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PREFACE 

This book is planned to iniroduee the reitder to tlie general theory of 

fluid flow. It is eoneerned ])rimarily with the (h^velopment of t he general 

fluid equations and their reduet ion to speeifie problems. The reader is 

presumed to have had no mathematics beyond the elementary differential 

and integral calculus. KSince tin; gerKual tioatmerit recjuires nior(‘ 

advanced matluanalic's, it has been devrdojied in (‘ach case immediately 

before its use is introduced. Tlu' book should be useful as a text for a 

second (anirse in fluid mechanics in the senior year of college or the first, 

year of graduate wor'k. Fn preparing the matraial every effoii. has been 

made to clarify the concepts and to incliKie thovse exaspei'ating steps in 

deifvations which are usuall.y omitted. 

For complete refei*ence and more advanced treatment, the reader is 

leferred to Lamb’s ‘^Hydrodynamics,” Gth ed., (’ambridge University 

Press, London, 1932, which is the undisputed authority in t he subject and 

from wdiich the author has di'awm heavily in the preparation of this book. 

The author has used this material in teardiing advanced flow of fluids 

to his classes at the Illinois Institute of Technology. He wishes to ac^knowL 

edge gratefully the aid given him by the David Taylor Model Basin, where 

the original work on the manuscript was started, and the help supplied by 

the Armour Research Foundation of the Illinois Instit ute of Technology in 

th(' computation of the flow patterns and the preparation of manuscript. 

Mrs. Lorraine Tuman Page is to Fie ci*edit.ed w ith the drawing of the flow 

nets, Mrs. Ruth Hopley Roberts w ith the preparat ion of t he manuscript 

for publication, and Mr. P. C. Chu for his careful examination of the 

proofs. The author is deeply grateful for their help. 

C'HK’AGf), Icii. 

August^ 1048 

Vicj'OR L. Strektkr 
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CHAPTER I 

FLUID FLOW CONCEPTS 

!• Flow of Matter. A fluid may be defined as a substance that 
deforms when subjected to a shear stress, no matter how small that shear- 
stress may be. Fluids may be classified as Newtonian or non-Newtonian. 
A Newtonian fluid has a linear relation between the magnitude of applied 
shear stress and the rate of angular deformation of fluid. A non-New¬ 
tonian fluid has a nonlinear relation between the magnitude of applied 
shear stress and the rate of angular deformation. 

The concepts of rate of angular deformation and magnitude of applied 
shear stress may be illustrated by considering the fluid between two 
closely spaced parallel plates so large that the conditions at the edges 
need not be considered. Both plates will be assumed weightless and the 
lower plate fixed, as shown in Fig. 1. The force F divided by the area 

a e d f 

Fig. 1.—Fluid subjected to a constant shear stress. 

of the upper plate is the applied shear stress r, which may easily be seen 
to be constant throughout the fluid. It has been quite definitely estab¬ 
lished that the fluid immediately in contact with a solid has no motion 
relative to the solid. ^ When the application of a force F, no matter how 
small, causes the upper plate to be set in motion (with some velocity v 
to the right), then the substance between the two plates is a fluid. 

The fluid occupying the space ahcd is deformed into the parallelogram 
ebcf. The rate of angular deformation of the fluid is given by the angular 
velocity of the line containing the particles between a and 6, or in other 
words the rate of change of the angle ahc. In equation form the rate is 
given by v/ab^ where ah refers to the length from a to 6. In general, for 
one-dimensional flow the rate of angular deformation is given by the 
change in velocity du which occurs in the distance dy perpendicular to the 
flow direction. 

^ S. Goldstein, Modern Developments in Fluid Dynamics,Vol. II, pp. 676-680, 

Oxford University Press, New York, 1938. 
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2 FLUID DYNAMICS [Chap. I 

For the Newtonian fluid 
du 

where m is a constant, which is called the viscosity. This relationship is 
du 

Newton^s law of viscosity. As r and ^ can be determined experi¬ 

mentally, M is a derived quantity. When it is not constant for a sub¬ 
stance that is set in motion by infinitesimal shear stresses, that substance 

Fig. 2.—Rheological diagram. 

may be classified as a non-Newtonian fluid. Many of the thick, highly 
viscous liquids are non-Newtonian. 

The rheological diagram in Fig. 2 represents the Newtonian fluid as a 
straight line through the origin and the non-Newtonian fluid as a curved 
line through the origin. A substance may have a linear relation between 
shear stress and rate of deformation but sustain some finite shear stress 
before flow starts, as shown by the line labeled ideal plastic.'^ Other 
substances may require a finite shear stress to cause motion and may have 

du 
a nonlinear relation between t and Many plastics are in this group. 

In addition, the substance may not have a fixed relation between r and 
du 

as many substances change this relationship with the prior working 

or shearing that has taken place. These substances are referred to as 
having the proj>erty of thixotropy. Printers^ inks are usually thixotropic. 



Sec. 3] FLUID FLOW CONCEPTS 3 

In this work Newtonian fluids only will be considered. Throughout 
most of the chapters a fictitious nonviscous fluid will be assumed in order 
to reduce the complexity of the mathematical treatment. Such a fluid 
would be represented by the ordinate on a rheological diagram. 

2. The Continuum. Fluids are composed of molecules between which 
are spaces much larger than the molecules themselves. In such a dis¬ 
continuous medium the terms velocity, acceleration, density, and pressure 
at a point have no meaning. For example, the density at a point in a 
fluid would be zero if that point did not happen to coincide with a mole¬ 
cule and would be very large if it did coincide with a molecule. Similarly, 
the velocity would be zero for the first case and equal to the velocity of 
the molecule in the second case. 

In general, average conditions at a point are required for most fluid 
flow cases. This may be accomplished by replacing, for mathematical 
purposes, the molecular structure by a hypothetical continuous medium. 
In the case of fluid density at a point, defined by 

,. Am 
lim 

A7->0 AF 

where Am is the mass contained in the small volume AF, the concept 
of a homogeneous medium, or a continuum, is equivalent to a restriction 
of the meaning of the limit AF —>0 to AF approaching a small value 
that is still large compared with the cube of the mean free path of the 
fluid. 

The quantities density, pressure intensity, velocity, and acceleration 
are assumed to vary continuously throughout the fluid except for special 
points, lines, or surfaces of discontinuity. 

3. Stress Relationships at a Point in a Fluid. The equations of 
motion for a small tetrahedron of fluid, in terms of the normal and shear 
stresses on its faces, yield relationships among these stresses useful in 
both ideal and viscous fluid flow. The normal stress components on the 
faces BCOy ACO, ABOj and ABC are px, Pyj Pz, p, respectively, as shown 
in Fig. 3. The subscript indicates that the force due to the stress is in 
the direction of the positive coordinate axis corresponding to the sub¬ 
script. The shear stresses r have two subscripts, the first indicating 
the direction of the normal to the area over which the stress acts and the 
second the direction of the stress. Let the area of the oblique face ABC 
be A' with Z, m, n the direction cosines of its normal, p is the normal 
stress on A', and r the shear stress on A'. Let Zi, mi, n\ be the direction 
cosines of t. 

The small free body may be acted upon by two types of forces: body 
forces and surface forces. The body forces act through the mass center 
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of the tetrahedron, and their resultant may be assumed to act in the 
^-direction without loss of generality. Let the magnitude of the resultant 
body force be Z per unit mass (the most common body force is the 
attraction of gravity). The mass of the tetrahedron is (p/6) bx by bz, 
where p is the mass density. Substituting into Newton’s second law of 
motion: 

Resultant force = mass times acceleration 

X 

Fig. 3.—Normal and shear stresses on a tetrahedron. 

written for the x-, t/-, and 2-components: 

-VA'I + rA'h + p.A'l - Ty^A’m - r.A'n = a. 

—pA'm + rA'mi — t^vA'I + pyA'm — T,yA'n = o„ 

—pA'n + tA'tii — Tx,A'1 — TytA'm + pxA'n + 

where o», Oy, a, are acceleration components in the x-, y-, z-directions, 
respectively, and where 

A'm = 
hx Sz 
-T’ 

A'n = 
bx by 

2 
A'l = 
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Expressing the mass in terms of A', the area A' may be divided out 
of the equations, leaving 

-pZ + tIi + pj — Ty^m — r„n 
p hx lax 

, , , pSymay 
-pm + rmi — Txyl + Pym — r^n =-^- 

— pn + rni — Tx,Z — ry,m + p^n + 
Zp 8zn p bz nag 

In order to find the stress relationships at a point, the tetrahedron is 
shrunk in size by allowing bx, by, bz to approach zero, holding Z, m, n 
constant in the limiting process. 

As the mass terms are of a higher order of smallness than the stress 
terms, they disappear from the expressions, yielding the desired stress 
e( Illations 

— pZ + tIi + Pxl — Tyxm — TzxU = 0 
— pm + rmi — Txyl + Pym — r^yU = 0 • (1) 

— pn + TUi — Txzl — TyzM + Vz'^ = 0 ^ 

which will be useful in developing the Navier-Stokes equations for viscous 
fluids. Since bx, by, bz may approach zero in any arbitrary manner, the 
direction cosines of the oblique face, I, m, n, may be arbitrarily chosen to 
specify the particular way the limit is taken. The condition that the 
shear stress r is at right angles to the normal stress p may be written^ 

III + mmi + nrii = 0 

Utilizing also the relation 

Zi^ + rrii^ + ni^ = 1 

five equations are obtained with which to determine the stresses on the 
oblique face, in terms of the five unknowns p, r, Zi, mi, Ui, Hence, if the 
shear and normal stress components are known for three mutually per¬ 
pendicular planes through a point, the normal stress and shear stress can 
be completely determined for any plane through the point. It is shown 

in Sec. 108 of Chap. -X that Txy — Xxz and Xyg Xzy- 
A nonviscous fluid has zero shear stress everynvhere throughout the 

fluid. For this case Eqs. (1) reduce to 

p = p* = Pv = P* (2) 

showing that the pressure intensity is the same in all directions at a 
point. This holds regardless of the motion of the fluid. 

^ The angle $ between two lines having direction cosines I, m, n and Zi, mi, ni is 
given by cos 9 - Ih + mmi + nriu 
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4. Ideal Fluid. The '‘ideal fluid'' of hydrodynamics is one that is 
frictionless and incompressible. A frictionless fluid has zero viscosity, 
i,e,y it cannot sustain a shear stress at any point. Hence, the fluid force 
acting on any elemental surface in the fluid is normal to that surface. 

The ideal fluid concept greatly simplifies the mathematical treatment 
of flow cases. Although no such fluid actually exists, many real fluids 
have small viscosities, and the effects of compressibility may be small. 
In general, those problems dealing with large expanses of fluid will be less 
influenced by viscosity than those in which the fluid is narrowly confined 
between boundaries. For example, many conclusions concerning the 
motion of a solid through an ideal fluid are applicable with slight modifica¬ 
tion to the motion of an airship through the air or to the motion of a 
submarine through the ocean. On the other hand, ideal fluid theory 
gives very little information of value concerning flow through a pipe or in 
a narrow channel. 

The assumptions of an ideal fluid are made in developing the fluid 
flow theory in the next chapter. They are brought in where needed to 

simplify the mathematical treatment. The development of viscous flow 
theory is undertaken in Chap. X. 

Exercises 

1. A substance is placed in the annular space between two concentric circular 

cylinders, one of which is free to rotate about its axis relative to the other. The 

following data were obtained for shear stress—rate of deformation: 

T, lb per ft* 
du 
^ per sec. 

10.2 0 

15.6 0 

20,8 0.886 

29.7 2.400 

38.3 3.860 

61.0 7.710 

Classify the substance according to the rheological diagram. Am, Ideal plastic. 

2. (a) Find the rate of angular deformation of a fluid contained between two 

parallel plates 0.03 in. apart when one plate is moving relative to the other at 3.0 

ft per sec. 

(6) The she^r stress on one plate is 1.44 psi. What is the viscosity in consistent 

English units? Am, (a) 1200 radians per sec; (6) 0.1728 lb-sec per ft*. 

3. Selecting as a free body a unit length of triangular prism (two-dimensional 

case), derive the expressions for p and r on the inclined face (making an angle 6 with 

the X axis) in terms of py, r»y, ry,. All stresses are parallel to the xp-plane. 

4. Show that xzy ** Ty, for the two-dimensional case by using the equation, summa¬ 

tion of torques about an axis through the mass center equals the product of the 

moment of inertia about this axis and the angular acceleration. 



CHAPTER II 

FUNDAMENTALS OF FRICTIONLESS FLUID FLOW 

6. Partial Derivatives and Total Differentials. Although partial 
derivatives and total differentials are included in the first year of calculus, 
they are not usually introduced until the latter part of the course; hence, 
little opportunity is available to the student to comprehend their value. 
As they are needed throughout this work, their definitions are given at 
this point. ^ 

Consider 

U = f(x,y) 

where x^y are independent variables. If y is held constant, u becomes a 
function of x alone and its derivative may be determined as if u were a 
function of one variable. This is denoted by 

dx 
or 

du 
dx 

and is called the partial derivative of / with respect to x or the partial 
derivative of u with respect to x. Similarly, if x is held constant, u 

becomes a function of y alone and ^ is called the partial of / with respect 

to y. These partials are defined by 

^ = lim /(^ + ^^>y) - 
dx dx Ar-o Aa- 
^ ^ dKx,y) ^ .. f{x,y + Ay) - fix,y) 

dy dy A„_o Ay 

Examples: 

1. u = + Sy 

= 3j-« + 3x*2/* 

du 

dy 

2. u 

du 

dx 

du 

dy 

= 2x^y + 3 

« sin (ax^ by^) 

= 2ax cos (ax* + by^) 

=» 2by cos (ax* + by*) 

^ I, S. and E. S. Sokolnikoff, ^‘Higher Mathematics for Engineers and Physicists,** 

2d ed., pp. 125-138, McGraw-Hill Book CJompany, Inc., New York, 1941. 

7 



8 FLUID DYNAMICS [Chap. II 

In each case the differentiation is carried out exactly as for a function 
of one independent variable with the other independent variable consid¬ 
ered as a constant. 

If w = f{x)^ the derivative of u with respect to x is defined by 

^ = lim ^ = lim 
dx Ax-^O Ax Ax—0 Ax 

= fix) 
Hence, 

Aii = /'(x) Ax + 6 Ax 

where e is an infinitesimal that vanishes with Ax. Then 

du = /'(x) Ax ^ /'(x) dx 
is the differential du. 

If u = J{x,y)^ the differential du is defined in a similar manner. If x 
and y take on increments Ax, At/, then 

^u = /(x + Ax,t/ + At/) - /(x,T/) 

Ax and At/ may approach zero in any manner. If Au approaches zero 
regardless of the way in which Ax and At/ approach zero, then u = /(x,t/) 

is called a continuous function of x and y. It will be assumed that 

f(x,y) is continuous and also that — and are continuous. 
' dx dy 
Adding and subtracting/(x,t/ + Ay) to the expression for Au above, 

Au = /(x + Ax,t/ + Ay) - f{x,y + Ay) + /(x,t/ + Ay) - f{x,y) 

Since 

hm /(^ + Ax,y + Ay) - f(x,y + Ay) ^ df{x,y + Ay) 
A™o ““ Ax dx 

then 

f(x + Ax,t/ + Ay) - /(x,T/ + Ay) = Ax + €i Ax 

where lim €i = 0. Furthermore, 

lim ^ ^f(x,y) 
Ay_>o dx dx 

as the derivative is continuous. Therefore, 

df{x,y + Ay) __ df(x,y) ^ 
—^ ^ + ** 

where lim €2 = 0. Similarly, 
Ai/->+0 

fix,y + Ay) - f{x,y) = + «s Ay 
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where lim ca = 0. 
Ai/—*0 

Therefore, it follows that 

A» - A. + A, + (.. + .JA. + ..A,. 

In the limit as Ao: and A?/ approach zero, the expression for the total 
differential of u is obtained: 

. ^ , d/ 
du = ~ dx + dy 

dx dy 

In general, if w = f(x,yjZ,t)j then 

du = ^dx +~dy +^dz + -~dt 
dx dy dz dt 

which may also be written in the form 

, du , , d?/ , , dw , , d?/ 
du = dx + ~ dy + dz + — dt 

dx dy dz dt 

If, now, in w = J{x,y), x and y are functions of one independent 
variable, say t, then u becomes a function of t alone and u may have a 
derivative with respect to t. Let x — y = /2(0j ''vhere the functions 
are assumed differentiable. If t is given an increment, then x^ y, and u 
will have corresponding increments Ax, Ay, and Au, which approach zero 
with A^. As before. 

Then 

and 

Also, 

Au + €2) Ax + C3 Ay. 

Au 

aZ dx At dy At 
+ (ci + €2) 

A^ 
+ 

dt dx dt dy dt 

du — 

holds, as before, even when x and y are functions of t. Moreover, if 
u = f(Xjy,z,t)f where x,y,2; are functions of then 

du 

dt 

du dz . du dy 
dx dt dy dt 

+ 
du dz 
dz dt 

may be shown in a similar manner. 
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Examples: 

1. Let M =« 2x -h 3?/* + 42^ -f tx. Then 

[Chap. II 

du = (2 -f 0 dx + 62/ rf?/ -f 122* dz xdi 

- 9 _U / = A./ _ 19^2 

If Xj t/, and z are functions of then 

Specifically, if 

2: = sin y = In 2 = 3<* 

where In represents the natural logarithm, then 

dx . dy \ dz .. 
It cos ty t “j— —• 

dt dt t dt 

and 

— - (2 4- 0 cos f 7 In ^ + 648^*^ + sin t 
at t 

2. Let u = xyzL Then 

du — yzi dx A" xztdy zyt dz 4- xyz 

If 

X — 2<, y = z ^ 
then 

# = 2, t - 2/, dt di ’ dt 

and 

^ « 2<« 4- 4i« 4- 6^® 4- 2i» = 14/». 

/ 
/ 6. Euler’s Equations of Motion, Every particle of a fluid must obey 
Newton^s second law at all times. Certain conditions (called boundary 
conditions) must also be fulfilled at the boundaries for specific flow cases. 
In addition, the continuity equation must be satisfied at all points in the 
fluid except so-called singular points.’^ 

The boundary conditions usually take the form of an analytical 
expression which states that the fluid velocity component at a boundary 
normal to the boundary is everywhere equal to the velocity of the bound¬ 
ary normal to itself. This is a mathematical statement that the fluid 
cannot penetrate the boundary surface and that no void spaces or gaps 
may occur between fluid and boundary. No restriction is placed on the 
tangential component of the velocity for a nonviscous fluid. 

The continuity equation is a restriction on the velocity distribution 
throughout a fluid. For an incompressible fluid it is a statement that 
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the flow into any fixed space in the fluid must exactly equal the flow out 
of that same space in the same time interval. Euler’s dynamical equa¬ 
tions for a non viscous fluid are derived in this section, the equation of 
continuity in Sec. 7, and the boundary condition equations in Sec. 8. 

Euler’s equations of motion state that the resultant force on any fluid 
particle must always equal the product of the mass of the particle and its 
acceleration and that the acceleration is in the direction of the resultant 
force. Rather than write the vector equation, expressions are developed 
for the xy^-components of that equation. 

y 

For convenience, consider a small parallelepiped of fluid whose edges 
are 3x, respectively, parallel to the xt/^-axes of a cartesian coordi¬ 
nate system as shown in Fig. 4. The equations of motion are written 
for this small free body, and then the limiting process is applied to its 
edges, shrinking it to a point. Two types of forces act on the free body: 
surface forces and body (or extraneous) forces. Assuming the fluid is 
nonviscous, the contact forces become normal pressure forces acting on 
the faces of the parallelepiped. Let the center of the body be at {x^y^z) 
and the pressure intensity there be p. The equation of motion for the 
x-component is derived in detail. The two other components may be 
obtained in a similar manner or by cyclic permutations. 

As the pressure intensity is assumed to vary continuously throughout 
the fluid, it may take a form similar to that shown in Fig. 5, which illus¬ 
trates its variation along a line parallel to the x-axis through the center 
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of the parallelepiped. To find the approximate pressure intensity at the 
left face, it may be assumed that the tangent to the curve at {x,y,z) 

St) 
replaces the curve. The slope of the tangent is ~~ and is negative as 

C/X 

shown in Fig. 5. Then the pressure intensity at the center of the left 
face is 

dp 8x 
7) — -I- -rr- 

and at the right face is 

V + 
dp bx 

dx 2 

The error in these expressions is 
visible in Fig. 5, caused by the 
divergence of the curve and its 
tangent. When bx is allowed to 
approach zero, the curve and tan¬ 
gent coincide and the above 
expressions become exact. Similar 
reasoning applies to variations in 
pressure intensities over the faces 

_of the parallelepiped; and likewise, 

Fig. 5.—Illustration of pressure variation these expressions become exact in 
along a line parallel to the x-axis through the the limit. The resultailt SUrface 
center of the parallelepiped. , - ii t 

force m the positive x-direction is 
then 

or, simplifying. 

( _ dp 
Jx 2 / 

by bz (>’+11) by bz 

— bx by bz 
dx 

Ivet the component of the body forces per unit mass in the positive 
^-direction be A^. The extraneous force in the x-direction acting on the 
free body is 

Xp bx by bz 

where p is the mass density of the fluid. Adding the surface and body 
force components together and equating to the mass times the accelera¬ 
tion in the x-direction yield 

^Xp — bx by bz = p bx by bz a* 

where a, is the acceleration component. 
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Now, allow Sx, Sy, Sz to approach zero and divide through by the mass 
of the parallelepiped, yielding 

= (lo) 
p OX 

In an analogous manner, the y and z equations are obtained 

Y 

Z 

1 dp 

p 
1 dp 
-1- = n 
p dz 

(16) 

(Ic) 

where F, Z are the components of the body forces per unit mass in the 
y- and ^-directions, respectively, and a* are the corresponding acceler¬ 
ation components. 

In order to obtain expressions for a^, ay, and general functional 
relations of the A^elocity components are used. Let u, v, w be the velocity 
components in the :r2/2-directions at the point x,y,z. In general, u, v, and 
w are functions of the coordinates and of the time t; thus 

u = u{x,y,z,t) 
V = v(x,y,z,t) 

w = w{x,y,z,t) 

where x, y, z, and t are independent variables. If, however, the displace- 
ment. Velocity, and acceleration of the particle at {x,y,z) at time t is 
desired, then x, y, z become functions of the time t. Writing the total 
differential for u, 

du = — dx ~ dy + — + — d/ 
dx dy ^ dz dt 

from Sec. 5. Dividing by dt, 

_ du _ d\i dx I du dz/ . du dz du 
dt dx dt dy dt dz dt dt 

dx du 
As X, y, z represent the coordinates of the particle as it moves, ; ~-j and 

dF 
are the velocity components u, v, and w, respectively. Hence 

du , du 
u-^ + V — 

dx dy 

Oy = U 

Qfz ~ U 

dv 
dx 
dw 

dv 
dy 
dw 

+ V 
dx ^ dy 

, du , du 
(2a) 

, dv . dv 
+ "’5; + « (26) 

>, dw , dw 
+ ”’S' + -5( (2c) 

and 
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Substituting these expressions for the accelerations in Eqs. (1), the 
Euler equations are obtained: 

1 dp _ 
p dx 

1 — 

p 

du . du 
u — + v~ 

dx ay 
, du , du 

dv , dv , dv , dv 
u~-^v~-\-w — + — 

dx dy dz dt (3) 

p dz 
dw , dw 
dx dy 

dw 
+ WJ- + 

dw 
~di 

/ No assumption has been made that p is a constant; hence, these 
equations apply equally well to compress!t)le and incompressible non- 
viscous fluids. 

z 
Fig. 6.—Maes flow through the faces of a parallelepiped that are normal to the a;-axis 

7, Equation of Continuity. In deriving the equation of continuity it 
is convenient to consider the mass flow through the faces of a small 
parallelepiped with edges parallel to an xp^-coordinate system and 
center at {x,y,z). The center is fixed in space. Referring to Fig. 6, the 
expression for rate of increase in mass of fluid within the parallelepiped 
with edges bz is formulated. As no restrictive assumptions are 
made, the resulting equation applies to any fluid, real or ideal. 

Fixing attention first on the rate of increase in mass due to flow 
through the two faces normal to the x-axis, the mass of fluid per unit time 
passing the face through the center point (x,p,«) and normal to the 
x-axis is given approximately by 

pu by bz 

where again p is the mass per unit volume at {x,y,z) and u is the x-com- 
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ponent of the velocity at the center. It is an approximate expression 
because pu for the center point may not be the mean value over the finite 
area 8y 8z, The mass flow per unit time through the face nearer the 
origin is given approximately by 

d(pu) 5x1 . . 

and the mass flow per unit time inlo the face farther from the origin is 
given approximately by 

^pu) ^ 
dx 2 

Sy 5z 

The minus sign is required, since u is taken positive in the positive x-direc- 
tion. The approximate net mass inflow per unit time to the paral¬ 
lelepiped through the two faces is the algebraic sum of the last two 
expressions, or 

dx 
6x by bz 

In an analogous manner the rates of mass inflow through the other two 
pairs of faces normal to the y- and 2-axes, respectively, are given by 

— 5x by bz and — —5x by bz 
dy dz 

where w are y- and 2-components of velocity at {x,y,z). Adding the 
three rates together, the approximate net mass inflow per unit time is 

rd(pl^) . d{pv) d{pw) 
' ‘ d2 

bx by bz 
L dz dy 

The net increase in mass per unit time in the parallelepiped is given 

approximately by 

dt 
{p bx by bz) 

As 5x, 5y, bz are independent of the time, this may be written 

^ 5x by bz 

Each of the two expressions for increase in mass per unit time are approxi¬ 
mate because of the possible nonlinear space rate of change of p, Uj v, w, in 
a manner analogous to the pressure change illustrated in Fig. 5. If 
5x, 5y, 52 are allowed to become very small, then the expressions become 
more accurate and are exact in the limit as the parallelepiped is shrunk 
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to the point {x^y,z). Applying the limiting process and dividing through 
by the mass of the parallelepiped, the general continuity equation in 
cartesian coordinates is obtained: 

1 1 1 ^(p^)i 
P _ dx dy p dt 

This equation must necessarily hold for every point in the fluid with 
the exception of the so-called singular points'' such as sources and sinks, 
which are discussed in Chap. III. 

If the density is constant, the right-hand side of Eq. (4) vanishes. 
Equation (4) reduces to the kinematical expression 

dll dv dw 
(5) 

which is the equation of continuity for an ideal fluid. 
The ideal fluid assumptions have led to four equations that must be 

satisfied at every point in the fluid (except singular points). These 
partial differential equations, Eqs. (3) and (5), contain four unknowns 
Uj Vj w, and p, all of which are functions of the (‘coordinates and the time. 
As arbitrary functions enter the solutions of partial differential equations, 
boundary conditions are also required for specific solutions of flow cases. 

Considering a frictionless fluid of variable density, Eqs. (3) and (4) 
are available in five unknowns: Uj r, w, p, and p. The density is usually 
expressed in terms of the pressure to obtain an additional equation, called 
the equation of state of the fluid. Examples of pressure-density relation¬ 
ships are those for isothermal or adiabatic expansion or compression. 

8. Boundary Conditions. The kinematical condition that must be 
satisfied at every point on a solid-fluid boundary is that the fluid does not 
penetrate the boundary and that no gaps occur between boundary and 
fluid. If the boundary is stationary, this may be stated as 

lu mv + nw =0 (6) 

or that the component of the fluid velocity normal to the surface must be 
zero, ly niy n are direction cosines of the normal to the surface, and u, v, w 
the velocity components used heretofore. 

When the boundary itself is in motion, however, then the fluid velocity 
component normal to the boundary must equal the velocity of the bound¬ 
ary normal to itself. Letting v (the derivative of v with respect to t) 
represent this velocity of the boundary normal to itself, the boundary 
condition becomes 

V = Zw + mv + nw 

for every point on the boundary. 

(7) 
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The equation of the boundary surface may be expressed as 

F{x,y,z,t) = 0 (8) 

To find the rate of motion normal to itself at any point {x,y^z) on this 

surface, first write the total derivative of Eq. (8) 

OF . I dE j 1 dF j I dF ^ 
dT = — dx + — dy + —dz + —dt == 0 

ax ay dz at (9) 

To follow the motion normal to the surface, let 

dx — Iv 8tj dy = mv 8ty dz — nv U, dt *= U (10) 

Substituting into Eq, (9) and reducing, 

,dF , dF , dF 
v\l--h TO ^ + w 

dy dx dy dz^ 

As the direction cosines of the normal to the surface * at (x,y,z) are 

1 dF 1 ^ 
^ ~ R dx’ 

TO 
R dy’ 

1 dF 
^ ~ R'^ 

(11) 

(12) 

where 

+(!)■■-(ST 
^ Ivct f{x,y,z) = 0 represent the boundary surface F{x,yyZ,t) =» 0 at some time to. 

The expressions for the direction cosines of the normal to the surface at some point 
(xo,yo,Zo) are developed as follows: 

Taking the total derivative of f{x,y,z) — 0, 

gdx + ^ydy+gdz=0 

Consider two neighboring points on the surface, {xo,yo,Zo) and {x,y,z). Let 

dx ^ x ^ Xo, dy — y — yoy dz == z — Zo; 
then 

dx (_xi),yo,Z(i) 
(x - a;o) 4- 

dy (xo,po,zo) 
(y -Vo)+% 

(Z0,I/0»20) 
(z — Zo) « 0 

is the equation of a plane through (a;o,2/o,2o), as the partial derivatives are constants. 
Let this plane be cut by the plane x = xo. The line of intersection is 

dy\ 
(2 - Zo) 

HixooVo,*o,) 

which is tangent to the curve f(xojyjZ) — 0 at (xo^yojZo), since 

dz ^ df/dy\{xo,yo,to) ^ g ~~ gp 
dy (yo,®o) d//dg|(zo,yo,«o) y - y^ 

Similarly, the planes y ^ yo and z = Zo intersect the plane on lines tangent to 
fix^yo^z) « 0 and fix^y^Zo) =« 0, respectively, at (a:o,yo,go)< The plane that contains 



18 FLVW DYNAMICS [Chap. II 

by substituting for I, m, n in Kq. (11) 

It dt 
(13) 

Substitution of Eq. (13) into Eq. (7) using Eq. (12) gives 

0 (14) 

which is the general boundary condition eciuation. This may be written 

(15) 

dF , dF , dF , OF 
u-^ + v—+ 

dx dy dz dt 

0 
Dt 

where the operator ~ is 

Jl ^ 
Dt dx dy dz dt 

(16) 

This operation is called differentiation with respect to the motion; tnus 

Du 
Dt 

= ax 
Dv 
TTt 

Oyy 
Dw 
lot a* 

Example: The equation of a sphere of radius r whose center is moving along the 

(T-axis with velocity U is given by 

F = - Ut)^ 4- 2^2 ^2 _ ^2 « 0 

The boundary condition is found as follows: 

and 

dx 

^=0 
Dt 

2(x - Ut), 

OF , dF , OF 
dx dy dz ^ dt 

dz 
« 22, 

dt 
-2U(x -> Ut) 

these three tangent lines at {xo,yo,Zo) is defined as the tangent plane to the surface 

at (xo,2/o,2o). 
The direction cosines of the normal to the tangent plane are proportional to the 

coefficients of x^y^z in the equation of the plane, 

:9f\ 
dxl(xo,^(i,4:«) dy\{xiityo,Zii) dz\{x9,yfi,ifi) 

and the direction cosines of the normal to the surface at (xo,yo,2o) are 

I n —gr—> m 
df/dy 

R ' 
n 

df/dz 
R 

where 
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Hence, 

DF 
= u(x — Ut) vy A- wz Uix — Ut) =0 

or 

(u — U){x -- UT) + vy wz — 0 

This is the required boundary condition equation which must be satisfied I'or every 
point on the surface of the spluiro. 

In dealing with the motion of bodies through an infinite fluid, it is 
assumed in general that the motion starts from rest; i.e., initially both 
fluid and bodies are stationary. When for(*es are applied to the bodies 
to set them in motion, a necessary condition is that the fluid at infinity 
remain at rest. If this were not so, it would imply that the finite forces 
acting on the bodies had imparted to the fluid infinite kinetic energy in 
finite time, which is obviously impossible. 

Dynamical boundary conditions may also arise wxien two different 
fluids are in contact. The piessure intensity must vary continuously 
across the boundary. If there were a finite (diange in pressure across the 
boundary, then the resultant force produced on an infinitesimal slice of 
tl^ boundary would produce infinite acceleration of the boundary. 
^ 9, Irrotational Flow. Velocity Potential. A further restriction to 
the general fluid problem, viz.y the assumption that the flow is irrotational, 
provides a means of integrating the Euler equations, if the extraneous 
(body) forces are derivable from a potential. It is shown in this section 
that the assumption of irrotational flow is identical with the assumption 
that a velocity potential exists. 

Rotation may be represented as a vector that has three components 
parallel to the xyz-a>xes. The sense of rotation follows the right-handed 
rule; for example, the component extending in the positive direction along 
the a:-axis indicates rotation about an axis parallel to x in the sense that 
would make a right-handed screw progress in the positive x-direction. 
The length of the vector (or component) is a measure of the magnitude 
of the rotation (radians per second). 

The rotation component of a fluid particle about an axis through 
itself, say parallel to the 2:-axis, may be defined as the average angular 
velocity of any two infinitesimal linear elements in the particle that are 
perpendicular to each other and to the 2:-axis. The rotation components 
are given the symbol w with subscripts indicating the axis to which they 
are parallel. Hence, w*, ojyj ojz are the components of rotation about axes 
parallel to the xyz-Bx^s of the coordinate system, respectively; they may 
be added vectorially to find the total rotation of the particle. The 
magnitude of the rotation is given by 

0) = \/ 
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The rotation vector of a particle is defined as one-half the curl of the 
velocity vector. 

Returning to the definition of rotation, the mathematical expression 

velocities of dx and 6y are sought, 
segment is 

for the rotation component of a 
particle about an axis parallel to 
z is developed. Any two line seg¬ 
ments perpendicular to z througli 
the particle will be in a plane 
parallel to the :i:?/-plane. ^I'hese 
two lines may conveniently be 
taken parallel to the x- and t/-axes, 
as they must be at right angles 
to each other, although any other 
two perpendicular lines in the 
plane through the point would 
give the same result. Referring 
to Fig. 7, the particle is SitP(x,y,z) 

and has the velocity components 
UjV in the x?y-plane. The angular 
The angular velocity of the dx 

V + dv 
dx 

5x 

dx 
dv 

dx 
radians per second 

The angular velocity of the dy segment is 

U + —,^y — u 
dy du 

radians per second 

using counterclockwise as positive. 
Hence, by definition, the rotation of the particle situated at (x^y^z) 

about an axis parallel to the z-axis is 

_ I f dv d?A 
~ 2 

The rotation components about axes parallel to x and y are found in an 
analogous manner to be 

Now that rotation has been defined, irrotational flow may be defined 
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as the abvsence of rotation at every point in the fluid with the exception of 
singular points. That is, 

CO* = coy = == 0 
or 

^ ^ du _ dw dv _ du 
dy dz dz dx^ dx dy ^ 

must be satisfied throughout the fluid. 
A visual concept of irrotational flow may be obtained by considering 

as a free body a small element of fluid in the shape of a sphere. As the 
fluid is frictionless, no tangential stresses or forces may be applied to its 
surface. The pressure forces act normal to the surface and, hence, 
through its center. Extraneous forces act through its mass center, which 
is also its geometric center for constant density. Hence, it is evident 
that no torque may be applied about any diameter of the sphere. There¬ 
fore, the angular acceleration of the sphere about any axis through the 
sphere must always be zero. If the sphere is initially at rest, it cannot be 
set in rotation by any means whatsoever; and if initially in rotation, there 
is no means of changing its rotation. As this applies to every point in 
the fluid, except singular points, one may visualize the fluid elements as 
being pushed around by boundary movements but not being rotated if 
initially at rest. Rotation or lack of rotation of the fluid particles is a 
property of the fluid itself and not its position in space. For example, a 
certain space may be occupied by irrotational fluid at one time, and at 
some later time other fluid with rotation may have taken its place. 

In an actual fluid, such as air or water, having small viscosity, irrota¬ 

tional flow may take place for all practical purposes for a short time after 
motion starts from rest. 

The concept of a velocity potential <t> in fluid flow has several advan¬ 
tages. It is defined as a scalar function of space and time such that its 
negative derivative with respect to any direction is the fluid velocity in 
that direction. It is analogous to the force potential whose derivative 
with respect to a direction is the force in that direction. Mathematically 

the velocity potential <t> is defined by the equations 

d<f} 
W = — -T” dx 

(18o) 

d<t> t; = — _ (186) 

1 11 (18c) 

where t6, r, w are the component velocities in the cct/2-directions. By 
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means of Eqs. (18) partial derivatives of 0 may replace the velocity 
components w, v, and w. 

As 

_ ay 
dx dy dy dx 

differentiation of Eq. (18a) with respect te y and of Eq. (186) with respect 
to X shows that 

du _ dv 
dy dx 

In a similar manner 

a^ “ a^ a'z “ ^ 

which are the conditions for irrotational flow [Eqs. (17)] derived in this 
section. 

Thus, it is seen that the existence of a velocity potential implies 
irrotational flow. To show that the conditions for irrotational flow 
imply the existence of a velocity potential, the equation 

du __ dv 
dy dx 

is the necessary and sufficient condition that 

udx + V dy 

is a perfect differential, say and 

<1)1 is a function of x,2/,2, where z is considered constant. 
Next, consider the function 

4>(x,y,z) = <f>i{x,y,z) + /(z) 

with f(z) a function of z only. Since 

a<^ _ d<t)i d<t> _ d(t)i 
dx dx ^ dy dy 

it is desired to find/(2;) such that <t> is the velocity potential, that is, 

where f'(z) is Then 
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Partial derivatives of f{z) with respect to x and y must be zero, since it is 
a function of z only, thus 

df(z) _ dw d d<t>i dw d d<t>i _ dw , 
dx dx dx dz dx dz dx 

dfiz) _ dw d d<t>i _ dw d d(j>i 
dy dy dy dz dy dz dy dy ^ 

du 
Tz 
dv 
dz 

which are Eqs. (17). Hence/'(z) is determined, from which/(z) and <l> 
may be determined. 

Hence, the conditions for irrotational flow give rise to the defining equa¬ 
tions for velocity potential. In these relations the partial derivatives 
are assumed to be continuous. Therefore, the assumption of irrotational 
flow and the assumption that a velocity potential exists are one and the 
same thing. 

Using the relationships obtained by assuming the existence of a veloc¬ 
ity potential, the Euler equations may now be integrated if the extraneous 
forces are derivable from a potential. Gravity is the usual extraneous 
force encountered in fluid flow and is derivable from a potential. 

10. Integration of Euler’s Equations. Bernoulli Equation. If the 

extraneous force components are given by 

^ dQ ^ dQ ^ dQ 
dx dy dz 

where Q is the extraneous force potential, the first of Euler’s equations, 

t^qs. (3), may be written 

du . du . 
u~ + V — + w 

dx dy 

du 
dz + 57+r + 'r -» dt dx p dx 

Substituting in the irrotational flow conditions 

du _ dv 
dy dx 

and the velocity potential 

the equation takes the form 

du _ dw 
dz dx 

dff) 
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the equation may be expressed as 

( 2 2 ^2 
d<t> + 12 + 

?)=» d:c \ 2 ' 2 ■ 2 dt 

where p is now considered a constant. Integrating with respect to x 

-1?+fi+^" 
where Fi is an arbitrary function resulting from the integration. Defin¬ 
ing q as the magnitude of the velocity, or the speed, at any point, then, as 

^2 ^ ^2 ^ y2 ^ 

the integrated equation is 

V - + n + ^ = F^iy,^,t) 

Integrating the second and third Euler equations in an analogous manner. 

and 

- ^ + Q + ? = F,ix,y,t) 

As the left-hand sides of the equations are the same 

Fi{y,z,t) = F2(x,z,i) = Fs(x,y,t) 

where the functions are all arbitrary. Examining the first two members, 
since x and y are independent variables, they must disappear from the 
equation or the equation could not be true. Similarly, considering the 
first and third members, z must disappear from the functions. F2, 
and Fz must then reduce to an arbitrary function of the time alone, or to 
a constant. The final integrated form of the three Euler differential 
equations becomes one equation: 

+ £2 + ? = Fit) (19) 

containing an arbitrary function of time F{t). This is the Bernoulli 
equation for unsteady flow, z.e., for flow that changes with time. In 
steady flow where there is no change in conditions with respect to time, 
the equation reduces to 

+ 12 + ~ = 
p 

(20) 
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where C is an arbitrary constant to be determined by known conditions 
of velocity, pressure, and extraneous force potential at some point in the 
flow. 

Restricting Euler’s e(iuation to steady flow along a streamline with q 
the total velocity, the equation becomes 

dq . dil . 1 dp 
^ ds ^ ds ^ p ds 

where s is the distance measured along the streamline, 
respect to s, 

2 
+ R + = C 

P 

Integrating with 

where C is a constant for a particular streamline. This derivation does 
not recpiire irrotational flow but requires that all points to which the 
equation applies be on the same streamline. 

The units of each term in Eqs. (19) and (20) are energy per unit mass 
(foot-pound per slug or scpiare feet per second per second). Each term 
on the left-hand side of Eq. (20) may be considered a form of energy 
(kinetic, potential, and pressure energy, respectively), and their sum 
is a constant throughout the whole region of steady irrotational flow. 

Orienting the 2:-axis positive upward and making the additional 
assumption that gravity is the only extraneous force acting, then 

0 = ~\~qz 

It is convenient to consider the pressure intensity as made up of two 
parts, that due to static fluid conditions the pressure that would exist 
if there were no motion, and that due to dynamic conditions pd, i.6., to 
changes in velocity. Equation (19) may be written 

The two terms 

1^2 
d<i> 
Tt + + - + ^ = Fit) 

p p 

El 
p 

+ gz 

equal a constant, however, as an increase in potential energy due to 
increase in z is exactly offset by a decrease in static pressure energy. 
These two terms may then be included in E(0, reducing the formula to 

where p now becomes the dynamic pressure. Its subscript is dropped; 
hence it should be remembered that the total pressure at a point is found 
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by adding to the p of Eq. (21) (and subsequent equations) the static 
pressure, which is the pressure that would exist if there were no flow. 

For steady flow, Eq. (21) reduces to 

+ ? = c 
p 

The constant C in this equation is usually determined by known condi¬ 
tions for velocity and dynamic pressure at some point in the flow. Thus, 
if the velocity of the undisturbed flow is go and the dynamic pressure is 
zero, C has the value Substituting in this value for C, the pressure 
intensity at any other point is given by 

(22) 

Euler^s equations have been integrated without using the continuity 
equation or any particular boundary conditions. As the continuity 
equation and the boundary conditions are both kinematical (contain no 

density term), the magnitude and direction of velocity at all points are 

independent of the particular fluid, and the problem resolves itself into 
one of geometry—to find the particular velocity potential that satisfies 
continuity and the prescribed boundary conditions. Once the velocity 
distribution (or field) is known, the pressure may be determined from the 
Bernoulli equation. 

11. The Laplace Equation. Equipotential Surfaces. When the con¬ 
ditions for existence of a velocity potential (equivalent to assumption of 
irrotational flow) [Eqs. (18)] are substituted into the continuity equation, 
Eq. (5), the Laplace equation results: 

(23) 

which must be satisfied at every point throughout the fluid, excepting 
singular points. Equation (23) is usually written in symbolic form 

VV = 0 

where (pronounced ^^del squared’') is the operator 

(24) 

V* = ii + 
dx^ ^ dy^ ^ dz^ 

(26) 

when expressed in cartesian coordinates. The Laplace equation is 
encountered in many other branches of physics, such as electricity, heat 
flow, and elasticity. It has the units jP“‘ (per second). As the Laplace 
equation contains the continuity equation and the irrotational flow 
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condition, any function 0 that satisfies it is a possible fluid flow case. 
One fruitful method of approach is to examine solutions of the Laplace 
equation in order to determine which particular boundary conditions 
they fulfill. 

When the boundary conditions are specified in advance, it may be very 
difficult to find the proper function 0 to satisfy them as well as the 
Laplace equation. Several methods of attack are available other than 

Fiq, 8.—Normal to an cqiiipotential surface. 

the direct method of finding 0 from the boundary condition equations. 
These include the electric analogy method, the Hele Shaw method, and 
graphical trial-and-error methods. 

Equipotential surfaces are defined as those surfaces within the fluid 
over which the value of <t> remains constant. As the derivative of <t> with 
respect to an element of length in the equipotential surface is zero, i.e.j 

^ = 0, as 0 is constant along the surface and 8s is an element of length 
as 
in the equipotential surface, there can be no component of the velocity 
tangential to the surface. In other words, the velocity is everywhere 

normal to the equipotential surfaces. 
The velocity normal to an equipotential surface (Fig. 8) is the total 

velocity q whose magnitude is given by 

g = I'u + m'v + n'w = - {i'^ ^ (26) 
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where dn is an element of the normal to the equipotential surface drawn 
positive in the direction of decreasing <t>. I', n* arc the direction 
cosines of the normal n. Equation (26) is the negative of the gradient 
of 0, written 

g = - grad 0 

Other surfaces or lines in two-dimensional flow have the velocity 
vector everywhere tangent to them. They are known as stream, surfaces 
or streamlines. It follows that stream surfaces and equipotential surfaces 
intersect orthogonally (at right angles). 

12. Summary. The following assumptions have been made in the 
derivation of Euler^s equations, the continuity equation, and the general 
Bernoulli equation: 

1. The fluid is frictionless (viscosity zero). 
2. The density is constant. 
3. The flow is irrotational; f.c., a velocity potential exists. 
The solution of a flow problem was shown to consist of a solution of the 

Laplace equation that also satisHes the prescribed boundary conditions. 
The Laplace equation in cartesian coordinates is 

dV 4_ 4- = 0 

hence, its solution would be an expression for 0, the velocity potential, 
as a function of the coordinates and the time. With the velocity poten¬ 
tial known that satisfies the boundary conditions, the velocity field may 
oe obtained from the defining equations for velocity potential; viz.^ 

u = 
d0 
dx ^ 

W = 
d<f> 
dz 

where w, v, w are the component velocities parallel to the a;7/2-directions 
at any point (x^y^z). The pressure distribution throughout the fluid may 
then be obtained from the appropriate form of the Bernoulli equation. 

