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Preface 

This book covers the theory of Laplace transformation and dis¬ 
cusses its application to various problems in engineering and 
physics. The operational method here refers to the modern 
approach of functional transformation where the function in terms 
of the real variable t or x is transformed to a subsidiary function of 
the variable s by means of the Laplace integral. The inverse 
operation is then identified either by the original transformation or, 
for more complicated functions, by the inversion integral based on 
complex variables. This procedure is recognized as being mathe¬ 
matically more precise than the somewhat ambiguous approach 
of symbolic algebra as used by Heaviside. 

Considerable thought has been given to the organization of the 
material for simplicity of mathematical development. The idea of 
functional transformation and its inverse is introduced in the first 
few pages of the book so that the reader will recognize its procedure 
and its utility from the beginning. The versatility of the method is 
greatly increased by the introduction of the unit functions and 
several theorems in the second chapter. The third and fourth 
chapters deal with the various applications to problems involving 
ordinary differential equations. Wherever possible, physical inter¬ 

pretation of the solution is given. 
To obtain further insight into the method of Laplace transforma¬ 

tion, a chapter on the theory of complex variables is introduced. 
In it the arguments necessary for the understanding of the inversion 
integral processes are presented. 

The remaining chapters deal with somewhat more advanced 
problems. In Chapter 6, problems involving partial differential 
equations are taken up with an emphasis on the procedure of the 
inversion integral. Iterated transforms are also discussed in 
relation to such problems. 

Chapter 7 is included to illustrate the applicability of Laplace 
transformation to difference equations. The problems dealt with 
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are, however, of a simpler variety involving only one space coordi¬ 

nate. Transients in such a system arc not considered. 

One important field for which the Laplace transformation has 

been rather thoroughly developed is that of the closed-loop systems 

discussed in Chapter 8. The brief treatment of this chapter is suffi¬ 

cient for the reader to obtain an introductory knowledge of such 

systems and their stability. 

The closing chapter discusses the two types of analogies fre¬ 

quently used in analysis. It should be evident that analogies 

provide a means of expressing mixed systems in terms of a single 

system, be they electrical, mechanical, or acoustical. 

In keeping with the aims of applied mathematics, a balance 

between rigor and physical insight has been sought. If is hoped that 

the book is written in such a way to stimulate further interest in the 

use of Laplace transformation. 

For their influence on the material selected for the book, the 

writer is indebted to the many authors of texts and papers dealing 

with the subject of Laplace transformation. Acknowledgement of 

appreciation is also due to Mr. Gerald H. Cohen, now with the 

Taylor Instrument Co., who assisted in gathering material for the 

course in Laplace transformation offered by the Mechanics Depart¬ 

ment, and to Professor Thomas J. Higgins of the Electrical Engi¬ 

neering Department for his valuable suggestions and criticisms. 

William Tyrrell Thomson 
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CHAPTER 1 

Introduction to the Laplace Transformation 

Introduction. The term “operational method” implies a pro¬ 
cedure of solving differential equations whereby the boundary or 
initial conditions are automatically satisfied in the course of the 
solution. Much of the interest in the operational method was 
stimulated by Oliver Heaviside (1850-1925) who developed its 
earlier concepts and applied them successfully to problems dealing 
with almost every phase of physics and applied mathematics.1-2 
In spite of his notable contributions, Heaviside’s development of the 
operational calculus was largely empirical and lacking in mathe¬ 
matical rigor. 

The operational method was placed on a sound mathematical 
foundation through the efforts of many men. Bromwich3 and 
Wagner4 (1916) were among the first to justify Heaviside’s work on 
the basis of contour integration. Carson5,6 followed by formulating 
the operational calculus on the basis of the infinite integral of the 
Laplace type. The methods of Carson and Bromwich were linked 
together by Levy7 and March* as two phases of the more general 
approach. Van der Pol,9 Doetsch,10 and others contributed by 
summarizing the earlier works into a procedure of solution presently 
known as the operational method of Laplace transformation.11 

Problems involving ordinary differential equations can be solved 
operationally by an elementary knowledge of the Laplace trans¬ 
formation, whereas other problems leading to partial differential 
equations require some knowledge of the complex variable theory 
for thorough understanding. The study of the complex-variable 
basis of the operational method is strongly urged, since it offers a 
more general approach covering cases for which the elementary 
method is frequently inadequate. 

The operational method of Laplace transformation offers a very 
powerful technique for the fields of applied mathematics. In con- 

i-n Figures refer to titles in Appendix H, Bibliography. 
1 
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trast to the classical method, which requires the general solution to 
be fitted to the initial or boundary conditions, these conditions are 
automatically incorporated in the operational solution for any 
arbitrary or prescribed excitation. Solutions for impulsive types of 
excitation and excitation of arbitrary nature can be concisely written 
operationally. In some cases it is possible to determine the behavior 
of the system merely by examining the operational equation without 
actually carrying out the solution. 

Special fields to which the operational method can be extended 
include difference equations, integral equations, and nonlinear equa¬ 
tions. Of these, only the simpler phases of difference equations are 
discussed in this book. 

1. Definition of the Laplace Transformation. If f{t) is a known 
function of t for values of t > 0, its Laplace transform J(s) is defined 
by the equation 

/(«) = /0“ <~m dt (i.i) 

and abbreviated as 
/w - m) d.2) 

As to the limitations on the character of the function f(t) and 
the allowable range of the variable s, for the present we shall merely 
state that s must be sufficiently large to make the integral (1.1) 
convergent. * 

^Kxample 1.1: Let f(t) = 1 for t > 0. Then its Laplace trans¬ 
form is 

1 
s 

which is convergent for all positive s. 

'^Example 1.2: Consider the function f(t) = eat. 
transform is /oo r « 

e~H eat dt = / e~(*~a)t dt 

Then its Laplace 

1 
s — a 

which exists for all $ greater than a. 
2. Existence Conditions. A sufficient condition for the existence 

of the Laplace transform of f(t) is evident from Example 1.2 Since: 

if the limit / 4>(t) dt exists. 
a—♦ w ^ ® 

* An integral f 4>(t) 
Jo 
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the integral 

fQ <?-<*-<*>' dl (2.1) 
exists for s > a, the Laplace transform exists for all functions f(t) 
satisfying the inequality 

\e~*lf(t)\ < C er(*~a)l (2.2) 

where C is a constant. This is equivalent to stating that f(l) does 
not grow more rapidly than C cat, i.e., that /(/,) is of exponential 
order, and that lim = 0. 

/—♦ 0O 

3. Transforms of Simple Functions. The Laplace transform of 
simple functions can be determined by direct integration or integra¬ 
tion by parts. Later we shall develop other methods for the evalu¬ 
ation of the transform. 

The function f(t) and its transform J{s) represent a function- 
transform pair which can lx* conveniently tabulated as in Table I. 

TABLE I 
A Short Table of Function-Transform Pairs 

m m 
1 i 

s 

t s* 

eat 
1 

s — a 

sin cot 

cos tat 

0) 
B2 -f a,2 

# 

We shall now offer some theorems which will be helpful in the 
evaluation of transforms. 

Linearity Theorem 1: The Laplace transformation is a linear 
transformation for which superposition holds. For instance, we 
have from the mtagral definition of the Laplace transformation the 
relation £>cf(t) = c/($), where c is a constant. It then follows that 

+ ^2/2 (t)] = cji(s) + c^f2(s) 
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Example 3.1: 

£smw( = £-777-J = ( —r-^7--r-7" J * 
\ 2i / 21 \s — s + fcw/ $2 + 0>2 

First Shifting Theorem 2: If J(s) is the Laplace transform of /(/), 
then/(s — a) is the Laplace transform of eatf{t). 

The proof of this theorem follows immediately from the definition 
of the Laplace transform. 

e~9t eatf(t) dl = e u-a)tf(t) di = J(s - a) (3.1) 

This equation is referred to as the shifting theorem in the 6-plane, 
since the multiplication of the function by eat shifts the transform of 
the original function by a. 

Example 3.2: Find Ait e~ at. 

The transform )(s) of t is 1/s1 2 * 4, and hence by Theorem 2 we 
obtain the new transform 

Ait e~at 
1 _ 

(* + a)2 

—at 

Example 3.3: If }{$) = find Aif(t) cos ut. Replacing 
cos ut by i(eiut + and using Theorem 2, we arrive at the result 

£f(t) cos col = Hf(s — ico) + f(s + io>)] = + io>) 

where (R stands for the real part of the quantity. 

Problems 

Obtain the following transformations: 

/ 1. £t = -4 

. 2. «£ cos o)t — 
s2 + O)2 

3At' • sinh cct = 

4. £ cosh o)t = 

s* - w* 

5 

5. £e~at sin cct = 

6. £e~at cos a)t = 

7. Ait sin o)t — 

j £t cos ut = 

Cl) 

(« + a)1 + Co2 

(s + a) 
(s + a)2 + «2 
2ci)8 

(s2 + a)2)2 

s2 - co2 V 

4. Transforms of Derivatives. 

(s2 + CO2)2 

Theorem 3: If lim e~“f(t) 
t—► * 

0, 

then £f(t) = /(«) and the Laplace transform of the derivative f{t) 
‘n 
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is given by the equation 

£f(t) = S?(S) -m (4.1) 

To prove this theorem, we integrate by parts and obtain 

" fQm er-'f'it) dt = e~”f(t)] “ + « JQ°° ) dt 

•= -m + sf(s) 
Thus the Laplace transformation reduces the operation of differ¬ 
entiation to a simple algebraic operation of transforms. 

To obtain the transform of the second derivative, we proceed 
as before. 

fo“ dt = e-"/'(*)]” + « c "/'(/) 

Thus if lim erK,f'(t) = 0, we obtain the equation 

£f"{t) = -/'(0) + s£f\t) 
= *2/($) -*/(()) -/'(0) (4.2) 

For the transform of the nth derivative, this procedure is 
repeated n times, the result being 

£/(n)(0 - sn?(s) - sn~'f(0) - • • ■ - «/<«-»(0) -/<-i>(0) (4.3) 

Equation (4.3) is valid only if f(t) and all its derivatives through 
the (n — l)st derivative are continuous.* 

Example 4.1: Find «£ t2/2. 
Letting/(0 = £2/2, we have 

/(0) = /'(0) - 0 

no -1 

Substituting into Eq. (4.2), we obtain < 
i* 

1 t2 £1 = i = $2£ !L 
V s 2 

#2 i 
Therefore £ ^ = -= 

2 s8 

See Appendix A. 
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Example 4.2: Find £ cos 
Letting/(0 = cos we have 

/(0) - 1 
AO) - o 
/"(O = ~W2 COS 

Substituting into Eq. 4.2, we obtain 

Therefore 

— or£ COS cot = s2£ cos cot — 8 

s 
£ cos = 

s2 + w2 

Problems 

Obtain the following transforms by the use of the equations of Section 4: 

n! 

10. £ sin cot = 

11. £ sinh o>£ = 

0) 
2 + a>2 

OJ 

cosh cot — -- 
s2 - a? 

s-i£ - 2cos 

OT 

£ £ sin a>£ 

14. £ t cos cot = 

2 + a?2)2 

t*2 + a>2)2 

15. Show that the result of Prob. 13 can be obtained by differentiating 

both sides of the equation £ cos cot — with respect to co. 
s2 + w2 

16. Equation (4.1) is valid only if f(t) is continuous. Show that if f(t) 
has a finite discontinuity at t = t1} the transform of the first derivative 
becomes 

£f(t) - sf(s) -m - [/(«>+) 

where/(<i+) and/(<i —) are the values of f(h) approached from the positive 
and negative directions, respectively. 

4 6. Transformation of Ordinary Differential Equations. By the 
application of the Laplace transformation, ordinary differential 
equations are reduced to algebraic equations of the transform. 
Consider, for example, the differential equation 

dPy 
dt* 

+ cSy = F(t) 

Applying the Laplace transformation, we obtain 

s2y(s) — ay(0) — y'( 0) -f w^(s) = P(s) 

(5.1) 



7 16] INTRODUCTION TO THE LAPLACE TRANSFORMATION 

which can be solved for y(s) as 

y(s) 
«y(Q) + y'(Q) , . PM 

S2 + a,2 S2 + <os 
(5.2) 

Equation (5.2) is called the subsidiary equation of the differential 
equation (5.1). y(s) is the response transform, F(s) the driving 
transform, and s2 + a>2 the characteristic function of the system. 
The first term on the right side of Eq. (5.2), being a function of the 
initial conditions, is the transform of the transient solution. The 
second term, which is independent of the initial conditions, fepre- 
sents the transform of the steady-state solution. 

For the more general case, the subsidiary equation can be 
written in the form 

y(s) 
Alls) , F(s) 
B{sj ^ B(s) 

(5.3) 

where B(s) is the characteristic function and y(s) and P(s) are the 
response and driving transforms, respectively. 

Problems 

Determine the subsidiary equations for the follovring differential equations: 

^17.' Ljt + Ri = E, t(0) = 0 

dd 
v^l8. L-j + Ri - E sin {ost + q>) 

■vXp ^•lr+3f+2*-0' 

SO. + ky = F 
at1 

y(0) = 2/0, y'{0) = vQ 

+ e% + ky-F.e~ 
at2 at 

6. The Inverse Transformation. Now that we have determined 
the subsidiary equation, we must perform an inverse transformation 

to complete the solution. This operation, abbreviated as 

£-/(«) - m (6.i) 
can be performed in some cases by looking up the function f(t) 
corresponding to the transform /(s) in the table of transforms. This 
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procedure, together with the shifting formula of Theorem 2, is often 
sufficient for the determination of the inverse transformation. 

Example 6.1: Find £-1 7—--—*• 
(« - a)2 

The inverse transformation of 1/a2 is t. Thus, by Theorem 2, 

p- 1_ ..... 

(« - a)2 

rExample 6.2: Find £~l — « + 5 
a2 + 2* + 5 

The given transform can be reduced to the following known 
form: 

* + 5 -s‘ + 5 
s2 + 2s + 5 £ 1 (s + 1)* + 4 

,<? 4- 1 
V5T(. + 2r' 

(5 + 1)“ + 22 1 “ (a + 1 )2 + 22 

= cosj2£>+ 2 c ' sin 2t 

7. Reduction by Partial Fraction. In general, the subsidiary 
equation takes the form 

f(s) = ^ 
JW B(*) 

(7.1) 

For the ordinary differential equation with constant coefficients, 
A(s) and B(s) are polynomials, the denominator generally being of 
higher degree than the numerator. The procedure is then to factor 
B(s) and express/(a) in terms of partial fractions, thereby reducing 
each term to known form. 

Example 7.1: Find £“* • 
s(s~ + s — 6) 

Factoring the denominator, we can expand in terms of partial 
fractions. Let 

a + 1 _ 8 + 1 _ Cl . C2 Cz 

8(82 + a - 6) 8(8 - 2)(8 + 8) a ^ a - 2 a + 3 
v/ 

Reducing the right side to a common denominator, we have, by 
equating numerators, 

a + 1 » Ci(a — 2)(a + 3) + C2a(a -f- 3) + Czs(s — 2) 
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Equating coefficients of like powers of s, we obtain 

Ci + C, + C* - 0 
Cl + 3 Ci - 2C, = 1 

-C.C, = 1 

We thus obtain Ci = —k, C2 = r&, and C3 = ~ts- The inverse 
transform of the given expression is then 

‘h‘ | 1 1 
6 s + 10 s — 2 

- Vr £ 

1 
"o = - “ + 

10 
p2l _. 

8. Transforms Having Simple Poles. We shall now develop a 
more rapid method of determining the constants C1, C2, C3, . . . 
of the partial fraction expansion. Starting with the transform 
expressed by the quotient of two polynomials 

f(s) = 
A (a) 
B(s) 

(8.1) 

where B(s) is of higher degree than .4 (s) and factorable to n roots 
a 1, a2, a3l . . . , all of which are different, we have 

B(s) = (s — — a2)(* - a8) •••(«— a„) (8.2) 

The expansion in partial fractions then takes the form 

/(«) = 
.4(8) _ Cj_ C2_ 

5 — (Zi .S‘ — (12 
+ cn 

(8.3) 
fl(s) s — di s — 0,2 s — an 

and we refer to/($) as having n simple or first-order poles, namely, 
® d2, d3 • • * . 

To determine the constant (7*, we multiply both sides of Eq. (8.3) 
by (s — dk) and take the limit as s —* a*. This operation results 
in the equation 

• ft - lim ■<» 
ah B(S) 

(8.4) 

Since 
1 

= ea^ 
s — dk 

the inverse transformation for the case of simple poles becomes 

n 

/(<) == 7 lim (s — a*)/(s) (8.5)* 
*-i 

* For those familiar with complex-variable theory, Eq. (8.5) is the sum of 
residues for the case of simple poles. 
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By the use of complex variables, we shall show in Chapter 5 that 
Eq. (8.5) also holds for f(s) other than polynomials, provided it has 
only simple poles. 

Example 8.1: Using Eq. (8.4), verify the numerical values of 
the coefficients Ci, C2, and C3 of Example 7.1. 

Writing J(s) in the form 

/(*) 
,i(S) 

m 
s +1 

s(s - 2)(s + 3) 

we identify the poles ;ts 0, 2, and —3. ’ Substituting into Eq. (8.4), 
we obtain 

F Sin pt 

Fio. 1 

C, 

C, 

8 + 1 
= lim — 

»-»o (s 

_ s + 1 

“ 23 8(7+ 3) 

- 2)(« + 3) 
_3 
10 

+ 1 
C3 = lim 

s(« - 2) 

_2 

15 

2 

G 

Example 8.2: The differential equation 
for the system shown in Fig. 1 is 

d2w , F . 

d?+uy = msm'pt 

where « = y/k/m is the natural frequency of the system. Deter¬ 
mine the solution for the initial conditions y(0) = y\0) = 0 and 
p a?. 

The transform for this case is 

y(«) * 
P V 

m (s2 + w2)(s2 + p2) m (s + — iw)(s + ip)(s — ip) 

By use of Eq. (8.5), the solution becomes 

y(t) 

_ f r p 
~ m |_2ia>(p2 — w2) 

F 

ma>2[I — (p/w)2] 

p eipt 
w2) + 2ip(co2 - p2) 

- sin a>£) 
w / 

p 

2ip(«2 — p2) 



§ 8] INTRODUCTION TO THE LAPLACE TRANSFORMATION 11 

Problems 

Determine the following inverse transforms: 

22. je1 
s(s + 2) -s + S- 

23. JB-« --L-T\ = (e- ~ «“) ($ — a)(s — o) a — b 

V^4. <C~l —•1   = 4 (1 - eos at) 
sis2 + a2) a2 

j, s + e _ (r — up-'" — (r — 
^ A' (* + «)(«+ 6) “ 

26. Determine the solution of Prob. 17. 

v/27. Determine the subsidiary equation of the differential equation 

+ W2?/ = 0 

and obtain the solution for ;/(0) = y0 and ?/(0) = 

28. Determine the solution for the differential equation 

^L + o>-2y= F0 

for the initial conditions //(()) = ?/'(()) = 0. 

29. Prove that Eq. (S.4) can be written as 

where B'(s) = y B(s). Hint: First method. Let B(s) - (s — ak)Bi(s), 
as 

differentiate with respect to s and let s —> ak. Second method. Treat 

if—- as an indeterminate case ~ and apply L'Hospital’s rule. 

30. Show that if/(s) has a simple pole at the origin, Eq. (8.5) reduces to 

JW Brio) + Z/ akB[i 

This form was first indicated by Heaviside, who referred to it as his expan¬ 
sion theorem. 
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9. Transforms Having Poles of Higher Order. The equations 
of Section 8 apply only if f(s) has first-order poles, in which case 
B(s) has no repeating factors. We shall now consider the case 
where B(s) has repeating factors in its partial fraction expansion. 
If a factor in B(s) is repeated k times, we say that/(s) has a Ath-order 
pole. 

We shall again start with /(.s*) in the form 

/(*) 
A(s) 

B(s) 
(9.1) 

where B(s) is a polynomial of higher degree than ^(s). On the 
assumption that there is a /cth-order pole at s — a\, B(s) will have 
the form 

B(s) = (s — ai)k(s — a2)(a — a3) • • • (9.2) 

and the partial-fraction expansion of/(.s) becomes 

Rs) = 
Ci 

(s - dl)k 
+ 

Cn 

+ 

(« - a\)k 

Cu- 

r, + 

+ C, ■ + C., 
(s - aO (s - a-2) (s - ax) + (9.3) 

To obtain the coefficients Cj„, we first multiply both sides of the 
equation by (s — ai)k: 

(s — ai)kJ(s) = Cn + (s — a\)(\« + 

+ 

• + (s — Oi)* 

(«- ai yg-2 
(s — at) 

■C lk 

(9.4) 

Cn is then obtained from this equation by letting s = o»: 

Cn = [(# - ai )*/(«)]„_„, (9.5) 

C12 is obtained by differentiating Eq. (9.4) with respect to s and 
substituting s = ai: 

Cn = (9.6) 

It is evident, then, that the equation for the nth coefficient becomes 

“ 5T^T7i [IS (• - ->%>]„, M 
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The coefficients C2, C3, . . . , are evaluated as in the previous 
section. 

Since by the shifting theorem 

(.s - ai)n (n - 1)! 

the inverse transformation of J(s) becomes 

m = C11 (k <_ lT, + C» + • ■ •] 

+ C2 ea>1 + C, + • • • (9.8) 

This equation can also be written in the following compact form, 
which is applicable to /(#) other than polynomials (see Chapter 5): 

/(0 = (j.-}-f) J j + ^ [(s—a,)/(s) 

Example 9.1: Find £-1 8 f. ,• * 
(s — 1)V 

Here we have a second-order pole at s = 1 and a third-order 
pole at s = 0, and the transform can be expanded to the form 

Cu . C» Cu , Cn . C23 
(s - l)2 (s — 1) “*■ s3' s2 ^ s 

Using the equations of this section, we have 

Cn = [•S' |,2js _ = 3 

c;2 = \±(*±*)] = - -8 
ds\ a* /J»„i [ ** J»-i 

C21 = 
(s + 2) 

(« - D2J»-o 
‘_d(s_+2) l _ [(.v - l)2 — 2(s — 1)(«+ 2)1 

ds (s — i)2_Uo L (* — i)4 J«-o 

1 Ti! (* +_2) 
2 [ds2 (s’- 1)* 

Thus the inverse transformation of the given expression is 

/(<) = (3t - 8)e‘ + (t- + 51 + 8) 
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10. Note on Complex Algebra. In many cases the poles of the 

subsidiary equation are complex numbers. We offer in this section 
a brief review of complex algebra and point out the simplest pro¬ 
cedure for the manipulation of complex quantities. 

From Demoivre’s theorem, we introduce first the well-known 
relation 

eie = cos 9 + i sin 9 (10.1) 

which can be verified from the series expansion of the above func¬ 
tions. The quantity eiB can be geometrically interpreted as a unit 
vector making an angle 9 with the real axis as shown in Fig. 2(a). 

Thus the complex number a + ib shown in Fig. 2(b) can be repre¬ 
sented in the exponential form 

a + ib = A eie (10.2) 

where A = y/a? + b2 = amplitude 

9 = tan-1 ~ = phase 

This result is easily verified by multiplying a + ib 

as shown: 

by 
+ b2 
+ 6* 

a + ib = vV + F2 + i- 
.Vo2 + ^ VV + b*_ 

— \/as + 62 [cos 6 + i sin B] = A eie 

In general, the manipulation of complex numbers is simpler in 
the exponential form. The following rules will be found useful. 



§ 10] INTRODUCTION TO THE LAPLACE TRANSFORMATION 15 

Multiplication: 

Division: 

Powers: 

nth Roots: 

A ieie'A2eid* = A1A2 

hfl = 6l 
A2 eie' A2 

(A eie)n = A” ein6 

(^4 g*^) = A1/n c^/n 

Example 10.1: Evaluate £~ 
1 

*2(*2 + 2 as + a>2) 

The given transform can be written in the form 

J(s) = % + CjL2 + 
S1 S S — 6*2 6* S3 

(10.3) 

(10.4) 

(10.5) 

(10.6) 

where the poles are 
si = 0 = double pole 

$2 = —a + ifi ) _ | simple poles (conjugate complex 
s3 = — a — ip j ~ | numbers) where p2 = co2 — a2 

The inverse of the above equation is 

f(t) = Cn< + C12 + C2 e**1 + C3 e** 

where the Cs are to be evaluated. Using the method of Section 9, 
we have 

C a » 

Cu « 

( 
[i(i 

1 
s2 + 2 as + 

1 
s2 + 2as + 

J) -l 
0)2/S~o W2 

-,)1 2a 
a.4 

The constants C* and C3 are evaluated according to the rules for 
simple poles discussed in Section 8: 

Ct =v 1 1 1 
j\s — Si) \ ( — a + f/S)22f/3 

Ci = 
1 -1 

_ s2(s — $2) _ _•( (—a — i/8)!2i/8 
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Here it is advisable to reduce the complex number to the exponential 
form as follows: 

(-a + m* = ei9]2 = (a2 _J_ £2)e«9 

26 = tan-1 

Thus C2 

/32 — a2 
«—£20 

C3 = 

2if3{a2 + /32) 
_e.'29 

'3 2if)(a2 + P2) 

Substituting back into the expression for/(£), we obtain 

/ e-i2de(-a-H0)t ei2de(-a-i0)t 

" ^2 “ ^7 + 2z7?(a2 + 02) “ 2ift(a2 + 02) 
' ei(0t~2O) _ r-i(0r-20)"| -at / 2a 

w2 CO4 /?(a2 + /32) |_ 

t 2a , <?-“* . //SJ 

■^'^+sr>aln03' 

Problems 

Determine the following inverse transforms: 

2 i 

1. «C~‘ 

■ 32. £-> 

33. £-■ 

34. £-* 

^/35. £-• 

36. £-' 

. 37. £-* 

1 
s2(s + a) = -7, ( 

1 . 1 r 
s(s + a)2 a.2 [ 

s + h 

(s + a)2 [(6 - 

\ 

(s + a) (ft + by1 

1 1 
«2(s2 + to2') or 

1 1 
S2(«2 - W2) or 

s + 2 

{e"at + [(a — b)t — 

0s + SKs + D* 

(sinh cot — cat) 
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38. Solve the differential equation 

d2y . 

w + y = s,n * 

i for y{0) = 1 and y'(0) 

Determine the solution for the differential equation 

dhj 

tit2 + 2acc fy + 0>2y = F 
at 

0 

for the initial conditions ;//(0) = y0 and ;//(0) = 0. 

40. Solve the problem of Example 10.1, using Eq. (9.9). 

41. In the case where there is a pair of conjugate poles on the imaginary 
axis, the transform can be written in the form 

t( ; =_Mr)_ 
m (s2 + t 

Show that the inverse transform of the above is 

_ A(ia})ciut A(—iuAe~lwt V _A((ik)eakt 

ft 2iW?i(iw) Lj (a\ 4- u2)B[(ak) 
k 



CHAPTER 2 

Properties of the Laplace Transformation 

Now that the operational method of solution has been intro¬ 
duced, it is advisable at this point to discuss several theorems help¬ 
ful in carrying out and interpreting the solution. In this chapter 
we shall also discuss certain operation artifices which enhance the 
conciseness of the operational method. 

11. Initial- and Final-Value Theorems. Certain properties of 
the Laplace transformation dealing with initial and final values are 
summarized in the following theorems. 

Initial-Value Theorem 4: If f(t) and f'{t) are Laplace trans¬ 
formable, then the behavior of f(t) in the neighborhood of t = 0 
corresponds to the behavior of sj(s) in the neighborhood of s = oo. 
Expressed mathematically, 

lim sf(s) = lim f(t) (11.1) 
®—► « t—¥ 0 

To prove this theorem, we start with the equation for the trans¬ 

form of a derivative/'(0- 

/0 e-m dt = s?(s) - m 
If $ is to approach infinity, the normal procedure will be to integrate 
the left member and then let $ —► oo. However, since s is only a 
parameter and not a function of t} and since the existence of the 
integral is implied by the theorem on derivatives, we can let $ —» <*> 
before integrating. It is obvious, then, that the left side of the 
equation is zero, which leads to 

0 = lim [«/(«) - /(0)] 
a—> ao 

or lim s/(s) = lim/(0 
a—► » t—*0 

This theorem enables one to determine the behavior of a system 
in the neighborhood of t — 0 from the subsidiary equation without 
actually carrying out the solution. 

18 
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Final-Value Theorem 5: If f(t) and f'(t) are Laplace transformable 
and the limit of f(t) as / « exists, then the behavior of f(t) in 
the neighborhood of t = oo corresponds to the behavior of s/(s) in 
the neighborhood of s = 0: 

lim sf(s) = lim f(t) (11.2) 
»0 t—+ » 

To prove this theorem, we start as in Theorem 4 with the 
expression for the transform of a derivative: 

J0 " dt = s/(s) -/(0) 

Using the same argument as in the previous theorem, we allow 
0 before integrating, and the left side of the equation becomes 

/"AO dt = lim r f(t) dt = lim [f(t) -/(0)1 
•/u *—► » ► 00 

Equating this to the right side of the previous equation, we obtain 

lim [/(<) - /(0)J = lim [s/(s) - /(0)] 
t—> oo a—»0 

Since f(0) is not a function of t or s, the quantity /(0) cancels from 
the above equation, leaving the result 

lim sj(s) = lim fit) 

It should be pointed out that this theorem cannot be applied to 
oscillating functions such as sin since sin <» does not have a 
definite value; that is, the restrictions on fis) require that its roots 
lie to the left of the imaginary axis of the s-plane. 

Example 11.1: Determine the initial and final velocities of a 
mass m which is allowed to fall through a column of oil. 

Assuming the resistance offered by the oil to be proportional 
to the velocity of m, the differential equation of motion written in 

terms of the velocity is 

v —cv + mg 

where c is the coefficient of viscous damping and g is the gravita¬ 
tional acceleration. Upon application of the Laplace transforma- 
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tion, the subsidiary equation becomes 

m[s£(s) — i’(0)] = — cv(s) + — 
s 

S(s) = m + ggw 
^ ^ s(ms + c) (ms + c) 

The initial value, from Theorem 4, is 

lim sv(s) = v(0) 
8—► ao 

and the final value, from Theorem 5, is 

lim .<?£($) — — 
s—»0 C 

12. Differentiation and Integration. Under certain restrictions 

the differentiation and integration in the real domain correspond to 
multiplication and division by s in the subsidiary domain. 

Differentiation Theorem 6: If f(t) and f'(t) are Laplace trans¬ 
formable, and if sj(s) has a denominator of higher degree than the 
numerator, then the multiplication of J(s) by 5 corresponds to the 
differentiation of f(t) with respect to t. 

This theorem follows directly from the equation for the Laplace 
transform of a derivative 

uno = sj(S) - m 
for the case /(0) = 0, and we need only to investigate under what 
condition the initial value/(()) is zero. 

Using the initial-value theorem, we have 

lim f(t) =/(0) = lim s/(s) 
t—> o 9—* 80 

If s/($) has a denominator of higher power than the numerator, 
then as s—> /(0) =0, and we obtain the relation 

sj(s) « £f'(t) (12.1) 

Integration Theorem 7: If £/(/) = j(s) exists, then the division 
of J(s) by s corresponds to integration of f(t) with respect to / 
between the limits 0 and t. 

To prove this theorem, we have from the definition of the 
Laplace transform the following equation: 

£ Jo dt = Jo " e~"‘ [ Jo* dt\ dt 
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By making the following substitutions 

21 

£ /(/) dt, dv = e~8t dt 

du = /(/) d*, v = 

and integrating by parts, we obtain 

£ \ f(t) di= - f‘m dt1 + - f " <r*/(0 cfc 
./o $ Jo Jo s J0 

By substitution of the limits, the first term on the right side of this 
equation is zero, and we arrive at the result 

f f(t) dt = - f e~“f(<) dt = -}(s) 
J 0 * J 0 s 

(12.2) 

which agrees with the statement of the theorem. 

