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Introduction 
During the past twenty years the nonlinear problems of mechanics 

and mathematical physics have been vigorously attacked by scientific 
workers having a wide variety of aims and purposes: one need only 
recall, for example, the advances made in fluid dynamics—par¬ 
ticularly in gas dynamics—and in plasticity and nonlinear elasticity. 
The purpose of the present book is to give an account of another 
small segment of the general field of nonlinear mechanics, i.e., the 
field of nonlinear vibrations. Actually, the title of the book is 
rather too inclusive since only systems with one degree of freedom 
are treated, but this is rather natural because of the fact that more 
general systems have been studied very little. 

It is perhaps worth while to consider for a moment the reasons 
why one should be interested particularly in the nonlinear problems 
of mechanics. Basically the reason is, of course, that practically all 
of the problems in mechanics simply are nonlinear from the outset, 
and the linearizations commonly practiced are an approximating 
device which is often simply a confession of defeat in the face of the 
challenge presented by the nonlinear problems as such. It should 
be added at once that such linearizations as a means of approxi¬ 
mation have been and always will be valuable—in fact completely 
sufficient—^for many purposes. However, there are also many cases 
in which linear treatments are not sufficient. For example, if the 
oscillations of an elastic system result in amplitudes which are not 
very small, then the linear treatment may be simply too inaccurate 
for the purposes in view. In such cases the accuracy can often be 
improved sufficiently by carrying out further approximations of the 
same sort as are involved in linearizations. However, it happens 
frequently that essentially new phenomena occur in nonlinear systems 
which can not in principle occur in linear systems. A familiar example 
of such an essentially nonlinear phenomenon in the field of gas 
dynamics is the building up of a discontinuous shock wave from a 
smooth wave. In nonlinear vibrations examples of the same sort 
are the occurrence of subharmonic forced oscillations in a wide 
variety of systems, the occurrence of systems (the so-called self-excited 
systems) in which a unique periodic free oscillation occurs, and the 
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occurrence of what are called combination tones. In this book, the 
principal aim is not so much to introduce methods of improving the 
accuracy obtainable by linearization, but rather to focus the attention 
sharply on those features of the problems in which the nonlinearity 
results in distinctive new phenomena. One of the most attractive 
features of the subject of nonlinear vibrations is the existence of a 
surprisingly wide variety of such distinctive new phenomena; and, 
what is perhaps still more surprising, these phenomena can be treated 
by methods which are interesting and instructive in themselves 
without being difficult, and which do not require the use of sophisti¬ 
cated mathematics. 

This book has been written with the needs and interests of several 
classes of readers in mind. To begin with, the author has wished to 
present the underlying principles and theory in such a way that they 
can be easily understood by engineers and physicists whose primary 
interest is in applying the ideas and methods to concrete physical 
problems. The author has the impression that the existing fund of 
knowledge in nonlinear vibration theory has not been used in practice 
as much as it could and would be used if engineers and physicists 
were more familiar with it. In view of the author^s own general 
interests—^not to say biases—it would be strange if the needs and 
interests of applied mathematicians were to be neglected. For this 
class of readers the author has emphasized the various known types 
of physical problems in the field which lead up to the questions of 
mathematical interest, and on the other hand carried out detailed 
treatments, particularly in the Appendices, of a variety of important 
problems of a mathematical character, some of which constitute 
results achieved only in the last few years. Thus the book might be 
hoped to serve those readers who wish to be brought up to the border¬ 
line where new discoveries are being made. At the same time these 
readers are supplied both implicitly and explicitly with hints re¬ 
garding new problems to be tackled and with a number of ideas and 
methods that could perhaps be used to solve them. The author’s 
acquaintance with the material of this book arose through seminars 
and lecture courses conducted from time to time at New York 
University over a period of nearly ten years. The subject has 
invariably proved to be interesting and stimulating to the students. 
Consequently the author hopes that the book may prove useful to 
other colleagues in the teaching profession who may wish to conduct 
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similar seminar or lecture courses in nonlinear vibrations, or who 
may wish to supplement a course—even a quite elementary course—on 
ordinary differential equations with some of the striking illustrative 
material which occurs in such profusion in the field of nonlinear 
vibrations. 

In attempting to please too many classes of readers the author 
incurs the well-known risk of pleasing none of them. In the present 
case, however, this risk is to a large extent obviated by the character 
of the material itself. While the main types of problems can be treated 
rather satisfactorily with the knowledge and use of little more mathe¬ 
matics than elementary differential equations, the problems, if in¬ 
vestigated thoroughly and deeply, lead at once to questions of great 
subtlety and interest from the mathematical point of view—^a case in 
point is the so-called “difficulty with the small divisors’’ which occurs 
as soon as one treats the problem of combination tones. 

Before outlining more precisely the actual contents of the book, it 
should be said that the book is not intended to furnish a complete 
survey of the more rec^ont literature in the field. This is particularly 
tme with regard to the Russian literature, which is well known to be 
important and exRmsive. Fortunately, the recent book by N. Minor- 
sky {Introduction to Non-linear Mechanics) ^ and the translations by 
S. Lefschetz of books by Kryloff and Bogoliuboff and by Andronow 
and Chaikin, go far toward making this literature available. One 
omission which the author regrets is the theory of Liapounoff for the 
discussion of stability questions; but to deal adequately with this 
theory requires more space than would be reasonable in a book like 
the present one. 

The source of practically all the basic mathematical ideas and 
also the techniques in nonlinear vibrations is the work of Poincar^, 
while the specific basic physical problems treated at present in non¬ 
linear vibrations were introduced by Rayleigh, van der Pol, and 
Duffing. The object of the present book is to give a connected and 
systematic account of this work, wliich includes most of what had 
been done up to about 1930. The author would not presume to give 
a survey of outstanding work done after 1930 in the field. Never¬ 
theless, a considerable amount of qufte recent work is discussed in the 
book: the work of Levinson and Smith on the existence and uniqueness 
of the periodic solution in a very general case of the self-excited type, 
and the quite recent work of Haag and Dorodnitsyn on asymptotic 
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developments for the period and other quantities associated with 
relaxation os(;illations, are examples in point. 

There are six chapters in the main body of the book, and six 
Appendices. The first five chapters of the book are elementary in 
character, the sixth chapter is rather less elementary, while the 
Appendices are on the whole not elementary, containing, as they do, 
rigorous existence and uniqueness proofs. 

Chapter I consists of a short, though fairly complete, summary of 
the theory of linear vibrations for a system of one degree of freedom 
having constant characteristics. This chapter serves both for refer¬ 
ence and for contrast with the results of the nonlinear theory. 
Chapter 11 ti-eats easily integrable nonlinear systems in which no 
external forces depending on the time occur. A considerable number 
of physical problems illustrating the material is given, and a first 
glimpse of the advantages to be gained by working geometrically in 
the phase plane is achieved. In Chapter III free oscillation problems 
of a type like those of Chapter II, but not so easily integrable, are 
studied in detail b}^ working in the phase plane, again with reference 
to a ^^ariety of physical piublems. In the course of this chapter the 
graphical method of Li^nard is introduced and applied, the theory 
due to Poincar^ of singularities of first order differential equations is 
developed in order to obtain the criteria for their classification into 
types, and the notion of the index of a singularity is introduced. 
Finally, the usefulness of these ideas is illustrated by solving con¬ 
cretely a number of physical problems. One of these is a problem in 
elastic stability, which is treated dynamically^ Another is the inter¬ 
esting problem of the pull-out torques of a synchronous motor, 
which is given a detailed treatment. 

In Chapter IV problems of nonlinear forced oscillations are taken 
up and specialized to the cases in which the nonlinearity is provided 
solely by the ‘^elastic’’ restoring force. This is the type of problem 
first treated with significant results by Duffing. Such problems 
arise any time that a system with elastic restoring forces is subjected 
to periodic external forces which cause sufficiently large amplitudes. 
The ^^response curves” are first studied—that is, the curves showing 
the amplitude of the forced oscillation as a function of the frequency 
for a given amplitude of the external force. In this connection 
the problem of hunting of a synchronous motor is considered. A 
curious ‘‘jump phenomenon” is .studied which has often been observed 
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experimentally. The effect of viscous damping is considered. The 
occurrence of subharmonic oscillations is discussed. The problem 
of the occurrence of combination tones is considered, and the general 
problem of the stability of the periodic oscillations is formulated. 
However, this chapter has another purpose aside from presenting the 
solutions to certain specific problems, and which is perhaps even more 
important. That purpose is the presentation and discussion of a 
considerable variety of analytic methods useful in treating the periodic 
solutions. In particular, iteration and perturbation methods are 
explained and applied t-o obtain directly the solutions of the differential 
equations; both methods are also applied more indirectly as a means 
of determining the coeffic^ients of the Fourier series developments of 
the solutions. Thus the same problem is sometimes treated a number 
of times by different methods in this chapter. Special mention 
might be made of the iteration method of Rauscher, which is also 
explained in this (chapter. At the end of the chapter a table (similar 
to one in the little book of Duffing) is given in which the contrasts 
between linear and nonlinear systems are pointed out. In the more 
recent literature on nonlinear vibrations the problems of the type 
discussed in this chapter are usually treated rather summarily, if at 
all; consequently it was felt that a detailed treatment might be 
found useful. 

Chapter V is devoted entirely to problems in which the non¬ 
linearity occurs in the “damping” terms (i.e., the terms depending on 
the velocity, rather than on the displacement) in such a way as to 
cause what are called self-excited or self-sustained oscillations. 
Systems of this kind are very common in nature: they occur always 
in fact when a periodic motion is maintained through absorption of 
energy from a constant flow of energy. The best known and most 
important technical applications occur in electrical systems containing 
vacuum tubes, in which the energy for the oscillations is supplied 
by a direct current source. Oscillations of the same type occur 
frequently also in mechanical and acoustical systems. In fact, 
Rayleigh probably pointed out the first example of the sort in the 
case of the production of a sustained note from a violin string caused 
by bowing it. The failure of the Tacoma bridge a few years ago is 
generally ascribed to a particularly heavy self-excited oscillation in 
which the constant energy source was the wind. The flutter of 
airplane wings is another example of the same kind. 
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Chapter V is divided into two parts. In the first part a number 
of electrical and mechanical systems which lead to self-excited oscil¬ 
lations are studied in some detail, and the corresponding differential 
equations are derived. The remainder of this part is concerned with 
an analysis of the free oscillations, i.e., those which occur without 
the action of external exciting forces that depend on the time. This 
part could thus have been placed in Chapter III, but the importance 
of the specrific problems warrants a separate treatment. The basic 
occurrence, from the mathematical point of view, is that of limit 
cycles in the phase plane in the sense of Poincar^. In the simplest 
case just one such stable limit cycle occurs, and this in turn means 
that all motions tend to a unique periodic motion. This is in the 
strongest contrast with the behavior of the free oscillations in systems 
with nonlinear restoring forces, in which a whole family of free 
oscillations occurs. If the nonlinearity is small (in other words, if 
the oscillation is in th(^ neighborhood of the linear oscillation) the 
problems can be and are treated by the perturbation method. How¬ 
ever, the cases in which the departure from linearity is large-even 
very larger an^ of particular interest in this class of problems. 
In such cases the resulting oscillations are of a jerky, not to say dis- 
(^ontinuous, character. They arc often given the name relaxation 
oscillations. It is comparatively easy to obtain the lowest order 
term in an asymptotic development for the period of such a relaxation 
oscillation in terms of a parameter characterizing the departure from 
nonlinearity, but it is not easy to obtain higher order terms. Un¬ 
fortunately it- turns out that the higher order terms yield rather 
large contributions in cases in which the oscillation is markedly of the 
relaxation type, so that it is important to have a means of calculating 
them. Such a means has been devised quite recently by Dorodnitsyn, 
for the van der Pol equation, and more generally by Haag. The 
details of the complete asymptotic development are carried out in the 
first part of Chapter V for one relatively simple case. 

The second part of Chapter V is concerned with forced oscillations 
of systems whose free oscillations are of the self-sustained type. 
It is assumed in all cases that the oscillations do not depart too much 
from the linear oscillations. This theory was created by van der Pol, 
who invented a special analytical mode of attacking the problems 
which is different from any of the several methods treated in Chapter 
IV. Van der PoPs method is the method used almost exclusively by 
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the Russian writers—particularly Kryloff and Bogoliuboff—for solv¬ 
ing all of the various types of problems that involve the time ex¬ 
plicitly in the differential equation. The author believes, however, 
that this method, while it is particularly well suited to deal with the 
problems treated in this part of Chapter V, is not necessarily the 
simplest or the most straightforward method of treating other prob¬ 
lems. Th() theory of van der Pol is developed with reference to a 
particular electric circuit containing a triode vacuum tube and a 
source of alternating current. In treating the response phenomena, 
i.e., the amplitude of the periodic n^sponsc as a function of the 
frequency and amplitude of the excitation, the elegant variant of van 
der Pol’s method introduced by Andronow and Witt is employed in 
order to study the stability of all possible periodic oscillations having 
the frequency of the excitation. This is done by reducing the problem 
to one of classifying singularities of the first order differential equation 
of van der Pol in accordance with the criteria of Poincar6 derived in 
Chapter III, and this in turn is made feasible by the fact that to each 
periodic oscillation there is a corresponding type of singularity. 
This idea of Andronow and Witt also yields more than the criteria 
for the stability of the oscnllations. By means of it one is led to the 
possibility of the occurrence of combination oscillations, i.e., oscil¬ 
lations that are the sum of two oscillations, one with the frequency 
of the excitation, the other with a frequency close to that of the free 
nonlinear oscillation. Such combination oscillations are correlated 
with the presence of Poincar(5 limit cycles of the first order differential 
equation just mentioned above. The methods used can be extended 
to prove that the combination oscillations for sufficiently large de¬ 
tuning, i.e., for sufficiently large differences between the frequencies 
of the free and the forced oscillations, are unique and stable. The 
circumstances which may occur when the detuning is neither very 
small nor very large are quite complicated; some description of the 
phenomena in such cases—which include jump phenomena of various 
sorts reminiscent of similar phenomena studied in Chapter IV—is 
given following recent work of Cartwright and Littlewood. 

The final Chapter VI of the book returns once more to linear 
oscillations, but this time the characteristics of the systems treated 
are assumed to be not constant, as was the case in Chapter I, but 
rather periodic in the time. As a consequence the differential equa¬ 
tions become of the type called HilPs equations. There are several 
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reasons which dictated the inclusion of a lengthy chapter on linear 
systems in a book devoted primarily to nonlinear systems. In the 
first place, the treatment of the important question of stability of 
any periodic nonlinear oscillation leads inevitably to such HilPs 
equations. Second, the vibration phenomena encountered in systems 
of this type have featurcvS—the occurrence of vibrations somewhat 
like the subharmonics, for example—which place them, in a sense, in 
a position between those of nonlinear systems and of linear systems 
having constant characteristics. A few mechanical and electrical 
problems leading to Hill’s equation are first discussed. Then follows 
an account of the Floquet theory for linear differential equations with 
periodic coefficients. For the study of the stability of a given periodic 
nonlinear oscillation it is necessary to determine whether the solutions 
of a certain Hill’s equation are all hounded or not when certain pa- 
i*ameters in the Hill’s equation are given. The question of separating 
the ‘"stable” from the ‘"unstable” parameter values is discussed in 
detail for the most important special case, the Mathieu equation. 
These results are then applied to test the stability of the forced os¬ 
cillations of the Duffing equation, which were treated in Chapter 
IV, w'ith results the same as were advanced in Chapter IV as the 
result of plausible physical arguments. 

As has been indicated earlier, the Appendices are devoted to a 
number of mathematical questions which, however, are in some 
instances also of interest from a practical point of view. Appendix I 
gives a rigorous treatment of the perturbation method in general 
as applied to periodic oscillations in the neighborhood of a linear 
oscillation. Again the basic idea used is due to Poincar6. The 
general theory is then applied to prove the existence of the perturba¬ 
tion series for all cases treated in this book. In the course of satisfy¬ 
ing the conditions needed to ensure the existence of the solutions, 
one finds that important clues regarding the manner of interpreting 
the results are uncovered, and that insights are gained regarding the 
appropriate means of calculating the solutions concretely in the 
various cases. In Appendix II the existence of combination oscil¬ 
lations of certain systems with nonlinear restoring forces and with 
viscous damping is proved by obtaining a convergent perturbation 
series. This result is included as a contrast to the corresponding 
case in which no damping occurs, when the famous ""difficulty of the 
small divisors” alluded to above makes it practically certain that no 
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convergent perturbation series could be obtained. In Appendix III 

the existence of a limit cycle in certain rather general systems of the 

self-sustained type is proved by using a topological method involving 

the proof of the existence of a fixed point of a certain mapping. This 

Appendix is modeled somewhat on the work of Levinson and Smith, 

but a less general case is treated. Appendix IV gives a rigorous 

proof for the commonly conjectured character of the relaxation 

oscillation when the departure from nonlinearity becomes very large. 

Appendix V gives a derivation of the criterion of Poincar^ for the 

stability of a limit cycle, or orbital stability, as it is called. Finally, 

in Appendix VI, the uniqueness of the limit cycle for the system 

treated in Appendix III is proved (following the idea of Ijcvinson and 

Smith) by showing that all possible limit (cycles are stable. 



Acknowledgments 

The writing of this hook was greatly facilitated by the generous 
support of the Office of Naval Iicsean^h under Contract N6ori-201, 
Task Order No. 1. The help and encouragement given the author 
by the ONR in general, and by J )r. Mina Rees in particular, is grate¬ 
fully acknowledged. 

The starting point of this book was a set of lecture notes which 
were published in 1941 witli the aid of a grant from the Rockefeller 
Foundation. In preparing these lecture notes the author was for¬ 
tunate in ha\'ing the help of Professor A. S. Peters. 

In the preparation of the present book, the author was greatly 
aided by Professor E. Isaacson, who corrected many errors, super¬ 
vised all of the considerable number of calculations, read proofs, and 
and gave much good advice of all kinds. The drawings were maej^. 
by Mrs. L. Scheer, and the index by Paul Berg. The author is par¬ 
ticularly grateful to Mrs. E. Rodermund, who not only typed the 
entire manuscript, but also acted as a sharp-eyed critic and detec¬ 
tor of innumerable slips of all kinds. 

The greater part of what the author has put into this book was 
learned in the course of seminars conducted in collaboration with 
his friend and colleague, Professor K. 0. Friedrichs. It has been the 
author's hope that the writing of the book would be a joint enter¬ 
prise, but this proved impossible. Nevertheless, the author has had 
the benefit of critical comments by Professor Friedrichs on many 
parts of the book. 

This book is dedicated to R. Courant as a token of esteem and 
friendship, and as an acknowledgment of the strong influence he 
has had in the author's scientific development. 

New York, N. Y. 
January, 1950 

J. J. Stoker 



Contents 

Introduction.vii 

I. Linear Vibrations. 1 
1. Introduction. 1 
2. Free vibrations. 1 
3. F^orced vibrations. 3 
4. Subharmonics and ultraharmoiiics. 7 
5. Linear systems with variable coefficients. 10 
6. Principle of superposition for linear systems. Contrast 

with nonlinear systems. 10 

II. Free Vibrations of Undamped Systems with Nonlinear Restoring 
Forces. 13 

1. Classification of problems. 13 
2. Examples of systems governed by x -{- /(j) = 0. 14 
3. Integration of the equation mx -f /(x) ~ 0. 18 
4. Geometrical discussion of the energy curves in the phase 
plane. 19 

III. Free Oscillations with Damping and the Geometry of Integral Curves 27 
1. The plan of this chapter. 27 

A. Geometrical and Graphical Discussion of Integral Curves_ 29 
2. Geometrical discussion of the integral curves in a special 
case. 29 

3. Lie^nard’s graphical construction. 31 

B. A Study of Singular Points. 36 
4. Singular points and criteria for their classification. 36 
5. Special cases of dvfdx = (ax -h 6t;)/(cx -f dv). 38 
6. Criteria for distinguishing the types of singularities. 40 
7. The index of a singularity. 45 

C. Applications Using the Notion of Singularities. 48 
8. Free oscillations without damping. 48 
9. Wire carrying a current and restrained by springs. 50 

10. Elastic stability treated dynamically. 54 
11. The pendulum with damping proportional to the square of 

the angular velocity. 59 
12. The p)endulum with viscous damping. 61 
13. Description of the operation of alternating current motors 66 
14. Pull-out torques of synchronous motors. 70 

IV. Forced Oscillations of Systems with Nonlinear Restoring Force. 81 
1. Introduction. 81 
2. Duffing’s method for the harmonic oscillations without 
damping. 83 

xvii 



xviii CONTENTS 

3. The effect of viscous damping on the harmonic solutions 90 
4. Jump phenomena . 94 
5. Hunting and pull out torques of s^'nchroaous motors under 

oscillatory loads   96 
6. The perturbation method. 98 
7. Subharmonic response . .  103 
8. Subharmonics with damping. 107 
9. The method of liauscher .110 

10. Combination tones .112 
11. Stability questions.114 
12. R(5sum<5.     116 

V. Seif-sustained Oscillations. 119 
A. Free Oscillations .119 

1. An electrical problem leading to free self-sustained oscil¬ 
lations .119 

2. Self-sustained oscillations in mechanical systems.125 
3. A special case of the van der Pol equation . 128 
4. The basic character of self-excited oscillations. 128 
5. Perturbation method for the free oscillation.134 
6. Relaxation oscillations.137 
7. Higher order approximations for relaxation oscillations .. 140 

B. Forced Oscillations in Self-sustained Systems. 147 
8. A typical physical problem.147 
9. The method of van der Pol for the forced oscillations .. . 149 

10. The method of Andronow and Witt. 153 
11. Response curves for the harmonic oscillations.155 
12. Stability of the harmonic oscillations.159 
13. Nonharmonic response in general. Existence of stable 

combination oscillations for large detuning. 163 
14. Quantitative treatment of combination oscillations for 

large detuning. 166 
15. Nonexistence of combination oscillations when the detun¬ 

ing and the amplitude of the excitation are sufficiently 
small. 171 

16. Stability and uniqueness of the combination oscillations 
for large detuning.182 

17. Description of the response phenomena for intermediate 
values of the detuning a. Jump phenomena. 184 

18. Subharmonic response. 187 

VI. Hill’s Equation and Its Application to the Study of the Stability of 
Nonlinear Oscillations. 189 

1. Mechanical and electrical problems leading to Hill’s equa¬ 
tion. 189 

2. Floquet theory for linear differential equations with peri¬ 
odic coefficients. 193 

3. The stability problem for Hill’s equation and the Mathieu 
equation. 198 

4. The Mathieu equation.202 



CONTENTS Xix 

5. Stability of the solutions of the Mathieu equation for small 
values of c. 208 

6. Stability of the harmonic solutions of the Duffing equation 213 
7. Orbital stability of the harmonic solutions of the Duffing 
equation. 219 

Appendix 1. Mathematical Justification of the Perturbation Method.223 
1. Existence of the perturbation series in general. 223 
2. Existence of the perturbation series in concrete cases.. . 227 

A. Free oscillations. 228 
B. Forced oscillations. 231 

Appendix II. The Existence of Combination Oscillations. 235 

Appendix III. The Existence of Limit Cycles in Free Oscillations of Self- 
sustained Systems.  241 

1. General discussion.241 
2. Existence of a limit cycle.243 

Appendix IV. Relaxation Oscillations of the van der Pol Equation 247 

Appendix V. The Criterion of Poincare for Orbital Stability.253 

Appendix VI. The Uniqueness of a Limit Cycle in the Free Oscillations 
of a Self-sustained System.259 

1. General remarks.259 
2. The uniqueness proof.260 

Bibliography.265 

Index.269 





CHAPTER I 

Linear Vibrations 

/• Introduction 

The purpose of this book is the treatment of a variety of non¬ 
linear vibration problems. It is of value and interest, however, to 
summarize briefly the essential features of linear* vibration problems 
governed by the differential equation 

mx + cx + kx — P{t) 

in which the coefficients are constants.f There are a number of good 
reasons for doing so: One of our principal objects is to compare and 
contrast linear with nonlinear vibration problems. Also, it is the 
practice to carry over as much as possible of the terminology used in 
linear problems to the nonlinear problems—a practice which is par¬ 
tially successful but sometimes overdone. I'inally, it is useful to 
have a summary of the chief ideas and formulas of the linear theory 
available for reference, since the solution of a nonlinear problem is 
quite often made to depend upon the solution of a se(iiience of linear 
problems; this is the case, for example, with the often used perturba¬ 
tion method. 

2. Free vibrations 

Perhaps the simplest example of a linear vibration problem is 
furnished by a mechanical system consisting of a mass m attached to 
a spring which exerts a force (called the restoring force or spring force) 

* For complete treatments of linear vibration problems see the books* of 

den Hartog [16] and Timoshenko [38]. 

t Here and throughout this book dots over a quantity refer to differentia¬ 
tions with respect to the time. 

1 



2 LINEAR VIBRATIONS CHAP. I 

proportional to the displacement x of the mass (see Figure 2.1). If, 
in addition, the mass is considered to move in a medium which exerts 

Fig. 2.1. Linear mechanical system. 

a resistance proportional to the velocity (a viscous damping force), 
the equation of motion is 

(2.1) mx + cx + kx = 0 

in which m, c, and A: are positive constants. If we introduce the 
quantities 

(2.2) r = c/2m, p = k/m, q = Vp^ - r^, 

(2.1) becomes 

(2.3) X + 2rx + p\ == 0. 

The general solution of this linear homogeneous differential equation 
with constant coefficients is a linear combination of two exponential 
functions, as follows 

(2.4) a; = Ae'" + Be^‘ 

in which A and B are arbitrary constants and Xi and X2 are roots of 
the quadratic 

(2.5) X* + 2rX + p* = 0. 

Hence Xi,2 are given by 

(2.6) Xi,2 = — r ± iq, i = "s/^. 

Since we wish to express the solution (2.4) in real form, we consider 
the three cases in which q is: (a) real, (b) zero, (c) imaginary. The 
solutions in real form corresponding to these cases are readily found 

to be 

a.) X = c“'‘(ci cos gi + Ci sin qt), 

< b) X = + C2), 

c) X = CiC*'' + Xi, X2 real. 

(2.7) 
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The arbitrary constants are now Ci and C2; in the applications their 
values are normally fixed by prescribing the values of the displace¬ 
ment X and the velocity x at some time t = to. 

Case (a) of (2.7) occurs most frequently in the applications. As 
one sees from (2.2), this case occurs if r (the damping constant) is 
small compared with p^. The equation (2.7a) then represents an 
oscillatory motion such that any two successive maxima Xi amd X2 
of the displacement satisfy the relation 

X2 - . 

Thus if r > 0, the motion dies out exponentially (the time t being 
always taken positive, of course), but if r < 0 (in which case the 
damping is sometimes said to be negative), the oscillations increase 
exponentially. The commonest cases are of course those in which 
r > 0. 

If r = 0 the system is said to be without damping. For this 
important special case the resulting motion is given by 

(2.8) X = Cl cos pt + C2 sin pt. 

Thus a simple harmonic motion results in which the circular frequency 
p is determined by p = y/lzim. For q real, the oscillations given 
by (2.2) and (2.4) are called free or natural oscillations. The quan¬ 
tity p/2t is called the natural frequency. 

The solution (2.7b) corresponding to 7 = 0 corresponds to the 
transition from the motions of oscillatory character given by (2.7a) 
to the motions given by (2.7c) which are not oscillatory; the motion 
is said to be one corresponding to critical damping. The nonoscilla- 
tory motions occur, of course, when the damping coefficient is rela¬ 
tively large. 

3. Forced vibrations 

Consider now the motion which results when an external force 
P(t) depending only on the time is applied to the system of Section 2, 
in addition to the other forces. The equation of motion is then the 
nonhomogeneous linear differential equation 

(3.1) mx + cx + kx — P(t), 

The most important case for our purposes is that in which P{t) is 
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periodic. It will be assumed here that P(t) is a simple harmonic 
function given by 

(3.2) Pit) = F cos (U + <p) 

in which F is the amplitude, co the circular frequency,* and <p a constant 
called the phase of P(t). The solutions of (3.1) consist of the sum 
of the solutions of the homogeneous equation (i.e. the free oscillations 
discussed in the preceding section) and of any solution of the non- 
homogeneous equation. If we assume that the free oscillation is of 
the type given by (2.7a), the solutions of (3.1) with P(t) given by 
(3.2) are readily obtained in the form 

(3.3) X = e cos qt + C2 sin qt) + 
F cos (cjL't -f- ^ 6) 

m\/ (p^ — co^)2 + 

The square root in the denominator is zero only if p = w and r = 0, 
and this constitutes an important special case to be treated later. 
In other words, the resulting motion is obtained by a superposition 
of the free oscillation and an oscillation called the forced oscillation 
which arises from the action of the external force. 

We observe that the frequency of the forced oscillation is the same 
as that of the external force. The amplitude H of the forced oscillation 
is given by 

(3.4) H = 

while the phase b—or, better, the phase shift relative to the phase of 
the external force Pit)—is given by 

(3.5) 
cos 5 = (p^ — (a)/\/ (p2 — 0)2)2 ^ 4r2o)2, 

sin 5 == 2ra)/ \/(p2 — o)2)2 -j- 4r^^^. 

In the case of positive damping (r > 0), it is clear from (3.3) that^ 
after a sufficiently long period of time the free oscillation is damped 
out and only the forced oscillation would be observed. 

In the present connection it is important to consider the special 
case r = 0 in which there is no damping. In this case the phase 
shift 5 is seen from (3.5) to be zero for w < p and tt for w > p; in 
other words the forced oscillation is in phase with the external force 

♦ For the sake of brevity we shall often refer, both here and later on, to 
w as the frequency rather than the circular frequency if no confusion is likely 
to arise. 
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if the free or natural frequency p is greater than the frequency of the 
external force and is 180° out of phase with it when w > p. For 
r = 0, we obtain from (3.3) the oscillation 

F 
(3.6) X = (ci cos vt + C2 cos pt) H-j—^-s-, cos (cot + <p — 6) 

m I p2 — 0)21 

provided that p ^ o. The resulting oscillation is the superposition 
of two simple harmonic motions, one with the natural frequency and 
the other with the frequency of the external force. The ease p ~ o 
in which the free and the forced oscillations have the same frequency, 
the case of resonancey is of great interest and importance; the solution 
of (3.1) for r = 0, p = o) is found to be 

Ft 
(3.7) X == Cl cos ut + Co sin cot — r— sin (cot + <p). 

ZCOTYI 

We observe that the motion due to the external force is no longer 
periodic, but is oscillatory with an “amplitude'^ Ftl2o3m which in¬ 
creases linearly with the time. One of the principal reasons for which 
vibration phenomena are important for the applications lies in the 
possibility of the occurrence of such resonance phenomena: It is often 
vital to design machine parts or other engineering structures in such 
a way as to avoid resonance with periodic forces which may be im¬ 
pressed on the system (through slight unbalances in rotating ma¬ 
chinery, for example) because of the danger that the structure might 
be destroyed through the building up of vibrations with large 
amplitudes. 

If there is damping in the system it is clear from (3.3) that the 
amplitude of the motion is always finite (for r > 0, of course). It is 
nevertheless of interest in practice to investigate the amplitude of 
the forced oscillation since a rupture of the spring would occur if the 
amplitude were to become too large. The numerical value 11? | of 
the amplitude of the forced oscillation can be written in the form 
I J? I = M(F/k) in terms of the magnification factor M and the static 
deflection (F/k) of the system under a constant force F equal to the 
amplitude of the given periodic external force. From (3.4) and 
p* ~ k/m we find readily for the magnification factor the relation 

M = (3.8) 
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The extreme values for M are attained for w = 0 and = 
1 — 2{Tlpf, If 1 — 2{r/pf < 0, there is a maximum for w = 0; 

if 1 — 2(T/pf > 0 and « > 0, there is a maximum for co/p « 
Vl — 2{r/pY a minimum for co = 0. For small values of the 
damping constant r, the frequency which produces the maximum 
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amplitude is very nearly the natural frequency. Figure 3.1 shows 
curves for Af as a function of w/p for various values of r/p. We 
shall refer to these curves as response curves, since they obviously 
yield the amplitude, or response, of the system for an external force 
of any given frequency. 

i. Subharmonics and ultraharmonics 

If there is damping in the linear system treated above, we see 
from (3.3) that no periodic motion exists unless the initial conditions 
are chosen in such a way that the damped free oscillation does not 
occur,* and in this case the motion has the same period as the external 
force. Even if the free oscillation does occur, it is always damped 
out in actual physical cases, so that the eventual steady motion has 
the same period as the applied force. In nonlinear systems, however, 
the circumstances may be quite different in this respect: We shall 
see later that nonlinear systems can possess a wide variety of periodic 
motions in addition to those which have the same period as the ex¬ 
ternal force; for example, what are called subharmonic oscillations 
can occur in which the smallest period of the motion may be any 
integral multiple of the period of the external force. 

If we assume our linear system to be undamped, it is possible 
under special circumstances to obtain all of the various types of 
periodic motions which are encountered in nonlinear systemsf; it 
therefore seems worth while to classify here the possibilities in this 
respect and to introduce the terminology to be used later. We con¬ 
sider the differential equation 

(4.1) X + p^x = F cos 0)1. 

Since we are interested only in periodic solutions, we may without 
loss of generality choose the time t = 0 such that i(0) = 0. If 
x(0) == A, the solution of (4.1) is 

/ F \ F 
(4.2) x(0 = (.4 + -*2-2) cos pt — -2 cos uiL 

\ W— p/ OJ— p 

* It is easy to see that the initial conditions can always be chosen to accom¬ 
plish this. 

t This remark is the starting point of an investigation by M. Levenson [23] 
in which the main purpose is a study of the periodic solutions of a nonlinear 
differential equation. 
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The solutions x{t) are periodic in the following cases (and only in 
these cases): 

(a) 

(b) 

(c) 

(d) 

B — A + ~ 2 2 = 0. The free oscillation does not 
ta — p 

occur. 

CO = np, n any integer except n = I, B 9^ 0. 

CO = p/m, m any integer except m == 1, B 5*^ 0. 

CO = nplniy n, m relatively prime integers, B 9^ 0. 

In case (a) the solution x(t) has obviously the period 2ir/(A3 of the 
external force, which is quite arbitrary. However, the amplitude of 
this oscillation depends on co. We call such an oscillation a harmonic 
oscillation. 

In case (b) the solution x{t) has as its least period the period 2t/p 
of the free oscillation, which is n times the least period 27r/np of the 
external force. Such an oscillation is called a subharmonic oscillation 
of order n, or simply a subharmonic. 

In case (c) the solution x(t) has the same period 2m7r/p as the 
external force, just as in case (a) of the harmonic solution, but the 
two cases are different since the present case is a superposition of two 
solutions whose least periods differ, while the harmonic case, as its 
name implies, consists of a single harmonic. The oscillations in 
case (c) will be referred to as ultraharmonics. 

In case (d) the solution x{l) has the period 2wmlp while the ex¬ 
ternal force has the period 2vmlnp\ thus the least period of the oscilla¬ 
tion is n times that of the external force, just as in case (b) of the 
subharmonics. However, the period of the oscillation in the present 
case is not the same as that of the free oscillation but is rather m 
times it. For lack of a better term we call such oscillations ultra- 
subharmonics. 

Since any actual system always involves some damping, it is clear 
that cases (b), (c), and (d) above, which require the coexistence of 
the free and the forced oscillations, would never be observed in 
practice. In nonlinear systems, however, it is a matter of great 
theoretical as well as practical significance that all four cases may 
occur even if viscous damping is present. 

In Figure 4.1 the four types of periodic oscillations discussed 
above are indicated schematically. 



(C) Ultraharmonic 
(ii = p/m 

oscillation (d) Ultra-subharmonic oscillation 

w*np/m ; case n= 3 shown 

Fio. 4.1. Various types of response. 



10 LINEAR VIBRATIONS CHAP. I 

5. Linear systems with variable coefficients 

The linear system considered so far was one with constant coeffi¬ 
cients. There are, however, important cases in which one or more of 
the quantities determining the nature of the system, i.e. the mass, 
damping factor, and spring stiffness, may depend upon the time; in 
such cases the differential equation remains linear but has variable 
coefficients. The vibratory motions which occur can still be said 
to be the result of a superposition of a ^ffree'^ and of a ‘fforced^^ 
oscillation. However, the theory of linear systems with nonconstant 
coefficients is quite different and much more complicated than that 
of the systems with constant coefficients. For example, the sub¬ 
harmonics and ultraharmonics of all orders may occur even if viscous 
damping is present. 

Perhaps the most important special case of a linear system with 
variable coefficients is that in which the coefficients vary periodically 
in the time. For this case a well-rounded and rather complete theory 
exists which, aside from its intrinsic interest, also is of great impor¬ 
tance for the discussion of the stability of the periodic solutions of 
nonlinear systems. We therefore postpone the discussion of the 
theory of linear differential equations with periodic coefficients until 
Chapter VI, where it is treated in considerable detail and applied to 
certain stability problems arising from nonlinear vibrating systems. 

6. Principle of superposition for linear systems. Contrast 
tvith nonlinear systems 

If xi is a solution of mx + cx + kx = Pi{t) and xz is a solution of 
mx + cx + kx — P^{t), then x = Xi + X2 is a solution of 

mx + cx + kx = Pi{t) + P2(0- 

This fundamental fact, a direct consequence of the linearity of the 
differential equation, is called the 'principle of superposition. It is 
important to note explicitly that the principle does not hold for non¬ 
linear differential equations. 

The notions of free and forced oscillation, free and forced fre¬ 
quency, and resonance, are intimately related to the principle of 
superposition and thus have real sense only for linear systems. It 
has become more or less standard practice to refer to these terms in 
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the analysis of vibration problems which lead to nonlinear differential 
equations. There are occasions when the use of these terms is helpful 
in nonlinear problems; for example, Figure 3.1 has its counterpart 
in certain nonlinear cases. One should, however, exercise some cau¬ 
tion in the use of these terms borrowed from linear vibration theory. 

The theory of linear differential equations has been very thor¬ 
oughly studied and developed. As a consequence the theory of linear 
vibrations is, in a sense, a closed and well-rounded one, particularly 
for systems with constant coefficients. On the other hand, there is 
almost nothing of such a general character known about nonlinear 
differential equations. The analysis of nonlinear vibration problems 
therefore depends largely upon the use of approximation methods, 
and it is confined for the most part to the discussion of a variety of 
special cases. 





CHAPTER II 

Free Vibrations of Undamped Systems 

with Nonlinear Restoring Forces 

1. Classrfi calion of Prohlems 

The main purpose of this book is the treatment of mechanical or 
electrical systems which arc governed by the differential equation 

(1.1) mx + <p(x) + f(x) = F cos oit. 

In analogy with the linear system treated in the first chapter we shall 
frequently refer to the term mx as the inertia force^ to —<p{x) as the 
damping force) to —fix) as the restoring force or spring force, and to 
the term F cos o:t (with F and constant) as the extemul force or 
excitation. We shall have man}^ occasions later to see how the terms 
in (1.1) can be interpreted in the case of electrical and combined 
electrical-mechanical systems of various types. 

We do not study equation (1.1) in all generality, i.e. for arbitrary 
nonlinear damping forces —ipix) and restoring forces —fix). Such 
knowledge as we have about the vibration phenomena associated with 
(1.1) is largely confined to certain special cases, each one of which is 
treated in a separate chapter of this book. 

We proceed to classify the special cases treated in the remainder 
of this book: 

(a) X + fix) == 0. 

We refer to the motions which result in this case as undamped (since 
(pix) ^ 0) and free (since F cos ^ 0) vibrations of a system with a 
nonlinear restoring force —fix). This simplest of our cases is treated 
in the present chapter. 

(b) X + <pix) + fix) = 0, Xip(x) > 0. 

13 
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The motions in this case are of course referred to as free vibrations 
with damping. The condition x<p(x) > 0 on the function <p ensures 
that the damping force acts in a direction opposite to the velocity, 
and hence is a true resistance. This case, which comprises a wide 
variety of interesting problems, is treated in Chapter III. At the 
same time, a few problems which might have been treated already 
in Chapter II are treated here in order to illustrate the methods. 

(c) X + ci: + fix) = F cos c > 0. 

Htn'o the motions are quite naturally referred to as forced oscillations 
of systems with a nonlinear restoring force. We also refer to the 
equation on occasion as the Duffing equation, since Duffing [9] made 
the first significant progress in studying it. The problems concerned 
with this equation are treated in Chapter IV. 

(d) X + <p(x) + X — F cos wf, 
Xipix) < 0 for X small, 
x<pix) > 0 for X large. 

The motions in this case are referred to as self-excited oscillations— 
free oscillations if F cos wi ^ 0 and forced oscillations otherwise. 
The reason for the adjective self-excited is that the ‘^damping” force 
is in the direction of the velocity for small velocities so that the state 
of rest is not stable and a motion will develop from the rest position 
under the slightest disturbance even if the excitation F cos oyt is zero. 
On the other hand, the free oscillations are limited in amplitude 
eventually because of the fact that the damping force is assumed to 
be positive, i.e. to be opposite in direction to the velocity, when the 
velocity is above a certain value. The differential equation in the 
present case (or, rather, the special case of it in which ^(x) = —x + 
I X®) is commonly referred to as Rayleigh's equation or the van der 
Pol equation (cf. [32]). We study this case in Chapter V. 

2, Examples of systems governed by x + fix) ~ 0 

The best known example of a vibratory motion which is governed 
by such an equation is that of the simple pendulum. Its motion is 
determined by 

(2.1) rri^x + mgl sin x = 0 
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where I is the length of the pendulum, m is the attached mass, x is 
the angular displacement, and g is the acceleration of gravity. If 
it is assumed that x is so small that sin x can be replaced by x with 
sufficient accuracy, (2.1) can be replaced by 

(2.2) mfx + mglx = 0. 

As we know from the preceding chapter, this implies that the motion 
is isochronous with period T = 2Tc\^l/g, that is, the period is inde¬ 
pendent of the initial velocity and displacement. For large displace¬ 
ments (2.2) is of course inaccurate; however, for displacements ranging 
up to about one radian, sin x in (2.1) can be replaced with fair accairacy 

Hord Linear Soft 

Fig. 2.1. The three types of spring forces. 

by the first two terms in its Maclaurin's expansion. The equation 
then becomes 

(2.3) mtx + mgl ^ ^ = 0. 

It will be seen later that the motions defined by this equation and 
(2.1) are not isochronous. 

The quantity —/(x) is the force exerted by the spring when it is 
subjected to a displacement x. The stiffness of the spring for a 
displacement x may be defined as f{x). If the stiffness increases 
with the displacement, the spring is said to be hard. If the stiffness 
decreases as the displacement increases, the spring is called a soft 
spring. In equation (2.3) the force mgl{x — x^/Q) is obviously one 
with decreasing stiffness, i.e., it is a soft spring force. Figure 2.1 
indicates the distinction between types of restoring forces. 

Another example of a system with a nonlinear restoring force is 
provided by a mass m which is attached to the middle point of a 
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stretched wire as shown in Figure 2.2. For a horizontal displacement 
X of the mass the strain c in the wire is e = (\/— a)/a. If S 
is the initial tension in the straight wire, the tension in it after the 
displacement x is S + AEe/m which E is the modulus of elasticity of 
the wire and A is its cross section area. The restoring force on the 
mass in the x-direction is 2(*S + AEe) sin (p, with sin <p — 
x/\/a2ip ^2^ assume now that x is so small compared with 
a that we may develop the restoring force in powers of x/a and neglect 

Fig. 2.2. Mass attached 
to a stretched wire. 

Fig. 2.3. Pendulum constrained 
by a stretched wire. 

all terms of order higher than the third in x/a; the differential equation 
governing the motion is readil}'' found to be 

(2.4) mx + 
2S 

x + - 0. 

Since the coefficient of x^ is positive it is clear that the restoring force 
is hard in this case—it would be legitimate in most cases to neglect 
the term S/AE in the coefficient of the x^ term since it represents the 
initial strain in the wire and hence would be small compared with 
unity. 

It is interesting to note that the approximate differential equation 
which determines the motion of a pendulum attached to a stretched 
wire perpendicular to the plane of motion, as shown in Figure 2.3, 
is found, after a little calculation, to be 

(2 5) mfo + { myl 

\ 6 3a a® a® / 
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The quantities S, E, and A have the same meaning as in the preceding 

example. By choosing the parameters properly, for example by 

taking for EA the value 

(2.6) EA == >S + ^^^2 + ' , mgla^ 

it is possible to make the coefficient of 6^ vanish. In this case the 

combination of stretched wire and pendulum would afford a good 

approximation to a system having isochronous oscillations. 

As an example of a nonlinear electrical problem, take the problem 

of finding the flux variation in an iron core inductance coil which is 

connected to a charged condenser as showm in Figure 2.4. If (p is the 

Fig. 2.4. Circuit with capa-citarice and nonlinear inductance. 

flux linking the coil the eqmition of the (dreuit may be written in the 

form 

# + 2 - 0 dt c 

where t is the time, q is the charge on the condenser, and c is its capaci¬ 

tance. Since the current i is ecpial to dq/dt, the above equation takes 

the form 

(2.7) 
d if I 

c 
0. 

In elementary circuit theory the linear relation i — <^/L between cur¬ 

rent and flux is assumed, in which L is the inductance. A more 

accurate relation between the current and flux in an iron core induct¬ 

ance is given by i — aip — a > 0, > 0. If this function is sub¬ 

stituted for i in (2.7) we obtain the nonlinear differential equation 

2^ + c 

which is of the type we consider in this chapter. 

In Sections 8, 9, and 10 of the next chapter still other examples 

of problems governed by the equation a; + /(x) = 0 are given. 
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Integration of the equation mx + f{x) == 0 

A first integral of mx + f(x) — 0 can be easily obtained, since the 
substitution 

_ dx (f X _ dv dx _ dv 

^ dt ^ di^ dx dl ^ dx 

reduces this equation to the first order differential equation 

(3.1) my +/(ar) = 0 

in which the variables are separable. Thus 

mvdv = —f(x)dx 

and if /* = ?-’o when x = Xq, the velocity v is giv^en by the equation 

(3.2) - r fix) dx= - \Fix) - Fixo)] 

which expresses the law of conservation of energy. The left side of 
the equation represents the change in kinetic energy; the right side 
represents the work done by the restoring force, or the change in 
potential energy. From (3.2) we find for the velocity v the equation 

(3.3) „ = g = ^ I 

The sign of the square root must of course be appropriately chosen. 
The time t can be found as a function of the displacement by separat¬ 
ing the variables again and integrating. Hence if the initial value of 
t is ^0 we have 

. V r* dx 
(3.4) ^ ~ -f. to . 

/l/t;? + ^ [F(xo) ~ F{x)] 
f m 

However, it is understood here that it is in general necessary to pass 
from one branch of the square root to the other whenever v = dx/dt 
passes through the value zero. The curves given by (3.2) in the 
x, v-plane are curves of constant energy; we refer to them frequently 
as energy curves. 



GEOMETRICAL DISCUSSION OF ENERGY CURVES 19 

4, Geometrical discussion of the energy curves in the phase 
plane 

In this section we discuss the curves of constant energy in the 
Xy r-plane, which we call the phase plane. As we shall see, important 
information about the motion of a qualitative character can be ob¬ 
tained rather easily. We note that x and v = dx/di are functions of 
iy that is, the curves in the a;,t;-plane may be regarded as given in 
parametric form with / as parameter. From v = dx/dl it follows, 
then, that x increases with t when v is positive. 

The closed energy curves (we refer to the energy curves also as 
integral curves) are particularly important since they correspond to 
periodic motions x{i): If x(t) is periodic it is obvious that the cor¬ 
responding x,r-curve is closed. On the other hand, if an .T,r-curve 
is closed, it follows that the displacement and velocity at any time t 
are reached again after a certain time T, i.e., x(t + T) == x(t) and 
v{i + T) = v{t) and the motion is evidently periodic. The period T 
can obviously be calculated by the line integral 

to be taken along the closed integral curve in the direction of increas¬ 
ing t. 

Consider first the case in which/(x) is linear. With f(x) = kx 
the differential equation for the x,r-curves is 

dv j 
V = —kx 

dx 

from which we obtain the solution 

(4.1) / + kx^ = Vo + kxl 

in which Xo and Vo are the initial displacement and velocity. All 
integral curves are ellipses if k > 0, which we now assume, and hence 
every motion is periodic. The motion is, as we know from the 
preceding chapter, a simple harmonic motion and x{t) and v{t) are 
given by 

(4.2) 
X = o cos pt 
V — —ap sin pt 
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with p* = k. The amplitude a (that is, the maximum displacement) 

should evidently be given by « = \/_)- kxl)/^ view of (4.1). 

Equation (4.2) can, of course, be obtained by setting v = dx/dt in 

(4.1) and intt^grating once more under the conditions tliat x = a and 

V — 0 for t — 0. The period T of the motion is 27r/p; it could also be 

obtaiiUMl from 

r = i l-'-i = i r = i f . 
J V p Jq V"— .r- p Jo V 1 — p 

In this liiuiar case w(‘ note the well known fact that t he period of the 

motion is independent of the amplitude, or as we could also put it, 

all of the dosed solution curves in the phase plane arc traversed in the 

same time. If we had tak(‘ri for k th(‘ n(*gativ(; sign in the above 

discussion, the curves (LI) would ])e hyperbolas and no periodic 

motions would exist. 

We consider next the moi*e general case of a spring force —f{x) 

of the form 

(4.3) fix) = ax + (Sx\ a > 0. 

In this nonlinear case the determination of x and v as fun(*tions of t 

is still possible by explicit integration through the use of elliptic, 

integrals and functions. However, it. is (juitc possible to discuss the 

qualitative nature of the motions x(t) which result from the differential 

equation 

(4.4) V = -{ax + 

rather easily without explicit use of elliptic integrals. An integration 

yields the equation 

(4.5) + ax^ + ^ 77 = h = constant, 

in which the constant h represents twice the total energy in the system. 

In the neighborhood of the origin x = 0, = 0 the curves given by 

(4.5) are all closed curves which have the appearance of ellipses, since 

/3a:V2 can be neglected in comparison with ax^ for small a:; the constant 

h is then of necessity small and positive. The maximum displacement 

Xmax = a is readily seen to satisfy the relation 

2 — a + \/ + 2fih 
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obtained by setting == 0, in which the positive sign of the radi(jal is 

taken for > 0 (hard spring) as well as for < 0 (soft spring) since 

h > {) and a should be small and positive. On account of the sym¬ 

metry of the closed phase curves (4.5) the period T of the motion can 

be obtained (cf. (3.4)) in the form 

(k7) T = 4 f Vh- 

d.v 

+ 6x^2) * 

It is useful to transform t he integral in this equation l)y changing the 

variable of integration. Since a is a root of h — {az + ^z'/2) = 0 

we may write 

(1.8) h - + ^x*/2) = ^ (rr - X^)(h^ + X^) 

in which 

(•4.9) ~ ( —?/ + a ) = — a, or fifr = fia + 2a. 

If we now introdu(*(^ 0 as new integration variable replacing x in 

(4.7) by the relation 

(4.10) X ^ a sin 

the integral is readily found to t.ake the form 

(4.11) 
_dd 

\^2a + sin^ 6 * 

upon making use of (4.9) to eliminate From (4.11) we now see at 

once that the period T of the oscillation in the present cases, unlike 

the case of the linear oscillations obtained for/3 = 0, is not independent 

of the amplitude a of the oscillation. In fact, for the hard spring 

(i3 > 0) the period is seen to decrease and thus the frequency to 

increase when the amplitude increases, while just the opposite effect 

of increasing period and decreasing frecpienc^y occurs with increase 

of the amplitude when the spring is soft {13 < 0). P"or j3 > 0, the 

phase curves given by (4.5) are all closed curves, in other words all 

motions are periodic in the case of the hard spring; in this case 

(4.11) is valid under all circumstances. If j3 < 0, however, the curvets 

(4,5) are closed curves only in a certain region of the :r,/;-plane (am- 

taining the origin in its interior, so that (4.11) has a meaning in this 

case only if the quantity a given by (4.0) is not too large. 
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In Figure 4.1 we show curves indicating schematically the relation 
between the amplitude a and the circular frequency w = 2v/T in the 
three cases of linear, hard, and soft springs. These curves have a 
common tangent at a? = \/a: (the frequency when /5 = 0), as one 
could easily prove using (4.11). This behavior of the amplitude of 
the free oscillations as a function of frequency is so important that we 
emphasize once more that the amplitude increases with the frequency 
with a hard spring^ is independent of the frequency with a linear spring^ 
and decreases with the frequency in the case of a soft spring. 

It is useful and instructive to discuss the curves furnished by 
(4.5) in more detail, particularly Avith a vieAV to comparison of the 
difference between the effects of hard and soft springs. Sets of curves 

Fia. 4.1, Dependence of amplitude on frequency with different types of spring 
forces. 

for the two cases are shown in Figure 4.2. In the case of the hard 
spring, little remains to be said since all of the curves are closed curves. 
The arrows on the curves indicate the direction in which any point 
(x(0, v{t)) moves with increasing f; these directions are obtained at 
once from v = dx/dt, so that, for example, x increases with i when v 
is positive. We observe also that the curves cross the coordinate 
axes orthogonally except at points on the x-axis where f{x) = 0. 
For a soft spring the circumstances are more complicated. In this 
case we may write equation (4.5) in the form 

(4.12) t;* + I* = h, p* = -ff. 

