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PREFACE

The present volume brings to a close the task undertaken some

ten years ago of writing a series of volumes on various aspects of

mechanics. The first volume dealt with the subject of statics

and the dynamics of a particle, the second with the theory of

the potential, and the present volume deals with the dynamics of

rigid bodies. In this volume references to Statics and the

Dynamics of a Particle are indicated by the roman numeral I

followed by the section number, and to the Theory of the

Potential by the numeral II and the section number.

It is assumed that by the time a student undertakes a study

of the dynamics of rigid bodies his mathematical training is well

advanced. The three laws of motion as given by Newton furnish

the foundation for the entire structure. Two methods of develop-

ment are in common use: the intuitive, or geometrical, method,

leading to the invention and development of the theory of vectors,

and the purely analytic method that results from the equations

of Lagrange and of Hamilton, ^th of these methods are used

in the present work, as they were in studies in statics and the

d3rnamics of a particle in the first volume. Analysis, hqwever, is

indispensable even in the intuitive method. But analysis by
itself is incomplete without intuition. A mere mathemaitical

formula is meaningless unless it is accompanied by an inter-

pretation that makes it really worth while.

The subject of small oscillations, as it is called in many books,

really infinitesimal oscillations, is extended here to the finite

periodic oscillations, known as the periodic solutions of Poincar^.

Lack of space forbids the development of solutions that are

reentrant only after many periods, and of solutions that are

asymptotic to periodic solutions. The same reason also forbids

a treatment of the figures of equilibrium of rotating fluid masses,

which, I think, properly belongs in this volume, for such bodies

move just as though they were rigid.
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DYNAMICS OF RIGID BODIES

CHAPTER I

ALGEBRA OF VECTORS

1. Introduction.—In the volume on “Statics and the Dynamics
of a Particle” vectors were defined as directed magnitudes which
combine in accordance with the parallelogram law, and were
denoted by bold face type, thus A, B,

C, a, b, c, etc. Graphically they are

represented by arrows. Thus in Fig.

1, the sum of A and B is C, since C is

the diagonal of the parallelogram of

which the sides are A and B. The
other diagonal D drawn from the terminus of B to the terminus

of A is the difference between A and B. Thus

A + B = C,

A - B = D.

C is said to be the vector sum of A and B, and D is the vector

difference.

Inasmuch as the combinations of vectors in addition and sub-

traction obey the associative, commutative, and distributive

laws of algebra, the usual notation of algebra for these operations

can be used, and the vectors in these operations act like algebraic

magnitudes.

A scalar is a quantity which possesses magnitude but not

direction, like the numbers of arithmetic. Thus the length of

the vector A (its tensor) is a scalar and, to distinguish between

the vector A and its tensor, the tensor will be denoted by the

italic letter A.

The multiplication of a vector by a scalar merely alters the

length of the vector without changing its direction. Inasmuch

as the vector character is not changed, the laws of algebra hold

1

Fio. 1.
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for vectors with scalar multipliers for the operations of addition

and subtraction. For example, the equations

2A + B = M,
A + 2B = N,

in which M and N are expressed in terms of A and B, can be

solved for A and B in terms ofM and N, just as though the vectors

were algebraic quantities, giving

3A = 2M - N,

^ 3B = ~M + 2N;

for the solutions require only the operations of addition and
subtraction, together with multiplication or division by scalars.

2. Scalar Multiplication of Vectors.—There are two types of

vector products, one of which is a scalar and the other a vector.

The scalar product is represented by a dot between the two

vectors. Its value is the product of the tensor of one of the

vectors into the tensor of the projection of the second vector

upon the first; thus

A . B = B . A = cos AB. (1)

As an example, it will be remembered that the work done by a

force A in a displacement B is

AB cos AB = A • B.

From the definition of a scalar product it follows that

cos AB =
;

and if a and b are any two unit vectors, it is seen that

a • b = cos ab.

Consequently, if i, j, and k are three mutually perpendicular

unit vectors.

i . i = j . j = k • k = I,"!

i
. j = j . k = k . i = 0./

(2)
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Scalar Multiplication Obeys the Distributive Law .—^Let A, B,

and C be three vectors such that, Fig. 2,

A + B = C,

and let D be any fourth vector, not necessarily in the same plane.

Let da, ob, and oc be the projections of A, B, and C upon the line

of D. Then ^ = dCj since the projection of B upon the line of D
is independent of the position of

B. Now

D • C = DC • cos Db = D • oc

= Z)(oa + dc) = D(6a + ob)

= DA cos AD + DB cos DB
= D • A -f- D • B,

and therefore Fia. 2.