Practically, the solution of problems in most cases is indirect in that 
it is much easier to investigate various functions which satisfy the Laplace 
equation in order to determine which boundary conditio^j^^^ satisfied 

In steady flow a streamline or stream surface may blpp||fced by a 
solid boundary without affecting the flow, as the normal'wiftponent of 
velocity at a stream surface is always zero when the surface is stationary. 
Therefore, if any streamline or stream surface can be found that has the 
exact size, shape, and position of fixed boundaries in a particular problem, 
then from the potential function the velocity and pressure fields may be 
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obtained. The assumption of frictionless flow precludes the develop¬ 
ment of a boundary layer. In actual problems where a boundary layer 
may develop appreciable thickness and especially where separation of 
the flow lines from the boundary may occur, ideal fluid solutions must be 
used with extreme caution. 

Exercises 

1. P'ind the total differential of the following: 

(a) u — (6) u — sin 2x -f cos 2y 

(c) u - taii“i (x -h y) (d) u = In {x^ -h xy) 

where In is the natural logarithm. 

2. Given: x = sin y = \i\ iy z = t Find ~ for the functions in Exercise 1. 

3. The velocity field is given by 

u — yz A- V = xz ~ ty %v — xy 

Find the acceleration components of a fluid particle at (1,1,1) in terms of t. 
4. Reduce Euler’s equations to the sp(^cial case where the a^-axis (s-axis) is 

oriented in the direction of the velocity vector at the point (XyVyZ) or (s,n,m) and the 

^-axis (?i-axis) is in the direction of the center of curvature of the streamline at 

tlic point. The 2-axis (rn-axis) then forms a right-handed cartesian system with the 

other two axes. Let gravity be the only extraneous force acting with h measured 

vertically upward, w,, Un, Um are the velocity components paralhd to the snm-axes. 

7 — py, f' = radius of cairvaturc. 

A ns. 
p dn ^ r -f- 

O Un . 
Ot ’ 

lA. 
p dm (V -f“ 7^) dt ' 

6. Which of the following velocity fields are possible fluid flow cases? Which 

satisfy the conditions for irrotational flow? 

(а) u—xA-yA-z, V—X — w=xA-y-\-^ 

(б) u x-y, V == yZy w — yz A- Z' 

(c) u = x{y A- z)j V - y(x + 2), w - — (j + y)z — 2^ 

2^ 
(d) u = xyzty V == —xyzt^y ^ 2 

6. With the two velocity components given, find the other component that 

satisfies continuity. Are the answers unique? 

(а) u = x^ + y^ A- zA 
U ea yz ^ xz 

w “ 

(б) w — In (t/2 + 2^) 

V = sin {x^ + z^) 
w 
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(c) u 

V 

w 

•f y 

-hz 

7. Do any of the velocity lields in Exercise 6 satisfy the conditions for potential 

flow? 

8. Write the boundary condition equation for a sphere whose center moves along 

the positive ^-axis with a velocity of 10 ft per sec at the origin and a constant acceler¬ 

ation of 1.0 ft per sec^. The radius of the sphere decreases inversely as the distance of 

its center from y = —1 ft and is 1.0 ft when the center is at the origin {t 0). 

Am. ux -j- V j + wz 

+ (< + 10) y + lot 

9. Examine the following functions to determine if they could represent the 

velocity potential for ideal fluid flow. 

(a) f - X 'h y + z (b) f X xy -h xyz 

(c) / = ic® 4- 2/^ + 2* (d) f = zx^ — y^ — z'^ 
(e) / = sin (x 4 2/ 4 2) (/) / = In a; 

10. Show that if and <t>2 are both solutions of V*<f> = 0, then (f>i 4 <^2, and 

C 4 <^i are also solutions, where C is a constant. 

11. In Sec. 9, the rotation component about an axis parallel to the 2-axis was 

defined as the average angular velocity of two elements, mutually pcj pendicular to 

each other and to the 2-axis. To prove that the same answer is obtained for any 

two such elements, show that 

2 \dx dy) 2 \dx' dy') 

where x',2/' are a rotated set of axes, the z-axis remaining the same; u\v' are velocity 

components parallel to x^y'^ respectively. 



CHAPTER III 

THEOREMS AND BASIC FLOW DEFINITIONS 

13. Equation of Energy. The principle of work and energy is valid 
for a fluid, provided that it is nonviscous, that the extraneous (or body) 
forces are derivable from a potential ft such that 

X = 
_ ^ 

dx^ 
r = - z 

dz (i) 

and, furthermore, that 12 is independent of time, -rr “ 0. In this 
oi 

section it is shown (1) that the time rate of doing work on the boundaries 

of an ideal fluid is equal to the time rate of change of the sum of the 

kinetic and potential energies and (2) that the time rate of doing work 

on the boundaries of a compressible, nonviscous fluid is equal to the 

time rate of change of the sum of the kinetic, potential, and intrinsic 
energies. 

Euler’s equations [Eqs. (3), Sec. 6] are written in the form force per 

unit mass = acceleration, for the a:t/2:-directions. Multiplying each 

equation through by p dx by 8z makes the equations applicable to an 
element of mass: resultant force = 8 (mass) X acceleration. Now, by 

multiplying the a:-component by u, the left-hand side is the power applied 
to the mass particle by forces acting in the a:-direction (time rate of doing 
work), thus 

uXp 8x 8y 8z — 8x 8y 8z = up 8x 8y 8z ^ 

where the operator ^ has the meaning of Eq. (16), Sec. 8. Similarly, by 

multiplying the y-component by v and the ^-component by w and then 

adding the three equations, the total power added to the particle is 

obtained: 

{uX + vY + wZ)p 8y 8z — + V ^ + w 8x 8y 8z 

f Du . Dv . Dw\ . . - 

81 
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Substituting in Eqs. (1), noting that i/ 

tion takes the form 

Du 
ITt 

etc., the equa- 

DQ 
Dt 

p Sx by bz (“If+ + 
Dt 

+ + w*) Sx Sy 5z 

Writing w~ and integrating throughout the volume of 
fluid, this becomes 

D1 
Dt 2 

pq~ dx dy dz -(.III 
-///(■ 

Qp dx dy dz 

dx^ dy 
+ w 

djp\ 
dz) 

dx dy dz 

The first integral 

T = dx dy dz 

(2) 

(3) 

is the total kinetic energy T in the fluid region. As 12 is the potential 
energy per unit mass at the point {x^y,z), the second integral is the total 
potential energy V of the fluid region: 

V = ^^i^pdxdydz (4) 

Equation (2) may now be written 

^ ~ 111 (“If+ "lf+ 
The integral on the right-hand side of the equation may be integrated 

by parts. Integrating the ^-component of the first term, 

dx dy dz 
dx ^ 

dx dy dz 

where the integration of the first term on the right-hand side of the ecpia- 
tion with respect to x is carried out from X\ to x^ as in Fig. 9. An element 
of boundary surface bS is related to its projection on the i/^-plane, by bz, 

by 
by bz = bS 

where I, m, n are the direction cosines of the normal to the surface, drawn 

into the fluid. As by, bz, and bS are always considered positive, the 
minus sign is used when I is negative. Substituting in the value of 
dy dz at Xz and Xi, it is evident that 
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j ])ul dS 

where the integration is carried out over the whole boundary surface 
of the fluid. Transforming the remaining terms in an analogous manner, 

^ (7" + T) = j p(hi + mv + rnv)dfl 

■^/// I+ ® 

Fig. 9.—Fluid region showing the direction cosine of a normal to the boundary. 

For an incompressible fluid the integrand of the last term is zero, by 
Eq. (5), Sec. 7. Hence, 

^ (T + F) = j p(lu + mv + nw) dS (7) 

Since In + mv + nw is the velocity of the boundary normal to itself 
[Eq. (7), Sec. 8] and p dS is the force element exerted on the fluid by the 
boundary, the surface integral is the rate at which work is being done 
on the fluid by forces at the boundary. For fixed boundaries, Eq. (7) 
reduces to 

T + V = constant 

For a compressible, nonviscous fluid the right-hand term of Eq. (6) 
may be interpreted as the time rate of change of intrinsic energy of the 
fluid in the region. Intrinsic energy may be defined as the work that a 
fluid is capable of doing by expanding against external pressure. The 

terms 

du \ \ 

represent the expansion rate per unit volume of fluid. Multiplying by 
the pressure intensity p, the work done per unit time per unit volume is 
obtained. Multiplying this by dx by bz and integrating throughout 
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the region give the time rate of work done by tne expanding fluid, or the 
time rate of decrease in intrinsic energy. Let W represent the intrinsic 
energy of the fluid region; then 

DW [ f f ^ ^ ~W~ ] J J ’’U 
Equation (6) now becomes 

-h V + W) = j p(lu + mv + nw) dS (8) 

Therefore, the time rate of doing work on the boundaries is equal 
to the time rate of change of fluid energy (kinetic, potential, and intrinsic). 

No restrictions have been placed on the nature of the fluid flow, f.c., 
whether it is rotational or irrotational. Therefore, equations derived in 
this section are valid for either flow. 

14. Green’s Theorem. Kinetic Energy Equation. The use of 
Green's theorem permits the derivation of an expression for the kinetic 
energy of a fluid in irrotational motion. This kinetic energy expression, 
in turn, aids in establishing some important uniqueness theorems which 
are given in Sec, 15. 

Green's theorem states that 

j {lU + m7 + nW) dS = - j j j ^ + ^'^dxdydz (9} 

where U, V, W are any finite, single-valued, differentiable functions of 
space in a connected region completely bounded by one or more closed 
surfaces >S, of which SS is an element and m, n are the direction cosines 
of the normal to the surface element dS directed into the region. The 
double integration is carried out over the boundary, and the triple inte¬ 
gration throughout the region. 

Consider the region as comprised of a large number of small parallele¬ 
pipeds with edges dx by bz, respectively parallel to the a;2/2-axes of a 
cartesian system of reference. The surface integral 

/(/f7 + mF + nTF) dS (10) 

when applied to the interface between two of the volume elements, will 
have the normals extending in opposite directions; thus if h, mi, Ui refer 
to the inwardly drawn normal from the face for one volume element and 
-2, m2, 712 refer to the inwardly drawn normal from the same face to the 
other volume element, h = — ^2, mi == —m2, Ui = —712, and the value 
for the face is zero, as 17, F, TF are functions of space. In a similar man¬ 
ner the surface integral becomes zero for all the inner surfaces and hence 
need be evaluated only for the original boundary of the region. 
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Consider one of the volume elements with center at {x^y^z). For the 

yzAsice nearer to the origin the surface integral (10) becomes 

( - Tx I)*-" 
as Z = 1, m = 0, n = 0, bS = by bz. For the opposite face (10) becomes 

dV bx\ ^ 
by bz 

asZ = —1, m = 0, n = 0, = by bz. Their sum is 

dU 
dx 

bx by bz 

Evaluating (10) for the other two pairs of faces and adding, 

\dx dy 
+ dW\ 

dz ) 
bx by bz 

is the value of (10) for this element. Summing up all the surface ele¬ 
ments of the region results in the triple integral on the right-hand 

side of Eq. (9); and as the surface integral over all the elemental volumes 
equals the surface integral over the original boundary, Greenes theorem 
[Eq. (9)] is proved. 

To obtain the expression for kinetic energy let 

u-0p, 
dx 

where 0 is the velocity potential. Substituting into Eq. (9), first 

where bn is an element of the normal to the boundary and I, m, n are the 
direction cosines of the normal. Then 

dU dV dW 
dx dy dz 

= 4- 4- 
''\dx/ \^y/ 

+ 0 

using the notation of Sec. 11. 
Green's theorem. 

Multiplying by p/2 and substituting into 

i/ 
-llll <t> dx dy dz 
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For any possible irrotational fluid flow case with constant density, 
VV = 0 and the last integral drops out of the equation. The remaining 
triple integral is that of Eq. (3), Sec. 13, the total kinetic energy of the 
fluid region. Hence, the kinetic energy T of the fluid is 

where the integral is evaluated over the boundary. 
This formula may be shown to hold for an infinite region,^ at rest at 

infinity, when bounded internally by a solid. Let rei)resent a large 
surface enclosing the fluid region about the solid S, Then for this region 

is the kinetic energy of the fluid. As there is no flow across the face S 
of the solid, the continuity equation may take tlie form of a statement 
that the flow out of the boundaries S and must be zero; thus 

[ ^dS + [ = 0 (13) 
J(z)dn 

Multiplying Eq. (13) by an arbitrary constant Cp/2 and adding toEq. (12), 

r, . - I (♦ - C) 2dz (H) 

As the liquid is at rest at infinity, 0 becomes a constant at infinity. Let 
C be this constant, and enlarge the surface S indefinitely in all directions. 

1 Sd) 
The second integral then becomes zero, as {<t> — C) is of order ^ is of 

It OH 

order ^ at great distances from the solid aS, while the surface element is 

of order R being the distance of the surface from the solid. Hcuice, as 
R becomes infinite, the integral vanishes.- The first integral reduces to 
Eq. (11), as 

C 
dn 

dS = 0 

states that there is no flow out of the region through S, 

1 Milne-Thomson, ^‘Theoretical Hydrodynamics,^' pp. 88-89, Macmillan & Co., 
bid., Txmdon, 1938. 

® The order of 4> and are obtained from considerations of source flow. It may 
071 

be shown that the motion of a fluid due to the passage of a body through it can be 
obtained by a suitable distribution of sources, sinks, and doublets about the boundary 
of the solid. See Lamb, “Hydrodynamics,'’ 6th ed., pp. 58-59, Cambridge Uni¬ 
versity Press, London, 1932. 
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16. Uniqueness Theorems. The following theorems are proved as a 
consequence of Eq. (11). These theorems are limited to ideal fluid flow 
cases w^here the velocity potential is single-valued. 

Irrotational motion of a fluid is impossible if the boundaries are fixed. 

In 

dx dydz— — ip / <l>^/dS 
dn 

(15) 

is zero over all the boundaries (Sec. 8). Hence, T == 0, and g, the 

velocity, is everywhere zero. 
Irrotational motion of a fluid will cease when the boundaries come to rest, 

d<b 
As — must be zero the instant the boundaries cease to move, q must be 

dn ^ ^ 

zero everyAvhere to satisfy the kinetic energy equation. 
Irrotational motion of a fluid that satisfies the Laplace equation and 

prescribed boundary conditions is uniquely determined by the motion of the 

boundaries. Let <t>2 be tw^o solutions that satisfy == 0 and the 
boundary conditions. Then 

d<j>i _ dd>2 
dn dn 

at each point on the boundary. As <^ = (#>i — <^2 is also a solution^ of the 
Laplace equation, 

d(t) _ d<t>i ^ d<t>2 _ d(0i — <^2) _ Q 
dn dn dn dn 

shows that from Eq. (15) g — 0 at every point. Then (j) — constant, and 
<t>i and 02 may differ by only a constant. The velocity distribution given 
by 01 and 02 are identical, as 0 is always subject to the addition of an 
arbitrary constant without affecting the Laplace equation or boundary 
conditions. 

Irrotational motion of a fluid at rest at infinity is impossible if the interior 

boundaries are at rest. The proof is essentially the same as for the first 
theorem above. 

Irrotational motion of a fluid at rest at infinity is uniquely determined 

by the motion of the interior solid boundaries. Let 0i, 02 be two solutions 
satisfying the Laplace equation and the boundary conditions. Then 

d0i   d02 

dn dn 

over the solid surface, and = ^2 = 0 at infinity. As 0 = 0i — 02 is 

1 As = 0 is a linear, homogeneous differential equation, the sum of any two 

solutions is also a solution. See Exercise 10 at end of Chap. II. 
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also a solution of = 0, 
difi 

bn 
0 over the surface of the solid. Hence, 

by Eq. (15), g = 0 everywhere, = constant, and <^>i and 02 produce the 
same fluid motion. 

16. The Stream Function in Two-dimensional Flow. The stream 
function requires a different definition for two-dimensional flow from that 

for three-dimensional flow. A streamline, 
however, is defined in the same manner 
for either two- or three-dimensional flow, 
viz,^ a continuous line through the fluid 
such that it has the direction of the 
velocity at every point throughout its 
length. The differential equation for a 
streamline is 

dx _ dy _ dz 
u V ^ w 

Fig. 10.—Fluid region showing the 
positive flow direction used in the 
definition of a stream function. 

dz 
in three-dimensional flow. The last part of the equality, —, drops out 

in two-dimensional flow. 
In two-dimensional flow all lines of motion are parallel to a fixed 

plane, say the xt/-plane, and the flow patterns (networks of ecjuipotential 
lines and streamlines) in all planes parallel to this plane are identical. 

Let A, P represent two points in one of the planes (Fig. 10), and con¬ 
sider that the flow has unit thickness; f.e., the flow is between two planes, 
say z — 0 and 2 = 1. The rate of flow of fluid across any two lines A CP, 
ABP must be the same if the density is constant and no fluid is created 
or destroyed within the region, as a consequence of continuity. Now 
consider A a fixed point in the o^iz-plane and P a movable point. The 
flow rate across any line connecting the two points is a function of the 
position of P and of the time. Let this function be 0, and take as sign 
convention that it denotes the flow rate from right to left across any line 
connecting A and P, when the observer is at A looking along the line 

toward P. Thus 

is defined as the stream function. 
Let 01, 02 represent the values of the stream function at points Pi, P2, 

respectively, in Fig. 11. Then 02 — 0i is the flow across P1P2 from right 
to left. If some other point besides A were taken as fixed point, say 0, 
then the values of 0i and 02 would be increased by the same amount, viz., 
the flow across UA. 0 is then indeterminate to the extent of an arbitrary 

constant. 
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Useful expressions for velocity components may be worked out 
from the definition of Displace P in Fig. 12 to P' an infinitesimal 
distance by in the ^/-direction. The flow rate across by from right to left 
is 5^ == by^ or 

dyp 
u = - -f 

dy (16) 

Similarly, ifP is displaced an infinitesimal 
distance bx in the positive ^-direction, 
b\f^ = V bx or 

dx 
V = (17) 

In words, the partial derivative of the 
stream function with respect to any 
direction gives the velocity component 
+90 deg (counterclockwise) to that 
direction. 

Equations (16) and (17) are true whether the flow has rotation or not. 
For irrotational flow, however, the condition 

J'la. 11.—Flow between two point? 
in a fluid region. 

^ dV 
dy dx 

from Eqs. (17), Sec. 9, applies. 
Substituting Eqs. (16) and (17) 
into this expression gives 

(18) 

showing that \p may be construed 
as a velocity potential for some 
other flow. The stream function 
has the dimensions (or 
cubic feet per second per foot of 
width), the same as the velocity 
potential. 

When the two points Pi, P2 of 
Fig. 11 lie on the same streamline, 
the rate of flow across APi and AP2 

is the same, as there can be no flow 

across a streamline. Then — ^2 = 0. Therefore, the stream func¬ 
tion has a constant value along a streamline. The flow rate between 
any two streamlines (unit width in 2-direction) is given by the difference 

Fia. 12.—Displacement of 
relation between if/ and u. 

P to show the 
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of the values of the stream function. Relations between stream function 
and velocity potential are found by equating the expressions for velocity 
components: p j. 

d<l> __ dyp d(j> 

dx di/ dy dx 

17. Stokes’ Stream Function for Three-dimensional Flow. The 
Stokes^ stream function is defined only for those three-dimensional flow 
cases which have axial symmetry, where the flow is in a series of planes 
passing through a given line and where the flow pattern is identical 
in each of the planes. The intersection of these planes is the axis of 
symmetry. 

In any one of these planes through the axis of symmetry select two 
points A, P, such that A is fixed and P is variable. Draw a line connect¬ 
ing AP. The flow through the surface generated by rotating AP about 
the axis of symmetry is a function of the position of P. Let this function 
be 2-71^, and let the axis of symmetry be the a:-axis of a cartesian system of 
reference. Then \l/ is a function of x and where 

W = Vz/'*' + 

is the distance from P to the o'-axis. The surfaces = constant are 
stream surfaces. 

To find the relation between yp and the velocity components ti, v' 

parallel to the a:-axis and the ^-axis (perpendicular to x-axis), respectively, 
a similar pi’oeedure is employed to that of Sec. 16. Let PP' be an infini¬ 
tesimal step first parallel to w and then to x, i.e., PP' — and then 
PP' = 5.r. The resulting relations between stream function and velocity 
are given by 

— 27rw 8a) u ~ 2Tr 8\p and 27rco 8x v' = 27r dyp 

Solving for w, v'^ 

I drP , Idyp 
u = - - v' = - ^ 

oj a 0) o) ox (19) 

The same sign convention is used as in the two-dimensional case. 
The relations between stream function and potential function are 

^ = 1^, ^=-1^ (20) 
dx w dco do) 0) dx 

In three-dimensional flow with axial symmetry p has the dimensions 
IAT~^, or volume per unit time. 

The stream function is used for flow about bodies of revolution that 
are frequently expressed most readily in spherical polar coordinates. 
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M = 
du 
dx 

must be true. These are true if 
dy 

dN . 
since 

dx^ 

d^u __ d^u 
dy dx dx dy 

Thus the necessity of the condition is proved. To prove its sufficiency 

and to obtain the solution of the equation, as M = 

u - M dx +f (y) (24) 

where the superscript x on the integral sign indicates integration with 

respect to x only. J{y) is a function of y only. Since = N, 
^ y 

du _ d 

dy “ dy [f 
M dx + f{y) = N 

or transposing, 

df(y) 
dy 

I n other words, 

' N d f ^ 
— -r~ I M dx — & function of y alone 

dy J 

d df{y) 

(25) 

dx dy 
= 0 

is the condition that N _A r 
dy J 

dN <9il/ „ 
or -r-^ = 0 

dx dy 

M dx be a function of y alone. This 

also proves the sufliciency of the condition for an equation to be exact. 
Proceeding to the solution of the equation by integrating Eq. (25), 

dy /(S')-/ 

Substituting this into Eq. (24) the solution of Eq. (23) is obtained, m., 

n.j'Mdx + j Mdx^jdy (26) 

In words: Integrate M dx for y constant. Take the partial derivative 
with respect to y, and subtract from N, leaving a function of y alone. 

Integrate this with respect to y^ and add to the first integral j‘M dx. 
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As an example of this process, the stream function corresponding to 

<t> - cos 9 
r- 

is to be determined, where fx is a constant, r and 6 are spherical polar 
coordinates, and the velocity potential has axial symmetry, from Eq. 

(22), ^ and ^ are obtained: thus 
^ ^ dr 69 

^ — 2 -3 cos 9, 
dr 69 

sin 9 

and then 

— = ~ sm sin*' 
dr 69 r- 

o • /, d</) 
— = r- sin 9 — = 
69 dr 

2/x 
sin 0 cos 9 

Then 
dxP dyf/ 

-f- = “ sin^ 9 dr 
dr 69 r^ 

2m 
sin 9 cos 9 dO 

must be a perfect differential, as 

dV __ dV 
dr 69 69 dr 

Integrating the first term with respect to r yields 

— - sin“ 
r 

and differentiating with respect to 9 yields 

— - 2 sin d cos 9 d9 
r 

Subtracting from N, or (—2M/r) sin 9 cos 9 d6, yields zero. Hence, the 
solution is 

^ ~ - sin^ 9 = •“ 4 
r r^ 

19. Three-dimensional Sources and Sinks. A source in three- 

dimensional flow is a point from which fluid issues at a uniform rate in 
all directions. It is entirely fictitious, as there is nothing resembling it 
in nature. That does not, however, reduce its usefulness in obtaining 
flow patterns. The '' strengthof the source m is the rate of flow passing 
through any surface enclosing the source. 

As the flow is outward and is uniform in all directions, the velocity, a 
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distance r from the source, is the strength divided by the area of the 
sphere through the point with center at the source, or 

Vr = 

m 

Since Vr — ^ ^ ^ hence ^ ~ the velocity potential 

can be found. 

dr Airr- 

and 

m 
Att 

A '^negative source^’ is a ^^sink.’^ Fluid is assumed to flow uniformly 
into a sink and there disappc ar. 

20. Three-dimensional Doublets. A ''doublet/’ or "double source," 

is a combination of a source and a sink of equal strength, which are 
allowed to approach each other in such a manner that the product of their 
strength and the distance between them remains a constant in the limit. 
Letting m' be the strength at distance 5s apart, then their product 
IX ^ m' bs remains constant as bs approaches zero, n is dcdined as the 
strength of the doublet. The equations, which will be determined in 
Sec. 30, have a directional property. The line extending from the sink 
to the source is the axis of the doublet. 

21. Two-ditnensional Sources and Sinks. In two'dimensional flow 

it is customary to consider the flow in planes parallel to the a:2/-plane, the 
two planes being considered unit distance apart. A source is a straight 
line parallel to the 2:-axis from which fluid is imagined to flow uniformly 
in all directions at right angles to the line. The source appears as a 
point on the customary two-dimensional flow diagram. The total flow 
per unit time per unit length of line is called the strength of the source. 
As the flow is in radial lines from the source, the velocity a distance r 
from the source is 27rM/2xr, where 2tix indicates its strength. Then 

dr r de 

and 
</» = —// In r 

is the velocity potential, where In indicates the natural logarithm. 
A negative source is a sink, into which fluid is imagined to flow uni 

formly from all directions at right angles to its line. 
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22. Two-dimensional Doublets. The two-dimensional doublet is 
defined as the limiting case, as a source and sink of equal strength 
approach each other so that the product of their strength and the dis¬ 
placement between them remains a constant jjl, called the strength of the 
doublet. If a source and sink of constant, finite strength were superposed, 
there would be no resulting flow, as the sink would absorb all flow from 
the source. The axis of the dou})let is from the sink to the source, 

the line along which they approached each other. The velocity potential 

is developed in Sec. 61. 
23. The Line Integral. Let cj be a vector (such as velocity) that is 

defined throughout a region enclosing the continuous curve C (Fig. 14). 

The integral 

where a is the angle between the vector and 5s, is defined as a line integral 
of the function q over the space curve C. Let u,v,w be the scalar com¬ 
ponents of q in the a:y2:-directions, and let the direction cosines of q and 
58 be l,m,n and m', n', respectively. Then, since u ^ Iq, v = mq, 
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w ^ nq and 8x = I' 6s, by = m' 5s, 8z = n' 8s, and 

[Chap. Ill 

cos a = ll' + mm' + nn' 

q cos ads (qlV ds + qmm' ds + qnn' ds) 

= (u dx + V dy + w dz) 

In general, the value of the line integral between A and B depends upon 
the particular choice of the curve 
C, If the equation of the space 
curve is given in parametric form 
as 

^ = /iW, y = 
2 = h(t) (to<t< h) 

where fi, f^, /a possess continuous 
derivatives in the interval U to h, 
the line integral may be evaluated 
as a definite integral 

/'■ [ufi'it) + vUit) + Wfs'it)] dl 

positive direction for traversing the 
boundary. 

where u, v, w are also expressed in 
terms of t. 

Consider the plane closed curve 
C (Fig. 15) such that no line par¬ 
allel to the coordinate axes inter¬ 

sects C in more than two points.^ Let the maximum abscissa of the 
curve be X2 and the minimum abscissa be xi. Let the equation of ACB 
be given by 1/2 = f2{x) and the equation of ADB be given by 2/1 = fi(x). 
Then the enclosed area ADBC is given by 

A = jj * y2 dx — jj ' yi dx 

where the last integral is a line integral around the curve taken in the 
counterclockwise direction. The positive direction is taken as that which 
permits the area to lie on the left as an observer walks around the pe¬ 
riphery on the positive side of the surface (right-handed rule). The 
restriction on the shape of the area for which this method is applicable 
may be removed by dividing any actual area into a number of smaller 

^ I. S. and E. S. Sokolnikoff, ‘^Higher Mathematics for Engineers and Physicists,*^ 

2d ed., pp. 200-201, McGraw-Hill Book Company, Inc., New York, 1941. 
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areas such that each may be considered as made up of two single-valued 
curves. In traversing all these peripheries in the positive direction, all 
internal boundaries will be traversed twice and in opposite directions, so 
that nothing is contributed by that portion of the line integral. This 
leaves the formula 

^ - fcVdx 

unrestricted. 

Using a similar procedure to that in the foregoing paragraph, a rela¬ 
tion that is useful in deriving Stokes’ equation is established between a 

line integral and a surface integral. Let be a continuous, single¬ 

valued function over a region R, bounded by a closed curve C. Then 

yi 

rai 

= / [M{x.,yi) - M{x,yx)]dx 
J at 

rai rai 

•= — / M{x,yi) dx - / M{x,yi)dx 
J a2 J a\ 

= - j^M (x,y) dx (28) 

where ai, 0.2 are the minimum and maximum a:-coordinates on the curve 
and ^2j 2/1 are functions of x representing the upper and lower portions of 
C, respectively. 

24. Stokes’ Theorem. Stokes’ theorem is used in establishing the 

relation between circulation and rotation in the following section, and in 
establishing the Cauchy integral theorem in Chap. VII. 

In equation form Stokes’ theorem states that 

/ (Pdx + Qdy + E dz) 
dx 

dx dy 

where P, Q, R are continuous, differentiable functions of a cartesian 
system of reference. The line integral on the left-hand side of the equa¬ 
tion is carried out along some closed curve in space, and the surface 

integrals are evaluated over any surface bounded by the curve. 
Consider the surface S bounded by the space curve T in Fig. 16. 

Let z = f{Xyy) be the equation of the surface aS, and let P(xjy,z) be a 
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function that is continuous in the region containing S. Then 

fpP(x,y,z)dx = j^P[x,y,f(x,y)]dx 

where the second line integral is taken around the projection of T in the 

X 

.ry-plane, as shown in Fig, 16. Differentiating with respect to 

dP[x,yJ(x,y)] ^ dP{x,y,z) dP{x,y,z) ^ 
dy dy ~dz dy 

dz TfZ 
Now — =-where l.m.n are the direction cosines of the normal 6n 

dy n ^ ^ 

to the surface S. This may be shown as follows: Let 0,mi,nj, be the 
direction cosines of an element of length ds in the surface (the element is 

at right angles to the a;-axis, as ^ presupposes x = constant). Since 

dn and ds are also at right angles, 

Z • 0 + mmi + nni = 0 
and 
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Let By be the displacement of Bs in the ^/-direction and Bz be the displace¬ 
ment of Bs in the 2-direction. Then By = nii Bs, Bz = Ui Bs, and 

52 _ d2 _ Ui 

By dy lUi 
hence, 

d2 _ __ m 

dy 71 

Applying Eq. (28), 

= - Plx,y,fi^,y)] dx 

P(x,y,z) dx 

Rewriting, 

P{x,y,z) 

Bx By 
since 

BS = 
n 

d2 dy 

and m BS = Bx Bz 

Tn a similar manner it may be shown that 

Qix,y,z) ^y j 

and 

R(x,y,z) dz= f 

Adding the last three equations, Stokes’ theorem in its most general form 

[Eq. (29)] is obtained. 
25. Circulation. The line integral of the velocity vector taken around 

a closed curve enclosing a surface S within a fluid region is said to be the 

circulation F. Referring to Sec. 23, this is 

r = j iudx + V dy + w dz) (30) 

Using Stokes’ theorem, where P, Q, R are replaced by u, v, w, which are 

also scalar functions of space, 
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'■ - // (S - S) '**'**' + // (li - s) * 

The first integrand is 2coz, the second integrand 2a)^, and the third inte¬ 
grand 2u)^, where co*, ooy, w* are the rotation components derived in Sec. 9. 
Rewriting Eq. (31), 

r = 2j(/a)x + nic^y + nco^) dS (32) 

where /, ?n, n are the direction cosines of the normal to 5/S, it is obvious 
that the circulation about any infinitesimal area hS is equal to twice 
the product of the area element and the component of the rotation vector 
normal to the surface, 

bV = 2o,n 5/S (33) 

As any surface may be divided into surface elements 5/S, in words: The 
circulation about any closed curve is equal to twice the surface integral 
of the normal rotation component over the surface enclosed by the 
curve. A restriction on this statement is that no singular points occur 
on the surface or boundary; f.e., a?n is continuous and defined at all points 
on the surface. 

When the flow is irrotational, the right-hand side of Eq. (31) is zero; 
hence, there is no circulation about any closed curve in the flow not 
enclosing a singular point. Conversely, if the circulation about every 
closed curve in a fluid is zero, when the curve contains no singular points, 
the flow is irrotational. This is apparent from Eq. (33), as the closed 
curve may be in any position and be arbitrarily small. It is, therefore, 
necessary that the rotation be everywhere zero for the circulation to be 
zero. Circulation has the dimensions 

26. Vortices. An example of two-dimensional flow with circulation 
is given by the velocity potential 

<l> = —fxd 

where /ji h constant and 6 is the angle used in plane polar coordinates, 
measured positive in a counterclockwise direction from the x-axis. The 

velocity in a radial direction is everywhere zero, as ~ 0. The 

tangential velocity at any point r distance from the origin is 
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as r 6d is the element of length in the tangential direction. Since the 
velocity is constant about any circle of radius r, the circulation, from 

r = / g cos a ds 
Jc 

is 

T ~ q j ds — qs = ~ 27rr = 

as o£ = 0. At the origin the velocity becomes infinite (r = 0), which 
makes it a singular point. As the velocity is defined for all other points 
in the plane, the origin is the only singular point. 

The flow described above is vortex flow, with a vortex of strength 2tijl 
at the origin. The flow is irrotational at all points except the origin. 
The circulation is zero about every closed curve in the plane that excludes 
the origin and is 2Trii for all curves that contain the origin. 

27. Summary. In this chapter the principle of work and energy was 
established for a nonviscous fluid, a formula for kinetic energy in terms 
of velocity potential was derived, and several uniqueness theorems were 
proved as a direct consequence. The stream functions in two- and three- 
dimensional flow were defined, as well as the basic flows set up by sources, 
doublets, and vortices. The relations between rotation and circulation 
were obtained. Sufficient theory has now been made available so that 
many of the classical three-dimensional flow cases may be studied. 

Exercises 

1. Let Vr, vq be the velocity components in the radial and tangential directions 

in plane polar coordinates. 

(а) Express Vr, in terms of the velocity potential <^(r, 0). 

(б) Express Vr, vb in terms of the stream function e). 
(c) Find the differential equations relating 4> to \f/. 

.. _ _ 1 

rW Am, (a) Vr ^ VB 
dr 

d<f> dyf/ . s d4> 

7W “ Tr’ 
d<l> 
Ye dr 

2. The velocity potential for a three-dimensional source of strength m is 

m 
^ 47rr 

from Sec. 19. Find the Stokes’ stream function for this flow. 

Am, ^ ^ 

8. The velocity potential for a two-dimensional source of strength 2irjtf is 

4* = —M In r 

from Sec. 21. Find the stream function for this flow. Ans. =« 
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4. Evaluate the line integral of the velocity u ^ v ^ w — x over the path 

X = y = — 1, z ^ 2t (0 < t <2); velocities are in feet per second, lengths in 

feet, and time t in seconds. Ans. 15.33 ft^ per sec. 
6. Evaluate the line integral of the velocity over the closed path 

U - 1)2 + (?/ - 6)2 = 4, 

when u = 3j + ?/, p = 2t — 3^/; a: and y are in feet, v in feet per second. 

Ans. 47r ft* per sec. 

6. Find the stream function for a vortex of strength 27r/u at the origin. 

Ans. \f/ = yu In r. 
7. Express the ^■elocity potential and stream function of Exercise 6 in (^artesian 

coordinates. 

8. Find the velocity potential for a sounie of strength 5 ft^ per sec per foot of 

width at X = 3, // = 4. 

9. Find the circulation about the square enclosed by the lines x = ±\, y = ±1 

for the two-dimensional flow given by u = x y, v = x* ~ y. 
Ans. —4 ft* per sec. 

10. Show’ that <p — xy satisfies the Laplace equation for two-dimensional flow’, 

~ J^^'^^'rmine the stream function. Show that the equipoten- 

tial lines and the streamlines are orthogonal. Are there any exceptions? 

11. Let \p — \ Ur^ sin* 6 for three-dimensional flow, axial symmetry, where U is 

a constant. Find the discharge betw’een strtvam surfaces through r = 10, d = tt/O, 
and r = 1, 6 = 7r/4. Draw’ the streamlines \l/ = U, 2V^ 3U. 

12. Express the stream function of Exercise 11 in cartesian coordinates and obtain 

the potential function. What is the nature of the flow? 

13. If a velocity distribution satisfies continuity everywhere and has zero rotation 

at several particular points, can it be inferred that the flow is irrotational except for 

a finite number of singular points in space? 



CHAPTER IV 

THREE-DIMENSIONAL FLOW EXAMPLES 

28. Source in a Uniform Stream. The velocity potential for a source 

of strength m located at the origin was worked out in Sec. 19 to be 

m 
iirr 

where r is the distance from the origin. The radial velocity is 

d(f> _ m 
dr 47rr“ 

(1) 

which, when multiplied by the surface area of the sphere concentric Avith 

it 47rr2, gives the strength m. Since the floAv from the source is sym¬ 

metrical with respect to the a;-axis, the stream function is defined. For 
spherical polar coordinates, from Eqs. (22), Sec. 17, 

Using Eq. (1), 

d\p 
dr 

* a 64/ „ . 64> 

5?"F 

^ = n ^ 
dr ’ 60 

m 
47r 

sin d 

Integrating, as in Sec. 18, 

47r 
(2) 

is the stream function for a source at the origin. Equipotential lines 
and streamlines are shown in Fig. 17 for constant increments of <t> and 

A uniform stream of fluid having a velocity U in the negative a:-direc- 

tion throughout space is given by 

dx 
- -u, 

d(l) 
do) 

= 0 

Integrating, 
(t> ~ Ux = Ur cos 6 

The stream function is found in the same manner as above to be 

(3) 

U Ur^ 

The flow network is shown in Fig, 18. 
53 

(4) 



54 FLUID DYNAMICS [Chap. IV 

Combining the uniform flow and the source flow, which may be 
accomplished by adding the two velocity potentials and the two stream 
functions, gives 

1-h Ur cos 6 

, m * , Ur^ . , ^ 
r — ^ “1—TT ^ 

47r Z 

The resulting flow is everywhere the same as if the separate velocity 
vectors were added for each point in space. 

Fia, 17.—Streamlines and equipotential lines for a source. 

A stagnation point is a point in the fluid where the velocity is zero. 
The conditions for stagnation point, where spherical polar coordinates 
are used and when the flow has axial symmetry, are 

Vr 
d<l> 
dr 

= 0, ve 
1 
r dd 

0 

Use of these expressions with Eqs. (5) gives 

^ cos d = 0, ?7 sin d = 0 
47rr2 

which are satisfied by only one point in space, viz., 

m 
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Substituting this point back into the stream function gives ^ = m/47r, 
which is the stream surface through the stagnation point. The equation 
of this surface is found from Eqs. (5): 

cos 6 + sin^ B — 1 (6) 
m 

The flow under consideration is steady, as the velocity potential does 
not change with the time. Therefore, any stream surface satisfies the 
conditions for a boundary: The velocity component normal to the stream 
surface in steady flow is always zero. Since stream surfaces through 
stagnation points usually split the flow, they are frequently the most 
interesting possible boundary. This stream surface is plotted in Fig. 19. 
Substituting w = r sin ^ in Eq. (6), the distance of a point (r,0) from the 
a:-axis is given by 

which shows that has a maximum value \/m/7rU as B approaches t, 
i.e.f as r approaches infinity. Hence, os = \/vi/TrU is an asymptotic 
surface to the dividing stream surface. Equation (6) may be expressed 
in the form 

I \m B 
“ 2 ViP 2 P) 

from which the surface is easily plotted. Such a figure of revolution is 
called a half body, as it extends to negative infinity, surrounding the 

negative x-axis. 
The pressure intensity at any point, z.e., the dynamic pressure from 

Eq. (22), Sec. 10, is 

p = I ([/2 _ q^) 

where the dynamic pressure at infinity is taken as zero, q is the total 
velocity at any point. Evaluating q from Eqs. (5), 

, _ /d<^V 1 /_ ^72 I cos B 
® ~\dr) r^\de) ~ 16xV^ 

and 

^ = P cosg_ \ 
^ 2^ \2irr-^U 

from which the pressure can be found for any point except the origin, 
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which is a singular point. Substituting Eq. (7) into Eq. (8), the pressure 
intensity is given in terms of r for any point on the half body; thus 

D = ? r'2 ^ A (Q) 
^ 2 2-Krnj) 

This shows that the dynamic pressure approaches zero as r increases 
downstream along the body. 

29. Source and Sink of Equal strength in a Uniform Stream, Ran- 
kine Bodies, A source of strength m, located at has the velocity 
potential at any point P given by 

€j 

where ri is the distance from (a,o) 
to P, as shown in Fig. 20. Simi¬ 
larly, the potential function for a 
sink of strength m at { — is 

Since both <t>i and <1)2 satisfy the 
Laplace equation, their sum will 
also be a solution. 

(10) 
Fia. 20.—Auxiliary coordinate .systems used 
for Raiikine body. 

Because ri, r2 are measured from 
different points, this expression must be handled differently from the 
usual algebraic equation. 

The stream functions for the source and sink may also be added to 
give the stream function for the combined flow 

^ ^ (cos $1 — cos ^2) (11) 

The stream surfaces and equipotential surfaces take the form shown in 
Fig. 21, which is plotted from Eqs. (10) and (11) by taking constant values 
of 0 and 

Superposing a uniform flow of velocity U in the negative ar-direction, 
<t> = UXf yj/ = the potential and stream functions for source and 
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sink of equal strength in a uniform flow (in direction of source to sink) 

<^ = r/a; + 

^ Ux + 

m /l _ 1 \ 

47r \ri r2/ 

m r 1 
— d)^ ay + 

yp = sin^ ^ 

As any stream surface may be taken as a solid boundary in steady 
flow, the location of a closed surface 
for this flow case will represent flow 
of a uniform stream around a body. 

/ \ Examining the stream function, for 
I \ X > a and = ^2 = ^ =* 0, = 0. 
/ I For X < —a and 61 = 62 = 0 = ir^ 
1 I ^ = 0. Therefore, ^ == 0 must be 
\ J \ / the dividing streamline, since the 

a:-axis is the axis of symmetry. The 
\ equation of the dividing streamline is, 

—(r'/W/l—(\V/\ ))—/ 

I where a> = r sin ^ is the distance of a 
I point on the dividing stream surface 

L / from the x-axis. Since cos Oi and 
\ / cos B2 are never greater than unity, 

w cannot exceed which shows 

Fig. 21.—Streamlines and equipotential that the Surface is closed, and hence 
lines for source and sink of equal replaced by a Solid body of 

exactly the same shape. By changing 
the signs of m and U the flow is reversed and the body should change 
end for end. From Eq. (14) it is seen that the equation is unaltered; 
hence, the body has symmetry with respect to the plane x = 0. It is 
necessarily a body of revolution because of axial symmetry of the 
equations. 

To locate the stagnation points (7, D (Fig. 22), which must be on the 
x-axis, it is known that the velocity is along the a:-axis (it is a streamline). 
From Eq. (12) the velocity potential 4>x for points on the x-axis is 
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given by 
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since 

4>z 
ma 
2t o} 

ri = x — a, Ti — X -V d 

Differentiating with respect to x and setting the result equal to zero, 

TT max^ _ 
to 

where Xo is the x-coordinate of the stagnation point. 

(15) 

This gives the point 

LJ 

(7(xo,0) (a trial solution). The half breadth h is determined as follows: 
From Fig. 22 

= TT — a, $2 = OL 

where 
a 

cos a = 

Substituting into Eq. (14), 
+ o* 

m a 

-)- a} 
Mb) 

from which h may be determined (also by trial solution). 
Eliminating m/U between Eqs. (15) and (16), 

U Xq a a ^ 

the value of a may be obtained for a predetermined body (xo, h, specified). 
Hence, U can be given any positive value and the pressure and velocity 
distribution can be determined. 
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In determining the velocity at points throughout the region it is 
convenient to find the velocity at each point due to each component of 
the flow, t.c., due to the source, the sink, and the uniform flow, separately, 
and add the components graphically or by and a;-components. 

Bodies obtained from source-sink combinations with uniform flow 
are called Rankine bodies, 

30. Equation for Three-dimensional Doublet* In Sec. 20 the doublet 
was defined as the limiting case of a source and sink of equal strength 
such that the product of the distance between them and their strength 
remains constant as they approach each other. The limiting process 
is applied to Eq. (10), where 2a approaches zero as 2a times the strength 
m is held constant and equal to 47r/x. /x is defined as the strength of the 
doublet. 

Referring to Fig. 20, by the law of sines, 

ri _ ro __ 2a 
sin ¥2 sin di sin (^1 — 62) 

^ _2a_ 
2 sin — 62) cos ~ ^2) 

as the angle between r2 and ri at P is ^1 — ^2. Solving for r2 — ri, 

__a(sin 6i — sin O2) _ 
sin — 62) cos ^(^1 — 62) 

__ 2a cos + ^2) 
cos i{Si — 62) 

m r2 Ti __ 2am cos ^{B\ + ^2) 
4^ " rir2 47rrir2 cos — ^2) 

M cos i(^i + B2) 
rir2 cos — B2) 

In the limit as a approaches zero, ^2 = 7*2 = ri == r, and 

<f> = ^co8e (17) 

rz - 

From Eq. (10) 

= 

w'hich is the velocity potential for a doublet^ at the origin with axis 
in the positive a:-direction. Equation (17) may be converted into the 
stream function by Eqs. (22), Sec. 17. The stream function is 

rz (18) 

^L. M. Milne-Thompson, Theoretical Hydrodynamics,'^ p. 414, Macmillan 

& Co., Ltd., London, 1938. 
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The stream function may also be obtained by applying the limiting 
process to Eq. (11). Streamlines and equipotential lines for the doublet 
are drawn in Fig. 23. 