Example 12.1: Starting with the transform 

£t e~at = 
(s + a)2 

derive a new function-transform pair by using Theorem 6. 
The given quantity is J(s) = l/(s + a)2. Thus sj(s) = 

s/(s + a)2, which is a rational fraction with a denominator of 
higher degree than the numerator. Theorem 6 thus applies, and 
we obtain the new pair 

(s + a) 
-2 = £ .. (* e~at) = £(1 - at) e~ 

Example 12.2: Starting with the transform 

£ sin co* = .~9 
sJ + co2 

derive a new pair by using Theorem 7. 
Substituting into Eq. (12.2), we obtain 

8(82 + co2) 
v= £ / sin co* d* = £ 

T — cos co*T 

L co Jo 
= £ - (1 — cos co*) 

CO 
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13. Multiplication and Division by t. Theorems 8 and 9, given 
without proof, are left for the student to prove. They are the 
result of performing the indicated operations on the integral defini¬ 
tions of f(s). 

Theorem, 8—Multiplication of f(t) by t: If £f{t) = /($), then 

£tm = - f?(s) (13.1) 

Theorem 9—Division of f(t) by t: If 43/(0 = Ks)> then 

£f~f = Jf }(s)ds (13.2) t 

Example 13.1: Determine £t sin o)t. lotting f(t) = sin cot, we 
have from Theorem 8 the desired transform 

. d ( co \ 2o>$ 
£t sin ut = - = (S2 + W2)2 

Problems 

Starting with the transform pair 

- £ e~at sin cot 
co 

1 
(s + a)2 + a>2 

determine the new transform pair resulting from the use of Theorem 6. 

^Jk^Starting with 

co2 
<£(1 — cos cot) = 

1 

s(s2 + CO2) 

determine the new transform pair resulting from the use of Theorem 7. 

44. Starting with the pair 

£ e~at = —-— 
8 + a 

derive the functions corresponding to the transforms* 

s(8 + a) aX1(^ 82(s + a) 

46. Determine £t sinh cot, starting from the known relation 

co 

82 — CO2 
£ sinh cot 
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Apply Theorem 9 to 

£t sin cot = 
2co8 

+ w2)2 

and prove that £ sin cot — -- 
s2 + c*>2 

47. Determine the complete solution for Example 11.1 and verify the 
results given. 

48. If & „constant force F is applied to the system of Fig. 3, determine 
the initial and final velocities of the upper end without completing the 
solution. 

49. The capacitor C of Fig. 4 is uncharged at the instant the switch 
is closed. Determine the subsidiary equation for the current i and find its 
initial and final values. Verify by completing the solution. 

14. The Unit Step Function. A knowledge of certain basic func¬ 
tions about to be discussed greatly increases the power of the opera¬ 
tional method. Of these functions, the unit step function can be 
considered to be the basic building block. As shown graphically 
in Fig. 5, the unit step function is zero for t < a and unity for 
t > a. Its transform, by definition, is 

£ Ol(t -a) - e-'ni (t - a) dt = e-‘0 dt 

^ r go 

+ / e-‘l dt = — (14:1) 
J a 5 

Thus, if a = 0 we have the special case 
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£ <U(t) = - (14.2) 
s 

Any function f(t) multiplied by 0l(£ — a) will have a value of 
zero for t < a and/(jf) in the region t > a. 

///,'/ ’ ' ' * ' ' ’ ' / ' / '■ ■> ’ 
V' '/ V ■ / / / 
///'■' 

'//// /.'■/// // • / //'//// * 

_a i 

Fig. 5 

_ 

t 

a 2a 3a 4a 5a 

Fig. (> 

Example 14.1: Express the square wave shown in Fig. 0 in 
terms of the unit step function, and obtain its Laplace transform. 

By adding and subtracting step functions started at a, 2a, 3a, 
. . . , we can express the square wave of Fig. 6 by the equation 

f(t) = 01(0 - 201(2 - a) + 201(t - 2a) - 201 (l - 3a) 
J + 20l(* - 4a) • • • 

Its transform is obtained by substituting from Eq. (14.1): 

v 1 o cra* 
/(») - s - 2 ; + 2- - 2 + 

= - [1 — 2<r“(l — e~aH + — e~3°* + 0] 

- tanh 
s 

2e~a’ \ _ 1 (\ — e~a*\ 
1 + e~a7 _ s \1 + e~a’) 

as 

This equation is sometimes referred to as the meander Junction. 
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16. The Unit Impulse. By combining two stop functions of 
height \/c as shown in Fig. 7 and approaching a limit as a —> 0, we 
obtain another important quantity known as the unit impulse. 
Expressed mathematically, the unit impulse is given by the fol¬ 
lowing limit: 

Tlf(t — a) = lim * 01^ — a) — - Tl(£ — a — c) (15.1) 
r->o c c 

and it is evident that its value, as shown by the shaded area of 
Fig. 7, is unity at t = a and zero everywhere else. 

Its transform can be obtained by substituting Eq. (14.1) in 
(15.1) and using LTTospital’s rule for the determination of an 
indeterminate quantity; that is, the numerator and denominator 
are separately differentiated with respect to c, after which c is 
allowed to approach zero. 

p—as   p—(a+c)g | 
£<U'(* - a) = lim --- = e— (15.2) 

c—+0 [ CS J 

Comparison of Eq. (14.1) with (15.2) indicates that the unit 
impulse is the time rate of change of the unit function (see 
Theorem 6), which explains the notation adopted. Among physi¬ 
cists, the unit impulse is referred to as the “Dirac-5 function/7 

The unit impulse has many applications, the most obvious of 
which is implied by the name. Consider an impulse of magnitude 
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Jo lb-sec applied to a system at t ~ a. Keeping Jo constant, we 
can consider this impulse to be the limiting case of a force of Io/c lb 
acting for a time duration of c sec as c approaches zero. As shown 
in Fig. 8, the impulsive force J* in the limiting case becomes equal to 

Fi = lira - [ni(< - a) - <U(< - a - c)] = /oU'(t - a) (15.3) 
c—0 C 

and its transform is 
£h^(t - a) = /o (15.4) 

Thus the response of a system to an impulse is obtained by using 
an impulsive force Fi = Jo'lL'C^ — a) in the differential equation of 

Fig. 8 

force. It should be noted here that J0H/(2 — a) must have the 
dimensions of a force; hence 11'(2 — a) must have the dimensions 
of time”*1. This is evident from the fact that 11(2 — a) is non- 
dimensional and It'(t — a) is the derivative of 11(2 — a). 

Another interesting application of the unit impulse is found in 
the representation of a concentrated force by the limiting case of a 
loading in force per unit area or force per linear dimension. In 
this case, the time coordinate 2 is replaced by a space coordinate x. 

Consider a case in which it is desired to write a loading equation 
corresponding to a concentrated force P lb acting at a position 
x « a on a beam. On the assumption that the force is replaced 
by a distributed load of P/c lb/in. acting over a length c, the 
limiting case of the loading wp lb/in. as c —> 0 is 

p 
wp = lim — [1l(a? — a) — 1l(£ — a — c)] = PH'(x — a) (15.5) 

e-*0 C 

Thus jPcU/(x — a) is the loading (lb/in.) corresponding to a concen¬ 
trated load P lb acting at * * a. 
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16. The Unit Doublet. The unit doublet tU."(< — a) shown 
graphically in Fig. 9 is defined by the limit 

ni"(< ~ a) 
_ j-m f Tl(f — a) — 2*11(1 — a — c) + Tl(< — o — 2c)l ^ 

o—*0 L c2 J 
The shaded area of Fig. 9 is readily obtained by combining three 
step functions as indicated by Kq. (1(5.1). 

Its transform can be obtained by substituting Eq. (14.1) in 
(16.1) and allowing c to approach zero: 

£Tl"(I — a) — lim 
<f->0 

e-a* — 2e~(a4r)* -|- e~(a+2r)* 

czs 
s er- (16.2) 

The above limit is indeterminate to the second order, however, and 
requires two applications of L’HospitaTs rule; that is, the numerator 
and denominator must be differentiated separately with respect to 

c two times. 
Comparison of Eq. (15.2) with (16.2) indicates that the unit 

doublet is the time rate of change of the unit impulse. Interpreted 
graphically, the shaded area of Fig. 9 represents a couple of unit 

magnitude. 

Example 16.1: If at a given position x = a on a structure a 
mechanical couple of moment is applied, show that the corre¬ 
sponding loading inexpressible in terms of the unit doublet. 

If we let the couple be represented by the limiting case as c -*> 0 
of distributed loads Mq/c2 lb/in. applied as shown in Fig. 10, the 
loading wm is equal to Jlf<fli"(3 — a) and its transform is M0$ e~—. 
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It is evident, then, that Tl"(x — a) must have the dimensions of 
length'2. 

17. The Second Shifting Theorem. Shifting of a transform 
f(s) to J(s — a) was discussed by the first shifting theorem of 
Chapter 1. Now we shall discuss shifting in the original plane, 
that is, f(x) to f(x — a). 

Theorem 10: If the inverse transformation of J(s) is f(x), then 
the inverse transformation of c'n*J{s) is f(x — a)Tl(:r — a): 

£~i cra*](s) — f(x — a)Tl(x — a) (17.1) 

For the proof of this theorem, we start with the definition of 
Laplace transformation: 

/(,) = |o\. «x/(X) rfx 

Letting X = (x — a), 

J(s) — e~ *(jr~a)f(x — a) dx = eaH J °° e~**f(x — a) dx 

= ca° Jq* e-**f(x - a)Tl(.r - a) dx (17.2) 

Therefore c~a*J(s) = e~ sxf (x — a)1 U(;r —a)dx (17.3) 

£-i e~a*J(s) = /(.r — a)Tl(.r — a) (17.4) 

Example 17.1: Evaluate £ ~1 e a*/s:i. Here f(s) = i/s3 and 
f(x) ~ x2/2! Thus from Eq. (17.4), 

ir16 
s3 

(x — a)2 
2! 

Tl(x — a) 

Problems 

60. Show that the transform of the function shown in Fig. 11 is 

1 
/(*) = s(l + e~at) 

1.0 

0 a 2a 3a 4a 5a 

Fig. 11 
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r 
51. Show that the transform of the saw-tooth wave of Fig. 12 is 

/(*) - Ku 
th1 «(1 — e~r*) 

52. The differential equation for the loading on a uniform beam of 
stiffness El is 

ET = o)(x) Ib/in. 
ax1 

Determine the equation for the loading w(x) for the beam shown in Fig. 13. 

53. A force varied with time as shown in Fig. 14. Show that its 
operational expression and its transform are 
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a 

F(s) = —j (1 + as)eraa — [!+(« + 6)s]e~(a+6)*} 

64. A pressure pulse po started at one end of a tube of length l travels 
with speed c to the other end without loss of intensity. If the ratio of the 
reflected to the incident pulse at each end is r, show that the pressure at 
any point x in the tube is given by the equation 

pit) = po [<U/ (t - ^ + rTl' (t - + r2ClV ^ 

66. The differentia] equation for the loading p{r) lb/in.2 of a thin 
circular plate under symmetrical loading is given as 

DV*z = p(r) 

If a total load P is applied along a circular line of radius a as in Fig. 15, 
show that 

P(r) = ~; *'(r - a) 

where r is the radial distance measured from the center of the plate. 

Fig. 15 

18. Periodic Functions. If a function f(t) is periodic, then 
f(t) = f(t + r), where r is the period. Its transform can be written 

/(«) = fom dt = fje-m dl+ f* e~“f(t) dt + • • • (18.1) 

By use of the second shifting theorem, Eq. (18.1) can be rewritten as 

/(«) = (1 + + e-*" + • • •) J* e-fit) dt 

- (i /„ (18.2) 
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Example 18.1: Determine the transform of the half-wave rectifi¬ 
cation of sin cot shown in Fig. 16. 

Fig. 16 

The period r is 2tt/co, and the function is 

f(t) = sin cot 

- 0 

Thus from Eq. (18.2) we have 

1 [*/<a 

/(«) = Io e~’(sinutdi 

__ .1 r e~“(s sin ut — u cos ut) 1^“ 
“ 1 — e-2T»/<. [ s2 + u2 Jo 

_ w(l + e-"'") _ u 

~ (s2 + w2)(l - e~2w,/“) (s2 + w2)(l - e~r,/u) 

19. Pulsed Periodic Functions. First we shall introduce the 
following theorem, which can be applied to pulses of periodic; 
functions. 

Theorem 11: If f(t) is periodic such that f(t) = f(t + a) and 

«£/(/) = /(s), then 
ZfitWt - a) = c~as/(s) (19.1) 

For the proof of this theorem we note that — a) is zero 
for t < a and f{t) for t > a. Thus 

£f(t)%(t - a) = fa“ e~«f(t) dt (19.2) 

Introducing a new variable X = t — a, we have 

ja “ e~“f(t) dt = e*4 JQ " e-V(X + a) dX = e— fQ * e->/(X) dX (19.3) 

.C/OM* - a) = e-**/(s) Thus we have 
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where a is any integral multiple of the period of f(t). We note here 

that this result could have been obtained directly from Theorem 10, 

since f(t ± a) = /(/). 

(Consider next a series of pulses formed by blanking out equal 

intervals of a periodic function /(/), as shown in Fig. 17. The 

Fig. 17 

resulting wave F(t) is then also periodic with a pulse repetition 

period rr, and Eq. (18.2) becomes applicable. 

P(s) = ,-1-, / c *'F(t) dt (19.4) 
J — e T>*Jo 

If we use tlie unit step function for blanking out portions of the 

period, F(t) for one period becomes 

F(t) = /(»[ni(f - to) “ Tl(t - to ~ a)\ (19.5) 

Hence from Theorem 11 we obtain the transform of the pulse: 

/?(,) = 
o - 

(19.0) 

If the origin is chosen so that to = 0, then the factor e~ta* becomes 

eipial to unity. 

Example 19.1: A series of pulses are produced by a sinusoidal 

carrier wave of frequency 1 megacycle per second which is on for 

4 cycles, with a repetition frequency of 5000 cycles per second. 

Determine its transform. 

For this problem, 

f(t) = sin a)t 
0) 
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From Eq. (19.G), 

where 

m = 
0) / 1 

^ + ^\T 
w = 2i X 106 rad/sec 

« = 4 X 10 6 sec 

tt = 200 X 10 6 sec 

Example 19.2: Repeat Example 18.1 by the method of Sec¬ 

tion 19. 

The function /(/) is again sinusoidal and equal to sin co/. The 

pulse interval a = x co is, however, equal to only half a period 

t = 27r/a) and /(/ + a) = — /(/) (see Eq. (19.3)]. 'Thus from 

Eq. (19.0), 

A., - U +j‘:r)Zw 
W (1 - C~r's‘) 

_ CO / 1 + c-**'" \ 

~ S* + 0)“ \1 — c 

Problems 

56. The full-wave rectification of the sin cot curve can he obtained by 
the addition of the curve of Fig. 10 and the same curve shifted to the right 
by 7T/co. Show that its transform is 

7T8 

/(•■>•) = ~-"2 ftoth 
S“ + co2 2co 

Solve Probs. 50 and 51 by the use of Eq. (IS.2). 

Fig. 18 

L Show that the transform of the function shown in Fig. IS is 

/(*) = j, tanh j 

59. Figure 19 allows a series of sinusoidal pulses with a repetition 
period of 4 microseconds. Show that its transform is 

PC*) 
4ir 

82 + (47r) 2 J cosh 8 

1 



34 PROPERTIES OF THE LAPLACE TRANSFORMATION 15 20 

_._lL 1 | f -m sec. 
/ 

- 

ro 

CV
J 5 6 7 

y 

Q 

y 

Fig. 19 

60. Figure 20 shows a series of damped oscillations f(t) = e~at sin cat 
repeated every r sec. Assuming that a is large enough that/(r) = 0, show 

that its transform is 

co 

(s + ay + CO2. 

1 
(1 - €T") 

20. Indicial Response. The indicial response g(t) is defined as 
the responses of a system to a unit step function. For instance, 
the response transform g(s) to a unit step function can be written 

g(s) 
l 

sZ(s) 
(20.1) 

where Z(s) is the system or impedance transform and 1/s is the 
transform of cll(t). The indicial response is then 

m (20-2) 

The term “indicial response” (or “indicial admittance”) was 
originally adopted in connection with electric circuit theory as the 
response of a system to a unit steady voltage; for instance, the 
current in some portion of the circuit due to the switching in of a 
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battery. This would correspond in the mechanical system to the 
sudden application of a steady force, a condition which is much 
more difficult to realize physically. 

Example 20.1: Determine the indicial response of a series RL 
circuit. 

The differential equation for the current in the circuit with a 
unit voltage applied at t = 0 is 

L~+ Ri = <U(<) 

With the initial current equal to zero, the subsidiary equation 
becomes 

t(s) = IMs + R/L) 

The indicial response which is the inverse transformation of the 
above equation is then 

i ~ii 
g(t) = m = jj(l -e L) 

21. Impulsive Response. The response of a system to a unit 
impulse is a quantity of fundamental importance. 

Using the notation h(t) and h(s) for the impulsive response and 
its transform, we can write 

*<•> - m <2,» 

W) = JB-> ~ (21.2) 

where Z(s) is again the impedance transform and 1 is the transform 
of As will be shown in Section 22, the importance of this 
quantity is linked with the fact that the response of a system to any 
arbitrary excitation can be directly expressed in terms of the 
impulsive response through the convolution integral. 

Example 21. lv Determine the impulsive response of a spring- 
mass system of Fig. 21. 

The problem resolves into one of finding the response of the 
system when an impulse of unit magnitude is applied to m. From 
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Eq. (15.3), the impulsive force for /0 = 1 lb-sec is Tl'(<)- Thus the 
differential equation becomes 

m d * + kx = cU/(f) 

Since the corresponding subsidiary equation is 

x{s) = 

m 

the impulsive response from its inverse becomes 

1 

X 

\ 

h(t) = x{t) = 
Vk 

sm 
m \ m 

Fiu. 21 

We note that this equation is dimensionally 
correct if we remember that the quantity 1 in 

the numerator is impulse (lb-sec) and y/km is 
impedance (force/velocity). 

22. The Convolution Integral. Given the impulsive response 
h(t) of a system, it is possible to determine the response of the 

system to any arbitrary excitation. Consider the arbitrary excita¬ 
tion f(t) of Fig. 22 to be applied to a system whose indicial and 
impulsive response are g(t) and h(t), respectively. If the time is 
subdivided into increments of Ar, the curve f(t) can be approxi¬ 
mated by a series of incremental steps 
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AM 
At 

At 

Thus the response of the system to the first step /(()) is 

main 
and the response to the incremenftil step started at / = t is 

4f(r) 
At 

At g(t — t) 

That is, the response to a unit step function applied at / — r depends 
only on the elapsed time (t — r) and would equal g{t — r). The 
response at any time t is, then, the sum 

/ 

x(t) = f(0)g(t) + V (,(( - t) At (22.1) 

/ = At 

If Ar is allowed to approach zero, this sum has the limit 

x(t) = /((%«) + - r) dr (22.2) 

which is referred to as the superposition integral or DuhamcVs 

integral. 

Equation (22.2) can be expressed in several different forms. 

Using the following substitution 

a = g(t, — r), da = g'(t — t) dr 

dv = /'(r) dr, V = /(r) 

and integrating by parts, we obtain the equation 

x(t) - + f{r)g(t - r)]y + fif(x)g'(t - r) dr 

= - T) dr (22.3) 

From the discussion in Section 15 it is evident that the impulsive 

response h(t) is equal to the time rate of change of the indicial 

response g(t). Thus by replacing g\t — t) by h(t — t), we obtain 

the expression 

x(t) = j‘f(r)h(t - r) dr 

=m * h(o 

(22.4) 
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This equation is referred to as the convolution or Faltung integral, 
and f(t) * h(t) is an abbreviation which stands for the convolution 
of f(t) and h(t) as expressed by the given integral. Another form 
of Eq. (22.4) is 

x{t) = J*f(t - \)h(\)d\ (22.5) 
* 

which is obtained by letting X = t — r. 
These equations indicate that if the impulsive response h(i) of a 

system is known, then the response to any arbitrary excitation/^) 
can be found. In cases where the integral is too complicated for 
analytical evaluation, it is always possible to resort to numerical or 
graphical integration. 

23. Borel’s Theorem. The convolution integral is linked with 
the operational method by BorePs theorem. To determine the 
equivalent operational form of Eq. (22.4), we can write the response 
transform £(s) to an arbitrary excitation f(t): 

m = = Ks)h(s) (23.1) 

Comparing Eqs. (22.4) and (23.1), we obtain the relationship 

X{t) = £->/(«)A» = f‘f(T)h(t - r) dr = fit) * h(t)) (23.2) 

Thus we have Theorem 12, which states that the inverse transforma¬ 
tion of the product of two subsidiary functions is equal to the convolution 
of tkeir inverse. 

^Example 23.1: Find 

£-i_i 
(S + a) is + b) 

by the convolution integral. We let 

/(s) = and h(s) = 7Tb 
Then /(r) = e~ar and h(t — r) = e~iit~T) 

Thus from Eq. (23.2) we have 

x{t) = e~are~t(‘~T) dr = e-** e~(a~t)r dr 

g-~btg—(a—b)T 1* g-o< _ g-w 

" —(a — 5)Jo ~ (b -a) 
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Example 23.2: Determine the response of the spring-mass sys¬ 
tem of Fig. 21 to an arbitrary force /(<) with the initial conditions 
x(0) - x'(0) - 0. 

The response of the system to a unit impulse is (see Example 
21.1) 

HO = -7= sin 1 
V km \ m 

Thus the response to an arbitrary force f(t), from Eq. (23.2), is 

*(0 = ~7t= [ /(T) sin \!~ (l ~ T) dr y/km Jo \m 

24. Steady-State Solution for Harmonic Excitation. The steady- 
state response of a system to harmonic excitation can be readily 
determined from the subsidiary equation without carrying out the 
inverse transformation. Writing the subsidiary equation in the 
form 

y(s) 
P(s) 

Z(s) 
(24.1) 

where F(s) is the excitation and Z(s) is the impedance transform, 

we can let F(t) = e™‘ or 

P(s) = (24.2) 

Thus Eq. (24.1) becomes 

^(s) = (s - iu)Z(s) 

The inverse of this equation is, then, equal to 

(24.3) 

= ZWi + j(s - iu)Z'(s) 

Since the second term of Eq. (24.4) leads only to transient terms, 

the steady-state solution becomes 

y(f)m = wk (24,5) 

where F(t) is any harmonic excitation. 

(24.4) 
s—roots of Z(*)—0 
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Example 24.1: Determine the steady-state response of a spring- 
mass system with viscous damping when the impressed force is 
sinusoidal. 

The differential equation of motion is 

my + cy + lay = F0 sin ut 
and Z(iw) = m(/co)2 + civ + k 

= y/ {k — mar)2 + (ca>)2 eiip 

<f — tan- 

Thus from Eq. (24.5) 

v.v Fo sin ojt 
y(t)n s = —7=---.“-rr * . rr^-_ 

VTk — mw2)2 + (eco)2 

Eo sin (co/ — ^>) 

~ mo?2)2 + (cco)2 

Problems 

61. Determine the indicial admittance of the massless spring of stiff¬ 
ness k lb/in. in parallel with a dashpot c lb-sec/in. shown in Fig. 23. 

Fig. 23 Fig. 24 

62. If a constant force 7YU(0 is applied to a massless spring of Fig. 24, 
determine the velocity and displacement of the end as a function of time. 

63. Repeat Prob. 62 if an impulsive force 70cll'(<) is applied. 

64. If an impulse 70 lb-sec is applied to the system of Fig. 23, show 
that the velocity and displacement of the end are given by 

m = j Jn'(0 - ~ r»‘J 
x(t) = — e * 

c 

Interpret these solutions physically. 
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65. Derive Eq. (22.4) by subdividing f(t) into impulsive components. 

66. The indicial response of a system is given as g(t) = (1 — e~~kt). 

Determine the response of the system to a force sin (;pt 4* 

3^ how thi it 

68. Prove that 

2a: 

8 + a 
0l'(/) - 2a 6"« 

1 = •u'co * ate*) 
1!,^ 

(t)TI(7 — r) dr — 1 

This problem should be visualized in terms of Fig. 25. 

U{t-T) 

0 
H-t- 
l 

U'(r) 

U'(t)UU-t) 

0 

Fio. 25 

9. Using the procedure of Chapter I, we can show that 

£-' 1 = -1 + 2 e~°‘ 
s \s + a/ 

By BorePs theorem, sfcow that the same result is obtained from 

£-11 (ill®) = ni(0 * [0l'«) - 2ae-«l 
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70. Using the result given in Prob. 69, show by Borel’s theorem that 

71. Show that the sum of two conjugate complex quantities is equal 
to twice the real component of either term. Show that the sum of the 
first two terms of Prob. 41 is equal to 

where 61 stands for the real part of the quantity. 

72. For the circuit of Fig. 26, determine from the subsidiary equation 
the steady-state solution for the current in R due to an impressed voltage 
of E sin (at. 

|-OTOP- 

E Sin wt z 

C 

Fig. 26 

25. Miscellaneous Integrals. Certain definite integrals involv¬ 
ing fractional powers of t are occasionally encountered in physical 
problems. Such functions generally require special techniques, 
some of which are discussed here. 

The Gamma Function. If f(t) = tn, its transform 

£tn = Jo* e—‘tn dt (25.1) 

can be shown to exist for n > —1. 
When a new variable x = st is introduced, Eq. 25.1 becomes 

£(n = ^+i JQ e~Xx” (25.2) 

The above integral is a tabulated function known as the Gamma 
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function T(n + 1) which is continuous for n > — 1. Thus 

JM" - 1} (» > -1) (26.3; 

For integer values of n, T(n + 1) = n\, and Eq. (25.3) reduces to 
the known form 

£tn — (n an integer) (25.4) 
s 

Of special interest is the case where n = 
becomes 

or 

£t~* = r(*) 
si 

£~l s~* 
1 

y/wt 

1 Eq. (25.3) then 

(25.5) 

The transforms of t. . . , can be readily obtained from this 
equation by the application of Theorem 8. 

The Error Function. The error function is another tabulated 
function. It is defined by the equation 

erf (ar) = ~ [* e~» <i\ (25.6) 
Vtt Jo 

We shall now consider some transforms resulting in the error 

function. 
First we shall investigate the inverse transform 

o-i_:_ 
y/s (s — 1) 

From Eq. (25.5), £~l -7= = —7= 
Vs y/vt 

Also £"* —^ = e* 

Thus by the use of the convolution integral, 

*_* f'iZi, 
VS (8 — 1) Jo V»T V1T Jo Vf 

(25.7) 

(25.8) 

If a new variable A s*-Vr is introduced, the above integral becomes 

jB-x e~vd\ « s' erf (\/7) (25.9) 
Vs (s — 1) Vt jo 
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Using the first shifting theorem, we obtain another transform 
pair: 

JC~' } -= = erf (Vt) = fVt e~» dX (25.10) 
* V* + 1 V7T Jo 

(Consider next the function 

m = 
4* 

\/Tft 
To evaluate its transform, 

a* 
r « r 4f 

e"v* 
aft 

let \/£ = X and write 

Since 

/(«) = ~ fX e “(X2+4^) dx 

2C-.V. f * -«(V ~4-Y 
/(«) = —-=r / C V 

\/ x 7<> V 

2e~ oV« f * - 
— / « 
7T 70 

•(-O' dX 

where 6 = a/2 \/s. We next make the substitution 

5 ,, b . 
t — t> dX =-; dr 

(25.11) 

(25.12) 

(25.13) 

(25.14) 

and write for the above integral 

- _/;* .-<w*. 

(25.15) 
Adding the integral on the left to each side, we obtain 

2//.-<“!)■* -//(l + i)(25.16) 

If we let * = -y/s dz = \/s ^1 + dr 
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Eq. (25.10) becomes 

2 / e e~z' dx = —r / e~x' dx = 
V« ./o 

(25.17) 

Substituting back into Eq. (25.14), we obtain the final expression* 

ft — tt\/ 8 /J 41 

V* y/*t 
(25.18) 

By making use of some of the ilieorems in this chapter, we can 
obtain other transform pairs. From Theorem 9, 

*&- [’lw* 

If we let 

/« = 

y/ 7rt 
e-a\f8 

jj{,) dx = J* r“v'Vl ds = - 2a 

2 A” 2 / 
—   _ ^ — a y s — _ £ — a V 8 

a J« a 

rf(c-°V*) 

Therefore £ = ? c -«V* 
\/ir<3 a 

(25.19) 

We next make use of Theorem 7, which can be written as 

«>-, M /(0 

If Eq. (25.18) is substituted into the above formula, 

a n 

2 y/r Jo 
e dt (25.20) 

* The procedure used here is similar to that used by Churchill (Ref. 12, 

Bibliography), page 58, for the evaluation of the transform of e4t. 
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If we let A = c/2 y/t, the integral on the right becomes 

_2 

y/ it 
= [" e~x’ 
* J a 

d\ « 

2 yft 

Therefore 
s 

;= f " e~x’ dA - f2Vi e-x* dA 
*■ Jo Virjo 

-l-etl(^n) (25-21) 

It should be pointed out that the inverse transform of functions 

containing c~av^ is sometimes obtained by expanding the expo¬ 
nential in the series form and operating on each term separately. 
This procedure, however, requires the use of the relation 

£-1 _L »_j" . 
s"+1 r(n + 1) 

for half integers with n < — 1. As has been discussed under The 
Gamma Function, the above equation is strictly limited for n > — 1, 
and its questionable use forn < —1 must be justified.* 

Problems 

73. Applying Theorem 8 to Eq. (25.5), determine the transform of 
£* and fl, 

74. In Eq. (25.2) let n = —^ an(l x = X2, and show that 

£H = e~x* dX 

Comparing this result with Eq. (25.5), show that 

2 /o%-xidX = 

75. For integer values of n we have F(n + 1) = n! Show that 
r(l) =■ 0! = 1. Note that (n — 1)1 = n\/n. 

76. Prove that JQ " d\ = Vtt/2. Let 

/ = e-.» dx = e-v' dy 

and express P = cte dy 

* Bee Goldman (Ref. 14, Bibliography), page 331. 
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in polar coordinates. The value of /2 must then lie between the integrated 

values over the circular quadrants of radius a and a \/2. By letting 
a —> oo, the desired result is obtained. 

77. Show that 

£-' —4-= -4= - e‘(l + erf y/t) 
v« + i virf 



CHAPTER 3 

Dynamical Applications 

In many cases, mechanical systems can be idealized in terms of 
linear springs, masses, and dashpots. Much information can be 
obtained by studying the behavior of such simplified systems sub- . 
jected to various dynamical conditions. Such problems involve 
only ordinary differential equations with constant coefficients for 
which the subsidiary equations are rational algebraic functions. 

26. Automatic Control Mechanisms. Regulation of pressures, 
flow, speed, and similar characteristics are frequently controlled 
automatically. In this section we shall descrilx? two automatic 

regulatory devices and investigate 
their dynamical behavior due to a 
sudden change in the load. 

(a) Figure 27 shows the essential 
parts of a pressure-operated control 
valve. Assuming a sudden increase 
in the pressure in the form of a unit 

step function, the differential equa¬ 
tion of motion of the valve becomes 

mx + cx + kx = POL^) (26.1) 

where m is the effective mass of the moving parts, c the damping 
constant (assumed to be viscous), and k the spring stiffness. For 

convenience, we shall rewrite this equation thus: 

where 

X + 2awx + w2X = — *11(0 
m 

« ~ \f~ and a — v> — 
\ m 2 moo 

(26.2) 

With the system initially at rest, the subsidiary equation is 

*(«) * 
_P_ 
ms(s2 + 2ao)S + w2) 

48 

P 
1718(8 — $i)(s — 82) 

(26.3) 
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where the zeros of the denominator are 

So = 0 

$i,2 ~ «(— a + i \/1 — a2) = o>( — a ± i/3) 

The inverse transformation, from Eq. (8.5), is then 

P 
m 

1 

S1S2 - a2) 

1 

•S i .S* 2 + 
1_ 

(«1 - Si) 
(20.4) 

Since and s2 are conjugate complex quantities, the last part of 
this equation, representing the difference of conjugate quantities, 

is equal to twice the imaginary part of the first term, or 

x(t) = — + 7.1—v 2d 
«1*2 (f> 1 ~ Si!) (?)] 