If X is near to zero we have already noted that h > 0 and the curves 
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Soft spring, 0(0 

Fkj. 4.2. Velocity-displacement plane for hard and soft spring forces. 

given by (4,12) are approximately ellipses. If we solve (4.12) for 
we have 

(4.13) = h - 
A 

If > 0, the curves given by (4.13) cross the p-axis, x = 0, with v = 
it:Vo, Vo > 0. The right-hand side of equation (4.13) is quadratic in 

and has a — 2p% as discriminant; it is therefore always positive 
if a — 2p\ is negative and in this case h must of necessity be positive. 
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The transition from curves which cross the 3^-axis to curves which do 
not cross it thus occurs for a — 2ph = 0 or = a on this curve 
the velocity vo corresponding to x = 0 has evidently the value 
Vo = a/p\/2- For > a/p\/2 the curves are open curves, as 
indicated in Figure 4.2, while for I’o < a/pv^2 they are closed 
curves encircling the origin. The transition curve corresponding to 
vq = a/p\/2 has two double points on the x-axis at x = ±:\^ a I and 
this curve separates the x,?;-plane into regions in which three distinct 
types of curves occur. We have already discussed the two sorts of 
curves which cross the r-axis and for which the discriminant a — 2p^h 

is negative. If the discriminant is positive, a set of curves is obtained 
which cross the x-axis only once and do not cross the p-axis. Thus, in 
addition to the closed curves representing periodic solutions there are 
two distinct types of curves which represent nonperiodic motions. 

We observe that the origin and the points (db\/a/p, 0) in the 
x, /.’-plane (Figure 4.2) correspond to points of cguilihriuvi of the mass 
in our mechanical system since for them the applied force /(x) = 
ax — px^ = 0. The origin corresponds evidently to a position of 
stable equilibrium in the sense that a slight disturbance from this 
point results only in an oscillation of small amplitude about x == 0. 
The points (zb Va/p? 0), on the other hand, correspond obviously to 
unstable equilibrium positions. These saddle points might well be 
called ‘‘repulsive” equilibrium points, as one sees from Figure 4.2. 

It is of some interest to calculate the time T required for a point 
to move along the transition curve into the saddle point (\/afpy 0). 
For this we can obviously make use of the formula (4.7) for the period 
T, with a = \/'a/py 0 = —py and without the factor 4. The result 

y2 r 
\/ a *^0 

_dd_ 
sec 6dd, 

We see that Ts is infinite, that is, the time required to attain the 
unstable equilibrium position is infinite. It is then clear also that any 
motion in the neighborhood of such an equilibrium point is a slow 
“creeping” motion. This is a result that holds good in general for 
equilibrium points of this character. 

Finally we consider the case of the pendulum, for which /(x) - 
a sin X, a > 0. The differential equation for the x,t;-curves is 

dv 
V — = —a sin x 

dx 
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and the curves themselves are given by 

(4.14) = 2a cos x + h. 

These curves are shown in Figure 4.3. We observe that h > --2a 
must be required or v will be always negative. If —2a < A < 2a 
one sees readily that the curves (4.14) are closed curves encircling 
the points y = 0, x = 2mr (n any integer, positive or negative); 
in these cases the amplitude a is then seen to satisfy the relation 

Fig. 4.3. Velocity-displacement plane for the simple pendulum. 

0 = 2a COS a + h and the period T of the oscillations which they 
represent is given by 

dx 

V 2a cos X + h 

4 I*"_ dx_ 

V 2a Jo Vcos X — cos a ‘ 

If a new integration variable replacing x is introduced by the relation 
sin x/2 = sin a/2 sin 0, the integral for T takes the form 

= r 
\/ a Jo 

sin^ ^ sin^ d 

that is, T is given in terms of the complete elliptic integral of the first 
kind. We observe that the period increases with the amplitude, in 
accordance with the fact that the spring force is soft in this case. 

If A > 2a, we observe from (4.14) that v never becomes zero, the 
curves are open curves as indicated in Figure 4.3. The transition 
from closed to open curves occurs for h == 2a, and v is then given by 

= 4a cos^ x/2. This curve is drawn more heavily than the others 
in the figure. The situation is similar to that of the soft spring in the 
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preceding example (cf. Figure 4.2), except that there are an infinite 
number of equilibrium positions which are alternately stable and 
unstable. The physical interpretation is quite clear. The pendulum 
either oscillates about its lowest position (x = 2nic), or it has been 
given so high an initial velocity that it turns always in the same 
direction about the point of suspension. In the latter case the 
angular displacement x increases without limit but the angular veloc¬ 
ity fliuduates periodically about a certain average value. It could 
be shown easily that the time required for the pendulum to reach its 
highest point (the unstable equilibrium positions for which x = nv,n 
odd) with velocity zero would be infinite, in accordance with our 
observations in the similar situation of the preceding example. 

We observe that the equilibrium positions in our examples cor¬ 
respond to what we shall define later as singular points in the x,p-plane, 
and that the character of these singular points pretty well fixes the 
general character of the integral curves. In the next chapter (in 
Sections 8, 9, and 10) we shall study such singularities in detail with 
the object of applying the knowledge so gained to the analysis of more 
difficult problems than those treated in the present chapter. How¬ 
ever, we also return in the next chapter to a few additional problems 
of the t3T)e treated here. 



CHAPTER III 

Free Oscillations with Damping and 
the Geometry of Integral Curves 

i. The plan of this chapter 

In this chapter we will be concerned with the differential equation 

(1.1) X + <p{x) + f{x) = 0 

which contains a term provided by a damping force —^(x) in addition 
to the restoring force ~/(x). The equation (1.1) differs from the 
equation treated in the preceding chapter only through the occurrence 
of the damping term <p{x), which makes explicit integrations not pos¬ 
sible in general. However, we shall also re-examine some cases in 
which ip(x) s 0 by way of illustration of the more general approach 
of the present chapter as compared with the simpler approach possible 
in Chapter II, 

The differential equation (1.1) arises, for example, in the case of a 
pendulum when damping forces are considered present. A differential 
equation of the same type occurs also, as we shall see, in problems 
concerning unsteady motions of synchronous electrical machinery and 
in a variety of other physical problems. 

Since the time t does not occur explicitly in (1.1), it is possible to 
reduce the equation to one of first order by introducing x = v, the 
velocity, as a new variable. One obtains in this way the equation 

(12) — = ~/(^) ~ 
dx V 

Because of the presence of the term (p(v) in the right-hand side of 
(1.2) it is not possible to separate the variables, in general, to obtain 
the solution curves in the a:,t;-plane by explicit integration as was done 
in the preceding chapter. In spite of this, the geometric interpreta¬ 
tion of (1.2) as an equation defining a field of directions in the x,?;-plane 

27 
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can lead to useful information of a qualitative character even though 
tlie solution curves themselves cannot be obtained explicitly. By 
solution curves (or integral curres) we mean, of course, curves which have 
everywhere the field direction defined by (1.2). 

There is some advantage in many cases in replacing the single 
equation (1.2) by the following equivalent pair of first order differential 
equations 

(1.3) 
dx 
dt 

V 

which yield a vector field with the components {dx/dt, dv/dt); the 
field vector is always tangent to a solution curve and points along it 
in the direction of motion of the point v{t)) in the .r,2vplane with 
increasing t. 

In Part A of the present chapter, comprising Sections 2 and 3, 
we give a number of examples indicating the value and usefulness of 
qualitativ'e discussions of the integral curves of (1.2) or (1.3) in a 
number of physical problems. Among these problems are vibrations 
of a system with Coulomb damping, and of systems involving what 
are called self-excited oscillations.* In the course of this discussion 
the graphical method of Lienard is introduced, both for its own interest 
and with the object of showing that the qualitative discussion of the 
geometry of the integral curves of (1.2) and (1.3) can lead also to a 
quantitative discussion—for example, by graphical means. 

We have so far considered the differential equation (1.2) as defining 
a field of directions in the a:,2;-plane. However, no such direction is 
defined at points where the numerator and denominator in the right- 
hand side of (1.2) vanish simultaneously. In terms of the equivalent 
equations (1.3) defining the vector field, we see that both components 
of the vector arc zero at such points. Such a point is called a singular 
point of the differential equation. In our cases a singular point cor¬ 
responds to a definite physical situation (when (1.1) is considered as an 
equation of motion of a mass), i.e., to a position of equilibrium mth 
velocity zero, as one readily sees. Such singularities were encountered 
in the preceding chapter; in the case of the pendulum, for example. 

* The latter problems are only touched upon here; in Chapter V we deal 
with them in great detail. 
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The character of the singularities in these cases was, in a way, a 
decisive factor in determining the qualitative nature of the solution 
curves, and hence it would seem important to study such singularities 
in detail. There is another important reason for making a study of 
singularities. As we know, (;losed curves in the x,2;-planc correspond 
to periodic solutions x(t) of the original second order differential 
equation and vice versa (cf., for example, Chapter II, Section 4). 
It is intuitively rather evident (and it has been proved rigorously 
under appropriate (conditions on the functions involved) that such a 
closed integral curve always contains at least one singularity in its 
interior. In other words, the highly important case of closed solution 
curves in the :r,r-plane is intimately connected with the occurrence of 
singularities. 

Part B of this chapter is devoted to a detailed discussion of the 
possible types of singularities of the general first order differential 
equation dv/dx == v))/{Q{x, v)) i.c. of the behavior of the so- 
lution curves of this equation in the neighborhood of a point where 
P{x, v) and Q(x, v) vanish simultaneously. It turns out, following 
the work of Poiiucare, that a complete discussion of the types of singu¬ 
larities is possible and that criteria for distinguishing the various 
types can be given explicitly and rather simply in terms of P and Q. 
Finally, it is possible and us(iful to attach an integer number, called 
the index, to each of the types of singularities. A brief discussion of 
the notion of the index is also included in Part B of this chapter. 

Finally, in Part C we make use of the ideas and results of Parts A 
and B to solve a variety of physical problems. These include a 
dynamical treatment of a problem in elastic stability and a treatment 
of the problem of the pull-out torque of a synchronous electric 
motor. 

A* Geometrical and Graphical Discussion of Integral Curves 

2. Geometrical discussion of the integral curves in a special 
case 

The special case we have in mind is that of the free vibration of a 
mass with a nonlinear spring (more specifically, a hard spring) to 
provide a restoring force and operating in a medium which exerts a 
resistance proportional to the velocity, i.e. a medium providing viscous 
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damping. In other words, we consider the special case of (1.1) which 
arises when == cx; we also assume f(x) to be given by f{x) = 

0 > 0. The equations (1.3) therefore 

— (ax + fix^) — cv 

V 

in this special case. In Figure 2.1 we indicate the closed solution 
curves of (2.1) for the case c = 0 (cf. Chapter II, Section 4), together 
with part of one integral curve for c > 0 as well; it is easy to deduce 
from (2.1) that the field vector at any point for c > 0 is in general 

ax + fix with a > 0 and 
become 

(2.1) 

dv 
dt 

dx 

dt 

Fig. 2.1. Effect of positive damping on integral curves. 

turned toward the interior of the closed solution curve for c — 0 
through the point, as indicated in the figure. The only exceptions are 
the points == 0, ,x 0 where the field vectors for c > 0 and c « 0 
coincide; however, at these points it is not difficult to show that the 
solution curves for c > 0 cross the curve for c *= 0 from the exterior 
to the interior with increasing t. Since the solution curves for c = 0 
are all closed curves, it seems quite clear (and in fact it could be proved 
with no difficulty) that all solution curves for c > 0 will tend to the 
origin as t increases. In other words, every motion would be damped 
out, and no periodic motion could exist. On the other hand, if c were 
negative (the case of so-called ‘'negative damping”) the displacement 
would increase indefinitely Avith t. , 

It is readily seen that the same conclusion holds as in the case 
c > 0 if a more general function (p(v) of v is taken instead of cv pro¬ 
vided only that <p{v) has the same sign as v and is zero only for v ^ 0. 
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Again the motion defined by (2.1) cannot be periodic if Vip{v) is always 
of one sign. For, suppose that (2.1) possesses a closed integral curve. 
We write (2.1) in the form (1.2), multiply by vdx^ and integrate along 
the curve. The result is 

V dv + <p <p(v) dx + ^ f(x) dx = 0. 

This, in turn, yields 

^ ip{v) dx = 0, or Vip{v) dt = 0, 

in which T is the period of the motion. But the last equation is 
impossible since v<p{v) was supposed to be of one sign and does not 
vanish identicfilly. 

One sees, therefore, that quite a little insight can be gained about 
the motions governed by (1.1) through relatively simple geometrical 
discussions of the integral curves furnished by (1.2). 

3, Lienard^s graphical construction 

In certain special cases of importance the first order differential 
equation (1.2) can be treated graphically in a very simple way by a 
method due to Li^nard [25]. This method is most frequently used to 
deal with w^hat are called self-excited oscillations (cf. Chapter V), 
but it is also applicable in other cases. The special cases in question 
are those in 'which —f(x), the spring force, is linear in a:; by introduc¬ 
ing new variables which are appropriate multiples of the original 
variables it is easily seen that (1.2) can be written without loss of 
generality in the form 

(31) — ~ ^ 
dx V 

Li^nard^s construction is indicated in Figure 3.1; its purpose is to 
obtain the field direction graphically at any point. The curve 
X = — ^(v) is first plotted. To determine the field direction at any 
point P(t, v)f the procedure is as follows: From P a line is drawn 
parallel to the x-axis until it cuts the curve x = --(piv) at R, 

From R a perpendicular is dropped to the x-axis at S; the field 
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direction at P is then orthogonal to the lineSP. That the construc¬ 
tion yields the correct field direction is seen at once from (3.1) and the 
fact that the slope of the line SP is v/{x + (piv)). 

One might use the Lidnard construction to obtain an approxima¬ 
tion to a solution curve through any given point in the following way: 
At the initial point the field direction is determined graphically in the 
manner indicated. The integral curve in the neighborhood of this 
point is replaced by a short segment of its tangent—that is, by a 
segment taken in the field direction. At the end point of this segment 
the field direction is determined once more by the graphical construc¬ 
tion, and the process is repeated. In this way an approximation to 
the integral curve by a polygon is obtained which could be made 

Fig. 3.1. Li^nard’s method for determining the field direction. 

as accurate as desired by choosing the lengths of the sides of the 
polygon small enough. 

There are a number of interesting cases in which the Li4nard 
construction gives the integral curves immediately without the 
necessity of determining polygonal approximations. Consider, for 
example, the case of the linear free oscillations furnished by i -f a: = 0. 
In this case (3.1) is simply dv/dx ~ —x/v, {p{v) = 0, the curve x = 
—ip{v) is the i^-axis, and hence the construction as indicated in Figure 
3.1 shows the point S to be the origin for all points P. Hence the 
solution curves are, as we know they should be from the preceding 
chapter, circles with the origin as centers. We recall also that all of 
these circles are traversed by the point {x{t)^ v{i)) in the same time 
T, T being the period of the harmonic oscillation. 

We turn next to the treatment of two problems which have been 
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used by Meissner* [30] to illustrate the graphical method devised by 
him for the treatment of vibration problems. Consider first the 
case of a system with a mass and a linear spring subjected to solid 
friction, or Coulomb damping as it is also called. This is a friction 
force which is constant in magnitude but reverses its sign when the 

Fig. 3.2. Li^nard's construction for the case of Couloml) damping. 

velocity changes sign. The differential equation for the motion can 
be taken in the form 

(3.2) X + (p{±) + X = 0 

with ip{x) defined by 

f r, X > 0 
(3.3) ^(x) = j , r > 0. 

[ —r, X < 0 

The curve x = —^(f) which figures in the Li^nard construction is 
thus given by x = — r, p > 0 and x = r, 2^ < 0 in the present case. 
Figure 3.2 indicates a typical solution curve. As we see at once, the 
integral curves consist of arcs of circles having Si and S2 alternately 
as centers; on crossing the x-axis the center shifts from one to the 
other of these points. Since any point on a solution curve moves 
with increasing t in the direction of the arrows, it is clear that the 

* For problems of the type under discussion here the writer believes that 

the method of Li^nard is superior to Meissner’s method; but it should be 

emphasized that Meissner’s method, while more complicated, is alscy more 

general since it, unlike the method of Lidnard, can be used to good advantage 

in cases in which the differential equation contains the time explicitly. 
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IT 

amplitude is decreased by the amount r between each successive pair 
of rest positions v = 0 until finally the mass comes to rest. The 
final rest position in the case shown in Figure 3.2 is denoted by F: 
this is, as in all cases, represented by the first point on the solution 
curve which falls on the segment iSiiS2, since the spring force in that 
case would have too small a value (cf. (3.2) and (3.3)) to overcome 
the friction force and hence no motion could take place. Suppose 
that the system is started with x — Ay v — 0 at the initial time t = 0. 
One sees then readily that the number n of half-swings executed by 
the mass before it comes to rest is obtained by finding the nearest 
integer solution x = n of the cquationVx = | A ( . The time required 
for the mass to come to rest could also be calculated without 
difficulty.* 

m * I 

Fig. 3.3. Pendulum striking a partially inelastic wall. 

Another example treated by Meissner using his method is that of a 
simple pendulum swinging against a wall inclined at angle a to the 
vertical. The impact of the mass of the pendulum on the wall is 
assumed to be inelastic in such a way that the value of the kinetic 
energy of the pendulum bob is decreased in a fixed ratio at each 
impact. The direction of the velocity is, of course, reversed at each 
impact. The linearized pendulum equation x + = 0 is assumed. 
In the x,v-plane the solution curves are therefore circles with centers 
at the origin, as was pointed out above. In Figure 3.4 the solution 

* The method of Meissner has been used by Ziegler [39] to deal with the 
problem of forced oscillations of a system with Coulomb damping. It might 
be of interest to note that infinite amplitudes can be built up by a periodic 
external force of proper frequency if the solid friction is not too great, as Ziegler 
shows. This is, of course, in strong contrast with the case of forced oscilla> 
tions in linear systems with viscous damping, since the amplitude is always 
finite in the latter cases (cf. Chapter I). 
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curves for the problem of inelastic impact are indicated for a > 0 
(as in Figure 3.3), a ~ 0, and a < 0, when the kinetic energy of the 
pendulum is assumed to be reduced by half its value at each impact. 
The solution curves, which have discontinuities in the present case, 
all tend when a > 0 to the point x ~ a, y = 0 as / increases as one 
would expect; in other words, the pendulum bob tends to a position 
of rest in contact with the wall. Meissner observed, however, that 
there is an interesting qualitative difference between the case a > 0 
and the cases a < 0. The fact is that the state corresponding to a: == 
a, V = 0 is obviously not approached at all for a < 0, is approached 
for a ~ 0 only as the time tends to infinity, while it is ‘‘attained” for 

a>0 a=0 a < 0 

Fig. 3.4. Lidnard’s construction for pendulum striking an inelastic wall. 

a > 0 in finite time. That the time is infinite in the cases a < 0 is 
seen at once from the fact that the time required to traverse each of 
the infinitely many circular arcs representing the whole motion is 
equal to the central angle of that arc (in radians, of course) and the 
fact that this angle is constant for the semicircular arcs in the case 
a « 0 and increases with each swing in the case a < 0. In the case 
a > 0, the central angle can easily be shown to tend to zero for 
successive swings in such a way that the sum of the angles converges 
to a finite limit. 

Finally, we indicate briefly the use of the Li4nard construction in 
studying what are called self-excited or self-sustained oscillations. 
It is characteristic for these cases that the “damping force” —^(v) 
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in (3.1) has the same sign as v for small values of v but the opposite 
sign for large values of r; in other words, this force acts in such a way 
as to tend to increase the amplitude of the oscillation when the velocity 
is small, but has the opposite effect when the velocity is large. One 
might then expect- that the interplay of these two effects of opposite 
tendency would lead to a motion which tends to a steady vibration. 
As we have already stated earlier, some of the important problems 
of this class will be treated in detail in a separate chapter (Chapter V) 
of this book. We confine ourseK^es here to a reproduction in Figure 
3.5 of the result of applying the Lienard construction to (3.1) for the 
case in which ’-(p{v) == v — v^/S. The curve x = v — ?//3 is shown 

tion of the Lienard construction are shown on the right. The latter 
curves indicate the general behavior of all integral curves: those which 
start near the origin spiral away from it while those which start far 
from the origin spiral toward it. In addition, the actual carrying out 
of the construction convinces one that all integral curves spiral toward 
a single closed integral curve, thus indicating that all motions of the 
system tend with increasing time to a single periodic motion. 

B. A Study of Singular Points 

4. Singular points and criteria for their classification 

The rest positions of equilibrium of the systems characterized by 
(1.1), (1.2), and (1.3) correspond to singularities of the first order 
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differential equation (1.2). Such singularities have been of impor¬ 
tance in our previous discussion but only in an incidental way. As we 
have already stated in Section 1 of this chapter, it is important to 
study such singularities in detail as an aid in the solution of various 
physical problems. Furthermore, wc shall eventually have need of 
information about the singularities of more general first order dif¬ 
ferential equations than (1.2). We turn, therefore, to a discussion 
of the character of the solution curves in the neighborhood of an iso¬ 
lated singular point of the differential equation 

^ ^ dx Q{x,'v)' 

By a singular point (xo, ^o) is meant, we repeat, a point for which 
P{xq , t’o) = Q(^o, Vo) — 0. (Note that a point for which Q == 0, 
P 7*^ 0 is not cons deted a singularity. In the vicinity of such a 
point we simply consider dx/dv instead of dv/dx. Note also that we 
may always shift the origin of the a*,2;-plane to the singularity, since 
dv/dx is invariant under such a change of coordinates.) 

It has been shown by Poincar4 [34] that the differential equation 

(4 9% _ ax -f bv + P2{x, v) 
dx cx + dv + ^2(^, v) ’ 

in which the constants a, fc, c, d are such that the determinant A = 
od — 6c 7*^ 0 and in which P2 and Q2 vanish like as XyV 0, 
has as its only singularities (at the origin x == 0, = 0, of course) those 
of the much simpler equation 

(4.3) 
dv _ ax bv 

dx CX + dv’ 

In addition, he showed that criteria for distinguishing the types of 
singularities of (4.2) can be derived solely in terms of the constants 
a, b, c, and d. If, however, ad — be — 0 (which would occur, for 
example, if the developments of either P or Q were to begin with terms 
of order higher than the first) singularities of higher order and of quite 
different types from those obtainable from (4.3) can occur. However, 
the restriction A 5*^ 0 is, in general, fulfilled in the cases of interest to 
us, so that we may confine our attention to (4.3). We shall assume 
without proof the result of Poincar^ relating the singularities of (4.2) 
to those of (4.3), but we shall derive in detail the criteria for the 
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classification of the singularities of (4.3). In the section to follow 
immediately we shall study the singularities of (4.3) for certain special 
values of the constants a, 6, c, d by integrating (4.3) explicitly in these 
cases. In Section 6 we shall then prove that all cases of (4.3) (i.e. 
all cases with respect to changes of a, 6, c, d) are reducible to these 
special cases by appropriate linear transformations, and at the same 
time we shall deduce the criteria for distinguishing the various types 
of singularities. The treatment used follows essentially the same 
lines as that in the book of Bieberbach [5]. 

5. Special cases of dv/dx = (ax + bv)/(cx + dv) 

As indicated above, we study here a number of special cases of 
(4.3) in which the differential equation is easily solved explicitly. 
The singularity is, of course, at the origin of the x,t;-plane. 

1. dv/dx = av/x. The integral curves are easily found to be 
given by V = Voix/x^y. If a = 1, the integral curves consist of all 
straight lines through the origin. If 0 < a < 1 all integral curves 
pass through the origin and all are tangent to the t^-axis there except 
the curve y = 0. If a > 1 all integral curves pass through the origin 
and all are tangent to the a:-axis there except the curve x = 0. In all 
of these cases the origin is called a nodal pointy or node, (See Figure 
5.1a, 5.1b.) The situation is quite different if a < 0, a = —fc, 
k > 0, say. The family of integral curves vx^ = vqXq is asymptotic 
to the axes. Only the integral curves x = 0, y = 0 pass through the 
origin; all others pass by the origin. This type of singularity is called 
a saddle point. (See Figure 5.Id.) In the case of the pendulum, 
the unstable equilibrium positions correspond to singularities of this 
sort, as we have seen. 

2. dv/dx = —/i^x/y. The integral curves are given by v^ == 
vl + pxl. All solution curves are ellipses with the origin as center. 
Only the degenerate solution curve v^ + AtV = 0, i.e., x = 0, y = 0, 
passes through the origin. The singularity is called a center (cf. 
Figure 5.1e). The stable equilibrium points of the pendulum are of 
this type. 

3. dv/dx = (x + ay)/(ax — y), a 0. This equation is solved 
most easily by introducing polar coordinates x = p cos y = p sin 
In these variables the equation reduces to dp/dB = ap and the integral 
curves are given by p = they are thus logarithmic spirals. The 
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singularity is called a spiral point (cf. Figure 5.If). The a:,y-curves for 
a free linear oscillation with damping are curves of this kind, and the 
origin of the a;,y>plane is a spiral point of equilibrium, provided that the 
damping is less than the critical damping, i.e., < k/m^, (See 

Fig. 5.1. Types of singular points. 

Chapter 1.) If the damping is greater than the critical damping, 
r® > k/m, the singularity at the origin of the a;,v-plane is a node. If 
the damping is critical, r* = k/m^ the equation for the a;,v-curves can 
be transformed by a linear transformation into: 

4. dv/dx = (x + v)/x. The integral curves of this equation are 
given by y = xvo/xo + x log ( x/xq |. All curves pass through the 
origin. The origin is again called a nodal point (Figure 5.1c). 
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In the following section we shall see that the differential equation 
(4.3) (and with it (4.2) if A 5^ 0) has no other types of singularities 
than the ones just obtained above. 

6. Criteria for distinguishing the types of singularities 

The examples just treated are all special cases of the differential 
equation 

(iv _ ax bv 

cx + dv ’ 

in which a, h, c, d are constants assumed to satisfy the condition 

(6.2) A = ad — 6c 0. 

It should be noted that if condition (6.2) is not satisfied (6.1) becomes 
dv/dx = constant, and this case is of no interest in the present context. 
Our object is to discuss the nature of the singularities of (6.1) and 
to derive criteria in terms of a, 6, c, and d by means of which the type 
of the singularity is determined. The discussion to follow consists 
essentially in showing that the equation (6.1) can always be trans¬ 
formed into one or the other of the special equations studied in the 
preceding section by means of an appropriate non-singular linear 
substitution on x and v. It is clear that such a linear substitution 
does not alter the type of the singularity: in effect the integral curves 
are simply referred to new oblique coordinate axes. 

In order to carry out this program it is convenient at times to 
consider x and v as functions of a parameter t and to replace (6.1) 
by the equivalent system 

{v — ax + bv, 
(6.3) 

= cx + dv. 

The functions x and v are transformed into Xi, vi by the following 
linear transformation: 

(6.4) 
ixi = ax + jSy, 

= 7X + bv. 

Our object is to seek out non-singular transformations (i.e. trans¬ 
formations such that ab — fiy 7^ 0) which lead to the following 
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simple form for the differential equations for the new quantities vi 
and Xi : 

(6.5) 
[vi = 

[iri = \iXi, 

with Xi and X2 certain constants; or, what comes to the same thing, 
dvi/dxi = (X2/X1) (^i/xi) . This procedure is motivated to some ex¬ 
tent by the fact that a majority of the special cases treated above in 
Section 5 were of this form. Since Xi = ax + fiv and = 7X + 5y, 
we may write (6.5) in the form 

{a(cx -f dv) + i8(ax + hv) = Xi(ax + ^v) 
(6.6) 

(7(cx + dv) + 6(ax + hv) = X2(73J + ^^) 

upon use of (6.3). Since the ratio of x and v is in general not constant, 
it follows that the equations 

(6.7) 

and the equations 

(6.8) 

|a(Xi — c) — /Sa = 0 

I —(x.d -f- — 5) = 0 

|7(X2 — c) — 3a = 0 

[—yd "i" 6(X2 — b) — 0 

must be satisfied for values of a, /?, 7, 8 not all zero in view of the 
assumed existence of the transformation (6.4). Consequently, Xi 
and X2 must be roots of the equation 

(6.9) 
c — X 

d 

a 

b 
= 0, 

which is called the characteristic eqiiation; it can also be written in the 
form 

(6.10) X' - X(6 + c) - (od - be) = 0. 

Since we assume always that ad — be 7^ 0 it follows that (6.10) has no 
vanishing root. 

If the two roots Xi, X2 of the characteristic equation are unequal, 
it is readily seen that the determinant a8 — py of the transformation 
(6.4) must be different from zero, as follows: Either ad or be must be 
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different from zero, since ad — be 9^ 0, If, for example, ad 9^ Owe 
could obviously choose for fi/a and 6/y the values (cf. (6.7) and (6.8)) 

P/a = - 

c — Xi 
S/y = ~ c — X2 

with P/a 9^ h/y since Xi 5^ X2. A similar statement can obviously 
be made in case he 7^ 0; it follows that a transformation (6.4) with 
Ba — py 7^0 will exist so that Vi and Xi satisfy (6.5). 

If the roots Xi and X2 are real as well as unequal, which will be the 
case if the discriminant Z) = (6 — c)* + 4ad of (6.10) is positive, 
we observe that a number of the previously discussed typical cases 
occur. For example, if X2/X1 is negative, which in turn occurs if A = 

ad — hc\s positive (cf. (6.10)), the singularity is a saddle point. If, 
however, X2/Xi is positive, and hence A is negative, the singularity is 
seen to be a nodal point. In the latter case also we observe from 
(6.5) that a point on any solution curve moves into the singularity as t 
increases if the roots are both negative and away from it if the roots are 
positive^ i.e. according to whether h + cis negative or positive. In this 
way we can distinguish between stable and unstable nodal points. 

If the roots Xi, X2 are not real, and hence conjugate complex, we 
shall prove first that Xi and vi are also conjugate complex, i.e. that 
they can be written in the form 

(6.11) 
(vi = t;2 + ix2 

[xi = ^2 — iX2 

with X2 and V2 both real. Assuming for the moment that this is true 
we solve (6.11) for V2 and X2 to obtain 

(6.12) 
^ (a;i + vi) == aix + piv 

X2 = 2 

upon using (6.4); since V2 and X2 are assumed real, it follows that 
, ft , 7i, Bi are real and in addition the determinant of these coef¬ 

ficients does not vanish since the transformation (6.12) is the result 
of applying successive transformations each of which has a non-van¬ 
ishing determinant. For dv2/dx2 we have in any case the following 
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differential equation, obtained from (6.12) and (6.5): 

dv2 _ (ii + yi) _ (XiXi + X2t^i) 

dx2 i{xi — vi) i{\iXi — X2t;i) 

I o\ _ i(X2 — Xi)a?2 + (Xl + X2)l^2 

(Xi + X2)X2 — t(X2 — Xi)V2 

_ i4a:2 + Bv2 

Bx2 — .4^2* 

in which A, B are obviously real constants since Xi and X2 are complex 
conjugates. As a consequence, real functions X2 and V2 satisfying our 
relations exist and the validity of the transformation (6.12) is estab¬ 
lished. Furthermore, the constant A in (6.13) cannot be zero, since 
the roots Xi and X2 are unequal and conjugate complex, and hence the 
differential equation (6.13) again belongs to one of the typical cases 
discussed in the preceding section, i.e. to case 3 in which the integral 
curves are spirals, unless JS = Xi + X2 is zero, in which case the integral 
curves are circles with center at the origin. Upon transforming back 
to the x,t;-plane by using (6.12) one sees that the integral curves are 
spirals if Xi + X2 5*^ 0 and ellipses if Xi + X2 == 0. Furthermore, it can 
also be shown that a point on a spiral moves into the origin with 
increase of < if Xi + X2 is negative and away from the origin if Xi + X2 

is positive, i.e. according to whether the real part of the characteristic 
roots is negative or positive. 

Finally, we consider the case in which the roots of the characteristic 
equation are equal, i.e. Xi = X2 = X, and hence real. It is possible 
in this case that the equations (6.7) and (6.8) are satisfied identically; 
but this requires that a = d = 0 and that 6 = c so that dv/dx ~ v/x 
and the integral curves consist of the straight lines through the origin. 
If (6.7) and (6.8) are not satisfied identically, w'e can make use of the 
root X in order to determine non-vanishing values for a and /3 and 
with this choice transform the original differential equation into the 
following form: 

aixi + bivi 

-s-• 
the values of 7 and d in (6.4) being any values linearly independent of 
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a and /3. For the differential equation (6.14) the characteristic equa¬ 
tion is 

1 ~ X 

0 
= 0, 

but since it is assumed to have equal roots it follows that = 1. 
If ai were zero, (6.14) would have the form dvi/dxi = Vi/xi and the 
integral curves would again be the straight lines through the origin. 

If ai 5*^ 0 we may introduce a new transformation vo -vi ,X2 = Xi, the 
a 

determinant of which docs not vanish, and obtain in place of (6.14) 
the equation 

dlh _ .'^2 + V2 

dxo Vo ’ 

which is the case treated in 4 of the preceding section so that the 
singularity is once more a nodal point. Thus if Xi = Xa the singularity 
is a nodal point. If X is negative, a point on any integral curve moves 
into the origin as t increases, away from it if X is positive. 

The results of the above disc.ussion can be summed up in the 
following table, in which we refer to a singularity as stable or unstable 
according to whether a point on any integral curve moves into the 
singularity or not with increasing t: 

I. {h - r)2 + 4ad > 0 
/(A) Node if ad — be < 0 

\(B) Saddle if ad — be > 0 

Stable if 6 4- c < 0 

Unstable if 6 -f c > 0 

II. {h - r)2 -f 4ad < 0 
(A) (Center if 6 -h c — 0 

(B) Spiral if 6 4- r 0 
Stable if /> 4- c < 0 
Unstable if 6 4* c > 0 

III. (b — c)“ + 4ad = 0 Node. (Case 4) 
/Stable if 4- c < 0 

\Unstable if 6 4- c > 0 

This completes our discussion of the classification of singularities 
of first order differential equations, except for one additional remark. 
We have already stated that the singularities obtained in the present 
section are the same as those for the general first order equation: 

dv _ ax + -w + Piixy v) 

dx cx + dv + 02(^, v) 
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in case od — 6c 0 and P2 and Q% vanish to at least second order at 
the origin. Poincar6 also showed that the criteria for the classification 
of the types of singularities also remain unchanged in this more 
general case, with one exception: the condition 6 + c = 0 no longer 
suffices to distinguish between a center and a spiral in the case Z) < 0; 
the higher order terms P2 and Q2 must be taken into ac(50unt for this 
purpose. 

7. The index of a singularity 

For some purposes it is useful to assign a number, called the index, 
to the various types of singularities of first order differential equations 
treated above. The definition of the index of a singularity, as given 
by Poincares [34], is as follows: Consider a simple closed curve C(t) 
(i.e., a closed curve without double points) which passes through no 
singularities and which has at most one singularity in its interior. 
The angle d{t) which the field vector {dx/dty dvldt)y defined by the 
differential equations 

s 

at the points of C(0, makes with the positive x-axis is taken in such 
a way that d{i) is continuous. On making one complete circuit around 
C in the counterclockwise direction the angle ^(0 changes by an 
amount 2^^, j a positive or negative integer (or zero), since the field 
vector returns to its original position after completing the circuit. 
The number j is called the index of the singularity. U j = —1, for 
example, this means that the field vector makes one complete revolu¬ 
tion in the clockwise sense when C is traversed once counterclockwise; 
if J = 0 the field vector may oscillate but it does not make a complete 
rotation. 

It is clear that this definition of the index is not appropriate unless 
the index has the same value for every cur\"e C enclosing the given 
singularity (and no others). This is, however, the case. One proves 
it along the following lines: Suppose C' is another simple curve en¬ 
closing the singularity. Upon deforming C into C' in a continuous 
manner it is very plausible (and can be proved rigorously) that the 
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angle 0 and with it the index also vary continuously, but on the other 
hand since the index is an integer it must remain constant. 

It is easy to see geometrically, on the basis of this definition, 
what the index is for each of the singularities discussed in Section 3 

above (cf. Figure 7.1): nodes, centers, and spiral points all have the 
index +1, while the saddle point has the index — 1. In the case of a 
center, the curve C may be chosen as one of the closed integral curves. 
At a regular point (i.e. a point that is not a singular point) one sees 
that the index is zero. It is possible to define other higher types of 
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singularities for which.; is diiBferent from =fcl, but since these cases 
are not of importance for our later discussions we shall not consider 
them here. 

The notion of index of a closed curve C is defined in the obvious 
way by means of the change in the angle l?(0 upon making a circuit 
around (7, and it is of interest to know that the index of a closed curve 
containing a finite number of singularities is equal to the algebraic 
sum of their indices. The reason for this can be made intuitively 
clear without difficulty as follows: The interior of the closed curve C 
is divided into a number of regions each of which contains one of the 
singularities in its interior (cf. Figure 7.2). We recall that the index 
of a singularity was defined as the change in the angle ^(0 of the field 
vector in making a circuit in the counterclockwise direction around 

Fig. 7.2. Index of a simple closed curve. 

a curve enclosing the singularity. The sum of all the indices inside 
C could therefore be obtained by adding the angle changes for all of 
the curves. But the angle changes over the segments of the boundary 
curves inside C occur always twice with opposite signs, since these 
curve segments are traversed twice in opposite directions (again cf. 
Figure 7.2). Hence the contributions to the total change in angle 
furnished by the interior curve segments cancel out and we see there¬ 
fore that the index of C is the sum of the indices of the singularities in 
its interior. 

A knowledge of the nature and distribution of the singularities is 
not enough to determine the qualitative character of the solution 
curves of a first order differential equation, but such information can 
be highly useful in certain important special cases. For example, 
suppose that there is a closed solution curve C without double points 
or other singularities. Since the tangent vector to such a curve 
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turns through the angle 2ir in the positive sense on making one circuit 
of the curve, it follows that the sum of the indices of all singularities 
inside any closed solution curve free of singularities ts +1. It follows, 
therefore, that there must be at least one singularity inside such a 
closed solution curve. Furthermore, if the singularities are all of the 
types discussed here, in which the indices are +1 or —1, we see that 
the number of saddle points must be one less than the number of other 
types of singularities. This observation will be very important for 
the discussion of certain problems in Chapter V. 

C. Applications Using the Notion of Singularities 

8. Free oscillations without damping 

In the preceding chapter we have already discussed in some detail 
the motions which occur in case the differential equation characterizing 
them is x + /(x) = 0, without making more than incidental use of 
the notion of a singularity. It is, however, useful and illuminating 
to consider explicitly the singularities in these cases also. We take 
the differential equation 

(8.1) * . 
dx V 

with/(0) = 0 so that the origin is a singularity, and write 

(8.2) f(x) = Uix +1* x* + • • •, Oi 0. 

We assume ai 0, i.e,, that the spring stiffness does not vanish for 
X = 0; otherwise the determinant A (cf. (6.1) and (6.2)) would vanish 
and the singularity would be of a higher order than we wish to 
consider. Upon introduction of the potential energy F(x) through 

= f fix) dx = a:* + a;'' 

the energy integral becomes 

v*/2 + Fix) = h 

(8.5) 
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in which h is the total energy of the system. As we noted in the 
preceding chapter, the singularities correspond to rest positions of 
equilibrium, since the conditions/(a^) = 0, y = 0 characterize these 
points. In terms of the potential energy F{x) the singularities there¬ 
fore occur for values of x satisfying F'{x) = 0. Since dv/dx = 
(—aiT + • * •)/Vy we have, in the notation of Section 6, a = ~ai, 
/> == 0, c = 0, rf = 1, and the table at the end of Section 6 shows the 
singularity to be a saddle if ai < 0 and a center if ai > 0. From 
(8.3) we see therefore that saddle points correspond to maxima of the 
potential energy F{x) and minima to centers. If the assumption 

Fig. 8.1. Relation of integral curves to potential energy. 

ai 0 were to be given up, the singularity at a; = 0 would be of higher 
order, as we have already observed. However, the nature of the 
singularity would be the same if F(0) were a relative minimum or 
maximum, as can readily be seen from (8.5). But if F'(0) = 0 
while F(0) is neither minimum nor maximum the singularity is in 
general of a type different from any we have discussed hitherto. 

As an example of the kind of conclusions that can be drawn with 
regard to the character of the motions for a given F(x), consider 
Figure 8.1 in which a special function F{x) is plotted together with 
the x,t;-curves for various values of the energy constant h. We 
observe first of all that the change of origin from a; = 0 to x = 
obtained by setting f = x — Xi replaces (8.1) by dv/d^ == f—/({ + 
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xi)]/v and the discussion above now applies to a neighborhood of 
{ = 0. We consider first the case h ^ hi corresponding to the lowest 
minimum of F(x) in the range we consider. It is clear that the only 
motion possible is the state of rest with a; = Xi, v = 0, since < 0 

for all other x. If h is changed slightly toh — hi + 6h, 5h > 0, the 
energy curve is a closed curve with (xi, 0) in its interior, corresponding 
to the fact that the singularity for x == a:i is a center. As h is gradu¬ 
ally increased new periodic motions can arise as soon as h passes the 
new minimum point at x = 0:2, /fc = ^2 on F(x). So far all motions 
might reasonably be considered to be stable since slight changes in 
initial conditions cause only slight changes in the resulting motions. 
However, when A = A3 is reached a quite different type of curve ap¬ 
pears, corresponding to the fact that F{x) has As as a maximum at 
point S. A solution curve with a saddle point arises, as indicated in 
the figure. In this particular case the solution curve with the saddle 
point is a closed curve with abscissas delimited by the points Mi and 
M2, as one can readily see. When A is increased farther to hi another 
saddle singularity arises. The corresponding solution curve has a 
closed loop to the left, but is open on the right. For values of A 
between A3 and A4 there exist closed solution curves which enclose a 
saddle point and two centers in their interiors. We have here a con¬ 
firmation of a general result dealt with in the preceding section that a 
closed solution curve free of singularities must contain in its interior 
one more center than saddle so that the sum of the indices of the 
singularities inside it is +1. 

The above discussion also makes it rather clear that the solution 
curves through the saddle singularities would in general be decisive 
in fixing the qualitative character of all the solution curves, since they 
separate the plane into regions in which the solution curves behave 
in different ways. 

9. Wire carrying a current and restrained by springs 

The above discussion can be extended to the somewhat more gen¬ 
eral motions determined by the differential equation 

(9.1) = 0, 

i.e. to motions in which the spring force depends upon a parameter X 
in addition to the displacement z. The solution curves and the char- 
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acter of their singularities depend then upon X; in particular, it is 
possible for one or more of the singularities to change in type suddenly 
when X passes through certain values, and consequently that the 
character of the possible motions of the system may change radically 
when X passes the transition values. We shall consider in this and 
the next section two special physical problems which illustrate some 
of the possibilities in this connection. 

The first problem* is that of the motion of a current-carrying 
conductor restrained by springs and subjected to a force from the 
magnetic field due to another infinitely long fixed parallel wire, as 

Fig. 9.1. Elastically restrained current-carrying wire in a magnetic field. 

indicated in Figure 9.1. The differential equation governing the mo¬ 
tion of the wire is 

\z + k = 0. 

The parameter X is given by X = 2Iil/k^ and k is the spring constant. 
The terra fcX/ (a — x) is the force of attraction set up by the magnetic 
fields due to the current in the wires. In the present case we have 

dv _ k — ax + \ 
dx m v(a — x) 

The singularities are the points {xi, 0), (0:2, 0) with Xi and X2 the 
roots of — ox + X = 0, i.e. 

a fa^ 

Upon setting == x — x, we can replace (9.3) by the equation 

(95) * = + Xi - Xj) ^ k (xj - Xj)ii + - - 
dft tn v(a ~ Xi — fi) m v(a — x,) +, • • • 

♦ This problem is treated in the book of Minorsky [31]. 
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in which Xi, Xj refer to the roots furnished by (9.4) and the dots refer 
to quadratic terms which are to be neglected near {» = 0, = 0 in 
determining the character of the singularities at = 0 and {2 = 0, 
i.e. at a: = Xi and x — X2. 

For X 7*^ 0, which we assume, the numerator on the right-hand side 
of (9.3) does not vanish for x = a, and (9.3) can be written in the 
form vdv = dx/g(x) with g(x) a function vanishing to the first power 
in X — a at X = a. Hence v tends to infinity as x approaches a. We 
shall therefore restrict x to values less than a. There are then three 
cases to be discussed, depending on the nature of the roots xi.2 as 
determined by the value of X: (a) X < a /4; both roots are real and 
positive with Xi > X2. (b) X = o^/4; both roots have the value a/2, 
(cj X > a^/4; the roots are not real and hence no equilibrium positions 
exist. The force due to the magnetic field is, in fact, always larger 
than the spring force in this case. 

In the first case there are two singularities at x = Xi and x = X2 

with Xi > X2, both of which lie between x == 0 and x = a. From 
(9.5) we see from the criteria developed in Section 6 that the sin¬ 
gularity is a saddle at x = xi since (xi — X2) and (a — xi), the coeffi¬ 
cients of and y, are both positive, and is a center at x = X2 since 
(x2 — xi) is negative and (a — X2) is positive. 

The same conclusion regarding the character of the singularities 
can also be obtained readily in the present case, just as in the pre¬ 
ceding case, by considering the potential energy F(x), which is in 
this case given by 

(9.6) F{x) = kz^/2 + fcX log (a — x), 

as one finds immediately from/(x) = k[x — X/(a — x)]. In Figure 9.2 
we indicate F{x) together with the solution curves of (9.3) for the 
cases X < aV4 and X = a^/4. In the former case the solution curves 
are closed curves surrounding the point (x2,0) until the energy con¬ 
stant is so large that the solution curve contains the saddle singu¬ 
larity at (xi, 0). Since F(x) always increases as x decreases below 
X ~ X2, we see that the solution curve through the saddle point forms 
a loop on the left. For still larger values of the total energy there are 
two distinct types of open solution curves corresponding to two dif¬ 
ferent types of non-periodic motions. In other words, the motion 
of the wire is periodic only if the initial velocity and displacement of 
the wire are not too large. When X =» aV4 the two singularities 
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coalesce to form a singularity of higher order (cf. (9.5) in which the 
coefficient (xi — x,) of f, is now zero and hence the numerator on the 
right-hand side is quadratic in {<). The curve for F(x) has a point 
of inflexion with a horizontal tangent at x = a/2. The solution curve 
through (a/2, 0) has a cusp at this point; there are no closed solution 
curves and consequently no periodic motions. In case (c) when 
X > aV4, there are no singularities and hence no periodic motions, 

Fig. 9.2. Integral curves for wire in a magnetic field. 

and the solution curves have the same general appearance as the 
curves to the left of the singularity indicated in Figure 9.2(b). 

The interpretation of these results for the physical problem is 
easily given: If the spring is sufficiently weak, no vibrations occur and 
the mass simply moves toward the fixed wire without oscillating. On 
the other hand, if the spring is stiff the motion will be oscillatory if 
the initial position of the mass is not too near to the fixed wire nor its 
initial velocity too high; otherwise, the mass again will tend even¬ 
tually to move always toward the fixed wire. This behavior is of 
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course conditioned by the fact that the force of attraction due to the 
magnetic field becomes infinite when the fixed wire is approached. 

10. Elastic stability treated dynamicMlly 

If a slender straight elastic rod is subjected at its ends to com¬ 
pressive forces along the axis of the rod it is well known that the 
straight equilibrium position will not be stable unless the compressive 
forces are kept under a certain critical value, beyond which the column 

Fig. 10.1. Analogue of an elastic column. 

bends or buckles. This problem is usually treated in the theory of 
elasticity from a purely static point of view by inquiring simply for 
the magnitude of the loads at the ends of the column at which bent 
states of equilibrium may exist in addition to the straight state, and 
defining as the critical buckling load the smallest load for which such 
a bent state of equilibrium can occur. 

In this section we shall consider a very much simplified version 
of the stability problem for the column, but treat it dynamically 
instead of statically. The simplification results through considering 
an elastic system having only one degree of freedom instead of the 
column, which as an clastic continuum has infinitely many degrees 
of freedom. In Figure 10.1 we indicate the system to be treated. 
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It consists of two light rods pivoted together at point C and free to 
slide along a vertical line at their other ends A and B, At point C 
the pivot is assumed to carry a particle of mass m. Compressive 
forces P, as indicated, act at the ends A and B of the “column’^ along 
the vertical line through A and B, At point C springs are provided 
which act to produce a sidewise restoring force f(x) which depends 
upon the displacement x. In addition, the two rods are assumed not 
to rotate relative to each other at C without constraint, but rather 
to react on each other through a properly attached coil spring, for 
example (not shown in the figure), which exerts a restoring moment 
Af proportional to the angle through which the rods turn relative to 
each other.* The forces acting on one of the rods (the forces on the 
other rod are the same by symmetry) and on the mass m are indicated 
in the figure. Since we neglect the mass of the rod the following 
conditions on the forces acting are obtained from statics: 

(10.1) P 

(10.2) VI sine cos0 = 0. 
A 

The first equation is the condition of equilibrium of the forces in the 
vertical direction, and the second is the equation of moments about 
point B, The equation of motion of the mass m is 

(10.3) mx = F — /(x). 

For the restoring moment M provided by the coil spring at C we have 
M = 2ki0 with ki a constant, while for/(x), the lateral spring force, 
we assume the behavior to be given by/(x) = ax + jSx®, with a and 
both positive constants. Equation (10.3) then takes the form 

/ . ^ Px — ki arc sin x/l . 
(10.4) mx - 2-“ 0 

upon using (10.1) and (10.2) to eliminate V and x = / sin ^ to elimi¬ 
nate 6, We now assume that the sidewise displacement x is so small 
compared with I that powers of x/l above the third may be ignored 
compared with lower powers, and thus replace (10.4) by the following 
equation 

(10.6) mx + (a + 2kt/f - 2P/l)x + (/3 + 4jfci/3/^ - P/l')x’ = 0. 

* In this way we simulate the handing stiffness of a continuous elastic 
column. 
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We observe that one solution of our problem is given by a; = 0, 
corresponding to the straight equilibrium position. The question is 
whether this solution is stable or not when the pressure P is increased. 

It is perhaps of interest to interpolate at this point the treatment 
of the stability problem on a purely static basis, as one does in the 
theory of elasticity. By dropping the acceleration term we obtain 
from (10.5) the following equilibrium condition 

(10.6) aix + CL^ = 0, 

with ai and 03 given by 

(10.7) ai - a + “ 2P/Z, 

(10.8) as = ^ + 4fci/3^* - P/l\ 

In the theory of elasticity one also usually restricts oneself to displace¬ 
ments X so small that nonlinear terms in x can be ignored; in this case 
the equilibrium condition takes the form aix = 0, with ax defined by 
(10.7). Consequently x = 0 unless ax = 0, and the latter equation 
in turn furnishes from (10.7) the following “critical” value for P: 

(10.9) Petit. — al/2 + kx/l 

at which the column would buckle, since the equilibrium becomes 
indifferent for this value of P in the sense that x is now arbitrary. 

We turn now to the dynamical treatment of the problem, which 
yields the same value for Perit. but determines it through an argu¬ 
ment which is perhaps more convincing. In accordance with our 
usual practice we replace x by v(dv/dx) and obtain the first order 
equation 

(10.10) dv _ 1 —aiX ~ azx^ 
dx m V ' 

with ax and as as defined in (10.7) and (10.8). In the x,y-plane the 
origin is an equilibrium point; and it is the character of the singu¬ 
larity there which decides whether the state x = 0 is stable or not. 
As we have seen in the previous examples, the sign of ax is decisive 
for this: if ax is positive, the singularity is a center, while it is a saddle 
point if ax is negative. The two cases are indicated in Figure 10.2. 
If ai > 0, a slight disturbance from the equilibrium position results 
in a small oscillation, but if ax < 0, the motion departs widely from 
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the equilibrium position upon the slightest disturbance. From (10.7) 
and (10.9) we conclude therefore that the column is stable if P < Pent, 
and unstable if P > Perit. , so that the static determination of Perit. 
yields the correct transition value from a stable to an unstable equi¬ 
librium position. 

In Figure 10.2 the curves for the case P > Peru, were drawn as¬ 
suming that az is positive (which would be the case if ^ were large 
enough, for example), so that two equilibrium positions would occur 
for x = ± y/az/i — aij- One finds readily that the corresponding singu¬ 
larities are centers. 

a,>0 a,<0 

Fig. 10.2. Stable and unstable cases of the column. 

It is interesting to consider the effect of viscous damping on our 
mechanical system. In equation (10.4) we would have an additional 
term cx, c > 0, on the left side of the equation, and equation (10.10) 
would be replaced by 

(1011) dv _ I -aix - cv - azx^ 
dx m V 

This equation cannot be solved by using the energy integral, but 
through consideration of the nature of the singularities of the equation 
it is not difficult to discuss the character of the solution curves. In 
the first place we observe that the equilibrium positions are not altered 
by including the damping term, since y = 0 in these positions. In the 
stable case when ai > 0 one finds readily, with reference to the table 
at the end of Section 6, that the singularity is a stable nodal point 
if the damping constant c is sufficiently large and is a stable spiral 
point otherwise. For this purpose we must identify — ai with a. 
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—c with 6, take c = 0, and set d — 1 in using the table of Section 6. 
In either case, the displacement x tends with increasing t to the rest 
position a; « 0. However, if ai < 0 or, in other words, if P > Pcrit., 
the singularity is readily found to be a saddle point, just as in the case 
without damping. As we would expect (and could also easily show 
from the criteria for singularities), the two other singularities, which 

Fig. 10.3. Kffecl of damping on motion of the column. 

were centers in the case of no damping, now become stable spiral 
or nodal points. The solution curves in the x,t;-plane now appear 
as in Figure 10.3. In the unstable case, we observe that all motions 
tend to one or the other of the two stable equilibrium positions. Once 
more the solution curves which contain the saddle point separate the 
plane into regions in one of which all solution curves tend to one of 
the two stable singularities, and in the other region to the second 
stable singularity. 

