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- FOREWORD

ArPLIED vibration study is an important or even a major
influence in many branches of modern engineering practice where
fluctuating stresses originated by periodically varying com-
ponents of the motive forces may seriously jeopardise structural
stability.

The general term * vibration >’ is given to the effect produced
by periodic forces, and this may range from physiologically
unpleasant tremors to disturbances of sufficient magnitude
to cause mechanical failure of structural components.

Recognition of the ill effects that are apt to appear when
vibration problems inherent in engineering structures are neg-
lected has led to intensive studies of fatigue phenomena in
materials, and other relevant subjects. This has resulted in
more widespread appreciation of the importance of avoiding
sharp corners and other abrupt structural discontinuities from
the point of view of minimising local concentrations of stress ;
and the necessity for adjusting the dynamical characteristics of
the system so that important zones of resonant vibration do not
occur in the operating speed ranges.

The foregoing remarks are particularly true of sea, land, and
air transport services, where modern requirements demand a
clear understanding of attendant vibration problems if opera-
tional troubles of one kind or another are to be avoided. In
this connection it should be borne well in mind that modern
requirements are not necessarily fulfilled by designs which
merely provide for freedom from mechanical breakdown.

Most engineers now and then experience the satisfaction .of
handling a machine in which the different design factors have
been so carefully balanced that the resultant hlend is a product
of outstanding merit. Even to-day, however, such examples are
oompara.tlvely rare and in many cases are confined to individual
specimens from a production batch, so that the achievement
appears to be largely the result of a happy accident which some-
how or other provides a product which is neither too sluggish
and lifeless nor too lively and over-sensitive. This suggests that
an important contributory factor towards the achievement of .

v



vi FOREWORD

these ideal results is accidental realisation of the correct solution
of the vibration problems associated with each case. Vibration
study is therefore likely to exert considerable influence on
engineering development, and already several industrial con-
cerns making products which are particularly susceptible to
vibratory influences have established special vibration engineering
departments.

In the past the tendency has been to disregard vibration
during initial design and consequently the work of the vibration
specialist has been largely confined to the correction of faults
which have all too often appeared in the product after it has
been put into service. Only occasionally has this procedure
proved to be entirely satisfactory, because it is almost impossible
to cure a really difficult case without resorting to a drastic
re-design of the whole system. There is nearly always some
increase of weight accompanied by a reduction of operational
efficiency due either to the necessity of imposing restrictions
on operating speeds or introducing energy-absorbing damping
devices. In other words, failure to take the vibration problem
into account during initial design nearly always results in
inefficiency of one kind or another.

It is to be hoped, therefore, that in the future many more
engineers will become interested in vibration study so that
design work will proceed along lines which are fundamentally
sound. At the same time, there are certain aspects of vibration
study which must always remain the special province of the
vibration engineer ; in particular, the task of accurately recording
and analysing structural vibration is a matter which requires
the skill and experience of trained personnel.

Although a considerable volume of literature has accumulated
on this important subject, there is a lack of information on the
fundamental principles underlying present-day vibration study
presented in such a way as to be readily assimilated by the busy
engineer. The author of the present work is therefore to be
congratulated on having produced a book which should be
welcomed by everyone wishing to acquire a good working know-
ledge of these principles. In particular, the author is to be
commended on dealing in a straightforward manner with
mechanical vibrations as such without resort to electrical or
other analogies.

There is no doubt that the student or engineer who studies
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Mr. Manley’s work will find little difficulty in -extending the
principles so ably set forth to meet the needs of his special
problems. This is largely because the work is based on the
results of actual first-hand experience in the Vibration Depart-
ment of a leading industrial establishment.

W. KER WILSON.
London, 1942.



AUTHOR’S PREFACE TO SECOND EDITION

Tais second edition represents a compromise which, it is hoped,
partially meets conflicting requirements. Several reviewegs, and
others, have suggested that in some places an amplification of
the descriptive matter would be advantageous. On the other
hand, the reception of the original, and the fact that another
edition was called for inside two years (although it could not be
provided at that time), have prompted an avoidance of any
alterations which would add unduly to the delays incidental to
publication.

In the text, additional material has been confined almost
entirely to the insertion of * Introductory ” and * Summary
sections in each chapter ; it is hoped that these will aid the reader
in gaining an appreciation of the background to the subject and
of its mode of development. Two further appendices have been
added ; in the first of these are given some details of the applica-
tion of the theory to the solution of the simpler practical problems,
while the second includes tables of some of the quantities com-
monly used in vibration calculations. Slight extensions have
been made in the analytical exercises at the ends of the earlier
chapters, and sundry small errors have been corrected.

The Bibliography has been brought more up to date. Since
revision, J. Morris’s book, The Escalator Method in Engineering
Vibration Problems, has appeared (Chapman and Hall, 1947), and
provides an admirable guide to the calculation of the vibration
characteristics of very complicated systems.

The author’s thanks are due to many colleagues whose sug-
gestions have been adopted, or are kept in mind in those instances
where it has not proved possible to give affect to them in this
present revision. '

NEWCASTLE-UPON-TYNE,
- September, 1947.
R. G. MANLEY.
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AUTHOR’S PREFACE

THE need for a really introductory book on vibration theory has
for some time been felt, both by technical staff engaged in vibra-
tion research and by others whose work brings them into contact
with the problems of the subject. The available textbooks are,
of course, excellent and comprehensive, but experience has shown
that it is difficult for beginners to extract from the somewhat
lengthy standard texts the precise information they are seeking.

The present work is designed to serve as an introduction to
the subject, so that the existing textbooks can subsequently be
approached with some degree of confidence. In accordance with
this plan, attention has been confined to the basic theory, a
knowledge of which is essential to a thorough understanding of
the physical phenomena ; instrumentation and testing technique
fall outside the scope of the book. No previous knowledge of
differential equations is assumed, this troublesome part of the
theory being dealt with by the powerful and easy method of
operators ; indeed, the only mathematical equipment is that
which should be at the command of anyone who has gone but
a little way ‘beyond the Matriculation syllabus. "A serjes of
notes in the appendices serves as a bridge between the school
work and those parts of analysis which are required in the text.

The most important advance, in recent years, in vibration
theory has been the development of the comcept of effective
inertia, with its collateral ‘‘ mechanical impedance ’ (herein
termed dynamic stiffness for reasons stated in the text); these
methods of attack have been utilised with conspicuous success
in the treatment of torsional vibration problems, particularly in
aircraft applications. An entirely new approach to the idea of
effective inertia is described in the text—an approach which,
besides being direct, has been ‘ tried out ” with students and
is evidently easily grasped.

Particular emphasis is given to resonance, which is the really
significant phenomenon for the engineer ; the usual assumption
concerning the practical equivalence of natural and resonant
frequencies in lightly-damped systems is justified by an argu-
ment based on the method of partial inertias which is described

in the chapter on effective inertia.
ix



X AUTHOR’S PREFACE

A few exercises are included at the end of each chapter ;
these are for the most part analytical in nature, and serve slightly
to extend the work covered in the chapter. Some numerical
examples are collected at the end of the book.

In the Bibliography are listed four standard works_ only.
These are books which should be readily available to all who
have any working connection with the subject, and between
them they cover the entire field of vibration theory and practice.

The volume embodies the subject-matter of a course of
lectures delivered by the author to members of the Vibration
Department of the de Havilland Aircraft Company ; in this and
other connections the author’s thanks are due to many members
of this Company, particularly: to Dr. W. Ker Wilson for his
interest and encouragement, and for the many helpful suggestions
he has made ; to Mr. R. N. Hadwin for the facilities so readily
granted for the compilation of the book, especially access to his
hbrary of technical works; and to Miss M. K. B. Harwood,
both for much numerical work embodied in the text and exer-
cises, and also for ungrudging co-operation in the tedious task
of checking the typescript and proofs.

R. G. MANLEY.
EpawARE, January 1942.
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LIST OF SYMBOLS

THE symbols listed below are those that occur most frequently in the
text. All symbols are defined where they first occur, and in many cases
the meaning is reiterated in subsequent references.

The figures in parentheses denote the pages on which the symbols are
first used or defined.

a, A amplitude of vibration (ins. or radians) . . . (7, 15)
c damping coefficient, i.e. force per unit velocity
(Ibs.ins.— 1 secs.) . . . . (20)
C critical damping coefﬁclent. = 2\/ mk . . . (23)
cxys otc. coupling coefficients . . . . . (52)
torsional stiffness (lbs.ins. /ra,d:an) . . . . (13)
D differential operator = & 4)
d
= (88)
B Young’s modulus (lbs./ins.?) . . . . . (87)
fH P force (lbs.) . . . . . . (19, 25)
F frequency (cycles per second) . . . . (8)
P, resonant frequency . . . . . . (32)
F shear force (lbs.) . . . . . (87)
g acceleration due to gravity (ms /secs 2 . . . (3)
qQ shear modulus (Ibs./ins.2) . . . . . (81)
% vi_1. . . . . . 4)
I moment of inertia (lbs ins.secs. “) . . . . (12)
1 second moment of area (ins.%) . (81)
J - versor-operator turning associated vector bhrough n /2
radians . . (38)
J polar moment of mertm (lbs ins.secs. ’) . . . (13)
J, effective inertia (Ibs.ins.secs.?) e .. (62)
k linear spring stiffness (lbs./ins.) . . . . (3)
k -ép(heavy shafts) . . . . . . (83)
K 1/GIy (beavy shafts) . . . . . . (84)
i length (ins.) . . . . A (81)
m mass (slugs = lbs.ins.~! secs. ’) . . (2)
m mass per unit length of beam (slugs/ms) . . (87)
M dynamic magnifier . . . . (30)
M, dynamie ma.gm.ﬁer ab resonance . . . . (30)

Xxv
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bending moment (lbs.ins.) . . .

- mass of beam (slugs) . . . . .
loading mass (slugs) . . . .

frequency of forced motion (c.r. s) .

natural frequency with damping

shear stress (lbs./ins.?) . .

time (secs.) . .

torque (Ibs.ins.) .

complementary function

particular integral .

plo .

wkl (heavy shafts)

1/x2 | .

dynamic stt&‘ness (lbsms /radla.n) .

dynamic stiffness of damped system

modulus of z = Va®4p? where z = a + if

damping constant =c¢/2m .
static deflection under gravity-load (ms)

A ne
logarithmic decrement _m—q .

angle (radians) .

partial inertias (lbs.ins.secs. ’)

density (slugs/ins.3)

radius of curvature (ins.)

phase-angle (radians)

shear strain (radians) .

angular velocity of rotating vector (mdmns/secs)
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(94)
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CHAPTER 1

SYSTEMS HAVING ONE DEGREE OF FREEDOM
(Undamped Motion)

Introductory.

Twis first chapter is concerned with the vibration of a simple
system when disturbed from its position of rest. The system
consists essentially of a concentrated mass and an elastic agent
which opposes motion of the mass by a force proportional to the
displacement from the position of rest.

The most commonly encountered example of such a system
in engineering can be regarded as equivalent to a mass suspended
on a light coiled spring, as depicted in Fig. 1, page 2. Many
industrial machines and power-plant installations are mounted
on flexible suspensions of various types, some practical features
of which are described in Appendix IV. [Some equivalent
systems illustrated diagrammatically in Fig. 3, page 11, are also
of practical importance. The cantilever spring in Fig. 3a merely
replaces the coiled spring of Fig. 1, so that the systems are essenti-
ally the same; a very useful model can easily be built with a
light steel strip for the spring, and can be employed for investigat-
ing practically the properties of simple vibrations. The pendulum
at (b) in the diagram is the basis of many time control or indicator
mechanisms ; the ordinary pendulum clock depends upon the
vibration characteristics of the pendulum for its accuracy as a
time-keeper. The torsional pendulum at (d) replaces the simple
pendulum in watches and similar mechanisms, and also corres-
ponds dynamically to the suspension used in some galvanometers.]

The important physical properties of such a system are that it
vibrates, when deflected and then released, at a definite frequency
(i.e. with a definite number of vibrations per minute) dependent
solely upon the mass of the suspended body and the stiffness of
the spring ; and that the motion is of a special type. The fre--
quency, which does not depend upon the size of the vibration
prov1ded this is sufficiently small to ensure that the elastic law
is not violated, is termed the ‘ natural frequency * of the system ;
the motion is in the form of a sine-wave (although this is modified
in practice by the damping effects of friction forces). These

1 . B



2 FUNDAMENTALS OF VIBRATION STUDY

properties are the result of the nature of the restoring force, which
is -proportional to the deflection, and can be established mathe-
matically on the assumption of such a force. For a thorough
understanding of the subject it is essential to follow out the
mathematical study, which does not however entail more than
an elementary acquaintance with the calculus. Fortunately, the
method of operators, introduced in Section 2, enables the differ-
ential equations arising in the study of vibration to be solved
without difficulty.

1. A simple vibrating system.

The system shown diagrammatically in Fig. 1 is an example of
the simplest type of mechanical vibrating system that can exist.
‘It consists simply of a mass m fixed to the lower end of a light
coiled spring, the upper end of which is attached to a rigid
support. If the mass is pulled downwards and then released,
practical experience shows that it will oscillate in the vertical
direction, the amplitude of oscillation diminishing in time until
finally the system appears to come to rest. This decay of the
motion is due to dissipation of energy by the action of damping
forces, the nature and effect of which are described in Chapter II.
It will be convenient to consider first the motion of the system
in the absence of such forces. :

R
Th(&n:)

m

3
—>a'<—

-

| () (b) 1"*9 |

Pra. 1.—Simple spring-mass system ; (a) static position; (b) at time ¢.



SYSTEMS HAVING ONE DEGREE OF FREEDOM 3

The spring is therefore considered to be idealised, so that the
force required to extend or compress it along its axis is propor-
tional to the extension or compression only. Fig. la shows the
position of the system in static equilibrium, the spring being
extended a distance 4 beyond its natural length by the action
of the gravity force mg. The spring-constant of proportionality,
or stiffness, k, is then given by the equation :

k6 =mg . . . . (L1)

The mass is then pulled downwards a further distance z, and
released with zero velocity. After a time ¢ from the instant
of release the displacement of the mass below its equilibrium
position is z, as shown in Fig. 15. The real forces acting on
the spring are :

(i) the gravity force mg downwards, and

(ii) the spring force k(6+x) upwards, as the reaction of the
spring is proportional to its extension beyond the
natural length and tends to return the spring to its
natural length.

These two forces have a resultant kxr upwards, as the part ké of
the spring force is balanced by the gravity force mg, as shown by
(1.1). The downward acceleration of the mass is ngen by the
equation of motion : )

ma'i=—lcx,or:l‘=-—kx . . (1.2)
m

(The dot notation for differential coefficients with respect to time will be
employed wherever possible.)

(1.2) is a linear differential equation of the second order in one
dependent variable, i.e. there are no second or higher powers of
any variable quantity, the highest differential coefficient involved
is the second (two dots) and there is only one dependent vari-
able (). - On account of this last property the system is said to
have one degree of freedom. In order to obtain an equation
giving the displacement  directly in terms of time, it is necessary
to integrate the equation of motion twice, and at each indefinite
integration an arbitrary constant must be inserted for generality.
The general solution must therefore contain two arbitrary con-
stants, the values of which can be chosen to make the solution
correspond to particular conditions. It has been postulated that
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at the instant of release (t = 0) the dlspla,cement is z, and the
velocity is zero. With the substitution

k .
0= m . . . (L3)
the three equations to be satisfied are :
equation of motion, & = — w2x (a)}
. initial conditions, x =2, at t =0 (b) (1.4)
£2=0 att=0 (c)

2. The differential operator D.

It can easily be shown by substitution that the function
z = x,co8 wt . . .. (2
is a solution of (1.4). Differential equations are frequently solved
by guesswork—indeed, guessing is very often the only way of
arriving at a solution—but there is a perfectly general method
of solving equations of the type of (1.4a).

Write D for gt so that Dz stands for & and D% for £. The
symbol D represents the operation of differentiating with respect
to time, and is called the differential operator. (1.4a) can be
written, with this notation, as

D% =—wx. . . . (22

Proceeding in an experimental manner, the common factor z is

‘“ dropped " by analogy with ordinary algebraic equations, leaving

D= — @? . . . . (2.3)°

(2.3) is to be interpreted as stating that the operation of double

differentiation with respect to time, when performed on the

appropriate function, is equivalent to the operation of multiply-

ing the same function by — w?. It remains to determine the

appropriate function. Performance of the square-root operation
on (2.3) leads to:

D= +io, ie. &

T + twx . . (2.4)
where 2= —1
Separating the variables 2 and ¢, and ta.kmg first the positive sign,
=tw.dt

x
'[‘i“? =iw.sz
, x
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whence log, # = iwt+4 a constant
= twt+log, C, (say).
This last result can be written as :
z = 0,e™.
Direct substitution shows that this function does in fact satisfy

(1.4a). Taking the negative sign in (2.4) leads to another
solution :

x = C,e—iot
and substitution again shows that the combined function
r = Cleiwt"l‘Oge-m . . . (2.5)

satisfies the equation of motion (1.4a), and it contains the two

arbitrary constants necessary for generality. Before determining

the values of these constants so that the initial conditions (1.4b, ¢)

are satisfied, it is advisable to restate (2.5) in more suitable terms.

Elementary mathematical analysis (see Appendix I, section 33)

shows that ‘
¢* = cos 0+41.sin 0

e % =cos — 4.8in 6

Putting wt for 6, (2.5) can therefore be written :

z = A.sin wt+B.cos wt . . . (2.6)
where A =1(C, — C,) :
B = 01+Ca
and w? = _k.
m

The form x = A .sin wt+B.cos wt is the general solution of the
equation of motion (1.4a). From the initial conditions (1.45, ¢)
the values of 4 and B are determined as -

A=0, B=xzx,
and the particular solution for these initial conditions is therefore
X = Z,.C08 wi
-where w? = L } (2.7)
m

The solution can be obtained by more direct methods in this
particular case, but the method of operators described above is
a very powerful one and can easily be extended to more com-
plicated linear differential equations; it is for this reason that
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the method has been described in some detail Using exactly
the same procedure it can be shown that the solution of the
equation . -
. Dx = ax
is x = Ce*
and that the solution of the equation
D2x+PDx+Qx = 0,
where P and @ are independent of x and ¢, is
x = C,e®+C,e,
where «, § are the roots in D of the equation D2+PD+Q = 0.
(See Exercise 1 at the end of this chapter.)

3. General solution and interpretation.

The function £ = A4.sin wt+B.cos wt has been shown to be
the general solution of the equation of motion (1.4a), and it has
already been noted that the constants 4 and B are to be deter-
mined by specific conditions of the motion. The conditions most
commonly given are the displacement and velocity at the instant
t = 0. At this instant let

xr = xo _
2.:=:i°}att— . . . (3.1)
Then x, = B
and x.o = Aw,
and the solution is :
z = 2—: sin wt+x,.cos wt . . . (3.2)

The general solution (2.6) can be put into a more convenient
form by using the relation

sin (0+¢) = sin 6. cos ¢ +cos 6.sin ¢.
Dividing (2.6) by V A%+ B? gives

z A .
= 8 t ————— e (Dt,
VA2+B: VA24+B? e +\/A2+B= o08
and if
__i_. = cos¢
- VA*+B?
B sin ¢

vaitp
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the result is obtained :
z = a.sin (wt+¢))
where = 4/A%24B? ‘
tan B . . . (3.3)
$=7
Note.—In determining ¢ from (3.3), the sign of 4 or of B enables the
correct choice to be made from the two alternative values of ¢ correspond-
ing to the value of tan ¢ Thus if B is positive, ¢ lies within the limits
0 and 180°, whereas if B is negative, ¢ lies within the limits 180° and 360°.
In this form of the solution there are again two constants
(a and ¢) to be determined. If the conditions at the instant ¢ = 0
are * = x,, £ = &,, then
z, = a@.sin ¢
&y = aw.cos ¢

wx
whence tan ¢ = ;—"

y . . . (3.4)

a = xoz_*_(:_f_o‘)z

The angle ¢ is termed the phase-angle and the factor a is termed
the amplitude, a useful interpretation of both terms being readily
available. In Fig. 2 the point P moves in the counter-clockwise

—®

ax -

Fra. 2.—Generation of sine-wave by rotating vector.

direction on a circle, radius @ and centre O, so that the line OP
rotates about O with a constant angular velocity w. If @4 is
a reference line, the projection AQ of the rotating vector OP on
a line perpendicular to OA4 is a.sin 6, where 0 is the angle POA.
If Pis at P, when t =0, and the angle P04 is §, then
AQ = a.sin (wi+¢). Thus AQ represents z, and the right-
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hand part of the diagram shows the graph of the displacement
x plotted against time ¢.

A fundamental property of the sine function is that if the
argument is increased by 2z radians the value of the function
is unaltered, i.e.

sin (6 +24An) = sin 0,
where 1 is any integer ; hence after successive intervals of time

2((—? the motion repeats itself exactly.

Displacement = a.sin (wt+¢)
Velocity & = aw.cos (wt+¢)
Acceleration & = — aw?.sin (wt+¢)

. % .
and ((2;’3 w(t-}-E) +¢] = ((2(‘)';;(@4_45).
The time-interval 2;7:— is termed the period of vibration, and

the reciprocal of the period is the frequency, or number of cycles
(i.e. complete repetitions of the motion) in unit time. As the
unit of time in every system of measurements is the second, the
frequency is given as a number of cycles per second, commonly
abbreviated to c.p.s. In practical work it is more convenient
to state the frequency in cycles per minute, usually written c.p.m.
The whole motion of the mass in Fig. 15, under the initial con-
ditions specified, can be described concisely thus : the displace-
ment of the mass below the static position is a sine-function of
time, the maximum displacements being +x, and the frequency
of vibration being

5 = 3 =5 kCPM—955J—OPM(35)
23: m m
This frequency of free vibration of the system, with no damping
or external a.pplied forces, is termed the natural frequency of the
system A table giving corresponding values of F' and w? = k/m
is included in Appendix V, page 145.

4. Units and general remarks.
In making use of the frequency formula

Jk
== oPS.,
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due consideration must be given to the units of measurement.
In scientific units the spring constant % is in poundals per foot
deflection, or in dynes per centimetre, and the mass m is in
pounds or grams. In the engineers’ system of units k is in
pounds per inch and m is in slugs, one slug being that mass to
which unit force (one pound weight) imparts unit acceleration
(one inch per second per second). Thus one slug equals g pounds,
where g is the gravitational constant in ¢nch units = 386 inches
per second per second ; so that one slug equals 386 lbs. (see
Appendix II, section 37). Any of these three systems may be
used so long as care is taken to ensure that all the quantities
involved are given in consistent units.

Checking the units of the frequency formula (3.5),
k = lbs.ins.™?

m= lb;s: = ]bs.ins.~Isecs.?

lbs.ins.”t
1bs.ins.~secs.?
That this result is correct is evident from the fact that the
frequency is the reciprocal of a time-period.

As a numerical example, suppose that the mass m is 200 lbs.,

and that the static deflection of the spring under the weight of
200 lbs. is 0-5 inches. Then

k=2 x 200 Ibs./in.

and thus ‘F = = gecs. L,

m——200 slugs
386 " &>

1 —_—
: =, 772 = 4'42 C.P.S.
and 638 v

= 265 C.P.M.

This example suggests an alternative frequency formula in terms
of the gravity deflection. If §, is the static deflection of the
spring under the gravity-load of the mass, then
_mg
£=5
, Lo
and = 52/ 3 CP-S. . . . (41)

)
. . . ’ 188
This formula is sometimes quoted as F' = 75
s

where F is the
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frequency 'in cycles per minute and J, is the static deflection in
inches. A table giving corresponding values of natural frequency
and static. deflection is included in Appendix V, page 145.
The amplitude and frequency are usually of far greater
practical importance than the phase-angle. The two forms

A .sin wt+B. cos wt
and a.sin (wt+¢)

both contain two constants which have to be determined by
initial conditions, but in the first form both A and B must be
found before the amplitude can be calculated ; the form

z = a.sin (wt+¢)

is therefore normally to be preferred. There are two conventions
with regard to the sign of the amplitude and the range of the
phase-angle: (i) if the amplitude is considered as essentially
positive, the phase-angle may have any value 0 <¢ <<2rn;
(ii) if the amplitude is allowed to take a negative value, the
phase-angle is restricted to the range 0 <¢ <=, for

a.sin (wt+a+n) = — a.sin (wt+a).

The choice between these alternatives depends upon the nature
of the problem.

It is well to note here what assumptions have been made in
the preceding analysis. First, the effect of damping forces has
been neglected ; these forces are taken into account in Chapter II.
Secondly, the spring is assumed to have a symmetrical linear
characteristic, i.e. the forces required to extend and to compress
it by equal distances are equal and proportional to the distance.
This assumption is justified for small vibrations in very many
practical applications ; the analysis of unsymmetrical and non-
linear spring characteristics is beyond the scope of this present
work, but an excellent discussion is given by Den Hartog (see
reference 1 in the Bibliography at the back of the book). The
physical conditions postulated for the system analysed above do
not arise in practice, but the type of resultant motion (i.e. sinu-
soidal) does occur. It is shown in Chapter VI that any cyclical
variation can be expressed as the sum of a number of sinusoidal
variations of different frequencies, and for this reason the
properties of sinusoidal motion are very important.
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- 5. -§imple harmonic motion, and equivalent systems.

The type of motion in which the restoring force is proportional
to the displacement from a mean position, and which therefore
is expressed by an equation similar to (3.3), is termed simple
harmonic motion. From the equation of motion (1.2) it is found
that the acceleration for a unit displacement ig numerically equal
to k/m ; the frequency equation (3.5) can therefore be written :

frequency _ 1 [/ (acceleration for unit
(crs) 29 displacement) (5.1)
or frequency _ o . J — (acceleration for unit )
(c.p.m.) displacement)
. A
7 s ,
a N_x I .
f ¢/6 /‘““*“."".
@) (b) A
|
LI
A |

@)

Fia. 3.—Systems equivalent to Fig. 1: (a) light cantilever; (b) simple
pendulum ; (c¢) compound pendulum ; (d) torsional pendulum.

and this property is typical of simple harmonic motion. If it
is known that the restoring force on a body is proportional to
the displacement from a fixed position, formula (5.1) can be
applied at once to determine the frequency of vibration. The
system of Fig. 3a, which consists of a mass m on the end of
a light cantilever spring, is fundamentally the same as that of
Fig. 1, for transverse vibrations; the spring-constant of the -
cantilever can be calculated from the physical constants (see
Appendix II, section 38). Two other examples of systems to
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which the formula (5.1) can be applied are (i) the pendulum,
Figs. 3b, ¢ and (ii) the torsional pendulum, Fig. 3d.

Rotatory .;ystems. ,

It is shown in Appendix II, section 37, that if a rigid body
rotates about a fixed axis the torque 7' and angular acceleration
6 about that axis are linearly related by the equation

T =16,

where I is the moment of inertia of the body about that axis ;
and if the body is considered as being composed of infinitesimal
particles typified by the particle of mass ém at a radius r from
the axis, I = 2r%.6m, the summation being extended over the
whole body. There is a general analogy between rectilinear and
angular motion, the corresponding quantities being listed in
Table I together with the British scientific and engineers’
units.

TaBLE I
l Linear Angular

Action force torque
Brit. Scientific . . . | poundals poundals-ft.
Engineers’. . . . . |lbs. Ibs.ins.

Response acceleration angular acceleration
Brit. Scientific . . . | ft./sec.? . 3
Engineers’ . . . . . | ins./sec.? }““"““s/ sec.

Inertia mass moment of inertia
Brit. Scientific . . . | lbs. Ibs.ft.2
Engineers’. . . . . | lbs.ins.—!sec.? lbs.ins.sec.?

Fig. 3b illustrates a simple pendulum, consisting of a particle
of mass m hung on a light inextensible string of length I. If
the string is deflected in a vertical plane through the point of
support 4, and the deflection from the vertical position is 6
radians, the restoring torque about A4 is that due to the weight
myg resolved normal to the string, i.e. mgl.sin §. As this is a
restoring torque. ’wndmg to decrease 0, the equa,tlon of motion
ana.logous to (1.2) is

mgl.gin @ = — I§ = — mi*y
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For small displacements sin § = 0, so that the equation of motion
becomes

mgl) = — ml2
or 6=—§’. N %)

As g and [ are constant the motion is simple harmonic and the
frequency is given by

_ 2 9
F = P C.P.S., where o ] . . (56.3)

Similarly, in the compound pendulum illustrated in Fig. 3c, if
m is the mass of the pendulum, 74 its moment of inertia about
an axis through the support 4 and normal to the plane of motion,
and & is the distance between the point of support and the centre
of gravity of the pendulum, then

mghd = — 10, or5=—"I"ih6 . . (5.4)

4 .

for small values of 6.
Hence the frequency of vibration is given by

=9 w 2 = 1___”9‘i
F 3 C.P.S., where w T . . (8.5)
Torsional systems.

Fig. 3d illustrates a torsional pendulum. A rigid fiywheel 4
is attached to one end of a light shaft B, the other end of which
is clamped. The gravity load of the weight of A is taken on
a bearing which is supposed frictionless, and the flywheel 4 is
free to rotate against the torsional stiffness of the shaft. Let
this torsional stiffness be C, so that the torque that must be
applied at A to twist it through an angle 6 is €0, and let the
moment of inertia of A about the axis X — X be J. Then the
equation of motion analogous to (1.2) is

Jb = — (6
or §=—Y% . . .. (5.8)
J .
Hence the frequency of vibration is given by
=2 2.0
F = 5 C.P.S., where w S . (8.7

Note.—The quantity o, which is the angular velocity of the radius
vector OP in Fig. 2, page 7, is called the * phase velocity >’ of the vibration.
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The units of measurement are radians per second, so that the quantity
has the dimension of the reciprocal of time ; the connection between it
and the frequency F is given by

Fere= |
=% 628‘“’5 ... (58)
= 9-556w ©.P.M.

It will be apparent that the mathematical study is more easily carried out
in terms of the phase velocity than in terms of the frequency, and in fact
the main equations obtained in the study are equations in w or w?; owing
to the close connection between w and F expressed in (5.8), such equations
are commonly termed  frequency equations.”