The combination of a doublet and 
uniform flow in the direction of the 
negative axis should give some form 
of closed body, as it is the limiting 
case for a Rankine body. In fact, it 
is the case of flow around a sphere 
that is treated in Sec. 34. 

31. Finite Line Source. A line 
source is a line over which infinitesimal 
point sources are continuously distrib¬ 
uted. The strength m is defined as 
the flow out from the line per unit 
length. For an element of line df, 
the strength of elemental source is 
m From Eq. (2) the stream func¬ 
tion at some point P for the elemental 

Fig. 23.—Streamlines and equipotential 
lines for a three-dimensional doublet. 

source is 

Q 

Restricting the problem to constant 

a; — f = w cot a, 

cos a 

where a is the angle the radial line 
from the source makes with the 
a:-axis, as shown in Fig. 24. 

For the stream function to be 
defined there must be axial sym¬ 
metry; hence, the line source must 
be straight. It is convenient to 
consider the line source as extend¬ 
ing from the origin along the posi¬ 
tive a:-axis to (a,0). As the stream 
functions may be superposed, the 
value of ^ at P due to the line 
source from O to a is 

1 
^ / m cos a df 

To perform the integration, m and 
a must be expressed in terms of 

m, this is easily effected, as 

^ (a csc^ a da 
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— cos Ct 
47r J sin^ a 

da — 
mo) 

4^ (: Sin ai sin a2 
{PO ~ FA) 

The streamlines in a plane through the axis of symmetry are hyperbolas 
with foci at 0 and A, 

A line sink is a negative line source. Combinations of uniform flow 
with point sources and sinks as well as line sources and sinks permit 

velocity and pressure distributions to 
be determined for a variety of bodies. ^ 
Equipotential lines and streamlines 
are drawn in Fig. 25. 

32. The Laplace Equation in 
Spherical Coordinates. The intersec¬ 
tion of three orthogonal surfaces defines 
a point in spherical polar coordinates. 
These surfaces are a sphere, a circular 
cone, and a plane. The sphere is 
concentric with the origin and has the 
equation 

+ 2/2 -f ^2 = 

The cone has its vertex at the origin and axis coincident with the x-axis. 
The angle made by an element of the cone and the x-axis is known as 
the polar angle. The plane is through the x-axis, and its orientation is 
given by the angle w it makes with the 2/-axis, as shown in Fig. 20. The 
following relations may be established from the figure: 

Fig. 26.—Streamlines and equipotential 
lines for finite line source. 

X — r cos By j/ = r sin ^ cos a?, z — r mn B sin w 

The elements of length bs in the r^oMiirections are 

bsr = BTj bse = r bBy 6$^ = r sin ^ 

(19) 

and form a right-handed system in the order given. The element of 
volume is their product 

bV = sin B br bB bw 

The Laplace equation is now derived by writing the condition that 
the net rate of flow (incompressible fluid) out of the elemental volume is 
aero. Let the center of the volume element be at (r,d,a)), and consider 
the rate of flow bQ through the face at (r,^,co) normal to br as in Fig. 27. 

* For additional information and references see R. H. Smith, Aerodynamic Theory 
and Test of Strut Forms, NACA Reports 311 and 335, 1929. 
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In termft of the velocity potential it is 

63 

bQ = 
d4> 
dr 

r bBr sin 6 bcj 

X 

Fio. 26.— Notation used for spherical polar coordinates. 

5r 
Then the flow out of the parallel face at r + ^ minus the flow into the 

parallel face at r — ^ is 

or substituting the value of 6Q, 

^ r 56 rsind ) 5r 
dr\ dr ) 

For the pair of faces normal to the r 56 

direction the excess rate of flow out is 

similarly 

d ( d(j> 

Fig. 27.—Volume element in 
spherical polar coordinates. 
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and for the remaining pair of faces 

—---A (-" ^ I ^ ^ r sin ^ dw \ r sin ^ da> / 

Since the net excess rate from all six faces must be zero, the Laplace 
equation is obtained by adding the three expressions and simplifying; 
thus 

dr + 
1 a 

sin 6 66 
. 1 d^<t> 

sin^ 6 do)^ 
= 0 (20) 

P^or symmetry with respect to the x-axis the last term becomes zero. 
Equation (20) may also be 
obtained directly from Eq. (23), 
Sec. 11, by change of variables, 
using Eqs. (19). 

33. Translation of a Sphere in 
an Infinite Fluid. Virtual Mass. 
The velocity potential for a solid 
moving through an infinite fluid 
otherwise at rest must satisfy the 
following conditions:^ 

1. The Laplace equation, 
V^<t> — 0 everywhere except sin¬ 
gular points. 

2. The fluid must remain at 
rest at infinity; hence, the space 

derivatives of <t) must vanish at infinity. 
3. The boundary conditions at the surface of the solid must be satis- 

fied; i.e., ^ = 0 [Eq. (15), Sec. 8]. 

For a sphere of radius a with center at the origin moving with velocity 
U in the positive a;-direction, the velocity of the surface normal to itself is 

U cos 6j from Fig. 28. The fluid velocity normal to the surface is — 

hence the boundary condition is 

Q 

Fki. 28.—Sphere translating in the positive 
r-direction. 

d<^ 
Ir 

U cos B 

^ G, G. Stokes, '^Mathematical and Physical Papers,’^ Vol. 1, pp. 33-43, Cam¬ 
bridge University Press, London, 1880. 
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for r = a. This may be obtained from the general boundary equation 
in the following manner: 

F = (x - Uty + - a=* - 0 

is the equation of the moving surface, such that when t = 0, the center 
is at the origin. Then 

Dt 
dF , ,dF , dF 

= 0 

and since u — 
d<i> 

for / = 0, the condition becomes 
ooo 

d(t> 

dx 
f/a: = 0 

for r = a. Dividing the equation through by a, as x/a = cos 6^ 
a)/a = sin 0, for r = the first two terms give the velocity in the radial 

direction and the desired boundary condition is procured. 

The fluid flow about a sphere moving along the :r-axis will have axial 
symmetry with respect to the x-axis. Hence, the last term of Eq. (20) 
drops out, leaving 

to be satisfied by the velocity potential. The velocity potential for the 
doublet [Eq. (17)] 

M cos 6 

satisfies Eq. (21) for any constant value of Substituting it into the 
boundary condition 

_ ^ cos 0 = U cos 0 
dr r® 

which is satisfied for r — a if n = Ua^/2. It may also be noted that the 

velocity components, — ^ and — ^ are zero at infinity. Therefore, 

^ cos ^ (22) 

satisfies all the conditions for translation of a sphere in an infinite fluid. 
This case is one of unsteady flow, solved for the instant when the center 
of the sphere is at the origin. Because this equation has been specialized 
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for a particular instant, the pressure distribution cannot be found from 
it by use of Eq. (21), Sec. 10. Streamlines and equipotential lines for 
the sphere are shown in Fig. 29. 

The stream function for this flow case is 

^ = 
Ua} 
"2r 

sin^ 6 (23) 

Fig. 29,—Streamlines and equipotential 
lines for a sphere moving through fluid. 

The kinetic energy of the fluid is 
obtained from Eq. (11), Sec. 14: 

- j <■“' * ‘'■S 

where the integration is carried out 
over the surface of the sphere r = a. 
The surface element may be taken as 
in Fig. 30. It is 

dS = 27ra sin BadO 

Substitution into the kinetic energy 
equation, for r == a, yields 

f = j cos^ ^ sin ^ = I Q ttu IP 

Written in this form the kinetic 
kinetic energy of one-half the dis¬ 
placed mass of the fluid if it were 
moving with the velocity U. 
lotting ilf' represent or 
one-half the mass of fluid displaced 
by the sphere, the kinetic energy 
of sphere and fluid together is 

r = i(M + M')U^ 

energy of all the fluid is equal to the 

provided the sphere is not in rota- 

tion. M is the mass of the sphere. Since the work done per unit time 
on the sphere and fluid must equal the time rate of increase of kinetic 
energy, 

FU = 
di 

MU 
dU 
dt 

+ M'U ill 
dt 
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w here F is the resultant force acting on the sphere (buoyant, gravity, or 
other external force). From this equation it is evident that the sphere 

experiences a resistance M' ^ due to presence of the fluid. This resist¬ 

ance is zero for constant velocity U. The term M' is known as the 
'‘virtual mass ” of the sphere. The fact that the fluid offers no resistance 
to the passage of a solid through it at constant speed is peculiar to ideal 
fluid theory only. Any body passing through a real fluid experiences a 
resisting force, called a drag, which depends upon the form of the body 
and its surface roughness. 

34. Steady Flow of an Infinite Fluid around a Sphere. The unsteady 
flow case in the preceding section may be converted into a steady flow 
case by superposing upon the flow a uniform stream of magnitude U in the 
negative x-direction. To prove this, add <t> — Ux = Ur cos 6 to the 
potential function [Eq. (22)]; thus 

(f) = cos $ + Ur cos B (24) 

The stream function corresponding to this is 

^ sin2 B + ^ sin2 B (25) 

Then from Eq. (25), ^ = 0 when 
stream surface ^ = 0 is the sphere 
r == a, which may be taken as a 
solid, fixed boundary. Stream¬ 
lines and equipotential lines are 
shown in Fig. 31. Perhaps men¬ 
tion should be made that the 
equations give a flow pattern for 
the interior portion of the sphere 
as well. No fluid passes through 
the surface of the sphere, however. 

The velocity at any point on tl 

^ = 0 and when r = a. Hence, the 

Fig. 31.““Streamlines and equipotential lines 
for uniform flow about a sphere at rest. 

surface of the sphere is 

1 

r dd_r-a 
e = ft/ sin 0 

The stagnation points are at 0 = 0, ^ = t. The maximum velocity fT 
occurs at ^ = r/2. The dynamic pressure distribution over the surface 

of the sphere is 

V 
pU^ (1-1 sin* e) 

for dynamic pressure of zero at infinity. 
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36. Fluid Motion Due to the Translation of a Sphere within a Fixed 
Concentric Spherical Shell. This is an unsteady fluid flow case in which 
the resulting flow pattern is valid only for the instant the sphere is 
concentric with the shell. The shell has a radius 6, and its center is fixed 
at the origin. The sphere of radius a has a velocity U in the positive 
x-direction and has its center at the origin at the instant the analysis of 
flow conditions is made.^ 

Fig. 32.—Streamlines and equipotential 
lines for motion of a sphere in a fixed 
concentric spherical shell. 

The boundary condition at the 
surface of the sphere, r = a, is 

dr 
U cos 6 

as in See. 33. At the fixed surface 
r - b 

must be satisfied. 
A potential function is now 

assumed and shown to satisfy the 
necessary conditions: 

( 
Ar + cos $ 

where A, B are arbitrary. Substitution in Eq. (21) shows that — 0 
is satisfied for any values of A, B, Substituting the boundary conditions, 

U cos 6 

from which 

Hence, 

68 / cos ^ = 0 

IJ 
"2 68 - a® 

0 = (r + 
b3 - a3\ ^ 2r7 

COS 6 (26) 

is the velocity potential. It is not necessary to consider conditions at 
infinity, since the fluid is bounded externally. The stream function 

' O. G. Stokes, “Mathematical and Physical Papers,” Vol. 1, pp. 38-43, Cam¬ 
bridge University Press, London, 1880. 
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corresponding to Eq. (26) is 

69 

, a»f/ / , b»\ . 
^ (27) 

The flow pattern is given in Fig. 32. 
36. Fluid Motion about a Stationary Sphere Due to Movement of a 

Concentric Spherical Shell. The preceding case may be converted into 
one in which the sphere is stationary and the shell has a velocity U in 
the negative x-direction.^ This is accomplished by adding to the velocity 
potential and stream function a uniform flow given by 

Ur^ 
4) ~ Ur cos xp — sin^ 6 

respectively. 

when ^ = 0, 

when r = bj 

The equations become 

a^U ( h^\ 
^ Y + ^ cos e 

- 2(55^^ (’■ -7) ^ * 

^ = 0, and r = a and 

^ = [/ cos 9, 
dr 

The 

velocity is necessarily tangent to the 
sphere and is given by 

1 _ A , 2a« + ^ 
^Jr-. V 2(6» - fl’V 

U sin 9 

when b approaches a the velocity 
approaches infinity. For very large 
values of b this reduces to the case in 
Sec. 34. The flow pattern is given in 

Fig. 33. 
37. Flow Due to a Doublet Near 

a Sphere. The flow net resulting 
from two unequal doublets oppositely directed along the same axis 
contains a closed spherical stream surface about one of the doublets. To 
prove this the doublets are located at 0 and R and a coordinate system 

1 G. G. Stokes, Mathematical and Physical Papers,Vol. 1, pp. 230-235, Cam¬ 
bridge University Press, London, 1880. 

Fig. 33.—Streamlines and equipotential 
lines for motion of a fluid about a sphere 
due to movement of a concentric 
spherical shell. 
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selected as shown in Fig. 34. From Eq. (18), a doublet with axis in the 
positive x-direction is given by 

Hence, the stream function for oppositely directed doublets is 

Q 

Fig. 34,—Notation for opposite doublets at 
0 and R. 

radius h = ac/(l — c^), or 

rs 
(28) 

where r, ri denote the distances 
of doublets from any point P. 
The streamline ^ = 0 is given by 

Expressing r and ri in terms of co 
and Xj the equation may take the 
form 

aV 
(1 ~ 0^)2 

When ;Lii > this is a sphere of 

and with center Q at 

a; = - ^ ^ -IT--—. “ =0 

0 and R are inverse points in the sphere; f.c., 

QO X QK - 

as can easily be shown by substitution. When ^ > /xi, the sphere encloses 
R. 

88* Flow Due to a Source Near a Sphere. The combination of a 
source of strength m at P (Fig. 35), another source of strength (m UQ)/a 
at Q, and a uniform line sink, of strength m/a per unit length, from 0 to 
Q produces a closed spherical stream surface of radius a with center at 0, 
provided P and Q are inverse points with respect to the sphere.^ 

1 W. M. Hicks, On the Motion of Two Spheres in a Fluid, PhiL Trans, Roy. Soc. 
London, Vol. 171, pp. 465-4P2, 1880. 
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The stream function for the line sink (Sec. 31) is 

The stream function for the source at P, from Eq. (2), is 

yp ^ ^ cos RPx 
47r 

and for the source at Q, 

^ 05 cos RQP 

Adding the three stream functions, 

lA = ~ (S5 - M5) + ^ cos RPx + cos RQP 

Restricting R to the sphere of radius a, 

= IRD cos ORQ + OQ cos OQR, cos RPx = — cos RPO 
cos RQP = — cos RQOj angle RPO = angle ORQ 

The latter equality follows from the triangles ROQ and POP, which are 
similar because they have a com¬ 
mon side and angle, and because 

d W 

since P is the inverse of Q in the 
sphere. Substituting into the 
stream function it reduces to 

in 
if/ = — _ I'lo. 35.—Combinations of two point sources 

4t at P and Q and a line sink. 

over the sphere; hence, the sphere is a stream surface that encloses the 
source at Q and the line sink. Therefore, the resulting pattern from the 
stream function is due to a source near a sphere. 

39. Surface 2!onal Harmonics. In several examples of fluid flow 
encountered in this chapter the type or form of the velocity potential 
has been assumed and then shoAvn to satisfy the boundary conditions for 
a given situation. In dealing with sources and doublets the term 1/P 
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(Fig. 36) occurs and may be expressed in terms of r, and c == UA, 
Using the cosine law, 

jB2 = 7-2 + c2 •— 2cr cos 6 1 + 

1 -20)co.« + (0 

Writing either of the latter two terms in the form 

1 — 2\ cos ^ + X“ 

<D 

Fig. 36.—Relationships among r, c, R, and 8 
in surface zonal harmonics. 

are known as surface zonal harmonics. 
harmonics, 

the following expansion can be 
made: 

(1 ~ 2X cos e + X2)-i 

= Po (cos + XPi(cos B) + X^P2 

(cos B) + X^Ps (cos ^) + • * • 

where Po, Pi, P2, . . . are inde¬ 
pendent of X. Performing the 
expansion and solving for Po, Pi, 

P2, P3, . . . 

Po = 1 
Pi = cos B 
P2 = i(3 cos2 ^ - 1) 
P3 = i(5 cos® ^ 3 cos B) 

The functions Po, Pi, P2, P3 
Expressing 1/P in terms of zonal 

1 
P 

- + -2Pi(cos B) + -jP2(cos B) + ^P3(cos B) + 
c c c c 

which is valid for r < c. When r > c, then 

^ e) + ^PzCcos e) + ^P,(cos e) + • • • 

It may be shown by substitution in V20 = 0 that each term of either 
expression for 1/P satisfies the Laplace equation. This may also be 
reasoned from the fact that the expansion 1/P in series must satisfy 
V2^ = 0 as a whole; then as no two terms are of the same degree and 
thus cannot cancel, each term in itself must be a solution. Therefore, the 
expressions in terms of surface zonal harmonics provide an infinite num¬ 
ber of solutions of the Laplace equation in three dimensions. 
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Examples of uses in the preceding sections are as follows: 

Source at origin: 

4, = 

Uniform flow in x direction: 
<t> = CrPi 

Half body: 

4, = CirPi + C*—" 
r 

Translation of sphere through infinite fluid, or doublet: 

Steady flow of infinite fluid around a sphere: 

4> = CirP, 4 

40. Fluid Motion Due to Two Spheres Moving along Their Line of 
Centers.^ Consider two spheres 
in an infinite fluid (Fig. 37) mov¬ 
ing in their line of centers. The 
velocity potential for the fluid 
surrounding these two spheres is 
sought. This flow case has axial 
symmetry with respect to the line 
of centers; hence, a point P may 
be specified by r and 6 or by r' 
and S', Letting <^o be the desired 
velocity potential, the boundary 
conditions at the surfaces of the spheres are 

= - u cos e, = - U' cos 0' 
ar J,.a ar'J/_6 

where U is the velocity of sphere A toward J5, and U' the velocity of 
sphere B toward A. 

Writing the velocity potential in the form 

4>q U<t> + (30) 

P 

Fig. 37.—Notation for two spheres moving 
along their line of centers. 

^ For references on the motion of two spheres see Lamb, **Hydrodynamics/’ 
6th ed., p. 134, Cambridge University Press, London, 1932; see also reference undei 
Sec. 38. 
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the velocity potential 4> Is for fluid motion for sphere B stationary as 
sphere A moves with unit velocity toward 5. may be given a similar 
interpretation. The boundary conditions now become 

d<l> 

dv ^r»a 

dr jr^a 

d4> 

d<t>'' 
dPjr'-t 

— cos 6 

0 

0 

— cos 6' 

(a) 

(b) 

(c) 

(d) 

The potential functions <i>^ <t>' are independently built up by taking 
successive images of doublets in the two spheres at inverse points, deter- 
mining location and strength by the methods of Sec. 37. 

To obtain 0, first consider B absent. The velocity potential for a 
sphere at A of radius a moving with unit velocity toward B is 

. 1 a* 
<^1 = 272 ^ 

from Sec. 33. This satisfies condition (a), but condition (c) is not satis¬ 
fied. Introducing a doublet at point Hi in By where 

satisfies the boundary condition over sphere /?, provided the strength of 
doublet at Hi is given [see Eq. (29), Sec. 37] by 

b - ins _ ( 
c-b \a’/2/ 

where is the strength of doublet at Hi and fxo = ci^/2 is the strength of 
doublet at A. Eliminating HiB in the two expressions and simplifying, 

2c* 

The doublet at Hi has its axis directed toward A, Letting ri be the 
distance from P to Hi and cos Bi be cos PHiA, 

la* .1 a*6* 
*2 = 2 
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is an approximate solution satisfying condition (c) but not condition (a), 
due to effect of the latter term. Another doublet in sphere A at 
which is the inverse of Hi in sphere A and of strength 

satisfies condition (a) again but unbalances condition (c). Continuing 
this procedure the potential function may be obtained to any desired 
degree of accuracy. The first four terms of </> are 

0 = 
2r2 

3 ^353 

COS 6 + cos ^1 + 
2cVi2 

COS ^2 

2^"77“ 

, 1 cos Bz 

where /i, /2, . • . represent the distances of successive images from A, 
c., /n = AHn, n = 1, 2, 3, . . . ; B\, 62, Bz, . > ^ represent the angle 

PHPH2, PHz, . . . make with line of centers; ri, r2, rs, . . . represent 
the distances Pi/i, F77I, PHz, .... 

The potential function </>' is developed in an analogous manner, 
starting with a doublet strength h^/2 at B. 

The equation is made up from a series of doublets, any of which 
satisfy = 0; therefore their sum is also a solution. The strength 
of the doublets decreases rapidly with each term, particularly when c is 
large compared ^^^th a and 6. The velocity becomes zero at infinity; 
hence, all necessary conditions are satisfied. Computation is awkward 
with the exact solution. An approximate solution more amenable to 
calculation is as follows: 

Assuming B absent, 

I 
= 2 72 ^ 

satisfies condition (a) as before. To obtain an approximate form for </> 
in the vicinity of S, as r cos B — c — P cos B\ 

</> = (c - r' cos 9') 

c — r' cos B' 
2 (c^ -■ 2r'c cos B' + 

Expanding the term for 1/r® in series 

« = 2 (c - r' cos 9') cos -275 + 

~ ^ f 1 + 
= 2c“ V c / 

■) 
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near B. The normal velocity over B is 

- cos 6' 

This velocity is canceled by the addition of 

cos 6>' 

which has a value near A, by same procedure as above, of 

/ 2r cos A 
"2^ \ “ V y 

The normal velocity over A due to this term is 

d<t>l 
- Tri.. - - T- « 

which may be canceled by addition of the velocity potential 

cos d 
72 

The velocity potential near A to this degree of approximation is 

( 2r cos e\ a cos 9 
2c^ r~2 

and the velocity potential near B is 

f 2r' cos d'\ cos 6' 

^ V + —^ ' ) ^ ^ 

The velocity potential for is found similarly. 
In order to evaluate the kinetic energy of the fluid, using Eq. (11), 

Sec. 14, the values of 4>, <t>' and —, -v- arc obtained: thu.s 
’ dn dn 

^ 1 A . <^ = ta C 1 + j cos t 

ir/i ,3o»6A 
^ I 1 d-j— ) cos ( 

<f> = ia(^l + 6 + constant (on sphere .4) 

(3a^b^\ 
1 H—^ j cos + constant (on sphere B) 

(on sphere B) 

(on sphere A) 
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and from the boundary conditions 

77 

d<i> . 
_ = ~ cos — cos an dn 

over spheres A and S, respectively. Then 

/ ♦" M / *' t 
+ UU’f t'%dS. 

where dSA, dSs represent area elements on spheres A and B, Integrating 
the first term on the right, using the area element dSA = 2Ta^ sin d dd^ 

j 4,^dSA -= -CVa=^l j\.os'‘esin 0de 

= - hraHP (^1 + 

The constant term in </> cannot contribute to the integral, since 

/ 
by the continuity equation. Integrating the second term, 

UU' j 4>'^^dSA = - UU' 

The third integral is the same as the second one, and the last gives 

- (l + 

The kinetic energy of the fluid is 

T = 2tp U[/' + f (a^U^ + ¥U'^) 

or 

r = f/. + ^ u'j (i + + 2.P ^ uu> 

where Ma, Mb are the masses of fluid displaced by the respective spheres. 
41. Fluid Motion Due to Sphere Moving Perpendicularly to a Fixed 

Plane Boundary. When a = h and U = U' in the preceding section, the 
plane that bisects line AB is a plane of symmetry across which there is no 
flow. It can, therefore, be replaced by an infinite rigid boundary, result- 
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ing in a flow case where a sphere moves with velocity U toward a wall. 
The velocity potential is given approximately by 

A, - ^ 4- — 4- 

” 2 \r2 4/i» 32/i« 

The stream function is 

_ ^ f 4.^ 4. ^ 

" 4 V r 4A» 32/i« 

+ 8/i*r» ' 64/i«r» ) COS 6 + constant 

where h = c/2. 
The kinetic energy of the fluid is 

T - xpa*t/* Q + g^, + 

under the action of no external 
forces, the kinetic energy of the system must remain constant; hence U 
decreases as h decreases. Similarly, if the sphere moves away from the 
wall, U increases. The sphere is repelled by the wall in both cases. This 
phenomenon decreases the probability of a head-on collision between 
immersed or floating objects. 

42. Fluid Motion Due to Two Spheres Moving at Right Angles to 
Their Line of Centers. An approximate solution of this flow case will be 
derived in a manner similar to that in Sec. 40. Referring to Fig. 38 for 
notation, as before let 

<f}Q = V(t> V'<l>' 

where ^ is the velocity potential for unit velocity of sphere A while sphere 
B is motionless and 0' is the velocity potential for unit velocity of sphere 

B while sphere A is motionless. F and V' must be parallel. The boundary 
conditions at the surfaces of the spheres are 
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d<l> 

f] -0 'r Jr-a 

pi =0 

I 

The velocity potential for A/\{ B were absent, is 

which satisfies condition (a). From Fig. 38 

r cos 6 = r' cos 6^ 

therefore, the velocity potential in the neighborhood of B may be written 

r' cos ^ 
2c^ 

aswsuming that r = c does not materially change the velocity potential. 
The normal velocity over the surface of B is 

-^CO8 0 

which may be canceled by addition of 

cos B' 
l^~yr 

to the velocity potential near B, In the vicinity of A this may be 

approximated by 

-j-i ^ cos B 
4c® 

by assuming r' — c over the surface of A. To cancel the velocity over A 
due to this term it is necessary to add 

cos B 
8c® r2 

Neglecting terms with powers of c higher than c~®, the velocity poten¬ 

tial becomes 
_ o* cos B cos B' 

<l> - *2 "7^ *^4? “7^ 
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Hence, over the surface of A 

while over the surface of B 

<l> — 2 ^ 

^ cos O' 
4c* 

In an analogous manner the velocity potential </>' for unit velocity of B 
and zero velocity of A is 

, _ 6* cos 6' cos 6 

which becomes over the surface of B 

</>' = ^ cos 8' 

neglecting terms containing c~® and higher. Over surface A 

3 ab^ 

</>0 
a* cos 8 1 

^ 2 2r^ ' 

b’ cos d' 1 ̂ rr/ 1 ^ Tr 

2P~ ' 
T7' 4- „ 17 ___ 

^ ^ 2 C* 

Collecting results, near A 

while near B 

All equations are accurate only when c is great compared with a and b 
and only when the spheres are moving at right angles to their line of 
centers AB. 

Using the same method of evaluating kinetic energy of fluid as in 
Sec. 40, 

T = + TP ^ vr + F'“ 
o o 

43. Fltiid Motion Due to Sphere Moving Parallel to a Fixed Plane 
Boundary* This is a special case of the preceding section, where a = 6, 
V = F', and, as before, where a. The plane bisecting AB becomes 
a plane of symmetry across which there is no flow. It may, therefore, be 
replaced by a rigid plane boundary. Let c = 2ft; then 
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near the sphere. The kinetic energy of the fluid becomes 

81 

T - 

where h is the distan(;e from center of sphere to wall. 
44. Motion of Fluid Bounded Externally by an Ellipsoid. When deal¬ 

ing with fluid flow cases in which the fluid has external boundaries, two 
conditions only must be satisfied, viz,, 

VV = 0 and 
DF 
Dt 

= 0 

The equation of the ellipsoid of semiaxes a,h,c, moving uniformly with 
velocity components U,V,W in the positive x2/;2:-directions, respectively, is 

For < = 0, the boundary condition equation = 0 becomes 

DF ^ I I ^ ^ IE? — 0 

In terms of the velocity potential this becomes 

xd<i> y d<t> z d<t) X I y 
dx dy c' dz a- ^ h‘^ 

F + 4 W - 0 

It may be seen by inspection that this equation and the Laplace equation 
are both satisfied by 

4> — — i7x — Fy — Wz 

Hence, by Sec. 15, the only possible irrotational motion of a uniformly 
translating ellipsoid occurs when the fluid is moving as if it were a solid 

having the same velocity as the ellipsoidal shell. 
The case of rotation of the general ellipsoid about the x-axis is investi¬ 

gated where the fluid is contained within the ellipsoidal shell. To develop 
the boundary condition that must be satisfied for this case the fluid 
velocity normal to the surface of the ellipsoid is found and equated to the 
velocity of the surface normal to itself. First, to find the direction 
cosines of the normal to the surface [Eq. (12), Sec. 8], 

F = ^ -L.yl 
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Differentiating, 

and 
dx 

2x 
dz 

2z 

ly m, n == 
y 
P’ 

yja* b* + z- 

for the cosines of the normal drawn into the fluid. The velocity of the fluid 
in the direction of this normal is 

lu + mv + nw 
X d<i> y d<t> . Z d<t> 

dx dy dz 

s t + f 
b* ^ c* 

(31) 

The velocity of any point {x,y,z) of 
the boundary, due to the rotation 
12* about the a:-axis, is, from Fig. 39, 
12* in magnitude, with 
direction cosines Zi, mi, ni, where 

h = 0, mi = 
Fig. 39.—Velocity of a point on an ellipsoidal 
shell rotating about a principal axis. Ui 

Let represent the angle between the velocity vector and normal, then 
the velocity of the surface normal to itself is 

^x\/y^ + cos /? = ^x\^y^ -jr {lli + mmi + nni) 

_ ^xyz 

s • « *.4 

(1-1\ 
\b^ c7 

(32) 

b* ■ c‘ 

From Eqs. (31) and (32) the boundary condition is obtained: 

X d4> , y d<l> ■ z d<l> 
dx b^ dy dz 

^xyz (1-1) 
\b^ cV 

Assume 

which satisfies 

<t> = Cyz 

0. It is found to be the solution, provided 
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Hence, 

^ _c^ ^ 

^ 

is the potential function for fluid motion caused by the rotation of an 
ellipsoidal shell about the x-axis, when the shell is completely filled with 
fluid. 

Due to lack of symmetry, the Stokes^ stream function is not defined 
for this case. 

Exercises 

1. Select the proper strenjajth of source and uniform flow to produce a dynamic 

pr(^ssure of 100 Ih per ft* at the stagnation point on a half body whose asymptotic 

cylinder is w « 2 ft. The fluid has a mass density 2.00 slugs per ft®. Draw the half 

body and the lines of constant pressure: p = 75 ib per ft*, p = 50 lb per ft*, p = 25 

lb j>er ft*. Ans. U = 10 ft per sec; rn = 407r ft® per sec. 

2. Find the point of minimum pressure in the fluid surrounding the half body of 

K.xercise 1. What is this minimum pressure? 

3. (a) Draw the traces of three stream surfaces about the half body of Exercise 1 

for a 27r At/' of 25 ft® per sec. 

(6) Draw the three equipotential lines <f>o = 25, (t>i — 5, <^2 = —15. 

4. By integration over the surface of a half body show that its drag is zero. 

6. Using P]q. (20), Sec. 17, derive the stream function, Eq. (11), from Eq. (10) 

for a source and sink of equal strength. 

6. Why cannot point D of Fig. 22 be found from Eq. (15)? 

7. (a) Find the equations for flow around a llankine body 3 ft long and 2 ft in 

breadth. 

(6) What is the pressure at a: == 0, w = 1 for U = 3.0 ft per sec, liquid of density 

p = 1.94 slugs per ft®, taking dynamic pressure zero at infinity? 

8. Obtain Eq. (18) by applying the limiting process to Eq. (11). 

2. Draw a curve of constant pressure intensity around a doublet. Take 

p = 100 ft^ per sec, 

B * —50 lb per ft*, p — 2 slugs per ft® (pressure zero at infinity). 

10. Find the length and breadth of the body formed by the closing stream surface 

when there is a line sink of strength m = 20 ft® per sec per ft extending from ( — 1,0) 

to (0,0), a line source of the same strength from (0,0) to (1,0), and a uniform flow 

in the negative a>-ciirection of 5 ft per sec. 

11. If the dynamical pressure at infinity is zero in Exercise 10, find the pressure 

at (0,2). 
12. Derive the Laplace equation for the cylindrical coordinates (x,w) when there 

is axial symmetry. 
13. If a sphere 1.0 ft in diameter and having a unit weight of 450 lb per ft® is 

released in water at rest, find its velocity after 2 sec. Assume irrotational flow of 

an ideal fluid. 
14. Show by taking the surface integral of the pressure force in the a;-direction 

that a sphere at rest in a uniform, ideal fluid stream suffers no drag force. 

15. Where should the openings be placed in a spherical Pitot tube to measure 

static pressure in the fluid? 
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16. Find ttie virtual nia.ss for the sphere moving inside a fixed concentrio spherical 

shell. i4ns. 
2 + 2o» , 

17. Show by substitution thai r^Ps (cos 0) is a solution of VV ~ 0. 

18. A 100-lb sphere, 1.0 ft in diameter, is submerged in water and released from 

rest when its center is 6.0 ft from a horizontal floor. Assuming ideal fluid flow, what 

velocity does the sphere have wlnui it lias fallen 4.0 ft? 



CHAPTER V 

APPLICATION OF COMPLEX VARIABLES 
TO TWO-DIMENSIONAL FLUID FLOW 

An infinite number of solutions to the two-dimensional Laplace equa¬ 
tion are easily obtainable from functions of a complex variable. In 
fact, due to the application of complex variable theory, the study of 
ideal fluid flow has been greatly expanded. Elements of complex variable 
theory are introduced in the first part of the chapter and conformal 
mapping in the remaining part. 

COMPLEX VARIABLES 

46. Complex Numbers. When solving quadratic equations the dis¬ 
criminant may be negative, giving a solution of the form 

+ iy 

where x^y are real numbers and i = 1; t.e., = — 1 The quantity 
X + iy is called a complex number. 
It is made up of two parts: the 
real part x and the pure imaginary 
part y. 

The Argand diagram (Fig. 40) 
provides a convenient geometric 
representation of complex num¬ 
bers. In the Argand diagram the 
real part of the complex number 
is plotted as abscissa against the 
pure imaginary part as ordinate. 
For example, the complex number 
x + iy is represented by the line 
Oz extending from the origin to 
the point {x,y) on the graph. The 
concept of the complex number is more easily grasped by considering it as 
a directed line segment rather than a point on a plane. Thus, in the 
figure, the complex number has a length r and makes an angle B with 
the a?-axis. The length of the line representing it is known as the rnodu^ 
lusy or absolute value of the complex number, which maj^ be designated 
by r or by |«|, where 

z X + iy 
85 
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Therefore, 
l^l = 

A complex number may conveniently be specified by using polar 
coordinates. Since a: = r cos 6, y == r sin 6, 

z == r cos B + ir sin B = r(cos B + i sin B) 

where r is the modulus and B is the angle the radius vector makes with the 
x-axis measured positive in the counterclockwise direction and is known 
as the argument of the complex number. A complex number is com¬ 

pletely specified when its modulus 
and argument are given. Two 
complex numbers are equal if their 
moduli are the same and their 
arguments are the same. Simi¬ 
larly, from the cartesian notation, 
two complex numbers are equal if 
their real parts are equal and if 
their pure imaginary parts are 
equal. 

Complex numbers are added 
according to the parallelogram 
law of adding vectors, as indicated 
in Fig. 41. There, 

Fig. 41.—Addition of complex numbers. z — Zi + Zz = Xi + X2 + i{yi + 2/2) 

This is equivalent to adding their real parts and to adding their pure 
imaginary parts. The difference of two complex numbers is obtained by 
taking the difference of their real parts and the difference of their pure 
imaginary parts; thus 

z — zi = X — xi +i(y — yi) == Z2 

from Fig. 41. 
The factor i that enters into complex numbers may be considered as 

an operator such that multiplication by it rotates a complex number 
through +90 deg. For example, when 2 = 0 + 3i is multiplied by i, the 
result is = 0 — 3, indicating rotation from the Oy-axis to the negative 
a;-axis. In more general form, 

z = a + ibf iz = —b + ia 

the slope of « is 6/a and the slope of iz, --a/b, showing they are at right 
angles. The rotation may be shown to be in the counterclockwise 
direction by plotting or by using the ei^ponential form derived in the next 
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section. Application of i twice is equivalent to rotation through 180 deg, 
since = — 1. 

46. DeMoivre’s Theorem, A complex number may also be expressed 
in an exponential form, which is in every way equivalent to the cartesian 
and polar forms but more suitable for certain operations. The relation¬ 
ship is known as DeMoivre^s theorem and is derived from a consideration 
of infinite series expansions of c*, sin Xy and cos x. The Maclaurin series 
expansion^ for is 

/)f.2 /V.3 rt.4 

e^ = l+^ + |-, + |j + f-,+ ••• 

and the series expansions for sin x and cos x are 

sin X = X 

cos X = 1 

X® x^ X 

3!'^5! 7!“^ 
^ ^ ^ 
2! 4] 

All the above series are absolutely convergent for all values of x. Replac¬ 
ing X by id in the expression e"' and remembering that = — 1, z® == —z, 
z^ = 1, etc. 

6^ 0® 
4! ■*■^5! 6! 

which will be taken as the definition of 
Since the series is absolutely convergent, it can be rearranged; thus 

. 1 -1’+ 
21 + 41 

which is seen to be 

6! + + n« 3! "^5! 7! 

(.Qg $ ^ i sin B (1) 

by replacing x by 0 in the sine and cosine series. Equation (1) is DeMoi- 

vre's theorem. 
The three forms available for expression of a complex number are 

z = X iy = r(cos ^ + z sin 6) = (2) 

where the most convenient form may be selected. The terms may be 
treated as ordinary algebraic quantities subject only to z^ = — 1. It 

follows that 
jjn = = r’*(cos uB + z sin nB) 

^ I. 8. and E S. Sokolnikoff, ''Higher Mathematics for Engineers and Physicists,*' 
2d ed., p. 37, McGraw-Hill Book Company, Inc., New York, 1941 
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More specifically, the square of z is 

= r^e^ie 

another complex number having a modulus that is the square of the 
modulus of z and an argument that is twice the argument of 2. 

The product of two complex numbers Zi = and 22 = ^2^"^ is 

2i22 = 

which is a complex number having a modulus that is the product of the 
moduli of 2i and 22 and an argument that is the sum of the arguments of 
2i and 22. The process of multiplication of a complex number, say 
by another complex number may be thought of as an operation on 
re'^^ by that consists of stretching (or shrinking) the modulus from 
r to Rr and of increasing the argument by the angle <p, changing the 
argument to 0 + <p. For example, when multiplied by 
stretches the modulus to 6 and rotates the segment +90 deg, so that its 
argument is 7r/2 + 7r/4 = 135 deg. This concept is of value in consider¬ 
ing the mapping function discussed in the latter part of this chapter. 
Multiplication in cartesian form is 

Z\Z2 = (xi + iyi){x2 + iy2) = xix^ - yxyz + i{yiX2 + xiy2) 

Division of one complex number by another is easily carried out 
when they are expressed in exponential form: 

22 r2C*^* r2 

This is an operation which is not defined in vector analysis. Division 
in cartesian form requires an extra step, thus 

^ (^1 + iyx){x2 — iy^ 
Z2 X2 + iy2 {X2 + iy2){x2 - ^2/2) 

= (^1 + - wd 
X2^ + 2/2^ 

^ X1X2 + yiy2 , . yiX2 — xiy2 

X2^ + y2^ X2^ + 2/2^ 

The denominator is made real by multiplying both numerator and 
denominator by the denominator when i is replaced by — i (its conjugate). 

The complex number i may be expressed as its modulus is 1 
and its argument is 2r/2. Multiplication by i then may be written 

iz = ire^^ = 

which shows clearly the rotation through +90 deg, caused by multiplica¬ 
tion by i. 
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47. Conjugate Complex Numbers. The conjugate of a complex num¬ 
ber is obtained from a complex number by replacing i by — thus 

z ^ X iy, z = X — iy 

where the bar over a complex number is used to indicate its conjugate. 
The product of any complex number and its conjugate is a real number: 

22 = (x + iy)(x — iy) = + 2/^ 
or 

zz = re^^re~^^ = + 2/^ 

Likewise the sum of a complex number and its conjugate is a real number, 
equal to twice the real part: 

z + z = X + iy + X — iy — 2x 

The difference between a complex number and its conjugate is always a 
pure imaginary number 

z — z X + iy -- {x — iy) — i2y 

48. The Logarithm of a Complex Number. The logarithm of a com¬ 
plex number is conveniently obtained from the exponential form; thus 

z ^ X + iy 
In 2 = In r + id 

= ^ In (x^ + y^) + i tan”*^ ^ 

It is observed that the logarithm of a complex number is another 
complex number having its real part equal to the logarithm of the modulus 
and its imaginary part equal to the argument. As 

gi(e+2ir) =: e^\cos 2ir + i sin 2t) = e*® 

it is evident that the imaginary part of the logarithm is indeterminate 
to the extent of 2/i'7r, where k is any integer. This indeterminate feature 
of In z may be avoided in many practical problems by restricting the 

range of 0, e.g., 

—TT or 0<^<2x 

49. Functions of a Complex Variable. Cauchy-Riemann Equations. 
When X and y in the complex number z ^ x + iy are considered variables, 

then z is said to be a complex variable. Defining w as another complex 

variable such that 

w = f{z) fix + iy) 
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XI) may be separated into its real part and its imaginary part, called 0 and 
0, respectively, 

V) = <t>{^yy) + iyp{x,y) 

where 0 and 0 are both real functions of x^y. 
The function f{z) is said to be a function of a complex variable if (1) 

within some region there is one and only one value of f{z) for each value 
of z and that value is finite and (2) the function has a one-valued deriva¬ 
tive at each point within the region. Within this region the function is 
said to be holomorphic, regular, or analytic. 

Further consideration of (2) leads to relationships that must be ful¬ 
filled by a function if it is analytic. A complex derivative 

Ii„ & ±_fe> -JW 
a*--+o oz 

may approach its limit in an infinite number of ways, e.g., 8z = 8x + i 6y 
where hx may be related to by by 6a: = c by, with c an arbitrary constant. 
Condition (2) states that no matter which way the limit is taken, the 
derivative must have the same value. Two different paths by which 
the limit may be approached are considered, and conditions therefrom 

required to make the derivatives the same are necessary for existence 
of the one-valued derivative but are not sufficient. For the first path, 
bz is allowed to approach zero in the x-direction; i.e., lot by = 0 first, then 
take the limit as bx approaches zero. This gives 

Jjjjj /(z + Sz) - f(z) ^ /(z + gx) - /(z) ^ ^ 
5I/-0 f ^y 5x-0 dx 
ax-o 

where the last term comes from the second term which is the definition 
of a partial derivative (Sec. 5). For the second path, bz is allowed to 
approach zero in the ^/-direction by letting 6x = 0 first; thus 

lim /(g + - /(g) ^ 1 /(z 4- i 5y) - /(z) ^ 1 ^ 
te-o Sx + i by i 8„_o i Sy 
tymO 

Since the derivative must be the same in either case if /(z) 
of a complex variable, 

dx' i dy 

is a function 

(4) 

/(z) == ta = ^ vl> 

dx dx * dx’ dy dy * dy 

However, 

and therefore, 
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Substituting into Eq. (4), 

91 

dx dx i \dy dy) 

Equating the real parts on each side of the equation and then the imagin¬ 
ary parts, 

^ dyp d(f> dip 
dx dy dy dx 

These relations are known as the Cauchy-Riemann equations. Books 
on analysis show that they are not only necessary but sufficient, provided 

the four partial derivatives ^y ^y ^ 
dx dy dx dy 

are continuous. 

Any f{z) = f{x + iy) that is defined throughout a region and that 
has a derivative throughout the region satisfies the Cauchy-Riemann 
equations. Points on the plane where the Cauchy-Riemann equations 
are not satisfied are known as singular points. 

60. Relation of Functions of a Complex Variable to Irrotational Flow. 
Differentiating the first of Eqs. (5) with respect to x and the second with 
respect to y and adding give 

dx"^ dy^ (6) 

which is the Laplace equation in two-dimensional cartesian coordinates. 
Therefore, by considering </> to be a velocity potential, the real part of 
any function of a complex variable is a possible flow case, as it satisfies 
the continuity equation and is irrotational. 

Similarly, differentiating the first of Eqs. (5) with respect to y 
and the second with respect to x and subtracting one from the other 

dhp dhp _ 
(7) 

showing that the pure imaginary part of any function of a complex 
variable may also be the velocity potential for a flow case. As the 
Cauchy-Riemann equations are identical to the relations developed at the 
end of Sec. 16 between stream function and velocity potential, it is obvi¬ 
ous that when <p = constant are considered as equipotential lines, the 
lines }p = constant form an orthogonal system that are streamlines. 

The proof that any f{z) — fix + iy) which is defined throughout a 
region and has a derivative throughout a region is a possible fluid flow 

case is as follows: 

w « /(«) « fix + iy) = « = x + iy 
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To obtain the expression 

Hence 

and since 

and similarly, 

dw 
dx 

dw 
dy 

dw ^ 
dz dx 

d'w _ 

dx^ 

= ^ 
dz 

d /dw 
dz \ dz 

since 

) dx 

dx 1, 
d^^w 

dz^ 

dw dz _ • 
since 

dz 
dz dy ^ dz dy 

d’^w d (.dw\ 1 dz d^-w 
dz V dz ] dz^ 

dhv , dhx 
dx- 

+ 
dy^ 

= V2(</, + ixp) = VV + ^ vv = 0 
V2<#> == 0, VV = 0 

which are the conditions for </> and 

y 

0 = C, 

to be either velocity potentials or 
stream functions for two-dimen¬ 
sional irrotational flow of an ideal 
fluid. 