The dynamic treatment of our stability problem for a simplified 
model of an elastic column thus leads to a completely satisfactory 
explanation of the buckling phenomena. In the case of the continu¬ 
ous elastic column a dynamic treatment of the stability problem 
would also be more satisfying than the present static treatment, but 
the difficulties in carrying out such a treatment would not be small. 
Certainly the above treatment would be out of the question, since 
it is in principle confined to systems with one degree of freedom. 
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11. The pendulum with damping proportional to the square 
of the angular velocity 

In the remainder of this chapter we shall deal with cases in which 
the occurrence of damping forces plays an essential role. As a first 
example we take the case of a pendulum immersed in a medium which 
exerts a force proportional to the square of its velocity and in a direc¬ 
tion opposite to the velocity. The differential equation for the 
pendulum in this case can therefore be written in the form 

(11.1) X + ci 1 X I + fc sin X = 0. 

The quantity x is the angle of swing measured from the lower equi¬ 
librium position. Instead of (11.1) we consider, as usual, the first 
order equation 

. V dv _ —k sin X — ct; I y I 

^ * dx V ' 

The singularities, corresponding to the equilibrium positions, are at 
X = nTT, n a positive or negative integer. At x = 0, the right-hand 
side of (11.2) takes the form (—to + • • • )A and the singularity is 
therefore either a center or a spiral: we have here the exceptional case 
mentioned at the end of Section 6 in which the criteria for the singu¬ 
larity fail to distinguish between these two cases. However, we know 
that the singularity at x = 0 for c = 0 (that is, the case of no damping) 
is a center, and we have seen in Section 2 of the present chapter that 
the singularity then becomes a stable spiral point when damping is 
present. At x = tt the singularity is a saddle, as we know from earlier 
discussions, since this singularity is not affected by an additional 
quadratic term cv\v\. It is therefore clear that the singularities at 
X = riTT, t; = 0 are stable spiral points if n is even and saddle points 
if n is odd. The solution curves of (11.2) are readily seen to appear 
as shown in Figure 11.1. Every motion tends to a stable equilibrium 
position. 

The curves of Figure 11.1 can be obtained explicitly in the present 
case by integrating (11.1) in the following way: We introduce v = x 
and y =* v/\/k in (11.1) to obtain 

y ~ + cy\y\ + sin X ^ 0, 
ax 

(11.3) 
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which can in turn be written in the form 

(11.4) + 2cj/* = —2 sin x for y > 0, 
ax 

and 

(11.5) - 2cj/* = -2 sin x for y < 0 

Fig. 11.1. Integral curves for pendulum with quadratic damping. 

Equations (11.4) and (11.5) are first order linear differential equations 
with constant coefficients for the function y^\ they are readily solved 
to yield 

(11.6) y* = cic-*'" + «os X - sin x, y > 0, 

(11.7) y* = V < ^- 

The quantities Ci and C2 are arbitrary integration constants. 
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We now consider a special problem which foreshadows a type of 
consideration that will be important in the sections to follow imme¬ 
diately. Suppose that the pendulum is given an impulse when in 
the position .r = 0 so that it acquires the initial angular velocity v. 
If V is sufficiently small the pendulum will oscillate about a; = 0 with¬ 
out making a full revolution about its support, but if v is large enough 
the pendulum will go “over the top’^ one or more times before finally 
oscillating about the stable equilibrium position. In terms of the 
phase curves in Figure 11.1 this means that a curve starting at (0, v) 
will finally spiral down on one of the singularities x ^ mr {n an even 
integer), which one it will be depending on the value of v. 

Our problem is to give the ranges of values of the initial velocity v 
within which the corresponding x,i;-curve will spiral down on a given 
singularity, or, in other words, to give the range of initial velocities 
'voithin which a motion with a specified number of full revolutions will 
occur. From Figure 11.1 it is quite obvious what must be done to 
solve the problem: The upper branches of the solution curves through 
the saddle points x = tt, Stt, Sir, • • • , y = 0 must be continued back¬ 
wards (i.e. for decreasing values of t) until they cross the p-axis at 
points , Pa, * • • . If then v lies in the range Vn < v < Pn+2 the 
pendulum will make (n + l)/2 complete revolutions before coming 
to rest. 

The values Vn delimiting the various ranges of v can be determined 
explicitly from (ll.G) with no difficulty in the present case: We need 
only fix Ci so that y — 0 for x = nir (n odd) and then calculate 
y = v/y/k forx == 0. This yields for Ci the value Ci = + 4c^) 

and for vl the value 

("■® 

As we have seen, the pendulum will execute (n + l)/2 full revolutions 
if V lies in the range Vn < v < Vn+2 • The impulse required to cause 
the pendulum to execute n revolutions therefore goes up exponen¬ 
tially with n. 

12, The pendulum with viscous damping 

In this section we treat essentially the same problem as in the pre¬ 
vious section, except that the damping is assumed to be viscous 
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damping, i.e. it is assumed to be proportional to the first power of the 
angular velocity rather than to its square. We have therefore to 
study the differential equation 

(12.1) X + cx + k sin X — 0, c > 0. 

Again we wish to determine the smallest initial impulse that must 
be given the pendulum when in the position a: = 0 in order that it 
should make a full revolution before tending again to the rest position 
X = 0 as the time increases. Evidently, one could solve the problem 
by investigating the solutions x{t) of (12.1) (graphically or otherwise) 
w’hich satisfy the initial conditions x(0) == 0, x(0) = vo for various 
values of ro until the value of vo is found for which x just reaches the 
angle tt. It can, hoAvever, be treated in a simpler way to which 
one is led naturally Avhen one interprets the problem in the x,em¬ 
plane and works backward from a singularity, as in the problem 
treated in the preceding section. This problem has practical im¬ 
portance when interpreted in terms of the unsteady operation of 
the synchronous alternating current motor, as we shall see in the 
next section. 

In the previous section we were able to solve the corresponding 
problem easily by explicit integration of the differential equation, 
but that is not possible with (12.1). We shall therefore indicate 
three different methods for the numerical solution of our problem 
which are capable of furnishing any desired degree of accuracy. As 
a basis for these solutions we take, as usual, the first order differential 
equation resulting from (12.1) by introduction of v = x as new 
variable: 

(12,2) dv _ —ct; — A: sin X 

dx V 

By setting y = v/\^k, X == c/y/'k we obtain in place of (12.2) the 
following equation containing only one parameter: 

(12.3) 
dy _ —— sin x 

dx y 

Our problem is to determine the value of y for x = 0 so that x will 
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just attain the value r. The solution curves for (12.3) are shown in 
Figure 12.1: qualitatively they do not differ from those shown in 
Figure 11.1 for the case of quadratic damping. The singularity at 
x = 0 is a spiral point (or a nodal point if X is large enough), and at 
a; = v it is a saddle point, as we know from our previous discussions, 
or can verify by the criteria given in Section 6. Our object will 

Fig. 12.1. Integral curves for pendulum with viscous damping. 

clearly be achieved once the point marked yi in Figure 12 J is determinedy 
i.e. the point of intersection with the y-axis of the solution curve drawn 
backward from the saddle at x — w. It is the determination of this 
solution curve which we propose to carry out numerically in three 
different ways in order to illustrate the kinds of procedures w'hich 
may be used in similar cases. 

The first method we use is the power series method. If a new 
independent variable { = a; — ^ is introduced in place of x in (12.3), 
this equation becomes 

y (^ + x) = -sin (f + it) = sin (12.4) 
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A power series solution valid near { = 0 is desired; hence we write 
with undetermined coefficients: 

(12.5) y = + Oaf* + Osf* + • ■ • . 

(It can be seen from the differential equation that y is an odd func¬ 
tion of $.) If this series is inserted in (12.4) the result is 

(ai f + 03 + • • *)(^ + + 303 f + 5o5 + • • •) ~ ^ “f” * “ » 

from which, by equating coefficients of like powers of we can 
obtain a set of equations for the coefficients o* of the series. The 
first such equation is the following quadratic in Oi : 

(12.6) ai(oi + X) = 1, 

with the real roots 

(12.7) Oi = (-X =b VxMr4)/2. 

Once one of the two roots has been chosen for Oi, the other coeffi¬ 
cients are determined successively by linear equations; for instance, 
az satisfies the equation 

(12.8) az(\ + ai) + Sazai = — 1/G. 

This furnishes a verification of our statement that the point x = tt, 
y = 0 is a saddle singularity since exactly two solutions enter it. 
The two solutions enter the singularity with slopes of different sign; 
but clearly our problem requires that we follow backward to f = — tt 
the one with the negative slope (cf. Figure 12.1). 

We proceed to carry the solution through in the special case for 
which X = 0.1. For this value of X the first terms in the power 
series are 

(12.9) y = -1.0512f -f .0406f’ - .0005|* + • • ■ . 

Even for { = 1 the error in using only the first term in the series would 
probably be less than 5 percent. In this particular numerical exam¬ 
ple we could make use of the power series to determine 2/(—ir) = . 
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In later examples of a similar type it will not be possible to use the 
poAver series over the full range of values of f. Hence Ave indicate 
methods of continuing the solution from the singularity in the present 
case by a different method Avhich can be used in other cases. 

The solution could be pursued beyond the range in Avhich (12.0) 
is accurate by any of a number of approximation methods. We 
choose first the method of finite differences. The interval — tt < { < 0 
is broken into a number of equal intervals of length h as shoAvn in 

Fig. 12.2. Approximation to integral curves by finite difference method. 

Figure 12.2. At each net point n we approximate the derivative by 
the formula 

t/n—1 yn+l 

¥i 
in which the right-hand side is the average of the forward and back¬ 
ward difference quotients. Instead of seeking a function y({) Avhich 
satisfies (12.4) at all points of —tt < { < 0 we require that the differ¬ 
ence equations obtained from (12,4) by replacing dy/d^ by (12.10) be 
satisfied at every net point. The difference equation for our problem 
is thus 

2/n—1 2/n+l = -X + 
sin 

2h Vn 

or 

(12.11) 2/n+l = 2ft 
_ sin fnA 

+ Vn 
Vn ) 

With this form of the difference equation Ave must knoAv tAvo values 
for yi initially in order to proceed Avith the solution. Clearly we 
must take yo = 2/(0) = 0, Avhile y\ = t/(—/i) can be computed from the 
power series (12.5) if h is not too large. From (12.11) Ave then find y^. 

(12.10) 
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Once ^2 is kno\vn (12.11) furnishes the value of yz, etc. The accuracy 
obtainable by this method of course depends on the smallness of h\ 
it could be shown that the values of converge to the exact values 
as A 0. 

We carry the calculations through for h = ir/4. The value of yi 
as computed from (12.9) is yi = y( —t/4) = .806. From (12.11*) 
the value of yz = 2/(—7r/2) is obtained; it is yz = 1.53. In the same 
way we obtain yz = 1.99 and finally 2/4 = = 2/( —^) = 2.24. Using 
three terms of the power series (12.9) would furnish the value 
y{-ir) ^ 2.20. 

Still another method of approximation can be applied in the pres¬ 
ent case. Since X is small we can approximate the solution by itera¬ 
tion, assuming as a first approximation y^^^ the solution of (12.3) 
for X = 0 which vanishes at a; = tt, that is by 

(12.12) 2/^°^ = \/2 -y/l + coBx. 

The next approximation y^^^ is obtained from (12.3) by inserting y^^^ 
in the right-hand side to yield the following equation for y^^^ 

dy^^^ _ _ sin X 

dx 2/^°^ 

with 2/^^^(^) = 0- The result is 

(12.13) 2/^'^ = -X(x -ir) + \/2 \/l + cos X. 

In the case treated above X = 0,1. Hence (12.13) yields for y(fi) 
the value y(0) = 0.1 (t) + 2 = 2.31. The results of the three dif¬ 
ferent methods of numerical solution differ by only a few percent. 

13. Description of the operation of alternating current motors 

The methods developed in this chapter have as one of their most 
striking applications the solution of the problem of pull-out torques 
of synchronous motors. It was therefore thought worth while to 
give a brief description of the mode of operation of these motors 
before taking up the pull-out problem in the next section. 

Rotating alternating current motors all have one feature in com¬ 
mon, A magnetic field which rotates in space is present. One of 
the simplest ways to obtain such a field is indicated in Figure 13.1. 
Two identical coils of rectangular shape are placed with their planes 
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at right angles. The two coils are supplied with current I from a 
two-phase alternating source such that 

/(i) = Im cos (at and 7(2) = Im sin tat, 

that is the currents are 90° out of phase. At the time < = 0 the 
field around the wires would then be as indicated in Figure 13.1(c). 
At < = 7r/2a) (or, as we shall also say, 90° later) the field would encircle 
the coil (2) and not the coil (1). If the fields furnished by each of the 
coils happened to be parallel fields of constant intensity everywhere, 
it would follow easily that the resulting field due to the superposition 
of both fields would also be a parallel field of the same constant in¬ 
tensity turning at angular velocity a>. With only two coils such a 

(b) (0) (c) 

Fig, 13.1. Method of producing a rotating magnetic field. 

field of constant intensity could hardly be achieved, but by taking n 
coils at angles 27r/n apart and using a polyphase current source a 
fairly close approximation to a rotating field of constant form and 
intensity can be obtained. The main point for our considerations 
here is that there is a magnetic field which rotates in space; that it 
may fluctuate somewhat in rotating is not of any great consequence 
for our purposes. 

So far we have considered only what is called the armature of the 
motor, that is, a winding fixed in space and so arranged that it pro¬ 
duces a magnetic field which rotates in space. The second essential 
element in a motor is an element free to rotate inside the armature 
and generally called the rotor. Different types of motors differ mainly 
in the design of the rotor. We consider here only two possibilities: 
the induction or squirrel cage motor, and the synchronous motor. 

The rotor of a squirrel cage induction motor consists of a series of 
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copper bars attached to the surface of a cylinder (see Figure 13.2); 
the bars are all connected together electrically at the ends. Such 
a motor functions as follows. Suppose that the rotor were at rest 
in the presence of the rotating magnetic field provided by the arma¬ 
ture. The bars of the rotor would be cut by the magnetic lines of 
force and hence currents would be induced in them; as a consequence 
forces would be exerted at right angles to the bars and a torque would 
result. Such a torque would, furthermore, cause the rotor to turn 
in the sense of the rotating field. If no load were applied to the 
motor (and if losses in the motor itself were neglected) the steady 
state would be one in which the rotor turns at the same speed as the 

Induction Motor Synchronous 

Fig. 13.2. Rotors of two types of motors. 

Motor 

rotating field, the so-called synchronous speed, and no currents would 
flow in the rotor bars. If the motor were overcoming a constant 
resisting torque, the rotor would turn at a speed less than synchronous 
speed; the **slip’' of the rotor relative to the field would lead to induced 
currents and consequently to a torque just sufficient to overcome 
the load on the motor plus the resistances of various kinds in the motor 
itself. If X represents the angular velocity of slip of the rotor relative 
to the rotating field, the torque on the rotor is given approximately 
by cXj with c a constant. 

The principle of operation of the synchronous motor is quite dif¬ 
ferent. In this type of motor the rotor consists of a series of wound 
electromagnets with iron cores, as indicated in Figure 13.2. The 
number of poles is just double that of the separate windings in the 
armature. The windings on the poles are so arranged that they are 
alternately of opposite polarity when the windings are connected to a 
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source of direct current. For such a motor a separate source of 
direct current for the rotor and a source of alternating current for the 
armature are needed. The synchronous motor is not self-starting. 
If the rotor were at rest when its field and that of the armature were 
excited it is clear that the torque on the rotor would alternate rapidly 
in sign so that the time average of the torque over even quite short 
intervals of time would be zero. However, if the rotor were, by some 
means or other, made to rotate at or near the speed of the rotating 
field, the two fields would ‘‘lock” and a torque would be exerted. 
The principle of operation is that of a magnet mounted on a shaft 
which is caused to rotate by turning another magnet about it. When 
the motor is carrying no load, the two fields are locked so that they 
are parallel; when the motor is overcoming a torque the rotor field is 
turned at an angle x to the armature field so that a torque propor¬ 
tional to sin X is developed^ (of course, under steady conditions, the 
rotor continues to turn at synchronous speed). It is as though the 
two fields were coupled together elastically. Of course, the torque 
which can be carried by the rotor is limited by the strength of the 
fields; if the torque is made too large the rotor will “skip a pole,” 
in the electrical engineer’s terminology, and the motor will “fall out 
of step” and cease to operate. 

The synchronous motor can be made self-starting by adding cop¬ 
per bars to the pole faces so that the motor can also function to greater 
or less degree as an induction motor in the manner described above. 
In such a case the operation of the motor is governed (to a first ap¬ 
proximation at least) by the same differential equation as for the 
pendulum with viscous damping: 

(13.1) -f cx + A; sin X = L, 

in which the term x represents the inertia torque due to the mass of 
the rotor and its connected load, the term cx arises from the torque 
due to the “slip” of the squirrel cage winding relative to the rotating 
field, the term k sin t is due to the angle between the fields of the 
rotor and armature, and L represents the torque of the external load 
on the motor. The angle x is measured from an axis which rotates 
with the synchronous speed of the rotating electrical field.* Actually^ 

* The angle x is now not the space angle but is rather the angle measured 
in so-called electrical measure: 2ir electrical radians correspond to the space 
angle between two alternate poles of the same polarity on the rotor of the 
synchronous motor. 
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the differential equation (13.1) is somewhat oversimplified since the 
factor c varies somewhat in practice and the term k sin x should be 
supplemented in general by terms involving sines and cosines of 2a:, 
but the methods of attacking (13.1) presented here would serve also 
in these more complicated cases. 

The problem concerning the pendulum with damping solved in 
the preceding section can be interpreted in terms of the operation of a 
synchronous motor, as follows: Suppose that the motor is operating 
under no load, i.c. L = 0, and with the rotor ‘docked” with the 
rotating field so that x = 0. At a certain instant an impulsive torque 
is applied to the rotor so that the angular velocity v = x suddenly 
changes from the value zero to the value v. The problem is to find 
the smallest value vi such that x will just reach the value x, i.c. such 
that the magnetic poles of the rotor pass from a position in which 
they are in line with poles of opposite polarity in the rotating magnetic 
field to a position in which poles of the same polarity are in line. 
The latter position is on physical grounds obviously an unstable 
equilibrium position. Any increase in v above h would then cause 
the rotor to “skip a pole” and the motor would in most cases “fall 
out of step” and cease to operate. The methods of the preceding 
section would yield the value of this “pull-oiit impulse” for any given 
motor once the values of c and h in (13.J) appropriate to the motor 
are given. 

14, Pull-out torques of synchronous motors 

A more general and in practice a more important “pull-out” prob¬ 
lem for the synchronous motor than the problem discussed in the 
preceding section is the follpwing: Up to the time t = 0 the motor is 
operating at constant speed under a steady torque Lo, i.e. x is a 
constant xq which satisfies the relation 

(14.1) k sin xo = Lo. 

At / = 0 a sudden additional torque Li is applied but is then held 
constant so that the total torque has the constant value Lo + Li. 
The problem, called the problem of the pull-out torque, is to determine 
the maximum additional torque Li which can be applied for each value 
Lo of the original steady torque without causing the rotor to reach the 
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nearest unstable equilibrium poeitioUy with 'probable resulting operational 
failure. We observe that L* = Lo + Li must always be less than k 
in order that an equilibrium state Xm = constant with torque L+ 
be possible at all, since the relation fc sin a:* = L* must be satisfied. 

It is of interest to interpret this problem also in terms of the 
pendulum with viscous damping, even though the problem is then a 
rather artificial one from the physical point of view. We assume 
that external moments L are applied to the pendulum. In Figure 14.1 
we indicate the stable equilibrium position x ~ Xo (marked A) cor¬ 
responding to L = Lo. Position B is the stable equilibrium position 
corresponding to the total torque L* = Lo + L\, while C (vertically 
above B) is clearly the unstable equilibrium position which corre- 

Fig. 14.1. Pendulum with external applied moment. 

sponds to the torque L* . Since the torque L* is larger than the 
equilibrium value Lo (we assume here that Lo and Li are both positive) 
for X = Xo, where the pendulum is initially at rest, a motion of the 
pendulum from A toward C will ensue when the torque Li is suddenly 
added to Lo. If Li is not too large the pendulum will tend eventually 
to the stable equilibrium position B corresponding to the torque L# 
without attaining the unstaWe equilibrium position C. If, however, 
Li exceeds a certain value Li == L* — Lo (which depends upon Lo 
and the constants in (13.1)) the pendulum will pass the point C and 
will (as we shall see later) continue on to make a complete revolution. 
The determination of Li (or, what is the same thing, L*) for each 
value of Lo constitutes the analogue of the pull-out problem for the 
synchronous motor. 

Before proceeding to discuss the solution of the problem, it is 
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convenient to introduce in (13.1) a new independent variable r in 
place of t through the relation 

(14.2) t = r/Vk 

and parameters X and y defined by 

(14.3) X = c/Vfc, 7 = L/k. 

The new differential equation is 

1 4 I \ (lx. doc . 
(14.4) — + X — + sin X = 7 

dr 

which (iont-ains only two parameters. We note that the condition 

(14.5) I 7 I < 1 

must be satisfied, since otherwise no state of equilibrium would be 
possible. 

In terms of these new quantities the pull-out problem is formu¬ 
lated mathematically as follows: Up to the time i = 0 the motion 
furnished by (14.4) is the state of stable equilibrium x = Xo = con¬ 
stant, with 7 = 7o = constant; hence Xo and 70 satisfy the condition 
sin Xo = 7o with Xo the smallest positive root of this equation. At the 
instant t == 0 the value of 7 is suddenly changed from the value 70 
to a new constant value 7* ; we set 7* = 70 + 7i, so that 71 is the 
change in 7. The numerical value of 7* is taken always to be less 
than unity: | 7* | < 1, in order that an equilibrium state x* satisfying 
sin x+ = 7* can exist. The pull-out problem then requires the deter¬ 
mination of the largest value 71 (or, of 7* = 70 + 7i) for each 70, 
such that the solution x{t) of (14.4) with 7=7*, which at / = 0 
satisfies x = Xo, x = 0 with sin Xo = 70, will not pass the value tt—or, 
in terms of the pendulum indicated in Figure 14.1, that the pendulum 
will just not ^‘go over the top’’ and make a full swing. Actually, it 
is not necessary to require that the value tt be attained: it is sufficient 
to require that x should just reach the nearest unstable equilibrium 
position, which occurs for x < tt in general, since x would go on to 
attain the value tt if 71 were increased the slightest amount beyond 71, 
as we shall see. 

As we know, it is not necessary to work with the differential equa¬ 
tion (14.4); instead, one can work to better advantage with the first 
order differential equation 

(14.6) 
dv _ —Xp — sin X + 7 
dx "" V 
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which results from (14.4) upon introducing v « dx/dr as new inde¬ 
pendent variable.* The method of solution, which follows the lines 
of our discussions in the two preceding sections, is to take for y the 
value 7* (satisfying (14.5), of course), and-begin at the unstable saddle 
singularity a; = x,, v = 0 corresponding to position C in Figure 14.1 
and hence satisfying the equation sin x, = 7*. The solution curve is 
then followed backward to position A, that is, to the first point x = Xo 
where v becomes zero. From sin xo = 70 the value of 70 is determined 
and with it the value of 71 from 7* == 7o + 7i • From 7 == L/k 
(cf. (14.3)) the corresponding values of Lo, Li, and L# are at once 
determined. The essence of this approach to the pull-out problem lies 
in the idea of starting with the critical value 7+ of 7^ and working back¬ 
ward to the corresponding initial value 70, instead of the other way 
around, which would be the more obvious approach. However, it 
should be observed that the recommended procedure of assuming a 
value for 7* and then calculating a critical value for 70 does not di¬ 
rectly solve the original pull-out problem, which requires that 70 

be prescribed and the corresponding critical value 7* be calculated. 
But we shall show later that the same pairs of values of 70 and 7% 
are coordinated by fixing values of 7* fiTSt and determining the corre¬ 
sponding critical values for 70, as by working the other way around. 

The method of attacking the problem directly by starting with 
an assumed value for 70 has been used by Lyon and Edgerton [28] 
to solve the pull-out problem for various values of the constant X 
characterizing the amount of damping (cf. (14.3)) and for initial 
values 7o of 7 covering the range 0 < 70 < 1. Their method was to 
solve the second order differential equation (14.4) graphically by use 
of the integraph at the Massachusetts Institute of Technology. In 
this method, a whole family of curves x(r) must be drawn to deter¬ 
mine the critical value of the torque for each given X and 70. The 
procedure is to start with the initial values x(0) = xo, x(0) == 0 

and follow the solution curves x(t) of (14.4) for a fixed value of X 
and various values of 7 until x(r) either exceeds the value t or until 
it becomes apparent that x(r) approaches a value less than The 
value of 7 at the transition is then the value we call 7*. The pro¬ 
cedure outlined above, in which equation (14.6) is used instead of 
(14.4), is obviously much more efficient (only one solution curve of a 

♦Minorsky [31], Ch. VII, discusses the work of Vlasov on the operation 
of the synchronous motor along essentially the same lines. However, the 
pull-out problem is not formulated. 
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first order equation need be found for each 70 and X) and, as we shall 
see, it is also not difficult to carry out numerically in such a way as 
to yield a complete solution of the problem. Of course, it should at 
the same time be made clear that our method of attacking the present 
problem cannot be applied except to special problems, while the 
integraph can be used quite generally to solve initial value problems.* 
Also, Lyon and Edgerton obtain x directly as a function of t, while 
our method would require an additional numerical integration to 
achieve this. 

We turn, then, to the solution of the pull-out problem following 
the ideas sketched out above. The simplest case to consider is that 
in which the damping factor X is zero. In this case (14.6) becomes 

(14 7) — = 
dx V 

which can be integrated explicitly. The singularities are located on 
the x-axis Avhere x = arc sin 7* ; it is readily checked that they are 
alternately centers and saddles, as one expects on physical grounds, 
the lowest positive root Xc of x = arc sin 7* being a center and the 
next largest x# = tt — Xc a saddle. We assume here, as always in 
this section, that 7* < 1. The x,r-curves are shown in Figure 14.2. 
We are interested in the upper branch of the curve which enters the 
saddle singularity x == .Xa, ?; = 0 and, in particular, in the point x — Xo 
where this curve crosses the x-axis again. We need only integrate 
(14.7) to obtain v{x) under the condition v = 0, .t = Xs ; the result is 

(14.8) - = cos X — cos x„ -t- 7*(a^ — *^'«), 

in which Xa = tt — arc sin 7* and the smallest positive value for arc 
sin 7* is taken. The point Xo is then located by calculating the value 
of X from (14.8) for y = 0. The points Xe, x,, and xo are shown in 
Figure 14.2, which gives the results of accurate calculations for the 
case 7* == .8. As noted above, this procedure yields directly the solu¬ 
tion of a problem which is different from the original pull-out problem, 

however, we shall not show the equivalence of the two problems here 
-‘sdnee we intend to prove it a little later for the general case in which 
X is not necessarily zero. 

* For example, the method of Lyon and Edgerton could be used to solve 
'the pull-out problem in cases when the external torque is not constant in the 
lime, while our method would not be applicable. 
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If X 0, i.e., if the damping constant is not zero, it is not possible 
to integrate (14.6) explicitly. Also, the singularities change in that 
centers become spirals (or nodes); saddles, however, remain saddles, 
as one can verify from the criteria at the end of Section 6. Typical 
XjV-curves are shown in Figure 14.3. The pull-out problem is solved 
here in the same way as above by taking a fixed value for 7* and deter¬ 
mining the corresponding value of xq . We proceed to show briefly 

that the critical value of 7 which would result if xo (or 70) were held 
fixed and 7 were varied would be the value 7* assumed in our pro¬ 
cedure. On account of the general form of the integral curves, as 
indicated in Figure 14.3, it is sufficient for this purpose to show that the 
point Xo moves to the right if 7# is increasedy since this would clearly 
mean that the critical value of Xo Jor a given value of 7* (as calculated 
by our procedure) is a value for which an increase in 7* would lead 
to a displacement beyond the unstable equilibrium position. Hence 
7* is the critical value belonging with the value Xo. We first observe 
that the upper branch of the integral curve from Xo to Xs (cf. Fig- 
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ure 14.3) is given by v = v{z) with v a single-valued positive func¬ 
tion of X. Consider then two different arcs v = Vi(x) and v = V2(x) 
corresponding to two different values 7*1 and of 7* with 7*2 > 7*i , 
which extend from the points Xoi, X02 to Xn , a:s2 respectively. In 
what follows we are concerned only with the arcs between these pairs 
of points. We must show that the point xoi belonging to 7+1 lies 
to the left of the point 0^02. This is shown in the following way: 

Fig. 14.3. Pull-out problem when viscous damping occurs. 

We observe first that X82 < Xai since these values satisfy x^i = tt — arc 
sin 7*t and 7^=2 > 7*i was assumed. The integral curve v = V2{x) 
for 7*2, which begins at X82, therefore starts under the arc v = 2^1 (x) 
extending from xoi tox^ (cf. Figure 14.4, in which the arc v = 2;i(x) 
is shown dotted). We show next that the arc V2{x) cannot intersect 
the arc Vi(x) as follows: If it did, there would be a first such inter¬ 
section, say at point P, and it is clear that the slope of the arc t^2(:r) 
at this point could not be algebraically greater than the slope of the 
arc t;i(x) at the same point. On the other hand, since yi(x) and V2{x) 
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both satisfy (14.6), and v and x are the same for both solutions at 
point P, it is readily seen that dvt/dx > dvi/dx since v is positive and 
y is greater for V2 than for vi. Hence no intersection P can exist, 
and the arc V2{x) cannot cut the arc vi(x) except possibly at xoi. The 
latter possibility can also be ruled out easily by considering x as a 
function of v in the neighborhood of the point Xqi and comparing 
values of dx/dv on the two arcs through use of (14.6); one would find 
that Vzix) would necessarily lie above t;i(a;) near xoi, in contradiction 
with the fact proved above that V2(x) lies under vi(x). We see there¬ 
fore that the arc V2{x) lies entirely under the arc Vi{x) and must cross 
the a:-axis to the right of Xoi, which proves our statement. 

Calculations to determine the value of Xq for given values of X 
and 7^ can be carried through by the methods used in Section 12 

Fig. 14.4. Solution curves for different values 7* of. 

above for the pendulum with viscous damping. We introduce in 
place of x a new variable ^ = x — (tt — Xc) where sin Xc = 7*, 
Xc < 7r/2. The value f = 0 thus corresponds to the saddle singu¬ 
larity X, = TT — Xc. We wish to determine the value fo of f (and 
hence of x = Xo) for which v becomes zero once more. (See Fig¬ 
ure 14.3.) As in Section 12 a solution v(^) of (14.6) in the form of a 
power series valid near { = 0 can be obtained: 

(14.9) V — aii + (ht + azt + * • * • 

Once a numerical value for 7t has been taken, it is not difficult to 
compute the successive coefficientsthe calculation is of exactly th'5 
same type as was carried out in Section 12. However, the series (14.9' 
cannot be expected to furnish the quantity we seek, the value of { 
for which t;({) == 0, since dv/dJi is infinite there and (14.9) would there¬ 
fore diverge for such a value. It is, then, imperative in this case 
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to use some other method in conjunction with the power series. One 
could use the method of finite differences in the same way as in 
Section 12, except that it would not be very accurate near fo where 

becomes infinite. However, this difficulty can be overcome by 
interchanging the roles of v and J near this point, i.e., by considering { 
as a function of v and proceeding with finite differences in the usual 
way. Of course the solution curve for v as a fun(^tion of $ should b(; 
carried somewhat beyond the maximum (dv/d^ = 0) before taking v 
as independent variable. In this manner the solutions of the pull-out 
problem were calculated for the following three cases: 

a) X = .022, 7* = 0.8 with the results: 70 = .22, xo = .22, and 
7i = .58. The curve through the saddle singularity x, as calculated 
for this case is shown in Figure 14.5, together with the locations 
of Xo and x*. 

Fio. 14.6. Curve yielding pull-out torque for X = .022, 7* = 0.8. 

b) X = 167, 7* = ,8 with the results; 70 = —.026, Xo = —.026, 
7i = .826. The curve through the saddle singularity x, is shown in 
Figure 14.6. We note in this case that the suddenly applied torque 
(corresponding to 71) is opposite in sign to the initial torque, which 
means that we have a case in which the direction of the torque is 
suddenly reversed to create the pull-out situation. In Figure 14.6 
an integral curve beginning at v = 5.36 is indicated: this is a curve 
corresponding to what Vlasov (cf. Minorsky [31], p. 123) calls a 
periodic solution of the second kind in which v returns to the same value 
after each complete revolution. In terms of the analogous pendulum 
problem it means that the pendulum turns indefinitely in the same 
sense about its support, returning with the same velocity at the end 
of each full revolution. This is mechanically possible since the ex¬ 
ternal torque can supply just enough energy to the system to make 
up for losses through the friction force. Vlasov shows that one such 
motion always exists. 
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c) X = .011, 7mc = .4 with the results: 70 = —*84, xo = —1.00, 

7i = 1.24. These results are indicated in Figure 14.7. As we ob¬ 

serve, the case is again one like case b) in which the pull-out results 

from sudden reversal of the torque. 

Fig. 14.6. Curve yielding pull-out torque for X - .167 7* ~ 0.8 

Finally, we remark that still another type of phenomenon in rela¬ 

tion to the pull-out problem can be discussed quantitatively using 

methods like the above. This is the occurrence of a critical damping 

factor (noticed by Lyon and Edgerton [28]) which is defined by the 

following considerations: Suppose that the initial torque 70 is held 

fixed but that the damping coefficient X is gradually increased, starting 

from zero. The critical additional torque corresponding to 71 which 

can be applied without causing instability will also increase, but it 

can never exceed the value 71 = 1 — 70 at which the total critical 
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torque 7i + 7o = = 1 since for any torques such that 7 > 1 there 
exist no stable equilibrium positions at all. Furthermore it turns 

out that such an upper limit 71 = 1 — 70 occurs for a finite value 
of X, and it is natural to call X* the critical damping factor corre¬ 
sponding to the given initial torque since no further increase in X 

would lead to the possibility of applying higher torques without 
breakdown. 

Critical values X* for X with a given 70 can be calculated once more 
by proceeding backwards from the singularity in the x,r-plane, as 

follows: We assume 7 = 1 in (14.6) at the outset. As a consequence 
there is only one type of singularity (the saddle and spiral singulari¬ 
ties coalesce in this limit case), and it is of a higher order than we have 
usually considered; the singularities are now located at n(7r/2), 

n = dbl, zh2, • • • . We assume next a value X* for X and follow an 
integral curve backward from the singularity at a: = t/2 until it 

first crosses the x-axis again at x = xo. The value of 70 obtained from 

sin Xo = 7o corresponds to the initial torque for which X* is the critical 
damping factor. Of (jourse, Ave have again not solved directly the 
originally formulated problem, in Avhich 70 is given and X* is to be 

calculated, but it is easy to show once more that the same pairs of 
values Avould be coordinated if one proceeded in either fashion. 



CHAPTER IV 

Forced Oscillations of Systems with Nonlinear 

Restoring Force 

i. Introduction 

The differential equation 

(1.1) X + cx + fix) — F cos 

in which/(a:) is nonlinear, occurs in several different kinds of physical 
problems. The obvious example is the pendulum with an external 
periodic force applied. The problem of finding the forced oscillation 
of a single mass subjected to an elastic restoring force leads in general 
to equation (1,1) if the amplitude of the motion is not kept small. 
The study of alternating current circuits containing iron core induct¬ 
ances also leads to equation (1.1). The problem of hunting of syn¬ 
chronous electrical machinery is still another example of a physical 
problem which leads to the same equation. 

Since equation (1,1) contains the time t explicitly it cannot be 
treated by the methods of the preceding chapters, which were based 
upon a geometrical discussion of the velocity-displacement plane. 
Although explicit solutions in terms of the elementary functions are 
not to be expected, the differential equation (1.1) can be treated 
by various analytic approximation methods, and one of the principal 
objects of this chapter is to develop some of these analytical methods 
and to compare and contrast them. 

From the theory of differential equations it is known that (1.1) 
possesses solutions x(0 which are uniquely determined once the 
values of the displacement and the velocity at the time t = 0 are given, 
i.e., when a:(0) and i:(0), the initial conditions, are prescribed. It is 
of course clear that solutions of (1.1) other than periodic solutions 
exist. However, the literature on the subject is almost entirely de¬ 
voted to the periodic solutions. Apparently the experimenters 

81 
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usually observe the motions to be periodic, at least after some tran¬ 
sients have died out, perhaps because the damping forces act in such 
a way that the motions in a wide variety of cases tend to periodic 
motions as the time increases. We concentrate our attention there¬ 
fore on the study of various types of periodic solutions of (1.1) with 
the object of obtaining in the first place information of a qualitative 
character about the periodic solutions. Once this has been done, it 
is relatively easy to see how one should proceed in order to obtain 
accurate quantitative information. 

The approximation methods we use in this chapter can be classed 
as either perturbation methods or iteration methods. Furthermore, 
each of these methods can be applied to our problems in at least two 
different ways: We may operate directly with the differential equa¬ 
tion by using either perturbation or iteration schemes; or, since we 
assume always that our solutions are periodic, we may assume for 
them a Fourier series development with undetermined coefficients, 
and then solve the nonlinear relations which the coefficients must 
satisfy by applying either iteration or perturbation methods. One 
of the principal objects of the present chapter is to illustrate these 
possibilities in various concrete cases. 

We shall treat the harmonic oscillations first, i.e. periodic solutions 
x{i) of (1.1) in which the period is the same as the period 27r/co of 
the external force F cos wi. Afterwards subharmonic oscillations, in 
which the solution x(t) has as its least period an integral multiple 
(different from unity) of the period of the external force, will be 
treated for cases with damping as well as without damping. There 
exist also ultraharmonic and ultra-suhharmonic solutions of (1.1) (cf. 
Chapter I, Section 4 for the definitions of these terms), which could 
be obtained by the methods used to study the harmonic and sub¬ 
harmonic oscillations, but we shall not treat them here. 

Very little generality is lost by choosing for the restoring force 
fix) in (1.1) the following cubic in x: 

(1.2) fix) = ax + 0x\ a > 0. 

The essential qualitative differences in the periodic motions as de¬ 
termined by differences in the character of the spring force are largely 
due to the distinction between hard > 0) and soft < 0) springs, 
in the terminology already used in previous chapters. In the re- 
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mainder of this chapter we shall usually assume the spring force to 
be given by (1.2) so that equation (1.1) becomes 

(1.3) di + ci + {ax + = F cos mi. 

Equation (1.3) is often called Duffing’s equation since it was Duffing 
[9J who obtained the first significant results concerning the harmonic 
solutions of the equation. 

2. Duffing*s meth€pd for the harmonic oscillations without 
damping 

As we have already remarked, explicit solutions of an elementary 
character are not known for the Duffing equation (1.3). In fact, as 
we shall see, this comparatively innocent looking differential equation 
possesses a great variety of periodic solutions alone for which the 
underlying mathematical theory has been explored to only a slight 
degree. Still less is known about the nonperiodic solutions. How¬ 
ever, as we have already indicated, much that is of interest and value 
can be achieved by various approximation methods, particularly 
with regard to the periodic solutions. In this section we shall con¬ 
sider the harmonic solutions, i.e. those periodic solutions which have 
the same frequency as the impressed force F cos wi. 

We begin by explaining the iteration method used by Duffing, 
assuming no damping. The first step is to write the differential 
equation (1.3) (with c = 0) in the form 

(2.1) X = —ax — Px^ + F cos o)t. 

We now start with Xo — A cos cot as first approximation* to the de¬ 
sired solution of frequency w, and insert it in the right-hand side of 
(2.1) to obtain 

(2.2) Xi = — {aA + IfiA^ — F) cos cot — cos Scot 

as equation for the next approximation xi, use having been made of 
the identity 

(2.3) cos^ cat = I cos cot + \ cos Scot, 

. * Actually xo » A cos u>i should be interpreted as the second approximation 
with X « 0 as first approximation. 
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Upon integrating (2.2) twice the result is 

(2.4) xi = (aA + 1/34’ - F) cos cot + -jV -4 cos 3cot. 

We have taken the integration constants to be zero in order to ensure 
that Xi and the next approximation 0*2 be periodic. Before con¬ 
sidering what should be done next we observe that an iteration proc¬ 
ess based on reinserting each successive approximation in the right- 
hand side of (2.1) in order to obtain the next approximation must 
require for convergence that the Constantsa, |S, andbe sufBciently 
small. A little later we shall remove this restriction on a and A, but 
we shall assume that is small except in Section 11, where the 
method of Rauscher is treated. The results we obtain are therefore 
subject to the limitation that the nonlinearity in the spring force is 
small. We usually also assume that F is small of the same order as 
—in other words that the motion takes place in the neighborhood 

of the free linear vibration of the system—although this latter re¬ 
striction is not very essential. 

So far the iteration method sketched out above is quite straight¬ 
forward. What to do from now on is not so clear. One might seek 
to continue the process simply by inserting Xi in the right-hand side 
of (2.1) in order to find an X2 , etc., which would be a rather natural 
procedure. The significance of such a procedure can be explained in a 
general way in terms of the response diagram for the motion. This is 
a diagram showing the relation between the amplitude of the oscilla¬ 
tion (defined, say, as the maximum numerical value of x) and the 
frequency co for each value F of the amplitude of the excitation. 
These curves should lie in the vicinity of the corresponding curves 
for the linear forced oscillation since ^ is supposed to be small. In 
Figure 2.1 we indicate the response curves schematically for the linear 
oscillation (shown dotted) as well as for the nonlinear oscillation (cf. 
Chapter I, Section 3 for a discussion of the linear response curves). 
As our remarks above indicate, the iteration scheme now under dis¬ 
cussion could yield accurate response curves only for | A | small 
enough, i.e. near the w-axis in Figure 2.1. It is therefore clear that 
there would be diflSculties near « = \/a. In addition, this pro¬ 
cedure means that the frequency w is held fixed while the value of the 
amplitude | A | is left to be determined as a function of it, and this, 
as we shall see later on, makes it difficult if not impossible to obtain 
the really essential features of the response curves. 



duffinq’s method 85 

The iteration method introduced by Duffing proceeds along differ¬ 
ent lines, as follows: The coefficient Ai of cos cvt in (2.4) is taken equal 
to A, the amplitude of the first approximation, on the ground that 
Ai should differ but little from Aifxo = A cos cot is truly a reasonable 
first approximation. Also, Duffing argues, such a procedure furnishes 
the exact result in the linear case ((i = 0) and might hence be ex¬ 
pected to yield good results for small, which is always assumed. 
This reasoning of Duffing thus leads to the following relation 

(2.5) CO* = a + ^ 

between the frequency w and the ^'amplitude'’ A of the periodic 
solution. The relation (2.5) is basic for the remainder of our discussion; 

(jj 

Fig. 2.1. Schematic diagram for nonlinear response. 

it has been written purposely so that is given as a function of A 
since it is very important to regard A as prescribed and w as a function 
of it to be determined. 

Before discussing the significance and interpretation of (2.5), it 
is useful to obtain it again by an iteration procedure which is slightly 
different from that of Duffing and has the advantage that the spring 
constant a need not be considered small. This procedure starts 
with the differential equation 

(2.6) X + (/x = (<o^ — a)z — + fiFo cos ci>/, 

which differs from (2.1) only through the addition of the term (/x 
to both sides and in the fact that we have put in evidence that F = ffFo 
is small of order 

It is natural to start the iteration process with the solution of 
(2.6) for = 0, i.e., with the free linear oscillation of frequency 
0) rsr That is, we start with Xo — A cos (at as first approxima^ 
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tion, the ‘‘amplitude^' A being supposed given.* If we insert xo in 
the right-hand side of (2.6), we find as differential equation for the 
next approximation Xi : 

(2.7) Xi + (/xi = [(—Of + 03^)A — fjSA® + fiFo] cos cot — iffA^ cos 3o)L 

In obtaining (2.7) we have again made use of the identity (2.3). 
The equation (2.7) presents the exceptional resonance case since the 
right-hand side contains a term Pi cos a)t of the same form as would 
occur in the solution of the homogeneous differential equation. If 
Pi were not zero, the solution of (2.7) would contain a term of the 
type Ct sin (at and xi(t) could not be periodic. Since we are interested 
only in the periodic solutions, we must require that Pi, the coefficient 
of cos (at in (2.7), be zero. Equating this coefficient to zero yields 
the following relation between the frequency w and the amplitude A 
of the first approximation: 

(2.8) w' = a + - /3FoM, 

which is exactly the same as Buffing’s relation (2.5) with F = fiFo. 
Once this relation has been satisfied the solution of (2.7) is 

3A^ 
(2.9) Xi{t) = cos cos 3(aty 

in which the term Ai cos (at is the free oscillation with an arbitrary 
amplitude Ai furnished by the homogeneous equation (as stated earlier 
we ignore terms in sin cat). The second approximation Xi{t) is not 
fixed until the value of Ai is prescribed. At this point the decisive 
step is taken (following Duffing) by choosing for Ai the value A of 
the amplitude of the first approximation xq = A cos (at, and this 
principle is to be followed in all successive steps in the iteration 
process. Accordingly we would have, from (2.9): 

pA^ 
(2.10) zM) - A cz, a + 32(. + - fFo/A) ““ 

in which the value of <a^ from (2.8) has been used. This procedure 
means that the frequency ca is not considered to be prescribed in advance, 

* A term B sin tat could also be added, but B would turn out to be zero in 
the next step of our iteration process. One could, in fact, show that only 
terms An cos ntat with n odd would appear. We have therefore ignored all sine 
terms in what follows. 
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hut rather to be given by (2.8) after the valv£ of A has been prescribed. 
This brings with it, however, the necessity to regard the frequency w 
as a function of A, which is somewhat unnatural since it is w which 
figures in the differential equation, and one would ordinarily regard 
it as given at the outset. Why this at first sight unnatural seeming 
procedure should be the correct one will be made clear a little later- 

Before taking up a detailed discussion of the highly important rela¬ 
tion (2.8) it is perhaps worth while to consider what would occur in 
the next step of the iteration process leading to . Naturally one 
would insert the function xi from (2.9) in the right side of (2.6). 
After conversion of powers and products of cos wi and cos into 
sums of terms of the type K cos one would obtain for X2 a differ¬ 
ential equation of the form 

(2.11) X2 + = P2 cos oit + Qz cos Zuit + R2 cos 5ci;< + * * * , 

in which P2, Q2, etc. would be expressions involving A and u). In 
order to insure the periodicity of the solution X2{t) it would be neces¬ 
sary to set P2 = 0. This would, of course, yield an improved relation 
between w and A analogous to (2.8). Once P2 has been set equal to 
zero the integration of (2.11) would proceed as before, always with 
A cos 03t taken as leading term. 

The reasons for our choice of iteration procedure can be readily 
seen from a discussion of the relation (2.8). We regard this relation 
as furnishing a set of curves in an w, A-plane with the amplitude 
F = of the applied force as parameter. These curves are called 
response curves; they reduce to the well known response curves for 
linear forced oscillations when /S = 0, as one easily sees. In order 
to understand the iteration procedure it was important to consider w 
as depending upon A. However, the response curves are usually 
plotted with A as ordinate and we shall follow this practice here. 
The quantity A—or, better, its numerical value | A |—will also be 
referred to on occasion as the ‘‘amplitude” of the nonlinear oscilla¬ 
tion; actually it is the value of the first Fourier coefficient of the oscil¬ 
lation. In any case, the quantity A, together with w, characterizes 
completely a periodic solution. 

In order to obtain the response curves, it is convenient to sketch 
first, in an A, w^-plane, the curve = a + 3/3AV4, and the set of 
curves o? = —FJA for various values of F (with F always taken 
positive). For > 0, the case of a hard spring force, these curves are 
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shown in Figure 2.2(a) in which Fj > Fi if j > t. The result of adding 
abscissas in order to obtain the curves given by (2.8) is the set of 

Fig. 2.2. Determination of the response curves. 

Fig. 2.3. Response curves for linear, hard, and soft spring forces. 

curves shown in Figure 2.2(b). In practice it is the custom to plot 
I A 1 against co, as shown in Figure 2.3, where response curves for 
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jS ^ 0 are indicated schematically. The response curve for the free 

oscillation, corresponding to = 0, is drawn heavier than the others. 
It is to be noted also that the quantity A is negative on the response 
curves to the right of the curve for F = 0 and positive to the left 
of it (cf. Figure 2.3), which means that the motion is (to the order 
of approximation considered) in phase with the external force or 
180® out of phase with it according to whether the frequency is greater 
or less than the frequency of the free oscillation for that particular 
amplitude. In this respect the behavior of the nonlinear vibration 
is the same as that of the linear vibration (cf. Chapter I, Section 3). 
One sees that the response curves in the nonlinear cases could be thought 
of as arising from those for the linear case by bending the latter to the 
right for a hard spring and to the left for a soft spring. 

Fig. 2.4. Diagram indicating the character of the approximation method. 

We can now see also why the quantity A should be prescribed while 
the frequency w should be considered as a function of A: For certain 
values of w there are three corresponding values of A; hence the first 
iteration process sketched above^ which at the outset seems a rather natural 
one, could not possibly yield all branches of the response curves. We 
note further that we began our iterations with a free linear oscillation, 
i.e., we started with co == y/a and F = 0 and == 0. By iteration 
we then passed to a neighboring solution, as indicated in Figure 2.4, 
and since A is arbitrary in the linearized problem its value must be 
assumed to begin with. For these reasons the method of Duffing 
yields the significant results in our present problem which earlier 
workers—^including even Rayleigh—failed to obtain. 

For F == 0 we obtain from the preceding discussion the free oscilla¬ 
tions. In Chapter III we have already seen that the free oscillation 
in this case can be treated by explicit integration and the amplitude 
of the free oscillation can be found as a function of the frequency. 
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In the case of the free oscillation the response relation (2.8) becomes 

(2.12) a 4" 

and it gives the exact result w* = a in the linear case (/3 = 0). One 
might expect it to be accurate, in addition, for not too large values of 

In order to obtain an indication of the accuracy which may be 
expected from (2.12), and so perhaps also from (2.8), consider the 
case of the pendulum, for which = —a/6. In this case (2.12) is 

(2.13) w' - a(l - \A^) 

and this result can easily be seen to coincide with the first two terms 
of the exact power series for w as a function of the amplitude A of 
the pendulum. (This could be obtained from equation (4.15) of 
Chapter II by identifying A with a and observing that w = 2v/T,) 
Formula (2.13) for the case of the pendulum is quite accurate even 
for amplitudes A up to t/2. This indicates that the second approxi¬ 
mation Xi(t) may be quite accurate for moderately large values of A, 

The response curves for systems with nonlinear restoring forces 
have been checked experimentally in a variety of different cases, with 
results in good accord with the theory presented above. Probably 
the first experiments of this kind were performed by Martienssen 
[29], who carried out his investigations with an electrical apparatus 
involving a condenser and an inductance with an iron core; he was 
aware of the influence of the nonlinearity. Duffing [9] checked the 
results of his theory by experiments using a pendulum, and found 
good numerical agreement, 

3. The effect of viscous damping on the harmonic solutions 

In this section we give a method for approximating the harmonic 
solutions of Duffing^s equation when the viscous damping term ci, 
c > 0, is included. 

If damping is neglected we have seen that there is an oscillation 
X — A cos (ji)t either in phase with the impressed force F cos ict or 
180° out of phase with it. If damping is present, however, the dis¬ 
placement and the impressed force can be expected to be out of phase, 
just as in the case of the corresponding linear problem. In order 
to take into account this difference in phase, the impressed force could 
be prescribed and the phase of the solution left to be determined, but 
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it is more convenient to fix the phase of the solution and leave the 
phase of the impressed force as a quantity to be determined. Hence 
the differential equation is taken in the form 

(3.1) a:’+ cf + {ax + = H cos — G sin 

in which the amplitude F = \/+ O' of the impressed force is 
considered as fixed, but the ratio H/G is left to be determined. We 
assume also that c, C?, and H are all small of order Guided by the 
experience gained in the preceding case we now proceed as follows: 
As first approximation to the solution we take x == A cos co/, with A 
regarded as fixed and w as a quantity to be determined. Insertion 
of this in (3.1) then leads to the following two equations, when (2.3) 
is used and the term in cos 3cu^ is neglected: 

(3.2) (a - = H 

(3.3) Am = G. 

These equations, incidentally, verify a conclusion reached in Chapter 
III: No 'periodic motion except the state of rest can exist if there is damp¬ 
ing hut no external force, for H G = 0 implies A ^ 0 if c 0. 

The relation between the amplitude of the impressed force and 
the quantities A and w is readily obtained by squaring (3.2) and (3.3) 
and adding. The result is 

(3.4) [(a - w^)A + fM? + cUV ^ + G^ = F\ 

It is convenient to write (3.4) in the form 

(3.5) S*(«, .4) + c*AV = 

in which 

(3.6) -S’(«, A) = {a - w)A + ^pA\ 

We observe that S(w, A) = F is the relation which yields the response 
curves shown in Figure 2.3 for the case in which there is no damping. 
Since c is assumed to be small of order /? it is to be expected that the 
curves for (3.5) differ only slightly from those of Figure 2.3, and that 
they are rounded off in the vicinity of the curve for F = 0. The latter 
expectation is certainly justifiable when is suflSciently small, since 
in this case (3.5) represents curves only slightly different from the 
linear response curves of Figure 3.1, Chapter I. The response 
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curves which result from (3.5) are indicated schematically in Figure 
3.1, both for a hard spring (/3 > 0) and a soft spring (/3 < 0) as well 
as for a linear spring (/3 = 0). Again we observe that these curves 
could be considered as arising from the linear response curves by 
bending the latter to the right or left, depending on the type of spring. 
In Figure 3.1 we have drawn dotted curves through the points of the 

Fici. 3.1. Response curves when viscous damping is present. 

response curves having vertical tangents; as one sees, these dotted 
curves form the outline of the region in which the response curves 
turn over on themselves. The significance of this region from the 
physical point of view will be explained shortly. We may, however, 
note here (cf. Figure 3.1) that the turning over of the response curves 
takes place only when the amplitude F of the excitation is larger 
than a certain value. 

