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PREFACE TO THE FOURTH EDITION

It is now nine years since this manual has been revised. During
this period the civilized world has fought and won the Second

World War. These have been years in which unprecedented

demands have been made upon the facilities and staffs of the

engineering colleges. The urgent need for trained and semi-

trained men and women compelled the educational institu-

tions to experiment with high-pressure, accelerated courses

and curriculums, and to utilize the services of inexperienced

personnel.

The teaching staff in Engineering Problems at Iowa State

College was fortunate in having had previous experience in

handling unexpectedly heavy enrollments and in training teachers

without classroom experience. For many years (since 1926) it

had been the regular practice to have a new teacher assist in a
^
^ pilot section taught by one of the experienced instructors.

The former took notes regarding teaching methods, class prob-

lems, instructions, and the classroom discipline. Uniform time

schedules for problems and study assignments were prepared,

and genercTlis use was made of mimeographed material. In this

way a continuity in standards and techniques was obtained.

When the war demands came and volunteer enlistments or the

draft began to call the younger men away, there was an effective

teacher training process already available. This same method of

teacher training is today proving its worth once more, in quick'y

preparing a large number of new teachers to handle the vastly

increased enrollments.

The Engineering Problems ManuaP^ is now 20 years old.

This revision is based upon many such war-inspired experiments

and represents the pooled experience of several instructors. Old

problems have been examined to see if they truly served their

purpose. New problems were collected and each one tested

several times before being accepted. Many experiments were

made in teaching methods. Various presentations of study prob-



vi PREFACE TO FOURTH EDITION

lems and classroom or printed instructions were tried in order to

secure the clearest comprehension by the students.

To a large extent blackboard instructions have been abandoned

in favor of printed or lithographed materials. A workbook^ was

prepared so that many drawings, tables, and other stock forms

would be ready for the student to work upon. The workbook is

intended to supplement the material in the ^^Engineering Prob-

lems Manual/^ illustrating with full-size pages various forms and

problem illustrations that are not suitable for small page repro-

ductions. Since one of the purposes of Engineering Problems is

to train students in making calculations, it seemed advisable to

gain computing time by furnishing them mth prepared work

sheets so that they would spend less time in ruling forms. The
past yearns work has shoum that the decision was a wise one.

The insistance upon neat, well-organized calculation sheets

paid large dividends during the war. Many former students have

indicated that this training in clearness and accuracy was one of

the most valuable things that they carried into the armed forces.

For such reasons the specifications have been retained in much the

same form as before, but they have been brought in line with

existing national codes.

Many of the new experiments, such as the introduction of curve

fitting in the Curtiss-Wright Engineering Cadette Program, gave

surprisingly good results. Curve fitting has been incorporated,

therefore, as a part of the work in third-quarter freshman Engi-

neering Problems. Some. notes on this topic are now a part of

this text and the workbook. The work in derived curves and

graphical calculus has also been tested in this freshman course

with good success. It can, however, be taught in parallel with

any of the calculus courses.

This edition of the ^^E]ngineering Problems ManuaP' repre-

sents, therefore, the results of many years of experience in devel-

oping a series of courses intended to give the student the maxi-

mum amount of practical training in engineering calculations in

the time allotted to the work.

The authors wish to acknowledge the hearty cooperation of

David King, Richard Hoverter, Wayne Moore, and Robert Lyon
in the development of the work in the ESMDT courses, which

* Dana, Forest C,, and Lawrence R. Hillyard, Engineering Prob-

lems Workbook,^' Wm. C, Brown Co., Dubuque, Iowa.
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is represented here by various problems. We wish to extend

our thanks to Harald Birkness who tried various methods in

curve fitting, nomography, and other material in the Curtiss-

Wright Engineering Cadette Program.

Forest C. Dana
Lawrence R. Hillyard

Ames, Iowa,

November
f
1946.





PREFACE TO THE FIRST EDITION

For several years many engineering schools have been experi-

menting vdth special courses for freshmen and sophomores.

Some of these are merely illustrated lecture courses requiring

little, if any, effort on the part of the student, their only pur-

pose being to show something of the field covered by engineer-

ing. Other courses are designed with the intention of giving

considerable training in the development of good habits of

work and study. Courses of this type are motivated by the

use of practical engineering situations, and close attention and

persistent effort are demanded of the student. Most of these

courses seem to have been given the name Engineering Prob-

lems’^ although the range of purpose and subject matter is

exceedingly broad.

Many of these courses owe their origin to the pioneer work of

Prof. Charles C. More and Prof. William E. Duckering at the

University of Washington. About 1915 they introduced and

developed new methods of teaching Mechanics. The new type

of instruction was so successful that freshmen courses were

organized under the name, ^^Engineering Problems,’^ and were

conducted on the same plan as the Mechanics classes. During

the World War both men were stationed at Camp Humphries,

Virginia, and their new teaching methods were used in the

Mechanics courses in the Engineer School. As a result of the

publicity given to this method by the ^‘Mann Report,” several

colleges began experimenting with similar courses, particularly

the Engineering Problems courses for freshmen.

Since 1919 all engineers at Iowa State College have been

required to take a series of Engineering Problems courses based

upon practical engineering situations. The courses at Ames
were developed by Professor Duckering who came here directly

from Camp Humphries. The work has been groAving, and for

some time it has been tending toward a closer cooperation

between the Mathematics, Physics, and Engineering groups.

The problems are intended to give training along many lines,

but all are presented in an engineering setting and, as far as

IX
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possible, one which is familiar to the average student. Many of

them make use of the principles of physics and mechanics. They

are arranged so that the mathematical tools required will be

those the student is then studying in his mathematics courses.

Machine shops, power plants, drafting rooms, surveys, or any

other engineering activities are drawn upon for the settings.

Therefore, the Engineering Problems courses are not primarily

physics or mathematics but a coordination of both in an engi-

neering atmosphere. Thus the interest of the worth-while

student is gained, and he sees more of the purposes of the funda-

mental sciences. The young man who has no aptitude for engi-

neering has an opportunity to discover that fact early in his col-

lege career and can get into more congenial lines of effort with

minimum loss of time.

This book has been prepared for use in the courses given at

Iowa State College Avhere they coordinate with algebra, trig-

onometry, and calculus. Enough tabulated material has been

included to give the information needed in solving the drill

problems, but no attempt has been made to make this a handbook.

The manual is not planned as a conventional textbook to be used

for assigned readings and problems. It is expected that the

principles of Chaps. 4-10 mil be introduced by class discussions

and the notes mil be used merely for reference when solving

problems. This book, therefore, is not a text on mathematics,

physics, or elementary mechanics but rather a student notebook

covering the work offered in the Engineering Problems courses at

Iowa State College.

The chapter on specifications sets forth an eflScient and effec-

tive method for obtaining neat, legible, well-organized computa-

tion sheets. The emphasis is placed upon good workmanship
in both the solving and the recording of problems rather than

upon “quantity production.'^ Most students have little or no

idea as to how computations should be arranged and do not

appreciate the value of systematic methods. The young engi-

neer should be given this training as early as possible, as it will

help him throughout his college career as well as in later life.

The chapter on drill problems gives many typical situations

and will suggest others to student and instructor. Numerical

data have been given in some of them. The blanks will allow

the instructor to use his own material or to use data supplied by
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members of the class, and the student should write the values into

the proper spaces. The problems range ftom the very simple to

those having many details. Even the most complex, however,

is not too difficult for the average student if he will be patient

and reason his way through step by step. Both pupil and teacher

should not forget that mental growth is not possible in the absence

of difficulty and effort. Hard problems, therefore, should be

accepted by the young engineer as a challenge to his mental

ability and perseverance.

The work on Calculm. with the problems showing its engineer-

ing applications is used in the sophomore course. This course

is given in the third quarter of the second year, after students

have had two quarters of both calculus and physics. At this

time they are regularly scheduled for the third quarter of calculus

and the statics work in mechanics. This Problems course is,

therefore, primarily one of review and drill on previous work but

with an occasional look ahead into hydraulics and strength of

materials.

Considerable emphasis is placed on the geometrical applica-

tions and relationships. Engineers can usually see through their

difficulties and often simplify their solutions, if they know how to

translate algeLiaic equations into physical quantities or the

physical measurements into algebraic laws.

The authors are glad to acknowledge their indebtedness to

the work done by Prof, C. C. More at the University of Wash-
ington and Prof. W. E. Duckering.

Professor Duckering^s booklet, Notes and Problems for

Engineering Problems Classes,^’ which he prepared while at

Ames, has been in constant use up to the time the content of the

courses was changed. We have found his form of presenting the

notes on basic principles to be very satisfactory and have used

much the same plan in presenting this material.

We also wish to thank Prof. J. W. Woodrow, of the Physics

Department, Iowa State College, for his valuable suggestions

and reading of the manuscript on Basic Principles.

Ames, Iowa,

July, 1927.

Forest C. Dana
Elmer H. Willmarth
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ENGINEERING PROBLEMS MANUAL

CHAPTER 1

PURPOSES OF ENGINEERING
PROBLEMS COURSES

1.1 Living in a Technical Era.

For many years the phrase ^‘the American way of life^’ has

been used as a concise name for the technical civilization that

has been developed in both the United States and Canada. This

rich culture has been based upon a constantly growing body of

technical knowledge, skills, and control over materials and proc-

esses. So truly has ours become a technological civilization

that there is hardly an area in the production of goods or services

in which the knowledge and skills of the engineer are not needed

somewhere alon% the route between the raw materials and the

consumer.

For this reason an increasing demand has arisen for engineers

and technicians. New vocational fields are opening to the

engineer. Often the jobs are those that once could be filled

by men who had had a more or less limited education but who
were skilled in the mechanics of their work from long experience.

Today an increasing number of employers are finding that these

same jobs now demand the services of men with training not

only in the art of their profession but also in its fundamental

theory. This means that there are constantly widening areas

where the engineering graduate is needed. The need for better

trained technical workers in the lower levels during the period

of the Second World War resulted in the United States govern-

ment sponsoring many short, high-pressure training courses

such as the EDT and ESMDT courses.^ Later came the

1 Engineering Defense Training Course and Engineering, Science and

Management Defense Training Courses,'^ Federal Security Agency, U. S,

Office of Education.

1
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Navy's V-12 program and the Army's ASTP courses for the

military forces.^ Since then many colleges have revised their

curriculums, streamlining them to help meet this growing demand

for trained, competent men.

1.2 More Accurate Elnowledge Is Essential,

This growth in the need for better educated men and women
in technical work is tied in closely with the growth in funda-

mental science. The areas in which trial-and-error methods can

be used with safety are shrinking rapidly. Empirical formulas,

developed experimentally, are giving way to more exact, rational

concepts and mathematical formulas. Rough-and-ready ways of

manufacturing goods have had to be replaced by high-precision

methods, close inspections, and better materials. When wage

scales are rising, employers must save labor as well as material

if they are to stay in business; hence, time and motion studies

must be made for nearly every task in order to determine stand-

ard times and standard methods of procedure, the aim being to

discover the most economical procedure.

1.3 The Upgrading of Jobs.

All this means that an upgrading of jobs is constantly under

way, and the end of the process is not yet in sight. Many
jobs that once could be filled satisfactorily by skilled workers

now need men of subprofessional caliber; other jobs once suitable

for the man with semiprofessional training now need the skills

and knowledge of the graduate of a 4-yr engineering course.

At the top there are various positions requiring men with the

higher degrees: the master of science, the professional, or the

doctor of philosophy. This upgrading has been going on not

only in engineering but also in commercial fields as well. Today
engineers are finding a welcome in such once strange activities

as sales; life insurance; fire and general insurance; appraisals;

management of retail chain stores, banks, and bond houses;

and other fields formerly considered very remote from engineering.

The engineer needs more than a mind well stocked with facts,

formulas, and design theory if he is to climb very high in engi-

neering or any of these new lines of endeavor now opening to

him. He not only must be competent in his special branch of

i Army Specialized Training Program.
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engineering but must have acquired a knowledge of the money
value of goods and services. He must have acquired a working

knowledge of human nature, applied psychology, sociology,

economics, and other subjects once considered the exclusive

domain of the liberal arts college. The prospective employer

must be convinced that the engineer not only has ability, knowl-

edge, and certain skills, but also has courage, ingenuity, per-

severance, a pleasant personality, dependability, high moral

standards, integrity, and other desirable traits of character.

Some students feel that character is no concern of the teacher^s

as long as the student does acceptable work. They are wrong,

however, because character is important. Employers ask

more questions about a student^s traits of character than they

do about grades. Grades count, but they are always on file

at the office of the registrar, whereas a man^s character rating

is on file only in the minds of those who know him. That the

engineering profession acknowledges the importance of char-

acter, integrity, and responsibilities to others is shown by a

study of the codes of ethics adopted by the various national

engineering societies.

1.4 Competitic,n Is Keen.

The foregoing comments indicate that there is probably an

informal, inconspicuous competition among men for desirable jobs

and among the employers for qualified men. This is true.

An unseen sifting or screening process is always going on so

that in a few years the general trend of a graduate’s career can

be seen. All men, engineers or others, tend to fall into several

well-defined groups in respect to their skills, knowledge, and

traits of charac’ter. At the bottom are the lazy and shiftless.

Too inert to learn to drive themselves, their chief function in

life seems to be that of consumers of food, fuel, and clothing

provided by the energy of others. Always failures, economic

parasites, they move from job to job blaming everyone but them-

selves for their condition. Next come the dodgers, the ones

who go through life and never learn how to face difficulties.

They fear unfamiliar situations, the new, the unusual. They

dodge responsibilities and promotions that would compel them

to leave familiat routines. Frequently they are fluent with

excuses for their shortcomings and seldom take the blame for
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their mistakes. They will not take the initiative, always

relying upon someone else to start them off and give them

detailed instructions for each major step. They are doomed to

routine work; and although they can and often do fill very

necessary jobs in the lower ranks, they never become leaders.

Next above them are the ones that might fairly be called the

cut-and-try artists. They often show surprising ingenuity and

originality. They are not afraid of the new and unfamiliar

and have ambition and perseverance. They frequently make
mistakes, but they do get things done. Learning by observation,

by trial and error, they develop hit and miss techniques that

serve them well as long as they do not run into situations that

demand the application of exact theory and scientific methods.

The most effective group, however, is the one that engineers

should help to fill. To the traits of the previous group they

add broader vision; trained, well-stocked minds; judgment;

and balance. They know how to analyze a problem or project,

and with their training they gradually fit themselves for positions

of great responsibility. They do not shun difficulties but attack

them with courage and vigor, regarding each new experience

as an opportunity to learn something worth while. Such men
are outstanding for their ability to grasp quickly the essentials

of a new situation, to break a problem down into its component

parts, and to reach a logical, workable solution of the difficulty.

The competent engineers are marked by their knowledge of the

fundamentals that \inderlie their profession and by their ability

to apply these basic rules to the new, ever-changing demands
of the present-day world.

1.6 Economy of Time and Effort Is Imperative.

So large is the body of knowledge, technical, social science,

and humanistic, that must be crowded into a 4- or 5-yr engineer-

ing course that economy of time and effort are imperative if a

student is to do better than mediocre work. A similar need

for efficiency is found in many engineering offices. Efficiency

in study, thinking, figuring, designing machines and processes,

in all the varied activities of the engineer is attained only by
/conscious effort. Very seldom do students in our high schools

and junior colleges ever receive any coaching in good habits of

work and study. It seems to be assumed that everyone is
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born with the knowledge^ of efficient ways to prepare lessons,

to attack and solve problems, and how to record his work in a
neat, legible, workmanlike manner. Such knowledge and skills are

not inherited, however, and are acquired only through proper

environment, coaching, and determined eiffort on the part of the

student or worker. Since the young men who enter the engineer-

ing colleges so seldom have received even the slightest definite

guidance in the organization of calculations or ever have had to

meet an engineer's standard of neatness and general workman-
ship, many of them find the first year or two in college to be a

trying, often discouraging time.

They have not been taught to use laborsaving ways of doing

their work or preparing lessons. Many find that they have to

unlearn things that they have been taught. For example, the

American Standards Association, the Federal Bureau of Stand-

ards, and similar organizations have sponsored modern codes of

symbols, abbreviations, and various notations to be used in

mathematics, physics, chemistry, and other branches of science.

But the texts found in high schools and grade schools are still

using and teaching notations long out of date. Samples are the

“shilling” (inclined bar) fractions and the colon method of show-

ing proportion. The latter notation {a:b::c:d or a:h = c:d)

was discarded by a national committee^ of teachers of mathe-

matics in secondary schools as early as 1921, and a standard

engineering handbook^ spoke of it in 1916 as one “wdiich is now
passing out of use.” It should, therefore, be abandoned by
the engineers of today.

Speed and economy of effort, effective study habits, and

rapid preparation of problems and reports are possible only for

the person who has been trained and drilled in these skills.

Since such skills have become so highly essential for one enter-

ing upon the truly arduous courses of study leading to one of

the engineering degrees, increasing numbers of colleges and

universities have been introducing a new type of course into

the freshman and sophomore curriculums. Various names have

been chosen for these training courses, but “engineering prob-

lems” seems to be the most popular.

^ ^^The Reorganization of Mathematics in Secondary Education, U. S.

Dept. Interior Bur. Education Bull. 32, p. 68, 1921.

* Marks, Mechanica} Engineers Handbook,*’ 1st ed., McGraw-Hill,

1916, p. 113,
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1.6 Definition of the Name Engineering Problems.

Engineering students and others who come in contact with

the courses under this name naturally want to know their

subject matter, their aims, and how the work is conducted.

Everyone knows that a man cannot do his best work if he does

not perceive the objective of his efforts or have anj^ particular

interest in what he may be doing. With interest comes coopera-

tion, so that the student no longer remains passive, waiting for

the teacher to do all the work, but instead takes an active part

in the learning process. This is of vital importance because all

true education is self-education; the development must come

from within, not without. What, then, are engineering problems

courses?

Engineering 'problems courses are courses in which the student

is coached in the development of accurate^ effective^ efficient work

and study habits while he is actually solving and recording problems

under the supervision of the teacher,

1.7 Aims cf the Courses.

Since these courses are primarily concerned with the forming

of desirable habits of mind and hand instead of the memorizing

of a specific body of factual knowledge, several rankings of

the various goals suggested above are possible. The goals

outlined below are in general accord with the emphasis placed

on them by most instructors.

a. Accuracy.

b. Efficiency.

c. Good workmanship.

d. Engineering attitude.

e. Subject matter.

In the remainder of the chapter these various aims will be

discussed in more detail in order to show the reasons for certain

instructions and the interrelationship among the goals.

1.8 Accuracy in Calculation.

There is really only one reason in engineering work for making
computations: They are made to use. Not only must they

be accurate but also they must be efficiently obtained, complete,

readily checked, and as precise as the data justify, The average
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student wastes much time and effort and gets needlessly lower

grades than he should because he is inaccurate in his figuring.

Sometimes he appears to ha^ e drifted onto an evil path that

leads to failure. He makes one or more arithmetical mistakes

on a problem, and it comes back with little or no credit. He
(concludes hastily that he docs not understand the problem. He
makes more blunders in arithmetic and decides that he cannot

understand the problem. A few students seem to reach the

point where they app(iar to decide that they will not understand

the problem, no matter how much effort the teacher puts forth

to clear up theii* troubles. Now, with a mind firmly locked shut,

defeat is inevitable. Thus the habit of inaccuracy saps con-

fidence and leads to future difficulties.

The obtaining of correct results involves four main steps:

. Correct reasoning, which in turn, depends upon the basic

theory underlying the problem and its statement in mathematical

form. That is, the computer must be using correct theory and

mathematical tools to start with.

, A systematic method cf attack. This means breaking a

problem into simple steps, logically arranged, and the avoidance

of so-called short cuts. There is no virtue in the ability to set

up a problem h' the form of a long, involved formula filled with

many unit complications and abstruse calculations. On the

contrary, experienced men in industry are constantly urging the

college teachei's to tell the young engineer to form the habit of

breaking his work into simple steps, each one easy to check and

easy to use. He should arrange his work so that there is enough

detail to leave a well-marked trail leading from the data to the

answer. Intermediate answers serve as frequent landmarks that

enable the coraputer and the checker to pause and verify the

route taken and the results obtained to that point. Students

often express resentment when textbook authors give sample

problems and when about halfway through the solution say

“Hence it is obvious that . . .
^' when the conclusion is any-

thing but obvious. Why are these students guilty of the same

offence both in their college oroblems and their professional work?

c. Correct use of the basic branches of mathematics such as

arithmetic, algebra, and trigonometry. This does not mean a

deep grasp of all the intricate phases of mathematical theory.

Far from it, because it is lack of skill in the simple phases of
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the various branches of mathematics that causes the most grief.

In trigonometry, for example, the essential formulas for solving

any plane triangle can be typed on a postal card.

d. Accuracy in simple arithmetic is the most important of all

the skills required. Blunders in addition, subtraction, multi-

plication, and division are the cause of far greater loss of time

and money, of effort and material, than mistakes in theory. The
blunders come from momentary lapses of attention, interrup-

tions, and a subconscious feehng that this phase of the work is

subordinate and unworthy of close attention and sometimes

from plain incompetence in arithmetical operations. Such

losses of time and effort may be reduced by the aid of mechanical

helps such as tables, charts and graphs, slide rules, and com-

puting machines. Engineers should also form the habit very

early in their careers of checking and rechecking all their work.

The man who accepts and uses his first, unverified result is a

gambler, not an engineer. Retracing operations is not checking.

A different method, a varied grouping of values, and another

computing tool should be used. Then last, but far from least,

the engineer should sit back, look at his numerical answers with

the skeptical eye of common sense, and ask if they look reason-

able. Many tales are told of bad blunders causing serious losses

because no one used horse sense.’^ Far too many men are

like the workman who was reproved for a blunder and, when
told to use common sense, replied: ^^But sir, common sense is a
rare gift of God and I have only a technical education.”

1.9 EflSiciency in Work and Study.

Students (and workers in industry, too) are constantly laboring

under the pressure of skimped and unfinished tasks simply

because they are inefficient in the handling of their jobs. Work
is put off and often left undone, but the only excuse offered is

have more work ahead than I can do.” In most instances

this is not true; these workers waste time because they are

unsystematic; use long, indirect methods; and in general, fail

to use the best available tools for getting results. They lose

time and waste energy in aimless, frantic attempts to work faster.

Then they make more mistakes in judgment and execution and
ejfid by doing inferior work. They worry about their troubles,

and by worrying they simply magnify the whole problem.
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These men resent bitterly the suggestion that they are poor

organizers and do not really know their own jobs. In truth,

however, poor planning and t]*e lack of systematic methods are

foremost causes of inefficiency. Instead of making use of

standardized methods of preparing assignments, of attacking and
solving problems, of organizing reports and term papers, of

developing a program for handling the routine tasks, they use

hit-and-miss, spur-of-the-moment methods. They treat each

new task that is put before them as if it were an unusual, special

situation, instead of looking for the underlying features common
to other problems solved in the past. In some cases, of course,

this inefficient approach to the task is, as suggested in the

preceding topic, simply due to the fact that the worker has a

poor foundation in the basic skills and in the knowledge of

computation. There is no remedy for this situation except

that of getting down to work and learning how to figure.

Faulty judgment in the choice of mechanical and mathe-

matical tools is also a source of wasted time. The use of unduly

precise calculation tools can cost much in time and labor with no

gain in accuracy. Some men wait until they can get a computing

machine when the task could be done in a very few seconds by
using cut-longh.;nd or a slide rule. Others regard logarithms

as a cure-all. One mining engineer, for example, said that he

always used a seven-place table of logarithms, even for four-

figure data, because he wanted his answers correct to five or

six figures. He never realized nor could he be convinced that

no seven-place table could ever create six-figure precision from

four-figure data or that he was grossly inefficient because other

methods would give four-figure precision in far less time. In

other instances a graphic solution of satisfactory precision can

be obtained in a fourth to a tenth of the time required by analyti-

cal methods. Sometimes a switch from one branch of mathe-

matics to another will save time. In computing the length of the

steel members in a certain design of crane, for example, a switch,

about halfway through, from trigonometry to analytic geometry

will save considerable time :vnd labor.

Another group of time wasters are the formula worshipers.

Some men make a fetish of formulas, especially in fields where

they are not sure of themselves; consequently, they spend more

time hunting a magic formula than they would need to analyze
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the problem piece by piece using simple, familiar methods and

calculations. The principal virtue of formulas, if virtue it is,

lies in the fact that by them men can avoid the labor of thinking.

A prime time-wasting habit of far too many people is the

‘‘scratch-paper habit.” Insufficient records due to the use of

scratch paper are a frequent cause of delay and of mistakes.

Many people think that it takes too long to make clear, per-

manent entries of calculations; so we find men (from the citizen

laboring over an income tax report to an engineer designing a

multimillion-dollar project) putting their arithmetical work on

scraps of paper that are thrown away when the answers are

obtained. If the scraps are saved at all, they are usually so

mixed up and shuffled that they are useless in checking back to

find errors. Later, when it is necessary to verify results or to

change the procedure in some way, the entire calculation must

be made all over again. Quite a few commercial organizations

have found it necessary to forbid the use of scratch paper in any

form. Some set aside part of the page for arithmetical work as

suggested in the specifications that are given in Chap. 3. Others

put the analysis and main solution on one color of paper and

the arithmetical calculations on paper of a different color.

Still other firms insist that all calculations be made in per-

manently bound books. In some cases not only the computer’s

signature is required on each page of the workbook, but the

signature of two witnesses. Such books then become legal

evidence, admissable in court, and may be of the utmost impor-

tance in patent cases and other lawsuits. The chief engineer of a

large oil company was asked if they permitted the use of scratch

paper. His answer was “Positively no!” He went on to say:

The one point which I wish to emphasize, and I think I am expressing

the opinion of industrial engineers in general, is that there is no place

for “scratch paper’’ in engineering calculations. In the first place

“scratch paper” which is to be thrown in the waste paper basket usually

means sloppy work. I do not wish to accuse young engineers of being

dishonest, but the psychological effect of retaining all calculations to be

filed cannot help but encourage neater mechanical effort and clearer

thinking. Furthermore, the filing of all calculations has a decided

practical advantage. The tools with which we work are changing

rapidly. A piece of equipment designed on the best available data of

today may be open to criticism a year hence. As our fundamental data
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increase in volume or become more exact quantitatively, we not only

design new equipment on this basis, but often modify existing equip-

ment to bring it up to date if such changes are economically justifed.

If the original calculations, initialed and dated, are available, it is a

much simpler and shorter job to revamp these calculations than to

prepare a complete new set.

Another advantage of retaining calculations is to definitely place the

responsibility for the original design on the man who made the calcu-

lations and tlie one who checked his figures. We make every effort

to keep errors at a minimum, but if they do creep in, it is most helpful

to know who made the error.

1.10 Good Craftsmanship Is an Asset.

Professional pride in good craftsmanship is not a useless

frill to be developed or not as an engineer sees fit. It has very

real values, both tangible and intangible. The doors of oppor-

tunity and advancement have opened sooner and wider to many
a young engineer just because his work was outstanding in its

(dean-cut, competent appearance. In addition to monetary

rewards there is a more personal, inner satisfaction known only

to the man himself when he can lay aside a completed task

with the knowledge that he has done his best and that his best

is a truly professional piece of work. Reaching such a goal is

not easy even for the b(^st of men, and some find that they have

to break life-long habits of doing slovenly work before they can

acquire the desirable habits.

Experienced men say that there is a close correlation between

the appearance of a computation sheet and the mental habits

of the computer. The president of a large manufacturing con-

cern once said There is a close connection between slovenly

thinking and slovenly records.'' He indicated that he w^as not

interested in having either one in his organization. Another

man wrote:

Sloppy notes are usually associated with a mediocre mind. An
intelligent, clear-thinking engineer keeps neat and legible notes. In

most instances we find that there is a close connection between slovenly

thinking and disorderly records.

These men are entirely justified in their statements, because

it is practically impossible for anyone to produce neat, sys-

tematic, well-arranged original records if his thinking has not
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previously been organized into logical, systematic form. Various

checkers of engineering problems papers have repeatedly com-

mented that there is no evidence that doing neat work slows

down the worker. On the contrary, they say that the men who
do the most work and with the largest number of correct answers

are generally the neatest and most careful as to the appearance

of their papers.

Basically, slovenliness in the preparation of reports and

calculations is a form of dishonesty as well as a mark of incom-

petence. Tt is of the same nature as carelessness in the making

and operating of machines. A careless mechanic ruins materials

and wastes time; a careless engineer may cause the loss of time,

materials, even human life. The man whose motto in life is

‘‘Why bother? That is good enough. It will get by'^ is as

much a cheat as the worker in a shop or on a construction job

whose life is built around the same low standard. Such a man
should never be intrusted with responsibilities or be put into

positions of trust. A careless, indifferent worker resents the

necessity of putting a workmanlike finish on any sort of job.

A man with such an outlook on his w^ork will seldom go far or

long continue in engiiK^ering. lie -will find the preparation of

high-caliber drawings, estimates, reports, or calculations most

distasteful and will probably gravitate to employment that is

less exacting than a high-standard engineering office.

When a man truly wishes to improve the quality of his work
from the standpoint of appearance, there arc several steps that

he can take. Since most of these have little to do with his skill

with pen or pencil, there is no excuse for not improving the

appearance of liis work. The most important aspect has been

discussed in connection with accuracy and efficiency in cal-

culation. That is:

a. He should break his work into a series of simple operations

arranged in a logical pattern that leads, without backtracking,

from data to conclusion.

b. All numerical values should be so clearly formed that no
critic could find an excuse to misread them even intentionally.

c. A habit that helps greatly in producing competent-appearing

papers is that of devising and consistently using standardized

sheet rulings, placements of analyses, and groupings of cal-

culations and the clear emphasizing of answers to all calculations.
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Such standard arrangements justify themselves in various other

ways as well.

d. Another highly important element in the production of good

records is that of preparing them for permanence. The worker

should be especially careful with pencil work and be sure that

grade of lead, pressure on pencil, and type of paper are such

that smearing, fading, and tearing are not likely to occur with

reasonable handling. The records should be made on the

assumption that they must speak for themselves many years

after the maker has left the organization or, perhaps, passed

to his future reward. A representative of a well-known dealer

of engineering supplies reported that several firms that he had
just visited were being forced to spend many hundreds of dollars

to recopy design records, calculations, and drawings simply

because the individuals making them had failed to bear down
on their pencils hard enough to keep the pencil marks from

smearing and losing legibility as the papers rubbed against each

other in the storage files. There is no excuse for a computer's

turning out work that someday must be copied because he

would not use enough pressure on his pencil.

e. The computer can greatly improve the general appearance

of his work by u^ing well-formed lettering, preferably the Ameri-

can Drafting Standard types, instead of script. When script

is used, however, it must be completely legible. Ambiguous

script is just as indefensible as illegible figures.

/. Long, formal reports on projects, designs, and processes

should, of course, be neatly typed on bond paper.

1.11 The Engineering Attitude.

The group of habits of mind and spirit that are characteristic

of so many members of the engineering profession is so noticeable

that it has been named “the engineering attitude." It is essen-

tially the emotional reaction of the engineer to the world of

men, forces, materials, and conditions that affect his efforts.

Its possession is almost imperative for any large measure of

success, and the -men who dc‘ not develop it find engineering too

highly exacting to suit them. The man who resents difficul-

ties, the quitter, the whiner, the leaner, the bluffer, gravitates

sooner or later to a less demanding way of making a living.

There are many essential elements in this character pattern
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which has become known as the typical engineering attitude.

They are so interdependent that an accurate ranking of them

is not feasible, but integrity, honesty, fairness should undoubtedly

come first. The gi’eat engineering societies have recognized

this through the adoption of their codes of ethics.’' These

codes serve as guides to engineers in their relations with their

employers, the public, and their fellow engineers. Basically

they are a restatement of the principle so concretely given in the

Golden Rule.

The engineer soon becomes philosophical about difficulties,

unfamiliar or unpleasant situations. Pie quickly learns that

they are normal conditions in the engineering world and that it

is folly for him to get upset or angry over them. He learns to

^*play the game,” to adopt the never-say-die attitude and, when
one plan fails, to devise another solution to the difficulty. One
writer^ when discussing the learning process wrote:

Uncertainty, confusion, doubt, hesitancy are the sources from which

thinking takes its start and the spur that urges us forward to reflection.

... If you wish to increase the power of thought and to develop the

ability to do clear and reflective thinking, embrace every oppoi'tunity to

handle problems. Plan your work in problems. Put yourself in a

situation where you have to take the initiative. Assume i‘esponsibility,

incur risks, be liable for something. If you want to learn to think, get

into trouble! Until you become involved in a hazardous undertaking,

until you are up against a real difficulty, you will never learn to think.

The way to develop leadership is to take the lead. You do not first

learn to think and afterwards apply that learning to the solution of a

problem; you begin by handling problems, and the effective handling

of the problem is the thinking.

The acceptance of difficulties as normal and then the ingenious

surmounting of them naturally lead to the development of th(‘

traits of selUreliance, originality, and initiative. The engineer

must become a self-starter,” self-reliant and ingenious in

finding ways of getting results. It has been said that he is the

man who, when told that something is impossible, goes out and
does it. It has been due in great measure to these traits that

modern industry has reached its present level. The student

who is always asking a classmate to lift him over a difficulty or

^ McClube, ‘‘How to Think in Business,^' McGraw-Hill, 1921, pp. 27

and 30.
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a hard problem is headed the wrong way. He may secure an

answer to be handed to his instructor, but he has learned little

or nothing and certainly has toughened no moral fibers.

Perhaps by training, perhaps through the development of the

foregoing traits of character, the engineer also eventually shows

what may be called the judicial frame of mind. That is, he

learns to withhold decisions until the facts are known, not to

act on snap judgment as do so many men and women. This

judicial temperament is almost forced upon him by the very

nature of the physical v orld with which he works. He cannot

decide questions of design, loads on structures, their strength,

or the speed and power of machines on the basis of prejudice, of

desire, of politics, of wishful thinking in any form. The per-

tinent facts—and facts alone—can be a safe foundation for a

true, sound (engineering project. Many millions of dollars have

been wasted in North Americea bet^ause the men who had the

final authority based their decisions on some political expediency,

some iinprovcHl economic theory, or the selfish desires of some

pressure group instead of on a carefully studied engineering

analysis.

There is one phase; of their duties that engineers fre(|uently

dodge, and as r result they’' are sometimes refused true profes-

sional recognition of the type given to members of the bar, the

ministry, or the medical profession. The engineer has all too

frequently kd't the civic duties to others and has been reluctant

to take part in community activities whether political, recrea-

tional, charitable, or educational. He could often help the

people reach sounder decisions on public undertakings if he

would recognize the fact that he should be a good citizen as well

as a good engineer. He should, therefore, strive to become well

balanced on what is called the cultural side of his life as well

as on the technical. He should acquire some familiarity with

the economic and sociological aspects of life in his community

and nation.

1.12 The Subject Matter of the Problems.

In order to form the habits of accuracy and efficiency, in

order to develop the traits of character discussed above, a body
of knowledge nui^t be chosen for the subject matter of such a

course as engineering problems. In order to cultivate skill in
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any line of effort it is a matter of common knowledge that we
must have material upon which to work. Readings and lectures

on such subjects as ^^How to Study/’ “Use of the Mind/’

“How to Read,” “How to Organize Problems and Reports”

are all the acme of futility unless the suggestions can be applied

immediately and in a concrete way to lessons and problems in

preparation at that moment. The student must have something

to studj'', to anal3^ze, to record, a problem calling for the applica-

tion of basic principles, if he is to see any real need for the

training that has been planned to fit him for the practice of

engineering. Engineers are concerned not only with the dis-

covery of truth through research and analysis but also with the

application of truth in such ways as will serve the needs of

mankind. The engineer is seldom interested in scientific knowl-

edge merely for its own sake; he docs not work in a cloister

but in the rush and scramble of an active, growing world, facing

new situations and surmounting new difficulties every day.

His profession is the one that has the responsibility of translating

theories and formulas from the mental world of ideas to the

realm of physical reality. He most freciuently asks when con-

sidering a new idea “Will it work?” “Can we use it?” “Can
we afford it ?” Because so much of his work consists of investiga-

tions that sooner or later take some mathematical form and

all are intended to serve useful ends, the engineering problems

courses are based upon the solution of various types of problems

calling for the application of several basic branches of mathe-

matics. The problems, therefore, serve as the framework

upon which the coaching and practice outlined in the preceding

topics can be built.

The engineering student has to choose his major group of

studies from a group of specialized courses of study. In each

there are numerous subdivisions, but underlying all of them
are the basic sciences common to all branches of engineering.

With such a large body of knowledge to choose from when
a training course like engineering problems is being built, it

becomes necessary to limit the choice to a few typical funda-

mental topics. The problems are drawn from the shop, the

drafting room, design offices, the surveyor’s field books, and

other sources. The engineering problems are not planned to

give a thorough drill in one or more of these subjects but rather
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to pick out some of the most valuable topics in several branches

and develop a technique for each that meets the requirements

laid down in Topics 1.7-1. 9. The student must become aware

of the fact that techniques that work in one situation will

generally work in others and that good work and study habits

can be developed for each type of task. The subject matter

varies considerably in the colleges offering engineering problems

but most frequently concerns the engineering applications of

mathematics and mechanics.

1.13 Conclusion.

Engineering is a profession only when its practitioner is a

professional man with character and with an outlook on his work

and community that measures up to that of other well-known pro-

fessions. Without this attitude, this approach to his lifework,

he is little more than a skilled technician, only a few rounds

above the skilled mechanic. Engineering becomes a trade to

those who arc trade-minded. The true engineer, however,

develops a pride in his profession. He qualifies himself for

this high calling by always doing his best in his work, by con-

tinuing his studies all his life, by broad reading, by learning to

express himself wi;ii both the written and spoken word, and by
taking an interest and an active part in the affairs of his com-

munity, its schools, its churches, its community life, yes, even

its government and the administration of its financial affairs.

His work is always outstanding for its neatness, its conciseness,

its honesty, and its thoroughness, whether the task be great or

small.
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CHAPTER 2

PREPARING FOR THE LONG PULL

2.1 Getting Set.

In the language of various sports we have phrases that well

express the purpose of this chapter. The sprinter must “get

set on his marks the golfer must have “the proper stance

and the baseball pitcher must “wind up’^ before he pitches the

ball. Careful preparation for the task in hand is an essential

step in the successful completion of any undertaking. The
college program for engineers is such a training period for men
who wish to become members of the engineering profession.

Sometimes it is advisable to have an introduction to the

training period. Thus colleges have tried to aid the new student

to find himself by introducing such programs as Freshman Days
and orientation courses. Even though a student has grown up
beside the campus, there are, nonetheless, many things he does

not know in regard to college life and requirements. New
students will find that there are things that the official counselors

never mention and problems are encountered that are not dis-

cussed in any textbook.

2.2 Getting Along with College Professors.

One of these highly important studies never mentioned in

college catalogues is one that might be called “Professors: A
Study of Their Nature and Behavior.” This study is always

offered by the students themselves, every term, as an informal

discussion course, usually over coffee and doughnuts, “cokes,”

or “malts,” It is not a bad idea at all, because students have

to associate with professors for four or five years. Learning

how to get along with the teachers and to become acquainted

with them is not always easy, but the rewards for the effort

are very real.

The first of these rewards is that the student who is sincerely

interested in his chosen profession can get much more out of a

course when he knows something of his teacher^s background,

19
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his experience, his personality. The student may discover that

his teacher really knows his subject and that his suggestions

and corrections are not based upon mere opinion or other men^s

writings. If he knows that his teacher is competent in his

field, the student will perhaps make allowance for odd and

intriguing mannerisms. No c.ampus is truly memorable unless

it has known and loved a teacher who was remembered by

alumni because he had some odd mannerism, some quirk of

fancy, something unconventional as a distinction around which

campus tales could be built.

It is a fact that a sincere student can profit from really getting

to know his teachers. He will discover that they have met many
of the problems that he is facing. He will come to a realization

that regardless of age his teachers are on the same road that

he has chosen to travel. The main difference is that they started

earlier, and now they are reaching back trying to coach him so

the path will be less rugged. He can learn something about

his older teachers if he will look in the college library. If they

have become known in their particular fields of activity, the

student will find a brief biography in one or more of the bio-

graphical dictionaries.^

2.3 The Art of Apple Polishing.

The ancient art of ^^apple polishing, sometimes known by
other names, is one that is sadly neglected in these modern times.

It should be cultivated more; it is one way of getting acquainted

with teachers. The experienced professor recognizes it readily,

gets a little fun out of it and perhaps a feeling of being appre-

ciated. The student profits, too. He may not be able to talk

his way to a better grade, but he may discover that his professor

is human and a potential friend. Before the student knows it,

he may be liking his teacher, enjoying the subject, and really

earning the desired higher grade.

2.4 How Strangely He Speaks.

One of the first experiences that really bothers the new student

is that of taking notes in lectures. Even though the lecture

^ Who’s Who in America,” A. N. Marquis Co.; ‘‘ Who‘’s Who in Engineer-

ing,” Lewis; ^‘American Men of Science,” American Association for the

Advancement of Science; and other such directories.
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system is not so widely used in engineering colleges as it was
once, it still has its place in education. There is a lot of knowl-

edge that has not yet reached the pages of a textbook. It is

too new. If the student is to receive up-to-the-minute instruc-

tion in the most recent discoveries in science and engineering,

it will have to reach him in lecture form.

Students usually have to take their own notes in these lec-

tures, and it is not always easy. Poor lecturers fall into several

classifications, and each is a challenge to a student, for he must
manage somehow to take a set of usable notes. For example,

there is the confidential speaker who talks so low that he cannot

be heard over three rows away. Even worse is the one who
slurs his words together, mumbling along in a monotone that,

defies unscrambling. Everybody knows the grunter who seasons

his talk with so many ahs and ughs that it sounds like ‘‘pig

Latin.”

The “blackboard lecturer” uses the board primarily as an

audience, not as a means of illustrating points. Students get his

words by echo, if at all. Some of these blackboard artists are

also ambidextrous; su(di a man will keep the eraser working so

close to the h.ind holding the chalk that his body hides the few

marks on the board.

Everyone has experience with the dry-as-dust lecturer who has

the deplorable ability to take the most fascinating topic and

phrase it in the driest, dullest manner possible. Delivered in an

expressionless monotone, without a single highlight of wit or

phrasing to redeem them, such lectures are as tiresome as the

reading of a legal document, llie pathetic fact is that many
of these lecturers really possess a prodigious amount of knowledge

of their special subjects, but they soon extinguish any spark of

interest that a listener may once have had. Any of the speakers

mentioned may also be a “hobby rider.” He is the owner of a

private hobby or experience, not at all related to the subject in

hand, but nonetheless he manages to drag it in so often that he

seldom completes the assigned lesson.

Among the lectunTS who can be understood but who still fail to

hold the attention of a class are the “readers.” Apparently

forgetting that his students have long since learned to read,

this man stands before a class and reads each assigned part of

the text in full, usually with little or no amplification or explana-
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tion. If he also wrote the book, this period becomes one of

agony for his victims. It is useful chiefly for catching up on

sleep.

The ^^entertainer'’ is the lecturer who endeavors to be well

liked
;
and so tries to secure the interest of his students by assum-

ing the role of a popular humorist. His lectures may be well

spiced with stories and clever sayings so that his classroom

resounds with laughter, but as a rule his subject suffers in the

popularizing process.

Of all the lecturers who can be classed as substandard, how-

ever, the intellectual snob is the worst. He is the one who is so

conscious of his own superior knowledge, so impressed with the

vast importance of himself and his narrow little field of informa-

tion that he has only contempt for those to whom he unwillingly

lectures. Undergraduates bore him, and he quickly shows his

feelings. His slurs and sarcastic answers to questions spon kill

any possible interest. His office is usually securely locked to

make sure that no brash student can find him.

Students are not slow to detect all of the above kinds of

lecturers, and they might add others to the list. They will

find that each type furnishes a problem in note taking and much
ingenuity must be shown in building up a set of notes, especially

if the record must be handed in or be used in preparing for

examinations.

Remember that far greater attention is required to secure good

notes when the lecture is dry and uninteresting than when the

lecturer knows how to keep his audience awake. Be charitable

to the speaker, and remember that very few speakers, whether

they are college teachers or practicing engineers or scientists, have

ever studied the art of public speaking. It is true that anyone
who is called upon to address an audience, either in a classroom

or at an engineering convention, should be able to speak clearly

and in an interesting manner, but even now it is hard to persuade

students to take a course in public speaking. The professional

reputation of many an expert has suffered because he made such

a pitiful exhibition of himself when giving a talk to some group.

This is no doubt one reason that the lecture system is in such evil

repute as an educational device.

The attitude that a student takes toward the difficulties of note

taking and other more or less intangible obstacles encountered
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under difficult teachers may very well be a forecast of his later

success or failure in the business world. If he sees a difficulty as a

challenge, as something to be overcome without griping,” if he

can only realize that Dr. McClure (see page 14) is right in regard-

ing a difficulty as an opportunity, then he need never fear being

in that large company of failures who blame everyone but them-

selves while claiming that the world owes them a living.

2.6 Students from A to F.

Each time that a class assembles for its first meeting of a term

the students start ^'sizing up” the teacher in charge. Not only

is he under close scrutiny for some time for his teaching ability

and knowledge of his subject, but they study his appearance, his

mannerisms, and his speech habits. They hunt for all the signs

that they hope will enable them to catalogue the teacher. They
seldom stop to realize that these personality studies are mutual.

From his first meeting until the last the teacher is constantly

endeavoring to determine character traits, working habits, and

the strong and the weak points of each student. He does so
' because experience has proved to him that scholastic achievement

is interlocked with personality traits. He also watches for these

things because someday he may be asked by a prospective

employer to appraise the student for a possible job and the

employer is interested in character as much as he is in grades.

The attitude that a man takes toward his tasks is a decisive

factor in determining his success and the ease with which he does

his work. This is shown in the classroom in a very striking

manner. Students classify themselves in one of several well-

marked groups within a very few weeks. Dean William E.

Duckering has given an excellent description of the various groups

in the following paragraphs, which are taken from his booklet

Notes and Problems.”

At every step in the analysis it must be remembered that the most

effective progress is that which the class makes in the gradual sur-

mounting of successive difficulties leading to a useful conclusion. It

is important that the student get the feeling that engineering is a

combination of technical training and information with good sound

judgment and clear thinking. No amount of mere knowledge can

take the place of the ability to face fearlessly an unanalyzed situation,
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to separate the important from the unimportant, and then to apply

the few fundamental ideas which arc the basis of every solution.

During the analysis of a study prol^lem, the instructor gets a good

view of the relative capacities of the members of the class. Engineer-

ing is not merely a garment which may be draped over any skeleton

which happens to be exposed successfully to the vicissitudes of a four-

year technical course; it is dependent upon a certain attitude and

state of mind in the face of diOiculty, as well as on the ability to under-

stand and assimilate technicail training and instruction. The class

naturally resolves itself into four main groups:

First, there is the small but powerful group which responds to the

call and begins to play the game. Some of these will ask leading ques-

tions, but they do not shrink from relying on their own resources, and

their efforts are long sustained and earnest.

Second, there is the larger group which makes an attempt to unravel

the problem, but finding itself in unfamiliar circumstances falls back

on more direct questions. Though bewildered in the early stages, they

do not lack courage. Once tliey get the idea that the problem is really

^'up to them,’^ they respond with sincere effort. Not so quick as the

first group, they are often safer in their judgment and in the long run

become thoroughly reliable and effec^tive.

Third, there is the main body which in the classroom is not in the

habit of doing any real thinking. Mere copyists in the main, they

lack originality even in their mistakes; but gradually they learn enough

of the contents of books to pass examinations, enough of the sayings

and idiosyncrasies of tlie instructor to avoid his displeasure, enough of

the mechanical phases of the course to do medium quality work, and

eventually by sheer repetition become familiar with sufficient knowledge

to develop into routine men filling subordinate positions.

Fourth, there is the group of (juitters who lie down. Always mentally

tired and inert, they balk at any effort to induce them to stand on

their own mental legs, and they respond to difficulty with the cries of

'‘I do not know anything about that,” ‘‘I cannot handle that problem,”

never have had that before.”

This horizontal classification according to attitude, in which the

student voluntarily chooses his own level, cuts across another classifi-

cation which is based upon natural ability interwoven with preparation.

Natural ability and thorough preparation will push the student to the

front of whatever division of attitude he chooses, but unless he really

desires engineering activity and unless he possesses a certain amount of

engineering aptitude, he will pay the price grudgingly, will dislike the

effort involved, and will eventually drift into other fields of endeavor.

The above analysis of classroom attitude is not intended as a goad
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to whip up laggard minds or reluctant students, but as a reminder to

those who are really serious at heart that the true joy of work lies in

growth. The goal sought for measures the aim, and the goal achieved

measures the outer success; but the manner in which the struggle is

made measures the permanent inner growth of the man.

As indicated in these comments, students reveal far more
than they realize by their classroom attitude and the way in

which they approach, solve, and record problems. They some-

times wonder how it is that an instructor can form such close

estimates of their interest, ability, and aptitude for engineering

work. The spirit in which a student works and the problem

sheets that he submits tell a plain story to the teacher. The
student should know and keep it clearly in mind that he rates

himself; the instructor merely records this rating.

2.6 Time and Patience Are Needed.

A reading of the previous chapter shows that the young man
who hopes to become an engineer must start the formation of

various habits of mind and hand at the same time that he is trying

to memorize many facts and specifications. He will be seriously

handicapped in his studies and his later professional work unless

he does have the knowledge, skills, and habits appropriate to his

calling. It should be obvious that the traits and habits that are

the sign of the competent man are of slow growth. Long and

persistent effort must be made to develop them if the young man
aspires to positions of leadership. lie must realize that no college

course nor any collection of degrees can make him into a “fin-

ished” engineer. An engineer's education is never completed,

and he should continue his professional reading and studies until

he is ready to retire from engineering work.

College courses do, however, give him the opportunity to starts

the development of the traits and skills that he should have if

he wishes to succeed. The student must remember that the most

his instructors can do is to give him a vision of the ideal toward

which he is striving, to coach him, and to guide him toward his

goal. An instmetor may inspire the student; he may impart

much information; he may show him better working methods

but when he has done this, he has done all that he can for the

pupil. The student must do the rest; he must carry on alone.
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No one else, fellow student or teacher, helps him by solving his

problems for him. No one can get an education by proxy.

2.7 How to ‘‘Flunk out.”

Unless he has b(^en especially fortunate in his preparatory-

school training, the average student finds that at least his first

term in an engineering college is a rather trying and troubled time.

He discovers that not only has he gained new freedoms but he has

at the same time acquiiod a set of responsiV)ilities. Most students

sincerely want to do a good job with their studies. They are

genuinely disturl^ed when they hav^c continued trouble with their

lessons. Eventually they work out mon^ or less effective methods

of study but often sp(‘nd an undue amount of time and energy on

their tasks. There are far too many students, however, who,

having average ability or better, either become discouraged and

quit school or else are failed and dropped by the college.

The causes of nonsuccess may be few and fairly easy to correct,

or they may be due to a number of things, some of which call for

long-continued effort if the handicaps are to be overcome. Some
of the more (common causes of scholastic trouble are as follows:

a. Procrastination. This is the chief (?ause of trouble. Many
students have the habit of postponing the preparation of assign-

ments, reports, or problems until the last minute. This invari-

ably results in hasty, half-doncj work. It is wise, therefore, to get

lessons ready ahead of time so that the material can have a chance

to organize itself in the mind more or less unconsciously.

h. Lack of interest. Far too many young men and women are

in college not because of any desire for an education but because

it ^bseems to be the thing to do.^^ Others want a diploma but

have never really made up their minds as to what they want from

life. With no central interest, they work halfheartedly, never

doing their utmost in any course. Often they shift around from

one field to another or endeavor to take advantage of an elective

system to build up ‘'snap schedules.”

c. Laziness. This is frequently coupled with procrastination

as a cause of disaster. The lazy man either fails entirely or else

learns to be highly efficient during his few, brief working periods.

d. Inattention. A very widespread cause of trouble, involving

many types of students, is the failure to concentrate on the

written or spoken word when assignments are made, lectures
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given, or troubles discussed. Momentary mind wandering may
easily lose the key word or statement, and the whole lesson may
be pointless without it.

e. Lack of good study habits. As a rule very few students

come to college well coached in work and study habits. The
whole purpose of the engineering problems courses is to try to

compensate for this lack if possible. There arc' very real differ-

ences in reading habits, in ways to prepare for examinations, and

to attack and record problems, the best of which should be

learned.

/. Reliance on formulas. It cannot bc' said too often that the

ability to understand and solve problems docs not come by mem-
orizing formulas. In fact, more time is wasted and more blunders

made on mechanics, chemistry, and physics i)roblems from a

frantic search to find or recall a formula than from any failure to

understand principles. Formulas are not substitutes for thought,

nor can they be used safely by blindly substituting data assumed

to fit them.

g. Too many activities. Sometimes the low grades and class-

room troubles stem from the fact that the student is simply

spread too thin.’^ He has so many outside activities and

interests that there is neither time enough nor energy enough left

to prepare class assignments as they should liave been prepared.

As a rule it is the student with superior ability who falls into this

trap. He is personable
;
he is alert

;
he is energetic

;
he is known to

have the knack of getting things done. As a result he has far too

many calls on his time and strength, and so his studies suffer.

h. Overwork. Students who arc wholly or partially self-

supporting are usually in the group of tlie most ambitious,

conscientious, and hard-working students. Quite frequently,

however, they fail to get v/hat they should from their studies

simply because they are overtired most of the time. They lose

chances at honor grades and also much of the pleasure of the

campus life simply because they have tackled a work and college

program that would down a Samson. Then they often compli-

cate the situation by wony, by too little rest and recreation, and

usually by highly irregular eating habits. It is much wiser to

avoid such excessive overloads even if a year or two longer is

needed to get the coveted engineering degree. It has been

demonstrated again and again that a student can carry a normal
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schedule and a job that takes up to 12 or 15 hr. a week, but after

that he should treat each hour on the job as the equivalent of an

hour of laboratory work and start to lighten his study load

accordingly.

i. Inadequate rooming conditions. Study and comfort

conditions in student lodgings are frequently deplorable, some

rooms being the equivalent of big-city slums. Some people seem

to believe the ancient idea that a man will study best when he is

physically miserable This is a theory that seems to have its

origin in the *Tog-cabin, light-of-a-pine-knot^^ tradition. It was

probably started by a romantic individual who never tried it, for

it certainly is false. Although the newer college-built dormitories

are usually well planned, there are many old ones that are little

better than barracks. Probably the worst conditions are found

in the lowest priced privately owned rooming places.

Noise, poor heat, inadequate ventilation, and primitive lighting

add up to a long-time drain on human nerves and energy. Some-

times the only light source is an unshaded bulb pendent in the

center of the room. The glare from such a light source inflicts a

punishment on eyes that they were never meant to withstand.

Study lights over the desk should be used in addition to the

general illumination of the room. They should be powerful

enough to give ample light on the work, shaded to prevent glare,

and placed so they neither cast shadows on the work nor throw

reflected light into the eyes. The desk or table should not be

crowded and overloaded but have space for spreading out books,

drawings, and writing pad. The study chair should be comfort-

able but not one to induce slouching. Room temperature might

range from G6 to 74F, but most people study best at 68 or

70F.

Regular study periods are important, and managers of rooming
places can perform a real service by establishing study hours and
insisting on quiet during those times. Radios should also be

banned at this time. Many students have a pernicious habit of

running the radio while trying to study. They claim that they

can listen and study, but the evidence is that this is not true. If

they do not hear the program, why run the radio? If they find

that they are ever conscious of the program, then that very fact

proves that their attention has been called away from the lesson

being studied. Constant flitting of the attention from book to
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radio and back again is the reverse of concentration, and college

studies, especially of a mathematical and technical nature,

demand the closest attention. Radio and effective study are

incompatible,

j. Health. Many students do not realize that they are achiev-

ing much less than their best because they are below par physi-

cally. It is hard to convince them that a sound, efficient body is

as important to a student working in the classroom and labora-

tory as it is to the mar or woman who hopes to make an average

showing or better in any athletic sport.

Some people have been cheated by nature or accident but make
good in spite of that fact simply because they have an inward,

spiritual drive that will not let them use their misfortune as an

excuse for quitting. But far too many students have only them-

selves to blame for health troubles. The causes vary; but as a

rule, insufficient sleep and improper diet are the root causes of

short tempers, ^Hhat tired feeling,^^ and a craving for excitement.

The average full schedule of preparation, recitations, and labo-

ratory periods will require not less than 50 clock hours per week.

This is a full work week in any line of endeavor, and the student

needs as mucii sleep and rest as any office engineer.

Students are notorious for poor eating habits. Not only are

they addicted to eating at odd hours, but they also show very poor

judgment in choosing foods. Too many limit their fare to a few

favorite dishes. Avoiding milk, fruits, and vegetables, they fill

up on starchy foods, carbonated drinks, and candy bars. The

snack eaten at four or five o'clock in the afternoon has ruined the

appetite for many a well-balanced dinner served at six.

Too much smoking is also a drain on nerve and body energy

whether the addict is willing to admit it or not. No student has

ever yet been harmed by leaving both nicotine and alcohol alone.

The use or nonuse of either is not basically a moral problem at all

but simply a question of scientific fact. The vast amount of

scientific evidence that has been collected furnishes overwhelming

proof that neither drug is conducive to the best operation of the

mechanism of the human brain or body, especially that of young

people.

k. Poor attitude. The last of the causes of poor work to be

mentioned here is one that, fortunately, is not encountered at the

college level very often. Poor attitude is a name that can cover
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many student responses but is used here to refer to that chronic

state of resentment which manifests itself in many ways. The
experienced teacher can usually detect the symptoms in a short

time. Most of the vi(;tims of this cross-grained habit of mind do

not reach college, because they will not knowingly submit to the

disciplines inherent in a 4- or 5-yr study program. The person

who has this habitual reaction to life is to be pitied, for he is really

a sick person and his own nemesis. His state is hopeless unless he

can be awakened somehow to realize that a porcupine has few

bosom friends. Unless he can recover from the egotistic idea that

his immediate world must circle about his desires and whims, he

should forget about college. He should try to find an occupation

where he is his own boss and has to please no one. The student

who resents correction or coaching or who regards his teachers as

enemies who dv'^light in ‘^picking on him’^ is thus complicating all

his study troubles.

Another trait that is related to the resentful habit and is some-

times its cause is that of being supersensitive. This busy,

hustling world, whether met in the classroom or in the professional

fields, has no time to spend in coddling ‘‘sensitive plants or in

weaning a young man from the attitudes of babyhood. The
person whose “ feelings are easily hurt will have them bruised

many times by others who do not even know that the bruised one

is thin-skinned and who certainly have no unkind intentions.

Such sensitive folk should, therefore, either grow up or find a

corner where they will not be bumped while the w^orkers concen-

trate on their tasks. If a man (or w^oman) cannot accept without

resentment the rules by which the adult world does its work or

learn to discipline himself, he will sooner or later receive his

disciplining from an utterly indifferent, impersonal public.

2.8 Characteristics cf a Good Student.

There are seven principal characteristics that clearly mark the

good student and enable the instructor quickly to identify him.

a. He is courageous.

He does not lose heart when he strikes a difficulty or an

unfamiliar situation but, on the contrary, accepts the

challenge and works his way through to a satisfactory

solution of the problem.
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h. He is independent.

He shows initiative and self-confidence. He has too much
self-respect to copy the work of others.

c. He is sincere.

His interest in a subject is real, not feigned. lie does not

bluff or try to substitute talk for deeds.

d. He is a good worker.

He is more interested in his work than in the c^lock, even

near the close of a period.

e. He has a good attitude when corrected.

Some students resent correction, evidently considering it

a personal affront. Others arc supersensitive and as a result

are constantly having their feelings hurt. The good student

has the right spirit and welcomes suggestions for bettering

his work.

/. He is systematic.

His orderl#^ computations and his clear sketches show his

forethought and logical thinking. He concentrates on his

work and plainly shows that he means business.

g. He is neat in his work.

His willingness to adhere to specifications and standards;

his clear, well-formed lettering; and his properl}^ arranged

papers are a reliable indication of orderly mental and

personal habits.

2.9 The Laws of Habit Formation.

If one is lacking certain of the traits of a good student but

earnestly desires to acquire them, there are only two steps to take:

abandon the old habits and develop the desired ones. ICvery man
is a “walking bundle of habits, and the nature of his thoughts,

his character, his actions, and even his outlook upon life are

determined by the habits of mind and body that he has developed

over the years. Bad habits cannot be cast aside without long-

continued thought and effort, nor can good habits be assumed

instantly, much as one would put on a garment. There are

certain laws of habit that every man must obey if he would be

successful in the attempt to develop latent powers. Bad habits,

like weeds, just grow; good habits, like fine fmit, must be culti-

vated. Bad habits cannot be rooted out, and the space be left

bare. They must be replaced by worth-while, controlled habits;
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otherwise the weedy ones will soon be in command again. When
any man attempts to form a new habit, he must obey four laws.

. Make a definite assertion of will.

He must use his will power; mere wishing is not enough.

Students who say cannot’^ after a few attempts usually

mean do not care to make the effort.^^

. Make a positive beginning.

Give the new habit the advantage of a (correct and

emphatic start. Study the best examples, and try to

pattern after them. Kitson^ says: you value your

intellectual salvation, then, go slowly in making the first

impression and be sure it is right. Unless this start is

correctly made, the man may find that he is only substi-

tuting a new bad habit for an old one.

c. Do not excuse any exceptions.

Anyone will have scant success in tapering off on a bad

habit or in trying to drift into a good one. The drunkard

says, won’t count this one,” but his bad habit has a firmer

grip than ever.

d. Exercise the new habit.

Give the new habit a ^‘workout” at every opportunity.

It will grow strong through use. Review its beginnings

from time to time to make sure that no undesirable varia-

tions are creeping in; see that it is still according to plan.

The way to kill any habit is to quit it. Habits, good and

bad, die of neglect.

The entire learning process is essentially a habit-forming

process, and for this reason the instructors in the engineering

problems courses try to make conditions favorable for the starting

of many new habits. The methods used in the classroom are

based upon the laws of habit formation. The instructor’s efforts

are in vain, however, if a student does not care about improving or

if he does not practice the new habits outside the classroom as

faithfully as when under the direct supervision of the teacher.

For example, a student should apply the ideas of neatness and
systematic methods to all his studies, not to engineering problems

alone. If he exercises the old habit of scribbling ten times as

* Kitson, Harry D., ^^How to Use Your Mind/^ Lippincott, 1921, p. 62.
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often as he does the new habit of being neat, what chance does he
have of becoming habitually neat and orderly?

2.10 The Final Answer Is Not Enough.

New students often wonder why there is so much emphasis on

workmanship in the engineering problems courses. They find

not only that their results are important but that the instructor

insists that they leave a plain trail all the way through the solu-

tion of a problem so that the reasoning as well as the numerical

work can be checked with ease. The instructor also says that

this record must be neat, systematic, and done in accordance with

a detailed code of specifications for computations. The majority

of students begin not only to adapt themselves to the system in a

few weeks but also to see that the code is aiding them to think

better, to solve problems with less fumbling, and to reduce mis-

takes. Their papers become neater and begin to take on a

professional appearance. There are always some students, how-

ever, who have good minds but who, for various reasons, do not

make satisfactory progress. Some of them would be misfits in

engineering and should enter other occupations; but as a rule, all

that most of them need to do is to trust their instructor and play

the rules of the game/^ The man who makes the best progress is

usually the one who keeps an open mind, builds upon the advice of

experienced men, and adapts the old to the new situations as they

arise.

If a young man enters an engineering career with the erroneous

idea that the final answer is the only thing that matters, he is due,

sooner or later, to have some painful and embarrassing experi-

ences. He may find that for him the building up of new com-

putation habits is a long and sometimes tedious process. Then

there is the lad who, apparently, never has learned to abide by the

rules of any game or other activity. He seems to resent all

requests to do things in a specified manner; and when he is given a

definite instruction, no matter how reasonable it may be, he acts

as though it were a personal affront. These nonconformists

should by all means leave the field of engineering if they are not

willing to change their attitudes. The engineer must make and

do things according to specifications all his life. These specifi-

cations may be the laws of nature or the mere whim of the owner

of a property, but obey them he must. Another group of
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students who have their troubles in engineering problems classes

is made up of those who seem to be constitutionally slovenly in all

that they do, say, and think. Their records are dirty, scribbled,

and without plan. They frequently show these same traits

in their speech, dress, and personal habits. They consider it

a waste of time to be neat or systematic or to regard the appear-

ance of any work. Many of these men may have excellent minds,

but they little realize how great a handicap their careless habits

may prove to be when they seek a job. Personnel directors

report that frequently the students who arc hard to place in jobs

because of unprepossessing personalities are from this group.

Good workmanship is not just a frill; it is what employers expect.

The men who are naturally neat will, of course, be the quickest to

turn out satisfactory papers, but without doubt these other

groups can profit most from the many suggestions and specifi-

cations in this manual.

2.11 The Two Elinds cf Learning.

Most students and even some teachers are not aware of the fact

that learning frequently consists of two distinct but related

activities. One is mental: the acquisition of knowledge and the

development of the reasoning ability. The other is manual : the

training in various skills that usually involve muscle control.

Knowledge and understanding may ^^dawn on one^^ suddenly,

almost intuitively, but muscular skills are never acquired in that

way. The development of a skill requires persistent and repeated

practice, even though the mind may have complete understand-

ing of the task itself. In some fields of endeavor only the mental

qualities are important, and a man may succeed brilliantly even

though he is sadly lacking in all skills requiring accurate muscular

coordination. In other occupations mechanical skills are of the

utmost importance, and the intellectual development is of

secondary value. It used to be said of a certain model of auto-

mobile that the driver needed ^‘brains in his feet.’' There is

much truth in that for any make of car. A clumsy watchmaker,

for instance, will soon be out of a job. He must be ‘‘finger-

minded.” The engineer, however, must have a balanced

blending of the two abilities if he is to go very fa*!- in his profession.

Not only must he have a sure knowledge of many facts and know
how to use them accurately in reasoning through his problems,
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but he must also become well trained in the various manual skills

that are a part of his profession.

It is for these various reasons that the engineering problems

courses have been put into the engineering curriculums of many
schools. Not only are they planned to coach the student in the

formation of good mental habits, but also one of their principal

aims is to train the engineering student in the workmanship
habits that are taken for granted by employers. Unless the

student applies the principles of good workmanship to his other

studies, however, lie will not make very rapid progress in develop-

ing the traits dis(aissed in this chapter. Even though a beginner^s

lettering may be crude for a time, it will clearly show whether

or not he has his mind on it and is trying to do good work. Surely

he can adhere to the instructions regarding sheet rulings, scrib-

bling, scratch paper, and other specifications that have no

reference to lettering. He should not attempt to memorize the

chapter of specific.ations, but instead he should glance through it

occasionally and, without fail, read carefully any specific items

that are called to his attention. In this way he will learn the

details gradually and not have to go through the laborious task of

rote memorization. If he works faithfully, he will develop latent

powers of which he was unconscious and eventually become a

competent, reliable worker showing initiative and ingenuity in the

handling of his assignment.

2.12 Method of Attacking a Problem.

Reasoning is purely a problem-solving process, and it is self-

evident that the only way to develop the reasoning power is to

solve problems. Only by exercising the muscles can physical

strength be developed, and, in like manner, the ability to over-

come difficulties is obtained by actually facing them and attacking

them courageously. The student must welcome difficulties as

opportunities to test his ingenuity, his initiative, his ability to

cope with a new situation. Each new difficulty is a challenge.

How will he meet it?

Because so few students know how to study their lessons, to

read assignments, and to solve problems, some condensed

suggestions on methods and mental attitudes will be given in a few

topics to follow. There are numerous well-written books that

discuss study methods, and the ambitious student will find many
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valuable suggestions in any one of the volumes listed at the close

of this chapter. The student who finds his college work very

difficult should read at least one such book and apply its sugges-

tions to his daily assignments.

As stated earlier, the man who uses hit-or-miss methods of

solving his problems may achieve a certain crude proficiency, but

such methods are not sufficient for the man who desires to master

his vocation. It is plain that only by controlled and organized

thinking can the solving of problems hi) put on an efficient and

effective basis. It is worth while noting that there are but five

main steps in the solution of any problem. These may be stated

as follows:

. Is there a problem?

One must be aware that there is a problem or difficulty

.
before he can reason about it.

. What is the problem?

The problem must be clearly stated. One must under-

stand the statement of the problem and pc'rceive its central

question before he can start its solution. What is the

central objective?

c. How can the problem be solved?

Call to mind all the fundamental principles that seem

to have a bearing on the problem and all of the various

methods of applying these principles. Collect all of the

tools.

d. Solve the problem.

Choose the laws and principles that seem to apply, and

get a result. Use the most logical tools.

e. Is the answer correct?

Look at it. Does it look reasonable? Use another

method of solving the problem, and go through it again.

Check the first ans^ver.

One who tries the suggestions just given will find that he will

be saved many false starts. Many students have no definite

plan in mind when they attempt to solve a new problem. Fre-

quently they have little or no idea of what they are trying to

find. They copy a few numbers on their papers and '^just

start figuring'^ regardless of whether the numbers make sense

or not. Others try to find a magic formula that will enable
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them to dodge all the difficulties and the labor of thinking and
yet give them an answer that the instructor will accept.

Problem solving hjses much of its difficulty as soon as the com-
puter abandons hit-and-miss methods of attack and slavish

use of textbook formulas and adopts systematic ways of going

about the task of getting answers. One of the greatest causes

of mistakes and lack of understanding of problems is the blind

use of long and involved formulas. Certain men seem to believe

that the measure of their engineering knowledge is their ability

to substitute data in a formula that they have found and then

“to rattle the thing around until some sort of an answer falls

out. Such fellows are not thinkers but mere “handbook engi-

neers’^ who are usually completely lost when they run into a

problem that is new to them or one that differs in any respect

from the type formula that they found in a handbook. Hand-
book engineers are regarded with contempt by all truly com-

petent engineers and sooner or later wind up in minor, routine

jobs. Symbol formulas are only a form of shorthand, useful

in routine work but safe only in the hands of experienced com-

puters. Beginners fre(iuently use th(‘m to conceal ignorance

or to dodge the labor of thinking something out for themselves.

Someone has said that a symbol formula is “an incantation for

getting answers without reasoning.” In order to signify anything

symbols must be translated into words in the mind of the user,

and the words must stand for very definite, concrete ideas;

otherwise the symbols are meaningless.

One excellent scheme for attacking a problem, especially a long,

involved one, is to block out the solution, step by step, using

words or symbols for the various quantities but introducing

no numerical v^alues. Time can be saved by providing space for

the actual values to be entered later on. If the reasoning in this

skeleton solution is found to be correct, it then becomes a routine

matter to substitute the numerical data and do the figuring.

This method often prevents blind-alley calculations and the

determination of intermediate values later discovered to be of

no use in getting the desired final answer.

Check lists of operations mvolved, steps to be taken, inter-

mediate values wanted, etc., are often a help in organizing both

the thinking and the solution, because check lists tend to keep

the computer from forgetting some item. This is where the
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use of standard forms and methods proves to be veiy helpful

in the handling of involved calculations. Like well-designed

machinery they leave the operator free to concentrate on the

main task.

2.13 Learn to Read.

Experiments made in several universities seem to prove that

many of the students have trouble with their studies because

they are slow in reading. The lack of ability to learn from the

written or printed page is a severe handicap, because the greater

part of college instruction is given with the aid of textbooks and

blackboard demonstrations.

There may be several reasons for poor reading; some will

require special instruction to overcome, but others are unjusti-

fiable excuses to offer for unsatisfactory work. The commonest
cause is inattention. Get rid of distractions, such as a radio

program; then put your mind on the job, and conc^entrate on

what a writer is saying. The second great cause of error in

reading is allied to the first. It is lack of observation. Many
men ‘‘have eyes and see not; have ears and hear not.” A third

cause of trouble is a scanty vocabulary. (Jwti at least one good

dictionary, and use it daily. I.ook up the meaning of every

word that seems unfamiliar. Also be sure that the author is

not using a common word in an unusual sense.

One way of studying text assignments that seems to work with

many students is the following:

a. Read the assignment rapidly to get the gist of the discussion.

h. Read it a second time slowdy enough to get the details.

Look up the strange wmrds. Do not attempt, however, to

memorize the material.

c. Now run through the assignment again, and underline

the key sentences or ideas in each paragraph. Do not overdo

the underlining; it loses its effect. If time permits, review the

underlined material just before going to class.

One place where poor reading habits exact a heavy premium
from a student is in reading lesson assignments. In too many
cases the student gives the assignment a quick glance and lets

it go at that. Later he finds that he has missed a critical instruc-

tion or bit of information. Fully 50 per cent of the engineering

problems students who miss all or part of assigned class problems
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do so simply because they start to compute something before they

really know what they have been asked to do. When told to

read an important paragraph of instructions in this manual before

starting work, students show a strange reluctance to open the

book. Instead they sit there and ^^beat their brains for 10

or 15 min simply b^ause they do not want to do 5 min reading.

They seem to regard reference to the printed word as a waste of

time. They will have to get over this attitude, because engi-

neers have to consult books and periodicals constantly. The
student who thinks that the teacher should tell him orally

each detailed step to be taken in his lessons, experiments, and

problems has the wrong conception of engineering. Most of

the time the engineer is on his own. Any student who thinks

that it is a teacher^s duty to lead him step by step through or

around all troubles is by temperament entirely unsuited for the

practice of engineering. He will have to be content with a

mediocre, routine job all his life.

It is plain, therefore, that every engineer must learn to read

accurately, witli reasonable speed, and without inner resentment

of the fact that such reading is an absolute necessity for the pro-

fessional man. The printed page is the most important device

that mankind has for preserving and transmitting the knowledge

and experience of others, living and dead.

2.14 Note Taking.

Engineering students do not have so much lecture work,

fortunately, as those in some other courses of study, but even

so they should know how to take usable notes from speeches

and oral instructions. The majority of directions on the job

are given rapidly and informally in oral form. Accurate notes

are imperative if the young engineer is to fill his job in satis-

factory fashion.

It is an art to take lecture notes in the classroom, a highly

individual skill, and many students never become even passably

proficient in it. There are a few aids for a student in his effort

to make note taking more successful. If the lecture is an elabora-

tion of subjects ( overed in the text, it is a fairly simple matter

to correlate it with the key sentences in the text. Do not

attempt to take down a lecture word for word or get all the

minor details. Concentrate on what is being said in the lecture,
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being on the alert for key words or sentences. Get the important

points; then use them to help recall details soon after class, and

complete the notes while the material is still fresh.

2.16 Examinations.

It is important for the engineering student 4o learn how to take

examinations without becoming all worked up’^ and filled with

dread over the ordeal. Examinations are no novelty in the

world outside the classroom. In most states no engineer can

practice engineering independently unless he has passed a set

of qualifying examinations. These tests are given by the state

licensing board and may require two or more long days. Appli-

cants for civil service jobs also will haA^e to take examinations

before being put on the eligible list. In some corporations

examinations must be passed in order to qualify for higher rating

and pay.

Tests, examinations, quizzes, and similar devices for measuring

a student^s grasp of new knowledge will probably exist as long

as there are students. These testings need not be ordeals,

however, if the student has made even a fair attempt to learn

the subject. Many good students make their task more difficult

because they have no systematic attack for such examinations.

The following plan for answering examination questions has

been used with excellent success.

. As soon as tlie questions are put before one, read over the

entire lot rather quickly to get the range of topics.

. Note the number of questions and the total time available.

Deduct 10 or 15 min for reserve time to use on difficult questions;

then divide the rest of the time evenly among the questions.

c. Now answer the questions in order; but if any one of the

answers is incomplete when its share of time has been used, leave

it and go to the next. Remember that a few minutes have been

reserved for cleaning up such unfinished business.

Many students who have tried this plan find that frequently

the answers to later questions seem to half formulate themselves

while the conscious attention is on the actual writing of the

answer to an earlier question.
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CHAPTER 3

STANDARDS FOR THE COMPUTING ROOM

3.1 Practice Makes the Master.

As pointed out in the preceding chapter the acquisition of the

habit of neatness, the use of systematic methods, the adherance

to standard forms, and the development of the other skills

that are the mark of the competent worker are of prime impor-

tance to the ambitious man. The gain in working speed, the

reduction in the number of mistakes, and the resulting feeling

of confidence in personal ability are ample rewards for the con-

scious, painstaking efforts that must be made by the beginner.

It is a trite saying, but true, that '^Perfection is made up of

trifles but perfection is no trifle.^^ Su(;h is certainly the case

when the engineer, young or old, endeavors to raise his personal

standards. The ability to do an excellent piece of engineering

lettering comes by giving careful attention to the details of

the form of each individual letter, not by giving the alphabet a

sweeping glance. After a close study of the sample form should

come the effort to reproduce it. Moreover, one successful

letter does not mean that the skill has been acquired for all

time, but practice, practice, and more practice is needed. The
good swimmer, the low-scoring golfer, the big-league ball player,

all who are better than average in any sport will be the first

to say that coordination and muscle control come by practice

and more practice. They will also say that there must be no

letdown if the skill is to be kept at a high level.

3.2 The Function of Specifications.

The suggestions and specifications in this chapter may be

compared to the books that have been written to help sportsmen

and hobbyists perfect their skills. The suggestions must be

followed if they are to have any value whatever; and as in most

sports, the advice and criticism of a coach is also needed from

time to time. He is your engineering problems teacher. He
is simply a coach—the student has to be the performer. Speci-

42
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fications are in universal use in the world around us. They
range from the simple, singh? instruction to veritable volumes
such as govern the construt* cion of a public building. When
the housewife says to the butcher want a 5-lb rib roast of

young beef, Grade k” she has given a set of specifications that

she expects the butcher oO fulfill. A set of architectural specifica-

tions for the construction of a skj^scraper is many times longer

and more complicated, but on examination it will be found to

be made up of single items differing only in kind from the house-

wife’s order for a beef roast. Specifications are written to obtain

certain standards of workmanship, to decide among two or

more alternate products or methods, or to outline what must be

done in order to meet certain natural laws. In the main,

specifications arc just a codifying of generally accepted prac-

tices. They are subject to revision from time to time and to

changes as required to meet special situations.

In the industrial and commercial world it is taken for granted

that specifications will be followed. It does not matter whether

the work is doiie by an individual or a large corporation. Work
not done according to specification may be rejected and need

not be paid or. There have been countless lawsuits and

unnumbered thousands of dollars lost because men have chosen

to ignore specifications, have tried to cheat them, or have been

too impatient to study them. Some men by temperament resent

and try to dodge specifications merely because they are instruc-

tions that mutot be followed. Such men lead dissatisfied lives,

however, for there are few people indeed who can ignore the

requirements of the world in which they live and earn their

livelihood. Because he will have to follow them and will in

time be writing specifications, the young engineer should welcome

the opportunity to gain experience in the application of specifica-

tions wherever he has the chance. The specifications that are

given in this book are not aimless restrictions but will help the

student become competent in organizing his work and at the

same time give him practice in reading, understanding, and

applying detailed instructions.

3.3 Origin of These Specifications.

The various details that are embodied in these standards for

the computing room are based upon the experience and observa-
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tion of a number of engineers. Many of them are commonly

used in engineering offices; others are taken from certain national

standards as developed by joint committees of engineering

societies; still others are the result of classroom experiences;

and some are based on suggestions made by students or instruc-

tors. Thus this chapter is a composite code derived from various

sources. It has been found to be suitable for the engineering

office as well as the classroom. This code is, of course, not

the only possible one or necessarily the best for all offices, but

it has been used in classwork and offices in essentially its present

form for a long time and lias been found to be of great practical

value in producing neat, ('lear, explicit engineering records.

It is highly desirable for the 3^oung engineer to acquire, as

early as possible, the various manual skills and mental habits that

tend to make him an efficient and reliable computer. Insofar as

he follows the spirit as w(dl as the letter of these standards, he

will be aided in developing habits that will have a genuine bread-

and-butter value to him no matter what field he may ultimately

enter. Because the ability to adhere to a set of standards is so

important, all computations, diagrams, tables, and graphs are to

be prepared in accordance vith this chapter on Standards for the

Computing llooin. Failure to adhere to the specifications is

sufficient reason to cause the checker to reject the work in whole

or in part, even though the numerical results are correct. The
quality of workmanship will be considered in evaluating each

set of papers.

3.4 Equipment.

The practicing engineer is expected to provide himself with cer-

tain instruments and materials and be ready for any assignment

that may be given. He is held responsible for maintaining this

equipment in good working condition. He should have his

own tools. The borrower is disliked, even by his fellow workers.

Each man should see to it, therefore, that he has the following

equipment, that it meets specifications, and that he has it at

hand ready for work each day.

{!) Paper. Use standard 8.5- by 11-in. engineering compu-
tation paper, primrose color, having coordinate rulings on the

back side, ruled margins on the plain front side, punched to

fit loose-leaf binders.
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{2) PenciL Use automatic pencils. They are being adopted

by large numbers of firms because of their economy and time-

saving features. Have one that holds the lead rigidly. The
propel-repel type of pencil seldom holds the lead firmly enough

for good lettering or for drafting-room use. Absolute control

of the point is essential to good lettering and line work. Sand the

point noAV and then in order to obtain (consistently clean-cut work.

(3) Grade of lead. Use a lead that will give a clear black

mark without smudging. A hard lead will give lines that are too

faint and gray. Soft leads will give fuzzy, smeary lines. A 3II

lead is generally the best grade for engineering paper, but adapt

the grade of lead to the surface of the paper used, as papers vary.

For coordinate paper and all graphic work use a 5Ii lead.

(4) Eraser. Use an eraser that will clean thoroughly, but

without roughing the paper or making a mess of dirty crumbs.

Never use ink erasers on pencil work or the crumbly, cleaning

erasers that are made for use in the drafting room.

(5) Ruler. Use a 12-in. ruler for making sketches and ruling

lines. If you have a slide rule of the Mannheim type, it has a

scale on one edge that serves as a ruler. The 6-in. pocket rulers

are inefficient, as it is impossible to draw a line across the sheet in

any direction without shifting the riik'r.

(^) Pencil pointer. Use a fine file or sandpaper block to get

the proper pencil pennt.

(7) Loose-leaf binder. Keep all papers in a ring binder.

Sheets cjuickly become mussced and torn if kept loose in a folder.

Reserve a section of the ring binder for back problems, notes,

and any mimeographed data sheets that may be furnished from

time to time. Keep all notes on standard engineering paper.

Do not destroy corrected problems.

(8) Books. Keep this Manual, the Workbook,^ and all other

required books ready for use.

(9) Compass. So many diagrams require the drawing of

circles that a small compass is desirable.

(10) Protractor. A protractor is needed in constructing to

scale any diagrams that inv^olve angles.

(11) Irregular (French) curve. This is an essential tool in the

drawing of graphs and other irregular curves. A very useful

1 Dana, F. 0., atid b. R. Hillyabd, “Engineering Problems Workbook,’’

William C. Brown Company, Dubuque, Iowa, 1945,
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shape is the K. & E. No. 1960-4. Small curves, 5 or 6 in. long,

are much too small to be of value in the construction of most
graphs.

(12) Slide rule. Be sure to get a slide rule that has at least the

following scales: D, C, Cl, CF, DF, A, K, and L.

3.6 Workmanship.

The group of specifications under this heading is one of the

most important in this entire chapter. The man whose paper

work shows scant evidence of intent to conform to the spirit of

the various specifications and suggestions seldom realizes how
much of his character and incompetence he is revealing. It

is the seemingly little things that tell the story. The tone of the

pencil work, the placement of the entries, the dimensioning of a

diagram, the logical or haphazard arrangement of the steps in the

solution—each one tells something of the attitudes, the habits,

the skills, and reliability of the worker. Slovenly, scribbled

papers are an almost unfailing indication of a lazy, careless,

indifferent man. Neat, crisp, orderly, well-planned papers are

the product of a thoughtful, dependable engineer. It is a mis-

take to assume that neat work means slow work. The com-

petent man takes no longer than iloes the hasty, sloppy, slapdash

worker and, moreover, has fewer blunders to locate and correct.

It should be noted that none of the specifications on work-

manship depend in any way upon sheet rulings, the computation

methods used, the nature of the problems, or any other details

that may vary from office to office. Only one of them, Spec. (20),

refers to a man^s skill in doing engineering lettering; all the rest

can be followed by the engineer and the nonengineer alike.

It is adherence to such standards as these that distinguishes the

good craftsman from the poor one. The man who tries to

conform to the spirit as well as to the letter of these suggestions

will seldom need to apologize for the appearance of his papers.

He will learn to adapt the quality of his work to the needs of the

task in hand, but always following this rule:

Do the best and neatest work that time, money, and

circumstances will justify. .

(IS) Pencil work must be decisive. Make clean-cut, reason-

ably black marks in all lettering and line work. Perfect legi-
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bility should be the goal. The first definite impression made
by a computation sheet is determined largely by the tone of the

pencil work. Getting pencil work with a ^^snap'' to it is an

art perfected only by practice.

(Jf4) Find the right grade of lead. Get the proper hardness

for the paper to be used. Do not rely on the manufacturer's

hardness marking. There is no uniform scale that is used by all

makers of leads.

(f 5) Do not make fine, faint, gray marks. They are sufficient

reason for complete rejection of a paper by the checker even

though the sheet is otherwise acceptable. Hard lead or too sharp

a point may be the cause, but generally lack of pressure accounts

for faint marks.

{16) Smeary pencil work is inexcusable. It is ample reason

by itself for the rejection of a paper. Too soft a lead, a dull

point, and, usually, lack of pressure are the causes.

{17) Bear down on the pencil. Use enough pressure on the

pencil so that the pencil mark will be embedded slightly in the

paper. Too much pressure, however, will cause the paper to

curl. Practice with various pressures, and then form the habit

of using the pressure that gets the right effect.

{18) Use backmg paper. Do not tiy to work on a single sheet

of paper resting on a hard surface, because the lead cannot be

embedded into the paper properly. Use a firm but resilient

backing such as a sheet of smooth poster board or half a dozen

sheets of unused problems paper. A yielding, spongy backing

surface is even worse than one that is too hard.

{19) Keep the pencil sharp. Do not, however, try to work

with a needle point. The result will be light, scratchy work that

is hard to read and rubs off easily. If the point is too fine,

it will break as soon as more pressure is applied in the effort to

get clearer, permanent line work.

{20) Use engineering lettering. Figures and letters must be

properly formed. They must be neither too large nor too small.

Adh^ere to Type 6 as shown in the ASA ‘‘Standard for Drawings

and Drafting Room Practice.

{21) Do not scribble. Computations may be rejected for this

reason alone. There is a distinct difference between scribbled

work where no thought has been given to appearance and letter-

ing that is crude in form but clearly shows an effort to do neat
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work. Work that is not worth doing legibly is not worth doing

at all.

{22) Do not use scratch paper. There is a place on the com-

putation sheet for every necessary figure; hence, there is no need

or excuse for doing work on scraps of paper that are later thrown

away. Use a pencil whenever you please, but do all your

figuring on the sheet where it belongs. Read Topic 1.9, page 8.

{23) Keep left column neat. Computations in the left-hand

column are to be made just as neatly as the work in the right-hand

portion of the page. There is no proper place for scribbling [see

Spec. {21)].

{24) Never mark one figure over another. Do not retrace a

letter or figure This is a sure sign of a careless man. Erase

the faulty value, and put it in correctly.

{25) Erasing must be clean and thorough. Sheets may be

rejected for slovenly erasing. It is often a good plan to rub the

erased spots with the thumbnail before trying to mark over them
again.

{26) Repair any work damaged in erasing. Repair any lines

or entries that may have been touched accidentally with the

eraser.

{27) Remove eraser crumbs. Clean the paper before turning

in the sheet for checking. A paper covered with dirty eraser

crumbs is a disgusting thing to handle and certainly is not of

high quality.

{28) Canceling incorrect work. If a computer discovers that

an entire step in a solution is incorrect, he should cancel it by
ruling two diagonal, intersecting lines across the entire sheet

through the discarded work. Separate the discarded material

from the calculations to follow by ruling a horizontal line across

the sheet.

