
> mmtn mm<rnk' r,w «*«•** <# ««r <wo« 

$irln CmtraiTUbrarp' 
J FUuAKI | 

? • «*»•** S/7’3 % | 
^ 71 0-U3T>2. | 

. At.M*fr*N«> ‘ ^2.377 ^ 









By Harry W. Reddick 

DIFFERENTIAL EQUATIONS 

Second Edition 

By Harry W. Reddick and Frederic H. Miller 

ADVANCED MATHEMATICS FOR ENGINEERS 

Second Edition 



Harry W. Reddick 
PROFESSOR OF MATHEMATICS 

NEW YORK UNIVERSITY (UNIVERSITY HEIGHTS) 

SECOND EDITION 

NEW YORK • JOHN WILEY & SONS, INC. 

LONDON • CHAPMAN & HALL, LIMITED 



Copyright, 1943, 1949 

BY 

Harry W. Reddick 

All Rights Reserved 

This hook or any part thereof must not 
be reproduced in any form without 
the written permission of the publisher- 

SECOND EDITION 

Second Printing, July, 1950 

PRINTED IN THE UNITED STATES OP AMERICA 



This book deals with methods of solving ordinary differential 
equations and with problems in applied mathematics involving 
ordinary differential equations; it includes no treatment of par¬ 
tial differential equations. 

It has been my aim, in both the theory and the numerous 
illustrative examples, to achieve a clarity of explanation which 

will enable any student who desires to understand actually to 
do so. In the physical applications the importance of setting 
forth clearly the physical units involved is stressed, so that 

numerical results with proper units attached may be obtained. 
Changes in the second edition include a new chapter on the 

linear equation of second order and additional material on 

hyperbolic functions, systems of curves, and vibratory motion. 
The text has been rewritten and amplified in several places, 
and illustrative exercises together with nine new figures have 

been added in an attempt to improve the exposition. 
There has been a considerable increase in the number of 

problems. It should be a source of satisfaction to the student 

that answers are given to all of them. 
I wish to express my appreciation to Mr. William C. Shach- 

mut, of the National Lead Company Research Laboratories, 
Brooklyn, N. Y., for working over with me the material of 
Chapter 7. He has also proposed problems, which have been 

included in the second edition, particularly some of those in¬ 

volving electric circuits and vibratory motion. 
The book is suitable for courses of various lengths in both 

engineering and liberal arts schools. For a short course of two 
hours per week for one semester in an engineering school, the 
following selection has been found appropriate: Chapter 1; 

Arts. 11-17 and 21-24 of Chapter 3; Chapter 4 (omitting Art. 

37); Chapter 5; and Arts. 45-47 of Chapter 6. 

Harry W. Reddick 
New York, N. Y. 
June, 19Jf3 
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PRELIMINARY IDEAS 

1. Ordinary and partial equations; order and degree. The 
subject, differential equations, is a natural outgrowth of differ¬ 
ential and integral calculus. Differential calculus is concerned 
primarily with finding the derivative of a known function of a 
single variable. In integral calculus the inverse problem is 
paramount—that of finding the function of a single variable 
when its derivative is known. If y is an unknown function of 
x, but its derivative dy/dx is a known function f(x), the prob¬ 

lem is: Given dy/dx = f(x); find y, that is, fm dx. 

Now suppose that dy/dx is a known function of both x and y, 
or that a relation connecting x with y and its derivatives of 
any order is known; the problem of finding y is now a much 
broader one. We are thus led to the subject, differential 
equations, whose basic problem is: Given an equation con¬ 
necting x, y, dy/dx, d2y/dx2, • • •, dny/dxn; find a relation be¬ 
tween x and y, free of the derivatives. 

We shall call an equation containing one or more ordinary 
derivatives or differentials an ordinary differential equation; if 
the derivatives involved are partial derivatives, the equation is 
called a partial differential equation. Such equations are of 
great importance in applied mathematics, inasmuch as many 
problems arising in mathematical physics and in all fields of 
engineering are conveniently expressed in the language of 
differential relations. 

Examples of ordinary differential equations are 

(1) 
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d2y r 
<h2 ’ 

(2) 
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II O
 

(3) 

x dy + y dx + y2 dy = 0, (4) 

x dx + y dy — % dt, (5) 

(IT+3x» “7i* (6) 

2x3 %+y (IT+6x ■ ™ »• (7) 

Equation (4) appears as an equation involving differentials, 
but by dividing through by dx it may be written in the equiv¬ 
alent form, 

(.x + y2)-£ + y = 0. (4')-' 

Similarly, equation (5) may be written in the equivalent form 
involving derivatives, 

Examples of partial differential equations are 

|<N 

ii 
5ss|« (S) 

d2u d2u d2u . 

d? + dy2 + J? ~ U* 
(9) 

In the first of these, y is a function of the two independent 
variables x and t; in the second, u is a function of three inde¬ 
pendent variables x, y, z. 

Many problems of mathematical physics require partial 
differential equations for their formulation. For example, 
suppose that we wish to study the motion of a stretched string 
vibrating in a plane. We may take the x-axis along the string 
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when at rest, with the origin at one end of the string, then 
denote by x, y, the coordinates of any point P on the string. 
The displacement y of the point P depends not only on x but 
also on the time t, so that y is a function of the two independent 
variables x and t. The law which expresses this functional 
relation is given by the partial differential equation (8), whose 
solution exhibits y explicitly in terms of x and t. 

Equation (9) is Laplace’s equation; it arises in various prob¬ 
lems of mathematical physics. Partial differential equations 
are of great importance but will not be considered further in 
this book; * the term differential equation will henceforth mean 
ordinary differential equation. 

The order of a differential equation is the order of the 
derivative of highest order involved in the equation. For 
example, equations (1), (4) or (4'), (5) or (5'), and (6) are of 
first order; equations (2) and (3) are of second order; equation 
(7) is of fourth order. 

Sometimes the term degree is used in connection with a 
differential equation. In equation (6) the derivative dy/dx is 
squared. The equation is of second degree in dy/dx, but it 
is equivalent to the two first degree equations 

f; = V7s - 3xy, | = -V7x - 3xy. (6') 

Equation (7), although containing (dv/dx)2. is an equation of 
first degree7~snrrog it is of the first degree in its highest deriva- 
tivef IrTdealing with methods of solving differential equa¬ 
tion^ we shall confine ourselves to ordinary differential equa¬ 
tions of first degree in the highest derivative involved, except 
for equations like (6) where the equivalent first degree equa¬ 
tions can easily be obtained. 

2. Solutions. A solution of a differential equation is a 
functional relation among the variables, free of derivatives, 

* For a derivation of equations (8) and (9) together with a discussion of their 
applications, the reader is referred to Reddick and Miller’s Advanced Mathematics 
far Engineers, 2nd Ed., John Wiley & Sons, Chapters VII, VIII, and X. 
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which satisfies the differential equation. The most general 
such relation is called the general solution. By solving a differ¬ 
ential equation we shall mean, unless other conditions are 
specified, finding the general solution. A differential equa¬ 
tion is solved by the process of integration. 

Example 1. Solve 

(1) 

We first multiply by dx and obtain 

dy = x dx. 

Now, integrating both sides, we have 

y = 2*2 + c, (2) 

where C is an arbitrary constant. In integrating we do not add an 
arbitrary constant to each side, for that would give 

y + Ci = lx2 + C2, 

or 

y = h2 + C2 - Ci - \x2 + C, 

which is the same result as before, since the difference of two arbitrary 

constants is another arbitrary constant. 

A solution of (1) is y — \x2] another solution is y = \x2 + 3, etc.; 

but the general solution is y = \x2 + C, where C is an arbitrary con¬ 

stant. To verify that the relation (2) is a solution, we substitute it 

in (1), obtaining 

£(fs2 + C) = *, * 
X S3 x, 

an identity which verifies the solution. 

d2y 
Example 2. Solve 
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First multiplying by dx, we have 

d2y 

dx2 
dx — x dx. 

Integration of both sides now gives 

dy 

dx 
= |x2 + Ci. 

Multiplying by dx and integrating again, we find 

y = |z3 + Cix + C2, (4) 

which is the general solution, Ci and C2 being arbitrary constants. 
Other solutions which are not general are, for example, 

y = lx3 + Cx, y = %x3 + x + 6. 

An important inference may be drawn from the two preced¬ 
ing examples. We note that in Example 1 the differential 
equation is of first order, one integration is performed, and the 
general solution contains one arbitrary constant. In Example 
2 the differential equation is of second order, two integrations 
are performed, and the general solution contains two arbi¬ 
trary constants. We might infer that, for a differential equa¬ 
tion of nth order, since n integrations are involved in obtaining 
its general solution, the general solution must contain n arbi¬ 
trary constants. The inference is correct and we state it as 
follows: The general solution of a differential equation of nth 
order contains n essential arbitrary constants. 

This principle should be kept in mind when solving differ¬ 
ential equations, and used as a check on the number of arbi¬ 
trary-constants in the solution. Care should be exercised in 
order that the arbitrary constants appearing in a solution 
shall all be essential, that is, shall not be reducible in number by 
a mere change of notation. For instance, y — (Ci + C2)x 
cannot be the general solution of a differential equation of 
second order, for, although there are apparently two arbitrary 
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constants, Ci and C2, the sum Ci + C2 is also an arbitrary 
constant and can be denoted by K. By a change of notation 
the solution reduces to y — Kx, which contains only one 
arbitrary constant and is the general solution of a differential 
equation of first order. Likewise az + fcy + c = Ois not the 
general solution of a differential equation of third order, for the 
arbitrary constants a, b, c are not all essential. Dividing 
through by one of them, say c, and writing a/c — A, b/c = B, 
reduces the equation to Ax + By + 1 =0, which contains 
two essential arbitrary constants and is the general solution of 
a differential equation of second order. We now see that a 
solution of a differential equation of order n may contain any 
number of arbitrary constants from 0 to n inclusive; but only 
if it contains n essential arbitrary constants can it be the 
general solution. 

A particular solution or particular integral of a differential 
equation is obtained by assigning particular values to the 
arbitrary constants in the general solution. Thus 

y = ^c3 + 1, y = fa? + 2x + 5, 

are particular solutions of differential equation (3). It will 
appear in Chapter 4 that particular solutions may be obtained 
also in other ways. 

After reading the solutions of Examples 1 and 2 of this 
article, the thought may have occurred to the student: Why do 
we need a book dealing with methods of solving differential 
equations, since all that is necessary is to integrate? What is 
this more than integral calculus? These would be fair ques¬ 
tions if all differential equations were as easy to solve as the 
two just solved. It usually happens, however, that the dif¬ 
ferential equation cannot be integrated as it stands. The chief 
difficulty in solving it is in preparing it for integration. As we 
proceed we shall see that, for differential equations of various 
types, methods can be developed for putting the equation into 
such a form that integration may be applied and the general 
solution obtained. 



Article 2 

'Example 3. Solve 

3 + »-a/ 
This is an equation which a student familiar only with integral 

calculus might have difficulty in integrating. He might integrate the 
first term after multiplying through by dx, and obtain dy/dx, but 
how would he integrate the second term, y dx? The equation can be 
prepared for integration as follows. 

We first multiply the equation through by 2 dy (inserting in the 
first term a factor dx/dx, which equals unity) and obtain 

2fl>+2^-0- 
Now the first term is the differential of (dy/dx)2 and the second term 
is the differential of y2, so that integration yields 

where C\ is an arbitrary constant. We choose C\ instead of Cj as the 
arbitrary constant in order to make the next integration come out in 
neater form. 

We now transpose the term y2 and take the square root of both 

sides, obtaining 

dy , „ /7f2 “5 

Integration gives 

dy 

'cfr7 

± arc sin — = x + C2. 
w 

If we multiply by ±1 and take the sine of both sides, we have 

/r = sin [±(* + Ca)], 
w 

y = =fcCi sin (x + C2). 
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Changing the arbitrary constants, ±Cj to a, C2 to b. puts the solution 

in the form 
y = a sin (x + b). (8) 

This equation (8) contains two arbitrary constants, a and b, and is the 
general solution of the differential equation (5) of second order. 

When a differential equation is solved by different methods, 
different-looking solutions, which at first glance do not seem 
to be equivalent, may result; they may result also from allow¬ 
ing arbitrary constants to enter in different ways or from using 
different formulas of integration. If these different-looking 
solutions contain the proper number of arbitrary constants, 
however, and are all correct, they are equivalent. Any one of 
them can be reduced (at least theoretically) to any other one 
by a mere change of notation with respect to the arbitrary 
constants, leaving their number unchanged. For instance, if in 
the preceding example the first arbitrary constant had been 
chosen as Cx instead of C\ we would have had instead of (7), 

y = dzVCx sin (x + C2). 

Then, by changing ±VCi to a, C2 to b, we obtain (8). 
Again, suppose that, on arriving at equation (6), the left 

member had been integrated into an arc cosine. Then we 
would have had 

y ~ 
=F arc COS yy = x + C2, 

w 

~ = cos [t(x + C2)], 

y = Cx cos (x -I- C2). (9) 

Now at first glance (9) may not seem equivalent to (8). But 
if in (9) we change the arbitrary constants, Cx to —a, C2 to 
b -f 7t/2, we obtain (8). 
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We shall see in Chapter 4 that this same differential equation 
(5) may be solved by an entirely different method and the 
following solution obtained, 

y = A sin x + B cos x, (10) 

where A and B are arbitrary constants. Let us show that (10) 
is equivalent to (8). We multiply the right member of (10) by 

A2 + B2/^/ A2 + B2 and obtain 

~y — VA2 + B2 j"sin x—■■ ^ ■■■ - + cos x—j=JL==== 1 • (11) 
L Va2 + b2 VaF+b2* 

We now make a change of notation on the arbitrary constants, 
changing from the old pair A, B to a new pair o, b, related as 
follows: 

VA2 + B2 a, 
VA2 + B2 

= cos b, 
B 

Va2~+b2 
= sin b. 

It is permissible to call one of these fractions a cosine and the 
other a sine of the same angle since the sum of their squares is 1. 
Equation (11) now takes the form 

or 
y = a(sin x cos b + cos x sin &), 

, y = a sin (;x + b), 

which is equation (8). 
Hence (8), (9), and (10) are equivalent forms; any one of 

them may be taken as the general solution of differential 
equation (5). 

3. Hyperbolic functions. Frequently we shall have occa¬ 
sion to use hyperbolic functions, particularly the hyperbolic 
sine, cosine, and tangent. The hyperbolic functions, hyperbolic 
sine, hyperbolic cosine, etc., are connected with a hyperbola 
in a manner analogous to that in which the circular functions, 
sine, cosine, etc., are connected with a circle. Corresponding 
to the formulas of ordinary trigonometry, an analogous set of 
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formulas can be developed in hyperbolic trigonometry. In or¬ 
der to exhibit this analogy, the idea of sector area, rather than 

q of angle, is fundamental. 
Given a sector (Fig. 1) formed by 

two straight lines OA and OP, drawn 
from the origin 0, and the arc AP oi 
a curve. Let r = length of OP, 6 = 
angle AOP, and S — area of the sec¬ 
tor. If the sector takes an increment 
POQ due to an infinitesimal increase 

in the angle 0, the differential sector area is given by a for¬ 
mula from calculus: 

Fio. l 

dS = It2 dO. 

If OA is taken as x-axis and x, y are the rectangular coordi¬ 
nates of the point P, we have 

r2 = x2 -f y2, dB — d tan-1 - = —| ^, 
x x2 + y2 

and hence 
dS = \{x dy — y dx). 

Now consider a unit circle, x2 + y2 = 1, and a unit equi¬ 
lateral hyperbola, x2 — y2 = 1 (Fig. 2). Representing by u 

the sector area OPAP', with OA = 1, we shall express the rec¬ 
tangular coordinates x, y of P in terms of u. As the sector 
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opens out, P moves to Q and P' to Q'. Thus the increment in 
the sector area u is twice the area of POQ, and the differential 
sector area is 

du = x dy — y dx. 

Substituting first the value of y from the equation of the circle, 
then the value of y from the equation of the hyperbola, we 
have 

Foe the Chicle 

du — x ciV 1 — x2 — Vl — x2 dx 

—dx 

= vT^7' 

fx -dx 
u =* / —,    = coe 1 x, 

Jl Vl - X2 

x ■* cos u. 

For the Hyperbola 

du - x d\/H? — 1 — Vz2 — 1 dx 

~(vF=;-v*zri)d‘ 

dx 

= 

rz dx _ 

u=Ji = ln(x +v^I), 

= x "t" Vx2 — 1, 

e2u — 2xeu -h x2 = x2 — 1, 

x = ■ 
eu +e- 

= cosh ix. 

Thus, in order to express x in terms of u, we are led in the 
case of the circle to the familiar circular function, cosine. 
Usually we think of a cosine as being the cosine of an angle, 
but we could just as well think of it as being the cosine of the 
number representing an area. For instance, if OA — 1 in., 
the number of square inches in the circular sector u equals the 
number of radians in the angle POA, so that the length OB in 
the circle can be regarded as the cosine of either number. In 
the case of the hyperbola we arrive at the fact that x is the 
particular function of u: (e“ + c~u)/2. It is natural to call 
this, by analogy, the hyperbolic function, hyperbolic cosine, of 
u. Thus we have the first definition in hyperbolic trigonom¬ 
etry: 

. «“ + e_u 
cosh u — 

2 
(1) 
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Consider again the meaning of the equations 

x — cos u, x = cosh u. 

How do these equations check dimensionally? One does not 
take the cos or the cosh of square inches and obtain inches. 
Suppose that instead of the unit circle and unit hyperbola we 
had used the equations 

x2 + y2 = a2, x2 — y2 — a2; 

then we would have obtained 

u u 
x = a cos —, x — a cosh —• 

a2 a2 

Now, for a (in.) and u (in.2), the ratio u/a2 is a pure number 
whose cos or cosh is also dimensionless, so that x has the di¬ 
mension of a. When a — 1 (in.) we could write 

i u -i u u x = 1 cos — , x — 1 cosh —, 
l2 l2 

which check dimensionally, but it is customary to write merely 

x = cosu, x = coshw, 

with the understanding that x represents the number of inches 
in OB, and u the number of square inches in the sector area. 

In order to express y in terms of u, we have 

For the Circle For the Hyperbola 

y = Vl - x2 II 

i 
^

 

— 1 = V cosh2 u — 1 

= Vl — cos2 u -J- 
+ 2 + e-2“ 

4 

= sin u. 

e“ - e~u 

2 
= sinh u. 
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The second definition in hyperbolic trigonometry is 

e“ — e~u 
smh u —- 

2 
(2) 

The other four hyperbolic functions, hyperbolic tangent, 
hyperbolic cotangent, hyperbolic secant, hyperbolic cosecant, 
we define as follows, by analogy to the circular functions: 

sinh u 
tanh u — —-—, 

cosh u 

coth u =-, 
tanh u 

(3) 

(4) 

sech u = —-—, (5) 
cosh u 

csch u = —-— (6) 
smh u 

We regard these six definitions as defining the six hyperbolic 
functions also when u is negative. From these definitions the 
formulas of hyperbolic trigonometry may be derived. Follow¬ 
ing are some of the formulas frequently used which are deriv¬ 
able from definitions (1), (2), (3), and (5): 

cosh2 u — sinh2 u = 1, 

sinh (u + v) = sinh u cosh v + cosh u sinh v, 

cosh (u + v) = cosh u cosh v + sinh u sinh v, 

(7) 

(8) 

(9) 

d 
— sinh u — cosh u, 
du 

(10) 

— cosh u — sinh u, 
du 

(11) 

— tanh u = sech2 u, 
du 

(12) 

J~ sinh udu — cosh u, (13) 

J"cosh udu — sinh u, (14) 

/'tanh u du — In cosh u. (15) 
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4. Graphs of the hyperbolic and inverse hyperbolic functions. 
Tables giving the numerical values of the hyperbolic functions 
may be employed to construct the graphs of the functions. 
Thus with x and y as coordinates the curves y = sinh x, y = 
cosh x, y = tanh x are obtained as represented in Fig. 3. 

Reflection of these curves in the line y = x gives the inverse 
functions y = sinh-1 x, y — cosh-1 x, y — tanh-1 x, as in 
Fig. 4. 

All the functions in Figs. 3 and 4 are single-valued with the 
exception of cosh-1 x, Fig. 4(6). In order to make this func¬ 
tion single-valued, which is desirable in problems where differ¬ 
entiation or integration is involved, we choose the principal 
value, i.e., the value of the function on the upper half of the 
curve in Fig. 4(6), as the value of the function. The upper half 
of the curve [heavy line in Fig. 4(6)] is called the principal 
branch of the function. 

5. Some formulas involving inverse hyperbolic functions. 
Just as the hyperbolic functions can be represented in exponen¬ 
tial form, so the inverse functions have equivalent logarithmic 
forms: 

sinh-1 x = In (x + Vx2 + 1), (1) 

cosh-1 x = In (x + Vx2 - 1), principal value, (2) 

i u-i 11 1 + # tanh 1 x = - In- (3) 
2 1 — x 

We now derive formula (2), leaving the derivation of (1) 

and (3) as Prob. 11. 
If y — cosh 1 x, 

then ev _|_ e-v 
x = cosh y = ^ 

Hence 
ev - 2x + e-* = 0 

or, multiplying by ev, 

e2v - 2xev + 1=0. 
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Solving for ev by the quadratic formula, we obtain 

2x ±V4x2 — 4 /r-5-- 
ev —-= x ±vx“ — 1. 

2 

Choosing the larger of these values of ev to obtain the principal 
value of y, we have 

that is, 
y = hi (x + — 1), 

cosh-1 x = In (x + Vx2 — l). 

The derivatives of these inverse functions and the corre¬ 
sponding integral formulas are 

/* /V» 

sinh-1 x, (4) 

cosh-1 x, (5) 

t,anh-1 x. (6) 

d 
— sinh 1 x = 
dx 

i r dx 

VI + X2 ’ J Vl + x2 

cosh-1 x — 
dx 

1 r dx 

Vx2-1’ J Vx2 — 1 
II 

T 1 1 r dx 

1 -x2’ J 1 - X2 

We derive formula (5), leaving the derivation of (4) and (G) 
as Prob. 12. 

If 
y - cosh-1 x, 

then 
x — cosh y 

and 

— = sinh?/ = ±Vcosh2 y - 1 = ±Vx2 — 1. 
dy 

Choosing the upper sign, since the slope of the upper half of 
the curve, Fig. 4(6), is positive, we have 

1 

and 

dy d 

dx dx Vi2 — 1 

/ dx 

Vx2 — 1 
— cosh 1 x. 
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The same result could be obtained, of course, by differentiat¬ 
ing the equivalent logarithmic form: 

d d __ 
— cosh 1 x = — In (x + V x2 — 1) 
dx dx 

x 

* Vx2 — 1 1 

~ X + Vxr-~1 ~ 

PROBLEMS 

Solve 
, s dn 
(a) — = cost; 

dx 

,.v d*y 

Solve 
dy dx 

1 + y~ it*** 
obtaining the general solution in algebraic form. 

3. Determine the order of the differential equation of which each of the 

following equations is the general solution: 

(а) Ax2 + Bxy + Cy2 + Dx + Ey + F — 0 (the general equation of a 

conic); 

(б) x cos2a + y = cx2 — x sin2 a, where a and c are arbitrary constants; 

(c) the general equation of a circle. 

4. Solve 

ay + b ax + b 

Here a and b are given constants and will appear, together with the arbitrary 

constant, in the solution. 

5. Solve 

dx2 yz 

6. Derive formulas (7) to (15) of Art. 3. 

7. Solve 
d2y 

dx2 
~ V 0. 

Show that 

(a) y = Aex + Be~*} (6) y = M sinh x + N cosh x, 

(c) pa sinh (x + 6), (d) y — c cosh (x + d), 

are all equivalent forms of the general solution. 
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8* Find the area in the first quadrant between the curves 

y = sinh xf y = cosh x. 

9. Find the distance from the origin to the point on the y-axis from which 
tangents drawn to the curve, y = cosh x, are perpendicular to each other. 

10. Find the area in the first quadrant between the curve y = tanh x and 
its asymptote. 

11. Derive formulas (1) and (3) of Art. 5. 
12. Derive formulas (4) and (6) of Art. 5. 
13. jFind the area bounded by y = sinh x, y = tanh x, x — sinh”11. 
14. Find the logarithmic equivalent of coth”1#, draw the curve y = 

coth”1 x, and find the values of y and dy/dx when x = — 2. 
16. Find the coordinates of the point of inflection on the principal branch 

of the curve y = a cosh”1 (a/x). 
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THE FORMATION OF DIFFERENTIAL EQUATIONS 

6. An inverse problem. Before proceeding with the devel¬ 
opment of methods for solving differential equations, we shall 
consider in this chapter the inverse process, that is, the forma¬ 
tion of the differential equation by eliminating the arbitrary 
constants from its general solution. For the case of two 
variables the problem may be stated thus: Given an equation 
involving two variables and n arbitrary constants; find the 
differential equation (of nth order) of which the given equation 
is the general solution. This is usually an easier problem than 
the direct process of solving a given differential equation. 

There are, of course, other ways in which a differential equa¬ 
tion may be obtained. For example, the expression of a 
geometric property of a family of curves may lead directly to 
a differential equation. Furthermore, the exact formulation 
of a physical problem from mechanical principles often produces 
a differential equation. Both these processes will be encoun¬ 
tered in our later work. 

We now take some of the examples of Chapter 1, and pro¬ 
ceed from the general solution to the formation of the differ¬ 
ential equation; the process may be regarded as a method of 
proving the correctness of the general solution. We shall also 
form some differential equations for which the methods of 
solution are given in succeeding chapters. 

7. Elimination by differentiation and combination. Some 
examples will illustrate the method. 

Example 1. Eliminate the arbitrary constant from the equation 

y = \x2 + C. 
j» 
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Differentiating once, we obtain 

dy 

dx 
x. 

In Example 1, Art. 2, we solved the second equation, obtaining the 
first as solution. Here we perform the inverse process and form the 

differential equation from its solution. 

Example 2. Eliminate the arbitrary constants from the following 
equation, or, in other words, obtain the differential equation of which 

the following equation is the general solution: 

y = i^3 + Cix + C2. 

Differentiating twice, since there are two arbitrary constants to 
eliminate, we have 

dy 

dx 
= \x2 + Ci, 

d2y 

d? = 

thus forming by differentiation the differential equation whose solu¬ 
tion was found in Example 2, Art. 2, by the process of integration. 

If a differential equation could always be solved like d2y/dx2 
= x, by mere integration and addition of an arbitrary constant 
at each integration, without reduction or change of form, then 
the reverse process could be carried out as in the previous ex¬ 
ample; differentiation of the solution as many times as there 
are arbitrary constants to be eliminated would produce at 
once the differential equation free of arbitrary constants. 
However, in solving a differential equation, we usually apply 
processes of simplification at various stages of the solution, 
which mix up the arbitrary constants and variables in such a 
way that mere differentiation of the solution will not auto¬ 
matically eliminate the arbitrary constants and produce the 
differential equation. 
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Example 3. Form a differential equation by eliminating the 
arbitrary constants from the equation 

y — a sin (x + b). (1) 

Two differentiations give 

—■ = a cos (x + 6), (2) 

d2y 
dx2 

—a sin (x + b). (3) 

We notice that the right member of (3) is the negative of the right 
member of (1), so that by adding these two equations we eliminate a 
and b at once, obtaining 

d2y 

dx2 
+ y = o, (4) 

which is the differential equation whose solution (1) was found in 

Example 3, Art. 2. 

In the above example the arbitrary constants did not dis¬ 
appear automatically after two differentiations of the original 
equation. We had three equations, the original (1) and the 
two obtained from it by differentiation, (2) and (3), from which 
it was necessary to eliminate the constants a and b. In this 
case the elimination was effected by combining (1) and (3) 
without using (2); usually all the equations must be used, that 
is, the original equation and those obtained from it by differen¬ 
tiation. 

It may be noticed that in this example the inverse process of 
finding the differential equation when the solution is given is 
much shorter than the direct process shown in Art. 2, of find¬ 
ing the solution when the differential equation is given. Given 
the solution (1), we find the differential equation (4) in three 
steps. One might say, “Why not reverse the steps, starting 
with the differential equation (4)?” But the first step back¬ 
ward cannot be taken; the differential equation was found by 
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elimination, and elimination is a process which covers up its 
tracks—it is irreversible. 

Example 4. Eliminate the arbitrary constants from 

y = Ae2x + Be~x. (5) 

Differentiating twice and using primes to denote differentiation 
with respect to x, we have 

y' = 2Ae2x - Be~x, (6) 

y" - 4Ae2x + Be~x. (7) 

Adding (5) and (6), then (6) and (7), we thus eliminate B: 

y + y' = 3.4 c2*, (8) 

y" + y! = 6 Ae2x. (9) 

Now multiplying equation (8) by 2 and subtracting from equation (9) 
eliminates A and gives 

y" - y' - 2y = 0, (10) 

which is the required differential equation whose solution is (5). 

This process may be regarded as a method of proving that 
(5) is the general solution of (10). However, if (5) and (10) 
were both given, we could verify that (5) satisfies (10) by 
merely differentiating (5) and substituting in (10), obtaining 
an identity. Thus, substituting (5), (6), and (7) in (10), we 
have 

4Ae2x + Be~x - 2Ae2x + Be~x - 2Ae2x - 2Be~x = 0. 

The foregoing examples illustrate the method called elim¬ 
ination by differentiation and combination, which consists in 
combining the original equation and those obtained from it by 
differentiation, in such a way as to eliminate the arbitrary 
constants. It is understood that differentiation of the origi¬ 
nal equation must be performed exactly the number of times 
equal to the number of arbitrary constants to be eliminated. 
Of course, only as many of the equations so formed need to be 
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combined as are necessary to effect the elimination. The first 
two examples illustrate the special case where only one of 
these equations itself expresses the result of the elimination. 

8. Isolation of constants. We now give a variation in the 
solution of Example 4, Art. 7, in which at each stage before 
differentiation one of the arbitrary constants is isolated, i.e., 
stands in a term unaccompanied by a variable, so that it will 
disappear on differentiation. 

Example 1. (Second solution of Example 4, Art. 7.) Eliminate 
the arbitrary constants from 

y = Ae2x + Be-*. *■ 

Multiplying by e* we isolate B: 

exy = Ae3x -f B. 
Differentiation gives 

ex(y' + y) = 3Ae3*. 

Multiplying by e-3*, we have 

e~2x(y' + y) = 3 A. 
Differentiating again, 

e-2x(y" + y'~ 2y' - 2y) = 0, 
or 

y" - y' - 2y = 0. 

This last step illustrates the fact that, when we are forming a dif¬ 
ferential equation, we may cancel out a factor not containing a 

derivative. 

In some cases it may be desirable not to isolate one of the 
constants, yet by multiplying the equation through by a factor 
we may obtain another equation from which it is simpler to 
eliminate the constants. 

Example 2. find the differential equation whose general solu¬ 
tion is 

y = e~2x(A cos x + B sin x). (1) 
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Multiplying by e2x, we have 

e2ly = A cos x + B sin x. (2) 

Two differentiations give 

e2l{y' + 2y) = — A sin x + B cos x, (3) 

e2x{y” + 4y' + 4y) = —A cos x — B sin x. (4) 

Thus, the effect of multiplying the; original equation by e2x was an 

equation (2) whose right member reproduced itself, apart from sign, 

after two differentiations. Adding equations (2) and (4), we obtain 
the required differential equation 

y" + 4/ + 5y = 0. (5) 

In the previous examples y is expressed explicitly in terms of 
x and arbitrary constants. It may happen, however, as in the 
next example, that the given equation expresses an implicit 
relation between the variables, which it may not be practicable 
to solve for one of the variables. 

Example 3. Eliminate the arbitrary constant C from 

xy - C{x* + y5). 

We may isolate C by dividing by x5 + y5 or by Cxy; the latter gives 

= 1. 
y x C 

Differentiating, we have 

4ar3y - x4y' 4xy3y' - y4 

y2 + x2 

or 
x(4y5 - x5)y' + 2/(4.r5 - y5) = 0, 

which is the required differential equation. 

9. Elimination by determinants. This method depends on 
a proposition in algebra: In order for a system of n + 1 linear 
equations in n unknowns to be consistent, the determinant 
formed from the coefficients of the unknowns and the terms 
free of the unknowns must vanish. 
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In the case, say, of four linear equations in three unknowns, 
the proposition can be stated thus: In order that the system of 
equations 

a,\X + b\ y + C\Z + d\ =0, 

a2x + b2y + c2z + d2 = 0, 

a3x + b3y + c3z + d3 = 0, 

(i.\X -f- b4y C4Z -)- c?4 =0, 

be consistent, we must have 

ax bx Cl dx 

a2 b2 c2 d2 

03 b3 Cs d3 

04 h C4 d4 

(2) 

In other words, (2) may be regarded as the result of eliminating 
the unknowns x, y, z from (1). 

Suppose now that we have an equation involving x, y, and, 
say, three arbitrary constants, A, B, C, from which the three 
constants are to be eliminated. In order to apply the above 
proposition to our problem we differentiate this equation three 
times, having then, in all, four equations from which the three 
quantities, A, B, C, are to be eliminated. The quantities 
A, B, C, to be eliminated, take the place of x, y, z in equations 
(1); the coefficients of A, B, C, and the terms free of A, B, C 
are the elements of the determinant (2). 

Example 1. Eliminate the arbitrary constants from 

y = Ax2 + Be* + Ce~2x. (3) 

Differentiating three times, we have 

y' = 2Ax + Be* - 2Ce~2x, 

y" = 2 A + Be* + 4 Ce~2x, 

y'" = Be* - 8Ce~2*. 
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The result of eliminating A, B, C from these four equations is 

y x2 ex e~2x 

y' 2x ex — 2e~2x 

y" 2 ex ie~2z 

ym 0 ex —8e~2x 
or 

y x2 1 1 

y' 2x 1 —2 

y" 2 1 4 

y"' 0 1 -8 

In forming this determinant we notice that all the coefficients of any 
one of the letters A, B, C must appear in the same column, but the 
order in which the columns are set down is immaterial, since any 
change in order of columns could at most change only the sign of the 
determinant; also any factor not containing a derivative may be 
cancelled from a column or row, since this factor could be taken out¬ 
side as a factor of the determinant. 

Equation (4) is really the differential equation required, but in 
determinant form. If we wish the result in the usual form of a dif¬ 

ferential equation we must develop the determinant. We may 
obtain two more 0’s in the fourth row by the following manipulation: 
Replace the first column by itself minus y'" times the third column; 

replace the fourth column by itself plus 8 times the third column; now 
all the elements of the fourth row are 0 except the third one which is 1, 
and (4) reduces to 

y -y'" x2 9 

y' - y"r 2x 6=0. 

y" - y'" 2 12 

Dividing 3 out of the third column, and developing with respect to 
the first column, we have 

(y - y'")(8x - 4) - (|/' - y"')(ix2 -6) + (y" - y"'){2x2 - 6z) = 0, 

or 

(x2 - x - I)?/'" + (x2 - Zx)y" - (2x2 - 3)j/' + (4x - 2)y = 0, 

which is the differential equation whose general solution is (3). 
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PROBLEMS 

Eliminate the arbitrary constants from the following equations, encoun¬ 

tered in Chapter 1, and thus obtain the corresponding differential equations. 

1. y — Ci cos (x + C2). 
2. y — A sin x + B cos x. 
3. y - x4 + C\x2 + C& + C3. 

4. y = x 4- C(1 + *y). 
6. x cos2 a y — cx2 — x sin2 a. 

6. (x ~ a)2 + (y — 6)2 = r2. 
7. (ax + b)(ay + b) — c (c arbitrary). 
8. (ax + b)(ay + b) = c (a, b, c arbitrary). 

9. y = Ac* + 
10. y = a sinh (x + b). 

Eq. (9), Art. 2. 
Eq. (10), Art. 2. 

Prob. 1(b), Art. 5. 

Prob. 2, Art. 5. 
Prob. 3(b), Art. 5. 

Prob. 3(c), Art. 5. 
Prob. 4, Art. 5. 

Prob. 7(a), Art. 5. 
Prob. 7(c), Art. 5. 

Find the differential equations from the following general solutions. 

11. (x2 + a2) 7/ = arx2. 
12. y = Aex+V + Be~x+V. 

13. y — Aex + Be~2x + Ce2x. 

14. (x + by + 9)4 - C(x + 2y + 3). 

15. tanh Q + |) = V3 tan ^ ~~ x + • 

16. y = Ac1/VI + 

17. 2/ = AVT + z2 + Bx. 

18. y = A (l + x + ~) + Bex. 

19. y = A(cos x + x sin x) + B(sm x — x cos x). 
^ . sinh x , _ cosh x 
20. y = A-h £- 

x x 
21. y = A cos 2x cosh (2x + a) + B sin 2x sinh (2x + 0), where A, Bf a, 

and /3 are arbitrary constants. 

22. 2/ = e*2 (Cl + C2ye-*s do:)- 

/• e*3'8 dx 
23. y * Cix / —^-h C2x. 

24. Find the differential equation whose general solution is 

y — Axn + Bxl~n, 

(a) if A, B are arbitrary; (6) if A, B, n are arbitrary. 
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10. The differential equation of a family of curves. The 
equation 

x2 + y2 = C (1) 

represents a family of circles. For instance, if C = 1 it is a 
circle of radius 1; if C = 2 it is a circle of radius y/2, etc. If C 
is an arbitrary constant, capable of taking on an infinity of 
different values, the equation represents an infinite family 
of concentric circles centered at the origin. If all the circles 
are to be real, C is arbitrary in a certain range, namely, C ^ 0. 
A. symbol, such as C in equation (1), which is constant for any 
one curve, but which can take on an arbitrary number of 
different values, is called a parameter. A family of curves, such 
as (1), which contains one parameter, is called a one-parameter 
family, or a singly infinite family, or a family of oo1 curves, the 
exponent on the oo indicating the number of parameters in 
the equation of the family. Thus we may say that in a plane 
there are oo1 concentric circles with fixed center. 

How many circles are there in the xy-plane with centers on 
the x-axis? The answer is oo2, since the equation of such a 
family is (2 — a)2 + y2 = r2, where a and r are arbitrary con¬ 
stants or parameters. The differential equation of the family 
is of second order, since two arbitrary constants will have to be 
eliminated to produce it. 

On the other hand there are only 001 circles of radius 1 with 
centers on the 2-axis; the equation of this family is (2 — a)2+ 
y2 = 1, containing only one parameter, and the differential 
equation will be of first order. The phrase, “in the 2j/-plane,” 
is always understood in such an example, since we are dealing 
with only two variables. 

In general, an n-parameter family of curves will be repre¬ 
sented by a differential equation of nth order. To obtain the 
differential equation of the family, we write, by analytic 
geometry, the equation of the family containing the proper 
number of essential parameters, then eliminate the parameters 
by one of the methods explained in the preceding articles. 
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Example 1. Find the differential equation of the family of circles 
concentric about the origin. 

The equation of the family of circles is 

x2 + y2 = C. 
Differentiating, we have 

xdx + y dy — 0, 

or 
dy x 
— + - = 0, 
dx y 

which is the differential equation required. 

Example 2. Find the differential equation of all circles with 

centers on the x-axis. 
The equation of the family is 

(x - a)2 + y2 - r2. 

Differentiating twice, we have 

then 

x - a + yy' = 0, 

l + yy" + y'2 = 0, 

which is the required differential equation. 

Example 3. Find the differential equation of (a) all vertical parab¬ 

olas, i.e., parabolas with vertical axes; (b) all vertical parabolas 

with vertices on the line y = x. 
There are oo 3 vertical parabolas. The equation of the family may 

be written in either of two ways: 

y — k = a(x — h)2, y = Ax2 + Bx + C. 

Using the second form, and differentiating three times, we have 

y' - 2Ax + B, 

y" = 2A, 

y"' = 0. 

The last equation is the answer to part (a). 
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For part (b) we use the first form, (h, k) being the vertex of the 
parabola. The condition requires that k = h; hence the equation is 

y — h = a(x — h)2, 

which represents a two-parameter family. Differentiating twice, we 

have 
y' = 2a(x - h), 

y" = 2a, 
from which 

. _v” i _ yf a — , x h — . A = 2/ - x + 
y 

2 ’ jr r 
Substituting these values in the original equation, we have 

, y' y'2 
y — x H-=-, 

2/" 2 y" 

or 

2(y - *)?" = y'2 - 2i 

which is the answer to part (b). 

PROBLEMS 

Find the differential equations of the following families of curves. 
1. Circles with centers on the ij-axis. 
2. Circles of fixed radius r, with centers on the x-axis. 
3. Circles with centers on the line y = x. 

4. Circles passing through the origin, with centers on the line y = x. 
6. Circles tangent to the y-axis at the origin. 
6. Circles tangent to both coordinate axes, with centers on the line y = x. 
7. Circles with centers on the x-axis, and tangent to the lines y — dbx. 
8. Circles with centers on the i/-axis, and tangent to the lines y = dbx. 
9. Parabolas with axis on the x-axis. 

10. Parabolas with axis on the x-axis and focus at the origin. 
11. Horizontal parabolas tangent to the y-axis. 
12. Vertical parabolas passing through the point (a, b). 
13. The probability curves, y = (h/\/lr )e~h2x\ 
14. The family of tractrices 

=b(x + C) = Vk2 — y2 — k cosh-'1 -, 
y 

where k is a fixed constant and C is arbitrary. 
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15. Find the differential equation of (a) the doubly infinite family of 
catenaries, y = a cosh [Or — b)/a]; (b) the triply infinite family of catenaries, 
y « a cosh [($ — b)/a] + c. 

16. Find the differential equation of all parabolas tangent to the y-axis at 
the origin. 

17. Write (a) in rectangular coordinates, (b) in polar coordinates, the equa¬ 
tion of the family of all circles passing through the origin. Find the differ¬ 
ential equation in each case, and transform one differential equation into the 
other. 

18. Find the differential equation of the family of hyperbolas having (a) 
asymptotes parallel to the coordinate axes; (b) asymptotes parallel to the 
coordinate axes and centers on the line y = x. Show, from the two differ¬ 
ential equations, without using their general solutions, that every solution of 
the second differential equation is a solution of the first. 

19. In Prob. 3(a), Art. 5, we found from the general equation of a conic 
that the differential equation of all conics is of the fifth order. This differ¬ 
ential equation may be found by dividing out one of the constants in the 
general equation (or, what amounts to the same thing, putting one constant 
equal to unity), then differentiating five times, and eliminating the five 
essential constants from the six equations by means of a determinant of the 
sixth order. The result comes out surprisingly simple. There is a shorter 
method, however, due to Halphen. (See Goursat-Hedrick-Dunkel, Maths- 
matical Analysis, Vol. II, Part II, p. 5.) Find the differential equation of the 
conics by one of these two methods. 

20. Find the differential equation of all parabolas. Show, from this differ¬ 
ential equation and that of the conics, Prob. 19, that every solution of the 
former is a solution of the latter. 
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DIFFERENTIAL EQUATIONS OF FIRST ORDER 

11. Introduction. In this chapter we consider various types 
of differential equations of first order and the methods of solv¬ 
ing them, together with their physical and geometric applica¬ 
tions. A first order differential equation involving only two 
variables x and y, and of first degree in the derivative dy/dx, 
can be written, in differential form, 

M dx + N dy - 0, (1) 

where M and N are, in general, functions of x and y. 
12. Separable equations. If, in equation (1), Art. 11, M is a 

function of x only (or a constant) and N is a function of y only 
(or a constant), the equation has its variables separated and 
can be integrated at once. A differential equation which can 
be written in the form 

M(x) dx + N{y) dy = 0- (1) 

is called separable. 

Example 1. Solve 
dy _ x 

dx y 

Separating the variables, we have 

x dx — y dy — 0. 
Integration gives 

J_y2_ = c 
2 2 2’ 

or 

*2 - y2 - c, 
32 
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which is the general solution. The constant of integration can be 
written as any function of C; here we chose C/2. 

Example 2. Solve the following differential equation, obtaining 
the general solution in algebraic form, and prove that the solution is 
correct: 

(1 + y2) dx + (1 + x2) dy = 0. (2) 

We first write the equation in the form 

Integration then gives 

dx t dy 

1 + x2 +1 + V2 
= 0. 

arc tan x + arc tan y = arc tan C. 

Here we choose the constant of integration in the form arc tan C, 

since in the next step we are going to take the tangent of both sides 
in order to express the result in algebraic form. In doing this we 
apply the formula for the tangent of the sum of two angles, namely, 

tan (a + 0) 
tan a + tan /3 

1 — tan a tan & ’ 

with a — arc tan x, j3 = arc tan y, and obtain 

or 

x + y 

1 - xy 
(3) 

x + y = C(1 - xy), (4) 

which is the required solution. 
The solution may be proved correct either by eliminating C from 

the solution (4) and producing the differential equation (2), or by sub¬ 

stituting in (2) the values of y and dy/dx obtained from (4), thus pro¬ 

ducing an identity in x. 
By the first method, writing (4) in the form (3) and differentiating, 

we have 
(1 - xy)(dx + dy) + (x + y){x dy + y dx) = 0, 

(1 + y2) dx + (1 + z2) dy = 0, 

which is equation (2). 
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By the second method we have, from equation (4), 

C - x dy _ 1 + C2 

V ~ 1 + Cx ’ dx (1 + Cx)2 ’ 

t , 2 (1 + Cx)2 + (C - x)2 (1 + C2)(l + z2) 

(1 + Cx)2 (1 + Cx)2 

Substitution of these values for 1 + y2 and dy/dx in equation (2) pro¬ 
duces an identity. 

In the next example and frequently thereafter we shall have 
occasion to take antilogarithms of both sides of an equation in 
order to reduce it to an equation free of logarithms. Suppose, 
for example, that we wish to remove the logarithms from the 
eauation 

2 In x — 3 In y — In C + sin x (5) 

by taking antilogarithms of both sides. This means that we 
must write an equation such that, if we should take logarithms 
of both sides of it, we would have equation (5). 

Let us see whence each term of equation (5) would come, by 
the process of taking logarithms: 2 In x from x2, 3 In y from y'\ 
the difference 2 In x — 3 In y from the fraction x2/y3; In C from 
C, sin x from csin x, the sum In C + sin x from the product 
Ce?m x. We can therefore remove the logarithms from an equa¬ 
tion by properly changing coefficients to exponents, differences 
to fractions, sums to products, and terms free of logarithms to 
exponentials. Taking antilogarithms, equation (5) becomes 

~ = Ce™ x. (6) 
y 

In applying this process to an equation having one member 
zero, it must be remembered that antilog 0 = 1. Thus, if 
equation (5) is written in the form 

21n* — 3 In 2/ — sin a: — InC = 0, 



Article 13 35 

we have, on taking antilogarithms, 

= 1, 
x2e~aiax 

Cy3 

which is the same as equation (6). 

Example 3. Solve 

2y cos y dy = y sin y dx + sin y dy. 

Transposing the last term to the left side and dividing by y sin y, 
we have 

Integration yields 
(* = dx. 

2 In sin y — In y — x + In C. 

Then, taking antilogarithms, we obtain the general solution in the 
form 

sin2 y — Cyex. 

13. Particular solutions and particular values. It happens 
frequently that we are more interested in a particular solution 
of a differential equation, which satisfies a prescribed condi¬ 
tion, than in the general solution; or our chief interest may be 
in finding a particular value of one of the variables correspond¬ 
ing to an assigned value of the other. 

Example 1. Suppose that we wish to find the solution of the 
differential equation 

dx , , 
— - 1 + 2x, (1) 
dl 

which satisfies the condition x — when t = 0, and that we also 
wish to find the value of x when t — 1. 

We may proceed as follows: Separating the variables, we have 

Integration then gives 

dx 

1 + 2x 
— dt. (2) 

£ In (1 + 2x) = t + C. (3) 
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The condition, x = t = 0, determines C: 

J- In 2 = C. 

Equation (3) then becomes 

1 1 + 2x 
-In-= t, 
2 2 

1 + 2x = 2e2t, 

x = e2t - (4) 

the required particular solution. We then find the value of x corre¬ 
sponding to t — 1: 

x]t=i - e2 - £ = 6.89. 

Instead of finding the general solution (3) and determining the 
value of the arbitrary constant, we could have integrated equation (2) 

between limits. Integrating between the known pair of values 
(■£, 0) and the general pair (r, t), we have 

r—-r* JX 1 + 2x Jo 

iln(l + 2*)]‘ -C 
1 Id* 2x 
-In-- t, 
2 2 

If, however, we are interested only in the value of x when t = 1, 
it is not necessary to find the particular solution (4). We can inte¬ 
grate equation (2) between the limits (■£, 0) and (x, 1), thus: 

r--r*. I + 2x Jo + 2x , 

1 +2x 

x — e2 — i = 6.89. 
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Example 2. Suppose that the derivative dx/dt is proportional to 
x} that x = 5 when t = 0, and that x = 10 when t = 5. What is the 
value of x when t = 12? 

The differential equation is 

where k is an unknown constant of proportionality which, together 
with the constant of integration, makes two constants to be deter¬ 

mined from the two given conditions. We shall solve the problem by 
two methods. In the first method, we determine both k and the 
constant of integration; in the second method we neither determine 
the value of k nor use a constant of integration. 

First method. Separating the variables, we have 

— = kdt. (5) 
x 

Integrating 
’ In x = kt + C. ((>) 

The condition, x = 5, t = 0, gives In 5 = C, so that (6) becomes 

(7) 

The condition, x = 10, t = 5, now determines k — ^ In 2, and (7) 

becomes 
X t 

In - = - In 2, 
5 5 

or 

z = 5'2'/5. 

Then 

*ki2 = 5'22'4 = : 

Second method. Integrating equation (5) between (5,0) and (10,5), 

then between (5, 0) and (x, 12), we have 

r10dx r ■6 
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Dividing the second result by the first, we find 

In 2 5 

x = 5-22,4 

2.4, 

2C.4. 

Example 3. ' Given the differential equation 

find (a) the general solution; (b) two curves through the point (1, 4) 
satisfying the differential equation. 

(a) Taking the square root of both sides and separating the varia¬ 
bles, we have 

= dx. (8) 
dy 

dt's/y 

Integration gives the general solution 

or 
±2 \/y = x + C, (9) 

(10) 

We could solve equations (8) separately and obtain 

2V^ = x + Ci, -\/2 y = x + C2. (11) 

It might seem then that the general solution of the original differential 
equation contains two arbitrary constants, C\ and C2. But giving 
Ci and C2 arbitrary values in (11) yields the same system of curves 
that is obtained by giving C arbitrary values in (9) or (10). Hence 
Ci and C2 are not both essential and can be replaced by C. To each 
value of C correspond two curves of the general solution. 

(6) Letting x = 1, y = 4 in (10) we obtain the values of C for 
which the curves of the general solution pass through the point (1, 4): 

-m 1 + C = ±4, C = 3 or -5. 
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Hence the required curves are 

(x + 3\2 (x - 5\2 

y = \rr-)> y = \—) 
PROBLEMS 

Solve the following differential equations, and prove that the solutions are 
correct. 

1 ^ = % 
* dx x 

2. 2 sin x cos y dy — cos x sin y dx. 

3. Vl — y2dx + V1 — x2 dy = 0 (algebraic solution). 

4. 
dx 

5. y(x2 dy — t/2 dx) = x2 dy. 

Find the particular solutions of the following differential equations, satis¬ 

fying the prescribed conditions. 

* dy , x \ .. 
6. ~ x = - (x — 2, y — 0). 

dx 2/ 
m. dy . . 
7. x~ = y - xy {x = 1, y = 2). 

dx / dx \ 
8. a— = 6 + cx (-- = 1, £ = 0) . Express x in terms of t. 

dt V rft / 

9. x cos y dx + x2 sin y dy — a2 sin y dt/ ( x = - , y = - ) • 
dx V ^ b/ 

10. ~ = k( 18 - 9x + x2) (x = 0, t = 0) (x = 2, t = 10). 
dt 

dx 
"11. If -— = 6 — 3x, and x = 0 when i = 0, find the value of x when t = 1. ~ 

at 
x dv 

12. If - ~ + 1 = 3y2, and y = 1 when x = 2, find the positive value of y 
y dt 

corresponding to x = f. 
dx 

13. If ~r = (1 — x)(3 — x), and x = 0 when t = 0, (a) find the value of 
dt 

t when x = §; (6) find the value of x when t — 
dx 

14. Given « k(fi — x)2, with x = 0 when t ~ 0 and x — 2 when t = 10. 
dt 

Find the value of x when t - 15. 
du 

16. If — + Aw * 0, ^ = uq when t = 0, w = w0/2 when J =* 16, u « mt0 
dt 

when £ = 2, find the value of n. 
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16. Find a curve through the origin whose slope is given by 

(a) 
dy 

dx 

y2 + 2y + 4 . 

x2 + 2x + 4 ; 
y + 2 
x + 2 

Wliy are the answers to (a) and (b) the same? 
17. Find a curve satisfying the following differential equation in polar 

coordinates and passing through the point (3, tt/3) : 

18. Solve 

19. Solve 

dp 

JdB 
P2- 1 

P2+“ 1 
tan 6. 

dy _ x — xy2 

dx = 87+2xV 

tan x + tan2 x. 
dx 

20. Solve 

21. Solve 

22. Solve 

(1 - xy)(dx + dy) + (x - y)(dx - dy) = 0. 

y dx 
t, ~ x dy + y dx. 

l + y+y2 

2 cosh x ~ = 1 + ?/2, 
dx 

and show that the particular solution which satisfies the condition (x = 0, 

y - 0) is 

y = tanh^- 

23. Find the abscissa of the point where the curve y = ex cuts the curve 
represented by the particular solution of 

dx x In x 
(x = e, y = 1). 

Show that the ordinate of the point is a number of more than 1,650,000 
digits. 

24. Given the differential equation 

find (a) the general solution; (b) two curves through the point (4“^, *) satis¬ 
fying the equation. 
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25. Find two curves through the point (1, 2) satisfying the differential 
equation 

'14. Dynamics. We consider now some physical problems 
which require the solution of separable differential equations. 

Newton’s second law of motion states that the rate of change 
of momentum of a particle is proportional to the force acting 
on it and is in the same direction as the force. Thus, if a par¬ 
ticle of constant mass m moves with varying velocity v under 
the action of a force F, we have 

d dv 
F = k-r (mv) = km -■ , (1) 

at dt 

where dv/dt is the acceleration of the particle and k is a con¬ 
stant of proportionality depending on the system of units em¬ 
ployed. When cgs (centimeter-gram-second) units are used, 
so that mass is measured in grams and acceleration in centi¬ 
meters per second per second, we may take F in dynes, so that 
k = 1, or we may take F in grams, so that k = 1 /g, where 
g is the gravitational constant, approximately equal to 980.5 
cm/sec2. When fps (foot-pound-second) units are used, so 
that mass is measured in pounds and acceleration in feet per 
second per second, F may be measured in poundals, making 
k = 1, or in pounds, making k = 1 jg, where now g = 32.17 
ft/sec2, approximately. 

If we consider a moving mass as concentrated at its center of 
gravity, we may set up the differential equation of its motion 
by equating the expression for force, given in (1), to the result¬ 
ant force in the line of motion. 

Example 1. A sled weighing 100 lb is being pushed in a straight 
line against the wind by a force of 10 lb. Suppose that friction is 
negligible but that there is an air resistance to motion whose magni¬ 
tude in pounds is equal to twice the velocity of the sled in feet per 
second. If the sled starts from rest, find the velocity and the distance 
traveled at the end of 1 sec. 
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Let x (ft), positive in the direction of motion, be the displacement 
from the initial position (x = 0), and let v (ft/sec) be the velocity, 
at time t (sec). We equate the expression for force, given by (1), to 
the resultant force, which is positive and equal in magnitude to 
10 — 2v, thus forming the differential equation of the motion, 

100* 
- 10 - 2v, 

where g = 32.17 ft/sec2. Separating the variables, we get 

In order to obtain v in terms of t, we may integrate (3), adding a 
constant of integration, and then determine this constant from the 
fact that when t = 0 we must have v = 0. Or we may use definite 
integrals, thus avoiding a constant of integration, and integrate from 
the known pair of values, v = 0, t = 0, to the general pair of values 
v, t. Using the latter method, we have 

r±~. l fn, 
Jo 5 — v 50 Jo 

In (5 - »)]Q = 

v = 5(1 — 6 e‘/50) ft/sec. (4) 

The relation (4) gives the velocity at any time t; for t = 1 sec this 

v]tml = 5(1 - c-32 17/80) = 5(1 - e-°-6434) 

= 5(1 - 0.5255) = 2.37 ft/sec. 