In order to carry out a complete discussion of the response curves 
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it is thus obviously useful to determine the loci of the vertical tan- 
gencies, and in fact also of the horizontal tangencies. The locus of 
the points of contact of the horizontal tangents of (3.5) can easily be 
found by differentiating (3.5) implicitly with respect to co and setting 
dAjdo) equal to zero. The equation of the locus is therefore given 
by aS(co, A) = cA/2 or 

(3.7) o? - = a ~ cV2. 

The last equation is the same as (2.12) except for the term — c^/2. 
The curve therefore is a conic of the same kind as the response curve 
for a free oscillation and tends to it from the left side as c tends to 
zero. There is only one horizontal tangent on each of the response 

Fig. 3.2. Loci of the vertical tangencies on the response curves. 

curves furnished by (3.5). It can be shown easily that A has a 
maximum at the points with a horizonal tangent. The equation of 
the locus of the vertical tangents can be found in a similar way by 
differentiating (3.5) implicitly with respect to A and setting dtaJdA 
equal to zero. The result is 

(3.8) (a — 03^ H” fjSi4^)(a — = 0. 

If there is no damping, that is if c = 0, equation (3.8) yields the follow¬ 
ing pair of equations: 

(1) 0,^ ~ = a, 

(2) J = a. 

The curves corresponding to these equations are shown in Figure 3,2. 
The first of these is, as one easily verifies, the response curve for the 
free undamped oscillation; the second is the locus of the vertical tan¬ 
gents of the curves in Figure 2.3. Hence if c is small one can expect 
the relation (3.8), which characterizes the vertical tangencies for 
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c 5*^ 0, to furnish a curve near these two; in particular, there should 
be one branch near the response curve for the free oscillation, and 
another near the points where the curves for c = 0 turn over on them¬ 
selves. In other words, the curves must appear as they are shown 
in Figure 3.1. The important curves represented by equation (3.8) 
which yield the ATrtical tangencics can be conveniently studied if one 
first makes the substitutions w* = .r, ~ y. In the .r, y-plane (3.8) 
represents a hyx)erbola. For jS > 0, one branch of the hyperbola lies 
entirely in the first quadrant, the other branch lies below the a:-axis; 
for 0 < 0, one branch of the hyperbola lies in both the first and second 
(]uadrants, the other branch lies beloAv the x-axis. It is then easy to 
see that in the oj, -plane (3.8) gives curves of the forms shown by the 
dotted curves in Figure 3.2. These dotted curves show (as we have 
mentioned earlier) that there is a certain value F:{c of F such that the 
response cur\'es corresponding to values of F less than Fsk do not 
possess any vertical tangents. 

4. Jump phenomena 

The form of the response curves in Figure 3.1 hiads to a number of 
conclusions of importance for the physical phenomena. In Figure 4.1 
representative curves for p > Q and /S < 0 are indicated. Let us 
imagine an experiment performed in whi(‘h the amplitude F of the 
external force is held constant, while its frequency is slowly varied 
and the amplitude A of the resulting harmonic oscillation is observed. 
Consider first the case of a hard spring force, /3 > 0, and suppose that 
0) is rather large at the beginning of our experiment, i.e., we start at 
point 1 on the curve. As co is decreased A slowly increases through 
the point 2 until the point 3 is reached. Since F is held constant, 
a further decrease in co would require a jump from point 3 to point 4 
with an accompanying increase in the amplitude A, after which A 
decreases with w. Upon performing the experiment in the other 
direction, i.e., starting at the point 5 and increasing co, the amplitude 
follows the 5-4-G portion of the curve, then jumps to point 2 and 
afterwards slowly decreases. The circumstances are quite similar 
with a soft spring force, but the jumps in amplitude take place in the 
reverse direction. It would not have been necessary, we observe, 
to consider the influence of damping in order to conclude that a jump 
from point 3 to point 4 should take place (for > 0) on decreasing 

but the jump from point 6 to point 2 on increasing w would be 
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inexplicable on the basis of the curves of Figure 2,3, which should be 
taken when there is no damping. 

Instead of performing an experiment in which the force amplitude 
F is held constant while the frequency o) is varied, one might vary F 
while holding c*? fixed. In fact, the latter experiment would probably 
be simpler to carry out. For example, it might be done by using an 
electrical apparatus consisting of an iron core inductance (which is 
the origin of the nonlinearity in the system) in series with a condenser 

Fig. 4.1. Jump, or hysteresis, phenomena. 

Fig. 4.2. Hysteresis in a nonlinear electrical system. 

and an alternating current generator. The frequency can be held 
constant simply by holding the speed of the generator constant while 
the voltage E (which is proportional to the force amplitude F) can 
be varied by changing the field current of the generator. When the 
voltage E is gradually increased, it is found that the current I rises 
gradually to a certain value and then increases suddenly to a much 
larger value after which a further increase in E causes only a gradual 
rise in the current. If, then, one attempts to reverse the process, it 
is found that the same curve is not retraced completely, but that the 
jump from the higher to the lower current takes place at a lower 
voltage than before, as indicated in Figure 4.2. An analysis of the 
relation (3.4) between A, w, and F which results when damping is 
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taken into account leads to similar conclusions when the amplitude 
of the response is considered as a function of the force amplitude F 
with CO held constant. These statements can be easily verified either 
by referring directly to equation (3.4) or to the curves shown in 
Figure 3.1 and considering the manner of variation of A with F along 
a line co = constant. 

Our discussion of the jump phenomena leads us to suspect that the 
harmonic oscillations corresponding to points on the response curves 
between the vertical tangendes—in other words, the points lying in the 
regions bounded by the dotted curves of Figure 3.1—are in some sense 
unstable. This is an important matter which will be discussed briefly 
in the last section of this chapter and in much greater detail in Chapter 
VI from the mathematical point of view. We observe here only that 
the jump phenomena have often been observed experimentally, for 
example by Martienssen [29] in an electrical system and Duffing 
[9] in a mechanical system. The effect of viscous damping on the 
response curves has been discussed by Appleton [2], who also observed 
and explained the jump phenomena he encountered in working with 
a certain galvanometer which behaved like the systems under dis¬ 
cussion here. Appleton also discusses the stability of the oscillations. 

5* Hunting and pull-out torques of synchronous motors 
under oscillatory loads 

We have seen in the preceding chapter that the unsteady opera¬ 
tion of the synchronous motor is governed by the equation 

(5.1) X + cx + k sin X ^ L, 

In the present section we discuss in a qualitative way a few problems 
of interest in practice when the external, torque L is not a constant 
(as we assumed in the preceding chapter) but a periodic function of 
the time, as follows: 

(5.2) L — Lq + Li cos (at. 

In other words, the external torque is assumed to consist of a periodic 
part superimposed upon a constant torque. 

The case in which Lo = 0, i.e. in which the load is entirely oscilla¬ 
tory, can be discussed immediately on the basis of the results of the 
preceding sections. We know that oscillations of frequency a> can 
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occur with a definite amplitude; this condition of operation of the 
synchronous motor is called hunting. Hunting of a motor may be 
very undesirable, particularly if the amplitude of the oscillation 
should become too large: undesirable surges in the electrical system 
supplying power to the motor would occur, or the motor could be 
thrown out of step through skipping a pole just as in the cases dis¬ 
cussed in the preceding chapter. The following problem therefore 
has practical significance: Determine the range of frequencies w 
and amplitudes Li of the disturbing torque such that the amplitude 
\ A \ of the response will never exceed a given value 1 A |max . This 
problem can be solved (for the special case Lo == 0, i.e. the case of 
zero average load) by making use of the appropriate response curves 

Fig. 5.1. Limiting the amplitude arising from the hunting of a synchronous 

motor or generator. 

determined by the methods discussed above. In Figure 5.1 we indi¬ 
cate schematically how one can obtain the region containing all 
points for which the frequency w and corresponding values of the 
amplitude Li of the external force lead to amplitudes never greater 
than I A |max . On account of the jump phenomena discussed in the 
preceding section it is not suflScient simply to draw a line | i4 | « 
\ A I max in the | ^4 |, w-plane and take the region .under this line as the 
desired region. Instead, the region in question lies below the heavy 
broken curve TiPQR, which follows the lower branch of the locus 
of vertical tangents of the response curves from Ti to a certain point 
P, rises vertically to Q, and then follows the horizontal line 1 ^ | = 

I A Imax . In this way those unstable oscillations with \A\<\A [max , 
from which jumps to stable oscillations with ] .4 | > | -4 |max could 
occur, are ruled out. The point P is fixed by finding the ‘‘critical 
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response curve’’ associated with a value Lf of the external torque 
such that the vertical tangent drawn on it from the point P intersects 
the upper branch of the same response curve at Q on the line 1^1 = 
1 A |max . Points to the left of PQ and above TiP lie on '^unstable” 
branches of response curves whose upper stable branches correspond 
to values of | il [ larger than [ A Imax, while points to the right of 
PQ lead to values of [ A | less than | A [max . The critical value L? 
of the external torque thus has the following property: If the external 
torque Li is kept below this value the amplitude | A | of the motion 
will be less than | A [max for all frequencies, but this will not hold good 
for all frequencies if Li > Lf . 

One sees from Figure 5.1 that the range of frequencies a little below 
the frequency \/a of the linear free oscillation is much more critical for 
the operation of the synchronous motor than the higher range of fre¬ 
quencies, and this results because of the fact that the nonlinear restor¬ 
ing torque is soft in the present case. Figure 5.1 was constructed 
assuming the presence of damping. One sees readily, however, that a 
non-vanishing critical external torque Lf would exist without the 
presence of damping. In other words, even without damping it would 
be possible to vary the frequency of the external torque from values 
well below’ \/a to values well above it without causing amplitudes 
higher than any given value, provided that the external torque ampli¬ 
tude is kept below the critical value.f This is, of course, not possible 
with a linear restoring force. 

If the constant part Lo of the external torque is not zero, the prob¬ 
lem of hunting of the synchronous motor can be attacked in much 
the same way as for Lo = 0. A special case of this kind has been 
treated by Duffing. 

6. The perturbation met/ioct 

One of the commonest methods for treating nonlinear problems in 
mechanics is the perturbation method, which consists in developing 
the desired quantities in powders of some parameter which can be con¬ 
sidered small, and determining the coefficients of the developments 
stepwise, usually by solving a sequence of linear problems. The 

t Naturally, this statement (as well as other earlier statements) is made 
only on the assumption that it is the harmonic oscillation studied here which 
is actually excited. 
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method has the advantage that it is relatively foolproof, in the sense 
that it can often be applied fairly safely even in the absence of fore¬ 
knowledge regarding the general character of the solution.* The 
method of perturbations is also very useful in settling important 
theoretical questions of a purely mathematical character; for ex¬ 
ample, the existence of the various types of periodic motions dis¬ 
cussed in this chapter can probably be established most readily by 
proving that the appropriate perturbation series converge. In 
Appendix I to this book we take up such questions in some detail. 
However, the perturbation method has the disadvantage that it is 
often rather cumbersome for actual computations, particularly if 
more than one or two terms in the perturbation series are desired. 
Consequently, it is often advantageous to begin the attack on a new 
problem by the perturbation method in order to gain a first insight 
into the character of its solution, but to abandon this attack even¬ 
tually in favor of other approaches once sufficient knowledge about 
the behavior of the solutions has been gained. For this reason, as 
well as for reasons indicated at the beginning of this chapter, we 
treat the DuflSng problem in detail once more by the perturbation 
method as applied directly to the differential equation. 

In this section we illustrate the use of the perturbation method 
(in a form first used by Lindstedt [26], apparently, in connection 
with problems in astronomy) to obtain the harmonic solutions of 

(6.1) X + {(XX + fix) = F cos i3)i. 

As we have stated, the method consists in developing the desired 
solution x{i) in a power series with respect to a small parameter c, 

the coeflicients in the series being functions of t. We write, therefore, 

(6.2) X = 4" 4" * * • , 

the Xi being functions of t A periodic solution x{t) is desired which 
has the same frequency as F cos coL It would be natural to regard 
the amplitude of x{i) as a quantity to be determined for any given 
frequency w. However, our previous experience has taught us that 
the amplitude of the vibration rathSr than its frequency should be 
prescribed. In order to avoid working with functions of unknown 

* The problems under consideration here, however, are not altogether of 
this character. One must gain some advance insight about the character of 
the solutions in order to fix the details of the procedure. 
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period it is of advantage to introduce a new independent variable B 
replacing I through the relation B = usL The equation (6.1) becomes 

(6.3) (J + {ax + = F cos B 

We now require that x{B) satisfy the following conditions: 

a) x{B + 2ir) = x{B) 

(6.4) b) x(0) = A 

c) a:'(0) = 0. 

The prime on a quantity means differentiation with respect to B here 
and in what follows. The condition a) states that x{B) is to be of 
period 27r, while h) and c) fix, roughly speaking, the amplitude and 
phase of the vibration. It should be noted that A is the maximum 
of x{t) here rather than the first Fourier coefficient, and hence is not 
quite the same as the quantity A in the preceding sections. The 
value of CO will depend upon A, as we know. 

The parameter € is arbitrary to a certain degree in any perturba¬ 
tion procedure. It is, however, natural in this case to choose € = 
so that the perturbation series (6.2) may be considered as a develop¬ 
ment in the neighborhood of the solution of the linearized vibration 
problem. In addition to x it is also necessary to develop the quan¬ 
tity 0) with respect to If the series 

(6.5) xie) = Xoie) + + ^Xiie) + - •, 

(6.6) w = Wo "I" /3wi /3*w2 -f- • • • 

are inserted in (6.3) we obtain a power series in p which must vanish 
identically in /3; hence the coefficients of the successive powers of 0 
must vanish. The coefficients are second order linear differential 
equations in the Xi{B)y which involve also the constants c*).*. To 
determine the Xi and the cu* we have the conditions (6.4) which lead 
to the new conditions 

a) Xi(B + 2t) = Xi(B) 

(6.7) b) a:o(0) = A, Xi(0) = 0 

c) xi(0) = 0, x»-(0) = 0. 

The condition a) will serve to determine the constants in (6.6). 
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It is more convenient, though not strictly necessary, to assume 
that the amplitude F of the applied force is also small with /3; we 
assume, therefore: 

(6.8) F == fiFo, 

This means that our development is one in the neighborhood of the 
linear/ree vibration, just as it was in the treatment of the same prob¬ 
lem by the iteration method. 

The result of inserting (6.5), (6.6), and (6.8) in (6.3) is 

(6.9) (wo + 2/3wowi + • • • )(^o' + fixi + • • * ) 

+ a(xo + ^Xi + + ' • * ) 
+ fi(xl + Sxlxifi -f • • • ) = fiFo cos 

By Xi is meant, of course, dtxi/d(^. 

The term of zero order in yields 

(6.10) (jooXq + axo = 0, 

the general solution of which is 

(6.11) xo = Ao cos d + Bq sin 6. 
Wo Wo 

The conditions (6.7) lead at once to 

a) Wo = y/a 

(6.12) b) Ao-= A 

c) Bo = 0. 

Hence we have determined 

(6.13) Xo — A cos 6 

and 

(6.14) Wo = \/a, 

i.e., the zero order terms in the perturbation series (6.5) and (6.6). 
We continue the process by taking the first order term in (6.9). 

This leads to a differential equation for Xi{B): 

(6.15) wqXi + otXi = —2wowiXo — Xo ^ Fo cos 6^ 
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Insertion of Xo fiom (6.13) yields 

(6.16) o:lxl + axi = (2(jcou)iA — + Fo) COS d — Ji4^cos3^. 

The 'periodicity condition for Xi requires that the coefficient of cos B 
be zero, since otherwise a term 0 sin 0 wovld arise in the general solution 
of (6.16), which presents the exceptional resonance case. Hence we 
set 2a?ocoi.4 — 3^4 + Fo = 0, or 

(6.17) 
2Va- 

which fixes the quantity wi in (6.6). We note that the first two terms 
in (6.6) yield, in view of (6.12a) and (6.17), the same relation (within 
terms of order less than /3^) between w and A as was found previously 
(cf. equation (2.8)). From </ = o)l + 2o}ocoi0 + • • • , we obtain 
in fact 

2 
0) + ••• 

= a + 1/3^* - 0fo 
A 

+ ••• 

where the dots refer to terms of order 0^ and higher. The general 
solution of (6,16) may now be written 

(6.18) xi = Ai cos 0 + Bi sin $ — --—- cos 3^ 
coo coo 4(a — 9wo) 

A^ 
= Ai cos B + Bi sin B + —- cos 39 

32a 

upon setting wo = \/a. The conditions (6.7b, c) require Ai = 
— AV32a and Bi = 0. Hence we have finally 

(6.19) Xi = (—cos B + cos 30). 
32a 

The approximation x = xo + fixi can now be seen to coincide with 
the second approximation (2.10) furnished by the iteration pro¬ 
cedure, again within terms of order Our solution, up to terms 
of first order in /3, is 

A^ 
(6.20) X - *4 cos 0 + /S — (—cos 0 + cos 30) + • • •, 
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and 

(6.21) + + •••■ 

The method of procedure from this point on should be clear. 

7. Subharmotne response 

Up to now we have considered only the harmonic solutions of 
the Duffing equation, that is, solutions for which the frequency is 
the same as that of the external force F cos o)t. Permanent oscilla¬ 
tions whose frequency is a fraction , 1/r?, of that of the 
applied force can, however, occur in nonlinear systems, in particular 
in our case of the Duffing equation. To this phenomenon the term 
subharmonic response is usually applied, though the term frequency 
demultiplication is also used and is perhaps a better one. (For 
literature on this subject see the papers by Baker [3], Krylov and 
Bogoliuboff [21], V. Kdrmdn [20], and Friedrichs and Stoker [13].) 

The fact that subharmonic oscillations occur in systems with 
nonlinear restoring forces can hardly be denied since they have been 
often observed (cf. the paper of Ludeke [27], for example). But it is 
not an entirely simple matter to give a plausible physical explana¬ 
tion for their occurrence. Let us recall the behavior of linear systems. 
If the frequency of the free oscillation of a linear system is w/n (n an 
integer, say) then a periodic external force of frequency w can excite 
the free oscillation in addition to the forced oscillation of frequency 
0). But since some damping is always present in a physical system, 
the free oscillation is damped out so that the eventual “steady state'' 
consists solely of the oscillation of frequency w. Why should the 
situation be different in a nonlinear system? The explanation usually 
offered is as follows: Any free oscillation of a nonlinear system con¬ 
tains the higher harmonics in profusion, and hence it is possible that 
an external force with a frequency the same as one of these might be 
able to excite and sustain the harmonic of lowest frequency. Of 
course that this actually should occur probably requires that the 
damping be not too great and that proper precautions of various 
kinds be taken. 

We shall not attempt to present a solution of the problem of sub¬ 
harmonic response for the Duffing equation in all generality. Rather, 
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we shall treat only one special case, i.e. the subharmonic oscillation 
of order Also, in the development which immediately follows, 
damping will be neglected, but will be taken into account in the next 
section. We are interested here, as in our previous discussions, in 
qualitative rather than accurate quantitative results. We are also 
interested here, as otherwise in this book, in discussing various differ¬ 
ent methods of solution which can be made useful in treating non¬ 
linear vibration problems. We have therefore chosen to treat the 
problem of the present section by operating directly with the Fourier 
series for the solution. Of the two possibilities for calculating the 
coefficients of the series—that is, either the perturbation or the 
iteration method—we have chosen the iteration method. 

There is some advantage in introducing, as in the preceding sec¬ 
tion, the variable ^ as new independent variable. The differ¬ 
ential equation is 

(7,1) + (ax + = F cos 6^ 

in which it is to be remembered that co represents the frequency of 
the applied force F cos oiL Our object is to find a periodic solution 
with frequency w/3, or in terms of the variable 0 of frequency It 
follows that the subharmonic solution can be developed in a Fourier 
series of the form 

X 

CO 

= 2: 
n-l 

nd . . , nd 
ctn COS ~ + On sin — . 

Our object is to determine the coefficients in the series approxi¬ 
mately, on the assumption that is small. We remark first of all 
that all sine terms and also all cosine terms in even multiples of 6/3 
in the Fourier series turn out to be zero in the course of the calcu¬ 
lation; for the sake of brevity we therefore omit these terms at the 
outset and write our solution in the form: 

6 56 
(7.2) X = Aui cos ^ CCS e + Am cos ^ + • • • . 

Substitution of (7.2) in (7.1) and use of some of the following identi¬ 
ties, in which the dots refer to terms involving higher multiples of 9'. 
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Z 0 « ^ I 1 A 
cos « ~ i cos - + i cos 0 

u O 

B B 
cos* 5 cos d = J cos 5 4- i cos P + • • • 

o o 

B B 
cos - cos* ^ cos - + • • • 

cos* 0 = I cos 0 + • • • 

B B 
cos* - sin = I sin - + I sin B 

i) O 

B • 2 a 1 ^1 cos - sm 0 t cos ~ + • • • 
o o 

leads to the relations 

(7.4) f/5(^i/3 + A\izAi + 2i41/3^4j) = 0, 

(7.5) (a - co^)^i + \fi{A\,z + %A]^^Al + 3Al) = F. 

Equations (7.4) and (7.5) take the place of equation (2.8) which was 
fundamental for the “harmonic’’ case. Only the two lowest 
harmonics have been considered. 

Again we are faced with a problem of procedure, but our previous 
experience offers a guide. We set = 0 (i.e., we consider the linear 
case) and observe from (7.4) that Ayz must be taken zero unless 
0) = 3\/aj and no subharmonic oscillation would be obtained. If, 
however, co = 3 y/a then A1/3 can be taken arbitrarily, while Ai = 
—F/8a is determined from (7.5) for a given value of F when /? = 0. 
The term A1/3 cos {B/3) represents evidently the free oscillation of 
arbitrary amplitude which may be superimposed on the forced vibra¬ 
tion (-~F/8a) cos B in the linear case. Hence we should prescribe 
Ai/z for p 7^0 and then hold it fixed. The quantity F should also be 
prescribed, but the quantities w and Ai, which were fixed for 0—0, 
should now be considered as functions of A1/3 and F, It should be 
noted that we begin our approximation in the present case with the 
linear forced oscillation rather than with the linear free oscillation, 
as in the preceding case. 
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With this in mind we rewrite equations (7.4) and (7.5) in the follow¬ 
ing form in order to perform iterations conveniently. After dividing 
equation (7.4) by A1/3 9^ 0, wc rewrite equations (7.4) and (7.5) as 
follows: 

f = 9q! + + A1/3 A1 + 2A?), 
(7.6) \ , 0 

I — 8«Ai = F + (oj^ — 9Qr)Ai — J/3(Ai/3 + i)Ai/zA\ + 3Ai), 

or 

(7.7) -8aAi = F - iP(A\n - 2lA?/3Ai - 27A1/3A? - 51A?), 

the last equation resulting from the elimination of 
We begin the iterations with the values for /? = 0, i.e., with A1/3 

prescribed, oj = 3\/a, and Ai = —F/Sa = A. The next step yields 

(7.8) </ = 9a + ¥-iS(A?/3 + A1/3A + 2A'), 

(7.9) A] = A +-5V^(Ai/3 ~ 2IAI/3A — 27Ai/3A^ ~ 51A^), 
a 

as one can readily verify. 
Equation (7.8) is readily discussed. It represents an ellipse or a 

hyperbola in an w, Ai/3-pIane, depending on the sign of (3. Also i/ 

has a minimum when ^ > 0 and a maximum when ^ < 0 for 
Ai/3 = -—A 12 and (J has as value there 

(7.10) = 9(a + UM"). 

Thus the subharmonic vibration exists only for 

(7.11) £0 ^ 3\/a + when ^ q 

If /3 0, we may conclude that no suhharmonic vibration with o) = 3\/a 
can exists i.e., no subharmonic response with exactly the frequency 
of the free oscillation of the linearized equation can exist. Some 
authors describe subharmonic response as an oscillation with exactly 
the frequency of the free oscillation of the linearized equation excited 
by a force with n times this frequency. In the case of the DuflSng 
equation, at least, such an oscillation cannot occur. 

Interesting conclusions can be drawn from the relation (7.9), 
which determines the second Fourier coefficient of the subharmonic 
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vibration as a function of .41/3. For .li/? = 0 relation (7.4) is satis¬ 
fied identically while relation (7.5) reduces to relation (2.8) for the 
harmonic case. ?Ience the suhharmonic vibration results through bi¬ 

furcation from the harmonic vibration. This takes place for 

(7.12) .1, - .4 - 

with .4 = —F/Ha. 

Fillin' 7.1 in(li(^a((‘s l-he nature of the curves for and 

i *4i + for both a hard ancl a soft restoring force. In the lower 

Fig. 7.1. Response curves for a suhharmonic oscillation. 

two graphs we have indicated the response curves for | ^4i |, the am¬ 
plitude of the harmonic oscillations, as well as curves for the “ampli¬ 
tude^^ I I of the ‘.‘harmonic^^ component of the oscillation. The 
point B is the bifurcation point; the subharmonic and the harmonic 
oscillations corresponding to it are identical. The intersection point 
C on the curve for iS > 0 is not a bifurcation point; the harmonic and 
subharmonic oscillations corresponding to it are different. 

8. Subharmonics with damping 

We have already remarked in the first chapter that subharmonics 
in linear systems with damping cannot occur. In nonlinear systems, 
however, subharmonics can occur even in the presence of viscous 
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damping, as we shall see in the present case of the Duffing equation. 
As in earlier sections, we introduce ^ = wi as independent variable 
and write the differential equation in the form 

(8.1) + cocx' + {ax + fix) = H cos 0 — G sin By 

and assume that the amplitude F = y/H^ + 0^ of the excitation is 
prescribed, but the ratio H/G is not fixed in advance. To determine 
the subharmonic oscillation of order § we start, as in the preceding 
section, with the Fourier series 

Q 
(8.2) X = Anz cos - + cos ^ sin ^ + • • • . 

o 

The term Byz sin ~ is omitted: we may prescribe the phase of the low¬ 

est term since we have left the phase of the excitation undetermined. 
Before proceeding to insert (8.2) in (8.1) it is convenient in the present 
problem* to introduce the following new dimensionless quantities: 

^ = xjAyz^ c = cjy/ay fi = fiAyz/ay F = F/aAyzyQ = 

G/aAyz, ft ~ UjaAiiz y Ax = Ax/Ayz, Bi = BxIAxiz. In terms of 
these quantities (8.1) and (8.2) become 

(8.3) + cwx' + (:^ + fix) = 3 cos 0 — Q sin By 

B ~ 
(8.4) X == cos - + Ai cos 0 sin 0 + • • • . 

o 

We now introduce (8.4) in (8.3), make use of the trigonometric identi¬ 
ties (7.3) of the preceding section, and obtain (after dropping tem¬ 
porarily the bars over all quantities) the following equations 

(l " + mi + Ai + 2Al + 2Bl] = 0 

(8.5) - ic« + I iSBj = 0 

(1 - a.*)^x +i/9[l + 6Ai + 34? + 34jB?] + acBi = H 

(1 — u)^)Bi + f^Bi[2 + jB? + a]] — C(i)Ai = G. 

In deriving these equations only the two lowest harmonics have been 

♦ Actually, it might have been wise to introduce these quantities much 
earlier. 
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taken into account. The first of the equations can be written in the 
form 

(8.6) - 1 = 8 + ^^[1 + Ai + 2A\ + 2B\] + • ■ • . 

By using the second equation of (8.5) together with (8.6) we can 
eliminate w and cw from the third and fourth equations of (8.5) 
to obtain 

(8.7) 84i + + 2M, + 274? - 9B? + 514? 
+ 5l4iB?] + ... = -/7 

(8.8) 85, + |^[7 + 124, + 174? + 175?] + ... = -G. 

The above relations coincide with those of the preceding ^6ction if 
we set c = 5, = 0. 

We can now introduce 4, and 5, as given by. ^8.7) and (8.8) in 
(8.6) to obtain the response relation for w analogous to (7.8) of the 
preceding section; in terms of the original variables this takes the form 

(8.9) „=.9« + V-8[^!„-^ + 3|,]. 

We shall not discuss the response curves hefe, but turn rather to an 
important observation with regard to the /effect of damping. If we 
square and add relations (8.7) and (8.8) we Pbtain 044? + G45? +••• 
= If + - F\ in which the dots refer to' terms of order 0 or higher. 
It follows therefore that 5? < FV64 and htence from the second equa¬ 
tion of (8.5) that CO) < ■/¥ 1 05 ]. In terms of the original variables 
the last inequality, in view of (8.9), takes the form 

(8.10) C < 
10^1/351 

ay/ a 

This inegmlily shows that the subharmonic of order | cannot occur unless 
the damping coefficient is a small quantity of order which is perhaps 
not surprising in view of the remarks made at the beginning of the pre¬ 
ceding section. The damping coefficient must also be smaller for 
smaller “amplitudes” 4i/3 of the response as well as for smaller ampli¬ 
tudes F of the excitation. It seems likely (cf. Levenson [23]) that 
the damping coefficient would have to be taken small of still higher 
order in 0 in order to obtain the subharmonics of order higher than 
I in the presence of damping. This is an interesting point which 
deserves further theoretical and experimental investigation. 
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9. The method of Rauscher 

The methods considered so far have consisted in developments in 
the neighborhood of the free or forced linear oscillation, i.e., in de¬ 
velopments which begin, say, at point 0 in Figure 9.1. It is rather 
obvious that more rapid convergence could be expected if one were 
to begin the approximations at point 1, i.e., if one were to begin with 
the free nonlinear vibration. The method of Rauscher [35] is an 
iteration method based on this idea. In applying this method it is 

as essential as before to prescribe the amplitude and leave the 
freqihifiicy to be determined. Hence there is some advantage in 

Fig. 9.1. Diagram indicatii^g the character of Rauscher’s approximation 
method. 

introducing the variable 0 — (ai m place of i, as was done in the pre¬ 
ceding sections. We therefore take as differential equation 

(9.1) ^ ^ 

For the sake of simplicity we assume the restoring force /(x) to be 
symmetrical, i.e. that /(~x) = —/(a:), although Rauscher's method 
can be carried out without difficulty in other cases. We require that 
x(0) = A, x'(0) = 0, which we may do since x(^) is assumed to be 
periodic. The quantity w is to be fixed by the requirement that x(^) 
should have the period 2v, 

As stated above, the Rauscher method is an iteration method 
which begins with the free nonlinear oscillation as first approximation, 
that is, with the solution of 

(9.2) 
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such that X = Xo(^) has the period 2t and Xo(0) = A, Xo(0) = 0. 
As we have seen in Chapter II, this problem can be solved by explicit 

integration: we set F(x) = / f(x) dx and obtain ^ as a function of x 
Jo 

by the formula (cf. equation (3.4) of Chapter II): 

r* dx 
(9.3) 

Since we have assumed that f(—x) = —fix), we obtain for wo the 
relation 

(9.4) 
-1 _ 2 _dx_ 

~ T Jo V2[F(Ar-'T("i)l 

since | 6 | varies from 0 to 7r/2 when x varies from 0 to A. 
Once 0)0 and doix) have been found, we proceed to determine the 

next approximation from the differential equation 

(9.5) 0)1 + fix) - F cos [0o(j^)] == 0, 

in which doix) is taken from (9.3). In other words, we go back to 
(9.1) and replace 9 in the right-hand side by its first approximation 
^o(x). This process is quite feasible since (9.5) is again a differential 
equation of the same type as (9.2) and can, like it, be solved by ex¬ 
plicit integration to obtain the next approximation coi for the frequency 
and Biix) for the ‘^time’’ as a function of .r. In complicated cases the 
integrations are best carried out graphically, as Rauscher illustrates 
in his paper. 

One secs that the general scheme for this iteration method is as 
follows: The nth approximation Xni9) is obtained as the solution of 

(9.6) 0)1 ^ + fix) - F cos [^„_i(x)] = 0 

for which Xni9) — Xni9 + 2t) and Xn(0) = A, Xn(0) = 0. The func¬ 
tion ^n>-i(x) is the inverse of the solution Xn^iiO) obtained in the pre¬ 
ceding step. (Actually, of course, it is 6n-iix) which is obtained 
directly, and this is what makes this ingenious method of Rauscher 
practicable.) The quantity o)n is the nth approximation to the 
frequency of the forced oscillation of amplitude A. The accuracy 
of this iteration method depends mainly, as one sees, on having F 
sufficiently small. 
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The method seems to be a very accurate one, as Rauscher indicates 
in his paper; in fact, it is usually sufficient to stop with Xi . In the 
paper referred to, it is also indicated how the method can be modified 
if a damping term cx occurs in the differential equation. It should 
be mentioned that the method of Rauscher involves an assumption 
that was not mentioned explicitly above, i.e. that the curve for x{d) 
should be monotone over a full period: otherwise, the inverse func¬ 
tion d(x) would not exist. 

10. Combination tones 

Up to now we have always considered the excitation to consist of 
a single harmonic. It is, however, a matter of considerable interest 
from the practical, and perhaps even more from the mathematical, 
point of view to investigate what occurs when the excitation is a 
sum of several harmonics. We consider therefore the differential 
equation 

(10.1) X ax — fix^ = Hi cos o)it + H2 cos a>2^. 

To this differential equation we might apply any one of several of 
the approximation schemes used earlier in this chapter. For example, 
the iteration method of Duffing explained in Section 2 might be used, 
starting with 

(10.2) Xq — A cos (ait + B cos a>2< 

as first approximation. In this way Duffing [9], p. Ill, obtained the 
following result for the next approximation Xi{t) (in slightly different 
notation and with sine rather than cosine terms): 

3A^ BA^ 
Xi = A cos wi < + cos Wit + cos 3(011 + ^ cos 3co8< 

06 ■ 36 

(10.3) + cos (<02 + 2(Oi)< cos ((02 — 2ui)t 

(a>2 + 

cos ((oi + 2ui)t 

(<02 — 2(0i)* 

1 8o.( Dii/cOS ((Ol + 2ui)t , cos ((01 - 2(02)<\ 

+ V-(iT+-a5F + (« /' 
in which A and B must satisfy the relations 

(a - (o!)A - iM(4* + 25*) = Hi, 

(a - (o5)5 - ti85(5* + 2A^ = ft. 
(10.4) 
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The relations (10.4) are, of course, the response relations for the 
amplitudes A, J5 as functions of the frequencies wi, W2. 

One of the essential points of interest here is the occurrence of 
terms of first order in with frequencies 0)2 ifc 2o)i and wi ± 2a)2, the 
so-called combination tones, in addition to those of frequency 3wi 
and 3w2 . This is in sharp contrast with the case of linear oscillations 
in which the forced oscillation would be simply a superposition of two 
harmonics of frequencies wi and 0J2. If we had taken a nonlinear 
term of the form in the right-hand side of (10.1) instead of the 
term a similar result (cf. DufEng [9], p. 108, and Appendix II) 
would have been obtained except that the combination tones of lowest 
order would now consist of the ^'difference tone^’ of frequency 0)2 — wi 
and the "summation tone’^ of frequency W2 + . Helmholtz in¬ 
voked a supposed nonlinearity in the mechanical vibrating system 
of the ear as a means of explaining, along lines similar to the above 
discussion, the fact that tones of frequencies C02 — wi and C02 + wi 
are often heard when two notes of frequencies wi and C02 are sounded, 
especially if they are loud notes. An excellent summary and critical 
discussion of such acoustical phenomena can be found in Rayleigh 
[36], p. 456. 

We turn now to a brief discussion of solutions of (10.1) from the 
mathematical point of view. If a)i/w2 is rational, then the excitation 
Hi cos wii + H2 cos o)2t is periodic and the method of Appendix I 
could be applied to furnish the existence of periodic solutions of 
(10.1) of various kinds which could be represented by convergent 
perturbation series. If, however, cji/m is irrational and the excita¬ 
tion is thus an almost-periodic function of the time, the situation is 
quite different. The strange and noteworthy fact is that the deter¬ 
mination of solutions of (10.1) by the kind of approximation methods 
used hitherto—iteration or perturbation methods of one sort or 
another—seems certain to lead to series or sequences which diverge 
if the ratio 0)1/032 of the frequencies wi and 0)2 is not a rational number. 
It is possible to understand why this should be so by considering what 
would happen in the present case of equation (10.1) if, for example, 
the iteration scheme of Duffing were to be continued in order to ob¬ 
tain approximations of higher order. Since the basic process consists 
essentially in substituting each approximation Xn in the right-hand 
side of x =* fixn — otXn + Hi cos o)it + Ht cos o)2t and integrating twice 
to obtain Xn+i, it follows (as we observe already in the case of xi{t) 
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given by (10.3)) that the resulting approximations will contain more 
and more terms whose denominators contain higher and higher powers 
of (zfcncoi ± mo32) with n and m integers. By virtue of a famous 
theorem of Kronecker, however, it is known that expressions of the 
form (rfcncoi rh 7nw2) with n and m integral will be arbitrarily near to 
zero for infinitely many different n and m if coi/w2 is irrational. Con¬ 
sequently it would seem quite hopeless to attempt to prove the con¬ 
vergence of any such iteration process as that sketched out here. 
This difficulty is the famous ‘^difficulty of the small divisors’' which 
was first pointed out by Poincar6 in discussing perturbation methods 
for dealing with problems in celestial mechanics. 

The difficulty with the small divisors can, however, be circumvented 
in some cases at least if there is viscous damping in the system. In 
Appendix II we shall show, following Friedrichs [40], that the differ¬ 
ential equation x + cx + x — ffx^ = h(t), with c > 0 and ^(0 an 
almost periodic function, possesses almost periodic solutions in a 
neighborhood of .r ^ 0 which can be obtained by a convergent itera¬ 
tion process for sufficiently small values of /?. The essence of the 
matter is that the occurrence of viscous damping has the effect of 
causing the denominators in the successive approximations to be 
bounded away from zero. The fact that actual systems are not ob¬ 
served to blow up when subjected to the influence of harmonics with 
incommensurable freciuencios—in spite of the fact that series for 
describing the phenomena seem (certain to diverge—could, however, 
hardly be ascribed in general to the effect of damping. 

11. Stability questions 

The jump phenomena discussed in Section 3 make it seem plausi¬ 
ble that the solutions corresponding to values of | A | and co for those 
portions of the harmonic response curves which are passed over in 
jumping from one point to another are unstable solutions in some 
sense or other. In other words, it seems plausible that the regions 
bounded by the dotted curves in Figure 3.1 are regions of instability 
for the equation x + cx + ax + px^ = F cos o)t. 

In any consideration of stability of a given system one funda¬ 
mental difficulty is that of defining the notion of stability in a logical 
and reasonable manner without destroying the chances of applying 
the definition in a practical way. Into this question we do not enter 
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here. We take simply the following often used definition for sta¬ 
bility (infinitesimal stability): Let x(t) and x(i) + dx(t) be two solu¬ 
tions of the differential equation of motion for which the initial condi¬ 
tions at / = 0, say, differ slightly. If we insert x -h Sx in the 
differential equation and neglect powers of 6x above the first, v/e 
obtain a linear ‘Variational’’ differential equation for 8x, If all 
solutions $x of this equation are hounded^ then x(t) is said to be stabhy 
otherwise unstable. 

When this definition is applied to the Duffing equation (1.3) we 
find for 8x{t) the linear homogeneous differential equation 

(11.1) 8x+ (a + 3Px^)8x = 0, 

in which x(t) is the solution of (1.3) whose stability is to be investi¬ 
gated. In our case x(t) is a periodic function, so that (11.1) is what 
is called a Hill’s equation. To each x(t)f or, to each point in the 
\ A co-plane, corresponds a particular equation (11.1). In any 
specific case means are available to decide whether all solutions 8x 
are bounded or not. However, it seems not to have been proved 
rigorously that all solutions corresponding to points in the region 
bounded by the dotted curves of Figure 3.1 are unstable. A strong 
indication that this is true is furnished by the fact that it can be 
shown that (11.1) always possesses a periodic solution 8x{t) for any 
x{t) which corresponds to a boundary point of the regions in question. 
It follows then from certain theorems of 0. Haupt that such points 
in the | A |, co-plane correspond to boundary points between regions 
of stable and unstable solutions.* 

If one were to be contented with the degree of accuracy implied 
in the first approximation x — A cos wt to the solution of Buffing’s 
equation, equation (11.1) would take the form 

(11.2) 8x + (a + b cos 2cot)8x = 0, 

with a and h defined as follows; 

b = ^fiA\ 

* F. John has shown [18], [19] that these statements are correct as regards 
the out-of-phase branch of the response curves for harmonic solutions which arc 
not necessarily in a neighborhood of the linear solution. 
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For later purposes it is useful to introduce the following new quantities 

(11.4) 

(z = 2o)t 

d = 

€ = bf4(/i 

in terms of which (11.2) takes the form 

(11.5) + (5 + e cos z)5x = 0. 
dz^ 

Equation (11.5), which is of course a special case of HilPs equation, 
is called the Mathieu equation. The stability theory of this equation 
has been worked out in detail for all values of € and 5. In Chapter VI 
we shall develop the theory of HilPs equation and the Mathieu equa¬ 
tion in detail and apply it to the discussion of the stability of the 
harmonic solutions of DufEng’s equation. In particular, it will be 
shown there that the statement made above regarding the unstable 
regions of the | A |, w-plane holds good, at least within first order 
terms in 

12, Resume 

The frequently cited book of Duffing contains in one place a brief 
confrontation, in the form of a table, of the characteristics and prop¬ 
erties of linear as contrasted with nonlinear systems. We close this 
chapter with a similar and somewhat enlarged table as a means of 
summarizing the salient facts discussed up to this point. 

Free Oscillations: x + cx. + x + fix^ = 0, c > 0 

Linear i/5 ** 0) 

(1) Ct^O: a; = 0 only periodic motion. 

(2) c » 0: Simple harmonic motion 
with arbitrary amplitude but 
fixed period T « 27r. 

Nonlinear (/5 0) 

(1) c 3^ 0: X ^ 0 only periodic‘mo¬ 
tion. 

(2) c » 0: Motions periodic but not 

simple harmonic. Period T is 
a unique function of amplitude, 
and T ^ 2Tr except for /3 = 0. 
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Forced Oscillations: x + cx + x + — H(t) 

Linear {$ ■» 0) 

(1) C = 0, H{t) = F COS uii 
CD 5^ 1: All oscillations a super¬ 

position of free oscillation of 
period 2ir and arbitrary ampli¬ 

tude, and a forced oscillation 
A cos cat with A fixed. All oscil¬ 
lations stable. 

CD = 1: Resonance case. No peri¬ 

odic oscillation. Forced oscil¬ 

lation has “amplitude” increas¬ 
ing linearly in t. 

(2) Ct^O, H(t) = F cos cat 
All oscillations a superposition 
of a free oscillation, w’hich is 

damped out exponentially, and 
a forced oscillation A cos cat with 

A fixed. All motions stable. 

(3) c 5^ 0, 
H{t) = Fi cos cDit “b Fi cos cd2^ 

CDl , CDj 5*^ 1 
All oscillations a superposition 

of a damped free oscillation and 
a forced oscillation which is in 
turn a superposition of the 
forced oscillation due to each of 

the tw’o separate terms in H(t) 
individually. 

Nonlinear r^O) 

(1) c = 0, H{1) * F cos cot 
There exist oscillations of fre¬ 
quency CD, with amplitudes a 
function of cd. For certain co 

several such oscillations may 
occur. For CD =* 1 (for which 

resonance occurs in linear case) 
stable oscillations of frequency 

CO = 1 with bounded amplitudes 
occur. General solution not 
known, but there exist many 

different types of periodic mo¬ 

tions (subharmonics, etc.) as 

well as nonperiodic motions. 
Some periodic oscillations 

stable, others unstable. Be¬ 

havior of periodic oscillations 
depends considerably on sign 
of /3. 

(2) c 7^ 0, H(t) - F cos cat 
Essentially the same remarks 
as for c « 0. 

(3) H{t) = Fi cos cait -f F2 CCS cd2 

c * 0: General motion unknown. 
Formal approximation schemes 

lead to combination tones. 

Mathematical “difficulty of 
small divisors” occurs, 

c 7^ 0: Existence of certain oscil* 
lations containing combination 

tones can be proved. 





CHAPTER V 

Self-su8laiiied Oscillalions 

In the preceding (;hapter avc trealed problems in which the 

nonlinear element in th(^ system Avas the nvstoring force. In the 

present chapter Ave consider problems in whicdi tlu^ nonlinciai* element 

concerns the force depending on the velochty, Avhiki the restoring 

force is assumed to be linear. TJiese nonlinear "'damping” forces 

Avill have, hoAvever, a special and very important property in all 

cases Ave consider: the damping force Avill Iac such as to tend to 

increase the amplitude for small vebcities but to decrease it for large 
velocities. It follows that the state of rest is not a stable state in 

such cases and that an oscillation will be built up from rest even 

in the absence of external forces; this accounts for the description of 

these oscillations as self-excited or self-sustained oscillations. The 

present chapter is divided into tAvo parts A and B; in the first part the 

free oscillations and in the second the forced oscillations are treated. 

A, Free Oscillations 

i. An electrical problem leading to free self sustained 
oscillations 

Probably the most important physical systems in practice which 
lead to oscillations of the type to be considered in this chapter are 
electrical systems involving vacuum tubes. An electrical circuit 
containing such an element is shoAvn in Figure 1.1. The triode 
vacuum tube indicated in the figure contains three main elements: 
the plate (or anode) P, the grid (r, and the cathode (or filament) F, 
The cathode is heated by a small battery, as indicated, in order that 
it will emit electrons. If, then, the anode P is charged positively an 
electric field Avill be created in the tube and an electron current Ayill 
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flow from cathode to plate. Between the plate and the cathode an 
additional element, the grid, is interposed; the grid, as the name 
indicates, consists of a wire screen of coarse mesh. The grid was 
introduced into vacuum tubes for the purpose of controlling the 
flow of electrons. This is accomplished simply by changing the 
potential of the grid, thus modifying the electric field in the tube and 
hence also the flow of electrons. The control can be achieved without 
an appreciable flow of current in the grid circuit, if desired. It is 
this central control feature (which requires only slight expenditure of 
energy) that has made the vacuum tube such a useful device for a 
great variety of purposes. 

The circuit shown in Figure 1.1 was chosen because it is important 
in practice and leads easily to the differential equation that we wish to 

study. The distinguishing feature of the physical phenomenon is also 
well illustrated: by means of a nonlinear element (in this case the 
triode tube) a source which normally provides a constant flow of 
energy (the battery in the plate circuit) is forced to produce oscilla¬ 
tions. It should be pointed out specifically that such occurrences 
require, in general, the presence of nonlinear elements; in a linear 
system a periodic source of energy is required in order to maintain a 
periodic motion (cf. the paper of le Corbeillcr [7] for interesting 
comments on this point). 

In the plate circuit there is, in addition to the batteiy, an ^‘oscil¬ 
lator’^ consisting of a coil of inductance L, a resistance J?, and a 
condenser of capacity C all in parallel. The grid potential is provided 
by a mutual inductance Af, as indicated. Such a circuit is sometimes 
called a feed-back circuit, in contrast with other circuits in which the 
grid control is provided by a circuit that is independent of the plate 
circuit. 
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We proceed to derive the differential equation for the current i 
flowing through the inductance coil of the oscillator. As indicated 
earlier, we assume that the current in the grid circuit may be neg¬ 
lected. The drop of potential through the inductance coil is, there¬ 
fore, Ldi/dt and this is also the potential drop through the resistance 
and the condenser. If we denote by in the current through the 
resistance, by ic the current through the condenser, and by qc the 
charge on the condenser, we have the following relations: 

(1.1) 

II 
(12) 

r di 1 r ^ i 1 t_ _ or L _ - - dqc 1 . 
~di ~ c'"' 

a.3) ip = f + in + ic 

If the quantities in and ic in (1.3) are replaced by their values from 
(1.1) and (1.2) the result is 

/1 < \ I <1/ di I 

^ ^ Rdt'^ ^ ~ 

Since no current was assumed to flow in the grid circuit it follows that 
the grid potential is given by 

(1.5) ua = Mj^. 

Also we have 

(1.6) Up=E-L^,, 
at 

Up being the plate potential. 
So far we have made practically no use of the properties of the 

tube itself. The decisive point is that the plate current ip depends, 
with good accuracy, upon a linear combination u of the grid potential 
Uq and the plate potential Up ; 

(1.7) ip * (p{u) 

with 

(1.8) U Uq + Dup, D > 0, 

D being a certain constant, the reciprocal of which is called the 
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“amplification factor.” Equation (1.7) might be given a theoretical 
justification, but we regard it as an empirical relation that is justified 
by the results of experiments. The function is sometimes called 
the characteristic of the tube. 

If (p{n) were a linear function of u we see that equations (1.4) to 
(1.8) inclusive would lead to a linear differential equation with con¬ 
stant coefficients for so that an oscillation of some kind could be 
expected to occur. Much of the engineering literature on this 
subject is based on the assumption that (p{u) can be taken as a linear 
function without too much error. 

The function <p{u) is not linear, but has rather the character 
indicated in Figure 1.2. That the characteristic is a curve of this 
kind was to be expected, 8in(‘e the current ip is limited finally by the 

Kig. 1.2. Plate runcnt as a function of grid and plate potentials. 

rate of production of electrons at the cathode; tlu' curve should then 
show evidence of such a saturation effect. 

From (1.5), (1.6), and (1.8) we have 

(1.9) = azi’+ (ilf - DL) 
at 

and, since ip = <p{u) is nonlinear in u we see that (1.4) is a nonlinear 
differential equation in which the nonlinearity involves the first 
derivative. 

For the discussion of the differential equation it is convenient to 
introduce a new dependent variable x defined by 

(1.10) x^i- q>(DE), 

In the new variable, equation (1.4) becomes 

(1.11) CM + ~ + a: + ip{DE) = ADE + {M - DL)xl 
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in which x = dx/dt. = di/dt. Through introduction of the function 
f(x) defined by 

(1.12) fix) = ,p(DE) - 4DE + (M - DL)x], 

we may write (1.11) in the form 

(1.13) CLx + + ./■(•t) + .t = 0. 

We suppose now that the plate battery potential E is adjusted 
so that the quantity u = DE is near the inflection point of the 
characteristic ip{u) (cf. Figure 1.2). We assume, in addition, that 
M — DL > 0; this condition is very essential—without it no self- 

(b) 

Fig. 1.3. The characteristic for the circuit. 

excited oscillation would be possible, as we shall sec. This condition 
is certainly satisfied if D is small enough, i.e., if the amplification 
factor l/D is large enough. The curve for f{x) as a function of x 
then has the general appearance indicated in Figure 1.3a. In Figure 
1.3b we indicate the curve for the function F(x)—called the char- 
acf/iristic—defined by 

(1.14) Fix) ^x + fix), 

assuming that the slope of F(x) for jp = 0 is negative, i.e., that 

(1.15) |+/'(0)<0, 

or 

(1.15)' ^ < (M - DD^'iDE), 
it 
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which can be secured, in view of L/R > 0, only if/'(O) < 0, that is, 
if Af — DL > 0. We may now write (1.13) in the form 

(1.16) CLx + F(x) + x - 0, 

with xF{x) < 0 for I X I small enough, but xF(x) > 0 for large | x |. 
This means that the “damping” is negative for small x; the system 
absorbs energy, and one could expect the amplitude of x to increase. 
However, for x large the system dissipates energy and hence one 
could expect the amplitude of x to be limited from above finally. In 
other words, one coulxl expect under^ these circumstances that a steady 
vibration of a certain amplitude would occur after some transients die out. 
We note that it is quite essential for such a behavior of the system that 
the slope of F{x) should be negative for small x, or, in other words 
that the amplification factor should be large enough; if this were not 

Fig. 1.4. The characteristic for the circuit. 

the case no oscillation (except the state x = 0) could occur, as we 
have seen earlier in Chapter III, Section 2. 

A differential equation of the form (1.16) was first studied by 
Rayleigh [36] in connection with acoustical problems. The treatment 
of the important problems centering about circuits with vacuum 
tubes in terms of differential equations with nonlinear damping is of 
much more recent date; this pioneering work was done by van 
der Pol [32]. 

Many writers, including van der Pol, prefer to work with a 
differential equation different from (1.16). Instead of x, they take as 
variable its derivative y — x. If (1.16) is differentiated with respect 
to t the result is 

CLix -j- F\x)*x -f“ X == 0, 

or 

(1.17) CLQ + x{v)-'d + y = 0 
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upon setting y = x and x{y) = P\y)^ If is of the type indicated 
in Figure 1.3b, we see that x{y) appears as in Figure 1.4. If xiy) 
is of this general character we may present once more an argument 
which indicates that a self-sustained oscillation will occur: For 
small 12/1, the coefficient xiy) of the damping term is negative and 
hence | y | will tend to increase. For large enough \y\y the coefficient 
of y becomes and remains positive so that [ y | will tend to decrease. 
The interplay of these two effects of opposite tendency might be 
expected to result in a steady oscillation of a certain amplitude. 

2. Self^sufstained oscillations in mechanical systems 

There are a number of well known cases of mechanical systems 
which execute oscillations of the type under consideration here. In 

Fig. 2.1. Mechanical system capable of executing self-sustained oscillations. 

one class of such problems the oscillations result from the action of 
solid friction. Consider, for example, the mechanical system shown 
in Figure 2.1. A block rests on a rough belt which moves with a 
constant speed vo, and is attached to a rigid support through a linear 
spring. If the speed Vo of the belt is properly chosen, it is a well 
known fact of experience that the block will not remain at rest, but 
will instead execute somewhat jerky oscillations. This behavior 
results from the fact that the solid friction force (or Coulomb damping, 
as it is also called) between the block and the belt is not constant, 
but varies with the velocity of slipping s of the block relative to the 
belt. In Figure 2.2 we indicate schematically the manner in which 
the friction force —(p(s) varies with s. When the block is at rest 
relative to the belt (s = 0), the friction force increases numerically 
(when an external force tending to move it is applied to the block) 
until a certain critical value is reached, after which it decreases for a 
time only to become larger again when i becomes large. It is clear 
that the friction force and s have opposite signs. 
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The position of the block is assumed to be fixed by its distance f 
from the point at which the spring is neither stretched nor compressed. 
The velocity of slip s is then given by 

(2.1) s = k-Vo, 

and the equation of motion of the block is (cf. Figure 2.1): 

(2.2) + <p(^ — Vo) + fcf = 0. 