1 J_ f(—a — iff) ec-«+<g)M>1| 

w2(a2 + ff~) tuff * a>(a2 + /32) _ } 

-&[- 
-1“ 

* f(0 cos + a sin (3cot) 
ip 

p—auit 

cos («/ V1 — a2 
VI — « 

V - 
= tan-1 

*0 
(26.5) 

a/1 - a2 

A typical plot of this equation is shown in Fig. 28, which indi¬ 
cates that the motion is a damped oscillation about its final position. 
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(b) Figure 29 shows a hydraulic device sometimes used in auto¬ 
matic control mechanisms. The cylinder is movable in the hori¬ 
zontal direction and is completely filled with oil. The valve v 
restricts the passage of the fluid. If the piston is given a sudden 
displacement, the cylinder must follow, since the valve cannot allow 
any appreciable flow in an infinitesimal time. However, since the 
oil flows through this valve, the spring under compression will 
gradually allow the cylinder to return to its original position, the 
rate of this motion being determined by the valve opening. 

Fig. 29 

Assuming that the piston is suddenly displaced an amount x0 
and held in this position, the differential equation of motion of the 
cylinder becomes 

mx — -kx-\- pA (26.6) 

with the initial conditions 

x(0) - Xof x(0) - 0 (26.7) 

In this equation p is the fluid pressure to the right of the piston 
(pressure in the left chamber is taken to be zero), and A the piston 
area. 

The motion of the cylinder from its initial position xo is due to 
flow through the valve V, and we have the equations 

Volume flowing through V ~ A (xo — x) 

Rate of flow through V — —Ax 

Since this rate of flow is proportional to the pressure, we can write 

cp = —Ax • (26.8) 

where c is a constant of proportionality. Substituting for p in the 
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differential equation gives 

x 

If we let 

.. , (A>\ . k 
x + I — ) x H— x = 0 

\cm/ m 

Ik 1 / A2\ 
W \m’ a 2a>\cm) 

51 

(26.9; 

Eq. (26.9) can be rewritten as 

x + 2<xa>x + co2* = 0 (26.10) 

With the initial conditions as specified by Eq. (26.7), the subsidiary 
equation becomes 

s2%(s) — sx o + 2aco[sx(s) — Xo] + oj 2x(s) = 0 
(s + 2aa))Xo (s + 2olo))xq 

s2 -f- 2aa)S -f- a)2 (s — $i)($ — S2) 

The zeros of the denominator Si and s2 are 

(26.11) 

6*1,2 = co( — a ± y/a2 — 1) 
where a is assumed to be greater than 1, to correspond to the case 

X(t) 

of aperiodic motion. Thus, from Eq. (8.5), we can write 

x(fi = (si + 2aa)) ent (a2 + 2aco) 
#0 Si — S2 82 ~~ s 1 

— (^1 + 2gg>) ($2 + 2aa)) e8it 

Si — $2 

1 [(a + Vas - 1) e(-“+'/5Tr7>“< 
2 V«* “ 1 

- (a - v«2 - 1) e(-“-V<.2-D«e] (26.12) 
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The final equation plotted in Fig. 30 indicates that the motion 

of the cylinder is that of exponential decay with a determining 

its rate. 

Problems 

78. If a rectangular pressure pulse of magnitude P and time duration t\ 
is applied to the system of Fig. 27, determine the motion of the valve. 
Hint: To the solution given in Section 20, superimpose the solution for a 
negative pressure started at ty. 

79. What additional term is introduced if the valve of Fig. 27 is moving 
with a velocity Vq at the time a sudden pressure increase in the form of a 
step function is applied? 

80. If an impulse of magnitude /<> lb-sec is applied to a spring-mass 
system with viscous damping, determine its motion for the initial con¬ 
ditions x(0) = £(0) = 0. 

81. A viscously damped spring-mass system of natural frequency co is 
excited by a harmonic force Fo sin cct. If the system starts from rest, 
determine the equation of motion. Obtain an equation for the time 

required for the amplitude to build up 
to £o. From the subsidiary equation, 
determine the maximum steady state 
amplitude. 

82. If the undamped natural fre¬ 
quency a; of the automatic control 
mechanism of Fig. 29 is 20 cpin, 
determine the time required for the 
cylinder to return to the position x(t) 
= 0.20xo if the by-pass valve is ad¬ 
justed so that a — 4. 

27. Prescribed Motion of Sup¬ 
port. Figure 31 shows a spring- 

mass system the lower end of which 

undergoes a motion x0(l) prescribed by the cam. The differential 

equation of motion of m is 

or 

mx = k[x0(t) — x] (27.1) 
X + W2X = 0)2Xq (t) 

If the system is started from rest, the subsidiary equation for the 
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displacement of ra is 

*w - ^ 
s2 + <•* 

53 

(27.2; 

from which x(t) can he found when xq(t) is specified. 
Frequently the quantity of interest is the force exerted on m by 

the spring, in whicli case we are concerned with the relative motion 

z = Xo(t) — x of the ends of the spring. From Eq. (27.1), we 
can write 

F — kz — mx 

from which the subsidiary equation becomes 

F(s) = kz(s) = ms2x(s) = (27.3) 

Example 27.1: Determine the force on the mass m when the 
cam motion is described by Fig. 32 and the natural period of the 

spring-mass system^* r. 
We note from Eq. (27.3) that the numerator contains the term 

s22o(x), which is the transform of the acceleration of the lower end 
of the spring. Also, the acceleration shown in Fig. 32 can be 
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obtained by properly superimposing step functions of height a, 
starting at t = 0, 1.5r, 3.5r, .... Thus we need only the solution 
for a step function s2x0(s) = o0/s, or the inversion of the equation 

which is 

F(s) = 
ma)*a,Q 

«vs2 -f- w2) 
F(<) = ma0(l — cos a>£) 

(27.4) 

(27.5) 

Equation (27.5) represents a harmonic oscillation between the 
values 0 and 2ma0. By superimposing such curves, starting it in 

Fit) 

ma0 

f/r 

Fig. 33 

the negative direction at 1.5r, 3.5r, and again in the positive direc¬ 
tion at 6.5t, and so on, we obtain the resulting force variation 
shown by the curve of Fig. 33. 

Problems 

83. If the cam of Fig. 31 has the motion shown in Fig. 34, determine 
the spring force. 

84. Figure 35 shows a simplified representation of a vehicle traveling 
with velocity v and running over a sinusoidal bump. Determine the 
vertical motion of m as a function of v, and its natural frequency. 
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Fig. 35 

85. A spring-mass system rests on a platform A as shown in Fig. 36. 
If the platform is started down with an acceleration ng, where n > 1, 
determine the equation of motion of the mass m and show that the plat¬ 
form will leave the ends of the spring 
when cos cot = I — 1 /n. 

28. Dynamic Load Factor Due to 
Impulse.* If a force of constant 
magnitude Fo is applied to the system 
of Fig. 37 for a time h, common 
sense tells us that the amplitude or 
acceleration developed by m will 
increase with fa. We shall now 
define the dynamic load factor as the 
ratio of the maximum dynamic spring force to the spring force 
developed under a static force F{) and shall study how this quantity 

F(f) 

fo- 

t 

Fig. 37 

depends on fa/r} where r = 2w y/m/k is the natural period of the 
spring-mass system, \ 

Measuring displacement x from the equilibrium position, we 

* J. M. Frankland, “Effect of Impact on Simple Elastic Structures,“ Proc. 
of Society for Experimental Stress Analysis, Vol. 6, No. 2, pages 7-27. 
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find that the differential equation of motion is 

mx = —kx + F0[Tl(J) — TL(£ — 2i)] (28.1) 

With the system started from rest in the equilibrium position, the 
subsidiary equation becomes 

*(•) = — (cos = -) (28.2) 
m s(s2 + w2) \ m) 

From Theorem 7, we have 

£~l ~rr~—^ == f sin ootdt — ~(l — cos a>t) (28.3) 
s(s2 + a?2) J o w 

The exponential only shifts the above function along the t axis 
by h. Thus 

x(t) = 1(1 ~~ cos [1 — cos a>(* — ^i)]cU(^ — *i)} (28.4) 

Since the function <11(2 — ti) is zero for t < U and 1 for t > th 
Eq. (28.4) is interpreted as 

x(0 = ~ (1 - cos at) (0 < t < ti) (28.5) 

F0 
= —- [cos 0)t — COS 0)(t ~ U)] 

mo?2 

”S8i,,Tliin"(i-|) f286) 

Expressed in nondimensional form, these equations can be written as 

^ = ^1 - cos 2t (0 < t < ti) (28.7) 

= 2 sin 7T ^ sin 2x (t > h) (28.8) 

These equations indicate that x(t)/x.t is a function only of the 
ratio t\/r. If <1 > r/2, Eq. (28.7) shows that an amplitude ratio 
of 2 will be reached. If t\ < r/2, the amplitude ratio from Eq. 
(28.8) is 2 sin xh/r. Since the force and acceleration are both pro¬ 
portional to the amplitude in this case, the dynamic load factor 
then becomes 
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2 for -- > 5 
r 2 

o . „ t\ \ 
2 sin — for - < ^ 

r r 2 

Curves for x(t)/xBt and the dynamic load factor are plotted in 
Figs. 38 and 39. Thus, for a short rectangular pulse t\/r < the 
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dynamic load factor is less than 2, and for a long rectangular pulse 
ti/r > i it is always 2. 

Problems 

86. Determine the motion and dynamic load factor of a spring-mass 
system subjected to a rectangular force pulse of duration h if (a) ti/r = i, 

(b) l,/r = to, (<0 li/r = 1.25, (d) t,/r = 1.5. 

87. Determine the response and dynamic load factor for a spring-mass 
system subjected to a triangular force pulse of maximum value F0 and 
time duration t\. 

The force pulse is given as 

F(t) = 2/'’0 j- 
t'l 

for 0 < t < 0.5«, 

-'iF- 
for 0.5<i < t < ts 

= 0 for t > h 

Write a separate solution for each of these intervals. 

88. Repeat Prob. 87 for a sinusoidal pulse of height F0 and base tim 

89. Figure 40 shows a typical pressure disturbance due to a gun blast, 
where 

V 
to 

(t < to) 

(t > to) 

(a) Taking t0 — 0 for a simplified analysis, determine the response and 
the dynamic load factor of a spring-mass system subjected to the blast. 
Plot the dynamic load factor as a function of t\/r, where r is the natural 
period of the spring-mass system. 
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(b) Repeat with to 5*^ 0 and show that the dynamic load factor is a 
function of to/r and ti/to. 

90. Determine the response of an undamped spring-mass system to the 
force shown in Fig. 41. Determine the dynamic load factor and plot it 
as a function of ti/r, where t is the natural period of the system. 

Fig. 41 

29. Impact of Falling Bodies (Drop Tests). The question of 
how far a body can be dropped without incurring damage is of 
frequent interest. Such considerations are of paramount impor¬ 
tance in the landing of airplanes or the 
cushioning of packaged articles.* In 
this section we shall discuss some of 
the elementary aspects of this problem 
by idealizing the mechanical system 
in terms of linear spring-mass com¬ 
ponents with viscous damping. 

(a) Undamped System. Consider 
the system of Fig. 42 dropped through 
a height h. If x is measured from the 
position of m at the instant t = 0 when 
the spring first contacts the floor, the 
differential equation of motion for m 
applicable as long as the spring 
remains in contact with the floor is 

mx + kx = mg 

By using the initial conditions 

x(Q) — 0 

v x(0) = \/2gh 

(29.1) 

(29.2) 

♦An extensive treatment of this problem, with emphasis on nonlinear 
cushioning, is given in R. D. Mindlin, '‘Dynamics of Package Cushioning,” 
Bell System Tech. Jour., 24, 3-4 (July-October 1945), pages 353-461. The 
treatment does not make use of Laplace transformation, however. 
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we can write the subsidiary equation as 

S(s) = vM +_ 
W S2 + ft)2 + s(s2 + <oa) 

(29.3) 

where co — y/k/m. From the inverse transformation of £($), the 
displacement equation becomes 

x{t) = —sin cot — ~ cos co£ + -2 
co co2 co2 

- 
y/2gh/<o2 sin co£ gr/co2 cos co£ 

«7 LV^A/co2 + (0/co2)2 y/2gh/<o2 + (g/co2)2 

sin ~ *?) + “2 

(29.4) 
= tan"1-^=r 

co V %gh 

We note here that g/co2 = IF/A; is the statical deflection and y/2gh/co2 
is the dynamical deflection due to A. Frequently the statical deflec¬ 
tion is small compared to the dynamical deflection, and further 

simplification of the equations is 
possible. 

g To determine when the lower end 
Z* of the spring will leave the floor, we 

lot x(t) = 0 and obtain the equation 

' ^ *■ <■* -y) - vmmm 
Fig. 43 (29.6) 

Again if the statical deflection is small compared with the dynamical 
deflection, the above equation reduces to 

sin (cot *— <p) = 

Fig. 43 

sin cot — 0 

(29.6) 

From design considerations, we are more interested in the force 
or acceleration, which can be obtained by differentiating Eq. (29.4): 

x(t) = — v 2ghco2 + g2 sin (cot — <p) (29.7) 
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Substituting for <py we find that the acceleration starts with the 
value g as expected and builds up sinusoidally to a maximum value 
of g — y/2gho)2 + g*y as shown in Fig. 44. The curve is reduced 
to nondimensional form x{t)/g. It is evident that the maximum 

Fig. 44 

X{t) 
9 

acceleration in terms of gravity depends only on the ratio of the 
distance dropped to the statical deflection and is equal to 

(29.8) 

A plot of this equation is shown in Fig. 45. 
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(b) Effect of Damping. Assuming viscous damping (see Fig. 46), 
the differential equation after contact of the lower end with the 

floor is 
rnx + cx + kx = mg (29.9) 

m the initial conditions 

_ J - x(0) = 0 | 
1 x(0) = y/2ghj (29.10) 

c Uh <> * With the substitutions 

Fig. 46 - = 2 
m 2 \/ k rn riu* ±u ra 2 \rn 

the subsidiary equation and its inverse become 

, = Vtyh _q __ 
X{S' s2 + 2ao>S + to2 '+' s(s2>"2aa).s + i'2) 

' 2<//i 
j(<) =-, ■ =• e 

u v 1 — or 
sin to v 1 ot~ t 

H-- -. - sin (a> Vl — a11 — y) + 
to2 V 1 - a2 

(29.11) 

(29.12) 

. , Vl - a* 7 = tan 1- / 

We shall now assume that the statical deflection g/w2 is negligible 
compared to the dynamical deflection, in which case only the first 
term of x(t) is retained. The acceleration can be readily obtained 
by applying the differentiation formula 

d2uv _ d2v d2u 0 du dv 
df ~ UWi +V dt2 + ~dtJt 

to Eq. (29.12). Thus 

x./4\_y/tyh n x(t) = 
co Vl — 

j[o)2(l — a2) — a2a?2] sin co V 1 — a21 

+ 2<*a>2 Vl — a2 cos co V1 — a21) e~a<at 

—e~a<at cos (w V1 — a21 + (p) 
V 1 — a2 

<p = tan-1 
2a2 - 1 

2a Vl ~ <*2 

(29.13) 
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2a yl-a* 

Kiel. 47 

For purposes of plotting, it is convenient to express Eq. 29.13 in 
nondimensional form as follows: 

-= -4J^L= cos (» Vl — «21 + <p) (29.14) 
gV2h/S.t V 1 - «2 

This equation is plotted in Fig. 48 for various values of the damping 
factor a = c/ccr. The curves show that the maximum acceleration 
occurs at t = 0 for a > 0.50. For a < 0.50, the maximum acceler¬ 
ation occurs after t = 0. 

Fig. 48 

Problems 
91. Obtain Eq. (29.13) by evaluating the inversion of the subsidiary 

equation 

s2 + 2a<as + o)2 

s2 V 2 gh 

(s - «i)(* - 

S', 
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where $1,2 = (—a ± i v 1 — a2)a> and | stands for the imaginary 
part of the quantity { }. 

92. An article m, spring-supported in a box as shown in Fig. 49, has a 
natural frequency of 2 cps. Determine the maximum acceleration devel¬ 
oped when the box is dropped through a height of 8 ft with no rebound. 

93. If damping is introduced in Prob. 92 so that 
a — 0.25, determine the maximum acceleration 
developed. 

94. If a body is spring-supported with a statical 
deflection of SBt = 0.30 in., how far can it be dropped 
without exceeding an acceleration of 4 g? If damp¬ 
ing of a = 0.75 is introduced, what will be the maxi¬ 
mum height of drop? 

30. Shock Testing. The mechanical rug¬ 

gedness of instruments or equipment is fre¬ 

quently determined by high-impact shock tests. 

This is particularly true of military equipment 

which must stand up under severe mechanical shocks. 

Figure 50 shows a schematic diagram of a standard shock testing 

machine. H represents an impact hammer which imparts the 

energy to the supporting base mh referred to as the impact table. 

The test specimen m, representing the equipment to be tested, is 
supported by the coupling spring k. 

In general, the mass m of the equipment to be tested is small 
compared with that of the impact table, and hence the impact of 
the hammer is assumed to act on a free mass mi, giving it a 
velocity ii. The problem then resolves itself to one of determining 
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the acceleration of m due to a prescribed motion of the lower end 

of the spring under impact of the hammer H. 

It is found that for medium-high-impact shock machines that 

the impact force of the hammer is very nearly triangular in distribu¬ 

tion,* as shown in Fig. 51. The equation for such a pulse can be 

readily written as 

m = ~ fu«) - w - &)] 

+ (2F0 - ^ [0l(< - 6) - «U(< - 26)] (30.1) 

and its transform after simplification reduces to 

P(s) = J (30.2) 

For the free mass mi which is initially at rest, we have the differ¬ 

ential equation 

miXi = F(t) (30.3) 

with its transform 

s’m.JiW - y 

°' *■<•> (30'4) 
The motion of the Impact table can be determined by the inverse 

of the last equation but is not necessary for this problem. 

* J. T. Muller, “Transients in Mechanical Systems/’ Bell System Tech. 
Jour., 27, 4 (October 1948), pages 657-683. 
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We next consider the equation of motion of m, which is 

[§ 30 

(30.5) mx = k(x i — x) 

The subsidiary equation then becomes 

x(s)[rrifi2 + k] = kx\(s) 

Letting w2 = k/m and substituting for ari($), we have 

, «2 Fu /l - c~»\ ... 

It should be noted here that it is not the displacement which is of 
interest; rather, the acceleration of m determines the severity of 
the test. If we let a stand for the acceleration, d(s) = s2x(s), or 

(3o7> 

The inverse transformation results in the acceleration equation 

<U(* - b) 
(/ t sined\ (t — b) sin o)(t — b) 
\[y ~ co3~/ “ 2 Q)2 CO3 

(t — 2b) __ sin co(t 

CO2 U)' 

- 2b) 
TL(* - 2b) (30.8) 

This equation can be reduced to nondimensional form by the fol¬ 
lowing substitution: 

Fj 

mi 

a __ ntya(Jt) 

di Fo 

t 

= maximum acceleration of impact table 

= ratio of acceleration of m to that of mi 

r — -- = elapsed time expressed as a ratio of pulse 
2b 

length 
Thus 

s-K* 

+ 

b(jo 
sin 2bur 

- 2 (2t — 

) 
i) 

bu 
sin bu(2r — 1) '\l(Zr — 1) 

2(r — 1) — jL sin 2bu(r — 1) ^(r - 1) (0 < r < oo) (30.9) 
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Fig. 53 
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which holds for all values of r. For r > 1 the above terms add 
up to the following: 

a —1 
a i bo) 

(sin 2bur — 2 sin 6w(2r — 1) + sin 2bo)(r — 1)} 

= foo (1 ~~ C°S ^ s*n 
(r > 1) (30.10) 

which shows that the acceleration ratio is sinusoidal with an ampli¬ 
tude equal to 

= -6- (1 - cos bu) (30.11) 

A plot of Eqs. (30.9) and (30.11) is given in Figs. 52 and 53: 

Problems 

95. A spring-supported system of Fig. 54 is excited by a series of 

fit) 

FoY— 

JhJ 
V2 T 3T/Z 2r 

Fig. 54 

blows by H. If this force is represented by rectangular pulses, show that 

/(*) = 
F0e 

£(s) = 

s(l + e 2) 
_ ST 

Fo e 2 
ms 

(1 + e 2)(s2 + «2) 

{[:1 ‘ “• ■ (‘ -1) ]14 (‘_ l) 
— [1 — cos Q)(t — r))^ — r) 

+ 1 

96. Determine the displacement and acceleration of the impact table 
due to a triangular force pulse of maximum value Fo and duration 26. 
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Show that the displacement after f = 26 is 

69 

*.«) = ~ (t ~ b) m i 

97. The velocity of an impact table weighing 800 lb was measured to 
be 8 ft/sec for t > 2b. Assuming the force pulse to be triangular and of 
duration 100 microseconds, determine (a) the acceleration a\ = Fo/mx and 
(b) the maximum force. 

Arts. F*/mx = 160,000 ft/sec2; F0 = 3.97 X 106 lb. 

98. In Prob. 97, what maximum acceleration is developed by the test 
specimen if it is supported to have a natural frequency of 2000 cps? 

99. Develop an equation for the ratio a/a\ for a rectangular force 
pulse of duration b. 

31. The Rate of Roll of an Airplane. The rolling motion of an 

airplane due to lateral control displacement can be approximated 

by the following differential equation: 

16 + D6 = Mx(t) (31.1) 

where 

I = moment of inertia of the airplane about the longitudinal 

axes, 

D = damping moment of wings per unit rolling velocity, 

6 = angle of roll, 

Mx(t) = rolling moment due to lateral control displacement x(t). 

We shall assume that the control displacement x(t) has the form 

shown in Fig. 55. Letting p = 0 be the rate of roll, we can rewrite 

x(t) 

the differential equation as 

Ip + Dp = Mo j- 

- Mo 

(0 < t < h) 

(t > <i) , 

(31.2) 
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The corresponding subsidiary equations are 

p(s) = KOTTTj «•<•<« 
Mo 1 , p{h) 

"7 «(« + D/I) + (« + D/7) 1 j 

(31.3) 

from which 

(0 < t < ti) (31.4) 

-yr [1 - e ] + p(li) « ' (< > ti) (31.5) 

Fig. 56 

These equations can be expressed in the following nondimensional 

form 
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W-i-Qd*--™* «■«<« <-> 

«-■> «>« (31.8) 

which is plotted in Fig. 56 with //Dfj as a parameter. The ele¬ 
mentary discussion presented neglects the loss of rolling moment 
due to structural twist of the wings.* 

Problem 

100. Determine the rate of roll of an airplane when the control dis¬ 
placement x(t) is a unit step function. 

32. Servomechanism. The purpose of a continuous control 
servo system is to regulate the position 0O of an output load device 

Output 60 

Fig. 57 

to follow rapidly and accurately the position 6, of a control input 
device. A servomechanism compares the input and output posi¬ 
tions and translates any discrepancy between these into an error 
signal (ft — 60), which in turn acts on the output to minimize this 
discrepancy. 

The principle of the servomechanism can be illustrated in terms 
of the rotational system of Fig. 57, where the displacement So of a 
body of moment of inertia J is to be in agreement with the input 
displacement ft. The error (ft — So) between the input and output 
is detected by a differential and fed into a controller, which in turn 
applies a correcting torque X(ft — 0O) to the output shaft. Usually 
damping is provided in one form or another to prevent undesirable 

* W. T. Thomson, “Rate of Roll of Airplanes,” Aircraft Engineering, 
January 1947. 
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oscillation of the system. The simplest arrangement consists of a 
damping torque c60 proportional to the output velocity. Thus the 
torque applied to the output shaft is K(0,- — 0O) — c$0, and the dif¬ 
ferential equation of motion for the driven body becomes 

JSo - K(0i- 0o) - c60 

which can be rearranged as 

J dn -f- edit -f- Kdo = KOi (32.1) 

If the system is at rest at t — 0, we have 0o(O) = 0(>(O) = 0, 
and the subsidiary equation becomes 

0o(s) = 
KUs) 

j(s2 + ^s + ^ 
(32.2) 

If the control input is given a uniform motion 0* = iU, then 
6i(s) = S2/s2, and Eq. (32.2) becomes 

So(s) = 

(s'1+js+f) 
£2 cfi 

s'2_Es + 

*2 + 7 * + 7 
(32.3) 

Hence the inverse transform is (see Example 10.1) 

0o(t) = M ~ -g + ^ e 2jt sin (/31 — <p) (32.4) 

where 

““Gj) 

<p = tan -i M 
’ /32 — a2 

Thus the error signal 0< — 0O is given by the equation 

Bi - 0o - ^ | e sin (0* - *>) (32.5) 

which is plotted in Fig. 58. It is evident, then, that the error 
signal consists of a constant lag cQ/K and a transient term. 
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33. Electrically Controlled Servo System. Figure 59 shows a 
servo system which is controlled electrically. M is a motor supply¬ 
ing torque Tm to the rotating system of total moment of inertia J. 
N is a tachometer which absorbs negligible torque and generates a 
feedback voltage En = A;„0, where 0 is the rotational speed of the 
system. A is a vacuum-tube amplifier with a gain fi. The input 
voltage e to the amplifier is the difference between the applied 

control voltage E(t) and the tachometer voltage En, and its output 
voltage \ie is applied to the motor M, Thus when the motor is 
running under steady-state conditions, e =* E(t) — En is just suffi¬ 
cient for the motorHorque Tm = kmEm to overcome the damping 
torque cd. 

Equating the torque of the motor to the torque necessary to 
accelerate the system and overcome friction, we find that the 
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differential equation for the system becomes 

JO + c6 = nkm[E(i) — kn0] 

which can be rearranged as 

where 

JO + KO - nkmE(t) 
R = {c + JJLknkm) 

Thus the subsidiary equation for the speed is 

*(*) = 
nkm£(s) 0(0) _ 

j\s + R/j) ^ (6* + /e/j) 

(33.2) 

(33.3) 

In this equation 2?(s) is the transform of the applied control voltage 
E(t), and 0(0) is the speed of the system at t = 0. 

We shall now assume that the system is running at a speed 0(0) 
with a control voltage E0, and this speed is to be modified by 
increasing the control voltage linearly according to the equation 
E0Qt. Then 

E(t) « #<>(! + «) and E(s) 
-b'C+I) 

When we substitute into Eq. 33.3, the subsidiary equation becomes 

a/ \ _ . . 0(0) 

W _ Js(s + E/d) ^ Js2(s + Jt/T) + (s + R/T) 

The solution after rearranging terms is then 

(33.4) 

m = 
r(*-3f) 

IlkmEoSU 

i fJi/imEoQJ fikmE o 
+ 0(0) 7?2 p (33.5) 

It should be noted that the last term in this equation contains the 
_Rt 

factor e J and hence is the transient term. Since R = (c + pknkm), 

the effect of feedback is to increase the stability of the system by 
causing the transient term to vanish rapidly. 

Problems 

101. If critical damping is employed in the servo system of Fig. 57, 
show that the error becomes a steady value of cQ/K. 
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102. If for the servo system of Fig. 57 the damping is taken equal to 
c(Si — do), show that the solution for the error signal is 

o -JLt 
Oi — do = — — e 2J sin fit 

which contains no permanent lag. 

103. The system of Fig. 59 is rotating at a constant speed do with an 
input voltage E(t) = Eo. To change the speed of rotation, the input 
rheostat is turned at a constant rate to a new position in time h such that 

E(t) = E0(\ + Qtnl(t) - Eom - *i)TL(* - h) 

Determine the equation for the speed d(t). 

104. Figure 60 shows a motor generator set, the rotating system of 
which is represented by the moment of inertias I m and /<? and the torsional 

Fin. 60 

stiffness K of the shaft. To reduce the torsional oscillation between the 
two units, a servo system consisting of two identical tachometers is con¬ 
nected in opposition. The resulting voltage is amplified and placed in 
series to oppose the line voltage E(t) so that the motor torque is 
km[E(t) — fik(8i — d2)]. Show that the equation of motion for the tor¬ 
sional oscillation of the system is 

ImIo<P + IJ>kkmIa<P + K{Im + Ia)<p ~ kmIuE{t) 
where v (p — 6\ — 62 

105. If in the system of Fig. 60 the tachometers are disconnected and a 
constant torque To is developed by the motor with the system initially at 
rest, show that 
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6i(t) = ~~ y (t - - sin ut\ 
/.» + la \ to / 

, /A'(/„ + la) where "= V /j0. 
34. The Electromechanical System. A vibrating system fre¬ 

quently includes interacting mechanical and electrical elements. 
For instance, if a conductor of length l moves with velocity x in a 
uniform magnetic field B, a voltage given by the equation 

E = Bit (34.1) 
is induced. 

Conversely, the same conductor carrying a current i experiences 1 
a mechanical force 

F = Bit (34.2) 

It is standard practice in dealing with electromechanical prob¬ 
lems to use the MKS system of units, which eliminates cumbersome 

Fig. 61 

conversion factors. Thus the quantities above are defined as 
follows: 

E = volts, 
i = amperes, 

F — force in newtons, 
x = velocity perpendicular to magnetic field in meters per 

second, 
B = magnetic flux density in webers per square meter, 
l « length of conductor perpendicular to B in meters. 

The direction of the force and induced voltage is established by 
reference to Fig. 61(a) and (b). 

Example 34.1: Determine the time required for the electro¬ 
magnetic switch of Fig. 62 to close. On the assumption that the 
coil impedance is a pure inductance, the electrical and mechanical 
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E0^(t) - L ~ + BZs 
at 

mx = —ex — kx + Bli 

With initial values i(0) = i(0) == 0, the transform of these equa- 

kA k/2 

tions can be written as 

Fig. 62 

— = Lsl(s) + Blsx(s) 
s 

ms2x(s) = —csx(s) — kx(s) + Bli(s) 

Eliminating t(s) and solving for x(s), we obtain 

EoBl 
x(s) = 

Lms2 s2 + - 
L m 

If we let — = 2a and ~ 
m m 

the inverse of the above equation is 

, k , BH2 
s H— + ^— 

m Lm 

c 0 , fc , BH2 2 
— = 2a and b t— = 03 
m m Lm 

2a: 6 x __ -|— ___ sm (0* + *>) 

where w2 — a2 and ip = tan”1 
a2 — p2 

The time <i, corresponding to the gap displacement x0 can then be 
obtained by plotting the right side of this equation and finding h 

when x(t) = x0. 
v Problems 

106. Determine the current %(t) in the coil for the system of Fig. 62. 

107. In Fig. 62 add a resistor R in series with E and determine the 
equation for the displacement x(t). 



CHAPTER 4 

Structural Applications 

35. Statical Deflection of Beams. The operational method 

offers a very simple approach to the beam problem. In contrast 

to the classical method, which requires equations to be written for 
each interval between loads, the operational method enables any 

loading to be accounted for by a single equation in terms of boundary 

values at the origin. For such problems the time coordinate t is 

replaced by the space coordinate x. Beams with abrupt changes in 

cross section offer no unusual difficulties to the operational method. 

36. General Beam Equation. The differential equation for the 

loading of a uniform beam is 

EIdx*=f(x) (36-1) 

where f{x) represents the loading (load/unit length), considered 

positive in the upward direction. If we take the Laplace transform 

of Eq. (36.1) with x as the independent variable, the subsidiary 
equation for the deflection becomes 

,,US =yA0) , y'(0) , ?/'(0) y"\0) ±J(s) 

y{ ) s + V+ s3 + s* + El V 
(36.2) 

From its inverse, the deflection can be written as 

y(x) - 2/(0) + y'(0)x + 2/"(0) + y'"(0) |] + (36-3) 

where 

2/(0) = deflection at x = 0, 

*''<0)_(E)..„_slopeatj!"0' 

y"{0) = X moment at x - 0, 

y'"{ 0) * shear at x = 0. 

78 
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In general, some of these quantities are known. The remaining 
unknown quantities at x = 0 are then evaluated from known deflec¬ 
tion, slope, moment, or shear at some other point along the beam. 