{29) Keep papers clean. Never submit torn, dirty, or greasy

papers. Such papers will be rejected by the checker even if

results are correct.

{30) Clearance is necessary. A clearance must be main-

tained between any lettering and any lines. This applies to

letters and figures themselves and to diagrams, rulings, under-

linings, and the lines used in fractions, multiplications, etc.

Lines must never be drawn through or in contact with figures

or lettering Move one or the other.
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(31) Stay within rulings. Never allow work to overrun the

column space.

{32) Avoid crowding. A sheet may be technically correct as

far as specifications are concerned, yet give the impression of

being badly crowded. A crowded paper is difficult to read and
check.

{33) Use a straightedge. A ruler should be used for drawing

diagrams, tables, and all sheet rulings.

{34) Make straight short lines. Use a ruler for short lines if

you cannot draw a reasonably straight line freehand.

{35) Watch your spelling. Be on guard against misspelled

words. Carry and consult a pocket dictionary if you have

trouble with spelling. Guard against errors in English.

3.6 Make-up of the Computation Sheet.

The following specifications for the make-up, or format, of the

computation sheets may be used to advantage in engineering

offices as well as in student work. Details may have to be

varied, of course, to suit the needs of a particular company or

department, but adherence to this*system will produce a desir-

able uniformity in the preparation of records. It is through the

adoption of such standards that time is saved in calculation and

in checking. Mistakes will be reduced and be easier to locate

if blunders do occur.

{36) Use the plain side of the computation paper. The
quadrille rulings show through the paper plainly enough to serve

as guide lines for diagrams and lettering.

{37) Use only the printed side of any coordinate paper.

{38) Keep binding holes to the left. The holes for the binders

must always be at the left or at the top if the sheet is turned

sideways. This will place the written work on the right-hand

page when the book is opened.

{39) Put no entries in left margin. The left margin is reserved

for binding purposes. No entries of any kind should be made in

it other than the desk number. No figuring should be allowed

to overrun the calculation column into this margin.

{40) Top margin is to be complete. The top margin of every

page is to be ruled and subdivided as shown in Fig. 1, page 50.

Start at the left corner of the sheet, and record the information

listed below and in the order given.
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Fig. 1.—Slide-rule calculations.

(4i) Put desk or table number in left comer.

{Ii.2) Enter date in second space. Record thus: 1-11-49. Do
not use the form 1/11/49.

(45) Record problem number in center space. Show tlu)

problem number and also the page if it is from a textbook.
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Fia. 2.—Right triangles. Typical page layout for cut-longhand calculations

(see page 137).

(44) Show name of computer in fourth space. Record last

name, then the initials. A neat rubber stamp may be used for

this if desired.

(45) Number pages. Each page is to have its number

recorded above the diagonal line in the upper right comer of the
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page. The total number of pages in the assignment is to be

entered on each sheet just below the diagonal line. Each day^s

work is paged as a unit starting with page 1 each period.

(46) Center all top margin entries. Keep them off the margin

ruling.

(47) Use right-hand margin for indexing. The right-hand

margin is reser^^ed for indexing the answers to the various steps

^ in the solution of the problem [see Spec. (120), page 62, and

various sample pages].

(48) Divide sheet vertically into two columns. The widths

will depend upon the method of calculation to be used.

(49) When slide rule is used make left column 2 in. wide.

The characteristics of the terms may be entered here (see Fig. 1,

page 50).

(50) For longhand left column is -to be 3 in. wide. Refer to

Fig. 2 which shows the use of cut-longhand. See Form 101 in the

Workbook.

(51) When logarithms are used make left column 3 in. wide

(see Form 35 in the Workbook and Fig. 3, page 53).

(52) Tabulate logarithms. For multiplication and division

with logarithms rule a tabular foi-m for the respective entries

(see Fig. 3, page 53, and Form 1 18 in the Workbook).

(53) Rule log forms first. Rule the form for the logarithms

before making any entries. Adhere exactly to the dimensions

shown in Fig. 3, page 53.

(54) Put ruling for logarithms at top of space. Enter the

figures for interpolation below it.

(55) Do not break the vertical ruling. The vertical column
line specified in (49)-(51), should not be broken once it has been

started.

(56) Use right-hand column properly. Reserve this column
for all diagrams and the series of steps into which the problem is

subdivided. The right-hand column should be used for all the

entries needed in the analysis, reduction, and solution of the

problem. No arithmetical or logaritlimic calculations should be

entered in this column
;
space has been provided in the left column

for such work.

(67) Put diagrams at top of sheet. A diagram is often a vital

part of the solution of a problem and hence should precede all

other entries.
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(58) Make all diagrams of ample size. The most common
mistake of engineering students is the use of diagrams that are so

small that they cannot be properly dimensioned, have data and

results entered upon them, or be used to show necessary con-
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struction lines. Use the entire width of the page or even a full

page at any time that clearness will be gained (see Topic 3.12).

(59) Show all given data. Record the data on the diagram if

one is used. If no diagram is drawn, be sure to list all given data

in concise form.

(60) State wanted items clearly. A statement of the main or

final objective of the problem should be given briefly and clearly

immediately following the listing of given data and any diagrams

used.

(61) Keep operations simple. Break the problem into a series

of simple steps, each complete in itself as an intermediate problem

and yielding an answer that becomes ‘^data^’ for the following

step.

(62) Show five entries in each step, as in Topic 3.9. Thus:

a. The item sought in that small step in the solution.

b. The word equation or formula applying.

c. Substitution of the data exactly as given.

d. Reduction of the mathematical cciuation.

c. The answcu* to that step in the solution iiududing the

units in which it is measured.

(63) Emphasize the answer [see Spec. (124)^ page 02].

(64) Rule a line from edge to edge of the paper to separate the

steps. There is no reason for drawing the line if nothing more

follows on that page.

(65) Start each new problem at top of a new sheet. If the

assignment consists of several series of short, independent prob-

lems, then start each new series on a new sheet.

3.7 Mathematical Signs and Symbols,

Throughout the history of mathematics there have been many
changes in the forms of the symbols used and a decided lack of

uniformity. Only a few symbols can be said to be international.

Various unsuccessful efforts have been made from time to time to

standardize practice. Textbooks and handbooks, however, are

usually lagging far behind the standards that have had general

approval such as those of the ASA. Thus it happens that signs

that were well known at one time but have passed out of general

use are still being set by printers merely because they have the
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characters and think them easier to set in type. Many of these

characters are ambiguous in hand-written computations and

hence are dangerous to use. The safest rule to follow is to

abandon the use of any symbol or character or arrangement that

can possibly be misread.

The following specifications are based upon the recommenda-

tions of various organizations and committees where any codes

were available. In adopting each one, however, clearness and

simplicity in handwork was the first consideration, not the

convenience of the typesetter. His work, when it is completed, is

done once for all, but the engineer makes new records daily, and

each is an original record. So the rule should be Safety first in

all ink or pencil work.^^

(66) Use parentheses only to indicate multiplication. In com-

plicated equations use brackets and large parentheses to collect

groups of terms,

(67) Do not use the letter x. Abandon both the letter x and

the symbol X as a sign of multiplication. They are often con-

fusing, especial!}" in algebraic work.

(68) Never use the dot as a sign of multiplication. It is not

a generally recognized symbol; moreover, it is readily confused

with the decimal point in numerical work. The engineer works

with decimal values constantly, and the danger of misreading the

dot is so great that its use should not be tolerated in any engineer-

ing office. Symbols become very expensive when they invite

mistakes.

(69) Use horizontal-bar fractions to show division. Do not

use the inclined-bar (or shilling) fractions. They have caused

numberless costly blunders. When one fraction is divided by

another, overemphasize the horizontal line that tells this fact.

(70) Do not use the -f- symbol. It was discarded by a

National Committee as early as 1923 and is becoming obsolete.

(71) Proportion must be shown in fraction form.

{72) Put the unknown in the left-hand numerator. Avoid one

or more algebraic operations by using this form:

X c

6
“ d
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(78) Abandon the use of colons to indicate proportion. This

notation is obsolete. See page 113 of Marks' Mechanical

Engineers' Handbook," 1st ed., 1916.

(74) Use decimal or fractional exponents. Roots and powers

should be indicated by this modern notation. Avoid the use of

the radical (square-root symbol). It is often highly cumbersome,

and the present trend in engineering is toward the exponential

form.

(75) Always show the decimal point. Show and emphasize the

decimal point regardless of its location. It is so important and

mistakes from its misplacement or misreading are so costly that it

IS a good plan to exaggerate it somewhat.

(76) Place a zero in front of numbers less than 1. This nota-

tion has been spreading for years and was recommended by a

national committee in 1927. Form the habit of using it. No
zero is to be placed after the decimal point unless it is a significant

figure needed to indicate the precision of the value.

(77) Show characteristic of every logarithm. It may be

positive, negative, or zero, but a logarithm is incomplete, hence

incorrect, without its characteristic.

(78) Point oft answers. Point off numerical answers into

groups of three digits each, starting at the decimal point and

running each way. Thus: 0.004,62 or 26,320,000. This has

nothing to do with reading values aloud but is for convenience in

checking.

(79) Write units as an exponent. Units such as in., lb, etc.,

are much clearer and safer to use if written in the exponent (or

superscript) position instead of on the same line with the numbers.

Units are to be in approved symbol form (see Table 1, page 349).

(80) Use capital letters for vertices of triangles. Use these

same letters for the sides of the triangles, thus: side AB, side BC,

etc.

(81) Do not use Greek letters for angles. The use of Greek

letters for angles, lower case letters for sides, and prime marks on

lettered points is seldom, if ever, justified. Notations become
complicated enough at best without using capital letters, small

letters, Greek letters, and prime marks on one or two triangles.

(88) Letters I, 0, Q, Z, F, and Z should not be used on dia-

grams. The /, 0, and Q resemble figures too closely and are

therefore likely to be misread in equations set up from the
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diagram. Too many college students pounce onto X, F, Z every

time they need to letter a diagram, as if it would be a misde-

meanor not to use X, F, and Z somewhere in every problem.

Start with the letter A
;
then run down the alphabet omitting the 6

letters mentioned. When the 20 safe letters have been used, it

may then be time to consider the use of small letters or the Greek

alphabet.

3.8 Graphs.

A graph is a formal bit of drafting whether or not it is prepared

for publication, and as such it should be planned carefully and be

neatly and accurately drawn. It should give its information to a

user with the smallest amount of accompanying explanatory

material. It should be in the form most likely to be understood

by a reader and be free from needless pictorial effects or decora-

tions. It should be prepared in accord with the recommendations

of the best authorities and adhere to generally recognized stand-

ards wherever they apply. A computer or draftsman who violates

such specifications as (86) and (91) has put himself on the

defensive at once and must be able to give an airtight reason (not

a mere excuse) for not following the specifications. Although it

is true that there are plenty of cases where the maker of a graph

has been too indifferent to learn the best practice, that fact does

not mean that others should ignore the practices that have been

approved by national organizations and industry in general. The
following specifications are arranged in the order in which the

various details should be decided upon before actually drawing

the graph. Most of them are based upon or quoted directly from

the ASA booklet ^‘Engineering and Scientific Graphs for Publica-

tion,'^ No. Z15.3, 1943. When the notation “(See 1.9, ASA)"
follows a specification, it refers to that numbered recommendation

in this ASA code. Also refer to Forms 30-32 in the Workbook.

(83) Put independent variable on x axis (horizontal axis,

see 2.5, ASA). When the properties of a round piece of steel are

studied, its diameter is the independent variable. The left-hand

column of tabular data is the independent variable.

(84) Put dependent variable on y axis (vertical axis, see 2.5,

ASA). A round steel bar might be studied for its weight per

lineal foot, the power that it could transmit if used as a shaft, or

its load-carrying ability if used as a beam or column. These are
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all dependent variables. In tabular data the values in the body

of the table constitute the dependent variables.

{85) Keep graph paper in normal position. Do not turn the

sheet sideways unless there is an airtight reason for doing so.

{86) Show zero point of both variables. If the zero point

of the independent variable is purel3^ arbitrary, it may be omitted.

The zero of the dependent variable must be shown. The best

authorities condemn the amputation of this base line, saying that

there are few, if any, cases justifying the practice. The excuse

offered for doing so is that the changes in the dependent variable

are exaggerated so they arc easier to see. This is the lamest of

excuses, because the resultant graph is a falsehood, giving *the

reader the impression of gn^at variations which, in truth, are non-

existent. Anyone drawing siH^h a graph has put himself on the

defensive, and his case is prejudiced from the start (see 2.3, ASA).

{87) Use care in choice of scales for each axis. The scale

depends upon many fa<dors such as size of the ruled surface, the

lines per inch, the maximum values to be includcKl, the precision

desired. Compute the scale by the formula below; then round

off to fit calibrations of the paper used (see 2.1 and 2.2 ASA).

Maximum value of the

['Scale ill uiiit:;"! ^ .
variahli! in its units .

1_
inch, r. J Availa.l>l(' length of the

axis for it, in inches

{88) Scale must fit paper used. Choose scales that can be

interpolated readily in both plotting and reading. Do not use

any scale that will require awkward fractions in the smallest

space on the paper. On lO-line-per-inch paper use only 1, 2, or 5

units per inch or these values multiplied or divided by 10, 100,

1000, etc., as is necessary to get into the data range (see 2.8 and

2.9, ASA).

{89) Calibrate inch lines only.

{90) Choose scale consistent with precision of data. This

may at times require the use of larger sheets of graph paper.

{91 ) Put origin at lower left comer of grid. Do not move the

axes into the ruled surface unless there are negative values to be

plotted. Like the suppression of the zero line there is no legiti-

mate reason for this rather frequent practice. Buy a sheet with a

smaller grid if wider margins are needed. Putting calibration

numbers and captions into the ruled grid merely obscures them,
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making them harder to read and almost illegible if the graph is to

be reproduced by blue printing or photography (see 2.6, ASA).

{92) Record all calibration values and captions. Place these

in the white margins of the sheet (see 2.6 and 2.7, ASA). Center

the captions along the axis.

{9S) The scale captipn or label should indicate both the

variable measured and the unit of measurement (see 2.10, ASA).

For example, DIAMETER, in/^ or POWER TRANSMIT-
TED, hp.’^ Use standard abbreviations in captions (see 1.10,

ASA).

{94) Place calibrations and captions properly. All lettering

and numbers on a graph should be placed so as to be easily read

from the bottom and from the right-hand side of the graph, not

the left-hand side (see 1.9, ASA).

{95) Use a 6H pencil on graphs. Unless a graph is to be

inked or blueprinted from a pemdl drawing, a 511 pencil should be

used when plotting the data for calibrations, captions, and title

plates.

{96) Plotted points must be fine, clean, tiny dots. A long,

fine pencil point is needed. Set the point at the right spot; then

spin the pencil half a turn, thus producing a small round dot.

{97) Each dot should be circled. Each point is to be indi-

cated by a small, neat circle around it. Circles must not be over

0.1 in. or less than 0.05 in. in diameter (see 4.4 and 4.5, ASA).

{98) Use a sharp, solid line for the graph. It should be fine

but black enough to be easy to follow (see 4.1, ASA).

{99) Keep out of circles when drawing graph. Draw the line

up to but not across the circles. The reason for this rule is that

the plotted point inside the circle is data and may be used

repeatedly in studies or construc^tions based upon the graph (see

10.7, ASA).

{100) Use a French curve for drawing the graph. No credit is

given for freehand curves.

{101) Complete graph with a good title plate. The title plate

should be on the ruled grid for 8.5- by 11-in. graph paper but is

put below the entire graph when it is reproduced in books or

periodicals (see 5.1 and 5.2, ASA; also see Form 32 in the Work-
book). The headings for Table 23, page 377, and Table 24, page

378, are worded in suitable title-plate form.

{102) Balance the graph with the title plate. The title plate

should be put in such a position on the sheet that curves, captions,
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and curve labels are balanced around horizontal and vertical axes.

In order that the total effect may appear balanced to the eye, the

center of gravity of the whole composition should be slightly

above the mid-height of the sheet (see 9.3, ASA). No top margin

or marginal entries are needed on graph sheets as the title plate

replaces them. Show the page number, however.

{103) Use vertical Gothic lettering in title plates. Capital

letters must not exceed 0,15 in., and lower case letters, such as

e, m, n, etc., must not exceed 0.10 in. in height (see 12.1-12.8

inclusive, ASA).

{104\ Center each line in title plate. Every line in the title

plate must be balanced with respect to a vertical center line

like the title page of a book, but do not have the title plate

arranged in a rectangular block. No two lines should be the

same length.

3.9 Recording the Analysis and Calculations.

The following series of specifications is intended to serve both

as a check list of operations and as a detailed outline of a pro-

cedure applying the general method of attack on problems

discussed in Topic 2.12 in the preceding (chapter.

The most effective way to solve any problem, simple or long and

involved, strange or familiar, is to break it down into a chain of

short steps each of which involves only a few facts and well-

understood principles. JCach of these links in the chain should be

shown in detail and be complete in itself. Each stej) should be

clearly distinguished from the one before and the one to follow.

Every such intermediate solution must answer each of the six

questions ^^What for?^^ ‘‘How?'^ ^‘What with?^^ ‘‘How was the

answer obtained?^^ “What is the result?^^ “Is the answer cor-

rect Each question should be answered in the manner shown
below (refer to Fig. 1, page 5J).

{105) “What for?” is to be answered by a concise explanatory

heading that definitely states the problem to be computed in that

particular small step in the solution.

{106) This heading is to be the first entry in the step and is to

be a complete sentence on a line by itself. It is not enough

merely to mention the units in which the unknown is measured.

Name it.

{107) “How?” is answered by a statement, in mathematical

form, of the law or principle that is to be used.
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(108) Use a word-equation form for stating the principle unless

otherwise instructed (see Fig. 1, page 50, for typical word equa-

tions.) Arrange the word equation in such typographical form as

to show clearly the mathematical relationship of the various

factors.

(109) Symbol formulas are not to be used unless permission is

given to do so.

(110) “What with?** is answered by now substituting the data

to be used in this particular step. It may be new data used for

the first time or a value computed in a previous step.

(111) Enter the data, with the proper units exactly as given.

This is sometimes referred to as the “raw data.**

(11^) Conversion constants for units must be included in the

problem setup the same as any other form of data.

(113) Check all numerical values at this point before pro-

ceeding further. Have they been copied correctly from the

original source of the data or, if they are computed values, from

the step where found? Are the units correct? Computations

made with incorrect values are absolutely worthless; so do not

gamble. It is disheartening to discover that hours of work are

wasted because of a careless slip in copying values. Be sure all

are right; then go ahead.

(114) “How was the result obtained?** is to be shown clearly

and completely by a series of entries giving the reduction and

solution of the data equation set up in Specs. (108) and (110).

This part of the work must not be slighted. It should be remem-

bered that many records will be consulted long after the computer

has moved away, gone to another job, or died.

(115) Do not make short cuts or omit operations. The use of

short cuts and tricks is permissible only in routine work by

experienced computers, never for beginners or even “old heads**

when they are starting into a new field. Many engineers of wide

experience go further and say that “only the green or careless man
attempts to short-cut

;
the experienced man knows better than to

try it.** Leave a plain trail for the checker. Perform one

operation at a time, and leave a record of what you have done.

(116) Keep all entries and steps in logical order. Do not

“backtrack.** Backtracking is a sure sign that the computer was

not thinking things through before he acted.

(117) Do not use scratch paper. See the quotation on page

10. Use a pencil whenever desired, but leave a record. Some of
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the largest companies in the United gtates absolutely forbid the

use of scratch paper. If anything needs to be written at all, it

needs to be a part of the record. That is the purpose of the

left-hand column. Record all interpolations and any other

incidental figuring that is not done mentally.

{118) Show conversions of units. The conversion of units

is a part of the reduction of the eciuation and generally should be

shown with the first operation following the statement of numeri-

cal data. By doing this, one is assured that the answer to that

part of the solution will be in the desired units.

{119) Use given data in preference to calculated values.

When computed values must be used and there is a choice, take

the ones that are closest to the original data. Once the logarithm

of a number has been found by calculation or in tables, use it as it

is in all following steps; do not recompute.

{120) Be consistent in the number of significant figures car-

ried. Use the rules for calculation as given on page 134 to avoid

the carrying of meaningless figures. Use calculation methods

that reduce labor to a minimum.

{121) Left-hand side of equation should not be repeated.

When a step has to be carried over to a following page, however,

be sure to repeat the key word naming the thing sought, and

proceed with the reduction of the equation.

{122) Check each operation. Be sure that it is correct. Do
this, and the final answer to the entire problem will take care of

itself.

{123) What is the result? This is, of course, the answer to the

particular step being computed and is the final answer when that

step is the last in the series.

{124) Emphasize the answer. Put it on a line by itself, and

double underline it.

{126) Show units of answer. The units in which the result

is measured must be shown. No answer is correct or complete

unless its units are clearly indicated.

{126) Index answer. This is done by entering a key word or

words in the right-hand (index) margin. A simple descriptive

term of not over three words is to be used. Usually it is about the

same as the explanatory heading.

{127) Use words for indexing. Avoid the use of letters,

symbols, and unconventional abbreviations.
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(128) Place indexing correctly. The key word is to be placed

directly opposite the answer that it indexes, and a heavy arrow

drawn from near the margin to within 0.5 in. of the answer.

When the space is less than 1 in., omit the arrow.

(129) Do not put answers in index margin.

(180) Record answers on any diagrams.

(131) “Is the answer correct?” Check the result before

starting the next step or another problem. Chief engineers in

industry are constantly insisting that the young engineer must be

trained to check his own work as he goes along. Know that the

answer is correct before leaving it.

(132) Do not rely upon someone else to find errors. The
computer should solve the problem in another way if need be, but

he must find the error himself, lie will have to stand on his own
feet someday; so he should start doing it as a student.

3.10 Tabulating Data and Calculations.

The ability to design and construct well-planned tabular forms

is of the utmost importance to the engineer. A high percentage

of the facts and numerical values that he uses must be organized

in such form that space is conserved, the relationships among
values arc clear, and calculation time and labor are reduced. It

frequently takes as much or more time and thought to plan and

rule a tabular form as it does to make a dramng of equal size.

Preliminary sketches of column placing, headings, and widths

should usually be made. Tables set in type frequently do not

have side rules, but all forms made for reports, drawings, and

office data books should be completely ruled—top, sides, and

bottom. Refer to Table 22, page 37G, and Table 23, page 377,

for typical ruled forms. The “ Engineering Problems Workbook ”

also is full of tabular forms.

The following numbered comments are as much a guide to help

a beginner plan a table as they are specifications. Study the

complete series before drawing a line, keeping in mind the partic-

ular problem at hand.

(133) A descriptive headingmust be putabove the table. Allow

at least 1 in. for this heading, which tells what the table is about.

(134) Do not draw any lines of random length. The result is

always a botched job even if the lines are erased or extended.

Plan the table carefully before drawing any lines.
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{136) Determine the number of columns needed. If there are

only two to four variables and 12 or more readings for each, it is a

good plan to break the table into two equal banks” of values set

side by side. Forms 4 and 14 in the Workbook show such

arrangements.

{136) Plan table width carefully. Use good judgment in

figuring column widths. Sometimes the columns must be wider

than indicated in the table below in order to provide space for the

column headings. In general, however, use these values as a

basis for planning the table.

Number of

digits

Column width

Fractiomd

inch

Decimal

inch

1 or 2 i 0.4

2 or 3 1 0.()

3 or 4 i 0.8

4 or 5 1 1.0

f) or () U 1 2

6 or 7 u 1.4

{137) Turn sheet sideways for very wide tables. Keep the

binding holes at the top (see Form 233 in the Workbook).

{138) Do not crowd column headings. Use as many short

lines as necessary for long headings, or turn the headings sideways

as shown in several columns of Table 20, page 375, and Table 21,

page 376.

{139) Put imits in headings. Do not attach units to the

column entries in the body of the table.

{HO) Keep column entries and headings inside the rulings.

Never allow any entries in a column to overrun the column or

the limits of the table.

{I4I) Do not use sheet margins for table rulings. The table

is to be an independant construction inside the margins and with a

frame of clear space completely surrounding it.

{H2) Use 0.2-in. minimum side clearance. Do not cut clear-

ance below this value. Plan the table again if necessary to avoid

this crowding.
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{143) Center the table. Place the table so the clearance on

each side is the same. Off-center placing indicates poor planning.

{144) Do not crowd column entries. Unless lettering size is

reduced to about i in. height, use 0.4 in. vertically for each

entry. Avoid crowding at all times.

(14^) Allow space for totals. If the values in one or more
columns must be added, be sure to allow 0.4 in. vertically for the

total.

{11^6) Compute table width and length. When Specs. (138)-

(14^) inclusive have been decided, compute the over-all size of

the table, dot the four corners, and rule the outside frame with

heavy black lines.

(Jf47) Use medium-weight lines for column rulings. Com-
plete the ruling of the table, and record all column headings before

entering any numerical values.

(14^) Use double lines to separate imrelated columns. Space

not over xV apart.

(14^) Tables must not be broken. Never break a table so it

runs onto another page unless the complete table would be longer

than a single sheet.

(150) Keep all column entries in vertical lines. Have units

over units, tens over tens, and all decimal points in a vertical line.

This helps to prevent blunders when totals must be obtained.

(151) Do not draw horizontal lines between entries. Such

rulings are seldom necessary and are not used in standard tables.

See any of the tables at end of this book. Do not rule such lines

unless specific instructions are given to that effect.

3.11 Diagrams.

A diagram is, by definition, a drawing of the essential lines in

an object, an area, a line figure, or any other construction

intended to show the relation between lines, parts, and positions or

to show the magnitudes of quantities, forces, and velocities or the

ways in which such things act upon the shape being studied. A
diagram may or may not be drawn to scale according to the needs

of the particular situation, but in most cases the proportions used

are relative and not to scale.

Diagrams are highly valuable tools for use in solving problems.

They should be used to aid in making an intelligent analysis of the

situation, not as mere records of what has already been done.
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Both known and unknown quantities should be shown on the

diagram before any computations are started, unknown values

being indicated by dimension lines, letters, or other clear devices.

If the computer completes his diagram before starting any

computations, he will find that he has been led to reason his way
through the entire analysis of the problem. This tends to

eliminate false starts and mistakes due to the erroneous applica-

tion of principles. The working diagram, therefore, should be a

simple drawing upon which all of the facts, both known and

unknown, are recorded in such manner that each item may be

readily found, easily understood, and used with the least possible

chance of mistake. The following rules will aid in obtaining

satisfactory diagrams. For further suggestions on diagrams

refer to a good text on engineering drawing and also consult the

ASA Code, Z14.1, 1935, ^^American Standard Drawings and

Drafting Room Practice.^'

{152) Diagrams must precede all other work. When several

diagrams are needed, put each one just ahead of the work based

upon it (see Figs. 2, page 51, and 3, page 53).

{153) Diagrams must be large. Any drawing less than 3 in.

high or wide is too small. Redraw it. Small, crowded, poorly

placed and dimensioned diagrams are a waste of time. They are

really harder to draw neatly than large diagrams, difficult to

check, and of little help in solving a problem.

{154) Allow ample room for dimension lines. As a general

rule the minimum area needed for the whole diagram is two or

three times that taken by the outline of the shape itself if clear

work is to be obtained. Remember that the outline and prin-

cipal lines showing the object itself form nothing more than a

framework which is to carry the dimension lines. The outline

shows the relation of the parts to one another, but the series of

dimension lines gives the numerical values used in the

calculations.

{155) Do not put any diagram in left column.

{156) Full-page diagrams. The entire width of the sheet,

between margins, may be used for the diagram whenever neces-

sary, omitting the vertical column line for that portion of the

page. Use an entire page for diagrams having many details or a

large number of dimension lines. Turn sheet sideways (clock-

wise) if the diagram fits better that way (see Fig. 24, page 207).
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{157) Avoid crowding. A diagram that is otherwise very well

drawn may have its appearance ruined by thoughtless crowding of

even a few dimension lines, detidls, or numerical values,

{158) Use proper tools for drawing diagrams. Use ruler,

compass, and irregular curv^e as needed. Adhere to the principles

and conventions of good drafting.

{159) Use plenty cf contrast. Diagrams are colorless and

ineffective where work is done in a monotone. Vary the thick-

ness and blackness of lines according to their purpose (see

below).

{160) Scale is not essential. Unless the answer is to be

checked graphically as well as by calculation, nothing is gained by

drawing the diagram to scale. We may, therefore, exaggerate

proportions without hesitation when clearness in dimensioning is

gained by so doing.

{161) Use heavy, solid lines for outline of object. In general

adhere to the rules for line work as given in your drafting-room

standards (see ASA code).

{162) Do not draw pictures. Needless picture effects are con-

fusing rather than hcilpful. Omit all details that have no bearing

on the solution of the problem.

{163) Do not shade or crosshatch a diagram unless absolutely

necessary for a clear understanding of it. It takes too much time,

and little or nothing is gained by doing it.

{164) Dimension the diagram. Remember that the sole pur-

pose of the diagram on a computation sheet is to impart informa-

tion to the users. Its primary value is to aid the computer in

solving his problem. Its secondary use is a record of the complete

solution, including construction lines and results. The diagram,

therefore, must be dimensioned as clearly as possible, and the

layout planned in advance. Use thought, care, and time in

placing all dimension lines and their values. Time is not wasted,

because well-placed dimension lines will speed the solution of the

problem and help reduce mistakes. It may happen that a com-

puter will spend more time drawing the diagram than he does in

the actual figuring, but his total time on the problem is reduced

simply because he has a well-planned diagram.

{165) Put all dimension lines outside the extreme limits of the

outline of the object. In a few special cases this rule may be

violated, but the man who does it is always on the defensive and
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must be able to give excellent reasons for not following the rule

(see ASA code; also see Fig. 61, page 283, for Prob. 195).

{166) Put the smallest dimensions closest to the figure being

dimensioned and the progressively larger ones farther and

farther away, with the over-all dimension being placed farthest of

all from the figun;. In this way unnecessary crossings of dimen-

sion and extension lines may be avoided.

{167) Use thin, sharp, clear lines for all dimension Unes.

They should be about a third as heavy as the line used for the

outline of the object. One must have contrast here; otherwise

the drawing will be hard to read.

{168) Use thin limit lines. The lines showing the limits of all

dimensions must be the same weight of line as the dimension lines.

{169) Limit lines must approach the points being dimensioned,

either just touching or with a little clearance.

{170) Do not break dimension lines imless necessary. To
break them is generally a waste of time, because it takes at least

a third longer to stop and start again in drawing the line, and

frequently it develops later that the break was not in the right

place for the clear recording of the’ numerical value.

{171) Clearance between dimension lines is absolutely essen-

tial. There should be a space of not less than 0.4 in. between

any part of the outline and a dimension line, and a similar spacing

is needed between parallel dimension lines.

{172) Arrowheads must be properly drawn and spaced. They
must be neat, black, and tapering and actually touch the exten-

sion line to which they refer. Do not use seagull wings, triangles,

loops, blacked-in arrowheads, or other scrawls as makeshifts for

the standard arrowheads called for in the American Drafting

Standards. Arrowheads are one of the important indicators of

skill and ability.

{173) Do not put dimension lines on trigonometry diagrams

unless it is impossible to show the values clearly otherwise.

Write the numerical value parallel to the side concerned.

{174) Record all numerical values on the diagram. All

numerical data that can be put on the diagram must be recorded

there. Use care and thought in this job, as by so doing you may
avoid miscopying when taking values from the diagram later on.

{175) Recording numerical values. Place the numerical or

letter value parallel to and about 0.05 in. above the dimension
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line. There will be no danger of misreading the values if a proper

spacing has been maintained between dimension lines.

{176) Use decimal fractions rather than common fractions

unless there is an excellent reason for doing otherwise. When
data have both kinds, convert to decimal fractions as they are

entered on the diagram. Because most computations are made
on the slide rule, all dimensions should be ready to use.

{177) Be consistent with the data when recording values.

Record the same number of significant figures, neither more nor

less. If the data show a tolerance on any value, show it on the

diagram in a similar manner.

{1 78) Clearance is essential. See that no values or descriptive

lettering are in contact with any line.

{179) All lettering must be clean-cut, black, and easily read

[see Specs. {13)-{19) inclusive, pages 46, 47].

{180) Check the diagram. Be sure that every value on it is

correct before starting on a series of calculations. A blunder on

the diagram may ruin a long series of calculations. No credit can

be given to calculations made with incorrect data.

{181) Record the results on the diagram as soon as they hav(^

been checked. If this is done, the diagram frequently serves the

purpose of a progress chart, and the computer thus can quickly

determine the next logical step.

{182) Different colors of lead may be used to distinguish the

given dimensions from the computed ones.

3.12 Derived Curves.

Sets of derived curves as discussed in Chap. 10 are not graphs

but diagrams, since they are not plotted or drawn to scale. The
computer should, therefore, follow the spirit of the specifications

given for the construction of diagrams and also adhere to the

following special instructions. The details are based upon many
years of use and experimentation with derived curves. Curves

drawn in accordance with the specifications will yield the maxi-

mum of information to the user with the least possible explana-

toiy material.

{188) Use standard top and side margins as called for in

Specs. {40)-{4'^) inclusive pages, 49, 52, including all entries (see

Fig. 4, page 70).

{18Jf) Put initial ordinate 0.6 in. to the right of left margin line.
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{185) Use a very heavy black line for the initial ordinate.

{186) Put final ordinate 0.76 in. to the left of right margin,

regardless of the numerical value of the abscissa or the number, of

intervals.

{187) Use a medium-weight line for the final and intermediate

ordinates.
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{188) Place the base lines as shown in Fig. 4. In case only

two curves are involved, omit the middle base line. If a fourth

base line is needed, put it about 1.5 in. above the upper base line

shown in Fig. 4.

{189) Base lines are to be very heavy black lines extending

0.25 in. beyond both the initial and final base lines.

{190) Record the units of the ordinates in the 0.75dn. space at

the right-hand end of the base lines. Enter the unit just below

the base line if the final ordinate is positive but just above it if the

final ordinate is negative.

{191) Index the curves in the customary manner in the right-

hand margin as shown in Fig. 4 and on Form 21 3 in the Workbook.

{192) Keep units out of the index margin.

{193) Draw principal intermediate ordinates only. These are

the ones that indi(;ate a special feature in one or another of the

series of curves, such as a point of inflection, a maximum or

minimum, or other change of shape.

{194) Circle all origins of the curves.

{193) Do not attempt to draw curves to any scale. Relative

proportions only are needed and hence may be distorted any time

that clearness is gained by so doing or the recording of values is

easier.

{196) Use heavy black lines for the curves. Dotted or dashed

lines should be used only when two or more curves must be shown
in reference to a common base line.

{197) Do not use dimension lines and arrows to show any

values except those parallel to the x axis.

{198) When two sections of any curve are tangent to each other

show them that way. If they are not tangent, make that fact clear.

{199) Check the shape of every section of each curve before

starting to compute values.

{200) Record all calculations on a work sheet (see Form 214

in the Workbook). Adhere to the standards of the specifications

unless special instructions are given.

{201 ) Record values of ordinates and abscissas as soon as

found, entering both partial ordinate and total value.

{202) Place numerical values of ordinates beside the ordinate

to which it refers. Usually the partial, or difference, values are

put on the left and total value on the right of the ordinate (see

Fig. 4).
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{203) Check all values, especially those to be used in later

computations, before going ahead with the next step. Work
done after the first mistake is usually of no value whatever.

{20Ji) Use either the second law or the calculus to get the

equations of the curves, whichever is the quicker.

{205) Record the derivation of all equations on computation

sheets similar to those used for getting numerical results.

{206) Record the equations on the sheet of derived curves,

writing them parallel and adjacent to the base line but outside

the area under the curve.

{207) Check the final value by substituting the maximum limit

of the abscissa in the equation of the highest curve, and see if it

gives the same value for the final ordinate as was found by the

second law.

3.13 Free-body Diagrams.

The equilibrium sketch, or free-body diagram, is a form of

diagram that shows all of the forces that are acting upon an

object. It is primarily a force diagram. It shows a body or a

portion of a body isolated from all other bodies that wei'o previ-

ously touching it or acting upon it in any manner. The actions of

the removed bodies are to be shown by force arrows. The follow-

ing points should be kept in mind when drawing free-body

diagrams:

{208) Force arrows must indicate, by points of application and

directions, the forces exerted by the bodies acting upon the one

being studied (see Figs. 5 and 6, page 73).

{209) A pull (or tension) is shown by the force arrow pointing

away from the body; a push (or compression) is shown by the

force arrow pointing toward the body.

{210) If the direction of the unknown force is not given, assume

its direction and then make the proper correction when it has been

determined.

{211) Never put in a force unless a body or part has been

taken away.

{212) Never take away a body or part without drawing a force

arrow to represent its action.

{213) All forces, whether known or unknown, should be shown

before starting computations. Mark an unknown force with a

letter that will signify something of its nature.
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{214) If the body is in motion or if motion is impending, draw

a light arrow pointing in the direction of motion, placing this

arrow an inch or more from the sketch.

Motion

t

Fio. 5.- "Body moving on level surface.

{215) The inertia force should be shown whenever the motion

of the body is being changed. Its direction is always opposite

that of the acceleration.

K.§

II

t

§
0

1

3.14 Integration.

Integrations involving properties of areas,

volumes, and masses will be much easier to

handle, especially when the computer is out

of practice, if the technique shown below is

followed.

{216) Draw a good, clear diagram of ample

size. Show the curves, the limits, variables

and elemental area, volume, etc.

{217) Dimension this diagram just as

clearly and completely as it should be done

if the object were to be made in the shop.

Complete the diagram before setting down any part of the

calculations. Adhere to the rules for good drafting.

{218) The integral sign is not to be written until nothing more
can be done without it. The average student is in too great a

hurry to get it down, but the bulk of the reasoning about the prob-

lem has to be done before, not after, this sign can be used.

{219) Choose the element of area, volume, or mass with care.

When an elemental strip is used, take it in such direction as to

require the simplest integrations. Show it on the diagram (see

Fig. 7, page 74).

Fig.
moving
upward.

6 .
— Body

vertically
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Fig. 7.—Setting up integration problems.

{220) Do any preliminary algebraic work that may be neces-

sary at this point. If a: = f{y) is given and y == <i>{x) is wanted,

get the equations into proper form before going further.

{221) Write down the simplest possible description of the

element of area, volume, or mass, using the dimensions shown on

the diagram. Refer to the elemental strip in Fig. 7, where

dA *= hdx.

'Edge

of

paper
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{222) When this simple equation involves other variables,

bring in the equations showing the relations between them. The
second and third equations dA = (l/i ““

2/ 2 ) do; and dA = [(10

0.8a::) — (2 + ^.2z^)\dx of Fig. 7 illustrate this operation.

{22S) Simplify this new equation as far as possible. See that

the equation is in terms of the variable to be integrated and

truly ready for integration, but do not record the integral sign

yet.

{224) Now indicate the required property of the area, volume,

or mass of the element, such as xdA.

{225) Do not combine with any arithmetical operation.

{226) Do not record the sign of integration yet.

{227) Simplify as far as possible. The smaller the number of

symbols to drag through the integration process the smaller the

chances of mistake.

{228) Record the integral sign, and show the limits.

{229) Perform the indicated summation, but do not substitute

limits at the same time.

{220) Substitute the given limits exactly as given in the setup

of the integral, making no arithmetical changes whatever.

{231

)

Reduce the numerical equation to its final form.

{232) Do not short-cut or omit steps. Mistakes are likely to

creep in.

{233) Check all operations, signs, and values before indexing

the final answer.

3.16 Specification Group Summary.

Topic

No.
Subject

Specification numbers
(inclusive)

3.4 Equipment 1 to 12

3.5 Workmanship 13 to 35

3.6 Makeup of the computation sheet 36 to 65

3.7 Mathematical signs and symbols 66 to 82
3.8 Graphs 83 to 104

3.9 Recording the analysis and calculations 105 to 132

3.10 Tabulating data and calculations 133 to 151

3.11 Diagrams 152 to 182

3.12 Derived Curves 183 to 207

3,13 Free-body diagrams 208 to 215

3.14 Integration 216 to 233
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CHAPTER 4

EXPONENTS, LOGARITHMS, AND GRAPHS

4.1 Need for Special Notes on Algebra.

The topics to be discussed in the following pages concern only

a few of the applications of greatest importance. The material is

not intended as a substitute for a conventional algebra text. Its

only purpose is to help remove some of the mystery that for some

reason seems to attach to certain phases of fundamental algebra.

Many students have an undue amount of trouble in getting a clear

understanding of exponents and logarithms, and they use a table

of logarithms mechanically, with no clear appreciation of why it

works or its limitations. Freshmen have had very little exper-

ience with graphs, and as a result the undergraduate student fre-

quently produces some rather awesome graphs in engineering

work.

4.2 Scope of This Chapter.

This chapter will, therefore, contain a restatement of the simple

laws of exponents, expand the idea of exponents to logarithms,

and give suggestions on the use of these tools in calculations.

The ideas developed in the discussion of logarithms will also serve

as a foundation for the instructions on the slide rule. Much of

the uncertainty in the use of logarithms and distrust of the slide

rule exist because so many computers have never had a real

understanding of the underlying algebraic principles. In other

cases the worker is simply deficient in the common computing

skills required.

Another section of this chapter will be a group of topics dis-

cussing graphs and other graphical tools. There are right and

wrong ways of arranging a graph; and since there are definite,

widely adopted standards, the young engineer should learn to use

them. This discussion will, therefore, consider the application of

the standards to various forms of graphic construction.

77



78 ENGINEERING PROBLEMS MANUAL

4.3 Setting up Formulas and Equations.

Time will be saved and frequently one or more entries in the

reduction of an equation can be avoided if the computer will form

the habit of making the unknown term the first entry and put it

on the left side of the equals sign. For example, in simple equa-

tions of the types x = ahy x = 3M + 1.4Ar — 0.2T, etc., put the

unknown, x, on the left side and the known values on the right-

hand side. If a proportion is involved, start with the unknown in

the first numerator and have it on the left side from the beginning.

Reversing the above procedure makes a calculation appear as if

the computer had thrown a series of values together on the basis of

chance, then suddenly discovered that he had an answer.

4.4 Exponents as a Tool.

The work on exponents in an algebra text is, without much
doubt, the most important part in the whole book. The engi-

neer, the scientist, the research worker in any field soon discover

that ^^Dame Nature is undoubtedly a mathematician with a

liking for exponential quantities. Again and again the mathe-

matical statement of a ^^law of nature uses exponents in one

way or another. The problem may concern the deflection of a

beam, the transfer of heat, or the flow of water, but in every case

the mathematical formula requires the use of exponents. It

follows that the engineer must have skill in the use of exponents

in calculations as well as an understanding of the mathematical

and engineering principles concerned.

4.6 The Basic Laws of Exponents.

There are four basic laws of exponents that must be known and

used. Other expressions may be derived from them, but the four

laws stated below are fundamental.

Case I. Multiplication.

Let X = a"*, y = a”, and z = o", and the product w = xyz is

required.

Then
w » xyz =» (o’«)(a”)(a*)

33- Qin+n+a

Rule: Add the exponents of the factors to get the exponent of

the result.
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Example:

Get w when x = a^-^, y — * and z = a*-*

w = xyz —
^2.4+(-3.6)+2.W

= ^ 6 . 3- 3.6

c=

Case 11. Division.

X
Let X = y = and z = a* and the quotient w = ^ in

desired.

Then

_ X _
yz (a")(a'l

Subtract the exponents of the divisors from that of the

dividend to get the exponent of the quotient.

Example:

Get w when x = y = and z =

£ ^

_ ^4.8-I.2-(-2.1)

_ q4.8-1.2+2.1

^ ^6.9-1 .2

Case III. Raising a Given Power to Another Power,

Let w =
Then

w — a*""

Rule: Multiply the exponents together to get the exponent of

the result.

Example:

Get w when x = and n = 3

Then
w *= (g* *)®

a- a2.4(8)

- g7.i
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Case IV. Getting the Root of a Given Power of a Number.

Let w =
Then

w ^

Rule: Divide the exponent that shows the power by the index

showing the root to get the exponent of the result.

Example:

Get w when x — and n = 5

w = ^

= a 5

=

Note that Case IV ean be convert^ed into Case II and the cal-

culations be simplified if the example is written thus:

IV — a®

= 5 ( 0 . 2 -.

= ai®

Several secondary relationships can he derived from the four

basic cases, yielding certain forms that the engineer should

recognize on sight. Three of these are as follows

:

a® = 1 because — 1 = a"* = a®
a"*

1
a””* = — because J_ a®= — = a®”'” an

a'^

1
=r a”* because « aO-(-«o == ^

4.6 Numerical Calculation with the Aid of Exponents.

It should be noted in the four basic laws shown above that the

degree of difficulty in the actual numerical work is lowered one

step by the aid of exponents. Thus in Case I multiplication of

numbers becomes one of adding exponents, an easier operation.

Case II is changed from division to tlue easier operation of sub-

traction of eiKix>n0nts. In similar manner Cases ni and IV are

changed from power and root problems to the far simpler tasks of

multiplication and division.

This simplifying of the numerical labor was recognized by
several men around 1600-1615. In 1614 Baron John Napier
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described a table of exponents that he had computed with 2.71828

(now known as the base e) for the value of the base a, which was

used above in the statement of the laws of exponents. Other

numbers have been suggested or used as the base for a system of

exponents, but the table that has always been in most common
use is the one devised by Henry Briggs about 1619. It has 10

as the base for the various values. Its general principles will hn

shown in the following topic.

4.7 Powers of 10.

The actual calculation of a table of exponents and powers for

any base is a long, tedious process, but an idea of the principle and

use of such a table can be obtained by actually computing a few'

values as follows:

10 « == 1

- (10)i - VyiO = =- 1.778

100.33 (I0)i ^ = 2.1544
100.50 (io)i = V10^= 3.1623
10007 =

( 10)^ = -^102 = -^100 = 4.6416

10« 75 = (10)^ = = VVlOOb. = \/^^23 - 5.623

lO'o = 10 __
101-23 ^ (10)! ^ ^104 = -^0,000'. = 21.544
101-^0 = (10)^ - VW = vlobo - 31.623

102 = 100
102.33 = (10)3 ^10? = v^^,000. = 215.44

102 (10)5 ^ ^ VT00,000 = 316.23
103 = 1000

10-1 0.1

It will be noted that the exponent is made up of two parts:

first, a decimal part which depends upon the sequence of the

digits in the result obtained by raising 10 to the indicated powder

and, second, an integral part which changes only when the deci-

mal point is shifted in the result. The values in the table above

show that when the integral part of the exponent is other than

zero, the magnitude of the integer indicates the number of places

that the decimal point has been moved from the (10)® position

and its sign + or — tells the direction of the shift. Thus, when
4.

the exponent is 2.50, the sequence of digits is 316.23, the same as
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for 10®*®®, but the decimal point must be moved two places to the

right. If the integral part of the exponent is negative, (10)^*®, the

decimal point is moved two places to the left and the result is

(10)2.6 = 0.031,623.

Calculations made by use of powers of 10 can be illustrated as

follows:

A = (3.1623)(1.7778)

= (100.2^)

«=

« 100.75

= 5.623

o ^ 464.16

2.1544

^ 102

10« 33

J-. .67-0.33

« 102.33

= 215.44

C = (17.778)'

= (101.25)3

« 101.26(3)

= 103

- 5625

The foregoing small table of powers of 10 and the sample

calculations will be recognized by students of algebra as an

introduction to the study of logarithms. When Napier first

introduced the idea, the tables of exponents were called artificial

numbers, but in a feiv years, probably about the time when Briggs

suggested using 10 as the base, the name was changed to loga-

rithm, This is a word derived from the Greek, and the root

meaning is speaking number. The decimal part of the loga-

rithm is known as the mantissa, and the integral part is called the

characteristic,

4.8 A Logarithm Is an Exponent.

It should never be forgotten that the word logarithm is an

arbitrary name given to one class of exponents; therefore, the

same laws apply to logarithms, regardless of the base used, as

apply to exponents in general.

The logarithm 1 ["The exponent of the power1
of any number ~ to which the base must be
to a given baseJ L raised to give the number J

1 .

2 .
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The base should be positive and other than 1. The proper-

ties, sources, and relationships of the two parts of a logarithm

are shown in the table below.

A LOGARITHM IS AN EXPONENT
It has TWP parts, both of which MUST be shown at all times.

An INTEGRAL part, called the

CHARACTERISTIC,
which shows the position of

THE DECIMAL POINT
in the number, nothing else.

A DECIMAL part, called the

MANTISSA,
which depends solely upon the

SEQUENCE OF THE DIGITS
in the number.

It never gives any indication of the

sequence of the digits in the number.

It never gives any indication of the

position of the decimal point in the

number.

It may be positive, negative, or

zero, but every logarithm has a

characteristic.

It is always positive in all standard

tables, either numerical or graphic.

It is determined by inspection and

is not given in standard logarithm

tables, either numerical or graphic.

It must always be found by means
of tables, either numerical or graphic,

and it cannot be determined by
inspection.

4.9 Decimal Points by Characteristics.

The relationship between the magnitude and sign of the

characteristic and the position of the decimal point in the power

of 10 brought out in Topic 4.7 is of the highest importance. A
clear understanding of this relationship is essential to the making

of correct computations with Briggs, or ‘^common,’’ logarithms.

Characteristics may be used to great advantage in other calcula-

tion methods as well as in logarithms. A person who has no

knowledge of logarithms can quickly learn how to determine the

characteristic of a number at a glance if he will study the table

that follows. He can learn how to use them accurately and effi-

ciently in computing if he will study the instructions given for

cut-longhand in Chap. 6 or on the use of the slide rule in Chap. 5.

The characteristic method is simple, exact, speedy, and mathe-

matically correct. It can be used equally well in longhand,

contracted longhand, or work done by a mechanical calculator,

also on slide rule or logarithmic computations.
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4.10 Rules for Characteristics.

The following summary gives the important facts needed to

determine the charac^teristic of any number correctly or to place

the decimal point in an answer when the characteristic is known.

a. The characteristic of a number is a figure (or figures) with

a definite relation to the position of the decimal point, in accord-

ance with the following:

h. The normal position of the decimal point is immediately

after the first, or left-hand, significant figure. The characteristic

of the number is then zero. The number of significant figures has

no relation to the characteristic.

c. The characteristic tells how many places the decimal point

has been shifted from the normal position. If it has been moved

to the right, the characteristic is positive; if it has been moved to

the left, it is negative. The characteristic may be positive,

negative, or zero. Negative characteristics should have the

negative sign written above the characteristic. Every numerical

value has a characteristic, but its magnitude and sign will depend

solely upon the position of the decimal point in the value. The
table below indicates the relation between the position of the

decimal point and the characteristic.

DETERMININC; C'HARACTERISTIOS

Number C'haracteristit;

0.0005310
0.005316
0 . 05316
0.5316

5.3 1 6

5 3.1 6

5 3 1.6

5 3 16 ,

5 3 1 6 0 .

Normal position of

decimal point is

immediately
after the first

4

3

2

1

0

+ 1

+2
+3
4-4

(

The decimal point HAS BEEN
moved to the left, hence these*

characteristics are negative.

(Taracteristic for normal position

.

prhe decimal point HAS BEEN
< moved to the right, hence these

\ charae.teristics are positive.

digit.
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4.11 Logarithms and the Laws of Exponents,

The basic laws of exponents must be kept in mind when loga-

rithms are used; the laws will take the forms shown below.

Although the statements apply equally well to either natural or

common logarithms, the numerical examples are worked out using

the table of common logarithms (see Table 32, page 401).

Case I. Multiplication by Logarithms.

If z = xy with X = and y —
then

z — (a”‘)(a"‘)

But by definition : m is the logarithm of x to the base a, and n

is the logarithm of y to the base a; hence,

logo 2 = logo X -1- logo y
— m n

or, stated as a word equation,

TThe logarithm'] _ TThe sum of tho logarithms
L of a produ(rt J Lof the factors

Example 1.

D = (0.015) (882.)

logio D - logio 0.015 -f logio 882.

= 2.17609 4- 2.94547

= 1.12156

D = 13.23

Case II, Division by Logarithms.

X
If 2 = - with X = a”^ and y — a"

y
then

z
a"*

==

But by definition, m is the logarithm of x to the base a, and n is

the logarithm of y to the base a; hence,

logo 3 “ logo X - logo y
^ m -- n

or, stated in word-equation form,

rThe logarithm
“I ^ f The logarithm 1 _ f The logarithm 1

L of a quotient J “ Lof the dividend-) L of the divisor J
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Example 2.

* 707.2

logio E =* logio 17.68 logic 707.2

= 1.24748 - 2.84954

= 2.39748

E * 0.0250

Case III. Raising a Value to a Power by Logarithms.

If = (x)^ with X =
then

2 -
^ a^y

But by definition, m is the logarithm of x to the base a, hence

loga 2 = lOgaCa:*')

= ?/(log„ x)

= y{rn)

or, in words,

FTho logarithm of the ?/l _ [“The logarithm 1

L power of a number J Lof the number J

Example:
F = (54.3)1-8

log F — 1.8(logjo 54.3)

= 1.8(1.73480)

= 3.12264

.-. F = 1326.

Case IV. Finding a Root of a Value by Logarithms.

I
If 0 = xy with X =

then
m

But by definition, m is the logarithm of x to the base a; hence,

m

lOga 2 = loga (X)*'

2/.

m
"

y

or, in words,
PThe logarithm of -the number!

PThe logarithm of the yl ^ JL number J

Lroot of a number J y
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Example:

G = 170
,
800.

Iogg„!i>g!d70.§02:

o

5.23249

5

« 1.04650

/. G = 11.13

4.12 Working with Numbers Less than 1.

When a computer is using the table of common logarithms and

has one or more values less than 1 (decimal values), such factors

will, of course, have negative characteristics because the decimal

point has been moved to the left of the normal position, which

is after the first digit in a number. Because some computers fear

such negative characteristics and so do not like to work with

them, they avoid the necessity of learning the basic principles by

using an artificial device known as the nine minus ten system.

That is, the whole logarithm, characteristic as well as mantissa, is

made positive by adding 10 or a multiple of it to the negative

characteristic and indicating that 10 or the same multiple of it

should be subtracted from the logarithm. Thus: log 0.00432 =
3.63548 with the characteristic negative and the mantissa posi-

tive. It is changed into the 9-10 form thus:

3.63548

+ 10.00000 - 10

7.63548 - 10

The characteristic and mantissa are now both positive. To
change the characteristic to the actual value, subtract the added

lO^s from each part of the logarithm.

Although this system is mdely used and the engineer must be

familiar with it because many handbook tables use it, it is, never-

theless, a derived system and requires more time, entries, and

space. For problems involving decimal values and decimal

powers, either positive or negative, it is actually more laborious

than the method based upon thefundamental theory of exponents.

4.13 Using the Absolute Value of a Logarithm.

The logarithm of a number less than 1 always has a negative

characteristic; and since the mantissa is always less than 1, the
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true, or absolute, value of the logarithm is a negative value. For

example, log 0.478 = 1.67943, but the absolute value of the

logarithm is obtained by adding the characteristic and mantissa

algebraically. Now I is the same as —1.00000; so T.67943

really means -1.00000 + 0.67943 and (-1.00000 + 0.67943) =
— 0.32057, and the entire decimal part is noAV negative.

As just stated, the use of negative characteristics is usually

faster and is closer to basic principles than the 9 — 10 system.

In like manner the use of the absolute value of the logarithm will

sometimes reduce the chances of error and also save time in

calculations (see Example 2 below).

To illustrate the various methods and the use of each of the

three systems, 9 — 10, negative characteristics, and absolute

value of the logarithm, two examples will be solved by each

of the three methods. Because many computers are at a loss

when they meet such problems, each step in the solution will

be shown.

Example A - (0.0074)°^ (Positive exponent).

Negative eliuraciteristics
Abwolute value of the

logarithm
’ Nine minus ten ’ system

log 0.0673 « 2.812802 log O.OG73 = 2.82802

Add the negative character-

istic 2 and the positive man-

tissa 0.82802, giving the

absolute value of

log 0.0673 = -1.17198

log 0.0673 =• 8.82802 - 10

log A ^ 0.4(0.82802 - 2) log A - 0.4(- 1.17198] log A ^ 0.4(8.82802 - 10)

« 0.331208 - 0.8 = -0.468792 * 3.531208 - 4

Add and fiubtract 0.2 Add and subtract 1 Add and subtract 6

log .4 -= 0.53] 208 - 1 log A = 0.531208 - 1 log A * 9.531208 - 10
- T.531208 «= 1.631208 - T.531208

A - 0.3398 .% A « 0.3398 A » 0.3398

In the example above there is relatively little to choose among
the three methods; but since negative characteristics are the

fundamental form, it is perhaps the best of the three. When
negative powers are involved, the absolute value of the logarithm

is much the shortest and most eflSicient, as will be seen in the

example following.
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Example 2. 5 = (0.0673)"”®'* (Negative exponent).

Negative characteristics
Absolute Value of the

logaidthm
Nine minus ten system

log 0.0673 = 2.82802 log 0.0073 = 2.82802 log 0.0673 == 8.82802 - 10

= -1.17198

log A - -0.4(0.82802 - 2) log A = -0.4(-l. 17198) log A - -0.4(8.82802 - 10)

= -0.331208 + 0.8 « +0.408792 = -3.531208 + 4

Add the —0.331208 to the Add the —3.531208 to the

+0.8 •=» 0.468792 +4. « 0.468792

A = 2.943 .-. A * 2.943 .-. A = 2.943

Since (O.OCTS)”"® "^ is the same as
1

the problem can
(0.0673) 0-^

be solved as in Example 1 and then the value of the reciprocal be

computed. It is ol)vious, however, that such a method is very

inefficient, since Example 1 is longer than Example 2 by any of the

three methods and getting the reciprocal adds still another

operation.

4.14 Natural Logarithms.

The base mosi commonly used in engineering work is 10, and

logarithms computed fiom it are known as Briggs' or common
logarithms. Any other positive number (other than 1) might be

used as a base for a system of logarithms. A system that has

many important uses in theoretical work is the natural or Napier-

ian system based upon the numerical value of an algebraic series.

This base is denoted by the letter e and is an irrational number
having the value 2.71828+ . Many problems in mechanics can

be solved much more (juickly through the use of natural loga-

rithms than by common logarithms, and so a computer should be

familiar with their use. Although some engineers shun them,

there is nothing mysterious about them or their use in calculation.

The only point to be remembered is that the characteristic cannot

be determined by inspection. The easiest way to handle values

outside the range from 1 to 10 is to rewrite the value as a number
in this range multiplied (or divided) by the proper power of 10.

Thus, 2,760. becomes 2.760(10)®, and log^ 2760. becomes loge

2.760 + 3 log. 10. If the value is 0.02760, we write 2.760 (lO)"®;
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hence, loge 0.02760 becomes log. 2.760 + (-2 log^ 10) = log.

2.760 - 2 log. 10.

The small table at the top of Table 34, page 412, gives a con-

venient set of the values of log« 10”.

It is usually unnecessary as well as a waste of time to convert

natural logarithms to common logarithms; but when it must be

done, the conversion is simple and is expressed in word-equation

form, thus:

[

The logarithm of] ["The logarithm of! PThe logarithm of
a number to ~ the number iV to the base a to

the base 6 J L the base a J L the base b

To convert from natural to common logarithms, or the reverse,

we must use the values log,. 10 = 2.302585 and logio e —0.434294.

Example:

logic 4.32 = 0.63550

log, 4.32 = 1.46325

By the (filiation above

logic 4.32 = 0.434394 (log, 4.32)

= 0.434294(1.46325)

= 0.63550

and
log, 4.32 = 2.302585 (logic 4.32)

= 2.302585(0.63548)

= 1.46325

Since these multiplications are tedious, it is best to avoid them
by making the calculation in natural logarithms if the quantity e

is inherent in the problem.

4.16 Graphical Methods.

Graphical methods of presenting facts are of the utmost

importance in engineering, because a properly constructed chart,

graph, or diagram will transmit more information from mind to

mind in a given time than will any other known means of com-

munication. It has been said that a single picture tells more than

can be said in many thousands of words and that to a very great

extent the message is independent of language barriers. This is

true because the eye has the ability to pick up a myriad of facts in

a split second and to present them to the mind for interpretation

with the least chance of being misunderstood. Although eye

(iefects and inaccurate observation can be the cause of error in the



EXPONENTS, LOGARITHMS, AND GRAPHS 91

report to the mind of the things seen, the graphic and pictorial are

nonetheless the most vivid and effective methods of presenting

many classes of factual matter for study and use. Although
words are the most common tools for transmitting ideas from

mind to mind and will always be used, they do have many
shortcomings. Most words have more than one meaning, and

some have so many that only the context of the sentence or

paragraph will reveal the meaning to be chosen. Time and long

use affect words just as they do structures and machines; hence,

they become timeworn and obsolete. The language of Chaucer^s

day, for example, is almost a foreign tongue to the users of modern
English. The graphic language, however, suffers the least loss in

value with the passing of time. The conventionalized pictures

found on the walls of tombs in Egypt enable us to understand a

great deal of the ways of life in that ancient civilization. In

another part of the ancient East there once lived near Ur of the

Chaldees an engineer-king named Gudea. About 4500 years ago

he ruled one of the city-states, and instead of waging constant

wars he was famed as a builder. He constructed canals, roads,

irrigation systems, and transportation systems, even bringing in

goods from ports a year’s voyage away. We know that he was

also a designer and builder, because in a Paris museum there is a

headless statue of Gudea that tells the stor^. On his lap is a

large tablet showing his plan for the reconstruction of a temple to

the god Ningirsu. It is drawn to a scale that can be understood

by the engineer or architect of the present time. Beside the plan

lie the stylus for drawing and the scale used in laying out the

building. The words that he had inscribed on the skirts of the

statue are without meaning to all save a very fe\^^ men, but

the plan, the stylus, and the scale tell their story at a glance.

Words may thus be ambiguous or in a forgotten tongue, but the

graphic message need not be of dubious meaning. It is for this

reason as well as the saving of time that the engineer and the

architect are led to make increasing use of the graphic method for

showing what is seen, measured, or wanted.

In our highly technical civilization the graphic language must

be able to express many more ideas than were ever dreamed of by

old King Gudea. It has become necessary, therefore, to adopt

various conventions and standards that must be used if the

graphic material is to be correctly interpreted by all users. The
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ASA code No. Z 15.3, 1943, has been prepared and adopted by

the leading industries and engineering technical societies of the

United States. It should be followed unless the computer and

designer have airtight reasons for ignoring it. The man who
refuses to use such accepted codes is like the man who coins his

own words—he talks only to himself.

The graphic presentation of facts ranges from the common
blueprint to the exploded views used to teach beginners on assem-

bly lines in factories. It includes the whole family of graphs

plotted on one form or another of coordinate paper, pictorial and

semipictorial representations used by magazines for popular

consumption, the familiar bar charts, the pie charts, and the

three-dimensional figures. It also includes the entire group of

alignment charts, or nomographs, that are deseiwedly becoming

increasingly popular with engineers. It requires a volume by

itself to discuss all these varied forms of graphical presentations

of facts.

4.16 Coordinate Papers.

A wide selection of well-printed coordinate papers is available

to the engineer today. They vary in sheet size as well as in types

of rulings. Sheet sizes vary from 3.75 by 6.75 in. through 8.5 by

11 in. and 11 by 16.5 in. to rolls 150 yd long and 12, 22, 32, and

33.5 in. wide. The most important rulings are the profile,

rectangular, metric, logarithmic, semilogarithmic, isometric,

polar, and triangular coordinates. These may be obtained in

various colors of ruling and on tracing cloth, drawing paper, or

tracing paper. In addition to these there are other rulings for

specialized uses.

The rectangular coordinate rulings are by far the most impor-

tant of any. The ones usually listed in catalogues are those

with 4, 5, 6, 8, 10, 12, 16, and 20 lines per inch. Probably the one

that is used more than all others combined is the one ruled 10

lines per inch. It is often called a 10-line paper. The advantage

of this paper lies in the ease with which values can be plotted or

readings be made from it.

4.17 Planning a Graph.

When it is necessary to plot a graph from a series of observed or

computed values, the engineer should do some planning before he
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starts his graph. He must consider and weigh each of the follow-

ing items: range in the data, precision of the data, units involved,

desired precision of the graph, s'iase of probable graph, paper size,

and kinds of rulings available. It should be recognized that

changing one of the items can easily involve one or more of the

others. Thus, a change in the range of the data may drastically

affect the size of the graph and its precision. A restricted choice

in coordinate papers may seriously limit the scales used, hence

the precision of readings from the graph. For such reasons,

therefore, good judgment is necessary in the planning and draw-

ing of graphs.

One very important phase of this planning work is that of

choosing the scales to be used. The scales must be chosen so that

the paper is used to best advantage, the graph fills the sheet

reasonably well, and no awkward fractions are encountered in

estimating even the smallest readings on the sheet. The ASA
specifications limit the choice of scales on 10-line-pcr-inch paper

to 1, 2, and 5 units per inch. These may have the decimal point

shifted either way to conform to the range in the data. Any
other values such as 1 .5, 3, 6, 7, or any other prime or fractional

number are thus definitely ruled out. If, for some valid reason

the worker must use 3, 6, or 12 units per^nch, then he is compelled

to get a 6- or 12-line paper. If the scale must be 4, 8, or 16 units

per inch, then corresponding papers have to be used. Notice

that in every such case, however, one can no longer decimalize the

small spaces but must use common fractions. This is certainly a

much slower process in plotting or reading the graph.

4.18 Avoid Some Common Blimders.

Without doubt the worst of several common blunders is that of

omitting the zero of the dependent variable and using an arbitrary

value for the base line. Of all the blunders made, the error of

^^suppressing the zero^' is the one most severely condemned by
every authority in the field of graphics. The excuse always

offered is that the worker wants to magnify the minor variations

so they can be seen better.^' It should be remembered that one

is entirely on the defensive when he omits the zero for either axis,

especially the dependent axis, and must be able to give valid,

airtight reasons to justify his violation of this fundamental rule.

Another common blunder is that of moving the coordinate axes
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into the ruled grid and then putting calibrations and captions

inside the coordinate rulings. This makes these entries very hard

to read; and when the graph is to be reproduced by blueprinting

or photography, they become almost illegible. The white margin

is left on the sheet by the manufacturers for calibrations and

captions
;
why not use it ? Shifting the axes also limits the user on

scales, because what was a 10-in. vertical axis on a 7 by 10 grid

becomes only 8 or 9 in.

When the white margins are really too narrow by an inch or

more, the worker probably should go to a larger sheet size. If

this is not feasible, then a grid of the proper size should be drawn

on a sheet of desired margins. Another way to get the same

result is to cut a grid of proper size from a prepared paper, then

mount it on a plain sheet of the desired size and margins. What-
ever subterfuge may be used, however, the draftsman should keep

his calibrations and captions out of the ruled grid.

When the magnitudes of the values plotted are so large that the

margins become really crowded, it is often possible to increase the

size of the units used and indicate this fact in the caption. If,

for example, the stresses on a structural member are to be plotted

and the data are in pounds per square inch ranging from zero to

100,000 lb, we have the fhoice of the scales, 1000 psi or 10 kips

per sq in. per in. (The kip is 1000 lb.)

A third common blunder is that of extending the curve beyond

the plotted data (extrapolation) without indicating in any way
that the extended line is a guess. Any such extrapolated portions

of a curve should be distinguished by using dotted or dashed lines

contrasting with the known portion of the graph. Failure to do

this produces a misleading graph, as it gives a semblance of

validity to what is merely a guess.

Blunders in the use of papers having one or more logarithmic

axes are usually in regard to the numerical values printed on the

sheet. The 10-line paper has no numbers printed in the margins

of the sheet, because several values can be assigned to the calibra-

tions as well as decimal-point changes. On any paper with loga-

rithmic scales, however, such as the semilogarithmic papers or

those with logarithmic scales on both the x and y axes, one cannot

change the value of the printed numbers. The only change

possible is a shift of the, decimal point, right or left, as necessary to

get into the range of the data. The line marked 5, for example,
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may be changed to 0.5, 50, 500, etc., but never to 1.5, 2.5, or any

other number. On papers having two or more cycles of the

logarithmic scale one must be careful to complete the calibration

of each cycle by entering the necessary zeros and decimal points.

This is of vital importance, as otherwise serious errors can occur

in the plotting and reading of value.



CHAPTER 5

THE ENGINEER'S SLIDE RULE

6.1 Introduction.

The purpose of this chapter is to help the engineering student

develop greater speed and accuracy in his slide-rule calculations.

Engineers frequently lack confidence in this timesaving instru-

ment because they have such a hazy knowledge of why it works at

ail. Unfortunately, many slide-rule instruction books seem to

imply that the slide rule is just another and rather mysterious

mechanical gadget. Such books give a series of arbitrary settings

to be memorized atid used blindly. These instructions sometimes

dodge the explanation of the basic principles that underlie the

design and operation of all slide rules and leave the user to trust in

vague, machinelike, trick settings memorized by rote.

No one can develop a sure skill in any area of knowledge on

such a poor foundation. I3e(;ause the great majority of slide rules

are used by engineers who have to be familiar with the use of

exponents and logaritluns, this chapter will endeavor to develop,

step by step, a sound engineering method of using the rule.

There will be no suggestions for fancy trick settings to be memor-

ized blindly. A sure yet simple method of determining the

location of the decimal point will be demonstrated, and proved

usefulness is the basis for every suggestion.

Unfortunately, locating the decimal point correctly is brushed

off as a matter of minor importance by some writers. As a matter

of fact, a mistake of one place in locating the decimal point is a

blunder five times as great as one in which the initial digit is half

or double what it should be. When a writer tells a slide-rule

operator to make a series of longhand or mental calculations in

order to locate the decimal point, he is ignoring the fact that there

is no gain whatever in using the slide rule if the computer has to

work out the correct answer by some form of arithmetical

figuring.

The characteristic method used in this book is the result of

the pooling of the ideas of several independent workers in various

96
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sections of the country. It has been thoroughly tested in the

field, in the classroom, and in engineering offices for thirty years

or more. No failures or exceptions to the method have been

discovered in all this time. As a matter of demonstrable fact,

none can occur, because the system is founded upon the mathe-

matically true laws that govern all logarithmic operations. The
computer who uses the characteristic method is independent of all

the approximate solutions or rough calculation processes or

calculating by tens. He who uses this system can place the

decimal point swiftly and with unerring precision in 100 per cent

of his slide-rule problems. It is a technique that can be applied

with the same reliability whether the actual numerical figuring is

done on a calculating machine, on the slide rule, by logarithms, or

by cut- or full longhand. Thus with only one method to learn

and, as will be seen later, only one thing to do, the mind of the

user is not cluttered with other artificial or empirical rules.

The student will find that the approach to the entire subject of

slide-rule calculation is simple and straightforward, each opera-

tion being based upon the fundamental laws of exponents. These

laws of exponents as developed in the preceding chapter and

carried on throi%;h the work in logarithms furnish all the founda-

tion needed for a thorough understanding of the principles used in

constructing the slide-rule scales and in the operation of the slide

rule. Thus there need be no mystery about this invaluable

engineering tool. Even the person who does not care to study the

algebra of exponents and logarithms can use the rules for deter-

mining characteristics as given in the table on page 84 and learn

to use the characteristic method Avith confidence and certainty.

6.2 On Choosing a Slide Rule,

For the great majority of engineers, and especially for those

who have to carry a slide rule about with them on the job, a rule

of the single-faced type such as the Polyphase Mannheim or the

Mannheim Special is usually the wiser choice. It is to be pre-

ferred to the duplex type because it not only is much easier to

operate but is lighter and quicker to adjust and holds its adjust-

ment much better than any of the double-faced rules. It is

smaller and will stand a lot of rough treatment yet is as accurate

as any rule and has all the scales needed by the average engineer.

Only a few specialists in certain lines of work, where problems
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with fractional exponents are encountered frequently, really are

justified in buying a slide rule of the log-log type. These are

double-faced rules and should be very carefully checked at the

time of purchase. These slide rules have 15 or more scales on

them, and any variation in scale length will introduce errors that

will preclude the doing of precise work such as a fine slide rule

should permit. It is a tedious job to adjust one of these rules so

that all of the scales and the hairlines on the runner are in perfect

alignment. They will not stand as rough treatment as will rules

of the Mannheim type and should not be dragged around in the

field or thrown around on a drafting table. They should be kept

in the case when hot in use, and the owner should form the habit

of checking their adjustments at frequent intervals.

The prospective purchaser will discover that numerous names

are given to their slide rules by the makers. Most of them are

really descriptive of the scales that are the distinctive feature of

each model. Regardless of make or model, there are certain

basic scales that should be on an engineer's slide rule. There are

at least six types of rules and three makes that have the following

essential scales: D, C, Cl, CF, DF, A, K, and L.

If a rule lacks the Cl, CF, and DF scales, its owner can expect

to make at least one more setting on many problems than will the

owner of a rule that has these scales.

Since the quality and prices of slide rules vary considerably,

there is a wide range of choice. Any slide rule should be inspected

carefully before purchase. The D, C, Cl, A, K, and L scales

must be exactly the same length, and the tt marks on the CF, and
DF scales must line up exactly with the indexes of the C and D
scales. Errors in scale length are permanent defects and cannot

be corrected by any adjustments; hence, any rule having errors in

scale length exceeding the thickness of a calibration line should be

rejected.

6.3 Suggestions on Care and Adjustment of the Slide Rule.

Remember that a well-made slide rule is a precision instrument

that will yield the owner a lifetime of excellent service if proper

care is taken of it. If the face of the rule becom.es soiled, it can

be wiped with a rag that has been dampened slightly, but strong

soaps, alcohol, or cleaning fluids should never be used. They
may remove the markings or stain the celluloid facings. The rule
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should be kept away from strong fumes of chemicals; otherwise

the facings may be disfigured permanently. Do not leave the

rule in a place where it will b»i subjected to great changes of

temperature or humidity. If the etched line on the runner fills

with dirt, tear a strip of paper and drag it under the runner of

duplex rules. If this will not work, it may be necessary to remove

one runner glass, clean each glass, and then readjust the hairlines.

When the black pigment in the etched line wears out, either

printer's ink or mimeograph ink can be rubbed into the line and

allowed to dry. The excess ink on the glass can be scraped off

with a razor blade.

For some reason a few men are ‘^all thumbs when it comes to

making settings of the slide or the runner. When using a rule of

the duplex type they put one hand on top of the rule, wrap their

fingers around it, and take a firm grip. Then they complain that

the slide is too tight. The stock or body of the rule should be

held between the finger tips and preferably, if space permits, with

the first finger and thumb holding only that part of the stock near

the operator. The slide should be held by the edges, never by the

calibrated faces, and with the fingers next to the body of the rule.

Close, accurate settings are made by pinching the slide with

the thumb and finger close against the end of the stock. Then
with a slight rolling movement of the first finger the slide can be

brought to the exact setting without sticking or jumping. In

like manner the runner should be set by crowding it to position

with a similar rolling movement of the fingers. The fingers

should really grip the rule, not the runner at all.

6.4 Historical.^

The close connection between logarithms and the slide rule is

seen when one is familiar with the story of its development. It

was in 1614 that John Napier described his table of natural

(Napierian) logarithms. Shortly afterward Henry Briggs sug-

gested using 10 as a base for a system of logarithms. He jour-

neyed to Scotland to see Napier, who liked the idea. Together

they worked out the table of common, or Brigg^s, logarithms, an

account of which was published in 1619. A year later Edmund

^ For a compirtc account of the development of the slide n^le consult

Cajobi, Flobian, a History of the Logarithmic Slide Rule,” Engineering

News Publishing Company, 1909.
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Gunter made an invention that was the direct ancestor of the

slide rule. He plotted the mantissas of the common logarithms

of the numbers from 1 to 10 along a straight line, then added or

subtracted the logarithms of numbers as distances on the scale.

He used a pair of dividers for adding or subtracting the distances

that corresponded to the logarithms of the factor in his problem.

The scale shown in Fig. 8, page 102, is a Gunter^s line broken into

four short sections. If matched properly into a single long scale

this line could be used exactly as Gunter used his scale. This

logarithmic line of numbers^ as it was called, was used quite

generally in London and by ship’s navigators for many years.

Gunter’s line is far from being obsolete today, even though the

slide rule has replaced it for computing work. Not only is this

logarithmic scale the basic scale for the slide rule, but it appears

in the spacings of the rulings of a series of logarithmic and semi-

logarithmic coordinate papers. The construction of many of the

nomographs seen so frequently today in engineering literature

depends upon the reliability and simplicity of Gunter’s line. The
most efficient four- and six-place tables of logarithms available

today are Gunter’s lines some 60 and 360 ft long, respectively,

cut into short sections and assembled in book form. ^ Logarithms

and antilogarithms can be obtained from this table in less than

a third of the time required by any known numerical table of

equal capacity. The engineer owes a great debt to Edmund
Gunter, the man who also devised the surveyor’s chain (used for

centuries in land measurements), a quadrant for measuring the

sun’s azimuth, and instruments for aiding navigators, and dis-

covered the variation in the declination of the magnetic compass.

A few years after Gunter made his famous logarithmic scale

an English clergyman. Rev. William Oughtred, invented the

logarithmic sliding scales. He did not make his invention public

until about 1630. He studied and taught mathematics as a

hobby, and to him goes the credit for the first use of several

symbols for mathematical operations as well as the invention of

both the rectilinear and circular types of slide rule. The circular

rules come and go, but the rectilinear form has continued to hold

the favor of its users for over 300 yr. About 1657 a surveyor

named Seth Partridge devised a rule of what is now known as the
%

1 Lacroix, Adrien, and Charles L. Ragot, Graphic Table. of

Logarithms and Antilogarithms/’ Macmillan, 1927.
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duplex design. All these slide rules were used without an indica-

tor or runner. There is considerable doubt as to the inventor of

the runner, but evidence exists that the credit should go to John
Robertson who described his rule with a runner about 1775.

During the three centuries that the slide rule has been known
many scales have been invented and scale arrangements sug-

gested, but the basic C and D scales have kept their place as the

most important scales on the instrument. That is why a com-

petent understanding of these two scales is absolutely essential.

About 1851 a French lad, 19-year-old Am6d(§e Mannheim, a

lieutenant in the Army, devised the shape of rule and combination

of scales that bears his name. The Mannheim slide rule is

probably the favorite of more experienced users than all the

complicated rules on the market today. It is doubtful if any

user realizes the full capacity of the Mannheim type of slide rule.

Certainly few men use or need to know all the settings that are

possible. The scale arrangement of the Mannheim special rule

(devised in 1931 by F. C. Dana) carries the CF and DF scales in

addition to the usual Mannheim scales. With this scale arrange-

ment (whether on the Mannheim or duplex types of rule) there

are over 150 different possible settings that require either the use

of the runner only or not more than a single setting of the slide.

These settings will handle problems with from one to four factors

(the fourth factor being tt) . This is certainly enough capacity for

most operators and solves problems that many men will never

meet; hence, no one should attempt to memorize such a long list

of trick settings. If one of them is encountered frequently in

routine work, it is then time to think about memorizing it.

Unless the worker knows that he will have to solve frequent

problems of the types A = (4.36)^-^® or B = (0.0142)°-2, th^re is

no need to buy the more expensive and complex rules of the log-

log duplex type. If, however, such problems are routine matters,

as in electrical and thermodynamics problems, log-log rules are

indispensable. Some engineers like to keep both types of rules

handy, a rule of the Mannheim type for the common, “run-of-

mine'’ problems and a log-log rule for roots and powers and for

work with trigonometric functions.

These log-log rules are a collection of logarithmic scales based

upon both the common logarithms (base 10) and the natural

logarithms (base e). This rule has all of the basic scales found on
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the Mannheim Special and, in addition, another set of log-log

scales. These LL scales are really natural (Napierian) logarithms

plotted to work in conjunction with the scales plotted to the base

10, so that a problem such as A = (4.36) is changed to this

form, loge A = 1.23 (log^ 4.36). The multiplication 1.23 (log«

4.36) is then carried out directly by means of the proper LL scale

and the C scale on the slide. Such problems can, of course, be

solved on the ordinary slide rule, but the making of two extra

settings is required.

6.6 Precision of Slide-rule Readings.

Most of the errors made by slide-rules users are mistakes in the

setting and reading of values on the various scales. The student*

should, therefore, learn to observe, to train his fingers in setting

the slide or runner, and to use care in all settings and readings.

A well-made slide rule is a precision instrument, justifying its

owner^s best efforts to use it as it should be used. Even though

the given data may require only three-digit precision, it is not a

bad idea to form the habit of reading four digits and then round-

ing off the answer to the required precision. Such procedure

is in the spirit of Ilolman^s rules for computation as given in

Chap. 6.

The scales shown in Fig. 8, page 102, are a reproduction of the

C and D scales but enlarged several times, then broken into four

sections. A portion of each section is numbered down to the

smallest calibration mark, so the beginner can see clearly the way
in which the value of a setting is read.

The slide-nile student should remember that the slide-rule

scales most often used (the C, D, Cl, CF, DF scales) are cali-

brated on the decimal basis. That is, the full scale length from

1 to 10 is divided into 10 parts, then each tenth into 10 parts.

These, in turn, are divided into smaller parts; but because the

subdivisions are now becoming rather small, the number of them,

hence their value, varies with the particular section of the rule in

which they lie. Thus, from 1 to 2, the smallest set of calibrations

gives single-unit changes in the third digit, such as 161, 162,

163, etc. From 2 to 4 the calibration marks give the even values

only, as 214, 216, 218, etc. Lastly, from 4 to 10, the steps are five

units each, thus, 610, 515, 520, 525, etc.

In all sections of the rule, however, the careful worker can
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estimate the values to one-tenth of the space between successive

calibrations; hence, the above values become 1610, 1620, 2140,

2160, 5100, 5150, etc., all being four-digit numbers. It is seen,

then, that from 1 to 2 the calibrations indicate a lO-unit change

in the fourth digit between successive marks: from 2 to 4, a

20-unit change; from 4 to 10, a 50-unit change. If the worker

will estimate to a tenth of a space, he can read values such as the

following: from 1 to 2, 1611, 1612, 1613, 1614 (each unit); from

2 to 4, 2140, 2142, 2144, 2146 (even values); from 4 to 10, 5100,

5105, 5110, 5115 (changing by 5's).

Values such as 2141, 2143 are impossible unless the reader can

estimate to twentieths of a space, which is very doubtful. Values

•like 5112, 5113, 5114 can be rated as impossible because the

human eye cannot divide the space between marks into fiftieths

and thus detect the difference, for example, between 12 fiftieths

and 13 fiftieths. It is, therefore, folly to record such improbable

values in answers.

It is necessary for the beginner to practice, practice, practice.

Do not be misled into thinking that a magnifier will increase the

precision of the readings. It cannot do so, since the basis of

the estimate is uncdianged. All that the magnifier does is to

reduce eyestrain and sometimes help in setting the hairline of the

runner.

One excellent way of devising practice problems for home study

is to practice the reading of the reciprocals of numbers. For

example (since the Cl scale gives the reciprocals of the values on

the C scale), set the runner to 8150 on the C scale. You should

read 1227 on the Cl scale. Since the tolerance is always one-

tenth of a calibration space, acceptable readings would be 1226,

1227, or 1228. Compare your reading with the digits in the

reciprocal of 815 as given in a table of functions of numbers such

as the one in the Engineering Problems Manual.'^ It is 122699;

hence, 1227 is the best possible slide-rule reading.

Try setting the runner to 3800 on the C scale. It should

read 2632 on the Cl scale. Compare this with the value in the

text, 2631579 or 2632 if rounded off to four digits. Since the

allowed tolerance is one-tenth space, or 0.1 (20 units) ~ 2 units,

the permissible readings would be 2630, 2632, 2634.

To get a reading in the third group, set the runner to 1650 on
the C scale. The text gives the answer as 6060606 or 6061 to four
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digits. The tolerance is one-tenth space, or 0.1 (50 units) = 5

units; hence, acceptable readings v^ould be 6055,^6060, 6065.

6.6 The Slide Rule Is a Logarithm Table.

The slide rule is essentially a group of Gunter^s logarithmic

scales of various lengths conveniently arranged for the mechan-

ical addition and subtraction of logarithms. Many users of

the instrument do not realize that the rule is based upon loga-

rithms, and as a result they are not able to make full use of its

possibilities. They rely upon memorized settings, guess at

decimal points, and frequently do not have a great amount of

confidence in the results obtained with it. If the origin of

the instrument is kept in mind, the mystery surrounding its

manipulation vanishes, and there is no need of memorizing

trick settings.

The following facts should be kept clearly in mind when
working with the rule

:

a. The slide rule is a graphic logarithm table.

b. Logarithm tables, numerical as well as graphic, give the

mantissas only.

c. The mantissa ^ determine only the sequence of digits.

d. Characteristics are used to locuite the decimal points.

e. Characteristics are not shown in either form |)f logarithm

table.

/. Characteristics of the various terms are determined by

inspection.

g. The determination of the decimal point in logarithmic

computation may be considered as an independent operation.

h. Since the slide rule is based upon logarithms, the same

laws apply to its operation as to numerical logarithms and

therefore

:

The decimal 'poi'rd can be as definitely located with a slide rule

as with numerical logarithms,

6.7 Graphic and Numerical Logarithms.

The principal difference between the two forms of logarith-

mic computation is this; In one case numbers must be looked

up, recorded, then added or subtracted; in the other the com-

plete solution of the problem is obtained by using distances

instead of numbers. Thus:
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For multiplication

. With numerical logarithms,

add the logarithms.

. With the slide rule,

add the distances that represent the logarithms.

For division

. With numerical logarithms,

subtract the logarithms.

. With the slide rule,

subtract the distances that represent the logarithms.

6.8 Multiplication on the Slide Rule.

This is a process of adding distances that represent the man-

tissas of the logarithms. The sequence of operations is as

follows:

a. Move slide (C scale) so that its index comes to the first

factor on the D scale.

b. Set runner to second factor on the slide (C scale).

c. Read answer on the D scale under the runner.

This operation has laid off the mantissa of the first factor on the

D scale, the mantissa of the second factor on the C scale, and their

sum is read on the D scale.

Example 1 (see Fig. 9). Multiplica-

tion (2) (4.5).

a. Move the slide so the initial index

of the C scale coincides with 2 on the

D scale.

h. Set the hairline of the runner to

4.5 on the C scale.

c. Read the answer, 9.0 on the D scale under the runner.

These operations have really laid off a distance corresponding

to the mantissa of 2 on the D scale, the length corresponding to

the mantissa of 4.5 on the C scale, and the sum of the two lengths

is the mantissa of the product.

6.9 Division on the Slide Rule.

This operation is performed by subtracting the distance corre-

sponding to the mantissa of the divisor from that of the dividend.

The process is as follows:

^Logof 4^.S

-IT
lO0. 2

± ^

TT7TTT

Zgy o/ r^U4.Sj

S 6 7S^4

Fia. 9.—Multiplication.
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. Set the runner to the numerator on the D scale.

. Move the slide so the denominator comes on the C scale

under the runner.

c. Read the answer on the D scale under either index of the

slide (C scale) (See Fig. 10).

This operation has set the numerator on the D scale; the de-

nominator over it on the C scale; the quotient is on the D scale.

Example 2 (see Fig. 10). Division,

9.6 divided by 4.0.

. Set the runner to 9.6 on the D
scale.

. Move the slide to the right until

4.0 on the C scale lies under the

runner.

c. Read the quotient 2.4 on the

D scale under the initial indcix of the C scale.

These operations have laid off a length on the D scale cor-

responding to the mantissa of 9.6, then subtracted the length

on the C scale corresponding to the mantissa of 4.0. The
remaining length on the D scale corresponded to the mantissa

of the quotient, which is n^ad as 2.4.

6.10 The Slide Does Most of the Work.

Beginners should remember that most of the work is done by-

means of the slide and the runner. The first factor and the

answer are the only values on the D scale; all the rest, no matter

how long the problem may be, are brought into the settings by

use of the slide. The runner is merely a convenient pointer

used to hold values on the D scale and to speed up the la^fing

off of values on the slide. It should also be noted that settings

of the slide and the runner alternate. To make two successive

movements of either means that one of the terms has been

thrown away. It is also worth remembering that in multiplica-

tion the answers are always read under the runner but in division

the quotient is always under an index of the C scale. It may be

under either the initial or the final index, depending on the

magnitude of the respective factors, but the quotient is always

available.