The functions <t>, ^ are called 
conjugate functions; t.«., the real 
part of an analytic function is said 
to be the conjugate of the imagi¬ 
nary part. The curves obtained 

<l>{x,y) = constant, 
yj/^x^y) = constant 

form an orthogonal system in the 
xTZ-plane in that they intersect at 
right angles for every point in the 
plane where the function is regular. 
Allowing the constants c in 

yp = c 

to take on values in arithmetic progression, the plotted curves in the 
X2/-plane form an orthogonal network that, in the limit as the intervals 
in the arithmetical progression approach zero, is composed of infinitesimal 
squares. Such a system is referred to as a flow net, as shown in Fig. 42. 
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The simplest example of a flow net is given by 

w==z = <l> + i\l/ = x + iy 
or 

0 = X, ^ = i/ 

As 0 and ^ take on constant values the resulting equipotential lines and 
streamlines are straight lines parallel to the y- and x-axes, respectively. 
A less simple example is 

where now 
w — — {x + iyY = — 1/2 + i2xy 

(j) = x^ — y^y yp = 2xy 

the equipotential lines are hyperbolas with asymptotes y = ±Xy and the 
streamlines are rectangular hyperbolas with the coordinate axes as 
asymptotes, as in Fig. 45. Because both (p and \p satisfy the Laplace 
equation, the streamlines may be taken as the equipotential lines and the 
equipotential lines as streamlines, thereby obtaining another flow case. 

CONFORMAL MAPPING 

61. Theory of Conformal Representation. The two complex vari¬ 
ables w and z have been discussed in the preceding sections. They are 
given by 

^ = fi^) == <^ + z = X + iy 

where 0, x, y are real and 

<l> = f 

A graph may be prepared in which <f) is plotted as abscissa and xp 
as ordinate in a manner similar to the plot of x and y. The <^>^-plane is 
called the ttJ-plane and the x^-plane the ^-plane. For each point in the 
2-plane there will correspond at least one point on the tc-plane whose 
location is determined by the values of x^y and the functional relations 

A curve or contuiuous line in the 2-plane may be “transformed” or 
“mapped” onto the i/^plane by determining corresponding points on the 
10-plane for points on the line in the 2-pldne. In this manner any con¬ 
figuration may be transformed from one plane into another configuration 
on the other plane, and the relation between the configurations will 
depend upon the functional relationship w — f{z) = 4> + iV'- The trans¬ 
formation is said to be “conformal” if corresponding infinitesimal con¬ 

figurations in the two planes are similar. 
An infinitesimal line element Sz in the 2-plane may be considered to be 
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transformed into the corresponding infinitesimal line element hv> in the 

vhplhne by the operator ^ as 

OW -T- OZ 
dz 

(8) 

For infinitesimal figures to remain similar in the transformation they 
may be stretched or shrunk, but always by the same amount in every 

direction, and they may be rotated, but again every element must be 

rotated by the same amount. To fulfill these conditions ^ must have 

one value only (although usually complex) at a point; z.e., it must not 
change with orientation. This condition, however, is exactly that 

imposed by the Cauchy-Riemann equations. Thinking of ^ as a con¬ 

stant complex number at any point, it then stretches and rotates 6z as it 
is transformed into bw. This mapping process cannot be carried out 

at singular points, where ^ becomes zero or infinite. 

To illustrate the mapping process, the infinitesimal triangle ABC in 
the 2f-plane of Fig. 43 is mapped onto the ly-plane, say by the function 

y) = y——, Let .4 be at 1 + z in the j?-plane, which may be written 
o 

z = y/2 e**'^'*. The point A is at 

w = ^ (V2 ^ = 0 + i ^ 

in the «>-plane. At A, 
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hence, multiplying bz by rotates it through +45 deg and decreases 
its corresponding length in the ti^plane by one-half. The lengths AB, AC 
are mapped over onto the Ti>-plane in this manner. Remembering that 
the figure is infinitesimal, BC is also rotated through +45 deg and shrunk 
one-half in length. At other points than the immediate vicinity of 

^ takes on different values, so that large figures suffer a distortion. 

Fig. 44.—Flow net in the uvplane. 

The simple function w ^ AZy where A is complex, say a + t6, has 
the same stretching and rotating value at all points, since 

~ = a + tfc = \/ 
az 

is constant over the plane. For this case finite figures also remain similar. 
Many cases of simple transformations will be studied in the next 

chapter. 
52, Application of Conformal Mapping to Ideal Fluid Flow. The 

real and pure imaginary parts of any function of 2 == re + ty with con¬ 
tinuous partial derivatives each provide a velocity potential or stream 
function for irrotational flow of an ideal fluid, as discussed in Sec. 50. 
Furthermore, any streamline in steady flow may be replaced by a solid 
boxmdary, as it satisfies the conditions for a boundary. 

The to-plane (Fig. 44) is always considered to have a flow net that 
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consists of a rectangular grid parallel to the <h and ^-axes. The vertical 
lines are equipotential lines. The flow represented by the t/^-plane is 
that of an infinite fluid flowing uniformly in the x-direction. Both 
families of lines may be mapped onto the js-plane by any analytic function 
of the form w = f{z), and the lines <j> = constant, ^ = constant are still 
equipotential lines and streamlines in the 2:>plane. The particular 
configuration in the 2;>plane depends entirely upon /(z), as the flow net 

in the t/>-plane is always the same. As ^2 — ^1, the difference in value of 
^ between two streamlines (Sec. 16), represents the discharge, or flow, 
between those lines per unit of thickness, that same flow will prevail 
between corresponding lines in the 2-plane. The spacing of the grid 
in the i^-plane is not important, except that both <t> and \p should vary 
by the same increment from line to line. In illustrations of flow examples 
the ii>-plane is not usually shown, since it is the same in all cases. 

The solution of two-dimensional fluid flow problems is attacked by the 
indirect method of investigating various functions to determine the shape 
of boundaries to which they might apply. 

63. Inverse Transformations. In some important cases the function 
relating wtoz cannot be solved explicitly for w. When it is solved in the 
form z = S(w)y the function is said to be an inverse function. Expanding, 

2 = f{w) = + #) = x{4>,^) + 

Many useful flow nets are obtained by the inverse transformation. It 
gives an entirely different flow net than w = /(z), where/ is the same in 

both cases. 
64. Complex Potential. Complex Velocity. The complex variable w, 

when defined by 

w — ((> + i}// 

where <#> and ^ satisfy the Cauchy-Riemann equations, is called the 
complex potential, <f> is the velocity potential and yf/ the stream function. 

Taking the partial derivative of the complex potential with respect to 

x, 
die _ _ dw 
dx ^ dx ^ dx dz dx dz ^ ^ 

since from 

z ^ X + iy, 

Introducing u and v, the velocity components. 
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and substituting in Eq. (9), a useful relation is obtained: 

dw , . 
+ IV (lOj 

where ^ is called the complex velocity. The real part of ^ is the nega¬ 

tive of the velocity component in the a:-direction, and the pure imaginary 
part is the velocity component in the ^/-direction. The complex velocity 
usually provides the most convenient mci^ns of determining velocity at a 
point. The speed, or magnitude of the velocity, is given by 

\dw\ 
dz 

= \/w- + 

or by means of the conjugate complex velocity 

dw 
— —u — IV 

dz 

^ ^ = { — u + iv){ — u — iv) = + v^ 

For example, to find the velocity at 2 = 1 + 2z from the function 
w = ^2 a* 4- z, 

^ = 23 + 1 = 2(] + 2i) + 1 = 3 + 4i 

Hence, 
u “3, V — 4, = -y/-V = b 

Stagnation points are those points in the flow where the velocity is 
zero. They are given by 

dw 
dz 

= 0 

as both real and pure imaginary parts of a complex number must vanish 
when it equals zero. 

Some transformations are more conveniently carried out by using an 
intermediate plane, say from w to f, then from f to z; e.g.^ 

tc = sin z = In f 

where the second relation is an inverse transformation. The complex 

velocity is given by 

dw __ dw d^ dw J__ 
Iz ~ lxTz~ w - f cos r 

The derivative ^ has been given two interpretations, one as the 



98 FLUID DYNAMICS [Chap. V 

complex velocity and the other as an operator by means of which elements 

of the 2«plane are transformed into elements in the ty-plane. When 

is zero or infinite, the transformation is not conformal. Those points are 
singular points and should be excluded from the flow net by drawing 
small circles around them. 

In the following paragraphs some relationships are developed that 
are useful in dealing with inverse transformations. Starting with 
z == f{w)^ the derivative becomes 

_ ^ ^ ^ 1 ^ if}!: ^ (11) 
dw dw/dz u — w q \q q) 

where q = and the last term is obtained by multiplying 
numerator and denominator of the third term by u + iv. Defining f by 

f = 
dz 
dw 

it is a complex number that has the direction (or argument) of the velocity 
vector at each point and a modulus that is the reciprocal of the speed 
\/q, u/q and v/q are direction cosines of the velocity vector, so that 
{u/q + i'^/q) is a unit velocity vector at each point throughout the flow. 

From the inverse relations 

where 
X = y = 

w — <!>-{- iyf/y z X + iy 

the following relations are developed; 

dz __ d , I • N _ I • _ dz dif? _ dz 
d<t> ^ d<t> ^ dtp dw d<f> dw 

^ { 4_ • ^ , ■ dy _ dz die _ . dz 
d^ d^ ^ d^ ^ d^ dw d^ ^ dw 

Equating ^ in the last two expressions, 

d4>^ d<t> i Xdit' ^ d^/ 
from which 

— :=z ^ _ dx 
d<t> d0 d^ 

These relations take the place of the Cauchy-Riemann equations. 

(12) 
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Since i is the modulus of and since ^ 
q aw aw d<t) 

1 = (4- (-^V 
\di/ 

From the interrelationships this may be written 

1 = ^ 4- Y = (^\ 4- (^\ 
q^ \d<t>/ \d^/ \d</>/ 

_ / 

dx dy dx dy 

d(j> dyj/ dip d<l> 

Bzercises 

1. Find the complex numbers given by 

(a) (2 - Si) 4- (4 + i) 

(b) (1 +i)(6 -3t) 

(c) (1 ~ i)(2 + t)(l ~ Si) 
/j\ 1 4- 2i 

(e) In (3 4- 4i) 

(/) ln(0 4-i) 
(g) In(-l) 

2. Given 2® « — i, by use of the DeMoivre'g theorem find six roots of z. Plot 

them on Argand diagram. 

Hint: Solve 2® = using k =* 0, 1, 2, 3, 4, 5. 

3. Separate the following functions of 2 into their real and imaginary parts </> 

and 

(c) In 2® 

(/)i + 2 

4. Show that the Cauchy-Riemann equations in polar coordinates are 

d<t> d<l> diff 

5. Which of the following functions are functions of a complex variable? 

(a) Vr cos I 4- f y/f sin ^ 

+ “ * *• + V* (d) *• — y* 4“ « ~ i(2«y 4- y) 
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6. For those functions in Exercise 5 which satisfy the Cauchy-Riemann equations, 
determine the function of 2, by substituting x ^ z — iy or r = and simplifying. 

7. Map the triangle having vertices at (1,0), (2,1), (0,0) in the 2-plane onto the 
u’-plane using the following functions: 

(a) u) = (1 + i)z Q>) w = 2* 

3. Plot the velocity vector at the vertices of the triangle in the 2-plane of Exer¬ 
cise 7. 

9. Determine the stagnation points for the flow nets given by: 

(a) *= In 2 + 2 (b) z = hi w 

(c) u? = - + 2 (d) w - iz 
z 

10, Determine the velocity at (1,1) and (3,0) in the 2-plane for the inverse trans- 
f urinations 

(a) 2 MI* (6) I — 
w 

(c) 2 « 



CHAPTER VI 

TWO-DIMENSIONAL FLOW EXAMPLES 

As the theory of complex variables leads to an infinite number of 
solutions of the Laplace equation, yielding streamlines as well as equi- 
potential lines, all examples in two-dimensional flow are treated from 
the standpoint of conformal transformations. SuflScient examples are 
given in this chapter to provide an understanding of the manipulations 
required to analyze simple functions. Flow nets are constructed in most 
cases as an aid in selecting the proper function for particular problems. 
The flow cases have been classified according to the type of function or 
the type of coordinate system employed. Flow around circular cylinders 
is studied in Chap. VIT as the initial transformations involved in deter¬ 
mining flow around the Kutta-Joukowsky airfoil. Chapter VIII deals 
with a special type of two-dimensional flow having free boundaries, called 
free streamlines. 

SIMPLE CONFORMAL TRANSFORMATIONS 

66. Exponential Transformations, w = Az^. By specifying whether 
A is real, complex, or pure imaginary and by specifying n, many different 
transformations can be obtained. Several special values of A and n 
are examined, 

n == 1. A Complex. Let A = a + ib; then 

w = {a + ib){x + iy) = 
dw 
dz 

- <l> -jr i\p = ax 

= A = a + ib 

by -f i{bx + ay)y 

Since is a constant, finite figures as well as infinitesimal figures will be 

similar in the w- and z-planes. Writing A = 

8z = 
dz ^ 1 

6w 

showing that elements in the ^^^-plane are elongated in the ratio 1/R:1 
and rotated through — ^ when mapped onto the z-plane. Hence, the 
rectangular ^-grid in the itv-plane remains a rectangular grid in the 
z-plane. When A is real, 6 = 0, and scale only is changed in the two 
grids. When A is pure imaginary, the grid is rotated through ±90 deg 

on the ^-plane. There are no singular points on the finite plane. 
101 
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n = 2. A Real. The equations pertinent to this case are 

w = ^ A(x + iyy = -4(x® — y^) + tA2xy 
and 

i> ^ A(x^ — y*), ^ = 2Axy, ~ = 2.42 

dw 
As is a function of z, it varies in modulus and argument, distorting 

the rectangular ^-grid in the ii?-plane into the flow net shown in Fig. 45. 
The vertical lines 0 = constant in the tf;-plane become the family of 
hyperbolas x* — = constant having axes coincident with the x-axis 
and asymptotes y == ±x. The horizontal lines ^ = constant in the 
tivplane map into the rectangular hyperbolas xy = constant, having 
axes y = ± X and with the coordinate axes as asymptotes. 

Expressing the stream function in polar coordinates, 

^ = 2Ar cos ^ r sin ^ == Ar^ sin 2B 

the streamline ^ == 0 is given by ^ = 0, ^ == ir/2, or the positive coordi¬ 
nate axes. This transformation may be taken to be the fluid motion 

dw 
adjacent to two perpendicular walls. At the origin “ 0; therefore, 

it is a singular point that must be excluded from the conformal map. 
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When A is pure imaginary, the streamlines and equipotential lines 
of Fig. 46 are interchanged. 

n = — 1. A Real. Hence, as tt; = A/z^ 

w = ^ = Mx - iy) 
X + iy {x + iy){x — iy) 

— Ax _ . Ay 
^2 ^ y2 ^ X* + 

from which 

gk — Ax . __ —Ay _ _ A 

^2 _|« y2y r dz 

The equipotential lines <!> ^ C are circles through the origin with 

Fig. 46.—Flow net for w ^ Afz. 

centers on the x-axis in the 2:-plane, readily seen when the expression for 
is placed in standard form for a circle in cartesian coordinates; thus 

In a similar manner the streamlines ^ = constant are circles through the 
origin with centers on the y-axis, m., 

+ + 
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The flow net is given in Fig. 46. At the origin becomes infinite; there¬ 

fore, it is a singular point not included in the mapping process. This is 
the case of a doublet of strength A at the origin; it is discussed more 
generally in Sec. 61. 

Fio. 47.—Flow net w *= A/z"^, a double family of lemniscates. 

n = — 2. A Real. Using polar coordinates, z = rc**, 

^ ^ ^ ~ p — i sin 2d) 

from which 

= -j cos 28, 
A . - dw 

^=-^sm20, ^=- 
2A 

The equipotential lines and streamlines <!> — C, yp — C are the double 
family of lemniscates shown in Fig. 47. The origin is a singular point 
that must be excluded from the region. 

n = ir/a. A Real. This is a general case where a may take any 
value between 0 and 27r. Using polar coordinates, 

from which 

w = = Ar^^^ ^cos ^ ^ + i sin ^ ^ 

<l> = Ar*"/® cos 
ttO 

a 
Ar*^/" sin 

tO 

dz a 
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The streamline ^ = 0 is given by ^ = 0 and B — a. Hence, the uniform 
flow of the ii;-plane is transformed into flow between two plane boundaries 

at an angle a. At the origin ^ becomes zero if a is less than tt and 

becomes infinite if a is greater than tt. In either case it is a singular point 
that must be excluded from the conformal region. Figure 48 shows the 

flow net for two values of a \ 45 and 225 deg. 

Fio. 48.-—Flow along two inclined piano Fici. 4Q.—Special coordinates for source at 

surfaces. z — a. 

66. Source. Vortex, w = —Am In (z — a). The case where A is 
the real number unity is considered first, with m a positive real constant 
and a complex. Plotting a in Fig. 49 the complex number z — a, 
obtained by vector subtraction of oa from oz, has a modulus ri and an 

argument 0i, 

z — a — 

Substituting into the complex potential, 

= — M In = — M In ri — i\i.B\ 

and 
1 , A du? M 

0 = -M In n, ^ 

The equipotential lines are concentric circles about a. and the streamlines 
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are radial lines through a, as shown in Fig. 50. The point a is a singular 
point that is excluded from the region. The velocity vector is everywhere 

in the direction of radial lines through cl, SiS 0. The velocity a 
ou 

distance ri from a is 
d<l> _ fi 
dri ri 

and the discharge or flow from point a (per unit thickness) is 

2irri — = 2x^1 
ri 

hence, this is a source of strength 2irfi located at 2 == a. Letting A be V1 
results in a sink instead of a source. 

Considering A imaginary, say —t, then 

w = in hi (z — a) = in In ri — n^i 
from which 

^ = /i In ri 

Figure 50 is the flow pattern for this case also, except that the equipoten- 
tial lines are now the radial lines through a and the streamlines the 
concentric circles around a. The line integral of the velocity about any 
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closed path including the point a is Selecting a streamline as path, 
the magnitude of the velocity is constant at it is in the direction of 
the path; hence, the line integral (Sec. 23) gives 

27rri — = 2^/x 
ri 

which is the circulation (Sec. 25). This is the case of a vortex of strength, 
K = 2vfXf at a. 

When A is complex, say 1 — z, 

4> = — M In Ti 

M In ri 

the flow net is obtained from that of Fig. 50. The streamlines and equi- 
. poterittial lines are drawn for the same increments A<^ = A^. Then to 
constiiict (j) = constant in going from one radial line to the next in the 
positive direction, <l> decreases by A<t> along a circular path, but by drop¬ 
ping to the next smaller circular path <t> has increased by Att>. The 
procedure then is to connect diagonal vertices of the polygons in Fig. 50. 
Similarly, for the streamlines the opposite diagonal vertices are connected. 
Figure 61 shows the new flow pattern. 

67. H]rperbolic Functions and Identities. In many of the two- 
dimensional flow cases hyperbolic functions are required. They will be 
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defined in this section, and their relations to trigonometric functions 
given. Many useful relationships are listed, which can be worked out 
from the definitions. 

There arc six hyperbolic functions that are comparable to the trigo¬ 
nometric functions. They are designated by adding the letter h to the 
trigonometric abbreviations: sinh cosh x, tanh Xy coth x, sech x, csch x. 

The basic definitions may be stated in terms of exponentials: 

1 __ - e~^ 

csch X 2 
1 _ + e~^ 

sech X 2 
1 __ 

coth X 

'J'iie corresponding definitions for trigonomef ric fumrtions, obtained from 
DeMoivrc's theorem (Sec. 46), are 

^ix ^ 

2 
^ f>iz — Q—ix 

^ “f" 

sm X 

cos X = 

tan X = 

CSC X 
1 

sec X 
1 

cot X 

sinh X ~ 

cosh X — 

tanh X = 

From the above definitions, the following relationships can be estab¬ 
lished : 

sinh IX 
cosh ix 
sinh x 
cosh x 

sinh { — x) 
cosh { — x) 

cosh^ X — sinh^ x 
1 — tanh^ X 
1 — coth“ X 

sinh {x ± y) 
cosh {x ± y) 

tanh (x ± y) 

sinh (2x) 
cosh (2x) 

= i sin X 

= cos X 

= —i sin ix 
= cos ix 
= — sinh X 
= cosh X 
= 1 
= sech^ X 
= — csch^ X 
= sinh X cosh y ± cosh x sinh y 
= cosh X cosh y ± sinh x sinh y 

— tanh X ± tanh ?/ 
1 ± tanh X tanh y 

= 2 sinh X cosh x 
== cosh^ X + sinh^ x 
== 2 cosh^ X — 1 
« 1 -f- 2 sinh^ X 

0) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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tanh (2x) 

tanh (l) 

d sinh X 
d cosh X 
d tanh x 
d coth X 
d sech X 
d csch X 

sinh 2 

cosh 2 

sin 2 

cos 2 

2 tanh x 
1 + tanh^ X 

0^ — 1) 

x + l) 

— cosh X — 1 _ sinh x 
sinh X cosh x + l 

= cosh X dx 
= sinh X dx 
= sech^ X dx 
= — csch- X dx 
= — sech X tanh x dx 
= — csch X coth x dx 
= sinh (x + iy) 
= sinh X cos y + i cosh x sin y 
== cosh (x + iy) 
= cosh X cos y + i sinh x sin y 
= sin X cosh y + i cos x sinh y 
= cos X cosh y — i sin x sinh y 
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(15) 

(16) 

(17) 

(18) 

(19) 
(20) 
(21) 
(22) 
(23) 
(24) 

(25) 

(26) 
(27) 
(28) 

The inverse hyperbolic functions exist and are expressible in terms of 
logarithms as follows: 

— 1 
y — sinh“^ x, x = sinh y = - (29) 

or _ 
6-^ — 2xey —1=0, = X + \/ x^ + 1 

As e*' is always positive, the positive sign must be used before the radical. 
Taking the logarithm 

X U 1 1 , 1 + X 
tanh~^ X = In -- 

2 1 — X 

coth~^ X = i In ^ — I 
2 X — 1 

+1) any x (30) 

-1) X > 1 (31) 

x^ < 1 (32) 

x^ > 1 (33) 

") 
X < 1 (34) 

any x (35) 

Similarly, 
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d sinh~^ X 

d cosh“^ X 

d tanh""^ x 

d sech~^ X 

d csch~^ X 

dx 

\/x^ + 1 

idx 

- 1 

= d coth-» X 
I — X^ 

—dx 

X \/l — x"^ 

—dx 

X y/l + 

(36) 

(37) 

(38) 

(39) 

(40) 

68. Source and Sink of Equal Strength. The complex potential for 
a source and sink of equal strength 27r/i, located for simplicity at (a,0) 

and (—0,0), respectively, is 

y 

Fio. 62.—Notation for source and sink. 

w — —fi\n{z — a) + ix\xi{z + a) 

Using the notation of Fig. 52, 
where 

z — a = 2 + a = 

for any point 2, then 

w — fx In 
z — a 
z + a 

and 

— M In 
Ti 

iy,{d\ — ^2) 

<t> = —M In ^ 

tf' = — 6i) 

dw — 2txa 
dz (2 — a)(2 + a) 

Expressing = (z — a)* + y*, = (a: + a)* + j/®, the equation for </. 

may take the form 

— o coth ^ + y* 

For equipotential lines, <t> = constant; this is the equation for a family 
of circles of radius a csch <j>/fi with centers at (o coth Vjh. 0). Likewise, 



Sec. 59J TWO-DIMENSIONAL FLOW EXAMPLES 111 

by expressing Qi = tan“^ [v/{x — a)], 6% = tan“^ [y/{x + a)], the equation 
for ^ becomes 

/ / yhy 
ic* + I y + a cot ^ 1 = ( a CSC ^ 1 

Hence, the streamlines are circles of radius a esc yp/ji having centers at 
(0, —a cot ^/m)* The flow pattern is given in Fig. 53. 

Fig. 63.—Flow pattern for source and sink of equal strength or for two equal vortices of 
opposite sign. 

Multiplying the complex potential by — t, a new complex potential is 
obtained in which the streamlines of Fig. 53 become equipotential lines, 
and vice versa. This is the flow pattern due to two vortices of equal 
strength but different signs at (a,0) and ( —a,0). The circulation around 
any path enclosing (a,0) and excluding ( —a,0) has a circulation 
while the circulation around any path embracing (—a,0) and not (a,0) 
is — 27r/x; for a circuit enclosing both singular points the circulation is 
zero. The points (a,0), (—a,0) must be excluded from the conformal 

region. 
69. Flow around a Circular Cylinder Due to an External Source. 

The combination of two equal sources at Q and P and a sink of the same 
strength at 0 (Fig. 54) produces a flow pattern with a closed circle of 

radius UU « Since a closed streamline may be replaced by 
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a solid boundary, the resulting flow is that due to a source near a circular 
cylinder. The complex potential is 

w — }x\n z — ^l\T^ {z — OQ) — /i In (2 — UP) 

Substituting 

z = z — OQ = z — OP = 
7*1 

u? = ju In —-jr = M In-h — O2 — dz) 

X 

I' lG. 54.—Sources at Q and P and sink at 0. 

yp = —m(^8 + ^2 ~ ^i) = 

and 

0 == M In 
ToTz 

\p = ijl(6i — ^2 ~ ^3) 

^ ^ - g-_ 
dz ''z{z - Op){z - UQ) 

Since Oil = "V^OP • OQ, Q is the 
inverse of P in the circle. Then, 
as in Sec. 38, 

Angle ORQ == angle RPO 

by similar triangles. Writing p 
for any point R on the circle, from 
Fig. 546, 

—/i(03 + angle ORQ) 
= — ^t(^8 + angle RPO) = —/xtt 

Hence, p = —jUT is satisfied by any point R on the circle of radius 

OP = y/UQ • Up, The source at P is the only singular point outside 
the cylinder. The flow pattern is shown in Fig. 55. 

60. Flow Due to a Series of Equal and Equidistant Sources along the 
y-axis. The complex potential 

u? = C In sinh 
a 

w Cln [?n('+«4.)] 

may be written 
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since* 

sinh< = <n(l+^,) 
n •“ 1 

where 11 means the product of terms. Expanding the products uml 
taking the logarithm, 

» - C In " + C In (l + J|) + C In (l + ^) 

+ Cln(l+i$)+ ■ 

Fiq. 55.—Flow net for source near a circular cylinder. 

or expanding further, 

w = C[ln + In (z — ia) + In (z + ia) + In (z — 2ia) + In (z + 2ia) 

+ •••] + C ^In “ — In — In 4a^ ) 

In this form the complex potential is seen to be that due to an infinite 
series of sources,^ all of strength located at the points (0,0), (0, ±a), 
(0, ±2a) .... The constant pa»,of the series can be dropped, as it 
contributes nothing to the flow pattern; the velocity potential and stream 
function are always subject to addition of an arbitrary constant. 

^ Smithsonian Mathematical Formulae and Tables of Elliptic Functions, p. 130, 
The Smithsonian Institute, Washington, 1922. 

* If C is negative, the series is composed of sources, if positive, the series is com¬ 
posed of sinks. 
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Returning to the first form of the complex potential, the real and pure 
imaginary parts may be separated by substituting z — x + iy and 
expanding, using Eq. (25). Then 

</> = In ^ ^cosh — cos 

tanli TT x/a 

Fig. 56.—Flow net for one of a series of equal and equidistant sources. 

From the symmetry of the problem there will be no flow across the lines 

I ^ 1 I 3a , ^ , 5a 
2/ = 0, ± 2^ ±a, ± -^y ±2a, ± • 

The formulas may apply to a source midway between two fixed parallel 
boundaries. The flow pattern is shown in Fig. 56. 

61. Doublets. The two-dimensional doublet of strength y, located 
at 2: = ^0 and with the axis making an angle a with the ar-axis, has the 
complex potential 

The flow pattern is that of Fig. 46 when the origin there is placed at 
z Zo and the flow net is rotated through the angle a. 
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The complex potential may be derived by applying the limiting 
process to a source and a sink, as required by the definition of a doublet 
(Sec. 22). Consider a source at zo + a of strength 27rm and a sink of the 
same strength at Zo — a (Fig. 57). The complex potential, as in Sec. 58, 

is 

ly = — Til In [z — (zo + a)] + ^ In [z — (zo — a)] 

y 

Fig. 57.—Notation for source and sink. 

To apply the limiting process as the complex number a approaches zero, 

let 

a = aie^^ 

where ai is the absolute value of a or its modulus and a is its argument. 
Rewriting the complex potential, 

w = -m In [(. - 2.) (l - j2^)] + m In [(. - z,) {i + 

-m In (l - + m In (l + 

Using the infinite series expansions, 
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when ai is small 

w = —m 
__ a\e^^ 

z — 2o 2(z 20)- 3(2 — 2:0)3 

aiC^ _ , ai3c3« 

2: — 20 2(2: — 2:0)“ 3(2 - 2())3 

[2 - 2o 3(2 “ 2o)‘^ J 

From the definition of the doublet, the product of the strength and 
distance between source and sink is to remain constant in the limit as the 
distance approaches zero. The formula is in the form suitable for taking 
the limit. Let 2aim — fi; then as ai approaches zero, 

which is the general equation of the two-dimensional doublet. The 
special case of a doublet at the origin witli axis in the positive x-direction 

has been treated in Sec. 55. 
62. Infinite Number of Doublets along the y-axis. The complex 

potential for a doublet with axis in the positive x-direction may be 
obtained by differentiation of the complex potential for a sink. For 
example, the sink of strength 2w/ji at 2 = a, from Sec. 58, is given by 

w = jji In (2 — a) 

Differentiating with respect to 2, the new complex potential is 

z — a 

which is a doublet of strength ju, as in Sec. 61. 
Similarly, differentiation of the complex potential for a series of equal 

and equidistant sinks along the 2/-axis (Sec. 60) produces the complex 
potential for a series of equal and equidistant doublets along the y-axis, 
with axes in the positive x-direction. Term by term differentiation of 
the series expansion for series of sinks proves this to be the case. The 
velocity potential and stream function can be obtained as follows: 
First, the complex potential of Sec. 60 is differentiated 

w = -^(c In sinh — ^ = — coth — 
dz\ a / a a 

= C' coth — 
a 
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The doublets are located at (0,0), (0, ±a), (0, ±2a), .... Substitut¬ 
ing z X + iy and separating w into its real and pure imaginary parts 
<^, by using Eqs. (25) and (26), 

, _ Qt_sinh ^TTx/a_ 
cosh %^x/a — cos 2Try/a 

, ^ sin 2Try/a_ 

cosh 2Tx/a — cos 2nry/a 

from which the cquipotential and streamlines of Fig. 58 are plotted. 

P^iG. 58.—Flow not for one of a series of doublets. 

Superposing upon the foregoing flow pattern a uniform flow of velocity 
If in the negative x-direction, 

w = Uzy 0 = Uxy rp = Uy 

the complex potential becomes 

w = Uz + C coth ^ 
a 

The velocity potential and stream function are 

<t> - Ux + C' 

Uy - C' 

_sinh 27rx/a_ 
cosh 2nrx/a — cos 2Ty/a 
_sin 2'Kyla_ 
cosh 2mxla — cos 2n^yla 
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The equation for the streamline ^ = 0 may be expressed 

, 2wx 2iry 
cosh-cos 

a 
— - f1 4- 1 

a / ~ a ~ Ul a \ a / 3\J 
using the series expansion for sin The equation is satisfied by 
j/ = 0. Factoring y out, the streamline ^ = 0 is also satisfied by 

cosh 
2rn:x 

cos - ^e£L _ £' vl 4. 
a aU \aj 

This is the equation of an oval witli origin as center. Its semidiameter 
along the x-axis is obtained by setting 2/ == 0, 

cosh 
2TrXo 

1 = 
27r(7' 

a aU 

The semidiameter yo along the ?/-axis is obtained by setting a: = 0, 

2iryo 
1 — cos ■ 

C' . 27r2/o 
jj- sin —^ 
f/t/o a 

Expressing this in terms of the angle Tryq/ay 

T^yo 
yo tan 

u 

By setting C' = rh’^U/a, where h is small compared with ay then as 

a a a a 

for small values of wxo/a and vyo/ay substitution shows that both semi- 

diameters are approximately equal to b. 
Since any closed streamline can be replaced by a solid boundary, 0 

and ^ can be construed as velocity potential and stream function for flow 
through a grating of parallel cylindrical bars of circular cross section. 
For small values of x and y the stream function takes the form 

when C = vW/a. Letting a = \^4irb and solving for semidiameters, 

X “ 0.254a, y = 0.25a 
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showing the section is very close to circular when the bars take up half 
the spacing between centers. Figure 59 shows the flow net. Lines of 
symmetry are the t/-axis and the lines parallel to the a:-axis through 

(0,0), (0,±a/2), (0,±a), (0,±3a/2). . . . 

^ INVERSE TRANSFORMATIONS 

63. Elliptic Coordinates, z = c cosh w. This function when solved 
explicitly for z, is an inverse of the function w — f{z). When used for 

Fio. 59.—Flow net for steady flow of an infinite fluid around a cylinder between parallel 
walla. 

mapping it is referred to as an inverse transformation. The relationships 
peculiar to inverse transformations have been worked out in Secs. 53 and 
54. The rectangular grid in the t^^-plane is the same as for simple trans- 

dz 
formations, and the new grid in the ^-plane is sought. ^ must be 

single-valued and not zero for the transformation to be conformal. 
Separating the function into its real and pure imaginary parts, using 

Eq. (26), 

X + iy = c cosh + iV) = c cosh <f> cos ^|/ + ic sinh ^ sin yj/ 

from which 

X ^ c cosh <i> cos yj/ 
y — c sinh sin 

(41) 
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Eliminating 

cosh^ (f) 
+_t_ 

c* sinh® ift 
= 1 (42) 

This shows that the equipotential lines <^> = constant must appear in the 
2-plane as ellipses, having foci at (c,0) and ( —c,0). 

Eliminating 

_yl_ ^ 1 

cos^}// sin^ ^ 
(43) 

yields a family of confocal hyperbolas for ^ = constant, having the same 
foci as the family of ellipses. 

Fig. 60.—Elliptic coordinates. Flow through a rectangular slot. 

The resulting grid in the 2-plane (Fig. 60) may be referred to as 
elliptic coordinates. They necessarily form an orthogonal system, except 
at the singular points given by 

3— = c sinh w 
aw 

being either zero or infinite. The singular points are at the foci. 
Taking the lines 4> = constant for equipotential lines, this may be 

considered as the flow through an aperture of width 2c in the thin plate 
comprising all the a;-axis except from a; = — c to x = Taking the 
ellipses as streamlines, circulation around an elliptic cylinder is portrayed 



Sec. 64] TWO-DIMENSIONAL FLOW EXAMPLES 121 

or, in the limit, circulation around the rectangular lamina extending 
from X = —c to X = +c on the x-axis. 
V ' 64. Flow into a Rectangular Channel, z = w + e"'. The advan¬ 
tages of the special relations developed for inverse transformations are 
apparent from this function which cannot be solved explicitly for w. 
Separating into its real and pure imaginary parts, 

X + iy — <f) + i\// + cos yp + ie* sin \J/ 

from which 

ciz 
X ^ <t> + e* cos y = ^ + sin ;v;7, “ ^ “1“ 

The streamline ^ == 0 is given by 

X = 0 + ^ = 0 

As <t> varies from plus infinity to 
minus infinity, x also varies from 
plus infinity to minus infinity; 
hence, the x-axis is the streamline 
^ = 0. The streamline ^ = tt is 
given by 

X - <i> — e*, y = IT 

As <t> varies from plus infinity to 
zero, X varies from minus infinity 
to minus 1. As varies from 
minus infinity to zero, x again 
varies from minus infinity to 
minus 1. Therefore, the line 

y=7r, — oo<^x;^ — 1 Fig. 61.—Flow into a rectangular channel, 

is the streamline xp = t. This line may be considered as bent back upon 
itself. Similarly the streamline ^ = — tt is 

y = —TT, — 00 < X < —1 

The streamlines lying between xp = —tt and xp = ir are all contained 
within the two straight lines y= ±7r, —oo <x< —1 for negative 
values of 0. For positive values of (p the intermediate streamlines fan 
out and cover the complete s-plane. The flow net is shown in Fig. 61. 
It represents the flow into or out of a canal bounded by two parallel walls. 

The singular points are given by 

+ 1 + cos xp + sin ^ 0 
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which is satisfied by 

0 = 0, 0 = ±ir 

These are the points a: = —1,7/ = ±7r, or the end of the canal walls. 
66. Flow into Channel with Diverging Walls. The preceding exam¬ 

ple may be generalized in such a manner that the flow into a channel 
with diverging walls is obtained. Starting with the function 

z = (1 - 

it can be reduced to 

z = w -{• 

by applying the limiting process as approaches zero. Separating into 
real and pure imaginary parts and solving for x and ?/, 

X = ^1 — cos cos j^^l — ^ 0 j 
y = gJn ^ -f. sin ^ 

The streamline 0 = 0 is the x-axis, for 0 < t. For ^ = ±t the expres¬ 
sion for X and y becomes 

![ ^ g(l-/5/ir)^ j 

(j^liminating 0 in these equations, 

= ± sin /3 
P/tt 

— i. /Dll"" i. ?/ = -f- X tan 0 ± —--7-". tan 0 
0/7r 

0 varies from minus infinity to plus infinity, x remains less than or 
^rqual to 

I (1 - cos fi) - 1 

Hence, the streamlines 0 = ±7r are straight lines making an angle 0 
with the x-axis, extending from minus infinity to 
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which again approaches —1 as approaches zero. Changing the sign 
of w changes the direction of flow. The flow net is shown in Fig. 62, for 
jS = 30 deg. 

Singular points occur at the ends of the channel, 0 = 0, ^ = ± tt 
where the velocity is infinite. 

^ 66. Idealized Flow around Two-dimensional Pitot Tube. By super¬ 
posing uniform unit velocity in the positive x-direction on the flow into 
a channel with parallel walls (Sec. 
64), the net flow into the channel is 
reduced to zero. This is similar 
to the flow around an idealized 
Pitot tube except that being two- 
dimensional, the parallel walls 
take the place of a cylindrical 
tube. 

Unit velocity in the x-direc- 
tion is given by 

<^" = ~x, 

r == -y 
where the primes are used to dis¬ 
tinguish this function from the 
final complex potential that is 
sought. From Sec. 64 the com¬ 
plex potential for flow into the 
channel is given by 

2 = t/;' + w' = <!>' + i\l/' (44) 
or 

a: = -f e*' cos y = ^' + €*’ sin (45) 

The resultant complex potential is 

w — 4> + — w' w" = + i\l/' + 0" + 
= 0' — X + z(0' — y) 

or 
0' =r 0 0' = 0 -f. W' = W + Z 

Substituting these relations in Eqs. (44) and (45), 

w + = 0 (46) 
0 + cos (^ + 2/) = 0 (47) 
0 + sin (0 -f 2/) = 0 (48) 
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Eliminating first y and then x from Eqs. (47) and (48) produces the 

desired equations 

X = — ^ + In y/<t>^ >1/^ (49) 

y = + tan-» ^ (50) 
<P 

Combining these two expressions, 

z = —w + In (51) 

is the inverse function. This may be obtained directly from Eq. (46), 

since 

In (—= In 14? + constant 

and the constant does not affect the flow pattern. 
From Eqs. (49) and (50) it is evident that x is an even function of \p 

and y an odd function of The x-axis is an axis of symmetry. When 
^ = 0, from Eq. (48) 

sin y == 0 

which is satisfied by y = 0, ±7r. From Eq. (47) 

0 (jQg y 

hence, if <l> is negative, y — 0; and if <t> is positive, y — ±ir. From Eq. 
(49) when </> varies from minus infinity to zero, x varies from plus infinity 
to minus infinity; but when 0 is positive, x varies from minus infinity 
to minus L Therefore, the streamline 

0 = 0, t/ = ±7r — 00 < a; < —1 

may be taken for the walls of the Pitot tube. 
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To show that the velocity is zero an infinite distance into the tube, 
by use of Sec. 54 and Eq. (51) 

— 

dw 

when = 0, = 0; hence, 

or 

q\q qf w 

u 
JL 

As <t) approaches zero, x approaches minus infinity and u approaches 
zero. A few streamlines are portrayed in Fig. 63. 
' ^ 67, Boundary Conditions for the Translation of Any Cylinder through 
an Infinite Fluid. The boundary 
condition for translation of a cyl¬ 
inder through an infinite fluid is 
simply expressed in terms of the 
stream function. Let the cylinder 
have the velocity U in the a:-direc- 
tion, as in Fig. 64. The boundary 
condition must state that the 
velocity of fluid normal to the 
surface at the boundary equals 
the velocity of the surface normal 
to itself. Taking s positive in the 
direction shown and the normal 
positive when directed into the 
fluid, 8Sy bn form a right-handed 
system similar to bx^ by. The fluid 
velocity in the n-direction is given 

6n 

Fig. 64.—^Translation of cylinder. 

ds 
The velocity of the boundary normal to itself is U cos d. However, 

cos B may be expressed as 
ds 

Hence, the boundary condition, in 

differential form, is 

ds ds 

Integrating around the periphery, 

= ^Uy + constant (62) 



126 FLUID DYNAMICS [Chap. VI 

where the constant is arbitrary. Any function yp that satisfies this equa¬ 
tion for a closed cylinder provides the stream flow pattern for values of 
tp = constant. Two examples of the use of this equation are given. 

The function 
yp ^ ^Uy 

satisfies the boundary condition [Eq. (52)] identically for any shape of 
body. It is the case of uniform fluid motion with constant velocity 
u = U, It must then be a case of fluid contained within a cylinder that 
is in translation. This is the only possible irrotational motion which 
can be given to a fluid by translation of a cylindrical shell if the region 
is simply connected.^ The complex potential is 

w —Uz 

Expressing Eq. (52) in polar coordinates, 

\p = — Ur sin 6 + constant 

Examining the function 

\p —-sin 0 
r 

the boundary condition is satisfied by substituting into it and solving for 
A; thus 

A U 
-sin ^ — Ur sin B 

r 

letting the constant be zero. This equation is satisfied if 

r = VA == a 
Hence, 

\p =-sin B 
r 

is the stream function for translation of a circular cylinder through an 
infinite fluid otherwise at rest. The complex potential is 

Ua^ 
w -- 

z 

The flow net is given by Fig. 46 if the circle is drawn in with center at 
the origin, 

68. Translation of an Elliptic Cylinder. Elliptic coordinates were 
defined in Sec. 63. By making use of two transformations, first from 
w to an auxiliary plane, the f-plane, then from the f-plane to the z-plane 

1 A region is simply connected if any closed curve within the region can be shrunk 
to zero size without leaving the region. 
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using the elliptic coordinate transformation, several interesting flow 
patterns are determined. 

Consider the relations 

w = 2 = c cosh f f = { + ii; (53) 

where the center relation is for elliptic coordinates and the last gives f 
and 7} as the real and pure imaginary portions of f. C and c are real 
constants. The potential and stream functions are 

</> == Ce~^ cos rjy ^ = —Ce~^ sin rj (64) 

Substituting ^ into the boundary condition [Eq. (52)], 

— sin ri = ■—Uy + constant 
= — Uc sinh { sin i; + constant 

from Eq. (41), Sec. 63. U is the velocity in the a:-direction. Letting 
the arbitrary constant be zero, the boundary condition is satisfied by 
one value of say Jo, determined by 

Ce~^o = Uc sinh Jo 

J = Jo is the equation of an elliptic cylinder, with semimajor and semi¬ 
minor axes a, 6, respectively. 

a = c cosh Jo, 5 == c sinh Jo, c = -y/a^ — 6* 

Solving for C, 

C = e^oUc sinh Ub 

since 

from the definitions of the hyperbolic functions. Substituting C back 
into Eqs. (54), 

^ = -Ub^-^e-isinr, 

is the stream function for an elliptic cylinder of semiaxes a, 6, moving 
parallel to the major axis with velocity U in an infinite fluid otherwise 
at rest, a is greater than or equal to 6, as cosh Jo is never smaller than 
sinh Jo. 

The stream function for motion parallel to the minor axis may be 
obtained by considering the body translating in the positive y-direction 
with velocity F. The boundary condition is 

^ = Fx + constant 
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and the stream function is 

Va 
a + 6 
a — h 

e~^ cos rj 

Fig. 65.—Unsteady stream¬ 
lines for translation of elliptic 
cylinder parallel to major axis. 

differs greatly from that 
actual fluid. 

69. Kinetic Energy. 

fluid was found to be 

The complex potential is 

w = iVa e-f (55) 

The two stream functions may be added 
to give the stream function for arbitrary direc¬ 
tion of translation through proper choice of U 
and V. 

Figures 65 and 66 show the unsteady 
streamlines for translation of an elliptic 
cylinder parallel to its major and minor axes, 
respectively. 

When b is set equal to zero in Eq. (55), the 
flow case is for motion of a plate at right 
angles to its surface through an infinite fluid. 
The same streamline pattern is obtained as 
for elliptic cylinders. Singular points occur 
at the edges of the plate, where the velocity 
becomes infinite. The pattern, therefore, 
obtained by moving a thin plate through an 

In Sec. 14 the equation for kinetic energy of 

with 6n the normal to the boundary surface, drawn positive into the 

Fio. 66.—Unsteady streamlines for translation of elliptic cylinder parallel to minor axia 

fluid, and dS an element of the boundary surface. Reducing this to the 
two-dimensional case, with unit thickness considered, 
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d<t) ^ dyj/ 
dn ds 

with 8n,Ss forming a right-handed system similar to x^y as in Fig. 67. 
The surface area element is now dsj and the equation becomes 

which is evaluated over the boundary. 
As an example of its use the kinetic energy of fluid due to translation 

of an elliptic cylinder is computed. The 
stream function, from See. 68, is 

= Va cos t) 

and the corresponding potential function 

/ . d(t) d\f/ d(l> 
vince Tv ^ 

^ e-«sin. 

Hence, the kinetic energy T is 

T.+iVv[^^e-».f%nUdn 

= ^ 72^2 
^ 2 " “ 

70. Scale Factors for Two-dimensional Coordinate Systems. Let 
ri represent any orthogonal two-dimensional coordinate system, related 

to x,y by 
X = xii,ri) 

y = 1/(€,’?) 

The condition for the system to be orthogonal is first determined. The 
slope of the curve i; = r;o is 

^ ^ dy(^,Vo} ^ dy/d^ 
dx dx{^,Tio) dx/d^ 

Similarly the slope of the curve { = {o is 

^ = dy/dy 
dx dx/dy 

elements. 