It is convenient to introduce a new variable x, replacing by the 
relation 

(2.3) a: = ^ + i^(-«»), 

I 

s 

Fig. 2.2. Damping force as a func^tion of velocity. 

which means that the position of the block is now measured from 
its equilibrium position under the combined action of the spring 
force and the friction force, since fp(—vo) + Af = 0 characterizes this 
position, in view of (2.2), The differential eejuation for x is then 

(2.4) mx + \(p(x - Vo) - ip{—Vo)] + kx = 0, 

or 

(2.5) mx + F{x) + /cx = 0 

with F(x) defined by 

(2.6) F{x) == ip{x - Vo) - ^{-vo). 

The function F(x) will appear as in Figure 2.3 if vo is not taken 
too large, since the function <p behaves as indicated in Figure 2.2; 
in particular, it is important that the slope of this curve is negative 
at the origin. One sees that the latter requirement will be fulfilled 
only if Vo is such that the friction force between block and belt would 
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decrease numerically if vo were increased. The importance of this 
for the physical problem is of course that self-excited oscillations 
can occur only when the damping force behaves in this way for small 
values of i:, as we might infer from the discussion in the preceding 
section. 

The specific problem in mechanics chosen here is only one possible 
case which leads to a self-excited oscillation. The production of 
oscillations in a violin string which result from drawing a bow in one 
direction across the string was first explained by Rayleigh in much the 
same manner as above (i.e., by taking account of the variability of 
the solid friction between the bow and the string). Self-excited 
oscillations due to the same cause have been observed in a pendulum 

F(x)* 

Fig, 2.3. The characteristic for the mechanical system. 

swinging on a rotating shaft. Whirling of a shaft caused by solid 
friction in a loose bearing has also been explained in this way. Still 
another example of a self-excited oscillation caused by solid friction 
is the often observed ‘‘chattering'' of the brake shoes against the 
wheels of a railroad car when the brakes are applied. 

Self-excited oscillations sometimes occur in electrical transmission 
line wires due to the action of the wind. The failure of the Tacoma 
bridge is ascribed to a very heavy oscillation of the same type. 
However, the description of the type of action which underlies 
phenomena of this sort is somew^hat complicated, because of the 
necessity to consider the flow pattern of the air behind the structure, 
and will not be undertaken here. That these latter cases (and others, 
including flutter of aeroplane wings) really belong to the class of 
self-excited oscillations is fairly clear on general grounds since the 
vibration results through partial conversion of energy from a steady 
flow (in these cases the wind) into oscillations. 
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3» A special case of the van der Pol equation 

We consider once more the equation (1.16): 

(3.1) CLx + F{x) + a: = 0. 

If it is considered that the vacuum tube operates near the point of 
inflection of the characteristic F(x), the function F(x) can be approxi¬ 
mated with good accuracy by the expression 

(3.2) F{x) = -ax + a, > 0, 

for X not too large. The differential equation then becomes 

+ X = 0. 

Van der Pol observed that (3.3) could be given a much simpler 
form involving only one parameter by introducing the new quantities 

(3.4) ti == = I/CL Xi = (co‘\//3/a)x, 

and a new parameter e through the relation 

(3.5) € = a/\/CL = 

in terms of which the differential equation (3.3) is transformed into 

As one sees, the parameter e occurs as the coefficient of the damping 
term. 

A considerable portion of the remainder of this chapter will be 
concerned with the discussion of equation (3.6). Hence it is con¬ 
venient to drop the subscripts and take as the fundamental differential 
equation for our later discussion the equation 

(3.7) X + €F{x) + a: = 0, € > 0 

with F(x) defined most frequently by 

(3.8) F(x) = —X -f J X®. 

4. The basic character of self^excited oscillations 

The differential equation (3.7) is one governing what have been 
called earlier ^ffree*' oscillations, since the time t does not occur 

(3.3) (- CLx + ( — OCX “b 
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e]q>licitly. Hepce we may apply to it the methods discussed earlier 
in Chapter III. Upon introduction of the “velocity” v — x as new 
variable (3.7) reduces to the first order differential equation 

(41) * = «(»> ^ pV3) - X ^ - €F(v) - X ^ ^ Q 
^ * dx V V ^ 

The field direction defined by (4.1) at any point in the x, v-plane can be 
readily determined, as we have already seen in Chapter III, Section 3, 
by a graphical construction due to Li^nard. For the sake of con¬ 
venience we repeat the description of this construction here. The 
method is indicated in Figure 4.1. The characteristic x = —€F(v) is 
first plotted. The field direction at P(x, i;) is then obtained as 

Fig. 4,1. The Lidnard construction. 

follows. From P a line is drawn parallel to the x-axis until it cuts the 
characteristic at if. From if a perpendicular is dropped to the 
a:-axis at S; the field direction at P is then orthogonal to the line SP. 
That the construction is correct follows at once from (4.1) since the 
slope of SP is obviously given by vl\x + eF(v)]. 

In the special case € = 0, the point S is the origin and the integral 
curves of (4.1) are concentric circles with their common center at the 
origin; the motion is a simple harmonic motion. The only singularity 
is a center at the origin. For € > 0 the singularity becomes an 
unstable spiral point (see Chapter III, Section 6); the integral curves 
depart from the origin for i > 0, corresponding to the fact that the 
origin is an unstable equilibrium point. Our previous physical 
arguments indicate, however, that the outward spirals near the 
origin will not spread out indefinitely, since the damping becomes 
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positive for large values of v. Far away from the origin the integral 
curves are in fact spirals which turn about the origin in moving 
toward it as t increases. l\vo such spirals are shown in Figure 4.2, 
which was obtained for e = 1 by applying the construction of Li4nard 
stepwise. The figure indicates clearly what happens. The spirals 
near the origin as well as those far away from the origin tend to a single 
closed integral curve o/ (4.1), which in its turn corresponds to a periodic 
solution of (3.7). In other words, every solution of (3.7) tendSy as 
1^ —> + 00, to a periodic solution. These are the salient facts about 
self-excited oscillations. Occurrences of this kind were first studied 
by Poincare, who gave the name limit cycle (or simply cycle) to a 
closed solution curve of the kind we have found in the present case. 

Fig. 4.2. The limit cycle for the van der Pol equation. 

We note that the closed cycle contains one singular point of index +1 
in its interior, i.e. the spiral point at the origin, and that this is in 
accord with our discussion in Chapter III, Section 7, according to 
which the sum of the indices of the singularities inside a closed 
solution curve should be +1. 

If € is small the closed solution curve which results will be nearly a 
circle and the corresponding motion will be nearly a simple harmonic 
motion of a definite amplitude. As c is increased the limit state 
that is approached for large t deviates more and more from a simple 
harmonic motion. Figure 4.3 shows the nature of the curves for 
v = :r as a function of < for e = 0.1, € = 1, and € = 10 for a solution 
which begins with small values of x and v for < = 0. The distortion 
from a sine wave increases markedly with increase of €. The veiy 
jerky oscillations which occur for values of € larger than about 10, 
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say, are often called relaxation oscillations; we shall have more to say 
about them later. However, it is of interest to observe here that such 
relaxation oscillations will occur in the circuit of Figure 1.1 if the 
capacity C of the condenser in the oscillating circuit is made small, as 
one sees from (3.5). 

It is clear that the same general phenomena will occur whenever 
the characteristic has a positive slope for small x and v and a negative 
slope for large x and v. In particular, the problem of the motion 
of a block lying on a moving belt and subjected to solid friction, which 

Fig. 4.3. Change in character of the oscillations with increase in nonlinearity. 

was formulated in equation (2.5) above, is a case in point. The 
equation (2.5) can be put in a form suitable for the application of the 
Li^nard construction by introducing a new independent variable 
replacing the time t through the relation t = U \/m/k; the result is 

k VT mdtj 
+ X = 0. 

Upon introducing v = dz/dk equation (4.2) can be reduced, in the 
usual way, to the following first order equation: 

(4.3) 

V 
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In Figure 4.4 we show the result of applying the Li^nard construction 
to (4.3) when the characteristic F has the form indicated in Figure 2.3. 
It is amusing to observe that once any integral curve of (4.3) touches 
the straight line segment P1P2 it follows it moving from left to right 
until Pi is reached, since on this segment v 9^ Q and thus v = constant 
is a solution of (4.3). (One can also see this in terms of the Li^nard 
construction by thinking of the segment P1P2 as the limit of a segment 
rotated slightly out of the horizontal position.) From the mechanical 
point of view, what this means is that the solid friction force on the 
block simply adjusts itself to the value of the external force applied— 
in this case the spring force—as long as the critical value of the 

Fig 4.4. The limit cycle for a mechanical system. 

friction force is not exceeded; hence the system moves with constant 
velocity since the resultant force is zero. To find the limit cycle 
toward w’hich all other integral curves of (4.3) tend as < 00 it was 
sufficient in the case shown in Figure 4.4 to construct the integral 
curve which starts at Pi and to follow it until it touched the segment 
P1P2 for the first time. However, it need not always happen that the 
limit cycle contains a portion of the segment P1P2 : for this to occur 
it is necessary that the point P2 lie far enough to the left, and this in 
turn requires that the critical value of the friction force be not too 
small. From (4.2) one sees also that the departure from linearity, 
or from a simple harmonic oscillation, depends essentially on the 
stiffness of the spring: if the spring constant, is large the oscillations 
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will be nearly simple harmonic, but if k is small the oscillations will 
be of the relaxation type; in other words, jerky oscillations are likely 
to occur with a weak spring, as one would intuitively expect. The 
case shown in Figure 4.4 should doubtlessly be classed as a relaxation 
oscillation. The suppression of the spring thus has the same effect 
on the oscillations here as the suppression of the condenser in the 
electrical problem treated above. 

Fig. 4.5. Case in which infinitely many limit cycles occur 

For any given F{v) the graphical solution is rather easily obtained, 
so that it is not difficult to decide practically whether a closed solution 
curve exists or not. The Li6nard construction can also furnish 
accurate quantitative results. However, it is not a particularly 
easy problem to prove rigorously that a closed solution curve exists; 
and it is still less easy to showthat there is a unique closed solution 
curve or cycle. It is in fact quite clear that the solutions of equation 
(4.1) will have neither of these properties unless F{v) has certain 
special features. This question has been treated by Li^nard [25] 
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and, in a more general way, by Levinson and Smith [24], who con¬ 
sidered the differential equation 

/4 ^ - fix, v)v - g{x) 
’ dx ’^v ' 

Levinson and Smith found conditions on/(x, v) and g{x) which insure 
that a closed solution curve exists, and other more complicated 
conditions which insure that only one cycle occurs. In Appendix III 
we given an existence proof and in Appendix VI a uniqueness proof 
for a limit cycle along the lines of the proof of Levinson and Smith, 
but for a less general type of differential equation than (4.4). 

In Figure 4.5 we indicate the character of the solution curves 
of the equation 

(4.5) 
dv _ sin t; — :r 

dx V 

In this case there are infinitely many cycles which are alternately 
stable and unstable. It is also not difficult to give examples in which 
any specified number of cycles will occur. A study of some of the 
possibilities in this direction has been made by H. Eckweiler [10], 
who in particular obtained sufficient conditions on the characteristic; 
in certain cases which insure the existence of any given number of 
cycles. 

5. Perturbation method for the free oscillation 

If c is small we can determine the periodic solution of (3.7) using 
the perturbation method.* Since we do not know the frequency 
of the periodic solution it is advantageous, as we have seen earlier, 
to replace the independent variable ^ by ^ = co^, w being the unknown 
frequency of the periodic solution. The differential equation (3.7), 
with F defined by (3.8), becomes 

* See Appendix I for a proof of the existence of these solutions for < suffi¬ 
ciently small. 
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We assume for x and u the following power series in e: 

(5.2) X — Xo + exi + tXi + • • • 

(5.3) W = COo “1“ -f- 6^6)2 “I” * * * . 

We may now assume that the solution x{B) of (5.1) has the period 
2ir\ we also require that dx/dB = 0 for ^ = 0, i.e., that the velocity 
be zero at the time t = 0. Hence we require that the functions 
Xi{B) all have the period 27r (this will serve to determine the constants 

a)j), and that dxijdB = 0. 
Insertion of (5.2) and (5.3) into (5.1) yields 

fxo + + • • 'Kwo + 26a)oCi>i + * * •] 

— ^[cooaro + e((ji)oXi + coia^o) + * • *] 

4" + 3coocoi€ + • * + Sexo^X} -f- • * •] 

+ \Xo + €Xl + €^^2 +•••] = 0. 

The coefficient of the term of order zero in (5.4) is 

(5.5) JoXo + Xo = 0, 

with the conditions 

(5.6) xo(^) = Xo{B + 2ir), Xo(0) = 0. 

The general solution of (5.5) is 

Xq = Aq cos-h Bq sm— . 
COo CUq 

If (5.6) is to be satisfied, it is necessary to take wo = 1 and 5o = 0. 
The value wo = 1 was to bo expected since the period of the oscillation 
for small 6 (cf. (5.3)) should be in the neighborhood of 2jr. Hence we 

have for a:o and wo finally 

(5.7) .To = Ao cos 0, 

and 

(5.8) 0)0 = 1. 

However, Ao has not yet been determined. It will be fi.xed in the 

next step. 
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The first order term of (5.4) yields the differential equation for xi : 

xi + = —2oi)iXq + xo — J Xo^ 

(5.9) = 2i4oc*Ji cos ^ — i4o sin ^ J i4o sin® 6 

= 2i4o wi cos 6 -}- sin ^ “ sin 36. 

To insure periodicity of Xi(6) the resonance case must be avoided: 
hence we must impose the following conditions: 

(5.10) 

Al 
-^0 = 0, 

0)1 = 0. 

Thus, in particular, the period of the oscillation remains that of the 
free linear oscillation within second order terms in e. We reject, 
naturally, i4o = 0 as a solution of the first equation of (5.10) and 
also choose Aq == +2. To take Ao — —2 would lead only to a 
solution of different phase. For xi we have as general solution of (5.9) 

(5.11) Xi = Al cos 6 + Bi Bind + sin 36. 

The constant Bi is fixed by the requirement that a:i(0) = 0. The 
constants Ai and W2 are to be determined in the next step of the 
general process; it should be noted that the Ai will be uniquely 
determined once Aq has been chosen. The first approximation to the 
periodic solution thus yields 

(5.12) 
X = 2 cos ^ + • * * 

0) = 1 + • • • . 

Accordingly, the amplitude of the oscillation is in first approximation 
a constant that is independent of the parameter e and the period is 
2w (i.e., that of the simple harmonic oscillation for c = 0) within 
second order terms in c. 

We have here an interesting example of a bifurcation phenomenon: 
For € == 0 the differential equation (5.1) has simple harmonic solutions 
which have arbitrary amplitudes but the same frequency for each 
given value of w. For e 0 we have seen that the nonlinear periodic 
solutions “bifurcate” from the simple harmonic solution which has a 
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particular amplitude (i.e. the amplitude 2) and a particular frequency' 
(corresponding to « = 1). 

6* Relaxation oscillations* 

We have already noted the change in the character of the solutions 
of (4.1) and consequently of (3.7) with increase of e. In this section 
we are interested in discussing what occurs for large values of €, 
and in particular what sort of limit cycle can be expected as c —> « 
in (4.1). Oscillations of this kind (which appear to be of very 
w idespread occurrence in nature) were given the name relaxation 
oscillations by van der Pol presumably because they exhibit two 

Fig. 6.1. Limit case of relaxation oscillations for c 

distinct and characteristic phases: one during which energy is stored 
up slowly (in a spring or condenser) and another in which the energy 
is discharged nearly instantaneously when a certain critical threshold 
potential is attained. 

In order to investigate the limit situation for € —► «>, it is con¬ 
venient to introduce a new independent variable f == x/€ in place 
of X. With this variable, equation (4.1) takes the form 

(61) ^ (t) - v*/3) - ( ^ t - F(v) - f 

The curve ( = —F(v) is plotted in Figure 6.1. The field direction 
is horizontal (i.e., dv/d( = 0) on the characteristic curve ( = —F(v) 

* For an interestingly written treatment of this subject see the paper of 
le Corbeiller [7]. 
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for all €, but at all other points in the plane the slope tends to become 
large without limit as e oo, that is, the field directions would be 
nearly vertical at all points except those very near the characteristic 
curve C. With this in mind it is not very difficult to guess what the 
limit of the cycles will be (that is, rather, the limit of limit cycles for 
€ —» oo). Consider a solution curve of (6.1), for a large value of e, 
which starts at P. The solution curve will be nearly a vertical 
straight line down to Pi, where it reaches C, At this point the slope 
is zero, but since the field direction at all points other than those 
near C is nearly vertical, the solution curve will tend to follow C, 
staying below it, until the vicinity of Po is reached. At this point the 

V A 

Fig. 6.2. Limit cycle with discontinuities for e — x. 

curve turns almost vertically upwards until C is reached once more 
at Pg. The curve then follows C, staying above it, until P4 is 
reached, where it turns vertically downwards again. This reasoning 
makes it highly plausible* that the limit of the limit cycles as c 00 

will be as shown in Figure 6.2. One might also argue directly from 
(6.1) that the limit cycle for e 00 should consist of portions of the 
characteristic curve plus vertical straight lines, i.e., of either 

(6.2) J = constant, 

or 

(6.3) f - v/?i. 

It is of interest to compute the period of the relaxation oscillation, 
assuming that it is given as indicated by Figure 6.2. This can be done 

* A rigorous proof of this statement is included as Appendix IV in this 
book. 
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by evaluating a line integral taken over the limit cycle. We wish to 
compute the period of the relaxation oscillation in terms of the 
original variables; hence we interpret f as xi/t and v as dxildii in the 
notation used for equation (3.6). The period Ti of x\ in terms of U 
is given by 

(6.4) T. = 

since dti = dxi/v = ei^/v. Since the vertical (straight line) portions 

V * 

Fig. 6.3. Relaxation oscillations shown as functions of t. 

of the cycle make no contribution to Ti (df = 0) we have in view 
of (6.3) 

(6.5) r, = 2e C ~ = 2e(log v - i/2) 
J2 V 2 

= 1.614€. 

From (3.4) we have, finally, as the period T = \/LC Ti for the 
relaxation oscillation (for large e == a/\/LC) referred to the units of 
equation (3.3) 

(6.6) T = IMWLC c = 1.614 a. 

This relation, we repeat, yields a good approximation for T only for 
large €. For small t the period, as we have seen in the preceding 
section, is nearly independent of € and is given approximately by 

(6.7) T = 2wy/LC. 
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As we see, the period of the oscillation depends upon the inductance 
and capacitance of the linear grid circuit in the latter case, but 
depends only upon the slope of the characteristic of the nonlinear 
element in the case of the relaxation oscillations. 

The nature of the curves for v and x as functions of t is indicated 
in Figure 6.3 for € large. Relaxation oscillations of the type shown 
in this figure are evidently to be expected in a triode oscillator, as we 
have remarked earlier, if the capacity C of the condenser is made small 
(c = a /Vlc), in particular if the condenser is suppressed. 

7. Higher order approximations for relaxation oscillations 

In the preceding section we have obtained an approximate formula 
for the period of relaxation oscillations of the van der Pol equation 
based on a geometrical discussion in the x, v-plane. Actually, the 
formula (6.6) gives the correct term of highest order in the asymptotic 
development for large values of € of the period of the oscillation, as 
one might infer from the fact that it can be proved rigorously (cf. 
Appendix IV) that the limit cycles for 6 oo behave in the manner 
assumed in deriving the formula. However, the formula is not very 
accurate for values of e which nevertheless are such that the oscillation 
should be regarded as a true relaxation oscillation; for example if 
€ == 10 one sees from Figure 4,3 that the oscillation already exhibits 
the characteristic jerky motion expected of relaxation oscillations, 
but we shall see a little later that the period as given by the formula 
of the preceding section would be about 20 percent too low in this 
case. It is therefore important to improve the accuracy of the 
asymptotic formula for the period. 

The problem of obtaining asymptotic developments for all 
quantities involved in relaxation oscillations has been solved com¬ 
pletely and very generally by J. Haag [1 i], [15] in a series of important 
papers. Haag considers differential equations of very general type, 
which include the van der Pol equation as a special case. More 
recently, the complete asymptotic developments for the special case 
of the van der Pol equation have been derived by A. A. Dorodnitsyn 
[8]; this work is much more accessible than the work of Haag, perhaps 
because the latter takes a very general case. However, even the 
work of Dorodnitsyn is too extensive to be reproduced here, and we 
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content ourselves with giving his formula for the period Ti based on 
equation (3.6): 

(7.1) Ti = 1.614* + 7.014*"*'* - ^ + 0.0087*"* + 0(*"*'*) 

in which represents a function which tends to zero of order 
As we observe, the term of highest order is the same as was 

given by (6.6) above. However, the term of next highest order dies 
out only like so that it makes a relatively large contribution even 
for such a value as € = 10—in fact, as we remarked above, the error 
is of the order of 20 percent in this case if only the first term in the 
development is used. 

Because of the importance of the study of the asymptotic behavior 
of relaxation oscillations in general, it would seem worth while to 
indicate how one can carry out such developments in a case which, 
unlike that of the van der Pol equation, is simple enough to be 
treated explicitly. At the same time one obtains some insight into 
the peculiar difficulties to be expected in treating other cases. We 
consider for this purpose the differential equation 

(7.2) X + tFix) + a: = 0, 

with F{v) the piece-wise linear function indicated in Figure 7.1 and 
defined by 

[F(t;) = ±2 - v, 1 H > 1 
(7.3) ‘ 

[Fiv) = V, I1 < 1- 

With this function F{v) it is clear that the oscillations are of the 
self-sustained type; in fact, this characteristic could be considered 
as a rough approximation to the characteristic of the van der Pol 
equation. Actually, Haag [15] considers this case also, but treats 
it by specializing his general formulas. 

As in the preceding section, there is an advantage in introducing a 
new variable xi replacing x by the relation 

(7.4) xi = jx, 

in terms of which (7.2) can be written 

/n er\ dv F{v) — Xi 
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with V defined by 

(7.6) 
dx 

dt 

dxi 
€ 

dt * 

By the same arguments as in the preceding section, the limit of limit 
cycles of (7.5) as € —> oo would be the two vertical segments between 
(1, 1) and (1, —3) and (—1, —1) and (—1, 3) (cf. Figure 7.1) and the 
segments of the characteristics between the appropriate pairs of 

Fig. 7.1. A piece-wise linear characteristic. 

these points. Also, since dt = dx/v, we have the following approxi¬ 
mation for the period Ti of the relaxation oscillation: 

(7.7) 

since da; = 0 on the vertical parts of the cycle. We shall see that this 
does in fact yield the highest order term in the asymptotic develop¬ 
ment of Ti. 

Instead of seeking the closed solution curve of (7.5) it is somewhat 
more convenient to work with the equivalent second order differential 
equations since they have constant coefficients. These equations are 

(7.8) xi — (txi) + a-i = 0 for 1 «ii 1 = 1» 1 < 1, 

(7.9) xj — (2 — «Xi) + xi = 0 for 1 1 = V > 1, 

and 



HIGHER ORDER RELAXATION APPROXIMATIONS 143 

as one sees from (7.2) and (7.4). What is to be done is rather obvious: 
The solutions v(t)) of (7.8) and (7.9) must be pieced together 
across the lines v = +l and v = — 1 in the Xi , t;-plane, and the initial 
conditions must be chosen so that the solution (a^i , v) will form a 
closed curve in the xi, y-plane. Once these conditions have been 
written down, they can he developed asymptotically for large values 
of €. 

The general solutions of (7.8) and (7.9) are 

(7.10) .ri^^ = for | | < 1, 

(7.11) — 2 + + C4e~^‘* for v >1, 

with 

(7.12) 

The Ci are, of (course, arbitrary constants. As initial conditions 
at the time t = 0 we take a;i = 1 + 5, t; = eXj = 1 for both and 
xi^^—in other Avords, we begin at the point (1 + 5, 1) in the Xi, 2^-plane 
(cf. Figure 7.2)—and afterwards determine 5(e) in such a way that a 

Fig 7.2. Integral curve for case of a piece-wise linear characteristic. 

periodic solution results. The periodicity condition will be satisfied 
(again cf. Figure 7.2) if a*r\f2) = ~xj*^(<i), on account of the sym¬ 
metry of the problem, with h and t2 to be determined from = 
— 1 and = +1. 

In the region (1) in which | p | < 1 we have therefore the following 
conditions on ci and C2 : 

(7.13) 1 + 5 = Cl + C2, 

(7.14) 1 = €(XiCi + X2C2). 
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For the periodicity conditions we shall need later the relations 

(7.15) = cic"*'* + and 

(7.16) -1 = *(XiCie^‘“ + X2ce"‘“), 

with Cl and cj defined by (7.13) and (7.14). Similarly in the region 
(2) we have for Cz and Ca the conditions 

(7.17) 1 + « = 2 + C3 + C4, and 

(7.18) 1 = 6(-XiC3 - X2C4), 

while the equations to be used for the periodicity conditions are 

(7.19) = 2 “h Cz6 4" Ca€ and 

(7.20) 1 = €(-XiC3e'''^'* - X2C4e'‘"*'*). 

The periodicity conditions are furnished by (7.16) and (7.20) together 
with the condition 

(7.21) x[^\t2) = 

One observes that even in this particularly simple case the calcula¬ 
tions needed to solve the relations (7.13) to (7.21) are not entirely 
trivial. It pays here to make use of knowledge and insights already 
gained in order to facilitate the asymptotic development—a not 
uncommon circumstance in general when asymptotic developments 
are wanted. To this end we consider first the equation (7*20) for 
the time fe required to pass in the region (2) from the point (1 + 5, 1) 
to the point 1): From (7.12) we see that Xi and X2 have the 
developments 

From the discussion which led to (7.7) we know that k must be of 
order € for € large; in addition fe must be negative since points on the 
solutions of (7.5) move in the direction of the arrows (cf. Figure 7.2) 
as t increases, and the point (1 + 5, 1) corresponds to < = 0. It 
follows that ** behaves like while ** is finite for c large. 
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It follows therefore that X1C3 must tend to zero like in order to 
make relation (7.20) valid. From (7.18) we may therefore conclude 
that 

(7.23) C4 = —f = = -1+ 4 + i + ^ + ^ + ••• 

aside from terms of exponential order, which we neglect.* From 
(7.17) we then obtain at once the expansion for 5, as follows: 

(7.24) i.l+l. + 2 + 5 + ..,. 

It is rather strange that we are thus able to determine asymptotically a 
point on the limit cycle (at least within terms of exponential order) 
without using the periodicity condition (7.21) explicitly; however, to 
make up for this, we still have not fixed the development of the term 

which is not necessarily of exponential order, and we shall 
have to make use of (7.20) again for this purpose later on. It is 
also worth noting that d l/lOO for c = 10, which as we see from 
Figure 7.2 indicates that the convergence toward the limit of limit 
cycles for € = 00 is rather rapid. From (7.13) and (7.14) we can 
now obtain the developments for Ci and C2 : 

(7.25) 
10 . 35 

C2=l+~+-^ + ^ + 
e €® 

+ 

It is convenient next to obtain the development for from (7.16) 
written in the form 

(7.26) 
cXi Xi 

Since X2 is of order 1/c and we expect that > 0 as € «>—once 
more on the basis of the discussion which led to (7.7)—^we can obtain 
the lowest order term in the development for h by setting == 1, 
then reinserting this value for h in the right-hand side of (7.26) to 

* From this the character of our developments as asymptotic rather than 
convergent is clear. 
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obtain two terms in the development for U , and so on; the result of 
such a calculation by iterations is 

(7.27) /i 
1 “ 

e L 
21og. + y?‘-H + i'25l< 

6“ 6^ 2 

We observe that does tend to zero as e —^ oo, as we expected, but 
only like (log c)/c. We also observe that the development is rather 
complicated, including as it does terms in (log c)/€, (log^ etc. 
As next step we take the sum of (7.15) and (7.19), make use of the 
perkxlicity condition (7.21), and eliminate the terms and 

by using (7.10) and (7.20)* to obtain finally the following 
equation for (2 : 

(7.28) 1 + c, ^1 - = cg - 1^ 

We have now made use of all of the relations (7.13) to (7.21) inclusive. 
From (7.28) the following development for (2 is obtained without 
difficulty by making use of the development for given in (7.27): 

(7.29) 

h - 
, 2 lo^ 

3 €2 

+ + 4 log^ € 
9 “74“ 

Since the period Ti of the relaxation oscillation is given by Ti = 
2(^1 — (2) we obtain finally** 

(7.30) 

On comparison with (7.7) we see that the highest order term in the 
asymptotic development is indeed given by (7.7). It is clear that 
asymptotic developments for the limit cycle itself could also be given 
without difficulty. 

* Here we use (7.20) once more to get rid of the troublesome term 
** This development coincides with that given by Haag [15] except for the 

coefficient of the term in (log «)/f, which appears to be given incorrectly by 
Haag. 
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It is of interest to compare the values given by (7.30) with values 
obtained by computations based on the exact solution of the differ¬ 
ential equation, which can be obtained without too much difficulty 
in the present case. For « = 10 the asymptotic series for Ti given 
by (7.30) was found in this way to be in error by less than 0.1 percent, 
and even for e = 5 the error was less than 0.8 percent. The first 
four terms in the scries, as given in (7.30), were used in making the 
computation. 

The development (7.1) for the period in the case of the van 
der Pol equation should be compared with (7.30). We observe that 
in both cases the terms of highest order are linear in e, but the terms 
of next higher order are of different orders in the two cases: of order 
€~ in the case of the van der Pol equation and of order €~^ log^ € 
in the case studied here. This indicates a rathet* strong sensitivity to 
the shape of the characteristic. Another observation should be 
made: the various quantities considered behave differently on 
different portions of the limit cycle as regards their order of magnitude 
in €, so that these various portions must be investigated separately in 
general, and this is one of the principal reasons for the complexity 
of the developments in the papers of Haag and Dorodnitsyn. 

B# Forced Oscillations in Self-sustained Systems 

8. A typical physical problem 

This part of the present chapter is devoted to a study of the 
oscillations which occur when a periodic excitation is applied to a 
system whose free oscillations are of the self-sustained type. A 
typical and important case is the electrical system indicated in 
Figure 8.1, which leads to the differential equation first treated by 
van der Pol [32]. This vacuum tube circuit differs from the circuit 
discussed in Section 1 above (cf. Figure 1.1)*^ in that the oscillatory 
component is in the grid circuit rather than the anode circuit and, 
in addition, a source E = Pq sin ojit of alternating voltage is present 

* By adding a periodic excitation to the circuit of Figure 1.1 in an appropri¬ 
ate way one would, of course, obtain a system of the type under consideration 
here, which would also lead to the same general results. The circuit of Figure 
8.1 was chosen because it yields the desired differential equation in a straight¬ 
forward way. 
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in the grid circuit, as indicated in the figure. As before, the grid and 
plate circuits are inductively coupled. The differential equations 
for the system in terms of the current i in the grid circuit, the current 
ia in the anode circuit, and the grid potential Ug are readily derived; 
they are: 

L + Vg — — Pq sin out, 

(8.1) 
- i. 

at 

We have ignored the current in the grid itself in deriving (8.1). 
We now make the assumption that the anode current ia depends 

Fig. 8.1. A self-excited system with periodic excitation. 

only upon the potential drop Ug between the grid and the filament* 
and that the relation between these two quantities is as follows: 

with S and K positive constants. The quantity S is sometimes 
called the steepness of the characteristic and K is called the saturation 
potential. We can replace both i and ia in (8.1) in terms of Ug through 
use of (8.2). It is, however, convenient to introduce first the follow- 

_ MS - RC _ IMS 
“ LC ’ ZLC' 

2 — ^ 
^-LC' 

* This condition is satisfied closely if the amplification factor of the tube 
is large (cf. the discussion in Section 1). 

ing new quantities: 

V = 

(8.3) 
K' 
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in terms of which (8.1) becomes 

id /I \ d V dv I ^/3\| 2 j 

^ di ^ di^^ ^ ^ ~ 

It is always assumed that a is positive, in order that self-excited 
oscillations can occur. We note that coo is the frequency of the free 
linear vibration of the oscillatory circuit. The differential equation 
(8.4) will be the basis for the discussion in the remainder of this 
chapter. The left-hand side of equation (8.4) is essentially the 
same as the left-hand side of equation (1.17) above; in other words, 
the free oscillations in the present case are not essentially different 
from those treated earlier in Section 1 and Section 3 of this chapter; 
practically the only difference is that the potential drop rather than 
the current is taken as the basic quantity here. Also, the theory for 
the equation x — ax + yx -f (alx = F cos o>it is the same as for (8.4) 
since (8.4) results by differentiating the latter equation with respect 
to t and identifying v with x and —Fwi with JSwo. 

9. The method of van der Pol for the forced oscillations 

The periodic solutions of (8.4) were investigated first by van der 
Pol [32], who devised a method of attacking the equation which is 
different from any others used hitherto in this book. Many writers 
on nonlinear vibrations, the Russian writers particularly, prefer to 
make use of the method of van der Pol to discuss forced oscillations 
of all systems, including those with nonlinear restoring forces. 
The author is inclined to feel, however, that the method of van der 
Pol has no advantages over the simpler and more direct perturbation 
or iteration methods used in the cases treated up to now. Even in 
the present case the perturbation method* is more straightforward 
than van der Pol’s method if one is simply interested in obtaining the 
response curves—that is, the curves showing the relation between the 
amplitude and frequency of the harmonic oscillations. However, the 
treatment of the stability of these oscillations is greatly facilitated by 
using van der Pol’s method in the manner devised by Andronow and 
Witt [1], which will be treated in the next section. Also, the method 
of van der Pol can be used to study certain oscillations which are 

* In Appendix I the existence of the perturbation series for the present 
case (as well as others) is proved, and the response curves are derived. 
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not periodic functions, but rather almost-periodic functions of the 
time. In fact, these results of van der Pol are among the most 
beautiful and striking in the whole range of problems treated in 
this book. 

Van der PoPs method is an approximate method of solving the 
equation (8.4) which is based—like the perturbation method—on 
the assumption that the coefficients of the damping terms and the 
amplitude of the excitation are small so that the motion is not far 
from that of the linear undamped free vibration; thus the constants 
a, 7, and B in (8.4) are assumed to be small quantities of the same 
order of magnitude. In terms of the physical problem these condi¬ 
tions could be satisfied by taking the steepness of the characteristic 
and the amplitude of the excitation small enough. In addition, 
it is assumed that coi , the frequency of the excitation, differs from o)o, 
the frequency of the free oscillation, by an amount which is also a 
small quantity of the same order of magnitude as a, 7, and B. 

The essential step in van der Pol’s procedure, however, consists in 
taking for i>(0 a solution in the form 

(9.1) v{l) = bi{t) sin + bzit) cos o)it 

in which the functions 6t(0 are assumed to be “slowly varying 
functions of the time,” or, in other words, that the motion is essen¬ 
tially an oscillation with the frequency of the excitation but with 
slowly varying amplitude and phase. This latter assumption is to be 
interpreted as meaning that the quantities fe, and hi are small of 
first and second order respectively in a (and 7 arid B).* Finally, 
it is implicitly assumed in writing the solution in the form given by 
equation (9.1) that possible terms involving higher harmonics of 
o)it are of order a or higher. 

By differentiation of (9.1) we find 

(9.2) V = hi sin out + bo cos u)it + biwi cos o^it — h-swi sin a>i/, 

(9.3) V = 261W1 cos CO]/ — 262W1 sin o)it — hiw? sin o)it 

— h2Wi cos (ait + hi sin cait + 62 cos (ait. 

* It would be possible to set up a formal perturbation scheme in which 
the quantities hi and hi would have automatically the desired order of magni> 
tude. Such a development w'ould probably not be convergent, but would 
have asymptotic validity. 
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We must also calculate the quantity v which occurs in (8.4) ; in doing 
so we use the familiar identity sin® ^ = f sin ^ — i sin 3^ and the 
corresponding identity for cos® % to obtain the relation 

(9.4) X? == 4(61 “h 62) (61 sin -f* 62 cos wiO *4“ • • • . 

The dots refer to terms of frequency 3wi. We now insert ti, t), and ^ 
as given by (9.2), (9.3), (9.4) in (8.4), reject all terms of order higher 
than the first, bearing in mind that the quantities bi are of first order 
and the quantities 6,- of second order. By equating the coeflftcients of 
cos o}it and sin o)it in the two sides of equation (8.4) we obtain the 
differential equations 

in which we have introduced the quantities 

(9.6) Uo = ^, 6^ = 6? + • 
ty 

The equations (9.5), which were first derived by van der Pol, form 
the basis for all of the discussion in the remainder of this chapter. 
The important quantity b is the ‘^amplitude” of the vibration, as we 
see from (9.1); the quantity Oo is the amplitude, within terms of 
lowest order in a, of the free nonlinear vibration of frequency wo, 
as we shall verify shortly. We now introduce in addition the quantity 
A given by 

(9.7) A — 2(a>o wi). 

which measures the difference between the frequencies of the free 
oscillation and the excitation; this quantity, or others proportional 
to it, will be referred to on occasion as the detuning. Since A is 
assumed to be a quantity of first order, it follows at once from the fact 
that wS — oj? = (wo — «i) (a>o + wi) = wiA Avithin terms of first order, 
that the equations (9.5) can be written in the following form: 

(9.8) 

26i 4“ i!>2A — ab\ 

262 ~ 5iA — a62 

= 0 

= — iScoo. 
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As in all of our previous discussions of forced oscillations we are 
interested at the outset primarily in periodic solutions of the differ¬ 
ential equation (8.4) which have the frequency wi of the excitation, 
that is, in solutions which we are accustomed to calling the harmonic 
oscillations. In order to obtain them it is necessary, in view of the 
form (9.1) of the solution assumed here, to require that 6i and 62 be 
constants. If this is done, the equations (9.8) become algebraic 
relations which determine the amplitude b of the forced oscillation 
in terms of A, the detuning, with the amplitude B of the excitation 
as a parameter. In other words, the response curves can be obtained 
directly from (9.8). In particular, if we take B = 0, i.e. if we consider 
the free oscillation^ we obtain easily from (9.8) the result Oo ~ 6, 
A = 0, since h and 62 cannot both vanish and a 0; this verifies 
the statement made earlier that ao is the amplitude of the free non¬ 
linear oscillation of frequency wo. 

In his basic paper van der Pol [32] proceeded to analyze the 
stability of the periodic solutions obtained by the method just 
explained. In doing so, he replaced 61 and 62 in (9.8) by 61 + dbi 
and 62 + 562, obtained linear differential equations with constant 
coefficients for 6bi and db2, and determined the stability of the 
periodic solutions in accordance with the behavior of the solutions 
of the latter differential equations in the obvious manner. Instead 
of studying the stability of the periodic solutions in this way we prefer 
rather to follow the method developed by Andronow and Witt [Ij. 
The basic idea of the method of Andronow and Witt is to study the 
solutions of the differential equations (9.8) quite generally, rather than 
to confine attention to the special solutions bi = constant, 62 = 
constant; and this is made feasible by the fact that the two equations 
(9.8) are equivalent to the single equation of first order dbi/db2 = 
P{bi, b2)/Q(bi, 62), which in turn can be treated by the methods of 
Chapter III. In fact, this work of Andronow and Witt furnishes, 
among other things, a beautiful application of the theory of the 
singularities of first order differential equations which was worked 
out in detail in Chapter III: in particular, we see at once that the 
harmonic solutions of the original differential equation (8.4) are 
correlated with the singularities of the first order system (9.8). 

In the next section W’e shall discuss the method of Andronow and 
Witt in a general way, followed in Section 11 by the derivation of the 
response curves for the harmonic oscillations, although the latter 
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could also have been derived here simply on the basis of equations 
(9.8). In Section 12 the stability of the harmonic oscillations is 
treated in detail. 

10, The method cf Andronow and Witt 

As indicated at the end of the preceding section, our object is to 
study in some detail the solutions of equations (9.8), which yield 
the amplitude and phase of the forced oscillations of the van der Pol 
equation. For this purpose it is useful to introduce still another 
set of new variables and parameters, as follows: 

(10.1) X = bi/oo, y = 62/00, r = ia/2, 

(10.2) (T = A/a, F = —JScoo/ooa. 

It is important to observe that the new independent variable r 
has the same sign as i since a is always taken positive. The quantity 
r is the ratio of the amplitude of the forced oscillation to that of the 
free oscillation, the quantity <r represents the detuning, and F is 
proportional to the amplitude of the excitation. In terms of these 
quantities the equations (9.8) can be written in the form 

-oy + x{l - r*) 

F+ax + y{l- /), 

or, equivalently, in the form 

no4’) ^ ^ y) 
dx —ay + a:(l — r*) Q(x, y)' 

In terms of the new variables the solutions of the form (9.1) of the 
original differential equation (8.4) take the form 

(10.5) t^/ao == X sin + y cos wi/, 

with X and y to be determined from (10.3). As we have already 
remarked, periodic solutions of frequency wi of the original differential 
equation (8.4) are therefore to be correlated with solutions x =» 
constant, y == constant of (10.3) and hence with the singular points of 

dx 

dr 
(10.3) 

dy 
dr 
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(10.4), i.e. the points (x, y) at which P{x^ y) and Q{x, y) vanish 
simultaneously. The distance from the origin to any such point 
represents the ratio 6/ao of the amplitude of the forced oscillation 
to the amplitude of the free oscillation, as we see from (10.1) and 
(9.6). The stability of any 'particular harmonic solution of (8.4) is 
then, according to the basic idea of Andronow and Witt, to be decided 
in accordance with the character of the singularity of (10.4) with which 
it is correlated. For example, if the singularity of (10.4) were a saddle 
point, it is clear that the corresponding periodic solution (10.5) 
should be considered to be unstable, since a slight disturbance would 
result in general in large changes in x and y. On the other hand, 
if the singularity were a stable spiral point it follows that a slight 
disturbance would lead to a solution which would tend with increasing 
t to the periodic solution since x{t) and y{t) would tend to the con¬ 
stants characterizing the periodic solution with increasing t\ hence 
such a solution should be considered to be stable. The general 
principle by which the decision as to the stability of a given oscillation 
is to be made is evidently the following: Stable harmonic oscillations 
are correlated 'with the singularities of (10.4) whith are stable in the 
sense defined in Chapter ///, and unstable harmonic oscillations are 
correlated with unstable singularities. 

Once the stability problem has been formulated in this way one 
can foresee another interesting possibility: It may happen that the 
solution curves of (10.4) in the x, y-plane have a stable limit cycle toward 
which all solution curves tend, just as in many of the cases of the free 
oscillations of self-excited systems treated earlier in this chapter. 
In such a case we know that x(t) and yir) tend to periodic functions 
with the same period in r; in other words x and y in (10.5) would tend 
to periodic functions having the same period and hence the solution 
of the original differential equation (8.4.) would be one in which the 
amplitude and phase after the lapse of sufficient time vary slowly but 
periodically in the time, or, as one says, the oscillation is affected by 
amplitude and phase modulation. Later on we shall indicate how 
one can show that the functions x{t) and y{t) are approximately simple 
harmonic functions with the frequency wi — wo provided that a and 
F are large enough; it follows that the solution (10.5) could be written 
in such a case as the sum of two harmonic oscillations with frequencies 
Wo and wi. In other words, the vibration would be a superposition 
of two simple harmonic oscillations, one with the frequency of the 



RESPONSE CURVES FOR HARMONIC OSCILLATIONS 155 

excitation, the other with the frequency of the free oscillation, and 
the latter oscillation \vould not be damped out. Such oscillations 
have often been observed in electrical circuits of the type considered 
here. That such a vibration might he possible in the present case, 
although it is not possible in the case of linear systems in which the 
free oscillation is always damped out, can he attributed to the fax^t 
that the ^^damping’’ force acts in the present cases in just such a way 
as to maintain the free oscillation. 

In the next two sections we shall study t he differential equations 
(10.3) and (10.4) in detail. First of all the response curves for the 
harmonic solutions of the original differential equation (8.4) wull be 
obtained, after which the stability of these oscillations will be in¬ 
vestigated. Finally, the existence and chara(*ter of certain stable 
nonharmonic oscillation.^, which are correlated with limit cycles of 
equation (10.4), will be treated. 

11, Response curves for the harmonic oscillations 

We have already seen that the amplitude of any harmonic oscil¬ 
lation of the van der Pol equation is obtained by equating the right- 
hand sides of equations (10.3) to zero, which amounts to saying that 
the location of the singular points of the first order differential 
equation (10.4) is determined. If (xo, yo) is such a singular point, 
the following conditions hold: 

(11.1) 
j -crya + Xo(l — rl) = 0 

[f + <TXo + yo(l - rl) = 0 
with rl — xl + yl p. 

The quantity p represents the square of the ratio of the amplitudes 
of the harmonic oscillation and the free oscillation, and we repeat that 
F is proportional to the amplitude of the excitation while <r is propor¬ 
tional to the detuning, or the difference between the frequency of 
the harmonic oscillation and the free oscillation. By determining 
xo and y^ in terms of f, <r, and p from (11.1) and then inserting these 
values in xo + 2/0 = p one finds readily the following relation between 
p, cr, and F: 

(11.2) p[a^ + (1 ~ P)^] = F^ 

which was given first by van der Pol. For each frequency of the 



166 SELF-SUSTAINED OSCILLATIONS CHAP. VB 

harmonic oscillation (i.e. for each value of cr) and for a given amplitude 
of the excitation (given by F) equation (11.2) furnishes through the 
values of p the corresponding amplitudes of the harmonic oscillations. 
Equation (11.2) thus yields what we call the response curves. 

We proceed to discuss the curves given by equation (11.2) in the 
<r, p-plane for various values of the parameter F. Clearly we are 
interested only in positive values of p. Evidently the curves are 
symmetrical with respect to the p-axis. For F = 0 we have the case 
of the free oscillation; in this case we observe from (11.2) that a = 0, 
p = 1, and p = 0, with cr arbitrary, are the only values of <r and p 

which are possible. Thus, as we have seen earlier, there is only one 
free oscillation of non-vanishing amplitude represented by the point 
cr = 0, p = 1. It is mainly this fact which causes the response 
curves in the present case to differ so much in appearance from those 
encountered in Chapter IV in dealing with the systems having 
nonlinear restoring forces, in which the free oscillations were not 
unique. If we consider next cases in which F is small, but different 
from zero, we expect p to be nearly unity or nearly zero so that the 
response curves would be ovals which are approximately ellipses 
0-^ + (1 — pf = F^ with their centers at <r = 0, p = 1 and in addition 
branches running near the cr-axis. The ovals expand with increasing 
F, For F not too large, therefore, we expect three values of p for 
each not too large value of a. However, it is found that the upper 
branches—the ovals—change from closed curves to open curves on 
passing a certain critical value of F, and that the response curve for 
this critical value of F has a double point on the p-axis with p == 1/3. 
For values of F larger than the critical value the response curves are 
all open curves with no double points, but p is still not a single-valued 
function of cr on these curves for values of F near the critical value 
and for not too large values of <r. Figure 11.1 shows a number of the 
response curves for various values of F; we repeat the highly important 
fact that each point on any such curve yields the amplitude which is 
correlated with the frequency of a possible harmonic oscillation for a 
given amplitude of the excitation. As we shall see shortly, the transi¬ 
tion value of F at which the two distinct branches of the response 
curves coalesce is given by F^ = 4/27. On Figure 11.1 a closed 
curve F(p, <r) = 0 is drawn; this curve is an ellipse which is the locus 
of the vertical tangents of the response curves^ as we shall show in a 
moment. This curve plays an important role in the discussion to 
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follow. As we shall see in the next section, the vertical tangencies of 
the response curves which lie on the upper half of this ellipse represent 
transitions from stable to unstable oscillations. However, the 
vertical tangencies on the lower half of the ellipse have no such 

Fig. 11.1. Response curves for the harmonic oscillations of a self-sustained 
system. 

significance: the portion of any response curve which lies below the 
vertical tangency on the upper half of the ellipse (assuming that the 
curve cuts the ellipse at all) contains only unstable points—^that is 
to say, the singularities of (10.4) correlated with these points are 
unstable. In addition, all points below the line p = 1/2 are found 
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to be unstable, so that the response curves for sufficiently high 
values of have unstable lower portions although they have no 
vertical tangencies at all.* Unstable parts of the response curves 
are indicated by dashed lines. As indicated on Figure 11.1 the 
transition from response curves with vertical tangents to those 
without them occurs when F^ = 8/27; the corresponding response 
curve is tangent to the ellip.se at its vertex. Also indicated on the 
figure is the fact that the straight lines p == dta are tangent to the 
ellipse £’(p, cr) = 0 at the points where p = 1/2, and the value of F^ 
on the response curve through these points is 1/4; these features of the 
response diagram have importance for the later discussion. 

AVe now indicate briefly how one can verify the above statements 
regarding the geometric character of the response curves. The 
condition da/dp = 0 for the vertical tangents is readily found from 
(11.2) to lead to the relation: 

(11.3) E{p, <r) = (7^ + (1 — p) (1 ~ 3p) = 0, 

and this is the equation of the ellipse discussed above which is the 
locus of vertical tangents of the response curves. For small values 
of F, the response curves have only one vertical tangent for <r > 0, 
while for larger values they have two; the transition obviously takes 
place, as we infer from Figure 11.1, for the response curve which 
contains the vertex of the ellipse at o’ = 0, p = 1/3, from which one 
finds for this response curve = 4/27 from (11.2). The point 
(7 = 0, p = 1/3 on the curve for F^ = 4/27 is a double point: one 
can easily verify that the response curve has a singular point with a 
double tangent at this point. The transition to response curves 
with no vertical tangents occurs for the response curve passing 
through the vertex a = \/3/3, p = 2/3 of the ellipse, and one finds for 

* It may be of interest to contrast these occurrences with the analogous 
but considerably different occurrences in the case of forced oscillations of 
systems with nonlinear restoring forces as treated in Chapter IV. In the 
latter case we found that instabilities occurred only on the portions of the 
response curves which extended between two vertical tangencies (cf. Figure 
3.1 in Chapter IV), and that no instability occurred on a response curve unless 
there was a vertical tangent on it. It follows that the jump phenomena 
encountered in the earlier case cannot exist in the same way in the problem 
now being considered. Nevertheless we shall see later that jump phenomena 
do occur in the present case; in particular jump phenomena involving a transit 
tion from an unstable harmonic oscillation to a stable nonperiodic oscillation, 
and vice versa, can and do occur in the present cases. 
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the value = 8/27. There is, finally, no difficulty in showing 
that the lines p = zba are tangent to the ellipse at (t = it 1/2, p = 1/2 

and that the response curve through the points (=hl/2, 1/2) is 
given by = 1/4. 

In the next section we verify the correctness of the statements 
made above concerning the stability of the harmonic oscillations. 

12. Stability of the harmonic oscillations 

It has already been explained in detail in Section 10 that the 
stability of the harmonic oscillations, which has just been described 
in the preceding section in connection with the geometry of the 
response curves, is to be decided in accordance with the character 
of the singularities of the differential equation (10.4).* We turn 
then to the problem of classifying the singularities in accordance 
with the values p, o', and F which determine a given harmonic oscil¬ 
lation. In order to do that we proceed as in Part B of Chapter III 
and replace x and y in (10.4) by To + f, yo + Vy with xo + yo == p 
defined as the square of the amplitude of the harmonic oscillation 
whose stability is to be tested, develop the numerator and denomi¬ 
nator in the right-hand side of (10.4) in powers of { and r;, and reject 
all but the linear terms in { and tj; the result is the following approxi¬ 
mate differential equation in ^ and 77: 

now drj _ + Br) 

drcf+-Dv- 
This equation, according to a theorem of Poincar^, has the same 
types of singularities as the equation for x and y, provided that 
AD — BC ^ 0. In the present case one finds from (10.4) without 
difficulty that A, B, C, D have the following values: 

(12.2) 
iA = <T- 2xoyo, jS = 1 ~ p - 2yS, 

[C = —2xo + 1 — p, D — —cr — 2xoyo. 

* It would, of course, also be possible to investigate the stability of the 

harmonic oscillations by investigating the character of the solutions of the 

appropriate variational equation, in the manner outlined in Section 11 of 

Chapter IV for the Duffing equation. In the present case the resulting equa¬ 

tion would be a Hiirs equation with a periodic coefficient in the first derivative 

term. 
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In accordance with the discussion of Part B in Chapter III, we must 
calculate the quantities (S — Cf -f iAD, AD — BC, and B + C 
in order to classify the singularities. We readily find for these 
quantities the expressions: 

r (B - C)* + 4AD = 40)* - <T*), 

(12.3) I AD - BC = -a - p) (1 - 3p) - (T*-E(p, <r), 

( B -t- C = 2(1 - 2p), 

in which S(p, <r) is the same quantity as given in (1L3); thus £(p, a) = 
0 is the equation of the ellipse indicated in the response diagram of 
Figure 11.1. It is now easy to determine the character of the singular 
points corresponding to all points of the response diagram—that is, 
corresponding to any given harmonic oscillation—simply by applying 
the criteria developed in Chapter III to the relations (12.3); we may 
summarize the result of such a classification as follows: 

r(A) E(p,<t) > 0 
T 2^2 I. p > or 

(stable node if p > 1/2 

[unstable node if p < 1/2 

(B) E(fiy cr) < 0, saddle 

(stable if p > 1/2 

[unstable if p < 1/2 

(stable if p > 1/2 

[unstable if p < 1/2 

II. p* = or* {node 

III. p* < <r* {center or spiral 

The decision regarding the stable or unstable character of a given 
singularity is based in Chapter III on the behavior of the solution 
curves as r increases. The criteria given in the table therefore also 
hold for increasing values of the time t, since t = ta/2 and a > 0. 