37. Beam Loading. Beam loading/(x) can be expressed opera¬ 
tionally, as has been discussed in Chapter 2. A distributed load 
can be started and stopped at any position xx and x2 by multiplying 
its equation by the unit step function [OL(a; — Xi) — 01(2 — x2)\, 

Fig. 03 

which is unity between xi and x2 and zero everywhere else. The 
loading corresponding to a concentrated load P at x = xx is 
PTl'(z — Xi), whereas the loading corresponding to a couple M at 
Xi is M^'ix — £i). 

The sign convention adopted for the beam problem is shown in 
Fig. 63. The problem then resolves into one of writing down the 
quantity £~lJ(s)/s4 and evaluating the unknown quantities at x = 0 
from known values at some other point along the beam. 

Example 37.1: Determine the equation for the deflection of the 
simply supported beam with a concentrated load at x = a as shown 
in Fig. 64. 

_ PU-a) Rz 

Fig. 64 

The loading foivthis case is 

fix) = -/*U'(x - a) 

and its transform and contribution to the deflection are (see second 
shifting theorem, Section 17) 
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/(s) = -Per" 

£-' & = -P ^ ~ a) 

Substituting into Eq. (36.3) with y(0) = y"(0) = 0 and y'"(0) = 

Ri/EI, we obtain 

y{x) = y'(0)x + Ri ^ (x - a)3cU(x - a) 

From the boundary condition y(l) — 0, we obtain 

2/(0) 
RJ2 P (l- a)* 
6 El + ()>;/ 2 

and the final equation for the deflection becomes 

2/(z) 
-Ril* + P(l - a)3 

6 Ell 
X + Rtf* P(x - a)* 

6 El SEI 
01(2 — a) 

Since <11(0; — a) = 0 for x < a and unity for x > a, the last term 
is retained only for the right side of the load P. 

38. Nonuniform Beam. There are two ways of treating beams 
with more than one cross section operationally. In the first method, 
the beam is reduced to one of uniform cross section with modified 
loads so that the M/EI curve is the same as that of the original 
beam.* The treatment of the problem after this modification is 
then identical to that of the previous section. In the second 
method, f the moment equation is used instead of the loading equa¬ 
tion, and the change in the stiffness is accounted for by a function 
of the form 

■gj [1 + fc'UOr - a)] 

To illustrate the first method, consider the beam shown in 
Fig. 65(a). It is possible to reduce this beam to one of uniform 
stiffness Eh with the modified loading shown in Fig. 65(b). To 
determine the modified load, we can write the following M// equa- 

* M. Hetenyi, “Deflection of Beams of Varying Cross Section,” Jour, of 
Applied Mech., 4, 2 (June 1937), pages A49-52. 

W. T. Thomson, “Deflection of Beams by the Operational Method,” Jour, 
of Franklin lnst.y 247, 6 (June 1949), pages 557-568. 

f Carslow and Jaeger, Operational Methods in Applied Mathematics, Oxford 
University Press, 1941, page 327. 
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tion with x = a as the reference. 

-![».+ vs - “f - M. (i - £) - v. (i - £)*' 
+ »(1-t^t] <381> 

It is evident from this equation that the modified loads given by 
w Ib./ft. 

(a) 

(b) 

R2 s wl 

Fio. 65 
its last three terms are 

M' 

P 

Q 

- M. (l 

'-4-0 (38.2) 

The loads P" and M" are then determined from the fact that the 
modified loads must be in equilibrium by themselves: 

P" - P' - qb - (F0 - wb) (l - 7;) = Vb (l - Q 

'*-¥-(^+F‘»-r)(i-fD M' + P'\ (38.3) 
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By using the method of the previous section, we find that the 
loading equation must include the following additional terms due 
to the modified loads: 

f(x) = ^[^(x — a) — Tl(x — a — />)] — P,(M\x — a) 
- MuU"{x - a) + P'uU'(x - a - b) + il/"<U"(x - a - b) (38.4) 

Hence its transform and contribution to the deflection are 

>/ x (- e~(a+b)s\ 
-T-)- 

p-i /(f) _ r - «)4 _ - 
s4 L 4! ■ 3! 

P' e~a" - M's e~°* 

+ P" 4. M"s c-(o+w* (38.5) 

r^’-^2f^]nux-a) 

-?(x - a - by . P"(x - a - by . M"(x - a - by 

lU(x — a — h) (38.6) 

Example 38.1: Determine the equation for the deflection of 
the cantilever beam shown in Fig. 66(a). 

Fig. 66 

The equivalent uniform beam with its modified loads are shown 
in Fig. 66(b). Thus from Eq. (38.2), 

p'-p(,~r) 
w > -P(i - a) (l - 0 

The loading, its transform, and its contribution to the deflection 
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f(x) = -P'<U'(x - a) - M,cVl"(x - a) 
/(«) = —P' (’— M's e~a‘ 

"*/(») _ r -/*(* 
V L 3! 

—^ + P(Z - a) (X -8 Tl(x — a) 

Substituting into the deflection equation with 2/(0) = //'(0) = 0, 

y"{0) = —PI/Elt, and y"'(0) = P/EIh we obtain 

TIT / \ PZx2 Px3 
Ehy(x) - 2| +3i' 

—P(x — a)3 P(Z — a)(x — 
3! + ~ 2! ^(‘-0 CU(£ — a) 

If we let a; = Z the deflection at the end becomes 

1 r ri* P{l-aY( /A] 
y(Z) -^/d" ;r + — 3---^ -7-JJ 

For the second approach to the problem, we start with the 
moment equation 

3?-*v, U-«*<*-■»! 

where 1//?/ over the section 0 < x < a is 1 /Eli and that over the 
section x > a is 

1 1 

Solving for k, we have 
Ell(1 k) Eh 

•(■-a 
As an illustration, we shall use the preceding example of the canti¬ 
lever beam, for which the differential equation is 

2 - [I - -“» 

The subsidiary equation with y(0) = y'{0) = 0 becomes 

PI . P , PZ/fc<r“* 
= ~ V + 3 + 

where 

V S s* 

£xclL(x — a) = e~ 

- Pke- G! + ?) 
Taking the inverse transformation, we obtain 
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Ehy(x) 
Plx2 Ps3 

2 + 6 

+ Pk 
l{x — a)2 

2 6 

which agrees with the previous result. 

(x — a)3 a(x — a)2 

2 _ Tl(a; — a) 

Problems 

108. Determine the deflection equation for a cantilever beam with a 
uniform load over the outer half of the span. 

109. Determine the operational solution for the beam of Fig. 67. 

fix) Ib./ft 

110. Show that the transform of the triangular load shown in Fig. 68 is 

/(*) = ?(-- —,) e-°* + —, 
cs2/ cs2 

111. Using the results of Prob. 110, determine the deflection of the 
beam shown in Fig. 69. 
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112. A uniform beam of length l has a concentrated load P at x = a. 
If the left end is clamped and the right end is hinged, both being at the 
same elevation, determine the deflection. 

113. Figure 70 shows a uniform cantilever beam with a narrow slot of 
width c at x = a. Show that the deflection is given by the equation 

y(») = 
PI Px3 

, t2 _L 

2EI 67i7 

_ FV- a) (l _ \ 
EJ \L ) 

c(x — a) Tl(£ — a) 

/ 
/ 
/■ 
/■ 

/ 
/" 
/ 

* h l 
— tfZZH 
a --—c 

-/- 

P 

where Ie is the moment of inertia at 
the slot. 

Fia. 70 

114. A simply supported beam with a load P at mid-span has a slot of 
width c at x = a. Show that the deflection is 

»(’> - - {if® + uiiij, " O''"""!1 

+ J&I (t ~ c^x ” a^x ~ a) 

where Ma = Pa/2 or P(l — o)/‘2, depending on whether the slot appears 
to the left or right of the load P. 

115. A flywheel of weight W is pressed on a shaft which has a larger 
diameter over the middle third of its length as shown in Fig. 71. Assuming 
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the bearings to be rigid, determine the deflection at mid-span in terms of 
/, Io, l, and W. 

39. Critical Load of Columns. Figure 72 shows a column with 
arbitrary end conditions. The column is assumed to be long so 
that failure tends to take place by lateral instability rather than 
by direct compression. 

We start with the differential equation 

d2y _ _ (P_\ 
dx- \E1) y + 

M (0) 
FJ 

and the subsidiary equation becomes 

«y(0) + ?/(()) + M(fi)/»EI 
y(s) = 

s2 +fi'1 

(39.1) 

(39.2) 

fi2 = 
El 

Noting that y(0) is zero, we find that the solution 
in terms of the slope and moment at x = 0 is 

y{x) = sin fix + (1 - cos fix) (39.3) 

To evaluate y'(0) and M(0), we note that the deflec¬ 
tion, slope, and moment at x = / are 

2/(0 = ~^ sin fil + ® (1 - cos fit) (39.4) 

y'(0 = 2/'(0) cos fil + sin fil (39.5) 

M(l) = Ely'(0)fi sin fil + 1/(0) cos fil (39.6) 

These equations are then sufficient for the evaluation of the critical 
load for any end conditions. 

(a) Pinned Ends. In this case il/(0) = M(l) = 0, and from 
Eqs. (39.4) and (39.6) we obtain 

2/(0) 
0 

sin fil = 0 

fil — T 

Per = 

r2EI 
P 
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(b) Both Ends Clamped. The slope at the ends for this case 
is zero y'(0) = y'il) = 0. From Eqs. (39.4) and (39.6) we obtain 

(1 — cos P1) = 0 

and from Eq. (39.5), 

sin pi = Q 

Both these equations are satisfied 

by 

pi = 2T 

p _ ***EI fcT p 

(c) End x = 0 Clamped and 
Other End Pinned and Free. The 
boundary conditions for this case 
are y'(0) = M(l) - 0. 
From Eq. (39.6), 

cos pi = 0 

P 
_ ir2EI 

Fig. 73 

40. Nonuniform Column. Columns of several sections can be 
treated operationally by shifting the origin to the end of each 
section. Thus the differential equation and the subsidiary equa¬ 
tion for the ith section from Fig. 73 are 

= -P(y - y<-i) + M,-! 

ff(s) = Utp 4. y±zi -i__ 
yK > S T s’ + p\ T EJMs2 + PI) 

where p 

Taking the inverse, vte have 

y(x) = j/._i + —-1 sin ptx + (1 - cos ftx) 

(40.1) 

(40.2) 

(40.3) 

(40.4) 
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Differentiating and letting x = Z», we obtain the equations for the 
deflection, slope, and moment at i in terms of corresponding quanti¬ 
ties at i — 1: 

77- M ^ 
yi = 7/i_i + ^r--1 sin pdi + 2 (1 ~ cos pdi) (40.5) 

Pi iPi 

Vi = Vi-1 cos Pdi + ~~‘~1 sin /3,Z> (40.6) 

Mt = sin #/,• — M,_i cos (40.7) 

It is convenient to express these three equations in matrix form 
as follows: 

Vi 

y\ 

Mt 

A similar equation can be obtained for i — 1 in terms of i — 2, and 
so on. By repeated multiplication of the matrices, quantities at 
station n can be expressed in terms of corresponding quantities at 
station 0 by the equation 

1 - sin pdi 
Pi 

0 cos pdi 

1 
EJSf 

1 
EJiPt 

0 — EJiPi sin pdi cos PM 

(1 — cos pdi) 

sin pdi 

yi-i 

. f 
Vi- 1 

-
1 

7 

_
i 

(40.8) 

yn An A12 A ] 3 "yo " 

y'n = 0 A 22 A 23 y[) 
Mn- -0 A32 A 33- - Mo- 

(40.9) 

The equation for the critical load follows by applying the boundary 
conditions to Eq. (40.9). 

(a) Pin-ended Columns. The boundary conditions are 

yn = yo = Mn = M 0 = 0 

By substitution into Eq. (40.9), the equation for the critical load 
becomes 

A12 = As2 = 0 (40.10) 

(b) Fixed-End Columns. We have the boundary conditions 

yn = yo = y'n = y'a = 0 

The critical load is then given by the equation 

A13 = A.23 — 0 (40.11) 
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(c) When only a few sections are involved, simple analytical 

expressions can be obtained for the critical load. However, for 

many sections the simplest procedure is to choose a fin and then 

compute the elements of the matrix equation for each section. This 

is possible, since 

fin-1 __ I 

fin \ En„\J n-l 
(40.12) 

By plotting Aw, A^, . . . , we can obtain the critical load by 

satisfying the equation corresponding to the particular boundary 

conditions. 

Problems 

116. From the equations of Section 40, obtain the equations for the 
critical load of a uniform column as given in Section 39. 

117. Write the boundary equations for a column of several sections if 
end 0 is fixed and the end n is pinned and free. Show that the critical 
load is given by the equation 

A 33 == 0 

118. For a pin-ended column of two sections, show that the equation 
for the critical load is 

tan fi2h _ tan filli 

—p~ ~ wr 
119. If a uniform column is fixed at one end and the other end is 

pinned and guided so that its deflection is zero, write its differential equa¬ 
tion and discuss its solution. 

References 

Thomson, W. T., ‘'Matrix Solution for the n-Section Column,” Journal 
of the Aeronautical Sciences, 16, 10 (October 1949), page 623. 



CHAPTER 5 

Complex Variable Theory 

The elementary treatment of the inversion process given in the 

first chapter is often found to be inadequate for more advanced 

problems. In this chapter we shall approach the subject of the 

operational method in a more general way by means of the theory 

of complex variables. In fact, it is hardly possible to obtain a 

thorough understanding of the subject of Laplace transforma- 

tion without some knowledge of complex-variable theory. To a 

beginner the theory of complex variables may appear somewhat 

abstract and remotely related to physical interpretations. How¬ 

ever, it is one of the most useful forms of mathematics for the 

applied mathematical fields. Only those parts of the theory which 

are essential to Laplace transformation are briefly presented. 

References at the end of the chapter should be consulted for further 

details. 

41. Complex Variable. If the real and complex parts of a 

complex quantity are variable, the quantity is called a complex 
variable. For example, 

z = x + iy (41.1) 

is a complex variable where x and y are variable. 

We now define another complex variable, 

w = u + it* (41.2) 

so related to z that for each value of z there corresponds a value of w 

w = /(z) (41.3) 

Thus, when the variable z describes a curve in the z-plane, the 

corresponding values of w will trace out some curve in the to-plane 

as shown in Fig. 74. 

42. Analytic Function. A function of a complex variable which 

possesses a derivative at every point of a region is said to be analytic 
(or regular) over that region. For instance, if w =* 1/z, the deriva- 

90 
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tive dw/dz = —1/22 exists for every z except 2 = 0. Thus w = 1/2 
is analytic except at the origin. 

We define the derivative of the function w = /(2) by the equation 

die 

d2 
lim 

Az—>0 

Aw = Jim /(2 + A2) - /(2) 

A2 Az—+0 Az 
(42.1) 

Since A2 = Ax + i Ay, there are any number of different ways of 
approaching this limit. Thus for an analytic function, it is neces¬ 
sary to demand that the above limit be independent of the manner 

Fig. 74 

in which A2 approaches zero. For instance, if A2 is first taken in 
the ^-direction and then in the ^-direction, we obtain the following 

two expressions: 

lim 
Aw .. Au + i Av du 

= lim --- = -r- mu ” — A 

Az—+0 Az Ax—+0 AX 

. dt) 
dx 1 dx 

lim 
A^ .. A u + i Av 

= lim —T--- 
dv . du 

(42.2) 

(42.3) 

For the limit to be unique, the above equations must be equal, or 

du _ dv 
dx dy 

du _ _ dv 
dy dx 

(42.4) 

(42.5) 

These equations which u and v must satisfy are known as the 
Cauchy-Biemann equations. They are necessary conditions for the 
existance of the derivative. The Cauchy-Riemann equations can 
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also be shown to be sufficient conditions for the existance of a 
derivative.* Thus an analytic function must satisfy the Cauchy- 
Riemann equations. Moreover, if f(z) has a derivative at a given 
point 2o, it must also be continuous and single-valued at that point. 
The converse is not necessarily true, however. 

It is fortunate that many ordinary functions, such as poly¬ 
nomials and sines, are analytic. For such functions the usual rules 
of differentiation hold. 

Examplk 42.1: Determine whether w = z3 satisfies the Cauchy- 
Riemann equations. 

Writing w in terms of x and y, 

w s= (x + iyY — (x3 — 3xy2) + i(Sx2y — y3) 
we have u — x3 — 3xy2 

v = 3 x2y — y3 

The Cauchy-Riemann equations 

£ - 3x> - 8»* - f 
dx dy 
du n dv 
- _ -fay - - _ 

are thus satisfied, and the derivative of the function w = zz exists 
and is equal to 

5 = 3 s2 = 3(* + iy)2 

Problems 
120. For w — 2* show that 

dw __ dw ~ . dw _ dtt . dw 
dz dx dy dx dy 

121. Determine whether the function w = sin 2 satisfies the Cauchy- 
Riemann equations. 

122. Is w = 2x + ty analytic? 

123. If the increment Az is taken in the radial and tangential direc¬ 
tions, show that 

where w — f(z) and z — reid 

* See references at end of chapter—Churchill, page 30, and Osgood, page 36. 
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43. Singularities. Points where the function ceases to be ana¬ 
lytic are called singularities. For single-valued functions, there are 
two kinds of singularities as follows: 

(a) Poles (Unessential Singularities). Poles are points where 
the function becomes infinite to a finite order; that is, the singu¬ 
larity can always be removed by multiplying the function by a 
suitable factor of finite index. As an example, the function 

/(*) = 
z 

(z — a)n 

for n a finite integer has a pole of order n at z = a, which can be 
removed by multiplying the function by (z — a)n. Thus 

lim (z — a)uf(z) ^ qo 
Z—+CL 

(b) Esse?itial Singularity {Pole of InJinite Order). For an essential 
singularity, the limit 

lim {z — a)nf{z) 
z—*a 

does not exist for a finite value of n. 

= 1 + \ + 2& + 

For example, 

L + . . . 
3 \z* ^ 

has an essential singularity at z = 0. Another example is an 
expansion of the form 

/0) = ^ {z - a)n 
n = 0 

which has an essential singularity at z = a. 
44. Branch Points. If w = f(s) is a single-valued function, each 

point of the 3-plane corresponds to one point of the w-plane. For 
a multivalued function, each point of the 3-plane may correspond 
to more than one point of the w-plane. 

Consider, for example, the function w = 3* taken over the 
circular path of Fig. 75(a). Changing to polar form, 

3 = reid 

w = r* 

we find that in completing one circuit of 0 to 2r radians in the 
3-plane the corresponding values in the w-plane cover 0 to r radians, 
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as shown in Fig. 75(b). Continuing around the 2-plane for the 
second time, 2ir to 4-ir radians, w describes the angle ir to 2ir radians 
(indicated by a broken line in the te-plane). Hence a point such 
as b in the z-plane corresponds to two points 6j and 62 in the ip-plane. 

z- plane w-plane 

(a) (b) 

Fig. 75 

The two regions of the w-plane—0 to w, w to 2t—are referred to as 
the two branches of the function w = zK The point z = 0 sepa¬ 
rating the two branch values bi and b2 is called the branch point. 

Consider again the same function w = z* taken over the contour 
of Fig. 76 and not enclosing the branch point. In the process of 

I z-plane 

Fig. 76 

going around this curve, the argument of z merely oscillates between 
the two extreme values shown, and hence w — ** is single-valued 
over such a curve. Values acquired by multivalued function, then, 
generally depend on the path described. 

Multivalued functions restricted to a single branch are single- 
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valued. Generally the first or principal branch is considered; and 
if a contour encloses a branch point, the argument in the 2-plane 
is restricted to 2w radians by means of a barrier or branch cut as 
shown in Fig. 77. ^ 

A branch point is generally considered to be a singularity, since 
its inclusion within the closed contour results in multiple values 
of w which fail to comply with the requirements of an analytic 

Fig. 77 

function. Other multivalued functions possessing this peculiarity 

are 

w = In z = In \z\ + id 
w — sin”1 z 
w = (z — a)l/n (n = a finite integer) 

y/l 
w = e, 

45. Cauchy-Goursat Theorem. The Cauehv-Goursat theorem 
states that if a function f(z) is analytic within and upon a closed 
contour, the line integral taken around the contour is zero. 

j)f(z)dz = 0 (45.1) 

The notation tj) is used to denote an integration around a closed 

curve; the arrow indicates that the integration is to proceed in the 
counterclockwise direction. 

To prove this theorem, let the curve C of Fig. 78 be the specified 
contour around which w — f(z) is to be integrated. By dividing 
the region within C into a series of rectangles, we can concentrate 
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our attention on one of them. If we consider the integration 
around this rectangle to be the product of the average value of w of 

each side and its length, we obtain 

(. dw dx\ . . ( . dw , . dw diy\ ,. 

2ri +v" + sf 5v 

+ T + te T + iav‘ dv)<-~dx^ + (w + Tdi ~r)<--' dy) 

(dw dw\ . , . 
te-Ui),dxdy <45'2) 

Substituting w = u + iv in this result, we obtain the equation 

Since the function is analytic, the right side of this equation, which 
corresponds to the Cauchy-Riemann equation, is zero, and hence 
the integration around each of these rectangles is zero. 

We note next that in integrating around adjoining rectangles, 
each side is traversed in opposite directions, the net result being 
equivalent to integrating around the outer curve (7. We therefore 
arrive at the result 

f m dz = o 
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when the function w = f(z) is analytic within and on the closed 
contour C. 

As a consequence of the Cauchy-Goursat theorem, we can state 
that if /(g) is analytic in a given region*the line integral between 
two points in this region is independent of the path taken. Refer- 

ring to Fig. 79, the integral around the curve acbc'a is zero, and 
hence the integral along the curve acb^must be the negative of the 
integral along bc'a. Thus the integral from a to b is independent 
of the path. * 

Example 45.1: The function w = z is analytic for all finite 
values of z. Show that its integral around the two contours shown 
in Fig. 80(a) and (b) is zero. 

iy 
iy 

(3,4) 

x 

ib) 

Fig. 80 
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(a) For the circular path, we let 

and the integral becomes 

z = r eie 
dz — ir eid dd 

f e™ dd = 0 

(b) For the rectangular path, we break up the integral along 
each side as follows: 

z dz — f* xdx + f* (3 + iy)i dy + J3° (x + *4) dx + f" (iy)i dy t 

-?£+(■•-AIM!* «)I-a- 
The integral tp z dz is therefore zero for both curves, as stated by 

the Cauchy-Goursat theorem. 

Example 45.2: The function w = 1/z has a simple pole at the 
origin but is analytic everywhere else. Show that its integral 
around a circular path enclosing the origin is equRl to 2iri. 

We let z = r eie 
dz = ir eiB dd 

and the integral becomes 

Example 45.3: The function w = \/{z — a) is analytic except 
at the pole z = a. Show that the integral around a circle with 
center z *= 0 is zero if a lies outside the circle and is 2iri if a is 
enclosed. 

If we make the substitution z — a = X, 

f 
dz 

z — a 
ff) = In |X| + id 

In going around a closed path, |X| returns to its original value so 
that In |X| =0. If a is outside the closed curve, the angle d returns 
to its original value, and hence the result is zero. If a is enclosed, 
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$ = 2t — 0. Thus 

99 

J? dz _ | 0 (a not enclosed) 
J z — a } 27n (a enclosed) 

The two cases are illustrated in Fig. 81. 

Fig. 8> 

Problems 
124. Evaluate the integral 

n+i 

Jo 
x dz 

along the straight-line path from 0 to 1 + and along the path corre¬ 
sponding to the x and y projections. 

125. Evaluate fj) (x — y) dz around a circle of unit radius with center 

at the origin. 

126. Evaluate ff) dz/z2 around a circle with center at the origin. Hint: 

Let z = r eie = r(cos 6 + i sin 6) 

127. Prove that 

dz 
(z — a)n 

0 (for n an integer not 1) 
2iri (for n = 1) 

128. Show that the following integrals are zero around a circle of 
radius 1 and center z = 0. 

(,) $ rrs’ ,(c> f e* dz 
z - 2 

e~9dz 
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46. Integral Expression of an Analytic Function. Let f(z) be 
analytic on and within the contour C shown in Fig. 82, and let a be 
a point within. We now define a new function: 

Q m 
(z - a) 

(46.1) 

with a singularity at a. If we draw a small circle around a, g(z) will 
be analytic in the area bounded by C and the circle, and the integra- 

I1 ig. 82 

tion around the path shown by the arrows will be zero. 

f vf=T)d‘-° (46'2) 

Since f(z) is analytic at a, we can let its value on the small circle be 

/(z)S/(a) + « (46.3) 

where c is a small quantity. Substituting into Eq. (46.2), we 
obtain 

If r is the radius of the small circle, (z — a) on the circumference is 

(z — a) = r eie 
dz = ir eie dd 

and Eq. (46.4) becomes 

f {¥=%=f(a)2Ti+1 /: •dz (4®-5) 
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We can now reduce the radius of the small circle so that e —► 0. 
Thus 

1 X f(z) dz /Aa 
«“> - 2itf 2wi j (z — a) 

c 
(46.6) 

and the function f(z) at a is expressed by a contour integral around 

mow the values of an analytic function at the 
boundary, ^ve also know the value of the function at any point 
within the boundary. The equation suggests several physical 
interpretations. / For instance, the temperature at any point within 
a body is dependent on the temperature distribution on the bound¬ 
ary surface. The deflection of a membrane stretched across a 
closed loop of wire depends on the shape of the wire and its elevation. 

Example 46.1: Using Eq. (46.6), show that 

for any point within a closed contour. We have for this case 
f(z) = 1; consequently, /(a) = 1, and the above equation is proved. 

Example 46.2: The function f(z) = z2 is equal to a2 at z = a. 
Verify this statement by evaluating the integral of Eq. (46.6) with 

/(*) - 
Let (z — a) = X; then 

(X + a)2 d\ 
X 

-55#( X -f- 2 a *4" 

The first two terms of the integrand are analytic, and hence their 
integrals are zero. Thus 

pt \ 1 r Z2 dz a2 rd\ 2 

Example 46.3: Show by meaiflH Eq. (46.6) that if a function 
is analytic, all its derivatives exist^^ 
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If we let a — z and z = s, Eq. (46.6) becomes 

_ 1 X /(*) * 
/(2) - asy (7-"*) 

where 2 becomes a fixed point and $ now varies along the enclosing 
curve C. Differentiating with respect to z, we have 

/'(*) = 

rw = 

_L 
27TZ 

2[ 
2;ri 

/-w = ^ 

/(«) ^5 
(7- *)2 

Ag) ds 
[s — z)* 

f(s) ds 

1 f ds 
2wiJ (s — c 2iri J (s — a) 

Let f(s) = 1; then /'(s) = /"($) = 

(s - 3)»+1 

Thus, if f(z) is analytic, all its derivatives exist. 

Example 46.4: By means of Cauchy’s integral formula, show 
that 

0 (n 7^ 1) 

1 (71 - 1) 

= 0. Thus the above 
relationship is obtained. 

47. Theory of Residues. 
In Fig. 83, let f{z) be analytic 
on and within the closed con¬ 
tour C except at z = a, where 
there is a pole of order n. Then 

_ /(*)(« ^ *)" _ F( 
JK } 12 ~ ~ (* - 

F{z) 
{z — a)n (z — a)n 

(47.1) 

where F(z) is analytic on and within the closed contour, including 
the point a. Since F(z) is analytic at a, we can expand F(z) about a 
by the Taylor series: 

F(z) - F(a) + F'(a){z - a) + (2 - a)* 

+ yw(a) 
n! 

(« - a)n + (47.2) 

where all the derivatives F00 (o^xist according to Example 46.3. 
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Substituting Eq. (47.2) into (47.1), we obtain the series 

= E(a) F\g) , F"(a) ... . 
' (2 — a)“ *r (z — a)n_1 "r 2!(z — a)"-2 

+ (»- D!(* - a) + ~nr + (^+ii!(z -a) + • ‘ • (47-3) 

which is referred to as the Laurent expansion. We now consider 
the integral 

F<—»(o) 
T (» - T) 

F<»+l>(a) f 
(n + 1) !2« J •’ 

dz 
(z — a)n 

r dz 

F"{a) 
2ti J (z — a) 

, ^<B)(«) j: , 

dz 

a) dz+ 

(z — a) n\2wi j 

, F(n+m)(a) 
(n + rn) \2ti 

dz + • • 

-.\j) (z — a)m dz 

(47.4) 

In the above equation, all integrals on the right side with the 
exception of one are zero. For instance, 

fj) (z — a)n dz = 0 (n = 0,1, 2, 3, * • •) 

since the function is analytic. The second type (see Example 46.4) 
has the value 

f_dz _ __ 0 (for 1) 
J (z — a)n \2iri (for n = 1) 

Consequently, Eq. (47.4) reduces to 

-js^rri-®00 <47-5) 
The right side of this equation is the coefficient of the (z — a)-*1 

term of the Laurent expansion given by Eq. (47.3). It is the only 
coefficient of the Laurent expansion which affects the value of the 
integral of f(z) around a closed contour C, and is called the residue 
<3l(w) of/(*). 

If there is more than one pole on or within the contour C, we 
can deform the path of integration as shown in Fig. 84 and apply 
the results just obtained. The deformed contour C" now excludes 
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all the poles, and so we can write 

him * -0 - hfm * - ssfm iz 
C Cl 

— <4™> 

Thus the integral around the outer curve C is 

-fof /(*) dz = <Ri + <R, + • • • = ^ <R (47.7) 

c 

We conclude from this equation that if f(z) is analytic except 
for singularities at the poles, the integral around the closed path is 

equal to the sum of the residues of the poles. From Eqs. (47.5) 
and (47.1), the residue for the nth order pole is 

CR(w) 
F(n“1}(o) _ 1:_ d-1 /(*)(* ~ a)* 
(n — 1)! ™ dzn~~l (n-1)! 

(47.8) 

which states that the function f(z) is first multiplied by 
(z — a)w/(n — 1)!, differentiated with respect to z, (n — 1) times, 
after which we let z = a. For the simple pole, this reduces to 

(R = lim/(z)(2 — a) (47.9) 
z—+a 

since 0! = 1; that is, (n — 1)! = n\/n = 1 if n « 1. 
In some cases the denominator of f(z) is not readily factorable, 

in which case we proceed as follows. Let f(z) = A(z)/B(z) contain 
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only simple poles ak. Then from Eq. (47.9) we can write 

105 

Y,■ Y (S ~ °‘) »(i> (4710) 
k — 1 

where ak are the roots of B(z) = 0. We note here that we have an 
indeterminate form and hence by L/Hospital’s rule we obtain 

ti 
,• (« - ak)A'(z) + A(z) 
I™ B'{z) 

V 

A(ak)_ 
B\ak) 

(47.11) 

Sometimes it is simpler to determine the residues by expansion 
of f(z) into a Laurent series, particularly when/(z) contains multiple- 
order poles. 

Example 47.1: Evaluate the integral 

f zldz 
J z + 1 

by the residue theorem. 
The function in this case is 

m = 
z2 

r+i 
which has a simple pole at z = — 1. From Eq. (47.9), the residue 
at z = — 1 is 

lim 
z—* — 1 

(Z+ 1) 
z2 

<*TTj 
l 

and the integral around any closed path enclosing the point z 

is 

f z2 dz 
J z~+l 

= 2iri 

-1 

We can arrive at the same result by expanding z2/(z + 1) into 
a Laurent series about the pole z = —-1. Letting z + 1 = X, 
z2 = (\ — i)2? and dz — d\, we shift our pole to X = 0. Thus 

z2 
z +1 

(X - l)2 
X 
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The residue is then the coefficient of 1/X, or 1, and we arrive at the 
value of 2iri for its integral. 

Example 47.2: Evaluate the integral 

dz 
(z - a)2 

where the integration is carried over a closed path enclosing the 
point z = a. / 

The function f(z) = l/(z — a)2 has a pole of order 2 at z = a 
and the residue from Eq. (47.8) is 

d (z — a)2 1 
lim 
z—+a 

= 0 
dz (2 — 1)! (z — a)2 

Thus the integral is zero: 

* =0 
(3 - a)* 

This result could have been established by inspection, since 
l/(z — a)2 can be considered to be one term of the Laurent expan¬ 
sion with all other coefficients equal to zero. The residue, being 
the coefficient of 1 /{z — a), is necessarily zero for this case. 