D . C = D . (A + B) = D • A + D • B, (3)

which shows that the distributive law holds for scalar multiplica-

tion.

It is a simple matter to generalize and show that

(Ai + A 2 + * •
* + An) • (Bi + B 2 + * •

• Bm)

= Ai-Bi + Ai.B2+ • •
• + Ai-B^

+ A 2 • Bi + A2 • B2 + *
* + A 2 • Bm

+
+ An • Bi + An • B2 + •

• + An • Bm*

In particular, if i, j, and k are mutually perpendicular unit

vectors, and if

A = xii + yii + zik,

B = X2i + y2i + Z2K
then

A • B = xiX2i • i + Xiy2i •
j + xiZ2i • k

+ yiX2i • i + yiy2i • j + yiZ2i • k

+ ZiX2k • i + Ziy2k • j + Zizj£ • k
= X 1X2 + yiy2 + ziZi, by Eqs. (2).

^

(4)

Example .—Consider the triangle formed by the three vectors

A - B = C.
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On taking the scalar product of C into itself, there results

C • C = (A - B) • (A - B) - A . A - 2A . B + B . B.

Hence

= A2 + £2 - 2AB cos AB,

which is the cosine law of trigonometry.

3. The Vector Product of Two Vectors.—The vector (or cross)

product of two vectors is indicated by the ordinary multiplication

sign (X) placed between the symbols of the two vectors, thus

A X B = AB sin AB,

and, since the angle AB is opposite in sign to BA, it is evident that

A X B = -B X A.

The commutative law is not obeyed, and careful attention must
be paid to the order of the letters.

It is seen in Fig. 3 that AB sin AB represents the area of the

parallelogram of which the vectors A and B form two of the sides.

Any plane area can be represented by a vector which is perpen-

dicular to the plane and whose

tensor is equal to that of the area.

Hence A X B can be represented

by a vector C which is perpen-

dicular to the plane of A and B
and whose tensor is

C == AB sin AB.

If the vector B in Fig. 3 is drawn with its origin at the terminus

of A, the arrows of the vectors indicate a counterclockwise

circuit of the boundary of the area; but, if the origin of A is at

the terminus of B, the arrows indicate a clockwise circuit of the

boundary. An area is regarded as positive if the circuit is

counterclockwise, and negative if the circuit is clockwise. If a

point describes a circuit in a plane, the area thus bounded is

positive on one side of the plane, and negative on the other side.

The plane can therefore be regarded as having a positive side

and a negative side. This understanding is always implied
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in the statement that the projection of any closed surface upon

any plane which does not intersect the surface is zero.

The projection of any plane area A upon any plane is the same

as the projection of its vector A upon the normal to the plane,

since the angle between the two planes is the same as the angle

between the two normals. Consequently the vector sum of two

plane areas is the projection of the two given areas upon a plane

which is perpendicular to the vector sum of their two vectors.

Since the projection of any closed polyhedral surface upon

any plane which does not intersect the surface is zero, it follows

that the sum of the projections of the vectors A», directed out-

ward, which represent its plane faces, upon any line whatever

is zero. Hence the vector which represents such a surface is

zero; and, since a curved surface can be regarded as the limit

of a sequence of polyhedral surfaces, the proposition holds for

any closed surface.

The Distributive Law Holds for Vector Products .—It is desired

to prove that

(A + B) X D = (A X D) + (B X D). (1)

In Fig. 4, let the vectors A, B, and C form a closed triangle,

and let D be any other vector. Let D be placed first at the

terminus of A, then at the ter-

minus of B, and finally at the

terminus of C. In these three

positions the vector D defines a

prism whose vector is zero since

the prism with its two bounding

triangles is a closed surface.

Since the two triangles are equal

and lie in parallel planes, their

vector sum is zero. Therefore

the vector feum of the three sides

of the prism also is zero. That is, if F^, Fi», Fc are the three

vectors which represent these sides,

F^ + Fs “f* Fc ~ 0.

This fact is otherwise obvious, since Fa is perpendicular to A,

Fb to B, Fc to C, and

Fa:Fb:Fc::A:B:C;

and the three vectors are coplanar.
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Now
= A X D,

F* = B X D,

Fc = C X D;

so that, on taking the sum,

0 == (A X D) + (B X D) + (C X D).

But

C = -(A + B).

Hence
(A + B)XD=AXD + BXD,

which is the theorem that was to be proved.

