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PREFACE 

In writing this book, I have tried to keep in mind the student 

of rather modest mathematical preparation, presupposing only a 

first course in function theory. Thus, I have included such 

things as a proof of Schwarz's inequality, theorems on uniformly 

bounded families of analytic functions, properties of Stieltjes 

integrals, and an introduction to the matrix calculus. I have 

presupposed a knowledge of the elementary properties of linear 

fractional transformations in the complex plane. 

It has not been my intention to write a complete treatise on the 

subject of continued fractions, covering all the literature, but 

rather to present a unified theory correlating certain parts and 

applications of the subject within a larger analytic structure. I 

have not touched upon the arithmetic theory, and have, for the 

most part, refrained from developing formulas of a more general 

character than are actually used in the proofs. Neither have I 

made any attempt to compile a complete bibliography. 
Certain parts of the book have been developed in courses. For 

instance, parts of Chapter X were used in a course in the theory 

of equations, and most of Part I was covered in a course in the 

theory of continued fractions. Some of the material ot Chapters 

XII and XV was developed in seminar courses. 

This approach to the theory of continued fractions is mainly 

the result of researches carried on during the past decade by my 

students and colleagues and myself. I wish to take this oppor¬ 

tunity to thank all those who have had a part in this work, and 

who have made this book possible. I wish also to thank my 

wife, Mary Kate, for invaluable encouragement and for help in 

the preparation of the manuscript and correction of the proofs. 

H. S. W. 

January^ 1948 
The University of Texas 
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INTRODUCTION 

This book deals with the analytic theory of continued fractions, 

that is, with continued fractions in relation to analysis: the theory 

of equations, orthogonal polynomials, power series, infinite ma¬ 

trices and quadratic forms in infinitely many variables, definite 

integrals, the moment problem, analytic functions, and the sum¬ 

mation of divergent series. In contrast with the analytic theory 

of continued fractions, there is an extensive arithmetic theory 

which is not touched upon here. 

The celebrated memoir of T. J. Stieltjes [95],* Recherches sur les 

fractions continuesy of 1894, may perhaps be regarded as marking 

the first major step in the creation of an analytic theory of con¬ 

tinued fractions. Here is to be found the development of funda¬ 

mental function theory and integral theory necessary for a com¬ 

plete treatment of an important class of continued fractions. For 

several years, Stieltjes had been interested in the problem of 

summation of divergent power series. His Thesis (1886), ‘‘Re¬ 

cherches sur quclques series semi-convergentes’’ {OeuvreSy vol. 2, 

pp. 1-58), is a profound study of the remainders in several asymp¬ 

totic series. In 1889-1890 he published a considerable number of 

examples of continued fraction expansions for series of this kind, 

all arising as formal power series expansions of definite integrals. 

The integrals are of the form 

X °J{u)du 

z -j- u ^ 

where f{u) > 0, and the continued fractions are of the form 

1 

z + 
ai 

(a) 

1 + 
^2 

2 + ^3 

1 +- 

* Numbers in brackets refer to the bibliography. 

1 



2 ANALYTIC THEORY OF CONTINUED FRACTIONS 

where the ap are positive. The latter can be transformed into 

2 + — 
Pi 

Z + ^2 “ 
P2 

2 + 

(b) 

where the and pk are positive functions of the Uk- [93, 94.] 
In the memoir of 1894, Stieltjes developed a general theory of 

these continued fractions, covering questions of convergence and 

connection with definite integrals and divergent power series. In 

order to complete the theory, he had to extend the customary 

notion of integral, and to develop a general ‘'convergence con¬ 

tinuation theorem” for sequences of analytic functions. 

In 1903, E. B. Van Vleck [109] undertook to extend the Stieltjes 

theory to continued fractions of the form (b) in which the pk 

are arbitrary positive numbers and the bk arbitrary real numbers. 

He was able to connect in certain cases these continued fractions 

with definite integrals of the type found by Stieltjes, but with the 

range of integration taken over the entire real axis. A complete 

extension of the Stieltjes theory to these continued fractions was 

first obtained by Hamburger [26] in 1920, following the pattern 

laid down by Stieltjes. In the interim, Hilbert and his pupils 

developed their famous theory of infinite matrices and quadratic 

forms in infinitely many variables, in which the ideas of Stieltjes 

are in the background. In 1914 Hellinger and Toeplitz [32] laid 

the groundwork for a matrix theory of the continued fraction (b) 

{pk > 0, bk real), and in 1922 Hellinger [31] obtained a complete 

theory from this point of view. Several other mathematicians 

reached the same goal by different methods at about the same time 

(Carleman [6], R. Nevanlinna [62], M. Riesz [79]). 
Another kind of investigation had been going on in the mean¬ 

time. Around 1900 Pringsheim [73, 75] and Van Vleck [107, 108] 
considered the question of convergence of continued fractions with 
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1 

and 

1 + 
1 + 

^2 

1 +■_ 

1 

+ — 
"T 

^2 + 

(c) 

(d) 

Pringsheim found that (c) converges if | Cp | < (1 ~ gp-i)gpy 
where 0 < gp^i < 1, p = 1, 2, 3, • • and Van Vleck arrived 

at the same conclusion but with go ~ 0 and the requirement that 
the series 

I JL 2 _• • • gp_ 

(1 “■ ^l)(l ^2) • • • (1 gp) 

be convergent. Both these results include an older theorem of 

Worpitzky [143] (1865), that (c) converges if | Cp | < ^ = 1, 2, 

3^ Van Vleck found that (d) converges when h ^ Oy 

I 3{^p) I ^ ^ > 0, ^ = 1, 2, 3, • • •;, if, and only if, the 
series 2| | diverges. Van Vleck also found that if Cp — apZ, 

lim ap = ay then (c) converges except for certain isolated values of 
P sa 00 

z and except for values of 2 on the rectilinear cut from — 1/4^ to c© 
in the direction of the vector from the origin to —1/4^2. Szasz [98] 
found that (c) converges if the Cp are in certain wedge-shaped 

domains extending beyond but not containing the circular domain 

found by Worpitzky. Szasz [99, 100] also found that (c) con¬ 

verges if the series 2| Cp | converges and 2[| Cp | — ^ 2. 

This is an extension of an older theorem of von Koch [116]. 
These results and the proofs which were employed bear little 

relationship to one another or to the Stieltjes theory. 

During the years 1940-1947, in which this book has been 

written, it has been our desire to develop a unified theory extend¬ 

ing the various results indicated in the preceding sketch and tying 
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them together within a larger analytic structure. First, we found 

that the inequalities \ Cp\ < (1 — gp-i)gp of Pringsheim and Van 

Vleck, which restrict the Cp to lie in the neighborhood of the origin, 

can be replaced by inequalities restricting the Cp to lie in domains 

bounded by certain parabolas with foci at the origin (Scott and 

Wall [86], Paydon and Wall [68]). Second, we developed the 

theory of positive definite continued fractions, which extends the 

Stieltjes theory to a class of continued fractions (b) with complex 

pjc and tky and also contains and extends the other results we have 

described, including the parabola theorems just mentioned (Hel- 

linger and Wall [3S], Wall and Wetzel [138, 139], Dennis and Wall 

[9]). 
We shall now describe in some detail the general plan of the book. 

The aforementioned “larger analytic structure'' is obtained here 

by regarding the continued fraction as generated by an infinite 

sequence of linear fractional transformations in a single variable, 

and also as arising from a single linear transformation in infinitely 

many variables. There is often an interplay of these two ideas. 

From the first point of view the continued fraction theory becomes 

a part of the theory of Mdbius transformations; whereas from the 

second point of view it becomes a part of the Hilbert theory of 

infinite matrices and quadratic forms in infinitely many variables. 

Let us begin with the first point of view, and regard the con¬ 

tinued fraction 

as being generated by the sequence of transformations 

1 a ^ 
t = /o(^) = - > / = tp{w) = bpZp-, p = 1, 2, 3, • • •. 

w w 

of the variable w into the variable /. The symbolic product ol 

the first w + 1 of these transformations is the transformation 

^ = Vi *' * tn{w). The image of te; == co under this product trans¬ 

formation is the nt\\ approximant of the continued fraction, and 
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is a rational function of Zi, Z2, Z3, 

upon the constants and bp-. 

Wi • • • 

j with coefficients depending 

^„(2) 
Bn{z) ' 

If the denominator 5„(z) 9^ 0 for at most a finite number of values 
of n, and if lim [^„(z)/5„(z)] = L, exists and is finite, then the 

n= 00 

continued fraction is said to converge to the value L, Otherwise 

the continued fraction diverges. Thus the value of a continued 

fraction is the limit of the images of a fixed point under a certain 

sequence of linear fractional transformations. 

In order to investigate the continued fraction, we proceed as 

follows. First, we determine a sequence of half-planes {tta:}, 

such that /oCtto) = a finite circular region, and such that 

Cl 15 P •**. If we put /q/i * • * ^p('7rp) = 

then we see at once that Kq'D Kx~I) K2 D • • Since 00 is in 

TTp, it follows that /q/i ••• P^^ approximant of (e), 
is in Kp. Thus, we determine a nest of circles such that the ^th 

approximant of the continued fraction is in the pth circle. 

There are two possible cases. Either the circles Kp have one, 

and only one, point L in common (‘'limit-point case^’), or else the 

circles Kp have a circular region in common (“limit-circle case'’). 

In the first case, the radius Vp of Kp has the limit 0 for ^ = 00, 

whereas in the second case —> r > 0. In the first case the con¬ 

tinued fraction converges to the value L\ in the second case the 

question of convergence remains undecided. Criteria fur deter¬ 

mining which of the two cases holds may be found if we first 

obtain an explicit formula for the radius Vp of Kp. 
The above-described program can be carried out under various 

hypotheses upon the coefficients Up and bp of (e). We have sought 

to define a class of continued fractions for which this can be done, 

which is sufficiently general to include all particular classes which 

have been studied in the literature. The class of positive definite 

continued fractions^ for which the quadratic forms 

71 n— 1 

^ 2p)| Xp 1*^ ^ ^3(^p)(‘^p^^p+i d" 
TTi P-1 

w = 1, 2, 3, • • *, 



6 ANALYTIC THEORY OF CONTINUED FRACTIONS 

are positive definite for 3(2^) > 0, p = 1, 2, 3, • • comes close 

to fulfilling our requirement. 

The condition of positive definiteness can be formulated in the 

following convenient form. 

>0, \ap^\ - < 23(/Jj,)3;(/Jj,+,)(l - gp-i)gp, 

Q<gp-i <1, /> = 1,2,3, •••. 

The continued fraction is positive definite if, and only if, numbers 

^0, • • • can be found satisfying the above inequalities. 
This has a simple geometrical interpretation: namely, for each 

py has its value in a certain parabola. This parabola has its 

focus at the origin and its vertex upon the negative half of the 

real axis, and it depends upon the index p. 
The class of positive definite continued fractions is first intro¬ 

duced in Chapter IV. This could have been done earlier, but we 

have followed, instead, the plan of first investigating by appro¬ 

priately simple methods certain special positive definite continued 

fractions. After covering some preliminary ideas in Chapter I, 

and some necessary conditions for convergence and a treatment of 

periodic continued fractions in Chapter II, we take up, in Chapter 

III, the aforementioned special positive definite continued frac¬ 

tions. These can be taken in the form (c), with the positive 

definiteness condition 

\cp\ - dt{cp) < 2(1 - gp-i)gpy 0 < gp^i <1, /> = 1, 2, 3, • • 

This holds with gp = ^ in case \cp\ < ^ (Worpitzky); for 

0 < gp-^i <1 if I Tp I < (1 — gp-i)gp (Pringsheim, Van Vleck); 

and for == ^ if | | — 9i(<^p) < § (Scott and Wall). 
The treatment of these cases in Chapter III is based upon a 

system of‘‘fundamental inequalities’’ [86]. Sequences of the form 

{(1 gp-T^gp] important part in our theory. They are 
called chain sequences, and some of their properties are developed 

systematically in Chapter IV after the introduction of positive 

definite continued fractions. 

In Chapter V we prove a theorem of invariability. Consider 

the system of linear equations 

~ ^p—l^p—1 d” (^p d” ^p^^p ^P'^p+l “ 

p == 1, 2, 3, • • •, (^0 ~ 1)> 
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in the variables xi, X2, ^3, **•. Let Xp{z) and Yp{z) denote 

the solutions of this system satisfying the initial conditions 

Xo= -h = 0, Yo = 0, Yi = 1. Then Xp^,(z)/Yp^i(z) 
is the pth approximant of the continued fraction, i.e., Vi • * • 

/p(oo). When the continued fraction is positive definite, a suffi¬ 

cient condition for the limit-point case to hold is that at least 

one of the series 2| Xp(z) 1^, S| Yp{z) be divergent. We show 

that for any continued fraction (e) with ap 9^ 0, this condition 

is independent of the particular values of the Zp in every domain 

1 Zp I < My p — ly 2y 3y • • y whcre M is a finite constant. We 

do this by expressing the general solution of the system Lp = 0 

for parameter values Zp in terms of solutions with parameter 

values Zp*, by means of a Volterra sum equation. From this 

theorem of invariability, it follows that a sufficient condition for 

the limit-point case to hold is that at least one of the series 

2| Xp(0) 1^, 2| yp(0) 1^ be divergent. Since this condition is 

easier to handle than the condition ‘Vp 0,'’ we emphasize it in 

preference to the ‘‘limit-point case,” and call it the determinate 
case. When both the above series converge, we say that the 

indeterminate case holds. This classification actually replaces 

the other less convenient classification throughout much of the 

sequel. 

The indeterminate case is in some respects easier to handle 

than the determinate case. We show that if the indeterminate 

case holds for any continued fraction (positive definite or not) 

and if the continued fraction or its reciprocal converges for one 

set of values of the Zp in the domain | Zp | < M, then the con¬ 

tinued fraction or its reciprocal converges for every set of values 

of the Zp in this domain. 

If the determinate case holds for a positive definite continued 

fraction, then it converges for | Zp | < M, ^{Zp) > 5 > 0, ^ = 1, 

2 3 • • • 
1{ Zp = ^, p = 1, 2, 3j • • •, the continued fraction is called a 

J-fraction. We employ the convergence continuation theorem of 

Stieltjes (§ 24) to show that when the J-fraction is positive definite 

and the determinate case holds, then the J-fraction is an analytic 

function of f for 3(1") > 0. If the J-fraction is convergent in the 
indeterminate case, then it represents a meromorphic function of 
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The last two sections of Chapter V, and the whole of Chapter VI 

and of Chapter VII, deal with particular convergence theorems 

derived from the general theory of positive definite continued 

fractions. We mention, in particular, the theorems on bounded 

J-fractions (§ 26), on real J-fractions (§ 27) and on the continued 

fraction of Stieltjes (§ 28), the general theorem on the convergence 

of Stieltjes type continued fractions (§ 29), and theorems of 

Van Vleck, Hamburger, and Mall, which appear as corollaries of 

this theorem (§ 30). 

The theorems of Chapter VII may be regarded as refinements 

or extensions of the theorems of Chapter III, and all deal with 

continued fractions of the form (c). We mention the ‘'cardioid 

theorem,’’ the theorem concerning convergence of the continued 

fraction for all c.p in some neighborhood of any point not on the 

interval (-00, -A), the theorem of Van Vleck mentioned before 

concerning continued fractions (c) in which Cp = lim 
00 

and an extension of the theorem of Szasz, also mentioned before, 

concerning continued fractions (c) for which 2| Cp \ is convergent. 

These theorems all come out of the theory of positive definite 

continued fractions. 

The concluding chapter of Part I (Chapter VIII) deals with the 

problem of finding estimates for the values of a continued fraction 

(c) whose elements are restricted to lie in a certain region of the 

complex plane. 

The reader will find some applications of the convergence 

theory to the continued fraction of Gauss in Chapter XVIII. 

Other examples are given in Chapter XIX. For convenience in 

reference, it has seemed best to put the examples together in these 

chapters. 

Part II, Function Theory^ deals mainly with applications of con¬ 

tinued fractions to the theory of equations, the moment problem, 

analytic functions, and the summation of divergent series. We 

begin, in Chapter IX, with the problem of expanding a rational 

function into a continued fraction, emphasizing techniques appli¬ 

cable to numerical examples. In Chapter X we show how these 

expansions can be used in the location of roots of polynomials. 

We are able to obtain (a) polygonal regions containing all the roots 

of a polynomial, (b) simple criteria for determining the number 
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of roots in a half-plane, (c) the values of the roots by successive 
approximations. 

In Chapter XI we give methods for expanding a formal power 
series into a continued fraction, connecting the problem with 

orthogonal polynomials and with the reduction of a quadratic 

form to a sum of squares. There are theorems connecting the 

sum of the power series with the value of its continued fraction 
expansion. 

In Chapter XII we regard the continued fraction as arising 

from a single linear transformation in the space of infinitely many 

variables, and thereby connect continued fractions with the 

Hilbert theory of infinite matrices. We have included here an 

introduction to the matrix calculus. The matrices which are 

actually used are the J-matrices (§59), whose reciprocals (ppq(^)) 

have the property that the leading coefficient pn{^) is formally 

equal to the J-fraction. The main problem is to determine a 

class of reciprocals which bear an essential relationship to the 

J-fraction. It turns out that these reciprocals are the ones for 

which the values of pn(2;) are common to the circles Kp{z) which 

were connected with the J-fraction in Chapter IV. We then find 

for these functions PnCz), called equivalent functions of the 

J-fraction, the important asymptotic formula 

Pi1(2) 
1 0(1) 
% 23 (z) ’ 

3'(%) > 0. 

In Chapter XIII we show, by means of this asymptotic formula, 

that any equivalent function of a positive definite J-fraction can 

be expressed as a definite Stleltjes integral 

Pii 
d(i>{u) 

z — u 
5 

where 4>{u) is a bounded nondecreasing function of u. In this 

connection we develop in detail a number of the essential prop¬ 

erties of Stieltjes integrals. Chapters XIV, XV, XVI and XVII 
are then devoted to problems growing out of this general con¬ 

tinued fraction-definite integral tie-up. The first of these four 

chapters deals with the case where the above integral extends over 

only a finite interval, i.e., </>(«) is constant for u > and for 
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u < Ml. For the sake of convenience we take Mi = 0, M2 = 1, 
and show that /(z) can be expressed as a definite integral of the 
form 

y 

where <j){u) is bounded and nondecreasing, if, and only if, /(z) 
is equal to a continued fraction of the form (a), in which —ai, 

— ”<23} • • • is a chain sequence. In this connection we con¬ 
sider the moment problem for the interval (0, 1). 

In Chapter XV we give continued fraction expansions for func¬ 
tions which are analytic and have positive real parts in the domain 
exterior to the rectilinear cut from — 1 to — <». This is done by 
connecting certain ideas of Schur [84] with positive definite con¬ 
tinued fractions. 

Chapter XVI contains the main outline of the theory of Haus- 
dorflF summability and of its connection with the moment problem 
for the interval (0, 1). There are some applications here of the 
material of Chapter XV. 

The moment problem for an Infinite interval is treated in Chap¬ 
ter XVII. We employ a modification of the method of R. Nevan- 
linna [62] in order to determine all solutions of the problem in 
terms of the equivalent functions of a J-fraction. 

Chapters XVIII and XIX contain examples. The continued 
fraction of Gauss is the subject of Chapter XVIII, and a number 
of examples illustrating the Stieltjes theory are given in Chapter 
XIX. We have included here a list of some formal continued 
fraction expansions for particular functions. 

The final chapter of the book treats of the Fade table of rational 
approximants for power series. This is largely formal in char¬ 
acter. 

At the ends of the chapters we have included a number of 
exercises, accompanied, in some instances, by references to the 
literature. These exercises frequently supplement the material 
of the text. 



Part I 

CONVERGENCE THEORY 





Chapter I 

THE CONTINUED FRACTION AS A PRODUCT 

OF LINEAR FRACTIONAL TRANSFORMATIONS 

1. Definitions and Formulas. Let 

cxpW -|- /3j, 
T = Tj,{w) =--, yp 5^ 0, jt) = 0, 1, 2, • • 

ypW + 5^ 

be an infinite sequence of linear transformations of the variable 
w into the variable t, and consider the product toti • • • Tn(w) of 
the first n -j- 1 of these transformations, given by 

ToTi(w) = rQ[ri{w)]y roTiT2{w) = Tor][r2(u;)], 

roTiT2Ts(w) = Torir2[r3(ze^)], • • •. 

If we write 

^pfyp^ _ _ 5 o 
Tpy^j — ^ / I ’ ~ ^p^p Ppypy 

Ip dp/yp + W 

then the required product is 

rorir2 • • * Tn{w) 

_ <^0_^o/to^_ 

7o ^ _ 

To Ti 

Tl 72 ‘_An-,l/7n-l^ 

^n—1 ^ An/7n 

7n—1 7n 
-\- W 
7n 

13 
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If we now put w — cc and then let « tend to oo, the resulting 

infinite expression which is generated is called a continued 
fraction. 

In case at most a finite number of the quantities toTi • • • t„(°o) 

are meaningless, and the limit 

lim ToTi • • • T„(oo) = t) 
n= 00 

exists and is finite, then the continued fraction is said to converge, 
and V is called its value. Thus, the value of a continued fraction 

is the limit of an infinite sequence of images, under certain trans¬ 

formations, of a fixed point w = oc, 
A glance at the above expression for toTi • • * Tn(w) will show 

immediately that the transformations Tp(w) may as well be re¬ 

placed by the simpler transformations 

/oH = ^0 + ^p(zv) = --- -- , p = 1, 2, 3, • • •. (1.1) 
Pp -\- w 

We observe that /q/i • * • 4(0) = Vi • • • 4-fi(°^)* The continued 
fraction which is generated is 

io H” 

ai 

b\ + 
a2 

^2 + ■ 

and the value of the continued fraction is 

(1.2) 

lim Vi • • • 4(0) = lim Vi • • • 4(«5). 
n =* w n=z 00 

We shall introduce some definitions with a view toward making 

these ideas more precise. The numbers ap and bp, called elements, 
may be any complex numbers; Upjbp is called the pth partial 
quotient, Up is the pth partial ntimerator, and bp is the pth partial 
denominator. The quantity 

Vi • • * 4(0) — bo -\- 

bi + 
^2 

Pn 

^2 + * 
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Is called the nth approximant.^ The 0-th approximant is /o(0) = ^o* 
We shall exhibit some properties of the approximants. 

By mathematical induction it is readily shown that 

Vl • • • = 
An—\W + An 

+ Bn ’ 
0, 1, 2, (1.3) 

where the quantities An-u Bn~u Bn are independent of w 
and may be computed by means of the fundamental recurrence 
formulas: 

Al—i “ 1> B^\ — 0, Aq — boy Bq — 1; 

^p-{-\Ap ~f“ ^p-\-lA p_\y 
/) = 0, 1, 2, . • 

Bp^\ ^p-\\Bp ~f“ ^p-\.\Bp—I, 

In fact, this may be verified directly for « = 0. If true for n 

then 

(1.4) 

hh • • • 4+1 (^) = 44 • * • 4 

AkW + {bkJ^lAk + ^fc+l^A:-l) 

BkW + {bkJ^iBk + UkJ^iBk^i) 

AkW -\~ Ak^i 

BkW + Bk-{-i 

so that the statement Is true for n — k \ and therefore for 

all n. 
We call An the nth numerator and Bn the nth denominator. 

The ;;th approximant is given by 

hh • • • 4(0) = —• 
tin 

The determinant of the transformation t = 44 • * • tn^w) is 

An—\ > An An-U bnAn—1 ”f" ^nAn—2 

Bn—1 j Bn Bn—U bnBn—1 “f“ ^nBn—2 

A n~2y An—I 

^ This is sometimes called the wth convergent. 
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SO that 

Jn^lBn ~ AnBn-l = W = 0, 1, 2, • * (1.5) 

where must be taken equal to unity. The formula (1.5) is 

called the determinant formula. 
We are now prepared to make the following definition. 

Definition 1.1. The continued fraction (1.2) is said to converge 

or to be convergent if at most a finite number of its denominators 

Bp vanish^ and if the limit of its sequence of approximants 

(1.6) 

exists and is finite. Otherwise^ the continued fraction is said to 

diverge or to be divergent. The value of a continued fraction is 

dcHned to be the limit (1.6) of its sequence of approximants. No 

value is assigned to a divergent continued fraction. 

We remark that if the partial numerators Up are all different 

from zero so that, by (1.5), An and Bn cannot both vanish, then 

the existence of the finite limit (1.6) insures that but a finite num¬ 

ber of the denominators Bn can vanish. Hence, in this important 

case, the continued fraction converges if (and only if) the limit 

(1.6) exists and is finite. 

Frequently, the elements Up and bp of the continued fraction 

depend upon one or more parameters, or may themselves be 

regarded as independent variables. In such cases, one is naturally 

concerned with the question of uniform convergence. We make 

the following definition. 

Definition 1.2. If the elements ap and bp of a continuedfraction 

are functions of one or more variables over a certain domain D, then 

the continued fraction is said to converge uniformly over D if it 

converges for all values of the variable or variables in D, and if its 

sequence of approximants converges uniformly over D, 

The first part of the book is concerned largely with the problem 

of determining conditions upon the elements ap and bp of the con¬ 

tinued fraction which are sufficient to insure convergence. This 

convergence problem is essentially more complex and interesting 

than the corresponding problem for infinite series. 
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We have adopted the natural notation for a continued fraction. 
Other notations in more or less common use are 

b\ + ^2 + • * 

and 

+ > 

^0 + 
00 

2. Continued Fractions and Series. The following theorem 

establishes a connection between certain continued fractions and 

infinite series. 

Theorem 2.1. IJ the denominators Bp of the continued fraction 

1 

1 + 
^2 

^2 “t" 

_^ 

^3 "t“ * 

(2.1) 

are all different from zeroy and if we put 

^p-\~iBp—\ 

Pp = - , /? = 1, 2, 3, •••, 
Bp^i 

then the continued fraction (2.1) is equivalent to the continued fraction 

1 

(2.2) 

1 
P\ 

(2.3) 

1 + Pi — 
P2 

1 + P2 "" 
P3 

1 + P3 

in the sense that the nth approximants of (2.1) and (2.3) are equal to one 

another for all values of n. Moreover^ for arbitrary numbers pp, the nth 
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numerator of (2.3) is equal to the sum of the first n terms of the infinite 
series 

00 

1 + ^^PiP2 • * • Pp> (2.4) 
1 

and the nth. denominator is equal to unity 

Proof. The sum of the first n terms of the infinite series 

(2.5) 

is AnlBn^ the ;^th approximant of (2.1). By the determinant 

formula (1.5), this infinite series may be written as 

a2 ^2^3 

■^3^4 

which, by (2.2), is the series (2.4). Now, the linear transformation 

s = Sp{w) = 1 + ppW may be written in the form 

If we apply the first n of these in succession, and then put te; = 0, 

we obtain as the product, on the one hand, the sum of the first n 

terms of the series (2.4), and, on the other hand, the nth approxi¬ 

mant of the continued fraction (2.3). Consequently, the nth ap- 

proximants of (2.1) and (2.3) are equal to the sum of the first n 

terms of the series (2.4), and hence to each other, for all values 

of n. One may readily verify by means of the fundamental recur¬ 

rence formulas that the nth denominator of (2.3) is unity, and 

therefore the nth numerator is equal to the sum of the first n 
terms of (2.4). 

This completes the proof of Theorem 2.1. 

® This equivalence between series and continued fractions goes back to Euler [llj. Cf. 
Szdsz [98] for a somewhat different formulation. 
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We note for future reference that if ^3, = 1, /) = 2, 3, 4, • • •, 
then we have the formulas 

Pj3 
+ Pp-i) 

1 + «p+i(l + Pp-i) ’ 

where po must be taken equal to zero; and 

p = 1,2, 3, (2.6) 

Pp ~ 
1 + + ^p+1 + ^pPp-2 ^ 

p = 1, 2, 3, (2.7) 

where we must take ai = O3 p_i — po = 0. These may be readily 
verified by means of (2.2) and (1.4). 

3. Equivalence Transformations. It is often convenient to 
throw the continued fraction (1.2) into another form by means 

of a so-called equivalence transformation. This consists in multi¬ 

plying numerators and denominators of successive fractions by 

numbers different from zero: 

^0 + 
Ciai 

cihx + 
C\C2Cl2 

(cp 0). 

^2^2 + 
r2^3^3 

4“ * 

(3.1) 

One may easily show by mathematical induction that this con¬ 

tinued fraction has precisely the approximants of (1.2). In fact, 
the pth numerator and denominator of (3.1) are 

C1C2 * * * c-pAp and ^1^2 * * * 

respectively, where Ap and Bp are the ^th numerator and denomi¬ 

nator of (1.2). This can be readily verified by means of the funda¬ 

mental recurrence formulas (1.4). 

If, conversely, two continued fractions with nonvanishing par¬ 

tial numerators have a common sequence of approximants, then 

either can be transformed into the other by means of an equiva¬ 

lence transformation. In fact, if Ap and Bp are the pth. numer¬ 

ator and denominator of one continued fraction, and Ap and Bp 
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are those of the other, then there must exist constants Cp ^ 0 

such that 

Let 

- CpJp, Bp' = CpBp, /) = 1, 2, 3, • • •. (3.2) 

y^p hpAp_i “h UpAp^2i 

p = 1, 2, 3, 
Bp hpBp—1 ~f~ upBp—2) 

//_i — 1, B_\ =0, Aq ~ ^o> Bq ~ 1. 

Then, since //p_i5p_2 — ^ 0, by virtue of (1.5), we 

conclude that the elements Up and bp are uniquely determined 

by the Ap and Bp, Similarly, the elements of the other con¬ 

tinued fraction are uniquely determined by the yf^'and Bp. 

Let 

Ap ~ bp Ap^x 4" Ap^2 y 

p = 1,2, 3, 
Bp' = bp'Bp^x' + ap'Bp.2'y 

A^x' = L = 0, Ao' = bo, Bo' = 1, 

so that, by (3.2), 

Ap = bp 
^p—1 

Ap—\ d" Up 
f f^p—2 f^p—1 

c 
A P—2> 

P-1 

with a like relation for the Bn> Here we must take C_i = Co = 1. 

Consequently, by the preceding, we must have 

bp Cpbp^ Up ^p-—i^pUp, p 1, 2, 3, ’ * ’> 

where Cp = Cp/Cp^x. Thus, the two continued fractions are the 

same up to an equivalence transformation [89], 

We note the following important special cases. If bp 5^ 0, 

p = 1, 2, 3, • •and we take Cp — \/bp^ then (3.1) takes a form 

in which all the partial denominators are equal to unity. Like¬ 

wise, if 7*^ 0, p = 1, 2, 3, • • and we take fo = !> and deter¬ 

mine the other Cp recurrently by the equations Cp^iCpUp = 1, 

p = 1, 2, 3, then (3.1) takes a form in which the partial 

numerators are all equal to unity. 

4, Even and Odd Parts of a Continued Fraction. By the even 
part of a continued fraction we shall understand the continued 
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fraction whose sequence of approximants is the sequence of even 

approximants of the given continued fraction. Similarly, the odd 
part of a continued fraction is the continued fraction whose se¬ 

quence of approximants is the sequence of odd approximants of 

the given continued fraction. For the sake of simplicity, we shall 

write these down for the continued fraction 

1 

1 + ^2 

1 + 
TT^ 

(4.1) 

rather than for (1.2). The even part of (4.1) is 

1 + ” 
^2^3 

(4.2) 

1 + ^3 4" ^4 
1 + ^5 "f" ^6 

and the odd part is 

1- ^2 

1 + ^2 + ^3 
^3^4 

(4.3) 

1 + ^4 + ^5 
1 4“ ^6 4" ^7 

The even and odd parts of (1.2) may be obtained from (4.2) and 

(4.3) by multiplying them by ^i, adding and then replacing 

d\ by ^i/^i, and by a-pjb^^ibj,^ /> = 2, 3, 4, • • •. 

To prove that (4.2) is the even part of (4.1), let us regard (4.1) 

as being generated by the sequence of transformations * 

t = h{w) ^ w, / = /p(tei) = —^-, p = 2, 3, 4, • • •, 
1 + a^w 

so that /1/2 • • • 4(1) = AnjBn^ the ;7th approximant. Let s^iw) 

® This device for obtaining (4.2) was used by Sticltjes [95]. 
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= p = 1, 2, 3j • • •. Then 

si(w) = 
1 

1 + a2W 
, Sp(w) = 1 - 

—* 

1 + + a2pW 

p = 2y 3y - J 

and Ji^2 • • • -^pCl) = • * • ^2p(l) = ^2v/B2py the 2/>th approxi- 
mant of (4.1). Since 

^1^2 • • • ^p(l) =-- 

1 + ^2 - --—- 
1 + ^3 4“ ^4 • 

^2p—2^2p—l 

1 + a2p-.l + ^2p 

it therefore follows that (4.2) is the even part of (4.1). The proof 

that (4.3) is the odd part of (4.1) can be made in an analogous way. 

More general ‘'contraction formulas’’ and also “extension for¬ 

mulas” will be found in Perron [69, pp. 197-205]. Next to the 

equivalence transformation, the transformations represented by 

(4.2) and (4.3) are perhaps the most useful continued fraction 
transformations. 

Exercise 1 

1.1. Let An/Bn, w = 0, 1, 2, • • be the sequence of approximants of the con¬ 
tinued fraction 

^0 + 
ai 

1 + 
_^ 
1 +• 

where ap ^ 0, ^2p-i 5*^ ~1> P = b 2, 3, • • •. Form a continued fraction 

*^0 + 
r\ 

1 + _^ 
1 +• 

having the sequence of approximants Ai/Biy A^/B^y Az/Bzy Ai/Biy Az/Bzy AJBi^ 

• Ans. Jo = ^0 + ai, n = r2 ~ (1 + a^/azy rzp^i = ^2p-i, r2p * 
(1 + ^2p-i)(l + <22p+i)/^2p. [58, 124.] 
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1.2. Let c be any number such that the denominators i?p(2) of the continued 
fraction 

1 

1 + a2Z 

1 4- r+T 

are all different from zero for z = —c. Put 

Kp-i = 1 
Bpi-c) 

Bp-ii—c) 
, — 2, 3, 4, 

Then, the continued fraction may be written in the form 

1 

1 +■ 

1 + 
(1 ~ gl)g2^ 

1 4- 
(1 - ^2)^3^ 

1 

where f = z/c. 

1.3. Show how to transform the continued fraction of 1.2 into the continued 
fraction 

1 

f - 
^2^3 

^ 4" ^3 4“ ^4 "~ 

4- ~ * 

1.4. Let u and v be the two roots of the quadratic equation 

— /^x — a = Oy {a 9^ b ^ 0), 

and suppose that \ u\'> | t? |. Show that the «th approximant of the periodic 

continued fraction 

can be written in the form 

, V 

U n-l 

P“0 

and hence deduce the facts concerning convergence and divergence of the con¬ 

tinued fraction. 
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Suggestion. Since ^ = —uv^b — u the continued fraction may be written 

in the form 
uv 

u + V — 

u V — 

u V 
u V — • 

Now apply Theorem 2.1, after making a suitable equivalence transformation. 

1.5. Show that 

\/2 = I + --^ = I + ^ 
I + \/2 2 + ' 

I 

24- 
1 

2 4-- 

1.6. Show that \{ dp 9^ 0 is real for n, then all the approximants of the 

continued fraction (4.1) from and after the wth approximant lie upon a circle 
(or straight line) in the complex plane. 

1.7. Let «i, u<iy • • • be numbers all except possibly the first different from 

zero, and put Un = //o + «i 4-h «n- Let 

^0 = «o, <^1=1, ^1 = y , 

Up 

CI^P — —1, d^pJfX ~-, 
Up 

Show that the 2wth and (2« + l)th approximants of the continued fi action 

^0 + 
ax 

bx^ 
^2 

^2 4“ • 

are Un and f/n 4“ «n+i/2, respectively [58]. 



Chapter II 

CONVERGENCE THEOREMS 

This chapter contains, among other things, an example indicat¬ 

ing in some way the complexity of the convergence problem, some 

necessary conditions for convergence of continued fractions, and 

a complete treatment of the question of convergence for periodic 

continued fractions. 

5. Some General Remarks on the Convergence Problem. By 

the convergence problem we shall understand the problem of de¬ 

termining conditions upon the elements and of a continued 

fraction which are sufficient to insure its convergence. In case 

the partial numerators ap are different from zero, we may confine 

our attention to continued fractions of the form 

bo -f- 
1 

bi + 

^2 + 
bs + ’ 

(5.1) 

whose partial numerators are all equal to unity; and in case the 

partial denominators bp are all different from zero, we may con¬ 

fine our attention to continued fractions of the form 

bo + 
ai 

1 + 
^2 

1 + 
«3 

1 +■ 

(5.2) 

* > 

whose partial denominators are all equal to unity (cf. § 3). 

25 
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In case some partial numerator is zero, we have this theorem. 

Theorem 5.1. Let the continued fraction (1.2) satisfy the following 
conditions^ for some integer m > \: 

= 0 whilej if m > ly a^j^Q for w = 1, 2, 3, • * *, w — 1. 

Theny the continued fraction converges ify and only //, there exists an index 

k such that the denominators Bn—i ^ 0 for n > k. When convergenty the 

value of the continued fraction is 

Proof. By Definition 1.1, it is necessary for convergence that 

such an index k exist. Suppose, conversely, that such an index 

k exists. Then we see from the fundamental recurrence formulas 

(1.4) that B,n-i 7^ 0, for otherwise Bm = ^m-fi = = • • • = 0. 
Now, 

ApBffi—1 ““ At/yi—\Bp 

= {bpAp—1 ”1“ UpAp—2)Bfji—1 Ain,—li^^pBp—1 *4“ ^pBp—2) 

= bp{Ap^\Bni—\ Ani—xBp^x) “1“ ^pi^Ap^2Bm~~l Afn^lBp^f)* 

On putting/) successively equal to w, w + 1, w + 2, • • • in this 

equation, and using the fact that Um = 0, we find immediately 

that 

ApBm-i — Ajn~\Bp = 0 for p > m 

Consequently, if/> > w — 1 and/) > ^ — 1, 

Ap Afn—1 

Bp Bfn—i 

The continued fraction is therefore convergent, and its value is 

Am—l/ 

In view of this theorem, the convergence problem for a con¬ 

tinued fraction with a vanishing partial numerator does not in¬ 

volve the investigation of a limiting process, but is the algebraic 

problem of establishing the system of inequalities Bp 9^ 0 for 

p > k. Since the value of such a continued fraction, when it 

converges, is a rational function of a finite number of the elements 

ap and bpy such a continued fraction is not especially interesting 

from the point of view of analysis. All other continued fractions 
can be thrown into the form (5.1). 
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We note the following theorem. 

Theorem 5.2. The continued fraction (5.1) diverges if its odd partial 
denominators b2p—u P = I? 2, 3, • • - , are all zero. 

In fact, Bi = == 0, = h^B^ “h ^^Bi = 0, B^ — h^B^ 4- ci^B^ 

= 0, • • •, so that infinitely many of the denominators are zero. 

The continued fraction is therefore divergent. 

The complex nature of the general convergence problem is indi¬ 

cated by the following example (cf. Leighton and Wall [58]). In 

the continued fraction of Exercise 1.7, take 

Uq — 0, U2n — , « = 1, 2, 3, • • *, 

where Ji, * * ' is an arbitrary sequence of numbers different 

from 0 and — and where the kn are chosen so that the series 

Xun converges and such that Un + Un^i 0, = 1, 2, 3, • • 

By means of an equivalence transformation we may throw the 

continued fraction into the form (5.2), where 

<^"0 — 0, ^, ^2 
1 

2' 

tin 

^2n-fl = ~ , T , <^2n+2 = \ T y 

« = 1,2,3, 

Then, «4n = Sn- The continued fraction converges (cf. Exercise 

1.7) and its value is ^Un- Thus, an infinite subsequence of the 

partial numerators of the continued fraction (5.2), namely, a^n, 

= 1, 2, 3, • • •, may be chosen arbitrarily, two values excepted, 

and the continued fraction converges provided the remaining 

partial numerators are suitably chosen. 

Questions arising from this example have been investigated by 

Leighton [52]. 

6. Necessary Conditions for Convergence. The theorems of 

this section deal with the continued fraction (5.1). Since con¬ 

vergence and divergence are not affected by the value of the addi¬ 

tive term the latter may as well be omitted. We shall now 

prove the following theorem of von Koch [115]. 
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Theorem 6.1. If the series S| bp 

1 

bi+- 

^2 4" 

convergesy then the continuedfraction 

- (6.1) 

1 

^2 4' • 

diverges. The sequences of its even and odd numerators and denominators,^ 

\A2p\, j^2p+il, {B2p}, {52p+il> converge to finite limits Fq, Fj, Gq, Gi, 

respectively y where 

F^Go -FoGi = 1. (6.2) 

Proof. From (1.4)^ with the Un now equal to unity, we have 

■^2p ~ ^2p^'^2p—l 4“ ^^2p~2 

— ^2p^2p—1 4“ ^2p—2^2p—3 4~ A2p—\ 

= ^2p^2p-l 4“ ^2p-2^^2p-3 4- • * • 4- ^2^1> 

SO that A2p is the sum of the first p terms of the infinite series 

2^2r-^2r~i. Sincc, by hypothesis, the series 2| />»2r | is convergent, 

the convergence of the sequence {^2p} will be established if we 

show that I A2p~\ | < C, where C is a constant independent of p. 
But if M is the larger of | A| and | | > then 

\ Ai\ < I I • I Aq 

M2I <\h\-\A, 

+ I A^, I < M(1 - 
\ Aq I ^ I 

< M(1 - 

■ I h I), 

1(1 + I I) + M 

\h \Xl + \h I), 

and, by mathematical induction. 

Jn\<M{l + \ h |)(1 + I I) • • • (1 + I I). 

This holds for n = 1, 2, 3, • • •. We may then take 

00 

C = AflXci + 1 h 1), 
1 

the infinite product being convergent inasmuch as the series 

2| bj, I is convergent by hypothesis. The proof that the other 
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three sequences converge can be made in the same way. Since, 

by the determinant formula, (1.5), 

we conclude that (6.2) holds. Therefore, the continued fraction 

diverges since its sequence of approximants oscillates between the 

two distinct limit-points Fq/Gq and iq/Gi. One of these may be 
00. 

Remark 1. From the results of Exercise 1.4, the reader will 

find that the continued fraction 

is divergent. Thus, although the divergence of the series S| by | 

is necessary for the convergence of (6.1), this condition is not, in 

general, sufficient. 

Remark 2. If, in Theorem 6.1, the by are functions of any 

variables over a domain G in which the series S[ by | is uniformly 

convergent, then the above proof shows that the sequences 

• • •, {52p-fi} converge uniformly over G, 

We shall now turn our attention to a generalization of Theorem 

6.1, due to Scott and Wall [88a]. 

Theorem 6.2.'* If the series 

2| ^2P+11 (6.4) 
and 

S| |> where Sy = ^2 + ^4 + * • * + ^2p> (6*5) 

converge^ and 
lim inf I I < 00, (6.6) 

then the continued fraction (6.1) diverges. The sequences of its odd numer¬ 
ators and denominators^ {y/2p4-i} {-62p+iK converge to finite limits Fi 
and Gi, respectively, Moreover^ if s is a finite limit-point of the sequence 
{jp}, and lim Sy = s as p tends to over a certain sequence P of indices^ 

^ This theorem was proved under certain conditions upon the by by Hamburger [26], 
Mall [59], and Wall [137]. 
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then -S2P converge to finite limits F(j) and G{s)y respectivelyy as 
p tends to 00 over Py and 

F^G{s) - G,F{s) = 1. (6.7) 

If the sequence {jp} has two different finite limit-points s and /, then 

F(s)G{t) - F(t)G(s) = t- s. (6.8) 

Finallyy corresponding to values of p for which lim Sp = ^ y we have 

P2P ^1’ 
{finite or infinite). (6.9) 

Proof. Since the series (6.4) and (6.5) converge, it follows that 

the series 

2| b2p^\Sp I (6.10) 

converges, and therefore there exists an index n > \ such that 

I I < 1 for ^ (6.11) 

Hence the quantities 

k 

p»=l 

are different from zero, and the infinite product 

lim TT/j I I (1 “h ^2n-f 2p-|-l'^n+3?) 

p = i 

converges and its value is not zero. 

Lemma 6.1. Let 

^2n+2A:-f-l 
U2k = 

B2n 
2k 

2n4-2fcH-l 

(6.12) 

f^2fc+l — (^2n-f2jfc+2 •In-f-it-fl^2n-f2fc+l)'^A;j 

^2*4-1 = {B2n-\-2k-\-2 ^n-\-k-j-lB2n-^2k-\-l)'^ky 

^ = 0, 1, 2, • - *, (tto = 1); 

__ ^2n+2fc+l ^ 2 
C2k-, t^2k+l — ‘~^^2n-^2k+lSn+k T^k-lT^ky 

TTk-^lTTk 

^ = 1,2,3, 
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U]c = CkUk-1 + Uk-2 
2, 3, 4, •••. (6.13) 

n = CkFk-i + n-2. 

Let us assume for the moment that the lemma is true. From 

the hypothesis that (6.4) and (6.5) converge, and from the con¬ 

vergence of (6.12), we conclude that the series S| c-p | is convergent. 

It then follows, as in the proof of Theorem 6.1, that the sequences 

{U2k+i], {^2*1, {^2i+i}, converge, and therefore the 
limits 

lim = Fi, lim ^2^+1 = Gi, (6.14) 

lim {A2P — SpA2p~\) = Xy 
p = 00 

lim {B2P - SpB2p-\) = y, 

(6.15) 

exist and are finite. Inasmuch as, by (1.5), 

■^2p--l('®2p ^pB2p—l) B2p—\i.^2p ^p^2p—^ ~ 

it follows that 

F^Y ~ G^X = 1. (6.16) 

Let j* be a finite limit-point of the sequence and suppose 
that lim j'p = j* as p —> oo over a certain sequence P of indices. 

We then conclude immediately from (6.14) and (6.15) that 

lim A2p = sFi + X ^ F{s)y 

lim £2p ~ sGi “f“ 5^ ~ f^(*^)> 

as p —> 00 over P, Moreover, by (6.16), we see that (6.7) holds. 

The relation (6.8) may now be readily verified. Inasmuch as 

I 
/l2n-\-2p—\ "1 

^2n-\-2p T^p~\^n+p 

-fi2n-f2p—1 4“ 

l*^n+p 
(6.17) 

the relation (6.9) is now evident. 

® Formulas of this type can be found, for instance, in Leighton and Wall [58], and 
Mall [59]. 
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From the preceding we conclude that the sequence of approxi- 

mants of the continued fraction oscillates among the distinct 

limits Fi/Gi and F{s)/G{s)^ where the range of s is the set of 

finite limit-points of the sequence {ip}. The continued fraction 

is therefore divergent. 

We shall now establish the lemma, and the proof of the theorem 

will then be complete. 

From (1.4), with am now equal to unity, we have 

^2n+2p+l “ ^2n-f-2p+1^2n+2p + -|-2p—1 

— ^2n+2p4-l(^2n+2p -j-p^2n-f 2p—l) 

+ (1 + ^2n+2p+li7<-f p)-"^2n-|-2p—!• 

That is, if we introduce the quantities 

TTp U2P = ^2 71 -{-2 p -}-l 
U2P—I 

'^p—l 
+ T^pU2p-2y 

or 

U2P — C2pU2p—l + U2P-2* 

This is the first relation (6.13) with k = 2p, The second relation 

(6.13) with k = 2p results if we replace the by the Bm in the 

preceding. To verify (6.13) for odd values of ky we have: 

(1 + ^2n+2p+lin4-p)(^2n-{-2p+2 ”” in-fp+1^2n-f2p+l) 

(1 ^2n+2p-fl*^«^+p) 

(-^2n-j-2p-f-2 ^2n-f-2p+2^2n-|-2p4-l in+p'^2n-f-2p4-l) 

“ (1 “T ^2n4-2p-flin+p) (-^2/14-2p in4-p^2n42p4-l) 

^ ^2n-\-2p in-fp('^2n4-2p4-l ^2n4-2p4-l'^'^2n4-2p) 

^27i4-2p4-lin4-p ^2n-f2p-fl 

~ ^2n4-2p4-l‘^n4-p ^2n4-2p4*l ('^2n-f2p ’^n-{-p^2n-\-2p—l)• 

Thus, 

^2p4-1 __ 7 2 r7 I ^2p-l 
^2n4-2p4-l'^n-fp p^2p i 

p—1 7rp_i 
or 

t^2p4-l — ^2p4-1^2p + t^2p-l* 

This is the first relation (6.13) ior k — 2p The second re¬ 

sults if we replace the Am by the Bm in the preceding. 
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If the series S| | converges, then the hypothesis of Theorem 

6.2 is clearly satisfied, and lim Sp exists and is finite. Hence, 

Theorem 6.1 is contained in Theorem 6.2. 

Let Ap and Bp denote the pth numerator and denominator of 

the continued fraction 
1 

^2 + 
1 

1 

(6.18) 

obtained from (6.1) by the removal of the first partial quotient. 

Then it is easy to see that 

= hB,/ + 

Hence, we conclude, on applying Theorem 6.2 to the continued 

fraction (6.18), that the continued fraction (6.1) diverges if the 

series 

2| ^2p+2 I 
and 

2| L where /p == ^3 + ^5 H-h ^2p+i, 

converge and if, moreover, the sequence [tp] has a finite limit- 

point. In this case, the sequences {^2p} and {B2p] have finite 

limits, and ^2^41 and B2pj^\ converge to finite limits as 00 

over a set of indices for which tp has a finite limit. 

On combining this result with Theorem 6.2, we obtain the fol¬ 

lowing refinement of von Koch’s theorem. 

Theorem 6.3. If the series S^2p 2^2p41 converge^ and at least 

one of them is absolutely convergent^ then the continued fraction (6.1) is 

divergent. The sequences {A2p), {B2p!, {^2^411 > {^2^41! of its even and 

odd numerators and denominators have finite limits Fq, Fi, Gq, Gj, respec¬ 

tively y where „ ^ r-, . 
ri^Q — = 1. 

7. A Sxxfficient Condition for Convergence. It follows from the 

proof of Theorem 6.2 that if the series (6.4) and (6.5) are con- 

® One may raise the question as to whether or not the simple convergence of the series 
2/^jp is sufficient for the divergence of the continued fraction. 
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vergent and lim jp = oo, then the sequence of approximants of 

the continued fraction (6.1) has the limit Fi/Gi. If this is finite, 

i.e., if Gi 7^ 0, then the continued fraction is convergent. In 

order to insure that Gi 7^ 0, we need to impose some additional 

restrictions upon the bp. We have the following theorem. 

Theorem 7.1. Let the partial denominators bp of the continued fraction 

(6.1) be complex numbers such that 

5R(^i) > 0, $R(4) >0, /> = 2, 3, 4, ..(7.1) 

and such that the series (6.4) and (6.5) are convergent^ while lim jp = 00. 
Then^ the continuedfraction converges^ and its value^ y, satisfies the inequality 

V 
1 

2^) 
< 

29i(^i) 
[88a.] 

Proof. Consider the linear transformations (cf. § 1) 

(7.2) 

/ = tp{w) 
1 ___ bp w 

bp w \ bp + 

of the variable w into the variable /. By (7.1), it follows that 

/ = lp(w) maps the right half-plane di{w) > 0 into the right half¬ 

plane $K(/) > 0. In particular, / = li{w) maps 9?(u?) > 0 upon 

the circular region 

t 
1 

2W 

1 
(7.3) 

It follows immediately that the transformation t = tft^ • • • tp{w) 

maps 9i(«;) > 0 into this same circular region. Therefore, since 

hh • * * ^p(O) = Ap/Bp^ the pt\i approximant of the continued 
fraction, it follows that 

Bp ■’5R(^i)’ 
{p = 1,2,3, ...). 

Since, as we have seen, lim {Ap/Bp) = Fi/Giy a finite number 

or 00, provided the series (6.4) and (6.5) converge and lim Jp = 00, 

we now conclude that this limit is finite. Inasmuch as / = ApjBp 

satisfies (7.3), it follows that the value v of the continued fraction 
satisfies (7.2). 

This completes the proof of Theorem 7.1. 
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In a later chapter (Chapter VI) we shall find that if the 

are restricted still further, then the continued fraction converges 
if at least one of the series (6.4) or (6.5) is divergent. 

It is important to note that the hypothesis (7.1) in Theorem 7.1 
can be weakened somewhat, as follows: 

b\ = ^3 = • • • = h2n—l = Oj 5K(^2n+l) > 0, 

$R(/^p) >0 for p>ln + \. (7.4) 

In fact, the continued fraction (6.1) and the continued fraction 

^2 + ^4 + * * * + b2n H-“ 

^2n+l H-- 

^2n-j-2 + --—- 
^2n+3 + • 

have all but a finite number of their approximants in common 

when (7.4) holds. Moreover, it is easy to see that the series 

(6.4) and (6.5) formed for the latter continued fraction converge 

if, and only if, they converge for the continued fraction (6.1) 
and the sequences {jp} for the two continued fraction tend to 
00 together. Hence, we have 

Theorem 7.2. Lei the partial denominators bp of the continued fraction 

(6.1) be complex numbers such that (7.4) holds^ and such that the series 

(6.4) and (6.5) are convergent^ while lim Sp = ^. Then^ the continued 

fraction converges. 

8. Convergence of Periodic Continued Fractions. The con¬ 

tinued fraction 

ax 

bx + 
a2 

{k > 1), (8.1) 

^2 + ' 

+ 
bk ”f" 

^1 

bx + ' 
ak 

bk + 
ax 

bx + ■ 



36 ANALYTIC THEORY OF CONTINUED FRACTIONS 

is called a periodic continued fraction. We shall suppose that 

^2) * * •> different from zero, and shall obtain necessary 
and sufficient conditions for convergence and the value of the 

continued fraction in case it converges. (See Exercise 1.4 for the 

case k = I,) The method followed here is that of Lane [48]. 
For other proofs cf. Stolz [96], Pringsheim [74], Perron [69, 70], 
and Schwerdtfeger [84a]. An interesting application of periodic 

continued fractions to “pseudo-elliptic” integrals was given by 

Abel [1]. 

We shall regard the periodic continued fraction as being gen¬ 
erated by the linear fractional transformation 

s = = 
ai 

b\ + 
Cl2 

^2 + * 

+ 
h + w 

This may be written in the form (cf. § 1) 

Ak-iW + Ak 
s = s{w) — 

Bk-iw + Bfc ’ 

(8.2) 

(8.3) 

where Ap and Bp denote, as usual, the/>th numerator and oenomi- 

nator of the continued fraction. The determinant of this trans¬ 

formation is Ak-iBk — AkBk^i = ( —and is differ¬ 
ent from zero by assumption. 

The fixed points of the transformation are, by definition, points 

X such that ^ ^ 
Ak-ix + Ak 

X = -, 
Bk~\x + Bk 

and are, in general, the two roots Xi and X2 of the quadratic equa- 

Bk—iX^ + {Bk — Ak—i)x — Ak = 0, 

If Xi and X2 are finite, so that/ — s{^) = Ak-i/Bk-i is finite, 
then the transformation s = s{w) can be written as [65, § 17] 

1 1 1 T 
- =-h -- ^ if Xl ^ X2y 
S — Xi W — Xi J Xi 

and as 
S — Xi / — Xi w -- Xi 

S — X2 f — X2 W — X2^ 
if Xi 9^ X2» 



CONVERGENCE THEOREMS 37 

The transformation s = s'^{w) obtained by iteration of the trans¬ 
formation s = s{w) n times can then be written as 

and as 
Xx w 

+ 
J - 

Xx = ^2> 

if Xi X2- 

(8.4) 

(8.5) 

We are now prepared to prove the following theorem. 

Theorem 8.1. Let xx and X2 be the fixed points of the transformation 

(8.2), where ^i, ^2j • * 'j <^2? * * *5 ^re any complex numbers^ the 

aj, being different from zero. Let Fn be the nth approximant of the periodic 

continued fraction (8.1). Then^ (8.1) converges if and only if xi and X2 

are finite numbers satisfying one of the following two conditions: 

= a'2, (8.6) 
or 

! - >^2 I > i Pk-X - *■! |, Fp 

/. = 0, 1.2, - 1. (8.7) 

If the continued fraction converges^ its value is Xx» 

Proof. We observe that 

Fnk+p = s^{Fp)y /) = 0, 1, 2, • • ^ - 1, 
w = 1,2, 3, (8.8) 

From this it follows that F'p = Xx if and only if Fnk+p = We 
have to consider four cases. 

Case /. The point at 00 is a fixed point of s{w). From (8.3) 

and the determinant formula we see that in this case Bk-x = 0, 

Ak-x 9^ 0, so that Fk-x = Hence, by (8.8), Fnk+k^i = 
?7 = 1, 2, 3, • • •, so that the continued fraction diverges. 

Case d. The fixed points Xx and X2 are finite, and Xx = X2. 

In this case, we have, by (8.4) and (8.8), 

Fnk-\-p Fp Xx Fk—X *Vi 

Here, Fk-x — s{cc) is finite and dilFerent from Xx- If Fp = Xxy 

then we know that Fnk-^-p = If Pp 9^ then Fnk-\-p ^ 
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but, on allowing n to increase to oo in (8.9) we see that 

lim Fnk^p = ^1. 

The continued fraction is therefore convergent and its value is 

Case 3. The fixed points Xi and X2 are finite and | Fk-i ^2 | 

> I Fk-i — Xi |. In this case we have, by (8.5) and (8.8), 

Fnk-\-p Fp Xi 

Z? * Z7 ^ 
nk-\-p *^2 ^ p ^2 

where 
Fk-i — Xi 

X == - 
jhk-i — X2 

(8.10) 

By hypothesis, | | < 1. If Fp ^ X2, then (8.10) shows that 

Fnfc-fp *^1 €n(-^nfc-j-p •^2)5 

where lim = 0. Thus, if | | < 1, 

Fnk-\-p 
^n(‘^l *^2) 

1 — 

SO that limn=:oo^nA:+p = ^1. On the other hand, if Fp = X2y then 

Fnk^p = ^^{Fp) = j”(;c2) = X2- Since Fk-\ is not a fixed point 
of the transformation, then Fk^i ^ X2 and, by the preceding, 

lim Fnk^k-i = 5^ ^2. 

The continued fraction therefore diverges by oscillation. 

Case 4. The fixed points Xi and X2 are finite, Xi 9^ X2y and 

I Fk-i — I = I Fk-i — ^2 I- In this case the equation (8.10) 
applies, where now \ K \ = ly K 9^ I, The sequence A", A^, A^, 

• • • must have at least two different limit-points. On putting 

p = k — I in (8.10), we then conclude that the sequence Fnk-u 

= 1, 2, 3, • • •, must have at least two different limit-points, 

and again the continued fraction diverges. 

Since these four cases include all possibilities, the proof of the 
theorem is complete. 

In the special case where = 1 in (8.1), the transformation 
s = s{w) is 

Its fixed points are 

-1 ± (1 +4«)^ 

2 
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By Theorem 8.1, the continued fraction converges when a 9^ 0 

if, and only if, these fixed points are equal to one another or else 

have unequal moduli. When ^ = 0, one may verify directly that 

the continued fraction converges by computing its approximants. 
On adding 1 to the continued fraction we then have the following 
theorem. 

Theorem 8.2. The continued fraction 

1+--- (8.11) 
a 

1 +- 
a 

converges excepting when a — — 4 — r, where c is real and positive. When 

convergenty its value is \ if a = — and is equal to the one of the quantities 

1 ± (1 + 
2 

having the larger modulus if a 9^ —j. 

Exercise 2 

2.1. Let z = X iy, 2 = X — ijr, where x and y are real. The continued 
fraction 

I 

1 + 
1 + 

1 + 
1 + 

1 +• 

whose partial numerators after the first are z, z, z, z, z, z, z, • • •, converges if, 
and only if, < x I, i.e., if, and only if, 

I 2 I - $H(z) < J- 

2.2. As z — X iy ranges over the parabola y^ — x then the value 
V of the continued fraction of 2.1 ranges over the circle (x — 1)^ -f-^2 _ | 

2.3. Show that the odd part of the continued fraction of 2.1 diverges if 

y > ^ 4- 4* 
2.4. Show that the continued fraction (5.2) diverges if ap 9^ 0, and there 

exists a constant ^ > 1 such that | Un+i/an | > ^ for all n sufficiently large [52]. 



Chapter III 

CONVERGENCE OF CONTINUED FRACTIONS 

WHOSE PARTIAL DENOMINATORS ARE 

EQUAL TO UNITY 

In this chapter we shall obtain convergence criteria for con~ 

tinned fractions whose partial quotients are of the form 

ap 

T‘ 
It should be emphasized that any continued fraction whose partial 

denominators are not zero can be thrown into this form by means 

of an equivalence transformation (cf. § 3). The basis of the 

method used here is simply the comparison test for infinite series. 

We seek to find a majorant series for the series 1 + 2piP2 * * • Pp 

of Theorem 2.1. 

9. The First Interpretation of the Fundamental Inequalities. 
The continued fraction 

-^- (9.1) 

1 + 
_az 

r+- 

is said to satisfy the fundamental inequalities if there exist num¬ 
bers r„ > 0, such that 

^pI 1 T ^p T ^p+i 1 — ^pt"p—2I ^p I “b I ^p+i l> P Ij 
(9.2) 

where we shall put 

«i = 0, ro = 0, r_i = 0, 
40 
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Theorem 9.1. If the continued fraction (9.1) satisfies the fundamental 

inequalities (9.2), then its denominators Bp are different from 0, and the 

numbers 

"" n 

satisfy the inequalities 

1 Pp I < rp, j? = 1, 2, 3, • • • [86.] (9.3) 

Proof. By (9.2) for p = 1, 2, we have 

ri| I + ^2 I ^ 1 ^2 |> ^2! 1 4- ^2 + ^3 I ^ I ^3 I- 
Therefore, ^2 = 1 4- chy ^ 0, £3 = 1 + <22 + ^3 ^ 0, and 

a2 
^ ! /^ 1 

^3 
I Pi 1 — 

1 4“ ^2 
S 1 P2 1 — 

1 4~ ^2 + ^3 

Using induction, we now suppose that Bpj^i ^ 0, | P;, | < r^, for 

^ = 1, 2, 3, . . where k >ly and shall establish them for 

p = k + \ , We have to distinguish two cases according as 

akjf.2 = 0 or akJr2 0, If ak^2 = 0> then, by the fundamental 

recurrence formulas, Bk^2 = Bk-^i 4- ^k-\2Bk = Bk^iy which is 
different from zero by hypothesis; and 

I PA: + 1 I 
^k-\-2B k 

■SAr-i-2 
0 < rfc+i. 

If, on the other hand, ak^2 0, then it follows from (9.2), w^ith 

p = k \y that rA:4i > 0. Moreover, from the fundamental recur¬ 

rence formulas we obtain 

Bk^2 = (14- 4“ ak^2)Bk *” ^k^k^\Bk-2i 

so that, by the hypothesis of the induction and (9.2), 

BkJr2 1 4” 4“ <^A:-f2 akBk~2 

t^k-\-2Bk ^kJ^2 ^k-\-2 Bk 

1 4" ^k-\-\ 4" ak-\-2 

^k-^2 ttk-\-2 rk-^i 
> 0. 

Therefore, Bk+2 ^ 0 and | pk+i | ^ This completes the 
induction and the proof of Theorem 9.1. 
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When the continued fraction (9.1) satisfies the fundamental 

inequalities (9.2), then the series 1 + 2rir2 • • • is a majorant 

for the series 

1 + SpiP2 • • • f>py 

which is equivalent to the continued fraction (cf. § 2). That is, 

= I PiP2 * • • Pp I < * ^p> p = 1, 2, 3, • • •. 

(9.4) 

This is what we shall call the first interpretation of the funda¬ 

mental inequalities. 

From Theorems 9.1 and 5.1 we have 

y7p_j_i yjp 

Brt-l-l S T) 

Theorem 9.2. If the continued fraction (9.1) satisfies the fundamental 

inequalitiesy and if some partial numerator Up varjisheSy then the continued 

fraction converges, 

10. Worpitzky’s Theorem. In what appears to be the earliest 

published paper treating of the convergence of continued frac¬ 

tions with complex elements (cf. Van Vleck [112, p. 147] and 

Szisz [98, p. 160] for comments), Worpitzky [143] showed that the 

continued fraction (9.1) converges if the partial numerators a2y 

tt3y a4y • • • all have moduli less than 

We shall now prove 

Theorem 10.1. Let «2> ^4> • * * functions of any variables over a 

domain D in which 

l^P+il <i ^ = 1,2,3, (10.1) 

Then the following statements hold. 

(a) The continued fraction (9.1) converges uniformly over D. 

(b) The values of the continued fraction and of its approximants are 

in the circular domain 

I 2 - i 1 < I. (10.2) 

(c) The constant J is the ^^besl* constant that can be used in (10.1), 
and (10.2) is the ^'besf* domain of values of the approximants. 
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Fig. I. 

Proof, (a) By (10.1), 

■g-| 1 + (^2 I 'j(l 1) ~ 1 ^ I <*2 |> 

f| 1 + ^2 + I > 1(1 - i - i) = I > Us I, 

p + 2 
1 + + «p+i I > 

p{p - 2) 

> 
/> + 2 

2(/> + 2) (/) + 2)/) 4 4 

~ 2 , 
T I I ”1* I '^p+2 |> ~ 3, 4, 5, 

Consequently, the continued fraction satisfies the fundamental in¬ 
equalities with Ty — p/{p 2), p = 1, 2, 3, • ■ Since 

1 + Sr]r2 • • • rp = 1 + 2 (l.L 
V3 4 

3 

5 

4 

6 /> + 2/ 

2 
1 + S- 

(;> + !)(/> + 2) 

we therefore conclude that the continued fraction converges uni¬ 

formly for I a^j^i I < /> = 1, 2, 3, • • •, and that the modulus of 

its value does not exceed 2. Inasmuch as the Up can have the 

value 0, it follows that the moduli of the values of the approxi- 

mants do not exceed 2. 
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(b) We now write the continued fraction in the form 

1 
% — 

where 
I + iw' 

(10.3) 

w — 
Xi 

1 + 
^3 

Xi\ <1. 

1 + 
^4 

1 +. 

It is clear that \ w \ <2. Any approximant of the continued 

fraction can, of course, be written in the form (10.3). Then 

I w <2, 

or 

I z — -I I < f, 
which is (10.2). 

(c) To see that J is the “best’' constant that can be used in 
(10.1), we need but note that if r > |, then the continued fraction 

diverges if ap^i = —Cy /? = 1, 2, 3, • • •, by Theorem 8.2. To 

show that (10.2) is the “best” domain, it suffices to note that the 
values of the particular continued fraction 

z = 

1 + 
^2 

1 - 

(i) 

(i) 

1 -• 

1 

1 -|“ 2a2 

fill the domain (10.2) as a2 ranges over the domain | ^2 | ^ I- 
The statements (b) and (c) were proved by Paydon and Wall 

[68]. They showed, more generally, that when | | < /(I — /), 

0 < / < -|, then the values z of the continued fraction fill the 
domain (cf. § 38) 

z 
1 

1 

- 



CONVERGENCE WHERE PARTIAL DENOMINATORS EQUAL UNITY 45 

Definition 10.1. A set of points D of the complex plane will 

be called a convergence set for the continued fraction (9.1) if the con¬ 

tinued fraction converges for all values of the partial numerators ^2, 

^4, • * * i'^ D. 

Theorem 10.1 shows that the largest circular neighborhood of 
the origin, with center at the origin, which is a convergence set 

for the continued fraction (9.1) is the one with radius |. The 

question naturally arises as to whether or not there are larger 

neighborhoods which are not circular which are convergence sets. 

This question will be considered in § 14. Another question which 

arises is the following: Given a point a in the complex plane, does 

there exist a neighborhood of a which is a convergence set for 

(9.1)? This question will be considered in §§ 15 and 32. 

An important type of continued fraction is 

1 

1 + 
CiZ 

1 + 
C2Z 

r+^ 

where Ci, C2, C3, • • • are constants and 2 is a complex variable. 

From Theorem 10.1 and a well-known theorem of Weierstrass, 

it follows that if | | < M, p = 1, 2, 3, • • •, then this continued 

fraction converges uniformly and represents an analytic function 

of 2 for I 2 I < \j\M (cf. § 54). 

11. Convergence of Continued Fractions Whose Partial Quo¬ 
tients Are of the Form 

(^ Sp—'^Sp^v _ 

The continued fraction of Theorem 10.1 has partial quotients 

which can be written In the above form with gn ~ \ \ ^ 1- 

We shall now prove this theorem. 

Theorem 11.1. Let ^1, ^2j g3y ''' be constants which satisfy one or the 

other of the conditions 

0<^p<l, ^=1,2,3,..., (11.1) 
or 

0<^p< 1, 1,2,3, .... (11.2) 
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Then^ the following three statements hold. 

(a) The continued fraction 

_^_ 

1 + ~ 
j (1 - g2)gsX3 

1 +• 

(11.3) 

converges uniformly for | | < 1, /) = 2, 3, 4, • ■ •. 
(b) The values of the continued fraction and of its approximants are in 

the circular domain 

where 
00 

= 

^l.f2 gv 

p*= 1 (1 -^l)(l -.?2) ••• (1 -&) 
(11.5) 

{possibly 00). The value of the continuedfraction for Xp —• 1, /> = 2, 3, 
1 

(c) The values of the continued fraction and of its approximants are in 

the circular domain 

g\ 
< 1 “ ,g-i 

2 - ^1 
(11.6) 

Proof. Consi(der the continued fraction 

(t - gA)g2_ 

_ ~ Silgz 
1 -• 

(11.7) 

For the sake of simplicity, let = (1 — gp)gp+i, p = \,1, 3, 

■ • •. We denote by and Qn the «th numerator and denominator 

of (11.7). These satisfy the recurrence formulas 

Pn P n—1 ^nP n—2j 

On On—1 ^nOn—2 

« = 2, 3, 4, 

Po — o> Pi — .fij Oo — i> Oi ~ 1. 

(11.8) 
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With the aid of these formulas one may readily verify by mathe¬ 
matical induction that 

!2n = (1 - ^l)(l - ^2)(1 - ^3) • • • (1 - gn) 

+ ^1(1 - .?2)(1 - ^3) • • • (1 - ^n) 

+ g\g2{^ — ^3) • • • (1 — gn) + • • • (11-9) 

+ gig2 • • • i:n-l(l - ^n) + g\g2 ' ' ' gn, 

Pn = Qn - (I - fl)(l - ir2) • • • (1 - gn). 

Hence, it follows that under either of the hypotheses (11.1) or 

(11.2), > 0, « = 1, 2, 3, • • •. Now, we find by (11.8) that 

Qn+2 — (1 ^n+1 ^n+2)Qn 2j W — 2, 3, 4, • • • . 

Hence, if we put 

= 
^p+iQp- 

~Q 
/> ■= 1, 2, 3, (11.10) 

P + l 

then 

(1 Op p t" pV p— 

Therefore, if | Upj^i | < Opj^i^ ^ = 1, 2, 3, • • then 

^p| 1 "4" *4“ j ^ ^j3(l Op Op^i) = rpT'p^20p 4~ Op^i 

^ ^p'^p—2\ j "4" { ^p-{l {3 

^ = 1, 2, 3, - ro = r_i = 0, (9i = = 0. 

That is, the continued fraction (11.3) satisfies the fundamental 

inequalities (9.2) if | Xpj^i | < 1, ^ = 1, 2, 3, • • •, the parameters 

Tp being given by (11.10). To prove (a), it is therefore sufficient 

to prove that the scries 

^1(1 + 2rir2 • • • Tp) 

converges. This follows at once from Theorem 2.1, applied to 

(11.7), inasmuch as 

^i(l + Srir2 
. y Pn , 1 

rp) = hm — = 1 - ~, 
« t/n O 

where S is given by (11.5). 

The proof of (b) is contained in the preceding. 
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To prove (c), we may write the value of the continued fraction 

or of any of its approximants in the form 

= 

1 + (1 - gi)w ' 

where \ w \ <1. Then, it follows at once that (11.6) holds. 

This completes the proof of Theorem 11.1. 

The preceding proof is based upon that of Scott and Wall [86]. 

A different proof, with the above formulation, was given by 

Pay don and Wall [68]. Part (a), under the hypothesis 0 < < 1, 

p — 1, 2, 3, • • •, was proved by Perron [69, p. 262], starting with 

less a complete result of Pringsheim [73]. Perron attributes the 

theorem to Van Vleck. However, it seems that Perron confused 

this theorem with the following theorem of Van Vleck [108]. 

Theorem 11.2. 1/ 0 < gp < 1, /> = 1, 2, 3, • • •, and if the series 

converges uniformly for | ] < 1, /> == 1, 2, 3, • the modulus of its 

value does not exceed S, and its value for Xp == — \^p = 1, 2, 3, • • •, iV 6*. 

Proof.'^ The continued fraction (11.11) can be regarded as ob¬ 

tained from (11.3) by multiplying the latter by Xiy adding 1, and 

then taking the reciprocal. When S is finite, the moduli of (11.3) 

and its approximants do not exceed 1 — l/*y < 1. It is therefore 

obvious that (11.11) converges uniformly for | x'p | < l,p = 1, 2, 

^ This proof shows that Theorem 11.2 is an easy corollary to Theorem 11.1. One may 
show, conversely, that Theorem 11.1 is a consequence of Theorem 11.2 (cf. [68]). 
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3, • • •, in this case, and the statements concerning the value of 

the continued fraction are also at once evident. 

The continued fraction (11.11) diverges for Xp = —1,^ = 1, 2, 

3, • ■ in case »?=<», However, we have this theorem [68]. 

Theorem 11.3. T/O < < 1, /> = 1, 2, 3, • • •, and the series 

1 

w 
_^1^2 gy_ 

(1 - gl)i^ - <?2) ‘ • (1 - gp) 

diverges^ then the continued fraction (11.11) converges for | | < 1, 

p = 1, 2, 3, • ■ provided Xp 7^ —\ Jor at least one value of p. 

Proof. Let Xi, x^, V3, ■ • • have values with moduli not greater 

than unity, for which (11.11) diverges. Inasmuch as (11.3) con¬ 

verges to a value Zi with modulus not greater than unity, it is 

obvious, since (11.11) diverges, that XiZi = —1. Inasmuch as 

i ■’^1 I < I5 I 2i I < 1, then we must have j .Vj | = 1, | Zi | = 1. 

But, by (11.6), I Zi I = 1 only when Zi = 1; and since XiZi = — 1, 

then Xi = —1. We now put 

where 

Zi = 

Z2 

1 + (1 - gl)x2Z2 ’ 

1 + (1 - g-slgsXs 

1 + 
(1 - g3)g^Xi 

1 +• 

Since Zi = 1, this shows that X2Z2 = — 1. On repeating the argu¬ 

ment used before, we conclude that Z2 = 1, V2 = — 1. The proof 

may now be completed by mathematical induction. 

If I I < T < 1, I ATp I < 1, ^ = 2, 3, 4, • • •, then (11.11) evi¬ 

dently converges uniformly inasmuch as (11.3) converges uni¬ 

formly and has modulus not greater than unity. Hence we have 

Theorem 11.4. 0 < fp < 1, /> = 1, 2, 3, • • •, or 0 < ^p < 1> 
/> = 1, 2, 3, • • - , then the continued Jr action (11.11) converges uniformly 
Jor I .Vi I < r, I Vp 1 < 1, /> = 2, 3, 4, •••,Jor every constant r less than 

unity. 
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Interesting cases of the preceding theorems result by specializ¬ 

ing the gp in different ways. We mention, in particular, the 

cases gp \ and gp = pj{2p + 1). 
We may of course apply the theorems of this chapter to con¬ 

tinued fractions of the form 
ai 

K + ■ 
^2 

b2 + • 

(11.12) 

if we first reduce the partial denominators to unity by means of 

an equivalence transformation. For instance, (11.12) converges 

uniformly if there exist constants gp such that 

bphpj^\ 
< (1 “ gp)gp+u 0 < gp < \y /> = 1, 2, 3, 

If we put = 1 — (1/^n), this condition takes the form pre¬ 
ferred by Perron [69], namely: 

Pn-^l 1 ^n-f 1 

bjibn +1 

< 
pnPn-\-l 

y Pn ^ I> ^ 

An interesting special case is obtained by taking 

~ 1^ P2n—1 ~ p2n ~ j ^2n |> — 1, 2, 3, * * •, 

The continued fraction 
1 

h + 
1 

bo ~f“ 
1 

^3 4“ ‘ 

is therefore convergent if 

1 

^2n—1 
+ 

'2n 
< 1, ^ = 1,2, 3, 

This criterion goes back to Pringsheim [73]. 

12. A Convergence Theorem of von Koch. If the series Hup 

of partial numerators of the continued fraction (9.1) is absolutely 

convergent, then it is easy to show, by means of the same type 

of argument which we used in establishing the limits in Theorem 
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6.1, that the sequences \ and [Bp] of numerators and denomi¬ 

nators of the continued fraction converge to finite limits A and By 

respectively. Therefore, if B 7^ Oy the continued fraction con¬ 

verges, and A/B its value. H. von Koch [116] showed that the 
continued fraction converges if infinitely many of the are differ¬ 

ent from zero and if 2| | < 1. Szasz [99, 100] and Verbeek 

[113] have contributed to this problem (cf. Perron [69, p. 259], 

footnote). The result of Szasz will be considered later on (§ 35). 

The following somewhat improved form of von Koch’s theorem 

(cf. Dennis and Wall [9]) will now be established by means of 
Theorems 11.1, 11.2 and 11.3. 

Theorem 12.1. The continued fraction (9.1) converges if 

n 

<1, «= 1,2,3, .... (12.1) 

We shall first prove the following lemma. 