6.11 Characteristics and the Slide Rule.

When numerical logarithms are used, the characteristic is

added to the mantissa and the two are taken together. This

Fig. 10.—Division.
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cannot be done with the slide rule, however, and the character-

istics must be treated separately. This is a simple matter,

though, and takes less time than other methods of determining

decimal points.

In problems involving the addition of numerical logarithms,

it frequently happens that the mantissas add to more than l.O,

and so 1 must be carried over into the column of character-

istics, Also in subtracting numerical logarithms, the mantissa

Fici. 11.—Multiplication.

Fig, 12.—Multiplication.

of the divisor may be greater than that of the dividend, and
it becomes necessary to borrow 1 from the characteristics of

the dividend. For example,

o. Multiply (6.0) (8.0).

log 6 = 0.77815

+ log 8 = 0.90309

1.68124 = log 48.

b. Divide 30. by 9.

log 30 = 1.47712
- log 9 = 0.95424

0.52288 =• log 3.3333

If these same problems are solved on the slide rule, it will be
found that there is an exact parallel between the numerical

and graphic methods. The distances representing the man-



THE ENGINEER'S SLIDE RULE 109

tissas will add to one full scale length or more. This corre-

sponds to carrying 1 into the characteristic column; hence, a

note should be made each time this occurs. If the mantissas

are being subtracted, it may be necessary to borrow’^ another

scale length just as 1 may be borrowed from the column of

characteristics. A record should be made when this occurs.

Fia. 13.—Division.

In both of these cases (if the full-length C and D scales are

being used), the answer can be read only by shifting the slide

so that its relation to the D scale is the same as it would have

with respect to a second D scale were it available and the slide

in the normal position (see Figs. 11 and 13).

Since there is but one section of the D scale, the C and D
scales must be in the position shown in Figs. 12 and 14.

Fia. 14.—Division.

There is a simple, quickly applied, and absolutely accurate

rule for decimal points based upon the foregoing facts. This

method completely does away with the need of longhand check-

ing, mental shifting of the decimal point, approximat;e calcula-

tions, or any other so-called ‘‘system^' not based upon logarithms.

6.12 The Initial Index.

In the following rule for the location of the decimal point,

reference is made to THE Initial Index. There are many
indexes on a rule; those at the beginning end of any scale are

^Mnitial indexes,'^ and those at the far end are final indexes/'
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There is one initial index, however, that is so important that

it is THE Initial Index.

THE Initial Index is the beginning end of the C scale for all

operations. The graduations begin at the initial index and have

increasing values as the final index is approached.

When the slide is in the position shown in Figs. 12 and 14, it

is said that THE Initial index projects, and there must be a

change made in the characteristics. THE Initial Index never

projects unless such a change should be made.

6.13 Rule for Decimal Points.

If THE Initial Index of the C scale projects after any factor

has been set on the slide, add 1 to the characteristic of the factor

that has just been set on the slide.

6.14 Multiplication.

In multiplication this 1 is added to the characteristic of the

multiplier. The characteristic of the answer is the algebraic

sum of the characteristics of the factors plus any added l^s.

6.16 Division.

In division this 1 is always added to the characteristic of

the divisor. Never add it to the characteristic of the dividend;

the answer will be one hundred times too big. The char-

acteristic of the answer is obtained by subtracting the algebraic

sum of the characteristics of the divisors (including added Ts)

from the algebraic sum of the characteristics of the factors in

the dividend (including any Fs added to them.)

6.16 There Are No Exceptions to the Rule.
,
I

The following facts should be remembered, because the rule

for locating decimal points is really extremely simple. All who
have trouble with it do so because they are looking for excep-

tions and are inclined to create troubles where none exist.

. There are no exceptions to the rule for locating decimal

points.

. It is the initial index of the C scale that is watched. When
the C scale is inverted to make the Cl scale, the initial index

is, of course, at the right-hand end. It is watched, therefore.
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for all factors set on the Cl scale, but it is still THE Initial

Index and there is no change in the rule for decimal points.

When the folded, CF scale is us(^d, watch the initial index of the

Cl scale for projections. There is again no change or exception

to the rule for decimal points.

c. It should be remembered distinctly that movements of slide

and runner have nothing whatever to do with above rule for

decimal points. It is simply a case of noting the position

of the initial index of the C scale after each and every factor

has been brought into the solution by setting it on the slide.

d. Under no circumstances is 1 to be added to a factor set

on the D scale, nor is 1 to be subtracted from any characteristic.

e. There is only one thing to do, namely, if THE Initial Index

projects (and only then), add 1 to the characteristic of the term

just set.

/. Projection of the final index is meaningless. Ignore it all

together.

g. For continued operation involving three or more factors

note the position of THE Initial Index as soon as each new value

is set on the slide; and if the index projects, record the added 1

to its characteristic immediately.

6.17 Sequence of Operations.

While becoming familiar with this method, the beginner

should form the habit of going through the following steps in

his slide-rule work.

a. Set the work up in form suitable for slide-rule computa-

tion.

fo. Indicate the logarithmic characteristic of each term some-

where close by. (Just above the multipliers and below the

divisoi's is convenient, or in the computation space to the left

opposite the operation. See Fig. 1, page 50.)

c. Note the position of THE Initial Index as soon as each

new factor is set on the rule.

d. Record the added characteristic if the index projects.

Remember that this extra 1 is invariably added to the character-

istic of the term just laid off on the slide, regardless of whether it

is division or multiplication that is being performed.

c. Determine the characteristic of the answer.

/. Check the results by taking the factors in reverse order.
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6.18 Typical Problems.

Example 1.

2 5

X « (165.5) (0.004750)

a. Record the characteristics of the factors, 2 for the 165.5 and 3 for

the 0.004750, just above the factors.

b. Move the slide so that the left index of the C scale conies to 165.5

on the D scale.

c. Set the runner to 4750 on the C scale.

d. Note the position of THE Initial Index. It does not project. Hence,

the characteristic of the product is 2 -f 3 — I.

e. Read the digits in the answer, 7860, on the D scale, under the runner.

/. Record and point off the answer, 0.7800.

Example 2.

5 3+1
y = (843000.) (0.004970)

a. Record the characteristics of the factors, 5 and 3 respectively.

h. It should be obvious that the product cannot be read with the slide

projecting to the right. Move the slide so that the right-hand (final) index

of the C scale comes to 8430 on the D scale.

c. Set the runner to 4970 on the C scale.

d. Note the position of THE Initial Index, It is projecting. There-

fore, 1 should be added to the characteristic of the factor. 0.004970, just

set on the C scale. Hence, the characteristic of the product is

5 4- (3 4- 1) = 3

e. Read the digits in the answer, 4190, on the D scale under the runner.

f. Record and point off the answer, thus, 4,190.

Example 3.

3

6270.
^ 0.03920

2

a. Note the characteristics of the factors as 3 and 2 respectively.

b. Set the runner to 6270 on the D scale.

c. Move the slide so that 3920 on the (
’ scale lies under the ruimer.

d. Note the position of THE Initial Index. It does not prQject. Hence,
the characteristic of the answer is 3 — 2 = 3 -f 2 = 5.

€. Read the digits, 1599, of the quotient on the D scale under whichever
index lies within the limits of the D scale. It is the left index for this

problem.

/. Record and point off the answer, thus, 159,900.

Example 4.

5

0.03260w =»
92.50

1 +1
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. Note the characteristics of the factors as 2 ajid 1 respectively.

. Set the runner to 3260 on the'D scale.

e. Move the slide so that 9250 on the O scale lies under the runner.

d. Note the position of THE Initial Index. It is projecting. There-

fore, 1 should be added to the characteristic of the factor, 9250, that was
just set on the C scale. Hence, the characteristic of the quotient is

2~(l-fl)«2-2-4

e. Read the digits, 3520, of the quotient on the D scale under whichever

index lies within the limit of the D scale. It is the right index for this

problem.

/. Record and point off the answer thus 0.000,352,0.

6.19 Using the C, D Scales for Three or More Factors.

Some slide rules have only the basic C and D scales for the

full-length, working scales. It is, therefore, important for a

computer to know how to solve his problem efficiently when it has

three or more factors and only the C and D scales are available.

Most of the three factor problems are of the types outlined below.

X
Case I. w — - (z)

y

a. Set the runner to x on the 1) scale,

h. Move the slide so that y on the C scale lies under the runner. Note the

position of the initial index of the C scale.

c. Set the runner to z on the C scale. Note the position of the initial

index of the C scale.

d. Read the answer on the D scale under the runner.

e. Compute characteristic of the answer.

Case n. w = xyz

a. Move the slide so that the proper index comes to x on the D scale.

h. Set the runner to y on the C scale. Note the position of the initial

index of the C scale.

c. Move the slide so that the index is under the runner.

d. Set the runner to z on the C scale. Note the position of the initial

index of the C scale.

€. Read the answer on the D scale under the runner.

/. Compute the characteristic of the answer.

X
Case III. w - —

yz

a. Set the runner to x on the D scale.

5. Move the slide so that y on the C scale lies under the runner. Note the

position of the initial index of the C scale.

c. Set the runner to the index of the C scale that is inside the rule.

d. Move the slide so that z lies under the runner. Note the position of

the initial index of the C scale.
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e. Read the answer under the index of the C scale that lies inside the rule.

/. Compute the characteristic of the answer.

5.20 The Inverted or Cl Scale.

Most of the better slide rules have a special scale on the slide

which serves several iiseful purposes. Some manufacturers mark

it Cl, meaning C inverted; another maker may label it CR, for C
reversed; a third may call it the R, or reciprocal, scale. In each

case it is simply the familiar C- scale turned end for end. By
means of it the reciprocals of numbers may be read with the aid

of the runner only. If th(' runner is set to a value on the C scale,

its reciprocal will lie on the Cl scale under the runner. The

reciprocal scale is usually numbered in red ink so that it will not

be confused with other scales.

Two of the three factor problems, Case II and Case III, will

generally be converted to single-setting operations if the Cl scale

is used. Every time that a resetting of the slide or runner can be

avoided, precision is gained and the chances for a mistake are

reduced. Remember, when reading the instructions to follow,

that THE Initial Index is not left behind when the C scale is

turned end for end to make the CT scale and so it lies at the right-

hand end of the slide for every factor that is laid off on the Cl
scale.

Case I. w The Cl scale is not used for this case.

Case II. w = xyz

Notice that dividing x by the reciprocal of y does not change

the value of the equation in any way but that it does convert

Case II into a form resembling Case I. In this way the move-
ments of slide and runner become exactly the same as Case I, and
in most problems Case II becomes a single setting job, thus:

a. Set the runner to x on the D scale.

h. Move the slide so that y on the Cl scale lies under Ihc runner. Note
the position of the initial index of the Cl scale because y was laid oflf on it.

c. Set the runner to z on the C scale. Note the position of the initial

index of the C scale because z was laid off on C scale. .

d. Read the answer on the D scale under the runner.

X
Case III. w =

yz ©
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It is apparent at a glance that multiplying by the reciprocal

of z does not change the equation in any manner but it does con-

vert Case III into a form like Case I. Again the movements of

slide and runner are the same as Case I and consequently a

single-setting job for most problems, thus:

a. Si't the runner to x on the D scale.

b. Move the slide so that y on the C scale lies under the runner. Note

the i.)osition of the initial index of the C scale.

c. Set the runner to z on the Cl scale. Note the position of the initial

index of the Cl scale because tho value z was laid off on the Cl scale.

d. Read the answer on the D scale under the runner.

5.21 The Folded Scales, CF, DF, and CIF.

The CF and DF scales are simply C and D scales that have been

cut at the tt mark, the sections transposed so that the two indexes

coincide, and the resulting “folded scale then engraved on the

rule so that the tt marks at the ends are in alignment with the

initial and final indexes of the C and D scales.

If the diameter of a circle is set on the D scale with the runner,

its circumference is read on the DF scale without the aid of the

slide. If the square of the radius is laid off on the D scale with

the runner, the area will be read on the DF scale.

The folded scales are of more fre(|uent value, however, in

enabling an operator to solve in one setting many multiple-factor

problems that would recpiirc two or more settings if only the C
and D and Cl scales were available. When the third factor in

either Case I or (^ase 1 1 cannot be set on the C scale because too

much of the slide lies outside the rule, set factor z on the CF scale

and read the answer on the DF scale. In Case III if the factor z

is out of reach on the Cl scale, set it on the CIF scale and read the

answer on the DF scale. There will always be a few problems,

however, where so much of the slide is outside the rule that the

third factor z cannot be reached on any of the regular or folded

scales. In such situations revert to the instruction given for the

C and D scales in Topic 5.19.

There will be no trouble in locating the decimal point in the

answers when using the folded scales if the computer will watch

the initial index erf the Cl scak* when a factor is set on the CF
scale, for Case I and Case II. ^ If the factor z is set on the CIF

^ For step-by-step instruction on thrcc-factor solutions on the several

scales refer to the “Engineering Problems Workbook.”
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scale for Case III, then watch the initial index of the C scale just

as is done when only the C and D scales are used.

One word of caution should be given here: Never set a factor

on a folded scale unless it is impossible to set it on the C or Cl

scales. Decimal points will be misplaced if this is done because

one will be referring to the wrong scale when watching for index

projections. There is a simple way of checking to see if the

folded scale was necessary:

a. Does the answer w lie between the central index (the 1.0)

of the DF scale and the central index of the CF scale? If it does,

the use of the folded scale was proper.

b. Does the answer w lie to the right or left of both of these

central indexes? If it does, the factor z can and should be set in

the usual manner on the C or Cl scale depending upon the form of

the problem.

6.22 There Are Still No Exceptions to the Rule for Decimal

Points.

Now that instructions for the use of the CT, CF, CIF, and DF
scales have been added to those for the C and D scales it is

advisable to say again: There are no exceptions to the rule for

locating the decimal point in answers. It still remains as follows

:

If THE Initial Index projects, add 1 to the characteristic of the

factor just set on the slide.

All that must be remembered is that inverting the C scale takes

THE Initial Index along with the other calibrations.

One can sum it all up thus:

. Watch the initial index of the C scale for all values set on the

C or CIF scales.

. Watch the initial index of the Cl scales for all values set on

Cl or CF scales.

6.23 Multiple-factor Problems.

For continued operations involving four or more factors the

engineer should be on the alert to use all of the above scales in

order to reduce the number of settings and also to do the work,

if possible, so that the answer is the only reading made. If the

continued operation involves both multiplication and division,

follow a zigzag path through the problem. That is, divide the

first term in the numerator by the first term in the divisor,
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multiply by the second term in the numerator, as for any three-

factor problem. Now with the runner on the partial result bring

in the second divisor and then the third multiplier, etc. Some
computers waste time by breaking such a problem into three

problems; they get the numerator and divisor separately and then

make the final division. Such a procedure will introduce into a

five-factor problem an extra setting of both slide and runner and

two needless readings, making ten operations instead of six.

The computer should not memorize special or trick settings

unless they are used frequently. He should, however, endeavor

to master the scales discussed in the foregoing topics so that he

can devise special settings when useful.

6.24 Scales Used for Squares and Square Roots.

The A scale on the usual slide rule consists of two logarithmic

scales, placed end to end, and each section is half as long as the D
scale. The A scale is, therefore, plotted so that the mantissas on

it increase twice as fast as they do on the D scale. Since this

means the same thing as multiplying the logarithm by 2 and

2 (log x) = log

it follows that the A scale carries the squares of the values

on the D scale. A few rules of the log-log type do not have an A
scale, but the B scale can be used with the C scale the same way
that the A and D scales are used for squares and square roots.

6.26 Squares, y x^

When squaring a number be sure to notice whether the value of

is read on the first (left-hand) or the second (right-hand)

section of the A scale, as this fact determines the location of the

decimal point in the square. The operations are as follows:

a. Set the runner to x on the D scale.

b. Read the value of x^ on the A scale.

c. Note the section on which x^ is found.

d. The characteristic of the power is computed thus:

1. When the first section of A carries the value of double the

characterifc^m of x to get the characteristic of x-.

2. If the second section of A carries the value of x^, double the

characteristic of x, then add 1, to get the characteristic of x®.
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6.26 Square Roots, y == 2?°
®

To find the square root of a number one must be sure to set x on

the correct section of the A scale. This is determined by first

marking off the number whose square root is desired into blocks

of two digits each, beginning at the decimal point just as in long-

hand extraction of the root. The number of digits left in the

first (left-hand) block tells the section of the A scale to be used.

If there is one digit in this left-hand block, set x on the first section

of the A scale. If there are two digits in the left-hand block, set

X on the second section of the A scale.

The operations are as follows:

a. Point off* the numerical value of x into blocks of two digits,

starting at the decimal point.

h. If there is one digit in the left-hand block, set the runner to

X on the first section of the A scale. If two digits, set the runner

to X on the second section of the A scale.

6*. Read x^‘^ on the D scale under the runner.

d. The characteristic of the root is computed thus:

1. The root is found under the first section of the A scale:

Divide the characteristic of x by 2 to get the characteristic

of the square root.

2. The root is found under the second section of the A scale:

Subtract 1 from the characteristic of x then divide by 2 to

get the characteristic of the square root.

3. Note that if, at any time, a fractional value is obtained when
dividing the characteristic by 2, tliis fact proves that

instruction d2 has not been followed.

Example 1.

y = (5,150,000.)®-^ The characteristic is 6.

a. Point off in blocks of two digits each, thus: 5'15'00'00.

h. There is one digit in left block; use the first section of the A scale.

Set the runner to 515.

c. Read the digits in the answer 2270 on the D scale under the runner.

d. Compute the characteristic of the answer: S = 3.

e. Point off the answer, 2,270.

Example 2.

y =a (0.000,515)0 ® The characteristic is 4.

a. Point off into blocks of two digits each, thus: 0.00'05q5
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h. There is one digit in the left block : Use the first section of the A scale.

Set the runner to 515.

c. Read the digits in the answer 2270 on the D scale under the runner.

4 -
d. Compute the characteristic of the answer;

2
~ ^

e. Point off the answer, 0.022,70

Example 3.

y
— (45,430,000.)'“^ The characteristic is 7.

a. Point off into blocks of two digits each, thus: 45'43'00'00,

h. There are two digits in the ](‘ft-hand block: Use the second section of

the A scale. S(;t the rimiK'r to 4543.

c. Read the digits in the answer 6740 on the 1) scale under the runner.

d. Compute the characteristic of the answ(T; The second section of A was

used; so subtract 1 from the charficteristic of x; th(ai divide by 2, thus:

7 - 1 _ 6 _ .

2 2^
e. Point off the answer, 6,740.

Example 4.

y = (0.000,045,943)®'® The characteristic is 5.

a. Point off into blocks of two digits each, thus: 0.00'00'45'43

b. There are two digits in the left-hand block: Use the second section of

the A scale. Set the runner to 4543.

c. Read the digits in the answer 6740 on the D scah^ under the runner.

d. Compute the characteristic of the answer: The second section of A
was used; «o subtract 1 from the characteristic of x; then divide by 2, thus:

5 - 1 _ 6 _ ^
2 2

e. Point off the nnswer: 0.004,543

Note that in each of the examples above there is one digit in

the root for each block or partial block in the value of x. If the

value of X is less than 1, there will be one zero between the decimal

point and the first digit in the root for every pair of digits in a

similar position in the value of x,

5.27 Scales Used for Cubes and Cube Roots.

The K and D scales are used for cubes and cube roots. The K
scale consists of three complete logarithmic scales placed end to

end, and each section is one-third as long as the D scale. The
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whole procedure is similar to that for squares and cube roots and

hence will be given in condensed form.

6.28 Cubes, y =

When cubing a number be sure to notice whether y is read on

the first (left-hand) section, second (center) section, or third

(right-hand) section of the K scale. The characteristic of the

cube is computed thus:

a. If first section of K carries the value of multiply charac-

teristic of X by 3 to get the characteristics of x'^.

b. If the second section of K carries the value of multiply

characteristic of x by 3, then add 1 to get the characteristic

of x^.

c. If the third section of K carries the value of multiply the

characteristic of x by 3, then add 2 to get the characteristic of x^.

6.29 Cube Roots, y =

To get cube roots the number should first be marked off into

groups of three digits, beginning at the decimal point, as for long-

hand extraction. There will be one figure in the root for each

group of three digits in the value of x.

As with square roots, the number of digits in the left-hand

group will tell which section of the K scale should b^ used.

If one digit, use the first (left-hand) section. If tw^o digits,

use the second (center) section. If three digits, refer to the

third (right-hand) section. Thus:

Answers
4^560^000. 1 One digit in left-hand group. Use the first 165.8
0.d00'006'40b/ section of K scale. 0 . 0i8,57

^54766^600. 1 Two digits in left-hand group. Use the 380.
V 0.000'b89'600/ second section of K scale. 0.0447

V^^5^000^000
. \ Three digits in left-hand group. Use the 626.

v0^060'000'975J third section of K scale. 0.009,92

6.30

Decimal Points for Roots and Powers.

As shown in the topics above the characteristic method of

determining the location of the decimal point can also be used for

roots and powers. The rules may be put in tabulated form as

follows:
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CHARACTERISTICS OF ROOTS AND POWERS

Section

Operation to be performed on characteristic of number to

give characteristic of result

of scale

For squares
For square

root
For cubes

For cube

root

First (2) (Char.) Char. (3) (Char.) Char.

2 3
Second .... [(2)(Char.)l + l (Char. - 1) [(3)(Char.)l + 1 (Char. — 1)

2 3
Third [(3)(Char.)l +2

1

(Char. — 2)

3

6.31 The L Scale.

The most popular size of slide rule is known as a 10-in. rule, but

actually it is 25 cm in length. The L scale is simply this 25-cm

length divided uniformly into 10 principal parts, and these in turn

into still smaller units so that the mantissas of the values on the D
scale can be read directly. This permits the computation of

fractional and decimal roots and powers. It is truly a graphic

logarithm table, and the logarithms may be used in exactly the

same manner as the numerical logarithms road from printed

tables.

There are two ways in which the L scale of Mannheim type

rules may be used to get log x, as follows:

a. Pull the C scale to the right until the value of x lies just

above the final index of the D scale. Read log x on the L scale

under the hairline of the insert.

5. Invert the slide, and align the initial indexes of the L and D
scales. Set the runner to x on the D scale, and read log x on the L
scale under the runner.

On the log-log rules the L scale is sometimes put on the back of

the rule and at the upper edge of the body of the rule. If the

index of the L scale lines up correctly with the index of the D
scale, set the runner to x on the D scale and read log x on the L
Scale under the runner. If the indexes do not line up, set the

slide so the index of the C scale is aligned with the L scale, then set

runner to x on the C scale instead of the D scale. A problem will

be solved to illustrate the use of the L scale for powers.



122 ENGINEERING PROBLEMS MANUAL

Example:

y = (36.0)2.!»

log y = 2.3(log 36.0)

2.3(1.556) Head 0.556 on L opposite 36.0 on D scale.

= 3.580 Transfer 0.580 to L scale,

Read 3805 on D scale.

(Characteristic in log is 3.

y = 3805.

6.32 Trigonometric Scales.

The back of the slide of the '^Mannlieim Speciar' slide rule

has on it scales marked S, B, L, and T. The S, B, and T scales

are used in getting the primary trigonometric functions. Most

rules of the Mannheim type have either a mark engraved on the

side of a notch in the stock or a small transparent insert with

a hairline on it set in the notch. TliivS mark or hairline is in lin(^

with the index on the face of the rule. If it is in the correct

position, the functions may be read with the slide in the normal

position. If the insert is not accurately placed, however, it does

not affect the reading of the sine but the tangent should be read on

the D scale with the slide upside down, as suggested later.

5.33 Sines.

Pull the slide to the right until the angle on the S scale lies

under the hairline on the insert. Read the natural sine on the B
scale beside the S scale. The table beloAv gives the rules in

concise form

:

Range Section of B
in

angle

Setting Function scale where

sine’*' is found

Char.

CO
oo Set angle on the S Read the Sine dn Left-hand 2

to 90*=^ scale the B scale Right-hand 1

* For cosines read the sine of the complementary angle, that is, (90° •— given angle).

6.34

Tangents and Cotangents.

To get the tangent of an angle pull the slide to the right until

the angle on the T scale lies under the insert. Turn the rule over,

and read the desired function on the C scale or D scale according

to the table below. For angles under 5° 43' it is necessary to
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read the sine and use it instead of the tangent. The error is about

5 in the fourth decimal place for this angle and decreases as the

angle becomes smaller.

Range in
Setting

Tangent
1

Cotangent

the angle
Read ( har. Read Char.

0° 34' to

5° 43'

Angle on S

scale

On B scale 2 On A scale op-

posite index of

C scale

1

5^^ 43' to

45° 00'

Angle on T
scale

On 0 scale op-

posite index of

D scale

T On D scale op-

posite index of

C scale

0

45° 00' to

84° 17'

(90° - A)

on T scale

On D Scale op-

posite index of

C scale

0 On C scale op-

posite index of

1) scale

T

84° 17' to

89° 26'

(90° - A)

on S scale

On A scale op-

posite index of

C scale

1 On B scale 2

When the hairline on the insert is not exactly opposite the

index of the D scale, the tangent and cotangent may be read as

follows:

Tangent. Turn the slide over, and line up with the D scale.

Set the angle on T scale; read the tangent on D scale.

Cotangent. Pull the slide to either light or left until the angle

on the T scale lies opposite the index of the I) scale. Read the

cotangent under the index of the slide. Characteristics are as

shown in the table above.



CHAPTER 6

PRECISION AND ARITHMETICAL
CALCULATIONS

6.1 Arithmetic : the Most Essential Tool.

The oldest of the mathematical sciences is still the one of

greatest importance to most people. All through the ages it has

been of the greatest usefulness and interest to the majority of

men. Ancient Babylonian clay tablets and long-buried Egyptian

records show that even in that distant age arithmetic was

regarded as an essential branch of knowledge. Today it is more

important than ever that everyone know this basic tool. The

ordinary citizen is expected to keep his accounts for income tax

records; the farmer has to make many varied reckonings; and the

housewife, no less than the others, must know th(^ basic operations

of arithmetic if she is to be competent in handling the household

finances.

It should be obvious that the engineer must assuredly be

competent in the science of calculation if such skill is expected

of the ordinary citizen. Without ready skill and dependability

in figuring, an engineer is of scant value to his employer. It

is a strange fact, however, that although the engineering student

presumably has been taught arithmetic from the time when he

was in the first grade, he is frequently completely unreliable in

such fundamental operations as simple addition and multiplica-

tion. Many of these young men feel that when they are given a

problem and make a ruinous arithmetical blunder on it, they should

nonetheless be given credit on the assignment just because ^Hhey

tried hard^^ or ^Hhey knew how.’’ They fail to realize that it

takes cold, impersonal, accurate results to build bridges, to make
machinery, or to operate a public utility. It is said that Hades
is paved with good intentions. Note that even there the inhabi-

tants do not think much of good intentions, because they tramp
on them. Results only, not effort, count.

124
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6.2 The High Cost of Blunders.

In every engineering design, construction, or operation project,

no matter how abstruse the theory may be, the facts must
eventually be resolved into measured, numerical values before the

project can assume reality. Failure to handle these numerical

calculations correctly will naturally be a cause of expense and

delay or, worse still, the failure of the project. The utility,

safety, convenience, and useful life of any engineer's creations

will depend upon the correctness of his calculations. And yet

competent engineers in executive positions in industry testify that

nearly all of the mistakes that bedevil engineering offices are due

to carelessness in calculations, not to troubles in theory or higher

mathematics. No, wrong answers due to blunders in arithmetic

cannot be brushed aside lightly with an off-hand remark about

misplaced decimal points or mistakes in arithmetic. Accuracy is

a mark of competence.

Men who are in a position to know have stated repeatedly that

fully 90 per cent of the mistakes in figuring are due to careless

arithmetical blunders. They are the sources of constant delay

and expense. Estimators have cost their employers many
thousands of dollars because of their blunders in making exten-

sions from unit price to total price in their cost estimates. The
contractor must absorb such costs, not the owner. Stories of

losses from misplaced or omitted decimal points are legion.

6.3 The Source of Blunders.

When questioned about the causes of such blunders several

psychologists ha^se said that there was only one reason: careless-

ness, They did not know of any psychological reason or excuse

for blunders. Often these careless mistakes are due to an

unvoiced feeling that this phase of the work is relatively unimpor-

tant. Sometimes they are due to a momentary lapse of attention

A bit of mind wandering while the pencil moves mechanically

may well introduce a costly blunder into a chain of calculations.

Such inattention frequently results in a transposing of digits when
copying values. It is a time-consuming blunder, because an

internal transpofedtion of digits is one of the most difficult mistakes

to detect. Thus it is that the mind wanders, the pencil keeps

moving, and sooner or later a '^bonehead" blunder creeps in.
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Only an alert checker then stands between the faulty figures and

the men who must use them.

6.4 The Luxury of Inefficiency.

The failure of instructors to teach and of employers to insist

upon the use of simple, direct, timesaving calculation procedures

cause expense, due to wasted time, in any computing room.

Computing machines are not so common in offices as most men
seem to believe, and there are countless situations where the use

of the machine would be time-wasting. The mechanical calcu-

lator is not a substitute for the human mind.

In many cases the engineer who uses long, roundabout tech-

niques is merely following the childhood teaching of some

inexperienced teacher who never knew or cared that she (or he)

was teaching inefficiency. In other cases he continues to use poor

methods because he does not have time to learn better ways.

Some men waste time by carrying too many figures through their

calculations. One engineer, for example, used six-place loga-

rithms, interpolated, on a job that is regularly handled on the

slide rule. Another used a seven-place logarithm table for all

values, even three significant figures, in the belief that he could

thus secure answers good to six or seven figures. Such blunders

indicate a deep-seated lack of understanding of the principles of

measurement and calculation.

Using formulas without r(*gard to the labor that they require in

numeri(^al calculations is another way to waste time and energy.

A good illustration of the differences among formulas is found

in various methods of getting the three angles in a triangle when
the lengths of the three sides arc known. The shortest, neatest

method requires only four logarithms to solve for all three angles

independently, to get the radius of the inscribed circle and the

area of the triangle. A second handbook formula for this same
problem requires seven logarithms and two extra square-root

determinations to get only the angles.

The habit that some men have of trying to get each problem
into the form of a single equation is another source of expense.

They put far too many things into one bundle, thinking that tbey

are saving themselves labor. They are, however, merely carrying

what the old pioneer always referred to as lazy man’s load.”

Some workers seem to have almost amania for trying to solve long,
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complicated problems by means of equally long and involved

formulas. These men will construct such a formula when none is

found in their handbooks. They couple term to term much as

freight trains are assembled, thinking that they are thereby

proving that they know their subject. Such efforts do not mark
the worker as a man of superior intellect—quite otherwise. It is

a common occurrence for a freight train crossing the mountains to

be cut into smaller sections to ^^get it over the hump.” A
similar procedure in the handling of tough problems will also help

the computer to “get over the hump.” More than one man can

tell of hearing chief engineers and superintendents make scathing,

not to say profane, comments about the men who will not cut

their problems into a series of simple, concise operations. Failure

to do this results in lost time in making the original calculations,

many unnecessary blunders, more time lost by the checker in

going over the work, and then still more time lost in trying to

locate and correct the inevitable blunders.

6.6 Sources of Efficiency.

To be efficient in calculating merely means that the computer

is, first of all, accurate in his work and, so(!ond, that he uses good

judgment in his choice of computing methods. ^ He must, of

course, be competent in the basic skills of figuring. He must also

be familiar with the use of the slide rule, cut-longhand, loga-

rithms, and the mechanical calculator. The slide rule ranks very

high in importance, as various large companies report that at

least 90 per cent of their calculations are done on the ordinary

engineer's slide rule. He must have a clear understanding of the

meaning of the terms 'precision of 'measurement and significant

figures and hence be able to choose the computing method best

fitted to the data at hand. If he carries too few figures, his work
is of as little value as if the result were wrong. If he carries too

many figures, then his results are false and misleading, because

they give an appearance of precision that, in fact, they do not

have.

6.6 Precision of Measurement.

Most numerical values as used in engineering represent

measurements of one kind or another. Either they are observed

values obtained by instrumental measurements of some sort,



128 ENGINEERING PROBLEMS MANUAL

or else they are computed values that have to be laid off, weighed

out, or otherwise measured as they are applied to the job in hand.

In either case, both measurements and calculations are involved.

Now nothing has ever yet been, or ever can be, measured exactly,

that is, with zero error. In some cases the measurement may be

only roughly approximate, as in pacing a distance. In others,

however, every possible artifice is used to make the error as small

as possible. In the case of a certain machinists^ gauging system,

for example, the master gauges are checked by the use of light of

known wave length, and the error is guaranteed not to exceed

0.000002 in. in a gauge block 1 in. long.

The fact that every value expressed as a measured quantity

has an error in it great or small does not excuse mistakes and

blunders. Every precaution should be taken to avoid these

and get the results to the degree of precision that the methods

of measurement will justify. Ordinary measurements usually

can be made so that the error is less than 1 in 1000, that is,

plus or minus 1 or less in the fourth figure. Thus a distance

measured to the nearest foot, such as 1283 ft, may be in error

as much as 6 in. either way. For this reason we say the 3 is

‘MoubtfuE^ because the true value may be anywiiere between

1282.5 and 1283.5, a range of 12 in. Yet any value in that range,

w^hen written to four ^^significant figures,^^ would be recorded as

1283 ft.

The precision of measurement will depend upon three factors as

follows:

a. Precision of the measuring tool itself. Compare the pre-

cision of a dressmaker’s cloth measuring tape with that of a steel

tape. Or compare the cheap spring scale with the chemist’s

balance as a means of weighing an object.

h. Fineness of the calibrations. A steel tape that was cali-

brated only at 5-ft intervals would be useless in surveying. A
12-in. ruler that was calibrated only to inches would not be of

much value in constructing diagrams to scale where sixteenths

of an inch would be a coarse reading.

c. Care used in measuring. If high-precision instruments are

used carelessly, the measurements obtained are no better than

those made with poorer grade tools. The skill arid care exercised

by the man doing the measuring thus is a factor determining the

reliability of the results.
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6.7 Significant Figures.

When the expression significant figures is used, it refers to the

series of digits, including zeros, that indicate both the magnitude

of the measured value and the degree of precision with which it

was measured. If a length of, say, 36.2 ft is measured to three

figures, it is recorded as 36.2 ft. If, however, more careful work

is done, it might be 36.19 ft, thus using four significant figures.

Suppose that still more careful measurements were made; then

five significant figures might be justified, and the value would be

recorded as 36.194 ft.

The zero may be either a significant figure or just a space filler

to show the position of the decimal point in the value. If the

value mentioned above was still read as 36.2 when methods

justif3dng the use of four significant figures were used, that fact is

shown by recording it as 36.20 ft. If correct to five figures, it

should be recorded as 36.200 ft. If, however, the same digits

occurred in a very long distance, it might have to be entered at

3,620,000. ft, and the user cannot tell whether it is correct to three,

four, five, six, or seven significant figures. In this case the

ciphers are merely fillers for decimal-point location. To clear up

an ambiguous situation like this the number should be written as

follows:

3.62(10)® for three significant-figure precision.

3.620(10)® for four-figure precision.

3.6200(10)® for five-figure precision.

This notation has many advantages, especially for extremely

large or very small values, such as 3.620(10)“^, because space is

saved and calculations can be simplified by so doing.

The position of the decimal point has no connection with

the number of significant figures. For example, the following

values all have the same number of significant figures although

the decimal point is shifted over a wide range.

627
,
500

,
000 . 176

,
928

,
000 .

6275 . 1769.28

0.6275 17.6928

0 .000
,
062,75 0 .000

,
176,928

All the values in the first column have four significant figures,

while those in the second column have six.

A clear distinction should be made between errors and mistakes.
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Errors have to do with the precision of measurement, but a

mistake is a mathematical blunder due to carelessness or ignor-

ance. Accuracy is essential in all calculations, and mistakes or

blunders cannot be tolerated no matter how few significant

figures are carried.

To drop significant figures without good reason is a blunder

that reduces the precision of the result. To record a string

of doubtful figures beyond those justified is downright dishonesty.

One writer said that doing this is telling a falsehood because it is

saying to all readers that the data were measured with a higher

precision than was actually the case. The results, therefore, are

misleading, unreliable, and dangerous because they give an

unjustified appearance of high precision. The use of calculation

methods that are not in keeping with the precision of the data is

an economic waste of time and equipment.

6.8 Error and Tolerances.

Error is defined as the difference between the true value and

the one measured or computed. The error is positive or negative

depending on whether the computed value is larger or smaller

than the standard. The magnitude and sign of the error is

determined from this equation.

“The mcasumll ^ 1
Error = or coinpulod - M he true

L value J L J

Thus if a line is computed as being 173.5 ft long and the true

value is 173.7 ft, the error is 173.5 — 173.7 = —0.2 ft, or 0.2 ft

too short. If the length is computed as 174.0 ft, then the error is

174.0 — 173.7 = +0.3 ft. That is, it is 0.3 ft too long.

The word tolerance is used to tell the worker the magnitude and
sign of any permissible error. Suppose that a class in trig-

onometry is given a problem and the instructor says that the

tolerance on results is ± 0.2 ft. This means that when a certain

length should be 176.4 ft, the checker will accept any answer
lying between 176.2 ft and 1 76.6 ft as correct. Answers of 176.1

or 176.7 ft will have to be marked as incorrect, because they have
errors exceeding the allowed tolerance. Many blueprints going

to a machine shop will have dimensions recorded thus:

Diam. = or Diam. =
1.6500



PRECISION AND ARITHMETICAL CALCULATIONS 131

This says that the material cannot be undersize but can be

0.0002 in. oversize. As stated in an earlier topic in this chapter

it is impossible to make or measure anything with zero error;

hence, tolerances are highly important, and the engineer who sets

them unnecessarily ‘Hight’^ is merely running up the cost with no

tangible gain.

There is still another term with which the engineer must be

familiar. It is probable error and is closely allied to the idea of

tolerances. Thus the nu^ker of steel l^locks used in a high-pre-

cision gauging system guarantees one grade of gauges to have a

probable error not exceeding ±0.000008 in. per inch of length,

the next grade to have a probable error of ± 0.000004 in. per inch

of length, whereas the best set has a probable error of only

± 0.000002 in. per irujh of length. With sucli information at hand

a buyer can tell which set best tits his needs.

6.9 Percentage Error.

A clear distinction must be made between error and percentage

of error. The percentage error is the ratio of the error to the true

value, expressed as a percentage, thus:

rPerccLtagicl _ The error 1

L of error J True valueJ
(100)

In certain fields it is customaiy to express tolerances in per cent

of error rather than in the absolute value of the error itself. A
clearer idea of the precision obtained is often had by this notation.

For example, in the following figures the two computed results

have identical errors, but the percentage errors differ widely.

Case A Case B
Computed ~ 1642.8 ft 4.7 ft

True value = 1642.5 ft 4.4 ft

Error = 0 . 3 ft 0.3 ft

^ ^ 0.3(100) 0.3(100)

1642.5 4.4

= 0.0183% 6.825%

The percentage values show that in Case A there is a high

degree of precision in the computed value whereas Case B has

very low precision. The absolute value of the error (0.3 ft),

however, gave no indication of this fact.
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The tables given on pages 132-133 give helpful information

regarding customary tolerances in several fields of work and the

suitable calculation methods for various degrees of precision.

Note that the values for errors in angles are only approximate, as

they vary widely depending on the size of the angle and the

function being used.

COMMERCIAL TOLERANCES
Tolerances

Plus or Minus

Surveys

:

Farm and open land

Ordinary work 1 in 500

Good work 1 in 2,000

Best work 1 in 5,000

Federal triangulation 1 in 1,000,000

C'ity surveys

Ordinary commercial work 1 in 5,000

Good commercial work 1 in 10,000

Best commercial work 1 in 50,000

Railroads and bridges

Ordinary work 1 in 25,000

Best work 1 in 100,000

U. S. Coast and Geodetic Survey

1st grade 1 in 25,000

Error in angles 1"

2d grade 1 in 10,000

Error in angles 3"

3d grade 1 in 5,000

Error in angles 5''

Machine Shop Practice:

Ordinary bearings, allowable error 0.005 to 0.010 in.

Good work, allowable error 0.002 in.

Best work, allowable error 0.0002 in.

Pine gauge and tool work, allowable error 0.001 to 0.000001 in

Rough work, clearances tV m.
Rough work, bolt holes, clearances ^ to i in.

Chemical Analysis:

Ordinary 0.3 of 1 per cent

Good 0.2 to 0.1 of 1 per cent

Best, metal traces, etc 0.03 of 1 per cent

Structural and Architectural Work:
Ordinary buildings, main dimensions i to 1 in.

Steel bridges

Member lengths A in.

Over all i in.
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CALCULATION METHODS SUITABLE FOR
VARIOUS TOLERANCES
SINGLE OPERATIONS

Significant Suitable
Tolerances

figures in

data

calculation

methods
Maximum

error

Per cent

of error

Errors

in angles*

3 Slide rule or three-

place logarithmr!

1 in 100 1.0 30'

4 Slide rule or four-

place logarithms

1 in 1,000 A of 1 2'

5 Five-place logarithms

or cut-longhand

1 in 10,000 jiis of 1 10"

0 Six-place logarithms

or cut-longhand

1 in 100,000 njStr of 1 1" to 2"

CONTINUED OPERATIONS

Significant Suitable
Tolerances

figures in

data

calculation

methods
Maximum

error

P(ir cent

of error

Errors

in angles*

3 Slide rule or three-

place logarithms

2 in 100 2.0 r

4 20 in. slide rule or

four-place logarithms

2 in 1,000 iof 1 5'

5 Five or six-place loga-

rithms or cut-long-

hand

2 in 10,000 tVof 1 20"

6 Six-place logarithms

or cut-longhand

2 in 100,000 of 1 2"

Davis, Foote, and Raynor, “Surveying," McGraw-Hill Book Company, Inc., 1940,

pp. 35-37, gives a thorough study of errors in connection with angles.

The list of tolerances in current commerical practice in various

fields of engineering can be used safely and will aid the inexperi-

enced man to avoid the twin mistakes of using too few or too

many figures. As better measuring devices come into use, some

of the high-precision tolerances will undoubtedly be reduced and

more precise osculations will then be necessary. Here and there

firms may depart from the tolerances indicated, but they will be

found satisfactory in the majority of cases.
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6.10 Holman’s Rules for Numerical Calculation.

Since it is misleading as well as time-wasting to carry needless

figures through a calculation, the engineer should know how to

round off values properly and also to know what the true results

will be when values of varied precision arc brought together in a

series of calculations. The pre^cision of a result depends upon the

precision of both the various factors and the mathematical

operations performed. It is necessary, therefore, for one to

become familiar with the facts that are summed up in Holman’s

rules of calculation. In all of the following instructions and

examples the doubtful figures are printed in small italics.

a. In addition or subtraction. The result cannot be accurate

beyond the column having the first doubtful value.

Addition Subtraction

1283. 645.35

+23.87 -219.4

+ 1.94i 426. 55

1303.3/^

h. In multiplication or division. The result will be accurate

only to the same number of figures as the least precise factor

involved. This will be true regardless of the number of factors

involved. Note the loss of precision in the examples below\

lB,St53

37 . 4)^2.473
37^
31^4

299^

1927

\%70

673

374

1990

1870

1200

1122

780

c. Carrying doubtful figures. In general, carry through all the

intermediate calculations one more figure than is wanted in the

end result of a chain of calculations. That is, carry two, but only

1473.5

2.5s

44208

7368c

2947^

3728.208
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two, doubtful figures through the intermediate steps; then cut

back to one doubtful digit in the final answer. Remember,
however, that one doubtful figure will always be left when any

rounding off is done. Dropping it merely makes the one to its

left doubtful. Refer to Topic 6.11 for the rules for rounding off

numerical values.

When measured values are to be used in connection with con-

stants such as TT or conversion constants that are known to many
places, time will be saved if the constants are cut back to the same

number of significant figures as the measured values.

6.11 Rules for Rounding off Numerical Values.

The following instructions, including the numbering of the

rules, are taken from the ASA Code No. Z 25.1, 1940, “Rules for

Rounding Off Numerical Values.^' They should be followed

whenever it is necessary to round off values that have more

figures than can be used in the final answers.

In setting up rules for rounding off decimals there are three general

cases that should be considered. They may be stated as follows:

When the figure next beyond the last figure or place to be retained is

less than 5, the figure in the last place retained should be kept unchanged.

Example

1.2342 1.234 1.23 1.2

When the figure next beyond the last figure or place to be retained is

more than 5, the figure in the last place retained should be increased by 1.

Example

' 1.6789 1.679 1.68 1.7

When the figure next beyond the last figure or place to be retained is 5,

and

(a) there are no figures, or only zeros, beyond this 5, if the figure in the

last place to be retained is odd, it should be increased by 1 ;
if even, it

should be kept uncharged;

Example

1.35 1.4

1.3500 1.4

1.45 1.4

1.4500 1.4
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(6) If the 5 next beyond the figure in the last place to be retained is

followed by any figures other than zero, the figure in the last place

retained should be increased by 1, whether odd or even.

Example

1.3501 1.4

1.3599 1.4

1.4501 1.5

1.4599 1.5

The above rules for rounding off decimals may be restated as follows

:

The figure in the last place to be retained should be kept unchanged

(a) when the figure in the next place is less than 5;

(5) when the figure in the next place is 5 followed by no other figures

or only by zeros, and the figure in the last place retained is even.

The figure in the last place to be retained should be increased by 1

(a) when tlie figure in the next place is more than 5;

(6) when the figure in the next place is 5 followed by no other figures

or only by zeros, and the figure in the last place retained is odd;

(c) when the figure in the next place is 5, followed by any figure or

figures other than zero.

The final rounded value should be obtained from the most precise

value available and not from a series of successive roundings. For

example, 0.5499 should be rounded off successively to 0.550, 0.55 and 0.5

(not 0.6), since the most precise value available is less than 0.55. Simi-

larly, 0.5501 should be rounded off as 0.550, 0.55 and 0.6, since the most

precise value available is more than 0.55.

6.12 Time Economy in Longhand Calculations.

The subject of precision of measurement is seldom discussed or

even given passing recognition in grade-school arithmetic books

when the topics of long division and multiplication are discussed.

As a result few students realize that ordinary longhand calcula-

tions as they use them really waste a lot of time and require much
more writing than do equally good shortened methods. Com-
puting machines carry a lot of useless figures and save time merely

because of their mechanical speed and the fact that they are not

subject to mind wandering and carelessness in the meshing of

gears as is the human brain. So, whether the work is done by
hand or machine, the man who does the work will have to cut off

the useless figures. He has to get the result in line with the

known precision and given tolerances.

There are numerous ways in which to economize on time with-
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out loss of accuracy, and the good engineer should know and use a

number of them. There are good books in print that suggest

other methods not mentioned here. Contracted longhand, or

cut-longhand as it will be called in this text, is a highly valuable

tool that all engineers should know. Surveyors have appreciated

its usefulness for many years, as it can be used to great advantage

in the field, where no computing machines are available.

The computer who chooses his computation methods to fit

the precision of his data will appreciate the time- and labor-

saving possibilities of the following contracted or ^‘cut-longhand

methods. Surprising economies are possible when the slide rule

is used in conjunction with cut-longhand, especially in division

and square root. A timed test with 150 students who were

equally inexperienced in the use of logarithms and cut-longhand

indicated a 2 to 1 advantage for the cut-longhand on multiplica-

tion or division involving two numbers of six significant figures

each. A 35 to 50 per cent reduction in the number of digits to be

recorded is no small saving, especially since the omitted digits are

all worthless. Decimal points are just as easy to place as in the

older, extended calculations if the ‘Characteristic method^’ is

used. When the data require the multiplying or dividing of

numbers with four or more digits, there is a gross waste of time

and absolutely no increase in accuracy through the use of full

longhand figuring. Logarithms may be used, of course, but there

will be no saving of time until four or more long factors have to be

handled.

6.13 Division by Cut-longhand.

Contrary to the idea held by a considerable number of people

division is actually easier than multiplication. This is true for

slide-rule work, for most computing machines, and for cut-long-

hand. If longhand and slide-rule work are combined, the engi-

neer can get results in far less time than he can by the use of

logarithms. The quotient will have the same precision as the

data, and there is no lost motion.

Stated concisely the method is the following:

a. Use contracted long division for all but the last three digits

of the quotient,, dropping useless doubtful figures.

5. Set the last remainder found in a on the slide rule, and

divide as usual to get the last three figures in the quotient.
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The sample problem below shows the savings obtainable by the

use of this system. The doubtful figures are shown in small

italics in each example. Since there is no gain whatever in carry-

ing more than two doubtful digits, the contracted form is defi-

nitely a timesaver.

Example:

Divide 694.72^^ by 47.362£/

Cut-longhand Ordinary Longhand
14.668i5 14.668/5

47.d6:id)694.72s 47.362o)694.72s 00000

473 62d 473 62s

221 09d 221 09s 0

189 46^ 189 461 6

31 647 31 647 40

28 417 28 417

3 23(7 3 22d 660

2 84? 2 841 774

385 387

378 903^

8 98£80

f
7S620

4 \2465i

The cut-longhand and slide-rule combination requires 39

entries of digits in addition to those for the dividend, divisor,

and quotient. The conventional long division requires 80

digits with no gain whatever in precision. The net saving, then,

is 41 characters, or 51 per cent.

6.14 Step-by-step Example of Cut Division.

. Set up the work in the conventional manner and note the

characteristics of each term as below.

. Divide on the slide rule to get the first three digits of the

quotient and to avoid trial divisions. Read 680.

2

, 501.493 A

T + 1

c. Note the characteristic of the answer. With the decimal

point now definitely located no more thought need be given to it.

d. Arrange the work for long division, and get the first remain-

der, using the 680 as a guide. Since the first digit in the divisor
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is larger than the first digit in the dividend, add one zero to the

601.493 but no more, thus:

680

0.736984)501.4930

442 1904

59 3026
«

e. Divide this remainder on the slide rule to verify the 0

obtained when the 680 was read on the slide rule. Now read

= 804+•

/. In order to avoid annexing useless zeros to the dividend,

drop the last figure (the 4) in the divisor and put a dot above it to

indicate that it will not be used again. Put a similar dot above

the 6 in the quotient to show it has been used as a multiplier.

g. Now use the second digit (the 8) in the quotient to get the

second remainder, thus:

6804

0^^731>984)501 .4930'

442 1904 / Hight-hand figure is a 7 from

59 3026 (8) (8) = 64 to which 3 must

58 9587^- be added from the (8) (4) = 32

3439 /that would have been found if

^the 4 had not been dropped.

h. Next the 8^s in the divisor and quotient are dotted to show

that they have been used. Note that the figures are always

dotted in pairs, one in the divisor to shorten it and one in the

quotient to show that it has been used as a multiplier in getting

the next remainder.-

i. Since the third figure in the quotient has been found to be a

zero, the 9 is dotted but the third remainder is the same as the

second, and normally the following entry is not recorded but is

shown here to make this statement clear.

6^64

0.736984y501.4930

442 1904

59 3026

58 9587

3439

0000

3439

j. Lastly, divide this third remainder 3439 by the rounded-off

divisor 7370, using the slide rule. Read 4670. This confirms
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the 4 found in Step e and adds the last two figures, the 67+ to the

quotient which can now be recorded in full, thus: 680.467. By
computing machine the answer is found to be 680.4666; but since

the original data had only six significant figures, both longhand

and computing-macliine results would them be rounded off to

680.467.

k. If it seems desirable, however, to get a seventh digit in the

quotient, thus making two doubtful digits in the answer, the long

division is carried one step furtlua*. Drop the 9 in the divisor,

and dot it. Dot the 0 in the quotient. Multiply by the 4 in

the quotient, and get the remainder 491, thus:

GSOl

0.7369984)50174930

442 1904

59 3206

58 9587

34^9 [(4) (6) = 24. Add 4 to be

29484—^ carried over from rounding

491 (off the product, 4 (9) = 36.

Z. Divide the 491 by the original divisor on the slide rule,

reading 677. This gives a final quotient of 680.4677 ; hence, the

six-figure reading appears to be 1 too low. This, however, is

within permitted tolerances, hence, little was gained by getting

the seventh figure.

When the divisor has more significant figures than the dividend,

either round it off to the same number of figures or add zeros to

the dividend to give it the same number of figures.

6,16 Decimal Point Rules for Cut-division,

The slide rule is the best way of locating the decimal point

in the quotient; but if no slide rule is at hand, the following rules

will locate the decimal point just as reliably.

a. If the first significant left-hand figure of the dividend is

greater than the corresponding figure of the divisor, the char-

acteristic of the quotient is the characteristic of the dividend

minus the characteristic of the divisor.

5. If the first significant left-hand figure of the dividend is

less than the corresponding figure of the divisor, add 1 to the

characteristic of the divisor before subtracting from the char-

acteristic of the dividend.
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c. If the first significant left-hand figures in divisor and

dividend are equal, take the first from the left that are not equal

and treat as above. If they are all equal, treat as though the

dividend was greater.

6.16 Multiplication by Cut-longhand.

In contracted multiplication the two numbers are arranged in

the usual order, preferably with the number having the smaller

digits as the multiplier. If the numbers do not have the same
number of significant figures, round off the multiplicand (figure

being multiplied) so that it has not over one more significant

figure than the multiplier. The work of multiplication is begun

with the left-hand figure in the multiplier. This first product

determines the number of digits in the answer. Any figures

falling to the right of this first product are worthless; so there is no

point to getting them at all. The example below will give the

step-by-step process. Pay no attention to decimal points while

multiplying, but run the problem on the slide rule as an over-all

check and to locate the decimal point.

Example:

Multiply 463.86 by 0.9748578

a. Round off the larger number to six figures, thus : 0.9748578 to 0.974858.

See Holman’s rules, Topic 6.10.

h. Set the work up in the usual fashion, multiplying by the number having
the smallest digits, thus:

0.974858

463 86

c. Start multiplying with the 4. This will determine the digits in the

answer, thus:

0.974858

463.86

3899432

d. Now multiply by the 0, but first dot the 4 in the m\iltiplier to show
that it has been used; then drop the final 8 in the multiplicand, and put a

dot over it to indicate that it is dropped. Note the amount to be carried,

however, if the 8 had not been dropped, thus:

0.97485S
V 463.86

3899432
684915<—6(5) ** 30 Add 5 from rounding off

(6) (8) * 48 to a 5.
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e. Next multiply by the 3, but now drop and dot the 5 in the multiplicand

and the 6 in the multiplier, thus

:

0.9748oS

463.86

3899432

584915

29246<— (3)(8) =24 Add 2 from rounding off

(3)(5) = 15 = 2.

/. Then multiply by the 8, first dropping the 8 in the multiplicand and

putting the dot over it and a dot over the 3 in the multiplier, thus:

0.974§58

463.86

3899432

584915

29246

7798^(8) (4) = 32 Add 6 from (8) (8) - 64 - 6

g. The last multiplication is by the final 6 in the multiplier. Drop and

dot the 4 in the multiplicand and the 8 in the multiplier, thus:

0.974666

463.66

3899432

584915

29246

7798

584^(6) (7) = 42 Add 2 from (6) (4) = 24 = 2

h. The multiplications are completed so that the partial products are

added, the problem solved on the slide rule, and the characteristics noted.

The answer is pointed off and cut back to one doubtful figure, and the job

is done, thus:

0.974666

463.66

3899432

584915

29246

7798

584

4521975

Round this off to 5 significant figures, thus: 452.20. To check this and
place the decimal point, round off the factors to slide-rule precision and

solve the problem on the rule.

I 2 -f*i 2

(0.9750) (464.0) = 452.0
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When this problem is solved on the computing machine, the

product is read as 452.197539, the first seven digits being the

same as those found by cut-longhand. The machine reading, too,

must be rounded off to 452.20, the same as above.

6.17 Economy in Cut-multiplication.

The examples below show a comparison of cut-longhand

and the older form. The numbers that are called doubtful

figures because they are at the limits of precision of measure-

ment for the data used are printed in italics; the certain values are

in bold-faced type.

Note the large number of doubtful, hence useless, figures that

are recorded in ordinary longhand.

Cut-longhand Ordinary Longhand
97.38<j 97.380

46.92^ 46.920

389644 77 0088

6843£^ 194 77£

8764 8764 74

la; 58431 0

78 389544

4670i5 4670^5 0W8

All digits to the right

of this line are of no

value.

The total number of digits recorded after the statement of

the problem is 26 for cut-longhand and 40 for ordinary longhand,

a saving of 14 entries, or 35 per cent,

saving is nearly 38 per cent.

In the problem below, the

847.62’ 847.620

^69 4Si 26.943^

169525. 10 95252

B08B7e 264 2870 .

76286^ 3390 504

3390 7628634

254 508575 ^

l7 169525^

228377^ 2288775 68JiS2

All digits to the right

of this line are of no

value.
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6.18 Decimal Point in Cut^multiplication.

a. If the first significant left-hand figure of the result equals

or is greater than the largest significant left-hand figure of either

factor, the characteristic of the result equals the algebraic sum of

the characteristics of the factors.

b. If the first significant left-hand figure of the result equals

or is less than the smallest left-hand figure of either factor, the

characteristic of the result is 1 plus the algebraic sum of the

characteristics of the factors.

c. If the left-hand figures are alike, take the first from the

left that differ and apply the rule as in a or b.

6.19 Square Root by Cut-longhand.

Sometimes scpiare roots are needed to a higher degree of pre-

cision than can be obtained on the slide rule, that is, to five,

six, or more figures. Time and labor can be saved by using a

combination of conventional square-root calculation plus the

slide rule. There will be no loss of pre(usion by this method.

a. Run the problem on the slide rule using the A and D scales

to get the first few digits in the answer and the decimal-point

location. This will avoid false trials.

b. Decide on the number of figures wanted in the square root.

c. Compute all but the last three digits in the root by the usual

method (see the following topic).

d. Divide the last remainder by the last trial divisor on the

slide rule by ordinary division. This will give the last three

figures in the desired root, with a probable error of 1 or 2 in the

last digit.

Example:

Get the square root of 119.768

119.7680)10.9

1

209)iF~76

18 81

2184)9580

Now divide 9580 by 2184 on the slide rule in the usual manner, reading

438. Annex 438 to the first three figures in the square root 10.9, obtained

above. This gives 10.9438 as the complete root.
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When conventional methods of longhand are used, or seven-

place logarithms, exactly the sajne value is obtained as was

obtained in less time by the contracted form.

6.20 Usual Longhand Method of Getting Square Root.

The following step-by-step instructions give the usual long

method of getting square roots. It is advisable to check the

first three digits on the slide rule using the A and D scales (see

Topic 5.26, page 1 18) and then verify the last few figures as in

the example above by ordinary division.

a. Divide the number into groups of two figures each, beginning

at the decimal point and pointing off both left and right, if there

are figures on both sides of the decimal point (see example).

b. Find the greatest figure whose square is contained in the

left-hand group. This figure is the first in the root.

c. Subtract the square of this figure from the left-hand group,

and annex the second group to the remainder for a dividend.

d. Double the root already found for a trial divisor, and set

it down to the left of the dividend, leaving a space at its right for

one additional figure for a completed divisor.

e. Divide the dividend by ten times this divisor. The quotient

will be the next figure in the root.

/. Annex this quotient to the trial divisor in the space left for

the additional figure. This completes the divisor.

g. Multiply the completed divisor by this last root figure,

and subtract the product from the dividend. If the product

is greater than the dividend, the root figure is too large and must

be reduced until the product is contained in the dividend.

h. Annex the next group to the remainder thus found, and

proceed as before, always doubling all the root already found for a

trial divisor.

One figure will appear in the root for each group in the original

number. Locate the decimal point in compliance with tliis fact.



CHAPTER 7

BASIC TRIGONOMETRY

7.1 Introduction.

This chapter does not give the proofs for any of the formulas;

hence, it will not serve as a textbook in the theory of trigonom-

etry. The practicing engineer does not need nearly all the

formulas for solving triangles that the average trigonometry text

implies, nor does he need to memorize a long series of identities.

Speed in calculation and relative freedom from chances of error

are the important factors. When a short, simple, accurate

method of solving a problem is available, it should always be used

in preference to a more involved formula. A long, complicated

equation with combined operations may be true and a ^H>eautiful

demonstration of theory’^ or of the computer's skill, but neither is

a reason for using such a method when shorter, simpler tools are

known. The closer the computer sticks to fundamental princi-

ples—to direct, well-known methods—the fewer time-consuming

blunders will be made. There are relatively few mathematical

tools needed by the average engineer. It is only the man in

highly technical design who needs more than the basic principles.

However, the computer must know these few basic methods

thoroughly, have confidence in them, and use them with speed

and accuracy.

A working knowledge of the right triangle is of vital importance

to the engineer not only because it enters into so many of his

design problems but also because it may properly be regarded as

the fundamental basis of the solutions of all plane triangles. For

his uses the definitions of the functions should be based upon the

right triangle rather than the coordinate system, because it is

then unnecessary to place the triangle in a particular position

before solving it. It is also true that the solutions of triangles

will generally be shorter and less liable to error if right triangle

methods are used. Texts and handbooks usually list a number
of more or less complex formulas for the solving of oblique

146
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triangles. They are supposed to enable the computer to get his

answers readily, but as a matter of fact some of the formulas

that apparently solve a problem in one equation are really longer

and offer greater chances of mistake than do methods that,

sticking close to basic principles, call for breaking the problem up
into short, simple steps. In the following notes, therefore, only

the shortest and most efficient methods have been stated.

Stick to these methods if time is to be saved and mistakes

reduced in solving the trigonometry problems in Chap. 11.

7.2 Fundamental Tools for Solving Plane Triangles.

Experienced men who make use of trigonometric calculations

in their daily work, such as surveyors, insist that only a few%

simple tools are necessary or even desirable. Here is a list of

what they consider to be the essential principles that must be

known and thoroughly understood.

. Right triangles, which include the following:

1. Primary functions.

(a) Sine.

Q)) Cosine.

(c) Tangent (and cotangent).

2. Area formula.

. Oblique triangles.

1. Sine law.

2. Three-sides laws.

(a) Radius formula.

(I?) Whole-angle formula.

3. Area formulas.

(a) Base-altitude formula (same as for right triangle).

(d) Two-sides and included-angle formula.

(c) Three-sides formulas (two).

Note that this list leaves out the secondary functions such as

secant and cosecant, the law of cosines, the law of tangents,’^ and

a long series of three-sides formulas. They are omitted because

they are longer in numerical work, mistakes are more likely to

occur, or they can result in a loss of precision in the answers. The
law of tangents is discarded completely in this book because it

suffers from all three defects. The right-triangle solution is much
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the best for handling the problem in which two sides and the

included angle are given.

7.3 The Right Triangle.

In either of the right triangles shown below, the angle BAC
is formed by the hypotenuse and one of the legs of the triangle.

The angle BAC will be called the angle A. The leg AC is the

side adjacent to this angle, and CB is the side opposite the angle A .

The hypotenuse is the side AB,
If the figure is to remain a right triangle, it is impossible

to change the angle A without also altering the length of two

sides. It is also impossible to change the length of only one

side and still have a right triangle. If two sides are changed,

the size of the angle A will also be clianged. It is possible

to change the lengths of all three sides, however, without affecting

the angle A, but it will be seen that the new triangle is similar to

the original one. In other words, the sides will still have the

same ratios to each other. Thus the size of the angle is deter-

mined, not by the length of any one side, but by the ratios of the

sides to each other. With three sides it is possible to set up six

ratios, but three of the six will be merely the reciprocals of the

others. Thus:

BC AC BC AB AB AC
AB' AB' AC' BC' AC' BC’

The first three of these are the ratios most often used and will,

therefore, be called the primary functions of the angle. They

have been named sine, cosine, and tangent
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7.4 The Primary Functions.

c,. c ^ A Opposite side
Sine of angle A « —

^ Hypotenuse
• . BCsmA = ^ (7.4«J

^ . Adjacent side
Cosine of angle A = —

Hypotenuse
, AC

cos A «
AB (7.46)

tan A ^ (7.4r)

The above definitions apply to either of the acute angles of a

right triangle in whatever position it may be placed, and it is

quite unnecessary to turn the triangle around to any particular

position before it can be solved. Many other functions are

derived from these three primary ratios, and many formulas

called identities are given in trigonometry texts, but all are of

secondary importance, being useful only in special problems.

Because the primary functions involve both the sides and the

angles in a right triangle, it is possible to solve for any of the

unknown sides or angles provided at least two of the terms

are given, one of them a side.

The engineer meets many problems involving the solution of

oblique triangles; but since such triangles may be divided into a

series of right triangles, they arc readily solved by using the

right-triangle relationships. Broadly speaking, the primary

functions are the only tools really needed for finding the unknown
sides or angles in any plane triangle.

c

Fig, 16 .—Oblique triangle.

7.6 Oblique Triangles.

As stated above, the right-triangle laws are enough to enable a

computer to solve oblique triangles, but there are a few instances

where it is more convenient to use special formulas which give the



150 ENGINEERING PROBLEMS MANUAL

relationships between sides and angles. A whole series of

oblique-triangle formulas are given in trigonometry texts, but

several of them are less efficient than the right-triangle method.

Only those which are efficient or have some other special advan-

tage will be given in this chapter.

7.6 Sine Law.

The most valuable of all the oblique-triangle laws is the one

called the sine law. It is so useful that the engineer considers

it as important as the primary functions. It is well adapted

to use with either logarithms or computing machines. The sine

law says:

In any oblique triangle the sines of the angles are proportional

to the sides opposite the angles, tlius:^

One side
__

Kither of the other sides a \

Sine of the Sine of the angle ^ ^

angle oi)posite opposite that side

or, in symbols,

Side BC _ Side .4C Side AB
sin A sin B

'

sin C"

The sine law furnishes a simple, legitimate short cut to the

solution of all problems in which three of the four terms in the

proportion arc known.

7.7 Three-sides Laws.

There are numerous formulas for determining the angles in an

oblique triangle when only the three sides are known. There is

considerable difference in their efficiency, however, especially in

logarithmic computation. For this reason, only three of the

shorter methods are given here, but they will serve the needs of

most computers. In order to have a check upon the accuracy

of the work it is advisable to solve for all three angles, even though

only one is required for the rest of the solution. The first two

laws make use of the perimeter of the triangle, as follows:

a. The half-angle solution^ (see Fig. 3 and Form 118 in the

Workbook). Let 2s equal the perimeter of the triangle.

Then s = 0.5 (sum of the sides).

1 See Form 110 in the Workbook for a proof of Eqs. (7.6a), (7.66).

* See Form 117 in the Workbook for a proof of Eqs. (7.7a), (7,76).
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Let r denote a constant; then

7.2
(s - BC){b - - AB)

8

tan
r

7 - BC

(7.7a)

(7.76)

This law is much the shortest to apply, as it uses the least

number of logarithms, only four being required to obtain all three

angles, to check them, and to find the area of the triangle. Since

this law gives the half angle, it is especially convenient for cases

where the whole angle approaches 90°. The value r is the radius

of the inscribed circle; hence, this formula has various special

uses.

h. The whole-angle solution^ (see Form IIG in the Workbook).
Let K denote a constant and h equal to 0.5 (the sum of the sides)

as above; then
= s(8 - BC){8 - AC){s - AB) (7.7c)

sm A = (7.7d)

This solution is a trifle longer than the preceding but has

the advantage that K equals the area of the triangle and also

that the whole angle is given directly. When the area or the

sines of the angles are wanted, this solution will give these results

as quickly as the half-angle formula.

c

Fig. 17.—Construction xised in the segrricnt solution.

c. The segment solution* (see Forms 120, 121 in the Work-
book). There is a third formula which is based upon the right-

triangle method of analysis. It does not involve the quantity 5

* See Forms 114, 115 in the Workbook for a proof of Eqs. (7.7c), i7,7d),

* See Form 119 in the Workbook for a proof of Eqs. (7.7e), (7.7/).
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and hence is an excellent independent method of verifying the

results obtained by either of the first two methods.

In the triangle ABC (Fig. 17) the vertex C is opposite the

longest side AB. Point E is midway between A and B. If a

perpendicular is dropped from C to AB^ thus locating point D,

the side AB will be divided into two segments AD and DB.
When these two segments are computed, we have two right

triangles each with two sides known, and hence the angles at A
and B are readily found. Angle C is determined by subtracting

{A + B) from 180°. The '^segment term^^ is the length DE
which tells the amount that the segments AD and DB vary from

being equal to half oi AB.

‘The segment”
term
DE

r Sum of the "1 f

[ shorter sides J [

Difference between
the shorter sides

(Twice the longest side)

{AC + BC){AC - nc)
2{AB)

'The long' ~Longest 1
segment = side +
ad L 2 J L

The sei

ter

segment
term

“The short" " Longest! P The
segment = side — segment
BB - 2 J L term

AB
2

- DE

(7.7e)

(7.7/)

(7.7^)

(7.7/1)

(7.70

(7.7i)

This method is about as short as the first two given above and

is well adapted to machine calculation. The work of getting the

segments should generally be broken into the three steps sug-

gested by the word equations. Refer to Forms 1 20 and 121 in the

Workbook for arrangement of the calculations.

This formula does have two rather serious weaknesses. First,

it is not self-checking, as is the case with the two methods above.

Second, when the sides BC and CA are roughly the same length,

there is a great loss of precision, because the number of significant

figures may drop from, say, five or six for BC and AC to two or

three for the value (AC — BC),

7.8 Cosine Law.^

A problem that frequently arises in the solution of triangles

is the one in which two sides and the angle included between
^ See Form 122 in the Workbook for a proof of Eqs. (7.8c), (7,Sd),
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them are given. If the data consist of four or more significant

figures, the right-triangle solution should be used, as it is much
the quickest method. For approximate results and for three-

figure data the formula known as the cosine law is sometimes

used. It is of considerable value in the study of vector problems

in physics, mechanics, etc. The statement of the law is as

follows:

The square
of the un-
known side

The product
term

Thus, in letters,

(BC^) = [{ACy + {ABy] - 2[(AC)(^J5)(co8 A)] (7.8c)

The sum of
1

the squares
of the given

sides J

’Twice the'
product of

the given
sine.H

The
product
term

The cosine
of the angle

included between
the criven .sides .

(7.8a)

(7.86)

Break the work into three steps: (a) The squares term, (6) the

product term, and (c) the unknown side.

When angle A is wanted, solve Eq, (7.8c) for cos A.

,
(ABy -f - (Bcy

cos A =
^irTiACj

(7.8d)

The labor can be reduced considerably if tables of squares and
roots are used and the calculations are made on the slide rule.

This law should not be used in logarithmic computation because

it requires several more logarithms and operations than are

needed if the triangle is divided into two right triangles. Do
not forget that the product term will be negative if the included

angle is over 90°. Refer to Form 123 in the Workbook for

arrangement of the calculations.

7.9 Areas of Triangles.

There are several ways of obtaining the area of a triangle,

and the computer should choose the one that is closest to the

given data or that requires the least computation in addition

to that which he has already done in solving the triangle.

The area of

a triangle
0.5 (Base) (Altitude) (7.9a)

1 PThe product"! FThe sine of theI
of angle included (7.96)

^ L two sides J L between them J

I The radius of the! (The sum oA 1

L inscribed circle J [_ \2/ \ the sides / J
^ ’

rs (7.9d)

VHs - BC)(» - AC)(8 - AB) (7.9c)
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7.10 Problem-analysis Outline.*

The following outline can be used to advantage by the inex-

perienced computer when he analyzes his trigonometry problems.

No outline can serve as a substitute for initiative, imagination,

perseverance, and courage. Only the computer himself can

break his problem into its component parts, put in the necessary

construction lines, and decide on the principles that apply to the

problem in hand.

. Right triangles.

1. Primary functions only are needed. Do not square any

sides.

{a) Sine function.

Use when an angle (other than 90°), the hypotenuse,

and a side opposite the given angle are involved.

(5) Cosine function.

Use when an angle (other than 90°), the hypotenuse,

and a side adjacent to the given angle are involved,

(c) Tangent or cotangent.

Use when an angle and the legs of the triangle are

involved.

2. To solve any right triangle one must know:

{a) Two sides or

(6) One side and one angle other than the 90° angle.

3. Area formula.

Area ==0.5 (base) (altitude).

, Oblique triangles.

1 . All oblique triangles can be divided into two or more right

triangles, and each right triangle should be solved with

the use of the tools listed above. No construction line

should be drawn so that it cuts the only known angle.

2. There are four cases based upon the data that are given.

Each case can be solved in two or more ways but with

varied efficiency of calculation. Only the preferred

methods are mentioned below, arranged in the order of

their speed in calculation and their relative freedom from

possible mistakes.

3. In order to solve any oblique triangle, one must know
three parts, one of which must be a side.

^ Refer to Form 100 in the Workbook.
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() Case I. Given; One side and two angles.

(1) Get the third angle by subtraction.

(2) Use the sine law to get the sides.

(3) Right-triangle method. Draw one or two con-

struction lines to form right triangles, then solve

by using the primary functions as above.

(4) Use Eqs. (7.9a) or (7.95) to get the area.

() Case II. Given: Two sides and an angle opposite

one of these sides (see Forms 111 and 112 in the

Workbook).

(1) Use the since law twice. First to get the angles,

then again to get the third side.

(2) Right-triangle method as in Case I.

(3) Area. Same as Case I.

(c) Case III, Given: Two sides and the included angle.

(1) The right-triangle method is the most efficient.

Draw a construction line from a vertex (but not

through the given angle), perpendicular to a side

or a side extended, thus forming right triangles.

Then solve using the principles of Part (a) above.

(2) For three or less significant figures, the cosine

law may be used. Make all calculations on the

slide rule. This method is too slow for use with

logarithms or longhand (see Form 123 in the

Workbook).

(3) Ai^eas. Same as Case I.

{d) Case lY. Given: Three sides.

(1) The half-angle, or radius, formula is by far the

fastest method. It is excellent for use with

logarithms (see Form 118 in the Workbook).

(2) The whole-angle, or K, formula. It is somewhat
slower than the radius formula, but a good tool.

It is excellent wth logarithms (see Form 116 in

the Workbook).

(3) Area. Use Eq. (7.9(i), page 153, when the radius

formula was used for angles. Use Eq. (7.9c)

when the whole-angle formula was used.



CHAPTER 8

CURVE FITTING AND DERIVED CURVES

8.1 Introduction.

In analytic geometry students learn that it is possible to

construct various lines, curves, and geometrical shapes when the

equations are given. Unless students do more than read the

assignments and go through the motions of solving a few prob-

lems, they will fail to realize that the usefulness of this branch of

mathematics lies not merely in certain facts about conic sec-

tions’^ but also in the relationships between experimental graphs

and some of the standard types of equations. The engineer

should recognize the straight line and its various forms of equa-

tion. He should be able to visualize the parabolic or hyperbolic

types of curves and to write the equation of such a curve, even

though he does not have any data regarding focus, directrix, etc.

He may need to use considerable patience and ingenuity in finding

the probable equation fitting some graphs.

8.2 The Straight. Line.

The most useful form of the several straight-line equations is

the one known as the slope, ^/-intercept ” form:

y == mx -j- 6 (8.2a)

In this equation m is the slope of the line and b is its y intercept.

The parallel-intercept” form is also of considerable use but is

essentially the same as the slope form. This equation is

In this form, b is the y intercept, yi is the y ordinate when the

abscissa is xi. This form converts into the slope form by solving

for y, thus:

„ „ 6 + (^—)
®

156

(8.2c)
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The general form is sometimes of value, and it likewise reduces

to any of the other forms. It reads

Ax + By +C

In this equation the y intercept h equals

m equals

(8.2rf)

and the slope

Now and then the engineer needs the angle between two

straight lines whose slopes are known. If E is the desired angle,

and mi and m2 are the slopes of the lines, the angle is obtained by

this formula:

tan E =>
m2 — mi
1 + mim2

For other properties and equations of straight lines and normals

consult a text on analytic geometry.

8.3 Fitting Equations to Straight-line Graphs.

When experimental data are plotted, it sometimes approximates

a straight line. It then becomes necessary to determine the

equation of the line that is the best approximation to the truth.

The equation obtained in this manner is empirical until enough

facts are at hand to enable one to develop and prove the equation

by rational analysis. Three methods of determining the approxi-

mate equation that best fits the given data are outlined in this

chapter. They differ in speed, precision, and convenience, so the

method used should be chosen with due regard to the precision of

the data.

a. Method of selected points. The easiest and quickest

method to use is one based directly upon the graph obtained when

the data are plotted. The worker places a transparent straight-

edge on the points and moves it about until it seems to him to best

fit the group of points; then a straight line is drawn through the

entire field of plotted values. This “best line is one that passes

through the maximum number of points, yet has about the same

number of missed points to one side of the line as the other. The
missed points should not be bunched with, say, three points below

the line at one end and three above it at the opposite end.

When the best line has been drawn, it slope is determined, the y
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intercept is read, and the slope form of the equation, y mx + b

is written.

It is obvious that the precision of this method depends

greatly upon the skill and judgment of the man who makes the

constructions.

h. The method of averages. This method derives the equation

of the line from the original data by calculations involving the

‘^raw^^ data. No graph is plotted. Since it uses calculated

values instead of drawing an average curve by eye as in the

previous method, it usually gives results of higher precision than

can be obtained by the method of selected points. The method is

briefly as follows:

Step 1. Divide the data into two equal or nearly equal groups;

then get the 2.r and 2?/ for each group.

Step 2. Substitute these suras in the standard slope equation

y = mx + 6, thus:
2?y = m^x A- rib (8.3a)

In this equation n is the number of observations or readings in

the group. Two equations are thus obtained which are solved to

get the value of m or b.

Step 3. Substitute this value in one of the equations, and solve

for h or m.

Step 4. Write the equation of the line.

c. Method of least squares. Although the proof of this

method depends upon an understanding of calculus, and hence is

outside the field of the subject matter here, the actual operations

are simple enough to justify inclusion of the method in this

discussion of curve-fitting methods. This method also uses the

slope form of the equation of a straight line. It is the most

precise of the three methods and should be used on careful work.

The operations are as follows:

SUp 1. Get the totals, Sx and 'Ey,

Step 2. Square the x values, and get

Step 3. Compute the product of each x and its correspond-

ing y value; then get Sxi/.

Step 4. Substitute these sums in the slope equation y =^mx + h

as follows:
=“ m'Lx 4- nb

Xxy = mXx^ 4- hXx

Step 5. Solve this set of equations for b or m.

(8.36)

(8.3c)
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Step 6. Substitute 6 or m in Eq. (8.36), and solve for the

other unknown.

Step 7. Write the equation of the line.

8.4 Curves of the Parabolic Type.

The family of curves classed as parabolic is probably of more
general usefulness than any other. Research in many branches

of science and engineering has indicated that an equation in this

large family will best describe countless facts that have been

discovered and organize them for practical application or further

study. Typical formulas of this type are found in the study of

motion problems, kinetic energy, hydraulics, beam analysis,

certain heat problems, and numerous other branches of knowl-

edge. The simple parabola studied in analytic geometry texts is

but one member of this family. The most important facts,

because they are useful, are those which enable the worker to

identify curves and write equations for them. The average

engineer probably will never construct a parabola, as such, in all

his professional career. He will, however, frequently use the

equations of curves that fall in the parabolic family.

This family of carves, otherwise known as the power Junction,

y = /(^)”, where n is positive, includes not only the standard

equations of the parabola as listed below but such curves as the

cubic and higher degrees and power polynomials. The exponent

n must be positive; otherwise the curve falls into the hyperbolic

family.

In the standard e(juations listed below, 0.5p is always the dis-

tance from the focus of the parabola to its a ertex. The line that

is perpendicular to the principal axis of the parabola at distance

0.5p from the vertex (or distance p from the focus) is called the

directrix.

Three important cases are to be considered when discussing

the second-degree parabola, each having two subcases.

Case I. The vertex is at the origin, and the principal axis of

the curve is one of the coordinate axes.

. The x axis is the principal axis of the curve.

2/2 « 2px (8.4a)

. The y axis is the principal axis of the curve.

a 2'py .(8.46)
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Case II, The vertex is not at the origin, but the principal axis

of the curve is on a coordinate axis.

. The principal axis coincides with the y axis, but the vertex

is at distance k from the x axis.

=* 2y{y ~ k) (8.4c)

. The principal axis coincides with the x axis, but the vertex

is at distance n from the y axis.

xj^ == 2'p{x — h) (SAd)

Case III. The principal axis is parallel to one of the coordinate

axes, and the vertex is at a distance from the other coordinate

axis.

. The principal axis is parallel to the y axis at distance h from

it, and the vertex is at distance k from the x axis.

(x - hy = 2p(xj - k) (8.4e)

. The principal axis is parallel to the x axis at distance k from

it, and the vertex is at distance h from the y axis.

(y - /c)2 2p{X - h) (8.4/)

The two general forms of the equation for second-degree

parabolas, corresponding to Eqs. (8.4e) and (8.4/), respectively

are
x^ -{- Dx A Ey A E — 0 (8,4^)

y^ A Dx A Ey A F = 0 (SAh)

8.6 Areas under Parabolic Curves.

Information about the areas under parabolic curves is of con-

siderable importance to engineers. The various properties of the

areas adjacent to a parabolic curve are of use in, studies of beam or

arch design, of motion problems and others. In many of the

situations only the degree of the curve is known and nothing is

known about its equation, focus, directrix, or principal axis.

Under such conditions one needs to know how to get the areas

when the information at hand is limited to the degree of the curve

and a few ordinates in the curve.

The most general case is illustrated in Fig. 18, which shows a

second-degree parabola cutting through a parallelogram. In the

diagram, line AD is tangent to the curve at point A, AB may
be at any angle with AD, Line CD = h and is parallel to AB,
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cutting the curve at any point C. Line BC is parallel to the

tangent AD,
The second-degree parabola has the property of cutting the

parallelogram into two areas, such that Area 1, known as the

parabolic spandrel, equals half of Area 2, known as the parabolic

segment. If the perpendicular distance between the lines AB
and CD is 6, then the areas are as follows:

Parabolic spandrel area — Ibh (8.5a)

Parabolic segment area = ibh (8.56)

These formulas hold true for all values of angle BAD greater

than O'’ and less than 180°.

When the curve is a cubic parabola, the formulas become,

repectively,
Spandrel area ~ \bh (8.5c)

Segment area ” Ibh (8.5d)

Generalized formulas can be written based upon the degree of

the curve n as follows:

Spandrel area =

Segment area =

71 + 1

n

In + 1

bh

hh

(8.5e)

(8.5/)

Certain other properties of the spandrel and segment will be

found in Tables 3 and 4 in Chap. 12. They will prove useful in

the work on derived curves discussed in Topic 8.13 and centroids

and second moments discussed in Chap. 10, Topics 10.7-10.15

inclusive.
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8.6 Fitting Equations to Parabolic Curves.

When the worker knows that his curve is not a straight line and

he suspects that it belongs to the parabolic family, he has three

approaches to his problem as follows:

a. The method of selected points. The quickest method of

getting an approximate equation of a curve of the parabolic type

is to plot X and y on logarithmic paper. If such paper is not at

hand, then plot log x and log y on rectangular coordinate paper.

If the plotted points are approximately on a straight line, the best

line is drawn with a straightedge. The slope triangle is measured

in any convenient unit, using the same scale for altitude and base;

then the slope m is computed. The y intercept is read where

a: = 1 or log X — 0. The equation of the curve can now be

written y = bx*^^ where b is the y intercept and m the slope of the

straight line on the logarithmic paper.

When the points yield a curve on logarithmic paper but one

feels certain that the curve is parabolic in form, there are still

ways to rectify the curve. If the equation is of the form y =
bxP + c, the value of c may be found by successive trials or it may
be computed. If the curve on logarithmic paper is concave

upward, it can be straightened by subtracting a (a>nstant c from

the values of y. Successive trials will give a close approximation

to the true value. If the curve is concave downward, the value

c is added to the respective values of y. The value of c can also be

computed by reading, from the graph, the value of yz at the point

where xz = \/rr]X 2 ,
then substituting the values of the ordinates

in the following formula:

V\.y\ — v%^

2/1 + 2/2 - 22/3
(8.6a)

In the rather infrequent case where one is quite certain that the

vertex of the curve lies on the y axis, the value of c is the y
intercept of the curve as plottecfon rectangular coordinate paper.

It is usually advisable, however, to verify the value of c by calcu-

lation, using Eq. (8.6a) al)ove.

b. The method of averages. In the method of selected points

the best or mean line is determined by eye, and even the com-
puted value of c depends upon a reading of yz from the curve;

hence the final equation depends greatly upon the skill of the

computer and the care that he used in doing the graphic work.
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The method of averages, however, avoids the personal factor

for an equation of the form y = by using calculated values

entirely. There are several steps in the calculations as follows:

Step 1. Tabulate the value of x and y.

Step 2. Tabulate the values of log x and log y. Use the

absolute values of the logarithms for any data values less than 1.

Step 3. Divide log x and log y into two equal or nearly equal

groups, and get the subtotals.

Step 4. Substitute these subtotals in the standard equation

log y — mi:, log X n log h (8.66)

Step 5. Solve the simultaneous equations for m and h, and

write the equation of the curve.

If the curve is of the form y ~ bx^ + c, one must determine the

value of c as in the method of selected points, then proceed as

indicated above, using (y — c) instead of y.

c. The method of least squares. Just as in the case of the

straight line, the most accurate way of determining the approxi-

mate equation of a parabolic curve is the method of least squares.

The various operations for a curve of the form y = hx"^ is as

follows:

Step 1. Tabulate the values of x and y.

Step 2. Tabulate the valuesof loga:and log y. Thenget Slog.r

and 2 log y.

Step 3. Compute and tabulate the values of (log xy and the

product (log O’) (log y).

Step 4. Get the totals 2 (log x)- and 2[(log x)(log ^)].

Step 5. Substituie the proper sums in the two standard

equations
S log 2/

= mS log X -V n log b (8.6c)

S[(log x){\og ?/)] — mX{\og x)2 -j- log 62 log x (8.6J)

Step 6. Solve these simultaneous equations for m and b, and

write the equation of the curve.

If the curve is of the type y = bx^ + c, it will be necessary to

determine c as in the method of selected points, then proceed as

above. Remember that one uses {y — c) in place of y in above

tabular values and summations.

8.7 Exponential and Logarithmic Curves.

The third important family of curves is also of considerable

interest to the engineer, because some of the common laws and
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formulas assume either the exponential form y = €* or the loga-

rithmic form X = log« y. This form of equation is sometimes

called the law of organic growth or the compound-interest law. A
large number of the formulas that describe the action of living

organisms take on the exponential form when the relationships

are put in mathematical equations. Usually the base for the

logarithms will be found to be the value e, the base of the natural

or hyperbolic logarithms. Sometimes labor will be saved on such

calculations if Table 34 is used instead of changing all logarithms

over to the base 10.

8.8 Fitting Equations to Curves of the Exponential Type.

When the data yield a curve on either rectangular or loga-

rithmic coordinate paper and it cannot be straightened by intro-

ducing a constant c, as above, the equation may be of the

exponential type y = If the curve is of this form, the con-

stants can be calculated and the equation be determined by three

methods.

a. Method of selected points. This is again a graphical solu-

tion, and the resulting equation depends upon the skill and

judgment of the worker for its reliability. The data are plotted

on semilogarithmic paper. If they yield a straight line, the curve

is of the exponential type, and the equation determined as follows:

Step 1. Throw the type equation y = into the logarithmic

form
log y = (dx)(\og e) -f log h (8.8a)

This equation can be put into the slope-intercept form, thus

:

log y - id log e)x -f log b (8.86)

corresponding to

y - mx + h (8.8c)

for the straight line except that logarithms are involved.

Step 2. Read two ordinates on this line, yi and y^ preferably

the initial and final values. The value of b is read directly from

the sheet, because it is on the logarithmic ruling.

Step 3. Get log yi and log y and solve for the slope of the line

m d log e

log y - log yi

X — Xi
(S.Sd)
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Since e = 2.7183 and logio e = 0.4343, the value of d can be

computed:

d — ^
“

iogjo e

= 04343

Step 4. The values of b and d arc now known; so their values

are substituted in the type equation, and the solution is complete.