The value of w is also the ratio of velocity amplitude to displacement
amplitude, or similarly of acceleration amplitude to velocity amplitude,
in a sine wave vibration. Tables of values of w? are given in Appendix V,
page 145.

6. Two-mass systems with one degree of vibrational
freedom.

The torsional system depicted diagrammatically in Fig. 4 is
an example of a two-mass system having only one degree of

% FRICTIONLESS (Jz)

©
Fre. 4.—Two-mass system with one natural frequency.

freedom so far as vibrations are concerned. Let the angular
displacements of the inertias J, and J, from the static position
be 6,, 0, in the same sense, and let the torsional stiffness of the
shaft be C. Then, as the torque 7' transmitted by the shaft is
proportional to the twist between the ends,

J 161 = - 0(01 - os)}
Ty = — C(6, — 05) (6.1)
These equations can be written in the operator form :
(/.D2*+C)8, = €0, (a)} (6.2)
(J.D*+C)0, = €0,  (b)

Equatlons (6.2) are simultaneous operational equations which
may tentatively be treated as algebraic equations, so long as
the result obtained in this way is checked in the original equations.
: The method of treatment is as follows operate on both sldss
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of (6.2a) with the operator (J,D?*+C) which occurs on the left-
hand side of (6.2b). Thus:

(J:D*+C)(J1D*+C)8, = C(J4D*+C)b,

The right-hand side of this last equation is, by reason of the
equation (6.2b), equal to C%,. Hence,

(J’D3+C)(J1D2+C’)01 = 0201
Dropping the variable 6, and expanding the brackets,
’JlJ,D‘-I-(J,—{-J,)CD’ =0
. C(J,+J,)
2 = _—e—— . . . .
ie. D2 =0 or 7T, (6.3)
Comparing the solutions (6.3) with equation (2.3) it is evident
that the two frequencies of vibration are
CW1+J4)
J:J s
The zero frequency solution corresponds to a steady rotation
6, = 0, = At+B (for which clearly D2 = 0), while the finite
solution gives the frequency of free vibration of the system.
That there is only one degree of vibrational freedom is shown
by the fact that the amplitudes and phase-angles of the motion

of the two inertias are related by (6.1). Let the motion of the
two inertias be

F = %{ C.p.8., where w? =0 or (6.4)

0, = A, .sin (wt+¢,)
6’ = A’.Bin ((Dt+¢g)

then b, = — w?4,.sin (0t +¢,)

and 6’ s w’Ag.sin (wt+¢.).

But from (6.1) J.,0, = — J,0,

.heno& JIAI.Sin (wt+¢1) = — J‘A. sin (wt+¢.) . (6.5)
If the amplitudes 4, and A, are regarded as positive (see the
note on the sign convention in section 4) then sin (wt+¢,) = — 1

whenever sin (wt+¢,) = 1. Hence ¢, and ¢, are separated by
an odd integral multiple of =, for if
wt+¢, = 2K,n+n/2, then sin (wt+¢,) =1
and wt+¢, = (2K,+1)n+=/2, K, and K, being integral.
Thus : ' '
¢r"¢1 = [2(K: - KIH"I]"- v
Furthermore, (6.5) gives the result J,4, = J,4,. If the motion
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of J, is A,.sin (wt+¢), then that of J, is

, =§1 ,.sin (@i+d+7). . . (6.6)
as gzz‘;)))[z(x, — K)+1n = g‘;;))n

The vibrational motion of the two masses is therefore such that
they move in opposite directions, and it is important to note
that there are only two arbitrary constants 4, and ¢ in the formula
(6.6). The initial conditions of the motion can be given as the
displacements and velocities of the two inertias at the instant
t =0, and it is left as an exercise for the reader to include
appropriate terms in the solution to express the steady rotation
of the system, and generally to determine the four necessary
arbitrary constants to make the solution fit the general initial
conditions. (See Exercise 2 at the end of this chapter.)

The equivalent linear system would consist of two masses
connected by a spring and supported on a smooth table, the
motion being horizontal along the line joining the two masses.
The simplified system of Fig. 1 is the result of making one such
mass infinite and rotating the system from a horizontal to a
vertical position.

Summary.

Whenever the physical properties of a mechanical system are
such that the force acting on a mass tending to restore it to its
position of equilibrium is proportional to the deflection from that
position, the mass can execute a sine-wave vibration at a constant
frequency which depends solely upon the mass and the intensity
of the restoring force. The formula for the frequency is given
in (5.1) on page 11.

The amplitude and phase-angle (relative to the chosen time-
datum ¢ = 0) depend upon specified initial or other conditions ;
for example, if the initial displacement and velocity are given,
these constants can be calculated and the vibration is then com-
pletely determined.

EXERCISES I
1. Find the general solution of the equation
i+ Pz+Qx =0,
where P and Q are independent of z and ¢.
(See end of section 2.)
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2. Determine the motion of the two flywheels in Fig. 4 if the initial
displacements and velocities are ®,, @,, ©,, €,; and find the conditions
(i) for steady motion only, with no vibration, and (ii) for vibrational
motion only, with no steady rotation.

(Method : show that the steady rotation formula 0, = 6, = A¢t+B is
a solution of the equations of motion, and determine these two constants
and the two constants contained in the formula for vibratory motion,
section 6, in terms of the initial conditions. Note that in the steady
rotation there is no relative motion between the flywheels.)

3. Find the general solution, in terms of exponential functions, of the
fourth-order equation

dly

dat = k'Y

(This equation occurs in the theory of beam vibration, see Chapter V,
section 25. Proceed as in section 2; the general solution contains four
arbitrary constants.)

4. Assuming that the vibration is in the form of a sine-wave, determine
the natural frequency of the system in Fig. 1 by considering the energy
in the system. The kinetic energy is a maximum, and the potential
energy zero, in the positions where the displacement is zero ; the kinetic
energy is zero, and the potential energy a maximum, where the displace-
ment is a maximum in either direction. Make use of the fact that the
total energy content is a constant in the absence of dissipating forces.
(See page 92.)

5. If a sinusoidal vertical force is applied to the mass of Fig. 1, calculate
the amplitude of the force required to maintain unit amplitude of vibration
of the mass ; hence find the natural frequency, as that frequency at which
the required force has zero amplitude.

(The extension of this process is very useful in the study of more
complex systems; see page 73.)

6. Calculate the inertia which must be added to the flywheel in the
torsional pendulum (Fig. 3d) so that any given frequency may be the
natural frequency of the system.

(This inertia, which is a function of the given frequency, is termed
the “ tuning inertia *’ ; it has the same magnitude as, but the opposite
sign to, the ¢ effective inertia,” which is widely used in the analysis of
more complex systems; see page 60.)



CHAPTER IT

DAMPING AND FORCED VIBRATION
(One Degree of Freedom—continued)

Introductory.

As already noted, the sine-wave motion discussed in the preceding
chapter is in practice modified by the effects of energy dissipation.
These effects must be taken into account when studying the
vibratory response to applied forces, otherwise the over-simplified
theory leads to results which are not obtained in practice.

In the first section of this chapter it is shown that a force
opposing motion, and proportional to the velocity of the motion,
does a definite amount of work during each cycle of the vibration.
Such a force, usually termed a * viscous damping force,” is
normally assumed to be present in all vibrating systems, and is
found to account quite well for many of the actual observed
properties of such systems. The behaviour of the simple system
of Fig. 1, modified by the inclusion of a “ dashpot” exerting
such a force on the mass, is studied in Section 8.

Generally speaking, the free vibrations of structures are not
of importance in themselves ; what is of much greater practical
importance is the response to imposed vibratory forces. For
various reasons, the imposed forces are at first supposed to be
sinusoidal. The vibratory force due to an unbalanced rotor is
of this form, and the practical result of Fourier’s theorem (see
Chapter VI) is that any type of periodic force can be represented
as the sum of a number of sinusoidal forces ; finally, the response
to a sinusoidal force is a sinusoidal displacement. Consequently
the force acting in the system of Fig. 9, page 25, is assumed to
be of this type.

The mathematical study of the response to the applied force
displays the extremely important phenomenon of resonance, which
may truly be said to be the key to the whole theory and practice
of vibration treatment.

As examples of the application of the theory, the use of
flexible suspensions to reduce the transmission of vibratory
forces, and the response characteristics of a simple seismic
vibrograph, are briefly described in Section 12. In the second

18
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part of this section the use of complex numbers is illustrated ;
the introduction of these quantities greatly simplifies the mathe-
matical analysis of damped vibrations. The question of insulation
is further considered in Appendix IV, page 134.

7. Dissipation of energy.

It has already been noted that the amplitude of free vibra-
tion of a practical system diminishes in time so that the motion
decays to zero, and that during this process there is a loss of
energy. It is now necessary to determine the origin of this
energy loss. If a system is constructed to resemble that in Fig. 1,
and it is set in vibratory motion by an initial displacement, the
motion is observed to be approximately sinusoidal during suc-
cessive small intervals of time ; in fact, it differs from sinusoidal
motion only in the diminution of amplitude. In order to discover
the cause of the loss of energy, the motion will be assumed sinu-
soidal and the work done during one cycle of the motion by an
impressed force will be calculated.

Let the displacement be given by

z = X.sin ot . . . . (1)

and let the force f be a linear function of the dxsplaoement
velocity and acceleration, say

f=A+Pr+Qi+Ri . . . (1.2

This force is applied to the mass, and the work done by the
force is given by

W=pw
But g—:: =&, and so dx = #.dt. Thus
- W = [e.ae.

If attention is coﬁﬁned to one cycle of the motion the limits of

integration differ by the period of vibration. The frequency
being w/2n, the penod is 27/w, and the work done by the force

during one cycle is
2n
W=fﬁw ‘
0
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o 2n
Thus W = J"" (A+Po+ Qi+ Ri)é.dt.
0
Giving z its sinusoidal form (7.1) the integral becomes

2n
w =JT' [A4+(P — Rw?)X .sin wt+QwX .cos wtlwX .cos wt.dt
0
2n 2n
=J""wa.cos o. dt+F%wX2(P — Ro?) sin 20t.dt
0 0

2n
+ j “ 1X%°Q(1+ cos 20t)dt
0

2n 4

=[§w2X2Qt]:=wX2Qn L. a3)

It isevident that the only part of the force that has done work
over the whole cycle is the part @z = QXw cos wt; the other
parts of the force each contribute nothing to the work done
over the cycle. This result suggests that an explanation of the
dissipation of energy during the motion of the practical system °
may be that work is being done against a damping force propor-
tional to the velocity of the mass. The theoretical results
obtained by analysing the motion on such an assumption are in
good agreement with practical results.

8. Damped motion of single-mass system.

The theoretical system of Fig. 1 is now extended, as shown
in Fig. 5, by the addition of a ‘‘ dashpot,” the function of which
is to exert a force ¢z proportional to the velocity of the mass
and opposed to the direction of motion. The symbolic spring
and dashpot do not necessarily represent separate parts of the
system, but rather different properties of the same part, i.e. the
practical spring. The symbolic spring represents that property
of the spring whereby it opposes motion of the mass with a force
proportional to the displacement, and is merely an energy-
storing device jncapable of dissipation; the constant of pro-
portionality, k, is sometimes referred to as the non-dissipative
stiffness. The symbolic dashpot represents that property of the
spring (and surrounding air) whereby motion is opposed with
a force cz proportional to the velocity, and is merely a dissipative
device incapable of storing energy ; the constant ¢ is called the
damping coefficient or resistance.
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Apart from air-resistance, the energy is dissipated by way
of internal friction in the spring; in the system of Fig. 5 the
dashpot represents both the resistance of the spring and that of
the air surrounding the system. The force exerted by the dash-

“DASHPOT"

. F1a. 5.—System of Fig. 1 modified by inclusion of a dashpot.

pot on the mass is — ¢, and the equation of motion is therefore

mi=—kx—ck . .. . (81)
As before, let w2 = k/m, and further put 2y = c¢/m. (8.1) then
becomes

E+4+2y2+ 0¥ =0,
and the operational equation obtained by using the operator D
and dropping the variable x is

D*4+2yD+w?=0 . . . (82)
Proceeding on the lines of the previous work (Section 2) this
equation is solved for D, thus:

D=(§)=—-7:l:.\/)7’t—a>—“

and in this solution « and B take the place of 4 tw in (2.4).
The form of (2.5) suggests the solution
x = O+,
ie.
=0, exp (—p+ Vy?—w?)i+C, exp (—y—\/y’—w’)t - (83)
where the notation exp 0 is used in place of €® for convenience.
Direct substitution shows that the function (8.3) does in fact
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satisfy the equation of motion (8.1), and as it contains the neces-
sary two arbitrary constants it is the required general solution.

The ‘physical significance of the solution (8.3) depends upon
the nature of the expression Vy? — w?. Three cases need be

considered, according to whether y is greater than, equal to, or
less than w.

(i) If y > o, both roots « and B are real and negative, for

Vy? — ? is then real and numerically less than y ; the graph
of the displacement plotted against time is therefore the sum of

x
<
2
x=C e.t+ CgéSt
x/c, PLOTTED AGAINST t
WITH Ca/Cc, AS PARAMETER
1
o
) e T -
-2
-1

Fia. 6.—Displacement : time curve for damped motion (more than critical
damping).

two decreasing exponential curves (see Appendix I, section 31).
The shape of the graph depends upon the values of C, and C,,
which in turn depend on the initial conditions of the motion.
Fig. 6 illustrates some typical shapes; in this diagram the
function z/C, is plotted against time for the particular values
‘a=—1, p = — 3, and for various values of the ratio C,/C,.
(ii) If y = o, both roots « and § are equal to y. (8.3) becomes
x = (C,+C,)e™",
but this function involves only one arbitrary constant (C;+C,)
and cannot be the most general solution. To find the general
solution the following procedure is adopted : -
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Let x = z.exp (— yt), where z is to be determined. Then
Dz = — ye " .z2+e . Dz
and D2y = p2e" .z — 2pe~". Dz4-e~".D%.
Substitution of these values in (8.2) leads to the result
(w2 — y2e " . 24e" . D% = 0
ie. D% =0, as y = w.
Double integration with respect to time gives :
z = Cgt+C,,
and x = (Cgt+C)e . . . (8.4)
The displacement-graph plotted against time may have either
of the forms indicated in Fig. 7, depending on the initial con-
ditions. (See Exercise 1 at the end of this chapter.)

x
(e)

\_/ bt
(b)

Fie. 7.—Displacement : time curve for damped motion (critical damping).

The condition y = w is known as the condition of critical
damping ; the corresponding critical value of the damping
coefficient (¢ = ¢,) is a convenient standard of comparison for
damping coefficients and is easily found :

y=a)=/J&-
m

and ¢ = ¢y = 2my = 2mw
whence co = 2Vmk . . . . . (8.5)
The physical significance of the critical-damping condition is :
that in this condition the system is brought practically to rest..
in a shorter time than if the damping is either greater or less
than the critical value (see Exercise 4 at the end of the chapter).
For this reason, many indicating instruments have their suspen-
sions critically damped.

(iii) If y < w, let ¢ = Vw? — 92, so that ¢ is real.
Then z = e 70,6+ Cye™ ),
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and as in Section 2 of Chapter I this expression may be rewritten
in trigonometric form :

x = e (A .sin gt +B.cos gt)
where A =1(C, — C,)
B = (,+C,
or alternatively, SN . (8.68)
x = e ".a.sin (¢t +¢)
where a=VA*4+B?
tan¢ = B/A J

The graph of the displacement plotted against time has the
form indicated in Fig. 8, the curve being a damped sine-wave

xA R
Pz
B8
\ |

BI

A

Fi1c. 8.—Displacement : time curve for damped motion (less than critical
damping).

lying between a decreasing exponential curve AB and its mirror-
image A’B’ in the time-axis.

Case (iii), when the damping coefficient ¢ is less than the
critical value c,, is the most important case in practice. A useful
property of the curve (Fig. 8) is the manner in which the wave
decreases in amplitude. The points P,, P, are successive maxima
at times ¢, and ¢,, so that ¢, = ¢,+2xr/q ; the amplitudes z, and z,
at these times are very nearly equal to the values of the expon-
ential function a.exp (— yt) at P, and P,, ie.

—q.e~ "
:1 — Z::—w.}&PPl‘Oximately.
Let the ratio zv,/a:l be M. Then U = exp [_ ?(t,v— tl)]
ie. p# = exp (— 2yzm/q) = exp (— mc/mq)

This ratio is independent of the initial amplitude and the time
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t;,, and is thus the same for all pairs of consecutive maxima.
If A= —log.u

then a=" . . . (8.7)

mq
This quantity is termed the logarithmic decrement, and provides
a ready means of determining the damping coefficient ¢ of a
system, as all the quantities in (8.7) except ¢ can be evaluated
experimentally from the physical constants of the system and
a dlspla.cement curve or vibration record.

There is no real cycle of the motion, as the amphtude of
vibration is constantly decreasing, but the maxima and minima
of the displacement curve (Fig. 8) each recur after successive
equal intervals of time 27 /g, and the quantity q/2x is termed the
“ frequency ” of vibration. The larger the value of (y = ¢/2m)
is made, the lower the frequency

q

i 2 2
_ i A
becomes.

As a practical result it is interesting to note that after w/y
“ cycles ” the amplitude of the motion is only 0-19 per cent. of
its original value, so that in most practical examples the motion
is effectively damped-out after this number of cycles (see
Exercise 5 at the end of the chapter).

9. Forced motion.

So far the analysis has been concerned with free vibrations,
i.e. vibrations maintained solely by the energy stored in the
system at the commencement of the motion. If the vibration

\

kR F1c. 9.—System of Fig. 5
C modified by inclusion of an
‘ P, sinpt applied force.

of a damped system is to be maintained at constant amplitude
there must be an energy input. Fig. 9 represents the system
of Fig. 5 acted on by a harmonic force P = P,sin pt. The
equation of motion is

- m& = P,y sin pt — kx — c&
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. i . . _ P, .

i.e. E42yit i = — sin pt ] 0.1)
where 2y =c¢/m, w®=k/m

In operator form this becomes

[D*+2yD+w?lx = % sir pt.
Operating on both sides of the equation with [D? — 2yD+w?)
[(D*+a%): — 4y3D% = 2D — 2D-+0?] sin pt
and this last equation can tentatively be written as:

z— P, [D?— 2yD+w?]
~m (D e — 4]

or z= 1;;3[1)2 — 29D+ w[(D?+w?)? — 49D -1sinpt (9.2)

sin pt

If the second bracket, with its negative index, is now expanded
by the Binomial Theorem, it is seen that every term in the
expansion contains powers of D2. But
D2sin pt = — p?sin pt
Disinpt =  p*sin pt, ete.,
so that wherever the operator D? appears in (9.2) the multiplier
— p? can be substituted. (It is. to be noted that the validity
of this procedure is to be checked by ascertaining whether the
derived solution satisfies the original equation.) 9.2 now becomes
z — Po/m)®? — p? — 2yD] sin pt
- (w? — p?)24-4y2p?
and performing the operation indicated by the square bracket
the result is obtained :
_ Py,/m
(0 — ) ayip?
which can be written as:

[(w? — p?) sin pt — 2yp. cos pt]

x = b.sin (pt — y)
P,/m
[(0* — p?)*+ 4% (9.3)

2yp
tany =i v
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Using the equations 2y =c¢/m, and ¢, = 2Vmk, (9.3) can be
written in an alternative form which is sometimes more useful :

= Po ‘
=5 T
w Co w
cr F . (9.4)
and tany = _c.,;;
"ot

This solution contains no arbitrary constants and cannot
therefore be the general solution. It is termed the particular
integral of the equation (9.1). To determine the general solution
" the procedure is as follows : i
Let # = u+v, where v stands for the solution (9.3). Substitu-
ting in the operator form of (9.1),

[D*+2yD+w?(u+v) = % sin pt

ie. [D*+2yD+w?lu+[D?+2yD +w?y = % sin pt
But v satisfies (9.1) and hence

(D*+2pD+ oy = fni sin pt

thus [D2+2yD+w?u = 0.

This last equation is exactly similar to that discussed in Section 8,
and if ¥y < w the solution is given by (8.6), i.e.

u =e . a.8in (¢t+¢) . . . (9.5)

The function w contains two arbitrary constants (a and ¢) and
is itself the solution of the equation obtained by putting zero
in place of the right-hand side of (9.1). Such a function is
termed a complementary function, and it is a general result in
the theory of differential equations that the complete solution
of an equation such as (9.1) is the sum of the complementary
function and a particular integral determined as in (9.3). (See
Exercise 2 at the end of this chapter.)

The complete solution z is given by

& = u+v = b.sin (pt — p)+e ".a.sin (g+4) . (9.6)

~
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The term due to the complementary function « is a decreasing
time-function, as in Fig. 8 ; after a time this part of the motion
is practically damped out, and effectively the displacement
function consists merely of the particular integral ». Such a
motion is termed ‘‘ steady-state forced vibration,” and is the
only part of the complete motion that is at all important.

10. Resonance.

The frequency of the steady-state motion is the same as that
of the impressed force, namely p/2x. It is of interest to investi-
gate the relation between the amplitude of steady-state motion
and the frequency. From (9.3) the amplitude is given by

_ P,/m

 [(w? — P4y
If P is independent of the frequency, b has a stationary value
whenever

j— ((02 —_— p2)2+4y2p2
has a stationary value (maximum or minimum). Differentiating
B with respect to p, which is proportional to the frequency of
the impressed force,

o = S+t — p)(— 2p)
= 4{2y*p+p(p* — @?)).

Hence b has a stationary value when p =0
or 292 4p? — w2 =0
ie. p= Vo —22 . . (10.1)
It can be shown that when p = 0, b is & minimum, and for the
value (10.1) b is a maximum ; thus the amplitude of the steady-
state motion has a maximum at the frequency

P _ oo

2  2n @ 2
and the graph of displacement-amplitude plotted against fre-
quency has the general form indicated in Fig. 10.

The condition of maximum displacement-amplitude for a given
impressed force is termed resonance, and the corresponding fre-
quency is termed the resonant frequency. The practical impor-
tance of resonance cannot be emphasised too strongly. Indeed,
the treatment of vibration problems in engineering is almost
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entirely a matter of detecting resonant frequencies and avoiding
resonant conditions, for at resonance the vibration-amplitude of
the system is maximum and the resulting stresses in the system
similarly have maximum values. The normal procedure in
dealing with practical vibration problems is to determine the
source of vibration (i.e. the origin of the input force) and the
resonant frequencies, either theoretically or practically, and then
to arrange matters so that the machine does not run in a resonant
condition. There are usually four ways in which this may be
done, any or all of which may be possible in a particular case :
(i) eliminating the source of vibration, (ii) absorbing the input

VIBRATION RESONANCE
AMPLITUDE .

FREQUENCY =
F1a. 10.—Resonance curve for system of Fig. 9.

energy in some way, (iii) altering the speed-range of the machine
to avoid resonance, and (iv) removing the resonance from the
operating-range of speed by suitable alteration of the dynamic
constants of the system. The precise technique involved is a
matter of engineering detail and as such is outside the scope of
this work, but one type of energy-absorber is discussed in
Chapter III, section 15. .

A measure of the intensity of the resonance effect is afforded
by the quantity known as the dynamic magnifier. The dynamic
magnifier at a point in a vibrating system is defined for a par-
ticular frequency as the ratio of two deflections : (i) the dynamic
amplitude at that frequency (as given, for example, by b in (9.3))
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and (ii) the deflection caused by the application of a static force
equal in magnitude to the amplitude of the forcing input. In
the system of Fig. 9 the dynamic forcing input is P, sin pt, and
the static deflection under the action of a force P, is P,/k at
the mass. The dynamic magnifier at the mass is thus given
from (9.3) by

w? '
. M= v —prappy - - (0%
as w? =k/m
M= 1 . (10.2)

pz 2 02 p%

1 — % 4 =

» N/( wz) + Co® w?
using the relations 2y = ¢/m, ¢, = 2 Vmk.

Using the-equation (10.1) it can easily be shown that at resonance

this expression becomes :
1

M =
res. 2£J1 _[c\e
Co Co
where ¢o = 2V'mk as before.

The greater the ratio of the damping coefficient ¢ to its critical
value c,, the less becomes the value of the dynamic magnifier
at resonance. Fig. 11a represents the dynamic magnifier curves
for the one-mass system for two values of the damping coefficient :
109% and 209, of the critical value. The magnification of
amplitude due to the resonant condition is seen to be very
much greater for small damping forces than it is for large damp-
ing forces. If there is no damping, the dynamic magnifier at
resonance has an infinite value, but this is of course a purely
theoretical consideration ; the curve for zero damping is drawn
dotted in ‘Fig. 11, and it is evident that for a lightly damped
system the magnifier is not very different from that for zero
damping, except in the neighbourhood of the resonant frequency.
A table of values of the dynamic magnifier in the absence of
damping forces is given in Appendix ‘V, page 146.

The general shape of the dynamic magnifier curve Fig. 1la
is typical for single-mass systems with a forcing input of the
form P = P, sin pt, where P, is constant ; this type of forcing
is commonly termed ‘‘ constant excitation.” A type of excitation

. (10.3)
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that is of very frequent occurrence in engineering is that due to
centrifugal action on unbalanced rotors; the reactions at the
bearings supporting the shaft are then of the form P=@p? sin pt,
as the centrifugal force acting on the unbalanced rotor is propor-
tional to the square of the rotational speed. The dynamic
magnifier curve for this type of forcing, commonly termed

M

5 : |C=v
et
4 ~C/Co® O\

' 2 Plw -~

g g
2 2 DA N6
a © 2 d)
£ sy S =
5 2
é&m“ é INCREASING

7 Ploo T Yo

—Dynami i in Fig. 9: (a) constant excitation ;
e (11))1 'inertia exgtzag!nl.!ﬁe];oﬁetmt?d togsuppoﬁ't): (c) constant excita-
tion; (d) inertia excitation.

“ inertia excitation,” has the form indicated in Fig. 11, from
which it can be seen that, for inertia excitation, the magnifier
has zero value at zero frequency and approaches unit value ?t
very high frequencies. (Note.—In this case the relevant st?,txq
deflection to be used in the definition of the dynamic ma.gmﬁ?r
—see the paragraph immediately preoeding.equations 10.2—is .
the deflection Q/k under the action of a static force @, not Qp?*
which has zero value at zero frequency.)
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Although the free vibration, given by the complementary
function (9.5), is damped-out after a short time owing to the
decreasing exponential factor, its amplitude may be quite con-
siderable at the beginning of the motion, the amplitude of the
total motion (9.6) being thereby increased temporarily to an
extent which can be troublesome in practice; this effect is
particularly significant in cases where the exciting force is started
and stopped frequently, when the  starting transient >’ (i.e. the
complementary function) may seriously increase the risk of
fractures being caused by excessive vibration amplitudes. Many
instruments are critically-damped to avoid this vicious condition.
An elementary treatment of transients has been given elsewhere
by the author, see references 13 and 14 in the Bibliography,
page 151. (See Exercises 6-9 at the end of the chapter.)

11. Resonance and natural frequency.

In the present section the resonance characteristics of a
single-mass system under the action of a constant excitation
force are discussed. Analogous results are easily obtainable for
the case of inertia excitation, the most important practical
characteristic of which is concerned with the problem of insulation,
see Section 12, Example I.

The resonant frequency of the single-mass system of Fig. 9
is, from (10.1),

F,, = %t = 2%'\/(02 - 272 . . (11.1)
and this expression can be rewritten in terms of the critical
damping coefficient (c, = 2Vmk) as

F,,&=§_‘;_N/1 _'2(5.)2' .. (112

It can be seen from (11.2) that if the damping force is small so
that the square of the ratio ¢/c, can be neglected in comparison
with unity, the resonant frequency is equal to w/2n. This
frequentcy is the natural frequency for zero damping (Chapter I),
and if the system is lightly damped no great error is involved
in neglecting the damping force altogether and making use of
the natural frequency of the resulting system instead of the true
resonant frequency.

It is shown in Chapter IV, section 18, that this result can
be extended to multi-mass systems, for such systems vibrating
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at any frequency can be considered as built-up of partial single-
degree-of-freedom systems, plus an auxiliary mass known as the
effective inertia of the complete system ; and the resonant frequency
of each such partial system is approximately equal to the natural
frequency for zero damping, so long as the damping forces are
small. Some examples of the error involved are listed in Table IT
for various values of the ratio ¢/c,.

TaBre II
Dam;;ing coeff. Ns;uml frequency
Critical value _for zero damping Error
Resonant frequency
c/cy o/p %
0 1-00 0
0-1 101 1
0-2 1-04 4
0-3 : 1-10 10
0-4 1-21 21
0-5 1-41 41
The error quoted is that involved in using the natural
frequency w/2n instead of the resonant frequency p/2x.

The practical importance of this result is that it is very much
easier to neglect damping forces altogether, and calculats the
natural frequencies of the resulting modified system, than it is
to calculate the resonant frequencies ; Table II shows that the
error involved in this procedure is negligible in the case of lightly
damped systems.

One further useful property of the resonant condition of
lightly damped systems is the value of the phase-angle y in the
expression (9.3) or (9.4). When p = , i.e. at the natural fre-
quency for zero damping, the angle y has the value /2, as the

"V/—\ Foce
A — />R/t-_
N/ VAV

F1a. 12.—80° phase-angle between force and displacement waves atDreeoganoe.
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denominator of the expression for the tangent is then zero, and
the tangent has an infinite value. Thus in a lightly dampefl
system the phase-angle at resonance is approximately n/2. This
angle is the angle by which the displacement-wave b.sin (pt — p)
lags behind the force-wave P,sin pt, as illustrated in Fig. 12.
Fig. 13 shows representative curves of the phase-angle for various
values of the ratio ¢/c,, plotted against the non-dimensional ratio
P/w which is proportional to the frequency p/2n. For very small
values of the ratio ¢/c, the curve approximates to the discontinu-
ous line for ¢ = 0, the characteristic of which is that for excitation
frequencies below the natural frequency the displacement is in

V

IOO. —_’__________'asr-‘
g |
/ p—
90"
i = 2 " .PA/w

Fra. 13.—Variation of phase-angle with frequency.

phase with the force, whereas for frequencies above the natural
frequency the two waves are 180° out of phase so that the rotating
vectors in Fig. 12 are separated by 180° or m radians.