Example 47.3: Determine the residue of f(z) = e”/(z2 + a2), 

and specify the integration path. 
The poles are z = ±ia, which are conjugate points on the 

imaginary axis. From Eq. (47.9), the residues are 

2 (R = lim + lim 
-;a - id) 1 ££ (* + to) 

_ ea . e~a = i (ea - e~a\ i . , 
2ia 2 ia a \ 2 / aSm a 

Consequently, the integral around any closed contour enclosing the 
poles z = ±ia is 

eiz dz 2iri2 . , 2tt . , 
—$  -smh a  -smh a 

z2 + a2 a a 

Example 47.4: Evaluate the integral 

z dz f sin nz 

around a circle of radius |z| < v/n with center at the origin. 



§47] COMPLEX VARIABLE THEORY 107 

The function 2/sin nz has no pole at the origin, since 

lim --I 
2—o sm nz n 

The closest singularity is at z = x/n. Hence the integral around 
the circle with center z = 0, and radius \z\ < x/n is zero. 

u/ ^ 
Problems 

129. Expand the function 

m « 
1 

z(z - 1) 

into a Laurent series (a) about 2 = 0 and (b) about 2 = 1, and determine 
the residues at the poles, (c) If f{z) is integrated around a closed path 
enclosing the origin and cutting the z-axis between 0 and 1, determine its 
value. 

130. Expand the function /(z) = e*/z2 into a Laurent series and deter¬ 
mine its residue. Determine its integral around any circular contour with 
center at z = 0. 

131. Evaluate the integral 

r e* dz 

J sin nz 
c 

where (a) C is a circle with center at z - 0 and radius \z\ < x/n, (b) radius 
is specified as x/n < \z\ < 2x/n. 

132. Determine the sum of the residues of the following functions: 

(a) f(z) 
z 

Z2 -b 2 — 6 

(b) f(z) - 
1 

2(2 + a) 

(0 /(e) = ^ 

(d> ™ 

133. Evaluate the integral 

f 
ea dz 

cos nz 

around a circle of radius |z| = 

134. Evaluate the integral 

1/n and center 2 = 0. 

f 
dz 

Z COS 2 

around a unit circle. 
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136. Determine the poles of 

/(*) = 

and find the sum of the residues. 

136. Show that the residue of 

sinh z 

z cosh z 

m = z sin nz 

at the origin is t/n. Specify a contour C which will result in the value 

vzi dz _ . t 
—;-= 2wi — 

z sin nz n 

48. Complex Form of the Fourier Series. If a function f(t) is 

periodic with a period r, then f{t) = f(t + r). Such functions can 

be represented by a Fourier series, provided the function is finite 

and contains only a finite number of discontinuities. The series and 

the coefficients are 

f(t) = ^ an sin not + ^ bn cos not 

n = 1 Ti — 0 

2 f+T/2 
an= / f{t) sin not dt 

7 J — r/2 

2 f+T/2 
n = - f{i) cos not dt 

7 J -r/2 

(48.1) 

(48.2) 

1 f+T/2 
o = - / m dt 

TJ -r/2 

We now convert these equations to a complex form by means 

of the substitution 

sin not = L (e™“' — e~inu.‘) 
2t 

cos not = i(einat + e~inat) 

Hence 

m = ^ (an + ibn)einut - L ^ (a„ - ^^>„)e_<n", 

n — 0 n *= 0 

(48.3) 
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Noting that 

1 1 /*+T/2 
(«n + ibn) = “ / /(0 ^ %1Uat dt 

™ T J — t/2 

] — 1 f +T/2 
(a„ - ibn) = — / /(0 d* 

^ T y -t/2 

we find that Eq. (48.3) becomes 

80 00 
YA Pinu»t f+r/2 YA p-incot C +r/2 

/(<) = > — / /(<) + \ --- / /«) c<n“‘ d< 

n =0 ^ n = 0 ^ 

(48.4) 

The expression is unaltered if we change the sign of n in the last 
term as well as in the summation. Hence the complex form of the 
Fourier series becomes 

fit) - 

+ °° 
f,W J+T/2 

/(t) (48.5) 

49. The Fourier Integral. Starting with Eq. (48.5) for periodic 
functions and extending the period to infinity, the function f(i) 
may include nonperiodic functions. 

fit) 

-f <*> . 2tt7\. 

= lim y [+r/2 
T—> « Z-/ T J -r/2 

— ’^rnt 
fit)e dt (49.1) 

Letting X = 2tu/t, and remembering that r —> <*> and that n is an 
integer, we find that the differential for the summation with respect 

to n is 

d\ = — {nk+1 -»»)-— (49.2) 
T T 

Thus the limit is expressible by the Fourier integral 

m = L J+ eiU f+* e-*‘Mdtd\ (49.3) 
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This integral is often expressed by the Fourier transform pair 

m = dt 

m = ~2~ J \ ^'/(X) d\ 

(49.4) 

The latter expression for f(t) has the following physical interpre¬ 
tation. eiX< /(X) d\ is a harmonic function of frequency X and ampli¬ 
tude /(X) d\. Thus f(t) is expressed as the infinite sum of har¬ 
monic oscillations in which all frequencies from — oo to + <» are 
represented. 

50. The Fourier-Mellin Inversion Integral. The function f(t) 
in the Fourier integral is assumed to exist for t < 0. In physical 
problems we are interested only in the solution for t > 0, and thus 
f(t) can be assumed to be zero for t < 0. For such functions, the 
Fourier integral becomes 

m - ^ fo e-*‘f(t) dt d\ (50.1) 

We shall now show the equivalence of Eq. (50.1) to4the Fourier- 
Mellin inversion integral 

Ki) -gL r+'m e“ /(«) ds (50.2) 

where /($) is the Laplace transform of / (t) and y is a positive 
constant. 

Rewriting the right side of Eq. (50.2) as 

i r 7 -HP r °° 

S’laSA-, ‘“A (“•»> 
we introduce the following substitutions: 

s = y + i\ 
ds = i d\ 

X = i(y — s) 

noting that the limits of s which are y ± iff must be changed to the 
limits of X = i[y — (7 ± iff)] = ±ff. Thus Eq. (50.3) becomes 
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lim f e(y+i\)t f e~{y+iK)t f(t) dt id\ 
0—> «o 2nn J —fi Jo 

= ~ J + eiXl e-"[«ny(i)] ctt rfX 

= = /(<) 

which verifies the equivalence of the two equations. 
Equation (50.2) can be written together with its pair: 

- r7+t« 

Kt) “ J e’‘J(8)ds (50.4) 

/(») = f e~“ f{t) dt (50.5) 

Thus Eq. (50.4) is the inversion of Eq. (50.5). These two equations 
form the basis for the modern operational calculus. We shall be 
concerned mainly with Eq. (50.4) as a means of evaluating the 
inverse transformation of }(s). The path y — too to y + ioo, 
which is a straight line parallel to the imaginary axis, is known as 
the first Bromwich path, sometimes abbreviated by the letters Bri. 

51. Evaluation of the Inversion Integral. The limits of the 
inversion integral, 

1 /*7 + »se 

Kt) = 2“. ^ e«f(s) ds (51.1) 

signify that the integration is to be performed along a straight line 
x * y from —ioo to o. We shall assume now that J(s) is 
analytic and that all the poles lie to the left of line x = y. This 
condition is generally fulfilled for all physical problems possessing 
stability, since poles to the right of the imaginary axis indicate 
instability. 

Consider now the contour shown in Fig. 85, where the radius R 
of the circle is chosen large enough to enclose all the poles. The 
integral along the closed path is then represented as the sum along 
the two segments 

f - T/ + (/ (51.2) 

which is rearranged as follows: 

»/-*-</ (51.3) 
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If we let R oo 9 the integral on the left becomes our inversion 

integral, which is 
ry+i~=r _ (51.4) 

now expressed in terms of a contour integral enclosing all the poles 
and an integral along a semicircle of infinite radius. Jordan’s 
lemma* shows that the integral along the semicircle of infinite 
radius is zero; consequently, from the theory of residues, the right 

Fic;. 85 

side of Eq. (51.4) is equal to the sum of the residues of the poles 
enclosed by the contour integral. 

C"'/(S) ds = Lfn^ . e"/(s) = X 61 (5L5) 

Thus the inverse transformation of /(«) is determined as the sum 
of the residues of e"/(s). 

62. Inversion by Contour Integration. We shall illustrate here 
how the inverse transformation is carried out by contour integration. 

Example 52.1: Evaluate 

m = 
1 fr+im e*1 ds 

2nd J y — ioo $2(s + a) 
41 Bee Appendix B. 
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The residue at the double pole s2 = 0 is 

113 

[d_ est | ___ |(s + a)J eKt — __ at — 1 

\ds (s + a)f8„o ~ 1 (s + a)2 f8=s0 ~ a*~~ 

d e 

Ids (s + a) j,»0 

The residue at s = — a is 

Adding, we find that the inverse transformation is given by the 

equation 

m * 1 = i (e~a‘ + «*-!) 6*2(6‘ + a) a 

Example 52.2: Evaluate 

'7+<“ e“ds 
m 

ry + i 

J 7 ~ * 0 s2(.s2 + CO2) 

The residue at the double pole s2 = 0 is 

A eKi 
[(/.S* S2 + co2 j 

The residue at $ = ±z‘co is 

+ 

(s2 + (jj2)t e8t — 2s cHt 

+ CO2)2 

6‘2(s + ico)) 8 

f e* 
{s2(s — ioji) 

«-<) CO 

sin tot 

Therefore f(t) = iT1 ——i - = — (cd — sin o>0 
s2(s2 + co2) co3 

Problems 

Determine by contour integration the inverse of the following: 

137. 

138. 

139. 

1 
140. 

s + 2a 

s(s + a)2 (s + ay + (8s 

s + b 
141. 

1 

Is + ay s2(s! + 2 as + a>2) 

1 
142. 

8 

8*(s! - tt!) (s2 + co2)(s2 + 2 as + co2) 

63. Inversion Involving Branch Points. When the subsidiary 

function contains branch points, the contour of integration must 

be altered. 
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Consider, for example, the function which has a branch point 
at the origin (see Section 25). If we establish a barrier along the 
negative #-axis and choose the contour shown in Fig. 86, the path 
will enclose no singularities and we can write from Cauchy’s integral 

the function converges uniformly and satisfies the conditions neces¬ 
sary for the vanishing of the integral around the semicircle of 
infinite radius. Equation (53.1) thus reduces to 

where the direction of integration for the second integral has been 
changed to conform to the positive direction. We have thus estab¬ 
lished EDC as an equivalent path to AB. These paths are fre¬ 
quently referred to as Br2 and Bri, respectively. 

The integral along the second Bromwich path Br2 can be evalu- 
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ated in three parts as follows. Around the small circle at D we let 

ds = ir eie dd 
.0 

s* = r* e* 

and obtain 

Along ED, we let 

ert(008 a-ht’Bin r* e*2 dd = 0 (53.3) 

s — x e~tx = —x 
ds = — dx 

.IT 

= £* g l2 = ■— IX* 

and obtain 

/* ds /*° /* +00 
Jed ~ e~xt dx = i J x~~* e~xt dx (53.4) 

Along DC, we let 
s = x elir = —x 

ds = —dx 

and obtain 
s* = x* el2 = ix* 

f e*ds . f+“ . _x< 
i —t— = z x * e xt dx 

J dc s* do 

Hence the entire integral along Br2 is equal to 

2i J x~* e~xt dx 

To reduce this integral to a known form, we let xl^= A2: 

(53.5) 

(53.6) 

*/. 
x~i e~*‘ dx = -^p 

o Vt l; 
But from Prob. 74, we have 

2 

V 
uv- 
Wo 

dX = 1 

e-x'* dX (53.7) 



References 

1. Churchill, R. V., Introduction to Complex Variables and Applications, 
McGraw-Hill, 1948. 

2. Osgood, W. F., Functions of a Complex Variable, Nat. Univ. of Peking 
Press, 1936. 

3. Goursat-Hedrick, Functions of a Complex Variable, Ginn & Co.. 1916. 



CHAPTER 6 

Partial- Differential Equations 

54. Procedure. The following procedures will be used in the 

solution of partial differential equations with x and t as independent 

variables. (1) The Laplace transform is applied with t as a variable, 

and the partial differential equation is reduced to an ordinary- 

differential equation of the ^-transform y(x,s) and the independent 

variable x. The general solution y(x,s) of the ordinary differential 

equation is then fitted to the boundary conditions of the problem, 

and the final solution y(x,t) is obtained by the application of the 

complex inversion integral. (2) As an alternative to the first 

method, iterated transforms are discussed in Sections 71 and 74. 

65. String under Arbitrary Displacement. Figure 87 shows an 

instantaneous position of an element of a perfectly flexible uniform 

string under tension T. We shall assume that the deflection y and 

the angle 6 are small and that the tension T is unaffected by the 

displacement. 

Summing forces in the y-direction, we obtain the equation 

r (e + fx dx^j - re = Pdxdf^ (55.1) 

where p is the mass per unit length of the string. Since the slope 

of the string is 6 = dy/dx, the above equation reduces to 
1X7 
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= p2djy 
dt2 dx* 

(55.2) 

which is the partial differential equation of the string with velocity 

of wave propagation c = y/T~/p. 
We shall assume now that the string is of infinite length, initially 

at rest on the a>axis, and that the end x = 0 is given a prescribed 
motion y(Q,t). 

With the boundary conditions y(x,0) = 2/(x,0) — 0, the sub¬ 
sidiary differential equation becomes 

which has a general solution 

8 _8 

y(x,s) = A ec% + B e °x (55.4) 

To satisfy the condition of zero displacement at x = oo, A must 
be zero, and the subsidiary solution reduces to 

y(x,s) = B e c* (55.5) 

When x = 0, y(x,s) becomes equal to the prescribed motion y(Q,t); 
thus B = y(0,s) and 

* y(x,s) = y(0,6*) e c* (55.6) 

Making use of the second shifting theorem, we find that the final 
solution becomes 

y(x,t) = y (o,t - (t - ?) (55.7) 

The interpretation of this equation is as follows. Since 

'0-0- 
for t < x/c, the string x units from the origin remains at rest until 
time t = x/c, after which it has the same motion as the end x = 0. 
Since c is the velocity of propagation of the disturbance along the 
string, t = x/c is the time required for the disturbance to reach 
the point x. Thus point x undergoes the same displacement as the 
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origin, but this displacement lags that of the origin by the time 
t = x/c. 

66, Longitudinal Motion of Bars. Consider a uniform bar of 
cross-sectional area A and modulus of elasticity E. Let p and u 
be the force per unit area and the displacement of the cross section 
at x. The corresponding quantities at x + dx are then 

V + ir dx and u + dx 
dx dx 

as shown in Fig. 88. 

Fig. 88 

Summing forces in the x-di recti on, we have 

where p is the weight per unit volume of the material. From 
Hooke’s law, the unit strain (increase in length per unit length) is 

du _ p 
dx E 

(56.2) 

Combining the two equations, we obtain the wave equation in one 
space coordinate: 

d2u ___ 2 d*u 
~dt* c dx2 

(56.3) 

where c = y/gE/p is the propagation velocity of the elastic wave. 
When we apply the Laplace transformation, the subsidiary 

equation becomes an ordinary differential equation: 

d2u(x,$) 
dx2 

u(x,s) - U(x,0) - ~ u'(x,0) 
C 6 

(56.4) 
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After applying the boundary conditions the final solution is obtained 
by the inverse transformation. 

57. Bar Fixed at One End with Prescribed Force on Other End. 
We shall assume the end x = 0 to be fixed and let F(i) be the pre¬ 
scribed force on the end x = ly as shown in Fig. 89. We shall also 
assume that the bar is initially at rest. 

_=3—- F(t) 

-/- 

Fig. 89 

The boundary equations are then as follows: 

Initial displacement u(x,0) =0 \ 
Initial velocity u'(x,0) =0 / 
Displacement at (x = 0) = 0 u(0,s) = 0 > (57.1) 

Force at x = l - F(t) AE = F(s) ) 
OjC I 

Substituting these conditions into the subsidiary differential equa¬ 
tion, we obtain 

u(x,s) = Cl e * + Ci e e* (57.2) 
u(0,s) = Ci + C2 - 0 

AE - AE - (Ci - C2 e~«) = P(s) 
OX c 

Therefore C, = -C2 =-- 
2AEs cosh -1 

c 

F(s) sinh - x 
u(x,s) =-- (57.3) 

AE m cosh ? I 

Solution for Constant End Force. If a constant force Fo is 
suddenly applied to the end of the bar, then P(s) = Ft/s, and 
Eq. (57.3) becomes 

/ 
/ 
/ 
/ 
/ 
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„ sinh - x 
\ cF o c 

»(*.«) " TT?-T 
(s)2 cosh - Z 

c 

(57.4) 

The motion of the end x = l is thus readily determined from the 
transform of Prob. 58, Section 19, as a triangular wave shown in 

Fig. 90. 
u(l,t) 

c c 
Fig. 90 

68. Bar with Prescribed End Motion. We shall now consider 
the motion of the bar of Fig. 91 with a prescribed motion of the 
end x = 1. On the assumption that the bar is initially at rest with 

/I 
/ 
A 
/ 
/ ■ i 

Fig. 91 

zero displacement, the subsidiary solution is 

8 8 

u(xfs) = Ci e* + C2 e * 

Introducing the boundary conditions, we have 

u(0,s) = Ci + C2 — 0 

Therefore Ci = —C2 

U(l,s) = C,(e*' - e"«') 

n _ m(^s) 

2 sinh - l 
c 

(58.1) 

(58.2) 

(58.3) 
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ll(XyS) = 

u(l,s) sinh - x 
_ __ c 

• L sinh — 
c 

(58.4) 

Sudden Displacement of End x = l. If the end x = l is suddenly 
displaced by u0, then 

u(lyt) = and u(l}s) = ~~ 
s 

Substituting into Eq. (58.4), we have 

U(XyS) = 

Uo sinh ' x 
c 

s sinh -1 
c 

Equation (58.5) has only simple poles, since at the origin we have 

sinh x 
c 

. x si ... si A 
sum — — —i sin t — = 0 

c c 

i ~ = 0, ± 7T, ± 2t, • *, i 'W, (58.6) 

« = ±i^f (n = 0, 1,2, • • •) J 

Thus the displacement expressed by the inversion integral 

‘ +l0° c" sinh 

(58.7) 
s sinh 

is evaluated as follows: 

Uo e8t sinh — 
c 

T( . 7 si\ 
*V"mhcJ 

Uo e9t sinh — 
c 

si , si . . 
— cosh —(- sinh — 
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go v^t . . UTTX oo 

w0 c 1 smh i j- 

/ j iut cosh imr / 7 

-*-H . , . nxa: 
w0 c 4 sinh — z —j— 

l . a: 
..v-•— ~ + Woy 

— triTT COSh — 77i7T l 

utx 

Vi sm ~7 in™, ~ iri™l r 
— Mo / - (e 1 + e 1 ) + Mo -7 

/ . nir cos nir l 

n — 1 

00 

x . ^ v ( — l)w • nwx utc 
= Wot + aW( i / -- sm -; - cos 7- £ 

/ / 7 W7T l i 
n = 1 

The displacement at any point x is then given by the equation 

u(x,t) = Wo 

00 

n = 1 

(-D" 
W7T 

. utx 
sm -j- COS (58.8) 

69. Solution for the Stress in Terms of Reflections. We shall 
again consider the bar to be fixed at the end x = 0 and undergoing 
a prescribed motion u(l,t) at the end x = l. Since the displace¬ 
ment u(l,t) is the time integral of the velocity v(l,t), we can replace 
u(lys) by v(l,s)/s and rewrite Eq. 58.4 as 

v(l,s) sinh ™ 
u(x,s) =- - ~~ (59.1) 

s sinh — 
c 

The force being equal to EA the subsidiary force equation 

becomes 
, sx 

PM - EA - HI,.) (^f) (59.2) 
' / sinh - 

C 

Thus the force at the end x ~ l is determined from the equation 

P(l,s) = V(1,8) (—'j C0th J 

(A /A _o*1 _41! _»** 

~~) [1 + 2 e ' + 2e ° + 2e « H- (59.3) 
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By making use of the second shifting theorem, we find that the 
inverse of this equation is 

m) = {—) [»«,0 + 2, (i,t - |) m (t - f) 

+ *> (l,t - f) 'll (< - 7) + • • •] (59.4) 

This equation is interpreted as follows. Given any prescribed 
. velocity v(l,t) of the end x = l, the force at this 

point is obtained by the superposition of the 
original velocity with similar velocity of twice 
the value displaced along the time axis by 
multiples of the period 21/c; that is, the second 
term represents the reflected force arriving at the 
end x = l after time 2Z/c, and so on. 

Example 59.1: The lower end of a helical 
spring of length l and stiffness k lb/in., shown in 
Fig. 92, is subjected to a velocity prescribed by 
the cam. Determine the force at the cam end. 

The stiffness of a uniform bar being AE/l 
lb/in., the equations of this section apply by letting AE/l = k or 

F(U) 

Fig. 1)2 

Fio. 93 
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A plot of the force variation with time is shown in Fig. 93 for a 
particular v(l,t) curve and period 21/c. 

Problems 

146. A string of length Z, fixed at the ends, is under tension T. If at 
time t = 0 the string is given an initial velocity 

y(xfi) = vo sin y> 

determine its motion. 

147. The end x = 0 of a string of length Z, fixed at the end x = Z, is 
given a prescribed motion 2/(0,Z). Determine the subsidiary solution for 
the displacement of any point x. 

148. The lower end of a helical spring of length Z and stiffness k is given 
a prescribed velocity v(0,t). If the upper end x = Z is free, determine the 
motion of any point x. Develop the equation for the stress in the spring 
and determine F(0,Z) in terms of traveling waves. 

149. A helical spring of length Z and stiffness k is fixed at the end x = Z. 
If the end x = 0 is given a velocity v(Oyt) = v0 sin o>Z, determine the stress 
F(0,t) for (a) co = c/l, (b) o> = fc/Z. 

160. A helical spring of length Z and stiffness k lies unstrained on a 
horizontal frictionless plane. If a constant force P is applied in the axial 
direction to the end x — 0, determine the motion of any section x. 

161. A bar of length Z moving with constant velocity Vo strikes a spring 
of stiffness k as shown in Fig. 94. Determine the subsidiary solution for 

vo 
^- M 

i_i 

— *■— 

Fio. 94 

the displacement u(x,t) measured from the instant the end x « 0 strikes 
the spring. 

152. If l « k ~ oo in Prob. 151, show that the solution is 

'(•-0 
163. A uniform rod of length Z, fixed at x * Z, is struck longitudinally 

on the end x ** 0 by an impulse of magnitude 70 Ib/sec. Determine its 
motion and the stress developed. 

u(x,t) = —vd + vo H) 
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154. A rod of length /, fixed at x — 0, is attabhed to a dashpot at the 
end x = /, as shown in Fig. 95. If the end x = l is displaced an amount u0 
and released, determine its motion. 

Fig. 95 

60. Vibration of a Mass-loaded Rod. Figure 96 shows a uni¬ 

form rod of length l and mass m clamped at x = 0 and mass-loaded 

at the end x = l. We shall investigate the behavior of such a 

system to an arbitrary excitation F(t) and determine the parameters 

/ / / / / governing its motion. 

| For the uniform bar we have the partial differen- 

x tial equation 

d*u dH 

dt2 dx2 V ' 

, and for the system initially at rest, its transform 

d2u(x,s) 

dx2 
u(x,s) = 0 (60.2) 

where u is the displacement of an element at x, and 

c = y/Eg/p. 

A subsidiary solution satisfying the boundary 
condition of u(0ft) = 0 is 

u(x,s) = B sinh (60.3) 

Fio. 96 
The constant B is evaluated from the boundary 

condition at x = l, which is 

<60-4) 

rrf?Z(x,s) 1 Ms2 v F(s) 

OT L-2rL + zs,,(x-*>-'t« 
Substituting Eq. (60.3) in (60.5) and solving for B, we have 

(60.5) 
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F(s) 

(f) 
Ai£Z m 

H — u o = T7 = mass ratio ^ Me2 A/ 

Thus the subsidiary solution is 

tZ(a;,s) = 

F(s) sinh — 
c 

which is to be evaluated from 

127 

(60.6) 

(60.7) 

(60.8) 

1^ 

M 

1 7 + 1 00 F(s) sinh ~ ds 

/ sA T /sZ\ .. si . , sZ 
y-t« i — 1 I - ) sinh —r n cosh - WLW c c] 

(60.9) 

We see from this analysis that the parameters entering into the 
problem are the mass ratio n and the stiffness (AE/l) of the bar. 

61. Evaluation for a Constant Force. If a constant force F0 is 
suddenly applied to M at time t = 0, F(s) = F0/s, and we shall 
need to evaluate the following inversion: 

2ri 

*7+i° est sinh ~~ ds 

sH 
c 

si • i si . t si 
— sinh —Km cosh — 
c c c 

(61.1) 

The singular points of the above function are a simple pole at 
the origin and simple poles obtained from sl/c tanh sl/c = — n, 
which can be rewritten as a tan a = ju, where a = i sl/c. The 
roots any n = 1, 2, 3, • * • are symmetrically located as shown in 
Fig. 97. 

Evaluating the residue at s = 0, we have 

-[(f) +«(?)■ + 

— ) sinh ~ + m cosh 
cj c 

$Zli 
c _) a-»0 

X_ 
id 

(61.2) 
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(61.3) 

Remembering that the poles s = —i(c/l)an are the roots of 

— sinh — + n cosh — = 0 
c c c 

we find that the denominator of the above expression becomes 

(*] ~ cosh — + (1 + n) sinh -- \i 
\cj [c c v c J7" ~lotn 

= — aj[ —iaw cos an — (1 + sin an] 

= la* [«.+ (!+#,) ^1 cos a„ (61.4) 

where tan an = ;>i/an was used to express sin an in terms of cos an. 

Fig. 97 
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The sum of all the residues can now be written as 

± °° 

V X V 
^ nl a„(a% + M + M2) CO 

n 
OO 

£ 

cos an 

x 
lil 

can . . x 
2 cos j- t sin a.n j 

' ocn{al + M + /i~) COS an 
(61.5) 

Letting 8at = F0l/AE, we can write the final solution in non- 
dimensional form: 

COCn . . X 

U(x t) X V cos T 1 sm 7 
= f - 2n > .— (61.6) 

l «n(«n + M + M“) COS «„ 
n=* 1 

Certain conclusions of interest can be obtained from the final 
solution. If we let x = l, the above equation reduces to 

00 Ccy 

=1_vy   j-_ _ (6i 7) 

n = 1 

If n is small, then tan ai = <*i = /u/ai so the roots are a = Vm, it, 
2tt, • • * . The solution then becomes 

ujlft) -j 

3* 

S 1 

c V/* . 2^2 C7r 
— COS  5— t-COS -r t * * 

AE 
IM l 

cos V; (61.8) 

The last equation indicates that the behavior of the system is nearly 
identical to that of a mass M with a weightless spring of stiffness 
AE/l lb/in, and that the dynamic load factor is 2 (see Section 28). 

Upon investigating the other extreme condition of /z —► <x>, we 
T 3t 5t 

find that the roots are a = ^ * • • , and the solution 

becomes 
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where il = rct/21. This series is recognized as that of a triangular 
wave of maximum height 2. 

62. Motion of Engine Valves. Figure 98 shows an engine valve 
whose lower end undergoes a motion 
prescribed by the cam. It will be 
of interest here to determine the 
stress at the end x = 0. If this 
becomes negative, the valve will 
leave the cam and produce pitting 
as it repeatedly strikes the cam. 
Since the stress in the spring is 
known for any prescribed motion of 
the lower end (see Section 59), we 
can treat this problem in two parts. 
We shall deal now with the valve 
alone. 

Starting with the subsidiary 
solution for a uniform rod, 

u{x,s) = B sinh — + D cosh — 
c c 

(62.1) 

where u(x,t) is the displacement of 
any point x measured from the 

lower end, we apply the boundary conditions, which are as follows: 
At x = 0, the displacement is the prescribed displacement u(Q,t) 

of the cam: 

fl(0,*) = D (62.2) 

At the end x = £, the force on the rod is equal to the inertia 
force of the end mass M: 

F(l,s) = AE = — Ms2u(l,s) (x = l) (62.3) 

AE^ £j5 cosh ^ + u(0,s) sinh £J 

= —Ms2 sinh ^ + «(0,s) cosh ~ j 

The constant B is thus evaluated to be 
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— £(0,s) (cosh — + sinh — 
v ’ _ \ c Mcs _ c t 

( . , si . AE JsK 
(sinh 7 + ms COsh c) 

(62.4) 

The term AE/Mcs appearing in B can be reduced to the following: 

A El c 
Me2 si M si M si 

(62.5) 

where n is the mass ratio of the valve stem to the valve head. The 
subsidiary force at the end x = 0 now becomes 

P(0,s) = AIjSB = 
sinh ~ ™ cosh 

(si . , si . , sl\ 
— sinh —h u cosh — 1 
c c c) 

(62.6) 

Evaluation for Constant Acceleration of End. If we know the 
force F(0,t) for a constant acceleration a of the end x = 0, we can 
determine the force F(Q,t) due to any motion composed of com¬ 
binations of constant accelerations. The displacement correspond¬ 
ing to a constant acceleration a being u(0,t) = at2/2, u(0js) = a/s3* 
Equation (62.6) can then be written as 

/ \ / M OIXJII-1-u 

. * si , si i si 
/jl sinh —I-cosh — 

c c c 

— sinh-h m cosh — 
c c c 

(62.7) 

which has simple poles at $ = 0 and sl/c tanh sl/c — -~n (see pre¬ 
ceding problem, Section 61). With the same notation as in the 
previous problem, a tan a = where a = isl/c. The evaluation 
of the inverse transformation follows a procedure similar to Sec¬ 
tion 61, the result being 

- (1 + M) 

cos a„ -j 

(M + A*2 + «n) 
(62.8) 

Analysis of this result shows that the first term (1 + n)Ma 
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= (m + M)a is the force required to accelerate the rigid body. 
The remaining terms represented by the series constitute the 
oscillatory force. 

It will be of interest here to examine the result for limiting cases 
of the mass ratio If M is very small, a\ = /*, and the above 
equation reduces to 

ms ~ i _ cos 
Ma ~ 1 C0S l 

= 1 - cos t (62.9) 

This is the result one would expect for a mass M at the end of a 
spring of stiffness k = EA/l. 

If ii is very large, we obtain the equation 

mo 
(m + M)a (62.10) 

The effect of the valve spring is to keep the lower end of the 
valve in contact with the cam. Since the force at the lower end 
of the spring is known for any prescribed motion of the valve stem 
(see Sections 58 and 59), the resultant cam force is determined by 
the superposition of the spring force and the force given by 

Eq. (62.8). 
63. Resonant Frequencies. A subsidiary function of the type 

l/(s2 + a>2)2 which has a second-order pole at s = ±iw will always 
result in a diverging time function. For instance, applying the 

residue theorem, we have 

* (s2 + <o2)2 = (ds = 21 COS ut (63-1) 

Consider next a subsidiary function of the form 

■ A(s) 
(s2 + w2)Z(s) 

(63.2) 

If the roots of Z(s) =0 are imaginary and symmetrically displaced 
about the origin, it is possible to have one of them coincide with u, 
in which case we would have a second-order pole at s = ±ia and a 

diverging time function. 
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As an example, let the force applied to the system of Fig. 96 be 
sinusoidal F(t) = Fo sin (at. The subsidiary equation (60.8) then 
becomes 

u(x,s) = 

(s2 + 0>2) 

<aFo sinh sx/c 

• L ^ I 1 Si 
smh —b M cosh — 

c c 

(63.3) 

The poles in this expression are 

s ~ ±i(a and 

where an are the positive roots of the equation a tan a = *i. Thus, 
if a) coincides with one of the roots <xkc/l, a second order pole is 
encountered, resulting in resonance. It is evident, then, that the 
resonant frequencies of the system of Fig. 96 are &>« = anc/l. 