We may notice from (4) that v does not increase indefinitely with t 
but approaches a limiting velocity of 5 ft/sec. The limiting velocity 
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can be found, however, simply by setting dv/dt equal to 0 in equation 

(2); 
0 = 10 - 2v, v — 5. 

In order to obtain x in terms of t, we replace v by dx/dt in equation 
(4) and integrate between (0, 0) and (x, t), since x — 0 when l = 0. 
We thus obtain 

f dx = 5 f (1 - c-s‘/5°) dt, 

[50 1 
t + — (e~ttl5° - 1)J ft. (5) 

Formula (5) is the general x, t relation; for t = 1 sec we have 

i.^Trie 

= 5 1 + 
50(0.5255 - 1) 

32.17 
1.31 ft. 

16. Trial and error. In applied mathematics it is often 
necessary to solve equations such as In x = x — 2, sin $ = 1 — 
20, <p + 3e“'° = 5, etc. In such equations we do not find the 
exact value of the unknown quantity but obtain an approx¬ 
imate value to the required degree of accuracy. The process 
that is usually the most convenient is known as the method 
of trial and error. 

As an illustration suppose that in Example 1, Art. 14, we 
wish to find the time required for the sled to move 5 ft from 
its starting position. From equation (5), Art. 14, we have 

50 
1 = t + — (e-“/so - 1), 

0 
(1) 

an equation to be solved for t. We start by guessing a value. 
It may be rather difficult to make a good guess for an equation 
in its original form; for this reason, and for ease in carrying 
out the process, it is expedient to reduce the equation to as 
simple a form as possible. If in equation (1) we let 

gt 50 <p 
- = v’, or t = — (2) 
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it reduces to 
50 

1 - — (* + e~* - 1), 
9 

tz + 1 — <P + e~r. 
50 

Putting g — 32.17, there results the equation 

•p + e~* = 1.643 (3) 

to be solved for <p; then t can be found from equation (2). This 
is a much easier process than finding t directly from equation 
(1). 

From Peirce’s “Tables” we find 

<p e~* 

1.4 0.247 1.647 

1.3 0.273 1.573 

1.395 0.248 1.643 

The value 1.4 for <p gives a value for ip + e~v which is too large 
by 0.004, and the value <p = 1.3 makes <p + e~v too small by 
0.070, so we decrease 1.4 by (4/74) X 0.1 = 0.005 and try <p 
= 1.395, which checks. 

Equation (2) now gives 

50(1.395) 

* ~ 32.17 
the required time. 

We could have let 

2.17 sec, 

«-**/50 _ or 
50 

-In 6, 
9 

(4) 
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thus reducing equation (1) to 

50 
1 = — (- ln0 + d - 1), 

9 

e - In 0 = 1.G43, (5) 

in which event we would solve equation (5) for 0, then find t 
from equation (4). 

Care must be exercised, however, in solving equation (5), in 
order to choose the right solution. One might find from 
Peirce’s “Tables” that 0 = 2.598 is a solution of equation (5), 
but this value of 0, when substituted in (4), would give a 
negative value for t. Before solving equation (5) it should be 
noticed that we must have 0 < 0 < 1, from equation (4), 
since l must be positive. This vigilance was not demanded in 
solving equation (3) since there it was only necessary to take 
<p positive. From Peirce’s “Tables” we find 

Q In 0 e - In 9 

0.25 -1.386 1.636 
0.24 -1.427 1.667 
0.248 -1.394 1.642 

Then equation (4) gives, as before, 

—50(—1.394) 

32.17 
2.17 sec. 

16. Chemical reactions; first and second order processes. 
In a chemical reaction the rate of change of a substance may 
be proportional to the "amount of that substance present at a 
given time. Such a reaction is known as a first order process. 
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If x is the amount of the substance present at time t, the differ¬ 
ential equation representing the process is 

(1) 

where k is a constant of proportionality. 
Suppose, on the other hand, that a molecule of one sub¬ 

stance A combines with one molecule of a second substance B 
so as to form one molecule of C. If a and b are the amounts of 
A and B respectively at time t = 0, and x is the amount of C 
at time t, then a — x and b — x are the amounts of A and B 
present respectively at time t, and x = 0 when t = 0. When 
the rate of change of x is proportional to the product of the 
amounts of A and B remaining at any given time, the reaction 
is known as a second order process and is represented by the 
differential equation 

— x)(b — x). (2) 

It is the process which is known as second order; the differ¬ 
ential equation is of the first order. 

Example 1. Suppose that, in the process represented by equation 
(2), a — 5 and 6 = 4, and that x — 1 when t = 5 min; find the value 
of x when t — 10 min. 

Separating the variables, we have 

dx 

(5 - x)(4 - x) 

( 1 1 \ 
I-I dx = k dt. 
\4 — x 5 — xf 

Integration between limits, using the pairs of values (0,0), (1, 5), 
(x, 10), gives 

In 

In 

5 — x 

4 — x 

5 — x 

4 — x 

(3) 

(4) 
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Dividing (4) by (3), we obtain 

or 
5 - x _ 5 /16\2_ 64 

4 -x ~ 4\I5/ ~ 45’ 

225 - 45x = 256 - Mx, 

19x = 31, 

x = 1.63. 

^17. Steady-state heat flow. Experimental study of the flow 
of heat has shown that the rate of flow across an area is pro¬ 
portional to the product of the area and the temperature gra¬ 
dient. The temperature gradient is the rate of change of the 
temperature with respect to distance normal to the area. We 
now state this law in the form of a differential equation, con¬ 
fining ourselves to the case in which the flow has settled down 
into a steady state and the rate of flow is therefore independ¬ 
ent of time. Furthermore, we consider here only the case in 
which the temperature depends on only one space coordinate, 
x, measured in the direction of flow.* If the flow is radially 
outward from the axis of a cylindrical surface of radius x, all 
points of the surface will have the same temperature; i.e., the 
cylinder will be an isothermal surface. If the flow is radially 
outward from a point, x will be the radius of an isothermal 
sphere, whereas, if the flow takes place in parallel straight lines, 
the isothermal surfaces will be parallel planes perpendicular to 
the lines of flow, x measuring the distance of one of these planes 
from a fixed plane of reference. 

* The more general problems of heat flow at a rate varying with the time, and 
of steady-state flow in which the temperature depends on more than one coordi¬ 
nate, lead to partial differential equations. See Reddick and Miller, Advanced 
Mathematics for Engineers, 2nd Ed., Chapter VII, Arts. 71, 72. 
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Let q (cal/sec) be the constant rate at which heat is flowing 
in a body perpendicularly through an isothermal surface of 
area A (cm2), all points of which have the coordinate x (cm) 
and the temperature u(°C). Then q will be proportional to 
A du/dx, and we have the differential equation 

«--u£. (1) 
ax 

The constant of proportionality, k (cal/cm deg sec), is a prop¬ 
erty of the material of the body and is called the thermal con¬ 
ductivity. Since the temperature decreases as x increases, the 
temperature gradient, du/dx, is negative and the minus sign 
must be used in equation (1) in order to make q positive. 

Example 1. A pipe 10 cm in diameter contains steam at 100°C. 
It is insulated with a coating of magnesia 3 cm thick, for which 

k = 175 X 10~6 cal/cm deg sec. If the outer surface of the insula¬ 
tion is kept at 40°C, find the rate of heat loss from a meter length of 
pipe, and the temperature halfway through the insulation. The thick¬ 
ness of the pipe is not taken into account; it is assumed that the inner 

surface of the insulation is at 100°C. 

By letting u represent the temperature on an isothermal cylindrical 
surface of radius x, within the insulation, then A — 2irxL will be 
the area of a portion of the surface of length L. For the rate of heat 
loss, which is equal to the rate of flow across A, equation (1) gives 

du 
q = —k'2wxL • — (2) 

dx 

Separating the variables and integrating from the inner surface 
where x = 5, u = 100, to the outer surface where x = 8, u = 40, we 

have 

qhix]l-2 rkLu]4^, 

q In 1.6 = 120irkL, 

or, when k — 175 X 10~G and L = 100, in cgs units, 

(3) 
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2. lx 6.597 
9 = 

In 1.6 0.4700 
= 14.0 cal/sec. 

To find the temperature halfway through the insulation, substitute 
in (2) the value of q given by (3), then integrate from x = 5, u = 100, 
to x = 6.5, u = u: 

120 rrkL du 
-= —2 irkLx — , 
In 1.6 dx 

6.5 , rdu,.jLr±, 
Jioo In 1.0 Jh x 

u 100 = - 

'100 

60 In 1.3 

In 1.6 

15.74 

0^4700 
- —33.5; u « 66.5°C. 

PROBLEMS 

1. A 20-lb weiglit moves in a horizontal straight line under the joint 

action of a constant force of 12 lb, in the direction of motion, and a resisting 

force whose magnitude in pounds is equal to four times the instantaneous 

velocity in feet per second. If the weight starts from rest, find its velocity 

and the distance traveled after § sec. 

2. If x dx + 2 dy = y(x dx + dy), and y = 0 when x = 2, find by the 

method of trial and error the value of y when x = \/6. 

3. If, from 0 to x, the area between the curve y = tanh x and the ar-axis 

equals the area between the curve and its asymptote, find the value of x. 

4. A weight of w lb falls from rest. If the resistance of the air is propor¬ 

tional to the velocity, and if the limiting velocity is 173 ft/sec, find (a) the 

velocity at the end of 10 sec; (b) the distance fallen at the end of 10 sec; (c) the 

time when the velocity is half the limiting velocity; (d) the time when the 

distance fallen is 173 ft. 
6. A ship weighing 8 X 107 lb, and starting from rest, reaches a limiting 

velocity V ft/sec under a force of 2 X 105 lb exerted by the propellers. As¬ 

suming a resistance to the motion proportional to the square of the velocity, 

find (a) the time required to attain half the limiting velocity; (b) the time 

required for the velocity to increase from one-third to two-thirds of the limit¬ 

ing velocity. 
6. A body falls from rest in a medium offering resistance proportional to 

the square of the velocity. The limiting velocity is 80 ft/sec. When the 

velocity has reached 56 ft/sec, find (a) the time elapsed; (6) the distance 
, / _ . dx dv dv \ ^ 

traversed. (Note that, since y = — = 
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7. A charged sphere, of weight w lb, falls from rest under the combined 
forces of gravity and an electric field, the latter producing an upward force ot 

E lb. If the air resistance is proportional to the speed and the limiting speed 

is V ft/sec, find the time required to reach p per cent of the limiting speed. 
Use g (ft/sec2) for acceleration due to gravity. 

8. A body failing from rest in a liquid acquires a velocity which approaches 

10 ft/sec as a limit. Assuming the resistance of the medium to be propor¬ 

tional to the velocity, and the specific gravity of the body to be 3 times that 
of the liquid, find (a) the velocity at the end of 1 sec; (b) the time required to 

traverse the first 6 ft; (c) the distance fallen at the end of 1 sec. 
9. A body falls from rest in a liquid whose density is l/n that of the body. 

The liquid offers resistance proportional to the velocity. If the velocity at 

the end of 1 sec is 20 ft/sec and at the end of 4 sec is one-half the limiting 

velocity, find the limiting velocity and the value of n. 

10. Work Prob. 9 if the resistance is proportional to the square of the 

velocity. 

11. In a certain chemical reaction, the rate of conversion of a substance at 

time t is proportional to the quantity of the substance still untransformed at 

that instant. If one-quarter the original amount of the substance has been 

converted when t — 3 min and if an amount A has been converted when 

/ = 6 min, find the original amount of the substance. 

12. If radium decomposes at a rate proportional to the amount present, 

and half the original quantity disappears in n years, (a) what percentage will 

disappear in n/2 years? (b) in how many years will 25 per cent disappear? 

13. According to Newton’s law of cooling, the rate at which heat is lost by 

a heated body is proportional to the difference in temperature between the 

body and the surrounding medium. If a thermometer is removed from a 

room in which the temperature is 70 °F into the open where the temperature 

is 30°F, and if its reading is G0°F at the end of | min, (a) how long after the 

removal will the reading be 40°F; (b) how long will it take for the reading to 

drop from 50°F to 35 °F; (c) what is the temperature drop during the first 

2 min after the removal? 
14. In the chemical reaction represented by equation (2), Art. 16, suppose 

that x = 2 when t — 10 min. Find x at the end of 15 min (a) when a = 6, 

b = 3; (b) when a == 6 == 6. 

15. In the chemical reaction represented by equation (2), Art. 16, suppose 

that a = 4, b = 3, and that x = 1 when t = 3. Find the value of t when 

x = 2. 

16. In equation (2), Art. 16, given a = b and x = a/n when t = t\) find 

the value of x when t — 2h. 

17. Assume the differential equation 
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connecting the atmospheric pressure p (lb/ft2), the density of the atmosphere 
p (lb/ft3), and the height h (ft) above the surface of the earth. Then, if a 

relation involving two or three of the variables p, p, h is known, one of the 

variables may be eliminated to obtain a relation between the other two. 

If 

V = 192p(144 - 0.001&), 

and the pressure at sea level is 2120 lb/ft2, find the pressure at a height of 
10,000 ft. 

18. In Prob. 17, at what height will the pressure be half the pressure at 
sea level? 

19. If dp/dh — —p and p is equal to 14.7 and 12.0 lb/in.2 at the surface 
of the earth and at a height of 1 mile respectively, find p at a height of 2.5 
miles, assuming that p = kp. 

20. In Prob. 19, find p at a height of 2 miles, assuming that p = kp*'*. 

21. If dp/dh = —p and p is equal to 14.7 and 10.1 lb/in.2 at heights 0 

and 10,000 ft respectively, at what height is p equal to 8 lb/in.2? Assume 

p = p 
22. If dp/dh — —pj how much will the barometer reading decrease in 

ascending 1000 ft above sea level under the following assumptions? 

The pressure of the atmosphere is proportional to the density. 
The barometer reading at sea level is 29.9 in. of mercury. 

The density of air at sea level is 0.0807 lb/ft3. 

The specific gravity of mercury is 13.6. 

The density of water is 62.4 lb/ft3. 

23. If the density of sea water under a pressure of p lb/ft2 is 

p - 64(1 + 2 X 10~8p) lb/ft3, 

find the density and pressure at a depth of 2 miles below sea level. Use 

dp/dh = p. 

24. Find the heat loss in calories per day from 20 meters of pipe 30 cm 
in diameter, containing steam at 100°C, if the pipe is covered with a layer 

of concrete 10 cm thick and the outer surface of the concrete is kept at 
35°C, Find also the temperature halfway through the concrete. (Assume 

k = 225 X 10~6 cal/cm deg sec.) 
25. Work Example 1, Art. 17, replacing the meter length of pipe by a 

hollow sphere 1 meter in diameter. 
26. A steam pipe of radius 10 in. is covered with a 2-in. layer of insulation. 

Find how much the thickness of the insulation must be increased to cut down 
the heat loss by 40 per cent if the temperature at the outer surface of the 

insulation is kept constant. 

27. A steam pipe has inner and outer radii, r\ and r2 respectively, and the 

temperatures at its inner and outer surfaces are respectively u± and W2. 
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(a) Derive a formula for the steady-state temperature u at radial distance 
r(rj < r < r2). (6) Compute the value of u if r\ — 5 cm, r2 ~ 10 cm, u\ = 

100°C, us ~ 80°C, r = 8 cm. 

28. A hollow spherical shell has inner and outer radii, n and r2 respectively, 

and the temperatures of its inner and outer surfaces are respectively u\ and u2. 

(a) Derive a formula for the steady-state temperature u at radial distance 

r(ri < r < r2). (b) Compute the value of u if ry = 10 cm, r2 — 20 cm, u\ — 

100°C, u2 = 64°C, r - 15 cm. 
29. A cylindrical pipe and a hollow spherical shell both have inside diam¬ 

eters of 3 cm and outside diameters of 5 cm. If the thermal conductivity of 

the material of the pipe is iV that of the shell, find how long the pipe must 

be in order that the quantities of heat conducted through pipe and shell walls 

shall be the same under the same inner and same outer temperatures in the 

respective cases. 

^ 30. If a flat furnace wall of thickness ti cm, conductivity ki cal/cm deg sec, 

and area A cm2 is covered by an insulating material of thickness t2 cm and 

conductivity k2 cal/cm deg sec, find the heat loss in calories per second 

through the wall if its inner surface is at ui°C and the outer surface of the 

insulation is at u2°C. 

31. A steam pipe of length L cm and radius x0 cm is covered by n layers of 

insulation of conductivities ki, k2, - - kn (cal/cm deg sec) and outer radii xh 

x2f (cm) respectively. If the steam is at w0°C and the outer surface of 

the outside layer of insulation is at un°C, find the heat loss in calories per 

second through the insulation. 

32. A steam pipe of radius xo is to have two layers of different insulating 

materials of outer radii aq, x2 (xo < x\ < x2). Show that, for maximum effi¬ 

ciency of insulation, the better insulator should form the inside or outside 

layer according as x\ ^ \/xtf£2, but that if x\ — y/xox2 the two insulating 

materials are interchangeable. 

^ 33. Assuming that the velocity of efflux of water (volume per unit time) 

through an orifice in the bottom of a tank is proportional to the product of 

the area of the orifice and the square root of the depth of the water, the 

differential equation is 

4^ = -kBVh, 
dt 

where h (ft) is the depth of the water and A (ft2) is the area of the water 

surface at any time t (sec), and B (ft2) is the area of the orifice. The constant 

of proportionality, k (ft^/sec), may be determined empirically. 

Find the time required to empty a cubical tank whose edge is 4 ft. The 

tank has a hole 2 in. in diameter in the bottom and is originally full of water. 

(Take k = 4.8.) 
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34* Suppose that the tank of Prob. 33 is originally empty and that water 

runs into it at the rate of V ft3/sec. Show that, if the tank is to fill, it is 

necessary to have V > w/15. Find the time required for the tank to fill if 

V = 2tt/15 ft3/sec. 

35. A funnel has the shape of a right circular cone with vertex down and 

is full of water. If half the volume of water runs out in time t, find the time 

required to empty. 

36. A tank in the form of a prism with equilateral triangular ends rests on 

one of its rectangular faces and is full of water. It has an outlet in the bottom 

and one of equal size in the top. Show that the tank will empty twice as 

fast if it is inverted. 

37. If the tank in Prob. 36 is filled only halfway up and then inverted, 

find the ratio of the time required to empty it in the inverted position to the 

time which would be required in the original position. 

38. A cylindrical tank 8 ft long and 4 ft in diameter is full of water. Find 

the time required to empty through a hole 1 in. in diameter in the bottom 

(a) if the cylinder is standing on end, (b) if the cylinder lies horizontal. (Take 

k = 4.8.) 

39. For the tank of Prob. 38 in horizontal position, find (a) the time re¬ 

quired to half empty, (b) the depth of water after 30 min. 

40. Show that a cylindrical tank full of water will empty faster through a 

hole of given diameter in the bottom if it stands on end or if it lies horizontal, 

according as (D/L) ^ (64/9tt2) , where I) and L are, respectively, the diam¬ 

eter and the length of the tank. 

41. A parabolic bowl 18 ft across the top and 9 ft deep is full of water. 

Find the time required to empty it through a hole of 2-in. diameter in the 

bottom. (Take k = 4.8.) 

42. A parabolic bowl of equal depth and radius, and a hemispherical bowl 

of the same radius, are full of water. Find the ratio of the times required to 

Kempty through a hole of the same size in the bottom. 

43. Ether flows at the rate of 4w ft3/hr into a bowd which is a paraboloid of 

revoluf: 10 ft across the top and 10 ft deep. If the rate of evaporation is 

proportional to the area A (ft2) of the liquid surface, the constant of propor¬ 

tionality being k = ft/hr, find the time required to fill the bowl. 

\ 44. A body with initial velocity u ft/sec downward falls under gravity in 

a medium offering resistance proportional to the square of the velocity. Show 

that the distance fallen in t sec is 

y = y In J^cosh y + y sinh ft, 

where V ft/sec is the limiting velocity and g ft/sec2 is the acceleration due to 
gravity. 
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r18. Integrable combinations. The differential equations 
encountered so far in this chapter have been of such a nature 
that the variables could be separated. We shall see now that 
a differential equation in which the variables are not separable 
can be solved if it can be arranged in integrable combinations. 
The process will be illustrated by some examples. 

Example 1. Solve 

xdy — (3x2 — y) dx. (1) 

This equation cannot be separated into terms containing x only 
and terms containing y only, but, by transposing the term y dx, 

we have 
xdy -j- y dx = 3x2 dx. 

The right member is now free of y and integrates at once into x3. 

The left member contains both x and y, but it is an integrable com¬ 
bination of x and y; we recognize it as the exact differential of xy, 

so that it integrates, not term by term, but as a whole, into xy. The 
general solution of (1) is therefore 

xy — x3 + C. 

If we make the substitution xy — u in (1), a substitution 
suggested by the combination xdy + y dx, the equation takes 
the form 

du — 3x2 dx, 

in which the variables u and x are separated, and integration 
gives 

u = x3 + C, 
or 

xy = x3 + C. 

Differential equations integrable by combinations can always 
be reduced to separable equations in new variables by means of 
substitutions, but we usually integrate the combinations which 
are recognizable as exact differentials without substituting new 
variables. 



Article 18 55 

Some of the frequently occurring integrable combinations 
and the functions of which they are exact differentials are: 

x dy + y dx = d(xy), 

xdy - ydx _ /y 

x2 \x, 

y dx — xdy 

? ■ -a 
2xy dy - y2 dx (y2 

2 xy dx — x2 dy 

-(f)- 
<f)- y \y 

xdy — y dx 

xdy — y dx xL 

X1 + y2 

xdy — y dx 

(tan'D- 

x dy — y dx 
o o 

x“ - y- 
1 

= d (j- In = d tanh-1 
\2 x - y) 

-iV. 

x 

Example 2. Solve 

x dy - y dx = y dy. (2) 

If we multiply both sides by 1/a;2, the left side becomes an integra¬ 
ble combination but the right side is not integrable. However, multi¬ 
plying by 1/y2 and changing signs, we have 

ydx — xdy 

7 

dy 

y 
(3) 

— C — \ny. 

Integration now gives 
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A differential equation such as (3), whose terms are exact 
differentials or form combinations which are exact differentials, 
is called an exact differential equation. The function 1/y2 is 
called an integrating factor of equation (2), since multiplication 
by this factor produces the exact equation (3). Rules can be 
devised for finding integrating factors of certain types of dif¬ 
ferential equations, but the method of finding these factors by 
inspection will suffice for our needs. 

Example 3. Solve 

xdx + y dy — v x" + y2 dx. (4) 

Division by the radical on the right gives 

xdx + ydy 

v7T7 ~ ’ 
(5) 

an equation whose left member is an integrable combination of the 
form du/2\/u1 where u = x? + y2, and therefore integrates into y/u; 

thus 1/ W + y2 is an integrating factor of (4). Integration of equa¬ 
tion (5) yields 

V x2 + y2 = x + C, 

the general solution of equation (4). 

Example 4. Solve 

dy _ y ~ 1^ 

dx x 2 y 

Clearing of fractions, we have 

2xy dy = (2y2 - x) dx, 

2y(x dy — y dx) = —x dx. 

If, now, we divide by x2y} i.e., try l/x2y as an integrating factor, we 
have an integrable combination on the left but the right side is not 
integrable; also, a similar situation occurs if we divide by y3. How¬ 
ever, division by x3 gives 

y\ xdy - ydx dx 



Article 19 57 

The left side is now an integrable combination of the form 2udu, 
where u = y/x, and the right side is also integrable. Integrating, we 

have 

or 
y2 = x + Cx2. 

19. Homogeneous equations. A function f(x,y) is homo¬ 
geneous of degree n if the replacement of x by kx and y by ky, 
where k is any quantity, constant or variable, multiplies the 
function by kn, that is, if 

fikx, ky) - knf(x, y). 

In particular, if n = 0 the function is homogeneous of degree 
zero and is unchanged by replacing x by kx and y by ky; such 
a function, if we take k — \fx, can be written as a function of 
the combination y/x, as follows: 

fix, y) = fikx, ky) 

As illustrations, observe the functions 

(a) f{x, y) = x2 - 2xy + y2, 

(&) fix, y) - x - 7y + 6, 

(c) fix, y) = y In x, 

id) fix, y) = y(In x - In y), 

(«) fix, y) = 
x?y_ + xf 

3x3 - 4y3 

ia) fikx, ky) = k2x2 — 2kx • ky + k2y2 = k2ix2 — 2xy + y2) 
= k2fix, y); hence the function x2 — 2xy + y2 is homogeneous 
of second degree. 

(6) fikx, ky) = kx — 7ky + 6. The k cannot be factored 
out; the function x — 7y + 6 is not homogeneous. If fix, y) is 
a polynomial, it is homogeneous only if each of its terms is of 
the same degree in x and y. 
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(c) f(Jcx, ky) = ky In kx; the function y In x is not homo¬ 
geneous. 

(d) f{kx, ky) = kyQn kx — In ky) = ky In x/y = kf(x, y); 
hence f(x, y) is homogeneous of first degree. 

(e) f(kx, ky) = = f(x, y). The function/(x, y) 

is homogeneous of degree zero and therefore can be written as a 
function of y/x; division of both numerator and denominator 
by x3 gives 

y+(y)2 
x2y + xy2 x \xJ 

3x3 - 4y3 3 _ 4 

The quotient of two functions, both homogeneous of the same 
degree, is a homogeneous function of degree zero, since, when 
x is replaced by kx and y by ky, the power of k occurring as 
factor of the numerator is the same as in the denominator and 
cancels out. 

A differential equation 

j- = /(*, V) (1) 
ax 

is called homogeneous if f(x, y) is a homogeneous function of 
degree zero. If the differential equation is written in the form 

M(x, y) dx + N(x, y) dy = 0, (2) 

it will then be homogeneous if M and N are homogeneous func¬ 
tions of the same degree. If a differential equation is homo¬ 
geneous it can be solved by either of the following methods: 

(а) Substitute y = vx. The resulting equation is separable in 
v and x; solve it, and replace v by y/x. 

(б) Substitute x = vy. The resulting equation is separable in 
v and y; solve it, and replace v by x/y. 
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We have to prove that the substitution y = vx reduces a 
homogeneous differential equation to one that is separable in 
v and x. The analogous proof for method (b) is left as an 
exercise for the student in the first problem of the next group. 

Since the differential equation is homogeneous, it may be 
written in the form 

Letting y = vx, hence dy — v dx + x dv, equation (3) takes the 
form 

v dx + x dv = F(v) dx, 
or 

dv dx 

F(v) — v x 

an equation in which v and x are separated. In the exceptional 
case where F(v) = v, equation (3) is itself separable: dy/dx = 
y/x. 

Examplk 1. Solve 

2xy dx + (x2 + y2) dy — 0. 

Method (a). Let y — vx,dy = v dx + x dv. It will be noticed that, 
since the differential equation is homogeneous of second degree, x2 
will cancel out of each term after the substitution y — vx. In general 
xn will cancel out if n is the degree of homogeneity. Similarly yn 
will cancel out after the substitution x = vy. The substitution and 
cancellation can be made at the same time. We have 

or 
2v dx + (1 + t'2) (y dx + x dv) — 0, 

(t>3 + 3t>) dx + x(l + v2) dv = 0. 

Separating the variables and multiplying by 3 in order to make the 
second numerator the exact differential of its denominator, we get 

3 dx (Zv2 + 3) dv 
-+ -0. 

v* + 3n 
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Integrating, 
3 In x + In (t>3 + 3v) = In C. 

Taking antilogarithms, 

Replacing v by y/x, 

x3(v3 + 3v) = C. 

2/3 + 3z22/ = C. 

Method (6). Letting x ~ vyy dx = v dy y dv, then cancelling y2, 

we have 
2u(y dy + y dv) + (v2 + 1) dy = 0, 

or 
(3^2 + 1) eft/ + 2wy efo = 0. 

Separating the variables and multiplying by 3, we get 

Integrating, 

3 dy Cw dv 
— + —5- - 0. 

y Sir2 + 1 

3 In y + In (Sv2 + 1) = In C. 

Taking antilogarithms, 

2/W + 1) = C. 
Replacing v by x/y, 

3 x2y + y3 = C. 

Shorter method. We have used this problem as an illustration of 
the standard methods for solving a homogeneous equation, but there 
is a shorter way to solve Example 1. Writing the equation in the form 

x2 dy + 2xy dx + y2 dy = 0, 

we see that the first two terms form an integrable combination, the 

differential of x2y, so that integration yields at once 

3 x2y + y3 = C. 

It is desirable to use the shorter method of integrable combinations 
whenever possible, provided that too much time need not be spent 
in recognizing the integrable combination. 
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Example 2. Solve 

(x + Vy2 — xy) dy — y dx = 0. 

In Example 1 there was little to choose between the methods (a) 

and (6), although (6) is perhaps a trifle simpler. In this example, 
however, method (6) is definitely easier, as the student may verify 

by solving the problem using method (a). There is no general rule 
for determining beforehand which method is easier, but usually it is 

better to substitute for the variable whose differential has the simpler 
coefficient. Here dx has the simpler coefficient and we substitute 
x = vy. Then, after division by y, the equation becomes 

(v + VI — v ) dy — (v dy + y dv) = 0. 

Separating the variables, we get 

Integrating, 

dy 

y 
= o. 

In y + 2 V1 — v = In C. 

Taking antilogarithms, 
yeWT-V = (J 

Replacing v by x/y, 
2\ZT^xJy = C 

20. The equivalence of solutions. Suppose that we have 
obtained by different methods two general solutions of the same 
differential equation and we wish to show that they are equiva¬ 
lent. One way is to show that, by changing the C of one solu¬ 
tion into the proper function of the C of the other, the solutions 
become identical. For instance, if the two solutions are 

x + Cxy + y = 0, C'(x + y) - xy = 0, 

we show that they are equivalent by letting C = — 1 /C', 
whereupon the first reduces to the second. 

On the other hand, if the functional relation between the 
C’s is not obvious, we may show that the solutions are equiva¬ 
lent without finding this relation. Let 

u(x, y) — C, V) = C , (1) 
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be two general solutions of the same differential equation; then 
they must give the same value for dy/dx. The values of 
dy/dx obtained by differentiating these implicit functions (1) 
are respectively 

dy 

dx 

du dv 

dx dy _ dx 

du ’ dx ~ dv 

dy dy 

and the condition that these two values of dy/dx are identical is 

or 

du dv dv du 

dx dy dx dy 

du du 

J = 
dx dy 

dv dv 
= 0. 

dx dy 

(2) 

The determinant J is called the Jacobian of the functions 
u, v with respect to x, y. The two solutions (1) may be shown 
to be equivalent by showing that their Jacobian vanishes 
identically. This means that there is a functional relation * 
between C and C", but it does not tell what the relation is; the 
search for the relation is sometimes an interesting exercise. 

Example 1. Show that the two following solutions of differential 
equation (2), Art. 12, are equivalent: 

x + y 
arc tan * + arc tan y = C, -= C\ (3) 

1 — xy 

Here we can see the functional relation between C and C', namely, 
C = arc tan 6”; for, if we substitute C — arc tan C’ in the first equa¬ 

tion and take the tangent of both sides, we get the second equation. 

* For a proof that the vanishing of the Jacobian is a necessary and sufficient 
condition for functional dependence, see Goursat-Hedrick, Mathematical Analysis, 
Vol. I, p. 52. 
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But, if this relation were not apparent, we could, without finding it, 
show the solutions equivalent as follows: Let 

x + y 
u = arc tan x + arc tan y, v =-; 

1 - xy 
then, forming the Jacobian (2), we have 

1 1 

l + x2 1 + if 

1 + y2 1 + x2 

(1 - xy)2 (1 - xy)2 

1 1 

(1 - xy)2 (1 - xy)2 

Hence the solutions (3) are equivalent; they are general solutions 
of the same differential equation. The vanishing of the Jacobian of 
u, v does not prove that the solutions u ~ C,v = C are correct, but 

it shows that if one is correct the other is also; if both solutions were 

incorrect and the Jacobian vanished, they would still be equivalent 
solutions of some differential equation. 

We now consider an example in which the functional relation 

between the C’s> is not so obvious. 

Example 2. Solve the differential equation 

(x2 + y2) dx + x2 dy = 0 (4) 

by substituting y = vx, then by substituting x = vy, and prove the 
solutions equivalent. Also find the functional relation between the 

C’s. 
First solution. Letting y = vx in (4), we have 

(1 + v2) dx + v dx + x dv = 0, 

dx dv 

-ii,2 = 0> 
X 1 + V + V 

lax + 

in a; + 

arc tan 
2v + 1 

"VT 

arc tan 
2y + x 
V3x 

C, 

c. (5) 
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Second solution. Letting x = vy in (4), we have 

(v2 + l)(t’ dy + y dv) -f v2dy = 0, 

dij (v2 -f- 1) dv 

y v(v2 + v + 1) 

dy 

y 
+ (‘-T_1 U-o, 

\v v2 + V + 1/ 

, 2 2v + 1 
In y + In i>-p arc tan-7=— = C, 

V3 v3 

2 2x + 2/ 
In x-p arc tan —7=— 

V3 V3 y 
C’. (6) 

We have to prove that the two solutions (5) and (6) are equivalent. 
Letting/ and g stand for the left members of (5) and (6) respectively, 

we shall prove that these two solutions are equivalent by showing 

that the Jacobian of /, g with respect to x, y is identically zero. We 

find 
df _ x2 + y2 _ dg 

dx x(x2 + xu + y2) dx ’ 

hence 

df 

dy X2 + xy + y2 

dg 

dy 

J = 

df df 

dx dy 

dg dg 

dx dy 

— 0, 

since the two rows of the determinant are identical. 
To find the functional relation between C and C', subtract equation 

(6) from equation (5): 

, 2y + x 2x + y VS 
arc tan—7=—(- arc tan - 

V$x 
{C-C'). (7) 
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Taking the tangent of both sides of (7), we find 

y^(2jf' + «i, + 2xi + »!<) = tanV| 

3xy - (2y + x)(2x + y) 2 

or 

hence 

2\/3(x2 + xy + V2) 

—2(x2 + xy 4- y2) 

V3 

-V3 = tan ^(C-Cy, 
it 

2 (C-H = arctan(-V3) = -j, 

and the required functional relation is 

%r 

3\/5 
C = C' 

PROBLEMS 

1. Prove that the homogeneous differential equation (1) or (2) of Art. 19 

becomes separable upon substituting x = vy, thus verifying method (6). 

Solve each of the following differential equations. 

r2. (* ~ 2if) dy = y dx. 3. 
dy 

dx 
i + 

y 
X 

4. z dy = (x2 4- y 2 + y) dx. 6. 
dy 

dx 

^ 
l 1 C
M

 

> 6. (*2-f ■y2; ) dx = 2xy dy. 7. 
dy _ 
dx 

- + 
X X2 

8. 
dy _ 
dx 

2V 

X 

3x 

2^* 
9. 

dy _ 
dx X2 - 

xy 
xy + 

10. 
dy 

dx"r" 
y s 
a; 

= er,/. 11. 
dy 

*dx 
= y(ln y - 

12. 
dy __ x2 “ i/2 - -2y 13. 

dy _ X — y 

dx — x2 - - 2x dx X + y 

14. ^ + = o.- 
dx 3x2 + y2 

16. 3xy2 dy — (x3 + 2y3) dx. 

j*18. ydx + x ^ln ~ — 2^ dy = 0. 

ydx 3y2-x2 

17. 3x dy = 2y dx - xy cos a: dx. 

^19. ^2x tan ^ + y^ dx = x dy. 

21.—+ 7:f-+3-y-+-5 = 0. 
dx T 3x 4- lly + 17 
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22. xdy 2a:8 - x^y - y3 _ Q 

ydx~2y3 — xy2 — a;8 

»!*!>*.(!+!)* 
y2 \x y/ 

24. x(y + Vx2 + y2) dy — y2 dx. 

25. Vy2 — 1(1 — yVx2 — 1) dx + Vx2 — 1(1 — xVy2 — 1) dy = 0. 

^26. Vxy dx = (x — y + Vxy) dy. 

f 27. x(x2 + y2) dy = y(x2 + yVx2 + y2 + y2) dx. 
28. Find a solution of 

dy _ exy 
dx: e* + 2y 

such that y = 1 when x = 0. 
<(>29. Find a curve through the point (1, —2) satisfying the differential 
equation 

dy _ y(xy + 1) 
dx y( 1 — x2) — x 

30. Find a curve through the point (§, 1) whose slope at each point is 
xy/(x + y)2. For what value of x wall the slope of the curve equal f? 

31. Show that the general solution of the differential equation 

dy _ = x + 2 

dx y —t2(x + 1) 

represents a family of hyperbolas whose asymptotes are the lines 

y = x, y = 3x + 4. 

32. Find two curves satisfying the differential equation 

each curve having slope \ at a point where it crosses the parabola y = x2/2. 
33. Show that for the differential equation 

T + -~l dx y 

(a) the substitution y = vx leads to the general solution 

- In (x2 - xy + y2) + arc tan = C\\ 
& V*oX 

(6) the substitution x = vy leads to the general solution 

In (x2 — xy + y2) — arc tan = C2- 
2 \/6 y 

Show that the two above solutions are equivalent, and find the relation con¬ 
necting Ci and C2. 
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34. Solve the differential equation 

dy 
= cosh (lx + y) 

(а) by means of the substitution \x + y = v, obtaining the solution 

tanh + |) = Vs tan x + Ci^ ; 

(б) by means of the substitution \x + y = In v, obtaining the solution 

2eu/2,+!'+l = V3tan(^x + C2)- 

Show that the two above solutions are equivalent, and find the relation 
connecting Ci and CV 

35. Show that 

ex+v = Ci(V9 + eu - 3), eT~* = C2(V9 + e2* + 3) 

are equivalent solutions of the same differential equation. Find the differen¬ 

tial equation and the relation connecting C\ and CY 

21. Linear equations. The standard form of the linear 
differential equation of first order is 

j- + Py = Q, (1) 
ax 

where P and Q are functions of x. It is called linear because it is 
of the first degree in the dependent variable and its derivative, 
that is, of the first degree in y and dy/dx. Either P or Q may 
be a constant, which can be regarded as a special case of a func¬ 
tion of x, but if their ratio is constant the equation is separable. 

Writing equation (1) in the form 

dy + Py dx = Q dx, (2) 

let us try to integrate it by changing the left side into an in- 
tegrable combination. We multiply equation (2) by an un¬ 
known function of x, say R, obtaining 

R dy + yRP dx = RQ dx. (3) 

The right side of (3) is in integrable form, since Q is a known 
function of x, and R when it is found will be a function of x. 
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Can we determine R so that the left side of (3) will be an 
integrable combination? The combination 

Rdy + ydR = d(Ry) (4) 

is at once suggested. Comparing the left member of (3) with 
this exact differential (4), we see that they will be identical 
provided that 

dR = RP dx, (5) 

in which case the left member of (3) will integrate into Ry. 
Now (5) is a separable equation determining the integrating 
factor R: 

dR 

~R 
= P dx, 

In R = (6) 

R = efpdx. (7) 

The constant of integration in (6) is omitted, or taken equal to 
zero, since the simplest value of R is desired. 

With the value of R given by (7), the left member of (3) 
integrates into Ry and the integral of he right member is 

expressed by J"RQ dx + C, so that the general solution of the 

linear equation (1) is 

Ry = J' RQ dx + C, (8) 

where B _ 
Therefore, to solve the linear equation (1), first compute the 

integrating factor R, then insert it in (8), perform the indicated 
integration, and simplify the result if possible. 

Example 1. Solve 

xdy = 2(x4 + y) dx. 
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The equation is linear, but it must be put into standard form (1) 
before using formula (8), thus: 

dlJ 2 0 3 -y — 2X6. 
dx X 

Here P = —2/x,Q~2x'i. Computing 7?, we have 

R = (J-VMdx ^ ^ 2 In x = elnx~2 = ^-2. 

Substitution in (8) gives 

x~2!/ = j*x~2 • 2xs dx + C = x2 + C, 

or 
y = x4 + Cr\ 

Example 2. Solve 

(x — sin ?/) (7// + tan ydx = 0, 

and find the particular solution satisfying the condition y = 7r/6 when 

x = 1. 
At first glance this equation does not seem to be linear, for, if we 

write dy/dx as the first term, the equation takes the form 

dy tan y 
f +-— = o, 
dx x — sin y 

which is not in standard form (1). The equation is not linear with y 
as dependent variable, that is, it is not linear in y and dy/dx; but, 

if x is taken as the dependent variable and the equation is written 
in the form 

dx 
-—b cot y-x = cos y, 
dy 

we see that it is linear in x and dx/dy. Hence it can be solved by 
using formula (8) with x and y interchanged, P and Q now being 
functions of y, namely, P = cot y, Q = cos y. 

We have 
R = = e1 = sin y. 
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Then formula (8) gives 

sin y-x = j*sin y cos y dy + C = ^ sin2 y + C, 

or, changing C to C/2, 

2x sin y = sin2 y + C, 

which is the general solution of the given equation. 
To find the required particular solution of the given equation, sub¬ 

stitute x = 1, sin y = sin (71-/6) = then 

2-(i)-i + C, C = i 
and 

8x sin y = 4 sin2 2/ + 3. 

Sometimes a differential equation may be solved in more 
than one way. For instance, the above example may be solved 
also by use of an integrable combination. 

Shorter solution. The differential equation may be written 

x dy + tan y dx = sin y dy. 

Multiplication by the integrating factor cos y produces on the left 

the integrable combination x cos y dy + sin y dx or d(x sin y); hence 

x cos y dy + sin y dx = sin y cos y dy, 

x sin y = sin2 y + C. 

When x = 1, y = 7r/6, \ ^ + C, C = and the required particular 
solution is 

8x sin y = 4 sin2 y + 3. 

PROBLEMS 

Solve the following differential equations. 

- 
2. + = a2 + l. 

- dy = a#1— 6 
* da 2a2 
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4. 2x*dy + 3(rfy + 1) dx = 0. 
6. (1 + x2) dy = (x* — xy + x) dx. 
6 dy = xy ± 1 

dx 1 — x2 
7. x dy — 2y dx = 2y4 dy. 

"•Kf+!() 
9. 2x d?/ =* (y + 2x2 In x) dx. 

10.* + ,-*. 
dx x 

11. (x — 1) dy = [?/ + (x — 2)ex] dx. 

12. ^ -(* + »)- 1. 

13. x2 ^ y = x2 + 2xy. 

^14. (2x + 2/2)y d?/ = dx. */' 

15 9dy = 10Q>+ 2:r ~ y 
dx 50 + £ 

16 ^ = 1+Jf. 
dx x x — 1 

-fl7. ^ - (x + 1)2/ = x2 + 4x + 2. 1 

v18. Solve the following differential equation by three different, methods— 
by regarding it as homogeneous, by regarding it as linear, and by using an 
integrable combination: 

dy _ y 
dx x + 2 y 

19. Find the curve, passing through the point (tt/G, — £), whose slope at 
any point is given by the function (y + sin3 x)/(sin x cos x). 

20. Obtain a solution of the differential equation 

dy 
dx 

cot x = sin 2x 

such that y will vanish when x = ir/2. Find the maximum and minimum 
values of yf and sketch the curve representing the solution from x = 0 to x = 
2tt. 
v 21. If 

~ + 2x2 + 3 = 2y, 

and y — 2 when x = 0, find the value of y when x * 1. 
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22. If 
dy 

dx 

and y — 2 when x = 1, find the value of y when x = 2. 

23. If 
dy 

dx 
= cos 3x + 2y tan 2x, 

and y = 1 when x = 0, find the value of y when x = -w/2. 
24. If 

^ + 2(x - 2/) + 1 = 0, 

and y — 2 when x = 0, find the value of y when x = 1. 

25! If 
y In y 

dx x + in y ’ 

and y = e when x = 0, find the value of x when y = 3. 

26. If 

x dy - 2y dx = 2y3 d?/,- 

and 7/ — 1 when x = 0, find the value of x when y = f. 

27. A curve satisfies the differential equation 

~ + 2xy = 2x5 

and passes through the point (0, 2). Show that this point is a maximum 

point on the curve and that the minimum value of y is 1. 

22. Chemical solutions. We shall consider now some 
physical problems leading to differential equations of the first 
order which are not separable. 

Example 1. A tank contains 100 gal of brine in which 50 lb of 
salt are dissolved. Suppose that brine containing 2 lb/gal of salt 

runs into the tank at the rate of 3 gal/min and that the mixture, kept 
uniform by stirring, runs out of the tank at the rate of 2 gal/min. 
Find the amount of salt in the tank at the end of 30 min. 

We set up the differential equation according to the following 
scheme: 

f Rate of increase! fRate of inflow 1 JRate of outflow! 

iof salt (lb/min)J lof salt (lb/min)J l of salt (lb/min)j 
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Let x be the number of pounds of salt in the tank at the end of 
t min;then 

, . dxf lb \ 
Rate of increase of salt = — (—7-) • 

dt \mm/ 

The brine flows in at the rate of 3 gal/min and each gallon contains 
2 lb of salt; hence 

Rate of inflow of salt = 3 (~~~) - 2 (—^ = G f—-V 
vmin/ vgal/ vmin/ 

Since the brine runs into the tank 1 gal/min faster than it runs out, 
the amount of brine in the tank at the end of t min is 100 + t gal, 
and the concentration of salt present at that time is :r/(100 + t) 
lb/gal; hence 

_ f lb 
Rate of outflow of salt — 2 

/lb\ 2x / lb \ 

t Vgal/ 100 + t Vmin/ \min/ 100 + t Vgal/ 100 + t Vmin/ 

Therefore the differential equation is 

dx 2x 
— = G-- 
dt 100 + t 

When the last term is transposed to the left side, the differential 
equation takes the standard linear form 

dx 2 

dt 100 4" t 
x = 6, (1) * 

which we solve by the method of Art. 21: 

R = ef2d,/(VM+<) = g2 In (100 + 0 = (10Q + ^ 

(100 + t)2x -I 0(100 “f* t)2 dt 4" Cf 

(2) (100 4- tfx = 2(100 4- tf 4- C. 

The constant of integration is determined from the condition that 
x = 50 when t == 0, so that 

C = 1002 • 50 - 2 • 1003 = -1002-150. 

* The substitution x = c(100 + t), where c is the concentration of salt present 
at time t, would reduce equation (1) to an equation separable in the variables c 
and t. (See Prob. 1, Art. 24.) 
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Hence 

or 
(100 + t)2x = 2(100 + tf - 1002 • 150, 

x = 2(100 + t) - 
150 

(3) 

which gives the amount of salt in the tank at any time t; for t = 30 
min we have 

£]f»30 = 260 — 
150 

L69 
171 lb. (4) 

Instead of adding and evaluating a constant of integration, we 
could have integrated equation (1) between limits, writing, instead 
of equation (2), 

(-30 
, .\*n30 

(ioo+ovnio=2(io°+ 
* = 50 

Then 

1302x - 1002 • 50 = 2(1303 - 1003), 

2-1303 - 150 1002 150 
x =-^-= 2G0-= 171 lb. 

130' 1.69 

Variations of Example 1. In certain cases, problems of this type 
lead to separable differential equations. For instance, suppose that 
in the example just solved the brine is running out at the same rate 

that it is running in, namely, 3 gal/min. The amount of brine in 
the tank remains constant, 100 gal, and the differential equation is 

dx 3x 

dt ~ 100 

Separation of variables gives 

dx 3 dt 

200 - x 100 ’ 
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and the solution proceeds as follows: 

200 — x — 150c~°-9 = 150 X 0.4066, 

x = 200 - 61 = 139 lb, 

the amount of salt in the tank at the end of 30 min. 
Again, suppose that the conditions of the original problem are the 

same except that pure water is running into the tank. There is now 
no inflow of salt, and the differential equation is 

dx 2x 

dt 100 + t 

Separating the variables, and solving, we have 

dx 2 dt 

~x ~ ~ 100~+~? 

ln xTm = ~2 ln (10° + C 

x 130 1 
In — = —2 ln-= —2 ln 1.3 = ln- 

50 100 1.69 

50 
x =-= 29.6 lb, 

1.69 

which in this case is the amount of salt in the tank at the end of 

30 min. 

Electric circuits. In the subsequent differential equa¬ 
tions for electric circuits the following symbols will be used: 
R (ohms) = resistance; L (henries) = inductance; C (farads) 
= capacitance; e (volts) = electromotive force (emf), q 
(coulombs) = quantity of electricity, or charge on a condenser, 
and i (amperes) = current, at time t (sec). The capital letters 
are constants; the small letters are, in general, variables. 
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Under certain conditions the circuit equation is a linear dif¬ 
ferential equation of first order, a special case of which reduces 
to a separable equation. 

For a simple circuit containing a resistance and an inductance 
in series with a source of emf * 

di 
L — + Ri = e. (1) 

dt 

In general, when e is a function of t, the equation is linear, but 
when e is a constant the equation is separable. 

For a simple circuit containing a resistance and a capacitance 
in series with an emf 

t^dq 1 

RJi + cq~e’ (2) 

or upon differentiating, since i — dq/dt, 

_ di 1 

Rdt + C' 

de 

dt 
(3) 

In general, when the right member of (2) or (3) is a function of 
t, the equation is linear, but it becomes separable if the right 
member is constant. If R, C, and e are given, q may be deter¬ 
mined from (2), and then i can be obtained from the relation 
i = dq/dt; or i may be determined directly from equation (3). 

The general solutions of equations (1), (2), and (3) can be 
written down in a form involving an integral, but, unless e is 
constant, the integrations cannot be carried out until the form 
of e as a function of t is given. 

For example, to obtain the general solution of (1), where 
e = f(t), we have 

di 

dt 
+ (4) 

* The differential equation for a circuit containing resistance, inductance, and 
capacitance will be found in Art. 39. For a derivation of these differential equa¬ 
tions, see Bedell and Crehore, Alternating Currents, or Reddick and Miller, 
Advanced Mathematics for Engineers, 2nd Ed., Arts. 7 and 14. 
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The integrating factor * is e^~(S/z,) dt = hence 

tWL)l-i = lf *(R,L)tm dt + K, 

where K is a constant of integration, and the general solution is 

~ i = l rW'f e(RtL)tm dt + Kt-<RILK (5) 

The integration cannot be carried out until the form of f(t) 
is specified. Suppose that the emf is a simple harmonic func¬ 
tion of the time, e = f(t) = E sin ut. Here E is the amplitude 
or maximum value of the emf, and u (rad/sec) is the angular 
velocity, or 2v times the frequency in cycles per second, so that, 
when t is given in seconds, the angle ut is in radians. Equation 
(5) now becomes (Peirce, 414) 

i 

or 

_ 1 ,-(R/L)t 

L 
, i f-eWL)t (y sin ut — u cos ut) 

+Ke -(*/«< 

l = 
E 

R2 + L2u2 
(R sin ut — Lu cos ut) + Ke {R/L)t, (6) 

The value of K is determined when a corresponding pair of 
values (i, i) is known; thus if i = 0 when l — 0, we have 
K = ELu/{R2 + LV), and equation (6) reduces to 

E 
i = 

R2 + L2u2 
(R sin ut — Lu cos ut) + 

ELu 

R2 + LV 
c-(RlL)t 

(7) 

Hence, for a simple circuit containing a resistance R and an 
inductance L, in series with an impressed emf of the form 
e = E sin ut, equation (7) gives the current i at any time t 
after the introduction of the emf under the condition that 
i — 0 when t = 0. This condition means that the circuit was 

* We now write € instead of e for the constant 2.718* • • to distinguish it from 
the electromotive force e. 
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idle, i.e., no current was flowing, just before the emf was intro¬ 
duced, so that at the time when the emf is applied the current 
starts at zero. There can be no sudden jump in the current 
when the emf is introduced, for that would make di/dt infinite 
and equation (1) would no longer be valid. The last term o 
(7) is called the transient term, since it dies out with increasing 
t; theoretically it becomes zero only when t is infinite, but prac¬ 
tically it is negligible for t fairly small. The remaining term on 
the right is called the steady-state term, since it gives the value 
of the current when a steady state has been reached, i.e., after 
the transient has died out. 

We now apply the method used in Art. 2 to reduce the equa¬ 
tion of the steady-state current to another form: 

E 
i = 7-r——-j—r. (R sin ut — Lu cos at) 

R2 + L2a2 

E r R • , I*» J 
Vr2 + LV2 L VR2 + L2u2 Vr2 + L2a2 j 

or 

*" VWTWsin (“‘ “ tan_‘ t)' (8) 

Equation (8) shows that the maximum value, or amplitude, 

of the steady-state current is E/vR2 + L2w2, which is less 
than E/R, the value it would have if there were no inductance. 

The expression vR2-L2w2 is called the impedance; it repre¬ 
sents apparent resistance. The steady-state current is alter¬ 
nately positive and negative and oscillates between +E/ 

VrF+TK? and -E/Vr2 + L2w2; it is a simple harmonic 
function of the time, having the same frequency as the im¬ 
pressed emf. 
- Now consider the case where e — E, a constant. Equation 
(1) reduces to 

di E — Ri 
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a separable equation whose solution proceeds as follows: 

di 1 , 
r: = Tdt> E - Bi 

In (E - Bi) = - t + In K, 

E - Bi = Ke~(H/L)l, 

Ke-(R/L)t), (9) 

which is the general solution of equation (1) for a constant emf. 

The condition i = 0 when t = 0 would give K — E and reduce 

the equation to the form 

E 

* = «(1 
-(R/L)t' (10) 

As t increases, the exponential term becomes negligible and the 

current takes on its Ohm’s law value, E/R. 

'Example 1. A simple electric circuit contains a resistance of 
10 ohms and an inductance of 4 henries in series with an impressed 
emf of 100 sin 2001 volts. If the current i = 0 when t = 0, find 
(a) the current when t = 0.01 sec; (b) the ratio of the steady-state 
current when t = 4 sec, to its maximum value. 

(a) We could use equation (7) as a formula and substitute the 
given values of the letters, but instead let us start with the differential 
equation and integrate between limits: 

di 
4 -- + lOi = 100 sin 200£, 

dt 

f0.02i{ 

— + 2.5i = 25 sin 200/, 
dt 

*=901 rom 
= 25 / e2'5' sin 200/ dt, 

i- 0 */0 

25 
2 e2-5t(2.5 sin 200/ - 200 cos 200/)]°O1, 

2.52 + 200: 

J).025, i = - e2-5( (4 
8 V8C 

sin 2001 — cos 200£, 
,80 >j0 

)“0.01 

Jo 
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(where 1/8 is written instead of 1/8.00125), 

i - i tr<y sin 2 - cos 2 + e-0 025), 

1 /0.9093 \ 
i = - (-+ 0.4161 + 0.9753 ), 

8 \ 80 / 

i = £ (1.403) = 0.175 amp. 

(6) From equation (8) the ratio of the steady-state current, when 
t = 4 sec, to its maximum value is sin (800 — tan-1 80). Expressing 
the angle in degrees, we have 

tan-1 80 = 89.28°, 

800 rad = 800 X 57.29578° = 45,836.62°, 

800 - tan-1 SO rad = 45,747.34°. 

Reducing this angle by 127 X 360° = 45,720°, we obtain for the re¬ 

quired ratio 
sin 27.34° = 0.459. 

Without using degrees, the computation could have been made as 

follows: 
tan-1 80 = 1.5583, 

800 - tan-1 80 = 798.4417. 