The equation should be checked by substituting some other

value of X in it and solving for the corresponding value of y. See

if this y value falls on the line and on the curve plotted on rec-

tangular coordinate paper.

When the points yield a curve on semilogarithmic paper but

one feels certain that the curve is exponential in form, it is possible

to verify this assumption. If the equation is of the form

y = + c, the value of c may be found by successive trials or it

may be computed. If c is positive in sign, the curve is concave

upward, it will be straightened when the proper value of c has

been subtracted from the given values of y. If c is negative in

sign, then the curve is straightened by adding the numerical value

of c to each given ^ alue of y. The magnitude of c can be obtained

by a few successive trials, or it can be calculated as follows: Read
the value of 2/3 from the graph at the point where 0:3 = 0.5(a:i) (^2)

Compute c:

2/1 -h 1/2 — 2yz
(8 .8/)

b. Method of averages,

SUp 1. Tabulate the values of x, y, and log y as for previous

equation types.

Step 2. Divide x and log y into two equal or nearly equal

groups, and get the subtotals.

Step 3. Substitute these subtotals in the standard equation,

thus getting simultaneous equations, and solve for log bord log e,

r log 2/ = (d log e)Xx + n log b (8.8ff)

Step 4. Write the equation of the curve, and test as above.

If the curve is of the form y = be*^^ + c, calculate the value of

c as in the method of selected points, then proceed as indicated

above, using (y — c) instead of y in all summations, Note that
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the result depends upon the accuracy of the original graph because

the value of 2/3 is found only from the graph, not by calculation.

c. Method of least squares.

Step 1 . Tabulate the values of Xy 2/, log ?/, and x log y.

Step 2 . Get the totals, '^^Xy 2) log 2/, '^x^y and 2 (x log y).

Step 3 . Substitute tliese totals in the appropriate standard

equation, and solve for log b and d log e

2 log y — {d log e)'Lx n log h (8.8/1)

log y) = {d log + log h'Zx (8.8t)

Step 4 . Substitute these values in the type equation; then

test as suggested above. »

If the curve is of the form y — he^^ + c, calculate the value of

c as in the method of selected points, then proceed as indicated

above, using (y — c) instead of y in all summations. Note that

the result depends upon the accuracy of the original graph

because the value of 2/3 is found only from the graph, not by

calculation.

8.9 The Harmonic or Periodic Type of Curve.

If the data is plotted on rectangular coordinate paper and

yields a regular, wavy line resembling a sine curve, then one

should suspect an equation of the form

2/
= a sin hx or y = a cos hx.

When a sine curve is plotted, it will be noted that it is symmet-

rical with respect to a horizontal line passed through the y

intercept. The maximum value of y with respect to this line is

called the amplitudcy and the value of x from crest to crest of the

waves is the period. The cosine curve is of the same shape as

the sine cur\"e but shifted one-quarter period to the right, because

the cosine function is 0 when the sine is 1 .

If the heights of the waves seem to be decreasing in such a

manner that a smooth curve, resemblihg the logarithmic curve, is

formed when the crests of the waves are connected, then one

should suspect an equation of the type y = (be~^^) sin {cx -f g).

This curve is known as the damped harmonic and. is frequently

encountered in electrical and mechanical problems. .

A unique coordinate paper has been devised and can sometimes

be purchased from the importers that has its rulings so arranged
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that data plotted on it will yield a straight line for each quarter

period if the equation is of the fomi sin y ==

The slope of this line is the value 'm, and the displacement of the

line right or left of a parallel line through sin 90° gives the value

of a in the equation.

8.10 Curves of the Pol3momial Type.

Sometimes one encounters a situation where none of the fore-

going types of curves seem to apply. Perhaps the curve is best

fitted by an equation of the polynomial type such as

2/
= a + + dx'^ (8.10a)

In this type of equation any of the coefficients 6, c, etc.,

may be positive, negative, or zero. Such an ecjuation really

represents the algebraic sum of several cuives in which y\ — a —
a constant, y 2 = hx — Si straight line, 2/3 = = a parabolic

cuiwe, 2/4 = dx^ = a cubic parabola, etc. Such an equation is,

in fact, a concise plotting or mapping instruction for getting

from the x axis to the curve. The equation y = 2A — 1.2x +
2Ax'^ + O.lx'^, for example, is really saying

^^To get from the x axis to the curve move upward 2.4 units,

downward a length of 1.2:r units, upward 2.4^^ units, and upward

again units to the cuive.^’

A neat and highly practical approach to problems of this type

is opened up in the topics on derived curves in this chapter. The
polynomial equations are frequently solved swiftly and accurately

by this method. In the following chapter a graphical method is

described that will enable the worker to get the equations of many
polynomial curves.

8.11 Miscellaneous Curves.

The preceding topics have discussed the curves that will be of

greatest importance to the engineer. There are a few other

curves whose typical equations will be given as found in texts on

analytic geometry. Since they are of minor importance to the

average worker, however, no suggestions on curve fitting will be

given. These equations are as follows:

a. Ellipse. If the origin is at the center, long axis horizontal,

short axis vertical,
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-I + rl = 1 or +By^ •=€ (8.II0)
a* 0^

a is the long radius, and b is the short radius.

If the origin is at the center, long axis vertical, short axis

horizontal,

yl
x“

4- — = 1 (8 . 116 )

If the origin is not at the center, long axis horizontal, short axis

vertical.

{x — 6)2 {y
—

/<r )2^ + p— (8.11c)

h. The circle. Since the circle is a special case of the ellipse in

which the major and minor axes are equal or a = b, it will not be

discussed here. The two most useful equations are shown below,

but the circle is seldom encountered in curve-fitting problems.

If the origin is at the center and r = the radius,

-f 7/2 = r2 (S.llrf)

If the origin is not at the center,

(x - a)2 -f (y — 6)2 = r2 (S.lle)

a and b are coordinates of the center.

c. Hyperbola. This curve is closely related to the parabola

because the only difference in the equations is that m is positive

for the parabola and negative for the hyperbola. The same

methods of attack may be used in starting the determination of

the equation. Thus, in the method of selected points, negative

slope to any straight line obtained on logarithmic paper is a sign

that the curve is hyperbolic in form. The four most useful

equations are as listed below:

y == hx^ (8.11/)

If the origin is at the center, transverse axis horizontal, con-

jugate axis vertical,

a is the distance on the transverse axis from the center to the

vertex, and b is the distance on the conjugate axis to the vertex.

If the origin is not at the center, transverse axis horizontal,
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conjugate axis vertical,

{x — hy (y — ky
(8 . 11^0

h and k are coordinates of the center.

In the above, if the transverse axis is vertical and the conjugate

axis horizontal, y and x should change places.

If the asymptotes are the axes,

,
. ci^ /o 1

1

•

xy — a i'onstant = — (8.11?)

8.12 Summary of Suggestions on Curve Fitting.

a. Plot the data on rectangular coordinate paper. If the best

curve is a straight line, the equation is of the form

y — mx + h (8.12a)

b. If this graph is a curve, examine it carefully and see if it

resembles some known type.

c. If the curve goes through (0,0) or if it appears likely that the

vertex is at the origin, plot x and y on logarithmic paper. If the

curve is a straight line, then the equation is parabolic or hyper-

bolic, depending on the sign of m, and of the form

y = hx”^ (8.126)

d. If the vertex of the curve, as plotted on rectangular coordi-

nate paper, appears to be on the x or y axis and not at the origin,

determine the y intercept c and plot x, {y — c) on logarithmic

paper. If this curve is a straight line, the curv^e is parabolic or

hyperbolic, depending on the sign of m, and of the form

y
—

6a:”' 4- c (8.12c)

e. If none of the above suggestions work, then plot x and y on

semilogarithmic paper. If this curve is a straight line, the curve

is an exponential of the form

y = (S.12d)

/. If this curve is not a straight line, solve for c and plot x and

(y — c) on semilogarithmic paper. If this curve is a straight line,

then the equation is exponential of the form

y == + c (8.12c)

g. Next try plotting x and on rectangular coordinate
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paper. If this curve is a straight line, it is a second-degree

parabola of the form

y — a A- cx dx"^ (8 . 12/)

Also try the suggestions given in the next and following topics

under the heading Derived Curves. This special approach may
aid in solving the problem.

h. Check another possibility by plotting{4 on rectangular

coordinate paper. If the curv^e is a straight line, the curve is

hyperbolic of the form

(8 . 12,)

i. If the graph on rectangular coordinate paper is a curve and

does not straighten out by any of the above devices, it may be of

form

y — a A- hx A- cx*^ A~ dx'^ + ex*’ -h • •
• kx”^ (8.12/i)

Successive applications of the laws of derived curves may help

to break this curve down to manageable form.

j. If the equation is of the form

Ax"^ A- Bxy Ctp A- L>x + Ey A- F — 0 (8.120

use the coordinates of six points and solve for A, B, C, D, and F
in the equation. Check the results against several other points,

and also plot the curve to see how it fits the original data.

8.13 Derived Curves.

In analytic geometry the student discovers that each of the

geometrical shapes has its own distinctive algebraic equation. In

the foregoing topics in this text he finds suggestions for getting the

equations when the curves with which he is working do not have

any easy, obvious solution, neatly fitted to textbook situations.

It does not seem to be recognized and appreciated by some

students that various shapes of curves are related to each other

and that given one curve, another can be derived from it easily

and quickly by applying simple geometrical relationships. Even
when this fact is mentioned in textbooks, it often ^Tails to regis-

ter in the student^s mind and understanding. The straight line,

the parabola, the third-degree parabola, and similar curves of

higher degree are all mathematically and geometrically related,
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one to the other, in what we can call the parabolic family. Thus,

if given one of the curves or its equation, the others in the series

can be derived from it. A knowledge of these relationships

not only will aid in getting a clearer understanding of problems

involving these curves but will also help to lay a sound foundation

for the work in engineering and mathematics beyond the freshman

year. It will then be found not only that the laws explained in

this chapter apply to the parabolic family of curves but that they

also can be extended to cover all sorts of equations and families of

curves.

The parabolic family of curves is one of the most important to

the engineer. The majority of engineering laws, formulas,

phenomena, designs, and constructions make use of straight lines

or parabolic curves. One study indicated that over three-fourths

of engineering calculations involved equations in this family of

curves. Since a clear visual picture of the relationships among
some of the curves will help one to perceive the geometrical

significance of any operations performed upon the equations, the

following topics will develop the idea of derived curves.

8.14 Slope and Area Relationships.

In any given family of curves the successive cuiwes are related

to each other through two laws. The first law concerns an ordi-

nate in one curve and the slope of a line tangent to the related

curve at the corresponding ordinate. The second law states the

relationship between the ordinates in one curve and the area

between corresponding ordinates in the related curve. The
derived curves must be considered in a definite sequence and

should be arranged in the same sequence w^hen the graphs are

drawn. There are no exceptions to the laws that state these

relationships, and the user does not need to fear that an exception

to them must be considered. In certain cases the complete curve

may consist of several sections such as inclined straight lines,

horizontal lines, or parabolas. Each section has its own set of

derived curves which, when completed, will lead to the solution of

the whole series. There may, therefore, be many curves in the

vertical bank for each section as well as several sections or banks.

If a few ordinates are known and it is also known that the curve

is a straight line, or second-degree parabola, or some other curve

in a series, it is possible to sketch the curves and eventually to
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write the equations of them. The curves are not plotted but

sketched only relatively to scale. Thus, if one knows that a final

ordinate is larger than the initial ordinate, it is shown that way,

but it is immaterial if exact proportions are not maintained. A
curve that is concave upward is drawn that way, but it need not

Fig. 19.

be constructed to scale. Since exact scjaling is not essential,

exaggeration is permissible and often desirable, especially when
details have to be studied and dimensioned.

8.16 The First Law of Derived Curves.

The first relationship mentioned above is that which connects

the slope of one curve to ordinates in its derived curve. This law

enables one to sketch the shape of many curves before any of the

numerical values have been computed. The first law states that

The slope at any Point in

any continuous Curve

The length of the Ordinate'
at the corresponding point
in the next lower curve

(8.15a)

By higher and lower curves is meant both the degree of

the curve and its position of the diagram sheet. In Fig. 19a,
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page 172, is shown a curve consisting of three straight-line seg-

ments starting with an initial positive value. Each of these

segments describes the situation that exists throughout the

indicated x interval.

The next lower derived curve is constructed in Fig. 196 in

accordance with this. law. In the interv^al x, the slope of the first

section of Curve is — Since this slope is con-

stant and positive, the value of yo is positive and constant. The
only line that can indicate these two facts is a horizontal straight

line drawn above the axis, as in Fig. 196.

In similar fashion the slope of the second section of ‘^Chirve a’’

is seen to be — - -- = Vu since the slope is obviously

steeper than in the first section, the value of yi is shown as another

horizontal straight line in Fig. 196, but higher than that drawn

for ?/o.

Figure 19a shows that the third section of Curve a^^ has

negative slope; that is, it points down to the right. The slope

calculation would yield the same information. Since is less

1 1
•

— ^‘2 1 •

than W2 ,
the slope is = ^2 and is negative. 1 his is shown

^"3

in Fig. 196 by a straight line again, but now it must be drawn

below the x axis, since 1/2 is negative.

8.16 The Second Law of Derived Curves.

The relationship between the ordinates in Curve a’^ Fig. 19

and the areas under Curve b^^ in the same figure are inherent in

the first law of derived curves but are more convenient to use if

expressed as a second law, thus:

"The difference in the
length of any two ordi-

nates in any continuous
curve

The total net area between
corresponding ordinates in

the next lower curve
(8.16a)

If in ‘‘Curv^e sl” the slope is
Wi — Wo

Xi
= z/o, then

(wi — Wo) = Xiyo

But if t/o in Curve b’^ is multiplied by X\j the product is, of

course, the area of the rectangle formed by the horizontal line
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graph of 2/0, the x axis, and the initial and final ordinates of the

first section of Curve Now {wi — wo) is only the change or

difference in the length of the ordinates of Curve a^’ for the

first section; hence, the area in Curve represents only this

change and not the total ordinate wi at the end of interval Xi.

To get wi one must include the initial condition Wo; hence,

“’ = + (thc'oXltc)
=

The second law can be used when going in cither direction, up

or down, in the bank of curves. For example, suppose that W2

in ‘'Curve a^’ is unknown but is known, also x^ and 2/1 in

“Curve b/^ By the second law, the area x^iji equals the change

in ordinates (w^ — Wi) in “Curve a.” Hence,

Wi — ivi 4-

Arca unck^r tlio

next lower curve
from ordinate 1 to 2

Wi + (Xil/i) (8 . 165 )

This sc'cond law should be applied after the shape of the bank of

curves has been sketched, not before. It is the tool used for

getting the numerical values of the various ordinates and is not

used for determining the shape of the curves. That is the duty

of the first or slope law. It should be emphasized that the

second law gives the difference in the ordinates in the higher

curve and not the total ordinate. In other words, it concerns

the change in “Curve a that occurs during the interval and in

no way concerns the initial condition existing at the beginning

of the interval.

There is a third law of derived curves which depends upon

certain principles discussed in the following chapter. It is based

upon the idea of moments of areas, but the mathematics of

calculation is still in the realm of simple arithmetic. It is an

excellent check method to use in verifying the results obtained

with the second law. It also enables a computer to hurdle a

curve now and then, going to the second higher curve without

solving the intermediate curve.

8.17 Discussion of the Laws.

The two laws of derived curves are general and apply to any

two or more continuous curves that are derived one from the

other on the basis of the first law. The agreement between slope
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1
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positive

ordinates,
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constantly
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ordinates h
from initial

value

yx-flfx + b
decreasing

in magnitude

from initial value J
Fig. 20.—Alphabet of derived curves.
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and ordinate is true for algebraic signs as well as for magnitudes.

Thus, negative slope in the upper curve always requires negative

ordinates in the lower curve, and increasing slope calls for

increasing ordinates in the lower curve. A table of some of these

paired facts follows and can be used as a guide by a beginner.

In Upper Curve

a. Positive slope

h. Negative slope

c. Constant slope (inclined straight

line)

d. Zero slope

e. Increasing positive slope (curve

rising toward the right and

concave upward)

/. Decreasing positive slope (curve

rising toward the right and

concave downward)

g. Increasing negative slope (curve

dropping toward the right and

concave downward)

h. Decreasing negative slope (curve

dropping toward the right and

concave upward)

In Ijower Curve

means Positive ordinates

means Negative ordinates

calls for Constant ordinates (hori-

zontal straight line)

means Zero ordinate (line coinr

cides with x axis)

requires Positive ordinates increas-

ing in magnitude

requires Positive ordinates decreas-

ing in magnitude

requires Negative ordinates increas-

ing in magnitude

requires Negative ordinates decreas-

ing in magnitude

Each of these pairs of relationships is shown in Fig. 20, page 175,

a to h inclusive. A study of them should enable one to visualize

and read a series of simple curves such as those in Prob. 321-353,

inclusive, in Chap. 11, After what may be called the alphabet

of curves’^ (Fig. 20) has been learned, one can proceed to the more
difficult problems such as Prob. 353. This type of analysis is

especially helpful in the solution of various types of motion

problems. These may concern the motions of machine parts in

automatic machinery, the action of conveyors, or the construction

of time schedules for the operation of transportation systems.

8.18 Notes on Construction of Derived Curves.

When semigraphic derived curves are used to assist in the

analysis of any problem, the best plan is to lay out the curve sheet

with the base lines and principal ordinates similar to Fig. 4, page

70, or to Form 215 in the Workbook. Do not attempt to draw

any curves as yet.
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Next, enter all given data on the curve sheet. This includes

the values of all x intervals and all known ordinates, whether

total or partial values. The partial value is always the change

occurring during the interval. Draw any sections of the curve

for which the shapes are known, such as straight lines and second-

degree sections.

Apply the first law as the first operation, and draw the shapes of

the other sections of the set of curves. When there is doubt as to

whether or not any value drops to the base line, draw the affected

sections lightly, subject to confirmation or change as calculations

prove necessary. In general, the shapes of all sections of the set

of curves should be completed before any numerical values are

calculated.

Use the second law as the second operation for computing the

values of all missing ordinates. Sometimes the known facts are

such that a pair of equations with two unknowns will have to

be solved. This is nothing to worry about and is quite a common
occurrence. Generally speaking, this happens when the known
values are found on the top and bottom curves. As a rule,

time will be saved by solving for a value on the center curve

rather than for an x interval or a value on the top or bottom

curves.

Apply either simple mensuration formulas or analytic geometry

to write the equations of the curves. When this has been done,

it is apparent that the curves have aided one to go from a few

initial or final ordinates and a knowledge of the type of curve

involved to the algebraic equation of the lines concerned. Once
all the equations are written, substitute the final value for x in the

last interval and see if it checks the final ordinate in the highest

curve.
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CHAPTER 9

SOME BASIC PRINCIPLES AND NOTES ON
THEIR USE

9.1 The Primary Quantities.

The definitions and comments given in this chapter are

arranged in the form of concise notes rather than detailed

explanations. It is assumed that the necessary preliminary

work has been done in the classroom during the discussion and
solution of the various study problems. These notes, there-

fore, are not intended as a textbook for the introduction or

development of the fundamentals, but for reference and review

when the student is working on problems that involve them.

Few symbol formulas have been given, the mathematical relations

having been shown in the form of word equations. Words have

been used because they reach the mind quicker than mere
symbols, as symbols must be translated into words before they

can be understood.

Distance, Time, and Force. Many of the review problems

in Chap. 11 involve one or more of three fundamental quantities

each of which has its own distinc^tive system of units. These

three quantities are frequently referred to as the ‘'primary

quantities, as combinations of two or more of them give other

quantities such a^ work^ power, and velocity. Another grouping

of quantities that is frequently used has mass instead of force as

one of the primary quantities.

a. Distance. Distance is measured in length units such as

inches, feet, miles, meters, etc. Areas, volumes, and space are

all measured in distance units.

h. Time. Time is measured in seconds, minutes, hours, etc.

c. Force. Force is the action of one body upon another,

changing or tending to change their shapes, relative positions, or

relative velocities. Force is measured in pounds, tons, grams,

etc. Various names are given to forces according to their source

or effect.

179
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The most common force is the attraction of the earth for all

objects near it. This attraction is known as the force of gravity.

Weight is the measure of the force of gravity upon a body.

It is a 'pulling force,

A tension is a force that pulls, tugs, or drags away from a body.

A compression is a force that pushes, thrusts, shoves, or presses

against a body.

9.2 Other Definitions.

In the foregoing definitions the word body has been used several

times, and other words will be used when referring to the prop-

erties or actions of bodies. Some of these terms will be defined

now.

a. Bodies are definite aggregations of matter, distinct from all

others.

h. Inertia is that property of a body by which it resists change

of motion or position. To overcome this resistance requires the

application of an external force.

c. Motion is the change in the relative position of one body

with reference to another. When no change is occurring in the

relative positions of two or more objects, they are said to be at

rest with respect to each other.

d. Deformation is the change in the shape of a body due to the

action of a force.

e. A rate is a comparison or ratio between two quantities.

/. The specific gravity of a liquid or a solid is the ratio of its

weight to the weight of an equal volume of water (see Table 16,

page 366). Gases are usually compared to an equal volume of

hydrogen (or air).

g. The density of any substance is its weight per unit of volume.

The usual unit is pounds per cubic foot. See Table 16 for the

density of various substances.

9.3 Energy.

Energy is the capacity of a body to perform work. It appears

in many forms, such as mechanical, electrical, or chemical, and

may be changed from one form to another. Mechanical energy

may exist in either of two forms:

Potential energy is the energy possessed by the body due to its

position or deformation.
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Kinetic energy is the energy due to the motion of the body.

A body may possess both kinds of energy, and either form can

be changed into the other. At all times the energy that a body

contains depends upon the work previously done upon it.

9.4 Work.

Work is done on a body whenever a force moves a body against

inertia or external resistance or whenever the shape of the body

is changed. Energy must be expended to perform work. The
measure of the work done is the product of the for(;e causing the

motion times the distance through which the point of application

is moved in the direction of the force. When the proper values

and directions are known, the mathematical statement of the

relationship is given by the following word equation:

Work = (Force) (Distance) (9.4a)

Thus, work involves two of the primary quantities previously

referred to, and its unit of measurciment is a compound unit such

as foot-pounds and ton-miles.

9.6 Power.

In practice we are (‘oncemed not only with the amount of

energy expended in performing any task but also with the time

in which it is performed, or in other words, the time rate at which

the work is done. Time is a valuable factor in modern life;

so we are accustomed to rate machines by their power.

Power is the time rate of doing work, or it may be thought of

as the amount of work done in a unit of time. Thus, power

is a comparison between the whole amount of work done and

the time consumed in doing it. Power involves all three of

the primary quantities, distance, force, and time, and is measui ed

in a compound unit such as foot-pounds per minute or ton-miles

per year. The mathematical statements showing the relation-

ship of the quantities are

:

Power = (Work done)

Time required \
.to do the work/

(
Distance that load'

is moved

.
^TimetomoveN
v the load /

/Force required

\

V to move load /

(9.5a)

(9.56)
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« (Velocity) (Force) (9.5c)

/Force to movc\

^
V the load / /Distance that\

” /Time to move\ Moad is moved/
\ the load /

(9.5(i)

- (‘‘"it"’') <“« (9.5e)

= { 'Turn )
(D'Btance) (9.5/)

9.6 Law of Work and Energy.

When a force acts so as to change the velocity of a body,

work is done by the force. Changing the velocity of a body

makes a corresponding change in the amount of kinetic energy

that it has. Any force tending to increase the velocity of a body

adds to its supply of kinetic energy, and any force tending to

reduce its velocity decreases its kinetic energy. The work and

energy law is a statement of the relation between the work done

and the resulting changes in the kinetic energy.

The
initial

kinetic

rWork donen rWork dono-i

by forces by forces

tending to

increase

— tending to

decrease
energy

- velocity - - velocity -

The
final

kinetic

energy

(9.6a)

All forces acting in the direction of the motion tend to increase

the velocity. All forces acting in an opposite direction to the

motion tend to decrease the velocity. Inertia is not an external

force and has no tendency to change the velocity in any manner;

hence, inertia does not appear in the work and energy law.

Energy and work are closely related, and one can be Converted

into the other. They are measured in the same units, such as

foot-pounds, inch-pounds, etc.

Kinetic energy is usually expressed in terms of the weight and

velocity of the body, but when computed it will be found that the

kinetic energy is in work units.

r Kinetic 1 « (Weight) (Velocity)

L energyJ (2) (Acceleration of gravity)
^ *

In most engineering computations the acceleration of gravity

can be taken as 32.2 fpsps. Note that the velocity and the

acceleration of gravity must always be taken in the same kind
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of units, preferably feet and seconds. The weight can be taken

in any convenient unit. The forcqg doing the work must be in the

same units as the weight.

9.7 Newton’s Laws of Motion.

Newton’s laws of motion express the relationships between

changes in velocity and the forces that produce the changes.

a. The inertia law, A body will remain at rest or in uniform

motion in a straight line unless an external force compels it to

change its position or velocity.

h. The acceleration law. While a body is having its motion

changed by an external force, it receives an acceration that is

proportional to that force and in the same direction.

c. The equilibrium law. The action of every force is opposed

by an ecpial and opposite reaction.

It should be kept in mind that the first and second laws refer

to external forces only. The third law, however, includes

internal forces as well. According to this law, every force must
have its equal and opposite reaction; and hence, when the external

forces are not in equilibrium and the resultant force is causing a

change in the motion of the body, the reactive force to this

resultant must be sought within the body. It is recognized as a

property of the matter in the body, bec^ause force must be applied

to overcome the body’s resistance to change of motion. This

property is known as the inertia of the body, and the resistance

that it offers is called the inertia force. The inertia force is

always equal in amount and opposite in direction to the resultant

of the external forces. The resultant of the external forces is

frequently called the effective force because it is effective in over-

coming the inertia force of the body. If the inertia force is

included in equilibrium sketches with all of the external forces, in

accord with d’Alembert’s principle, the third law is ob\dously

fulfilled, and the problem is reduced to one in statics.

The second law of motion gives the relation between the

acceleration and the force effective in causing the change in

motion. Since the forces acting on a body and their resulting

accelerations are proportional, it is evident that their ratio is

a constant. (In iadvanced work this constant is known as the

mass of the object or sometimes as the mass ratio.) This relation-

ship can best be shown in equation form, as follows:
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The effective force Any other force

/ The acceleration \ Its acceleration
Vthat it will produce/

When the acceleration given a body by any known force

has been determined, the value of the ratio can be computed,

and then the acceleration produced by any other force can be

quickly found. The ratio most readily measured is that between

the force of gravity acting on a freely falling body and the

resulting acceleration. The force of gravity is the weight of the

body as measured on a spring scale. The acceleration of gravity

for various localities and altitudes has been determined many
times with a high degree of precision. For ease in computation

we use the second law in the following form rather than the

preceding equation

:

/The force of gravity,

\

The effective force _ \ its weight / .

/ The acceleration ~ 7 The acceleration \
t

Vthat it will produce/ Vof gravity, g = 32 .2/

Any unit may be used for the forces so long as the same unit

is used for both sides of the equation. It is best to keep the

accelerations in feet per second per second.

The ratio on the right-hand side of Eq. (9.7?>) is known as

the mass ratio or, more simply, as the mass of the object. It

is represented by the letter m in physics and mechanics textbooks.

When the conventional symbols are used, Eq. (9.7h) becomes

F = ma, where F equals the effective force used to produce the

w
change in velocity, in is the mass of the object or — ; and a is

the acceleration given to the object by the force F.

In general, use Newton^s second law for the first solution

of the problem when the acceleration is given or when the time

and resulting change in velocity are known. Use the work
and energy law for the check method. If the initial and final

velocities, also the distance traveled, are given, then use the work
and energy law for the first solution and Newton^s second law for

the check method.

9.8 Rectilinear Motion.

The work and energy law and Newton’s laws of motion refer to

velocities and accelerations. It is frequently necessary to know
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the relation between acceleration, velocity, distance traveled,

and the time. The following definitions and equations will give

that information for problems involving uniform acceleration.

Velocity is the time rate of change of position. The rate may
be either a constant or a variable. If constant, the velocity is

said to be uniform since equal distances are being traveled in

equal time intervals. If the velocity is either increasing or

decreasing, the rate is not constant and the velocity is said to be

varying. The following equations hold true provided the velocity

is changing at a uniform rate:

. , Total distance traveled ^ .

Average velocity =

[

Average] ^ (Final velocity) + (Initial velocity)
(^^h)

velocity J 2
^ '

Acceleration is the time rate of change of velocity. This rate

may be either constant or variable. Acceleration may be either

positive or negative, positive acceleration meaning an increase in

the velocity and negative acceleration a decrease. Negative

acceleration is also called retardation or deceleration. The follow-

ing equations are true for uniform acceleration only:

. , .. Change m velocity
Acceleration — -

Time

_ <'Final velocity) — (Initial velocity)

Time

(9.8c)

(9.8d)

Equations (9.8a) to (9.8d) give some of the relations between

distance, velocity, uniform acceleration, and time. Since they

are mutually related, we may readily obtain other desired

relationships betvreen these quantities such as the ones below.

If Eqs. (9.8a, &, and d) are combined and solved for the distance

traveled, we will get

Distance « (i) (Acceleration) (Time) *
-f- (Time) (9.8c)

Then if Eqs. (9.8d) and (9.86) are combined, we get a useful

equation for determining the change in velocity when a certain

acceleration has been given to an object for a given distance of

travel.

(9.8/)
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9.9 Friction.

Whenever an^ object moves or tends to move across the surface

of another, by either sliding or rolling, there is a resistance to

motion which is called/nc/mn. Friction always opposes relative

motion between the surfaces. It always tends to decrease the

relative velocities of the two surfaces. Thus the friction between

a wheel and a brake shoe is used to help stop a train or an auto.

Looked at in another way, it can be said that friction tends to

equalize the velocities of the two surfaces in contatd. This effect

is used in the case of belt drives and in friction clutches such as are

used in automoblies.

Frictional resistances are usuall}^ classified under three heads:

a. Static friction is the resistance to motion, other than inertia,

that must be overcome in order to start one body moving across

the surface of another.

h. Sliding friction is the resistance to motion, other than

inertia, that must be overcome in order to maintain relative motion

between the two surfaces in contact.

c. Rolling friction is the resistance to motion, other than inertia,

that must be overcome in order to keep one body rolling over the

surface of another.

In all three cases the main fac^tors governing the amount of the

friction force are

. The nature of the surfaces.

. The pressure between them.

For static and sliding friction the frictional resisting force may
be expressed as a decimal fraction of the normal pressure between

the surfaces. This fraction is called the coefficient of friction.

r Friction 1 _
r ^ 1

r The normal1
L force J Leoeffleient J L pressure J

The nonnal pressure is the pressure perpendicular to the surfaces

at the point of contact. The friction force is perpendicular to

the normal pressure and, hence, is always tangent to the surfaces at

the point of contact. The coefficient of friction gives the ratio

of the friction force to the normal pressure. Its value depends

upon the substances in contact, condition of the surfaces, and for

high speeds, upon the relative velocities. For moderate pressures

and low velocities the following laws are true:
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a. Frictional resistance is independent of the areas of the

surfaces in contact if the total normal pressure is constant.

b. Friction is directly proportional to the normal pressure.

c. Friction is independent of the velocity for low speeds but

decreases as the speed increases.

d. Sliding friction is usually less than static friction.

Rolling friction is computed in various ways; but in the con-

sideration of moving trains, mine cars, automobiles, etc., it is

usually given as the number of pounds per ton of weight that

must be exerted to keep the object moving and is called irac-

Hon resistance. Equation (9.9a) can be written in this form for

traction resistance.

[,as^] - [<“»

Values of the friction coefficients are given in Tables 25, 26,

and 27, pp. 379-381.

9.10 Efficiency.

Owing to frictioj! in various parts of its mechanism, the final

output of work from any machine is always less than that put into

it. The efficiency of a machine is the percentage of the power

input that is obtained as useful power. It is always less than

unity and is usually expressed in percentage.

The
horsepower

output

Where the pow'^^'r passes through a series of machines or energy

is changed from one form to another, the first output is the input

for the second step, and the output of the second is the input of

the third, and so on through the series. The net efficiency of the

equipment will be the product of the efficiencies for the various

steps.

9.11 Resolution of Forces.

In many problems that arise in engineering it becomes neces-

sary to study the effect of a force that acts at an angle to a surface.

The computations are usually simplified and the problem made

easier to visualize if the original force is replaced by two other

The
efficiency

The
horsepower

input
(9.10a)

Total
weight (9.96)
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Fig. 21.—Resolution of forces.

forces: one parallel, the other perpendicular to the surface, and

the two having the same combined effect as the original force (see

Fig. 21, above). The two forces are called the components of the

original force, and determining the value of the components is

known as resolving the force into its components.

There are four principal cases:
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a. A vertical force resolved into components parallel to and
perpendicular to an inclined surfa<;e.

h, A horizontal force to be resolved into components parallel

to and perpendicular to an inclined surface.

c. A force parallel to an inclined plane to determine its hori-

zontal and vertical components.

d. A force normal to an inclined plane to find its horizontal and
vertical components.

Inclined forces acting against horizontal or vertical planes are

merely special cases of c or d,

9.12 Computation of Components.

To determine the value of the components of a force in any
of these cases, use should be made of what has been called the

orienting device because it is invaluable in determining the

proper directions of the forces. It consists of a space triangle^

which gives the slope of the plane or inclination of the resultant

force, and a force trianglCy which shows the direction and relative

magnitude of the forces involved. The space triangle shows

distance only and is usually in the same position for all four of the

cases mentioned, but the force triangles (showing forces only),

are all different, as the sides of the force triangle must be parallel

to the corresponding force arrows in the equilibrium sketch. The
equilibrium sketch and orienting device are arranged as shown in

Fig. 21, page 188.

Directions for drawing the orienting device.

. Draw the original force and its components on the equi-

librium sketch as shown at W, A, and P, in Fig. 21.

. Draw a light vertical line down the page from the point

where the original force is shown as splitting into its components.

This locates and forms one side of the space diagram.

c. Draw the space triangle, showing the slope of the incline or

of the original force.

d. Draw the force triangle. Each side in it must be parallel

to the corresponding force arrow in the equilibrium sketch.

Extensions of the sides of the space diagram form the basis of

this triangle. Use heavy lines for force arrows.

6. Solve for the value of the unknown components. The

space and force triangles are always similar; hence, the unknowns

are found by proportion.
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9.13 Equilibrium.

A special application of the third law of motion is seen in the

case of bodies that are either at rest or moving with uniform

velocity. Under either of these conditions the external forces

oppose each other in such manner that no change in the motion of

the body occurs; if at rest it continues at rest; if in motion it

continues moving in the same direction with the same speed.

The external forces are therefore said to be in equilibrium. So

many situations exist in which it is necessary to study the action

of such forces that they arc commonly grouped together under

the name statics. In discussing problems in statics it is cus-

tomary to classify the forces according to the direction and num-
ber acting. Some of the terms used and their meanings are as

follows:

Concurrent forces are those wliich intersect at one point.

Nonconcurrent forces do not intersect at a common point.

Coplanar forces are all in one plane.

Noncoplanar forces are in several planes.

Parallel forces have parallel action lines.

Collinear forces have action lines that coincide.

A couple consists of tw^o equal and opposite forces with parallel

action lines. A couple always tends to cause the body to rotate.

There are several tests that must be applied in order to deter-

mine if a body is in equilibrium. The third law of motion says

that the action of eveiy force is opposed by an equal and opposite

force. In order to apply this law readily its principle is reworded

in the two following statements:

a. The algebraic sum of all the forces acting on a body must

equal zero.

- 0 (9.13a)

h. The algebraic sum of the rotating tendencies of all forces

must equal zero.

Silf = 0 (9.136)

The first condition concerns the magnitude of the forces and

their directions. It is usually expedient to resolve the forces into

components in two or three directions. When this is done, the

summation law becomes
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J

-The algebraic sum of the*
components of all forces

acting on a body, taken
along any hne

XF =» 0

« 0 (9.13c)

When the forces are resolved into components acting parallel

to three coordinate planes, it is necessary to apply the test three

times to see if the following conditions, expressed in symbol form,

are true:
= 0 XFy - 0 XF^ = 0 (9.13d)

The second condition stated above, XM = 0, concerns the

magnitude of the tendency of each force to cause the body to

rotate. The body may not actually rotate, but each force tends

to cause such motion. For equilibrium, therefore, the following

must be true

:

-The algebraic sum of the”
moments of all t he forces _ rQ i ^

acting on a body, with ^

respect to any axis

XM = 0

The measure of the tendency of a force, or couple, to cause

rotation is called its monienL It is the product of a distance

and the magnitude of the force. The line that indicates the

position and dire(;tion of a force in space is called the line of action

of the force. It is of unlimited length. The axis about which the

rotating tendencies are to be computed is the center of moments.

The perpendicular distance from the line of action of the force to

the center of moments is called the lever arm of the force. The

product of the lever arm and the force is the moment of the force

about the given center of moments. The last two definitions

are more readily used if put into equation form as below:

“The lever!
arm of =
a force J

The perpendicular distance to

the line of action of the force, from
the center of rotation

~The moment

d

of a
force

= r
force

r
Its

1
lever I

_ L arm J

(9.13/)

(9.13p)

If the forces are resolved into components in two or three

planes, it becomes necessary to apply the moment summation

law to each set of components in turn. If the body is in equi-

librium, the following is true:

SM* = 0 XMy « 0 XM, = 0 (9.13A)
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If the computer remembers that the three laws of motion

apply to every problem involving forces, and that the above

laws of equilibrium apply especially to all stationary struc-

tures, he will find his approach to the analysis greatly simpli-

fied. It is true that texts and handbooks divide the situations

into a great many special cases, but they can all be analyzed

by applying the simple fundamental laws as given above. Even

a problem involving accelerated motion can be reduced to a

problem in equilibrium, in accordance with d^\lembert^s prin-

ciple, provided the inertia of the body be shown as an inertia force.



CHAPTER 10

GEOMETRICAL AND GRAPHICAL APPLICATIONS
OF CALCULUS

10.1 Calculus as a Way of Reasoning.

The following notes and suggestions are not intended to

take the place of a text in calculus but rather to give a few

of the more important applications and to restate certain prin-

ciples from the engineering viewpoint. This branch of mathe-

matics should not be regarded as a mathematical tool for use only

in research or, as some conceive it, a vague subject that teaches

hard ways of doing easy tasks. On the contrary, the calculus not

only enables us to obtain exact answers to problems that other-

wise would have to be solved by trial and error or other long

methods but also includes a distinctly different type of reasoning,

a mental approach to problems not found in more elementary

mathematics. The engineer is constantly handling problems

that involve the ideas of change, of growth, of variation, of rates.

Now calculus is about just such things; but because the computer

may not know the algebraic equation involved, he often assumes

that calculus cannot be used in analyzing such problems.

The arrangement of the material in the calculus texts naturally

leads the student to think of the calculus as being divided into

many distinct parts. He spends a certain number of weeks

studying the differential calculus; then he spends some more time

on integral calculus, fmishiug with differential equations. As a

matter of fact, the two principal operations are complementary,

the same as addition and subtraction or multiplication and

division. One is finding the rate of change of some variable; the

other is determining the total change. Integral calculus is

concerned with the finding of a sum, but differential calculus has

to do with determining the elemental quantities that yielded the

given total, Thrc^lighout the entire subject of calculus the

student is really working with differential equations; in fact

he cannot begin to reason in this branch of mathematics without

193
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thinking in terms of differential quantities, whether they are

called that or not.

It is probable that much of the trouble that most computers

have with the calculus is due as much to their fear of it and to lack

of systematic methods as to their failure to understand the

subject. Because they rely more on memory than on reason,

they tend to become panic-stricken when they fail to remember

formulas. Then they excuse themselves by saying that ^‘the

calculus isn’t practical, anyway.” A very noticeable fault in

most of the men who use calculus infrecpiently is their habit

of trying to set up their problem in one complete equation at one

operation, no matter how involved it may be. They do not real-

ize that the effective reasoning about the problem comes in the

development of the equation, step by step, beginning \^ith

the simplest description of the required property of the elemental

quantity, and not after the signs of integration or differentiation

have been written. Integration, for example, is a routine, more

or less mechanical process having little or nothing to do with

the reasoning about the fundamental principles of engineering.

Problems involving double or triple integration can be simpli-

fied by breaking them up into two or three distinct integration

statements, each one consisting of a single, simple summation.

Since accuracy is far more to be desired than rigid adherence

to the textbook technique of the man who is using calculus

day after day, the average computer should not hesitate to

adopt all the devices and methods that will safeguard him from

possible mistakes.

10.2 Classif3dng the Problem.

If the many problems to which some phase of the calculus

way of thinking might be applied are grouped according to

the nature of the data, it will be noticed that they fall into

one of the following cases:

Case L The algebraic equation is known. Use the methods

of formal calculus. When the equation that describes the

relationships between the variables is completely known, the

underlying laws are also known, and hence all of the operations of

calculus may be applied with exactness.

Case II. The equation is not known, but its form is known.
The data consist of a few experimental constants. Use semi-
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graphical methods. A large number of problems are of the type

in which the equations are unknown but the laws and principles

involved are definitely known. If the geometrical relationships

of differentiation and integration are used it is often possible to

solve the problem completely and to determine the descriptive

equations in a simple, direct manner.

Case III. The equations are unknown, but some definite

law connects the variables. A series of experimental readings

is available from which a graph may be plotted. Use the

methods of graphical calculus. The basic laws describing the

phenomena may or may not be known or suspected, but in

either case the operations of differentiation and integration may
be performed by purely graphic methods, such as are suggested in

Topics 10.23 and 10.25.

Case IV. No law or equation is known or probable. Data
consist of experimental readings of two independent variables.

Use graphical methods or approximate analytical methods.

Frequently only pure chance relationships exist between the

variables, or else the possible equations are so complex that it is

not possible to determine them. For such situations the graphic

calculus may be used or else approximate methods such as

Simpson^s rule, as given in Topics 10.30-10.32.

Case V. The equation is fully known, but its accurate analysis

is not feasible. Use graphic or other approximate methods. In

a few problems the exact mathematical equation may be known,

but the accurate analysis may be too complex, or its computation

too costly in time or money. In an occasional (‘ase, the integrals

of the given equation may never have been determined. In such

situations the metl.ods suggested in Case III and Case IV may be

used to good advantage.

"

10;3 The Three Principal Types of Equations.

The large number of differential and integral forms that are

found in texts and handbooks lead one to imagine that it is not

possible to make a simple classification of calculus problems.

Such is not truly the case, however, for it has been said that there

are only three broad families of equations, or laws of change,

occurring in natiire which the engineer will commonly meet.

He will find that he can usually place the function that he is

studying into one of these three classes:
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a. The parabolic law. This group includes all of the conic

sections and may be represented by equations of the form

y = hx”^ + C (10.3a)

b. The harmonic law or periodic law includes the trigonometric

curves and is represented by bmctions of the periodic type,

such as

7/ = a sin {hx 4- c) (10.36)

c. The law of organic growth. Also called the compound

interest law, logarithmic law, or exponential law. The equations

may be in the form

y =» or log«,
^
= dx (10.3c)

Sometimes combinations of two or three of these may be

encountered. The typical equation for a damped vibration is

an illustration

y = (6e~^‘®)[sin {ex -|- {7)1 (10. Sri)

It is very probable that the average engineer will find that

by far the greater number of the functions that he uses will fall

into the first group. This is not saying that all of the equa-

tions will be easy to solve; some may be simple, some may be

very complex and difficailt to handle; but the general method
that will solve one problem will at least help in attacking another

in the same group.

10.4 Setting Up the Problem.

Problems falling under any of the five cases previously men-
tioned will be approached with considerably more confidence

if the computer will adopt a rather definite procedure in setting

up his problems and in their consequent solution. He should

not be hasty in trying to throw his work into the conventionalized

form of the textbooks. He should organize his thoughts and
work somewhat as follows

:

a. Endeavor to get a clear idea of what the problem is about.

What is wanted and why?
b. Draw a diagram when possible. Many problems concern

facts that can be put into a diagram or simple graph in such

manner as to be grasped more readily. This diagram should

show all of the essential information, such as axes, curves, limits,
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variables, elemental quantities, dimensions, and units (see Fig. 7,

page 74).

c. Determine the nature and number of the variables. Decide

which will be dependent and which independent.

d. Determine which one of the five cases listed above properly

describes the given data.

e. Use the computation process applicable to the given prob-

lem, and solve the problem.

/. Put the answer into the simplest and most practical form.

10.6 The Formal Calculus (Case I).

If the data are such that the algebraic equation describing the

relation between the variables is given or can be determined

readily, then the formal calculus applies. This will include all

such problems as determining rates of change, maxima and min-

ima, centroids, moments of inertia, and other properties of shapes

and masses. This group includes all problems concerning the

properties of composite shapes such as built-up girders, flywheels,

and machine frames. A vast number of problems in mechanics

and design call for the application of formal calculus.

The suggested classification of problems as given in Topic 10.3

above will help the computer to plan his solution.

The engineer generally uses differential calculus for deter-

mining rates of change or for finding the maximum and mini-

mum values of a variable. To find the rate of change is merely

to determine the ratio of the change in the dependent variable to

a specified change in the independent variable. When a graph

of the given function is drawn, this rate of change is the slope

of the graph. If the algebraic equation is given, the calculus

enables one to figure the exact value of this ratio, whereas (jther

methods give merely the approximate value. Determining

this rate of change is called taking the first derivative. Maximum
and minimum points are the points where the first derivative is

zero and changes sign.

Without doubt, integral calculus causes the most trouble.

If integration is thought of as being the summation process or

determining the total change in a variable when the rate of

change is given, il vdU be easier to see the objective of the com-

putations. A way of visualizing it is to think of it as the area

under the graph of the derivative curve. Integration is truly
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a summation process. In fact, the integral sign is just the old-

time, long form of the letter s made more or less ornamental

by the type founders. It corresponds to the symbol S that is

also used as a sign of summation. Finding the area under a

curve, for example, requires, first, a summing up of elemental

areas to get the area of an elemental strip and, second, a summa-
tion of the strips to get the total area. This principle can be

applied to all integrations. Experience may be the only guide

to choosing the proper integral forms, but many mistakes are

made long before the computer is ready for the integration.

They occur because he attempts to set his equation up in final

form ready for integration without carefully developing it from

the simple statement of the rate of change of the variables.

Because few, if any, of the texts give a suggestion regarding

methods of organizing computations, the average computer

blindly imitates the symbolized statements of principle that

he finds in the book. The truth is, however, that reasoning about

the facts, quantities, and principles that are involved must pre-

cede any statement of the mathematical process to be performed.

The computer who is rusty on his cahailus will be wise to

follow the suggestions in Topic 3.14, page 73.

10.6 Moments.
•

When students first meet the word moment in an engineering

class, they are often confused. It plainly has a technical meaning
that has no connection with time, as it usually docs in everyday

conversation. They are also somewhat bewildered when they

discover that even in engineering the word may be applied,

and correctly, to widely differing things. In general, the name
moment is given to a particular group of mathematical products

that may or may not be visualized, as the action of forces,

the movement of bodies, and similar physical events may be.

The idea of moments, however, is one of the most valuable

concepts used by the engineer. Nearly all problems dealing

with, forces or the strength of materials involve this idea in some
manner.

A moment is the product of some quantity and some function

of its distance from a point, line, or plane. The distance is

called the moment arm, but movement or rotation is not necessar-

ily implied, because the product is usually no more than a
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mathematical abstraction that cannot be visualized or rep-

resented by sketch or diagram. There are many kinds of

moments. However, the following outline suggests only some of

the most common.

a. Moment of force—no rotation necessarily implied.

h. Torque—rotation is implied.

c. Moment of impulse.

d. Moment of momentum.
e. First moment of:

1. Lines.

2. Areas.

3. Volumes.

4. Masses.

/. Second moment of

:

1. Lines.

2. Areas.

3. Volumes.

4. Masses.

g. Higher moments.

/i. Product moments.

When the first power of the moment arm is used to get the

moment, the product is known as a moment of the first order or

merely first moment. An older but not so accurate a name
is static moment. If the square of the moment arm is used,

the product is a moment of the second order^ or second moment.

Through an unfortunate analogy, itself based upon a mistaken

idea, the name moment of inertia was given to the group of

second moments early in the development of the science of

mechanics. Since inertia does not enter into the computations

in any way, especially when areas are involved, the name is

meaningless and confusing. The more accurate term second

moment is much to be preferred but on account of long usage

and the reluctance of many men to abandon old customs, the

name moment of inertia will be with us for a long time to come.

Occasionally, the distances from two perpendicular axes are used

in the moment, and the name prodmt moment is used for the

resulting value. Through an extension of the poor naming

previously referred to, the name product of inertia is often used for

this quantity, which is purely a mathematical abstraction.
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The users of these moments should avoid trying to visualize

most of them. Torque and moment of force may be pictured,

but in most cases nothing is gained by such efforts.

10.7 First Moments.

To obtain the first moment of a line, area, volume, or mass

with respect to a chosen moment axis, imagine the shape to be

divided into elemental parts whose moment aims differ infin-

itesimally. The product of the element and its moment arm

is the first moment of the element. Moment arras to one side

of the axis are considered positive, and on the opposite side,

negative. The first moment of the entire shape, with respect to

the given axis, is the algebraic sum of the moments of all the

elements.

Thus
'rho first

“

moment of

an elemental
area

First power of

the moment arm
y

The
elemental
area dA

(10.7a)

and in symbols
« ydA (10.76)

The total first moment of the area is the sum of the moments
of the elements, or

r Total

|_moment (10.7c)

Ax —JydA

10.8 Centroids of Plane Areas.

A ceiitroidal axis is a straight line lying in a given plane area

in such position that the algebraic sum of the first moments of

all the elements in the area, with respect to it, is zero. Although

there may be an infinite number of lines fulfilling this require-

ment, as a rule only two or three centroidal axes, perpendicular

to each other, are used in practical work.

All centroidal axes intersect at a common point known as the

centroid, of the figure.

The following remarks on locating the centroidal axes of

plane areas will illustrate the principle to be applied in similar

manner to the locating of centroids of lines, volumes, and masses.

Because the moment of the total area must equal the sum
of the moments of its elemental areas, we have a tool for use in
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finding the location of a centroidal axis running in any desired

direction. The first step is to choose a reference axis parallel

to the desired centroidal axis. The reference axis is usually

the coordinate axis, or often one side of the area of which the

location of the centroid is desired. Next the total area is com-

puted, and third, the summation of the moments of its parts with

respect to the chosen reference axis is obtained. When these

values, total moment and total area, are known, it is a simple

operation to solve for the location of the desired centroidal axis.

Putting these facts into word-equation form we have

Tho nioniciit of

the total area

“'riie sum of the"
moments of its

partial areas

xA = -f Mtdi + M’Adz • •]

(10.8a)

(10 .86 )

Or, in algebraic symbols, where x is the distance from reference

axis to the centroidal axis, the element of area is dA^ and x is

the distance from reference axis to the clement, we have

xJdA = fxdA (lO.Sc)

_ SxdA
~ SdA

(10.8c()

_ Total moment
Total area

(lO.Se)

To determine the point called the centroid a similar calcu-

lation is made to find y. The values x and y are the coordi-

nates of the centroid, with respect to the reference axes used.

10.9 Composite Areas.

When the total area is made up of small, simple areas in

which the centroidal axes are already known, the work of deter-

mining the location of the centroid need not involve any integra-

tion whatever.

If the partial areas are numbered Ai, As, etc., and the

distances from the reference axes to their respective centroids

called xi, Xz, Xa, etc., Eq. (10.8a) above becomes

area
J

(xiAi
An)

Sum of the 1
moments of the 1 (10.9a)
partial areas J

-h XzAs 4* * • "H XnAnl f]0.96i
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Locate the centroid of the composite area with respect to

Part Area

in2

Moments with

respect to

Moments with

respect to

03 Size Arm, In. QIQ2Q1QBIS

1

2

3

4 1
5

6

Totals aa msi
Total moment, 1st axis

Total area
”” ""

Total moment, 2nd axis

Total area

Check on total =

Fig* 22.—From computing and checking axis of composite shapes centroidal.
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and as before

Hence

When a centroidal axis for a complicated shape such as a

built-up girder cross section is wanted, the work should be

handled in distinct steps as follows:

a. Diagram showing size of every part, the reference axes,

and the location of the centroid of each partial area with respect

to the reference axes.

b. Computation of total area,

c. Computation of the moment of each part and the sum
of the partial moments.

d. Solution for Xi (or yi as case may require).

The result should be checked by taking moments with respect

to the second reference axis parallel to the first one. This

adds three more steps:

e. Computation of total moment with respect to the second

reference axis.

/. Solution for X 2 .

g. Checking to see if sum of Xi and X 2 equals distance between

reference axes.

AVhen the composite area consists of four or more parts the

work should be tabulated (see Form 231 in the Workbook, also

Fig. 22, page 202). In offices where much work of this kind has

to be done, printed or mimeographed forms with the table

already ruled will be a great help, both speeding up the work and

reducing chances for mistakes,

10.10 Center of Gravity.

The force of gravity acts upon every particle in a mass,

and thus there is a system of forces, which converge toward the

earth^s center, acting upon the body. The resultant of this

concurrent-force system is what we commonly call its weight,

and the line of action of this resultant passes through a point

known as the center of gravity.

The center of gravity may or may not lie within the mass.

No matter what the position of the body may be, the resultant

£ « Total moment
Total area

{xiAi 4- 4 • •
• XnAn)

{Ai A2 Az 4 ^n)

(10.9c)

(lO.Qd)
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force of gravity acts through tliis point. The intersection of

two such gravity lines is sufficient to determine completely the

center of gravity.

When the mass has a regular shape such that its dimensions

are all known, the location of its center of gravity may be deter-

mined by applying the idea of moments as used in finding

centroids except that now the moments of forces are involved.

For moment of area in Topic 10.8 above we now have to substi-

tute moment of force. However, the center of gravity in a

homogeneous mass is in exactly the same position as the cen-

troid of a volume having the same shape as the mass. For

this reason it is usually simplest to find the centroid of the

volume because questions of density, weight, mass, etc., all

drop out.

10,11 Second Moment.

To find the second moment (moment of inertia) with respect

to a chosen moment axis, the line, area, volume, or mass is

divided into elemental parts as was done in finding first moments.

Instead of using the moment arm as it is, however, the element

is nuiltiplied by the square of the arm. Second moments appear

in the analyses of various problems, such as the design of beams

and columns, but in many instances they are lifted out of their

context and figured as independent problems.

Thus two whole chapters of mechanics texts and some calculus

texts are usually given to the calculation of second moments
of area and mass, with little or nothing to explain why this quan-

tity is important. The unit for second moment of area is inches

to the fourth power, and for volume, inches to the fifth power.

Now neither of these ejuantities can be pictured, even mentally,

as we do length, area, or volume, save by inaccurate and mis-

leading analogies. It is better to accept them as the purely

mathematical abstractions that they are, remembering that

they take on physical meaning only when restored to their

places in the analysis that gave rise to them.

Because the second moment of area (moment of inertia) is

so important in the analysis of the load-carrying capacity of

beams and columns and also in certain problems in hydrostatics,

some special comments on this topic follow.

When the area is bounded by coordinate axes and curves
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whose equations are known, the calculation of second moment
(moment of inertia) is a routine calculus problem. A clear

diagram should be drawn, and the element chosen with care.

Usually the element should be in the form of the elemental

square dx dy^ but frequently it can be an elemental strip, thus

avoiding double integration. The strip should run in such

direction as to simplify the integrations as much as possible.

Follow the suggestions given on pages 73-75 for setting up
such problems. Keep the basic operation clearly in mind.

It is

^coiid
moment of -/

The square
of the

moment arm
The elemental

area dA
area, I x L 1/2 J

and in symbols,
- iyUA ( 10 . 116 )

Since the moment arm is squared, the term is always

positive, even though y may be negative.

10.12 The Transfer Formula.

A common problem is one in which the second moment of a

quantity (area, mass, etc.) with respect to its own centroidal

axis is known or can be figured from some very simple formula,

but the desired second moment is with respect to another axis

which does not pass through the centroid. This is a routine

situation in the design of composite areas such as beams, columns,

and special shapes. The parallel-axis theorem, better known
to engineers as the transfer formula, is the invaluable tool for

solving such problems. This law says that the desired second

moment is equal to the centroidal second moment plus a correc-

tion factor which takes care of the distance between the axes.

This correction factor, or transfer term, is always positive,

because second moment always varies as the square of the

moment arm. A clear statement of the transfer formula is

given in the form of a word equation.

Second Second
moment of milkmen t

area with with rt‘$pect

respect to to a centroi-

any given dal axis

axis parallel to

i

_tho given axis_

/x « F Ad^

(

The squareX
of the dis- \

taiicc bo-
I

tween the
|

parallel

axes /

(10.12a)

(10 . 126 )
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10.13 Second Moment of Composite Areas.

If the total area is made up from two or more simple areas,

such as rectangles, triangles, or parts of circles, the transfer

formula must be applied to each of the small, ‘ partial areas.

The calculations for areas liaving four or more parts should be

tabulated in a form similar to that shown in Figs. 23 and 25, pages

206-208, or Forms 232 and 233 in the Workbook. Speed will be
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gained and fewer mistakes will be made if a completely dimen-

sioned diagram is drawn before any calculations are made.

Refer to Fig, 24, below, and to Topic 3.11, page 65, of the

specifications.

10.14 Radius of Gyration.

Students in mechanics courses are usually confused when
they meet the quantity called radius of gyration. They do not

Fig. 24.—-Moment of inertia of built-up sections.
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Fig,

25.

—

Tabular

form

for

complete

solution

for

centroid,

moment

of

inertia,

and

radius

of

gyration

of

composite
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realize that the value is another abstract mathematical quan-

tity. Because the word radius is used, the}^ vainly attempt to

visualize it as they can visualize the radius of a circle. When
applied to plane areas the term is especially inappropriate

because the value is not a radius and nothing gyrates (rotates).

The user of this function of an area will be wise to treat it as the

abstraction it is and forego any attempt to picture it. The
seciond moment of area (moment of inertia) was defined above

as

/ = lyMA (10.14a)

We might also say that it is mathematically equal to the

area times the square of some distance k, thus

/ - kM (10. 146)

or

Through an unfortunate analogy, the value k was called a

radius and coupled to another word signifying rotation, although

no part of the a^ea was moved or had a tendency to move.

The term enters into all column formulas, as a property of the

cross-sectional area, and into many other problems of design. It

is given in all standard tables of properties of structural steel

shapes.

10.16 Geometrical and Graphic Applications of Calculus.

The authors of calculus texts are usually careful to point out

that when a diagram of an equation has been drawn, the laws

of calculus can be translated into terms of geometrical relation-

ships. In a give function y = /(.t), the slope of its graph at

any point is given by its first derivative. This new function

y' == f{x) can also be shown, and the length of the ordinate at

any point in the new curve is a measure of the slope of the

original curve at the corresponding ordinate. The area under

any curve represents the integral of that curve, and thus the

integral curve can l^e sketched by breaking the given area in

smaller parts, getting the area of the parts, and then plotting

those values.

The graphical methods based upon these facts are seldom
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taught or given much emphasis in calculus classes. The graphical

approach is valuable not only for the original solution of experi-

mental problems but also for clarifying one^s thinking when using

the formal calculus. This approach is also of assistance in check-

ing the results obtained by mathematical calculation. It is

unfortunately true that men tend to go through the algebraic

operations with little or no thought about the realities behind

the symbols. The graphical approach with its ideas of slope,

ordinate, and area helps the mind to focus upon the physical

facts described by the algebraic equation.

Engineers by temperament and training are visual minded.

They want literally to see what they are doing, and therefore

graphic and semigraphic methods are invaluable in engineering

offices. This graphic presentation of fact, whether in the form

of pictures, diagrams, charts, or graphs, is a far more efficient way
of transmitting knowledge than words and symbols. Because

he is trained to use and understand such presentations, the

engineer will often prefer to think of integration as a means of

getting the area under a curve. Unless he makes use of such

devices, the average man seldom will use calculus if it can be

avoided in any way. He dislikes it, distrusts it, and regards it as

a highly distasteful form of mental gymnastics. If circum-

stances compel him to use calculus, the work is usually done by

slavish substitution of values in formulas picked hopefully from

some integral table.

This is risky business, and so it is better for the computer to use

some of the methods discussed in this chapter if he can thereby

get a clearer understanding of what he is doing. He can use these

methods either for the original solution or as a check on formal

calculus. As pointed out in Topic 10.2 there are situations where

the equations cannot be determined or, if known, are too complex

or the solution is too time-consuming to justify the cost. In

such cases, the graphical methods are the only practicable ones.

10.16 Calculus and Derived Curves (Case II).

A comparison of the first and second laws of derived curves as

given in the proceeding chapter, with the comments regarding the

graphical relationships of integration and differentiation, shows

that they are the same thing. That is, the first law describes a

pure graphical way of determining the first derivative of an equa-
^
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tion. The second law simply describes a graphical way of

integrating a curve.

This semigraphic method is very helpful in visualizing many
problems, even where the equations are known. Because

many of the curves needed by engineers are either straight

lines or parabolic curves and the areas under them can be com-

puted by simple arithmetical methods, integration is often

transformed into the problem of computing the area of a triangle

whose base and height are known or perhaps the area of a para-

bolic spandrel or segment of which the area is figured just as

readily. In such cases the laws of derived curves, as they were

explained in Chap. 9, are of the utmost value.

There is a third law of derived curves that was not discussed

in the previous discussion because it ties in better with the purely

graphical viewpoint of calculus. It is essentially double inte-

gration expressed in graphical language. This law has been

known under various names for about 75 yr. It was first devel-

oped in connection with studies in stresses and deflection and is

known as the area-moment method or conjugate beam method.

These are merely special-case name's for a completely general

method. The third law reads,

In any continuous curve,
the length of the ordinate
from the tangent to the
curve at any point (called

the first point) to any
other point on the curve
(called the second point)

The algebraic sum of the
moments of the areas be-
tween the ordinates of th(^

corresponding points in the
second lower curve, mo-
ments being taken about
the ordinate through the

second point

(10 ,16a)

This law (‘,an n Iso b€> used as a check on the results obtained by

means of the first and second laws.

The wdiole concept designated in this and other books as

derived curves has been used for a great many years by the writers

of texts on the strength of materials and structural analysis.

There are five, sometimes six, curves in the series that they use.

Starting with the lowest in the bank, they have the load curve,

shear curve^ moment diagram^ slope curve, and lastly, the deflection

curve. The load curve shows the actual loads on the beam;

the deflection cta \ e shows the elastic curve, or bent neutral axis

of the beam itself. The other curves indicate what is going on

inside the beam. The third law is especially useful in beam
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analysis, as it is regularly used to hurdle one or more curves in

going from the load to the deflection curves.

10.17 Comparison of the Calculus and the Graphical or Derived-

curve Methods,

The complete agreement of the two methods can be seen from a

study of the ways of describing a given condition in each of the

two approaches. Listed in parallel columns below are certain

comparisons of the conventional calculus and the derived-curve

presentation of the same facts.

Calculus

The first derivative of the given

equation is positive.

The first derivative of the given

equation is negative.

When the first derivative of a given

equation is zero, it denotes a maxi-

mum or minimum in the original

equation.

When the first derivative is zero

and is changing from -f to — (that is,

the second derivative is negative), it

denotes a maximum value in the

given equation.

When the first derivative; is zero

and is changing from to -{- (that

is, the second derivative is +), it

denotes a minimum value in the

given equation.

If the first derivative of an equa-

tion is zero but it not changing sign,

while the second derivative is chang-

ing sign from -(-to — or — to T, it

denotes a point of inflection.

The constant of integration in the

equation is the value of y when a: = 0.

When an equation is integrated,

the value of the constant of integra-

tion C must be entered as part of the

integral equation.

(Graphical Calculus

The next lower derived curve has

positive ordinates. The given curve

has increasing ordinates. Tangents

to it point up and to the right.

The next lower derived curve has

negative ordinates. The given curve

has decreasing ordinates. Tangents

to it point down and to the right.

If the next lower curve crosses its

base line, then the upper curve has

zero slope at that point and it indi-

cates a maximum or minimum in the

upper curve.

If tlie next lower curve is crossing

from -f to — side of the base line, it

indicates a maximum point in the

original curve. The second lower

curve has — ordinates.

If th(‘ next lower curve is crossing

from — to -f* side of the base line, it

indicates a minimum point in the

original curve. The second lower

curve has -f* ordinates.

When the next lower curve touches

but does not cross its base line, the

original curve has a point of inflec-

tion at that ordinate.

The value of y when the original

curve touches or crosses the y axis

is the constant in the equation of

the curve.

The y intercept of any curve must
be included as a constant in the equa-

tion of the curve.
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10.18 Graphical Calculus (Cases III, IV, and V).

The need and value of graphical methods of solving problems

has been felt for many years. The application of graphical

methods has been especially valuable in experimental work.

Chemical engineering, for example, has been using graphical

methods for years. Not many books have been written on the

use of graphic methods in calculus, but one of the earliest was

‘^Graphical Calculus^’ by Barker in 189(). Frequent references

to one or another operation are to be found in periodical litera-

ture, but few n'cent texts are available. The two operations

described below are those of more general interest, but reference

should be made to various library indexes in order to get special

applications.

# There are cases in which enough data or eejuations are available

to permit conventional algebraic analysis, but the operations are

so time-consuming that the graphical solution is much the quicker

procedure. At othew times the visual presentation is wanted in

addition to the other analysis because of its value in showing the

whole picture at a glance. Lastly, more often than teachers like

to admit, it is true that students forget large sections of what they

learned^’ in college. Out on the job there is seldom time for a

man to go back and dig out a forgotten skill. He is expected to

get the job done promptly even if he is “rusty,” and hence

the graphical approach will often provide a satisfactory solution

in much less time than any other. The solution may be approxi-

mate, lacking all the niceties of rigorous analysis and the refine-

ment of detail. If, however, it gives a workable solution,

precise enough foi* the job in hand, who cares if it lacks the beauty

of a classroom demonstration?

10.19 Equipment Needed in Graphical Calculus.

Very simple tools are required for graphical methods of solving

calculus problems. These few should be of good quality, but far

more important is the exercise of skill and care on the part of the

draftsmanwho does the work. Surprisingly good precision may be
obtained. Integration constructions on 8.5- by 11-in. coordinate

sheets can almost approach the slide rule in precision. Because

of the diflBiculty in drawing the original graph, it is harder to get

high precision in differentiation. Errors of 1 or 2 per cent may
be expected, but the use of the principles of curve fitting will
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sometimes reduce this. Since errors of this magnitude are not

uncommon in experimental work, however, graphical methods can

fill a very useful place in an engineer's list of tools.

The equipment needed is as follows:

Coordinate papers, preferably 10 lines per inch.

A 5Ii or 6H drawing pencil with long, fine point.

A steel needle point for finest work.

An 8-in. French curve (a spline is very useful if the curve is

rather flat),

A pair of 7- to 10-in. transparent triangles.

For graphic differentiation the above tools are needed, and in

addition a plane, surface-plated mirror 5 to 10 in. in length.

10.20 Approximate Methods of Getting the Area under a

Curve.

As stated above the total area under a cur\^e is the same as the

value of the definite integral for that curve and limits. There

are various ways of determining this area. They differ some-

what in speed, precision, and convenience. The best known,

most commonly used methods are described below.

a. Coimting squares. The simplest, but also the slowest,

method of getting the area under a curve that has been plotted on

rectangular coordinate paper is that of counting the squares. It

is laborious, tr;ydng on the eyes, hard on the patience, and none too

precise. It should be abandoned for better methods.

h. Planimeter. The method that appeals to many, especially

to those who are fascinated by mechanical gadgets, is the use of

the planimeter or mechanical integrator. A cheap tool gives

results that are little, if any, more precise than those obtainable

with a lead pencil and a couple of triangles. The results are

always affected by play in the pivots of the instrument, by
the adjustments, by the surface of the paper, and most of all by
the skill of the user. A really fine planimeter is an expensive

instrument. Its purchase is seldom justified in the average

engineering office. Even with a good instrument, a keen eye and
a steady hand are essential. Regardless of the type and quality

of the planimeter, each measurement should be made at least

twice, and the average value used. For important work the

average of six or more measurements should be used. The
planimeter is not, therefore, a cure-all for area determinations.
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c. Average ordinate of total area. A quick approximation of

the total area under a graph may be made by the visual balancing

of areas so as to estimate the average ordinate. This method is

shown in Fig 26, below . A transparent triangle is placed

horizontally on the graph sheet so the area under the triangle

between the straight edge and the curve is equal to a similar area

outside the triangle and lying between the curve and the straight

edge. Make a short mark across the mid-ordinate where the

straight edge crosses it. This is the average ordinate. Check

it by placing the straight edge at either the initial or the final

value of the curve; then swing it about this point to form an

equivalent trapezoid (see Fig 26). Tick the mid-ordinate

again where tl.e straight edge crosses it. The average of

these two settings should give a fair approximation of the height

of a rectangle of the same width as the graph and having the same

total area. This method should yield results having a probable

error of less than 5 per cent.

d. Average height of strip. The method just suggested can be

applied to the individual strips wdth greatly increased precision.

By this method the area is first divided into a series of vertical

strips, usually but not necessarily of equal width. Then the

average height of each strip is estimated as in c. If the strips are

not all of equal width, the area of each is figured and the sum
computed. Il they are of equal width, the sum of the estimated
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average ordinates is obtained. Then this sum multiplied by the

width of one strip gives the total area. This is a good method,

reasonably fast and of higher precision than most users suspect.

Errors of less than 1 per cent are to be expected. It seems that

the normal eye is quite sensitive in balancing areas, and slight

differences in the included and excluded areas are detected with

surprising ease.

e. Weighing. If chemical or other sensitive balances are at

hand, a rather unusual but neat method of estimating the area

under a curve is that of weighing. The curve is plotted carefully

on paper of uniform thickness, and the curve is drawn as a fine,

light line. Cut along the straight sides of the ai-ea with a keen

knife and a straightedge. Then use fine scissors or a knife, and

cut along the graph. Also cut a 2-in. square from the waste area

outside the graph. Weigh the desired area, then the 2-in. square.

By proportion the area under the curve can be calculated from the

weight of the known area of 4 sq in.

/. The string polygon method. This method is one of great

usefulness not only because it is of relatively high precision but

also because it gives a close approximation to the shape of tiie

integral curve. If the work is done carefully, it will give results

as good or better than the average planimeter and in not much
more time. The constructions used are practically identical with

those long familiar to engineers who use graphic statics to deter-

mine the resultants of forces and load distributions in trusses.

Texts on strength of materials or graphic statics refer to the

method either as the funicular polygon or string polygon method,

the first name being Latin for string or cord. Since the applica-

tion of this method to the problem of area determination is new to

many engineers, it will be discussed in detail in the following

topics.

10.21 Description of the Diagrams.

The data curve is shown in Fig 27a, page 217. It consists of

three sections; each one is a horizontal straight line limited by the

given ordinates. These ordinates are numbered 0 for the initial

value, then 1, 2, 3, etc., for all following values. The intervals

between the ordinates are the abscissa lengths xi, x^, Xz, etc.

The values of the given ordinates are represented by the notations

2/0 , 2/i» Vh This figure will be referred to as the data curve or as
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the lower curve, this name having the same significance as it did in

the study of derived curves in Chap. 9.

The projection diagram, shoWn in Fig. 276, is, in several

respects, the equivalent of the force diagram used in graphic

statics. The projection diagram consists of a vertical line called

the projection axis; a point on the base line of the data curve,

called the pole; and a series of lines, called rays, that connect the

r'CV

c. String polygon -2

(upper curve) g

I^ t

\j
1

:

%

!/c

y
.

Pole distance
-I r 1 lu

t

a. Data curve h. Projection diagram
(lower curve)

Fia. 27.

pole and the points on the projection axis. The distance from

the pole to the projection axis is known as the pole distance, d.

The string polygon is shown in Fig 27c. It is constructed so

that each of Its several segments is parallel to the corresponding

ray in the projection diagram and extends from ordinate to ordi-

nate. As will be seen in the following topic, it is the same thing

as ‘Hhe upper curve referred to in the topics on derived curves in

a previous chapter. It will also be shown that the ordinates in

this string polygon give the total amount of the area under the

lower curve, up to that particular ordinate. Thus the final

ordinate in the string polygon indicates the total area under the
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original (or lower) curve. Calculus teaches that the string

polygon is, in fact, the integral of the lower curve.

The values Wq, Wij W 2 f
etc., are the values of the ordinates in the

string polygon at ordinates 0, 1, 2, etc., corresponding to the same

X intervals as used in the lower, or original, curve.

10.22 Construction and Mathematical Significance of the

Diagrams.

The value yo of the initial ordinate is projected, by means of

a line parallel to the x axis, to the projection axis, and the pro-

jected point is marked 0. Then the pole and the projected point

0 are connected, thus determining the location of ray 0. Next

the string 0 to 1 is drawn, as in Fig. 27c, so that it is exactly

parallel to ray 0 and connects ordinates 0 and 1 in the upper curve.

In similar manner, ^i, ?/ 2 ,
etc., arc projected, the rays located, and

the strings 1 to 2, 2 to 3, etc., are drawn parallel to the corres-

ponding rays, each in turn starting where the preceding string

ended.

From the constructions just made it is seen that

or since

Slope of ray ^ ^
Slope of string 0 to 1

v>i —
Xi

Wo = 0
,

the slope == —
Xi

But by construction these slopes are equal
;
hence,

d Xi

and

That is, the ordinate yo in the lower curve equals the slope of

the string 0 to 1 multiplied by a constant d. Thus yo represents,

to some scale, the slope of the upper curve. This gives, therefore,

an exact graphical counterpart of the first law of derived curves,

which states that

[

The slope at any Point
any continuous Curver]

[

The length of the Ordinate
at the corresponding point (10.22a)
in the next lower curve
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In the second interval the slopia of ray 1 is and the slope of

string 1 to 2 is — - The slopes are equal by construction,
X2

and hence,

m ^
d X2

or

Hence, as before, yi equals the slope of the string multiplied by
the constant d, and the first law still applies.

If the proportions shown above are written so as to solve for w
values instead of y values, an area relationship is obtained, thus:

First Interval

wi — Wq _ yo

Xi d

Wi - Wi) {xiyo)

Second Interval

W2 — uh _ yi

X‘i d

> Wi ~ = ^- (^22/l)

Since Xi is the base of a rectangle in the first section of the

given curve and yi) is its height, the product (jiyo) equals the area

under this section of the curve. The difference in ordinates

{wi Wo) in the string polygon is therefore eciual to the area

under the lower curve divided by the pole distance d. Likewise

for the second interval, the product (X 22/ 1 ) is the area under the

lower curve, and therefore the difference in ordinates (w2 Wi)

is equal to this area,

Tliis construction is, therefore, a truly graphical application

and verification jf the second law discussed in Chap. 9, which

reads as follows:

“ The difference in the
length of any two ordi-

nates in any continuous
curv i

The total net area between'
corresponding ordinates in

the nejrt lower curve
(10 .226 )

These laws can be applied in several ways to obtain a scaled

drawing that approximates the shape of the integral curve. The
precision will be affected by the width of the strips used and the

care taken in thi work.

It should be obvious that the actual positions of the various

diagrams on the sheet, the lengths of the ordinates, and the pole
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distance must be entirely dependent upon the scales used for

plotting the curves. When the given lower curve has been

plotted, the choice of a pole distance will completely determine

the slope of the rays in ^e projection diagram and, hence, the

steepness of the string polygon. By the proper choice of the pole

distance, therefore, the string polygon (or integral curve) can be

made to agree with any predetermined scale for its y axis. If

this is done, the values of its ordinates can be read directly from

this calibrated axis without any calculations. The proper scale

for the integral curve can be computed by making an estimate

of the total area under the lower curve, using method c in Topic

10.20. When the scale for the new curve has been chosen, the

pole distance is computed from the following equation:

d = -/;- (10.22f)

In tliis equation Fx is the scale (units per inch) used in plotting

the X values in the lower curve, Fy is the scale (also in units per

inch) used in plotting the y values in the lower curve, and Fy, is

the computed scale (in units per inch) from which the values of

the ordinates in the integral curve will be read.^

10.23 The Graphic Integration Process.

The foregoing discussion and development of relationships was
based on a situation in which the given curve was made up of

horizontal straight lines. When used in engineering offices,

however, this graphical method has its greatest usefulness in cases

where the known data, when plotted, yield an irregular curve of

no identifiable shape or combination of shapes. The first phase

of the construction, therefore, is the use of a method of resolving

the complicated curved area into a stepped, straight-line diagram

in which both the individual strips and the total area are replaced

by a series of equivalent rectangles. When this is done, the

process outlined in Topic 10.22 is used. The detailed operations

will be described step by step, in the proper sequence for fast,

accurate work in getting the area under a curve (integrating)—

a

curve so irregular that its equation might or might not ultimately

be determined

^ For proof of the formula for the pole distance see Forms 218 and 219 in

the Workbook,
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Step 1. Choose desirable x and y scales for the given data.

Remember that on 10-line paper scales are limited to 1, 2, or 6

times lO’*. As a rule ignore the fact that other constructions

will be made on this same sheet. Choose scales so they fit the

paper used and will produce a graph of ample size.

Step 2. Plot the data carefully. Use a hard pencil with a sharp

point; or better still, use a needle point. See that all points are

tiny, clean, round dots, the smaller, the better. Circle the dots

with a clear, sharp circle a sixteenth of an inch in diameter. Do
not let the circle touch a dot, and see to it that the graph and any

and all consti-uction lines never cut through these circles. The
dots constitute original data and must be available for reference

and checking at all times.

Step 3. Draw the graph. Use a hard, sharp pencil with a long

point, and keep it that way from start to finish. Use a spline or

French curve, and draw a smooth fine line for the graph. Impor-

tant—make all splices between the plotted points, not at the point

as so many workers do. Place the curve ruler so that there is

always an overlap of at least one point as each new section of

the graph is spliced to the ones already drawn. The object

of this is to make Jure that each piece of the graph is tangent to its

neighbors on either side. Failure to do this will result in troubles

later on, especially if graphic differentiation is also to be used.

Step 4. Determine the approximate total area by estimating

the height of a rectangle equivalent to the total area. Refer to

Topic 10.20, method c.

Step 5. Compute a desirable scale for the coming integral

curve. This scale is computed thus:

Estimated total area

[

Scale for thel _ Lm^dcr curve to be integrated

w axis J r Length of axis available

, for. showing this total value

(10.23a)

Revise this scale, if necessary, in order to secure a scale suitable

for the paper used. Remember that for 10-line paper this scale

must be 1, 2, or 5, multiplied or divided by multiples of 10 as

needed to get into the proper range. See Specs. (87), (88),

page 58.. When the scale is computed, calibrate the w axis.

It frequently is advisable to calibrate it along the right-hand side

of the sheet.
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Step 6. Compute the pole distance. As stated above the

value of the pole distance will depend upon the scales used for

the Xj Pj and w axes, thus;

(10.235 )

All these scales are known by this time; so d is readily com-

puted. It will always be in inches. If it is necessary to make

any unit conversions as one goes from curve to curve, it should be

done here. Changing area in square feet to acres will, of course,

affect the value of F„, and, hence, the value of the pole distance.

Step 7. Place the projection axis. In practice the projection

diagram is superimposed upon the data curve. This is for

convenience only and to simplify lajdng off the pole distance.

The projection axis should be inside the ruled surface, but do not

use any of the heavy coordinate rulings or data ordinates such as

the 1- or 1,5-in. lines. The heavy rulings are so wide that

precision is lost whenever they are used for the projection axis.

To identify this line in order that mistakes will not occur later on,

it should be heavily reinforced for about 0.5 in. a little way above

the highest level reached by the data curve and in a like manner

just below the lowest level of the data curve. Never retrace the

printed line.

Step 8. Mark the pole. Lay off the proper pole distance by

counting squares and any necessary fractional squares on the

actual graph sheet being used. Never bring in an outside scale

such as a ruler or another sheet of paper. All papers change in

length and width with temperature and humidity changes; hence,

the scale of the paper will seldom, if ever, agree exactly with a

ruler or other external scales. All scales and measurements must,

therefore, be self-contained in the work sheet. For work of the

highest precision the graphic constructions should be completed

without a break once they have been started. An overnight

break with the sheet open to the air for many hours is almost

certain to introduce noticable errors.

The pole is marked by drawing a short (0.5-in.) vertical line

across the x axis of the data curve at the proper distance from the

projection axis. Check this distance carefully, as an error here

ruins the scale for the variable w which was computed in Step 5
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and substitutes an unknown (and probably very awkward) scale

for the one first planned upon. '

It is usually a good idea to label the pole and the projection

axis and use a dimension line between them to record the pole

distance. This not only helps prevent mistakes but is an aid to

the checker.

Steps 9 and 10. Projecting the y ordinates and establishing

the height of the equivalent rectangular strips. These two

operations should always be performed together vvdthout lifting

the triangle, since each extra movement of the tools will introduce

an unnecessary loss in precision.

The long edge of a triangle, which is big enough to cross the

sheet, is placed so the edge is parallel to the horizontal coordinate

rulings. Slide it up or down until it lies on ordinate 0. Check to

see that it is still horizontal
;
then draw a fine line from the circle

marking point 0 to a place approximately two-thirds of the way
across the first vertical strip. Without shifting the straight edge,

raise the pencil and move over to the projection axis. Draw a

short line, less than a 0.10 in. long, across the projection axis.

This has projected the length of ordinate 0 onto the projection

axis. Number this ^Hick^^ with the ordinate number 0. Refer

constantly to Fig. 28, page 224, for constructions from this point.

Steps 11 and 12. Determine the ray, and draw the corre-

sponding string. Use one triangle to connect the pole and the

projected point 0 corresponding to the initial ordinate. Then use

the second triangle to move this line parallel to the ray until

the string 0 can be drawn. Draw this string from the value of

tt)o, the initial ordinate in the integral curve across about two-

thirds the width of the strip. Start the integral curve with an

initial value of zero unless it is known to be some other positive

or negative value. This initial ordinate tco usually is the same as

the constant of integration encountered in formal integration. Do
not draw any of the rays, as they serve no useful purpose once

the strings have been located. This phase of the work must be

done carefully and accurately, as an apparently minor error in

the slope of a single string can result in a startling loss of accuracy

in the final result.

Steps 13 and 14. Now draw a light horizontal line through

ordinate yi (but staying out of the circle). Let this line run to the

left as well as to the right so that it crosses about two-thirds of
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the way through each strip. Without moving the triangle,

project this ordinate as in Step 10.

Steps 15 and 16. Place a triahgle vertically in the strip between

ordinates i/o and 2/ 1 ,
and move it slowly right and left until its

edge forms two small equal areas, nearly triangular in shape.

One of these areas lies under the straight edge and between the

graph and the horizontal line through ordinate t/o. The other

little area lies on the opposite side of the curve and with the

horizontal line through t/i as its other side (see Fig. 28, above).

When the straight edge is placed so that these areas seem to be

equal, draw a very short (0.05- to 0.10-in.) vertical line through
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either of the horizontal lines previously drawn through the

ordinates. Without shifting the straight edge move along its

vertical edge to the place where it crosses the string from tuo

which was drawn in Step 12. Draw another short vertical line

through this string. This intersection marks the starting point

for string 1 whose slope is fixed by yi.

Step 17 and following. Proceed as in Steps 13-16, inclusive,

picking up each ordinate in turn, and complete the cycle of

operations step by step uudl the string polygon is completed.

Each string should be numbered 0, 1, 2, 3, etc., and checked to

see that it crosses the ordinate that determined its slope. This

will forestall mistakes due to the omission of an ordinate or the

use of any ordinate a second time.

Note. The operations performed in Steps 9, 13, 15, and follow-

ing have converted the original curve-bordered figure into a

stepped diagram consisting of a series of rectangular strips of

unequal height and width but w^hose total area is the same as that

under the given curve. Since the strips are now' of unequal width,

the strings will have varied lengths; hence, it is necessary to know
the splicing points for the various strings. The vertical line

forming the two small equal triangles on either side of the curve

thus served two purposes: first, the formation of the equivalent

rectangles; second, locating the splicing point of the strings.

These splicing points, as Figs. 27a and 27c show, are vertically

above the sides of the vertical, rectangular strips formed by the

balancing of the small triangular areas.

Final Step. As a general rule the string polygon, made up of a

series of straight-line segments, Avill be accurate enough to yield

all the necessary Information, especially w'hen the vertical strips

are relatively narrow. With 0.5-in. strips to start with on a sheet

of 8.5- by 11-in. coordinate paper it is easily possible to secure

results having a probable error of less than half of 1 per cent for

the value of the total area under the given curve. Since this is

leas than the probable error in much experimental wwk, the

method is a satisfactory tool.

When a still chiser approximation to the true shape of the

integral curve is desired, it may be drawm as follows: Place a

French curve so chat it lies tangent to two adjacent strings at the

points where each string cuts the ordinates directly in line with

the original data ordinates yo, yi, etc.; then draw in a short
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section of the curve. The strings not only have the correct slope

of the integral curve where they cross the ordinates that gave rise

to them (see first law of derived curves) but also show the correct

value of the accumulated area under the lower curve up to

the point where the string intersects the ordinate (or ordinate

extended). When the smooth curve is completed, the shape of

the integral curve is approximated as closely as it could have been

plotted were its equation known.

10.24 Graphical Integration on Unruled Paper.

Sometimes it is necessary to integrate curves that have been

drawn by automatic recording instruments. At other times it

may seem desirable to construct the graph to a large scale on

plain sheets of detail paper. Since there is no prepared grid of

coordinate rulings ready for use, it becomes necessary to mle in

the essential vertical ordinates to form the series of curved end

strips that are the starting point for the work. These ordinates

should be drawn at all important points in the original graph,

such as points of inflection, changes in slope, or places where it is

obvious that two different types of line are joined (such as

straight-line sections and curved sections). The ordinates

should be relatively far apart where the slope of the curve changes

slowly but much closer together where the slope is changing

rapidly. An ordinate should be drawn through all maximum or

minimum points. The strips obviously are of varied widths

instead of constant width as when squared paper is used, but the

method of constructing the curves will give as good or even better

results, because the ordinate spacing takes into account the

important changes in the original graph.

When the ordinates have been drawn, the constructions are

made exactly as in the preceeding topic.

10.26 Graphical Differentiation.

Greater care and skill must be used in graphical differentiation,

because the worker must measure the slope of a changing curve

at the exact point where the curve crosses the specified ordinates.

This is not easy even when the shape of the curve is most favor-

able and can be a patience-taxing affair when the given curve is

highly irregular.

As previously stated, the derivative curve can be plotted if the
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slope can be determined at enough points and these slope values

plotted. When the given graph is the record made by a recording

instrument, it may be a highly irregular curve consisting of many
fine, saw-toothed variations from an unknown average line which

probably represents the real trend of the curve. . In such cases

the worker may decide to use his best judgment and draw in a

smoother curve which he believes will represent the a^^erage

condition. This new curve can then be worked upon, and usable

results obtained.

There are several ways of estimating the slope of a curve, but it

must be realized that none will give the high precision of graphic

integration. The most commonly used methods are as follows:

a. Drawing tangents to the curve. One method is that of

guessing at the position of a line tangent to the curve at the

specified point. This is the least reliable of all methods and is

especially lacking in accuracy when a curve is changing its slope

rapidly. It should not be used for anytliing more than a rough

approximation.
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6. Constructing very small-slope triangles. Some engineers

have used high-power magnifjdng glasses or microscopes to enable

them to constnict very small triangles along the curve. The
triangles are taken so small that the portion of the curve used as

the hypotenuse can be considered to be a straight line. When
the triangles are formed, the altitude and base of each are meas-

ured as accurately as possible; then the slope is figured. This is

an extremely slow, patience-trying job. It is hard on the eyes,

requires an unusually steady hand, and calls for good equipment.

c. Use of mirrors and normals. The best way to determine

the approximate slope of a curve at any given point is by the use

of a mirror. A mirror is set vertically on the curve at the point

where the slope is desired, then rotated slowly about a vertical

axis until the image in the mirror and the real curve in front of it

make a smooth line (see Fig. 29, page 227) . When placed correctly

the curve and its image are tangent to each other, and the face of

the mirror lies normal to the curve. The true slope of the curve

is the negative rcciproijal of the slope of this normal.