Three Mutually Perpendicular Unit Vectors.—^Let i, j, and k be

three mutually perpendicular unit vectors forming a right-handed

system. Then

iXi = jXj = kXk = 0,

j X k = i,
]

[k Xj = -i, 1

k X i = j, / but <i X k = — j, > (2)

1 X j
= k,j U X i =

Suppose the vectors A and B are expressed in the form

A = xii + yj -f «ik,

B = X2i -f ytj + ztk;

then, since the distributive law holds,

A X B = (xii -I- yij -f Zik) X (xai -f j/2j + Zik)

= xixd X i + xiyii X j + a;iZ2i X k

+ yiXij X i + yiyij X j -f yiZij X k

-f ZiX2k X i -f Ziytk X j -t- ZiZtk X k,

which reduces to

A X B = (yiZ2 — ziyt)i + (ziXt — xiZ2)j -f (xij/2 — yiXt)k; (3)

or in the form of a determinant, which is convenient for the

memory.

A XB =
i

*1

X2

i

yi

yt

k
Zl

Zt

(4)
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The coeflBicients of i, j, and k in this formula will be readily

recognized as the projections of the parallelogram formed by
A and B upon the jk, ki and ij planes respectively.

4. The Scalar Triple Product.—The product A • B C must be

understood to mean (A • B)C, for the reading A • (BC) has no

meaning, since the combination BC has not been defined. Since

(A • B) is a scalar, the product A • B C, notwithstanding that it

involves three vectors, is essentially a simple scalar product.

The product A • (B called tfh^ scQ/'Lclv "product

j

and, since (A • B) X C has no meaning, being the vector product

of a scalar and a vector, the parentheses are not necessary, so

that it can be written simply A • B X C.

The interpretation of the scalar triple product A • B X C is

simple. Since

B X C = D

is the area of the parallelogram defined by the vectors B and C,

Fig. 5, and A • D is the product of D and the projection of A on D,
it is readily seen that A • B X C is the volume of the parallel-

epiped defined by the vectors A, B,

and C. The volume is positive

if A and D lie on the same side of

the BC plane, negative in the d

opposite case. It is positive if

A, B, and C form a right-handed

system as is the case in Fig. 5, and

negative if they form a left-handed

system. If any two of the vectors

A,B, and C are interchanged, the system passes from a right-hand

system to a left-hand system, and the volume changes sign.

If merely the lettering is changed, the vectors themselves

remaining unaltered, the volume of the parallelopiped is unal-

tered. The sign of the volume is unaltered if the change of

lettering is cyclic, that is, in the order A—>B—>C—>A or

A —> C —^ B A. But if only two of the letters are inter-

changed, the sign changes. It is evident therefore that

A-BXC = B.CXA =C-AXB \

= -A • C X B = -B • A X C = -C • B X A./
( 1 )
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A comparison of these expressions shows that the dot and the

cross can be interchanged provided the cyclic order of the letters is

preserved. Since the commutative law holds for scalar products,

A-BXC = BXC-A,

As there are altogether six of these expressions which have the

same value, they can all be denoted by the symbol

[ABC] = A- BXC = B- CXA = C- AXB 1

= AXB.C=BXC.A = CXA.B,/ ^ ’

and

[ABC] = -[ACB]. (3 )

If i, j, k are mutually orthogonal unit vectors, and if

A = a;,i + J/ij + 2ik,

B = xji + ysj +
C = 2:3! + J/ 3j + 23k,

then, by actually carrying out the operations indicated, it is found

that

[ABC] = xiiytzt - yszt) + yiiZiXt - ZzXt) + Ziixty^ - x^yt); (4 )

or, in the form of a determinant,

xi yi zi

[ABC] = X2 yz 2j . (5)

Xi ys 2s

Obviously, for the three mutually orthogonal unit vectors,

[ijk] = -[ikj] = +1. (6)

The scalar triple product vanishes if all three of the vectors are

coplanar, if any two of them are collinear, or if any one of them
vanishes.

5 . The Vector Triple Product.—The vector triple product is

written

A X (B X C).

It is the vector product of two vectors, one of which is itself a

vector product. The vector B X C is perpendicular to the plane
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which contains B and C, assuming that B and C have the same

origin. The vector A X (B X C) is perpendicular to A and to

(B X C) and therefore lies in the plane of B and C. If v? is the

angle between A and the normal to the plane which contains

B and C, then the tensor of A X (B X C) is ABC sin BC sin

Likewise the vector (A X B) X C = — C X ^ X B) lies in the

plane of A and B, and its tensor is ABC sin AB sin where

is the angle between C and the normal to the

plane of A and B. Therefore in general

A X (B X C) (A X B) X C.