When these two slopes are negative reciprocals, the two curves inter- 
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sect at right angles; therefore, 

df dri dii dij 
(57) 

is the condition for orthogonality that must be satisfied at all points 
throughout the plane except singular points. 

Since the velocity in any direction, say the s-direction, is given by 

— it is necessary to compute 8s in terms of any orthogonal coordinate 

system in order to determine the velocity conveniently at any point. 
This can be accomplished as follows: 

ds* = dx^ + dy^, dj = ^ df + ^ dij 
of OTf 

X - x{^,ri), y = y{i,ri) 
Then 

^ Ede + 2F d^dn + G dit^ 

where E, f, G are Gauss numbers. F is zero for an orthogonal system 
[Eq. (57)]. Hence, 

ds^ = Ede + Gd7j^ 

Along the curve rj = rjoy dij = 0 and 

ds = y/E df 

Similarly, along the curve { = ^o, 

ds = y/G djj 

The quantities y/E, y/G are scale factors. For conformal transforma¬ 
tions the scale at any point must be the same in all directions; therefore, 

y/E^y/G 

The scale factor for any two-dimensional coordinate system that can 
be expressed as a function of a complex variable z = 2(f) is given by 

(58) 
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The velocity components in the positive ^Ty-directions are 

131 

d<t> d(j> 

VEdi VEdr, 

when <t> is expressed as a function of ^,77. 
For elliptic coordinates 

X = c cosh { cos rj 

y = c sinh f sin 77 

and 

A" y/G = y/E = c -v/sinh^ f cos^ 77 + cosh^ { sin2 rj 

71, Steady Flow around an Elliptic Cylinder. By superposing a uni¬ 
form velocity U in the negative a:-direction upon the flow system given 
by Eqs. (53), steady flow around an elliptic cylinder is obtained. The 
complex potential for uniform velocity —U is 

w = Uz = Uc cosh f 

as z = c cosh f is the elliptic coordinate relation. The new complex 
potential then becomes 

w = ri) e-f + Uc cosh f (59) 

from which the potential and stream functions may be written: 

0 = Ub cos 77 + i[/ \/cosh $ cos rj (00) 

and 

^ = —Uh sin 77 + C/ \/a^ — 6^ sinh { sin 77 (61) 

Equation (61) gives ^ = 0 for 77 = 0,7r, which is the x-axis except for 

— c < a: < +c. ^ = 0 is also given by 

f = $0 == In 
<2 -f“ b 
a — b 

readily verified by substitution. Hence, the elliptic cylinder { == £0 may 

be taken as a boundary. 
Similarly, by superposing w = —iVz upon the flow given by Eq. 

(55), the steady flow about an elliptic cylinder “broadside” to the flow 

is obtained; thus 

w « iVa ^ iVc cosh f 
\a — 0 

(62) 
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from which 

<l> = Va ^ h - -7 e“t sin ij + F -s/a* — 6* sinh { sin ij (63) 
\ a — 0 

and 

\fi = Va cos ?7 — F \/— 6^ cosh $ cos 97 (64) 

Equation (64) gives ^ = 0 for 17 = 9r/2, which is the ?/-axis. For 

{ = fo = i hi -- 
d u 

\p is also zero, which is the same elliptic cylinder as given by Eq. (61). 

Fig. 68,—Steady flow around an elliptic 
cylinder F = 0. 

Fig. 69.—Steady flow around an elliptic 
cylinder U ==> 0. 

Equations (59) and (62) may be added to produce the case for steady 
flow about an elliptic cylinder with any arbitrary direction of the undis¬ 
turbed velocity by proper selection of U and V, Figure 68 shows a 
few streamlines for the case where F == 0, Fig. 69 for the case where 

= 0, and Fig. 70 for the case where C7 = F. 
Setting 6 = 0 reduces the equations to flow around a rectangular 

lamina. 
72. Boundary Conditions for Rotation of Any Cylinder in an Infinite 

Fluid. The boundary condition for rotation of a rigid cylinder about an 
axis through the origin is obtained from the original definition: The 
velocity component at the boundary normal to the boundary must equal 
the velocity of the boundary normal to itself. In Fig. 71 let ds denote 
an element of the surface of the cylinder. The positive direction of s 
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is as shown, and the positive normal to the surface is drawn into the 

fluid. The fluid velocity normal to the surface is The velocity of a 
os 

point P on the surface is wr, and the velocity normal to the surface is 
dv . * 

cx>r cos 9. From Fig. 71 cos ^ hence, the differential equation for 

boundary condition is 

dx// dr 

which applies equally well to external or internal boundaries. 

Fig. 70.—Steady flow around an elliptic Fig. 71.—Rotation of cylinder about origin, 
cylinder C/ == F. 

Integrating, 

xp = + constant (65) 

where the constant is arbitrary. Some examples of rotating boundaries 
are discussed in the following sections. 

73. Fluid Contained within a Rotating Elliptic Cylinder. The com¬ 

plex potential 

w = iAz’^ (66) 

has the potential and stream functions 

— —2Axy, xp = A{x’^ — ^2) 

Substituting xp into the boundary condition [Eq. (65)], expressed in 
cartesian coordinates, 

A(x^ — y^) = ^u)(x^ + y^) — C 
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Rearranging, 
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— .4) + + 4) = C 

This is the equation for a conic. Writing it in the standard form for an 
ellipse, 

^0) — A io) + A 

which is an ellipse when A < Denoting the semimajor and semi- 

Fig. 72.—Flow net for fluid within a rotating elliptic cylinder. 

minor axes by o, b, respectively, 

Solving for A by eliminating C, 

^■*"5r+T" 
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The stream function is 

Since the fluid velocity approaches infinity at infinity, this is a flow 
case with external boundaries. It is the case of fluid flow within a hollow 
cylinder filled with fluid and rotating with angular velocity a? about its 
axis. The flow net is shown in Fig. 72. 

Fia. 73.—Flow net for rotation of elliptic cylinder about its axis in an infinite fluid. 

pr 74. Rotation of an Elliptic Cylinder in an Infinite Fluid. The fluid 
motion due to the rotation of an elliptic cylinder about its axis in an 
infinite fluid is given by the complex potential 

w = z = c cosh f (67) 

The potential and stream functions are 

tj) = Ce~^^ sin 2?y, \l/ = cos 2?; 

Expressing the boundary condition [Eq. (65)] in elliptic coordinates, 

^ == (cosh -|- cos 2r}) “f* D 

where D is the arbitrary constant. Substituting this into the stream 

function, 
cos 2ri = 'i-c^a>(cosh 2{ + cos 2yj) + D 

This equation is satisfied by { = fo, provided 

cosh 2fo + /> = 0 
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Letting a, h be the semimajor and semiminor axes of the elliptic cylinder 

{ = {o, 
a = c cosh fo, 6 = c sinh 

and since 

= sinh + cosh fo 
a “b b 

c 
then 

C = "I” b)^ 

C may be substituted back into Eqs. (67) to give the complex potential. 
As i approaches infinity, the potential function approaches a constant 
value. As J approaches infinity at an infinite distance from the origin, 
all necessary conditions are fulfilled for rotation of an elliptic cylinder in 
an infinite fluid. The flow net is given in Fig. 73. 

Setting b = 0 reduces this case to the rotation of a rectangular lamina 
in an infinite fluid. The same flow net applies as for the elliptic cylinders. 

Exercises 

1. Construct a flow net for flow along two planes intersecting at 135-deg angle. 
2. Sketch the flow net for two sources of equal strength located at (1,0) and 

( — 1,0). What is the complex potential? Find all the singular points in the finite 
2-plane. Indicate all planes of symmetry. 

3. Show, from the definitions, that Eqs. (1), (5), (10), (13), (20), (25), and (27) 
are true. 

4. Sketch the flow net for the transformation li? = (1 -f- 
5. Find the complex potential for 10 ft per sec approach velocity flowing through 

a grating of parallel cylindrical bars 2 in. in diameter spaced 1 ft center to cente^r. 
Are there any singular points in the flow pattern outside the cylinders? 

6. Select the functional relation between z and w to portray a flow of 100 ft^ per 
sec out of a channel with parallel walls 10 ft apart. Consider a depth of 1 ft. Sketcdi 
the flow net. Ans, IO2 = — u; 4* 

7. What is the potential function for an elliptic cylinder translating parallel to 
its major axis? 

8. Find the kinetic energy of the fluid in Exercise 7. 
9. Find the virtual mass for an elliptic cylinder translating parallel to its major 

axis. 
10. Work out an expression for the fluid velocity at the surface of an elliptic 

cylinder translating parallel to its major axis. 
11. Investigate the function 

w 
ij^ 
2t 

z «« c cosh ^ 

What is the flow pattern obtained by superposing this upon steady flow around an 
elliptic cylinder? 



CHAPTER VII 

BLASIUS THEOREM—FLOW AROUND CYLINDERS 
AND AIRFOILS 

The theory and use of complex variables have been examined in Chaps. 
V and VL In this chapter examples requiring multiple transformations 
are worked out, leading to irrotational flow around an airfoil with 
circulation. 

76. Resultant Fluid Forces and Moments on Cylinders. The Blasius 
Theorem. When the complex potential for flow around any cylinder is 
known, the resultant fluid forces 
and moments may be determined 
by use of the Blasius theorem. 
Referring to Fig. 74, the pressure 
force acting on an element of the 
surface is p ds and is normal to the 
surface element ds. Unit width 
is assumed. The components of 
the fluid pressure force dXy dY 
in the positive x- and ^/-directions 
may be expressed as follows: 

dX == —p ds cos 

dY = —p ds sin (d — ^ Fig. 74.—Fluid force on element of a cylinder. 

where 0 is the angle the element makes with the x-axis. The differential 
fluid force on the element may be expressed as a complex number: 

or 

dF = dX + i dY —p ds j^cos ~ + * sin 

—p ds 

dF = ip ds e‘* 

using DeMoivre’s theorem (Sec. 46). Since dz — ds the conjugate of 

dFh 
dF = dX — i dY = —ip ds 

= —ip dz 
137 

(1) 
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The moment about the origin due to fluid pressure on the element is 

-0] 
= p dsiy sin ^ + X cos 6) 

which is the real part of 

pz dz = iz dP 

Therefore, the moment about the origin dN due to fluid pressure is 
given by 

dN + idM = izdP (2) 

^^'he^e dM is the pure imaginary part of iz dP. 
Integrating Eqs. (1) and (2) around the closed cylinder 

P = X — iY = pe~^^^ dz (3) 

and 

N + iM == ^ pe^^^z dz (4) 

where the small circle in the integral sign indicates that the integration 
is to be carried out completely around the periphery of the cylinder. 

The Blasius theorem is derived for steady flow; hence, Bernoulli's 
equation may be written 

— y dX + X dY = p ds y cos ^ ( 

V (5) 

with extraneous forces omitted. The constant c cannot affect either the 
resultant force or moment on the cylinder. It can be dropped out; thus, 

7^ = -2^' 
(6) 

The complex velocity is 

dw 
dz 

— u — tv 

Since the fluid velocity must be tangent to the cylinder, 

and 
u — tv ^ qe 

q ^ {u iv)e^^ « — 
dw , 
dz 

iB (7) 
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Substituting Eq. (7) in Rq. (6) and Eq. (6) in Eqs. (3) and (4), the 
Blasius theorem is obtained in equation form: 

and 

N+ iM = dz (9) 

These expressions are most easily evaluated by use of the Cauchy integral 
theorem, which is proved in the following section. 

76, The Cauchy Integral Theorem. The Cauchy integral theorem 
is the most fundamental theorem in function theory. Let fiz) be a 
regular function, as defined in Sec. 49, in a simply connected region S, 
and let C be a closed curve in this region. The Cauchy integral theorem 
states that the line integral of /(z) around any closed curve in this region 
is zero, or 

- 0 (10) 

To prove the theorem, let /(«) = { + iri and z — x + iy, where J 
and 1) are the real and pure imaginary parts of /(z). Then 

f{z) rfz = ($ + i-n)(dx + i dy) 

and Eq. (10) becomes 

^ {^dx — y dy) + i (v dx + ^ dy) 

Referring back to Stokes’ theorem [Eq. (29), Sec. 24] and letting R = 0, 

E = f, Q = -yields 

,f(^dx-vdy) = - I j (^^+^dxdy (11) 

Then letting ft = 0, P = 77, Q = ^, 

j>(vdx + idy) = - 11 dxdy (12) 

But { and ri satisfy the Cauchy-Riemann equations [Eqs. (5), Sec. 49]. 
Hence, the right-hand side of Eqs. (11) and (12) are zero and the theorem 
[Eq. (10)] is proved. 

When one or more singular points are present in the region enclosed 

by the curve, the integral ^ f{z) dz may not vanish. An important 

extension of the Cauchy integral theorem is as follows; Let }{z) be a 
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regular function in a multiply connected region^ S, and let Ci and (72 be 
closed curves in this region that can be continuously deformed into each 
other without leaving the region (Fig. 75). Then 

(j)J{z)dz^ j)J{z)dz (13) 

where the line integrals are taken in the same direction, either clockwise, 

Proof: Consider the path of integra¬ 
tion, say Czy shown in Fig. 75 by the 
arrows. Cs is simply connected; hence, 
integrating around it, beginning at A, 

j)J{z)dz + j^'mdz 

+ ^^mdz + ///(r)d2 = 0 

by the Cauchy integral theorem. Letting 
A approach Ai and B approach B\, the 
second and fourth integrals neutralize each 
other, whence Eq. (13) is proved. 

77. Evaluation of the Blasius Theorem. 
Using the Cauchy integral theorem and 
its extension, Eqs. (8) and (9) can be 
further reduced. 

Lift. When the square of the derivative of the potential function 
w = f(z) is expressed by the series 

for large values of z, Eq. (8) can be integrated by choosing a large circular 
path of radius R with center at origin. 

X - iY = + ^ + ^ + ■ ■ ^/z 

Letting z = dz = iRe^^ dSy 

X - iY = (^iAoRe^^ + i+ • • ■ ^ dO 

= i I + iAid — ~ ~ ’ )o 

= — irpAi (16) 

^ A region is said to be multiply connected when there are closed curves in the 
region that cannot be reduced to a point without leaving the region. This is the 
case when part of the boundary of the region is interior to the region, as in Fig. 75. 

or counterclockwise. 

Fig. 76.—Extension of a curve in 
the regular region. 



Sec. 78] BLASIUS THEOREM—FLOW AROUND CYLINDERS 141 

where Ai, usually complex, is determined from the particular complex 
potential used. 

Moment. To find the moment about the origin due to fluid pressure 
forces, from Eq. (9), 

N jfiM-I ^ 2 + . . . ^ 

for large values of z. Again letting z ~ /2ir 

+ iAiRe^^ iA>i + * ••) dB 

= - I + A,Re'> + iA^e +•••)[" 

= —iA2Trp (16) 

Hence, the moment N is the real part of —iA^irpy where A 2 in general is 
complex. 

The evaluation of these equations assumes no singularities in the 
fluid outside the cylinder. Equations (15) and (16) are evaluated for 
particular flow cases later in the chapter. 

78. Steady Flow around a Circular Cylinder without Circulation. 
The complex potential w ^ JJz is for uniform flow with velocity U in 
the negative a:-direction. The complex potential w = Ua^/z is for a 
doublet at the origin with axis in the positive a^-direction. The super¬ 
position of the uniform flow upon the doublet yields steady flow around 
a circular cylinder. Expressing z in polar coordinates, 

w = 

which may be separated into the components 0, thus 

cos dj sin B (17) 

The streamline = 0 is given by 0 = 0, t, and by r = a, i.e., by the 
a:-axis and by the cylinder r = a. 

The complex velocity is 

_ dw _ _jj X 
Iz ~ ^ 

showing the uniform velocity u — —U at great distances from the 
cylinder. To find Ai, At in Eq. (14) 

dwY rr, 2a*{7* , a*U^ 
+ -ji- 
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from which Ai = 0, Aa ~ Hence, from Eqs. (15) and (16) the 
resultant force and moment on the cylinder is zero. Stagnation points 
occur at X = ±a, y == 0. The flow net is shown in Fig. 76. 

79. Steady Flow around a Circular Cylinder with Circulation. The 

complex potential 

w = ^In z = ~ In (re*^) (18) 

is for circulation k about the origin in the positive (counterclockwise) 
direction (Sec. 56). Separating 
into real and pure imaginary 
portions, 

0 = 2ir 
In r 

from which the streamlines are 
seen to be circles concentric with 
the origin and the equipotential 
lines straight lines through the 
origin. 

Superposing this flow upon the 
steady flow around a circular cylinder of the preceding section, 

Fia. 76.—Flow pattern for uniform flow 
around a circular cylinder without circulation. 

W == 

dw 
dz i 

The potential and stream functions are 

(^ - 7) M 

COS ^ ~ ^ ^ 

sin ^ ^ In r 

(19) 

(20) 

(21) 

The streamline ^ = (K/2ir) In o is the circular cylinder r = o, showing 

that this is still the case of uniform flow around a circular cylinder. 
From the complex velocity [Eqs. (19)], the flow is m = —U&t great dis¬ 
tances from the cylinder. 

The velocity at the surface of the cylinder, necessarily tangent to the 
cylinder, is 
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Stagnation points occur where g == 0; i.e., 

When the circulation is equal to 4irf7a, the two stagnation points coin¬ 
cide at r = a, ^ = — 7r/2. For larger circulation the stagnation points 
move out into the fluid. 

The pressure intensity at the surface of the cylinder is, from Eq. 
(22), Sec. 10, 

P = I (ffo* - g*) 

To evaluate the resultant fluid force and moment about the origin, 
the coefficients Ai A 2, in Eq. (14) are determined from the complex 
potential [Eqs. (19)]. 

from which 

rr. , • Uk ^ 1 • Uah , C/V 
in + t-I 2U^a^ + 2 J ^ —r H t” 

TZ \ 47rV TTZ^ z* 

X.-'S, A.,.-(2UV + ^^ 

Hence, the resultant force is 

X = 0, Y ^ pUk 

There is no drag force in the direction of flow, but a force at right angles 
to the flow equal to the product 
of fluid density, circulation, and 
approach velocity. This thrust is 
referred to as Magnus effect. The 
Flettner rotor ship was designed 
to utilize this principle by mount¬ 
ing circular cylinders with axes 
vertical on a ship, then mechan¬ 
ically rotating the cylinders. Air 
flowing around the rotors produces 
the thrust at right angles to the 
relative wind direction. Since A 2 

is real, iV «* 0 and no moment is developed. 
The flow pattern is shown in Fig. 77. It is apparent from the spacing 

Fig. 77.—Streamlines for uniform flow 
around a circular cylinder with circulation. 
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of streamlines that the velocity is lower along the lower portion of the 
cylinder and therefore the pressure is greater than along the upper portion 

\ of the cylinder. 
80. Flow around a Circular Arc. A series of transformations due to 

Kutta and Joukowski are given in this section and developed for the 
special case of flow around a circular arc with circulation. By a change 
in one transformation the same relations give equations for flow around 
a Joukowski airfoil. 

The first transformation is from the rectangular 0^-grid of the t/;-plane 
to flow about a circular cylinder of radius a with uniform approach 
velocity U in the negative ;r-direction, and arbitrary circulation k. This 
plane is the ^"-plane. The complex potential is 

w=ir(z" + (22) 

It may be noted that at great distances from the origin the flow patterns 
are identical in the w- and ^"-planes. The second transformation, from 
the 2;"-plane to the 2:'-plane (Fig. 78), provides for a uniform flow U from 
an arbitrary direction a. It is 

2:" = (23) 

where a is the angle the approach velocity makes with the negative 
a:-axis, as shown in Fig. 78. The third transformation provides a transfer 
of origin. It is to the f-plane, given by 

2' = f (24) 

where m is the distance 00' and 8 is equal to 7rl2 for the circular arc. The 
final transformation is an inverse one: 

62 
= f + y (25) 

By proper selection of the constants in the transformations, flow about 
any of the Joukowski airfoils can be obtained. 

Letting 8 = 7r/2 and selecting m and b so that the points Ay B in the 
2'-plane transform into the points A, B on the real axis at (±6,0) in the 
f-plane, the circle is transformed into a circular arc. From Fig. 78, 

m = a cos fiy 6 = a sin 

To prove that the circle is transformed into a circular arc, Eq. (25) may 
be written in the following two forms: 

(z -- 26)f « (f - 6)2, (z + 26)f = (f + 6)2 
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Dividing the first by the second, 

z - 26 (f - 6)* 
z + 26 (f + 6)2 

Expressing tiie four complex numbers making up this ratio in exponential 

Fio. 78.—Kutta-Joukowski transformation for flow around a circular are. 

form, 
f — 6 = rie'\ f + 6 = rac**' 

z — 26 = riV**', z + 26 = 

r*'® r**® 

the ratio becomes 
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The arguments of these two complex numbers mtist be equal; hence, 

- 62' = 2(^1 - ^2) (26) 

Let P be a point on the circle in the f-plane (Fig. 79). Then as P 
moves in a counterclockwise direction around the circle starting at Ay 

the corresponding point P in the 2-plane describes a circular arc, as 
0i ~ 62 is constant and equal to 2(61 — 62) by Eq. (26). From the 
geometry of the circle /S = ^1 — ^2. As P passes B in the f-plane, 61 — 62 

increases by v and hence 6/ — 62' increases by 2t. Therefore, as P 
completes the circle in the f-plane, it moves back along the arc in the 
z-plane. 

The complex velocity for flow around the circular arc is given by 

dw dw dz'* dz' df dw 
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The points f == ±6 are singular points having infinite velocity unless 

equals zero at these points. These are the points A ,8, By taking 

one of them as a stagnation point in the z"-plane, the flow is made finite 
there, but in general it is impossible to make the flow finite at both A,B 
at the same time. To make A the stagnation point, from Eq. (22), 

for the point A, whicli can be expressed 

2' = — a sin — ia cos 

z" = 

Substituting into Eq. (27) and solving for k, 

K = AiraU cos {oL + 0) (28a) 

In a similar manner, if B is the stagnation point, 

K = Awall cos (a — fi) (286) 

The velocity is necessarily tangent to the arc when the circulation is 
selected to make it finite at the end. - 

/ Ss. 

From Fig. 80, A 

R = a sec 0 \^ 'b ^ 

\ / 
By selecting the desired chord 4a \ ^ / 
sin 0 and radius /?, the values of a n I / 
and 0 may be determined. The ^ / 
approach velocity U and its direc- 
tion are arbitrary. The circula- V' 
tion is selected from Eqs. (28) for Fig. so.—Circular arc showing values of 
« , .. , A constants in transformations, 
finite velocity at A. 

To find the resultant fluid force and moment about the origin, the 
constants Ai, A2 in Eq. (14) are required. Using Eqs. (22) to (25), 

Yi ^ + J!L. == [/[i ^ 
V z"7 ^ 27r2" ^ L (r - 2ir(i‘ — 7ne*^) 

z" = (f — me*^)€** 

Expanding ^ in series of descending powers of f, 
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dw _ Tf , i I 
jf — ty -f- - h 

dz 

Also 

and 

f 2n- 

+ 

^ = A - = 14.^ + ^ + 
dz V fV ^ ^ ^ ^ 

d2" 
df 

= 1 

Combining, 

and expressing in series form, 

dw IK 
dz 

From Eq. (25) 

hence, 

and 

= TJpia 4.-_i. 
^27rr^r 

6= + 
tKm , 
2x 

aH ,'g-ia^ + 

, 6* 
2 2® 

i = l + ^+ • 
f ^ 2’ ^ 

1=1 + 2^V >2 -2 ‘ ,5.4 * 

Substituting these in the expression for 

— = re*“ + f [/e*“62 + e*» - a*C/e--“) + • • • 
dz 2'kz 2- \ 27r / 

Squaring, 

+ • • • 
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Therefore, 

At 

and 

Ai 

tKUe^ 

r 

--^ + i ^ - 2C;«o* 
47r^ V 

From Eq. (15) the fluid force components exerted on the body resulting 
from this series of transformations are 

X — iY = —TP = pkU sin a — fpK?7 cos a 

or 
X ^ PkU sin a, Y pkU cos a (29) 

These are the components of a force at right angles to the undisturbed 
stream U, Hence, the body is subjected to a lift force 

L = PkU (30) 

The moment about the origin, from Eq. (16), experienced by the body 
resulting from this transformation, is 

Mo = 2TpU^b'^ sin 2a + pUKm cos (a + 8) (31) 

Referring back to the circular arc, a special case of this transforma¬ 
tion, the lift for finite velocity at A is, from Eqs. (28) and (30), 

L = iTpall^ cos (a + /3) 

and the moment, since 8 = 7r/2, is 

Mo = 2TpU^b'^ sin 2a — ^TpaU^m sin a cos {a + p) 

If it is desired that the finite velocity be at the trailing edge, the value of 
K is determined from Eq. (286). 

Example: What is the lift per foot of span on a thin lamina bent in the shape of a 
circular arc of radius 6 ft and length along the arc of 4 ft? The velocity of lamina is 
10 ft per sec, and the fluid is salt water, p = 1.99 slugs per ft^ 

Sdviion: From Fig. 80, 7 = 5 ~ 0.333 radians and 2^ + 7 hence, 

^ = ir/2 — i = 1.404 radians 
a == R cos ^ 6 cos (1.404) = 0.99 ft. 

« 4ir • 0.99 • 10 cos (1.404 -f a) = 124.5 cos (1.404 -f a) from Eq. (28) for finite 
velocity at A, The lift force is 

L ^ pUk ^ 2480 cos (1.404 + «) lb per ft span 

At zero angle of attack (a * 0), the lift is 409 lb. If the velocity is made finite at 
the trailing edge, for zero angle of attack (a « t) the lift force remains 409 lb. 



160 FLUID DYNAMICS [Chap. VII 

The angle of zero lift for finite velocity at the trailing edge is given by 

cos (1.404 — a) a» 0 

from which a -» —9°40' or 170®20'. The lift equation does not hold in an actual 
fluid for large values of a. The streamline in contact with the arc separates from 
the arc, and the lift force drops. 

The moment about the origin is 

ilfo « 1250(0.978 sin 2« - 0.318 sin* a) 

« 1222(sin 2a — 0.325 sin* a) 

81. Joukowski Airfoil. In the preceding section it is shown that the 
circle of radius a transformed into a circular arc. Now, by selecting the 

Fig. 81.—Selection of axes in the f-plane for the Joukowski airfoil. 

proper values of 6, 5, and m, the transformation is from a circle into a 
Joukowski airfoil. The two singular points, f = ±&, are on the real axis 
and are equidistant from the imaginary axis. In Fig. 81 the dashed 
circle would transform into a circular arc. The circle of radius a, how¬ 
ever, now transforms into a cylinder enclosing A and having a cusp at B, 
since 5 is a singular point. The amount of camber of the arc and the 
cylinder depends upon the ratio /a, while the thickness of the cylin¬ 
drical section depends upon 5. a determines the size of the cylinder. 
That the circle does transform into an airfoil section can be verified by 
substituting points into Eqs. (22) to (26). A graphical method for 
constructing the airfoils from known values of m, 5, and a is more expedi¬ 

ent. It is explained in the following paragraphs. 
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The transformation 

may be regarded as two separate transformations: 

fl -y. ^ = f + f 1 

With f and fi known the second transformation reduces to simple vector 
addition. 

The first transformation be accomplished as follows: 
For some point, say P, the complex number OP = = f (Fig. 82). 
Then 

^^ilich is another complex number with modulus b^/r, the inverse of P 
in the circle of radius h ~ 0.4, and with amplitude —d, OP' is the 
complex number (b^/r)e^^y and OPi 
is the complex number (b^/r)e~^^; p 

OP I is said to be the image of OP' 
in the real axis. The graphical 
procedure is then to take the ^ 

inverse of P in the circle of radius Lrv /v 
/>, then its image in the real axis. ^ ^ 
'Fhe second transformation /\ 
^ = r + f 1 is the vector addition / \ 

of OP and OPi, giving OR in the -qK"]" /”—- 
2-plane. This is a tedious process 
when many points are to be p 
plotted. 

If P describes a circle, then its Fia. 82.—Graphical transformation 

inverse in the circle of radius h , > . 
also describes a circle. Since the ^ 
image of a circle in an axis is another circle, the locus of Pi is a circle 
when P describes a circle. To prove this, let P be any point on the circle 
(center at C) that is to be transformed into an airfoil (Fig. 83). P' is 
the inverse of P with respect to the circle with center at 0 and radius 
6; i.e., 

k/y' 

Fig. 82. - -Graphical transformation 

Extend line PO to cut the circle at Q; draw CQ; then draw a parallel to 
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CQ through P' to its intersection with CO extended at C'. It is first 
proved that the locus of P' is a circle whose center is C'. 

Since A^OB and POQ are chords of a circle intersecting at 0 

W X OQ = UI’ XOB = (33) 

then from Eqs. (32) and (33), 

A* 
= constant 

The triangles OP'C, OQC are similar, since P'C was drawn parallel to 
CQ. Therefore, 

UC ^ UQ 
hi 
A* 

constant 

Then, as is a fixed distance, OC is also a fixed distance and C' is a 
fixed point. Since TJQ, the radius of the circle, is a fixed length, TPF’ is 

also a fixed length. Therefore, P' describes a circle whose center is at C. 
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As OB = b, the point B is its own inverse and the locus of P' passes 
through B. 

Taking P at point J5, line JSC', parallel to CA', also determines C'. It 

follows that, as CA' and PC' are parallel, 

ZCA'P = ZC'PA' = ZCPA' 

Fia. 84.—Graphical construction of Joukowski airfoil. 

Hence, C'B and CB are equally inclined to the real axis. The image of 
C' in the real axis is on the line CB at point D (Fig. 84) such that 

/.DOy = Z.yOC 

Point P is a point on the reflected circle; therefore, DB is the radius. 
With the two circles drawn, as in Fig. 84, points on the airfoil section 

are rapidly constructed by drawing pairs of straight lines through 0 
making equal angles with the real axis. Then corresponding points P, Pi 

are added as indicated in the figure. 
Symmetrical sections, called strut sections^ are obtained when C is on 

the real axis. 
82. The Joukowski Hypothesis. The Joukowski hypothesis is that 

the circulation for an actual airfoil will always adjust itself so that the 
velocity is finite at the trailing edge. The hypothesis is fairly well 
substantiated experimentally. The equations for lift and moment 
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developed in Sec. 80 [Eqs. (28&), (30), and (31)] are valid for Joukowski 
airfoils. For more complete information on the theoretical treatment of 
airfoil sections, reference is made to the excellent treatment in Glauert, 
^‘The Elements of Aerofoil and Airscrew Theory,” Macmillan & Co., 
Ltd., London, 1926. 

83. Extended Joukowski Airfoils. Again rewriting Eq. (25) in the 
form 

z-2b ^ - bV 

z -jr 2b \f + ?>/ 
(34) 

which transforms the circle into a circular arc or an airfoil, a singular 
point occurs at 2 = 26 and z — —26, the end points of the arc. For the 
Joukowski airfoil the singular point 2 = 26 is within the contour and does 
not need any further consideration. At 2? = —26 a cusp is formed. As 
it is physically impossible to construct an airfoil with a cusp, a trans¬ 
formation that produces a finite angle at the trailing edge is useful. 

In the immediate vicinity of 2 = —26 let 

z == —26 + re^^, f = —6 + 

where r, ri are infinitesimals. Then substituting into Eq. (34), 

_ ^ 46" 

Rewriting, 

46 46" zr Q-i(e+T) zlL 
r ri" 

and equating arguments of the complex numbers, 

^ -f" TT == 2$i 

Hence, as the point traverses the circle in the t-plane and passes through 
5, increases by ir and d increases by 27r, resulting in the cusp. By 
generalizing Eq. (34), 

z-nb ^ /r - h\ 
z + nb + 6/ 

(35) 

and making similar substitutions for the vicinity of z =« — n6, f * —6, 
f.e., z =■ — n6 + f = — 6 + rie*% 

0 + {n + l)ic — nffi 

Therefore, by taking n — 2 — X/x, then increasing $1 by tt, in moving 

through B, moves 0 through 27r — X, which gives two definite branches 
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at the trailing edge in place of a cusp. Figure 85 shows an airfoil with a 

finite angle X at the trailing edge. These airfoils are known as extendea 
Joukowski airfoils. 

Fig. 86.—Extended Joukowski airfoil. 

More general sections may be obtained by generalizing Eq. (25) to 

the form 

..i. + | + p+... 
where ai, a2, . . . are constants. 

Exercises 

1. Show that the resultant force and moment of fluid forces on a circular cylinder 
in a uniform stream must be zero by integration of surface pressure forces around 
the cylinder, 

2. Prove that the resultant force on a circular cylinder in a uniform stream U 
with circulation k is pVk by taking a surface integral of the pressure force around 
the cylinder. 

3. Find the velocity at the leading edge of a circular arc when the circulation is 
selected such that the velocity is finite at that point. 

Ans. M = -{-(/ sin jS cos 2/3 sin (cr + /3); v =» 2U cos /3 sin* /3 sin (a + /3b 
4. Graphically construct the Joukowski airfoil determined by a = 2 in., 6 = 60 

deg, m = 0.4 in. 
5. Find the angle of zero lift for the airfoil section of Exercise 4. What is the lift 

when in an air stream {p » 0.00238 slug per ft*) of velocity 150 ft per sec and a » 5 
deg? 

6. The complex potential at a great distance from a cylinder in a uniform flow 
may be written 

w ^ A +Bz+Clnz 

(a) By substitution in Eq. (8) find the resultant force components X iY in 
terms of B and C. 

(b) Evaluate B and C in terms of f/, F, and k; then show that the resultant force 
is always a lift force having components 

X « KpV, Y = -KpU 



CHAPTER VIII 

SCHWARZ-CHRISTOFFEL THEOREM—FREE STREAMLINES 

The Schwarz-Christoffel theorem provides a method for transforming 
the flow about a polygon into the uniform flow parallel to the real axis. 

The assumption of free streamlines permits separation of the flow to take 
place at those sudden changes in direction of boundaries which cause 
infinite velocities. As the Schwarz-Christoffel theorem is utilized in 
studying free streamline transformations, it is derived and examples 
worked out for special cases in the first part of this chapter. 

84, Definitions and Conventions. In hydrodynamical applications 

leading to free streamlines it is necessary to determine the flow pattern 
around straight-sided closed figures. Frequently these polygons have 
vertices at infinity. Rectangles, for example, having two vertices at 

infinity are referred to as semi-infinite strips, while those with all four 
vertices at infinity are referred to as infinite strips. 

A simple closed polygon is defined as a closed figure composed of 
straight-line segments such that (1) the boundary may be completely 
traversed without leaving it, f.e., the boundary is connected, and (2) the 
boundary divides the whole plane into two regions, one region that is 
interior to the polygon and the other region that is exterior to the polygon. 

The interior of the polygon is connected’^; i.c., a path from any point 
in the interior to any other point in the interior may be followed without 
crossing a boundary, and similarly for the exterior region. Furthermore, 
the interior is defined as that region which is on the observer's left as he 
traverses the boundary in a prescribed sense. For a polygon having all 

vertices at finite points, the boundary is traversed in the counterclock¬ 
wise direction to preserve the usual conception of interior. Figure 86 

shows several simple closed polygons having vertices at infinity. The 

subscript refers to a point that is infinitely distant. The exterior is 
indicated by hatching. By application of the Schwarz-Christoffel 
method twice, any simple closed polygon can be transformed into any 
other simple closed polygon. 

86. The Schwarz-Christoffel Theorem. To prove the Schwarz- 

Christoffel theorem, which states that the interior of a simple closed 

polygon may be mapped into the upper half of a plane and the boundary 
156 
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Semi • inf ini ie Strip 

in fini fe - Strip 

Semi-infinite Straight Line. Total Plane the Exterior 

Interior is Upper Half Plane 

Triangle. Two Vertices at Infinity 

Fig. 86.—Examples of simple closed polygons. 
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of the polygon into the real axis, it is shown that the transformation 

given by 

^ = 4(a - • • • (1) 

transforms the real axis in the ^-plane into the boundary of a simple 
closed polygon in the 2-plane, where -4 is a complex constant; a, 6, c, . . . 
are real constants in ascending order of magnitude; and a, 7, . . . are 
angles (positive or negative) such that 

q: + ^ + 7+*’‘ = 2t 

Plotting a, 6, c, . . . in the ^plane (Fig. 87) and considering Eq. (1), 
dz 

it is clear that ^ is not defined at the points ^ = a, / = 6, ^ = c, . . . . 

These points are to be excluded from the boundary by small semicircles 

I >■ ... I > .nmmu ^ 

a be 
Fiq. 87.—Real axis of f-plane. 

about each singular point, situated on the upper side of the <-axis, as in 

Fig. 87. 
The proof must show (1) that the real axis of t between any two 

consecutive singular points a, c, . . . transforms into a straight line 
in the 2-plane, (2) that the small semicircles at a, 6, c, . . . transform 
into small circular arcs subtending the angles t — a, tt — jS, tt — 7, . . . , 
respectively, and (3) that the polygon actually closes for large plus and 

minus values of L 
dz 

To prove the first part, consider ^ as an operator (Sec. 51) that trans¬ 

forms an element U in the i-plane into its corresponding element 5z in the 
z-plane. The right-hand side of Eq. (1) is a complex variable, having a 
fixed modulus and argument for a fixed point in the ^-plane. Let the 
modulus be r and the argument 0; then 

where r, $ vary in general as t varies throughout the t-plane. Sz is given 

by 

Sz ^ ^ St = re** St 
ut 

The argument of ^2 is to be studied as t moves along the real axis. The 
product of two complex numbers (Sec. 46) is a complex number whose 
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modulus is the product of the moduli and whose argument is equal 
to the sum of the arguments of the two complex numbers. The argu¬ 
ment of bt is always zero, however, as a point moves in the positive 
direction along the real axis of the ^-plane. Hence, the argument of hz 

dz 
must equal the argument of Examining Eq. (1), a — t, b — tj 

c — t, . are real numbers if a, 6, c, . . . are greater than t (t real), 
and such terms have the constant 
argument zero. Thus, when t moves 
in the positive direction along the a 
real axis to the left of a, hz has the 8®-““ " '■ ‘ 

' the right of a. 
argument of which is constant, 
showing that z moves in a straight line. When i is between, say, a and 
ft, a — Hs negative and when raised to a fractional power usually becomes 
complex. In Fig. 88 let 

then 

a — ^ = ric*' 

(a - 

showing its argument to be constant, —a. Hence, this portion of the 
<-axis transforms into a straight line in the z-planc. Similarly, the other 
portions of the real axis of the ^-plane also map into straight lines in the 

z-plane. 
The second part of the proof shows that the small semicircles map into 

small circular arcs subtending the 
angles tt — a, ir — t — 7, . , . . 
The transformation of hi into hz 
will be examined in detail for one 

of the semicircles, say a. Con¬ 
sider the element hi to be on the 

arc (Fig. 89). Then 

t a ^ 

where ri, the radius, is constant and the argument, varies from ir to 0. 

Taking the derivative 

hi = ivi hSie*^^ 

i = 

hi * Ti 

Writing 
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where ri 6di is the modulus and (ir/2) + di the argument, bz now 

becomes 

Since ri can be made as small as desired, (6 — ”” . . . 
become constants in the limit as ri approaches zero. Grouping together 

all the terms that do not contain Ti 

or into a complex number F, 

, bz = bSi 
1'-^ ' 

—--__ j For |q:| < tt, which does not 
n /c' restrict the problem since a may 

1 be positive or negative, the mod- 
\ 7 ulus of bz approaches zero as ri 
\ / approaches zero. When di 

\ I changes from tt to zero, i.e.y 

\ through —TT, the argument of bz 
\ "^'1^^ jg decreased by tt — a, which 

b proves the second part. Figure 
\ a 90 shows the 2:-plane for a possible 
y' polygon. 

-Thus far it has been shown that 
Fig. 90.—Polygon in the «-plane. • j. j. xi. i • r 

as a point traverses the real axis of 
the /-plane, the corresponding point in the 2-plane moves in a straight 
line between the singular points a', 6', c', . . . and at each singular point 
the direction undergoes an angle change (Fig. 90). a, /?, 7, . . . are the 
exterior angles of the polygon. Since the interior has been kept to the 
left, the upper half of the /-plane has been transformed into the polygon. 

The third part of the proof, to show that the polygon in the 2-plane 
properly closes, requires consideration of the infinite regions of the 
/-plane (Fig. 91). The upper half of the /-plane is contained within the 
semicircle of radius R when R is allowed to approach infinity. For / at 
points along the positive real axis beyond c, assuming a three-sided poly¬ 
gon for convenience, z will follow the straight line from c', which has an 
argument greater than 6'c' by 7. For very large values of /, a — /, 
6 — /, c — / may each be replaced by —/. Then from Eq. (1), 
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Since a + ^ + 7 = 27r, this reduces to 

161 

which becomes, upon integration, 

^--7 + ^' 

where E' is the constant of integration and must be the value of z when t 
approaches infinity along the positive real axis. Hence, it must be a 
point along the line extending 
from c'. 

In following the motion of z 
as i traverses the large circle, i 
may be expressed by 

t = 

where R is the modulus of also 
the radius of the circle, and 6 is the 
argument of L Then, as a — 
b — tj c — t can still be replaced 

by -t, 

- % u 
at 

8t 
R^ 

dt 

Expressing A ~ where C and 
X are constant, and differentiating 
t for constant /?, 

bt = iRe^^ be = 5^ 

Making the substitutions in the 
expression for bz^ 

bz = ^ 5^ 
it 

b 0 
Fia. 91.—Notation for convergence for 
infinite regions of the f-plane. 

Integrating, 

.C 
^ ~ + constant 

= + ^ e«(T+x-«) -j- constant 

To evaluate the constant of integration, as t approaches infinity along 
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the positive ^-axis, z approaches E\ Then, 

R -->00 ^ = 0, 
substitution shows that the constant is thus 

Z = I + E' 
K 

transforms the large circle in the /-plane onto the 2-plane. Rewriting, 

where C/R is the modulus of 2 — E', 2 — is a small radius vector 
with center at E' and argument tt + X ~ Therefore, as t describes the 
infinitely large circle in the /-plane, 2 describes an infinitesimal arc in the 

2-pIane. The argument of / changes from 0 to tt, and the argument of 
2 ~ changes from X + tt to X, a change of t in the negative direction. 

Now as / leaves the large semicircle at ^ = tt and traverses the real 
/-axis from — 00, 2 moves in a straight line that is an extension of c'E'. 
This line approaches a' as / approaches a; therefore, the polygon in the 
2-plane closes properly and the side c'£"a' is straight. Letting the small 
semicircles about the singular points approach zero and the large one 
approach infinity, the upper half of the /-plane is mapped into a polygon. 

This completes the proof of the Schwarz-Christoffel theorem. Inte¬ 

grating Eq. (1), 

-aJ 

where A and B are arbitrary constants. 5 is a complex constant that 
determines the location of origin in the 2-plane. By proper choice of 
origin B can be made zero. A is also a complex constant whose modulus 
affects the scale of the polygon and whose argument determines the 
orientation of the polygon in the 2-plane. Three of the numbers a, 6, c, 
. . . can be selected arbitrarily; the remaining ones are determined by 
the shape of the polygon. 

When the vertex of a polygon corresponds to a point at infinity on the 
real /-axis, Eq. (1) may be reduced as follows: Let A = \A\e^; then 

If, for example, a —— w, the constant jA] may be written Then 

(6 - 
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and in the limit as o —> — », the term 

(•-f-r 
becomes unity and drops out of the equation completely. Hence, for 
one or more vertices at infinity in the ^plane, the whole factor, including 
its exterior angle, drops out of the relation. 

t-Plane 

H 

Fig. 92. 

— - ^ HO 

-Semi-infinite strip mapped into the real axis. 

86. Mapping a Semi-infinite Strip into a Half Plane. As an example 
of the Schwarz-Christoffel transformation, the semi-infinite rectangle 
given in the 2-plane of Fig. 92 is mapped into the real axis of the ^-plane. 
The exterior angles are 

therefore, 

a==/? = 7 = 5==2 

I Via - 

dt 

t)ib - 0(c - t)id - t) 
+ B (3) 

As three of the points a, Z>, c, d in the ^-plane are arbitrary, they are 
selected as ^ = — oo, ^ ^ = +1, for a, 6, and c, respectively. Evi¬ 
dently, d is also at infinity, since if one vertex of a rectangle is at infinity. 
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at least one more must also be at infinity. The factors in Eq. (3) con¬ 
taining a and d drop out. Substituting for 6 and c, 

z = A f -y£L= + B = A cosh-» t + B J Vt^-i 
Now this equation would apply equally well to any semi-infinite rectangle 
in the 2-plane. To specialize it for the one in Fig. 92, the constants A 
and B must be determined. For the origin in the z-plane, 

then, 
z = X + iy ^ Oy t = 1 

0 = A cosh“^ 1 + B 

Since cosh~^ 1 = 0, B = 0. The value of A depends upon scale and 
orientation. Letting the width of rectangle be I, then at point B, z = il 
and ^ — 1, giving 

il ^ A cosh~^ (““!) 

Simplifying, 

cosh ^ — 1 
A 

or 

I 1 cos — 1 

from Sec. 57. Hence, l/A = tt, and A = Z/tt. The mapping function is 

2 = ~ cosh~^ t 
TT 

(4) 

The interior of the strip covers the whole ^-plane above the real axis. 
87. Mapping an Infinite Strip into a Half Plane. An infinite strip 

(Fig. 93) is a rectangle having four vertices at infinity. Letting 
coincide in the Z-plane at the origin and selecting at Z = — oo, then 
must correspond to Z == + oo. The transformation becomes 

z=‘Ajj + B = A In t + B (5) 

where a, 6, c, d are substituted. Letting the width of strip be Z, then at 
2 = 00 + fO, z = 00 + tO. At A^, 2 = 00 -f- fZ. ^ — 00 -f. tO. 

Substituting in Eq. (5), 

and 
00 = A In 00 + B 

00 -ffZ = Aln(—oo)+B 
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The first equation above is satisfied by B = 0. Since 

from which 

In (— oc) = In (00 c**-) = 00 -f- ITT 
oo + = A(oo + tV) 

il — 

Cfoo 

Fig. 93.—Infinite strip mapped into the real axis. 