A fairly simple relation between the dynamic magnifier M
and the phase-angle ¢ can be obtained from equations (9.4).
This relation is

» = cos ¢
S 11.3
where X=p/o= frequency of vibration (11.3)

natural frequency

12. Practical examples.

In order to illustrate the use of the foregoing analysis, two
practical examples are discussed in this section. The first involves
the principles of vibration insulation, whereby the force trans-
mitted from a vibrating machine to its support is reduced by
means of an elastic mounting ; the second is the case of a seismi¢
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vibrograph for recording vibration-amplitudes, and in the treat-
ment of this problem the complex-number method of calculation
is introduced.

1. Insulation (see also Appendix IV, page 134).

A machine, which may be considered as a rigid mass of
1,930 lbs., is acted on by an alternating vertical force, whose
amplitude is 400 Ibs., at a frequency of 3,000 c.p.M. The damping
forces in the system can be made to have 209, of the critical
value. If the alternating load is taken equally by four spring
feet of identical design, what must the stiffness of each mounting
be in order that the total alternating force transmitted to the
base is only 100 lbs. maximum ?

In essentials the system is that of Fig. 9 inverted, the four
identical spring mounts being considered as combined together.
In Fig. 9 the total alternating reaction on the support is kz +c& =f,
and if x = b.sin (pt — y) the force is

Jr = b[k.sin (pt — p)+cp.cos (pt — y)]
= bV'k?+c?p?.sin (pt+¢)
where the phase-angle ¢ is not important. The maximum value
of the reaction force is
fma.r. = b‘/kg'f'cspz :
which can be written in a form similar to that used in (9.4) as :.
Fmas, = bmo®*V1 444y = 2bmw:V'i+iu

where A= (-1-’-)2
(2]
and Cou= (cf)2 = (02)? = 0-04
0
ie. Fmaz. = 2bmw?V0-2540-044.
Substituting for b from (9.4),
£ 2P,V 0-254-0-044
max.

T [(1 — A)240-16A]
and when P = 400 lbs., f,,,. must be 100 lbs.

Hence 8v0-2540-044 = V(1 — 2)240-161
Solving for 2, '
. - p e
(_) — =666
w
ie. 2 _ 958

w
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But it is given that p/2x = 3,000/60 = 50 ©.P.S.
Hence =50 X 21 -+ 2:58 = 122

Also w = E, and m = 1,930 - 386 = 5 slugs.
m
Hence k=5 x 1222 = 7-45 X 104 1bs./in.

The total stiffness of the four similar mounts is thus 7-45 x 104
lbs./in., and that of each mount is one-quarter of this value,
i.e. 186 x 10* lbs./in.

This example shows the property of partial insulation possessed
by a spring mounting ; by choosing the mounting so that the
working frequency is 2-58 times the natural frequency, the force
transmitted to the base is reduced to a quarter of the applied
force.

In connection with this insulation effect, it is a matter of
some practical importance to determine the precise result of
increasing the damping forces in the systems. By the method
given above the general formula for the transmitted force due
to an applied force P = P,sin pt is obtained as:
_ PV1+4ipu
. V(1 —2)*+4ip
By differentiating this expression with respect to u, keeping 4
constant, it is found that for A less than 2, i.e. for a forcing
frequency less than V2 times the undamped natural frequency,
an increase in the damping force causes a decrease in the trans-
mitted force, whereas for A greater than 2, i.e. for a forcing
frequency greater than V2 times the undamped natural frequency,
an increase in the damping force causes an increase in the trans-
mitted force. Representative curves are shown in Fig. 1lc.

If @p? is substituted for P, in (12.1), so that the expression
corresponds to the case of inertia-excitation, the increase in
transmitted force due to an increase in the damping force, when
the forcing frequency is greater than v'2 times the undamped
natural ffequency, is more violent than for the case of constant
excitation ; representative curves for this type of excitation are
shown in Fig. 11d.

The choice between great or small values of the damping
coefficient in any particular practical case depends to a large
extent on whether there is any likelihood of the system being

. (12.1)

max.
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vibrated accidentally in a resonant condition. For high fre-
quencies of excitation, large damping forces are a disadvantage,
but in the neighbourhood of resonance the effect of decreasing
the damping forces may easily be disastrous, owing to the much
greater effect of magnification at resonance.

II. Seismic vibrograph.

Fig. 14 illustrates the seismic element of a simple type of
vibrograph. The base A4 is attached to the structure whose
vibration-amplitude it is required to measure, and means are
included for recording the amplitude of the relative displacement:
between A and the mass m. It is required to draw the ‘ response
curve "’ of the instrument, i.e. a curve showing how the ratio

amplitude of relative motion

amplitude of motion of base
varies with the frequency. The natural frequency of the instru-
ment is 500 cycles per minute, and the damping can be made
to be between 0-1 and 0-7 of the critical value.

c R

= = A
Fie. 14.—Seismic element of simple vibrograph (recording-gear not shown).

Let the displacements of the base and the mass be z and y
respectively,  being a sinusoidal time-function of frequency
p/2n cycles per second. The alternating forces acting on the
mass are k(x — y) and ¢(Z — g), and the equation of motion is

k(z — y)+e(@ — y) = mj

ie. ‘ mijt+ej+ky = cE+kx . . . (i)
Let the amplitude of x be X, so that
z = X .sin pt.

It is evident that the right-hand side of the equation (i) represents
a sinusoidal force of frequency p/2n, and the displacement y
can be obtained by a method similar to that adopted in Section 9.
It is convenient here, however, to introduce an alternative
method of solution involving complex-numbers.

It has been shown in Section 3 that a sine-function of fre-
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quency F can be regarded as the projection of a vector rotating
with angular velocity 2nF (see Fig. 2). If the displacement
z = X.sin pt, the velocity # = Xp.cos pt, or

% = Xp.sin (pH—g),

and the corresponding vector is phased =/2 radians ahead
of the displacement vector. Elementary vector-analysis (see
Appendix I, section 35) utilises the symbol j to represent a
versor-operator which turns the associated vector through an
angle 7/2 radians in the positive sense. If the vector resulting
from this rotation is operated on again by j it is turned through
a further angle #/2 radians, so that it is finally phased n radians
ahead of the original vector. As
sin (0+4x) = — sin 0,
the operatlon j? is equivalent to changing the sign, i.e.
ir=-1

and in general the operator j has the algebraic propertles of
i=v —1

The form of equation (i) shows that the displacement y is
a sinusoidal time-function of frequency p/2z. Thus the velocity
g can be written jpy and the acceleration § = — p2%. (As a
check on the method, it will be observed that in Section 2 it was
found that the velocity # of a displacement x = X .sin wi is

& = Dx = iwz (see 2.4)

and in the present section the operator j is being used in place
of the number ¢.)

Rewriting the equation of motion in terms of j,

(k — mp2+jep)y = (k+jep)x.

Hence y i&
: k — mp?+jop
and Y°%_ "‘P” _ mp*(k — mp? — je).

z  E—mpiijop  (k— mp’)’+c’p’

Substituting the sinusoidal form for z, ,
y —x _ mp*(k — mp?) sin pt — cp.cos pt]

X (k — mp?)24cip?

mp? _

~ [ — mptyerprp P 9
where tang = P
k — mp?
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The amplitude of the relative motion is therefore

_ mp:X
rel- 8P = [ mp o]
or, making use of the substitutions w? = k/m, ¢, = 2V ﬁ,
A = (p/w)? and p = (c/cy)?,
X
rel. amp. =

P = =2
Fig. 15 shows curves of the relative amplitude plotted against
frequency (it is given that the natural frequency is 500 c.p.m.)

for values of the damping coefficient from 0-1 to 0-7 of the critical
value. For frequencies above twice the natural frequency, i.e.

REL.
AMP

§X

4X

N / \g‘. 0.
o AN

0 500 1000 C.P.M
1 2 p/w

-

Fra. 15.—Response-curve for Fig. 14.

above 1,000 c.p.M., the response of the instrument is within
2349, of the motion of the base if the damping has 709, of the
critical value. At such frequencies the mass m is practically
stationary in the gravitational field of the earth, and the recorded
relative motion is therefore almost exactly the same as the
absolute motion of the base in the gravitational field.
Although it is no part of this present work to enter into
engineering details, it is relevant to observe here that large
damping fordes can be introduced into the system deliberately
by means of an electro-magnetic device, the damping effect of
which can be varied over a wide range by adjustment of the
electric current flowing through the coil of an electromagnet.
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Summary.

Provided the damping force is less than a certain critical
value, the effect of such a force on the free vibration of a simple
system is to cause a decay in the amplitude. Mathematically
the decay is expressed by multiplying the sine function by a
decreasing exponential function. If the damping force exceeds
the critical value there is no true vibration, but only a slow
return to the position of rest after perhaps one swing.

The response to an applied sinusoidal force is itself sinusoidal,
and has the same frequency as the force. The amplitude depends
upon the ratio of the frequency of force to the natural frequency,
being greatest when this ratio is unity. The frequency cor-
responding to a maximum response to a given amplitude of
excitation force is termed the ‘‘ resonant frequency *’; for small
damping forces such as are commonly encountered, the resonant
and natural frequencies are very nearly equal (for example,
Table II on page 33 shows that if the damping force is less than
109, of itss critical value, the difference between the two frequencies
is less than 19). .

At resonance the amplitude of response to an applied vibratory
force is very much greater than the response to a static force
of the same magnitude. This ‘““dynamic magnification ” at
resonance varies with the intensity of the damping force, as shown
by equation (10.3) on page 30. In practice the damping force
may be as small as 19, of its critical value, corresponding to a
dynamic magnification of 50 : 1 at resonance.

EXERCISES II

1. Determine the condition distinguishing between the two forms of
displacement curve illustrated in Fig. 7 and derived from equation (8.4),
and show that the curve cannot cross the time-axis more than once.

(Method : the type of motion depends upon the initial displacement
and velocity ; solve to find the time at which # = 0 in terms of these
initial values.)

2. Extend the method of Section 9 to prove the general theorem :

If [p(D)lx = [ap+a,D+a,D2+. . .+a,D"kr, where the a’s are
constants, and = v is a particular integral of the equation

[v(D)Je = f(2)

then = u-+v is the general solution of this equation, where x = u is
the general solution of the equation

[v(D)e = 0.
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Show also that this result is not true for non-linear equations 'such as
@ = ax+bt.

3. Show that if the force input in Fig. 9 is of the form P = Qp?sin pt,
where @ is a constant, the resonant frequency formula analogous to
(10.1) is '

@?
P = ot =2y

Draw a curve showing the relation between the displacement amplitude
and the frequency of the applied force. Show that for both types of
motion under the action of forces of the form P = P,sin pt and P = Qp?
sin pt this curve has no maximum if the damping coefficient has a value
greater than 1/4/9 times the critical value.

(This type of motion occurs when the exciting force is the result of
centrifugal action on an unbalanced rotor.) -

4. Verify that for damped free motion of a single-mass system the
mass is effectively brought to rest in a shorter time if the damping is
critical than if the damping is either greater or less than critical.

(Consider a particular system in which the damping has the values
1-1, 1-0, and 0-9 times the critical value, and the initial displacement
and velocity are x, and zero respectively. Find the times taken for the
displacement (or in the case of 909, critical damping, the exponential
“ envelope ’ 4B in Fig. 8) to fall to 109, of the initial value.)

5. Show that when the damping is very much less than critical, the
amplitude of the exponential envelope AB in Fig. 8 is only 0-199, of its
initial value after a time 2x/y, i.e. after w/y ‘‘ cycles * ; and show further
that after a time 1/y the amplitude is 1/e or 36-8%, of its initial value.

6. The mass in Fig. 9 is held rigidly while a harmonic force P = P,
sin pt is applied ; it is released at an instant whensin pt = 1; if p = /10,
and y = o/5, draw a curve of displacement against time.

(Let the amplitude of the forced motion be basin (9.4) ; at the instant
of release the displacement due to the forcing must have this maximum
value, so that the displacement due to the free motion, at a frequency
/27, must be — b; similarly the velocity of the free motion is zero.
The complementary function (9.5) therefore has an initial amplitude b
and a phase angle 3n/2. Sufficient is now known to enable the required
curve to be drawn. It will be seen that shortly after the instant of release
the displacement is instantaneously nearly double the amplitude of the
steady-state motion.)

7. A load P is suddenly applied to the mass in Fig. 9, the system’
being in a state of rest prior to the imposition of the load. If the damping
force is 5%, of its critical value, calculate the response, and show that the
mass finally reaches a static position at a deflection P/k below its normal
position. (See reference 13.)

8. The load P (see previous question) is suddenly removed after an
interval 7'. Find how the free vibration after the load is removed depends
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upon the relation between T and the period of free vibration. (See
reference 13.)

9. A constant vertical acceleration a is given suddenly to the base
4 in Fig. 14, and ceases suddenly after an interval 7. Investigate the
response of the mass m. (See reference 14.)



CHAPTER III

UNDAMPED MOTION WITH TWO DEGREES OF
FREEDOM

Introductory.

Ix the previous chapters attention has been confined to the
systems possessing one degree of vibrational freedom only : that
is, to systems whose configurations can each be completely
specified by means of one variable quantity, which is conveniently
taken to be the displacement of the single mass from the position
of rest.

A more complicated system may require more than one
variable for a specification of its configuration, and it is found
that it can have more than one natural frequency. Similarly it
is found that the response can have a maximum amplitude at
more than one frequency, i.e. there are two or more resonances.

It is shown in Chapter IV that provided the damping forces
are reasonably small, the resonant frequencies of complicated
systems are very nearly the same as the natural frequencies
calculated as if damping forces were absent. So nearly identical
are these two sets of frequencies that for all practical purposes
it is sufficient to calculate the natural frequencies, assuming no
damping. As outlined in Appendix IV, page 134, the practical
treatment of vibration problems depends largely upon the avoid-
ance of resonance, and so it is important to be able to determine
the resonant frequencies ; it is much easier to calculate natural
frequencies. If the damping forces are large, however, they must
be taken into account, in the manner outlined in Chapter IV,
page 76.

For the systems discussed in this chapter there are two natural
frequencies. It is found that the vibrating patterns are not the
same at the two natural frequencies; the values of the two
displacement amphtudes involved have different ratios: at the
two frequencies. It is well to keep in mind the fact that there
must be some fundamental physical distinction between. modes
of free vibration at different frequencies; in some cases this
distinction is to be found in the number of nodes, or pomts where

there is no wbmtlon
43



44 FUNDAMENTALS OF VIBRATION STUDY

13. Two-mass systenis.

In this chapter two different types of system with two degrees
of freedom are discissed ; the first is typified by the system of
Fig. 16, in which each of the two masses has one degree of free-
dom—namely, motion in the vertical direction—and Fig. 21
illustrates the second type, in which one mass has two degrees
of freedom as denoted by the arrow diagram in this figure.
' The two types of system are fundamentally
different and are treated in order.

It has been shown in Section 11 that the
resonant frequency of a lightly-damped system
with a single degree of freedom is practically
equal to the natural frequency calculated on the
assumption of zero damping. This result will be -
extended to cover multi-mass systems in Chapter
IV, section 18, and present attention is confined

Fro. 16.—Two. (0 the determination of the natural frequencies
mass system with of the two-mass system in Fig. 16. Let the
gzgnc’;:;m“l fre- displacements of the two masses below the posi-

tion of static equilibrium be 2z, and z,. The
extension of the lower spring is then z, — z,, and the equations
of motion for the two masses are :

myE, = — kg, +ky(xy — x,)
ie. mE, = — (k1+ka)x1+kz"”:} (13.1)
and myks = kg, — ka, )

The spring stiffnesses are constant and the motion of the system
can therefore be assumed to be sinusoidal ; the validity of the
assumption is, as usual, to be checked by investigating whether
the solution obtained does in fact satisfy the equations of motion.
Without loss of essential generality the phase-angle for the dis-

placement of the mass m, can be taken as zero, and the displace-
ments can be written :

2, = a, 8in w,¢ }
%y = @y 8in (wgt+¢)
Substitution of these values in (13.1) gives the equations :
(— my0,2+-ky+-ks)a, sin w,t = ka2, cos ¢ sin w,t
' +ksa,8in ¢ cos wet . (@)
}( 13.3)

(13.2)

(— mewy2+ks)a, cos ¢ sin w,t :
+(— myw,2+-ks)a, sin ¢ cos wyt = kya, sin w,t  (b)
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These equations are true for all instants of time ; put ¢ =0,
then (13.3a) becomes -

kga’ Sin ¢ = 0.
Now, k, is not zero by hypothesis, and hence either a, or sin ¢ is
zero. If a, is zero, so is @, from (13.3b), but if both a, and a,
are zero there is no motion. Thus sing = 0, and equa.tlons
(13.3) become
(— myw,2+k,+ky)a, sin ot = k,a, cos ¢ sin wgt (a) (13.4)
(— Mmawy2+-ky)a, cos ¢ sin wet = kya, sin w,t b) :
(where cos ¢ = 4 1).
The ratio a,/a, obtained from (13.4a) is
@ _ kycos ¢ sin w,t
229 _m]w12+k1 +ka.sin w;t'
This fraction being merely the ratio of two lengths, it must be

independent of the time ; thus the right-hand factor must reduce
to a constant, i.e.

Sin wgt = O.Sin (Olt,
where ¢ is as yet undetermined. If possible, let ¢ < 1, and put
t = n/2w,, then
7w,

1 =c¢.5in =
2w,

ie. sin 21> 1, which is impossible.
2w,

Thus ¢ cannot be less than unity; similarly, it can be
shown that ¢ cannot be greater than unity; hence ¢ =1, and
sin wyf = s8in w,t. For this last result to be true at all times,
w; = w;. Let w = w, = w,;, then the ratio a,/a, becomes :

8 _ kq cos ¢
Qs —myw?+-k+ks (13.5a)
This same ratio can be evaluated from (13.4b) as
4 _ (—mo’tk,) cos ¢ (13.5b)

as k,
By equating the two expressions for the ratio, the so-called
“ frequency equation ”’ is obtained :

i [ k,+k,]w2 |y

my m, m,m,

=0 . (13.6)
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As this equation is a quadratic in w? there are two natural fre-
quencies of the system, /27 and wgy/2r ©.P.S. Where

2w 2= ks+k1+k: _ [( k3+k1+k )’ _ 4"71’53]*

m’ m, My m, mymsy
k1+k: ’01 +70 470170:]*
2og" = _: + [( myms

Rearranging the expression in square brackets,

ky kitks [ ky It:1+lc,)2 4k,2 ]*
2 . M3, ™ —_ = —
Zogt = ms+ m, (’m: m, +'m1m:
_byhth B _kith )
me m, My
where C > 0
’ _ ofitks _ .
m,
Hence Wt < ki ks . . . (13.7a)
m,
Similarly it can easily be shown that
k
s . . . (13.7b
oyt > ol ( )
X2
A L :
T -
@ ®

F1e. 17.—Displacement : time curves for the two masses of Fig. 16 : (a) lower
natural frequency ; (b) higher natural frequency.

. Tt is convenient here to regard the amplitudes as being essentially
positive (see note in Section 4); the results (13.7) when sub-
stituted in (13.5) then give :

cosg = 1, ie. ¢=0if w =0,
cosp=—1,ie. ¢ =nif o =wy - (13.8)
(It has already been shown that cos ¢ = + 1.)
Two very important results have now been obtained :
(i) both masses vibrate with the same frequency, and
(ii) there are two natural frequencies, at the lower of which
the two masses move in phase (¢ = 0) as in Fig. 17a, whereas
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at the higher frequency the two masses always move in opposite
directions (¢ = =) as in Fig. 17b.

14. Deformation diagrams and nodes.

The configuration of the system when vibrating is known
as the ‘“ deformation shape,” and is illustrated by a “ deforma-
tion diagram > similar to Fig. 18, in which the amplitudes of the
motion of the two masses are plotted at right-angles to the axis
of the system. As the springs are supposed to be composed of
uniform material uniformly distributed, the deformation shapes
for the springs are straight lines AB’ and B'C’, where BB’ and
CC’ are the plotted displacements of the two masses and A is the

Fi1a. 18.—Deformation diagrams for the two masses of Fig. 16 : (a) lower natural
frequency ; (b) higher natural frequency.

suspension point. The deformation diagrams are quite different
for the two natural frequencies.

(i) Lower natural frequency (w = wy).
From (13.5b), when o = wy,

.a_l = —_— _'_n_._(?_‘l‘_z < l.

a3 ks
Moreover, a, and a, are positive ; hence a, < a;and the deforma-
tion diagram has the form indicated in Fig. 18a.

(ii) Higher natural frequency (v = wg).

The masses move in opposite directions, and there is a point
N on BC such that the displacement at N is zero at all times,
Fig. 18b. Such a point is termed a node.

At both natural frequencies the displacement of the suspension
point A is zero, since the support is taken to be rigid and so
does not move. The point A4 is therefore a node in both cases.

The shape of the deformation diagram, specified by the
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position- of the nodes, is termed the mode. The two modes of
vibration of the two-mass system of Fig. 16 are therefore :
(i) a one-node mode, the node being at 4, and
(ii) a two-node mode, one node being at 4 and the other
between the two masses.
In Chapter I, section 6, it was
Js A shown that the torsional two-mass sys-
Ja tem of Fig. 4 has only one natural
C [ G frequency ; similarly it can be shown
g that the three-mass system of Fig. 19
has only two natural frequencies. It
is left as an exercise for the reader to
L two 1 nm&:;g::fg show that the corresponding modes of
vibration are :
(i) a one-node mode, and
(ii) a two-node mode.
(See Exercise 1 at the end of the chapter.)
It must be emphasised that the same result would hold for
a linear system consisting of three masses, adjacent pairs being
connected by springs, the motion being in a horizontal line on
the surface of a smooth table ; the torsional case is more prac-
ticable, however, and is therefore to be preferred as an illustra-
tion. It will be seen from the results obtained that the number
of natural frequencies is, in all cases of
systems so far examined, the same as the

Y,

number of springs, whether linear or tor- R,
sional. This is true of any multi-mass P=P.5'npt‘
system in which the masses and springs
occur alternately (see Chapter IV, section17). k

2
15. Undamped vibration absorber. "

The system illustrated in Fig. 20 is Fie. 20.—Undamped

a simple type of dynamic absorber lay- Vibm‘;il‘i’;ll e:}_’)m‘be"
out. The mass m, is forced by the input '

P =P, sin pt, and it is desired to reduce the amplitude of
vibration of m, to zero at a particular value of the forcing fre-
quency p/2n. The auxiliary spring-mass system k,, m, effects this
by absorbing the input ehergy at its own natural frequency. By
precisely the same method as used in Section 13 it can be shown
that the two masses move with the same frequency p/2n as the
exciting force, and further that they move either in phase or
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 radians out of phase with each other. Allowing the amplitudes
to take negative values, the displacements of the two masses
can therefore be expressed as:

z, = a, sin pt (15.1)
Xy = a4 8in pt ) I ’

The equations of motion are :
mlil"!'(kl‘l'k’)xl -_ kgx, = Po Sinpt}
Mgty — ks, +ksxs = 0
Substitution of the sinusoidal expressions (15.1) in the equations
of motion, and elimination of a, between the two resulting equa-

tions, lead to an expression for the amplitude a, of motion of
the mass m, :

(15.2)

_ Py(ky — myp?)
N (ks — myp?)(ky+-ks — myp?) — k,?

If the forcing frequency p/2x is such that myp? = k,, the numera-
tor of the fraction (15.3) is zero but the denominator is not ;
thus at the natural frequency of the auxiliary system, considered
as a separate system similar to Fig. 1, the amplitude of motion
of the mass m, is reduced to zero. The auxiliary system is thus
absorbing all the vibratory energy in the system, and is termed
a dynamic absorber. The name ‘dynamic damper” is fre-
quently used but in error, as the property utilised is that of
absorption, not of dissipation by way of damping.

, The arrangement is of great utility in cases where it is required
to reduce the amplitude of motion of a system without altering
the suspension arrangements. In practice the damping forces
must be taken into account ; Den Hartog deals with the subject
of the damped absorber in some detail (see reference 2 in the
Bibliography). The dynamic absorber in its torsional form is
of still greater utility.

Two fundamentally different types of absorber are being
applied to an ever-increasing number of troublesome torsional
systems. One type is merely a torsional version of the linear
absorber, the spring attachment being in some cases a patented
rubber mounting ; this variety of absorber is effective at a
particular frequency in the same way as is the linear analogue.
The other type is more interesting and at the same time more
nseful ; it consists essentially of a pendulum hinged to a con-
venient part of the system—in the case of internal combustion

B

a, (15.3)
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engines, to a crankweb—and the dynamic conditions of the
system are such that the pendulum absorbs energy, not at a
certain constant frequency, but at a frequency which is a constant
multiple of the rotational speed of the engine. Thus, for example,
the absorber may be effective for frequencies 2} x engine R.P.M.,
and it is then termed a ‘ 2} X’ absorber. By suitable design of
absorbers two or three harmonics (24, 34, and 6 X engine R.P.M,,
for example) may be absorbed simultaneously. A very full dis-
" cussion of this important subject is given by Dr. Ker Wilson
(see reference 3 in the Bibliography). -

16. Coupled vibrations.

Fig. 21 illustrates a system of the second type mentioned at
the beginning of this chapter—one in which a single mass has

Ry R2
Y
) {6 ‘
——-:dqdes-n— ' X
'

Fi1a. 21.—One-mass system with two natural frequenciés.

two degrees of freedom. The centre of gravity of the mass is
constrained to move vertically, and the springs react against
this motion with restoring forces in the vertical direction ; and
the mass rotates about its centre of gravity, also against the
spring restraints. If @ is the centre of gravity of the mass, the
two degrees of freedom are therefore :

(i) vertical motion of @, and
(ii) rotation of the mass about G.

When both linear and angular displacements occur in the
same problem it is convenient to denote them by capital and
small letters respectively ; in this system let the two displace-
ments be X and y as shown in the diagram, The arrow-diagram
on the right of the figure shows the positive directions of motion.
In general both displacements occur at the same time, and for
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small amplitudes the spring forces produced by the motion are
proportional to the displacements. Suppose first that the mass
moves vertically with no rotation, the displacement being X
downwards. The spring ¥, exerts a restoring force k,X upwards,
and this force has a moment %,d,X about @G in the clockwise
direction ; similarly the spring %, exerts a restoring force k,X
upwards, and this force has a moment — k,d,X clockwise about
G. Thus the total restoring force on G is (k,+k,)X upwards,
and the total moment about G in the positive sense is
(kyd, — kod,)X. This moment tends to produce a rotation round
G, and the two types of motion are therefore coupled. It is to
be noted that the displacements are assumed small, so that the
moment-arms d, and d, do not change appreciably during the
motion.

Now suppose the mass to rotate through a small angle y
without linear motion of the centre of gravity G ; the rotation
being about @, the displacements at the points of attachment
of the springs are — d,y and dyy downwards, as y is positive
when clockwise. The forces exerted by the springs are there-
fore k,d,y and — k,d,y downwards, and these forces have moments
— k,d,%y and — k.d,% clockwise about @. The total spring
force on G is thus (kd, — k.d,)y downwards, and the total
moment about G is — (k,d,2+k.d,%)y clockwise.

If now the mass is supposed to move generally—i.e. to have '
both the displacements X and y—the forces and moments induced
are the sum of those induced by the two motions occurring
separately, Let the moment of inertia of the mass about @
be J, with respect to the rotation y, then the equations of
motion are : '

CmX = — (ko)X +(kudy — Eudn)y }
JG = (krdy — kedo)X — (kidi24-Euda2)y
In the usual manner (see Section 13) it can be shown that the
displacements can be expressed as:

(16.1)

X = A.sin ot
Yy = a.sin (wt+¢)
where ¢ =0 or =

It is convenient here to allow the constant a to take negatlve
values, and to write accordingly :

X —A.smwt}

Y — @.gin of (16.2)
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where A.is positive but ¢ may be either positive or negative.
Substitution of these values in (16.1) leads to the equations :

[mw? — (ky+ks)]A +[k:d, — kydsla = 0
[Jo? — (kdy?+hsds?)]a+[kady — kyds]d = 0
~ which can be written as:

(mw? — cxx)A+cx,a =0
x4 +(Jw? — o,,,,'ia =0 . . (16.3)
where :

Cyy = kyd,?+-kyds?
Cxy = Cyx = kyd, — ks

Cxx = ky+k,
(16.4)

The substitutions indicated in (16.4) are very generally useful,
for — cxx is the force parallel to the X-axis produced by a unit
displacement along that axis, — cx, is the force parallel to the
X-axis produced by a unit angular displacement about the
y-axis, etc. The equality of the two constants cx, and ¢ x is
not merely coincidental, but is an example of a well-known
reciprocation theorem.

By obtaining the ratio 4/a in each of the equations (16.3)
the “ frequency equation ”’ is obtained :

w? — <‘%Y+c§y)wz+cxxcw1;]cxv%x =0

or, as Gx,y == yX>

o _ (°xx O\, 2 OXX0w — Cxy® _
o (W.{-T)w -l-———m——— =0 . (16.5)
(16.5) is very significant when expressed in terms of the * un-
coupled ” frequencies of the system. The constants cx, = ¢,x
are a measure of the degree of coupling between the two modes
of vibration, i.e. between X and y. If these equal constants are
zero, which occurs when

<

kydy =kydy . . . . (16.6)

the two degrees of freedom are uncoupled and each can take
place without involving the other ; for a displacement X then
induces zero moment about @, and an angular displacement y
induces zero force parallel to the X-axis. (16.3) then become :

(mw?® —cxx)d =0
(Jo? — 6,8 = 0
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and if the corresponding values of w are denoted by wx, w,,

wy? = XX
m N ¢ (X))
[

0, =

From (16.7) the ““uncoupled ” frequencies wx/2% and w,/2x can
be calculated. (16.5) can be written as:

ot — (0x’+o,)0’+(0x?w,? — B) =0 . (16.8)
L |
where B o > 0.