Reducing this angle by 2547r = 797.9645, we obtain for the required 

ratio 
sin (0.4772) = 0.459. 

24. Rope wound on a cylinder. A rope is wound on a rough 
circular cylinder whose axis is horizontal. Let n represent the 
coefficient of friction, a (ft) the radius of the cylinder, T (lb) 
the tension in the rope at any point P, p (lb/ft) the linear den¬ 
sity of the rope, and 0 the angle POA. (See Fig. 5.) Let Q 
be a point on the rope somewhat to the left of P, Ad the angle 
POQ, As the length of arc PQ, and M the midpoint of PQ. 
Suppose that the rope is on the point of slipping from right to 
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left; then the tension at Q will be T + AT, a quantity larger 
by AT than the tension at P. 

Let us resolve along the tangent line at M the forces acting 
on the small portion of the rope, PQ. The tension T + AT, 
acting tangentially to the cylinder 
at Q, yields toward the left along 
the tangent line a force (T + AT) 
cos (Ad/2). We equate this to the 
stun of all forces toward the right 
along the tangent line. Notice that 
the frictional force along the tan¬ 
gent line is toward the right, since 
it opposes the motion, and that 
it is equal to p times the result¬ 
ant along the normal MO of the Fia. 5 
tension T, the tension T + AT, 
and the weight pAs of PQ. The resulting equation is 

(T + AT) cos ~ - T cos ~ + pAs cos (d + + 

M |V sin y + (T + AT) sin ~ + pAs sin (d + • (1) 

If we let Ad —> 0, and hence As —> 0 and AT —■> 0, in order 
to obtain the tension T at P, we obtain T = T; but if, after 
cancelling the equal terms, T cos (A0/2), we divide equation 
(1) through by Ad and then take limits as Ad —> 0, we obtain 
the differential equation which determines T as a function of d: 
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or, since 
A9 

As 
— = a 
A6 

sin • 

and lim • 
AS -+ 0 Ad 

2 

= 1, 

dT 

de 
— pa cos 0 4- m[T + pa sin 0]. 

The linear differential equation 

dT 

~d8 
— pT = pa(cos 6 + p sin 6) (2) 

therefore states the law connecting the tension T at any point 

P with the angle corresponding to this point. 

The general solution of equation (2) may be found by the 

method of Art. 21; it is 

T =-- [(1 — p2) sin 6 — 2p cos 6] + Ce(3) 
1 + p 

where C is an arbitrary constant. (See Problem 25 at the end 
of this article.) 

Two special cases occur: when T is so large compared to p 
that p can be taken equal to zero, and when friction is negli¬ 
gible so that p can be taken equal to zero. These cases are 
represented respectively by the following differential equations 
and general solutions: 

dT 
_ = T - Ce*9; (4) 

dT 
j— = pa cos 0, T = pa sin 0 + C. (5) 

Example 1. On a rough circular cylinder with horizontal axis and 
a diameter of 8 ft and in a plane perpendicular to the axis lies a chain 
with one end at the level of the axis of the cylinder. If the coefficient 
of friction between the chain and cylinder is how far below the 
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axis must the other end of the chain hang down so that the chain is 
on the point of slipping? 

Referring to Fig. 5, suppose that the right end of the chain is at A 

and that the left end hangs down a distance L below B. Equation 
(2) is the differential equation for this problem. Assuming that the 
general solution (3) has been obtained, the constant C is determined 
from the condition T — 0 when 6 = 0 as follows: 

0 = + C, 

c~100p 6 

34 ’ 5 

60p 

TT 

Also T — pL when 8 — it, so that we have from (3): 

PL 
_ 10°pr 

34 l25 

16 . 6 1 
— sin ir-cos ir 
25 5 J 

+ — p3ir/5 

17 ’ 

L = f?- (1 + e37r/5) = f?(l + 6.586) = 26.8 ft. 

The same result is obtained by substituting /z = •§, a = 4, in the 
formula found for L in Problem 26 of the following group. 

Example 2. A rope weighing -J lb/ft is wrapped once around a 
smooth horizontal cylinder 6 ft in diameter. If the rope is cut at its 
lowest point so that the ends hang down, find the maximum tension 

in the rope. 
Assuming that the cylinder is so smooth that friction is negligible, 

equation (5) is applicable: 

T = f 3-sin 0 + C. 

The length of rope hanging down on each side is equal to a quarter 
of a circumference or |*6ir ft and its weight is (6x/4)-J = f* lb, so 
that C is determined by the condition T = f t when 0 = 0 or ir; 
hence C = f t, and 

T = | sin 0 + f ir. 

The maximum tension occurs at the top where 6 = ir/2; hence 

Tmax = f + f71* = 3.86 lb. 
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/problems 

1. In Ex. 1, Art. 22, what is the concentration of salt in the tank at the 

end of 30 min [obtained from equation (4)]? Obtain the same result by solv¬ 

ing the separable equation mentioned in the footnote to equation (1). 

2. A tank contains 100 gal of fresh water. Brine containing 1 lb/gal of 

salt runs into the tank at the rate of 2 gal/min, and the mixture, kept uniform 

by stirring, runs out at the rate of 1 gal/min. Find (a) the amount of salt 

present when the tank contains 125 gal of brine; (6) the concentration of salt 

in the tank at the end of 1 hr. 

3. A tank contains 100 gal of brine holding 25 lb of salt in solution. Three 

gallons of brine, each containing 1 lb of dissolved salt, run into the tank per 

minute, and the mixture, kept uniform by stirring, runs out of the tank at 

the rate of 1 gal/min. Find (a) the amount of salt in the tank at the end of 

40 min; (b) the time when the concentration of salt in the tank is f lb/gal. 

4. (a) Brine, containing 1 lb of salt per gallon, runs into a 200-gal tank 

initially full of brine containing 3 lb of salt per gallon, at the rate of 4 gal/min. 

If the mixture runs out at the same rate, when will the concentration of salt 

in the tank reach 1.01 lb/gal? (/>) Work Prob. 4(a) if the mixture runs out 

at the rate of 5 gal/min. 

6. A tank contains 100 gal of saturated brine (3 lb/gal of salt). Brine 

containing 2 lb/gal of salt runs into the tank at the rate of 5 gal/min, and the 

mixture runs out at the rate of 4 gal/min. Find the minimum content of 

salt in the tank and the time required to reach the minimum. 

6. Show that in Prob. 5, if the mixture runs out at the rate of 3 gal/min, 

the content of salt in the tank continually increases. 

7. A tank contains 100 gal of fresh water. Brine containing 1 lb/gal of 

salt runs into the tank at the rate of 1 gal/min, and the mixture runs out at 

the rate of 3 gal/min. Find the maximum amount of salt in the tank and 

the time required to reach the maximum. 

8. A tank contains V gal of fresh water. Brine containing c lb/gal of 

salt runs into the tank, and the mixture runs out, the ratio of the rate of in¬ 

flow to the rate of outflow being r(< 1). Find the maximum amount of salt 

in the tank and the corresponding volume of brine in the tank. 

9. A resistance of 3 ohms and an inductance of 1 henry are connected in 

scries with an emf of 10 sin 10£ volts. If the current is zero when t = 0, find 

(a) the current when t = 0.1 sec; (b) the current when t = 3 sec; (c) the ratio 

of the numerical value of the steady-state current when £ = 3 sec to its 

maximum value. 

10. A resistance of 20 ohms and an inductance of 2 henries are connected 

in series with an emf of e volts. If the current is zero when t = 0, find the 

current at the end of 0.01 sec if (a) e = 100; (b) e = 100 sin 150£. 

11. Find the general solution of equation (2), Art. 23, if e — J{t). From 
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this result obtain the general solution when (a) e = E, a constant; (6) e = E 
sin ait. 

12. Obtain the general solution of equation (3), Art. 23, for an emf of E 
sin o>t volts, (a) by substituting e = E sin wf in equation (3) and integrating; 

(6) by differentiating the result of Prob. 11(6). 

13. An emf is introduced into a circuit containing in series a resistance of 

10 ohms and an uncharged condenser of capacitance 5 X 10 _“4 farad. Find 

the current and the charge on the condenser when t = 0.01 sec, (a) if e = 100 
volts; (6) if e = 100 sin 120^ volts. 

14. An emf of 100 volts is introduced into a circuit containing in series a 

resistance of 10 ohms and an uncharged condenser of capacitance 5 X 10"4 

farad. When a steady state has been reached, the emf is removed from the 

circuit. Find the current and the charge on the condenser 0.01 sec after the 

removal of the emf. 

16. An eraf of 100 sin 1207r£ volts is introduced into a circuit containing in 

series a resistance of 100 ohms and a condenser of capacitance 5 X 10 “4 farad. 

There is already a charge on the condenser at the time i = 0, when the emf is 

introduced, such that the current at that time is 1 amp (positive). Find the 

current 0.1 sec later. 

16. An inductance of 1 henry and a resistance of 100 ohms are connected 

in series with a constant source E (volts) through a switch. The switch is 

closed, and 0.01 sec later the current is \ amp. Find E. 

17. A resistance of 10 ohms is put in series with an inductance of L hen¬ 

ries. The circuit is connected through a switch to a constant source of E 
volts. If the current reaches l of its steady-state value in 0.1 sec, find L. 

18. (a) A condenser of capacitance C is in series with a resistance R. The 

circuit is connected to a constant source E through a switch. If the condenser 

is uncharged at the instant the switch is thrown, and after t sec has a charge 

Q, what source was applied? 
(6) Find E if t = 0.01 sec, R = 100 ohms, C = 5 X 10~6 farad, Q = 

5.2 X 10“3 coulomb. 
19. A certain relay is designed so as to close a circuit when 60 volts are 

impressed across its terminals (i.e., when Ri = 60 volts). The relay coil 

has an inductance of ^ henry and operates from a 120-volt d-c source. If 

the circuit closes 0.05 sec after being connected to the source, find (a) the re¬ 

sistance of the relay; (6) the current when the circuit closes. Neglect the 

resistance of the leads. 
20. If in Prob. 19 the relay is designed to operate when the current is 6 

amp, in the same time, 0.05 sec, find the resistance of the relay coil. 

21. An uncharged condenser of capacitance C (farad) is charged from a 

source of constant voltage through a resistance R (ohms). When will the 

current (amp) be equal in magnitude to the charge (coulomb) on the con¬ 

denser? 
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22. Show that in Prob. 21 the charge will reach 63.2 per cent of its maxi¬ 

mum value in RC sec and that it would reach its maximum value in this 

same time if it increased continually at its original rate. 

23. A condenser of capacitance 4 X 10"4 farad is discharged through a 

resistance of 10 ohms. If the current is 1 amp at the end of 0.01 sec, what 

was the initial charge on the condenser? How much resistance should be 

taken out of the circuit in order to obtain half the current in the same time? 

24. A series circuit consists of a resistance of 120 ohms and an inductance 

of 6/7r henries. A 220-volt d-c generator is put in scries with a 220-volt 

a-c generator (60 cycles frequency), and the combination is connected to the 

circuit through a switch. Find (a) the current at time t after the switch is 

closed; (6) the current after 1/20tt sec; (c) the steady-state current; (d) the 

voltage across the inductance and the voltage across the resistance when 

t = 1/207T sec. 

26. Obtain the general solution (3) of the differential equation (2), Art. 24. 

26. In the problem leading to differential equation (2), Art. 24t assume 

that the right end of the rope is at the level of the axis of the cylinder and that 

the other end hangs down a distance L below the axis; find L, in terms of /jl 

and a, when the rope is on the point of slipping. 

27. In the problem leading to differential equation (2), Art. 24, assume that 

the right end of the rope is at the top of the cylinder and that the other end is 

at the level of the axis, (a) Find the equation which determines the coefficient 

of friction if the rope is on the point of slipping. (6) Solve the equation of 

part (a) by the method of trial and error, obtaining the value of (jl to three 

figures. 

28. A rough circular cylinder with horizontal axis has a piece of flexible 

cable lying across the uppermost quarter of its circular cross section. Find 

the force which, applied tangentially at one end of the cable, would just 

cause it to slip. Radius of cylinder = 2 ft. Weight of cable == \ lb/ft. 

Coefficient of friction = f. 

29. A flexible cable weighing 1 lb/ft hangs a distance of L ft below the hori¬ 

zontal axis of a drum of radius 6 in. and reaches three-quarters of the distance 

around the upper half of a circular cross section. Assuming that the cable is 

on the point of slipping and that the coefficient of friction is find L. 

30. A piece of cable weighing 1.5 lb/ft rests along the circumference of a 

smooth cylinder of radius 4 ft. If the maximum tension in the cable is 3 lb, 

what is the length of the cable? 

31. A ship, pulling with a force of 10,500 lb, is held by 2.5 turns of rope 

wound around a post. If the coefficient of friction is 0.4, with what force 

must a man pull at the other end of the rope in order to hold the ship? How 

many turns of rope would be necessary if the man pulls with a force of 40 lb? 

32. (a) A rope 35 ft long weighing \ lb/ft is thrown over a rough (n = 0.5) 

cylinder 3 ft in diameter whose axis is horizontal and 20 ft above ground. 
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On one end of the rope a piece of iron is suspended. The other end of the 

rope is held by a man standing on the ground who uses 2 ft of the rope as a 

grip by winding it around his hands. If the man pulls straight downward 

with a force of 50 lb at a distance of 4 ft from the ground, how much does the 

piece of iron weigh if it is on the point of dropping? 

(b) Work part (a) neglecting the weight of the rope. 

(c) Work part (a) assuming that the cylinder is smooth. 

33. On a smooth cylinder rests a 40-lb weight attached to a chain which 

passes over the cylinder and hangs down 2 ft below the horizontal diameter of 
the cylinder. A 20-lb weight is attached to the lower end of the chain. The 

diameter of the cylinder is 12 ft, and the weight of the chain is 5 lb/ft. Find 

the position in which the 40-lb weight rests in equilibrium. 

34. A flexible cable weighing p lb/ft hangs a distance of G in. below the 

horizontal axis of a drum 5 ft in diameter and reaches around the upper half 

of a circular cross section for a distance equal to one-third the circumference 

of the drum. Assuming that the cable is on the point of slipping, obtain a 

formula for finding the coefficient of friction p, and show that p = 0.44 

satisfies it closely. 

35. Assuming p = 0.7324 in Trob. 27, find the angle I>OP, where B is the 

lower end of the rope, 0 is the center of the cylinder, and P is the point on 

the rope where the tension is a maximum. 

36. A trough is 2 ft long and of width 1/(10 — x) ft at a distance of x ft 
from its flat base. Ether flows into the trough, originally empty, at the rate 

of 10/(10 + 0 ft3/hr, where t (hr) is the time after the flow starts. If the rate 

of evaporation is proportional to the area /I (ft2) of the liquid surface, the 

constant of proportionality being Jc — ft/hr, find the depth of the liquid in 

the trough after 2 hr. How much greater would the depth have been if none 

of the liquid had evaporated? 

37. Tests, taken after an overhaul of a plastic molding machine producing 

100 articles per second, showed approximately the following rate of produc¬ 

tion of defective articles: (1) 20 per min due to uncontrollable causes, (2) 

1 per hr increase in defectives per 104 additional articles, due to steady wear 

of machine parts, (3) 2 per hr increase in defectives per 103 additional defective 

articles. Find the total number of defectives produced during 10 hr after 

an overhaul. 

25. Substitutions. A differential equation that is not in one 
of the forms previously discussed may be capable of transfor¬ 
mation into one of these forms by substituting one or two new 
variables. The new equation may then be solved and the re¬ 
sult transformed back in terms of the original variables. We 
shall now consider a few equations of this kind. 



88 Chapter 3 

(a) Bernoulli’s equation. A differential equation of the form 

^ + Py = Qyn, (1) 

where P and Q are functions of x, and n is any constant except 
0 or 1, is called a Bernoulli equation. It is assumed that n is 
neither 0 nor 1, for then the equation would be linear or sepa¬ 
rable, respectively. 

We shall show that equation (1) can be transformed into a 
linear equation by substituting a new dependent variable in 
place of 2/; but, in order to see the appropriate substitution, 
we first multiply equation (1) by y~n so that a function of x 
alone appears on the right, thus: 

dy 
y " — + Py1 n = Q. 

ax 

We notice now that, if the equation is multiplied by 1 — n, the 
first term becomes the derivative of yl~n‘ 

dy 
(1 - n)y n — + (1 - n)Pyl ” = (1 - n)Q. 

ax 

Hence the substitution yl~n = z produces the equation 

dz 
— + (1 - n)Pz - (1 - n)Q, 
ax 

which is linear in z and dz/dx and can be solved in terms of 
z and x by formula (8) of Art. 21, after which the replacement 
of z by yx~n will give the general solution of equation (1) 

However, in practice we do not need to use the letter z, but 
proceed as follows to solve equation (1). First multiply 
through by y~n and by the new exponent of y in the second 
term. Then apply formula (8), Art. 21, replacing P by the 
new coefficient in the second term, Q by the new right member, 
and y by the new power of y in the second term. 
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If, instead of equation (1), we had 

dx 
— + Px = Qxn, (2) 
dy 

where P and Q are functions of y, we would follow the same 
procedure with x and y interchanged. 

Example 1. Solve 

dy , 2 
— = xryr + xy. 
dx 

Written in the standard form (1), the equation is 

dy 3 2 
--xy - x V ■ 
dx 

Multiplying by y~2 and by the new exponent of y in the second term, 
which is — 1, we have 

_2 dy 3 
—y ; ■ + xy = -x3. 

dx 

Since the first term is the derivative of y~l, the equation is linear 
with y~x as dependent variable. Using formula (8) of Art. 21, we 

have 

e*iay~l 

R = (f* dx = ex*12, 

-x3 dx) + C = —2 J ex',2(x dx) + C. 

Integration (Peirce, 402), with x replaced by x2/2, gives 

= —2e*s/2 (|2 - l) + C. 

Multiplying by e~x*l2y and rearranging, we have 

(2 - x2 + Ce~x'l2)y = 1. 

(b) Equations reducible to homogeneous. A differential equa¬ 
tion of the form 

(axx + a2y + o3) dx + (6xx + b2y + b3) dy - 0, (3) 
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where the a’s and b’s are constants, can be reduced to a homo¬ 
geneous equation by making a substitution for both variables, 
x and y. The method would not be used in the special cases 
where the constants have values that render the equation 
solvable by one of the previous methods; for instance, 

When a2 = bl — 0, or ai = b2 = 0, or di/bx = d2/b2 = 

a3/b3, the equation is separable. 
When a2 = bi 7* 0, the equation is solvable by means of 

the integrable combination x dy + y dx = dixy). 
When a3 = 63 = 0, the equation is homogeneous. 
When ax = 0, or b2 = 0, the equation is linear. 

We shall employ a transformation which moves the origin 
to the point (h, k), then choose the point (h, k) so that the re¬ 
sulting equation is homogeneous. Let x = X + h, y = Y + k 
(making dx = dX, dy = dY), and substitute in (3): 

(fljA -f* o2Y -f- o,\h -|- d2Ic -f- (X3) dX -f- 

(biX + b2Y + bji + b2k + 63) dY = 0. 

Now choose h and k so that 

d\h -f- d2k “l- dj — 0, 

(4) 

b\h -f- b2k —f- 63 = 0. 

The result is 

(01X + d2Y) dX + (TbtX + b2Y) dY = 0, (5) 

a homogeneous equation which we can solve in terms of X and 
Y, and then go back to the original variables by means of the 
substitution 

X-x-h, Y - y — k. 

In practice, however, it is not necessary actually to change 
to the new variables X, Y and afterwards change X to x — h 
and Y to y — k. The same effect is produced if, after dropping 
a3 and b3 from equation (3), we solve the resulting equation and 
then change x to x — h and y to y — k, h and k having been 
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determined previously by solving equations (4). The method 
can be stated as follows: 

1. Solve equations (4) for h and k. 
2. Drop a3, b3 from (3) and solve the resulting equation. 
3. In the result of step 2 change x to x — h, y to y — k. 

Example 2. Solve 

(x + y + 1) dx + (6* + 10y + 14) dy = 0. 
Solving 

h + k -f- 1 = 0, 

3h -j- 5fc -f- 7 = 0, 

we obtain h — 1, h = — 2. 

We now solve 

0 + y)dx + (6x + 10j/) dy = 0. 

The substitution x — vy gives 

(v + l)(t> dy + y dv) + (6v + 10) dy = 0. 

Separating the variables, 

dy (v + 1) dv 

y + ip + 5)(v + 2) 

Resolving the second fraction into partial fractions, 

dy f 4 1 I 
— +-\dv = 0. 
y L3(t> + 5) 3(v + 2)J 

Multiplying by 3 and integrating, 

3 In y + 4 In (v + 5) — In (v + 2) = In C. 

Taking antilogarithms, 

y3(v + 5)4 = C(v + 2). 

Replacing v by x/y, 

(x + 5 y)* = C(x + 2 y). 

Finally we change x to x — 1, y to y + 2, and obtain 

(x +5y + 9)4 = C(x + 2y + 3), 

which is the required solution. 
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There is one exceptional case in which equations (4) cannot 
be solved for h and k. This occurs when in equation (3) 

bix -j- b2y = m{axx + a2y), 

where m is a constant. It happens, however, that this excep¬ 
tional case is more easily treated than the regular one, for, if in 
equation (3) we substitute axx + a2y = v, bxx + b2y — mv, 
and the value of either dx or dy from the differential relation 
ax dx + a2dy — dv, we obtain a separable equation. 

Example 3. Solve 

dy _ x + y + 4 

dx 2x + 2y — 1 

Substituting x + y = v, dx = dv — dy, we have 

(2» — l)dy = (v + 4)(dv - dy), 
or 

(3v + 3) dy = (v + 4) dv, 

which is separable: 
v+4 ( 3 \ 

3 dy =-dv — ( 1 4-) dv. 
v + 1 V v + 1/ 

Integrating, 
3y + C = v + 3 In (v + 1). 

Replacing v by x + y, 

x — 2y + 3 In (x + y + 1) = C. 

(c) Substitution suggested by the form of equation. Sometimes 
a substitution of variables, suggested by the form of a differ¬ 
ential equation, will reduce the equation to a solvable form in 
the new variables. 

Example 4. Solve 

— = sin (x + y). 
dx 
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A little reflection discloses that this equation does not belong to 
one of the types previously considered, nor does it help to expand the 
right member and write 

dy , 
— = sma; cos y + cos x sm y ; 
dx 

but the form of the equation suggests letting 

x + y = v, dy = do — dx. 

The result of this substitution is 

dv 
— 1 s sin v. 

dx 

an equation separable in the variables v9 x. We have 

dv 
-7— = dx. w 
1 + sin v 

Integration (Peirce, 294) gives 

or, replacing v by x + y. (r x + y\ 

4-2 / 

The above example suggests the more general case: A differ¬ 
ential equation of the form 

y = /(°x + *v) (6) ax 

is reducible to a separable equation by the substitution ax + 
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The proof is immediate, for, using this substitution together 
with the value of dy obtained therefrom, equation (6) becomes 

1 f dv \ 

bidi-a)-m 
or 

dv 
-= dx% 
bf(v) + a 

in which the variables are separated. 

PROBLEMS 

Solve each of the following differential equations as a Bernoulli equation 
and also by another method. 

1. x dy = y(xy — 1) dx. 

■P 2. 

3. 

dy 4 xhf 

dx x4 + y2 

xdy 

. j 

y dx 
+ 1 - 3 y\ J 

*4 ^ y = x 
‘ dy x y 

K ydx 3,2 
5. —— = xif + y2 

xjdy 
1. 

Solve the following differential equations. 

dx y 

7. 3x f- + y + xY = 0. 
ax 

8. x3 dy + 3x2 dx — 2 cos y dy. 

dy 
10. cos x — — y sin x + y2 = 0. 

11 2 — = y(2x -■ — 

dx x2 
dy 

12. cos x = y sin x + y2 tan x. 
dx 

dy __ 4 sin2 y 

dx x5 + x tan y 
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J 

14. 2a:2 ii 

+
 

■&
I-9 42f. 

1R 
dy _ 6a: + y - 12 

JLCJ. 
dx 6x - y - 12 

16. 
dy 1 

= 1. 
dx x + y 

17. 
dy x + y - - 1 

dx X - y - - r 

is ?_dy i x + V + 1 - n 
•J* dx 2x + 3y — 1 

V) 19. (x + 2y) dx + (y — 1) dy = 0. 

20. j- + ~~ = 2. 
dx x + y 

21 o dy -- 12y - fa + 26 
■ <ix 2/ + 2X-2 

22. ^ j = 0. (Hint: Let x + y = u, xy 
dx 1 + rhj 

23. ^ = cos (&r - 
dx 

4> 24. ^ = _ «!_. 
dx e2z + y/2 

f.) 

32/)- 

26. ~- = (x + l)2 + (4»/ + l)2 + 8x2/ + I- 
ax 

26. x ~ — 2/ = 2x2y(y2 - x2). 

27. Find the solution of 

(4 - x2 + 7/2) dr + 4y cfy = 0 

for which y = 1 when a: = 2. 
28. Solve 

X2? - 2X2/ = 32/", 
dx 

where n is a constant. For what values of n is the solution valid? Find 
the solution for any exceptional values of n. 

29. Solve 
dy 1 — a? — 2 y 
dx y + 3 1 

if z = 4 when y = 1. 
30. If 

dy _ + 3a: 

do; a:2 
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and y — 0 when x = 1, find the value of y when x — 1.5. 

31. Solve 
dy y 

x-~ + y\n~ = ?/(l + x sin x) 

by using each of the following substitutions : 

(a) I^et y/x — v, obtaining an integrable combination in v and x. 

(b) Let In (y/x) = r, obtaining an equation linear in v and dv/dx. 

32. Show that the differential equation 

x dy 

ydx 
= f(?y) 

is reducible to an equation separable in v and x by the substitution xy — v, 

hence solve 

(a) y(l + xhf) dx = x dy; n\ = 2 + z2y2 
y dx 2 — xly2 

33. Show that the differential equation 

dy — f(i\X -f- a2y + a3\ 

dx \&ix + 622/ + b-J 

is reducible to a homogeneous equation by the substitution x = X + h, 

y = Y + k, if h and k are chosen so that 

Solve 

(a) 
dy (x + 4 y\2 

CL\h + CLok + U3 = 0, 

b\h -f- 62k -f- 63 — 0. 

dy /x + y + 1\8 fx + 4yy dy _ fx + y + 1\ 
\4j; — 4/ ’ U dx \ x + y ) dx \4j — 4/ 9 dx \ x + y 

34. The general form of Riccati’s equation is 

dy 

dx 
= P + Qy + Ry2, 

where P, Q, and R are functions of x. Solve the following special cases: 

(а) P — x3, Q — 2/Xj R = \/x. Let y — x2v. 

(б) P = sec2 xf Q = tan xy R = — 1. Let y = tan x + (l/t>). 

35. Solve Prob. 34(6) using each of the following substitutions by which 
the equation becomes separable: 

y = v sec x; y = v cos x + tan x. 
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26. Curves determined from geometric properties. It often 
happens that a family of curves may be characterized by a 
geometric property stated in terms of the coordinates of a 
point on one of the curves and the first derivative of one of the 
coordinates with respect to the other. Such a statement will 
be a differential equation of first order whose general solution 
represents the family of curves each of which possesses the 
given property. Then, if an additional condition is given, such 
as the requirement that the curve shall pass through a given 

Fig. 6 Fig. 7 

point, this condition may be used to determine the arbitrary 
constant in the general solution. Using this value for the ar¬ 
bitrary constant, there is obtained the particular solution which 
represents a curve possessing the given geometric property and 
satisfying the required condition. The geometric property 
may be stated either in rectangular coordinates or in polar 
coordinates. 

If x, y are the rectangular coordinates of a point P on a 
curve (x = abscissa, y = ordinate), dy/dx represents the slope 
of the curve at that point, that is, the tangent of the angle 
measured counterclockwise from the positive direction of the 
x-axis around to the tangent line at P. Denoting this angle by 

a (Fig. 6), 

(1) 

Thus dy/dx will be positive when a is an acute angle, and nega¬ 

tive when a is obtuse. 
If p, 6 are the polar coordinates of a point P on a curve 
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(p = radius vector, 6 = vectorial angle), dp/dd does not repre¬ 
sent an important geometric concept such as that expressed by 
equation (1) in rectangular coordinates. The combination 
p dd/dp, however, is shown in calculus to represent the tangent 
of the angle QPT (Fig. 7), measured counterclockwise from 
the radius vector OP (extended) around to the tangent line at 
P. Denoting this angle by \]/, 

dd 
P — = tan (2) 

dp 

By means of relations (1) and (2) we can set up differential 
equations in rectangular and polar coordinates which define 
systems of curves having certain geometric properties; some¬ 
times we shall bring in other formulas from calculus, such as 
those for area under a curve, distance along a curve, and area 
of a surface of revolution. We shall make a distinction be¬ 
tween the terms “length” and “distance.” The length of a 
line segment or arc will mean its actual length, a positive num¬ 
ber of linear units, irrespective of the direction in which it is 
measured, whereas distance, if positive in one direction, is nega¬ 
tive in the opposite direction. When dealing with lengths, the 
terms “tangent” and “normal” will mean the length of the 
segment of tangent line and normal line, respectively, between 
a point P on a curve and the x-axis. 

Example 1. At every point of a curve the projection of the normal 
on the x-axis has the length k. Find the family of curves possessing 
this property. 

The length of DB in Fig. 6 is y tan a = y(dy/dx). For P in any 
of the four quadrants and a either acute or obtuse, the length of DB 
is always either y(dy/dx) or —y(dy/dx). The differential equation for 
the required family of curves is therefore 

a family of parabolas each of which possesses the required property. 
The axis of x is the axis of all the parabolas; they open toward the 
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right or left according as the + or — sign is used, and shift to right 
or left with varying C. 

Example 2. Find the curves for which the length of any arc equals 
the area under the arc and above the x-axis. 

The statement that length equals area means that the number of 
inches of arc equals the number of square inches of area. If the 
integral representing the arc length from any fixed abscissa a to a 
variable abscissa x is equated to the integral representing the corre¬ 
sponding area under this arc and above the #-axis, we have 

\1 + dx = J' y dx. (y > 0.) (3) 

Differentiating with respect to x, 

or 

whence 

Integrating, 

or 
db cosh 1 y = x + C (y 9* 1), 

y — cosh (x + C). 

(4) 

(5) 

(6) 

(7) 

Equation (7) represents a family of catenaries obtained by shifting 
the catenary, y = cosh x, to the right 
and left (Fig. 8). Each catenary has 
the property that the length of any arc 
equals the area between the arc and the 
x-axis. Direct substitution of (7) into 
(3) verifies that the curves (7) satisfy the 
required condition. It should be noticed 
that equation (6) does not follow from 
(5) if y = 1, so that this value of y should Fig. 8 

be tested to see whether it satisfies equa¬ 
tion (3). It is seen that y = 1 does satisfy (3) and hence also pos- 
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sesses the required property; this line is the envelope of the curves 
(7). The complete solution of the problem is therefore the family 
of curves (7) together with their envelope, y = 1. 

Example 3. At every point P of a curve the radius vector and 
the tangent at P intersect at the same angle, cot-1 k. Find the curves 
having this property. 

Referring to Fig. 7 we see that \f/ = cot”"1 k or 180° — cot”*1 k, 
so that tan ^ = dzl/k; then from equation (2) the differential equa¬ 
tion of the required family of curves is 

or 

Integration gives 

or 

pdd 1 

~dp~~ ±kf 

dp 
— = ±/c dd. 

In p = ±k$ + In C, 

0 - Ce±M, 

two singly infinite families of equiangular spirals, so named because 

of the equal angles between radius vector and tangent at all points 

of the curves. 

27. The range of the parameter. The general solution of a 
differential equation of first order in two variables, x, y, is an 
equation which involves x, y, and an arbitrary constant or 
parameter, say C, and is represented geometrically as a singly 
infinite or one-parameter family of curves. This solution satis¬ 
fies the differential equation for any value of C, real or imagi¬ 
nary. If, for a given value of C, we can assign real values to 
one variable, within a certain interval, and obtain correspond¬ 
ing real values for the other variable, we have a real solution 
or real curve. In most applications, whether physical or geo¬ 
metrical, it is demanded that the solution be real. Such is the 
case when we are seeking the family of curves characterized 
by given geometrical properties. 

In the three examples of Art. 26 the real curves satisfying 
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the conditions are obtained merely by letting C take on all 
real values. But in some cases C may enter the general solu¬ 
tion in such a way that a more restricted range of values for 
C will yield all the real solutions, or a more extensive range, 
including imaginary values of C, may be necessary in order to 
obtain all the real solutions. 

Example 1. Find the family of curves characterized by the prop¬ 
erty that at each point the tangent line is perpendicular to the line 
joining the point to the origin. 

The differential equation is 

or 

dy _ x 

dx y ’ 

xdx + ydy = 0, 

whose general solution is 

x2 + y2 = C. (1) 

In order to satisfy the geometric condition and obtain real curves, 
the range of C must be restricted to positive real values. The solution 
of the problem is represented by the family of circles concentric about 
the origin: 

x2 + y2 = C (C > 0). (2) 

If C2 were written instead of C in the general solution (1), the 
solution of the problem would be 

x2 + y2 = C2 (C > 0), 

with the same range for C. For negative real values of C the curves 
would be duplicated. 

Example 2. At any point of a curve the slope is equal to the 
reciprocal of the abscissa. Find the equation of the family of curves 
having this property. 
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The differential equation is 

Integrating, we have 

dy _ 1 

dx x ’ 

y = In x + C. 

For x > 0 and C taking on all real values, equation (3) represents 
the curves to the right of the ?/-axis in Fig. 9. If x < 0, In x is imagi¬ 

nary, and with C real we get no curves to the left of the y-axis. But 
the curves on the left of the y-axis in Fig. 9, symmetrical to those 
on the right, possess the required property. At any point on one of 
these curves the slope equals the reciprocal of the abscissa. Equa¬ 
tion (3) with C real does not represent the complete solution of the 
problem. We may change the form of equation (3), or we may extend 
the range of C in equation (3), in order to obtain the family of curves 
shown in Fig. 9. 

The integral of dx/x is sometimes written J* dx/x = In | x | + C 

in order to take care of the case x < 0. With this notation we could 
write, instead of (3), 

y - In | x | + C, (4) 

and this equation, with C real, would represent the curves both to the 
right and left of the y-axis in Fig. 9. 
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Another form, instead of (3), could be obtained by changing C to 
In Cj namely, 

y = In Cx, 
or 

c* = Cx. (5) 

Equation (5), with C ranging over all real values except 0, also repre¬ 
sents the curves both to the right and left of the y-axis in Fig. 9. 

However, the original equation (3) also can represent the complete 
family of curves in Fig. 9 if C is not restricted to being real. For x > 0 
and C real in equation (3), we have the curves to the right of the 

i/-axis in Fig. 9. Now reflect these curves in the y-axis by changing x 
to —x, and we get 

y ~ In (—x) + C. (6) 
But, for x > 0, 

In (—x) = In x + In (—1). (7) 

Hence, if we write 
C.C'-ln(-l), (8) 

we have 
y = In x + In (-1) + C" - In (-1), (9) 

or * 

y = In x + C'. (10) 

Equation (3) is changed into (10), i.e., is unchanged except for C, 
by changing x to — x, and therefore represents the system of curves, 
symmetric to the ?/-axis, shown in Fig. 9. 

The solution of the problem may be written in any of the forms 
(3), (4), or (5), each of which, under the proper specification of the 

range of C, is represented by the curves of Fig. 9. 

Example 3. Find the family of curves having the property that 

the tangent is of constant length k, and determine the particular 
curve of the family which passes through the point (0, k). 

The length of AD in Fig. 6 is y cot a = y(dx/dy). For P in any 

of the four quadrants and a. either acute or obtuse, the length of AD 
is either y(dx/dy) or -y{dx/dy). Then, the length of the tangent 

* An objection might be raised to saying that In ( — 1) — In ( — 1) — 0, since 
In ( — 1) is multiple-valued. But we can assume that In (—1) in (8) is the same 
as in (7). 
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AP being Vy2 + AD2> the differential equation of the family of 
curves is 

Hence 

dx — zb 

Integration (Peirce, 130) gives 

V7 k2 — tr 
dy. 

(ID 

(12) 

or 

± (x + C) = V7k2 — y2 — k In 
k + V7k2 - y2 

V 

db (x + C) = \/k2 — y2 — k cosh 1 
k 

y 

(13) 

(H) 

If y = k when x = 0, then C = 0, and the particular curve passing 
through (0, k) is 

±.x = Vfc2 — y2 — k cosh-1 -• (15) 
V 

The curve (15) is a tractrix (Fig. 10), the + or — sign on the left 
being used respectively for the left and right branches of the curve; 

Y 

these signs denote respectively positive and negative values for the 
slope dy/dx} as shown by equation (12). 
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Equation (14) includes all the curves obtained by shifting the trac- 
trix of Fig. 10 to the right and left; furthermore, it includes the reflec¬ 
tion of these curves in the j-axis, since equation (13), and hence 
(14), is unchanged except for C when y is changed to —y, (Cf. 
Ex. 2.) The complete family of tractrices represented by equation 
(14) is symmetrical to the z-axis, and each curve of the family has all 
its tangents of length k. 

PROBLEMS 

1. At any point P of a curve, the projection of the normal on the x-axis 

and the abscissa of P are equal in length. Find the curve if it passes through 
the point (2, 3). 

2. Find the curve through the point (0, 2) such that the projection of the 
tangent on the £-axis is always of length 2. 

3. Find the curve having both the following properties: (1) its ordinate 

equals the logarithm of its slope; (2) it crosses the line x = 1 at an angle 

of 60°. 

4. Find the curve through the point (1, 2) whose normal at any point 

(except where x ~ 0) is bisected by the ?/-axis. 

6. Find the family of curves having the following property: the perj)en- 

dicular from the origin to the tangent line and the abscissa of the point of 

tangency are of equal length. 

6. Find the curve through the point (2, 1) such that the ^-intercept of the 

tangent is twice the ordinate of the point of tangency. Draw the curve. 

7. Find the curves for which each normal and its ^-intercept have the 

same length. 

8. Find the curve through the point (4, 2) such that the line through each 

point of the curve and the origin bisects (a) the angle between the correspond¬ 

ing ordinate and tangent; (6) the angle between the corresponding ordinate 

and normal. 

9. Work Prob. 8, using polar coordinates, if the curve passes through the 

point (2, 60°). 

10. (a) Find the family of curves having the following property: at any 

point the slope of the normal is obtained by subtracting unity from the re¬ 

ciprocal of the abscissa. 

(b) Find the particular curve of the above family passing through the ori¬ 

gin, and the particular curve passing through the point (2, 1). 
11. The normal at a point P of a curve meets the x-axis at Q. Find the 

equation of the curve if it passes tlirough (0, 5) and if the locus of the mid¬ 

point of PQ is y * x/3. Check the result for the normals drawn at (0, 5) 

and at the vertex of the curve. 
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12. The normal at a point P of a curve meets the x-axis at Q. Find the 

equation of the curve if it passes through the point (0, b) and if the locus of 
the midpoint of PQ is y2 = kx. 

13. Show that in Prob. 12 the curve is a parabola if b = 2k, and draw a 

figure illustrating the case b — 2k — 4. 

14. Write the equation of the curve of Prob. 12 in each of the cases (a) 

b = 3, k = 1; (b) b = 1, k = 2. Show that curve (a) is an open curve cross¬ 

ing the y-axis at y - ±3 and the z-axis at x — —1.33. Show that curve 
(6) is a closed oval with —1.01 < x < 3.77 and —3.04 < y < 3.64. 

15. The tractrix (Fig. 10) may be thought of as the path of a heavy particle 

P being dragged along a rough horizontal plane by a string PQ of length k. 

The end of the string, Q, is pulled along the z-axis, the initial positions of P 

and Q being at A and O respectively. If k = 10 in., how far have P and Q 

traveled from their initial positions when P is 5 in. from the .r-axis? 

16. If the length of the tangent to a tractrix is 2 ft, find the length of the 

line joining the two points on the curve where the slope is =fcl. 
17. (a) Show that the family of catenaries obtained in Ex. 2, Art. 26, may 

also be derived from the following property: if at any point on a curve 

(y > 0) an ordinate and a tangent are drawn, the perpendicular from the 

foot of the ordinate to the tangent is of unit length. 

(b) Obtain the equation of the family of curves characterized by the above 

property if the perpendicular is of length k, instead of unit length. State 

the corresponding characteristic property involving arc length and area under 

the arc. 

18. Find the curve for which the length of any arc equals half the area 
under the arc and above the £-axis, if the curve has slope 1 when x = 0. 

19. An arc of a curve extends from a point P (a, b) to a point Q upward 

and to the right of P. If for all positions of Q the area under the arc and 

above the ar-axis is k times the vertical distance of Q above P, find the equa¬ 

tion of the curve. 

20. An arc of a curve is drawn upward and to the right, starting at the 

point (a, 0). The area between the arc and the x-axis is equal to the nth 

power (n > 1) of the ordinate which forms the right boundary of the area. 

Find the equation of the curve. Is the restriction n > l necessary? 

21. On a curve which passes through the origin, take an arc from (0, 0) 
to any point (x, y) of the curve. The area between this arc and the or-axis, 

when rotated about the z-axis, produces a volume Vx. The area between 

the same arc and the y-axis, when rotated about the y-axis, produces a 

volume Vv. Find the curves characterized by the property Vx = Vv. 

22. A curve has the property that any arc of it, when rotated about the 

x-axis, produces an area equal to the difference of the ordinates at the end¬ 

points of the arc. Show that the curve is one of the branches of a tractrix 

whose tangent is of length 1/27T. 
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23. Find the curves for which any arc, rotated about the x-axis, produces 
a surface of revolution whose area is 1 /n the volume enclosed by it. 

24. Find the curve characterized by the following property: an arc of the 

curve in the first quadrant, from (0, k) to any point (x, y), when rotated about 

the x-axis, generates a surface of revolution whose area is equal to the area of 

the cylinder formed by rotating the straight line from (0, y) to (x, y) about 

the x-axis. Draw the curve. 

25. At any point P of a curve the normal bisects the angle between the 
ordinate and the radius vector (or the radius vector extended through P). 

Find the curves characterized by this property, (a) using rectangular coordi¬ 
nates, (b) using polar coordinates. 

26. Find the family of curves for which the vectorial angle is n times the 

angle between radius vector and tangent. 

27. Find the family of curves for which the radius vector through any 

point trisects the angle between the corresponding tangent and ordinate. 

28. A reflector is to be constructed so that light emanating from a point 
source will be reflected in a beam of parallel rays. Taking the origin as the 

point source and the x-axis as the direction of the reflected beam, the reflector 

will be a surface of revolution generated by rotating a certain curve about 

the x-axis. Find the equation of the curve, (a) using rectangular coordinates, 

(b) using polar coordinates. Note the physical law that the angle of incidence 

(the angle between the incident ray and the normal to the surface) equals 

the angle of reflection (the angle between the reflected ray and the normal 

to the surface). 

29. Find the equation of an axial section of the convex surface of a lens, 

whose concave surface is spherical, if a ray of light parallel to the axis of the 

lens is focused at the center of the sphere, (a) using rectangular coordinates, 

(b) using polar coordinates. Take the origin at the focus, and the x-axis 

along the axis of the lens. Employ the physical law sin a/sin /3 — k, where 

k is the constant index of refraction, a is the angle of incidence, and is the 

angle of refraction, (c) What is the equation of the axial section if the index 

of refraction is 1.5 and the distance along the axis of the lens, from the convex 

surface to the point where the light is focused, is 3 ft? 

28. Orthogonal trajectories. Suppose that a singly infinite 
family of curves is given. Consider a second family composed 
of all the curves which intersect all the curves of the given 
family at right angles. When two families of curves are so 
related each family is called the orthogonal trajectories of the 
other. 

As an illustration, the equation x2 + yz - k represents a 
singly infinite family of concentric circles. Here & is a param- 
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eter, constant for any particular circle but varying from one 
circle to another. The orthogonal trajectories of this family 
of circles are represented by y — cx, the family of straight lines 
through the common center of the circles. The circles are also 
the orthogonal trajectories of the family of straight lines. The 
relation is geometrically obvious in this case, but in general we 
need an analytical method for finding orthogonal trajectories. 

If we differentiate the equation of the given family of curves 
and eliminate the parameter, we obtain the differential equation 
of the given family—an equation which gives the slope dy/dx of 
any one of the curves in terms of the coordinates x,y of a point 
on the curve. Now the slope of the orthogonal trajectory at the 
point (x, y) must be the negative reciprocal of the slope of the 
given curve in order for the condition of perpendicularity to 
hold. The differential equation of the orthogonal trajectories 
is therefore obtained by writing dy/dx equal to the negative 
reciprocal of the value it has in the differential equation of the 
given family. Integration of the differential equation so ob¬ 
tained then yields the equation of the orthogonal trajectories. 
Let us apply this method to the family of concentric circles 
used in the above illustration. 

Example 1. Find the orthogonal trajectories of the family of cir¬ 
cles concentric about the origin. 

The equation of the given family of circles is 

x2 + y2 = 7c. (1) 

Differentiation with respect to x gives 

or 

2z + 2yf = 0, 
dx 

dy x 

dx y 
(2) 

In this case the parameter k was eliminated automatically by differen¬ 
tiation; equation (2) is the differential equation of the original family 
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of circles (1). The differential equation of the orthogonal trajectories 
is therefore 

dy _y 

dx x ’ 
or 

dy dx 

y x 
Integrating (3), we have 

(3) 

or 
In y = In x + In c, 

y = cx, (4) 

the equation of the orthogonal trajectories. 

When the parameter does not disappear automatically by 
differentiation, it must be eliminated by combining the original 
equation with the one resulting from differentiation, in order 
to obtain the differential equation of the original family. 

Example 2. Find the orthogonal trajectories of the family of cir¬ 
cles with centers on the x-axis and passing through the origin. 

The equation of the given family is 

Differentiating, 
x2 + y2 = kx. (5) 

dy 
2x + 2 y — = k. 

dx 
(6) 

The elimination of k between (5) and (6) gives 

2x2 + 2xy = x2 + y2, 
dx 

or 
dy _ y2 - x2 

dx 2xy ’ 
(7) 

the differential equation of the original family (5). 
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The differential equation of the orthogonal trajectories is therefore 

dy _ 2ry 

dx x2 -y2’ 

which can be written in the following form involving an integrable 
combination, 

2xy dx — x2 dy 
—-5-- + dy - 0. 

Integration then yields 

+ V * C, 

X2 + y2 = Cy, 

the equation of the orthogonal trajectories, a family of circles also 
passing through the origin, but with centers on the y-axis. (See 

Fig. 11.) 

Fig. 11 
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If the equation of a singly infinite family of curves is given 
in terms of the polar coordinates p, 6, and a parameter k, we 
differentiate the equation and eliminate the parameter, thus 
obtaining the differential equation of the given family in polar 
coordinates. This equation enables us to express the value of 
pdd/dp, that is, by equation (2), Art. 26, the value of tan 
for any one of the curves in terms of the coordinates p, d of a 
point on the curve. Now the \f/ of the orthogonal trajectory at 
the point (p, 0) differs by 90° from the of the given curve, 
hence the tan \p of the orthogonal trajectory equals the —cot ^ 
or — 1/tan \p of the given curve. The differential equation of 
the orthogonal trajectories is therefore obtained by writing 
pdd/dp equal to the negative reciprocal of the value it has in 
the differential equation of the given family. Integration of 
the differential equation so obtained then yields the equation 
of the orthogonal trajectories. 

Example 3. Work Example 2, using polar coordinates. 

In polar coordinates the equation of the given family of circles is 

p — k cos 0. (10) 

Differentiating with respect to 6, 

dP 
— = —k sin 6. (11) 
dO 

The parameter k may be eliminated by dividing (10) by (11): 

pdO 
— = - cot 6, (12) 
dp 

the differential equation of the given family (10). 
To obtain the differential equation of the orthogonal trajectories, 

we write p dd/dp equal to the negative reciprocal of its values in (12): 

tan 0} 

cot 0 d9, (13) 
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Integration then yields 

or 
In p = In sin 0 + In C, 

p = C sin $, 

the equation of the orthogonal trajectories. 

Example 4. Find the orthogonal trajectories of the family of 
curves. 

p = sin 0 + k. 

The differential equation of the given family is 

or 

dp 
— = cos 0, 
dd 

p d9 p 

dp cos 0 

Hence the differential equation of the orthogonal trajectories is 

p dd cos 0 

dp p 

or 
dp 

-- = sec Odd. 

9 
Integration then yields 

1 
- = In (sec 0 + tan 0) + C, 
P 

the equation of the orthogonal trajectories. 

PROBLEMS 

Find the orthogonal trajectories of the following families of curves. 

1. The family of curves of Ex. 1, Art. 26. 
2. The family of curves of Ex. 3, Art. 26. 
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3. (* — I)2 + y2 + kx = 0. 4. x2 = y2 + kyz. 

5. ex cos y — k. 6. sinh y — k sec x. 

7. y2 — 4 k(x + k). 8. x2 + 3 y2 = ky. 

9. y = x tan \{y + k). 10. y = sin x sinh y + k. 

11. y = In tan {x + sin x + k). 12. y — k sin 2x. 

13. p ■■ = k sin 20. 14. e2p = k cot 0. 

15. p2 = 7c(p sin0 — 1). 16. (p + sin0 = k. 
P/ 

Find the orthogonal trajectory, through the point specified, of each of the 

following families of curves. 

17. y2 = kx (-2, 3). 18. y2 = *2 + ky (1, -2). 

19. p = k sin (0/4) (!, 180°). 20. p - *(1 + sin 0) (2, tt/6). 

21. y2 = 2x + 1 + ke2* (0, e). 

22. Find the curve through the point (7r/4, 0) belonging to the family 

sin x + sinh y = k cosh y, 

and the curve through the same point lielonging to the orthogonal family; 

verify that the two curves intersect at right angles. 

23. Find the orthogonal trajectories of 

ax2 + y2 = kx, 

where a is a fixed constant and k is a parameter. 

24. Find the orthogonal trajectories of 

cos y — a cosh x = k sinh x, 

where a is a fixed constant and k is a parameter. 

25. Find the orthogonal trajectories of 

x2 + ay2 = b 

(a) if a is a parameter and b is a fixed constant; (6) if b is a parameter and 

a is a fixed constant. 

26. Find the orthogonal trajectories of 

p — k tan (0 + a) 

(a) if a is a fixed constant and k is a parameter; (b) if k is a fixed constant 

and a is a parameter. 

27. Find the orthogonal trajectories of 

pm - k sec 7*0, 

where m and n are fixed constants and k is a parameter. 
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28. Show that the family of tractrices represented by equation (14), Art. 27, 

with k — r, are orthogonal trajectories of the family of circles in Prob. 2, 

Art. 10. 

29. Given the family of curves 

(x - y)(2x + y)2 = kx6, 

find the family of orthogonal trajectories and show that one family can be 

transformed into the other by a rotation of 90° about the origin. 

30. Given the family of curves 

y = kx2ev} 

find (a) a curve orthogonal to the family and passing through the point (2, 2); 

(6) a curve orthogonal to the family and passing through the point (2, —1). 

Show that curve (a) has a single branch with minimum point at (0, 1.57) and 

that curve (6) is an oval with ^-intercepts ±2.29 and y-intercepts 0.88 and 

—2.58. 

31. Consider a plane sheet of conducting material into which a current is 

fed at a point A (1, 0) and out of which it flows at a point J? ( —1,0). It 

can be shown that the streamlines arc represented by the family of circles 

passing through the points A and B. Find the orthogonal trajectories, i.e., 

the equipotentials. Draw both families of curves. Show that the equipoten- 

tials can be characterized by the property that at any point P on an equi- 

potential the ratio PA/PB is constant. 

32. In Prob. 31 the polar equation of the streamlines, taking the origin 

at B and the initial line along BAy is 

p = 2 cos 0 + k sin 0. 

Find the polar equation of the equipotentials. 

33. Given the fixed points A (1,0) and 7? ( —1,0). A curve has the prop¬ 

erty that, for any point P (x, y) on it, the difference between the angles PAB 

and PBA is constant. Show that the curves characterized by this property 

are a family of hyperbolas, and find their orthogonal trajectories. Show that 

the orthogonal trajectories can be characterized by the property that the 

product PA-PB is constant and that they are therefore Cassinian ovals. 
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LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS 

29. The linear equation. In Art. 21 of Chapter 3 we dis¬ 
cussed the linear equation of first order. We shall now deal 
withl linear egiiations of rith order, the word “linear” signify- 

anJTts derivatives. It is assumed in this chapter that the co¬ 
efficients of the dependent variable and of its derivatives are 
constants; in the succeeding chapters linear equations with var¬ 
iable coefficients will appear. The type-form of linear equation 
of nth order with constant coefficients is 

dny dn~ly dy 

Oosr-+“■ £.-+■■ •+ *+“•« -R• 

where the a’s are constants, a0 ^ 0, n is a positive integer, and 
the right member R is a function of x (or a constant). 

30. The differential operator. Throughout this chapter we 
shall use symbolic methods in which the symbol D, called 

the differential operator, stands for ~ and symbolizes the opera¬ 

tion of taking the derivative with respect to x of what follows 

it. Thus the equation -^x2 — 2x would be written, in operator 

notation, Dx2 = 2x. Similarly D2 stands for ^ , and Dn for 

dT 

dx' 
- ; thus D2x2 = 2, and Dneax 

In operator notation the equation of the preceding article is 

aoDny + axDn-1y H-1- a„_iDy + any = R, 

(ooDn + OjDn-1 + • • • + a„_iD + an)y = R. 
115 

or 
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The expression in parentheses, a polynomial in D, may be 
denoted as a function of D by the symbol /(D). The type- 
form linear differential equation of nth order will then be 
written 

/(D)y = R, 
where 

/(D) = OoDn + oiD"-1 + • • • + on_iD + an 

is a polynomial differential operator which, operating on y, 
produces R. 

We shall now examine an important property of the operator 
/(D). Take, for example, the case where n -■ 2, a0 = 1, 
a,i = —1, a2 = —2, and let the operator be applied to the 
function x2 + x; that is, consider the expression 

(D2 - D - 2) (x2 + x). (1) 

This means: Take the second derivative of x2 + x, minus the 
first derivative of x2 + x, minus twice x2 + x. Thus 

(D2 - D - 2) (x2 + x) = 2 - (2x + 1) - 2(x2 + x) = 

1 - 4x - 2x2. 

Now, if D2 — D — 2 is regarded as a quadratic expression in 
the letter D, without regard to the meaning of D, the expression 
can be factored by algebra into (D — 2) (D + 1). Let us 
inquire whether, when D is regarded as a differential operator, 
the operator (D — 2) (D + 1) has the same effect on x2 -f- x as 
the operator D2 — D — 2. To evaluate the expression 

(D - 2) (D + 1) (*2 + x), (2) 

we must first operate on x2 + x with the operator D -f 1, then 
operate on the result with D — 2: 

(D - 2) (D + 1) (x2 + x) = (D - 2) (x2 + 3x + 1) = 

1 — 4x — 2x2, 

which is the same value as that obtained for the expression 

(1). 
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Finally, we may factor D2 — D — 2 in the other order and 
obtain 

(D + 1) (D - 2) (x2 + x). (3) 

Evaluating this expression, we have 

(D + 1) (D - 2) (x2 + x) = (D + 1) (1 - 2x2) = 1 - 4x - 2x2. 

We see that the expressions (1), (2), and (3) are equal. This 
illustrates an important property of an operator which is a 
polynomial in D with constant coefficients. D may be regarded 
as playing a dual role. The polynomial /(D) may be factored 
with D playing its algebraic role, then, with the factors taken 
in any order, D may assume its role as operator. This may 
not be true, however, if the coefficients of /(D) are not all 
constants, as the following example shows. We have 

(D + x)Dy - (D2 + xD)y, 
but 

D(D + x)y — D 2y + D xy = D 2y + xDy + yDx = 

(D2 + xD + 1 )y; 
so that . 