Problems 

166. For the mass-loaded uniform rod clamped at one end and excited 
at the other end, derive the subsidiary equation for the stress at any point. 

166. For a constant force Fo applied at the end, show that the stress 
equation becomes 

167. For fi = 0.20, show that Eq. (61.7) becomes 

= 1 - 0.99 cos 0.433 ^ - 0.00074 cos 3.20 % • • • 6.' I l 

166. Determine the equation of motion for the mass loaded rod of 
Fig. 96 if the lower end is displaced by an amount u0 and released. Estab¬ 
lish the equation for the natural frequencies of the system. 

169. For n = 0.20, show that Eq. (62.8) becomes 

_ = 1.20 - 1.135 cos 0.433<' - 0.379 cos 3.2(M' - • • . 
Ma 

where V * ct/l. 

160. Determine the resonant frequencies of a uniform bar of length l 
fixed at one end and free at the other end. 

F(xft) 

FMl(l) 
= 1 

-2= 

X ct 
cos an j cos an -y 

l V 

“ («n + M + M2) COS ' 
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161. Determine the resonant frequencies of a uniform bar of length l if 
one end terminates to a spring of stiffness k as shown in Fig. 99. Hint: 
Write the subsidiary equation with a sinusoidal impressed force at the 
end x — l. 

Z * 
WWI 

/ 
/ 

Fig. 99 

64. Water Hammer. When the flow of liquid in a pipe is sub¬ 
jected to a sudden change, a surge of pressure wave, referred to as 
water hammer, is developed. We shall derive the differential equa¬ 
tions describing this phenomenon and examine the solution for 
various types of valve closure. 

Figure 100 shows a pipe of length l backed up by a reservoir 
and terminating with a valve which regulates the flow. A sudden 

Y2/2g 

Fig. 100 

closure of the valve results in a pressure wave which travels from 
the valve to the reservoir with a velocity c which is considerably 
greater than the velocity of flow v. This surge of pressure results 
in the compression of the liquid and a dilatation of the pipe. 

Figure 101 shows a section of the liquid when the pressure wave 
has just reached the forward end of the element under consideration. 
Neglecting friction in the pipe and summing forces acting on the 
element, we have 

A P dv 
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where A is the cross-sectional area of the pipe, p the weight per 
unit volume of the liquid, and p and v the pressure and the velocity 
of flow, respectively. 

The second equation relating velocity and pressure is obtained 
by examining a given quantity of fluid in the two positions shown 
in Fig. 102. If we let v be the velocity of flow at A, the velocity at 
B will be v + (dv/dx) dx. If the element AB moves to position CD 
in time dt, we have 

VC = v + —■ dt + p- V dt 
?' S; . (64.2) 

Vd = V + dx + dt + ~ V dt 
dx dt dx 

The distances AC and BD can then be determined by taking the 

Fig. 102 

average velocity and multiplying by the time: 

AC = \{v -j- vc) dt 

BD = i ^ dx + Vn'j dt 

Hence the reduction in the length dx is 

AC — BD ~\(^~^.dx + vc-- v») dt = dx dt (64.4) 

The reduction in the length dx, designated by A, can also be 

(64.3) 
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expressed in terms of the pressure and the properties of the pipe. 
From the conservation of mass we have 

pA dx = (p + dp)(A + dA){dx + A) (64.5) 

If we neglect higher-order terms, this equation reduces to 

A = (64.6) 

We now express dp/p and dA/A in terms of the pressure and 
diameter. Since 

P V = constant 

where V is the volume, we have, on differentiating, 

dp _ __ dV _ dp 
p ~V~K 

(64.7) 

where the last term is introduced by the definition of the bulk 
modulus K of the fluid. 

The change in cross-sectional area can be expressed in terms of 
the diameter from the equation 

A 

dA 
A 

-kB'1 
4 

(64.8) 

Since dD/D is the unit strain, it is also equal to the ratio of the 

stress to the modulus of elasticity. Referring to Fig. 103, we find 
that the stress is (dp/2)(D/b)f from which 

dA _ n dD __ dpD 
T ~ ~D ~ ~bE 

Substituting back into Eq. (64.6) we obtain 

(64.9) 
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Equating Eqs. (64.4) and (64.10), we obtain 

_ dv _ / D\ dp 
dx " \K + bE/ ~dt 

(64.10) 

(64.11) 

Differentiating Eq. (64.11) with respect to i and Eq. (64.1) with 
respect to x and eliminating dH/dx dt, we obtain the wave equation 
for the surge pressure 

d2P = 2 d*p 
dt2 dx2 

(64.12) 

where (64.13) 

is the velocity of propagation of the pressure wave. 
Approximate values of E for the usual pipe material are as 

follows: 

Wrought iron. 26 X 10® lb/in1 
Wrought steel. 28 X 10® lb/in* 
Cast iron. 12 X 10® lb/in2 

and for any material and fluid, the velocity of propagation becomes 
a function of D/b as shown by the following table for wrought-steel 
pipes filled with water. * 

Velocity of Pressure Wave for Water 

in Wrought-Steel 

D 
Pipes 

b c ft/sec 
100 3280 
200 2340 

for E = « 4720 

66. Instantaneous Valve Closure. If we let p(x,s) be the 
Laplace transform of the pressure, Eq. (64.12) transforms to 

C2 - ~ s*p(x,s) = sp(x,0) - p'(x,0) (65.1) 

Since the pressure and its time rate of change at t = 0 are p(x,0) = p0 
and p'(x,0) = 0, the subsidiary solution for p(x,s) becomes 

p(x,s) = Ci cosh - x + C2 sinh - x + — (65.2) 
C C 8 

* M. P. O'Brien and G. H. Hickox, Applied Fluid Mechanics, McGraw-Hill, 
1937, page 246. 
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For the second equation we start with Eq. (64.1), 

dp _ p dv 
dx g dt 

(65.3) 

and write its subsidiary form 

dp(x,s) __ 
J [sv(x,s) - v(x,0)] (65.4) 

With instantaneous valve closure we have the following bound¬ 

ary conditions: 
(1) At the reservoir x = 0, the pressure is p0: 

p(0,s) = ^ (65.5) 

(2) At the valve x = l, the initial velocity v0 is suddenly reduced 

to zero: 

v(l,0) == Vo 
v(l,t) = 0 

Therefore v(l,s) = 0 (65.6) 

Substituting Eq. (65.2) in Eq. (65.5), we have 

Therefore C i = 0 

Substituting Eq. (65.2) in Eq. (65.4) and letting x = l with the 
boundary conditions (2), we have 

P CV o 

^ s cosh — 

The subsidiary solution is then 
. . OJU 

cvo sinh — 

7 + g-71? 
s cosh — 

c 

(65.7) 

and the final solution is determined from the inversion integral 

e-ds + ^ 
s 2 mg 

* T + t« pt 

-~^ds (65.8) 
s cosh — 

c 
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66. Evaluation of the Inversion Integral. The first integral of 
Eq. (G5.8) has a simple pole at s = 0. Its residue is 

lim e8t =1.0 
#—►0 

(66.1) 

and hence the first term is p0- 

In the second integral, the poles are the roots of the equation 

or 

Since the limit 

, si . si A 
cosh — = cos i — = 0 

c c 

S1 = ±i(2k - \)l (*-1,2,3, 

sinh 
lim 

-♦o s 

sx 
C _ X 

c 

there is no pole at s = 0 for this integral. 
The residues for the second integral are thus 

(66.2) 

(66.3) 

. . , sx 
eHt sinh 

c 
est sinh — 

c 

l“d , si 
* jT" s cosh — 
\ds C I roota 

(sl . , sl , . all 
— sinh-h cosh — 
c c c «= ± x(2k— 1) 21 

00 

-2 

t(2fc-l)~ 
sinh i(2k — 1) 

TTX 

21 

▼ z(2fc — 1) g sinh i(2Ar — 1) ~ 

+ 

00 

2 
-t(2fc-l) ret 

2* sinh—£ (2 A; — 1) 
TT# 

2A 

. -t(2A; — 1) g sinh— i(2k — 1) A! *■ 1 £ 

CO 

2 
2 sin (2A: — 1) 

wx 
2i 

f (2* - 1) | sin (2* - 1) ^ 

i(2k-l) 
,rct 

21 __ 
-i(2k—l) 

2 i 

ret 

-) 

00 

4V (~1)"1 si 
v / i (2k — 1) 

£ a. 1 

sin (2* — 1) Yi sin (2k — 1) ^ (66.4) 

to
 I a

* 
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The final solution then becomes 

p(*,o = vo + ^ Y, (k-1)sin (2fc"1} fisiD (2fc -1} 

(66.5) 

The pressure at the valve is readily obtained from the above 
equation for x — l, as 

n ,x , pcr04/ . vet . 1 . 3ird , 1 . 5xc< . \ 
P(^) = Po + — - (an y g sm ^ + 5 -gf +-j (Wi.6) 

which is a rectangular wave as shown in Fig. 104. 

Fig. 104 

67. Solution in Terms of Traveling Waves. The solution of 

Eq. (65.8) can be expressed in terms of traveling waves by replacing 

the hyperbolic functions by exponentials. Equation (65.8) then 
takes the form 

p(x,t) = fy+"°~ds + T^ J y—too s 2 wig 

fy+im e“ e c(ec - e e) ds 

ig Jy-ioo 
Jy s( l+e *) 

_2d __2sZ _4d 
since (l+e c )~“1 = 1 — e 6 + e c — e 0 + 

(67.1) 

p(x,t) = Po + 
r 74*t« 

J y — i » 

[e V CO/— o C/ — g \ C C/ .j. g \ C C/ -j- . . .J , 
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- 01 + 01 (t - - -+ • • • j (67.2) 

This solution is interpreted as follows. When the valve is suddenly 
closed, a pressure wave equal to pcv0/g travels towards the reservoir 
with speed c. The first wave which is a positive pressure reaches 
the point x ft from the reservoir in time (l — x)/c. At the reservoir 

the wave is reflected as a negative pressure —pcv0/g. As is indicated 

Fig. 105 

by the second term, the time required for this negative pressure to 

reach point x is (l + x)/c. This wave is reflected at the valve 
without change in sign and reaches x in time (31 — x)/c, and so on. 

To summarize, the pressure p0 at x suddenly increases to 

Po + (pcvo/g) at time t — (l — x)/c and remains unchanged until 
time t = (l + x)/c, when the negative pressure nullifies the positive 

pressure, leaving it equal to p0 until ^ == (3Z — x)/c. The pressure 

then becomes p0 — (pcv0/g) until time t ~ (31 + x)/c when it 
becomes p0 again, and so on. The result is illustrated graphically 
in Fig. 105. If x = i, this curve reduces to that of Fig. 104, 

68. Linear Valve Closure. If the valve is closed in such a way 
that the velocity of flow is reduced linearly from v0 to 0 in time r, as 
shown in Fig. 106, the boundary conditions and the corresponding 

subsidiary form are as follows: 
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At the valve x = l: 

i>(0) = Vo 

,«) - ». (i - m Si) 
v(t) = 0/>T v(s) = I’o 0 - 

At the reservoir x = 0: 
p(0,t) = Pa 

(68.1) 

(68.2) 

When we substitute these boundary conditions into Eqs. (65.2) 

Fig. 106 

and (65.4), 
Ci = 0 

and Ci = rr ' 
cosh sZ/c o<t<T I 

= e~*T1 1 
grs2 cosh sl/ct>T , 

The subsidiary equations are thus 

p(x,s) = ~ + 

from which the solution is obtained as 

(PVoc\ sinh sx/c 

gr ) s2 cosh sZ/c 0< 

= ^ + (1 - e~”) (?VX 4 
s \ gr ) s2 

sinh sx/c 

2 cosh sl/ct>r 

(68.3) 

(68.4) 

t\ pcva x 81 
P(x,t) « Po + — [ - - —t V m si 

Z/ (2k - l)2 81 
sin (2A; — 1); 

cos (2k — 1) ^4 
Zi Jo 

(68.5) 



§69] PARTIAL DIFFERENTIAL EQUATIONS 143 

rrx 

21 

pcvo\x 81 V' (— 1)*—1 . 
P° + J [e " cir* X (2* -~T? 8in i2k ~ l> 

k~l 

\x 81 V ( —1)*-* • ^ 

[_c Cir2 2/ (2k - l)2 hlU (2/c 

•U(< - r) (68.6) 

cos (2k - 1) f J - ^ 
~2l 

/o; -, irc(t — t) 
cos (2k — 1)-^— 
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Problems 

162. Determine the equation for the velocity v(x,t) for 
the case of instantaneous valve closure. 

163. Express the hyperbolic functions in Eq. (6S.4) 
by exponentials and determine the solution in terms of 
the traveling waves. 

69. Conduction of Heat. The general problem 
of heat conduction was first treated mathematically 
by Fourier. In this section we shall take up the 
simple case of unidirectional flow of heat through a 
rectangular slab of uniform thickness. To find the 
temperature at any point at any time, we shall need to define the 
following quantities with reference to Fig. 107. 

U = temperature difference between the planes at x and 
x = 0, the two planes being parallel and perpendicu¬ 
lar to the direction of flow of heat 

q = quantity of heat flowing across a unit area in unit 
time 

k = thermal conductivity of the material = the quantity 
of heat flowing across a unit area per unit time when 
the temperature gradient dU/dx = 1.0 

Fig. 107 
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c = specific heat per unit mass, that is, the quantity of 
heat necessary to raise the temperature of a unit mass 
of the material one degree 

The flow of heat q per unit area per unit time is proportional 
to the temperature gradient and the thermal conductivity of the 
material. Thus across the plane at x, the flow is 

qx — (69.1) 

whereas across a parallel plane at x + dx we have 

qx+dx= ~kk(U+ d~^dx) (692) 

The difference in the flow of heat across these two planes per unit 
time is the rate of absorption of heat by the element 1X1 X dx: 

h d2U , , dU f Qv 
qx - qx+dx = k dx « cp dx — (69.3) 

and the partial differential equation for the problem becomes 

dU _ d*U 
dt a dx2 

(69.4) 

where a = k/cp is the thermal diffusivity of the material. 
70. Semi-infinite Block of Zero Temperature Subjected to a 

Constant Temperature Uo at x = 0. The equation 

dU _ dHJ 
dt a dx2 

is to be solved for the boundary conditions 

U(x,0) = 0 V (x,0) = 0 

U{0,t) = Uo 0(fi,s) = ^ 

U{ *,t) = 0 U(°o,s) = 0 

The subsidiary equation then becomes 

(70.1) 

d2t7(x,8) 8 

dx* a U(x’s) 
(70.2) 
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This equation has the solution 

U(x,s) = + (70.3) 

and we see immediately that B must be zero to satisfy the boundary 
condition at infinity. A is then evaluated at the boundary x ~ 0 as 

A - -y (70.4) 

and the solution in the subsidiary domain becomes 

U(x,s)=^e~^x (70.5) 
$ 

From Eq. (25.21), Section 25, the final solution is 

(7°-6) 

71. Iterated Transforms. Iterated transforms can be used to 
solve partial differential equations. We shall take up the appli¬ 
cation of this method to a problem in heat conduction. 

Consider the problem of determining the temperature distribu¬ 

tion of an infinite slab of thickness 21 (shown in Fig. 108) initially 
at a uniform temperature Ua and suddenly submerged in a cold 
medium the temperature of which is held constant. For con¬ 
venience we shall let the temperature of the cold medium be zero. 

We have for this case the differential equation 

dU dHJ 
dt a dxi 

(71.1) 

.and the following boundary conditions: 
\ (1) The initial temperature is constant: 

■ V(x,0) - U0, U(x, 0) = 
u0 

(71.2) 
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(2) Because of symmetry, the temperature gradient at x = 0 is 
zero at all times; that is, the problem is identical to that of a slab 
of thickness l insulated on the face x = 0 and subjected to a cold 
medium on the face x = 1. 

dU(0,t) 
dx 

= 0, 
dl!(0,s) 

dx 
= 0 (71.3) 

(3) The rate of heat flow at the face x = l is proportional to 
the difference in temperature of the face x = Z and that of the 
medium. 

= ,, an/,0 = 
dx 

d£M 
dx 

= —hU{l,t) (71.4) 

where / is the equivalent film thickness adjacent to the plate, k' is 
the equivalent conductivity of this film, and h is the ratio //7c'. 
This last equation is the mathematical statement of Newton’s law 
of cooling. Its transform is 

-hU(l,s) (71.5) 
dF (1,8) 

dx 

Taking the transform of Eq. (71.1) and using boundary con¬ 
dition (1), we have 

d2U(x,s) 
dx2 

s 
a 

U(x,s) = 
Uo 

a 
(71.6) 

Instead of writing the solution* to this equation as is usually done, 
we now take the transform of this equation with respect to x} using 
another bar and the letter p for the subsidiary variable of x: 

p2U(p,s) - pU(0,s) 
dU(0,s) 

dx 
— (71.7) 
ap ' 

From boundary condition (2), the third term on the left side of this 
equation is zero, and the result can be arranged in the form 

UM 
pU{ 0,9)_Up 

(p.-i) «?(»>■-£) 
(71.8) 
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Taking the inverse with respect to x, we obtain 
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U(xys) = U(Oys) cosh (71.0) 

Differentiating with respect to x and substituting into the equation 
for the third boundary condition, we can evaluate the quantity 

£7(0,$) as 

U (0,s) = 
r 5 'l 

a Sinh \| 
/ + cosh xj 

a \ 

(71.10) 

Substituting this quantity back into Eq. (71.9), we have 

(' ocosh^('-x 

U(X>S) = l-° - ./rT...r --7-r (71.11) 

s(ivlsinhVlz + coshVlV 
To evaluate the inverse of this equation, we note that the 

terms due to the pole at the origin cancel. Hence the only poles 
needing consideration result from the equation 

or 

(71.12) 

If we let A = i y/<s/a ly it is necessary to determine the roots of 
the equation, 

cot X = 
X 
hi 

(71.13) 

shown in Fig. 109. 
We need next the term 

as(j-^8inl,V 
-1 + cosh 
a & * 

l 

2 \/ sa [x^C06h-^,+ (n + 1)8inh^!] (71.14) 

Expressing cosh \/J/a l in terms of — l/h y/s/a sinh y/sja l from 
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Eq. (71.12) and changing to trigonometric functions, we obtain 

sa (i^8jnh^, + c°‘h^1) 
--£[('+ s)J + (S?]”"x «7U6) 

The solution then becomes 

In this result, it is evident from Fig. 109 that the Xn depend 
only on the quantity hi, which is known as the Biot's modulus B. 

The othef quantity of interest is at/l2, which is known as the Fourier 
modulus F. The solution at any point x is then a function of B 
and F, of which the latter can be plotted in various ways.* 

U(x,t) = f(B,F) (71.17) 

* L, M. K. Boetter, Heat Transfer Notes, Univ. of Calif. Press, 1949. 
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72. Cooling of a Cylinder. Consider the problem of determining 
the temperature distribution of a solid circular cylinder, initially at 
a uniform temperature and cooled in a medium of zero temperature. 
If the cylinder is long compared to its diameter, the end effects 
may be ignored and the temperature becomes a function only of 
the radius and time. The equation of conduction in cylindrical 
coordinates then becomes 

(m) 

The boundary conditions are as follows: 
(1) Initial temperature is uniform and is equal to (70. 
(2) Because of symmetry, the temperature gradient at r ** 0 is 

zero: 

BUM = Q dU(0,s) = 
dr ’ dr 

(3) The rate of heat flow at the cylinder surface r = R follows 
Newton’s law of cooling: 

= —hU(R,t), = —hU(R,s) 

The transform of Eq. (72.1) is 

d2(7(r,s) 1 dUjrys) __ s 
dr2 r dr 

If we let 

s) 

y{r,s) = U(r,s) - 

(72.2) 

(72.3) 

Eq. (72.2) takes the form 

s 

d^yj^s) 1 dy(r,s) 
dr2 r dr 

- | y{r,s) = 0 (72.4) 

which is recognized as Bessel’s equation of zero order and argument 

ir Vs/d- Thus a solution which is finite at r * 0 is 

V(r,«) (72.5) 
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We notice here that Eq. (72.5) automatically satisfies boundary 
condition (2). The constant A can be evaluated from boundary 
condition (3). 

dJ°(ir4a) 
dr VI)+tL 

Since 

A becomes 

dJo(kr) 

dr 

A = 

== —k Ji(kr) 

-To 

and the subsidiary solution is established as 

(72.6) 

U (r,s) 
UJo (ir ^ ID 

5 J 0 (iR yj 
D-u 

r3 , 
a (*« yj 9] 

(72.7) 

To evaluate the inverse of this equation, we note that we have a 
simple pole at the origin and simple poles at the roots of the 
equation: 

<72-8> 

Rewriting this equation in the form 

Jo(\) - Ji(\) = 0 (72.9) 

where X = iR y/sja, we see that the roots are 

iR 

X2a 

'n, 

Sn — 
& 

(72.10) 

Since Jo(0) = 1 and Ji(0) = 0, the residue at s = 0 is zero. 
For the residues at the other poles we need the quantity 
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By use of the recurrence formula 

J'lW = j.(X) -i./i(X) 

/o(X) = - Jj(X) 
Eq. (72.11) becomes 

X 
2 

-J x(X) hie 

-i[ 
(X) 

X*=XH 

X! 

•>] 
2(hR) 

\nJ i(Xrt) + ./0(X 

[(A#)2 + X2]J0(Xn) (72.12) 

where /i has been replaced by Jo from Eq. (72.9). 
result, the solution becomes 

n = 1 

With this 

(72.13) 

Here again fei? = B is Biot’s modulus and at/R2 = F is the 
Fourier modulus. Also, Xn as determined from Eq. (72.9) is a 
function only of B. It is evident, then, that the solution is a 
function only of B and F and can be plotted up in the form 

U(r,t) -/0B,F) (72.14) 

For large values of F} the series given by Eq. (72.13) converges 
rapidly, and the equations for the temperature at the center and at 
r = R become 

17(0,0 S 

U(R,t) as 

2 U0B e-^F 
(B2 + Xf)J0(Xi) 
2UoB e-*'iF 
(B2 + X?) 

(72.15) 

(72.16) 
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Thus the ratio of the temperatures at r — R and r = 0 is 

U(R,t) 

um j o(Xl) (72.17) 

Also, by considering two different times for which Eq. (72.16) is 
valid, we obtain a simple formula from which the thermal diffusivity 
can be computed:* 

a 
R2 . U(R,t 0 

- h) 
(72.18) 

References 
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Problems 

164. The face £ = 0 of a semi-infinite block of uniform temperature U0 
is suddenly exposed to a cold medium of zero temperature. If the surface 
x = 0 obeys Newton’s law of cooling, 

dU(0,t) 

dx 
- A 17(0,0 

show that the subsidiary equation is 

L o 
D(x,s) * — I 1 - 

— x a 

h + 

166. In Prob. 164, let 

V(x,t) = U(xA - 
1 dU(x,t) 

h dx 

Then the conduction equation dU/dt = a(d2U/dx2) becomes 

dV = d2_V 

dt a dx2 

and the boundary conditions for the problem reduce to 

V(x,0) = Uo 
v (o,o = o 

* W. T. Thomson, “A Method of Measuring Thermal Diffusivity and 
Conductivity of Stone and Concrete,” American Society of Testing Materials, 
40 (1940), pages 1073-1081. 
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Show that the solution for V(x,t) is 

153 

VM ’ G’>er'(^s) 
and that the equation for the surface temperature is 

r/(0,0 = Uo eh*at erf (h \/ai) 

166. If heat is added at a constant rate go to the face z = 0 of a semi¬ 
infinite block whose temperature distribution is initially constant, show 
that the subsidiary equations for the temperature and its inversion are 

V(x,s) = 
X V=* 

U(x,t) = | 
-IL 
\at __ x erf(. 

167. If the slab of Fig. 108 is submerged in a well-stirred liquid, we 
can assume the temperature of the surface to be zero for t > 0; that is. 
h = oo. If the initial temperature of the slab is uniform and equal to U«. 
determine the temperature distribution. 

168. If the surface r = R of an infinite circular cylinder of uniform 
temperature is suddenly cooled to zero temperature, determine its temper¬ 
ature distribution. 

169. Steam of temperature Uo is suddenly introduced in a pipe of 
inner and outer radius R,i and R2> respectively. Assuming the temperature 
of the inner and outer surfaces to be Uo and 0 for t > 0, determine the 
temperature distribution. 

170. When isothermal surfaces are concentric spheres, the temperature 
is a function only of r and t, and the equation of heat conduction becomes 

dU(rJ) _ „ [d*U(r,t) 2dU(r,t)] 

dt [ dr2 r dr J 
On letting U = F/r, this equation reduces to 

dV(r,t) _ d*V(r,t) 
dt ° 9r* 

Determine the subsidiary form for each of these equations. 

171. A sphere of uniform initial temperature Uo and radius R is sub¬ 
jected to a condition where the surface temperature becomes zero for 
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t > 0. Show that the subsidiary solution is 

R sinh rs ) 

rs sinh Rs) 

Show that the inverse of this equation is 
QO 

(2w+lW 

4 at 

73. Transmission Lines. The differential equation for the four- 
parameter transmission line is / 

(73.1) 

where 

R = resistance per unit length, 
L = inductance per unit length, 
G = conductance per unit length, 
C = capacitance per unit length. 

If we assume that there is no current or voltage in the line prior 
to t = 0, the transformed equations can be reduced to the form 

-t'"1 - 

>re a2 = (G + Cs)(R + La) 

The general solution for the subsidiary quantities is 

where 

E(x,s) = A i e~ax + A 2 ea 
I(x,s) = A3e~ax + A4ea 

(73.2) 

(73.3) 

(73.4) 

where the A’s are functions of s and are to be evaluated from the 
terminal conditions of the line. The solution for the general case 
where all four parameters are retained is rather difficult. However, 
the following four cases are of interest: 
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R = G = 0 a = s y/LC 

1C = LG a = y/LC + 0 

G = L - 0 a = y/ltC y/I- 

L = 0 a = v/«C' /(* + 

RC = LG 

L = 0 V'flC' 

Transmission in an Infinite Line. In order for A1 and I to be 
finite in an infinite line, A2 and A 4 of Eq. (73.4) must be zero, and 
the subsidiary equation reduces to 

E(xys) = A1 e~ 
I(x,s) = A3e~ 

(73.5) 

Letting the voltage and current at the sending end x = 0 be E0(t) 
and /»(0> we find from Eq. (73.5) that 

A, = Eo(s) 
A 3 = I{)(s) 

and E(x,s) = 2?0(*) tf“a;r ) 
I(xys) = 7o(s) e~ax J (73’b) 

We shall now consider three of the four special cases mentioned 
previously. 

(1) a = s y/LG. Substitution of a into Eq. (73.6) results in 
the following: 

E(x,s) = E0(s) I . 
I(x,s) = Io(s) cr‘x^LC J ' 

Applying the second shifting theorem, we arrive at the solution 

E{ot,t) = E„(t - x y/LC)%(t - x y/LC) ] . 
I(x,t) = h(t - x y/LC)%(t - x y/LC) j 

which indicates that both the voltage and the current are propa¬ 
gated without distortion or attenuation with a velocity equal to 

1 /VLC. 

(2) a = VLC (s — R/L). Since the exponential can be written 

in the form 

e-„* = -Trfl*e—vn (73.9) 

(73.7) 

(73.8) 
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the solution becomes 

-fxVLc _ ,_ ) 
E(x,t) = e L E0(t — X -y/LC^it — x \/LC) ( ^ 

l(x,t) = e~7' h(t - x VLC)%{t - a; VLC) ) 
These equations indicate that there is attenuation along the line 
but that the wave form is maintained and propagated with a 

velocity equal to 1 /y/LC. 

(3) a = VRCV^s. The subsidiary equation for the voltage 
for this case is 

E(x,s) = E0(s) (T’VircV; (73.11)' 

From formula 44, Appendix IT, the inverse of the exponential is 

e-xVRcVJ = e-x’*r (73.12) 
2 Virt3 

Thus the solution can be expressed by the convolution integral as 

x xTrc n„ -~RC 
E(x,t) = Eo(t - r) dr (73.13) 

2 VV Jo Vr* 

This equation is not capable of simple interpretation. However, 
for E0 = constant the subsidiary equation will have the form 

g — ks/s 

8 

which will result in an error function. 

Problems 

172. Show that if a steady voltage Eo is applied to an infinite line with 
L = <? = 0, the voltage and current at any point x are 

E(x,t) = Eo erfc 

x*RC 
U 

173. A line of length l with L = G ~ 0 is open-circuited at the far end. 
If a constant voltage Eo is applied to the sending end, determine the 
voltage and current. 
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E(x,s) 

l(x,s) 

E{x,t) 

Eg cosh \/CRs (I — x) 

cosh \/CRs l 

g, fu sinh \/ CRs (l — x) 

\ Rs cosh ■s/CRs l 

1 . mrx 
- sm — e 
n 21 

n*itH 
4 RCl* 

I(x,t) 
2Eo VA 

Rl 2/C0S 
n~.1 

n7nr 
“2T 

nHH 
e~4 RCl* 

174. A finite line of length / has R — G = 0. If the far end is short- 
circuited, determine the voltage and current at x due to a steady voltage 
Eo at the sending end. 

176. A sinusoidal voltage Eo sin cot is applied to the line of Problem 174. 
Determine the natural frequencies of the line when (a) the far end is 
short-circuited, (b) the far end is open-circuited. 

(a) 

E(x,s) = 
sinh 8 y/i£ (l - x) 

+ to2 sinh s -y/LQ l 

kir 

"n = l y/LC{k 
1, 2, 3, ■ • •) 

176. Show that for the general case of a finite line of length Z, the 
subsidiary voltage and current are 

\ n/r, \ sinh a(l — x) , . sinh ax 
- E(0's>- sinh.1 + 5** 

cosh a(l — x) 
l(x,s) = 

{R + Ls) 
£(0,s) 

sinh al 
- E{l,s) 

smh al _ 

74. Vibration of Beams. The differential equation for the trans¬ 
verse vibration of a uniform beam with applied force f(x,t) can be 
obtained from the loading equation of Section 36 by including the 
inertia force — m(d2y/dt2): 

FTd*y(x,t) _ 
dt2 

+ f{x,t) (74.1) 

If we let the initial displacement and velocity be u(x) and v(x), the 
transform of Eq. (74.1) with respect to t becomes 
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+ (|?f) «*,.) - % [»»(*> + „(*>] + &£ (74.2) 

Making the substitution 

= - J7 (74.3) 

?(*,*) = [«u(x) + t>(x)] + (74.4) 

we find that Eq. (74.2) reduces to 

- fi*y(x,8) = *(x,s) (74.5) ( 

Taking next the transform with respect to x with p as the sub- 
sidiary variable, we have 

(P4 - fi*)y(p,*) = 5(p,s) + p3p(0,s) + P2y'x(0,s) 
+ PVxiOyS) + y'"(0,s) 

y(p,s) = <KP,s) 
P4 — 

4. p3g(Q^) + p*y'z(Pi*) + pyx (0,*) + ,74 m 
"t p4 - u ' 

In this equation, 2/(0,s), p'(0,$), y"(0,s), and 2/'"(0,s) are the trans¬ 
forms with respect to t of the deflection, slope, 1 /El X moment, 
and 1 /El X shear at the origin x = 0. 

Carrying out the inversion first with respect to x, we obtain the 
equation 

y(x,s) = 2^3 JQ <£(£,s)[sinh fi(x - f) - sin 0(x - {)] 

+ ^ y(0,s)(cosh fix + cos /3x) + — j7'(0,s)(sinh 0x + sin /3x) 

1 
+ 2^2 P* (0,s)(cosh fix — cos fix) 

+ 2^3 p"'(0,s)(sinh fix - sin fix) (74.7) 

Before we proceed further with the problem, it is advisable to 
specify the applied load and the boundary and initial conditions. 

Example 74.1: A simply supported beam of length l has a 
concentrated load at x = a which varies in an arbitrary manner 
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with time (see Fig. 110). If the beam is initially straight and at 
rest, determine the equation for its deflection. 