Denoting the roots of (16:8) by w,? and wg? where w,? is the
smaller root, the elementary theory of equations shows that

o7l tog® = ox’to,’ (@) (16.9)
wploy? = wx’n,? — B < ox'o,? ) : :
By using the identity (m+n)2 = (m — n)2+4mn it is easy to
deduce from (16-9) that
wg® — o > wx® — w,? numerically . (16.10)

(16.9a) shows that the mean of the two coupled values of w? is
equal to the mean of the two uncoupled values, while (16.10)

uncoupLep | ; f
l :ﬁ l wa-—-
COUPLED T %7 { wz —

Fi1a., 22.—Frequency spectrum for Fig. 21.

shows that the difference between the coupled values is greater
than the difference between the uncoupled values. The lower
coupled value is therefore lower than the lower uncoupled value,
and the higher coupled value is higher than the higher uncoupled
value, as shown in Fig. 22. Such a diagram is termed loosely
a ‘ frequency spectrum.”

If the mass in Fig. 21 is free to move in a horizontal direction
against spring restraints, the system then has three degrees of
freedom and the equation corresponding to (16.8) is a cubic in
w2 The general case of a mass free to move in space under
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spring restraints, as shown in Fig. 23, has six degrees of free-
dom, namely, three linear and three angular displacements.
The resulting ‘‘ frequency equation ” is of the sixth degree
in w2 but symmetry in the system can reduce the equations of
motion to separate groups by rendering some of the coupling
coefficients zero. This occurs in the orthodox type of in-line
aero-engine mounting ; in such a system the vertical motion,
for example, is uncoupled from rolling motion (i.e. rotation
about a fore-and-aft axis) while usually remaining coupled to
pitching motion (i.e. rotation about an axis parallel to the wings
of the aircraft).* The more symmetrical the system is, the
simpler the solution becomes ; in the case of a solid of revolution
such as an airscrew spinner, with spring mountings symmetrically
disposed about the axis of revolution, the general solution reduces

3 . TYPICAL
MOUNTING

F1a. 23.—One-mass system with six degrees of freedom.

to two quadratic equations similar to (16.8) and two *“ uncoupled ”’
equations similar to (16.7).

Summary.

All parts of a system with two degrees of freedom vibrate at
the same frequency. There are two natural frequencies. In the
case of the “ chain " type of system illustrated in Figs. 16 and 19,
there are respectively one and two nodes in the configuration at
the two natural frequencies. In such a system, a final mass
attached by a spring can eliminate forced vibration at its point
of attachment by ‘‘ forcing a node ” there ; this fact is the basis
of the dynamic absorber.

-In the type of system illustrated in Fig. 21, there is couphng
between the two degrees of freedom possessed by the mass
(horizontal motion being supposed to be prevented). It is found

* See Appendix III, section 41.
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that the mean of the two values of w? corresponding to the two
natural frequencies is the same as the mean of the two values
corresponding to the so-called ‘ uncoupled ” modes, in each of
which one type-of motion is supposed to exist in the absence of
the other.

EXERCISES III

1. By the methods of Sections 6 and 13 show that there are only
two natural frequencies of the three-mass torsional system of Fig. 19,
and that the corresponding modes are :

(i) a one-node mode, and

-(ii) a two-node mode.

2. Derive an expression for the amplitude of motion of the lower
mass (m,) in Fig. 20, and draw curves showing how the amplitudes of
motion of both masses vary with the forcing frequency p/2.

(It will be found that these amplitudes have infinite values when the
forcing frequency equals the natural frequencies of the system. If small
damping forces are included in the system the infinite amplitudes are
reduced to the practical resonance * peaks.”)

3.—Find the condition that ene of the coupled frequencies of the
system shown in Fig. 24 should be zero, the centre of gravity of the mass
being constrained to move in the direction X.

-

Ry Ra
R
|

Ix
I
Fre. 24—Ex. III, 3.

(Obtain a frequency equation analogous to (16.5) and find the con-
dition that w? is a root, i.e. that the term independent of w? is zero.)

4. Derive the frequency equation for the system of Fig. 23 in terms
of appropriate coupling-coefficients similar to (16.4).

(See Appendix III, section 41.)

5. Determine the force which must e applied to the top of the spring
k, in Fig. 16, page 44, in order to maintain unit amplitude of vibration
thereat, ignoring the upper part of the system ; similarly, determine the
force which must be applied to the upper mass (m;) to maintain unit
amplitude thereat, ignoring the lower part of the system. Hence determine
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the natural frequencies, as those frequencies at which zero total force is
required to maintain a vibration (see page 74).

6. Vibratory torques of amplitudes 7', and T, and of the same
frequency, act upon the inertias in the system of Fig. 4, page 14. Show
that if the torques are in-phase and T',/T, = J,/J,, there is no twisting
of the shaft ; and that if the torques are anti-phased and T, = T';, the
vibration is in the mode corresponding to the natural frequency. Show
also how the general case can be analysed by regarding the applied torques
as resulting from the superposition of two sets of torques fulfilling these
special conditions.



CHAPTER IV

MANY DEGREES OF FREEDOM
Effective Inertia and Dynamic Stiffness
Introductory. .

By forming a chain of alternate springs and masses, vibrating
systems with any number of degrees of freedom can be constructed.
The linear form of such multi-mass systems is of no particular
interest, but the torsional form, in which a number of inertias
are connected by light shafts, is of great importance in the study
of the stresses in internal combustion engine crankshafts, and
more generally in power-plant installations of all kinds.

Of recent years there has been a great development of certain
special methods of torsional vibration analysis. The problem is
to determine the natural frequencies of a torsional system, given
the values of the inertias and shaft stiffnesses. Once these
frequencies are known, and provided there is sufficient information
on the magnitude and nature of the forces causing vibrations,
it is possible to analyse the system with a view to the avoidance
of the dangerous dynamic magnifications due to resonance. For
practical purposes it is very convenient to evolve a method of
analysis in which various parts of the total system are first
considered separately, with means for the immediate determina-
tion of the natural frequencies of the complete system. Many
different types of installation can thereby be treated on a unit
basis. An aircraft power-plant can be split conveniently into
two parts, the engine and the propeller ; an industrial compressor
plant into two parts, the engine and the compressor; and so
on. The greatest utility of such a method is seen where there is
likely to be a considerable amount of interchanging of the units,
different propellers (for example) being used with the same
engine.

Such a method can be based on the now familiar concept of
effective inertia, and a very similar method proceeds by considering
dynamic stiffness. The two methods are very closely related, and
a choice between them depends largely upon the precise nature
of the particular problem under consideration. They have been
described in detail elsewhere by the author (reference 15 in the

: 57
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Bibliography, page 151), and the application of the dynamic
stiffness concept to the analysis of damped vibrations is described
in reference 4. .

The system being regarded as composed of two sub-systems
joined at a definite point in the shafting, for each part a character-
istic quantity is determined either by calculation or by experi-
ment. This quantity, which is a function of the frequency of
vibration, is the amplitude of alternating torque which must be
applied at the junction to maintain a vibration either of unit
acceleration amplitude or of unit displacement amplitude. In
the former case the characteristic quantity is then the effective
inertia of the sub-system at the junction point : i.e. the inertia
of a rigid flywheel which would vibrate with the same amplitude
as does the actual sub-system under equal forcing torques. In
the latter case the characteristic quantity is the dynamic stiffness :
i.e. the stiffness of a shaft, one end of which is fixed, which is
imagined to be acted upon by an alternating torque at the free
end, and which vibrates with the same amplitude as does the
actual sub-system under equal forcing torques. Whether effective
inertia or dynamic stiffness is chosen, the procedure is to plot
the variation of this quantity against frequency for each sub-
system, reverse the sign of the graph for one part and superimpose
it on the graph for the other part; the frequencies determined
by the points of intersection of the two curves are the natural
frequencies of the complete system, as shown on page 69.

It is found that for practical purposes, in lightly-damped
systems the damping forces can be neglected without causing
any serious error except in the accuracy of amplitude determina-
tions in the immediate neighbourhood of resonances, and the
working is greatly simplified in this way.

Several methods are given in the text for the determination
of the deformation shape of the system at any frequency, from
a knowledge of which the stresses in various parts of the shafting
can be calculated.

17. Multi-mass systems.

The purely analytical methods employed in Chapters I-IIT
“prove to be cumbersome when applied to systems having more than
two degrees of freedom. Particularly is this so in the calculation
of resonant frequencies by differentiation of amplitude-against-
frequency curves, but fortunately it is found that for lightly-



MANY DEGREES OF FREEDOM - 59

damped systems the damping forces can be disregarded and the
natural frequencies of the resulting system calculated instead of
the resonances. This useful fact has been proved for systems
with one degree of freedom in Chapter II,
section 11, and will be proved for multi-
mass systems in Section 18; and when
dealing with lightly-damped systems at-
tention will be confined to determining
the natural frequencies and deformation
shapes. The analytical method can be
used to show that a torsional system as
that of Fig. 254 has one less natural fre-
quency than the number of inertias ; if

Jn Jn-t Js Jz N

B h
-==  m—
SN 2! l," N

@) (b)

Fi1e. 25.—Multi-mass systems: (@) n—1 natural frequencies; (b) » natural
frequencies.

the last inertia J, is removed and the system clamped at this
point, thus repla.cmg the finite inertia by the effectively infinite
inertia of the earth, to which the clamp is rigidly attached, there
will still be » — 1 natural frequencies. These results are easily
derived, as follows :

Let the angular displacements of the inertias from the
static position be 6,, 05, 65 . . . 0,. There are n equations of
motion :

Jlgl = 01(61 - 02)
ngs =—_0,(0. - 03)+01(01 — 0,) o
ete. ete. - (17.1)
- é 1=—0Cp (0 — 0,)+Crz(0p_2 — en—l)
J 6 _+C -l(on— - n)

By extension of the method of Section 6 it can easily be shown
that all the inertias have sinusoidal motion at the same frequency,
and that all the phase-angles differ from each other by zero or
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a multiple of » radians, and that the displacements can therefore
be put in the form ‘

01 = Al.SiIl wi
0’ = Ag.sin wt '
ete. ete. - (17.2)

6, =A4,.sinwt

where the constants 4 are allowed to take negative values (see
note on the sign conventions, Chapter I, section 4). The
equations of motion can then be written as:

(Cl - lez)Al = OIAQ
(01"'03 — ngz)Ag = 01A1+0gA3
ete. ete.

(Chey — Jp0¥)4, = On-lAn—l

. (17.3)

Elimination of the amplitude ratios 4,/4,, 4;/4,, etc., leads to
an equation of degree » in w2, of which w? = 0 is a solution
corresponding to 4, =4,=...=4,. As in Section 6 this
solution refers to steady rotation, and there are thus n — 1
natural frequencies of vibration. It has not been shown that
these natural frequencies are all distinct, but that they are so
will be evident in the course of the present chapter ; a proof of
the validity of the assumption in the case of * straight chain ”
systems comprising alternate masses and springs, or alternate
inertias and shafts, is given in the Appendix of reference 15. An
important point to be noted is that the number of natural
frequencies is equal to the number of springs, in systems similar
to those of Fig. 25, wherein the inertias and springs occur
alternately ; whether the system is a linear or a torsional one
is, of course, immaterial.

18. Effective ineﬁia.

" The multi-mass systems that occur most frequently in practice
are torsional systems, and the discussion which follows is therefore
concerned primarily with torsional vibration; the equivalent
results for linear systems can be obtained by means of the linear-
torsional analogues listed in Table I (Chapter I, section 5).

When a torsional system such as that of Fig. 26a is vibrating
at a natural frequency in the absence of damping forces, the
motion is maintained by the energy stored in the system initially.
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If the displacement at a point P in the system is

0 = A.sin ot
the acceleration is  § = — Aw?sin o,
and there is no applied torque required to maintain this accelera-
J
2 Ji
C

e

P Az

F1c. 26.—Partial inertias.

tion. The effective inertia of the system towards vibrational
motion at a natural frequency is thus zero, for

torque
angular acceleration’

If it is possible to determine the effective inertia of the system
as a function of frequency, the natural frequencies can be found
by investigating for what frequencies the effective inertia is zero.

Consider the two-mass system shown in Fig. 26. The natural

frequency is
— C(J,+4J,)
F - J 7T, (see Section 6).

Suppose that the inertia J, is divided into two parts, s and p,,
the partial inertia A, being such that the natural frequency of
the sub-system J, — (C) — 4, is w/2n. Thus

inertia =

_ C(WJ1+4)
J1As
. _eJy :
ie. b= —o ‘“’} .. s
and ps =J3 — Ay (®) :
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U, is then the effective inertia J, of the system at the frequency
w/2n, for the remainder of the system is vibrating at its natural
frequency and thus has zero effective inertia. The effective
inertia J, of the whole system is thus given by :

_Oh
w’J 1 — C )
Putting J, = 0 naturally leads back to the formula (6.4). The

method is, however, capable of immediate extension to multi-mass
systems In the system of Fig. 25a let

Je=Jg—‘2.g=J3— (18.2)

Jy = 1:‘*‘[!:
Jy = ls’i‘.ua

etc. ete. - (18.3)
Jp = Ayttt

As before, let the sub-system J, — (C;) — 4, have a natural
frequency w/2n ; then as in (18.1),

OlJ 1
0], —C’
Now determine A, so that the sub-system u; — (C;) — 4; also has
a natural frequency w/2n. Thus

pr=dy — (18.4a)

- c
=Jy— Ay =y — 2 ) )
.u‘s s— Ay =d3 @, — C, (18.4b)
In this manner the whole system is split up into sub-systems, for
each of which w/2x is the natural frequency. In the next stage
after (18.45),

_ _ Oslla
‘u‘ = J‘ m——zﬂs — 03 . (18-40)
and finally, for the last inertia J,,
pp=d, — —Cnthney (18.4d)

L wzl"n—l - Cn—l
The whole system can now be considered as consisting of two
parts :

(i) the System Jl _J‘ '—Ja “ o e Jn—l ""2”

(ii) the remaining inertia u,.

Part (i) is a system vibrating at a natural frequency, and has

therefore zero effective inertia ; thus the effective inertia of the
whole system at the point J, is u,.
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Apart from providing a method of determining the natural
frequencies of multi-mass systems, this conception of partial-
inertias and sub-systems enables two very important general
conclusions to be drawn :

(i) All the masses move so that their displacements can be

expressed as in (17.2), for it has already been established
(Section 6 in Chapter I) that the two partial inertias
comprising each sub-system move in this manner, and
the two partial inertias comprising each inertia J,, J,,
J,, etc., are rigidly connected. Thus any pair of
adjacent inertias move either in phase or z radians out
of phase with each other.

(ii) The resonant frequencies of a lightly-damped multi-mass

Ja
)

system are very nearly equal to the natural frequencies

JS Ja J|
[ ]

ot e gl

s 05 VR o5 Y l{' ro‘l LBS.INS. /MICRO-RADIAN
®

25 3 2 LBs.INs.SECS
Fi1a. 27.—Four-mass torsional system.

calculated on the assumption of zero damping; for
this result has also been proved for a single-mass,
single-degree-of-freedom system, and therefore by im-
plication for a two-mass, single-degree-of-freedom
system such as that of Fig. 4 with light damping
forces included ; but the sub-systems are of the same
type as that of Fig. 4, hence the general result.

. (A more rigorous demonstration of this second result
is to be found in reference 4 in the Bibliography at the
back of the book.)

As an example of the application of the method, consider
the four-mass system of Fig. 27. The stiffness values are given
in the practical unit : lbs.ins. per microradian (i.e. per millionth
of a radian) and must be multiplied by a million before being
used in the formulae (18.4).

At the frequency 13,500 c.p.M., ie. 225 C.PS,,

w—_-27;_x225=1,414a.ndw*=2x10“.
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At this frequency,

o
Ha = J’ wle - 01
—J.— _ G :

U3 = J3 m 2 220

= 2-333

: Caps
= sy = I — = 1-049.
and Jo=ps=J, —-——m . 049

At the frequency 6,750 c.p.M., ie. 112:5 C.P.S,,
(0 = 2rx x 1125 = 707 and w? = 0-56 x 10%)
By = o, pus=15 J,=p =+

2

10,000 C.P.M.

|
|
|
|
|
|
e
L]

]
-]
!

jea— NO 1 3 =
NODE NODE MODES - NODES

Fia. 28.—Effective inertia at J, in Fig. 27.

At the frequency 9,550 c.p.M., i.e. 159 C.p.S.,

(@ = 21 x 159 = 1,000 and »? = 1-0 X 10%)
pa=1  p,=15 J, =pu,=0.
Thus 9,550 c.p.M. is a natural frequency of the system. The
effective inertias at J, of the system are calculated in a similar
manner for various frequencies so as to determine the other
natural frequencies. Values are given in Table III, and the
curve of effective inertia plotted against frequency in Fig. 28.
The three natural frequencies are seen to be :

4,100, 8,620, and 9,550 C.P.M.

The curve in Fig. 28 is typical of effective-inertia curves.
The zeros correspond to natural frequencies of the system of
Fig. 27, and the discontinuities correspond to the natural fre-
quencies when the inertia J, is clamped so that its displacement
and hence its acceleration are necessarily zero, for the ratio
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Tasre IIT
Frequency ot J
(c.p.M.) + 10¢ e
0 0 9
955 0-01 10-6
1,910 0-04 30-1
3,020 0-1 — 6-83
4,100 0-1838 0
5,230 0-3 1-97
6,040 04 4-26
6,750 0-5 ©
7,400 0-6 — 4-89
8,000 0-7 — 0-84
8,620 0-8162 0
9,160 0-9216 0-98
9,360 0-9604 — 1-03
9,550 1-0 0
10,500 o121 0-58
ete. ete.

torque/acceleration is then infinite, and the effective inertia is
equal to this ratio. Between adjacent zeros there must be one
discontinuity, and between each pair of adjacent discontinuities
there must be one zero, so that zeros and discontinuities occur
alternately as the frequency is increased ; for the discontinuities
correspond to the natural frequencies when an additional con-
straint is applied (the clamping of J,) and it is a general dynamic
theorem that the natural frequencies of such a system must lie
between the natural frequencies of the original system. (See
E. T. Whittaker, Analytical Dynamics, Cambridge, 3rd Edition,
pp- 191, 192 ; appendix of reference 15; and Biot, reference 5,
from whom the reference to Whittaker is taken.)

19. Swinging forms.

The deformation curve of a torsional system undergomg
vibration is called the swinging form, and it is frequently very
important to know the shape of this curve, i.e. what are the
relative amplitudes of motion of the various inertias. If the
swinging form of a system at a particular frequency is known,
then from experimental observations of the amplitude at one
point in the system the a.mphtudes at all other pomts can be
calculated. ) . .

F
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In the two-mass system of Fig. 26, let the displacements of
the two inertias J, and J, be .
. 0, = A, sin wt

and 0’ =_A’ Sin wt-
The velocities are 6, = A,w cos wt
and 6, = A, cos wt.

At a natural frequency of the system there is no applied force
required to maintain the motion in the absence of damping
forces, so that the rate of change of the total angular momentum
(J:0,+J40;) must be zero, by Newton’s second Law of Motion
(see Appendix II, section 37).

Thus : J161+J'§’ = 0, i.e.
JIA‘Z-*.J’A’J:- 0,
L
or &=-7 . L9

Now, the partial inertia A, has been chosen so that the sub-
system J, — (C) — 4, has w/2n as its natural frequency (18.1a),
and therefore (19.1) holds true at any frequency w/2n if 4, is
substituted for J,. Similarly, in the system of Fig. 25a, the
following amplitude ratios are obtained :

4, _  J,

4 %

4, _ s |
. As Fo. . . . (19.2)
etc. etc.

An — _ Hn—1
An—l An

An arbitrary value of unity is usually assigned to the ampli-
tude 4,, and the equations (19.2) then give the corresponding
values of the amplitudes of motion of the other inertias. As
. an example, Table IV gives the amplitudes of the four inertias
of the system of Fig. 27 at the three natural frequencies.

TaBLE IV
F
{gg:{::};’y 4, 4, 4, 4,
4,100 - - 1 - 0-6325 — 0-7999 — 1-2648
8,620 1 - 0-6325 — 0:7999 1-:2648
9,650 -1 =1 1 -1
1
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The corresponding swmgmg forms are illustrated in Fig. 29 ; the
three modes are :

(i) one node between J, and J,;
(ii) two nodes, between J, and J, and between J, and J, ;
and (iii) three nodes, one in each spring.

' 4100 C.P.M.
4 3. /l/l

9550 C.P.M.
2

Fie. 29.—Swinging forms: for Fig. 27 (at natural frequencies).

The method apparently breaks down when any of the partial
inertias are infinite, as for example at the frequency 6, 750 C.P.M.
At this frequency

Ay =00 Uy = — ©
As=1 ;=158
4, Jy _
Thus - j:--O,a,ndA,--.-O’
and A—’=.—“i‘=oo,whenoeA,=oo><O
Ai 2'8

and is indeterminate. The amplitude can however be determined
in such cases by a consideration of the torques in the shafts to
either side ; in this example let 7'; and 7', be the torques in the
shafts C,-and C;. These torques are proportional to the twists
in their respective shafts, and 4, = 0. Hence g

T1 = Ol(Ag - Al) = — C‘,Al
and T’ = Cg(A' - A’) = G’A'.‘
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Furthermore, as the amplitude A, is zero, the acceleration of J,
is zero, and hence the resultant torque on J, is likewise zero ; i.e.

T: - T1 = C:A:+01A1 =0,

4, 0, _
and hence 1.- "0, 2.
Thus if 4, =1, A; = — 2. In a similar manner the swinging

form can be obtained at any frequency whereat there are nodes
at any of the inertias.

If it is desired to know merely how many nodes occur in the
swinging form at a particular frequency, it is only necessary to
count the number of discontinuities in the effective-inertia curve
between that frequency and zero frequency. At these discon-
tinuities the effective inertia is infinite and thus 4, = 0. As the
frequency is increased through such a value, an additional node
is introduced into the swinging form. Thus for the system of
Fig. 27, the effective inertia curve for which is shown in Fig. 28,
if F is the frequency, '

for 0 < F < 2,100 c.p.M., no nodes ;
2,100 < F < 6,750 c.p.M., one node ;
6,750 < F < 9,320 0.p.M., two nodes ;
9,320 cP.M. < F, three nodes.

20. Rigidly-coupled systems.

The system illustrated in Fig. 30 consists of two definite
parts A and B, rigidly coupled at P; part 4 is a system in

? ? L=J' ? ?
P
) ) ﬁ& ® ®
B A
L * ? ¢ o ? ?
, PE -
¢« o 4l ® ¢

R
Fid. :30.—Rigidly-coupled systems.
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which all the inertia and torsional stiffness values are known,
and part B is a system in which some or all of these values are
for some reason unknown. The effective inertia of system B at
the coupling-point P can be determined experimentally by apply-
ing at this point a sinusoidal torque 7'.sin w¢ and measuring the
amplitude 4 of the resulting motion at P; for if the displace-
ment is 0 = A .sin wt, the acceleration is § = — Aw? sin wt, and
the torque required to produce this acceleration is
Jbi = — J,Aw?sin ot = T.sin wt.
The effective inertia J, is thus given by :
T
J, = — ok

and in this formula the quantities 7' and A are determined
experimentally for various values of the frequency w/2n. It
is therefore possible to obtain experimentally a curve of J,
plotted against frequency.

Let the effective inertias of the parts 4 and B be J, and
Jp at P. Part 4 consists of a system vibrating at a natural
frequency together with a residual inertia J, at P; part B
consists of a system vibrating at a natural frequency together
with a residual inertia J; at P. The total effective inertia of
the whole system at P is therefore J,+J5 and the natural
frequencies of the complete system are determined by the
condition

(20.1)

JA +JB = 0 . . o . (20.2)

Suppose that part 4 is the system of Fig. 27, P being at J, in
this diagram, so that Fig. 28 is the curve of effective inertia
J, at P; and suppose further that the effective inertia curve
of part B obtained experimentally is that shown in Fig. 3la. .
The function J,+J5 can be plotted by adding together the
corresponding ordinates in Figs. 28 and 31a, but the frequencies
at which J,+Jgz =0 are more conveniently determined by
plotting J, and — Jp on the same axes, as in Fig. 315. The
two curves intersect where J, = — Jp, ie. J,+Jp=0. The
natural frequencies of the complete system are thus: 2,960,
5,000, 7,300, 9,200 and 10,050 cp.M. As the two parts of the
system are rigidly connected at P there are five spring con-
‘nections and hence five natural frequencies. The node distribu-
tions at these frequencies are listed in Table V.
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104

F1e. 31.—Determination of natural frequencies of Fig. 30 (J4 from Fig. 28).

This method of calculating the natural frequencies of coupled
systems is of great use even when all the dynamic constants
(inertias and stiffnesses) are known, particularly when it is

TaBLE V
T | e | el | e
2,960 1 0 1
5,000 1 1 2
7,300 2 1 3
9,200 2 2 4
10,5600 3 2 i3

desired to find the effect of making alterations to one part only
of the system, as it is unnecessary by this method to recalculate
over the whole system ; in such cases it is usual to split the
system as near as possible to the point where the alterations are
to be made. '
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21. Frequency (Torque-Summation) Tables.

The treatment, given in Sections 18 and 19, of the concept
of effective inertia is & convenient one for the purpose of intro-
ducing the method, and also for enabling the two important
general conclusions (Section 18) to be deduced. By far the most
convenient practical method of calculating the effective inertia
of a system, however, is afforded by the Frequency Tabulation,
or Torque-Summation Table. By this method the effective
inertia, swinging form, and variation in vibration-torque through
the system are obtained by means of a systematic tabulation.

Referring to Fig. 25a, the torque 7', sin wt in the shaft C, is
proportional to the difference between the displacements of the
inertias J, and J,. Thus

Tl sin wt = Ol(Ag - Al) sin wt
or Tl = Cl(A' - Al)’

This torque produces the acceleration §, = — 4,0? sin ot, hence
Tl = — lezAl = C"I(A.’ — A;).
Let the difference between 4, and A, be 6,4, so that

A’ = Al - 6144.
J0? ‘
then 61A = Al . . . . (21.1)
C,

Similarly the torque 7',sin wt in the shaft C, is given by :
T, = Ca(Aa - Aa)

and the acceleration of the inertia J, is effected by the resultant
torque acting on J,, i.e.

-—J,w’A, =T’ - T]

hence T;= — J]_ngl - ng-aAg = 0;(&43 — Ag).

Let Ag - A' = 5,A, ’

then 8,4 = J‘“”A‘b""""u’ (21.2)
3

Proceeding in this manner, the amplitude A4, of the last inertia
J, is calculated in terms of 4, ; similarly the total torque which
must be applied to J, to maintain the motion is obtained as the
sum

(04T AT 0t . . . AT 0i4,).
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Denoting: this t.orqu& by — XT,, the effective inertia J, of the
system at J, is given by putting — 27T, for T in (20. l), ie.

ZT,
J, = Tais (21.3)
As the amplitude A4, is a constant multiplier throughout the
calculations it is usually given unit value for convenience.
As an example the frequency tables for the system of Fig. 27
at the frequencies 4,100 and 7,990 c.P.M. (w? = 0-1838 x 10% and

0-7 X 10° respectively) are given in Tables VI and VII.

TasrLE VI
Frequency table for Fig. 27 at 4,100 c.p.Mm.
Jot Jod | EJo4 c
J £ 100 4 108 100 | =108 o4
2 0-3675 1 0-3675 | 0-3675 1 0-3675
3 0-5513 0-6325 0-3487 | 0-7162 0-5 1-4324
2-5 0-4594 — 07999 | — 0-3675 | 0-3487 0-75 0-4649
1-5 0-2757 — 1-2648 | — 0-3487 | O — —_
Jw? = Ty _ 0, J, = 0 (natural frequency).
n
TasrLE VII
Frequency table for Fig. 27 at 7,990 c.p.m.
Jo? | Jeru £Twtd c
J + 10 4 e | ET00 | <108 4
2 14 1 14 14 |1 14
3 2:1 — 04 — 0-84 0-56 0-5 112
25 1-75 — 1-52 — 2:66 — 210 0-75 — 28
1-5 1-05 1.28 1-344 | — 0-756
. 2T — 0-756
: Joo2 =" =______ = — 0591, J, = — 0-845.
=4 T 128 » e

: 22 Dynamic stiffness.

A qua.ntlty havmg a close relation to the effective inertia of
a system is the dynamic stiffness. The torsional stiffness of a
shaft is defined as the ratio of the torque transmitted by the
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shaft to the twist induced by that torque. If one end of the
shaft is clamped as in Fig. 32 and a torque 7' is applied at the
free end, the angular displacement at the free end is 7'/C, where
C is the torsional stiffness. If this displacement is 4, then
T

=3 - - - . (22
Now consider a torque 7'.sin w¢ to be applied at a point P in
a vibra,ting system, and let the resulting displacement at P be
60 = A.sin wt. The ratio torque/displacement is defined as the
‘ dynamic stiffness ”’ of the system at the point P, and is denoted
by Z. Thus

T
== . . . . (22.2
Z A ( ).
The name ‘‘ mechanical impedance ”’ is sometimes given to this
7
\ =
C 2
.i.

ANGULAR DISPLACEMENT A= T/c
Fre. 32.—Static stiffness of shaft.

quantity, by a loose analogy with electrical quantities. ~Electrical
impedance is the ratio of e.m.f. to current, and the analogous
mechanical ratio is that of force (or torque) to velocity, not to
displacement ; while it is quite justifiable to choose any name
for the quantity defined, it is perhaps unfortunate that the word
“ impedance ”’ should be used to denote two ratios of different
types. Biot (reference 5 in the Blbhography) uses the term
“ dynamic modulus,” but this choice again is unfortunate as the
word ‘“‘ modulus >’ has certain other specific meanings in mathe-
matics, and it is indeed necessary to refer to the ‘ modulus of
the dynamic modulus ” in the case of damped systems—see
(22.8) and reference 4 in the Bibliography. The quantity Z
defined by (22.2) is, however, the precise dynamic analogue to
static stiffness, and the name  dynamic stiffness” has been
adopted in this book for this reason.

In engineering practice, torques are normally measured in
Ib.in. units ; the basic unit for dynamic stiffness Z is therefore
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Ib.in./radian. As the radian is a large angle, however, it is
usually more convenient to express the stiffnesses in 1b.in./micro-
radian.