Hence, the mapping function is 

z = - \nt (6) 
TT 

for the particular location of axes in Fig. 93. 
88. Introductory Remarks concerning Free Streamlines. When a 

fluid is made to turn a sudden corner, with radius of curvature zero, the 
acceleration for the fluid particle becomes infinite. This calls for an 
infinite force on the particle, which is obtained in ideal fluid flow by 
having the velocity go to infinity; i.e., an infinite pressure gradient is set 
up, with negative infinity pressure at the particle. Since such a situation 
has no physical counterpart, the assumption may be made that the fluid 

particle separates from the boundary rather than make the sharp turn. 

This assumption leads to the class of problems referred to as free stream- 
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lines. In the remaining sections of this chapter, the assumption is made 
that separation occurs at those points on the body where the body form 
makes a sudden turn, with the exception of stagnation points, or those 
points downstream from the first point of separation. 

At separation points in steady flow of a fluid around a body the 
streamlines leave the body. This dividing streamline is called a free 
streamline in two-dimensional flow, and the fluid in contact with the body 
downstream from the separation points and separated from the main 
body of fluid in motion by the free streamlines is known as the wake. 
The fluid in the wake is assumed to be at rest in steady flow problems. 

The Blasius theorem (Secs. 75 and 77) does not apply to cases when 
there is separation. The method of free streamlines provides a drag in 
irrotational flow of a frictionless fluid around bodies Due to this and 
the avoidance of points of infinite velocity, this method permits the 
solution of many problems that conform closely to similar problems 
with actual fluids. 

The assumption that the fluid is at rest in the wake is considerably 
in error for actual fluids and frequently leads to a theoretical drag that is 
much less than in an actual case. When the wake contains another fluid 
of much less density, the theory should give results comparing favorably 
with experiment. An example would be the discharge of water out of a 
slot into air. 

In the following sections the effects of gravity are neglected. The 
pressure intensity in the wake is, therefore, constant, since it is at rest, 
and the pressure intensity along the free streamline is constant. Accord¬ 
ing to the Bernoulli equation the velocity of the free streamline must 
also be constant. A streamline in contact with a boundary upstream 
from the separation point is referred to as a hounding streamline. Since 
the resultant drag on a body is the same whether viewed by an observer 
as steady or unsteady motion, examples are considered for steady flow 
only to take advantage of the simpler form of the Bernoulli equation. 

When the bounding streamlines are straight, the shape of the free 
streamlines in two-dimensional motion can be found by the methods of 
conformal mapping. The transformations are of a special character 
which takes advantage of the fact that the direction of the bounding 
streamlines is constant and the speed of the free streamlines is constant. 
The Schwarz-Christoffel transformations are used and must be familiar to 
the reader before a complete understanding of the problems can be 

obtained. 
89. Transformations Used in Free-streamline Broblems. The trans¬ 

formations required in free-streamline problems are conformal and pro¬ 
vide a means of mapping the uniform flow of the ty-plane into the free- 
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streamline pattern of the 2-plane. Since ^is many as six complex planes 
are required for some of the problems, it is a difficult subject. In this 
section, by means of an example, several of the commonly used trans¬ 
formations are carried out in detail. 

It is convenient to assume the velocity of the free streamlines as unity. 
As long as consistent units are used, it is unimportant what the particular 
units happen to be. In working with the problem where the free stream¬ 
line has a 15 ft per sec velocity, the length unit may conveniently be 
taken as 15 ft and the time unit as 1 sec. All other terms containing 
lengths should then be expressed accordingly. An example would be 
pressure intensity, where the consistent unit would be pounds per 225 ft^. 
These remarks apply equally well to other portions of this work. 

In free-streamline problems it is convenient to start with the 2-plane 
showing the flow boundaries and the general form of the free streamlines 
Then by suitable transformations the bounding streamlines and free 
streamlines are mapped into straight-sided polygons from which the 
tf;-plane is obtained by use of the Schwarz-Christoffel theorem one or 
more times. 

The example selected to illustrate the various steps is the flow out of 
a tank composed of two flat plates inclined at 45 deg, as shown in the 
2-plane of Fig. 94. The tank is considered very long normal to the 
paper, leaving an opening out of which the fluid can flow. The inclined 
sides are assumed to extend back indefinitely. The bounding stream¬ 
lines are thus straight; i.e., their argument, or direction, is constant. 
After the streamline becomes free, it has the special property of constant 
speed; viz.^ u + iv has constant modulus. 

These special characteristics lead to the transformation from the 
2-plarie to another plane, say the f-plane, where 

When {* is known or can be expressed as a function of 2 and Wj the prob¬ 

lem is solved. From Sec. 54, 

where w, v are component velocities in the x,y directions and q is the 

resultant velocity in direction ^ at a point. ^ is the modulus of f. Since 
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it is evident that f is a complex number having a modulus which is the 
reciprocal of speed and an argument which is the angle the velocity 
vector makes with the positive a:-axis. At in the 2~plane (Fig. 94) 
the velocity is zero for B^A very long. Then f has a magnitude infinity 

z - Plane Plane 

Fig. 94.—Planes used for flow out of a tank with 45-deg sides. 

and a direction 6 = 225 deg, a point that can be indicated in the f-plane. 
Observing the bounding streamline near A, the argument remains the 
same, d = 225 deg, but the modulus becomes unity at A when unit 
velocity of free streamline is assumed. The line plots as shown in 
the f-plane. 

The free streamline AI changes direction from 225 to 270 deg, but 
its modulus 1/g remains unity, f is then the arc of the unit circle from 
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A to 7 in the f-plane. Similarly plots in the f-plane as in Fig. 94. 
This transformation has changed the bounding streamlines to other 
straight lines and has changed the unknown free streamlines into an arc 
of a circle. If a means can now be found to change the streamlines in 
the f-plane into a polygon, then by use of the Schwarz-Christoffel method 
the final conversions can be made to the ii?-plane. 

Considering next the transformation 

f' = In f = in 
1 

Q 
+ id (8) 

where f' is another complex plane, the argument of the velocity vector 
is plotted as ordinate against In \l/q\ as abscissa. Along the circular arc 
AIA' in the f-plane, In \l/q\ =0 and 6 varies from 225 to 315 deg. 
Hence, the arc plots as a portion of the imaginary axis. The line B^A 
has constant 6; therefore, it plots as a horizontal line starting at A and 
extending to the right as In \\/q\ varies from 0 to oo ; likewise for B'^A\ 

The f'-plane has provided a semi-infinite strip that can be mapped 
into the upper half of another plane, say the ^-plane, by the method of 
Sec. 86. 

The i-plane is as shown in Fig. 94. Since is also a streamline, 
another transformation must be made, this time from the ^-plane to an 
infinite strip as worked out in Sec. 87. This latter transformation has 
all streamlines parallel to the real axis and is, therefore, the ti?-plano. 
The various functions for each transformation being known, f may be 
expressed in terms of z and w only, and the position of the free stream¬ 
lines can be plotted on the z-plane. 

In the following three sections examples are worked out showing 
various techniques required in working with free streamlines. 

90. Borda’s Mouthpiece in Two-dimensional Flow. Borda's mouth¬ 
piece, in two dimensions, is a re-entrant slot in a large container, as shown 
in the 2:-plane of Fig. 95. The bounding streamlines AB^, A'B'^ are 
assumed to be so long that the velocity at B^ and is zero. The 
point 7'^ is in the tank along the line of symmetry and is sufficiently 
removed from the entrance so that the velocity is also zero; 7^ is a point 
on the jet sufficiently far downstream that no more contraction takes 
place; 71,7 is a streamline. 

The first transformation is 

where 6 is the argument of the velocity vector in the 2-plane. Along 
6 is zero and \l/q\ varies from oo at B^ to unity at A when unit 
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velocity of free streamlines is assumed. Then from A the free stream¬ 
line turns in the negative direction through 180 deg. Along the 
argument of the velocity vector is zero also, and \l/q\ varies from qo at 

to unity at A\ Then the streamline turns through 180 deg in the 

I z-Plane j 

\b„ a i 

Plane Plane 

W" Plane 
A(O.b) 

"5. 

-^4 

A'(0,-b) 
Fig. 96.— Mapping planes for Borda’s mouthpiece in two dimensions. 

positive direction, with \l/q\ unity along the free streamline. In Fig. 96 
the bounding streamlines are indicated by heavy lines. To avoid con¬ 
fusion, AB^ is drawn slightly below in the f-plane. At \l/q\ is 
infinite and ^ = 180 deg, plotting as shown in the f-plane. 

The second transformation 

r' « In f 
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is used to convert the f-plane into a semi-infinite strip. A\ given by 
f = 1, plots as f' ~ 0, or as origin in the f'-plane. Traversing the unit 
circle, the real part of remains zero and $ increases to tt radians at / 
and to 2Tr radians at A, as shown in the f'-plane. The point is 
given by f = 00 or, using the transformation, = oo. As f is real 
between A' and the bounding streamline becomes the real 
axis of the f'-plane. Along AJ5^, ^ = 2x and the real part of f' varies 
from 0 to 00. At /'«, f = — 00 and = oo -f- tV. plots as a hori¬ 

zontal line in the f'-plane extending from (0,7r) to (°o,7r). 

As the f'-plane shows the streamlines in the form of a semi-infinite 
strip, the Schwarz-Christoffel transformation of Sec. 86 can be employed. 
It has the form 

f' = C cosh""^ t + D 

where C and D are constants to be determined by the size and location 
of the figure in the f'-plane, where the two vertices A, A' have been 
selected Bit t = —1,^ = +1, respectively, and where has been selected 
iit ^ = — 00 in the ^-plane. 

Substituting two points into the equation to determine C and D: 

for A, f' = i^iTj ^ — 1, and for A', f' = 0, ^ = -fl. This results in 

i2ir = C cosh-i (~1) + P, 0 - (7 cosh-i (1) + D 

From the second equation, since cosh“^ (1)=0, Z> = 0; hence, from the 
first equation 

== -1 

and C = 2. The relation between f' and t is then 

f' = 2 cosh~^ t 

To locate the figure in the /-plane the coordinates of the end points 
in the f'-plane may be substituted into the equation. For 5^, 

hence, 

f' = L X + 

cosh ^ = L cosh 
Z x—*« 

Expanding, 
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since the imaginary term is zero for all finite values of x and is assumed 
continuous in the limit as x oo. For 

f = h X iir 
to 

hence, 

Since the streamline I^I in the f-plane is not parallel to the real axis, 
this plane does not suffice as a tc-plane and another transformation is 
required, this time from the upper half of the ^-plane to an infinite strip 
in the ti^-plane. This last transformation, described in Sec. 87, is 

w = C' In t + D' (9) 

where w = </) + and C', Z>' are to be determined from the location of 
axes in the iz^-plane and from the scale. 

The streamline /^/oo iu the z-plane may be taken as ^ = 0. Letting 

the discharge per unit width of slot be 26, then along the streamline AI^, 
^ = b; and along the streamline A'l^, ^ = —6. Since the velocity at 
I^ is unity, the thickness of jet must be 2b there. Selecting </> = 0 
as the equipotential line through A A' in the 2-plane, <t> — oo at and 
<^) = *- <» at /«,. 

Letting t = —lyW^ib for point A and t = ly w = —ib for point 

A', Eq. (9) yields 

ih = C' In (~1) + Z)', -ib = C' In (1) + Z>' 

From the second equation, since In (1) ~ 0, Z>' = —and from the 

first equation, 

^ = In ( —1) = In C*” = iv 

and C' = 2b/tt. The transformation becomes 

w = — in t — lb 
IT 

To determine the location of the various points in the ic-plane, sub¬ 
stitutions can be made into this formula. For example, the line 7/1 in 
the ^-plane may be written t — iyy 0 ^ y < co. Then 

26, . 26 , 
w = — In — ^6 = — In j/ 

T TT 

since iy = w is real and varies from oo to + oo as y varies from 
0 to 00 . 
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Collecting the transformations, 

f = dw « \9 8/ 

f' = In f = In |-| + is 
|r 

f' = 2 cosh-» t 

w = — In i — to 
T 

(10) 

(11) 

(12) 

(13) 

The variables f, f', i can be eliminated from these equations and w 
dz 

expressed as a function of z by integration c>f It is more convenient, 

however, to use the formulas in their present form. 
The free streamlines are easily plotted by expressing x and y as 

parameters of B, In the ^-plane the free streamline A'I is real and 
extends from ^ = 1 to ^ = 0. From Eqs. (11) and (12), since g = 1, 

or 
f' == In f = 2 cosh”^ t 

t = cosh " = cos - 

From Eq. (13) 

II) = 0 + i\p 
2b, 6 
— In cos jr — iO 
TT 2 

and 

^ 25, 6 
0 = — In cos H 

TT 2 

Along the free streamlines — ^ = 1; hence, </> may be replaced b}^ 
os 

-s, giving 

25, e 
s = — In sec ^ 

TT 2 

where s is measured along A'/ from A'. This is the intrinsic equation 
of the curve; and by differentiation, 

^ 25 ^ 6 , 
ds = — tan ^ d 

TT 2 

writing 

ds = dx sec B — dy esc B 
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the parametric equations are obtained by integration. Thus, 

a; = _ 2 - In sec 2^ 

y = - (tf — sin 0) 

where the origin of the x2/-system is at A\ The free streamline is 
described as B varies from 0 to tt. Since the asymptotic value of y is 6, 

the distance between walls AA' is 46, and 
the coefficient of contraction is in agree¬ 
ment with Bordaks theory. Figure 96 shows 
the free streamlines drawn to scale. 

91. Flow out of a Two-dimensional 
Orifice. The solution for flow out of a slot 
in a flat plate is analytically similar to the 
preceding example, flow through Bordaks 
mouthpiece. A large tank is assumed to 
have a rectangular slot of great length in 
the bottom, out of which fluid flows. To 
avoid infinite velocity at A and A', the flow 
separates from the boundary and leaves in a 
tangential direction. This example is not 
treated in as great detail as the preceding 
one; hence, reference to Sec. 90 should be 

made as needed. The same complex planes are used: z, f, f', tj and Wy as 
shown in Fig. 97. 

The problem is to find the shape of the free streamlines in the 
2-plane. In transforming the f-plane into the f'-plane the configuration 
is the same as in the previous example, except that the coordinates of the 
various significant points are changed. This requires a change in the 
constants in the transformation from f' to t. The general form is 

Fig. 96.—Free streamlines in 
Borda’s mouthpiece in two 
dimensions. 

f' = C cosh“* t + D 

The conditions to be substituted in are as follows: for A, f' 
for i4', f' =>= = thus, 

from which 

therefore, 

0 = 0 cosh-i (-1) + D 
-ix = C cosh-i (1) + D 

0 = ixC + n, —Mr = D 

f' = cosh“^ t — ix 

0, t -1; 

(14) 
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The transformation from the <-plane to the t<»-plane is exactly as before: 

w = — In < — to (15) 

where 26 is again the final thickness of the stream. Along the free stream- 

7' Plane Plane 
••aft 

A' Bio Bio (-1,0) (0.0) (1.0) 
I 7V_/4 (:^o) 

I V(o,-/) 

A(O.O) 

1(0.-^) 

(oo.O) 

Plane 

A'(0,-Tr) i«o,-1T) 

iL(0..o) 

^«.Q) (-1,0) j [/,0) («>.0) 

B„ A 1(0,0) A' Bio 

t-Plane 

ty - Plane 

-/« 

A BU 
Fig. 97.—Mapping planes for a two-dimensional orifice. 

line Al, t is real and varies from — 1 to 0. Since 

r = 

along the free streamline 

f' = In e’* = i& — cosh“'t — iir 

and 

t = cosh i(B + it) = cos (fl + t), ~ ^ $ 0 
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Substituting the value of t into Eq. (15), 

= </> + 
TT 

In cos (^ + ir) — ih 

from which, as before, 

and 

— 5 = ~ In (sec B) 
TT 

2h 
ds = dx sec 6 = dy esc 6 = — tan 6 dO 

Fia. 98,—Free streamlines for flow out of a two-dimensional orifice. 

Integrating, 

X -^(2 sin^ I — 1^ + Cl 

2/ = ^ l^ln tan “ sin ^ j + Cz 

Taking the origin at A in the z-plane, 

X = 0, y = 0, e = 0, Cl = —> Cj = 0 
TT 

The parametric equations become 

46 . ^ 
X = — sin^ -f 

T A 

y = ^ In tan (| + 0 - sin «] j 

The asymptotic value of x is 2b/w (for 6 = —7r/2); hence, the total 
width of slot is (46/7r) + 26. The coefficient of contraction is 

^ _0 1 
(46/7r) + 26 ■“ TT + 2 ““ 

The free streamlines are drawn to scale in Fig. 98. One of the curves 
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may also represent the case of high velocity flow under a sluice gate when 
the line of symmetry is replaced by a solid boundary. 

92. Infinite Stream Impinging upon a Fixed Plane Lamina. An 
infinite stream is divided by a rectangular fixed plane lamina of breadth 1 

/oo 
1 

A' |c A 

/ \ 2-Plane 

\ 

- 
AHO) . Ad.o) ^ 

l/ 

A(O.O) 

1 
^OO 

I — CqQ ^-Plane 

A'(0,-tt) 

f«) 
1 

— Loo 

KO) 
1 

\m) (1.0) t - Plane 
1 Co, A l A' ”co 

_A_ 
Cca )-Cn w'-Plane 

A' I 

_A_ 
^-w-Ptane 

A C 
Fig. 99.—Mapping plane for an infinite stream impinging on a lamina. 

at right angles to the stream. The flow separates into two portions 
divided internally by two free streamlines, as shown in Fig. 99. Unit 
velocity of the free streamlines is again assumed. The dividing stream¬ 
line approaches the lamina along its bisector and has a stagnation point 
at the upstream point of contact. This streamline follows the lamina 
to its edges and then forms the free boundaries. The mapping planes 
for this transformation are shown in Fig. 99, The dividing streamline is 
taken as ^ = 0, and the equipotential line through the stagnation point 

as ^ = 0. 
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The transformations from z to f to f' to t are similar to those in the 
preceding examples. Equations (10) and (11) give the first two rela¬ 
tionships, while the third one, from f' to t, is given by 

f' = COsh~^ t — ITT (16) 

Since both branches of the free streamline are ^ = 0, the region occupied 
by the fluid corrtjsponds to the whole of the t^?-plane, which may be con¬ 
sidered as bounded internally by a semi-infinite rectangle of zero thick¬ 
ness extending from <(> = 0 to <t> = —oo. 

In transforming from the /-plane to the ic'-plane, the upper half of 
the /-plane is transformed into the exterior of the semi-infinite strip of 
zero thickness in the w'-plaiie. Taking a at (/ = — cc),bsitl{t = 0), and 
c/ at (/ = +oo), with (3 = — tt, 7 = 0, the Schwarz-Christoffel trans¬ 
formation gives 

y’' - - A J j^, + B ^ - +B 

taking 7 at tz;' = 0, 5 = 0. Rewriting the constant A, the fourth trans¬ 
formation becomes 

U. = -^ 

Consideration of the transformation from the /- to the tc'-plane shows 
that C' is a real positive constant. It is determined by the breadth of 
lamina 1. 

The final transformation to the tc-plane is simply 

w 

which moves I to the infinite regions and places C at the origin. 
To determine the value of C', Eq. (16) is written 

t = cosh (f' + iv) = “ I + 0 

since f' = In f. Along CA (z-plane), 6 = 0; therefore, 
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where the minus sign before the radical is selected so that t 
g —> 0. Also along CA 

d<t> dx 1 
dx ^ d<t> q 

Integrating dx in the 2-plane from C to A 

ri/2 dx d4> 

00 as 

(18) 

taking the limits on the second integral by inspection of the ^-plane 
(Fig. 99). Since 

(7' 
w = — "Y = </) + ^^ 

for real values of ^ = 0 and 

dt 

Substituting into the integral, using Eqs. (17) and (18), 

This is easily integrated by making the change of variable t = —\li\ 
thus. 

S = 20' [\l + Vr=T'') dt' = 20' + 
I Jo ^ 

Hence, the relation between I and C' is 

Along the free streamline AI{q == 1) 

f' = In J* = In = iB 

and from Eq. (16) 
t = cosh (In f + tV) = — cos B 

Since 
C' 

w ^ <t> A- ^ — 
<2 

and t is real along AI, 

0 = ——(7' gec2 B 
r 
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The intrinsic equation of the free streamline is 

TT 4 
sec^ 6 

where 6 varies from 0 to —7r/2 along AL In parametric form this 

becomes 

with the origin taken as the center of the lamina. The free streamlines 
are plotted in Fig. 100. 

Fig. 100.—Free streamlines for a fluid impinging at right angles against a rectangular 

plane lamina. 

The resultant force on the lamina (^an l)e found by applying the 
Bernoulli equation: 

p + = Po + ipgo"^ 

where po, qo refer to the pressure intensity and velocity of the undis¬ 
turbed fluid, qo has been taken as unity, and the pressure intensity on 
the downstream side of the lamina is the same as that of the undisturbed 
fluid because the wake is assumed to be at rest. Then 

P - Po = ^ (1 - ?*) 

is the excess pressure intensity on the upstream face. The resultant 
force per unit length of lamina is 

= TpC' 
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This resultant force is for unit velocity. The Bernoulli equation shows 

that the resultant pressure varies as the square of the velocity of the 

stream. Therefore, the resultant force per unit length of lamina for any 

go is 

irpC'go^ = —= OAiOpqoH 
TT “t" 4 

With actual fluids in which the wake has the same fluid as the stream, the 

assumption that the fluid in the wake is stationary is considerably in 

error. The pressure on the downstream side is actually less than that of 

the undisturbed stream. 

Exercises 

1. Map the lino y — 1/2 onto the <-plano of Fig. 92 using Eq. (4). 

2. Find the mapping function for the* semi-infinite rectangle of Fig. 92 for c at 

the origin in the ^plane, a, 6, d remaining as in the figure. 

.4n,s. 2 = - In (2 \ i + + 2^ -f 1). 
TT 

3. lioeate the following points on the /-plane of Exercise 2: 

(a) z = il (h) 2 = ^ ^ 

(c) 2 ~ 0 (d) 2 = ^ ^ 

4. Plot the ^-axis between y = 0 and y = I on the /-plane for Fig. 93. 

6. Complete the problem in Sec. 89, and plot the free streamlines. Find the 

coefficient of contraction for this opening. Am, C = 0.747. 



CHAPTER IX 

VORTEX MOTION 

An example of a two-dimensional vortex is given in Sec. 26 in which 

the vortieity, or region of rotational flow, is confined to a single line. In 
this chapter the theory is developed for vortex motion where the vortieity 
is confined to lines, tubes, and sheets or is unconfined, and examples are 
considered for both two-dimensional and three-dimensional flow. 

THREE-DIMENSIONAL RELATIONSHIPS 

f, 
93. Vortieity, Vortex Lines, and Vortex Tubes. 

defined as 
dtc di' \ 

^ dy dz I 
_ ^ dw{ 

^ dz da: ^ 

_ d?; __ du I 

^ dx dy J 

The quantities t/, 

(1) 

are known as the components of vortieity in the a*?/2:-directions, respec¬ 
tively. Referring to Sec. 9, the vortieity components are seen to be 
twice the components of rotation about axes parallel to the .T?/2-axes, 
respectively. In the preceding chapters the flow has been assumed 
irrotational, except for isolated points and lines. Where 77, and f have 
nonzero values throughout regions of the fluid, the flow is rotational. 
The theory of vortex motion was developed by Helmholz and was pub¬ 
lished in 1858.^ 

Continuous lines drawn in the fluid such that the vortieity vector 
(whose scalar components are 77, f) is everywhere tangent to the lines 
are called vortex lines. The definition is analogous to that of streamlines 
(Sec. 16). The differential equations for vortex lines are 

dx _ dy _ dz 

« ri f 
The vortex lines passing through a small closed curve form the surface 

^ Helmholz, Ueber Integrale der hydrodynamischen Gleichungen welche den 
Wirbeibewegungen entsprechen, Crelle*8 Journal^ Vol. 56, 1858; translated by Tait, 
Phil. Mag,, Vol. 33 (4th ser.), 486. 

182 



Sec. 94] VORTEX MOTION 183 

of a vortex tube. The fluid contained within this tube is referred to as a 
vortex filament, or merely as a vortex. In the following secjtions some of the 
properties of vortices are developed. 

94, Circulation about a Vortex Tube. Letting I, m, n be the direction 
cosines of the normal to the surface of a vortex tube, the component of 
vorticity normal to it must be zero, or 

+ mr) + nf = 0 (3) 

Referring to Fig. lOT, the line integral of the velocity around the path 
ABCDD^C'B'A'A must be zero from Stokes' theorem (Sec. 24) as follows: 

j (udx + V dy + w dz) = j j dx dy 

= y* (Zf + mrj + nf) dA 

= 0 

since the int^egrand of the surface integral [Eq. (3)] is zero over the surface 
of the vortex tube. Rewriting the line 
integral, 

I + I + I + /• _0 « 
JABCD JDD' JD'C'B'A' JA'A 

Since the two lines DD' and >4.4' can be 
made to approacdi each other, the sum of 
the line integrals along them cancel, 
leaving 

IaBCD ~ Ja'B'C'D' 

which proves that the circulation around 
the vortex tube is the same at both sec¬ 
tions. As the two circuits ABCD, 
A'B^C^D' are any two circuits about a 
vortex tube, the circulation about a vortex tube has thus been shown to 
be constant. Furthermore, from Sec. 25, the circulation about a small- 
area element is given by 2wn(r, where Wn is the normal component of the 
rotation and o is the elemental cross-sectional area of the vortex tube. 

As the circulation is constant about a vortex tube, the vortex tube 

Fiq. 101.—Circuit around a vortex 
tu\>e. 
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cannot end in the fluid but must either close upon itself or end at a fluid 
boundary. The strengthof a vortex tube is its circulation, or the 
product of its vorticity and its cross-sectional area. 

96. Vortex Lines Move with the Fluid. A theorem that the circula¬ 
tion of any circuit moving with the fluid is constant is first proved, and 
from this it can be shown that vortex lines move with the fluid. 

Let A and B be the end points of a line drawn in the fluid such that 
each point on the line moves with the fluid particles. The rate at which 
flow along the line AB is increasing is to be calculated. Let Sx, by^ bz be 
projections of an element of this line on the coordinate axes. Then 

D{u bx) Du - , D bx 
—er + (4) 

where ^ is the acceleration in the :r-direction, while is the rate that bx 

is increasing due to the fluid motion; i.e.y it is bu. Assuming that the 
extraneous forces have a single-valued potential and using Eqs. (3) and 

(16), Chap. II, 

Du 1 dp 
Di ~ dx p dx 
Dv _ dQ _ 1 dp 
TTt ~ dy p 

Dw dU 1 dp 
Ht " dz p dz 

Then 

D , dQ dQ dU . 
ox + V 6y + w 5z) = - — bx ~ 

dx 
- — Sy- 

dy 

+ U bu -i- V bv A- IV bw 

sn-^P + T 

Integrating from A to B, 

Dt 
{u dx V dy A- w (5) 

if p is a function of p only. 

Equation (5) gives the rate of increase of flow along the line AB. 
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If A and B coincide so that the line AB is a closed curve, Eq. (5) shows 
that the circulation around any closed curve moving with the fluid is 
constant for all time. This proves that if irrotational flow exists within 
some portion of fluid, then the circulation about any closed curve is 
zero and remains zero; hence, the permanence of irrotational flow is 
established. 

Any closed circuit drawn on the surface /S of a vortex tube has circu¬ 
lation zero at time t. Using the above theorem the circulation remains 
zero for the circuit now on the surface Si, composed of the same particles 
at t + dt. Thereof ore, the surface Si must also be a vortex tube. This 
means that a vortex tube moves with the fluid. The intersection of two 
vortex tubes must be along vortex lines; and hence, a vortex line must 
move with the fluid. 

96. Determination of Velocity Components from Vorticity Compo¬ 
nents. The velocity components at any point in space due to the presence 
of vortices in an incompressible fluid are obtained in the following manner: 

The flow through all surfaces having a common boundary curve must 
be the same for an incompressible fluid. The flow, therefore, depends 
on the boundary only, and it may be assumed that the flow is given by 
the line integral of some vector around the boundary curve. In equation 
form 

/ {lu + mv + nw) dS — dx A-Gdy + H dz) (6) 

where 1, m, n are the direction cosines of the normal to the surface element 
dS; Fj G, H are scalar components of some vector; and u, v, w are the 
scalar components of the velocity vector. Using Stokes’ theorem (Sec. 
24), 

Comparing Eqs. (6) and (7), it is obvious that 

dH dG 
^ dy dz 

^ dz dx 
dG dF 

w = --— 

dx dy 
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Substituting the values of w, f, w from Eqs, (8) into Eqs. (1), the 
following equations are obtained: 

fc ~ A (— 4-^4- ^ S7^F \ 
^ dx\dx ^ dy ^ dz J I 
„ = A ^ _ v^’ > (9) 

dy dy dz) ( 

' dz \dx ^ dy ^ dz J I 

Values of F, G, H that satisfy Eqs. (9) may, by substitution into Eqs. 
(8), yield the desired velocity components. A particular solution is 
obtained by taking 

dx 
+ ^ + ^ = 0 

dy dz 
(10) 

and requiring the solution to satisfy Eq. (10) and 

V2F = V2(? = = -r (11) 

These latter equations have the form of the Poisson equation.^ 
The solutions to Eqs. (10) and (11) are shown to be 

^ = il I f jdx'dy'dz'\ 

^ = I f "i;:dx'dy'dz'\ (12) 

I j jdx'dy'dz'l 
The integrals are carried out over all space where the vorticity com¬ 
ponents have nonzero values; f' are the vorticity components of 
the volume element dx' dy' dz' at {x',y',z')) F, G, H are evaluated for 
(XyyjZ); and the distance from {x^y^z) to {x',y'^z') is 

r = V{x — x'y + (y — j/')“ + (z — z')® 

To prove that Eqs. (12) are solutions of Eqs. (11), the volume integrals 
are considered in two parts; thus 

F - + F' 

where Fy^ represents all the space integral except a small sphere of radius 
r with center at {XjyjZ)j and F' represents the integral for the small sphere. 

1 B. B. Wilson, ‘^Advanced Calculus,” pp. 646-552, Ginn & (Dompany, Boston, 
1912. 
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Since r cannot go to zero in this region, always has a finite inte¬ 
grand. Differentiation under the integral sign is, therefore, permissible. 

is a function of {x\y'jZ') and is therefore treated as a constant in the 
partial derivatives with respect to Xj y, and z. Thus 

dx -«/// ^ dx \i 
and 

dz^ 

II dx' dy^ dz' 

Hence, 

= 
iUh ’■(0 

dx' dy' dz' == 0 

since V^{\/r) is identically zero. 
The second space integral may be written 

1 I 6F 
Att r 

where 6V is the volume of the small sphere. As is assumed continu¬ 
ous, it takes on the value f at the center of the sphere and may be con¬ 
sidered constant for the small sphere. Writing m = f dV, 

has the form of a velocity potential for source of strength g at (x^y^z), 
Then,^ considering the sphere fixed in space and size, 

dF' _ __^ X — x' 
dx dr dx r 

Substituting for y and for the volume of the sphere, 

dF' x — x^ _ X — x' 
lix ~ " T7rr2 r ^3 

Differentiating again, 
d^F' __ ^ 
dx^ 3 

1 r* « (a; - x')* + (y - 2/')* + (« - «')* 

2rg - 2(x - *0 

and 
dr X — x' 
'  SOI ..* 

dx r 
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Similarly, 

Adding, 

Hence, 

dy^ 3' dz^ 3 

VW' = 

V2F = + V^F' = - f 

and the first of Eqs. (12) has been proved a solution of V^F = — ^ The 
other two equations are proved to be solutions in an analogous manner. 

It must now be shown that Eq. (10) is satisfied by the solutions given 

in Eqs. (12). First 

dx 
dx^ dy^ dz^ 

Since^ 

d d 

dx' dy' dz' 

Integrating by parts 

dx Itt 
I' 
r 

dy' dz' + 
1 

•Itt 

I 
r dx' 

dx' dy' dz' 

Hence, 

dF\ dUif 

dx dy dz 
I {IX + mv' + nX) dS 

dx' dy' dz' 

where Z, m, n are the direction cosines of the normal to the boundary 
surface dS. Vortex filaments must either close or end at a boundary. 
If they end at a boundary, then both ends of the filament may be con- 

1 Sf(r) ^ af{r) dfir) _ df(r) dr 

dx dr dx^ dx' dr dx'" 

but 

! 1 
V. 

<r> dr X — x' 

dx r dx' T 
hence 

df(r) ^ df{r) 

dx dx' 
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sidered to close in a greater space S' in which only re-entrant vortex 
filaments occur. Then over the boundary either {' = ?;' = = 0 or 

ZJ' + mri' + nf' = 0 

hence, the surface integral vanishes. Since 

^ + ^ + ^ = 0 
dx^ dy^ dz 

everywhere, by substitution of Eqs. (1), it has been proved that 

Since 

dPjf I ^ I ^« 

dx by dz 

dF' , dG' , dH' ^ I / I V/ /M 

in the limit as the small radius approaches zero x —> x', y —> y\ and 
z —> z'y or 

dF' dG' dir ^ 
dx dy ^ dz ^ 

proving that 

^ ^ 
dx ^ dy dz 

= 0 

for Ff (t, and H given by Eqs. (12). 
In order to gain an insight into Eqs. (8), the velocity components at 

(x^y^z) due to the volume element 5F at {x',y'jz') are obtained from Eqs. 

(8) and (12): 

Taking the partial derivatives of 1/r, these equations become 
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Multiplying the first of these equations by {x — xO, the second by 
{y — y'), and the third by {z — z') and adding, 

{x — x') bu + {y y') Bv + (z — z') 8w = 0 (16) 

Similarly, multiplying the first of these equations by the second by i;', 
and the third by f' and adding, 

5u + rj' Sv + Siv = 0 (16) 

Equation (15) shows that the velocity at (x,y,z) due to dV is at right 
angles to r, since x — x', y — i/', 2 — 2' are proportional to the direction 

Fig, 102.—Velocity element due to segment of a vortex. 

cosines of r and Bu, 5?;, Bw are proportional to the direction cosines of the 
velocity element. Likewise, Eq. (16) shows that the velocity element is 
at right angles to the axis of rotation of the element dV. 

The magnitude of the velocity element may be written 

Bq = \/Bu^ + Bv^ 4* w' sin x (17) 

where a>' is the magnitude of the vorticity at (x\y',z'); t.e., 

co' = 

and X is the angle between r and the axis of rotation at (x',?/',2'), as shown 
in Fig. 102. Equation (17) is easily proved to be correct by substituting 
for w' and sin x where 

sin X = a/1 — cos^ X 

is used and cos x is expressed in terms of direction cosines. 
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Considering a segment of a vortex filament of length 6s' at {x\y',z') 
and having a strength k, 

K = a>'(r 

where <t is the cross-sectional area of the filament. Then 

/c6s' == o)'(r 6s' = o)' 6y 

Equation (17) may now be written 

Bq 
k5s' sin X 
4t 

(18) 

V 

I'lie velocity element at (x^y^z) due to the segment of the vortex filament 
is perpendicular to the plane through {x,y^z) and the axis of rotation at 

97, Velocity Potential Due to a Vortex. In an incompressible fluid 
the velocity potential exists at points not on vortex filaments. The 
expression for velocity potential for a point external to a single reentrant 
vortex is obtained as follows: 

From Eq. (13), 

dV 

.vriting dV 
d d 

KdsWo}' and remembering that — = — — and that 
dy dy' 

0)' 6s'’ ‘ ’ ‘ 

Using Stokes^ theorem (Sec. 24) the line integral around the vortex 
filament can be replaced by a surface integral over any surface bounded 
by the vortex filament. Stokes’ equation may be written 

j ^Pdx■ + Qd,■+R<lz^). 

, (dP dR\, (dQ 

Letting 

P = 0, 
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then 

^ ^ ^ /i\ ^ /i\ 
dy^ dz' ay'2 \r / dz'^ \r) dx''^ \r) 

from V^{\/r) = 0. Also 

^ ^ = __A'_ 
dz' dxf dx' dy' \r / 

ax' ay' ax' a^' \r / 

Hence, Eq. (19) takes the form 

Since 

a 
ax' rf/S' 

A = - A 
ax' ax 

and furthermore, 

w =: 
d<i> 
dx 

then 

which may be written^ 

« = 
K f COS S dS' 

47r J (20) 

where 6 is the angle the normal to the surface element dS' makes with r, 
the line joining (x,y,z) to (x',y',2;'). The integral in Eq. (20) may be 
interpreted as the solid angle subtended at (x,y,2) by the surface that is 
bounded by the vortex. 

98. Vortex Sheets. A discontinuity in fluid velocity along a surface, 
such as the slippage of one layer of fluid over another, may be handled 
as a vortex sheet in an otherwise continuous flow. The normal com¬ 
ponents of velocity on the two sides of the discontinuity are assumed 
equal; i.e., 

lu + mv + nw = W + mv' + nw^ 

dx'\rj ^dr\rjdx' A r*/ 
~ x) i A 

-2 

X') 

and 
_^ _ I (x ~ x') , iy - y') , ^ (2 ~ 2') cos 9^1- + m-h n- 

r r r 
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where I, m, n are the direction cosines of the normal to the surface and 
where w, v, w, and w', v', w' represent the velocity components on the two 
sides of the surface. Rewriting, 

I{u — w') + 7n(v — v') + n{w — w') — 0 (21) 

The components u — u\ t; — i;', it? — ic' represent the relative velocity, 
which is obviously tangent to the surface of discontinuity, since the 
components are proportional to the direction cosines of the vector. 

Fig. 103.—Circulation about elenient of vortex sheet. 

Similarly, letting q' be the magnitudes of the velocity vector on 
either side of the discontinuity, the magnitude of the vector ^ — g' is 
given by 

\q — q'\ = y/{u — + (i? — v'y + {w — w'Y 

Constructing a small rectangle with sides 6s in the direction of the 
relative velocity and sides bn much smaller than 6s, as shown in Fig. 103, 
the circulation is given by 

^ = coV = |(g - g')i 5s (22) 

where w' is the vorticity and o’ the area of the rectangle bn 6s. Rewriting, 

oj' 6n = (g — q'\ 

showing that the vorticity varies inversely with the thickness bn for a 
given discontinuity. The layer, of thickness bn, is called a vortex sheet. 
It may be of infinitesimal thickness, in which case the vorticity is infinite, 
or it may have finite thickness, with finite vorticity; hence, the distribu¬ 

tion of vorticity in a sheet in a fluid gives rise to a discontinuity in the 
velocity components tangent to the sheet. 
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A simple example is given by a uniform plane vortex sheet comprising 
the x^z-plane with the vortex lines parallel to OXy as in Fig. 104, and with 
a constant strength k per unit length in direction Oy, As the strength 
is equal to the circulation, consider the element of length dy; let v be the 
velocity of the element on the side z > 0 and v' the velocity on the side 
s < 0. Then from Eq. (22) the circulation is 

K 8y (v' — v) hy 

where the positive sense of rotation is from Oy to Oz, 

z 

To find the resultant velocity at any point, say (OjOjZ), due to the 
vortex sheet, the velocity due to an elemental strip of the vortex of 
breadth 6y at t/ is = a 8y/2irr as in Sec. 26, where r \/y^ + z^. 
Taking another strip at —y, the resultant of the two strips is a velocity 
2dq sin 6 in the direction of the negative ^/-axis. Summing up the 
velocity contribution at (0,0,2) due to all strips 

q = f 2 sin $ dq ^ ^ f — ^ ^ 
^ J ^ 2x7--2*+ 2/* 2 

since sin d =* zl^y^ + 2^. When 2 is negative, the resultant velocity is 
reversed in direction. Superposing the uniform velocity {v +1;')/2 parallel 



Sec. 99] VORTEX MOTION 195 

to OVy the resulting flow is two uniform velocities v, v', respectively, as z 
is positive or negative. 

99, Circular Vortex Rings. Referring to Eq. (18) 

= (18) 

where bq is the speed at (x^y^z) due to the element of vortex of length 5s' 
at {x'yy'jZ') of strength k. The distance between (Xyy,z) and (x'^y'^z') is 
r, and x is the angle between r and 5s' as shown in Fig. 105. To find the 

velocity at any point in space due to a circular vortex ring requires, in 
general, the use of elliptic integrals. Several general conclusions regard¬ 
ing the motion of circular vortex rings having the same axis of symmetry, 
say the x-axis, may be drawn from Eq. (18). 

Consider first a single vortex ring, lying in a plane parallel to the 
2/z-plane, with the x-axis as its axis. The velocity at any point on the 
ring due to any element 5s of the ring is parallel to the x-axis, as it is 
normal to the plane through r and 5s. Hence, the velocity of the ring is 
parallel to the axis, and the radius does not change with time. For a 
given strength k the ring will translate more rapidly with a smaller 
radius; and as the radius becomes very large, the vortex ring tends to 
come to rest. 

The velocity of fluid along the axis can be computed from Eq. (18). 
For convenience assume the circular vortex ring in the j/g-plane and of 
radius r©. The speed at point (x,0,0) is then given by 
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since x “ t = The direction is parallel to the x~axis. 
At the center of the ring the speed is K/2ro. Fluid near the ring is carried 

around the ring. 
When two vortices have a distance between them, large compared 

with their radii, the effect of one on the other is negligible. When two 
vortex rings having the same axis are close to each other, each is affected 
both by its own field and by the field of the other. Due to the symmetry, 
both vortices remain circular. With rotation in the same direction, as 

Fig. lOf).—Two circular vortex rings with centers on ar-axis. 

in Fig. 106, the smaller ring will intTcase in size and the larger one will 
decrease in size. The velocity of vortex A will increase in the positive 
a:-direction and vortex B will decrease in the same direction, so that 
vortex A will become smaller than B and pass through B. After ring A 
passes through B, it will start to grow and B will start to shrink, so that B 
will pass through A, This will continue indefinitely. 

When two vortices have opposite rotations, equal strength, the same 
size, and rotation in the sense such that they tend to approach each other, 
they will grow larger and larger as they approach. Due to symmetry 
the plane midway between the two has no flow across it. It may then 
be taken as a solid wall, and the case of a single circular vortex approach¬ 
ing a wall is obtained. 

TWO-DIMENSIONAL RELATIONSHIPS—RECTILINEAR VORTICES 

In two-dimensional flow all vortex filaments must be straight and 
parallel. The computation of resulting fluid motions is therefore much 
simpler than for three-dimensional motion. Some general relationships 
valid for two-dimensional flow are derived, and then special cases are 
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considered. In Secs. 100 to 103, inclusive, the area of the vortex fila¬ 
ment^ are taken as infinitesimal. 

100. Velocity Due to Vortex System. Referring to Fig. 107, the 
velocity components at P{x^y) due to the line vortex of strength ki at 

(xi,yi) are 

JiL y X - xi 
2ir ri* ' ^ 2t 

where the strength is defined as in Sec. 56 and is considered positive when 
the sense of rotation is counterclockwise. The velocity components at P 
due to any number of vortices, n are 

u = 

s = n 

2 y ~ y- 
27r r.-'* ’ 

8=^1% 
_ V ^8 X — Xt 

" “ Z/ 2x r.“ 
(23) 

Letting Va denote the velocity components of a filament of strength 

Ka, the sum of the products KaW«, 

Kat^ for any number of vortices is 
easily shown to be zero, since pairs 
of terms of opposite signs occur 
such as 

K\ ^ y} 
2ir ' 

^3 y^ ~ y^ 

C'onsidering k, as a mass, plus or 
minus, the mass center of the 
system is seen to be at rest. The 
mass center is given by 

X = —, 
ZKg y = ^Kg 

(24) 

Fig. 107.—Velocity components at a point 
due to vortex system. 

101. Examples of Simple Vor¬ 

tex Systems. Several special 
cases consisting of a finite number of vortices are considered in the 

following examples: 
a. Single Vortex. From Eqs. (23) and (24) it is observed that the 

vortex filament remains at rest. The velocity of any point P(x^y) is 
given by 

y -- yo .. K X - Xo 
II = — ^= o-2— 

2fK 2k 
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where the vortex is at The speed is 

9 
K 

%rr 

as in Sec. 56. 
h. Two Vortices of Equal Strength and the Same Sense, Let the 

strength of each vortex be k and the positions be (o^i, 2/1) and (^2, ^2), as in 

y 

Flo. 108.—Two vorticeH of equal strength and Fio, 109.—Two vortices of equal strength and 
same sense. opposite sense. 

Fig. 108. From Kqs. (24) the mass center at 

_ £i_+£2 . _ Vi + 2/2 

^ 2 ^ ^ 2 

remains fixed. This is the mid-point between the two vortices. Each 
vortex rotates around this mid-point with a speed Kf%rr, 

c. Two Vortices of Equal Strength and Opposite Sense. From Eqs. (24) 
the mass center of this system is shown to be at infinity. From Fig. 109 
the two filaments both have the same velocity; hence, the system trans¬ 
lates with speed K/2irr. Since the plane bisecting the two points has no 
cross flow, it may be taken as a wall, and the case of a vortex filament 
moving parallel to a wall is obtained. The speed of the vortex with 
respect to the wall is K/27rr. 

If the limiting case of two equal opposite vortices is taken as r 0, 
such that the product Kr = /i remains constant, a vortex doublet is 
obtained. This limiting process is handled the same as the doublet of 
Sec. 61. 
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d. Two Vortices of Different Strengths, The center of mass of two 
unequal vortices at A and B (Fig. 110) lies along the line through AB, 
When Kij k2 have the same sign, the point of rotation is between A and JS; 
but when their signs are different, it is on AB extended. Each vortex 
has a velocity due to the other; and since this is always at right angles 
to the line connecting them, they 

Fig. 110.—Two voriice8 of difforeiit strengths. Fig. 111.—Centers of rotation for 
vortex pairs. 