P0F(t) 

\—x—* 

Fig. 110 

The loading corresponding to a concentrated force isP0Tl'(x — a). 
Thus if F(t) is its time variation, we have 

f(x,t) = -JVll'fr - a)F(t) (74.8) 

*(*,«) = *(«) (74.9) 

Since the deflection and moment are zero at x = 0, Eq. (74.7) now 
becomes 

y(x,s) = - 2^i JQ -—--gj [sinh0(x - g) - sin|8(x - £)]d£ 

4- Ci sinh fix + C2 sin fix (74.10) 

where Ct = ~ y'(0,s) + ^ C'(0,s) 

Ci = — yi(0,s) - ~ y'"(0,s) 

At the end x = /, the deflection and moment are also zero, so that 
we obtain the two equations 

o - 2PEI* jo ~ a^sinh PC ~ ® ~ sin PC - 
+ Ci sinh fil + C2 sin fil (74.11) 

0 = ~WMT Jo “ o) [sinh PC “ «) + sin PC - €)] d* 
+ Ci sinh fil — C2 sin fil (74.12) 

Solving for the C”s,* we obtain 

* Note that 

-0(a) 
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Cl 
PoF(s) sinh 0(1 — a) 

203EI sinh 01 
PoP(s) sin 0(1 — a) 

Ci 20*EI sin 01 

Thus the subsidiary deflection becomes 

[§74 

(74.13) 

y(x,s) = - Jq ‘It'd - a)[sinh 0(x - £) - sin 0(x - £)] d£ 

P{)F(s) Tsinh fi(l — a) sinh fix sin fil — sin fi(l — a) sin fix sinh fill 
2fizEI [ sinh fil sin fil J 

= (fsin “ ®) - sinh P(x ~ a)Pu(z - ®) 

sinh fi(l — a) sinh fix sin fil — sin fi(l — a) sin fix sinh fil\ 1 ,, 
+ sinh fil sin fil J (74* 4) 

(1) Steady-state Solution for Harmonic Time Function. If F(t) 
is harmonic, the steady-state solution can be easily found from 
Eq. (74.14) by letting s = iu> in all terms except F(s), which is 
replaced by F(t) = sin cot (see Section 24). y{x,t) is then deduced 
from Eq. (74.14) as* 

y(x,t) = ^>2/j8fe'/J< |fsin P(x - °) ~ sinh P(x - cOM* - °) 

sinh fi(l —a) sinh fix sin fil — sin fi(l — a) sin fix sinh fil 
sinh fil sin fil 

(74.15) 

where fi* 
mu2 
~ET 

(2) Beam Subjected to an Impulse of Magnitude $o lb-sec. For 
an impulse of lb-sec concentrated at x = a, the loading equation 
becomes 

f(x,t) = — 40cU/(x — a^'it) (74.16) 

Thus we need only to replace P0 by 0O and F(s) by 1, and the deflec¬ 
tion for x < a from Eq. (74.14) becomes 

-/ \ f" sinh fi{l — a) sinh fix sin fil — sin fi(l — a) sin fix sinh fill 
y{X’S) ~ 2E7 L fiz sinh fil sin fil J 

(74.17) 

* W. T. Thomson, “The Laplace Transform Solution of Beams,” Jour. 
Acoustical Soc. of Amer., 21, 1 (1949), pages 34-38. 
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where 

The poles of Eq. (74.17) are all simple. It can be easily shown 
that there is no pole at the origin s = 0. Taking the first two 
terms of the expansion for sinh and sin, we find that the limiting 
value of the numerator as p —> 0 is proportional to /?5, so that the 
function does not have a pole at the origin. Hence the only poles 
of Eq. (74.17) are the roots of the equations 

or 

sinh pi = 0 

sin pi = 0 

imr . nVh 
13 = —’ s- = j— 
a nir . nVh 

p = T Sn = ” 1 ~J~ 

(n = 1, 2, 3, • •) (74.18) 

For the residues we shall need the quantity 

j- (P3 sinh pi sin pi) ~ = i (sin pi cosh pi + sinh pi cos pl)8-*n 

(74.19) 

Substituting Eq. (74.18) into the expression for the residues, 

2A[sinh p(l — a) sinh fix sin pi — sin p(l — a) sin px sinh pi] e9t ( 

we obtain 
ip2l(sin pi cosh pi + sinh pi cos pi) 

. 2hl . riTTX . mra 
1 nV Sm ” Sm ~T 

. 2 hi . mrx . mra 
—i —7T-.i sin -7- sin —7— e 

(74.20) 

H-t) 

H==r) 
Addition of these residues gives the final expression for the deflection: 

1 . nwx . mra . nV2 m 

m 4^sin^sin Tsin ir ^* <74-21> 
n»l 

which is clearly a normal mode solution. 



162 PARTIAL DIFFERENTIAL EQUATIONS 

If a = 1/2, the deflection under the load becomes 

(i A zM (■ 1 • o 
y\2l) xJ y/Tilmy'1 l2 32 bin 3 

,>7r2ht 1 . ir^ht 

T+5»“n5 

which converges very rapidly. 

Problems 

[§ 74 

■) 

177. From Eq. (74.15) establish the natural frequencies of the simply 
supported beam to be 

kv IF/ 
Wn = -7T \ - 

l2 \ m (* = h 2, 3, * • 0 

178. A concentrated force I\ with arbitrary time variation F(t) acts 
at the end of a cantilever beam of length l which is initially straight and 
at rest, (a) Determine y(x,s). (b) Determine y(x,t) when F(t) = sin cat. 
(c) Establish the natural frequencies of the beam. 

Ufa*) 
_ — PoF(s) Dcosh fix — cos fix] — [sinh fix — sin fix] \ 

fim 1 /sinh fil + sin fil\ , 

lwrr+~o«~»v ~ (cosh *+“ m\ 
179. The deflection due to an impulse is given by Eq. (74.21). The 

moment and shear derived from this equation result in a diverging series. 
This difficulty can be avoided by assuming the time function to be a 
rectangular pulse of finite magnitude. Establish a solution for this type 
of function. 

180. Determine the solution for Prob. 178 when F(t) = *11/(0. 

181. Determine the subsidiary solution for a simply supported beam 
when the load is uniformly distributed with x but arbitrary with t. 

182. If a concentrated load W moves along a simply supported beam 
with constant speed v, determine the deflection. 

183. Repeat Prob. 182 for the load uniformly distributed over a 
length b. 



CHAPTER 7 

Difference Equations 

76. Introduction. Tf a function y is known at equally spaced 
values of x, then an equation connecting consecutive values of y is 
called a difference equation. For example, if y for integer values 
of x is defined by the first two columns of the following table, the 
first, second, and third differences, designated by AyX) A2yx and Azyx, 

x yx_&ih_A2j/s A3yg 

0 1 
13 2 1 
2 6 3 1 0 
3 10 4 1 0 
4 15 5 

can be expressed by the equations 

= yx4-1 - yx = 2 + X 

A2yx =• A(Ayx) = Ayx+x - Ayx = yx+2 — 2yx+x + yx = 1 

Azyx = A(A2yx) = A2yx+l - A'lyx = yx+* - 3^+2 

+ 3yx+i — yx « 0 

(75.1) 

These represent first-, second-, and third-order difference equations 
satisfying the values of yz in the above table for integer values of x. 

The most important applications of difference equations arise in 
the electrical or mechanical systems where there is a recurrence of 
identical sections. Electrical wave filters, multistage amplifiers, 
insulator strings, continuous beams of equal span, crankshafts of 
multicylinder engines, and acoustical filters are examples of systems 
with recurrence of identical sections. The usual method of solving 
such systems is generally lengthy when the number of elements is 
large, whereas the method of difference equations reduces the labor 
and complexities of the solution. 

We shall discuss only difference equations of first and second 
order, since the procedure can be extended to equations of higher 

163 
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order. The general form of the second-order equation is 

ayx + byx+1 + cyx+2 = fx (75.2) 

where a, b, and c are constants and fx is the value of the right side 
of the equation at x. The solution yx is a set of numbers depending 
on the value of x which satisfy the above equation and the boundary 
conditions at the ends x = 0 and n. 

76. Solution by Laplace Transformation. To make the problem 
suitable to an operational approach, we introduce in place of the 
numbers yx the jump function y(x) shown in Fig. 111. Such a 

Fig. 111 

function can be expressed mathematically in terms of the unit 
function as 

to 

y(x) = y yrl^x — r) — ^(a: — r — 1)] (76.1) 
r-0 

which represents a sum of a series of rectangles of unit base and 
height yr. The function y{x + 1) then represents the same curve 
shifted to the left through a distance x = 1. Thus the difference 
y{x -f 1) — y(x) at any value of x is numerically equal to the 
difference in the numbers yx+1 — yx. We see then that Eq. (75.2) 
can be written in terms of the jump function as 

ay(x) + by{x + 1) + cy(x + 2) = f(x) (76.2) 

which holds for all values of x. For example, if x ~ r + e where e 
is a fraction less than 1, then y(r + e) = yr. 

To solve this equation operationally, we first define the Laplace 
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transform of the jump function as 

£y(x) = JQ“ er‘x y(x) dx = y(s) (76.3) 

Since each term of y(x) is a constant yr multiplied by a unit pulse 
[OlCx — r) — ^(x — r — 1)], the value of this transform is readily 
seen to be 

y(s) 

00 Xr erT* 0-(r+i)«l 
/'b——\ 

■pi**- 

r» 0 

(i - 
(76.4) 

To obtain the transform of y{x + 1), we write 

£(y + 1) = /0" tr“ J/(x + 1) dx (76.5) 

and let (x + 1) = X. 

£y(x + 1) = e* Jx °° e~aX y(\) d\ 

= e* £f~*x ?/(X) dX — 7/o e* e~'x d\ 

= e‘y(s) - 2/o 7 e-~)- (76.6) 
o 

In this equation y0 is the value of y(x) in the interval x = 0 to 1. 
If this procedure is repeated, the transform of y(x + 2) becomes 

£y(x + 2) = e2* y(s) - (ya e‘ + yx) — - - (76.7) 
o 

When these expressions are substituted into Eq. (76.2), the 
subsidiary equation becomes 

(a + b e9 + c e2*)y($) = J(s) + [y0(b + c e8) + yxc) —-— (76.8) 
s 

The inverse transform of y(s) fitted to the boundary conditions 
then results in the final solution. 

77. Transforms of Commonly Encountered Jump Functions. In 
Eq. (76.2) f(x) is also a jump function, and hence it is convenient 
to have at our disposal the transforms of the more frequently 
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encountered jump functions. Such a table will also be an aid in 
determining the inverse transformation. It is evident from Eq. 
(76.4) that the quantity (1 — e~*)/s will be a factor in all types of 
jump functions. 

(1) Transform of a Constant y(x) = c. Using Eq. (76.4) with 
yr = c, we obtain 

£c (1 ~ e-) 
s 

/• = u 

(1 ~ tf-*) c 
s (T — «?”•) -s (77-V 

which agrees with our previous result for the Laplace transform 

Fig. 112 

of a constant. It is, however, convenient in many cases to retain 
the factor (1 — e~8)/s. 

(2) Transform of the Jump Function y(x) = x (see Fig. 112). 
From Eq. (76.4) we have 

£x = 
(1 - e 

00 

r e~r* = = iLz €!l u- [e-(l + 2e- + 3e~2* +•••)] 
r *=() 

_ (1 — e~*) e~8 
s (1 — e~*)2 

Multiplying and dividing by e2*, we obtain 

(77.2) 

(e» - 1)* s 
(77.3) 
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(3) Transform of the First Difference. The Laplace transform of 
the first difference can be obtained from Eq. (76.G) as 

£ Ay(x) = £{y{x + 1) — y(x)] 

= (e* - l)0(s) - i(77.4) 
o 

The use of this equation is illustrated by the following problems. 

0 12 3 4 5 6 7 

Fig. 113 

(4) Transform of the Jump Function y(x) = x2 (see Fig. 113). 
The first difference is 

Ay(x) = (x + l)2 - x2 = 2x + 1 (77.5) 

Taking the transform of each side of the equation, we have, from 
Eqs. (77.4), (77.3), and (77.1), 

(e» _ \)£x2 _ 6 | ^ j_V 
1 ' s \(e* - l)2 + c‘(l -e-) 

_ e*{\ - e~9) (2 + (c* - 1)1 
s \ (f - l)2 j 

JCx2 « 
e*(l - e~') j e* + l 

s l(e* — 1 y 
(77.6) 

(5) Transform of the Jump Function sinh fix and cosh fix. Here 
the following equations form the first difference: 
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A sinh fix = sinh fi(x + 1) — sinh fix 
= (cosh fi — 1) sinh fix + sinh fi cosh fix (77.7) 

A cosh fix = cosh fi{x + 1) — cosh fix 
— (cosh fi — 1) cosh fix + sinh fi sinh fix (77.8) 

Using (3) for the transform of the first difference, we obtain 

(e* — 1)£ sinh fix = (cosh fi — 1)£ sinh fix + sinh fi£ cosh fix (77.9) 

(e* — 1)£ cosh fix — - — — -—- 

= (cosh fi — 1)£ cosh fix + sinh fi£ sinh fix (77.10) 

Collecting coefficients of like terms, we have 

(e‘ — cosh fi)£ sinh fix = sinh fi£ cosh fix 
08Q _ 

(e* — cosh ($)£ cosh fix = -- + sinh /?£ sinh fix 
s 

Finally, we solve these two equations for «£ sinh fix and £ cosh fix: 

£ sinh fix = 

£ cosh fix = 

_sinh fi_ 
c2* — 2e* cosh fi + 1 

ea ~ cosh fi 
e28 — 2e* cosh fi + 1 

g*(l ~ e~*) 
s 

e*(l - e~a) 
s 

(77.11) 

(77.12) 

(6) Transform of the Jump Function y(x) = cx. Forming the 
first difference, we have 

Ac* = c**1 cx = (c - 1 )cx 

Applying (3), we get 

(ea — l)iic* — —-- = (c — 1 )£cx 

£cx 
ea{\ - e~a) 

(e* — c)s 

(77.13) 

(77.14) 
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Problems 

184. Determine the Laplace transform of the jump function f(x) = x 
by considering f(x) to be a series of unit step functions started at x = 1, 2, 
3, • * * ; that is,f(x) = Tl(.r — 1) + Tl(z — 2) + Tl(x — 3) + • • • . 

186. Determine the Laplace transform of the jump function f(x) = x 
by taking the transform of its first difference. 

186. Determine the Laplace transform of the jump functions sin fix 
and cos fix. 

78. The Multicylinder Engine. The torsional oscillations of a 
multicylinder engine are generally studied from the approximate 
system of Fig. 114, where the moment of inertia J is lumped at each 
cylinder and connected by a massless shaft of stiffness k. 

J j j j j 

x x + i x + 2 

Fig. 114 

Writing the torque equation for the x + 1 disk and assuming 
the oscillation to be harmonic, we have 

-Ju>2d(x + 1) - k[6(x + 2) - 6{x + 1)] - k[0(x + 1) - 8(x)] (78.1) 

On rearranging, we recognize the equation to be a homogeneous 

difference equation of second order: 

d(x) - 2 (l - 6(x + 1) + e(x + 2) - 0 (78.2) 

To solve this equation operationally, we apply the Laplace 
transformation, keeping in mind that 8(x) is a jump function. By 
Eqs. (76.6) and (76.7), the subsidiary equation becomes 
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Making the substitution 

cosh /J - (l - *^) 

we find the inverse from Eqs. (77.11) and (77.12) as 

e(x) = 0(0) (cosh fix - Sinh /Jr) + 0(1) (78.4) 

To complete the solution, we need to specify the boundary con¬ 
ditions at each end. 

79. Natural Frequencies of n Disks. To determine the natural 
frequencies of n disks, we refer to Fig. 115, where the shaft is 

J 

Fig. 115 

assumed to extend beyond the first and nth disks to stations 0 and 
n + 1, respectively. Since there is no disk at x = 0 and n + 1, 
there can be no twist in the end shafts. Thus the boundary equa¬ 
tions become 

0(0) = 0(1) 
0(n) = 0(n + 1) 

(79.1) 

Applying the first of these to Eq. (78.4), we obtain 

6(x) = 0(1) ^cosh fix + (1 - cosh fi) (79.2) 

Letting x = n and n + 1 and substituting into the second boundary 
equation, we obtain 

cosh n/3 + (1 — cosh fi) " ” eos^ (n "I" 1)0 

+ (1 - cosh fi) 8inhsi(^ (79.3) 

Upon simplification, the above equation reduces to 

sinh nfi( 1 — cosh fi) = 0 (79.4) 
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which is satisfied if 

cosh p = 1 | 
sinh nP = 0 ) 

(79.5) 

To interpret these equations, we note that we had originally 
made the substitution 

cosh a - (1 - ^’) (79.6) 

It is evident from this equation that cosh p must be less than 1. 
Letting p = y + iX, where y and X are real numbers, we can write 

cosh p = cosh (7 + iX) = cosh 7 cos X + i sinh 7 sin X 

If we choose 7 = 0, then 
cosh P = cos X 

which must lie between ±1. If we were to choose X = 0 or X = tt, 
we should obtain 

cosh p = cosh 7 = 

cosh p = — cosh 7 

The first is not possible, since cosh 7 must be greater than 1. The 
second is also not possible, since a positive number cannot equal a 
negative number. Thus we conclude that the only possible choice 
is 7 a® 0 and p = iX, from which we obtain 

cos X = (l - (79.7) 

*2 = y (1 - cos X) = ~ sin2 ^ (79.8) 

The values of X are obtained from Eqs. (79.5) as 

cos X = 1 (X = 0, 27r, 

sin nX = 0 (X = 0, -> —i ■ * • 
\ n n 

The natural frequencies are therefore given by the equation 
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If we go beyond r = n, the co’s are repeated, and hence there are 
only n distinct natural frequencies—a result to be expected for a 

system with n degrees of freedom. 
The frequency spectrum corre¬ 
sponding to Eq. (79.9) is con¬ 
veniently shown by the diagram 
of Fig. 116. 

80. Natural Frequencies with 
Flywheels or Load. Figure 117 
shows an n-cylinder engine 
coupled to loads or flywheels on 
each end. To determine the 
natural frequencies of this 
system, again we shall assume 

Fig' 116 the shaft between 0 and 1 and n 

and n + 1 to be rigid and massless so that 0(0) = 0(1) and 0(n) 

= 6{n + 1). 

Fig. 117 

Considering the left end, we can write two equations 

-Jaco20(a) = *.[0(1) - 0(a)] (80.1) 
-Ja>20( 1) = *[0(2) - 0(1)] - *.[0(1) ~ 0(a)] (80.2) 

Eliminating 0(a) from these two equations and letting 

Ka = —(80.3) 
* _ fca 

JW 
we obtain the equation 

- 0(1) - (l - ^ 0(1) + 0(2) = 0 (80.4) 

If we compare this equation with the original difference equation 
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for 2 = 0, 
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6(0) - 2 (l - 0(1) + 0(2) = 0 (80.5) 

we find that 

6(0) - 0(1) = - ^ 0(1) 

or 0(0) = ^1 — 

It is evident then that a similar equation can also be obtained for 
the right end: 

1 _ t) e{n) (80-7) 
Equations (80.6) and (80.7) are now the boundary conditions which 
the general solution, Eq. (78.4), must satisfy. Substituting Eq. 
(80.6) into Eq. (78.4), we obtain 

6(n + 1) 
- 

Ka\ 
k) 

0(1) (80.fi) 

,(C 6{x) = 0(1) (cosh fix — 
cosh fi 
sinh fi «■*)('-£!) + -aaf] 

(80.8) 

Letting 2 = n and n 1 and substituting into Eq. (80.7), we have 

cosh (n + l)/3 — sink (n + 1)0 ](-*) + 

-(-*)[(' cosh nfi — ~ sinh nfi 
sinh fi 

sinh (n + 1 )fi 
sinh fi 

sinh nfi XI — i sinh nfi 
k ) ' sinh nfi_ 

which reduces to the form 

nfi sinh (n + 1 )fi — ^2 — —^ sinh 

+ (i - (l - sinh (n - 1)0 = 0 (80.9) 

As in the previous problem, 0 must equal tX. Therefore this equa¬ 
tion reduces to 

sin (n + 1)X Ka + ^ sin n\ 

+ (l - *°) (l - sin (n - 1)X = 0 (80.10) 
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The solution of this equation can be carried out by plotting. 
For a given « we have numerical values for Ka, Kb, and X, where 

cos X = 

Ka = 

Kh = 

(80.11) 

If more than one flywheel is placed on the end as shown in Fig. 118, 
i 

Ja must be replaced by the equivalent inertia* at a, which is given 
by the equation 

JOeq a ~\~ 
Je 

JcO)2 

kc 

(80.12) 

Problems 

187. Determine the natural frequencies of a six-cylinder engine without 
flywheel, in terms of the fundamental. 

188. If a flywheel attached at one end of an engine is very large as 
shown in Fig. 119, the shaft at that end can be considered to be fixed. For 
such a case, set up the boundary equations and show that the natural 
frequencies are obtained from the equation 

where the X’s are determined from 
sin X = 0 

cos X(n + i) = 0 

* W. T. Thomson, Mechanical Vibrations, Prentice-Hall, Inc., 1948, page 
140. 
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189. If the flywheel of a four-cylinder engine arranged as in Fig. 119 
is J/ = 10J, determine the natural frequencies of the system. 

Jf 

81. Continuous Beams. Continuous beams of equal span can 
be treated by difference equations. Considering the uniformly 

w lb / ft 

0 l 2 x x+l x+2 n 

Fig. 120 

loaded beam of Fig. 120, we write the three-moment-equation, 
which relates the moments at three adjacent supports. 

M(x) + 4M(x + 1) + M(x + 2) = - ~ (81.1) 

Taking the Laplace transformation and noting that M(0) = 0, we 
obtain 

M(s)( 1 + 4e* + e2’) = 

M(s) 
Af( 1) c»(l - e~*) 
s(l + 4e‘ + e2') 

wl- 

2(e’ - Tj 
ca(1 — e~*) 

s 
wP e“(l — c~’) 
~2 s(i1)(1 + 4e" T^2*) 

(81.2) 

The quantity (1 + 4e* + ("’) in the denominator can be factored 
to (e* — c)(e" — d), where 

c = -2 + \/3 

d = -2 - VS 

c d — 2 V3 

It is also seen that 

1 = 1 T _1_1_ 
(e* — c)(e’ — d) (c — d) \_e‘ — c e* — d 

(81.3) 
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so that the subsidiary equation becomes 

M(s) = 
3/(1) e*(l - e”*) 
$(e* — c)(e* — d) 

wl2 [ e*(l 
2(c — d) [s(e* — 

- e~') e8(l — e~‘ 

^3)] (81 
•4) l)(es — c) s(e‘ — l)(e 

From Eq. (77.14), the inverse transformation is found to be 

, Mm [^|] - ^ [(^) - (^§)] (81.5) 

We have already used one of the boundary equations M(0) = 0. 
We next apply the boundary equation for the right end 3/(n) = 0 i 
and solve for 3/(1): 

o . (c” - d") 
c — d 

Therefore 

3/(1) = 
(c - d) 2(cB 

wl2 

d") 

wl'1 r /1 — c”\ (1 — d-\l 

'2 (c-d)[ VT^T) \T^d ) J 

M) - (V^)] <T^> <**•« 
Substituting back into Eq. (81.5), we get 

- wh 
Noting that 

> - 1 )dx - (dn — 1 )c* r j . i i 
cn — dn JLi-c i-dj 

(81.7) 

1 \ _ C - d _ _ V3 
c)(1 - d) 

we can write the final equation as 

[(-2 + V3)n - l](-2 - V3)’ 

- [(-2 - V3)» - ]](—2 + V8)» 

(-2 + V3)" - (-2 - V3)“ 

Problems 

3f(x) = 
- 1 

(81.8) 

190. Plot the moment at the supports of an eight-span continuous 
beam with uniform load, and sketch in the approximate moment variation 
between spans. Assume the moments at the ends to be zero. 

191. If the moment at the left end of the beam of Fig. 120 is Mo, deter¬ 
mine the moment equation at x. 

192. If in Prob. 191 the uniform load is reduced to zero, determine M(x). 
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193. For the continuous beam loaded by a concentrated load P at each 
mid-span, the three-moment equation becomes 

M(x) + 4Mix + 1) + M(x + 2) - -fPI 

Determine the equation for M(x) when M0 = Mn = 0. 

194. Set up the difference equation for the motion of the mechanical 
system shown in Fig. 121 and determine the general solution for the dis¬ 
placement of the ith mass. 

Fig. 121 

195. If in Prob. 194 the ends terminate with a spring which is fixed, 
determine the natural frequencies. 

196. In Prob. 394 show that the equations reduce to that of a uniform 
bar if n is increased indefinitely by subdivision. 

1 V 1 
Tz Z Z Z Z Tz 

Z' 

Fig. 122 

197. Show that the difference equation for the electrical network shown 

in Fig. 122 is 

E{z) - (2 + J;) E(x + 1) + E(x + 2) = 0 

State the boundary conditions and write the general solution in terms of 
them. 

198. Determine the steady-state 
output of the high pass filter of 
Fig. 123. Also show that there is 
no attenuation when co2 > 1/4LC. 

What is the value of EL/EQ when 
w2 * 1/2LC? 

199. If the load end of the net¬ 
work shown in Fig. 122 is short- 
circuited, determine E(x). 

200. If the load end of the network shown in Fig. 122 is open-circuited, 
determine E{x). 

c c c 

Fig. 123 



CHAPTER 8 

Closed-loop Systems 

Servomechanisms discussed previously in the text are examples 

of closed-loop systems. A closed-loop system is in general an error- 
sensitive system. Its operation is controlled by the error between 

the output and the input command, and the system is continuously 

cognizant of the accuracy of performance. 
Of great importance to the closed-loop system is the question of 

stability. With several elements contributing to the performance 

of a system, the problem of determining the stability of the system 
may appear formidable. Such questions, however, can be readily 
answered from the transfer locus plot of the system. 

82. Block Diagrams. A physical system is commonly described 
by a schematic diagram or differential equations. The block 

(o) (b) 

Fig. 124 

diagram represents a simplified device for accomplishing the same 

result. In the block diagram the characteristics of an element or a 

component of a physical system are described by a term called 

transfer function, which is the ratio of the output to input in the 
subsidiary plane. In determining the transfer function, the system 

is assumed to be in equilibrium prior to the disturbance, and hence 

all initial values are taken to be zero. 

Example 82.1: Determine the transfer function of a spring-mass 

element and represent it by the block diagram. 

With the coordinates shown in Fig. 124(a), the differential equa¬ 

tion and its subsidiary form are 
178 
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mx2 = — k(x2 — Xi) (82.1) 

(k + s2m)xo(s) = kxi(s) (82.2) 

Hence the transfer function is 

x2(s) _ k _ 1 
X\ (s) k + ws2 1 + ms2/1c 

(82.3) 

with the corresponding block diagram shown in Fig. 124(b). 

Example 82.2: Represent the vacuum-tube amplifier of Fig. 
125(a) by a block diagram. 

Rp 

e,(s) 
mrl e2(s) 

Rl + Rp 

(c) 

Fin. 125 

The transfer function of a four-terminal network is determined 
with the output open-circuited. Figure 125(b) is the equivalent 
circuit where \i is the amplification factor and Rp is the plate resist¬ 
ance of the tube.* We can write the following two equations: 

n ci = i(Rp + Rl) (82.4) 
e2 = iRl (82.5) 

With i eliminated, the transfer function is found to be a constant 
and is given by the equation 

62(g) _ »Rl 

(s) Rl + Rp 

The block diagram of the amplifier is shown in Fig. 125(c). 
* See Appendix D. 

(82.6) 
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83. Cascading of Elements. Two or more elements in series 
may be reduced to one by multiplying their transfer functions. 
Thus, for the system of Fig. 126, the block diagram can be repre¬ 
sented by the transfer function of each part in series or by a single 

Fits. 120 

block with a transfer function equal to the product of the two. The 
validity of this rule is easily established as follows: 

SiOO_ 
1 + niis2/ki 

Xz(s) = 
1 + ni2S2/k2 + niis2/ki 1 + ra2$ 1 Yl2$l; k'l} 

(83.1) 

(83.2) 

In general it is feasible to combine a series of elements and to 
represent the transfer function of the group by a single symbol (?(«), 

as shown in Fig. 127. It 
should be noted that in doing 
so, the poles and zeros of 6(s) 
remain the poles and zeros of 
the individual transfer func¬ 
tions comprising (?($). This 

fact is of considerable importance in the analysis of systems with 
large numbers of degrees of freedom where difficulties arise primarily 
in the solution of higher degree algebraic equations. 

In the problem of synthesis where a desired operating character¬ 
istic is to be designed into the system, the vacuum tube offers 
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considerable freedom. It is a well established fact that vacuum 
tube amplifiers isolate electrical meshes; that is, the ratio of the 
voltage on the grid of one tube to the grid of the preceding tube is 
determined only by the amplification factor of the tube and the 
network coupling the two tubes together. This ratio may be 
expressed in terms of the transfer function of the network, and the 
poles and zeros of the over-all transfer function will be equal to the 
poles and zeros of the individual coupling networks. 

€(S) = X,(S)-X0(S) 

84. Closed-Loop Analysis. Figures 128 and 129 show two 
closed-loop systems where several elements in each branch are 
lumped into a single block element. In Fig. 128 the output is fed 
back directly to the differential and the error i(s) == $i(s) — x0($) 
is fed to the block element. In Fig. 129 the output is modified by 
the transfer function Cr2($), and the input to block 1 is the difference 
between the input $i(s) and the feed-back signal $/($). 
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Considering the system of Fig. 129, we can write the following 
equations: 

*/(«) = Gt(«)*0(«) (84.1) 

*o(«) = <?!«[*(«) “ */(«)] (84.2) 

Eliminating Xf(s), we obtain the output response in terms of the 
input command: 

* ,.X _ GlWftW /«„ OX 
55o(s) = 1 + Gi(s)G2(s) 

(84.3) 

The response in the time domain is then obtained from the inversion 

„ /.x _ 1 fy+i" Gi(s)x,(s) c‘< ds ' . . 
I”(,) -s?J,_(. r+G,(Sjo7(S) (84-4) 

85. Stability of Closed-Loop System. We shall define a system 
to be unstable if a disturbance, applied to it in the equilibrium 
state, produces an amplitude which increases without limit. 

We write Eq. (84.4) in the following simplified form: 

where 

fM=I fy+im 
o() 2wi)y-tm 1+50 

+ (s) = Gi(s)xi(s) i 
B(s) = (?l(s)(?2(s) I 

(85.1) 

(85.2) 

The value of the integral is then given by the sum of the residues, 
which for simple poles is 

(85.3) 

We note here that e" is the only time function in this expression, 
and hence if any s< has a positive real part, the system will become 
unstable. If the real part of all the st- is negative, the response 
will decay exponentially and the system will be stable. If simple 

poles lie on the imaginary axis and there are no poles to the right 
of this axis, there will be sustained steady-state oscillation which 
represents the limit of stability. Finally, if an s, coincides with the 
origin while all other roots are complex with negative real parts, 
we shall have stable oscillation, the final value of which is dis¬ 
placed from its initial value. 
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It can be shown that the same conclusions hold when there are 
higher-order poles in the left half plane, since for such cases the 
time function is in the form 

tn e*il (85.4) 

For Si with a negative real part —a, 

lim tn e~~at = 0 (85.5) 

which represents a stable function. 
86. The Transfer Locus Plot of Nyquist. We have found in the 

previous section that instability results if a pole of the integrand 
lies in the right half plane. Thus, by choosing the contour shown 
in Fig. 130 and assuming for convenience that there are no poles 
on the imaginary axis, except possibly at the origin, we can express 
the condition for stability mathematically as 

__ f A (s) e8t ds ___ 

27ri Jc 1 + B(s) 
(86.1) 

where C is the path described. 
We note here that A(s) = Gi(s)xi(s) cannot have a pole in the 

right half plane, since (?i($) is a transfer function which is assumed 
to be stable without feedback, and £*($) is the transform of an input 
which is assumed to be regular. Thus the only possibility for a pole 
in the right half plane will be due to the zero of the denominator, 

B(s) + 1-0 (86.2) 

resultingSn a positive real part of s. 
It is not necessary to calculate the roots of the above equation 

to determine whether any s has a positive real part. The methods 
of Hurwitz and of Routh* provide an algebraic means of establishing 
this point. There is also a simpler method due to Nyquistt which 
will also ascertain the region of the roots s and in addition will give 
information as to the degree of instability of the system. We shall 
limit our discussion only to the latter method of Nyquist. 