Comparison of the equations (20.1) and (22.2) shows that the
dynamic stiffness Z and the effective inertia J, are related by
the formula :

. Z=—Jw? .. (223)
and a curve of dynamic stiffness can easily be derived from a
curve of effective inertia, or vice versa, by multiplying or dividing
all the ordinates by the corresponding values of w? and changing
the sign. The condition for the natural frequencies of two systems
rigidly coupled together is therefore
Z\+Z, =0 . . . . (22.4)
where Z, and Z, are the dynamic stiffnesses of the two systems
1 and 2 .at the coupling point. (Note: the distinguishing sub-
scripts have deliberately been changed from letters to numbers,
as both notations are useful on different occasions.)

Both the effective inertia and the dynamic stiffness are
measures of the response of a system to an applied sinusoidal
torque ; the dynamic stiffness is frequently to be preferred when
it is desired to know the response at one point in a system in
terms of the response at another point, and more particularly
when two systems are coupled through flexible shafts or through
gearing. For these purposes three formulae relating to transfer-
ence of the reference point are very useful.

(i) Transference through an inertia. ‘
In Fig. 33a let the dynamic stiffnesses of the systems to the

right of the points A and B immediately each side of the inertia

JbeZ,and Zy ; the correspondmg torques and angular displace-

ments are :
' T 4d . A 4 . :
(TB) sinwt  and ( AB) sin wt.

As thé inertia J is rigid, 4, = Ay = A (say) and the difference
between the torques 7' and T, maintains the acceleration

0 = — Aw?sin ot of the inertia. Thus
. TB TA 2
and AB 4‘14 —Jw

whence by (22.2) Zyp=2,—-Jw* . . . (22.6a)
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(ii) Transference through a shaft.

Using the same notation for the conditions of the systems to
the right of each end of the shaft in Fig. 336, T, = T'y = T (say),
as the shaft is supposed to be light. Furthermors, the amplitudes
are connected by the relation :

Hence A=A, +g
Ap _ 44
and 72 =7
whence Zl_ = ZL-}-EI,. . . . (22-5b)
B 4
J r—Zs
A o AL _ Hwuees
—_—— - ;_:l— - -
Za Zy mat nm:u - ==
% () (b)

(©) L—ZA

::j'r;':{ = ]:::1'”,;‘::: @)
ZI3Es =)
Zgg LGs : L n

Fia. 33.—Transference of reference point for dynamic stiffness : (a) through
a mass; (b) through a shaft ; (c) through gearing ; (d) and (e) application
to flexibly-coupled systems.

(iii) Transference through gearing: ,

Let Z, in Fig. 33¢ be the dynamic stiffness of the system to
the right of, and including, the gear-pinion, and let Z refer to
the system to the right of, and excluding, the gear wheel. If
the number of teeth on the pinion is n times the number of
teeth on the gear-wheel, the gear-ratio is n:1. If the displace-
ment of the pinion is 6, the displacement of the wheel is nf,, ;
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whereas if the torque at the pinion is 7', the torque at the
wheel is T ,/n. From the equatlon (22.2) the relation between
Zg and Z , follows :

zB=7§zA LD (22.50)

The same method (of multiplying displacements and dividing
torques by the gear-ratio) can be used in frequency tables.

Successive use of the two equations (22.5a, b) alternately
enables the dynamic stiffness at the inertia J, in Fig. 27 to be
determined as a function of the frequency, for the dynamic
stiffness of the (zero) system to the right of J, is zero, and the
point of reference can be shifted from right to left until the last
inertia J, is included. This affords a third method of calculation
of the effective inertia of the system. _

The application of the method of dynamic stiffnesses to the
problem of flexibly-coupled systems is illustrated in Figs. 334, e.
Two systems, 1 and 2, are coupled through the shaft C,. The
dynamic stiffnesses are as shown in the exploded view, Fig. 33e.
The quantities Z,, and Z,; are known as functions of the fre-
quency and it is required to find the natural frequencies of the
coupled system. The stlﬂ'ness Zl p is given in terms of Z,, by
(22.5b), i.e.

1 1 1
o =
ZlB ZlA CC’
and the condition for natural frequencies is
Zip+2yp=0
. 1 1 1
l.e. — == . . . (22.6
VSl AL (226)

A striking example of the power of the dynamic stiffness
method, and the convenience of its use, is found in the problem
of systems coupled by single helical gearing (see reference 15 in
the Bibliography, page 151).

The method of dynamic stiffnesses is capable of extension to
damped systems, and provides the easiest way of calculating the
resonant frequencies of systems with large damping forces. The
full details of the method are given in reference 4 in the Biblio-
graphy, but a brief outline is not out of place here. It has
already been shown (Chapter II, section 9) that in the presence
of damping forces the digplacement in forced motion has a non-
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zero phase-angle with respect to the applied force. Thus if a
torque 7' sin ot is applied at a point P in a damped system,
the resultant displacement is of the form
0 = A.sin (wt+¢)
= A.cos ¢ sin wt+A4.sin ¢ cos wi.

In Appendix I, section 35, it is shown that the cosine function
can be expressed as:
cos wt = j.sin wf,

J being a versor operator turning the associated vector through
an angle #/2 in the positive sense. (This conception has already
been utilised in the discussion of the damped seismic vibrograph,
Chapter II, section 12, example I1.) Thus the displacement 6 can
be written :

6 = (A.cos ¢+Aj.sin ¢) sin wt.

The dynamic stiffness at P is defined, as before, as the ratio of
the torque to the displacement at P, but to emphasise the complex
nature of the quantity the small letter z is used. Thus

T.
"~ A(cos ¢+j.sin )’
Multiplying top and bottom of this fraction by (cos ¢ — j.sin qS)

z ——(cos¢ —j.sing), as cos?¢d — j2sin® ¢ = 1.

T T .
If a—zcos¢ andﬂ—zsmqs,

then ' z=a—jf. . . . (227
Formulae similar to (22.5) can be evolved for transferring the
reference point through a system including dashpots which

produce forces proportlonal to velocities. The modulus ” of
the dynamic stiffness is defined as

o] = Va2482 . . . (22.8)
which, by the definitions of « and 8, can be written as
T
IzI—Z e (229

and clearly the amphtude of motion 4 is a maximum when the
modulus ‘of the dynamic stiffness is & minimum. In order to
determine - the resonant frequencies of a damped system. it is
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necessary therefore to obtain a curve of the modulus of the
dynamic stiffness plotted against frequency; the resonances
correspond to the minima in this curve.

Note.—The present chapter has been concerned primarily with torsional
vibration, as the multi-mass systems occurring most frequently in engin-
eering are torsional ones, and all the results can be converted for use in
linear systems by means of the table of analogous quantities given in
Chapter I. It is no part of this present work to consider how the inertias
and stiffnesses of, say, an internal combustion engine are calculated ;
in this work it is assumed that such data are available and to hand. Full
details of the methods of calculation of these dynamic constants are
given by Dr. Ker Wilson—sed reference 6 in the Bibliography at the
back of the book.

Summary.

The use of effective inertia and dynamic stiffness facilitates
the determination of the natural frequencies of complicated tor-
sional systems. As demonstrated on page 63, the resonant
frequencies are very nearly equal to the natural frequencies
calculated on the assumption of zero damping. Thus the first
part of the practical problem of avoiding resonance is solved if
the natural frequencies are determined.

The effective inertia of a system at any point is the amplitude
of the alternating torque which must be applied at that point
‘to maintain unit amplitude of vibratory acceleration there. The
dynamic stiffness is similarly defined, ‘ displacement ’’ being
substituted for  acceleration.” Natural frequencies are the
frequencies for which the effective inertia or dynamic stiffness
is zero. :

If two systems are joined together, the natural frequencies
of the combination are those frequencies for which the total
effective inertia (or dynamic stiffness) is zero; this total is the
sum of the effective inertias (or dynamic stiffnesses) of the two
systems at the junction. The method of dynamic stiffnesses can
also be extended to deal with heavily damped systems, and
systems joined by flexible shafts or couplings or by gearing, both
spur and helical.

EXERCISES IV

. (Numerical examples on the calculation of effective inertia and dynamic
stiffness of systems are rather tedious unless a calculating machine is
available. Such examples have, therefore, been omitted from this set
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of exercises, except for No. 1, the solution of which does not require more
than slide-rule acouracy and for which the ma.]onty of the work has
already been done in the text.)

1. Calculate the dynamic stiffness of the system of Fig. 27 from the
figures of effective inertia given in Table III, section 18.

Suppose that two systems similar to that of Fig, 27 are coupled by
means of a shaft joining the two inertias J,. If the stiffness of this shaft
is 1,000,000 1bs.ins. per radian, determine the natural frequenmes of the
complete system by means of (22.6).

2. Obtain the natural frequencies of the system of Fig. 16 by calcu-
lating the effective inertia at m, by the method of Section 18, and also
by calculating the dynamic stiffness at m, by the method of Section 22.

3. Obtain the resonant frequency of the system of Fig. 9 by deriving
an expression for the modulus of the dynamic stiffness at the mass (see
Section 22).



CHAPTER V
CONTINUOUS SYSTEMS
(Heavy Shafts and Beams)

Introductory.

ArL the vibrating systems considered in the previous chapters
have only a finite number of degrees of freedom, and hence of
natural frequencies. The present chapter is concerned with
continuous distributions of mass and flexibility such as-occur in
heavy shafts and beams.

All material structures have a continuous distribution of mass
and flexibility ; a cantilever spring, for example, should be
regarded not only as a flexible unit but also as a quantity of
matter. In many cases, where the mass suspended on such a
spring is very heavy in.comparison with the spring, it is convenient
to neglect the inertia effects of the mass of the spring and to
consider it to be *light,” so that the system is essentially the
same as that in Fig. 1 or Fig. 9. Simplification in this manner,
however, is not always possible; when the mass of the spring
cannot be considered negligible in comparison with that of the
suspended body, it is necessary to study the effects of this con-
tinuous distribution of mass in the spring.

It is frequently important to be able to calculate the natural
frequency of systems including units such as diaphragms, rings,
plates, etc. It is not possible here to describe in detail the
analysis of such systems; the reader is referred to Timoshenko
(reference C in the Bibliography, page 151) for a full treatment
of these matters.

In this chapter the torsional vibrations of a heavy shaft of
uniform ecircular cross-section are studied by the aid of an
extension of the dynamic stiffness method. Heavy beams are
treated in normal fashion, and also by Rayleigh’s approximate
method, which is based on a consideration of energy. Rayleigh’s
method enables the lowest natural frequency of loaded heavy
‘beams, and similar systems, to be determined in an easy
manner.

80
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23. Torsional vibration of a heévy circular shaft.

The torsional systems discussed in Chapter IV are composed of
rigid inertias connected by light shafts, i.e. the flexibility of the
inertias and the polar inertias of the shafts have been neglected.
Many torsional systems encountered in practice can be con-
sidered as built-up in this manner; in internal combustion
engines, for example, torsional vibration of the crankshaft pro-
duces vibration of the reciprocating parts (pistons, connecting-
rods, etc.) and the polar inertia of the crankshaft itself is very
small compared with the inertia at each cylinder due to the
motion of these reciprocating parts. In the present section the
torsional vibration of a heavy uniform circular shaft will be
considered.

Fig. 34 shows longitudinal and transverse sections of such
a shaft, the length being ! and the radius ». Torsional vibrations

be——— £

; ¥¢,

"
g X | p—
6x

FIG. 34.—Uniform heavy circular shaft.

take place about the longitudinal axis 4B, and it is assumed that
during the motion plane cross-sections of the shaft remain plane
and undistorted. Consider a thin slice normal to the axis AB
at a distance z from one end B, and of thickness dz. Let the
angular displacement of the cross-section at z be § from the
static position, and let the angular displacement of the cross-
section at z+dx be 6+380. The twist over the length éx of the
slice is then 80, and dx and 60 are connected by the formula

6 T
o GI'
where 7 is the torque transmitted by the slice, G is the shear
modulus of the material, and I is the polar moment of area of the
cross-section, defined thus :
' I = Zrda
where da is an elemental area of cross-section at a distance r

from the axis AB, and the summation is extended over the
. . (23

. (23.1a)
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whole cross-section. (See Appendix II, section 39.) The polar
inertia of the slice about AB is

of =Ipdx . . . (23.1b)

where P is the density of the material in appropnate units ; in
the engineers’ system of units, dx is in inches, I in inches4, p in
slugs per cubic inch and 8J in lb.in.sec.2? (see Appendix II, section
37). The difference 7' between the torques 7' and 7'+6T at
either end of the slice maintains the acceleration §. Thus

: oT = G8J . . . . (23.1¢)
From (23.15, c) :
: _ _ oT _ 18,
ox

the partial notation being used as s there are two variables z and .
Differentiation of (23.1a) gives:

oT 020
% = Hom

and hence
. @G 9%

Equation (23.2) is a partial differential eqﬁation, and 0 is
evidently a function of both = and ¢. Assume that 0 is such
that it can be written

0=X.0¢t). . . . (23.3)

where X is a function of z only and f(t) is; a function of ¢ only.
Then

| 0= XaT,[fa)]
' 9%0
and - 5 = f(t) . -52—5.
Substltutlon in (23.2) glves

I =10 .55

2 .
Now, as X is mdependent of ¢, so must be aaX; ;

Hence g-:—’Lf(t)] _ Qa-a%.}]f(t) .. (23.4)
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and the expression in square brackets is independent of . Denote
this expression by — w?, so that ‘

@ 9°X 1 \
;_a'ﬁf= —w . . . (23.5)
Then g%[f(t)] = — w¥f(t)

which yields the normal simple-harmonic-motion result
f@¢) = a.sin (wt+¢) . . . (23.6a)
Equation (23.5) can be written

‘3’7{ = — 01X = — aWX
(23.6b)
where = —g '

‘the solution of which is e_ﬁdently of the form
X = b.sin (wkz+vp).
It is more convenient in this case to write X in the form
X = b, sin wkx+b, cos wkx . . (23.6c) .
From equations (23.3) and (23.6),
60 = (b, sin wkx+b, cos wkx)a.sin (wt+$)
or, writing 4 for b,a, and B for b,a,
0 = (A.sin wkz+B.cos wkx) sin (wt+¢) . (23.7a)
The torque 7' is given by (23.1a) and (23.7a) as:
T = Glok(— B.sin wkz+A4.cos wkz) sin (wt+¢) (23.75)

From the equations (23.7) the frequency of vibration w/2% (i.e.
the natural frequency) can be determined in accordance with
specified end-conditions. ‘

24. Dynamic stiﬂness and natural frequencies of heavy
shaft. o

Without loss of essential generality the phase-angle ¢ can

be made zero by a suitable choice of the instant ¢ = 0. 'In'the
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absence of damping forces, the torques and displacements at the

ends 4 and B of the shaft can be written :

(g') = (1;93) sinwt at B (z = 0)

()= (%)t ot 4 e

Putting 2 = 0 in (23.7) yields
=B .
and putting z = I, and writing y for wkl,
= A.siny+R.cosy .
T,=0GI(y/l)(— B.siny+A.cos y)

Solving these last two equations for 4 and B,

A =oasiny+KT, cosy

B = — KT ,siny+acosy
l

where K = ah

The dynamic stiffnesses Z, and Zz at 4 and B are
_T,4 _Ts

ie. Zy = alwk*il

GIy osiny+ KT, o8 Y .

l'acosy—KT  siny
This last -formula reduces to

_1( cosec y
Zp = &\ oot y+cosy — KZ 4 sin y}
l
where K = Gly
y = okl

and , k*N/G'

(24.1a)
(24.1b)

(24.1¢)
(24.1d)

(24.2a)
(24.2b)

(24.3)

Equation (24.3) gives the dynamic stiffness at B in terms of
that at 4 ; it can be applied immediately to systems similar to
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those discussed in Chapter IV except for the inclusion of heavy
shafts, the formula (24.3) being used in place of (22.5b).
Four special cases are worthy of particular consideration :

(i) Z at one end of the shaft, the other end being free (Fig. 35a). -

<

<

1 @ © |
Lez, =0 L7, |...zA=m
7 (b) A
| ) :E
L’ZG-.O () --——-ZB=°
Zg’sz
—{ﬁ ‘—72“-0
J | (€)
7
J C (f)
Z
E J (S)A
le Zg2 Jpu?

L—ZA= ’J!w!
F1a. 35.—Various end conditions and special cases for Fig. 34.

In this case Z, =0,

and Zg = %{— cot y+°22:cyy}

___ta.ny

ZB=GIw[ tanwl[

Hence (24.4a)
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(ii) Natural frequencies of shaft, both ends free (Fig. 35b).
At the natural frequencies, Z; = 0

Hence wl J 5— =0, n, 2n, etc.'
Apart from the zero solution, the natural frequencies are
: w/2n
where w=2 g, 2z ﬁ, 3a J g, ete. . (24.4D)
INp INp INPp
(iii) Z at one end of the shaft, the other end being clamped
(Fig. 35¢).
In this case
and Zyp = %(— cot ) unless siny = 0.

Hence Zp = — GQlo Jé.mt wl Jg . . (24.4¢c)

(iv) Natural frequencies of shaft, one end clamped (Fig. 35d).
At the natural frequencies Z; = 0

p_m 3 bn

Hence wl\/G_2’ 5 2,§tc.

or o = 0.

Apart from the zero solution the natural frequencies are
/27

G 5n /@
where ] J; lﬁ, ete. . (24.4d)

Three other speclal cases, illustrated in Fig. 35e, f, g, are of
interest. The method of calculating the natural frequencies of
these systems is indicated in Exercise 4 at the end of the chapter.

25. Flegmral vibration of uniform beam.

Fig. 36 represents an elemental portion of a uniform heavy
beam vibrating transversely. The section is at a distance =
from one end of the beam and is of length 8z ; the total length
of the beam is I. It is assumed that each point in the beam
moves at right-angles to the static direction of the beam-axis
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Oz. Let the displacement of the section from the static position
be y. Elementa.ry theory of elasticity (see Append:x II,
gection 38) gives the formulae :

M = Bending moment = E’Ia——
o0x?
(25.1)
F = Shear force = oM
ox
|
F
F“’SF‘ - : ::
-2
gl
| v x
et— X —>~{ S|

F1e. 36.—Elemental portion of vibrating beam.

where E is Young’s modulus of elasticity for the material and
I is the second moment of area of the cross-section defined as
2r%da, éa being an elemental area of cross-section at a distance »
from the neutral axis of bending (see Appendix II).

Let the mass per unit length of the beam be m. The resultant
shear force on the section is — F in the positive direction of y ;
hence

OF = — méxjj
or '?-I—‘——m"
oz Y

oF oM B 0ty

ox 9z = oa¥ ,

as the quantities £ and I are constant over the whole length
of the beam.

Hence E’Ig“y4 — my . . . (25.2)

(25.2) is a partial differential equation similar to (23.2) except
that the partial differential with respect to « is the fourth instead
of the second. The solution y can therefore be written

y = X .sin wt . . . (253)

But ’from (25.1)
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, Where X is a function of  only, i.e. X is mdependent of t. The
phase-angle required for the most general solution is omitted as
it is of no importance here. Substituting in (25.2),

‘X

E’I —— = mwX
ox?
or X _ = kX
ozt (25.4)
where kt = "—%’I—
Writing equation 25.4 in operator form,
D*X — kX, where D = ..
ox
Hence " D=+kor +ik @E=V-—-1).

The general solution in 2 must have four arbitrary constants,
as (25.4) must be integrated four times to eliminate differential
coefficients. By extension of the method of Section 2, Chapter I,
the general solution is found to be of the form :
X = 0, +Ce %40 ye* 4 C e . (25.5)
It is shown in Appendix I, sections 33 and 34, that
¢® = cosh 6+sinh 0 ’
¢=® = cosh 6 — sinh 6
€® = cos 0+1.sin 0
e ® = cos 06— ¢.sin 6
Putting kx for 6, (25.5) can therefore be written in the form
X = A, sin kx+A4, cos kx+ A, sinh kxz+A, cosh kx
and hence
= (4, sin kz+A4, cos kx+A4 , sinh kx+ A4, cosh kx) sin wt (25. 6a)
The bending moment M is given by (25.1) and (25.6a) as:
M = EIk*— A, sin bz — A, cos kx+A, sinh kz
+A4, cosh kz) sin wt  (25.6b)
and the shear foree F = 2:_: ie.
F = EIk*(— A, cos kz+A, sin kx+4, cosh kx
+ A, sinh kz)sin ot (25.6c)
From equations (25.6) the natural frequencies can be determmed
according to the end-conditions.
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26. Natural frequencies of beam.
(i) Cantilever.
If the beam is built-in at one end, as in Fig. 37a, the end-

conditions are that at = 0, the displacement and slope are zero,
a ]
% x=4
= (@)

. X=0 "(b) xsf

F1a. 37.—(a) Cantilever; (b) free-free beam.

while at & = [ the bending moment and shear force are zero, as
there is no loading beyond the end of the beam.

Le., at x=0,y=0anda—y=0
at =1 azy Oandaay—o
ox? 0x,
Substituting these values in (25.6),
A;+4, =0 .. . (26.1a)
A, 44, =0 . (26.1b)

— A, sin kl — A, cos kl+A, sinh kl+ A4, cosh kl =0 (26.1¢)

and .
— A, cos kl+A,sin kl+A; cosh kl4+ A4, sinh kl = 0 (26.1d)

Elimination of the constants 4,, etc., from these four equations
leads to the result : _
coskl.coshkl+1 =0 - . . (26.2)

The first four roots of this equation are
kl = 1-875, 4-694, 7-855, 10-996
and the first four natural frequencies are therefore :
/27,
A EI

where = and A = 352, 224, 61.7, 121 '. (26.3)
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(ii) Free-free beam.
If the beam is free at both ends, as in Fig. 37b, the end-
conditions are :
M = F = 0 at both ends,
Loy _ay
ie. T2 = 3 = 0 at both ends (x =0 and = =)
Hence - A3+A‘ =0 . . . (26.4“)
_ A1+A3 = 0 . . . (26.4b)
- — A,sinkl — A,cos kl4+A,;sinh kl+A4,coshkl =0  (26.4c)
and
— A,cos kl+A,sinkl+A; cosh kl4+A,sinh kl = 0 (26.4d)
Elimination of the constants Al, etc., from these equations leads
to the result :
cos kl.coshkl —1 =0. . . (26.5)

The first four roots of this équation are
kl = 4-730, 7-853, 10-996, 14-137
and the first four natural frequencies are therefore

w/2m,
. where o -l—lz E{ and A = 22-4, 61-7, 121, 200 . (26.6)

The natural frequencies of beams under other end-conditions
can be found in-a similar manner ; the subject is treated fully
by Timoshenko (reference 7 in the Bibliography at the back of
the book), who also discusses the vahdlty of the various assump-
tions that have been made.

The deformation shapes of the cantilever, Fig. 37a, at the
various natural frequencies are illustrated in Fig. 38. It will be
seen that the continuous beam has the same property as multi-
mass systems as regards the different modes of vibration, namely
that each successive natural frequency involves an additional
node.

The analytical solution of the problem of the uniform beam
is relatively simple, owing to the fact that the quantities £ and

"I in equations (25.1) and m ‘in the equation g—xF- = — mjj are

constant -over the whole length of the beam. In a beam of
variable cross-section or of non-uniform material the quantities
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E, I and m are not all constant, and the differential equation
corresponding to (25.2) is

az
a_x"=[ axz] ——mj. . . (267)

The difficulty of solution is not due to any abstruseness of the
theory but to the complexity of the calculation. The equation

W\

ANQNAN

L/
N

Fie. 38.—Deformation shapes of cantilever at first three natural frgqum;cies.

ACAANN

(26.7) cannot be solved in terms of analytic functions if &, I and
m are unspecified functions of z, and an approximate numerical
method has to be developed to enable a solution to be obtained
at all. Numerous authors have published methods of solution ;
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an adequate treatment of the subject is given by Timoshenko
(veference 8 in the Bibliography).

27. Rayleigh’s method for heavy beams.

Rayleigh’s approximate method for finding the lowest natural
frequency of heavy uniform beams depends upon the energy
properties of vibrating systems. When the system is at its
maximum displacement the kinetic energy is instantaneously
zero, as the system is instantaneously at rest, and the potential
energy is at its maximum value ; for the potential energy is the
work done against the restoring forces, and this is clearly a
maximum at the maximum displacement. Similarly, when the
system passes through its mean position (zero harmonic displace-
ment) the kinetic energy is a maximum and the potential energy
is zero.

Consider for example a single-mass system, the displacement
of the mass m being # = a.sin wt against a spring force kz, as
in Chapter I. The kinetic and potential energies are given by

K.E. = imi? = }ma’w? cos? vt (a)
PE. = r(kx) iz = ke = Yea? sin? ot (b)} (27.1)
0

At the maximum displacement sin wt = 4+ 1, cos wt = 0

Thus (P.E)pes. = 3ka?, KE =0. . . (27.2q)
At the mean position sin wt = 0, coswt = + 1,
and (K.E) pow. = 3ma’ew?, PE. =0 .. (27.2b)

The total energy in the system is the sum of the kinetic and
potential energies, and this total remains constant throughout
the motion in the absence of damping forces, as there is no
dissipation. The maximum kinetic energy is thus equal to the
maximum potential energy, and thus

ymz — %m*w’
whence w? =:fn- . . . . (27.3)

and the frequency w/2x is thus determined.

In the case of heavy beams, the expressions for the kinetic
and potential energies are more complicated. Consider the
elemental section of beam in Fig. 36. For sinusoidal motion
Y = Y, 8in wf the maximum kinetic energy 4(K.E.),,, of the
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section is §(K.E.),., = Imw?y,2z, as the mass of the section
is méz. The maximum kinetic energy of the whole beam is
therefore

(K.E.)m,=;mwzﬂy.,2dx .. (21.49)

Referring to Fig. 39a, if the left-hand end of the section is fixed
the bending moment M turns the right-hand end through the
angle 80, and M is proportional to 6. The work done against
M during this rotation is given by the shaded area in Fig. 395,

m{ @TM M
@™\
N b

\gse (b)

\
F1e. 39.—Derivation of potential energy formula for beam.

and is equal to 3Md6. The potential energy of the section is
thus A
6(P.E.) = 1 M46.

The slope of the displacement curve at the left-hand end of the
section is g—‘z, and the slope at the right-hand end is

8y+(32y> 6z, hence 60 = %&x

ox \ox?
and JPE) = M % %Y s
Substituting M= Elg“y

— 1g1(?%\
§(P.E.) = wz(%> 5.
The maximum potential energy of the whole beam is therefore
l 2 ’
(P.E. )y, = ;EEIJ' (?;_'?/') dx . . (21.4b)
0 ox?

The natural frequency w/27% can be found if the deformation
shape is known, by equating the two expressions (27.4). The
procedure is to guess a deformation curve which satisfies the
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end-conditions and corresponds to the mode of vibration con-
cerned. As an example, consider the system of Fig. 40, consisting
of a heavy uniform beam simply supported at each end (so that
the displacements at the ends are zero but the slopes are not

x:0 M. x=4

& / l l
Mg
Fre. 40.—Simply-supported beam with central loading.

necessarily zero) and carrying a concentrated load at the centre
of the span.

Let I = length of beam
m = mass per unit length of beam
M, = mass of beam
M; = mass of central load
Yo = maximum deflection at centre of span.

The end-conditions to be satisfied are that the displacements and
“bending moments at each end are zero, i.e.

- y=0and iy=0at:.'z:--0emd::;—l

, For the fundamental, or lowest, natural frequency the curve
Yo = Yo smnl—x satisfies the end-conditions and the mode. From
(27.4a) the maximum kinetic energy of the beam is

(KB, = mat :yc’ sint ™z = motyot

‘ . = }Mzwtyc?
- and for the central load (K.E.),,, = M 0%,*
Hence for the whole system,

total (K.E gz, = $0%c*(3Mp+M ) . (27-5‘_1)
From (27.4b); ; - ‘
1
(PE) e, = ;EIJ ') EIyG"”‘I 2.sin? P
414}, l
The value of the definite integral is I, and hence
(P.E.) g, =TT (@1.5)

43
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Equating the expressions in (27.5a, b),

10yt Mp+M;) = E*%:E
. _ _ 487EI
whence () B, I MJ?‘*‘ i) (27.6)

From this formula the frequency w/2n is obtained.

Two special cases deserve attention :

(i) If the central load is zero, the system reduces to a heavy
beam simply supported at both ends, and (27.6) becomes

97-4E1
Mg *

This result agrees with the exact expression derived by the
method of Section 26.

(ii) If the beam is light compared with the central load,
(27.6) becomes
48-7E1
M

Comparing this formula with w? = k/m for the system of Fig. 1
the effective spring-constant of the light beam is here given as
48-7 EI/13. If this spring-constant is calculated according to
normal methods (see Appendix II, section 38) the numerical
factor is obtained, as 48 ; thus Rayleigh’s method gives a value
for w? which is 1:49 in excess of the true value ; the frequency
error is thus only 0- 7%

Rayleigh’s method is very useful when it is desired to know
the effect: of neglecting the mass of a beam carrying concentrated
loads ; in the case of a simply-supported beam carrying a central
load, (27.6) shows that half the mass of the beam should be
added to the central load if it is required to find the lowest
natural frequency assuming the system to be simply a one-mass
system similar to Fig. 1, & being the effective stiffness of the
beam at the centre of the span.

" Table VIII gives various formulae and results for three
different types of loaded heavy beams : _

w?

(i) cantilever with end-loading, -
(ii) simply-supported beam with central loading,
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TABLE VI
LENGTH OF BEAM £, DEFLECTION y, MASS OF BEAM M,
MASS OF LOAD M, , MAX: DEFLECTION A
SYSTEM: %‘“\‘é =<E&oa & _
CONDITIONS
x=0 2a0= 33. e
x=£ y‘a* §3=°= %x‘ }3’0:%3‘5
A
ASSUMED
FUNCTION 3=A(I-cos§)l 3=Asm§§ 3’?0'“6%)
(K.E) |8 (it 1BMY S (M sk Mg) | S M+ Me)
P.E M 2 - 2 4 2
PRl Zge | ZEs | g
wt 3.04EI 487E1 19SEL
-(F s é»i cps) e:(Mk-t- 'ZZGW ‘C'(M.;l-iM.) C'(M._«t-%M‘)
FREQUENGY -
FOR LIGHT | F= L [SEL =J—F€r F= '_,"ZH
BEAM exim e exi M &? x| m €2
|CORRECTION
FOR MASS| 0226 M, 0'5 Mg 0-375 Mg
OF BEAM |
FREQUENCY . e orey
ERROR 06% 07% 075%
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(iii) clamped-clamped beam with central loading. The table

gives :

(@) end-conditions,

(b) Rayleigh function,

(c) maximum kinetic and potential energies,

(d) value of w?