10.26 Mechanical Differentiators.

This mirror method has been known and used by workers in

other fields for many years with excellent success. Engineers

should be more familiar with it, because their skill with drafting

instruments gives them a decided advantage over untrained

workers.

Various types of differentiators have been devised and put on

the market, nearly all having a mirror as an essential part of the

instrument. Some such devices are supposed to draw the deriva-

tive curve as the operator moves the mirror along the curve,

always keeping it normal to the line. Others permit the operator

to draw a line tangent to the curve. Still others are made so that

the slope angle can be read. From the angle and a table of func-

tions the slope can be found. Since the true slope can be deter-

mined so easily with nothing more than a simple mirror, there is

no need for these complicated gadgets.

10.27 Types of Mirrors.

Three types of mirrors have been used for this work. The
simplest is a strip of ordinary mirror made of either common
glass or plate glass. The strip should be about 1 in. wide and 6
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to 12 in. long. If this type of mirror is used, the constructions

must be made along the back of the mirror because the image lies

at that surface. A piece of plate glass that is surface-plated can

be used, but the mirror surface is easily scratched. All glass

mirrors must be handled with care, as the strips of glass are

broken so easily.

A more durable mirror can be made from a strip of brass,

nickel- or chromium-plated. The material should be from 0.25

to 0.75 in. thick, 0.5 to 1.0 in. finished width, and from 6 to 10 in.

long. The mirror surface does not need to run the full length

of the material. It is better to limit it to a section about 0.75 in.

in length at one or both ends of the material. The brass stock

must be planed and ground straight, without bend or wind. If

the mirror is made by electroplating, the stock should be cut

about 0.5 in. oversize for width and length. This is because in

electroplating the material builds up at the edges and corners of

the stock. This bead distorts the image and affects the accuracy

of the work. Hence the edges and ends of the mirror strip

must be sawed off after th(* plating is finished, and the edges of the

material ground so they are perpendicular to the mirror face.

It has been founci that one of the best mirrors, both for accuracy

and long life, is one made of stainless steel. For office work the

bar should be 0.5 in. thick, 1.0 in. wide, and 10 or 12 in. long.

The bar must be ground smooth and true, with edges and mirror

face perpendicular to each other. It is not necessary to polish

more than 1 in. length of the face at each end of the bar.

Some designers have gone to the trouble of mounting a small

mirror perpendicular to a straight edge so the tangents may be

drawn directly. It is both an expensive and difficult manufac-

turing operation to machine three planes so that they are mutu-

ally perpendicular to each other. This arrangement is an

unnecessary complication, because results of equal or higher

precision can be obtained by means of the simple mirror and two

triangles.

10.28 To Draw the First Derivative of a Graph.

The curve is carefully plotted as in Steps 1, 2, and 3 of Topic

10.23
;
then the \\'0rk proceeds as below.

Step 1. Place the mirror on the initial ordinate so that the

mirror faces the curve and the image is about half an inch in
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from the end. See that the mirror surface lies centered on the

dot that shows the value of yo. Now rotate the mirror slowly

with the dot as a pivot point until the graph and its image seem

to form a smooth curve. If correctly placed, the face of the

mirror is normal to the curve or, in other words, coincides with

the radius of curvature at that point. The line of sight should

be at about 15° with the horizontal in a plane perpendicular to

the mirror face.

Step 2. Hold the mirror firmly in this position
;
then using a

very sharp pencil, draw a line, about 0.1 in. long, at the far end of

the straight edge of the mirror. Use the front surface of a metal

mirror and the back side of glass mirrors plated on the back.

Get as long a normal as possible in order to retain precision.

Check this normal carefully, using the average of two or more

observations.

Step 3. Now carefully place the longest edge of one triangle

so that It passes through the dot showing and the average of

the normals.

Step 4. Then place the second triangle so that its longer leg is

perpendicular to this normal. This edge, then, is parallel to

the tangent to the curve at point y„, and the line can be moved
parallel to itself to any desired position.

Step 5. Now slide this second triangle along the first triangle

so that the tangent line is moved parallel to itself until it passes

through a bottom corner of the graph sheet. All tangents having

positive slope will pass through the lower left corner, and tangents

with negative slope will pass through the lower right corner.

Step 6. Do not draw in the whole length of the tangent,

because it would clutter up the sheet. Merely draw a line about

half an inch long where the tangent crosses the far edge of the

coordinate rulings. This line may cross either a side or the top

edge, depending on the slope of the tangent. Label this short

line, just inside the rulings, with the ordinate number 0, 1,2, etc.,

that gave rise to it.

Step 7. Figure and record the slope thus: Using the same
scales with which the original graph was plotted, read the altitude

and base of the slope triangles formed in Step *6. Compute
the ratio of altitude to base, and record the result as the value of

the slope at ordinate yo.

Step 8. Now move the mirror to ordinate ?/i, and place the
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mirror on it so that it faces toward the initial ordinate (see Fig.

29, page 227). Locate the normal a$ in Step 1. Check the obser-

vation by facing the mirror away from the initial ordinate, and

locate the normal from this viewpoint. Ignore any part of the

curve that is behind the mirror. Do not be influenced by the

first placing of the normal. Accept the observations only when
two normals, not less than 4 in. long, lie within 0.10 in. of each

other at the far end. Repeat the observations until a check is

obtained.

Step 9. Use the average of two acceptable normals, and

construct the tangent as in Steps 5 and 6.

Step 10. Compute and record the slope as in Step 7. Then
continue as above until the slopes at all specified points have been

measured.

Step 11. Note the over-all range in the slopes obtained and

compute a suitable y scale for plotting the slopes. Lay out and

plot the values of the slopes as determined above. Do not

draw the graph just yet.

Step 12. Before drawing a line through the points just plotted,

sight across them to see if any definite trend can be detected.

If it seems as though a straight line might best fit the points, then

divide the slopes into two nearly equal groups and compute the

average x and y values for each group. This gives the coordinates

of two points through which the line can be drawn.

Sometimes it will be advisable to proceed with one of the curve-

fitting methods outlined in Chap. 9. When this is done, the

equation of the slope (or derivative) curve can often be calculated.

With known equations the integration by formal calculus methods

will yield the whole series of equations of the higher curves.

In some cases it may prove to be necessary to get a smooth

derivative curve, then obtain a second derivative hy repeating

the above process before the equations can be determined.

10.29 Approximate Integration.

When only the total area of an irregular figure is required

and the shape of the integral curve is of no importance, this

total area may be obtained by se\^eral formulas that give more

or less close apfTOximations to the correct result. They are

of great service in cases where it is not feasible to use either

graphic methods or the formal calculus. All these rules for
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getting the area are based upon the idea of dividing the area

into a series of strips, all of the same widths then totaling the

strips in various ways. The formulas of most value to the

engineer are known as Simpson’s rule, Durand’s rule, and

the trapezoidal rule. ^

10.30 Simpson’s Rule.

Simpson’s rule is generally considered to give the best results

of the three methods and may be used with confidence in all

vm of the. *Ktal —

Fig. 30.—Simpson’s rule.

situations that tiie average engineer will encounter. The rule

assumes that the curve between any three successive ordinates

is a parabola. It is necessary, therefore, to have an even number
of strips, since they are really taken in pairs, although this

fact is not apparent on casual inspection of the formula.

The ordinates should be numbered in turn, the initial ordi-

nate being numbered 0. If the number for the final ordinate

is even, then Simpson’s rule may be used; if odd, then either a

value must be dropped or another added, or another rule must

be used. The extreme ordinates (initial and final) will always

be “even numbered” if Simpson’s rule can be used.

1 Whited, Willis, '‘Methods of Approximate Integration,” Eng. News,

voL 73, pp. 840-842, Apr. 29, 1915, gives an interesting analysis of the

accuracy of various methods.
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If the ordinates are tabulated in three columns as called for

in the formula, the work goes very quickly (see Fig. 30 for

the ordinate groupings).

10.31 Durand’s Rule.

Durand ^s rule does not give quite so accurate results as does

Simpson’s; but as it has the advantage that it may be used

Fig. 31.—Durand’s rule.

for any number of strips, it is a good tool to use when Simpson’s

rule cannot be applied. It is essentially a combination of

Simpson’s rule and the trapezoidal rule.

At the time tha:| the data are copied, tabulate them in three

columns ready for summing, and the labor will be reduced

(see Fig. 31 for the ordinate groupings).



234 ENGINEERING PROBLEMS MANUAL

10.32 Trapezoidal Rule.

This rule is based upon the assumption that the curve is

made up of a series of straight lines running from ordinate to

ordinate. The error, therefore, may be considerable if the

curve has a short radius between any two ordinates. The

I O.S /ha. jiurr7 of fh^ 1

L ^nct o r'o/incita.^.

Fig. 32.—Trapezoidal rule.

computed area ^\ill be too high when the curve is concave and

too low when it is convex. To overcome this fault and give

the same relative accuracy as Simpson^s rule gives, it is neces-

sary to narrow the strips considerably or, in other words, increase

the number of ordinates.

r Approx. 1 r Width] f / Sum of \ / Sum of \]
total = of one 0.5 I the end

) + (
remaining

J

L area J L J L VordinatCB/ \ ordinates/ J

The trapezoidal rule may be used for either an odd or even

number of strips. It is generally a good plan to use this rule

to check the results obtained by cither of the other rules. The
results will not be identical, but the comparison will serve to

detect any bad blunders (see Fig. 32 for the ordinate groupings).

When two of the rules are being used, it is advisable to tabulate

the data ready for summing, thus avoiding the labor and danger

of mistakes that ensue if the values are recopied in the left-hand

column of the work sheet. Do not forget that every ordinate

must be used and that no ordinate is to be used more than once,

10.33 Conclusion.

The value of graphical and semigraphical methods of com-

putation has long been appreciated by engineers, especially
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in the study of forces. They are now making more and more

use of similar methods in the study of other problems. Align-

ment charts, special slide rules, graphs, and mechanical instru-

ments are being used in many branches of engineering. In

a large number of investigations the data are obtained as a

series of readings, or measurements of related quantities. No
mathematical equation may be known, but it is desired to

study rates of change of the variables or, perhaps, the total

change. Under these circumstances graphic methods are of

great value.

The semigraphic methods of derived curves described in Chap.

9 and the extension of this concept to the exact graphical con-

structions described in this chapter furnish very powerful tools

for the cracking^’ of many otherwise difficult problems. They

will also enable the man who may have forgotten most of his

college calculus still to think in terms of the two fundamental

operations of the calculus, namely:

a. The determination of the rate of change of two \'ariables

with respect to each other.

b. Determination of the t.otal change when the rate of change

curve is known.
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CHAPTER 11

MISCELLANEOUS PROBLEMS

MENSURATION

!• A concrete girder with a rectangular cross section

by in. is ft long. How much does it weigh ?

2. A white-oak beam is 16 ft long and 8 by 10 in. in cross

section.

a. What is its weight?

b. At $110 per 1000 fbm what is its value?

3. A rectangular fuselage panel section is 180 in. long and 11.5

in. wide. The panel section is made of aluminum alloy and is

0.020 in. thick.

. Compute its area.

. Compute the weight of the panel on the basis of the weight

per square foot of sheet aluminum, using footnote below Table 17,

page 372.

c. Compute its volume in cubic inches.

d. Check its weight on the basis of the weight per cubic inch or

cubic foot, using Table 16, page 366.

4. A rectangular floor panel made of 0.25-in. balsa is 72.4 by
24.6 in. The panel is covered on each side with a layer of

aluminum alloy which is 0.012 in. thick.

a. Compute the area of the panel.

b. Compute the volume.

c. Compute the weight. (Balsa weighs 0.0056 lb per cu in.)

6* A triangular piece of steel armor plate is in. long,

in. high, and in. thick.

a. Compute its area.

b. Compute its weight, using Table 17, page 372.

c. Compute its volume.

d. Compute its weight, using Table 16, page 366.

236
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6. A triangular piece of micarta 36.5 in. long has a height of

6.0 in. and a thickness of 0.032 in.

a. Compute the area.

5. Compute the volume.

c. Compute the weight by two methods.

(1) Weight per square foot = 0.226 lb.

(2) Weight per cubic inch = 0.048 lb.

7. Two triangular lots lie as shown in Fig. 33. AB =
ft; BC = ft; BD = ft.

What is the area of each lot?

Fig. 33.

8 . How many rods of fence will be required to fence each lot in

Prob. 7? How many rods of fence will be required to fence both

lots in Prob. 7?

9 , A trapezoidal windshield section (see No. 5, page 354) is

made of plexiglass 0.125 in. thick, weighing 0.043 lb per cu in., or

0.0054 psi.

AB = in.

DC = in.

h = in.

a. Compute the area.

h. Compute the volume.

c. Compute the weight by tv;o methods.

10

.

In preparing the estimate of the cost of a steel crane it is

necessary to compute the weight of a trapezoidal steel plate

in. thick (see No. 5, page 354). The parallel edges

of the plate are in. apart; the long edge is



238 ENGINEERING PROBLEMS MANUAL

in. ;
and the short edge parallel to it is in. long. How

much does it weigh?

11 . A tract of land having four sides has two adjacent right

angles (see Fig. 34). CD = ft; AD —

ft; BC = ft.

a. What is the area of the tract in acres?

b. How many rods of fence would be needed to enclose the

tract?

c. How long are the diagonals?

12. A four-sided section ABCD (see No. 0, page 354) is made of

plexiglass 0.062 in. thick weighing 0.043 lb per cii in.

CF = 0.0 in. AE = 2.0 in.

DF = 3.0 in. AF - 41.0 in.

ED = 36.0 in. BE = 9.0 in.

a. Compute the area.

b. Compute the volume.

c. Compute the weight.

13. A circular ring 1 in. long is cut from a tube of aluminum

alloy. The outside diameter of the tube is 2.000 in. and the

inside diameter is 1.965 in. The tube weighs 0.516 lb per lin ft.

. Compute the cross-sectional area.

. Compute the volume.

c. Compute the weight.

14. A control system sector (see No. 9, page 355) is an alum-

inum-alloy forging 0.375 in. in thickness. The length BC == 7.0

in. The angle ACB is 122°.

a. Compute the area of the sector.
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b. Compute the volume of the sector.

c. Compute the weight.

16

.

A brass segment (see No. 10, page 355) is 0.375 in. in

thickness. The radius AC is in., and angle ACB is

deg.

a. Compute the area.

b. Compute the volume.

c. Compute the weight by two methods, using Table 10, page

355, and footnote to Table 17, page 372.

16 . A wing fillet (see No. 11, page 355) is an aluminum-alloy

forging 0.25 in. in thickness. The radius is 30 in.

a. Compute the area.

h. Compute the volume.

c. Compute the weight by two methods, using Table 10, page

363, and footnote to Table 17, page 372.

17. An elliptical leather hinge (see No. 12, page 355) is 0.0625 in.

thick. The long diameter AB = 26.3 in., and the short diameter

DE = 7.2 in.

a. Compute the area.

b. Compute the volume.

c. Compute the weight.

18. A right cylindrical tank is ft diameter inside

and holds gal. What is its height?

19. A stock-watering tank in. deep has a cross section

as shown in Fig. 35. How many gallons of water will the tank
hold when filled ii A i? = and radius R = ?

20. A vertical cylindrical gas tank holds 75 gal The area of

the base is 500 sq in. How high is the tank?
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21* A cylindrical tank with open top is ft in diameter

by ft high (see No. 18, page 356). It is made of steel

plate in. thi(*-k, and all seams are butt welded. What,

is the total weight of the tank and contents in tons when filled

with water to a line 1 ft below the upper edge?

22. The supercharged cabin in a high-altitude plane is 20 ft

long and 1 1 ft in diameter. The air in the cabin must be changed

every 5 min. Compute the capacity of the ventilating system in

cubic feet per minute.

23. A cubical tank contains cu ft. What is the

diameter of a cylindrical tank having the same volume and the

same height?

24. A tank of rectangular section is ft long and

ft high and has a volume of cu ft (see

No. 18, page 356). What would be the height of a cylindrical

tank having the same volume and the same diameter as the width

of the rectangular tank?

26.

Compute the piston displacement of a 9-cylinder engine

that has a 5-in. bore and a 6-iii. stroke.

26. A right conical hard-rubber bumper is 3.7 in. high and has

a base diameter of 2.5 in.

. Compute the surface area.

. Compute the volume.

c. Compute the weight.

27. A firm making glass novelties is filling an order for 2000

flint-glass paperweights in the form of a right pyramid (see No.

19, page 357). The base is a square in. on a side, and
the perpendicular height is in.

a. Compute the weight of one paperweight in ounces.

h. Compute the weight of the full order in pounds.

28. A bridge abutment is made of concrete. Its shape is that

of a truncated pyramid ft high (see No. 21,

page 357).

Length Width
Rectangular top.

Rectangular base.
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Using the mixture described in Prob. 55, page 245, what quantities

of each material will be required. Round off final answers to the

next larger unit.

29 . A patrol bomber flies in a circle of miles

radius. The observer can see 45 miles horizontally in each

direction. Compute the area observed.

30. A copper-ball float is 3.50 in. in diameter and is made of

material in. in thickness.

a. Compute the surface area.

h. Compute the weight.

31 . A rubber bumper is made in the shape of a spherical sector

(see No. 24, page 358). The radius is in., and the

height h is in.

a. Compute the surface area.

h. Compute the volume.

c. Compute the weight.

32 . The nose of a bomber is made of 0.125 in. thick plexiglass

and is in the shape of a spherical segment. The diameter of the

base of the segment is 50 in., and the height is 30 in.

a. Compute the surface area.

h. Compute the weight.

33 . A radio direction-finder loop is made of 1-in. diameter

copper and has an outside diameter of 1 ft.

. Compute the surface area.

. Compute the volume of copper.

c. Compute the weight.

34 . In one of the problems assigned in the forge shop it is

necessary for the student to compute the length of round steel rod

that will be needed to make a close-fitting collar to be forged onto

another round rod. If the collar is to be made from stock

in. in diameter and the other rod is

in. in diameter, how long should the collar stock be cut?
m

36 . A cylindrical tank 10 ft long and ft in diameter

lying in a horizontal position has in. of gasoline in it.

Compute the quantity of gasoline in gallons.
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36

.

The extruded bulb angle shown in Fig. 36 is made from
aluminum alloy. Compute the weight of lin ft of the

bulb angle.

37

.

The extruded trailing-edge wing section shown in Fig. 37 is

made from aluminium alloy. Compute the weight of

lin ft of the trailing-edge section.

i\

38

.

The extruded elevator-hinge section shown in Fig. 38 is

made from aluminum alloy. Compute the weight of

lin ft of the hinge section.
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39. A cross section of a lower spar cap is shown in Fig. 39. All

dimensions are given in inches, and all fillets have a radius of 0.100

in. The spar cap is made from aluminum alloy. Compute the

weight of lin ft of the spar cap.

40. It is desired to construct an open steel tank having a

capacity of 1200 gal. The depth of liquid is to be 5.00 ft, but the

tank is to be 6 in. deeper to allow some reserve space. Material

is to be 0.25-in. steel plate for sides and bottom.

a. Determine the weight of steel needed if the tank is to be

square.

h. Determine the weight of steel needed if the tank is to be
circular.

D
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41 . A roof-truss outline is shown in Fig. 40. Find the length

of each piece not given. CD =
;
CA =

Point B is the mid-point of CA.

42. A section of a highway is on a 4.5 per cent grade. What is

the grade length of the pavement for each 100 ft measured

horizontally?

43 . A pump is delivering water at the rate of

gal per 24-hr day. What is the equivalent amount in cubic

feet per second?

44. A pipe in. in diameter is delivering water to a

tank. If cu ft enters the tank each second,

what is the velocity of the water in the pipe?

46

.

A reservoir having a capacity of

two-thirds full. Water is being pumped in at the rate of

gpm, but it is also being drawn off at the rate of

How long will it take to fill the reservoir?

46 . A reservoir has two supply pipes. One can fill it in

hr, and the other in hr, working sepa-

rately. How many hours will it take to fill the reservoir if both

pipes are filling at the same time?

47 . A certain make of compressor has a list price of $

If it is sold at chain discounts of per cent and

per cent with an additional 2 per cent off for cash,

what is the lowest cost of the equipment?

48. What diameter grinding wheel should be used on a spindle

running at rpm so that the rim speed will be fpm?

49. A belt transmits power from one pulley to another. The
driven pulley is in. in diameter and runs at

rpm, and the driver runs at rpm. What diameter

must it be?

60. Two shafts are connected by gears. If one gear has

teeth and is turning rpm and the

other has teeth, what speed in revolutions per minute
will it have?

61 . A belt transmits power from a pulley on a line shaft to a
pulley on an idler shaft, and from another pulley on the idler

gal is

cfh.
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another belt transmits the power to a pulley on a machine.

If the machine pulley is in. diameter and is to run at

rpm and the line shaft is nmning at rpm, what

diameter pulleys must be used on the idler and on the line shaft

to have the speed of the idler a mean between the others?

62. In a certain factory pne of the departments was producing

pieces in 8 hr. Another machine was

added, and the total production was found to be

pieces in 5 hr. What was the percentage of increase?

63 . Coal is frequently purchased on the basis of the heat units

furnished. Two samples were tested. Sample 1 was priced at

$.6.25 per ton of 2000 lb, and tested 12,660 heat units per pound.

Sample 2 was priced at $6.40 per ton and tested 13,810 heat units

per pound. Which was the more economical coal to buy, and

what was the cost per 1000 heat units of each?

64. A certain electric generator can deliver

kw. How many kilowatts are delivered to the consumer if losses

are as follows:

Powerhouse, ti ansformers, etc., per cent.

Line losses, per cent.

Losses in local distribution system, per cent.

66 . The proportions of cement, aggregate, and water required to

secure concrete of maximum strength and density and of proper

consistency for forming and hnishing will vary considerably, as

they will depend upon the materials available and the type of

concrete wanted. In a given case experiment indicated that a

medium-rich concrete required a 1 :2:3 mix by volume. That is,

1 sack of cement (1 cu ft), 2 cu ft of sand, 3 cu ft of coarse crushed

rock, and 5.5 gal of water is used for each bag of cement. To
make 1 cu yd of this concrete required 7 sacks of cement, 0.52

cu yd of sand, 0.78 cu yd of stone, and 38.5 gal of water. Com-
pute the total units of each material required to make
cu yd of concrete.

Note : Bags of cement are not broken. Use next larger whole

unit for each material used.

66. As indicated in Prob. 55, the materials used in making
concrete should be proportioned carefully. In another locality it
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was found that a medium-rich mixture required the volumetrie

proportions 1 :2.5:3.5 and 6.0 gal of water per bag. For 1 cu yd of

concrete the following quantities we^-e needed: cement, 5.9 bags;

sand, 0.55 cu yd; gravel, 0.76 cu yd; and water, 35.4 gal.

Compute the total units of each material needed to make
cu yd of concrete.

Note. Do not assume fractional bags of concrete. Go to

next larger whole unit for each material used.

67 . Refer to Prob. 55, page 245, and Table 16, page 366, for

data, and then compute the quantities of cement, sand, and

gravel per cubic yard of concrete as percentages of the total

weight. Allow 1 cu ft per sack of cement.

68. Refer to Prob. 56 for data, and then compute the quantities

of cement, sand, and gravel per cubic yard of concrete as per-

centages of the total weight. Allow 1 cu ft per sack of cement.

69

.

A concrete sidewalk is to be laid along a side and an end of a

rectangular corner city lot. The lot is ft wide by
ft deep, the lot lines being 1 ft inside the

sidewalk (see Fig. 41). The parking strip between the sidewalk

and the curb is ft wide. The sidewalks are to be

ft wide and in. thick and are to extend to

the curb at the corner.

a. Compute the number of cubic yards of concrete needed.

b. Compute the quantities of cement, sand, and, crushed stone

needed (see Prob. 55). Round off quantities to the next larger

whole unit.

c. Compute the cost of the sidewalks (see Prob. 65).
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Fig. 42.—Garage floor plan and foundation.

60. Compute t!»e quantities of cement, sand, stone, and water

needed to construct the garage foundation and floor as shown in

Fig. 42. Consult the figure for all dimensions and Prob. 56,

page 245, for the materials required.

61 . A man plans to build a cylindrical cistern ft in

diameter and ft deep inside. The walls are to be of

concrete; side walls and cover in. thick; and bottom

in. thick.

a. Compute the area of the forms required for double forming

the walls.

b. Find the quantity of concrete required for the cistern. Use

the mixture specified in Prob. 56.

c. Find the capacity of the cistern in gallons.

62 . The cistern mentioned in Prob. 61 is to be made of concrete

proportioned as in Prob. 55.

. Compute the quantities of material required.

. Qompute the cost of materials according to costs used in

Prob. 65a.

c. Compute the labor cost (see Prob. 655).
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63. The cistern mentioned in Prob. 61 is to have 2 ft of earth

over the top, and the excavation is to be such that there is an
18-in. clearance all around the cistern so that workmen can
waterproof the outside surface. How many cubic yards of earth

are to be removed?

Fig. 43.—Driveway plan.

64. It was decided to put in a concrete driveway, 5 in. thick,

leading to the garage mentioned in Prob. 60. The shape and
dimensions are shown in Fig. 43.

a. Compute the quantity of materials needed if the mix is the

same as for the garage floor (see Prob. 56).

b. Compute the cost of materials (see Prob. 65a).

c. Compute the labor cost (see Prob. 655).

d. How much could be saved by using two 24-in. runways for

the 65-ft long driveway?

66. Compute the cost of the concrete work in Prob.
,

if

the unit costs are as follows:

a. Materials:

Cement @ cents per sack.

Sand @ $ per cubic yard.

Gravel @ $ per cubic yard.

5. Labor:

Foreman at $ per 8-hr day.

2 laborers at $ each per 8-hr day.

This crew can mix and place 1 cu yd of concrete per hour with
a small 3.5-cu ft mixer.

66. The outer wharves in a certain Canadian port were built

in an unusual manner. A series of reinforced concrete caissons or

cribs were built several miles from the pier site. They were
launched by means of a marine railway, towed to the harbor, then
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sunk on a prepared foundation. When all of the cribs were in

place, sand and gravel were filled in behind them and in them,

making a firm foundation for the dock structures.

The details of the size and construction of a crib are shown in

Fig. 44.

Compute the following:

a. Weight of the crib (see Table 16, page 367).
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6. Amount of “freeboard/^ or height of sides above the water

surface, when the crib was floating in sea water.

LOGARITHMS

67. Solve the following problems, using five-place logarithms.

See and use Form 35 in the Workbook.

K = 'S^94:^A = (16.54)(287.5)

190.3
^ 0.4162

C = (17.23)2*4

D =

E = (12.05) (4. 167) (6. 195)

_ (45.75) (0.07142)

0.00^071

G = (0.1928) (3. 142)

^ 6.047

0.07152

/ = (35.68)1-*

L = (12.05)(72.63)(4.275)

^ (81.91) (75.64)

0.06143

N = (0.06 123) (95.08)

J]l.0716^^ ” 0.0008243

Q = (0.08l21)-“-’i

R = ~X^0.07m

S = (0.04612)(7.174)(69.15)

_ (0.0421 5) (7 1.83)

85.97

68. Solve the following problems, using five-place logarithms.

See and use Form 35 in the Workbook.

A = (21.68) (0.1042)

34.26

0.06923

C = (716.3)«-=i

D =

E = (69.41) (0.008154) (91.67)

(0.2731)(74.32)
^ 2876.

G = (0.04123) (46.81)

„ _ 0.07164
" 0.8916

J = (25.58) o-"*

K = •^FooTe

L = (61.38)(79.67)(0.04217)

u _ (89.43) (0.006172)
'

0.07149

N = (0.08125) (12.23)

0.08176

0.9973

Q = (0.0006173)

R = ~v^a006405

S = (4. 162) (3. 162) (0.04185)

„ (65.65) (0.04211)

8.167
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69

.

Solve the following problems, using five-place logarithms.

Interpolate for the fifth digit. See Form 36 in the Workbook.

A = (1708.4) (475.39)

P _ 62.756

0.021673

C = (24.473) o-i*

Z) = ^64.329

E = (57.636) (48.21 7) (0.7IK

„ _ (0.0021305) (74.3 16)

82.454

G = (92.763) (16.735)

./ = (487.38)

K =

L = (82.316)(0.041609)(22.802)

, _ (816.75) (21 5.02)

111.11

N = (0.041299) (0.61907)

0.061937

0.0012312

Q = (945.39)-‘>-3='

R = ^W081673

S = (82. 107) (4. 1222) (69. 198)

^ (25.412)(6.1715)
' 0.042679

70

.

Complete the value of the following by logarithms:

_ (24.3)(902.5)(0.00274)( )
* “ (l04.2)(97.3)( )

71.

In a (certain pk'co of research work it was necessary to

measure the amount of water flowing through a line of tile. A
series of orifice plates was used for this purpose. They were made
of heavy sheet brass, and each plate had a circular hole through

its center. The holes were of different sizes, and the areas of the

openings were made convenient decimals of a square foot. In

order to bore the holes it was necessary to give the machinist the

exact diameter of the opening to half a thousandth of an inch.

Compute the diameters of the following orifices in inches to the

required degree of precision:

Area 1 was 0.001 sq ft Area 4 was 0.500 sq ft

Area 2 was 0.025 sq ft Area 5 was 0.750 sq ft

Area 3 was 0.100 sq ft

72

.

Steam turbine power problems involve calculations of the

quantity of steam passing through an orifice, pressure and weight

of the steam, etc. The following formula is often used:

w - 0.01296i>2po.97
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where w is the weight of the steam in pounds per second, D the

diameter of the circular orifice in inches, and P the steam pressure

in pounds per scpiare inch. Find the quantity used in pounds
during 2.5 hr when D = in. and P - psi.

Use logarithms.

73.

A formula that is used in designing the ducts for a warm-air
heating system reads as follows:

p = (0.075) (0.00624) (d)

In this formula p is the loss in pi-essure, due to friction, jn

pounds per square foot; F is the velocity in feet per second;
c is the perimeter of the duct in feet

;
a is the area of the duct in

square feet
;
and d is the length in feet. Find the loss of pressure

when V is fps, c is ft, a is sq

ft, and d is ft.

74.

The following problems illustrate several ways in which
decimal points may be located when raising decimal values to

some power by the use of logarithms. Rehw to page 88; then
solve the problems below, handling the decimal point by each of

these three methods:

a. Use the absolute value of the logarithm; that is, subtract

the positive mantissa from the negative characteristic, thus
getting a negative mantissa.

b. Use negative characteristics.

c. Use the “9 ~ JO” system.

A = (0.04273)«-2-'

B = (0.002965)-i'‘

C = (O.SGS)-"!'

D = (0.08725)

E = (0.00643)-»'>*

F = (0.071 G)®-‘«

G = (0.00416)-2-‘‘

H = (0.925)-«-26

J = (0.0()10)3i«

K = (0.000r)07)-''-®«

L = (0.0825)

M = (0.0071 8)-’s

N = (0.754)-»

P = (0.0412)7-718

Q = (0.00213)-“ “•

COMPOUND INTEREST

75.

A note having a face value of 8 , a
term of yr, and calling for interest at per
cent per annum is offered for sale. How much should be paid for

it if the buyer wishes to realize per cent on his

investment?
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76. If $ are invested in the bonds of the

local public utility company at the end of each year for

yr, and the income is reinvested each year to earn interest at the

same rate so that the interest is compounded annually, what will

be the total accumulation at the end of the investment period

when the interest rate is per cent per annum?

77. Many men now provide for old ago by l)uilding up an

annuity fund. If a man pays in $ each

birthday for 20 yr and interest is earned at the rate of

per cent per annum, compounded annually, how large a retire-

ment fund will he accumulate?

78. A contractor wishes to build up a sinking fund so that he

will have money on hand for replacing certain equipment by the

time it should be discarded.

How much should he pay into this fund at the end of every

months in order to accumulate a total of $

in yr? The interest rate is per cent per annum.

79. A sinking fund for new equipment has had $

deposited in it eac^L Dec. 31 for the past yr. If interest

is compounded annually at per cent, what is the accu-

mulation of the sinking fund?

80. An annual deposit in a sinking fund for the purchase of new
machinery is made each Dec. 31 for yr. If the annual

deposit is $ and the interest rate

is per cent per annum, how much will be in the fund

a. At the end of yr?

b. At the end of the sinking fund period?

81. A certain contractor Avishes to establish a sinking fund to

pay for replacing some machinery. How much money must be

laid aside for the fund every months in order to accumu-
late a total of $ in yr?

The fund includes interest compounded at every payment period.

The annual interest rate is per cent.

82. A man buys an automobile costing $

delivered. He receives an allowance of $

on his old car and also has $ cash to pay
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down. He finds that he can save interest by borrowing from a

bank; so he signs a note for the unpaid balance and pays the

dealer in full. He pays the note with 12 equal monthly payments

including interest figured at per cent on the unpaid

balance. What is the amount that he should pay each month?

83 . A common method of financing the purchase of property

is that of making an initial cash payment, followed by a fixed

number of equal installments which include the interest on the

unpaid balance and a payment on the principal.

Form a table showing the following facts for the problem

outlined below: payment period, amount of principal outstanding

at the beginning of each peiiod, amount of periodic payments,

and the portion of each payment that is applied on the principal

at the end oi each period.

A contractor makes a purchase of equipment costing $ ,

The cash payment is 20 per cent of the selling price. The bal-

ance is to be paid in six equal payments extending over

yr. The interest is per cent per year.

84 . A common way of paying a contractor for local improve-

ments in cities is to give him bonds issued by the city, but to be

paid by the special assessment taxes. The contractor must sell

these bonds, as a rule, in order to get cash to pay for labor and

materials. The bonds are supposed to be paid off by equal

annual installments plus interest.

A certain contractor has receivt^d $75,000 in bonds, earning

per cent. They are supposed to be paid off at the

rate of $7500 per year.

. What is the maximum amount that he can expect to get for

the bonds?

. If the buyer wants to make 5 per cent on his investment,

what will he offer for the bonds?

86. A certain engineer signs an annuity contract calling for an

annual premium of $ ,
and the term is

yr. Interest on his deposits is allowed at the rate of

per cent, compounded annually. Then he receives an inheri-

tance and decides to pay the premiums in a lump sum, but

interest at only per cent is allowed on all premiums
paid in advance. The retirement fund is to be paid back to him
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in equal annual installments, beginning yr

after the last premium would normally be due.

a. What will be the total accumulation by the time the man
retires?

h. What single payment will pay all premiums in advance?

c. What will be the annual income when the fund is paid back ?

86. A consulting engineer has not been eligible for old-age

income under the J936 National Security Act. If he wishes to

have a retirement fund for his declining years, he must set up an

annuity fund in a commercial company. An engineer wishes to

accumulate $ in yr.

. If interest is earned at the rate of per cent per

annum, compounded annually, what equal annual year-end pay-

ment to the annuity fund should he make?
. If the fund is to hi) drawn upon at the rate of $

per year after he is 05 yr old, how long will the fund last?

87 . The following formula is used in computing the present

value of engineering properties:

[

Condition as docimall _ | qq _ f (1 + ^ 1
part of original value J * L(1 "k — t J

where p is the probable life in years, n is the present age in years,

and r is the rate of interest, expressed as a decimal, that might

have been earned had the money been invested at compound
interest instead of being spent for the equipment.

a. If you own a

costing $ and having a probable life of

yr, compute its value at the end of each yr of

its life when r equals per cent, and plot a curve

showing how its value varies.

b. What is the total amount of the depreciation up to the

time that 75 per cent of the probable life has been obtained?

88.

The engineer is frequently called upon to determine the

value of various properties. One of the important factors to

be considered is the ‘'present condition as percentage of original

value or, as usually stated, “the condition per cent'^ (see

Prob. 87).

A certain property had an original value of $ ,
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a probable life of yr, and the interest rate to be used

is per cent.

. Compute its condition for every yr. Tabulate the

calculations.

. Plot a graph showing its age and condition as computed in a.

89 . The present value of an operating mining property is

frequently determined by a method called HoskoWs formula^

which is as follows:
1

r 4- i^ (1 + iY - 1

Where P = the present worth.

R = annual operation return.

r — risk rate or desired rate.

i = going rate on safe investments.

n = number of future annual net returns to be received

from the mine.

Compute the value of a mine that has a probable life of

yr and an annual operation return of S

when the desired rate r = per cent and the safe rate

i = per cent.

SLIDE-RULE EXERCISES

90. If ^ = 8.73P, compute values of A for the following values

of P: 0.6480, 3.002, G.425, 7.125, 8.065

91. A given grindstone can be run safely with a rim speed of

1200 fpm. What is the highest speed, in revolutions per minute,

that it can be given if its diameter is ft?

92. Compute the values of y corresponding to the following

values of x in the equation x =

X = 0.0005280, 0,009735, 0.3924, 4.803, 73.85

93. Compute the values of x corresponding to the following

values of y in the equation y = (0.416)

y = 0.007515, 0.06525, 0.7255, 2.850, 6.855

94. Change the following speeds from feet per second to miles

per hour: 17.5, 23.6, 36.2, 67.8, 143.0 fpm.
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96

.

Table 27, page 381, gives a formula for determining the

approximate wind resistance of automobiles. If the projected

area (maximum cross-sectional area in a front view) of a given

machine is sq ft, find the air resistance for the follow-

ing speeds: V = 30, 40, 50, 60, 70, 75, 80, 85, 90, and 95 mph.

Tabulate the calculations.

The table of squares. Table 31, page 384, may be used for getting

and the slide rule in computing the values. Make a single

setting for the entire series.

96 . The second moment’’ of the area of a triangle is given by

the formula

Ic =

where I

c

is the second moment, h is the base of the triangle, and h

is its height.

Use the slide rule to compute the value of the second moment
for triangles having these dimensions; all values are in inches.

b h h h

4.500 0.800 0.2500 18.25

6.750 10 35 0.5250 20.75

8.500 10.50 0.6750 24.30

24.65 16.50 0.7500 14.75

45.45 22.35 0.8750 16.25

GRAPHS

Note: Suitable scales for a lO-linc-pcr-inch paper are as

follows: 1, 2, and 5 units per inch or these values multiplied or

divided by 10, 100, 1000, etc. Do not use any prime or fractional

numbers such as 1.5, 3, or multiples thereof. Adhere to the ASA
code at all times [see Specs.

97. Refer to Table 23, page 377, and plot a graph showing how
the working strength of

varies with diameter. Refer to Forms 30-32 in the Workbook
for a sample solution of this problem for cast-steel rope.

98. Refer to Tabic 18, page 373, and plot a graph showing how
the weight of round steel rods varies with diameter. Plot values

for every 0.25 in. to and including 3.5 in. in diameter.
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99. Refer to Table 18, page 373, and plot a graph showing

how the weight of square steel bars varies with size. Plot values

for every 0.25 in. to and including 3.5 in.

100 . Plot a graph showing the relation between

and diameter for Manila-rope drives (see Table 22, page 376).

101 . Table 24, page 378, gives the power transmitted by

turned-steel shafting. Draw a graph showing the relation

between power and diameter if the speed is rpm.

102 . Draw a graph from the data given in Table 24, page 378,

showing how power and speed vary for a in.

diameter shaft.

103 . Plot a graph showing how the speed (in revolutions per

minute) of a grindstone varies with diameter. Use a rim speed

of 1250 fpm. Use diameters from 1 to 3 ft, taking 0.25-ft

intervals. Tabulate the calculations [see Specs. {133)-{151)],

104 . Plot a curve showing the volumes of spheres to and

including in, diameter for every inch increase in

diameter (see Formula 23, page 357).

106. Plot a graph showing the relation between the numbers

1, 1.5, 2, 2.5, etc., to 10 and the mantissas of their logarithms.

Refer to Table 32, page 401, and round off logarithms to 3 decimal

places (see Topic 6.11, page 135).

106- Plot a curve showing the value of the natural sine of an

angle from 0 to 90®. Refer to Table 33, page 407, and plot points

for every 5®.

107. Plot a graph converting speed in miles per hour to speed in

feet per second. Let speed in feet per second be the independent

variable. Plot values for speeds from 0 to 175 fps in 25-unit

intervals. Tabulate the calculations [see Specs. {133)--{15t)].

108

.

Plot a graph showing the relation between the tempera-

ture of water from 0 to 100®C, and its density.

PC
\

Density <°c Density PC . Density

0 0.9999 20 0.9982 60 0.9832

4 1.0000 25 0.9971 70 0.9778

5 0.9999 30 0.9957 80 0.9718

10 0.9997 40 0.9922 90 0.9653

15
i

0.9991 50 0.9881 100 0.9584
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109

,

The density of the population per square mile in the state

of Ohio for 10-yr periods for 110 yr is shown in the table below.

Year Density Year Density

1830 23.3 1890 90.1

1840 37.3 1900 102.1

1850 48.6 1910 117.0

1860 57.4 1920 141.4

1870 65.4 1930 161.8

1880 78.5 1940 161.2

Draw a graph showing the density as it has been and as it

probably will be up to 1970.

110.

The enrollment of undergraduate students in the Engi-

neering Division at Iowa State College at 6-yr intervals is shown

below. Plot a graph for this data.

Period No. students Period No. students

1879-1880 37 1914-1915 605

1884-1885 65 1919-1920
: 1027

1889-1890 66 1924-1925 1158

1894-1895 156 1929-1930 1621

1899-1900 220 1934-1935 1190

1904-1905 530 1939-1940 2059

1909-1910 586 1944-1945 1391

111

.

The population record of two cities as shown by the

United States census reports since 1860 are shown below.

Year Worcester, Mass. Detroit, Mich.

1860 24,960 45,620

1870 41,100 79,575

1880 58,290 116,340

1890 84,655 205,875

1900 118,420 285,700

1910 145,985 465,765

1920 179,765 993,680

1930 196,395 1,573,985

1940 193,695 1,623,450
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Plot graphs of each on the same graph sheet, extending the

carves to show the estimated populations in 1980.

112 . When testing pumps, water wheels, and various other

power-plant equipment, it is necessary to measure the quantity

of water being used. One means of doing this is by the use of a

weir. For rectangular weirs the quantity is Q = 3.336//'-®,

where Q is the number of cubic feet per second, 6 is the width of

the weir in feet, and 11 is the head of water (height of water on

weir) in feet. Plot a graph showing how the discharge varies

with the head for heads varying from 0 to 5 ft in 0.5-ft intervals.

Width of weir = ft. Refer to and use Form 33

in the AVorkbook.

113 . If a testing weir is a 90° V notch, the quantity is

Q = 2.53//-®,

where Q is the quantity of water in cubic feet per second and H is

the head (height of water on weir) in feet. Plot a graph showing

how the discharge varies with the head for heads varying from 0

to 2.5 ft in 0.25-ft intervals. Refer to Form 33 in the Workbook
for the arrangement of this problem.

114:. A formula that is used in determining the head lost in

friction in a pipe line is in the form // = 0.38F^'®®d“^-^®, where H
is head lost in feet per 1000 ft of pipe, V is the velocity of the

water in feet per second, and d is the diameter of the pipe in feet.

Plot a graph showing how the head lost in friction varies with

the velocity for the following velocities: 0.0, 0.89, 1.42, 2.37, 3.25,

4.80, 5.G0, 9.02, 10.75, 12.1, 13.4, 14.0 Pipe diameter =
ft. Refer to and use Form 34 in the Workbook.

116 . Table 27, page 381, gives the traction resistance of trains

at different speeds. Plot a graph showing the relation of traction

resistance to speed.

116 . Table 27, page 381, has a table giving a formula forthe air

resistance of automobiles. Plot a graph showing the air resist-

ance against a car having a forward projecting area (maximum
cross-sectional area in a front view) of sq ft.

Plot values up to 140 mph.

MOTION EQUATIONS

117. An airplane in taking off started from rest with a constant

acceleration of fpsps. After it had traveled
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ft with this acceleration, its wheels left the

runway. What was its velocity at this instant? How many
seconds were required to reach this speed?

118. A certain automobile in starting from rest has enough

pickup ” to reach a speed of 50 mph in 20 sec. flow much is the

acceleration if the car increases its speed at a uniform rate?

How far does it travel while increasing speed at this rate?

119. A locomotive starting from rest with an acceleration of

fpsps reached a speed of mph. If

the acceleration was uniform, how far did it travel during the

time that it was gaining speed, and what time did it take?

120. A body starts from rest and accelerates at a uniform

rate for a time i. If s equals the distance it traveled during

this time and v equals the velocity that it attaincid, develop an

equation that will give the velocity for any instant in terms of

the acceleration and the distance. Refer to Topic 9.8 for the

basic definitions.

121.

If a body is accelerating uniformly for a cc^rtaiii period of

time, what will be its final velocity in terms of the iiiilial velocity,

the a(iccleration, and the time?

Fig. 45.—Belt conveyor. {Courtesy of Link^BeU Company, Chicago.)

122.

A coal conveyor (see Fig. 45 above) has a maximum
speed of fpm. If a load of coal is dumped
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upon the moving conveyor, reducing the speed to

fpm in sec, what was the average deceleration?

123. According to a certain chart showing the required effi-

ciency of automobile brakes, it should be possible to stop a car

having hydraulic brakes with a uniform deceleration of 24.7 fpsps

if the brakes are in excellent condition. How long a time will be

required'to reduce the speed of a car from 75 to 10 mph? How
far will the car travel during this time?

124 . Highway engineers are telling automobile drivers that

they must allow for their o^vn ^'reaction time’’ as well as for the

time required by the brakes to stop the car quickly. If it takes

sec for a man to start actually applying the brakes after

he sees an object dart out in front of his car, and if his automobile

can be stopped with a uniform deceleration of

fpsps, what is his maximum safe driving speed if his clear view

ahead is limited to ft?

126 . A chute for delivering shipments of freight is so designed

that the boxes, starting from rest, receive an acceleration of

fpsps on the first section, which is

ft long, and then they are retarded by a fpsps retarda-

tion on the next section. If the time consumed in shooting”

both sections is sec, what velocity do the boxes

have at the end of each section? How long is the second section?

126. A switch engine was switching some cars on level track.

Starting from rest the engine got up to a speed of

mph in a distance of ft with uniform

acceleration. Four of the cars were then uncoupled and allow’ed

to coast for a distance of ft. If the

deceleration was fpsps while they were coasting, what
was the final velocity of the cars, and what was the total time

consumed?

127 . A train runs down a grade for sec and after

that on level track for sec. If its velocity was
mph at first and ' mph when it

reached the bottom of the grade, what uniform acceleration did

it have on the grade, and what distance did it cover on both
stretches of track? The speed was uniform on level track,



MISCELLANEOUS PROBLEMS 263

128. In the design of automatic machinery it is necessary to

know exactly the type of motion that the various parts are to

have, their velocities with respect to each other, and the distance

that any part travels in a given time.

In a given case, one part at a given instant has a velocity of

5 fps and a uniform acceleration of 2.4 fps. Another part has an

initial velocity of 8 fps at the time that they begin to move toward

each other and a uniform retardation of 3 fpsps.

a. At what time will the t\/o parts have the same velocity?

h. Find the magnitude of that velocity.

c. How far do the two parts travel from the time when they

begin to approach each other until they pass if they started

ft apart?

129. A train that has been traveling at a speed of 75 mph
(110 fps) approaches a ^^slow signaF^ ahead of a stretch of track

being reconstructed. The speed of the train is reduced at a

uniform rate of —1.80 fpsps until the speed is 20 mph. The
train travels at this speed until it reaches the ^^clear signal,’^

which is miles from the first flag. The velocity is now
increased at a uniform rate so that it reaches 85 mph in 90 sec.

. What is the total length of time from the instant that the

train first began to slow down until the speed of 85 mph was

reached?

. What distance did the train travel:

(1) In slowing down?

(2) At 20 mph?
(3) In regaining speed?

c. How long a time must the train travel at 85 mph in order

to make up for the time lost in not traveling 75 mph continuously?

130. a. If a projectile is fired vertically into the air with an

initial velocity of fps, how high will it go?

i). If the air resistance causes an average retardation so that

the projectile goes to a height of only ft,

what uniform deceleration does it have, and what is the average

air retardation?

c. If the air caust-s the same average retardation when the

projectile comes down, what will be its velocity as it reaches

the ground?
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WORK AND POWER

131

.

A farmer in southeastern Iowa has a series of wells from

which he obtains water for irrigation. Each well is equipped with

a centrifugal pump, which is G5 per cent efficient and will dis-

charge 500 gpm. The maximum lift is 14.0 ft. He is now using

a G-hp gasoline engine which is moved from pump to pump as

each field is irrigated. If he substitutes a portable electric

motor, what size should he get?

Fig. 46.—Link-Belt loader. {Courtesy of Link-Belt Company, Chicago.)

132 . One of the manufacturers of conveying equipment makes
a portable bucket elevator for loading wagons and trucks (see

Fig. 46 above). It will handle 3 cu yd of crushed limestone

per minute, raising it to a height of 18 ft. If the hoist is 45 per

cent efficient, what horsepower is required to operate it?

133 . A pump is handling 500 gal of gasoline per minute,

pumping it into a tank 25 ft above the intake of the pump.
The specific gravity of the gasoline is 0.66. What horsepower is

required to operate the pump if its efficiency is 65 per cent?
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Fig. 47.—Automatic skip hoist. (Courtesy of Link-Belt Company, Chicago.)

134. A fully automatic skip hoist for raising crushed limestone

to the top of silo-type storage bins is shown in Fig. 47.

Compute the actual horse power required to operate such a

hoist under the following conditions:

Capacity of lime rock per hour.

Vertical lift = ft.

Efficiency of equipment = per cent.
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136

.

A fire boat used in protecting the water-front property

of a coast city is equipped with four centrifugal pumps each

having a capacity of 2000 gpm against a head of 250 ft (see

Fig. 48, page 206). If the speed of the pumps is increased, they

can pump against a head of 350 ft, but the quantity drops to

1200 gpm. Assuming the efficiency of the pumps to be 75 per

cent in the first case and 72 per cent in the second, how much
horsepower is recpiired in each case?

136. A cross-section view of one of th^e four main turbines at

Grand River Dam is shown in Fig. 49, page 260. The turbines

are rated at 20,000 hp, and the operating head is 115 ft. The
efficiency is as high as 90.7 per cent. How many cubic feet of

water are being used by one of these turbines when carrying full

load at above efficiency? If the generators are

per cent efficient, how many kilowatts are being delivered to the

switchboard?

137 . A centrifugal pump is used to circulate calcium chloride

brine (specific gravity = 1.2) against a head of 28 ft. The pump
is delivering 350 gpm. If the pump is 67 per cent efficient, how
large a motor is required?

138 . An impulse wheel used on the Santee-Cooper Project is

rated at 40,000 hp under 70-ft head. Compute the quantity of

water needed to develop this much power if the turbine is

operating at an efficiency of per cent.

139 . A belt conveyor (Fig. 45, page 261) is built to deliver

to the top of a

storage bin. The height that the material is to be lifted is

ft. The bin is ft long,

ft wide, and ft deep and can be filled level full in

min. What horsepower motor is required to

drive the conveyor with the efficiency of the conveyor at

per cent?

140. A municipal pumping plant has a maximum capacity of

gpm, pumping water against a head of

ft (see Fig. 50, page 268). The pumps are

per cent efficient, and the electric motors are per

cent efficient. The plant is operating at full load for

hr per day and under load for the rest of



Fig. 50,—Type LS dual-drivcii circulating pumi>. {Courtesy of AUis-Chahners
Man ufacturing Company.)

the day. If the coyt of power is cents per kilowatt-

hour, compute the monthly power bill.

Fig. 61 .
—^Triplex single-acting pump. {Courtesy of Goulds Manufacturing

Company.)

141 . The water supply for a small town is raised from a well to

an elevated tank by means of a triplex single-acting pump
(see Fig. 51 above). The surface of the water in the well is
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ft below the pump, and the base of the tank is

ft above it. The tank is cylindrical,

ft in diameter, and ft high. Allow ft

of head for the friction losses in the pipe line, and compute

the following items:

. How many foot-tons of work are recpiired to fiirthe tank

if the inlet is at the bottom?

. How many foot-tons of work arc rcciiiired if the inlet is

at the top of the tank?

c. What is the capacity of the tank if the bottom is hemi-

spherical instead of flat?

d. If the pump that supplied the water to the tank can deliver

gpm, how long will it take to fill the tank when

(1) The base of the tank is flat?

(2) The base of the tank is hemispherical?

142 . A small hydroelectric power plant is operating under

a head of ft. The turbines are designed for a

flow of cfs. If the turbines are per cent

eflficient and the electric generator is per cent efficient,

how many kilowatts can be delivered to the switchboard?

143 . A bucket type of elevator (see Fig. 52, page 209) is raising

to a height of

ft at the rate of . The efficiency

of the elevator is per cent. Compute the horsepower

needed to operate the conveyor.

144 . One of the copper-mining companies in Anaconda, Mont.,

has an extremely deep shaft to one of its workings. The hoisting

engine raises the loaded cage from the mine at a speed of 3000

fpm. If the maximum load on the hoisting cable is

tons, what horsepower is being delivered by the hoisting engine?

What kind and size of hoisting rope should be used? Efficiency

of the hoist is per cent.

146. In a certain type of hoisting equipment, power is trans-

mitted from the driving shaft to the shaft carrying the rope drum
by means of friction gearing (Fig. 53, page 271). The driven”

wheel is made of cast iron; the ^driver” is made of

,
is in. in diameter, and has a

in, The driven wheel is in.width of
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in diameter and is run at a maximum speed of rpm.

Assuming that the maximum allowable pressure per linear inch

of face is used, what is the maximum horsepower that can be

transmitted by this drive (see Table 26, page 379).

Fio. 53.—Friction hoist, showing drum and friction gearing. {Courtesy of

Allis-Chalmers Manufacturing Company.)

146 . The city of oeattlc is developing a large hydroelectric

project along the Skagit River in the Cascade Mountains. In

order to get materials and equipment to the site of the Diablo

Canyon Dam it was necessary to construct the inclined hoist

shown in Fig. 54, page 272, and Fig. 55, page 273. The data are

as follows:

Slope of the rails 67,5 per cent

Total vertical lift 318 ft

Maximum pay load 79 tons

Hoisting speed 100 fpm along rails

Power required for operation 400 hp

Assume that the counterweight just balances the dead load of the

hoist platform. Allow 20 lb per ton for rolling resistance of the

hoist.

Determine the efficiency of the hoist when carrying a maximum
load.

147. A gasoline driven hoist is advertised as being capable of

raising 1500 lb vertically at a speed of 300 fpm. The gasoline

engine delivers 30 hp. What efficiency must the hoist have?
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Fig. 64.—Inclined hoist at Diablo Canyon Dam. {Courtesy of City of Seattle

Department of Lighting, Seattle, Wash.)
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148. A manufacturer recently began making a new model

hoist for contractors' use. It has two speeds and is driven by

an electric motor. When operating at a slow speed, it will handle

a load of 10,000 lb at 20 fpm. At high speed it will handle a

load of 4000 lb at 65 fpm. Efficiency is 63 per cent. What
horsepower must the motor be able to deliver in each case?

149. What horsepower must be delivered to the rear wheels of

an automobile traveling on a level road in order to maintain a

uniform speed of mph? The automobile weighs

lb and has a projected area of sq ft

(see Table 27, page 381).

160. Manila rope is sometimes used in place of belts for the

driving of machinery. What horsepower can be delivered by

a rope in. in diameter when its speed is fpm?

161. The head shaft of a bucket elevator is driven by means of

a chain drive. The speed of the countershaft is

rpm. The speed of the head shaft is rpm, and the

chain sprocket on it is in. in diameter. It will

require hp to drive the elevator. Compute the

working strength of the chain that should be used.

162. It is desired to transmit hp by each of the

following means:

a. By a double leather belt at a speed of 2500 fpm.

b. By an 8-in.-diameter spur friction wheel made of straw

fiber and having a speed of 600 rpm (see Fig. 53, page 271).

Note: The safe load on double leather belting is 1.65 hp per

inch of width at 500 fpm. The total horsepower transmitted is

proportional to the width and to the speed up to a velocity of

about 4500 fpm.

The safe pressure on the friction drive is to be taken as 150

lb per lin in. of face. Find

a. Necessary width of belt.

fc. Width of face of the friction wheel.

163. Find the horsepower necessary to keep a

ton train moving on level track with a velocity of mph.
Refer to Table 27, page 381.



MISCELLANEOUS PROBLEMS 276

164 . A locomotive is hauling a ton train at

a velocity of mph. How much kinetic energy would

be required to increase the speed to mph in sec?

166

.

An elevator with its load weighs tons. If it

starts at the bottom of the building and reaches a velocity of

fps in sec, what pull will be exerted

on the hoisting rope? What size plow-steel rope will be required?

166 . A skip hoist like that shown in Fig. 47, page 265, starts

up from the bottom with a load of lb, includ-

ing its own weight, and has a constant acceleration of

fpsps for a distance of ft. By the law of

work and energy, what is the maximum stress in the cable

pulling the hoist? Assume 8 lb of friction per ton weight.

What size standard cast-steel hoisting rope is required? What is

its final velocity?

167. An automobile weighing lb is running

at a velocity of mph, traveling on a dirt road.

If the automobile takes a spurt and accelerates at

fpsps for sec, what is the maximum horsepower

required? Projected area for mnd resistance is

sq ft (see Table 27, page 3S1).

168 . The belt conveyor sho^vn in Fig. 45, page 261, has a load

of tons of coal on it. If the belt is capable of

sustaining a maximum safe pull of lb and

friction amounts to per cent of the load, what

maximum acceleration can be developed in starting the loaded

conveyor?

169 . A . ton passenger train was running

on level track at mph when an emergency stop

was made. The engineer stopped the train in a distance of

ft. What resistance was offered by

the rails? What time did it take to stop?

160. A conveyor with its load weighs lb.

It is moving at fpm. Friction amounts to

per cent of the weight. If the order were given to increase

the speed to fpm, what extra power would be

required if this speed could be attained in ft?

How long a time would it take?
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161. A lb pile-driver hammer drops

a distance of ft due to the action of gravity

alone [see the definition of g, page 184, Eq. (9.76)]. How much
kinetic energy will it develop? What will be its final velocity?

162. A motor truck and its load weigh tons.

If it is traveling on level ground at a velocity of mph,

what braking force must be exerted on the wheels to reduce

the velocity to mph in a distance of

ft? What will be the force if it is going up a per

cent grade? What if on a per cent down grade?

Compute friction at lb per ton weight.

163. At a strip mine there is an inclined track for hauling coal

to the bunkers. The track has a slope of 30 per cent. If the

loaded cars weigh lb, with fricttion at

lb per ton of w'eight, what tension must the rope pulling

the cars sustain in order to start them from rest and get them up
to a speed of fps in ft? Draw
the equilibrium sketch, and find the work done by means of the

work and energy law^ i

RESOLUTION OF FORCES

164. A coal car and its load weigh tons. The
car is being drawn up an inclined mine shaft at a uniform speed

of mph. The shaft has a slope of ft

vertical to ft horizontal. Frictional resistances

amount to lb per ton weight. If the hoisting

machinery is per cent efficient, wdiat horsepower

must be delivered by the hoisting engine?

166. A heavy safe on skids is being hauled to the second story

of a building. The saft^ weighs 6 tons and is being moved up
an oak incline that rises 3.6 ft for every 10 ft horizontal. It is

found necessary to slacken the rope used to pull the safe; so a

stick of timber is braced between the safe and a convenient

wall at the foot of the incline. If the timber is in a horizontal

position, what force must it withstand?

166. An automobile is being towed up a per cent

grade by another automobile. The first automobile weighs

lb, and the frictional resistances amount to
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lb per 1000-lb weight. What horsepower is required

to maintain a uniform speed of mph up the grade?

167. A crated machine, on steel skids fastened to the crate,

is resting on an oak gangplank that stands at a

per cent grade. The total weight of machine, crate, and skids

is tons.

a. Will it slide down if it is not held?

b. If it will slide, what force parallel wdth the incline will be

required just to prevent sliding?

c. What horsepower will be required to run a hoist used to haul

the crated machine up the gangplank at fpm if the

hoist is per cent efficient?

d. What horizontal force must be used just to prevent sliding?

168. A chute for sliding wooden boxes from the second floor

of a warehouse to the main floor is on a slope of 4 ft vertical to 7 ft

horizontal. If the average box weighs 66 lb, what is the force

tending to make the box slide downward? If the slide is steel,

what is the resultant force down the incline?

169 . A heavy stick of timber is being dragged along the level

by a steel cable with a constant slope of 25 ft horizontal to 11 ft

vertical. If the tension in the cable is 0.75 ton and the stick is

being moved at a speed of 150 fpm along the level, what horse-

power is being transmitted by the cable?

170. A gable roof has a rise of ft to a total hori-

zontal span of ft. The wind is blowing against

the roof to such an extent that each rafter must withstand a

total horizontal pressure of lb. What is the normal

pressure against the roof?

171 . The roof on one of the engineering buildings at Iowa

State College has a slope such that snow will just slide off when

the coefficient of friction between the snow and the roof is 0.36.

What is the slope?

172 . A post 18 ft long stands at a slant so that its horizontal

projection is 6 ft. If the post carries a load of 4600 lb along its

axis, what are the horizontal and vertical reactions at the foot

of the post?
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173. A stone sled weighing 4 tons, including its load, is being

hauled up a 25 per cent grade. If the cable hauling the sled is

pulling parallel with the grade with a force of 4000 lb, what is

the coeflBcient of friction between the sled and the grade?

EQUILIBRIUM

174. A Douglas fir beam in. wide by in.

deep and ft long between centers of end supports

is carrying two concentrated loads. The first is

lb applied ft from the left end. The second is

lb applied ft from the right end.

Compute the reactions.

176.

A beam ft long has one support at the left end,

but the second is placed at a point ft back from the

right end. A load of lb is concentrated at

a point ft from the left support. A second load of

lb is placed ft to the right of the first

load. The third load is at the extreme right-hand end of the

overhanging portion of the beam. Compute the reactions

at each support.

176. An 8- by 12-in. Douglas fir beam ft long has

a uniform load of lb per lin ft on the left

ft of its span and a concentrated load of lb

applied ft to the left of the right-hand support. Com-
pute the reactions.

177.

A white oak beam
deep is bridging a span of

of lb is applied

A concentrated load of

center point. A uniform load of

begins at a point ft from the left end and extends

to the right-hand support. Compute the reactions.

in. wide by in.

ft. A concentrated load

ft from the left end.

lb is applied at the

lb per lin ft

178.

The derrick shown in Fig. 107, page 307, and with dimen-

sions as listed in Prob. 251, page 307, has a load of steel plate

suspended from point D. The load consists of 20 plates of

flat steel. Each plate is 36 in. ^yide, 10 ft long, and 0.5 in. thick.

Compute the reactions at A and B.
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179. Compute the reactions at A and 5 for the derrick shown

in Fig. 105, page 306. A load of 8 lengths of pipe is carried from

the point D. Each length of pipe is 4 ft long, 20 in. inside

diameter, and 0.5 in. thick. The pipe is butt welded for the

longitudinal seam. The derrick dimensions are listed in the

statement of Prob. 249, page 307.

180. A crane of the type shown in Fig. 80, page 293, is used in a

foundry for handling heavy castings. The maximum load to

be lifted is tons hung from point C. The height

of the post is ft, and the horizontal projection is

ft. Compute the reactions at the supports A and B.

All of the vertical load is to be carried at point A,

181 . The jib crane shown in Fig. 106, page 307, is anchored to

the side of a factory building in such manner that all the vertical

reaction has to be taken care of at point A. The dimensions

are listed in Prob. 250, page 307. The boom BC is stationary.

Compute the reactions at A and B when a load of

tons is hung at point C.

182 . A heavy crane of the type shovm in Fig. 108, page 308, is

used for handling crushed rock. The dimensions are listed in

Prob. 252, page 308. The load suspended from point F consists

of a steel bucket weighing 3600 lb and loaded with 2.5 cu yd of

crushed limestone. Compute the reactions at points A and B,

TRIGONOMETRY

183 . A tree ft tall stands at the end of one of the

runways of an airfield. A plane with a gliding ratio (cotangent

of the angle of glide) of 12 to 1, glides in for a landing just clearing

the tree. How far from the tree does the plane touch ground?

184 . The engine in a plane stalls when the plane is at an

altitude of 20,000 ft. How far will the plane glide if the gliding

ratio (cotangent of the angle of glide) is 11 to 1.

186. The lower end of a hoist chain 10 ft long is ft

to the right of the center line of the hoist. Compute the angle

that the chain makes mth the horizontal and the distance

from the end of the chain to the center line of the hoist.
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186 . A plane leaves the ground 900 ft from a 50-ft high

obstacle. What must be the angle of climb if the plane is just to

clear the obstacle?

187. A force AB ol 110.5 lb has a line of action that makes

an angle of 36® 48' with the horizontal. Find the horizontal

component of the force, AC, and the vertical component of the

force, BC,

188 . A plane is flying due sout h with an air speed of

mph. A cross wind is due east and has a velocity of 25 mph.

Compute the angle of drift.

189. A machine has a triangular base with bolt holes in each

corner as shown in Fig. 56. AB — ft; AC —

ft;Ca:== ft;andCy= ft. Compute
the coordinate distances A^, Ay, B^, and By, Use Forms 103,

104 in the Workbook.

190. A cylindrical steel smokestack is anchored by guy wires

fastened to the stack three-fourths of the distance to the top

(see Fig. 57, page 281).

a. One of these wires is anchored to the earth at the same

level as the bottom of the stack and ft out

from it. If the wire makes an angle of with

the horizontal, how long is the wire and how high is the stack?

b. One of the wires must be anchored to the earth on an
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elevation ft lower than the level of the base of the

stack, but it makes the same angle with the stack as the short

o

wire. How long will this wire be? Refer to and use Form 105

in the Workbook.

B

191 . In a certain preliminary survey it is desired to determine

the height of a cliff (see Fig. 58 above). A transit is set up

over point jB, thfe height of the instrument A being

ft above E, The point E is ft, measured hori-

zontally, from F on the face of the cliff. A sight is taken
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on point B which is direcfcly above point C. The angle

BAC is measured and found to be .A
similar sight is taken to point D which is vertically below point C
and in a ravine in front of and below E. The angle DAC is

measured and found to be . Compute the

height of the cliff BD and the elevations of B and D with respect

to the monument at E, Refer to and use Form 106 in the

Workbook.

192

.

Power station A is situated 42.780 miles due west of

another station J5. It is proposed to connect two intermediate

stations C and Z>. Station C is 12.150 miles east and 9.167

miles north of A, and station D is 11.260 miles west and 9.728

miles south of B, Find the length of wire to connect the stations

in the following order: A, C, D, B, Do not square any sides in

finding the desired quantities.

B

193 . A ball-point center for a lathe is shown in Fig. 59. If

BC = in. and DE == in.,

what angle BAC must be used in turning the center? Refer

to and use Form 107 in the Workbook.

194. Figure 60 represents a machine dovetail for guiding

sliding parts. The depth AM is to be
;
the

angle ADC is to be
;
the angle BCD is to

be
;
and the bottom widthCD is to be

The angles ADC and BCD are checked by placing gauge

cylinders having a radius of in., as shown and then

measuring the distance FG between them. Refer to and use

Form 108 in the Workbook.
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What will be the distance FG when both DC and the n.nglft«

are correct?

Fio. 61 .

^95. The foundation bolts for a certain automatic machine

are spaced as shown in Fig. 61, Compute the coordinates pf
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the bolt holes with respect to the two walls as axes, the data

being as follows:

AB
BC
CD
DE

196. A profiling machine has an equilateral triangular base

with foundation bolt holes at each corner as shown in Fig. 62.

Angle LJK =
Bx =

The holes are ft in. apart, center to center.

Compute the coordinate distances B^, By, Cx, and Cy of the other

holes with reference to the walls. Angle CGH equals

The coordinates of hole A are Ax = and Ay —

197. A screw-cutting machine has a rectangular base with

holes for foundation bolts in each comer. The holes are

ft apart along the front and back and ft

apart from front to back, distances measured from center, to

center. The machine is to stand so that its long side makes
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an angle of with an adjacent wall. If the

center of the nearest bolt hole is ft from the wall,

locate the other holes by coordinates from the wall and this hole.

198 . A regular hexagon head used on a turret lathe is

in. between the flat sides. What is the length of one of the

sides? If the center of a hole in the bottom of the hexagon

turret is located in. from the center of the hexagon

and in, from one side, what angle does a line

passing through the centers of the hexagon and of the hole make
with the nearest diagonal of the hexagon (see Fig. 63)?

199. A portion of the wing bracing in a small plane is shown

in Fig. 64. Ai> = ft; DC == ft;
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BC =* ft. Angles ADC and DCB are 90®. Com-
pute the length of the drag wire AC and the antidrag wire DB.

Fig 66.

200. Figure 65 shows a cross section of a casting holding two

shafts at the angle BAC with each other. These shafts are

connected by a pair of bevel gears whose hubs bear on the faces

of the casting FG and HK. If the gears are to run smoothly,

these faces must be machined so that the distances AB and AC
are exact. To test these distances plugs of specified sizes are

inserted in the holes; and when they just touch at point P,

the faces are correctly machined.

If angle BAC =
,
AB =

in., AC = in., plug diameter FG =
in., and HK = in., what must be the lengths PG
and PH of the plugs?

201. A 90® notch is to be machined in a block of tool steel

shown in Fig. 66. To test the depth of the cut AD a plug

gauge, in. in diameter, is laid in the notch,

and the total heightA5 is measured. What should be the correct
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reading of AB when the bottona of the notch is to be

in. below the top surface?

202. A tapering hole, as shown in Fig. 67, is to be drilled into a

piece of steel BE in. thick. The small diameter of the hole must

be GHy and the sides form an angle GFH. To test the size of

the hole a ball is frequently used and the distance AB measured.

If
,
BE =

AD = diameter, and angle GFH =
,

what will be the value of AB?

Fig. 68.

203. The curb lines of two streets that cross would make an

exterior angle of 117° 32' with each other if they were extended
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to a point of intersection (see Fig. 68). A rounded curb line

with a radius of 25,48 ft is built in at the comer. How far from

the point of intersection will the curve start?

204 . Two forces AB and AC are pulling up and to the right

from point A, both forces being in the same vertical plane.

Force AB = 150.5 lb, and its line of action makes an angle of

45® 14' with the horizontal. Force AC = 75.50 lb, and its line of

action makes an angle of 15® 10' with the horizontal. Find the

resultant force AR and the angle that it makes with the horizontal.

206 . Two forces AB and AC are pulling up and toward the

right from the point A, both forces being in the same vertical

plane. Force AJ5 = lb and acts at an angle

of from the horizontal. Force AC =
lb and acts at an angle of

from the horizontal. Find the* value of the resultant AR and

its inclination.

206 . Three forces, AB^ AC, and AD, are pulling from an

anchor. AB is acting upward and to the right; AD down and

to the left; while AC is acting downward and to the right, all

in the same vertical plane. The forces and their inclinations

are as follows:

AB = Ib; its angle with the horizontal =
AC = lb; its angle with the horizontal =
AD == lb; its angle with the horizontal ==

Fig. 69.
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Find the resultant force and its inclination by getting the

horizontal and vertical components of each force and the algebraic

sum of these components (see Fig. 69).

c

207.

A given roof truss has the shape shown in Fig. 70. The
lower chord is divided into three equal panels, and diagonals

are run from the points E and F to C. Members DE and FG are

perpendicular to AC and CB. Compute the length of the

diagonal CE when AB — and the height is

ft. What is the length of the member DE?

208. A Brownhoist locomotive crane has a boom and guy

wire placed as shown in Fig. 71. If the minimum angle between

the boom and guy wire is limited for safety to 13® 30', how much
overhang has the load, and what angle does the boom make with

the horizontal?

209. A bucket made of steel plate is shown in Fig. 72.

o. Find the size required for the side plate if ED =
AB ^

, BC =
,
and FD =
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Fig. 72.

b. Find the size required if the end is shaped as shown in

Fig. 73 and angle HAB is

Fig. 74.

210. A special gauge is to be made according to the dimensions

shown in Fig. 74 above. Determine the distances HG and AB,
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211. Triangle ABC in Fig. 75 represents the cross section of a

highway cut. AB = ft; BC = ft;

and the angle BCD = . Compute the length of

the slope AC and the cross-sectional area of the excavation.

212. When making a survey the instrumentman discovers

that the line that he is running will cross a pond. He can see

across the pond; so he has the chainman set stakes at points

A and B on the near and far sides. He then picks up his instru-

ment and moves to a point C where he can sight on A and B to

measure angle ACB and the chainman can measure the distances

AC and CB, Compute AB when AC —
,

CB =
,
and angle ACB =

213.

A tunnel is to be bored straight through a hill from AtoB^
but neither end is visible from the top of the hill. A point C

is selected over at one side so that both A and B are visible.

If the length AC is found to be ft, BC is

ft, and angle ACB is
,

what is the length of the tunnel AB (see Fig, 76)?
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214. A certain distance AB must be obtained; but on account

of an obstruction in the way, it cannot be measured directly.

Instead, a line AC to one side of the obstniction is measured

and found to be ft. The line between B and C
is also measured and equals ft, and the angle

ACB is . Find the length AB.

216 . The wing section of the plane shown in Fig. 77 is 18.05 ft

long. The dihedral angle (the angle that the center line of

the wing makes with the horizontal) is 2° 15'. Compute the

wing span of the plane.

216 . An airplane is flying at 275 inph on a north to south

course according to the compass. A cross wind of 30 mph is

blowing south A7^ west and carries the plane west of its course.

What is the actual velocity and course of the plane?

217. A certain lot ABCD is being surveyed (see Fig. 78).

AB has been measured as ft; BC as

B

ft; AD as ft; angle ABC as
; and angle

ADC as
;
but it is not practicable to measure CD,

owing to obstructions. Find CD and also the area of the lot.



MISCELLANEOUS PROBLEMS 293

218.

The interplane bracing of a biplane is shown in Fig. 79.

All lines shown in the figure are center lines of the bracing.

If AC = 4.05 ft, BC = 4.28 ft, and angle ACB = 56® 27',

compute the length of the leading edge strut AB.

219. Figure 80 shows a bracket frame. Find all angles

between parts and the length of each part that is not given.

220. The following problem was given in a certain examination

for surveyors.

In a highway relocation survey it was found that the route

crossed a pond; so the line could not be chained. The chief of

the party had a line CD laid off as shown in Fig, 81, and angles
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ACB and ADB and lengths CB and DB were measured. From
these data compute the distance AB.

CB = Angle ACD =
BD = AngleAZ)C' =

221. A water pipe line cuts through a quadrilateral field

ABCD on the diagonal BD. If AB = 821.5 ft, BC = 1234.0 ft,

CD = 930.0 ft, DA = 1578.0 ft, angle BAD = 7T 30', and

angle BCD = 95° 24', find the length of the pipe line.

a. Solve by triangle ABD.
b. Check by triangle BCD.

222. The landing gear shown in Fig. 82 has the following

dimensions:

AC = BC = Angle ACB = 127° 20'

FA ^ BE = 0.50 ft

Compute the length of the landing-gear tread FE,
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223. Three monuments, i4, 5, and C, are important points in a

survey. If AB = 965.3 ft, BC == 557.8 ft, and angle BAC ==

29° 22', find angle ABC^ angle ACB, and the distance AC. Use

Forms 111 and 112 in the Workbook.

224. A triangular-shaped ax'ea ABC on the campus is to be

enclosed by sidewalks. BC = ft; angle

ACB =
;
and angle ABC =

Find lengths AC and AB and the angle CAB,

226. A survey party in making a preliminary survey for the

relocation of a highway found that the line passed through a

building on the right of way. The following method was used

to extend the line through and beyond the building even though

the line of sight was broken (see Fig. 83)

:

c

A stake was set on the line at A and another at point C.

Angle DAC was carefully measured, also distance AC. Then
the transit was set at C, and the angle ACB measured. It

was then necessary to compute the distance CB that should be

laid off in order to have point B on the desired line. Angle

CBE was also computed so that the line DE could be extended

ahead. The transit was then set at point B and sighted on C;

angle CBE turned; and the line continued. Compute the

distance CB and AB and angle CBE when AC is

ft, angle DAC is
,
^d angle ACB is

226. The wing span of the plane shown in Fig. 84 is 37.25 ft.

The dihedral angle (the angle that the center line of the wing

makes with the horizontal) is 7° 5'. The center line of the wing

strut makes an angle of 24° 45' with the center line of the wing.
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The stmt is attached at the mid-point of the wing. How long is

the stmt?

227. A level roadway is to be made on top of a fill on a hillside

(see Fig, 85). The road is ft wide (AB),

The present slope of the hill is angle ACD =
,

and the angle of repose (angle BCD) of the fill material

is . How far from A, measured along the

line CA, will be the toe of the fill, point Cl What is the cross-

sectional area of the fill?

a

228. A covered conduit for a stream crosses the center lines

of two streets that intersect at B, making the oblique triangle
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ABC (see Fig. 86). The distance AB is ft,

and BC is ft. If the conduit line makes an

angle of with the line BC, how long is

the conduit, AC,

229. See Fig. 87, and compute the wing span of the plane.

AB is the center line of the plane; AD is the center line of the

wing; and BC is the center line of a strut. Angle =
;

BC =
;
angle ABC = Point C is the

mid-point of the wing.

230. The fuselage bracing in a small plane is shown in Fig. 88.

AD — ft; angle EAB =
;
angle CDF =

and cross tube AC bisects angle BAD. AD is perpendic-

ular to A

E

and DF. Compute the lengths of the tubes AC, BC,

and CD.
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231.

Two radio antennas are attached to the wing and tail

of a plane as shown in Fig. 89. Compute the total length of the

anteimas AD and CD.

232. The bell crank shown in Fig. 90 has the following

dimensions; Angle A’CJ5 = 123° 16'; angle CAB — 31° 32';

AC = 6.375 in. Compute the lengths AD, DC, CB.

233. A plane is flying on a course N 62° E, angle FAD. The
pilot gets a radio bearing of 5° right on Wright Field Station,

angle DAB. The pilot also gets a radio bearing of 38° right on

Cincinnati Station, angle DAC. Wright Field is located N 20° E,

angle GCB, and 49.6 miles from Cincinnati (see Fig. 91).

a. How far is the plane from Wright Field?

h. How far is the plane from Cincinnati?
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234. The bracing of a semicantilever monoplane wing is shown

in Fig. 92. Angle CAD = 2° 45'; AB =
;

and BC = . AD is horizontal. Compute
the distance AC along the wing spar to the strut joint.

c

236. The engine mount shown in Fig. 93 has the following

dimensions: AB = 13.65 in.; AC = 22.03 in.; angle ABC =
115® 40'. Computet the diameter of the engine mount BD,

236. ThefollowingdataareforFig. 94. Crank armAB = 6.25

in.
; connecting rod AC = in.

;
angle ABC =
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When the crankshaft has traveled through 36® 17', how far has

the piston traveled from top dead center?

237. Engineers are sometimes asked to settle questions about

the height of an inaccessible structure such as a radio tower or a

high smokestack. In a given case it was desired to determine

the height of a famous radio tower. The tower stood on a

knoll and was fenced in; so no measurements could be made at

or close to the base.

A surveyor obtained the following information (see Fig. 95):

A stake was driven at point A, and a transit was set up over it,

the instrument height being CA. A sight was taken on the tip

of the tower, point and the horizontal angle BCL was read.

Another stake in line with A and B was set at point E, The
transit was then set up over E, the instrument height being FE.

The horizontal distance AG between A and E was carefully

measured; then the difference in elevation EG between A and E
was measured. Sighting on 5, the top of the tower, with the

transit at E the vertical angle BFH was read; also angle HFK
was read.

What was the he’ght of the tower BH when the me)asurements

were as follows:

CA =
Angle BCL -

FE =
AG =
EG =

Angle BFH =
Angle HFK =

238. A depression ACB (Fig. 96) in a road is to be filled to

the line AB, If AC has a per cent grade, AB
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a per cent grade, and CB a

grade, and the total height BE is

o. The angle of the grades with the horizontal

6. The angle of the grade AB with AC.

c. The area to be filled.

d. The maximum depth of the fill.

239.

In Fig. 96, if AC has a per cent grade, BC
a per cent grade, AB a per cent grade,

and BC is ft long, find the grade angles,

the angles in the triangle ABCy and the lengths ABj BE, and AC,

D

Fig. 97.

240.

A double-pointed cone center is shown in Fig. 97. Total

length AB = in,; diameter CD =
in.; angle HBE =

;
angle ADH =

Find the diameter HE,
£>

Fig. 98.

241.

A machine-testing gauge, made of a flat piece of tool

steel, is shaped like Fig. 98. If AB ^
AD =

,
angle ADC =

per cent

ft, find
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angle ABC =
,
and angle BAD =

find the lengths DC and CB,

242. In laying out the triangulation for a certain region,

illustrated in Fig. 99, it was necessary to establish the bench

marks i4, 5, C, and D. The survey showed the following:

AB = ft; angle BAD ==
;

angle ABD =
;
angle CBD =

;

and angle BCD = Find the distances AD,
BD, BC, and CD,

c

243. In Fig. 100, points B, D, and C represent important

centers in an electric power-station development, and the



304 ENGINEERING PROBLEMS MANUAL

distances between them must be found. Since they cannot

be measured directly, triangulation is necessary.

A base line AB^ ft long, is measured,

and the angles with D and C are measured as follows:

Angle ABC =
Angle BAD —
Angle ABD =
Angle BAG —

Find the lengths JSC, BD, and CD.

D

244. Referring to Fig. 101, points A, jS, C, and D are important

location monuments in a power-transmission development,

and the distances between them, except BC, must be found.

Length AJS is measured as ft, and the

angles with C and D measured as follows:

Angle BAG =
Angle ABD =
Angle BAD =
Angle ACD =

Find the lengths AC, A JO, JSZ), and CD,

246. Referring to Fig. 102, points J5, C, and D are important

power-line transmission centers, and the distances between

them must be found. Since they cannot be measured directly,

a base line AB, ft long, is laid off, and
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Fia. 102.

the following angles measured:

Angle ABC =
Angle BAC =
Angle ABD =
Angle BCD =

Find the lengths BC^ BD, AC^ and CD,

246. A and B in Fig. 103 are lighthouses

miles apart. B bears S E from A.

A sliip is sailing due east on the line DE, One hour after crossing

point D an observer on the ship at C sights both lighthouses

and finds that A bears S W and B bears

S W.
Find the speed of the ship, the distances AC and BC, the

distances AD and BD, and the nearest distances to A and B
as the ship passed north of the lighthouses.
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247. Two intersecting streets AB and AC are crossed by a
third street BC, forming the triangular enclosure ABC, It is

proposed to put a circular park into this enclosure and to pave

the remaining parts of the triangle. The curb lines AB =
ft; AC = ft; BC = ft. How large

a circle can be enclosed; what is its area; and what is the area

remaining?

248. The field shown in Fig. 104 has been chained, and the

following distances obtained:

AB = it BC ^ ft

AC = ft CZ) = ft

AD = ft

Determine all angles, the area, and the length of all sides.

Get each of the angles by the specified formula, and check their

sum for each triangle.

. Use the half-angle formula (see Form 118 in Workbook).

. Use the whole-angle formula (see Form IIG in Workbook),

D
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249 . In the derrick shown in Fig. 105, AB ^
-

,
BC =

,
CD -

and BD = . Find the overhand BE, the height

DE^ and also the angle DBE, Get all

three angles by specified formula, and
check their sums in triangles ACB and
BCD,
. Use the half-angle formula (see

Form 118 in Workbook).

. Use the whole-angle formula (see

Form 116 in Workbook).

260 . A certain type of foundry jib

crane is shown in Fig. 106, the crane

swinging around the line AB, AB ^
ft; AC- ft.;7^C- ft; DD
ft; CD = ft.

Find all three angles in each of the triangles shown, as these

angles must be us(^d in laying out the steel framework. Check
the sum of the angles.

a. Use the half-angle formula (see Form 118 in Workbook).

h. Use the whole-angle formula (see Form 116 in Workbook).

261 . Figure 107 represents a .dde view of a crane structure,

the lines represfmting center lines of the parts, all being in the

same plane. AB — ft; AC ==

ft; BD - ft; angle CAB =
;

and BD makes an angle of with AB extended.
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G bisects the line (7i>, and E and F divide the Une BD into three

equal parts.

Find all angles and the lengths of all lines not given.

252. In the crane shown in Fig. 108,

AB = CE =
AC = DE =
AD = DF =
BD = EF =
CD =

Find the perpendicular distances AG, BH, BJ, CK, CM, DN,
and EP.

263. Three holes whose centers are at A, B, and C are to be

bored into a piece of steel plate. If the distances between them
are as given below, find the angles made by the center lines.

A5 =
;

=
;
i?C =

a. Use the half-angle formula to get all three angles (see Form
118 in the Workbook). Check the sum of the angles.

b. Use the whole-angle formula to get all three angles (see

Form 116 in the Workbook). Check the sum of the angles.
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264. A piece of flat bar steel, shown in Fig. 109, is to be drilled

at B and C. The distances shown below are known; but in

order to drill these two holes, the coordinate distances AE, CE,
AFj and BF must be found.

If AB =
,
AC =

BC ,CD
AD =

,
find the above distances.

a. Use the half-angle formula, solving for all angles in triangles

ABC and ACD (see Form 118 in the Workbook). Check the

sum of the angles in each triangle.

b. Use whole-angle formula, solving for all angles in triangles

ABC and ACD (see Form 116 in the Workbook). Check the

sum of the angles in each triangle.

266 . Figure 110 represents one view of a part of a gear speed-

change box, used for changing speeds in automobiles and other

machines. The holes A, By and C are gear centers. The

distances between the centers are found when the gears are

designed, but to drill the holes the box is placed on the drill

table so that it can move only parallel to the lineDE or perpendic-
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ular to it. It is necessary to compute distances AEy CE, AD^
and BD,
U AB =

,
BC ^

AC =
,
and angle CAE ==

,

find AE, CE, AD, and BD,

a. Use the half-angle formula, solving for all angles in triangle

ABC (see Form 118 in the Workbook). Check the sum of these

angles.

b. Use the whole-angle formula, solving for all angles in triangle

ABC (see Form 116 in the Workbook). Check the sum of

these angles.

266. Figure 111 represents holes that are to be drilled into a

casting for a machine.

AB AC =
AD ^ BD =
In order to locate these holes on a boring machine, hovrever,

the two holes A and B are placed on the table in line with the

motion of the table, and the holes C and D must be located by

parallel or perpendicular distances. Find the distances AE,
CE, AF, and DF.

a. Use the half-angle formula (see Form 118 in the Workbook).

Get all three angles in each triangle, and check the sum.

b. Use the whole-angle formula (see Form IIG in the Work-

book). Get all three angles in each triangle, and check the sum.

267. A plot of land is triangular in shape. The three sides

have been measured and are as follows: AjB is

ft; BC is ft; and CA is ft.

Find the area of the lot and the corner angles.

a. Use the half-angle formula, solving for all three angles.

Check the sum of the angles (see Form 118 in the Workbook).
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h. Use the whole-angle formula, solving for all three angles.

Check the sum of the angles (see Form IIG in the Workbook).

c. Use the segment solution (see Forms 120 and 121 in the

Workbook).

268 . An ornamental iron bracket in front of a public building

is in the form of an oblique triangle ABC (see Fig. 112). Side

AB is ft; LC is ft long;

and AC is ft long. Three circles, whose

centers are at £), J5, and F, form part of the ornamental ironwork

in the bracket. Circle D is the inscribed circle tangent to all

three sides of the triangle. Circle E is tangent to circle D and

to sides BC and AC. Circle F is tangent to circle E and the same

sides. Compute the radius of each of the circles, neglecting the

thickness of the metal from which they are formed.

269 . In making a survey in the lake region in northwestern

Iowa, it was necessary to determine the distance between two

points A and B, both on the farther side of one of the lakes and

inaccessible. As a means of finding this distance, two points,

C and D, were selected so that A and B could be seen from each

point, C being nearer to A. The distance CD was carefully

measm’ed as a base line and found to be ft,

and the following angles were read: ACD —
;

BCD =
;
ADC ==

BDC = . Find the distance AB.