Lemma 12.1. Let Ci, ^2, ^3, • • * be nonnegative real numbers such 

that n 

« = 1,2,3, •••. (12.2) 
!i=l 

Then, there exist numbers gp such that 0 < gp < \,p = 1, 2, 3, • • •, 

and such that 

ttx — gi) ~ (1 Sp—i^Sp> P .... 

Since Cp > 0, /> = 1, 2, 3, ..., it follows from (12.2) that 

0 < Cl < 1. Hence, gi = Ci has the required property. Let us 

assume that ^i, g2, ■ • ■, gk have been determined. Then 

Ct+l 1 — Cl C2 . . • Ci 

= 1 - ^1 - (1 - .g'l).g'2 - (1 - .r2).g’3-(1 - gk-\)gk 

== (1 - - .§■2) - (1 - ^2)^3-(1 - gk-l)gk 

< (1 - g2) - (1 - ^2)^3 - (1 - g3)gi-(1 - gk-l)gk 

= (1 - .§'2)(1 - .^3) - (1 - g3)g4-(1 - gk-l)gk < • • • 

= (1 - ^*_2)(1 - gk-l) - (1 - gk-l)gk 

< (1 - gk-l) - (1 - 

= (1 - .g-fc-l)(l - gk) < (1 - gk). 
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Consequently, there exists a number such that 0 < ^*+1 < 1, 

and such that 
= (1 

The lemma now follows by mathematical induction. 

By (12.1) and the lemma we may now write 

^2 “ ~ (1 p — 1, 2, 3, ’ * *> 

where 0 < < 1, and | | = 1, (/) = 1, 2, 3, • • • )• Hence, if 
one or more of the vanishes, then some gp vanishes, and hence 

the series (11.5) converges. The convergence of the continued 
fraction in this case then follows from Theorem 11.2. 

If 5^ 0, /> = 2, 3, 4, • * *, let 
00 

gn+l = 1 - ^ I I, H = 0, 1, 2, • • •, 
= w + 2 

SO that 0 < < 1, 0 < < 1, /> = 1, 2, 3, • • •. Then 

(1 - gn)gn+i = ( ^ U;- 1 ) ( 1 - T! Up I 
\;) = n+l / \ p=‘n-j-2 

= 1 «n+i I + ( 2 Up 1) (1 - £ Up l\ 
\p = n + 2 / \ p = n-i 1 / 

and, consequently, 

(1 - gl)g2 > U2 I, 

(1 - gn)gn+i > I a„^i I for « > 1. 

Therefore, if we put 

^n+l = (1 “ gn)gn+lXn-i-U = 1, 2, 3, • * 

we have | ^^2 | T i 1 < 1, /> = 3, 4, 5, • • •. The convergence 

of the continued fraction then follows from Theorem 11.2 or 

Theorem 11.3 if = 0, and from Theorem 11.1 in case > 0. 

13. Second Interpretation of the Fundamental Inequalities. 
We shall now introduce two parameters ki and k2y greater than 

or equal to zero, and write the fundamental inequalities (9.2) in 
the form 

n| 1 + ^2 I > (1 + ^i)| az I, 

ri| 1 + ^2 + ^3 I > (1 + ^2)1 ^3 \y (13.1) 

Tpj 1 + + ap_^i I > rprp^zl I + I |> p = 3, 4, 5, • • •. 
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We thus write the first two of the Inequalities in a form which 

will enable us to conveniently distinguish two cases, according as 

ki = k2 = 0, or at least one of ki or is positive. 

Theorem 13.1. Let the continued fraction 

1 

1 + 
^2 

1 + 
_ 

1 +• 

(13.2) 

satisfy the fundamental inequalities (13.1). If ki > 0(^2 > 0), then the 

even {odd) part of the continued fraction converges [86]. 

Proof. If some partial numerator vanishes, then the continued 

fraction, and, of course, its even and odd parts, converge, by 

Theorem 9.2. We assume, then, that 5*^ 0, p = 2, 3, 4, • • •. 

Then, it follows from (13.1) that rp > 0, | 1 + | > 0, 

and rp\ 1 + | > 0, (^ = 1, 2, 3, • • •), where 
Ui is to be taken equal to zero. 

Let us suppose that ki > 0. Put 

^2p+li 1 + + ^2p-h2 I ~ I ^2p-f2 I ^ 1 O T 
Sp 111 1 1 3 3, • • •. 

^2p+l| 1 "T ^2p+l “T <^2p+2 I 

Then, 0 < ^p < 1. Also, by (13,1), 

- 1 + ^3 + ^4 I ~ ] ^4 I ^ _n| ^3 I 

^ Tal 1 + ^3 + ^4 i 1 1 + ^3 + ^4 1 
^ (1 + /^l)| <^2^3 I_ ^ 

1 (1 + <^2)(1 + ^3 + <^4) I ’ 

(1 - gp-l)gv > 

so that 

(1 + ^2p-l + ^2p)(l + (^2p+l + <^2p+2) I 

P = 2, 3, 4, • • •, 

"^2p^2p-}-l 

(1 + ^2p~l + ^2p)(l + ^2p->rl + ^2p-f2) 

/> = 1, 2, 3, • • 

(I Sp—'^Sp^t 

where 1*0 = 0, \xi\ < 1/(1 + ki)^ | Xp | < 1, ^ = 2, 3, 4, • • •. 

After making a suitable equivalence transformation upon the 
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even part of (13.2), namely, upon (4.2), we see that the latter is 

equal to 
1 1 

1+^2 ^ __ 

^ (1 - ^i)^2.y2 

I ~ g2)g3X3 

This is convergent by Theorem 11.4. 

The convergence of the odd part, in case k2 > 0, can be estab¬ 

lished in a similar way. 

Theorem 13.1 states that if the continued fraction (13.2) satisfies 

the fundamental inequalities, and if actual inequality holds in the 

first two, then the even and odd parts of the continued fraction 

converge. This gives us a second interpretation of the funda¬ 

mental inequalities. This will enable us, in certain cases, to 

establish the convergence of the continued fraction even when 

the majorant series 1 + 2rir2 • * • furnished by the first inter¬ 
pretation of the fundamental inequalities, is divergent. We shall 

now proceed to show how this can be done. 

Theorem 13.2. Let the continuedfraction (13.2) satisfy thefundamental 
inequalities (13.1), with k\ > 0, ^2 > 0, and suppose that a^^ 9^ p = 2^ 
3, 4, • • •. Let ^1, ^25 defined by the formulas 

1 
bi = l, ^p+i = —-, p = 1, 2, 3, • ■ (13.3) 

so that the continued fraction is equivalent to 

--7 (13.4) 

Let Qp be the ^th denominator of (13.4), so that 

Qp ~ ^1^2 * * ' l^p^py (13.5) 
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where Bp is the pth denominator oj (13.2). Then the following inequalities 
hold; 

nrz ■ ■ • r2p_i| Q2p 1 > ^(1 + rj| ^2 1 + bi \ ^- 

+ • • • rap-sVap-il b2p 1), 
(13.6) 

^2^'4 • • • r2p\ Q2P+I I > ^(1 + >"21 4 I + ^2^^4| ^5 I H- 

+ ^2^4^ • • • r2p-2^r2p\ b2p+i 1), 

P = 1,2,3, •••, 

where k is a positive constant. {For p — 1, the inequalities are to be inter¬ 

preted according to (13.9), below?) [86.] 

Proof. On making the substitution (13.3) in (13.1)5 we obtain 

ri| 1 + bib^ I >1+^1, ^2! + ^3 | ^ 1 + ^2> (13.7) 

rbp^ibpbpj^i -j- bp^i -f- bp^\ | ^ rprp_2j bpj^\ j -f- | bp^\ j, 

/) = 3, 4, 5, * • 

Inasmuch as = 1. Si == ^1 = 1> (22 = 1 + ^1^2, Qz = b^b^bz + 
b\ + the first two of these inequalities can be written 

i (22 I-I (2o I > k\b2\y 
n 

I <23 I - - I (2i I > I, 
r2 

where k is the smaller of 

(13.8) 

h k2 

ri| b2 r r2\h\' 
and 1. 

Thus, 

ri\Q2\ > ^(1 + ri| b2 I), 
^2! <23 1 > ^(1 + ^2! h I). 

(13.9) 
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Now, by (13.7) and the fundamental recurrence formulas, we 

have 

!2p+3 I 
> I “b ^P-f-3 I * ~ 

^P+1 

^P-{-2^7)\ ^??-f3 I “f* I I I Qp-{-l I I ^p-f3 

fpHh3 

^P+1 

* I Qp-1 

so that 

j2p+3 I ~ 'p-\-l \ ^ fp 

On applying this inequality for /) = 1, 3, 4, • • •, and then for 

/> = 2, 4, 6, • • *, and making use of (13.8), we then find that 

^2p-l\ (?2p I > I (?2p~2 I + ^2p \y 

^2p1 Q2P+I i ^ i Q2P-I 1 + ^2^4 * ' * ^"2p^l ^2p+l I* 

From these inequalities and (13.9), the inequalities (13.6) follow. 

From the determinant formula and (13.3), (13.5), we find that 

^_ (13.11) 
Bp^i Bp I QpQp+i I 

In view of Theorem 13.1, this shows that the continued fraction 

converges if it satisfies the hypothesis of Theorem 13.2 and if 

lim sup I QpQj, (13.12) 

In the next section we shall consider in detail the case where 

the fundamental inequalities are satisfied with = 1,^ = 1, 2, 3, 

• • In this case it follows at once from (13.6) that (13.12) holds 

if the series S| bp | is divergent. ThuSy the continued fraction may 

converge although the majorant series 1 + 2rir2 •'' rp diverges, 

14. The Parabola Theorem. We shall suppose that the funda¬ 

mental inequalities (13.1) hold with = 1, p = 1, 2, 3, • • *, and 

with ki > 0, ^2 > 0, i.e., that 

1 1 + ^2 1 > 1 ^2 |> 

1 1 + ^2 + ^3 1 > 1-3 1, (14.1) 

1 4“ "b ^p-fi 1 > 1 -P 1 "b 1 -P+l \y P ^ 4, 5, • • . 
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If some ap vanishes, then the continued fraction converges by 

Theorem 9.2 (even when | 1 + ^2 | = | ^2 | or | 1 + ^^2 + ^3 1 = 
I ^3 |). If 7*^ 0, /) = 2, 3, 4, • • •, then, as remarked at the end 

of § 13, the continued fraction converges if the series 2| bj^ |, 

given by (13.3), diverges. If this series converges, then the con¬ 

tinued fraction diverges by virtue of Theorem 6.1. 

Let Wi, m2y • • • be positive numbers such that 

mi < 1, 

Then, if 
trip ~(“ m^j^i ^1, p 1, 2, 3, • * *. 

I 3I(^p+i) — mp^ p ~ 1,2,3, •**, 

(14.2) 

(14.3) 

we can show that the inequalities (14.1) are satisfied (except that 

I 1 + <3:2 + ^3 I niay equal | ^3 | if ^2 = 0). We have, in fact, 

I 1 4“ ^2 I ^ 1 4" 81(^2) ^ 1 4“ I ^^2 I — mi > I ^2 |) 

I 1 4“ 4~ ^p-\ri i ^ 1 4“ 9i(^j>) 4~ ^)f(^p4-i) 

> 1 - - mp + \ap \ + \ apj^.i | 

— I I 4“ I |> 7^ ~ 2, 3, 4, • • •, 

We therefore have the following theorem. 

Theorem 14.1. Let ^2? ^3? ^4) inequalities (14.3), 
where ;«i, W2, W3, • • • are positive nujnbers satisfying (14.2). Then^ the 

continued fraction 

1 

1 + 
a^ 

1 + _^3 

1 + • 

(14.4) 

converges if^ and only if, (a) so?ne ap vanishes^ or (b) ap ^ ^for /> = 2, 3, 4, 
• • *, and the series S| bp |, given by (13.3), diverges. 
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This theorem has a simple geometrical interpretation. The con¬ 

dition (14.3) states, in fact, that for each /), has its value 

within or upon the parabola with focus at the origin and vertex at 

— ;72p/2. In Figure 2, the parabolas are drawn for /> = 1, 2, 3, 

and with mi = ^2 = = f. We note that if the pth 

parabola contains real values less than — then the (p + l)th 

parabola cannot contain the value Thus^ all the parabolas 

contain the Worpitzky circle^ \ ^ \ = iy ify only if^ 

/) = 1, 2, 3, • • •. If I ayj^i I <\^p - 1, 2, 3, • • •, then, obviously, 

one or the other of the conditions (a) or (b) of Theorem 14.1 

holds. Hence, we see that Theorem 14.1, with furnishes 

a generalization of the theorem of Worpitzky (§ 10). 

We shall now prove, more generally, the following parabola 
theorem (Scott and Wall [86]). 

Theorem 14.2. A set of points^ *5, in the complex plane^ which is sym¬ 
metrical with respect to the real axisy is a convergence set {Definition 10.1) 

for the continued fraction (14.4) ify and only ify S is a bounded set contained 
in the parabolic domain 

1 2 I - SR(2) < (14.5) 
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Kig. 3. 

Moreover^ if ^2> ^3? ^4? * * • values contained in this parabolic domain^ 

then (14.4) converges ij^ and only if^ (a) some a^ vanishes or (b) 5*^ 0, 
p = 2, 3, 4, • • •, and the series S| b-p\^ given by (13.3), is divergent. 

Proof. The last part of the theorem is the special case Wp = | 
of Theorem 14.1. The sufficiency of the conditions imposed upon 
S is contained in the last part of the theorem. It therefore remains 
to be proved that the conditions are necessary. 

It is necessary for a convergence set to be bounded. For other¬ 
wise a2y ^4> • • • can be chosen in .S' such that the series 2j | 
converges. The continued fraction then diverges by Theorem 6.1. 
It is necessary for S to be contained in the parabolic domain 
(14.5). For if S contains a point z = a outside this domain, then, 
inasmuch as, by hypothesis, S is symmetrical with respect to the 
real axis, it contains the complex conjugate d of a. But if a2p = 
^2p+i ^ P ^ 2, 3, • • •, then the continued fraction diverges 
by Exercise 2.1. 

In Theorem 10.1 we found that the values of the continued 
fraction (14.4) fill the circular domain | 2; ~ | < f as ^22^ ^4> 
• • • range independently over all values with moduli not greater 
than |. The corresponding result when the circular region 
1 2 I < J is replaced by the parabolic domain (14.5) is as follows. 
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Theorem 14.3. The values of the continued fraction (14.4), and of its 

approximants^ fill the domain 

1 2 - 1 1 < 1, 2 0, (14.6) 

as ^2> ' Tange independently over the parabolic domain (14.5), 
taking on values such that (a) or (b) of Theorem 14.2 holds. 

Proof. From the recurrence formula (2.6) we find that 

1 “h Pp 

1 + 
1 + 

I +• 

■ + 
^3 

1 + 
^2 

1 ^ 

SO that, by (9.3), remembering that the fundamental inequalities 

are satisfied here with = 1, we have 

Pv I = 

1 + 
1 + 

1 + 

< 1. 

Since 02, «3, «4, • • • are independent variables over (14.5), it 

follows that every approximant of the continued fraction has its 

value in (14.6) when the Un are in (14.5). Thus the values of 

(14.4) and of its approximants are all in (14.6). 

Now, let z be any value in (14.6), and consider the continued 

fraction 
1 

(1 - l/z)(l/z) 

(l/z)(l - 1/z) 

■ (1 - l/z)(l/z) 

(14.7) 

1 -• 
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This is of the form (14.4) with 

1—2 1—2 
"Z 5 ^2p^-l Z j P ^ 1^ * • •. 

22 22 

We shall prove that (14.7) converges to the value 2. From the 

fact that the continued fraction converges, it will then follow by 

Exercise 2.1 that the are in (14.5). By Theorem 2.1, we sec 

that (14.7) is equivalent to the expression 

./,_^_ 
(11 1 

^ ^ 2—1 (2--l)(2—1) (2---l)(2—1)(2—1) 

Inasmuch as | 2 — 1 [ < 1, 2 7*^ 0, it readily follows that the con¬ 

tinued fraction converges to the value 2. 

This completes the proof of Theorem 14.3. 

Theorem 14.3 was proved by Scott and Wall [87] by means of 

a geometric argument. The above simple proof is due to R. E. 

Lane [47]. 

Note, The example used in the above proof was obtained in 

the following way. In view of Exercise 2.1, one tries to find a 

continued fraction of the form 

1 + 
1 + 

1 + 
1 + 

1 +’ 

(14.8) 

which takes on the value 2. Both the odd and the even parts 

must then have the value 2, i.e.. 

2=1 — 

1 + m{a) - 

1 + 2d{{a) 
1 + 29?(^) 

3 
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and 

z — 

1 + 25K(^) - 
1 + 29t(^) - . 

Thus, z has simultaneously the forms 

a 1 
z = 1-, and z = -, 

/ a + s 

where s and t are real. If we determine the intersection of the 

maps of the real axis under these transformations of t and s into 
z, we find that a = {\ — z)/zz. 

Remark. In a later section (§ 34) we shall return to Theorem 

14.1, and connect it with a more general theorem, in which nip is 

replaced by 2(1 - gp-i)gp, 0 < gp^i < 1, (^ = 1, 2, 3, • • •)• 
15. “Convergence Neighborhoods’’ of a Point (1). If z is a 

given point in the complex plane, does there exist a neighborhood 

of c which is a convergence set for the continued fraction (14.4) ? 
Inasmuch as (14.4) diverges if ap^i == p = 1, 2, 3, • • *, in case 

c is on the real interval — oo x < (Theorem 8.2), we see 

that a necessary condition is that c be not real, or that it be real 
and greater than — j. In a later section (§ 32) we shall prove that 

this necessary condition is also sufficient. The methods developed 

thus far enable us to establish the existence of convergence 

neighborhoods of c only when 9t(r) > — J. We have the follow¬ 
ing theorem. 

Theorem 15.1. The continued fraction (14.4) converges if 

'\+2c\-2\c\ 
<*p+i ~ I ^ • ^ = 1> 2, 3, (15.1) 

{Note that ll + 2c| — 2|fj > Q if, and only if, 5R(c) > —4). [86.] 

Proof. Let = c + Rp+i > 0. Then, it is 

easy to verify that the fundamental inequalities (14.1) are satis¬ 

fied (except that | 1 + ^2 + ^3 I may equal \ az\ \( 02 = 0), 
provided Rp+i < (| 1 + 2^ | — 2| c |)/4. Hence, it follows that 

(14.4) converges when (15.1) holds. 
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We note that when c = Oy Theorem 15.1 reduces to Worpitzky^s 
theorem. 

Exercise 3 

3.1. By specializing the in Theorem 11.2, show tliat the continued fraction 

1 

1 +- 

1 +■ 

converges uniformly for | ap^i | < ly p = 1, 2, 3, • • •. 

3.2. Show that I'heorem 11.1 can be derived from Theorem 11.2. [68.] 

3.3. Show that the values of the continued fraction of Theorem 15.1 are in 
the circular domain | 2 — 1 | < 1. 

3.4. Let rn — \ an+i \ in the fundamental inequalities (9.2), and these in¬ 
equalities lead to the inequalities 

I 1 + ^2 I ^ 1, 

I 1 -f- ^2 + ^3 I ^ 1, 

I 1 + ^p+11 ^ 1 + I ^p-i^p |> = 3, 4, 5, • ■ •. 

If these inequalities hold and some vanishes, then the continued fraction of 
3.1 converges. If 7^ 0, /> = 2, 3, 4, the inequalities hold with actual 

inequality in the first, and lim sup | % | < 00, then the continued fraction con¬ 

verges [51, 86]. 

3.5. If I 1 -f ^2 I > 1, I ^3 I > (2 -f r)/(l — r), | ^2^ | < r, | a2p+s | > 
2 + r + r I ^2p4-i \i P = 1, 2, 3, • • •, where 0 < r < 1, then the continued frac¬ 

tion of 3.1 is convergent [51]. 

3.6. If (13.1) holds with ki > 0, ^2 > 0, then any one of the following condi¬ 
tions is sufficient for the convergence of the continued fraction of 3.1. 

(a) lim inf \ an\ — 0; 
(b) \ ap \ < M, /► = 2, 3, 4, • • M finite; 

(c) lim inf rir2 • * * r„ < co, S(l/| Up |) diverges; 

(d) rirs • • • r2p-i < M, r2r4 • • • r2p < M, 2| <^p | diverges; 

(e) lim inf rir2 • • • rn < nrs • • • r2p-i and r2r4 • • • r2p bounded away from 

zero, 2| ^p I diverges [86]. 
3.7. If the series S| ap j converges, then the sequences {^nl and {5r»l con¬ 

verge to finite limits [116]. 
3.8. The continued fraction of 3.1 converges and the modulus of its value 

does not exceed 3 if | | «V(4«^ — 1), ?/ = 2, 3, 4, • • •. Moreover, the 

value of the continued fraction is 3 if ^p = —/>V(4p^ ”■ 1)> P — 2, 3, 4, • • *. 
3.9. If an = (2« — 3 -f 4xn)/4, « = 2, 3, 4, • • •, then the continued fraction 

of 3.1 converges uniformly for | .V21 ^ i, | Xn | ^ 4 “■ (l/4(w — 1)), w == 3, 4, 5, 

3.10. Show that the continued fraction (9.1) converges if | a2n+i | ^ 4, 

1 ^2n I ^ w = 1, 2, 3, •••. Hint. Use the result of Exercise 1.1. [58.] 
(For extensions or refinements of this result, see [124, 41, 101a, 7a]). 



Chapter 

INTRODUCTION I'O THE THEORY OF POSITIVE 
DEFINIl'E CONTINUED FRACTIONS 

In the preceding chapter we have approached the convergence 

problem for a continued fraction by investigating a certain infinite 

series, 1 + 2piP2 • • * Pp, equivalent to the continued fraction. 
We now propose to approach the problem by determining a class 

of continued fractions whose denominators are different from 

zero. To do this we shall express the denominators as deter¬ 

minants, and then use the theorem of algebra which states that 

a system of n homogeneous linear equations in n variables has 

only the trivial solution (all variables equal to zero) if, and only 

if, the determinant of the system is different from zero. We shall 

be led in this way to connect the continued fraction with a certain 

quadratic form. This method will enable us to carry the con¬ 

vergence problem much farther than we have been able to carry 

it by means of the methods of Chapter III. 

16. Definition of a Positive Definite Continued Fraction. We 

shall now consider continued fractions of the form 

bi + Zi 

1 

ai^ 

^3 + Z3 — • 

(16.1) 

in which the ap and bp are complex constants, and Zi, Z2> 23, • • • 

are complex variables. It will often be convenient to let z stand 

64 
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for the set (zi, Z2, Z3, • • •) and 0 for the set (0, 0, 0, • • •)• Thus, 

the pt\i numerator and denominator of (16.1) will be denoted by 

Jp{z) and Bp{z), respectively; and ^p(O), 5p(0) will denote the 

values of Jp{z), Bp{z) for Zi = Z2 = Z3 = • • • = 0. We use ap^ 

instead of ap in order to avoid using the exponent | later on. 

Lemma 16.1. The denominators of the continued fraction (16.1) 

are given by the formulas 

Bp{z) = 

b\~\~Z\y a\y Oj Oj Oj * * *> H 

— fli, ^2'4'22, ~<?2j 0) Oj 0 

0, -fl2, -a-sy 0, •••, 0 

0, 0, ■ ■ ■} Oj 2> ^p—id"2p—1) ^p—1 

Oj Oj * * *> “~ap—ij hp I Zp 

(;>= 1,2,3, •■•). (16.2) 

Proof. We need but note that these determinants satisfy the 

recurrence formulas 

Bp{z) = {bp + Zp)5p_i(z) - ap^fBp^2{z)y 

p = 1, 2, 3, • • •, 
(16.3) 

with the initial values 5_i(z) = 0, Bo{z) — 1, {a^ = 1), which 

are satisfied by the denominators of (16.1). 

We now turn to the system of homogeneous linear equations 

in the variables Xn, whose determinant is 5p(z), namely, 

{bi + Zi)a'i - aiX2 = 0, 

—aiXi + {bi + Z2)x2 -- «2^3 = 0, (16.4) 

ttp—\Xp—1 4" (^p 4~ Zp')Xp 0. 

This has no solution excepting the trivial solution ati = ^^2 = • • • 

= Xp = 0 if, and only if, Bp{z) ^ 0. Let us multiply the equa- 
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tions (16.4) by Xi, X2, • • *, Xpy respectively, and add the resulting 

equations. This gives 

“h I Xr j ^^^Uj-^XrXr^X “f“ (16.5) 
r»l r=l 

We shall now put 

yr = 3(2r), = 3'(^r), 

and suppose that the imaginary part of the left-hand member of 

(16.5) is positive definite for > 0, i.e., that 

V y>-1 

^ y(/^r "1“ JVr) I j ^ ^ ^ (16.6) 

for y r > 0, r = 1, 2, 3, • • •, p,'^ \xr\^ > 0. It then follows 

that (16.5) and (16.4) can hold when the jVr are positive if, and 

only if, Xi = X2 =• — = Xp — 0, and therefore Bp{z) ^ 0 for 

> > 0 (r = 1, 2, 3, •••,/)). 

Lemma 16.2. If the real quadratic form 

p-i 

(16.7) - l^aMr+l > 0 
r=l r=l 

for all real values of the then (16.6) holdsy and conversely. 

Proof. If (16.6) holds, then (16.7) obviously holds. Suppose 

that (16.7) holds, and put Xr ^ Ur ivry Ury Vr real. We then find 

that the quadratic form in the left-hand member of (16.6) is 

equal to 

(- 2^ar«r«r+i) + ( 

\r>«=l r“l / \r"*l r«=l / 

+ Xr\^ 
r-1 r-1 

SO that (16.6) holds. 

We now make the following definition. 
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Definition 16.1. The continued fraction (16.1) is said to be 
positive definite if the quadratic form 

V P-1 

- 2'^ar^r^r+l > 0 

r=l r=l 

for p = 1, 2, 3, • • a?7dfor all real values of * * *, where 

Oir = 3(^r). 

In view of Lemma 16.2, we conclude from the preceding that 

this theorem holds. 

Theorem 16.1. If the continued fraction (16.1) is positive definite^ then 
its denominators Bp{z) are different from zero for > 0, (r = 1, 2, 3, 

...). [138,] 

We shall now prove the following theorem of Wall and Wetzel 

[139], which furnishes a parametric representation for the coeffi¬ 

cients Up and bp of a positive definite continued fraction. 

Theorem 16.2. The continued fraction (16.1) is positive definite ify 
and only if^ both the following conditions are satisfied, 

(a) The imaginary parts Pn = 3(^n) of the numbers bn are all non¬ 
negative: 

I3n>0, - 1, 2, 3, •••. (16.8) 

(b) There exist numbers ^o> Siy Szy * * * such that 

0 < gn~\ < 1, Oiff = /3n/3n + i(l “ gn-l)gny ?? = 1, 2, 3, * • *, (16.9) 

where an == 3 (^n)* [139.] 

Proof. On putting all the equal to 0 with the exception of 

^ny we see from (16.7), with p > that the condition (16.8) is 

necessary for (16.7) to hold. Let ^3 = ^4 = ^5 = * * • = 0. Then 

(16.7) becomes 

— 2ai^l^2 + ^ 0. 

Consequently, it is necessary that af < /3iiS2, i.e., that ai^ == 

i8ii32(l ~ where ^0 = 0 and 0 < < 1. We shall agree 

that = 0 if i8i = 0. Let ^4 = Is = fe = * * * = 0, and we may 

now write (16.7) in the form 

[(/3i(l — ^o))^li {^2Si)^^2V + ^2(1 ~ ““ 2a2^2^z + 
>0. 
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If /3i = 0 SO that, by agreement, gi = 0, then the first term on the 

left is equal to 0. If ft > 0 and we put 

(ft(l-^o))''’ 

then again the first term is zero. Since ^2 and ^3 are unrestricted, 

we must therefore have 

^ /32/33(1 gl)y or ^2^ = l^2/^3(l ^l)^2) 

where 0 < ^2 1* We shall agree that ^2 = 0 if 1(32 = 0 or if 

^1 = 1. On setting ^5 = ^6 = ^7 = * • * = 0, we find next that 

[(/3l(l ~ (^2^l)^^2]^ 

+ [(ft(l - gi))^i2 - 

+ ^3(1 ~ ^2)^3^ “ > 0, 

and, consequently, we conclude that — ^2)? or 

oiB^ = — ^2)^3 where 0 < ^3 < 1 and ^3 = 0 if /Ss = 0 or 

if ^2 = 1- Continuing in this manner, we see that the condition 

(16.9) is necessary for the continued fraction to be positive 

definite. 

If we suppose, conversely, that (16.8) and (16.9) hold, then 

we have the obvious identity 

+ (1 - gp-l)Mp" 
r—1 r*"! 

+ £ [(ftd - - {0r+^gr)\+l?> (16.10) 
r»l 

from which (16.7) follows. 

This completes the proof of Theorem 16.2. 

Corollary 16.1. ff^e may assume that = 0 in Theorem 16.2. 

If (16.7) holds, then 

^ft?,2 _ > 0 

r—1 r—l 

for all real values of the fr, provided \ ar \ < \ ar\y {r = \y 2^ 3, 

• p — 1). Hence, we have 
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Corollary 16.2. In Theorem 16.2, we may replace the condition 
(16.9) by the condition 

0 < <1, OL^ < ^„^n+l(l — gn-\}gn 

« = 1, 2, 3, • • •. 
(16.11) 

Inasmuch as | | — 9J(^2„^) = 2a„^, this condition may be 
written 

0 < gn-\ <1, \an^\- < 2/3„6n+l(l - gn-\)gn, 

« = 1, 2, 3, •••. 
(16.12) 

By means of this formulation of the condition of positive defi¬ 

niteness, we can show that the continued fractions studied in 

Chapter III belong to the class of positive definite continued 

fractions. In fact, with the aid of an equivalence transformation 

we find that 

1 / 

1 + 
U2 

1 + «3 

1 +• 

; — 

C2 

where we have put = Cp^,p — 1,2,3, •••. Then, in the nota¬ 

tion introduced above, — 1. The condition (16.12) now reads 

0 < gn-l < 1, \Cn^\ — 9i(fn^) < 2(1 - gn-\)gn, 

« = 1, 2, 3, • • •. 
(16.13) 

If we put gn — 5, this reduces to the condition (14.5) of the 

parabola theorem. If the gn satisfy the additional requirement 

that (1 - go)gi < ^, (1 - gn-\)gn + (1 - jrn)^«-|-l <?,(»= 1, 2, 3, 
• • •), the above condition reduces to (14.3). If the are pure 

imaginary, then (16.13) reduces to \cn^ \ < (1 — gn-i)gn, which 

is the condition used in § 11. In any case, (16.13) implies that 

I < (1 - gn-l)gn- 
It should be noted that (16.1) is positive definite if the ap and 

bp are real; or if the Op are real and the bp have nonnegative 

imaginary parts (cf. Hellinger and Wall [35]). The class of posi- 
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tive definite continued fractions was first introduced and investi¬ 

gated by Wall and Wetzel [138, 139]. 
17. The Nest of Circles. We saw in § 14 that the values of 

the approximants of the continued fraction of the parabola 

theorem are all in a certain circle. We shall now show that the 

same is true of a positive definite continued fraction, provided 

that > 0, ^(Zr) > 0, r = 2, 3, 4, * • *. For this purpose we 

shall need the following lemma. 

Lemma 17.1. Let 
2 

/ = + Zp - —, p = \,2, 3, ■ ■ ■, (17.1) 
w 

where 

/3p = > 0, ttp^ = < ^p/3p+i(l - gv-\)gv> 

0 <g^-^ <1, ^ = 1, 2, 3, •••. 
(17.2) 

JJ 3;(w) > ^p+igp then 3(/) > ^pgp-i + jp, where yp = 3f(Zp), 

(;>= 1,2,3, •••). [9.] 

Proof. Since, by hypothesis, Q(w) > Pp+igp, we have, for 

yp > 0, 
cyg \ ^ o ^ <^p 3(w) > ^p+igp ■ > 

Therefore, 

w + 

- gp-i) +yp - gp-i) +yp 

- ^p_i) +yp] 
> — 

2[0p(l - gp-i) +yp] 

This says, in fact, that w lies outside or upon a circle which is 

tangent to the line = ap^/[l3p(l — gp-i) + yp] from below, 

and is equivalent to the inequality Pp + yp — > l^pgp-i 

or ^ l^pgp-i- Since this holds for yp > 0, it must hold for 
yp — 0. Thus, 

s (^) - 

Pp “h Jtp 3^ — ^pSp—i "h yp> 

or 
3f(^) > ^pgp-i +yp, 

as was to be proved. 
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We now apply the transformation t — t(i{w) = \/w to the half¬ 

plane ^{w) > Pigo + ji, and find that it is transformed into the 
proper circular region 

t + 
2(^oft + yi) 2(^oi8i + Ji) ’ 

for ^o)3i+y, >0. (17.3) 

We shall denote this region by A'o(2). This is tangent to the real 
axis from below at the origin. 

We next define A'i(2) as the map of the half-plane O'(zt') > 

under the transformation 

t = t^h{w) =--r- 

^1 + 2i- 
W 

By the lemma, ■3[a(«')] > go^i +yt for Q{w) > gi$2, and there¬ 
fore Aifz) is contained in Ko(z). Since w = <» is on the boundary 

of the half-plane 3(w) > gi^2, it follows that Vi("=)j the first 
approximant of (16.1), is on the boundary of Ai(2;). We note 

that if ai = 0, then Ai(z) is the single point 

1 ^ 

5i(z)' 

For arbitrary p > 1, we now define A'pfz) as the map of the half¬ 

plane 3;(tf) > Pp+igp under the transformation 

(17.4) 

, , 
Zp- 

w 

t = /o/i 

+ 2i — 
^2 + 22 

where we suppose that ^{zr) > 0, r = 2, 3, 4, • • From the 

lemma it follows immediately that Kp{z) is contained in Kp^i{z). 

As before, we see that the ^th approximant of (16.1), namely, 

hh • • * upon the boundary of Kp{z), If some Up vanishes, 

and Um is the first which vanishes, then all the circular regions 

Kp{z) reduce to the point /q/i • • * /m(^) for p > 
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On referring to the inequality (17.3) defining Ko(z), we now 

conclude from the fact that 

Ko(z) DK,{z) DK,{z) D •••, (17.5) 

that for all points t of these circular domains: 

m <0, I /1 < for go^i + Ji >0, 
golSi + yi ’ 

Jr > 0, r = 2, 3, 4, • • 

and that, in particular, the approximants of (16.1) satisfy: 

(17.6) 

(dM) < 0, 
Bp(z) 

< 
gol^i + ' 

for go^i +yi > 0, Jr > 0, r = 2y 3, 4, 
(17.7) 

Thus, the approximants of a positive definite continued fraction 

have all their values in the lower half-plane, and have moduli 

not greater than 1/ji for Q{zi) = ji > 0, ^(Zr) = Jr > 0, r = 2, 

3, 4, • • •. More precisely, the values of the approximants are 

all in the circular domain Ko{z). 

We note the following theorem, which supplements Theorem 

16.1. 

Theorem 17.1. 1/ in (17.2), gp-ifip > 0, /> = 1, 2, 3, • • •, i/ien the 
denominators of the continued fraction (16.1) are different from zero for 
3(2r) >0,r= 1,2,3, .... [9.] 

Proof. In case the ap are different from 0, this follows at once 

from the determinant formula and (17.7). If some Up vanishes, 

then it suffices to observe that, by (16.2), the denominators can 

be written as products of factors, each of which may be regarded 

as a denominator of a positive definite continued fraction, with 

nonvanishing partial numerators and bounded approximants. 

From Theorems 5.1, 16.1 and 17.1 we have: 

Theorem 17.2. Let (16.1) be a positive definite continued fraction 
having one or more vanishing partial numerators. The continued frac¬ 
tion converges for ^{zf) > 0, r = 1, 2, 3, • • *; and, if gp^xfip > 0, /> = 1, 
2, 3, ..., the continued fraction converges for 3(2r) ^ 0, r = 1, 2, 3, • • •. 
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We shall assume from this point on, unless the contrary is 
explicitly stated, that 

1,2,3, •••. (17.8) 

From (17.5) and the fact that the pth approximant of (16.1) 

is in Kp{z)y it follows that for any particular values of the Zr 

with ^(zi) > 0, ^(zr) > 0, r = 2, 3, 4, • • •, there are just two 

possible cases. 

Case /. The limit-point case. The circular regions A"p(2) have 

one and only one value/(z) in common; the radius of Ap(z) has 

the limit 0 for p = oo; the continued fraction converges and its 

value is/(z). 

Case 2, The limit-circle case. The circular regions Tip{z) have 

a circular region in common; the radius of A"p(z) has a positive 

limit for ^ = oo; the continued fraction may conceivably con¬ 

verge or diverge. 

The decision as to which of the two cases holds rests upon a 

knowledge of the behavior of the radius rp(z) of Ap(z) for p = oo. 

Accordingly, we shall proceed to determine a formula for rp(z). 

It will be convenient to use, instead of the polynomials y^p(z) 

and Bp{z)y the polynomials 

V /^\ ^pi^) v' __ Bp(z) 
A^P4-i(2!) ~ > Tp_^l(z) , 

^1^2 ' ' ' ap aiao ' ' • ap (17.9) 

/. = 1,2,3, •••. 

We define Xi(2) = 0, Yi{z) = 1, A'o(2) = -1, Yoiz) = 0. The 

polynomials Xp = Xp{z) and Yp = yp(2) satisfy the recurrence 

formulas 

^Zp—iXp—1 A p dpXp-^i 0, 
p = l, 2, 3, (17.10) 

—flp—i Tp—id" (^pH”Zp) Yp apYp-j-i = 0, 

where we must put ao = 1- The determinant formula becomes 

Xp+xYp - XpYp+i = — , p = l,2,3, •••. (17.11) 
Up 
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We shall suppose now that the parameters gp have been chosen 

so that, in (17.2), 

ap^ = Mp+i(1 - Sp-i)gp, P = 1> 2, 3, • • •• (17.12) 

Let us recall that the circular region Kp{z) is the map of the 

half-plane ^{w) > I3p-^igp^ under the transformation (17.4). We 

now write the latter in the form 

/ = /o/i • • • tpiw) = 
Ap{z)w — ap^Ap^xiz) 

Bp{z)w — ap^Bp^i{z) 

On introducing the polynomials (17.9), we then find that 

ClpYp 
(17.13) 

This transformation carries the point w = apYp/Yp^i into the 

point / = 00. Inasmuch as the center Cp of Kp{z) and co are 

inverse points with respect to Kp{z)^ and inasmuch as the points 

^ (17.14) 

and apYp/Ypj^i are inverse points with respect to the line 

3^(?x;) = Pp-\-igpy it follows that Cp is the image under the trans¬ 

formation (17.13) of the point (17.14), that is, 

r V.y p 
^P+1 (^ + 

Fp+i (^ + 2ig,Pp+i) 

dpX p 

^pYp 

(17.15) 

Inasmuch as the pth. approximant of the continued fraction lies 

upon the boundary of Kp{z)^ we therefore have: 

rp{z) == - 
p+i 

On substituting here the value of Cp from (17.15), and using 

(17.11), we then find that 

" 1 gp^P+i\ rp+i 1^ - f 
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In order to throw this expression into a more convenient form, 

we multiply the second recurrence formula (17.10) by Yp, and 
get, on replacing p by r, 

-ar-iVr-lVr + (^r + 2r) | Vr “ a^Vr+lYr = 0, 

r = 1,2,3, • ■ 

Remembering that Yo — 0, we then find, on summing over r 
from 1 to p: 

r r = ;> 

+ Zr)\ Yr + ^+1^) = -apYp + ,Yp. 
r=l r=l 

Hence, If we consider only the imaginary parts, we get 

^{apYpYp^i) 

= '^ar{Yr+lYr + ^+1^) + Jr)] K 
r=l r»l 

With the aid of this formula and (17.16) we then have: 

2rp(z) = 

1 

(17.17) 

;>+! 

n 1^ - j2^r(Yr+lYr + Fr+lF.) +j^yr\ ^ 
r=l T—1 r—1 

(1 .?p)^p+i| Yp^i 

Finally, if we employ the identity (16.10), this formula can be 

written, if we now use (17.12), 

(17.18) 

2rp(z) = 

___1_ 

goPl +£(jr| + I (^.(1 - gr-l))^Yr - (^r+^gr)^Yr+, |^) 
(17.19) 

This holds for ^ = 1, 2, 3, ■ • It should be emphasized that this 

formula was developed under the hypothesis (17.12). The 

formulas prior to (17.19) hold under the hypothesis (17.2). 

18. Positive Definite Continued Fractions and the Parabola 
Theorem. We pointed out in § 16 that the continued fraction 
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of the parabola theorem (Theorem 14.2) is a particular case of 

the positive definite continued fraction. The question naturally 

arises as to whether or not the machinery which we have set up 

in the preceding section can be used to obtain the condition for 

convergence given in the parabola theorem. 

To answer this question, we shall first express the center Cp 

(cf. (17.15)) of the circular region Kp(z) in terms of the poly¬ 

nomials = Ap{z) and Bp = Bp(p^ of (17.9). We find imme¬ 

diately that 

^ ^pBp—1 ^p Ap—\Bp T" ^i^p^p-\-'\ApBp 

dp^BpBp-.i — ap^Bp^iBp + 2igp^p^iBpBp 

Hence, the radius rp{z) = | Cp — Ap/Bp | is given by 

rp{z) = 
I ^1^2 * * ' I 

p-| a^^Bp^i |‘^+(2^pi8p+i-1)| Bp 
(18.1) 

In (16.1) we now put Zp — 0, bp = i, p — 1, 2, 3, • • •, so that 

the continued fraction becomes 

(18.2) 

and Bp + ia^Bp-x = —iBp^x. On taking /> = 1, 2, 3, 

• • •, we then find that 

rp = rp{0) = 
^1^2 * * * Clp 

Bp+x P - I ap^Bp^x P 
We now make the substitution 

Cx = 1, ap^ =-, p = \, 2, 3, 
CpCp^l 

Qp ~ ^1^2 ’ ’ * ^pBpy 

and this expression for rp becomes 

I ^p+i i 1 
rv = 

Qp+i I — 1 Qp-i I I Qp+i I + 1 Qp-i 
(18.3) 



Of course, this substitution can be made only when the are 

different from zero. The convergence of (18.2) when some 

vanishes is covered by Theorem 17.2. 

We wish to show that lim = 0 if the series 2| Cp [ diverges. 
P= 00 

That is, the limit-point case (cf. § 17) holds, so that the continued 

fraction converges if the series 2| Cp | diverges. The question 

raised at the beginning of this section will then have been answered 

in the affirmative. 

The means for the proof are at hand. In fact, since 

I I - 9f(«p“) <1, /> = 1, 2, 3, • • •, 

then, as in §14, 

I 1 + I >1 + 1 <^\ |> 
[ 1 + + ^p-f-i“ I > I I + I |> 2, 3, • • *, 

or 

I 1 + C\C<2. I > 2! ^1^2 I + 

I + ^p4-2 + I > I ^P+2 I + I |> P ~ 2, 3, • • 

Therefore, as in (13.8), 

I 02 I ““ 1 (?0 I > 2I ^2 I) 

I 03 I - 1 01 I > ka I > IU3 I, 
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or 

I 02 I > + I <^2 |)j 
I 03 I > i(l + I ^3 I); 

and, as in (13.10), 

I 02p I ^ I 02p—2 I d" ^2p |> 

I 02p-tl I — I 02p—1 I + II r2p+l (. 
On applying (18.5) and (18.6) to (18.3), we get 

f2p-l < 
HZli 

>+E 

t*2p < 

C2r 1 I C2r+1 

(18.5) 

(18.6) 

(18.7) 

Inasmuch as ri > r2 > ra > • • it then follows that —>0 if 

the series 2| rp | diverges. 

This proof gives us some new information. Since all the approx- 

imants from and after the ^th approximant are in the circular 

region Kpy we can make an assertion concerning uniform con¬ 

vergence. Let ai^y ^3^, • • • have their values so restricted in 

the parabolic domain | 2 | — 9i(2;) < | that the quantity Rp 

defined below tends uniformly to 0 for all these values of 

^2y ^3^ * ’ We take 

R% Ei-i 
if ^1^2 • * • ^p-i ^ 0; 

0 if ak = 0 for some k < p 

Then, the continued fraction converges uniformly over the speci¬ 

fied set of values of . This is true, in particular, 

if these values are restricted to a bounded portion of the parabolic 

domain. Hence, we have, if we change the notation, 

Theorem 18.1. The continued fraction 

1 

1 + 
^2 

1 + 
^3 

TT^ 
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converges uniformly for ^3, • • • in the domain 

I 2 1 - 5R(2) < i \z\<M, 

for every constant M. 

The above type of argument was used by Paydon and Wall [68] 

before the notion of a positive definite continued fraction had 

been Introduced. They obtained the nest of circles in this par¬ 

ticular case by mapping the domain \ w — I \ < 1 by means of the 

transformations t == /1/2 • • • where tj,{w) == 1/(1 + 

19. Chain Sequences. In the present chapter, and also in 

Chapter III, we have seen that sequences of the form 

(1 ^0)^l3 (1 ~ gl)g2y (1 ~ ^2)^3, • • *3 (19.1) 

where 0 < < 1, p = 0, 1, 2, • • •, play a fundamental role. 

Some of the properties of these sequences have been revealed 

during the course of the preceding developments. We shall 

pause here to give the subject a somewhat more systematic 

treatment. 

The sequences in question will be called chain sequences; 

and the numbers gp will be called parameters of the sequences. 

The constant term sequence f, • * • is a chain sequence 

with parameters = 0,1, 2, • • •. In the following theorem 

we characterize all constant term chain sequences. 

Theorem 19.1. constant term sequence • • • is a chain 

sequence ify and only if^^^a<\. 

Proof. To show that the condition Is necessary, we show that 

any chain sequence whose terms are greater than j is not a con¬ 

stant term sequence. In fact, if 

(l-^P-ikp>T, /> = 1, 2, 3, • • •, (19.2) 
then 

(1 - gp-i) +gp ^ ^ ^ 1 

so that^p > gp-i. Hence, the increasing sequence fi < ^2 < 

• • • < 1, must converge to a limits, and, by (19.2), (1 — g)g > j. 

That is, the chain sequence converges to the limit inasmuch as 

(1 “ i)i cannot exceed f, and is therefore not a constant term 

sequence. To show that the condition is sufficient, one need but 



80 ANALYTIC THEORY OF CONTINUED FRACTIONS 

note the identity (1 — g)g — a where = (1 + — 4«)/2, 

0 < ^ < i- 
A chain sequence does not, in general, determine its parameters 

uniquely. For instance, the sequence j, j, j, • • • has the parame¬ 

ters 

^^, and Mp = ^, ;> = 0,1,2, • • (19.3) 

We shall now prove 

Theorem 19.2. Every chain sequence has minimal parameters m^ and 
maximal parameters such that 

mp<gp<Mp, /> = 0, 1,2, (19.4) 

for all other parameters gp of the sequence [139, 9]. 

Proof. Let [up] be a given chain sequence with parametersgp. 

We shall define the minimal parameters recurrently as follows. 

mo = 0, mp^i = 
(0 if m 

^p+i 

r — mp 

•r ^ 1 ^ 0, 1, 2, • • -V 
if mp < 1, (19.5) 

Since mo = 0, then mo < Using induction, we suppose that 

for some k > 0^ mk < gk- If mk == I or mk < I and Uk^^-i = 0, 

then mk+i = 0 < gk-\-i; if mk = 1 and Uk+i > 0, then, by (19.5) 

and the induction hypothesis. 

_ (1 ~ gk)gk-i-l 

1 — mk \ — mk 
(1 ~ 

1 - gk 
gk-\-l* 

Thus, Wp < ^p for ^ = 0, 1, 2, • • •. 

From the definition of the Wp, it follows that nip > 0; and 

from what we have just proved, it follows that nip < 1. 

That (1 — nip)nipjf.i = ap+i is obvious from (19.5) if Wp < 1. 

If wjp = 1, then gp, being greater than or equal to nip, must equal 1, 

so that flp+i = (1 — gp)gp+i = 0. Hence, (1 — nip)nip^i = Op^i 

in this case. 
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We have completed the proof of existence of the minimal 
parameters. 

We now define the maximal parameters by the formula 

= l-- ^ = 0, 1,2, •••, (19.6) 
j_^P-f-2 

I _ 
1 

where we adopt the convention that in case some partial numer¬ 

ator of the continued fraction vanishes, then the continued frac¬ 

tion shall terminate with the first vanishing partial quotient. 

Thus, if d, then 1 ^ if ^ 

then A/p 1 ^^p+i 1 (1 .?p)^p+i — ^p* If ^p-t-i> ^p+2> 
• • •, ap+k are positive and ap+k+i = 0, {k > 0), then 

A/p = 1 - (1 - ^p) • 
_gp+i_ 

2 _ Sp+i)Sp+2_ 

I _ ~ Sp+2)gp+S 

_~ gp+k-2)gp+k-l 

i ' 

If gp+k = 1, this obviously reduces to Mp = gp\ and if gpj^k < 1> 

then we may write, by Theorem 2.1, 

where 

Tp = 

Mp = 1 - (1 - .?p) 

r = p-f 1 

_gp+lgp+2 • • • gr_ 

(1 — ^P+l)(I ~ gp+2) • • • (1 ~ gr) 

(19.7) 

(19.8) 

In this case, Mp > gp. Finally, if «p+r > 0> ^ = 1> 2, 3, • • •, 

then Mp is again given by (19.7), but with Tp now defined by 

^•“i + ZTrr 
^P+1^p4-2 gr 

“P+1 (1 - ^p+l)(l - ^p+2) • • • (1 - ^r) 
< 00, (19.9) 
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Hence, again Mp > gp. Equality holds here if, and only if, 
Tp= CO. 

It follows from the definition of the Mp, and from what we 

have just proved, that 0 < Mp < 1 for^ = 0, 1, 2, • • •. Finally, 

if ^Zp+i = 0, then Mp = 1 and (1 — Mp)Mp+i = 0 = «p+i. If 

iZp+i > 0 so that 0 < ^p+i < Mp+i, then it follows from (19.6) 

that 

Mp = 1 - , ap+, = (1 - Mp)Mp+i. 

This completes the proof of Theorem 19.2. 

We note that in case > 0, ^ = 1, 2, 3, • • then Mp — gp 

for all values of p if, and only if, the series 

00 
gr 

(1 - .§'l)(l - .g‘2) • ■ • (1 - ^r) 
(19.10) 

diverges. In particular, we have 

Theorem 19.3. Let ^ = 1, 2, 3, ‘ ^ be a positive-term chain 
sequence^ with minimal parameters mp. Then^ the maximal parameters 
are equal to the corresponding minimal parameters^ so that the chain 
sequence determines its parameters uniquely //, and only ify the series 

diverges. 
r«=l 

m\m2 '' ’ mr 

(1 - Wi)(l - ^2) • • • (1 - mr) 
(19.11) 

Corollary 19.1. A positive-term chain sequence determines its 

parameters uniquely if^ arid only if^ its 0th maximal parameter Mq 

is equal to 0. 

It is important in certain connections (cf. Theorem 17.1) to 

know conditions under which the maximal parameters of a chain 

sequence are all positive. We have this theorem, which readily 

follows from the definition of the maximal parameters. 

Theorem 19.4. Let ^2p, /> = 1, 2, 3, •• - y be a chain sequence whose 
minimal parameters satisfy the inequalities 0 < mp < 1, ^ = 0, 1, 2, • • •, 
Then, its maximal parameters are all positive ify and only ify all the con¬ 
tinued fractions 
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1 - 

= 1,2, 

^P+2 

1 -• 

are convergent. 

We may illustrate Theorem 19.2 by means of the constant term 

sequence where 0 < a < \ (cf. Theorem 19.1). In 

this case, the minimal parameter is given by the pt\i approxi- 
mant of the continued fraction 

a 

1 ~ 

1 -- 

1 ~ 

so that 

1 - Vl - Aa 
1 - 

\1 — Vl — ^a)_ 

(19.12) 

^ = 0, 1, 2, • • •; 

and the maximal parameters are given by 

Mp = 1 - 
1 + Vl — Aa 

1 - 

1 - 

, p = 0, 1,2, •••. 

(19.13) 

These formulas reduce to (19.3) when a = \. 

We shall now investigate the question as to when a chain 

sequence {bp\ can be found which dominates a given chain 

sequence {^p}. We have this theorem. 

Theorem 19.5. Given a chain sequence {up} with minimal and maximal 

parameters mp and Mp. Then, there exists a chain sequence {hp} such 

that 

bp> ap, p = 1, 2, 3, • • •, (19.14) 
if, and only if, 

mp < Mp, p — 0,1,1, (19.15) 
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Proof. Suppose first that (19.15) holds, and put 

gp = rnip + (1 “ r)Mp, /> = 0, 1, 2, • • •, 

where 0 < r < 1. Then, clearly, 0 < < 1. Let 

~ (1 gp—l^gv 

Then, (19.14) holds. In fact, the inequality (19.14) is equivalent 
to the inequality 

(1 — rwp-i ~ (1 — r)Afp_i)(mp + (1 — r)Mp) 

> r(l — Wp_i)wp + (1 — r)(l — Mp_i)Mp. 

This, in turn, is equivalent to the inequality 

(Mp_i — Wp_i)(Afp — nip) > 0, 

which holds because of (19.15). 
To prove that, conversely, (19.14) implies (19.15), we prove 

the following more precise result. 

Theorem 19.6. Let [up] be a chain sequence with minimal and maximal 

parameters mp and Mpy respectively. Let {bp\ he a second chain sequence 

with parameters hpy such that 

bp>ap, /> = 1,2, 3, •••. (19.16) 
Theny 

mp <hp<Mpy p ^ 0, 1, 2, . . .. (19.17) 

Ify moreover^ for any particular k > Oy bk^i > then m^^x < hk-^iy 

and hk < 

Proof. Since — 0, then < h^. Using induction, let us 
assume that w* < hk for some k > 0. In case Uk^i = 0, so that 
nik^i = 0, then nik+i < hk^i; while if ak^i > 0, then it follows 
from the relations (1 — bk)bk^i > (1 — mk)mk^i > 0 and I — hk 
< \ — niky that nikJ^i < hkJ^x. If (1 — hk)hkJ^i > (1 — 
then it is clear that nik+i < hk-{~i- This proves the part of the 
theorem which relates to the minimal parameters. 

We now prove the part relating to the maximal parameters. 
By (19.6), if Up^i = 0, then Mp = 1 > Ap, and if (1 — hp)hp^i > 
ap^iy so that hp < 1, then Mp > hp. If ^p+i > 0, ap^2 = 0, then 
hp^i > 0, Ap < 1, so that if (1 — hp)hp^i > ^p+i, we have 

hp <l - ^ < 1 - ap+i = Mp, 
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and if (1 — hp)hpj^i > then 

hp \ — - < 1 — = Mp, 

for some k >2^ let <2^+25 * • *, be positive and ^^p+^+i 

= 0. If (19.16) holds, then 

hp < 1 

7p-j-i < 1 - 

hpjf-i 

^P-j-2 

^P+2 

7 ^ 1 ^P-^k 
np^k~l SI ^ S k ^p-\-ky 

and therefore 

hp < \ - 
<p+i 

1 - 

^p-|-2 
= Mp. 

1 -• 

1 — Clp^k 

If (1 — hp)hp^i > ^p+i, then it is evident that hp < Mp, Finally, 

if Upj^r > 0, r = 1, 2, 3, • • and (19.16) holds, then we have, 

successively, 

hp SI Si ^p4_i, 

7 ^1 ^p+i ^ 1 ^p-fi - ^p+i - 
h-o Si — Si — si — ;; si — 

^p+1 1 - 

^P+2 

hp+2 

< 1 _ ff±L < 1 _ _^£±1_ < 1 _ 

1 — ^p4-2 

1 - 

< 1 

^P+2 

hpj^2 

^P+1 

1 — ^p4-3 

1 - 
^P+2 

1 
^p+3 

^P4-3 

< 1 
^P+1 

1 — ^p+2 
S 1 Up^ly 
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SO that hp < Mp. If (1 — hp)hpj^i > then actual inequality 

holds in the first place in each line of the above system, so that 

hp < Mp. 
This completes the proof of Theorem 19.6. 

In the proof of Theorem 19.5, we used a chain sequence whose 

parameters are certain means between nip and Mp. It is interest¬ 

ing to note that if 

^p nip^^py nip ^ py nip^\ ^ 0, p — 0, 1, 2, * * *, 

and = (1 — gp-\)gpy then bp > Up. 

In Lemma 12.1 we have an example of a chain sequence, 

namely, any sequence {^p| of nonnegative numbers such that 
n 

y^^Tp < 1, w = 1, 2, 3, • • •. Hence, r, • is a chain 
p»i 
sequence if 0 < r < |. The sequence {wp} of (14.2) has the 

property that (nip/lj is a chain sequence. In this case the 

parameters may all be taken less than j. 

20. Quadratic Forms and Chain Sequences. In Theorem 16.2, 

we have a remarkable characterization of chain sequences in 

terms of a special type of quadratic form. This may be stated 

as follows. 

Theorem 20.1. The sequence {ap^l is a chain sequence ijy and only 

ify for all real numbers fi, f2> ' * 'j 

n n — 1 

>0, « = 2, 3, 4, • • •. (20.1) 
p»l ,p=l 

From this theorem it follows immediately that if {a:p^| is a 

chain sequence, and if &p^ < jO = 1, 2, 3, • • •, then {jSp^} 

is a chain sequence. 

The minimal and maximal parameters of a chain sequence can 

be expressed in terms of values of the quadratic form of Theorem 

20.1. We have this theorem. 

Theorem 20.2. Let {ap^} be a given chain sequence with minimal and 

maximal parameters mp and Mp, respectively. Theny for /> = 0, 1, 2, • • •, 
we have 
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»zp = 1 - min 
Lr=l r-1 

, fp+1 = 1 , (20.2) 

and 

Mr, 

00 CO 

'p = g-l-b. - 2 «rJr?r+l 
r»=p+l “P + 1 

,^p+i=l. [9.] (20.3) 

Here^ the minimum of the form in (20.2) is taken with respect to all real 

kr, ^nd in (20.3), the greatest lower hound is taken with respect to all rea 

krfor which the infinite series converge. 

Proof. PVom the identity (16.10) we have 

P + l 7^ p 

23^’'^ - 2 y^ar^rir+l = 23(^^ ~ )* 
r=l r=l 7^ 

+ (1 - Wp)^p+1^ > (1 - ?Wp)^p+l^- 

By (19.5), Wr = 0 if mr-i = 1. Hence, it follows that we may 

choose ^2, • * • such that the above form takes on the minimum 

value 1 ~ nip for fp+i = 1. This proves (20.2). 

Again, from (16.10), we find, for any n > p + \y 

n+l n 

23 - 2 2^ = Mp^p+i^ 
r=»p+l 

n 

+ 23 (^1 - )=* + (!- Mn)^n+1^ 

r“p+l 

Hence, the right-hand member of (20.3), which we shall denote 

by Mp\ is greater than or equal to Mp, We must prove that 

Mp' = Mpyp = 0, 1, 2, • • *. 

Obviously, Mf > 0. On putting = 1, = 0 for r = ^ + 2, 

^ + 3, p + 4, • • •, we see immediately that Mp' < 1. 
From the way in which the maximal parameters were defined, 

it follows that Mp, Mp^iy Mp^2y ' • * are the maximal parameters 

of the chain sequence ap+i^, ap+2^5 <^p+3^ * ’ *> for every p. By 
hypothesis, if n > p + 1, 

n + l n 

23 ~ 2 23 “>■^’•^'•+1 > Mp'^p+i^ 
r=p+l r=p+l 
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Inasmuch as > 2V •— it therefore follows 
that 

n+l w 

- 2j2<^r'Ur+l >0, «=/>,/> + 1, ^ + 2, ••• , 
r = p 

where 

Qip' = \^Mp'y a/ — ar for r ^ p. 

Therefore, ^p+2^y * • • is a chain sequence. Let its 
minimal parameters be mo^ = 0, mi\ * • *. Then, 

== =: Mp', ap+i" = (1 - Mp')m^'y 

ap+2^ = (1 - ^20^3', • • 

But Mp', y y • • • are in consequence parameters of the chain 

sequence ap^i^y ap^2^y ap^^^y •••, and therefore Mp < Mpy 

m2 < Mpj^iy W3' < Mp^_2, *•*. The first of these inequalities, 
which holds for ^ = 0, 1, 2, •••, together with the inequality 

Mp > Mpy establishes (20.3), and the proof of the theorem is 

complete. 

We shall conclude this section by expressing the minimal pa¬ 

rameters by means of certain determinants. We first state a 

known theorem of algebra concerning the general real quadratic 

form 
n 

■^(^13 ^23 * ’ *3 ^ ^j^pq^p^qy {^pq ~ 
p, a=i 

n 

l( F > 0 for all real $p such that^^^p^ > 0, then F is called 
p—i 

positive definite. 

Theorem 20.3. 
determinants 

Di == an, D2 = 

The form F is positive definite if, and only if, the 

^11> ^X2y ’ * * 3 ^In 

^ll3 <^12 
y •••, £>» = 

^213 ^22y ‘ * *3 ^2n 

^213 CI22 

^n\y ^n2y ’ * '3 ^nn 
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are all positive. If these determinants are different from zerOy we have the 

decomposition 

where 
ld\ 

+ (20.4) 
II n—2 Dn-l 

D\Xi — 7)ifi + ai2i2 + + • * • + 

Z)2^2 ~ 
^21) 

— Dafa + ^21 > 

+ ^14^4 + • • • + ^l7ifn 

^23& + ^24^4 + ' • • + ^2nfw 

^12> ^14^4 + ^15^5 + • • • + 

^22y ^24Xa + ^25^5 + ‘ ’ * + > 

I ^323 ^34^4 + ^35^5 + * • • + a-^nin 

The formula (20.4) shows that when the Dp are positive, then 

Dyi/Dn-i is the minimum value of F under the condition = 1. 
We shall apply this remark to the form 

V 

(1 + — 2^^ar^rfr+l> (20.5) 

where }ar*} is a chain sequence. This form is positive definite 

for all > 0. Hence, the determinants Dr = Dr{y) formed from 

its coefficients, as in Theorem 20.3, are all positive. From the 

remark made above, it follows that Dp+\{y)/Dp{y) is the minimum 

value of (20.5) under the condition ^p^i = 1. We shall prove 

that the minimal parameters of the chain sequence {ap^} are 

given by 

mp = 1 — lim 
u-o 

Dp+i(y) 

Dp(y) ’ 
^ = 0,1,2, •••, (Do = 1). [139.] 

(20.6) 

(Cf. (20.2).) In fact, we have the recurrence formulas 

Dp+i(j) = (1 +y)Dp(j) - a/Dp_i(», /> = 1, 2, 3, • • •, 

(i I 
Dp_x(y)V Dp{y) / 

(20.7) 

so that 
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Therefore, 

0 < 'Dv+i{y') 

DAy) 
< l + y. 

Hence, the limit of the rational function of jy. 

Dp+i(y) 
lim — 
2/=o Dp(y) 

= 1 — 

exists and is not greater than 1 nor less than 0; and, by (20.7), 

ap^ = (1 — mp^i)mp ^ so that the nip are parameters of the chain 

sequence. Since 1 — nin is the limit for = 0 of the minimum 

for ^n-fi = 1 of the form (20.5), it is reasonable to expect, in view 

of (20.2), that nin = Wn* This can be easily proved by mathe¬ 

matical induction. We have, = 0 = Wq. Assuming that 

nik = for some index we see from the formula (1 — nik)mkj^i 

= (1 “ that nik^i = mk^i provided w* < 1. But, if 

mjc = ly so that = 0, we have 

Dk+2(y) 

Dk+i(y) 

so that nik^i' — 0 = nik+i (cf. (19.5)). This completes the proof 

of the formula (20.6). 

Exercise 4 

4.1. Let [dp] he a chain sequence with minimal and maxima] parameters rrtp 
and A/p, respectively. Show that parameters gp may be chosen such that go 
has any prescribed value between mo and Mo. 

4.2. Show that if the polynomial 

V^rd - ^r-l)n(z) - Ver + lgrYr+A2) 

appearing in (17.19) does not vanish identically, and if 2^ = f, r = 1, 2, 3, • • •, 
then this polynomial in f has all its zeros in the lower half-plane, /(f) ^ 0. 
[138.] 

4.3. Show that if the limit-point case holds for Zr — ^ — x + iy^ y > 0, then 
the limit-point case holds for Zr = a* -|- iY for every Y > y. [138.] 

4.4. Show that the real poles of an approximant of a positive definite con¬ 
tinued fraction in which 2r = f must be simple with positive residues. 

4.5. If the coefficients ap and l^p are real and Zr == h iben all the poles of the 
approximants are real. [109.] 
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4.6.® Show that the linear transformation 

z' = t{z) = --, a 9^0, 
o — % 

carries the circular region | z — 1 | < 1 into a part of itself if, and only if, 

2 • 

Suggestion. Show that /(r,) maps the half-plane 

a(z — 1) + a(z - 1) -f 'Ida S: 0 

upon 1 z' — 1 I < 1; and this half-plane contains | z — 1 | < 1 if, and only if, 

(——)> 5 + 

4.7. If kp 9^ 0, p = 0, 1,2, • • •, the transformation 

9? 

Z' = tniz) = --- , Oy 
un Z 

carries the circular region 

into a part of the circular region 

kn 

1 

if, and only if, 
kn-l\ 

/I ~ ^ 1 _|_ I 1 I 
\knkn—lUn/ 2 1 ktikn — \Un I 

< 1 

kn — 1 

4.8. Put <3n = l/^n, = —Cn/un^ and let he real and positive. Show 
that the last condition can be written 

9?(^n) >0, I «n 1 - 9?(«n) < 29K^n)9^(^n+l)(l “ 

where 0 < g^ < 1. Apply this result to the continued fraction 

1 

ic\ — 
U\ 

* Exercises 4.6, 4.7 and 4.8 were suggested to the author by R. E. Lane. 
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4.9. Let^i, (1 - (1 — ^2)^3, • • • be a chain sequence in which 0 < gp < ly 
p = 1, 2, 3, • • •, and suppose that the series 

o _ 1-1-2_^1^2 * * * gp_ 

(1 - ^i)(l - ^2) • • • (1 - gp) 

is convergent. Show that — ^9), (1 — j^iXir2, (1 — .§^2)^3, * • * is a chain 
sequence which determines its parameters uniquely. 



Chapter V 

SOME GENERAL CONVERGENCE I'HEOREMS 

The starting point of the present chapter is the formula (17.19) 

for the radius rp(z) of the circle Kp(z)y which we have introduced 

in connection with a positive definite continued fraction. Let us 

recall that the continued fraction converges If rp(z) —> 0 (limit 

point case). By inspection of the formula (17.19) for rp(z)y we 

see that a sufficient condition for Vpiz) —> 0 is that the series 

SjVp I 1^ he divergent. If, in particular, the yp are bounded 

away from 0, then this series will be divergent if the series 

2 I Yp{z) 1^ is divergent. A glance at (17.7) and (17.9) will 

show immediately that the divergence of the series S| Xp{z) 

implies the divergence of the series 2| Yp{z) |^. From these con¬ 

siderations it follows, then, that the positive definite continued 

fraction (16.1), in which the Up are not zero, converges for any 

particular Zp such that yp = 3(2^) > 5 > 0, (p = 1, 2, 3, • • •)> 

provided that at least one of the series 

I l^ 2] I I" (a) 
p=l p-1 

is divergent. These two series will play a fundamental role in the 

succeeding developments. 

If our way of introducing these two series seems somewhat 

artificial, perhaps the reader will want to look for deeper-lying 

reasons in the following considerations. We are, of course, 

primarily interested in replacing the condition rp{z) 0, involv¬ 

ing the rather complicated formula (17.19), by some simpler con¬ 

dition. We are thus led in a natural way to use the series 

93 



94 ANALYTIC THEORY OF CONTINUED FRACTIONS 

2| Yp{z) [^. If we reflect upon the fact that the Xp{z)y as well 

as the Yp(z), are solutions of the system of equations 

—i^p—1 “h ”1“ ^p)^p ^p^p-\~i ^ (1^) 

and that the general solution of this system is Xp = aXp{z) + 

iYp{z)y we come naturally to consider the two series (a) together. 

The search for analogies between the system (b) and a second 

order linear differential equation enters into this train of ideas. 

In the next section we prove Schwarz's inequality. Then, in 

§ 22 we consider the question of dependence of the convergence 

of the series (a) upon the particular values of Zi, 22> ‘ • We 

shall find that if these series converge for Zp = Zp*, then they 

converge (uniformly) for all Zp such that | Zp — Zp* | < Af, where 

M is any finite constant. This result holds for continued fractions 

(16.1), subject to the so/e restriction ^p 7*^ 0, ^ = 1, 2, 3, • • 

In view of this ‘‘theorem of invariability," the question of con¬ 

vergence of the series (a) for any Zp such that ] Zp j < M is reduced 

to the question of convergence of these series for Zp = 0. We may 

therefore distinguish two cases, the determinate case and the 

indeterminate case, according as at least one of the series (a) 

diverges for Zp = 0, or both of these series converge for Zp = 0, 

respectively.® 

In § 23 we consider questions of convergence of the general 

continued fraction (16.1) in the indeterminate case; § 24 contains 

some fundamental theorems on sequences of analytic functions; 

and §25 deals with continued fractions (16.1) in which the Zp 

are equal to a common variable f (“J-fractions"). In § 26 and 

§ 27 we treat J-fractions for which the Up and bp are bounded, and 

for which the Up and bp are real, respectively. 

21. Schwarz^s Inequality. In this and later chapters we shall 

need the following theorem. 

Theorem 21.1. {Schwarzs inequality.) Let ai, a2y ••*, ^nj ^i> ^2> 

• • - y bn be any complex numbers. Then 

n 2 n n 

^^Upbp < ^ ^ I ^ ^ I \^y (21.1) 
p»l p»l p«l 

®This classification was used by Hamburger [26] for continued fractions with real ap 
and Ifp and with Zp = z, /> = 1, 2, 3, • • •. 
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where equality holds if^ and only if^ either (a) = 0, /) = 1, 2, 3, 
or (b) Up — cbpy p = 1, 2j 3, *•*,«, where c is a complex constant. 

Proof. Let 

Up cbp ~f“ P — Ij 2^ 3j ' ‘ ' y (21.2) 

where c and the Cp are to be determined. Since 

Upbp c\ bp j €pbp^ 

we see that 
rt n 

2]^ A = c^\K\\ (21.3) 

if, and only if, 
n 

''^^^■pbp = 0. 
p—i 

Since (21.1) obviously holds with equality in case the bp are all 0, 

we shall assume that at least one bp 9^ 0. We may then determine 

c by (21.3), and the ep are then determined by (21.2). Hence, 

\ Up Y" = {^p + ^p){cbp + €p) = I ^ 1^1 bp Y + CCpbp + CCpbp + | €p Yy 
so that 

pm, I P=1 I 

or 

a'--!) 
p n 1 p BT 1 

where equality holds if, and only if, ep = 0, p = 1, 2, 3, • • •, i.e., 

if, and only if, ap = elp, p = 1, 2, 3, •••,». Therefore, by (21.3) 

and (21.4), 

n 

p-1 

12 n n n n 

with equality if, and only if, Op = cbp, p = 1, 2, 3, • • •, n, as was 

to be proved. 
This proof was given to the author by Ernst Hellinger. 
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22. The Theorem of Invariability. We shall now prove the 

following fundamental theorem of invariability. 

Theorem 22.1. Let (16.1) be a continued fraction in which the coeffi¬ 

cients Up are different from zero. If the two series 

2 I 1^, 2 I FpCs) |2, (22.1) 

formed for this continued fraction^ converge for particular values Zjf of 

the variables 2^, then these series converge uniforinly for \ — Zp*\ < My 

p = \y 2y 3y • • •, where M is any constant independent of the Zp. 

Proof. The proof is accomplished by replacing the difference 

equation 

~ —1 "h ^p^p-\-i 0^ 

^ = 1,2,3, •••, (22.2) 

where we now take ao = 1, by a Volterra sum equation^® 

Tp ^ ^J^pqtq ~ ^P, p = 1, 2, 3, • • •. (22.3) 
q^l 

(This is analogous to replacing a differential equation by an inte¬ 

gral equation.) Denote by Lp*{x) the expression (22.2) in which 

Zp has been replaced by Zp*. The solution of the system Lp*{x) 

= 0 under the initial conditions = — 1, = 0 is ;c'p = Xp{z*) 

= Xp*y and under the initial conditions Xq == Oy Xi = 1, the solu¬ 

tion is Xp = Yp{z*) = Yp*, If Xp and Xp* are arbitrary solutions 

of the systems Lp(x) = 0 and Lp*(x*) = 0, respectively, then we 

obtain immediately the identity (analogous to Green’s formula) 

n 

T] [ArpLp*(Ar*) - Xp*Lp{x)] = XqXi* - Xo*Xi 

P“1 ^ ^ 

ein{,XnXn-{-l Xfi Xn^x) ^^XpXp^ = 0. 

p=l 

^®This proof uses the idea which Weyl [141] applied in similar problems, namely, to 
express the relationship between solutions for two different parameter values as a Volterra 
integral or sum equation. This procedure, as well as the procedure used by Weyl [140] 
and by Hellinger [31] can be embraced in a single set-up usin? reciprocals of the J-matrix 
(cf. § 60). 
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On putting Xp* = Xp* and then Xp* = Yp*, we then get 

n 

n 

Xo - ^nC^nFn + l* ~ Fn^^n+l) - ^(^p* - = 0. 
p=l 

On multiplying the first of these equations by —Yn*y the second 

by Xn*5 and then adding, we obtain, if we use the determinant 

formula (17.11), 

n 

Xn —^(^P — Zp*){Xp*Yn* — Xn*Yp*)Xp = XiYp* - AoX„*. 
7J = 1 

Therefore, fp = Xp is a solution of the equation (22.3) in which 

kp, = (2, - 2,*)(x,*yp* - Xp*y,*), 

hp = ^lyp* — xoXp"^. 

The proof of the theorem will be complete if we show that the 

series S| fp converges uniformly for | Zp Zp* | < Af, /> = 1,2, 

3, •••, where fp is any solution of this sum equation having 

bounded initial values fo and fi. 

Under the hypothesis that the two series 2| Xp* and 2| yp* 

are convergent, it readily follows by Schwarz’s inequality that the 

double series 2| kpq is uniformly convergent for | Zp — Zp* | < M. 

Hence, if € is an arbitrarily chosen positive number, which we take 

less than unity, there exists an i?, depending only upon e, such 

that 
00 00 

€r = 'Xj 22 I ^ I 2p — 2p* I < M. 

Also, on taking R still larger if necessary, we have 

00 

Cr^ = 'Yj I ^p fo*' r >R. 
p = r 

We now multiply the equation (22.3) by fp and sum over p 

from r to m, where m > r. This gives, if we apply Schwarz’s 

inequality, 
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m p 

^ ^ I fp ^ “t" ^ ^ X ^J^PQ^P^Q 
p^r c»l 

\ p^r \ ^ Q-l \ p^r tf=l / 

m m 

and therefore. 

<c + 6. /2]|r,P 
p-r V g=-l 

< Cr + tr ^ ^2 ^ ^9 + *’• \ ^2 I I’ 
\l q=zl \ qmzr 

or 

^‘(1+JSif' 
p = r \ p = r 

Determine a constant K such that 

«-i 

(22.4) 

^ I f < X' for I Zp - Zp* I < M. 
5«1 

The above inequality then shows that, for all 

P = 1 (1 - 6)^ 
= H, 

so that the series| fp converges and its sum does not exceed 

H for I Zp — Zp* I < M. Then, by (22.4), R < r < 

|:ir.r<p-‘+_^*f, for U,-.,>\<M. 

This establishes the uniform convergence of the series S| fp |^. 

This theorem was proved by Hellinger [31] for the case where 

the ap and bp are real, and for the general case by Hellinger and 

Wall [35]. 

The theorem of invariability gives significance to the following 
definition. 
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Definition 22.1 The determinate case or the indeterminate case 

is said to hold for the continued fraction (16.1) according as at least 

one of the following two series diverges or both these series converge^ 

respectively: 

2i XM 1^ 2| y,(0) 1^ (22.5) 

23. The Indeterminate Case. In this section we consider arbi¬ 
trary continued fractions (16.1) in which the flp are not zero, and 

for which the indeterminate case holds (Definition 22.1). We 

define four polynomials as follows. 

f7„(z) = «„[y„(0)X„+,(z) - F„+i(0)Z„(2)], 

y„(2) = «„[F„(0)F„+,(2) - F„+,(0)F„(z)], 

P„(z) = ^„[X„(0)F„+i(z) - X„+,(0)X„(z)], 

(2n(2) = an[XMYr.+l(z) - («) ^(z)]. 

These polynomials satisfy the identity 

Pn{z)Vn{z) - Qn{z)Un{z) ^ 1. (23.2) 

In fact, we have, if we use the determinant formula (17.11), 

Pn{z)Vn{z) - Qn{z)Un{z) 

= a„[X„(0);^„+i(z) - A''„+,(0)F„(z)]F„(z) 

- «„[Z„(0)F„+i(z) - X„+,(0)F„(z)]t7„(z) 

= «„X,(0)[.Y„+i(z)F„(z) - F„+i(z)f/„(z)] 

- «„X„+i(0)[Z„(z)F„(z) - F„(z)(7„(z)] 

= -«„X„(0)«„F„+i(0)[X„+i(z)F„(z) - X„(z)F„+i(z)] 

+ ^„Z„+i(0)«„F„(0)[Z„+i(z)F„(z) - X„(z)F„+i(z)] 

= ^„[X„+i(0)F„(0) - X„(0)F„+i(0)] = 1. 