(e) frequency for light beam (My = 0),

(f) correction for mass of beam,
and (g) approximate frequency error.

Summary.

Vibrations of heavy beams and shafts are analysed by obtain-
ing the general solution to the partial differential equations of
motion, and determining the constants from a consideration of
the end-conditions relevant to the problem.

Rayleigh’s approximate method for beams consists of assuming
a deformation shape for vibration at the lowest natural frequency,
and then calculating the maximum values of kinetic and potential
energies for sinusoidal vibrations in this mode. Since when the
kinetic (or potential) energy is a maximum, the potential (or
kinetic) energy is zero, and the sum of the two, being the total
energy content of the system, is constant in the absence of
da.mping forces, the maximum values of the kinetic and potential
energies may be equated. This equation yields the value of the
natural frequency. i

EXERCISES V

1. Check by Rayleigh’s method the expression given for the lowest
natural frequency of a free-free beam in (26.6), and so obtain data for
another column in Table VIII.

(The appropriate function is y, = a — ¥ sin ?—’, in which @ has to

be found by determining the condition for zero total inertia force (mg)
for the whole beam.)

2. Check the date given in columns (i) and (iii) of Table VIII.

3. Draw the swinging forms of a uniform heavy circular shaft at its
first four natural frequencies, the shaft being free at both ends.

(Use the formula 23.6¢ in conjunction with the special end-conditions.)

4. Determine the natural frequencies of the heavy-shaft systems
shown in Fig. 3be, f, g

(Use the formula 24. 3 putting in the particular end-conditions required

) . H
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o

(e). Z4 = 0, Zp = Jw? giving y -3 tan y,
where y = ol /,:g and J, is the polar inertia of the shaft = pll.

. . J
(f) Z4 = o, Zp = Jo? giving y = —jcoty.

@ 24 = — J 10 Zp = Jyo', giving
K, Jqw*+K(J, +J)wtcoty — 1 =0
where K = 1/Gly.)

5. Some variable-pitch aircraft propellers can be “ feathered,” i.e. their
blades can be turned edge-on to the direction of flight. Idealising the
blades in the form of uniform beams of rectangular cross-section, and
supposing these to be built-in to a shaft of negligible diameter, derive an
expression for the torsional dynamic stiffness of the propeller as a whole,
the blades performing flexural vibrations in a direction perpendicular to
the shaft.

(In equations 25-6, page 88, substitute the end conditions: at z =1
(outer end of blade), M = F = 0; at z = 0 (root end of blade) y = 0,
(dy/dx) = A.sin wt, M = T .sin wt. The required dynamiec stiffness is by

"definition nT'/A, where n is the number of blades.)



CHAPTER VI

COMPLEX VIBRATIONS
(Fourier Analysis)

Introductory.

ATTENTION has been confined, in the previous chapters, to
vibrations of sine-wave form. In a great number of practical cases
vibrations of this type are of considerable importance, but it very
frequently happens that the form of serious or even dangerous
vibrations is not that of a sine-wave. Moreover, it is found that
many vibratory forces are not sinusoidal (for example, the gas-
pressure variations in an internal combustion-engine cylinder, or
the regular blows of a power hammer) and it becomes necessary
to study their effect.
The practical result of Fourier’s Theorem (see Section 28
p. 100) is that any periodic variation whatever can be expressed
in the form of a series of sinusoidal components. Since a sinusoidal
force causes a similar vibration at the same frequency as itself,
a periodic force which is not sinusoidal can cause vibrations at
more than one frequency. Its components, which are generally
termed ‘ harmonics,” can have frequencies which are -any
multiple of its own frequency, the presence and relative severity
of each harmonic depending upon the form of the periodic
variation. Thus, for example, the periodic variations in Figs. 41
and 42 are such that the corresponding Fourier series contain
only odd harmonics, whereas that in Fig. 43 consists of the sum
of two sine-waves whose frequency-ratio is 5 : 6.
The practical importance of Fourier’s Theorem is great. If
a structure is acted on by a sinusoidal force with a frequency
of 2,800 c.p.M., it will only undergo sustained vibrations at this
frequency, and these will be small if this value does not nearly
or quite coincide with any natural frequency of the structure ;
but if the pattern of the force is'similar to that in Fig. 415, the
“ load being suddenly applied and suddenly removed, there are in
effect sinusoidal forces at 2,800, 8,400 (= 3 x 2,800), 14,000
(=6 x 2,800), etc., 0.p.M., and if any of these frequencies nearly
or quite coincides with any natural frequency there may be severe -
vibration. :
: 99
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The practical details of Fourier analysis cannot be described
here at length, and in the present chapter attention is confined
to the simpler parts of the subject. The author has described
elsewhere the various methods of Fourier analysis, and particu-
larly of waveform analysis (the analysis of periodic variations
into their sinusoidal components, the data being a vibration
record or similar waveform) ; see reference D in the Bibliography,

page 151.

28. Fourier series.

If a function f(¢) of any variable ¢ is periodic with a ¢-period z,
so that if the variable ¢ is increased by any multiple of 7 the
value of the function is unaltered (i.e. f(t) = f(¢t+%7), where k is
any integer), then the function can be expressed in the form :

ft) = ay+a, cos 2Tnt+a, cos 22—::-t+a,3 cos 32%{ ete.
2t
T

The series can be expressed concisely as :

f(t) = ao+ ) a, cos n2_”t+2b,, sin n 27t
T

+b, sin -+ b, sin 22—‘-iz—t—}-b3 sin 32_1:_7“’ ete.

n=1 n=1 T

- where n is integral . . . (28.1)

The result is known as Fourier’s Theorem, and the series is
commonly termed a Fourier series.

If the variable ¢ represents time, so that the function has

a time-period 7, it is convenient to write w for 27/r, and then

f(t) =ao+ ) a, cos nwt+ ) b, sinnwt . (28.2)
The terms a,, cos nwt-+b, sin nwt can be written as r,, sin n(wt+4¢,),
where 7,2 = a,2+b,2 and tan né, = a,/b, so that the series can
be put in the alternative form :

f@t) = aog+ ) r,sinn(wt+¢,) . . (28.3)

n=1
The quantity w/2x, being the reciprocal of the time-period 7,
is termed the fundamental frequency of the function ; the term
in the series for which » = 1 is called the fundamental component,
and the other terms (» = 2, 3, etc.) are known as the harmonics.
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As an example of the synthesis of a periodic function by the
addition of sine-waves, consider the function

f(0) = sin 0+} sin 30+ 8in 50+ . . .
1 .
g N — 10+ ... (284)
In Table IX are listed values of the various terms in (28.4) as
far as the term involving 70, i.e. the 7th harmonic.

Tasie IX
"0/n sin 6 § sin 30 4 sin 50 4 sin 70 sum
0 0-0000 0-0000 0-0000 0-0000 0-0000
0-1 0-3090 0-2697 0-2000 0-1156 0-8943
0-2 0-5878 0-3170 0-0000 — 0-1359 0-7689
03 0-8090 0-1030 — 0:2000 0-0441 0-7561
0-4 0-9511 — 0-1966 0-0000 0-0840 0-8385
0-5 1-0000 — 0-3333 0-2000 — 0-1429 0-7238
0-6 0-9511 — 0-1966 0-0000 0-0840 0-8385
0-7 0-8090 0-1030 — 0:2000 0-0441 0-7561
0-8 0-5878 0-3170 0-0000 — 0-1359 0-7689
0-9 0-3090 0-2697 0-2000 0-1156 0-8943
1.0 * 0-0000 0-0000 0-0000 0-0000 0-0000
1-1 — 0:3090 — 0-2697 — 0-:2000 — 0-1156 — 0-8943
1-2 — 0-5878 — 0-3170 0-0000 0-1359 — 0-7689
1-3 — 0-8090 — 0-1030 0-2000 — 0-0441 — 0-7561
14 — 0-9511 0-1966 0-0000 — 0:0840 — 0-8385
15 — 1-0000 0-3333 — 0-:2000 0-1429 — 0-7238
1-6 — 09511 0-1966 0-0000 — 0-0840 — 0-8385
17 — 0-8090 — 0-1030 0-2000 — 0-0441 — 0-7561
1-8 — 0-5878 — 0:3170 0-0000 0-1359 — 0-7689
1-9 — 0:3090 — 0-2697 — 0:2000 — 0-1156 — 0-8943
20 0-0000 0-0000 0-0000 0-0000 0-0000
2:1 0-3090 0-2697 0-2000 0-1156 0-8943
l etc. etc.

The values in the last column of Table IX are plotted in Fig. 41a.
If more terms of the series are taken, the curve approximates
more nearly to the shape of Fig. 41b,* i.e.

f(6) ==n/4 for 0 <6 < 2 }
fO0)= —=n/t for x <0 < 2x] °
;t will be seen that the function (28.5) is such'thg,t
fO) = —f—0)=—fen—06) . . (288

* See note on Gibbs’ phenomenon, p. 106.

. (28.5)
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so that the curve, Fig. 41b, is skew-symmetric about the values
60 =0 and 0 ==z. The result is due to the fact that all the
terms in the series (28.4) are sine-terms and obey the law (28.6).

@)
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Fia. 41.—(a) Graph of the function (28-4), first four components : (b) sine-term
function ; (c) cosine-term function.

4 @

Let the variable 6 be changed to 0,, where § = 0,+x/2 ; the
resulting graph is that of Fig. 41¢, which is seen to be symmetrical
about the lines §, = 0 and 6, = x, so that

f0:) =f(—0,) =f(2n — 6,) . . (28.7)
‘Making the substitution in the series (28.4),
£(6,) = cos 6, — 1 cos 36,41 cos 50, etc. . (28.8)
as sin (0,+x/2) = cos 6
sin 3(0,+x/2) = — cos 30,
Sin 5(01+W/2) = COS 501,
ete. etc.

The forms of (28.4) and (28.8) point to a general conclusion that
if the function f(t) in (28.2) is symmetrical about the lines ¢t = C,
C+n/w, ete., the series can be put into a form containing cosine
terms only by making the substitution ¢, = ¢ — € ; and similarly
if the function is skew-symmetric about these lines the series
can be put into a form containing sine terms only.

29. Fourier analysis.

The process of determining the coefficients @ and b in the
series (28.2) for any particular function f(t) is known as Fourier
Analysis. The procedure depends upon the results :
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21/ 3
(a) sin mowt.sin nwt dt = 0
Jo
r27/w
(d) sin mowt. cos nwt dt = 0 if m and » are unequal
Jo integers
¢ "2’(/0) .
(¢) cos mwt. cos nwt dt = 0
Jo )
r2n/w .
(@) sin mwt.cos mwt dt = 0 if m is an integer
Jo
r2n/w ) : - (29.1)
(e) sin mwtdt =0
Jo
r2n/w
. - cos mwtdt =0
‘.;’”/w .if m is an integer.
(9) sin? mwt dt = n/w
JO
r2n/w
(k) cos?mwt dt = n/w
o 0

These results are proved in Appendix I, section 36.
Integrate (28.2) with respect to ¢ over a cycle of the function,
i.e. between the limits 0 and 2x/w for &.

27/ 27/
j. - f@)de =j (@+ ) a, cos nwt+Zb sin not) dt.
0 0 ot
The equations (29.1) show that every term on the right-hand
side will be zero except that due to the integration of @,. Hence

f ") dt = (a7 = 0,2
0 w
251/
and o = %jo fyd . . (29.2a)

Now multiply (28.2) by cos mwt and integrate over a cycle ; thus
2n/a 2n/w
j f(t) cos mot dt = I a,, cos® mot df = g“m
0 0

as all the other terms integrate to zero by reason of the equations
(29.1).

w 2n/o .
Hence a, = —-j f(t) cos mwt dt . .. (29.2b)

Slmlla.rly, by multiplying (28. 2) by sin mwt and integrating over
a cycle, it is found that



104 FUNDAMENTALS OF VIBRATION STUDY

(D 2n/w Lt
b, = = J@)sinmwtdt . . (29.2¢)
0

The procedure for determining the Fourier coefficients @ and
b is thus as follows :

(i) The constant a, is found by evaluating the average value
of the function over a cycle, for that is what the value
(29.2a) is. '

(ii) The cosine coefficients “a > are found by multiplying
the function by the appropriate cosine function,
integrating over a cycle, and multiplying the result
by w/x. '

(iii) The sine coefficients ““ b > are found in a similar manner,
except that the appropriate sine function is used
instead of the cosine function.

The equations (29.2) are collected together below for easy
reference.

(@) o

(b) ;\ X /J,r\ :
IRV

Fia. 42.—Periodic functions analysed in section 29.

e L @]
a,, = Qr’w f() cosmetdt -+ (b)) . (29.2)
75’ 0 ! i

b, = %j:"’ “f¢) sinmotdt (¢

As an example, the function graphed in Fig. 42a will be
analysed in this manner. -
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f)= l1foro<t<am
f(t)=—lforn<t<2n}

Here w = 1. By (29.2a),
ap = El;z[ﬁ(l)dt-pf(‘— l)dt] —o.

(29.3)

By (29.2b),
i 2 -
am=l cosmtdt—lj cos mt dt = 0.
o Ja
By (29.2¢),
1= . 1(%
by =— smmtdt-——j sin mt dt
o 3
_ I —cosmt}*  1[ — cos mi|?"
_ﬂ_ m ]0 T m n

2
= —(1 — cos mx).
maz

If m is even, cosmn =1 and b, =0
4
If m is odd, cosmnw = — 1 and b, = —

The Fourier series representing the function of Fig. 42a is
therefore :

4 4 . 1, 1.
f@) =J—t(smt+5 sin 3t+3 sin 5¢ . . .) . (294)

This result agrees with the previous synthesis (Section 28,
Fig. 41).

The Fourier analysis of a discontinuous function gives results
which are accurate except at the discontinuities, where the
Fourier function ‘ jumps” too far; this is known as Gibbs’
phenomenon, an account of which is given elsewhere by the
author (reference 9 in the Bibliography).

A slightly more complicated function is shown in Fig. 42b.
By a suitable choice of the point ¢ = 0 the function can be made
either symmetrical or skew-symmetrical about ¢ = 0, so that the
series can be made to consist of cosine terms only or of sine terms
only. Let the time-origin be as shown, so that the function is :

f(t)=1—2—': for0<t<m
: n : : (29.5)

L2 _ 2
ft) = —'l+’—z(t—az)-— —3+-  a<t<m
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Dividing the integration into two stages, as before, and using
the results : '

j t.cos midt =t smm’"t — r’m ™t g

m
sin mt . cos mi
+ 2
m m
cos mi _ j‘— cos mit dt
m m
cos mt  sin mi

+

m m2

=1

and jt.sin mtdt = — 1

=—t

the Fourier series is obtained as: _
8 1 1
fi) = n—z(cos t+§§ cos 3t—|—-5—2 cosbt . ..) . (29.6)

When it is required to carry out a Fourier analysis of a
function which cannot be readily expressed in an analytic form
such as (29.3) or (29.5), the integration is performed numerically
as a summation. The ordinates, or values of the function, at
a number of time-values equally spaced over the cycle are mul-
tiplied by the corresponding values of the appropriate cosine or
sine function, and the products summed over the cycle. The
results of this process are sufficiently accurate so long as the
number of ordinates is greater than twice the index-number of
the highest harmonic present. Thus a 48-ordinate analysis will
give true results so long as there are no harmonics higher than
the 23rd present. The numerical work is easy but tedious;
in order to reduce it to a minimum, various schemes of com-
putation have been evolved, the most convenient one being that
due to Runge, a full description of which is given elsewhere
(reference 10 in the Bibliography at the back of the book).

A particular example of a complex wave with only two com-
ponents is afforded by the phenomenon of beating. The effect
occurs when two sine-waves of slightly different frequencies are
added. Let the two functions be a.sin wt and b.sin (0 +Adw)t,
where Aw is small compared with w. The sum of the two
functions can be expressed in the form

(a+b.cos 'Awt) sin wt+b.sin Awt. cos. wt,

or rsin (wt-+¢), where 72 = (a+b.cos Awt)2+(b.sin Awt)?
= a®+b2+2ab.cos dwt.
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The amplitude r varies between the limits (a+b) and (a — b),
the frequency of variation being Aw/27, which is the difference
between the frequencies of the two components As an example
of this phenomenon, the function sin 6¢+2.sin 5¢ is plotted in
Fig. 43.

f© £(¥) = sin 6t +28inSE

Fro. 43.—Beating,

30. Vibration under non-harmonic forces.

A sinusoidal force is termed a harmonic force. Periodic forces
which are not sinusoidal, but which can however be expressed
as a Fourier series of harmonic forces, are termed non-harmonic,
and they are of very frequent occurrence in engineering. In the
internal-combustion engine, for example, the gas-force acting on
the piston in each cylinder is a periodic function with many .
harmonics present ; the frequency of the fundamental component
is the frequency of firing in each cylinder, i.e. half the number
of revolutions per minute of the crankshaft in the case of four-
stroke engines. These gas-forces are transmitted to the crank-
shaft through connecting-rods of finite length, and the non-linear
relation between the force on the piston and the resulting torque
exerted at the crank-throw introduces further harmonics. The
resultant torque in the crankshaft is therefore a Fourier series,
the constant term (@,) in which represents the steady torque
available for the power-output of the engine, and the sine and
cosine terms in which induce torsional vibration of the crankshaft
and its associated inertias. As the frequency of the fundamental
component in C.P.M. is § X R.P.M. of the crankshaft, there will
in general be harmonic torque components at .

(3, 1, 1}, 2, 24, 3, . . . etc.) X engine R.P.M.
Many of these harmonics are practically balanced-out by.suitable
design of a multi-cylinder engine, but all the harmonics are
present in a single-cylinder engine. Further information on
this important subject may be found in textbooks on torsional
vibration ; the reader is referred to that by Dr. Ker Wilson
(reference 11 in the Bibliography).
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.Suppose the mass in Fig. 9 to be acted upon by a complex
force P = P, sin pt+P,sin qt, where p and ¢ are not equal.
Using the method of section 9,

P, . P, .
2 2 — 1 2
[D?+2yD 4+ w?le = — 8in pt+——m sin gt

and the displacement z is found to be of the form :

where the quantities b and y are expressions similar to those in
(9.3), subscript 1 indicating the frequency p/2x and subscript 2
indicating the frequency ¢/2m. The motion of the mass is
therefore the sum of two sine functions whose frequencies are
the same as those of the two components of the exciting force.

In general, if the exciting force is a Fourier series in the
form (28.3), ie.

F =Fo+ ) r,sinn(pt+¢,) . . (30.2)
n=1

then the displacement of the mass is given by

z = ay+ ) a,sinn(pt+yp,) . . (30.3a)
n=1 )
where the amplitude coefficients a, are given in terms of the
modulus of the dynamic stiffness |z,| at the frequency np/2= as
I .
|2
(see Chapter IV, end .of Section 22).

The phase-angles y, can easily be calculated, but are generally
of far less importance than the amplitudes.

An important consideration is the work done by the force
(30.2) on the displacement (30.3). Consider any particular
harmonic of the displacement-function (30.3a), say the mth

harmonic z,, = a,, sin.m(pt+v,,). The work done is dea:,,,,

. (30.3b)

a, =

‘but dx,, = a,mp.cos m(pt+y,)dt, and the work done during a
cycle of the fundamental component is

= rn/p [F. +Zr,, sin n(pt+¢,.)]p cos m(pt +y,,)dt (30,4)

n=1

‘and equations (29.1) show that all the terms on the right-hand
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side of (30.4) integrate to zero except that due to the mth harmonic
in the force input. For any particular harmonic in the displace-
ment function, the input energy that is required to make good
the loss due to dissipation is therefore derived exclusively from
the corresponding harmonic in the force. This result is of great
practical importance, for it means that if one harmonic com-
ponent of a periodic force input is varied, only the corresponding
harmonic in the displacement-function will be altered.

Summary.

Equations (29.2) on page 104 enable the sinusoidal components
to be found for any periodic variation which can be expressed
mathematically, either as a single function or as a number of
functions each extending over part of the cycle. These com-
ponents have frequencies which are multiples of the frequency
of the original variation, the presence and relative intensity of
each component being dependent upon the form of the variation.

A form of numerical approximation to the integrals of
equations (29.2) enables the components of periodic variations
to be found when these are given as sets of values or as graphs
(e.g. recorded waveforms).

Whereas the response to a sinusoidal force is also sinusoidal,
at the same frequency as the force, the response to a more complex
periodic force is itself complex ; the response has a component
at the same frequency as each of the harmonics of the force.
Consequently, a system with a single degree of freedom, and
hence one natural frequency, will be in resonance at various
different fundamental frequencies of a complex force. Thus if
the force varies after the manner of Fig. 42a, and the natural
frequency is 1,500 c.p.M,, there will be resonances at frequencies
of 1,500, 500, 300, 214, etc., force c.p.M. ; in each case, however,
the large vibrations due to resonance will be at 1,500 c.p.m.
(See Appendix IV, page 134.)

EXERCISES VI
1. Determine the Fourier series for a function f(f) which is such that

f) = asin ket for 0<t<
ft) =0 for ’z'< t<2n

k being integral.
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- 2, Determine the Fourier series for a function f(t) which is such that
=1, for — ¢ <t<t,
. ft)y =0 for ¢, <t<2n — ¢,
t, being less than =.
3. Develop a method of Fourier analysis by numerical integration
with six ordinates, to evaluate the constants » and y in the function :
f@) = ag+ry sin (0 +yp;) +ry 5in 2(wt +y,).



APPENDIX 1
SOME PURE MATHEMATICS

31. Exponential function. I\»
"THE number e is defined as the limit of the expression (1 +;L)
" as n tends to an infinite value. Thus
e= Lt .(l+—l)”.
n—yw0 n

Expanding by the Binomial Theorem :

_ nm — 1)  nn — 1)(n—2) )
e —"ﬁw.{1+ + '”'2|_ + n3|_3_ + etc.}
. B 1,1, 1
1.6. e = 1+1+——|2+—3+—4+ ete. . . (31.1)

e XL ———
F1a. 44.—Decreasing exponential function e—=.
The function ¢® is similarly defined :
= [ Lt. N1" _ Lt e -
eF = n—-)w(l-'_ﬁ)] =2 l—l-a
and the result is obtained : ’
: x? 3 at
e* —1+x+'— ,_ L—|— etc. . (31.2a)
Putting — z for «,
: x’
eF =1 — — ete.* . (31.2h)
S l_ l_ o

* A graph of e—Z is given in Fig. 44.

It is shown in textbooks on analysis that these series are con-
: 111
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veigent for all values of . The function e* is termed the ex-
ponential function and obeys the normal laws of indices.
Thus - €.V = 1Y, (€®) = e, ete.

The exponential function is such that the series form can be
differentiated term by term (see Whittaker and Watson, refer-
ence 12 in the Bibliography). Performing the differentiation, it
is seen that the resulting function is identical with the original, i.e.

d I\ — o )
d—;(e) = ¢ . . . (31.3)

32. Sine and cosine series.

Maclaurin’s formula for the expansion of a function as a
power series is :

f(®) = FO)+af O+ f'O)+ oto.. . (321)

2

where dashes denote differentiation with respect to 2 and f(0) is
the value of f(z) when x = 0, etc.

It - flx) = sin =, flo)=0
f'x) =cosz, f(0) =1, etc.

In this manner the function sin 2 can be expanded by Maclaurin’s
formula as :

si1'1z=x l_ |_ |_+ etc. . . (32.2a)

and similarly,
2
cosx =1 — + ete. . (32.2b)
12 l_ s
33. Expdnential form of sine and cosine functions.
Let ¢ stand for Vv —1; then

1= —1, 13 = —1, =1, 1% =1, ete.
: x®  ab
iz - — . e — —4— —- te.
Thus & 1 |_ l__ etc]+ zl:a: |1+|_§_ ec]
ie. = oS :v+z sinx . . . (33.1a)

Putting — z for z, ‘
. e ¥ =cosxr —i.8inx . . (33.1b)
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and hence
: iz |, g—iz -
CO8 & = ?_+2e_ (@)]
o . (33.2)
I A b
sin r = — (b)

From (33.2) it can be shown that cos?z + sin?z = 1. If the
co-ordinates of a point in plane Cartesians are z = r. cos 0,
y = r.sin 0, the point lies on the circle x2+4y2 =72 The sine
and cosine functions are therefore termed * circular functions.”

34. Hyperbolic functions.
The functions cosh # and sinh z are defined :

T @)

cosh z =
(34.1)

e — e~ 2

G

and it can easily be shown that cosh?z — sinh?x = 1. If the
co-ordinates of a point in plane Cartesians are x = r cosh 6,
y = rsinh 6, the point lies on the hyperbola 2 — y2 = r%. The
functions cosh and sinh are therefore termed ‘‘hyperbolic
functions.”

sinh ¢ =

35. Vectors. :

A scalar quantity is one having magnitude but no direction ;
examples are: numbers, temperatures, lengths, etc. A vector
quantity is one having direction as well as magnitude ; displace-
ments, velocities, accelerations and forces are all vectors. A
scalar can be represented by the distance between two points ;

A B é P(a')

OX%

. B

- -
-OP = OP'

-y
e

F16. 456.—(a) Representation of scalar quantities on a straight line;
(b) Representation of vector quantities on a plane. )
. . I
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'if one point O is fixed, a set of scalars can be represented by the
distances 04, OB, OC, etc., from O to points 4, B, C, ete., on
a straight line OP (Fig. 45a). A vector can be represented in
magnitude and direction by the line joining two points. If one
point O is fixed, a set of vectors in a plane XOY can be repre-
sented by the lines OP, 0Q, etc., joining O to points P, @, etc.,
~ in the plane XOY. Let the co-ordinates of the point P be (z, y)

(Fig. 45b) and let N be the foot of the perpendicular from P to
OX. - A displacement from O to P is equivalent to a displacement
from O to N together with a displacement from N to P ; if &
represents a displacement of magnitude x in the direction OX,
and # represents a displacement of magnitude y in the direction
07, then

0P = g+§. . . . (35.1)
As the point P is determined by the co-ordinates (2, y) the vector
OP can be denoted by the set (z, y).

->

io

v
]
=N

F1a. 46.—¢ as a versor-operator.

It can be seen from Fig. 45b that the vector — (z, y) is in
the same straight line POP’ as the vector (z, y) but is in the
opposite direction. Thus multiplication by — 1 is equivalent to
a rotation through two right-angles or » radians. By (33.1a),

¢ =cosmti.sinmg = —1 . . (35.2a)
Hence rotation of a vector through an angle n radians is effected
by multiplying it by €. By convention, rotation of a vector
through one right-angle or z/2 radians is said to be effected by
multlplymg it by e®/%2. Now, from (33.1a),

e/? = cos < +z :sm—é =1 . . (35.2b)

and heénce rotation through one nght-a,ngle is by convention
supposed to be effected by multiplication by ¢. That this con-
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vention is consistent can be easily shown. Real scalar quantities
being measured along OX, Fig. 46, the quantities ¢, 2i, 37, etc.,
are to be measured off along OY. Thus

—
OP = z+1y.

— —
Let z'+iy’ = «(OP) = i(z+iy) = (— y+iz) = OP'.
It is clear that OP’ in Fig. 46 is at right-angles to OP.

- In order to distinguish between the number ¢ (= v — 1) and
the operator ¢ (turning the associated vector through an angle
n/2 in the positive sense), the symbol j is frequently used for
the versor-operator. (A versor-operator is a turning-operator.)

If the polar co-ordinates of P are (r, 6), then
241y =rcos 0+i.7rsin O = re® . . (85.3)
This exponential form is sometimes useful in calculations. The
following alternative forms are of frequent occurrence :
: l1=cos0 +¢8in0 =e° )
—1=cosn +ising =ei*

i=cos’—; +isin7§t ="/ 4, . (35.4)

— 1 = cos 3—n+i sin 8 _ i37/2

: 2 2 J .
'Thus, for example, i(x+iy) = ire®® = re?®*+%/2) 5 form of state-
ment which shows clearly the turning effect of the operator 1.

36. In_ltegral formulae.
The equations (29.1) are easily derived.

2n/w . 1 2n/w
j sin mot dt = — —[cos mwt] =0. (29.1¢)
0 m 0

By ordinary trigonometry, .
sin met. sin nwt = } cos (m — n)wt — } cos (m-+n)wt.
. If m and n are unequal,

2n/w 27 /o
j sinnmt.sinnwtdt:&j cos (m — n)wt dt
0 0

- %j‘wm cos (m-+n)wt dt

2n/0
sin (m+n)wt] N
0o

= )[sm (m — n)wt] e ~ 3m +n)[
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As both m and n are integers, both these terms are zero and the
whole integral is zero. . (29.1a)
iIf, however, m = n, then as

sin? mwt = } — % cos 2mawt,

2n/0 2n/@ 2n/w R
j sin? mowt dt = }I (1) dt — &j. cos 2mawt dt
0 0 0
i L (2999)

(1] .
The other equations (29.1) are obtained in a similar manner.
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SOME APPLIED MATHEMATICS

37. Newton’s second Law of Motion, units.

NEewton’s second Law of Motion states that the rate of change
of momentum of a body is proportional to the impressed force.
If the force in a certain direction is F, and the displacement in
this direction is z, the resulting equation of motion is

F=Z—t(ma’:) N VA )

where m is the mass of the body. If the mass remains constant,
F=mi. . . . (37.1b)

Use of the equation (37.1b) leads to two fundamentally different
systems of units. In the scientific system the basic quantities
are mass, length, and time (lbs., ft., secs.); (37.10) then serves to
define unit force as being that force which produces in unit mass
a unit acceleration. This unit force is called the poundal, and
since the weight of unit mass produces in the mass an accelera-
tion of 32-2 ft./sec.2, 1 lb.wt. = 32-2 poundals. In the engineers’
system, however, the basic quantities are force, length, and time
(Ibs. wt., ins., secs.) (37.1b) then serves to define unit mass as
being that mass in which unit force produces unit acceleration.
This unit mass is called the slug, and 1 slug = 386 lbs., since the
acceleration due to gravity is 386 ins./sec.2.