V(D + x)Dy ^ D(D + x)y. 

An operator, however, even with variable coefficients, is com¬ 
mutative with a constant; for example, 

(D2 + xD + 3)2 y = 2(D2 + xD + 3)y. 

Consider next the effect of operating with /(D) on the 
product of an exponential function eax and y, a function of x. 
We have 

Deaxy = eaxDy + aeaxy = eaz(D -f a)y, 

D2eaxy = eax(D2 + aD)y + aeax(D + a)y = eax(J) + a)2y, 

and, in general, 
Dneaxy = eax(D + a)ny, (4) 

a formula which may be proved by mathematical induction 
[Problem 1, Art. 31(6)]. Hence, substituting in 

f(D)eaxy = (a0Dn + aiD"-1 4-b an_iD + aH)eaxy 
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the values of the derivatives of eaxy as given by (4), we have 

f(D)eaxy = «“[oo( D + o)B + 

Oi(D + a)""1 + • • • + a„_j(D + a) + af\y, 
or 

f(D)eaxy = eaxf( D + a)y. (5) 

This formula states that when the operator /(D) operates 
on a product eaxy, the exponential eax may be shifted from right 
to left across the operator provided that the D in the operator 
is changed to D + a. We may refer to this process as the 
exponential shift. For example, 

(D2 - 4D + 4)eixxA = (D - 2) W = e2*DV = 6xe2*. 

Reversing formula (5) and changing D to D — a, wer have 

eaxf(D)y = /(D - a)eaxy, (6) 

that is, we may shift the exponential eax from left to right 
across the operator /(D) provided that the D in the operator 
is changed to D — a. This process may be called the reverse 
exvonentialshifL. For example, 

e~s(D2 - 2D + 5)y = e~x[(D - l)2 + 4]y = (D2 + 4)e-xy. 

We shall find considerable use for formulas (5) and (6) in 
the work which follows. 

31. The linear equation with R = 0. Before developing 
methods for solving the general linear differential equation 

f(X>)y — (aoDn + ffliD”-1 + • • • + o«_iD + an)y — R, (1) 

we consider first the case where R = 0, which is a step toward 
the solution of the more general case; that is, we shall now be 
concerned with solving the equation 

f(D)y = (ooDn + aiDn_1 -f- a„_jD + an)y = 0. (2) 

Take first the case where all the o’s, except Oq, are zero: 

D ny = 0. (3) 
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Integrating n times in succession, we obtain 

D"~V = ci, 

D n~2y = CiX + c2, 

D"-3 
X2 

y = ci — 4- c2x + c3, 

D y = ci 

y = c i 

-n—2 mW 3 

+ c2 
(n - 2)! ' " (n - 3)! 

-.n—1 y.n — 2 

+ c2 
(n - 1)! ' (» — 2)! 

H— • + c„_2x + Cn—i, 

H-- + C„_iX + Cn- 

We shall find it more convenient to write this value of y in a 
different form by letting c„ = Ci,c„_i = C2, ■ ■ ■, c2 = (n — 2)! 
Cn-i, Ci = (n — 1)! Cn; hence the general solution of the 
differential equation (3) is 

y = Ci + C2x + C3X2 + • • • + C„xn-1. (4) 

We are now almost ready to solve the differential equation 
(2). We need to notice one rather obvious fact, however. 
Suppose that yx and y2 are two particular values of y that 
satisfy (2); that is,/(D)?/i = 0 and/(D)?/2 = 0. It follows that 
the sum of yi and y2 will satisfy (2), since f(D)(yi + y2) 
=/(D)?/i + f(D)y2 = 0. Furthermore, if yu y2, • • •, yn are 
particular solutions, then yi + y2 -\-f- yn is a solution. 

(a) Solution of {2) when the roots of the polynomial equation 
f(D) = 0 are real and distinct. Suppose that the polynomial 
equation 

OoD» + cqD"-1 + • • ■ + o„_xD + o„ = 0 (5) 

has all its n roots real and distinct: rx, r2, • • •, rn. When we 
say that rx is a root of equation (5) we are not saying that a 
value of the operator D is rx. Equation (5) is not a differential 
equation; it is an algebraic equation of the nth degree in the 
letter D. Here D is playing its algebraic role as explained in 
Art. 30. When we have factored the polynomial in (5), we 
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shall rewrite equation (2) in factored form; it will be a differ¬ 
ential equation in which D is an operator. There need be no 
confusion regarding the dual role which D plays, and we shall 
not dwell further on this point. Since D — rh D — r2, • • •, 
D — rn are factors of the polynomial in (5), the differential 
equation (2) may be written 

(D - ri) (D - r2) • • • (D - rn_x) (D - rn)y = 0. (6) 

Now the equation (6) is evidently satisfied if (D — rn)y — 0, 
since 

(D - rx) (D - r2) • • • (D - rn_x)0 = 0. 
But, if 

(D - rn)y = 0, 
then 

dv _ „ , 
— = rndx, 

In y = rnx + In C,„ 

V = Cner“x. (7) 

Hence (7) is a particular solution of (6). 
However, we saw in Art. 30 that the factors in (6) may be 

taken in any order, so that any one of them could be placed 
last, just before the y. Therefore (7) is a particular solution for 
each integral value of the subscripts from 1 to n and, by the 
principle enunciated earlier in this article, 

y = C\eri1 + C2ertx + • • • + C„er"* (8) 

is a solution of (6) and hence of (2). Furthermore, it is the 
general solution since the C’s are all essential—that is, the 
solution (8) cannot be expressed with fewer than n arbitrary 
constants. 

The problem of solving the differential equation (2) is 
merely a problem in algebra—finding the roots rx, r2, • • •, rn 
of the polynomial equation /(D) = 0, then, when these roots 
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are distinct, substituting in (8) to obtain the general solution 
of the differential equation. Four methods of finding the 
roots of a polynomial equation are illustrated in the four 
following examples. 

Example 1. Solve 

2<Py ,dy 
dx2 dx 

- y = 0. 

In operator notation, the differential equation is 

(2D2 + D - I)*/ = 0. 

By inspection, the roots of the quadratic equation 2D2 + D — 1 = 
(2D — 1)(D + 1) = 0 are and —1. Hence the general solution 
of the differential equation is 

y = CiC,M)x + C2e~x. 

Example 2. Solve 

(D4 + 2D3 - D2 - 2D)y = 0. 

Here we factor by grouping terms: 

D4 + 2D3 - D2 - 2D = D3(D + 2) - D(D + 2) = 

(D3 - D)(D + 2) = D(D - 1)(D + 1)(D + 2) = 0. 

Hoots: 0, 1, —1, —2. 

General solution: 

y = Cl + C2ex + C3e~* + C4e~2x. 

^ Example 3. Solve 

(D3 - 8D + 3)2/ = 0. 

Here we notice that the cubic D3 — 8D + 3 will vanish when 
D = —3, so that D + 3 is a factor; we may find the other factor by 

synthetic division: 
1 0-8 3 | -3 

-3 9 -3 

1-310 

The other factor is D2 — 3D + 1 and the other roots are those of the 
quadratic equation D2 — 3D + 1 = 0, namely, (3 ± \r5)/2. 
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General solution: 

y = cxe~3x + C2e(ll2)(3+V~a)x + C3e(ll2)(3~V^x. 

Example 4. Solve 
(D4 - 6D2 + I)?/ = 0. 

In this case the quartic can be factored by arranging it as the dif¬ 
ference of two squares: 

D4 - 6D2 + 1 = (D2 - l)2 - 4D2 = 

Roots: 

(D2 - 2D - 1)(D2 + 2D - 1) = 0. 

2 ± -\/8 , /= — 2 ± \/8 y— 
—7T- = 1±V2, -^~=-l±V2. 

General solution: 

y = ClC(1+V2)x + C2c(l-^)Z + C3c(~1+V2)x + C4e(~1~V2)*. 

(b) Solution of (#) when the roots of the polynomial equation 
f(D) = 0 are real but not all distinct. Suppose that the poly¬ 
nomial equation 

OoD” + ajD"-1 + • • • + on-iD + an — 0 

has all its n roots equal to r. The general solution of the differ¬ 
ential equation (2) cannot then be found from the formula (8), 
for this formula would now yield 

y = Cxerx + C2erx + ■ • • + Cnerx = (C, + C2 + • • • + Cn)erx, 

and, since Cx + C2 H-1-Cn can be replaced by a single con¬ 
stant C, the result is 

y = Cerx, 

which is only a particular solution. 
Since D — r is an n-fold factor of /(D), equation (2) may be 

written 
(D - r)ny = 0. 

To solve this equation, multiply by e~TX: 

e~ri(D - r)ny = 0. 
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Now, performing the reverse exponential shift [formula (6), 
Art. 30], we get 

Dne~rxy = 0, 

which is the same as equation (3) with y replaced by e~^xy. 
Hence, from (4), the solution is 

e~rxy = Ci + C2x + C3x2 H-b Cnxn~\ 
or 

y — (Ci + C2x + C3x2 + • • • + Cnxn~l)eTX. (9) 

‘If the polynomial equation /(D) = 0 has some single roots 
and other multiple roots, the solution of the differential equa¬ 
tion /(D) y — 0 is obtained by adding the terms corresponding 
to the single roots and the terms corresponding to the multiple 
roots. 

Example 5. Solve 

D2(D - 1)3(D + 2)(D - 3)y = 0. 

The roots of /(D) = 0 are 0, 0, 1, 1, 1, —2, 3. The part of the 

solution corresponding to the double root 0 is, by (9), (Ci + C2x)e° 

or Ci + C2x; the part corresponding to the triple root 1 is (C3 + C±x 

+ Cr}x2)ex; and the parts corresponding to the single roots —2, 3 are 

respectively Cqc~2x and C7e3x. Hence the general solution is 

y = C1 + C2x + (C3 + C4x + Csx2)ex + C6e~2x + C7eSx. 

PROBLEMS 

1. Prove formula (4) of Art. 30 by mathematical induction. 

2. Find the results of the indicated operations: 

(а) (D3 - 3D2 + 3D - l)xV, 

(б) (D3 + 4D2 + 4D)x2e-2*, 

(c) (D4 - 8D3 + 24D2 - 32D)e2x sin 2z, 

(id) (D — a)nax. 

3. Show that the general solution of Ex. 4, Art. 31, may be written in the 
form 

y = Aex sinh (V2x + a) + Be~x sinh (y/2x + p). 
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4 Write the general solution of the differential equation 

d2y 

fa'2 
= khj 

in terms of exponential functions and in terms of hyperbolic functions. 

Solve the following differential equations. 

5. (D2 - 5D - 6)2/ = 0. 6. (D2 + 6D - 5)y = 0. 

7. S “ 8 % + 1Qy = °- 8- (2D3 + 5aD2 + 2a^y = °- 
9. (2D3 - D2 - 2D + l)y = 0. 10. (D4 - 7D2 + \)y = 0. 

11 ^ = 
fab ^ fa3' 

12. (D4 - 6D2 + 8D - 3)y = 0. 
13. [a&D2 - (a2 + 62)D + ab]y = 0. 

14 (10D4 - 9D3 - 23D2 + 4)y = 0. 

15. (36D4 - 37D2 + 4D + 5)y = 0. 

16. Given the differential equation 

dfy A-tl _ n 
fa* fa3 

subject to the conditions 

y — 0, dy/dx = 0, when x = 0, 

y = 1, dy/dz = 1, when x = 1. 

Obtain a formula for in terms of e, and use this formula, with e = 

2.718, to compute the value of y]£~-i. 

17. Find a curve having slope \ at the origin and satisfying the differential 

equation 

3+*2-* 

(c) Solution of (2) when the 'polynomial equation f(D) = 0 
has imaginary roots. Suppose that the polynomial equation 

OoD" + ctiDn—1 + • • • + a„-iD + = 0, 

where the a’s are real constants, has an imaginary root. We know 
that such roots must occur in conjugate pairs: if 2 + 3i is a 
root, 2 — 3i must also be a root, and, in general, if a + (ii iv a 
root, a — |Bi must also be a root, a and 0 being real constants. 
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Suppose first that n - 2 and the equation has a pair of im¬ 
aginary roots: rt — a + fii, r2 — a — /8i. Then formula (8) 
would give for the solution of (2), 

y = Cieia+m)x + C2e(a~(K)x. 

This is a correct solution but it is not customary to leave it in 
this form with imaginary exponents. We transform it as fol¬ 
lows. Factoring the right member, we have 

y = + C2e~iSx). 

For the exponentials e^x and e~iffx we may substitute the values 
obtained from Euler’s relation, 

e'° = cos 6 + i sin 0, 

by first putting 6 = fix, then 6 = -fix, namely, 

gt/3* _ cog £jx _(_ j gJn 

e-ipx _ cog fa _ j gJn 

This gives 

y = eax(Ci cos fix + iCj sin fix + C2 cos fix — iC2 sin fix), 

or, changing Cx + C2 to A, iCv - iC2 to B, which is merely a 
change of notation on the two arbitrary constants, we have 

y = eax(A cos fix + B sin fix). (10) 

In Chapter 1, Art. 2, we saw that the expression in paren¬ 
theses may be written in either of two equivalent forms, K 
sin (fix -j- 5) or K cos (fix + e); hence alternative forms of (10) 
are 

y = Keax sin (fix + 5), (10') 

y — Keax cos (fix + e). (10") 

Formula (10) gives the general solution of (2) when/(D) = 0 
is a quadratic equation with a pair of imaginary roots. If 
/(D) = 0 is a quartic equation having, besides a ± fii, another 
distinct pair of imaginary roots, y ± Si, the general solution 
of (2) is obtained by adding to the right member of (10) the 
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expression eyx(E cos Sx + F sin hx) corresponding to the pair 
7 ± hi. If/(D) = 0 has both imaginary and real roots, the solu¬ 
tion of (2) is obtained by adding the terms corresponding to the 
imaginary roots and the terms corresponding to the real roots. 

Finally, if the polynomial equation /(D) = 0 possesses a 
double pair of imaginary roots, a ± f3i, a ± (ti, the correspond¬ 
ing part of the solution of (2) is obtained by writing the expres¬ 
sion for a single pair, namely, eax(A cos /3x + JS sin /3x), with 
A replaced by Ci + C2x and B replaced by C3 + C4x, a process 
analogous to that used for double real roots. For a triple pair 
of imaginary roots A would be replaced by Cx + C2x + C3x2, 
and B by C4 -f C5x + C6x2, etc. 

Example 6. Solve 

(D3 + D + 10 )y = 0. 

Since the cubic D3 + D + 10 vanishes when D = — 2, we may 

find the other roots of the cubic equation D3 + D + 10 = 0 by 

synthetic division: 

1 0 1 10 I -2 
-2 4 -10 

1-2 5 0 

The other roots are those of the quadratic equation D2 — 2D + 5 = 

0, namely, (2 ± V4 — 20)/2 = 1 ± 2t. Hence a = 1, 0 = 2, in 

(10), and the general solution of the differential equation is 

y — Cie~2x + ex(C2 cos 2x + C3 sin 2x). 

Example 7. Solve 

(D4 + 2D2 + 1 )y = 0. 

The roots of D4 + 2D2 + 1 = (D2 + l)2 = 0 are ±i, ±i. Here 

the pair ±*‘, with « = 0, /S = 1, is repeated; hence we use (10) with 

A replaced by Ci + C2x and B replaced by C3 + C^x. 
General solution: 

V — (Ci + C2x) cos x + (C3 + C4x) sin x. 
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PROBLEMS 

Solve the following differential equations. 

Lg + *V = 0. 

2. (D2 - 2D + 4)y - 0. 

3. (36D2 + 36D + 13)y = 0. 

. <Ps 

dt* 
4 - + 13s = 0. 

dt 

/fix fix 
5. —- + 2a-h Aj2£ = 0, where 0 < a < fc, 

dr dt 

6. (4D4 + 5D2 - 9D)y = 0. 

8. (4D« - 107D - 222)?/ = 0. 

9. (D6 - 3D2 + 2)?/ = 0. 

10. ™ - 64s = 0. 
dt4 

11. ^ + 64s - 0. 
dr 

12. (D6 - 12D2 - 16)t/ - 0. 
13. (D4 ~ D2 + 2D + 2)y = 0. 
14. (D6 + 12D4 + 48D2 + 64)y = 0. 
16. (D6 + 2D3 + 10D2 + D + 10)y = 0. 
16. (D5 - 4D4 + 2D3 - 8D2 + D - 4)y = 0. 

17. According to the preceding theory, if f(D)y =* 0 is a fourth order 
differential equation with a repeated pair of imaginary roots, a d= fit, a d= fii, 
the general solution is 

y = e^^Ci + C2X) sin fix + (C$ + C&) cos fix]. 

Are the following also correct forms for the general solution: 

(a) y = (E + Fx)eax(A sin fix + B cos fix), 

(b) y = tf*[A sin (fix + E) + Bx sin (fix + F)], 

where A, B, E, and F are arbitrary constants? 
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32. Rectilinear motion. Before developing the theory for 
solving the linear equation f(D)y — R with R 5* 0, we shall 
consider some applications of the equation f(D)y = 0 to prob¬ 
lems in rectilinear motion. These problems will involve differ¬ 
ential equations of second order, that is, the case where /(D) 
is a quadratic in D; certain cases which could be treated by 
means of first order equations have already been studied in 
Chapter 3. 

(a) Attractive force proportional to displacement; resistance 
negligible. Consider a particle moving without resistance 
along a straight line, which we may take as the x-axis, under 
the action of an attractive force located at the origin 0. Sup¬ 
pose that the force is proportional to the displacement x of the 
particle from 0 at time t, x being positive to the right and 
negative to the left of 0. Since force is proportional to accelera¬ 
tion (c/. Art. 14), the acceleration d2x/dt2 will be proportional 
to the displacement x. If the particle is to the right of 0, the 
displacement is positive and the force (acting toward the left) 
and acceleration are negative; if the particle is to the left of 0, 
the displacement is negative and the force and acceleration are 
positive; hence the acceleration and displacement are oppositely 
signed and the differential equation of the motion is 

if - m 
where k2 is used for convenience, instead of k, as the constant 
of proportionality. 

Equation (1), written in operator notation, with D = d/dt, 
is 

(D2 + k2)x = 0. (1') 

Its general solution may be written down by the method of 
Art. 31(c) and is the same as that of Problem 1, Art. 31(c), with 
x and t taking the places of y and x, namely, 

x = Ci sin kt + C2 cos kt. (2) 



Article 32 129 

A form equivalent to (2) is (Art. 2) 

x = A sin (kt + a), (3) 
where 

A = Vcf + Cl, a — tan-1 ~ • v 
w 

Differentiation of (2) and (3) gives two forms for the velocity 
v = dx/dt: 

v = kCi cos kt — kC2 sin kt, (4) 

v = kA cos (kt + a). (5) 

The motion defined by (1), (2), or (3) is called simple har¬ 
monic motion. Equation (3) shows that the particle vibrates 
between the extreme positions x = ±A. A is called the 
amplitude of the motion. 

The motion is periodic. If, at any time t, the displacement 
and (signed) velocity of the particle are noted, then after a 
certain time T, called the period, the particle will again have 
the same displacement and velocity. To find T we observe 
from equations (3) and (5) that x and v will both return to their 
original values if the angle kt + a increases by 2?r, that is, if t 
increases by 2ir/k; hence 

t = t (6) 

Any integral multiple of 2ir/k would also be a period, but by 
the period T we mean the smallest period. In particular, T is 
the time of a complete vibration from one extreme position to 
the other and back again. ~ 

(6) Repulsive force proportional to displacement; resistance 
negligible. In the case of a repulsive force directed away from 
0, the force and acceleration have the same sign as the dis¬ 
placement; the differential equation of the motion is then - 
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The general solution of (7) is [Problem 4, Art. 31(6)] 

x = Cie*‘ + c2e~kt, (8) 
or 

x = Ci sinh kt + C2 cosh kt. (9) 

The analogy between the solutions of equations (1) and (7) 
may be exhibited by considering two particles, each starting 
from rest at a distance a from 0, the one under the action of 
an attractive force and the other under the action of a repulsive 
force emanating from 0. We assume that the initial accelera¬ 
tions are numerically equal; that is, k will be the same in both 
equations. The initial conditions, x = a and v = 0 when 
t = 0, serve to determine the arbitrary constants in the solu¬ 
tions in both cases. 

= Ci sin kt + C2 cos kt x = C[ sinh kt + C2 cosh kt 

a = C2 (x = a, t = 0) a — C2 (x = a, t = 0) 

syv — kCi cos kt — ak sin kt v = kC[ cosh kt + ak sinh kt 

0 = Cj (v = 0, l = 0) 0 = Ci (v = 0, t = 0) 

x = a cos kt x = a cosh kt 

The displacement is a circular function of the time in the case 
of the attractive force, and the corresponding hyperbolic func¬ 
tion of the time in the case of the repulsive force. This x, i 
relation is called the equation of motion. 

Example 1. In the case of the two particles just discussed, let 
h and t2 be respectively the times required to travel the first a/2 
units of distance; find the ratio ti/t2. 

When each particle has traveled a/2 units, starting at x — a, the 
first will be at x — a/2 and the second at x - 3a/2; hence 

kti cos-10.5 <i 1.0472 —i = - _ —-= 1 09 
kt2 cosh"1 1.5 ’ t2 0.9625 ’ ' 
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Example 2. A particle moves with simple harmonic motion in a 
straight line. When t = 0, the acceleration is 9 ft/sec2, the velocity 

is 4.5 ft/sec, and the displacement a: = —4 ft. Find (a) the dis¬ 

placement when the time equals half a period; (b) the first time when 

the displacement is zero and when it is 1 ft; (c) the maximum velocity. 

The differential equation is 

Since d2x/dt2 = 9 when x = —4, 

9 - 47c2, k - f. 

Then x and v [equations (2) and (4)], together with the conditions 
for determining the arbitrary constants, are 

x ~ Ci sin -ft + C2 cos (t = 0, x = —4), 

v = |Ci cos %t — fC2 sin %t (t = 0, v = 4.5). 

Substitution of the conditions in these equations gives C2 = —4, 
Ci = 3; hence the relation between displacement and time is 

x = 3 sin — 4 cos %t. (10) 

The amplitude of the motion is A = V32 + (—4)2 = 5 ft, and the 
period is T = 2tt/(-§) = 47r/3 sec. 

(а) To find the displacement when the time equals half a period, 
substitute t = 2tt/3 in equation (10): 

2*/3 = 3 sin 7T — 4 cos 7r = 4 ft. 

(б) To find the time when x = 0 or 1 it is more convenient to use 
the alternative form for x [equation (3)], 

x = 5 sin (fj + a), (11) 

where a = tan”"1 — f. But care must be exercised in choosing the 
appropriate value for a, which could be an angle in either the second 
or fourth quadrant if there were no restrictions. Here, however, x 

is given negative when t = 0, hence sin a is negative and a must be 
in the fourth quadrant. We write a = —tan~* ^ = —0.9273 
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radian; then equation (11) gives, for tTie~ftTsivposilive value of t that 
makes x = 0, \ 

ft - 0.9273 = 0, t = 0.618^c. 

When x — 1, we solve for the smallest positive at satisfies 

1 = 5 sin (ft - 0.9273). 

f< - 0.9273 = sin-1 0.2 = 0.2013, 

ft = 1.1286, 

< = 0.752 sec. 

-™™'(o). X)ifferentiating equation (11), we have 

COS (ft + a). __„ 

Hence the maximum velocity is 7.5 ft/sec; it occursjrfrSTz = 0. 
The maximum value of v could also be found from 

■ —• --*% 

v — f cos ft + 6 sin ft 

by taking the square root of the sum of the squares of the coefficients 
of the cos and sin functions: 

l>max = VT + 36 = = 7.5 ft/sec. 

-L<et us now obtain the differential equation that represents 
the vibratory motion of a weight hanging on a spring, under the 
assumption that there is no resistance to the motion. 

Given a spring fixed at its upper end and hanging vertically 
[Fig. 12(a)]. Suppose that a weight of w lb is attached to the 

lower end of the spring, stretch¬ 
ing the spring a ft. The weight 
now hangs at rest in its equi¬ 
librium position [Fig. 12(6)]. 
Assume that Hooke’s law holds; 
i.e., the tension in the spring is 
proportional to the elongation. 
The constant of proportionality 
is called the spring constant. In 
the equilibrium position the ten¬ 
sion in the spring is w lb, just bal¬ 
ancing the weight, and the elonga¬ 

tion is a ft; hence w = ca, and the spring constant is c = w/a lb/ft. 

(a) (b) (c) 

Fig. 12 
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We now set the weight in motion. This can be done by 
giving it an initial vertical velocity. Or, we may first displace 
the weight vertically from its equilibrium position and then 
either release it from rest or give it an initial vertical velocity. 
We take the equilibrium position as the origin and let x (ft), 
measured positive downward and negative upward, represent 
the displacement of the weight from its equilibrium position 
at time t (sec). The amount the spring is stretched at time t 
is therefore a + x ft, no matter whether the weight is below 
or above the equilibrium position, and the tension in the spring 
is c(a + x) lb [Fig. 12(c)]. The spring then pulls the weight 
upward with a force of —c(a + x) lb, and gravity pulls it 
downward with a force of w lb. The resultant force acting on 
the weight at any time t is therefore w — c(a + x) lb, which 
is equal to — cx lb since w — ca. The force acting on the mov¬ 
ing weight is also (w/g)(d2x/dt2) lb. Equating these two ex¬ 
pressions for pounds force, we obtain the differential equation 

w d2x 
_ = _ca.> v (12) 
g dt 

which shows that the resultant force acting on the weight is 
proportional and opposite in sign to the displacement. The 
weight will therefore execute a simple harmonic motion about 
its equilibrium position, x = 0. 

r Example 3. A spring, fixed at its upper end, supports a weight at 
its lower end which stretches the spring 6 in. (a) If the weight is 
drawn down 3 in. below its equilibrium position and released, find 
the period of vibration and the equation of motion of the weight, 
(ib) If the weight is drawn down 3 in. below its equilibrium position 
and given a downward velocity of 1 ft/sec, find the distance, below 
the equilibrium position, of the lowest point reached by the weight, 
the maximum velocity of the weight, and the time required by the 
weight to reach its equilibrium position. 

The weight, say w lb, produces an elongation of ^ ft; hence w = c*-£, 
and the spring constant is c = 2w lb/ft. The differential equation is 
therefore [equation (12)] 

wd?x 
(13) 
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or 

(D2 + 2 g)x = 0. (14) 

(a) The period of the motion is 

2tt 
T — —7= = 0.783 sec. v 

V2g 

It is independent of the initial conditions and is obtained directly 

from the differential equation. 

From (14) we have 

x = Ci sin \/ 2g t + C2 cos V2gt, 

y = V2g (Ci cos V2g t — C? sin V/2g t). 

(15) 

The initial conditions x = -J- (ft), t; = 0, £ = 0, substituted in equa¬ 

tions (15), give C<2 = Ci =0; hence the equation of motion is 

x = | cos \^2g t or x = | cos 8.02^ 

(6) Substituting the initial conditions x = = 1, t = 0 in equa¬ 

tions (15), we obtain C2 = t, Ci = l/\/2g. The distance, below the 

equilibrium position, of the lowest point reached by the weight is the 

amplitude of the motion; that is 

VC? + Cf = + — ft = 12 
V16 2^ 1 

1 1 

16 + 64.34 
in. = 3.35 in. 

The maximum velocity of the weight is the maximum value of v 

in the second of equations (15), namely, 

V2 jf(C? + Cl) H— = 2.24 ft/sec. 
8 

It is attained when the weight passes through its equilibrium posi¬ 

tion, x = 0. 

The time required by the weight to reach its equilibrium position is 

obtained by setting x = 0 in the first of equations (15) and solving 

for the smallest positive value of t: 

0 = sin V2~g t + - cos V2g t, 
V2 g 4 

/— y/2~g 
tan V 2g t =-- = -2.0053, 

4 

Vig t = t- tan-1 2.0053 = 2.0334, 
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_ 2 0334 = 0.253 sec. 

The next example illustrates the vibratory motion of a body 
floating in water. The buoying force of the water takes the 
place of the force exerted by the spring in the preceding ex¬ 
ample. 

Example 4. A cubical block of wood 6 in. on an edge and weigh¬ 

ing 4 lb floats in water (62.4 lb/ft3). If it is depressed slightly and 

released, find the period of vibration, assuming that resistance is 

negligible and that the top remains horizontal. If the initial depres¬ 

sion below the floating position is 2 in., find the equation of motion 

and the distance of the top of the block above water at the end of 

| of a period. 

The first position of the cube in Fig. 13 is the equilibrium position 

in which the cube floats without vertical motion. The fixed plane PQ 

which coincides with the plane of the water surface may be called the 

equilibrium plane. If a (= PB) ft represents the depth of the sub¬ 

merged portion of the cube, the weight of the water it displaces is 

(-J)2 X a X 62.4 lb = 15.6a lb. According to the Principle of 

Archimedes, the buoying force of the water when the cube is in equi¬ 

librium is 15.6a lb, and this is just balanced by the weight of the cube, 

4 lb, so that 15.6a = 4 and a = 1/3.9 ft = 3.08 in. The cube floats 

with 3.08 in. submerged and 2.92 in. above water. 

Now suppose that the cube is set in motion by drawing it down and 

then releasing it. We first determine the differential equation of the 

motion. Take the origin in the water surface, and let x (ft), measured 

positive downward and negative upward, represent the displacement 

of the equilibrium plane PQ from the water surface at any time t 

(sec). In the second position in Fig. 13, PQ is x ft below the water 
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surface. But, no matter whether PQ is below or above the water 

surface, the depth of the submerged portion of the cube is a + x ft 

and the buoying force of the water is 

-f- x)(62.4) lb = 15.6(a 4- #) lb, 

acting upward, while gravity pulls the cube downward with a 

force of 4 lb. The resultant force acting on the cube is therefore 

4 — 15.6(a + r) lb, which is equal to — 15.6# lb since 15.6a = 4. 

Hence we have the differential equation 

or 

4 d2x 
-- = —15.6*, 
9 dt2 

d?x 

d? - -3'991- 

(10) 

representing the simple harmonic motion of the plane PQ vibrating 
up and down through its equilibrium position, x — 0. 

From equation (16) the period of vibration is 

2ir 
T = —jr—- = 0.561 sec. 

V3.9 g 

Now suppose that the initial depression below the equilibrium posi¬ 
tion is 2 in. = ■£ ft. In order to find the equation of motion we must 

solve equation (16). Writing the general values of x and v [equations 
(2) and (4)], together with the initial conditions, we have 

x = Ci sin V3.9g t + C2 cos V3~9g t (< = 0, x — £), 

v — V3.9<7(Ci cos V3.9g t — C2 sin V3.901) (t — 0, v — 0). 

Substituting the conditions, we find C2 = l and Cj = 0; hence 

the equation of motion is 

X = \ COS V3 % t. 

At the end of of a period, t — = |-(ir/V/3.9g), and 

1 5tt Vi 
= - cos — --ft = —1.41 in. 

6 4 
*J<«.5778 

12 
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Hence the equilibrium plane PQ is 1.41 in. above the water surface, 
and the top of the block is 1.414 + AP = 1.414 -f 2.923 = 4.34 in. 
above water at the end of -g- of a period. 

In all the problems of the following group resistance is as¬ 
sumed to be negligible. They are all problems in rectilinear 
motion except those concerned with the motion of a pendulum, 
but here the angular displacement 9 takes the place of linear 
displacement x. Whenever the numerical value of g is needed, 
the value 32.17 ft/sec2 should be used. 

PROBLEMS 

1. A particle P starts from rest at x — a in accordance with the law 

cPx/dt2 = —k2x. At the same time a second particle Q starts from rest at 

x — a in accordance with the law <Px/dt2 = k2x, Find (a) the distance 

traveled by P while Q moves its first a/3 units of distance; (6) the distance 

traveled by Q while P moves its first a/ 3 units of distance. 

2. For the motion described in Ex. 2 of Art. 32, find (a) the relation 

between x and v; (b) the values of x and v when t equals a quarter-period; 

(c) the time when the particle first reaches its extreme left position. 

3. A particle moves on a straight line under the action of a repulsive force, 

according to the law cfx/dt2 — .t/4. If it is projected from the point x = 0 

with a certain initial velocity, how much time will elapse before its velocity 

is double the initial velocity? 

4. A weight stretches a spring 6 in. It is started vibrating at a point 

2 in. below its equilibrium position with a downward velocity of 2 in./sec. 

(a) When will it first return to its starting position? (6) When will it reach 

its highest point? (c) Show that its maximum velocity is 2\/r2y + i in./'sec. 

6. A weight which stretches a spring a ft is drawn down b ft below its 

equilibrium position and released. What initial velocity imparted to the 

weight would have doubled the amplitude of the vibration? 

6. A weight of 10 lb stretches a spring 10 in. The weight is drawn down 

2 in. below its equilibrium position and given an initial velocity of 4 in./sec. 

Another, identical spring has a different weight attached to it. This second 

weight is drawn down from its equilibrium position a distance equal to the 

amplitude of the first motion, then given an initial velocity of 2 ft/sec. If 

the amplitude of the second motion is twice that of the first, what weight 

was attached to the second spring? 
7. A 20-lb weight is hung on an 18-in. spring, stretching it 8 in. The 

weight is pulled down 5 in., 5 lb are added to the weight, and it is given a 
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vertical push. During vibration the weight rises to a point 6 in. above the 

point where the 20-lb weight originally hung. Find the initial velocity. 

8. A weight hanging on a spring is pulled down 4 in. below its equilibrium 

position and then released. At the end of 1 sec it is passing upward for the 

second time through a point 2 in. below its equilibrium position. Find the 

period of the motion and the distance of the equilibrium position below the 

end of the unstretched spring. 

9. A weight stretches a spring 2 in., and another weight stretches another 

spring 8 in. If both weights are pulled down 1 in. below their respective 

equilibrium positions and then released, find the first two times (after t = 0) 

when their velocities will be equal. 

10. Two springs with weights attached are hung from a horizontal beam. 

If the weights are pulled down, and released at different times, show that 

when the distance between the weights is a maximum the velocities will be 

equal (in magnitude and direction). 

11. In Prob. 10 suppose that the springs are identical, that each weight 

stretches the spring 1 ft, and that the weights are released | sec apart at the 

same distance below their equilibrium positions. Find the time, after the 

release of the first weight, when the distance between the weights is first a 

maximum, and show that then the displacements of the two weights are 

equal in magnitude and opposite in sign. 

12. A spring is 1.5 ft long. A weight is hung on it, stretching it 6Mn. 

The weight is then drawn down 4 in. and given a downward velocity of 

4 in./sec. (a) Find the distance of the weight below the top of the spring 

when the tension is a maximum. (6) If the maximum tension is 10 lb, what 

weight was used? 

13. A weight stretches a spring 6 in. The weight is drawn down below 

its equilibrium position, then pushed upward, and reaches its uppermost po¬ 

sition 4 in. above the equilibrium position in 0.3 sec. (a) How far was the 

weight drawn down below the equilibrium position? (6) What was the ini¬ 

tial acceleration? (c) If during vibration the minimum tension is 5 lb, what 

weight was used? 

14. A rubber band of natural length AB is suspended vertically from A 
and a weight is attached to it at B. The weight stretches it 18 in. If the 

weight is drawn up to the point B and then projected downward with a 

velocity of 5.67 (= \/g) ft/sec, find the greatest extension of the band. 

15. The resultant attraction of a spherical mass on a particle within the 

mass is directed toward the center of the sphere and is proportional to the 

distance from the center. Suppose that a straight tube is bored through 

the center of the earth and a particle weighing w lb is dropped into the tube. 

If the radius of the earth is 3960 miles, find how long it will take the particle 

(a) to pass through the tube; (b) to drop halfway to the center. 
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16. In Ex. 4 of Art. 32, assume that the block of wood is depressed until 

its upper face lies in the water surface and is then released. At the end of 

2 sec, (a) how much of the block is submerged? (6) how fast is it moving, and 
in which direction? 

17. A cylinder | ft in diameter and weighing 10t lb floats half submerged 

in water. It is pressed down so that its top is in the water surface; then it is 

released, and vibrates with axis vertical. Find (a) the period of vibration; 

(b) the location of the midpoint of the cylinder after 1 sec. 

18. A cylinder weighing 40 lb floats in water with its axis vertical. It is 

pressed down slightly and released, whereupon it vibrates with a period of 

1.8 sec. Find the diameter of the cylinder. 

18. A cubical block of wood 28 in. on an edge floats in water. It is pressed 

down slightly and released, whereupon it vibrates with a period of 1.35 sec, 

its top remaining horizontal. Find the specific gravity of the wood. 

20. A rod of length L (ft) is pivoted at one end and has a weight w (lb) 

attached to the other end, forming a simple pendulum. If 6 is the angular 

displacement of the rod from the vertical at time t (sec), show that 

dt2 

If 0 is so small that sin 0 may be replaced by 0, the equation takes the form 

of equation (1), Art. 32. In this case, with a equal to the amplitude, or 

maximum angular displacement, find the period of vibration and the equa¬ 

tion of motion when the initial conditions are 0 — a, w = dO/dt = 0, when 

t = 0. 

21. Find the equation of motion of a pendulum of length L (ft) if the am¬ 

plitude of the vibration is small and the pendulum is started from its lowest 

position by giving it an angular velocity co0 rad/sec. 

22. A seconds pendulum is one which swings through its complete arc in 

1 sec, that is, one whose period is 2 sec. (a) Find the length of a seconds 

pendulum with small amplitude, (b) If the pendulum of Prob. 21 is a seconds 

pendulum with amplitude 4°, find o?0. 

23. A pendulum swings through an arc of 6°. IIow much of its period is 

consumed in traveling from its extreme position halfway to its lowest 

position? 

24. A pendulum whose period is 1.5 sec is drawn aside 3° from its vertical 

position and released. With what angular velocity does it pass through its 

vertical position? 

(c) Attractive force proportional to displacement; resistance 
proportional to velocity. The vibratory motion with constant 
amplitude, which we have just studied, resulted from a force 
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proportional to the displacement, acting without resistance. If 
friction or other resisting forces are taken into account, the 
particle may execute damped vibrations in which the oscilla¬ 
tions continually decrease in size, or, if the resistance is suffi¬ 
ciently large, the particle may gradually come to rest at its 
equilibrium position without vibrating. 

We consider here only a resistance which is proportional to 
the velocity. Suppose that a particle moving along the z-axis 
suffers such a resistance. If the particle is moving toward the 
right, the velocity dx/dt is positive, and —Kdx/dt represents 
the negative resisting force, K being a positive constant. If 
the particle is moving toward the left, the velocity dx/dt is 
negative, and —K dx/dt represents the positive resisting force. 
If, therefore, for either direction of motion, we add the resisting 
force — K dx/dt to the force —k2x, proportional to the displace¬ 
ment, we obtain the resultant force acting on the particle. 
Equating this resultant force, measured in pounds, to the sym¬ 
bol for pounds force, (w/g){d2x/dt2), where w (lb) is the weight 
of the particle, we have the differential equation 

w d2x 

9 dt2 
—k2x K 

dx 

dt 

Now multiply by g/w, write for convenience k2g/w = b2, 
Kg/w = 2a, and use the operator notation D = d/dt, thus 
obtaining the standard form of the differential equation of 
motion, 

(D2 + 2aD + b2)x = 0. (17) 

The roots of the quadratic D2 + 2aD + b2 = 0 are — a ± 

Vo2 — b2, so that the form of the general solution depends on 
the relative values of a and b. 

If a < b, that is, if the resistance is sufficiently small, the 
roots will be imaginary, and the solution will contain trigonomet¬ 
ric functions and represent vibratory motion. In this case we 

write the roots in the form — a ± V&2 — a2 i, and the general 
solution is 
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x — e at(Ci sin Vfe2 — o21 + C2 cos V62 — a2 £), (18) 
or 

a; = Ae~°‘ sin (W — a21 + a). (19) 

If a were equal to zero, that is, if there were no resistance, 
we would have the case of simple harmonic motion discussed in 
Art. 32(a), where the x, l relation, if plotted on rectangular t, x 
axes, would represent a sine curve oscillating between the 
straight lines x = ±A. Here the x, t relation represents a dis¬ 
torted sine curve oscillating between the damping curves 
x = ±Ae~at. The oscillations are damped down and gradu¬ 
ally die out with increasing t\ equation (18), or (19), represents 
damped oscillatory motion. The factor e~at is called the damp¬ 
ing factor (d.f.). It should be remembered, however, that the 
x, t curve is not the path of the particle. The particle oscillates 
back and forth through the origin in a straight line, the x-axis; 
the x, t curve pulls this motion out, so to speak, in the t direc¬ 
tion. 

We call T — 2-ir/P the period, where /? = Vb2 — a2. If 
a = 0, T reduces to the period for simple harmonic motion, 
T = 2ir/b. The period represents the time interval between 
two successive passages of the particle through the origin in 
the same direction. 

If a > b, both roots — a ± Vo2 — b2 are real and negative. 

Writing rx = —a + Vo2 — b2 and r2 - —a — Vo2 — b2, 
we obtain the general solution of the differential equa¬ 
tion (17): 

x = C1eni + C2eH, r2 <rx < 0. (20) 

Then, differentiating equation (20), 

v = rxCxerit + r2C2eTit. (21) 

Suppose that at time t — 0 the particle is started at the 
point x = x0 > 0 with initial velocity v = i>0. Substitution of 
these conditions in equations (20) and (21) determines the con¬ 
stants Cx and C2: 
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x0 = Ci + C2 j c v_o - r2xo = -t>o + rta;0 

Vo = ViCx + r2C2J 1 n — r2 2 ra - r2 

By inserting these values of Cx and C2 in equation (20), it be¬ 
comes 

x =--— [(»„ ~ r2xo)er,t - (v0 - rxx0)er2']. (22) 
fi - r2 

Since ri and r2 are both negative, equation (22) shows that 
the particle will settle down to x = 0 as t increases indefinitely; 
the way it moves, however, depends on the value of the initial 

0 00^72*0 

(a) (b) (e) 

Fia. 14 

velocity v0. 

vided that 
Since rx — r2 is positive, x will be positive pro- 

(i'o — r2x0)e,ri r*>l > !’o r 1Xo. (23) 

For t > 0 the exponential in (23) is greater than 1; also, for 
x0 > 0, v0 — r2x0 > t’o — rxx0. Therefore if v0 ^ r2x0 the 
inequahty (23) is satisfied and the particle remains to the right 
of x = 0; for v0 > 0 the particle starts at x = x0, moves toward 
the right, then reverses its direction of motion, and approaches 
x = 0 [Fig. 14 (o)]; for r2x0 ^ v0 ^ 0 the particle starts toward 
the left and approaches x = 0 [Fig. 14(6)]. If v0 < r2x0 the 
inequality (23) is reversed for sufficiently large t; the particle 
starts toward the left at x — x0) passes through x — 0, reverses 
its direction of motion, and approaches x = 0 [Fig. 14(c)]. 

Example 5. A particle starts from rest at time / = 0 (sec) with a 
displacement x = 5 (ft) to the right of the origin, and moves along 
the 2-axis according to the law 

d2x dx 

dt?+7t 
+ 1.25a; = 0. 
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Find (a) the time required for the damping factor to decrease 50 per 
cent, (6) the percentage decrease in the damping factor after one 
period, (c) the location of the particle after one period. 

The differential equation is given in standard form [equation (17)], 
with a = -J, b2 = 1.25, a < b. 

(a) The d.f. is e~~ai = e“</2. Its original value, for t = 0, is 1; it 
reduces to ^ when 

e~t/2 = *1 e — 2f 

t 
- - = - In 2, 

2 

t = 2 In 2 — 1.39 sec. 

(5) The period is 27r/Vir — a2 = 27r sec. At this time the d.f. 

has the value e”* = 0.0432. Hence the d.f. has decreased 95.7 per 

cent. 

(c) Only in part (c) do we need to use the initial conditions and 

solve the differential equation 

(D2 + D + 1.25)j = 0. (24) 

The roots of the quadratic D2 + D -f 1.25 = 0 are — -i db i; hence 

the general solution of (24) is 

.r = e~t/2(Cx sin t + C2 cos t). (25) 

Differentiation of (25) gives 

cos t — 

Substituting the initial conditions x = 5, v = 0, t = 0 in (25) and 

(26), we obtain 
C2 5 

5 = C2, 0 = Ci ——, Cx = -• 
Jj z 

Hence the equation of motion is 

Then 

x = e r 2C| sin t + 5 cos t). 

= e~~*(5) = 0.216 ft, 

and the particle is located 0.216 ft to the right of the origin. 
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Example 6. A particle moves along the x-axis in accordance with 

the law 
d2x dx 
— +10-+16x = 0. 
dt2 dt 

From a point 1 ft to the right of the origin the particle at time t = 0 
(sec) is projected toward the left at the rate of 9 ft/sec. Find (a) the 
time when the particle passes through the origin; (b) the numerically 
greatest negative displacement; (c) the maximum (positive) velocity. 

The differential equation is in standard form (17), with a = 5, 

b = 4, a > b, 7i = —2, r2 == —8. Since #0 = 1 and i>0 = —9, the 
condition v0 < r2xo is satisfied and we have the type of motion in 
which the particle passes toward the left through the origin, reverses 
its direction of motion, and approaches x = 0. 

For x and v [equations (20) and (21)] we have 

x — CiC~~2t + C2C~^, 

v = -2ClC~2t - 8C2e-St. 

Substitution of the initial conditions x ~ 1, v — — 9, t = 0, gives 

1 - Cl + c2 1 = _x 
-9 = -2Ci - 8C2J 1 6 

Hence 

* = -h~2t + ^-8t, 
v = £e"2t - ^e~st. 

C2 = £. 

(27) 

(28) 

(а) When x = 0, equation (27) gives 

eat = 7, < = £ In 7 = 0.324 sec. 

(б) The numerically greatest negative displacement occurs when 
v = 0, that is, from equation (28), when eGt = 28, from which 

e~2t = 28~H, e~8t = 28"**. 

Substituting these values in equation (27), we obtain 

* = £(-28 + 7)28-** = —3.5(28)-** = -0.0412 ft. 

(c) When the velocity is a maximum, 

dv 2 „ 224 fl, 
- = - - e~2t + —e~8t = 0. 
dt 3 3 
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Then e6t = 112, from which e~2t = 112"*, e~8t = 112“#. Sub¬ 
stituting these values in equation (28), we find 

vmax = (112 - 28)112“** = 28(112)-** = 0.0519 ft/sec. 

Example 7. A spring, fixed at its upper end, supports a weight 
of 10 lb at its lower end, which stretches the spring 6 in. If the weight 
is drawn down 3 in. below its equilibrium position and released, find 

the period of vibration and the equation of motion of the weight, 

assuming a resistance in pounds numerically equal to ^ the speed in 
feet per second. 

We obtain the differential equation for this example by putting 
w = 10 in equation (13) of Ex. 3, and adding the term dx/dt 

which represents the resisting force with sign opposite that of the 
velocity. The differential equation is therefore 

10 d2x 1 dx 
-~ = -20*-, 
g dt2 2 dt 

or, in standard form, 

(D2 + 2aD + b2)x = 0, 

where 

a = — = 0.804, b = V2g, 
40 

/3 = VV - a2 = V64.34 - .65 = 7.98. 

The period is therefore 2tt/)3 = 0.787 sec. The general solution is 

x = e~al(Ci sin /31 + C2 cos #). (29) 

Differentiating (29), we get 

v = e~at[(pCi — aC2) cos (3t — (aCi + /SC2) sin fit], (30) 

Substitution of the initial conditions x = |, v = 0, t = 0, in (29) and 
(30) gives 

C2 = i 0 = 0Ci - aC2, Ci = — « 0.0252. 
4/3 

Hence the equation of motion is 

x = e-O-8°4<(0.0252 sin 7.98/ + 0.250 cos 7.98/). 
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PROBLEMS 

1. For the motion represented by the differential equation [(17), Art. 

32(c)] 
(D2 + 2aD + b2)x = 0, 

where a <b1 show that, if v is the velocity at any time, the velocity one 

period later is e^Tv9 where T is the period. 

2. Discuss the motion represented by the differential equation of Prob. 1 

if a = by with initial conditions x = x0 > 0, v — r0, when t = 0. 

3. When a > hin the differential equation of Prob. 1, there are two cases 

when the particle reverses its direction of motion, represented by Fig. 14(a) 

and (c). In each of these cases obtain a formula for the time elapsed until 

the reversal takes place. 
4* The motion of a particle is represented by the differential equation of 

Prob. 1 with a > b and initial conditions x = .t0 > 0, v = 0, when i — 0 

[Fig. 14(6)]; at what time will the particle be moving fastest? 

5. If a particle moves along the z-axis under the action of a repulsive 

force proportional to the displacement and resistance proportional to the 

velocity, the differential equation of the motion takes the form [cf. equation 

(17), Art. 32(c)] 
(D2 + 2ab - lr)x = 0. 

Discuss the motion under initial conditions x = xQ > 0, v ~ when t — 0, 

and draw a diagram similar to Fig. 14 illustrating the motion. 

6. A particle executes damped vibrations of period 1.35 sec. If the 

damping factor decreases by 25 per cent in 16.3 sec, find the differential 

equation, with numerical coefficients, representing the motion. 

7. A weight hung on a spring and vibrating in air with negligible damping 

has a period of 1 sec. It is set vibrating with a practically weightless damping 

vane attached to it, causing a resistance proportional to the speed, and the 

period is found to be 1.5 sec. Find the damping factor, and wTite dowm 

the differential equation, with numerical coefficients, corresponding to the 

damped vibrations. 

8. A weight suspended from a spring executes damped vibrations of 

period 2 sec. If the damping factor decreases by 90 per cent in 10 sec, find 

the acceleration of the weight when it is 3 in. below its equilibrium position 

and is moving upward with a speed of 2 ft/sec. 

9. A weight of 4 lb is hung on a spring causing an elongation of 2 in. It 

is set vibrating, and its period is tt/6 sec. Find the time required for the 

damping factor to decrease 75 per cent if resistance is proportional to velocity. 

10. In Ex. 4, Art. 32(6), suppose that the water offers a resistance (lb) 
numerically equal to K times the velocity (ft/sec), thus increasing the period 
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of vibration by 0.04 sec. Find the value of K and the time required for the 

damping factor to decrease 50 per cent. 

11. A particle moves along the x-axis in accordance with the law 

d2x 

dP 

i n di% 
+ 10~ + 9x = 0. 

at 

From a point 2 ft to the right of the origin the particle at time t = 0 (sec) is 

projected toward the left at the rate of 20 ft/sec. Find (a) the time when the 

particle reaches its leftmost position; (b) the distance traveled and the ve¬ 

locity at the end of 1 sec. 

12. If the particle of Prob. 11 is projected toward the right at the rate of 

20 ft/sec, find (a) the time when it reaches its rightmost position; (b) the 

distance traveled and the velocity at the end of 1 sec. 

13. If the particle of Prob. 11 is projected toward the left at the rate of 

10 ft/sec, find the distance traveled and the velocity at the end of 1 sec. 

14. A particle moves along the x-axis in accordance with the law 

(Px dx 

dt- dt 
- 16x = 0.- 

From a point 2 ft to the right of the origin the particle at time t — 0 (sec) is 

projected toward the left at the rate of 10 ft/sec. Find (a) the time when the 

particle reaches its leftmost position; (b) the distance traveled and the 

velocity at the end of 1 sec. 

16. A 10-lb weight is suspended by a spring which is stretched 2 in. by the 

weight. Assume a resistance whose magnitude (lb) is 40/y/g times the 

speed (ft/sec) at any instant . If the weight is drawn down 3 in. below its 

equilibrium position and released, find (a) the displacement of the weight 

from its equilibrium position after 1/(2\/g) sec; (6) the time required to 

reach the equilibrium position. 

16. A 10-lb weight hanging on a spring stretches it 2 ft. If the weight is 

drawn down 6 in. below its equilibrium position and released, find (a) the 

highest point reached by the weight; (b) the location of the weight after 

1/V? sec- Assume a resistance whose magnitude (lb) is 10/yfq times the 

speed (ft/sec). 

17. In Prob. 16 draw the x, t curve and the damping curves. Show that 

throughout the motion the time required for the speed to increase from zero 

to a maximum is l of a period, and that at maximum speed the x, t curve is 

tangent to a damping curve. 

18. A 10-lb weight stretches a certain spring 1 ft. The weight is drawn 

down 6 in. below its equilibrium position and then released. Assuming a 

resistance whose magnitude (lb) is equal to the speed (ft/sec) at any point, 

find (a) the period; (b) the percentage decrease in the damping factor when 
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the weight is at its highest point; (c) the distance (in.) of the weight from its 

starting position when t = 0.6 sec. 

19. A weight of 16 lb hanging on a spring, which it stretches 6 in., is given 

a downward velocity of 10 ft/sec. If the resistance (lb) of the medium is 

numerically equal to 8/\/g times the velocity (ft/sec), is the weight above 

or below the starting point at the end of 0.5 sec, and how much? 

20. A simple pendulum makes small oscillations with a period of 2 sec in a 

resisting medium. Assume an angular retardation whose magnitude (rad/ 

sec2) is 1/25 the magnitude of the angular velocity (rad/sec). If the pendu¬ 

lum is released from rest at an angular displacement of 1°, find the displace¬ 

ment at the end of 10 periods. 

21. A 6-lb weight of specific gravity 3 stretches a spring 4 in. when im¬ 

mersed in water. If the period of vibration in water is £ sec, by what per¬ 

centage will the damping factor decrease in 1 sec? Assume resistance propor¬ 

tional to velocity. 

22. A weight having specific gravity p is immersed in water and supported 

by a spring which it stretches a in. It is set vibrating, and the resistance of 

the water to the motion of the weight is proportional to the velocity. If at 

the end of r periods the damping factor is 1 In its initial value, obtain a for¬ 

mula for the period T in terms of p, a, n, r, and g. Use the formula to com¬ 

pute the value of T if p = 3, a = 8 in., n = 6, r = 1, g = 32.17 ft/sec2. 

33. The linear equation with R ^ 0; simplest case. We 
consider now the simplest case of the differential equation 

f(D)y = (a0D” + -|-|- an_jD + an)y = R, 

with R t* 0, namely, the case in which an and all the other a’s 
except one, say a„_r, are equal to zero; the differential equation 
then has the form jr„, 

an-r-~ = R, 
axT 

where R is a function of x, or 

fry 
dxT 

= F{x). (1) 

The solution of the differential equation is effected merely by 
integrating r times, adding each time a constant of integration. 

Example 1. Solve 

—- = 6z + 2 cos 2x 
dx3 
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Integrating three times, adding each time a constant of integra¬ 
tion, we have 

d2y 

d? 
3x2 + sin 2x + Ci, 

dy cos 2x 
— = x---(- cxx + c2, 
dx 2 

x4 sin 2x Cjx2 
y = — --1—-—|- c2x + c3. 

4 4 2 

General solution: 

Ay — x4 — sin 2x + Cjx2 + (72x + C3. 

34. Deflection of beams. As an application of equation (1), 
Art. 33, we consider some problems on the deflection of beams. 
Figure 15 shows a piece of a bent beam. It can be regarded as 
made up of fibers such as F'F, all originally of length s (ft). 

The surface PQ, containing fibers whose lengths are unaltered 
when the beam is bent, is called the neutral surface. The curve 
of one of these fibers B'B is called the elastic curve of the beam. 
Fibers below the neutral surface are stretched, and those above 
are compressed, when the beam is bent. Suppose that the 
fiber F'F at a distance z below the neutral surface has been 
stretched an amount e by the force S dA, where S (lb/ft2) is the 
stress per unit cross-section area and dA (ft2) is the cross-sec- 
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tion area of the fiber. Also let R (ft) be the length of BC, the 
radius of curvature at B of the fiber B'B, and let QQ' be perpen¬ 
dicular to B'B and BC. 