From this table we see that the saddle point singularities are 
confined to the interior of the ellipse E(j), cr) = 0, since E < 0 char¬ 
acterizes these points; the corresponding harmonic oscillations are 
therefore unstable. In the part of the p, <r-plane exterior to the 
ellipse it is clear from our table that the stable and unstable singulari¬ 
ties are separated by the line p =* 1/2, those below this line being 
unstable. This confirms the statements made in the preceding 
section regarding the stability of the various possible harmonic 
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oscillations (cf. Figure 11.1, in which the unstable portions of the 
response curves are shown dotted). As we have already indicated, 
this result is due to van der Pol. 

Fio. 12.1. Stability of the harmonic oscillations of a self-sustained system. 

With reference to Figure 12.1, which superimposes the results 
of the above table classifying the singularities upon the response 
curves of Figure 11.1, we can summarize the situation with regard to 
harmonic oscillations of the van der Pol equation as follows: 
1) If F* > 8/27 there is only one possible harmonic oscillation for a 
given value of <r (i.e. for a given frequency) and it is stable if p > 1/2, 
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i.e. if the square of its amplitude is larger than half the square of the 
amplitude of the free nonlinear oscillation (since \/p = b/oo), and 
is unstable for p < 1/2. 
2) If 1/4 < < 8/27 there is an interval of <r-values, i.e. 1/2 < o' < 
\/3/3, for which three different harmonic oscillations occur, of which 
either one or two will be stable depending upon whether p > 1/2 or 
not. The stable solution with larger amplitude corresponds to a 
nodal point. In Figure 12.2 we give a detail of a portion of Figure 
12.1 indicating these circumstances. 
3) If < 1/4, there are three harmonic oscillations for all values of 
<r between zero and a certain maximum (which depends on F), 

Fig. 12.2. Detail of Figure 12.1. 

beyond which only one unstable harmonic oscillation occurs. When 
three periodic solutions occur only the one with the largest amplitude 
is stable, and it corresponds to a nodal point. 

By making use of the character of the singularities one can also 
say something about the nature of the transient motions in the 
neighborhood of the stable harmonic oscillations: The harmonic 
oscillation corresponding to a given singularity can be represented 
(cf. (9.11)) in the form j; = 6 cos {ait + v^) by introducing an appro¬ 
priate phase shift ^. If the singularity is a spiral point we could 
expect any motion in its neighborhood to be given approximately by 
V — b cos {o)it + v^) + 5(0 cos {o)it + ^(0) in which the amplitude 
6{t) of the disturbance tends to zero while the phase ^(0 tends to 
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dh 00 with increasing t On the other hand if the singularity were a 
stable node, we would expect B{t) to approach zero but ^(0 to tend 
to a finite limit as t increases. In other words, for p < <7 the transients 
would be oscillatory in character, but not for p > a. 

13* Nonharmonic response in general* Existence of stable 
combination oscillations for large detuning 

Within the basic assumptions made and the accuracy of the 
approximation used here, the harmonic oscillations of the van der Pol 
equation have been completely characterized in the preceding 
sections, including their stability. In addition, it was possible to 
say something qualitative about the nonperiodic transients which 
may occur in the neighborhood of the stable harmonic oscillations. 
It is, however, possible to go much farther with the discussion of 
nonperiodic solutions of the type (9.1) of the van der Pol equation by 
(considering the general character of the totality of solutions of the 
first order equations (9.8), which in turn fix the amplitude and phase 
of the former solutions. Such a discussion makes it possible to 
understand in some cases why, if at all, a given stable harmonic 
oscillation should be the motion observed in practice (after some 
transients have died out) rather than some other possibly nonperiodic 
motion. More than that, we see by reference to Figure 12.1 that 
there are no stable harmonic oscillations at all if > 8/27 and <r is 
sufficiently large compared with F: in other words if the detuning 
<r = A/a is large enough no stable harmonic oscillation should be 
observed. This is actually what is found in practice. The important 
question then arises: what can be predicted from our basic theory 
for large detuning? 

These and other questions can be answered in some instances, 
at least, by investigating the possibility of the occurrence of a stable 
limit cycle {a:(r), yir) 1 (that is, a limit cycle toward which neighboring 
solutions tend as t increases) among the solution curves of (10.3). 
As we have already indicated in Section 10, this would mean that the 
corresponding oscillation v/oo = x cos u)it + y sin a)it would be affected 
by phase and amplitude modulation since x and y would be periodic 
functions of t with large periods, and, in addition, it would be stable. 
If such an oscillation were audible, beats would be heard. Such 
oscillations are thus somewhat like the combination tones studied in 
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Chapter IV and Appendix II since they contain two frequencies 
whose ratio is in general incommensurable; we shall therefore refer 
to them in what follows as combination oscillations to distinguish 
them from the harmonic oscillations. Such combination oscillations 
will in general be almost-periodic rather than periodic functions. 
The existence of combination oscillations in electrical circuits like 
that of Figure 8.1 is well known experimentally. 

In the remainder of this section we shall discuss the technique of 
determining the existence of a limit cycle of (10.3) in a general way 
and show how it can be applied to prove that a stable limit cycle, and 
consequently a stable combination oscillation, occurs when the 
detuning is sufficiently large compared with the amplitude of the 
excitation. In the following Section 14 we shall then give an analytic 
treatment of the combination tones for large detuning whose existence 
is ensured because of the existence of a limit cycle. In Section 15 
we consider the character of the oscillations for sufficiently small 
detuning and show, following Andronow and Witt [1], that no limit 
cycles exists and hence no combination oscillations. 

We turn then to the qualitative discussion of the solution curves 
of (10.3) in the entire x, y-plane, with particular attention to the 
possible occurrence of limit cycles. To begin with, the solution 
curves of (10.3) have an important property for large values of x and y 
which is independent of the values of the parameters a and F (i.e. 
of the detuning and the amplitude of the excitation), i.e. that all 
solution curves of (10.3) for sufficiently large values of x and y are 
approximately straight lines through the origin,' and x and y both 
tend toward the origin on these lines with increasing r. The correct¬ 
ness of this statement follows at once from (10.3), since we have 
approximately for large x and y: dx/dr = —r^x^ dy/dr == —rV, so 
that dy/dx = y/x. Thus we see that the integral curves are approxi¬ 
mately the rays through the origin and that a point (a:(r), y{r)) on 
one of them moves toward the origin as t increases. Hence all 
integral curves of (10.3) remain, ns r increases, within a circle of suffi¬ 
ciently large radius. 

Within such a circle \ye know from the discussion of the preceding 
section that there are from one to three stable or unstable singularities 
of the differential equations (10.3), depending upon the values of the 
parameters <r and F, and these singularities include all of the possible 
types studied in Chapter III. One cannot, therefore, say anything 
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concrete about the general character of the solution curves in the 
large since the variety of possibilities is much too great. However, 
in special cases it is quite feasible to decipher the general character 
of the solution curves, at least to the extent of proving the existence— 
or, under other circumstances, the nonexistence—of a limit cycle. 
For this purpose we shall have frequent occasion to make use of an 
important theorem of Poincar^ and Bendixson, which furnishes 
conditions under which the existence of a limit cycle is ensured. 

The theorem of Poincar^ and Bendixson can be formulated as 
follows: If a solution curve C: {(a:(0, y(0)} of 

dy/dx = P(x, y)/Q(x, y), 
with P and Q defined and regular in — oo < Xy y < oo, remains, 
as i 00, within a bounded region of the x, y-plane without ap¬ 
proaching singular points, then there exists at least one closed solution 
curve of the differential equation. For a proof of this theorem, see, for 

example, Bieberbach [5]. One can make the correctness of the 
theorem rather plausible in the following way. Consider an infinite 
sequence of points : {x{ti)y yiU)) on C for ► oo. Such a set of 
points must have a limit point P since the points P» lie in a bounded 
region, and P is not a singular point. If P lies on C it is not diflScult 
to make it plausible geometrically that C itself is closed: One considers 
the accompanying figure and sees that the curve C must eventually 
cross the normal to it at P at a point Q so close to P that further 
passages of the curve across the normal as < » would of necessity 
take place always in the same sense across the normal; but that is 
manifestly not possible since the solution curve beyond Q can escape 
out of the region PSQP only by crossing over the segment PQ since 
an intersection with C itself is ruled out by our assumption that no 
singularities occur on C. Hence C itself is closed in this case. On 
the other hand, if P does not lie on C, one can make it very plausible 
by a similar geometrical argument that C winds itself in spiral 
fashion around a closed solution curve containing the point P. 
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U'he theorem of Poincar^ and Bendixson can be applied, in 
particular, to establish the existence of a limit cycle when the detuning 
is large while the amplitude of the excitation is fixed, i.e. when <r is 
large compared with F. As we see from Figure 12.1 there is only one 
singular point of (10.3) in the ^-plane and it is an unstable spiral 
point when <t >> F for any given F. This means that any solution 
curve starting near this point moves away from it with increasing r; 
in fact, there is an ellipse containing the spiral singular point in its 
interior with the property that all solution curves cross it on moving 
from its interior to its exterior as r increases. On the other hand we 
have seen that all solution curves which start on a circle of sufficiently 
large radius with center at the origin move into and stay inside the 
circle as r increases. Thus there is a ring-shaped domain bounded 
on the outside by this circle and on the inside by a small ellipse which 
is free of singular points and has the property that any solution 
curve which starts inside it remains inside it as r oo. The theorem 
of Poincar^ and Bendixson can therefore be applied to establish the 
existence of at least one limit cycle and hence also of a combination 
oscillation. 

It seems not to have been proved up to now that there is only one 
such cycle if <t is sufficiently large; we shall give such a proof in 
Section 16. Once the uniqueness of the limit cycle has been proved, 
it is clear that the limit cycle is stable,* and hence that the combina¬ 
tion oscillation is also stable. We see, therefore, that the approach 
of Andronow and Witt leads to a proof of the existence of a unique 
stable combination oscillation for large detuning. In the next 
section we discuss such oscillations quantitatively by an anal5rtic 
approach which was already used by van der Pol. 

14. Quantitative treatment of combination oscillations for 
large detuning 

Our interest is in cases in which the detuning <r is made large while 
the amplitude of the excitation is held fixed. 

In this section there is some advantage in returning for a time to 
the original notations of Sections 8 and 9. In terms of the quantities 

* Curiously enough, the uniqueness of the limit cycle is established in 

Section 16 by proving first that all limit cycles which might occur would be 

stable, after which the uniqueness of the cycle follows with no difficulty. 
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used there our assumption may be interpreted to mean that A is 
large compared with B in equations (9.8). Let us begin our discussion 
by assuming that A is actually so large that the amplitude h = 

\/h\ + h\ of the resulting oscillation is small compared with it. 
In such cases equations (9.8) may clearly be written in the following 
approximate form: 

[261 “1- 62A = 0, 

{262 — 61A = 0, 

which have as solutions h\{i) = b/ cos t + ^), hiif) = bf sin 

The solution (9.1) of equation (8.4) therefore can be written in this 
case in the form 

/ A \ 
(14.1) v{t) = bf sin ( wi ^ 2 ^ 

the last step following from the definition of A: A = 2(coo — wi) 
given by (9.7). The quantity ^ is a constant phase shift. The 
quantity 6/, the amplitude of the oscillation, is written with the 
subscript / because the oscillation evidently has the frequency coo of the 
free oscillation of the system. In the limit, as the detuning grows 
large, we shall see later that 6/ also actually tends to the amplitude Oo 
of the free oscillation. 

In other words, we expect the oscillation of the system to be 
approximated closely by the free oscillation when the detuning is 
very large. On the other hand, if the detuning is very small we 
observe from Figure 12.1 that there is always one and only one stable 
harmonic oscillation for any given value of the excitation amplitude, 
and we shall show in the next section that it is the only stable motion 
(aside from transients) which exists for small detuning. At the two 
extremes of large and small detuning the resulting oscillations are 
thus simple harmonic oscillations which have the frequencies wo and 
wi respectively. Between the two extremes we know from the 
preceding section that there is a range of values of the detuning for 
any given amplitude of the excitation within which combination 
oscillations of the form i?(0 = 61 sin wi< + 62 cos occur with bi{t) and 
62(0 certain periodic functions having a common frequency. It 
would seem at least plausible that the oscillations for moderately 
large values of <r—^more precisely those values of <r for which the 
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harmonic oscillation corresponds (cf. Figure 12.1) to an unstable 
spiral point in the bi, 62-phase plane—could be considered as approxi¬ 
mately a combination of two simple harmonic oscillations, one with 
the frequency o)o of the free oscillation, the other with the frequency 
0)1 of the excitation. In order to investigate the combination oscil¬ 
lations quantitatively it would therefore seem reasonable to replace 
the general form v = 61 sin wit + 62 cos of the combination oscilla¬ 
tion by a sum of two simple harmonic oscillations, as follows: 

(14.2) v{t) = hf sin {o)t + ^1) + 6a sin (coi^ + ^). 

The quantities 6/ , 6^, , ^2, and w are all constants with a fairly 
obvious significance: 6/ and 6* are the amplitudes of the ‘‘free’* and 
the “harmonic” components of the combination oscillation, respec¬ 
tively, while 03 and a>i are their frequencies. We have preferred not 
to set 03 equal to O3o, the frequency of the free oscillation, at the outset 
since it is conceivable that the frequency of this component might 
turn out to differ somewhat from coo—actually we shall see that 
0) = 0)0 within the accuracy of our approximation. The constants in 
(14.2) must now be chosen in such a way that (14.2) yields v(t) as a 
solution of the original differential equation (8.4); by substituting 
v{t) in (8.4) and making the usual approximations one obtains the 
desired relations for the constants by equating the coefficients of the 
terms in sin 03ty cos 03t, sin 03it, and cos 03it. The result is the following 
set of equations: 

a) (c*)o — 0)^)6/ = 0 

b) 

c; Oa(wo wi) cos <p2 -r abh 0)1 —-^2—~J ^2 = xJcoo 

d) bh(o3l — 03i) sin <p2 — abhO)i ^1 — ^ = 0, 

in which Oq is, as before (cf. (9.6)), the amplitude of the free nonlinear 
oscillation. From the first of the relations (14.3) we conclude that 
if 6/ 0, then w = a)o; in other words the first term on the right-hand 
side of (14.2) is an oscillation with the frequency of the free nonlinear 
oscillation, as we had expected. 

We proceed next to a study of the amplitudes 6/ and 6a of the 
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components of the combination oscillation. If 6/ « 0, it is at once 
seen that the relations (14.3) reduce, as they should, to the correspond¬ 
ing relations for the harmonic oscillations studied in Section 11, and 
bh can be identified with the quantity b used to denote the amplitude 
of the harmonic oscillation. From (14.3b) we find, in case b/ 9^ 0: 

(14.4) bf + 2bh = Go, 

while (14.3c) and (14.3d) yield 

bh<r ri 
— — F cos ip2 
Go 

h bl + 
— I 1 — -5—i I = F Sin <p2 

Go \ <4 / 

with F and a defined as in (10.2). 
From now on we work in gene :al once more with the quantities 

introduced in Section 10. As a measure of the square of the ^'ampli- 
tude” of the oscillation given by (14.2) we take the quantity p 
defined by 

so that p' is defined by 

(14.8) 

and is the square of the amplitude of the harmonic component. 
We have already seen that 6* = 6 if 6/ == 0; in this case therefore the 
quantity p as defined here is identical with the same quantity used in 
Section 11 to discuss the harmonic oscillations. From (14.4) we have 

(14.9) (b)' .1-2,- 
SO that p' can never exceed the value 1/2, at which 6/ = 0 and hence 
also p = p',b = bk. By comparing with Figure 12.1 we note that the 
transition from stable to unstable harmonic oscillations occurs 
exactly for p = 1/2, at which b/ = 0. 

We now imagine an experiment performed in which F (propor¬ 
tional to the amplitude of the excitation) is held fixed while a, the 

(14.5) 

and 

(14.6) 
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detuning, is slowly increased. In view of our earlier discussions we 
expect that an oscillation of the type given by (14.2) with two 
harmonic components sets in as soon as <r is increased beyond the 
point on the harmonic response curve where p = 1/2 (cf. Figure 12.1). 
For such values of <r we expect a nonharmonic response with an 
“amplitude"' p given by (14.7). It is convenient to superimpose 
the response curves for the harmonic oscillations on those for the 
combination oscillations which result from (14.4), (14.5), and (14.6), 
the latter being valid only for the range in which the combination 
oscillations exist, which means in the region p < 1/2 w'here the 
harmonic oscillation is not stable. The quantity p is thus unambigu¬ 
ous in the sense that it furnishes always the amplitude of whatever 
stable oscillation exists. The “amplitude” of the combination 
oscillation as a function of the detuning a for any given F can be 
discussed by means of the equation 

(14.10) p = 1 ~ p', 

which follows from (14.7) and (14.9), and the equation 

(14.11) + (1 - 3p0l = F\ 

which follows from (14.5) and (14.6) by elimination of ^2 and (bf/ooY, 
The relation (14.11) yields through the value of p' the amplitude of 
the “harmonic” fraction of the response. By comparison with 
(11.2) we see that this portion of the response is given by the same 
expression as in the case of the pure harmonic oscillation except 
for the factor 3 on p' inside the bracket. In any case, it is clear from 
(14.11) that p' —> 0 as <7 00 for any fixed value of F, so that p —» 1 
from the lower side as <7 —> <», which confirms the observation at the 
beginning of this section that the motion to be expected for very 
large a is the free oscillation. The response curves obtained from 
(14.10) and (14.11) are shown in Figure 14.1, together with the stable 
portions of the harmonic response curves. The branches of the 
response curves which rise from p = 1/2 as <7 increases correspond 
to the response in the form of combination oscillations, while the 
branches which go downward to p = 1/2 as <7 increases correspond, of 
course, to the harmonic oscillations discussed in Section 11. 

The present section was concerned with the analysis of the limit 
case in which <r is large, i.e. with the case of large difference between 
the frequency of the free oscillation and the excitation for a given 
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value of the amplitude of the excitation. From Figure 14.1 we see 
also that which characterizes the amplitude of the excitation, 
should be larger than 8/27 in order to obtain response curves of the 
kind shown in Figure 14.1. In the next section we shall analyze the 
opposite limit case, in which or and F are both small, and finally in the 

next to the last section of this chapter we shall give a brief description 
of the more complicated circumstances encountered in the middle 
region. 

15. Nonexistence of combination oscillations when 
the detuning and the amplitude of the excitation 
are sufficiently small 

The situation is now veiy different from that of the pieceding 
section since there are now three different harmonic oscillations 
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possible: one corresponding to a stable nodal point, one corresponding 
to a saddle point, and one corresponding to an unstable nodal point 
in the x, ^/-plane, as we have seen in Section 12. This is indicated 
in Figure 15.1, which is a detail of Figure 12.2. We note that the 
stable nodal point occurs for p > 1, the saddle point for 1 > p > 1/3, 
and the unstable nodal point for p < 1/3 if <r is small enough. The 

question now is: what sort of stable motions does our theory predict 
for this range of parameters? When we consider the results of the 
preceding section, we are led to inquire whether it might not be 
possible that a limit cycle of the differential equation (10.4) exists in 
the present cases also, at least for certain values of the parameters a 
and F, in which case combination tones would exist. This is, how¬ 
ever, not the case, and stable motiaas exhibiting perfect synchronization 
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with the frequency of the excitation occur no matter how small the ampli¬ 
tude F of the excitation may be, provided only that the detuning a is 
kept under a certain bound which depends on F, This bound ^ should 
be fixed so that the stable nodal points for all <7 < a occur for p > 1, 
as indicated in Figure 15.1. This is an experimentally verified fact 
in electrical circuits of the type discussc^d in Section 8. In the 
present section we shall see that these observations are in accord 
with our theory by using an argument given by Andronow and Witt 
[1] in the paper cited above; in fact, Andronow and Witt had as the 
main object of their investigation the giving of a proof that there is no 
threshold value for the amplitude of the excitation below which 
synchronization does not occur. 

In view of the discussion above, particularly that of the preceding 
section, we see that what is necessary to achieve the desired result 
in the present case is a proof that no limit cycle of (10.4) can occur in 
the x,y-plane when a is kept under the bound a(F) discussed above: 
If this is once established it is clear that the only stable motion 
(excluding transients) which occurs is the harmonic oscillation 
corresponding to the stable nodal point of (10.4), in view of the 
theorem of Poincar^ and Bendixson (see Section 13 for the formula¬ 
tion of this theorem), according to which every solution of equation 
(10.4) would of necessity approach the stable singular point: We 
have already seen in Section 13 that all solution curves remain inside a 
sufficiently large circle when the curve parameter t (essentially the 
time) becomes and remains sufficiently large. Hence all solution 
curves must tend either to a limit cycle or to a stable singular point, 
and since there is only one stable singular point in the present case all 
solution curves must tend to it as the time increases. 

We have then to show that no limit cycles occur. The general 
method used by Andronow and Witt to prove this is the following: 
One first constructs two ring domains, each centered at one of the 
two different nodal points of the x, ^-plane, with the property that 
any limit cycles which occur lie in the interiors of the ring domains 
and hence in their common part. In other words, a construction is 
used which traps the limit cycles in certain regions R of the plane. 
Each region R is then shown to be simply connected, i.e. to be such 
that every closed curve in it can be shrunk to a point without leaving 
the region. Once these constructions have been made, it is readily 
seen that no limit cycle occurs at all, as follows. If there were such a 



174 SELF-SUSTAINED OSCILLATIONS CHAP. VB 

cycle it would contain in its interior either no singular point or a 
saddle point, since the remaining singular points have been excluded 
by the above construction from the simply connected region R 
which contains the cycle. On the other hand, a closed solution 
curve must contain at least one singular point of index >0 in its 
interior, as we have seen in Section 7 of Chapter III. The assump¬ 
tion that there is a limit cycle in R must therefore be rejected since 
such a cycle would contain either no singularity or a singularity of 
index —1. 

The object of this section will therefore be accomplished once the 
two ring domains with the properties described above have been 
constructed. The method used by Andronow and Witt for this 
purpose involves the determination of certain curves introduced by 
Poincar4 and called contact curves by him. For the present purposes 
they are defined as follows: We consider a set of concentric circles 
with centers at a singular point (rro, 2/o) of (10.4) with radii n and 
determine the locus of the points where these circles are tangent to 
the field directions determined by (10.4); this locus is the contact 
curve. The ring region centered at (xo, yo) in which any possible 
limit cycles occur is then shown to be determined by the circles of 
largest and smallest radius which touch the contact locus. The 
relative positions and sizes of the ring domains centered at the two 
nodal singularities must then be studied in detail in order to prove 
that the region common to both of them is simply connected. We 
turn then to the task of carrying out the details of this program. 

It is convenient to begin by assuming that the contact loci lie 
in a bounded region of the plane—a fact that will be apparent later 
on—and show on the basis of this assumption that if a limit cycle 
occurs at all it must of necessity lie in a ring with center at the singular 
point {xo, t/o) whose boundaries are the innermost and outermost circles of 
radii rimin ond rimax respectively^ which touch the contact curve. The 
proof is carried out in three steps. First of all we show that there 
exist points of the contact locus in every neighborhood of the two 
other singular points. We observe that one of these, the node, has 
the index +1, while the other (the saddle point) has the index —1, 
which means that the direction field in the neighborhood of these 
singularities turns through the angle or —2ir (cf. Chapter III, 
Section 7) on making a circuit around every sufficiently small circle 
with center at the singularity. It is therefore clear that the circles 
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with centers at (xo, yo) would have at least one common direction 
with the field in every neighborhood of some other singularity since 
the field of directions defined by the concentric circles is essentially a 
parallel field in the neighborhood of each of the singular points (or, as 
one could also put it, the index of this field is 0 everywhere except at 
the point (xo, yo))- The second step in proving our statement is to 
show that the point (xo, yo) at which the ring domain is centered is 
an isolated point of the contact locus. This is seen as follows: At a 
nodal point (0, 0) the direction field is given essentially by dy/dx == 
<^(y/^)i a > 0 or by dy/dx = (^ + x)/Xy as we have seen in Chapter 
III, while the circles centered at (0,0) have the slopes dy/dx = —x/y; 
one sees therefore that the only point where the respective right-hand 
sides are equal is the origin since ay^ + x^ and x^ + xy + y^ as positive 
definite forms vanish only for x = y = 0. One sees also that the 
argument would still hold if the higher order terms in (x, y) in the 
differential equations for the field directions were retained. The 
third step in proving our statement is then the following: If there 
were a point of a limit cycle outside the circle of radius fimax say, 
it follows that there would be a point Pmax on the limit cycle at a 
maximum distance i2max from (xo, 2/0), with jRxnax > nmax . If -Pmax 
were not a singular point, the limit cycle would have a tangent at 
Pznax which would also clearly be a tangent to the circle of radius JBmax 
centered at (xo, yo)- If Pmax should happen to be a singular point, 
we know from the discussion above that there would be tangencies 
of the circles centered at (xo, yo) with the integral curves in any 
arbitrary neighborhood of Pm^x. In either case, therefore, there 
would be points of the contact locus outside the circle of radius rimax , 
contrary to our assumption. In the same way we can show that if a 
point of a limit cycle were to lie inside the circle of radius rimin it 
would follow that points of the contact locus would occur near a point 
Pmin of the limit cycle at the minimum distance from (xo, yo), with 
Pmin 5^ (iTo, 2/o) since (xo, yo) was shown above to be an isolated 
point of the contact locus. In other words, the assumption that there 
are points of a limit cycle outside the region in question leads to a 
contradiction, and hence our statement is proved. We have therefore 
a means of trapping the possible limit cycles in definite regions of the 
plane. 

To make a study of the contact curves as a means of locating 
possible limit cycles of (10.4) it is convenient to shift the origin to a 
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singularity (xo, ^o) by introducing xi = x — Xo, 2/1 = 2/ — 2/0 as new 
variables; the result is 

(\r i) ^ ^ f +. c{xi + Xo) + (2/1X + ^o)(l - r^) ^ P(xi, 2/0 

dxi -xy{y\ + 2/0) + (^1 + a:o)(l ~ r^) Q(xi, 2/1) ’ 

with = (xi + + (2/1 + The contact curves can be con¬ 
veniently obtained by transforming (15.1) to polar coordinates 
(ri, with center at (xi, 2/1) == (0, 0); the appropriate formula is 

(15.2) 
1 dri 

Ti d\p 
xi Q + yiP 
xiP - 2/1Q ’ 

with rl = X? + 2/1 • 

The contact curves are evidently given by dri/d\l/ = 0, so that they 
are furnished by the algebraic curves XiQ + yiP = 0 or 

Xi[-a(yi + 2/0) + (^1 + Xo) (1 - r^)] 

+ yi[F + cr(xi + Xo) + (2/1 + 2/0) (1 = 0, 
(15.3) 

together with n = 0. 
The fac't that the origin (in the Xi, 2/rplane) is a singular point 

imposes the conditions P(0, 0) = Q{0y 0) = 0 on c, P, Xo, and 2/0. 
These conditions are of course the same as those given in Section 11: 

(15.4) 
[ -<^2/0 + Xo(l — p) = 0 , 

\f + crXo + 2/0(1 — p) = 0 

2 , 2 
p = Xo + 2/0 • 

From these we have already deduced in Section 11 the relation 

(15.5) Pk^ + (I - p)^] = P^ 

from which the response curves of Figure 11.1 were derived. It is 
useful for later purposes to give the following two further relations 
which are easily deduced from (15.4): 

(15.6) 

Xo = 
-p<r 

F 

yo 
p(i ~ p) 

F 

The equations (15.6) determine the coordinates of the singularity 
in the x, 2/-plane, and of course also the center of the ring domain 
which we propose to construct. 
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By using (15.4) it is easily found that equation (15.3) reduces to 

(15.7) ri(l - r^) - (a:iXo + yiyo) (A + 2.Ti.ro + 2yjyo) = 0, 

upon eliminating F and a. We introduce the quantity k by the 
relations 

/t r ox ^ i' + yo sin ^) = TiK 
(15.8) 

[ K = Xo cos ^ + 2/0 sin yf/ 

and note that = rl + p + 2ri/c, so that (15.7) can finally be written 
in the form: 

(15.9) r\[r\ + 3/cri - (1 - p 2k)\ = 0. 

Equation (15.9) is the equation of the contact curv^c in polar co¬ 
ordinates. Aside from the point n = 0, the contact curve is given by 

(15.10) = + 

and we observe that it has no branch which goes to iiifinity. Con¬ 
sequently we know that a ring domain centered at the singular point 
(3"o, yo) exists and contains all possible limit cycles; its boundaries 
are the radii ri„uu > 0 and rjmax of the smallest and largest circles 
which touch the contact locus given by (15.10). The radii of these 
circles are contained among the roots of the equation dri/d^ = 0. 
It follows easily that these values of n satisfy one or the other of the 
relations 

fSri + 4k = 0, or 

(15.11) 

The first of these relations, upon insertion in (15.9) or (15.10), yields 
for ri the value 

(15.12) n = VsIp - 1). 

The second relation yields by (15.8) the equation 
—Xq sin ^ + 2/0 cos ^ = 0 

and hence k = \Ap since p = xl + yl. Insertion of k = Vp in 
(15.10) leads then to the value 

I ± ? p (15.13) ri = 
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for n . According to our discussion above, any existing limit cycle 
lies in the ring between the circles of radii rimax and rimin obtained by 
taking the largest and smallest values furnished by (15.12) and (15.13). 

We now apply the above considerations to the special case of 
interest to us here in which both F and a are below certain bounds. 
We must discuss the ring regions centered at the two nodal points 
which occur in the present case by studying the values of and 
rimin as well as the location of the centers of the rings as functions 
of the two parameters F and cr. In order to distinguish the two 
different rings and the quantities associated with them we use the 
subscripts s and u, the former referring to the ring associated with 
the stable nodal point and the latter to the unstable nodal point. 
Thus row = \/xou + ylu = Vp^andros = \/ps represent the distances 
in the a:, ^/-plarie to the corresponding singularities, while riw max and 
Tu max represent the radii to the outer boundary circles of the rings 
centered at the corresponding singularities. Finally {xou, you) and 
(xoa, yoa) represent the centers of the rings—in other words the 
singular points themselves. We now determine all of these quantities 
approximately for small F and <r by using equations (15.5) and (15.6) 
to determine the centers of the rings, after which their radii can be 
determined from (15.12) and (15.13). To this end consider first the 
uns^ble nodal point. From Figure 15.1 we know that pw is less 
than 1/3 at this point if F“ is less than 4/27; it then follows from 
(15.5) that pu and Tqu have the approximate values 

(15.14) = F\ ro,. = F 

wdthin higher order terms in F if <r is small enough, and this approxi¬ 
mation is better the smaller F is taken. As for the coordinates 
(xow, you) of the center of the ring, one sees from (15.6) and (15.14) 
that they are given approximately by 

[:rou = —Fa, 
(15.15) 

i^/Ou = 

At the stable nodal point we find in the same manner that p, and ro,, 
which are slightly greater than unity, are given approximately for 
small values of a by 

(15.16) p« = 1 + F — ^F- 
F 

ro. - 1 + ^ 
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again within a higher order term in F. The coordinates (xo,, y#,) 
are then given approximately by 

(15.17) 

f _ _(1 + F) 
Xqs — <r, 

— 1 + 
We observe that the x-coordinates (but not the 2/-coordinates) of the 
centers of the two rings are of first order in cr. 

We proceed to study the ring domain centered at the unstable 
nodal point. Since p« < 1/3, it follows that the maxima and minima 
of n,* are both obtained from (15.13) since (15.12) does not yield a 
real value for ri„ . The quantities ri„ max and ri„ are thus obtained 
in terms of F by inserting the value a, = from (15.14) for the 
quantity p in (15.13). These values are then easily seen to be given 
approximately by 

(15.18) 
\riu max == I + IF, 

I riu ,„i„ = 1 — I /J’ 

for F small. Again second order terms in F have been ignored. 
Since the coordinates of the center are given by (15.15) we see that 
the ring domain associated with the unstable singular point appears 
as in Figure 15.2a, in which, however, the center is taken on the 
2/-axis instead of slightly to the left of it. 

In the same manner we determine the values of max and Vu min 
approximately in terms of F, In this case one sees readily from 
(15.IG) that ru max is given by (15.13) and has the approximate 
value ru mux = 2, but that ru min might be furnished by either of the 
two expressions (15.12) or (15.13). An eavsy calculation yields the 
approximate values 

(15.19) 
ru max — 2, 

ru min = 1 + i F, or ru min == VSF, 

once more within terms of higher order in F, In Figure 15.2b we 
indicate the circumstances in this case by showing the ring centered 
at distance = 1 + F/2 from the origin and with its center on the 
2/-axis (cf. (16.16) and (15,17)). Only the inner radius of the ring for 
the case ru min = is shown, since the outer radius is so large. 
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Finally, we have only to superimpose the two ring domains and 
study the region which they have in common. In Figure 15.3 the 
two domains are shown together for both of the cases which may occur 
on account of the ambiguity in the values for ru min . The circle of 
radius ro, max — 2, tlie outer boundary of one of the rings, is drawn 
only in part. The region common to the two ring domains is 
shaded in Figure 15.3. AVe can now' see from Figure 15.3 that the 
domains common to the tw o ring domains are indeed simply connected 

y* 

Fkl 15.2. Ring domains associated with each of the nodal singular points. 

because of the fact that the center of the ring associated with the 
stable nodal point lies practically on the outer boundary of the other 
ring, while its smaller radius is larger than the distance, 3F, between 
the circles centered at the unstable node. This is evident in the 
case shown in Figure 15.3b. In the case of Figure 15.3a the radius of 
the circle corresponding to the stable nodal point is \/8F, which can 
be made large compared with F if F is small enough. The shaded 
regions shown in Fig. 15.3 may form one or two simply connected re¬ 
gions depending on slight changes in F or a. For F sufficiently small* 

* AiCtually, it could be seen that it is sufficient to choose F so that F* < 4/27. 
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we may thus conclude that Figure 15.3 is qualitatively corre(*t, if it 
is legitimate to take the centers of the ring domains on the 2/-axis 
instead of slightly to the left of it in accordance with (15.15) and 
(15.17). It is, however, clear that the qualitative result would not 
be changed if we assume a to be different from zero, but small: the 
effect upon Figure 15.3 would be simply to shift the centers of the 
domains to the left of the i/-axis by amounts which are of first order 
in or. If therefore F is chosen small enough so that Figure 15.3 is 
qualitatively correct for tr = 0, it follows that it will remain so for all 

Fig. 15.3. Simply connected domain common to the two ring domains. 

values of <7 below a certain bound. We conclude therefore that 
once F has been fixed at an appropriate small value the domains in which 
any limit cycles lie are simply connected if a is below a certain bound 
dr(F). This result, finally, ensures tnat no limit cycles exist for 
or < o’(F), as wc have already shown above. 

No attempt was made in the above discussion to fix a maximum 
for the value of F at which a bound for a exists such that no limit 
cycles of (10.4) exist. However, it could be shown that this result 
holds for all F, Andronow and Witt show that the discussion above 
(valid only for F sufficiently small) can be extended for values of F 
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such that < 4/27 (as one might expect). If F® > 4/27 so that 
only one singular point—a stable nodal point—occurs for <r sufficiently 
small (cf. Figure 12.1) we may apply the same kind of argument as 
above but confined now to the ring centered at the one singular point. 
For > 4/27 it is readily seen from (15.5) that p5 is greater than 
4/3 if <r is small enough and hence that the contact curve furnished 
by (15.10) has no real branches, since k < pg, as one sees from 
(15.8) and p, = Consequently no limit cycles exist if 
(T is sufficiently small. In other words there is a range of values of <r 
near o- = 0 for any F such that the harmonic oscillation is the only 
stable oscillation. 

16» Stability and uniqueness of the combination oscillations 
for large detuning 

In the preceding section it was shown that no combination oscilla¬ 
tions of our system occur if the detuning <t is kept sufficiently small, 
by showing that no limit cycles of (10.3) occur; in the present section 
we employ some of the ideas developed in that section as an aid in 
showing that there is a unique stable combination oscillation if the 
detuning is sufficiently large compared with the amplitude of the 
excitation, by showing that only one stable limit cycle of (10.3) 
occurs. We have seen previously in Section 13 that at least one 
combination oscillation exists. 

The proof of our statement takes the following course. We narrow 
down the location of all possible limit cycles of (10.3) by making use 
of the contact curves in the manner of the preceding section. In 
particular, we shall show that all limit cycles lie outside a circle in 
the X, y-plane whose center is very close to the origin and whose 
radius is nearly unity. We show next that any such cycle is stable 
and isolated by using Poincare’s criterion for stability, which is 
developed in Appendix V. The application of the criterion proves 
to be very simple in the present case. Finally we make use of an idea 
of Levinson and Smith [24] to conclude from the fact that all possible 
cycles are isolated and stable, that there is only one cycle. In 
Appendix VI this conclusion is established, and we shall not repeat 
the proof here. In other words, we have only to show that any 
possible cycles are stable and isolated in order to be sure that only 
one cycle exists, and hence that there is only one combination 
oscillation, which is then also evidently stable. 
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We turn to the proof that any limit cycles of the equations (10.3) 
are isolated and stable if a is large compared with F. It is convenient 
to write down these equations once more: 

(16.1) 

^ = -ay + a;(l - - y^) = P{x, y), 

^ = F ->r ax + y{X - x^ - y^) = Q{x, y). 

In the present case, in which a >> F, there is only one singular 
point of (16.1)—^an unstable node—^and it is located very near to the 
origin in the x, t/-plane. The coordinates {xo, ^o) of the singular 
point and the quantity p — xl + yl satisfy the relations (15.6) and 
(15.5) of the preceding section. If we set e = F/a we find without 
difficulty for these quantities the values * 

2 

(16.2) p = Xo == —c, yo = e = F/<r, 

within quantities of higher order in the small quantity c. We consider 
next the ring domain centered at the singular point (xo, yo) which 
contains any possible limit cycles of (16.1). The inner and outer 
radii rimax and rimin of the circles bounding the ring are furnished, 
just as in the preceding section, by the largest and smallest values of 
Vi given by equation (15.12) or equation (15.13). In the present 
case, in which p is small, the equation (15.12) does not give a real 
value for n ; consequently both radii are furnished by (15.13). 
With the value p = for p we then see at once that rimin *= 1 vrithin 
first order terms in «. From (16.2) we observe also that the center 
of the ring domain is at a distance from the origin which is of first 
order in €. Hence if <r is sufficiently large compared with F—and 
hence e sufficiently small—it is clear that any existing limit cycles 
lie outside of a circle with center nearly at the origin and of radius 
nearly unity. For establishing the stability criterion it will be 
sufficient to know that all limit cycles lie outside a circle of radius 3/4 
with center at the origin. Clearly this is true if <r is sufficiently large. 

We have now to show that all cycles satisfy the stability criterion 
given in Appendix V. The criterion for an isolated and stable limit 
cycle is the following inequality: 

(16.3) (Fa + Qy)dr < 0. 
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The integral is taken in the direction of increasing r over the cycle 
whose stability is to be tested, and Px and Qy are the partial deriva¬ 
tives of the functions which figure in the right-hand sides of the 
equations (16.1). In the present case we have 

(16.4) ^(Px + Qy)dr = ^(2 - 4(x' + y^Wr, 

and the integral will obviously be negative if (x^ + y^) >1/2 over 
the entire cycle. But we know from our discussion above that any 
existing cycles lie outside the circle + 2/^ = (3/4)^, and hence the 
criterion for stability is satisfied. Once this is known, the uniqueness 
of the cycle is also established, as was remarked above. 

We have therefore proved that there is one and only one combina¬ 
tion oscillation, which is in addition stable, provided that the detuning 
is sufficiently large compared with the excitation amplitude. It would 
be possible to refine this result in such a way as to give more precise 
bounds for the parameter values within which unique combination 
oscillations occur. 

17* Description of the response phenomena for intermediate 
values of the detuning a. Jump phenomena. 

In Section 13 and in the preceding section we studied the nature 
of the response to be expected when the detuning a is large compared 
with F, and in Section 15 the same question for sufficiently small F 
when a is small compared with F. In the first limit case we found the 
stable oscillation to be composed of a sum of tw^o oscillations, one 
with the frequency of the excitation, the other with a frequency 
approximately the same as that of the free nonlinear oscillation; 
in the second limit case we found the stable oscillation to be an oscil¬ 
lation with the frequency of the excitation. In the present section 
we give a brief description of the results for the intermediate cases in 
which the detuning <r is neither large nor small compared with F, 
following the work of Cartwright and Littlewood as reported, without 
proofs, in a recent paper by Cartwright [6]. These results are stated 
to hold rigorously within terms of the order retained in the theory as 
developed in Section 9 above. 

In Figure 17.1 we reproduce the figure given by Cartwright 
(and which is the same as Figure 11.1, in so far as the harmonic 
oscillations are concerned) for the response curves in the portion of the 
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response plane of interest here. The full curves correspond to the 
stable oscillations. As one sees, the response curves for > 8/27 
and (T large are like those of Figure 14.1 and are to be interpreted in 
the same way: the rising branches of the response curves (with 
increaKse of <r) represent oscillations Avhich combine a “free oscillation'' 

Fig. 17.1. Response curves for harmonic and combination oscillations for 

intermediate values of the detuning. 

with a harmonic component tb produce what is in general an almost- 
periodic response. However, for smaller values of <t and for values of 

near to but less than 8/27 the situation becomes more complicated: 
a) For 1/4 < F^ < 8/27 the response curves for almost periodic 

oscillations continue to emerge from the line p = 1/2 and may for 
some values of F^ cross the interior of the ellipse B = 0, as indicated. 
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For certain values of near to 8/27 one sees that two stable harmonic 
oscillations may exist (for the same value of F^) for certain values of a 
in the range 1/2 < <t < a/3/3, while for values of near to 1/4 
there exists (again for the same a stable harmonic oscillation as 
well as a stable almost periodic oscillation. If one were to perform 
an experiment in which the detuning cr is slowly varied, one sees 
therefore from this discussion that sudden jumps in amplitude would 
occur at certain values of <t and the oscillation would jump either to 
another harmonic with the same frequency or to an almost periodic 
oscillation, depending on whether F^ is near to 8/27 or to 1/4. One 
sees also that the jump phenomena are subject to hysteresis, since the 
jumps occur in different ways when <t is decreased than when it is 
increased. 

/ 

Fifi. 17.2, Tlystorosis plionomcD.'i. 

b) AcH^ording to C-artwright there exists a po;^itive number b 
(which has not been precisely determined) such that for 4/27 + 
6 < 1/4 the response phenomena again exhibit curious features. 
As indicated in Figure 17.1 stable almost periodic response occurs 
for certain values of <t less than 1/2 and these branches start in the 
interior of the ellipse F = 0 from a (certain point on the unstable 
branch of the harmonic response curve for the given value of F'\ 
It follows that jump phenomena occur for this range of values of F^ 
also, but now the transitions are ahvays from a stable harmonic 
oscillation to a stable almost periodic oscillation or vice versa. One 
sees, too, that hysteresis occurs here also, Avith transitions occurring 
in the manner indicated in Figure 17.2. 

c) If F* < 4/27 + 5, the branch of the response curves referring 
to stable almost periodic oscillations has its origin always oh the upper 
side of the ellipse E — 0 where the transition from stable to unstable 



SUBHARMONIC RESPONSE 187 

harmonic oscillations occurs. To each value of a there is only one 
point on the stable part of the response curve, and hence no jump 
phenomena occur in this range of values of For c sufficiently 
siriall compared with we observe that the harmonic oscillation is 
the only stable oscillation, in accord with the result of Section 15. 

Experimental confirmation of some of the results described here 
has been given. In particular, the transitions described in c) on 
the boundary of the ellipse have been observed. However, experi¬ 
mental confirmation of the '‘fine structure” of the response curves 
described in a) and b) above seems to be lacking, perhaps because the 
transitions from one type of phenomena to another occur for param¬ 
eter values which are very close together; it may well be that the 
phenomena were just not noticed in making the experiments. 

18* Subharmonic response 

This chapter should not be closed without a reference to the 
important phenomena of subharmonic response in self-excited 
systems, which is important for the applications. That such sub¬ 
harmonics, i.e. oscillations whose least period is a fraction of the 
period of the excitation, occur is well known both experimentally and 
theoretically. In fact, subharmonics of order as high as the 200th 
are said to occur. It would be possible to treat these oscillations 
by the same kind of methods as we have used in Chapter IV to discuss 
the similar question for systems with nonlinear restoring forces, and 
also by the method of van der Pol used in the present chapter to 
treat the harmonic oscillations. We refrain from doing so, however, 
but note that this subject is treated at some length in the book of 

Minorsky [31]. 





CHAPTER VI 

Hill’s Equation and Its Application to the Study 
of the Stability of Nonlinear Oscillations 

J. Mechanical and electrical problems leading to HilVs 
equation 

A particle attached to one end of a light rigid rod which is pivoted 
at the other end is in equilibrium when the particle is either vertically 
above or below the pivot, but the former position—referred to as the 
inverted position of the pendulum—is obviously not a stable equi¬ 
librium position. If, however, the rod instead of being constrained to 
rotate about the fixed lower end is permitted to move so that the lower 
end slides freely on a vertical line, it is possible to convert the inverted 
unstable equilibrium position into a stable one by applying a vertical 
periodic force of proper amplitude and frequency to the lower end 
of the rod. We open the present chapter with a discussion of this 
problem (which is clearly of interest for its own sake) because it leads 
at once to the central question to be studied here in detail. 

Fig. 1.1 indicates the rod and attached mass in a position 
displaced from the vertical. The motion is assumed to take place 
in the x, ?/-plane under the action of the weight mgr, the external 
applied force Y{t), and the force X(0 provided by the constraint 
at the end A of the rod. The x-coordinate of point B (where the 
mass m is located) is given by 

(1.1) X = Z sin t?. 

Since the mass of the rod is neglected the center of gravity of the 
system is at B and in addition the moment of inertia of the system 
with respect to this point is zero. The system has a plane motion 
which is determined by the equations of motion: 

(1.2) mx = X, and 

(1.3) Yl sin — XZ cos I? = 0. 

189 
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Equation (1.2) results from the principle of the motion of the center 
of gravity, and (1.3) results from the angular momentum law, in 
view of the fact that the moment of inertia about the center of 
gravity B is zero. Equations (1.1), (1.2), and (1.3) would serve to 
determine the motion. 

We assume now that the angle is so small that we may replace 
sin I? by I? and cos by unity, and eliminate x and X from (1.2) by 
using (1.1) and (1.3); the result is the following differential equation 
for the angle t?: 

(1.4) mZd ~ Fi^ = 0. 

The applied vertical force Y{i) is assumed to be given as follows: 

(1.5) Y(t) = mg - my{t) \ 

Fig. 1.1. Pendulum with a prescribed vertical force at one end. 

that is, it consists of a constant part mg equal to the static weight 
to be supported and in addition a variable part depending on the 
time. In this case (1.4) becomes 

(1.6) = 0. 

If the function p(t) is periodic in t—which we assume from now on— 
the linear equation (1.6) is called HilVs equation. 

In deriving (1.6) we assumed the angle B to be small, that is, we 
tacitly assumed that the inverted pendulum could be made stable 
by a proper choice of the periodic part —mp{t) of the vertical force 
F(/). It is clear that B could not be expected to remain small for 
small but otherwise arbitrary initial values for ^ and 6 unless aZZ 
solutions of (1.6) are hounded for all positive values of t. We note 
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that if p{t) s 0 the solutions of (1.6) are linear combinations of 
gvOT t and < and hence have unbounded solutions among them, 
and this corresponds to the fact that the inverted pendulum is 
unstable unless some force is supplied in addition to what is needed 
to support the static weight. It is far from obvious that p{i) can be 
chosen in such a way that all solutions of (1.6) are bounded. How¬ 
ever, as we shall see later, one may take p{t) in the form p(t) = A cos uit 
and dispose of the constants A and w (even for arbitrarily small values 
of A) in such a way that (1.6) has only hounded solutions for all t. 

In other words, the unstable inverted position of equilibrium 
of the pendulum can be converted into a stable one if a vertical 
pulsating force of proper amplitude and frequency is applied at the 
support of the pendulum. It is also of interest to add that it is 
possible to convert the stable equilibrium position of the pendulum 
(that is, the normal position in which the mass lies below the support) 
into an unstable one by applying a properly chosen periodic vertical 
force at the support. The differential equation for this latter case is 
the same as (1.6) but with the sign of g reversed, corresponding to a 
reversal in the direction of the force of gravity. If we take p{t) « 0 
we see that all solutions of the resulting differential equation are 
bounded—they yield in fact the simple harmonid motions given by 

linear combinations of cos i and sin ^ /. We shall see later that 

periodic forces mp(t) of arbitrarily small amplitude can be chosen in 
such a way that the stable “normar' position of the pendulum is 
made unstable. 

A simple mechanical-electrical system leading to a Hill’s equation 
is also readily devised. It consists of a circuit containing a constant 
inductance and a condenser in series. The plates of the condenser 
are assumed to be movable and to be actuated mechanically in such a 
way as to change the capacity of the condenser periodically in the 
time. If q is the charge on the condenser, L the inductance, and C(t) 
the capacitance of the condenser, we have for q the differential 
equation 

(1.7) ^ 

and since C{t) is assumed to be periodic in t (1.7) is a Hill’s equation. 
Such u mechanical-electrical system is a convenient one for experi¬ 
mental investigations of Hill’s equation (cf., for example, Barrow [4]). 
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One could easily give many other examples of physical problems 
which lead to a HiU’s equation (cf., for example, the first chapter 
of the book of Strutt [37]). 

The main reason for our interest in this particular linear equation 
in a book devoted to nonlinear vibrating systems is that the problem 
of the infinitesimal stability of the periodic solutions of our nonlinear 
systems always leads to a HilVs equation, as we have seen (cf., e.g., 
Chapter IV, Section 11 for the case of the Duffing equation). In 
fact, the Hill’s equation in these cases is a variational equation 
characterizing small variations from the given periodic motion whose 
stability is to be investigated. We say that a given periodic ^notion is 
stable if all solutions of the variational equation (which is always a 
Hill’s equation in our cases) associated with it are bounded for all 
positive values of t, and unstable if the variational equation has an 
unbounded solution. In other words, the question of stability of a 
given motion depends upon the character of the totality of solutions 
of the Hill’s equation associated with the motion, just as in the 
problem of the inverted pendulum discussed above.* Thus it makes 
no sense to speak of a stable solution of the Hill’s equation; but it is 
nevertheless very convenient to use such a phrase as “the solutions 
are stable” as a concise way of saying that all solutions of the given 
Hill’s equation are bounded. We shall frequently make use of such a 
terminology when no confusion is likely to arise because of it. 

The remainder of this chapter is devoted to a discussion of the 
general theory of Hill’s equation with particular reference to the 
question of boundedness of the solutions. The important special 
case of the Mathieu equation—a Hill’s equation in which the periodic 
coefficient is a simple harmonic function of the independent variable— 
is taken up in some detail in order to open the way to a discussion 
of the stability of the periodic solutions of Buffing’s equation obtained 
in Chapter IV. 

The author cannot forbear to add that the theory of Hill’s equa¬ 
tion is a theory of extraordinary elegance and one that is well worth 
studying on its own merits, quite aside from its utility in discussing 
stability questions. 

* The HilPs equation (1.6) is also a variational equation for the inverted 

pendulum problem: the quantity 6 could really have been written 66 and 

interpreted as a small variation of the basic motion given by 0 » 0. 
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2, Floquet theory for linear differential equations with perU 
€>dic coefficients 

We consider differential equations of the form 

(2.1) ^ + piz) ^ + q{z)w = 0 

in which the coefficients p{z) and q{z) are regular periodic functions of z 
of real period i.e. p(z + Q) = p{z), q{z + Q) — q{z). In this section 
it is convenient (though not necessary) to consider p and q as analytic 
functions of the complex variable z defined in a strip containing the 
entire real axis. 

Before drawing any conclusions resulting from the periodicity of 
p and q it is useful to recall a few well known results about the solutions 
w{z) of (2.1) which follow solely from the fact that (2.1) is linear and 
homogeneous with coefficients which are regular functions of z. First 
and foremost, there exists a pair of linearly independent and regular 
solutions Wiiz) and W2{z) neither of which vanishes identically, and 
every other solution is a linear combination of these two: 

(2.2) w = ciWi + C2W2. 

The pair of solutions Wi, W2 is called a fundamental set of solutions. 
The necessary and sufficient condition that Wi and W2 form a funda¬ 

mental set is that the Wronskian determinant 

Wi W2 Wi W2 

(2.3) A(^) = dwi dW2 
Wi W2 

dz dz 

should not vanish identically in z, (In this chapter the primed 
symbols refer to differentiations with respect to 2.) This is readily 
proved as follows: If non-vanishing constants Ci, C2 exist such that 
CiWi + C2W2 ^ 0, it follows that ciw'i + C2W2 also vanishes identically 
so that A vanishes identically in this case. Hence if A does not 
vanish it follows that Wi and W2 are not linearly dependent. The 
non-vanishing of A is thus a sufficient condition for the linear inde¬ 
pendence of Wi and W2. On the other hand, if A == W1W2 ~ = 0, 

we can integrate to find log — = constant so that vh and loj are 
W2 
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necessarily linearly dependent. Thus A 0 is both a necessary and a 
sufficient condition for the linear independence of w\ and uh . 

It is of interest also to note that if I^{z) vanishes for a single value 
of z then it vanishes for all z. This follows from a formula for A{z) 
which will be useful to us later on. The formula is obtained in the 
following way: Differentiation of both sides of (2.3) with respect 
to z yields 

W2 V)[ 
t 

V02 

// It 
+ t t 

Wj V)2 Wi W2 

from which we obtain 

(2.4) 
dA 

dz 

Wi W2 

II II 

Wi W2 

We now make use of the fact that v>i and W2 are both solutions of (2.1) 
and accordingly replace wi and W2 in (2.4) by their values as given 
by (2.1). The result, after expanding the determinant in (2.4) 
as a sum of two determinants and noting that one of the latter 
vanishes, is as follows: 

(2.5) 
dA 

dz 
~pA. 