260 . It is desiied to connect ^wo points C and D with a trans-

mission line; but on account of the difficulty of measuring the

distance directly, an indirect method was employed. A base

line AB was measured as ft long, and

the angles observed between the points A and B as follows:
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Angle BAD = ;
angle BAC = ;

angle ABC = ;
angle ABD =

Find the distance CD.

261. A railroad line is being surveyed and must bridge across

a river and over some tracks that follow alongside the river.

Since the length of this bridge cannot be measured directly,

a convenient base line CD, ft long, is

measured at the side of one of the tracks along the river. Find

/ID, the length of the bridge required, if CD makes angles as

follows:

ACD = ADC -
BCD = BDC =

262. A locomotive is traveling at the rate of 85 mph. If its

drive wheels are 6 ft 8 in. in diameter, what is their angular

velocity in radians per second?

263. A steam boiler ft in diameter is to be hoisted by
means of rope slings hung from a crane hook. If the angle

between the ropes from the hook is limited to
,

how much rope is needed for each sling, allowing 2 ft for

connections?

264. Two pulleys, ft apart from center to center,

are and in. in diameter, respectively. What
length of belt will be required to drive one from the other if they

revolve in the same direction? What length if they revolve in

opposite directions?

266. A gasoline storage tank 5 ft in diameter by 20 ft in length

rests horizontally on its side. How many gallons will it hold for

each foot of depth? What will be the depth when one-third full?

Fio. 113.
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266.

Two radio antennas have their ends attached to the

wing of a plane 40.05 ft apart. Their other ends are attached to

the tail of the plane. The antennas are attached 5.00 ft higher

on the tail than on the wing. Compute the total length of the

antennas AB and AC (see Fig. 113).

A

267.

A portion of the control system in a plane is shown in

Fig. 114. AJ5 = 3.50 in.; AC = 39.00 in.; D/i = 2.75 in.;

ED = 27.00 in. If the right end of push-pull tube AG is moved
2.00 in. to the right to the new position FC, what will be the

displacement EK of the left end of the pull-push tube EDI

C

268.

Three adjoining pieces of land on the campus are sketched

in Fig. 115. The following measurements have been made:

AB = Angle ABC =
BC = Angle BAE ==

CD - Angle CDE =
BD «
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Plot a map of these lots, showing all angles, the length of each

side, and the area of each lot.

269,

In running a triangulation of a certain area (see Fig. 116)

certain lengths and angles were measured. It is desired to

compute the missing lengths and angles and also the area shown.

The values are as follows:

AC = Angle ACB =
AB = Angle ACD =
CD = Angle CFE =
CF = Angle FED =
FD =

CALCULUS

270. Determine the most economical proportions for a cylin-

drical water tank for the following conditions: Cost of sides is

two-thirds of the cost of the bottom, and the cost of the cover

is three-quarters the cost of the sides per square foot.

271. The space-time equation of a moving object is given by
the equation 5 = — 0.9^^ -f 0.24^^ ~ 0,04^^. Determine the

maximum and minimum velocities occurring between i = 0

and t = 7. Also find the times when the object has maximum
and minimum velocities.

272. Determine the maximum and minimum accelerations

given the object in Prob. 271.



MISCELLANEOUS PROBLEMS 315

273 . Determine the area under the curve, 2/
= 3.6 — 1.6:c +

0.8x^ lying between the ordinates xi = 0.35 and = 7. All

values are in inches.

274. Solve for the area lying between the two curves and

limits shown below, all values measured in inches.

yi = 3.6 -f 2Ax Xi = —2
2/2 = 1.8 4- 0.36a;* 0^2 = 5

276

.

Draw a diagram of the two curves X\ = yi^ — \2yi + 38

and X2 — 0.22/2" — 2.O62/2 + 5. Compute the larger area lying

between these curves and the parallel lines Xz = 3.0 and = 7.0

All values are in inches.

276 . Get the area lying below the curve 2/
= 3.6 — 1.5a; + 0Ax‘^

and between the ordinates X\ = and Xi =
All values are in inches.

277 . What is the area between the curves yi = 6.00 + 0.24x

+ 1.8x2 and 2/2 = 5 — 0.8x? The area is bounded at the sides

by the lines Xi = 1.6 and x^ = 7. All values are in inches.

278 . Compute the area between the curves and limits shown

below, all values being measured in inches.

^1 = 10 + 2a; — l.Oa** 4* 0.4a;^

7/. = 2.8 - 2.1x H- 0 8x*

Xi = 1.5 X 2 = 4.5

279 . Get the area lying between the curve .r = 1.2 log*. 1/,

the y axis, and the lines t/i = 1.5 and 7/2 = 30. Use natural

logarithms in solving this problem (refer to Table 34, page 412).

All values are in inches.

280. Compute the area between the curves 7/ = (1.81ogeX) + 1

and y = + 4. The other limits are Xi = 2.5 and X 2 = 7.0

Use natural logarithms (see Table 34, page 412). All values

are in inches.

281 . Determine the area under the curve y = 2,4 loge x + 1.6

and between the ordinates Xi — 2.5 and x^ = 7.0 All values

are in inches.
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282. Compute the positive and negative areas, respectively,

between the x axis and the curve y = (1.4 sin x) + 0.6 for one

complete cycle. All units in inches.

283 . Solve for the positive and negative areas, respectively,

between the x axis and the curve ?/ = 1.1 + (3.5 sin x) for one

complete cycle.

284 . Locate the centroid of the area lying between the two

curves yi = 0.8x + 4.5 and y^ = 0.2a:^ — 1.6. Use the ordinates

X = 3 and x = 10 for the limits of the figure.

286

.

Compute the position of the centroid of a circular spandrel

in terms of the radius of the circle.

286. Compute the centroid of the quadrant of a circle in

terms of the radius of the circle.

287 . It frequently becomes necessary to know the location

of the centroid of a parabolic spandrel or a parabolic segment.

The equation of a given curve is = O.Bkx^. Find the location

of the centroid of the spandrel between the limits x = b and

a; = 0 in terms of b and /i, h being the value of y when x equals b.

288 . Compute the moment of inertia of the area bounded by

the following lines: yi = 2x^5 2/2 = 10; = 4; X 2 = 10.

289 . Compute the general formula for the second moment
(moment of inertia) for any oblique triangle of height h and base b

with respect to a centroidal axis parallel to the base. Any side

may be used as the base.

290. The gear-shift lever used in a heavy machine has a

cross section in the form of an ellipse. The major axis is

in., and the minor axis is in. long. Compute the

moment of inertia of the section with respect to both axes.

CENTER OF PRESSURE

291 . A tank ft deep is filled to a depth of

ft with a liquid having a specific gravity of A
rectangular gate in. high and in. wide

is in the side of the tank, and the lower edge of the gate is on the

bottom of the tank. Compute the total pressure on the gate.
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292 . If the gate mentioned in Prob. 291 is a circle

in. in diameter, what is the pressure on it?

293 . A common shape of manhole used in steel standpipes

and pressure tanks is that of an ellipse. A certain manhole of

this shape has the major axis in. long and horizontal

and the minor axis in. long. What is the total

hydraulic pressure on the cover when the water is 30 ft deep

over the center of the manhole?

294 . A dam is closed by a trapezoidal gate whose parallel

sides are horizontal and ft apart. The long side

is at the bottom and is ft long, and the short side is

ft long. The head on the lower side of the gate is

ft. What is the depth of the center of pressure?

296

.

A rectangular gate ft by ft,

with the long side horizontal, is used to close the sluice gate in the

dam at the outlet of a lake. If the normal water depth to

the bottom edge of the gate is ft, what is the depth

of the center of pressure?

296 . A sluiceway in a dam is closed by means of a circular

gate ft in diameter. If the center of the gate is

ft below the surface of the water, what is the depth

of the center of pressure on the gate?

297 . A large steel standpipe has an elliptical manhole in its

side. The major axis of the ellipse is horizontal and is

in. long. The minor axis is in. long. The center of

the manhole cover is ft below the surface of the water.

Locate the center of pressure on the manhole cover.

GRAPHIC CALCULUS
AND

NUMERICAL INTEGRATION

298 . The following problem gives a comparison of the relative

precision of the approximate integration rules (page 231). Carry

data and all calculations to foui decimal places.

a. Determine the area lying between the curve

y = 1.8000 +
the X axis, and the limits Xi = 24.0000 and X2 = 3.0000, by
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each of the three methods of approximate integration, Simpson’s,

Durand’s, and the trapezoidal rules. Use = 3, 4, 5, 6, etc., to

= 24.0000

6. Compute the area by integration, using natural logarithms

(see Table 34, page 412).

c. Using the results from h as correct, compute the per-

centage error in the results by the three methods of approximate

integration.

299 . The naval architect uses the term half ordinate to describe

the horizontal distance from the center line of a boat to the shell.

Both the cross section of the boat and its deck plans are made up

of complex curves. The half ordinates are used in laying out

the cross sections and in figuring various structural properties.

Use Simpson’s and Durand’s rules to compute the cross-

sectional area of the mid-ship section of a vessel whose half

ordinates, taken 2 ft apart, are as follows, beginning with the keel

as ordinate No. 0 and the deck as ordinate No. 18:

Ord. No.

0

1

2

3

4

5

Half

ordinate

5.00

15.80

19.75

22.20

24.16

25.65

Ord. No.

6

7

8

9

10

11

Half

ordinate

26.70

27.45

28.00

28.28

28.50

28.55

Ord. No.

12

13

14

15

17

18

Half

ordinate

28.50

28.40

28.10

27.75

26.75

26.15

300 . The coordinates of the corners of an irregular tract of

land are given below:

Point
1

ft y, ft Point X, ft V, ft

A jHMMH E
B F
C G
D H

Determine the x location of a north-south line that cuts off

acres from the west side of the tract. Use graphic

integration.
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301.

The coordinates of the corners of an irregular piece of

land are given below;

Point Xj ft y, ft Point X, ft V, ft

A 0.0 F 1400.0 200.0

B 323.4 G 1000.0 -368.2

C 548.0 H 700.0 -378.4

D 347 4 J 400.0 -162.6

E 412.6

Determine the x location of a north-south line that will (;ut off

acres from the west side of the tract. Use graphic

integration.

302.

In the course of making the survey of a tract of land it is

necessary to compute the area between the boundaries of the

land and a stream that winds through it. An east-west line is

laid off, and the perpendicular distance from this line to the edge

of the stream is measured every ft. The first reading

is taken along the west edge of the tract. The measurements

are as follows:

Line Length, ft Line Length, ft Line Length, ft

0 205.5 5 240.5 10 154.0

1 227.0 6 229.5 11 164.5

2 272.0 7 201.5 12 187.0

3 289.5 8 163.0 13 207.5

4 278.0 9 145.0 14 216.0

. Compute the scale factor for the integral curve, and deter-

mine the total area of the tract by graphic integration.

. Use graphic methods only to determine the location of

the north-south property lines needed to divide the tract into

three lots all equal in area. Scale the lot widths, and record them

on the plot.

c. Check the above results by Simpson^s rule and the trap-

ezoidal rule. Tabulate the summing of ordinates.

303.

A series of velocity-time readings of a moving part in a

machine was determined as follows:
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Time, sec Velocity, ips Time, soc Velocity, ips Time, sec Velocity, ips

0 5 10

1 G 11

2 7 12

3 8 13

4 9 14

. Plot a graph showing this velocity second by second.

h. Use graphic differentiation to determine the shape of the

acceleration-time diagram. Use a mirror, and follow Forms
221-223 in the Workbook. Refer to Topic 10.28, page 229.

c. If possible, determine the equations describing the motion.

Use successive differentiation if necessary.

d. Use graphic integration to draw the distance-time curve

(see Topic 10.23, page 220).

. At what time has the object completed 75 per cent of its

total movement? Determine by graphic construction.

/. What are its velocity and acceleration at that time?

304. The area under a velocity-time curve between any two

ordinates is equal to the total distance traveled during that time

interval. Use Simpson\s rule and the trapezoidal rule to deter-

mine the total distance traveled by an object that has the follow-

ing velocities, the readings being taken sec apart:

Reading

No.

Velocity,

fps

Reading

No.

Velocity,

fps

Reading

No.

Velocity,

fps

0 13 23

1 11 21

2 12 22

3 13 23

4 14 24

5 15 25

6 16 26

7 17 27

8 18 28

9 19

306 , An indicator card taken on the crank-end, low-pressure

side of a certain Corliss engine is just 3.6 in. long. The net
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height in inches of the diagram is measured at 0.25-in. intervals,

beginning at the left end of the card. The measured values

are as follows: 0.00, 0.48, 0.58, 0.65, 0.71, 0.79, 0.89, 1.01, 1.18,

1.37, 1.38, 1.54, 1.55, 1.G7, 1.68

a. Plot a graph using the above values. Use scale factors as

follows: Fx = 0,5 in. per inch; Fy = 0,5 in. per inch.

h. Use graphic integration to determine the total area under

the curve. What is the average oi-dinate when figured from this

graphic result?

c. Compute the total area of the indicator card by each of the

three methods given in Topics 10.30-10.32, and also compute the

average ordinate from each of the values of the area thus obtained.

Which one seems to give results closest to the graphic method?

306 . The area under a force-distance curve represents the work

done by the force in moving an object. A variable force moves

an object in such a manner as to give the force-distance readings

below.

Distance from

start, ft

0

10

20

30

40

50

60

70

Force, lb

062

054

024

56G

458

316

265

236

rice from

irt, ft
Force, lb

i

80 214

90 200

100 188

110 176

120 168

130 165

140 162

a. Plot the force-distance curve.

5. By graphic integration determine the total work done.

c. Determine graphically the distances at which the following

percentages of the work have been done: 25, 50, 60, 75, and 90

per cent.

d. Use Simpson's, Durand^s, and the trapezoidal rules as

check methods to obtain the total work done.

307. The ordinates tabulated below represent measurements

made at 1.605-ft intervals on a wing panel of an English plane.
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Ord. No. Length, ft dO Length, ft

0 7.865 7 6.640

1 7.865 8 6.035

2 7.815 9 5.245

3 7.760 10 4.275

4 7.600 11 2.940

5 7.405 12 0.268

6 7 085

Determine the projected wing area by

a. Graphic integration.

b. Simpson^s rule.

c. Durand^s rule.

d. The trapezoidal rule.

303 . The ordinates tabulated below represent an airfoil

cross section. The ordinates are measured at 0.3000-ft intervals.

Ord. No. Length, ft Ord. No. Length, ft Ord. No. liCngth, ft

0 0.0000 7 1.0870 14 0.6555

1 0.6400 8 1.0480 15 0.5680

2 0.8645 9 1.0080 16 0.4800

3 0.9680 10 0.9445 17 0.3760

4 1 .0400 11 0.8800 18 0.2640

5 1.0880 12 0.8160 19 0.1440

6 1 . 1030 13 0.7360 20 0.0480

Determine the cross-sectional area of the airfoil by

. Graphic integration.

. Simpson’s rule.

c. Durand’s rule.

d. The trapezoidal rule.

309 . The ordinates tabulated below represent an airfoil

cross section. The ordinates are measured at 0.3000-ft intervals.

Ord. No. I-^ength, ft Ord. No. Length, ft Ord. No. Length, ft

0 0.0000 7 0.7200 14 0.4320

1 0.4555 8 0.7040 15 0.3840

2 0.5755 9 0.6755 16 0.3200

3 0.6640 10 0.6400 17 0.2560

4 0.7115 11 0.5840 18 0.1840

6 12 0.5440 19

6 13 0.4880 20 0.0320
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Determine the cross-sectional area of the airfoil by

a. Graphic integration,

fc. Simpson^s rule.

c. Durand^s rule.

d. The trapezoidal rule.
310.

The following readings represent a series of sounding at

ft intervals across a river. Its cross-sectional

area is desired.

a. Plot the sounding downward from the x axis, and draw the

cross section. Determine the area by graphic integration,

putting the projection axis to the left of the pole. Put the pole at

the water surface.

h. Compute the area by each of the following methods:

Simpson^s rule, Durand^s rule, and the trapezoidal rule.

311.

The following velocity-time readings represent the motion

of a moving part in an assembly-line machine:

Time, sec Velocity, fps I'ime, sec Velocity, fps Time, sec Velocity, fps

0 5 8.000 10

1 3.195 6 8.696 11

2 4.705 7 9.202 12

3 8 9.500 13

4 7.098 9 9.598 14

. Plot a graph showing the relation of velocity to time.

. Use graphic differentiation to determine the acceleration-

time curve.

c. Draw the curve (rate of change of acceleration).

d. Use graphic integration, and draw the distance-time curve.

312.

The following velocity-time readings represent the

motion of a moving body.
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Time, sec Velocity, fps
1
Time, sec Velocity, fps T me, sec Velocity, fps

0 5.000 5 3.244 10 5.991

1 4.290 6 3.431 11 7.080

2 3.759 7 3.800 12 8.350

3 3.409 8 4.350 13 9.801

4 3 . 239 1 9 5 079 14 11.431

a. Plot a graph showing the relation of velocity to time.

h. Use graphic differcmtiation to determine the acceleration-

time curve. Refer to Forms 221-223 in the Workbook. Tabu-

late the work on Form 227 in the Workbook or similar columnar

paper.

c. Draw the ^^IV^ curve (rate of change of acceleration).

d. Use graphic integration and draw the distance-time curve.

313 . The following velocity-time readings represent the motion

of a moving body.

Time, sec velocity, fps Tim<‘, .sec Velocity, fps Time, sec Velocity, fps

0 4.60 5 4.20 10 7.80

1 4,20 6 4.60 11 9.00

2
1

3.96 7 5.16 12 10.36

3 I 3.88 8 5.88 13 11.88

4 3 96 9 6 76 14 13.56

a. Plot a gra))h showing the relation of velocity to time,

b. Use graphic differentiation to determine the acceleration-

time curve. Refer to Forms 221-223 in the Workbook. Tabu-

late the work on Form 227 in the Workbook or similar columnar

paper.

c. Draw the curve (rate of change of acceleration).

d. Use graphic integration, and draw the distance-time curve.

314 . The follomng distance-time readings represent the motion

of a moving body.

Time, sec Distance, ft Time, sec Distance, ft Time, sec Distance, ft

0.0 5 108.6 10 145.1

1 34.1 6 111.5 11 164.2

2 61.9 7 113.6 12 187.3

3 83.7 8 120.0 13 214.5

4 99.3 9 130.6 14 246.0
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. Plot a graph showing the relation of distance to time.

. Use graphic differentiation to determine the velocity-time

curve. Refer to Forms 224-226 in the Workbook. Tabulate

the work on Form 227 or similar columnar paper.

c. Draw the acceleration-time curve.

316 . The following velocity-time readings represent the rim

speed of a rotating part in a machine during the time when it is

being brought to full velocity.

Time, sec Velocity, fps Time, sec Velocity, fps Time, sec Velocity, fps

0 0.0 5 30 .

5

10 119.8

1 1.5 6 52.6 11 130.0

2 5.8 7 71.6 12 137.2

3 13.1 8 90.6 13 141.5

4 23.4 9 106.7 14 142.9

a. Plot a graph showing the relation of velocity to time.

b. Use graphic difTercntiation to deteimine the acceleration-

time curve. Refer io Forms 221-223 in the Workbook. Tabu-

late the work on Form 227 in Workbook or similar columnar

paper.

c. Draw the curve (rate of change of accoloratioii).

d. Use graphic integration, and draw the distance-time curve.

316 . The following distance-time readings represent the motion

of a moving body.

Time, see Distance, ft Time, sec Distance, ft I’imc, sec Distance, ft

0 0.00 5 7.75 10 25.00

1 0.79 0 10.43 11 29 60

2 1.96 7 13.50 12 34.55

3 3.51 8 16.95 13 39 90

4 5.44 9 20.80 14 45.65

a. Plot a graph showing the relation of distance to time.

b. Use graphic differentiation to determine the velocity-time

curve. Refer to Forms 224-22G in the Workbook. Tabulate

the work on Form 227 or similar columnar paper.

c. Draw the acceleration-time curve.
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317

.

The following distance-time readings represent the

velocity of a moving part in a machine during the starting period.

Time, sec Velocity, fps Time, sec Velocity, fps Time, sec Velocity, fps

0 0.00 5 15.80 10 25.56

1 3.64 6 18.24 11 26.68

2 7.04 7 20.44 12 27.48

3 10.20 8 22.40 13 27.96

4 13.10 9 24.12 14 28.12

a. Plot a graph showing the relation of distance to time,

fc. Use graphic differentiation to determine the velocity-time

curve. Refer to Forms 224-226 in the Workbook. Tabulate

the work on Form 227 or similar columnar paper,

c. Draw the acceleration-time curve.

318

.

The following velocity-time readings represent the

starting velocity of a large conveyor.

Time, see
Velocit3%
fpm

Time, see
Velocity,

fpm
Time, sec

Velocitv,

fpm

0 5 17.86 10 58.68

1 6 11 67.10

2 7 32.90 12 75.00

3 6.70 8 41.32 13 82.14

4 9 14 88.30

a. Plot a graph showing the relation of velocity to time.

h. Use graphic differentiation to determine the acceleration-

time curve. Refer to Forms 221-223 in the Workbook. Tabu-
late the work on Form 227 in the Workbook or similar columnar

paper.

c. Draw the curve (rate of change of acceleration).

d. Use graphic integration, and draw the distance-time curve.

319

.

The moment of inertia of an irregular area can be deter-

mined approximately by constructing a new area whose ordinates

are equal to the cube of the corresponding ordinate in the figure

whose second moment is desired. The second moment of the

given area is equal to K times the area of the constructed figure,

What is the proper value for iC?
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320

.

Use the method described in Prob. 319, page 326, to

determine the second moment (moment of inertia) of the shape

with ordinates as follows:

Ord. No. Length, in. Ord. No. Length, in. Ord. No. Length, in.

0 10 20

1 11 21

2 22

3 23

4 14 24

5 15 25

6 16 26

7 17 27

8 18 28

9 19

. Determine the needed area by graphic methods (see

Topic 10.23).

. Determine the needed area by Simpson^s and the trape-

zoidal rules.

DERIVED CURVES

Study Chap. 8, Topics 8.13-8.18 inclusive, before starting to

solve any of the following problems on derived curves. Arrange

the diagrams and the calculations in accordance with the specifi-

cations in Chap, 3, Topic 3.12. Also refer to Fig. 4, page 70,

and to Forms 213-21G in the Workbook.

321 . An automobile driver approaching a stop signal at an
intersection coasts his car at a velocity of fps for

sec, then applies the brakes so that the car is brought

to a stop with constant negative acceleration. The car travels

ft after he applied the brakes. How long did it

take him to stop? See Form 213 and 214 in the Workbook for

a solution of this problem.

322 . Construct the derived curves showing the distance-time,

velocity-time, and acceleration-time relationships for the follow-

ing description of the motion of a body. Write equations for

each curve.
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First time interval

:

Time = 20 sec

Initial velocity = 0

Final velocity = 40 fps

Velocity increase's uniformly throughout the time interval

Second time interval:

Distance travc'led — 1000 ft

Velocity is constant throughout the time interval

323 . Construct the derived curves showing the distance-time,

velocity-time, and acceleration-time relationships for the follow-

ing description of the motion of a body. Write equations for

each curve.

First time interval:

Distance traveled = G4 ft

Velocity is 8 fps throughout the time interval

Second time interval:

Time =10 sec

Velocity varies uniformly from its maximum value at the

beginning of the time interval to 0 at the end of the time

interval

324 . In a start-and-stop test of an automobile the car was
given a constant acceleration for 20 sec. During this time the

car traveled 400 ft. During the second time interval the car was
stopped in a distance of 80 ft, being given a constant negative

acceleration during this period.

. Draw complete derived curves showing the accelerations,

velocities, and distances traveled.

. Write the equations describing the motion.

326 . Construct the derived curves showing the distance-time,

velocity-time, and acceleration-time relationships for the follow-

ing description of the motion of a body. Write equations for

each curve.

First time interval

;

Acceleration = 5 fpsps throughout the time .interval

Time = 4 sec

Initial velocity = 0

Second time interval:

Acceleration = — 20 fpsps throughout the time interval

Final velocity is zero at the end of the interval
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326 . Construct the derived curves showing the distance-time,

velocity-time, and acceleration-time relationships for the follow-

ing description of the motion of a body. Write equations for

each curve.

First time interval:

Distance traveled = 2000 ft

Time = 20 sec

Velocity varies uniformly from its maximum value at the

beginning of the time interval to zero at the end of the time

interval

Second time interval:

Velocity varies uniformly from its minimum value at the

beginning of the time interval to a maximum value of 50

fps at the end of the time interval

Time =10 sec

327 . A gravity type of package conveyor is designed so that

boxes placed on it start from rest and are given a constant

acceleration of 4 fpsps during the first time interval. During

this interval they travel a distance of 72 ft. During the second

time interval of 5 sec they have a constant velocity throughout

the interval. What is the total length of the conveyor?

323 , Construct the derived curves showing the distance-time,

velocity-time, and acceleration-time relationships for the follow-

ing description of the motion of a body. Write equations for

each curve.

First time interval

:

Initial velocity = 10 fps

Velocity varies uniformly from its maximum value at the

beginning of the time interval to zero at the end of the time

interval

Acceleration = — 5 fpsps throughout the time interval

Second time interval:

Distance traveled = 10 ft

Acceleration = 20 fpsps throughout the time interval

329 . Construct the derived curves showing the distance-time,

velocity-time, and acceleration-time relationships for the follow-
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ing description of the motion of a body. Write equations for

each curve.

First time interval

:

Acceleration = 6 fpsps throughout the time interval

Time = 4 sec

Initial velocity = 0

Second time interval

:

Velocity is constant

Time = 6 sec

Third time interval

:

Time = 10 sec

Velocity decreases uniformly to 0 at the end of the time

interval

330. Construct the derived curves showing the distance-time,

velocity-time, and acceleration-time relationships for the follow-

ing description of the motion of a body. Write equations for

each curve.

First time interval

:

Initial velocity = 4.8 fps

Velocity decreases uniformly to zero at the end of the time

interval

Time = 24 sec

Second time interval:

Velocity = 0 throughout the time interval

Time = 6 sec

Third time interval

:

Acceleration = 0.4 fpsps throughout the time interval

Final velocity = 19.2 fps

331 . Construct the derived curves showing the distance-time,

velocity-time, and acceleration-time relationships for the follow-

ing description of the motion of a body. Write equations for

each curve.

First time interval

:

Distance traveled = 144 ft

Acceleration = 8 fpsps throughout the time, interval

Initial velocity = 0

Second time interval

:

Acceleration = 0 throughout the time interval

Distance traveled == 96 ft
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Third time interval

:

Velocity decreases uniformly to zero at the end of the time

interval

Time = 10 sec

332 . Construct the derived curves showing the distance-time,

velocity-time, and accieleration-time relationships for the follow-

ing description of the motion of a body. Write equations for

each cm-ve.

First time interval :

Distance traveled = 384 ft

Acceleration = — 3 fpsps throughout the time interval

Final velocity = 0

Second time interval:

Acceleration = 0 throughout the time interval

Time =11 sec

Third time interval:

Distance traveled = 100 ft

Acceleration = 5 fpsps throughout the time interval

333 . Construct the derived curves shoAving the distance-time,

velocity-time, and acceleracion-timc relationships for the follow-

ing description of the motion of a body.

First time interval: Initial value of the acceleration is zero,

final value is fpsps. The acceleration increases

uniformly throughout the time interval. The velocity at the

end of the first time interval is fps. Initial velocity

is fps.

Second time interval: Acceleration is constant throughout

the sec interval. Its value is negative and

fpsps.

334 . Construct the derived curves showdng the distance-time,

velocity-time, and acceleration-time relationships for the follow^-

ing description of the motion of a body.

First time interval: Initial value of the acceleration is zero. It

increases uniformly to fpsps in sec.

The initial velocity is fps.

Second time interval: Initial value of the acceleration is

fpsps, but it decreases at a uniform rate to zero in

sec.
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336. Construct the derived curves showing the distance-time,

velocity-time, and acceleration-time curves for the following

description of the motion of a body.

First time interval: The initial value of the acceleration is

fpsps. It increases at a uniform rate to

fpsps in sec. The initial velocity is zero.

Second time interval: Initial value of the acceleration is

fpsps, decreasing uniformly to zero in sec.

336. Construct the derived curves showing the distance-time,

velocity-time, and the acceleration-time relationships for the

following description of the motion of a body.

First time interval: Initial acceleration is fpsps.

It decreases at a uniform rate to fpsps at the end of

the interval. The initial velocity is fps. The

velocity increases fps during the interval.

Second time interval: Initial acceleration is negative

fpsps and is changing at a constant rate to zero at the end of

sec.

337. Construct the derived curves showing the distance-time,

velocity-time, and acceleration-time relationships for the follow-

ing description of the motion of a body.

First time interval : Initial velocity is

eration has a constant negative value of

sec.

Second time interval : Final velocity is

oration is negative with initial value of

changes at a constant rate to zero.

333. Construct the derived curves showing the distance-time,

velocity-time, and acceleration-time relationships for the follow-

ing description of the motion of a body.

First time interval: Initial velocity is fps. Initial

acceleration is negative fpsps. The acceleration

changes at a uniform rate until its value is negative

fpsps at the end of sec.

Second time interval: The acceleration has a negative value

which remains constant throughout the interval. The body is

brought to rest in sec after the beginning of the first

time interval.

fps. Accel-

fpsps for

fps. Accel-

fpsps. It
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339. A given pumping plant pumps a total of 2,500,000 gpd.

From 5 to 10 p.m. the pumping rate is gpm.

From 10 p.m. to 6 a.m. it pumps at the rate of

gpm. Draw the derived curves showing the total quantity

pumped in each time period and the rates. What is the pumping
rate between 6 a.m. and 5 p.m.?

340 .. The following data were secured on the motion of a

moving body:

First time period: Initial velocity = fps. Initial

acceleration = fpsps, changing uniformly to

fpsps at the end of the period. Time == sec.

Second time period: Uniform velocity = fps.

Distance traveled in this period = ft.

Third time period: The body is brought to rest. Deceleration

changes uniformly from 0 to fpsps at the end.

341 . A gravity type of package conveyor is constructed so

that the boxes handled by it start from rest, are given a uniform

acceleration of fpsps, and reach a velocity of

fps by the time that they enter the second section of the

conveyor. This second section has just enough slope to maintain

a uniform velocity for a distance of 150 ft. The third section

is level, but the packages receive a deceleration of (3 fpsps due

to the friction between the platform and the sliding boxes. The
boxes come to rest at the end of this third section.

Draw the series of derived curves describing the above motions.

What is the total time and distance that the packages travel?

342 . A chute for delivering boxes has three stages of incline,

the first two being straight inclines and the third curved. Start-

ing from rest at the top the boxes reach the end of the first stage

in 15 sec, and the acceleration is constant. The boxes attain a

velocity of 12 fps. During the second stage the velocity is

constant for 30 sec, and during the third stage the boxes come to

rest with uniformly increasing deceleration (negative acceleration

or retardation) in 8 sec. The curved incline starts tangent to the

second incline. Draw the complete curves for each stage,

showing all equations.

343. An automobile starts from rest and increases its velocity

until mph is reached at the end of sec;
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During this period the acceleration increases uniformly from

fpsps to a maximum. The gas is then shut off, and

the car slows down with uniform deceleration of

fpsps for a distance of ft. The brakes are then

applied, giving the car a negative acceleration which changes

uniformly from a maximum of fpsps to 0 in sec.

Draw complete curves showing the distance, time, velocity,

and acceleration relations for the automobile during these time

periods.

344 . A switching locomoti^^e stalled a train of cars and got

up to a speed of mph in sec, the accel-

eration having been increasing uniformly from 0. The cars were

then run at the above' speed over a stretch of track

miles long, after which the brakes were applied, causing uniform

deceleration for a distance of ft, when the train was

brought to a stop.

Find the distance, time, and acceleration relations during

these periods.

346 . An elevator in an office building starts upward from

the ground floor, is accelerated so as to attain a speed of

fps in sec, and is brought to a stop in the next

sec. The acceleration varies uniformly from max-

imum to 0 in the first time period and varies uniformly from

maximum deceleration to 0 in the last time period. The distance

from the ground floor to the second floor is ft, and

each floor above this is ft, from floor to floor.

a. Draw the complete set of derived curves.

h. Opposite what floor did the elevator stop?

346 . Draw the motion curves for the conditions stated in

Prob. 129, page 203.

347 . A car-pulUng capstan used to switch cars at a steel mill

is fitted with a drum in. in diameter including

cable diameter. A steel cable is used for pulling the cars.

Cars are drawn a maximum distance of 360 ft. When the cars

are started, the acceleration of the drum varies uniformly from

0 to 1 .2 rpm per second in 1 8 sec. The acceleration now decreases

at a uniform rate to 0 in 12 sec. The speed is constant after this.
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Draw the angular space, velocity, and acceleration-time cuiwes

for the drum and write their equations. How long does it take

to haul the cars the 240 ft?

348 . One of the sliding parts in an automatic macliine travels

a total distance of in. in sec. The
block starts from rest and reaches its maximum velocity in

sec. The acceleration varies uniformly from its

greatest value at the start of the movement to 0 as the maximum
velocity is reached. The velocity remains uniform for

sec, and then the block is brought to rest. The deceleration

increases at a uniform rate from 0 throughout the period of

retardation.

Compute the maximum velocity, the maximum values of the

accelerations, and the distances traveled during each time

interval, using the laws of derived curves. Draw the com-

plete series of curves.

Write the equations of the acceleration-time curves; then

integrate these differential equations; and obtain the equations

of the velocity-time and space-time curves. Substitute the

limits, and check the previous values.

349 . A block in a machine travels a total distance of

in. in sec. The motion of the block is as follows:

Initial velocity, 0.

Initial acceleration, its maximum value.

One-fourth total distance, uniformly varying acceleration,

decreasing uniformly to zero as maximum velocity is reached.

Five-eighths total distance, uniform speed.

One-eighth total distance, uniform deceleration.

Final velocity, 0.

360. A revolving table in a machine has a diameter of

in. The motion of the table is as follows:

Initial velocity, 0.

One-third revolution, constant acceleration, for 0.6 sec.

One-half revolution, uniform velocity.

One-sixth revolution, constant deceleration.

Final velocity, 0.

Draw the complete set of derived curves describing the motion

of the table.
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361 . A small stream is subject to sudden but short floods. Its

normal rate of discharge is cfs. The following

description gives the data on a typical flood.

The initial flow is normal. The rate of change of discharge

increases uniformly from zero to cfs per hour

at the end of hr. The rate of change of discharge

now decreases from the above to zero at a uniform rate in

hr. The increased rate of discharge is maintained for

hr; then the return to normal flow is made in a

similar manner to the rise, except that the final periods take 50

per cent longer than the coiTesponding periods of the initial

increase and the final period is the longest of all.

Determine the total number of acre-feet of water that have

passed through the stream channel from the start to the finish

of the flood. Draw the derived curves showing the variations

of the rate of change of discharge with time, the rate of discharge

and time, and the total quantity and time.

362 . A locomotive used in transcontinental service was

given a test and showed the following action in three successive

time stages. Draw derived curves to show the results.

First time interval: Time = sec. Initial velocity

is 0. Final velocity = fps. Acceleration starts

at 0 and increases uniformly.

Second time interval: Distance = ft.

Velocity is constant.

Third time interval : Time = sec. The locomotive

comes to a stop. The deceleration varies uniformly from its

maximum at the beginning of the period to zero at the end.

363 . An interurban train can maintain a uniform speed of

75 mph between two stations. The starting acceleration varies

uniformly from the initial (and maximum) value to zero at the

end of 45 sec. The train maintains its maximum running speed,

75 mph, until it is 2800 ft from the next station. At this point

the power is shut off and the train coasts for 1600 ft. During

this interval the speed is reduced by air and rolling friction to

60 mph. (Retardation is constant.) The brakes are now
applied, and the train is brought to a complete stop, with uni-

formly increasing retardation.

a. Compute the total distance between stations if the total



MISCELLAUBOVS PROBLEMS. 337

elapsed time is 10 min. Determine the value of the maximum
retardation and the time required during the coasting and

braking period.

h. Draw the complete set of derived curves that completely

describe the operating performance of this train; also write the

equations describing the motion; and check the numerical

results by the equations.

CENTROIDS AND MOMENT OF INERTIA

Study Chap. 10, Topics 10.7-10.14, inclusive, before starting

the solution of any problems on centroids and moment of inertia.

Arrange diagrams and calculations in accordance with the

specifications in Chap. 3, Topic 3.11, and Forms 228-233,

inclusive, in the Workbook.

364. A special tee has the following dimensions: length of

flange, in.; thickness, in.; length of

stem, in.; thickness in.; sides not

tapered. Locate the centroid of the tee with reference to the

upper edge of the flange. Use Form 230 in the Workbook.

366 . A standard structural-steel angle has these dimensions:

long leg, in. over all; short leg, in.

over all; thickness of each leg, in. Determine

the position of the centroid of the section with reference to the

outer edge of each leg.

866. A steel plate was originally in the shape of a rectangle

ABCD, The ends AD and BC were 49.0 in., and the sides AB
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an CD were 74.8 in. A point E was laid off on the long side

CDy 18.4 in. from the corner C. The end of the plate was then

sheared off along the line BE. A hole 18.2 in. in diameter was

cut out, its center being 32.3 in. from side and 17.4 in. from the

end. Locate the centroid of the steel plate (see Fig. 117).

367. The limestone cornice block shown in Fig. 118 was used

in the construction of a certain building. No wires or hooks were

Fia. iis.

used to anchor the block to the walls; and not long after the build-

ing was completed, it was discovered that the cornice had tipped

down an inch or more. Investigation showed that the center

of gravity of the block was outside the point of support. What
additional width e should have been called for in the drawings

in order to bring the center of gravity of the stone just to the edge

of the wall?

It should be noted that the dimension e is not the same as the

distance from the edge of the wall to the centroid of the actual

block used but it is the additional amount of stone that should

have been used in order to have the centroid of the complete
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block lie just above the outer edge of the wall. Also note that

the block itself is not to be moved, that b, it must still project 12

in. from the wall. Tabulate

the computations as indicated

in Fig. 22, page 202, or Form
231 in the Workbook.

AB =
CD =

368 . A small solid pulley for

use with round belting is to be

machined from a disk cut off

a piece of steel shafting. It ^
is first turned to form a hub
for the set screw; then a V-

shaped groove is machined

in the rim. All dimensions

are as shown in Fig. 119. The pulley bore is to be 0.500 in.

Compute the weight of the finished pulley by the use of the

theorem of Pappus (s,ee page 358).

Fig. 120 .

369 . A cast-iron plate for a screw conveyor box is illustrated in

Fig. 120. Compute the weight of the casting, using the theorem
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of Pappus to find the volume.

A = D = II

B = E = J
C = F = K

G =

360 . Half of the cross section of a cast-steel blank for a silent

chain gear wheel is shown in Fig. 121. Four circular holes

3 in. in diameter are cast in the web. What is the weight of

the blank? Apply the theorem of Pappus to find the volume

(see No. 27, page 358).

Fio. 122.
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361.

A section of a bomber gun-turret track is shown in

Fig. 122. Use the theorem of Pappus (No. 27, page 358) and
compute the volume of the material in the turret track.

362.

A portion of the bracing i:i the bulkhead of a plane is

shown in Fig. 123. Use the theorem of Pappus (No. 27, page 358)

and compute the volume of the material.

Fio. 124.

363.

A cast-iron flywheel ft in outside diameter

is made with a rim having the dimensions shown in Fig. 124.

Compute its weight through the use of the theorem of Pappus
(see No. 27, page 358). AJ5 =
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364. A cast-ring for a friction clutch has the cross section

shown in Fig. 125. Find the weight of the ring, using the

theorem of Pappus (see No. 27, page 358).

366

.

An equal-legged structural-steel angle has the following

dimensions: outside length of each leg, in.; thick-

ness of metal, in. Neutral axis is in.

from the back of the leg. Compute the moment of inertia of the

cross section.

366 . An unequal-legged structural-steel angle has the following

dimensions: long leg, in.; short leg, in.;

thickness of metal, in. The centroid is

in. from the back of the short leg and in. from

the back of the long leg. Compute the moment of inertia of the

cross section with respect to the neutral axis parallel to the

short leg.

367 . A square hollow cast-iron column has the following

dimensions: outside width, in.; thickness of metal,

in. Compute the moment of inertia of the cross-

sectional area and its radius of gyration.

368 . A standard pipe column has the following dimensions:

outside diameter, in.; thickness of metal, in.

When the pipe column is used as a beam, it is necessary to

know the moment of inertia of the cross section. If it is used

as a column, the radius of gyration is needed. Find both
properties of the column.



MISCELLANEOUti PROBLEMS 343

369 . A certain steel mill rolls an H-column section that has

the following dimensions: over-all height, in.; width

of flanges, in.; thickness of web, in.;

and thickness of flanges, in. The flanges and web
have uniform thickness. Compute the moment of inertia of

the section with respect to both axes of symmetry. Compute the

least radius of gyration.

370 . Determine the least radius of gyration of a zee bar having

the following dimensions: depth, in.
;
flanges, in.

;

thickness, in.

371 . Plate-and-angle columns are in common use in building

construction. Compute the second moment (moment of inertia)

of such a column with respect to

a. The centroidal axis perpendicular to the web.

h. The centroidal axis parallel to the web.

The column is made up as follows:

One web plate, 10 by 0.50 in.

Four angles, 6 by 4 by 0.50 in., with the short leg riveted to

the web plate.

Over-all height, 10.50 in.

372 . Plate-and-channcl columns are sometimes used in building

construction. Two channels, flanges pointing out, arc riveted to

the cover plates at top and bottom.

a. Compute the second moment (moment of inertia) with

respect to the centroidal axis that is perpendicular to the channels.

h. Compute the second moment with respect to the centroidal

axis parallel to the channels.

The column is made up as follows:

Two channels, 12 in. by 30 lb, placed 6.50 in. back to back.

Two cover plates, 13.5 by 0.50 in.

373 . Columns are frequently built up from plates and angles.

Determine the moment of inertia about both the principal

axes and the least radius of gyration for such a column if the

shapes used are as given below.

One web plate, 24 by 0.50 in.

Four flange angles, 5 by 3.50 by 0.50 in., placed so longer leg

is perpendicular to web plate.

Two flange plates, 11 by 0.50 in.
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Over-all height of the section is 25.50 in.

Tabulate all calculations. Use Form 232 in the Workbook.

374 . A standard form of plate girder is built up from plates and

angles. Determine the moment of inertia of a riveted plate

girder with respect to its horizontal neutral axis when made up

as follows:

One web plate, 28 by 0.50 in.

Four flange angles, 5 by 3.50 by 0.50 in., long leg perpendicular

to the plate.

Height over all 29.50 in.

Two flange plates, 12 by 0.50 in.

376 . Find the moment of inertia and radius of gyration with

respect to both principal axes for the following channel column.

Two channels, 12 in. by 40 lb.

Back to back of channels, 8.50 in.

Two web plates riveted to back of channels, 11 by 0.375 in.

Two flange plates, 16 by 0.75 in.

376 . Find the moment of inertia of a plate girder built up from

the following shapes with respect to the neutral axis perpendicular

to the web plate. Tabulate the calculations. Use Form 232

in the Workbook.

One web plate, 36 by 0.50 in.

Four angles, 6 by 6 by 0.75 in.

Two flange plates, 14 by 1 in.

Two outside flange plates, 12 by 0.75 in., placed symmetrically.

Total height, 40 in.

377 . The use of welded connections in building construction

has led to the development of economical designs that were

not possible with riveted connections. ‘^Battledeck floor

construction” is one of these new developments. This type of

floor is made by laying steel plates over light I beams, then

welding the edges of the plates to the top of the beams and to

each other. In computing the properties of this combination

of shapes, a portion of each plate and the I beam are treated

as a composite section. The plate is considered as carrying a
portion of the bending stress. Thus it is necessary to locate the

neutral axis of the composite beam and to compute the moment of
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inertia with respect to its centroidal axis. Make these compu-

tations for the following typical battledeck floors:

. Plate, 20 by 0.50 in., 1 beam, 10 in. by 40 lb.

. Plate, 24 by in., 1 beam, in. by lb.

378 . A track for a traveling crane is made of a

charmcl, lying flat with flanges pointing down,

supported by a I beam with its

web vertical, the upper flange of the I beam being riveted cen-

trally to the web of the (fliannel. Locate the horizontal neutral

axis of the two combined, and find the moment of inertia with

respect to this axis.

379 . Plate-and-channel columns are widely used in building

construction. They consist of two standard steel channels, with

flanges pointing outward, and a steel cover plate riveted to one

pair of flanges. The other pair of flanges are stiffened with

lattice bars. Ignore the effect of the latticing, and compute

the properties for a column made of the following shapes:

Two channels, 10 in. by 25 lb.

Back to back of channels, 5.5 in.

One cover plate, 12 by 0.50 in,

a. Compute the location of the neutral axis with respect to

the upper edge of the cover plate.

h. Compute the moment of inertia with respect to this axis.

c. Compute the moment of inertia with respect to the axis

perpendicular to the cover plate.

d. Compute the least radius of gyration.

380 . An inclined bridge-truss post is made up of two
I beams and a plate in. wide by in.

thick, riveted to the upper flanges of the I beams. The section

is symmetrical about the vertical axis, and the I beams are

sp^aced horizontally in. apart center to center.

Locate the horizontal neutral axis of the section, and find the

moment of inertia of its area with respect to both principal axes.

381. The cross section of the frame of a shear press is as shown
in Fig. 126.

a. Locate its centroid.

h. Compute the moment of inertia of the section with respect

to the centroidal axis.
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382 . A type of tubular spar construction is shown in Fig. 127.

Compute the location of the horizontal centroidal axis and the

value of the second moment with respect to this axis.

383 . A crane runway is made up of two standard channels

and an I beam. The I beam is in the center with the web
vertical, and the channels are laid one on top and one at the

bottom, symmetrical about the vertical axis and with the flanges

pointing down in both cases.

If the I beam is and the channels are

each, find the centroid of the cross section of the

runway and the moment of inertia of its area.

384. a. Compute the location of the centroidal axis for the

area shown in Prob. 39, page 243.

6. Compute the moment of inertia with respect to both

centroidal axes.

386 . A special column was designed for a certain large office

building. It was built up from plates and angles as follows:

Web plate, 14 by 1.25 in.

Four angles, 6 by 6 by 0.625 in.

One cover plate, 16 by 2.25 in. symmetrical about the center

line of the web.
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One cover plate, 24 by 2.75 in., placed so that one edge was in

line with the short cover plate.

a. Determine the location of the centroidal axis perpendicular

to the web plates, the second moment of the cross section with

respect to this axis, and the radius of gyration. Tabulate the

calculations. Use Form 233 in the Workbook.

h. Determine the location of the centroidal axis parallel

to the web plates, the second moment of the cross section with

respect to this axis, and the radius of g>Tation. Tabulate the

calculations. Use Form 233 in the Workbook.

386 . When the steel framing for a certain large office building

was designed, it was found necessary to use a number of unsym-

metrical columns built up from plates and angles. A typical

column was made of the following shapes:

Web plate, 12 by 0.75 in.

Four angles, 7 by 3.50 by 0.75 in., the short log being riveted

to the web plate and extending 0.25 in. beyond its edge.

Two cover plates, 20 by 1.50 in.

Total height pei uendicular to cover plates, 15.50 in.

Th(^ (a)lumn was symmetrical about the axis parallel to the

cover })lates, but the Aveb plate was shifted 2.00 in. to one side of

the middle of the cover plates.

a. Determine the location of the centroidal axis that is parallel

to the web plate.

b. Compute the moment of inertia and the radius of gyration

with reference to the above axis.

c. Compute the moment of inertia and radius of gyration with

reference to the axis that is parallel to the cover plates. Tabulate

calculations. Use Form 233 in the Workbook.

387 . Another column in the building mentioned above had the

following shapes in it:

Web plate, 8 by 0.50 in.

Four angles, 5 by 3.50 by 0,50 in., the short leg being riveted to

the web plate and extending 0.25 in. beyond its edge.

One cover plat^, 12 by 0.75 in., symmetrical about the center

line of web plate.

The other cover plate, 16 by 1.50 in., placed so that one edge

was 6 in. from the center line of web plate.
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Over-all height perpendicular to the cover plates, 10.75 in.

a. Compute the location of the centroidal axes of the column.

b. Determine the moment of inertia of the column with respect

to both principal axes.

c. Compute the radius of gyration with respect to each axis.

Tabulate the computations.



CHAPTER 12

MISCELLANEOUS TABLES

TABLE L—ABBREVIATIONS AND SYMBOLS

Based upon the “American Standard Abbreviations for Scientific and

F^ngineering Terms,” ASA Code Z 10.1—1941 and other recognized lists.

Note: Use the same abbreviation for both singular and plural. No
periods used except where* specifically shown, as in. for inch.

acceleration accel

acceleration of gravity g

acre spell out

acre- foot acrc-ft

alternating-current (as adje^ctive) a-c

ampere amp
ampere hour amp* hr

answer ans.

antilogarithm antilog

approximate approx

arc spell out

area spell out

average avg

barrel bbl

board feet (feet board measure) fbm
brake horsepower bhp
brake horsepower- hour. bhp- hr

bushel bu
calorie cal

center line t.

cent c or

center to center c to c

center of gravity eg

centigrade (temperature) C
centimeter cm
centimeter-gram-second (system) cgs

circumference circum

coefficient coef

coefficient of friction /
cosine cos

cotangent cot

cubic cu

cubic centimeter cu cm, cm® (liquid, meaning milliliter, ml)

cubic foot cu ft

349
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Table 1.

—

{Continued)

cubic feet per minute

cubic feet per second .

cubic inch

cubic meter

cubic millimeter

cubic yard

cylinder . . ,

day

degree

degree centigrade. . . .

degree Fahrenheit,

degree Kelvin ...

diameter

direct-current (as adjective). . .

dollar

dozen

dram
efficiency. ...

electric

electromotive force. ...

elevation ...
equation

Fahrenheit (temperature)

feet board measure (board feet) ....

feet per minute

feet per second. .

feet per second per second . . .

fluid

foot . .

foot-pound

foot-pound-second (system)

free on board

gallon

gallons per minute

gallons per second

grain

gram
horsepower

horsepower-hour

hour

hundred

inch

inch-pound

inches per second

inches per second per second

inclusive

inside diameter

cfm
efs

cu in.

. . . .cu rn or nv'

cu mm or mirr^

cu yd

cyl

spell out

deg or

C
F
K

diam

d- c

$

doz

dr

efl

elec

emf

el

m
F

fbm
fpm
fps

fpsps

fl

ft

ft-lb

fps

fob

gal

gpni

gps

spell out

g

hp
hp-hr

hr

C
in.

in.-lb

ips

ipsps

incl

ID
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Table 1.

—

{Continued)

internal

kilogram

kilometer

kilovolt

kilovolt-ampere

kilowatt

kilowatthour

latitude

linear foot

liquid

liter

logarithm (common)
logarithm (natural)

longitude

mass . . .

maximum
meter

mile

miles per hour

miles per hour per second

millimeter

million ...
million gallons per day

millivolt

minimum
minute

minute (angular measur(')

miscellaneous

moment of inertia, mass or area .

month .•
. .

number
ohm
ounce

outside diameter, .

page

parts per million

pint

pound
pound- foot

pound-inch

pounds per cubic foot

pounds per square foot

pounds per square inch

power factor

product of inertia

quart

radian

int

kg

km
kv
kva
kw

kwlir

lat

lin ft

liq

1

log

logc or In

long.

spell out

max
m

spell out

mph
mphps
mm

spell out

mgd
mv
min
min

misc

I

.... spell out

No.

. spell out

oz

OD
P-

PPni

Pt

lb

Ib-ft

lb-in.

. . .lb per cu ft

psf

psi

spell out or pf

qt

spell out
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Tablb 1.

—

{Continued)

radius rad or R
radius of gyration . . k

revolutions rev

revolutions per minute. . rpm
revolutions per second rps

rod spell out

second sec

second (angular measure) "

second-foot (see cubic feet per second)

sine sin

specific gravity «p gr

specification spec.

square sq

square centimeter sq cm or crn*'*

square foot sq ft

square inch sq in.

square kilometer sq km or km^
square meter sq m or rn^

square millimeter sq mm or mm*
standard std

tangent tan

temperature, temp
time spell out

thousand ... M
thousand foot-pounds. . . . kip-ft

thousand pound kip

ton spell out

ton- mile spell out

velocity vel

volt V

volt-ampere va
volume vol

watt w
watthour whr
week spell out

weight wt
yard yd
year yr
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TABLE 2.—MATHEMATICAL SYMBOLS

plus (addition) -h

minus (subtraction) ~
plus or minus ±
multiplication. Use parenthesis only . .. (2.37)(85.3)

division. Use fraction only

ratio

proportion

square root

cube root

other powers or roots

equals

is not equal to

\i less than

is greater than

varies as (spell out)

tends toward or approa(du3s

approximately equals

parallel or is parallel to

perpendicular, or is perpendicular to

therefore, hence

per cent

number, when before Tgures

pounds, when after figures

infinity

angle

right angle

triangle

circle

circumference
pi = — 7 == 3.141C).

diameter

summation
differential (in calculus)

integral (in calculus)

a _ c

b “ d

(385)4 or (385)

(627)4 or (627)

(863;^ or (825)2 '>

<
>
“varies as”

a == kx (approx) seep. 349

I!

%
#

#
CO

<
rt <
A
G

S
d

/
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TABLE 3.—MENSURATION
(Plane surfaces)

1.

Rectangle

Area = (base) (altitude)

Diagonal = Vbase^ + altitude^

2.

Right Triangle

Area — ^(iDase) (altitude)

Hypotenuse == \/base‘^ + altitude^

Angles A + R =

3.

Any Triangle

Area = 2 (base) (altitude)

Note; Altitude h perpendicular to base h

Angles A + R + C = 180°

4.

Parallelogram

Area = (base) (altitude)

Note: Altitude h perpendicular to base b

Sum of angles = 360°

5.

Trapezoid

(Sides a and b parallel)

Area = |(sum of parallel sides) (altitude)

Note: Altitude h perpendicular to a and 6

6.

Trapezium

(Four sides, none parallel)

Area: Draw diagonal BD and get sum of areas

of triangles ABD and BCD.
Or draw altitudes h and k, then

area trapezium = area trapezoid EBCF
-f triangle ABE — triangle DCF

7.

Regular Polygon

Note: A regular polygon has equal sides and

equal angles and can be inscribed in or cir-

cumscribed about a circle.

Area «

1 /numbcr\ /length of'^ /distance
2 Vof sides/ V one side / \ to center /
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TABLE 3.—(Plane surfac4(3s —Continued)

8. Circle

Circumference = tt (diam)

= 2x (rad)

circumference ^

,

diameter

Area ~ :r(rad)2 ~

-- = 3.141G

7r(diam)^

4

0.7S34 (diam)5

1 radian
1 Rn°—- = 57.2058°

Arc BD ^ ansb BCir
Circumference 360°

Also arc BD — (rad) (angle BCD in radians)

9 , Sector cf a Circle

. (arc) (rad)
Area — ^

2

__ 7r(rad)2 (angle ACB°)

_ (rad)2 (angle ACB in radians)

2

10. Segment cf a Circle

Area of segment == area of sector ABC
— area of triangle ABC

,, rad2r7r«AC^°) . ,Also area = ^

= ACB in radians — sin A

rad2r7r«ACB°) . ,^^,1
-y- [—TW \

< ACB in radians — sin A('D°)

11. Circular Spandrel cr Fillet

. - area circle
Area = area of square j

= rad* —

0.2146 (rad)*

12. Ellipse

Area =» 7r(long rad AC) (short rad CE)

« j
[long diam AB\ [ 3hort diam DE]
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TABLE 3.—(Plane surfaces.

—

Continued)

13. Parabola

Rectangular axes, vertex at A
Parabola is tangent to AD at A
Area of section ABC — |6/i

= f(A/))(C/))

Area of spandrel ADC — Ibh

- UAD)(dC)

14. Parabola

Rectangular axes, vertex unknown
Parabola is tangent to mcIiiK'd line AB iit A
Area section ABC — ^bh

- MAE) (DC)

Area spandrel ADC — Ibh

D = UAE){DC)
-langent To AB l-iT

t, ^

15,

Rectangular Prism
Volume == (area of base) (altitude)

16.

Any Prism

Axis either inclined or perpendicular to base

Volume = (area of base)

or == area of perpendicular cross-section times

lateral length

17.

Truncated Prism

Volume = area of base multiplied by perpen-

dicular distance from base to center of

gravity of opposite side

j

18. Cylinder

Axis perpendicular or inclined to base

/perpendicular

\

Volume *== (area of base) y height /

Also when axis is inclined to base,

Volume = (area of section perpendicular to

axis) (length of axis)

Area of cylindrical surface *=* (perimeter of

base) (perpendicular height)
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TABLE 3.*-~(Solids.--*Co7i<i7ia6c?)

19. Pyramid
Axis either inclined or perpendicular to base

Volume = J(area of base)

/A
20. Cone

Axis either inclined or perpendicular to base

Volume = J (area of base)

Right cone, area of conical surface =

4 (circumference of base) (slant height)

i

21. Fnistrum cf Pyramid or Com
Ends f)arallel

Volume = i perpendicular height times

[area of has? -h ari'a of top

+ \/ljirca of base) (area of top)]

22. Ungula, dice, cf Right Circular Cylinder

Vohime =

rad
~
^\ (area of base)]

Use -f- when base is larger than a half-circle,

and — when less.

Area of cylindrical surface =

[2a(rad) + (6) (am ABC)]
rad ± 0

Use ± same as in volume

23. Sphere

,, ,
47r(rad)* Trfdiam)®

Volume « —l_jL- »

Area of surface « 47r(rad)®

=a T(diam)^

Height
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TABLE 3.—(Solids.

—

Continued)24.

Spherical Sector

Votae -
u

Area of surface — area of conical surface +
area spherical segment (see spherical seg-

ment)
25.

Spherical Segment

Volume = irh ' -
1)

/chord^ h^\

Area of spherical surface ==

2,r(rad)/j = r

26. Circular Ring or Torus

Volume =
27r* (rad of section, r)* (mean rad, R)

= ^ (diam of section)^ (mean diam)

Area of surface =
47r®(mean rad) (rad of s(u^ti()n)

~ 7r
2 (mean diam) (diam of section)

27, Solids of Revolution (Theorem of Pappus)

A plane area revolved about an axis in its own
plane generates a solid.

Its volume equals the plane area times the

length of path followed by the centroid of

the area.

Its surface area equals the perimeter of the

generating area times the length of path

followed by the centroid of the area.

28.

Comparison of Volumes

Cone^ Paraboloid, Sphere, Cylinder having

same base diameter and same height

Volumes have following comparative values:

Cone Paraboloid Sphere Cylinder

i i I 1

Cube would be - (vol of cyl)

+ Centroid
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TABLE 4.—CENTROIDS AND SECOND MOMENTS OF SIMPLE
SHAPES

No. Centroid Seeond moment Shape

i

1. Rectangle

y = ih

X = lb

Ic =

/x -= ibh’‘

1

X-

S\..—1

r!rt±:
-$ix

2. Triangle fj =
Jr =

!

X 7
r-T]
-T-P
._-pix

ir-"-
r

3, Semicircle
\ 0 - 0.4244r

/c = 0.10996r^

/x - 0.39270r4

1

Y

.^Jx
6.4244r

4. Circular

Spandrel

ij — 0.2233r

£ - 0.7767r

Ic = 0.007524r4

/x = 0.1370r'

Xo.7762^

V

5:|253r

X

5. Parabolic

Segment

U = Ih

X =

Ic = 0.07246/i3

- 0.15238

Y

jXrXx-

Y
^

xi^i-X

6. Parabolic

Spandrel

y “ A

* =• }h

/c = 0.017636/iS

/x = 0.01762 6/i’

V

X-

>

-—

1

r

ITI
j^ix
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TABLE 5.--TRIGONOMETRIC FORMULAS

Secondary Functions

:

^ ^ . adjacent side . . 1 cos A
Cotangent A = —-— cot A = j = —

j

opposite side tan A sin A

1 . . hypotenuse — adjacent side
Versed sine A =

v
^

—
hypotenuse

vers A = I — (*os A

^ ^ . hypotenuse . 1 tan A
Secant A = * - — sec A = r — . —

^

adjacent side cos A sin A

^ . hypotenuse — adjacent side
External secant /I = ,

adjacent side
External secant A =

. vers A .
,

exsec A = = sec .4 — 1

cos A

Cosecant A
hypotenuse

opposite side
cosec A 1 __

cot A
sin A cos A

^ 1 . i hypotenuses — opposite side
Coversed sino A = —

, ^hypotenuse

covers = 1 — sin ^

Single Angles

:

3S A tan A = \/i — cos^ A

cos A = —j = sin A cot A = \/l — sin^ A
tan A

tan A =
cos A cot A

Half Angles

:

Referring to Fig. 16, if 5 = half the sum of the sides:

• ^ A — AC){s — AB)
__

jl — cos A
sm

2 ^ -
yl (AC)(AB)

~
V 2“ '

— cos A

cos
2
A

tan
2
A

cot
^
A

I
(AC)(AB)

js(s - BC)

(AOiAB)

Ks - AC)(s - AB)
I s(s -BC)

sin A
1 — cos A

/l -f cos A
V """7^

sin A
1 + cos A



MISCELLANEOUS TABLES 361

TABLE 5.

—

{Continued)

Double Angles

:

sin 2A = 2 sin A cos A
cos 2A = cos^ A — sin^ ^ = 1 — 2 sin* A = 2 cos* A

2 tan A
tan 2

A

==

cot 2A =

1 — tan* A
cot* A — \

2 cot A

Sums and Differences of Angles

:

sin {A ± B) ^ sin A cos B ± cos A sin B
cos {A ± B) ^ cos A cos + sin A sin B
X / ^ tan A ± tan B
tan {A ± B) = h

1 4- tan A tan B

cot (A ± L) =
cot A cot B 4- 1

cot B ± cot A

Sums and Differences of Functions

:

sin A + sin B =2 sin 1{A + B) cos ^(A — B)

sin ^ — sin £ = 2 cos \{A + B) sin \{A — B)

cos A + cos B -- 2 cos l(A + B) cos |(A — B)

cos B — cos A = 2 sin ^{A + B) sin |(A — B)

tan A + tan B =

cot A + cot B

cot A — cot B

sin (A + B)

cos A cos B
sin (A - B)

cos A cos B
sin (B A- A)
sin A sin B
sin (B -A)
sin A sin B

Squares of Functions

:

sin* A = 1 — cos* A =

cos* A = 1 — sin* 4 =

1 — cos 2A

1 + cos 2A

sin* A — sin* B — sin (A + B) sin (A

cos* A — sin* B *=* cos (A + B) cos (A

1 — cos 2A
tan* A =

cot* A s=

1 + cos 2A
1 A cos 2A
1 — cos 2A

B)

B)
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TABLE 6.—SIGNS OF THE TRIGONOMETRIC FUNCTIONS

Sc.cor\d
Ouadront

First

1 Car Qoadront

Co3
Ibn - i

Cor - /

5in
Cos
Tan t

1
*

Third 1 njHRBIIBB9HS1 t Fourth
Quadrant ^ 15 Quadrant

- / 5in -

Cos - Cos t

7bn Jon -
Cot Cot -

EQXnVALENTS OF MEASURE

TABLE 7—LENGTHS*

Inches Feet Yirds Rods Miles
C’cnti-

inoters
Meters

Kilo-

meters

1 0.08333 0.02778 0.005051 O.O 4 I 578 2.540 0.0254 0.0,254

12 1 0.3333 0.06061 O.O3 I894 30.48 0.3048 0.033048

36 3 1 0.1818 0.035862 91.44 0.9144 O.O39144

198 16.5 5.5 1 0.002714 502.9 5.029 0 005029

63360 5280 1760 320 1 160935 1609.4 1 , 60935

0.3937 0.03281 0.01094 0.001988 0.066214 1 0.01 0.00001

39.37 3.2808 1.0936 0.19884 9 .O362 I 4 100 1 0.001

39370 3280.8 1093.6 198.84 0.62137 100000 1000 1

*0.042296 means that there a:e four ciphers between decimal point and first digit, thus

0.00002296.

TABLE 8 —AREAS*

Square

inches

Square

feet

Square

yards

Square

rods
i

Acres
Square

miles

Square

meters

Square

kilometers

1 0.006944 0 087716 0 .042551 0.081594 0.0»2491 0.0*6452 0 . 0»6462

144 1 0.1111 0.003673 0.042296 0.073587 0 . 09290 0 . 0t9290

1296 9 1 0.03306 0.082066 0.0o3228 0.8361 0.068361

39204 272.25 30.25
i

1 0.00625 0.059766 25 . 293 0.042529

6272640 43560 4840 160 1 0.001562 4047 0. 004047

27878400 3097600 102400 640'’
1 2590000 2.59

1550 10.764 1.196 0.03954 0.0i2471 , 0.063861 1 O.O 5 I

1195985 39536 247.1 0.3861 1000000 1

0.042296 means that there are four ciphers between decimal point and first digit, thus
0.00002296.
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TABLE ©.—VOLUMES*

Cubic
inches

Cubic
feet

Cubic
yard.s

U. S. quarts U. S. gillons
u . s .

bushels
Liters

Liquid Dry Liquid Dry

1 0.035787 0.042143 0.01732 0.01488 0.004329 0 . 003720 0.084650 0.01639

1728 1 0.03704 29 . 92 25.71 7.481 6 429 0 . 8036 28.32

46656 27 1 807.9 694.3 202.0 173.6 21.70 764 .

6

57.75 0.03342 0.001238 1 0.8594 0.25 0.2148 0.02686 0 9464

67.20 0.03889 0.001440 1.164 1 0.2909 0.25 0.03125 1.101

231 0.1337 0.004951 4 3.437 1 0.8594 0.1074 3 . 785

268.8 0.1556 0 . 00576

1

4.665 4 1.164 1 0.125 4 . 405

2150 1.244 0.04609 37.24 32 9 309 S 1
!

35.24

6102 0.03531 0.001308 1 . 0.57 D .9081 0.2042 ) 2270 0 . 2838 1

* 0.042296 rnouTiN that there are four ciphers between decimal point and first digit, thus

0.00002296.

TABLE 10.—WEIGHTS*

Grains

Ounces,

avoir-

dupois

Pounds,

avoir-

dupois

Tons,

short

Tons,

long

Tons,

metric

Kilo-

grams

1 0.002286 O.O 3 I 429 0.077143
;

0.076378 O.O7648O O.O4648O

437.5 1 0.0625 O.O43125
1

0.0427^)0 0.042835 0.02835

7000 16 1 0.0005 0.034464 O.O34536 0.4536

1406 32000 2000 1 0.8929 0.9072 907.2

156804 35840 2240 1.12 1 1.016 1016

15432356 35274 2205 1 . 102 0.9842 1 1000

15432 35.27 2.205 9.001102 9.039842 9.001 1

0 042296 means that there are four ciphers between decimal point and first digit, thus

0.00002296.

T.\BLE 11.—PUMPING RATES

1 ,000,000 gal.

per day (24 hr.)

Gallons per

minute

Gallons per

second

Cubic feet

per minute

Cubic feet

per second

1 694.444 11.5741 92.836 1.547

0.001440 1 0.01667 0.1337 0.002228

0.08640 60^ 1 8.021 0.1337

0.01077 7.481 0.12467 1 0.01667

0.6463 448.86 7.481 60 1



364 ENGINEERING PROBLEMS MANUAL

TABLE 12.—VELOCITIES

Feet

per

second

1

0.01667

1.467

1.68894

3.281

0.05468

0.9113

Feet

per

minute

60

1

88

101.337

196.85

3.281

54.68

Miles

per

hour

0.6818

0.01136

1

1.15155

2.237

0.03728

0.6214

Knots

0.59209

0.00987

0.86839

1

1.942

0.03237

0.53960

Meters

per

second

0.3048

0.005080

0.4470

0.51497

1

0.01667

0.277H

Meters

per

minute

18.29

0.3048

26.82

30.898

60

1

16.67

Kilo-

meters

per hour

1.097

0.01829

1.609

1 .8532

3.6

0.06

1

1 knot = 1 nautical mile per hour.

1 nautical mile = 6080.2 ft.

TABLE 13.—ACCPILERATIONS

Feet per

second per

second

Miles per

hour per

second

Meters per

second per

second

Kilometers per

hour per

second

1 0.6818 0.3048 1.09728

1.4667 1 0.44704 1.6093

3.2808 2 237 1 3.6

0.9113 0.6214 0.2778 1
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TABLE 14.—POWER*

Foot-pounds

per second

Foot-pounds

per minute

Horse-

power
Watts Kilowatts

1 60 0.001818 1.3557 0.001356

0.01667 1 0.043030 0.0226 0.04226

550 33000 1 745.65 0.74565

0.7376 44.257 0.001341 1 0.001

737.6 44256 1.341 1000 1

* 0.042296 means that there are four ciphers between decimal point and first digit, thus

0.00002296.

TABLE 15.—PRESSURES*

Pounds

per

square

inch

Pound.s

per

square

foot

Short

tons

per

square

foot

Atmos-

pheres

Col-

umns
mer-

cury at

o"b.,
1

inches

Col-

umn
water

at

15"C.,

fe(‘t

Col-

umn
water

at

15°C.,

inches

Kilo-

grams

per

square

centi-

meter

1 144 0 0720 0.06804 2.036 2.309 27.70 0.07031

0.00694 1 3.0005 0.034725 0.01414 0.01603
1

0.1924 0.0.14882

13.89 2000 1 0.9450 28.28 32.06
^

384

.

8 , 0.9765

14.70 2116.3 1.058 1 29.92 33.93 407.2 1.0333

0.4912 70.73 0.03536 0.03342 1 1.134 13.61
’

0.03453

0.4332 62.43 0.03119
'

0.02947 0.8819 1^ 1

12 0.03045

0.03610 5.2023 0.002599 9.00245C 0.07349 0.08333 1 0.002538

14.22 2048
1

1.024 0 9678 28.96 32.84 394.0
1

1

* 0.042296 means that there are four ciphers between decimal point and first digit, thus

0.00002296.



366 ENGINEERING PROBLEMS MANUAL

TABLE 16.—WEIGHTS OF COMMON SUBSTANCES

Substance
Specific

gravity

Average

weight,

lb per

cu ft

Acid, muriatic, 40 per cent 1.20 75

Acid, nitric, 91 per cent 1.50 94

Acid, sulphuric, 87 per cent 1.80 112

Air, 0°C., 760 mm 1.0 0.08072

Alcohol, ethvl (100 per cent) 0.789 49

Alcohol, methyl (103 per cent) 0.795 50

Aluminum, allov, 0.100 lb per cu in 2.708 172.8

Aluminum, cast 2.55 - 2.80 168

Ammonia gas 0.5920 0.0478

Ammonia liquid 0.89 55.6

Antimony G.02 - 6.72 418

Asbestos 2.1 ~ 2.8 153

Ashes, cinders 0.64 - 0.72 43

Asphaltum 1.1 - 1.8 87

Babbitt metal, hard 7.34 - 7.75 470

Babbit metal, soft. ... 9.73 -10.67 670

Bariev, bulk 0.62 39

Basalt, solid 2.7 -3.2 182

Basalt, granite, gnei.ss, crushed, piled 96

Benzine 0.73 - 0.75 46

Bismuth 9.70 - 9.90 610

Brass, average cast and rolled plate 8.4 525

Brick, common 1.8 - 2.0 120

Brick, pressed 2.2 - 2.3 140

Brick, pressed, fire 2.3 - 2.4 145

Brick, soft 1.5 - 1.7 100

Bronze, average 8.8 551

Calcium . . . 1.58 98.6

Carbon, amorphous, graphitic 1.88 - 2.25 129

Carbon bisulphidve 1.29 80.6

Carbon dioxide 1.5291 0.1230

Carbon monoxide 0.9673 0.0781

Celluloid 1.43 90

Cement, portland, loose 1.44 90

Cement, portland, set 2.7 - 3.2 190

Chalk 1.8 ~ 2.0 140

Charcoal, pine 0.28 - 0.44 22

Charcoal, oak 0.47 ~ 0.57 31
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TABLE 16.

—

(Continued)

Substance
Specific

gravity

Average

weight,

lb per

cu ft

Chlorine 2.49 0.190
(^av, excav'ated, dry 1.0 63

Clay, excavated, damp, plastic 1.76 no
Clay, marl in bank 1.8 - 2.6 135

Coal, anthracite, block 1.4 - 1.8 95

(/oal, bituminous, blo(*Iv ] .2 - 1.5 84

Coal, lignite, block 1.1 - 1.4 80

Coal, anthracite, loose 56

Coal, bituminous, L)os(‘. . . 50

Coke, solid ... 1.0 - 1.4 81

Coke, loose 28

Concrete, reinforced 2.2 - 2.4 150

(Concrete, slag, etc 1.9 ~ 2.3 130

Concrete, ciiuh^r, etc 1.5 - 1.7 100

Copper, pure 8.9 554

Copper, wire and rolled sIuh^I 8.91 - 8.95 556

Copper, cast 8.8 - 9.0 552
Copper ore, pyrit es 4.1 - 4.3 262

Cork 0.22 - 0.26 15

Corn, shelled . . . 0.73 45

( k)tton, flax, hemp 1.47 - 1.50 93

Earth, foose 1.2 - 1.3 76

Earth, packed 1.5 98

Earth, mud 1.7 - 1.8 110

Earth, turf or peat 0.32 - 0.45 25

Emery ... I 4.0 250

Flour, loose 0.40 - 0.50 28

Gas, illuminating, coal 0.35 ~ 0.45 0.032

Gas, natural 0.57 - 0.74 0 050

Gasoline 0.66 - 0.69 43

German silver
[

8.58 524

Glass, common 2.40 - 2.80
I

162

Glass, plate or crown
1

2.45 - 2.72 161

Glass, crystal 2.90 - 3.00 184

Glass, flint 2.15 - 4.7 210

Glycerine 1.23 79

Gold, cast-hammered 19.25 >19. 35 1205
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TABLE 16.

—

(Continued)

Substance
Specific

gravity

Gold coin (IJ. S.)

Gneiss, serpentine, solid

Granite, syenite, solid. .

Gravel, screened, wet

.

Hay and straw, bales

.

Hydrogen

Average

weight,

lb per

cu ft

17 .18 -17 .2 1073

2 .4 - 2 ,7 165

2 5 - 3 1 170

1 ,9 - 2. 3 131

1 44 - 1. 92 112

2. 3 - 2. 8 159

0. 32 20

0.00559

Ice, solid 0.88-0.92
Ice, crushed

Iron, gray, cast, 0.2G0 lb per cu in 7.03-7.13
Iron, wrought, 0.278 lb per cu in 7.6 - 7.9

Iron ore, hematite, loose

Iron ore, magnetite, in bank 4.9 - 5 2

Iron slag 2.5 -3.0

Kerosene 0.78 - 0.82

Lead 11.34

Lead ore, galena 7.3 - 7.6

Leather 0.86- 1.02

Lime, quick, loose

Limestone, solid 2.46-2.86
Limestone, quarried, crushed

Marble 2.5 -2.8 167

Magnesium 1.69 - 1.75 108

Magnesium carbonate 2.4 150

Manganese 7.2 - 8.0 475

Mercury 13.4 -13.6 847

Mica 2.75-3.1 183

Mortar, wet 1.4 94

Mortar, hard 1.9 103

Nickel 8.57 - 8.90 546

Nickel, monel metal 8.8 - 9.0 556

Nitrogen 0.9714 0.0783

Oats, bulk 0.51 26

Oil, cottonseed 0.93 - 0.97 60



UJSCELLANEOVS TABLES 360

TABLE X&.—^iEonlinued)

/. / *^ubs canoe

r} ,

- -

Specific

gravity

Average

weight,

lb per

cu ft

Oil, lard 0.90 - 0.97 58

Oil, linseed. ... 0.94 59

Oil, lubricating, mineral . . 0.90 - 0.93 57

Oil, fuel 0.78 - 0.88 53

Oil, vegetable 0.91 - 0.94 58

Oxvtten 1.1056 0 . 0892

Paper 0.70 - 1.15 58

Paraffin 0.87 - 0.91 55

Petroleum, crude 0.87 - 0.88 55

Pitch . . 1.07 -- 1 . 15 70

Plaster of paris 1.4 - 2.2 112

Platinum, rolled 21.2 -21.7 1345

Plexiglass, 0.043 lb per cu in . 1.19 74.3

Porcelain, china 2.30 - 2.50 150

Porphyry 2.6 - 2.9 172

Potassium 0.865 54

Potatoes, pih^d 42

I’umice, natural 0.37 - 0.90 40

Quartz, flint, solid 2.5 - 2.8 165

Quartz, quarried, crushed 95

Resins, rosin, amber 1.07 68

Rubber, caoutchouc, pure 0.93 - 0.96 58

Rubber compound 1.44 - 1.66 105

Salt, block 2.07 - 2.10 130

Salt, granulated, piled . ... 47

Saltpeter 1.07 67

Sand, gravel, dry, loose 98

Sand, gravel, dry, in bank 1.6 - 1.9 110

Sand, gravel, wet 1.9 120

Sandstone, solid 2.2 - 2.5 147

Sandstone, quarried, broken
1 84

Shale, slate 2.6 - 2.9 1 175

Shale, crushed, piled 92

Silver, caat-hammered 10.4 -10.6 657

ShW, fresh-fallen 0.08 ~ 0.19 8

Sn^iw, wet, compact. . 0.24 -9.56 35

Soapstone, talc 2.6 - 2.8 169

Sodium . 0.97 - 0.98 60.7
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TABLE 16.—(Con/mt^cf)

Substance

Steel, cold-drawn.

Steel, machine . . .

.

Steel, tool

Sulphur

Tar

Tile

Tile, hollow

Tin, cast/-haminere(l

Trap rock, solid

Trap rock, crushed, piled

.

Tungsten
Turpentine

Water, 4°C., max density 8.345 lb per gal

Water, 100°C
*

Water, sea water

Wax, bees

Wheat, bulk

Wood, U. S. seasoned (moisture, 15 to 20 per cent)

:

Ash, white or red

Birch

Cedar, white or red

Cherry

Chestnut

Cypress

Elm, white

Fir, Douglas spruce

Hemlock
Hickory

Lignum vitae

Mahogany
Maple, hard

Oak, live

Oak, red or black

Oak, white

Pine, white

Pine, yellow, long-leaf

Specific

gravity

Average
weight,

lb per

cu ft

1.53 96

7.8 - 7.9 489.6

7.83 489

7.80 487
i 7.70 - 7.73 481

1.93 - 2.07 125

1.0 - 1 .20 63

1.80 - 1.85 116

0.42 - 0.72 40

7.2 - 7.5 457

2.8 - 3.2 187

110

18.7 -19.2 1183

0.861- 0.867 54

1.0 62.428

0.9584 59.830

1.02 - 1.03 64

0.95 - 0.98 60

48

0.62 - 0.75 44

0.51 - 0.74 40

0.35 - 0.65 35

0.67 - 0.73 ‘ 44

0.56 - 0.66 40

0.48 - 0.57 34

0.56 - 0.72 44

0.51 - 0.59 35

0.39 - 0.52 26

0.70 - 0.93 51

0.75 - 1.30 70

0.56 - 0.85 48

0.68 - 0.80 46

0.95 - 1.20 64

0.66 - 0.75 46

0.70 - 0.80 48

0.38 - 0.48 26

0.66 - 0.72 44
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TABLE 16.

—

(CotUimied)

Substance
Specific

gravity

Average

weight,

lb per

cu ft

Pine, yellow, short-leaf 0.55 - 0.62 38

Poplar 0.35 - 0.50 27

Redwood, California 0.42 26

Spruce, white 0.40 - 0.46 27

Walnut, black 0.61 - 0.70 40

Wool, compressed, in bales 0.78 48

Zinc, cast 6.9 - 7.05 432

Zinc, rolled 7.0 - 7.2 448
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TABLE 17.—WEIGHTS OF FLAT STEEL PER LINEAL FOOT
(Based on 489.6 lb per cu ft)

Thickness, in.

U 0.47 0.71

li 0.53 0.79

1| 0.58 0.87

li 0.63 0.95

1| 0.69 1.04

2.30 2.87 3.35 3.83

2.05 3.19 3.72 4.25

2.92 3.51 4.09 4.68

3.19 3.83 4.47 5.10

3.46 4.15 4.84 5.53

U 0.74 1.15

2 0.85 1.28

2i 0.96 1.44

2i 1.00 1.59

2\ 1.17 1.75

5.74 7.65 9.57

6.38 8.50 10.63

7.02 9.35 11.69

7.65 10.20 12.75

8.29 11.05 13.81

13.39 15.30

14.87 17.00

10.30 18.70

17.85 20.40

19.34 22.10

For weight of sheets of other metals:

Aluminum alloy, multiply above weights by 0.353.

Cast iron, multiply above weights by 0.92.

Copper, multiply above weights by 1.13.

Cast brass, multiply above weights by 1.07.

Lead, multiply above weights by 1.45.
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TABLE 18—WEIGHTS OF ROUND AND SQUARE STEEL
Pounds per lineal foot

fBased oa 489.6 lb per cu ft)

Size, in. Round Square Size, in. Round Square

A 0 . 094 0.L20 2H 23.04 29.34

A 0.128 0.163 3 24.03 30.60

i 0 . ir>7 0.213

3i 26.08 33.20

A 0.211 0.269 3A 27.13 34 . 55

A 0.261 0.332 3i 28.20 35.92

H 0.316 0 . 402 3i 30.42 38.73

i 0 . 376 0.478 3A 31 .56 40.18

H 0.441 0.561 3J 32.71 41.65

A 0.511 0.651

i 0 . 668 0.850 3| 35.09 44.68

3ii 36.31 46 . 24

A 0.845 1.076 31 37.56 47.82

J 1.043 1.328 3i 40 . 10 51 .05

H 1.262 1.607 3H 41.40 52.71

1 1 . 502 1.913 4 42.73 54.40

il 1 763 2.245

i 2.044 2.603 4i 45.44 57.85

2.347 2.989 4A 46.83 59.62

1 2.670 3 . 400 4i 48.24 61.41

41 51.11 65.08

lA 3.014 3.838 4A 52 . 58 66.95

n 3 . 379 4.303 45 54 . 07 68.85

1 A 3.766 4.795

li 4.173 6.312 4i 57.12 72.73

lA 4 . 600 5 . 857 4H 58 . 67 74.70

H 5.049 ! 6 . 428 4} 60 . 25 76.71

1 A 5.518 7.026 4i
{

63.46 80.81

U 6 . 008
!

7.650 4H 65.10 82.89

5 66.76 85.00

lA
i

6 . 520
1

8.301

l| 7.051 1 8.978 70.14 89.30

i

7.604 9.682 5A 71.86 91.49

U 8.178 10.41 6i 73 . 60 93.72

lil 8.773 11.17 77.15 98.23

.
U i

9 . 388 11.96 5A 78.95 100.5
10.02 12.76 80.77 102.8

H 84.49 107.6

2 10.68 13.60 5H 86.38 110.0

2i 12.06 15.35 Of 88.29 112.4

2A 12.78 16.27

2i 13.52 17.22 5i 92.17 117.4

2t 15.07 19.18 94.14 119.9

2A 15.86
j

20.20 6 96.14 122.4
16.69 21.25 65 112.8 143.6

7 130.9 166.6

2f 18.40 23.43 7J 150.2 191.3

2H 19.29 24.56 8 171.0 i 217.6

2i 20.20 25.71 85 193.0 1 245.6

2i 22.07 28.10 9 216.3
1

275.4
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TABLE 19.—PROPERTIES OF SELECTED
STANDARD ANGLES
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Y

TABLE 20.—PROPERTIES OF SELECTED
STANDARD I BEAMS

Dimensions Axis X - X Axis Y — Y

Depth

h
in.

Weight,

lb

per

ft

1 .

.2 «

o **

Width

of

flange,

b
in

Web

thickness

in.

Flange

thickness
Second

mo-
ment
I.,

in.<

-• r

m

Second

mo-
ment

7vf

in.

== r,

in.
Min.

/. in.

Max.

0* ill-

4 7.7 2.21 2.660 0.190
'

0.190 0.396 6.0 1.64 0.77 0.59

4 9.5 2.76 2.796 0.326 0.190 0.390 6.7 1.66 0.91 0.58

6 12.6 3.61 3.330 0.230 0.230 0.488 21.8 2.46 1.8 0.72

6 17.26 6.02 3.565 0.465 0.230 0.488 26.0 2.28 2.3 0.68

8 18.4 5.34 4.000 0.270 0.270 0.581 66.9 3.26 3.8 0.84

8 23 0 6.71 4.171 0.441 0.270 0 581 64.2 3.09 4.4 0.81

8 25.5 7.43 4.202 0.532 0.270 0.681 68.1 3.03 4.7 0.80

10 25.4 7.38 4.660 0.310 0.310 0.673 122.1 4.07 6.9 0.97

10 35.0 10.22 4.9 <5-

,

0.594 0.310 0.673 145.8 3.78 8.5 0.91

10 40.0 11.69 5.091 0.741 0.310 0.073 158.0 3.68 9.4 0.90

12 31.8 9.26 5.000 0.350 0.360 0.738 215.8 4.83 9.5 1.01

12 40.8 11.84 5.250 0.460 0.460 0.859 268.9 4.77 13.8 1.08

12 50.0 14.57 5.477 0.687 0.460 0.859 301 6 4.55 16.0 1.05
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h
in.
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f. r g^ U~. «« —

TABLE 21,--PI10PERTIES OF SELECTED
STANDARD CHANNELS

Flange

thickness

Min. Alax.

/. g.

6.23 2.619 0.579 0.220 0.560

4.47 2.600 0.240 0.240 0.633

Axis V - Y Axis X ~ X
0)

Second

mo-
ment
ly

in.^

=» r,

in.

Second

mo-
ment
7 a:,

in.

= r,

in.
Centroidal

distan<

y

in.

3.8 1 . 56 0.32 0.45 0.46

4.5 1.47 0.44 0.46 0.46

13.0 2.34 0.70 0.54 0.62

17.3 2.13 1.1 0.53 0.52

32 3 3.10 1.3 0.63 0 , 58

39.8 2.89 1 .8 0 61 0.56

47.6 2.77 2.2 0.60 0 59

66.9 3.87 2.3 0.72 0.64

90.7 ' 3.52 3 .

4

0 . 68 0 02

115.2 3.34 4.6 0.67 0.69

128.1 4.G1 3.9 0.81 0.70
161.2 4.28 5.2 0.77 0.63

196.5 4.09 6.6 0.75 0.72

TABLE 22.—MANILA-ROPE DRIVES

Diameter of Weight per Breaking Working
rope, in. foot, lb load, lb load, lb

1 0.13 2,900 78
3
4 0.18 4,200 112

i 0.26 5,700 153

1 0.33 7,500 200

U 0.45 9,400 253

11 0.50 11,700 312

1| 0.65 14,000 378

u 0.72 16,800 450

n 0.85 / 19,800

22,900

527

n 0.98 612

2 1.27 30,000 800
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TABLE 23.—WORKING LOADS OF STANDARD HO^^TING ROPE
Loads based on one-fifth of breaking strength

Diam-
eter, in.

!

Approxi-

mate
weight per

foot, lb

Working load, tons of 2000 lb

Iron
Cast

steel

Extra-

strong

cast steel

Plow'

steel

Im-

proved

plow steel

n 11.95 22.2 42.2 48.6 55.0 63.0

n 9.85 18.4 34.0 40.0 46.0 1 53.0

21 8.0 14.4 26.6 32.0 37.0
;

42.0

2 6.3 11.0 ! 21 .2 2f4.6 28.0 33.0

ii 5.55 10.0 19.0 22.4 25.0 30.0

II 4.85 8.8 17.0 19.8 22.0
i

27.0

If 4.15 7.6 14.4 16.6 19.0 22.0

3.55
1

6.6 12.8 14.6 16.0 20.0

If 3.0 5 .