(In aerodynamics a ‘‘ slug ”’ equal to 32-2 Ibs. is used, the
basic units being lbs., ft., secs., as it is more convenient to
make measurements in feet when such quantities as Young’s
modulus—usually given in lbs./in.2—are not involved.) -

Either system, the scientific or the engineers’, may be used,
but care must be taken to express all the quantities consmtently
in omne system.

When a body rotates -about an axis under the action of a
torque 7' about that axis, the angular acceleration § is propor-

tional to the torque in the same way as a linear accelera.tlon is
| 117
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proportit.)na.l to the applied force. If the constant of propor-
tionality is I, as yet undetermined, then

: T=1 . . . . (312
Conmder a particle 4 of mass m at the end of a light arm OA

of length r, rotating about O under the action of a force F' at
A normal to 04 (Fig. 47). The velocity of 4 is 70 normal to 04,

" F1e. 47.—Derivation of I = mr? for a particle.

and the acceleration in the direction of the force F' is therefore
vl as r is constant. By Newton’s Second Law,

F = mrf.
The moment of the force F about O is Fr = T, and hence
T = mr2f,
and by comparison with (37.2) it is seen that
I =mr? .. . . . (37.3a)

This quantity I is termed the “ moment of inertia *’ of the particle
about 0.

A continuous rigid body can be regarded as composed of
elemental masses ém,. The moment of inertia of the body about
any axis is then defined as

I = Zr"am'- . . . (37.3b)

where 7, is the distance from the mass dm, to the axis of rotation,
and the summation is extended over the whole body. The
symbol J is frequently used for moments of inertia of solid
- bodies about an axis of rotation ; if the axis of rotation is also
an axis of symnfetry J is also termed the ‘‘ polar inertia.”

The dimensions of moments of inertia are those of mass X
length? ; the scientific unit is therefore lbs.ft.?, while the engineers’
unit is slugs.ins.? ; in terms of the basic units a slug is Ibs.ins.~2
secs.?, being a force divided by an acceleration, and the engineers’
unit of inertia is therefore lbs.ins.secs:?

A somewhat analogous quantity is the ‘‘ second moment of
.area”’ ; tlus is for a cross-sectional gkea what @he moment of
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inertia is for a body ; i.e. the second moment of area of any
area about any axis is defined as
I=23r2a,. . . . (37.4)

where 8a, is an elemental area at a distance r; from the axis,
and the summation is extended over the whole area. The units
of I are clearly ins.* or ft.¢

The polar second moment of area of a circular cross-section
is found to be }nR*, where R is the radius; this polar moment
is with respect to an axis normal to the sectlon and passing
through the centre (Fig. 48a).

(a) o, .
81 =2xr6r 2" v % (b)
7\ 1

I- [éxr’. dr
= tﬂﬂ*

F1a. 48.—(a) Determination of polar
second moment of area for circular
cross-section; (b) Rolling oscillation
of a solid half-cylinder.

Example.

To illustrate ‘the method of application of Newton’s Law in
a complex problem, the natural frequency of small rolling oscilla-
tions of a solid half-cylinder (Fig. 48b) will be determined by
ordinary dynamical methods, although the solution is most
readily obtained by the energy method. Let the radius be r,
the length [ and the density p. The centre of area of the cross-
section is on the line of symmetry OA, at a distance 0G = 4r/3n
from the geometric centre 0. (This result follows easily from
one of the theorems of Pappus, which states that the volume
of a solid of revolution is equal to the product of the genera.tmg
area and the length of the path of the centre of this area; in
this case the half-circle is rotated about the diameter PQ and
generates a sphere. The generating area is {ar?, a.nd the length

of the path of @ is 21: (0Q) ; thus {nr3.2x.(0Q) = -m- whence
4r N
0o =35) »
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The moment of inertia J, of the body about the axis 00’ is
pll,, where I, is the second moment -of area of the cross-section
about O and is therefore }nr¢. Now I, = Z(OW)%3a, where W
is the position of a typical elemental area da. The second
moment of area about G is easily shown to be I, — (OG)%. 4,
A being the area of the cross-section = Xéa. For

= 2{0G*+GW?* — 2.0G.GW .cos |OGW)éa
= OG‘-” A+I; — 2.0GZGW. cos|OGW oa

where I; = Z‘GW* da = second moment of area about G. The
third term vanishes as @ is the centre of area of the cross-section,
and thus I; = I, — (0Q@)2.A. (This is a perfectly general result,
which holds true for any area.)

Let OG = z; the moment of inertia J; of the body about
an axis parallel to OO’ and passing through @G is given by :

Jg = Igpl = (}ar* — x*}nr®)pl
— arol(" — 5 — areoy — 8/9m)
Ps — gas) = '

The solid is rolled to one side of the static position, without
slipping on the supporting horizontal plane. Let B be the point
of contact when the angular displacement is 6, and let the resolved
reactions at B be R and S as shown. The vertical distance
moved by @ is (1 — cos §) = }x02, as 0 is small ; the horizontal
displacement of G is r.tanf — x.sin6 = (r — z)§. Applying
Newton’s Law for three displacements, i.e. for vertical and
horizontal displacements of G' and for the rotation ahout @G,

= m3{(r — 2] = m(r — 2)0 @]

R — mg = m4a6%] = m [260) o)

= mxf2+4+mxf.0  (b)
and Rz.sin 0+8(r — x.co80) = — Jo
ie. Rx6+8(r — ) = —Jgl (c)

as 0 is small.
Elimination of R a,nd S leads to the equation :
_ m[gz0+x’09’+x’6’9+(r —x)f]=—Jgb . (37.6)
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Puttmg 0 = a sin wt, and consxdermg the instant when cos wt = 0
sin wt = 1, the equation is obtained :

m(gza — z?a*w?) — m(r — z)%aw? =+J a0l
and omitting terms containing powers of a higher than the first,
mgxr — m(r — z)2w? = Jw?

whence ‘ Cw= 9% . . (37.7)

by substituting for m and J;; the natural frequency w/2x is
thus obtained.

38. Bending of Beams.

Fig. 49 represents a short section of a beam which is deformed
by bending ; circular deformation is assumed so that all plane
cross-sections remain plane and undistorted and all pass through
a line normal to the plane of the longitudinal section Fig. 49a,

0
I"\
/
b

\ -
@
) 5 .
E F é v
P C K
D ot —t

Fia. 49.—Bending of beams: (a) longitudinal section ; (b) perspective view ;
(c) transverse section.

the intersection of this line with the plane of Fig. 49a being O.
Considering the beam to be composed of fibres originally parallel
to AB and DC in the undeformed condition, these fibres are
deformed into circular arcs, and those lying in the plane of the
diagram are concentric at 0. The fibres nearer O are compressed-
and those further from O are extended. There is a plane EFRS
such that all the fibres in it are merely bent, without extension
or compression. This plane is termed the “ neutral plane,” and
‘the line of intersection of the neutral plane with a cross-section
is termed the ‘ neutral axis.”
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Let E = Young’s modulus for the material
~ p = radius of curvature of deformed neutral plane = OF
~h = distance of slice PQ from neutral plane
. 6h = thickness of slice
e = extension per unit length of fibre PQ
! = undeformed length of PQ = EF
M = bending moment at BCKL
8 = stress on area QQ'T'T
t = width of area QQ'T'T = QT

By the properties of similar figures,
arc PQ OP p+h _ h (38.1)

arcEF OF —T o 1+;_
but o ;g - ”ll""e) —1l4e . . . (382
Hence e = g
Now ‘ e = tensile strain = tepsxleEEtrgss %,
hence X - 8 =€-—h . . . . (38.3)

The tensile force on the area QQ'T"T is s(area) = stéh and this
force has a moment 6M about FR, where

oM = sthéh.

The total moment for the whole area BCKL is the bending
moment M ; thus

M = Xsthéh
or, by (38.3),

M= fi'maoh L. (384
or M= —E;I- where I = Zth3h . . (38.5)

(see Section 37)
"The resultant tensile force on the area BCKL is zero, hence
Zstéh = 0

ie. ;EZMM —o.
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This last equation expresses the fact that the neutral axis FR
passes through the centre of area of the cross-section BCKL.

If the distances along the undeformed beam are denoted by
z, and y is the deflection of the beam from its undeformed position,
the radius of curvature is given by

dy .

dy Fath
[+(@)]
For small displacements for which g—z is small, this formula

1 dy
reduces to k7 and (38.5) becomes

_ p%%
7R ) N 1)

The deflection curve of a loaded beam is easily obtained.
Consider, for example, a light loaded cantilever, the loading
being concentrated at the free end (Fig, 50). At a distance z

‘e <l

o |

x—-l.

A

AW
;.%

P
F1e. 50.—Loaded light cantilever.

from the built-in end the bending moment is given by

. M = P(l —z)
e, EI%; — Pl —2)
hence B — plo -T2 4
Ely = P_;’if — Ii:_’ +Az+B.

At the built-in end (z = 0) the displacement and slope are zero ;
hence 4 = B =0, '
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If A is the end-deflection at £ = [, it is found that

Pis
A = m.
The linear stiffness of the beam to an end-load P is thus
. P 3EI

39. Torsion of a circular shaft.

The shear modulus @ of a material is defined thus : let ABCD
be a small cube of the material (Fig. 51a), and while the face

-
-’
== D

@ |7 ry

Fia. 51.—(a) Shearing deformation of small cube. (b) Torsion of circular shaft.

AB is fixed, let the face CD be subjected to a shearing stress g,

so that the cube deforms into a rhomboid prism ABC'D’. Let
the angle CAC’ be y, then

¢=2 . . . . (@91

v (39.1)

Now consider a short section dz of a uniform circular shaft

Iﬁg 51b) of radius . Under torsion the generator PQ becomes

PQ’; let the angle QOQ’ be 86, Q being the centre of the cross-
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section through @ and @’. Imagining the small cube of Flg 5la
to be at P,.the shear strain y is given by .

a0
tany = rTx
. - 60 .
i.e. y=rp a8 s small.

Let the area of that side of the cube which is included in the
cross-section of the shaft at P be da, on which the shear stress
is ¢ = Gy (by 39.1). The shear force on da is then gda, and by
the above formula this is equal to
80,

&Eaa [

the moment of this force about the axis AB is
30

oT = Gfr’a—da

and the total torque transmitted by the section is-
7= ZGr’éa& - GI‘” L. (392)

where I is the second moment of area of cross-section (see
Section 37), as the summation is extended over the whole
cross-section.
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FREQUENCY EQUATIONS AND NUMERICAL
SOLUTIONS

40. Determinants. -

THE equations of motion for a complicated vibrating system
contain a number of variables representing linear and angular
displacements ; elimination of these variables in order to obtain
a frequency equation similar to (16.5) is often best performed
by means of a determinant. The mathematical properties of
determinants are fully treated in standard intermediate text-
books on Algebra ; sufficient will be restated here to enable the
method to be explained.

The set of simultaneous linear equations in three variables

az+by+cz=0

agx+bytegz = 0} . . . (40.1a)
ax+by+ez =0] -

has a solution z = y =2 = 0, and may have another solution
in which at least one of the variables 2, y, z is not zero. Suppose
2 is not zero; the set can then be written :

0. X+b,Y +¢, =0
a‘X+b’Y+O’ = 0
a,X+b3Y+c' = 0
where X=z/z, Y=y/
Solving the second and third equations of this transformed set
for X, Y,

A}

(40.15)

bies — 6bs  Gs6s —€a2s  @sby — 3,
X _-Y 1
i.e. by Cs| |Gy Cs}. |ay by
by ¢, Qs Cy as b,
where 2’ z’ =byey —Cshy, 6. . . (40.2)
3 Vs .

(40.2) defines a second-order deferminant, represented symholic-
126 - ' ‘
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ally by the left-hand side of the equation. Substitution of the
values of X and Y in the first equation of (40.1b) leads to

by ¢, aa 0. a, b,

ay b Cs - +c, as b =0 (40.3“)
and this last equation is expressed,m the form :
‘ a, b, ¢,
[/ 29 bg Cq| = 0 (40.3b)
a; b, ¢,

This arrangement of letters in three rows and three columns is
called a third-order determinant, and is defined to be identical
with the left-hand side of (40.3a). (40.3b) expresses the condition
that the set of equations (40.1a) should have a solution in z, y, 2
other than z =y =2z = 0.

The rule for expanding a three-row determinant, as indicated
in (40.3a), can be stated as follows: * Associate with each
element a,, b,, ¢, of the top row the signs 4, —, + alternately,
always giving the left-hand element the positive sign ; multiply
each such element, with its associated sign, by the determinant
formed by omitting the row and column containing the element,
and sum the products so obtained.” Thus the determinant
as Cy
7 las ey
and the sign to be associated with b, is negative ; similarly for
a, and c,.

It is convenient to express a determinant concisely by writing
down the elements of the diagonal which runs from the top left
corner to the bottom right corner; thus the determinant in
(40.3b) is represented by |a, b, ¢,| and the three-row determinant
is defined :

@, by c5|= a,|bs c5|— bysla, ¢4 +¢4lay b,|} (40.4)
where . |by 4| = bacy — c3b,, ete. ’ ’

The following rules of manipulation are proved in Algebra

textbooks, and may easily be demonstrated in particular cases
by performing them on numerical determinants :

(i) The value of & determinant is unaltered if columns and
rows are interchanged. TFhus
753

010
582

formed bj omitting the row and column containing b, is

=172 —0) — 5(0)+3(0 —5)=—1
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705
518
. |302

. (ii) If two rows or columns are interchanged the value of the
determinant is multiplied by — 1. Thus

010
753
582

(iii) If two rows or two columns are identical, the determinant
has zero value ; this follows from (ii). Thus

010
753
753

(iv) If all the elements of a row or column are multiplied by
the same constant, the value of the determinant is multiplied
by that constant; thus

and '
=172 —0) — 0450 —3) = — 1.

= —1(14 — 15) = 1.

= 1(21.— 21) = 0.

14 10 6 7 53 753
0 10l=2x|0 10/=2x8x|010/=—286
15 24 6| 15 24 6 582

(v) If the elements of a row or column are each expressed
as the sum of two numbers, the determinant can be expressed
as the sum of two determinants, the other rows or columns
remaining unaltered. Thus

753 5+2 8—3 2+1
01o| 0o 1
582 | 5 8 2 |
582 |2 -31 0 10
=|010(+/0 10 2 —31|=-—1
582 |5 82 5 82

(vi) If to the elements of any row, or column, are added the
same multiples of the corresponding elements in any other row,
or column, the value of the determinant is unaltered. Thus

17 21 7 7410 5+16 344
0 10/=| 0 1 0
5 82 5 8




APPENDIX III 129

These rules are very useful for determining the value of a numerical
determinant. For example, let

123
4=|465
789
Subtracting the top row from the bottom row (rule vi)
123 123 111
A=({465 =6|/465 =—-6(4635
666 111 123
(rule iv) (rule ii)
Subtracting the left-hand column from the other two, (rule vi),
100
A=—6/421|=—64=1)=—18.
112

All the results stated in this section are capable of extension
to determinants of higher order. Thus, for example, the definition
of a fourth-order determinant is:

|@1bsCsdi| = @1|bsCsds| — by|asesdy] 4-c1lashsdi] — dilashscs| . (40.5)
and the equation |@,b,c;d,|= 0 is the condition that the set of
four simultaneous linear equations
a1x+b1y+clz+dl'w = O
ax+byy+cz+dsw =0
asx+by+czt+dsw =0
azx+bytez+dw =0
has a solution in z, y, 2, w other than s =y =2 =w = 0.

41. Frequency equations.

Suppose that the equations of free undamped motion of a
vibrating body having three degrees of freedom are :

@, X4+b,Y+cz+mX =0
@, X+b,Y +ez+tm¥Y =0
Ay X +bY +cz+JE =
where m is the ass of the body, J its moment. of inertia with
respect to the rotation 2, and X and Y represent linear displace-
ments. For sinusoidal motion X = 4 sin wt, ete., X = — X,
etc., and the equations of motion can be written as

(@ — mw2)X+b,Y ¢z = 0}

(41.1a)

@3 X +(by — mw?)Y +cz =0
a,X-l-b;Y—i—(O, - Jma)z = 0

(41.1b)

K



130 FUNDAMENTALS OF VIBRATION STUDY
and there is a solution other than X = ¥ =2z = 0 if
(@y — mw?) b, ¢,

- ay (by — mw?) Cs =0
ay b, (cs — Jw?)

Expansion of this determinant by (40.4) gives an equation of
the form
Pt +Quwit+Rw?+48 =0 (41.2)

where P, Q, R, S are expressions involving the constants m, J, a,,
ete.

Similarly, the equations of motion (free and undamped) of
a body having six degrees of freedom (Fig. 23, Chapter III) are
of the form

a, X+b,Y +c,Z+dx+ey+fiz+mX =0,
etc. etc.

The resulting frequency equation analogous to (41.2) is of degree 6
in w® As noted in Chapter III, section 16, however, symmetry
in the spring-mounting scheme may result in certain modes of
vibration being uncoupled. In a standard type of in-line aero-
engine mounting, for example, if X, Y, Z represent displacements
vertically, transversely and fore-and-aft respectively, and z, y, z
are rotations about corresponding axes (see Fig. 23), the following
pairs of displacements are uncoupled :

X and 2 X and Y
Y » y ‘X ”» Z
zZ , =z Y ,, Z
X , =z z , Y
Z , =z Y 5 2
The equations of motion then reduce to the set :
a, X +ey +mX = 0)
b,Y +dyx +fz +m¥ =0
csZ +esy 4+mZ =0 | (413)
b.Y +dx +fe +J,E =0 )
asX +csZ +esy +J,4 =0
b Y +de +fe +Jg =0

where J,, J,, J, are the moments of inertia of the body with
respect to rotations z, y, z respectively. The first, third and
fifth equations contain only X, Z and y, and the second, fourth
and sixth equations contain only Y, z and z; the two resulting
determinantal equations are therefore :
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(@ — mw?) 0 e ]
0 (cs — mw?) e =0
— 2
as Cs (es — J, w?) » (41.4)
(by — mw?) d, Ja
be  (de— 0% . =0
be de (fo — J 0% J

and these lead to two cubic equations in w?; the six natural
frequencies are thus determined.

42. Numerical solutions.

Suppose that a cubic equation in w? is obtained by the method
of Section 41. It is required to find the three natural frequencies.
Let the equation be, for example,
w® — 651 X 10%0%+13-19 X 10202 — 7-99 X 1018 =0 (42.1)
Put z=w?Xx107¢
then 2 — 6-61224+13-19z — 799 =0 . . (42.2)
Let the left-hand side of (42.2) be represented by y.

When 2 =0, y = — 7-99

1 — 0:31}; there is therefore a root between

2 0-35
1 and 2. Put z = 1+h, and substitute in (42.2), neglecbing
powers of k& higher than the first. Thus:

143k — 6-51(1+2h)+13-19(14+h) — 7-99 = 0
ie. — 0:31+4317h = 0, h = 0-1 approximately,
and 2 = 1+A = 1-1 approximately. Now put z = 1-14+k and
solve for & in a similar manner ; it is found that k is 0-01 approxi-
mately, so that a nearer approximation to « is 1-11. The process
is one of applying a series of decreasing corrections to an approxi-
mate value of the root found by inspection or graphical methods ;
the next correction in the series 0-1, 0-01, . . . is found to be
— 0-002, so that the value 1:11 is correct to three significant
figures. The equation is now divided through by (2 — 1-11),
i.e. the left-hand side is factorised with (z — 1-11) as one factor :
(@ — 1-11)(z® — 5-40¢-+7-20) = 0,

and the other two roots are found by solving the quadratic

equation ‘
2 — 54024720 = (z — 3-0)(z — 2-4) = 0.
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Hence the three roots in z are : 1-11, 2-4, 3-0, and the correspond-
ing values of w? are:
- w? =111 x 108 2-4 x 108, 3:0 x 10°

and F =w/2rn =167, 247, 275 c.ps. . . . (42.3)

The method is often stated in another form. Let x = a, be
an approximate solution to the equation f(z) = 0. Let the
function be represented in the neighbourhood of z = a, by the
curve of Fig. 52; Q,R = f(a,) and if the approximate root a,

Y

F1a. 52.—Approximation to solution of a numerical equation.

is sufficiently close to the true value x, a closer approximation
is found by drawing the tangent RQ, at R and finding the point
@, in which the tangent cuts the z-axis. Now @,R = Q,Q.f(a,)

where f’(2,) means the value of Jé f(x) when z = a,. Thus

— 4, — QQ, = a, — @)
[/ 2% a, QIQR a, f,(al) . . (42.4)
Putting a, for a,, a still closer approximation z = a; is found
in a similar manner. As an illustration, consider this method
applied to the equation (42.2).
- fx) = 2® — 6-5122+13-19x — 7-99
f'(@) = 32* — 13-022+13-19
‘a, =1, f(a,) = — 0-31 and f'(a,) = 3-17
— 0-31
3-17
It is evident that the two methods are equivalent ; the second
form of the procedure is more easily applied to higher order
equations. It is necessary in any case to obtain as a first
approximation a value which is not too widely different from
the. true solution, particularly if the curvature of the graph
y = f(z) is large in the neighbourhood of the root.

Hence ? @y =1 — = 1-1 approx., as before.
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43. Normalising of numerical equations.

It frequently happens in the analysis of an engineering
vibration problem that a large number of fairly simple equations
(quadratics and cubics) require to be solved. In such circum-
stances much time can be saved by normalising the equations
and making use of special tables. The process, which was
known to the Babylonians circa 2000 B.c. for certain types of
cubic equations, will be illustrated here by applying it to the
general quadratic equation,

ax®+br4+c=0 . . . (43.1)
Let x = yd, so that ay*d"’+byd+c =0,
. “b
ie. y2+ady+ad2 0,

and choose d so that the coefficient of y is unity, i.e. d = b/a.
Then

y+y+R =0 ,
whers R — ac/b? } ... (432
The roots in y are

= — V1 — 4R
y=—}1+V1-— )} 5.3

and = _y

Special tables can be constructed giving the two values of y
corresponding to any value of R ; for real roots it is only neces-
sary to consider values of R < 0-25, and the range of negative
values included will depend to some extent on the nature of the
problem which gives rise to the equation. If the roots in z are
essentially positive, as will be the case if x is proportional to w2,
w/2n being a natural frequency, then R must be positive and
is restricted to the range 0 <R < 0-25. Tables giving the
values of y corresponding to this range of values of R are easily
prepared.

The method of normalising equations is of no great use unless
a large number of equations of the same type have to be solved,
but the time saved in such cases is considerable, apart from the
fact that the results are easily tabulated together with the
incidental working.



APPENDIX IV
PRACTICAL TREATMENT OF VIBRATION

AvtHOUGH practical details have in general been excluded from
the body of the text, as falling outside the scope of the book,
this appendix describes the treatment of simple vibrations as an
illustration of the method of applying the fundamental principles.

The basic theory of anti-vibration mounting and insulation
is outlined, and its application discussed. Various forms of
resilient mountings are described.

44. Theory of anti-vibration mounting.

For practical purposes it is often sufficient to confine attention
to the response of a single-degree-of-freedom system without
damping, under the following conditions :

(a) Flexible suspension fixed to a rigid immovable structure,

a sinusoidal force being applied to the suspended mass
(Fig. 9, page 25).
(b) Flexible suspension fixed to a movable base, to which is
imparted a sinusoidal vibration (Fig. 14, page 37).
Case (a).

From formula (9.3) on page 26 it is seen that, disregarding
the effects of damping forces, the amplitude of vibration of the
mass is

(44.1)

b= | Py
m(w? — p?)
where the symbol | | denotes that the numerical value of the
fraction is to be taken without sign,
P, = amplitude of disturbing force applied to mass,
m = suspended mass,
@/2n = natural frequency of mass on suspension,
p/2n = frequency of disturbing force.
The equation (44.1) can be interpreted in two different ways.
First, if the variation of the response amplitude b with changes
in the forcing frequency is considered, the relation is found :

b _ l 1
: C, |1—X2
where - X=p/w
C,= Py/mw?® = Py/k
134

(44.2a)
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For very small values of the frequency-ratio X the ratio 6/C,
approaches unit value, and in this condition the amplitude is
equal in magnitude to the deflection that would be produced by
a static force P, acting upon a spring of stiffness k. For very
large values of the frequency-ratio, the ratio b/C, tends to the
value 1/X?, so that the amplitude b approaches the value P,/mp?,
which is equal to the amplitude of response of an unsupported
mass to the same vibratory force. At intermediate frequencies
the response amplitude displays the resonance phenomenon ;
some values of the ratio b/C,, for various value of the frequency-
ratio X, are given in Table XII on page 146. (In using this
table it should be remembered that damping has been neglected
in the present treatment ; the effect of damping forces will always
be to decrease the amplitudes given by the figures in the table,
and so long as the forces are small their effect is confined to
frequency-ratios very nearly equal to unity.)

Secondly, if the forcing frequency remains constant and the
stiffness of the suspension is changed, it is often convenient to
express equation (44.1) in the form :

Al

C, 1Y-—1
where Y = k/mp? = 1/X3 (44.2b)
and C; = Py/mp?

For very small values of the ratio Y (i.e. for a very flexible
suspension or a high-frequency force) the ratio b/C, approaches
unit value, and in this condition the amplitude is equal to that
produced by the same force acting on an unsupported mass. On
the other hand, if the suspension is very stiff the ratio Y is
large, and in this condition the amplitude approaches the value
P,/k, which is equal in magnitude to the deflection which would
be produced by a static force P, acting on a spring of stiffness k.

It must be noted that although the provision of a very flexible
mounting (corresponding to a small value of Y, and a large value
of X) is frequently desirable for the purpose of avoiding resonance
with the disturbing force and with any possible harmonics (at
higher frequencies) if this force is not a pure sine-wave, the
advantage is not as great as at first sight it appears to be. The
ratio b/C, is then very small, but C, = Py/k is large. It is
often stated that a good measure of vibration prevention is
obtained if the frequency-ratio is made not less than 3:1; but
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there is no effective standard for comparison. Clearly, a rigid
mounting would entirely prevent vibration, although it has
disadvantages on account of its high degree of transmission of
vibration through to the supporting structure. If a flexible
mounting is fitted, then in order to avoid resonance with possible
harmonics it must be more flexible than a mounting which would
give a condition of resonance with the fundamental component
of the force ; and equation (44.2b) shows that the amplitude of
response cannot then be less than C,. The fact that this value
is decreased by increasing the mass gives the reason for the
common practice of mounting machinery on massive concrete
plinths which are themselves supported on flexible members.

Ezxample.

A horizontal shaft carrying an unbalance of 1 oz. at 19} inches
radius and running at 1,800 Rr.p.M. is mounted on a frame which
is supported on four flexible mountings, between which the total
weight of 750 lbs. is evenly distributed. If the rotor is at the
mass centre of the supported body and the mountings each have
a vertical stiffness of 12,000 lbs. per inch, calculate the amplitude
of vertical vibration. Calculate also the amplitude if (i) the
running speed is increased to 2,100 r.P.M., and if (ii) the mountings
each have a stiffness of 6,000 lbs. per inch, the speed being
1,800 r.p.M. (Assume that the body can only move vertically,
with no “ rocking.”)

Here m = 750/386 = 1-94 lbs.ins.”secs.? For 1,800 Rr.P.M.,
p?® = 3-55 x 10* secs.”? (from Table XI, page 145).

P, = 19-25p%/(16 x 386) = 111 lbs.,
and with the original mountings,

k=4 x 12,000 = 4-8 x 10* lbs.ins.,
w’ = k/m = 2-47 x 10* secs.”2 The natural frequency of ver-
tical vibration is therefore 1,500 c.p.M. (from Table XI). Then
X =1,800/1,500 = 1-2, b/C, = 2-27 (from Table XII) and
C, = Py/k = 2-31 x 1072 inches. Hence b = 0-0053 inch.

For a speed of 2,100 r.P.M., P,=151 lbs.,, X =14,
b/C, = 1-04 and b = 0-0033 inch.

For 1,800 r.p.M. and k£ =4 X 6,000 = 2-4 X 10* ]bs.ins.”1
Y =0-348, b/C; = 1-63 and C; = 1-6 x 102 inches. Hence
b = 0-0025 inch.

Case (b).
For the system of Fig. 14, with ¢ = 0 (no damping) and s
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vibratory movement of amplitude a and frequency p/2n c.p.s.
imparted to the base A, the equation of motion (i) on page 37
yields the result :

Ib _ k ___l 1

al 1k —mpt| |1 =X?

where x = a sin pt . . (44.3)
y = bsin pt '

and X =p/w

The numerical value of the ratio b/a indicates the ratio of the
amplitude of response of the supported mass to the amplitude
of movement of the base 4. Comparison of equations (44.3) and
(44.2a) shows that the values given in Table XII are applicable
to this case also. For very small values of X (i.e. for very low
frequencies of excitation or for a very stiff mounting) the response
of the mass is equal to the applied vibration. For very large
values of X (i.e. for very high frequencies or for a very flexible
mounting) the response is negligible. It is thus seen that in order
to provide a good measure of insulation the mounting should
be made very flexible. If the frequency-ratio is greater than
V2 : 1, the response will be less than that with a rigid mounting ;
for example, if X is greater than 3 : 1, the response will be reduced
to less than an eighth of that with a rigid mounting.

Ezxample.

A galvanometer is to be mounted on a table which is subject
to vertical vibrations of amplitude 0-010 inch at a frequency of
3,000 c.p.M. The galvanometer, which weighs 8 lbs. complete
with a suitable base-plate, must not vibrate with an amplitude
greater than 0-0005 inch. Relying solely upon a flexible suspen-
sion to achieve this measure of isolation, how flexible should it be ?

From Table XII it is evident that the value of X must be
made somewhat greater than 4-5 to obtain a value 0-05 for the
ratio | b/a |. Since X is greater than unity, a and b are of opposite
signs, and the critical value of X can be found from the equation

1
=X 0-05.
Hence X = 4-6 approximately, and the natural frequency of the
suspension must not be greater than 3,000/4-6 or about 650 c.p.m.
From Table X it is found that the gravity deflection corresponding
to this frequency is 0-0833 inch. If the load is evenly distributed
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over four springs, each must deflect at least 0:0833 inch under a
load of 2 lbs., so that the stiffness of each must not be greater
than 24 lbs. per inch.