Now, by Hooke’s law, the stress S per unit area is propor¬ 
tional to the stretch e/s per unit length in the fiber F'F; that is, 

S = E-, (1) 
s 

where the constant of proportionality E (lb/ft2) is Young’s 
modulus, or the modulus of elasticity. Furthermore, from the 
figure we have the proportion 

e _ z 

s R 

Then, from (1) and (2), 

(2) 

The moment of the force S dA about the axis QQ' is 

zS dA = ~ z2 dA. 
R 

Integrating this over the cross section of the beam we get the 
bending moment M: 

where I (ft4) is the moment of inertia of the cross-section area 
of the beam with respect to the axis QQ'; hence 

El 

m-TT ® 
Now take the 2-axis horizontal through some point of the 

fiber B'B chosen as the origin and the y-axis positive upward. 
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The formula for radius of curvature is R — (1 + y,2)H/y", but 
for small bending y’ is small and y'2 may be neglected in com¬ 
parison with unity, so that a close approximation to the radius 
of curvature is R = 1 /y". By use of this approximation, (3) 
becomes 

M = Ely", (4) 

the expression for the bending moment at any section of the 
beam. Equating this expression to the algebraic sum of the 
moments, with respect to the axis QQ' of the section, of all 
forces on one side of the section which tend to bend the beam 
about this axis, we obtain the differential equation of the elastic 
curve of the beam. When the moments of all these forces are 
expressible in terms of x the differential equation is of the 
form (1), Art. 33, with r — 2. 

Example 1. Find the elastic curve and the maximum deflection 
of a beam L ft long resting on supports at the ends and slightly bent 
under a uniform load of q lb/ft. 

Take the origin 0 at the left support and the y-axis positive upward 
(Fig. 16). Then take a section of the beam through a point P at a 

Fia. 16 

distance x from 0, and equate the expression for the bending moment 
at P, Ely" [equation (4)], to the sum of the moments of all the forces 
on one side of P, say to the left, that tend to bend the beam at P. 

Since y" is positive on a curve when the curve is concave toward 
the positive direction of the y-axis, we write a moment positive when 

it tends to produce concavity in the direction of the positive y-asia. 
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Since y" is negative on a curve when the curve is concave toward the 
negative y-axis, we write a moment negative when it tends to produce 
concavity in the direction of the negative y-axis. The load qL is 
equally distributed on the supports, causing an upward force of qL/2 
at the left support and a moment qLx/2 with respect to P. The load 
qx on OP acting downward at the middle point of OP produces a 
moment —qx2/2 with respect to P. The differential equation of the 
elastic curve of the beam is therefore 

Ely" 
qLx qx2 

~2 2~* 

(5) 

In this equation the units of the various quantities involved are as 
follows: E (lb/ft2), I (ft4), y" (ft"1), q (lb/ft), L (ft), z (ft). 

The differential equation (5) is solved merely by integrating twice 
and determining the two constants of integration from two condi¬ 
tions. Integrating once, we get 

Eh/ 
qLx2 

~r 
qx° 

+ CX. (6) 

The condition / = 0, .r = L/2, gives 

0 « 

ql? ql? 

10 48 
+ Cn Cx 

qj? 

24 * 

Inserting the value of C\ in (6) and integrating again, we find 

Ely = 
qLx3 

~12~ 

qjP 

24 

qL3x 

~24~ 
+ C2. (7) 

The condition y = 0, x = 0, gives C<2 = 0. Hence the elastic curve 
of the beam is 

V = —— (x4 — 2 Lx8 + L3x). 
24EI 

(8) 

There 'were just enough independent conditions to determine the 
two arbitrary constants. It may be noticed that a third known con¬ 
dition y = 0, x = L, is not independent; it satisfies (8) automatically, 

or, if substituted in (7), yields again C2 = 0. If we had not seen at 

the beginning that the reaction at each support is qL/2, we could 
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have called one reaction R and the other qh — R; then all three con¬ 

ditions would have been needed to determine R, C\, and C2. 

It may be noticed further that, if we had taken moments to the 

right of P, instead of to the left, it would have been more complicated 

but the same differential equation would have been obtained, for in 

that case 

Ely" = 
qUL - .r) 

2 

q(L - r)2 

which reduces to equation (5). 

The maximum deflection of the beam is the value of —y when 

x = L/2, that is, from equation (8), 

— y]z=L! 2 
24E/\1G 4 2/ 384JS7 

Example 2. Solve Example 1 if the beam, instead of being simply 

supported at its ends, is embedded horizontally in masonry at its ends. 

Fig. 17 

The differential equation is the same as in Example 1, except that 

there is an additional unknown moment at each end of the beam, 

exerted by the masonry, which keeps the beam horizontal at the ends 

(Fig. 17). Since this moment tends to produce concavity downward 

it is negative; we denote it by — Af. The differential equation is 
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Integrating once, 
qLx2 qxs 

Ely' = ----Mx + Ct. 
4 6 

The condition yf = 0, a: = 0, gives C\ = 0. Then the condition 

yr = 0, x = L/2, gives 

?L3 $L3 ML qL2 
0 = ----; M = -— 

16 48 2 12 

The condition 7/ = 0, x = 0, gives C2 = 0. Hence the equation of 
the elastic curve of the beam is 

Two other conditions y = 0, x = L and 2/' = 0, x — L are not 
independent of the ones used and are satisfied automatically. 

Example 3. In Example 2, if there is an additional concentrated 
load of F lb at the midpoint of the beam, find the elastic curve of the 

left half of the beam and the maximum deflection. 

The effect of the load F at the midpoint is to increase the reaction 

at each support to (qL + F)f 2. But there is another important dif¬ 
ference between this example and the preceding one. In Example 2 

the point P can be taken anywhere along the beam and the moments 
to the left of P are given by the same expression; the differential 

equation obtained holds for the whole beam. In this example, how¬ 

ever, if P is moved toward the right across the midpoint of the beam, 

an additional moment to the left of P is introduced, due to the con¬ 
centrated load, so that the differential equation of the right half of 

the elastic curve is different from that of the left half; the two halves 
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of the elastic curve have different equations. This may seem strange, 

since the elastic curve “looks like” a curve with a single equation, 

but, if the student will draw for illustration the curve y = —x3 from 

— 1 to 0 and the curve y = x3 from 0 to 1, the result will be a curve 

whose two halves have different equations. 

Taking P to the left of the midpoint of the beam and taking 

moments to the left of P, the differential equation representing the 

left half of the elastic curve is 

Ely" 
(qL + F)x 

~~2~ 

- M. 

Following exactly the same steps and using the same conditions as 

in Example 2 (the student should do this), the elastic curve of the left 

half of the beam is found to be 

24 El 
(x4 - 2L;r3 + L2*2) +- 

48 El 
(4r3 - 3Lx2). 

Notice that the two conditions y — 0, z — L and yf = 0, x = L, 

which were satisfied automatically in Example 2, are not satisfied 

here; these conditions are true only for the right half of the beam. 

For the maximum deflection we have 

- qL4 PL3/1 3\ qL4 + 2FL3 
x—Lt** ~-(-J ~-ft. 
~ 384El 48El \2 4/ 384L7 

This result could have been obtained by finding the deflection due 

to the concentrated load (with q — 0) and adding it to the result of 

Example 2. 

PROBLEMS 

1. Solve Ex. 1, Art. 33, if y = y" = 0, yf = — f, when x = ir. 
2. Solve 

y" = 12x2 + J 
JO 

if yf = V = 0 when x = 1. 
3. Solve 

y" = 4(e“* — e2x) 

if y =* 5 when £ = 0 and 2/ = In 2 when x = In 2. 



156 Chapter 4 

4. A beam of length 20 ft is simply supported at the ends and carries a 

weight of 240 lb at its midpoint. Taking the origin at the left end and 

neglecting the weight of the beam, find (a) the equation of the elastic curve 

of the left half of the beam; (b) the equation of the elastic curve of the right 

half of the beam; (c) the maximum deflection. 

5. If the beam of Prob. 4 carries in addition a uniform load of 30 lb/ft 

find the maximum deflection. 

6. A 2 by 6 in. board 20 ft long stands on edge, is simply supported at 

its ends, and carries a 240-lb weight at its midpoint. If the board weighs 

40 lb/ft3, and E — 15 X 106 lb/in.2, find the maximum deflection. 

7. A cantilever beam (one end free and the other fixed horizontal) of 

length L ft weighs q lb/ft and carries a load of W lb at its free end. (a) Tak¬ 

ing the origin at the free end, find the equation of the elastic curve of the 

beam, (b) What load, distributed uniformly along the beam, would produce 

the same maximum deflection as the load W at the free end? 

8. A cantilever beam of length L ft weighs q lb/ft and carries a load of P 
lb at its midpoint. Find the maximum deflection of the beam. 

9. A beam L ft long, carrying a uniform load of w lb/ft, is fixed hori¬ 

zontal^ at one end and is simply supported at the other. Find (a) the 

deflection of the midpoint of the beam; (6) the maximum deflection of the 

beam. 

10. A beam 10 ft long, fixed at one end and simply supported at the other 

carries a uniform load. Find the distance from the supported end to the 

point where the maximum deflection occurs. 

11. A beam 6 ft long is simply supported at its ends. Two concentrated 

loads, each equal to P lb, are supported at the points of trisection of the 

beam. Neglecting the weight of the beam, find the points at which the 

deflection has half its maximum value. 

12. A cantilever beam of length L ft, vertical dimension h ft, and modulus 

of elasticity E lb/ft2 carries a load of material whose width equals the width 

of the beam, whose density is w lb/ft3, and whose depth at distance x ft from 

the free end is kx2 ft. Neglecting the weight of the beam, find its maximum 

deflection. 

13. A beam simply supported at its ends, of length L ft, vertical dimension 

h ft, and modulus of elasticity E lb/ft2, carries a load of material whose 

width equals the width of the beam, whose density is w lb/ft3, and whose 

depth at distance x ft from one end is kx2 ft. Neglecting the weight of the 

beam, find the deflection of its midpoint. 

14. Solve Prob. 13 if the depth of the load is proportional to the square 

root of the distance from one end and equal to If ft at the other end. 

15. A beam of length 2L ft carrying a uniform load of q lb/ft is supported 

at its ends and at its middle point, (a) Taking the origin at the middle 
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point, find the elastic curve of the right half of the beam. (6) Show that the 

maximum deflection is 

(39 + 55^3)^, 
and that this is 42 per cent of the value it would have if the beam were cut in 

two at its middle point. 

16. A simply supported beam L ft long carries a concentrated load of 

TF lb at a distance of c ft from the left end. (a) Taking the origin at the left 

end, find the equation of the elastic curve of the portion of the beam to the 

left of W and of the portion of the beam to the right of W. (b) If c < L/2, 

show that the distance from the left end to the point of maximum deflection 

is greater than c and less than L/2, and find the maximum deflection. 

^35. The linear equation with R ^ 0. We now rewrite equa¬ 
tions (1) and (2) of Art. 31: 

my = R, (1) 
mv = 0, (2) 

where 

/(D) = o0D" + OiDn_1 + • • • 4- a„_iD + o„. 

Equation (2) has been solved in Art. 31; we now seek the 
general solution of equation (1), in which R is a function of x. 

The general solution of equation (2) is a value of y contain¬ 
ing n essential arbitrary constants, n being the order of the 
differential equation; we call this the complementary function 
(c.f.) of equation (1) and denote it by yc. Then /(D) operating 
on yc produces 0; 

mvc = o. (3) 

Now suppose that in some way we are able to find a particu¬ 
lar value of y, free of arbitrary constants, which satisfies equa¬ 
tion (1); we call this a particular integral (p.i.) of equation (1) 
and denote it by yp. Then /(D) operating on yv produces 22; 

mv, = r- (4) 
We have seen in Arts. 2 and 13 that a particular integral of a 
differential equation can be obtained from the general solution 
by assigning particular values to the arbitrary constants which 
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enter into the general solution; but here we are going to find a 
particular integral before the general solution is known—the 
finding of a particular integral is now to be a step in the process 
of finding the general solution. 

Adding equations (3) and (4), we find 

f(D)(yc + yP) = R; 
hence 

y = Vc + yv (5) 

satisfies the differential equation (1), and since it contains n 
essential arbitrary constants it is the required general solution. 
Thus the general solution of (1) consists of two parts, the c.f. 
and a p.i. The operator/(D), operating on the c.f., produces 
nothing—the c.f. merely acts as a carrier of the required arbi¬ 
trary constants. The p.i., however, when operated on by/(D), 

yields the right member R. 

Example 1. Solve 

(D2 + 2D + l)y = 4e*. 

The c.f. is found by solving (D2 + 21) + \)y = 0, or (D + l)2y = 0; 

it is 
Vc = (Ci + C2x)e~x, 

A p.i., found by inspection, is yv = ex, since 

(D2 + 2D + l)ex = ex + 2ex + ex = 4e*. 

Therefore the general solution of the given equation is 

y=(C1 + C2x)e~x + e*. ,■ 

This example illustrates the plan of solving an equation of 
form (1). We have but to find the c.f. by the method of Art. 
31, then find a p.i., and add them together. However, we can¬ 
not rely on inspection to reveal a p.i. except in very simple 
cases. We shall explain in the next two articles two methods 
for finding a p.i. The first method, undetermined coefficients, 
will apply when R is of certain special form; the second, varia¬ 
tion of parameters, is general and can be used theoretically for 
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any form of R, although it is impracticable to carry it through 
oor complicated forms of R. 
■'v'36. Undetermined coefficients. We shall find it convenient 
/m this article to call the part of a term which is multiplied by 
a constant coefficient the variable part (v.p.) of the term. Thus 
the v.p. of 7xe2x is xe2x, the v.p. of 6 cos 2x is cos 2x, and the 
v.p. of 3x is x. If a term is a constant, say 5, it can be thought 
of as 5x°, where 5 is the constant coefficient and x° or 1 is the 
v.p. Now a function may be of such kind that successive 
differentiation of it beyond a certain point ceases to yield terms 
with new variable parts. 

For example, take the function x2e3* and its two successive 
derivatives: 

x2e3x, 3x2e3x + 2xe3x, Qx2e3x + I2xe3x -f 2c31. 

Further differentiation would yield only terms with variable 
parts, x2e3x, xe3x, e3x. 

As another example, take the function 3x2 + sin 2x and its 
two successive derivatives: 

3x2 + sin 2x, 6x + 2 cos 2x, 6 — 4 sin 2x. 

These and further derivatives contain only terms with v.p.’s 
x2, x, 1, sin 2x, cos 2x. 

As an example of a function which does not possess this 
property, take tan x and its successive derivatives: 

tan x, sec2 x, 2 sec2 x tan x, 

Further differentiation continues to produce functions with new 
variable parts. 

It can be shown * that functions possessing the above prop¬ 
erty are expressible as sums of terms of the form 

Cxpeax cos /3x or Cxveax sin fix, 

where p is a positive integer or zero, a and /3 are any real con¬ 
stants (including zero), and C is any constant. 

* See Reddick and Miller, Advanced Mathematics for Engineers, 2nd Ed., Art 
11, for proof of this and the rule following. 
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Thus the function x2e3x in the first example above is obtained 
from the first form by putting <7=1, p = 2, a = 3, /3 = 0; 
and the function 3x2 + sin 2x in the second example is obtained 
by summing the first form with C = 3, p = 2, a = 0, /3 = 0, 
and the second form with C — 1, p — 0, a — 0, /3 = 2. 

Suppose now that R is a function possessing the above 
property; that is, R is a function such that successive differ¬ 
entiation of it beyond a certain point ceases to yield terms with 
new variable parts. Otherwise stated, R is a function expressi¬ 
ble as sums of terms of the form Cxpeax cos fix or Cxpeax sin /3x, 
where p is a positive integer or zero, a and j8 are any real con¬ 
stants (including zero), and C is any constant; then it is shown 
(Joe. cit.) that the following rule will yield a particular integral 
of equation (1), Art. 35. 

Write the variable parts of the terms in the right member It and 
the variable parts of any other terms obtainable by successively 
differentiating R. Arrange the v.p.’s so found in groups such 
that all v.p.’s obtainable from a single term of R appear in only 
one group. Any group consisting of v.p.’s none of which is a v.p. 
of a term of the complementary function y0 is left intact, but if 
any member of a group is a v.p. of a term of yc all the members of 
this group are to be multiplied by the lowest positive integral power 
of x that will make them all different from the v.p. of any term in 
y0. Now multiply each member of all the groups by a general 
constant (undetermined coefficient), and take the sum of the 
expressions so obtained as yp. Finally, operate on yp with f(D) 
and equate the complete coefficients of the various v.p.’s to the 
coefficients in the corresponding terms of R in order to evaluate the 
undetermined coefficients in yp. 

Example 1. Solve , _ 

(D2 — D)y =^3x2 — 4x + 5,+ 2ex + sin x. (1) 

We give all the work necessary, followed by an explanation of the 
steps taken in finding yp. 

Roots of/(D) = (D2 - D) = D(D - 1) = 0: 0, 1. 

Vc - Cj + C2ti. 
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”7-\- 
yp=zAx3+ Bx2+ Cx 

-1) 

1) 

+Exex +F sin x+G cos x (2) 

Dyp= ZAx2-\-2Bx+ C+Exex+ Eex—(rsinx+Fcosx (3) 

D2yP— 6Ax+2B+Exex+2Eex—Fsin x—G cos x (4) 

CO II 

3
 i 6A-2£=-4 2B—C=5 2E-E=2 -F+G = 1, -F-G= 0 

4 = -l | B=-1 C=—7 \ E=2 F—h <?=§ 

yp = —x3 — x2 — 7x + 2xcx — ^ sin x + ^ cos x. 

The general solution, y — yc + yP, is 

y = Ci — 7x — a:2 — x3 + (C2 + 2x)c* — sin x + •£ cos x. 

The v.p.’s of 3a*2 and its two successive derivatives are x2, x, 1. 

Corresponding to the term — 4x we would get x, 1, and corresponding 

to the term 5 merely 1, but these are already included in the group 

x2, x, 1, so that this group of v.p.’s corresponds to the terms 3a*2 — 

4x + 5 of R. Now one of these v.p.’s, namely 1, is the v.p. of Ci, a 

term of the c.f.; hence we multiply each member of the group a*2, 

x, 1, by x, obtaining x3, x2, x, none of which is a v.p. of a term of yr. 

By multiplying by A, B, C respectively we get the first three terms of 

yp, namely, Ax3 + Bx2 + Cx. 

The only v.p. obtainable from 2cx is cx, which itself forms the 

second group. Since cx is the v.p. of the term C2cx in yc, we multiply 

it by x and prefix a general constant E to obtain the fourth term, 

Excx, of yv. 

From sin x the only new v.p. obtainable by successive differentia¬ 

tion is cos x, so that the third group consists of sin x, cos x. Since 

neither of these is a v.p. of a term of yCl we multiply by F and G 

respectively, obtaining, for the last two terms of yp, F sin x + G cos x. 

Now write down yp, and under it write Dyp and D2yp, arranging 

terms with the same v.p.’s in the same column. Since yp satisfies 

equation (1), the combination D2yp — D?y„ must be identical with 

the right member of (1)“ To produce this combination we multiply 

equation (4) by 1, equation (3) by — 1, and add, placing the multi¬ 

pliers 1 and —1 at the left of the respective equations. We do not 

use a multiplier (other than 0) for equation (2) since y, unaffected by 

a D, does not appear in the left member of (1). By equating the 

resulting coefficients of the various v.p.’s column by column to the 

coefficients of the corresponding terms in the right member of (1), 
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we obtain just enough equations to solve for the values of the unde¬ 
termined coefficients; any additional equations, although superfluous, 
must not be contradictory. In this example there are six equations, 
obtained from the 2nd, 3rd, 4th, 6th, 7th, and 8th columns, for deter¬ 
mining the six undetermined coefficients, A, B, C, E, F, G. Note 
that the first column yields nothing, and the fifth gives E — E = 0, 
or merely 0 = 0; if the fifth column had yielded a contradictory re¬ 
sult, a mistake would have been indicated. 

A short cut. In the case where R is the product of an expo¬ 
nential function cax and some other function of x, it is usually 
shorter to multiply the equation through by e~ax and then 
make use of the reverse exponential shift [equation (6), Art. 
30] in finding the p.i. As an illustration we shall work the 
following example first by the regular method just explained, 
then by use of the short cut. 

Example 2. Solve 
V 

j (D2 - 2D + I)?/ = 2xe*. 

First solution. 

are 1, 1; hence 

The roots of the quadratic 

D2 - 2D + 1 = (D - l)2 = 0 

Vc = (Cr + C2x)c*. >/ 

Writing the v.p.’s of 2xec and of the terms obtainable by differentia¬ 
tion, we have the group xex, cx. Multiply the members of this group 
by x? in order to obtain the group xAcx, x2i'z, both of whose members 
are different from^the v.p. of any term in yc. Nojv multiply these 
members byA, C7r&spectively[”to "obtain 

1) 

-2) 

1) 

yp — Ax3ex + Bx2ex 

Dyp — Ax3ex + (3A + B)x2ex + 2 Bxex 

D2yv - Ax3ex + (QA + B)x2ex + (6A + 4B)xex + 2Bex 

6A + 4S - 4B = 2 
yp - \x?ex A = \ 

(Note that the first two columns give 0 = 0.) 

2B - 0 
B - 0 
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33. Solve 
d-0 
-rjg- + 108Q = 100 sin 500J 

if Q = 0, dQ/dt = 0 when < = 0; find the value of dQ/dt when l = 1/100 
(i.e., when 500t = 5 rad). 

//al. Variation of parameters. There was developed in the 
^preceding article the method of undetermined coefficients which 
enables us to find a p.i. of the differential equation f(D)y — R, 
where R is of a certain special form. It happens that R is of 
this special form in most of the linear differential equations 
which arise in practice, but it is well to have a method for 
finding a p.i. in case an equation is encountered in which the 
method of undetermined coefficients does not apply. Such is 
the method of variation of parameters, due to Lagrange. 

The method is general and theoretically can be used for any 
form of R, and even for a linear differential equation with 
variable coefficients * provided the complementary function is 
known, although it is impracticable to carry it through except 
for fairly simple forms of R. The difficulty in carrying it 
through increases not only with the complexity of R but also 
with the complexity of the complementary function. Even 
for Problem 22, Art. 36, where the complementary function is 
rather simple, the method is hardly practicable; in Problem 27 
of the same article, however, although R is more complicated, 
the c.f. is simpler, and, as we shall see in Example 2, this prob¬ 
lem can be solved by the method of variation of parameters 
with little more work than by the method of undetermined co¬ 
efficients. The chief value of the method from the practical 
point of view is in solving an equation like that of the following 
Example 1, where R is a function whose successive derivatives 
continue to yield terms with different variable parts, so that 
the method of undetermined coefficients would involve a yp 
having an infinite number of terms. The method of variation 
of parameters is powerful for use in theoretical considerations 
and is justly described by mathematicians as “elegant.” 

* For example, Prob. 12 at the end of this article. 
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We shall explain the theory for the differential equation of 
second order with constant coefficients, 

f(D)y = (o0D2 + OjD + a2)y = R, (1) 

then indicate how it applies to equations of higher order. 
First find the c.f. by the familiar method of Art. 31. We 

use, for convenience, A and B instead of the arbitrary constants 
Cx and C2, and write the c.f. in the form 

yc = Au + Bv, 

where u and v are certain known functions of x. 
Our problem is now to find a p.i. of equation (1), that is, a 

function such that/(D) operating on it produces R. We know 
that /(D) operating on the function Au + Bv produces 0 if A 
and B are constants; it is reasonable to surmise that, if A and 
B were functions of x (which can be called parameters), it 
might be possible to determine them (vary the parameters, so 
to speak) so that/(D) operating on Au + Bv would produce R 
instead of 0. 

Accordingly we write 

y = Au + Bv, (2) 

where A and B now are undetermined functions of x. If we can 
determine A and B (free of arbitrary constants) so that (2) 
satisfies (1), the corresponding value of y will be the yp that 
we are seeking. 

We need two conditions on A and B in order to determine 
them. We may choose the first condition in some way that 
will simplify the problem. But the second condition is forced 
on us; it is that y = Au + Bv must satisfy equation (1) after 
the first condition has been imposed. The form in which these 
two conditions appear is made clear by the following compact 
arrangement of the problem. Subscripts denote differentiation 
with respect to x. 

y — Au + Bv 

Dy - Aux + Bvi + 

D 2y = Au2 + Bv 2 + 

A\U + B xv — 0 

Aitti + BjVx = R/a0 
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Arrange the four terms obtained by differentiating Au + Bv 
so that the first group of two terms contains A and B, and the 
second group contains Ax and Bx. Now draw a vertical line 
separating the two groups, and set the second group equal to 
zero. This is the first condition, mentioned above, which we 
arbitrarily impose on the two functions A and B, namely, that 
the sum of their derivatives multiplied by u and v respectively 
shall vanish. 

Next differentiate the part of T)y that remains on the left 
of the vertical line, obtaining four more terms for D2y arranged 
as before. If now we imagine that the values of y, T)y, and D2y 
are substituted in (1), the parts to the left of the vertical line 
yield nothing, since these would be the values of y and its de¬ 
rivatives if A and B were constant. There remains only 
a0(Ai«i + which must equal R. if the second condition 
mentioned above is satisfied. To say that y = Au + Bv must 
satisfy (1) when A xu + Bxv — 0 is the same as to say that 
AxUi + Bxvj = R/a0, which is the second condition that the 
functions A and B must satisfy. 

In order to determine A and B, the equations 

Aiu + Biv = 0, 
R (3) 

A iU\ + B\V\ — , 
do 

must be solved for Ax and Bx; these expressions are then inte¬ 
grated (omitting constants of integration) to determine A and 
B. Substitution of these values of A and B in (2) yields a p.i. 
yp of equation (1). The general solution of (1) is then 

y = Vc + yP. 

If, when Ai and Bx were integrated to obtain A and B, con¬ 
stants of integration had been added and the resulting values 
of A and B substituted in (2), the general solution of (1) would 
have been obtained. Since yc must be found at the beginning, 
however, it is expedient to use the method of variation of 
parameters merely to find yp> then add yc and yp to obtain the 
general solution. 
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Example 1. Solve ^ 

(D2 + 1 )y = tan x. 

The c.f. is yc = Cx sin x + C2 cos x. 

y = .4 sin x + B cos a; 

T>y = .4 cos x — B sin x + Ax sin a: + cos x 

D2y = —4 sin x — I? cos x + 4X cos x — #i sin x 

A — — cos £ Ai 

J5 = sin x — In (sec x + tan x) Bx 

yv = — cos x In (sec x + tan x) 

y = Ci sin x + [C2 — In (sec x + tan x)] cos x 

In solving the two equations to the right of the vertical line for 
A i and Bx we multiplied the first of these equations by sin x, the 
second by cosx, then added to obtain Ax; we then multiplied the 
first equation by cos x, the second by sin x, and subtracted to obtain 
Bx. The expressions for Ax and Bx were then integrated (omitting 
constants of integration) to find A and B. When these values of A 
and B were substituted in the equation y = A sin x + B cos x, the 
terms — cos x sin x and sin x cos x cancelled and the expression for 
yv was obtained. Finally the general solution was written down by 
adding yc and yp. 

In studying this method the student may have been curious 
about the statement that we may choose a condition on A and 
B that will simplify the problem. In the above example we 
arbitrarily imposed on A and B the condition that Ax sin x -f 
Bi cos x = 0. Was it necessary to impose this particular condi¬ 
tion? Suppose we had written some other constant or a func¬ 
tion of x instead of 0, would the result have been the same? 
The answer is that this particular condition was not neces¬ 
sary; it was convenient—it simplified the problem. If the stu- 

= sin x 

sin2 x 
=-= cos x — sec x 

cosx 

■ 0 

= tanx 
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dent has sufficient curiosity, he should try working this exam¬ 
ple by imposing the condition Ax sin x + Bx cos x = x; the 
final result will be the same but the work will be longer. 

We shall now solve Problem 27, Art. 36, by the method of 
variation of parameters, omitting explanations. 

Example 2. Solve 

(4D2 — l)y = e~xl2 (x — cos^* 

The c.f. is ye = Cxexl2 + C2e~xl2. 

y= Aexl2+ Be~xl2 

D y=%Aexl2-%Be~xl2+ Axexl2+ Ble~x,2=0 

D 2y=\Acx,2+\Be-x,2+ \Axexl'2 — \Bxe~xl2 — %e~xl2[x—cos(x/2)] 

o? 1 . X 
B—— — +- sin - 

8 2 2 

A=±e-x{-x-l)-|c-*( 
* . 1 • A 

-x( X 1.1 X 1 • X\ 

- l-i-4+5COS2-ioam2j 

v,-°-n “ r i+5 l) 

The method of variation of parameters is applicable theoret¬ 
ically to differential equations of any order, but practically it is 
seldom used for equations of higher order than the second. 
The amount of work necessary to carry it through increases 
rapidly with the order of the equation, owing to the necessity of 
solving a system of simultaneous equations for Ax, Bx, • • •, the 
number of equations in the system being equal to the order of 
the differential equation. 
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In order to illustrate the method for a third order equation, 
we give the following example, although it could be solved 
much more readily by the method of undetermined coefficients. 
Note that here we need three conditions for determining Au 
Bi, Ci, so we arbitrarily set the tails of Dy and D2y equal to 
zero for the first two conditions. 

Example 3. Solve 

"fl)3 _ 6D2 + HD - 6)y = e- 

/(D) = (D - 1)(D - 2)(D - 3) 

y = Aex + Be2* + Ce3x 

D y = Acx + 2 Bc2x + 3Ce3x + 

D 2y = Ac* + 4 Be2x + 9 Ce3x + 

D3y = Ac* + 8 Be2x + 27 Ce3x + 

yc = Cy<? 4- Coe2* + C3e3x 

Ai<7+ Bie2x+ C\e3x = 0 

Axex + 2BiC2x + 3Cie3* = 0 

Aicx + 47he2x + 9Cie3x = <?~x 

Solving the system of three simultaneous equations to the right of 

the vertical line for Alt B\, Cx, we obtain 

_ 1 ,—2x 1 a _ 12x 

1 — 2C A ~ ~1( 

Bx = -e-3x B = \e~3x 

Ci « ic~4x C = -ic-4* 

Vv = ~Te~x + ~ \e~x = —4te~* ' 

y = Ci* + C2e2x + C3e3x - ^e~x. ' 

PROBLEMS 

Solve the following differential equations, working 5, 9, and 10 by the 
method of Art. 36 and also by the method of Art. 37. 

^ 1. (D2 + 1)?/ = esc x. 
2. (D2 + 4)y — cot 2x. 

*f 3. (9D2 + 1 )y = sec (x/3). 
y4u (D2 + 1 )y = tan2x,-^/' 
jr 5• (D2 — 1 )y = sin2 xy 
; 6. (4D2 + 4D + S)y ~ 4e~*12 sec x + 4e*/2. 

(D2 — 1 )y = x2ex*12.^ 
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(D2 — 2D + 2)y = Sx + ex tan x. 

9. (D2 + 1 )y ~ x cos x. 

10. (D3 — 7D — 6)y = 26e~2x cos x. 

11. (a) Solve by the method of variation of parameters: 

(D2 + 3D + 2 )y = sin 

(b) Show that, although successive differentiation of the function sin ex 

continues to yield terms with different v.p.’s, nevertheless the differential 

equation may be solved without using the method of variation of parameters. 

12. Solve by the method of variation of parameters: 

(D + P)y = Q, 

where P and Q are functions of x, obtaining the solution (8), Art. 21. 

^8 . Forced vibrations. 
the differential equation 

In Example 7, Art. 32, we saw that 

10 d2x 1 dx 
-- — —20x- 
g dt2 2 dt 

(1) 

represents the vibrations of a 10-lb weight, hung on a spring 
with spring constant 20, in a medium offering resistance nu¬ 
merically equal to half the velocity. If resistance is negligible, 
the last term is absent and the differential equation 

10 d2x 

g dt2 
— 20x (2) 

represents the special case of simple harmonic motion in a non¬ 
resisting medium. 

These differential equations, of standard form 

(D2 + 2aD + b2)x = 0, (a < b), 

(D2 + b2)x = 0, 

respectively, represent free or natural vibrations, that is, vibra¬ 
tions due to the inherent forces in the system. The system 
involved in (1) consists of the spring and the weight, together 
with the resisting medium in which they are immersed; in (2) 
the system is merely that of the spring and the weight. 
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Suppose now that there is applied to the weight, vibrating 
in accordance with equation (1), a periodic force A sin at, ex¬ 
ternal to the system, of amplitude A and period 2ir/u. The 
differential equation of the motion will then be 

10 <Px 

g dt2 

1 dx 
-20x — - —- + A sm at, 

& dt 

of standard form 

(D2 + 2aD + b2)x = C sin <d, (a <b). (3) 

Neglecting the resistance due to the medium, the standard 
form of the differential equation is 

(D2 + b2)x = C sin wt. (4) 

Equations (3) and (4) represent forced vibrations respectively 
with and without resistance proportional to velocity and due 
to the medium. The solutions of these equations consist of a 
complementary function xc plus a particular integral xp. 

The form of the solution of equation (4) will depend on 
whether u — b or a b, that is, whether the period 2-ir/o) of 
the impressed external force is or is not equal to the period 
2ir/b of the natural vibrations. If w = b, we have the case of 
resonance, where the vibrations get larger and larger. This 
condition would cause dangerous stresses in some vibration 
problems; on the other hand a resonant condition is desirable 
in certain acoustical and radio-circuit problems. 

Example 1. A 12-lb weight hangs at rest on a spring which is 
stretched 2 ft by the weight. The upper end of the spring is given the 
motion y = sin t, where y (ft) is the displacement, measured 
positive upward, of the upper end of the spring from its original posi¬ 
tion, at time t (sec). Find the equation of motion of the weight and 
the position of the weight 1.5ir/\/2g sec after the motion starts. 
Draw a figure representing the motion for the interval 0 | ■y/g/21 ^ 
2tt. 

Since a force of 12 lb stretches the spring 2 ft, 12 = c-2, and the 
spring constant is c = 6 lb/ft. 
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Take the origin at the equilibrium position of the weight, and let 
x (ft), measured positive upward, represent the displacement of the 
weight from its equilibrium position at time t (sec). The difference, 
y — x, represents the change in length of the spring caused by the 

displacement of its upper end. Combining this with the original 

stretch of 2 ft caused by the weight, we have 2 + y — x ft, the total 
stretch in the spring at time l, no matter which direction the weight 
or the upper end of the spring is moving, and no matter whether x 
or y is positive or negative. The spring pulls the weight upward with 

a force of 6(2 + y — x) lb while gravity pulls the weight downward 

with a force of —12 lb. The resultant force acting on the weight is 
therefore 6(2 + y — x) — 12 = 6(y — x) lb. Equating this to the 
expression for pounds force, we have the differential equation 

12 d2x 

9 dt2 
= 6(?/ - x), 

or, replacing y by sin \^2g t, multiplying by g/12, and using operator 
notation, we have 

This equation is of standard form (4), with ^ b. 

mentary function is 

xc C i sin t + C2 cos 

The comple- 

For the particular integral we have 

^ xp = A sin V2~g t + B cos t 

D2xp = —2gA sin t — 2gB cos V2^ t 

3 g 3 
— -gA = 1 1 i S3

 
II O

 

,— 2 2 
xv — — \ sin V2g t , 

2 

A = -tv 

0
 

II 
CQ 

Hence the general solution is 

x — Ci sin 4 — t "t" C2 cos 
2 

V2gt. 
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The condition x — 0, t — 0, gives C2 = 0. Then differentiation 

and the condition dx/dt = 0, t = 0, gives 

2 

3 

The equation of motion is therefore 

2 . r« l 
x = - sin * t-sin V 2g t. 

3 V2 3 

When t = 1.5ir/ we find 

2 3ir 1 3x V2 1 2.4112 
# = - sin-sin — ==-f- - =-= 0.805. 

3 4 3 2 3 3 3 

Hence, when t = 1.5ir/\/2g sec, the weight is 0.805 ft above its origi¬ 
nal position of equilibrium. 

In order to represent the motion graphically we can plot x and y 

against y/g/2 t (instead of t) for convenience, since the motion of the 
upper end of the spring and of the weight are represented respectively 

by 

y - sin 2 ^ t (5) 

2 . 
x = - sin */-1-sin 21 Jit. (6) 

3 V2 3 V2 

Let O' (Fig. 18) denote the original position of the upper end of 
the spring, and draw the sine curve (5) representing the motion of the 

upper end of the spring. The upper end of the spring, of course, 
actually oscillates in the vertical line through O' with simple harmonic 

motion which is the projection of the motion of a point along the 

curve (5). Different scales are used horizontally and vertically. 

Let A be the original position of the lower end of the spring. (O'A 
is not drawn to scale—the length of the spring is not given.) When 

the weight is attached to the spring at A it will hang in equilibrium 
at O. With O as origin we draw the curve (6) representing the motion 
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of the weight. This curve can best be drawn by compounding the 

two sine curves 

shown as broken lines. 
irFhe weight oscillates a distance of 0.866 ft above and below its 

equilibrium position (a fact to be established in Prob. 1 of the follow¬ 

ing list). The t, t curve repeats in intervals of \/g/2 tj= 2t; that is, 
the motion of the weight is periodic, with period 2t/\/g/2~ 47r/\/2g 
sec. But the motion of the weight is not simple harmonic. The x 
of equation (6) is a compound of two sine functions of different 
periods and hence is not expressible as a single sine function. 

39. Electric circuits. In Art. 23 electric circuits leading to 
linear differential equations of first order were discussed. Using 
the same notation as in that article, the differential equation 
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for a circuit containing resistance, inductance, and capacitance, 
is * 

(LD2 + RD + £)q = e, i = D q. (1) 

Here D = d/dt, and, as in Art. 23, the capital letters L, R, and 
C represent constants of the circuit whereas the small letters 
are, in general, variables. 

Example 1. An inductance of 1 henry and a capacitance of 10-6 
farad are connected in series with an emf e = 100 sin 500/ volts. If 
the charge and current are both initially zero, find (a) the charge and 
current at time / sec, (b) the value of the current when t — 0.001 sec, 
(c) the maximum magnitude of the current. 

Substituting L — 1, R = 0, C = 10~° and e = 100 sin 500/ in (1) 
we have the differential equation 

(D2 + 10°)j - 100 sin 500/. 

(a) The solution—finding the complementary function and par¬ 
ticular integral, and evaluating the constants of integration—pro¬ 
ceeds as follows: 

qc — C\ sin 1000/ + C2 cos 1000/ 
106) 

qp — A sin 500/ + B cos 500/ 

~D% = — 5002 A sin 500/ - 5002 B cos 500/ 

(106 - 5002)A = 100 (10® - 5002)5 = 0 

A = T5W 5 = 0 

q = qc + qP = Ci sin 1000/ + Ca cos 1000/ + 7 5\,0 sin 500/ 

<? = 0, / = 0; C2 = 0 

i = Dq = 1000Ci cos 1000/ + iV cos 500/ 

1 1 
i = 0, / = 0; 0 = lOOOCx + —, Cx  - 

15 15,000 
1 

q =-(2 sin 500/ — sin 1000/). 
15,000 

i = (cos 500/ — cos 1000/). 

* For references to the derivation of this equation see footnote, Art. 23. 
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(6) When t = 0.001 sec, 

?]*=o.ooi = iV (cos 0.5 — cos 1) = -jfg- (0.8776 — 0.5403\ 

0.3373 
=-= 0.0225 amp. 

15 1 

(c). The maximum (and the minimum) value of the current occurs 
when 

Di = sin 500* + sin 1000* = 0, 

or, if 5001 = Tj when 

2 sin 2T — sin T = 4 sin T cos T — sin T = sin T(4 cos T — 1) = 0. 

For sin T = 0: 

T = 0, i « 0. 

T = 7T, i = (cos 7T — COS 27r) = -3^- 

For cos T = |: 

(*os 2T = 2 cos2 T7 — l=J — 1 = — = -£$• 

Hence the current varies between the extreme values of —2/15 
and 3/40 amp. Its maximum magnitude is 2/15 amp. 

PROBLEMS 

1. In Ex. 1, Art. 38, find the amplitude of the oscillation of the weight. 
2. In Ex. 1, Art. 38, find the smallest value that the tension in the spring 

can reach, and the time when this value first occurs. 
3. Solve Ex. 1, Art. 38, if the upper end of the spring is given the motion 

y = sin V7/2 *• 
4. A weight of w lb hangs on a spring. The upper end of the spring is 

given a simple harmonic motion y = sin wl, where y (ft) is the displacement, 
measured positive upward, of the upper end of the spring from its original 
position, at time t (sec). If the period of the motion impressed on the upper 
end of the spring is 1/n the period of the natural vibration of the weight 
(n 7^ 1), find the displacement of the weight after one period of the impressed 
motion. 

6. A weight of w lb hangs on a spring, stretching it 18 in. The upper 
end of the spring is given simple harmonic motion y = sin y/fy l, where 
y (ft) is the displacement, measured positive upward, of the upper end of the 
spring from its original position, at time t (sec), (a) Find the location of the 
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weight at the end of one period of the impressed motion, {h) Draw a figure 
similar to Fig. 18 representing the motion for the interval 0 ^ \/Jg t ^ 2nr, 
and show that the weight will oscillate a distance of f ft above and below 
its original position of equilibrium with periodic but not simple harmonic 
mption. (c) Show that the maximum velocity is \/2g/S ft/sec, and find 
the time when it is first attained. 

6. An 8-lb weight is hanging at rest on a spring which is stretched 2.25 
ft by the weight. The upper end of the spring is given the motion y = 
sin 2 \/~g t, where y (ft) is the displacement, measured positive upward, of 
the upper end of the spring from its original position, at time t (sec). Find 
(a) the position of the weight ir/4y/g sec after the motion starts; (b) the 
extreme positions attained by the weight. 

7. If the upper end of the spring in Prob. 6 is given the motion y = 
sin i\/g t> find (a) the position of the weight when t = tt/2\/g sec; (b) the 
time when the weight first passes through the equilibrium position. 

8. A 10-lb weight is hanging at rest on a spring which is stretched 4 in. 
by the weight. The upper end of the spring is given the motion y — \ 
sin \/2g t, where y (ft) is the displacement, measured positive upward, of 
the upper end of the spring from its original position, at time t (sec). Find 
the equation of motion of the weight, and the position of the weight when 
t = 7r/\/Sg sec. 

9. Solve Prob. 8 if the upper end of the spring is given the motion y = 
l sin y/ty L 

10. A 10-lb weight is hanging at rest on a spring which is stretched 4 in. 
by the weight. The upper end of the spring is given the motion y = ■§ 
sin \/2gt, where y (ft) is the displacement, measured positive upward, of 
the upper end of the spring from its original position, at time t (sec). If the 
resistance (lb) of the medium in which the weight vibrates is equal to 20/\/g 
times the speed (ft/sec), find the position of the weight when t = ic/y/2g sec. 

11. Draw a graph showing i from t = 0 to t = 7r/250 for Ex. 1, Art. 39. 
12. In the circuit of Ex. 1, Art. 39, if e = 100 sin 1000£ volts, find the cur¬ 

rent when t = 0.01 sec. 
13. An inductance of 1 henry is connected in series with a capacitance of 

10 ~4 farad and an emf e — 100 sin 501 volts. If q = i = 0 for t = 0, find 
(a) the current when t — 0.02 sec; (b) the maximum magnitude of the 
current; (c) the extreme values between which the current varies. 

14. Solve Prob. 13 if e — 100 volts. 
15. A circuit consists of an impedance coil of inductance L and negligible 

resistance connected in series with a condenser of capacitance C and an emf 
e = 120 sin 2501 volts. Assume i = 0, q = 0, when t = 0. If L = 2 henries 
and C = 2 X 10“6 farad, find (a) the current when t — 0.01 sec; (b) the 
values between which the current varies. 

16. A condenser of capacitance 2 X 10 “4 farad, having a charge of 0.05 
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coulomb, is placed in series with a coil of inductance 2 henries and a resistance 

of 28 ohms, and discharges by sending a current through the circuit. The 

current being initially zero, find the current and the charge on the condenser 

when t = 0.1 sec. 

17. An inductance of 1 henry, a resistance of 400 ohms, and a condenser of 

capacitance 1.6 X 10 “5 farad are connected in series with an emf of 40 cos 2501 
volts. If the charge and current are both zero when t = 0, find the current 

when t = 10~3 sec. 

18. An inductance of 1 henry, a resistance of 100 ohms, and a capacitance 

of 10“4 farad are connected in series with an emf of 100 volts. If no charge 

is present and no current is flowing at time t = 0, find the maximum value 

of the current. 

19. An inductance of 2 henries, a resistance of 100 ohms, and a capacitance 

of 2 X 10“4 farad arc connected in series with an emf e = 100 sin 501 volts. 

Initially the current is zero and the charge is 0.05 coulomb. Find the charge 

and current when t — 0.02 sec. 

20. In a circuit containing resistance, inductance, and capacitance, a con¬ 

stant emf E is applied by closing a switch [Eq. (1), Art. 39, with e — E], 
When t = 0 the current i = 0 and the charge on the condenser is q — qQ. 
Find the time after the switch is closed when the current is a maximum (a) 
if 4L > R2C; (b) if 4L = R2C\ (c) if 4L < R~C. The result shows that the 

time of maximum current is independent of the applied voltage and of the 

initial charge on the condenser. 

21. A particle slides freely in a tube which rotates in a vertical plane about 

its midpoint with constant angular velocity o>. If .r is the distance of the 

particle from the midpoint of the tube at time t, and if the tube is horizontal 

when t = 0, show that the motion of the particle along the tube is given by 

cPx 

dt2 
(xrx — —g sin w/. 

Solve this equation if .r = xq} dx/dt = r0, when t = 0. For what values of 

Xq and v0 is the motion simple harmonic? 
22. (a) A cantilever beam of length L in. and weighing w lb/in. is subjected 

to a horizontal compressive force of P lb applied at the free end. Taking the 

origin at the free end and the y-axis positive upward, show that the differential 

equation of the elastic curve of the beam and the maximum deflection are, 

respectively, 

.2 WX‘ 

2E1 

Maximum deflection = ~~~ ^1 
(P 

2 
sec 9 + 6 tan 6 )• L 
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(6) Find the maximum deflection of a wrought-iron cantilever beam 2 in. 

by 4 in. by 12 ft with E = 15 X 106 lb/in.2 and weighing 490 lb/ft8, if the 

2-in. side is horizontal and the compressive force is P = 6000 lb. 

23. (a) A cantilever beam of length L in. and weighing w lb/in. is subjected 

to a horizontal tensile force of P lb applied at the free end. Taking the 

origin at the free end and the y-axis positive upward, show that the differ¬ 

ential equation of the elastic curve of the beam and the maximum deflection 

are, respectively, 

Maximum deflection = 

(b) Find the maximum deflection of a wrought-iron cantilever beam 2 in. 

by 4 in. by 12 ft with E = 15 X 106 lb/in.2 and weighing 490 lb/ft3, if the 

4-in. side is horizontal and the tensile force is P — 6000 lb. 

24. If, in Probs. 22(a) and 23(a), a weight of W lb is added at the free end, 

and the weight of the beam may be neglected, show that the formulas for 

maximum deflection are, respectively, 

Compressive force P: 

Tensile force P: 

Maximum deflection = 

Maximum deflection 

WL / tan 6 \ 

T\T )' 
WL/, tanh d\ 

-TV-—)' 
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SOME SPECIAL HIGHER ORDER EQUATIONS 

40. Equations reducible to linear with constant coefficients. 
In this chapter a few of the common types of differential equa¬ 
tions of order higher than the first will be discussed, beginning 
with a special kind of linear equation of nth order, 

dnv 
O.X"— + 

. dn ly ,n—I  _# I , 

dxn~l ■ + (in¬ 
dy . 

R. (1) 

Here the a’s are constants, R is a function of x (or a constant), 
and n is an integer greater than 1; if n were equal to 1 the 
equation would be a special case of the linear equation of first 
order treated in Art. 21. It will be noticed that this equation 
differs from that studied in Chapter 4 by having variable 
coefficients; the exponent of x, however, in each coefficient 
must be the same as the order of the derivative which it multi¬ 
plies. Such an equation can be solved by reducing it to the 
type treated in Chapter 4, that is, by reducing it to a linear 
equation with constant coefficients. 

First write the equation in operator notation: 

(aoxnDn + axXn_1Dn_1 -|-ha„_2£2D2 + an_i£D + an)y = R. 
(2) 

It will now be shown that a change of independent variable 
from x to 2 by means of the transformation x = e* will reduce 
equation (1) or (2) to a linear differential equation with con¬ 
stant coefficients. Use will be made of two operators—that of 
equation (2) indicating differentiation with respect to x, 
D = d/dx, and a script Q) indicating differentiation with 
respect to z, @ = d/dz. 

183 
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We shall express xD, x2D2, etc., in terms of 9. 

x = ez, or z = In x. 

dy d2 dy 1 _ „ 

dz dx dz x V' 
Hence £

 

II 

9
 (3) 

and 
xD = 9. (4) 

Operating on equation (3) with D, 

xT)2y + Dy = D 9y. 

Transposing the term Dy, multiplying by x, and making use of 
(4), 

x2D 2y = xD(9y — y) = 9(9 — 1 )y. 

x2D2y = 9(9 - 1 )y, (5) 
and 

x2D2 = 9(9 - 1). (6) 

Operating on equation (5) with D, 

x2D3y + 2xD 2y = D9(9 — l)y. 

Transposing the term 2xD2y, multiplying by x, and making use 
of (4) and (6), 

x?D3y = xD9(9 — 1 )y — 2x2D 2y = 

[9\9- 1) - 29(9- 1 )]y = 9(9- 1 )(9 - 2)y. 
Hence 

x?D3y = 9(9 - 1 )(9- 2)y, (7) 
and 

x3D3 = 9(9-1)(9-2). (8) 

Looking at (4), (6), and (8), we have a strong suspicion that 

xnDn = 9(9 — 1)(9 — 2) (9 — n + 1). (9) 

This formula may be established by mathematical induction. 
The solution of equation (1) or (2) now proceeds as follows: 

(o0a:nDn+<iiiCB_1Dn“1 + - • • + a„_2x2D2 + a„_ixD + an)y = R. 
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On the left, substitute On the right, substitute 

xD = 9 x = e* 
x2D2 = 9(9 — 1) In x = * 
a^D3 = 9(9- l)(9-2) 

Solve the resulting equation, by the method of Chapter 4, 
for y in terms of z. Then substitute z = In x, or e* = x, to 
obtain y in terms of x. 

Example 1. Solve 

d3y d2y 
3x2 + In * + 2. 

We write the steps in the solution, following the preceding theory 

without further explanation. 

(x3D3 + x2D2 - 4xD)y = 3x* + In r + 2 

[9(9- l)(9- 2) + 9(9- 1) - 49]y = 3e2‘ + z + 2 

(93 - 292 - 39)y = 9(9 + l)(9- 3)1/ = 3e2* + 2 + 2 

yc — ci + C2e~J + C3e3* 

j/p = +e2‘ + Bz2 + C2 
-3) 

^2/p = 2+e2* +2Bz + C 
-2) 

^2j/p = 4Ae2‘ + 2fi 
1) 
93yP = &4 e2* 

0
0

 

I 0
0

 

1 II G
O

 

-6 B = 1 -4B - 3C = 2 

A--h B=~l O
 

II 1 

Vv = -§e2‘ - |z2 - $2 

y - Ci + C2e_* + C3fi3* — — %z2 — $2 

y = Cl + — + C3X3 — 2Z2 — I In2 x — $ In X 
3C 
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A generalization of equation (1) is obtained by replacing the 
x’s in the coefficients of the derivatives by a + bx. The trans¬ 
formation a -f- bx = e* then reduces the equation to an equa¬ 
tion with constant coefficients. If the preceding theory is 
worked out for this transformation, we have the following 
process for solving the differential equation. 

[ao(o + 6x)BDn -1-f o„_2(a + bx)2D2 

+ a„_i(a + bx) D + a„]y = R. 

On the left, substitute On the bight, substitute 

(a + bx) D = bQ> a + bx = e* 

(a + bx)2D2 = b2Q>{^> - 1) x = 

(a + 6x)3D3 = b3$(® - l)($ - 2) In (a + bx) = z 

Solve the resulting equation for y in terms of z, then substi¬ 
tute z = In (o + bx) to obtain y in terms of x. 

Example 2. Solve 

[(3x + 1)2D2 + (3x + 1)D - 3]y = 9x. 
Solution: 

[9^(^ - 1) + 3^ - 3]y = 3(ez - 1) 

(Z&2 -2&- 1 )y = {$)- 1)(3^+ 1 )y = e* - 1 

yc = Cje* + C2e~*13 

-1) 
yp = Aze* + B 

-2) 
Q>yp = Aze‘ 4- Ae‘ 

3) 
Q)2yP — Aze‘ + 2 Ael 

Vv - i2®* + 1 £ i £ ti >—
* 

-B = -1 

B = 1 

y - Cie* + C2e~*13 + \ze* + 1 

y — Ci(3x + 1) -j- C2(Zx + l)-1^3 -f- ^(3x 4-1) In (3x + 1) 4-1 



Article 40 187 

PROBLEMS 

1. If D = d/dx, 9 — d/'dz. x = e‘, prove by mathematical induction that 

x”Dn = 9(9 ~ \)(9~2) • ■ • (9~n + 1). 

2. If D = d/dx, 9 — d/dz, a + bx — e‘, show that 

(a + bx)D = b9, (a + 6x)2D2 = b *9(9 - 1). 

Solve the following differential equations. 

y3. x3 f- - 2x + 2y = 4x3. S 
dx3 dx 

dy 
5. x 

6. r 

2 fy 

4. x2 ^ 22/ = * * *n x‘^ 

2.c ~ + 2y — 4.r2 + sin In x. 
dx dx2 

r2 - x J - 3// = 8x3 In x + G. 
oar dx 

y1. (x3D3 + 6x2D2 + 8xD + 2)y = x2 + 3x - 4. ■«/ 

^8. (x4D4 — 1 lx2l)•)// = x + In x. 

9. X4 y-| + 2x3 j| + 2xy - 10 = 0. 
dx3 dx- 

10. (x3D4 + 6D)y = 11 — • 

,1. + + + 
dx3 dx x dx1 

13. (4x3D3 - 8x2D2 - xD + \)y = x + In x + In2 x. 

14. (x2D2 + 4xD + 2)y = x + sin x. (Cf. Prob. 11, Art. 37.) 
dhi 

16. (2x - 3)2^ = 2x - y. 

16. (1 + 3x)3 ^ - 18(1 + 3x) ^ - 81(1 + x).^ 

17. [(2x - 1)3D3 + (2x - 1)D - 2]y = 4x. 

18. Find the solution of 

x 2 

dx2 
= 3x — x2 

if y = 3 and dy/dx — 2 when x = 1. 

19. Find the equation of a curve which satisfies the differential equation 

(4x2D2 + 4xD — 1)2/ = 0 

and crosses the x-axis at an angle of 45° at x = 1. 
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20. Solve 

(d’+H'-I 
if y = 2, Dy — D2y — —1, when # = 1. 

21. A steam pipe has inner and outer radii ri and r2 respectively, and the 

temperatures at its inner and outer surfaces are, respectively, U\ and u2. 
Show that the temperature u at radial distance r{r\ < r < r2) is given by the 

differential equation 
du 
dr 

= 0. 

Solve this equation under the conditions u — U\ when r = ri and u = u2 
when r = r2. {Cf. Prob. 27, Art. 17.) 

22. A hollow spherical shell has inner and outer radii n and r2 respectively, 

and the temperatures at its inner and outer surfaces are, respectively, u\ and 

u2. Show that the temperature u at radial distance r(ri < r < r2) is given by 

the differential equation 
d?u , ^ du 

Solve this equation under the conditions u ~ u 1 when r — r\ and u = u2 
when r — r2. {Cf. Prob. 28, Art. 17.) 