6

11.2 12.8 14.0 17.0

11 2.45 4.50 9.4 10.6 1 12.0 14.0

li 2.0
1

3.72 7.6 8.6 9.4 11.0

1 1 .58 2.90 6.0 6.80 7.6 9.0

i 1.20 2.36 4.6 5.20 5.8 7.0

1 0.89 1.70 3.5 4.04 4.6 5.3

I 0 . 62 1.20 2.5 2.80 3.1 3.8

A 0.50 0.94 2.0 2.24 2.4. 2.9
I 0.39 0.78 1.68 1.84 2.0 2.4

I'fi
0.30 0.58 1.30 1.45 1.6 1.9

1 0.22
1

0.48 0.96 1.06 1.15 1.35

A 0.15
i

0.30 0.62 0.70 0.76 0.9

1 0.10 0.22 0.44 0.49 0.53 0 63
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TAB1.E 24,—POWER TRANSMITTED BY TURNED STEEL
SHAFTING*

Power transmitted by shaft in hp

Speed of shaft in rpm

100 150 200 250 300 350 400 450 500 550 600

3.7 5.6 7.5 9.4 11.2 13.

1

4.8 7.1 9.5 11.9 14.3 16.6

5.9 8.911.9 14.9 17,9 21.0

7.311.014.7 18.3 22.0 26.0

15 16.9 18.8 20.5 22

19 21.0 24.0 26.0 28

24 27.0 30.0 33,0 36

29 33.0 37.0 41.0 44

8.913.3 17.8 22.0 27.0 31.0

10.616.021.0 27.0 32.0 37.0

12.619.025.0 32.0 38.0 44.0

14.922.030.0 37.0 45.0 52.0

40.0 44.0 48.0 53

48.0 53.0 58.0 64

57.0 63.0 69.0 76

67.0 74.0 81.0 89

17.426.035.0 43.0 52.0 61.0 69 78.0 87.0 96.0 104

20.030.040.0 50.0 60.0 71.0 80 90.0100.0 110.0 120

23.035.046.0 58.0 69.0 81.0 92 104.0115.0125.0 138

26.040.053.0 66.0 79.0 92.0 105 119.0132.0145.0 158

30.045.060.0 75.0 90.0105.0 120 135.0150.0165.0 180

34.051.068.0 85.0102.0119.0 136 152.0 170.0187.0 203

38.057.076.0 95,0114.0134.0 153 172.0191.0 210.0 229

43.0 64,0 85.0107.0128.0150.0 171 192.0 213.0 234.0 256

3i 148. 0172. 0195. 01119. 01143. 01167. 01 190 1214. 01238. 0|262,0| 286

i From Marks' *' Mechanical Engineers’ Handbook/' 4th ed., McGraw-Hill Book Com-
pany, Inc., 1941.
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TABLE 26.—COEFFICIENTS OF STATIC FRICTION
(Average values)

Materials
CondL

Static friction

tions
f e

General:

Metals on oak dry 0.4 -0,6 26-3r
Wood on wood dry 0.25-0.5 14-26i°
Steel on steel dry 0.22 12r
Steel on bronze dry 0.19 ir
Steel on ice dry 0.027 ir

Building materials:

Stone or brick masonry on

mortar dry 0.70 35"

Stone or brick masonry on

mortar wet 0.30 16i"

Timber on stone dry 0.40 22"

Iron on masonry new dry 0.30 i6r
Iron on masonry rusted on 0.60 3r
Masonry on earth dry 0.65 33"

Masonry on earth wet 0.30 i6r

For friction wheels:

Leather fiber on iron dry 0.31

Safe working pres-

sure, pounds per

linear inch face

250

Tarred fiber on iron dry 0.15 250

Straw fiber on iron dry 0.25 150

Sulphite fiber on iron dry 0.33 140

Leather on iron dry 0.14 150

Cork composition, iix)n dry 0.21 50



'^80 ENGINEERING PROBLEMS MANUAL

TABLE 26.-^COEPPICIENTS OF SLIDING FRICTION
(A-verage values)

AI&t/Griflils Conditions

Sliding friction

/ 6

General:

Metals on oak dry 0.4-0.

6

26-31"

Metals on oak wet 0.24-0.26 13J-14"

Metals on oak soapy 0.2 nr
Metals on oak greased 0.05-0.08 3-4

Wood on wood dry 0.25-0.5 14-26i

Wood on wood soapy 0.2 nr
Leather on oak 0.27-0.35 15-19^'

Leather on metals dry 0.50 29r
Leather on metals wet 0.36 20"

Leather on metals greasy 0.23 13°

Leather on metals oily 0.15 sr
Steel on steel dry 0.15 sr
Steel on bronze dry 0.18 lor
Steel on ice dry 0.014 -0.02 r
Bronze on bronze dry 0.20 nr
Bronze on cast iron dry 0.21 12°

Cast iron on cast iron rough and dry 0.31 17°

. C’ast iron on cast iron machined, lu-

bricated

0.15 8r

Cast iron on wood rough and dry 0.49 26r^

Cast iron on wood machined, lu-

bricated

0.19 11°

Journal hearings:

Cast iron on bronze ordinary lubri-

cation

0.080 -0.260

Cast iron on bronze oil bath 0.0012-0.007

Worm gearing well greased 0.010 -0.10

For trains:

Cast-iron brakes on

steel tires 10 mph 0.18

steel tires 50 mph 0.098

Sleds^ wood runners

on stone surfaces dry 0.38 21°

on stone surfaces greased 0,11 6°
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TABLE 27.---RESISTANCE TO MOTION OF TRAINS, AUTOS, ETC.
(Average in still air)

Resistance,

Vehicle pounds,per

ton weight

Trains, starting 20

Train speed 5 niph 3

Train speed 10 mph 4

Train speed 20 mph O J

Train speed 30 mph 0

Train speed 40 mph Hi
Train spe(*d 50 rnph 13^

Train speed 00 mph
Autos, traction rcisistance:

Smooth asphalt or concrete pavement
Macadam or hard ro(‘k pavement

Good gravel, well-scraped roads

Poor, thick, gravel, sand roads

Dirt roads, medium condition, dry

Muddy roads, passable

Air resistance, in pounds, for autos = 0.003 A, where V =
speed in miles per he ^r and A = forward projecting area in

square feet. This is in addition to traction resistance.

Wagons and trucks:

.Asphalt road

iMacadam

Ordinary gravel

Dry dirt

16

20

30

50

75-125

60

250

30

34

38

50

TABLE 28.—FUNCTIONS AND LOGARITHMS OF t

Functions of x Logarithm

X = 3.141593 0.497150

0.25x « 0.785398 1 . 895090

X* - 9.869604 0.994300

1= 0.3183099 1,502850
X

- 1.772454 0.248575 ,
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TABLE 29.—DECIMALS OF AN INCH

Fractious of

an inch
Decimal value

Fractions of

an inch
Decimal value

A 0.015625 H 0.515625

A 0.03125 0.53125

A 0.046875 if 0.546875

A 0.0625 A 0.5625

A 0.078125 a 0.578125

A 0.09375 0.59375

A 0.109375 if 0.609375

. i 0.125 I 0.625

A 0.140625 a 0.640625

A 0.15625 a 0.65625

0.171875 n 0.671875

A 0.1875 0.6875

H 0.203125 if 0.703125

A 0.21875 0.71875

H 0.234375 if 0.734375

i 0.250 i 0.750

0.265625 a 0.765625

A 0.28125 H 0.78125

if 0.296875 H 0.796875

A 0.3125 H 0.8125

ii 0.328125 a 0.828125

H 0.34375 H 0.84375

H 0,359375 a 0.859375

i 0.375 i 0.875

« 0.390625 a 0.890625

H 0.40625 a 0.90625

H 0.421875 a 0.921875

A 0.4375 H 0.9375

if 0.453125 H 0.953125

H 0.46875 a 0.96875

if 0.484375 a 0.984375

i 0.500 1 1.000
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TABLE 30.—DECIMALS OF A FOOT

Decimal
of a foot

Itichea
Decimal
of a foot

Inches
Decimal
of a foot

Inches
Decimal
of a foot

Inches

0.0052 A 0.2552 3A 0.5052 6A 0.7552 9 A
0.0104 r 0.2604 3f 0.5104 6i 0.7604 9i

0.015625 0.265625 3A 0.515625 6A 0.765625 9A
0.0208 i 0.2708 3i 0.5208 6i 0.7708 9i
0 . 0260 A 0.2760 3A 0.5260 6A 0.7760 9A

0.03125 i 0.28125 3| 0.53125 6f 0.78125 9i
0.0365 A 0.2865 3A 0.5365 6 A 0.7865 9A
0.0417 i 0.2917 3i 0.5417 6i 0.7917 9i

0.046875 A 0.296875 3 A 0.546875 6 A 0.796875 9A
0.0521 0.3021 8| 0.5521 6| 0.8021
0 0573 H 0.3073 3H 0.5573 6H 0.8073 9H

0.0625 1 0.3125 3J 0,5625 6} 0.8125 9i
0.0677 H 0.3177 3H 0.5677 6H 0.8177 9H
0.0729 1 0.3229 3| 0.5729 6i 0.8229 9f

0.078125 H 0.328125 3H 0.578125 6H 0.828125 9H
0.0833 1 0.3333 4 0.5833 7 0.8333 10
0.0885 lA 0.3385 4A 0.5885 7A 0.8385 lOA

0.09375 li 0.34375 4t 0.59375 7i 0.84375 lOf
0.0990 1

A

0.3490 4A 0.5990 7A 0.8490 lOA
0.1042 U 0.3542 4i 0.6042 7i 0.8542 lOf

0.109375 lA 0.359375 4A 0.609375 7A 0.859375 10 A
0.1146 H 0.3646 4| 0.6146 7| 0.8646 lOf
0.1198 lA 0.3698 4A 0.6198 7A 0.8698 10A
0.1250 li 0.3750 4i 0.6250 7i 0.8750 lOi
0.1302 1

A

0 38^:2 4A 0.6302 7A 0 . 8802 10A
0.1354 If 0.3854 4f 0.6354 7| 0.8854 lOf

0.140625 IH 0.390625 4H 0.640625 7H 0.890625 lOH
0.1458 li 0.3958 n 0.6458 7} 0.8958 lOi
0.1510 Hi 0.4010 4H 0.6510 7H 0.9010 lOH

0.15625 n 0.40625 4i 0.65625 7i 0.90625
i

lOf
0.1615 Hi 0.4115 4rt 0.6615 7H 0.9115 1 10 H
0.1667 2 0.4167 5 0.6667 8 0.9167 11

0.171875 2A 0.421875 5A 0.671875 8A 0.921875 iiA
0.1771 2i 0.4271 5f 0.6771 8i 0.9271 11*
0.1823 2A 0.4323 5A 0.6823 8 A 0.9323 iiA

0.1875 2i 0.4375 5i 0.6875 8i 0.9375 11*
0.1927 2A 0.4427 6A 0.6927 8A 0.9427 iiA
0.1979 2| 0.4479 51 0.6979 81 0.9479 Ilf

0.203125 2A 0.453125 5A 0.703125 8A 0.953125 llA
0.2083 2i 0.4583 51 0.7083 8i 0.9583 11*
0.2135 2A 0.4635 6A 0.7135 8A 0.9635 iiA

0.21875 2f 0.48875 5| 0.71875 8f 0.96875 111
0.2240 2H 0.4740 5H 0.7240 8H 0.9740 llH
0.2292 21 0.4792 5i 0.7292 8i 0.9792 m
0.234375 2a 0.484375 5H 0.734375 8H 0.984375 llH
0.2396 21 0.4896 0.7396 0.9896 Hi
0.2448 2H 0.4948 5« 0.7448 9H 0.9948 llH

0.2500 3 0.5000 6 0.7500 9 1.0000 12



384 ENGINEERING PROBLEMS MANUAL

TABLE 31.—FUNCTIONS OF NUMBERS
- Squares, cubes, square roots^ cube roots, and reciprocals.

; Circumferences and areas of circles when number is the diameter.

No. Square Cube Sq Root

1 1 1 1.0000
2 4 8 1.4142
3 9 27 1.7321
4 16 64 2.0000
5 25 125 2.2361

6 36 216 2.4495
7 49 343 2.6458
8 64 512 2.8284
9 81 729 3.0000
10 100 1,000 3.1623

11 121 1,331 3.3166
12 144 1,728 3.4641
13 169 2,197 3.6056
14 196 2.744 3.7417
15, 225 3,375 3.8730

16 256 4,096 4.0000
17 289 4,913 4.1231
18 324 5,832 4.2426
19 361 6.859 4.3589
20 400 8,000 4.4721

21 441 9,261 4.5826
22 484 10,648 4.6904
23 529 12,167 4.7958
24 576 13,824 4.8990
25 625 15,625 5.0000

26 670 17,676 5.0990
27 729 19,683 5.1962
28 784 21,952 5.2915
29 841 24,389 5.3852
30 900 27,000 5.4772

31 961 29,791 5.5678
32 1,024 32,768 5.6569
83 1,089 35,937 5.7446
34 1,156 39,304 5.8310
35 1,225 42,875 5.9161

36 1,296 46,656 6.0000
37 1,369 50,653 6.0828
38 1,444 54,872 6.1644
39 1,521 59,319 6.2450
40 1,600 64,000 6.3246

41 1,681 68,921 6.4031
42 1,764 74,088 6.4807
43 1,849 79,507 6.5574
44 1,936 85,184 6.6332
45 2,025 91,125 6.7082

46 2,110 97,336 6.7823
47 2,209 103,823 6.8557
48 2,304 110,592 6.9282
49 2,401 117,649 7.0000

^ 2,500 125,000 7.0711

51 2,601 132,651 7.1414
52 2,704 140,608 7.2111
53 2,809 148,877 7.2801
54 2,916 157,464 7.34$5
55 8,025 166,376 7.4162

Cu Root Reciprocal Circum Area

1.0000 1.000000000 3.1416 0 . 7854
1 . 2,599 0.500000000 6.2832 3.1416
1.4422 0.333333333 9.4248 7.0686
1.5874 0.250000000 12.5004 12.5664
1.7100 0.200000000 15.7080 19.635

1.8171 0. 166666667 18.850 28 274
1.9129 0.142857143 21 .991 38 . 485
2.0000 0.125000000 25.133 50 . 266
2.0801 0.111111111 28 . 274 63 617
2.1544 0.100000000 31.416 78.640

2.2240 0.000909091 34.558 95 . 033
2.2894 0.083333333 37 . 699 113.10
2.3513 0 . 076923077 40.841 132 73
2.4101 0.071428571 43.982 153.94
2.4662 0.066666667 47.124 176.71

2.5198 0.062500000 50.265 201 . 06
2.5713 0 . 058823529 53 . 407 226.98
2.6207 0.055555556 56 . 549 254 . 47
2.6684 0.052631579 59 . 690 283 . 53
2.7144 0.050000000 62 . 832 314.16

2.7589 0.047619048 65.973 340.36
2.8020 0.045454545 69.115

1

380. 13
2.8439 0.043478261 72 . 257 415.48
2.8845 0.041666667 75.398 452 . 39
2.9240 0.040000000 78.540 490 . 87

2.9625 0.038461538 81.681 530 . 93
3.0000 0 . 037037037 84.823 572 . 56
3 . 0360 0.035714286 87.065 615 75
3.0723 0.034482759 91.106 660 52
3.1072 0.033333333 94.248 706.86

3.1414 0.032258065 97.389
1

754.77
3 . 1748 0.031250000 100.63 8:)4 . 25
3 . 2075 0.030303030 103.67 855,30
3 . 2396 0.029411765 106.81 907.92
3.2711 0.028571429 109.96 962 . 1

1

3.3019 0.027777778 113.10 1,017.88
3.3322 0.027027027 116.24 1,075.21
3 . 3620 0.026316789 119.38 1,134.11
3.3912 0.025641026 122.52 1,194.59
3.4200 0.025000000 125.66 1,256.64

3.4482 0.024390244 128.81 1,320.25
3.4760 0.023809525 131.95 1,385.44
3 . 5034 0.023255814 135.09 1,462.20
3 . 5803 0.022727273 138.23 1,520.63
3.5569 0.022222222 141.37 1,590.43

3.5830 0.021739130 144.51 1,661.90
3.6088 0.021276600 147.65 1,734.94
3.6342 0.020833333 150.80 1,809.56
8.6593 0.020408163 153.94 1,885.74
3.6840 0.020000000 157.08 1,963.50,

3.7084 0.019607843 160 . 22 2,042.82
3.7325 0.019230769 163.36 2,123.72
3.7563 0.018867925 166.50 2,206,18
3.7798 0.018518519 169.65 2.290.22
3.8030 0.018181818 172.79 2,«76.83

,
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TABLE 31.

—

’{Continued)

No. Square Cube 8q Root Cu Root Reciprocal Ciroum Area

56 3,136 175,616 7.4835t 3.8259 0.017857143 17.5.93 2,463.01
57 3,249 185, 193 7 . 549^\ 3 . 8485 0.0175438601 179 07 2..551 .76
58 3,364 195,112 7.015^1 3.8709 0.017241379 182,21 2,642.08
59 3 , 481 205 . 379 7.081J 3.8930 0.016949153 185 . 35 2,733.97
60 3,600 216,000 7 . 746(11 3.9149 0.016060GC7 188.50 2,827.43

61 3,721 226,981 7.81021 3.9366 0.016393443 191.64 2,922.47
62 3,844 2.38 , 328 7 . 874{J1 3 . 9579 0.016129032 194.78 3,019.07
63 3,969 2.50,047 7 . 9373 3.9791 0.015873016 197.92 3,117.25
64 4 , 0<J6 262.144 8.0()001 4.0000 0.01,562.5000 201.06^ 3,216.99
65 4 , 225 274 , 625 8.0623 4.0207 0.015384615 204 , 20 3,318.31

66 4,356 287 , 490 8.1240 4 0412 0.01515151.5 207 . 34 3,421.19
67 4,489 300,763 8.1854 4.0615 0.014925373 210.49 3 , 525 . 65
68 4,624 314,432 8.2462 4.0817 0.01470.5882 213.()3 3,631.68
69 4,761 328,509 8.3066 4.1016 0.014492754 216.77 3 , 739 . 28
70 4,900 343 , 000 8 . 3666 4.1213 0.014285714 219.91 3,848.45

71 5,041 357,911 8.4261 4.1408 0.014084517 223 . 05 3,959 19
72 5, 184 373 , 248 8 . 4853 4.1602 0.013888880 226.19 4,071.50
73 5 , 329 389.017 8.5440 4.1793 0.013608630 229 . 34 4,185.39
74 5,476 405 . 224 8.0023 4.1983 0.013513514 232.48 4,300.84
75 5 , 625 421,875 8.6603 4.2172 0.013333333 235 . 62 4,417.86

76 5,770 438,976 8.7178 4.2368 0.013157895 238 76 4,536.46
77 5,929

)

456 . 533 8 7750 4.2.543 0 01208701.3 241.90 4,656 63
78 () , 084 474 . 552 8.8318 4.2727 0.012820513 215.04 4,778, 36
79 6.241 493,039 8 . 8882 4.2908

,

0.012658228 248 19 4,901.07
80 6.400 512,000 8.9443 4.3089 0.012500000 251.33 5,026.55

81 6,561 531,441 9.0000 4 3267 O.OJ 2345670 254 . 47 5, 153.00
82 6 . 724 551,368 9.0554 4.3445 0.012195122 257.61 5,281 02
83 6,880 571,787 9.1104 4.3621 0.012048193 260.75 5,410.61
84 7.056 592, i 04 9.1652 4.3795 0.011904702 263 . 89 5 , 54 1 . 77
85 7 , 225 614,125 9.2195 4.3968 0.0117G4706 267 . 04 5,074.50

86 7,396 636 , 056 9 . 2736 4.4140 0.011627907 270 18 5,808.80
87 7..569 658, 503 9 3274 4.4310 0.0114942.53 273 32 5 , 944 . 68
88 7,744 681,472 9 . 3808 4.4480 0.0 11 363636 276.46 6.082.12
89 7,921 704 . 969 9 . 4340 4.4047 0.01123.5055 279 . 00 6,221.14
90 8,100 729,000 9.4868 4.4814 o.oiiiuin 282.74 6,361.73

91 8,281 753,571 9.5394 4.4979 0.010989011 285 88 6,503.88
92 8,464 778,688 9.5917 4.5144 0.010809565 289.03 6,047.61
93 8 . 649 804 . 357 9.6437 4 . 5307 0.010752688 292.17 6,792.91
94 8 . 836 830,.584 9 . 6951 4.5468 0.010638298 295 31 0.9.39.78
95 9,025 857,375 9.7468 4.5629 0.010526310 298.45 7,088 22

06 9,216 884,736 9.7980 4.5789 0.010416667 301..59 7.238 23
97 9,409 912,673 9.8489 4.5947 0.010309278 304 . 73 7,389.81
98 9,604 941,192 9.8995 4.6104 0.010204082 307 . 88 7 , 542 . 96
99 9,801 970,299 9.9409 4.6261 O.OlOlOlOlO 311.02 7,697. (59

100 10,000 1,000,000 10.0000 4.6416 0.010000000 314.16 7,853 98

101 10,201 1,030,301 10.0499 4.6570 0.009900990 317.30 8,011.85
102 10,404 I ,061 ,208 10.0995 4.6723 0.009803922 320.44 8,171.28
103 10,609 1,092,727 10. 1489 4.6875 0.009708738 323.58 8,332.29
104 10,816 1,124,864 10. 1980 4 . 7027 0.009615385 326.73 8,494.87
105 11,025 1,157,62.5 10.2470 4.7177 0.009523810 329 . 87 8,659.01

106 11,2.36 1,191,016 10.29,56 4.7326 10.009433962 3.33.01 8,824.73
107 11,449 1,225,043 10.3441 4.7475 10.009345794 330.15 8,992.02
108 11,664 1,259,712 10.3923 4.7622 10.009259259 339 . 29 9,160.88
109 11,881 1,295,029 10.4403 4.7769 10.009174312 342 . 43 9,331.32
110 12,100 1,331,000 10.4881 4 7914 10.009090909 345.58 9,503. 32

111 12,321 1,307,631 10.6367 4.8059 10.009009009 348.72 9,676.89
112 12,544 1,494,928 10.6830 4.8203 i0.00892S571 351.86 9,852.03
113 12,769 1,442,897 10.0301 4.8346 10.008849558 355.00 10,028.76
114 12,996 1,481,544 10.6771 4.8488 10.008771930 358.14 10,207.03
115 13,225 1,620,875 10.723S 4.8629 10.008695652 361.28 10,386.89
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TABLE 31.

—

(Continued)

So. Square Cube 8q Root Cu Root Reciprocal Ciroum Area

116 13,456 1,660,896 10.7703 4.8770 0.008620690 364 . 42 10,568.32
117 13,689 1,001,613 10.8167 4.8910 0.008547009 367 . 57 10,751.32
118 13,924 1,643,032 10.8028 4.9049 0.008474576 370.71 10,935.88
119 14, 161 1,685.159 10.9087 4.9187 0.008403361 373.85 11,122.02
120 14,400 1,728,000 10.9545 4.9324 0.008333333 376.99 11,309.73

121 14,641 1,771,561 11.0000 4.9461 0.008264463 380.13 11,409.01
122 14 , 884 1,815,848 11.0454 4.9.597 0.008196721 383 . 27 11,689.87
123 15,129 1.860,867 11.0905 4.9732 0.008130081 386.42 11,882. 29
124 15,376 1,906,624 1 1 . 1355 4.9866 0.008064516 389 . 56 12,076.28
125 15,625 1,953,125 1 1 . 1803 5.0000 0.008000000 392 . 70 12,271.85

126 15,876 2,000,370 11.2250 5.0133 0.007936508 395.84 12,468.98
127 16, 129 2,048.383 11.2094 5.0265 0.007874016 398.98 12,667.69
128 16.384 2,097,152 11.3137 5.0397 0.007812500 402 12 12,867.96
129 16,641 2,146,689 1 1 . 3578 5.0.528 0.007751938 405 . 27 13,069.81
130 10,900 2, 197,000 11.4018 5.0658 0.007692308 408.41 13,273 23

131 17,161 2,248,091 1 1 . 4455 5.0788 : 0.007633588 411.55 13,478.22
132 17,424 2,299,968 11.4891 5.0916 0.007575758! 414 69 13,684.78
133 17.689 2,352,037 1 1 . 5326 5.1045 0.007518797 417.83 13,892 91
134 17,956 2,406, 104 1 1 . 5758 5.1172 0.007402087 420 97 14,102.61
135 18,225 2,460,375 11.6190 5.1299 0.007407407 424. 12 14,313.88

130 18,496 2,515,456 1 11.66191 5.1426 0.007352941 427.26 14,526.72
137 18,769 2,571,353

1

1 1 . 7047 5.1551 0.007299270 430.40 14,741 . 14
138 19,044 2,628.072 11 7473 5.1676 0.007216377 433 . 54 14,957. 12
139 19,321 2,685,619 1 1 . 7898 5.1801 0.007194245 436 . 68 15,174.68
340 19,600 2,744,000 11.8322 5.1925 0.007142857 439.82 15,393.80

141 19,881 2,803,221 11.8743 5 . 2048 0.007092199 ' 442.96 15,614.50
142 20,164 2 , 86.3 . 288 11 .9164 5.2171 0.007042254 440 . 1

1

15 , 830 . 77
143 i 20.449 2,924,207 11.9583 5 . 2293 0.000993007 449 . 25 16,060.61
144

1

20,736 2.985,984 12.0000 5 2415 ().0:W944444 452.39 16.286.02
145

j

21 ,025 3.048,025 12.0416 5.2536 0.000896552 455.53 10,513.00

146 21,316 3,112,136 12.0830 5.2656 0.006849315 458 . 67 16,741.55
147 21,609 3,176,523 12 1244 5.2776 0.006802721 461.81 16,971 67
148 21 ,904 3,241,792 12.1055 5.2896 0.006756757 404.90 17,203 36
149 22,201 3 , 307 . 949 12.2066 5.3015 0.00G711409 468.10 17,436.62
150 22,500 3,375,000 12.2474 5.3133 0.006066667 471.24 17,671.46

151 22,801 3,442,951 12.2882 5.3251 0.006622517 474.38 17,907.86
152 23 , 104 3,511,008 12.3288 5 3368 0.000,578947 477 . 52 18, 145.84
153 23 , 409 3, 581,.577 12.3693 5 . 3485 0.000535948 480.66 18,385.39
154 23,716 3,652,264 12.4097 5.3601 0.006493506 483.81 18,626 50
155 24,025 3,723,875 12.4499 5.3717 0.006451613 486.95 18,869.19

156 24 , 336 3,796,416 12.4900 5.3832 0.006410256 490.09 19,113.45
157 24,649 3,809,893 12.5300 5.3947 0.00G369427 493.23 19 , 359 . 28
158 24,964 3,944,312 12.5698 5.4061 0.006329114 496 . 37 19,606.68
159 25,281 4,019,679 12.6095 5.4175 0.006289308 499.51 19,855.65
160 25,600 4,096,000

j

12.6491 5.4288 O.OOG250000 502.65 20,106.19

161 25,921 4,173,281 12.6886 5.4401 0.006211180 505.80 20,358.31
162 26 , 244 4,251,528 12.7279 5.4514 0.006172840 508.94 20,611,99
163 26,569 4,330,747 12.7671 5.4626 0.006134969 512.08 20,867.24
164 26,896 4,410,944 12.8062 5.4737« 0.006097561 515.22 21,124.07
165 27,225 4,492,125 12.8452 5.4848 0.006060606 618.36 21,382.46

166 27,556 4,574,296 12.8841 5.4959 0.006024096 521.50 21,642.43
167 27,889 4,657,463 12.9228 5.5069 0.005988024 524.65 21,903.97
168 i 28,224 4,741,032 12.9615 5.5178 0.005952381 527.79 22,167.08
169 ! 28,561 4,826,809 13.0000 5.5288 0.005917160 530.93 22,431.76
170

j

28.900 4,913,000 13.0384 5.5397 0.005882353 634.07 22,698.01

171 29,241 5,000,211 13.0767 5.5505 0.005847953 537.21 22,965.83
172 29,584 5,088,448 13.1149 5.5613 0.005813953 540.35 23,235.22
173 29,929 5.177,717 13.1529 5.5721 0.005780347 543.50 23,506.18
174 30,276 6,268,024 13.1909 5.5828 0.005747126 546.64 23,778.71
175 30,626 6,359,375 13.2288 5.5934

1

0.005714286 549.78 24,052.82
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TABLE 3L—

No. Square Cube Sq Root Cu Root Reciprocal Circura Area

176 30,976 5,451.776 13.2665 5.0041 0.005681818 552 . 92 24,328.49
177 31,329 5,.545, 233 13.3041 5.6147 0.005649718 656 . 06 24,605.74
178 31,684 5.639,752 13 3417 5.6252 0.005617978 559 . 20 24 , 884 . 56
179 32,041 5 , 735 . 339 13.3791 5.6357 0.005586.592 562 . 35 25,164.94
180 32,400 5.832.000 13.4164 5.6402 0.005555556 565.49 25,446.90

181 32,761 5,929,741 13.45.36 5.6567 0.005524862 568.63 25 ,*730. 43
182 33,124 6 , 028 , 568 13.4907 5.6671 0.00.^94505 571.77 26,015.53
183 33 , 489 6, 128,487 13.5277 5.6774 0.005464481 574.91 20 , 302 . 20
184 33 , 856 6.229,504 13.5647 5.6877 0.005434783 578.05 2(J,590 44
185 34,225 6,331,625 13.0015 5.6980 0.005405405 581.19 20,880.25

186 34 , 596 6,434,8.56 13.6382 5.7083 0.005376344 .584.34 27,171.63
187 34 , 969 6,539,203 J 3. 6748 5.7185 0.005347594 587 . 48 27 . 464 . 59
188 35,344 6,644,672 13.7113 5.7287 0.005319149 .590.62 27,759.11
189 35,721 0,751,269 13.7477 5.7388 0.005291005 .593 . 76 28,055.21
190 36,100 6,859,000 13.7840 5.7489 0.(X)5263158 590.90 28 . 352 . 87

191 36,481 6,967,871 13 8203 5.7590 0.00523.5602 600.04 28,652.11
192 36,804 7,077,888 ! 13.8564 5.7690 0.005208333 603 . 19 28,952.92
193 37,249 7, 189,017 13.8924 5.7790 0.005181847 600 . 33 29 . 255 . 30
194 37,636 1 7,301,384 13.9284 5.7890 0.005154639 609.47 29 , 559 . 25
195 38,025

;

7.414,875 13.9642 5.7989 0.005128205 612.61 29,864.77

190 38,416 7,529,536 14.0000 5.8088 0.005102041 615.75 30,171.86
197 38 , 809 7,645,373 14.0357 5.8180 0.005070142 618.89 30,480.52
198 39 . 204 7.762,392 14.0712 5.8285 0.005050505 622 . 04 30.790.75
199 39,001 7,880,599 14.1007 5.8383 0.00502.5126 62.5. 18 31,102.55
200 40,000 8,000,000 14.1421' 5.8480 0.005000000 028.32 31,415.93

201 40,401 8, 120,001 14. 1774 5.8578 0.004975124 631.46 31,730.87
202 40,804 8,242,408 14.2127 5.8075 0.004950495 034 . 60 32,047.39
203 41,209 8,365. 127 14.2478 5.8771 0.004926108 637 74 32.365.47
204 41,016 i 8.480,664 14.2829 5.8808 0.004901961 640.88 32,685.13
205 42 , 025 8,615,125 14.3178 5.8964 0.004878049 644.03 33,006.36

206 42 , 436 8,741,816 14.3527 5.9059 0.004854309 647.17 33,329.16
207 42 , 849 8,809.743 1 4 . 3875 5.9155 0.00483;)918 650.31 33,653.53
208 43 , 204 8,998,912 14.4222 5.9250 0.004807692 653 . 45 33,979.47
209 43; 681 9 , 1 29 , 329 14.4568 5.9345 0.004784689 6.56..59 34,306.98
210 44,100 9,261,000 14.4914 5.9439 0.004761905 659.73 34,630.06

211 44,521 9,393.931 14.5258 5.9533 0.004739336 662.88
i

34,966.71
212 44,944 9,528, 128 14.5602 5.9627 0.004716981 666.02 36,298.94
213 45,369 9 . 663 , 597 14.5945 5.9721 0.004694836 669 16 35.632.73
214 45,796 9,800.344 14.6287 5.9814 0.004672897 672 . 30

1

35,968.09
215 46,225 9 , 938 . 375 14.6629 5.9907 0.004651163 675.44 36,305.03

216 46,656 10,077,696 14.6969 6.0000 0.004629030 678.58 36,643.54
217 47,089 10,2lS,3l3 14.7309 6.0092 0.004608295 681.73 36,983.61
218 47 , 524 10,360,232 14,7648

1

6.0185 0.004587156 684.87
1

37.325.26
219 47,961 10,503.459 14.7986 6.0277 10.004566210 688.01 ! 37,068.48
220 48,400 10,648,000 14.8324 G.0368 0,004545455 691.15 38,013.27

221 48,841 10,793,861 14.8661 6.0459 0 . 004524887 694 . 29 38,3.59.63
222 49,284 10,941,048 14 8997 6.0550 0.004504505 697.43 38,707.50
223 49,729 11,089,567 14.9332 6.0641 0.004484305 700.58 39,057.07
224 50,176 11,239,424 14.9666 6.0732 0.004464286 703 . 72 39,408.14
225 50,625 11,390,625 15.0000 6.0822 0.004444444 706.86 39,760.78

226 51,076 11,543,176 15.0333 6.0912 0.004424779 710.00 40,115.00
227 51,529 11,697,083 15.0665 6.1002 0.004405286 713.14 40,470.78
228 51,984 11,852,352 15.0997 6.1091 0.004385965 716.28 40,828.14
229 52,441 12,008.989 15.1327 6.1180 0.0v04366812 719.42 41,187.07
230 52,900 12,167,000 15.1658 6.1269 0.004347826 722.57 41,547.50

231 53,361 12,326.391 15.1987 6.1368 0.004329004 726.71 41,909.63
232 53,824 12,487,108 15.2315 6.1446 0.004310345 728.85 42.273.27
233 54,289 12,649,337 15.2643 6.1534 0.004291845 731.99 42,638.48
234 64,756 12,812,904 15.2971 6.1822 0.004273504 735.13 43,005.26
235 66,226 12,977,876 15.3297 6.1710

1

0.004255319
1

738.27 43,373.61
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236 55 . 696 13,144,256 15.3623 6.1797 0,004237288 741.42 43,743 54
237 56.169 13.312,053 15.3948 6.1885 0.004219409 744.56 44,115.03
238 56 , 644 13,481,272 15.4272 6.1672 0 004201681 747.70 44,488.09
239 57,121 13,651,919 15.4596 6.2058 0.004184100 750 . 84 44 , 862 . 73
240 57,600 13,824,000 15.4919 6.2145 0.004166607 753 . 98 45,238 93

241 58,081 13,997.521 15.5242 6.2231 0.004149378 757.12 45,616.71
242 58,564 14.172,488 15.5563 6.2317 0 004132231 760.27 45,996.06
243 59,049 14,348,907 15.5885 6.2403 0 004115226 763.41 46,376.98
244 59 . 536 14 . 526 . 784 15 . 6205 6.2488 0.004098361 766 . 55 46,759.47
245 60 , 025 14,706,125 15.6525 6.2573 0.004081633 769 . 69 47,143.52

246 60,516 14,880,936 35.6844 6.2658 0.004065041 772.83 47,529.16
247 61,009 15,069,223 15.7162 6.2743 0 004048583 775.97 47 916.30
248 61.504 15.252,902 15 7480 6 2828 0.004032258 779.12 48,305.13
249 62,001 15,438,249 15.7797 6.2912 0.004016064 782 . 26 48,695.47
260 62 , 500 15 , 625 , 000 15.8114 6 . 2996 0.004000000 785.40 49,087.39

251 63,001 15,813,251 15.8430 6 . 3080 0.003984064 788.54 49,480.87
252 63 . 504 16,003.008 15.8745 6.3164 0 . 003968254 791.68 49 , 875 . 92
253 64,009 16.194.277 15.9060 0 3247 0 003952569 794.82 .50,272.55
254 64,516 16,387,064 15.9374 6 . 3330 0 . 003937008 797 . 96 50,670.75
255 65,025 16,581 ,375 15.9687 6.34 13 0.003921569 801.11 51,070.52

256 65 , 536 16,777.216 16.0000 6.3496 0.003906250 804 . 25 51,471 85
257 66.049 10 , 974 . 593 16.0312 6 . 3579 0.003891051 807.39 51,874.76
258 66 , 564 17,173,512 16 0624 6.3061 0.003875969 810.53 52 , 279 . 24
259 67,081 17,373,979 16.0935 6.3743 0. 003861004 813.67 52 , 685 . 29
260 67,600 17,576.000 16.1245 6 3825 0.003846154 816.81

i

53,092.92

261 68,121 17.779,581 16.1555; 6.3907 0.003831418 819.96 53 ,502.11
262 68,644 17,984,728 16 1864 6.3988 0 003816794 823.10 53,912.87
263 69,169 18, 191 .447 16.2173 6.4070 0 003802281 826 . 24 54,325 21
264 69,696 18.399,744 16.2481 6.4151 0.0037878791 829 . 38 54,739.11
265 70,225 18,609,625 16.2788 6.4232 0.003773585 832.52 55 , 154 . 59

266 70,756 18,821,0f)6
!
16 3095 6.4312 0.003759398 835 66 55,571.63

267 71,289 19,034,163
1

16.3401 6.4393 0.003745318 838.81 55,990.25
268 71,824 19,248,832 1 16 . 3707 6.4473 0.003731343 841 .95

1

56,410.44
269

!
72,361 19,465,109 16 4012 6 . 4553 (0.003717472 845 . 09 56,832.20

270 72.900 19,083,000
]

16.4317 6.4633 0.003703704 848.23 57,255.53

271 73,411 19,902,511 16.4621 6.4713 io. 003690037 851.37 57,680.43
272 73,984 20,123,648 16 4924 6.4792 10.003676471 854.51 58,106 90
273 74,529 20,346,417 16.5227 6.4872 0.003663004 857 . 65

1

58,534.94
274 75,070 20,570,824 16.5529 6.4951 0.003049635 860.80 58.964.55
275 75,625 20,796,875 16.5831 6 . 5030 0.003636364 863.94 59,395.74

276 76, 176 21,024,576 16.6132 6.5108 0.003023188 867.08 i 59,828.49
277 76 , 729 21,253,933 16.6433 6.5187 0.003610108 870.22 60,262.82
278 77 . 284 21,484,952 16.6733 6.5265 0.003597122 873 . 36 00,698.71
279 77,841 21,717,639 16.7033 6 . 5343 0.003584229 876 . 50 61,136.18
280 78,400 21,952,000 16.7332 6.5421 0.003571429 879.65 61,575.22

281 78,961 22,188,041 16.7631 6.5499 0.003558719 882 . 79 62,015.82
282 79 , 524 22,425,768 1 16.7929 6.5577 0 . 003546099 885.93 62,458.00
283 80,089 22,665,187 16.8226 6.5654 0.003533569 889.07 62,901.75
284 80,656 22,906,304 16.8523 6.5731 0.003522127 892.21 63,347.07
285 81,225 23,149,125 16.8819 6.5808 0.003508772 895.36 63,793.97

286 81,796 23,393,656 16.9115 6.5885 0.003496503 898.50 64,242.43
287 82 , 369 23,639,903 16.9411 6.5962 0.003484321 901.64 64,692.40
288 82,944 23,887,872 16.9706 6.6039 0.003472222 904.78 65,144.07
289 83,521 24,137,569 17.0000 6.6115 0.003460208 907.92 65,597.24
290 84,100 24,389,000 17.0294 6.6191 0.003448276 911.06 66,051.99

291 84,681 24,642,371 17.0587 6.6267 0.003436426 914.20 66,508.30
292 86,264 24,897,088 17.0880 6.6343 0.003424658 917.35 66,966,19
293 85,849 25,153,757 17.1179 6.6419 0.003412969 920.49 67,425.65
294 86,436 25,412,184 17 . 1464 6.6494 0.003401361 923.63 67,886.68
296 87,026 26,672,376 17.1756 6.6569 0.003389831 926.77 68,340.28
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296 87,616 25 , 934 , 336 17.2047 6.6644 0.00,3378378 929.91 68,813.45
297 88,209 26,198,073 17.2337 6.6719 0.0033G7(X)3 933.06 69,279.19
298 88.804 26.463,592 17.2627 6.6794 0.003355705 9,36. 19 69,746.50
299 89,401 26,730,81H) 17.2916 6.6869 0.003344482 939.34 70,215.38
.300 90,000 27,000,000 17.3205 6.6943 0.00333,333,3 942.48 70,685.8,3

301 90,601 27,270,901 17.3494 6.7018 0.0033222,59 945.62 71.157.86
302 91,204 27 , 543 , 008 17.,3781 6.7092 0.0033112.58 948.76 71,631.45
303 91 , 809 27.818,127 17.4069 6.7166 0.003301,330 951.90 72,106.62
304 92,416 28,094,464 17.4356 6.7240 0.003289474 955 04 72 ,

.583 . 36
305 93,025 28,372,625 17.4642 6.7313 0 . 003278689 958 . 19 73,061.66

306 93 , 636 28,652,616 17.4929 6.7387 0.003267974 961.,33 73,541.54
307 94,249 28,934,443 17.,521

4

6 7460 0 0032.57320 964.47 74,022.99
308 94 , 864 29,218,112 17.5499 6.7,5,33 0 . 0032467.53 967.61 74,506.01
309 95,481 29,.503, 629 17.5784 6.7606 0.003236246 970.75 74,990.60
310 96,100 29,791,000 17.6068 6.7079 0 . 003225806 973.89 75,476.76

311 96,721 30,080,231 17.63,52 6.7752 0.00321,5434 977.04 75,964.60
312 97,344 30,371 ,328 17.6635 6.7824 0.003205128 980.18 76,453.80
313 97 , 909 30,664,297 17.6918 6.7897 0.003194888 983 . 32 76,944.67
314 98 , 596 30 , 959 , 1 44 1 7 . 7200 6.7069 0.003184713 986 . 46 77,437.12
315 99 , 225 31 ,2.55,875 17.7482 6.8041 0.003174603 989 . GO 77,931.13

316 99,856 31,5.54,496 17.7764 6.8113 0.003164,5,57 992.74 78,426.72
317 100,489 31,855,013 17.8045 6.8185 0 00,3154574 995 88 78,923 88
318 101,124 32,157,432 17.8326 6 . 8256 0.0031446,54 999 . 03 79,422.00
319 101,761 32,461 ,7.59

1

17.8606 6 . 8328 0.0031,34796 1,002 17 79,922.90
320 102 , 400 32,768,000

1

17.8885 6.8399 0.00312,5000 1,005.31 80,424.77

321 103,041 33,076, 101 17.9165 6.8470 0.00311.5265 1,008.45 80,928.21
322 103,084 33,380,248 17.9444 6.8,541 0.00,3105.500 1 ,011 .,59 81,433.22
323 104,329 .33,098.267 17 9722 6.8612 0 . 00.3095975 1 ,014.73 81,939. 80
324 104,976 34,012,224 18.0000 6.8683 0 . 00.3086420 1,017.88 82,447.96
325 105,025 34,328,125 18 0278 6.8753 0.(X)3076923 1,021.02 82,957.68

326 100,276 .34,045.976 18 0,5.55 0.8824 0.00,3067485 1,024 16 8.3,468 98
327 106,929 34,965,783 18.0831 6 . 8894 0 003058104 1 ,027.30 83,981.84
328 107 , 584 35,287,552 18 1108 0.8904 0.003048780 1 , 030 . 44 84,496.28
329 108,241 35,61 1,289 18.1,384 6 . 9034 0.00,3039514 1 , 033 . 58 85,012.28
330 108,900 35,937,000 18. 1659 0.9104 0.003030303 1,036.73 85 , 529 . 86

331 109,.561 36,204,091 18 1934 6.9174 0.00,3021148 1,039. 87 86,049.01
332 110,224 36.,594, 368 18.2209 6.9241 0.003012048 1,043.01 86 , .569 . 73
333 110,889 36,926,0.37 18.2483 6.9313 0.00,3003003 1,046.15 87,092.02
334 111,556 37,2.59,704 18.27,57 6.9,382 0.002994012 1 , 049 . 29 87.615.88
335 112,225 37,595,375 18.3030 6.94,51 0.002985075 1 ,0,52.43 88,141.31

336 112,896 37,9,33,0.56 18 3.303 6.9521 0.002976190 1,055.,58 1 88,668.31
337 11 3..569 38,272,7.53 18.,3576 6 . 9589 0 0029673.59 1,058.72 89. 196.88
338 114.244 38,614,472 18.3848 6.96,58 0.0029,58,580 1,061.86 89,727.03
339 114,921 38,9,58,219 18.4120 6.9727 0.0029498,53 1,065.00 90.2,58.74
340 115,000 39,304,000 18.4391 6.9795 0.002941176 1,068.14 90,792.03

341 116,281 39,051 ,821 18.4062 6.9864 0.002932551 1,071.28 91,326.88
342 116,964 40,001,688 18.49,32 6.9932 0.002923977 1,074,42 91.863.31
343 117,649 40,.3.53, 607 18 . 5203 7.0000 0.00291,54,52 1,077.57 92,401.31
344 11 8,.336 40, 707,,58

4

18.5472 7.0068 0.002906977 1,080.71 92,940.88
345 119,025 41 , 063 , 625 18.,5742 7.0136 0.002898551 1,083.86 93,482.02

346 119,716 41,421,736 18.6011 7.0203 0.002890173 1 , 086 . 99 94,024.73
347 120,409 41,781 ,923 18 . 6279 7.0271 0.002881844 1 , 090 . 13 94,569.01
348 121,104 42,144,192 18.6,548 7.0338 0.002873563 1,093.27 95,114.86
349 121,801 42,508,549 18.6815 7,0406 0.00286,5330 1,096.42 95,662.28
350 122,500 42,875,000 18 . 7083 7.0473 0.002857143 1,099.56 96,211.28

351 123,201 43,243,551 18.7350 7.0540 0.002849003 1,102.70 96,761.84
352 123,904 43,614,208 18.7617 7.0607 0.002840909 1,105.84 97,31,3.97
353 124,609 43,986,977 18.7883 7.0674 0.002832861 1,108.98 97,867.68
354 125,316 44,361,804 18.8149 7.0740 0.002824859 1,112.12 98.422.96
355 126,025 44,738,875 18.8414 7.0807 0.002816901 1,115.26 98.979.80
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356 126,736 45, 118,016 18.8680 7.0873 0.002808989 1,118.41 99,638.22
357 127,449 45,499,293 18.8944 7,0940 0.002801120 1,121.55 100,098.21
358 128,164 45,882,712 18.9209 7.1006 0.002793290 1,124.69 100,659.77
359 128,881 40.268,279 18.9473 7.1072 0.002785515 1,127.83 101,222.90
360 129,600 46,656,000 18.9737 7.1138 0.002777778 1,130.97 101,787.60

361 130,321 47,045,881 19.00001 7.1204 0.002770083 1,1,34.12 102,353.87
362 131,044 47,437,928 19.0263 7.1269 0.002762431 1,137.26 102,921.72
363 131,769 47,832,147 19.0526 7.1,335 0.002754821 1,140.40 103,491.13
364 132,496 48 . 228 , 544 19.0788 7.1400 0.0027472,53 1,143. .54 104,002. 12
365 133,226 48,627,125 19 . 1050 7 . 1466 0.002739720 1,146.68 104,634.67

366 133,956 49,027,896 19.1311 7.1531 0.002732240 1,149.82 105,208.80
367 134.689 49,430,803 19.1,572 7.1596 0 . 002724796 1, 1,52.96 105,784.49
368 135.424 49 , 836 , 032 19.1833 7.1661 0.002717391 1,1,56.11 106,361.76
369 136,161 50,243,409 19.2094 7.1726 0.002710027 1,1.59.25 106,940.60
370 136,900 50,053,000 19.2354 7.1791 0.002702703 1,162.39 107,521.01

371 137,641 51,064,811 19.2014 7.18,55 0.00269,5418 1,165.53 108,102.99
372 138,384 51 ,478,848 19.2873 7 . 1920 0.002688172 1,168.67 108,686.54
373 139.129 51,895,117 19.3132 7.1984 0.002680965 1,171.81 109,271.66
374 139,876 52,313,624 19.3391 7.2048 0.002673797 1,174.96 109,858.35
375 140,625 52,734,375 19.3649 7.2112 0.002606667 1,178.10 110,446.62

376 141,376 53,157,370 19.3907 7.2177 0.002659574 1,181.24 111,036.45
377 142,129 53 , 582 , 633 19.4165 7.2240 0.002652520 1 , 184.,38 111,627.86
378 142,884 .54,010, 152 19.4422 7.2304 0.002645,503 1,187.,52 112,220.83
379 143,641 54 . 439 , 939 19.4679 7.2308 0.002638522 1 , 1 90 . 66 112,815.38
380 144,400 54,872,000 19.4936 7.2432 0.002631579 1 . 19.3 . 80 113,411.49

381 145,161 55, 306,.341 19.5192 7.2495 0.002024672 1,196.9,5 114,009.18
382 145,924 ,55,742,968 19.,5448 7.2.5,58 0. 0026 J 7801 1,200.09 114,608 44
383 146,f)89

.
50, 181,887 19.5704 7.2622 0.002610966 1,203.23 115,209.27

384 147,456 .50,623,104 19 ,59,59 7 . 2685 0.002604167 1,20().37 115,811 67
385 148,225 57,066,025 10.6214 7.2748 0.002,597403 1,209.51 116,415.04

386 148,996 57,512,450 19 64()9 7.2811 0. 002,590(574 1,212.66 117,021.18
387 149,769 57,900,603 19.6723 7.2874 0.002583979 1,215.80 117,628.30
388 150,544 58,411,072 19 6977 7.2936 0.002.577320 1,218.94 118,236.98
389 151,321 58,863,869 19.7231 7.2999 0.0025706941 1,222.08 118,847 24
390

i

152,100 59,319,000 19 . 7484 7.3061 0.002,564103 1,225. 22 119,459.06

391 152,881 .59.776,471 19.7737 7.3124 0.002557,545 1,228.36 120,072.46
392 153,664 00,236,288 19.7990 7.3186 0.002551020

!

1,2.31.,50 120,687.42
393 154,449 60,098,457 19.8242 7.3248 0.002.544,529 1,234.6,5 121,303.96
394 155,236 61,102,984 19.8494 7.3310 0.002538071 1,2,37.79 121,922.07
395 156,025 61,029,875 19.8746 7.3372 0.002,531646 1,240.93 122,541.75

396 1,56,816 62,099,136 19.8997 7.3434 0.002,525253 1,244.07 123 , 163 . 00
397 157,609 62,570,773 19.9249 7.3496 0.002,518892 1,247,21 123.785.82
398 1.58,404 63,044,792 19.9499 7.3558 0.002.512,563 1 ,2.50.35 124.410.21
399 1.59,201 63,521,199 19.97,50 7.3019 0.002506260 1 , 253 . 50 125,036.17
400 160,000 64,000,000 20.0000 7.3681 0.002,500000 1,256.64 125.663.71

401 160,801 64,481,201 20.0250 7.3742 0.002493766 1 , 259 . 78 126,292.81
402 161,604 64,964,808 20.0499 7.3803 0.002487,502 1,202.92 126,923.48
403 162,409 65,450,827 20.0749 7.3864 0.002481390 1,266.06 127,555.73
404 163,216 65,939,264 20.0998 7.3925 0.00247,5248 1,269. 20 128,189.55
405 164,026 66,430,125 20.1246 7.3986 0.002469136 1,272.35 128,824.93

406 164,836 66,923,416 20.1494 7.4047 0.002463054 1,275.49 129,461.89
407 165,649 07,419,143 20.1742 7.4108 0.002457002 1,278.63 130,100.42
408 166,464 07,917,312 20.1990 7-4169 0.002450980 1,281.77 130,740.52
409 167,281 68.417,929 20.22.37 7.4229 0.002444988 1,284.91 131,382.19
410 168,100 68.921,000 20.2485 7.4290 0.002439024 1,288.05 132,025.43

411 168.921 69.426,631 20.2731 7.4350 0.002433090 1,291.20 132,670.24
412 169,744 69,934.528 20.2978 7.4410 0.002427184 1,294.34 133,316.63
413 170,669 70,444,997 20.3224 7.4470 0.002421308 1,297.48 133,964.68
414 171,396 70.967,944 20.3470 7.4630 0.00241,5459 1,300.62 134,614.10
415 172,225 71,473,375 20.3716 7.4690 0.002409639 1,303.76 135,265.20
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416 173,056 71,
417 173 , 889 72,
tl8 174,724 73,
419 175,501 73,
420 176,400 74,

421 177,241 71,
422 178,084 75,
423 178,929 75,
424 179,776 76.
125 180,625 70,

426 181,476 77,
427 i 182,329 77.
428 183,184 78,
429 184,041 78,
430 184,900 79,

431 1 185,761 80.
432 186,624 80.
433 187,489 81,
434 188,350 81.
435 189,225 82,

436
1

190,096 82,
437

1

190,969 83,
438 191,844 84,
439 192,721 84.
440 193 . 000 85,

441
1

104,481 8.").

442 19.5,.364 8('»

.

443 1 196,249 86.
144 197,136 87,
445 198,025 88,

446 198.916 88,
447 199,809 89.
448 200.704 89,
449 201,601 90,
450 202,500 91,

451 203,401 01,
452 204,304 92,
453 205 , 209 92,
454 206,110 93.
455 207,025 94,

456 207,936 94,
457 208,849 95,
458 209,764 96.
459 210,681 96,
460 211,600 97,

461 212,521 97,
462 213,444 98,
463 214,369 99,
464 215,296 90,
465 216,225

1

100,

466 217,156 1 101,
467 218,089 101,
468 219,024 102,
469 219,961 103,
470 220,900 103,

471 221,841
I

104,
472 2142,784

1

105.
473 223.729 105,
474 224,676 1 106,
475 225,625 107,

991,296 20.3961
511,713 20.4206
,034,632 20.4450

560.0.

59 20.4695
088.000 20.4939

618,461 20.5183
151,448 20..5426
,686,967 20.5670
225,024 20.59 13
765,625 20.6155

.308,776 20.6.398
8.54,483 20.6040
,402.7.52 20.6882
9.53,589 20.7123
.507,000 20.7364

062,991 20.7605
621,508 20.7840
182,7.37 20.8087
740,504 20.8327
312.875 20.8507

881,8.56 20.8806
4.53,4.53 20 9045
027,072 20 9284
604,519 20.9.523
184.000 20.9702

766,121 21.0000
3.50,888 21.0238
938, '.w>7 21.0476
528,384 21.0713
121.125 21.09.50

716..

536 21.1187
314,623 21.1424
915,392 21.1660
518,849 21.1896
125.000 21.21.32

73.3,351 21.2368
345,408 21.2603
9,59,677 21.2838
.576,064 21..3073

196..

375 21..3307

818 816 21..3.5-12
443,993 21.3776
071,912 21.4009

702..

579 21.4243
336.000 21.4476

972,181 21.4709
611,128 21.4942
2,52,847 21.5174
897,344 21.5407
,544,625 21.5639

194,696 21.5870
847,503 21.6102
.503,232 21.6333
161.700 21.6564
823,00<i 21.6795

487,111 21.7025
154, {*48 21.7266
823.817 21.7486
496,424 21.7715
171.875 21.7945

7.4650 0.002403846
7.4710 0.002398082
7.4770 0.002392344
7.4829 0.002386635
7.4889 0.0023809,52

7.4948 0.002375297
7.5007 0.002369668

7..

5067 0.002364066
7.5126 0.0023.58491
7.5185 0.002352941

7.5244 0.002347418

7..

5302 0.002.341920

7..

536 1 0.0023.36449
7.5420 0.002.331002
7.5478 0.002325.581

7.5.537 0.002320186

7..

5.595 0.002.314815

7..

56.54 0.002309469

7..

57 12 0.002.304147
7.5770 0.002298851

7..

5828 0.002293578

7..

5886 0.002288330
7.5944 0.00228,3105
7.6001 0.002277904
7.60.59 0.002272727

7.6117 0.002267.574
7.6174 0.002262443
7.6232 0.0022.57330
7.6289 0.0022522.52
7.6.346 0.002247101

7.6403 0.002242152
7.6460 0.002237136
7.6517 0.002232143
7.6.574 0.002227171
7.6631 0.002222222

7.6688 0.002217295
7.6744 0.002212389
7.6801 0.002207506
7.6857 0.002202643
7.6914 0.002197802

7.6970 0.002192982
7.7026 0.002188184
7.7082 0.(K)2 18,3406
7.71.38 0.002178649
7.7194 0.002173913

7.7250 0.002169197
7.7306 0.002164.502
7.7362 0.0021,59827
7.7418 0.0021.55172
7.7473 0.002150538

7.7529 0.002145923
7.7584 0.002141328
7.7639 0.0021367,52
7.7695 0.002132196
7.7750 0.002127660

7.7805 0.002123142
7.7860 0.002118644
7.7915 0.002114166
7.7970 0.002109705
7.8026 0.002105263

1,306.90 135,917.86
1.310.04 136,572.10
1,313.19 137,227 91
1,316.33 137,885.29
1,319.47 138,544.24

1..

322. 61 139,204.76
1,325.75 1.39,866.85

1..

328. 89 140,530.51
1.332.04 141,196.74
1,335.18 141,862.54

1..

338. 32 142,.530. 92

1..

341. 46 143,200.86
1,344.60 143,872.38
1,347.74 144,545.46
1.350.88 145,220.12

1,354.03 145,896.35
1,3.57.17 146,574.15
1,360.31 147,2.53.52
1,363.45 147,9,34.46
1,366,59 148,616.97

1,369.73 149,301.05
1.372.88 149,986.70
1,376.02 150,673.93
1,379.16 151,362.72

1.382..

30 1.52,053.08

1,385.44 152,745 02

1.388..

58 153,4.38.53

1..

39 1.73 154,133 60

1..

394. 87 154,830.25
1,398.01 155,528.47

1,401.15 156,228.26
1,404.29 156,929.62
1,407.43 157, 632..55
1.410.68 158,337.06
1,413.72 159,043.13

1,416.86 159,750 77

1,420.00

1 60,4.59 99
1,423.14 161,170 77
1,426.28 101,883 13

1.429.42 102,597.05

1.432..

57 163,312 .55

1,4.35.71 164,029.62
1,438.85 164,748.26
1,441.99 165,468.47
1,445.13 166,190.2.5

1,448.27 166,913.60
1.451.42 167,638.53
1,454.56 168,365.02
1,457.70 169,093.08
1,460.84 169,822.72

1,463.98 170,553.92
1.467.12 171,286.70
1.470.26 172,021.05
1,473.41 172,756.97
1,476.55 173,494.45

1.479.69 174,233.51
1,482.83 174,974.14
1,485.97 175,716.35
1.489.12 176,460.12
1.492.26 177,205.46
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476 226,576 107,850, 176 21.8174 7.8079 0.002100840 1,495.40 177,952.37
477 227 , 529 108,531,333 21.8403 7.8134 0.002096436 1,498.54 178,700.86
478 228,484 109,215,352 21.8632 7.8188 0.002092050 1 ,501.f)8 179,450.91
479 229,441 109,902,239 21.8861 7.8243 0.002087683 1,.504. 82 180,202.54
480 230,400 110.592.000 21.9089 7.8297 0.002083333 1,507.96 180,955.74

481 231,361 111,284,641 21.9317 7.8352 0.002070002 1,511.11 181,710.50
482 232 , 324 111,980,108 21 .9.545 7.8406 0.002074089 1,514.25 182,460.84
483 233,289 11 2, 07 8..587 21.9773 7 . 8460 0.002070393 1,517.39 183,224.75
484 234,256 113,379,904 22.0000 7.8514 0.002066116 1..520..53 183,984.23
485 235,225 114,081,125 22.0227 7.8568 0.002001850 1,523.07 184,745.28

486 236,196 114,791,250 22.04,54 7.8622 0.0020.57013 1,520.81 185,507.90
487 237,109 11 5,.50 1,303 22.0681 7.8076 0.0U2053388 1 , 529 . 90 180,272.10
488 238,144 110,214,272 22 . 0097 7.8730 0.002049180 1,533.10 187,037.86
489 239,121 110,930,109 22.11.33 7.8784 0.002044990 1,530.24 187,805.19
490 240,100 117,649,000 22.1359 7,8837 0.002040810 1 , 539 , 38 188,574.10

491 211 ,081 118.370,771 22.1585 7.8891 0.002030000 1 ,.542.52 189, 344..57
492 242 , 004 1 19,095,488 22. 1811 7.8944 0.002032.520 1 , .545 . 0(i 190.110 02
493 243,049 119,823,157 22.20.36 7.8998 0.002028398 1 ,548.81 190,890.24
494 244.030 120..5.53, 784 22.2201 7.9051 0.002024291 1 . .5.51 . 9.5 191,005.43
495 245.025 121,287,375 22.2480 7.9105 0.002020202 1 , 555 . 09 192,442.18

490 240,010 122,023,9.36 22.2711 7.91,58 0.002010129 1,.558. 23 193.220.51
497 247,009 122,703,473 22.29.35 7.9211 0.002012072 1,.50 1.37 194,000.41
498 248.004 123,.505. 992 22.3159 7.9264 0.002008032 1,504.51 194,781.89
499 249,001 124,251,409 22.3383 7.9317 0.002004008 1,.507. 05 195,504.93
500 250,000 125,000,000 22.3607 7.9370 0.002000000 1,.570. 80 190,349.54

501 251,001 125, 751,.501 22.3830 7.9423 0.001990008 1,573.94 197,135.72
502 252,004 120 ,

.500 , 008 22.4054 7.9470 0.001992032 1,.577. 08 197 , 923 . 48
503 253 , 009 127, 20.3,.527

j

22.4277 7.9.528 i 0.001988072 1,580.22 198,712.80
504 254,010 128.024,004 22.4499 7.9.581 0.001984127 1,-583. 30 199,593.70
505 255,025 128,787,025 22.1722! 7.9()34 0.001980198 1,580.50 200,296. 17

506 250,036 120,.5.54, 210 22.4944 7.9686 0.001970285 1,.589. 65 201,090.20
507 257,049 130,323,84.3 22.5107 7.9739 0.001972387 1 ,.592.79 201,885.81
508 258,064 1.31,090,512 22 . 5389 7.9791 0.001908504 1..59.5. 93 202,682.99
509 259,081 131,872.229 22.5010 7.9843 0.0019040.37 1 . 599 . 07 203,481.74
510 260,100 132,651,000 22.5832 7.9896 0.001900785 J ,002.21 204,282.00

511
i

261,121 133,432,831 22.00.53 7.9918 0.001950947 1 ,005.35 205,083.95
512 262,144 134,217,728 22 . 6274 8.0000 0.0019.53125 1,008.50 205,887.42
513 263,109 135,005,097 22.0495 8.00.52 0.001949318 ' 1,011.04 200,692.45
514 204,196 1.35,790,744 22.0710 8.0104 0.001945.525 1,014.78 207,499.05
515 265,225 130,590,875 22.0930 8. 0156 0.001941748 1,017.92 [208,307.23

51G 266,250 1.37,388,000 22.7150 8.0208 0.001937984 1,621.06 209,116.97
517 207 , 289 138.188,413 22.7370 8.0260 0.0019,34230 1,624.20 209,928.29
518 268,324 1.38,991,8.32 22.7.596 8.0.311 0.001930502 1,627.34 210,741.18
519 269,301 1.39,798,3.59 22.7810 8.0363 0.001920782 1,630.49 211.555.63
520 270,400 140,608,000 22.8035 8.0415 0.001923077 1,633.63 212,371.66

521 271,441 141,420,701 22,8254 8.0466 0.001919386 1,630.77 213,189.26
522 272,484 142,230,048 22.8473 8.0517 0.001915709 1 ,639.91 214,008.43
523 273 , 529 143,055,607 22.8692 8.0509 0.001912046 1,643.05 214,829.17
524 274,576 143,877,824 22.8910 8.0620 0.001908397 1,646.19 215,651.49
525 275,625 144,703,125 22.9129 8.0671 0.001904762 1,649.34 216,475.37

526 276,676 145,531,576 22.9347 8.0723 0.001901141 1,652.48 217,300.82
527 277,729 146,363,183 22.9505 8.0774 0.001897533 1,655.02 218,127.85
528 278,784 147,197,952 22.9783 8.0825 0.001893939 1,658.76 218,956.44
529 279,841 148,035,889 23.0000 8.0870 0.0018903.59 1,661.90 219,786.61
530 280,900 148,877,000 23.0217 8.0927 0.001886792 1,665.04 220,618.34

531 281,961 149,721,291 23.0434 8.0978 0.001883239 1,668.19 221,451.65
532 283,024 150,668,768 23.0661 8.1028 0.001879699 1,671.33 222,286.63
533 284,089 151,419,437 23.0868 8.1079 0.001876173 1,674.47 223,122.98
534 285,156 152,273,304 23.1084 8.1130 0.001872659 1,677.61 223,961.00
535 286,225 163,130,375 23.1301 8.1180 0.001869159 1,680.75 224,800.59
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53fi 287,290 153.990.0.56 23.1517 8.1231 0.001805672 1,683.89 225.641.75
537 288,309 154,854,153 23.1733 8.1281 0.001862197 1 ,687.03 226 , 484 . 48
538 289 , 444 155,720,872 23.1948 8.1.332 0.001858736 1,690. 18 227,328.79
539 200,521 150,.590. 8 19 23 2164 8.1,382 0.0018.5.5288 1,603.32 228, 174.66
540 291,600 157,404,000 23.2379 8. 1433 0.001851852 1,696.46 229,022. 10

541 292,081 158.340,421 23 . 2594 8.1483 0.001848429 1,699.60 229,871.12
542 293 , 704 159,220,088 23 . 2809 8.15.33 0.00184.5018 1,702.74 230,721.71
543 294 , 849 100, 103,007 23 . 3024 8.1.583 0.001841621 1 ,705.88 231 ,.573.86
544 295 , 930 100,989,184 23 . 3238 8.16.33 0.001838235 1,709.03 232 , 427 , ,59

545 297 , 025 101 ,878,025 23.3152 8.1083 0.001834862 1,712.17 233 , 282 . 89

540 298,116 102, 771,.330 23 3006 8.1733 0.001831502 1,715.31 234,139 73
547 299 , 209 1 03 , 007 , 323 23 3880 8.1783 0.0018281.54 1,718.45 2.34,998 20
548 300 , 304 104 , 500 , 592 23.4094 8.1833 0.001824818 1,721.59 235,858.21
549 301 .401 105.409,149 23 . 4307 8.1882 0.001821494 1 ,724.73 236,719 79
550 302 , 500 160,375,000 23.4.521 8.1932 0.001818182 1,727.88 237 , 582 . 94

551 303 , 001 167,284,151 23.4734 8.1982 0.001814882 1,731.02 238,447.67
552 304 , 704 108,190,008 23 4947 8.2031 0.001811594 1 ,7.34. 10 239,313.96
553 305,809 109, 112,377 23 5160 8.2081 0.001808318 1 ,737.30 240,181 83
554 300,910 170,031 ,404 23 5372 8.2130 0.001805054 1,740.44 241,051 26
555 308,025 170,953,875 23 5584 8.2180

^

0.001801802 1 , 743 . 58 241,922.27

550 309 , 130 171,879.010 23 . .5797 8.2229
'

0.001798561 1,746.72 242,794 85
557 310,249 172,808,093 23 6008 8.2278 0.001795332 i ,749.87 21.3,068 99
558 311,304 173,741,1 12 23 . ()220 8.2327 0.001792115 1,753 01 244,544.71
559 312,481 174,07(».879 23 . 6432 8 2.377 0.001788909 1 ,7.56. 15 245 , 422 . 00
560 313,000 175.010,000 23 . 6643 8.2426 0.001785714 1 , 759 . 29 246,300.86

501 314,721 170,558,481 23 . 6854 8 2175 ' 0.001782531 1 , 762 . 43 247,181.30
502 315,844 177,504,328 23 . 7065 8.2.524 0.0017793.59 1 ,705..57 248,063 30
503 310,909 178, 4 53,.54 7 23 . 7276 8.2.573 0.001776199 1 ,708.72 248,946.87
504 318,090 179,400,144 23.7487 8.2621 0.001773050 1,771.86 249,8.32.01
505 319,225 180,302,125 23 . 7697 8.2670 0.001769912 1,775. 00 250,718.73

500 320,350 181,321,496 23.7908 8.2719 0.001766784 1,778.14 251 ,607 01
507 321,489 182,284,203 23.81 18 8.2768 0.001763668 1,781.28 252,496 87
508 322,024 183,2.50,432 23 . 8328 S.2816 0.001760503 1,784.42 25,3,388.30
509 323,701 1 84 , 220 . 009 23.8.5,37 8.2805 0.0017.57469 1,787. 57 254,281.29
570 324 . 900 18.5, 193,000 23.8747 8.2913 0.00175438G 1 .790.71 255,175.86

571 320,041 180,109,411 23 . 8956 8.2962 0.001751,31,3! 1 , 793 . 85 256,072.00
572 327,184 187,149,248 23.91651 8..30 10 0.001748252' 1 ,796.99 256.969 71
573 328,329 188,132.517 23.9374 8.3059 0.001745201 1,800. 1,3 257 . 868 . 99
574 329,470 189,119,224

'

23 9583 8.3107 0.001742160 1 . 803 . 27 258,769.85
575 330,025 190,109,375 23.9792 8.3155 0.001739130 1,806.41 259,672.27

570 331,776 191,102,976 24.0000 8.3203 0.001730111 1,809.66 200,576.26
577 332,929 192,100,033 24 . 0208 8.3251- 0.0017.33102 1,812.70 261,481.83
578 334,084 193,300,552 24.0416 8.3300 0.0017.30104 1,815.84 202.388.96
579 335,241 194,104.539 24 . 0624 8..3348 0.001727116 1,818.98 263 , 297 . 67
580 336,400 195,112.000 24 . 0832 8.3396 0.001724138 1,822.12 264 . 207 . 94

581 3.37,501 190,122,941 24.1039 8.3443 0.001721170 1 ,825.27 265,119.79
582 338,724 197,137,308 24.1247 8.3491 0.001718213 1,828.41 266,033.21
583 339 , 889 198,155,287 24.1454 8.3539 0.001715266 1,831.55 ,266,948.20
584 341,056 199,170,704 24.1061 8.3587 0.001712.329 1,834.69 267,864 76
585 342,225 200,201,625 24.1868 8.3634 0.001709402 1,837.83 268,782.89

586 343 , 396 201,230,056 24.2074 8.3682 0.001706485 1,840.97 269,702.59
587 344,509 202,262.003 24.2281 8.3730 0.001703578 1,844.11 270,623.86
688 345,744 203,297,472 24 . 2487 8.3777 0.001700680 1,847.26 271,546.70
589 .346,921 204,336,469 34.2693 8..382

5

0.001697793 1,850.40 272,471.12
590 348,100 205,379,000 24.2899 8.3872 0.001694915 1,853.54 273,397.10

591 349,281 206,425,071 24.3105 8.3919 0.001692047 1,856.68 274,324.66
692 350,464 207,474.68& 24.3311 8.3967 0.001689189 1,859.82 275,253.78
693 351,649 208,627,857 24.3516 8.4014 0.001686341 1,862.96 276,184.48
594 352,836 209,584,584 24.3721 8.4061 0.001083502 1,806.10 277,116.75
595 354,025 210 V 644. 876 24.3926 8.4108 0.001680672 1,869.25 278,050.68
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596 365,216 211,708,736 24.4131 8.4155 0.001677852 1,872.39 278,985.99
697 356,409 212.776,173 24.4336 8.4202 0.001675042 1,875.53 279,922.97
598 367.604 213,847.192 24.4540 8.4249 0.001672241 1,878.67 280,861.52
599 358,801 214,921,790 24.4745 8.4296 0.001669449 1,881.81 281,801.65
600 360,000 216,000,000 24.4949 8.4343 0.001666667 1,884.95 282,743.34

601 361,201 217,081,801 24.5153 8.4390 0.001663894 1,888.10 283,686.60
602 362,404 218,167,208 24.5357 8.4437 0.001661130 1,891.24 284,631.44
603 363,609 219,256.227 24.5561 8.4484 0.001658375 1,894.38 285,577.84
604 364,816 220.348,864 24.5764 8.4530 0.001655629 1,897.52 286,525.82
005 366,025 221,445,125 24.5967 8.4577 0.001652893 1,900.06 287,475.36

606 367,236 222,545,016 24.6171 8.4623 0.001650165 1,903.80 288,426.48
607 368,449 223,648,543 24.6374 8.4670 0.001647446 1,906.95 289,379.17
608 360,664 244.755,712 24.6577 8.4716 0.001644737 1,910.09 290,333.43
609 370,881 225,866,529 24.6779 8.4763 0.001642036 1,913.23 291,289.26
610 372,100 226,981,000 24.6982 8.4809 0.001639344 1,916.37 292,246.66

611 373,321 228,099,131 24.7184 8.4856 0.001636661 1,919.51 293,205.63
612 374,544 229,220,928 24.7380 8.4902 0.001033987 1,922.65 294,166.17
613 375,769 230,346,397 24.7588 8.4948 0.001031321 1,925.80 295,128.28
614 376,996 231,475,544 24.7790 8.4994:0.001628604 1,928,94 296,091.97
615 378,225 232,008,375 24.7992 8.5040 0.001626016 1,932.08 297,057.22

616 379,456 233,744,890 24.8193 8.5086 0.001023377 1,935.22 298,024.05
617 380,689 234,885,113 24.8395 8.5132 0.00]02()746 1,938.36 298,992.44
618 381,924 236,029,032 24.8596 8.5178 0.001618123 1,941.50 299,962.41
619 383,161 237.176,659 24.8797 8.5224 0.001615509 1,944.04 300,933.95
620 384,400 238.328,000 24.8998 8.5270 0.001612903 1,947.79 301,907.05

621 385,641 239,483,061 24.9199 8.5316 0.001610306 1,950.93 302,881.73
622 386,884 240,641,848 24 9399 8.5362 0.001607717 1,954.07 303,857.98
623 388,129 241,804,367 24.9600 8.5408 0.001605136 1,9.57.21 304,835.80
624 389,376 242,970,624 24.9800 8.5453 0.001602564 1,960.35 305,815.20
625 390,625 244,140,625 25.0000 8.5499 0.001000000 1,963.49 306,796.16

626 391,876 245,314,376 25.0200 8.5544 0.001597444 1,966.64 307,778.69
627 393,129 246,491,883 25.0400 8.5590 0.001594896 1,969.78 308,762.79
628 394,384 247,673,1.52 25.0599 8.5635 0.001,592357 1,972.92 309,748.47
629 395,641 248,858,189 25.0799 8.5681 0.001589825 1,976.06 310,735.71
630 396,900 250,047,000 25.0998 8.5726 0.001587302 1,979.20 311,724.53

631 398,161 251,239,591 25.1197 8.5772 0.001584786 1,982.34 312,714.92
632 399,424 252.435,968 25.1396 8.5817 0.001.582278 1,985.49 313,706.88
633 400,689 253,636,137 25.1595 8.5862 0.001579779 1,988.63 314.700.40
634 401,956 254.840,104 25.1794 8.5907 0.001577287 1,991.77 315,695.50
635 403,225 256.047,875 25.1992 8.5952 0.001574803 1,994.91 316,692,17

636 404,496 257,259,456 25.2190 8.5997 0.001572327 1,098.05 317,690.42
637 405,769 258,474.853 25.2389 8.6043 0.001569859 2,001.19 318,690.23
638 407,044 2.59,694,072 25.2587 8,6088 0.001567398 2,004.33 319,691.61
639 408,321 260,917,119 25.2784 8.6132 0.001564945 2,007.48 320,694.56
640 409,600 262,144,000 25.2982 8.6177 0.001562500 2,010.62 321,699.09

641 410,881 263,374,721 25.3180 8.6222 0.001560062 2,013.76 322,705.18
642 412,164 264,609,288 25.3377 8.6267 0.001557032 2,016.90 323,712.85
643 413,449 265,847,707 25.3574 8.6312 0.001555210 2,020.04 324,722.09
644 414,736 267,089,984 25.3772 8.6357 0.001552795 2,023.18 325,732.89
645 416,025 268,336,125 25.3969 8.6401 0.001550388 2,026.33 326,745.27

646 417,316 269,686,130 25.4165 8.6446 0.001547988 2,029.47 327,759.22
647 418,609 270,840,023 25.4362 8.6490 0.001545595 2,032.61 328,774.74
648 419,904 272,097,792 25.4558 8.6535 0.001543210 2,035.75 329,791.83
649 421,201 273,359,449 25.4755 8.6579 0.001540832 2,038.89 330,810.49
650 422.500 274,625,000 25.4951 8.6624 0.001638462 2 ,.042. 03 331,830.72

661 423,801 275,894,451 25.6147 8.6668 0.001636098 2,045.18 332,852.63
652 425,104 277,167,808 25.5343 8.6713 0.001583742 2,048.32 333,875.90
663 426,409 278,445,077 25.5539 8.6767 0.001631394 2,051.46 334,900.85
664 427,716 279,726,264 25.5734 8.6801 0.001629062 2,054.00 335,927.36
666 429,026 281,011,376 26.5930 8.0846 0.001626718 2,057.74 386,955.45
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656 430,336 282,300,416 26.6125 8.0890 0.001524390 2,060.88 337,985.10
667 431,649 283 , 593 , 393 25.6320 8.6934 0.001522070 2,064.03 339,016.33
658 432,964 284,890,312 25.0515 8.6978 0.001519757 2,067. 17 340,049.13
659 434,281 286,191,179 25.0710 8.7022 0.001517451 2,070 31 341,083.50
660 435,600 287,490,000 25.6905 8.7006 0.001515152 2,073.45 342,119.44

661 436,921 288,804,781 25.7099 8.7110 0.001512859 2,076.59 343,156.95
602 438,244 290,117,528 25.7294 8.71,54 0.001510.574 2,079.73 344,196.03
663 439,569 291,434,247 25.7488 8.7198 0. 001.508296 2,082.87 345,236.69
664 440,896 292,754,944 25.7082 8.7241 0.001506024 2,086.02 346,278.91
665 442,225 294,079,025 25.7876 8.7285 0.0015037,59 2,089.16 347,322.70

666 443,556 295,408,296 25.8070 8.7329 0.001501502 2,092.30 348,368.07
667 444,889 290,740.903 25.8203 8.7373 0.0014992.50 2,095.44 349,415.00
668 446,224 298,077,032 25.8457 8.7416 0.001497006 2,098.58 350,463.51
669 447,561 299,418,309 25.8650 8.7460 0.001494768 2,101.73 351,513.59
670 448,900 300,703,000 25.8844 8.7503 0.001492537 2,104.87 352,565.24

671 450,241 302,111,711 25.9037 8.7547 0.001490313 2,108.01 353,618.45
672 451,584 303,404,448 25.9230 8.7,590 0.001488095 2,111.15 354,673.24
673 452,929 304,821,217 25.9422 8.7634 0.001485884 2,114.29 355,729.60

Maim 454 , 276 306,182,024 25.9015 8.7077 0.001483680 2,117.43 356,787.54
675 455,625 307,540,875 25.9808 8.7721 0.001481481 2,120.58 357,847.04

676 456,976 308,915,770 26.0000 8,7764 0.001479290 2,123.72 358,908.11
677 458,329 310,288,733 26.0192 8.7807 0.001477105 2,126.86 359,970.76
678 459,684 311,005,752 26.0384 8.7850 0.001474926 2,1,30.00 301,034.97
679 461,041 313,040,839 26.0576 8.7893 0.001472754 2,133.14 302,100.75
680 462,400 314,432,000 26.0768 8.7937 0.001470.588 2,136.28 303,168.11

681 463,761 315,821,241 20.0960 8.7980 0.001468429 2,139.42 364,237.04
682 465,124 317,214,508 26.1151 8.8023 0.001460276 2,142.56 305,307.54
683 406,489 318,011,98/ 26.1343 8.8006 0.001464129 2,145.71 306,379.60
684 467,856 320,013,504 26.1534 8.8109 0.001461988 2,148.85 367 , 453 . 24
685 469,225 321,419,125 26.1725 8.8152 0.001459854 2,151.99 368,528.45

686 470,596 322,828,850 26.1916 8.8194 0.001457720 * 2,155.13 369,605.23
687 471,969 324,242,703 20.2107 8.8237 0.0014.55604 2,1,58.27 [370,683.69
688 473,344 325,000,672 20 . 2298 8.8280 0.0014.5.3488 2,161.41 371,763.51
689 474,721 327,082,709 26.2488 8.8323 0.001451379 2, 164.,56 3/2, 846. (K)

476,100 328,509,000 26.2679 8.8366 0.001449275 2,107.70 373,928.07

691 477,481 329,939,371 26.2869 8.8408 0.001447178 2,170.84 375,012.70
478,864 331 ,373,888 26.3059 8.8451 0.001445087 2,173.98 376,098.91

693 480,249 332.812,557 26.,3249 8.8493 0.001443001 2,177.12 377,186.68
694 481,630 334,255,384 26.3439 8.8,5,36 0.001440922 2,180.26 378,276.03
695 483,025 335,702,375 26.3629

1

8.8578 0.001438849 2,183.41 379,360.95

696 484,416 337,153,536 26.3818 8.8621 0.001436782 2,180.55 380,459.44
697 485,809 338,008,873 26.4008 8.8663 0.001434720 2,189. 69 381,553.50
698 487,204 340,008.392 26.4197 8.8706 0.001432665 2,192.83 382,049.13
699 488,601 341,532,099 26.4386 8.8748 0.001430615 2,195.97 383,746.33
700 490,000 343,000,000 26.4575 8.8790 0.001428571 2,199.11 384,845.10

701 491,401 344,472,101 26.4764 8.8833 0.001426534 2,202.26 385,945.44
702 492,804 345,948,408 26.4953 8.8875 0.001424501 2,205.40 387,047.36

masm 494,209 347,428,927 26.5141 8.8917 0.001422475 2,208.54 388,150.84
704 495,616 348,913,604 20.5330 8.89,59 0.001420455 2,211.68 389,265.90
705 497,025 350,402,626 26.5518 8.9001 0.001418440 2,214.82 [390,362.52

706 498,436 351,895,816 26.5707 8 9043 0.001416431 2,217.96 391,470.72
707 499,849 353,393,243 20 . 5895 8.9085 0.001414427 2,221.10 392,580.49
708 501,264 354,894.913 26.6083 8.9127 0.001412429 2,224.25 393,691.82
709 502,681 356,400.829 26.6271 8.9169 0.001410437 2,227.39 394,804.73
710 504,100 367,911,000 26.6458 8.9211 0,001408451 2,230.53 395,919.21

711 505,521 359,425,431

5

26.6646 8.9253 0.001406470 2,233.67 397,035.26
712 506,944 360,944,128 26.6833 8.9295 0.001404494 2,236.81 398,152.89
713 508,369 362,467,097 26,7021 8.9337 0.001402625 2,239.96 399,272.08
714 509,796 363,994,344 26.7208 8.9378 0.001400660 2,243.10 400,392.84
715 511,225 365,525,875 26.7395 8.9420 0.001398601

1

2,246.24 401,615.18
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716 512,056 367,001,696 26.7582 8.9462 0.001396648 2,249.38 402,639.08
717 514,089 368,601,813 26.7769 8.9503 0. 001394700 2,252.52 403.704.56
718 515,524 370,146,232 26.7955 8.9545 0.001392758 2,255.60 404,891.60
719 516,961 371,694,959 26.8142 8.9587 0.001390821 2,2.58.80 406,020.22
720 518,400 373,248,000 26.8328 8.9628 0.001388889 2,261.95 407,150.41

721 519,841 374,805,301 26.8514 8.9670 0.001386963 2,205.09 408,282. 17
722 621,284 376,367,048 26.8701 8.9711 0.001385042 2,268.23 409,415.50
723 522,729 377,933,067 26 8887 8.97.52 0.001383126 2,271.37 410,550.40
724 524,176 379,603,424 26.9072 8.9794 0.001381215 2,274.51 411 ,680.87
725 525,625 381,078,125 26.9258 8.9835 0.001379310 2.277.65 412,824.91

720 527,076 382,657,176 26 . 9444 8.9876 0.001377410 2.280.79 413,904.52
727 528,529 384,240,583 2() . 9()29 8.9918 0.00137.5516 2,283.94 415,105.71
728 529,984 385,828,352 26.9815 8.99.59 0.001373626 2,287.08 416.248.46
729 531,441 387,420,489 27 . 0000 9 . 0000 0.001371742 2,290.22 417,392.79
730 532,900 389,017,000 27.0185 9.0041 0.001369863 2,293.36 418,538.68

731 534,361 390,617,891 27.0370 9.0082 0.001.367989 2,206.50 419,086. 15
732 535,824 392,223,168 27.0555 9.0123 0.001366120 2,299.64 420,835. 19
733 537,289 393,832,837 27.0740 9.0164 0.001364256 2,302.79 421 ,985.79
734 538,756 395,446,904 27.0924 9.0205 0.001362398 2,305.93 423,137.97
735 540,225 397,005,375 27.1109 9.0246 0.001.360.544 2,309.07 424,291.72

736 641,696 398,688,256 27.1293 9.0287 0.0013.58696 2,312.21 425,447.04
737 543,109 400,315,553 27.1477 9.0328 0.0013568.52 2,315.35 426,()03.94
738 544 , 644 401,947,272 27.1602 9.0369 0.0013.5.501-1 2,318.49 427,762.40
739 546,121 403,583,419 27.1846 9.0410 0.0013.53180 2,321.64 428,922.43
740 547,600 405,224,000 27 . 2029 9.0450 0.001.351351 2,324.78 430 , 084 . 03

741 549,081 406,869,021 27.2213 9.0491 0.001349.528 2,327.92 431,247.21
742 550,564 408,518,488 27.2397 9.0532 0.001347709 2,331.06 432,411.95
743 552 , 049 410,172,407 27 . 2.580 9.0572 0.00134.5895 2.334.20 433,578.27
744 653 , 530 411,830,784 27.2764 9.0613 0.001344086 2 , 337 . 34 434,746.10
745 655,025 413,493,625

;

27.2947 9.0654 0.001342282 2,340.49 435,915.62

746 656,516 415,160,936 27.3130 9.0694 0.001340483 2,343.63 437 , 086 . 64
747 558,009 416,832,723 27.3313 9.0735 0.001338688 2,346.77 438,259.24
748 659,504 418.508,992 27.3490 9.0775 0.001336898 2,349.9] 439,433.41
749 561,001 420,189,749 27.3679 9.0816 10.001335113 2,353.05 440,609.16
750 502,500 421,875,000 27.3861 9.0856 0.001333333 2,350.19 441,786.47

751 564,001 423,564,751 27.4044 9.0896 0.001331558 2,359.33 442,965.35
752 565,504 425,259,008 27.4226 9.0937 0.001329787 2,362.48 444, 145.80
753 567,009 426,957,777 27.4408 9.0977 (1.001.328021 2,365.62 445,327.83
754 508,516 428,601,064 27.4591 9.1017 0.001326260 2,3()8.76 446,511.42
755 670,025 430,368,875 27.4773 9.1057 0.001324503 2,371.90 447,696.59

756 571,536 432,081,216 27.4955 9.1008 0.001322751 ' 2,375.04 448,883.32
757 673,049 433,798,093 27.5136 9.1138 0.001321004 2,378.18 450,071.63
758 674,664 435,519,512 27.6318 9.1178 0.001319261 2,381 .33 451,261.51
759 576,081 437,245,479 27.5500 9.1218 0.001317523 2,384.47 452,452.96
760 577,600 438,976,000 27.5681 9.1258 0.00131.5789 2,387-61 453,645.98

761 579,121 440,711,081 27.5862 9.1298 0.001314060 2,390.75 454,840.67
762 580,644 442,450,728 27.6043 9.1338 0.001312336 2,393.89 456,036.73
763 582,169 444,194,947 27.6225 9.1378 0.001310610 2,397.03 457,234.46
764 583,696 445,943,744 27.6405 9.1418 0.001308901 2,400.18 458,433.77
765 585,225 447,697,125 27.6586 9. 1458 0.001307190 2,403.32 459,634.64