45. Theory of vibration isolation (continued).

One type of isolation has been described in the preceding
section ; this is the isolation of suspended bodies from vibrations
of the supporting structure. Another type is of importance,
viz. the prevention of the transmission of vibratory forces from
a vibrating body through its suspension to the supporting structure
or to the ground.

Considering the system of Fig. 9, page 25, but with no
damping, the force transmitted by the spring to the support is
always equal to the product of the spring stiffness £ and the
displacement x of the mass. Consequently, if P, is the amplitude
of the force transmitted,

_Pt__‘
R—E_ k — mp?

(45.1)

=‘1_le={¥—1'
where X =p/w, Y = k/mp? = 1/X?

This ratio R is a useful quantity for consideration, as it expresses
in a convenient form the effectiveness of an isolating installation.
If R is unity the force transmitted to the support is the same as
in the case of a rigid suspension ; if R is less than unity, a degree
of isolation has been achieved ; while if R is greater than unity,
a greater vibratory force is transmitted than in the rigid case.
The variation of R with changes of Y is plotted in Fig. 53¢, and
it can be seen that in order to obtain a degree of isolation Y
must have a value less than } ; i.e. the suspension must have a
stiffness less than half that value which would correspond to a
state of resonance with the given applied force.

46. Application of theory.

From the foregoing sections it will be apparent that three
graphs are useful for the appreciation of the properties of flexibly-
mounted single-degree-of-freedom systems. These are the graphs
of the numerical values of the quantities :

@ o O o © g - U8
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against X, Y and Y respectively, where

x_2 __ frequency of disturbing force
o  natural frequency of system

y=1_ _k _ actual stiffness of suspension
X mp? (stiffness corresponding ‘to)

resonance with given force

These quantities are graphed in Fig. 53, the scales of which are
lettered to correspond to (46.1).

(a) shows the variation of the amplitude of response of the
mass to a vibratory force a.pphed directly to the mass, assuming
that the only quantity altered is the frequency of the applied
force. (Note.—If the frequency-ratio X is altered by varying the
spring stiffness, the appropriate graph is (b), as such a variation
alters the value of C, in (44.2a).) It shows also the variation

(lat) (gc) (2)
@ |
h
(a,d,¢) ® I’ ;’I
e @ |75l 3
0 lw rZ
0 - TR 2 * 3! x (@
o 42 1 o5, o3 o2 AR
Fia. 53.

of the amplitude of force transmitted by the spring to the support,
or of the amplitude of response of the mass when the support is
subjected to a vibration, for changes in the frequency-ratio X
brought about in any manner. The unit value, approached at
very low values of X, is in the first case the magnitude of deflection
which would be produced in the spring by a static force equal
in magnitude to the applied dynamic force, and in the other cases
it is the amplitude of the applied force or vibration itself, which
in the case of a rigid suspension is transmitted through the
suspension unaltered.
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- (b) shows how the amplitude of response to a directly applied
vibratory force depends upon the stiffness of the suspension.
The unit value, approached at very low values of Y, is the
amplitude of response of the mass to the same force if it were
unsupported.

(c) shows the variation of the force transmitted through the
suspension when a vibratory force is applied directly to the mass,
and also of the response of the mass when the support is subjected
to a vibration, against changes in the stiffness of the suspension.

From a study of these graphs it will be apparent that for the
purposes of isolation, i.e. preventing the transmission of vibratory
forces from the mass (to which they are directly applied) through
the suspension to the support, or preventing the transmission of
vibrations in the support through the suspension to the suspended
mass, it is sufficient to provide a suspension which is flexible
enough to give a value not less than 3 to the frequency-ratio X ;
i.e. so that the natural frequency of the mass on its suspension
is not more than one-third of the frequency of the disturbing
force. Naturally, the more flexible the suspension is, the greater
will be the degree of isolation. A very flexible mounting scheme,
however, has the disadvantage that the mounted mass is not very
precisely located, and has a good deal of freedom in small but
possibly undesirable displacements.

When it is desired to prevent vibration in the mass which is
directly acted upon by the disturbing force, without at the same
time causing large or relatively large vibratory forces to be trans-
mitted to the supporting structure, it is customary to add sub-
stantially to the mass of the supported body, by means of a large
concrete block, and then to mount the whole assembly on flexible
units. The effect of the mass increase is to reduce the unit
value C, in (44.2a).

The effect of the flexible units is to give a large value to X,
so making both the ratios b/C, in (44.2a) and b/a in (44.3) small ;
at the same time the large mass ensures that the unit value C
in (44.2a) is small.

In the great majority of cases it is not possible to alter the
forcing frequency. The most common causes of vibration in
engineering practice are unbalance of rotors and gas forces in
internal-combustion engines and compressors ; in these cases the
frequency of the disturbing force is dependent on the running
speed of the machinery, and it is only seldom that any radical
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change can be made in this speed. Consequently, the desired
large value of X can only be obtained by the use of fairly flexible
mounting units, various types of which are described in the
following section.

In assessing the vibration characteristics of any actual system
it is important to realise that the idealised types of system which
are necessarily studied in mechanics are over-simplified in order
to make a mathematical analysis possible ; a * rigid suspension ”
does not exist. Even apparently rigid structures may be appreci-
ably flexible so far as vibrations are concerned. Thus if a
“ rigidly mounted ”’ machine is noticeably vibrating as a whole,
there must be a certain amount of flexibility in the supporting
structure. The degree of flexibility can be assessed quite accur-
ately enough in most cases by observing the natural frequency
and substituting in the formula (3.5) on page 8. Any additional
flexible unit is to be regarded as being in series with this flexibility
in the structure.

Fortunately, for a variety of reasons the majority of vibrating
systems which cause trouble in general engineering are for
practical purposes equivalent to single-degree-of-freedom systems,
and there are usually not more than two possible frequencies of
disturbing forces. Consequently, the theoretical considerations
outlined above enable a successful solution to be found for most
problems. In certain specialised fields, however, and particularly
in aircraft engineering, a large number of natural frequencies may
be significant and at the same time there may be many different
disturbing frequencies, so that the treatment of vibration problems
becomes very complicated. The author has given elsewhere
(reference 16 in the Bibliography on page 151) a general outline
of the vibrations in aircraft. In these more complicated cases
a tremendous amount of actual experimental work is usually
necessary, mathematical analysis proving to be of little use owing
to the large number of unknown quantities, or to the complexity
of the calculations. Nevertheless, an appreciation of the broad
principles underlymg the treatment of simple cases is very
helpful as guidance in all problems.

47. Flexible mounting units.

The most commonly employed type of flexible unit for anti-
vibration and insulation purposes embodies rubber as the flexing
medium. The rubber is usually stressed in shear or in compres-
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sion ; its strength in tension is too small to allow of tensile
stressing in general, although in special cases this is quite possible
and sometimes convenient. Rubber units can be divided into
two classes : those in which the metal parts are bonded to the
rubber, and those in which the rubber is pre-compressed between
the metal parts, as in the Silentbloc flexible bearings and anti-
vibration mountings.

Bonded units are available in a wide variety of shapes and
sizes. The design of such units calls for specialized knowledge
based on experience ; clean and simple outlines, and avoidance
of stress concentration in the rubber, are among the essentials.
Several firms specialise in the manufacture of such mountings.

Pre-compressed units can take advantage of extremely rugged
construction, to withstand heavy static and dynamic loads. The
initial state of compression enables heavy loads to be carried by
mountings of small volume ; the standard sizes range from a
mounting to take a static load of 20 lbs., with a length of 1% inch
and a diameter of § inch, to one capable of carrying 7,000 lbs.,
with a length of 9} inches and a diameter of 9 inches.

. Metal springs are also very often used for anti-vibration and
insulation purposes. A mounting scheme for a 680 B.H.P.
generator set is a typical example. The load is taken, via
girders projecting from the concrete foundation block (attached
to the set) and vertical rods, by semi-elliptic springs, the outer
ends of which bear on plinths forming extensions of the base raft.
Various other forms of spring supports or ‘“ anti-vibrators ’ are
supplied by the same firm ; loads from 28 lbs. to 5 tons can be
taken on each unit, depending upon the size.

In another method of foundation isolation, the isolating
medium consists of specially selected and treated virgin cork,
cut into strips and arranged in a packed formation inside iron
frames. The resulting units, which are 2} inches thick and up
to 18 square feet in area, are then impregnated with a preservative
to maintain resilience and prevent deterioration. The base raft
is first laid, and the whole area covered with the units, over which
thin felt is placed to seal the surface for the pouring of the main
concrete block. An air space is maintained round the sides of
the block, but in the case of belt-driven installations the space
on the side of the belt-pull may be filled with the cork units.

In all types of installation, whether the insulation is achieved
with rubber, metal springs or cork, it is important to prevent the
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insulation being ‘ short-circuited ” by holding-down bolts, rigid
pipe-connections or other solid paths for the transmission of
vibration forces. When there is a massive concrete block, the
mass is usually sufficient to make holding-down bolts unnecessary,
and in the case of rubber mountings the units act themselves
as holding-down devices; when it is essential to pass a bolt
through an insulating unit, short-circuiting may be avoided by
providing a flexible washer under the bolt-head or nut and a
bush or grommet round the shank where it passes through a
metal part. Rigid pipe-connections can usually be avoided by
fitting flexible pipe-couplings; with recent advances in the
manufacture of synthetic elastomers (rubber-like substances) it
is possible to prevent deterioration of the coupling by most of
the fluids commonly passed through pipes.



APPENDIX V
TABLES

THE tables included in this appendix are of quantities frequently
used in vibration calculations. Brief notes are given below.

Table X. Static deflection under gravity and natural frequency.
For suspensions that can be regarded as essentially equivalent

to the system of Fig. 1, page 2, the relation between the natural

frequency and the static deflection under gravity is:

1,000
= 0-03519
o (7
where , = sta:tichdeﬂection in the suspension under gravity, in
inches,

and F = natural frequency of vertical vibration, in c.p.M.
The values given in the table are in thousandths of an inch, and
at intervals of 100 c.p.M. over the range 100-9,900 c.p.M.

Example.

An engine-bed weighing 20 tons is to be supported on 10
flexible mountings so that the natural frequency for vertical
vibration is 280 c.p.M. Assuming all the mountings to be equally
loaded and to have the same stiffness, what must this stiffness be ?

Static deflection for 2,800 c.p.M. (from table) is 0-00449 inch ;
hence deflection for 280 c.p.M. is 0-449 inch. Load on each mount-
ing is 2 tons; hence stiffness must be 2 x 2,240/0-449 = 9,980
or about 10,000 lbs. per inch.

Table XI. Values of w® for various frequencies.

The values of w? are given in the table, at intervals of 100
c.p.M. over the range 100-9,900 c.p.M. The quantity given in
the table must be multiplied by the power of 10 given in the
column headed (A).

Ezamples.
(i) For F = 5,200 c.p.M., w? = 29-7 X 104 (sec.”%).
(ii) For F = 520 0.p.M., w? = ‘391—"1’;,19. = 297 x 102 (sec.”?).

(iii) For F = 800 c.p.M., % = 70-2 x 10? (sec.”%).
144
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Table XII. Values of the dynamic magnifier (no damping).
The table gives the numerical values of the dynamic magnifier

(10.2), page 30, in the absence of damping forces. X is the

ratio of the vibration frequency to the natural frequency.

TaBrLe X

Static deflection under gravity (thousandths of an inch) for various natural
frequencies (C.P.M.).

(Note.—If F is multiplied or divided by 10, deflection is divided or
multiplied by 100.)

|
F 0 100 200 300 400 500 600 700 800 900 |
0 — 3,619 880 391 220 141 978 71-8 550 435
1,000 | 35-2 29-1 244 208 180 156 13-7 122 109 975
2,000 1880 798 7-27 665 611 563 520 483 449 4-18
3,000 (391 366 344 323 3-04 2-87 272 257 244 231
4,000 12-20 209 199 190 1.82 174 1-66 1-59 153 1-47
5,000 141 135 130 125 1-21 1-16 112 1-08 1.05 1-01
6,000 | 0-978 0-946 0-915 0-887 0-859 0-833 0-808 0-784 0-761 0-739
7,000 | 0-718 0-698 0-679 0-661 0-643 0-626 0-609 0-594 0-579 0-564
8,000 | 0-560 0-536 0-523 0-511 0-499 0-487 0-476 0-465 0-454 0-444
9,000 | 0-436 0-425 0-416 0-407 0-398 0-390 0-382 0-374 0-366 0-359

.

TaBLE X1

Values of w? (radians?/sec.3, radians/sec.3, or sec.—2) for various
frequencies (c.p.M.).

F 0 100 200 300 400 500 600 700 800 900 (4)

0 0 110 4-39 9-87 175 274 395 537 70-2 888 ; x 10%
1,000 | 1-10 1.33 1-568 1.85 2156 2-47 2-81 3-17 3-55 3-96/ x 104
2,000 | 439 4-8¢ 531 580 632 68 741 799 860 922
3,000 | 9-87 105 11-2 119 127 13-4 142 150 158 167 »»
4,000 175 184 193 203 212 222 232 242 253 263 »
5000 | 27-4 285 297 308 320 332 344 356 369 382 »
6,000 (39:5 408 42-2 435 449 46-3 478 492 507 522 »
7,000 | 53-7 553 656-8 584 600 617 633 650 667 684 »
8,000 |70-2 719 1737 17556 1714 792 8111 830 849 869 »
9,000 | 88-8 90-8 928 948 969 99-0 101 103 105 107 I »

(Note.—The quantity given in the table must be multiplied by the factor
in column (4). If F is multiplied or divided by 10, »* is multiplied
or divided by 100.)
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TasLe XII

Dynamic magnifier [numerical value of M = 1/(1 — X?)] for various
vibration frequency.

values of X natural frequency

X M X M X M

01 1-01 11 476 24 0-210
0-2 1-04 1-2 227 2:6 0-190
03 1-10 13 1-45 2-6 0174
0-4 1-19 1-4 1-04 2-8 0-146
05 1-:33 1:5 0-800 30 0125
0-6 1-56 1-6 0-641 35 0-088
07 1-96 1-8 0-446 4-0 0-067
08 278 20 - 0333 | 45 0:052
09 i 5-26 22 : 0260 | 50 0-042




MISCELLANEOUS EXERCISES
(Numerical examples on the work of Chapters I-IV.)
All frequencies should be given in c.p.M.

CHAPTER 1

‘Find the natural frequency of a system similar to Fig. 1, in which
the constants are :

1. k = 4,000 lbs./in., m = 2 slugs.

2. k = 3,000,000 poundals/ft., m = 150 lbs.

3. k = 7,600 lbs./in., m = 200 lbs.

4. k = 3,750 lbs./in., m = 100 lbs.

Find the natural frequency of a system similar to Fig. 4, in which the
constants are :

5. J, =J,; =2, C = 3,500,000.

6. J, =3, J, =4, C = 1,700,000.

7. J, =8, J, =6, C = 3,400,000.

(inertias in lbs.ins.secs.?, stiffnesses in lbsms/mdmn)

8. Determine the period of oscillation of a compound pendulum
similar to Fig. 3¢, in which the constants are :

m = 10 lbs., I, = 3-73 lbs.ins.secs.?, h = 8 inches.

CrarreER I1

Find the resonant frequency, and the natural frequency if the damping

is neglected, of a system similar to Fig. 9,‘in which the constants are :
9. k = 200 lbs./in., m = 2 slugs, ¢ = 409, critical.

10, k& = 3,500 1bs./in., m = 1-2 slugs, ¢ = 12 lbs.ins.—!-secs.

11. k = 40,000 lbs./in., m = 3 slugs, ¢ = 209, critical.

12. Find the resonant frequency of a torsional system equivalent to
Fig. 9, in which the inertia is 10 Ibs.ins.secs., the shaft stiffness is 4,500,000
Ibs.ins. /radian, and the damping force is 459, of the critical value.

13. Find the force transmitted to the base in a system similar to
that of Section 12, Example I, in which the mass is 5,000 Ibs., the springs
have a total stiffness of 12,600 1bs./in., the damping force is 269, of the
critical value, and the applied force has & maximum value of 750 lbs.
and a frequency of 1,600 o.p.M.

CuarrER III
Find the natural frequencles of the system of Fig. 16 m which the
constants are :
14. k, = k, = 1,000 lbs./in., m, = m; = 200 lbs.
15. k, = 300, ky = 450 Ibs./in., m, = 20, my = 30 lbs.
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16. k, = 600, k, = 900 Ibs./in., m, = 40, m, = 60 Ibs.
Determine the ratio a,/a;, at the natural frequencies in nos. 14-16.

Find the natural coupled and uncoupled frequencies of the system
of Fig. 21, in which the constants are:

17. m = 1-2slugs,J = 401Ibs.ins.secs.3, k, = 2,000, ky = 3,0001bs./in.,
dl = d’ = 5 ins. »
18. m =16 slugs, J = 200 lbs.ins.secs.}, k, = 3,000, k, = 4,600
Ibs:/in., d, = 6, dy = 4 ins.
19, m = 2-25 slugs, J = 300 Ibs.ins.secs.?, k, = ky = 4,000 1bs./in.,
dl = 6, d’ = 4 ins.
20. m = 2475 slugs, J = 330 lbs.ins.secs.t, k; = k; = 8,800 Ibs./in.,
dl = 6, d’ = 4 ins- . .
CraprEr IV
21, Find the lowest natural frequency of & seven-mass torsional
system in which :
Jl = Jz = Ja = J‘ = Js = Jo = 0'39,0]7 = ll‘llbs-ins.secs.',and
01 ='C’ = 03 = 04 = 05 = 7'25, 0‘ = 4'55 lbs-ins./micm'rad.iﬂn.
Determine the swinging form at this frequency.
22, Find the lowest natural frequency of a geared torsional system
which is as follows :

(inertias in lbs.ins.secs.?, stiffnesses in lbs.ins. /micro-radian.)

J, = 0:505 C, = 8188
Jy =0-621 C, = 8793
Jy = 0:501 Cy = 8793
J, = 0-501 C, = 8793
Jy = 0-621 C, = 8788
Jy = 0-556 C, = 27751
J, = 0121
(J, geared to J, with a 0-477:1 reduction gear)
Jg = 1027 C, =11-182
Jy = 3:060 '

Determine the swinging form at this frequency.



ANSWERS TO. EXERCISES
CaaPTER 1

1. z = Cye{Cyef’, where (ﬂ) }(—Pi\/P’ 4Q).

2. (14J,/J)4, = VR1+8%/w?,  tan ¢ = wR/S,
A =6 -8/1+Jy/Jy), B=6, — R/(1+J,/J,), where R =6, — 9,,
S = 6, — 6,,and w? = C(J, +J,)/J,J,. Forno vibration, w?R?+ 8% =
for no steady rotation, J,0, +J40, = 0 = J,6, +J,6,.

3. y = 0" +Cge 154 Cyeik? + 00— k2,

.Cmmn]l

1. For type (b), #,/xy< — ¥, where x, and £, are initial dxsplaeement
and velocity.

CuaprTER II1
2. q, = I}:—L;nz'a" a, being given by (15.3).
3. kl = 0-

CHAPTER IV

1. First six natural frequencies are approximately 1,900, 4,100, 6,100,
8,620, 9,200, and 9,550 c.p.M.; seventh is outside range of Table ITI
(Note : Z;4 = Zop= 0 is & solution of (22.6) giving three of the frequencies.)

CHAPTER V

1. (@) y = a, g—;y, = 0 at each end; (b) y, = a — Ysin’%x; ais found

to be 2Y /= by determining condition for zero total inertia force (m4j) for the
whole beam ; (¢) (K.E.)yur. = 0:048 0?Y3Mp, (P. E Ymaz, = EIntY3/413 ;
(d) w? = 519 EI/Mpls.

CuAPTER VI
1. ay = a/k=n, a, =0, b, = a/2k ; and for m #k,
om - 2 (1 + cosma/k); bm = ——* _ sinma/k
7 (m* — k) ’ n (M= 1Y)

2.ay, =t/n; a, = (2/nn)sinng, ; b, = 0.

MisCELLANEOUS SET
: (Frequencies in c.p.M.)
1. 4217, -2, 1,350. 3. 1,150. 4. 1,150. 5. 17,900.
6. 9,600. . 7. 9,500. 8. 1-:36 secs.
9. Resonant, 786 - natural, 955
10. » 511 » 516
149
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11. Resonant, 1,070 natural, 1,110.
12. 4,940. 13. 550 lbs.

14. 259, 679 ; ratios: 1-615, — 0-618.
15. 407, 1,297; ,, 1-98, — 0-498.

16. As for 15.
17. Coupled, 503, 642 ; uncoupled, 534, 615.
18. » 286, 675 ; “»s same as coupled.

19. , 206, 585; » 251, 570.
20, |, 292, 828; . 355, 807,
21. 9,940;
A, A, A, A, A, A, 4,
1 0942 0829 0667 0467 0239 — 0-145
122, 11,990;
Al Al Aa A! AG AG A? AO AD
10909 0734 0492 0207 — 0099 — 1042 — 0497 — 0-875
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INDEX

Absorber, undamped vibration :
linear, 48 ; torsional, 49

Alternation of zeros and discon-
tinuities, 65

Amplitude, 7; convention regard-
ing, 10

Analogues, linear-torsional, 12

Analysis, Fourier, see Fourier -

Anti-vibration mountings, details,
141 ; theory, 134

Approximations : natural frequen-
cies of beams (Rayleigh), 92 ;
numerical solutions of equa-
tions, 131

Beams, theory of bending of, 12

Beams, heavy, vibrations of, 86 ;
Rayleigh’s method, 92 ; special
cases—cantilever, 89, 96;
clamped-clamped, 96; free-
free, 90 ; simply supported, 94,
96

Beams, light cantilever : vibration
with mass on free end, 11;
stiffness formula, 123

Beating waveform, 106

Bending of beams, theory, 121

Bending vibrations in beams, see
Beams

Biot, 65, 73

Cantilever, heavy, vibrations of, 89 ;
deformation curves, 91 »

Cantilever, light: vibration with
mass on free end, 11 ; stiffness
formula, 123

Circular functions, 112

Ciroular shafts, see Shafts ,

Clamped-clamped heavy beam, 96

Complementary function, 27 :

Complex number method, 38, 77

Complex vibrations, 99

Constant excitation, 30

Constant of integration, 3

Continuous systems, see Beams and
Shafts

Convention regarding amplitude
and phase, 10

Coupled systems : flexibly-coupled,
76 ; rigidly-coupled, 68

Coupled vibrations : two degrees of
freedom, 50 ; three degrees of
freedom, 53, 129 ; six degrees
of freedom, 54, 130

Damped systems, 18; dynamic
stiffness of, 76

* Damper,” 49

Damping, 18; coefficient, 20 ;

critical, 23, 41 ex. 4; effect
on insulation, 36; eleetro-
magnetic, 39; experimental
determination of coefficient,25

. Dashpot, 20

Decay of motion, 2, 19, 24

Decrement, logarithmic, 25

Deformation diagrams : heavy can-
tilever, 91; light cantilever,
123 ; spring-mass systems, 47.
See also Swinging forms

Den Hartog, 10, 49

Determinants, 126

Differential operator D, 4, 88

Dissipation of energy, 2, 19

Dynamic absorber: linear, 48;
torsional, 49

Dynamic magnifier, 29; table of
values, 146 ; value at reson-
ance, 30; relation between
d.m. and phase angle, 34

Dynqmio modulus, 7

153 : -
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Dynamic -stiffness, 72; damped_
systems, 76 ; modulus of, 77 ;
transference formulae, 74

Effective inertia, 60; curves, 64,
70; experimental determina-
tion, 69

End conditions : heavy beam, 89 ;
heavy shaft, 84

Energy : dissipation, 2,19 ; kinetic,
of beam, 92; potential, of
beam, 93

Engines: dynamic absorbers in,
49 ; gas-forcesin, 107 ; mount-

. ings for, 54

Equations : frequency, 14, 129;
normalising of, 133 ; numerical
solution of, 131

Equations 6f motion: compound
pendulum, 13 ; coupled vibra-
tions, 51, 129, 130 ; heavy beam,
87 ; heavy shaft, 82; multi-
mass systems, 59 ; one degree of
freedom, 3, 21, 26; seismic

" vibrograph, 87 ; simple pendu-
lum, 12; torsional pendulum,
13 ; torsional two-mass system,
14 ; two degrees of freedom, 44 ;
undamped linear absorber, 49

Excitation : ‘ constant,” 30, 36 ;
gas-force, 107 ; ‘‘ inertia,” 31,
36

Experimental determinations :
damping coefficient, 25 ; effec-
tive inertia, 69

Exponential function, 111

Flexibly coupled systems, 76

Flexural vibrations of beams, see
Beams

Forced motion, 25

Fourier : analysis, 102, 106 ; series,
100 ; synthesis, 101

Free-free heavy beam, 90

Frequency, 8 ; equations, 14, 129 ;
natural, 8; natural damped,
25; resonant, 30, 41 ex. 3;
tables, 71. See also Natural
frequency . .

INDEX

Function: complementary, 27 ;
exponential, 111 ; hyperbolic,
113 ; sine and cosine, 112

Fundamental frequency, 100

Gas-force harmonics, 107

Gearing in torsional systems, 75
Gibbs’ phenomenon, 105

Gravity deflection and natural fre-

quency : formula, 9; table,
145

Harmonic, 100; analysis, see
Fourier;  gas-forces, 107 ;
motion, 11

Heavy beams and shafts, see Beams
and Shafts
Hyperbolic functions, 113

Impedance, mechanical, 73. See
also Dynamic stiffness

Inertia : effective, see Effective
inertia ; excitation, 31, 36;
moment of, 12, 118 ; partial, 61

Initial conditions in single degree of
freedom system: undamped,
3, 6, 17 ex. 2 ; damped, 40 exs.
land 6

Insulation, 35, 134;
damping on, 36

Integral, particular, 27

Integration, constants of, 3

effect of

Kinetic energy of beam, 92

Light(-weight) : beams, see Beams ;
shafts, see Torsional systems
Linear spring characteristics, 10
Linear-torsional analogues, 12
Ingaﬁthmio decrement, 25

Magnifier, dynamic, see Dynamic
magnifier

Manley, 32, 57, 58, 105

Measurement systems and units, 9,
12, 73, 117

Mechanical impedance,



INDEX

Modulus : dynamie, 73; of
dynamic stiffness, 77, 108 ; of
shear, 124

Moment : of area, second, 118 ; of
inertia, 12, 118

Morris, viii

Motion : damped, 20 ; decay of, 2,
19, 24; equations of, see

25; free, 2; harmonie, 11;
Newton’s second law of, 117 ;
steady-state, 28

Multi-mass systems, 57

Natural frequency, 8 ; and gravity
deflection, 9, 145

Natural frequency formulae: one
degree of freedom, 11; canti-
lever, 89, 96 ; clamped-clamped
beam, 96 ; compound pendu-
lum, 13; free-free beam, 90,
96 ; shafts, 86 ; simple pendu-
lum, 13; simply-supported
beam, 95 ; torsional pendulum,
13 ; torsional two-mass system,
16; two degrees of freedom,
46 ; damped single-mass sys-
tem, 25

Newton’s second law of motion, 117

Nodes, 47 ; and effective inertia, 68

Normalising of numerical equations,
133

Numerical : Fourier analysis, 106 ;
solution of equations, 131

Operator :  differential, 4,
versor, 38, 77, 114

88 ;

Partial inertias, 61

Particular integral, 27

Pendulum : compound, 13 ; simple,
12; torsional, 13

Period of vibration, 8

Periodic functions, 100

Phase angle, 7; and dynamic
magnifier, 34 ; convention re-
"gerding, 10; value at reson-
ance, 33

158

Phase velocity, 13 ; and frequency,
14

-Potential energy of beam, 93

Rayleigﬂ’s energy method, 92
Reciprocation theorem, 52.
Resistance, 20

_ Resonance, 28 ; and dynamic stiff-
Equations of motion ; forced,

ness, 76; and natural fre-
quency, 32, 63 ; elimination of,
29
Response of seismic vibrograph, 39
Rigidly coupled systems, 68
Rolling oscillation of half-cylinder,
119
Runge’s method of Fourier analysis,
108

Scalars, 113

Seismic vibrograph, 37 ;
curve, 39

Series : exponential, 111 ; Fourier,
100 ; sine and cosine, 112

Shaft, heavy, 81; dynamic stiff-
ness, 84 ; natural frequencies,
86

Shaft, light, see Torsional systems

Shear modulus, 124 )

Sine: wave, 7; and cosine series,
112

Skew-symmetry in periodic func-
tions, 102

Slugs, 9, 117

Spectrum, frequency, 53

Spinner, aero-propeller, 54

Spring stiffness : linear, 3;
sional, 13

Starting transient, 32, 41 ex. 6

Static gravity deflection and natural
frequency : formula, 9; table,
145

Steady-state motion, 28

Stiffness : dynamic, see Dynamic
stiffness ; linear, 3 ; torsional,
13

response

tor-

Swinging form, 65; 67

Symmetry : in mounting systems,
54, 130 ; in periodic functions,
102 ; in spring characteristic, 10
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Timoshenko, 90, 92

Torque summation tables, 71

Torsional-linear analogues, 12

Torsional systems, heavy shafts, see
Shafts

Torsional systems, light shafts :
one degree of freedom, 13 ; two
degrees, 48 ; three degrees, 63 ;
many degrees, 57

Torsion of circular shaft, 124

Transference formulae, dynamic
stiffness, 74; heavy shaft,
84

Transient, starting, 32, 41 ex. 6
Transmitted force, 32, 138

INDEX

 Uncoupled ” frequencies, 53

Uniform beams and shafts, see
Beams and Shafts

Units of measurement, 9, 12, 73, 117

Vector, 113; rotating, 7; wv.
method, 38, 77

Versor operator, 38, 77, 114

Vibrograph, seismic, 37 ; respo
curve, 39 :

Whittaker, 65 ; and Watson, 112

Wilson, Ker, 50, 78, 107

Work done by impressed forces, 19,
108