102. Infinite Row of Equal Vortices. The complex potential for a 
vortex of strength x at 2 = is given by 

w = i\n (z — Zi) 

as in Sec. 56. For a series of 2n + 1 vortices of the same strength k 
spaced along the x-axis at a distance a apart with the center one at the 
origin, 

u, = In z(3 — a)(z + a){z — 2a)(z + 2a) • ■ ■ (z — na)(z + na) 

Rewriting, 

-S)('■ 0 - „£i)+ 
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When n —>• 00, this may be written 

w = ^ In sin — (25) 
2t a 

neglecting the constant terms, which have no bearing on the velocity. 

y 

Fig. 112.—Infinite row of vortices. 

'J'he velocity can be obtained from the complex velocity 

dw 
-r- = u tv = 

dz 

irZ 

a 

Separating into real and pure imaginary parts 

u = 

V =* 

2a , 2Try 2irx 
cosh —^-cos — I 

a a ' 
. 2‘jrx 
sin- I 

K a 
2a , 2Try 2irx 

cosh-cos — 
a a 

(26) 

Consideration of the effect of pairs of vortices (Fig. 112) at equal distances 
from a given vortex shows that the vortices remain fixed. 

b 

Fig. 113.—^Double line of vortices symmetrically spaced. 

103. Double Rows of Vortices. Since a single vortex line has no 
ir fluence on the position of its own vortices, the motion of an individual 
vortex in a double row is found by determining the velocity caused by 
the second vortex line. With a symmetrical location, as in Fig. 113, with 
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spacing a between vortices in a row and distance b between rows, the 
resultant velocity may be seen to be parallel to the rows. Referring 
to Eqs. (26) the translation velocity is given by letting x = na, y ^ —b: 

U coth —, F = 0 (27) 
2iCl CL 

When one of the vortex rows is displaced parallel to itself a/2, such 
that the vortex of one row is opposite the mid-point between vortices 

—c—f—c-—(-—^—f-|—r-- 

b 

f f 
1IG. 114. Double line of vortices unsyinnietrically spaced. 

of the other rows, as in Fig. 114, the motion of the vortices is given by 
substitution in Eqs. (26) for a: = (n + ■j)a, y = —b; thus 

('=;^tanh-, F = 0 (28) 
2a a ^ 

(/onsideration of pairs of vortices equally spaced from a vortex in the 
opposite row also shows that the motion is parallel to the rows. 

The unsymmetrical case shown in Fig. 114 is called the Kdrmdn vortex 
street after Th. von Karman who pointed out that such a configuration 
arises when a body, such as a cylinder, moves through a fluid. He also 
showed that when h/a = 0.281, the motion is stable. The question of 
stability is fully discussed in Lamb^s ‘^Hydrodynamics,’^ Art. 156, 1932. 

104. Rectilinear Vortices with Finite Sections. For two-dimensional 
vortex motion with flow lines in planes parallel to the xiz-plane 

tc = 0, 
du 
dz = 0, f = 0, V — 0 

and from Eqs. (1) 
_ df; __ du 

^ “ to ^ 

From the equation for streamlines 

V dx — udy — 0 

and from the equation of continuity 

du , dv 

(29) 
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the streamline equation is shown to be a perfect differential therefore, 

and from Eq. (29) 

dy dx 

dhp ay ^ 
dx^ dy^ ^ 

(30) 

with the streamlines given by 
^ = constant. For those regions 
where f = 0, the flow is irrota¬ 
tional and a velocity potential 
exists. 

The velocity components at 
any point (x,y) due to a vortex 
filament at {x'^y^) can be obtained 
by reference to Fig. 115. The 
circulation around the vortex 
filament of area dx'dy' 
/c == f' dx' dy'f where f' is the vor- 
ticity at {x'^y'). The speed q at 
{x^y) is then /c/27rr, and thfe veloc¬ 
ity components 

w = — g sin q cos B 
Fig. 115.—Velocity components due to 
vorticity. 

Expressing B in terms of the coordinates, 

^ f' dx^ dy' y - y' ^ dx' dy' y 
dy 27rr r 27r 

dxp _ f' dx' dy' X — x' _ dx' dy' x — x' 

u = y 

(31) 

dx 2irr r 27r 

The velocity components at (x,2/) due to distributed vorticity are 

dyj/ 
u == — (y — y') dx’ dy' -L f (^1 

J J 
(32) 

where the integration is carried out for the areas having nonzero values 
of f'. Integrating Eqs. (32), 

^ ^ / J In rdx' dy' + (33) 
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which is easily verified by differentiation, remembering that 

203 

dr 
dx dr dx^ 

r® = (x ~ x'Y + {y - 2/')^ 
dr 
dx 

4^0 can be selected to satisfy boundary equations. For an unlimited fluid 
at rest at infinity it is a constant. 

For a single vortex, where ^ is a function of r only and r is the distance 
from the vortex, from Eq. (30) 

^ 
dr* r dr 

(34) 

This is obtained by change of independent variable, using r* = x* + j/*. 
The steps are as follows: 

dtj/ _ dip dr 
dx dr dx 

dx^ dx^ dr dr^ / 
dr _ X 
dx r 

dj^ 
dx^ 

106. Single Rectilinear Vortex with Finite Circular Section. Let the 

vorticity be constant and equal to f throughout a circular area of radius 
a. The stream functions are 

dhp d^ 

and 

dx* dy^ 

Expressed in terms of r, 

^ , 1 # 
dr* r dr 

and 

d*\^ ■ 1 dp 
dr* rdr 

for r < a 

0 for r > o 

f for r < a (35) 

0 for r > o (36) 

Equation (36) becomes, when integrated, 

f ™ it In r 4- B 
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A particular integral of Eq. (35) is 

The solutions for Eqs. (35) and (30) then become 

^ — A In r + — for r < a 
4 

^ = C In r + for r > a 

The stream function should be finite for r = 0; hence, ^ = 0. For the 
motion to be continuous at the periphery of the vortex, ^ and 
must be continuous at r = a; thus 

B + ^-^ = C\na + D 

and 

2 a 

Eliminating the constants of integration and neglecting the additive 
constants, 

= 1 1 for r < a (37) 

and 

lA = 2 a 
for r > a (38) 

It is evident from Eqs, (37) and (38) that the velocity is wholly 
tangential, having as its values fr/2 inside the vortex and fa‘^/2r outside 
the vortex. Outside the vortex a velocity potential exists. It may be 
found from Eq, (38) using the relations in Exercise 1, C'hap. Ill; thus, 

(39) 

The complex potential, from Eqs, (38) and (39), is 

w ^ i ^ a- In - 
2 a 

(40) 

Letting k be the circulation, since k — Tra'^f, 

k6 k . r 
<P = In — 

2'k ^ %r a 
(41) 

106* Rankine’s Combined Vortex. Considering the case of a recti¬ 
linear vortex of finite circular section as in Sec. 106, with axis vertical and 
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subject to the action of gravity, a three-dimensional case is obtained, 
having a free surface. The expressions for velocity obtained in Sec. 105 
are valid. Referring to Eq. (21), Sec. 10, for a given horizontal plane, 

?! 
2 ^4 + ^-m ot p 

is the Bernoulli equation for unsteady flow, where p is the absolute 
pressure for this application. 

Fig. 116.—Rankine’s combined vortex. 

Applying the Bernoulli equation to the fluid outside the vortex, sub¬ 
stituting q = K/2wrj and simplifying for steady flow, 

_l!_ -L E = ^ 
SttV* p p 

for r > a (42) 

where p« is the pressure at r = oo in the same horizontal plane for which 
p is determined. Referring to Fig. 116, with z measured vertically 
upward, the pressure at any point (r^z) is given by 

1 
p p 8irV2 - gz for r > a (43) 

where p^ is the pressure at z = 0, r = oo. 
To find the pressure distribution inside the vortex, the equation of 

motion for radial direction is written from Fig. 116: 

or 

p dA — (p + dp) dA = pdA dr 
y2 

— p dA dr ^ r 

>2 
dp = pjr dr 

y2 
p = p ^ r* + R for r < a 

Integrating, 

(44) 
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where P is the pressure at r = 0 in the same horizontal plane as p. Since 
the pressure must be the same at r = a in Eqs. (42) and (44), using 

K = firo*, 

P'._P I 
p p 4t*o* 

Substituting in Eq. (44), 

p _ p(, K* 
P “ 7 “ iTo* 

If p', < K®p/4T®a*, P will become negative for sufficiently small values of 
r < a. This means that a void will exist inside the vortex. 

The pressure inside the vortex, as a function of z and r, is given by 

Letting p equal a constant to obtain the equations for free surface, 

where the constants have been arranged so that z — C when r a. 
With the plane of the origin at the free surface at infinity, « = 0, r = «, 

C = ^ 

The depth of depression at the axis is, from Eq. (47), 

A vortex of this type can be set up by allowing flow out of the bottom 
of a reservoir until the whirling motion is established; then by closing 
the opening, the center portion fills with liquid rotating as if it were a 
solid. 

Exercises 

1. Using Eq. (18), show that the velocity at {x,y,s) due to a rectilinear vortex 
of infinite length has the magnitude 

«-2^. 
and that its direction is normal to the plane through the vortex and the point (a;,y,x). 
The quantity r® is the perpendicular distance from (af,y,r) to the vortex. 
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2. A circular vortex ring of strength k and radius a is located in the yz-plane with 

center of the ring at the origin. Find the velocity along the a;-axis in terms of a, 

KQt^ 
andx. Am. g - 

3. Two parallel vortex rings normal to the a:-axis and having centers on it are 

located in the planes a; « 0 and a: « 3 ft at a given instant. The ring in plane a: * 0 

has a radius 2 ft and circulation 6 ft* per sec in the sense that causes the other vortex 

ring to contract. The vortex ring at a; «* 3 ft, with radius of 1 ft, has a circulation 

10 ft* per sec in the opposite sense. Find the velocity u along the x-axis. 

5 12 
Am. « = ^ ^ 

4. Find the rate at which the radius of the vortex at x » 3 ft (of Exercise 3) 

reduces. Am. 0.08 ft per sec. 

5. Two two-dimensional vortices of strength 8 ft* per sec are located at (0,0) and 

(0,3) at a given instant. 

(а) Find their location after 1.0 sec. 

(б) If the sense of the vortex at the origin is reversed, find their positions after 

1.0 sec. Am. (a) (0.42,0.06), (-0.42,2.94); (fe) (0.425,0), (0.425,3). 

6. Find the centers of rotation of the following vortex pairs: 

(а) ici « 3 at (1,1), M - -4 at (2,3) 

(б) K\ « 10 at (0,0), k2 ** 3 at (0,5) 

Am. (a) (5,9); (5) (0,H). 

7. An infinite row of equal vortices of strength 2 ft* per sec are uniformly spaced 

unit distance apart along the x-axis with one at the origin. If the one at the origin 

is displaced a very small distance to (Ax, Ay), find its velocity. Sketch the velocity 

vector for a displacement in each quadrant. 

. 27r Ay* 2ir Ax* 
Am. w «-^=1—^=r; -=i-==r’ 

3(Ax’ + Ay*) 3(Ax* + Ay*) 

8. Find the velocity at (0,26) due to a double row of vortices of strength k located 

at (0, ±6), (±a, ±6), (±2a, ±6), (±3a, ±6), .... 

Am. u ^ ^coth -f coth —^; v 
2a \ a a 

0. 
9. Find the velocity at the origin due to constant vorticity f = 2 sec”** in the 

unit square with sides parallel to the coordinate axes and center at (i,4). 

Am. u =“ 0.36 ft per sec; v — —0.36 ft per sec. 

10. Find the velocity at the origin due to the semicircular area of vorticity above 

the x-axis with center at the origin. The radius of the semicircle is 10 ft, and the 

vorticity is given by « 2r sec”**. Am, u * 31.8 ft per sec; « 0. 



CHAPTER X 

EQUATIONS FOR VISCOUS FLOW 

In the preceding chapters an ideal fluid has, in general, been assumed. 
These assumptions permit the solution of many flow cases that apply 

closely to the motion of real fluids with low viscosity. The effects of 

viscosity in these cases are limited to the immediate neighborhood of 

boundaries. The solutions are usually valid for the first stages of the 
flow, Z.C., as it is initiated and before the boundary layer has developed. 

Ideal fluid theory gives no information as to the drag on an object moving 

relative to the fluid. 
All evidence indicates^ that an actual fluid in contact with a solid 

boundary has no motion relative to the boundary. Due to the adhesion 

of the fluid to the solid, fluid is retarded near the boundary, relative to the 

boundary. This zone of retarded fluid is called the boundary layer. 

The equations of motion, when viscosity is taken into account, are 

derived in this chapter. The resulting simultaneous nonlinear partial 
differential equations are so complex that their solution can be effected 

for only the most simple flow cases. Before undertaking their derivation, 

the concept of stress is reviewed. 

ANALYTICAL STATICS OF A THREE-DIMENSIONAL CONTINUUM 

The concepts and relationships of shear and normal stresses are 

essential in the development of the equations of motion. Following the 

lecture notes of Prof. M. Sadowsky in his graduate course in analytical 

mechanics at Illinois Institute of Technology, the relationships are 

developed for static bodies (continua). By use of D'Alembert^s principle 

of dynamic equilibrium the same relationships are found to apply to 

moving bodies. No limiting assumptions are made as to the nature of 

the continuum, whether solid, liquid, plastic, or gas, other than those 

given in Sec. 2. 
107, Notion of Inner Stress. When a body is acted upon by external 

forces and an internal cut is made in the body, a gap may occur, as shown 

in Fig. 117. The cut has removed the action of internal forces that 

were holding the faces together. Those internal forces in a body which 

^S. Goldstein (ed.), ^‘Modern Developments in Fluid Dynamics,pp. 676-680, 
Oxford University Press, New York, 1938. 

208 
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prevent any gap from occurring and which prevent motion of one face 
relative to the other are called stress forces. At any face they are equal 
and opposite, as required by Newton's third law. Inner stress forces 
arise from the action of external forces. A stress is an internal intensity 

Fio. 117.—Cut in a continuum. 

of force expressed as force per unit area. If the resulting stress is normal 
to the cut, it is called a normal stress; if it is tangent to the cut, it is a 
shear stress. Any general stress may be decomposed into normal and 
shear stress components. 

108. Stress Components in a Cartesian Coordinate System. There 
are nine stress components, which are evident when three sections through 
the continuum are taken at a point, each section normal to a coordinate 
axis of a cartesian coordinate system. These are shown in Fig. 118, in 
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which the stress components parallel to the axes are taken for the three 
planes. Six of the nine stresses are shown to be independent. The 
normal stresses are indicated by <7-, considered positive (tension) when in 
the direction of the outer normal and carrying a subscript to indicate its 
direction. A negative normal stress (compression) is in the direction of 

the inner normal. The tangential stresses 
(shear stresses) are indicated by r. The 
sign of a shear stress has no physical sig¬ 
nificance; it is a mathematical formality. 

7j The first subscript indicates the direction 
of the normal to the plane over which the 
stress acts, and the second subscript indi¬ 
cates the direction of the stress, as shown 
in Fig. 119. The sign convention is as 
follows: Referring to Fig. 120, is posi¬ 
tive if acting in the direction of negative 
^axis on a face preceding the direction of 
positive ty-axis. All shear stresses shown in 
Fig. 120 are positive. 

Fig. 119.—Si^iificanc© of ^ Small prismatic body cut out of the 
shear stress subscripts. . i , i i 

continuum has the nine stresses shown m 
Fig. 121. Taking moments about an axis through the center of the body 
parallel to the 2-axis shows that = r^*, as follows: 

ZM ^0 

The only stresses acting to cause moments are and Letting the 
edges of the prism be dx, 62, respec¬ 
tively, parallel to the xyz-SixeSj the moment 
equation becomes 77 

'“Ty* 8x by bz + Txu by bz bx ^ 0 

hence, 

Txy == Tyx (1) 

and similarly, 
Fio. 120.—Sign convention for 

Tyt = Tty, Tgx ~ Txg (2) shear stresses. Those shown are 
~ . , , , . positive. 
For a moving body the summation of 

moments is equated to the product of the moment of inertia of the body 
and its angular acceleration. The moment of inertia term is of higher 
order of smallness than the moment term, so that it drops out in the limit 
as bx, by, bz approach zero, leaving Eqs. (1) and (2) valid for moving 
bodies. 
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It must be proved that the nine stress components completely define 
the state of stress at a point. Using a tetrahedron (Fig. 122), since it is 
the solid with least number of faces, the stresses on an arbitrarily inclined 

z 

I 
I 
I 
I 

/ 
/ 
Flu. 121.—Prismatic body showing stress components. 

2 

X 
Fio. 122.—Stresses on tetrahedron. 

face are expressed in terms of the stress components. Let I, m, n be the 
direction cosines of the normal to the inclined face; let the area of the 
inclined face be A; and let the x^2:-components of the stress erg on 
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the inclined face be anxy <TRy, crz, respectively. Applying the equations 

of equilibrium 

2F = 0 

in the directions of the coordinate axes yields (from Fig. 122) 

(TRx = <Txl + I 

(TRy ~ xyl “b (Ty'ftl “t" Tzy'f^ | (3) 
(TRz = Txzl + TytTn + azU ) 

Since the stresses on anj^ arbitrarily inclined face are completely given in 
terms of the nine stress components and the direction cosines of the 
normal to the inclined face, it has been proved that they completely 
define the state of stress at a point. 

Due to Eqs. (1) and (2), there are then six independent stress com¬ 
ponents that are required to determine completely the state of stress 
at a. point. The stress components may be conveniently written as a 
matrix 

(Tx r xy T xz 

'^yx '^yz 
Tzx Tzy (T z 

which also completely defines the state of stress at a point. 
109. Principal Stresses. In this section it is shown that for any 

general state of stress, there are, at every point, at least three planes over 
which the shear stresses vanish. The resulting stresses on these planes 
are normal stresses and are called principal stresses. Axes through the 
point coincident with the principal stress directions are called principal 
axes, and the planes over which they act principal planes. Thus, by 
definition, the stresses are perpendicular to the faces over which they 
act, and likewise any stress that acts normal to a face in the absence of 
other components is referred to as a principal stress. A body subjected 
to principal stresses is easily visualized, since the forces on the surface 
are normal to the faces. The converse case is examined here, viz,, with 
a continuum subjected to the most general system of surface stresses, to 
show that at every point a special position of a rectangular element 
around the point may be found such that only normal stresses act on its 
faces. 

First, the relation between the relative size of the principal stresses 
and the inclinations of the principal axes are determined. Assume that 
two or more principal planes exist, and let d be the angle between them, 
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as in Fig. 123. Taking moments about 0 for the element shown, where 
c is the dimension normal to the plane of the drawing, 

2M = 0 
i.e., 

— ac<Tib cos 6 + bca^a cos 0 == 0 

Simplifying, 
(<r2 — cTi) cos 0 = 0. 

This relationship may be satisfied in two ways: 
1, <r2 (Ti, then cos 0 = 0, 0 = 90 deg. This is the general case in 

which all principal axes are per¬ 
pendicular at a point, which limits 
their number to three. 

2. 0-2 = <Ti, 0 arbitrary. This 
is the ideal fluid flow case in which 
the stress is the same in all direc¬ 
tions at a point. 

To prove the existence of three 
principal stresses, their existence 
is assumed and the necessity of 
existence proved. Referring to 
Fig. 122, assume that (tr — a is a 
principal stress, a must be per¬ 
pendicular to the face, i.e.y along the normal whose direction cosines are /, 
m, n. The components of a in the x2/2-directions then are 

O’ I ~~~ (T i T xy'^^ r xz^^ | 

(Tin — Txy^‘ I (Tyin I TyglZ | 

O'n “ Txz^ I I O’gH/ J 

Rearranging, 

(o-x — O’)/ + Txyin -j- Txzn = 0 ^ 
Txyl + {(Ty — (T)7n + TygU = 0 > (5) 
Txzl + Tygin + (0-2 — o’)n = 0 j 

Thus three homogeneous linear equations in i, m, n are obtained. The 
trivial solution is impossible, / = m = n = 0, since 

/2 -f m2 -f = 1 

Using the determinate method of solution, it is necessary that the denomi¬ 
nator determinate be zero; otherwise there could be no solution. Hence, 

Fig. 123.—Principal stresses on an element. 
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Expansion of Eq. (6) leads to a cubic equation in a: 

D = F((r) » 0 

If it can be shown that Eq. (6) has three real, distinct roots, it is evi¬ 
dent that Eqs. (6) yield three sets of direction cosines corresponding to 
the three principal stresses. Inspection of Eq. (6) shows that the highest 
degree term of the expansion is — <r®. Thus, if <r -^ + Q®, Fi^r) is negative; 
and if cr —> ~ 00, F(<r) is positive, proving at least one real root exists. 

The remaining two may be distinct real, coincident real, or conjugate com¬ 
plex, as illustrated in Fig. 124. Knowing that (the reai root) exists, 
the arbitrary xyz-system may be chosen such that the «-axis coincides 
with <Ti, so that = 0, a, = <ri. For this system the denominator 
determinate of Eq. (5) reduces to 

(<r, ~ a) 

0 
(ffy — a) 

0 

0 
0 

(ffi - <f) 

= 0 (7) 

All the stress components have necessarily changed, but not the principal 
stresses, which are independent of the choice of reference axes and depend 
entirely on the state of stress. Equation (7) leads to a quadratic in a, 
viz., 

ff* — <r(<r, + ffy) 4- — T,„* = 0 
Solving, 

_O', 4- <r» ± "s/(o, — o,)* + 4t„* --^ 

Since the discriminant of the quadratic (portion under the radical) is 
positive, sum of two squares, Di = 0 has two real, distinct roots. ‘ Hence, 
D = 0 has three real, distinct roots. 

‘ A special case arises when the discriminant is sero; i.e., r„ — 0, and <r, » <r,. 
This is the ideal fluid case, where the only stresses are equal principal stresses. 
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There must exist, in general, three distinct principal stresses, corre¬ 
sponding to three mutually perpendicular axes in space, given by substi¬ 
tuting in turn o-i, <^2, <tz in Eqs. (5). Selecting the principal axes as axes 
of reference, the general stress matrix reduces to 

<ri 0 0 
0 <72 0 
0 0 CTs 

The invariants in the transformation of a state of stress are obtained 
from the expansion of Eq. (6). The state of stress at a point may be 
expressed in terms of an arbitrary coordinate system or referred to the 
principal axes, 1, 2, 3. Expanding Eq. (6), 

/a 

This cubic determines the values of <7i, <72, (tz. Since these values are inde¬ 
pendent of the choice of axes and inherent in the state of stress, the quan¬ 
tities 7i, /2, /a in Eq, (8) must be invariant under any rotation of the coordin 
note system. Hence, 

11 = <7* + <^1/ + <?■* = + 0^2 + <78 

12 = <r^y + (Ty(Tz + <7,(7* — r*y2 — — 7,^2 

~ <7i<72 ”1“ <72(78 H” <78<7i 

<7* Tgy T x» 

h = Tty (Ty Ty. = (TKTjff* (11) 
r** Tyt 0's 

Thus, the equation for determination of the principal stresses, <7i, <72, <73 

may be written as 

<7* —^ 7i<7* -|- — 78 = 0 

EQUATIONS OF MOTION 

In order to obtain the equations of motion for viscous fluids, the 
relationships between the stresses and velocity gradients must be estab¬ 
lished. An assumption must be made in regard to these relationships. 
The equations are first developed in terms of the stresses at a point, then 
the viscosity definition is extended to the general case, next the normal 

(9) 

(10) 
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stresses are expressed in terms of the viscosity and velocity gradients, and 
finally, by substitution, the Navier-Stokes equations are obtained. 

110, Equations of Motion in Terms of Stress Components. The 
effect of viscosity is to cause shear stresses in the fluid. Referring to Fig. 
125, the shear stresses on a small rectangular parallelepiped maybe included 
in the equations of motion as follows: 

Let the stresses at the center of the parallelepiped be ctx, 

y 

z 
Fig. 125.—Stresses in x-direction on parallelepiped. 

cTy, O’*. At the face normal to the y-axis and most distant from the origin, 
the shear stress in the a:-direction is 

, dTy:, 8y 

and the shear force on the face is 

Similarly, the shear force on the opposite face in the x-direction is 
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Likewise, the shear forces in the x-direction on the faces normal to the 
2-axis are 

and 

/ Sz\ 

- V- - -fz 2) 

Adding to these forces the other forces in the a-direction and equating to 
the product of the mass and the ^-component of acceleration, as in Sec. 6, 

n n n 

Xp dx by bz + by bz + bx by bz + bx by bz = p bx by bz 
ox oy oz 

Dividing through by the mass of the particle and taking the limit as 
the parallelepiped shrinks to a point, tlie first of the three equations of 
motion are obtained: 

Xr I 1 dcTa; . 1 djyx , 1 dj tx 
A -f- -- 'T-h “ -r —^ 

p dx p dy p dz 

y _i_ ^ . 1 dcy , 1 dtzy 

p dx p dy p dz 

„ , 1 dTxt , 1 dTyt , 1 d<Tz 
" n--1-— “I- 

p dx p dy p dz 

The shear and normal stresses must now be expressed in terms of velocity 
gradients and viscosity further to reduce these equations. 

111. Viscosity. In Sec. 1 Newton^s law of viscosity for one-dimen¬ 
sional flow was stated. Viscosity is that property of a fluid by virtue of 
which it offers resistance to shear. In the one-dimensional case it was 
shown that the shear stress is a linear function of the time rate of angular 
deformation. 

It is assumed here that in general flow the shear stress components are 
proportional to the corresponding time rates of angular deformation. 
Heferring to Fig. 120 the time rate of angular deformation is determined 
from the angular velocities of the two adjacent sides of the element. 

The angular velocity of the linear element ^2/ ^ ^ as 

in Sec. 9, considering the counterclockwise direction positive. The rate 
of angular deformation is then 
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Extending Newton's law of viscosity to this general case, 

(dv , \ 
1 

(du , I 

The expressions for normal stress in terms of the velocity gradients 
and viscosity are developed in the following section. 

112. Relation between Normal 
Stresses and Velocity Gradients. 
Referring to Eqs. (13) and Fig. 
126, another selection of axes 
could have been made such that 
Txy ~ zx ~ TLhese are 
the principal axes, discussed in 
Sec. 109. For these principal 
axes, denoted by x\ y\ and with 
velocity components w', r', ii?', 

dt;' _ du' dw' _ dv' 
~ dy'’ djp' d?’ 

du' dw' , . 
. , . . 57 “ “ ^ 
deformation in two- 

The orientation of principal axes 
with respect to the arbitrary xyz-axes are given by the table of direction 
cosines. For example, the y'-axis has the direction cosines ia, Wa, na 
referred to the xy^-system. 

Fig. 126.—Angular 
dimensional flow. 

x'h 
y'h 
z'h 

jy_^ 
mi wi 
m2 71% 

ms ns 

Along the principal axes there is only a linear deformation of an 
element. Taking a small element with sides parallel to the principal 
axes, as in Fig. 127, Eqs. (14) show that the time rate of angular deforma¬ 
tion is zero. The element may translate, rotate, and the sides expand 
or contract, but the angles of the element remain right angles during the 

infinitesimal time the sides are in the principal axes. On the other hand, 
assuming the principal axes to rotate with the element, the extension of 
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an element along a principal axis depends upon that coordinate only; 
therefore, u' is a function of x' only, v' is a function of y' only, and w' is a 
function of z' only; hence, each of the terms in Eqs. (14) is equal to zero, 
while in general u = u{xyyyz), v = v(x,y^z)y and w = w(x,y,z). 

The velocity components and independent variables in the two sys¬ 
tems are related as follows: 

u = + v'h + w% 
V = u'mi + v'm2 + w'mz 

w = u'rii + v'ui + w'nz 
x' = hx + miy + niz 
y' = Ux + m^y + n^z 
z* = hx + miy + 

since in each case the component in a given direction is given by the 
components in that direction of any three mutually perpendicular 
components. The velocity gra¬ 
dients in the arbitrary system are 
to be expressed in terms of the 

2/' 

components as a means of sim¬ 
plifying the relationships and the 

assumption. The expression 

may be written 

dx 

du du dx' , du d^ , ^ ^ 
dx dx' dx dy' dx dz' dx 

Fig. 127.—Motion of element with side? 
parallel to principal axes. 

since x is a function of x', y', z'. Using the relation between coordinates, 

dx' , ^ _ 
dx K dx 

= h 
dz' j 
to ~ 

Hence, 

and 

dx ~ dx' + dy' ^ dz' 

dy 
dw 

= mi 
du' , dv' 
dx 

du' 

7 + ^ + mz^ 

2 . 2 

dw' I 
W 

dw' 

(16) 

dz '■ dx' 

using Eqs. (14) or, for rotating x'y'z'-axes, v! is a function of x' only, etc. 
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The last two equations are obtained in a similar manner. 

Adding Eqs. (15), 

du . dv , dw du' , dv' , dw' 
(16) 

which shows that the expansion of fluid at a point is independent of the 
orientation of axes. 

Furthermore, 

du 
dy 

(mid 
\dx' 

d m^d , msd 
{u'h + h + 

and 

Adding the two expressions. 

dx 

dv . du 
dx dy 

^ A du' . dv' . dw 
= 2 Uimi , + hmz 0 

dw . dv ^ ( du' , dv' , dw'\ ’ 
- + - - 2 jp + ^ ^ j 

0 
du dw 

dx 
C^( 1 du' , 1 dv' , , dw 

= 2 I niZi —f + —f + nzh 

(17) 

where the last two expressions are obtained in a similar manner. The 
shear stresses may now be expressed in terms of the velocity gradients 
referred to principal axes. 

The shear stresses are next expressed in terms of the principal stresses 
cTxS (Tz'. Writing the equations of motion for the tetrahedron of Fig. 
128, which has three faces in the principal planes over which no shear 
stresses act and the inclined face normal to the x-axis, and remembering 
that the terms containing the mass are of higher order in the limit as the 
inclined plane approaches the origin. 

<rx(ABC) - <T.iOBC)h + (TyiOAOh + a^{OAB)h 
since 

{OBC) - hiABC), (OAC) = hiABC), (OAB) = h{ABC) 

ffx = + CTy'h^ + (Tz'h^ (18a) 

Similarly, by taking the inclined face normal to the y- and the «-axis, 
respectively, 

<Ty = o-x'trii® + <Ty'm2^ + cTt^nti^ 

Cr, = (Tx'ni* + <Ty*n2^ + 

(186) 
(18c) 
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Adding Eqs. (18), 

O'x + CTy + 0-2 = (Tx^ + <Ty> + O’*' = — 3p (19) 

which is Eq. (9). The sum of the normal stresses at a point is a constant. 
The average pressure intensity at a point is p, as defined by the equation. 
In nonviscous flow the normal stresses are the same in all directions. 

Fig. 128.—Tetrahedron with inclined face normal to x-axis and other faces in principal 
planes. 

Referring again to Fig. 128, to express the shear stresses in terms of the 
principal stresses, 

Txv{ABC) = <Tx'iOBC)mi + (Ty'(0AC)m2 + (Tz'{0AB)mz 

and reducing as before, 

'Txy = “I” (Ty>l2'f^2 ”t" CFz'lzMz (20) 

The shear stress Txy can now be expressed two ways 

= 2/x (^\mi ^ + hmz + Izrriz (21) 

== cTxdinii + (Ty'lz'n^^ "h o’gdzMz 

The normal stresses must be expressed in terms of the viscosity and 
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velocity gradients in some manner that is compatible with Eq. (21). 
The most general linear relationship is 

ffg' = —p + a 

cTv' = — p + a 

O'*' = ~p + a 

{^ 4- ^ 4- 

Vd? dy' Bz'/ 

(^ 4. ^ 4- 

\W By' Bz') 

+ b 

+ b 

Bu' 

Bv' 
By' 

.rBw' 

(22) 

Adding Eqs. (22) and comparing with Eq. (19), it is seen that 

Sa = —b 

Substituting Eqs. (22) into Eq. (21), remembering that 

liMi + hm^ + hmz = 0 

since the two lines represented by the direction cosines are perpendicular, 

6 = 2m 

Substituting the values of a and b into Eqs. (22) and then expressing 
the velocity gradients in terms of the arbitrary a;p^:-system, using Eqs. 
(15), (16), and (18), 

<7* = 

ay == 

<r. = 

2 (Bu . Bv , Bw\ , n Bu \ 

2 (Bu , Bv , Bw\ , o V 

-r,-^u(— + — + —\ + 2a—) 
^ 3^\dz^dy^dz)^‘^dz} 

(23) 

113. Navier-Stokes Equations. Using the expressions for shear and 
normal stresses in terms of the viscosity and the velocity gradients, as 
given by Eqs. (13) and (23), substitution into Eqs. (12) gives the Navier- 
Stokes equations 

^ I Bp . V B /Bu . Bv . Bw\ , -2 

Y -l?2 + i±(?!i + ^ + ^) + ,n 
p dy 3 dy \dx dy dz / 

^ + i?!+ £!£) + 
p dz 3 dz \dx dy dz) 

Du \ 
Dt i 
^ ( 
Dt f 

Dw I 
Dt I 

(24) 
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in which v => it/pis the kinematic viscosity and 

223 

V* = — -f -f — 
dx^ ^ dy^ ^ 32* 

These equations are the most genera] ones for fluid flow. By letting 

»> »= 0 they reduce to the Euler equations. For incompressible fluids the 
term containing the divergence drops out, leaving 

1 dp , Du 

p dy Dt 

y 1 3p , Dw 

In deriving the equations the assumption was made that the stresses are 

linear functions of the velocity gradients. Due to the complexity of the 

equations, no solutions that would confirm the validity of the assumption 

have been effected for a general case. For those solutions which are 

known, obtained by neglecting terms in the equations, the results are 

confirmed by experiment. The equations were first derived by Navier 

and Poisson by an entirely different method in 1822 and 1829. They 

were derived in a manner similar to the above method by Saint-Venant 

and Stokes in 1843 and 1845. 

For a specific problem the solution must satisfy not only the Navier- 

Stokes equations but also the continuity equation and the boundary 

conditions for the particular problem. 

114. Botmdary Conditions. It is generally accepted that the fluid in 

contact with a solid boundary moves with the boundary or that the 

velocity of fluid at the boundary relative to the boundary is zero. This 

hypothesis has been borne out by experiment where it is possible to make 

reductions in the Navier-Stokes equations that permit their solution. 

When two fluids are flowing, a dynamical boundary condition arises 

at the interface. Applying the equation of motion to a thin layer of fluid 

enclosing a small portion of the interface shows that the terms containing 

the mass axe of higher order than the surface intensities and that the 

stresses must be continuous through the interface. 

In general, the boundary conditions at the solid surfaces give rise to 

rotational flow. This precludes the simplification that results from the 

use of a velocity potential. Examples of simplified solutions of the equa¬ 

tions of viscous flow are given in the following chapter. 



CHAPTER XI 

EXAMPLES OF VISCOUS FLOW 

Since no general solutions of the Navier-Stokes equations are known, 
the examples of this chapter in each case are obtained by neglecting 
certain terms in the differential equations. Similitude relationships are 
first discussed, follow^ed by flow between parallel boundaries, the lubrica¬ 
tion problem, flow through circular tubes, percolation, and flow around 
a sphere at low Reynolds numbers. 

116, Similitude Relationships: Reynolds Number. Due to the com¬ 
plexity of the viscous flow equations, it has been necessary to resort to 
experimental means for the solution of many fluid problems. Even 
though the Navier-Stokes equations have not been solved, much can be 
learned from them through considerations of similarity. For two flow 
cases to be dynamically similar the following criteria must be met; 

1. The geometrical boundaries must be similar. 
2. The boundary conditions must be the same. 
3. The streamlines, or flow patterns, must be geometrically similar, or 

the dynamic pressures at corresponding points must bear a fixed ratio to 
each other. 

In applying the Navier-Stokes equations to the two flow cases, the 
alteration of units of length, time, and pressure should transform one 
equation into the other for complete similarity. Letting subscript 1 
refer to one flow and subscript 2 to the other, the ratios of length, time, 
and pressure scales may be represented by the dimensionless quantities 

T, T, respectively; thus 

lit “ l2~ ’’’ 0) 

The length ratio applies to the lengths between corresponding points, 
while the time ratio applies to the time for a fluid particle to travel cor¬ 
responding distances. The pressures are considered to be dynamic 
pressures only, since the effect of gravity and the static portion of the total 
pressure terms compensate. 

Omitting the extraneous force term from the first of the Navier- 

Stokes equations for incompressible flow [Eqs. (25), Chap. X], 

^ ^ ^ f 4- 4- ^ I ^ I tt? du , ^ 

224 
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The development is limited to fluids of constant density and viscosity, 
with their ratios taken as 

fJL = —y P = — 
M2 P2 

The velocity term contains the units length over time; hence, the velocity 
ratio is given by the length ratio divided by the time ratio 

^ Ui Vi Wi 
— z::z Yl - 
T U2 V2 W2 

Acceleration is velocity divided by time and can be represented by 

5 = 1 = 1' 
r ^ 

The following similitude relationships are to be substituted into 
Eq. (2) when written with subscripts 1: 

= f.r2, . . . , Ui = TjUz, . . . 
Pi = 7rp2, pi = p'p2, Ml = m'M2 

This yields 

TT dp2 
p'f P2 dX2 

+ p'v M2 f d^U2 , d%2 , 

p'^‘^P2\dX2^ dy2^ dZ2^) 

T}^ f U2 dU2 

I \ dx7 
+ V2 dU2 

dy2 
+ W2 ^^^2^ 

dZ2 / 
+ rj dU2 

T di2 
(3) 

For dynamic similitude this must reduce to Eq. (2), with subscripts 2, 
which means that the dimensionless coefficients of Eq. (3) must divide 
out. This occurs if 

JL = H = 5! = 5 
P'$ p'e i r 

(4) 

The last two terms are obviously the same, since rj = {/r. Examining 
the second and third terms, 

11 =1' 
P'r « 

or 

JL- = 1 

Substituting for the dimensionless quantities and rearranging, 
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If the proper base for dynamic pressure be taken, the other relation¬ 
ships given by Eq. (4) can always be satisfied. The dimensionless ratios 
[Eq. (5)1 are given the name Reynolds number after Osborne Reynolds, 
who first determined them. If Reynolds number is the same for two 
flows having geometrically similar boundaries, the flows are said to be 
dynamically similar. For example, the flow of the same fluid (same 
temperature and density) through two pipes, one twice as large as the 
other, requires that the larger pipe have an average velocity half that 
of the smaller pipe for dynamic similitude. 

The drag on a body can be considered as made up from a pressure 
difference times an area. Solving Eq. (4) for tt. 

hence, the drag D can be written in two forms: 

(6) 
(7) 

where the ratio of numbers kiy k2 is seen to be given by 

D = kiPpu^ 
D = k^fjilu 

k^, 
ki 

(8) 

for dynamically similar flows. The dimensionless quantities fci, ^2 are 
constant for dynamic similarity (one Reynolds number) and, in general, 
vary with Reynolds number. Rewriting Eqs. (6) and (7), 

D = fi{R)pPu^ (9) 
D = f2iR)plu (10) 

where /i, /2 are unknown functions that must, in general, be determined 
by experiment. 

When Reynolds number is very small, the denominator is large com¬ 
pared with the numerator. This means that the viscous terms pre¬ 
dominate as compared w^ith the inertial terms. Hence, from Eq. (7), 
k2 must not depend on p and must therefore be a constant. Similarly, for 
large Reynolds numbers, the inertial terms predominate, and viscosity 
should have no effect. Hence, ki must be a constant. 

These two relations have been observed to hold experimentally. 
For very large Reynolds numbers, solutions of the Euler equations apply 
closely, except for a narrow region along the boundaries and possibly 
in a wake. For very small Reynolds numbers, the inertial terms (those 
containing density) may be omitted from the Navier-Stokes equations, 
permitting special solutions to be effected. For the broad range of 
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Reynolds numbers between the two extremes, theory contributes little 
and recourse must be had to experimental methods. 

116, Flow between Parallel Boundaries. For steady flow between 
fixed parallel boundaries at low Reynolds numbers, the Navier-Stokes 
equations can be greatly reduced. Taking the xy-plane midway between 
the boundaries, the flow normal to the boundaries is everywhere zero; 
i.e.y w = 0. Since the velocity at the boundaries must be zero, as shown 

z 

Fia. 129.—Viscous flow between fixed parallel boundaries. 

in Fig, 129, the change in velocity with respect to the ^-direction is much 

greater than the change with respect to the xy-directions. Hence, 
ax ay 

and their second derivatives are small compared with 
dx dy dz dz 
d^U d^v 

and can be neglected. 
dz^ dz^ 

Letting the extraneous force potential be == ghy where h is measured 
vertically upward, then the extraneous forces are given by 

The incompressible viscous flow equations [Eqs. (25) of the preceding 
chapter] reduce to 

where y pg, the unit weight of fluid. 
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The third equation shows that the pressure varies hydrostatically 
in the ^-direction; i.e., the dynamic pressure does not vary in the 2:-direc- 
tion. Hence, in each plane parallel to the the pressure gradient 
does not depend upon z. The flow lines, therefore, have the same direc¬ 
tion at corresponding points on any plane parallel to the xy-plsme. Since 
p + yh does not vary with 2, the first two equations can be integrated 

with respect to z as follows: 

zA(p + yh) = ,l^ + C^ 

z^(p + yh) = + 

From symmetry, — = 0, — = 0, at 2 = 0; hence, Ci = C2 = 0. Inte- 
oz oz 

grating again with respect to 2, 

I' ^ (p + yh) = liu + Ct 

^ (P + 7^) = lit) + Ci 

Since the flow must be zero at the boundaries, 

u = V = 0 for 2 = ±6 

where the distance between boundaries is 2b. Evaluating C3 and C4, 

2^ — ?>2 ^ 

“ - s; 
22 7)2 ^ 

v--^^(p + yh) 

(12) 

2fi dy 

the velocity distribution is seen to be parabolic. Rewriting the equations, 

d 
u = 

ax 

d 
V = — 

dy 

(p +(£-5;^’) 

(P + yh) (5^’)] - - 

d<t> 

dx 

dy 

(13) 

where — is the quantity in brackets. For this special viscous flow case 
a velocity potential exists, given by 0. Using this as an analogy to 
potential flow, Hele-Shaw^ constructed an apparatus consisting of two 

^ H. J. S. Hele-Shaw, Investigation of the Nature of the Surface Resistance of 
Water and of Stream-line Motion under Certain Experimental Conditions, Tram. 
Inst. Naval Architects^ Vol. 40, 1898. 
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closely spaced glass plates. A transparent fluid is caused to flow between 
the plates, and dye is continuously injected into the fluid at regular 
intervals along the upstream edge of the plates. An object placed 
between the plates causes the fluid to deviate in flowing around it, such 
that the dyed portions of the fluid trace out streamlines for two-dimen¬ 
sional potential flow. The results are confirmed by potential theory 
and by other experimental means. There is a slight discrepancy in the 
immediate neighborhood of the boundaries, which extends outward a 
distance about equal to the spacing between plates. By decreasing the 
spacing, the results may be made as accurate as desired. 

For motion of the upper plate in the a:-direction with velocity t/, the 
boundary conditions become 

u == V 0 for z — —b 
u = Uy V — 0 for 2 = +b 

Integrating Eqs. (11) twice and substituting these boundary conditions 
yield 

■?('•!) 
V = 

d 

2m ^ 

+ z^ — d 

2m ^ 
(p + yh) 

(p + yh) 
(14) 

The maximum velocity has been displaced from the middle plane. When 
p + yh is constant, the gradient is zero and flow results due to motion 
of the upper plate only. The 
velocity distribution is then 
linear, and work done in moving 
the upper plate is converted into 
heat through viscous shearing of 
the fluid. 

117. Theory of Lubrication. 
The equations for two-dimensional 
viscous flow are applicable to the 
case of a slider bearing and can be 
applied also to journal bearings. The simple case of a bearing of unit 
width is developed here, under the assumption that there is no flow out of 
the sides of the block, i.e., normal to the plane of Fig. 130, where the clear¬ 
ance b is shown to a greatly exaggerated scale. The motion of a bearing 
block sliding over a plane surface, inclined slightly so that fluid is crowded 
between the two surfaces, develops large supporting forces normal to the 
surfaces. The angle of inclination is very small; therefore Eqs. (11) can 
be applied to give the velocity distribution. Since elevation changes 

z 
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are also very small and flow is in the ^-direction only, the equations reduce 

to 

dj> ^ dhi 
to “ 

(16) 

It is convenient to consider the inclined block stationary and the plane 
surface in motion. The two ends of the block (Fig. 130) are considered 
to be at zero pressure, as a change in static pressure does not affect the 
computations. Using the notation of Fig. 130, the boundary conditions 
are 

x = 0, p = 0; w==C7,2 — 0; w«0, 2 = 6 

Integrating Eqs. (15) twice with respect to 2 and inserting the boundary 
conditions to evaluate the constants of integration yield 

To find the discharge Q, which, by continuity, must be the same at 
each section, the velocity is integrated over a section of width 6, 

Q -f: J wu 
udz — -x- 

m 
2 12/i to 

(17) 

for unit width normal to the plane of the figure. At the section having 

maximum pressure intensity, ^ ~ 0 

Q (18) 

where 2>o is the clearance at section of maximum pressure intensity, 
Bv 

Solving Eq. (17) for ^ and integrating with respect to x, where 
ox 

b ^ bi — ax, a = (6i — bi)/L, from Fig. 130, 

_ _I p 
” a(6i — ax) a(bi — ax)* (19) 

where Q and C may be determined by the two conditions p ■» 0, for 
X = 0, L. Substituting these conditions, 

and 

P _ Ubib, Ub,, 
^ bi + bi~ 2 

QnUx{b — b») 
b\bi + bt) 

(20) 

(21) 
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The last relation shows that b must be greater than 62 for positive pressure 
build-up in the bearing. From Eq. (20), 

60 

X 
Proto. 