766 586,756 449,455,096 27.6767 9.1498 0.001305483 2,406.46 460,837.08
767 588,289 451,217,663 27.6948 9.1537 0.001303781 2,409.60 462,041.10
768 589,824 452,984,832 27.7128 9.1577 0.001302083 2,412.74 463,246.69
769 691,361 454,756,609 27.7308 9.1617 0.001300390 2,415.88 464,453.84
770 692,900 456,633,000 27.7489 9.1657 0.001298701 2,'419, 02 465,662.67

,

771 594,441 458,314,011 27.7669 9.1696 0.001297017 2,422.17 466,872.87
772 595,984 460,009,648 27.7849 9.1736 0.001295337 2,425.31 468,084.74
773 597,529 461,889,917 27.8029 9.1775 0.001293661 2,428.45 469,298.18
774 599,076 463,684,824 27.8209 9.1815 0.001291990 2,431.69 470,613.19
775 600,625 465,484,375 27.8388 9.1855 0.001290323 2,434.73 471,729.77
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776 602,176 467 , 288,676 27.8568 9.1894 0.001288060 2 , 437.88 472
, 947.92

777 603 , 729 469 , 007 , 433 27.8747 9.1933 0.001287001 2 , 441.02 474
, 167.65

778 605 , 284 470 . 910,952 27.8927 9.1973 0.001285347 2 , 444. 16 475
, 388.94

779 606,841 472 . 729,139 27.9106 9.2012 0.001283697 2 , 447.30 476
, 611.81

780 608,400 474 , 552,000 27.9285 9.2052 0.001282051 2 . 450.44 477 , 836.24

781 609,901 470 , 379,541 27.9464 9.2091 0.001280410 2 , 453.58 479
, 062.25

782 6 ] 1,524 4 ;8 ,
21 1,768 27.9643 9 . 21.30 0.001278772 2

, 456,72 480
, 289.83

783 013,089 480 , 048,687 27.9821 9.2170 0.001277139 2 , 459.87 481
, 518.97

784 614,656 481 , 890,304 28.0000 9.2209 0.001275510 2 , 463.01 482 , 749.69
785 616,225 483 , 736,625 28.0179 9.2248 0.001273885 2

, 466. 15 483
, 981.98

786 617,796 485 , 587,656 28.0357 9.2287 0.001272265 2 , 409.29 485
, 215.84

787 610,309 487 , 443,403 28 . 0r>35 9.2326 0.001270648 2 , 472.43 486
, 451.28

788 620,944 480 , 303,872 28.0713 9.2365 0.001269036 2 , 475.68 487 , 088.28
789 022,521 491 , 169,069 28.0891 9.2404 0.001267427 2

, 478.72 488 , 926.85
790 024 , 100 493

,
039,000 28.1069 9.2443 0.001265823 2 , 481.86 490

, 166.99

791 625,681 494 , 913,671 28. 1247 9.2482 0.001264223 2 , 485.00 491
, 408.71

792 627,264 496 , 793 , 088 28.1425 9 . 2.521 0.001 262620 2
, 488. 14 492

,
651.99

793 628 , 840 498
, 077 , 257 28.1603 9.2560 0.001201034 2 , 401.28 493

, 890.85
794 630 , 436 500 , 566 . 1 84 28.1780 9.2599 0 . 0012.59446 2 , 404.42 495

,
143.28

795 032 , 025 502 , 459,875 28. 1957 9.2038 0.001257862 2 , 497.57 496 , 391.27

796 633,610 504 , 358,336 28.2135 9.2677 0.001256281 2 , 500.71 497 , 640.84
797 635,209 506

,
261,573 28.2312 9.2716 0.001254705 2 , 503.85 498 , 891.98

798 636 , 804 508
,
169,502 28.2489 9.2754 0.001253133 2 , 506.99 500 , 144.69

799 638,401 510
, 082,399 28.2006 9.2793 0.001251564 2 , 510.13 501 , 398.97

800 640,000 512
, 000,000 28.2843 9.2832 0.001250000 2

, 513.27 502 , 654.82

801 641,601 513 , 922,401 28.3019 9.2870 0.001248439 2 , 516.42 503
,
912.25

802 643 , 204 515 , 849,008 28.3196 9.2909 0.001246883 2 , 519.56 505
, 171.24

803 644 , 809 5 l 7
,
78 l

,
6 '

r.7
,

28.3373 9.2948 0.001245330 2 , 522 . 70 506
,
431.80

804 646,416 519 , 718,464 28.3549 9.2986 0.001243781 2
, 525.84 507 , 693.94

805 648,025 521
,
600,125 28.3725 9.3025 0.001242236 2 , 528.98 508 , 957.64

806 649,636 523
,
600,616 28.3901 9.3063 0.001240605 2

, 532.12 510
, 222.92

807 651,249 525 , 557 , 943 28.4077 9.3102 0.001239157 2 , 535 . 20 51 ]

,

489.77
808 052,804 527

,
514,112 28.4253 9.3140 0.001237621 2 , 538.41 512

,
758.19

809 654,481 529
, 475,129 28.4429 9.3179 0.001236004 2 , 541.55 514

, 028.18
810 656,100 531

, 441 ,000 28.4005 9.3217 0.001231568 2 , 544 . 69 515 , 299.74

811 657,721 533
, 411 .731 28.4781 9 . 32,55 0.001233046 2

, 547.83 516 , 572.87
812 050 , 344 535

, 337 , 328 28.4956 9.3294 0.001231527 2 , 550.97 517 , 847.57
813 000,909 537

, 367,797 28.5132 9.3332 0.001230012 2 , 554.12 519
, 123.84

814 662 , 506 539
,
353 . 144

'

28 5307 9.3370 0 . 001228.501 2
, 557.26 520 , 401.68

815 664,225 541 , 343,375 28.5482 9.3408 0.001226994 2
, 560.40 521

, 681.10

816 665,856 543 , 338,406 28 . 56.57 9.3447 0.001225490 2
, 563.54 522

, 962.08
817 607,489 545 , 338,613 28.5832 9.3485 0 . 00122,3990 2 , 566.68 524

, 244.63
818 669 , 124 547

, 343,432 28.6007 9.3523 0.001222404 2 , 569.82 525
, 528.76

819 670,761 549
, 353,259 28 6182 9.3561 0.001221001 2 , 672.96 526

, 814.46
820 072,400 551 , 368,000 28.6366 0.3599 0.001219512 2 , 576.11 528 , 101.73

821 674,041 553 , 387,661 28.6531 9.3637 0.001218027 2 , 679.25 529 , 390.66
822 675,084 555 , 412,248 28.6705 9.3675 0.001216545 2 , 582.39 530 , 680.97
823 677 , 329 557 , 441,767 28.6880 9.3713 0.001215067 2 , 685.53 531

, 972.95
824 678,970 559 , 476,224 28.7054 9.3751 0.001213592 2 , 588.67 533 , 266.50
825 680,625 561 , 615,625 28.7228 9.3789 0.001212121 2 , 591.81 534 , 561.62

826 682,276 503 . 559,976 28.7402 9.3827 0.001210654 2 , 594.96 535 , 858.32
827 683,929 565

, 609,283 28.7576 9.3865 0.001209190 2 , 598.10 537
,
156.68

828 685,584 567 , 663,552 28.7750 9.3902 0.001207729 2 , 601.24 538 , 456.41
829 687,241 569 . 722,789 28.7924 9.3940 0.001206273 2 , 604.38 539 , 767.82
830 688.900 571 , 787,000 28.8097 9.3978 0.001204819 2 , 607.52 541 , 060.79

831 690,561 673,856 191 28.8271 9.4016 0.001203369 2 , 610.66 542 , 365.34
832 692,224 575 , 930,368 28.8444 9.4053 0.001201923 2 . 613.80 643 ,

671.46
833 693,889 678 , 009,537 28.8617 9.4091 0.001200480 2 , 616.96 544 , 979.16
834 695,556 680

, 093,704 28.8791 9.4129 0.001199041 2 , 620.09 640 , 288.40
835 697,225 682 . 182,876 28.8964 9.4166 0.001197606 2

, 623.23 547 ,
699.23
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836 698.896 584,277,056 28.9137 9.4204 0.001196172 2.626.37 548,911.63
837 700 , 569 686,376,253 28.9310 9.4241 0.001194743 2,629.51 5,50,225.61
838 702,244 588.480,472 28.9482 9.4279 0.001193317 2,632.66 551 ,541.15
839 703,921 590.589,719 28.96,55 9.4316 0.001191895 2.035,80 5,52,858.26
840 705,600 692,704,000 28.9828 9.4354 0.001190476 2.638.94 554,176.94

841 707 . 281 594,823,321 29.0000 9.4391 0.001189061 2,642.08 555,497.20
842 708,964 596,947,088 29.0172 9.4429 0.0011876-18 2,645.22 556,819.02
843 710,649 599,077,107 29.0.345 9.4466 0.001186240 2,648.36 ,5,58,142.42
844 712,336 601,211,584 29.0517 9.4503 0.001184834 2,051.60 559,467.39
845 714,025 603,351,125 29.0689 9.4541 0.001183432 2,654.65 560,793.92

846 715,716 605,495,736 29.0861 9.4578 0.001182033 2,657.79 562,122.03
847 717,409 607,045,423 29.1033 9.4615 0.001180638 2,660.93 563,451.71
848 719,104 609.800.192 29.1204 9.4652 0.001179245 2,664.07 564,782.96
849 720,801 611,960,049 29.1376 9.4690 0.001177856 2,667.21 566,115.78
850 722 . 500 614,125,000 29. 1548 9.4727 0.001176471 2,670.35 567,450.17

851 724,201 616,295,051 29.1719 9.4764 0.001175088 2,673.50 568,786.14
852 725,904 018,470,208 29. 1890 9.4801 0.001173709 2,676.64 570,123.67
853 727 . 609 020.650,477 29 . 2062 9.4838 0.001172333 2,679.78 ,571,462.77
854 729,316 622 , 835 , 804 29 2233 9.4875 0.001170960 2,682.92 572,803.45
865 731,025 625,026,375 29.2404 9.4912 0.001169591 2,686.06 574,145.69

856 732,736 627,222,010 29.2575 9.4949 0.001168224 2,689.20 575,489.51
857 734.449 029,422,793 29.2746 9.4986 0.001166861 2,692.34 576,8,34.90
858 736,164 631,628,712 29.2916 9.5023 0.001165501 2,695.49 578,181.85
859 737,881 633,839,779 29.3087 9.5060 0,001164144 2,698.63 579,530.38
860 739,600 636,050,000 29.3258 9.5097 0.001162791 2,701.77 580,880.48

861 741,321
i
638,277,381 29.3428 9.5134 0. 00 J 161440 2,704,91 582,2,32.15

862 743,044 640,503,928 29 . 3.598 9.5170 0.001160093 2,708.05 583,.585. 39
863 744 . 769 642,735,047 29.3769 9.5207 0.001158749 2,711.19 ,584,940.20
864 746,496 644,972,544 29.3939 9.5244 0.001157407 2,714,34 ,586,296.59
865 748,225 647,214,625 29 4109 9.5281

1

0.001156069 2,717.48 587,654.54

866 749,956 649,401,890 29.4279 9.5317 0.001154734 2,720.62 589,014.07
867 751.689 651,714,303 29 . 4449 9.5354 0.001153403 2,723.76 590,375.16
868 753,424 653,972,032 29.4018 9.5391 0.001152074 2,726.90 591,737,83
869 755,161 656,234,909 29.4788 9.5427 0.001150748 2,730.04 ,593,102.06
870 756,900 058,503,000 29.4958 9 . 5464 0.001149425 2.733. 19 '594,467.87

871 758,641 660,776,311 29.5127 9.5500 6.001148106 2,736.33 595,835.25
872 760,384 663,054,848 29.5296 9.5537 0.001146789 2,739.47 597,204.20
873 702,129 065,338,617 29 . 5466 9.5574 0.001145475 2,742.61 598,574.72
874 763 , 876 067,627,024 29.5635 9.5610 0.001144165 2,745.75 599,946.81
875 765,625 069,921,875 29.5804 9.5646 0.001142857 2,748.89 601,320.47

876 767,376 672, 221, 376- 29 . .5973 9.5683 0.001141553 2,752.04 602,695.70
877 709,129 674,526,133 29.6142 9.5719 0.001140251 2,755.18 604,072.50
878 770,884 676,830,152 29-6311 9.6756 0.001138952 2,758.32 605,450.88
879 772,641 679,151,439 29.6479 9.5792 0.001137056 2,761.46 606,830.82
880 774,400 681,472.000 29.6648 9.5828 0.001136364 2,764.60 608,212.34

881 776,161 683,797,841 29 . 6816 9.6865 0.001135074 2,767.74 609,596.42
882 777,924 686,128.968 29.6985 9.5901 0.001133787 2,770.88 610,980.08
883 779,689 688,405,387 29.7153 9.5937 0.001132503 2,774.03 612,366.31
884 781,456 690,807,104 29.7321 9.5973 0.001131222 2,777.17 613,754.11
885 783,225 693,154.125 29.7489 9.6010 0.001129944 2,780.31 615,143.48

886 784,996 095.506,456 29.7658 9.6046 0.001128668 2,783.45 616,534.42
887 786,769 697,864,103 29.7825 9.6082 0.001127396 2,786.59 617,926.93
888 788,544 700,227,072 29.7993 9.6118 0.001126126 2.789.73 619,321.01
889 790,321 702,595,369 29.8161 9.6154 0.001124859 2,792.88 620,716.66
890 792, 100 704,969,000 29.8329 9.6190 0.001123596 2 J96.02 622,113.89

891 793,881 707,347,971 29.8496 9.6226 0.001122334 2,799.10 623,512.68
892 795,664 709,932,288 29.8664 9.6262 0.001121076 2,802.30 624,918.04
893 797,449 712,121,957 29.8831 9.6298 0.001119821 2,805.44 626,314.98
894 799,236 714,516.984 29.8998 9.6334 0.001118668 2,898.58 627,718.49
895 801,025 716,917,375 29.9166 9.6370 0.001117318 2,811.72 629,123.56
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TABLE 31.

—

.(Continited)

No. Square Cube Sq Root Cu Root Reciprocal Circum Area

896 802,816 719,323,136 29.9333 9.6406 0.001116071 2,814.87 630,530.21
897 804,609 721,734,273 29.9500
898 806,404 724,150,792 29.9606
899 808,201 726,572,699 29.9833
900 810,000 729,000,000 30.00(K)

901 811,801 731,432,701 30.0167
902 813,604 733,870,808 30.0333
903 815,409 736,314,327 30.0500
904 817.216 738,763,204 30.0666
905 819,025 741,217,625 30.0832

906 820,836 743,677,416 30.0998
907 822,649 746,142,643 30.1164
908 824,464 748,613,312 30.1330
909 826,281 751,089,429 30.1496
910 828,100 753,571.000 30.1062

911 829,921 756,058,031 30.1828
912 831,744 758,550,528 30.1993
913 833,569 761,048,497 30.2159
914 835,396 763,551,944 30.2324
915 837.225 766,060,875 30.2490

916 839,056 768,575,296 30.2655
917 840,889 771,095,213 30.2820
918 842,724 773,620,632 30.2985
919 844,561 776,151,559 30.3150
920 846,400 778,688,000 30.3315

921 848,241 781,229,961 30.3480
922 850,084 783,777,448 30.3645
923 851.929 786, 330, 46 « 30.3809
924 853,776 788,889,024 30.3974
925 855,625 791.453,125 30.41£8

926 857,476 794,022.776 30.4302
927 859.329 796,597,983 30.4407
928 861,184 799,178,752 30.4631
929 863,041 801,765,089 30.4795
930 864,900 804,357,000 30,4959

931 866,761 806,954,491 30.5123
932 868,624 809,557,568 30.5287
933 870,489 812,106,237, 30.5450
934 872,366 814,780,504 30.5614
935 874,225 817,400,375 30.5778

936 876,096 820,025,356 30.5941
937 877,969 822,656,953 30.6105
938 879,844 825,293,672 30.6268
939 881,721 827,936,019 30.6431
940 883,600 830,584,000 30.6594

941 885,481 833,237.621 30.6757
942 887,364 835,896,888 30.6920
943 889,249 838,561,807 30.7083
944 891,136 841,232,384 30.7246
945 893,025 843,908,625 30.7409

946 894,916 846,590,536 30.7571
947 896,809 849,278,123 30.7734
948 898,704 851,971,392 30.7896
949 900,601 854,670,349 30.8058
950 902,500 857.375,000 30.8221

951 904,401 860.085,351 30.8383
952 906,304 862,801,408 30.8545
953 908,209 865.623,177 30.8707
954 910,116 868,250,664 30.8869
955 912,025 870,983,875 30.0031

0.6442 0.001114827 2,818.01 631,938.43
9.6477 0.001113586 2,821.15 633.348.22
9.6513 0.001112347 2,824.29 634,759.68
9.6649 0.001111111 2,827.43 636,172.51

9.6585 0.001109878 2,830.58 637,587.01
9.6620 0.001108647 2,833.72 639.003.09
9.6656 0.001107420 2,836.86 640,420.73
9.6692 0.001106195 2,840.00 641,839.95
9.6727 0.001104972 2,843.14 643,260.73

9.6763 0.001103753 2,846.28 644,683.09
9.6799 0.001102536 2,849.42 646,107.01
9.6834 0.001101322 2.852.57 647.532.51
9.6870 0.001100110 2,855.71 648,959.58
9.0905 0.001098901 2,858.85 050.388.22

9.6941 0.001097695 2,861.99 651,818.43
9.6976 0.001096491 2,865.13 653.250.21
9.7012 0.001095290 2,808.27 654,683.56
9.7047 0.001094092 2,871.42 656,118.48
9.7082 0.001092896 2,874.56 657,554.98

9.7118 0.001091703 2,877.70 658,993.04
9.7153 0.001090513 2,880.84 660,432.68
9.7188 0.001089325 2,883.98 661,873.88
9.7224 0.001088139 2.887.12 663,316.66
9.7259 0.001086957 2,890.26 664,761.01

9.7294 0.001085776 2,893.41 666,206.92
9.7329 0.001084599 2,806.55 667,054.41
9.7364 0.001083423 2,899.69 669,103.47
9.7400 0.001082251 2,902.83 670,554.10
9.7435 0.001081081 2,905.97 672,006.30

9.7470 0.001079914 2.909.12 673,460.08
9.7505 0.001078749 2,912.26 674,915.42
9.7540 0.001077580 2,915.40 676,372.33
9.7575 0.001076426 2,918.54 677,830.82
9.7610 0.001075269 2,921.68 679,290.87

9.7645 0.001074114 2.924.82 680,752.50
9.7080 0.001072961 2,927.96 682,215 69
9.7715 0.001071811 2.931.11 683,680.46
9.7750 0.001070664 2,934.25 685,146.80
9.7785 0.001069519 2,937.39 686,614.71

9.7819 0.001068376 2,940.53 688,084.19
9.7854 0.001067236 2,943.67 689,656.24
9 7889 0.001066098 2,946.81 691,027.86
9.7924 0.001064963 2,949.96 692,502.05
9.7959 0.001063830 2,953.10 693,977.82

9.7993 0.001062699 2,956.24 695,455.16
9.8028 0.001061671 2,969.38 696,934.06
9.8063 0.001060445 2,962.52 698,414.53
9.8097 0.001059322 2,965.66 699,896.58
9.8132 0.001058201 2,968.80 701,380.19

9.8167 0.001057082 2,971.95 702,865.38
9.8201 0.001055966 2,975.09 704,362.14
9.8236 0.001054852 2,978.23 705,840.47
9.8270 0.001053741 2,981.37 707,330.37
9.8305 0.001052632 2,984.51 708,821.84

9.8339 0.001051525 2,987.66 710,314.88
9.8874 0.001050420 2,990.80 711,809.60
9.8408 0.001049318 2,993.94 713,805.68
9.8443 0.001048218 2,997.08 714,803.43
9.8477 0.001047120 3,000.22 716,302.76
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TABLE 31.

—

(Coniinued)

No.

"
1

Square Cube 1
Sq Root Cu Root Reciprocal Circum , , Area

956 913,936 873,722,816 30.9192 9.8511 0.001046025 3,003. 30 717,803. C(>

957 915.849 876.467,493 30.9354 9.8546 0.001044932 3,006.50 719,300.12
958 917,764 879,217,912 30.9516 9.8580 0.001043841 3,009.05 720.810 k;
959 919,681 881,974,079 30.9677 9,8614 0.001042753 3,012.79 722,3 5.77
960 921,600 884.736,000 30.9839 9.8048 0.001041607 3,015.93 723,822.95

961 923,521 887.503,681 31.0000 9.8683 0.001040,583 3,019.07 725,331.70
962 925,444 890,277,128 31.0101 9.8717 ,

0.001039501 3,022.21 726,842.02
963 927 , 369 893,0.56,347 31.0322 9.8751 0.001038422 3,025.35 728,353.91
964 929,296 895,841,344 31.0483 9.8785 0.001037344 3,028.50 729,807.37
965 931,225 898,632,125 31.0644 9.8819 0.001036209 3,031.04 731,382.40

966 933,156 901 ,428,696 31 .0805 9.8854 0.001035197 3,034.78 732,899.01
967 935,089 904.231,063 31.0960 9.8888 0. 001034 12() 3,037.92 734,417 18
968 937,024 907,039,232 31.1127 9.8922 0.001033058 3,041.06 735,936.93
969 938,961 909,853,209 31.1288 9.8950 i 0.001031992 3,044.20 737,4.58.24
970 940,900 912,673.(K)0 31.1448 9.8990 0.001030028 3,047.34 738,981.13

971 942,841 915,498,611 31.1609 9.9024 0.001029800 3,050.49 740,505.59
972 944,784 918,330,048 31.1769 9.90.58 0.001028807 3,053.03 742,031.62
973 946,729 921,107,317 31.1929 9.9092 0.001027749 3,050.77 743,5.59.22
974 948,676 924,010,424 31.2090 9.9126 0.001020094 3,0,59.91 745,088.39
975 950,625 926,859,375 31.2250 9.9100 0.001025041 3,003.05 746,619.13

976 952,576 929,714,176 31.2410 9.9194 0.001024590 3,000.19 748,151.44
977 954,529 932,574,833 31.2570 9.9227 0.001023541 3,009.34 749,685.32
978 956,484 935,441,352 31.2730 9.9201 0.001022495 3,072.48 751,220.78
979 958,441 938,313,739 31.2890 9.9295 0.001021450 3,075.02 752,757.80
980 960,400 941,192,000 31.3050 9.9329 0.001020408 3,078.70 754,290.40

981 962,361 944,076,141 31.3209 9.9303 0.001019308 3,081.90 755,830.50
982 964,324 946,906,168 31 .3309 9.9390 0.001018330 3,085.04 757,378.30
983 966,289 949,802,087 31.3528 9,9430 0.001017294 3,088.10 758,921.01
984 968,256 952,703,904 31.3688 9.9404 0.001010200 3,091.33 700,406.48
985 970,225 955,671,625 31.3847 9.9497 0.001015228 3,094.47 702,012.93

986 972.196 958,685,256 31.4006 9.9531 0.001014199 3,097 61 703,500.95
987 974,109 961,504,803 31.4160 9.9505 0.001013171 3,100.75 765,110.54
988 976,144 964,430,272 31.4325 9.9598 0.001012140 3,103.89 706,601.70
989 978,121 967,301.609 31.4484 9.9032 0.001011122 3.107.04 708,214.44
990 980,100 970,299,000 31.4043 9.9666 ! 0.001010101 3,110.18 709,708.74

991 982,081 973,242,271 31.4802 9.9699 0.001009082 3,113.32 771,324.61
992 984,064 970,191,488 31.4900 9.9733 0.001008005 3,110.46 772,882.00
993 986,049 979,140,057 31.5119 9.9766 0.001007049 3,119.60 774,441.07
994 988,036 982,107,784 31.5278 9.9800 0.001006036 3,122.74 776,001.00
996 990,025 985,074,875 31.5436 9.9833 0.001005025 3,125.88 777,503.82

996 992,016 988,047,930 31.5595 9.9866 0.001004010 3,129,03 779,127.54
997 994,009 991,026,973 31.5753 9.9900 0.001003009 3,132.17 780,692.84
998 996,004 994,011,992 31.5911 9.9933 0.001002004 3,135.31 782,259.71
999 998,001 997,002,999 31.6070 9.9967 0.001001001 3,138.45 783,828.15
1000 1,000,000 1,000,000,000 31.6228 10.0000 0.001000000

j

3,141.59 785,398.16
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TABLE 32.—FIVE-PLACE TABLE OF COMMON LOGARITHMS

First

three

digits

in

number
0 1 2 3 4 5 6 7

I

8 9

100 00000 00043 00087 00130 00173 00217 00260 00303 00346 00389

101 00432 00475 00518 00561 00604 00647 00689 00732 00775 00817

102 00860 00903 00945 00988 01030 01072 01115 01157 01199 01242

103 01284 01326 01368 01410 01452 01494 01536 01578 01620 01662

104 01703 01745 01787 01828 01870
j

01912 01963 01995 02036 02078

105 02119 02160 02202 02243 02284 02325 02366 02407 02449 02490

106 02531 02572 02612 02653 02694 02735 02776 02816 02857 02898

107 02938 02979 03019 03060 03100 03141 03181 03222 03262 03302

108 03342 03383 03423 03463 03503 03543 03583 03623 03663 03703

109 03743 03782 03822 03862 03902 03941 03981 04021 04060 04100

110 04139 04179 04218 04258 04297 04336 04370 04415 04454 04493

111 04532 04571 04610 04650 04689 04727 04766 04805 04844 04883

112 04922 04961 04999 05038 05077 05115 05154 05192 05231 05269

113 05308 05346 05385 05423 05461 05500 05538 05576 05614 05652

114 05690 05729 05767 05805 05843 05881 05918 05956 05994 06032

115 06070 06108 06145 06183 06221 06258 00296 06333 06371 06408

116 06446 06483 06521 06558 06595 06633 06670 06707 06744 06781

117 06819 06856 06893 06930 06967 07004 07041 07078 07115 07151

118 07188 07225 07262 07298 07335 07372 07408 07445 07482 07518

119 07555 07591 07628 07664 07770 07737 07773 07809 07846 07882

120 07918 07954 07990. 08027 08063 08099 08135 08171 08207

1

08243

121 08279 08314 08350 08386 08422 08458 08493 08529 08565

1

08600

122 08636 08672 08707 08743 08778 08814 08849 08884 08920 08955

123 08991 09026 09061 09096 09132 09167 09202 09237 09272 09307
124 09342 09377 09412 09447 09482 09517 09552 09587 09621 09656

125 09691 09726 09760 09795 09830 09864 09899 09934 09968

i

10003

126 10037 10072 10106 10140 10175 10209 10243 10278 10312 10346

127 10380 10415 10449 10483 10517 10551 10585 10619 10653 10687

128 10721 10755 10789 10823 10857 10890 10924 10958 10992 11025

129 11059 11093 11126 11160 11193 11227 11261 11294 11327 11361

130 11394 11428 11461 J1494 11528 11561 11594 11628 11661 11694

131 11727 11760 11793 11826 11860 11893 11926 11959 11992 12024

132 12057 12090 12123 12156 12189 12222 12254 12287 12320 12352

133 12385 12418 12450 12483 12516 12548 12581 12613 12646 12678

134 12710 12743 12775 12808 12840 12872 12905 12937
1

12969 13001
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First

three

digits

in

number
0 1 2 3 4

1

5 6

1

1

7 8 9

135 13033 13066 13098 13130 13162 13194 13226 13258 13290 13322

136 13354 13386 13418 13450 13481 13513 13545 13577 13609 13640

137 13672 13704 13735 13767 13799 13830 13862 13893 13925 13956

138 13988 14019 14051 14082 14114 14145 14176 14208 14239 14270

139 14301 14333 14364 14395 14426 14457 14489 14520 14551 14582

140 14613 14644 14675 14706 14737 ^ 14768 14799 14829 14860 14891

141 14922 14953 14983 15014 15045 15076 15106 15137 15168 15198

142 15229 15259 15290 15320 15351 15381 15412 15442 15473 15503

143 15534 15564 15594 15625 15655 15685 15715 15746 15776 15806

144 15836 15866 15897 15927 15957 15987 16017 16047 16077 16107

145 16137 16167 16197 16227 16256 16286 16316 16346 16376 16406

146 16435 16465 16495 16524 16554 16584 16613 16643 16673 16702

147 16732 16761 16791 16820 16850 16879, 16909 16938 16967 16997

148 17026 17056 17085 17114 17143 17173 17202 17231 17260 17289

149 17319 .17348 17377 17406 17435 17464 17493 17522 17551 17580

150 17609 17638 17667 17696 17725 17754 17782 17811 17840 17869

151 17898 17926 17955 17984 18013 18041 18070 18099 18127 18156

152 18184 18213 18241 18270 18298 18327 18355 18384 18412 18441

153 18469 18498 18526 18554 18583 18611 18639 18667 18696 18724

154 18752 18780 18808 18837 18865 18893 18921 18949 18977 19005

155 19033 19061 19089 19117 19145 19173 19201 19229 19257 19285

156 19312 19340 19368 19396 19424 19451 19479 19507 19535 19562

157 19590 19618 19645 19673 19700 19728 19756 19783 19811 19838

158 19866 19893 19921 19948 19976 20003 20030 20058 20085 20112

159 20140 20167 20194 20222 20249 20276 20303 20330 20358 20385

160 20412 20439 20466 20493 20520 20548 20575 20602 20629 20656

161 20683 20710 20737 20763 20790 20817 20844 20871 20898 20925

162 20952 20978 21005 21032 21059 21085 2111*2 21139 21165 21192

163 21219 21245 21272 21299 21325 21352 21378 21405 21431 21458

164 21484 21511 21537 21564 21590 21617 21643 21669 21696 21722

165 21748 21775 21801 21827 21854 21880 21906 21932 21958 21985

166 22011 22037 22063 22089 22115 22141 22167 22194 22220 22246

167 22272 22298 22324 22350 22376 22401 22427 22453 22479 22505

168 22531 22557 22583 21^608 22634 22660 22686 22712 22737 22763

169 22789 22814 22840 22866 22891 22917 22943
1

22968
1

22994 230.19
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TABLE 32.

—

(Continued)

First

three

digits

in

number
0 1 2 3 4 5 6 7 8 9

170 23045 23070 23096 23121 23147 23172 23198 23223 23249 23274

171 23300 23325 23350 23376 23401 23426 23452 23477 23502 23528

172 23553 23578 23603 23629 23654 23679 23704 23729 23754 23779

173 23805 23830 23855 23880 23905 23930 23955 23980 24005 24030

174 24055 24080 24105 24130 24155 24180 24204 24229 24254 24279

175 24304 24329 24353 24378 24403 24428 24452 24477 24502 24527

176 24551 24576 24601 24625 24650 24674 24699 24724 24748 24773

177 24797 24822 24846 24871 24895 24920 24944 24969 24993 25018

178 25042 25066 25091 25115 25139 25164 25188 25212 25237 25261

179 25285 25310 25334 25358 25382 25406 25431 25455 25479 25503

180 25527 25551 25575 25600 25624 25648 25672 25696 25720 25744

181 25768 25792 25816 25840 25864 25888 25912 25935 25959 25983

182 26007 26031 26055 26079 26102 26126 26150 26174 26198
j

26221

183 26245 26269 26293 26316 26340 26364 26387 26411 26435 26458

184 26482 26505 26529 26553
j

26576 26600 26623 26647 26670 26694

185 26717 26741 26764 26788 26811 26834 26858 26881 26905 26928

186 26951 26975 26998 27021 27045 27068 27091 27114 27138 27161

187 27184 27207 27231 27254 27277 27300 27323 27346 27370 27393

188 27416 27439 27462 27485 27508 27531 27554 27577 27600 27623

189 27646 27669 27692 27715 27738 27761 27784 27807 27830 27852

190 27875 27898 27921 27944 27967 27989 280*L2 28035 28058 28081

191 28103 28126 28149 28171 28194 28217 28240 28262 28285 28307

192 28330 28353 28375 28398 28421 28443 28466 28488 28511 28533

193 28556 28578 28601 28623 28646 28668 28691 28713 28735 28758

194 28780 28803 28825 28847 28870 28892 28914 28937 28959 28981

195 ! 29003 29026 29048 29070 29092 29115 29137 29159 29181 29203

196 29226 29248 29270 29292 29314 29336 29358 29380 29403 29425

197 29447 29469 29491 29513 29535 29557 29579 29601 29623 29645

198 29667 29688 29710 29732 29754 29776 29798 29820 29842 29863

199 29885 29907 29929 29951 29973 29994 30016 30038 30060 30081

20 30103 30320 30535 30750 30963 31175 31387 31597 31806 32015

21 32222 32428 32634 32838 33041 33244 33445 33646 33846 34044

22 34242 34439 34635 34830 35025 35218 35411 35603 35793 35984

23 36173 36361 36549 36736 36922 37107 37291 37475 37658 37840

24 38021 38202 38382 38561 38739 38917 39094 39270 39445 39620



404 ENGINEERING PROBLEMS MANUAL

TABLE 32.

—

(Continued)

First

two

digits

in

number 0 1 2 3 4 5 6 7

]

8 9

25 39794 39967 40140 40312 40483 40654 40824 40993 41162 41330

26 41497 41664 41830 41996 1
42160 42325 42488 42651 42813 42975

27 43136 43297 43457 43616 43775 43933 44091 44248 44404 44560

28 44716 44871 45025 45179 45332 4548^1 45637 45788 45939 46090

29 46240 46389 46538 46687 46835 46982 47129 47276 47422 47567

30 47712
j

47857 48001 48144 48287 48430 48572 48714 48855 48996

31 49136 49276 49415 49554 49693 49831 49969 50106 50243 50379

32 50515 50651 50786 50920 51055 51188 51322 51455 51587 51720

33 1 51851 51983 52114 52244 52375 52504 52634 52763 52892 53020

34 ! 53148 53275 53403 53529 53656 53782 53908 54033 54158 54283

35 54407 54631 54654 54777 54900 55023 55145 55207 55388 55509

36 55630 55751 55871 55991 56110 56229 56348 56467 56585 56703

37 56820 56937 57054 57171 57287 57403 57519
!

57634 57749 57864

38 57978 58092 58206 58320 58433 58546 58659 58771 58883 58995

39 59106 59218 59329 59439 59550 59660 59770
1

59879 59988 60097

40 60206 60314 60423 60531 60638 60746 60853 60959 61066 61172

41 61278 61384 61490 61595 61700 61805 61909 62014 62118 62221

42 62325 62428 62531 62634 62737 62839 62941 63043 63144 63246

43] 63347 63448 63548 63649 63749 63849 63949 64048 64147 64246

441 64345 6444^ 64542 64640 64738 64836 64933 65031
1

65128 65225

45 65321 65418 655f4 65610 65706 65801 65896 05992 66087 66181

46 66276 66370 66464 66558 66652 66745 66839 66932 67025 67117
47 67210 67302 67394 67486 67578 67669 67761 67852 67943 68034
48 68124 68215 68305 68395 68485 68574 68664 68753 68842 68931
49 69020 69108 69197 69285 69373 69461 69548 69636 69723 69810

50 69897 69984 70070 70157 70243 70329 70415 70501 70586 70672
51 70757 70842 70927 71012 71096 71181 71265 71349 71433 71517
52 71600 71684 71767 71850 71933 72016 72099 72181 72263 72346
53 72428 72509 72591 72673 72754 72835 72916 72997 73078 73159
54 73239 73320 73400 73480 73560 73640 73719 73799 73878 73957

55 74036 74115 74194 74273 74351
1

74429 74507 74586 74663 74741
56 74819 74896 74974 75051 75128 75205 75282 75358 75435 75511
57 75587 75664 75740 75815 75891 75967 76042 76118 76193 76268
58 76343 76418 76492 76567 76641 76716 76790 76864 76938 77012
59 77085 77159 77232 77305 77379 77452 77525 77597 77670 77743
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TABLE 32.

—

{Continued)

First

two

digits

in

number 0 1 2 3 4 5 6 7

1

1

8 9

60 77815 77887 77960 78032 78104 78176 78247 78319 78390 78462

61 78533 78604 78675 78746 78817 78888 78958 79029 79099 79169

62 79239 79309 79379 79449 79518 79588 79657 79727 79796 79865

63 79934 80003 80072 80140 80209 80277 80346 80414 80482 80550

64 80618 80686 80754 80821 80889 80956 81023 81090 81158 81224

65 81291 81358 81425 81491 81558 81624 81690 81757 81823 81889

66 81954 82020 82086 82151 82217 82282 82347 82413 82478 82543

67 82607 82672 82737 82802 82866 82930 82995 83059 83123 83187

68 83251 83315 83378 83442 83506 83569 83632 83696 83759 83822

69 83885 83948 84011 84073 84136 84198 84261 84323 84386 84448

70 84510 84572 84634 8460(i 84757 84819 84880 84942 85003 85065

71 85126 85187 85248 85309 85370 85431 85491 85552 85612 85673

72 85733 85794 85854 85914 85974 86034 ' 86094 86153 86213 86273

73 86332 86392 86451 86510 86570 86629 86688 86747 86806 86864

74 86923 86982 87040 87099 87157 87216 87274 87332 87390 87448

75 87506 87564 87622 87679
:

87737 87795 87852 87910 87967 88024

76 88081 88138 88195 88252 88309 88366 88423 88480 88536 88593

77 88649 88705 88762 88818 88874 88930 88986 89042 89098 89154

78 89209 89265 89321 89376 89432 89487 89542 89597 89653 89708

79 89763 89818 89873 89927 89982 90037 90091 90146 90200 90255

80 90309 90363 90417 90472 90526 90580 90634 90687 90741 90795

81 90849 90902 90956 91009 91062 91116 91169 91222 91275 91328

82 91381 91434 91487 91540 91593 91645 91698 91751 91803 91855

83 91908 91960 92012 92065 92117 92169 92221 92273 92324 92376

84 92428 92480 92531 92583
1
92634

t

92686 92737 92788 92840 92891

85 92942 92993 93044 93095 93146 93197 93247 93298 93349 93399

86 93450 93500 93551 93601 93651 93702 93752 93802 93852 93902

87 93952 94002 94052 94101 94151 94201 94250 94300 94349 94399

88 94448 94498 94547 94596 94645 94694 94743“ 94792 94841 94890

89 94939 94988 95036 95085 95134 95182 95231 95279 95328 95376

90 95424 95472 95521 95569 95617 95665 95713 95761 95809 95856
91 95904 95952 95999 96047 96095 96142 96190 96237 96284 96332

92 96379 96426 96478 96520 96567 96614 96661 96708 96755 96802

93 96848 96895 96942 96988 97035 97081 97128 97174 97220 97267

94 97313 97359 97405 97451 97497 97543 97589 97635 97681 97727
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TABLE 32.

—

{Continued)

First

two

digits

in

number 0 1 2 3

1

]

4 5 6 7 8 9

95 97772 97818 97864 97909 97955 98000 98046 98091 98137 98182

96 98227 98272 98318 98363 98408 98453 98498 98543 98588 98632

97 98677 98722 98767 98811 98856 98900 98945 98989 99034 99078

98 99123 99167 99211 99255 99300 99344 99388 99432 99476 99520

99 99564 99607 99651 99695 99739
1

99782 99826 99870 99913 99957

To get the logarithm of a number: See p. 85 for rules for computation

with logarithms.

. Determine the characteristic (integral part) by^ inspection (refer to

page 84).

. Find the first two (or for numbers ranging from 100 to 200, the first

three) digits in the given number.

c. Follow horizontally across the page to the column headed with a single

digit. This is the third (or from 100 to 200, the fourth) digit in the number.

d. The value in this column and on this horizontal line is the mantissa

(decimal part) of the required logarithm.

e. Annex this mantissa to the characteristic to ged the complete logarithm

.

To get the number corresponding to a given logarithm

;

a. Hunt in the body of the table until given mantissa is found.

h. Read the figures in the number column on the same line.

c. Annex the single digit at the head of the column in which the mantissa

was found.

Interpolation formulas used to extend the range of a table of logarithms.

Symbols used:

X = any five-digit number whose logarithm is desired.

a = the five-digit number next below x.

h « the five-digit number next above x.

ntx = the desired mantissa of x.

rria = the given mantissa of a.

rrib “ the given mantissa of b.

log X * log a -f

log~^ X »= a + (6 — a).
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TABLE 33.~-FOUR-PLACE TABLE OF TRIGONOMETRIC
FUNCTIONS^

TKIGONOMETRIC FUNCTIONS (at intervals of 10')

Annex—10 in columnB marked*.

De-
grees

Ra-
dians

Sines Cosines Tangents Cotangents

1 Nat. Log.*
1
Nat. Log. *

1
Nat. Log.*

1
Nat. Log.

1

0° 00' 0.0000 1.0000 00 1.0000 0.0000
1
.0000 00 00 00 1 . 5708 90° 00'

10 0.0029 .0029 7.4637 1.0000 .0000 .0029 7.4637 343.77 2.5303 1.5679 50
20 0.0058 1.0058 .7648 1 . 0000 .0000 .0058 .7048 171.89 .2352 1 . 5650 40
30 0.0087 .0087 .9408 1 . 0000 .0000 .0087 .9409 114.59 .0591 1.5621 30
40 0.0116 .0116 8.0658 0.9999 .0000 .0116 8.06.58 85.940 1.9342 1 . 5592 20
50 0.0145 .0145 .1627 .9999 .0000 .0145 .1627 68.750 .8373 1 . 5563 10

o Oo 0.0175 .0175 8.2419 .9998 9.9999 .0175 8.2419 57.290 1.7581 1 . 5533 89° 00'

10 0.0204 .0204 .3088 .9998 .9999 .0204 .3089 49.104 .6911 1 . 5504 50
20 0.0233 .0233 .3668 .9997 .9999 .0233 .3669 42 . 964 .6331 1 . 5475 40
30 0.0262 .0262 .4179 . 9997 .9999 .0262 :4181 38. 188 .5819 1 . 5446 30
40 0.0291 .0291 .4637 .9996 .9998 .0291 .4038 34.368 .5362 1.5417 20
50 0.0320 .0320 .5050 .9995 .9998 .0320 .5053 31.242 .4947 1 . 5388 10

2® 00' 0.0349 .0349 8.5428 .9994 9.9997 .0349 8.5431 28.630 1.4569 1 . 5359 88° 00'

10 0.0378 .0378 .5776 .9993 .9997 .0378 . 5779 26.432 .4221 1 . 5330 50
20 0.0407 .0407 .6097 . 9992 .9996 .0407 .6101 24.542 . 3899 1.5301 40
30 0.0436 .0436 .6397 . 9990 .9996 .0437 .6401 22.904 . 3599 1.5272 30
40 0.0465 .0465 .6677 .9989 .9995 .0466 .6682 21.470 .3318 1 . 5243 20
50 0.0495 .0494 .6940 .9988 .9995 .0495 .0945 20.206 .3055 1,5213 10

3® 00' 0.0524 .0523 8.7188 .9986 9.9994 .0524 8.7194 19.081 1.2806 1.5184 87° 00'

10 0.0553 .0552 .7423 .9985 .9993 .0553 .7429 18.075 .2571 1.5155 50
20 0.0582 .0581 .7645 .9983 .9993 .0582 .7052 17.109 .2348 1.5126 40
30 0.0611 .0610 .7857 .9981 .9992 .0612 .7865 16.350 .2135 1 . 5097 30
40 0.0640 . 0640 . 8059 .9980 .9991 .0641 .8007 15.605 . 1933, 1 . 5068 20
50 0.0609 .0669 .8251 .9978 .9990 .0670 .8261 14.294 . 1739 1 . 5039 10

4° 00' 0.0698 .0698 8.84361i .9976 9.9989 .0699 8.8446 14.301 1.1554 1.5010 86° 00'

JO
{

0.0727 .0727 .8613 .9974 .9989 .0729 . 8024 13.727 . 1376 1.4981 50
20 0.0756 .0756 .8783 .9971 .9988 .0758 .8795 13.197 . 1205 1.4952 40
30 0.0785 .0785 .8946 .9969 .9987 .0787 . 8960 12.700 . 1040 1.4923 30
40 0.0814 .0814 .9104 .9967 .9986 .0816 .9118 12.251 .0882 1.4893 20
50 0.0844 .0843 .9256 .9964 .9985 .0846 .9272, 11.826 .0728 1 . 4864 10

5" 00' 0.0873 .0872 8.9403 .9962 9.9983 ' .0875 8.9420 11.430 1.0580 1.4835 85° 00'

10 0.0902 .0901 .9545 .9959 .9982 .0904 .9563 11.059 .0437 1 . 4806 50
20 0.0931 . 0929 .9682 .9957 .9981 .0934 .9701 10.712 .0299 1.4777 40
30 0.0960 , 0958 .9816 .9954 .9980 .0963 .9836 10.385 .0164 1 . 4748 30
40 0.0989 .0987 .9945 .9951 .9979 .0992 .9960 10 078 .0034 1.4719 20
50 0. 1018 .1016 9.0070 .9948 ,9977

1

.1022 9.0093 9.7882 0.9907 1 . 4690 10

6® 00' 0.1047 .1045 9.0192 .9945 9.9976 .1051 9.0216 9.5144 0.9784 1.4661 84° 00'

10 0.1076 .1074 .0311 .9942 .9975 .1080 .0336 9.2553 .9664 1.4632 50
20 0.1105 .1103 .0426 .9939 .9973 .1110 .0453 9 . 0098 .9547 1 . 4603 40
30 0.1134 .1132 .0539 .9936 .9972 .1139 .0567 8.7769 .9433 1.4574 30
40 0.1164 .1161 .0648 .9932 .9971 .1169 .0678 8.5555 .9322 1.4544 20
50 0.1193 .1190 .0755 .9929 .9969 ,1198 .0786 8.3450 .9214 1.4515 10

7° 00' 0.1222 .1219 9.0859 .9925 9.9968 .1228 9.0891 8.1443 0.9109 1 . 4486 83° 00'

10 0.1251 1.1248 .0961 .9922 .9966 .1257 .0995 7.9530 .9005 1.4457 50
20 0.1280 .1276 .1060 .9918 .9964 .1287 .1096 7.7704 .8904 1.4428 40
30 0. 1309 .1305 .1157 .9914 .9963 .1317 .1194 7.5958 .8806 1 . 4399 30
40 0.1338 .1334 .1252 .9911 .9961 .1346 .1291 7.4287 .8709 1 . 4370 20
50 0,1367 .1363 .1345 ,9907 .9959 .1376 .1385 7.2687 .8615 1.4341 10

boO 0.1396 .1392 9.1436 .9903 9.9958 .1405 9.1478 7.1154 0.8522 1.4312 82° 00'

10 0.1425 .1421 .1525 ,9899 .9956 .1435 .1569 6.9682 .8431 1.4283
1

50
20 0.1454 .1449 .1612 ,9894 .9954 .1465 . 1658 6.8269

‘

.8342 1 . 4254 40
30 0.1484 .1478 .1697 .9890 .9952 .1495 .1745 6.6912 .8255 1 . 4224 30
40 0. 1513 .1507 .1781 .9886 .9950 .1524 .1831 6.5606 .8169 1.4195 20
50 0.1542 .1536 .1303 .9881 .9948 .1554 .1915 6.4348 .8085 1.4166 10

9® 00' 0.5171 .1564 9.1943
Nat. Log.*

.9877 9.9946
Nat. Log.*

.1584 9.1997
Nat. Log.*

6.3138 0.8003
Nat. Log.

1.4137 81° (Ky

Cosines Sines Cotangents Tangents
1

Ra-

1

dians
De-
grees

1 From Masks’ Mechanical Engineers’ Handbook.”
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TArXE 83.

—

{Continued^

TIUGONOMETRIC FUNCTION3
Annex—10 in columns marked*.

De-
grees

Ra-
dians

Sines Cosines Tangents Cotangents

Nat. Lo-.* Nat, Log.* Nat. Log. *
1
Nat. Log.

1

9° 00' • 0.1571 . 1564 9. 1943 .9877 9.9946 .1584 9. 1097 6.3138
.2078,6. 1070

0.8003 1.4137 81° 00'

10 0.1600 .1593 . 2022 .9872 .9944 .1614 .7022 1.4108 50
20 0. 1629 . 1622 .2100 .9868 .9942 .1641 .2158 6.0844 .7842 1.4079 40
30 0.1G58 .1650 .2176 .0863 .9940 .1673 . 2236 5.9758 .7764 1.4050 30
40 0.1687 .1679 .2251 . 9858 . 9938 .1703 .2313 5 . 8708 . 7687 1.4021 20
50 0.1716 .1708 .2324 .9853 .9930 .1733 . 2389 5.7694 .7611 1.3992 10

lO'’ 00' 0.1745 . 1736 9.2397 .9848 9.9934 . 1763 9.2463 5.6713 0.7537 1..3963 80° 00'

H) 0.1774 .1705 .2468 . 9843 .9931 .1793 . 2536 5. 5764 .7464 1 . 30.34 50
20 0.1804 .1794 . 2538 .9838 .9920 . 1823 . 2600 5.4845 .7301 1 . 3904 40
30 0. 1833 . 1822 . 20CO .9833 , 9927 . 1853 . 268 ) 5.3055 . 7320 1.3875 30
40 0.1862 .1851 .2674 . 9827 .9024 . 1883 .2750 5.3003 .7250 1.3846 20
50 0.1891 .1880 .2740 . 9822 .9022 .1014 .2819 5.2257 .7181 1.3817 10

11° 00' 0.1920 .1908 9,2800 .9816 9.9919 .3044 9.2887 |5. 1440 0.7113 1 . 3788 79° 00'

10 0.1049 . 1037 . 2870 .9811 .9917 . 1074 20.53 ,5.0658 .7047 1 . 3759 50
20 0. 1978 .1965 . 2934 . 9805 .991-1 . 2004 .3020 4.0804 . 0980 1 .3730 40
30 0.2007 . 1994 .2997 .9799 .9012 . 2035 . 3085 ,4.0152 .0915 1.3701 30
40 0.2036 . 2022 . 3058 . 9793 . 9009 . 2065 .314!) 4.8430 . 6851 1 . 3672 20
50 1 0.2065 .2051 .3119 .9787 .9907 .2095 .3212 4 . 7729 .6788 1 . 3643 10

12° 00' ! 0.2094 .2079 9.3179 .9781 9.9904 .2126 9 . 3275 4 . 7040 0.0725 1.3614 78° 00'

10 0.2123 .2108 .3238 . 9775 .9901 .2156 . 3336 4 . 6382 . 6t)64 1 . 3584 50
20 0.2153 .2136 .3296 .9769 .0899 .2186 .3307 1 . 5736 . 0003 1 . 3555 40
30 , 0.2182 .2164 .3353 . 9763 . 9896 .2217 .3458!4 5107 . 6542 1 . 3526 30
40 1 0.2211 .2193 .3410 .9757 . 9893 .2247 .3517 4.4494 . (»483 1 . 3497 20
50 0.2240 .2221 .3466 . 9750 .9890 .2278 .3576 4.3807 . 0424 1 . 3468 10

CO oo 0.2269 .2250 9.3521 ,9744 9.9887 . 2309 9.3634 4.3315 0.6360 1 . 3439 77° 00'

10 0.2298 . 2278 .357r . 9737 .9884 . 2339 .3691 4.2747 . 6309 1.3410 50
20 0.2327 . 2306 . 3629 .9730 .9881 . 2370 .3718 4 2103 .6252, 1 . 338

1

40
30 0.2356 .2331 . 3682 .972-1 .9878 . 2401 . 3804 4 . 1653 .6196[ 1 . 3352 30
40 0.2385 .2363 , 3734 .9717 . 9875 .2432 .3850 1.11 26 .6141 1 . 3323 20
50 0.2414 .2391 .3786 .9710 .9872 .2462 .3014 4.0611 . 6086 1 . 3294 10

14° 00' 0.2443 .2419 9 . 3837 .9703 9.9869 .2493 0.3068 4.0108 0 . 6032 1 . 3265 76° 00'

10 0.2473 .2447 . 3887 .9696 .9866 .2524 .4021 3 9617 . 5979 1.3235 50
20 [0.2502 . 2470 . 3037 .9689 .9863 .2555 .4074 3 . 0 1 30 . 5926 1 . 3206 40
30 0.2531 . 2504 . 3986 .9081 .9859 .2586 ,4127 3 . 8667 . 5873 1 . 3 L77 30
40 0.2560 . 2532 . 4035 .9674 .9856 .2617 .4178 3.8208 . 5822 1.3148 20
50 0.2589 .2560 .4083 . 9667 .9853 .2648 . 4230 3.7700 .5770 1.3110 10

15° 00' 0.2618 . 2588 9.4130 . 9659 9.9849 .2679 9.4281 3.7321 0.5719 1.3090 7 00'

10 0.2647 .2616 .4117 .9052 .9846 .2711 .4331 3.6801 . 5669 1.3J01 50
20 0.2676 . 2644 . 4223 . 9644 . 9843 .2742 .4381 3.6470 .5619 1 .3)32 41
30 0.2705 . 2672 . 42C9 .9636 .9839 .2773 .4430 3 . 6059 . 5570 1 . 3003 30
40 0.2734 .2700 .4314 . 9028 .9836 .2805 .4470 3 . 5656 .5521 1.2074 20
50 0.2763 .2728 . 4359 .9021 .9832 .2836 .4527 3.5201 .5473 1.2945 10

10° 00' 0.2793 . 2756 9 . 4403 .0013 9.9828 . 2867 9.4575 3 . 4874 0.5425 1.2015 74° 00'

10 0.2822 .2784 .4447 . 9605 .9825 .2899 .4622 3 . 4 105 . 5378 1 . 2886 50
20 0.2851 .2812 .4491 .9596 .9821 .2931 .4669 3.4124 .6331 1.2857 40
30 0.2880 . 2840 .4533 . 9588 .9817 .2962 .4716 3 . 3759 .5284 1.2828 30
40 0.2909 .2868 .4576 .9580 .9814 .2994 .4762 3 . 3 402 . 5238 1 . 2799 20
50 0.2938 .2896 .4618 ,9572 .9810 .3026 .4808 3.3052 .5192 1.2770 10

o Oo 0.2967 . 2924 9.4659 .9563 9.9806 .3057 9.4853 3 . 2709 0.6147 1,2741 73° 00'

10 0.2996 .2952 .4700 . 9555 .9802 . 3089 .4808 3.2371 .5102 1.2712 50
20 0.3025 .2979 .4741 .9546 .9798 .3121 ,4043 3.2041 . 5057 1 . 2883 40
30 0.3054 .3007 .4781 .9537 .9794 .3153 . 4087 3.1716 .5013 1.2654 30
40 0.3083 .3035 .4821 . 9528 .9790 .3185 .5031 3.1307 .4969 1.2625 20
50 0.3113 .3062 .4861 .9520 .9786 .3217 .5075 3.1084 .4925 1 . 2595 10

18° 00' 0.3142 . 3090
Nat,

9.4900
Log.

.9511
Nat.

9.9782
Log.*

.3249
Nat.

9.5118
Log.*

3 0777
Nat.

0.4882
Log.

1 . 2566 72^ 00'

Cosines Sines Cotangents Tangents Ra-
dians

De-
grees

'From Mabks’ “Mechanical Engineers* Handbook.”
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TABLE 33.

—

{Continued)^

t:xigonometric functions
Annex—10 in columns marked*.

De-
grees

Ra-
dians

Sines Cosines Tangents Cotangents

18*" 00' 0.3142
Nat.

. 3090
Log. ^

9 . 4900
Nat.
.9511

Log.*
9.9782

Nat.
.3249

Log.*
9.5118

Nat.
3 0777

Log.
0 . 4882 1 . 2.506 72° 00'

10 0.3J7I .3118 .4939 . 9,502 .9778 . 3281 .5101 3 0475 .4839 1 . 2537 50
20 0 . 3200 .3145 .4977 .9492 .9774 .3,314 . 5203 3 0178 .4797 1 . 2.508 40
30 0 . 3229 .3173 ,5015 .9483 .9770 . 3340 . .5245 2.9887 .4755 1 . 2479 30
40 0.3258 .3201 . 5052 .9474 .9765 .3378 .5287 2.9600 .4713 1 . 24.50 20
50 0.3287 . 3228 . ,5090 .9405 .9761 .3411 . 5329 2.9319 .4671 1.2421 10

19° 00' 0.3310 . 3250 9.5120 .94,55 9.97,57 .,3443 9.5370 2 . 9042 0.4630 1 . 2392 71° 00'

10 0.3345 . 3283 .5163 . 9440 .97,52 .3470 .5411 2.8700 .4589 1 . 2363 50
20 0 3374 .3311 .5199 . 94.30 .9748 . 3.508 .5451 2 . 8502 . 4549 1 . 2334 40
30 0 . 3403 .3338 .,5235 .9420 .974.3 . 3.54

1

.5491 2 . 8239 .4.509 1 . 2305 30
40 0.3432 . 3.365 . 5270 .9417 .9730 .3574 .5.531 2.7980 . 4469 1.2275 20
50 0 . 3402 . .3393 . 5300 .9407 .9734 .3007 .5571 2.7725 .4429 1.2246 10

20° 00' 0.3491 3420 9.5341 .9,397 0.9730 .3040 9.5011 2.7475 0.4.389 1.2217 70° 00'

10 0.3520 3448 . .5375 .9,387 .9725 .3073 .56.50 2.7228 .43.50 1.2188 50
20 0 . 3549 . 3475 .5409 .9377 .9721 .3700 . 5089 2 . 6985 .4311 1.2159 40
30 0 3578 . 3.502 ..54^4.3 .9307 .971(; .3739 .5727 2 . 6746 .4273 1 .21,30 30
40 0.3007 .3529 . 5477 . 9350 .971 1 .3772 .5706 2.0511 .4234 1.2101 20
50 0.3030 3557 .5510 .9346 .9700 .3805 .5804 2.6279 .4196 1 . 2072 10

21° 00' 0.3005 . 3584 9 . 5543 . 93.30 0.0702 .3839 9.5842 2.0051 0.41.58 1 . 2043 69° 00'

10 ) 3094 3011 . 5.570 .9325 .9097 .3872 .5379 2 . 5820 .4121 1.2914 50
2) .4.3723 . 3038 . 5009 . 93 1

5

.909'
. 3900 ..5917 2 . 5005 .4083 1.1985 40

3 ) ) 3752 . 3005 . 504 1 .9,304 .9087 .3939 . 59 5-1 2.5380 .4046 1.1950 30
4 ) :).3782 . 3092 . 5073 .9293 .9082 ..3973 .5991 2.5172 .4009 1.1026 20
50 0.3811 .3719 . 5704 .9283 .0077 .4000 .6028 2.4960 .3972 1.1897 10

22° 00' 0.3840 .3746 9.,5730
.576'-

. 9272 9.9072 .4040 9.0064 2.4751 0.30,36 1.1868 68° 00'

10 0 . 3809 . 3773 . .9201 .9007 .4074 .6100 2.4545 . 3900 1 . 1839 50
20 0.3898 , 3800 . 5798 .9250 .9001 .4108 .613 2.4342 .3864 1 .1810 40
30 0.3927 3827 . .5828 . 9239 .9050 .4142 .6172 2.4142 .3828 1.1781 30
40 9.395(; . 38,54 . 5859 . 9228 .9051 .4170 .62r)r 2..394 5 . 3792 1.1752 20
50 0 . 3985 .3881 . 5889 .9210 .9040 .4210 .6243 2.3750 .3757 1.1723 10

23° 00' 0.4014 ,3907 9.5919 . 9205 9.9040 .4245 9.6279 2.3559 0.3721 1.1094 37° 00'

10 0 . 4043 .39.34 . 5948 .9194 .9035 .4279 ,6314 2 . 3309 . 3686 1.1665 50
20 0 . 4072 !

3901 . .5978 .0182 .9029 > .4314 .6348 2.3183 .3652 1.1036 40
30 0.4102

i

3987 .0907 .9171 .9 >24
[

.4348 .6383 2 2098 .3617 l.lGOr. 30
40 0.4131 .4014 .OOSil .9159 .9018 .438,3 .64171 2.2817 . 358.3 1. L577 20
50 0.4160

1

4041 , 0005 .9147 .9013 .4417 .6452 2 . 2037 .3548 1 . 1548 10

24° 00' 0.4189 .4007 9.6093 .9135 9.9007 .44.52 9.6480 2.2400 0.3514 1.1519 36° 00'

10 0.4218 .4094 .6121 .9124 .90:)2 .4487 , 652<

)

2.2286 .3480 1 . 1490 59
20 0.424V .4120 .6149 .9112 .9,590 .4522 .05.53 2.2113 .3447 !l 1461 40
30 0.4270 4147 .6:77 .9100 .9.590 .4.5.57 .0587 3 . 1943 .3413 1.1432 30
40 0.4305 .4173 .620': .9088 .9.581 .4592 .6620 2.1775 . 3380 1.1493 20
60 0.4334 .4200 .6232 .9075 .9579 .4028 .60.54 2 . 1609 .3.346 1.1374 10

25° 00' 0.4363 .4220 9.6259 . 0063 9.9.573 .4663 9.6087 2. 1445 0.3313 1.1345 35° 00'

10 0 . 4392 . 42.53 . 6286 .9051 .9507 .4699 .6720 2.1283 .3280 1.1310
i

50
20 0.4422 .4279 .6313 . 9038 .9501 .4734 .6752 2.1123 .3248 1.1286 40
30 0.4451 . 4305 . 6340 . 9020 .95,55 .4770 .6785 2 . 0965 .,3215 1.1257 30
40 0.4489 .4331 .6300 . 9013 .9549 .4806 .6817 2.0809 .3183 1 . 1228 20
50 0.4509 .4358 .6392 . OOOi .9543 .4841 .6850 2.0655 .31.50 1.1199 10

20° 00' 0.4538 . 4384 9.6418 .8088 9.9537 .4877 9.6882 2.0503 0.3118 1.1170 64° 00'

10 0.4567 .4410 .6444 .8975 .9530 .4913 .6914 2 . 0353 .3086 1.1141 60
20 0.4.590 . 4436 .6470 . 8902 .9524 .4950 .6946 2.9204 .3054 1.1112 40
30 0.4025 .4462 .6495 . 8949 .9518 .4986 .6977 2.0057 .3023 1.1083 30
40 0.4654 .4488 .0521, . 8930 .9512 . 5022 .7009 1.9912 .2991 1.1054 20
50 0.4083 .4514 .6546 .8923 .9506 .6059 .7040 1.9768 .2960 1.1025 10

27° 00' 0.4712 .4,540 9.5570 .8910 9.9499 .6095 9.7072 1.9626 0.2928 1.0996 33° 00'

Nat. Log.*
1
Nat. Log.*

1
Nat. Log.* Nat. Log.

1

Cosines Sines Cotangents Tangents Ra-
dians

De.
grees

I From Masks' “Mechanical Engineers’ Handbook.”



36° 00' 0.6283 .6878 9.7692 .8090 9.9080 .7265 9.8613 1.3764 0.1387 0.9425 54^ 00'

I Nat. Log.* Nat. Log.* Nat, Log.* Nat. Log.

Cosines Sines Cotangents Tangents g^s
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' TABLE 33.

—

*(Continued)^

TRIGONOMETRIC FUNCTIONS*
Annex—10 in columna marked*.

grees dians
Sines Cosines Tangents Cotangents

Nat. Log * Nat. Log.* Nat. Log.* Nat Log.
kfhiliTiifl51^ .5878 9.7692 .8090 9.9080 .7265 9.8613 1 . 3764 0.1387 0.9425

iHl .5901 .7710 .8073 .9070 .7310 .8639 1 . 3680 .1361 0.9396 60
0.6341 . 5925 .7727 . 8056 .9061 .7355 . 8666 1 . 3597 . 1334 0.9367 40
0.G370 .5948 .7744 . 8039 .9052 .7400 .8692 1.3514 .1308 0.9338 30
[iHiCflll] .5972 .7761 .8021 .9042 .7445 .8718 1 . 3432 .1282 0.9308 201 0.6429 .5995 .7778 . 8004 .9033 .7490 .8745 1 . 3351 .1255 0.9279 10

37° 00' 0,6458 .6018 9.7795 .7986 9.0023 .7536 9.8771 1 . 3270 0.1229 0.9250 53° 00'
10 0.6487 ,6041 .7811 . 7960 .9014 .7581 .8797 1.3190 . 1203 0.9221 50
20 0.6510 .6065 .7828 .7951 .9004 .7627 .8824 1.3111 .1176 0.9192 40
30 0.6545 .6088 .7844 .7934 .8995 .7673 .8850 1 . 3032 .1150 0.9163 30
40 0.6574 .6111 .7861 .7910 .8985 .7720 .8876 1 . 2954 .1124 0.9134 20
50 . 6134 .7877 .7898 .8975 .7766 .8002 1 . 2876 .1098 0.9105 10

38° 00' 0.0632 .6157 9.7893 .7880 9.8965 .7813 9.8928 1 . 2799 0.1072 0.9076 52° 00'

10 0.6061 .6180 .7910 .7862 .8956 .7860 .8954 1.2723 .1046 0.9047 50
20 0.6690 . 6202 .7926 .7844 .8945 .7907 .8980 1.2647 .1020 0.9018 40
30 0.6720 . 6225 .7941 .7826 .8936 .7954 .9006 1.2572 .0994 0.8988 30

0.6749 . 6248 . 7957 .7808 .8925 .8002 .9032 1 . 2497 .0968 0.8959 20
50 0.6778 .6271 .7973 .7790 .8916 .8050 .9058 1 . 2423 .0942 0.8930 10

30° 00' 0.6807 .6203 9.7989 .7771 9.8905 .8098 9.9084 1 . 2349 0.0916 0.8901 51° 00'

10 0.6836 .6316 .8004 .7753 .8895 .8146 .9110 1.2276 .0890 0.8872 60
20 0.0865 . 6338 .8020 . 7735 .8884 .8195 .9135 1 . 2203 .0865 0.8843 40
30 0.6894 .6361 .8035 .7716 .8874 .8243 .9161 1.2131 . 0839 0.8814 30

0.6923 .6383 .8050 .7608 .8864 .8292 .9187 1 . 2059 .0813 0.8785 20
60 0.6952 .6406 .8066 . 7679 .8853 .8342 .9212 1 . 1088 .0788 0.8756 10

40° 00' 0.6981 .6428 9.8081 .7660 9.8843 .8391 9.9238 1.1918 0.0762 0.8727 50° 00'

10 0.7010 .6450 .8096 .7642 .8832 .8441 .9264 1 . 1847 .0736 0.8698 60
20 0,7039 .6472 ,8111 . 7623 .8821 .8491 .9289 1.1778 .0711 0.8668 40
30 0.7069 .6494 .8125 . 7004 .8810 .8541 .9315 1 . 1708 .0085 0.8039 30
40 aUrTRfia .6517 .8140 . 7585 .8800 .8591 .9341 1.1640 .0659 0.8610 20
50 0.7127 .6539 .8155 .7566 .8789 .8642 .9366 1.1571 .0634 0.8581 10

bo 0.7156 .6561 9.8169 1 .7547 9.8778 .8693 9.9392 1.1504 0.0608 0.8552 49° 00'

10 .6583 .8184 .7528 .8767 .8744 .9417 1.1436 .0583 0.8523 50
20 0.7214 .6004 .8198 .7509 . 8756 . 8706 .9443 1.1369 .0557 0.8494 40
30 .6626 .8213 .7490 .8745 .8847 .9468 1 . 1303 .0532 0.8465

.050610.8436
30

40 0.7272 .6648 .8227 .7470 .8733 .8899 .9494 1.1237 20
50 0.7301 . 6670 .8241 7451 .8722 .8952 .9519 1.1171 .0481 0.8407 10

bco
e' .6691 9.8255 .7431 9.8711 .9004 9.9544 1.1106 0.0456'o.8378 48° 00'

10 .6713 . 8209 .7412 .8699 .9057 .9570 1.1041 .0430,0.8348 50
20 .6734 . 8283 .7302 .8688 .9110 .9596 1.0977 . 0405 ;0. 8319 40
30 0.7418 .6750 .8297 .7373 .8676 .9163 .9621 1.0913 .0379 0.8290 30
40 ).7447 .6777 .8311 .7353 .8665 .9217 .9646 1 . 0850 .0354 0.8261 20
50 0.7476 .6799 .8324 .7333 .8653 .9271 .9671 1.0786 .0329 0.8232 10

43° 00' 0.7505 .6820 9.8338 .7314 9.8641 ,9325 9.9697 1.0724 0.0303 0.8208 47° 00'

10 }.7534 .6841 .8351 .7294 .8029 .9380 .9722 1.0661 .0278 0.8174 50
20 9.7503 .6862 .8365 .7274 .8618 .9435 .9747 1.0599 .0253 0.8145 40
30 .6884 .8378 .7254 ,8606 .9490 .9772 1.0538 .0228 0.8116 30
40 0.7021 .6905 .8391 .7234 .8594 .9545 .9798 1.0477 .0202 0.8087 20
50 0.7650 .6926 .8405 .7214 .8582 .9601 .9823 1.0416 .0177 0.8058 10

44° 00' 0.7679 .6947 9.8418 .7193 9.8569 .9657 9.9848 1.0355 0.0152 0.8029 46° 00'

10 0.7709 . 6967 .8431 .7173 .8557 .9713 .9874 1.0295 .0120 0.7999 50
20 0.7738 . 6988 .8444 .7153 .8545 .9770 .9899 1 . 0235 .0101 0.7970 40
30 tWtUfi .7009 .8457 .7133 .8a32 .9827 .9924 1.0176 .0076 0,7941 30
40 tUrHiltl ,7030 .8469 .7112 .8520 .9884 .9949 1.0117 .0051 0.7912 20
50 0.7825 ,7050 .8482

j

.7093 ,8507 .9942 .9975 1.0058 .0025 0.7883 10

45° 00' 0.7854 .7071
iNat.

9.8495
Log.*

.7071
!

Nat.
9.8495
Log.*

1.0000
Nat.

0.0000
Log.*

1.0000
Nat.

0.0000
Log.

0.7854 46° 00'

Cosines Sines Cotangents Tangents Ra-
dians

De-
JK22L

^ From Marks’ “Mechanical Engineers’ Handbook.’’
* For functions of angles 45 to 90 , use the names of the functions at bottom of page and

read up in the right hand column of angles.
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TABLE 34.—NATURAL LOGARITHMS
(Also known as hyperbolic or Naperian logarithms)

Conversion constants Numbers over 10 Numbers loss than 1.0

The base, * 2.718281828 log« (10)« log* (0.1)"

loK. 10 = 2.30258509 n = n(log.. 10) = n(log« 0.1)
loKio« = 0.43429448 = M (2.302585) = n (0.697415 - 3)

Below are given the logarithms of 1 2.302585 0.697415 - 3
luimbers from 1 to 10 to the base, e. 2 4.005170 0.394830 - 5
correct to five d(icimal places. 3 0.907756 0.0922447 - 7
Moving the decimal point in the 4 9.210340 0.789660 - 10
number n places to the right is 5 11.512920 0.487074 - 12
equivalent to adding n times G 13.815511 0.184489 - 14
(3.30258509) to the logarithm when 7 16.11 8090 0.881904 - 17
the number is greater than 10 or n 8 18.420081 0.579319 - 19
times (0.0974149 1 — 3) to the 9 20.723206 0.276734 - 21
logarithm when the number is h!S8

than 1

N 0 1 2 3 4 5 6 7 8 9

1.0 0.0 0000 0995 1980 2956 3922 4879 5827 6766 7690 8618
1 1 9531 *0430 *1333 *2222 *3103 *3970 *4842 *5700 *6551 *7395
1.2 0.1 8232 9062 9885 *0701 *1511 *2314 *3111 *3902 *4686 *5464
1.3 0.2 6236 7003 7763 8518 9267 *0010 *0748 *1481 *2208 *2930
1.4 0.3 3647 4359 6066 5767 6464 7156 7844 8520 9204 9878

1.6 0.4 0547 1211 1871 2527 3178 3825 44()9 5108 5742 6373
1.6 7000 7623 8243 8858 9470 *0078 *0682 *1282 *1879 *2473
1.7 0.5 3063 3649 4232 4812 5389 5962 0531 7098 7601 8222
1.8 8779 9333 9884 *0432 *0977 *1519 *2058 *2.594 *3127 *36.58

1.9 0.6 4185 4710 5233 6752 6209 6783 7294 7803 8310 8813

2.0 9315 9813 *0310 *0804 *1295 *1784 *2271 *2755 *3237 *3716
2.1 0.7 4194 4669 5142 5012 6081 6547 7011 7473 7932 8390
2.2 8846 9299 9751 *0200 *0648 *1003 *1530 *1978 *2418 *2855
2.3 0.8 3291 3725 4157 4.587 5015 5442 5800 0289 6710 7129
2.4 7547 7963 8377 8789 9200 9609 *0016 *0422 *0826 *1228

2.5 0.9 1029 2028 2426 2822 3216 3609 4001 4391 4779 5166
2.6 5551 5935 6317 6698 7078 7456 7833 8208 8.582 8954
2.7 9325 9695 *0003 *0430 *0790 *1160 *1523 *1885 *2245 *2604
2.8 1.0 2962 3318 3674 4028 4380 4732 5082 5431 5779 6120
2.9 6471 6815 7158 7500 7841 8181 8519 8856 9192 9527

3.0 9861 *0194 *0526 *0856 *1186 *1514 *1841 *2168 *2493 *2817
3.1 1.1 3140 3462 3783 4103 4422 4740 5057 5373 5688 6002
3.2 6315 6627 6938 7248 7557 7865 8173 8479 8784 9089
3.3 9392 9695 9996 *0297 *0597 *0806 *1194 *1491 *1788 *2083
3.4 1.2 2378 2671 2964 3256 3547 3837 4127 4415 4703 4990

3.6 5276 6562 5846 6130 6413 6095 6976 7257 7536 7815
3.6 8093 8371 8647 8923 9198 9473 9746 *0019 *0291 *0503
3.7 1.3 0833 1103 1372 1641 1909 2176 2442 2708 2972 3237
3.8 3500 3763 4025 4286 4547 4807 5067 5325 5584 5841
3.9 6098 6354 6609 6864 7118 7372 7624 7877 8128 8379

4.0 8629 8879 9128 9377 9624 9872 *0118 *0364 *0610 *0854
4.1 1.4 1099 1342 1585 1828 2070 2311 2552 2792 3031 3270
4.2 3508 3746 3984 4220 4456 4692 4927 5161 5395 5629
4.3 6862 6094 6326 6557 6787 7018 7247 7476 7705 7933
4.4 8160 8387 8614 8840 9065 9290 9515 9739 9962 0185

4.6 1.6 0408 0630 0851 1072 1293 1513 1732 1951
‘

2170 2388
4.6 2606 2823 3039 3256 3471 3687 3902 4116 4330 4543
4.7 4766 4969 6181 5393 5604 5814 6025 6235 6444 6653
4.8 6862 7070 7277 7486 7691 7898 8104 8309 8515 8719
4.9 8024 9127 9331 9534 9737 9939 *0141 0342 *0543 ,*0744
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TABLE 34.

—

{Continued)

N 0 1 2 3 4 5 6 7 8 9

5.0 1.6 0944 1144 1343 1542 1741 1939 2137 2334 2531 2728
5.1 2924 3120 3315 35U 3705 3900 4094 4287 4481 4673
5.2 4806 5058 5250 5441 5632 5823 6013 6203 6393 6582
5.3 6771 6959 7147 7335 7623 7710 7896 8083 8269 8455
5.4 8640 8825 9010 9194 9378 9562 9745 9928 *0111 >^0293

5.5 1 .

7

0475 0656 0838 1019 1199 1380 1560 1740 1919 2098
5.6 2277 2455 2633 2811 2988 3166 3342 3519 3695 3871
6.7 4047 4222 4397 4572 4746 4920 5094 5267 5440 5613
5.8 5786 5958 6130 6302 o ;73 6644 6815 6985 7156 7326
5.9 7495 7665 7834 8002 8171 8339 8507 8675 8842 9009

6.0 9176 9342 9509 9675 9840 *0006 *0171 *0336 *0500 *0665
6.1 1.8 0829 0993 1156 1319 1482 1645 1808 1970 2132 2294
6.2 2455 2616 2777 2938 3098 3258 3418 3578 3737 3896
6.3 4055 4214 4372 4530 4688 4845 5003 5160 5317 5473
6.4 5630 5786 5942 6097 6253 6408 6563 6718 6872 7026

6.5 7180 7334 7487 7641 7794 7947 8099 8251 8403 8555
6.0 8707 8858 9010 9160 9311 9462 9612 9762 9912 *0061
6.7 1.9 0211 0300 0509 0058 0806 0054 1102 1250 1398 1545
6.8 1692 1839 1986 2132 2279 2425 2571 2716 2862 3007
6.0 3152 3297 3442 3586 3730 3874 4018 4162 4305 4448

7.0 4591 4734 4876 5019 5161 5303 5445 5586 5727 5869
7.1 6009 6150 6291 6431 6571 6711 6851 6991 7130 7269
7.2 7408 7547 7685 7824 7962 8100 8238 8376 8513 8650
7.3 8787 8924 9061 9198 9334 9470 9606 9742 9877 *0013
7.4 2.0 0148 0283 0418 0553 0687 0821 0956 1089 1223 1357

7.5 1490 1624 1757 1890 2022 2155 2287 2419 2551 2683
7.6 2815 2946 3078 3209 3340 3471 3601 3732 3862 3992
7.7 4122 4252 4381 4511 4040 4769 4898 5027 5156 5284
7.8 5412 5540 5668 5796 5024 6051 6179 6306 6433 6560
7.9 6686 6813 6939 7065 7191 7317 7443 7568 7694 7819

8.0 7944 8069 8194 8318 8443 8567 8691 8815 8939 9063
8.

1

9186 0310 9433 9556 9379 9802 9024 *0047 *0169 *0291
8.2 2.1 0413 0535 0657 0779 0000 1021 1142 1263 1384 1 505
8 3 1026 1746 1806 1986 2106 2226 2346 2465 2585 2704
8.4 2823 2942 3061 3180 3298 3417 3535 3653 3771 3889

8.5 4007 4124 4242 4359 4476 4593 4710 4827 4943 5060
8.6 5176 5292 5409 5524 5640 5756 5871 5987 6102 6217
8.7 6332 6447 6562 6677 6791 6905 7020 7134 7248 7361
8.8 7475 7589 7702 7816 7929 8042 8155 8267 83S0 8493
8.9 8005 8717 8830 8942 9054 9165 9277 9389 9500 9611

9.0 9722 9834 9944 *0055 *0166 *0276 *0387 *0497 *0607 *0717
9.1 2.2 0827 0937 1047 1157 1266 1375 1485 1594 1703 1812
9.2 1920 2029 2138 2246 2354 2462 2570 2678 2786 2894
9.3 3001 3109 3216 3324 3431 3538 3645 3751 3858 3965
9.4 4071 4177 4284 4390 4496 4601 4707 4813 4918 5024

9.5 5129 5234 5339 5444 5549 5654 5759 5863 5968 6072
9.6 6176 6280 6384 6488 6592 6696 6799 6903 7006 7109
9.7 7213 7316 7419 7521 7624 7727 7829 7932 8034 8136
9.8 8238 8340 8442 8544 8646 8747 8849 8950 9051 9152
9.9 9253 9354 9455 9556 9657 9757 9858 9958 *0058 *0158

10.0 2.3 0259 0358 0458 0558 0658 0757 0857 0956 1055 1154

loK^x « (2.30258509) (logiox) logic x » (0.43429448) (log. x)
where 2.30258509 « log. 10 where 0.43429448 logic e





INDEX
A

Abbreviations, 349-352

Acceleration, definition of, 185

equivalents, table of, 364

Accuracy in calculation, 6

Aims of engineering problems
courses, 6

Analytic geometrj^ formulas, 156-

170

Angle iron, steel, properties of, 374

Areas, of circles, 384-400

equivalents, table of, 362

mensuration of, 354-358

moment of inertia of, 359

second moment of, 359

of triangles, 153

und(^r a curve, approximate, 214-

216, 231-234

Averages, method of, 158, 162, 165

C

C-al cuius, 193-235

classifying the problem' 194

derived curves, 210

formal, 73, 197

graphical, 209-231

integration, approximate, 231-235

graphical, 209-226

setting up the problem, 73, 196

moments, 198-209

types of functions, 195

Center of gravity, 203

Centroids, 200-204

Channels, steel, properties of, 376

Characteristics, changing sign of, 87

facts about, 83

how determined, 84

Circles, areas of, table of, 384-400

circumference of, table, 384-400

Circles, equation of, 108

sectors, etc., 358

semicircle, centroid, and moment
of inertia of, 359

spandrel, centroid, 'and moment
of inertia of, 359

Circumferences, circles, 384-400

Classifications, of engineers, 3

of lecturers, 20

of students, 23

Components, computation of, 187

orienting device, 188, 189

Computation methods, cut-long-

hand, 136-145

logarithmic, 85-90

slide rule, 106-123

Cosines, definition of, 149

law of, 152

table of values, 407-411

Cotangents, d(ifinition of, 149

table of values, 407-411

Craftsmanship, good, importance

of, 11, 33-35, 46

Cube roots, on slide rule, 120

table of, 384-400

Cubes, on slide rule, 120

table of, 384-400

Curve fitting, 156-170

exponential curves, 163-166

harmonic curves, 166

miscellaneous curves, 167-170

parabolic curves, 159-163

straight line, 156-158

suggestions on, 169-170

Cut-longhand computation, 137-144

characteristics in, 140, 144

decimal-point rules, 140, 144

division, 137

multiplication, 141

square root, 144

415
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D

Decimal-point location, character-

istic method, for cut-longhand,

140, 144

for logarithms, 84, 87-89

rule for characteristics, 84

for slide rule, 109, 116, 118-123

Decimals, of a foot, 383

of an inch, 382

Definitions of various terms, 6, 179

Derived curves, 170-178, 210-212

laws of, 172, 173

specifications, 69-72

typical sheet, 70

Differentiation, graphical, 229-231

Division, cut-longhand, 137

logarithms, 85

slide rule, 106

Durand’s rule, 233

E

Efficiency, definition of, 187

Energy, definition of, 180

Engineering problems (ujurses, aims,

6, 13

Equilibrium, laws of, 190

Equilibrium diagrams, specifications

for, 72

Equivalents, tables of, 362-365

Errors, allowable, 132

percentage of, 131

tolerances, 130

Exponents, laws of, 78-80

logarithms are, 82

¥

Flat steel, weights of, 372

Forces, resolution of, 187

Free-body diagrams, 72

Friction, in automobiles, 381

defined, 186

in friction gearing, 379

sliding, 380

static, 379

of trains, 381

Functions of pi (tt), 381

secondary, definitions, 252

trigonometric table, 407-413

G

Graphical methods, 90

Graphs, 57, 92-95

specifications, 57

H

Habit, laws of, 31

Holman’s rules, 134

Horsepower, conversion table for,

365

transmitted by shafting, 378

I

I-beams, steel, properties of, 375

Inertia, moment of, 204-209

transfer formula, 205

Initial index, definition of, 110

Integration, approximate, 231-234

formal, 73

graphic, 220-226

Interpolation, logarithms, rules for,

106

Inverted scales, 114

L

Least squares, 158, 163, 166

Lengths, equivalents of, 362

Logarithms, absolute value of, 87

base c, value of, 89, 412

characteristics, rule for, 84

common, table of, 401-406

computation by, 85-89

conversion of bases, 89

decimal values, 87-89

definition of, 82 .

how to use table of, 406

natural, table of, 412

powers of ten, 81

Longhand computation, 137-144
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M

Mathematical signs and symbols,

specifications, 53

tabic of, 353

Mensuration, tables, 354-358

Moment of inertia, 204

transfer formula, 205

Moments, 198-209

composite areas, 201

first, 200

of forces, 191

second, 204

Motion, rectilinear, 184

Multiplication, cut-longhand, 141-

144

logarithms, 85

slide rule, 106

N

Newton’s Laws of Motion, 183

Numbers, functions of, 384-400

P

Parabola, area of, 101, 356

equation for, 159-163

Parabolic st^gment, ar(\‘i, 161, 356

centroid, 359

moment of inertia, 359

Parabolic spandrel, area, 161, 356

centroid, 359

moment of inertia, 359

Pi (tt), functions and logarithms of,

381

Power, calculation of, 181

Precision, of measurement, 127-133

tables of, 132-133

Pressures, equivalents, 365

Primary quantities, 179

Problems, analysis, 35-37, 60-63

calculus, 314-348

centroids, 337-348

compound interest, 252-256

derived curves, 327-337

equilibrium, 278-279

graphs, 257-260

Problems, logarithms, 250-252

miscellaneous, 236-250

moment of inertia, 342-348

motion, 260-263

resolution of forces, 276-278

slide rule, 256-257

trigonometry, 279-314

typical tables, 202, 206, 208, 375,

378

work and power, 264-276

Pumping rates, equivalents, 363

R

Radians, table of, 407-411

Radius of gyration, 207

Reciprocals, of numbers, table,

384-400

on slide rule, 114

Resolution of forces, 187

Rope, hoisting steel, 377

manila, 376

Rounding of numbers, 135

S

Second moments, definitions of, 204

simple shapes, table, 359

steel shapes, 374-376

Sel(K!ted points, method of, 157,

162, 164

Shafting, horsepower transmitted

by, 378

Significant figures, allowable errors,

table of, 132

computation methods to use, 133

discussion of, 127-131

error, percentage of, 131

Holman’s rules, 134

Signs of trigonometric functions, 362

Sin^pson’s rule, 232

Sines, definition of, 149

law of, 150

table of, 407-411

Slide rule, characteristics, 107

decimal-point laws, 110, 114, 116,

117-121

division on, 106, 113, 116
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Slide rule, examples, 112, 113, 118-120

folded scales, 115

graduations on, 102-104

a graphic logarithm table, 105

history of, 99

initial index, 109

inverted scales, 114

logarithms on, 121

multiplication, on, 106 113, 116

precision of readings, 102-104

roots and powers, 117-120

trigonometric scales, 122-123

Specific gravity, definition of, 180

of substances, table, 360-371

Specifications, 42-75

analysis and calculations, 60

calculus. 73

derived curves, 69

diagrams, 65

equipment, 44

free-body diagrams, 72

graphs, 57

make-up of sheets, 49

mathematical symbols, 53

origin of, 43

reasons for, 42

tables, 63

workmanship, 46

Specimen pages, built-up shapes, 207

cut-longhand, 52

derived curves, 70

integration for area, 74

logarithmic computations, 54

resolution of forces, 188

slide rule, 50

tabulations, 202, 206, 208

three-sides laws, 54

trigonometric computations, 52,

54

Square roots, contracted, 144

longhand, 145

on slide rule, 118

table of, 384-400

Squares, on slide rule, 117

table of, 384-400

Standards and specifications, 44-76

origin, 43

reason for, 42

Steel, channels, 376

flat plates, 372

I-beams, 375

round bars, 373

square bars, 373

weight of, angles, 374

Steel shapes, properties of, 374-

376

Students, good, 30

types of, 23-25

Study aids, 31

attacking a problem, 35

attitude, 29-31

examinations, 40

note taking, 39

reading, 38

signs of a good student, 30

Symbols, 353

T

Tangents, definition of, 149

tables, 407-411

Three-sides laws, 150

Timber, weights, 371

Tolerances, 130-133

Trains, tractive resistance, 381

Traits neeided in engineering, 13-15,

33

Transfer formula, 205

Trapezoidal rule, 234

Trigonometry, 146-155

area of triangles, 153

conversion formulas, 360

cosine law, 152

functions, primary, 149

table of, 407-411

fundamental tools, 147

half-angle solution, 150

oblique triangles, 149

outline of basic needs, 154

right triangles, 148

segment solution; 151

signs of the functions, 362

sine law, 150

three-sides laws, 150

whole-angle solution, 151
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Types, of engineers, 2-6

of students, 23-25, 30

U

Unit circle, 362

V

Velocity, definition of, 185

equations, 185-186

equivalents, 364

Volumes, equivalents, ta})le of, 363

mensuration, 354-358

W

Weights, common substances, 366-

371

equivalents, table of, 363

plates, steel, 372

rope, manila, 376

steel hoisting, 377

steel bars, round and square, 373

wood, 371

Wood, weights of, 371

Work, definition of, 181

Work and energy law, 182

Workmanship, 11
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