Now, by (17.10), 

an+lXn+2iz) — (^n+1 T Zn+l)A^n+l(z) anXniz). 

Cf. footnote 9. 
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We multiply both members of this identity by Xn-\-i(0)y subtract 

an-^iXn+2{0)Xn+i(z) from both members, and obtain 

an+l[Xn-\-l{0)Xn-\.2{‘^) Xn+2(0)Xn-{-l(z)] 

== (^n+1 “h 2:n4^l)v¥^w4~l(0)A n+l(2) anXn-{~l(0)Xn{z) 

^n-fl A^n-|-2(f^)A^n-f-l (2) 

~ [^w-f lA^n-f 1 (^) ^M-fl A n-|-2(f^) jA (2) -f" Z^-f-lA ,1^1 (0) A^n_|_l (z) 

— anXn-^l{0)Xn{z) 

= <2„[A^n(0)A^n-f-l(z) ““ An-fl(0)A„(z)] + (0) A^n+1 (z) . 

Hence, by (23.1), we have the first of the following four relations. 

Pn-fl(2) = Pn{^) + ^n-f-lA^n+l (0)A"n-fl (2i), 

j?n+l(2) = Qn{z) + 2n4-lA^n+l(0)yn+l(2;), 

f^nH-l(2) = U n{P} + 2,1+15^71+1 (O)A^n+1(2), 

V71+1(2) = VniX) H“ 2n_j.i5^71+1(0)5^71+1(2). 

The others may be obtained in a similar way. From these rela¬ 

tions we now obtain immediately the following formulas. 

n + l 

P„+l(2) = 2^ZpZp(0)Zp(z), 

n+l 

Qn+\{Z) = -1 +^2p^p(0)yp(z), 
p = 2 

(23.3) 

= 1 X'^z.YMXpiz), 
p=2 

We may now prove this theorem. 
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Theorem 23.1.^^ In the indeterminate case for the continued fraction 

(16.1), there exist four functions t;(z), p(z), q(z) such that 

p(z)v(z) - q(z)u(z) = 1, 
and such that 

lim Ujfz) = «(z)> Hni V^fz) == j;(2;), 
00 n= 00 

lim P„(2) = p(2), lim Qn{%) = 9(2), 
71 = 00 s= 00 

uniformly for | | < M, p — 1, 2, 3, • • •, where M is an arbitrarily large 

positive constant. [137.] 

Proof. By the theorem of invariability and Schwarz’s in¬ 

equality we get, for \ Zp\ < M, 

m-^k in -f- k 

2] 1 
p — m 

where e is any assigned positive number, provided that m > Ny 

{k = 1, 2, 3, • • ')) ^ being a sufficiently large number depending 
only upon e and A/. Therefore, we have, uniformly for | Zp | < A/, 

m-\-k 

1 z^XMXpiz) 1 < M 

(23.4) 

(23.5) 

00 

lim P„+i(2) = 'Y]zpXp{0)Xp{z). 
"=" 

The other limits in (23.5) can be established in the same way. 

Formula (23.4) follows at once by (23.2) and (23.5). 

From (23.1) and the determinant formula we find that 

Xn+l(z) = Z„+i(0)(7„(2) - y„^i(0)P„(2), 
(23.6) 

y„+l(2) = Xn+m^niz) - y»+l(O)0„(2). 

Let 
^ Zn+i(0) 

yn+l(0)' 

^ This theorem, and the other theorems of this section, were proved by Hamburger 

[26] for the case Zp = z and bp real. Cf. also [35]^and [9] for analogous theorems which 

hold in the (more restrictive) limit-circle case for positive definite J-fractions. Stieltjes 

[95] had the analogous theorem for his continued fraction. 
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If lim j„ = a finite number, it then follows by Theorem 23.1 
n=s 00 

that 

]|fn 
n- «^„4.l(0) 

= su{z) - p(z). 
Tn+l(z) 

Jim- 
-^„+l(0) 

= Jo(z) - q(z). (23.7) 

uniformly for | Zp | < M, p = \, 2, 3, . Since, by (23.4), 

[j£;(z) - q{z)]u{z) - [j«(2) - ^(z)]£>(z) = 1, 

it follows that the limits (23.7) cannot both vanish. Therefore, 

for I Zp I < M, p = 1, 2, 3, • • •, we have 

lim - p{^) 
n=«y„+i(z) sv{z) - q{z) ’ 

a finite number or oo. If lim = oo, then, for ( Zp | < M, 
n= oe 

/> = 1, 2, 3, •••, 

lim 
n- - y„+i(z) t>(z) ’ 

a finite number or oo. If the sequence {j„} has more than one 

limit-point, s' and s", s' 9^ j", then, if s' and s" are both finite, 

one infinite subsequence of approximants of the continued frac¬ 

tion has the limit 
s'u{ss) - j>(z) 

s'v{%) - q{z) ' 

and another infinite subsequence of approximants has the limit 

s"u{-^ - j)(z) 

j"y(z) - q{z) 

These are unequal for all Zp inasmuch as 

[s'u{z) - p{z)][s"v{z) - q{z)] - [s"u{z) - p{z)][s'v{z) - q{z)] 

= s' - s" 9^ 0. 

Therefore, the continued fraction diverges by oscillation for all 

Zp, (I Zp I < M). The same evidently holds if one of the limit- 

points s' or s" is 00, From these considerations we conclude that 

the following theorem is true. 
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Theorem 23.2. L.et the indeterminate case hold for the continued frac¬ 

tion (16.1). If the continued fraction or its reciprocal converges for a single 

set of values of the Zp in the domain 1 Zp | < M, ^ = 1, 2, 3, • • •, (M an 

arbitrarily large constant)^ then^ for every Zp in this domain^ either the con¬ 

tinuedfraction or its reciprocal converges. If the continued fraction and its 

reciprocal both diverge for a particular set of values of the Zp with moduli 

less than M, then the continuedfraction diverges by oscillation for all such Zp, 

In case the Zp are all equal to a common variable the con¬ 

tinued fraction is called a J-fraction. This name is used because 

the related quadratic form + ^)xp'^ — TLupXpXp^i has long 

been called a J-form. For the J-fraction, the functions 

p(X)'i ^(f) Theorem 23.1 are entire functions of We 
may then state the following theorem. 

Theorem 23.3. Let the indeterminate case hold for the f-fraction 

f 

^2 + f — 
^2 

^3 "b f ' 

(23.8) 

Then^ there exist four entire functions «(f)> ^(f)> p(f)> $'(f) that 

piOviO - ^?(f)«(f) ^ 1, (23.9) 
and such that 

= = (23.10) 

as n tends to oo over a set of indices for which the sequence 

_ X.+i(0) _ 
•^n — __ 5 ^ — 1> 2, 3, * * *> 

Yn+m 

has a finite limit s; and 

Xn+l(rt 
lim 

^„^n+l(0) 
= «(f), = (23.11) 

as n tends to oo over a set of values for which the sequence has the limit 

00. In either case^ the limits exist uniformly over every bounded domain 

of the i-plane. The continued fraction diverges by oscillation for every 
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value of f, or converges to a meromorphic function of f, or else its reciprocal 

converges to the constant value 0. 

If (23.8) is positive definite (Definition 16.1), then 

X (^) 1 
^ < - , for 3(r) > 3 > 0, = 1, 2, 3, • • •)• (23.12) 

Hence, it is impossible for the reciprocal of the continued fraction 

to have the constant value 0. We therefore have 

Theorem 23.4. Let (23.8) be a positive definite f-fraction for which 

the indeterminate case holds. Then^ the continued fraction diverges by 

oscillation for every value of f, or else it converges to a meromorphic func¬ 

tion of ^yfor all values of ^ 7^ot poles of this function. If an infinite sub¬ 

sequence of app7'oximants coyiverges for a single value of then this sub¬ 

sequence conveyges to a meromoyphic function of f which is analytic for 

3(f) > 0. 

24. Convergence Continuation Theorem. Let/i(2),/2(2(),/3(2:), 

• • • be an infinite sequence of functions which are analytic over 

a simply connected domain S of the complex z-plane. Suppose 

that we have established the convergence of the sequence over a 

subdomain of and that corresponding to every finite closed 

region S' entirely within 6^ there exists a constant M depending 

only upon S\ such that 

\fp{^ 1 < M, for /) = 1, 2, 3, • • 2 in S'. 

That is, the sequence is uniformly bounded over S'. The con¬ 
vergence continuation theorem of Stieltjes [9S] then asserts that 

the sequence converges uniformly over every finite closed region 

entirely within <5* to a function which is analytic over S, 

This theorem is of fundamental importance in establishing the 

convergence of continued fractions and the character of the func¬ 

tions represented by them. In particular, we shall need this 

theorem in § 25 for our investigation of positive definite J-fractions 

in the determinate case. 

The convergence continuation theorem has been improved upon 

by other mathematicians. Osgood [64] and Arzela [2] showed that 

the conclusion of Stieltjes’ theorem holds if the sequence is uni¬ 

formly bounded, as above, and converges over a set of points 
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everywhere dense along a closed rectifiable contour within S, 

Vitali [114] and Porter [71, 72] replaced the contour by an infinite 

set of points having at least one limit-point interior to S. Blaschke 

[4] showed that this limit-point may be on the boundary of S 

provided only that there is a sequence of points of the given set 

which approaches the limit-point ‘‘sufficiently slowly/’ Montel 

[60] extended and developed this theory by means of his notion of 

normal families of functions. 

We shall begin by proving 

Theorem 24.1. Let {/j>(-)) he a sequence of functions y analytic in a 

simply connected open doinain Sy which is uniforynly hounded over every 

closed domain entirely within S, Theny there exists an infinite subsequence 

of these fu7ictions which is uniformly convergent over every finite closed 

doinain entirely within Sy to a limit-function which is analytic in S. 

Proof. Let be a sequence of points e^y ^2, ^3, • • * of which 

is everywhere dense in S, Then, since the given sequence of func¬ 

tions fpif) is uniformly bounded over every finite closed region 

within Sy there exist constants Mn such that 

\fp{e„) I < Mn, ^ = 1, 2, 3, • • •, w = 1, 2, 3, .. 

where Mn is independent of p. Therefore, by the Bolzano- 

Weierstrass theorem, we may select from the sequence {/p(2)} 

an infinite subsequence {/n^(2)}, where ni < W2 < ^*3 <**•> 

which converges for z = Ci, From the sequence j/n^Cz)} we 

may then select an infinite subsequence )/np'(z)}5 where < 

nf < nf < nf < • • which converges for 2; = 62- From the 

last chosen sequence we may select an infinite subsequence 

{/np"(2)}, where nf < nf' < nf' < nf' < • • •, which converges 

for z = e^y and so on. The “diagonal sequence” 

Mz), ••• (24.1) 

is then obviously an infinite subsequence of the given sequence 

{fp{z)] which is convergent for z = Cn^ w = 1, 2, 3, • • *. We 

shall, for the sake of simplicity, denote the pt\\ member of the 

sequence (24.1) by Fp{z). 
Let S' be an arbitrarily assigned bounded closed domain en¬ 

tirely within S. We shall prove that the sequence {^^(z)} con- 
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verges uniformly over S\ It will follow from a theorem of Weier- 

strass that the limit of this sequence is an analytic function of 

z in S, 

Let 6*" be a bounded closed region lying entirely within .S’, 

containing on its interior, and having a rectifiable boundary 

C of length L at a minimum distance 5 > 0 from S\ We may 

obtain for instance, by covering <?' with a finite number of 

circles within Sy using for this purpose the Heine-Borel theorem. 

The boundary C of S'' then consists of a finite number of arcs of 

circles. 

If 2 is in S'y we then have, by Cauchy's integral formula, 

1 

'c I — z 

Hence, for any two points z' and z" of S', 

F,(z') - F,(z") ■ill 0 (/ - z')(/ - z") 
F^{t)dt 

n\ P 

ML 

2x5* 
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where, in accordance with the hypothesis, M is so chosen that 

1 Fp(2;) I < Myp = 1, 2, 3, • • •, for all2 in S\ M being independent 

of z and of p. Consequently, for every € > 0, there exists an 

ri{e) > 0, depending only upon e, such that 

I F\{z') - Fp{z'') I < € if I 2' ~ 2" I < 77(e), 

z', z" in .V'. (24.2) 

That is, the sequence {^^(2)} is equi-continuous over S\ 

Let 2 be any point of S\ Since the set E is everywhere dense 

in Sy we can find in .9' a point Ck of E in the circle with center 

2 and radius 77(e). Then, 

I Friz) - FM I < 1 Friz) - Friej) I + I Fricj) ~ F,(.,) I 

+ I FXc) - F.iz) |. 

The first and last of the quantities on the right are less than e 

by virtue of (24.2). The second will be less than e if r, j > w, 

where m is sufficiently large, since converges over E, There¬ 

fore I Friz) — 7%(z) I < 3e if r, > w. Here m depends upon e 

and upon 2. Thus, the sequence converges for every 2 in S\ 

Denote the limit-function by Fiz). Then, 

I Fiz) ^ F,iz) \<e \f p> nie, 2), (24.3) 

where nie, 2) is a sufficiently large number depending upon e 

and 2. We may evidently agree to take ;7(e, 2) to be the least 

positive integer for which (24.3) holds. In order to prove uniform 

convergence, it is required to prove that ?z(€, 2) is a bounded 

function of 2 for each € > 0. 

For a fixed e > 0, let < 00 be the least upper bound of 

/?(€, 2) as 2 ranges over Choose a sequence 2i, 22, 23, • • • of 

points in S' such that 

lim niey Zp) = N, 
p= 00 

Let f be a limit-point of the sequence {zp|, and z any point of 

S' in the circle of radius •q{t/S) and center Then 

1 F^{z) - F{z) I < I Fiz) - Fit) I + I m - F^it) 1 
+ I F,it) - F,iz) |. 
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The last term on the right does not exceed e/5 by (24.2). The 

second term is less than e/5 if ^ > n(€/5y f). Finally, the first 

term is not greater than 

3e 
I Fiz) - F,{z) 1 + I Fn(z) - F*(f) | + | F,(f) - F(r) | < / 

for all sufficiently large values of h. Therefore, 

I - -^(z) I <« if /> > " (^, r), i 2 - s' I < v (0- 

Inasmuch as | Zp —* T 1 < for all sufficiently large values 
of p, we therefore conclude that w(e, Zp) < 77(e/5, f) for all suffi¬ 

ciently large values of p, and hence N < w(e/5, f). Thus, N is 

finite, and | F{z) — Fp{z) | < e if p > A^, for all z in S'. That is, 

the sequence {Fp(2)} converges uniformly over S'. 

This completes the proof of Theorem 24.1. 

From Theorem 24.1 we may readily obtain the convergence 

continuation theorem: 

Theorem 24.2. Let {fp{z)\ be an infinite sequence of fimctionsy 

analytic over a simply connected open domain <9, which is uniformly bounded 

over every finite closed domain S' entirely within S. Let the sequence converge 

over an infinite set of points having at least one Iwiit-point interior to S, 
Theny the sequence converges uniformly over every finite closed domain 

entirely within S to a function of % which is analytic in S, 

Proof. Let Zi, Z2, Z3, • • • be an infinite sequence of points of 

S having the limit Zq, interior to Sy over which the given sequence 

of functions is convergent. In accordance with Theorem 24.1, 

we may select an infinite subsequence {Fp(z)} of the given 

sequence, which converges uniformly over every finite closed 

domain entirely within S, to a function F{z) which is analytic in 

S. Then, we evidently have 

lim/p(zn) = F{zn)y n = 1, 2, 3, • • •. 
P SS 00 

Let S' be a finite closed domain entirely within S which con¬ 

tains the point Zq on the interior. Let 

5p = l.u.b. |/p(z) - T’(z) I, zin6’', p = 1, 2, 3, • • •, 

and let 

6 = lim sup Sp. 
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We shall prove that 5 = 0, and thereby establish the uniform con¬ 
vergence over of the sequence {fp(z)}. Let pi < p2 < p3 < * • • 
be a sequence of indices such that 

3 = lim 5p^, 
A;*n 00 

From the sequencek = ly 2, 3, • • •, we may select an 
infinite subsequence uniformly convergent over S' to a function 
F*(z). Inasmuch as F*{z) = F(z) for all z == which are in S'y 
it follows that F*(z) = F(z). Hence we conclude immediately 
that 5 = 0, as was to be proved. 

25. The Determinate Case. We suppose now that the deter¬ 
minate case holds for the continued fraction (16.1), that is, at 
least one of the two series (22.5) is divergent. There are two 
simple sufficient conditions for the determinate case. In fact, 
from the determinant formula and Schwarz's inequality, we find 
that 

7? 1 1 n 

X) -. = Z) I ^^p+i(0)n(0) - Xp(0)y^+j(0) I 
P = ] \ Up] ^ J 

\ p=:l 

and therefore we have [9] 

Theorem 25.1.^^ IJ the series 

- (25.1) 
Up 

diverges y then the determinate case holds for the continued fraction (16.1). 

One may easily verify that 

Z;,+2(0)y^(0) - x^(0)y,+2(0) = 

and conclude, as above, that the following theorem is true [9]. 

Theorem 25.2. If the series 

V I AtL (25.2) 

diverges^ then the determinate case holds for the continued fraction (16.1). 
i^Hellinger [31] showed that the determinate case holds for a real J-fraction if 

lim inf | | is finite. Carleman [6J had Theorem 25.1 for the case of real J-fractions. 

1 
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We can establish the convergence of the continued fraction 
(16.1) in the determinate case provided the coefficients and 
bp are suitably restricted. If we require that the Up and bp 
satisfy the conditions imposed in Definition 16.1, i.e., that the 
continued fraction is positive definite, we have this theorem. 

Theorem 25.3. Let (16.1) be a positive definite continued fraction for 

which the determinate case holds. Then,, the continued fraction converges 

if (}(-p) ^ 1 -p I < P — 1> 2, 3, • • •, where b and M are arbitrarily 

chosen positive constants. 

Proof. It is only necessary to recall the discussion given at 
the beginning of this chapter, and to apply Theorem 22.1. 

For positive definite J-fractions, we have the following theorem. 

Theorem 25.4. Let (23.8) be a positive definite f-fractioji for which 

the determinate case holds. Then^ the f-fraction converges uniformly over 

every bounded closed region in the upper half-pla?je /(.f) > 0, and its value 

is an analytic function of f for 3(f) > 0. [138.] 

Proof. The uniform convergence over every finite closed do¬ 
main in 3(f) > 0) and the fact that the value is an analytic 
function of f, follow immediately from Theorem 25.3, (23.12), 
and Theorem 24.2. 

On combining Theorems 23.4 and 25.4, we obtain at once 

Theorem 25.5. If a positive definite f-fraction (23.8), or an infinite 

subsequence of its approximants,, co72V€rges for a particular value of f such 

that 3(f) > 0, then it converges uniformly over every closed finite region 

in the half-plane 3(f) > 0, and its value is an analytic function of f in 

this half-plane. [9.] 

In later chapters we shall investigate the class of functions 
represented by positive definite J-fractions. We shall show, in 
particular, that these functions can be expressed by means of 
certain definite integrals. 

26. Bpimded J-fractions. The J-fraction (23.8), where we now 
permit the partial numerators to be zerOy is called bounded, if there 
exists a number M such that 

I ~ 3 > 3, • • •, (26.1) 
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the number M being independent of p. If the J-fraction is 

bounded, then the least number M which can be used in (26.1) 
is called the bound of the J-fraction. 

The condition (26.1) can be formulated in terms of J-forms as 
follows. 

Theorem 26.1. The J-fraction (23.8) is bounded if^ and oydy ij^ there 

exists a number N such that 

'^^^bpUpVp p(Up-f 1 T np^jVp) 

^ ^ (26.2) 
\ p = 1 p — 1 

/or all values of the variables Up and Vp^ the constant N being independent of 

the variables and of n. 

Proof. If (26.1) holds, then we find by Schwarz/s inequality 

that the left-hand member of (26.2) does not exceed 

so that (26.2) holds with N = A/. Conversely, if (26.2) holds, 

then we find, on putting Up — Vp — Uy = Vr = 0 for r 7^ /), that 

I I ^ and, on putting Up = Vpj^i = 1, Uy — Vs = 0 for 

r 9^ py + that \ Up \ < N, Thus, (26.1) holds with 

M = 7>N. 

When (26.2) holds, the J-form — ^ap{UpVp^i + Upj^iVp) 

is said to be bounded, and the least value of N which can be 

used in (26.2) is called the norm of the J-form. We shall also 

call this number the norm of the J-fraction. 

The above proof shows that the norm of a J-fraction does not 

exceed its bound. That the norm may be less than the bound is 

shown by the example 



112 ANALYTIC THEORY OF CONTINUED FRACTIONS 

Here the norm is = 1, whereas the bound is M = f. 

We shall now prove 

Theorem 26.2. A bounded J-fraction with hound M is uniformly con¬ 

vergent for I r 1 ^ 

Proof. Let (23.8) be a given J-fraction with bound M. If the 

J-fraction is transformed by means of an equivalence transforma¬ 

tion so that all the partial denominators are equal to unity, then 

the nt\i partial numerator is 

— ^n-l^ 

{brt-l + f)(^n + f) 

If I r I ^ M and (26.1) holds, this has modulus not greater than 
Hence, by Theorem 10.1, the J-fraction converges uniformly 

for I f I > M. 

We shall now undertake to improve this result by showing that 

there exists a region K in the circle | f | = W, where N is the 

norm of the J-fraction, such that the J-fraction converges for all 

f not in K, To that end, let a = be a complex number with 

modulus unity, and consider the J-fraction 

bia + X — 
{aiaY 

^2^ d" X — 
{a2ay 

b2,a + X — 

X = al, (26.3) 

which is obtained from (23.8) by means of an equivalence trans¬ 

formation. It is easy to see that (23.8) and (26.3) have one and 

the same norm. 

We now put 

n^p(^) = x^(^p^)> /5p(^) = p = 1, 2, 3, - 

Then, if (23.8) is bounded, there exists a finite constant Y{B)y 

depending upon 0, such that 

n n— 1 

T! + y{^)]Xp^ - 2'^ap(d)XpXp+i > 0, 
p — 1 p 1 

« = 1, 2, 3, ■ • 
(26.4) 
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for all real values of Xi, x^, x^, • • •. We may evidently assume 

that 

I y(0) \<N, 0 <d <2ir, 

where N is the norm of the J-fraction. For each 6, we shall let 

— Yo{d) denote the greatest lower bound of the values of 

n n — \ 

p-I p—I 

n 

for w = 1, 2, 3, • • •, and for= 1. Then, | Yo{0) | < Ny 

and (26.4) holds with Y{e) = Yo{ey 

We now make the change of variable X = iY{d) + $ in (26.3). 

It follows from (26.4) that (26.3) is then a positive definite J-frac¬ 

tion in the variable Therefore, if 6 is a positive constant, it 

results from (23.12) that the nt\\ approximant of (26.3), which is 

the same as the wth approximant of (23.8), satisfies the inequality 

^^n(r) 

i5n(r) "5' 

provided that (}(^) ^ i e., provided that 

X sin 6 + y cos 0 > Y{d) + where ^ = x iy. 

This result has the following geometrical interpretation. Let K 

denote the set of points ^ = x iy such that 

sin 0 + jy cos 6 < Y{6) for 0 < ^ < Iw, 

If + iyi, ^2 = *^2 + h'z are any two points of 7f,then every 

r = + (1 ~ t)^2 = [^*^1 + (1 — t)x2] + i[tyi + (1 — t)y2]j 
0 < / < 1, a point on the line segment joining and is in K. 

Thus, K is a convex set. The zeros of all the denominators 

5n(f) are in K, Moreover, the approximants of the J-fraction 

are uniformly bounded over any region at a positive distance 

from K. We shall let Kq denote the convex set of points obtained 

in this way corresponding to the function yo(^) introduced before. 

By Theorem 26.2, the J-fraction converges for all f with suffi¬ 

ciently large moduli. Hence, we may apply the convergence con¬ 

tinuation theorem (Theorem 24.2) and obtain 



114 ANALYTIC THEORY OF CONTINUED FRACTIONS 

Thoerem 26.3. A bounded J~fraction (23.8) converges uniformly over 

every finite closed region whose distance Jf^oyn the convex set Kq defined above 

is positive. In particular^ the J-fraction converges [ f | > where N is 

its norm. [137a]. 

We note the following special cases. If the coefficients 

and b^ are all real, then Yo{0) = Yo{7r) = 0, so that Kq reduces 

to a subinterval of the interval —N < x < -\-N. If the ap are 

pure imaginary and the bp are real and nonnegative, then the set 

Ko is contained in the left half-plane, 91(f) < 0. 

27. Real J-fractions. The J-fraction (23.8) is called real if the 
coefficients ap and bp are all real. A real J-fraction is obviously 

positive definite. If f is replaced by — f in (23.8), we see by means 
of an equivalence transformation that the effect is to multiply 

the J-fraction by —1 and to replace bp by —bp. If the J-fraction 

is real, it therefore follows that the role of the upper and lower 

half-planes may be interchanged. In particular, we have the 

following theorems. 

Theorem 27.1. The zeros of the denominators of a real f-fraction are 

all real [95, 109]. 

Theorem 27.2. If a real f-fraction converges for a single nonreal value 

of f, then it converges uniformly over every finite closed region whose dis¬ 

tance from the real axis is positive^ and its value in each of the half-planes 

•3(f) ^ 3(f) >0 is an analytic function of f in that half-plane. 

[26.] 

For real J-fractions we have, instead of the inequality (23.12), 

the inequality 

for = 3(f) 5-^0, /. = 1,2,3, •••. (27.1) 

Inasmuch as 

3 (^) < 0 for 3(f) >0, /) = 1, 2, 3, • • •, (27.2) 

it follows that the poles of ^p(f)/5p(f), which are all real by 

Theorem 27.1, are all simple and have positive residues. In 

fact, if this were not true for one of the poles, then we could 

Ap(X) 

BpiX) 
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choose a path of f in the upper half-plane approaching this pole 
in such a way that (27.2) would fail to hold. 

Let the poles of the pth approximant be denoted by Xiy X2y 

• • •, Xp, Then Xr ^ x^ for r ^ s, and we have a partial fraction 
development of the form 

Jpj^) Lr 

Bp{t) frf f - ' 
where Lr > 0. (27.3) 

On expanding both members of (27.3) in descending powers of f 
and comparing coefficients of 1/f on either side, we obtain 

V 

= 1. (27.4) 
r« 1 

From results found in § 26, we have 

Theorem 27.3. A real bounded J-fractio?2 of noynn N converges uni¬ 

formly over every finite closed regio7i whose distance froin the real interval 

— N<x< +N is positive. 

We shall now prove the following theorem concerning real 

bounded J-fractions (23.8) in which == 0, /> = 1, 2, 3, • • *. 

Theorem 27.4. A real bounded f-fraction of the form 

(27.5) 

has norm less than or equal to unity ify and only ify the sequence (ap^j is 

a chain sequence (cf. § 19). [139.] 

Proof. If the norm of (27.5) does not exceed unity, then 

w = 2, 3, 4, •••, (27.6) 
p«l 

for all real values of the Xp. Therefore, 
n n~i 

^^pXpXp^i ^ Oj (27.7) 
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SO that, by Theorem 20.1, the sequence (ap^j is a chain sequence. 

Conversely, if {ap'^} is a chain sequence, so that (27holds, 

then the first inequality in (27.6) holds inasmuch as it is the same 

as (27.7), while the second follows from (27.7) if we there replace 
Xp by ( — l)^Xp. Hence the J-fraction has norm not greater than 

unity. 
By means of an equivalence transformation, we may throw 

(27.5) into the form 

_i/r 

1 

I _ 
1 ^~ 

Hence, if we drop the factor 1/^ and then put z = we 
obtain 

1 

1 +- 

1+7- 
a2^z 

1 +- 

The real f-interval —l<;c<+lis carried by the above sub¬ 
stitution into the real z-interval — oo < < —1. On combining 

Theorems 27.3 and 27.4 we then have 

Theorem 27.5. 
fraction 

// 0 < < 1, /? = 0, 1, 2, • • •, then the continued 

1 

1 + 
(1 “ So)g\ 

1 +• 
(1 - g\)g2^ 

1 + 
(^ - ^2)^32 

1 +• 

(27.8) 

converges uniformly over every finite closed region whose distance from the 
real interval — 00 < a; < —I is positive. 
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Exercise 5 

6.1. Let denote the polynomial obtained from Yp(z) by advancing 

the subscripts of all the and l^k by n. Show that the determinate case holds 
if the series 

V 
I 

is divergent [9]. 

6.2. Show that the determinate case holds for a bounded J-fraction. 
6.3. Show that if the limit-point case holds for a positive definite J-fraction 

when f = fo> SCfo) > then the limit-point case holds for all f in the half¬ 
plane 9(f) > 0. [138, 9.] 

6.4. Show that the continued fraction 

1 

1 
1 

1 + f — 
1 

1 +f-. 

may diverge if | f | is less than the bound. 
5.5. Letp = I, 2, 3, • • % be a sequence of functions which are analytic 

for I 2 I < L such that |/,>(2) | < p — 1, 2, 3, * • where M is a constant 
independent of p and of 2, | 2 | < 1. Let 2i, 22, 23, • • • be an infinite sequence of 

points with moduli less than unity such that the series S(1 — | |) diverges, 
and suppose that the sequence of functions converges for 2 = 2p, /> == 1, 2, 3, 

• •Then the sequence converges uniformly for | 2 | < r for every r in the 

interval 0 < r < 1. [4.] 
5.6. A function which is analytic and has modulus not exceeding a constant 

M for every point in the interior of the half-plane R{z) > 0, and which vanishes 

at the integral points 1, 2, 3, • • •, vanishes identically. (Use 5.5 and the mapping 
2 = 1- [2/(1 + w)l 



Chapter J^I 

STIELTJES TYPE CON'llNUED FRACTIONS 

In his celebrated memoir of 1894, Stieltjes [95] developed a 

theory of the continued fraction (28.1) in which the are real 

and positive. We shall connect this continued fraction with a 

certain real J-fraction, and shall be able to discover some of its 

properties by means of known properties of the J-fraction. More 

generally, we shall investigate the continued fraction (28.2), and 
shall obtain a general convergence theorem of Scott and Wall 

[88a], which includes theorems of Van Vleck [107], Hamburger 
[26], and Mall [59]. 

28. Convergence and Divergence of the Continued Fraction of 
Stieltjes. The continued fraction preferred by Stieltjes has the 
form 1 

kiz -T 
1 

(28.1) 

^2 4“ 

hz + 
^4 H“ ' 

where the are real and positive and z is a complex variable. 

It will sometimes be convenient to consider a more general 

continued fraction, namely, 

1 

kiZi + 
^2 + 

kzZ2 + 
^4 + * 

(28.2) 

118 
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where the kp are complex constants and Zi, Z2, Zs, ■ • • are inde¬ 

pendent complex variables. We shall refer to (28.2) as a Stieltjes 
type continued fraction. 

If the kp are all different from zero, then the even part (cf. 

§4) of (28.2) is a continued fraction of the form (16.1), namely. 

l/k, 

Cl + Zj — 
CiCo 

(28.3) 

^2 + ^3 -f Za — 
C‘iC 4 

^4 + ^5 + 

where we have put 

r =-^^103 
^ p it j ^ (28.4) 

It is easy to verify that the approximants of (28.2) can be ex¬ 

pressed in terms of the transformations 

T,{w) = 
lAi 

ri + — 

by means of the formulas 

C1C2 

(28.5) 

^2 + ^3 + 22 — 
^2p—1^2t 

W 

p(^p-}-l "4" ^2p “b ^2p-|-l) 

2p+2 

B 2p-h2 

TpiZp^l ~|~ ^2p) 

(28.6) 

2p-fl 

B 2p-f-l 

From (28.6) we see that the approximants of the continued 

fraction (28.1), in which kp > 0, may be regarded as approxi¬ 

mants of real J-fractions. From this remark it follows (cf. § 27) 

that the poles of the approximants are all real, simple, and have 

positive residues. Inasmuch as the denominators are obviously 

polynomials in 2; with positive coefficients, it follows that these 

poles all lie on the negative half of the real axis. On applying 

(27.3) and (27.4), we then conclude, by (28.6), that the approxi- 
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mants v^2p+2/^2p+2 and ^2p+i/52p+i of (28.1) have partial frac¬ 
tion developments of the form 

^ Lr 
(28.7) 

where Lr > 0, SL^ = lAi, and 0 < < ;c’2 < • • • < Xy,, It fol¬ 
lows immediately that if 2; is at a distance not less than 5 > 0 

from the negative half of the real axis, then the approximants of 

(28.1) satisfy the inequality 

Bp{z) 
<T-T, /> = 1,2, 3, •.*. 

a:i5 

(28.8) 

We are now in a position to prove the following fundamental 

convergence theorem of Stieltjes [95]. 

Theorem 28.1. The continued fraction (28.1), in which the kp are 

positive constants and the series 'iii/kp diverges^ is uniformly convergent over 

every finite closed domain of z whose distance from the negative half of the 

real axis is positive^ a7td its value is an analytic function of z for all z 7J0t 

on the negative half of the real axis. 

Proof. Let 2 be real and positive. Then it follows at once 

from the parabola theorem (Theorem 14.2) that the continued 

fraction (28.1) is convergent if the series 2/^p diverges. Now, 

if G is any finite closed region whose distance from the negative 

half of the real axis is positive, it follows from (28.8) that the 

approximants of (28.1) are uniformly bounded over G. Conse¬ 

quently, by the convergence continuation theorem (Theorem 

24.2), we conclude that Theorem 28.1 is true. 

With the aid of Theorem 6.1 and the second remark after that 

theorem, we readily obtain this theorem. 

Theorem 28.2. The continued fraction (28.1), in which the kp are 

positive constants such that the series hkp converges^ is divergent by oscil¬ 

lation for every value of z. The sequences of even and odd approximants 

converge uniformly over every finite closed region whose distance from the 

negative half of the real axis is positive^ to distinct meromorphic limit- 

functions p{z)lq{z) and pi{f)/^\iz)^ respectively^ whose poles are all on 

the negative half of the real axis. HerCy p{z)y q{z)y ^1(2), and qi{z) are 

entire functions of z which satisfy the identity 

Pl(z)?(z) - i>(2)?l(2) = 1, 
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and are the limits^ uniformly over every finite domain of 2, of the sequences 

{^2p(^)}y {^2pi^)}y ! 1 (2) 1, and {i?2?j-i-i(2) j of the even and odd 
numerators and denominators of (28.1). [95.] 

We have seen that the even part of the continued fraction of 
Stleltjes is a real J-fraction. Stieltjes employed the following 
criterion for determining when, conversely, a given real J-fraction 

is the even part of a continued fraction of the form (28.1) in 

which the are positive. 

Theorem 28.3. A real ffraction 

X() 

h + 
/'3 + 2 ■ 

(28.9) 

in which \p-.i > 0, bp > 0, /> = 1, 2, 3, • • •, 
tmued fraction 

ro 

2 + 
1 + 

C2 

+ 
^3 

1 +• 

is the even part of a con- 

(28.10) 

in which Cp > 0, /) = 0, 1, 2, • • •, provided there exist numbers Pi = 0, 
Pn > 0, « = 2, 3, 4, • • •, such that 

Pn < b„y 
« = 1,2, 3, •••. [95.] (28.11) 

Proof. It is required to show that when (28.11) holds, then 

the system of equations 

Cq Xoj Cl — bi^ 

C1C2 = Xij C2 + Cs = hy 

C^C4 = X2, ^4 + ^5 = ^3) 
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can be solved for Cq, Ciy C2y • * *, and that these numbers are posi¬ 

tive. We have 

C2 

If we assume that 0 < C2n—i ^ Pny then we conclude from the 
equation 

that 

^2n 
^71 ^2 —2 

0 ^2n < P n • 

Therefore, 0 < r2n < Pn+iy w = 1, 2, 3, Since C2n~i = 

\n/c2ny then r2«-i > 0, w = 1, 2, 3, • • •. 
29. The Condition (H). We have seen in § 6 that a necessary 

condition for the continued fraction 

1 

bx + 
1 

^2 + 
_1_ 

bz + • 

(29.1) 

to be convergent is that the infinite series bp \ be divergent. 

More generally, we showed that it is necessary for the convergence 

of (29.1) that the sequence bi, ^2? * * * satisfy a certain condition, 

which we shall now call condition (H), and which is defined as 

follows. 

Definition 29.1. J sequence boy ^3, • • • of complex numbers 
is said to satisfy condition (H) if at least one of the following three 

statements holds, 

(a) The series 2| b2p^\ i diverges, 

(b) The series 2| i'2p+i(^2 + ^4 + * *' + ^2p)^ | diverges, 

(c) lim I ^2 + ^4 + • • * + ^2p I = 00. 
p »=« 

In § 7, we found one important case where the condition (H) 

is sufficient for the convergence of (29.1). We note that if 



STIELTJES TYPE CONTINUED FRACTIONS 123 

kp > Qj p — 1, 2, 3, • • then the series Ihkp diverges if, and only 

if, the sequence ^23 * * • satisfies condition (H). Hence we 

see by Theorems 28.1 and 28.2 that the continued fraction of 

Stieltjes converges if, and only if, the sequence of coefficients 

ku ^2) * * * satisfies condition (H). 

The condition (H) was first used by Hamburger [26] in the case 

of the continued fraction (28.1) in which the kp are real, ^2p+i > 0 

and ^2p ^y {p ^ I3 2, 3, • * •)• He showed that the continued 
fraction converges for 2 nonreal if, and only if, the kp satisfy 

condition (H). (Cf. § 30.) 

The theorem which we shall now give, due to Scott and Wall 

[88a], includes this result of Hamburger as well as an extension 

of Hamburger’s theorem due to Mall [59]. It also includes an 

important convergence theorem of Van Vleck [107]. 

Theorem 29.1. Let ^1, ^3> * * * ke constants such ihat 

kx > 0, k2p^x > 0, m2v) >0, /> = 1, 2, 3, ..., (29.2) 

and let Zj, 22, 23, • • • be complex variables. The continued fraction (28.2) 
converges for 

\zp\<M, /> = 1,2,3, •••, (29.3) 

where S and M are any positive constants, if, and only if, the sequence 

ki, k2, ks, ■ ■ ■ satisfies condition (//). 

Remark 1. By means of an equivalence transformation, we 
may write (28.2) in the form 

i _ _ 
kiizi -1-j- 

-ik2 H-- 

kziz2 H---;- 
-iki + • 

On replacing iZp by Zp, —ik2p by ^2p, and dropping the factor i, 
we see that this resumes the form (28.2) with the inequalities 
(29.2) and (29.3) replaced by the inequalities 

ki > 0, > 0, 3(^2p) <0, p = 1, 2, 3, • • •, (29.4) 
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and 
&(zp)>5, |zp|<M, /> = 1,2,3, •••, (29.5) 

respectively. The statements (a), (b), (c) of the condition (H) 

remain unchanged. Conversely, if (29.4) and (29.5) hold, then 

the continued fraction is equivalent to another of the same form 

which satisfies (29.2) and (29.3). 

Remark 2. Instead of the condition (29.2) we may use the 

more general condition 

k2p-i > 0, dt{k2p) >0, p = 1, 2, 3, • • •, (29.6) 

with the proviso that k2p-i > 0 for at least one value of p. 

(Cf. the remark after Theorem 7.1.) 

Proof of Theorem 29.1. Since | Zp | < M, p = 1, 2, 3, • • •, 

it follows by Theorem 6.2 that it is necessary for the convergence 

of the continued fraction that the satisfy condition (H). In 

case the series 

2^2p+i (29.7) 

and 

S/^2p+l| ^2 + ^4 + ■ • • + ^2p 1^ (29.8) 

both converge, and 

lim I ^2 4- ^4 4-1- ^2p I = «, (29.9) 
an 00 

then the continued fraction converges by Theorem 7.1. Hence, 

there is to be considered here the case where at least one of the 

two series (29.7) or (29.8) is divergent. 

As in the proof of Theorem 7.1, we find that the pth approxi- 

mant of the continued fraction satisfies the inequality 

^ ?-1.2,3, ■■■, (29.10) 
Bp kii 

and therefore Bp 0. 
We have to consider two cases (A) and (B) according as 5^ 0 

for all values of p, or = 0 for one or more values of p. 
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(A) Suppose that kp 9^ Oforp = 1, 2, 3, • • •. If we make the 

substitution (28.4) and suppose that (29.4) holds (cf. Remark 1), 
then 

^(O = > 0, p = 1,2,3, •••. 

Let 7o = 0, 

Pp ~ 72p—2 4“ 72p—1} 

go = 0, 

72p 

72/> + 72P-I-1 
if 72p+l ^ 

Olp 3 (^^^2p—-1^2i> )> 

Then we find that 0 < gp^i < 1, and, since arg r2p-i = arg r2p, 

ap^ = 72p-i72r> = ~ gp-i)gpy P = 1> 2, 3, • • •. 

Therefore^ (28.3) is in this case a positive definite continued fraction. 

Following § 17, we now define the circular region Kp as the 

image of the half-plane 

> Pp-^igp = 72p == 3 (---I-) (29.11) 

under the transformation t — Tp{w) of (28.5). Inasmuch as 

3^(2p+i + C2p + C2p+i) > 72p, 3’(Zp+i + C2p) > 72p, it follows by 
(28.6) that ^2p-h2/^2p+2 and yf2p+i/52p+i both have their values 
in Kp, To prove that the continued fraction (28.2) converges, it 

therefore suffices to prove that the radius Tp of Kp has the limit 0 

for /) = 00, i.e., that the limit-point case holds for the positive 

definite continued fraction (28.3). 

By an argument used before (cf. the beginning of Chapter V) 

and the theorem of invariability (§22), we know that 0 

if 3(2p) > 5 > 0, I Zp I < M, p = 1, 2, 3, • • •, provided that at 

least one of the infinite series 

s|x,(0)|^ s|yp(0)|^ (29.12) 
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is divergent, where the Xp and Yp are the polynomials con¬ 
structed by means of (17.10) for the continued fraction (28.3). 

Our theorem will then be established for the case where kp 9^ 0, 

p = 1,2,3, • • •, if we show that the series (29.12) are the same as 

the series (29.7) and (29.8). But this can easily be done by mathe¬ 

matical induction with the aid of the recurrence formulas 

n = 0, Yi = 1, Xo = ~1, A^i = 0, 

—3^2p—2^p-l(0) + {C2p—2 + ^2p—\)Yp{0) 

C2p~lC2pYp^i (0) = 0, 

— V r2p_3r2p-2A^p-i(0) + (r2p—2 + C2p—i)Xp(0) 

— V" r2p—i^2pA^p+i(0) = 0, 

/> = 1,2,3, 

In fact, we find that 

1^P+1^(0) = ^2pH-l> 

/> == 1, 2, 3, •••. 

Xp+i^(0) = k2p^^(k2 + >^4 + • • • + ^2p)^ (29.13) 

(B) Suppose that kp = 0 for one or more values of p. We shall 

reduce this case to the preceding case, or else to the consideration 

of the convergence of what is essentially a terminating continued 

fraction of the form (28.2). The ideas involved are intuitively 

simple, but the detailed treatment is somewhat tedious. 

We shall associate with the continued fraction (28.2) another 

continued fraction obtained from it by a certain contraction 

process, namely: 
1 
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where, for certain indices tip specified below, 

hi = ^1 + ^3 + • • • + ^2n,—1, 

^2 = ^2ni + ^2«i+2 + • • ■ + ^2«2> 

hz = ^2n2+l + kzn^-l-Z + ' ‘ + k^n-i-l, 

hi = kzn^ + ^2na+2 + ' ' ' + 

hz — kzn-i+l + ^2n44-3 + • • • + ^2na-l> (29.15) 

* > 

hi^l — + kz^z d" • • • “b ^2n,—lZ;ij, 

hzlz — ^2n2+l2n2 + l ~b ^2n2432n2+2 + ‘ + ^2113—l^re,, 

hzt'Z ~ ^2r»a+l2,m-l "b ^'2n4+32n4-(-2 ”b ' ‘ " "b ^2nt,—l^nj, 

The indices «o = 0, «i, «2) «3> • • • satisfy the following conditions. 

0 = «o < «i < «2 < «3 < W4 < «5 < • • •; 0) 

^2n,+i >0, ^ = 0, 2, 4, 6, • • •; (ii) 

^2p+i = 0 for til < p < n2, tiz < p < lU, ti5 < p < riz, 

• • •; (iii) 

^2 *b ^4 "b ■ ■ ■ "b kzp—z 5*^ 0 for 1 <. p <. tii 

implies ^2p-i ~ Oj 

^2 + ^4 "b • • ■ 4" kzn^—z — 0> 

^2«2+2 + kn^+i H-b ^2p-2 0 for tlz < p < tlz 

implies kzp-i = 0, 

^2n,H-2 + ^2n2+4 + ' ' ' + ^2»a-2 = 0> 

^2n4+2 ~b ^2n44-4 + ' ' ‘ + ^2p—2 5^ 0 fo*" tli K p <. tlz 

implies kzp-i = 0, 

k2n^+2 + kznt+i + ' ' ' + ^2nj-2 = 0> 

’ ? 

^2nj + ^2ni+2 H-b ^2p 0 fo*" ^i < p < tl2, 

kzn, 4" ^2n,4-2 4" ' ' ' 4" ^2p ^ 0 fo*" W3 < /> < «4> C'^) 

^2»a 4- ^2«a+2 4* ' ' ' 4" ^2p 5^ 0 for tlz < p < »«, 
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It is easy to verify that all the approximants of (29.14) are approxi- 

mants of (28,2). 
If, by exception, the sequence of indices satisfying the con¬ 

ditions (i), •••, (v) fails to exist, then (28.2) has an infinite 

subsequence of approximants of the form 

J{Wr) =-- 

H-- 

^2 H- 

^3f2 + 

where 
n2w-fr 

Wr = y^^2p+iZp+i. 
V 

1 

1 
h2m H- 

Wr 

(29.16) 

Here the hp are defined as in (29.15) with noy ni, • • •, n2m a finite 

sequence of indices satisfying the conditions (i), •••, (v), and 

the further condition 

0> 

'^2n2„+2 + ^2n2^-f4 + * * ’ + /^2p-2 ^0 for p > «2w (vi) 

implies k2p-\ = 0. 

Inasmuch as at least one of the two series (29.7) and (29.8) 

diverges, by hypothesis, it follows that > 0 for infinitely 

many values of p. 

The case where (29.14) exists will be referred to as Case 1, 

and the exceptional case will be referred to as Case 2. We shall 

prove that when (29.4) and (29.5) hold, and at least one of the 

series (29.7) or (29.8) diverges, then (29.14) converges in Case 1, 

and the sequence (29.16) converges in Case 2. It will then 

remain to be shown that the sequence of approximants of (28.2) 

which are not approximants of (29.14) converges to the value of 

(29.14) in Case 1, and the analogous fact must be established in 
Case 2. 
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We shall first dispose of Case 2. From condition (vi) we get, 
for n > «2m = tr, 

11 

^2 + ^4 + • • * + k2p 1^ 
1 

fT 

= ^ ^^27>4-i| ^2 + ^4 + • * * + ^2p 1^ 

TO 

+ E ^2p + l| ^2 + ^4 + ’ * * + ^2cr + ^2cr-|-2 I 1 ^2p I 
p = a + l 

= ^ ^^2p+l| ^2 + ^4 + • * * + ^2p 1^ 
p«l 

TO 

+ I ^2 + ^4 + • • • + ^2.r ^2p4-l^ 
p = tr-h 1 

and consequently the series (29.7) is divergent. Therefore, the 

sequence (29.16) converges to the finite (cf. (29.10)) limit f{^)- 

All except at most a finite number of those approximants of 

(28.2) not Included in the sequence (29.16) are equal to/(oo) or 
are of the form fiwr + v)^ where 

1 
y =--— ^ ^ ^ 4_ 4. 

^2cr -|-2r -|-2 + ^2<r-f 2r+4 + ••• + ^2p 

Since ^{v) > 0, then 3(ror + i’) > 3(^r), and therefore 

lim/(TO,. + u) =/(<»). 
r=a 00 

Thus, (28.2) converges tof{^)- 
Turning now to Case 1, we first prove that the continued frac¬ 

tion (29.14) converges. To that end, it suffices to prove that it 

satisfies all the conditions used in (A). There will then be asso¬ 

ciated with (29.14) a nest of circles Ki\ X'2', • • •, each con¬ 

tained In the preceding, whose radii have the limit 0. We shall 

show then that, for each w, there exists an Index ji = ii{n) such 

that all the approximants of the original continued fraction 

(28.2) from and after the wth have their values In the circle 

K^'; and lim m(^) == Qo. It will then follow that (28.2) con¬ 
ns® 00 

verges, and the proof of the theorem will be complete. 
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From the formulas (29.15), the conditions (i), •••, (v), and 

(29.4), (29.5), we find that 

0, h2p 7^ 0, -3(^2^) ^ 0, 3(f;)) ^5, I fp I 

Let = /22 + >^4 + • * * + h2p^ Then, by (29.15) and (iv), 

Sp = J-njp, where J'n = + ^4 + * * • + ^2n. It is not difficult to 
show that 2A2p-i-i| = 2^2p-fi| P- Therefore, if at least 
one of the series (29.7) or (29.8) diverges, then at least one of the 

series 2/^2p+i or 2/^2p4-i| Sp diverges. Therefore, by (A), the 
continued fraction (29.14) converges. 

Let Aj!IBp denote the ^th approximant of (29.14). The 

sequence of these approximants is a subsequence of the sequence 

of approximants of (28.2). We shall prove that those approxi¬ 

mants of (28.2) which fall between A2p IB2P and A2p^2 IB2p^2 

in the sequence have their values in the circle Kp^i associated 

with (29.14). This will imply the existence of the index ^(n) 

having the required properties. 

The approximants of (28.2) in question all have the form 

1 

1 
H-- 

^2 H-- 

^3^2 + J-,- 
^4 "1 * 

’•+ 

where w has one of the possible forms 

1 

h2p ^-} 
w 

(29.17) 

— ^2n2r + l2«.2p + l + ^2«22.+32n2,+2 + ’ ’ ' + ^2r-l, 

or 
n^p <r < «2p+i, 

^27i2p*i-l2n2p+l 1 ^2n2p+3^n2p")"2 I ■ + k2r-\Zr 

+ 
1 

^2r + ^2r+2 + ' 

«2p < r < K2p+1> r < S < «2p+2- 

2« 

We note that when (29.4) and (29.5) hold, then 7(w) > 0. 
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Since (29.17) Is the lpt\v approximant of (29.14) in which h2p 

has been replaced by h2p + X/w^itis given by the expression 

where Is the transformation related to (29.14) in the same 

way that Tp_i is related to (28.2) (cf. the first formula (28.6)). 
Inasmuch as 

we conclude Immediately that the value of (29.17) is in the circle 

This is what we wished to prove, and Theorem 29.1 is 

therefore established. 

In case the Zp of (28.2) are all equal to a single complex variable 

2, we have, by (29.10) and the convergence continuation theorem, 

this corollary to Theorem 29.1. 

Theorem 29.2. If ki^ ^2> numbers satisfying the conditions 

(29,2), then the continued fraction (28.1) converges uniformly over every 

finite closed region in the half-plane 5R(2) > 0, and its value is analytic 

in this half-plane ^ provided the kp satisfy the condition {H). If condition 

{H) is not satisfied^ then the continued fraction diverges for every value of z. 

30. Three Convergence Theorems. The first of the three theo¬ 
rems which we shall consider in this section is the following 
theorem of Van Vleck [107], 

Theorem 30.l.'^' IfiR{b^) > 0 and \ | < c^i{bp) forp= 1,2, 3, 

• • •, where c is a positive constant ^ then the continued fraction 

-^-7 (30.1) 

converges ify and only if, the infinite series 2| bp ] diverges. 

Van Vleck used his theorem to obtain Theorem 28.1 of Stieltjes. Besides Van VIeck's 
original proof, and the proof given here (cf. [88a]), other proofs are to b? fpund in [40] 
(cf. [69, § 54]) and in [35]. 



132 ANALYTIC THEORY OF CONTINUED FRACTIONS 

Proof. In the continued fraction of Theorem 29.1, put 

^2p — ^2p3 ^2p—1 — 1 ^2p—1 \y ^2p—l^p ^2p—1 
where 

Zp = 1 if b2p-i = 0. 

Then, 

m2p) > * ^ 
c 

>0, 

~ 1 1 ^ ^2p4-1 ~ 1 ^2p-fl 1 ^ 0, 

I Zp I — 1 < A/, 9i(Zp) > /T~r—2 
V 1 + 

If the series 2| | diverges, then either (a) of condition (H) 

holds (cf. Definition 29.1), or else 2| b2'p | diverges, in which case 

(c) of condition (H) holds, inasmuch as | | V^l + r^9J(^2p)* 

We then conclude by Theorem 29.1 that the continued fraction 

(30.1) converges if 2| ^p | diverges. If, on the other hand, this 

series converges, then the continued fraction diverges by Theorem 

6.1. 
If we require that | 3'(^p) | ^ only for odd values of />, 

we obtain the following theorem of Mall [59]. 

Theorem 30.2. IJ 9?(^i) > 0, ] ^(^-i) | < ^■5R(^2p-i)j where c is a 

positive constant^ and 9?(^2p) ^ 0, (/> = 1, 2, 3, • • •)> ^hen the continued 

fraction (30.1) converges if^ and only ify hy * * * satisfies condition 

m 
Proof. As in the proof of Theorem 30.1, we put 

1 I ^2p—1 |> ^2p “ ^2'py ^2p—“ ^2p—1 
where 

Zp = 1 if b2p^\ = 0, /) = 1, 2, 3, * • •. 

Then, h = \by\>0, k2p+, = I I > 0, = 9?(^2p) > 0, 

I Zp I = 1 < M, and 9i(zp) > 1/(VH- c^) = 5. Hence, by 

Theorem 29.1, the continued fraction converges if, and only if, 

the bp satisfy condition (H). 

The third theorem is the following theorem of Hamburger [26]. 
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Theorem 30.3. If kp is real^ > 0, ^ 0, /> = 1, 2, 3, • • 
then the continued fraction (28.1) converges for all nonreal z if^ and only 

ify the kp satisfy condition (//). When condition (//) holds^ then the con¬ 

tinued fraction converges uniformly over every finite closed domain whose 

distance from the real axis is positive. 

Proof. By means of an equivalence transformation, we may 

throw (28.1) into the form 

kxifz) H..—-- 

— ik2 H--j- 

hiiz) H-rr—— 
+• 

Then, ki > 0, ^2^+1 > 0, —/^2p) = 0. By Theorem 29.1, the 
continued fraction converges for 91 (/z) = —3^(2) > 6 > 0 if, and 

only if, k\y —ik2j ks — ik^y ^5, • • • satisfies condition (H). There¬ 

fore, the continued fraction (28.1) converges for 3(2) ^ —5 if, 

and only if, kiy k2y ^3, * • * satisfies condition (H). Again, by 

means of an equivalence transformation, we may throw (28.1) 

into the form 
— i 

ki{-iz) + 

ik2 + 
h{-iz) + 

ik^ +' 

and conclude, as before, that (28.1) converges for 91( — /2) = 3(2) 

> 6 > 0, if, and only if, k\y ^3, • • • satisfies condition (H). 

Since, by (29.10), the approximants of (28.1) are uniformly 

bounded for 3(2) > 5 > 0 and for 3(z) < —5, we conclude by 
the convergence continuation theorem that, when condition (H) 

is satisfied, then the continued fraction converges uniformly over 

every finite closed domain at a positive distance from the real 

axis. 
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Remark 1. In connection with all three of these theorems, cf. 
Remark 2 following Theorem 29.1. 

Remark 2. Both Theorems 30.2 and 30.3 are here proved in a 
somewhat more general form than is to be found in the papers of 
Mall and of Hamburger, respectively (loc. cit.). 

Exercise 6 

6.1. Show that Stieltjes’ theorem (Theorem 28.1) holds under the more general 
hypothesis > 0, ^ 0, p = 2, 3, 4, • • *. 

6.2. In the continued fraction (30.1)^ put — j Show that if there 
exists a real number c and a positive number a such that 

^ ^ ^2p-i ^ tr -I- TT — a, 
/) = 1,2,3, 

— c — TT a 02p ^ 

then the continued fraction converges if, and only if, the series S| ^p | diverges 
[107]. 

6.3. Let 5i, 52, 53, • • • be any numbers such that 

I 5j, I — dt(8p) < 52p52p4-i > 0, 3(^2p-i -h ^2p) ^0, /> == 1, 2, 3, ' • 

Then, the continued fraction 

1 

5l -f- 52 + 2 — 
5253 

53 + 54 -j- 2 — 
5455 

56 4“ 56 -|- 2 — • 

converges if 2 is outside the region bounded by the lower half of the parabola 
I z I + 9i(z) = 2. 

6.4. Show that the continued fraction (28.9) in which 

Xo = 1, 

X, = (2« - l)(2»)2(2n + 1)P, 

6„ = (2k - 1)2(1 + P), 

k>0, 

is the even part of a continued fraction (28.10) in which Cp > 0. [95.] 



Chapter FII 

EXTENSIONS OF THE PARABOLA THEOREM 

The theorems of this chapter may be regarded as extensions or 

refinements of the theorems of Chapter III, which result from the 

general theory of positive definite continued fractions. 
31. A Family of Parabolic Domains. We specialize the con¬ 

tinued fraction (16.1) by there taking 

bp — — sin <t>p{\ + 8 sec + / cos 
(31.1) 

- ^ < 0P < ^, 2p = 5 > 0. 

Then + Zp = /^^^(l + 6 sec <^p). We require the continued 

fraction to be positive definite, i.e., we require that 

< 2 cos <t>p cos (/)p+i(l - gp-i)gp, 
(31.2) 

0 < gp-i <1, /» = 1, 2, 3,- 

We do not require the Up to be different from zero. 

By means of an equivalence transformation, the continued frac¬ 

tion can be written as l/zV^Xl + 8 sec <t>i) times 

1 

where 

1 + 
1 + 

^2 

1 +• 

2^—t(0p+0p+i) 
n C _ «p cr ' - 

(1 + 5 sec ^p)(l + 6 S€ 
135 

(31.3) 

(31.4) 
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On substituting the value of from (31.4) into (31.2), we get 

the following inequalities for the Cp. 

\cp\- 
2 cos <t>p cos (f>p+i(\ — gp-i)gp 

(1 + S sec 4>p){\ + 5 sec 0p+i)’ 

p = 1,2,3, ■■■. 
(31.5) 

Conversely, if (31.5) holds, then (31.2) holds. 

If Ap/Bp is the pth approximant of the continued fraction 

(31.3), and Ap /Bp is the /)th approximant of (16.1), with bp, 

Zp and ap determined by (31.1) and (31.4), then 

^_1 Ap 

Bp //■'"(I + 5 sec 0i) Bp 

Therefore, if (31.5) holds, it follows from (17.3) that 

Ap ^’*'(1 + S sec <f>\) ^ 1 + 5 sec <b\ 

Bp 2{gQ cos + 5) “ 2(^0 cos 01 + 5) ’ 

/. = 1,2,3, •••, 

provided > 0 or 5 > 0. 

We have thus proved the following theorem. 

(31.6) 

Theorem 31.1. Let the partial numerators Cp of the continued fraction 

(31.3) satisfy the inequalities (31.5), where 5 > 0, and 

^ < 0p < ^ , 0 < 1 ^1, /> — 1, 2, 3, 

If go ^ or b > Q, then the approximants of the continued fraction satisfy 

the inequalities {3\.6). [139.] 

This is a generalization of Theorem 14.3. In fact, we see that 

this theorem is the special case <t>p = 0, ^p_i = \, p = 1, 2, 3, 

•••,5 = 0, of Theorem 31.1. 

Geometrically, the inequality (31.5) means that, for each p, Cp 

has its value in a certain parabolic domain depending upon p. 

In contrast with the parabolic domains of Chapter III, the axes 

of these domains do not necessarily coincide with the real axis. 

From Theorems 5.1, 16.1 and 17.1, we have immediately 
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Theorem 31.2. If the inequalities (31.5) hold with d > 0 or with 

> 0, p = 0, 1, 2, • • *5 then the denominators of the continued fraction 

(31.3) are all different from zero. Hence ^ the continued fraction converges 

in this case when some partial numerator Cp vanishes [9]. 

If S > 0 and the determinate case holds for the continued frac¬ 

tion (16.1) equivalent to (31.3), then the latter converges. By 

Theorem 25.1 and (31.4) we therefore have 

Theorem 31.3. If the inequalities (31.5) hold with 5 > 0, and if the 

series 

“^1 i(l + b sec (t>p){\ + b sec ^p+i) 

diverges^ then the continued fraction (31.3) converges, 

32. “Convergence Neighborhoods” of a Point (2). In § 15 we 

found that every point c with real part greater than — j is the 

center of a circular region which is a convergence region for the 

continued fraction (31.3). Perron [69] showed that this holds if 

c is not real and less than or equal to —j. Pay don and Wall 

[68] proved the following more general theorem. 

Theorem 32.1. Let W be a finite closed region containing c. Then 

W is a convergence neighborhood of c for the continued fraction (31.3) 
provided there exists a parabola with focus at the origin^ not containing the 

point —-j in its interior^ which contains W in its interior. 

Proof. Let | 2 | — = h, h > Oy he a parabola with 

focus at the origin, passing through —J, which contains /F in 

its interior. Then we must have 

TT TT cos^ (t> 
- - < <t> <~y h = —T- 

2 2 2 

Thus, if Cp is in /F, then 

\ Cp\ — iR{cpe^^) < 
COS^ 0 

2(1 + 5 sec (t>ff ^ 

provided S is a sufficiently small positive number. That is, 

(31.5) is satisfied with == 0, gp^i = ^, 6 > 0. Since is a 

finite region, we conclude from Theorems 31.2 and 31.3 that the 
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continued fraction converges when the Cp are in JVy i.e., /F is a 

convergence set for the continued fraction. 

From Theorem 31.1 we have at once 

Corollary 32.1. The approximants of the continued fraction 

(31.3) do not exceed (2 + 25 sec 4>)/(cos <j> + 25) in absolute value, 

provided the Cp are in the domain W. 

33. A Theorem of Van Vleck. We shall now prove the follow¬ 
ing important convergence theorem of E. B. Van Vleck [110]. 

Theorem 33.1. Let hp, p — \, 1, Z, ^ , be a sequence of numbers 

having a finite limit h. In case h 3^ 0, let L denote the rectilinear cut from 

Fig. 5. 

— 1/4A to 00 in the direction of the vector from 0 to /Ah. Let G denote an 

arbitrary finite closed region whose distance from L is positive, or, in case 

h = 0, an entirely arbitrary finite closed region. There exists an index N, 

depending only upon G, such that the continued fraction 

-— (33.1) 

1+-^2!- 

1 I 

1 +• 

converges uniformly over G for n > N. 
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Proof. If ^ = 0, it is only necessary to choose so large that 

I hpZ I < ior p > Ny and for z in G, and then to apply Theorem 

10.1. 
K h 7^ 0 and z' is in G, then hz' is not on the real interval 

00 < X < — J. By Theorem 32.1 and Corollary 32.1, together 

with the convergence continuation theorem, we therefore conclude 

that there exist an index N(z^) and a circle G(z') with center z\ 

such that (33.1) converges uniformly for z in C(z^), provided 

n > A"(z'). Since G is a finite closed region, we may select from 

the family of circles G(z') a finite set of these circles such that 

every point of G is interior to at least one of them. Let ISI denote 

the larger of the finite set of indices A^(z') which correspond to the 

circles selected. Then (33.1) is obviously uniformly convergent 

over G \{ n > N, 

The above theorem can be generalized in the following way. 

Suppose that there are k finite numbers (Ti, a2y • • (Tky such that 

lim hnk-\-v ~ f^I* P • • • , 

For the sake of simplicity, let ^ = 2. For any the even part 

of (33.1) can be thrown into a form where the partial denominators 

are unity, and the partial numerators are 

^n-f 2 p^n-f-2p 4-12* 

(1 + A n42j)—“b ^w42p^)(l “f~ ^242p4l2’ “b >^7142^42^) 

For p = 00^ this becomes 

T(z) = 
— <71(722;^ 

(1 + (T\Z + (72Z)2 

The odd part gives exactly the same expression. One can now 

conclude, by the argument used in proving Theorem 33.1, that if 

G is any finite closed region at a positive distance from the curve 

along which T{z) has its values in the real interval — oo < at < 

— J, then there exists an index N such that the even and odd 

parts of (33.1) converge uniformly over G if w > A^. Since the 

region G can always be chosen so that it contains the origin on 

its interior, and since, by Theorem 10.1, (33.1) converges in a 

sufficiently small neighborhood of the origin, we conclude that 

the even and odd parts must have a common value. Therefore, 
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if n > Ny the continued fraction (33.1) converges uniformly 

over G. In this case the cut is the curve into which the real 

interval —oo <^< —| is transformed by the transformation 

/ = T{x). For further details, cf. [121], 

34. The Cardioid Theorem. We now specialize (16.1) by 

taking bp — ihy h > 0, Zp = 2, (/> = 1, 2, 3, • • •)• The condition 
for positive definiteness then becomes 

I - 0 < < 1, 

p = 1, 2, 3, • • •. 
(34.1) 

Instead of (31.4) we now have 

where 

(34.2) 

(34.3) 

Since 2 = / for / = 1/(1 + >4)^, we must take that branch of V/ 

which is real and positive for t real and positive. In the /-plane 

we make a cut from 0 to — oo along the negative half of the real 

axis, thus: 

^ = 1 

Then, by (34.3), 

so that 

/ k —2t> H >0, 
It TT 

X < <t> <;z- 2 2 

3(2) /T~i ^ 
V|/| 

- h. 

(34.4) 

If A = 0, then 3*(2) >0 for all t in the domain (34.4). 

If A > Oj then 3(2) > 0 if, and only if, 

U I < ^ (1 + cos 2<t>), ~ ^ ^ arg/ = --2<t>. (34.5) 
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Fig. 6. 

Let G be any finite closed region of the /-plane in the domain 

(34.4) if ^ = 0, or in the cardioid domain (34.5) if A > 0. Then, 

if <7 is a sufficiently small positive constant, we shall have (}(z) > <t 

for all / in G, and consequently the approximants of the continued 
fraction 

1 

1 + 
ai^t 

1 + 
1 +• 

(34.6) 

are uniformly bounded for / in G. Now, if / is real and 

0 < / < 
4A=*’ 

(34.7) 

then it follows from (34.1) that | j — 91(flp^/) < \,p = 1, 2,3, 
• • •. Hence, for these values of /, we may apply the parabola 

theorem to (34.6), and conclude that it converges for / in the 

interval (34.7) provided that (a) some a-p vanishes, or (b) Up 0, 

p = 1, 2, 3, • • •, and the series 2| kp | diverges, where 

ky = 1, 
1 

kpkp^x 
, p = 1, 2, 3, • • •. (34.8) 



142 analytic theory of continued fractions 

By the convergence continuation theorem, we therefore conclude 

that (34.6) converges uniformly over G if (a) or (b) holds. Simi¬ 

larly, if the series kp\ converges, then we find that the even and 

odd parts of (34.6) converge uniformly over G to distinct limit- 

functions. 
We have thus proved the cardioid theorem [68, 9]: 

Theorem 34.1. Let the partial numerators a^ of the continued fraction 

(34.6) satisfy the inequalities (34.1). Let G be any finite closed region 

in the t-plane which is in the domain (34.4) if h ^ or in the cardioid 

domain (34.5) if h > Q. The continued fraction (34.6) converges uni¬ 

formly over G if (a) so?ne a^ vanishes^ or (b) 7^ 0, ^ = 1, 2, 3, • • •, 
and the series 2| | diverges^ where the kp are given by (34.8). If this 

series converges^ then the even and odd parts of (34.6) converge uyiiformly 

over G to separate limits^ and the continued fraction diverges by oscillation 

for all t in G. 

Remark. If ^ = 0, this theorem is essentially Stieltjes' theo¬ 
rem, Theorem 28.1. 

An arbitrary value t in the interior of the cardioid domain 

(34.5) can be expressed in the form 

r cos^ <t) 
-2i<t> 

0<r<l, -^<</)<^, h > 0. 

If we combine (34.1) and (34.2), we then obtain the inequality 

yticpc^^^) < Ircos^ 0(1 - gp-i)gp 
(34.9) 

P -= 1,2, 3, •••. 

Therefore, by Theorem 34.1, we have immediately [68, 9] 

Theorem 34.2. If the partial numerators Cp of the continued fraction 

1 

1 + 
Cl 

1 + 
_^ 
r+T 

satisfy the inequalities (34.9) in which —(tt/I) < 0 < (ir/l), 0 < r < 1, 
0 < < 1, ^ = 0, 1, 2, * •', then the continued fraction converges if^ 
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and only ify (a) some Cp vanishes^ or (b) Cp^^^p ^ 1? 2, 3, • • •, and the 

series 2)| kp j diverges^ where kx = 1, p = 1, 2, 3, • • •. 

If <^> — Oy gp = 2> “ 0, 1, 2, • • then, if it were allowable to 

have r = 1, this theorem would reduce to the parabola theorem. 

It is reasonable to conjecture that Theorem 34.2 holds even for 

r = 1. However, our method of proof does not permit this value 

of r. Having r = 1 is equivalent to allowing the region G of the 

cardioid theorem to have boundary points upon the boundary of 

the cardioid domain. 

35. An Extension of a Theorem of Szdsz. Szasz showed that 

the continued fraction 
1 

1 + 
1 + 

^2 

(35.1) 

converges if the Cp are not zero, provided the series S| | con¬ 

verges and provided 2(| Cp | — 3J(cp)) < 2. This may be re¬ 

garded as an extension of von Koch’s theorem, Theorem 12.1. 

In the following theorem, we drop the requirement that the Cp 

be different from zero and the requirement that the series 2| Cp | 

be convergent, and employ an extended form of the condition 

2(1 I - < 2. 

Theorem 35.1. If 

n 

X) (Up 1 - < 2 cos" 0, « = ], 2, 3, • • •, (35.2) 

where —(t/2) < <p < (7r/2), then the continued fractio7i (35.1) converges 

ify and only //, (a) some Cp vanishesy or (b) Cp 7*^ 0, /> = 1, 2, 3, • • •, 
%nd the series 2| kp | divergesy where ^1 = 1, Cp = 1/^p^p+i, p — 1, 2, 3, 
... [139,9.] 
Proof. Let 

^ I fp I - 9t(fpg"^) 
“ 2 cos" <t> 

n 

Then, Cp > 0, and, by (35.2),^^Cp < 1, « = 1, 2, 3, •••. 
p-1 
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Therefore, by Lemma 12.1, the sequence {Cp] is a chain sequence 

whose minimal parameters Wp satisfy the inequalities 0 < Wp < 1, 
/> = 0, 1, 2, •••. Moreover, by Theorem 12.1, the continued 

fractions 
1 

~ 1— 

/) = 0, 1, 2, 

are convergent. Therefore, by Theorem 19.4, the maximal param¬ 

eters Mp of the chain sequence [Cp] are all positive. We may 

then write Cp = (1 — Mp_^Mp^ or 

I ^p I — = 2 cos^ <t>(l — Mp^i)Mpy 0 < Mp_i < 1, 

/) = 1,2,3, •••. 

If we now put Cpe~^''^ = then (35.1) can be written as 

times the continued fraction 

1 

- • 

This is a positive definite continued fraction (16.1) in which 

bp = /3p = cos 0 > 0, Zp = 0, 

On applying Theorem 17.1, we then conclude that its denominators 

are all diflPerent from zero, so that the denominators of (35.1) 

are all different from zero. Therefore, (35.1) converges in case 

some Cp vanishes. 

Suppose that Cp 5*^ 0, p = 1, 2, 3, • • •. By (35.2) we may 

choose ?7 such that 

I ^p I — diicpC^^^) < 2r cos^ 0(1 — 1)1, for p > ny 



EXTENSIONS OF THE PARABOLA THEOREM 145 

where 0 < r < 1. Therefore, by Theorem 34.2, the continued 
fraction 

1 

1 + 
C n 

1 
1 +• 

converges when the series S| | diverges. If we denote its value 
by y, then (35.1) must converge to the value 

^n—\ ”1“ Cn—\V/lyi—2 

—1 “h —1^-^n—2 

(35.3) 

where is the ^th approximant of (35.1), provided the 

denominator of this expression is not zero. Now, by the deter¬ 

minant formula. 

Cn—l^An--2)Bn—2 ~ {Bn—I + Cn—lvBn—2)^n~2 ^ 0, 
so that the numerator and denominator of (35.3) cannot vanish 

together. Inasmuch as the approximants of (35.1) have moduli 

not greater than 1/Mo cos 0, it follows that the denominator of 

(35.3) is not zero, so that the continued fraction converges. 

If the series 2| | converges, then the continued fraction 

diverges by Theorem 6.1. 

The proof of Theorem 35.1 is now complete. 

Exercise 7 

7.1. Show that if t is in the domain G of the cardioid theorem, then the approxi¬ 

mants of the continued fraction satisfy the inequality 

2 cos (/) — A(1 — ,g‘o)'\/| / I 

1 

2 cos 0 - h{\ - gQ)y/\ 11 ’ 

P = 1, 2, 3, 

7.2. Show that the approximants of the continued fraction of Theorem 34.2 

satisfy the inequality 

Bp 2 cos <#>[1 - (1 — ^o)Vr] 
< 1 

2 cos<#>[l - (1 ~ iro)\/r] 



Chapter Fill 

THE VALUE RECJION PROBLEM 

By the value region problem for a continued fraction, we shall 

understand the problem of determining a region V of the complex 

plane in which the values of the approximants lie when the ele¬ 

ments of the continued fraction are restricted to have their values 

in a preassigned region E. We shall restrict our attention to con¬ 

tinued fractions of the form 

1 + 
1 4- 

C2 

1 +’ 

(a) 

and shall call the pair of regions (£, V)^ having the above de¬ 

scribed property, a solution of the value region problem. A so¬ 

lution {E^ V) is called minimal if V is closed and if, moreover, the 

closure of contains V whenever (£, is a solution. Thus, 

if (£, ^ is a minimal solution, then the region V contains all the 

limit-points of the set of values of the approximants of the con¬ 

tinued fraction whose elements Cp are in and is the smallest 

closed region having this property. 

In the preceding chapters, we have found two solutions of the 

value region problem for the continued fraction (a), namely, 

E:\z\^ 5R(2) < i F: I z - 1 I < 1, 

(Theorem 14.3); and 

£;h| <i, <», 
146 
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(Theorem 10.1). Both these solutions (£, V) are minimal 
solutions. 

In the present chapter we propose to treat the value region 
problem in some detail, with a view toward correlating a number 

of results, including the two cited above. 

36. A Sufficient Condition. In the investigation of the value 
region problem, the following theorem is often useful [87]. 

Theorem 36.1. Let 

be a linear transformation of the variable t into the variable the transforma¬ 

tion depending upon the parameter 2. Let E and V be two regions having 

the following two properties. 

(a) The region V contains the point 1. 
(b) The transfonnation s = s{z; t) transforms V into all or a part of 

itself for every value of the parameter z in E: 

s{z; V)(Z Vy for all z in E. 

Under these conditions^ (£, V) is a solution of the value region problem 

for the continued fraction 

1 

1 + 
Cl 

1 + 
C2 

1 +• 

(36.1) 

Proof. By (a), the first approximant Ai/Bi = 1 of (36.1) is 

in V. By (a), (b), 
1 

s{Cn, 1) = 7--= «- 
1 + Cn 

is in V. Hence, by (b), 
1 

s(^Cn—1, W71) —1 

1 + 



148 ANALYTIC THEORY OF CONTINUED FRACTIONS 

is in V. Therefore, again by (b), 

S^Cn—2> —l) “ “ 
1 

1 + C n—2 

^n—2 

1 + 
^ n—1 

1+^71 

is in F, Continuing in this way we conclude, finally, that 

1 ^n-+l 

^1 
s(ci; U<2) — 

1 + - - 

1 + ___ 
1 +T' 

is in Fy and the theorem is proved. 
+ T 

37. The Two-Circle Theorem. We now consider the problem 

of determining conditions upon the parameter z in order that the 

transformation s = s{z; t) carry a given circular region H into 

all or a part of another given circular region K, We have the 

following theorem of Lane [47], which will be used later on to 

obtain solutions of the value region problem. 

Theorem 37.1. Let H and K be arbitrary circular regions oj the form 

H: \ w — c \ < p\ c\^ K:\w — d\ < q\ d\y c^d Oy P > ^ > ^y 

in the complex w~plane. Let s ~ s(z; w) = 1/(1 + zw) be a linear trans¬ 

formation oJ the variable w into the variable j, the transformation depending 

upon the parameter z. This transformation carries H into all or a part 

of K if^ and only if, 

p\A-^ 

2 + 
I I(!_-/) 

cdz + cdz + d + d — 1 

d(l - g^)) ’ 

2\cd\ 

d(l - i) 

> if 4 = 1. 

if 4 < 1. 

(37.1) 

11 1(1 -4^) 
+ 2 + if 4>i- 
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Remark. It may of course happen that there is no value of 2 

for which (37.1) holds. It can be shown that the domain of z 

is nonvacuous if, and only if, one of the following three conditions 
holds: 

(a) K contains the point 1; 

(b) K contains the origm and H does not contain the origin \ 

(c) Neither H nor K contains the origin and 

- P^) 

?(l - 

Inasmuch as we do not make use of this criterion, we shall omit 

the proof (cf. [47]). 

Proof of Theorem 37.1. One may verify directly that z = 0 

satisfies (37.1) if, and only if, K contains the point 1, i.e., if, 

and only if, j(0; //) = 1 C AT. We therefore need consider only 

values of z which are different from zero. It is required to show 
that such a value of 2 satisfies (37.1) if, and only if, j(z; H) C 

i.e., if, and only if. 