The parentheses are important, and cannot

be omitted.

Consider first two coplanar vectors A
and B. Let Bi and B 2 be the components of

B perpendicular to A and parallel to A
respectively, Fig. 6. Since Bi/5i is a unit vector per-

pendicular to A

(A X B) X A = A^B sin >0

= A^Bi
= A • A Bi.

Hence the component of B which is perpendicular to A can be

written

B, = (2)

The component of B which is parallel to A is

B. -^ A. (3)

Consequently

Bi + B, = B = ^ A.A • A A • A
Whence

(A X B) X A = A . A B - A . B A; (4)

and similarly

BX(AXB)«B.BA-A-BB.



10 DYNAMICS OF RIGID BODIES

Consider now three coplanar vectors A 2 ,
B, and C. Since they

are coplanar (I, 16),^ there exist scalars h and c such that

A 2 = &B -t“ cC.

Hence

A 2 X (B X C) = 6B X (B X C) + cC X (B X C)
= -f'6B • C B — 6B • B C "1“ cC • C B — cC • B C>

by Eq. (4).

Therefore

A 2 X (B X C) = +A2 • C B - As • B C. (5)

Finally let A be any vector in space. Let Ai be its component

perpendicular to the plane of B and C, and As its component in

the plane; so that

A = Ai Asi

and

A X (B X C) = Ai X (B X C) + A 2 X (B X C).

But

Ai X (B X C) - 0,

since Ai is parallel to B X C. It can be written

Ai X (B X C) = Ai • C B - Ai . B C,

since

Ai • C = Ai • B = 0.

(6)

On taking the sum of Eqs. (5) and (6), itjs seen thali in general

A X (B X C) =1 A • C B ~ A - B G. -/ (7)

The scalar triple product [ABC] is unaltered by cyclical

permutations of the letters, but if the letters in the vector triple

product are circularly permuted, the vector itself is altered; in

such a way, however, that

A X (B X C) + B X (C X A) + C X (A X B) ^ 0,

^ References to ‘‘Statics and the Dynamics of a Particle’^ will be denoted

by the roman numeral I, the number following being the section number.

References to the “Theory of the Potential” will be denoted by the roman
numeral II.
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as is readily verified by means of Eq. (7). That is, the sum of

all the circular permutations of the vector triple product vanishes.

6. Any Vector in Terms of Three Reference Vectors.—Let

A, B, and C be any three non-coplanar, non-vanishing vectors;

then any other vector R can be expressed in terms of A, B, and C
and certain scalars. Thus

R = aA + feB “h cC, (1)

if a, 6, and c are properly chosen numbers (I, 17).

Let Eq. (1) be multiplied by • (B X C). It then becomes

R • (B X C) = aA . (B X C) + fcB . (B X C) + cC • (B X C).

Since the vector B X C is perpendicular to both B and C, the

last two terms of this equation vanish, and there remains

RBXC = aA-BXC,

or

[RBC] = a[ABC].

Therefore

[RBC]
“ = [ABC]5

and similarly,

_ [RCA] _ [RAB]

[ABC]’ [ABC]'

If these values of a, b, and c are substituted in Eq. (1), there

results

[RBC] [RCA]
,

[RAB],

[ABCr [ABC]" [ABC]^

On multiplying through by [ABC] and taking all terms to the same
side of the equality sign, there results the symmetric form

[ABC]R - [BCR]A + [CRA]B - [RAB]C = 0. (3)

Now

[RBC] = R . B X C, [RCA] = R • C X A,

and

[RAB] = R . A X B,
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so that Eq. (2) can also be written

'-(«• 1^)-^ + (« • + (* •

If the ABC system of vectors is an i, j, k system, that is, a

mutually orthogonal system of unit vectors, then

[ijk] = 1, j X k = i, k X i = j, i X j
== k,

and Eq. (4) becomes

R = (R . i)i + (R . j)j + (R.k)k. (5)

7. The Reciprocal System of Vectors.—The three vectors

_BXC u_CxA _AXB ,,,
* [ABC] ’ [ABC]

’ ^ ~
[ABC]

’ ^

which are perpendicular to the planes of B and C, C and A, and

A and B respectively, are an interesting system of vectors that is

associated with the system A, B, C, provided A, B, and C are

non-vanishing and non-coplanar vectors. They are known as

the reciprocal system of the system of vectors A, B, C. Using this

system of vectors also, Eq. (6.4) becomes

R = R.aA + R.bB + R.cC. (2)

From the definitions, Eq. (1), it is readily seen that the scalar

product of any two corresponding vectors of the two systems is

A-a = B-b = C-c == 1; (3)

and that the product of any two non-corresponding vectors is

zero. That is,

A'b = A*c = B«a = B*c = C*a = C*b = 65 (4)

and therefore A is perpendicular to the plane of b and c, B is

perpendicular to the plane of c and a, and C is perpendicular to

the plane of a and b.