This linear differential equation for A lias the general solution 

(2.6) A{z) = Ao exp p({) j, 

in which Ao is the value of A for ^ = 2:0. Since j){z) is regular for all z 
it follows that the exponential function in (2.6) never vanishes and 
hence A cannot vanish at any point without vanishing identically. 

We turn now to a discussion of some of the consequences which 
follow from the assumed periodicity of the coefficients p and g.* To 
begin with, if wi{z) and wziz) form a fundamental set of solutions it 
follows that wi{z + 12) and w^^z + 12) also form a fundamental set 
since they clearly satisfy (2.1) because of the fact that p(z + 12) = p(z) 
and q(z + 12) = q{z) and the fact that A(z + 12) does not vanish, 
as we have just seen. Since every solution can be obtained as a 

* This theory is usually called the Floquet theory. 
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linear combination of wi and W2 it follows that the solutions Wi{z) = 
Wi{z + 12) and W2(z) = W2(z + 12) satisfy linear relations of the form 

(2.7) 
iWi{z) = wi{z + 12) = aiiWiiz) + ai2W2(z)y 

[W2(z) = W2(z + 12) = a2iWi(z) + 022^^2(2:). 
The Wronskian of Wi, W2 is readily seen to result from the Wronskian 
of Wi, W2 through multiplication by the determinant of the coefficients 
in (2.7); that is, we have 

(2.8) A{z + fi) 
ail ai2 

021 a22 
• A(2). 

Since Wi and W2 form a fundamental set it follows therefore that 

ail 

a2i 

a 12 

5*^ 0. 
a22 

It is not true in general that the solutions w(z) of (2.1) are periodic 
with real periods in z though the coefficients have a real period, as 

one sees in the special case — w — 0 in which all solutions are 
az^ 

linear combinations of exponentials with pure imaginary periods. 
There are, however, solutions which have the property that they are 
multiplied by a constant factor when z is shifted by the amount of 
the period f2 (assumed always to be real), that is, there exist solutions 
W(z) for which 

(2.9) W{z) = w{z + i2) = <rw{z), <r = constant, 

for all z. Such solutions are called normal solutions; they play a 
central role in the discussion to follow for reasons which will soon be 
apparent. Any normal solution w (assuming that it exists) can be 
expressed as an appropriate linear combination of Wi and W2 : 

(2.10) W = \iWi + \2W2 . 

A normal solution w satisfies (2.9) while Wi and W2 satisfy (2.7); it 
follows that the relation 

[Xi(aii — O’) + X2a2i]t^i + [Xiai2 + X2(a22 <r)]w2 == 0 

holds identically in z, and since wi and W2 are linearly independent their 
coefficients must vanish. Furthermore, since the constants Xi and 
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X2 do not both vanish, it follows that the following determinantal 
equation, called the characteristic equation: 

(2.11) 
On — <r 

U12 

021 

O22 — <r 
= 0, 

holds.* The equation (2.11) is a quadratic equation for <r neither root 

of which vanishes since the constant term in the equation is 
011 021 

I 0]2 O22 

and we have already seen (cf. (2.8) and the remarks following it) 
that this determinant does not vanish. We must consider two cases 
according to whether the roots of (2.11) arc unequal or not. 

If the roots <ti , 02 of the characteristic equation are uneq^ml there 
exists a pair of linearly independent normal solutions. This follows 
from the fact that each of the roots ai and 02 yields a pair of values of 
Xi and X2 which in turn yield a normal solution, and since these two 
pairs of values of Xi and X2 are themselves linearly independent since 
<ri and 0*2 are different it follows that the two normal solutions thus 
obtained are linearly independent. The two normal solutions in this 
case can he shown to consist of the product of an exponential function and 
a periodic function of period Q. For this purpose consider the normal 
solution Wi corresponding to or,-. We may write 

+ Q) <7,e 
—ai 0 —aiz 

and hence the function <pi(z) defined by (pi(z) = e '^'*Wi{z) is seen to 
be a periodic function with period Q if a, is chosen so that 

(2.12) = (Ti. 

It follows that the linearly independent normal solutions Wi and W2 

can be expressed in the form 

\wi{z) = e“‘Vi(2), 
(2.13) { 

\w2(z) = e“*‘^(e), 

in which ai 9^ a2 and <pi and <P2 both have the period Q. It should be 
noted that <ri and 02, and also ai and a2, need not be real numbers. 

* It is not difficult to show that the equation for <r is the same no matter 
what pair of fundamental solutions one takes as a basis for the above de¬ 
velopments. 
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Later on we shall be particularly interested in the cases in which 
the quantities <r, have the values dbl. If or,- = +1, for example, 
we note from the definition of the normal solutions that the cor¬ 
responding normal solution Wi is periodic of period Q, while if <Ti — — 1 
the normal solution Wi has the period 2Q; at the same time the quantity 
a,12 in (2.12) must have its real part zero in both cases and its imagi¬ 
nary part equal to zero for o-,• = +1 and equal to ir for <ri = —1. 
It is also of interest to observe that normal solutions with the smallest 
period fcl2, with k any integer, will occur if cr, = 

For later purposes it is of importance to consider the exceptional 
case in which (2.11) has repeated roots, i.e., ai = 02 = <t. There is 
then at least one normal solution Wi which behaves like those in the 
preceding case. As we shall see, any other linearly independent 
solution behaves in a different fashion in general. To study this 
question, we introduce the normal solution Wi itself as one of a pair of 
fundamental solutions and choose the other fundamental solution W2 

arbitrarily. In this case the linear substitution (2.7) has the special 
form 

= <rw,(z\ 

[1^2(2) == awi(z) + bw2{z). 

Since, however, (2.11) is assumed to have a double root it is clear that 

b = a. It follows that the quotient — undergoes the substitution 
Wi 

W2 _ W2 ^ a 

Wi Wi or 

when z is shifted by the amount S2, and hence that the difference 

W2 ^ a z 

Wi a 12 

is a periodic function of period 12, so that W2 is of the form 

with ^(z) a function with period fl. Thus when the characteristic 
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equation has repeated roots there exist two fundamental solutions 
wi, W2 of the form 

wi(z) = e"*" (pi{z), 

u'=(2) = e“' • ,p^{z) + Uz)], 

in which <^1(2) and ^1(2) are periodic functions of period U, 
As we have remarked earlier, our principal interest is in the 

question whether all solutions of (2.1) are bounded for all real positive 
z or not. If all solutions of (2.1) are bounded, we should say, in view 
of the discussion in the preceding section, that the differential equation 
(2.1) characterizes a stable situation or motion, and otherwise an 
unstable situation; but to avoid such a lengthy terminology we shall 
in general say that the soluiionn of (2.1) are stable if all are hounded 
and unstable if an unbounded solution exists. 

On the basis of (2.13) we see that this question is settled by the 
values of the constants ai and ao alone in case the roots <ti and 02 

are unequal: all solutions are bounded if, and only if, | e"’* [ is 
bounded for all real positive z and this in turn requires that ai and aa 
should have real parts which are not positive. In the case of repeated 
roots of the characteristic equation we see from (2.14) that if a has a 
real part which is negative all solutions of (2.1) are bounded. If, 
however, the real part of a is zero the solutions are stable in the case of 
repeated roots of the characteristic equation only if in addition the 
constant a in (2.14) is zero, which means that two linearly independent 
normal solutions would exist. This special situation, in which the 
real part of a is zero and the roots <ri and 02 are equal, is of considerable 
importance in the applications to be treated later. 

3. The stability problem for HilVs equation and the Mathieu 
equation, 

The Floquet theory, as outlined in the preceding section, reveals 
the functional character of the solutions of Hill’s equation, but does 
not provide a means of deciding the stability question. This problem 
is, in fact, a difficult one which can be solved only by studying the 

* In writing this section we have been greatly aided by the book of Strutt 
[37], which should be consulted for further details and for exterisive references 
to the literature. 
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solutions of the given differential equation in considerable detail. 
For the special case of Hill’s equation: 

(3.1) + = 0, 

i.e. the special case of (2.1) in which p{z) = 0, and in which also we 
restrict ourselves to Junctions of the real variable z, it is possible to 
carry the analysis of the preceding section somewhat farther. Such 
an extension of the Floqiiet theory will he carried out in the present 
section. 

We begin by choosing as fundamental solutions Wi , W2 of (3.1) the 
pair of solutions which satisfy the following initial conditions* 
at 0 = 0: 

iw^iO) = 1, wUO) = 0 
(3.2) 

\w2{0) = 0, ?e2(0) = 1. 

That such a pair of solutions is linearly independent is clear, since the 
Wronskian is different from zero for z = 0—it has, in fact, the value 
one. With this pair of functions as a basis wo follow the method of 
the preceding section to determine a normal solution. rj)on shift ing 
by the amount of the real period Q the fun(*tions t/m and become 

(3.3) 
|'iyt(-c: 4“ 1^) ~ aii'W'i 4* ayiW‘> , 

4“ — aiiU'i 4“ (hiou . 

The coefficients a,k are real in the present case since wi and w^ are 
real. For a normal solution w(z) we have w{z 4- f2) = (tw{z) with 
a a root of 

On ~ (T fhi 

a\2 022 — cr 
0, 

which, as we shall prove presently, can be written in the form 

(3.4) — A(t 4“ 1 == 0, 

with A obviously a real number.** 

* We assume as known the fact that solutions of (3.1) exist for any pre¬ 
scribed initial conditions and for all values of z. 

** The roots of (3,4) need not and in general will not be real. Consequently 
the normal solutions will in general be complex-valued functions of the real 
variable z. 
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We observe that the constant term in (3.4) is in any case the 
an 0,21 

determinant and we are claiming that it has the value 
ai2 O22 

one. This follows from the fact that the Wronskian for any pair of 
fundamental solutions of (3.1) has a constant value for all values of z, 
as we see from (2.6) since piz) ^0 in the present case. The Wronskian 
^{z + Q) of Wi(z + Q) and W2(z + 12) therefore has the same value 
as the Wronskian A(z) for ^>1(2-) and W2(z) since the former pair of 
functions continues to be a fundamental set of solutions, and hence 
A(z + 12) has the value one because of (3.2). But the Wronskian 

On 0\2 
of Wiiz + 12) and W2{z + 12) is the product ^pf and the 

0,21 CL22 

Wronskian of Wi{z) and 1^2(2:) (cf. (2.8)), and our result follows at once. 
In the present case, in which the differential equation does not 

contain a term in the first derivative the important relation 
02 

(3.5) aiar2 = 1 

therefore holds between the two roots <xi, 0-2 of the characteristic 
equation belonging to the normal solutions. It is useful to add the 
remark that in the case of repeated roots of the characteristic equation 
O’! = 0-2 = cr and a must have one or the other of the values ± 1; thus 
the equation (3.1) necessarily has a periodic solution in this case. 

For stability it is obviously necessary, because of the definition 
of the normal solutions, to require that | ai | and [ (T2 1 should both 
satisfy the inequality | (7i | < 1, and this in view of (3.5) means that 
ai and 0-2 must satisfy the relations 

(3.6) 1 (7i 1 = 1 (r2 I f= 1. 

The relations (3.6) are thus necessary conditions for stability in the 
present cases; they are also sufficient conditions for stability in case 
(Ti 7*^ {r2, as we know from the form of the normal solutions given by 
(2.13), which is valid in this case, and the fact that these two solutions 
form a fundamental set. In case 0*1 = (72, the conditions (3.6) are 
not sufficient for stability; we must in fact require in addition that 
the constant a in (2.14) should vanish. 

In the problems leading to Hill’s equation discussed at the begin¬ 
ning of this chapter the periodic coefficient corresponding to q(z) in 
(3.1) contained a number of parameters, and the stability question 
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referred to the proper choice of the parameters in order to insure that 
all solutions be stable. The parameter values at which a transition 
from stability to instability occurs are then of particular interest; 
we propose to discuss such transitions in the important special case 
for which (3.1) takes the form 

(3.7) + (5 + triz))w = 0. 

The parameters are 6 and €, and the function r(z) is assumed to have 
the average value zero over its period 12. We turn now to the char¬ 
acteristic equation (3.4) and observe that once r(z) has been fixed 
the real number ^ is a function of 8 and c only. The roots of this 
equation are given by 

(3.8) ^ ± y/^^) - 1 . 

In view of the stability condition (3.6) and the fact that A is real 
we see that 

a) If I A I > 2, the solutions are clearly unstable, and 
b) If 1 A 1 < 2, the solutions are stable. This follows because 

ai 7*^ 0-2, 1 <ri 1 = I (721 = 1 and the ai in (2.13) are therefore pure 
imaginary (ef. 2.12). Since A is real it follows that the transition 
from stability to instability occurs for A = +2, or A == ~2, which 
corresponds to the repeated roots <7 = +1, or (7 = — 1, and hence also 
to the existence of a periodic normal solution of period 12 or 212. 

If the quantities 5, € are such that the solutions are stable we call 
such values of 8 and € stable values, and otherwise unstable values. 
Values of 8 and € for which <7 = =tl are called transition values. A 
normal solution w{z) is characterized by the property w(z + Qi) = 
aw{z) and hence we can say that corresponding to transition values of 
8 and e from stability to instability there must exist at least one periodic 
solution of (3.7) with the period 12 or the period 212. The transition 
values themselves usually lead to unstable solutions and hence 
belong themselves to the unstable values, in view of the remarks at 
the end of the preceding section, since the characteristic equation 
has repeated roots of absolute value one in this case. 

The transition values of 8 and € satisfy the equations 

A(5, €) - 2 

A(5, c) = -2, 
(3.9) 
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It has been shown by O. Haupt [41]* that the points satisfying (3.9) 
fill out curves in a e-plane separating it into regions in which 
(5, e) have stable or unstable values. In fact, these regions can be 
described in more detail, as follows: For each fixed e there exists an 
infinite set 8i of isolated values of 8 bounded on the negative (left) 
side of the 5-axis but unbounded on the positive side that satisfy 
(3.9). Upon moving from left to right along the 5-axis the points 5* 
fall into pairs of adjacent points (with the exception of the first 
point at the extreme left) in such a way that one pair satisfies the 
first of (3.9) while the next following pair satisfies the second of (3.9). 
This means also that the periodic solutions of (3.7) correlated with 
these transition values of 5 (for fixed e, we recall) are also arranged in 
successive pairs which have alternately the periods il and 212, except 
for the first point on the left to which a solution of period 12 is corre¬ 
lated followed by two of period 212 at the next two points. Further¬ 
more, 0. Haupt shows that all values of 5 betAveen pairs of points 
of the same type yield unstable solutions while the other values of 
5 yield stable solutions. The points from — oo up to the first point 
5o on the 5-axis yield unstable solutions. The transition points 8i 
themselves belong to the unstable regions in general, as we know 
from the discussion following (3.8), since the characteristic equation 
has a double root in such cases. The general situation is indicated 
schematically in the accompanying figure. 

I Unstable ^Stable .Unstoble . Stoble 8 

4. The Mathieu equation 

If we take r{z) = cos z in (3.7) the result is a special case of Hill’s 
equation called the Mathieu equation: 

(4.1) ^ + (5 + € cos z)w = 0. 
dz^ 

* The theorems of Haupt make extensive use of the theory of linear eigen¬ 
value problems. We do not reproduce these proofs here. However, we are 
interested only in applying such a theory for the case of small values of e, 
and this can be done with sufficient accuracy in a rather simple way, as we 
shall see in Section 5. 
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This equation has been studied very extensively, and, in particular, 
the stable and unstable regions in the 5, c-plane have been determined 
completely for all values of 8 and €. In the following section we 
shall determine these regions approximately for small values of € 
as a basis for a study of the stability of the harmonic solutions of the 
Duffing equation, which is to be carried out in sec. 6). Such a 
determination of the stability regions even for small values of e 
requires, however, a knowledge of certain facts about the solutions of 
(4.1) , and, since these facts are of general interest in any case—for 
one thing because the Mathieu equation governs a wide variety of 
problems in mathematical physics—^we propose to investigate them 
in the present section. 

We begin our study of the properties of the solutions of (4.1) by 
remarking that if w{z) is a solution that is neither an even nor an odd 
function of z, then wi^-z) is obviously also a solution and w(z) and 
w(—z) form a fundamental set. Thus [w{z) + w{--z)] would be an 
even solution and [w{z)—w{—z)] an odd solution and neither vanishes 
identically. On the other hand (4.1) cannot possess two linearly 
independent even solutions since otherwise no solution satisfying 
the initial conditions w{0) = 0, tco(O) = 1 would exist; in the same 
way one sees that no two distinct odd solutions exist. We conclude 
that the Mathieu equation possesses a fundamental set of solutions 
Wi, W2 in which one solution is an even and the other an odd function of z. 

We are particularly interested in the transition values of 8 and € 
from stable to unstable values. From the discussion of the preceding 
section we know that (4.1) possesses for such values of 5 and c a 
periodic solution having either the period 27r or the period 47r, since 
the periodic coefficient has the period 27r in this case. Since these 
periodic solutions are regular for all values of z it follows that they 
possess Fourier series developments. Thus in case the solution 
w{z) has the period 27r it would have a development of the form 

00 

(4.2) w{z) = Oo + S («n cos nz + hn sin nz). 
n-l 

If one inserts this series in (4.1) it turns out, however, that if the 
first non-vanishing term is for example a cosine term then all sub¬ 
sequent terms are also cosines, and likewise if the first non-vanishing 
term is a sine term then all subsequent terms are sines. It follows 
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therefore that the Fourier series for a solution of period 2t is either a 
cosine series or a sine series: 

(4.3) 
ivCz) = ao ^ ctn cos nzy or 

w(z) — ^ bn sin nz. 
n^l 

A corresponding statement holds for the periodic solutions of period 
47r. A little later we shall show that in general only one of the two 
possibilities can actually occur for a given pair of transition values of 
e and 8—in other words there can be only one periodic solution in 
such a case (at least within a constant multiplying factor). This 
fact makes it possible to calculate the transition values in the following 
manner. Insertion of the series (4.3) in (4.1) leads to one or the other 
of the following sets of recurrence relations for the a„ and 6„ , as one 
can readily verify: 

(4.4) 

+ ^<*1 = 0, 
(5 — n^)an + 2 (^n~l + dn-^-l) = 0, 

(4.5) 1“ 

- l)6i + ^ 52 = 0, 

— n^)hn + 2 (5n-i + 5„4.i) = 0, 

n = 1, 2, • • • 

n = 2, 3, • • • . 

Suppose we content ourselves with the accuracy obtained by taking a 
certain finite number of terms of (4.3). The relations (4.4) and (4.5) 
then furnish two distinct sets of linear homogeneous equations which 
must be satisfied for values of an and for values of bn which do not all 
vanish. The determinants of the coefficients—often referred to as 
Hill’s determinants—must therefore vanish, and these equations 
between e and 8 furnish approximations to the transition values of 
€ and 6. In a similar fashion the transition values corresponding 
to the periodic solutions of period iw can be determined. 

In this way the stability regions of the Mathieu equation have been 
completely determined; we reproduce the results in Fig. 4.1 in 
which the shaded regions are the stable regions. These regions are 



MATHIEU EQUATION 205 

shown only for € > 0; for e < 0 the stable regions are obtained by 
reflection in the 5-axis.* The stable regions are connected together 

ri 
at the points 5 = ^ , € = 0, n an integer; for these values of 5 and € 

7h 
the equation (4.1) obviously possesses the bounded solutions cos - z 

Th 
and sin - z which form a fundamental set of period 27r if n is even and 

Fig. 4.1. Stable and unstable regions for the Mathieu equation. 

47r if n is odd. It has been shown that for large values of € the stable 
regions become very narrow and tend to curves having the slope —1, 
as the figure indicates. For negative values of 5 the stable regions 
are quite narrow. 

We are now in a position to settle the question raised in section 1) 

about the stability of the inverted pendulum. If we set ^ p(0 = 

€ cos i and — j = 8 In equation (1.6) we have a Mathieu equation 

* In the next section we shall determine these regions approximately for 
small values of c and for 0 < 5 < 1. 
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with a negative value for 8, It follows from Fig. 4.1 that values for e 
(that is, values for the amplitude of the vibratory force at the support) 
can really be found for which (1.6) has only stable solutions, since 
stable regions of the Se-plane exist for negative values of 5. We 
observe also that the stable equilibrium position of the pendulum, 

for which ^ = 5 is positive, can be made unstable by a suitable 

choice of the amplitude of the pulsating force at the support of the 
pendulum, since unstable regions of the 5, e-plane occur for 8 positive. 

We have already observed that the points 8 = —, n an integer, 

on the 3-axis are boundary points of the stable regions (or as we also 
say, transition points) which also belong to the stable regions. These 
are, however, the only transition points which have this property: all 
other boundary points of the stable regions are unstable points. To 
prove this fact, which will be of considerable importance in certain 
of our later investigations, it is only necessary to show that the 
equation (4.1) cannot have a pair of linearly independent periodic 
solutions since in that case the solutions are of the form (2.14) with 
a = 0 or Tri and a 5^ 0 because of the fact that the characteristic 
equation has repeated roots for transition values of 3 and e. It is 
not difficult to prove that only one periodic solution of (4.1) of period 
2ir or 4:ir exists for all transition values of 3 and e except those with 
€ = 0. This has been done by E. L. Ince [17] by an indirect proof as 
follows: If there were two linearly independent periodic solutions of 
period 27r, for example, we know that we could choose one of them as 
an odd function and the other as an even function; these solutions 
could be expressed as the Fourier cosine and sine series given in 
(4.3). The coefficients of these series would then satisfy the recur¬ 
rence relations (4.4) and (4.5). By eliminating (3 — 1) from the 
equation forn = 1 in (4.4) and the first equation in (4.5) we obtain 
the relation 

ai 02 

ao bi = 
61 62 

provided that c 0. By using the equations for n = r in both 
groups one obtains in similar fashion 

ar dr+l Or~l Or 

hr br+1 &r~l hr 
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so that we have the following relation, valid for all n = 1,2, • • • : 

(4.6) 
dn fln-fl 

bn bn+l 

CIq bi , 

We now observe that if ao = 0, Avith e 0^ it follows from (4.4) that 
all ttn are zero, and similarly that all bn vanish if 61 = 0, e 7*^ 0. There¬ 
fore oo 7*^ 0 and also 61 7*^ 0 since the two solutions are assumed to be a 
fundamental set, and it follows that Gobi is a non-zero constant if 
c 7*^ 0. On the other hand, the existence of the solutions (4.3) 
requires that the Fourier series converge and hence that Un —^ 0 and 
6n 0 as n —^ 00, and this is obviously not compatible with (4.6). 
It follows that two periodic solutions of period 2t of the Mathieu 
equation cannot exist for transition values of e and 8 except when 
€ = 0, in which case 8 = n^. In the same way it can be shown that 
two periodic solutions of period 47r cannot exist unless 6 = 0, in 

2 

which case 6 = -7-, n odd. At boundary points of the stability region 
4 

not on the 5-axis it follows therefore that all solutions cannot be 
periodic and consequently that unbounded solutions exist which tend 
to infinity like the first poAver of z. 

Wc close this section with a few remarks about periodic solutions 
of (4.1) in general. We have seen that for values of 8 and € corre¬ 
sponding to certain boundary points of the stable regions there exist 
solutions of period and for other boundary points solutions of 
period Q, in Avhich is the period of the periodic coefficient. Since, 
as Ave have seen in the first section of this chapter, the periodic 
coefficient corresponds in general to a periodic disturbance having its 
origin outside the system we see that periodic solutions of (4.1) may 
exist which have the same frequency or which have half the frequency 
of the disturbance. In other Avords, we might say that the sub¬ 
harmonic solution of order J occurs for appropriate choices of € and 8 
as well as the harmonic solution. In the engineering literature 
where this fact is of importance (in the theory of the whirling of 
shafts, for example) it is often overlooked that still other types of 
periodic solutions of Hill’s equation and the Mathieu equation may 
occur. The fact is that all of the types of periodic solutions discussed 
in earlier chapters—the subharmonics of all orders, as Avell as the 
ultra-harmonics and ultra-subharmonics—occur in these cases also 
Avhen € and 8 are properly chosen values taken from the stable regions 
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of the 6, e-plane. It is not difficult to see in a general way how this 
comes about, as follows: For values of e and 5 in the stable regions 
as we have seen in section 2) (cf. equation (2.13)), the normal solutions 
have the form 

(4.7) w{z) = c“V(^) 

with a a pure imaginary constant and <p(z) a function of period Q, 
It can be shown that there exist normal solutions for which 

with p and q any integers prime to each other. If p/q ~ 1 or ^ 
we have the transition cases corresponding to boundary points of the 
stable regions and to periodic solutions having the periods Q or 2Q. 
For any other values of p/q all solutions w(z) corresponding to stable 
values of 8 and e are periodic of period since two linearly inde¬ 
pendent normal solutions of the form (3.15) exist with conjugate 
complex values of a, as we know. The cases p = 1, ^ > 1 correspond 
to the subharmonics, the cases g == 1, p > 1 to the ultra-harmonics, 
and the cases q > 1, p > 1 to the ultra-subharmonics. The values of 
8 and e corresponding to solutions of each of these types fill out curves 
in the 6, e-plane which lie in the stable regions and which presumably 
have much the same appearance as the boundary curves of the 
stable regions which correspond to the occurrence of the harmonic 
solutions and the subharmonics of order 

5. Stability of the solutions of the Mathieu equation for 
small values of e 

For the purpose of discussing the stability of the periodic solutions 
of a nonlinear system (with one degree of freedom) in the neighbor¬ 
hood of the linearized system it is usually sufficient to solve the 
stability problem for a Hill’s equation (3.7) under the assumption 
that the parameter e can be considered small, since c is generally the 
parameter with respect to which the periodic solutions of the original 
nonlinear problem are developed. In the present section we carry 
out such a discussion for the special case of the Mathieu equation and 
will then apply the results in the next section to the discussion of the 
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stability of the harmonic solutions of the Duffing equation (cf. Chapter 
IV, Section 11). 

Our object is to obtain the equations of the boundary curves of 
the stable regions of the Mathieu equation 

i2 

(5.1) + (5 + t cos z)w = 0 

in the form 8 = 8(e), and, since we assume e to be small, we shall 
develop 8(e) in powers of e and retain only a certain number of the 
terms of lowest order in the development. The discussion of the 
preceding section has furnished us with the following facts which we 
shall use to obtain the development of 8(e) in powers of e: The stable 

2 
Yl 

regions are connected together at the points 6 = —, « = 0 (n = 0, 
4 

1, 2, • • •) which obviously correspond to the linearly independent 
t » 7h 71 

periodic solutions sin ~z, cos ^ z of (5.1). From each of the points 

2 

5 =: ^, € = 0 we expect two branches of the curves 6 = 5(c) to emerge 

except in the case n = 0 when only one branch is to be expected. 
Each point of the boundary curves 5 = 5(c) corresponds to a periodic 
solution of (5.1) of period 27r or of period 47r and, as we have seen near 
the close of the preceding section, these solutions are the unique 
periodic solutions (w4thin a constant multiplier, that is) associated 
with such points for c 5^ 0. As c —> 0, we expect that these periodic 

solutions will tend to appropriate multiples of either sin -^z or cos - z, 
Jj A 

We assume that the solutions w(z\ c) of (5.1) as well as 5(c) can be 
expanded in series of powers of c as follows:* 

(5.2) 
I w = Wq + ewi + eW2 + • • * , 

I 5 = 5o + + e82 + • • ■ . 

The quantities 5, are constants and the quantities Wi are functions 
of z which must be determined in such a way that ti? is a solution of 

* The proof in Appendix I for the existence of periodic solutions analytic 
in c of differential equations of the form « + a: * c/Cx, i, t), with / periodic 
in i, holds for equation (5.1). 
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ft ft 
(5.1) with period 2t or 4t which reduces to cos - 2 or sin ~ 2 when 

jU JL 
€ -^ 0. Insertion of (5.2) in (5.1) yields the following relation: 

+ ewI + ’ • •) + [(5o + e8i + •••) + € cos ^] 

•(w)o + +•••) = 0 

which is satisfied only if the coefficients of all powers of « vanish; 
we are therefore led to the following differential equations for the 
functions Wi : 

(5.3) 

Wq + ^oWq = 0, 
Wi + 80W1 = —diWo — Wo cos Zy 

^ W2 + 80W2 == —52Wo — 81W1 — Wi cos Zy 

In addition, we require that each function Wi should have the period 
2ir or 4:t, The first equation of (5.3) leads therefore of necessity 
to the following values for 80 : 

(5.4) = n = 0,l,2, •••, 

and to the following functions for wo : 

(5.6) 

n 
Wo = cos ~ z 

JU 

Wo = sm -z 
£1 

n = 0, 1, 2, 

as was to be expected. We observe that the solution w given by 

(5.2) reduces as it should to cos - 2 or sin ~ 2 when € —► 0. We proceed 
Z L 

to the higher approximations for the cases n == 0, 1, 2: 

n 5= 0: In this case 80 ~ 0, = 1, and the equation for vh is 

wi = — — cos z. 

In order that wi be periodic it is clearly necessary that 8% be zero, 
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in which case = cos « + c, c a constant. The equation for W2 

becomes 

W2 — —62 — (cos z + c) cos z 

= —52 — i ~ c cos z — \ cos 2z 

from which we conclude that 52 = — | in order that W2 should be 
periodic. Up to terms of second order in e we have therefore 

(5.6) 6’= •*. . 

z z 
n = 1: In this case 5o = i and wq = cos - or u’o = sin If we take 

A 

= cos - we find for Wi the equation 
JU 

w[ + J = (— 5i — cos z) cos ^ 

= (- 5i - i) cos - - J cos —, 

since cos - cos z 
2i 

= -j(cos| + cos|). 
2; 

If the coefficient of cos ~ in 

the right-hand side of this equation were not zero the function Wi 

would contain a term of the form z sin - corresponding to the fact 

z 
that the homogeneous differential equation is satisfied by cos To 

di 

insure periodicity of wi it is therefore necessary to require that 5i + § 
= 0. In this case we obtain for 5 the relation 

(5.7) 5 = i - |e 

valid within terms of order e* or higher. If we take Wo = sin 

z 
rather than = cos we find in the same way the relation 

z 

2 

(5.8) 5 = \ + h 

also valid within terms of order **. 

n = 2: In this case 5o = 1 and Wo = cos 2 or wo = sin 2. If we 
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choose Wo = cos z we would find by proceeding in exactly the same 

way as above that = 0, 52 = so that 
lib 

Fig. 5.1. Approximate regions of stability of the Mathieu equation for small e. 

within terms of order t. On the other hand, the choice of wo = sin z 

z would lead to 5i = 0, 5s = — ~t, so that 

(5.10) « = 1 _ ^ 

within terms of order 
The result of plotting the curves outlining the stable regions is 

indicated in Figure 5.1. The shaded regions are the stable regions in 
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accordance with the theorems of Haupt discussed in Section 3) 
since they are the regions whose boundary points are correlated with 
solutions of (5.1) of different periods. The agreement with Figure 
4.1 is quite good for not too large values of e. 

6. Stability of the harmonic solutions of the Duffing equation 

In Chapter IV, Section 11, we have seen that the discussion of the 
stability of the harmonic solutions of the Duffing equation depends 
on the following Mathieu equation: 

cos 2a)^Jsx = 0 

for the variation bx{t) of the harmonic solution x{t), which was 
presumed to be given with sufficient accuracy by its approximation of 
lowest order a; = ^4 cos wi. It was also found that the “amplitude^’ 
A of x{i) depends upon the frequency w and on the amplitude Foi^ 
of the external periodic force FS cos oii in accordance with the relation 

(6.2) w = a + I - F,fi/A 

under the assumption that the parameter ^ is so small that terms of 
order ^ or higher could be ignored. For stability we require that all 
solutions hx of (6.1) remain bounded for < > 0. As we know from the 
preceding Section 5), this requires that the coefficients in (6.1) satisfy 
certain conditions which are readily obtained approximately if is 
small enough. Our object is to decide which pairs of values of A and 
« satisfying (6.2) lead to stable solutions of (6.1) and which to un¬ 
stable solutions, or in other words to decide which portions of the 
response curves given by (6.2) correspond to stable and which to 
unstable regions. In Figure 6.1 we indicate schematically the 
character of the response curves given by (6.2) (cf. Chapter IV, 
Sect. 2) for a complete discussion of these curves). The curve for 
FqP = 0 indicates the response curve for the free oscillation when no 
external force acts on the system; the other curves indicate the two 
branches which occur for > 0, one of them corresponding to an 
oscillation in phase with the external force {A >0), the other to an 
oscillation 180° out of phase with the external force (A < 0). The 
points marked T are the points at which the response curves have a 
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vertical tangent; they are characterized by db)/dA = 0, from which 
we obtain the relation 

<6.3) + Fop/A^ = 0 

in view of (6.2). In Chapter IV we have already argued on physical 
grounds that the points T should be transition points from stable to 
unstable pairs of values of A and w. This conjecture will be found 
to be correct in the course of the discussion to follow. We recall 
that the amplitude of the excitation is always assumed to be 
positive. 

In order to make direct use of the stability relations developed in 
the preceding Section 5) it is convenient to introduce a new inde- 

Hard spring , /3> 0 Soft spring, <0 

Fig. 6.1. Schematic response curves for the Duffing equation. 

pendent variable replacing t and new quantities replacing the param¬ 
eters occurring in (6.1), as follows: 

f z = 2wt, 

I 4:(ad = a + 

4w% = 

In terms of these quantities (6.1) becomes 

(f 8x 
(6.5) 

dz^ 
-f- (5 “t” € COS z) bx = 0, 

as one can readily verify. We observe that e is a small quantity 
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proportional to /S. In the 8, e-plane the set of curves corresponding to 
the response equation (6.2) is given in parametric form by 

(6.6) 

45 
« + -2^* 

a + - Fcfi/A 

4e = 

a+ ^PA‘‘- F,^/A 

with A as parameter, in view of (6.4). Each different value of F 
yields of course a different curve. In any given case the decision as 
to stability or instability depends upon whether the points (5, e) 
given by (6.6) fall into the stable or the unstable regions of Figure 5.1. 

We therefore turn to a geometrical discussion of the curves (6.6) 
in the 5, c-plane. The two cases of hard (0 > 0) and soft (0 < 0) 
springs are best discussed separately. We begin with the case 
0 > 0. As A approaches zero through negative values it is readily 
seen that 8 approaches zero through positive values and that all of the 
curves are tangent to the 5-axis at the origin. As A varies in a 
monotone way from zero to + <» or from zero to — oo, one sees 
readily that both 5 and e approach the point (|, J) independent of the 
value of Fo0. The point (§, i) is singular, that is, dd/dA and de/dA 
both vanish; the point is in fact easily seen to be a cusp at which two 
branches of the curves given by (6.6) come together with a common 
tangent having the slope +2; one of these is traversed as A —» — oo, 
and the other as A —> + oo. As A decreases from + oo, the values of 
5 and e decrease at first, but later increase again. In Figure 6.2 two 
curves of the set (6.6) have been plotted; in both cases the quantity 
K = 3/3/2a has been assumed to have the value 0.1, while two 
values, i.e. ki = 0.1 and ki == 1.0, were chosen for the quantity 

= Fo0/a, The two curves thus represent response curves for two 
rather widely separated values for the amplitude of the external force. 

We observe that for A < 0 the curve points lie to the left of the 
straight line 5 = J + c/2 and to the right of it for A > 0, and this 
behavior is typical for all of the response curves when 0 > 0, We 
observe that the points on the response curves for A >0 are stable 
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(cf. Figure 6.1 also), at least for values of A which are not so small 
that the curve points come into the vicinity of 5 = 1. The points on 
the branches corresponding to A < 0 are seen to be stable until A 
reaches a value corresponding to the points marked T in Figure 6.2 
where the response curve crosses the line 5 = J — 6/2, after which the 
points are all unstable points. We proceed to show that the points on 
6 = i — 6/2 correspond to the previously mentioned points with vertical 
tangents on the response curves shown in Figure 6.1, i.e. to the transition 
from stable to unstable pairs of values of A and w. For this purpose 
we develop the relations (6.6) with respect to and neglect terms of 
order higher than the first (this is of course consistent with our general 

Fig. 6.2, Map of response curves for the Duffing equation 05 > 0) on the 

stability regions of the Mathieu equation. 

procedure in which we have systematically ignored terms of this 
order in /3); the result is 

(6.7) 

45 = 1 + 
/3^ 
\l a 

+ 

3A^ 

0, 

as one can readily verify. We are at present interested in those 
values of A which satisfy (6.3), i.e. for which 3/2 A* = —Fa/A. In 
this case, one sees immediately that the curve points furnished by 
(6.7) satisfy the equation 6 ■= J — e/2, which proves our statement. 
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The locus of the vertical tangents of the response curves in the Ay o)-plane 
thus maps on the boundary between a stable and an unstable region of the 
8y €-piane, and this verifies the conjectures in Chapter IV (cf. particu¬ 
larly Section 3 and Section 11). 

We turn now to the discussion of stability for the case < 0, i.e. 
the case of a soft spring. The curves corresponding to (6.6) in this 

Fig. 6.3. Map of response curves for the Duffing equation 03 < 0) on the 

stability regions of the Mathieu equation. 

case are different from those in the preceding case because of the fact 
that the denominators in the right-hand sides of (6.6) tend to zero 
for three real values of A so that the curve points in the 5, €-plane 
tend to infinity when A approaches these values. In addition, e is 
always negative. In Figure 6.3 the curves have been plotted for the 
case K = 3/3/2a ~ —0.1 and ki = 1.0. Unlike the preceding case 
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for > 0, the branch of the response curve with A < 0 (the “out of 
phase” branch) is stable, while the branch with ^ > 0 is stable only 
for amplitudes less (numerically) than the transition value T where 
the response curve has a vertical tangent. It has already been shown 
that the locus of the transition points T (when Fo varies) falls on the 
line 5 = 1 — t/2 which separates a stable from an unstable region. 
Thus the results for stability in the case < 0 are also shown to 
occur in accordance with our expectations. 

A few further comments on the results of the present section 
are of interest. We have noted that the image of the response curves 
for A > 0 (i.e. the in-phase branches) in the case > 0 falls in a 
stable region of the 5, e-plane only if A does not become so small that 
5 lies near the value unity, which means that w lies near the value 
\/a/2, as we see from the second equation of (6.4). This indicates 
that the response curves given by (6.2) for > 0 are accurate only 
for values of w which exceed somewhat the value a/2. In the case 
^ < 0, the curves of Figure 6.3 indicate that a branch A < 0 as well 
as the branch A > 0 may become unstable when 5 is near unity. 
One is tempted to conjecture that the response curves might show 
peculiarities of one kind or another in the vicinity of these points if 
they were calculated with greater accuracy. This is a question 
which deserves further investigation. 

In all of the above discussion we have tacitly assumed that the 
amplitude /3Fo of the external force was different from zero, i.e. that 
the solutions of the Duffing equation under discussion were forced 
oscillations. It is, however, also of considerable interest to consider 
the case Fo = 0, i.e. the case of the free oscillations. In this special 
case the parameter A can be readily eliminated from (6.6) to yield 

(6.8) ■ » - J + I - 

A comparison with Figure 6.2 shows that these points lie on the 
boundary between stable and unstable regions and hence as we know 
are points corresponding to unstable solutions. We have thus 
obtained the rather paradoxical result that the free oscillations of the 
Duffing equation are unstable! Of course the reason for this lies in 
Qur definition of stability. We propose to discuss this point in 
detail in the next section, where we introduce a modified but still 
quite reasonable definition for stability which leads to exactly the 
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same results for stability of the forced oscillations of the Duffing 
equation as we have found in this section, while the free oscillations 
are found to be stable on the basis of the new definition. 

7. Orbital stability of the harmonic solutions of the Duffing 
equation 

In the preceding section we have seen that the free oscillations 
of the Duffing equation are unstable on the basis of the definition of 
stability used there. This seems rather strange at first sight since 
all of these solutions are pericxlic and they therefore can be represented 
in the velocity-displacement plane as a set of closed curves; a slight 
disturbance therefore has the effect of a shift from one such closed 
curve in the phase plane to another which lies in its neighborhood. 
However, the periods of the two oscillations differ slightly, as we 
know, and thus one sees readily that the corresponding displacements 
will differ by finite amounts for sufficiently large values of the time 
even though the disturbance is made very small. It is thus clear that 
the definition of stability used hitherto must yield the result that such 
oscillations are unstable, since the motion to be tested for stability is 
always compared with another for the same values of the time. On the 
other hand, it would seem not unreasonable in many cases to consider 
a given motion as stable if the perturbed motions yield curves in the 
phase plane which lie near to the image of the original curve in that 
plane—in other words if the given motion and all neighboring ones 
are such that the velocities and displacements differ only slightly 
throughout the motion when the time variable is appropriately 
transformed in each particular neighboring solution. In astronomy 
the problem of the stability of the motion of the planets is one in 
which such a definition of stability is clearly appropriate, and in fact 
the stability problem is often referred to in these cases as a problem 
in orbital stability. 

We turn then to the discussion of the orbital stability of the 
harmonic solutions of the Duffing equation:* 

(7.1) X + ax + == F cos <i)t. 

Up to now we have considered a harmonic solution x(t) of (7.1) 

* In Appendix V we derive the Poincar^ criterion for orbital stability in 

all generality and without specific reference to the theory of HilPs equation. 
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and compared it with a neighboring solution x(0 + 5a: (0 obtained by 
changing the initial data slightly; the solution x{t) was then said to 
be stable or unstable according to whether the solutions of the 
variational equation, in this case a Hill’s equation: 

(7.2) 8x+ (a + 3fix^)8x = 0 

were all bounded or not. For the discussion of orbital stability it 
is necessary, in accordance with our above discussion, to consider 
variations of a more general character than has been customary, in 
which the independent variable (the time) as well as the initial 
conditions are varied. We consider therefore a set of solutions of 
(7.1) of the form x(i; Xi, X2) in which Xi and X2 depend on the initial 
values of x and for < = 0 in such a way that the harmonic solution 
Xo(t) whose stability is in question is obtained for Xi = X2 = 0, i.e. 
xoit) = x(t; 0, 0). We then consider variations of these solutions of 
the form x(f(\i, X2)^; Xi, X2)* in which the factor /(Xi, X2) on < is a 
function which reduces to unity when Xi and X2 are zero; our object 
then is to decide whether a function /(Xi, X2) can be found for suflS- 
ciently small but otherwise arbitrary values of Xi and X2 such that 
I x — oJo I remains bounded for all t, at least within terms of first order 
in the small quantities Xi and X2. Within first order terms in Xi and 
X2 we may write 

(7.3) /(Xi, X2) = 1 + K^\l + K2X2 

with Ki and k2 certain constants, and hence we have also with the 
same degree of accuracy the relation 

Xi, X2) - xo(t) 

= (k.xo + + (tK2X, + 

in which of course are all evaluated for Xi == X2 = 0. 
aXi 0X2 

Our problem in any given case is to decide whether the two terms 
on the right-hand side of (7.4) can be made bounded or not for all t 
by making appropriate choices for the constants #ci and k2 ; if they 
can be made bounded, we say that the solution is orbitally stable. 

These functions will in general not be solutions of (7.1), of course. 
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We begin by observing that 6a: = ^ and ^ are certain 
aAi aA2 

special solutions of (7.2) when x = a:o(/), as one can readily verify 
simply by differentiating (7.1) with respect to Xi and X2 and observing 
that the right-hand side of (7.1) is independent of Xi and X2. Con¬ 
sider now the case of the free oscillations of the Duffing equation, i.e. 
the case in which F = 0. In this case we observe that is also a 
solution of (7.2), as we can see by differentiating (7.1) with respect to 
t\ thus the parameters a and in (7.2) have such values that (7.2) 
possesses a periodic solution having the same period as the coefficient 
a + 3i3a:^, since xo has the same period as Xo. It follows (cf. (3.5) 
and the subsequent discussion) that the characteristic equation, for 
(7.2) has a double root and hence (cf. (2.14)) fundamental solutions 
6x1, 5x2 of (7.2) exist which have the form 

(7.5) (to-VO, 
[ 5X2 = A<Xo(0 + ^(0, 

in which ^{i) ’s a function having the same period as Xo(0 and ^4 is a 
certain constant which may or may not be zero. The fixed functions 

and ^ are solutions of (7.2), as we have already remarked, and 

hence are certain linear combinations of 5xi and 6x2. From the 
form of the quantities in the tw^o parentheses on the right-hand side of 
(7.4) we now see that ki and kz can always be chosen in such a way that 
the only term which could possibly be unbounded—i.e. a term of the 
form —^will be cancelled out. It follows therefore that the 
free oscillations of the Duffing equation are stable on the basis of the 
new definition, i.e. they are orbitally stable. 

It is obvious that any solutions of (7.1) which were stable in the 
earlier sense will also be orbitally stable: one need only choose 
Ki and k2 to be zero in these cases. It is also true that the new defini¬ 
tion of stability does not cause solutions of (7.1) other than the free 
oscillations to become stable which were unstable according to the 
earlier definition: this follows at once from the known fact that any 

dXn 
unbounded solutions of (7.2) which are correlated with points 

d\i 

in the interior of an unstable region of the Mathieu equation become 
exponentially infinite in these cases, so that it is not possible to make 
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the quantities <(c,io + -jr i“ (7-4) bounded by any choice of «,• in 
OAi 

view of the fact that io is a periodic function. It follows therefore 

that the two definitions of stability yield the same results for the 

harmonic solutions of the Duffing equation except in the case of the 

free oscillations, which are stable rather than unstable on the basis 

of the less restrictive definition. 



APPENDIX I 

Mathematical Justification of the Perturbation 
Method 

1* Existence of the perturbation series in general 

In this book we have in general assumed without proof that the 
methods of solution involving infinite processes of one sort or another, 
e.g., the iteration method or the perturbation method, converge to 
the desired solution. In this section we show how one of them, the 
perturbation method, can be given a rigorous mathematical justifica¬ 
tion. In the next section we shall see that important information 
regarding the mode of attack that is appropriate in various special 
cases can also be obtained from some of the formulas used in the 
existence proof.* 

We consider the differential equation 

(1.1) X + X = efix, i, B)y $ 0)1 

for x(0, in which the function / is assumed to have the period 27r/w 
in t and € is a small parameter. This differential equation is clearly 
general enough to include all of the cases treated in this book when¬ 
ever a development in the neighborhood of the linearized vibration 
problem was in question. It also includes the case of the HilPs 
equation for small periodic coefficients. 

Our aim is to prove the existence of solutions of period 2T/a> 
expressible as power series in c. Instead of proving directly the 
convergence of such power series, it is simpler to prove that there 
exist periodic solutions which depend analytically upon €, which then 
implies the possibility of a power series expansion. It is therefore 
appropriate to assume that /(x, x, 0) is an analytic function of the 
three complex variables x, x, and 0 for all values of these arguments; 
the parameter c is also to be considered complex. It follows** that all 
solutions x(t\ c) of (1.1) depend analytically upon t and e. 

* The baaic ideas in this proof are due to Poincare [33]. The presentation 
given here follows that given by Friedrichs [40]. 

*''‘For a proof of this, see Ince [17], Ch. XII. 

223 



224 PERTURBATION METHOD: JUSTIFICATION APP. I 

We are interested in establishing the existence of periodic solutions 
x(i). It follows that we may assume the initial condition i:(0) = 0 
without loss of generality, provided that we shift the phase of / in 
(1.1) appropriately. We write, therefore, in place of (1.1) 

(1.2) X + X = €f(Xy X, 6 + $), 

in which the phase shift d is to be chosen properly. Periodic solutions 
of (1.2) are to be found which satisfy the initial conditions 

(1.3) x(0) = A, x(0) = 0, 

the complex number A being at our disposal. It is known (see, for 
example, the book of Ince cited above) that a unique solution x(t) = 
x(t; Ay S, e) of (1.2) satisfying the initial conditions (1.3) exists in the 
domain 

I < I < Ti, lx-Al<Ar, I i I < , A^ = 31 Al, 

in which x(t; A, 5, c) depends analytically on i. A, S, and e. For 
€ == 0, in particular, the solution is 

(1.4) x(i) = A cos f, 

and it has the real period 27r. Our purpose is to establish the existence 
of periodic solutions in a neighborhood of e = 0 by assuming that 
A = -4(e), S = 5(e), and selecting from the solutions x(l;A(€), 5(e), e) 
of the initial value problem those which are periodic. The period T 
will then also be a function of e: T = ^(e) = 27r/co, which must ap¬ 
proach 27r as c approaches zero. It must therefore be shown that the 
bound Ti for | < | can be chosen greater than 27r. We indicate how 
this can be done by taking e sufficiently small, on the basis of two 
relations which are of fundamental importance otherwise for the 
entire discussion to follow. The differential equation (1.2) and initial 
conditions (1.3) are replaced by the equivalent integral equation 

(1.5) x(t) = A cos £ + € f flxir), x(t), q)t + 5] sin (t — r) dr, 
Jo 

from which 

(1.6) x(t) = —A sin ^ + € f /[x(r), :c(r), 6;r + 5] cos (( — r) dr. 

If € is chosen small enough, e.g., if € < AjZvMy M being the maximum 
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of/(x, X, 6) in the domain |x — oo <^<oo, 
it is easily seen that iterations applied to (1.5) in the usual way will 
lead to a sequence of functions Xn(t) with values which stay within the 
domain | x — | < , | x | < Ai, if | i | < Stt. It then follows 
along standard lines that the solution x(t) exists for | ^ | < Stt. 

We now seek functions -4(6), ^(t), !r(c) such that x(t; A(e), 6(e), e) 
is periodic with the period T = 2ir/o), The conditions of periodicity 
are 

I 6, c) = x(0; A, 6, e), 

\x(T;A,d,e) = 0. 

Our problem would clearly be solved if we could show that analytic 
functions ^(e), T(€), and 5(e) can be chosen in such a way as to satisfy 
equations (1.7). These periodicity relations are two equations for the 
three functions A, 5, and T, so that there is some latitude possible in 
deciding what quantity should be prescribed in advance. For 
instance, one might prescribe A arbitrarily and seek to determine 
r(€) and 5(e), as was done actually in Chapter IV in dealing with 
forced oscillations of systems with nonlinear restoring forces; or one 
might prescribe 5 and find A (c) and T{e) as was done in Chapter V 
in dealing with the free oscillations of self*sustained systems. In 
Chapter IV we found also that it was not a matter of indifference 
whether one choice or another for the quantity to be prescribed was 
made—^for the cases considered there it was in fact found really 
essential to prescribe the quantity A and then determine T in accord 
with that choice. As we have already hinted above, the method we 
follow here to establish the validity of the perturbation series also 
yields clues regarding the proper procedure to be used in individual 
cases in order to obtain the series concretely. 

We have reduced the problem of determining the existence of 
periodic solutions of our differential equation to the problem of 
solving the periodicity equations (1,7) in a neighborhood of € = 0. 
To solve the equations we naturally wish to make use of the implicit 
function theorem in a neighborhood of c == 0. However, this theorem 
cannot be applied to equations (1.7) in their present form since they 
are, as we know, satisfied identically in A for T = 2ir (i.e., in the 
case € « 0). This difficulty can be overcome by proceeding as 
follows. Instead of T a new variable i? is introduced by the equation 

(1.8) r = 2X + €17(€), 
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SO that the frequency w is given by 

(1.8)' 
1 + 

2ir 

1 — 

2t 
for € small. 

Thus T ^ 2ir automatically when € == 0. In order to formulate 
periodicity conditions in such a way that they are not satisfied 
identically we introduce the quantities 

(1.9) P = - x{T; A, 8, e)] = P{A, 5, i?; 0, 

(1.10) Q = -€^\x{T;A, 8, e)] = Q(i4, 5,17; e), 

so that the periodicity conditions are now given by 

(1.11) P = Q = 0. 

The choice made for P and Q was determined by the integral repre¬ 
sentations (1.5) and (1.6) for x{t) and x{t): we shall see in a moment 
that the definitions of P and Q can indeed be extended so that these 
functions are regular and analytic for e = 0 and that they do not in 
general become identities in i4 for c = 0. The quantities P and Q 
are in fact given by 

P = Ae~\(l - cos €17)] 

(1.12) -2ir+€ij 

+ / fMr), x{r), cor + 5] sin (r — erj) dr, 
Jo 

Q sin ei7 

— f /[^(r), x(t), cot + 8] COS (r — erj) dr, 
Jo 

with CO expressed in terms of ti through (1.8)'. Since sin c and 
c”’^(l — cos 6) can be extended to € = 0 as regular analytic functions 
of €, the same is true for P and Q considered as functions of the 
complex variables e, 17, and 8. 

With P and Q defined by (1.12) and (1.13) we can in principle 
investigate the periodicity conditions P = Q = 0, beginning with the 
equations for € = 0. If it could be shown that the equations for 
€ = 0 possess a solution for any one of the possible pairs of values 
{Ay rj), (il, 5), (8y rj)—and for arbitrary values of the respective third 
quantity—such that the Jacobian Jo of P and Q with respect to the 



EXISTENCE OF PERTURBATION SERIES 227 

appropriate pair of values does not vanish for 6 = 0, it would follow 
from the implicit function theorem that the periodicity equations 
could be solved in a neighborhood of € = 0 to yield »?(€)), 
(4(c), 5(c)), or (5(c), 17(c)). Under these circumstances the existence 
of periodic solutions of (1.1) would be established; these solutions 
would have the period T = 2t + er} and they would be regular 
analytic functions of c in a neighborhood of c = 0 and therefore would 
possess power series developments in c. In any given case, then— 
i.e. for any given /—the existence of the perturbation series may be 
decided by studying a certain Jacobian. Once the existence of the 
series is established the successive coefficients of the series can be 
obtained by the formal processes illustrated in Chapter IV and 
Chapter V. 