26162 

61 + 62 

61 — 60 _ ^ 61 — 62 _ h\L 
a a 61 + 62 61 + 62 

Inserting these values of bo and x into Eq. (21) the maximum pressure 
intensity is 

_3/xC/Zy 6i — 62 

26162 61 + 62 
(22) 

The force P, which the bearing will sustain, is given by 

Inserting the value of 6 in terms of x and integrating, 

P - 

where k = 61/62, 
The drag D on the bearing is given by 

rL 

“--/o 
du\ 

0 

dx 
««»o 

(23) 

du 
Evaluating — for z = 0, from Eq. (16), 

OZ 

dw! 
dz *•■0 

b dp 
2/1 dx 

u 
b 

Inserting the value of the pressure gradient 

dp _ 6/11/ _ 12/iQ 
dx ~ 6* 6* 

and integrating. 

(24) 

Equation (23) gives a maximum P for k approximately 2.2. For this 

value. 

0.16/1 
VL^ 
bi^’ 

0.75/1 
UL 

bt 
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and the ratio 
L 

62 

can be made very large, since 62 is small. This type of bearing is capable 
of sustaining large loads. The pressure distribution is shown for one 
case in Fig. 130. 

For k = 2.2, x = 0.58L, where x is the distance to line of action of the 
bearing load. In general, the position of the line of action is given by 

L 2k k- — 1 — 2k In k 
2 [ir^l “ (k^ - l) Tn k-2{k- 1)2_ 

(25) 

Journal bearings^ are computed in an analogous manner. In general, 
the clearances are so small com¬ 
pared with the radius of curva¬ 
ture of bearing surface that the 
equations for plane motion can be 
applied. 

118. Steady Flow through Cir¬ 
cular Tubes. The Navier-Stokes 

equations may be expressed in 
cylindrical coordinates and then 
reduced to the case of one-dimen¬ 
sional flow. It is much simpler, 
however, to derive the differential 
equation that applies to this case 
directly from consideration of a 
thin cylindrical lamina. For Rey¬ 
nolds numbers less than 2000, 
based on average velocity and 
diameter of tube, the flow is lam¬ 
inar and fluid particles move in 

straight lines parallel to the axis of the tube. For higher Reynolds num¬ 
bers the flow may be laminar; but in general, it is unstable. 

The fluid may be visualized as telescoping layers, with each lamina 
moving faster than the one next larger. Those fluid particles in contact 
with the conduit walls are at rest. Selecting the free body as shown in 
Fig. 131 and writing the equation of motion for the a;-direction, 

27rr hr ^ + Sttt hr hx 7 ~ (r27rr hx) fir = 0 

h 

* For more detailed information see A. E. Norton, ‘Tubrication,^^ McGraw-Hill 
Book Company, Inc., New York, 1942. 
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The first term represents the pressure force on the ends of the element, 
the second term the action of gravity, and the third term the shear force 
from the curved surfaces. The resultant of these forces is equated to 
zero, since each particle moves through the tube with constant speed, 
i.e.j the acceleration is zero. Dividing by the volume of the element, 

+ (26) 

The shear stress may be expressed in terms of viscosity and velocity 
gradient, 

r = 

where the minus sign is introduced because — is negative for the par¬ 

ticular coordinate system. Substituting into Eq. (26), remembering that 

— (p + 7^) is not a function of r and is, in fact, a constant for a given 
C/3/ 

flow, the equation can be integrated twice; thus 

^-{p + yh)= ^r- + Cx 

and 

« = ^ (P + 7*) - Cl In r + 02 (27) 

Since the velocity must be finite at the axis of the tube, C\ = 0. 
Solving for C2, using w = 0, for r == a, 

“ - - ^ W 

where a is the radius of the tube. The velocity distribution is parabolic, 
with maximum velocity at the axis: 

The average velocity u can be found by integrating over the section or by 
recalling that since a paraboloid of revolution has a volume one-half that 
of its circumscribing cylinder, it must be half the maximum velocity. 

M = 

For a horizontal tube the discharge Q is 

o - 
^ “ 128mL 

I 
! 

(30) 

(31) 
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where D is the diameter and Ap the pressure drop in the length L. Equa¬ 
tion (31) is usually called PoiseuilWs law; it was obtained experimentally 
by Hagen in 1839 and independently by Poiseuille in 1840. The theo¬ 
retical derivation was made by Wiedemann in 1856. 

Equation (27) may be applied to laminar flow in the annular space 
between two concentric tubes. Letting r = a he the outer boundary 
and r = 6 the inner boundary, two conditions are available to determine 
the two constants: 

w = 0, r = a; u = 0, r = h 

Evaluating the constants, the velocity distribution is given by 

52, 
« = - (p + yh) (a^ r* + 

In b/a ■”?) 4/i dx 

and the' discharge Q by 

<2-jT'arr u dr 

(32) 

(33) 

119. Flow with Very Low Velocity. Percolation. The Navier-Stokes 
equations for incompressible flow can be solved when the velocity com- 

., , , ,, , u du V du w du 
ponents are considered to be so small that such terms as — 

dx dy 
can be neglected. For steady flow, Eqs. (25), Sec. 113, reduce to 

dz 

dx 

dy 

iP + yh) 

(P + yh) 

H VHi 

n V’‘v (34) 

— (p + yA) = /i VHv 

where gravity is the only extraneous force acting. Taking the derivative 
of the first of the equations with respect to Xy the second with respect to y, 
and the third with respect to z and adding, 

V2(p -b yh) (^ 4^ J!L 4. 4- ^ 4- 
\dx^ dy^ \dx dy'^ dzj 

or 

V*(p + yh) - MV^div q) 
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Since the divergence of the velocity vector is zero in incompressible flow, 
the equation reduces to 

V2(p + yh) =0 (35) 

which must be satisfied along with the continuity equation and boundary 
conditions. The neglect of the acceleration terms, in effect, states that 
the complete energ}^ required to overcome viscous shear must be obtaine^I 
from potential energy. 

In the flow of fluid through pervious materials, such as the flow of 
water through sand, the velocities are usually very small and the passages 
very small. Although it is impossible to write the equations for an 
individual fluid particle, the mass-flow relationship is given by Eq. (35). 
This is the Laplace equation; hence, a velocity potential exists, with 
velocity given by 

k d . \ 

+ (36) 

where k is the permeability coefficient which has the dimensions of 
velocity. The permeability coefficient takes into account the size, shape, 
spacing, and roughness of the solid particles as well as the physical prop¬ 
erties of the fluid. For two-dimensional flow cases, such as flow under a 
long dam, the flow net may be constructed graphically or by any con¬ 
venient means available to ideal fluid theory. When the porous 
media is stratified, k takes on directional properties and is no longer a 
constant. 

120. Viscous Flow arotmd a Sphere at Very Low Velocity. Stokes^ 
Law. The flow of a viscous fluid around a sphere at very low Reynolds 
numbers has been solved by Stokes.^ The Navier-Stokes equations with 
the acceleration terms omitted must be satisfied, as well as continuity 
and the boundary condition that the velocity at the surface of the sphere 
vanishes. Equations (34) are the reduced equations that must be 
satisfied. 

The Stokes solution is given by the following equations, which are 
readily checked by substitution into Eqs. (34), continuity, and the 

^ G. Stokes, Tram. Cambridge Phil. Soc., Vol. 8, 1845, and Vol. 9, 1861. 
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boundary conditions: 

The radius is a; u = [/is the undisturbed velocity of the fluid; and p is 

the average dynamic pressure intensity at a point. The origin is taken 
at the center of the sphere. 

The Stokes^ stream function (Sec. 17) can be obtained from the 
velocity components. First, the velocity component in the radial direc¬ 
tion qr is given by 

Qr U- + W- 
r r r 

since ar/r, y/r, z/r are direction cosines of a radial line through the point 
Substituting for w, v, w from Eqs. (37), 

rr /i 3 a , 1 a®\ x 
'”2r“’“2r*/r 

(38) 

The flow %nl/ through the segment of a sphere subtending the angle d 
at the origin, as shown in Fig. 132, is given by 

2ir^ —gr)r sin BrdB 
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Inserting Eq. (38) and performing the integration, 

237 

For translation of the sphere through an infinite fluid, a uniform flow 

Fia. 133.—Instantaneous streamlines for translation of sphere through viscous fluid. 

= — [/ may be superposed on the fluid. The stream function for 
uniform flow is 

Ur^ . 
^ ^ sin2 e 

Adding the two stream functions. 

I Uar (> - 3^) sin^ 6 (40) 

The instantaneous streamlines are shown in Fig. 133 for equal increments 
of These streamlines should be com¬ 
pared with the ideal fluid streamlines 
shown in Fig. 29. The great difference is 
not surprising when it is recalled that 
completely different forces are assumed to 
act and that the boundary conditions are 
different. 

To find the drag on the sphere the 
components due to pressure and to shear 
must be determined and summed up over 
its surface. Since there is axial symmetry, 
it is convenient to work with the radial and 
tangential components of velocity. Referring to Fig. 134 and to Eqs 

Fio. 134.—Radial and tangential 
axes on surface of sphere. 
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(37) and (38), 

?,=c7costf(iI 

gt = -t/sin o[l “|;(3 +^)] I 

The pressure intensity acting over the surface of the sphere may be 
found from Eqs. (23), Sec. 112, together with the above equations: 

(Tr -p + 2m 
dr 

Evaluating ^ at r = a it is found to be zero; hence, the pressure intensity 

over the surface is given by the expression for average pressure intensity 
at a point [Eqs. (37)]: 

p = I — cos 0 (42) 
2 a ^ 

Integrating over the surface of the sphere, using the x-component of the 
pressure force, the drag due to pressure difference is 

Dp = — 27rtt2 jj p cos d sin $ dO = 2TafjLU (43) 

The drag due to viscous shear must be evaluated from the shear stress 

for r = a. Thus 

tt ■ 3a , a*\ 

which is zero for r a, and 

dqt 3 Ua . . A , aA 
= — - - ™ sm 0 I 1 H—r I 

dr 4 r2 \ ry 

which, for r ^ a, becomes 

dr 
-3 U . 

The shear stress tangent to the surface and in the plane of symmetry is 
then 

Tt9 
-3 U , . 

(45) 
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The force on the sphere in the a:-direction due to shear is given by 

— 2fKa^ j TrB sin^ 0 dB 

Substituting for Tr^jr-a and performing the integration give the drag due 
to viscous shear Dr: 

Dr = AwaixU (46) 

The total drag on the sphere is then 

D == (47) 

\vhich is known as Stokes* law. It should be noted that viscous shear 
contributes two-thirds of the drag on the sphere. 

Using the drag given by Eq. (47), the settling velocity of small 
particles can be obtained by writing the equation of equilibrium for drag, 
weight of particle, and buoyant force: 

OiraiJiU + 

where 7* is the specific weight of the solid particle. Simplifying, 

= -7) (48) 

Stokes' law has been found by experiment to hold for Reynolds numbers 
below 1; i.e., 

2apU ^ ^ 

M 

Exercises 

1. Apply the principles of similitude to the Euler equations. What conclusions 

can be drawn from the equations in this mauru^r? 

2. A sleeve 6 in. long is concentric with a 3-in .-diameter shaft and has a clearance 
of 0.002 in. A fluid with viscosity 1.0 poise completely fills the space between shaft 
and sleeve. 

(a) Find the velocity with which the sleeve moves parallel to the shaft when a 
force of 20 lb is applied to it parallel to the shaft. The shaft rotates at 1000 rpm 
relative to the sleeve. 

(6) What torque on the shaft is required to overcome resistance between sleeve 
and shaft? 

3. (a) Find the terminal thickness of a liquid film that flows down a glass plate 
inclined 30 deg with the vertical. The maximum velocity at the surface of the film 
is 2 ft per sec, ju — 0.0001 lb-sec per ft*, p = 2.0 slugs per ft^. 

(b) How many pounds per hour flow down the plate per foot of width? 
Am. (a) 0.032 in.; (h) 826. 

4. (a) Find the direction and amount of flow per foot of width between two parallel 
plates when one is moving relative to the other. The upper plate has a velocity 10 ft 
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per sec in the negative z-direction. The plates are horizontal with a spacing of 

0.001 ft. ^ = -10,000 lb per ft»; m = 0.0001 lb-sec per ft». 

(6) What force is required to move the upper plate per square foot of surface? 
5. A vertical turbine shaft carries a load of 80,000 lb on a thrust bearing con¬ 

sisting of 16 flat rocker plates, 3 in. by 9 in., arranged with their long dimension 
radial from the shaft with their centers on a circle of radius 1.5 ft. The shaft turns 
at 120 rpm, ^ = 0.002 lb-sec per ft*. If the plates take the optimum angle for 
maximum load, find (neglecting effects of curvature and radial lubricant flow) (a) the 
clearance between rocker plate and fixed plate, (b) the maximum pressure intensity 
under the plates, and (c) the torque loss due to the bearing. 

6. Find the drag per foot on the inner tube of a horizontal annular system, where 

a » 1.0 in., h “ 0.5 in., ^ = —300 lb per ft*, /i = 0.01 lb-sec per ft*, p ■» 1.8 slugs 

per ft*. 
7. A pervious stratum of earth in a valley is 1 mile wide and 40 ft deep. The 

ground-water table slope is 1 per cent (1 vertical to 100 horizontal). Find the dis¬ 
charge in millions of gallons per day. A: = 50 ft per day. 

8. Plot the same streamlines for steady flow around a sphere, for the two cases: 
(a) viscous flow, Reynolds number less than 1, and (6) ideal fluid flow, same approach 
velocity as in (a). 

9. What is the largest diameter of dust particle that will settle in standard sea- 
level air and obey Stokes^ law? Find its settling velocity. Specific weight 7 « 160 
lb per ft*. 



CHAPTER XII 

THE BOUNDARY LAYER 

In the preceding chapters two types of fluid problems have been 
considered: (1) those in which the viscosity has been neglected, i.e., 
potential or irrotational flow, and (2) those in which viscosity is taken 

into account but, due to the complexity of the equations, certain inertial 
terms have been neglected, usually for cases of very low velocities. 

In 1904 PrandtP developed the concept of the boundary layer, which 

provided an important link between the two extreme cases heretofore 

studied. For fluids having relatively small viscosity, the effect of internal 
friction in a fluid is appreciable only in a narrow region surrounding the 

fluid boundaries. From this hypothesis the flow outside the boundary 

layer could be considered ideal or potential flow. The Navier-Stokes 

equations apply to the boundary layer and can be reduced to a more 

simple form. In this chapter the basic equations for the boundary layer 

are developed and applied to simple flow cases. 
121. Description of the Boundary Layer. When motion of a fluid 

having very small viscosity is started from rest, the flow is essentially 

irrotational in the first instants. Since the fluid at the boundaries must 

have zero velocity relative to the boundaries, there is a sharp velocity 
gradient from the velocity given by the potential flow to the boundary. 

This velocity gradient in a real fluid sets up shear forces in the boundary 

that tend to reduce the flow relative to the boundary. That fluid layer 

that has had its velocity affected by the boundary shear is called the 

boundary layer. 

Considering a streamlined body at rest in an otherwise uniform flow, 
the boundary layer at its upstream end is very thin. As this layer moves 

along the body, the continual action of the shear forces slows down 

additional fluid particles, causing an increase in thickness of the boundary 

layer with distance from the upstream point. The fluid in the layer is 

subjected to a pressure gradient and to shear forces. The resultant of 

these forces on a fluid element must equal the time rate of change of its 
momentum. Basic equations are obtained either from the Navier-Stokes 

equations or from considerations of momentum. 

^ Prandtl, L., Uber Flussigkeitsbewegung bei sehr kleiner Reibung, Verhandl. des 
III Intern, Math.-Kongr,^ Heidelberg, 1904. 

241 
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In general, the subject of turbulence is beyond the scope of thivs 
volume; but in turbulent flow, momentum is brought into the boundary 
layer by the erratic motion of fluid particles, thereby affecting its growth. 
This chapter deals with those cases in which the turbulent transfer of 
momentum can be neglected. 

When the body is a thin plate parallel to a uniform stream, the veloc¬ 
ity distribution near the plate is shown in Fig. 136. The fluid between 
the dashed line and the plate has been retarded by shear forces at the 
boundary surface and comprises the boundary layer. When the motion 
of fluid particles in this layer are sensibly straight line, it is a laminar 
boundary layer; and when the motion of fluid particles are erratic, it is a 

Fia. 135.—Boundary layer growth along a flat plate. 

turbulent boundary layer. As the layer grows in thickness, it becomes 
progressively more unstable and eventually changes from laminar to 
turbulent. When the boundary layer is turbulent, there is a very thin 
layer next to the boundary that still has laminar motion. It is called the 
laminar sub-layer, 

122. Differential Equation of the Boundary Layer. Restricting the 
flow to two dimensions, as along a plane boundary, the Navier-Stokes 
equations [Eqs. (25), Sec. 113] can be greatly simplified. Neglecting 

extraneous forces and with flow parallel to the a:2/-plane, the equations 
become 

which, together with the continuity equation 

du . dv 
dx dy 

= 0 (2) 

must be satisfied in the boundary layer. The various terms in the 
equations will be examined to find their relative importance in the thin 
boundary layer. 

Following PrandtPs^ method, dimensionless quantities ty, r of order 

^ W. F. Durand (editor-in-chief), Aerodynamic Theory,^' Vol, III, pp. 80-84, 
Verlag Julius Springer, Berlin, 1935. 
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of magnitude unity, written 0(1), are introduced. Letting 

243 

^ y = t = 2 
u T 

where I is characteristic of the length in the direction of flow x; Hs char¬ 
acteristic of the thickness of the boundary layer 0(6), a distance much 
smaller than 1] and Z/?7, a time, is characteristic of the flow through the 
boundary layer. The order of magnitude of v can now be determined 
relative to u by integration of Eq. (2), 

f‘du, S f^du. 

where the dimensionless length parameters have been introduced. The 
right-hand integral is 0(t/), since { and rj both vary from zero to unity; 

hence, t; is 0 (r») • Inserting the dimensionless parameters in Eqs. (1), 

/1 d^u , 1 d^u\ /U^.udu^v du\ 

'* V* ^2 P ^7 ~ 5 dri dr'^ Tdl'^ I 

. * d^u 
Since {, rj vary from 0 to 1, the second derivatives are 0(w). 

Therefore, the term can be neglected in comparison with^~^> 

since 6 is much smaller than L Leaving out of consideration possible 
shock forces, the terms on the right-hand side may be taken as having 
the same order of magnitude. The pressure term cannot be of lower 
order than all the other terms; and since both viscous and inertial terms 

come into the boundary layer, ^ ^ and y ^ should be of the same 

order of magnitude, 

cients are of the same order; hence, 

Furthermore, as and ^ are 0(w), their coeffi- 

52 I 

Replacing u by 17, the expression may be written 
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where v — \klp. The ratio of thickness of boundary layer to length of 
flow is inversely proportional to the square root of Reynolds number, 
where the characteristic length is measured from the leading edge. 

Considering now the second equation, ^ ^ cannot be of lower order 

u dv 
than the acceleration terms, say p -j Since 

drj 
IS 

0 

compared witb of 0(pt/“). Hence 

o a 
Fiq. 136.—Segment of lx)nndary layer. 

is very small compared with ^ 
dy] d^ 

and can be set equal to zero; or in 
words, the pressure intensity does 
not vary with y and is determined 
by the potential flow outside the 
boundary layer. 

The final equations may now 
be written, viz,y 

and 

du 
dx 

I I 

dy di) 

du dv 
dx dy 

(4) 

(5) 

By introducing the stream function 

u 
dyp 

V 
dx 

which identically satisfies the continuity equation, Eq. (4) becomes 

^ dy^ dx ^\dydxdy dx dy^ dy dt) ^ 

It must be remembered that this equation holds only for a thi^ boundary 
layer, which from Eq. (3) occurs for large Reynolds numbers. 

123. Momentum Equation Applied to the Botmdary Layer. Follow¬ 
ing von KArmdn’s^ method, the principle of momentum may be applied 
directly to the boundary layer, without recourse to the Navier-Stokes 
equations. Considering a small segment of the layer (Fig. 136), where 

‘ Th. von Kdrmdn, On Laminar and Turbulent Friction, Z. angew. Math Mech,^ 
Bd, 1, pp. 235-236, 1921. 
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ahcd is fixed, the resultant force in the a:-direction must equal the time 
rate of increase of momentum within ahcd minus the net influx of momen¬ 
tum across the surface of the element in unit time. The resultant force 
on the element is, for unit breadth, 

dx —■ 
v-o dx 

dx d 

The net mass outflow through cd and ah is 

dx 
dx 

This mass must be entering through be and hence brings into the element 
in unit time the momentum 

U 
dx (/o dx 

The excess of momentum per unit time leaving cd over that entering ah is 

s(/, 
The time rate of increase of momentum within abed is given by 

(/„ 
Assembling the force and momentum terms, then dividing out dx, 

= -^5- 
dx 

du 

’ dy ll/-0 
(7) 

which is the desired momentum equation. 
Equation (7) can also be obtained directly from Eq. (4) through 

integration with respect to y. First, 

+ - /o'“S''=' + ”1 - /o “I''*' 
where the second integration was effected by parts. Since w = i; = 0, 
for y = 0, and 

“I--''/.' 

du 
dx 

dy 

du 
dx 

from Eq. (5), 
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Also, using Eq. (6), 

/■* dv, r 1 r 
" j. “aj'*''-jo 

Equation (7) is now obtained by multiplying Eq. (4) by dy and integrat¬ 

ing, using these relationships. 
For steady flow of an infinite fluid along a flat plate the pressure drop 

is zero, U becomes a constant, and Eq. (7) reduces to 

where 

p{U — u)u dy 

y-O 

(8) 

The momentum approach is highly desirable when the equations of 
motion are too difficult to handle or when little is known of the internal 
mechanism of the phenomenon. Equation (8) is applied to flow along a 

flat plate in Sec. 128. 
124. Diffusion of Vorticity from a Boimdary. The concept of the 

development and growth of the boundary layer can be clarified by an 
analogy between diffusion of heat and diffusion of vorticity in a fluid 

stream. 
Potential flow may be shown to satisfy the Navier-Stokes equations. 

Introducing the velocity potential into the terms containing viscosity, 

vV^u = ^ ^ • • • 

Since = 0 for potential flow, the terms containing viscosity drop out, 
leaving the Euler equations. 

The difficulty, however, is with the boundary conditions. A viscous 
fluid clings to the boundary and requires two conditions, that the normal 
and tangential components of velocity at the boundary vanish relative 
to the boundary. These conditions can in general be met by the Navier- 
Stokes equations, as they are of higher order than the Euler equations. 
With the assumption of potential flow, however, they cannot be satisfied, 
since their order is reduced. In fact, it has been shown by Jeffreys^ 
that when a velocity potential is assumed, with no motion of fluid at the 
boxmdaries relative to the boundaries, the only motion is one of transla¬ 
tion of fluid and boundary as if both were solid. 

In the first instants as motion is started, the flow is irrotational. Due 
to the lack of slip at the boundaries, rotation starts there. For a plane 

^Jeffreys, Proc, Roy, Soc, A., Vol. 128, p. 376, 1930. 
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boundary the rotation w, is given by 

1 (dv du\ 
dy) 

Differentiating the first of the two-dimensional Navier-Stokes equations 
[Eqs. (1)] by y and the second by then subtracting the first from the 
second, using Eqs. (2) and (9), 
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(9) 

dbiz , do)* , d(jdz 

dx^ dy ^ dt dy^J (10) 

Replacing oj, by a symbol for temperature and v by a symbol for 
thermal diffusivity, the equation gives the variation in temperature 
of a fluid with velocity components Therefore, heat is imparted to a 
fluid from a body in the flow in exactly the same manner that vortices 
diffuse into the fluid. For very slow motions, z.e., low Reynolds numbers, 
heat flows out in all directions from the boundary and, similarly, vortices 
spread in all directions from the boundary, making the flow rotational. 
For high velocities or very small viscosities, f.e., high Reynolds numbers, 
the only fluid heated would be in the narrow layer of fluid surrounding 
the body and in the wake. Similarly, rotational flow is confined to the 
narrow layer called the boundary layer and to the wake. 

Although this analogy does not aid in the quantitative solution of the 
Navier-Stokes equations, it presents a clear picture of the spread of 
vorticity. 

Referring to Eq. (9), ^ is small compared with in the boundary 

layer. Hence, the rotation term becomes 

CO, = 
1 ^ 
2dy (11) 

which is large in a thin boundary layer. At the outer edge of the bound- 
♦ • du 

ary layer, as u approaches the velocity U of the main flow, — becomes 

small and the vorticity vanishes. 
126. Definition of Boundary-layer Thickness. Although the velocity 

u in the boundary layer approaches the velocity U of the main flow 
asymptotically, for practical purposes the boundary layer may be defined 
as the region where most of the velocity change occurs. Various defini¬ 
tions of boundary-layer thickness have been suggested. 

The most basic definition is referred to the displacement of the main 
flow due to slowing down of fluid particles in the boundary zone. This 



248 

thickness 6i is given by 
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Uhl = i{U - u) dy (12) 

Referring to Fig. 137a, the line y = 5i is drawn such that the shaded 
areas are equal. This distance is, in itself, not the distance that is 
strongly affected by the boundary. In fact, that region is frequently 
taken as 3di. 

Another definition, given by Fig. 137&, is the distance to the point 
where u/U = 0.99. A third definition, given by Fig. 137c, is the dis- 

Fig. 137.—Definitions of boundary layer thickness. 

tance from the wall to the intersection of the tangent to the velocity 
distribution curve at the origin and the asymptote. 

126. Application of Equations to Curved Boundaries. The differ¬ 
ential equations, worked out for a thin boundary layer, are equally 
applicable to curved boundaries when the radius of curvature is large 
compared with the boundary-layer thickness. Centrifugal forces enter 
into the expression for pressure change normal to the boundary, but the 
actual change is 0(5). The coordinate x may be taken as the distance 
along the curved surface, and y as the normal distance. For curved 

boundaries, U and in general, become functions of x. 

127. Two-dimensional Flow along a Flat Plate: Exact Solution. For 
steady flow of an infinite fluid along a flat plate, the pressure gradient 
becomes zero and the boundary-layer equations become integrable. 
Equations (4) and (5) become 

— 

dx 
du _ 

dy ~ " dy^ 
(13) 

O
 II (14) 

and 
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The undisturbed velocity U (Fig. 138) is constant. To satisfy continuity, 
the stream function is introduced: 

V 
dx 

The assumption is next made that the velocity distribution curves 
in the boundary layer all have the same form; viz., 

u 
V = F(v) 

where 77 = y/5j d is the thickness of boundary layer, and F is an unknown 

Fig. 138.—Flow of an infinite fluid along a flat plate. 

function. In Sec, 122 it was shown that 

hence, 

6 1 
- 

3: vr V 

where b has absorbed the proportionality factor. For convenience it is 
now assumed that F{ri) is the derivative of another function /(tj), 

^ = fiv), r, = I Vfl (15) 

The stream function is obtained by integration of Eq. (15), as follows: 

“ - w'(,) - -1 
then 

= - Uinv) dy + G(x) (16) 

where (?(x) is an arbitrary function of x only and may be taken as zero, 
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since it is convenient to let the boundary streamline be = 0. From the 

value of i>, Eq. (15) 

an = ay 

Substituting for dy in Eq. (16), integrating, and simplifying, 

f = - y/^xjin) (17) 

where, at the boundary, /(ij) = /(O) = 0 

The terms and v are determined from for substitution 
dx dy dy- 

into Eq. (13), as follows; 

du ^ 
dx ur(,) 1 1 U^yf'in) 

2 -y/v 

/"(v) 
_ d^fin) 

dij* 

du 

^ ~ 
Uf'M g 

and 
dH _ 
dy^ r'M - ^ 

Finally, 

dyff t) = -I. = 
dx 

1 lyU 
2^1 X • fiv) + ^ Ufin) 

Substitution of these terms in Eq. (13) yields, upon simplification, 

mrin) + 2f"in) = 0 (18) 

This differential equation of the velocity distribution in the boundary 
layer is of the third order; and hence, its solution has three constants of 
integration. The boundary values are w = r = 0, for y = 0, and u = U, 
tor y —* 00, which become, in terms of n, 

fin) = 1, for ij 00 

/(»?)=/'W = 0 for „ = 0 

Equation (18) has been solved by Blasius* by building up particular 
solutions that satisfy the boundary conditions. The equation was inte¬ 
grated numerically by T6pfer,® using the boundary conditions at = 0. 

‘ H. Blasius, Grencschichten in Fltkssigkeiten mit kleiner Reibuug, Z. Math. 
Phyrik, Bd. 66, pp. 4-13, 1908. 

• C. T6pfer, Z. Math. Phytik, Bd. 60, p. 397, 1912. 
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The results are practically identical in both cases, but the methods of 
solution are so involved that reference is made to the original papers for 
details. The numerical results are given in the following table and have 
been found to agree closely with experiment. 

Theoretical Velocity Distribution in Boundary Later 

17= I vs 

V f'M V f'M V f'M 1 f'M 

0 0 1.6 0.5168 3.2 0.8761 4.8 0.9878 
0.2 0.0664 1.8 ! 0.5778 3.4 0.9018 5.0 0.9919 
0.4 0.1328 2.0 0.6298 3.6 0.9233 5.2 0,9943 
0.6 0.1990 2.2 0.6813 3.8 0.9411 5.4 0.9962 
0.8 0.2647 2.4 0.7290 4.0 0.9555 5.6 0.9975 
1.0 0.3298 2.6 0.7725 4.2 0.9670 5.8 0.9984 
1.2 0.3938 2.8 0.8115 4.4 0.9759 6.0 0.9990 
1.4 0.4563 3.0 0.8461 4.6 0.9827 

Blasius has computed the displacement of the main flow [Eq. (12)] 
to be 

or 

X Vr (19) 

Letting the thickness of the boundary layer be taken arbitrarily as 35i, 
then 

i = 
X X y/R 

(20) 

which corresponds to a value u/U = 0.994 from the theoretical solution. 
du 

From the table, the value of ^ can be evaluated for y »= 0; thus 

Au 
Ay 

umv) 

Since the function is a straight line for small values of 17, the increment 
All » 0.2 may be taken 

^ _ 0-0664 u Vr 
dyymo 0.20 X 
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and the shear stress at the boundary to becomes 

'■SL 
The shear stress at the boundary is observed to decrease with distance 
from the leading edge, while the boundary layer thickness increases. 

The drag on one side of a flat plate per unit breadth is 

hence, 

or 

Z) = r To c/x = 0.332 r ~ 
yo Jo^ y/x 

D = 0.664 \/pnUH 

0 = ?:^,!/.; 
Vr 

(22) 

(23) 

Expressing the drag in terms of a drag coefficient Co times the stagnation 
pressure pU'^/'i and the area of plate I (per unit breadth), 

where 

D^Cv^ I 

1.328 
(24) 

128. Momentum Equation Applied to Two-dimensional Flow along 
a Flat Plate. Rewriting Eq. (8), with the limit of integration 0 to h, 

ro = ^ ^ p{U - u)udy (25) 

where h is greater than b but is independent of x. The quantity h is still 
of the order of magnitude of 5, but its exact value is unimportant, since 
the integrand vanishes as u approaches U. 

The momentum equation gives no information regarding the velocity 
distribution in the boundary layer. For an assumed distribution, which 
satisfies the boundary conditions w = 0, ?/ = 0, w = J7, y == 5, the bound¬ 
ary layer thickness as well as the shear at the boundary can be determined. 

Letting 

U = F(n), n = I (26) 
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as before, where 5 is unknown, the integral of Eq. (25) can be calculated: 

fh/S 

= 8U^p / (1 - F)Fdv 

Once the function F is assumed, the integral becomes a constant whose 
value will be given the symbol a. Then 

ro = ^ (5C/V) 

Now 

To -'sl 
from Eq. (26). Letting F'(0) be represented by /3 and equating the 
expressions for ro, 

Simplifying, 

d V fJiUP 
_ (at/v) = — 

d8 v0 
dx aU 

and performing the integration for 5 = 0, a: = 0, 

___ I2v0x 

“ V 
(27) 

The surface shear stress now becomes 

X 

and the drag on one side of the plate, per unit breadth, 

To dx = \/2afipLpUH 

The values of 8 and tq are evaluated for two velocity distributions. 
First, following Lamb, 

(28) 

(29) 

Fiif) = sin ^ jj, 0 ^ < 1 

Fiv) = 1, 1 < ’» < ^ 
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Comparing these values with the exact values [Eqs. (19) and (20)], the 
agreement is remarkable. The results are comparatively insensible to 
the particular velocity distribution selected. 

The momentum method, due to its extreme simplicity, becomes a 
very useful tool, particularly for those cases where the exact method 
cumot be evaluated. 

129. Boundary-layer Growth with Pressure Rise. Separation. 
When the pressure intensity decreases in the direction of motion, the 
pressure force tends to accelerate the boundary layer and thereby aids 
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in keeping it thin. With an adverse pressure gradient the pressure and 
boundary shear both act to retard the layer, thereby causing it to thicken. 
If there is not sufficient kinetic energy available in the layer to carry it 
through the zone of increasing pressure, the fluid particles near the wall 

lose their forward velocity, i.e., — J = 0, and the streamline moving 

along near the wall is diverted out from the boundary. This phenomenon 
is known as separation. When separation occurs, the boundary layer 
becomes thick, and vorticity is shed from the boundary into the thick- 

Fia. 139.—Effect of adverse pressure gradient on boundary layer. Separation. 

ened boundary layer. Back flow necessarily occurs downstream from 
the point of separation, and eddies develop in the boundary layer. 

The action of an adverse pressure gradient on the boundary layer is 
illustrated in Fig. 139. The slope of the velocity distribution curve 
grows more steep until it becomes vertical, at which point separation 
occurs. There the streamline leaves the boundary, and back flow 
commences. 

Limiting the discussion to steady flow, the differential equation for 
the boundary layer [Eq. (4)] can be applied to the boundary, z.e., let 
u — V — 0] hence 

dx ^ dy^ (31) 

Furthermore, the pressure gradient may be expressed in terms of the 
potential flow outside the boundary layer, using Bernoulli's equation: 

IP ^ dp 
P + 'T-^- 

Equation (31) now takes the form 

dhi 
" dy^ ^ dx 

(32) 

(33) 

which applies only to the boundary; i.e., y = 0. 
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Substituting the expression for pressure gradient [Eq. (32)] into the 

momentum equation [Eq. (7)] and solving for to = 
dul 

^ dy\yj 

To (34) 

Equations (33) and (34) together with Eqs. (4) and (5) are the controlling 
equations for determining boundary layer growth when the velocity U 
in the main flow is a known function of x. 

When the velocity outside the boundary layer is increasing in the 
d^'U 

direction of flow, ^ is negative, from Eq. (33), which means that the 

slope of the velocity distribution curve at the boundary is decreasing; 
hence, the trend in the boundary layer is opposite that shown in Fig. 139, 
and separation cannot occur. With a pressure rise in the direction of 

S . 
flow, from Eq. (31), is positive, and the sequence of events illustrated 

in Fig. 139 is sure to occur, provided that the adverse pressure zone exists 
over a sufficiently long portion of the boundary. 

A quantitative calculation can be carried out for each particular case 
to the point of separation. This is effected by expressing ?7 as a power 
series in x, by introducing the stream function, and by substituting in 
Eq. (4). The methods are involved, and reference is made to the work 
of Blasius^ for details. It should be remarked that the methods do not 
give information beyond the point of separation, since Eq. (4) is valid 
only for thin boundary layers. Hiemenz^ has carried through the 
theoretical calculations and has also conducted very careful experiments 
on the flow of water around a circular cylinder. He found that his calcu 
lations located the point of separation within one degree of that deter 
mined by experiment. 

Beyond the separation point the skin friction forces are generally 
negligible, and the fluid may be again considered as frictionless, but with 
vorticity in the wake. 

Equations (33) and (34) have been used by Pohlhausen^ with a 
velocity distribution of the form 

u ^ ay + by^ + cy^ + dy^ 

‘ H. Blasius, Grenzschichten in Fltlssigkeiten mit kleiner Reibung, Z. Math. 
Physik, Bd. 56, pp. 4~13, 1908. 

* Hiemenz, Die Grenzschicht an einem in den gleichformigen Fliissigkeitsstronci 

eingetauchten geraden Kreiszylinder, Dinglers polytech. Vol. 326, p. 321, 1911. 

3 Pohlhausen, K., Zur naherungsweisen Integration der Differentialgleichung der 

laminaren Grenzschicht, Z. angew. Math. Mech.^ Bd. 1, p. 252, 1921. 
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The calculations are quite involved but agreed with the results of Hie- 
menz on location of separation point within 1 per cent. 

Further calculations by PrandtF show that the boundary layer is 
incapable of sustaining itself without separation against strong adverse 
pressures. For most technical applications where it is desirable to con¬ 
vert kinetic energy into pressure energy by means of an expanding 
conduit, the action of ^Hurbulence’^ increases the momentum carried into 
the boundary layer from the main flow and, hence, reduces the action of 
adverse pressure gradient in causing separation. 

130. Turbulence. The resulting flows obtained by use of the Navier- 
Stokes equations are not necessarily stable and, in fact, for large Reynolds 
numbers do not occur. This does not mean that the Navier-Stokes 
equations are inadequate to describe the flow phenomena but that the 
method of applying them, i.e., by considering the flow is steady, is inac¬ 
curate. For large Reynolds numbers the smooth streaming flow con¬ 
sidered to take place with viscous fluids is broken down into a flow in 
which the paths of individual particles are erratic, and there are rapid 
fluctuations of velocity and pressure at any point. 

If flow is considered to start at low Reynolds numbers and then 
increase, turbulence develops from the shedding of vortices from the 
boundaries. At high Reynolds numbers, due to the complexity of 
vortices in the flow and their interactions and decay, an apparently 
erratic condition is produced, although the temporal mean velocity and 
pressure may be constant. 

The particular value of Reynolds number at which turbulence causes 
a change in the flow relationships depends on the type of flow considered 
and upon the characteristic length and velocity selected for Reynolds 
number. For flow through straight round tubes the motion is laminar 
for VD/v < 2000, where V is the average velocity and Z> the diameter. 
It may be laminar for higher values of Reynolds numbers, but it is then 
unstable and breaks down into turbulent flow when disturbed, as by a 
change in flow direction. 

For the boundary layer, it is generally laminar for values of Ux/v up 
to about 300,000 to 500,000, where x is measured from the upstream point 

of the boundary. 
The erratic motion of the fluid particles in turbulent flow transfers 

momentum through the fluid and thereby creates apparent shear stresses 
that may be much greater than those due to viscosity alone. Turbulence 
acts in such a manner that momentum is carried from the central portions 
of the fluid toward the boundaries, causing a greater velocity gradient at 

^ W. F. Durand (editor-in-chief), “Aerodynamic Theory,” Vol. Ill, pp. 112-119, 

Verlag Julius Springer, Berlin, 1935. 
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the boundaries, which in turn causes larger boundary drag. Its action in 

carrying momentum into the boundary layer also delays separation and 

may decrease the size of the wake. In fact, the total drag on a body may 

be less when a turbulent boundary layer develops. A good example 

is the flow of an infinite fluid around a sphere. The total drag on the 

sphere reduces when the laminar boundary layer becomes turbulent and 

moves the separation point downstream, thereby decreasing the size of 

the wake. 
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Angular deformation, 1, 217-218 
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laminar sub-layer, 242 
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C 
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122-123 
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about vortex tube, 183-184 
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259 



260 FLUID DYNAMICS 

Cylinder, bou ndary conditions, for rota¬ 
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circular, reparation point of, 256 

steady flow around, 141-144 

elliptic, rotation of, 133-136 

steady flow around, 131-133 
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flow due to source near, 111-112 
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D’Alembert's principle, 208 
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Durand, W. F., 242n. 
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Dynamic similitude, 224-227 
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Earth, flow through, 234-235 

‘^Elements of Aerofoil and Airscrew 

Theory," 154 
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steady flow around, 131-133 
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intrinsic, 31, 33-34 
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Navier-Stokes, 222-223 

of vis(;ous flow, 208-223 
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Flat plate, boundary layer flow along, 
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free streamline flow around, 177-181 

Flettner rotor ship, 143 
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ideal, 6 

real, 208 

Force, bearing, 231-232 
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centrifugal, 248 
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extraneous, 11 
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stress, 209 

surface, 3, 12 

Free streamlines, 156, 165-181 

G 

Gauss numbers, 130 

Glauert, H., 154 

Goldstein, S., In., 208n. 
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221 
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H 

Hagen, G, H. L., 234 
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Harmonics, surface zonal, 71-73 
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N 
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O 
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P 

Parallel boundaries, flow between, 227- 
229 

Percolation, 234-235 
Permeability coefficient, 235 
Pervious materials, flow through, 234-235 
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Pipe flow, 226, 232-234 

Pitot tube, two-dimensional, 123-125 

Pohlhausen, K., 256n. 

Poiseuille, J. L. M., 234 

Poiseuille^s law, 23^234 

Poisson, S. D., 223 

Poisson equation, 186 

Polygons, simple closed, 156-181 

Porous media, flow through, 234-235 

Potential, velocity, 19, 21-23, 30, 40-41 

analogy to, 228-229 

Potential energy, 31-34 

Prandtl, L., 241 n., 242n., 254, 257 

Pressure, dynamic, 25-26 

static, 25 

Pressure intensity, 3 

Principal axes, 212 

Principal planes, 212 

Principal stresses, 212-215 

R 

Rankine bodies, 57-60 

Rankine’s combined vortex, 204-206 

Rectangular channel, flow into, 121-122 

Rectilinear vortices, 196-207 

with finite sections, 201-207 

Region, multiply connected, 1407i. 

simply connected, 1267t. 

Reynolds, O,, 226 

Reynolds number, 224-227, 232,235,239, 

244, 247, 257-258 

Rheological diagram, 2-3 

Rings, circular vortex, 195-196 

Rotation, of cylinder, boundary condi¬ 

tions for, 132-133 

of ellipsoidal shell, 81-83 

of elliptic cylinder, 133-136 

of fluid particle, 19-21, 30, 47, 50, 182, 

246-247 

S 

Sadowsky, M., 208 

Saint-Venant, B. de, 223 

Scale factors, two-dimensional, 129-131 

Schwarz-Christoffel theorem, 156-163 

examples of, 163-181 

Separation, 29, 156, 165-166, 254-258 

Similitude relationships, 224-227 

Singular points, 50-51, 139-140 

Sink, three-dimensional, 43-44 

two-dimensional, 44 

{See also source) 

Skin friction, 256 

Slot, flow through rectangular, 119-121 

Smith, R. H., 62n. 

Smithsonian Institute, 113n. 

Sokolnikoff, I. S. and E. S., 7n., 46n., 87n. 

Source, three-dimensional, 43-44 

line, 61-62 

near sphere, 70-71 

and sink combinations, 57-61 

in uniform stream, 53-57 

two-dimensional, 44 

equation for, 105-107 

near to cylinder, 111-113 

and sink combinations, 110-111 

Sources, series of two-dimensional, 112- 

114 

Sphere, flow around, 67, 69-'i 1, 235-240 

moving parallel to wall, 80-81 

moving perpendicular to boundary, 

77-78 

translation of, 64-69, 235-240 

Spheres, moving along line of centers, 

73-78 

moving at right angles to line of 

centers, 78-81 

Spherical polar coordinates, 40-41 

Spherical shell, 68-69 

Stagnation point, 54, 97, 143 

Statics, analytical, of three-dimensional 

continuum, 208-215 

Steady flow, 24 

Stokes, G., 64n., 68n., 69n., 223, 235n. 

Stokes' stream function, 40-41, 236-237 

Stokes' theorem, 47-50, 139, 183, 191, 

235-240 

Stream function, three-dimensional, 40-41 

two-dimensional, 38-40 

Stream surfaces, 28 

Streamlines, 28, 38-39 

analogy to, 182 

bounding, 166 

free, 156, 165-181 

Stress components, 209-215 

Stress forces, 209 

Stress matrix, 212, 215 

Stress relationships, 3-6, 208-215 
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Stresses, conventions for, 209-211 

inner, 208-209 

normal, 209 

principal, 209-215 

shear, 1, 209 

Strut sections, 153 

Surface zonal harmonics, 71-73 

T 

Tank, flow from, 167-177 

Thermal diffusivity, 247 

Thixotropy, 2 

Three-dimensional continuum, analytical 

statics of, 208-215 

Three-dimensional flow, with axial sym¬ 

metry, 40 

examples of, 53-84 

Tdpfer, C., 250n. 

Transformations, exponential, 101-105 

inverse, 96 

examples of, 119-136 

Kutta-Joukowski, 144-155 

simple conformal, 101-119 

theory of conformal, 93-100 

Tubes, steady flow through, 232-234 

Turbulence, 257-258 

Turbulent boundary layer, 242 

Two-dimensional flow, along flat plate, 

248-254 

definition of, 38 

examples of, 100-136 

theory of, 85-100 

U 

Uniform stream, 53-55 

Uniqueness theorems, 37-38 
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V 

Velocity, distribution in boundary layer, 

251 

distribution in tube, 233 

Velocity, due to vortex system, 197 

Velocity components, 3, 13, 29, 39-41 

determination from vorticity compo¬ 

nents, 185-191, 201-203 

Velocity gradients, relation to normal 

stress, 218-222 

Velocity potential, 19, 21-23, 30, 40-41 

for solid moving through fluid, 64 

for source, 44 

for vortices, 50, 191-192 

Vntual mass, 64, 67 

Viscosity, 2, 217-218, 225 

Viscous flow, through annular space, 234 

equations for, 208-223 

examples of, 224-240 

between parallel walls, 227-229 

around sphere, 235-240 

through tubes, 232-234 

Vortex, Rankine’s combined, 204-206 

three-dim ensional, 182-196 

two-dimensional, 105-107, 111, 196-207 

Vortex filament, 183 

Vortex lines, 182-185 

Vortex motion, 182-207 

Vortex rings, 195-196 

Vortex sheets, 192-195 

Vortex systems, 197-207 

Vortex tubes, 182-185 

circulation about, 183 

Vortices, 50-51 

Vorticity, 182-185 

diffusion from boundary, 246-247 

W 

Wake, 166, 181, 247, 256, 258 

Wiedemann, G., 234 

Wilson, E. B., 186n. 

Z 

JZonal harmonics, surface, 71-73 