Equations (3) and (4) show that if a, b, c is the reciprocal

system of A, B, C, then A, B, C is also the reciprocal system of

a, b, c. Suppose it were not so and that the reciprocal system of

a, b, c were Ai, Bi, Ci, different from A, B, C. Then the equations

Ai • a = Bi • b « Cl • c == 1,
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Ai *1) — Ai • c — Bi • a — • c — Ci • a — Ci • 1) = 0

also would hold. That is, Ai is perpendicular to the plane of

b and c, and therefore collinear with A. Furthermore

A • a = 1 and Ai • a = 1.

Hence

Therefore

(A - Ai) • a = 0.

Ai = A,

and is not different from it, as was supposed. One concludes

therefore that a necessary and sufficient condition that the

systems of vectors A, B, C and a, b, c be reciprocal systems is that

they satisfy Eqs. (3) and (4).

8. Vector Equation of a Plane.—If A is a fixed vector and R is a

variable vector which has the same origin

as A, the equation

R.A = a (1)

obviously represents a plane if a is a

fixed scalar. For
0

R
. j = ft cos RA = 2 (2)

is the projection of R upon the line of A. If the plane Pa is per-

pendicular to A at a distance a/

A

from 0, and if the terminus of

R lies in Fo, it is evident that. Fig. 7,

R • A = a.

This equation, therefore, can be regarded as a vector equation of

the plane Pa-

Two such equations,

R • A = a and R • B == 6, (3)

however, can be satisfied only by the line of intersection of the two
planes which the equations represent. Hence Eqs. (3) represent
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a straight line in space. If the vectors A and B are collinear, the

planes Pa and Ph will be parallel and Eqs. (3) will be incompatible

unless

a b

A

in which case Eqs. (3) are essentially identical.

If three such equations are given, namely,

R*A = fl, R*B = 6, R*C = c,

and if the vectors A, B, and C are non-coplanar, the vector R is

restricted to the point of intersection of the three planes, and is

completely determined.

If a, b, c is the system of vectors reciprocal to A, B, C, then, by

Eq. (6.4),

R = R.Aa + R.Bb+R.Cc,
or

R = aSL + bh + cc,

or again

R = R- aA + R.bB + R.cC.

Vectors.—Suppose the vector r is a

continuously varying vector, and that,

its origin remaining fixed, its terminus

describes a certain curve (7, so that r

is a function of the time. Let ii, Fig. 8,

be the position of r at the time h, and

let T2 be its position at some subsequent

time < 2 . If the time interval <2 — ==

At is small, the vector

Ar = 12 - Ti (1)

quotient

—
At

is the average rate of change of the vector r in the interval

ti to ^ 2 - In accordance with the usual methods of the calculus,

9. Differentiation of

also will be small. The
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the limit of this expression as <2 tends toward ti is the derivative

of r at the instant ti. That is,

lim
At

At
(2)

That this limit, which, when t is the independent variable, will

be denoted by r', is a vector which has the direction of the tangent

to the curve C at the position ii is obvious.

Let a, b, c be any three non-coplanar, constant vectors and let

r = na + r2b + r^c. (3)

Since r varies with the time, and a, b, c do not, it is clear that

ri, r2 ,
and rs are functions of the time, and that

r2 == Ti + Ar = (ri + Ari)a + (r2 + Ar2)b + (ra + Ar3)c. (4)

Consequently, on subtracting Eq. (3) from Eq. (4),

Ar = Aria + Ar2b + AraC,

from which it follows at once that

*
dt
= r' r/a + r2'b + r^c. (5)

In a similar manner, it follows for the second derivative that

g = r" = r/'a + r/'b + (6)

and so on, for derivatives of any order. In particular if i, j, and k
are unit vectors having the directions of the a:-, i/-, and ;2:-axes of

a rectangular system

T = xi + yi+zkj
r' = x' i + 2

/' j + 2^' k,

r" = :r"i + i/"j + 2"k,

Example .—Suppose a particle describes a space curve in such

a way that its radius vector is

r = a cos ^ + b sin ^ + ntc. (7)

Its velocity is (I, 28)

r' = —a sin f + b cos t + nc, (8)
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and its acceleration is (I, 31)

r" = —a cos ^ — b sin t + Oc. (9)

If n is zero, the curve described by the particle is a plane curve,

which is evidently an ellipse; for if its coordinates parallel to a

and b are A and By referred to the same origin as r, it is seen that

A = a cos ty B = b sin t,

and therefore

which is the equation of an ellipse of which a and b are conjugate

semidiameters.