1 ^ ^ I ^ p\ c\ implies 
\ + zw 

(37.2) 

We introduce a new variable f by means of the equation f = zw/c 

or w ~ c^/z. Then (37.2) holds, if, and only if. 

I f — 2 i < ^1 z I implies 
1 / 1\ 1 

1 

+
 < (1 f+ - 

c 
(37.3) 

Let A and B denote the f-regions (depending upon z), defined 

by the inequalities in (37.3). It is required to find a necessary 

and sufficient condition on z, z 7^ 0, such that A C. B, This condi¬ 

tion is obviously as follows. The center z oj the circular region A 

lies within B at a distance at least p\ z | from the nearest point of the 

boundary of B, There are three cases to be considered, according 

as < 1, ^ = 1, or ^ > 1. 

Case /. Suppose that q <\, In this case, B is the region 
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Hence, it follows immediately from the above stated condition on 

the center z of that A (Z B if, and only if, the first of the 
inequalities (37.1) holds. 

Case 2, Suppose that q — In this case, B is the region 

cd^ + cd^ d -]r d ^ \ ^0. 

We then conclude by the same reasoning which was used In Case 1 

that A (Z B and only if, the second inequality (37.1) holds. 

Case 3. Suppose that q > \. In this case, B is the region 

Cd\{q^ - !)■ 

Hence, as before, A Z B if, and only if, the last inequality (37.1) 

holds. 
38. Circular Element Regions with Centers at the Origin. 

Continued fractions of the form (36.1) whose partial numerators 

have their values in the neighborhood of the origin are of con¬ 

siderable importance in analysis. (Cf., for Instance, some of the 

examples in Chapter XVIII.) The following theorem furnishes 

estimates for the values of such continued fractions [68]. 

Theorem 38.1. A minimal solution of the value region problem for the 

continued fraction (36.1) is given by 

*■+K' “ <i(i - V)) 

E:\z\< r(l - r), F: z 0 < r < |. (38.1) 

Proof. In the two-circle theorem (Theorem 37.1), take 

Since 0 < ^ < 1, (37.1) gives for z the condition | z | < r(l — r); 

and the regions H and K of Theorem 37.1 are one and the same 

region, namely, the region F of (38.1); and since F contains 

the point 1, and since s{z; F) C F for every z in £, it therefore 

follows by Theorem 36.1 that (£, F) is a solution of the value 

region problem for the continued fraction (36.1). 
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To prove that this is a minimal solution, consider the continued 
fraction 

1 

1 + 
Cl 

1 + 
r(r — 1) 

1 + 
r{r - 1) 

1 +• 

(38.2) 

If I ^1 I ^(1 this continued fraction converges by Theorem 
10.1. Since it is periodic from and after the third partial quotient, 

one may readily find that its value is 

1 — r 
V =--• 

1 — r + Cl 

As Cl ranges over the region E of (38.1), v ranges over E, 

This completes the proof of Theorem 38.1. 

Since the continued fraction (36.1) converges if the Cp are in 

the region E of (38.1), and since E contains 0, we may speak of 

the values of the continued fraction, and these values include 

all the values of the approximants. We shall now prove that the 
values of the continued fraction are, in general, on the interior of 

the region F. In fact, we have this theorem. 

Theorem 38.2. The only continued fraction (36.1), with partial 

numerators Cp in the domain E of (38.1), which takes on values upon the 

boundary of the domain V of (38.1), is the continued fraction (38,2) with 

1 = K1 - r). [68.] 

Proof. We have seen that the continued fraction (38.2) takes 

on every value v on the boundary of as C\ ranges over the 

boundary of E. We write such a value in the form 

1 + r. 
V = ---, 0 < <j} < Iwy 

1 — F 

and consider any continued fraction (36.1) with partial numerators 

Cp in Ey whose value is v. Such a continued fraction is equal to 
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1 
V = 

1 + CiW ^ 

where w is the value of another continued fraction of the form 

(36.1) with elements in E. We then have 

CiW = 

so that 

I — V —r[2r + (1 + cos 0 + /(I — r^) sin 0] 

1 + 2r cos (j> + 
(38.3) 

CiW ^ I = 
w 

r(l - r) 

Inasmuch as w is in we have 

1 
w < 

1 ‘’ {I — r)\ w 

(1 - r)| 

> 1, 

w 

and consequently | (Ti | > r(l — r). On the other hand, | | < 

r(l — r) since Ci is in E, Therefore, 

[ = r(l - r), \w\=- 
1 1 

1 — r ^ 
w = 

1 - r 

On putting this value of w in (38.3), we find that the value of Ci 

is thereby uniquely determined. 
Starting now with w = 1/(1 — r) as the value upon the bound¬ 

ary of F to be attained, we find in the same way that C2 must be 
given by the expression in the right-hand member of (38.3), 

multiplied by 1 — r, but with <t> now set equal to zero. This gives 

C2 == r(r — 1); and on repeating this argument we find that 
C4y C5, ■ • • all have this same value. On referring to (38.2) we 

now see that the proof of the theorem is complete. 
39. A Family of Parabolic Element Regions. We turn now to 

the case where the element region E is the region bounded by a 

parabola with focus at the origin, 

1 z I — 9?(z^"'^) < 2 cos^ ^ hy (39.1) 

where —7r<<#)<+7r, Q < h < On putting (t>p = 0/2, 

6 = 0, (1 — gp^i)gp = h (cf. Theorem 19.1), in (31.5), we see by 
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Theorem 31.1 that a corresponding value region V is the region 

sec (<^/2) ^ sec (<^>/2) 

1 + Vl - 4A - 1 + vT=^‘ 
(39.2) 

We have taken = (1 + ^1 — ^h)l7.^ in accordance with 
(19.13). When (/> = 0, = |, we know that this is a minimal 

solution of the value region problem (cf. Theorem 14.3). 

In the present section we shall improve the above result in the 

case where h < \. 

If we put 2 cos^ {<f)/2)-h = //2 in (39.1), and write a — 

then the inequality defining the region E takes the form 

E\ az az t >l\z\y a = e^'^^y 
(39.3) 

(h 
— 7r<<t)<Ty 0</< cos^ — ' 

- 2 

To obtain a corresponding value region, we start with two circular 

regions of the form 

H:\z — c \ <\ c\y A": I 2 —■ ^ I < I I, c ^ Oy d 9^ Oy 

and apply the two-circle theorem. We find at once that 

s{z; H) C K if, and only if, 

cdz + cdz + d + d — \ > 2| |; (39.4) 

and that s{z; K) C H if, and only if, 

cdz + cdz + c + c — I > 2| cdz |. (39.5) 

The domain E of (39.3) will be contained in the intersection 

of the domains (39.4) and (39.5) if, and only if, 

cd d d — I c c— \ 

cd\ ^ I I ~ ’ \ cd \ ~~ 
(39.6) 

If c and d satisfy these conditions, we shall say that (c, d) is a 

solution of (39.6). We shall write H = H{c) and K = K{d). 

In (39.4) and (39.5), let Cy d be such that (r, d) is a solution of 

(39.6). If 2 is any point of £, so that 2 is in both (39.4) and (39.5), 

then j(2; //(c)) C K{d) and ^(2; K{d)) C H{c). Therefore, 

‘^(z; E^cd) C Vcd^ where V^d is the intersection of H{c) and K{d). 
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From (39.6) it readily follows that V^d contains the point 1. 

By Theorem 36.1 we therefore conclude that (£, Vcd) is a solution 
of the value region problem for the continued fraction (36.1). 

Let V denote the intersection of all the regions Fed as (c, d) 

ranges over all solutions of (39.6). Then ^(z; C for all z 

in £, and V contains the point 1, so that (£, V) is a solution of 

the value region problem. 

We shall now prove the following theorem, which will facilitate 
the construction of the region V by successive approximation. 

Theorem 39.1. Let W denote the set of all points c such that for some 

c 
1 

'kt 
< 

Vi - kt 

kt 
> c 

Vi - {t/k) 
t 

(39.7) 

Then the value region V just defined^ corresponding to the element region 

E of (39.3), is the intersection of all the regions \ z — c \ < \ c \ as c ranges 

over W [47]. 

Proof. The totality of solutions (r, d) of the system (39.6) is 

identical with the totality of pairs (r, kac)^ where c and /^ > 0 

satisfy (39.7). In fact, if (r, d) is a solution of (39.6), then from 

the last of those relations we get 

^ T ^ — 1 

cc 
> kty where k = 

d 

c 

Also, since a\ cd\ — cd^ we have 

ced ced 
ac ac — tcc — ^4- 

Consequently, 

cd 

c 

cd I 
tcc 

+ ^ - 1) + 1 - /| |] > 

c c — 1 
> kt > 

cc ac ac — tcc 

which is equivalent to (39.7). Moreover, 

d 

r>0. (39.8) 

d = • ac = kac. 



THE VALUE REGION PROBLEM 155 

Conversely, let c and k satisfy (39.7), i.e., (39.8). Then one may 

readily verify that c and d = kac satisfy (39.6). 

If (c, d) satisfies (39.6), then f is in TT and, by symmetry, d 

is in W. Let Vi denote the intersection of all the circular regions 

I z — ^ I <\c\{oTcm]V, We are to show that where 
V is the region defined above as the intersection of all the regions 

Vcd- If z is in then z is in every circle \ z — c\ — \ c\iovc 

in fVy so that V and if z is in then z is in every region 

Vcdy so that VxC. y* Hence, V — and the proof of the 
theorem is complete. 

Since E is nonvacuous, it is clear that V is nonvacuous. Let 
us consider the range of ^ > 0 such that (39.7) has a solution c. 

A necessary and sufficient condition for (39.7) to have a solution 

c is that 

1 

kt 

V\ - kt 

It + 
- (t/k) 

t < k y 

i.e., that ^ 

k{t — cos </>) < V/&(1 — kt){k — /), f < k < - y (a = 

Therefore, (39.7) has a solution c if, and only if, 

0 < / < cos 0, t < k < - y (39.9) 

or else, 
1 sin^ <t> 1 ^ ^ 

/ > cos <t>y —[- k < 2 cos <t> H-, t < k < -‘ (39.10) 
k t t 

The minimum of {\/k) + k for k > 0 is 2. Then 2 cos <l> + 

(sin^ 0)A > 2 if, and only if, / < cos^ (0/2), which is the condition 

imposed upon / in (39.3). Since cos 0 < cos^ (0/2), this condition 

upon / is necessary also under (39.9). We have proved 

Theorem 39.2. The values of k for which the simultaneous inequalities 

(39.7) have solutions c are given by (39.9) and (39.10). In particulary 

they have a solution c if k 1. 

If / = cos^ (0/2), then (39.7) has a solution only when ^ = 1, 

whereupon c is uniquely determined, and JV has but one point. 
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If / < cos^ (</>/2), then JV contains more than one point. There¬ 

fore ^ the boundary of V is a circle if^ and only if^ t = cos^ (</>/2). 
We find that the equation of this circle is 

which is the same as the region (39.2), for h == 
If <^ = 0, so that 0 < / < 1, ^ = 1, the boundary of V may 

be obtained as follows. The inequalities (39.7) now coincide, so 
that V is the set of all points w such that 

\ w — c \ < \ c\ (39.11) 

for all c in the circular region 

1 Vi - / 
r - 7 <--- (39.12) 

If w is any fixed value such that (39.11) holds, then c lies in the 

half of the /^-plane defined by wu + wu — ww >0. If this is 

to hold for all c satisfying (39.12), then \/t must lie in this half¬ 

plane, at a distance at least (1//) V 1 — / from the boundary line, 

i.e., 

wt~^ + — ww Vl ■— t 

2\ w \ ~ t 

Conversely, if w satisfies this inequality, then w is in V, Thus 

the region V is the region bounded by the inner loop of the limagon 

2 + 2 — = 2V1 — /1 z |. (39.13) 

One can readily show that this solution of the value region prob¬ 

lem is minimal [55], In fact, as z ranges over the parabola 

2 + z + />/|2| bounding £, the value w of the continued frac¬ 

tion of Exercise 2.1, which satisfies the equation wwz + «; — 1 

= 0, ranges over the boundary of namely, the inner loop of the 

lima^on (39.13). 
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Exercise 8 

8.1. Show that a solution of the value region problem is given by 

£:rlzl< 
“ 1 ^2 1 

where 0 < r < 1. The boundary of is a natural generalization of a conic 
section. It is the locus of the point P whose distance from the circle 

1 1 - r' 
, (directrix), 

is r (eccentricity) times its distance from the origin (focus) [47]. 
8.2. If \ ^ c < 2, then 

£: ! 2 I - 5R(2) < , /^:|2--|<- 
2c ‘ c \ c 

is a solution of the value region problem. 

8.3. If a value region is a region whose boundary is a circle C passing 
through the origin and containing 1 on the interior, if E is a corresponding ele¬ 

ment region, and if there is a continued fraction (36.1) with its elements in E 
whose value is on C’, then there is only one such continued fraction [68]. 
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FUNCTION THEORY 





Chapter IX 

J-FRACTION EXPANSIONS FOR RATIONAL 

FUNCTIONS 

In this chapter we consider the problem of expanding a rational 
function of a variable z into a J-fraction, with particular emphasis 

upon the development of an algorithm suited to numerical com¬ 

putation. These expansions have applications in the theory of 

equations (cf. Chapter X), and are useful in certain problems in 

physics, for instance, in the theory of electrical networks. 

40. The Expansion Algorithm. For the purposes of the present 

chapter, it will be convenient to write the J-fraction in the form 

-^-- (40.1) 

riz + d-- 

r2Z + H-;-;- 
rsz + .^3 + • 

The rp and Sp are complex numbers of which 5*^ 0, (p = 1, 2, 3, 

• • • )• The pt\i approximant is a rational fraction whose numerator 
and denominator are of degrees p — \ and />, respectively, whose 

coefficients are certain polynomials in the Vn and Sn- 

Let 

/o = ^ H-h ^On, 

/l = ^\lZ^~~^ + + * • • + 

(40.2) 

be two polynomials of degree n and w — 1, respectively. The 

problem of determining numbers rp 7^ 0 and Sp^ p = 1, 2, 3, • • •, 

such that 

161 
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/o 

1 

1 
m + Ji H-;-— 

+ S2 +■ 

■ + 
1 

r„z + 

(40.3) 

is equivalent to the problem of determining polynomials fp of 
degree n — p, p = 2, 3, 4, — 1, which are connected with 
/o and/i by the recurrence relations 

/p_i = (rpZ + Sp)/p +/p+i, p = 1,2,3, ■■ •,n, (40.4) 

where/n+i = 0 and/„ is a constant different from zero. For, if 
(40.4) holds, then 

/p-i 
rpZ + Jp + 

/p+i 

/p 

, p = \,2,3, 

so that (40.3) holds; and if (40.3) holds, we may compute the 
fp step by step by means of (40.4), starting with p = = 0, 
/„ equal to a constant not zero, /„ = c. This determines the 
fp up to a constant factor not zero. This factor may be made 
equal to unity by suitably adjusting the value of c. 

It is easy to show that when the expansion (40.3) exists, then 
the Tp and Sp are unique. In fact, let (40.4) hold with rp 5^ 0, 
and suppose that/o =/o',/i =//, 

/p-/ (fp 2 -f- jp )fp -|- fp-i-i , p — \, 2, 3, •••, 

where /«+/ = 0 and /„' is a constant not zero. Suppose, more¬ 
over, that fp' is of degree n — p. Then, if ^ = 1 we get 

0 =/o -/o' = [in - n')z + is, - nOJ/i + (/^ -ff). 

Since the degree of/2 —/a' is at most n — 2, and since/i is of 
degree w — 1, it follows that ri = r/, Ji = sf,f2 = ff. On tak¬ 
ing jp = 2, we then find in the same way that ^2 = rf, J2 = sf, 
fz = fz, and so on. 

We shall now obtain recurrence formulas for computing the 
constants Vp and Sp. The division process involved in forming the 
first of the equations (40.4) may be expressed by means of the 
following equations. 
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^00^^ + ^ + • • * + aon 

aiiz'^"^ + ai2z'^~^ + * * • + ain 

bixZ^ ^ 
— 2 “1“__ 

^00 , 
n = — , ^ a^x — riai2y 

ax 1 

bi2 — ^02 — ^1^135 bi7i — aon 

biiZ'^ ^ 

aiiz^-^ 

+ bi2Z^ 2 . _j_ 

+ ai2Z^^~^ + • * • + ^In 
a22Z^ ^ H“ a2'sZ^ ^ 

_ _ ; 
j'l — , a22 ~ ^12 “ 

axx 

(40.5) 

+ * * • + ^2n 

+ ' * • + ^In ^ 

^23 ~ ^13 ““ <^2n ~ ^211 S lUxu' 

These equations determine ri, Sx and/2 = ci22^"''~'^ + ^232^”“^ 4-.. . 

+ a2n^ The equations for determining r2y S2 and /a may be ob¬ 

tained from the preceding by advancing all subscripts by unity 

and decreasing all exponents by unity. Then rs, J3 and may 

may be obtained by repeating these operations, and so on. 

We observe that the process can be continued as long as the 

numbers ^225 * • * are different from zero. The expansion 

(40.3) exists if^ a72d only if^ a^^^ ^11, • • •, ann different from zero. 

The computation involved in (40.5) can be conveniently ar¬ 

ranged in the following table. 

<200, ^01, ^02, 

11 

■ 

^11, ax2y ^13, 

1 0
 

11 ri<2i2, bx2 = «02 ~ n^l3j , ^13 = <^03 ~ ^1<214, 

^11 
.fl = —, <222 = ^12 ~ •^1^12, ^23 = t?xz — -fl^l3> <?24 = ^14 ~ •^1<2i4, 

axx 
rg = —, 

^22 

1 11 ^2^23, ^23 — ^13 “ ^2«24> ^24 = «14 — r2<226, 

^22 
•^2 = -, 

<222 
<233 = ^23 •^2^23, <234 = ^24 “ *^2^24, «35 = ^26 ^2^26, 

<222 

<»33 
^33 = ^23 ~ r3<234, ^34 == <^24 ~ r3<236> ^36 = ^25 — r3<236, 

{apq = = 0 for q > n). 

(40.6) 
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These are the recurrence formulas we wished to obtain. They 

are well-suited for the purpose of numerical computation. 

Example. Let 

/o = z" + (2 + i)z^ + {3 + i)z + {2i -h 2), 

= 22" + iz + 2. 

In this case, the table (40.6) is as follows. 

L 2 + /, 3 -L i. 

2, i> 2, 

n = h 2 + i, 2/ -f- 2, 

•-
* II +

 1 9 
• 4> 

3i 

Y’ 

^2 — 9> 
i 

~ 3 ^ 
2, 

C
O
 

to
 

11 
II 

$
 

1 1 6 ■9"> 

3/ 

1 

C
O

 II 

Then, we have 

/i 1 

/o 1 
Z+1+7+: 

1 

(40.7) 

2/ -f- 2 

(40.81 

1 

9 ^ ~ ^ ^ sl m 
— Z -f- -• 

64 32 

41. Conditions Involving Determinants. We shall now formu¬ 

late the condition for the J-fraction expansion (40.3) to hold, 

in terms of certain determinants involving the coefficients of the 

polynomials/o and/i. 
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Theorem 41.1. The quotient of two polynomials 

fl — ^112” ^ H— •+ ainy 

/o = ^002^ + <2oiZ^ ^ + • • • + ^On 

has a J-fraction expansion (40.3) in which 7*^ 0, ^ = 1, 2, 3, •••,«, 
if^ and only ify 

^ = 0, 1, 2, (41.1) 

where Do = ^oo> D2i • • •, the firsts thirds • • •, (2w — l)th 
principal minors {blocked off with lines) m the array 

) ^12> ^133 ^143 ^153 ^163 ^17y ^183 

^00 3 ^013 ^023 ^033 ^043 ^053 ^063 <^073 

0, a\\i ^123 1 ^133 ^143 ^153 ^1C)3 ^173 

0, ^003 ^0l3 ^023 tiO’Sy ^043 ^05y <^063 

0, 0, ^ll3 ^123 ^133 ^143 tl\by ^165 

0, 0, ^003 ^013 ^023 <^033 ^043 ^053 

0, 0, 0, ttlly ^123 ^133 ^143 ^153 

0, 0, 0, ^003 ^01 3 tlQ2y ^033 ^045 

(41.2) 

{aop == = 0 for p > n). [15.] 

Proof. We suppose first that the expansion (40.3) exists, so 

that the numbers ^oo> **•> ^nn in (40.6) are different from 
zero. Thus Do = aoo ^0, Di = an ^ 0. Let us write Dp 

= Dp{fo’ifi)y to indicate the dependence of the determinant upon 

the polynomials /o and/i. We shall prove that 

r>p(/o,/i) = /> = 2, 3, • • «. (41.3) 

In fact, on subtracting Vi times the (2^—l)th row from the 2^th 

row for = 1, 2, 1 in Dp(/o,/i), 2 <p <n, and making 

use of (40.6), we obtain 

I ^12> ^13^ 

^123 ^13j 

^11) ^123 

3 

<^ll3 <^123 

0, bin * * * 

Dp{fo^fl) — till 

tllly 

0, 
0, 
0, 
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where the new determinant is of order Ip — 2. If in the lattet 

we subtract times the 2^th row from the (2^ — l)th row for 

^ = 1, 2, 3, • • ^ — 1, and again make use of (40.6), we readily 

obtain (41.3). For /> = 2, (41.3) gives Z)2(/o,/i) = 

On applying the formula for p = 2 to the polynomials /i and J2 

we get BiUu = -«22^£>i(/2, Jz) = -azza-z-i, and conse¬ 

quently D3(/o,/i) = «u^I>2(/i,/2) = -a\\a22a<iz. In this way 
we obtain the formula 

p(p-l) 

Z)p ( 1) ^ ^22 ■ ‘ * —l,p—1 ^pp> 

p = 2, 3, • • •, w. 
(41.4) 

Therefore, if the expansion (40.3) exists, then Dp 3?^ 0, /) = 0, 1, 

If, conversely, these determinants are different from zero, then 

^11 are different from zero since, by definition. Do = ^oo> 

Di = an. Since an ^ 0, then (41.4) holds for p = 2y so that 

D2 = —^11^^22 9^ 0, or ^22 ^ 0. This guarantees that (41.4) 

holds for^ = 3, so that D3 = “^ii^^22^^33 ^ 0, or a^s 9^ 0. On 

continuing this argument, we finally arrive at ann 9^ 0, and 

therefore the expansion (40.3) exists when Dp 7^ 0, /> = 0,1, • • *, ^7. 
This completes the proof of Theorem 41.1. 

42. Relationship Between the J-fraction and the Power Series 
for/1//0. We now make an equivalence transformation in (40.3), 

and put 

a^ = , a^p = , ^ = 1, 2, 3, • • *, w 1, (42.1) 

/> == 1, 2, 3, n. 

The J-fraction then takes the form 

bi z 
ax 

^2 H” 2 — - 

(42.2) 

(42.3) 

bn + Z’ 
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By (40.6), we have 

an 
ao — — j 

^00 

and 

= P = 1,2,3, •••,«- 1, (42.4) 
—l,p —1 

= - Jp'-p- ^ ^ = 1,2, 3, •••,«. (42.5) 
^p —l.p—1 

If we assume that ^oo = which we may do with no loss in 

generality, then we obtain from (41.4) and (42.4) the formulas 

and 

Z)p_^l ^0^1 * * * ^pDpy p 0, 1,2, •••,77 1, 

^0 - — 
Z)p_iDp4.i ^ 1 o T 1 

= -3:—:;^-, /) = 1, 2, o, • • •, 77 — 1. 
Do ^ ^ Dp^ 

(42.6) 

(42.7) 

We now call attention to a relationship which exists between 

the pth approximant of the J-fraction (42.3) and the expansion 

in descending powers of z of the rational function filfo- Let 

r * 

/ .Z-/ ^p+i /O p»0 ^ 
(42.8) 

From the determinant formula (1.5) it follows that 

;, = o,i, •••,«-1. (42.9) 
5^+i(z) 5,(z) 5p+i(2)5p(z) ’ 

Inasmuch as 5p+i(z)5p(z) is a polynomial in z of degree 2p + 1, 

this shows that the power series expansion in descending powers 

of z of the difference in the left-hand member begins with the 

term in l/z^”'^^ In other words. 

^p(z) _ ^0 , C2v + \'^^ 

5p(z) - Z Z^ Z^** Z^P+l z2p+2 
(42.10) 

p = 1, 2, 3, •••,« — !. Thus, the pth approximant {p < n) 

approximates filjo in the sense that its expansion in descending 

powers of z agrees term by term with the expansion in descending 

powers of z offi/fo for just the first 2p terms. 
43. Rational Fractions with Simple Poles and Positive Resi¬ 

dues. We shall now prove the following theorem. 
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Theorem 43.1. A necessary and sufficient condition for a rational 

fraction to have the form 

/o friz---' 
(43.1) 

p=l 

where the Xp are real and distinct and the Lp positive^ is that fi/fo have a 

f-fraction expansion (42.3) in which the bp are real and the Up are positive 

[23]. 

Proof. The sufficiency of the condition follows from the re¬ 

marks in § 27. (Cf. (27.3).) 

To prove the necessity, let us suppose that (43.1) holds, and 

write/i//o in the form (42.8). The coefficients Cp in that power 

series expansion are evidently given by 

n 

Cp = ^ /) = 0, 1, 2j 
A:=l 

Inasmuch as the Xk are distinct, a polynomial in u of degree 

m < Uy not identically zero, say, Xq + Xiu + • * • X^u^^ can¬ 

not vanish for all the values u — Xk^ k = 1, 2, 3, ♦ •;7. There¬ 
fore, the quadratic form 

m U<=‘Xn 

^^Cpj^qXpXq — ^^(^0 + XiU + • * * + XmU'^YL{u)y 
p, a”0 u=>xi 

Li^Xk) = Lky 

is positive definite for m < and consequently, by Theorem 20.3, 

> 0 for /> = 0, 1, • • w — 1. 
(43.2) 

the determinants 

1 COy Cly • Cp 

Ap = 
Cly C2y • •, Cp^i 

Cpy • C2p 

We consider now the rational fraction 

CqZ^^ + q-... -p ^*271—12; + t ^ 

22n+l 
§ 

J-- (43.3) 
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where / is a constant to be determined. In this case, the deter¬ 
minants Dp of Theorem 41.1 are 

Do = 1, Di = ro = Ao, D2 = Aj, • • Dn — An_i, 

Dn-fl = — /A„_i + Dr,-fi(0). 

By (43.2), Dp > 0, = 0, 1, 2, * • *, w, and, if / is a sufficiently 

large positive number, then Dn+i > 0. We may therefore con¬ 

struct the first n \ partial quotients of the J-fraction for the 
rational function (43.3), namely. 

^0 

bi z — 
1^2 z 

^n — l 

bn-{- Z — 
bn + 1 + 2 

where the bp are real and, by (42.7), the Up are positive. 

By (42.10) we have, for the «th approximant of this continued 
fraction, 

^n{z) Cp , 

Bn{z) + > 

so that 

Jl{z)Bn{z) - //„(2)/o(z) = (^), 

where (I/2) denotes a power series in descending powers of z 

beginning with the term in 1/z. Inasmuch as the left-hand mem¬ 

ber of this identity contains no negative powers of z, it follows 

that fi{z)Bn{z) — ^„(z)/o(2) = 0, and therefore 

An{z) 

Bn{z) “/o ’ 
(43.4) 

i-e-j f\/fo has a J-fraction expansion (42.3) in which the bp are 

real and the Up are positive. 
This completes the proof of Theorem 43.1. 
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44. Expansion of Rational Functions into Stieltjes Type Con¬ 
tinued Fractions. If we replace z by — z in (40.3) and make an 

equivalence transformation, we obtain 

Ai-z) -1 

/o(-2) 1 
riz - Ji H-;- 

r2Z — S2 +■ ^ 

. _]- 
rnZ — s„ 

Consequently, if /i(z)//'o(2) is an odd function of z, it follows 
from the uniqueness of the J-fraction expansion that the Sp are 

all equal to zero. Conversely, if the Sp are all equal to zero, 

then/i(z)//'o(2^) is evidently an odd function of z. 
In view of this remark, if the function z/'i(z^)//’o(z^) has a J-frac¬ 

tion expansion, then, since this is an odd function of z, the Sp 

must all be equal to zero in that expansion. Therefore, if we 
change the notation and write kp for rp, 

zAiz^) 

/o(2") 

1 

kiZ -|- 
1 

k2Z -}- • 

(44.1) 

where w? = 2« — 1 or 2« according as/o{z), supposed of degree n, 

does or does not vanish at z = 0, respectively. On making an 
equivalence transformation and then replacing z^ by z, after 
removing a factor z, we then obtain 

/i(^) 

/o(2) 

1 

^iZ + 
1 

k2 + 
1 

^32 +• 

|^2n-l2 

1^2n if 

if /o(0) = 0, 

/o(0) 0. 
(44.2) 

If, conversely, the expansion (44.2) exists, then the expansion 

(44.1) exists and the kp are determined uniquely by the poly- 
nomials/o and/i. 
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To compute the continued fraction (44.2), it is only necessary 

to insert a 0 between every two successive numbers in the first 

two rows of the table (40.6). Every second entry in all the rows 

of the table will then be equal to 0. If we change the notation, 

the table may then be written more compactly as follows. 

^00, <3()1, ^^02, 
^11, ^12, ^13, 

^22 — <*01 — k\a\2^ a2Z — ^02 ~ ^1^13» <*24 = <*03 ~ ^1<*14, * * * (44.3) 

<*33 = <*12 ” ^2<*23, <*34 = <*13 ” ^2<*24, <*3B = <*14 “ ^2<*26, * ‘ 

By Theorem 41.1, the continued fraction expansion (44.2) 

exists if, and only if, the determinants of that theorem formed 

for the fraction are different from zero. We find that 

these determinants, which we shall denote by Dp\ can be factored 

into products of the determinants Dp = Dp{foy fi) times other 

determinants Wq, The latter are the principal minors of even 

order in the array (41.2). Thus, 

kx = 

^2 = 

<*00 

<*11 ’ 

<*22* 

Dq — <*00 ~ DoJV0, 
Di — <*11 = D\W0, 
D/ = -Di/Fi, 

A/ = 

Z)/ = A/Fa, • • •, 

= 1, 

with the general formulas 

D2/ = {-XyDpWp, D^p^x! = {-lYDp^xWp, (44.4) 

Hence, we have the following theorem. 

Theorem 44.1. The quotient fi/Jo of two polyno7nials (40.2) can be 
expanded into a continued fraction of the form (44.2) in which the kp are 
different from zero if^ arid only ify the condition (41.1) holds and^ in addi¬ 
tion^ the principal minors of the array (41 2) of even order are different 
from zero up to and including the one of order In — *1 or 2n according as 
/o(0) = 0 or/o(0) 9^ 0, respectively. 
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(44.5) 

(44.6) 

By (42.7) and (44.4), we then obtain the formulas 

_ 
^0 — ^5 ^2p-l 

Dp^iJV p ^ ^ 
(44.7) 

Exercise 9 

9.1. Find the J-fraction expansion for/i//o where 

/o = 2^ ~ (i 4- 4- 2^ - |z 4- f, 

/i = -(f 4- /)2^ - f2. 

9.2. Find the J-fraction expansion for P'(z)/P(z), where 

P{z) = 64z3 -f 80x2 -f 242 4- 1, 
and P'{z) = dP{z)/dz. 

9.3. The roots of P{z) are all real if, and only if, P'{z)/P(z) has a J-fraction 
expansion (42.3) in which the by are real and the ay are positive. 



Chapter X 

THEORY OF EQUAl IONS 

One of the main problems in the theory of equations is the loca¬ 

tion of the roots of polynomials. There are two main aspects of 

this problem. One is the problem in the large, of determining 

regions in which the roots lie, and of determining the number of 

roots in a given region. The other is the problem in the small, of 

computing the roots to any desired degree of accuracy. For some 

purposes, one needs to know only information on the problem 

in the large. The solution of the problem in the small depends in 

general upon a preliminary investigation of the problem in the 

large. 

Continued fractions have proved to be useful in both aspects 

of this problem of the theory of equations. Given a polynomial 

P(2;) of degree w, we seek to find another polynomial N{^ of 

degree n — \ such that properties of P(z) can be determined from 

the J-fraction expansion of the quotient A^(z)/P(z). For exam¬ 

ple, if we take iV(z) = dP{z)/dZy then the roots of P{z) are all 

real if, and only if, the J-fraction for N(z)/P(z) is of a certain 

kind (cf. Exercise 9.3). There is one choice for N{z) which is 

particularly convenient, namely, we take N{z) to be a certain 

polynomial Q{z)y called the alternant of P(z) (cf. § 45 following). 

The J-fraction for Q(z)/P{z) is called the test-fraction for P(z). 

By means of this test-fraction, we are able to find polygonal regions 

in which the roots of P(z) lie, to determine the number of roots of 

P{z) in each of the half-planes ^{(z) < 0 and 5R(z) > 0, and to 

obtain a method, similar to Horner’s method, for computing the 

roots (real or complex) by successive approximations. 

173 
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45. The Test-Fraction. Let 

P{z) = 2” + 5i2"-1 + 52Z"-2 H-1- 

be a polynomial of degree n > 0 with complex coefficients 5*. We 

shall put 9i(5fc) = pk, S(h) = ^k, so that S;t = pk + iqk- The 
polynomial 

Qiz) = + /V22"-" + • 

is called the alternant of P{z). The quotient Q{z)/P{z) has, in 
general, a J-fraction expansion of the form 

Q{z) 
Piz) 

(45.1) 

^\Z 1 + ^1 + 
C2Z + ^2 + 

1 

C3Z + ^3 + • 

• + 
1 

CnZ kn 

called the test-fraction of P(z). 

In (45.1), the Cp are real and different from zero, and the kp 

are pure imaginary or zero. In fact, from the identity 

Q 

P-Q 

1 

it follows that Q{z)/P{z) has a J-fraction expansion if, and only if, 
Q{z)/{P{z) — Q{z)) has a J-fraction expansion; and when (45.1) 

holds, then 

Q{z) 

P{Z) - Q{Z) 
CiZ + + 

1 

C2Z + ^2 "h ■ 

■ + 
1 

Cn 4“ * 

and vice versa. Now, the table (40.6) for obtaining the latter 
expansion is as follows. 
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aoo = 1, aoi = tgi, ^02 == p2i 

an = ^1, ai2 — tq2^ ai3 — psy 

C\ 
__ am 

> hn == aoi — ^1^12, ^12 = ao2 ■“ ^1^13, ^13 = ^03 “ 0^14, 
an 

kl 
_ j a22 — h2 — kiai2, ^23 = ^13 ~ hajzy <224 — ^14 “ kiau. 

an 

C2 - fH 
> ^22 = <212 — ^2^23, ^23 = <213 ■“ ^2^?24, ^24 — ^14 — r2<22B, ■ • • (45.2) 

^22 

h 
_ ^22 

> azz = ^23 — ^2^23, <234 — ^24 — ^2^24, ^36 = ^2B — ^2fl2Bj 
a22 

Cz 
_ ^22 

) hz = ^23 — 0^34, ^34 = <224 — ^3^35, ^36 = ^25 — ^3^36j 
azz 

Hence, the entries in the table are alternately real and pure 

imaginary. We verify immediately that the Cp are real and the kp 

are pure imaginary or zero. Since all the entries in the table (45.2) 

are pure imaginary or real, the choice of Q{z)/P{z) as our ‘‘test- 

fraction'^ is a particularly fortunate one for numerical computation. 

In exceptional cases the test-fraction for P{z) may fail to exist. 

Ways of circumventing this difficulty are illustrated in Exercise 10. 

There is some theoretical interest in expressing the condition 

for the test-fraction to exist by means of the determinants Dp 

of Theorem 41.1. We take 

/o = P{z) - Q{z) = + iqiZ^ ^ + p2Z^ ^ + iq^z^ ^4-, 

/l = <3(2) = + pzZ^-^ + ^-. 
We then find by simple transformations that 

Du = ( 
where F\ = and 

Pi, P3, Pby p2k-ly 

1, P2y Pij ' ' ‘ ) p2k~2y 

0, Ph PZy * • ' > p2k-Zy 

P
 p

 

' ’ ' j 

74, • • * > 

pky 

q2k~2y 

0, qu qzy * * * > q2k-Zy 

0, 0, q2y • • •, q2k-Ay 

0, 
k = 2,’ 3, 4, 

qky 

1) ^ •Fu, 

-?2, qZy •, '-q2k-2 

— ?1> ~q^y — qhy ' ' •j ^q2k-Z 

0, -q2y —qiy • • '-q2k-i 

0. * * * > 

pi. p3y Ph, *, p2k-Z 

1, p2y />4, *, P2k-A. 

0. ply PZy •y p2k^Z 

0, ’ * * J Pk-^l 

= = 0 for k> n. 
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By Theorem 41.1, the test-fraction for P{z) exists if^ and only if^ 

these determinants Fk are different from zero [15]. 

46. Polygonal Bounds for the Roots of a Pol3moniial. The con¬ 

siderations in § 26 furnish methods for determining bounds for the 

roots of a polynomial. We first write the test-fraction for P{z) 

in the form 

Piz) 
b\ z — 

(46.1) 

^2 + Z — 

^71+2 

This is a bounded J-fraction. Hence all the roots of P{z) are 

contained in the convex set A"o defined in § 26. 

One may easily obtain a closed polygon, for instance a rectangle, 

containing A'o, and hence containing all the roots of P{z). Let 

^p(^) = (46.2) 

If V(0) is determined so that 
n n— 1 

T Wp(0) + y(0)]x/ - 2^aj,(e)xpXp^i > 0 (46.3) 
p== 1 p== 1 

for all real values of the Xpy then Kq is contained in the half¬ 

plane (cf. § 26) 

sin ^ ^ cos 6 < Y(0)y (z = x + iy). 

Hence, in particular, Kq is contained in the rectangle. 

y > -VM, X > ->"(y)- 
(46.4) 

Now, by Theorem 16.2, the number Y(d) satisfies (46.3) for 

all real Xp if, and only if, numbers gp between 0 and 1 can be 

found such that 

^p(0) + Y(0) >0, p = 1,2,3, •••,«, 

< Wp(O) + Ym0p+^(ff) + Y(0)K1 - (46.5) 

p = 1, 2, 3, •••,« — 1. 
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If, for the sake of simplicity, we take = 0, = |, p = 1, 2, 

• • •, w — 1, we then have the following theorem. 

Theorem 46.1. Let P{z) be a polynomial of degree n having a test-- 

fraction (46.1). Let ap{B) and fip(6) he defined by (46.2), and let Y(6) be 

any number such that 

&p{B) + Y{3) >0y p= 1,2,3, 

2aAe) < + y(^)][&(0) + Ym. (46.6) 

4a/(0) < me) + Y(0)][^Jp+i(O) + y(0)], p = 2, 3, 1. 

Then all the roots of P(z) are contained in the rectayigle (46.4). 

I<!ote. It is an easy matter to determine the least integral value 

of Y{fi) which satisfies (46.6). 

To illustrate the application of Theorem 46.1 in a numerical 

example, let 

/ 1 + iV7\ / 1 - ;■ V7\ 
P(2) = (2 + 1 + 0 (2 + ^. )(2 + -^) 

= r’ + (2 + i)%^ + (3 + i)z + (2/ + 2). 

The test-fraction for Pisd) is given by (40.8). When this is written 

in the form (46.1), we find that 

3/ 2V2/ 

The inequalities (46.6), to be satisfied for 6 — 0, irll, ir, ’iivll, are 

then 
2 sin 0 + I cos 6 + Y{6) >0, 

-i cos 6 + ¥(6) > 0, 

I cos » + ¥(6) > 0, 

f cos^ 6 < (2 sin 0 + ^ cos 6 + ¥(6))(—^ cos 6 + ¥(6)), 

-V cos^ 6 < (—^ cos 6 + ¥(6))(§ cos 6 + ¥{0)). 
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Y These are satisfied for 

y(0) = 2, = 0, 

—^ YM = 3, y(y) = 2. 

Hence, the roots are contained in the rectan¬ 

gle shown in the accompanying figure. 

-3 47. Polynomials Whose Roots Are in a 

I Given Half-Plane. We shall now solve the 

Fig. 7. following problem. 

To determine necessary and sufficie?jt conditions^ depending upon 

the coefficients hpffior a polynomial 
with complex coefficients^ to have all its roots in a given open half-- 

plane. 

Let the given half-plane be defined by the inequality 

a% az — Ip < 0, 

where | ^ | = 1 and/) > 0. Under the substitution 2 = a{z'^p), 

this half-plane goes over into the half-plane 9l(z') < 0, and the 

polynomial P{z) goes over into another polynomial of degree n. 

We may therefore assume without loss in generality that the 

given open half-plane is dt{z) < 0. 

We shall prove the following theorem. 

Theorem 47.1.^^ Let P{z) = z’* + a polynomial 

of degree « > 0 with complex coefficients hk = pk iqk-i h — 1,2, 
Let Q{z) = piz^~^ + iq2Z^‘~^ + ^32”“^ + iq^z^~^ -f . . . he the alternant 

of P{z). All the roots of P{z) have negative real parts if^ and only if^ 

P{z) has a test-fraction of the form 

Q{^) 

Pif) 

^0 

2 + ^0 4" + 
^1 

(47.1) 

2 + ^2 + 

a2 

2 + ^3 + * 

• + 
^n-l 

Z + K' 
This was proved for real polynomials by Wall [134] and extended to polynomials 

with complex coefficients by Frank [15]. 
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in which • * * j ^n-i real and positive^ and ’ 'y K ^re pure 
imaginary or zero [134, 15]. 

Remark. If the test-fraction of P(z) is written in the form 

(45.1), so that Ui) = l/cj, = lApCp^^i, /> = 1, 2, 3, • • — 1, 

A = P = 2, 3, • • then the condition of the theorem 
is obviously equivalent to the condition that the Cp be real and 
positive and the pure imaginary. 

Proof of Theorem 47.1. We shall suppose first that P{z) has 

a test-fraction with the stated properties, and prove that P{z) 9^ 0 

for 9?(z) > 0. The J-fraction (47.1) may be regarded as generated 

by the sequence of transformations 

t = /o(2; 
^0 

ao hi w 
ip{z; = 

2 + A+1 + ^ 

/)= 1, 2, 1. 
The ^th approximant is then equal to /(/i ••• 0). If 

5)1(2;) > 0, the transformation t = /o(z; w) takes the half-plane 

^ 0 the circular region 

I 
^0 

2(t^o T 
< - 
“ 0 

^0 

(ao + x) ’ 
where x — 9f(2) > 0, 

which is contained in the circular region 

< h. (47.2) 

The transformations / = tp(z; w) transform 9i(w) > 0 into all or 

a part of 5K(/) > 0. Consequently, t = Vi • • ■ w) trans¬ 

forms > 0 into a circular region inside (47.2), and, in 

particular, the wth approximant is in (47.2): 

Q{± 

m 

1 

0 
if 9?(z) > 0. (47.3) 

From the determinant formula (1.5) it follows that ^(z) and P(z) 

cannot vanish together. We therefore conclude that P(z) 5^ 0 

for 91(2) > 0. 
We now suppose, conversely, that P{z) is a polynomial whose 

roots are all in the left half-plane, 9t(z) < 0. We denote by 
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P(z) the polynomial obtained from P{z) by replacing each coeffi¬ 

cient by its complex conjugate: 

P{z) = z" + + • • • + 6n. 

The set of roots of P{z) is evidently symmetrical to the set of 
roots of P{ — z) with respect to the imaginary axis. If we regard 
the modulus of the polynomial as the product of the lengths of the 

vectors from z to its roots, we then conclude immediately that 

|P(z)| > |P(-z)| if ^}I(z)>0, 

and 
\P{z)\ <\Pi-z)\ if 3J(2)<0. 

Consequently, we have 

I P{z) ± P(~z) I > 0 for Ti{z) ^ 0. (47.4) 

Now, the alternant of P{z) is 

Q{z) = 
P{z) + P(~z) 

2 
or Q{z) 

P{z) - P(-z) 

according as the degree n of P(2) is odd or even, respectively. 

Therefore^ by (47.4), the roots of Q(z) are all on the axis of imagi- 

naries. Moreover, since, for 9t(2) > 0, 

P(-2) 
!^ + ( 1)"'^'+ ( 1)" 

C(z) 
2 . 1 

P{^) P{z) P{z) 

it follows that (47.3) holds. 

Since the roots of P(z) are in the half-plane 5R(z) < 0, and those 

of Q{z) are on the line 9t(z) = 0, it follows that Q{z)/P{z) is 

irreducible. 

By ordinary long division we now find that 

m 
a^ 

z + ^0 + 4“ 
C(z) 

!?(z) 

(47.5) 

where a^ is the negative of the sum of the real parts of the roots 

of P{z)y and is therefore positive, bi is 0 or pure imaginary, and 

C{z)/Q{z) is an irreducible rational fraction in which the denomi- 
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nator is of degree w — 1, and the degree of the numerator is less 

than « — 1. By (47.3) and (47.5) it follows that 

> —X, where x = 9?(z) > 0. 
V!3(z)/ 

Consequently, 

for 9{(z)>0. (47.6) 
V0(z)/ 

In fact, if the left-hand member of (47.6) is equal to a number 
— kjk>0^ for some z == Zo on the interior of the right half-plane, 

we can contradict the theorem that a nonconstant harmonic 
function cannot take on its minimum value in the interior of a 

region in which it is harmonic. It suffices to take for the region 

the portion of the right half-plane exterior to circles of radius 

^/2 with centers at the roots of (9(z), and interior to a circle 

I z I = r > I Zo I so large that | C(z)/()(z) | < Jt/2 upon this circle. 

From (47.6) we conclude that the roots of Q(z) are simple, and 

that the residues of C(z)/Q(z) are positive. Otherwise we can 

choose a path of z in the right half-plane approaching a pole of 
C{z)/Q{z) in such a way that (47.6) is violated. We therefore have 

a partial fraction development of the form 

Q{z) ^ z + ixj,' 

where the Xp are real and distinct, and the Lp are positive. On 
replacing z by —/z and then multiplying by we see that this 

becomes 

~-/C(-/z) Lp 

Therefore, by Theorem 43.1, 

“-;C(~“/z) ai 

^2^ + 2 — , - 
hi + z —• 

bni + z* 



182 ANALYTIC THEORY OF CONTINUED FRACTIONS 

where the are positive, and the bj, are pure imaginary or zero. 

On replacing z by iz and dividing both members by —we then 

get 
C(2) ax 

0(2) 
^2 + 2 + 

^2 

^3 + Z + • 

• + 
^n —1 

+ Z 

On substituting this expression Into (47.5) we obtain (47.1), and 

the proof of the theorem is complete. 
48. Determination of the Number of Roots of P{z) in Each of 

the Hali-planes 9^^) < 0. Let P(2) be a polynomial with com¬ 
plex coefficients for which the test-fraction (45.1) exists. We 

have seen that all the roots of P{z) are in the left half-plane 

9^(2) < 0 if, and only if, the Cp are all positive in this test-fraction. 

On changing 2 to —2, we see that all the roots are in the right 

half-plane 91(2) > 0 if, and only if, the Cp are all negative. We 

shall now prove the following theorem. 

Theorem 48.1.^® If P(2) has a test-fraction (45.1) in which m of the 

Cp are positive ayid n — m are negative^ then m of the roots of P{z) have 

negative real parts and n — in have positive real parts [134, 15]. 

Proof. As noted in § 45, 

0(2) 1 

P(z) -Q{z) 1 
C\Z + + 

^22 k2 ■ 

Therefore, 

-iQ{-iz)_^_ 

- 0(-fz) 1 
CiZ + kit — 

■ + 
1 

“b krt 

C2Z + k2t — 
1 

C„z + kj 

Since the Cp and the kpi are real, this is a rational function of z 

with real coefficients. Consequently, there exists a constant 

For polynomials with real coefficients, the practical application of this theorem by 
means of the algorithm (45.2) is known as ltouth*s method [81]. 
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c ^ 0 such that ^(z) = —icQ{ — ii^ and y(z) = c{P{--iz) — Qi — iz)] 

are polynomials in 2 with real coefficients. Moreover, 

cP{ — iz) = u{z) + iv{z). 

If we put kpi = ^ = 1, 2, 3, • • •, w, then 

viz) 1 

uiz) 
CiZ + di — 

1 

C2Z + ^2 — 
1 

^ 11^ ~f” d ti 

(48.1) 

(48.2) 

Under the hypothesis that the test-fraction for P{z) exists, 

the fraction Q{z)/P{z) is irreducible. If P{z) has a root of the 

form n, where r is real, then 

P{ri) ± P(-r/) P(n) db P{^) ^ 

Q{rt) =---=--- = 0, 

which is contradictory. Hence, 

P{z) has no root on the line 

9?(2) = 0, and we may therefore 
write, for !jj(z) = 0, 

P{z) = A€^\ a > 0. 

If we regard P{z) as the product 

of vectors from its roots to the 

point 2, we then conclude im¬ 

mediately (cf. Fig. 8) that as 2 

ranges along the axis of imagi- 
naries from +/-oo to —/-oo, 

then d decreases by the integral 

amount 

A = N - P, (48.3) 

Iv 

where P and are the number | 

of roots of P(2) having positive j 

and negative real parts, respec- 

tively. This same conclusion 

evidently results if we introduce 
the constant factor r, and consider cP{z) — Ae'-^'K 
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By (48.1) and the preceding argument, we then conclude that 
as z increases over the real axis from — oo to + oo, 

1 v{z) 
6 — — arc tan — 

TT U{Z) 

decreases by the amount A. 
Let ^1, X2y • • ata; denote the distinct real zeros of u(z). Let 

Sp = +1, 0, or —1, according as v{z)/u{z) increases from — oo 

to + 5 does not change sign, or decreases from + oo to ■— oo ^ 
respectively, as z increases through the value Xp, We must then 
have 

k 

A = '^Sp. 
1 

To compute the number A, let polynomials/o = l,/i = CnZ + dn, 
* * 'y/ny be defined by the recurrence formulas 

~ (^n—-f” dn—j))fp Jp—\y p = 1,2, 3, ‘1, (48.4) 

and define polynomials Fq = 0, jPi = 1, • • *, Fn, by the formulas 

— (Cn—“I” dn^p)Fp Fp—1, 
(48.5) 

p = 1,2,3, ~ 1. 

On multiplying (48.5) by fp and (48.4) by — Fp and then adding, 
we get Fp+i/p - Fp/p+i =/p_iFp -/pFp_i, from which it fol¬ 
lows that 

Fp->r\fp ~ Fpfp^i = 1, /) = 0, 1, • • *, w - 1. (48.6) 

Consider now the sequence 

/o,/i, (48.7) 

From (48.6) it follows that two successive members of this 
sequence cannot vanish for one and the same value of 2. From 
(48.4) it follows that when /p, 1 < p < n — vanishes, then 
/p_i and fp^i have opposite signs. Hence, as z increases through 
a real root of/p, 1 < p < n — there can be no loss or gain in 
the number of variations in signs in the sequence (48.7). There¬ 
fore, as 2 increases through real values from — qo to + oo ^ any 
change in the number of variations must be due to the vanishing 
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of Jn- Moreover, there will be a loss or a gain in the number of 

variations according as the quotientfn-ilfn changes from negative 

to positive or from positive to negative, respectively, as 2 passes 

through a root of/n. But,/n_i//’n = v{z)/u{z)^ and consequently 

the number A is precisely the net loss in the number of variations 

in signs in the sequence (48.7) as 2 ranges from — qo to + 

through real values. 

Now, when 2 is negative, the signs of the leading terms of the 

polynomials (48.7) are the same as the signs of 

1) ^ny ~\~^n — ^n—2^n — l^n> * * ‘y ( 1) ^1^2 * * * (48.8) 

while for positive 2, the signs are those of 

fjCyj, —1C7}, **‘>^1^2 c Ti* (48.9) 

If there are n — m variations in signs in (48.9), then there are m 

variations in signs in (48.8). Therefore 

A = m — {72 — m) — 2m — n. 

By (48.3) and the relation + P = ;7, it then follows that 

N = m and P 72 — m. 

Since m is clearly equal to the number of positive terms in the 

sequence Ci, ^2, • • Theorem 48.1 is established. 

49. Computation of the Roots of Polynomials.^^ We shall now 

give a method, based upon Theorem 48.1, for computing the roots 

of a polynomial by successive approximations. Let ^(2) = 

{pi + + (/>2 + ^*^2)^””^ + * * * + pn + iqn be the 
given polynomial, and put Ph{^) = P{^ + h). Let (2a(2) be the 

alternant of Pa(2), and let 

Cp{h) 
1,7>—1 ('^) 

/) = 1, 2, 3, • • •, Hy 

(cf. (45.2)), be the coefficients of 2 in the test-fraction (45.1) 

for Ph{^)- By Theorem 48.1, if ^ = k{h) of the coefficients Cp{h) 

are positive for a given real value of A, then Ph{z) has just k{h) 

The method of computation of the roots given here is related to the method of 
Hitchcock [38]. 



186 ANALYTIC THEORY OF CONTINUED FRACTIONS 

roots in the half-plane SKCz) < 0, so that P(z) has just k{h) roots 

in the half-plane 9i(2;) < h. 

In general, the method for computing the roots of P{z) con¬ 

sists in varying h in such a way that an,n{h) —> 0 and k{h) changes 

by one unit. This means that the last remainder in the division 

process used in forming the test-fraction for Ph{^)^ which is simply 

the Euclidean algorithm for the greatest common divisor of 

Ph{^) — Qh{^) and approaches zero. If Zo(^) is the root 
of the next to the last remainder, an-\,n~i{h)z + an-i,n{h)y then 

h + 2;o(A) approaches a root of P(z) as an,n{h) approaches zero. 

If two or more roots of P{z) have a common real part, the process 

must be suitably modified (cf. Example 2, following). 

We shall now show how the computation can be so arranged that 

the roots of P{z) can be effectively determined by this method. 

The polynomials Ph{^) can be formed exactly as in Homer’s 
method. The Euclidean algorithm can be reduced to the com¬ 

putation in the table (45.2). 

Example 1. To compute the roots of the polynomial 

P{z) = + (1 + 6/)z^ — (13 5/)z — (7 + 10/). 

We first compute the test-fraction for P{z) by means of (45.2): 

^00 = 1, ^01 = 6/, «02 = ““13, ^03 = —10/, 
— = — 1, — ^1 = — / ^11 = 1, ^12 = 5/, ^/13 = “7 

— /) ^12 = —6, b\% = —10/, 
— ^2 = 1, ’—ki — 'li <222 = “!> <^23 = “3/, 

<^22 = 2/, ^23 = “7, 

^3 “■ 1 j k3 — 3/ ^33 “* 1 > 
^33 — —3/. 

Since Cx > 0, C2 < 0, > 0, there are two roots in 9?(z) < 0 

and one in $R(z) > 0 (Theorem 48.1). 

By Theorem 46.1 we find that the roots of P{z) are contained 

in the rectangle 

y<—1, X <2y y > —3, ^ > —2, (z = x + yi). 

We now compute the polynomial Pi(z) = P(z + 1), as in 

Horner's method. 
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1 1 + 6/ 

1 

—13 + 5/ 

2 + 6/ 

-7 - 10/ 

-11 + !!/■ 
h = 1, 

1 2 + 6/ 

1 

-11 + 11/ 

3-4" 6/ 

-18+ /• 

1 3 + 6/ 

1 

-8 + 17/ 

1 4 + 6? 

Hence, Pi(z) = + (4 + 6?V + (-8 + 17?> + (-18 + i). 
With the aid of the calculating machine, we now form the 

table (45.2) for Pi(z). 

1 6i -8 

4 \li -18 

1.75/ -3.5 / 

3.9375 8.8750/ 

7.98413/ 

-.003985 

-18.00 

We have not recorded the values of the Cp, kp or of ^33. The signs 

of Cl, C2 and C3 are +, +, and —, so that P(z) has one root in the 

half-plane 91(2) >1. In the above table, ^33(1) = —.003985. 

We next form 

P2(z) = + (7 + 6?>2 + (3 + 29i)z + (-21 + 24/), 

and find that Ci(2), <r2(2) and Csil) are all positive, so that all the 

roots of F(z) are in the half-plane 91(2) < 2. There is one root 

in the strip 1 < 91(2) < 2. We find that «33(2) = 8.98. Since 

we had «33(1) = —.003985, it would appear that this root has 

real part very nearly equal to 1. If we assume that varies 

linearly with h, we find, by interpolation, that we should have 

//33(1.0004) = 0. In the light of this information, we now form 

P{z + 1.001) = 2^ + (4.003 + 6/V + (-7.991997 + 17.012/)2 

+ ( — 18.007995999 + 1.017006/), and construct table (45.2) for 

this polynomial. We find that <333(1.001) = —.000076233, and 

that </22(1.001)z + </23(1-001) = 3.944596397z + 8.8904426667/. 

On setting the latter equal to zero we find for the imaginary part 
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of the root the approximate value >-2.254/. We thus have as an 

approximate value of the root 

1.001 - 2.254/. 
Now, 

P{d+ 1.001 - 2.254/) = + (4.003 - n61\i)d^ 

+ (3.814455 - 1.033524/V - (.000253547 + .000645698/). 

If we neglect the terms in d'^ and d‘^y and set the linear part equal 
to zero, we obtain the correction d = .0000192 -|- .0001745/. 

Then d + 1.001 ~ 2.254/ - 1.0010192 - 2.2538255/ is the value 

of the root. This is actually correct to the number of places given, 
inasmuch as it was found by additional calculation that the root is 

1.0010192258 — 2.2538255167/, where the last digits 8 and 7 are 
in doubt. For the other two roots of P{z) we find the values 
-1.520324 - 1.39987916/ and -.480695 - 2.3462953/, correct 

to the number of places given. As a check, we find that the sum 

and the product of these values of the roots are —1 — 6/ and 

7 + 10/, respectively, correct to six decimal places. 

It should be emphasized that, except for the supplementary 

calculation of the table (45.2) at each step, the computation is 

exactly the same as in Horner’s method. 

Example 2. To compute the roots of the polynomial P{z) = 

+ 2z + 20. 

This polynomial has a pair of conjugate imaginary roots. 

Since the coefficient of is zero, the test-fraction does not exist. 
This is of little concern inasmuch as the test-fraction exists for 

Ph{z) = P(z + h) when h is near the real parts of the roots. We 

find by Theorem 48.1, applied to Pi(z) and ^2(2), that the 
imaginary roots are in the strip 1 < 5R(z) < 2. In the following 

table, the numbers pp are the next to the last remainders obtained 

in applying the Euclidean algorithm to the polynomials Ph{z) — 
Qh{z) and Qh{z). 

11 3 23 

1 3 
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P{d+ 1.235 + 2.564/) = ^ + (3.705 + l.G91i)cP - (13.146613 ~ 18.99924/V 

- (.003572805 - .004048556/). 

The real part of the imaginary roots has the value h = 1.235, 
correct to three decimal places. The imaginary parts are zt:2.564/, 

as indicated above. On equating to zero the linear part of 
P{d + 1.235 + 2.564/) we obtain the correction d = —.000237 + 

.000247/. Hence, the imaginary roots are approximately equal 

to 1.234773 ± 2.564247/. 
Since the sum of the roots is equal to zero, the real root must 

be —2.469546. One may readily verify that this is correct to six 

decimal places. 

Exercise 10 

10.1. A polynomial P(z) of degree n has all its roots in the left half-plane, 
5R(2) < 0, if, and only if, the determinants /a, k — 1, 2, 3, • • •, w, of § 45, are 
all positive [15]. 

10.2. A polynomial P(2) = 2" +• —h pn^ with real coefficients, has 
all its roots in the left half-plane, 9?(2) < 0, if, and only if, the determinants 

/>l, Phy ' * ' J , plk-\ 

1, p2k-2 

0, 7^3) ’ * ') p2k-Z 

0, 1, P% * ' •, p2k-^ 

0, •••, pk I 

(pr = 0 if r> n) 
are all positive [39]. 

10.3. Using the fact that the transformation 

12 3 1, z,, 

2 r 
1 -h w 

1 — a; ’ (r > 0), 

maps the half-plane 5)?(w) < 0 into the circular region | z | < r, derive an algo¬ 
rithm for determining whether or not a polynomial has all its roots in the circle 
I 2 I < r. 

10.4. Show that if a is not on the real interval — qo < then one 

of the roots of the quadratic equation ^2" + 2 — 1 = 0 is within the circle 

I 2 — 1 I = 1, and the other is outside this circle. The root within the circle 
is the value of the periodic continued fraction 

1 
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10.5. Theorem 48.1 cannot be applied to the polynomial l\z) = z** — (f)z^ 
+ z^ — (f)z + (f) because in this case the test-fraction fails to exist. Show that 
the theorem can be applied, however, to the polynomial (z + x)P(2), and prove 
that P{z) has two zeros in the right half-plane and two zeros in the left half¬ 
plane. Show that the same conclusion can be reached by applying the theorem 
to the polynomial (f)z^P(l/2). 

10.6. By a theorem of Hurwitz, the zeros of a polynomial are continuous 
functions of its coefficients. Apply this fact and Theorem 48.1 to the polynomial 

P(/; z) = Z^ - (/ + 1)2^ + 22 -- (1)2 + (-1) 

to determine the number of zeros of P(0; 2) in each of the half-planes < 0. 
10.7. The test-fraction for P(z) — z^ — 3z^ — 9z^ — 27z^ — 322 — 30 is 

P{z) 

Determine a polygon in which the roots of P{z) lie. 
10.8. Write the test-fraction for Piz) in the form with all its partial denomi¬ 

nators equal to unity. For | 2 | > M, let the partial numerators after the first 
have moduli not greater than (1 — /> = 1, 2, 3, •• *, « — 1, respectively 

< gk< 1). Then P{z) 0 for | 2 | > Af. 



Chapter XI 

J-FRACTION EXPANSIONS FOR POWER SERIES 

In this chapter we consider the problem of expanding a power 

series into a J-fraction, with emphasis upon the 

computational aspects of the problem. We first show that the 

expansion exists if, and only if, a sequence of polynomials can be 

constructed which are orthogonal relative to the sequence of 

coefficients Coy Ci, e2y • * • of the power series. These polynomials 
are the denominators of the J-fraction. The algorithm for con¬ 

structing the orthogonal polynomials gives immediately the 

J-fraction expansion for the power series. This idea goes back to 

Tschebycheff [105] (cf. also [133] and [21]). 

In contrast with this step-by-step method for expanding a 

power series into a J-fraction, is a method due to Stieltjes [93] 

which will, in certain cases, give the complete expansion in one 

stroke. Stieltjes showed that the expansion can be written down 

immediately when one has at hand a suitable formal reduction of 

the quadratic form Zcp^gXpXg to a sum of squares. (Cf. § 53.) 

In the concluding section of the chapter, we consider questions 

of convergence and of equality between the power series and its 

J-fraction expansion. 

50. Polynomials Orthogonal Relative to a Sequence. Let 

c: Coy Ciy C2y * * * be any sequence of numbers. Relative to this 
sequence we define an operation called formal integration, which 

replaces by Cpy (/> == 0, 1, 2, •••)> any polynomial in u 
upon which it operates: 

^(^0 + kxU knU^)tl4>c{u) — k^CQ + kiCi + * • * + knCn* 

192 
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The symbol <l>c{u) is used only to signify that u is the variable 

whose powers are to be replaced by the Cp. When the operation 

is performed upon the product of two or more polynomials, the 
polynomials must be multiplied together, and the product written 
as a polynomial, before the operation is performed. 

A finite or infinite vSequence of polynomials Bp(u)^ /) = 0, 1, 2, 
• • •, is called orthogonal relative to c if 

^Bp{u)B^{u)d<t>c{u) = 0 for p ^ q- 

We now consider the following problem. 

To construct a set of m \ polynomials Bp{u) = 
+ q-. . . p = 0, 1, 2, • • •, w, w > 1, such that 

f Bp(u)B^{u)d<l)r(u) 
^ = 0 for p ^ q, p < m, q < m, 

i 5^ 0 for p = q <. m. 
(50.1) 

A necessary condition for the polynomials to exist is that the 

determinants 

Ap — 

* * * > ^ P 

* ‘ * 5 ^p-\-l 
5^ 0, ^ = 0, 1, 2, • • m — 

Cp-i * * ’> C2p (50.2) 

In fact, since 

0 5^^Bo^{u)d<j>c{u) =J’\-d<j>c{u) = Co, 

it is necessary that Aq = Co 5^ 0. Now, \{ q > 0, q < m, then 

jBo(u)Bg(u)d<t>c{u) = J Bg(u)d<l>c(u) = 0, 

j Bi{u)Bq{u)d4>c{u) = j uBq{u)d4>c{u) — 0, 

^Bq-i{H)Bg{u)d4)c{u) = j'u‘'~^Bg{u)d<t>c{u) = 0, 

f Bg^(u)d</>r,(M) = fU'‘Bg{u)d<pciu) = hg 0. 
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From these equations we find immediately that 

Aq — hqAq_iy ^ = 0, 1, 2, • • - y TTl — 1, (A_i = 1), 

and therefore (50.2) holds. 

Suppose, conversely, that (50.2) holds. Then 

J=J\'d(i>c{u) = ro = Ao 7*^ 0. 

We write = Co- Tet Bx{u) = u + bi. Then 

J Bo{u)Bi(u)d<l>c(u) = Cl + cobi = 0 

if, and only if, 

J Bo(u)d<t>c(u) = aoy J* uBo{u)d(l>c{u) = —aobi. 

Since ao 9^ 0, this determines biy and therefore Biy uniquely. 

Using induction, we now suppose that jBo(«), Bi{u)y • • Bn{u)y 

n < rriy have been uniquely determined, such that (50.1) holds 

{or p < riy q < tiy and that constants Up and bp have been deter¬ 

mined by the relations 

Ju^Bp{u)d<t>c{u) = aoai • — ap 9^ Oy 

Ju^'^^Bp{u)dcl)c{u) = -aoai • • • ap{bi + ^2 H-h ^p+i), (50.3) 

/) == 0, 1, 2, • • ~ 1, 
such that 

Bp(^u^ (.bp “f” u^Bp—1(^) (^p—iBp—2(^)5 

p = lylySy • -y riy (B^l{u) = 0). 

(50.4) 

We shall prove that Bn+i{u) is then uniquely determined. 

It is easy to see that an arbitrary polynomial of degree n \ 

in which the coefficient of is unity, can be expressed uniquely 

in the form 

Bn + l{u) = (^n + 1 + u)Bn(u) “ ^n5n-l(«) + k^B^{u) 

+ kiBi(u) 4- . . . -f- kn—2^n-^2 

where b^j^iy any k^y kiy y kn^2 constants. The conditions 
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^u^Bn+i{u)d<i>c{u) =0, /) = 0, 1, 2, •••,« — 2, 

give in succession kou^ = 0, kia^ai = 0, • • •, ^n-2^0^1 * * • ^n-2 = 

0, so that ^0 = ^1 = ‘ = kn—2 — 0- From the conditions 

J*«" ^Bn+i{u)d<i>c{u) = 0, 

= 0, 
we then obtain (50.3) for p ^ n. We then find immediately 

from the equations 

U^Bn{u)dcl>c{u) =0, p = 0, 2y • — y n — ly 

Ju^Bn{u)dcj>c{u) = aoai an, 

that An = aoai • • • an^n-iy and therefore an 9^ 0. Accordingly, 

^n+i is uniquely determined. Moreover, 

J*Bp{u)Bq{u)dcl>c{u) =0 for p 7^ p < « + 1, ?<« + !, 

and, if ^ + 1 < rUy then 

J*+ == JBn + l{u)d(j>c{u) 9^ 0, 

for otherwise we would have An-f 1 = 0. 

We have completed the proof of the following theorem. 

Theorem 50.1. Let c — {cp\ be a sequence of constants such that for 

some m > \y (50.2) holds. Then there exist uniquely determined poly¬ 

nomials Bp{u) = «^ + H— • + /> = 0, 1,2, • • •, ?72, such that 

(50.1) holds. These polynomials can be found recurrently by means of the 

formulas 

Bo{u) = 1, Bi{u) bi + Uy 

Bp{u) = {bp -[“ u^Bp-.i{u) ap—iBp^2{d)y p — 2, 3, 4, * • *, m\ 

^uPBp{u)d<bfyT) ^0^1 * * * 

= —a^a\ • • • Upipx + ^2 H-V ^p+i)) 

/> = 0, 1, 2, • • •, »2 - 1. 

(50.6) 

Conversely, if (50.2) fails to hold, then such polynomials do not exist. 
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Remark. If the and bp are given, Up 9^ 0, then it is easy to 

see that the relations (50.5) and (50.6) serve to determine ro, ri, 

• • •, C2m-i uniquely in terms of the ap and bp, 

51. Algorithm for Expanding a Power Series into a J-fraction. 
By (50.5) it follows that the polynomials Bp{z) are the denomi¬ 

nators of the J-fraction 

Let 

^1 + 2-7 
b 

— 1 

bm 2 

(51.1) 

(51.2) 

be the formal power series whose coefficients are the given num¬ 

bers Cp, The coefficients of I/2, l/z^y • • l/z^' in the product 

P{\/z)Bp{z) are 

Ju^Bp{u)d(bc{u) =0, r = 0, 1, 2, •••,/) — 1; 

and the coefficients of and of in this product are 

J*u^Bp{u)dct)c{u) = a^ai ' • • Up 

and 

J*u^^^Bp{u)d(t>c{u) = —aoai * • * ap{bi + ^2 H-h 

respectively. Consequently, we have 

aoai Up a^ai • • • ^pibi + ^2 + * • • + ^p+i) 
7P+1 rP+2 + 

P ll>lj 2, •••,??? 1, (51.3) 
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where A^{z) is a polynomial in z. It follows that (cf. (42.10)) 

_ ^0 ^2p-l C2p^^^ 

Bp{z) ~~z'^ ^ "72”^ + z2p + l + '•*• 
(51.4) 

By the argument used in proving (43.4) we see at once that 

Ap{z)IBp{z) is the/)th approximant of (51.1), {p < m). 

If, conversely, (51.1) is any terminating J-fraction in which 

the partial numerators are different from zero, then we see 

immediately that its denominators Bp{z) satisfy (50.1), the 

sequence c being ^o, C2m-u determined by means of (51.4). 

If (50,2) holds for all m, and only then, we can construct an 

infinite sequence of orthogonal polynomials. In this case we have, 

instead of (51.1), an infinite J-fraction; and the relation (51.4) 

holds for all values of p. 

The power series P{\/z) with which the power series expansion 

in descending powers of 2 of the^th approximant of the J-fraction 

agrees term by term for the first 2p terms {p = 1, 2, 3, * • •)> 

is called the power series expansion of the J-fraction; the coeffi¬ 

cients Cp are the moments of the J-fraction. From the preceding 

discussion it follows that the following theorem is true. 

Theorem 51.1. There is a one-to-one correspondence between infinite 

J-fractions and power series P(l/z) for which the determinants of (50.2) 

are different from zero for /> = 0, 1, 2, 3, • • •. This correspondence is 

completely characterized by the fact that (51.3) holds for p = 0, 1, 2, • • •. 

The determinants Ap are related to the coefficients ap in the f-fraction by 

the formulas 

Ap = a^ai • • • /2pAp_i, /> = 0, 1, 2, * • *, (A_i = 1). (51.5) 

If a power series P{\/z) represents a rational function of 2, 

then the determinants Ap are clearly zero from and after some 

value of p. Hence, we have 

Theorem 51.2. The power series expansion of an infinite f-fraction 

cannot represent a rational function of z. 

The formulas (50.6) for constructing the orthogonal poly¬ 

nomials, and hence of the J-fraction, can be expressed in matrix 

notation in such a way as to facilitate the computation. We shall 

write down the formulas and explain them afterward. 
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= ZP + Sp.lZ""' + 5p.22^-^ + • • • + 

^00 = 1> 

^0^00 “ ^0? 

^1^00 ~ —^0^1= Ao> 

, >^0 
—-> 

ao 

(SlOj Sii) = (1, ^i), 

{C2i ^i) ^ “ ^0^1) 

(^^3, C2) ) = -aoaii^i + h) = fii; 

^ _ A_ ^ 
ao ^0^1 

/L 1^2, 0\ 
(^20y ^215 ^22) = (^105 ^11) ( ^ 1 ; ) <^1(0, 0, 6oo)> 

\0, 1, 02/ 

(51.6) 

(f4, t's, ^2) ( 821 I = 

(^5) ^4> <^3) I ^21 1 = —^0^1^2(^1 + ^2 + ^3) ~ >^2; 

^0^1 OqCIiU2 

Ay b^y 0, 0\ 

{^SOy ^Sly ^32y S33) = (^20j ^21, 622) ( 0, 1, b^y Oj — ^?2(0, 0, 5io, 5ii), 

V 0,1, bj 

(,^p,Oy ^p,ly ^P,2y * ’ *) — i^p,Oy ^p,ly ^p,2y * * ')• ('^^•^) 

/Coy Ciy •••, 

I 0, ^03 ’ * * > ^p—2 I 

O3 * * *> Cq^ 
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The second relation in each group, after the first, is (50.5) 

for the appropriate value of p. The last two relations in each 

group are the relations (50.6). We understand the usual row 

times column matrix multiplication. The equation (51.7) can be 

obtained by equating the coefficients of z®, z^, z^, z^*”^ on 

either side of (51.3). 

Example. By way of illustration, we shall carry out several 

steps of the calculation for the case where 

1 
c ji j ~ , p 0, 1, • • *. 

^ + 1 

Here, P(l/z) = log[z/(z — 1)]. Hence, we shall have obtained 

the first few partial quotients in the J-fraction expansion for this 

function. 

Following (51.6), we get: 

5oo — 1> 

^0^00 = ^0 ” 1> 

^i^oo = 

bx = 

(5io> 5ii) = (1, -“I), 

(^2, ^l) ^ ~ ~ ~ 

(i> i) ~ “■^o^i(^i + ^2) = 1^ = h\\ 

/\ _i Q\ 

(520> ^21, ^22) “ ““ i) (n 1 1 ) 
\U, 1, ” 2^ 

= (1, -l,i), 

(i> i> i) ~ = TTO) ^2 = T^> 

(ij i) ~ — a^xUi^bx + ^2 + ^3) = tIit = ^2; 
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(^SO^ ^32, 633) = (Ij 

(0^305 <^31> 0-32) == (I3 ““1> 1^)- 

The first three partial quotients of the J-fraction for log [z/{z — 1)] 

are then found to be 

1 

—+ 2 — 
(A) 

- z + (U) 

- (§y + (i)z - (^0)' 

We note that for z = —1, this gives log 2 = .69312 • • - , which is 

correct to /our decimal places. 
52. Stieltjes Type Continued Fraction Expansions for Power 

Series. In Chapter VI we considered continued fractions of the 

form (28.1), which we called Stieltjes type continued fractions. 

These continued fractions have the property that their even parts 

are J-fractions. For the purpose of abbreviation, we shall call 

any continued fraction of the form (28.1) in which the kp are 

diff’erent from zero, or any continued fraction which can be ob¬ 
tained from this by an equivalence transformation or simple 

change of variable, an S-fraction. According to this definition, 

a J-fraction in which bp = 0, /> = 1, 2, 3, * • is an S-fraction: 

%- 

z- 
Z — ' 

(52.1) 

By means of an equivalence transformation, this can be thrown 

into the form 
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Hence, it follows that if P{\/z) is the power series expansion of 
(52.1), then 

Cq Cl C2 

+ + (52.3) 

contains only even powers of 1/z. It is therefore convenient to 
remove a factor 2 from (52.2) and then replace 2^ by 2. This 
gives the S-fraction 

Cl{\ 
(52.4) 

2 — 
ai 

CI2 

2 — 
^3 

1 - 

and its power series expansion is 

Co Cl C2 

“ + “2 * 
(52.5) 

Inasmuch as Co, 0, Ciy 0, C2y 0, • • • are the moments of a J-frac- 

tion, the determinants 
Coy 0, Cl 

Co, , 0, 0 , ••• (52.6) 
0, Cl „ 

Cly 0, C2 

must be different from zero. By making suitable interchanges 

among rows and corresponding columns, the determinants (52.6) 

may be written as 

Aq, Ao^o, * * * 

where the Ap are the determinants introduced before, and 

Qp = 

Cly C2y * ’ * > ^p+1 

C2y C’Sy • • ' , Cp^2 

’’j C2p^l 

, /> = 0, 1, 2, (52.7) 

Hence, a necessary condition for (52.5) to have an S-fraction 

expansion (52.4) is that 

Ap 7^ Oy Qp 7^ 0, p = 0, 1, 2, • • *. (52.8) 
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Conversely, if this condition is satisfied, then the determinants 

(52.6) are all different from zero, so that Co, 0, Ci, 0, 0, • • • are 

the moments of a J-fraction. To construct this J-fraction, it is 

only necessary to replace C2-p by Cp and C2p^i by 0, ^ = 0, 1, 2, 

• • *, in the formulas (51.6). If we do this, we find that 

bx = 0, 

0
 

11 

<0 

^2 = 0, ^21 — 

^3 = 0, ^31 = 0> ^33 = 0> 

0
 

11 541 = 0, ^43 = 0, 

b^ = 0, ^61 = ^53 = 0, 

Thus the J-fraction has the form (52.1), so that (52.5) has the 

expansion (52.4). 

We shall state this result as 

Theorem 52.1. There is a one-to-one correspondence between power 

series (52.5) for which (52.8) holds^ and S-fractions (52.4) in which 

^ 0, p = 0, 1, 2, • • •. The correspondence is completely characterized 

by the fact that the expansion in descending powers of z of the />th approxi- 

rnant of the S-fraction agrees term by term with the power series for the first 

p terms (p = 1, 2, 3, • • *)• 

Remark. If we remember that the determinants (52.6) are 

products Ao, AqI^q, Ai^i, A2O1, A2l^2> * * * of determinants (52.8), 

we see by (51.5) that the coefficients Up in (52.4) are positive if, 

and only if, 

Ap > 0, fip > 0, p ^ 0, 1, 2, • • •. (52.9) 

Just as in the case of J-fractions, we have 

Theorem 52.2. An infinite S-fraction cannot have a power series 

expansion which represents a rational function of 2. 