41. Dependent variable absent. Consider a differential 
equation involving an independent variable x and a dependent 
variable y, but one in which y is absent except in the derivatives. 
If in such an equation we substitute for dy/dx a single letter 
p* then substitute for the higher derivatives the correspond¬ 
ing expressions in terms of p and x, the result is an equation of 
lower order in p and x. If the latter equation can be solved in 
terms of p and x, we then substitute dy/dx for p and try to solve 
the resulting equation for the relation between y and x. The 
substitutions are 

dy d2y dp d3y d2p 

dx dx2 dx ’ dx3 dx2 ’ 

* If dy/dx also is absent, but two or more higher derivatives are present, we set 
the derivative of lowest order present equal to p and make corresponding sub¬ 
stitutions for the higher derivatives. 
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Example 1. 

Solution: 

Solve 

x  -2 p = x3 + x, 
ax 

The integrating factor of this equation of first order, linear in p and 

dp/dx, is e/{~2,x) dx = e~21,11 = 1/x2. Hence 

4 * V - f4 (j:2 + 1) dx = X - - + Ci, 
X* J X* X 

J- = X3 - X + Cix2, 
dx 

xi x2 -J , _ 
V = J —^ + ^V3 + C^2- 

42. Independent variable absent. If, in a differential 
equation involving the independent variable x and the depend¬ 
ent variable y, x is absent except in the derivatives, we substi¬ 
tute for dy/dx a single letter p* then substitute for the higher 
derivatives the corresponding expressions in terms of p and y. 
The result is an equation of lower order in p and y; if it can be 
solved in terms of p and y, we then substitute dy/dx for p and 
try to solve the resulting equation for the relation between y 
and x. The substitutions are 

d2y _ dp dy _ dp 

dx2 dx ^ ~dy' 

d?y_d_ / dp\ dy _ d?p 

dx3 dy v dy) dx dy2 

etc. 
* See footnote, Art. 41. 
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If the dependent and independent variables are both absent, 
as in Problem 12 of the following group, then either the method 
of Art. 41 or that of Art. 42 may be used, but the former is 
usually simpler. 

Example 1. Solve v' b"' 

d~y dy 9 
J = 2 y-Z, 
dxz dx ' 

and find the value of y when x = —7r/12 under (a) the conditions 

y = 1, dy/dx = 2 when x = 0; (6) the conditions y = 0, dy/dx = — 1 

when x = 0. 

Substituting p for dy/dx and p dp/dy for d2y/dx2 in the differential 

equation 

dy 

dx’ 
(1) 

it becomes 

= 2 yp. 

Dividing by p [p = 0 would give the trivial solution, y = C, of equa¬ 

tion (1) which would not satisfy the given conditions], 

Integrating, 

dp = 2y dy. 

v = y2 + Ci. (2) 
In problems of this kind the constants of integration should be 

evaluated as soon as they appear. 

(a) Under the first set of conditions we have, from equation (2), 

2 = 1 + Ci, Ci = 1, so that 

The next integral is 

dy 

y2 + 1 
= dx. 

tan 1 y = x + C2, 

and, under the given conditions, tan 1 1 = 0 + C2, C2 = ir/4; hence 
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which is the solution of equation (1) satisfying the first set of condi¬ 
tions. For the value of y when x — — x/12, we have 

y\x—jr/12 = tan - = 0.577. 
D 

(6) Under the second set of conditions we have from equation (2), 

— 1 = 0 + Ci, Ci = —1, so that 

dy 
-- = dx. 

r — i 

The next integral is 

—tanh""1 y = x + C2, 

and, under the given conditions, — tanhT1 0 = 0 + C2, C2 = 0; 

hence 

tanh"1 y = —x, 

y = — tanh 

which is the solution of equation (1) satisfying the second set of 

conditions. For the value of y when x = — 7t/12, we have 

2/]x=-r/i2 = tanh = tanh 0.2618 = 0.256. 

PROBLEMS 

Solve the following differential equations. 

Y. 
^ dx2 dx \dx) 

y/L xy” + (x2 - 1 )y' + 1 = x2. 

3. xy" = y' + 2/'3 (c/. Prob. 1, Art. 10). 
4. x2yn + y'2 = 3xy\ 

b d^y , d^y 
6-X^ + d? 6‘ 

6. (y +1) — = 2 f—Y 
dx2 \dxj 

7. 2?/2/" - 2/'2 = 0. 
8. 22/2/" + 2/'4 = 0. 
9. 2j/j/" — yn = 4j/2. 

3 (2) |2 _ 2 — — = 0. 
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11. Show that the differential equation of Prob. 7 can be changed into the 

differential equation of Prob. 8 by changing y to if. 
12. Solve y" + y'2 + 4 = 0 by (a) the method of Art. 41; (6) the method 

of Art. 42. 

13. Solve Prob. 18 of Art. 40 by the method of Art. 41. 
14. Find a curve which satisfies the differential equation 

yy" = 2 if2 + if 

and has slope yf% at the point (0, 1). 
16. Find a curve having slope 1 at the origin and satisfying the differential 

equation 
dry dy _ x 

dx2 dx (1 + x)2 

16. A curve is tangent to the x-axis at the origin and satisfies the differen¬ 
tial equation 

if = sec if. 

Find the area between the curve and the r-axis. 

Find a solution of each of the following differential equations satisfying 

the given conditions. 

.. 3 . „_i\ 17. * 
dx2 2V 

18. (1 - x%" = xy' 

mg- 
20. (1 - x)(y" - y') + y' - 0 

d?y 
21. ■— = sec2 y tan y 

<py 
22. cos® y ~~ = sin y 

23. (1 - e)y" = ey' 

24- 2/" + y'2 = 7~ 

(I->—->)• 
W *= 2, y = 1, x = 0). 

0/ = -1, y = 0, x = 0). 

(*/ = -1, ?/ = 0, x = 0). 

(y' - x = 1, y = 0). 

(y' = 1, Z = i y = 0). 

Find the particular value of the variable specified for each of the following 

differential equations with given conditions. 

Find 

27-g-‘* rind 

a &y = _i_ 
dx2 4yi/ 
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30. y" = yn tanh y (*/' = 1, y « 0, x = 1). Find y]xam0. 

31. Given ?/" + yyf = 0, with ?/ = — 1 and y' = f when a; = 0; find the 

values of ?/ and ?/' when x = — 1. 

32. (a) Find the equation of a curve which is a solution of the differential 
equation 

y" = yf sinh y 

and passes through the origin with slope 1. 

(6) Find the equation of a curve which is a solution of the differential 

equation 

y" — y' tan x 

and passes through the origin with slope 1. 

Show that the curves of (a) and (b) are the same, namely, 

sinh y — tan x. 

33. Show that there are two curves satisfying the differential equation 

ym + yn - 1 

and conditions (a) yr — §,?/= \/3/2, x ~ tt/2, but tliat there is only one 

curve satisfying the differential equation and conditions (b) y' = y — 1, 

x = 7t/2. Find the equations of the curves. 

In the two following problems the differential equation is [c/. Frob. 20, 

Art. 32(6)] 

34. At what angle must a pendulum be started from rest in order to attain 

half its maximum angular velocity when it is in a horizontal position? 

35. If a pendulum is started from rest at an angle of 120° from its lowest 

position, at what angle will it attain its maximum velocity? 

43. The inverse square law. If a particle moves from rest 
under the action of a force varying inversely as the square of 
the distance x from a point 0, the differential equation of 
motion, taking the x-axis as the line of motion, is 

d2x A-2 

df2 “ ~x2 
a) 

the negative or positive sign being used according as the force 
is attractive or repulsive. 
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To solve these equations we use the method of Art. 42, let 
ting dx/dt = v (velocity) and d2x/dt2 = vdv/dx; then equa 
tions (1) become ].2 

vdv = =F —— • 
x2 

(2) 

Assuming that the particle starts from rest at x = a, the initial 
conditions are v — 0, x = a, when t = 0. We continue the 
solution of equations (2) in parallel columns: 

Fob an attractive force For a repulsive force 

Let x — a cos2 0 Let x = a cosh2 6 

“V a — x — Vasin# Vx — a « Va sinh 6 

dx ~ —2a cos 0 sin 0 d& 

-Uu- 

-I'll1™ 

2a cos2 0 dd 

(cos 0 sin $ + 0) + C2 

dx — 2a cosh 0 sinh 0 dO 

-Ulf- 2a cosh2 0 d0 

(cosh 0 sinh 0 + 0) -f C% 

t ■» 0, x » a, 0 = 0; C2 * 0 / = 0, a; - a, 0 « 0; C2 - 0 

'"WilVaV1-^008' 
a a / /x /x 

fc\2V\a\a 
-\j—1 •+* cosh""1- 

1 = (° “ X) +a C0S_1 < - ^(v'x(x-a) +a ^ < 

The v, x and £, a: relations, equations (3) and (5) respectively, 
give the velocity and the time when the particle is at distance 
a: from 0. 
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If the force of attraction is that of the earth’s gravitation, 
then, in equation (1), when x — R (the radius of the earth), 
the acceleration due to gravity at the earth’s surface is d2x/dt2 
= —g = —32.17 ft/sec2, so that —g = —k2/R2 and k = 

RVg. 
44. The suspended cable. We shall now find the equation 

of the curve in which a uniform flexible cable of weight w 
(lb/ft) will hang if suspended from two points (Fig. 19). Let 
A be the lowest point of the cable, and consider a portion AP 
of length s (ft) and weight ws (lb). 
The three forces, measured in pounds, 
under which this portion of the cable 
is in equilibrium are T, the tension 
acting tangentially at P at an angle 
0 with the horizontal; H, the hori¬ 
zontal tension at A; and ws, the 
weight. Then, resolving vertically 
and horizontally, 

T sin 6 - ws, (1) 

T cos 0 = II. (2) Fig. 19 

Take the y-axis vertical through A and the z-axis horizontal 
at a distance a (ft) below A; a value for a will be chosen later 
which will make the equation of the curve come out in simplest 
form. Dividing (1) by (2) and writing dy/dx for tan 0, we have 
the differential equation of the curve, 

dy ws 

Tx^T 

Equation (3) contains three variables x, y, s. The s may be 
eliminated by differentiating with respect to x and replacing 

ds/dx by Vl -f (dy/dx)2: 

d2y w / (dy\2 
(4) 



196 Chapter 5 

Equation (4) can be solved by the method of Art. 41, letting 
dy/dx = p, d2y/dx2 — dp/dx; then 

dp 
= ^zdx. 

Vl+v2 H 

w 
sinh 1 p = — x + Ci. 

H 

Integrating, 

Since p = dy/dx = 0 when x — 0, Cx = 0 and 

Integrating again, 

But y — a when x = 0. In order to make C2 = 0, we choose 
a = H/w, and the equation of the curve is 

dy • i W — sinh — x. 
dx H 

H 
w ^ cosh x 4- C2 

w H 

y — a cosh • (5) 

the standard equation of a catenary; x and y are the coordinates 
of any point P, referred to the origin 0 which is at a distance 
a = H/w ft below A. 

The length of the arc AP is 

= f ^W) dx = f yjl + sinh2 - dx 
Jo , \dx/ Jo y a 

cosh - dx = a sinh -• 
ci a 

(6) 

Suppose (Fig. 20) that a cable of length S ft dips d ft when 
suspended from two points at the same level and L ft apart. 
We shall find relations connecting a with d and L, with S and 
L, and with S and d. 

From equation (5), 

d = y]x - Liz - a = a ^cosh ^ - 1^ , 

a relation connecting a, d, and L. 
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4d2 + 8ad - S2 = 0; 
hence 

_ S*_ _ d 

a ~ 8d~ 2’ 

a relation connecting a, S, and d. 
The tension at P is 

T = H sec 6 = H Jl + (~) = H cosh- = «)?/, 
' \dx) a 

and T0, the tension at a point of support, is 

T0 = w(a + d). 

Collecting the above results, we have the following working 

formulas: 
x H 

(7) y — a cosh -, a = —, 
' a w 

d — a( cosh  -1V 
V 2a )’ 

(8) 

S = 2a sinh — , 
2 a 

(9) 
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_&_d 
“ 8 d 2’ 

(10) 

T = wy, T0 = w(a + d). (11) 

If d and L are given, we can find a from equation (8) by trial 
and error; then S can be found from equation (9). If S and 
L are given, we can find a from equation (9) by trial and error; 
then d can be found from equation (8). If S and d are given, 
equation (10) gives a; then L can be found from equation (9). 

Example 1. A wire, fastened at the same level to two poles 
120 ft apart, dips 30 ft. Find (a) the length of the wire; (b) the tension 
at the lowest point and at a point of support if the weight of the wire 
is 0.10 lb/ft. 

Substituting d = 30, L = 120, in equation (8), 

/ 60 
30 = a I cosh — 

\ a 
f 

from which the value of a is to be found. It is simpler to let 60/a = X, 
then solve for X the equation 

X 
- + 1 = cosh X. 
2 

Using the method of trial and error, we find, from Peirce’s “Tables,” 

X 
X 

2 + 1 
cosh X 

1.0 1.500 1.543 
0.9 1.450 1.433 
0.930 1.465 1.465 

Hence X = 0.930, a = 60/0.930. 
(a) Substituting in equation (9), the length of the wire is 

120 128.4 
S =-sinh 0.930 =-= 138 ft. 

0.930 0.930 
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(6) The tension at the lowest point is, from (7), 

H = aw = 6/0.930 = 6.45 lb. 

The tension at a point of support is, from (11), 

T0 = wa + wd = 6.45 + 3 = 9.45 lb. 

PROBLEMS 

1. Evaluate the integrals in equations (4) of Art. 43 by use of the substi¬ 

tution x = az2 and formulas 150, 151 of Peirce’s “Tables.” 

2. In the motion described in Art. 43, assuming that k is the same for 

both attraction and repulsion, i.e., that the two forces have the same mag¬ 

nitude at a given distance from 0, find the ratio of the times required to 

travel the first a/2 units of distance in the two respective cases. 

3. Work Prob. 2 if the first particle travels from x — a to x — a/2 and 

the second travels from x = a/2 to x = a, each starting from rest. 

4. In the motion discussed in Art. 43, assuming that k ~ 8 ft^/sec and 

a = 8 ft, find the distance traveled during the first second in the two respec¬ 

tive cases. 

6. A particle is repelled from 0 by a force obeying the inverse square law. 

If the particle starts 1 ft from 0 with an acceleration of 2 ft/sec2, find the time 

required to travel 3 ft. 

6. Find the, number of hours required for a particle to fall from the dis¬ 

tance of the moon to the surface of the earth. Assume that the radius of the 

earth is R = 4000 miles and that the distance from the center of the earth to 

the moon is 6022 = 240,000 miles. 

7. Suppose that the earth’s attractive force should suddenly become 

repulsive, remaining numerically the same. How many hours would be 

required for a particle to shoot out from the earth’s surface to the distance 

of the moon? Assume distances as in Prob. 6. 

8. Find the velocity with which a particle would strike the earth’s surface 

if it started from rest at a very great (practically infinite) distance and moved 

subject only to the earth’s attraction. Take R (radius of earth) = 3960 

miles. (This is the “velocity of escape,” i.e., the velocity with which a par¬ 

ticle would have to be shot from the surface of the earth in order not to 

return.) 

9. In Prob. 8 find the time consumed by the particle in traveling the last 

R miles. 

10. Suppose that a particle, starting from rest at a distance R = 3960 miles 

from the surface of the earth, falls into a straight tube bored through the 
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center of the earth. If the only force acting is that of the earth's gravitation, 

find the time required to reach the center. [Cf. Prob. 15, Art. 32(6).] 

11. Solve Probs. 2, 6, 7, and 8 under the assumption that the earth at¬ 

tracts according to the inverse cube law, but that the acceleration due to 

gravity at the surface of the earth remains numerically the same (32.17 ft/ 

sec2). 
12, A particle moves under the action of a force which varies inversely as 

the nth power of the distance from a point 0. If x is the distance from 0 at 

time t, and if the particle starts from rest at x = a, show that the t, x rela¬ 

tions are 

t 

t 

t 

t 

For an attractive force 

i /r^ r dx 
k V 2 Jx Va1-" - Z1-" ” < 
1 r dx 
k\—J9 V,- -a- (W > 1} 

For a repulsive force 

13. Using the formulas of Prob. 12, with equal k’s, find the ratio of the 

times required to travel a units of distance starting from rest at x = a, in the 

two cases of an attractive and of a repulsive force varying inversely as the 

square root of the distance from a point 0. 

14. Subject to an attractive force which varies inversely as the f power of 

the distance from a point 0, a particle starts from rest 16 ft from 0 with an 

acceleration numerically equal to 4 ft/sec. Find the time required for the 

particle to reach 0. 

15. A chain has its ends fastened at the same level to two poles 60 ft apart. 

(a) Find the dip in the chain if it is 70 ft long. (6) How long is the chain if 

the dip is 5 ft? (c) Find the tension at the lowest point and at a point of 

suspension of the chain of part (b) if the weight is 1.5 lb/ft. 

16. A cable 60 ft long hangs from two supports at the same level and dips 

6 ft. Find the distance between supports. 

17. Two poles 80 ft high are 100 ft apart. A wire weighing 0.1 lb/ft is 

fastened to the top of one pole and drawn tight through a pulley at the top 

of the other pole. The wire, assumed flexible, is then let down through the 
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pulley until the tension at the fixed end is 10 lb. Find the dip in the wire 

and its length between the poles. 

18. If the wire in Prob. 17 is let down further, show that the tension at 

the fixed end will decrease to a minimum and then increase. Find (a) the 

minimum value of the tension at the fixed end; (b) the dip in the wire and its 

length between the poles when the tension at the fixed end is again 10 lb. 

19. The ends of a cable 80 ft long are fastened at the same level to two 

poles. If the cable dips 8 ft, show that the slope of the cable at x ~ L/4 

(one-quarter span) is \/6/12. 

20. A flexible cable of length b ft is hung over two smooth pegs at the 

same level L ft apart. Show that there are two, one, or no positions in which 

the cable will hang in equilibrium according as b/L ^ e. 

21. Find the equations of the two curves in which the cable of Prob. 20 

will hang in equilibrium if b = 30 ft and L = 10 ft. 

22. A flexible cable of length b ft hangs in equilibrium over two smooth 

pegs at the same level 100 ft apart. Find b so that the tension in the cable 

at the pegs is a minimum. What is the corresponding dip in the cable? 

23. If the suspended cable (Art. 44) is tightly stretched, a will be large, 

(a) Show that, by replacing a cosh (.x/a) by its series expansion and neglect¬ 

ing terms in 1/a of higher power than the first, the equation of the curve 

becomes 

a parabola which approximates the catenary for large a. 

(6) Using the above approximating parabola obtain the formulas 

d - 
I2 

8a1 
H 

L2w 

~8T 
When the tension is large it varies little along the cable, so that H in the 

above formula can be taken as the tension in the cable. 

(c) A wire weighing 0.1 lb/ft is stretched between two poles 120 ft apart. 

If the tension in the wire is 240 lb, find the dip. 

24. A flexible chain L ft long is hung over the upper end of a smooth in¬ 

clined plane which makes an angle 0 with the horizontal. The end of the 

chain which hangs down is a ft below the end which rests on the plane. 

Show that the time required for the chain to slide off is 

t = \/-Ti r > 'a\ cosh~l ~ (sec)> \flf( l + sm0) a 

where g — 32.17 ft/sec2. Assume a space of at least L ft below the upper 

end of the plane. 
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25. Using 0 = 0° and 90° respectively in the formula of Prob. 24, find the 

time required for a chain 13 ft long, with a — 5 ft, to slide (a) off a smooth 

horizontal table; (b) off a smooth peg. 

26. If “upper” is replaced by “lower” in Prob. 24, obtain a formula for the 

time required for the chain to slide off the plane. 

27. If the lower end of the chain in Prob. 26 is initially at the lower end of 

the plane, show that the time required for the chain to slide off is 

t — * /— —rr COsll”1 CSC 0; 
\g{l — sin0) 

also show that, as 0 approaches tt/2, t approaches the time required for a 

freely falling body to fall L ft. Assume that the plane is at least L ft long. 

28. If the length of the radius of curvature at any point P of a curve is 

proportional to the length of the normal drawn from P to the x-axis, 

dx2 

Find and identify the family of curves possessing this property in the four 

cases: (a) k = 1; (b) k = —1; (c) k = 2; (d) k = —2. Explain the signifi¬ 

cance of positive and negative values for k. 

29. Solve the differential equation formed by setting the expression for 

radius of curvature equal to a constant r, and thus obtain the general equa¬ 

tion of a circle of radius r. 

30. At any point of a curve the product of the lengths of the ordinate and 

radius of curvature is equal to the length of the normal. Find the equation 

of the curve if it passes through the origin with slope 1 and is concave up¬ 

ward. What is the length of the radius of curvature at the points x = 0, 

—7r/4, —7t/2? Sketch the curve for — 37t/4 < x < 7t/4. 
31. Find the curve satisfying the conditions of Prob. 30 except that it is 

concave downward. Show that this curve is symmetrical with respect to the 

origin to the curve in Prob. 30. 

32. Find and identify the family of curves such that the length of an arc of 

any curve of the family is proportional to the difference of the slopes at the 

ends of the arc. 

33. A curve passes through the point P (1, 0) with slope 0 and has the 

property that the slope at any point is twice the length of the arc from P to 

that point. Find the ordinate and the slope of the curve at the point whose 

abscissa is 2. 

34. The length of an arc of a curve is equal to the distance intercepted 

on the y-axis between the tangents at the ends of the arc. Find the equa- 
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tion of the curve having this property and passing through the point (1, 0) 

with slope 0. 

35. The length of an arc of a curve is equal to the distance intercepted on 

the x-axis between the tangents at the end of the arc. Find the equation 

of the curve having this property and passing through the point (0, 1) with 

slope 4/3. 

36. A particle Q starts from the origin and moves uniformly along the 

z-axis. It is pursued by a particle P which starts at the same time from a 

point on the y-axis at a distance a from the origin. The velocity of Q is k 

times that of P. Find the curve of pursuit, i.e., the path of P, (a) if k 9* 1; 

(6) if k = 1. Show that capture will occur if k < 1 after a time ak/( 1 — k2)r 

sec, where a is measured in feet and r (ft/sec) is the rate of Q. If k = 1 

show that the distance between P and Q approaches the limiting value a/2. 

37. A wooden prism 4 ft long, whose cross section is an equilateral tri¬ 

angle, weighs 15 lb and floats in water with the vertex of the triangle down¬ 

ward. (a) If the prism is lifted up until the lower edge just touches the water, 

and is then released, show that it will pass through its equilibrium position 

with a velocity of \/(4/3)ga ft/sec, where a ft is the depth to which it sub¬ 

merges when floating. (6) Compute this velocity using w (density of water) 

= 62.4 lb/ft3 and g = 32.2 ft/sec2. Assume that the top face of the prism 

remains horizontal during the vibration. 
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SIMULTANEOUS EQUATIONS 

46. System of two first order equations. The simplest 
system of simultaneous differential equations contains two 
equations of first order in three variables—one independent 
variable and two dependent variables. Taking x as independ¬ 
ent variable and y and z as dependent variables, we now con¬ 
sider a system of two first order equations which can be written 
in the form 

(1) 

where M and N are functions of x, y, and z, or in the form 

dx _dy _dz 

P Q R’ {) 

where P, Q, and R are functions of x, y, and z. Any or all of the 
functions M, N, P, Q, and R may actually contain less than 
three variables; they may even all be constant. 

Solving such a system as (1) or (2) will be understood to 
mean finding two relations, free of derivatives, which together 
involve the three variables and two arbitrary constants, and 
which satisfy the equations. We take first an example of the 
simplest case where the capital letters are all constants, then 
an example in which M and N are not constant, but one at least 
of equations (1) contains only two variables. 

204 
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Example 1. Solve 

dy _ dz 

dx ’ dx 
(3) 

Here each of the two equations may be integrated immediately, 

giving the solution 

y = x + Ci, 

z — 2x -j- C2. 
(4) 

Example 2. Solve 

dy _ „ dz = y + z_ 

dx ’ dx x 
(5) 

Integration of the first equation gives 

y = *2 + Ci. (6) 

Substituting the value of y from (6) into the second of equations (5) 

and rearranging the terms, we find 

dz z Ci 
- = x H- 
dx x x 

This is a linear equation which may be solved by the method of Art. 

2i. It may be solved also by use of an integrable combination, as 

follows: 

z - X2 + C2x - Cl. (7) 

Equations (6) and (7) constitute the required solution of the sys¬ 

tem (5). 

Geometric interpretation. The term space will be used in this 
chapter to denote three-dimensional space in which a point is 
determined by its three rectangular coordinates, x, y, and z. 
A single equation (not a differential equation) in the three 
variables represents a surface. The surface is a plane if the 
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equation is of first degree. If the equation contains only two 
variables it represents a cylindrical surface with elements 
parallel to the axis denoted by the missing variable; if the 
equation is linear in the two variables the surface is a plane 
parallel to the axis denoted by the missing variable. Two 
simultaneous equations in three variables represent the inter¬ 
section of the two surfaces represented by the single equations, 
i.e., a curve in space; if the two surfaces are planes, the curve 
is a straight line. 

In Example 1, the first of equations (4), for a fixed Ci, repre¬ 
sents a plane parallel to the 2-axis; the second, for a fixed C2, 
represents a plane parallel to the y-axis; hence the two equa¬ 
tions taken simultaneously, for fixed Ci and C2, represent the 
straight fine intersection of the two planes. As Ci and C2 
independently take on an infinity of values we have oo1 par¬ 
allel planes intersecting another oo1 parallel planes in a family 
of oo 2 parallel straight lines, one through each point in space. 
This doubly infinite family of straight fines is the geometric 
picture of the solution of the system of differential equations 

(3). 
In Example 2, for a fixed Cj, the parabolic cylinder (6), with 

elements parallel to the 2-axis, intersects the singly infinite 
family of parabolic cylinders (7), with elements parallel to the 
y-stfis, in a family of oo1 curves. Thus, for each value of Ci 
we have oo1 curves of intersection; for Ci arbitrary, there are 
oo 2 curves of intersection forming the geometric picture of the 
solution of the system of differential equations (5). 

What does the system of differential equations tell us about 
the direction of the curves representing the solution? Let us 
look at the equations of the system written in the form 

dx _dy _dz 

P Q R (Z) 

The functions P (x, y, z),Q ix, y, z), and R (x, y, z) determine 
at any point (x, y, z) of space three numbers, and these three 
numbers, regarded as direction components, fix a direction at 
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that point. Thus if P = x + y, Q — —2y, R = x + y -f z, 
then, at the point A (3, 2,1), P = 5, Q = — 4, R = 6. If from 
A we travel 5 units in the positive direction of the x-axis, then 
4 units in the negative direction of the y-axis, then 6 units in 
the positive direction of the 2-axis, we arrive at a point B, and 
the line joining A to B fixes a direction at the point A; we 
denote this direction by the notation [5, —4, 6]. Furthermore, 
the three differentials dx, dy, and dz are, at the point (x, y, z), 
the direction components of the tangent line to the curve 
through this point and satisfying the differential equations. 
Relations (2) state that dx, dy, and dz are proportional to P, Q, 
and R, and hence that the directions determined by these two 
sets of direction components are the same. Therefore the sys¬ 
tem of simultaneous differential equations (2) defines a family 
of curves, one passing through each point of space in a direc¬ 
tion [P, Q, R], 

In Example 1 the differential equations can be written in the 
form 

dx dy dz 

1 ~ T “ Y 
The solution 

y = x -f Ci, z = 2x + C2, (4) 

represents a family of parallel straight fines in the direction 

[1,1,2]- 
If y = —2 and 2 = 3 when x = 1, then Cx = —3, C2 = 1, 

and the particular solution through the point (1, —2,3) is 

y = x — 3, 2 = 2x + 1. (8) 

This particular solution could be written down directly from 
the differential equations, since the equations of a fine through 
(1, —2, 3) in the direction [1,1, 2] are 

x — 1 y A- 2 _ 2 — 3 

1 ” 1 ” 2 * 

the equivalent of (8). 

(80 
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In Example 2 let us find the particular solution through the 
point (1, 2, 3) and its direction at this point. Substituting 
x = l,y = 2,2 = 3 in equations (6) and (7), 

2 = 1 + Ci, 3 = 1 + C2 - Cu Ci - 1, C2 = 3, 

and the particular solution is 

y = x2 + 1, z = x2 + 3x — 1. (9) 

Writing the differential equations in the form 

dx _ dy _ dz 

x 2x2 y + z’ 

we have for the direction of the curve (9) at the point (1, 2, 3), 

IP, Q, R] = [1, 2, 5]. 

Systems in which both equations (1) contain all three variables. 
Certain systems in which both equations (1) contain all three 
variables may be solved by proceeding as in the following 
example which we shall solve by two different methods. 

Example 3. Solve 

dz dy 
— = x + y, — = X + z. (10) 
dx dx 

First solution. By using a system of multipliers l,m,n, which may 
be either constant or variable, any of the fractions in equations (2) 

l dx + mdy + ndz 
may be set equal to 

form (2), we have 
IP + mQ + nR 

Writing equations (10) in 

dx 

T 

dy dz 

x + z x + y 

dx _ dy — dz _ dy + dz + 2 dx 

1 z - y y + z + 2z + 2 

Then 
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Integrating the first two fractions, then the first and third, we obtain 

In (y — z) = — x + In Cu 

V - z = Cxe~x, (11) 

In (y + z + 2x + 2) = x + In C2, 

y + z + 2x + 2 - C2ex. (12) 

By adding and subtracting (11) and (12), 

y = Ae* + Be~x - x - 1, (13) 

t = Ae? - Be~x - x - 1. (14) 

Equations (11) and (12), or equations (13) and (14), constitute the 
solution of the system (10). 

Second solution. Subtracting the first of equations (10) from the 
second, we have 

j- (y - z) = z - y, 

(D + 1)0/ - 2) = 0, 

y - 2 = Cxe x. (15) 

Substituting the value of z from equation (15) into the second of 
equations (10), we obtain 

dy 

dx 
- y = x - Cxe x, 

a linear equation, whose solution is 

or 

xy - J(xe~x - Cie~2x) dx + C2, 

= e-*(-x-l) +^e~2x + C2, 

y = C2ex + je~x-x-l. (16) 

Equations (15) and (16) constitute the solution of the system (10); 
if the value of y from (16) is substituted in (15), the equivalent solu¬ 
tion consisting of equations (13) and (14) is obtained. 
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PROBLEMS 

1. Find the equation of the cylinder formed by the straight lines which 

satisfy the equations 

dy_1 dz ___ 

dx 9 dx 

and (a) pass through the circle y2 + z2 = 1, x = 0; (b) pass through the parab¬ 

ola 3y2 - x, z ~ 0. 
2. Find the particular solution of 

= V + j dz _ 1 
dx x ’ dx x 

through the point (1, 2,3), and its direction at this point. 

3. Find a curve through the point (1,1,1) satisfying the equations 

dy 

dx 
= -2 xz, 

4. Find the two most general functions of x such that the derivative of 

each one equals the other one. 

Solve the following systems of differential equations. 

5. 

6. 

7, 

dy 

dt 
0, 

dx t 

dt x 

dx _ dy ^ dz 

1 + y 1 + x z 

+ z = smi, 
dx 

dz , 
— + y = cos x. 
dx 

8. In a certain type of chemical reaction, if a substance A forms an inter¬ 

mediate substance B, which in turn changes into a third substance C, the 

respective concentrations, x} y, z, of the three substances obey the relations 

dx dz 
~ + ax = 0, — = by, x + y + e - c, 
dt dt 

where a, b, and c are constants. Solve for x, y, and z, using the conditions 

y = z = 0 when t = 0, (a) if a t* b; (b) if a = b. 
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9, There are two tanks, each of 100 gal capacity, the first being full of 

brine holding 50 lb of salt in solution and the second being full of water. If 

water runs into the first tank at the rate of 3 gal/min and the mixture, kept 

thoroughly stirred, passes out at the same rate through the second tank, 

when will the first tank contain twice as much salt as the second, and how 

much salt will have passed through the second tank at that time? 

10. There are two tanks, each of 100 gal capacity, the first being full of 

brine holding 50 lb of salt in solution and the second being full of water. If 

the brine runs out of the first tank into the second at the rate of 3 gal/min 

and the mixture, kept thoroughly stirred, runs at the same rate out of the 

second tank into the first, when will the first tank contain twice as much salt 

as the second? 

11. Tank A initially contains 100 gal of brine in which 20 lb of salt are dis¬ 

solved. Two gallons of fresh water enter A per minute and the mixture, 

assumed uniform, passes at the same rate from A into a second tank B 
initially containing 50 gal of fresh water. The resulting mixture, also kept 

uniform, leaves B at the rate of 1 gal/min. Find the amount of salt in tank 

B at the end of 1 lir. 

46. Systems of two linear equations. A differential equa¬ 
tion is linear if it is of first degree in the dependent variables 
and their derivatives. All the differential equations encoun¬ 
tered so far in this chapter, except those of Problems 5 and 6, 
are linear but of the simplest type, each being of first order and 
containing only one derivative. We now develop a method for 
solving a system of two linear equations of any order, with con¬ 
stant coefficients, involving one independent and two depend¬ 
ent variables. The method may be used also for systems of 
three or more equations, and for systems of equations with 
variable coefficients, of the type discussed in Art. 40, which 
can be reduced to linear equations with constant coefficients. 
Two examples follow which illustrate the method. 

Example 1. Solve 

dy dz 
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Using operator notation, we place all terms containing the depend¬ 

ent variables y and z on the left, those containing y in the first 
column and those containing z in the second: 

(D - 4)2/ + T>z - 1, (1) 

(D - 3)y + z = x2. (2) 

It can be shown * that for a system of differential equations written 
in this form the number of arbitrary constants appearing in the gen¬ 
eral solution is equal to the exponent of the highest power of D in 
the expansion of the determinant of the (operator) coefficients of the 
dependent variables. The highest power of D in the expansion of 

the determinant 
D — 4 D 

D - 3 1 

is D2; hence two arbitrary constants will appear in the solution of the 
system of equations (1) and (2). If more than two arbitrary con¬ 
stants appear in the process of solution, the extra ones must be 
evaluated, or expressed in terms of only two. 

Three methods of procedure are possible. We may eliminate z 
from equations (1) and (2), solve the resulting equation for y, then 
substitute this value of y in (2) to obtain z. If the value of y, con¬ 
taining two arbitrary constants, were substituted in (1) to obtain zT 
another constant of integration would appear and would have to be 
evaluated by substituting the values of y and z in (2); hence it is 
better to obtain z from equation (2). 

Another method, obviously more complicated in this case, is first 
to eliminate y from equations (1) and (2), solve the resulting equa¬ 
tion for zf then substitute the value found for z in (1) or (2) to obtain 
y; this method introduces a third arbitraiy constant which must be 
evaluated. 

A third method would be to eliminate z from equations (1) and (2), 
then solve the resulting equation, obtaining y in terms of x and two 

arbitrary constants, say C\ and C2. Next eliminate y from equations 
(1) and (2), solve the resulting equation and obtain z in terms of x 
and two arbitrary constants, say C[ and C'2. Finally C\ and C2 would 
be evaluated or expressed in terms of C\ and C2 by substituting the 
values of y and z in (1) or (2), 

* See Forsyth’s A Treatise on Differential Equations, 5th Ed., Art. 171. 
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We proceed to solve Example 1 by each of the three methods. 
First solution. Multiplying equation (2) by D, 

(D2 - 3D)y + Dz = 2x. 

Subtracting (1) from (3), 

(D2 - 4D + 4)y = (D - 2)2 y= 2x - 1. 

Solving (4) by the method of Art. 36, we find 

Vc = (Ci + C2x)e2x. 

4) 
yp — Ax + B 

-4) 
D yp = A 

1) 
D *yp = 0 

4A = 2 45 - 4A = -1 

II II 

03 

V = (Ci + C2x)e2x + + j. (5) 

Differentiating (5), 

D y = (2Cj + C2 + 2 C2x)e2x + \. (6) 

From (5) and (6), 

(D - % = (-Ci + C2 - C2x)e2x - fx - (7) 

Then, from (2), 

z = (Ci — C2 + C2x)e2x + x2 + -fx + (8) 

Equations (5) and (8) comprise the general solution of the system 
of equations (1) and (2). 

Second solution. Multiplying equation (1) by D — 3 and (2) by 

D — 4, we have 

(D - 3)(D - 4)y + (D2 - 3D)z - -3, (9) 

(D - 3)(D - 4)2/ + (D - 4)z = 2x - 4x2. (10) 

Subtracting (10) from (9), 

(D2 - 4D + 4)z = (D - 2)2z = 4x2 - 2x - 3. 

(3) 

(4) 

(ID 
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The solution of (11) proceeds as follows: 

zc = (Ci + C’2x)e2x. 

4) 
zp = Az2 + Bx+ C 

-4) 
Dz„ = 

1) 

2 Ax+ B 

D2zp = 2A 

''f II 

3 4£ - 8A = -2 4C -4B + 2A = -3 

A = 1 0—3 
15 ~ ^ c = i 

^ « (Ci + C'2x)e2x + x2 + f* + l (12) 

Substituting the value of z from (12) into (2), we obtain the linear 

equation 

(D - 3)y = -(C[ + C’2x)e2x - fz - i 

whose solution is found by the method of Art. 21: 

e-3xy _ _ J[(^ + C'2x)e~x + (fz + \)e~’iz] dx + C’z, 

Q p—Sx ~3x 
= C\e~x - C’2e-x(-x - 1) - (-3x - 1) + — + ^ 

y = (Ci +Ci+ Ciz)e2* + + £ + C3e3x. (13) 

To evaluate C3 we multiply (12) by D and (13) by D — 4, giving 

D z = (2Ci + C2 + 2C2x)e2x + 2x + *2, 

(D - 4)2/ = (—2Ci - C2 - 2C2a-)e2x - 2x - \ - C3eSx, 

which, substituted in (1), yield 

1 - C3e3x = 1. 

Hence C3 = 0, and equation (13) becomes 

y = (Ci + Ci + C2x)e2x + \x + \. (14) 

Equations (14) and (12) comprise the general solution of (1) and 

(2). If C2 = C2 and Ci — C\ — C2) equations (14) and (12) reduce 

to (5) and (8). 
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Third solution. First eliminating z and then eliminating y from 

equations (1) and (2), and solving the resulting equations, as above, 

V — (Ci + C2x)elx + \x -f- (5) 

z — (Ci + C2x)e2x + x2 + \x -f- j. (12) 

In order to find the relations connecting the constants C\, C2, 
Ci, C2, substitute (5) and (12) in (2), making use of the value of 

(D - 3)y given by (7): 

(—Ci + C2 — C2x)e2x — — \ + (Ci + C2x)e2z + x2 + -fx + \ — x2, 

(Cl - C2 + C2x)e2x = (Ci + C2x)e2x, 

ci = Cl - C2, C'2 = c2. 

Hence (12) reduces to 

z = (Ci — C2 + C2 x)e2x + x2 + §x + j; (8) 

equations (5) and (8), as before, comprise the general solution of the 

given system of equations. 

Example 2. Solve 

First write the equations in the form 

D2x + 2D y = 2a, (15) 

2Dz - D2y = 2b, (16) 

where D now denotes d/dt. The determinant of the coefficients of 
the dependent variables x and y yields D4 as the highest power of D; 
hence the general solution will contain four arbitrary constants. Add¬ 
ing D X (15) and 2 X (16), we get 

Then 
(D3 + 4D)z = 45. 

xe = Ci -f C2 sin 21 + C3 cos 21, xp = bt, 

x = Ci + C2 sin 2t + C3 cos 2< + bt. (17) 
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Substituting in (15) the value of 

D2x = — 4C2 sin 22 — 4C3 cos 22, 

we find 
T>y = 2C2 sin 22 + 2C3 cos 22 + a. (18) 

Integration of (18) gives 

y = — C2 cos 22 + C3 sin 22 + at + C4. (19) 

Equations (17) and (19) contain the proper number of arbitrary 
constants and constitute the general solution of the given system. 
This solution may also be written in the form 

x = A cos (22 + a) + bt 4“ B, 

y — A sin (22 -f- a) -f- at -f- (7, 

where A, B, Cy and a are arbitrary constants. 

PROBLEMS 

Solve the following systems of differential equations. 

„ dy _ _ dz 
1. -y — z = 2 cos 2x, — 

dx dx 

~ dy dz 0 d?/ 
2. -- + — = cos x - 3 y, — * 

dx dx dx 

- 3y + z = 0. 

= 11 sin x + y — 2. 

^ dx dx dv 

_ dx dx dv . , 
4.  -y as cos 22, ----x — y = sin 22 + cos 22. 

di d& dt 

* dy ndy . dz 
5. -z - ex — y — z} 2-1-- cos x — 2. 

dx dx dx 

6. ^ ^ y + 2 = 4 sin x, 2 — — y + 32 = 2 cos x. 
dx dx dx 

?• ~T + “T + V ” 2 sin 2x, ~ + ~~ + 2y + 2z = cos 2x. 
dx dx dx dx 

dx dx dn 
8* T - V * + 3 sin 2, —• + = 2^/ — 3x + 2ef + 6 sin 2 — 2 cos 2 

dt dt dt 
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dx dv 
11. t-jt + y = t + x, t-^ + x = t + y. 

13. Show that the system of differential equations 

Dy + (D + 1 )z = x, 

(D — 1 )y + [(w2 — ft + 1)D + ft] 2 = ex, 

where D = d/dx, has none, one, or two arbitrary constants in its general 

solution when n — 0,1, and -5 respectively. Find the general solution in each 

of these cases. 

14. Find a solution of the system 

(7D2 + 23)x - % = 0, (3D2 - 13)x + 2(D2 + 5)y = 0, 

where D = d/d/, subject to the conditions: x = 0, y = 0, Dx = 1, and Dz/ = 

3, when / = 0. Find the values of x and y when / = 1. 

16. Solve the system 

^.8f+9I.a+J, 
dr at 

-^ + 8~ + 9y = bt + k. 
at2, at 

16. Solve the three simultaneous equations 

dx 

dt 
= ^ + 2/, 

dj/ 

dt 
— z — x, 

dz 

7ry+‘- 
47. Motion of a projectile. The theory of the motion of a 

projectile in the atmosphere is quite difficult, owing partly to 
complications connected with the law for variation of resist¬ 
ance with velocity. We shall treat here only the case in which 
resistance is assumed to be proportional to velocity, and the 
path is considered to be a plane curve traced out by the 
center of gravity P (x, y) of the projectile. 

If t is the time, dx/dt and dy/dt are the components of 
velocity in the x- and ^/-directions, and d2x/dt2 and d2y/di2 
represent the corresponding components of acceleration. Let 
x and y be measured in feet and t in seconds; also let w (lb) be 
the weight of the projectile and g (ft/sec2), as usual, the gravity 
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constant. We form a system of two simultaneous differential 
equations by equating (w/g) (drx/dt2) and (w/g) (d2y/dt2) respec¬ 
tively to the components of force in the x- and y-directions: 

w (Px _ _ dx w <Py _ _ _, dy 

g dt2 dt ’ g dt2 W dt (1) 

Here each of the equations contains only two variables and 
hence can be solved separately. The solution will consist of 
two equations giving the parametric equations of the path, x 
and y in terms of t. Four arbitrary constants will appear in 
the course of solution, for whose determination four conditions 
are necessary. We shall solve equations (1) under the assump¬ 
tion that the projectile starts at the origin with an initial 
velocity v0 (ft/sec) in a direction making an angle a with the 
horizontal; that is, the four conditions are x = 0, y = 0, 
dx/dt = v0 cos a, dy/dt = v0 sin a, when t = 0. 

After writing equations (1) in operator notation, with 
D = d/dt, the solution proceeds as follows: 

^p2 , k9 D2 + '^D)x = 0 
w / 

z = Ci + C2e-(k«Mt 

Dx = - — C2e~(ksiw)t 
w 

0 = Cx + C2 

kg n 
v0 cos a --- C2 

w 

y = C-i + C4e~{kelw)t - ^ t 
K> 

By = - ^ C4e-^/u))< - y 
w k 

0 = C3 + C4 

kg n w 
v0 sm a —-C4 —r 

w k 

Cx = 
w 

— C2 = T- Vo COS a 
leg Cs=_c4“i("“siii“+i) 

x = — Vo cos a (1 — e~(ksMt) 

*« +1) a1*. 
(2) 
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Equations (2) are the parametric equations of the path and 
locate the position of the projectile at any time t. The x) y 
equation of the path could be obtained by eliminating t be¬ 
tween the two equations. 

PROBLEMS 

1. Assuming that there is no resistance to the motion discussed in Art. 47, 

find (a) the x, y equation of the path; (6) the maximum height of the pro¬ 

jectile and the maximum range. 

2. (a) Find the maximum height of the projectile in Art. 47. (b) Show 

that this result approaches the value found for the maximum height of the 

projectile in Prob. 1(b) as k —> 0. 

3. The small oscillations of a certain system with two degrees of freedom 

are given by the equations 

If x * 0, y = 0, dx/dt — 1, dy/dt = 3, when t = 0, find (a) the values of x 

and y when t = 1; (b) the maximum and minimum values of x and y. 

4. A particle of unit mass moves in accordance with the law 

d2x d2y 

» = 2/1 i? = ~x- 

If it starts from rest at the point ( — 1,0), find the parametric equations of its 

path. Plot the path up to the point where it crosses the x-axis, and find the 

coordinates of the maximum point on this portion of the path curve. 

5. The primary of a transformer has inductance L\ henries and resistance 

Ri ohms, the secondary has inductance Li henries and resistance R2 ohms, 

and the mutual inductance is M henries, where L\Li > M2. The free oscilla¬ 

tions in the two circuits are given by 

where i\ and i2 (amp) are the respective currents in the primary and second¬ 

ary at time t (sec); show that i\ and i2 approach zero as t becomes infinite. 

Suppose that the values of the circuit constants are L\ = 3, Li — 6, 

Ri = 7, Ri = 10, M = 4; also that i\ = 2, i2 = 3, when t = 0. (a) Show 

that i*2 continually decreases but that i’i increases to a maximum and then 

decreases indefinitely as t becomes infinite, (b) Find the maximum value of 

ii and the time required for it to reach the maximum, (c) Find the values 

of ii and i2 when t — 0.01 sec. 

6. If a particle of unit mass at P(x, y) is attracted toward the origin 0 by 

a force F, the x- and ^-components of the force are — F cos 6 and — F sin 6, 
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where 6 is the vectorial angle of 1P. 

then 
d2x_Fx 

dt 2 r 

The differential equations of motion are 

d2y _ Fy 

dt2 r 9 

where r is the radius vector of P. 

(a) Multiply the second equation by x, the first by y} and subtract; then, 
making use of the formula for differential sector area, Art. 3, show that the 

areal velocity (time derivative of sector area) is constant. 

(b) Multiply the first equation by 2 dx, the second by 2 dy) and add, then, 

letting r = l/R, show that 

d2R 

dd2 
+ R 

F 

mt2 ’ 

where h is twice the areal velocity. 

(c) Solve the differential equation in (b) if F = kR2 (inverse square law), 

subject to the conditions R — 1/ro, dR/dB — 0, when 0 = 0, and show that 

the path is a conic. 
7. In Thomson’s experimental determination of the ratio m/e of the mass 

to the charge of an electron, in which the electrons were subjected to an elec¬ 
tric field of intensity E and a magnetic field of intensity H, the equations 

d?x . rr dy _ d2y Tr dx 

mle + B’li-Ee’ 

were employed.* If x = y = dx/dt = dy/dt — 0 for t = 0, show that the 

path is a cycloid whose parametric equations are 

Em/. He \ Em /He . He \ 
x = ttt ( 1 ~ cos — t) , y = --- ( — t — sm — t) • 

H2e \ m / H2e \m m / 

8. In the network of Fig. 21, when the switches Si and $2 are closed, the 

following differential equations (using the notation of Art. 23 with D = d/dt) 
hold: 

* See Phil. Mag., Vol. 48 (1899), p. 547. 
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LD(z*i + i2) + Rill = 2£, 

LD(ii + 1*2) + i?2^2 — R* 

(а) Find the currents %i and i2 at time T sec after Si and S2 are closed si¬ 

multaneously. Given the circuit constants Ri = 10 ohms, R2 = 20 ohms, 

L = 2 henries, 2£ = 32 volts, find the currents when IT = 0.03 sec. 

(б) If S\ is closed and i\ reaches a steady state while S2 is open, find i\ 

and i2 at time T sec after S2 is closed. Using the same circuit constants as 

in part (a), find the currents when T — 0.06 sec. 

(c) If S2 is closed T sec after Si is closed, find t'i and i2 at time T sec after 

S2 is closed. Using the same circuit constants as in part (a), find the cur¬ 

rents when T = 0.06 sec. 

(d) Suppose that S2 is closed T sec after Si is closed, and that T sec after 

S2 is closed the transient currents in the two circuits are identical. Find T. 

R R 

9. In the network of Fig. 22 suppose that each R is equal to 10 ohms and 

that each L is equal to 10 henries; then the following differential equations 

hold: (10D + 20)t’i - 10i2 = e, 

(10D + 20) i2 — 10ii = 0, 

where D = dfdU Assuming that ii = i2 = 0 when t — 0, find ii and i2 at 

time t if e = 100 volts. 

10. Solve Prob. 9 if e = 10 sin t volts. 

48. The roots of unity. The n roots of the equation 

X" = 1, (1) 

where n is a positive integer, are called the nth roots of unity. 
De Moivre’s theorem gives the n values of x which satisfy 
equation (1) in the form 

■ 2 irk . 2 irk 
x = cos-b i sin 

n n 
(A; = 0, 1, 2, ••*,» — 1), (2) 
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where i = y/— 1. These values of x are the nth roots of unity. 
They may be represented graphically by n points equally 
spaced around a unit circle centered at the origin, the first 
point being at x = 1, corresponding to k = 0. If r denotes the 
next of these points in the counterclockwise direction, corre¬ 
sponding to k — 1, 

2 T . . 2 TV 
r = cos-(- % sin — , (3) 

n n 

and we may call r the basic nth root of unity; all the nth roots 
of unity are obtained by raising r to the powers 0, 1, 2, • • •, 
n — 1. Thus instead of (2) we may write 

x = 1, r, r2, r\ (rn = 1). (4) 

The relation 

1 + r + r2 + • • • + r"-1 = 0, (n > 1), (5) 

follows from the symmetrical arrangement of the points. Fur¬ 
thermore 

1 + r* + r2k + • • • +r(”-1)fc = 0, (k = 1,2,3,-• •,n - 1), (6) 

and 
rnk = 1. (7) 

When n — 2, r = —1; the square roots of unity, 1, r, are 

!, "I- 
When n = 3, r = — J + iy/3/2 and r2 = —| — iy/3/2. 

It is customary to denote r by the Greek letter « when n = 3. 
Thus to = + iy/3/2, w2 = — | — iyfi3/2, and the cube 
roots of unity are 1, «, «2. 

When n = 4, r = t; the fourth roots of unity, 1, r, r2, r3, are 
1, z, 1, — f. 

49. Cyclic systems of differential equations. By a cyclic 
interchange of the letters xlr x2, x3, • • •, xn~u xn, we mean a 
change of Xi to x2, x2 tox3, • • •, x„_i to xn, xn to X\. We call a 
system of differential equations cyclic if it is unchanged by a 
cyclic interchange of the dependent variables; for example, the 
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following system in which the x’s are the dependent variables 
and D = d/dt: 

Dxi = x2, 

Dx2 = x3, 

Dx„_x = xn, 

Dx„ = xi. 

(1) 

Certain cyclic systems of n equations in the dependent vari¬ 
ables Xj, x2, • • •, xn, may be solved by changing to a new set of 
dependent variables, U\, u2, ■ • ■, u„, connected with the old set 
by means of the substitutions 

uk- xi + r*-1x2 + (r*_1)2x3 -4-(- (2) 

where k = 1, 2, 3, • • •, n, and r is the basic nth root of unity. 
The original dependent variables Xj, x2, • • •, x„ and the inde¬ 

pendent variable t are assumed to be real. Usually we wish to 
express the x’s in a form involving t and n arbitrary constants 
but involving no fixed imaginary constants, that is, to obtain 
a solution in real form, although imaginary quantities are used 
to effect the solution. 

Example 1. Solve the system 

1 h: = ax + by + cz, 

Dy = ay + bz + cx, (3) 

D z — az + bx + cy, 

where D = d/dt, and a, b, c are real constants. 
In the substitutions (2) let n = 3, r = w, and replace x\, x2, x3 by 

x, y, z, and uu m2, w3 by u, v, w. Then 

u = x + y + z, 

v = x + oiy + u2z, (4) 

w = x + a?y + uz. 

The .last term of the third equation is u4z, but it is written uz since 
«3 - 1. 
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Adding equations (4), we find 

u + v + w = 3x, 

since 1 + w + w2 = 0 [equation (5), Art. 48]. Multiplying equa¬ 
tions (4) by 1, a)2, o) respectively and adding, then by 1, a), 032 and 
adding, we find similarly 

u + co2v + uw = 3 y, 

U + 03V + 032W = 3 Zy 

so that the solution of equations (4) for x, y, z gives 

X = \{u + V + w), 

y = + 032V + 03W)f (5) 

z = + wv + co2w). 

Now, adding equations (3), we obtain 

Du = (a + 6 -f c)w, 
whose solution is 

u = 3Cie(o+6+c)i. (6) 

Multiplying equations (3) by 1, a>, w2 respectively and adding, we 
find 

whose solution is 
Dt; = {a + boj2 + co3)v, 

v = 3 C2eia+b0)2+c03)t. (7) 

Finally, multiplying equations (3) by 1, co2, a> respectively and add¬ 
ing, we have 

D w = (a + bo3 + co32)w, 

w = 3C3e(o+^+cw2)*. (8) 

Substituting (6), (7), and (8) in (5) gives 

y = Cie(o+ft+c)f + «2C2e(o+i,"J+c")< + wC3e(a+f’“+c“J)‘, (9) 

z = C1e(o+ft+c)< + a)C2e(o+i",+c")‘ + o)2C'3e(a+ia,+<:",)<. 

Equations (9), where the C’s are arbitrary constants, represent the 
general solution of the system (3), but the solution is not in real form 
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since it involves the fixed imaginary constant u. This solution, how¬ 
ever, may be transformed into the following form (see Problem 1 at 
the end of this chapter): 

x - Ce(a+b+c)t + K^1 sin (jit + a), 

where 

y = Ce(a+b+c)l + Keu sin ^ ~ y) , 

2 _ Ce(a+b+c)t + Keu sin - y), 

V3. 
M = ~2~ (c ~ b)> 

(10) 

and C, K, and a are arbitrary constants. Equations (10) represent 

the general solution of the system (3) in real form; for any real values 

of the arbitrary constants C, K, and a, the values of x, y, and z are 

real. 

Example 2. Solve the system (1). 

This system may be solved by use of the substitutions (2), but 

here it is e&^y to eliminate all but one of the dependent variables, 

say xi, then solve the resulting equation for x\ and find the other 

x’s by successive differentiation. Substituting the value of x2 from 

the first equation into the second, then the value of x3 from the 

second equation into the third, • • •, then the value of xn from the 

(n — l)th equation into the nth, we have 

Dnxi = Xi, 

or 
(Dn - l)Xl - 0, 

from which we write down the value of xi, then obtain x2 from 

Dxi = x2, • • *, xn from Dxn-i = xn. 
The general solution of system (1) is therefore 

X\ = C\el + C2ert + C^er *+••• + Cner 

x2 = C\el + rC2ert + r2C^H + • • • + (11) 

Xn = CV + rn~lC2eTt + (r2)"-1^4 +• • •+ (rB-1)"-1C'ner“‘\ 
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in which the derivative of each equation gives the following one and 
the derivative of the last gives the first. 

As in the case of equations (9), the equations (11) represent a 
solution in imaginary form for n > 2, but in any particular case the 
solution can be exhibited in real form, for example in the following 
special case of (1). 