Nyquist's criterion of stability is based on Cauchy's principle of 
argument (see Appendix C), which states that if a function f(s) is 

* See reference 1 at end of chapter, 
t See reference 2 at end of chapter. 
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analytic except for poles and zeros within a closed contour, then 
the number of times the origin of f(s) is encircled in going around the 
contour C is equal to the number of zeros minus the number of 
poles of /($), with the multiplicity of order taken into account. 

2S j/W ~ N ~ Z ~ P <8“-3> 

Thus to make use of this principle we can let 

}{s) = 1 + B(s) (86.4) 
i 

and examine the number of encirclements of the origin of f(s) in 
traversing the contour of Fig. 130. Note now that the origin of 

Fig. 130 

f(s) corresponds to B(s) = —1. Thus if w = B($) is plotted for 
the contour of Fig. 130, the number of times B(s) encircles the 
point w = — 1 + iO will be equal to the number of zeros minus the 
number of poles of 1 + B(s) for s in the right half plane. 

We shall now examine w = B(s) along the contour of Fig. 130. 
Since lim |JB($)| = 0 for all physical systems with which we are 

8~* <*> 

concerned, points along the infinite arc CD A contract to the origin 
w = 0. Along the imaginary axis, s = iu, so that w * B(ia). 
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Along the small semicircle at the origin we can let s = p ei9. Since 
B(s) is in general a rational fraction with the denominator of higher 
power than the numerator, 

w = lim B(p eie) (86.5) 
fir->0 

will map into a segment of an infinite circle. Thus it is necessary 
only to plot B(ia>) from co = oo to 0. Since B(—io) is a conjugate 
of B(iu), w will be symmetric about the real axis and B( — ioo) will 
be the reflection of B(iu) about the real axis of w. 

Summarizing, we can write 

1 f A (&) eRt ds 

2wi Jc 1 + Bjs) 
(86.6) 

where SGI is the sum of the residues of the integrand at the zeros 
of 1 + B(s) in the right half plane of s. The system is stable only 

if Z = 0. 

Z can be determined by plotting w = B(iu), noting the number 
of encirclement N of the point w = — 1 + i0} using the equation 
N = Z — Py where P is the number of poles of B(s) in the right 
half plane. P is in general easily found from B(s) by inspection. 

In single-loop systems B(s) has no poles in the right half plane, 
and hence Z = N. Thus stability is ensured if the transfer locus 
plot w = B(iu) does not enclose the point w = — 1 + iQ. 

In multiple-loop systems B(s) may have poles in the right half 
plane; that is, the feed-back element itself may be unstable. Thus 
instability is possible with N = 0, since Z — P may be zero. Also 
stability is possible with N 9± 0, since Z may be zero and P^0. 

87. Examples in Stability. To illustrate the subject of stability, 
a few problems are included in this section. 

Example 87.1: Plot the Nyquist diagram and determine the 
stability of a closed-loop system with B(s) = 1/1 + s. 

First we shall write B(iu) in the form, 
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Choosing various values of u, we obtain the following table. 

to 1 + 0>2 
1 to 1 

1 4- 1 -f- <0* 0>(1 -J- CO2) 

0 1 1 0 00 

1.04 0.960 0.192 4.80 
0.60 1.36 0.735 0.441 1.23 
1.00 2.00 0.500 
1.40 2.96 0.338 0.473 0.241 
2.00 5.00 0.200 0.400 0.100 
3.00 0.100 0.300 0.033 
6.00 0.162 0.0045 

00 00 0 0 0 

Using the values in this table and plotting w = B(iu), we obtain 
the circle shown in Fig. 131, where the dotted portion represents 

B(—iu). It should be noted here that the small semicircle at the 
origin of Fig. 130 contracts to the point w ■» +1. Since B(s) «■ 
1/(1 + «) has no poles in the right half plane of s and since the 
Nyquist diagram does not enclose the point w = —1, we have 

N = P = Z - 0, 

and the system is stable. 
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Example 87.2: Determine the stability of a closed-loop system if 

Here we have a pole of the denominator 1 + B(s) in the right 
half plane; that is, s = 1. We therefore have P = 1. The pole 
at the origin, s = 0, is not included in the contour of Fig. 130, and 
hence it does not contribute to P. 

Writing B(ico) in the form 

Rr v _ 1 _ ~1 , . 1 
103 — 1) 1 + co2 1 co(l + co2) 

we can plot the Nyquist diagram of Fig. 132 with the aid of the 
previous table. To determine the position of the infinite circle on 

the tt>-plane, corresponding to the small semicircle around the origin 
of Fig. 130, we can substitute s = r eie in B ($) and obtain 

- !S1) ” " “3(? ‘-j 

Since 6 goes from ir/2 to — jr/2, the infinite arc in the w-plane encloses 
the left half plane. 
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We see from Fig. 132 that the point w = —1 is enclosed once; 

hence N = 1. Solving for Z in the equation N — Z — P, we obtain 

Z = N + P = 2 

and the system is unstable. 

Example 87.3: Figure 133(a) represents an oscillator where the 

feedback of energy is accomplished through the coupling condenser 

(t>) 

Fig. 133 

Ci between the screen and suppressor grids. With the screen 

potential higher than that of the plate, the secondary electrons 

emitted by the plate, and dependent on the control grid and plate 

voltages, are drawn through the screen grid. If the suppressor 

grid is now made positive, a part of this secondary flow is diverted 

through the suppressor, thus decreasing the screen current. With 

the control grid and plate voltages fixed, the tube can be considered 

to be a triode with the screen as anode and the suppressor as grid. 

The transconductance* of this tube gm = di,Jde„ (between the 

* See Appendix D. 
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screen and suppressor) is, however, negative; hence the voltages 
at A and B are in phase, making possible feedback through C in 
the proper phase relation to sustain steady oscillations. 

The equivalent a-c circuit for this oscillator is shown in Fig. 
133(b), where the equivalent triode is replaced by a current source 
i(t) = — gme in parallel with a conductance l/rP, where rP is the 
resistance of the equivalent triode.* In the diagram l/rP is con¬ 
solidated with R such that R2 = RrP/(R + rP). 

Equating i(t) = — gme to the branch currents, we have 

gmc — i\ H- %c “b tRi 

~ 7?i + °2 dt + R2 

To replace e2 by e we note that 

02 

de2 
dt 

, 1 r e 
& sy I L> dt 

Cl J 0 #1 

de . e 
~ dt^ RTF* 

Substituting into the current equation, 

c 1 fy de . 0 2 1 e . 

= R[ + °2di + Wie + R 
1 r 

iR*cJ0 ei 

Differentiating and rearranging terms, 

— 4. ^-J_|-__|-_-f. ™ 4. ^_1_^ e = 0 
tftf2 ^ R2C2 R1C1 ^ C2) dt ^ Vb1R1(71C2/ 

Since gm is negative, it is possible to make the coefficient of the 
second term equal to zero, in which case we have harmonic oscilla¬ 
tions of frequency 

O) 
1 

R1R2C1C 2 

If the coefficient of de/dt becomes negative, we obtain unstable 
oscillations. 

See Appendix E. 
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Problems 

201. Determine the transfer function for the integrating circuit of 
Fig. 134. 

202. Determine the transfer function for the coupling network of 
Fig. 135. 

R C 

Fig. 134 Fig. 135 

203. Electronic Analog computer components are commercially avail¬ 
able to perform the following operations. 

Determine the output response of these units when a unit step function is 
used as stimulus. 

Fig. 136 

204. For the vacuum tube circuit of Fig. 136, show that the equation 
for the transform f2(s) for any impressed grid voltage is 
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If e0 * Eq sin cot, show that the solution is 

where 

-rZ== sin (cot + *). 

'#-r'(,+t+S) 

<f> = tan-1 — 
co 

206. If a vacuum-tube amplifier consists of two stages of the circuit 
shown in Fig. 136, determine its transfer function. Using the solution of 
Problem 204, express the output voltage across the load resistor of the 
second stage in terms of the convolution integral. 

206. Determine the transfer function and the block diagram for the 
torsional system shown in Fig. 137. 

Fig. 137 

207. Figure 138 shows a vacuum-tube oscillator with feed-back through 
the mutual inductance M. Verify the equivalent circuit and the block 
diagram given and show that the system will be stable if 

R , _1_ . f*M 
L^RpC RpCL 

208. Figure 139 shows an electron-coupled oscillator. Verify the block 
diagram given. 

209. A closed-loop system has the following equation for £(s). 

B(a) = 
1 

8(1 + 8) 

Plot the Nyquist diagram and show that the system is stable. 
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210. If B(s) = l/($ — 2), show that the Nyquist diagram does not 
enclose the point w — — 1, yet the system is unstable. 

Arts. A = 0, Z = 1,P = 1. 
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CHAPTER 9 

Analogies 

In many cases the physical system is so complex that a direct 
mathematical solution by means of the differential equations is not 
practical or possible. For such problems, experimental methods 
based on analogies offer one possible approach. The system under 
consideration may be mechanical, electrical, acoustical, or combina¬ 
tions of all three. However, it is frequently possible to reduce such 

<J>) (c) 

Fig. 140 

a system to an analogous electrical system that may be studied 
experimentally. Such a study generally involves both the use of 
circuit theory and the principle of dimensional similarity. 

88. Analogous Quantities. The analogy between systems is a 
mathematical one based on the similarity of differential equations. 

194 
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For instance, the differential equations for the three systems of 
Fig. 140 are 

LIt + Ri + lc. o
 

^
 

<s
>.

 

S
L

 

II C
H

. 

(a) 

c^ + (?e + i. o
-
^

 

S
L

 

II c*
. 

o*
. 
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O
 

(c) 

which are similar in form and differ only in the letters used. 
The significance of these equations is that the mechanical system 

of Fig. 140 can be represented by either of the two electrical circuits 
shown. The analogous quantities are evident from these equations 
and have been tabulated for convenience. 

Table of Analogous Quantities 

Electrical Quantity 

Mechanical Quantity 
Force-Voltage 

(/ — e) Analogy 
Force-Current 

(/ - i) Analogy 

Force (pound) / Voltage (volt) e Current (ampere) i 
Velocity (in./sec) V 

n 
Current (ampere) i 

ft 
Voltage (volt) e 

Displacement (in.) x - f vdt Charge (coulomb) q = j idt 

Mass (lb sec*/m.) m Inductance (henry) L Capacitance (farad) C 
Compliance (in./lb) i/k Capacitance (farad) C Inductance (henry) L 
Resistance (lb sec/in.) c Resistance (ohm) R Conductance (mho) G 

89. Circuit Diagrams. Rules for setting up analogous electrical 
circuits are offered in this section. We shall start with the (/ — e) 
analogy, for which the following line of reasoning is required. 

Force-Voltage Analogy. Springs and dashpots are in general 
associated with two displacements or velocities; namely, those of 
each end. In the case of springs, the force transmitted is propor¬ 

tional to the difference in the displacement of the ends, whereas the 
force transmitted through dashpots is proportional to the difference 
in the rate of change of these displacements or their velocities. The 
electrical analog of springs and dashpots are capacitors and resistors, 
which in general can be considered to have two currents flowing 
through them in opposite directions, as shown in Fig. 141. 
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The voltage across the capacitor is proportional to the difference 
of the charge or the time integral of the difference between the two 
currents, whereas the voltage across the resistor is proportional to 
the difference in the two currents. It is evident then that, except 
in cases where one end of the spring or dashpot is fixed, capacitors 
and resistors must be placed in a branch common to two circuits. 
With one end fixed, = Vi = 0, wrhich corresponds to i% = 0 or an 
open circuit of branch 1. 

Fig. 141 

The force acting on a mass or inertia is associated with the 
absolute acceleration, which means that only one displacement is 
involved. Inductance, which is the corresponding electrical ele¬ 
ment of mass, can therefore be included in only that branch of the 
circuit where a single current flows. 

Example 89.1: Figure 142(a) shows a mechanical system for 
which an equivalent electrical circuit is desired. Using the rules 
given in this section, the circuit of Fig. 142(b) can be readily 

established as the equivalent circuit based on the (/ — e) analogy; 
that is, the inductances L\ and L2 corresponding to mi and m2 

must be associated ouly with single currents ix and i2. The spring 
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and dashpot k2 and c are related to the difference of the displace¬ 
ment and velocity at 1 and 2; hence their equivalents C2 and R must 
be placed in the branch between loop 1 and 2. Also C3 corre¬ 
sponding to A;3 is placed in the branch where the difference in cur¬ 
rent (U — i2) flows. The applied force being measured with respect 
to ground and associated with the velocity v3, its equivalent e(t) is 
placed in the branch with current h. 

Force-Current Analogy. The equivalent circuit for the (/ — i) 
analogy can be obtained in two different ways. The first method 

(a) (b) 

Fig. 142 

assumes that the circuit diagram based on the (/ — e) analogy is 
known, from which the dual circuit of the (/ — i) analogy is readily 
obtained. In the second method, a mechanical circuit diagram is 
drawn. This mechanical diagram will correspond identically with 

the dual electrical circuit of the (/ — i) analogy. 
We shall now illustrate both these methods for the system of 

example 89.1. 
Method (1). From the following rules the dual electrical net¬ 

work can be established. We first draw the circuit for the (/ — e) 
analogy as shown in Fig. 143(a). Next place a dot in each loop 
and one outside; that is, a, b, c, g. These points are the nodes of 
the dual circuit, and the branches are established by connecting 
these nodes by dotted lines through each element as shown. The 
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dual of the elements crossed by these lines are then placed in the 
respective branches of the new diagram as shown in Fig. 143(b). 

Method (,2). Method (2) is preferable to method (1) in that 
the circuit diagram of the (/ — e) 
analogy is not necessary. We begin 
by drawing the mechanical circuit 
diagram of the system as follows. 
Since masses are associated with 
absolute motion, one end of each 
mass must be connected to ground. 
We next connect together the ends 
of all mechanical elements having 
the same velocity or displacement, 
and the mechanical diagram is 
completed as shown in Fig. 144. 
It is evident that this diagram is 
identical to that of Fig. 143(b) 
when the analogous electrical 
elements are substituted for the 
mechanical quantities. 

The mechanical circuit diagram is an essential feature of the 
so called 1‘mobility method” of Firestone,* which is frequently 
used for steady state analysis. In fact, the mobility method makes 

k2 

Fig. 144 

use of the mechanical admittance of the elements and is comparable 
to the force-current analogy. 

90. The Similarity Principle. In order to determine the behavior 
of a mechanical system from its equivalent electrical circuit, it is 
necessary that the two systems be similar. The similarity principle 

* See references 3 and 4 at end of chapter. 

(b) 

Fig. 143 
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as set forth by Bridgman* states that the solution of a physical 
system must be valid in all systems of units. Thus two systems 
are similar if their dimensionless equations are identical. Stated 
in another way, a dimensionless equation must be independent of 
the system of units used. 

As an example, the equation 

m, ^ + c-^ + Jcx = F0 sin pt (90.1) 

can be written in the nondimensional form 

™ + (j\% + (±\X,(j±)ein(r)T (90.2) 
dT2 ynco/ dT \rruo2/ \mo)2xo/ \a>/ v 

by the introduction of nondimensional variables X = x/xo and 
T = cot. The dimensionless equation for any similar system must 
be identical with respect to form and numerical values of the non- 
dimensional coefficients represented in the parentheses. 

In general, we wish to establish the similarity between two 
systems without reference to their differential equations. The pro¬ 
cedure is then to write a functional equation by fixing our attention 
on the particular quantity to be studied and deciding what variables 
could affect it. The number of dimensionless parameters in its 
solution is then established by Buckingham’s r theorem which states 
that, if a physical problem has n independent variables and m funda¬ 
mental units, there will be (n — m) dimensionless parameters. 
Mechanical problems generally involve three 
fundamental units; namely, force, length, and 
time. The dimensionless parameters having 
been established, the corresponding quantities 
in the analogous system can be determined by 
reference to the table of analogous quantities. 

Example 90.1: Establish the dimensionless 
parameters for the free vibration of a damped Fig. 145 

spring-mass system of Fig. 145. 
If we assume the mass to be started with displacement x0 and 

velocity Vo, the displacement at any time will depend on k, m, c} x0, 
and v0. The functional equation then becomes, 

x * /(fc,m,c,xo}v0) 
* Bridgman, W. P., Dimensional Analysis, Yale University Press, 1922. 
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This equation contains six independent quantities; hence by the 
7T theorem there will be three dimensionless parameters; namely, 

where w» = \/k/m is the natural frequency of the system. 

Example 90.2: Determine the dimensionless parameters for the 
system of Fig. 145 when a force of F\ sin pt is applied to it. 

Fig. 146 

Assuming the initial conditions to be zero, the functional equa¬ 
tion becomes 

The dimensionless parameters are then 
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The dimensionless parameters obtained in Examples 90.1 and 
90.2 are of basic importance to the more general problem and are 
tabulated with their electrical analogs in the following table. 

Mechanical 

Electrical 

/ — e Analogy f — i Analogy 

Vl 
03 03e 0)e 

mpa 
k 

lc P* LC pS 

c 
bJ G J 

\/ km \L yjc 
kx 

Fo CEo 

kv e 

F qCO o)Li 

Note: p and are impressed and reference frequencies respectively. It is 
sometimes convenient to let co = con. 

The subscript e is used to differentiate between the electrical and mechanical 
frequencies. 

Example 90.3: For the mechanical system shown in Fig. 146(a), 
determine the equivalent electrical circuit and the numerical values 
of the electrical elements. The constants for the mechanical system 

are given in the engineering units as follows: 

Jfci - 200 lb/in. Wi « 300 lb 

&2 = 20 lb/in. W2 = 15 lb 
c2 = 0.10 lb-sec/in. F0 = 50 lb 

p = 10 rad/sec 

By means of the (/ — e) analogy, the equivalent circuit of 
Fig. 146(b) is readily established. We next focus our attention on 
the displacement Xi and write the following functional equation: 

Xi = /(fci,fc2,mi,m2,c2,Fo,p) 
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This equation indicates that the displacement X\ is some function 
of the seven quantities on the right side. There are eight inde¬ 
pendent variables in this equation; hence from the v theorem there 
will be five dimensionless parameters as follows: 

V B Pe 
0) 0)e 

mip2 _ 300 X 102 
ki 386 X 200 

m2p2 _ 15 X 102 
~k2 386 X 20 

c2 _ 0.10 

y/k:2m2 X 20 

= 0.389 = LiCipl 

= 0.194 - L2C2p2 

= 0.113 = Rz 

k\X\ _ . __ <7i _ eci 
F0 ~ 1 ~ CiEo ~ E0 

The quantities on the right are the corresponding electrical 
parameters, which must also have the same numerical values. 
These relationships can be satisfied in a number of different ways. 
However, it will generally be necessary to choose a large value of 
the electrical frequency in order to limit L and C to practical values. 
If we let coe = 100o>, then 

P « P* 
(a) IOOco 

pe « l00p « 1000. 

and we obtain 

L\Ci » 0.389 X 10~8 
L2C2 = 0.194 X 10~6 

Letting C\ = C2 = 10 X 10"~6 farads, the numerical values of the 
remaining quantities become 

Li = 0.0389 henry 
L2 =* 0.0194 henry * 

R* -.0.113 r 5.0 ohms 
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The displacement x\ is then determined from the equation 

203 

where ee\/Et is the ratio of the voltage across the capacitor Ci to 
the impressed voltage. The displacement can also be obtained 
in the same manner from the equation 

X2 = 2.5 
Cc2 

E0 

It should be pointed out that, if the electrical voltages above are 
obtained by means of an oscillograph, both the transient and the 
steady-state response will be established. 

Problems 

211. Figure 147 shows the essential components of a vibrometer 
Verify the equivalence of the circuits shown. 

(o) (b) 

L 

21% Establish the analogous circuits for the mechanical systems shown 
in Figs. 148, 149, and 150. 
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213. Show by means of the (/ — e) analogy that the circuit diagram for 
the mechanical system of Fig. 151 corresponds to that of a low-pass filter. 

Fig. 148 

214. Draw the mechanical circuit diagram for the 
system of Fig. 152. Establish the electrical circuit 
diagrams corresponding to the (/ — e) analogy and 
the (/ — i) analogy. 

215. The motor shown in Fig. 153(a) is capable of 
translation in the vertical direction and rotation about 

its center. Show that Fig. 153(b) is its equivalent circuit where 

L = Lm C = 
1 

k 

216. The vibration absorber shown in Fig. 154 has the following 
constants: 

ki * 500 lb/in. W\ = 100 lb 
*2 « 20 lb/in. W2 = 10 lb 
c os 0.10 lb-sec/in. F0 « 5 lb 

p = 27.8 rad/sec 

Establish the equivalent circuit, using the (/ — e) analogy, and determine 
the numerical values of the electrical elements. 
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217. The following numerical values are given for the mechanical 
system of Fig. 155. 

k\ = 1000 lb/in. W = 400 lb 
hi = 500 lb/in. F0 = 10 lb 

c = 15 lb-sec/in. p = 10 rad/sec 

Fig. 151 

Determine the numerical values for the electrical elements of the equiva¬ 
lent circuit for similarity of behavior. Assume 60 cps a-c voltage source 
and a 200 millihenry coil to be available. Indicate what measurements 
you would make on the electrical circuit to determine the displacements Zi 
and a?2, and express these displacements in terms of these measured 
quantities. 
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218. Determine the equivalent electrical circuit for the system of 
Example 90.3, using the (/ — i) analogy. Calculate the numerical values 
of the electrical elements in this circuit. 

Fig. 154 Fig. 155 

219. For the system of Fig. 154, discuss how you would obtain the 
transient response of the system to a suddenly applied impulse to Wi, 
giving it an initial velocity of v0. 

References 

1. Gardener and Barnes, Transients in Linear Systems, Chapter 2. 

2. Thomson, W. T., Mechanical Vibrations, Prentice-Hall, 1948, Chapter 8. 

3. Firestone, F. A., “A New Analogy between Mechanical and Electrical 
Systems,” Jour. Acous. Soc. of Amer., Vol. 4 (1933), pages 249-267. 

4. -, “The Mobility Method of Computing the Vibration of Linear 
Mechanical and Acoustical Systems/' Jour. Appl. Physics, Vol. 9 
(1938), pages 373-387. 



APPENDIX A 

Continuity 

A function f(x) is continuous at the point x if for a given positive 
number e, there exists a number 8 such that for all values of h for 
which \h\ < 8, the inequality 

\f{z + h)-m\<€ a) 
is satisfied. 

If in a given region 8 can be found independent of £, then fix) 
is said to be uniformly continuous in that region. 

The above definition of continuity applies also to a complex 
function f{z) where f(z + h) — f(z) is a vector difference and h is 
also a vector in the z plane. 

The condition of continuity can also be stated in the form of 
a limit, 

lim f(x + h) » J{x) (2) 
hr->0 
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Jordan's Lemma 

If }(s) is analytic and converges uniformly to zero as s increases 
indefinitely, the integral along the infinite half circle is zero for t > 0. 

lim tJVf/(s) ds = 0 (1) 
R—> 00 

Proof: We will assume the radius of the half circle shown in 

Fig. 156 Fig. 157 

8 = Re* |*| - R 
ds — iR eie do |dsj = R do (2) 

If /(*) is uniformly convergent, for any t no matter how small, 
there exists an R large enough such that 

l/(*)l < « (3) 
We now have 

3t 

\I(R)\ < f \e“f(s) ds| < Rt jj e*‘°°‘»dd (4) 

2 
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7T 
On substituting 0 = <f> + ^ we obtain 

\I(R)\ < Rt J* e~«“**d<l> (5) 

From Fig. 157, it is apparent that the inequality 

sin <t> > — (6) 
7r 

exists for 0 between 0 and x/2. Also, since e~Bt llin * is symmetric 

about 4> - x/2, we can rewrite Eq. (5) as 

IT 

r 2 _ 2Rt<j> 

!I(/e)| <‘2Re e - d<t> = ~[ 1 - e~«‘] < ^ (7) 
Jo f J 

As 72 —► oo t e —> 0, and the integral vanishes for all i > 0. 
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Cauchy's Principle of Argument 

Consider an integral of the form 

J_ f f'(s) ds 
2ri Jc f(s) 

taken over a closed curve c. We note here that 

(1) 

so that Eq. (1) can be rewritten as 

2Vi //[In/W] = ™[ln 1/001 + 41, (3) 

Since |/($)| returns to its initial value in completing one circuit of a 
closed curve, the value of the integral is equal to l/2v times the 
net angle swept by the radius vector from the origin to the 
curve c, or 

J_ f fM ds = ± = N 
2ri J f(s) 2t (4) 

We know, however, that this integral is also equal to the sum 
of the residues at the poles of the integrand f (s)//(s) within the 
curve c. It is obvious that poles of the integrand will result from 
the zeros of the denominator. However, poles of the integrand can 

also result from the poles of /(s). As an example, if /(s) = 

then 

and m~~ ~ ±” at*"0 

Thus the value of the integral is associated with the residues-at the 
zeros and poles of f(s). 
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To establish the value of the integral for the general case, let/(s) 
have both zeros and poles. At a zero of /(s) we can write 

/(«) = (s - o)V(s) (5) 

where a is a zero of order z and <p(s) a regular function not zero at a. 
Differentiating, 

/'(«) = z(s - a)2~V(s) + (s - a)V(s) 

/'_(«) = 2 + <f>'(s) 
/(«) * - « <p(s) 

(6) 

The residue of f'(s)/f(s) at o is then equal to 

lim (s — a) 
8—*a 

Z 

is - a) 
= Z (7) 

If there are other zeros of f(s) the sum of the residues of all the 
zeros of f(s) will be Z where multiplicity of the order of zeros is 
taken into account. 

For the poles of /(s) we can write 

f(s) = (« - fe)-^(s) (8) 

where 6 is a pole of order p and ^(s) is analytic at b. Differentiating, 

/'(«) = (s — b)~vi'(s) — p(s — b)~v^l\p(s) 

ns) = ns) _ y 
f(s) f(s) s - b 

and the residue of at b becomes equal to —p. 
We thus conclude that 

(9) 

,i. froods 
Jc f(s) 

A 
2ir 

= N = Z - P (10) 

where Z and P are zeros and poles of /($) within c with due regard 
for their multiplicity of order, and N the number of encirclement 

of the origin of f(s). 
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APPENDIX D 

Equivalent Circuits of Vacuum Tubes 

Since vacuum tubes are common network elements, their charac¬ 

teristics are briefly discussed in this section. 

With the plate voltage Ep held constant as a parameter, the 

characteristic curves for the plate current ip vs. grid voltage ea will 

appear as shown in Fig. 158. The slope dip/de0 is called the trans- 

0 

Fio. 158 

conductance or mutual conductance gm of the tube. It gives the 

relative change in plate current for a change in grid voltage. 

The slope dip/deP of the plate-current vs. plate-voltage curve 

is known as the plate conductance gp, whereas its reciprocal is the 

plate resistance rP. The ratio 

£W diP/de0 dep 
gp dip/dep deg 

is called the amplification factor of the tube. is a measure of the 

relative merit or gain of the tube. 

To determine the equivalent circuit of a vacuum tube, we refer 

to Thevenin’s theorem* which states that a network composed of 

linear elements and voltage is equivalent to a simple generator 

* Everitt, Communication Engineering, 1st ed., McGraw-Hill, 1032, page 36. 
212 
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with an internal impedance equal to that of the network. Thus if 
the range of operation of a vacuum tube is restricted to the linear 
portion of the curve where ip varies linearly with eg and eP, the 
tube can be replaced by a generator of voltage iieg with an internal 

resistance rP as shown in Fig. 159. Since the battery voltage E 
determines only the operating region of the tube, and we are 
interested only in the a-c voltages and current, the d-c components 
need not be considered in the equivalent circuit. 
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Equivalent Sources 

A voltage source e(t) in series with a resistor R can be replaced 
by a current source i(t) in parallel with a conductance 0 = 1/R as 
shown in Fig. 160. The equivalence in the two circuits must be 

b b 

Fig. 160 

established on the basis of equal terminal conditions. From the 
series circuit we have 

. _ 1 1 
R e ^ R 

= G e(t) — G e0 

= i(t) ~ ii 

It is obvious that the parallel circuit also satisfies the last form of 
this equation; hence the two circuits are equivalent. This latter 
form is often more convenient for networks with parallel elements, 
whereas the voltage source is more suitable for networks with series 
elements. 

Reference 

Bode, H, W., Network Analysis and Feedback Amplifier Design, D. Van 
Nostrand, 1945, page 12. 
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J 

.Jordan’s leinma 112, 208 
Jump functions 164, 216, 224 

L 

Laplace transformation, definition 2 
Laurent expansion 103 
Linearity theorem 3 
Line integral 95 
Loading of beams 29, 79, 159 
Loading of circular plate 30 
Logarithmic residues 210 
Longitudinal vibration of rods 119- 

130 

M 

Mass-loaded rod 126 
Meander function 24, 222 
Mechanical circuit 198 
Mechanical filter 205 
Moment, equivalent loading of 27 
Motor-generator set 75 
Moving load on beam 162 
Multicylinder engine 169 
Multiplication of f(t) by t 22 
Multivalued function 93 
Mutual conductance 212 

N 

Natural frequencies 132 
of multicyUnder engine 172 

Network, dual 197 
Newton’s law of cooling 146 
Non-dimensional quantities 199-201 
Non-uniform beam 80 
Non-uniform column 87 
Normal mode vibration 161 
Nyquist’s criterion of stability 183 

o 

Ordinary differential equation: 
transformation of 6 

P 

Partial fractions 8 
Pentode tube 188 
Periodic function 30, 108 
Poles: 

first order 9, 93 
higher order 12, 93 

Prescribed force on bars 120 
Prescribed motion: 

of bars 121 
of cams 52, 54, 124 

Pressure pulse 30 
Pressure regulator 48 
Principal branch 95 
Product of transforms 38 
Propagation velocity, water hammer 

137 
Pulsed periodic function 31 
Pulsed sinusoidal wave 32, 34 

R 

Rate of roll of airplane 69 
Rectification: 

full wave 33, 223 
half wave 31, 223 

Recurrence formula for J(x) 151 
Reflection of elastic waves 123 
Residues 102 
Resonance 132 

S 

Saw-tooth wave 29, 223 
Second order difference equation 164 
Servomechanism 71-75, 181 
Shifting theorem: 

first theorem 4 
second theorem 28 

Shock test 64 
Similarity principle 198 
Simple pole 9 
Singularities 93 
Source, exchange of 214 
Specific heat 144 
Sphere, heat conduction in 153 
Springs, waves in 124 
Square wave 24, 28, 222 
Stability 183-189 
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Statical deflection of beams 78-86 
Steady state response 39, 160 
Step function 23 
Strings, vibration of 117 
Subsidiary equation 7 
Superposition integral 37 

U 

Unessential singularity 93 
Unit doublet 27 
Unit impulse 25 
Unit step function 23 

T 
V 

Tachometer damping 75 
Taylor expansion 102 
Temperature distribution: 

in cylinder 149 
in semi-infinite block 144 
in slab 145 

Thermal conductivity 143 
Thermal diffusivity 144, 152 
Thermionic valve 212 
Thevenin’s theorem 212 
Transfer function 178 
Transfer locus plot 183, 186, 187 
Transforms, tables of 3, 217-224 
Translation theorem 4, 28 
Transmission line equations 154 
Traveling wave solution 123, 140 
Triangular pulse 58, 65, 222 
Triangular wave 33, 121, 223 
Triode 212 

Vacuum tube: 
amplifiers 179, 190 
characteristics 212 
oscillators 188, 192 

Vibration of beams 157 
Vibrometer 203 
Voltage source 214 

w 

Water hammer 134-143 
Waves in springs 124 

Z 

z-plane 90 