53. Stieltjes^ Expansion Theorem. We have given a step-by- 

step method for expanding a power series into a J-fraction. We 

shall now describe a method due to Stieltjes [93] which will, in 

certain cases, give the complete expansion in one stroke. Stieltjes 

showed that the problem of expanding a power series into a J-frac- 
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tion is equivalent to the problem of obtaining a decomposition of 
a certain quadratic form into a sum of squares. The theorem may 

be stated as follows. 

Theorem 53.1. The coefficients in the J-fraction 

1 

bi z — 
ai 

(53.1) 

^2 + 2 — 
^2 

h + 

and its power series expansion 

K')=2: 

are connected by the relations 

(-1)% 
(53.2) 

(53.3) 

where 
“b ^1^2^2,p^2,q ”!"***> 

^0,0 = h ^r,8 = 0 if r > s, 

and where the kr,sfor s > r are given recurrently by the matrix equation 

/koOy 0, 0, 0, .... ^bij I5 0, 0, 0, 
•\ 1 koi, ^11) 0, 0, ...' aiy b2y 1, 0, 0, 

1 ^025 kl2) ^22, 0, 

"1 

0, ^2> K 1, 0, •• 

/ 

/^01> ^11) 0, 0, 0, 

ko2y ^12j ^22> 0, 0, 

^03> ^13j ^23 J ^33 > 0, 
(53.4) 

\ 

Moreovery there is the fof'mal decoinposition into a sum of squares: 

^ ^^Cp^qXpXq — (;fo + ^01-^1 + ^02*^2 + * * *)^ 

+ afxi + ki2X2 + ki^xs H- 

+ aia2{X2 + ^23*^3 "t~ ^24*^4 + * * ‘)^ “b ‘ (53.5) 
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Converselyy if we have a decomposition (53.5), where the are not zeroy 

then Piy/z) is the power series expansion oj the J-fraction (53.1), where 

h\ ~ '^oi) —i,p> P ‘ • *. (53.6) 

Finallyy the proble?n of expanding the power series (53.2) into the 

f-fraction (53.1) is equivalent to the problem of obtaining a power series 

identity of the foryn 

Q(x + j) = Q{x)Q{y) + «i<2i(Af)(2)(v) + «ifl2(?2W(?2(v) H-, (53.7) 

where the a^ are constants different from zerOy and 

^(^) “ I ’ 

(53.8) 
00 

Qrif) ~ ^ 
p\ 

The coefficients a^ in the f-fraction are the ap of (53.7), and the bp of the 

f-fraction are given by (53.6) in terms of the kr,s of (53.8). [93.] 

Proof. We remark, in the first place, that the identity (53.7) 

can be written as 

V - QMQly) + atQt(x)Q,(y} + 

SO that the identity is equivalent to a decomposition (53.5). 

Denote the right-hand member of (53.3) by Cp,g. Then from 

(53.4) we obtain the relations 

^p.g + l = kQ,p(kQ,q + + aiki^pih^q + + ^2^2.g) 

+ <^l^2^2.p(^l,g + ^3^2.g + ^3^3,a) + ‘ * *3 

and 

^o,5(^o,p 4“ ti\h.\^p) “f” ,9(^0,p 4~ ^2^1,p 4“ ^2^2,p) 

4“ <^i^2^2,g(^i,p 4“ ^3^2,p 4" <^3^3,p) 4“ • * 
Consequently, 

'p.«+i ^P + 1.9 Cp-f-2,g —1 

^ Cp_i,g_^2 ^ Cp^2,g-f3 

— Cp4_g,_^l,0 

* * = Co.p+g + l. 

The formulation by means of this identity was given by Rogers [80]. 
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Thus, 

^p,q ” ^r,8 P “1“ ^ ~ Sy 

and we are therefore justified in writing Cp,g = Cp+j. 
Considering now the bilinear form 

00 

C — ^^^^Cp^qXpyqy 
P, Q = 0 

we readily verify that 

C = (^O.O'^O + + ^0.2‘^2 + * * *) 

(^o.oJVo + ko^iyi + ko,2y2 + • • *) 

+ + ^1,2*^2 + ki/sX'S + • • •) 

(^i.iJVi + ^I,2jy2 + ^i.sJVa + • • •) 

+ <^1<^2(^2.2‘^2 ^2,3*^3 “h ^2.4*^4 "f" ’ * ‘ ) 

(^2,2^2 + ^2,3^3 + ^2,4^4 H-) 
+ • • • . 

If we put Xp = 0, jVq = 0 for p > Uy q > ?iy we then conclude 

that the linear transformation 

t/o == ^o,o*^o "4“ “h • ' d~ ^0, nXny 

f/l = + • ■ ”f“ k 1 ^nXny 

C/n = k-n, nXny 

/^o = ^’o.oJVo + k{)^iyi + • ’ • + f^O^nyny 

= + * ■ • ' + ki,nyny 

Vn = kn,ny ny 

carries the bilinear form 
n 

^ ^ CpH-9'Vpjy« 
p, « = 0 

into the bilinear form 
n 

* * * ^p^p^py (^0 !}• 
p*.0 
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Since the determinant of the linear transformation is equal to 

unity, it follows that 

Cl, C2, 'P+1 

^p —1 ^py 

Cp3 Cp_|-i, ■ ■ y C2P 

and therefore, since the Up are not zero. 

Ap uqUi • * • <3pAp_i, p 0, 1, 2, • * *, (A_i 1). (53.9) 

Likewise, if Xn = = 0, Xp — Oy = 0 for p > n + \y 

q > n + ly WQ find that 

A/»' = • * • ap^iap 

— {a^ai • • • a^ibi + ^2 + * ' ‘ + ^p+i)Ap™.i, (53.10) 

where Lp is the determinant obtained from Ap by advancing the 

subscripts of all the elements of the last row by unity. 

Now (53.9) and (53.10) are precisely the relations one obtains 

by equating the coefficients of 1/z, 1/2^, • • •, on either side 

of (51.3), but with Cp replaced by Cp, /) = 0, 1, 2, • • •. Since 

those relations determine the Cp uniquely in terms of the Up and 
bp (cf. the remark following Theorem 50.1), it follows that 

Cp = fp, /> = 0, 1, 2, • • •. This establishes the relation (53.3). 

Let us suppose, finally, that we have a decomposition (53.5) 

of the quadratic form whose coefficients fp+g are the coefficients 

in a given power series; and that the Up are not zero. We can 
then conclude that (53.9) and (53.10) hold with Cp = Cp\ and 

hence that the power series has the J-fraction expansion (53.1) 

in which the bp are defined by (53.6). This completes the proof 

of Theorem 53.1. 

Example. We shall use this theorem to obtain the expansion 

[93, 80] 

f sech*M e ^du — 

2 + 
1 

(53.11) 

nk +1) 
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Consider the identity 

sech^ (x + y) 

— (cosh ;c coshy + sinh sinhy)~^ 

= sech^ a; sech^y — k sech^"^^ a- sinh sech^'^^ y sinhy 

_|-{—it—1 sech^"^^ X sinh^ ;>c sech^’^^y sinh^ y — . . . 
1-2 ^ 

= QMQiy) + ^iQiMQiiy) + ^i^202(^)02(y) +■ 
where 

sech^*^^ 2 sinh^ z z^ 

^ ip + \)i 

yV+'i- 

+ ■ 

Up PiM “h P ^p.p+i 

The expansion (53.11) now results immediately by application of 

the last part of Theorem 53.1. 

The formula (53.4) furnishes what is perhaps the most con¬ 

venient means for expanding a J-fraction into a power series. 

By way of illustration^ let us find the first few coefficients in the 
power series for 

1 

z + 1 — 
1-V 

z -T 2/ T 3 
3-V 

z -f“ 3/ -f" 4 —' 

We find for (53.4), (to three rows), 

0, 0, • • -s /l, 1, 0, 0, --A 

1, 1, 0, • • • if, / + 2j 1, 0, ••• 

/ + 1, / + 3, 1, • • • 1 i0, 4t, 2/ -|- 3j 1, 
... / \ . / 

1. 0, 0, 

_ u + 1> / + 3, 1, 0. 

~ + 4/ + 1, , /2+10/ + 7, 3/+ 6, 1, 
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Then, by (53.3) we get immediately, 

^0 = 1, cs = + 1, 
Cl = ly ^4 = + 11/^ "t" 11/ “h 1, 

^^2 = / “h 1, ^5 = -f- 26/^ 66/^ 26/ “h 1> 

c^ = + 57/" + 302t^ + 302/2 57^ .j. 

54. Convergence Questions. There is one important case 

where we can assert that the power series P{l/z) is equal to the 

J-fraction or S-fraction of which it is the expansion. It will be 

convenient to replace 2: by l/z and then divide by 2, in the power 

series and the J-fraction or S-fraction. The J-fraction takes the 

form 

iiZ + 1 

ao 

aiZ^ 

b2 z-{~ 1 
^22 

bsZ -j- 1 — 

(54.1) 

the S-fraction becomes 

ao 

1 _ 

“ 1 ~ • 

(54.2) 

while the power series becomes 

P(z) = Co + Ciz + C2Z^ H-. (54.3) 

Theorem 54.1. 1/ the J-fraction (54.1) converges uniformly for 

I z 1 < My then its power series expansion (54.3) has radius of convergence 

at least equal to My and the sum of the series is the value of the J-fraction, 

The corresponding statement holds for S-fructions [111]. 

Proof. The approximants of the J-fraction or S-fraction form 

a sequence of rational functions /^(z), converging uniformly for 

I z I < M. There must exist an index k such that for p >ky 
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the power series expansion of/p(z) in ascending powers of z con¬ 
verges for I 2 I < M. Put 

«i(2) =fk{z), Upiz) =/fc+p_,(z) -/i+p_2(z), ^ = 2, 3, 4, •••. 

Then 
00 

= hm/p(2:) = u{z), 

uniformly for | z | < M, where //(z) is an analytic function for 
I z I < M. By a theorem of Weierstrass, the series of nt\i 
derivatives 

00 

converges for | z | < M to the sum Now, since the expan¬ 
sion in powers ofz of/p(z) agrees term by term with the series P{z) 

for a number of consecutive terms beginning with the first, which 
increases to oo with />, it follows that 

00 

= n\cny « = 0, 1, 2, • • •, 
/» = 1 

and therefore, if | 2 | < M, 

p = 0 • p=»0 

as was to be proved. 

Theorem 54.2. If 

lim Up = 0, {ap 9^ 0), (54.4) 
P=s 00 

then the S-fraction (54.2) converges to a meromorphic function of 2. The 

convergence is uniform over every closed bounded region containing none 

of the poles of this function. If 

lim dp a 7^ Oy (54.5) 
pa 00 

then the S-fraction (54.2) converges in the domain exterior to the rectilinear 

cut running from l/4« to <» in the direction of the vector from 0 to 1/4^, 
to a function having at most polar singularities in this domain. The con- 



210 ANALYTIC THEORY OF CONTINUED FRACTIONS 

vergence is uniform over every closed bounded region exterior to the cut 

which contains no poles of the function [111, 110]. 

Remark. This theorem is due to E. B. Van Vleck. Stieltjes 

[95] proved that if the Up are real and positive, then (54.2) con¬ 

verges to a meromorphic function if^ and only if^ (54.4) holds. 

One can find examples to show that this conclusion does not hold 

if the Up are not restricted to be real and positive [121, 122]. 

Proof of Theorem 54.2. Let G be a bounded closed region 

containing the origin on the interior, which is otherwise arbitrary 

in case (54.4) holds, and which is exterior to the specified cut in 

case (54.5) holds. By Theorem 33.1, there exists an index Ny 

depending only upon G, such that \i n > Ny then the continued 

fraction 
UnZ 

1 _ ^"+^2 
1 -• 

(54.6) 

converges uniformly over G to an analytic function Fn{z). Since 

G contains the origin on the interior, the power series expansion 

of (54.6) converges in the neighborhood of the origin to Fn{z), 

by Theorem 54.1. Hence, by Theorem 52.2, Fn{z) is not a rational 

function of z. We then conclude that (54.2) converges over G 

to the function 
An{z) - Fn{z)An-\{z) 

Bniz) - Fn{z)B^_^{z) ' 

which is analytic over G except possibly for poles, inasmuch as 

Bn{z) — Fn{z)Bn-\{z) cannot be identically zero. The con¬ 

vergence is clearly uniform over the region obtained from G by 

removing the interiors of small circles with centers at the poles 

of the function. This completes the proof of the theorem. 

Exercise 11 

11.1. Let azp = Cp ^ 0, lim Cp = 0, = a 9^ 0, Then the 
continued fraction (54.2) converges to a meromorphic function of z [121]. 

The continued fraction converges uniformly in the neighborhood of the origin (cf. 
end of § 10), and is equal to its power series expansion by Theorem 54.1. 
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11.2. Let xiy X2y • • Xm be real numbers such that < ^-2 < • • • < and 
suppose that Mj, > 0, p = 1, 2, 3, • • Put 

V = 
Z — Xj, 

ao 

z + 
ai 

2 + ^2 
^m~l 

2 “f" ^7n 

The polynomial P„(2) which renders the sum^ l/(xp) - Pn(xp)]Wp a minimum 

is given by 

p ^ Pn + l(z)Bn(Xp) — 2?n + l(‘^j))/?n(z) 
Pn(z) = - > ^-/(Xp). [105, 106.] 

aoai ' ' ' Un A. — Xp 

11.3. Let Xp — x\ {p — \)dy Mp = l,/> = 1, 2, 3, • • •, ;w, 0. Then the 
constants dp and bp are given by 

^0 = mdy dp = , bp = -(^1 4- \{ni - \)d). [94.] 

11.4. xi — —ky X2 — — k 2y xs = — ^ + 4, • • Xk-^-i = -^ky k a positive 

integer, and Mp = “■ 1)*(^ ~ P + !)’•> then 

^0 = 2, dp^ p{k-p + 1), 4 = 0, /> = 1, 2, 3, • • •, /^ + 1. [93.] 

11.5. Obtain the formal expansion 

1 

r •'0 
2 + - 

12 

2 4- - 
22^2 

2 4- • 

2-f ■ 
4V 

+ 

.. [93.] 



Chapter XII 

MATRIX THEORY OF CONTINUED FRACTIONS 

Up to this point we have regarded the J-fraction as being 

generated by a sequence of linear fractional transformations in 

one variable. We may also regard the J-fraction as arising from 

a single linear transformation in infinitely many variables. In 

fact, let us consider the system of linear equations 

(^1 + 2)^1 — 

””^1^1 + ip2 + ^)^2 ■“ = V2y (3^) 

— ^2^2 + (^3 + 2)^3 — ^^3^4 = 7?3, 

This may be looked upon as a transformation of the point 

^ ^2y ^3j *•*) the space of infinitely many variables 
into the point 77 = (771, 772, 773, •••) of the space. If 771 = 1, 

77p = 0 forp > 1, we may write the equations in the form 

ai 

hi z 
^1^2 

+ 2 — 
^2^3 

^2 

^2^3 ^2 
2 

^2 
^3 “f" Z — 

^3^4 

17 

If we then substitute in succession from each into the preceding, 
we obtain the formal expansion of into a J-fraction 

212 



MATRIX THEORY OF CONTINUED FRACTIONS 213 

= 

bx z — 

^2 “f" Z 
^2 

^3 + 2 - 

Suppose now that we have an “inverse” of the transformation 

(a). 

PllVl + P12V2 + Pl3^3 + • • • = ^1, 

P21V1 + P22V2 + P23’73 H-- $2, 

P31’71 + P32^2 + P33’73 H-- ^3, 

(b) 

On setting rji = 1, = 0 for /) = 2, 3, 4, • • we then see that 

= Pii- We shall call the matrix (ppq) a right reciprocal of the 

matrix J of the transformation (a). From the preceding we now 

see that the leading coefficie7ity pn, m a right reciprocal oj the matrix 

J is formally equal to the J fraction. 

To make this a little more precise, we may understand that 

(b) is an inverse of (a) if, when the values of the from (b) 

are substituted in (a), the latter is formally satisfied. On making 

this substitution, we find that the ppq can be any numbers such 

that 

^p — \Pp — \,q T f'p ~h ^)Pp,q ^pPp-\-l ,q ^p,qy 

where 6^,^ is the Kronecker delta, and is equal to zero or unity 

according as p 7^ q or p — qy respectively. Here we agree to take 

ao = 0. Since aiy a2, ^3, • * • are not zero, it follows that, for a 
fixed qy if pi,g is chosen arbitrarilyy then pp,g, p = 2, 3, 4, • • *, are 

uniquely determined. ThereforCy there are infinitely many different 
right reciprocals. This makes it obvious that one must restrict 

in some way the class of right reciprocals to be considered in order 

that the statement ‘‘pii is formally equal to the J-fraction” shall 

have any significance. 
The principal goal of the present chapter is to investigate the 

right reciprocals of the J-matrix, and to determine those which 
have an essential relationship to the J-fraction. To that end, 
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we first develop some of the fundamental ideas of the matrix 
calculus. 

The introduction to the matrix calculus given here is based 

upon notes of a seminar directed by Ernst Hellinger. The princi¬ 

pal references are Hellinger [30, 31], Hellinger and Toeplitz 

[32, 33, 34], Hilbert [37], and Stone [97]. 

55. Linear Forms. The expression / apXp, in which the Up 

are given constants and the Xp are independent variables, is called 

a linear form. The linear form is called bounded if there exists a 

constant N such that for every positive integer n and every system 

of values Xpy 

v 

Cl dX t, 

P»1 

(55.1) 

where N is independent of n and of the variables Xp, The smallest 

value of for which (55.1) holds is called the norm of the linear 

form. 
00 

Theorem 55.1. T/ie linear form ^ ^UpXp is bounded ify and only ify 
p=i 

00 

the infinite series ^ ^ \ convergent. If the linear form is bounded^ 

then its norm is given by 

The infinite series 

N Zi 
p^l 

00 

^ ^jUpXp 

(55.2) 

p*= 1 

converges absolutely and uniformly in any domain of the variables such that 

where r^ is a positive constant. 

Proof. If (55.1) holds, then on substituting Xp —Up in that 

inequality we obtain 
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so that 

and consequently the series 

« 

p = i 

converges^ and its sum does not exceed Conversely^ if this 
series converges, then, by Schwarz’s inequality. 

^ I i ^p 
p=i \p=i 

so that (55.1) holds when N has the value (55.2), and it cannot 

hold if N has a smaller value. Again, by Schwarz’s inequality. 

m-\-n m -f-n 

<rJ^ 
p=^m ^ m 

Xp\‘^ < r^. Hence, when the linear form is bounded, the 
p = 1 00 

series converges absolutely and uniformly in the prescribed 
p= 1 

domain of the variables. 
00 

A sequence ;.3, • • • such that I Xp converges, is 
p-i 

called a point of Hilbert space, and may be convenient./ desig¬ 

nated by the single letter x. The Hilbert space is denoted by 
00 

the set of points x such that^^ | -Vp |^ < is the Hilbert sphere 
p-=i 

of radius r, and is denoted by The value of the linear form 
00 

is the sum of this infinite series in case it converges. A 
P-1 
bounded linear form has a value for every point of its norm is 
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the least upper bound of its absolute value for all r in and is 

actually attained by the form for at least one point of v^i. 
56. Bilinear Forms. The expression 

00 

A{x,y) = ;ap,iXpy^, 
p, q= 1 

in which the aprj are given constants forming the infinite matrix 

^ is called a bilinear form in the infinitely many varia¬ 

bles Xp^yq. It is called bounded if there exists a number such 

that for every positive integer n and every system of values Xp 

and yqy __ 

T. I^ (56.1) 

where is independent of ?i and of the values Xp^ y^. 

It is easily seen by application of Schwarz's inequality that the 

convergence of the double series 2| Upq is sufficient for the 

bilinear form to be bounded. That this is not a necessary condi¬ 

tion is seen^ for Instance, from the fact that the unit form 

00 oo 

~ ^ ^ ^pqXpyq ~ ^ ^J^pyP (56.2) 
p,y=l P=1 

is bounded, although the double series 26^^^ is divergent. 

Theorem 56.1. A necessary condition for A{x^ y) to be hounded is the 

convergence oj the seines 

00 CO 

^ ^ 1 i j ~ I5 ^5 * *5 ^ ^ i ^^Pf/ 1"^) 

p«l a=l 

= 1,2,3, .... (56.3) 

Proof. For a fixed let jVg = 1 and let yp — 0 for p ^ q. 

Then 
00 

A{Xy ^ ^cipqXp 
p« 1 

is a linear form which, by Theorem 55.1, is not bounded unless 
00 

the series E I 1^ is convergent. It follows, a fortiori, that 

n 

E 
p, 1 

a pqX py q < N Ei^.i^E 



MATRIX THEORY OF CONTINUED FRACTIONS 217 

the convergence of this series is necessary for the bilinear form to 

be bounded. Similarly, the second series in (56.3) must be con¬ 

vergent for each fixed p, "Chat the condition is not sufficient may 
be seen from the example ap^j = p * hpq. 

Theorem 56.2. A bounded bilinear form converges for each x ayid y in 

by rowSy that isy for each py the series 

00 

^ (56.4) 

convergesy and the series 
00 / 00 \ 

^ ^ ^ ^ApqyQ I (SG.S) 
p~l \q=l / 

converges. The sum of the latter serieSy which will be denoted by A{Xy jy), 

and called the value of the bilinear fornty satisfies the inequality 

\A{Xyy)\ <N 
p-1 y-1 

(56.6) 

where N is the constant appearing in (56.1). 

Proof. The convergence of the series (56.4) follows at once by 

Schwarz’s inequality and Theorem 56.1. Let m and n be two 

positive integers such that 7i > m. Then by (56.1) we have: 

^ ^ ^ ^fipqyq ] ^p 
p — m \5 = 1 » p — m 

^ = 1,2,3, 

yQ 

and therefore, by the convergence of (56.4), 

■' \ 
fipqyq I Z E 

p=^m \ g== 1 
yq (56.7) 

Since x is in ^y the right-hand member of this inequality ap¬ 

proaches zero as m tends to oo^ so that (56.5) converges. On 

putting m equal to unity, and then letting n tend to oo in (56.7), 

we then obtain (56.6). 
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Theorem 56.3. A hounded bilinear form converges by segments for 

each X and y in to the value A{x^ y') defined in Theorem 56.2, that is: 

n ao / 00 \ 

lim / ^apgXpy, = J{x,y) =^( / apgyg ] Xp. (56.8) 

Proof. Put 
n n / ae V 

^ pjQi y) — ^ ^ f ^ ^j^pgyg j 
p, 3= 1 p = 1 \ g-= 1 / 

Then, 

•^ni^yy) -^nix^y) = ^ ^ f ^ ^ ^pqyq ) 
p=^l \q = n-\-l / 

which is the bilinear form A(Xy y) evaluated for Xn^i = ^n+2 = 

. . . = 0,3^1 — y2 = ' ■ • = yn ~ Oy and therefore 

I ‘Sn{x,y) - An{x,y) I < I .yp p I Jg 
\ p=i 

Since the right-hand member of this inequality approaches zero 

as n tends to oo, and since, by Theorem 56.2, 

lim Snixyy) = Aixyy)^ 
n= 00 

it follows that 
lim An{x,y) = A{x,y). 

n== 00 

As an immediate corollary we have 

Theorem 56.4. The summatioyj of a bounded bilinear form by rowSy 

by columnsy or by segmentsy give one and the same value A{Xy jy) when x 

and y are points of 

A — — 

A matrix 

^I2y ^13> 

1 ^2ly ^22y ^233 

Usi, ^323 ^333 

is called botmded if the bilinear form A{xy y) = ^ttp^x^yq is 

bounded in the sense of (56.1). By the norm of the matrix we 

shall understand the least number N which can be used in (56.1). 
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If c is any number, then ck is the matrix {ca^^; and if B = 

then the sum A + B is the matrix + bp^. One sees imme¬ 

diately that if A is bounded, then ck is bounded; and that if 
A and B are bounded, then A + B is bounded. We have: 

^cA = 1 ^ i‘^A ^A + B ^A + 
where denotes the norm of the matrix X. 

The product AB of matrices A and B is the matrix C = 

where 
00 

^pq “ ^ ^j^prbrqy Q ~ ^3 * ' *> 
r=l 

provided all these series are convergent. Otherwise, the product 

is undefined. 

Theorem 57.1. T/ie product of two hounded matrices exists and is 

bounded. Moreover^ the norm of the product is not ^eater than the product 

of the norms of the factors. 

Proof. It is required to show that the bilinear form 

pqXpyqy where ^pq ^^^^prbrqy 

v,q^l r =- 1 

is bounded when {apq) and {bpf) are bounded matrices. By 

Theorem 56.1 and ^Schwarz’s inequality, the series defining Cpg 

is absolutely convergent. We may therefore write 

^ / °° \ 

Z E eiprbrq j ^py q 
p, fl=l p, (/=l\r=:l / 

~ ^ V ( ^ ^/I'prXp j ( ^ ^j^rqyq j y 

r=l \p=l / \y=l / 

so that, by Schwarz’s inequality. 

'^^^CpqXpyq 
p, 3=1 

qjq 
r=l I p = r=l 1 3=1 

(57.1) 

n 

Put er = ^ ^CLprXp. Since A is bounded we then have: 
p = i 

m m I n 

^ ^ ^ ^ ^^eiprXp J Wr 
1 \p=l P»1 
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where is the norm of A. On putting Wr = er in this inequality, 

we get 
m n 

r=l 1 2^=1 

For the same reasons. 

rn n 

r=I g=l V <2=1 

On letting m tend to oo In these inequalities, and then substitut¬ 

ing from the resulting inequalities into (57.1) we then have: 

pqXnpy ^ 

P. G = 1 p= 1 y-1 

which establishes the theorem. 

If M is a bounded matrix, the transformation 

y 

ao 

P “ ^ P ~ I5 2, 3, • * *, (57.2) 
<2=1 

has the property that if ^ is in then jy is in Sy, In fact, as in the 

preceding proof, 

n / m 

V P == i 
1 ^p ^ ^ ^j^pq^q ] ^p 

p=1 \g=1 

SO that, on letting m increase to 00^ we have: 

< 

a = i 

E p= 1 
yp^p 

p= 1 

Thus, ^ ^jVp^p is a bounded linear form, and therefore ^ ^ \ yp 

converges. Moreover, 

(57.3) 
P=1 fl»l 

The transformation (57.2) which takes points of $ into points of § 
is called a botmded transformation. 
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Theorem 57.2. The bilinear form whose ynatrix is the product of two 

bounded matrices {apf) and {bpf} m this order has the value 

\ / \ 
/ j y / ^^pr^pj y / prqyqj' (57.4) 

Proof. Let C{x^ y) be the bilinear form whose matrix is 
{apf){bpf) = {Cpf). Then, by the definition of a bilinear form. 

00 00 / 00 

p. fl = 1 

yqCpq 

The coefficient of Xp in this last expression is the value of the 

bilinear form B{x^y) with matrix {bpf)^ where Xr = Upr^ the sum¬ 

mation being by columns. On summing the same by rows, we get 

0(>^J y) — ^ ^ pr ( ^ ^prqyq 
p=l r=l \q=l 

But this is the value of the bilinear form ^^{Xy y) with matrix 

(apg) and with yr = D-v,. the same being summed by rows. 
1 

On summing by columns we then have: 

C{x,y) = Efe rqjq 
r=l \g=l p-1 

as was to be proved. 
We shall now prove that the bilinear form with matrix A(BC) 

is equal to the bilinear form with matrix (AB)C, when A, B, and C 

are bounded matrices. That is to say, multiplication of bounded 

matrices satisfies the associative law. It is required to show that 

s=l / s=l \r==l 

p,q==l, 2, 3, 
(57.5) 

Now, the left-hand member of this proposed equality is the value 

of the bilinear form with Xr ys ^sqy the summation 
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being by rows, while the right-hand member is the same but with 

the summation being by columns. It follows that (57.5) is a 

true equality. 
A matrix is called symmetric if {or p^q — 1, 2,3, 

Theorem 57.3. A real symmetric matrix {a^^ is hounded if for each 

real pomt x in 

n n 

^pq^p^q ^ N'^^^Xp y — 15 2, 3, •■ * •, (57.6) 
p, p=l 

where N is a constant independent of n and of the Xp; and the norm relative 

to real § is equal to the least value of N which can be used in (57.6). 

Proof. If X and y are real points of then for the nth seg¬ 

ment Arfxy y) of A{Xy y)y we have: 

■^n{.Xy y) = \{An{x + yyX y) - An{x - yyX - jy)], 

so that, if andy are in 6^1, 

Anix.y) I < -^ypY +^(yp 
^ \p-l P=1 / 

N 
2 

p=l p=l 

< N. 

Therefore, A{xy y) is bounded relative to real .Sp, and its norm 
relative to real § is the smallest number N that can be used in 

{SI.6). It is also bounded relative to complex For, if 

Xp = Xp + ixp', y^ = yf + iyf\ then 

An{x,y) = An{x\y) - An{x"yy'f + iAn{x\yf + iAn{A\y)y 

so that, by the above inequality. 

I An{Xyy) I < ^ < 2iV, 
^ p-i 

if X and y are in §i. 

If A{x, y) is a bilinear form whose matrix is symmetric, then 

A{x, x) is called a qtmdratic form; it is called bounded if its 
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matrix is bounded. The value of a bounded real quadratic form 
is the sum of the double series 

A{x^ x) = 'y^^apqXpX^ 

X being a real point of H. 

P, 

58. Bounded Reciprocals of Bounded Matrices. If AB = I, 
where I = {8pg) is the unit matrix, then B is called a right recip¬ 
rocal of A; and if CA = I, then C is called a left reciprocal of A. 

If AB = BA = I, then B is called a reciprocal of A. 

Theorem 58.1. If K is a bounded matrix having a bounded right 

reciprocal B, then the system of equations 

pq^q 

q^l 

= P = 1,2,3, •••, (58.1) 

has at least 07ie solution x in $ for each y in and if there is a bounded 

left reciprocal C, then the system of equations (58.1) has at most one solu¬ 

tion X in ^ for each y in 

Proof. It will be convenient here and in subsequent develop¬ 
ments to write systems of linear equations such as (58.1) as a 

single matrix equation. We represent a point as a one-column 

matrix: 

^2 

X = •^3 

The system of equations (58.1) is then equivalent to the single 

matrix equation Ax = y. Suppose that A has a bounded right 
reciprocal B; we see by direct substitution that x = By consti¬ 

tutes a bounded transformation ofj into Xy so that (58.1) has at 

least one solution x for each y in Suppose now that (58.1) 

has a solution ^ in § when y is a given point of and that A 

has a bounded left reciprocal C. We then have: 

Ax = y, C(Ax) = Cy, (CA)x == Cy, x = Cy. 
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Thus, if there is one solution, there is only one solution. 

Theorem 58.2. If a bounded matrix A has a bounded left reciprocal 

C, and a bounded right reciprocal B, then B = C, and the equation Ax = y 
has one ay7d only one solution x in ^ for each y in 

Proof. We have: AB = I and CA = 1. On multiplying the 

first of these equations on the left hy C and the second on the 

right by B, we then have: C(AB) = C, (CA)B = C(AB) = B, so 

that B = C. By Theorem 58.1, the equation Ax = y has at least 

one solution x in ^ for each y in and at the same time it has 

at most one. Therefore, it has just one solution x in Sly for each 

y ill §• 

Theorem 58.3. For a hounded symmetric ynatrix A, there are two and 

only two possibilities^ namely: 

(a) A has neither a right nor a left bounded reciprocal; 

(b) A has a unique bounded reciprocal A~^ such that 

AA-^ = A-^A = I. 

Proof. If A has a bounded right reciprocal B, then AB = 1. 

If we denote by X' the transpose of a matrix X, i.e., the matrix 

obtained from X by interchanging corresponding rows and col 

umns, then (AB)' = B'A' = I' = I, or B'A = I, since A is sym¬ 

metric. Hence, by Theorem 58.2, B = B'. Similarly, if A has a 

bounded left reciprocal, then it has a unique bounded reciprocal. 

There is but one other possibility, namely, (a). 

Theorem 58.4. If a bounded matrix A has a unique right {left) 

bounded reciprocal^ then this is the reciprocal. 

Proof. Let B be the unique right reciprocal of A. Then, 

AB = I. Consider BA - I. Since A(BA - I) = (AB)A - AI - 

O, we conclude that A(B + BA — I) = I. Since A has, by hy¬ 

pothesis, a unique bounded right reciprocal B, and since B + BA 

— I is bounded and is a right reciprocal of A, we have: B + BA 

— I = B, or BA = I. Hence B is the bounded reciprocal of A. 

Theorem 58.5. ^ A = I — D, where D is a matrix with norm less 

than unity^ then A has a bounded reciprocal. 

Proof. Since the norm of D is a number r less than 1, then 

the norm of is less than or equal to r^^k = 1, 2, 3, • • •. Hence, 

if .V andjv are points of ^i, the series 
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00 

= F{x,y), {D^ = I), 

converges absolutely and defines a function F{x^ y) such that 

I Fix, y) I < 7-^"— 
1 — r 

Let Xp = yp = 0 {or p > n. Then, Fix, y) = 5„(x, y) is the 

wth segment of a bounded bilinear form B{x, y) whose matrix 
B = ibp^ is given by 

00 

/> = 5 4- d = 1 ^ 1 • • • ^pq I / /^pq 3 ^ 5 ^5 i 

where we have putD^‘ = We shall prove that B{x^y) = 

j)- Determine m so that, for all at and j in §1, 

oc 

Y,^nx,y) < 

where e > 0 is a preassigned number. I>et D^{x^y)n denote the 
value of D^{Xy y) when Xp = = 0 for p > n. Then, 

00 00 

F{x,y) - Bnix,y) ='^iy‘''^ix, y) - j)„ 

= J^[D>^-\x,y) - iy‘-Kx,y)p] 
A: = l 

00 

00 

k~ rn-^i 

The modulus of each of the last two sums does not exceed e for 

« = 1, 2, 3, • • •; and, m being fixed, we may choose «o so large 

that for n > no, the modulus of the first sum does not exceed e. 

Here, «o depends in general upon x,y and e. We then have: 

I Fix,y) - Bnix,y) I < 3e for n > «o, 

i.e., Fix,y) = Bix,y). 
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Put 
m 

B{x,y) = + R,n{x,y). 

Then, 
m 

(/ - D)(B - RJ(x,y) = (/ - D) 

= I{x,y) - D^"ix,y), 

(/ - D)Bix,y) - I{x,y) = (/ - D)R,.ix,y) - D-(x,y). 

For any values of and jy in the modulus of the right-hand 
member does not exceed 

(1 + r)r^ 

1 — r 
+ r’% 

which approaches zero as w —^ oc. Since the left-hand member 

is independent of m, we conclude that it must be identically 

zero. Therefore, (/ •— D)B{xy y) = I{xy y), or (I — D)B = I. 
Thus B is a bounded right reciprocal of A = I —D. In like 

manner, we find that BA = L Hence, A has a unique bounded 

reciprocal. 

59. The Bounded Reciprocal of a Bounded J-matrix. The 

matrix of a J-form + z)xp^ — Iha^x^Xp^i is called a 

J-matrix. We shall denote this matrix by 

J = Jo + 

h + 0, 0, 
-^1, h + z, 0, 0, 

0, ^3 + Z, —^3, 0, * • • 

0, 0, ^3, “f“ Z, ”~^4> 

If Jo is bounded and has norm and if | z | > Ny then the norm 

of Jo/z is a number r less than unity. By Theorem 58.5 it then 

follows that I + (JoA) has a unique bounded reciprocal for 
I 2 I > Ny which is given by 
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Therefore, J = Jo + zl has a unique bounded reciprocal for 
I z I > Ny which is given by 

J-' = (Jo + zl)-i = 2 , (Jo" = I). (59.1) 

This is a matrix whose elements are power series in 1 /z, convergent 

for I z I > TV. We remark that even if Jo is unbounded, this 

matrix of power series exists formally, inasmuch as all powers of 

Jo exist. 
Let us put J“^ = (Ppg(l/z)) = (Ppq). Inasmuch as JJ~^ = I, 

we have the power series identities 

Piii^i + 2) ~ Pi2ai = 1, 

11^1 + P 12(^2 + 2) — P i3<22 == O5 

~~Pl2^2 "ri Pl3(^3 4" 2) — Pi4^3 — 0, 

‘ > 
and therefore 

Pxi = P 11 
© 

(59.2) 

ai 

ai ‘(^1+2)- 
d 1^2 

^2 H^2 + 2) — 
Cln^n-\-l 

^n-fl (^n-f-l~l“2) 
+2 

P l.n + 1 

We may write this in the form (cf. (17.13)), 

P l,n4-2 
Xn+2iz) - 

Pl.n 

X„ + ,(2) 
+ I 

T„+.(2) - C— n + l(2) 

and therefore 

'"lx TVn-^l(2) 

Pl.n 

^n-fl 

y„+i(z)y„+2(z) - y„+i(z) 

(59.3) 

Pl,n +1 
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One may verify that Pi.nW^i.n+i == (^n+iA) + (lA^), where 

(lA^) denotes a power series in descending powers of z beginning 

with the term in lA^- Hence we conclude that the power series 

expansion in descending powers of z of the difference in the left- 

hand member of (59.3) begins with the term in lA^” ^h There¬ 

fore^ Pii(lA) = ^(lA) the power series expansion of the J-frac¬ 

tion (cf. § 51), 

1 

+ z - 

^2 + Z — 
^2 

+ Z 

In § 26, we showed that a bounded J-fraction of norm N con¬ 

verges uniformly for | z | > + c for every positive constant c. 

By Theorem 54.1 and the preceding conclusion^ it then follows 

that the leading coefficient in the matrix (59.1) is equal to the value 

of the f-fraction for | z | > N, 

60, Reciprocals of an Arbitrary J-matrix. As pointed out at 

the beginning of this chapter, any matrix {ppq) whose coefficients 

satisfy the equations 

^V — \Pp — \,q 4" (<^p ^Pp,q + “ ^P-9) , 

(60.1) 
p,q = 1, 2, 3, • • 

(^0 = 0, 7=^ 0, ^ = 1, 2, 3, • • •)) is a right reciprocal of the 

matrix J. These equations are equivalent to the matrix equation 

J(ppg) = I. Since the ^ 0 for /> > 1, it follows that, for a 

fixed ^ = 2, 3, 4, • • *, are determined uniquely in terms 

of an arbitrarily chosen initial value pi,^. We shall now obtain 

explicit formulas for the pp,^, ^ = 2, 3, 4, • • •, in terms of pi,g. 

For a fixed the equations (60.1), {or p — 1, 2, 3, • • *, are 

the same as the recurrence formulas in (17.10) for the polynomials 

Tp(z), which determine the Yp{z) uniquely up to a factor inde¬ 

pendent of p. Consequently, 

Pj),9 ~ Pl,qYp{z) y P ^ I5 2, 3, * * * 3 

\{p > qy it is clear that p^,^ must have the form 
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Pp,q 

where Cp,g{z) is a polynomial in z; and that the Cp^g{z) are uniquely 

determined by means of the system of equations 

dqCg^l 

“1“ ^Cqj^i ^q Clqj^iCq^2,q ~ 0) 

d” {Pq-\-r-\r\ “h q-{-r-{-\,q ^q-{-rq-\-r-\-2 ,q ~ ^3 

1,2,3, .... 

We observe that, by the determinant formula. 

and also, 

” ^<741 (^741 d” z) == XqYqj^2 ^q-\-2Xq* 

One may now readily show by mathematical induction that 

^q-\-r,q ~ ^qYqj^-r Xq^rYqy T = 1, 2, 3, .... 

Hence, we have proved 

Theorem 60.1. The general right reciprocal of the J-matrix is (ppq)y 

where pi.g, ^ = 1, 2, 3, * . *, are arbitrary functions of z, and 

f X I Pi,<77X^)3 P ^ I3 2, 3, '' ’ y q; 
Pvq\^) — i (60.21 

Ipi.,(2)^42) + A-42)y42) - y4z)n(-). 

p — q + 1, q + 2, q -j- 3y .... 

If we introduce a new function Wg = Wq(z)^ by means of the 

equation 

Pl,Q ~ YqWq Agr, q — I3 2, 3, • • 

then the formulas (60.2) take the symmetrical form [3] 

Yp{z)Yg{z) (wg(z) - 

Y,(z)Y,(z) (t£;44 

P C 2, 3, ■ ■ ■) 

(60.3) 

p = q + \, q + 2, •••. 

From (60.3) we see immediately that the following theorem is true. 
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Theorem 60.2. The matrix (ppg) is symmetric ify and only ify the 

functions W(fz) are all equal to one another; or ify and only ify 

= Vn(z), for n> q, (60.4) 

where Vn(f) is independent of q for n > qy {ny q = 1, 2, 3, • • •)• 

If the J-fraction is bounded, and we put Wq{z) — P(l/z), the 

power series expansion of the J-fraction, then (60.3) gives the 

unique bounded reciprocal, (^^^(l/z)), of the J-matrix. In the 

general case, it follows from Theorem 56.1 that a necessary condi¬ 

tion for the matrix {ppf) to be bounded is that the series 

2^ 1 Pi .9(2) converge. In the indeterminate case (Definition 

22.1) it follows from Theorem 22.1, (60.2), and Schwarz’s in¬ 

equality, that this condition is also sufficient. For then the 

double series 2[ Ppq{z) is convergent. Since the Pi,q{z) are 

arbitrary functions, we then see that in the indeterminate case 

the J-matrix has infinitely many bounded right reciprocals. In 

the determinate case, we are unable to say, in general, whether or 

not a bounded right reciprocal exists. In the next section we shall 

find that if the J-fraction is positive definite, then there is a unique 

bounded reciprocal in the determinate case, which has an essential 

relationship to the J-fraction. Also, in the indeterminate case, 

there are among the infinitely many bounded reciprocals certain 

ones which have an essential relationship to the J-fraction. 

61. Reciprocals of the J-matrix Associated with a Positive 
Definite J-fraction. We now consider a positive definite J-fraction 

^1 + z - 
af 

{up 9^ 0), (61.1) 

^2 “f" z — 
^2 

bz + z — 

and the symmetrical reciprocals of its associated J-matrix. We 

shall employ the ideas and notation of Chapter IV. 
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The symmetrical reciprocals are given by (60.3) with Wq{z) = 

f{z), q = 1, 2, 3, • • *3 an arbitrary function of z. We shall impose 

certain restrictions upon the function /(z). We recall that for 

3'(z) > 5 > 0, the approximants of the J-fraction are uniformly 

bounded (cf. (17.7)). Hence, every infinite sequence of its approxi¬ 

mants contains an infinite subsequence which is uniformly con¬ 

vergent over every bounded closed region lying entirely within 

the upper half-plane, 3(2) > 0, to an analytic limit-function/(z). 

The values of this function must lie in all the circles Kj^iz) (cf. 

(17.5)). Any function which for 3(2) > 0 is analytic and has its 

values in all the circles K.^{z) will be called an equivalent function 

of the J-fraction. In particular, every function which is the limit 

of a convergent sequence of approximants of the J-fraction is an 

equivalent function of the J-fraction. We shall require that 

Wg(z) = /(z), ^ = 1, 2, 3, • • *, where f{z) is an equivalent Junction 

oj the J-fraction. 

Let fi, * • * j be arbitrary real numbers. On multiplying 

the equation (60.1) by and summing over q from 1 to w, we 

obtain 

^p—iVp—i “t” {^p ^^Vp ~ ^py (61.2) 
where 

Vp 

n 

q^l 
(61.3) 

By Theorem 60.2, the quotient Pn+i,«/p™,« is independent of q 

for q = 1, 2, 3, •••,«. Moreover, if we put 

then 

w — 
Cl n P 71,q 

> 

Pn-\-l,q 

y„(z)/(2) - 

Yn + x{z)f{z) - + ’ 

SO that, by (17.13), 

/(z) = Vi • • • tn{w) = 
)y«+i(z)^e> - anXnjz) 

yn + l(z)w' — anYn{z) 

Consequently, the function /(z) has its values for 3(z) > 0 in 
the circle X„(z) if, and only if, 3f(w) > Pn+ign (cf. (17.12)). By 
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our assumption thatf{z) is an equivalent function of the J-fraction, 

we therefore conclude from Lemma 17.1 that 

I^n + jy ~ -3 (-—) > ^ngn-i + J, whcrc y = 3(2) > 0, 
\w/ 

or 

3(—) <^1 (61.4) 
\ w / 

Now 
_ 

^nPn-\-l,q Pn.q* 
W 

On multiplying this by and summing over q from 1 to we 

have 

^n'^n-f 1 
an 

w 
Vn- (61.5) 

We now multiply (61.2) by sum over p from 1 to n, and then 

eliminate the quantity anVn+iVn by means of (61.5). This gives 
immediately the relation 

4" 2)| 7}p 1^ ^ ^jap{vpVp-\-i 4" VpVp-i-i) 

w 

n 

Vn 

If we consider only the imaginary part and make use of the in¬ 

equality (61.4), we then have the relation (cf. (16.10)) 

n n— 1 

I 1^ 4~ ^ ^ ~~ gp—i)vp ~ ^Pp-{-igpVp-i'i\^ 
p=i p=i 

n 

+ ^^p3'(>?p) < 0. (61.6) 
p = l 

Hence, in particular. 

n 

Vp P +^^{p3(’?p) ^ 0. 
^■*=1 

(61.7) 
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Turning now to the quadratic form 

^n(^j 0 ~ ^ ~ ^ ^J^plpy 

we have, by Schwarz’s inequality and (61.7), 

n 2 I » n 

I 1^ = ^ ^j^pVp — “ ^ JV ^ ^ 
p=l 0^33=1 

Therefore, 

or 

Vp 

y 7^ p=i 

= -&'-(-3[^nU, ^)]). 
J 7^ 

Rn{k, I, 

I /?n(^, $) i < - 
J 7^1 

(61.8) 

For the related bilinear form we then have, by the identity used 

in the proof of Theorem 57.3, 
I n n 

I Rn{u, y) I < - , if < 1, y~^yp^ < 1> (61.9) 
y p=i p=i 

for all real u and v. 

We have completed the proof of the following theorem.-® 

Theorem 61.1. Any reciprocal of the J-matrix associated with a posi¬ 

tive definite J-fraction^ which is given by (60.3) with Wq{z) =/(2), q — 1,2, 
3, • • where f{z) is an equivalent fwiction of the J-fractiony is bounded 

for 3(2:) > 0. The norm of this matrixy relative to real Hilbert spacey is 

not greater than \/^{z), That isy 

'^PpaUpV, 3' = ^^(^)>0> (61.10) 
p,q—\ Jy \ p,=cl Q~1 

for all real Up and Vq. [136.] 

*®This theorem and the next were proved for real J-fractions by Hellinger [31]. For 
related theorems, where a modification of the boundedness condition was used, cf. [35] 

and [138]. 
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In the determinate case, the circles Kp{z) have one and only 
one point in common for 3(2) > 0, namely, the value of the 
J-fraction. We shall prove 

Theorem 61.2. In the determinate case for a positive definite ffraction^ 

the associated f-matrix has one and only one bounded reciprocalfor 3(2:) > 
0. This is given by (60.3) with Wq{z) = /(z), q — 1, 2, 3, • • •, wheref(z) 

is the value of the f-fraction [136]. 

Proof. That the said reciprocal is bounded for ^(z) >0 has 
been proved. It remains to be shown that any other reciprocal 
is unbounded for at least one 2; in 3(2) > 0. For any other 
(right) reciprocal there must be at least one q and at least one 
z in 3(z) > 0 such that 

W,(2) - > k > 0 
Yp{z) 

for all sufficiently large values of p, k being a positive constant. 

Fio. 9. 

Hence, it follows by (60.3) that, for these values of q and 2, 

I Pp,(z) > I n(2) pp-i Fp(z) |^ 
for all sufficiently large values of p. Since | Yq{z) | > 0, and since 
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OQ 

the series| Yp(z) diverges in the determinate case, it then 
p-i 

n 

follows that the series ^ ^ | ppq{z) diverges. Therefore, by 

Theorem 56.1 the matrix (^^,7(2:)) is unbounded. 
62. Estimates for the Equivalent Functions. If in (61.10) we 

let Up = Vq = ly Ur = 0 for r 9^ pyVr — 0 for r 7*^ that inequality 

becomes 

I Ppg{z) I < -, y = 3(2) > 0- 
By (60.1), 

/ , ^p — lPp — l,q ^vPp.q ”1“ ^pPp + l,g . ^p,q 
Ppq{z) =-h -- 

z z 

Consequently, 
5^, 0(1) 

PpQ\^) I 
z yz 

(62.1) 

(62.2) 

where we use 0(1) to represent a function of z which is numerically 

less than a constant independent of z for all z with 3(2) > 0. 

In particular, since puiz) —■ /(z), we have, for any equivalent 

function of the J-fraction,^' 

/(2) 
1 

z yz 
(62.3) 

If we substitute the values of Pp-\.q, Pp,q, Pp+i,® from (62.2) 

into the right-hand member of (62.1), we obtain 

Ppq{z) = — + 
V”' . 0(1) + 

yz 
P>h 

-i,q ^p^PtQ **1” (^0 0). On sub- where = ap-idp. 

stituting from this into (62.1), and continuing the same process, 

we then find that 

Ppgi^) 

where 

‘'J’9 _|_ . . Spq^’^^ , 0(1) 
+ ••• + 

vft+1 
+ , p>k-\, (62.4) 

S ()fc) _ ^ S . (*:-l) _ A X (*-l) 4- /2 S , , 
Opq — Up^iOp^l^q i ^p^p-\-l,q • 

21 Cf. Beth [3] for the case of real J-fractions, and Hellinger and Wall [35] for the case 

ap real and 3(^p) > 0. 
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Since = 0 if ^ > 9 + ^, we then have 

0(1) , 0(1) 
+ 

2-1-T i ^,2" 
Pq+k.q , k = 0,\,2. [138.] (62.5) 

Exercise 12 

12.1. A bilinear form ^(x^j) is called completely continuous if for every 

€ > 0, there exists an such that 

I ^niy.y) - Anx{x,y) I < e if m,n> N, 

for all points x andy in $i, the number being independent of x andjy. A matrix 

is called completely continuous if it is the matrix of a completely continuous 

bilinear form. A completely continuous bilinear form is necessarily bounded, 

but not all bounded forms are completely continuous. For example, the unit 

form is not completely continuous. Show that if the double series S| 

is convergent, then A{x^y) is completely continuous. This is not a necessary 

condition. A necessary but not sufficient condition is that lim a>pq = 0 as 

and q tend to oo. 

12.2. If we are given two sequences of points and y^^^ in the Hilbert 

sphere such that for each p\ 

lim = Xp, limjp^”^ = 
n= 00 n« 00 

and if A{x,y) is completely continuous, then 

lim = A{x,y). 
n=» 00 

12.3. If A{x,y) is a bounded form such that A{x,y) approaches zero whenever 

all coordinates Xp and jVp of x and jy, respectively, approach zero, then A(x^y) 
is completely continuous. 

Hint. Show first that if M is the least upper bound of | A{x^y) | for x and^ 

in f)i, then there exist points z and w in such that | A{z^ w) | = M. Apply 

this to the form 
00 

A^’'\x,y) = ^ Oj^Xpyq, 
P, 

which may be regarded as A{x^y) evaluated for Xp — y^ = 0 for p K n. 
12.4. The product of two bounded matrices is completely continuous if at 

least one of the factors is completely continuous. 

12.5. If A is a bounded real matrix, and if AA' is completely continuous, then 

A is completely continuous. 

12.6. If A{Xyy) is symmetric and positive definite, and ifS^pp converges, then 

the double series converges and A{Xyy) is completely continuous. 

12.7. If the matrix D of Theorem 58.5 is completely continuous, and if wc 

put (I — D)“^ == I — E, then E is completely continuous. 
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12.8. If a bounded real matrix A has a bounded right reciprocal, then there 

exists a positive constant m such that 
00 

AA'(x, x) > mY^x;- 
V-- 1 

for all real x-p. 
12.9. IfS is a real bouncied symmetric matrix, such that 

x) > 
1 

for all real Xpy where m is a positive constant, then S has a reciprocal, and its 

norm does not exceed l/m. 
12.10. The condition in 12.8 is sufficient as well as necessary for A to have a 

bounded right reciprocal. 

12.11. A system of linear equations 

Xp — y^.dpqXq = Vp, /) = 1, 2, 3, • • 
ff-i 

which may be written as the single matrix equation 

(I — D)x = X - Dx = y, 

is called completely continuous if the matrix D = {dp,j) is a completely continuous 

matrix. The solution of the completely continuous system may be made to 

depend entirely upon the solution of an algebraic system of linear equations in a 

finite number of unknowns. 

12.12. The completely continuous system (I — D)x = y has a unique solu¬ 

tion A' in $ for each y in 4*), or else the homogeneous system (I — D)x = 0 has 

at least one solution a 0 in .f). 

12.13. A bounded J-matrix has a unique bounded reciprocal for any 2 not 

in the convex set Ko introduced in § 26. 



Chapter XIII 

CONTINUED FRACTIONS AND DEFINITE 
INTEGRALS 

In the earlier investigations of J-fractions, beginning with the 

classical work of Stieltjes [QS], the coefficients and bp were sup¬ 

posed real. For this case, and with some additional restric¬ 

tions, Stieltjes was able to connect the J-fraction with one or 

more integrals of the form 

where 4){u) is a bounded nondecreasing (not necessarily con¬ 

tinuous) function of u. For particular cases where these restric¬ 

tions are relaxed, Van Vleck [109] obtained again a connection 

with an analogous integral, the range of which he had to extend 

over the whole real axis. Hilbert’s [37] famous theory of bounded 

quadratic forms, in which the ideas of vStieltjes are in the back¬ 

ground, allows immediate application to real J-fractions and their 

connection with integrals of the above form, but with a finite 

range of integration [32]. Grommer [23] showed that the process 

of Hilbert can be applied to more general cases where the integral 

extends from — oo to + co. A general theory of real J-fractions 

was first developed by Hamburger [26] following the pattern laid 

down by Stieltjes. At about the same time, the general case was 

treated by several other mathematicians. Hellinger [31] em¬ 

ployed Hilbert’s theory of infinite linear systems, R. Nevanlinna 

[62] used methods of function theory and asymptotic series, 

Carleman [6] used his theory of integral equations, and M. Riesz 

[79] used methods of successive approximation. 
238 
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In this chapter, we first develop some of the properties of 

Stieltjes integrals. Then, using the asymptotic expression (62.3), 
found in the preceding chapter, we arrive at the fundamental 

theorem that any equivalent function of a positive definite J-frac- 
tion is equal to a Stieltjes integral of the form 

J_oo z — 

in which is a bounded nondecreasing function of u. 

63. The Stieltjes Integral.^^ In his investigations of the con¬ 
tinued fraction (28.1), in which the kj, are real and positive, 

Stieltjes found that in some cases the value of the continued frac¬ 

tion has the form 
r'^f{u)du 

Jq z u 

wheref{u) is a positive function of //, while in some cases the value 

of the continued fraction has the form 

00 

z Lp 

z -f" ^p 

where the Lp are positive and 0 < < ^2 < *^3 < • • *• More¬ 
over, in other cases, the value of the continued fraction may be a 

sum of an integral and an infinite series of the above forms. This 

situation led Stieltjes to define an integral of the form 

Jq Z U 

embracing all the functions of the three diverse types. 

Let f{u) and <t>(u) be two real or complex valued functions of the 

real variable Uy defined on a finite interval a < u < b. We sub¬ 

divide this interval into n + I subintervals by interpolating n 

points Uiy U2y • • y Un between a and by so that if — Uy Un+i = by 

then 

^ U\ "K. U2 

^ References: Stieltjes [95, Chap. VI], Bray [5], F. Ries'z [78], Evans [13], Widder [142], 
Shohat and Tamarkin [90]. 
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For ^ = 1, 2, 3, • • •, w + 1, let be chosen arbitrarily in the 

interval Uk-i < u < Uky i.e., Uk-i < Vk < Uky k = ly 
n \y and form the sum 

w+l 

S{uy v) = '^f{vk)[(p{uk) — 4>{uk-i)]. 
/fc=l 

If this sum tends to a finite limit L as n tends to oo in such a 

way that the maximum of the differences Uk — Uk-i tends to zero, 

the limit being independent of the manner in which the successive 

subdivisions are made and the interpolated points Vk chosen, then 

L is called the Stieltjes integral off{u) with respect to </>(^/), and 
is denoted by the symbol 

r f{u)d<l>{u). 
^ a 

We shall now develop some of the properties of this integral. 

There is a duality between the functions J{u) and </>(/v) appear¬ 

ing in this definition: 

Theorem 63.1. If the Stieltjes bitegral of f{t() with respect to (t>{u) 

existsy then the Stieltjes integral of (t>{u) with respect to f{u) existsy and there 

is the formula of '^integration by parts f 

= f(b)ct>{b) -f{a)(i>{a) - f <i>{u)df{u). (63.1) 

Proof. Inasmuch as, by hypothesis, the Stieltjes integral of 
f{u) with respect to 0(//) exists, we may regard it as the limit as 

max {uk — Uk~\) ~^0 of the sum S(uy v)y wherein we agree to 

take Vi = Uy Vn+i = h. We then have: 

Siuyv) =f{b)<t>{b) -f{a)4>{a) - 

In passing to the limit, we may choose «i, U2y • • at pleasure 

in the intervals a < u < V2y V2 < u < Vsy • • Vn < u < by 

respectively, and the condition max {uk *— Uk-i) 0 is equivalent 

to the condition max (vk — Vk^i) —> 0. It is therefore evident that 

the Stieltjes integral of (t>{u) with respect to f{u) exists, and that 

(63.1) holds. 
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One may easily verify that the Stieltjes integral obeys the 

following rules of operation; 

f [/i(«) +/2(»)W<f>(») = r/i(«)^0(«) + f/2(uU4>(u); 

f/(«)40i(tt) + 02(«)] = fJ{u)d<t>i{u) + r f{u)dct>2{u)-, 

f ki/(u)d[k2</>(u)J = ^1^2 f/0-i)d^(u), 
•'a 

kiy ^2 being constants. 

Under suitable conditions, the Stieltjes integral reduces to a 

Riemann integral. 

Theorem 63.2. Jf <t)(u) is co?/tinuous for a < u < bj and possesses a 

derivative (l>fu) such that J{u)<b\u) is Riemann integrable for a < u < b, 

then 

f/(u)M^) =f 
b 

f{u)(b\u)du. 

This may be easily established with the aid of the mean value 

theorem. 

If there exists a constant L such that for all subdivisions of the 

interval a < u < the sum 

I (i>{uk) — <t>{uk-i) I < L, (63.2) 

then (t>(u) is said to be of bounded variation on the interval 

a < u < b. In this case, if \f{u) | < M for a < u < b, then 

I v) I < ML. (63.3) 

Theorem 63.3. If f{u) is continuous and <j>{u) is of bounded variation^ 

on the interval a < u < b^ then the Stieltjes integral of f(u) with respect 

to (t>{u) exists. 

Proof. Sincef{u) is continuous on the closed interval a < u < 

by it is uniformly continuous, so that if e > 0, there exists a num¬ 

ber S > 0, such that \( a < Ui < U2 < ‘ Un < b any sub¬ 

division of the interval into subintervals of maximum length S, 
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and ii\ are arbitrary points in an arbitrary one of the sub¬ 

intervals, then \fW) — fW^) I < €. For brevity, such a sub¬ 

division of the interval a < u < b will be called an e-division. 
In any given e-division, let new division points be interpolated, 

forming a new subdivision, which is obviously an e-division. 

If v) and S{u'y v') are sums formed for the given subdivision 

and the new one, then one may easily verify that 

I S(u, v) — S{u\ y') I < eL. 

Suppose now that S(Uy v) and S{u\ v') are sums corresponding to 

arbitrary e-divisions, and let S{u'\ v") be an arbitrary sum corre¬ 

sponding to the e-division obtained by superimposing the u and 

li' division points. Then, by the preceding, we have: 

I S{Uy v) - S(u"y v") \ <eLy I S(u\ v^) ~ S(u"y | < eL, 

and therefore, 

I v) - S{i/y O I < 2eL. (63.4) 

Let ei, e2, ea, • • • be a sequence of positive numbers with the 

limit 0, and, for each py let S{u^^\ be a sum corresponding 

to an e^-division. Then if t; > 0, it follows from (63.4) that there 

exists an index Ny such that 

I — S{u^^^y \< 7]y if n > Ny 

= 1,2,3, .... 

Therefore 

lim S{u^^\ = / 
n= « 

exists and is finite. If S{u, v) is an arbitrary sum corresponding 

to an e-division, then 

1 S{u, v) - I \ <1 S{u, v) - S{u^”\ v<”>) I + I - 11 

< 2eL + 5?, 

for all sufficiently large values of «. Consequently, the Stieltjes 
integral of/(u) with respect to <f)(u) exists and is equal to /. 

e shall suppose in what follows that f{u) is continuous and 4>(u) 
is of bounded variation on the intervals considered. 

The symbol 
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is commonly used to denote the least upper bound of the sums in 

(63.2), taken with respect to all finite subdivisions of the interval. 
By (63.3), we than have the inequality 

I fI < M f 1 I, (63.5) 

where M is the least upper bound of \j{u) \ on a < u < h. 

Since the properties assumed for f{u) and <i>{u) \n a < u < b 

pertain as well to any subinterval a < u < have: 

f/{u)d(t>(u) = f j{ii)d<b{u) + rf{u)d(l>{u), a < c < b. 
•^a •'c 

Integrals over an infinite range are defined as in the case of 
Riemann integration: 

I /(»)^‘f>(u) = lim I 
00 h~+ 00 J^ 

provided the limit exists. Of course, but one of the limits of 

integration may be infinite. 

If a constant c is added to <^(/4), the value of the integral of 

J{ti) with respect to is obviously unchanged. More generally, 

we have this theorem: 

'Eheorem 63.4. In order that the integral 

(63.6) 

vanish for every continuous Junction J{u)y it is necessayy and sufficient 

that <t>(u) == (t>{a) for u = b^ and for all other values of u with the exception 

of at most a countable set included in the set of discontinuities of (l){u). 

[78.J 

Proof. Suppose first that (63.6) vanishes for every continuous 
f{u). Putting in succession/(^) = l;and/(«) = u iov a < u < 

f{u) = V for li > y, we get 
V nh 

ud<j>{u) + vj d<j>{u) = 0(«)> 0 = r 
*'a 

= (y — a)(t>{a) —^ <p{u)au. 
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On differentiating the last equality with respect to Vy we then find 

that (t>(v) = at all points v where 4>(u) is continuous. 
Suppose, conversely, that (l>{a) = cj>{b) — except possibly 

for a countable set of values of n. Then it follows at once by the 

definition of a Stieltjes integral that (63.6) is equal to 0 for every 

continuous f{u). In fact, the sums used in defining the integral 

will all be equal to 0 if the division points are chosen among the 

points for which (j){u) = 

Theorem 63.5. Let J{u) be continuous and nonnegative for a < u < by 

and in this interval let <^)(z/) be bounded and nondecreasing. Suppose that 

there is at least one point u^y a < Wq < by such that/{uf) > 0 and <t>{uo + t) 

> </)(wo ~ 0 sufficiently small values <?/ / > 0. Then the integral 

I f(u)d<t>(u) is positive. 
da 

We omit the proof. 

Theorem 63.6. Let P{u) he any real polynomial of degree r — 1 which 

is not identically equal to zerOy and let <j>{u) be a bounded nondecreasing 

function such that for at least r points Wo, a < u^ < by we have <f)(//o + b) 

> — t) for all sufficiently synall values of t > Suppose further that 

h 

u^P{u)d<l){u) = 0, for ^ = 0, 1, 2, • •w — 1. 

Then P(u) changes sign at least n tunes in the interval a < u < b. 

Proof. If P{u) does not change sign in the interval, then 

the relation I P{u)d4>{u) = 0 shows, by Theorem 63.5, that 
da 

P{u) = 0, contrary to hypothesis. Suppose that P{u) changes 

sign just m times, where n > rUy vX the points «i, U2^ * • *, 

where a < Ui < U2 < • • • < u^n < b. Then the polynomial 

{u — Ui){u — U2) • ' • (tt — Um)P{ti) 

does not change sign in the interval. Therefore, inasmuch as 

Jf (u — Ui){u — U2) • - {u — Um)P{u)d(t>{u) = 0, 
a 

we conclude, as before, that P{u) = 0, contrary to hypothesis. 
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64. Sequences of Stieltjes Integrals.23 If= 1,2,3, • ••, 
is a sequence of continuous functions, uniformly convergent for 

a < u < and if ^{u) is of bounded variation in this interval, 
then 

aP= ^ 
lim I fp{u)d(t){u) 
P= 00 

The proof is analogous to the proof of the corresponding theorem 

for Riemann integrals. There is another type of double-limit 
theorem for Stieltjes integrals, namely: 

Theorem 64.1. Let /(u) be continuous for a < u < b. Let (bpiu), 

/) = 1, 2, 3, ' - ' ^ be a sequence of Junctions of bounded variation on this 

interval^ such that 
h 

1 d4>p{u) I < M, /) = 1, 2, 3, • • •, 

where M is a constant independent of p. Let 

lim <t>p{u) = <#>(w), 
pta eo 

over a set K of points everywhej'e dense in a < u < b^ including u — a 

and u — b^ where <t){u) is of bounded variation. Then 

lim I f{u)d(t)p{u) 
00 i = I f{u)d<t>{u). 

Proof. From the inequality (63.4) it follows that by choosing 

from K a suitable set of division points Uq = a < Ui < U2 < • • • 

< Un < Un^i = b^ we can make 

ff(u)d</>m(tt) -^/(Vp)l<bm(ttp^l) — (/>m(Up)] 

I /{u)d<t){u) — / J{Vp) l(t>iup+i) — <t>(up)] 
da p = 0 

< 

< €3 

where e > 0 is a preassigned number. Since the Up are fixed and 

The theorems of this section have been used in many investigations where Stieltjes 
integrals are involved. The ideas go back to Stieltjes, and were developed and extended 
by Hilbert as important tools in his theory of infinite quadratic forms. Cf. Hilbert [37 
(book)], p. 113 and p. 116. 
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finite in number, we may choose sufficiently large in order that 

n-fl n+1 

tn(^p-fl) [^(^p + l) <5^(^p)] 

p=0 p=0 

for w > Wq. We therefore conclude that 

h _ 
<36 if m > moy 

< e, 

I f{u)d(j>m{u) ~ I f{u)d(l>{u) 
•J a 

which is what was to be proved. 

As a companion to the preceding theorem we have 

Theorem 64.2. Let <t)p(u)y /> = ], 2, 3, ‘ ‘ ^ be a sequence of non¬ 

decreasing functions on the interval — oo < w < + oo, such that for all 

these values of u 

c < <t>p(u) < Cy /> = 1, 2, 3, * • *, 

where c and C are finite constants. Then there exists a nondecreasing 

function such that c < <i>{u) < Cy and a sequence of indices p\ < p2 < 

Pz ‘ ‘ that for all values of 

lim = 0(w). 
k= « 

Proof. Let t’2> ^^3^ * • • be a countable set of points, every¬ 
where dense along the real axis, which set will be denoted by V. 

Since the functions ^p{u) are uniformly bounded, we can select 

a subsequence Siy convergent at u = Vi; from Si we may select a 

subsequence ^’2, convergent at u = V2; from S2 we may select a 

subsequence S^y convergent at u = v^; •••. Using the well- 

known diagonal process, we may then select a sequence 6" con¬ 

sisting of one function from each of the sets Spy which converges 

at every point of F, We define ^{u) over V as the limit of the 

sequence S. If f and v" are points of V such that v" > y', then 

<t>W) < SO that we may complete the definition of 4>{u) 

by writing 

(i>{u) = lim (t>{v)y 
V^u 

where v approaches u over points of F which are less than u. 

The function <l>{u) is now defined for all values of it is clearly 

nondecreasing; and c < <t>{u) < C. 
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Let u be any point where <l>{u) is continuous. Then if e > 0, 
there exists a 6 > 0, such that 

if 

<j>{u) — € < ct)(u') < <l>{u) < < <f){u) + €, 

u — d <?/< u < u" < ii h. 

Since V is everywhere dense^ we may take u' and u" to be points 
of V, Then if K is sufficiently large: 

(t>{u') — e < + e, ^ 
if ^ > K, (t>/ciu) in S, 

<i>W') - e < +6, 

Therefore, \{ k > K, (i)k{u) in Sy 

4>{u) - 26 < (t>{u') - 6 < < </>A-(w) < (t>k{u") < <p{u") 

H" e ^ (l>{u) + 26, 

so that 

I ct>k(u) — (t)(u) I < 46 if k > Ky (t>k(^) in 

i.e., the sequence S converges to (t>{u) at all points u where (t>{u) 

is continuous. Now, we may use the diagonal process to select 

from S a subsequence fpf^{u)y A' = 1, 2, 3, • • •, convergent at all 

the points of discontinuity of If is then suitably 

defined at these points, our sequence will converge to (l>{u) 

everywhere. 
65. The Stieltjes Inversion Formula. The Stieitjes integral 

(65.1) 
, z — u 

is called a Stieltjes transform. 

Theorem 65.1. If <^(w) is bounded and nondecreasing on the interval 

— 00 < < +00, then the mtegral (65.1) cofwerges absolutely and uni¬ 

formly over every bounded closed region whose distance from the real axis is 

positivCy and represents a function F{z) which is analytic for all nonreal 

values of 2. 

Proof. If s and t are finite numbers and j < /, it follows from 

Theorem 63.3 that the integral 

i: 

X z — u 
(65.2) 
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exists for all nonreal z. Let G be a simply connected closed region 

whose distance from the real axis is 6 > 0. Then if 2 is in G we 
have: 

d<i>(u) 1 

Z — li\ 0 

Since </>(/) — 0(j) —> 0 as j and t both approach + oo or both 

approach --qo, it follows that (65.2) converges for /= + oo^ 
j == — oOj absolutely and uniformly over G. 

To prove that (65.1) is an analytic function of 2 over G, it 

suffices, by a theorem of Weierstrass, to show that (65.2) is an 

analytic function of 2 over G for all finite values of s and t. To 

prove this, it is only necessary to note that the sums S{uy v) 

which were used in defining a Stieltjes integral, when formed for 

(65.2), are analytic functions of 2 which are uniformly bounded 
over G, and then to apply Theorem 24.2. 

Note. The integral in Theorem 65.1 does not, in general, define 

a single analytic function, but two analytic functions: one in the 

upper half-plane, 3(2^) > 0, and another in the lower half-plane 

3(2) < 0. The real axis may be a natural boundary separating 

the two functions. The two functions are one and the same 

analytic function in case there is an interval of constancy of 

If <t>{u) has discontinuities everywhere dense along the real 
axis, then the real axis is a natural boundary, and one function 

cannot be continued analytically into the other. 

We now consider the problem of expressing the monotone func¬ 

tion (t)(u) in the integral (65.1) in terms of the analytic function 

F(z) defined for 3(2) > 0 by the integral. We form the integral 
of F{z) along the rectilinear path from z = s iy to z = t + iy^ 

Fio. 10 
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s < /y jy > 0, and obtain 

pt+iy d6(u) ^<+12/ I F(z)dz - I dzj = I d(l>{u) I - 
^8-{-iy *'a-{-iy —ao ^ ^ ^ — oo 8-\-iy ^ 

dz 

the interchange of the order of integration being allowable by 
virtue of the uniform convergence of the integral (65.1) along 
the path of integration with respect to z. On equating imaginary 

parts, and performing one of the integrations, we then have, 

\{ z = X iyy 

f'^[F{z)\dx =/^*( 
/ u — t u 
arc tan-arc tan 

y 
y^d<i>{u). 

We now observe that the integral 

J ' — QO 

U — t 
arc tan-d(j>{u) 

y 
(65.3) 

Is unchanged If <l>(u) is replaced by the function 

</)(/^) for u < ty 

4>{u) — 0(/ 4" 0) “h — 0) for u 'y*- ty 

</>(/ — 0) for u — ty 

which Is continuous at n — t. We may then write (65.3) as 

a{u) = 

/t 5 

arc tan 
-u 

2^   ^ ^ ~\~U 21 — / 
-— da{u) + I arc tan-d(7{u) + B{U, S, y), 

y ^t+6 y 

where, for any e > 0, 

1 5, j) I < €, if i7 > A^, 0 < 5 < 5o, 

N and 5o being numbers depending upon e but not upon _y > 0. 

On letting y approach 0 through positive values, the first of the 

above integrals has the limit 

- h) - 

and the second has the limit 

+ ^[<r(+f/) -<r(/+ 6)]. 
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Therefore, we conclude immediately that as y approaches zero 

through positive values, the integral (65.3) has the limit 

~ [or(4- oo) + (7( — oo) — cr(/ — 0) — o'(/ + 0)] 

^</>(+^) + _ </)(/ - 0) + <i>{t + 0)^ 

On subtracting from this expression the same expression with t 
replaced by j, we then have the following formula: 

1 
- lim I + iy)\dx 
TT j/=+0 

4>(s — 0) + (j)(s + 0) 

2 

(/>(/ — 0) + </>(/ + 0) 
0 

(65.4) 

This is Stieltjes’ inversion formula [95, No. 39]. 

66. Representation of an Equivalent Function of a Positive 
Definite J-fraction as a Stieltjes Transform. We now consider 

the question of obtaining an integral expression 

d(f>{u) 

z — u 
(66.1) 

for an arbitrary equivalent function of a positive definite J-frac¬ 

tion. We recall that an equivalent function is analytic for 

3(2) > 0, and has a negative imaginary part in this domain. 

These are properties of the Stieltjes transform (66.1) if <l>(u) is 

bounded and nondecreasing. In (62.3) we have an asymptotic 
expression for an equivalent function, namely, 

/(z) = - + ^ ^ = 3(2) > 0. (66.2) 
z yz 

We shall prove that these properties are sufficient to guarantee that 

an equivalent function of a positive definite ffraction is equal to a 

Stieltjes transform (66.1), in which (t){u) is bounded^ nondecreasing^ 
and 0(+ 00) — 0(—oo) = l. [35.] 



CONTINUED FRACTIONS AND DEFINITE INTEGRALS 251 

Suppose that 0 < j and consider the contour F in the 

upper half of the z-plane, consisting of; the straight line segment 

from A = —c^Aiy to 5 = + ry» the straight line segment 
from 5 to 5' = + ic, the arc of the circle with center at the 

origin through W and A' = —A + ic, and, finally, the straight 

line segment from A' to A. Inasmuch as /(z) is analytic in the 

domain interior to F, we have; 

Jy(z)dz = - /(z)dz - J^ /(z)i/z - J^ /(z)^/z. (66.3) 

Now, by (66.2), 

(jh-A 
The modulus of this integral is therefore less than 

1 ^, y ..s 
—I—- log - , Aa constant. (66.4) 
c r c 

In like manner, we find that the modulus of the last integral in 

the right-hand member of (66.3) is less than the quantity (66.4). 

If we put z = re'\ r = fVT-F?, in the second integral in the 

right-hand member of (66.3), and use (66.2), that integral becomes 

pA' nr — arc tan 

I j(z)dz = i I 
JB* */arc tan (1/c) 

(1/c) nr - arc tan (1/c) 0(1) 

^0 ^ i j —:-^0- 
Jarc tan (1/c) r SIH 6 
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Since r sin 0 > r along the path of integration, the modulus of 

the last integral does not exceed ttKIc. Hence, we have 

TT/ — 2i arc tan \K'\ <K, 

From these estimates, we now conclude immediately that 

f(x + iy)dx = — TT/, if jy > 0. (66.5) 
-c^ 

Let + iy)] = v{xy y). By hypothesis, v(x, y) < 0 for 
y > 0. From (66.5) we now have 

lim I —v(xyy)dx = tt, if y > 0. (66.6) 
00 J-C^ 

Let 
1 /•“ 

<t>(y, «) = - I -v(x,y)dx. 
TT Jq 

Since the integrand Is positive, this is a nondecreasing function 

of u; and by (66.6) it follows that </)(y, u) is bounded, and 

^(y, +^) “ 0(y> ~oo) = 1. (66.7) 

We now apply Theorem 64.2. There exists a sequence of posi¬ 

tive values of y: yi, y2, y3> * * *, approaching 0, and a bounded 

nondecreasing function 0(w), such that lim 0(yn> «) = 0(^)> for 
71 = 00 

all values of By (66.7) we must have, </>(+oo) — <^(—oo) = 1. 

If z is any point within F, Cauchy's integral formula now gives: 

/{s)ds 

s — z 

With the aid of (66.2) one may readily verify that for r = co, 

this goes over into 
f{u + iy)du 

u + iy — 
(66.8) 

where the integral is to be regarded in the sense of Cauchy's 

principal value. Let z' be the point outside F which is sym- 
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metrical to the point z with respect to the line AB. Then we 
have 

0 = — + 0')^“ Qj. 0 = — 
27r/ J_oo u iy — z' ^ liri J_^ u — iy — z! 

Inasmuch as — z = ^ — (y 2', we then have, on sub¬ 
tracting the last equation from the equation (66.8), and then 
introducing the function </)(^, u): 

v{uyy)du 

-00 ^ — 2 

+ d<i>{yy u) 

.^z — u — iy 

On lettingjv approach 0 over the sequence ji,jy2,j3, • • •, we then 

find, with the aid of Theorem 64.1 and an easy argument, that 

Since <l){u) is bounded and nondecreasing, the integral converges 

absolutely (not merely as Cauchy's principal value) and uniformly 

for z in any region whose distance from the real axis is positive. 