Example 3. Write in real form the solution of the system 

Dzi = x2, 

Dx2 = *3, 

Dx3 = xA, 
(12) 

T>xa = x\. 

The first of equations (11) for n = 4, r = i, is 

= <V + C2eil + C3e~l + CAe-u. 

By means of Euler’s relation we may replace C2elt + C4e~lt by 
K sin (t + a) as in Art. 31(c). Also let Ci — A, C3 — B. We thus 
write T\ in real form and obtain the other x’s by successive differen¬ 
tiation: 

xi = Ael + Be~l + K sin (t + a), 

x2 = Ael — Be~l + K cos (t + a), 
(13) 

x3 = Ael + Be 1 — K sin (t -(- a), 

xA = Ael — Be~l — K cos (t + a). 

Equations (13), in which A, B, K, and a are arbitraiy constants, 
form the required solution of the system (12). 

50. A special case of Einstein’s equations. Einstein’s law 
of gravitation is expressed by a system of ten partial differential 
equations of second order. It has been shown by Kasner * 

* “Solutions of the Einstein equations involving functions of only one variable,” 
by Edward Kasner, Transactions of the American Mathematical Society, Vol. 27 
(1925). 
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that in a special case these equations reduce to the following 
system of three ordinary differential equations of first order: 

Dx = yz — x2, 

Dy = zx - y2, (1) 

D z = xy — z2, 
where D = d/dt. 

We notice that this system of equations is cyclic in x, y, z, 
but not linear as in the case of the system in Example 1, Art. 49; 
however, the method used in that example will be followed in 
solving system (1). Letting 

u = x + y + z, 

v = x + a>y + w2z, (2) 

w = x + «2y + wz, 
we find 

uv = x2 + uy2 + w2z2 — u2xy — yz — uzx, 

vw = x2 + y2 + z2 — xy — yz — zx, (3) 

wu = x2 + u2y2 + a)Z2 — uxy — yz — w2zx. 

Now, adding equations (1), multiplying them by 1, a>, w2 re¬ 
spectively and adding, then multiplying by 1, w2, u respectively 
and adding, we reduce system (1) to the system 

Du = — vw, 

Dt> = —uv, (4) 

Dw — —wu. 

From the last two of these equations dv/v = dw/w, hence 
v = k2w, where k2 is an arbitrary constant written in this form 
for convenience, and the system (4) is equivalent to 

Dm = —k2w2, 

, Dm> = — wu, 

v = k2w. 

(5) 
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Eliminating u from the first two of equations (5), we get 

or 

—k2w2 = 
—u?D2w + (Dip)2 

w2 

wT>2w — (Dtp)2 = k2 w4. 

Solving this equation by the method of Art. 42, letting 
Dip = p, D2w = p dp/dw, we have 

wp~ — p2 = k2w4, 
dw 

then, as in Art. 25(a), 

2p~ — —p2 = 2k2uj3, 
dw w 

~ - k2w2 — c2, 

where the constant of integration is taken as — c2; if the + 
sign is used the resulting solution will involve hyperbolic 
instead of circular functions. Solving for p(= dw/dt), separat¬ 
ing the variables, and integrating again, we find 

tp V k2w2 — c2 ’ 

- sec-1 — = ±(t + b), 
c c 

£ 
w = £ sec c(t + b). 

The last two of equations (5) then give v and u: 

v — ck sec c(t + b), 

u — —c tan c(t + b). 
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The relations (5) of Art. 49 yield the values of x,y,z: 

x ~ ~~ot"1 c sec c(£ + b) — 5 tan c(t + b), 
o/e 3 

2/ = — c sec c(i + b) - | tan c(£ + 6), 

1 qj2 /i 

2 =-57— c sec c(t + b) — - tan c(t + b). 
oK o 

(6) 

Equations (6), in which k, b, and c are arbitrary constants, rep¬ 
resent the general solution of the system (1). 

It may be noticed that if we write 

_A;2 —1 u2k2 -f- a) uk2 -(- u>2 

01 = 3 k ’ °2 = 3 k ’ 03 = 3k ’ 

then a1,a2, and a3 satisfy the relations 

d\ 4" d2 4- 03 = 0, 

d\d2 4” d2<h 4" d^d\ = — 

d\d2d3 
k* + 1 . 

27k? ’ 

hence alf o2,03 are the roots of the cubic 

k6 + 1 

<r |a - 
27k? 

= 0. (7) 

The solution (6) of the system (1) may therefore be written in 
the form 

c 
x,y,z = o,-c sec c(t + b) — - tan c(t + b), (i = 1,2,3), (8) 

o 

where the a’s are the roots of the cubic (7). This is the solution 
obtained by another method in the paper by Kasner previously 

cited. 
An integral of a system of differential equations expressed as 

a relation free of derivatives, involving some or all of the de¬ 
pendent variables and an arbitrary constant, is of importance 
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in the discussion of certain physical problems, 
of equations (5) we see that 

x + uy + co2z _ ^ 

x + <*>2y + uz 

is an integral of the system (1). 

PROBLEMS 

1. Transform equations (9), Art. 49, into equations (10), making use of 

Euler’s relation, ete — cos 0 + i sin 6. 

2. Obtain the solution of the system 

dx 
— = y + z — x, 
dt J 

dy , 

j = x + y - z, 
at 

in the real form 
x = Ael + Be~2t, 

y = Ael + Ce~2\ 

z =Ae‘- (B + C)e~2\ 

(a) by putting a = — 1, b = c = lin equations (9), Art. 49; (b) by putting 

a = —1^ 6 = c = 1, hence X = —2, m = 0 in equations (10), Art. 49. 

Solve in real form the following systems, where D = d/di: 

3* Dx = ayy 

D y = 02, 
D« = or. 

4* Dx — Dy = Dz = x + y + z. 

5. Dx + Dy = 2, 

Dg/ + Dz — x, 

Dz + Dx = y. 

6. Dx = \ (y + z + t)f 

Dy * \ (z + x + t)y 

Ds * | (x + y + t). 

7. < Dx - y + 2, 
t Dy = 2 + xy 

t Dz = x + y. 

From the third 

(9) 
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8. t Dxi = ax2, 

t Dx$ = axz, 
t D#3 = ax4, 

J D#4 = CKCi. 

9. Show that the substitutions 

w = a; + y + 2, 

v = xy + yz + zx, 

w = xyz, 

reduce system (1) of Art. 50 to the system 

Du + w2 = 3v, 

Dv = 0, 

D w + 3 uw = v2. 

10. Obtain the integrals 

z — y 
= C and xy + yz + zx = C 

z — x 

of system (1), Art. 50. 

11. Prove that the three integrals of system (1), Art. 50, given in equation 

(9) and in Prob. 10, namely, 

f(z, Vi *) 
x + my + uPz 

x + aPy + ojz 

g(x, y, z) = -—- = C2, 
z — X 

h(xy y, z) = xy + yz + zx = C3, 

are not independent by showing that the Jacobian of /, g, h with respect to 

xy yf z vanishes. (Of. Art. 20.) 

12. Letting xjz = a, y/z ~ P, the first two integrals in Prob. 11 may be 

written 

F(a, p) = 
a + up + co2 

a + oPp + u> 

G(«, /3) = J-J- = C2. 
1 — a 

Show that F and G are not independent and find the relation connecting them. 
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THE LINEAR EQUATION OF SECOND ORDER 

51. Introduction. In Chapter 4 we examined the linear equa¬ 
tion of second order, but with constant coefficients. Some 
special cases of linear equations with variable coefficients were 
considered in Chapter 5. We now turn our attention to the 
general linear equation of second order, 

SiV” + hy' + fiV = Si, (1) 
where primes denote differentiation with respect to x, and the 
fs are functions of x (or constants), /i ^ 0. But we exclude 
the cases previously treated, namely, 

Si,Si,Sz constant: linear equation with constant coefficients, 
Chapter 4; 

Ji = aox2, /2 = dix, /3 = a2: reducible to preceding case, 
Art. 40; 

/3 = 0: dependent variable absent, Art. 41. 

When Si — 0 we have 

Siy" + Szy' + Ssy = o. (2) 

Using the notation of Art. 35, we may call yc the comple¬ 
mentary function of equation (1). It is the most general 
value of y satisfying equation (2) and contains two arbitrary 
constants. Also we call yP a particular integral of equation 
(1). It is a particular value of y satisfying equation (1) and 
containing no arbitrary constants. Then 

y = Vc + yP 
232 

(3) 
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is the general solution of equation (1). This is a property of 
linear equations; the verification (Art. 35) holds whether the 
differential equation has constant or variable coefficients. 

We shall consider in this chapter some cases where equation 
(2) can be solved without the use of infinite series. Methods 
involving the use of series will be taken up in the next chapter. 
With yc known, a method is given for finding yp and hence the 
general solution of equation (1). We shall see also that some¬ 
times the general solution of equation (1) may be obtained 
without first finding yc. 

52. Exact equations. An equation of the form 

fiv"+f*y'+f*y=U (l) 

is exact if the expression forming the left member of the equa¬ 
tion is the exact derivative of some function of x and y. This 
function will then be the integral of the given expression. We 
now illustrate a process that will not only tell when an expres¬ 
sion is exact but will also, if the expression is exact, produce 
its integral. We carry out the process for the expression 
x2y" + (x -f 1 )y' — y, and follow up with an explanation of 
the steps. 

x2y" + (x + 1 )y' - y \ x2y' - (x - 1 }y 

x2y” + 2xy' 

- (x - l)?/' - y 
- (x - l)j/' - y 

The first term x2y" would come from differentiating x2y', 
and so we write this as the first term of the integral. Now dif¬ 
ferentiate x2y', obtaining x2y" + 2xy'. Subtracting this from 
the given expression, we obtain — (x — 1 )y' — y, whose first 
term comes from differentiating — (x — 1 )y. Writing this as 
the second term of the integral and differentiating it, we get 
— (x — 1 )y' — y. The process yields no remainder, hence the 
given expression is exact and its integral is x2y' — (x — 1 )y. 
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If we apply this process to the left member of equation (1), 
we have 

hy" + hv' + hv \M_ ± 0i z£)l 
W ±fW 

if2 - fi)y' +fay 
(f2 - /iV + (fa - A)y 

(/3-/2+/1V 

The given expression will be exact if the remainder is 0. The 
test for exactness is therefore 

fa -fi + /i = 0; 
when this identity holds, the given expression is exact, and its 
integral is 

fiV' + if2 - fi)y. 
Hence equation (1), if it is exact, can be reduced at once by 
integration to a linear equation of first order whose solution 
will yield the general solution of equation (1). We have the 
result: 

The differential equation 

fiy” + f2y' + fay = ft (i) 
is exact if 

/s -/g +/i = 0, (2) 

in which case it integrates into 

fxy' + if2 - fi)y =ff*dx + Cl (3) 

Example 1. Solve 

(x2 + x)y" + (x — 1 )y' — y - 2x. (4) 
Here 

fi = x2 + x, f[ = 2x + 1, fx =2, /2 = x - 1, 

= 1, /3= -1, 

and the test for exactness, equation (2), gives 

/3-/2+/i'= -1- 1 + 2 = 0; 
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hence the equation is exact, and the first integral, by equation (3), is 

(x2 + x)y' + [x - 1 - (2x + 1 )]y = J2xdx + Cu 

or 

x(x + 1 )y' - (x + 2)y = x2 + Ct. (5) 

Dividing through by x(x + 1), we get 

, _ x+ 2 _ _ x C, 

J x(x + 1) J X + 1 x(x + 1) ’ 

a linear equation of first order which we solve by the method of 

Art. 21. 

ih = ef(jh-l)dx _ eto<*+i)-2in* = x +1 

x2 

Hence 

T + i r (i ca Ci T-J + 
Multiplying by x2, and replacing —C\/2 by A and C2 by B, we have 
the general solution in the form 

(x + 1 )y — x2 In x + A + Bx2, (6) 

where A and B are arbitrary constants. 

The above procedure produced the two parts of the general 
solution, yc and yv, simultaneously: yc = (A + Bx2)/(x + 1) 
and yp = (x2 In x)/(x + 1). If in any problem yp were ob¬ 
tainable by inspection, the above procedure could be used 
merely to obtain yc, then the addition of yv would give the 
general solution. Such a case occurs when /3 and /4 are con¬ 
stant since then equation (1) is satisfied by y = fjfs, y' = 0, 
y" = 0, and we have yp = /4//3. Consider, for example, the 
equation obtained by changing the right member of equation 
(4) in the preceding example from 2x to 2: 

Example 2. Solve 

(x2 + x)y" + (x - 1)/ - y = 2. (7) 
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Equation (7) is satisfied if y — —2, so that we have, by inspection, 
yp = — 2 and we solve for yc the equation 

(z2 + *)y" + (z - 1)2/' — 2/ = 0. (8) 

The solution proceeds as in the previous example except that we 
omit the first term on the right; equation (5) becomes 

x(x + 1 )y' - (x + 2)y = Cu 

and finally, instead of equation (6), we have 

(x + 1 )y = A + Bx2. 
Hence 

and 

Vc = 

A+Bx2 

x + 1 ’ 

A+Bx2 
y - yc + yP =-—-2, 

x + 1 

or, multiplying by x + 1 and replacing A — 2 by cj and 5 by c2, 
we obtain 

(x + l)y = Ci + c2x2 — 2x, (9) 

the general solution of equation (7). 
If we put ci = c2 = 0 in equation (9), we see that yP = —2x/(.r -f- 1) 

is a particular integral of equation (7), but not as simple as the one 
we used, yp = —2. 

Example 3. Solve 

xy" + (1 + x - 2x2)y' + (1 - 4x)y = 0. 

Applying the test for exactness, we get 

1 — 4x — (1 — 4x) + 0 = 0; 

hence the equation is exact. The first integral is 

xy' + (1 + x — 2x2 - 1 )y = Cu 
or 

Ci 
2/ + (1 - 2x)y = — 

x 
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Then 

</(1~2*) toy = ex-*\ = /* — e*"*2 dx + C2, 
J X 

or 

y - e*2-* [Ci/ dx + C2 j • 

Here we leave the solution in a form involving an integral which is 

not integrable in terms of elementary functions except by means of 

infinite series. 

By the method of this article a solution is obtained whether 
the right member is zero or not, but only when the equation is 
exact. For non-exact equations some other procedures will 
now be developed, first for the equation with right member 
zero. 

53. Right member zero; particular solution known. The 
Unear equation with right member zero can be w'ritten in either 
of the forms 

hy"+f2y'+f3y = 0, (l) 
or 

y" 4- Py' + Qy = 0, (2) 

where P = f2/fi and Q = /3//i. It is understood that P and 
Q are not both constants and Q ^ 0. Equations (1) and (2) 
are equivalent; they have the same general solution of the form 

y = CiV! + C2y2, (3) 

where yi and y2 are functions of x(yi not merely a constant 
times y2) and Cu C2 are arbitrary constants; y = yi and y = 
y2 are distinct particular solutions. 

For convenience we write u for ylt and v for y2, and derive 
a formula for obtaining v in terms of u, so that if one particular 
solution u is known we can find another one, v, and hence the 
general solution (3). 



238 Chapter 7 

Assuming that y = u and y = v are particular solutions of 
equation (2), we have 

u" + Pu' + Qu = 0, (4) 

v" + Pv' + Qv = 0, (5) 

Subtracting v X (4) from u X (5), we find 

or 
uv" — vu" + P{uv' — vu') = 0, 

uv" — vu" 
-= _p. 
uv' — vu' 

(6) 

Now, since uv" — vu" is the exact derivative of uv' — vu', we 
have, upon integrating equation (6), 

or 

In (uv' — vu') = — 

uv' — vu' — e -fl-dx (7) 
We omit the constant of integration or take it equal to zero 
since we are seeking the simplest expression for v in terms of u. 

Dividing equation (7) by u, we get 

v' — — v = - e fpdx, 
u u 

a linear equation to be solved for v. Since e 
= 1/m, we obtain 

1 
- v = 
M 

e Spd*dx, 

e — In u 

again omitting the constant of integration, or 

(8) 

When a particular solution u of equation (1) or (2) is known or 
can be found, formula (8) gives another particular solution v, 
then the general solution is 

y — Cyu + C2v. (9) 
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In some cases a particular solution of (1) or (2) can be found 
by inspection or by a simple test. For example, substituting 
y — exx in equation (1), we obtain (X2/x + X/2 + fz)eXx = 0, 
hence the test: y = exz is a particular solution of (1) if 

^2/i + X/2 +/a = 0. (10) 

Special cases for X = ± 1 are: ex is a particular solution if 
fi + A + A — 0; e~x is a particular solution if — /2 +/3 = 0. 

Also y = x + a is a particular solution of (1) if 

h+(x + a)fs ss 0; (11) 

in the special case where a — 0, x is a particular solution if 

h + xh = 0. 
Example 1. Solve 

(1 - x2)y" -xy, + y = 0. 

Since /2 + x/3 = 0, y — x is a particular solution, and a second 

particular solution is obtained by substituting u = x and P = 

—z/(l — x2) in formula (8): /cyV(i-x-)dx ^ g-;iin (i-zJ) 

-5-dx = x I -5-dx 
x~ J x~ 

= x f ~>—7= 9 = [by Peirce, 153] — V'l — x2. 
J x \ 1 — x 

With these values of u and v, equation (9) gives the general solution 

y = Clx + C2Vl - x2. 

Since /a — /> + f” = 0, the differential equation is exact and can 

be solved also by the method of Art. 52. 

Example 2. Solve 

xy" + (x + 2 )y’ + 2y = 0. 

Since /j — /2 + /3 = 0, y — c~x is a particular solution, and a second 
particular solution is obtained by substituting u = e~* and P — 

1 -f 2/a; in formula (8): 

e-/U+(2/*)] dx 

C —2x 
dx — e 

—x—2 In x ex dx 
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Substituting these values of u and v in equation (9), we have the gen¬ 
eral solution 

y — e 1 Cx + C2 

PROBLEMS 
1. Solve 

(1 — 4x2)y" — 4xy' 4- iy = 0 

(a) by the method of Art. 53; (6) by the method of Art. 52. 
2. Solve 

(2x2 + 3a: + 1 )y" + 2xy' - 2y = 0 

(a) by the method of Art. 53; (6) by the method of Art. 52. 

Solve the following differential equations. 

3. xy" + (2 — x)y' — y = 2 cos x. 

4. (1 — In x)xy” + y' — y/x = 0. 

5. xy” + (2 - x)y' + y = 0. 

6. xy” + 2(x + l)yf + 2y — 4ie~2x. 

7. y" + (1 — x2)y' - 2xy = 0. 

8. (x + 1 )y” + (x + 1)2/' + y = 0. 
9. (x 4- 1 )y” + (x + 1 )y' - y = 0. 

10. y” — xy' — y = xe^n. 

11. (aa;2 + x)y" + (4ax + 2)y' + 2ay = 0. 

12. xy” -y' + {1 — x)y = 0. 

13. (1 - x2)y" - 2xy' + 2y = 0. 

14. xy" + (2 — x)y' — 2y = 0. 

16. x2y" + (x + 1)?/ - y = a. 

16. xhj" + (a: + 1 )yr — y = 2x. 

IT. y" + (x + 1)»/' 4- xy - 0. 

18. x[x - l)y" -(2x- 1)/ + 2y = 0. 

19. x(x 4- 1)/' + (x + 2)t/' - y = 5. 
20. x(x + 2)2/" - 2(x + 1)2/' + 2y = 0. 

21. xy" — 2x2/' — 2y = 2xeix. 

22. Find two particular solutions, and hence the general solution, of the 

differential equation 

xy" - (1 - 2x)y' - 2y - 0. 

Apply tests (10) and (11), determining the values of X and a. 

213. Solve 

(x 4- 1)2/" - (x 4- 2)y' - 2xy = 0, 

first finding a particular solution by test (10). 
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24. Show that the differential equation 

(axx + bi)y" + (axe + b2)y' + (a& + bz)y = 0 

has a particular solution y = eXx if 

where 

CL\ dZ 2 
a\ oz 02 flg 

b\ bz bi b2 62 bz 

as 'll fl2 

h 63 61 62 

25. Apply the result of Prob. 24 in finding a particular solution of the dif¬ 
ferential equation of Prob. 23. 

26. Find a particular solution of the differential equation 

(x - 3)y" - (x - 2)2/' - 2(s - 4)y = 0 

(a) by using the result of Prob. 24; (b) by applying test (10). Hence obtain 

the general solution. 

27. Solve the differential equation of Prob. 14 by writing it in operator 

notation and factoring the operator. 

28. Solve the differential equation of Prob. 23 by writing it in operator 

notation and factoring the operator. 

64. The equivalent Riccati equation. If we change the de¬ 
pendent variable from y to v in the equation 

y" + Py' + Qy = 0 (1) 

by means of the substitution 

y = e 
— J*vdx 

) 1/ = -ve~fvix y» = (y2 _ v')e-fvdX, 

we obtain 

or 
v2 — v' — Pv + Q — 0, 

1/ = Q - Pv + v2, (2) 

a Riccati equation * equivalent to (1). 
Now, if we can find a particular solution of (2), say vu it 

follows that 
yi-e-S"** (3) 

* The general form of Riccati's equation is dy/dx » P + Qy + Ry1, where 
P, Q, R are functions of x. 
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is a particular solution of (1). Then the substitution of this 
value for u in equation (8), Art. 53, gives another particular 
solution of (1) and hence the general solution. As we had no 
general rule for finding yx in Art. 53, so here we have no gen¬ 
eral rule for finding V\.* But it may happen that it is easy to 
find Vi although it is difficult to find yx directly; in such cases 
equation (3) is useful. 

Carrying out the substitution of yx for u in equation (8), 
Art. 53, we obtain a second particular solution y2: 

y2 = e~fv'dx f = eS"* f ef{^~P)dx dx. 

Then the general solution of equation (1) is 

V = CiVi + C2y2, 
that is 

y = e-s*| Cl + C2f ef(2v'~P) dz] • (4) 

Equation (4) can be used as a formula for solving equation (1) 
when Vi is known. If two distinct particular solutions vv and 
v2 of equation (2) are known, then 

Vl = e~fHix and y2 = e~Snix 

are particular solutions of equation (1), and the general solu¬ 
tion of equation (1) is 

y = + C2e-ftidx, (5) 

Example 1. Solve 

xy" - (1 - 2x)yf - 2y = 0. (6) 

Dividing by x we have 

* The condition that a polynomial can be a solution of equation (2) if P and Q 
are polynomials, is given in Rainville, Intermediate Differential Equations, John 
Wiley & Sons, Art. 13. 
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hence P = — [(1/z) — 2], Q = —2/a:, and the equivalent Riccati 
equation (2) is 

v' = - - + (- - 2^ + *2. (7) 
x \x / 

It might be observed that v = 2 is a particular solution of equation 
(7). Or, if this is not obvious, we might try 

t> = axn, t/ = ?iaxn'“1, 

and see if we can determine n and a so that the identity 

2 
naxn 1 s-f- aa;n 1 — 2axn + a2x2n 

x 

holds. We can make the terms —2/x and axn~l cancel by choosing 
n = 0, a = 2. This gives 

9 9 
0 ss-1-4 + 4; 

x x 

hence v = 2 is a particular solution. 
Substituting ^ = 2 in equation (4), we have 

y = e~2x[Cl + C2J efi2+l/x)dzdx] 

= e~2x[Ci + C2f xe2x dx] 

= e-2*[c1+C2^(2z--l)]. 

Hence, writing C\ = A, C2/4 = B, we have the general solution of 
equation (6): 

y = Ae~2x + B(2x - 1). (8) 

Another method. Although equation (6) is not exact, one might 
see that by rearranging the terms and dividing by x2 it can be ar¬ 
ranged in integrable combinations as follows: 

.2 
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Integrating these combinations, we have 

— + 2 - = Ci, 
x x 

y' + 2y = Cix, 

a linear equation of first order; hence 

e2xy -*/• 
or 

xe2* dr + C2 = Ci — (2x - 1) + C2, 

y = Ae~2x + B(2x - 1). 

This example can be solved also by the method of Art. 53. (See 
Problem 22, Art. 53.) 

Example 2. Solve 

y" -y' + e2xy = 0. (9) 

The equivalent Riccati equation is 

v' = „ + v2 (10) 

We try an exponential function for v (although there is no guarantee 

beforehand that an exponential solution exists). Put 

v = beax, v' = abeax, 

and see if a and b can be chosen so that the identity 

abeax m e2x + beax + b2e2ax 

holds. In order to get a term that will cancel e2x we must have a = 1 
or 2, but if a = 2 the last term would become b2e4x, forcing b = 0, so 

we take a — 1 and obtain 

bex = e2* + bex + b2e2x. 

This identity is satisfied if 

62 + 1 = 0, b — ±f. 

Hence there are two particular solutions of equation (10) of the form 

beax: 
t>i = ie* and v2 = —ie*. 



Article 54 245 

The fact that a particular solution of (10) is imaginary does not mean 
that the corresponding solution of (9) need be imaginary. 

Substitution of these values for and v2 in equation (5) gives 

y = + C2ekt, 

which, by use of Euler’s relation as in Art. 31(c), reduces to 

y = A cos ex + B sin ex, (11) 

the general solution of equation (9). 

1. Solve 

PROBLEMS 

xy" + (1 + x2)y' + 2xy = 0 

(a) by the method of Art. 54; (b) by the method of Art. 52. 

2. Solve „ 2 , . . 
y — x*y + xy = 0 

(a) by the method of Art. 54; (b) by the method of Art. 53. 

3- Solve xy» _ {2x+ 1)yl + 2y = o 

(a) by the method of Art. 54; (6) by finding two particular solutions as in 

Prob. 22, Art. 53. 

4 S°1VC 2xy" + (3x + 2)y' + (* + \)y = 0 

(a) by the method of Art. 54; (b) by the method of Art. 53, using the result 

of Prob. 24, Art. 53. 

Solve the following differential equations. 

5. xy" — (2a:2 + 3)y' + 4xy = 0. 

6. xy" + (2a:4 — 1 )yr + 4xhj — 0. 

7. x2y" + x(l - 2x2)y' - (1 + 2x2)y - 0. 

8. 4x2y" — 4a;V + (1 + 2x)y = 0. 

9. xy" — yf + xzy = 0. 

10. 4xy" + 2yr — y = 0. 

11. xy" — y* + 4xhy = 0. 

12. y" + (4a: - 1 )y' + 2(2x2 - x + l)y = 0. 

13. y" + (e2x — I)/ + e2*?/ == 0. 

14. y" + (e2x — 1)2/' — 62*y = 0. 

16. y" — (cot x)yf + (sin2 x)y = 0. 

16. xY + x(3x — l)yf — y = 0. 

17. Solve the differential equation 

xy" - (1 + x2)y' + x3y « 0 
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by obtaining the particular solutions ri = ux, = u?x, of the equivalent 

Riccati equation, where 1, w, co2, are the cube roots of unity. 

66. Right member not zero. Consider now the general equa¬ 
tion (1) of Art. 51: 

fxV" + hv' + hv — fi) (1) 

with /4 9^ 0, excluding the case where (1) is exact, which has 
been treated in Art. 52. We know that the general solution 
will be of the form 

y = Vc + yp, (2) 
where 

Vc = ClVl 4- C22/2 (3) 

is the complementary function representing the general solu¬ 
tion of the equation 

f\y" + hv' + fay = 0, (4) 

and yp is a particular function, free of arbitrary constants, 
satisfying equation (1). 

We develop two methods which can be used in certain cases 
to solve equation (1). By the first method we obtain the solu¬ 
tion (2) without finding yc and yp separately; by the second we 
obtain yp after yc is known. 

(a) A substitution method. Divide equation (1) by fi and 
write it in the form 

y" + Py' + Qy = R. (5) 

Now, in an attempt to solve equation (5), suppose that we try 
the effect of substituting y = uv, where u and v are unknown 
functions of x. We have 

y = uv, y' — uv' + u'v, y" = uv" + 2 u'v' + u"v, 

and equation (5) becomes 

uv" + 2 u'v' + u"v + P(uv' + u'v) + Quv = R, 
or 

uv" + (2 u' + Pu)v' + (ib" + Pu' + Qu)v = R. (6) 
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One way to simplify equation (6) is to choose u so that 
u" + Pu' 4- Qu = 0, thus causing the terms in v to disappear 
from equation (6). This means that y — u is a particular solu¬ 
tion of the equation 

v" + Py' + Qy = 0. (7) 

If then we have given, or can find in some manner, a value u 

of y which satisfies equation (7), the substitution of y — uv in 
(5) reduces it to (6) with the t'-terms absent: 

This equation is linear in v' and dv'/dx, and may be solved in 
terms of ?/ and x by the method of Art. 21. Then, writing 
v’ — dv/dx, a second integration yields v. Having u and v, we 
multiply them together to obtain the general solution, y = uv, 

of equation (5). 
This method depends on knowing a particular solution of 

equation (7), which may be obtainable as in Art. 53 or Art. 54. 
The method does not assume a knowledge of the general solu¬ 
tion (3) of equation (7), although, if (3) is known, either yi or 
y2 can be taken as u in equation (8). 

Example 1. Solve 

(1 - x2)y” -xy' + y = 3x2. (9) 

As in Example 1, Art. 53, we have the particular solution 
of the equation 

(1 - x2)y" - xy' + y = 0, 

y = x, 

(10) 

or if we assume as known the general solution of (10), namely, 

y = C\x + C2 Vl — x2, the particular solution y = x is obtained 
from it by putting Cj = 1, C2 = 0. Substituting 

x 

1 — X 
2 > 

R = 
3x2 

rr*5» U — X, u' = 1, p = - 
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in equation (8), it becomes 

dv' /2 x \ f 3x 

Z+\Z~T^?)V ~T^?' 
By the method of Art. 21, 

pf\(2/*) —x/(l—a:2)] dx _ ^lns+Hln (l-*2) _ 

Hence 
/o?3 _ 

-^=====dx -\r Ci — — (2 + x2)V 1 — x2 + Ci, 

, _dv _ 2 c; 

dx x2 x2\/l — x2 ’ 

2 
v — - 

X 
+ C2, 

and the general solution, y = xv, is 

y = 2 — x2 + CiVT — x2 + C2x. 

(6) Variation of parameters. We now assume that the com¬ 
plementary function, yc = CiU + C2v, of equation (1) is 
known. Then the theory explained in Art. 37 shows that yp 
is given by the formula 

yp = Au + Bv, (11) 

where A and B are functions of x determined by the equations 
(3), Art. 37: 

AiU + By = 0, 

A\Ui + BiVi = R. 
(12) 

The subscripts indicate differentiation with respect to x, and 
R \sfjfi. Eliminating first Bu then Au from equations (12), 
we have 

Ai(mq — UiV) = —vR, 

B\(uvi — U\v) = uR. 
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Solving for A and B, taking the constant of integration equal 
to zero, we get 

A 
vR 
-ax, 
UV i — UiV 

uR , 
-ax. 
UV1 — UiV 

(13) 

These values of A and B substituted in (11) give yp; then the 
general solution of equation (1) is y = yc + yP- For illustra¬ 
tion we solve the above Example 1 by this method. 

Example 2. (Second solution of Example 1.) Solve 

(1 - x2)y" - xy' + y = 3x2. 

The complementary function is (Example 1, Art. 53) 

yc = Cix + C2Vl — x2. 
Substituting 

U — X, V — V 1 — X2, Uj = 1, 

3x2 —X 
Vi = 

Vl — x2 ’ 
o 

—x 

R = 
1 -ar .2 7 

~ UyV = 
Vl-i:2 

in equations (13), we find 

- vi-7 = - 
1 

vr=T2’ 

f f 3x3 dx 

H** B--Jvrr?- 
or 

Hence 
A = x3, B = (2 + x2)Vl - x2. 

2/y = Au + Bv — x4 + (2 + x2)(l — x2) = 2 — x2 

and the general solution is 

y = Cix + C2Vl - x2 + 2 - x2. 

1. Solve 
PROBLEMS 

xy" - (2x + l)^/' + 2y = xV* 

(a) by method (a), Art. 55; (6) by method (6), Art. 55. 
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2. Solve 

y + x~y — ^2/ = xA 
by method (a), Art. 55. 

3. Solve ^ 

xy'* — 2/' — r3// = a;e* 12 
by method (5), Art. 55. 

Solve the following differential equations. 

4. rfy" — (x2 + 2x)y' + (x + 2)y = 2a;4. 

5. xy" - (2 + x)y’ + 2y = 2.rV. 
6. a;?/" + (2a; + 1)?/' + (a; + 1)2/ = (2a; + 1 )ex. 

7. a;2/' + 2a;(l — x)yf — a*(2 — x)y = sin x. 

8. 4a;y" - 4/ + (2 - x)y = a*2e~* 

9. xy" — y' — x?y = a:6. 

10. (x + 1 )y" - (x + 2)yf - 2a;y - a-2 + 1. 

11. y" + 2.ry' + (xr + l)y = R, where R is a function of ;r. 

12. Another way to simplify equation (G), Art. 55, is to choose u so that 

the coefficient of v* will vanish, that is, 

u = »-KSFta. 

Show that the resulting transformation 

y = uv = ve~^fpdx 

transforms the equation 

y" + Pyr + Qy = R 
into 

v" + (Q - \P’ - \PT)v = Re^pax 
Hence, if 

Q-\r-\r-' or 

where c is a constant, this differential equation in v and x is of the type con¬ 

sidered in Chapter IV or Chapter V (Art. 40). 

Solve the following differential equations using the result of Prob. 12. 

13. x2y" + xy* + (x2 — j)y = axyfx. 

14. y" + 2 tanh x-y* + ^1 — y = sech x. 

16. 4x2(y" — y*) + (x2 + l)y = ex/2. 
16. y" + 2xi/ + x2y = 2. 
17. y" + 2xy* + (a;2 + 1 )y = xz. 
18. Solve the differential equation of Prob. 11 using the result of Prob. 12. 
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SERIES SOLUTIONS 

66. Power series. There are many simple-looking differ¬ 
ential equations, for example, d2y/dx2 + xy = 0, for which 
the methods discussed up to this point are inadequate to yield 
a general solution. When such an equation is encountered it 
may be possible to solve it by use of an infinite series. We 
shall consider in this chapter only certain * equations of the 
form 

fiV" + hy' + = 0, (1) 

where the f’s are functions of x and primes denote differentia¬ 
tion with respect to x. 

Assume that a value of y, expressible in the form of a power 
series in x, satisfies equation (1), and write down the expressions 
for y and its first two derivatives: 

y — ao + Ui* + + QqZ? + • • • + anxn H-, (2) 

y' = oi + 2a2x + 3a3x2 -|-b (n + l)an+1xn + • • •, (3) 

y"= 2a2 + 3-2a3x + 4-3a4x2 -|- 

+ (n + 2)(» + l)a„+2xn -|-. (4) 

* Not all differential equations of form (1) can be solved by the methods of 
this chapter. For example, the equation 4xzy” + 6x2yf — y * 0 (cf. Prob. 16, 
Art. 9) has a general solution which is not expressible by series of type (2), Art. 56, 
or of type (1), Art. 57. In this case the assumption of a solution of type (2), 
Art. 56, leads merely to the trivial solution y = 0, and the assumption of a solu¬ 
tion of type (1), Art. 57, leads to a contradiction ao = 0. Furthermore, in other 
cases these assumptions may lead to series which do not converge except pos¬ 
sibly for x = 0. It is understood that a solution expressed in series form is valid 
only for values of x for which the series is convergent. A fuller discussion may be 
found in'Ince’s Ordinary Differential Equations, Chapter VII, or in Cohen’s 
Differential Equations, Chapter IX. See also Jeffrey’s Mathematical Physics, 
Chapter 16. 

251 
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Now substitute the values of y, y', and y" from (2), (3), and (4) 
in equation (1), then equate to zero the complete coefficient 
of each power of x in order that (1) shall be satisfied identically. 
It may happen that two of the o’s thus remain arbitrary but 
that the others are determined or expressible in terms of the 
two arbitrary ones. In this case equation (2) expresses y as 
a power series in x involving the two a’s as arbitrary constants. 
If the series converges, equation (2) furnishes the general solu¬ 
tion of (1), valid for values of x for which the series is con¬ 
vergent. 

Some of the following examples illustrating the series method 
could be solved without the use of series; in such cases it is 
interesting to notice that the results obtained by the use of 
series are equivalent to those obtainable by previous methods. 

Example 1. Solve 

(1 + x2)y" + xy' - y = 0. (5) 

Substitute the values of y, y', and y" from (2), (3), and (4) in (5) 
and arrange the result in tabular form. At the left of the table are 
the terms of equation (5), at the top the various powers of x which 
occur, with their coefficients in the body of the table. 

: con. ] X X2 X3 ... xn ... 

-y —ao —Q>\ -02 -03 -a„ ... 
xy' 01 202 3os ... na» 

y” 
H’ 

2<Z2 3 * 2<Z3 43o4 

202 

5-4os 

3 * 203 

■ 

(n + 2) (n + l)a„+2 
n(n - l)a„ ... 

The sum of each column of coefficients must vanish. The first two 
columns give 

2a2 — do = 0, a2 = |ao, flo arbitrary, 

3*2a3 = 0, a3 = 0, ai arbitrary. 
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The next two columns give 

4- 3a4 + 3a2 = 0, a4 - - ^ ^, 
4 2-4 

5- 4 a5 + 8 a3 = 0, a5 = 0, 

and so we see that all a1 s with odd subscripts vanish, except ai which 
is arbitrary, and that each a with even subscript can be expressed 
in terms of ao which is arbitrary. 

Perhaps the best way to compute the a’s is to obtain a general 
formula by equating to zero the column of coefficients of xn: 

(ft + 2) (ft + l)an+2 + (ft2 ~~ V)an = 0, 

n — 1 

an+2~ ~^r~2an- 

Then, letting n — 0, 1, 2, 3, 4, • • •, we find 

n = 0, ^2 = \a0 j 

n = 1, §
 II O
 

i 1 n = 2, a4 = —Tflz — ~ ^ «0> 

ft = 3, a5 = — |-fl3 = 0, 

ft = 4, 
3 1-3 

a6 = _oa4 = 2.4-6 a°’ 

Substituting these values of the a’s in equation (2) and remember¬ 
ing that ax is arbitrary, we have 

y = a0(l+^x2-^x4 + ;^x6- •••) + a1®, (6) 

which, with ao and ax arbitrary constants, is the general solution of 
equation (5). 

We might recognize the series in parentheses as the expansion of 
(1 + X2)*4 and write the solution (6) in the finite form 

y — a0V1 + x2 + aix. (7) 
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However, if the series in parentheses were not recognized, we could 
obtain the finite form of solution as follow's. Putting a0 = 0, cq = 1 
in (6) yields the simple particular solution y = x. Then a second 
particular solution is obtained by substituting u = x and P = 
x/(l + x2) in formula (8), Art. 53: 

/e-fx/{lW) dx f e- H In (1+X2) 

-^-dx = x I--dx 
x J x‘ 

= x f 2 = [by Peirce, 152] - V1 + x2. 
J xWl + x2 

Hence 

y = Ax + By/1 + x2, 

where A and B are arbitrary constants, which is form (7). Notice 
that the series solution (6) is valid only for — 1 x ^ 1, wdiereas 
there is no such restriction on x in solution (7). 

The solution may be verified by eliminating the arbitrary constants 
from the solution in finite form and thus obtaining the original dif¬ 
ferential equation (Problem 17, Art. 9). The differential equation can 
be solved without the use of series by the method of Art. 52 or the 
method of Art. 53. 

It may be noticed also that the above general solution is obtain¬ 
able from that of Example 1, Art. 53, by changing x to ix, since this 
substitution, together with the corresponding substitutions for y' and 
y", transforms one differential equation into the other. 

Example 2. Given the differential equations 

*V' - 2xy' + 2y = 0, (a) 

4x2y" + 4 xy' - y - 0, (b) 

obtain the general solution of (a) by the power series method and 
show that this method is inadequate to yield the general solution 
of (5). 
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Substitution of the values of y, yand y" from equations (2), (3), 
and (4) in equation (a) results in the following table: 

con. X X2 X3 xn 

2 y 2ao 2ai 2a*> 2a3 2 (In 
■2xy’ — 2a i —2•2a2 — 2 • 3a3 — 2nan 
*V' 2 a2 3-2a3 n{n — l)an 

Equating to zero the sum of each column of coefficients, we see 
that all the a1 s arc zero except a\ and a2 which are arbitrary since the 
columns in which they occur vanish identically. This could also be 
seen by summing the coefficients of x11: 

(n2 — 3n + 2)an = (n — l)(n - 2)an = 0; 

hence an = 0 unless n = 1 or 2, ax and a2 being arbitrary. 
Equation (2) then reduces to 

y = axx + a2x2, 

the general solution of equation (a) in finite form. 
Applying the same method to equation (b) we have the table: 

• 

con. X X2 X3 xn 

-y 
Axy' 

4xhy" 

-a0 ~a\ 

4ai 

— a2 

4 • 2a2 

4*2a2 

-03 

4-3a3 

4 • 3 • 2a3 ... 

On 

4nan 

4n(n — l)an ... 

Equating to zero the sum of each column we find that all the n’s 
are zero; equation (2) gives only the trivial solution y = 0. There 
is no power series in x which satisfies equation (6). The power series 
method is inadequate for the solution of (b) but we shall obtain the 
solution by a more general series method in the next article. Both 
equations (a) and (6) can be solved by the method of Art. 40. 
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Example 3. Solve by the power series method 

xy" - (x + 2)yf + 2y * 0, (8) 

and express the solution in finite form. 
Substituting the values of y, y\ and y" from (2), (3), and (4) in 

(8), we have the following table: 

con. * 
2 

x3 sn 

22/ 2ao 2ax 202 2o3 • . • 2 an 
-2/ —2aj -2-2a2 -2-3a3 — 2*4(14 -2 (n + l)an+i 
-xy' -<*i ~2a2 — 3d3 —nan 

xy" 2a2 3'2a3 4*3a4 • • • (n + l)nan-fi 

Equating to zero the sum of each column, the first column gives 
ai = a0j with a0 arbitrary; the next gives — 2a2 + ax = 0, a2 = eq/2; 
the x2 column vanishes identically, making a3 arbitrary; the remain¬ 
ing columns determine a4, ar„ • • • in terms of a3. The general for¬ 
mula, obtained by summing the coefficients in the xn column, is 

(n + l)(ft - 2)an+1 = (ft - 2)an, (9) 
or 

a«+i = ^ 2)> 
ft -t“ 1 

from which we find 
ft — 0, flj — 

ai ao 
n - 1, a2 - 2 - 2 * 

n — 2, a3 arbitrary, [from equation (9)], 

o °3 n = 3, a4 = —, 

n = 4, 
«3 

4-5’ 
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Substitution of these values of the o’s in (2) gives 

y = a0 ^1 + x + + a3 + — + — 4-^ , (10) 

the general solution of equation (8) in series form, a0 and a3 being 
arbitrary constants. 

In order to express the solution in finite form we might use the 
method of Example 1, but it is simpler to notice that the second 
part of the solution may be written 

-4 
.3 _4 5 
_ +L + L+. 

! 4! 5! 

and that the series in parentheses is now the series for ex minus its 
first three terms, 1 + x + x2/2. Hence 

= <*0^ 1 + x + *2 1 + 3 \a3 >-( 1 + x + 

or, letting a0 — 3!a3 = A, 3!a3 = B, 

y — A 4*4) + Bex, 

where A and B are arbitrary constants. Equations (10) and (11) 
are equivalent, (11) being the solution of (8) in finite form. This 
example can be solved without using series, by the method of Art. 53 
or the method of Art. 54. Verification of solution (11) is found in 
Problem 18 of Art. 9. 

Example 4. Solve 
y" + xy = 0. 

Substituting the values of y, y', and y" from (2), (3), and (4) in 
(12), we have the following table: 
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Equating to zero the sum of each column, we see that a2 = 0; 
do and a\ are arbitrary; a3, a6, a9, • • • arc expressible in terms of 
ao; a4, 07, ai0, * * • are expressible in terms of a\ \ a5, a8, an, • • • are 
expressible in terms of a2 and are all zero. The general formula is 

°n+2 = “ (» + 1)(» + 2)' 

Then, letting n = 1, 2, 3, • • •, we have 

a3 = ~ 
2-3 y Q.4 

1 II 05 =M), 

4a0 a4 2*5ai 
a6 = ~ 

5-6 ~ 6! ’ 
a7 

6-7 “ 7! y = 0, 

a6 1 4-7an 07 2- 5 • 8ai 
= 0, a9 = — 

8-9 9! 
y alQ 

9 10 10! ’ 
an 

t *3 , 1 •4a-6 1-4-7x9 \ 
+ II Q 0

 

l1- 3l + 6! 9! 

( 2ar4 2-5x7 2 • 5 • 8a10 \ 
(13) fli 

v~ 4! + 7! 10! 
+ -) 1, 

the general solution of equation (12), where ao and (i\ represent arbi¬ 
trary constants. Here we leave the solution expressed in terms of 
two infinite series which do not represent expansions of any elemen¬ 
tary functions so far encountered. The solution may be expressed 
in terms of Bessel functions. * 

PROBLEMS 

Solve the following differential equations by the power series method; also, 

in case the result involves an infinite series, express the solution in finite 

form if possible. 

• 1. (;x2 - 1 )y" + 4xyf + 2y = 0. 

2. x(3 - 2x)y" - 6(1 - x)y' - 6y = 0. 
3. xhj" - 2xyf + (2 - x*)y = 0. 

* See Reddick and Miller's Advanced Mathematics for Engineers, Chapter VI. 
Following the theory of this chapter it may be shown that (13) is equivalent to 
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4. y" + x2y' + xy = 0. 
5. (1 — x2)y" — xy' + 4y = 0. 

6. ?/" - xy' + 2y = 0. 

7. tfj/" — 2y' + xy = 0. (C/. Prob. 19, Art. 9.) 

8. 2{x2 + 8)y" + W + {x + 2)y = 0. 

9. (a) Show that the power series method gives only a particular integral 

of the differential equation 

xy" + 2y’ - xy = 0; 

find the particular integral, and express it in finite form. 

(b) By making use of the particular integral found in (a), ODtain the gen¬ 

eral solution of the differential equation. 

(c) Eliminate the arbitrary constants from the general solution found in 

(ft), thus obtaining the original differential equation. (('/. Prob. 20, Art. 9.) 

10. By the power series method find a particular integral of the differentia 

equation 

xy" + (2 - x)y' - y = 0; 

whence obtain the general solution. 

11. Find a particular integral of the differential equation 

4x(l - x)ij" + 2(1 — 3x)y' + 2y = 0 

in the form of a power series. The general solution can be obtained by the 

method of Art. 57 (Prob. 9, Art. 58). 

12. Solve by the use of a power series 

y" - xY + xy = 0, 
and show that the result agrees with the answer to Prob. 2, Art. 54. 

yrff. The series of Frobenius. In Art. 56 we found that the 
differential equation Q>) of Example 2 could not be solved by 
the method of that article since it has no solution in the form 
of a power series in x. We shall solve this differential equation 
as the next illustrative Example 1 by employing the more gen¬ 
eral Frobenius series. 

The series of Frobenius is obtained from the power series (2) 
of Art. 56 by multiplying it by xc: 

y = xc(a0 + oix + a2x2 -1-b anxn H-), a0 9* 0. (1) 

Here c is a constant to be determined, as well as the o’s, by 
substituting the series in the equation to be solved and equat- 
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•Zing coefficients as in Art. 56. For zero or positive integral 
values of c, (1) is merely a power series, but for negative or non¬ 
integral positive values of c the series represents a new type. 
The Frobenius series (1) is therefore a generalization of a power 
series, including it as a special case. The assumption a0 ^ 0 
means that xc is the lowest power of x appearing in the series. 

The method of solving a differential equation by use of series 
(1) is similar to that of Art. 56. Assume that a value of y 
expressible in the form of series (1) satisfies the differential 
equation of form (1), Art. 56, and write down the expressions 
for y and its first two derivatives: 

y = a0xc + aizc+1 + a2xc+2 + a3xc+s H-, (2) 

y' = ca qxc~1 + (c + l)aixc + (c + 2 )a2xc+1 -1-, (3) 

y" = c(c—l)a0xc_2-i-(c+ V)caixe~l+(c+2)(c+ l)a2xcH-. (4) 

Substitute the values of y, y', and y" from (2), (3), and (4) in 
the differential equation, form a table like those in Art. 56, 
starting with the lowest power of x which occurs after the sub¬ 
stitutions are made, then equate to zero the complete coefficient 
of each power of x. 

Suppose that two values of c are thus determined. If, for one 
value of c, we are able to determine all the a’s in a manner 
involving only one of them which is arbitrary, we substitute 
these values in (2) and obtain a value of y, say yx, which is a 
particular solution involving one arbitrary constant.* If, 
for the other value of c, we can determine the set of a’s, .which 
we now call a"s, involving one of them which is arbitrary, we 
have another particular solution, say y2. The sum 

y = y i + 2/2, 

involving two arbitrary constants, is the general solution of the 
differential equation. 

It may happen that for one value of c the a’s are determined 
in terms of two of them which are arbitrary; the corresponding 

* It is understood here as in Art. 56 that the series represents a solution only for 
values of x for which it converges. 
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value of y, involving two arbitrary constants, then represents 
the general solution. Solutions in series are valid for values 
of x for which the series converge. There follow some illustra¬ 
tive examples, the first being the differential equation (6) of 
Example 2, Art. 56. 

Example 1. Solve 

4 x2y" + 4 xy' — y — 0. (5) 

Substitute the values of y, y', and y" from (2), (3), and (4) in (5), 
and arrange the result in tabular form, starting with the lowest power 
of x present after the substitutions, namely xc: 

xc+l xc+2 ... Xc+r ... 

-y 
4xy' 

4*y 

-ao 
4cao 

4c(c —l)ao 

-a\ 
4(c+l)ai 

4(c-f l)cai 

-02 
4(c-f 2)o2 

4(c+2) (c-f l)a* ... 

-aT 

4 (c+r)ar 
4(c+r) (c-fr—l)ar 

... 

Equating to zero the sum of the coefficients of xc, we find 

(4c2 — l)ao = 0, c = ■£ or —a0 arbitrary. 

The set of a’s corresponding to each of the two values of c will now 
be determined. 

We obtain a general formula by equating to zero the sum of the 
coefficients of xc+T, first for c = then for c = —J. 

For c = ■£: 

[4(J + r)2 — l]ar = (4T-2 + 4r)ar = 4r(r + l)ar = 0; 

hence ar — 0 unless r = 0, with oq arbitrary. 
For c = —(using primes on the a’s for the second value of c): 

[4(~| + r)2 - l]dr = (4r2 - 4r)a'r = 4r(r - l)ar = 0; 

hence a' — 0 unless r = 0, 1, with a'Q and a[ arbitrary. 
Then equation (2) gives, for c = £ and c = — respectively, 

2/2 = doX~ H + a[xH. 2/i = aoxH, 
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The first of these results is superfluous since the second contains two 
arbitrary constants and represents the general solution. Of course 
we would get the same general solution by setting y = y\ + y2 and 
replacing oo + a\ by a new arbitrary constant. The general solution 
of equation (5) is therefore 

y = Ax'1 + Bx~ 

where A and B are arbitrary constants. This solution can be found 
without the use of series by the method of Art. 40. 

If we had chosen the value c = — £ first, we would have obtained 
the general solution without using the value c = When, as in this 
example, the values of c differ by an integer, it is better to try the 
smaller value first as this value may yield the general solution and 
make unnecessary the use of the other value of c. It can happen, 
however, as we shall see in Example 3, that there is no solution cor¬ 
responding to the smaller value of c. 

As a second example we solve the differential equation of 
Problem 9, Art. 56, by use of a Frobenius series. 

Example 2. Solve 

xy" + 2y' — xy = 0, (6) 

and express the result in finite form. 
Substituting the values of y, y', and y" from (2), (3), and (4) in 

(6), we have the following table: 

a®-1 | xc xc+1 Xc+* xc+r 

-ary 

21/ 
xy" 

II 1 

'tT
 

2(c+l)oi 
(c+l)eai 

-OQ 

2(0+2)02 

(c-f2) (c + l)o2 

“«1 
2(c+3)a8 

(c+3) (c+2)0i 

— Or -l 
2(c+r+l)or+i 

(c+r+1) (c+r)ar+l ... 

Adding the first column and equating the sum to zero, we have 

c(c + l)ao = 0. 

Hence c = 0 or — 1 with a0 arbitrary. The second column gives 

(c + l)(c + 2)ai = 0. 
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Using the smaller value of c, namely c = — 1, the above equation 
makes a\ also arbitrary. 

The general column gives, for c = — 1, 

r(r + l)ar+i = ar-i 

00 

2! 
«3 

dl Q-l 

2^3 ~~ 3T 

a4 
do Oo 

3^4 “ 5T 05 
03 _ 01 

4-5 ~ 5! 

0o 

G! 

05 01 

6-7 ~ 7! 

Substituting these values of the a’s and c = — 1 in equation (2), 
we have the general solution : 

/I x x3 x5 

V * °"Yi + il + 4! + 0! + 
/ x2 Xi X6 \ 

+ Oi(H-1-1-(-•••)• (7) 
V 3! 5! 7! / 

If we had used the value c = 0, we would have obtained corresponding 
to it merely the second series of (7). 

To express (7) in finite form, we make use of the expansions: 

*3 x5 x7 
smhx = * + - + - + -+•••, 

x2 x4 x6 
cosh * = 1 + — + — + — + ■ 

2! 4! 6! 
Then (7) reduces to 

cosh x sinh x 
y = ao-1- ai- (8) 

A trick method. If we notice that 

D(xy) = xy' + y, D 2(xy) = xy" + 2^, 
! 

where D = d/dx, then equation (6) can be written 

(D2 - 1 )xy = 0. 
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Hence we have at once by the method of Art. 31, 

or 
xy — C\ez -)- C^c *, 

pX p-X 

y = - + C2 — 
X X 

) (9) 

which is the general solution of equation (6) and is equivalent to (8). 

Example 3. Show that the differential equation 

xy" - xy' + y - 0 (10) 

has only one particular solution of type (2). Making use of this 
particular solution, find the general solution in series form. 

Substitute the values of y, y', and y" from (2), (3), and (4) in (10), 
and form the table: 

xc 1 xc xc+1 Xc+r ... 

y ao Oi ... Or ... 
—xy' — Cflo — (c + 1)^1 ... - (c -f r)aT 

xy" c(c — l)oo (c + l)cai (c + 2) (c + 1 )0s • • • (c +r + 1) (c +r)ar+i * • • 

The first column gives 

c(c — l)ao = 0, 

from which c = 0 or c = 1 with a0 arbitrary. 
The second column gives 

(c + l)coi = (c - l)a0, 

which cannot be satisfied by c = 0, since a0 > 0; but for c = 1, 
cq = 0. Furthermore all the successive o’s are 0 when c = 1, as 
can be seen from the formula 

(r + 2 )(r + lK+i = rar. 

Therefore the only solution of type (2) is for c = 1, Oo arbitrary, 
Oi — 02 = • • • = 0, namely, the particular solution 

y — a0x. (ID 
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Using u — x and P = —1 in formula (8), Art. 53, we obtain a 

second particular solution x J e* dx/x2, and hence the general solu¬ 

tion: /«* 
— dx. (12) 

To express the result in series form we substitute for ex its power 
series expansion and find 

y = Cix + C2x J Q 
/ = Cix + C2^-l + x 

1 1 l X X2 

? + i + ii + S + S + 

j_C,x + Cs(-l+xlnx + | + ~ + ^ 

^-) fix, 

± + ..\ 
•4! / 

The solution in form (12) can be obtained by the method of Art. 53. 

68. Bessel functions of zero or positive integral order. 
Bessel functions are named after the German mathematician 
and astronomer, Friedrich Wilhelm Bessel, who was director 
of the observatory at Konigsberg. He obtained them in solv¬ 
ing a differential equation connected with a problem in plane¬ 
tary motion, but they occur in various other problems in 
applied mathematics. 