If n is not zero, the particle can be regarded as moving in an

ellipse, the plane of which is moving uniformly in the c direction,

remaining always parallel to its initial position, with the velocity

nc. That is, Eq. (7) represents an elliptical helix.

By combining Eqs. (9) and (7), it is seen that

r" = — r + ntCf

which is a vector differential equation, the right member being

the component of —r which is in the a, b plane. Hence the

acceleration of the particle is always toward the center of the

moving ellipse.

10. Differentation of Vector Products.—Suppose A and B are

vectors that vary with the time. The derivative with respect

to the time of the scalar product A • B is

|(A . B) - Ita (*.± • <? +
at »

0

Since

(A + AA) • (B -f- AB) = a • B “f- a • AB + B • AA *-|- AA • AB^

it is seen that
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. B) = A . B' + B . A'. (1)

Thus the derivative of the scalar product is formed just as the

derivative of the product of two functions is formed in the

differential calculus.

The same rule holds also for the derivative of the vector

product of two vectors, only in this case the order of the factors

must be preserved, since the vector product does not obey the

commutative law. That is,

j^{A X B) = (A' X B) + (A X B'). (2)

Likewise

^(A . B X C) = (A' • B X C) + (A • B' X C) + (A . B X C'),

(3 )

and

^[A X (B X C)] = A' X (B X C) + A X (B' X C)

+ A X (B X C'), (4)

their derivation being quite similar to that of Eq. (1).

11. Applications to Geometryt—The above results are valid

whatever the independent variable may be, but the accents can-

not be used to denote the derivatives with respect to other

variables, since the notation would not indicate what the inde-

pendent variable is.

Suppose s is the length of the arc of a curve described by the

terminus of r measured from some convenient point. Then

dr Ar ,= hm — = t.
ds A« » 0

Since, Fig. 8, Ar is the chord of the arc As, and, since the limit

of the ratio of these two variables, as As diminishes, is imity,

it follows that t is a unit vector tangent to the curve at the

terminus of r. It is not a constant vector notwithstanding that
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its length is always unity, for its direction changes as the terminus

of r moves along the curve. The equation

t • t = 1 (2)

however holds at all points of the curve. On differentiating

Eq. (2) with respect to 5, there results

Hence

dX
___

ds ds^

is a vector which is perpendicular to t, since its scalar product

with t vanishes, and, since it lies in the

osculating plane of the curve, it is collinear

with the principal normal.

It is seen from Fig. 9 that, if is the

angle through which the tangent has turned

in the distance As, the length of At is 2

sin (AO/2), since the length of t is unity.

Hence in magnitude

dt _ 2 sin (A^/2) _ dO _ 1

ds A9 ">o ds p

where p is the radius of curvature. Hence, if n is a unit vector

directed from the terminus of r toward the center of curvature,

then

dt _ dh _ n

ds ds^ p
(3 )

and dt/ds = dh/ds^ is called the curvature.

If b is a unit vector in the direction of the binormal, then t, n,

and b is a right-handed rectangular system of unit vectors, and

b = t X n. (4)

The Normal Derivative ,—Suppose

<p{x, y,z) = C
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is a certain surface. It was shown in II, 64 that the derivative

of the function ^ normal to this surface is the direction in which

the values of the function ^ are changing most rapidly, and the

normal derivative is denoted by the symbol dipfdn.

If the direction cosines of the normal are X, jXy and Vy the deriva-

tives of (p with respect to Xy y, and z are related to the normal

derivative by the equations

d(p _ dip

dx dn

dip
__

dip

dy ^dn

dip _ dip

dz ^dn

Now let i, j, and k be unit vectors in the x-y y-, and z- directions

respectively. Multiply the first of the above equations by i,

the second by j, the third by k, and add. There results

But

Xi + j + yk = n

is a vector which has the direction of the normal; and it is a

unit vector, since the sum of the squares of its components is

equal to unity. Hence

I

dx ^dy
+k|f

dz (5)

is a vector which has the direction of the normal and in magnitude
is equal to the normal derivative. Or, if preferred, it is the

derivative in the direction in which the function ip is changing

most rapidly.