Since /(z) is now expressed as a Stieltjes transform, it follows 

from Stieltjes' inversion formula, (65.4), that (t){u) is determined, 

except for an additive constant, at all its points of continuity, 

by the formula 

<l>{u) = lim r 3[/(^ + iy)]dxy 
2/=+0 Jq 

where jy approaches 0 in any manner through positive values, and 

not merely over the sequence yp. Thus, (l>{u) is determined 

uniquely by /(z) to an additive constant, at all points where 

<i>{u) is continuous. 

We shall state this result as 

Theorem 66.1. 1//(z) is an equivalent Junction of a positive definite 

Jfractiony then f(z) can be expressed as a Stieltjes transforniy 

> 

where is a bounded nondecreasing function of u such that <;(>(+ 00) — 

0( — c3o) = +1. The function <t>(u) is determined uniquely up to an addi¬ 

tive constant at all its points of continuity by the function f(z). [138.1 
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We have actually proved the following more general theorem. 

Theorem 66.2. Any Junction J{z) which is analytic and has a negative 

imaginary part in the domam 3(2) > 0, and which there has the asymptotic 

form 

1 0(1) 
/(^) + (66.9) 

2 2/(2) 

can be represented as a Stieltjes transjoy'm as in Theorem 66.1. [35.] 

Note. It should be remarked that the condition (66.9) is not 

necessary in order that/(%) be expressible as a Stieltjes transform 

of the type under consideration. This may be seen from the 

example 
^(1 ~ u~^) 

% — u 
(66.10) 

Here 

(b{u) = 

[0 for u <\y 

ll for u > \. 

The function (66.10) does not satisfy the condition (66.9). [35.] 

67. Proper Equivalent Functions. We shall say that a func¬ 

tion J{z) is a proper equivalent function of a positive definite 

J-fraction if it is the limit of a subsequence of the approximants of 

the J-fraction. We may establish for these functions the integral 

representation of Theorem 66.1, independently of the matrix theory 

of Chapter XIL In fact, if we use (17.7) and consider the partial 

fraction development of the pt\v approximant of the J-fraction 

(cf. [138], we find that 

Xp{z) ^ d(t>p(u) 

Bp(z) J_oo z — u ^ 
(67.1) 

where (t>p{u) is a bounded nondecreasing function of u such that 

<f>p{+= 1- If we apply Theorems 64.1 and 64.2 

to (67.1), we are led at once to the desired Integral representa¬ 

tion for a proper equivalent function. 

We note that in the case of a real J-fraction it follows from 

(27.3) that the function (t>p{u) in (67.1) is a simple step-function. 

If the poles of the approximants are confined to some part of 

the real axis, then it is clear that the integral need be extended 
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only over that part. For example, a proper equivalent function 

of the S-fraction (28.1), in which the kp are real and positive, 
has the form 

(67.2) 

If we replace u hy —u and put d{u) = —<j>{ — u), this becomes 

^+00 

*^0 

dd{u) 

z + u 
(67.3) 

The value of the continued fraction of Theorem 27.4 has the 

integral representation 
d<l>(u) 

J-1 f - «’ 
(67.4) 

and the value of (27.8) is of the form 

i ^ de{u) 

\ + zu 
{67.5) 

EIxercise 13 

13.1. Show by means of the Stieltjes inversion formula that 

-7= I .; > s « < 1), 
1 — « + (1 + «) V 1+2 •'0 1 + 2/ 

where 

0W = - f \A - 0 < / < 1. [88.1 
TT Jo (1 + \ S 

13.2. Show that 

« + l — — r , ^7 — 0, 1, 2, * * •, 
Jo « + (« + 1)2 

^ / [cos (^^ log /) - . 0<«<1, 0</<l. 

where 

4>{t) 

13.3. Let 

[88.] 

TV 
d^{u) 
+ zu ’ 

where <^(«) is of bounded variation on the interval 0 ^ ^ 1. Show that 
is continuous at « = 1 if, and only if, lim (1 + 2)/(z) == 0, where 2 ap- 

proaches — 1 through values interior to or upon the circle | z | = 1; and that 
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</>(«) is continuous at a = 0 if, and only if, lim/(z) = 0, where z approaches 
2— oo 

00 along any ray through the origin with the exception of the negative half of 

the real axis. Show that <t>(u) is continuous at « = r, 0 < r < 1, if, and only 
if, lim (1 + zr)/(2) = 0, where z approaches — 1/r along any ray with the 

21 _ l/r 

exception of the portion of the real axis to the left of —1/r. [83.] 

13.4. Show that if « = 0, 1, 2, • * then 

lim f u^d<p(u) = <#>(!) — 0(1 — 0). 
n- 00 Jq 

13.5. Show that ^ 

r u^d4>{u) 

is an analytic function of z for 9i(2) > 0, and is a continuous function of z for 

5R(2) > 0. 
13.6. Show that it is impossible to find a function 4>{u) of bounded variation 

such that 

2 = f «"</<#>(«), « = 0, 1, 2, • • •. 
nl Jo 

13.7. Let ^ 

Cp = f u^d<t>{u)y p = 0, 1, 2, • • 
Jo 

where 4>(u) is of bounded variation on the interval 0< « < 1. Let c(z) be 
analytic and have modulus less than M for ^^(z) > 0. Let c(p) — rp,p = 0, 1, 2, 
•••. Then 

^(2) = f u^d<t>{u). 

13.8. Let 

/(z) = -<^(-«) = 1, 
J-^ z — u 

where 0(«) is a bounded nondecreasing function of u. Suppose that the integral 

/-f 00 
udcKu) 

converges. Then, if 3(z) > 0, 

where A/ is a constant independent of 2. 

13.9. Express the function 1/(1 -f z*), 0 < ^ < 1, as a Stieltjes transform. 

13.10. Let <t>{u) be bounded and nondecreasing, and let /(«) be bounded and 
Riemann integrable (or a K u ^ If, Let 

e(u) = C/m. 
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The Stieltjes integral 

f <Ku)deiu) 
•'o 

exists and is equal to the Riemann integral 

f 4>{u)f{’A‘iu. 
•'a 

13.11. Let <t){u) and /(«) have the properties required in 13.10. 
exists a number X in the interval a ^ x ^ b such that 

J <\>{u)f{u)du = <^>W J /(«)^« + </>W J f{u)du. 

Then there 

13.12. Let /(m) and 0(«) be functions of bounded variation on the interval 
a ^ u ^ which have no common discontinuities in the interval. Then the 

Stieltjes integral exists. The restriction on the discontinuities is 

necessary, for the integral does not exist if/(«) and have a point of discon¬ 

tinuity in common. 



Chapter XI 

THE MOMENT PROBT.EM FOR A FINITE 

INTERVAL 

In § 5O3 we introduced an operation called formal integration, 

Cy =•-J*^ = 0, 1, 2, • • *3 

which replaces by a given constant Cp, By the moment 
problem, we shall understand the problem of expressing this 

formal operation by means of an actual integral operation. It is 

clear that the possibility of solving the moment problem and 

the character of the solution when it exists must depend upon the 

nature of the given sequence {cp}. In the present chapter we 

shall determine those sequences [tip] which admit of a solution 

of the form 

where ix{u) is a bounded nondecreasing function, and the integral 

is to be understood in the sense of Stieltjes. That is, we replace 

here the formal integral by a Stieltjes integral extended over a 

finite interval. For the sake of simplicity, the interval is taken 

from 0 to 1. 

68. Formulation of the Problem. We begin by proving the 

following uniqueness theorem. 

Theorem 68.1. Let {cp} be a given sequence of complex constantsy and 

suppose that there exist two functions ^\{u) and (t>2(u) of bounded variation 

on a finite interval a < u < by such that 

Cp — f u^d<i>i{u) = r u^d(f>2(u)y p = 0, 1, 2, • • •. 
*'a 

258 
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Put 4>{u) = <i>\{u) — 02(w). Then <l>{u) = (t}(a) for u — b and for all 
other values of u in the interval (ay b) with the exception of at most a countable 
set included in the set of discontinuities of (l>(u). 

Proof, Since I u‘^dd>(u) = 0, ^ = 0, 1, 2, • • - , it follows that 

h 

I G(u)d<t>{u) = 0 for every polynomial G(u)y and, therefore, by 
da 

a theorem of Weierstrass, for every continuous function G(u). 
The theorem now follows from Theorem 63.4. 

Definition 68.1. By the moment problem for the interval 

(0, 1), we shall understand the problem of determining a bounded 

nondecreasing function fx(u) such that 

rO for u <^y 

fi(u) = 
ix(u — 0) + ijl(u + 0) 

2 
for 0 < u < ly (68.1) 

^t(l) for u > ly 

which satisfies the system of equations 

Mp = r u^du>(u)y /> = 0, 1, 2, • - , (68.2) 

where { Mp} ^ given sequence of constants. For the sake of brevityy 

we shall refer to this as "'"the moment problem (68.2).^’ A function 

\x(u) satisfying (68.1) will be said to be normalized, and if it satisfies 

(68.2) it will be called a solution of the moment problem. 

From Theorem 68.1 we have 

Theorem 68.2. If the moment problem for the interval (0, 1) has a solu- 
tiony then the solution is unique. 

Definition 68.2. By the symmetrical moment problem for the 
interval ( — 1, +1), shall understand the problem of determining 

a bounded nondecreasing function d(u) such that 

^( — 1) for u < —1, 

e(u - 0) + e(u + 0) 

2 

^(+1) for u > ly 

0{u) = for — 1 < « < +1, (68.3) 
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and such that 

d{u) = —d(--u) for — 00 < « < + 00, (68.4) 

which satisfies the system of equations 

^+1 

~ J u^dd{u)y ^ = 0, 1, 2, • • (68.5) 

where {dp} is a given sequence of constants. For the sake of brevityy 

we shall refer to this as ''the moment problem (68.5).'* 

One may readily verify that the following theorem is true. 

Theorem 68.3. If the moment problem (68.5) has the solution B{ii)y 

and if we put jip = d^p/Iy p ~ Oy 1,2, • • then the moment problem 

(68.2) has the solution ix{u) = d{\/u)-y and if the moment problem (68.2) 
has the solution ix{u)y and if we put d^p-^x = 0, d2p = 2^tp, j?) = 0, 1, 2, • • •, 
then the moment problem (68.5) has the solution d{u) = m(«^)> ^ 0, 
6{u) = —n{u^), u < 0. 

In view of this theorem, the solution of either of these moment 

problems can be reduced to that of the other. 

69, Solution of the Moment Problem by Means of S-fractions. 
Excepting in the trivial case = 0, p = 0, 1, 2, • • we may 

evidently assume that do > 0 in (68.5). Moreover, if do > 0, 

there is no loss in generality in assuming do = Otherwise we 

could consider instead the sequence dp/doy /> = 0, 1, 2, • • *, and 

the solution 6{u) /do- 

We shall now prove the following theorem. 

Theorem 69.1. The symmetrical moment problem (68.5), in which 

[dp\ is a given sequence of cofjstants and= 1, has a solution {cf. Defini¬ 

tion 68.2) ify and only ify doy moments of a real S-fraction 

of the form 

1 

(1 - ^o)^i 

(1 - gl)g2 
z- 

(69.1) 

2 — • 

s 
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in which 0 < < 1, /> = 0, 1, 2, • • When the condition is satisfied^ 

then the solution is the Junction d{u) {suitably normalized) such that 

dd{u) 

z — u 
(69.2) 

is the value of the S-Jraction (cf. (67.4)). 

Proof. We suppose first that ^2, * * • are moments 
of the S-fraction (69.1). We have seen (cf. Theorems 27.3 and 

27.4, and (67.4)) that this S-fraction converges uniformly over 

every finite closed region whose distance from the interval 

— l<x<+l is positive, to a function of the fojm (69.2). 
By Theorem 54.1, the power series expansion in descending powers 

of z, namely, 2(^p/z^"^^), converges for | z | > 1 to the value of 
the S-fraction, i.e., to the integral (69.2). Consequently, 

dp — I u'^d6{u)y ^ = 0, 1, 2, • • •, 

so that the moment problem (68.5) has a solution. 

We now suppose, conversely, that d^ = diy d2y • * • is a se¬ 

quence of numbers such that the moment problem (68.5) has a 

solution 6{u) of the specified character, and shall prove that these 

numbers are the moments of an S-fraction (69.1). 

If d{u) is a simple step-function, so that there are (say) exactly 

m points Uq such that 0{uq + /) > 6{U{) — t) for / > 0, then the 

quadratic forms 

J (Jilq + + • • • + XnU^Ydd{u)y ;7 = 0, 1, 2, • • *, 772 — 1, 

are positive definite by virtue of Theorem 63.5. Therefore, the 

determinants of (50.2), formed with the moments dpy are posi¬ 

tive for 72 = 0, 1, 2, • • •, w — 1. We may therefore construct 

a terminating J-fraction (51.1) in which = 1, and Uiy 

•••, ^m-i are positive. This J-fraction has the value (69.2) 

since this integral and the J-fraction are rational functions of z 

in which numerator and denominator are of degree m — \ and w, 

respectively, and since the power series expansion in descending 

powers of z of the J-fraction agrees term by term with the like 

expansion of the integral for the first Im terms. Therefore, 
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doy diy d^y • • ' are the moments of this terminating J-fraction. 
Inasmuch as, by (68.4), the integral (69.2) is an odd function of z, 

it follows that the J-fraction has the form 

■-(69.3) 
ax 

z- 
^2 

2- 
2 — • 

am—1 

2 

The denominators ^^(z) of (69.3) satisfy the conditions 

I u"Bp{u)dd{a) =0, r = 0, 1, 2, •••,/) — 1, p < 
d-\~c 

for all r > 0, by (50.1). Hence, since the roots of Bpiti) are 

the poles of (69.2) \{ p = and by virtue of Theorem 63.6, if 

p < m, Bp(u)y a polynomial of degree py changes sign p times 

on the interior of the interval —1—Since 

Bp{u) > 0 for sufficiently large values of Uy it then follows that 

Bp(u) > 0 for u > 1. 
From the fundamental recurrence formulas we now have 

5p_i(l +r)\ B,(l+c) )’ 

p = 1,2,3, ■ ■ ■, m — 

Since ap > 0, it then follows that 

(69.4) 

0 < 
Bp{l + c) 

Hence, if we put 

< 1 + p = 0, 1, 2, m 1, (OO). 

lim 
5p + i(l + c) 

c-o Bp(l -|- c) 

we have 0 < £;p < 1, p = 0, 1, 2, • ■ m — 1, and, by (69.4), 

ap = (1 — gp-i)gp,p = 1, 2,3, • • - , w — 1, so that (69.3) has the 
form (69.1). 

In case 0(u) is not a simple step-function, the determinants 

A„ > 0 for all values of «, and consequently we have, instead of 
(69.3), a nonterminating J-fraction, and P(l/2) = Z((/p/z^'^^) is 
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its power series expansion. The above argument can be used to 
show that this J-fraction has the form (69.1). 

This completes the proof of Theorem 69.1. 

If we make an equivalence transformation and replace —l/z^ 

by z in the S-fraction (69.1), and then make suitable changes in 
notation in accordance with the remarks in § 68, Theorem 69.1 

may be stated as follows. 

Theorem 69.2. The moment problem for the interval (0, 1) {cf. Defini¬ 

tion 68.1) ^ 

= f u^d}x{u), ;> = 0, 1, 2, • • •, 
Jo 

Mp 

has a solution if, and only if, the power series 

Mo — MlZ + - 

has a continued fraction expansion of the form 

(69.5) 

(69.6) 

_Mo_ 

1 (1 ~ 

1 + (^ ~ 
1 +• 

(69.7) 

where uo > 0 and 0 < < 1, /> = 0, 1, 2, • • •. [126.] 

70. Some Geometry.^^ The moments Mp of the continued frac¬ 

tion (69.7) may be characterized geometrically in an interesting 

way, if we regard (mo, Mi> • • •> M»-i) as a point in w-dimensional 
Euclidean space. 

We again take mo = 1- If we use the minimal parameters 
(cf. Theorem 19.2) of the chain sequence appearing in (69.7), 

that continued fraction becomes 

1 

1 + 
m\Z 

1 + 
(1 — 

1 + 
(1 — mf)mzZ 

1 +• 

(70.1) 

> 

** Cf. Dines [10] for further details on the ideas of this section. 
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where 0 < Wp < 1, /> = 1, 2, 3, • • •. The coefficients jxp in the 

power series expansion (69.6) of this continued fraction are 

polynomials in miy m2y the first three being given by 

Mo = 

Ml = rniy (70.2) 

jU2 = mim2 + mi^(l — m2). 

These may be readily computed by means of the formulas of 

Stieltjes (Theorem 53.1). 

Let us regard (/xqj Mi^ M2) as the co-ordinates of a point in 
3-space. Since 0 < Wp < 1, /) = 1, 2, 3, we see by (70.2) that 

this point is characterized by the fact that it is in the shaded 

region shown in the accompanying figure. This region is bounded 

by the parabolic arc 

Z = 1, 0 < V < 1, (70.3) 

and by the straight line segment z=yyX— ]y0<y<l. Any 

point of this region must be of the form 

[1, miy mim2 + Wi^(l — Wz)], 0 < < 1, 0 < ^2 < 1, 

and, conversely, every such point is in the region. 

This region, which we shall call £3, has two characteristic 

properties, namely; 

(a) If p and q are two points of £3, then all points of the line 

segment pq are in £3. This is the property called convexity. 

(b) £3 is the smallest convex set in 3-space which contains the 

parabolic arc (70.3), i.e., £3 is the intersection of all the convex 
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sets of 3-space which contain this arc; it is the so-called convex 

extension of the arc. 

Since we have fixed /zq == 1, the point (jitoj Mij M2) is actually in a 
convex set in 2-space. 

We shall establish the following theorem: 

Theorem 70.1. The moment problem (69.5) for the interval (0, 1), 
where we assume /xq = 1, has a solution if^ and only if ^ for every 7i{— 1, 2, 3, 
• • •) the point (/xi, /X2, M3> • ‘ Mn) the convex extension of the arc 

whose parametric equations are 

Xx = 

^^2 = 0<«<1. [78.] (70.4) 

•Vn = 

Proof. Let C denote the arc (70.4). This is a bounded closed 

set of points in ;^-space. Its convex extension E{C) consists of 

those points and only those points which may be centroids of 

distributions of positive masses of total mass unity, placed at a 

finite number of suitably placed points of C: 

(xu. •^12, ' ' ' 5 *^1 n), 

(•^21, •^22, ’ ' ’ > *^2 n) > (70.5) 

(*V m 1 j ^i7i2y ’ * * , ^mn) • 

The points of E{C) are then all those points (/xi, M2, * * *, Mn) whose 

pth coordinates have the form 

m m 

lip - ''ff^CrrXrp., where Cr > 0, = 1. 
r — 1 r== 1 

Since Xrp — Ur^, where 0 < ar < 1> we then have: 

m 1 

fXp = ^ ^Ur^(Tx — I p — 1, 2, 3, * * *, 
TTi *^0 

where Mn(^) is a simple step-function with the jump <Xr at the 
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point Ur^ and Mn(l) — Mn(0) = 1. For any fixed we may now 

let n increase over a suitable sequence of values for which 

lim iiniu) = 

where )u(^) is a bounded nondecreasing function, and jLi(l) — 

)u(0) = 1. Then, 

Mp = r u^dix{u), /) = 0, 1, 2, • • •, (70.6) 

so that the moment problem has a solution. 

Let us suppose, conversely, that (70.6) holds, and we shall 

prove that (/ii, ^25 Ms? * * •> Mn) is a point of £(C). The proof may 
be made by assuming the contrary and arriving at a contradiction. 

If (/xi, /X2, ‘ Mn) is not in £(C), then there exists a plane 

ki{xi — /Xi) + k2{X2 — M2) + • • • + ^n(*Vn Mn) = 0 

passing through this point, separating w-space into two open half¬ 

spaces, one of which contains C (a so-called '‘bounding plane of 

C’’)- We may suppose that the notation has been so chosen that 

for all u in the interval 0 < u < \y 

ki{u — Ml) + k2{td - M2) H-b kn{u^ — Mn) > 0. (70.7) 

Since the left-hand member of this inequality is a continuous func¬ 

tion of Uy it follows from Theorem 63.5 that 

r {ki{u — Ml) + k2{u'^ — M2) + • • • + kn{u^ — Mn) \d\x{u) > 0. 

But, by (70.6), this is impossible. 

The proof of Theorem 70.1 is now complete. 

Remark. This proof goes through in the same way if, instead 

of the functions (70.4), we use arbitrary continuous real func¬ 

tions fp{u)y p = 2, 3, • • The corresponding “moment prob¬ 

lem'' is then 

tip = ^Jp{u)d4>{u), /» = 0, 1, 2, • • •, (/o s 1). 
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71. Totally Monotone Sequences. A sequence of real numbers 

Mo> M2, • • • is called totally monotone if 

Up > 0, Amp = fip — Mp+I >0, • • •, 

= A"-Vp - A”-Vp+i >0, ■ ■ - , (71.1) 

(p = 0, 1,2, •••). 

If the ^^,p are given by (69.5), where n(u) is nondecreasing, then 

AVp = r (1 ~ uYu^dii{u) >0, p = 0, 1, 2, • • •, 
•'0 

where we define AVp = Mp> so that the sequence {|ip| is totally 

monotone. The converse is also true. 

Theorem 71.1. The moment problem (69.5) has a solution if, and only 

if, the given sequence uoi Mi> M2> • ‘ ’ ts a totally monotone sequence [28]. 

Proof.^® We have just seen that the condition is necessary. If 

we suppose the sequence is totally monotone, then, for any positive 

integer p, 

Pn ^ ^ ^> * * *> Py 

A^n ^ ^ 1 > ^3 ’ ' ' y P 1 > 

AVn >0, w = 0, 1, 2, • • ^ - 2, (71.2) 

A^’-Vn >0, « = 0, 1, 

A’’Mn >0, « = 0. 

This system of inequalities is equivalent to the simpler system 

AVo > 0, A»’-Vi >0, • • •, AVp > 0. (71.3) 

For, of course, (71.2) implies (71.3). Then, since 

AV. = A’'~V» — A’'“V8+i> 

it readily follows that (71.3) implies (71.2). 

“ This proof is due to Schoenberg [82]. HausdorfF gave several proofs in [29]. 
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The system (71.3) is, in turn, equivalent to the system of 

equations 

Mo 

Ml 

Ml + ( ^ ) M2-h (-~l)Vp = 0^ 

^ ^M2 H-f" ( — 1)^ Vp = ^p. i> (71.4) 

Mp—1 Mp “ ^p, p—1> 

Mp ^p, p> 

where the r,,, are arbitrary nonnegative numbers. This system 

may be readily solved for the /li„ in terms of the r,,,. We find 

that 

where 

(71.5) 

L P. *» > 0. 

We may express the \Xn as Stieltjes integrals. Let Mp(^) be defined 
as follows: 

Mp(^) 

fo, 

o> 

Lp, 0 "h r^p, 1) 

■^p, 0 T Tp, 1 "I" * • * “1“ Z.p, p—1> 

•^Pi 0 ”1“ ^p, 1 T ■ * * T Lp^ p, 

a < 0, 
1 

0 < u < - , 
P 

1 2 
~ < u < -, 
P P 

P - 1 . P 
■-< u < - , 

p p 

- < u. 

The function Hp{u) is nondecreasing, and is bounded inasmuch as 
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= Mo, by virtue of (71.5) with « = 0. In terms of the func¬ 
tion Hp(u), we may now write 

_ m{m — l)(w — 2) ■ ■ ■ (m — n 

” 1^0 P(p-mp-2)---(p-n + ij 

= ^ u^d\i.p{u) + 0 , 

d^Xpiu) 

where 0(1/p) —> 0 as oo. On applying Theorems 64.1 and 

64.2, we now conclude immediately that there exists a bounded 

nondecreasing function ii(u) such that 

in = f U", 
•^0 

d^x(u)y « = 0, 1, 2, 

This completes the proof of Theorem 71.1. 

72. Composition of Moment Sequences. If {Xp} and {/Xp} 

are two totally monotone sequences, then it is evident that 

{Xp + Mp} is a totally monotone sequence. Also, since A(Xp/Xp) = 

\pAfip + ^p^iAXp, it follows immediately that {Xp/Xp} is a totally 

monotone sequence. Let 

Xp = r u^d\(u), Mp = f u^dn{u)y p = 0, 1, 2, • • •. 
•-'o 

Then we must have 

XpMp f U^dp(u)y p — 0, 1, 2, • • (72.1) 

where v(u) is a bounded nondecreasing function. What is the 
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relationship among X(«), and ^(w) ? In order to answer this 

question, we consider the functions 

/x(z) = ^Xp(-2)P = f 
d\{u) 

I + zu^ 

/.(z) = Tt 

and 

/.(Z) =£*'^(-2)" = f- 

+ z« ’ 

’ ^^(u) 

-f- zu 

Then we have, 

/M = f ^^(u). (72.2) 
do ^0 ^ ~r 

Supposing the functions X(//), ix{u) and v{u) all normalized, we 

then find by the Stleltjes inversion formula, with j<0,0</<l, 

that 

- - lim fs -/d~ ~) = ''Wj 
IT V-+0 Jg Lz \ z/J 

(z = X 4- ry). 

Using (72.2), one may then show, as in the proof of the Stieltjes 

inversion formula, that 

K/) = 

y«0 L TT Jq Jq ^ 

UV — t UV — 
arc tan-arc tan 

J 
-^ d\{v)dyL{u) ■ 

If we make the change of variable w — uv^ and assume that / has 

only those values such that \{t/u) and m(^) have no discontinuities 

in common,^® {Q < u < 1), we may readily evaluate this limit, 

and obtain the formula 

.(/) = d\x{u). (72.3) 

This is valid for all except at most a countable set of values of /. 

Turning now to the difference, {Xp — /ip}, of two totally 

monotone sequences, we are led to consider the following more 

general moment problem. 

Cf. Exercise 13.12. See [17] for further details concerning the formula (72.3). 
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To determine a function (t){u) of bounded variation on the interval 

0 < u < \^ such that 

c, = f u^d<t>(u), ^ = 0, 1,2, (72.4) 

where \cp\ is a given sequence of constants. 

If we permit the Cp to be complex numbers, then this problem 

clearly has a solution if, and only if, Cp is expressible in the form 

Cp = /> = 0. 1, 2, • • *, where 

‘ *5 {mp^^M totally monotone sequences. 
We shall now prove the following theorem. 

Theorem 72.1. The moment problem (72.4) has a solution if^ and 

only if^ the given constants Cp satisfy the inequalities 

1 « = 0, 1, 2, • • •, (72.5) 
p=u '7*7 

where ( ) “ n\/p\{n — p)!, and M is a constant independent of n. [78.] 

Proof.” If the moment problem (72.4) has a solution, then 

= mo'” + Mo'” + Mo'"’ + Mo'” = M, 

so that the condition (72.5) is necessary for the moment problem 

(72.4) to have a solution. 
We assume now that (72.5) holds, and shall prove that the 

moment problem (72.4) has a solution. We may evidently 

assume that the Cp are real. 

^ This proof is due to Hausdorff [28]. 
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Using the recurrence relation = A”* Vp — A”* ^Cp+i, we 

readily find by mathematical induction that 

I A’^Cp I < I A^'+Vp I + I A"‘Cp+i I < 1 A’^+^^p I 

+ Q I A™+Vp+i I + I A^Cp+2 I < ■ • • < I A-+% I 

+ I A-^+^-Vp+i I + . . . + (^) I A-Cp+. I < • • •. 

Denote the general member of this sequence by In 

particular, we have = Mky so that Mo < Mi < M2 < * • * 

< My and consequently the sequence [M^] is convergent. Now 

rr + ^ I A-+p+*-V, ^ M.fn-\-p-\~h ^ ^M, 

Moreover, 

^m,p 2^ ' ^m,p-\-\ ^m,p • 

Consequently, we have 

lim Bra,p^^^ = <rm,p < My 
00 

^m,p P I> * * *• 

Therefore, if we put o-p = o-q.p, we see that cri,p = Aorp, (72.p = 

AVp, • ■ *, (Trn,p = ^"”<rp, • • •, so that (To, (71, (72, * • * is a totally 

monotone sequence. Inasmuch as 

<r„,p = A”*<7p > I A"‘Cp I, 

it follows that the sequences 

^(^P ”1“ ^p)y ^p 2^^P ^p)> P I> * * *> 

are totally monotone sequences. Thus, {cp} = {ap — ^p} is 
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the difference of two totally monotone sequences, and conse¬ 

quently the moment problem (72.4) has a solution. 

This completes the proof of Theorem 72.1. 

Exercise 14 

14.1. Let [ap] and [bp] he two totally monotone sequences, so that [apkp] 
is a totally monotone sequence. If lim = lim = 0, then lim A”(<3o^) 

n*. «o 00 oo 

= 0. 



Chapter XF 

BOUNDED ANALYTIC FUNCTIONS 

In this chapter we shall be concerned primarily with the follow¬ 

ing problem. 
Given: Two regions G and H in the complex plane, and the class 

of all functions/(z) which, for z in G, are analytic and have their 

values in H, 

To determine: A class C of continued fractions, convergent over 

G, such that each of the functions is equal to just one of the con¬ 

tinued fractions, and each of the continued fractions is equal to 

just one of the functions. 

We shall suppose that both G and H are simply connected do¬ 

mains having more than one boundary point. We may then 

suppose that these regions are taken, for example, to be circular 

regions, half-planes, or the portion of the plane exterior to some 

ray. We seek to determine G and H in such a way that the con¬ 

tinued fractions will have as simple a form as possible, and, 

preferably, that they will be in some way related to the continued 

fractions already considered. 

Our main result is as follows. 

Let G be the portion of the complex plane exterior to the cut 

along the real axis from —1 to — oo, and let H be the right half¬ 

plane, R{z) > 0. Then C is the class of continued fractions of the 

form _ 
/xVl + 2 

1 + /Vo 1 + 2 + 
(1 - ^o)^iZ 

1 + /ViVl + 2 + 
(1 gl)g2^ 

1 + ir2\/l + 2 + * 

274 
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where m > < + °^> 0 < < 1, ^ = 0, 1, 2, • • •. 
When some partial quotient vanishes identically, we agree that 

the continued fractioi^shall terminate with that partial quotient. 

The branch of z is taken in G which is positive for real 2. 

When rp = 0, p = 0, 1, 2, • • •, the above continued fraction 

reduces to (27.8) (except for a factor). This appears also in 

§ 11 and in Chapter XIV (cf. (69.7)). The class C thus contains 

the subclass Co of continued fractions of the form 

flVl + 2 

1 4_ ~ 
1 ~ Sl)g2Z 

y 

which have already been considered. 

We develop in detail some properties of the continued fractions 

of the class Co, and subsequently we proceed to the general class C. 

73. Integral Formulas for Boimded Analytic Functions. We 

shall need the following theorem of F. Riesz [78] and Herglotz 

[36]. 

Theorem 73.1. A function f{z) is analytic and has a positive real part 

for I 2 I < 1 //, and only if^ 

—-d(i>(t) + qi, (73.1) 
e''^ - z 

where <t>(t) is a bounded nondecreasing function of t such that <f>{0) = 0, 

^(27r) > 0, and where q is a real constant. The function 4>{f) is determined 

uniquely up to an additive constant at all its points of contmuity by f(z). 

Proof. Let 

00 

/(2) = 
ee 

= bo + iq + «Vp)r'’(cos pQ + i sin pQ), (73.2) 
p=l 
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where2 = < r < = 3f(«p),? = 3(ao),Cp+i = 
p = O5 1, • • •. Then^ by hypothesis, 

//(r, 6) = 9^[/(2:)] = cospO — Cp s\n pd) > 0, 

so that the function 

p= 1 

1 
<t>r(^) = — I 6)ddy 0 < / < 27r, 

It Jo 

is a nondecreasing function of /, and 0;.(O) = 0, (/)r(27r) = ^0 > 0* 
Moreover, 

^2x p2Tr 

I d4>r(t) = /^o, 12 cos ptd4>r{t) = 
Jo Jq 

I —2 sin pu/<l>r(t) = r^Cpy /> = U 2, 3, • • •. 
Jo 

By Theorems 64.1 and 64.2, there exists a bounded nondecreas¬ 
ing function 0(/) such that 0(0) = 0, 0(27r) = and a sequence 

of values of r approaching unity, such that these equations go 

over into 
^2t^ ^2t ^2t 

I d<l>(t) = i)Q, I 1 cosptd4>{t) = hp, I —2smptd^{t) = Cp, 
Jq Jo Jo 

/> = 1,2,3, •••. 

When these values are substituted into (73.2), we get 

’•2t I 
f{z)=iq + r\\+l'T 

Jo L jTi 

= iq +f 
Jq 

d4>{t) 

+ z 
d(t>{t)y 

SO that (73.1) holds. The proof that 0(/) is determined uniquely 

up to an additive constant at all its points of continuity by f{z) 

is similar to the proof of Theorem 68.1. One uses in this case the 

theorem of Weierstrass on the approximation to continuous func¬ 

tions by trigonometric sums. 

Conversely, any function of the form (73.1) is easily seen to be 

analytic and to have a positive real part for | 2 | < 1. 
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If we multiply (73.1) by —/ and replace z by (1 + — iz) 

we obtain, after some simple transformations, 

If we now put 

2. 1 + ^ tan - 

■ d4>{t) + g- 

z — tan 

d(u) = 
[ 0(2 arc tan u + lir) for u < 0, 

10(2 arc tan u) + 0(27r) for u > 0, 

we find that this goes over into 

• + + zu 
Fiz) ./_ 

z — u 
d6(u) — az q, (73.3) 

where a = 0(7r + 0) — 0(7r — 0) >0. The function 6(u) is a 

bounded nondecreasing function of u which is uniquely deter¬ 

mined up to an additive constant at all its points of continuity 

by F{z), It is required that at least one of the numbers a or 
S{+ 00) — 0( — oo) be positive. 

The expression (73.3) is the most general expression for a Junc¬ 

tion which is analytic and has a negative imaginary partfor 3(2) > 0. 

Let us suppose that the function /(z) of Theorem 73.1 is real 

for real values of z. Then, instead of (73.2), we have 

/(z) = + y^^pr'’(cos pd + z sin pd). 
1 

From the proof of Theorem 73.1, we then find that 

_ ^2- 1 - 2^ 

Jo 1 — 2z cos t 

which can be written in the form 

1 + z 

1 — Z Jo 

d<p{t) 

Mi), 

1 + 
4z 

(1 - z)^ 
• 2^ sin-* - 

(73.4) 

This is the most general expression for a function /(z) which is 

analytic and has a positive real part for | z | < 1, and which is real 

for real values of z. 
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Consider now the transformation 

(1 - 2)^ 
(73.5) 

This maps the domain | 2 | < 1 conformally upon the portion 

of the w-plant exterior to the cut along the real axis from —1 to 

— 00. We denote the latter domain by Ext ( — 13 — co). We note 

that 

= Vl + w, (73.6) 
1—2 

where that branch of Vl w is chosen in Ext ( — 1, — oo) which 

is positive for w — 0, Then 

2 = ... (73.7) 
a/I w + I 

We make this substitution in the formula (73.4). On putting 

that formula becomes, if we write z for w, 

^ . /7-7- r'" 
G(z) = Vl+zf 

(73.8) 

(73.9) 

1+2 sin^ - 
2 

This is the most general expression for a Junction which is analytic 

and has a positive real part in the domain Ext (—1> — <»), and which 

is real for real values of z. 

74. Continued Fraction Expansions for Real Anal3d:ic Func¬ 
tions. The integral in (73.9) may be expanded into a power series 

in 2, convergent for | 2 | < 1, of the form 

where 

*0 1 . 2 ^ 
1+2 sm^ - 

= Mo - AtiZ + - MaZ® H-, (74.1) 

t 
Mp = I sin^P - c/<^(/), p = 0, 1, 2, 
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Inasmuch as 

sin^” - d4>(t) > 0, w = 0, 1, 2, • • •, 

we see that the sequence {/ip} is totally monotone. Therefore, 

by Theorems 69.2 and 71.1, the integral (74.1) has a continued 

fraction expansion of the form (69.7). On substituting this into 

the formula (73.9), we then obtain the continued fraction expan¬ 

sion 

Giz) = 
1 + z 

1 + 
(1 - ^o).?lZ 

1 + 
(1 - g\)g2Z 

1 +• 

(74.2) 

Conversely, any continued fraction of this form has the integral 

representation 

G(z) - . 
Jq 1 -f- zu 

where <t>(u) is a bounded nondecreasing function and </>(!) ■— 

4>{0) = juo > 0. This function is analytic and has a positive 

real part in Ext (— E ^ is real for real values of z. Hence, 

we have proved 

Theorem 74.1. necessary and sufficient condition for a function 

G{z) to be analytic and have a positive real part in the domain Ext ( — 1, 
— oo), and be real for real z, is that it have a continued fraction expansion 

of the form (74.2), where /xo > 0, 0 < < 1, p = 0, 1, 2, • • •. We shall 

agree that in case some partial numerator of the continued fraction vanishes 

identically^ then the continued fraction shall terminate with the first identi¬ 

cally vanishing partial quotient. With this agreement^ the continued frac¬ 

tion expansions are unique [129], 

Remark. We have seen that a function Giyd) is analytic and 

has a positive real part in Ext ( — 1, — oo), and is real for real z, 

if, and only if, 
00 

G(z) = vi+zy^(-i)p/tp2^ 
p — U 

(74.3) 
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where {^tp} is a totally monotone sequence with juq > 0. If we 
replace ie> by z in (73.8), we may then write (74.3) in the form 

Here, 
00 

f{w) ='^{-\yapW^ 
p = 0 

is a real power series convergent for | ze; | < 1, and 9i[/(?^)] > 0 
in this domain. Thus, if we replace 2 by — z in (74.4), we obtain 

p=() 

where we have put 

(74.5) 

Cp being the coefficient of in the power series for 1/V^l — 2. 

The formula (74.5) is precisely the formula which Gronwall [24] 

used to determine Fp as the sum 

which is known as the pt\i de la Vallee Poussin mean for the 

series l^Up. This has the property that lim Vp = whenever 
p~ 00 

the latter series converges. This limit may exist even when the 

series "Zap diverges, and it thus assigns a sum to the divergent 

series. Gronwall generalized the formula (74.5) by using more 

general mapping functions and weight functions. 

75, Continued Fraction Expansions for 1/G(z) and for 
G[—z/(l + z)] in Terms of the Expansions for G(z). If G{z) is 

analytic and has a positive real part in Ext ( — 1, —Q®)? and is 
real for z real, then \/G{z) and G[—z/(l + 2)] also have these 
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properties. We shall prove that if G(z) is given by (74.2), and 

if we take = 0, which is always permissible, then [126] 

Mo 

Vl + 

G{z) (1 - gi)z 
A n 

1 + 
^i(i - .^2)2 

1 + 
.g'2(l - .^3)2 

1 +• 

(75.1) 

and [18] 

Mo Vl 4- 

1 + 
(1 - fl)2 

1 + 
(1 - .?2)(1 - g■^)z 

1 + 
1 + 

g3g4Z 

1 +• 

(75.2) 

The continued fraction (75.1) is obtained from (74.2) by replacing 

Mo by l/fiQ and g,, by 1 — gp for p — 1, 2, 3, • • •; while the con¬ 
tinued fraction {7S.2) is obtained from (74.2) by replacing gp by 

f — gp for only the odd values of p. 

The relation (75.1) is an immediate consequence of the follow¬ 

ing identity [126, 127]. 

1 

1 + 
giz 

1 + (I - gl)g2Z 
1 + 

(1 - gx)z 

1 + 
0_ - g2)g3Z 

Y+T 

1 + 
^l(l - ^^2)2 

1 + 
^•2(1 - ^3)2 

"1 +■ 

1 

1 + z' 

(75.3) 

To prove this, let ^p(z)/Bp{z) and Cp(z)/Dp(z) denote the pth 

approximants of the first and second continued fractions which 
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appear as factors in the left-hand member. Then the following 

relations hold. 

(1 -I- z)yi/„(z) = ^„_izD„_i(z) + D„(z), « = 1, 2,3, • • •, 
(75.4) 

-^71(2) “ — i(2») “1" f7n(z), 

where go must be taken equal to unity, and Ao = Co — 0, 

Bo = Do = 1. These may readily be verified for « = 1, 2, and 

then, by mathematical induction, for all n. By means of (75.4) 

we obtain the formula 

(1 -f z)^„(z)C„_i(z) - 5„(z)D„_i(z) = knZ^~^, 

where kn is independent of z. Therefore, 

An{z) C„_i(z) 1 _ ^«Z"~'_ 

5„(Z) Dn-J^z) 1 + Z (1 -f z)Bn{z)Dn-i{z) 

From this it follows that the expansion in ascending powers of z 

of the difference in the left-hand member begins with the term 

in z”~k This means that the product of the power series expan¬ 

sions of the factors in the left-hand member of (75.3) is equal to 

the power series for 1/(1 -f- z), so that the identity is established. 

If we take the even part of (74.2) and then replace z by 

—z/(l 4- z), the resulting continued fraction is precisely the even 

part of (75.2). This establishes the validity of (75.2). 

Remark. The above formulas hold in a formal sense when the 

g-p are arbitrary constants and G(z) is the formal power series 

expansion for (74.2). The transformation represented by (75.1) 

can be formulated in several different ways. One of these is 

(75.3). Another is as follows. Let 

/(z) = 
gi 

1 j (^ ~ 

1 I (^ ~ 

1 +• 

(75.5) 
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Then 
1 -/(z) 

1 + 2/(2) 

1 + 

1 - gi 

^j(l - ^2)2 

1 4- ■§'2(1 - 1-3)2 

1 +• 

(75.6) 

The transformation represented by (75.2) can be formulated as 

follows. If (75.5) holds, then 

1 
1 - 

1 + 
_^1^22_ 

1 _L (^ ~ g2)(^ - g3)z 

1 +• 

(75.7) 

These are to be regarded, in general, as formal power series 

identities. 

76. Condition for G(z)/V 1 + z to Be Bounded in the Unit 
Circle. Let G(z) be given by (74.2), and put 

Mg I.u.b. 
W<1 

<7(2) 

Vl + 2 
(76.1) 

We shall prove the following theorem. 

Theorem 76.1. Let G(2) be analytic and have a positive real part in 

the domain Ext (—1, — “), and be real for real 2, so that G{z) is given by 

(74.2). Then the number Mg defined by (76.1) does not exceed unity if, 

and only if, the parameters gp of the chain sequence appearing in (74.2) 

can be so chosen that g^^ = [126.] 

Proof. Suppose first that the parameters can be chosen as 

specified. We may evidently assume that 0 < I’p < 1 for 

p = 0, 1, 2, • • •, or that 0 < < 1, p = 0, 1, 2, • • •. Hence, 

it follows from Theorem 11.1 that Mq < 1. 
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If, conversely, Me. < 1, then the value is taken on by the 
continued fraction for 2 = —1, i.e.. 

Mg = 
Mo 

1 - 

Wi 

1 - 

(1 — Wi)OT2 

1 - 

(1 — ni'^m^ 

1 -• 

where the nip are the minimal parameters of the chain sequence 
1(1 - Thus, by (19.6), Mq = mo/^o < 1, where Mq 

is the 0th maximal parameter of this chain sequence. We may 
therefore choose the parameters so that = Mo (cf. Exercise 4.1). 

The condition Mq < 1 can be formulated in terms of the 
moments fXp as follows. 

Theorem 76.2. Let Giz) he given by (74.2), so that 

G{z) = vT+^2^(-1)%2^ Jor 1 2| < 1, 
p — (i 

where {mp} i^ ^ totally ynonotone sequence. Then Mq ^ 1 {/*, and only if^ 

< 1- 
P=x0 

Proof. If Smp < 1, then Mq = 2/Xp < 1. If S/Up > 1, then 
one may readily verify that lim [G{z)/"n/I + 2] >1, (2 real 

z— — 1 

and greater than —1). 

Theorem 76.3. Let G{z) be given by (74.2). Then Mq ^ 1 and 

only ify 
/-(1 — u)d(l>{u) 

G{z) = VlT^ ^ 
Jo 1 -f" 

(76.2) 

where <j>{u) is a bounded nondecreasing Junction such that ^{V) — <t>(0) < 1. 
[126.] 

Proof. 

Put Xp = 

that 

By Theorem 76.2, Mo < 1 if, and only if, 'Znp < 1. 
00 

y^Mp- Then {Xp} is a totally monotone sequence, so 

Mp = f «V0(«), /) = 0, 1, 2, • • •, 
Jn 
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where is a bounded nondecreasing function, and <^(1) — ^(0) 
= Xo < 1. Then ^ 

tip = AXp = r (1 — u)uPii<j>(u), p = 0, 1, 2, • • •, 
‘'O 

and consequently (76.2) holds. Conversely, if (76.2) holds, then 

Mp = f (1 - u)u^d<t>iu), /. = 0, 1, 2, • • •, 

'ZjjLp = </>(!) — </)(0) — lim r i4^d(t){u) < \y 
v= « ^0 

SO that Mo < 1 by virtue of Theorem 76.2. 
77. Analytic Fimctions Bounded in the Unit Circle. Following 

the method of Schur [84], we shall now obtain expansions for 
arbitrary functions f{z) analytic for | z | < 1, such that 

M{f) = l.u.b. 1/(2) I < 1. 
\A<l 

Theorem 77.1. Let {o-^} be an infinite sequence of complex numbers 

with moduli less than unity^ 

IcTpl < 1, /. = 0, 1, 2, •• •, (77.1) 
and let 

L) = (To + 
(1 - 1 CTO i^)2 

(77.2) 

C7o2 — 
(1 - I CT, |2)Z 

<7-1 + 
diZ — 

(1 - 1 <Tp f)z 
CTp + 

(7-nZ 

Theny 

5p(z;/)|<l for ^ | < 1, | 2 | < 1, p = 0, 1, 2, • • (77.3) 

Let {tp] he a sequence of independent variables. There exists a function 

/(z), analytic for | 2 | < 1, such that M{f) < 1, and such thatyfor every 

positive number r < 1, 
lim tf) =^(2), 

00 

uniformly for ] 2 | < r, ] /p j < I, ^ = 0, 1, 2, • • ■. 

(77.4) 
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Conversely^ if /(z) is a given Junction^ analytic for | z | < 1, such that 

M{f) ^ one of the following three statements holds, 

(a) /(-) — o-Qj ^ constant with modulus unity, 

(b) There exists uniquely a finite sequence o-q, (ti, ^ ^ 0, 
such that 

|crp|<l, /) = 0, 1, 2, • • •, w, |(rn+i|==l, (77.5) 

and such that 

f(z) = .S’„(Z; (Tn+l). (77.6) 

(c) There exists uniquely aji infijute sequence jo-p} satisfying (77.1), 
such that (77.4) holds [84, 128, 129]. 

Proof. Consider the linear transformation 

j = |trl<l, (77.7) 
1 — azt 

of the /-plane into the j-plane, the transformation depending 

upon the parameter z. We observe that | j | < 1 if, and only 

if, I or — 2/ j < I 1 ~ a'z/ I, or (| zt p — 1)(1 — | a p) < 0. Hence, 

if I 2 I < 1, then | /1 < 1 implies that | j | < 1. The same prop¬ 

erty must hold for the product of two or more such transforma¬ 

tions. Let 

S J'p(2^ /) ~ > I I P ’**> 
i — (JyZt 

be an infinite sequence of transformations of this form. We may 

write 

/ , (1 - I o^ 
s = Jp(z; /) = (Tp + -TTITT' 

CTpZ - (lA) 

Then the product • • • J*p(z; /) is given by (77.2); and (77.3) 

holds. 

For < 2^ + 2, let Ak{z)/Bk{z) be the ^th approximant of the 

continued fraction (77.2). By means of the fundamental recur¬ 

rence formulas one may readily verify that 

^2ft+2(z)-S2*(z) - ^2*(z)52*+2(z) = (- l)*7r*<7t+iZ*+S k < p, 

i^P+1 ~ ^)> 
where we have put 

rk = (1 - |<ro|2)(l - Uip) ... (1 - 
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From this it follows, by a familiar argument (cf. (42.9) and 

(42.10)), that if we put 

6’p(z; /) = H-, 

then • • •) are independent of p and of t\ 

dni ^ 171 0, 1, 2, * * *, p* 

As p is increased, we thus see that there is determined a power 

series/(z) = 'LcpZ” with which the power series for Sp{z\ t) agrees 

term by term for the first p \ terms. From (77.3) it follows 

that I 1 < 1, w = 0, 1, 2, • • •, so that \ c,n \ < 1, w = 0, 1, 2, 

• • •. The function /(z) is analytic for | z | < 1, and |/(0) | = 

I (Jo I < 1. Now, if I z I < r < 1, I 4 I < 1, ^ = 0, 1, 2, • • •, then 

|/(z) - 3’p(z; tp) 

00 

< 2 r'" = 
m= pd-1 

2rP+i 

1 - r’ 

and therefore (77.4) holds uniformly for | z | < r, | 4 | < 1, 

^ = 0, 1, 2, • • •. From (77.3) and the fact that |/(0) | < 1, it 

follows that i/(z) I < 1 for I z I < 1, and therefore M{J) < 1. 

Turning now to the converse, let/(z) = hcpZ^ be any function 

which is analytic and has modulus not greater than unity for 

I z I < 1. Put Co = ffo- If I o-Q I = Ij then /(z) =<jo, i.e., (a) 

holds. If j (Jo I < 1, let 

/i(z) = -=-7rT' 
z 1 - (Jo/(z) 

In the notation previously introduced, this may be written 

/l(2) = -Jo(/(z); 1). 
Z 

Inasmuch as Jo(/(0); 1) = 0 and | Jo(/(z); 1) | < 1 for | z | < 1, 

it follows by Schwarz’s lemma that /i(z) is analytic and has 

modulus not greater than unity for | z| <1. Put/i(0) = ai. 

If I (Ji 1 = 1, then/i(z) = (Ji, and in this case 

/(z) = (Jo + 
(1 - I (To |^)z 

ffoZ — (l/<ri) 
‘S’olz; (Ji). 
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If, on the other hand, | ctj | < 1, we put 

Aiz) = -^i(/i(2); 1), 

and conclude as before that/2(^) is analytic and has modulus not 

greater than unity for | z | < 1. If/^(O) = ^2 has modulus unity, 

then/2(2) = (7-2, and in this case 

/(z) = Siiz-, <^2)- 

If I 0-2 I <1, we put 

Mz) = -^2(72(2); 1), 
2 

and so on. 

These considerations show that there are just two possibilities. 

Either there is an index ;; > 0 such that (77.5) holds, in which 

case /(z) is given by (77.6); or else (77.1) holds. In the latter 

event we have, for every 

/(z) = .yp[z;A^i(z)], (77.9) 
where 

/p^i(z) = -Sp[/p(z); 1], /> = 0, 1, 2, • • •, /o =/. 
z 

Hence, since \fp^i{z) | < 1, we conclude immediately that (77.4) 

holds. 

The constant (Tq = /(O) is uniquely determined by /(z). One 

may readily show by mathematical induction that (Ti, <73, 0-3, • • • 

are uniquely determined. 

This completes the proof of Theorem 77.1. 

78. Continued Fraction Expansions for Arbitrary Functions 
Which Are Analytic and Have Positive Real Parts in Ext (—1, 
— 00). We come now to the main theorem of the present chap¬ 

ter, which extends to arbitrary analytic functions the expansion 

theorem for real analytic functions given in § 74. 

Theorem 78.1. A necessary and sufficient condition for a Junction 

H(z) to he analytic and have a positive real part in the domain Ext (—1, 
— 00 ) is that it have a continued fraction expansion of the form 
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H{z) = - 

1 +/ro^ 1 +2 

(78.1) 

i+iVivT+2 
l+/r2VT+^+ 

(1 -g2)gd.Z 

H-«>3VT+2+- 

where m>0, —oo <rp<+oo,0< gp^i < 1, /? = 0, 1, 2, • • *. JVe 

shall agree that in case some partial numerator oj the continued fraction 

vanishes identically^ then the continued fraction shall terminate with the 

first identically vanishing partial quotient. With this agreeynent^ the con¬ 

tinued fraction expansions are unique. 

IfQ < & < 1> 2, 3, 4, • • •, then the continued fraction con¬ 

verges uniformly over every finite closed domain in Ext (—1, — <»). [129.] 

Proof. The proof consists in transforming the continued frac¬ 

tion (77.2) in a suitable way. 
(i) It will be convenient to denote by U the class of analytic 

functions f{z) of Theorem 77.1, which map the unit circle ] z | < 1 

into all or part of itself. Consider the transformation 

Since 

i_+3/'(^ 

1 -2/(2)' 

1 - I 2/(2) 
1 - Z/(Z) / 

(78.2) 

it follows that 9J[^(z)] > 0 for | z | < 1 provided /(z) is in U. 

Conversely, if 9?[^(z)] >0 for | z | < 1, then | zf{z) | < 1 for 

I z I < 1, so that, by Schwarz’s lemma,/(z) is in U. We denote 

the class of these functions ^(z) by K. The formula (78.2) sets 

up a one-to-one correspondence between the classes U and K. 

We note that ^(0) = 1. 
(ii) Let ctq, o'lj • • •, izp be numbers with moduli less than unity, 

and let d’p(z; t) be defined by (77.2). We now put 

/o(25 t) — *^p(25 

^ = 0,1,2, •••, 

1 i) 

z 1 - ffiA(2; t) ’ 
(78.3) 
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Then 

/a:(z; /) 
(Tk - t) 

1 - /) 
— CTk -\- 

(1 - I (7/fc |2)2 

- 
fk + l{Z\ /) ' 

SO that we must have/p+i(z; t) — A 
We now define new functions hk{z'^ t) by means of the equations 

hn{z\ t) 
1 

1 + Zdn/n{z; t) ' 
// = 0, 1,2, + 1, (78.4) 

where the 6„ are numbers different from zero to be determined. 

If we substitute the values offk{^\ and/a;4.1(2; t) obtained from 

(78.4) for w = ^ and n = k \ into (78.3), we find that hk = 

hk{z\ t) and hk^i — hkJ^i{z\ t) are related by means of the equation 

^A:4-i(^A:— 5^ + 1 —25A. + 2<rfc) 

^ = 0, 1, 2, • • •,/>. 

We now determine the 8k so that the factor multiplying /ik-{-i in 
the numerator of this expression is zero, namely, we take 

So = l, h = ^/&= 1,2,3, •••,/> +1. (78.5) 

We note that [ 5n | = ly n = 0, 1, 2, •••,/) + 1. The expression 

connecting hk and ^*+1 may now be written 

, , ^ _I 1 - <^kh _ 

(1 ~ ^kh) ~ (1 ~ <^kh)z + (1 ~ I <^kh |^)zAfcH-l(2; t) ’ 

A = 0,1,2, (78.6) 

In particular, since do = l,/o(2; /) = Sp{z; /), we have 

1 — *5’p(z; t) 

_I I P'o^o _ 

(1 60^0) - (1 — 8ocro)z + (1 - I aodo l^)2Ai(z; /) 

1 + zSp{z; t) 
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On multiplying both members of this equation by 2z/(l — z), 

adding 1 to both members, and then taking reciprocals, we obtain 

1 + zSpjz; t) 

1 - zSpiz-, t) 
(78.7) 

2z| 1 — cro5() 1^ 

(1 — ffo^o) “ (1 ~ <roSo)2 + (1 — 1 ffoSo |^)zAi(z; f) 

If / is a constant with modulus not greater than unity, this is a 

function in the class K introduced before (cf. (78.2)). If we sub¬ 

stitute in succession for ^ = 1, 2, 3, ■ ■ ■ ,p from (78.6) into (78.7), 
we get a continued fraction expansion for this function. Our 

next step is to introduce new parameters in place of the o-„ in 

this continued fraction. 

(iii) Let 

= 1 — luk, k = 1, 2, 3, •••,/) -h 1. (78.8) 

Since | | = 1, | ak-i | < L then 

Hk — \\ < hy ^ = L 2, 3, • • •, ^ + 1, (78.9) 

so that 91(z<t) > 0. We now put 

Sk — 
Uk 

^{Uk) ’ 
rk = 

yt{Uk) 
, k = \,2,2, + (78.10) 

so that 
arg Uk = — arc tan Vk = — <i>k, Uk = gk cos <t>ky 

k = 1,2,3, ■■■,p + 1. 

The numbers gk and rk satisfy the inequalities 

0<^*<1, —'»<rfc<+<», ^ = 1,2,3, •••,/>+1. 

If, conversely, gk and n are any numbers satisfying (78.12), then 

numbers satisfying (78.9) are uniquely determined by (78.11). 

The Uk, in turn, determine uniquely numbers o-* such that (78.8) 

and (78.5) hold. In fact. 

(78.11) 

(78.12) 

(To = 1 — 2ui, (Tk 

U\U2 • • • Uk 

U1U2 • ■ ■ Uk 

(1 '2.Uk+l), k = 1,2,3, 
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If we introduce the new parameters gk and r*, the expressions 

(78.7) and (78.6) become 

1 + zSpjz; /) 

1 — zSp(z; t) 

1 2 -f- ^ 
(1 + iri) - (1 - iri)z + 2(1 - gi)zhi{z\ t) 

and 

(78.13) 

hk{z\ t) 
__ 
(1 + irk^i) - (1 - /H+i)2; + 2(1 - gk+i)zhk^i{z\ t) ' 

k = 1,2,3, (78.14) 

(iv) We now suppose that (To> o'lj * is an infinite sequence 
of numbers with moduli less than unity, so that the preceding 

formulas hold for arbitrarily large values of p. By (78.4), with 

^ p + 1, we have, remembering that/p+i(2:; /) = /, 

1 — 

1 + z5p+i^ 
(78.15) 

We take / = Sp+i, so that ( / | = 1 and hp^i{z\ t) = 0. From 

(78.13) and (78.14) we then conclude that 

l-fz6*p(2; 5j>+i) 

1 zSp{z\ 5p4-i) 
1+2 

(78.16) 

4g-iz 
1 +- 

4(1 -^i)^22 
(1 +/ri) - (1 - /ri)z+- 

(l+/r2)-(l-/r2)z+' 
4(1-j?'p)^p+iz 

. - 
(l+/rp+i)-(l-/r^i)z 

By (77.4), this converges uniformly for |z| < r < \^ as p ^ 

to a function k{z) = [1 + zf{z)]/[\ — zfiz)]^ where f{z) is in U so 

that k{z) is in K (cf. (i)). 

(v) Let us now suppose that cro, ci, • • o-p have moduli less 

than unity, and let ap^i be any number with modulus unity 
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{p > 0). In case 1 — dp^iap^i = 0, we see by (78.15) that 
hp^i{z; (Tp^i) = 0, so that 

1 “I” ZSp(Zy (Tp^l) 

1 z6'p(2:; (7p_j_i) 
(78.17) 

is given by the continued fraction in the right-hand member of 
(78.16). If, on the other hand, 1 — 5p+i(rp_^i 0, then 

,—-- 
1 T" 2:dp4.i(7p_^i 

_ _I ^ ~ 1^_ 
(1 — (Tp-^i^p-^i) — (1 ~ o'p_|..i5p_|_i)2: 

Put (7p^i6p4.i = 1 — Up^2- Since | (Tp_j_i5p_^i | = 1, it follows that 

I ^p-\-2 ~ 2 I = 2* Since 9^ 1, we must therefore have 
9f(^p+2) > 0. Hence, if 

— I ^P-h2 i! - 3(»p+2) 

9i(«P+2)’ mHp+2)' 
then 

<^p+i) = T{~^' ^-r‘ (1 + /rp+i) - (1 - irp^i)z 

Here, gp^2 = 1. Clearly, if gp^2 = 1 and rpj^2 is real, then the 
preceding relations determine <rp^_i uniquely. We now see at once 

that in this case the function (78.17) is given by the continued 

fraction in the right-hand member of (78.16) with p replaced by 
p + 1. 

(vi) On referring to Theorem 77.1 and (i), we find that we now 

have continued fraction expansions for all the functions of the 
class K with the exception of those of the form 

1 + ZcTq 

1—2(70 
where | (Tq | = 1. 

If (7o = 1, this is the first approximant of the continued fraction 
in the right-hand member of (78.16). If ao 7^ 1, and we put 

ctq = then this function is the second approximant of the con¬ 

tinued fraction in the right-hand member of (78.16) with gi = I 

and ri = cot (</>/2). 
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This accounts for all the functions of the class K. Every func¬ 

tion of the class K has a unique infinite or terminating continued 
fraction expansion of the form 

1 +z 

1 - z + 
4^i2 

(78.18) 

(1 + iri) — (1 - />i)2 + 
4(1 - gl)g2Z 

(1 -f /rs) — (1 — ir2)z -f ■ 

and, conversely, every such continued fraction represents a func¬ 

tion of the class K. 

In case 0 < _g-p < 1, /> = 1, 2, 3, • • •, the continued fraction 

converges uniformly for hi for every positive constant r 
less than unity. 

(vii) The functions k(z) of the class K have the property 

^(0) = 1. If fi > 0, — ^ < ro <+ ^ y then the function 

/Vo + 
1 

W) 

(78.19) 

is evidently analytic and has a positive real part for | 2 | < 1, 

provided k{z) is in K. Conversely, if ^'1(2;) is analytic and has a 

positive real part for 121 < 1 , and if ^i(O) = p + i^y p > Oy q real, 

then the relation (78.19) determines uniquely a function k{z) in 

K if we there take ro = ^qlp:, M = i.P^ + q^)/p- substituting 
for k{z) its continued fraction expansion of the form (78.18), we 

then obtain from this relation the expansion 

ki{z) (78.20) 
/*(! + z) 

(1 + /ro) — (1 — /ro)z + 
4giz 

(1 -f tri) - (1 - /ri)z + 
4(1 - gi)g^ 

(1 + *>2) - (1 - /r2)2 +• 

The function ^1(2) is analytic and has a positive real part for 

I 2 I < 1 if, and only if, it has an infinite or terminating continued 

fraction expansion of this form. On making the substitution 
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(73.7) in (78.20) and then writing z for w, and putting H{z) = 

ki[(V\ + z - l)/(Vl + z + 1)], we obtain at once the expansion 
(78.1) as the most general expression for a function which is 

analytic and has a positive real part in the domain Ext ( — 1, — 

The facts concerning convergence and uniqueness of the expansion 
are contained in the preceding discussion. 

The proof of Theorem 78.1 is now complete. 

15.1. Let 

Jiz) = 

Exercise 15 

1 + 
(1 - gl)g2Z 

1 + 
(1 - ^2)^32 

1 +• 

where 0 < < 1, /> = 1, 2, 3, • • •• Put/o =/, 

1 h ~ fp 
21 - 

Show that {oT p — 1, 2, 3, • • •, 

/p(2) = - 

, /p=/p(0), p = 0,1,2, 

ip) 

(1 _ 
1 +■ 

1 + 
(1 - g2<P>)g3(P>2 

1 +• 

where 0 < k — 1, 2, 3, • • •. [126.] 

15.2. Let 
d4,{u) 1 

f- Jo 1 + zu 
1 +- 

^iZ 
(1 - ^1^22 

1 + 
1 +• 

where 0 < ^p < 1, ;> = 1, 2, 3, • • •. Prove that </>(«) is continuous at « = 0 

if, and only if, the series 

^ ^1X3 • • ■ - g2)0 - ^4) ■ - (1 - ^2p) 

X2^4 • • • X2p4-2(1 — gl)i^ — Xs) • • • (1 — ^2p+l) 

diverges, and is continuous at « = 1 if, and only if, the series 

^ (1 - ^l)(l - ^2) • - (1 ~ ^2p-l) 

diverges. [18.] 
^1^2 g2p 
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15.3. Let /(z) denote the function of 15.2. Show that the modulus of 
(1 d- z]f{z) is bounded for $H(2) > — | if, and only if, the series 

1 _j_ 0 _j_ ~ ^i)^2 (1 - gi)g2{\ - ^3) ^_ 

^i(l - ^2) ^i(l - ^2)^3 

is convergent. [19.] 
15.4. Show that /(z) is bounded for | 2 | < 1 and (1 -h z)/(z) is bounded for 

9^(2) > if, and only if, 

u{\ — u)dB{u) 

i.e., <i>(u) = r /(I - i)dd(t). [18.] 
•'0 

15.5. Let 

/W = 1 + 
1 + 

(1 - r)sx 

1 + 
(1 — s)rsx 

1 +■ 

(1 — 

1 + 
(1 - s^^Wx 

1 + 
(1 — rs^)s^x 
______ 

where 0<r<l,0<j<l. Show that 
(a) /{x) is a meromorphic function of x whose poles are all on the negative 

half of the real axis. 
(b) /{x) satisfies the functional equation 

/W = 1 + 1 -f- J.V 

(c) fix) = 1 -f r;e — rj(l — r)x^ -f rj^(l — r)(l — 

- rs\\ - r)(l - rj)(l - rs^)x^ -f • 

(d) /(-l) =n(l 
j?- 0 

Mx, 

where Mi = and 

15.6. Let 

M =__ 
^ (1 - S)il - . . . (1 ^ ,P-1) /> = 2,3,4,.... [131.] 

^0 + 
Xl 

yi 
X2 

y2 +• 

be any continued fraction with partial numerators Xp 9^ 0, and denote the nth 

numerator and denominator by Xn and Yn, respectively. Put 

= pn-lipn + ^n^n+l) 1> 2, • * *, 
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where p-i = 1, q-i = 0, and the other and qn are any numbers such that 
0, w = 0, 1, 2, • • •. Put 

E-n — pn{pn—2yn ^n—2*Vn) “{“ qriipn—liynyn-\-\ + -Vn+l) ^'n—2-^71^71+1]) 

W = 1, 2, 3, •••; 

, , q^xi x{Di 

XnE)n '10/1 
— JZ , W — 2, 3, 4, • • • , 

^n — 1 

in - «= 1,2,3, •••. 
/Jn-1 

Let An and Bn denote the «th numerator and denominator of the continued 

fraction 
ai 

h 
b\ -f 

b<i + • 

Then, 

T)^An — Pn^n “I” ^Ti^fn+l) 
w = 0, 1, 2, •••. [58.] 

DoBn — Pn^n 4“ qn^n + ly 

15.7. Let pn and qn be regarded as parameters, put 

yn bn 1) ^ “ L ’ ’ *> 
and show that 

{bo — yo)ipo + ^0) po qo — pi qi 
xi = --, ^2 = — - 

^0 

•^n+l 
hh • ■ • U-i 

S1S2 

• • • fn-l r 

I ’ ' ' Sn ' 

, , ^+^2 , , •^1-^2 • • • Sn-l\ 
ri + rj - + ra —+•••+ r„ ----I, 

/i /1/2 hh ’ • * ^7t-i ' 

where 

^n+l = Pn-l{pn + ^7» ~ Pn+1 — ^'tj+i)) 

•^71 + 1 — ^n—I^'ti+I) 

/n + 1 = qn{pn+2 + ^'71+2 ““ 9'n+l)« [19.] 

15.8. Obtain the identity (75.3) by taking qn — 1, = gnZ, go — gn 9^ Oy 

w = 0, 1,2, = 0,^0- 1/(1+z). [19.] 
15.9. If {jUpj is a totally monotone sequence in which /xo > 0, and /(z) = 

\//{z) = bboz - biz^ + b2Z^-, then the sequence {bp} is 

totally monotone, and the function F{z) = S(—•l)^^p2^ has modulus not greater 

than unity for | z | < 1. [70a.] 
15.10. If \bp} is a totally monotone sequence such that the function 

F(z) = S( —l)P/^pZ^ has modulus not greater than unity for | z | <1, and if we 

put/(z) = 1/(zF(2) + 1) = S(-“l)PiLtj>2^ then {/Zp} is a totally monotone sequence. 
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15.11. If (77.1) holds and the series S| (Tp | is convergent, then lim «S'p(2;<7p+i) == 
px 00 

/(z) uniformly for j z | < 1, and 

\J{Z) < 1 - ll <1 for I 2 I < 1. [84.] 
P^O 1 ~T \(Tp\ 

15.12. In the continued fraction of 15.1, let the gp be such that the series 

2| — I I is convergent. Then the function /(z) is bounded over the domain 

Ext (~1, — oo). Moreover, as z —> where — oo < j < —1, from the upper 

half-plane, then /(z) —> u{s), where u(s) is a continuous function of s which is 

real if, and only if, j = —1. As z—^s from the lower half-plane,/(z) —> (us). 

[130.] 
15.13. The function Hiz) represented by (78.1) is bounded over E^xt ( — 1, — «) 

if the series 

[i (1 - ukp 
"\4 1 + r/ 

is convergent. 

15.14. The power series /(z) = XcpZ^ is convergent and |/(2) | is bounded for 

1 2 I < 1 if, and only if, the bilinear form 

^^/p—qXpyq 

p>q 

is bounded. If N is the norm of the form, then 

N = l.u.b. 1/(2) 
\Z\<\ 

[84.] 

15.15. The power series/(z) of 15.14 is convergent and has a nonnegative real 

part for I 2 I < 1 if, and only if, the Hermitian form 

^ "h ^P—q^p^q) ~ [84.] 
p^a 

15.16. The zeros of the polynomial + riz -}-••• -f~ ^nZ^, r„ ^ 0, are all in 

the interior of the unit circle if, and only if, the Hermitian form 

n-l 

^ ^(| CnXp “h Cn—lXp.^1 (^p+lXfi—1 

— I CoXp + C\Xp^\ + --h Cn—p—XXn—l P) 

is positive definite. [84.] 
15.17. If (77,1) holds with the <jp real, and if the series 

^ ^ (1 - cro)(l - (Ti) - • (1 ~ o-p) 

(1 + (ro)(l + <ri) • • ‘ (1 + (Tp) 

is convergent, then the function/(z) of (77.4) has the property M{f) = 1. The 

same conclusion holds if one of the series obtained from S by replacing Cp by 

—(Tp, by replacing (T2p+i by ~(r2p+i, or by replacing <T2p by —<X2py (/> = 0, 1, 2, 

* • •), is convergent [132], 
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15.18. If (77.1) holds with the Cp real, and if lim (1 + (rp_i)(l — ap) — 0, 
p >» 00 

then the function /(z) of (77.4) has an essential singularity at z = 1, and no 
other singularities in the extended plane except poles [132]. 

15.19. A necessary and sufficient condition for a function /(z) to be analytic 

and have a negative imaginary part for 3(2) > 0 is that it have a continued frac¬ 

tion expansion of the form 
c 

~ .^i(l + 2-)_ 

^ ^ __(1 - ^l)jr2(l -4- 2-)_ 

^ _ (1 - .tf2),^"3( l -f 2^) 

where 0 < ^p< ^ < rp^i < +^yp = 1,7, 3, • • •, r > 0, with the agree¬ 
ment made in Theorem 78.1 in case some ^p is equal to zero or to unity. If 
0 < jTp < I, p — 1, 2, 3, * • then the continued fraction converges uniformly 

over every finite closed domain in the upper half-plane 3(z) > 0. [137a.] 
15.20. To indicate the dependence of the function /(z) of (77.4) upon the 

(Tp, let us write 
/(z) = (z; 0-0, 0-1, 0-2, • • •)• 

Then, 
-/(z) = (z; -ao, -cri, -(T2, • • •), 

/(-z) = (z; (To, -<Ti, 0-2, -cr3, (74, ' * •)• 

Show that the identities of § 75 are easy consequences of these formulas [128]. 

15.21. If ^/ > 0, ^ > 0, then 
, a + ^ _ 

(a + 2b){\ + 2^) 

_(a + m_ 
^ a(a + 3/^)(l + 2^ 

((7 + (^)(rt -h 2^)4 

^ + b){“ + 
((7 + 2b){a -|- 3^)4 

^ (a + 2b){a + 5-^)(l + 

{a + U){a +4b)^ 
2 __ -- 



Chapter Xf^I 

HAUSDORFK SUMMABILITY 

The theory of summability is concerned primarily with the 

transformation of one sequence into another. For example, the 

sequence 

p “h ‘^p-fi 
/> = 0, 1, 2, 

is obtained by transformation of the sequence {^p}. We observe 
that if lim then lim = s, X transformation having this 

P= 00 P= oo 

property is said to be a regular transformation. We also observe 

that lim tp may exist even though lim Sp fails to exist, e.g., if 
pss 00 P= OO 

^p = [1 + ( —1)^]/2. If we write a sequence as a one-column 

matrix, the above transformation may be expressed by the single 

matrix equation 

~fo' r-1 i 0 0 • -n 2> 2> *^0 

t\ 0 i i 0 2> 2> 

1
-

 

I- 
• 

0 0 i i 2y 2y ^2 

or simply t = As, where A denotes the matrix of the transforma¬ 

tion. We shall use one and the same letter to denote a trans¬ 
formation and the matrix of the transformation. A sequence 

{sp} is said to be A-summable to the value v if lim tp = v, 
P s 00 

where t = As. 
Two transformations A and B are said to be mutually con¬ 

sistent if they assign one and the same value to an arbitrary 
300 
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sequence {j-pj which they both sum. If two regular transforma¬ 

tions are permutable^ then they are mutually consistent. For, let A 
and B denote two transformations which are permutable, i.e,, 

AB = BA, and let {jp} be a sequence which they both sum. If 
t = As and u = Bs, then {/p} and {uj,} are both convergent 

sequences. Let v = Bt = BAs, w = Au = ABs. Since A and B 
are regular, lim Vp = lim tp and lim Wp = lim Up. But, since 

p— CO p— CO p=oo p — CO 

AB — BA, it follows that v = w, and therefore A and B are 

mutually consistent transformations. 

Our main object here is to show how to construct classes of 
permutable transformations and, in particular, the class of all 

transformations with triangular matrices A = {apf, Upq = 0 for 

q '> py which are permutable with the transformation 

tp = 

with matrix 
p +1 

, p = 

-1, 0, 0, ■ • 
1 
2y 

1 
2y 0, ••• 

1 
3> 

1 
3y 

1 

A triangular matrix A which is permutable with C is called a 
Hausdorff matrix, and the corresponding transformation is called 

a Hausdorff transformation or Hausdorff mean. Since C is a 

triangular matrix which is necessarily permutable with itself, the 

corresponding transformation is a Hausdorff mean. This is the 

familiar arithmetic mean, or Cesaro mean of order 1, and is 

usually denoted by (C, 1). 

With the aid of the formula 

we may write 

^-^u^du 
p\{n — p)! 

{n + 1)! ' 

+ + ***+-^n 

n + I 
(1 ~ uY ^u^Spdu. 

If in the integral in the right-hand member of this formula we 

replace du by d<l){u)y where (t>(u) is any function of bounded varia- 
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tion on the interval 0 < w < 1, we obtain a natural generalization 

of the Cesaro mean of order 1. These transformations 

I n j V 

/„ = I Y] (” ) (1 - « = 0, 1, 2, • • •, 

are precisely the convergence preserving HausdorfF means, i.e., 

the HausdorfF means which transform convergent sequences into 

convergent sequences. It is therefore at once apparent that the 

theory of HausdorfF summability is closely connected with the 

moment problem for the interval (0, 1). 

We shall now proceed with the development of some of these 

connections. 

79. Hausdorff Matrices. Let A = = 0 for y > p, 

be any triangular matrix in which the diagonal elements are 

different from zero. Then A has a unique inverse A""^ such that 

if t = As then s = A“T. Let D = {hpqd^ denote any diagonal 

matrix. Then the transformation 

t = A-'DAs (79.1) 

is of the form t = Bs, where B is a triangular matrix. The 

transformation depends upon the matrix A and upon the sequence 

{dp}. If lim/p = s, we shall say that the sequence {jp} is 
pssB 00 

{Ay ^/p)-stiininable to the value s. A sequence [dp] such that 

{Ay dp) is regular, will be called an A-regular sequence. We shall 

denote by {A) the class of all matrices of the form A~"^DA, where 

A is a fixed matrix and D an arbitrary diagonal matrix. 

Theorem 79.1. A matrix B each of whose rows has but a finite number 

of nonvanishing coefficients is permutable with all the matrices of the class 

{A) ify and only ify it is a member of the class {A). 

Proof. Suppose first that B is a member of the class {A)y so 

that ABA"”^ = D, a diagonal matrix. Let Bi = A^^DiA be 

any member of the class {A). Then, since diagonal matrices are 

permutable, 

BiB = A-'DiAA-'DA = A^'DiDA = A~'DDiA = BBi. 
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If, conversely, B is permutable with all the matrices of the 

class {A)y it is permutable with a matrix Bi = A~^DiA, where Di 

is a diagonal matrix whose diagonal elements are distinct. Put 

D = ABA“^ Then we are to show that D Is a diagonal matrix. 

We may write the equation BBi = BiB as ABA'^ABiA""^ = 

ABiA^'ABA-', or DDi = DiD. Therefore, If D = Di = 

{^pqdq)y then dpqdq = dpdpq. Since dq 9^ dp q 9^ it follows 

that dpq = 0 if ^ 7*^ /), so that D is a diagonal matrix, as was to be 

proved. 

We have proved the stronger statement, that if B is permutable 

with a single member of the class (yf) of the form A“^DiA, where 

Di Is a diagonal matrix whose diagonal elements are distinct, 

then B is in the class (/^). Hence, if we can find a triangular 

matrix H such that the Cesaro matrix C can be written as C = 

H-'DH, where D is a diagonal matrix whose diagonal elements 

are distinct, then the class (//) will consist of all the triangular 

matrices which are permutable with C. Moreover, all members 

of the class will be permutable with one another. 

Accordingly, we seek a matrix H such that 

HC = DH, 

where D Is a diagonal matrix whose diagonal elements are distinct. 

TLhat is, if H! ^ ^ ^^ptidq^y then 

^^^hpJcCicq 5 pkdkhkq) 

or, \iq <p. 