Before passing on to the study of concrete cases in the next section 
it is of interest to comment on the possibility of determining the 
periodic solutions in terms of quantities other than 4, T, or 5. For 
instance, in Chapter IV we more often than not prescribed the 
coefficient 4i of the term 4i cos 2irt/T in the Fourier series for the 
periodic solution, instead of the quantity 4. It would not be difficult 
to justify this procedure in these cases by showing that 4i(€) is an 
analytic function of e which reduces to 4 for € = 0 and that the 
function 4i(4) can be inverted, i.e. that 4 can be considered a 
function of 4i. If this were done it is clear that 4i could be pre¬ 
scribed instead of 4 and again the solution x and its period T would 
depend analytically on e. 

2* Existence of the perturbation series in concrete cases 

Our object here is to study the solutions near € = 0 of the equations 
obtained from (1.12) and (1.13): 

(2,1) -P(4, 5,17; e) = 4€“\1 — cos C17) r»+€7 

/[xCt), x(t), ut + 5] sin (t — eti) dr = 0, 

(2.2) Q(.4, 5, ij; «) = Ae~^ sin 

«2s-+<9 

— / flxir), x(r), wr + 5] cos (r — eri) dr = 0, 
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in which w = 2^1(2^ + c^?). We denote by Po and Qo the values of 
P and Q for € = 0; these quantities are thus given as follows: /2t 

f(A cos T, —A sin r, t + 5) sin r dr ^ Po(-4, 5), 

-27r 

(2 4) ^0 ~ r, r + 5) cos t dr 

= QoW, 5,17), 

since x = ^4 cos i = sin / for € = 0. It is of some importance 
for the later discussion to observe that Po is independent of r?, and 
that we may be able in some cases to solve the equation Po = 0 to 
obtain A — A(i and insert its value in the equation Qo = 0 to determine 
770. If it is possible to do so, it is clear that the existence of a periodic 
solution is established and at the same time the lowest order terms 
ilo and 770 in the developments for the ‘‘amplitude^* and for 77 (essen¬ 
tially the period) are obtained. 

We proceed to discuss a number of special cases which arise from 
special choices of the function /. To begin with we consider these 
cases in two main groups: A) the free oscillations for which / is 
independent of and B) the forced oscillations in which / depends 
explicitly on /. 

A, Free oscillations 

In the case of the free oscillations, which are characterized by a 
function / not depending on the quantities Po and Qo reduce to 

(2.5) Po(A) = f f{A cos r, — A sin r) sin r dr, 
Jo rir 

f{A cos r, — A sin r) cos r dr. 

The simplest case to consider would seem to be the case in which/ 
is also independent of x, i.e. the case of the free oscillation without 
damping. In this case we have, however, 

(2.7) Po(A) = / f(A cos t) sin t dr = — / fiA cos t) d cos t 
Jo Jr-O 

and one sees that Po(A) is identically zero. Consequently our 
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procedure fails; we shall see later how it can be modified in such a way 
as to yield the desired development in this case. 

We turn next to cases in which damping occurs: 

Case 1, Here we take the case of linearly damped oscillations, 
with / = /(x) — cx, c = constant. One finds readily for Po the 
equation 

(2.8) Po(A) - cAtt, 

and since Po = 0 only for A = i4o = 0 we obtain the expected result 
that no free linearly damped oscillation exists except the state of 
equilibrium. 

Case 2, We suppose now that/represents a pure damping force, 
i.e. / = /(x), and for Po and Qo we have 

(2.9) 

PU) 

Qo(.4, ri) 

= /(—A sin r) sin r dr, 
Jo 

= Atj — I /(—A sin t) cos t dr. 
Jo 

If / represents a true damping force, i.e. a force which is always 
opposite in direction to the velocity, then /(x) and x are opposite in 
sign and Po(A) would not vanish except for A = Ao = 0. Again 
we have the result to be expected: no oscillation exists except the 
state of rest. However, if / represents a partly negative resistance, 
it may well be that the equation Po(A) = 0 has a solution Ao other 
than Ao = 0. For example, in the case of the free oscillations of the 
van der Pol equation/(x) is given by 

(2.10) /(x) s (i - J i®). 

From (2.9) one finds for Po(^) the equation 

(2.11) Po(A) = -irAil - i A^) 

8othatPo(.i4) = 0 yields either .40 = 0, or.4o = ±2. With.4o = +2 
one then finds from Qo(2, >?) = 0 the value i;o = 0 for ij, which means 
that the frequency w is given by w = 1 within terms of second order 
in €. These results are identical with those obtained by the formal 
perturbation procedure in Part A of Chapter V. 



230 PERTURBATION METHOD: JUSTIFICATION APP. I 

Case 3, We now assume that / is an even function of x, i.e. 
/(x, ~x) = /(x, x). This includes the case mentioned above (i.e. / 
independent of x) in which our procedure failed so far to give the 
desired development. A modified procedure is, however, easy to 
devise. We observe fii^t that x(—0 is a solution of (1.2) satisfying 
(1.3) if x(0 is a solution and our condition on / holds. Since we are 
interested only in periodic solutions we may assume x(0) = 0 without 
loss of generality. From the uniqueness theorem for the solution of 
the initial value problem of our differential equation it therefore 
follows that x(—0 = x(t)y so that, in particular, x( —T/2) = x{T/2) 
and x( —r/2) = —x(r/2). On the other hand we have x{T + 0 = 
x(0, and consequently for t = —T/2 the relation x(—r/2) = 
x(T/2), It follows therefore that x(T/2) = 0, and the periodicity 
conditions are reduced in the present case to this one condition. 
The periodicity condition can therefore be written (cf. (1.13)) in the 
form 

(2.12) 
RiA, rj; e) — Ae ^ sin ~ 

0, 

and this reduces for e = 0 to 

(2.13) /2o(.4) = s — / f{A cos T, —A sin r) cos r dr = 0. 
Z Jo 

Now we are permitted to prescribe A 0 arbitrarily, after which 
/io = 0 can be solved to yield 

ijo = 2A ^ I f{A cos r, — A sin r) cos r dr. 
Jo 

- I A 0, it follows that (2,12) can be solved for 
I 

7! = flit) with 17(0) = 170. This procedure would, in particular, 
yield the perturbation series for the free undamped oscillations of 
systems with nonlinear restoring forces with results coinciding with 
those obtained in Chapter IV. 

(2.14) 

a- Since — 
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B. Forced oscillations 

In the case of forced oscillations, in which the function / is not 
independent of 6, we must solve the equations 

-2t 

(2.15) Po(Ay d) = / f{A cos Ty —A sin r, r + 6) sin r dr = 0, 
Jo 

QoiAy 8,7}) = Arj 

(2.16) -2r 

~ / f(A 
Jo 

cos r, —A sin Ty T + 8) cos r dr = 0 

obtained from (1.12) and (1.13) for e = 0. Again we consider a few 
special cases: 

Case 1. Consider first the case of forced oscillations of a system 
with nonlinear damping but linear restoring force, i.e. the case in 
which / = f{x) + F cos (col + 5). The equation Po = 0 reduces to 

(2.17) tF sin 8 A sin r) sin r dr 

and this equation has in general a solution Ao even if / represents true 
damping, i.e. if/(i)/i: <0. If/ represents a partly negative I'csist- 
ance, as in the case of forced oscillations of self-excited systems, there 
may be several solutions if F is sufficiently small. For example, if / 
is given by 

(2.18) J ^ X — I + F cos (cot + 8)y 

the equation Po = 0 for Ao reduces to 

(2.19) ^o(l - ^Al) = -F sin d. 

From (2.16) Ave find that 

(2.20) T?o = PAo^V cos 8. 

The relations (2.19) and (2.20) yield the response curves for the 
forced oscillations, at least to the lowest order of approximation. 

In fact, we may set (cf. (1.18)') 2if C-^") ~ T/o so that rjo is propor¬ 

tional to the quantity <r of part B of Chapter V Avhich Avas called the 
detuning, Avhile Ao can be interpreted, of course, as the amplitude of 
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the response. If 5 is then eliminated between (2.19) and (2.20) the 
result is readily found to be, with <t = tjo/it: 

(2.21) AlW^ + (1 - i ^d)-] = F* 

and this yields exactly the same response curves as were found in 
Part B of Chapter V when due regard is paid to differences in nota¬ 
tion. This should not be surprising since the differential equation x — 
(i — i X*) + cos (ct)t + S) yields by differentiation the equation 
^ — (1 — ^2)^ + 2/ = — Fco sin (o)i + S) for y = x which is essentially 

the equation dealt with in Chapter V. The perturbation procedure 
thus furnishes the same result in the lowest order as the quite different 
procedure of van der Pol. 

Case Next we consider the case of the Duffing equation with 
linear damping, in which / is defined by 

(2.22) / = f(x) — cx + F cos (0 + S), c 0. 

The equations Po — 0 and Qo == 0 are in this case 

(2.23) Po(-4, 5) = ircA — ttF sin 5 = 0, 

l>2r 

(2.24) Qo{A, 5yrj) = Arj — / fiA cos r) cos t dr — ttF COS 8 = 0, 
Jo 

as one finds with no difficulty. If 5 = 5o 5*^ 0 is prescribed, (2.23) 
yields for Aq the value 

(2.25) Ao = c“^ F sin 5o, with Ao 9^ 0, 

and this value inserted in (2.24) yields for rjo the value 

(2.26) no = I J 
.Jo 

/(Ao cos r) cos T dr + tF COS «oj. 

The last two equations yield the response curves to the lowest order 
in c; one can easily verify that they give the same results as were found 
formally in Chapter IV for c 9^ 0. If c = 0, we see from (2.23) that 
5 = 0 or 5 = TT, and (2.24) then yields the value of no for values of 
A 5^ 0 but otherwise arbitrary. 

Case 5. Finally, we consider briefly the method to be followed in 
order to obtain subharmonic periodic solutions, for which a somewhat 
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different approach is necessary. To begin with, the differential 

equation is written in the form 

(2.27) X -{■ X — H CQ&n6 = ef{x, x), 6 = wt, 

with n an integer larger than one, and H assumed to be kept fixed as 
« —> 0. Again we introduce a phase shift S by replacing d in (2.27) 

with 6 + 6 and require 

(2.28) a:(0) = A, x{0) = 0. 

We introduce further the period T = 2ir/u of the oscillation desired 

and set 

(2.29) T ~ 2x + ei?(«). 

For e = 0 the solution of (2.27) (with + 6 instead of 6) is 

(2 30) ~ = {A + kH cos n5) cos t 

— nnH sin n6 sin t — kH cos n{t + 6), 

with k = l/(n* — 1). 
The conditions under which a solution of (2.27) will have the 

period T, which is 1/n times the period of the excitation H cos nut, 

can then be formulated in the same way as above by two equations 
P = 0, Q = 0 which reduce for e = 0 to 

(2.31) 

C 71 
PoiA, 5,fi) = / /[xc(t), io(T)] sin rdr + ; H rj siarid 

Jq 71 — 1 

iT, / i , X /a H cos n5\ QaiA, 6, Tj) — j if 

— / /[*o(t), a:o(T)] cos r dr = 0. 
Jo 

The further discussion then follows the same lines as above. 





APPENDIX II 

The Existence of Combination Oscillations 

In Appendix I the existence of periodic solutions of a nonlinear 
differential equation was proved for the case in which the excitation 
was a periodic function of the time. In this appendix we shall prove 
the existence of a special type of combination oscillations in the form 
of certain almost periodic solutions of the nonlinear differential equa¬ 
tion 

(1) X + cx + X — px^ = h(t)^ c > 0, 

with h{t) an, in general, almost periodic function given by 

(2) hit) = Z 
PM»2 

*n which pi, p2 are certain positive or negative integers. At the end 
of Chapter IV in dealing with the problem of combination tones it 
was pointed out that the usual methods of approximation applied to 
equation (1) for c == 0 (i.e. with damping not present) and wi/w2 

irrational would almost certainly lead to divergent series because of 
the occurrence of certain small divisors in the representations of the 
terms in the series expansions. The purpose of this appendix is to 
show that the ‘‘difficulty of the small divisors” can be overcome in 
some cases at least in a system which is provided with viscous damp¬ 
ing. 

To this end we follow a procedure given by Friedrichs [40]. 
First of all a set of functions z{t) of the form 

(3) zit) = Z 
Vl’Vt 

is introduced. For reasons which will soon be apparent it is useful 
to introduce a norm || « || for the functions z by the definition 

(4) ||2|| = E 
Pl»J>2 

235 
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and to denote by K the class of functions which have a finite norm. 
In particular, the external force, or excitation, h{t)^ which is given in 
our notation by 

(5) MO - 

is assumed to belong to the class K\ we set 

(6) II A II = V < «• 
The class K of functions z is readily seen to be closed in the following 
sense; If (2?^:! is a S3t of functions belonging to K such that 

II 2n - Zml 0 
when 00, then there exists a function zmK such that 

II - 2II 0. 
In other words, if the Cauchy criterion for convergence (in the sense 
of the norm defined by (4)) is satisfied, there exists a limit function 
of the class. Since, in addition, 

uwi <11 ^11 
in view of (4), it follows that convergence in the sense of the norm 
implies uniform convergence in the present case. 

The motivation for the choice of the norm made here results from 
the following considerations: If Zi and Z2 are in /f, the linear combina¬ 
tion aiZi + ^222 is also in K since the inequality 

(7) II otiZi + a2Z2 II < I ai I II 21 II + I a2 I || ^21| 
clearly holds; further, the product zvZ2 is also in K since the in¬ 
equality 

(8) II 21^2 II < II II II 22 II 
holds. In addition, if z and z are both in K, one sees readily that z 
can be expressed in the form 

(9) 2 = {iipiui + P2W2)Cp.p,}, 
i.e., the series for z may be differentiated termwise to yield z. 

It is useful to begin by' considering the linear differential equa¬ 
tion 

flO) y + cii + y = g(t) => {Gpip,}, 
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in which g is assumed to be in K, and to show that it possesses a 
solution in K. Such a solution is in fact given in the form 

(11) y Rg 

with R an operation defined for any functions of our class (cf. (4)) by 

(12) Rz = {rpjpjCpjpo 1 

when the numbers are given by 

(13) Tpjpj == (1 + tc(pi60i + P2W2) (PlWl + P2W2)^] ^ 

One verifies readily that equation (11) does indeed furnish a solution 
of (10). It is important to observe that the numbers Tp^p^ satisfy 
the inequality 

(14) i rpiPi 1 < p, 

with 

(15) 

if c < V2, 

IP = 1 if c > y/l- 

The inequality (14) is readily verified directly, or it can be inferred 
from the discussion at the end of Section 3 in Chapter I. It might 
be observed here that it is in the establishing of (14) that we make 
essential use of the existence of a damping term with c > 0. It fol¬ 
lows that the function Rz obtained by performing the operation R 
defined by equation (12) has a norm vrhich satisfies the inequality 

(16) ||i^^|l<p||^||, 

and thus belongs in K. 
Instead of equation (1) it is convenient to consider the integral 

equation 

(17) X = + h), 

which is clearly equivalent to it when the operator R is defined by 
(12) since we may think of (1) as written in the form r + ci + ^ = 
jSx* + h{t). Our purpose is now to perform on (17) the iterations 

(18) Xn+l = R(ffXn + h)j 
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starting with 

(19) 0-0 = 0, 

and to establish the convergence of the sequence Xn to a solution of 
(17) if ^ is taken small enough. More precisely, we prove the con¬ 
vergence if P satisfies the inequality 

(20) ^ 

in which t] and p are defined by (6) and (15). We also introduce the 
number ao by 

(21) ofo = 2pT7, 

with the (consequence that 

(22) p(0OL^ + »/) < ao if a < ao, /^ < , 

as one can readily show. As a consequence of (22), (16), and (6) 
we have the inequality 

(23) il + /i) II < a„ 

if 11 2 II < a; for (16) applies to R(pz' + h) since this function belongs 
in K: our norm was in fact defined in such a way as to make this 
true. For the sequence Xn it therefore follows that 

(24) llxnll <ao, n = 0,1,2,...; 

or, in other ^^'ords, the iteration process always yields functions which 
belong to K, From (18) and the fact that the operation R is linear 
it follows that 

(25) il Xn+l - Xn\\ = II R^ixl - xLi) 11, 

and hence, in view of (8) and (16), that 

(26) 11 a;„+i - r„ || < p/3 H Xn + x„-i |1 H x„ - x„_i || 

^ 11 Xn Xn—1 11 

by (24). From (20) and (21) we then obtain the inequality 

(27) |a;„+i — Xnll < I X„ - Xn-i 
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Consequently, since the class of functions K is closed, the iterations 

converge to a function x{t) such that || — x || —»0. Furthermore, 

since the convergence is uniform in t it is not difficult to establish 

the fact that x(() satisfies the integral equation (7), and from this 

fact one shows easily that x(() is differentiable and is a solution of (1). 

We have therefore proved the existence of combination oscilla¬ 

tions which are in general a special type of almost periodic solutions 

of equation (1) under the condition (20), which may also be written 

as follows: 

4/311^11 <~< 
if 

if 

c < V2 , 

c > v^2. 

This condition requires either that the damping coefficient c be large 

enough, or that the coefficient /3 of the nonlinear term, or the ampli¬ 

tude II fi II of the excitation be small enough. Then almost periodic 

solutions in a neighborhood of the equilibrium state x s 0 exist ivhich 

are unique once the parameters c, /3, and the function k(f) in equation 

(1) are specified. 

In the case of the Duffing equation we found, by the iteration or 

perturbation schemes used in Chapter IV, that in some ranges of 

the excitation frequency it was possible to have as many as three 

different solutions having the same frequency. The combination 

oscillations obtained abov^e are uniquely determined due to the 

restriction || x || < ao on the amplitude, as we have already remarked, 

but it would be very interesting if some other mode of attack could 

lie invented which would lead to the analogue of the Duffing phenom¬ 

ena of instability and hysteresis also in the case of combination tones. 





APPENDIX III 

The Existence of Limit Cycles in Free Oscillations 
of Self-sustained Systems 

General discussion 

In Part A of Chapter V we have discussed in detail various special 
types of free oscillations, with particular emphasis on Rayleigh’s 
or van der Pol’s equation, for which there exists exactly one limit 
cycle. Our purpose in this appendix is to prove the existence of at 
least one limit cycle in systems for which the characteristic has cer¬ 
tain special properties that one might expect to find normally in the 
applications. Later on, in Appendix VI, we shall prove that the 
limit cycle thus found is unique provided that an additional condition 
is imposed on the characteristic. 

The existence of a limit cycle will be proved by carrying out a 
construction due to Poincar4. The idea of Poincar6, as applied to 
a first order system of differential equations of the form dx/dt = 
P{Xj v)y dy/dt = Q(x, v), is the following: A ring-shaped region in the 
X, v-plane free of singular points is constructed with the property that 
all solution curves of the system pass across the boundary of the 
ring into its interior when t increases. As a consequence, any solu¬ 
tion curves which start at points inside the ring must of necessity 
remain inside it as < increases. One could then conclude at once, on 
the basis of the theorem of Poincar^ and Bendixson cited in Section 
13 of Chapter V (which applies since no singular points occur in the 
ring), that at least one limit cycle exists. However, in many cases, 
including those to be treated in this appendix and in the Appendices 
IV and VI, it is possible to prove the existence of a limit cycle rather 
easily without the necessity of using a theorem as general as the 
theorem of Poincar^ and Bendixson. This is done, again following 
Poincar^, by showing first that all solution curves in the ring make 
a complete circuit around the ring as t increases, so that any solution 

241 
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which starts on a cross section of the ring will cut the cross section 
again for the first time for a certain larger value of a continuous map¬ 
ping of the cross section on itself is thus set up, and the existence of 
a closed solution curve or limit cycle then follows from the fact that 
such a mapping can be shown to have at least one fixed point, that 
is, a point which is both the initial point and the final point of a 
certain solution curve that makes one complete circuit around the 
ring. In all of the cases in which we use this method the cross sec¬ 
tion of the ring will be a certain segment of a straight line. It should 
perhaps also be stated that the continuity of the mapping of the 
segment on itself is ensured by the theorem on the continuous de¬ 
pendence of the solutions of the differential eejuations on the initial 
conditions. 

The fixed point theorem which is needed to justify the above 
scheme for obtaining the existence of a limit cycle is easy to prove. 
We give a proof of it here once for all in order to avoid interruption 
in the continuity of the discussions in several places later on. Let 
the mapping of the segment S: a < x < b on itself be given by the 
continuous function /(.r). We have the conditions /(a) > a and 
f{b) < by and consequently the continuous function f{x) — x is non¬ 
negative for X = a and non-positive for x = b so that it vanishes some¬ 
where in the interval a < x < b. In other words, a value of .1; exists 
in the interval for which x = f(x), which proves the theorem. 

2. Existence of a limit cycle 
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(2.3) G\v) > 0, (?'(0) > a, 

(2.4) G{-v) = -G{v), 

(2.5) 1 G{v) I < c. 

This example is basically the same as the one treated by Friedrichs 
[40] (cf. p. 76). As was mentioned in Chapter V, the existence and 
uniqueness of a limit cy(de for the case of the van der Pol equation 
have been proved by Li<5nard [25], and Levinson and Smith have 
generalized these results to a broad class of ecpiations. 

X 

Fig. 2.1. Form of the characteristic. 

The effect of these conditions is to yield a symmetric “charac¬ 
teristic” X == F{v) of the type indicated in Figure 2.1.* It has the 
same qualitative appearance for large | v | and for values of x and v 
near the origin as the characteristic in the van der Pol case: in view 

* In practice a characteristic of the form (2.2) is to be expected with G{t)) 
having the property expressed by (2.5), since saturation effects are usually 
present to cause the nonlinear part —G'{v) of the damping force to die out as 

V increases. The characteristic of the van der Pol equation does not have 
this property—G{v) is in fact essentially i;* in that cjise—but it should be re¬ 

called (cf. Section 3, Chapter V) that this form of the characteristic was taken 

in that case as an approximation to the actual characteristic valid only for 
small values of v. 
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of (2.3) the slope of the characteristic is positive at the origin, as it 
should be for self-sustained oscillations, while (2.2), (2.3), (2.4^ and 
(2.5) guarantee, among other things, that the slope is negative for 
I V I large enough since &{v) —> 0 as j y | oo. One would suspect, 
therefore, that a limit cycle exists. We shall indeed prove that a 
limit cycle of (2.1) occurs under conditions (2.2) to (2.5). In Appendix 
VI we shall add the condition that G^(v) < 0 for t; 0 so that only 
one point of inflection occurs (at the origin), and prove then that 
only one cycle occurs. 

The existence of a limit cycle will be proved by following the 
procedure explained in the preceding section. We must therefore 
construct a ring-shaped region with boundaries Ci, C2, say, which 
contains no singularities and with the property that the vector field 
defined by (2.1)' points toward the interior of the ring on its bounda¬ 
ries Cl and C2. We begin by constructing first the outer boundary 
C2 of our ring domain. As a first step in this direction we note that 
from (2.5), the following inequality holds: 

/oi-\ dv ^ c — X -- av ^ ^ ^ 
(2.6) < - for V > 0. 

dx V 

It is therefore natural to take for the part of C2 for i; > 0 a solution 
of the differential equation 

(2.7) 
dv _ c — X — av 
dx V 

If a < 2—^we shall consider the cases a > 2 later on—a solution of 
(2.7) is 

(2.8) 
X — c + be ( q cos qt -f ' cos ^ sin qi^ 

v = —be sin qt 

with q defined by 

(2.9) ^ = 1 - 4 > 

and b an arbitrary constant. The variable t is restricted to the range 
—ir/g < / < 0 for which i; > 0 and x lies between x = c — bge 
and X - c + bq. We determine b such that 

(2.10) c ~ bqe^^^^ « -(c + bq) 
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or 

(2.11) - 1} - 2c, 

and this can be done since > 1. The curve given by (2.8) 
with this value of b is defined as the curve C2 for v > 0. We note 
that it crosses the x-axis for < = 0 and t = —ir/q at points which are 
symmetrical with respect to the origin. The part of C2 for t; < 0 is 
obtained by reflecting the part for t; > 0 in the origin: clearly a simple 
closed curve with the origin in its interior results. Finally, the rela¬ 
tions (2.6) and (2.7) and the symmetry of the problem guarantee 
that the vector field on C2 defined by (2.1)' points to the interior of C2 . 

For the inner boundary Ci of the ring domain we take the circle 

(2.12) + v^ ^ r" 

with r chosen so small that Ci lies entirely inside of C2 and also so 
that F(v)/v = iG{v)/v) — a is positive for 11; [ < r; such a value of r 
exists since G'(0) > a by (2.3) and hence there is a value of r such 
that G(v)/v > a for 11; I < r. On Ci we have therefore, from (2.1) 
the inequality: 

and this means that the field vector on Ci points toward its outside, 
i.e. toward the inside of the ring domain bounded by Ci and C2 . 
Thus the field vectors have been shown to point inward over the 
entire boundary of the ring. It might be added that other ways of 
constructing a ring domain with the desired properties could be readily 
given; one such method is illustrated in the paper of Levinson and 
Smith [24]. 

Consider next the intersections S+ and S_ of the positive and 
negative halves of the x-axis with the ring domain between Ci and C2. 
In order to complete the desired existence proof in accordance with 
the scheme outlined in Section 1 wc need only show that all integral 
curves of (2.1) which start from a point of the segment to the left 
of the origin will eventually cross the same segment once more after 
making a full circuit of the ring, since the fixed point theorem for the 
mapping of on itself then applies. To this end we first remark that 
any integral curve which initiates on stays inside the ring domain 
as i —► + 00 since the field vectors on the boundary of the ring point 
toward its interior, and in addition it enters the upper half plane as t 
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increases. Furthermore we see from the first equation of (2.1)' that 
for y > 0 the x-coordinate of any solution curve increases monoton- 
ically with i; it follow's that any solution curve which starts on S- 

must of necessity cross for a finite value of t since no singularities 
occur in the ring domain and hence any solution curve leaving <S_ 
can be continued up to the segment S+ as t increases. Similarly, 

every solution curve leaving 6'+ and therefore entering the low'er half¬ 

plane must eventually arrive back at S- . In this way a continuous 
mapping of the segment SL on itself is definetl by coordinating a given 

point P on »S'_ with the point Q at which the solution curve starting 
from P arrives after one circuit around the ring domain. Our 

existence proof is now complete upon applying the fixed point theo¬ 

rem to the mapping of S- on itself. 
The above proof was carried out for the case a < 2 (cf. (2.2)), but 

it could easily be modified to take care of the cases a > 2. All that 
is needed is a different construction for the curve Cj, w'hich, however, 

can be carried out by integrating (2.7) explicitly and choosing an 

appropriate solution. 
A construction similar to the one employed here has been carried 

out in a much more complicated three-dimensional case by Friedrichs 
[40]. The problem concerned an electrical circuit with a triode 

vacuum tube so arranged that the resulting system of differential 

equations was of third order, i.e., a system of three first order equa¬ 

tions for three unknown functions. The existence of a limit cycle 
was then deduced by constructing explicitly a certain torus in the 

three-dimensional space, whose coordinates were the unknown func¬ 

tions, with the property that the field vectors at all points of the 
boundary surface pointed toward the interior of the torus. In addi¬ 

tion, every integral curve was shown to make a full circuit around the 

torus. The fixed point theorem applied now for the mapping of a 
simply connected domain on itself then furnished the existence of a 

limit cycle. 



APPENDIX IV 

Relaxation Oscillations of the van der Pol Equation 

In Section 6 of Chapter V we gave certain plausible geometric 
arguments which led us to the form of the limit of the limit cycles of 
the equation 

(1) dv 2V 3/“^ ,F{v)-i 
= e ^- = c - 

V V 

when € 00. In this appendix a rigorous proof is given (cf. Flanders 
and Stoker [11]) that the limit of the limit cycles is actually what was 
assumed in Chapter V, i.e. that it has the form indicated by the heavy 
line in Figure 1. 

We write (1) as a system of first order equations by introducing 
a parameter r: 

and formulate our theorem as follows: 1) For all sufficiently large t 
the system (2) {and with it (1), of course) possesses at least one closed 
solution curve r(5) containing the origin in its interior* in which 6(e) 
is a quantity to be defined later. 

2) A value of 6 can always be found such that r(6) lies in a pre¬ 
assigned but arbitrary open neighborhood of the closed curve T shown in 
Figure 1 for all sufficiently large values of e. The curve F is defined by 

{ = 1; — ~ for — l<t;<2, 
< o 

( « I for ~2 < e; < 1, 

* This statement was first proved for any given c by Li^nard [25]. 
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together with the corresponding curve segments symmetrical to (3) 
with respect to the origin. 

The method of proof is as follows: As in the preceding appendix 
an open annular region D(d) is first constructed in the f, !;-plane which 
contains T in its interior, but excludes a neighborhood of the origin. 
D{8) is so chosen that for all sufficiently large € every integral curve 
of (2) through a boundary point of D{8) passes into the interior of 
D{8) with increasing t. It is next shown that every integral in D 
makes a complete circuit around the ring. From this the first con¬ 
clusion of our theorem follows at once, as in Appendix III, from the 
fixed point theorem for the mapping of a segment on itself. The sec¬ 

ond conclusion is proved by showing that for all sufficiently large € it 
is possible to choose d so that D{8) is contained in an arbitrarily given 
open neighborhood of F. 

The annular open set D(d) is defined by explicit construction of 
its boundary curves D^(8) and J[>_(5). The curves D^(8) and D^(8) 
are shown in Figure 2, together with the curve F. The curve C: 
^ r= is shown by dashes. We proceed to define the curves 

and , describing only half of the construction since these curves 
are symmetrical with respect to the origin. Symmetrical points 
will be denoted by such pairs as P*, Pi and Q,-, Q,*. It is to be noted 
that the field vectors (d^/dr, dv/dr) defined by (2) have the same 
symmetry property as the curves 5+ and , 
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Description of 3+ (S): 

Consider the curve C to be translated a distance 2S in the positive 
{-direction, and let Qi and Qs be the points on the uppermost branch 
of the translated curve in which { = — f and { = f respectively. 

Let Ps be the point on C with { = — | — 5. Ps and Qj are joined by a 
straight line segment. Qj and Pj (the point symmetrical to P* with 
respect to the origin) are also joined by a straight line segment. One 
half of the curve D^{S) then consists of the segment PjQi, the arc 
QiQi obtained from (7 by a translation, and the strmght line segment 
QtPi. 
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Description of : 

Consider C to be translated a distance 5, where b should now be 
restricted to remain less than ^ say, in the negative {-direction, and 
let Rz and Ra be the points on the uppermost branch of the translated 
curve at which { = — f + 25 and { = | — 5 respectively. Let Pz be 
the point on C with coordinates, { = f — 5, and v a value between 0 
and 1 (that is, a point on the arc of C w^hich extends from the origin 
to the point (§, 1)). We join Ra to Pz and Pz to Rz by straight line 
segments. One half of />-(5) then consists of the arc RzRa plus the 
tw^o straight line segments RaPz and PzRz. 

It is evident that F lies in the interior of the annular region D{b) 
bounded by T>^{b) and D~{b) and that the origin, the only singular 
point of (2), is not in D(5). Since and would evidently both 
lie in an arbitrary open neighborhood of F when 8 is appropriately 
chosen, our theorem Avill be proved once we have shown that the 
vectors (d{/dr, dv/dr) at all boundary points of D(5) point into the 
interior of D(8) for all sufficiently large €. We proceed to verify the 
correctness of this statement for both D+ and . Constant refer¬ 
ence should be made to Figure 2. 

The vector field on D+{b): 

We consider the part of in the upper half plane. Let Qo and 
Qo be the points where Q2P5 and Q2P5 cross the {-axis. On QoPz the 
slope of D+ is a negative constant, while the field vector {d^/dr, 
dvldr) in this segment slopes upward to the right, except at Qo, 
where the field vector is vertically upward, as one readily sees from 
(2) since d{/dr and dv/dr are both non-negative. At Pz the field 
vector is {d^/dr, 0) with d{/dr positive. Thus the field vector points 
inward everywhere along the closed segment QoPs, since the slope of 
the segment QoPz is positive. With the exception pf point Pz, the 
field vector points downward to the right on the segment PzQi, since 
d^/dr is positive while dv/dr is negative at these points. Hence the 
field vectors at all points of PzQi point inward except possibly at the 
end-point Qi. On the closed arc Q1Q2 the slope of D+ is negative and 
different from zero, while the field vector (d^/dr, dv/dr) has a positive 
{-component and a negative v-component (which is bounded away 
from zero) and slopes down to the right more and more steeply with 
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increase of e. We can therefore for any given 5 choose € so large that 
the field vector will point toward the interior of D(d) along the arc 
QiQi, with the possible exception of Q2. f mally, the slope of the 
segment O2O0 is a negative constant, while the field vector along Q2Q0 

has the same properties as along the arc Q1Q2. Hence one may again 
choose € so large that the field vector will point inward along the 
closed segment Q2Q0 • On account of symmetry, the field vectors at 
all points of D+(6) therefore point inward for any given 8 once € has 
been properly chosen. 

Fig. 3. A characteristic yielding more Fig. 4. A case in which two relaxation 

than one limit cycle, oscillations occur. 

The vector field on D^{8): 

Again we consider the portion of D-{8) in the upper half plane. The 
points Rq and Ro are the intersections of with the f-axis. At i?o 
the field vector is directed vertically upward and thus points into the 
interior of D{8), From Rq to Rz the field vector points upward to 
the right with a slope proportional to e. By choosing c sufficiently 
large the field vectors at all points of the closed straight line segment 
RqRz (which has a constant positive slope) will point into the interior 
of D{h) for any fixed 5. From Rz to R^ the slope of D^{8) is negative, 
while the field vectors at all points of this curve segment point upward 
to the right; hence the field vectors point invrard on this portion of 
5-(5), The segment R^Pq is vertical while the field vector at all of 
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its points is non-vertical and points toward the right, so that the 
field vector points inward in this segment also. Finally, the field 
vectors along the open segment Pe^o (which has a positive slope) slope 
downward to the right. At the upper end-point the vector is hori¬ 
zontal and turned to the right and at the lower end-point it is turned 
vertically downward. *On account of symmetry, the field vectors 
at all points of D^(d) thus point inward for any given 6 < ^ once c 
has been fixed appropriately. 

Summing up, we see that once any small 6 has been chosen a value 
€o of € can be found such that the field vectors at all boundary points 
of D(d) point into the interior of D(5) for all c > €o. It is clearly 
sufficient to choose for eo the largest of the values e which were needed 

to insure that the field vectors on each of a finite number of closed 
curve segments should point inward. Finally we observe that every 
integral curve in the ring makes a complete circuit around it as r 
increases since ^ increases monotonically for > 0 and decreases 
monotonically for t; < 0 in view of d^/dr = v. These facts, together 
with the fixed point theorem for the mapping of a segment on itself, 
are sufficient to prove our theorem, as we have stated earlier. 

From a practical point of view it is of interest to observe that €o 
must be taken large without limit when d runs through a sequence 
tending to zero. This is clear from our proof. 

The geometrical construction emplo3^ed above would lend itself 
readily to generalizations of our theorem. Consider, for example, the 
differential equation 

d^ ^ V 

in which F{v) is one-valued and has a continuous derivative, and 

with F(0) = 0. Suppose that the curve f = F{v) has the form indi¬ 
cated in Figure 3. It is not difficult to see that the same methods 
used aboye would show the existence of at least two distinct cycles 

for sufficiently large e which w^ould tend, as e —> , to the closed curves 
indicated in Figure 4, where $ = F{v) is now indicated by a dotted 

curve. 



APPENDIX V 

The Criterion of Poincare for Orbital Stability 

In the final section of Chapter VI we discussed the orbital stability 
of periodic free vibrations of a nonlinear system by making use of 
the theory of Hill’s equation. In this appendix we treat the same 
problem by a method due to Poincar<S which leads to a criterion for 
orbital stability in a form that is of general interest. The criterion 
is also needed to obtain an important result in Appendix VI to follow. 

We consider the following system of two first order differential 
equations 

(1) 
* = 

dt 

in which / and g are functions with continuous second derivatives, 
say. As we know, all cases of free vibrations treated in this book are 
included in (1). We assume that the physical system represented by 
(1) has a periodic solution of period T, which means that the system 
(1) has a closed solution curve, or cycle C(t). We assume also 
that no singularity of (1) occurs on C, i.e. that x and v do not vanish 
simultaneously on C; hence C is in particular a simple closed curve. 
The periodic motion represented by C is then said to be orbitally 
stable if the following condition is satisfied: Any solution curve which 
starts from a sufficiently small neighborhood of a point on C is either a 
closed curve or a spiral which approaches C as ^ + oo. Otherwise the 
cycle C is said to be unstable. This definition is evidently in accord 
with the physical intuition. 

We must consider a family of solutions of (1) in a neighborhood 
of C. It is convenient to introduce such a family C\ depending on a 
parameter X in the special way indicated in Figure 1. Without loss 
of generality we may assume the cycle C to be located so that the 
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x-axis falls along the normal to C (which exists because C contains no 
singularities) at a certain point P with coordinates a: = , t? = 0 to 
which the time ^ = 0 is assigned, since our definition of stability is 
independent of the choice of coordinate system and the equations (1) 
are invariant when t is replaced by / + constant. This choice of 
coordinate axes and initial conditions will be adhered to in all that 
follows. We confine our attention to solutions which initiate on the 
x-axis in a neighborhood U(P) of P so small that any solution starting 
from a point in that neighborhood crosses the x-axis once more for 
some t > 0; and determine uniquely a family C\ : x{t, X), v{t^ X) of 
such solutions by the stipulation that they satisfy the initial condi¬ 

tions x(0, X) = Xo + X, y(0, X) = 0 for ^ = 0. The existence of such 
a family is ensured by the theorems on existence, uniqueness, and 
continuous dependence on initial conditions for solutions of ordinary 
differential equations; in addition x{t, X) and v{ty X) have continuous 
derivatives ^vith respect to X. The parameter X represents the dis¬ 
tance along the x-axis from P to the initial point of the solution curve 
C\ ; in particular, we have Co = C, or x(^, 0) = x(0, v{t, 0) « v{t). 
In view of our definition of stability the cycle C is therefore seen to 
be stable or not, depending upon Avhether the solutions C\ which 
originate in U{P) cross the x-axis for the first time (for < > 0) at 
a distance A = A(X) from P such that A < | X | or A > | X | respec¬ 
tively. In addition, if either of the strict inequalities A < X or 
A > X holds for all sufficiently small X it is clear that there is a neigh- 



ORBITAli BTABILITT CRITERION 255 

borhood of the cycle C within which no closed solution curves, but 
only spirals, occur; in this important special case we say that the 
cycle C is isolated* In Figure 1 a case of instability is shown with 
X positive. 

Before going on to discuss the family of solutions C\ : x(<, X), 
v{t^ X) in detail, it is useful to obtain for later purposes a result which 
follows from our special choice of the parameter X and the coordinate 
axes. The result in question states that the determinant TF(<, X) 
defined by 

(2) 
X\ 

Vx 

X 

V 

in which xx (t, X) = dx/d\ vx (t, X) = dv/d\ and x and v are, as always, 
the time derivatives of the same quantities, does not vanish for t = 
0, i.e. that 

(3) TF(0, X) = m X) 5^ 0 

holds for all sufficiently small X. This follows at ovce from the fact 
that X was chosen in such a way that X ~ x(0, X), 0 = t;(0, X) with 
the consequence that xx = 1, t;x = 0 for < = 0, while t)(0, X) will be 
different from zero for all sufficiently small X since v(0, 0) does not 
vanish by virtue of the fact that the x-axis at P is normal to C and 
the fact that v is continuous in X. It is assumed from now on that 
X has been so restricted. 

As a preliminary step it is convenient to introduce next the fol¬ 
lowing pair of linear differential equations, the ‘Variational equations’* 
associated with (1), for two functions 5x and 8v: 

(4) 
Ux = 5x + fv Bv 

(St) = gxBx + Qv dv, 

with /, , fv etc. denoting the partial derivatives of the functions / and 
g occurring in (1). We observe that 6x = x(ty \)y Sv = v(t, X) and 
dx « xx(^, \)y dv » vx(t, X) constitute two sets of solutions of (4) if 
x{t, X) and v{ty X) solve the equations (1); to prove this statement, one 
need only insert the solution x(t, X), v{ty X) in (1) and differentiate— 
once with respect to t and once with respect to X. In addition we 
remark that the two sets of solutions of (4) thus obtained are linearly 
independent since the Wronskian determinant Wit, X) already intro- 
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duced in (2) does not vanish* because of the fact that by (3) it does 
not vanish for t = 0. The value of W{t, X) is determined by its value 
at / = 0 from the relation 

which in turn follows from dW/dt = (/* + gv)W, as one can verify 
by differentiating both sides of equation (2). (Equation (5) is the 
analogue of equation (2.6) in Chapter VI.) Later on the relation (5) 
is needed only for the case X = 0. 

We turn now to the derivation of the desired criterion for sta¬ 
bility of the cycle x{t) = x{t, 0), v{t) = vit^ 0) of period T. To this 
end it is convenient to introduce a “time shift factor'’ /x and set 

(Ax(0 = xiiit, X) - x(0, 
(o) i 

[Ai;(0 = X) — v{t). 

The factor y. = y(k) is to be chosen in such a way that 

(7) HviT) = 0. 

The reason for introducing the factor y in this way is that it makes 
the determination of the stability or instability of a given cycle depend 
in a simple way on one single quantity, as follows.f The quantity 
A == A(X) introduced earlier (cf. Figure 1) is now the same as Ax(!r), 
in view of (7) and our choice of initial conditions and coordinate axes. 
We observe also that A.t(0) = X. It is now convenient to introduce 
a new function v — vW through the following mlations 

(8) A(X) = Ax(T) = i?(X)Ax(0) - Xt,(X), 

which define 17 (X) for \ 9^ 0. We see therefore that a given cycle is 
stable if 1 17 I < 1 and is unstable if | r; 1 •> 1 for all sufficiently small 
values of X. Our object will be to show that as X 0 the function 
T7(X) approaches a value rjo > 0, and hence that the limit cycle is 
stable if 170 < 1 and unstable if 770 > 1. The case 770 = 1 is left un¬ 
decided, and we shall not undertake to settle it later. However, if 

* In Section 2, Chapter VI the Wronskian determinant and its relation 
to linear independence were discussed for a single second order linear differ¬ 
ential equation; the similar discussion for the pair of first order equations (4) 
can be carried out by means of an obvious modification. 

t See also the discussion in sec. 7, ch. VI. on this point. 
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710 9^ 1 we note that the given cycle is isolated in the sense defined 
above. We turn then to the problem of determining the value of rjo. 

First of all we observe that since all of the solution curves x(tj X), 
v(ty X) considered cross the x-axis again after t = 0—in fact when t is 
near to T—it follows that for each X the quantity m(X) exists such 
that (7) holds; in addition /x(X) could be shown to have a continuous 
second derivative, so that we may write, since obviously /i = 1 for 
X = 0: 

(9) M = 1 + kX + 0(X*), 

with K a constant and O(X^) a function of order X*. We also set 

(10) ri{\) = ijo + 0(X). 

The relation (7) and the relation Ax(T) = taken from relations 
(8) permit us, in view of (7), (9), and (10), to derive the following 
equations from (6): 

U{Ty 0) + KTv(Ty 0) = 0 

\xx(T, 0) + KTx{Ty 0) = rjo 

by developing in the neighborhood of X = 0, using y(0) = 0, and 
setting X = 0. From the equations (11) we eliminate kT to obtain 
for rjQ the relation 

(12) 
1 

v(T, 0) 

xx{T, 0) 

vx(T, 0) 

x{T, 0) 

viT, 0) 

_!_ 

v(T, 0) 
WiT, 0), 

the last step following from (2). The parameter X was, however, 
introduced in such a way that a:x(0, 0) = 1, yx(0, 0) = 0 so that 
TF(0, 0) = v(0, 0) 3^ 0, according to (3). Since vit, 0) has the period 
T it follows that v(Ty 0) = v{0, 0) and hence we conclude from (12) 
that 770 has the value 

(13) 170 = W{Ty 0)/W(0, 0). 

From relation (5) applied for < = T and X = 0 (i.e. on the cycle C) we 
observe that 170 > 0 as stated above and hence we have from (13) and 

log 170 « I (fx + Qv) dt the following criterion for stability: 
Jo 

(14) 
stability 

instability 
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when the line integral is evaluated along C in the sense of increasing 

t. This is the desired criterion of PoincarS for orbital stability of a 

given limit cycle. As remarked above, we leave aside the ease in 

which the integral vanishes and = 1, since this case is not of direct 

interest to us and its treatment would require more extensive develop¬ 

ments. 

Finally we observe once more that the discussion which led to the 

conditions (14) shows that the cycle in question will be isolated, in the 

sense that it will have a neighborhood in which all solution curves are 

spirals. This observation will be used in the following Appendix VI. 



APPENDIX VI 

The Uniqueness of a Limit Cycle in the Free 
Oscillations of a Self-sustained System 

1. General remarks 

In Part A of Chapter V we have seen that it is quite easy to con¬ 
struct examples of self-sustained systems in which any number of 
limit cycles occur. To prove the uniqueness of the limit cycle in a 
given case is thus by no means an easy problem. Mention was made 
in Chapter V and Appendix III of the work of Li4nard [25] and of 
Levinson and Smith [24] in proving the uniqueness of a limit cycle in 
certain cases. In this appendix we shall prove’" the uniqueness of the 
limit cycle for the special class of differential equations (much less 
general than those considered by Levinson and Smith) treated in 
Appendix III, where the existence of at least one limit cycle was 
proved. We shall carry out the uniqueness proof by making use of 
the beautiful and striking idea of Levinson and Smith, which consists 
in deducing the uniqueness of the limit cycle from considerations of 
stability. 

The uniqueness proof, following Levinson and Smith, is carried out 
in two steps: (1) First of all one derives the intuitively rather evident 
fact that if one isolated stable limit cycle encloses another of the same 
sort and there are no singularities in the ring between the two, then 
there exists at least one limit cycle between them. Furthermore, the 
set of such limit cycles is a closed set, i.e. a limit of limit cycles is 
itself a limit cycle. (2) One then goes on to show that aU possible 

limit cycles are isolated and stable in the case under consideration. 
This in conjunction with the previous result obviously means that at 
most one stable limit cycle occurs, since the only alternative would 
be the existence of a limit of limit cycles. 

* For similar considerations see Friedrichs [40]. 

269 
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2* The uniqueness proof 

As we have already stated, our uniqueness proof refers to the 
equations (2.1)' of Appendix III under the conditions (2.2) to (2.5) 
assumed there. These conditions make it possible to prove the 
existence of a limit cycle, but they are not sufficient to guarantee its 
uniqueness; we must add an additional condition. For the sake of 
convenience we write down the differential equations and the pre- 

Fig. 2.1. Form of the characteristic for a unique limit cycle. 

scribed conditions once more, but include also the added new condi¬ 
tion. The differential equation is 

I - ™ - - 
The function F(v) has a continuous second derivative and satisfies the 
following conditions: 

(2.2) 1 11 av, a > 0, 

(2.3) G'(v) > 0, G'(0) > a, 

(2.3)' G"{v) < 0, > 0, 

(2.4) G{-v) = -G{p), 

(2.5) 1 Gh>) 1 < c. 

The added condition is the condition (2.3)'; obviously it ensures, in 
conjunction with (2.4), that F{v) has exactly one point of inflexion, 
i.e. the origin. The characteristic x = F{v), as indicated in Fig, 2.1, 
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now has the same qualitative appearance throughout as in the case of 
the van der Pol equation, and we would suspect that only one limit cy¬ 
cle occurs. We shall in fact prove that the system of equations (2.1)' 
has at most one limit cycle under the conditions (2.2) to (2.5). To do 
so, we carry out, in order, the two steps of the Levinson-Smith pro¬ 
cedure outlined at the end of the preceding section. 

To prove the first part we consider the ring between two isolated 
stable limit cycles. We repeat that a cycle is said to be isolated if it 
hds a neighborhood within which no other cycle, but only spirals, 
occur; and it is stable if the spirals in that neighborhood approach it 
as t increases. We know (from the discussion of Appendix III, for 
example) that any such cycles contain the origin in their interiors and 

Fig. 2.2. Situation in which two stable isolated limit cycles occur. 

that they cut the x-axis orthogonally (in view of the first equation of 
(2.1)'). Just as in Appendix III we consider the segment S^: a < 
X < of the negative x-axis between the two stable cycles and the 
continuous mapping of on itself induced by the solution curves 
which start on and make one circuit around the ring. We know 
from Appendix IV that there is a value a2 a little larger than a such 
that the integral curve which leaves at x — a2 with increasing t 
arrives back on 5- at a point x = ai with ai < a2 since the cycle 
through X = a is isolated and stable (cf. Figure 2.2). In like manner 
there are two points x == 02 and x = 0i near x = 0 with 0i > 02 with 
a similar property. Consider now the segment Sl: ai < x < and 
the continuous mapping induced by the backward-moving integral 
curves which make one circuit around the ring; clearly Sl is mapped 
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on a part of itself. As in Appendix III this mapping has a fixed point 
at X = 7, say, which corresponds to a limit cycle, and, in addition, it 
is clear that the fixed point x = 7 is different from x — a or x — 0: 
actually we have a < ai < 7 < jSi < jS. This proves the existence of 
at least one limit cycle between the two given cycles. Furthermore, the 
set of fixed points of the mapping is a closed set since the mapping 
function is continuous. It therefore follows that a limit of limit 
cycles is also a limit cycle. 

We have now to verify the correctness of the more difficult second 
step in the uniqueness proof. To this end it is necessary to make use 
of the special properties of the function F{v) in the differential equa¬ 
tion (2.1)' with the object of showing that the criterion of Poincar4 
for stability of a limit cycle given in (14) of Appendix IV is satisfied 
for any limit cycle which occurs in the present case. In the present 
case the quantity fx + Qv which figures in the criterion for stability is 
F'(i;), as one sees from (2.1)'. We have therefore to show that the 
condition 

(2.6) j) F'{.v) dt <0 

holds when the line integral is taken in the sense of increasing t around 
any limit cycle C. In accordance with a remark made at the close 
of Appendix V it would then follow that the limit cycles are also iso¬ 
lated in the sense used above. Our uniqueness theorem will there¬ 
fore be established once the validity of the condition (2.6) is proved. 

In proving the validity of (2.6) we follow essentially the same pro¬ 
cedure as Levinson and Smith, but the argument is simpler here 
because of the nature of the characteristic x = F{v) defined by our 
conditions. To this end we consider the function g{t) defined by 

(2.7) 9 « W + v\ 

from which 

(2.8) g vi) + vv F\v)v^ 

since we assume v to satisfy (2.1)'. From conditions (2.2) to (2.5) on 
F(v), and particularly condition (2.3)', it is readily seen that there is 
exactly one positive value vq such that 

f 0 for 0 < 11; I *< Vo 
F'(v)*| =*0 for I V I == Vo 

[ < 0 for 1 V I > Vo. 
(2.9) 
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It might be noted that we use here in an essential way the symmetry 
of the characteristic as well as the fact that it has only one point of 
inflexion. 

We show’ now that condition (2.6) will be satisfied provided that 
the minimum of g on C is attained for a point with | y | = vo ond y 0, 
and postpone until later the proof of this fact. Assuming this, we 
note that 2g > vl everywhere on C since the minimum of g satisfies 
this inequality by (2.7). Since y^ = 2fir — v“ from (2.7) we may write 

{> 2g — vl for I y I < yo 
(2.10) y^^ — 2g — vl for | y j = yo 

[ < 2^ — yo for I y I > yo , 

from which we have, in view of (2.9): 

(2.11) F'(y)y' > r(v){2g - vl) 

for all y with | y [ yo. But since g = F'{v)v^ we have, in view of 
(2.11) , the inequality: 

(2.12) \v\9^v,. 
Zg — Vo 

We have seen that 2g — I’o > 0 everywhere on C. Hence we may 
write 

(2.13) 

Since {g dt)l(^g — yo) == \d log {2g — vl) is an exact differential it 
follows that the integral on the right-hand side has the value zero, 
and consequently relation (2.6) is established. 

We have still to show that g attains its minimum at a point of C 
where | y i = yo and y 0, First we show that there are points on C 
where | y | = yo, as follows: If vo were greater than or equal to the 
maximum | y of | y | on C, i.e. vo > | y Uax , it would follow from 
(2.9) that F'(y) > 0 and hence from (2.8) that ^ > 0 for all y on C. 

Since ^gdt = 0, g would necessarily be constant on O', and since this 

is not the case (cf. (2.3)') we conclude that | v [mux > yo • Consequently 
points occur on C with | y | = yo since y = 0 occurs on C, We see 
from (2.8) and (2.9) that stationary values of g occur only for | y | = 
yo or y = 0. Our statement will therefore follow if we can show that 
the minimum of g cannot occur when y = 0. This can be seen as 
follows. First of all we observe that the points P where y = 0 are 
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the two points on C where | v | is a maximum: The condition » = 0 

means that the point P lies on the characteristic x — F{v), as we see 

from the second equation of (2.1)'. But the characteristic is cut by 

C at exactly two points symmetrically located with respect to the 

origin, since the ^-coordinate on C, in view of dx/dt = v, changes in a 

monotonic way with i in each half-plane v > 0 or ?; < 0. Hence the 

minimum and maximum of v (which are numerically equal) are taken 

on at the points where v = 0, and our first statement is proved. Next 

we note that | v |ni„ > vo so that F'(v) < 0 at a point P (cf. (2.9)), and 

hence ^ < 0 in the neighborhood of P (cf. (2.8)), with g = 0 only at 

P. Thus g decreases on crossing P and hence cannot take on a mini¬ 

mum at P. It follows that g attains its minimum at a point on C 

where | v | = vo, and this completes the proof of the uniqueness 

theorem. 
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