For the sake of brevity the operator

.d
,

.d
,

1^ b i'E b
dx dy

is denoted by the symbol v (an inverted Greek capital delta)

which is called del in the vector analysis of Gibbs-Wilson. Thus

V<P
dx ^dy dz’

(6)
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from its significance, it is obviously independent of the particular

rectangular coordinate system which is used.

In particular, if V {iCj y, z) is a potential function, it is evident

that the force which is acting at any point P is the vector W
at that point (see II, 27). It will be observed that F is a scalar

function of position (a*, y, 2), while VF is a vector function of

position.

12. Applications to Kinematics.—Suppose an origin 0 is chosen.

The position of a particle with respect to 0 can be defined by

means of a vector r, whose origin is at 0 and whose terminus is

at the particle. The velocity of the particle was defined at I, 28

as the rate of change of its position. Hence, if v is its velocity,

r' = V, (1)

since r' also is its rate of change of position.

Similarly, if a is its acceleration, or the rate of change of its

velocity (I, 31), then

a = v' = r".

If m is the mass of the particle, its momentum is

(2 )

my = mr',

and since force is the rate of change of momentum, by Newton^s

second law, the force acting on a free particle is

f = my' = wr", (3)

since the mass is assumed to be constant.

Consider the motion of a particle which is moving in a circle

of radius r. Let r be its vector of position referred to the center

of the circle. The equation of the circle is

r • r - rS (4)

where the scalar r is constant, although the vector r is not

constant. If Eq. (4) is differentiated with respect to the time,

there results

r-r' r • V = 0. (5)
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If neither r nor v is zero, this equation states the geometrically

obvious fact that the velocity v is perpendicular to the radius

vector r. If Eq. (6) is differentiated, it is found that

r • r" + r' • r' = 0. (6)

If the speed of the particle is constant,

r' • r' = i>2, and r' • r" = 0.

The vectors r and r", therefore, are collinear, but oppositely

directed, and

r • r" = —ra\

so that Eq. (6) gives the result

a = ~y
r

in agreement with the expression for the acceleration given for

uniform circular motion in I, 39.

In uniform circular motion the acceleration is always directed

toward the center of the circle. In general the acceleration

vector lies in the osculating plane (I, 266), which coincides with

the plane of motion when the curve described by the particle

is a plane curve. If the acceleration is resolved into components

along the tangent, normal and binormal, the binormal component
is always zero.

In order to find the general expressions for the tangential and

normal components, take the formula

r' = V = ft, (7)

where

t; == «'

is the speed. On differentiating Eq. (7) with respect to the time,

there results

r" = v' = t;'t + vt\

i . * dt cts n
and t' = 3- -jT ®

as di p

Now
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by Eq. (11.3). Hence

a = r" = s"t + —n,
P

which shows that, in magnitude, the component of the accelera-

tion along the tangent is s", and along the normal is v^/p.

If a particle moves in such a way that its moment of momentum
is constant, a case that is of much interest, its momentum is

wv, and its moment of momentum with respect to the origin 0,

is (I, 133)

M = mr X V.

If M is a constant, there results by differentiation

m(r' X V + r X v') =0.

Since r' = v, it is seen that r' X v is zero by itself. Hence

r X (wv') = 0,

which reduces to

r X f = 0,

since mv' is the rate of change of momentum, or the force.

This result shows that the force which is acting always lies in the

line of r, or, stated otherwise, the force is a central force.

13. Integration of Vectors.—Integration, regarded as the

inverse of differentiation, proceeds in much the same way as in

the integral calculus, and difficulties of the same type are encount-

ered. If

A' = B',

it is not difficult to understand that

A = B + C,

where C is a constant vector; that is, C is independent of the

time. Of course, such an expression as

A' - B

would have no sense, since a vector cannot equal a scalar. But

if
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where B is a constant vector, the general integral is

23

A = -}“ Cf

where C is a constant vector.

Falling Bodies ,—In the case of a falling body, for which the

acceleration is constant, the equation of acceleration is

r" = g;

therefore

r' = g/ + a,

and

r = + a/ + b, (1)

where a and b are constant vectors that play the r61e of constants

of integration. The vector b is the value of r at ^ = 0, and a

is the value of r', or the velocity, at ^ = 0. This result can be

translated into the familiar form in rectangular coordinates by
taking

r = a:i + 2/j, g = a = Xoi + y^h b = Xoi + ^oj.

Equation (1) then becomes

xi + T/j = {x^'t + xo)i + + 2/0) j,

and therefore

X = Xot + Xo,

y = + yot + 2/0 .