For ^ this gives 

kk) {k) 

^ bpk 

A. + 

h 

p +1 

so that if hpp 9^ 0, then dp = !/(/> + 1). The condition for deter¬ 

mining the hpq then becomes 

k-9 

p-\r\ 

+ 1 
hp q <P- 
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On replacing q hy q \ and subtracting the resulting equation 
from this, we obtain the recurrence formula 

; - ^ ^ A ^ 
"P9 Ap.p+l, ^ ^ P’ 

p - q 
Therefore, 

K, = 

the choice of being at our disposal subject only to the condi¬ 
tion App 9^ 0. We shall take App = ( — 1)^’, and thus have for the 
general coefficient in our matrix H the formula 

^p9=(-1)''Q, q<P\ 

and H = {hp^ clearly has the desired property, namely: HCH“^ 

is a diagonal matrix whose diagonal elements are distinct. We 
state this result as; 

Theorem 79.2, A triangular jnatrix A is permutahle with the Cesaro 

matrix C if^ and only if^ A == where D is a diagojial matrix^ and 
H is the matrix 

L 
Moreover^ 

C [28.] 
V q + 1/ 

The matrices H“^DH are the HausdorS matrices, and the cor¬ 

responding transformations are the Hausdorff means. 
80. A Theorem on (A, dp)-Transformations. We shall now 

return to the general {A, ^/p)-transformation, and shall prove the 
following theorem. 
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Theorem 80.1. The transformations have the following prop- 
erties: 

(a) If {Ay dp) transforms the sequence {j-pj mto the sequence {/pj, and 

{Ay dp') transforms [tp] into [up]y then {Ay dj/if) transforms {jpj into 

i«p}- 
(b) If [dp\ and [df] are A-regular sequences y then [dpdf] is an 

A-regular sequence. 

(c) If {Ay dp) sums the sequence {.f^} to the value Sy and if k is arty 

numbery then {Ay kdf) sums {j-pj to the value ks. 

(d) If the sequences [dp] and [df] are A-regulary and gh — 1, 

then \gdp + hdf\ is A-regular. 

(e) If dp 9^ ^y then every sequence {Ay df)-summahle is {Ay dp')-sum- 

mahky and to the same valuey ify and only ify {df jdp\ is an A-regular 

sequence [28, 22]. 

Proof, (a) Let D = {^pqdq)y Di = {^pqdf). By hypothesis, 

t = A“^DAs, u = A“^D 1 At, and therefore u = A~^DiAA~^DAs = 

A~^DiDAs. Since DiD = {hpgdfdq)y part (a) is proved. 

(b) This follows immediately from the preceding. 

(c) If t = A~^DAs, then = /:A~^DAs = A~^(^D)As. 

(d) If t = A-'DAs, u = A“'DiAs, then 

+ Au = A~'(^D + ^Di)As. 

If {jp} is convergent, then lim tp = lim Up — lim Sp. Therefore, 
p=00 P=oo p=00 

since g h — \y lim {gtp + hUp) — lim Sp. 
P = 00 p = 00 

(e) Suppose first that every sequence {Ay <^p)-summable is 

{Ay dp') summable, and to the same value. We shall indicate this 

symbolically by writing 

{Aydp')D{Aydp)y (80.1) 

read '\Ay df) includes {Ay dp)A Let {sp} be a convergent 

sequence with the limit v. Determine the sequence {/p} by the 

equation s = A“^DAt. This is possible since dp 9^ 0. Put 

u = A“~^DiAt. Since {tp} is {Ay ^p)-summable to the value Vy 

it follows by (80.1) that lim Up = v. Now 
paa CO 

u = A-'DiAt = A-'DiAA-iD-»As = A-»DiD-'As, 
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and we therefore conclude that the convergent sequence is 

{A^ ^pV<gfp)-summable to the value v. That is, [d^ /d^\ is an 

yf-regular sequence. 

Suppose, conversely, that \dj!/d.^^ is y/-regular, and let {/p} 

be an ^p)-summable sequence. That is, if s = A'~^DAt, 
then lim Sj, — v exists. Since {A^ dp'/dp) is regular, it then 

p=: OO 
follows that if u = A~^DiD~^As, then lim Up ~ v. But u = 

P = 00 

A~^DiD~'^AA“^DAt = A‘”^DiAt, and hence we conclude that 

{/p} is {Ay ^/p')-summable to the value Vy i.e., (80.1) holds. 
81. Hausdorflf Means. In this section we shall establish the 

fundamental formulas of the HausdorfF theory. 

Theorem 81.1. If Jl is the matrix of Theorem 79.2, then the trans¬ 

formation {Hy dp) can he written in the form 

where 

tn-^{''\{h^'^~^dp)Spy n^^yXyly- 

AV, [28.] 
7^ vy 

Proof. It is required to prove that the matrix 

H-'DH = A^-^p )• 

-)■ 

Let H = (Ap,). Then = ( Yjhpkhk/) . Now 
^ (Icf / 

hplihjcq 

(81.1) 

(81.2) 

0 if q > p, 

£(-.,-00 if .... 
This is obviously equal to \ \( q — p. If ^ let r = ^ — y, 

and we have 

(:)C;o=(:) 
(1 - !)*’-« 

= 0. 
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Therefore, so that H = H Consequently 

H ^DH == HDH = i^’^^hpk^krdrhr^ = ^ ^hpkhkqdj^' 

Now, 
' (A, r) 

0 if q > py 

For q < p y^e put k — q + r and find that 

Qa-v., 

as was to be proved. 

Theorem 81.2. The Hausdorff mean (81.1) is convergence preserving^ 

i,e.y transforms any convergent sequence into a convergent sequence^ ify 

and only if^ there exists a function <i>{u) of bounded variation on the interval 

0 < « < 1, such that 

dp = f id'd4>iu), ^ = 0, 1, 2, • • •. [28.] 

n 

Proof. A transformation of the form tn = is con- 

Mergence preserving if, and only if, the following three conditions 

are satisfied. 

n 

(a) 1 ^np 1 ^ 
pvoO 

rT
 

o
' 

II •, M a constant. 

(b) lim bfip — ^py 
n** « 

= 0, 1, 2, • • •, Lp finite. (81.3) 

(c) 

n 

lim /bnp = L, L finite. 

The transformation is regular if, and only if, (81.3) holds with 

Lp = Q, p = 0, 1, 2, • • •, and L = \. This is a fundamental 

theorem in the theory of summability [91, 104]. 
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The condition (c) is automatically satisfied by any transforma¬ 

tion of the form (81.1), and in this case L = inasmuch as 

« = 0, 1, 2, (81.4) 

The conditions (a) and (b), applied to (81.1), give 

\ < My n = OyXyly 

(81.5) 

;> = 0,1,2, 

Since, by Theorem 72.1, the condition (a') is both necessary 

and sufficient for the existence of a function </>(//) of the specified 

character, it remains only to be proved that 

”)f' p/ 
(1 - uY~^u^d<l>{u) = Lp, /) = 0, 1, 2, • • •, (81.6) 

when (j){u) is a function of bounded variation on the interval 

0 < // < 1. To that end, we write the expression under the limit 

sign in the form 

or 
(1 - a)”-'’«V(/>( 

--Of, 
(1 — uY ^U^d(l>{u)y 

where 0 < / < 1. We may evidently suppose that (j>{u) is real 

and nondecreasing, for the general case can readily be reduced tc 

this. Assume, for the moment, that <^(/y) is continuous 3.t u = 0 

Then, for the first of the above integrals we have 

0 < ^ ^ (1 — uY~^u^d(t>{u) <J [(1 — u) + uYd(t>{u) 

This will be less than an arbitrarily small assigned e > 0 if 

0 < / < S, where 5 = 5(e) > 0 is sufficiently small. For a fixed 

/, the second integral does not exceed 

(”)(i - </>(/)]<*, 
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for all sufficiently large values of n. We therefore conclude that 
(81.6) holds with Lp = 0, ^ = 0, 1, 2, • • •, in the case where 
(t>{u) is continuous at = 0. 

If (t){u) is discontinuous at u = 0, put c = 0(+O) — 0(0), and 
define the function d(u) = (t>(u) — c for u > 0, 0(0) = 0(0). Then 
d{u) is nondecreasing and is continuous at u = 0. Moreover, 

(”) r (1 - 
\p) h , 

(^) (1 — uY~^u^dd{u) for /> > 0, 

(^) (1 — uY~^u’’dd{u) + c for p = 0. 

Hence, it follows from the preceding that (81.6) holds with 

Lp = 0 for i!> > 0, Lo = <^(+0) — (81.7) 

The preceding proof contains the following theorem. 

Theorem 81.3. T/ie Hausdorf mean (H, dp) is regular if, and only if, 

the moment problem 

has a solution <t)(u) of bounded variation on the interval 0 < « < 1, such 

that 0(1) — 0(0) = 1 and 0(-|-O) = 0(0). [28.] 

82. Examples of Hausdorff Means. We shall now give several 
examples of Hausdorff means. 

Example 1. The Cesaro mean of order 1, (C, 1), is the Haus¬ 
dorff mean (//, \/{p + 1)). Here 0(«) = so that the mean is 
regular by Theorem 81.3. 

Example 2. The Hausdorff mean (//, is called the Euler- 
Emopp mean. If 0 < r < 1, then is the step-function 

0 
1 

1 

for u < Ty 

for u = Vy 

for u > r. 
This is a regular mean. 
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Example 3. The Holder mean, Hcj is the Hausdorff mean for 

which 

It will be noted that Hi is the same as (C, 1). 
Example 4. The Cesaro mean of order c, (C, c), is the Haus- 

dorfF mean for which 

^(u) = 1 - (1 - u)% 5W(r) > 0. 

The means Hr and (C, c) are equivalent in the sense that any 
sequence summable by the one is summable by the other also. 

They are, of course, mutually consistent. 
Example 5. Let 

Jo 1 + pu 
/> = 0, 1,2, 

where fx{u) is a bounded nondecreasing function and "" 

fx{0) = 1. Then the Hausdorff mean (//, a^) is a regular mean. 

In fact, 

^ I-^ 0, 
Jo (1 + r2u){\ + [n + l]u) • • • (1 + + m]u) 

so that the sequence {ap} is totally monotone. Since ao = 
^( — oo) ~ ^(0) = 1, and since, as may be easily seen, lim A^ao — 

pSBT 00 

0, it follows that {H, Cp) is regular [88, 22], 

83. The Hausdorff Inclusion Problem. Let {H, ap) and (H, i>p) 

be two Hausdorff means, and suppose that ip ^ 0,p — 0,1,2, • • •. 

By (e) of Theorem 80.1, 

(H, Up) D {H, bp) (83.1) 

if, and only if, the sequence \aplbp\ is //-regular, i.e., if, and only 

if, there exists a function ^(«) of bounded variation on the interval 

0 < « < 1, such that </>(!) — <^(0) = 1, (^(+0) = <^(0), and such 

that 
dp 

Tp X u^d4>{u). P = 0,1, 2, (83.2) 
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The Hausdorff inclusion problem is the problem of establishing 

whether or not the inclusion relation (83.1) holds between two 

given Hausdorff means. Necessary and sufficient conditions for 

(83.1) to hold between two given regular Hausdorff means have 

been formulated in various ways (cf. [17]). We shall limit the 

discussion here to an example, in which use is made of the con¬ 

tinued fraction theory [88, 22]. 

Consider the regular Hausdorff mean defined in Example 5 of 

§ 82. We shall establish the inclusion relation [22] 

(C, 1)D(//,^,,). (83.3) 
Let 

/(2) = 

so that = /(p). Then 

(1 — v)d\{v) , , ^ ( ^ \ 
/(I + z) = ( -^-, where \{v) = m f--)• 

Jo 1 + zy \1 — y/ 

The function X(y) is a bounded nondecreasing function of v, and 

X(l) — X(0) = 1. By Theorems 76.3 and 76.1, we therefore have 

X 1 -|- zu 

/(I + z) = 
_gj>__ 

1 _|_ - go)gi^ 

1 ..j_ ~ 

(83.4) 

where 0 < fo < T 0 < ^ /* = 2, 3, • • •. 

If ^0 = 1, so that/(z) = 1, then (//, a^) is the identity trans¬ 

formation, i.e., convergence, and is of course included in (C, 1). 

By (83.4), 

.go 

/(z + 1) 
1 + (1 ~ ^o)z • 

gi 

1 + 
(1 - gl)g2Z 

1 + 
(1 - ^2)^3Z 

’ 'l +• 

= 1 + (1 - ^o)z-/i(z + 1), 
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where /i(2 + 1) has the form 

f ( -J_ 1 'I - (1 - dixi(u) 

^ ~ Jo 1 +zt; Jo 1 + (z+ 1)«’ 

x.w 
The function Xi(c;) is a bounded nondecreasing function. If 

^0 = /(I) = ai < then, since /(O) = 1, it is easy to see that 

/i(0) = 1, and therefore Xi(l) — Xi(0) = 1. Thus, the sequence 

~ fi{p)i P = 0, 1,2, • • •, is //-regular, and we have 

dp 
= 1 + (1 - a^){p — \)i>p, 

(«i < 1). 

p = 0,\, 
(83.5) 

Since (C, 1) is the Hausdorff mean [H, \/{p + 1)], it is required 

to prove that 

1 
a„ = /> = 0, 1,2, •• 

p \ + l)^i< 

is an //-regular sequence. We have, by (83.5), 

(83.6) 

_ 1 

{p + \)ap -(— di \p + 1 
+ (1 — ai)bp — 2(1 ~ di) __\ 

i+ 1/ 

Now, the sequences [\/{p + 1)} and [bp] are//-regular. Hence, 
by (b) of Theorem 80,1, {bp/{p +1)} is //-regular. We then 

conclude from (d) of Theorem 80.1 that (83.6) is //-regular, and 

(83.3) is thereby established. 

Exercise 16 

16.1. The HausdorfF mean of Example 5, § 82, is equivalent to convergence, 
i.e., will sum only convergent sequences, if, and only if, the function ii{u) is 
discontinuous at « = 0; and is equivalent to (C, 1) if, and only if, the integral 

r*^pt(«)/« is finite [88, 22], 
•'0 

16.2. Let ^ be a number between 0 and 1, 0 < ^ < 1, and let 

^0 — CiZ + ^22^- 
1 

1 + 
sO - S)z 

1 + ^(1 - g)z 
1 +• 

Show that the HausdorflF mean (H, includes (C, 1). [19.] 
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16.3. Let (//, flp) and (//, be regular Hausdorff means, and suppose that 

7*^ 0, p = 0, 1, 2, • • •. Then (//, ap) 2) (//, ^p) if, and only if, there exists a 
function 4>c(u) of bounded variation on the interval 0 < < 1 such that 

0c(+O) = <t>c{0) = 0, 0c(l) = 1> and such that, for | / | < 1, 

/«W = r Jh(tu)d<i>c{u) 
•'0 

where/.(/)= 2:(-1)^aVL [17.] 

16.4. Let (//, ^p) be a regular Hausdorff mean, and let = I u^'d4>{u), 
-N 

/) = 0, 1, 2, • ■ - , <j!)(0) = 0. I'hen (//, ^Zp) J (f-', w), w a positive integer, if, 
and only if, the following five conditions are all satisfied. 

(a) d>{u) is absolutely continuous and has absolutely continuous derivatives 
of orders 1, 2, • • •, w — 1 for 0 < « < 1. 

(b) has a finite right-hand derivative </>r^”'^(w) for 0 < z/ < 1, and 

a finite left-hand derivative for 0 < w < 1. 
(c) </>(«), u^\u)^ • • •, and are of bounded 

variation in the interval 0 < z/ < 1. 

(d) 1 — (f>{u)y tend to zero as zz 1 — 0. 
(e) 0(zz), u4>'{u)j • • •, u^~ u^<pr^”"\u) and tend to zero as 

zz-^+O. [17.] 
16.5. If (//, Jp) and (//, rp) are convergence preserving Hausdorff means, and 

= /> = «. 1. 2, •••, 

then (//, /p) is a convergence preserving Hausdorff mean [22]. 

16.6. Let 00 

= ———fits 9^-0. 
V-O 1 +. .?I2 

1 +■ 
(1 - 

1 + (1_- .gaksz 

'+■ 

Then, 

P«0 1 + 
(1 - .?l)2 

1 + .fl(l - ^'2)Z 

1 + HI - J?3)2 
1 +• 

and 
Mn 

p-o 1 + (I - Hz 

1 + 
jri^22 

(1 - ,?2)(1 - Hz 
1 + 

1 +■ 
m42 

1 +• 
[18.] 
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16.7. Let f{w) be any function which is analytic and has modulus not exceed¬ 

ing unity for I w I < 1, and which is real when w is real. Then there exists a 
function F{z) of the form 

-X'r -E zu 

where 4>{u) is a bounded nondecreasing function of u on the interval 0 < u ^ 1, 
of modulus not greater than unity for | z | < 1, such that 

Ll - iti) = F{z), where 2 
2 1 + wjiw) 

Aw 
for \ w \ < 1. 

Conversely, if F(z) is given, then/{w) is determined [132]. 
16.8. Put /(w) — S( —F(z) = 'E{ — iyCpZP in the preceding identity. 

Then 

Cn = ^Tn,pCp where Tn.p = + l)(w -f ;> -f 1)~^ ( )• 
fri \n-pJ 

Put Sn — Co + Cl -p • • • 4~ C„, Sn ~ Co -{- Cl ‘ ‘ Cn^ 1 hen 

This is a regular transformation having the following properties. 
(a) The transformation sums the geometrical series to the sum 1/(1 — x) 

inside the curve whose polar equation is r = 2 — cosB -|- [(1 ~ cos^)(3 — cos^)]^, 
but does not sum the geometrical series outside or upon this curve. 

(b) The method of summation defined by this transformation includes de la 

Vallee Poussin summability but is not included by de la Vallee Poussin sum- 

mability (cf. § 74). [88.] 



Chapter Xf^II 

THE MOMENT PROBLEM FOR AN INFINITE 
INTERVAL 

By the moment problem for the interval + ^) we shall 

understand the problem of determining a bounded nondecreasing 

function on this interval, such that 

-f cc 

u^d<t){u)y p = 0, 1, 2, 

where {cp} is a given sequence of constants. If we require <t>{u) 

to be constant for ^ > 1 and for u < Oy this problem reduces to 

the moment problem of Chapter XIV. We shall put to one side 

the case where there is a solution 0(/^) which is a simple step- 

function having a finite number of jumps, and shall characterize 

those sequences [cp\ for which the moment problem has a solution 

(j){u) which takes on infinitely many different values. We shall 

find that a solution of this kind exists if, and only if, the formal 

power series X(cp/z^'^^) is the power series expansion of an infinite 

real J-fraction. Moreover, the solutions are just those functions 

(t>{u) such that the functions 
d(l>(u) 

z — u 

are equivalent functions of the J-fraction. 
315 
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84. Asymptotic Expressions for J-fractions, We consider in 

this chapter infinite J-fractions 

+ z — 

^2+2 
^2 

^3+2 

(84.1) 

in which <7^ 0, /) = 1, 2, 3, • • •. We shall make use of the 
ideas and notations introduced in Chapter IV and in §§60-61. 

Definition 84.1. Let f{z) be a functioji defined for l{z) > 0. 

We shall say that f{z) is asymptotically equal to the J-fraction 

(84.1) in the half-plane 3(z) > 0, if for every positive Jiumber 5, 

and every index /> = 0, 1, 2, • • •, 

lim z^^ffiz) 
?=r 00 \ 

^ P + l(2)\ __ ^ 

Y.^fz))" ^ 
(84.2) 

where XjYis the ^th approximant of the J-fraction 

(rf (17.9)). 

Definition 84.2. Let f(z) be a function defined for 3(2) > 0. 

We shall say that f{z) is asymptotically equal to the power series 

S(rp/z^"^^) in the half-plane 3(2) > 0, if for every positive number 6, 
and every index p = 1, 2, 3, • • 

ii™ -0. (84.3) 

Theorem 84.1. A Junction J(z) is asymptotically equal to the J fraction 

(84.1) //, and only if^ it is asymptotically equal to the power series expansion 

oj the J-fraction. 

Proof. By (51.4) and (17.9), 

r, G(z) 

n+i(z) 
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where | G{z) | < C, C a positive constant, for all 2: with modulus 
sufficiently large. If ri < we therefore have 

where /j{z) remains bounded as z—> oc. Therefore, if /(z) is 

asymptotically equal to the J-fraction in the half-plane 3(2) > 0, 
this expression must tend to zero as z —> 00 along any path in the 

half-plane 3(2) > 5, for every positive constant d. Hence,/(z) 
is asymptotically equal to the power series expansion of the 

J-fraction. 

Suppose, conversely, that /(z) is asymptotically equal to the 

power series expansion of the J-fraction. Then, 

z 2p 
G(2) 

and, since the right-hand member tends to zero as z —^ 00 in 

3(2) > 5, we conclude that /(z) is asymptotically equal to the 

J-fraction. 

Theorem 84.2. is asymptotically equal to the J-Jr'action (84.1), 

and 1 

bi+z - ai^g{z) ’ 

then g{z) is asymptotically equal to the J-fraction obtained Jrorn (84.1) by 

advancing the subscripts of all the ap and bp by unity. 

Proof. Let/n(2) and ^n(z) denote the nth approximants of the 

J-fraction (84.1) and of the J-fraction obtained from (84.1) by 

advancing the subscripts of all the Up and bp by unity, respec¬ 

tively. Then, one may readily verify the identity 

Z^r^yiz) -fr^Az)] 

On letting z 

zf(z) - 

so that 

- J-r(2)] = 2 ^ ^ ai^-z/iz)-z/r+i{z) 

^ 00 along any path in 3(2) > 5, we see that 

1, 2/,+ i(2)-^1, 2='’-+n/(2) -/r+l(2)]-^0. 

2^’'1^(2) - ^r(2)] ^ 0, 

and the theorem Is established. 
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Theorem 84.3. Let (84.1) be a positive definite J-fraction^ and let 

f{fi) be an equivalent function {cf, § 61). Then f{z) is asymptotically equal 

to the f-fraction [138]. 

Proof. By (60.3), with Wq{z) = /(z), q = 1, 2, 3, • • •, we get: 

.p(^) 

Therefore, by (62.5), 

^ ___ ^ __ 

y^^,(z)7 y;,(z)y, “(z) A z yz)^ 

where y — ^{z) > 5. Since yp(z)yp_|_i(z) is a polynomial in z 

of degree 2p ~ 1, it follows that the left-hand member of this 

equality tends to 0 as z oo in ^(z) > 5. This establishes the 

theorem. 

For real J-fractions we have the following stronger theorem. 

Theorem 84.4. // function f{z) which for 3(z) > 0 is analytic and 

has a negative imaginary party (l[/(2)] < 0, is asymptotically equal to a 

real f-fraction (84.1) and only ify it is an equivalent function of the 

f-fraction [62]. 

Remark. For real J-fractions, the determinate case and the 

indeterminate case correspond exactly to the limit-point case and 

the limit-circle case, respectively. This is not in general true for 

positive definite J-fractions. We venture the conjecture that 

Theorem 84.4 is not true in general for positive definite J-fractions. 

It would be desirable to have a definition of “equivalent function'' 

for which the theorem would hold. We offer the conjecture that 

the required function is: “Any function/(z) which for > 0 

is analytic and satisfies the inequality (61.7)." It should be 

noted that Theorem 84.3 holds for these functions. 

Proof of Theorem 84.4. The sufficiency of the condition is 

contained in Theorem 84.3. We suppose, then, that for ^{z) > 0, 

the function /(z) is analytic, has negative imaginary part, and is 

asymptotically equal to a real J-fraction (84.1), and shall prove 

that/(z) is an equivalent function of the J-fraction. We are to 

show that for every z with 3'(2) > 0, the values of/(z) are in all 

the circles ifp(z) of § 17. In the case of a real J-fraction, Kp(fi) 
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is the image of the half-plane 3(w) >0 under the transformation 

(cf. (17.4)) 

t = V, • • • ty(w). 

For each /> = 1, 2, 3, • • •, let the function /^(z) be determined 

such that 

/(z) = Vi 
0.(2)) 

The theorem will be established when we have shown that 

> 0, i.c., 3[/.(2)] < 0, for (V(z) > 0. 

In view of Theorem 84.2, it will evidently suffice to show that 

for (}(z) > 0,/i(z) is analytic and 3l/i(2)] < 0. We have: 

1 ^/>l-(-Z /(Zj 

(ii- ai^\f{z)\‘^' 

and, therefore, since ax and are real, 

3[/i(z)] < , where J = 3(z) > 0. 
<»r 

The function Sl/iW] is clearly harmonic for 3(2) > 0. If possi¬ 

ble, let 3[/i(2o)] — dx> 0, 3(2o) > 0- Let ^/ > 0 be so chosen 

that {y/a^) < dx/1 for 0 < jy < f/; and let r be so chosen that 

I Zo i < and |/i(z) | < di/1 for | 2 | > r, 3(2) > d. This is 

possible by virtue of Theorem 84.2 from which it follows that 

lim/i(z) = 0 for 3(2) > d. Then, in the region | 2 | < r, 3(2) > d^ 
z= 00 

the function 3[/i(2)] is harmonic, is not greater than di/2 on the 

boundary, and takes on the value di at an interior point Zq, 

Since this is impossible, we conclude that 3[/i(2)] < 0 for 3(2) > 0. 

Since /i(z) is not a constant, we then have 3[/i(2)J < 0 for 

3(2) > 0. 
Inasmuch as/i{z) is asymptotically equal to the real J-fraction 

obtained from (84.1) by advancing the subscripts of all the ap 

and ip by unity, it now follows that /2(2) is analytic and has a 

negative imaginary part for 3(2) > 0, and so on. This completes 

the proof of Theorem 84.4. 
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Since there is just one equivalent function of the J-fraction in 

the determinate case, we have 

Theorem 84.5. In the determinate case for a 7'eal J-fractio7t^ there is 

one and only one Junction J{z)^ analytic and with negative unaginary pa7i 

for 3(2) > 0, which is asy7npt otic ally equal to the J-fractio7i [62], 

In the indeterminate case, which, for real J-fractions, coincides 

with the limit-circle case, we may represent all the equivalent 

functions parametrically in terms of the entire functions p{z)^ 

u{z)^ q{z)y v(z) of Theorem 23.3. 

In order to indicate dependence upon the parameter 2:, we 

shall now write (cf. (17.4)), 

4/1 • • • = Tj,iw; z). 

By means of (23.1) and (17.4) we readily find that 

^ 0Vz)7f(w; 0) - P,{z) 

F,{z)T,{w‘6) - 

(84.4) 

Now, for every/), the transformation t = Tp{w\ 0) maps the half¬ 

plane 3(^) ^ 0 upon the half-plane ^ 0* Consequently, 
if in (84.4) we replace Tp(w; 0) by any function d(z) such that 

for 3(2) > 0, 0(2) is analytic and 3[^(2)] < 0, or by the constant 

00^ the resulting function will have its values in Kp{z) for all p 

and for 3(2) > 0. On letting p tend to we then conclude 

from (23.5) that 
u{z)B{z) - p{z) 

V{z)e{z) - q{z) 

is an equivalent function of the J-fraction. Conversely, iff{z) 

is any equivalent function of the J-fraction, we may determine, 

for each value of p, a function ^^(2) such that 

Up{z)ep{z) - Pp{z) 

Vp{z)dplz) ~ Qp{z)^ 
(84.6) 

and dp{z) is necessarily analytic for 3(2) > 0 and 3[^p(2)] < 0 
in this domain, or ^^(2) = 00. On letting p the function 

dp{z) must have the constant limit 00, or else must converge to a 

limit d(z) which, for 3(2) > 0, is analytic and has imaginary part 

not greater than zero. Hence, we conclude that f{z) has the form 
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(84.5). We have completed the proof of the following theorem of 

R. Nevanlinna [62]. 

Theorem 84.6. 7;^ the indeterminate case for a real J-fractiony a 

necessary and sufficient condition Jor f{z) to be an equivalent Junction is 

that J{z) have the Jorm (84.5), where //(z), i^(-), q{fr} are the entire 

Junctions introduced in Theorem 23.3, and d{z) is an arbitrary Junction 

which Jor ^(z) > 0 is analytic and has 3[^(^)] 0, or else 6{z) ^ oo, 

in which case (84.5) is the Junction u{z)/v{z). 

85. A Theorem of Hamburger. We have seen in Theorem 66.1 

that an equivalent function J{z) of a positive definite J-fraction 

can be represented as a Stieltjes transform 

(85.1) 

where 4>{u) is a bounded nondecreasing function, and </>(+^) — 
0(—oo) = 1. The following theorem of Hamburger [26] fur¬ 

nishes a necessary and sufficient condition for the integrals 
f 00 

u'^d(j){u)y /) = 0, 1, 2, ♦ • to exist. 
00 

Theorem 85.1. Let 

Tn ri Co 

T + + 3 +' 

be a power series with real coefficients. The bounded nondecreasing Junc¬ 

tion <j>{u) oj (85.1) satisjies the equations 

5 

«V0(«), ;) = 0, 1,2, ..., (85.2) 

ijy and only ijy the Junction J{z) oJ (85.1) satisfies the equations 

where 2: oo along the positive imaginary axis [26]. 
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Proof. We prove first that (85.3) follows from (85.2). We 

have 
d<l>{u) 

% — ti 

U 
,.n—1 

+ 
\ 

-J d<\>{u) 
2" 2"" (2 — u) ) 

+ 

= - + -^ + ■ 

2"(Z 

Cn-\ r^°° U”^d<i){u) 

2” J_oo 2:"^(2 — u) ^ 

and therefore 

2^ 
Cr.-,\ ^ 1 2 

2” / 2 J_oo 2: — u 
u^d(t>{u). 

Now \{ z = iy^y > 0, then | 2/(2 — u) \ <1. Hence, if ^7 is even^ 

the modulus of the last expression does not exceed 

1 c 
- I U^d<t>(u) = 
y J-00 y 

which approaches 0 as jy —> + 00. If 7; is oddy we may write 

u^'‘^^d(i>{u)y 

so that (85.3) holds in this case also. 

We suppose now, conversely, that (85.3) holds as 2 00 along 

the positive imaginary axis, and shall prove that (85.2) holds. 

By hypothesis, 
iyd<i>{u) 

Jim I -= fo, 
»= + « ty — u 

or, since cq is real, 

llm 
ys= «3 1 001 + 

^0} 

and the integral increases as y increases. Consequently, if 

a < b,Q < t < y. 

d4>{u) ^ d<t>{u) ^ d4>{u) ^ 

1 + {u/ty ~Ja 1 + {u/yY 1 + {u/yY ~ 
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If we let jy —>+ 00, this gives 

11 + {u/ty 
: J d(i>{u) 

On letting a^ and >+00^ and subsequently letting 

/ —> -f- 00^ we obtain (85.2) for the case ^ = 0. 

Using induction, let us assume that (85.2) holds for n — 2ky 

k > 0, and we shall prove that it holds for n ~ Ik -\- \ and 

2k + 2, and hence for all n. According to our assumption, we 

may write 

/(z) 

+
 

II 

-2 + Z^ 
' ' ^2k+l J 

_ QO 2 li 

rr2k+l 
(/(2) - 

^0 ^2k \ 
2 

2 2^ *■' 22^--^ 1 8 1 

We denote this function by Then it is evident that 

hm z" l/i(z)-— 
« \ 2 2^ 

p = 1,2,3, •••, 

where z —» oo along the positive imaginary axis. In particular, 

lim ty[iyfi{iy) — c^k+i] - C2h+2, 
*/“+«> 

or, since ^2*4-1 is real, 

C2k+2 = lim -y%{iy) = hm I 7—7-7-75- 
j/« + oo y=+«%/_co 1 “T V'^/y) 

Using exactly the same argument as before, we then conclude 

that (85.2) holds for p = 2k + 2, 

Inasmuch as | | < for | « | > 1, we now see that 

the integral 

d— 00 
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is convergent. Then, using the preceding argument, we find that 

lim 
+ W 

lim 
+ w 

X 

/: 

-00 

1 + {u/yr 
-«2*+V<A(w) 

) 1 + {»/y) 

•^0 

-2- = -f 

SO that, finally, 

- Um ,>/,(,» - 11m - f"«-V0(o). 

and the theorem is proved. 

We shall now supplement Theorem 85.1 as follows: 

Theorem 85.2. If the Junction f{z) of (85.1) satisfies (85.3), as z-~^ oo 

along the positive imaginary axis^ then J(z) satisfies (85.3) as z ^ 

along any path in (}(2) > h^Jor every positive 6. 

Proof. Under the hypothesis of the theorem, we know that 

(85.2) holds. Then, if n > 2 is even^ we have, as in the proof of 

Theorem 85.1, 

Cn-2\ 

2"-V z z J__^ z — u 

so that if 3(2) > 5 > 0, the modulus of this expression does not 

exceed 
Cn—-1 I ”1“ (Cn/^) 

and must therefore approach 0 as 2 —> co in the half-plane 

3(2) > 5. It then readily follows that (85.3) holds as 2 —> 00 

in any such half-plane. 

From Theorems 84.1, 84.4 and 85.1 we now have immediately: 

Theorem 85.3. If (85.2) holds^ where Pif/z) is the power series expan¬ 

sion of a real J-fraction, then the function f(z) given by (85.1) is an equiva¬ 

lent function of the J-fraction. 

Remark. We have defined “asymptotically equal'’ with refer¬ 

ence to the half-planes 3(2) > 5 > 0. Nevanlinna used instead 

the angular domains 
TT 

Fc \ c < arg 2<7r-~c, 0<c<-, 
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and began by proving the following theorem. Let f{z) be a func¬ 

tion which for ^(z) >0 is analytic and has imaginary part 

3(/(2^)) 0. Let /(z) be asymptotically equal to the real power 
series P{l/z) = S(cp/z^'"^^) in the sense that (f n 1 V 

/(2) - = 0, w = 1, 2, 3, ■ ■ •, 

as z00 in every angular domain Then P(l/z) is either 

equal to a terminating real J-fraction, or else is the power series 

expansion of an infinite real J-fraction. He then showed that 

the function /(z) is necessarily asymptotically equal to P(l/z) in 

every half-plane 3(2) > 6 > 0. In our somewhat simpler ap¬ 

proach to these problems, we have missed getting the important 

result that, for the functions and power series under consideration, 

asymptotic equality in the angular domains Pc is entirely equiva¬ 

lent to asymptotic equality in the half-planes 3(z) > 6 > 0. 

86. The Moment Problem for the Interval ( — <», We 

are now in a position to prove the following theorem. 

Theorem 86.1, Let ro = 1, ri, <r2, * • • be a given sequence oj real con¬ 

stants. There exists a bounded nondecreasing Junction 0(«), taking on 

injinitely many dijjereyit values in the interval — co <«<+<», such that 

^ + 
Cj,= U^d<t>{u), /. = 0, 1,2, (86.1) 

d — 00 

i/y and only if, the determinants 

^0> 

C\, >0, p = 0, 1, 2, • • •. [26.] (86.2) 

Cp, • • *5 C2p 

Proof. If a function 4>{u) of the specified character exists, 

then we find, on applying Theorem 63.5 to the quadratic forms 

Cpj^qXpXq = I (ato “h X\U "h * • • “h x^u ) 

w = 0, 1, 2, • • •, 

that (86.2) necessarily holds. 

(86.3) 
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If, conversely, (86.2) holds, then we find by means of the 

formula (51.5) that the formal power series P(l/2) = 

has a J-fraction expansion (84.1). Let/{z) be any equivalent 

function of this J-fraction, and choose 0(^) in accordance with 

Theorem 66.1, so that (85.1) holds for this equivalent function. 

By Theorems 84.4 and 84.1, f{z) is asymptotically equal to 

P{l/z) in the half-plane ^{z) > 0. Therefore, by Theorem 85.1, 

the function (f>{u) satisfies (86.1). That </>(//) takes on infinitely 

many different values now follows from (86.1) and (86.2). In 

fact, if this were not the case, then the quadratic forms (86.3) 

would not be positive definite for large values of w, contrary to 

(86.2). 

This completes the proof of Theorem 86.1. 

We have shown that every equivalent function /(z) of the 

J-fraction expansion of P{l/z) yields a solution (t){u) of the 

moment problem (86.1), which is determined if we write /(z) 

in the form (85.1). The function (f>(u) can then be expressed in 

terms of/(z) by means of the Stieltjes inversion formula (65.4). 

There are no other solutions of the moment problem (86.1). In fact, 

if <t)iu) satisfies (86.1), then the function /(z) given by (85.1) is 

asymptotically equal to P(l/z), by Theorems 85.1 and 85.2, and 

therefore/(z) is an equivalent function of the J-fraction expansion 

of/(z), by virtue of Theorems 84.1 and 84.4. Since the J-fraction 

has just one equivalent function in the determinate case, and 

infinitely many in the indeterminate case, we therefore have the 

following theorem. 

Theorem 86.2. Let co = 1, Ciy ^2, • • • be a given sequence of real con¬ 

stants for which (86.2) holdsy and let (84.1) be the f-fraction expansion 

of the formal power series S(cp/z^"*"^). The moment problem (86.1) has 

just one solution <t>(u) such that <^(—oo) =0, <t>{u) = [0(« + 0) + 
<t>(u — 0)1/2 for —00 < u < ^ y if the determinate case holds for this 

J-fractiony and has infinitely many different solutions satisfying these condi¬ 

tions if the indeterminate case holds [62]. 

The moment problem (86.1) is said to be determinate or 

indeterminate according as it has one or infinitely many solu¬ 

tions d>{u)y respectively, normalized by the conditions </»( — oo) = 

0, d>{u) = [<t>{u + 0) + </>(« — 0)1/2, — 00 <«<+«>. 
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87. The Stieltjes Moment Problem, This is the problem of 

determining a function </>(«) which takes on infinitely many values 

in the interval 0 < « < + oo, is constant for « < 0, and satisfies 

the equations (86.1), where Cq, fi> ^2, • • • are given real constants. 

Here the integrals have to be extended over only the positive half 

of the real axis. We shall prove the following theorem. 

Theorem 87.1. Let co, ci, cz, • • ■ be a given sequence oj real numbers. 

There exists a bounded nondecreasing Junction <l)(u), taking on injinitely 

many values in the interval 0 < « < + , such that 

00 

= \ u^d<^{u), p = 0, 1,2, (87.1) 
•^0 

//, and only the numbers Cp satisfy the condition (86.2) and^ in addition^ 

the condition 

C2, 

CZy ’ * > >0, P = 0,],2, •• . [95.] (87.2) 

■ * *3 ^2p-hl 

Proof. Since the moment problem (87.1) is a special case of 

the moment problem (86.1), it is clear that the condition (86.2) 

is necessary in order for a solution to exist. On applying Theorem 

63.5 to the quadratic forms 

~ I ^(*^0 *~h X\U Hh * * * “f" Xjiti ) 

w = 0, 1, 2, • • •, 

we conclude that the condition (87.2) is likewise necessary. 

On referring to Theorem 52.1 and the remark following that 

theorem, we see that the necessary conditions (86.2) and (87.2) 

are together equivalent to the condition that the formal power 

series 2(cp/z*’'^^) have an S-fraction expansion (52.4) in which the 

Up are all positive. We shall prove that the latter condition is 

sufficient for the Stieltjes moment problem to have a solution. 
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We suppose, then, that P(l/z) = has an S-fraction 
expansion 

ao 

z ~ 

(87.3) 

in which > 0, p = 0, 1, 2, • • •. On replacing z by and then 

multiplying by f, we find by means of an equivalence transforma¬ 
tion that this goes over into the real J-fraction 

ao 
(87.4) 

and the power series expansion goes over into fP(l/f^). Thus, 

the moments of the J-fraction (87.4) are Co, 0, Ci, 0, C2, 0, • • •. 

By what we have proved In § 86, a function 6(u) which is bounded, 

nondecreasing, and which takes on Infinitely many different 

values, satisfies the equations 

0 = f" Cp = f u^^WO(u), 
^—00 —00 

^ = 0, 1,2, •••, 
if, and only if. 

(87.5) 

dO{u) 

-oo f — ^ 

is an equivalent function of the J-fraction (87.4). Now, 

Cp — f u^^dB{u) = I u^^dB{u) + I u‘^^d6{u) 
•^—00 •' — 00 

— f u^^d['—B(’—u)] + f u^^dBiu) 
•'0 *^0 

^+00 

u^d<f>(u). p = 0,1,2, ■ ■ ■, 
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where 

4>iu) = 0(\4 ) - 0(-\4 ), (87.6) 

and therefore the StieJtjes moment problem has a solution. 

This completes the proof of Theorem 87.1. 

It is at once evident that all solutions of the Stieltjes moment 

problem are of the form (87.6), where d{ii) is a solution of the 

moment problem (87.5). Therefore, the Stieltjes moment prob¬ 

lem is determinate or indeterminate, i.e., has just one or infinitely 

many solutions </)(/^), respectively, normalized by the conditions 

</)(0) = 0, (t>{u) = [(t>{u + 0) + (t){u — 0)]/2, u > Oy according as 

the determinate case or the indeterminate case, respectively, 

holds for the J-fraction (87.4). On applying Definition 22.1 we 

then find, after making the necessary calculations, that the 
following theorem is true. 

Theorem 87.2. Lei Tq, Ci, ^2, • • * he nuynbers satisfying the conditions 

(86.2) and (87.2). Let the S-fraction expansion of the power series 

be written in the form 

-^-7 (87.7) 

The Stieltjes moment problem (87.1) is determinate if^ and only ify the posL 

tive term series Hkp is divergent [95]. 

We now consider the following question. 

Let Co, ri, C2, • • • be numbers satisfying the conditions (86.2) 

and (87.2), so that the Stieltjes moment problem (87.1) has a 

solution. Does there exist a function yp{u) which is bounded, 

nondecreasing, and which takes on infinitely many diflFerent 

values, but which is not constant for < 0, such that 

5 

p = 0, 1, 2, • • • ? (87.8) 
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The answer to this question Is affirmative in case both the 

series and 2^2p+i(^2 + ^4 + * * * + are convergent 
and the series is divergent, in (87.7). In fact, the Stleltjes 

moment problem is then determinate by Theorem 87.2, whereas 

the indeterminate case holds for the J-fractlon which is the even 

part of (87.7) (cf. (29.13)). Therefore, the moment problem 

(87.8) has infinitely many different normalized solutions. Only 

one of these is constant for u < 0. [26.] 
88. A Theorem of Carleman.^s A number of criteria have been 

found which furnish sufficient conditions, in terms of the given 

constants Cpy for the moment problems (86.1) and (87.1) to be 

determinate. One of the simplest and most comprehensive of 
these is given by the following theorem of T. Carleman [6, 7]. 

Theorem 88.1. (a) Let c^y o, ^2, • • • be a sequence of real constants 

for which the inequalities (86.2) holdy so that the momey^t problem (86.1) 

has a solution. This moment problem is determinate if the series 

2( —) (88.1) 
\C2p/ 

is divergent, 

(b) Let coy ciy C2, • • • be a sequeyice of real constants for which the in¬ 

equalities (86.2) and (87.2) holdy so that the momeyU problem (87.1) has a 

solution. This moment problem is determinate if the series 

is divergent. 

ll2p 

(88.2) 

Remark. Since the moment problem (87.1) is a special case of 

the moment problem (86.1), namely (87.5), we conclude imme¬ 

diately that (b) is a consequence of (a). Carleman proved this 
theorem by means of methods of function theory. He also gave 

an independent algebraic proof of (b). We shall give here an 

algebraic proof of (a), based upon two lemmas and upon Theorems 

53.1 and 25.1. 
eo 

Lemma 88.1 (Carleman’s inequality). be a con- 

vergent series of nonnegative numbers whose sum is positive. 
“ Carleman [7] used the theorem of this section to establish fundamental theorems on 

quasi-analytic functions. 
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Then 
eo 

^ ^ ^UxU<i ' ' ' u 

T)= 1 

ao 

p-1 
(88.3) 

where the base of natural logarithms, cannot be replaced by a 
smaller constant if 2/^p is arbitrary [7]. 

Proof. Let ^2^ ^3^ • * * be a sequence of positive numbers 
to be determined. Then 

n n f~~ 

V U^U2 Uj, 2^ -y — 
p =* 1 P = 1 

2^1* ^^2^2.^'^7)^p 

n 1 

frf V ^’1^2 • • • y, 

V\V2 ■ ■ ■ Vp 

U]Vx + «2J'2 H-h UpVp 

1 
n n 

p_ / 
We now take ^V\V2 • • • = /> + 1, or H—J , so that 

^ ^ -/) • a/fJr. • • • ^ 

1 _ 1 1 1 

^ p • + ^ ?; + 1 r 

We therefore have 

^ ^ U\U2 ' ' ' U 
p= 1 

Since [1 + {l/r)Y < e, we then obtain (88.3) on letting ;/ —> oc. 

The proof that e is the best constant may be accomplished by 

taking Up ^ I/p for p < Up — 0 for p > n. On taking n 

sufficiently large, one may then make the quotient 

2^U1U2 ''' Up 

'^Up 

as nearly equal to e as desired. 
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Lemma 88.2. For « = 1, 2, 3, • • •, let = Fn{xi, x^, 

Xn) denote the «th segment of the real quadratic form 

00 

Upq == ^q 
p,q=\ 

Then Fn{xi^ X2^ • • *3 Xn) > 0 for all real values of Xi^ * * *> 
and for n — 1, 2, 3, • • - ^ if, and only if, there exists a transforma- 

tion 

+ bx2^2X^2 + bisISsXs +' 

^2 — ^22^2X2 H" ^23^3X3 + ■ 

^3 = ^'33^3X3 + ■ 

X. = 

’ + bin^nXny 

“I” b2n^nXny 

T b3fi(3nXny 

bnnf^nX ny 

where = aqq > 0, and bpqy 1 < p < q < are real numbers 

independent of n such that y b-^g =1. If the segments Fp 

p=i 
are all positive definite, then bqqi^q > Oy q = 1, 2, 3, • • •. 

Proof. Since Fn(0y 0, • • •, 0, 0, 0, ♦ • 0) = aqqXq^ > 0, it 
follows that Uqq = > 0. Since Fn{xly 0, 0, • • 0, Xpy 0, 0, * • *, 
0) > 0, it follows that aip < UnUpp = Hence, there 

exists a number s^p such that 0 < Ji/ < 1, Sip = 0 if /3i =0, and 

such that aip = SipPi^py (p = 2, 3, 4, • • •)• We now put Cip^ = 

1 

Xi — ^iXi + Si2^2X2 + -^1303X3 + * * * + Sin^nXn 

SO that 

Fn -- Xi^ == Ci2^2^X2 + 2^23'-y2‘V3 + 2^24'‘V2^4 + ’ 

"f* + 2<334^.X3;C’4 + • 

+ + • 

+ • 

• + la2nX2Xn 

H” ^^3n X3Xfi 

T 2^4n X^Xfi 

+■ Cir?Pr?Xn y 

where the Upq are certain constants. Since the right-hand member 
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is a quadratic form in X2, Xz, • • •, Xny which may be regarded as a 

value of Fnixxy Xz, • • •, Xn), it is nonnegative. Consequently, we 
conclude as before that 

^2p “ ^ ^12 ^2 ^2p ~ '^2p^l2^2^lp^pi 

0 < S2p^ <1, S2p = 0 if C12P2 = 0, (^ = 3, 4, • • •, n). 

On putting C2p^ = 1 — ^'2/, 

X2 = ^12^2^2 “h ■^23^13^3X3 4“ S24Cl4^4X4 + • • • + ^2(1^1 n(^n^ ny 

we then find that Fn — Xi^ — is a quadratic form in 

• • y^yiy which may be regarded as a value oi Fn{pc\^ x^y • * *, ^n)> 

in which the coefficients of ^3^, x^^ • • Xn are Cr^C2’i^i‘y 

C\^C2^&\y * • *5 c^nC2n&ny respectively. Continuing in this man¬ 
ner, we finally obtain Fn — X\ — X2 — • • • — Xy? ^ 0, where 

X\y X2y * • - , Xn have the properties specified in the lemma. 

Remark. Theorem 16.2 is the special case of Lemma 88.2 in 

which it is required that = 0 for | p — ^ | > 1. 

Proof of Theorem 88.1. It has already been noted that part 

(b) of the theorem is a consequence of part (a). Under the 

hypothesis of part (a), all the segments of the quadratic form 

F — '^Cpj^qXpXq^ py q — Oy 1, 2, — are positive definite, and 

therefore, by Lemma 88.2, 

i" — 4~ b\zX^\X2 + * * ')^ 

where ^11^ = + ^22 = L ^13^ + ^23^ + <^33“ = 1, • • •• By 
Theorem 53.1 we then conclude that 

^0^1 ' * ‘ ~ ^2p ^ ^2py P U 

where ~^2y • * * are the partial numerators of the J-frac- 

tion expansion of the power series By Lemma 88.1, 

it then follows that 
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so that the divergence of the series (88.1) implies the divergence 
of the series and therefore, by Theorem 25.1, the 
determinacy of the moment problem. 

Exercise 17 

17.1. Let Co, ^1, ^2, • • • be the moments of an infinite positive definite J-fraction, 

and let /(z) = I d<t){u)/{z — u) be an equivalent function of the J-fraction. 
*/ — 00 

Then 

Cp — lim ;> = 0,1,2, 
j cc M 4- tru/ 

Suggestion. Use a theorem of F. Nevanlinna [61] on differentiation of asymp¬ 
totic series. 

17.2. Let 2( —l)^Vp2^ be the power series expansion of.the S-fraction 

1 

^’1 + 

where the kp are positive. Show that (cn+iAn) > (cn/c„_i), w = 1, 2, 3, • • •, 
and that lim (cn+i/cn) is finite if, and only if, l/^„^n+i < Af, where M is a finite 
number independent of n [95]. 

17.3. Let <i>{u) be any solution of the Stieltjes moment problem. If x is 
real and positive, then J'«> d<j}{u) 

0 X u 

is greater than every even approximant and IcsSS than every odd approximant of 
the corresponding S-fraction [95]. 

17.4. Let F — 2Cvp2 4- 2ap^^'^XpXp -|- lup^'^^Xp^pj^'^ be a real J-form with 5 
diagonals, which is never negative. Show that if | c/p^^^ | > I, p = 1, 2, 3, • • •, 
then lim | ap^^^ \ = and lim «p^*^ = 0. 

pts* 00 )P = 00 

Suggestion. Apply Lemma 88.2 and the theory of chain sequences. 



Chapter XFIII 

THE CONTINUED FRACTION OK GAUSS 

This is the S-fraction expansion for the quotient ^ + 1, 

c + 1; z)/F{ay c\ z) of two hypergeometric series. We derive 

here the expansion, establish its convergence to the function 

expanded, and treat in considerable detail a number of special 

cases and limiting cases. 

89. General Properties. We consider the h5rpergeoinetric series 

ab 
F{ay b,c;z) = \-]-z + 

c 

ci{ci -f- X)b{b “hi) 

Vx{c + 1) 

+ 
^(r7 + l)(^ +W + l)(^ + 2) 

3!r(r4- l)(^ + 2) 
2'^+-.., (89.1) 

where a and b are any complex constants, and c is a complex 

constant different from 0, — 1, •—2, — 3, • • *. If or is 0 or a 

negative integer, F{a^ b^ c\ z) reduces to a polynomial. Other¬ 

wise, it is an infinite series with radius of convergence equal to 

unity. For special values of the parameters, F{a^ b^ c\ z) reduces 

to elementary functions in a number of cases. For example, 

F{\, 1, 2; ~z) 
1 

z 
log (1 + z), 

1,1; ~z) = (l+z)^ 

I; z^) = arc sin z, 

zF(J, 1, f; —z^) = arc tan z. 
335 

(89.2) 
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On replacing z by z/a and then letting a tend to oo, the hyper¬ 

geometric series becomes: 

^{b, c; z) 

, , ^ ^ b{b-V\){h-Vl)z^ , 

■'+7" + 7(7n)2!'^V(7Ti)(7+l)3] + '"' 
Similarly, on replacing 2 by zjb and letting b tend to 00 in (89.3) 

we get: 

; 2) 
1 1 2^ 1 2^ 

= 1 -f- — 2 -f"-“f"-- (89.4) 
c c{c + \)2l c{c + \){c+ 2)V. ^ 

and if we replace 2 by cz in (89.1) and let c tend to 00 we obtain: 

2^ 
12(^j b\ z) = 1 “t" ^bz -f" ci{d “h X)b{b -f" 1) 

2! 

+ ^(^ + \){a + 2)b{b + 1)(^ + 2) - + ■ (89.5) 

Excepting when ^ or is a negative integer or 0, the last series 

has zero radius of convergence. 

To obtain the continued fraction of Gauss, we start with the 

relation 

F{a, b, c\ 2) = F{a, b + I, c + \ ;z) 

a(c - b) 
-7—]—H-l,<^' + l,c + 2;z). (89.6) 

c{c + 1) 

By comparing coefficients of corresponding powers of 2 in the 

two members, one may readily verify that this is a power series 

identity. The relation (89.6) may be written in the form 

F{a, b \y c z) 

F{a, b,c\z) ^ 

^ a(c — b) "b + 1,^ + 2; 2) 

c{c + 1) FiF'y ^ + 1, c + 1; 2;) 

(89.7) 
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We now interchange a and b in (89.7), and afterwards replace b 

hy b \ and c by c + 1. This gives 

F{a + \ , b ], c H-2;2) 

~F(a, b c + \ \z) ^ 

^ ^ {b + l)(c -a + \)^F{a + 1,^ + 2,r + 3^^' 

(c + l)(c + 2) '^F{a +1,7 +T,c +~2;z) 

The quotient in the left-hand member of (89.8) is the same as the 

quotient of hypergeometric series appearing in the denominator 

of the right-hand member of (89.7). Also, if a, b, c are replaced 

by + 1, 7 + 1, c + 2, respectively, in (89.7), the quotient in 

the left-hand member becomes equal to the quotient of hyper¬ 

geometric series appearing in the denominator of the right-hand 

member of (89.8). On applying first one identity and then the 

other, we obtain by successive substitution the continued frac¬ 
tion of Gauss [20]: 

F{a, 7 + 1, r + 1; z) 

F{a, 7, c; z) 

1 - 

a{c - b) 

c{c + 1) 

1 - 

1 - 

(7+l)(c — fl + 1) 

17+ l)(c + 2) 

(rt + l)(c — 7 + 1) 

“(c + 2)(c + 3) 

(7 + T){c -a+ 2) 

1 - 

(r + 3)(r + 4) 

(a + 2) (c — b + 2) 

1 - 

(r + 4)(c + 5) 

1 -• 

(89.9) 

This is to be regarded, for the present, as a formal expansion. 

If we let ai, a2, a-s, ■ • ■ denote the coefficients of —z in the partial 

numerators, so that 
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and if we put 

(a + p){c — b + p) 

{c + 'lp)(,c + 2p + 1) ’ 

{b + p l)(f — a p -\- \) 

^(7T2/. + l)(f + 2^ + 2) 

/> = 0, 1,2, •••, 

P2n{2) 

-Pan+ifz) = 

F{a n, b -\- n c In z) 

F{z + n, + «, c + 2«; z) ’ 

F(a + w + 1> ^ + « + 1, f + 2w + 2; z) 

F\a + ?;, ^ + « + 1, f + 2« + 1; z) 

w = 0, 1, 2, 

then we have the identities 

(89.10) 

(89.11) 

Pn-l(z) = 

Hence, for every «, 

F(a, i> + I, c + 1; z) 

F{a, b, c\ z) 

1 H nZF 
1 3 ■ ■ 1, (89.12) 

(89.13) 

an-lZ 

1 UfiZP 71(2) 

If aiy a2y * • *5 an-i are different from zero, while an = 0, then 
the continued fraction of Gauss terminates, and the quotient 
F{ay ^ + 1, c + 1; z)/F{ay by c\ z) is a rational function of z, which 

is equal to the terminating continued fraction. If, on the other 

hand, ap 9^ Oy p = 1, 2, 3, • • •, we may write (89.13) in the form 

F(ay b + \y C + l;z) _ Jn{z) - anZPniz)Jn-l{z) 

F{ay by c; z) Bn(z) - anZPn(z)Bn-l(z) ' 

where y^p(z) and Bp(z) are the pth numerator and denominator 

of the continued fraction of Gauss, and therefore 
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F{ciy b ly C 4" 1? 2) 

FiUy by C\ z) 5n-l(2) 
_ ^ 

Bn-l{z)[Bn{z) — anZBn-.l{z)Pn(z)] 

This shows immediately that the power series in ascending powers 
of 2: for Jn-i{z)/Bn^i{z) agrees with the power series F{ay b + \y 

r + 1; z)/F{ay by c\ z) term by term for the first n terms. There¬ 

fore, the power series for the hypergeometric quotient is the power 

series expansion of the continued fraction of Gauss. 

Theorem 89.1. The continued fraction of Gauss converges throughout 

the z-plane exterior to the cut along the real axis from 1 to + «», excepting 

possibly at certain isolated pointsy is equal to the function F{ay b + \y 

£• + 1; z)IF{ay by c; z) in the neighborhood of the origin y and furnishes the 

analytic continuation of this function into the interior of the cut plane. 

The continued fraction converges uniformly over every bounded closed region 

exterior to the cuty which contains none of the above-mentioned isolated 

points. These pointSy if they existy are poles of the function represented 

by the continuedfractio72 [101, 77, 111]. 

Proof. Since 
lim Up = +i, 
p= 00 

the theorem follows immediately by Theorems 54.1 and 54.2. 

We note that if 

S2p 

a + p c — b p 

~ c^-lp + l ’ 

(89.14) 
c Ip 

p = 0, 1, 2, • ••, 

then the continued fraction of Gauss can be written in the form 

^ T 1, c 4" 1; z) 

F{a, b, c\ z) 

J_ 

(1 - go)giZ 

(1 - .g'l).g'22 

, (1 - ^2).g-3Z 

(89.15) 

1 -• 
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If we put b = Q and replace r by r — 1, then the continued frac¬ 

tion of Gauss reduces to 

Fia, 1, 2) = -- (89.16) 
a 
- 2 
C 

^ 

J_c{c + 1) ^_ 

c{a + 1) 

1 (r + m + 2) ^ 
2{c — a + 1) 

1 _ + 2)(r -f 3) 

(r+ l)(^ + 2)_ 

1 _ + 3)(r -h 4) 

1 -• 

If we denote by bi, ^2, ^3, • • • the coefficients of —2 in the partial 
numerators, then 

^2p+l 
(a + p)(c + p — 1) _ (p + \)(c — a + p) 

ic + 2p- Die + 2p) ’ ~ (c + 2p){c + 2p-f\)' 

If 
;> = 0, 1,2, •••. 

a + p — 1 p 
'2p-l “ ^ I r, . 7^ y = r"7r7 7 y 

c -r 2p — 2 c 2p — \ 

/. = 1, 2, 3, • • •, 

then (89.16) may be written in the form 

(89.17) 

(89.18) 

F{a, 1, r; 2)  --— (89.19) 
j_Ai2_ 

1 _ 

(1 — b2)h3Z 

1 -• 
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One may verify that the denominators of (89.16) are the 
hypergeometric polynomials 

B2n{^) = — 1 — a — riy 2 — c — ln \ z)y 
(89.20) 

B2n+\ = F{ — n, —a — n^ \ — c — 2n\ z). 

In case the parameters b and c in the continued fraction 

of Gauss are real^ we note that the numbers (89.14) will satisfy 

the inequalities 0 < < 1, forprovided N is sufficiently 

large. Hence, it follows from Theorems 27.5 and 69.1 that if 
n > the continued fraction 

1 
- (89.21) 

1 

” I-. 

where the ap are given by (89.10), converges uniformly over every 

bounded closed region of the complex plane exterior to the cut 

along the real axis from +1 to and is equal to a function 

of the form 

Jo 1 

where is bounded and nondecreasing. The number N de¬ 

pends only upon b and r, which is in contrast with the assertion 

made in Theorem 33.1, where the number N depends upon the 

region G. 
If 0 < < l,/> = 0,1,2, • • *, we may apply Theorem 11.1 and 

obtain the inequality: 

c -- a F{a^ ^ + 1, r + 1; z) c 

c F{z^ by c\z) c + ^ 

a 
<- 

c a 

for (89.22) 
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In particular, if « = 1, ^ = 1, r = 2, we have, by (89.2), 

I log (1 + z) - -|2 1 < II z I for I z I < 1. (89.23) 

With the aid of (75.6) and (75.7), other inequalities can be 

obtained. We shall list some of these without proof. 

1+2 
< I log (1 + z) I < I z 

I 1 +2 

1 + |2 
, if |2|<1; (89.24) 

F{a^ 1, 1 + r; —z) - 
2c — a 

9i(2) > 
(89.25; 

F{a, 1, c; —z) 2c — 

z I < 1; 

2c — a cz c — a . 
———- <  -z 

(89.26) 

1 r + ^ + uz ^ u 

F\a, 1, c\ —z) c a ~ c + a 

dt(z) > -I 

(89.27) 

These hold provided a, b and c are real, and the numbers (89.14) 

or (89.18), as the case may be, are between 0 and 1. [127.] 

90. Elementary Functions. From (89.2) and (89.16) we obtain 

the following three expansions. 

log (1 + z) (90.1) 

•, [46,42], 
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-Z 
1-2 

1-(1 - k) 

2(2 + k) 

2(2 - k) 

”~4-5 

3(3 + k) 

arc tan 2 = 

(90.2) 

(90.3) 

•. [46,42]. 

The first two are valid exterior to the cut along the real axis 

from — 1 to — oo. The third is valid exterior to the cuts along the 

imaginary axis from i to /• oo and from —i to —/• oo. 

Since 

we have 
1+2 

1 - 2 

(90.4) 

[12] 
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valid exterior to the cuts along the real axis from — 1 to — oo and 

from +1 to + 00. 

On replacing 2 by 1/z in (90.4), and making an equivalence 
transformation, we obtain 

log 
2 + 1 

2 - 1 
2 

(90.5) 

This is valid exterior to the real interval (—1, +1). This is the 
J-fraction whose denominators are the Legendre pol)momials. In 

fact, we have: 

log 
2 + 1 

2 - 1 

du 

z — 
(90.6) 

so that the formal integral introduced in § 50 is the actual integral 

u'^du. 

The Legendre polynomials are, by definition, the polynomials, 

suitably normalized, which are orthogonal on the interval ( —1, 

+ 1), and must therefore be, except possibly for a constant factor, 
the denominators of the J-fraction for the function (90.6). They 

are normalized so that they satisfy the recurrence formulas 

2/) 1 1 
■Lq ~ Lp ^dtp — 1 “■ Lp—2> 

P P 

^ = 2, 3, 4, •••. 
(90.7) 
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As a generalization of (90.1) and (90.3) we have 

C" dt ^/1 1 \ 

Jo 1 + ^ ^ / 

IV 

77 + 1 ■ 

277 + 1 ■ 
(77 +1)^2^ 

377+1 
{InYz^ 

477 + 1 + 
(277 + 1)^Z” 

577+ 1 ■ 
(377)^2” 

677 + 1+- 

valid exterior to the cut along the real axis from — 1 

in the plane of {n — 1, 2, 3, • • •)• 
From (89.9) we obtain the expansions 

arc sin 2 z7’(^, f; z^) 

Vl - 2^ F{h-\,l-,z^) 

1 - 

\-lz^ 

l-2z2 

3-42- 

7 - 

3-4z^ 

5-622 

11 
5-622 

13 -- 

(90.8) 

[42], 

to — 00 

(90.9) 
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and 

(1 4- zY — (1 — zY 

(1 + zY + (1 - zY 

F 

= kz 

1 - 2 - k 3 

1.,A 
\ 2 ’ 2’2 ’ / 

kz 

(90.10) 

1 + 
(P - 1)2== 

3 + 
{k^ - 4)2= 

5 + 
{k‘^ - 9)2= 

7 +• 

• . [12.] 
These are both valid exterior to the cuts along the real axis from 

— 1 to — so and from +1 to + <». 

From (90.10) one may derive the expansions 

C^)‘-' = 

2k 

z - k- 
1 

(90.11) 

2fc-arc tan - 
1 + 

32 

2k 

A - P 

5z — 
9 - k '^ 

[44], 

z — k -\- 
1 + k"^ 

(90.12) 

32 + 
4 + 

5z + 
9 + k^ 

Iz 

and 
[45], 

tan k4> — 
k tan <t> 

1 - 
(P - 1) tan^ </, 

(90.13) 

3 - 
{k^ — 4) tan* <l> 

5 - 
(k^ — 9) tan* <t> 

[12.] 
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The expansion (90.11) is valid for z exterior to the real interval 

( —1, +1); (90.12) is valid outside the interval on the imaginary 
axis from —i to +z; the range of (90.13) is 

— lir < 9{(0) < +^ir. 

Formula (90.13) shows that for integral values of k, —is a 

rational function of tan^ ^ 
91. Certain Meromorphic Functions. On replacing z by z/a in 

(89.9) and then letting a tend to oo, we obtain the following ex¬ 

pansion for the quotient of two of the series (89.3): 

4>(^ + 1, r + 1;2) 

4>(^, r; z) (f - „ 

r(c + 1) ^ 

(^ + 1) 
(c + Die + 2) ^ 

{c 

(c + 2)(c -b 3) 

(^ + 2) 

^ ^ (c + 3)(c + 4) 

(91.1) 

One may readily justify this limiting process directly from the 

definition of the power series expansion of an S-fraction. 

The function 4>(^, c; z) is an entire function of z, so that the 

function (91.1) is a meromorphic function of z. Since the sequence 

of coefficients of z in the continued fraction has the limit zero, 

it follows from Theorems 54.1 and 54.2 that the continued frac¬ 

tion converges uniformly to this meromorphic function over 

every closed bounded region containing none of its poles. 
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On putting b — 0, (91.1) becomes 

■^(l, c; z) (91.2) 

c + 1 - 

C + 2 + 

c 3 
{c + l)z 

c + 4 + 

In particular. 

(91.3) 

valid for all values of z. 

For the quotient of two of the entire functions (89.4) we have: 

^ 
, , '^(^ + 1) 

(c + l)(r + 2) 

(^ + 2)(c + 3) 
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valid for all values of z. This is obtained by replacing z hy z/b 
in (91.1) and then letting b tend to oo. From this one may obtain 
immediately the expansion 

z 

/„_i(z) _ In 2{n + 1) 

/n(z) “ 2 {z/2y 
^ {n + 1)(« + 2) 

1 _ + -)(” + 3) 
1 - • 

where Jp{z) is Bessel’s function. This expansion is valid for all 

values of z. 
Another special case of (91.4) is Lambert’s continued fraction, 

[46], 

which is valid for all values of z. On replacing z by iz, this gives 

tanz = —^-- (91.7) 

[46], 
valid for all z, 

92. A Class of Divergent Series. On replacing z by —rz in the 

continued fraction of Gauss, and then letting c tend to qo, we 
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obtain for the quotient of two of the divergent series (89.5), the 

expansion 

n(«, b% —z) 1 

U(a, b — \\ —z) 
1 + 

az 
(92.1) 

1 + 
bz 

1 + 
{a + l)z 

1 + 
{b + 1)2 

1 + 
{a + 2)z 

1 + 
{b + 2)z 

1 +• 

Here, the equality sign is purely formal inasmuch as the series are 

divergent excepting for 2 = 0. In the special case b = 1, we have 

U{a, 1; -z) 
1 

1 + 
az 

(92.2) 

1 + 
1 -2 

1 + 
{a + 1)2 

1 + 
2-2 

1 + 
{a + 2)z 

1 + 
3-2 

1 +■ 

Although the power series involved in these formulas are totally 

divergent, nevertheless the continued fractions converge to 

analytic functions of z. We shall first prove: 

Theorem 92.1. Let A and B denote two arbitrary bounded regions of 
the complex plane. Then, there exists a number 5 > 0 such that the con¬ 
tinued fraction (92.1) converges uniformly for a in A, b in B, and z in the 
real interval (0, 6). 

Proof. If 5 > 0 is sufficiently small, then (a + p')z and 

{b + p^z will be in the parabolic region | w | — 9i(a») < for 
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all amA.b in 5, and z in (0, 5), {p = 0, 1, 2, • • •)• The theorem 
now follows immediately from Theorem 18.1. 

Theorem 92.2. Let a and b be arbitrary complex constants. Let G 

be any closed bounded region in the z-plane exterior to the negative half 

of the real axis. Then the continued fraction (92.1) converges over G 

excepting possibly at certain isolated points^ and uniformly over the region 

obtained from G by removing the interiors of small circles with centers at 

these points. The value of the continued fraction is an analytic function 

having these points as poles [135]. 

Proof. Let A and B of Theorem 92.1 be the single points a 
and ^5 and choose 6 > 0 accordingly. We may suppose that G 

contains the interval (5/2, 5) on the interior, and that G is a 
connected region. The region G will be contained within the 

cardioid domain (34.5) provided the parameter A > 0 determining 

that domain is sufficiently small. Then if N is sufficiently large, 

the numbers a n and h n will be in the parabolic region 

(cf. (34.1)) I tc; I — 91(^£;) < /r^/2 for n > N. Hence, it follows 

by Theorem 34.1 that for n > Ny the continued fraction 

1 

1 + 
{a + ?t)z 

1 + 
(b + n)z 

1 + 
{a + n + l)z 

1 + 
{b + n + l)z 

i + • 

converges uniformly over G to an analytic function fn{z)- There¬ 

fore the continued fraction (92.1) converges over G to the value 

A2n{z) + (b + n — l)zfn(z)A2n-l(z) 

B2n{z) + (^ + « - \)zfn{z)B2n^l{z) ' 

provided the denominator does not vanish identically. Since the 

continued fraction converges when z is in the interval (0, 5), 

by virtue of Theorem 92.1, we then conclude that it converges 

except possibly for isolated values of z. The convergence is 
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evidently uniform over the region obtained from G by removing 

the interiors of small circles with centers at these isolated points. 
In order to express the analytic function represented by the 

continued fraction in terms of integrals, we write 

n(<?, -z) 

= 1 — (2^ — + a{a + ^ ~ 

r(^) T{a + 1) 

r(«) ^ r(fl) \ 1 / 

r(rt + 2) 

na) 
+. 

1 

fw X 
1 00 

€~^U'^dU‘Z 

H-( ^ r ^ 
^ T{a) V 2 / Jo 

- ?X)X'(‘ + ('iO'” + ("aO *’"' + ■■ ■) 
1 e-'^u^-^du 

~T{^Jo (1 + zu)’’' 

This formal procedure suggests the possibility of the formula 

1 i: 

I 

(1 + zu)^ 

0 (1 + z«)^-i 
1 + 

az 
(92.3) 

1 + 
^z 

1 + 
(a + l)z 

1 + 
+ l)z 

1 + 
(a + 2)z 

1 +• 

, [63], 
for all values of a, b, and z for which the integrals are defined, 

namely, for > 0, ^ arbitrary, and for z not on the negative 

half of the real axis. 
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We consider first the case where b = \\ 

1 

r(fl) Jq 1 + zu 

1 

1 + 
az 

1 + 
1-z 

1 + 
{a \)z 

1 + 
2z 

1 + 
(fl “h 2)z 

1 + 
3z 

1 +• 

(92.4) 

If a is real and positive, this formula is valid for all z not on the 
negative half of the real axis. In fact, it is only necessary to 

apply the theory of § 87. Since the continued fraction is con¬ 

vergent, the Stieltjes moment problem 

Cp = f u^d4>(u), p = 0, 1, 2, ■ ■ 
*'0 

is determinate, so that the solution 

f 
Jq 

is the o?7/y normalized solution. Therefore (92.4) holds if a is 

real and positive. To show that (92.4) holds for dt(a) >0 and 

for all z not on the negative half of the real axis, it suffices to 

show that it holds for dt(a) > 0 and for all z on some interval 

(0, 6), (5 > 0). For a fixed z = > 0, the left-hand member of 

(92.4) is easily seen to be an analytic function of a for dt(a) > 0. 

By Theorem 92.1, the same is true of the right-hand member for 

0 < X < 8, provided 5 is a sufficiently small positive number. 

Since (92.4) holds for a real and positive, it must therefore hold 

for 3J(^3) > 0. 
We shall now show that (92.3) holds for a and b real and posi¬ 

tive, and for z not on the negative half of the real axis. The exten¬ 

sion of the result to complex values of d and h for which the 
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integrals exist can be made by means of the argument used above. 

Suppose that 2 = > 0, ^ > 0, ^ > 0. Put 

Aa, b) 
1 e-^u^-^du 

r(^z) Jo (1 + xuY 

By integration by parts we readily find the formulas 

J{a^ b) — /{a^ b axf{a + 1, + 1), 

/(^3 ^ + 1) f {a + \y b 1) + bxf{a + 1, ^ + 2). 

Therefore, 

/(^, ^ + 1) 

\ ax 

1_ 

f{a + 1,^+1) 

/(«, ^ + 1) 

> 

/(^ + 1,^ + 1) 
A^i ^ + 1) 

\ -V- {b + \)x 

1 

f{a + \y b 1) 

J{a +1,^+1) 

These hold for <3 > 0 and for all values oi b. We now see imme¬ 

diately from these formulas that 

/(^, b) _ An{x) + knAn-\{x) 

f{a, b — \) Bn{x) + knBn-l{x) " 

where Ap{x) and Bp{x) are the pt\v numerator and denominator 

of the continued fraction in (92.3), with z — Xy and are positivCy 

and where kn is a positive number. Therefore, the quotient 

A^j b)/A^y b - \) lies between An{x)/Bn{x) and An-i{x)/Bn-^i{x). 
Since the continued fraction converges, its value must then be 

A^i b)IA^^ b — 1), Thus, (92.3) holds for Uy b and z real and 
positive. The extension to complex z not on the negative half 

of the real axis is at once possible, since both members are analytic 

functions of z. As indicated before, the extension to complex 

values of a and b for which the integrals exist can be easily made 
[135]. 
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We shall now derive some important special cases of the formula 
(92.4). 

We first replace the integral in the left-hand member of (92.4) 
by an integral which converges for all values of a. For this pur¬ 
pose it is only necessary to put b = \ \n the identity 

rw Jo (1 + 2«)“ ~ r^) Jo (1 + zuj^' 

We then have: 

(1 + z«)“ 

1 

1 + 
az 

1 + 
1 -2 

1 + 
(a + 1)2 

1 + 
2-2 

1 + 
(a -|- 2)2 

1 + 
3-2 

iT^ 

(92.5) 

valid for all values of a, and for all z not on the negative half 

of the real axis. 
On replacing z by I/2 and then dividing by 2 in (92.4) we get: 

r(a) /■ 
“'O 2 -t- « 

(92.6) 

z 4- 

1 + 
1 

z + 
(« + 1) 

1 + 
Z + 

(a -b 2) 

i + • 

valid for 9J(^?) > 0 and z not on the negative half of the real axis. 

On taking the even part of the continued fraction in the right- 

hand member, we obtain 
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1 

r(^) Jo z + « 
(92.7) 

Z Cl 

z -4” ^ “i" 2 
2(1 + 

z + a + 4 
3(2 a) 

2 ^ -f- 6 — 

valid in the range of (92.6). 
On replacing 2 by 1/z in (92.5) we obtain: 

e-^du _ 2^~" 

Jq (z -f" ^)^ ^ 

(92.8) 

(^ + 1) 

{a + 2) 

valid for all a and for z not on the negative half of the real axis. 

Let 2 = .V be real and positive, and replace u x hy u \n the 

above integral. On replacing ^ by 1 — we then have: 

-^u^-^du = 

\ — a 
(92.9) 

2 — a 

- a 

[SO], 
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valid for all a if x > 0. For a = 0, this gives 

du —e~^ 

f log« 1 
X H- 

1 + 
1 

X + 

1 + 
V + 

1 +■ 

valid for x > 0; and for a = j, (92.9) gives 

i'\/xe~ 

L 
e ^ du = 

X + 
1 

2 + 
AT + 

2 + 
X “f" ■ 

•, [49], 

valid for x > 0. With the aid of the formula 

Jr.® 1 _ 
e~'^^du = - V IT, 

0 2 

we then find immediately that 

(e-^du = V; - 
•'0 ^ ' a. ^ Af + -- 

lx “h 

X + 

lx + 
a; +■ 

(92.10) 

(92.11) 

(92.12) 

valid’for At > 0. 
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One may readily obtain the following four formulas, all valid 

for A' > 0. 