Bessel functions are particular solutions of the differential 
equation 

x2y” + xy' -f (x2 — n2)y = 0. (1) 

The number n may have any real or imaginary value, but we 
limit this discussion * to the case where n is zero or a positive 
integer: to = 0, 1, 2, 3, • • •. With this restriction on to let us 
make use of a Frobenius series to find a particular solution of 
equation (1). 

Substituting in (1) the values of y, y\ and y" from equations 
(2), (3), and (4) of Art. 57, we form the following table of coef¬ 
ficients: 

* See footnote to Ex. 4, Art. 56, for reference to a more extensive discussion of 
Bessel functions. 
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xc *0 + 2 x°+i sc+r ... 

— n*y —n2oo — rfia\ — n2a2 — n*a3 — »2ar ... 
x*y ao ai ar -2 

zy' ca0 (c+Da! (c-f2)a2 (c+3)a3 (c+r)or 

x*y'' c(c— l)ao (c + l)coi (C + 2) (C+1)02 (c+3) (c+2)a3 (c+r)(c+r— l)ar * * * 

Setting the sum of the first column equal to zero, we find 
(c2 — »2)a0 = 0, which with a0 arbitrary is satisfied if c = n. 
We now obtain the particular solution of equation (1) corre¬ 
sponding to c — n. The second column gives ax — 0, then the 
fourth column gives a3 = 0, etc.; all a’s with odd subscripts 
vanish. 

We compute the a’s with even subscripts from the formula 
obtained by equating to zero the sum of the coefficients in the 
xc+r column with c = n: 

[(n + r)2 - n2]ar + ar_2 = 0, 

Hence 

a4 = 

aT = 

= 

d 2 

dr—2 

r(2n -j- r) 

do 

2(2n + 2) ’ 

a0 

4(2n + 4) 2 • 4(2n + 2)(2n + 4) ’ 

a2k = (-1)*--- 
2-4 • • • 2k(2n + 2)(2» + 4) • • • (2» + 2k) 

Now since 
2-4 ••• 2k = 2*(l-2 ••• Jfe) = 2hk\ 

and 

(2n-l-2)(2n+4) ••• (2n+2k) = 2k(n+l)(n+2) ••• (n+k), 

we may write 

_ /i')*__ 

2k 22kk\(n + 1 )(n + 2) • • • (n + k) 
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Multiplying both numerator and denominator by 2"»!, 

_ , 2ran!a0 

°2* 1 ' 2n+2kk\(n + k)l’ 

or, setting 2nn!a0 equal to ag, another arbitrary constant, 

024 = (-1)* 
_Oo_ 

2n+2A7e!(a + jfejl’ 

In this formula let 1c = 0, 1, 2, 3, • • • and substitute the 
resulting a’s, together with c = n, in the Frobenius series (2) of 
Art. 57 (remembering that all a’s with odd subscripts vanish); 
then 

, r xn xn+2 xn+i I 

V ~ a° l¥n\ ~ 2"+2l!(» + 1)! + 2n+42f(n + 2)1 J _ 

The series in brackets is known as the Bessel function Jn(x) of 
order n(n = 0,1, 2, 3, • • •), which, written in S notation, is 

oo 

Jn(x) 

rn +2/t 

A: = 0 2n+2kk\(n + k)\ 
(2) 

We therefore have the following particular solution of the 
differential equation (1): 

V = <hJn(x), (3) 

where a,'0 is an arbitrary constant and Jn(x) is the Bessel func¬ 
tion of zero or positive integral order given by (2). 

The power series (2) is convergent for any finite value of x, 
and the derivative or integral of Jn(x) may be found by differ¬ 
entiating or integrating the corresponding series term by term. 
Writing out the expansion of J0(x) and Ji(x) from (2) we have 

J0(x) = 1 
X2 X4 

22 + 24(2!)2 
+ ■ 

26(3 !)2 

+ (-l)fc 
x 24 

2 2k(k\y 
+■ (4) 
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"•■-I-A + 
252!3! 273!4! 

+ (-1)4- 

+ ■ 

-2i+l 

22k+1k\(k + 1)! 
+ •••• (5) 

We notice that the derivative of the second term in Jq(x) is 
the negative of the first term of Ji(x), the derivative of the 
third term in J0(x) is the negative of the second term in J:(x), 
etc. In general the derivative of the term containing x2k+2 in 

Jo(x) is 

d_ 

dx 

~2k+2 
(_!)*+! --- 
V ' 22k+2(k + l)!2 

-(-I)4 

-(-l)4 

(2k + 2)xu+1 

22fc+2(A; + l)!2 

x2k+l 

22*+1fc!(A; + 1)! 
J 

which is the negative of the term containing x2h+1 in Ji(x); 
also the derivative of the first term of J0(x) is zero. Hence 

d 
— J0(x) = -J i(x), 
dx 

(6) 

PROBLEMS 

1, Solve the differential equation 

x2y" + 4xi/ + 2y == 0 

by use of a Frobenius series, and check the result by the method of Art. 40 
2. Show that the differential equation 

xy” + (2 - x)yr - 2y « 0 

has only one particular solution of Frobenius type. Making use of this par¬ 
ticular solution, find the general solution in series form. (C/. Prob. 14, 
Art. 53.) 

3. Solve by use of a Frobenius series 

x2y" + (x- 2x*)y' - (1 + 2x2)y = 0, 

and show that the result agrees with the answer to Prob. 7, Art. 54. 
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4. Show that the differential equation 

4x2y" — 4x2yf + (1 + 2 x)y = 0 

has only one particular solution of Frobenius type. Using this particular 
solution find the general solution in series form. (C/. Prob. 8, Art. 54.) 

Solve each of the following equations by use of a Frobenius series, and 
express the result in finite form if possible. 

6. (1 + 3x2)y" + - y' - 6y * 0. 
x 

6. (2x — \)x2y" + 2x(3x — 2)if — 2y = 0. 
7. xy" + 3^/' — x3?/ = 0. 
8. (3x2 - + 2*V - (2x2 + 6)2/ = 0. 
9. 4x(l - x)y" + 2(1 - 3x)yf + 2y = 0. 

10. (2xz + 6x2)y" + (x2 + 9x)*/' - 3y • 0. 
11. 4x2(l — x)y" + 2x(x — 2)?/' + (3 — 2x)?/ — 0. 
12. 4x(l — s)*/" + 2(1 — 2x)yr + y = 0. 
13. 2x(l + *>/' + 2/' - 42/ = 0. 
14. 2xy" + 3yr + xy = 0. 
16. Show that the method of Art. 57 yields only a particular solution of 

x(x - 1 )y" - 2(2x - 1 )y' + 2y = 0, 

and find the particular solution in series form. 
16. Compute to four decimal places the values of J0(3) and J\{2). 
17. Prove that 

— [xJi(x)] = xJq(x), J~xJq(x) dx = xJi(x). 

18. Prove that 

/jCr) = JoW - - Ji(x). 
X 

Find a particular solution of each of the four following differential equa¬ 
tions, and express the result in terms of a Bessel function. Prove in each 
case, by the use of formula (6) and Probs. 17 and 18, that the particular 
solution found satisfies the differential equation. 

19. xy" -yf + xy = 0. 
20. xy" + 3t/' + xy = 0. 
21. xy" + y' + xzy = 0. 

h 
x 
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23. Find a solution of 

4xy' + {x + 1)2/ = 0 

such that y = 1 when x — 4. 
24. Find the equation of a curve through the point (3, —6) representing 

a particular solution of the differential equation 

xhj" - xy' + (x2 + 1)?/ = 0. 

Also find the area from x = 0 to x = 2 between this curve and the x-axis. 



Amw&ii 
Art. 6 

1. (a) y = sin x + C; (b) y = x* + C\x2 + C^x + C3. 
2. y — x = C(1 + xy). 3. (o) 5; (b) 1; (c) 3. 4. (or + b)(ay + b) = C. 
5. C,(y2 - Ci) = (C2 + x)\ 8. 1. 9. 0.533. 10. 0.093. 13. 0.0676. 

14. i b , -0.549, 15. (0.707a, 0.881a). 
2 x — 1 

Art. 9 

6. xiy' = x + 2y. 6. (1 + yn}y'" = 3y'y"2. 
8. (x — y)y" + 2y' + 2y'2 = 0. 11. xhj' = y3. 

12. (j/ - \)y" + y = (y - 2)y'2. 13. y"' - 2y" - 5y( + Gy = 0. 
14. x + y + 1 + 2(3x + 5y + 7)y' = 0. 15. y' = cosh [(x/2) + y]. 
16. 4x3y" + 6xhj' — y = 0. 17. (1 + x2)y" + xy' — y = 0. 
18. xy" — (x + 2)?/ + 2y = 0. 19. xy" — 2?/' + xy = 0. 
20. xy" + 2y' — xy = 0. 21. y,v + 64y = 0. 22. y" — 2xy' — 2y = 0. 
23. y" — x2y' + xy = 0. 24. (a) x2y" — n(n — l)y = 0; 

(6) xyy'" + 2yy" - xy'y" = 0. 

Art. 10 

1. xy" = y' + y'3. 2. y2(l + yn) = r2. 
3. (x - y)y" = (1 + y')(l + y'2). 4. (x2 - 2xy - y-)y' = x2 + 2xy - y2. 
5. 2xyy' = y2 — x2. 6. x2y'2 + y2 = 2xy(l + y' + y'2). 
7. y2y'2 — 2xyy' + 2y2 — x2 = 0. 8. (2x2 — y2)y/2 — 2xyy' 4- x2 = 0. 
9. yy" + y'2 = 0. 10. 2xy' = y(l - y'2). 11. 2xy" + y' = 0. 

12. (x - a)2y" = 2(x - a)/ - 2(y - 6). 13. y,e*»Vl' + 2«y» = 0. 
14. y2[l + (dx/dy)2] = A2. 16. (a) yy" = 1 + y'2; (b) (1 + y'2)y"' = y'y"2. 
16. 2x2y" — xy' + y = 0. 17. (a) 2(xy' — y)(l + y'2) = (x2 + y2)y"; 

(6) (dVdfl2) + P = 0. 18. (a) 2yY" = 3y"2; 
(6) (x - y)y" + 2y'2 + 2y' = 0. 19. 9y"2yv - 45y"y"Vv + 40y"'3 = 0. 

20. 3y"y*v - 5y'"2 = 0. 
271 
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Art. 13 

1. y = Cx8. 2. sin* y — C sin x. 3. xV 1 — y2 + y\/1 — x2 = C. 
4. «* + «~1' = C. 5. x — 2xy + 2y2 - Cxy2. 
6. x2 = 2[2 — y — In (1 — y)]. 7. y = 2xe1~x. 8. x = (l/c)(acc</o — 6). 
9. x = a sin y. 10. x = 3(2‘'10 - 1)(2'"° - |). 11. 1.90. 12. f. 

13. (a) 0.255; (b) 0.720. 14. Y- 16. 0.917. 16. xy + 2(x + y) = 0. 
17. p2 — 1 = £p sec 0. 18. (4 + x2)(l — y2)2 = C. 19. y = e~*tan x + C. 
20. (1 - x - y + xy)e(x+y)li = C. 21. x(l + y) = Ce"“. 23. 3.81 X 10*. 
24. (a) y = (x3/2 + C)2; (6) y = x3, y = (x3'2 - l)2. 
26. x2 + 3y = 7, x2 + 3y = 3 + 4x3/2. 

Art. 17 

1. 2.88 ft/sec; 1.05 ft. 2. -0.557. 3. 1.22. 4. (a) 146 ft/see; 
(6) 945 ft; (c) 3.73 sec; (d) 3.65 sec. 6. (a) 6.83F sec; (5) 5.70F sec. 

6. (a) 2.16 sec; (b) 67.0 ft. 7. t = [>F/y(u> - £)] In [100/(100 - p)] sec. 
8. (a) 8.83 ft/sec; (b) 1.01 sec; (c) 5.88 ft. 9. 126 ft/sec; 3.10. 

10. 147 ft/sec; 2.67. 11. 16A/7. 12. (a) 29.3 per cent; (b) 0.415n yr. 
13. (a and b) 2.41 min; (c) 27.3°F. 14. (a) 2.36; (5) 2.57. 16. 10.3. 
16. 2a/(n + 1). 17. 1460 lb/ft2. 18. 17,900 ft. 19. 8.85 lb/in.2 
20. 344 X lO'7 lb/in.3 21. 15,800 ft. 22. 1.12 in. 23. 64.9 lb/ft3; 

680,000 lb/ft2. 24. 3.11 X 108 cal/day; 63.4°C. 26. 117 cal/sec; 
69.1°C. 26. 1.55 in. 27. (a) u = Mi — (u\ — a 2) In (r/ri)/ln (r2/ri); 
(6) 86.4°C. 28. (a) u = «i — [(ui — w2)(r — n)/(r2 — ri)](r2/r); 
(b) 76°C. 29. 5.47 cm. 30. kik2A(ui — ut)/{kit\ + hk) cal/sec. 

n 

31. 2ttL(uq — Un)/ (1/W In (xr/xr_i) cal/sec. 33. 10.2 min. 
T«» 1 

34. 3.93 min. 35. 2.28J. 37. 0.456. 38. (a) 45.3 min; (5) 54.3 min. 
39. (a) 19.2 min; (b) 1.31 ft. 41. 81 min. 42. j. 43. 56.9 hr. 

Art. 20 

2. x « Cy — y8. 3. y * fc(ln x + C). 4. y — x tan (a; + (7). 
5. y2 = x*v + (7. 6. x2 — y2 - Cx. 7. xex/v « (7. 8. 3x2 + 2y2 = Cx4. 
9. (a - y)ex'* - C. 10. «X*(C - x2) = 2. 11. In (y/x) « 1 + Cx. 

12. (a; + y)e*+* = C(x - y). 13. x2 - 2xy - y2 = C. 
14. 6x2y2 + y4 « C. 15. x2 + 2y _ Cy2. 16. y8 - Cx2 + a:8. 
17. x2 = CyV111*. 18. y = C[1 + In (x/y)]. 19. x2 ~ C sin (y/x). 
20. (x2 + y2)2 = Cxy. 21. 7x2 + 6xy + lly2 + lOx + 34y = C. 
22. x3 + y8 ■» xy(x + y + C). 23. x + y== Cexlv. 
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2/24jA^T7 * C®. 25. a;?/ + Vx2 — 1VV — 1 = cosh (xy + C). 
Vx - y(Vx - Vy) = CeV^S-V* 

2/ + Vx2 + y2 = . 28. e1 = y(l + 2 In y). 
(1 — x2)y2 — 2a-?/ = 4. 30. (2* + y)y* — 2eixlv~1; ±1.16. 
xy = -|(2 - x2)8'2 + f, xy = 4(2 - x2)3'2 - W. 

Ci = C2 + tt/3. 34. Ci = C2 - jr/3. 36. V9 + e21 dy = 3dx; 
CjC2 = 1. 

Art. 21 

y = (x + C)e*. 2. 15x3y = 3x6 + 5x3 + C. 3. y = (2/x) + CV». 

xhj = 3 + Cy/x. 6. 3y = 1 + x2 + C(1 + x2)-1'2. 

yV1 — x2 = sin-1 x + C, or y\/x2 — 1 + cosh-1 x = C. 

7x + 2y* = CVy. 8. xy = x — 1 + Ce-1. 

9y + 6x2 In x — 4x2 + CVx. 10. y = Cx — x2. 
y = «» + C(x - 1). 12. x + y + 2 = Ce*. 13. y = x2(l + Ce1'1). 
2x + y2 + 1 = Cev\ 16. y = 4(50 + x) + C(50 + x)-1'3. 
x + y = Cx(x - 1). 17. y = Ce*+l2/2 - x - 3. 18. y2 = Ce1'*. 
y = — sin x. 20. y = 2 sin2 x — 2 sin x; 4, —21. 4. 
7.44. 23. -8/5. 24. 9.39. 26. 0.103. 26. fW or -*&• 

Art. 24 

1.32 lb/gal. 2. (a) 45 lb; (5) ff lb/gal. 3. (a) 124 lb; (5) 54 min. 
(a) 4 hr 25 min; (6) 2 hr 27 min. 6. 287 lb; 14.9 min. 7. 14.8 lb; 
27.8 min. 8. cr7( 1 - rf1-^ lb; 7(1 - gal. 
(а) 0.416 amp; (6) —0.413 amp; (c) 0.432. 10. (a) 0.476 amp; 
(б) 0.299 amp. 11. (a) q = EC + Kt~t/BC; 
(6) g = [2?C/(1 + «2f£2C2)](sin«< — «2?C cos a><) + Ke~‘/RC. 
i - [wAC/(l + w2J22C2)](cos u« + coflC sin «<) + Ae~‘/sc. 
(o) 1.35 amp, 0.0432 coulomb; (6) —8.50 amp, 0.0131 coulomb. 
-1.35 amp; 0.00677 coulomb. 16. 0.181 amp. 16. 79.1 volts. 
0.721 henry. 18. (a) E = Q/C( 1 - e-,/fic); (5) 120 volts. 
(a) 6.93 ohms; (6) 8.66 amp. 20. 15.9 ohms. 
t = RC In (RC + 1)/A£sec. 23. 0.0487 coulomb; 2.94 ohms. 

(o) t = V-U + (1/V37) sin (120jr< - tan-16) - (31/37)*-20*]; 

(b) 0.969 amp; (c) ^[1 + (1/V37) sin (120irf - tan-16)]; 
(d) 42.3 volts; 116 volts. 26. L = [2ay/(l + p2)](l + eMr). 
(a) 2p = (1 — yV*'2; (6) 0.732. 28. 2.01 lb. 29. 0.630 ft. 
8.38 ft. 31. 19.6 lb; 2.22. 32. (a) 258 lb; (b) 241 lb; (c) 50.9 lb. 
73°44' from the top of the cylinder. 
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34. 1 — 10m + A*2 = 5|> - (1 - M2)(V/3/2)>2'',r/3. 36. 41°44'. 
36. 5.85 ft; 0.13 ft. 37. 13,900. 

Art. 25 

1. ««»* = C. 2. x* = Cy + y\ 3. 3y2 = 1 + Cxhf. 4. s/c1^2 = C. 
6. xy = C(xy + l)e"2/2. 6. 2y2 = 2x - 1 + C«r2*. 7. zy3(x + 0 = 1. 
8. x8 - sin y + cos y + 6y£“I/. 9. 3?/4 = x2(2/6 + C). 

10. l/y = sin x + C cos x. 11. x2 = (C — 3x)?/2. 
12. y = 2 cos x/(C cos2 2; — 1). 13. x\C — In tan y) = tan 
14. y2 = el/*/(4e1/* + C). 15. (2/ - 2x + 4)4 = C(y - 3x + C)3. 
16. 2(x - y) + In (2x + 2y + 1) - C. 
17. (x - l)2 + y2 = Ce2 *“ 1 W<*-1)]. 18. (i + 3» - 5)2 = C(x + 2y - 2). 
19. (x + y + iy*+»/(*+»+« = 20. 2/2 + 2xy - 2x2 - 18x = C. 
21. In [9(y - x + 3)2 + (3x - 5)2] + 0 tan"1 [3(2/ - x + 3)/(3x - 5)] = C. 
22. (x + y)~ = C(xV - 1). 23. 3y = 5x - 2 tan-1 [§ tan (2x + C)]. 
24. j/2 = (C - 2 In y)e2*. 25. 2(x + 4y + 1) = 3 tan (6x + C). 
26. x2 = (1 + Ce*V. 27- 2/2 = (x - 2)2 + e1-*1'2’. 
28. xy1-” = 3(1 - n)/(2n - 3) + Cx3~2" (» ^ 1, f); y = Cx2e~3/* (» = 1); 

2x = (C — 3 In x)y/y (n = §). 
29. (x + 2/ - 4) In (x + y - 4) + 4x + 3y = 19. 30. 2.20. 
31. x In (y/x) == sin x — x cos a: + C. 32. (a) x2(x2?/2 + 2) = C?/2; 

(6) y = Cxe*V/4. 33. (a) x = 1 + ce‘4l-4)/<I-4<'-2>; 
(6) 6(j/ - x) + C = In (2x + 2?/ + l)(x2 + 2xy + 2/2 + x + 2/ + l)4. 

34. (a) 2/ = x2 tan [(x2/2) + C]; (b) 7/(sin x + C) = sec x + C tan x. 

Art. 27 

1, y2 — x2 = 5 or x2 + ?/2 = 13. 2. y2 = 4c±J. 3. x = 1 + V3 — c“v. 
4. 2x2 + y2 = 6. 6. x2 + 2/2 = Cx. 6. 2/2 = c2~<*'*>. 7. x2 + if = Cx. 
8. (a) x2 + s/2 = 5x; (6) x2 + y2 = 10?/. 9. (a) p = 4 cos 0; 

(6) p = (4\/3/3) sin 0. 10. (a) 2/ = x + In (x — 1) + C; 
(5) 2/ = x + In (1 — x), ?/ = x — 1 + In (x — 1). 

11, (y — 2x)2 = 5(2/ — x). 12. y2 = 4&(x + k) + (&2 — /Uc2)ex,k. 
14. (a) 2/2 = 4(x + 1) + 5ex; (b) y2 = 8(x + 2) - 7cz/2. 15. P, 6.93 in.; 

Q, 13.2 in. 16. 0.697 ft. 17. (6) ?/ = k cosh [(x/fc) + C]; 
area under arc = A; X arc length. 18. y — 2 cosh [x/2 + 0.881]. 

19. y = be(x~a)Ik. 20. n2/n~1 — (n — l)(x — a). 21. x — ?/ = Cxs/. 
23. y = 2n cosh [(x/2n) + C] and y = 2n. 24. 2/3 — 3x2?/ = A;3 and 2/ = fc. 
25. Confocal parabolas: (a) x2 = 2C?/ + C2; (ft) p(l + sin 6) = C. 
26. p = C sin" (0/n) or p sinn (0/n) = C. 27. p2 = C sin 20 or 

p = C(1 - sin 0). 28. (a) y2 = 2Cx + C2; (5) p(l - cos 0) - <7. 
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29. (a) (jk2 - l)x2 + k2y2 - 2Cx + C2; (6) p - C/(A; - cos 0); 

(c) p = 3/(3 — 2 cos 0). 

Art. 28 

1. y = Cewx/k. 2. p = Cewe,k. 3. x2 + ?/ - 1 = Cy. 4. 3x2 + y2 = Cx. 
5. c* sin y - C. 6. sin a; = C sech y. 7. t/2 = 4C(x + C). 
8. y2 — x2 = Cx3. 9. x2 + ?/2 — Cex. 10. x + cos x cosh y = C. 

11. 2 sinh 7/ + tan (x/2) = C. 12. t/2 = £ In cos 2x -f C. 

13. p4 = C cos 20. 14. p = 1/(C — sin2 0). 16. p — 2 sin 0 + C cos 0. 

16. p2 — 1 = Cp sec 0. 17. 2x2 + y2 — 17. 18. x3 + 3xy2 = 13. 

19. p =M)4 cos16 (0/4). 20. p = 4(1 — sin 0), 21. x y2(l — In y). 

22. V/2(sin x + sinh y) = cosh y\ sinh y = sin x — cos x. 

23. y» = C[(a - 2)** - y2], (a ^ 2); ye*'"* = C, (a = 2). 

24. cosh x — a cos y - C sin t/. 26. (a) x2 + y2 - 26 In x + C; 

(6) ?/ = Cxa. 26. (a) In p = J cos 2(0 + a) + C; 

(6) (*/p) - (p/jfc) = 9 + C. 27. p(sin n0)m/”2 = C. 

29. (x + y)(x - 2y)2 = Cy6. 30. (a) x2 = 4[y - 1 + In (y - 1)]; 

(6) x2 = 4 j^y + 2 + In * . 31. x2 + y- + 1 = Cx. 

32. p2 = C(p cos 0 - 1). 33. (x2 + y- + l)2 - 4x2 = C. 

Art. 31(6) 

2. (a) 6ez; (b) —4e“2r; (c) 0; (d) (In a — a)na*. 4. y = Cie** + C2e~*T; 

y — A sinh kx + B cosh kx. 6. y — CV6z + C2£~*. 

6. y = Cie^-3)x + Cie-(^Ii+3)x. 7. y = (Ci + C2x)e2x + (C* + C4x)e-2*. 
8. y = Ci + Cifi~(an)x + C3<r2°*. 9. y = Cie* + C2e-* + C8e(1'2>1. 

10. y = Ae(3/2)l sinh [(V5/2)x + a] + Bc-(3/2)xsinh [(V5/2)x + /?]. 

11. y = Ci+ C2x + Csx1 + C^x + C5e"^. 

12. y = (Ci + C2x + C3x2)e* + C4e~3*. 13. y = Cie(o'Wx + C^bla)x. 

14. y = Cie"* + C2c2* + C3e(2/6)* + Cte~^x. 

16. y = Cie~* + C2e(1/2)I + C3c(6/6)js + C4«r'1/3)l. 

16. y]x—, « (1 - e)(2 - e)/(3 - e); 4.37. 

17. y = (\/2/8)e-*sinh V2x. 

Art. 31(c) 

y — A cos kx + B sin kx. 2. y = ex(A cos "v/ix + B sin V3x). 
3. y = e_x/2[A cos (x/3) + B sin (x/3)]. 4. s = c21(A cos 3< + B sin 31). 

6. x — e~at(A cos ■%/k2 — a2t + Bsin A/W—~cH)._ 

6. y = Ci + C2e* + e-l/2(C3 cos V2x + C4 sin V2x). 
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7. 2/ = A$)xfo{x + a)+Bexl2$\i\[(\^/2)x + fr\ + Ce~x,2$m[{y/%/2)x + y]. 
8. y = Cie6x + e~3x[C2 cos (x/2) + Ci sin (x/2)]. 

9. y = (Ci + C%x)ex + (C3 + C&)erx +_CB cos \/2x + CB sin *\/2x. 

10. s => A sinh (2\/2£ + a) + B sin (2\/21 + /3). 

11. s = Ac2* sin (2£ + a) + sin (2t + /?). 

12. y = Cic2x + C2e~2* + (Cs + C4a;) cos \/2x + (CB + C$aO sin V2x. 

13. 2/ = (Ci + Cix)e~x + ex(C3 cos x + C4 sin x). 
14. y = (Ci + C2a; + Csa;2) cos 2a; + (C4 + C&a; + Cea;2) sin 2x. 

15. 1/ = Cie~2x + C2 cos a: + C3 sin x + ex(C4 cos 2a; + C$ sin 2a;). 

16. y = Cie4x + (C2 + C3X) cos a; + (C4 + C&a;) sin a;. 17. (a) No; (6) yes. 

Art. 32(5) 

1. (a) 0.300a; (6) 0.375a. 2. (a) 9a;2 + ^ = 225; (6) 3 ft, 6 ft/sec; 

(c) 3.76 sec. 3. 2.63 units. 4. (a) 0.031 sec; (6) 0.407 sec. 

5. d^b\/3g/a ft/sec. 6. 8.88 lb. 7. ±3.84 ft/sec. 8. 7 sec; 7.18 in. 

9. 0.190 sec; 0.452 sec. 11. 0.377 sec. 12. (a) 2.34 ft; (b) 5.98 lb. 

13. (a) 0.247 ft; (b) -15.9 ft/sec2; (c) 15 lb. 14. 3.44 ft. 15. (a) 42.2 min; 

(b) 14.1 min. 16. (a) 0.40 in.; (b) 13.0 in./sec downward. 

17. (a) 1.77 sec; (b) 2.36 ft above water. 18. 6.67 in. 19. 0.636. 

20. 2L/g\ 9 = a cos \/g/Lt. 
22. (a) 3.26 ft; (6) 0.219 rad/sec. 

21. 0 * VZT^o sin 's/g/Ll 
23. £. 24. ±0.219 rad/sec. 

Art. 32(c) 

3. t = [l/(n - r*)] In [(r2^0 - 52a;o)/(riy0 - 52a;0)]. 
4. * » [In (r2/ri)]/(n - r2). 6. (D2 + 0.0353D + 21.7)a; - 0. 

7. e~*m; (D2 + 9.37D + 39.5)a; = 0. 8. -1.56 ft/sec2. 9. 0.198 sec. 

10. K - 1; 0.172 sec. 11. (a) 0.549 sec; (6) 2.16 ft; 0.0895 ft/sec. 

12. (a) 0.206 sec; (6) 3.12 ft; -1.74 ft/sec. 13. 1.63 ft; -0.369 ft/sec. 

14. (a) 0.223 sec; (b) 4.09 ft; 8.86 ft/sec. 15. (a) 0.154 ft; (b) 0.315 sec. 

16. (a) 0.259 in. above equilibrium; (b) 4.94 in. below equilibrium. 

18. (a) 1.16 sec; (6) 60.5 per cent; (c) 8.35 in. 19. 5.40 in. above. 

20. 40.2'. 21. 93.5 per cent. 

22. T = Vap(47r2r2 + In2 ri)/2r\/3g(p — 1); 1.15 sec. 

Art. 34 

1. 4|/ « a^ — sin 2a; — 6ir2a;2 + 8^ — 3?r4. 2. 2/ - a;4 — a; — 3 In x. 
3. 2/ = 4c""x — e2x + x + 2. 4. (a) 2?/y = 80x(a;2 — 300); 

(b) Ely = 20(20 - a;) (100 - 40a; + x2); (c) (4 X 10*)/EI ft. 
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Art. 40 

3. y = Cxx + Ctx' + V* + Csx1"^ + 2a;3. 

4. y = #(Ci sin In a: + C2 cos In x + In z). 

6. y = CiX + C2a:2 + 4a:2 In a: + y 0- sin In a; + -nr cos In x. 
6. y = (Ci + In2 x — | In a;)*3 + (C2/a;) — 2. 

7. y - (Ci + C2 sin In a: + C3 cos in rr)(l/^c) + (a:2/30) -f (3x/10) — 2. 

8. y = Ci + C2x + C.,x<s+3^2 + CV5'3^72 - U In x + TV In2 x. 

9. y — (Ci + 2 In x)(l/x) + (C2 sin In x + C*3 cos In x)x. 

10. y = (?i + (72 In x + [C3 sin (y/2 In x) + (74 cos (V72 In x)]x3 + l In3 x 

+ vr In2 x. 11. y = [Ci + C2 In x + C3 In2 x + (in8 x)/48]x. 

12. y = (Ci + C2 In x +J In2 x)Vx — -2jx3. 

13. y — Cix 4- C2x2+ v'4-25 -j- CV2-^4'25 — rs* In * + In2 x — 29 In x + 475. 
14. y = (Ci/x) + (C2/x2) + (x/6) — (sin x)/x2. 

15. y = [<7i + Ci In (2x - 3)]V2x - 3 + 2x. 

16. y = Ci + C2 In (1 + 3x) + C3(l +_3x)3 - \ In2 (1 + 3x) - 3x/2. 

17. y - Ci(2x - 1) + C2(2x - l)1+(^2> + C3(2x - l),"(V'3/2) 

— 3(2x — 1) In (2x — 1) — 1. 18. y = V — 3x + Vx2 — lx- In x. 

19. y = \/x — 1/Vx. 20. y = 2 cos In x — sin In x. 

21. u = Ui- [(Ml - Ui) In (r/ri)]/in (r2/r,). 

22. m = Mi - [(mi - Ui)(r - Ti)/(t2 - r0](r2/r). 

Art. 42 

1. y = In (x2 + Ci) + C2. 2. y = x + CuT**'2 + C2. 

3. x2 + (y + Cif = Ci. 4. y = x2 + Ci In (x2 - Cx) + C2. 

6. y = x3 + Cix2 In x + C2x2 + C& + C4. 6. y = (Ci + x)/(C2 — x). 

7. y = (Cix + C2)\ 8. y3 = (^x + C2)2. 9. y = sinh2 (x + C,). 

10. xy + Cix + C2y = C3. 12. y = In cos (2x + Ci) + C2. 

14 2y = sec [x + (x/3)]. 16. y = In (1 + x). 16. 0.356. 

17. x = 3 — (2/y/y). 18. y = 2 sin-1 x + 1. 19. x = 2(e~vl~ — 1). 

20. y = (x — 2)ex + 2. 21. x = j In 2 — In sin y. 22. sin y — y/2 sin x. 
23. y = (e - 1) In [(1 - e—)/(l - «->)]• 24 (?/ + l)2 = 2x. 26. -1.73. 
26. 27. 27.-1.42. 28. f. 29.3.21. 30.-1.23. 31. -1.83; 0.330. 

33. y = sin ^x — 0 , y = \/3 - cos ^x - 0 ; y = 1 - cos x. 

34 109° 28'. 35. 109° 28'. 
Art. 44 

2. 0.843. 3. 1.58. 4 0.51 ft; 0.49 ft. 5. 2.39 sec. 6. 116 hr. 
7. 9.90 hr. 8. 6.95 mi/sec. 9. 11.6 min. 10. 45.1 min. 11.(2) 0.775; 

(6) 810 hr; (7) 13.5 hr; (8) 4.91 mi/sec. 13. 0.910. 14 2.36 sec. 
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16. (a) 15.9 ft; (b) 61.1 ft; (e) 136 lb, 144 lb. 16. 58.4 ft. 17. 15.2 ft, 
106 ft. 18. (a) 7.54 lb; (<b) 76.5 ft, 194 ft. 21. y = 8.08 cosh 0.124s, 
y * 3.31 cosh 0.302*. 22. 277 ft; 33.8ft. 23. (c) 9 in. 

25* (a) 1.02 sec; (5) 0.723 sec. 26. t = VL/g{ 1 — sin 0) cosh-1 (L/a). 
28. (o) catenaries; (6) circles; (c) parabolas; (d) cycloids. 

30. y = — In (cos* — sin x); V^, 1, \/2. 31. y = In (cos * + sin *). 
32. The family of catenaries: y — b = A; cosh [(* — a)/fe]. 33. 1.38; 3.63. 
34. y = =fc[i(*2 — 1) — | In *]. 35. s = i(l — y2) + In y and 

x - §(y2 - 1) - i In y. 
36. (a) x - [a-y+V2(l +Jfc)] - [akyl~k/2(t - k)] + ah/{l - k2); 

(6) * = M(r/2a) - (a/2) + a In (a/y)]. 37. (6) 3.72 ft/sec. ‘ 

Art. 45 

1. (a) (y + x)2 + (2 — 3*)2 = 1; (6) (3y + z)2 = 3x - z. 
2. y = * In * + 2*, 2 = * In * + 3; [1, 3, 1]. 

3. y = cos [s2 — 1 + Or/4)], z — sin [ar — 1 + Or/4)]. 
4. Cie* + CtfT"x and C\ex — C^~x, 5. x2 = t2 + Ci, 2/ = C2(* + £)• 
6. (1 + y)2 = (1 + z)2 + Ci, s - C2(* + y + 2). 7. y - C*r* + C2e*, 

2 = C\e~x — C^* + sin s. 8. (a) x = ce~a*, 

y = [ac/(a — 6)](e“6‘ — e~a*), 2 = c + [c/(a — 6)](5e“a‘ — ae~bt)\ 
(b) x = cerat, y = acte~at1 z = c[l — (1 + at)eraV}. 9. 16f min, 
4.51 lb. 10. 18.3 min. 11. 9.43 lb. 

Art. 46 

1.2/= C\e2x + C?pr2x + | sin 2x — £ cos 2*, 
2 = Cie2x — 3CV~2x — f cos 2*. 

2. y — Cie3* + C&~x — 2 cos x — sin *, 
2 = —2Cie3;c + 2C2e~x — cos * + 8 sin *. 

3. x » e~*(Ci sin $ + C2 cos $) + (t/2) — }, 
y 888 e-‘[(C2 — Ci) sin t — (C2 -f“ Ci) cos £] + 

4. a? *» Ci sin t + C2 cos t + sin 2£, y = Ci cos £ — C2 sin £ + cos 2t. 
6. y *» Ci sin * + C2 cos * + ex — i# sin x, 

2 *» [C2 — Ci + \ + (x/2)] sin * — [C2 + Ci — (x/2)] cos * — e*. 

6. y « Ci sin \/2* + C2 cos V2x + 5 sin x — cos x, 

z = [(Cl + 2V2C2)/3] sin Viz + [(C2 - 2V2Ci)/3] cos Viz 
+ sin * — 3 cos x. 

7. y = Cie~2x + | sin 2x — cos 2x, 
z = — (Ci/2)«“2* + f cos 2x — £ sin 2*. 

8. * * Ci sin $ + C2 cos t + et + {t/2) sin £, 
y ** [Ci — C2 — -f + 0/2)] sin < + [Ci + C2 + 0/2)] cos £ +* 2^^ 
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9* y = (Ci + Czzje* + (C3 — x)e x, z = 1 — C20* — (2Cs + 3 — 2:r)$ *. 
10. y = (Ci 4- C2x)ex + Cze~x + 3e”2* — 1, z = —C2e* — 2C$e~x — 8«~2a;. 
11. x = Ci + C2£2 ■+* y = Ci — C2£2 ~i~ A 
12. x - [Ci - C2 + (Ci/2) In t]t - (C3/0 + In t + 1, 

y = [C2 — (Ci/2) In *]* + (C3/0 - 2 In * - 2. 
13. ft = 0: ?/ = 1 — 2ex, z — ex + x — 

n — 1: y — x — ex} z — Ce~x + \ex + x — 2. 
n == J: z = Cie3x + Cic~{zl2)x + TV* + a? — 7, 
2/ - -IC^8- - £C2<r<3/2)* - *e‘ + (z/3) + f. 

14. x = y sin £ — tjt sin 30 7/ = -1/ sin t + sin 3J; 0.955, 1.96. 
16. ^ = A sin (< + a) + B sin (9* + 0) + (o*/9) + (A/9) + (86/81), 

y = —A cos 0 + <*) + B cos (9$ + j8) + (6^/9) + (A/9) — (8a/81). 

16. y - Ci + CaeO e - -Ci + (Crf + C3)c‘, s - -Ci + (Crf + C2 + C3)e*. 

Art. 47 

1. (a) y = — [^V(2^o cos2 a)] + x tan a; 
(6) (rg sin2 a)/2gr ft, (wg sin 2a)/g ft. 

2. (a) [(wwo sin a)/kg] — (w2/k2g) In [(kv0 sin a + w)/w] ft. 

3. (a) 1.24,1.33; (b) -f g * g & - V2 g y g V2. 

4. j — — cos «/\4) cosh (i/\/2), ?/ = sin (f/\/2) sinh (t/\/2); 

(3.83, 3.70). 5. (6) 2.37 amp, 0.061 sec; (c) 2.15 amp, 2.85 amp. 
6. (c) K = [(1/Vo) - (k/h?)] cos 9 + (k/K2). 
8. (a) ii = (B/fli)[l ~ e-^«p/«*»+«]l 

i2 = (B/B2)[l - e~'Blfl2j’/i(fll+fi2>]; 0.305 amp, 0.152 amp. 
(ib) n = E/Rh ^ = (B/B2)[l - e-I{>IiiT/L(Rl+Ui>];3.2 amp, 0.290 amp. 
(c) it = (B/Bx)[l - 
t2 = (i?/ie2)[l - €-R*^r/z-'Ri+^)]; i.26 amp, 0.290 amp. (d) 0.139 sec. 

9. it - V - 5e~‘ - fe~3i, 4 = -^- 5e-( + ft"3'. 
10. ii = £e~‘ + ^e_3t - ^ cos t + f sinf, 

4 = £«-‘ — - r cos i + rV sin t. 

Art. 50 

3. * = ile®* + Be~atn sin [(V3/2)o< + a], 

j/ = j4ea< + Be—'1/2 sin [(V3/2)a< + a + (2*/3)], 

2 = Aeat + Be—4/2sin [(Vz/2)at + a+ (4r/3)]. 
4. x = Aeil + B,y = Ae»‘ + O, z = ,4e3( - (B + C). 
5. x = -.Ae‘12 + Be-4,2/ — Aetn + Ce~‘, 2 = Aetl2 — (B + C)e~‘. 
6. x - Ae‘ + Be-"2 -t/2-\,y = Ae‘ + Ce~‘12 - i/2 - 

2 = 4e* - (B + C)e~‘12 - t/2 - f. 
7. c - At1 + Bt~\ y - At2 + Ct~\ 2 = At2 - (B + Or1. 
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8. Xi — Ata + Bt~a + K sin (a In t + a)9 

x% = Ata — Bt~a + K cos (a In t + a), 

Xz = Ata + Bt~a — K sin (a in t + a), 

x4 = Ata — Bt~~a — K cos (a In t + a). 
12. F = (1 + «G)/(1 + w2G). 

Art. 53 

1. y = CjX + C2a/1 — 4a:2. 2. y = C\X + C2/(x + 1). 
3. xy = Cx + C2c)X — sin x — cos x. 4. y = Cix + C2 in x. 

«.»-(*- 2) [Ci + CiJex dx/x\x - 2)2]. 

6. y = (Ci + C2e~2x)/x — (x + l)e“2*. 

7. y = e-*+*V3[Ciy'e1-1’73 dx + C2]. 

8. y = (x + l)e~*[Ci + C2J'ex dx/(x + l)2]. 

9. y = (x + 1)[Ci + C2ye-*dx/(x + l)2]. 

10. y = eI,/2[x + Ci Je~x'/2 dx + C2]. 11. y = Cj/x + C2/(ax + 1). 

12. ?/ = Cicx + C2(2x + 1)^“*. 13. y = C\x + C2(x tanh-1 x — 1). 

14. ?/ = e*[Ci + C2y*<e""* dx/x2]. 15. 1/ = Ci(x + 1) + C2xe1/r + ax or 

^L(x + 1) + Bxe1,x — a. 16. y = Ci(x + 1) + xe1,x[C2 + J"e~1/;cdx/x]. 

17. y = e~*[Ci + C2Je1^'2 dx], 18. y = Ci(2x - 1) + C2x\ 

19. y — Ci/x -j- C2(x + 2) — 5. 20. 2/88 Ci (x -J- 1) + C2x2. 

21. y = xe2l[ln x + l/(2x) + Ci Je~ix dx/x2 + C2]. 

22. y = Ae~2x + B(2x - 1). 23. y = Ae2z + B{3x + 4)«~*. 
26. y = Ae2x + B(3x - 8)e~*. 

Art. 64 

1. y = «-*’/2(Ci + C2J'e*/2 dx/x). 2. y = x(Ci + C2Jex*/2 dx/x2). 

3. y = Cie2* + C2(2x +1). 4. y = e~xl2(Ci A-C2 Jc~xli dx/x). 

5. y = Cie2’ 4- C2(x2 + 1). 6. y = <T*4/2(Ci + C2Jxe*4/2 dx). 

7. xy = Ci + C^**. 8. y = \/x(Ci + C2Jex dx/x). 

9. y = A cos_(xV2) + B sin (x2/2). 10. y = CievT+ C2e~^ ox 

A cosh V® + 5 sinh "s/x. 11. y = A cos x2 + B sin x2. 

12. y = e~x\Ci + C*1). 13. y = c~^(Ci + C2Jex+^ dx). 

14. y = e*(Ci + C2J"e~x~ ^*2* dx). 15. y = A cos (cos x) + B sin (cos x). 
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16. y ~ e 1/x(Ci + C%Jelfx dx/x*). 

17. y = e**/4[A cos (\/3x2/4) + B sin (V3*74)]. 

Art. 55 

1. 2/ - Ci(2* + 1) + (C, + 3*V'. 

2. y = |x3 + 3 + Cix + C2x e~x*/3 dx/x2. 

3. 2y = (Ci + In x)e^’ + (C* - /*.'^dx/x)e~^. 

4. 7/ = x(Ciex + C2 — 2# — x2). 6. y = Ci(x2 + 2x + 2) + (fx3 + C2)e*. 
6. y = |ex + (Ci In x + C2)e~~x. 

7. ^ = e* + 2? — ^/e~* (sin x + cos x) dx/x2j. 

& y = Ae*« + #(* + l)e-l/2 + 0 + 0 

9. y = Ae^2 + .&r^- x2. 10. 2/ = + 7?(3x + 4)e~x — \x + 

11. y - e-^[CiX + C2 + ff e^R dx2]. 

( (J x2 \ 

13. 2/*\/^ = Ci sin x + C2 cos x + a. 1L y = [ Cix2 + — -f — In x ) sech x. 
\ x Z ) 

16. y = (Ci + C2 In x)Vxex + «T/2. 

16. y = e*-^(Ci +Je~x+Wdx) + - Je1^ dx). 

17. y = e y,e^2(x2 - 2) dx -f* CiX -f- C2 

Art. 66 

1. y = -4/(1 — x) + 22/(1 + x). 2. 7/ = oo(l — x) + a3X8. 

3. 3/ — x(ai cosh x + a2 sinh x) or x(Aex + Be~x). 

4. 
'--0-5 

/ 2*x 

°l \ 41 

, 42x* 4272x9 . 4272102x12 

+ li'-W + —ET 
2V , 2W 225282x10 

)■ 

■) 

7! 10! 

6. y « ao(l - 2x2) + Oi[x -\x2- (l/2-4)*» - (1 • 3/2-4-6)xT-] 

= ao(l — 2x2) + aixVl —x2. 

6. y - a„(l - a;2) + o,[x - (x73!) - (x6/5!) - (3*77!) - (3-5x79!) 

- (3-5-7xn/ll!)-] - (1 - *2){a<, + atJ[e*V7d - *2)2] dx}. 

7. y - ao[l + (x2/2!) - (3x74!) + (5x6/6!) - (7x78!) + • • •] 

+ 4(2x73!) - (4x5/5!) + (6x77!) - (8x79!) + • • •] 

= A (cos x + x sin x) + B(sin x — x cos x). 



284 Answers 

8. y - ao[l - (x2/16) - (x3/96) + (5x4/1536) + •• •] 

+ ax[x - (x3/24) - (x4/192) + (x6/384) + •••]• 

9. (a) y = ao[l + (x2/3!) + (x4/5!) 4-] = ao(sinh x)/x; 

(5) y = Ci(cosh x)/x + C2(sinh x)/x. 10. y = (.4c1 + £)/x. (J.2 j.3 J.4 \ 

1—8-5-7"T 
qS /p9 

1 ~ 2*3* 1! ~ 5-3*~2! ~ H3^ 

r12 

8-33-3! 11*34-4! 
I 4" CLiX. 

Art. 68 

1. 2/ = (A/x) + (B/x2). 

2. y = c*{Ci + C2[(l/x) + lnx - (x/2!) + (x72-3!) - (x3/3-4!) +•••]}. 
3. y - (oo/x) + «2[x + (x3/2!) + (x6/3!) + (x7/4!) + •••]- (A 4- Be*Vx. 

4. y = \4{Ci + C2[lnx + x+(xV2-2!) + (x3/3-3!) + (x4/4-4!)+...]}. 

6. y = ao/x + oi(l + x2). 6. y = ao/x2 + oi[(l/x) - 1]. 

7. y = [A cosh (x2/2) + B sinh (x2/2)]/x2. 8. y = ao[(l/x) — x] + aax2. 

9. y = ao(l-x-|-|-|-^ + aay/x 

= Ay/x + B(1 — Vx tanh-1 \/x). 

10. y = oo[(l/x) + 1] + JoVx. 11. y = (A 4- By/1 — x)Vx. 

12. y = Oo[l - (x/2) - (x2/2-4) - (l-3x3/2-4-6) - (l-3-5x4/2-4-6-8) 

-] 4- a!#1'2 = ooVl - x 4- a^Vx. 
13. y = ao(l 4- 4x 4- fx2) 4- a^1/2[l 4* f* 4- (3-l/2-4)x2 

- (3*l-l/2-4-6)x3 4- (3-l-l-3/2-4-6-8)x4-] = ag(l 4- 4x 4- fx2) 
4- otfr1,2( 1 4- x)3/2. 

14. y = «o[l - (x2/2-5) 4- (x4/2-4-5-9) - (x«/2-4-6-5-9-13) 4---] 
4- aix_1/2[l - (x2/2-3) 4- (x4/2-4-3-7) - (**/2-4-6-3-7-ll) 4—*]. (~5 o~7 \ 

x3 — x4 4- — 4- — 4- — + •••). 16. -0.2601, 0.5767. 
5 45 315 / 

19. y = oox2 [1 — (x2/2-4) 4- (x4/2-42-6) - (x*/2-42-62-8) + ...]- AxJj(x). 
20. y = (A/x)Ji(x). 21. y = a0/o(x2/2). 

22. y = o„(x 4- ~ 4- +•• •) = Ay/ZJi&y/i). 

23. y = 2.23y/xJV\/^‘ 24. y = 7.69x/o(x); 8.87. 
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Amplitude, of cmf, 77 
of simple harmonic motion, 129 

of steady-state current, 78 

Arbitrary constants, essential, 5 

Archimedes, Principle of, 135 

Areal velocity, 220 

Atmospheric pressure, 51 

Beam, deflection of, 149, 181, 182 

elastic curve of, 149 

Bedell and Crehore, 76 

Bending moment, 151 

Bernoulli’s differential equation, 88 

Bessel functions, 258, 265/ 

Bessel’s equation, 265 

Cable, suspended, 195 /. 

tightly stretched, 201 

Cassinian ovals, 114 

Catenary, 99, 106, 196 

Cgs system of units, 41 

Chemical reactions, 45, 210 

first order process, 45 

second order process, 45 

Chemical solutions, 72 /, 211 

Coefficients, undetermined, method of, 

159 / 

Cohen, 251 

Constants, isolation of, 23 

Curves, determined from geometric 

properties, 97 ff., 202 

family of, differential equation of, 28 

in space, 206 

n-parameter, 28 

Cyclic systems of differential equations, 

222 

Damped oscillatory motion, 141 

Damping curves, 141 

Deflection of beams, 149/. 

Degree of differential equation, 3 

De Moivre’s theorem, 221 

Differential equation (ordinary), 1 

degree of, 3 

equivalent solutions of, 8, 61 

formation of, 19/. 

by elimination, 19 

general solution of, 4 

verification of, 33 

Laplace s, 3 

linear of second order, 232/. 

complementary function of, 232 

equivalent Riccati equation, 241 

exact, 233 

particular integral of, 232 

particular solution known, 237 

linear with constant coefficients, 

115/. 

of a family of curves, 28 

of efflux of water, 52 

of first order, 32/. 

Bernoulli’s, 88 

exact, 56 

homogeneous, 57/. 

intcgrable by suggested substitu¬ 

tion, 92 

intcgrable combinations, 54 

integrating factor of, 56 

linear, 67 / 

reducible to homogeneous, 89 
separable, 32/ 

of motion of pendulum, 139 
order of, 3 
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Differential equation (ordinary), par¬ 

tial, 1, 2, 226 

particular integral of, 6, 157, 232 

particular solution of, 6, 35, 237, 241 

particular values of variables, 35 

Riccati’s, 96, 241 

series solution of, 251 jf. 

simultaneous, 204Jf. 

solution of, 3 

special higher order, 183 Jf. 

dependent variable absent, 188 

independent variable absent, 189 

reducible to linear with constant 

coefficients, 183 

Differential operator, 115 

Dynamics, 41 

Efflux of water, differential equation of, 

52 

Einstein’s equations, a special case of, 

226 

Elastic curve of beam, 149 

Electric circuits, 75 Jf., 177 Jf. 

Electric network, 220, 221 

Equation of motion, 130 

Equipotentials, 114 

Equivalent solutions of a differential 

equation, 8, 61 

Essential arbitrary constants, 5 

Euler’s relation, 125, 226, 230, 245 

Exact differential equation, 56, 233 

Family, of curves, differential equation 

of, 28 

in space, 206 

n-parameter, 23 

of surfaces, 206 

Flexible chain, 82, 201, 202 

Forced vibrations, 173 jf. 

Formation of differential equations, 

19 Jf. 

by elimination, 19 Jf. 

determinants, 24 

differentiation and combination, 19 

finding differential equation of a 

family of curves, 28 

Forsyth, 212 

Fps system of units, 41 

Frobenius series, 259 jf. 

Functional dependence, 62 

Functions, Bessel, 258, 265 jf. 

hyperbolic, 14, 15 

Goursat-Hedrick, 62 

Goursat-Hedrick-Dunkel, 31 

Halphen, 31 

Heat flow, steady-state, 47 

Homogeneous differential equations, 

57 jf. 

Hooke’s law, 132, 150 

Hyperbolic functions, 9Jf. 

graphs of, 14 

inverse, 15 

Impedance, 78 

Ince, 251 

lntegrable combinations, 54 

Integrating factor, 56, 68 

Inverse hyperbolic functions, 14 jf. 

Inverse square law, 193, 220 

Isolation of constants, 23 

Isothermal surface, 47 

Jacobian, 62, 63, 231 

Jeffrey, 251 

Kasner, 226, 229 

Lagrange, 167 

Laplace’s equation, 3 

Lens, 107 

Limiting velocity, 42 

Linear differential equations, 67 

of first order, 67 Jf. 

of second order, 232 ff. 
complementary function of, 232 

equivalent Riccati equation, 241 

exact, 233 

particular integral of, 232 

particular solution known, 237 

simultaneous, 211 
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Linear differential equations, with con¬ 

stant coefficients, 115/. 

complementary function of, 157 

general solution of, 158 

particular integral of, 157 

Modulus of elasticity, 150 

Motion, equation of, 130 

simple harmonic, 129 

Network, electrical, 220, 221 

Newton's law of cooling, 50 

Newton's second law of motion, 41 

cgs system of units, 41 

fps system of units, 41 

Ohm’s law, 79 

Order of differential equation, 3 

Ordinary differential equation, 1 

Orthogonal trajectories, 107 /. 

Parameter, 28 

range of, 100 Jf. 

Parameters, variation of, 158, 107/., 

248 

Partial differential equations, 1, 2, 226 

Particular integral of a differential 

equation, 6, 157, 232 

Particular solution of a differential 

equation, 6, 35, 237, 241 

Peirce, 44, 45, 77, 89, 93, 104, 198, 239, 

254 

Pendulum, 139 

Period, of damped oscillatory motion, 

141 

of simple harmonic motion, 129 

Power series, 251 /. 

Pressure, atmospheric, 51 

Projectile, motion of, 217 

Pursuit, curve of, 203 

Rainville, 242 

Rectilinear motion, 128/. 

attractive force proportional to dis¬ 

placement, 128 

resistance proportional to velocity, 

139 

Rectilinear motion, repulsive force pro¬ 

portional to displacement, 129 

Reddick and Miller, 3, 47, 76, 159, 258 

Reflector, 107 

Refraction, law of, 107 

Resonance, 174 

Riecati’s differential equation, 96, 241 

Roots of unity, 221, 246 

Rope wound on a cylinder, 80/. 

Separable differential equations, 32 /. 

Series, of Frobenius, 259/. 

power, 251 /. 

Shift, exponential, 118 

reverse exponential, 118 

Simple harmonic motion, 129 

amplitude of, 129 

j>eriod of, 129 

Simultaneous differential equations, 

204/ 

cyclic system of, 222 

Einstein’s, a special case of, 226 

integral of system of, 229, 231 

linear, 211 

of first order, 204 

Steady-state current, 78 

amplitude of, 78 

maximum value of, 78 

Steady-state heat flow, 47 

Streamlines, 114 

Substitutions, differential equations 

solvable by, 87 /. 

Bernoulli’s equation, 88 

equations reducible to homogeneous, 

89 

linear second order equation, 246 

suggested by form of equation, 92 

Surface, isothermal, 47 

Surfaces, family of, 206 

Temperature gradient, 47 

Thermal conductivity, 48 

Thomson, 220 

Tractrix, 104, 106 

Trajectories, orthogonal, 107/. 

Transient, 78 

Trial and error, 43 /. 
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Undetermined coefficients, method of, 
159 #. 

Unity, roots of, 221, 246 

Variation of parameters, 158, 167#., 
248 

Velocity, areal, 220 

Velocity, limiting, 42 
of escape, 199 

Vibrations, forced, 173#. 

free, 173 
natural, 173 

Young’s modulus, 150 
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