1 
TT \/2 

X + 

+ 
^ + 

^ + 
^ + ' 

(92.13) 

X 
e '‘^du = 

2x + 

X “1“ 

2x + 

A’ + 
2x + ■ 

(92.14) 

[ 
A’ + 

X + 
A' + 

A +• 

(92.15) 

C— 
Jx u 

du — 

A + 1 — 

A + 3 

A + 5 - 

a + 7 - 

(92.16) 

16 3 

A + 9 - 



THE CONTINUED FRACTION OF GAUSS 359 

Stieltjes gave the following generalization of (92.6): 

e-'iu 

nf 

(92.17) 

z + 
am 

1 + 
me 

2 -j- 
{a + \)m 

1 + 
Imc^ 

{a + T)m 
z + 

1 + 
3mc^ 

Z+' 

•, [95], 

where m = (I — c)/{\ — c^). This is valid for a > 0, > 0, 
c > 0, and z not on the negative half of the real axis. The integral 
in (92.6) is the special case S(ay 1, 1; z). If 0 < f < 1, then 

S(a, b, c\ z) 

‘ «(« + \){a + 2) • • • (^ + /> - 1) (1 - cYc'>^ 
00 

-z Z + (/» + ^)(I “ c) ’ 

and if £■ > 1, 

S{a, b, c; z) 

00 

=E 
paaO 

a{a-^\){a + l) ■ ■ ■ {a + p - \) _ {c - 

p\ z+ p{c - 1) 

If 
00 

<^(r, z) = =z 

then 
p = 0 

r / 1 - r 
z) II >—

* 

+
 1 

Z 

0 1 + 7>z 

We therefore have the expansions 
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(t>{r, 2) = 1 + (92.18) 

1 -r + 

1 4- 
rz 

1 -r + 
22 

1 + 
2r2 

1 — r + 
32 

1 +• 

and 

<t>{r, 2) 

1 - r + 
rz 

1 + 
l-r + 

2rz 

1 + 
22 

1 - r+ 
3r2 

1 -+-• 

(92.19) 

valid for 0 < r < 1 and for all 2 —\ln, « = 1, 2, 3, 

Exercise 18 

18.1. Let P{z) = satisfy the differential equation 

jTy/ \ w 

{a 4- ^z) - - ~ -f rP(2) = 0, r*^ 0, r, /p constants. 
0 

Then 

P{z) = Co 4“ oz + * —h CnZ^ 
Cn-flZ .n+l 

1 4-- 
[r 4* (w -f 1)^)2 

(w 4" 2)tf 4" ■ 

- r)2 

w 4- 3 4- 
{n 4- 2)[r 4- (« + 

{n 4“ 4)^ 4“ 
2{lb - r)2 

W4-54-- 

If ^ = 0, this holds for all values of z; if b 9*^ 0, it holds for all 2 exterior to the 
cut along the real axis from — 1 to — 00, 
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18.2. Let P{z) satisfy the differential equation 

{az + iz^ + (r + sz)P{z) = 0, pa + r 0, p = 0, 1,2, ■■■. 
p»0 

Then, 

+ -z\ , a 9^ Oy ^5*^0, 
\ ^ a a / 

w + l-h-;—-zV a 9^ Oy ^ = 0, 
\ a a ) 

“2^, — 0, b 7^ Oy 

so that continued fraction expansions for P(z) can be written down at once. 

P(z) = ro + ciz H- 

+ Cn-lZ”~^ 4- CnZ^ • 



Chapter XIX 

STIELTJES SUMMABILITY 

In this chapter we have applied some of the theory of J-frac- 

tions to a number of examples. The pattern of these examples 

may be described as follows. A definite integral is expanded into 

a power series which proves to be totally divergent. The power 

series is then expanded into a J-fraction which turns out to be 

convergent and to have as its value the definite integral with 

which we started. The J-fraction then serves as a means for 

computing the value of the definite integral. 

93, Definition and Illustrative Examples. By Stieltjes sum- 
inability we shall understand the process of summing a divergent 

power series by means of a J-fraction. The examples given in 

§ 92 show that the J-fraction may converge even when the power 

series expansion of the J-fraction is totally divergent. The J-frac- 

tion thus furnishes a generalized sum of the divergent power series. 

If there is given a power series P{\/z) = S(rp/z^'^^), then there 

arise two main problems. 

(A) To determine whether or not the power series has a J-frac- 

tion expansion. 

(B) If the J-fraction exists, to establish convergence, and to 

determine properties of the function represented. 

As to (A), there are several criteria for establishing the existence 

of the J-fraction, of which the following may be suggested. 

(a) There is a bounded nondecreasing function <l>{u)y taking on 

infinitely many different values, such that the coefficients in the 

power series are given by 

/+00 

p = 0, 1, 2, (93.1) 

362 
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In case <f>(u) is constant for « < 0, this may be written 

^4-00 

rp = I ^ = 0, 1, 2, • • •, (93.2) 

and then P{l/z) has an S-fraction expansion. 

(b) The determinants of (86.2) are all different from 0. 

If the Cp are real and these determinants are all positive, then, 

and only then, does P{l/z) have a real J-fraction expansion. 

(c) There exists a nonrational function /{z) which is analytic 

and has negative imaginary part for ^(z) > 0, which is asymptoti¬ 

cally equal to the real power series in the domain 3(2) > 5 for 

every positive 5. It is actually sufficient if this holds in every 

domain c < argz <7r — r, 0<^< 7r/2. In case /{z) can be 

expressed in the form 

(93.3) 

where (l){u) is bounded and nondecreasing, then it is sufficient that 

/(z) is asymptotically equal to P{l/z) as 2oc along the posi¬ 

tive imaginary axis. It may be possible to establish (93.3) by 

means of Theorem 66.2. 

(d) There exists a power series identity of the type required 

in Theorem 53.1. 

(e) The power series has some special property which enables 

one to obtain its J-fraction expansion, e.g., as is the case for the 

series of Chapter XVIII. 

(/) The coefficients in the J-fraction may be computed step 

by step by means of the algorithm of § 51. If the law of formation 

of the coefficients is not too complicated, it may be possible to 

discover and establish it. 
As to (B), if the law of the coefficients in the J-fraction is 

known, it may be possible to use one of the convergence criteria 

developed in the early chapters of this book. If the law of the 

coefficients is not known, then it may be possible to establish 

convergence of the J-fraction by showing that the related moment 

problem is determinate, e.g., by Theorem 88.1. The given power 

series may have arisen as the formal solution of a differential 

equation, or as the formal expansion of a definite integral. One is 



364 ANALYTIC THEORY OF CONTINUED FRACTIONS 

then naturally interested in knowing whether or not the value of 

the J-fraction is a solution of the differential equation, or is equal 

to the integral. Since the value of the J-fraction can always be 

expressed as a definite integral, it may be possible to find the 

answers to thevSe questions without much difficulty. 

The technique employed depends of course upon the particular 

problem under consideration. Stieltjes worked out a large num¬ 

ber of examples. These will be found in his Oeuvres^ vol. 2, pp. 

184-200, 378-391, and 546-559, and also scattered through the 

celebrated memoir on pp. 402-566. We shall consider some of 

these examples here. 

Example 1. Let us recall that 

log r(2) = -Z 4- (z - ?) log 2 + log 4- /(z), 

where, If 91 (2) > 0, 

1 f * 1 

- ri 4- 
■ du. (93.4) 

The function /(z) has the formal power series expansion 

where 

Thus, 

1 /•'" 
p = - I log (1 — /) = 0, 1, 2, • • 

TT Jo 

(^^)' V ^ -ft = n 1 -7 
2p4 2 Z y ^27>+2 ^ ^ ^ y 22p+l^ 

Consequently, 
B 

C rn 
27?-f 2 

^ {Ip + l){lp 4- 2) 
, /) = 0, 1, 2, 

(93.5) 

(93.6) 

where B2 = B^ = B^ = xV> '' ‘ the Bernoulli numbers. 

It readily follows from (93.6) that the formal power series P(l/z) 

is totally divergent. 

The equations (93.5) can be written in the form 

Cp = f u^d<f>(u), /) = 0, 1, 2, • • •, 
•^0 

(93.7) 
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where 

<t>iu) 
-/ TT Jo 

“ log (1 

2Vt 
dt, (93.8) 

i.e., in the form (93.2), where ^{u) is bounded and nondecreasing, 
and takes on infinitely many different values for u > 0. There¬ 
fore the series P(l/z) has an S-fraction expansion of the form 

^0 

Z + 

2 + - 
^2 

2 + • 

in which the are positive. On applying Theorem 88.1 to the 

Cp as given by (93.6) we find that the Stieltjes moment problem 
(93.7) is determinate. It Jolloivs that the S-Jraction must converge 

for 91(2) >0/0 the Junction J{z). 
By means of the algorithm (51.6) we find that 

1 

/(2) = 
12 

2 + 

1 

30 

(93.9) 

2 + 

53 

^10 

2 + 

195 

'm 

2 + 

22999 

2^737 

z + — 

29944523 

19733142 

2 + 

109535241009 

48264275462 

2+' 
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The law of formation of the coefficients is extremely complicated. 

However, even the first approximant 1/(122;) gives an excellent 

approximation to the function J{z) for large positive values of 2;. 

Example 2. By (53.11) we have, formally. 

— /I sech*// 
•^0 

1 

\'k 

+ 1) 

3{k + 2) 
2- 

2 — • 

(93.10) 

If k is real and positive, this is a real J-fraction. By Theorem 

25.1, the determinate case holds, so that the J-fraction converges 

for 3(2) > 0. The integral on the left is also convergent for 

3'(2) > 0. To show that the integral is equal to the J-fraction, 

we proceed as follows. Denote the value of the integral by/(s). 

Then 

(J(/(2)) = — I u-cos XU' 
do 

where we have put z ^ x iy. 

3^(/(z)) is negative for 3(2) > 0, 

where 

Hence, if j >0, 

/(z) = - + 
z 

It is not difficult to see that 

Then, by integration by parts, 

g{^) 

JZ 

sech* u • tanh u ■ if'* = -ky f 
•'O 

I ^(2) I < c r ye~^'^du = C, 
^0 

where C is a sufficiently large positive constant. It now follows 

by § 66 that/(z) can be expressed in the form (93.3), where (^{u) 

is bounded and nondecreasing. 

Let P(l/z) = S(cp/z^'^^) be the power series expansion of the 

J-fraction. One may then readily verify that/(z) is asymptotically 

equal to P(l/2) in the sense of (85.3), as z approaches 00 along the 
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positive imaginary axis. Since the determinate case holds for 

the J-fraction, we then conclude by Theorem 85.3 that /(z) is 
the equivalent function of the J-fraction, and consequently 
(93.10) is a true equality. 

Example 3. We now consider the function 

e — i 

mentioned near the end of § 92. For / = 1 this reduces to 

€ '''du 

z -\r u 
(93.12) 

(cf. (92.6) with ^ = 1), which is a formula of Laguerre, valid 

for all z not on the negative half of the real axis. The power series 

expansion of this S-fraction is the totally divergent power series 

The function F{t\ z) can be expressed as a Stieltjes integral of the 

form 
d^(u) 

Jq z + 

also when / > 0 and different from 1. In fact, we have 

> -- It 0 < ^ < 1, 
^ Z + ^(1 — /) 

F{t; z) = (93.13) 

^—«- ■)' ^^ if ,>i. 
z + {p — 1)(^ — 1) 

If / 5*^ 1, <i>iu) is a step-function; and 4>{u) is continuous if / = 1. 
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Moreover, the moments 

r 00 

if 0 < / < 1, 

= r u'^d<i>{u) = 
•'O 

00 

- \y{t - i)p+v-*= if / > 1, 

(93.14) 

^-=1 

^ = 0, 1, 2, • • •, 

exist. From (93.14) we readily verify that 

Cp = r(l - t) + [1 + (p - l)/kp-i> fo = 1, 

p = l,2,3, •••. 

Thus, fp = Cp{t) is a polynomial in / of degree p — 1, with positive 

coefficients. One may readily verify that 

Consider now the series 

p(/) — /^ ^Cp ^ ^ • 

(T 

(93.16) 

(93.17) 

If / = 1, then Cp = ply so that this series diverges. If 0 < / < 1, 

then obviously Cp < ply so that again the series diverges. If 

/ > 1, then, by (93.16), Cp < and therefore the series 

(93.17) diverges in this case also. By Theorem 88.1 we now 

conclude that the Stieltjes moment problem (93.14) is determinate. 

From these remarks we conclude that F{j:\ z) is the value of a 

convergent S-fraction of the form 

^0 

2 + 
ai 

1 + 
^2 

z+' 
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in which the coefficients «p are positive. By means of the 
algorithm of § 51 we find that 

F{f, z) 

2 + 

1 + 
Z + 

1 + 
It 

2 + 

1 + 
3/ 

2 +• 

(93.18) 

94. List of Expansion Formulas. In this section we have listed, 

without proof, a number of expansion formulas given by Stieltjes 

and others. 

{A) Integrals involving hyperbolic junctions. 

(cosh u-\-a sinh 
(94.1) 

z-\-ma-]r 
m{\ —d^) 

z+(m-\-2)a+- 

z-{-{m+4)a- 
3{m+2){l —d^) 

2+(iW + 6)^+ • 

i: tanh ue ‘'^du 

+ 
1-2 

[94.] 

(94.2) 

1 + 
2-3 

2^ + 
3-4 

1 + 
4-5 

z2+. 

m.] 
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/‘ 
•'O 

sinh {ati) sinh {bu) _ 

sinh {cu) 
e-^^du 

ab 

2^ + - 
ai 

+ ^2 
Cl2 

2" + ^3 “ ■ 

where 
[94], 

= (2^" + 2^ + ly - ~ b\ 

4p^ 

i 

= (/>V - - b^) 

sinh (au) , ^ ^ --^ ^ —- 

4p^ — 1 

sinn (bu) 
z + 

ai 

z -f- 
^2 

2 +• 

where 
•, [94], 

ap = - a^) 
Af - 1 Jf* 

r F{ay b, \{a -A- b -\- 1); — sinh^ ti)e~^'^du 
0 

z + 

2 + 
a-i 

2 +■ 

•, [94], 

where F{a, b, c\ x) is the hypergeometric series, and 

A{a + p){b + p){p + \){p At a -A- b — \) 
ap+i = 

(2p + a + b — l)(2p + a + b A- 1) 

(94.3) 

(94.4) 

(94.5) 
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Jo sinh u 
z + — 

1-^ 

32 
24 

52 + 
3" 

7z +• 

( * ue-^’^du 
•• [80.] 

0 cosh u 

1 

2^ - 1 + 

22 

1 + 
2^ 

2^ - 1 + 

42 

1 + 
4" 

2- - 1 + 
6- 

1 + 
6^ 

2^ — 1 + • 

r"'( 
^ cosh 2au\ 

Jo u\ cosh 2a / 

= 1 +- 
2(1 - «=*) 

2 _ ^2\ 

2" + 
(3^ - 

1 + 
(5^ - 

, , (7=^ - 
2^ + 

1 +' 

, /I r sinh 2au , \ 
tanh ( - I -;— e ^'^du ) 

\2 Jo u cosh u / 

. [80.] 

2 + 
(P - 

2 + 
(2^ - 

2 _ ^2\ 
2 + 

(3^ - 

2 + • 

(94.6) 

(94.7) 

. [80.] 

(94.8) 

(94.9) 

[80.] 
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, r ” sinh au 
tanh I -- e ‘'‘du 

Jo u cosh u 
(94.10) 

2 + 
2 + (2^ - 

2 + 
2 + 

(4^ - 

2 + 
(6^ - 

2 + 
2 +■ 

• . [80.] 

(B) Formulas involving= d]}ogT{z)]/dz. [94.] 

i^(z + ^) _ i^(2 4- 1 _ ^) = 

L L . 
2 + 

2 + 
(l2 

2 +■ 

(94.11) 

dn 

where 
p\p + 1 - lb){p -1+2^) 

4(2/> - l)(2i> + 1) 

|['4'(2 + ^) + 4^(2 + 1 - ^) - '*'(2) - 4'(z + 1)] 

P(1 - b) 

+ /-i 

1 + qx 

2=* + 
P2 

1 + 92 

“f* • 

where 

(94.12) 

«(w — b)(ji — \ + b) n{n + b){n \ — b) 
Pn = W7:g7^ 7^ > 9" “ 2(2« - 1) 2(2« + 1) 
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^ (z + P) ^1 

2 - - + 
^2 

2 z-i+. 

where 

dn = 

^ (z + pY 
~ 22 - 2 

4(2/> - 1)(2^ + 1) 

1 

2 + 
Pi 

Z -|- 

2 + P2 

2 + ^2 

where 

pn 

1 r /2 + 1 + ^ 

2+' 

+ 1) ti{n + 1)^ 
4« + 2 ’ ^ 4« + 2 ‘ 

z 4- 2 — , /z + ^\ 

(^)] — 
2 + — 

ai 

2 + ^2 

2 +■ 

where ^2p = ^2^+1 = (/> + ^)(^ + 1 “ ^)- 

-K 

z +1 + (i) 

z^ + ^1 - 

Z^ 4- ^2 - 

<^2 

z^ 4- ^3 - 

373 

(94.13) 

(94.14) 

(94.15) 

(94.16) 
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where 
2p-l , A/2/. + 1 

\{ip -1)=*. 

(C) Integrals involving the Jacobi elliptic Junctions. 

f sn{u, k)e 
•7o 

(94.17) 

a — 

•3? + Ua — 
3-4'*-5P 

3? + S^a — 
5-62.7P 

2^ + l^a — 

where 

I cn{u, k)e ^'^du = 
*'0 

^ = 14” bJ. 
1 

(94.18) 

Jdnluy k) 
0 

e ^'^du = (94.19) 

[93.] 
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Jsn^{u, k)e~ 
0 

= 

bi - 
ax 

(94.20) 

z^ + bi - 
^2 

+ ^3 ~ ■ 

where 

X 
QO 

= 2p{2p + 1)2(2^ + 2)k\ 

sniu^ k)cn{u, k) 

. 
1 

•, [80], 

K = i^pni + p). 

(94.21) 

z^ + bx- 

z^ + b-i — 
a-i 

z^ + b;- 

■, [80], 
where 

= {2p - \){2pY{2p + 1)^*, b^ = 2{2p - 1)2(2 - P). 

(D) Miscellaneous expansions. 

JT 

2 1 + / 
(1 + /)2 — 4/« "V « 1 + 42« 

1 
1 (94.22) 

1 

1 + 
(1 + t)z 

1 +- 
1 + 

1 + 
1 +■ 

[88.] 

Let a — (Vp — v^)^, b = p + ^x (p > 0, q> 0). 

Let 

F{z) = 

yfab 1 c'' V(« — <?)(^ — u) du 

Z 2Tr da X 
if />>«-, 

1 .f 

2ir Ja « z + « 



[131.] 



Chapter XX 

THE FADE TABLE 

With each ordered pair (/), q) of nonnegative integers, there 
is associated a uniquely determined rational fraction 

whose numerator and denominator are of degrees not exceeding 

q and/), respectively, and whose expansion in ascending powers of 

% agrees term by term with a given power series for more 

terms than that of any other such rational fraction. These 

rational fractions are arranged in a table of double entry, by 

putting/p,5(2) in the (/> + l)th row and {q + l)th column of the 

table (/), ^ = 0, 1, 2, • • •)• The present chapter is concerned 
primarily with the investigation of formal properties of this table, 

and of continued fractions whose approximants are among the 

fractions of the table. 

95. Definitions. Let 

^(2) = Co + Ciz + C2Z^ H-, (co 0), (95.1) 

be a formal power series with constant term different from zero, 

and let B(z) = /q + /iZ + • • • + t^z^ be a polynomial of degree not 

exceeding p. We form the product 

P{z)B(z) = Cq^o + (^0^1 + ^1^0)2 

+ {cot2 + citi + ^2/0)2^ + * • *. (95.2) 

Since there are /> + 1 parameters 4, we may choose them, not all 

zero, such that the coefficients of r == 1, 2, •••,/>, in (95.2) 

are equal to zero. If we denote by Bp,q{z) the corresponding poly¬ 

nomial 5(2), and denote by y^p,q{z) the sum of the terms of degree 

less than ^ + 1 in (95.2), we then have 

Piz)Bp,q(z) - Jp,q(z) = (2-+^+^), 

377 

(95.3) 
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where (z*") denotes a power series beginning with the term in z*’ 

or a higher power of z. If 5p.j'(z) and ^p,q{z) are two other 
polynomials so determined that 

P(z)5p,,'(z) - Ap.q'{z) = (z-+«+'), 

the polynomials being of degrees not exceeding p and q, respec¬ 
tively, Bp,q(z) ^ 0, then we find by composition that 

Ap.q(z)Bp.q'{z) - Jp,,'{z)Bp,q{z) = (Z^+«+l). 

This is a polynomial of degree not exceeding p and yet it 

contains no power of z of degree less than /> + ^ + 1. The poly¬ 
nomial must therefore be identically equal to 0, so that 

This uniquely determined rationalfraction^’^^ 

Bp,a{z) 
(95.4) 

is called a Fade approximant of P(2). 
We associate with the Fade approximants the following geo¬ 

metrical configuration, known as the Fade table. To the point 

Cao] [Od] 

D.o] D.i] [1.2] 

[2.0J [2,1] [2.2] 

• • 

X Fig. 13. 

® Frobenlus [16] made a systematic study of these rational fractions, obtaining recur¬ 
rence relations connecting numerators and denominators of three contiguous fractions. 
Pad6 [66] arranged the fractions in a table of double entry, and investigated the different 
types of continued fractions whose sequences of approximants are appropriately chosen 
files in the table. 
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in the cartesian plane with nonnegative integral co-ordinates 

(/>> ?)> we shall let correspond the Fade approximant 
It will be convenient to take the positive _y-axis to the right 
and the positive Ar-axis downward. We may also regard fpa{z) 
as occupying the square [p, q\, with vertices at the points 

{pi y)> {pi <1 + i)> 

{p + 1. <})i (7> + 1, ? + 1). 

96. The Normal Pade Table. I'he power series (95.1) and its 

Fade table will be called normal if all the determinants 

Cky 

Ij ^A:+2> * > 

Oc-l-p) ■ ' * ) ^A;-f2p 

p = 0, 1, 2, •••, 

(96.1) 
k = 0, 1,2, •• •, 

are different from zero, and if all the like determinants formed 
with the coefficients of the reciprocal series 

(?(2) = 
1 

W) 
d(j "b d\Z d^z^ "b • • ■ (96.2) 

are different from zero. By Theorem 52.1 it follows that P(z) 

is normal if, and only if, the series 

-b Cic + lZ + Ck-\-2Z^ + ■ ■ 'j 

Q^'‘\z) = + dk+iz + dk+^z? + • • 'j (96.3) 

^ = 0, 1,2, (P''»=P, = 

have S-fraction expansions 
aJk) 

-— = Up), (96.4) 
«i' ’z 

and 
«o (*) 

1 - 
1 - 

(ap'°> = Qfp), (96.5) 
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respectively, where the and ap^^^ are different from zero. 

Theorem 96.1. In a normal Fade table^ the approxhnants of the con¬ 

tinued fraction 

^0 + ^'iz + <^2Z" H-1- fifc-iz*^ H-^ (96.6) 

1 - 

«i 

1 
a2 (A-). 

1 -• 

ji// the stairlike sequence of squares 

[0, k - 1][0, k\ 

[1, + 1] 
[2, k + 1][2, ^ + 2] 

(96.7) 

while the approximants of the continued fraction 

1 

dfs + d\Z + d'jS? + • • • + ^ H- 

1 - 

1 - 

02 

1 -• 

(96.8) 

fill the squares 
\k - 1, 0] (96.9) 

\K 0] [k, 1] 
[k + 1, 1][^ + 1, 2] 

[^ + 2, 2] 

[66.] 
Proof. Let and Bp^’‘\z) denote the pth. numerator 

and denominator of (96.4), Then the numerators and denomi¬ 

nators of (96.6) are given by 

-<fp,p+fc-i(z) = (fo + Ciz 4-h 

^p.p+k{z) == (co + <^iZ 4-1- r*_i2*^“‘)R2p+i'*’’(z) 

4- Z^^2P+/*’(Z), 

-8p.P+4-l(z) = Bzp^^Kz), 
Bp,p+k{z) = B2p+l^^\z}. 

(96.10) 
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The polynomials are of degrees p k - p + k, p and p, 
respectively. Moreover, 

= {z^^+'--). 

Consequently, y^p,p+fc_i(2)/5p.p+fc_i(2) is the Fade approximant 

Jp,p+k—l (2) of P{z). Similarly, Ap^p^^iz)/=/p,p+fc(2). 

Therefore the approximants of (96.6) are the Fade approximants 
in the file (96.7). Now one may verify at once that if Fp^^ is a 

Fade approximant of Q{z) = 1/P(2), then \/Fp,g is the Fade 

approximant /,,p of P(z). From this remark it follows that the 

approximants of the continued fraction (96.8) make up the file 
(96.9). 

We note that (96.4) with ^ = 0 is the same as (96.8) with 

^ = 1. Hence, we have the relations 

1 
— ^()3 

«0 

(1) 

(Iq 

p = 1,2, 3, 

^ly OCp 
(1) 

(96.11) 

Inasmuch as two of the stairlike files (96.7) or (96.9), formed 

for consecutive values of ky overlap, it follows that if all the 

continued fractions (96.6) and (96.8) converge, then they must 

have a common value. In order to investigate the convergence 

of these continued fractions one needs to have formulas expressing 

their approximants in terms of the approximants of some one of 

them, for instance, (96.4) with = 0. We shall proceed to 

obtain such formulas. 

The approximants of the even part of (96.6), namely. 

Co + CiZ-]-h ^ (96.12) 

+ 
1 — 

1 ~ - 
1 - (^4^*^ + - 

i 
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occupy the diagonal file of squares 

[0, k - 1] 

[1,^] 
[2, k + 1] 

and the approximants of the odd part of (96.6), namely, 

Co+r i2+f 22® d-h (96.13) 

1 — +^4^*02- 
1 —(«5‘*^+«6‘*0z- 

occupy the file 

I0,k] 

[Uk+l] 
[2, k + 2] 

It follows that (96.13) with k replaced by ^ — 1 must be identical 

with (96.12). Because of the uniqueness of the J-fraction expan¬ 

sion, we are justified in equating corresponding coefficients. 

Therefore 

- (4—1) _ ^ 
<*0 — ^k-l, 

(96.14) 

These can be most easily handled if we make the substitution 

1 1 
= (r) 

P = ly 2, 3, (96.15) 
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One may then readily establish the relations 

he - ^'2o — 
^ (A:-l) ^27} 4-1 ^ = 1,2,3, •••, (96.16) 

V ?> + l 

and also. 

Z, (fc~l) _ ^2o4-l -- 

= b2 

(96.17) 

Again by comparison of (96.12) and (96.13) we obtain the 

relations 

B2p^’‘Kz) = 52p + /*~*Kz), 
(96.18) 

2^2p‘*'’(2) = ^2p + l'*~^Hz) - Cfc-l52p + i'*^"^’(z)- 

By means of the fundamental recurrence formulas we then get: 

52p+1<«(z) = 52p+3<*-‘H2) + Z«2p+i'">52p+i<*-'H2), 

2^2p+/*K2) = Ap+3<‘-'’(2) + 2«2p+/*^^f2p+l'*-‘’(2) (96.19) 

- C)t_l[52p+3^*'"*\z) + Z«2p+1®52p + i‘*~*’(2)J. 

Corresponding to the substitution (96.15) we now put 

Gp(^>(z) - • • • -^p<'>^p'’'^(2), 

••• ^p<^’5p<’->(2). 

(96.20) 
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The relations (96.18) and (96.19) then become, if we use (96.16), 

H, 2p+l 
(fc-1) (Z) 

G2p''^’(z) 

(96.21) 

/f2p + l<*H2) = Ap+/*-’'//2p+2<^-'>(2) - //2p+.<^-*>(2), 

2G2p+i'*''(z) = ^p + /*'“'’f'2p+2'*'“”(z) - G2p+3'*="*'(2) 

- C,^,[Ap + /^-‘>//2p+2'"-'’(2) - //2p+.s'*-'’(2)]. 

Theorem 96.2. For ^ = 0, 1, 2, ' • • y the Fade approximant/p,p-fA*(-) 
/V given by 

r ( \ ^ A^fc(^)^2p4-A:+2(^) /g^ 

/p.P+K-; - Mk{z)j^2p^k^liz) - Nk{z)H2p^k+2iz)^ ^ 

Mk{z) and Nk{z) are polynomials in z whose coefficients are rational 

functions of the quantities hp^^\ 

Proof. Since 

fp,v^^ 
G’2p-fl(^) 

P = 0y\y ly 

the formula (96.22) holds for A’ = 0 with Mq{z) — 1, N^^iz) = 0. 
Using induction, we shall assume that (96.22) holds for k and 
prove it for yt + 1. By hypothesis, (96.22) holds for the series 
Cl + r22: + + ' • *, and for k. That is, the approximant in the 
square [py p + k] of the Fade table for this series is given by 

Mf^Kz)G2p^kW^Kz) - Ar.^^>(z)G2p+,+2'^'(z) 

Mf^\z)H2p^k^i^^Kz) - Nf^\z)H2p+kW'\z) ^ 

where the superscript indicates that all the bp which are involved 
in the coefficients are replaced by bp^^\ If we multiply this expres¬ 
sion by 2 and add Co, we obtain a rational fraction whose numerator 
and denominator are of degrees not exceeding ^ ^ + 1 and py 
respectively, which is obviously the Fade approximantfp,pj)^k^i{z) 
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for P(z). By means of (96.21), this expression may be reduced to 

(96.22) with k replaced by Ar + 1, and, according as k = 2r or 
k = 2r+l: 

^2r+l(p'') ^p+r+1^2p^ 

N^r+l{z) = + N,PKz)/h,+r^u 

M^r+ziz) = M2r+l^^\z)/h,+r+l - zN^r+l^^^z), ^ ^ 

Nzr+ziz) = ^p4-r+lA^2r+l^*^(2). 

Therefore (96.22) holds with k replaced by ^ + 1, where Mic+i(z) 

and Nk+i{z) are polynomials in z whose coefficients are rational 

functions of the quantities hp^'‘\ and the theorem is proved. 

From the recurrence formulas (96.23) we find that 

Mzr+ijz) 

zNzr + liz) 

'p+r+l 

^p+r (1) 
(96.24) 

2 — 

1 - 

h . ^2) 

T ~(Ty np^r 

hpj^r—1 (3) 

2 ~ 
h /?p-fr 

hpj^T—\ 

hp-^r—1 

(4) 

(3) 

2 — 
ft'p-\-r—1 

(4) 

2p-f 1 (2r-l) 

(2r-2) 

(2r) 

^P + l 
(2r-l) 

2 
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and 

___ iV2r+2(z) 

M2r4-2(2) 

4-r4-l 
(1) 

(96.25) 

z — 
7p4-r4-l 

Zp-l-r 
(2) 

.(1) 

(3) 

2 — 
/p+r (2) 

^p-f-r — 1 (4) 

^p+r (3) 

2 — ■ ^P + l 
(2r) 

2p+2' 
(2r-l) 

^p + 1 
(2r+l) 

2 — 
*p-f 1 

.(2r) 

Inasmuch as the approximants /p4-a:,p(2) for P(2) are the 
reciprocals of the approximants Fp^p^k{^) for Q{z) = 1/P(2), 

analogous results hold for the approximants/p+A,p(2). By (96.22) 

we have 
1 

Fp,p-\-k{p^ 

Mk'{z)G2p+k-^i{z) - Nk{z)G2p^k+2{z) ' 

(96.26) 

where the primes denote that the polynomials of (96.22) have been 

formed for the series Qiz) = 1/P(2). In particular, Gp{z)/Hp{z) 

IS the pth approximant of the S-fraction 

1 

fix 

(96.27) 
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On comparing the reciprocal of (96.27) with (96.6) with k = \, 

we find that 

G/(z) = 

H,\z) = 

By (96.21), these may be written 

G2P (z) == //2p-{-l(2) hpH2pi^y 

G2p + lX^) ~ ^2p+l(2^)/^p> 
(96.28) 

H2p\'^) ^ G2p-{-l(2) ApG2p(z), 

^2p + lX^) ~ G2p-f-i(z)/Ap. 

On substituting from (96.28) into (96.26) we obtain 

A'A;(2)G2p-ffc-f l(z) Z#fc(z)G2p4-fc-j-2(z^) 

Kk{z)H2p-\~k-{-\iP^) Lk{,z)H2p~\-k-^2{p^) 

where A'jfc(z) and /.^(z) are polynomials given by 

K2k{z) = M2it'(z)/Ap+Jt + ziV2/(z), 

L2k(z) = A^2A; (2^)^p-fA:> 

-K^2A:-fl(z^) ” M2k-^1 (z)^p-f.fc-f 1^ 

/^2lfc+l(z) = — J^^2t+l'(z)/^P+i+l + ■^2ft+l'(z)* 

Let 

j,® - fe*-*p)- 

(96.29) 

(96.30) 

Then we find that gp = \/hp. Also, ^p^^^ — ^ph-ij P 
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• • may be computed by means of (96.16). By (96.28), 

(96.24) and (96.25), we now readily obtain 

-^2r-f 1(2) 

and 

(1) 

Kp-\- 
(2) 

Z — 

(1) 

(2) 
Sp->rr 

(3) 

2 — 

1 

—1 

"in.” 

(4) 

(3) 

^P+2 

C2r-1) 

(2r-2) 

Sp-^i 
(2r) 

Z — 
<?■;> +1 

(2r-l) 

(96.31) 

^2r-l-2(2) 

2Z,2r+2(2) 

^p+r-fl (1) 

gp-^' 
(2) 

2 — 

(1) 

gp-\- 
(3) 

1 - 

gp-\-‘ 
(2) 

(4) 

2 — 
gp-{-_ 

1 ~ 

(3) 

gp-\-l 
(2r) 

gp-\-2 
(2r-l) 

(2r+l) 

.S’p+i 
(2r) 

(96.32) 

We conclude the present section with the following theorem. 

Theorem 96.3. In a normal Fade table^ the approximant occupying 

the square [/), q\ haSy in its simplest termSy numerator and denominator 

whose degrees are exactly q and p, respectively [66]. 
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Proof. We shall prove this for/p,p+i(z), using (96.10). Since 

^ p .p+ki.^') p tP~\-k(^^') ^ p ,p-i-k — 1 (2) 

it follows that the only possible common factor of /fp,p-^k(^) 

and Bp,p^k{z) is a power of z. Since Bp^p^kiO) 5^ 0, there can 

be no common factor^ so that Jp,p^k(^)/Bp^p^k{^) is irreducible. 
Since the degrees of numerator and denominator are p + k 

and py respectively, the theorem is proved for this case. The 
proof for/p-^k,p(z) can be made in the same way. 

97. The Fade Table for the Series of Stieltjes. A power series 

(95.1) with real coefficients, such that the determinants Ap = 

and ^2p = Ap^^\ /) = 0, 1, 2, • • • (cf. (96.1)) are all positive, is 

called a series of Stieltjes. We saw in § 87 that the conditions 

Ap > 0, Qp > 0 are necessary and sufficient for the existence of a 

bounded nondecreasing function (t>(u)y taking on infinitely many 
different values for 0 < // < + cc^ such that 

Cp = f iP'd(t>{u)y p = 0, 1, 2, • • •. 

This implies that the quadratic forms 

^ ^^Cpj^q^kXpXq = I + X\U + • • * + Xnl^^)^d(t){u)y 

p, q^O ^ 

ny k = 0, 1, 2, • • •, 

are all positive definite. HencCy the determinants (96.1) are all 

positive when P{z) is a series of Stieltjes, By Theorem 52.1 and 

the remark following that theorem, = cjfc + + CkAr2^ 

+ • * • has an S-fraction expansion 

1 

z 

* > 

(97.1) 
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in which the are all positive. The reciprocal series = 

1 /P(2j) = ^0 + diZ + d2^ -f. . • has the S-fraction expansion 

-i- (97.2) 
2 

and therefore the determinants Ap and Qp formed for Q{7) are 
different from zero. Also, — has the S-fraction expansion 

1 

^2 

(97.3) 

so that — is a series of Stieltjes. It follows that all the 
determinants (96.1) formed for ^(z) are different from zero. 

Hence, we have proved 

Theorem 97.1. The series of Stieltjes is normal [IQ9]. 

In order to connect with the work of § 87 we now replace z 

by 1/z and divide by z in the power series P{z) and in all its Fade 

approximants. Put (cf. (96.20)) 

R^niz) = (-z)’*-*G2„ (1), 

722»+i(z) = (~z)"G2n+i ^ , 

«S’2»+l(z) = (-2)’‘+‘/r2n+l (1^ 

(97.4) 
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Then R„{z) and »S'„(z) are the «th numerator and denominator of 

the S-fraction 

(97.5) 

^iZ 
1 

h - 
1 

hz 
b,-- 

The Fade approximants (96.22) become, under the indicated 

change of variable, 

Jp.p+ik 
z 

(97.6) 

(D 

A/2A: ^2p+2fc-fl(2) A^2A: •^2p-f2fc+2(2) 

M2k ^2p+2A:H-l(2) — A^2A: S2p-\.2k-\-2{^) 

-/p.P+2k + l (-) 

N2k+\ 7?2p+2*:+3(2) + zM2k+l 722p+2A:+2(2) 

7V2fc+i ^ •52p4-2*+3(z) + zM^k+l 6'2p+2J:+2(z) 

Since P(z) is a series of Stieltjes, the numbers bp are positive, 

and, by (96.16), the numbers bp^^'' are all positive. Moreover, 

if the series 'Lbp converges, we see that the series '^bp^’^^ are 

convergent. The corresponding series associated with Q{z) are 

also convergent, since, as we saw in § 96, /3p^^’ = —bp^i, p = 1,2, 

3, • • •. For the numbers hp^'^'^ and gp^’^'‘ introduced in § 96 we then 

have 
lim > 0, lim ^p^*^ = < 0, 

A = 1, 2, 3, lim Ap = A > 0. 

(97.7) 
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By Theorem 6.1, there exist four entire functions r(2;), ri(z), 

s(z)y Si{z)y such that ri(2)^(2) — r(2)ji(2) = 1, and such that 

lim i?2n(2) = r(2), lim i?2n-i-i(z) = ri(2), 
n =a 00 n = 00 

lim Siniz) = s(z), lim .S’2„+i(2) = Ji(z). 

(97.8) 

Let dk(z) and <j>k{z) denote the ^th numerator and denominator of 

the S-fraction 

zh 

zh^^yh 

zh^-^y'h^^ 

~zh^^yW^ 

(97.9) 

By (96.24), (96.25) and (97.7), we then have 

zM2r+\ f-') , . 
\Z/ ^2r+l(z) 

lim-- -— 
T^T ^2r + l{z) 

[-J 

A^2r + 2^-^ e2r+2(z) 

lim - =--— 
4>2r+2(.z) 

M2r+2 I - ) 

Therefore, by (97.6) and (97.8), 

.. 1 /V\ ^ <t>k(z)ri{z) - ek{z)r{z) 

p=«z \z/ (t>k{z)si{z) — dkiz)s{z)’ 

^ = 0, 1,2, •••. 

(97.10) 

This is a meromorphic function, /*(z). Since $r(z)/(l>r{z) ^ 

0,(z)/</>,(z) if r 5^ j, it follows that/r(z) /,(z) if r 5^ j. 
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By means of (96.29) we find in like manner that 

i:„ ^ _ <^*'(2)^(2) - dkiz)r{z) 

\J '<t>k'{z)s^{z) - ek'{z)s{z) ’ 

(97.11) 

where the <l>k{z) and 6k'(z) are polynomials. This is a meromorphic 

function Fk{z); and ^^(z) ^ F,{z) if r ^ s. It can be shown 

that the functions fk(z) all have z = 0 as a pole, while the func¬ 

tions Fk{z) are all regular at z = 0. fVe therefore conclude that 

when the series Hhp is convergent, then every diagonal file of the Fade 

table converges, and no two different diagonal files have a common 

limit [117]. 
We turn now to the case where the series hbp is divergent. 

One may show by means of examples that the series ^ 

k = \,'l,'i, •' •, may all diverge, or they may diverge for k = \, 

2, 3, • • ■ y r, r > 1, and converge for k > r. In the first case, all 

the continued fractions (96.6) converge to a function /(z) which 

is analytic over the entire plane excepting the whole or a part 

of the positive half of the real axis. Then, for ^ = 0, 1, 2, • • •, 

lim/p,p+fc(z) = lim/p+i,;,(z) =/(z). 
p = 00 p = 00 

If the series also diverges, then 
iv) 

lim/p+fc,p(2) =/(2), ^ = 2, 3, 4, • • •. 

If^ diverges for ^ < r and converges for k > then 
(p) 

lim/p,p+i(z) = lim/p+i,p(z) =/(z), 
pc= 00 p= 00 

for = 0, 1, 2, • ■ ■ ,r. For k > r, the limits 

lim/p,p+*(z), ^ = r+l, r + 2, r + 3, ■■■, 
pms CO 

exist and are distinct analytic functions. An analogous state¬ 

ment holds for the sequences fp^k,p{z)y p = 0, 1, 2, • • > 1). 

98. General Theorems on the Fade Table. We shall now in¬ 

vestigate properties of the Fade table for an arbitrary power 

series (95.1). 
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Theorem 98.1. Let /wi,n(z) = ^m.n(2)/5w.n(z) the Fade approxi- 

mant for P{^ occupying the square [w, w], and suppose that ^^d 

Fm,n{‘^) have no zero in common. Let the degrees of Am,nif) and Bm,n{'^) 

be exactly q and p^ respectively. There exists an integer r, r > 0, such that 

P(2)5„,„(2) - + • • •, (98.1) 

where km,n ^ 0, or else the left-hand member of (98.1) is identically equal 

to zero. In the latter events we set r ^ qo . Moreover^ in the Fade table^ 

the squares 

[/>>?]> b. 9 + 1 ]. • • • > bj 9 + H 

b + b 9]> b + 1> 9 + 1]> • • b + 1> 9 + r] (98.2) 

b + ^9]. b^-^9 + l]. b + ^9 + ''] 
are all occupied by the approximant/w,n(2), while no other square in the 

table is occupied by fm,niA> [66.] 

Note. We shall call (98.2) a block of order r. If r = C30 we 

shall understand that the block extends to infinity to the right 

and downward. 

Proof. By hypothesis, there exists an integer > 0, and 

a polynomial ^0 + f iZ H-h ^ 0, where A -\r k q <n, 
h k + p < m, such that 

[P(2;)5™,„(z) - yy,„,„(z)]z'‘(^o + .fiz H-(- gk^^) = (z’"'*'"+'). 

Inasmuch as go 5^ 0, it follows that 

P(z)5.,„(z) - ^™.„(z) = 

Now, p + h < m,q + h <«, w + w + 1 — h >p-\-q-\-h-\-\y 

and consequently there exists an integer r, r > 0, such that 

»j + « + l —h=p-\-q + \+r. We then have the inequali¬ 

ties; 

p h < m, y + A<«, p-{-q-\-r-\-h>m-\-ny (98.3) 

so that 

\h q h, 
/> + 9 + r + A > OT + « > 

{h+ p + n, 
or 

p r > m, q r > n. (98.4) 
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From (98.3) and (98.4) it follows that m and n can have only 

the values m ^ p,p + \,p + 2, • + r^n = q,q + \yq + 2, 
• • ^ + r; and one may verify immediately that these values are 

actually allowable. Therefore,^4.,(2) = /j>,,/z) if, and only 
if, i andy have independently the values 0, 1, • • •, r, where 

P(z)5...n(z) - (98.5) 

This last may hold for r = 0, 1, 2, • • •, or there may be a largest 

r for which it holds. 

If (98.5) holds for r = 0, 1, 2, then we shall say that 

/p,q(z) is a Fade approximant of infinite order, while if there is a 

largest r = ro for which (98.5) holds, then we shall say that 

fp,q{z) is a Fade approximant of order Tq. 

Theorem 98.2. Let 

Cn—mj ^n—m 4-1) * ' * ) 

^m,n — 
—m-f-l J ■ * *) ^n41 II o

 

J
O

 
(98.6) 

1 r ,j, ’ * * ) 

where Cp = 0 if p < 0, A necessary and sufficient condition for the Fade 

table for P{f) to contain the block (98.2) of order r is that the following five 

conditions hold: 

(a) Ap-\,q 9^ 0, 

(b) 

(c) ^p,q ^ ^) (98.7) 

(d) ~ ^ = 0, 1, 2, * • •, r 1, 

(e) Ap+r,94.r41 7*^ 0. [14.] 

Note. If r = 0, the condition (d) is not present. If P-0, 

we shall set 
= 1, (98.8) 

so that (a) and (b) always hold for ^ = 0. 
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Proof. The Fade table contains the block (98.2) if, and only 

if (cf. Theorem 98.1), 

(^0 l.g—1(^)> 

(b') fp,q{z) 

(c') /p,q{z) ^fp,q-l{z), (98.9) 

(d') =fp,g(^)y k = 1, 2, 3, * * * , T, 

(^ ) /p+r-\-l 9^/p,q{z), 

It is convenient to include the condition (a'), although it is a 

consequence of (b') and (c')- Let fp,q{z) = where A = 

aQ + aiZ + • • • + aqZ"^^ B = b^z + • • • + bj,z^\ and let 

The equation P{z)B{z) — A(z) = (2^+*^+^) can then be expressed 

in the form 

= 0, C^_^i ob = a. (98.10) 

If = 0, then the first equation (98.10) has a solution 

b 0 where b^ = 0. Then the value of a given by the second 

equation has Uq = 0. This means that A{z) and B{z) have the 

common factor 2, and P{z)[B{z)/z] — [^f(2)/2] = (2^"^^), i.e., 

fp,q{^) = fp~i,q-i{’^)- Thus, (a) is necessary for (a'). 
If = 0, then (98.10) has a solution b 0 in which 

bj, = 0. Therefore /p_i,<y(2) = fp,q{z). Hence (b) is necessary 

for (b'). 

If Ap,^ = 0, there is a solution with b 0, = 0, so that 

fp,q^\{z) =/p,q{z). Thus (c) is necessary for (c'). 
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The condition (e) is necessary for (e') for the same reason that 
(a) is necessary for (a'). 

It remains to be shown that (d) is necessary for (d')* In 

order for (dO to hold (cf. the proof of Theorem 98.1), it is neces¬ 
sary that 

P(z)z^B{z) - z^J(z) = ^ ^ 1, 2, 3, • • •, r. (98.11) 

Let denote the matrix obtained from b by inserting k zeros 

above Then the condition (98.11) can be written 

— 0, ^ , 2, 3, • • •, r, 

where ^ 0. But this is impossible unless (d) holds. 

We now prove that (98.7) is sufficient for (98.9). 

From (a) we conclude that the equation = 0 has a 

solution b 5^ 0, and that every other solution is a constant multi¬ 

ple of this particular solution. Moreover, is proportional to 

and is not zero if b 5*^ 0. The fraction A/B determined by 

(98.10) with b 5^ 0 is irreducible. For if y^^/B = A'/B\ where 

A' and B' are of lower degree by /z > 0 than A and J5, then 

P{z)J'B'{z) — z^'A'iz) — and therefore z^'A\z) and 

z^'B'{z) ^ 0 can be determined by solving (98.10). But, in this 

solution we would have — bi = • • • = bi^^i = 0, which we 

have seen is impossible. From (b) and (c) it follows that A 

and B are exactly of degree q and respectively. Hence, (a'), 

(b') and (c') all hold. 

We now let b 5*^ 0 be a fixed solution of (98.10). Let 

Jp-\-k,q->rk{7) 

+ ai^^^z -f • . . -f A^^\z) 

H-h ~ B^^'\z) 

Let and b^^^ be the one-column matrices analogous to a and 

b, formed with the coefficients of A^^'\z) and B^^\z), The condi¬ 
tion P(z)B^^\z) — A^^\z) = (2:P+9+2A:+i^ written 

Cp4.A:,^4.A:4-ib^^^ — 0, — a^^\ (98.12) 

Since ^p,q+i = 0, we see that (98.12) with = 1 has the solution 

a(i)^ b^^^ in which bo^^^ = 0, b^^^^ = s = ly 2y 3y • • ^ + 1, 

= 0, = a,^iy j = 1, 2, 3, • • •, ^ + 1. Hence it follows 

that A^^\z)/B^^\z) = A{z)/B{z). Then, since Ap4.i,5+2 = 0, it 
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follows that for k = 2, (98.12) has the solution where 
^o(2) = 0, ^ ^ ^ 2, 3, • • •, p +2, = 0, 

s = 1, 2, 3, ■■ - yg + 2, where 0 is some 

solution of (98.12) for = 1. Consequently, {z)/= 

A^^'*{z)/B^'^\z) s A(z)/B(z). On continuing this argument, we 

conclude that (d') holds. 

Finally, (e') holds. For if not we would have 

P{z)z^+^B(z) - z^+^A{z) = (2?-+?+2-+2), 

which is impossible by virtue of (e). 

This completes the proof of Theorem 98.2. 

The preceding argument contains the proof of the following 

theorem. 

Theorem 98.3. The relations 

(1) /.-l,(-l(2) 

(2) f.+k,t+k{z) = ], 2, 3, • • •, r, (98.13) 

(3) /..K2) fs+T + \.l+T+l{~), 

hold if, and only if, 

(F) 7^ 0, 

(2') =0, k = 0,\,l, (98.14) 

(3 ) A4.(.r,l4-r4-l 5^ 9, 

hold [14]. 

In fact, we saw that (1'), (2') and (3') are necessary for (1), 

(2), and (3), respectively. Conversely, (1') is sufficient for 

A{z)/B{z) to be irreducible, and for the numerator or the denomi¬ 

nator to be exactly of degree t or s, respectively, so that (1) holds. 

The proofs of (2) and (3) are the same as before. 

It follows from Theorem 98.3 and Theorem 96.3 that a neces¬ 

sary condition for the Fade table to be normal is that 

Am,„ 5^ 0, w, « = 0, 1, 2, • • •. (98.15) 

This condition is also sufficient. For if (98.15) holds, then the 

determinants (96.1), being contained among the determinants 

Am.n, are different from zero. Let A^.n' denote the determinants 
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^m,n formed with the coefficients of the reciprocal series Q{z) = 
\/P{z). Then, as Hadamard [25] showed, 

(-1)- 
3|n/21 +p , 

—l.n-fp 
^n~hp~l,p 

^0 2p-{-n-i2 (98.16) 

so that the determinants (96.1) formed for Q(z) must be different 
from zero. Hence, we have: 

Theorem 98.4. T/ie Fade table is norinal and only (98.15) 
holds [66]. 

When (98.15) holds, then every approximant fp,q(z)^ when in 

simplest terms, has numerator and denominator exactly of degree 

q and p, respectively. Therefore, by Theorems 96.3 and 98.4 

we have: 

Theorem 98.5. The Fade table is yiormal if^ and only every approxi¬ 

mant when in simplest termSy has numerator and denominator 

exactly of degree q and p, respectively [66]. 

99. C-fractions. We have seen that a power series has an 

S-fraction expansion only when the determinants Ap and Op are 

all different from zero, and has a J-fraction expansion only when 

the Ap are all different from zero. We shall now introduce a type 

of continued fraction expansion which exists for arbitrary power 

series. We shall assume for the sake of simplicity that the power 

series has constant term different from zero: 

^(2) = Co + CiZ + C2Z^ H-, {co 9^ 0). (99.1) 

The continued fractions are of the form 

Co + 

1 + 
1 + 

^32“' 

(99.2) 

in which the ap are complex constants different from zero, and 

the Up are positive integers. This is called a “corresponding 
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type’’ continued fraction/® or simply a C-fraction. By a ter¬ 
minating C-fraction we shall understand a continued fraction of 
the form (99.2) with but a finite number of partial quotients. 

We shall show that there is a one-to-one correspondence 

between C-fractions and power series (99.1) which do not repre¬ 

sent rational functions of z, and also a one-to-one correspondence 

between terminating C-fractions and power series (99.1) repre¬ 

senting rational functions of 2. 

Let us suppose first that we arc given a C-fraction (99.2). 

We denote its pth numerator and denominator by ^p{z) and 

Bp(z)y respectively, and put 

^p = or + 0:2 + ‘ * • + oLp^i, 

It follows from the determinant formula 

Aj,{z)Bp+i{z) - Jp+i{z)Bp{z) = (99.3) 

just as in the case of J-fractions or S-fractions, that there is deter¬ 

mined uniquely a power series P{z) such that the power series 

expansion in ascending powers of 2 of /lp{z)/Bp{z) agrees term 

by term with the power series P{z) for a number of consecutive 

terms beginning with the first which increases with p. In fact, 

P{z)Bp{z) - Ap{z) = {-iyaia2 ■ ■ ■ -Jp+iz'’” -. (99.4) 

This statement holds also for terminating C-fractions, except that 

in this case there is a ^ for which P{z)Bk{z) — = 0. 

We shall call this uniquely determined power series the power 
series expansion of the C-fraction or of the terminating C-fraction. 

Theorem 99.1. The power series expansion oj a C-fraction cannot rep¬ 

resent a rational function of z. [54.] 

Proof. Let it be supposed that P(z) = N{z)/D{z)y a rational 

function of 2. Then by (99.4), 

N{z)Bp{z) - D(2)^,(2) = (2^-). 

Let Sp and tp denote the degrees of Ap{z) and Bp{z)y respectively. 

Then the degree of N{z) must be at least hp — /p, or that of D{z) 

at least hp — Sp. Now, one may readily show by mathematical 

^ These continued fractions were first investigated by Leighton and Scott [54], They 
showed that every power series has a unique C-fraction expansion. Scott and Wall [85] 
and Frank [14] considered the connection of these C-fractions with the Pad6 table. 
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induction, using the fundamental recurrence formulas, that 

> [{p + 2)/2], and that a similar inequality holds for 

hp — tp. This shows that the assumption that P{z) is a rational 
function is untenable. 

We shall now start with a power series (99.1), and show that 
there is uniquely determined a C-fraction or a terminating C-frac- 

tion, of which it is the power series expansion. There is no restric¬ 

tion upon the coefficients ro, ^2, • * • of the power series; it may 

diverge for every value of z 0, or may even be a polynomial. 

If Tp = 0 for ^ > 0, then P(z) — Cq, which is a terminating 

C-fraction. If the Cp are not all zero for /> > 0, let be the first 

which is not zero. Put^^i = a, and the fraction starts out 

^0 + (99.5) 

If Cp = 0 for p > then P{7) is equal to the terminating C-frac¬ 

tion (99.5). If the Cp are not all zero for p > let CkJ^r be the first 

which is not zero. Put ^2 = ^cicj^r/cky oi2 = r, and at this step 

we have 

(99.6) ^0 + 
aiZ 

1 + 

The three denominators of (99.6) are 

5o(z) = 1, B,{z) = 1, 5.(2) = 1 + ^22"*. 

If we put Bp{z) = 5p,o + 5p,iZ + hp^2^^ + • • •, then the formulas 

for determining the ap and ap may be written in matrix form as 

follows [14]. 

(Cn, Cn—1) ^n—2) ‘ 

^7>.0 

^P,l 

^P.2 

0 if ao + «!+'• * + ^ 

+ a2 + ’ * • + «p+i> (^0 = 0); 

( —l)^^i^2 • ' * if n == ai 

+ a2 + * * * + 

(99.7) 
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Explanation. Supposing that a-^, az, •••, <2p, ai, az, ap 

have been determined, then ap+i is defined as the least positive 

integer s such that the product in the left-hand member of (99.7) 

is not zero for n = ai az otp s. If the value of this 

product is c, then is determined by the relation c — { — \)^aiaz 

■ ■ • «p4-i. If P{z) does not represent a rational function of z, 

it is evident that a C-fraction is determined by this procedure. 

We must show that the power series expansion of this C-fraction 

is the given power series P{z). If P{z) is a rational function 

of z, we shall find that the process leads to a terminating C-fraction 

equal to P{z). 
We suppose first that P{z) is not a rational function of z. 

We are to show that the C-fraction determined by (99.7) in the 

manner indicated satisfies (99.4) for ^ = 0, 1, 2, •••. It is 

immediately evident that this holds for /) = 0 and p = \. Sup¬ 

posing that (99.4) holds (or p < m, m > 2, we shall prove it for 

p = m. We have: 

P{z)B^{z) - AM) 

= P(z)5m-l(2) - ^m-l(z) + amZ”[P{z)Br„M^) “ ^m-2(z)] 

= ( —1)'"~^<2i«2 • • • + (higher powers) 

-t_ ( —1)'"-2^j^2 • • • + (higher powers) 

= (2^+''"-*). 

Thus the formal power series P(z)Bm{z) — AM) contains no 

power of z of degree less than 1 + hm-i = 1 + ai + a2 H— • + «»». 

Now, it is easy to see that the degree of AM) is less than ai + az 

+ • —h ccm, Therefore, the first nonvanishing term in the power 

series P{z)BM) ~ ^m(z) is equal to the first nonvanishing term 

in the product P{z)BM)‘ By (99.7), this term is { — Vj'^aiaz • • • 

flm+iZ*”. Consequently, (99.4) holds for p = m, and therefore 

the algorithm (99.7) is established for the case where P(z) is not 

a rational function of z. 

If P(z) is a rational function of z, it follows from Theorem 99.1 

that there must be a last ap, say, am, which can be determined 

by means of (99.7). Then it is clear that (99.4) holds for p — 0, 
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1, 2, •••,»>- 1, while P{z)B„,(z) - J^{z) = 0. Therefore, 

Piz) ^ Co +-- (99.8) 

1 -t-- 

1 

If two C-fractions have one and the same power series expan¬ 

sion P{z), they must evidently agree in the constant term Cq, 

Assuming that they agree up to and including the ytth partial 

quotient, it is easy to prove that they must agree in the {k + l)th 

partial quotient, and hence they agree throughout. 

If we put Jp{z) = ap^o + ap^iZ + (7^,2^^ + * ■ *5 and equate 
coefficients of corresponding powers of z from the 0th to the 

jpth, inclusive, in (99.4), where Sp is the degree of Ap{^^ we 

obtain the following formula for determining Ap{z)\ 

^2,py ' ' *) ~ (^0,7^^ ^l,py ^2,py ’ * ’) (99.9) 

/Coy Cl, r2^ • • -V 

0, C03 Cl, 

0, 0, COy 

\ ... I 
We remark that the relations (99.7) serve also to determine 

the power series P(z) when the C-fraction is given. 

Example 1- Let P{z) = 1 — 2^ + 2^, a polynomial. We find 

that <*i = — 1, ai = 2, <22 = 1, a2 = 2. Then, P2 = 1 + 2^5 

and, by (99.7) with /> = 2, k > ai + 02 = 4, we have 

(0,1,0) (0,0,1) 

so that <?3 = — 1, 02 = 2, P3 = 1, and the process terminates 

Hence, we have 
2^ 

1 - 2^ + 2^ = 1-5 
Z‘‘ 

1 + 
2 2 
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Example 2. Consider the following C-fraction: 

1 + 
1 + 

1 + 
1 +• 

(99.10) 

in which ap = 1, — P> P — 1> 2, 3, • • •. We first compute the 
first few denominators: 

Boiz) = 1, Biiz) = 1, Boiz) = 1+2^ 

Baiz) = 1 +2^ + 2*, • • •• 

By means of (99.7) we then readily find that the power series 

expansion P(z) of (99.10) is, to 31 terms: 

P(z) = 1 + 2 - 2^ + 2® + 2® - - 22"* + 22'® + 22" - 2'^ 
— 32'" — z'* + 32'® + 32'® — 22'^ — 52'® — 2'® + 62^® 

+ 52^' - 32^2 - 6223 - 2z^* + 82"® + 722® - 52^7 

- 1222® - 2223 ^ 13230 (9911) 

Example 3. Let P{z) = 1 + zP'(z), where P{z) is the series 

(99.11). We find by means of (99.7) that the C-fraction for 

P'{z) is, to 8 partial quotients. 

(99.12) 

1 + 

1 + 
1 - 

1 + 
1 - 

1 + 
1 +• 
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One might conjecture that the next partial numerators are 

—2^, +z^y +z^, -2^ • • •. It is not difficult to prove that 

this conjecture is correct. This can be done by multiplying 

(99.12) by 2, adding 1, and taking the even part of the resulting 

continued fraction. This gives a continued fraction whose 

sequence of approximants is easily seen to be the same as the 

sequence of approximants of (99.10) with the 0th approximant 

omitted. It then follows immediately that the power series 

expansion of (99.10) is 1 + zP\z)y where P\z) is the power series 

expansion of (99.12). 

It can be shown that the corresponding result holds for any 

C-fraction whose exponents ap satisfy the inequalities 

n?2 + «4 + * * * + <^2p+2 > + «5 + * * * + Oi2p-^l 

> ^2 + + • * * + Oi2py 

= 1,2,3, [14.] 

Example 4. Let the coefficients ap and exponents ap in the 

C-fraction (99.2) satisfy the relations 

25+1-2*^ + 1 ~ (*”1)^ + 

Py ^ 1 > 2, 3, * • *. 

ap.2Q+l-.29-\-l — + 

Then the power series expansion of the C-fraction is + 

C2Z^‘^ + CsZ^^ + * • •, where 

Xi = 0^1, Xp 2Xp — 1 ai 4“ P ' y 

2 2 (99.13) 
^3 ^p — 1 ^2^-1-fl 

Cl aiy C2 y cp > P 4, * • •. 
Ui Ui 

Conversely, if we are given a power series with gaps such that 

(99.13) holds, then the C-fraction can be written down by means 

of the above formulas. For the proof, see [85, § 3]. 

100. Regtilar C-fractions and Power Series. A C-fraction and 

its power series expansion are called regular if every approximant 

of the C-fraction is a Fade approximant of the power series. 

This property is dependent upon the degrees Sp and tp of the 

numerators and denominators of the C-fraction, and upon the 
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exponents ap. In fact, if we compare (95.3) with (99.4) we find 

immediately that the C-fraction (99.2) is regular if, and only if, 

there exist integers Tp such that 

«! + + • * • + ^p + 1 
rp >0y ^ = 

— T‘p-\~Sp-\-tp-\’ 1, 

0, 1,2, .... (100.1) 

If this condition is satisfied, it follows from Theorem 98.1 that 
the ^th approximant Ap{z)/Bp{z) of the C-fraction occupies all 

the squares of a block Qp of order 

Tp in the Fade table, and occurs 

nowhere else in the table. We 

shall investigate properties of the 

geometrical configuration in the 

Fade table which is formed by 

the sequence of blocks (Jo, 01, 

02, 
If p = 0, then j'o = ^ = 0, so 

that the order of 0o is ro = 
«i — 1 > 0. The block 0o has 

vertices (0, 0), (0, ai), (ai, 0), 

(ai, ai). Since Si = ai, = 0, 

then ri = ^2 1 ^0- The ver¬ 
tices of 01 are (0, ai), (0, ai+a2), 

Fig. 14. (^2, «^i), («2, + «2). Since 
^2 = Oi2y «ind .5‘2 <^1 “f" it fol- 

lows that 02 lies below 0i. Moreover, it is easily seen that the 

lower side of 0i and the upper side of 02 have a line segment in 

common. We shall now proceed to show that the blocks Qp fit 
together as shown in Fig. 14. 

The co-ordinates of the vertices of Qp are 

(/p, Sp)y (/p, S p Vp 1), {tp V p 1, Jp), 

{tp “f“ fp "f* l,.^p “f" 't'p T* !)• 

IS! ■ ■ ■ ■ ■ ■ ■ 1 ■ ■ r i ■ ■ ■ E ■ ■ ■ ■ '■I p ■ ■ ■ ■ ■ ■ ■ ■ ■ tk 5 ■ ■ ■ ■ i ■ ■ ■1 ■ ■ ■ ^3 ■ ■ ■ i □ is ■ ■ ■ i ■ ■ 1 m H ■ III ■ i ■ i m m P E ■ ■ m ■ ■ EE i ■ ■ ■ ■ -O ■ ■ ■ i 1 ■ i ■ ■ ■ ■ i ■ J 
_ s ■ ■ ■ 1 ■ ■ ■ ■ ■ ■ ■ ! E n . 

6 

— 

hor all points on the diagonal connecting the second and third 

of these vertices, the sum of the co-ordinates is i^p + /p + rp + 1. 

By (100.1), this sum increases with increasing p. Hence, as 

Qp and 0p-fi do not overlap, it follows that for any given p either 
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> Sp rpy (100.2) 
or 

^p+i > tp + rp. (100.3) 

By the fundamental recurrence formulas it then follows that 

Sp^i = Sp_i + ap^iy (100.4) 

or 

^p-\-l ~ ^p — \ ^p-\-ly (100.5) 

according as (100.2) or (100.3), respectively, holds. Therefore, 

Sp^i - (sp + rp) = tp - (/p_i + rp„i) > 0, (100.6) 

if (100.2) holds, while 

~ (^P + ^p) = ^P ~ (^P-i + ^P-i) > 0, (100.7) 

if (100.3) holds. One may now readily show by mathematical 

induction that 

/) = 1, 2, 3, (100.9) 

(100.10) 

+ l ^ '^2p + ‘^2;>-f-2 ‘^2p+l + ^2p + ly ^ = 0, 1, 2, * • *. 

hp + l ^ ^2p + ^2py 4p-f2 > ^2p4-l "h ^2p-hl> (100.8) 

Hence, by (100.4) and (100.5), 

•^2p-i = ai + aa + • • • + a2p-iy 

^2p = OC2 + + ' • • + a2py 

Then, by (100.1), 

1 + j'2p + ^2p = «! + as + • • * + «2p + lj 

1 + hp-\ + ^2p-\ = a2 + a4 + • * • + «2p5 

or 

•^2pH-l = ^2p + ^2p H“ ^ 
/> = 1,2,3, .... (100.11) 

^2p — hp—\ “r ^2p—i “r 1) 

Turning now to the Fade table (Fig. 14) we draw the a-polygon 

0VqViV2 ••• with vertices 

0 = (0, 0), Vo = (0, aO, 

V2p^i = (^2 + «4 H-h a2p> ai + as + . • . + a2p-\)y 

^2p = {oL2 + ^4 + * . . + a2p5 «! + as + . . . + a2p+l), 

p = 1,2,3, .... 
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By (100.9) and (100.10), the vertices of Q2p are 

W2v = («2 + «4 d-h ^*2^)3 ^2p> 

“ (^2p "4” ^2p "4“ ^) *^2^)3 

f^2p = (4p + ^2p + 1, «l + 0^3 + • • • + af2p + l), 

and the vertices of !32p+i are 

f^2p4-l = (^2i>4-l3 + ’ * • + <^2p + l)3 

'f^2pH-l “ (^2p-fl3 ‘^2p-f-l 4“ ^2p+l *4" 1)3 ^2p + l3 

2p + l («2 + <^4 + * * * + 0^2P3 ^^2^ + 1 + ^2p + l + !)• 

Thus, the ce-polygon forms part of the boundary of every block 

Qj,, By (100.8) we see that Qp and Qp^i have a line segment dp 

of the a-polygon as common boundary. 

Let L{k) denote the straight line whose equation is y = a* + ^. 

Then it is clear that there exist one or more integers kp such that 

the lines L(kp) and L(1 + kp) have points in common with the 

line segment d2py the common boundary of Q2P and Q2p-ri* 

The principal diagonal of Q2p lies on or below L{kp)y and the 

principal diagonal of Q2P+1 lies on or above L(1 + kp). Hence, 

we see that fF2p must lie on or below L{kp)y i72p+i must lie on 

or above L{\ + kp)^ V2p must lie on or above L(1 + ^p), and 

V2P+1 must lie on or below L{kj). These statements are equiv¬ 

alent to the following inequalities: 

(a) 32p ^ t2p “I" ^p3 

(b) J2P+1 > /2P+1 + kj^+\, = 0, 1, 2, .... (100.12) 

(c) ^2p+l ^ hp + + 1, 

(^) ^2p-\-l ^ ^2p-\-2 “b kpy 

We shall now prove that the necessary conditions (100.9) and 

(100.12) are together sufficient for regularity. We suppose that 

(100.9) holds, and that integers k^^ ^1, ^2> • * * exist such that 

(100.12) holds. Then S2p “h t2p ~ ^2p “b <^2 “b d" • • • “b 0L2p ^ 

^2p + + «2 + <^4 d-b oc2p ^ ^2p-\-i ~ 1 d“ <^2 “b 0:4 d” • • • 
d” ^2py OI* 

‘i2p d” ^2p d- 1 < «i d" «2 d— • "b «2p+i- 
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Similarly, S2p+i + = ai + ag 4-h aap+i + hp+i < 
Oil + as + •*•+ «2p+i + S2P-1.1 — kp — \ < «! + as +■••• 
+ OL2pJ^l + ^2p+2 or 

^2p + l + /2p-f 1 + ^ :< «1 + ^>^2 + * • * + a'2p42- 

Consequently, (100.1) holds, so that the C-fraction is regular. 
We have proved the following theorem. 

Theorem 100.1. The C-fraction (99.2) is regular ij^ and only if^ 

integers kp can be found such that (100.12) holds andy in additiony (1(X).9) 
holds [14]. 

101. a-regular C-fractions. If (100.9) holds, and there exists 
an integer ^ > 0 such that the straight lines L(J<) and L(1 + If) 
intersect all the line segments dpyp — 0, 1, 2, • • •, then the C-frac¬ 
tion and its power series expansion are called a-regular. We shall 
prove the following theorem. 

Theorem 101.1. The C-fraction (99.2) is a-regular and only ify 

there exists an integer ^ > 0 such that 

ai + as + • • • + ^ ^>^0 + ^2 + ^4 + * * ‘ + a2p + + 1, 

a2 + a4 + • * • + «277-{-2 ^ «1 + «3 + «5 + • • • + a2pj^l — ky 

0,1,2,..., (101.1) 
where ao = 0. [14.] 

Proof. If (99.2) is a-regular, then (100.12) holds with kp = ky 
p = 0, 1, 2, .... Hence, by (100.9) and (100.12) (c), (d), we 
conclude that (101.1) holds. 

If, conversely, (101.1) holds, then we shall prove by mathe¬ 
matical induction that 

^2p k < /2p = n:o + a2 + a4 + * • • + OL2py 

p = Oylyly ^ (aQ = 0), 
^ + 1 + /: 2p—l < S2p~-i = ai + as + • * • + a2p- 

(101.2) 
ly 

^ = 1, 2, 3, ..., 

from which it will follow immediately that (99.2) is a-regular. 
The first relation (101.2) holds for p = Oy since > 0. Since 

Scott and Wall [85] investigated C-fractions for which (101.1) holds with ^ = 0. 
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Si = Oily ti = 0, ^2 niax (ai, = a2> we readily verify 

(101.2) for ^ = 1. Assuming that the relations hold for p < 

« > 1, we shall prove them for ^ + 1. From the funda¬ 

mental recurrence formulas we see that J‘2n+i = niax (j‘2n, 

•^271-1 + «2n-Hi) if -^271 7^ ‘^277-1 + <^2n+i. But, by our assumption, 

^2n ^ k + a2 "h + * * * + <^271 and, by (101.1), ^“2/1—1 + 0^27?+! = 

Ol-l + 0^3 + ‘ * * + ^^2n + l > ^2 + 0:4 + • * * + ^^271 + SO that J’27i + 1 
= 0:271+1 + *^271-1 — oi + 03 + * • * + 02n+i* Again, /271+1 < max 

(/271J ^277—1 4“ 02/7+1)5 so that 

+ 1 + ^277+1 
+ 1 + hn 

l>t + 1 + hn~l + Oi2 

< OJi + O3 + • * * + o:2/j+i = .^277 + 1. 

Next, since ^277+2 = rnax (/277+15 hn + 02/7+2) provided /2/7+1 

hn + 0:2/7+25 we conclude that /271+2 = 02 + 04 + • • * + 02/7+25 
inasmuch as, by what we have just proved and (101.1), /2/7+1 < 

Oi + O3 -f- • • • -f- 0:277 + 1 — k l< 02 + 04 +*** + 02/7+2 = 

t2n + 0:2/7^ 2- Finally, we have 

•^277 + 1 

•^277 “f" 02/7+2 

< 02 + 04 + • ' ' + 02/7+2 + = ^271+2 + k. 
The proof of Theorem 101.1 is now complete. 

Regularity depends in general upon the coefficients and the 

exponents o^ of the C-fraction. The conditions (101.1) involve 

only the exponents Op, so that o-regularity depends upon only 

the exponents Op. 

The condition for o-regularity can be formulated in terms of the 

coefficients in the power series expansion of the C-fraction, using 

for that purpose Theorem 98.3. These conditions involve the 

determinants A^n,//, and are somewhat complicated [14]. 

102. Concluding Remarks on the Fade Table. It is difficult to 

appraise the significance of the Fade table in the theory of con¬ 

tinued fractions and power series. We feel that any appraisal 

must await further and deeper investigations. We might be 

permitted to conjecture that the nature of the ^^blocks” in the 

table have a bearing upon the nature of the function represented 
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by the power series. Consider, for example, a series with “Hada- 

mard gaps.” Then the sequence of blocks along the upper border 
of the table have orders equal to the sizes of these gaps. Perhaps 

any power series whose Fade table contains a sequence of blocks 

whose orders increase sufficiently rapidly represents a function 
with a natural boundary. This conjecture is supported by several 

examples. For instance, the continued fraction of Ramanujan 
m 

1 

1 + 
1 + 

1 + 
1 +• 

represents a function having the unit circle as natural boundary 
although the power series does not have Hadamard gaps. The 

gaps are “concealed” further down in the Fade table. The same 
is true of the continued fraction [85] 

1 

1 + 
az 

1 + 
az 

1 + 
az 

1 +• 

at least if m is odd and a 9^ 0, and if m is even and a < 0, {a real). 
Another example which leads to interesting speculations is as 

follows. The continued fraction 

1 

1 + 
2 

1 + 
2 

1 + • 

has a normal Fade table, and represents an algebraic function. 
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By suitably changing the signs in the sequence of partial nu¬ 

merators, this can be made the continued fraction for the series 

1 + z + 2^ + 2^ + 2® + 2^® H— *, which has the unit circle as 

natural boundary [54]. This is a special case of Example 4, § 99. 

We have not touched upon the horizontal files of the Fade 

table. If P{z) is a power series representing a function having 

only polar singularities on its circle of convergence, then the 

horizontal files of the table are closely connected with the investi¬ 

gations of Hadamard's [25] thesis. Using Hadamard’s results, 

de Montessus de Balloire [8] proved the following theorem. 

Let P{z) be a power series representing a Junction which is regular 

for I 2 I < i? exceptfor m poles within this circle. Then the {m + l)st 

horizontal file of the Pade table for P(z) converges to P{z) uniformly 

in the domain obtained from | 2 | < R by removing the interiors of 

small circles with centers at these poles [8]. 

Perron [69] gives an interesting example of a power series P{z) 

having a finite or even infinite radius of convergence for which 

the second horizontal file in the Fade table diverges over an every¬ 

where dense set in the circle of convergence of the power series. 

Considerable attention has been given to the problem of deter¬ 

mining explicitly the numerators and denominators of the Fade 

approximants of a power series P{z) satisfying a differential 

equation 

L{z)P\z) + M{z)P{z) + N{z) = 0, 

in which L(z), M(2), N{z) are polynomials. Laguerre [43] showed 

that the problem can be reduced to the problem of determining 

other polynomials which are essentially simpler than the nu¬ 

merators and denominators of the approximants. However, 

according to Perron [69], the actual computation has been success¬ 

fully carried out in but three particular cases. In two of these, 

the approximants can be obtained by much easier means. (Cf. 

Exercise 20.9.) We should like to emphasize the main idea in 

Laguerre’s theory. If P{z) satisfies the differential equation 
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then the wth approximant, y/„(z)/5„(z), of the J-fraction for 
P(z) satisfies the differential equation 

L(z) 
dw 

dz 
+ M{z)w + N{z) 

where Gn{z) is a polynomial whose degree is at most one unit 

more than the largest of the degrees of L{z)y M{z) and N{z), 

This can be proved very easily by eliminating P{z) and P'{z) 

from the set of equations 

LP' + MP + N == 0, 

BnP - yin = 

BnP' + BnT - An' = Z^^^’^Qu 

where Q and Qi are power series, and the third equation is obtained 

from the second by differentiation with respect to z. 

Exercise 20 

20.1. Let ^1, /22, • • *, (ik{k > 1) be real or complex numbers different from zero, 

let Wi, W2, * ’ ’, be positive integers, and let m be an integer > 1. The con¬ 

tinued fraction 

1 +* 
aix^^ 

1 + 
1 +• 

• + 
a/cX^^ 

1 +* 

1 + 
TT~ 

1 + 
aix'^ 

1 +• 

represents a function/{x) which is analytic for | ^ | < 1, with the possible excep¬ 

tion of poles, and satisfies the functional equation 

f( \ + akX^^Jk-2M 
/ix^)Bk-i{x) + akX^^Bk~2{x)' 

[85.] 

20.2. If there is a point xo = upon the circle | ^ | = 1 where/{x) is analytic, 

then /{x) is a meromorphic function of x, [85.] 



414 ANALYTIC THEORY OF CONTINUED FRACTIONS 

20.3. Let j = 1 or —1 if the exponents Wp are all odd, and j = 1 if any of them 

is even. Put 

Z(j) = l^jfcCO - Bk~i{s) 4- Jk-i{sW ~ 4( — s)^aia2 • • • ak. 

Then/(x) has the unit circle as natural boundary if the are real, Bk—\{s) 0, 

and Z{s) < 0. [85.] 
20.4. If a is real, the function 

/(^) = 1 + • 
1 +■ 

1 + 
1 + 

1 +• 

{m > 1), 

has the unit circle as natural boundary if (a) m is odd and <3 5^ 0, or (b) m is even 

and a < 0. [85.] 
20.5. Let u and v be parameters, u 7^ and m an integer > 1. Then the 

continued fraction 
j_{u + v)x 

j_(« - 
^ _ {u + v)x^ 

{u — v)x'^ 

(7+1^ 

represents a function having the unit circle as natural boundary if u and v 
are real and u > If is odd, the same holds if « < —i^— [85.] 

20.6. Let P{z) = 1 + 4z^ + 62®. Show that 

1 
P(2) 

and 

and hence show that the zeros of P(z) are in the domain .63 < | 2 | < 1.08. 
(Cf. Exercise 10.8). 

20.7. Investigate the questions of convergence and the character of the limits 

of the diagonal files of the Pad6 table for a series P(2) = fo + ciz + + • • • 
which has a real J-fraction expansion [118]. 

1 + 
42^ 

1 - 

1 + (1)2“ 

1 + (l)2‘ 

1 - 
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20.8. Let P{z) be a power series having a real J-fraction expansion. Let 
P{z) be Borel-summable over a domain G. Then, in the Pad6 table for P{z)y 

all the diagonal files which start on the upper border of the table converge uni¬ 
formly over every finite region whose distance from the real axis is positive, to 
a function F(z) which is the Borel sum of the series in G [120]. 

20.9. Apply Theorem 96.1 and the results of Exercise 18 to obtain continued 
fractions whose approximants fill all the squares [py p + k]y for sujfficicntly large 
ky in the Pad6 table for a power series satisfying the differential equations of 

Exercise 18. 
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for denominators, 55 
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with five diagonals, 334 

J-fraction, 103 
bounded, 110 jf. 
equal to power series, 208 
equivalent function of, 231 
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