Simple Harmonic Motion ,—In simple harmonic motion the

acceleration is always directed toward the origin and is pro-

portional to the distance. In this case

r" = (2)

This is a linear vector differential equation of the second order.

In analogy with the ordinary differential equation, one is led to

suspect that the solution is

r == A cos kt + B sin kt^ (3)

where A and B are any two constant vectors; and on substituting

Eq. (3) in Eq. (2) it is found that the differential equation is
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satisfied. Equation (3) is therefore the general solution of

Eq. (2), since it contains two arbitrary vectors. As was seen in

Sec. 9, Eq. (3) represents an ellipse in which A and B are con-

jugate semidiameters.

Keplerian Motion .—If a free particle is attracted towards a

fixed point by a force which varies inversely as the square of its

distance from the point, its acceleration equation is

where is the factor of proportionality. On multiplying both

sides of this equation by r X ,
the right side vanishes, since

r X r = 0.

The left side then gives

r X r" = 0.

To this, add

and there results

r' X r' = 0,

(r' X r') -f (r X r") = 0,

or

(r X r')' = 0.

Hence,

r X r' = h, (5)

where h is a constant vector which represents the moment of the

velocity, or twice the rate at which the radius vector sweeps over

areas. Equation (6) shows that the particle moves in a fixed

plane.

The vector product of Eqs. (4) and (5) gives

r" X h = -^r X (r X r')

= -i“(r . r' r - r . r r'), by Eq. (5.7).

But

r . r = r*.
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and, by differentiation,

r • r' = rr';

hence

r" X h = —%(rr't - rV),

which can be written

(r' X h)' =

On integrating, this equation becomes

r' X h = + e&y

where a is a constant unit vector and e is an arbitrary scalar. The

vector a lies in the plane of motion,

as is indicated in Fig. 10.

Now let Eq. (6) be multiplied

by r • . There results

r • (r' X h) = ^

(7)

and since, Eq. (4.2), Fio. lo.

r • r' X h = r X r' • h = h • h = A®,

(6)

and

Eq. (7) reduces to

r . r = r^,

A® = A®(r + re cos fi).

If a new constant p is introduced by the relation

A® = A®p,

there results finally the general equation of a conic referred to its

focus, namely,

r
P

1 + € cos
where ^ = fi.
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The vector a, evidently, is directed toward the perihelion point.

The Energy Integral .—In case there exists a potential function

V{Xy y, z), the equation of motion of a single particle becomes

[Eq. (11.6)]

mr" = VF .dV
,
.dV

,
,dV

dx dy ‘ dz

Multiply this equation by r' •, and it becomes

mi'
. r" = r' • VF.

Now

(8)

(9)

and

r" = iW • r')',

r'.VV = {x'i + y'i + z'k) •

aF
, ,

aF
, ,

aF

,

dx dy dz

= V',

so that Eq. (9) can be written

im(r'.r')' - F',

which, on integration gives

. r - F =

where E is the constant of integration. The negative of the

potential function F is the potential energy; ^mr' • r' is the

kinetic energy; and E, the total energy, is a constant. For

the Newtonian law of force with the center of force at the origin,

F =
r

14. The Differential Equation of the Orbit for a Central

Force.—The method of the preceding section is particular in

that it applies only to the inverse square law. But the differen-

tial equation of the orbit for any central force can be obtained

by vector methods in the following manner.

Let f be any function of position, that is, in polar coordinates, a

function of r and d; and let p be a unit vector which has the
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direction of r. Then the differential equation of motion for any
central force can be written

mr" = /p. (1)

If / is negative the force is attractive, and if / is positive the force

is repellent. On multiplying both sides of Eq. (1) by r X there is

obtained

r X r" = 0, since r X p = 0.

Hence, on integrating,

r X r' = h, (2)

just as in Sec. 12. This equation shows that the motion is in a

plane perpendicular to h. Now let

1
w == —

r

Then, since

1 , 1
,

r = -p, r = —gp H—p ,u u

Eq. (2) becomes

p X p' = w^h. (3)

Let 6 be the angle in the plane of motion which gives the direc-

tion of r. Then

In a unit circle, the ds of Eq. (11.1) is the same as d$. Hence

p' =

where t is a unit vector in the plane perpendicular to p, and, if p is

a unit vector perpendicular to the plane of motion,

P X 9' = X t = e'p.

Hence p X p' is the angular velocity, and Eq. (3) then gives

p' = hu^, since h = Ap. (4)
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The expression for r' can now be written

_/ _ 1 ^ ^9or

u^d0 ^ u d6

,du . , dp=

= + hut,

and

But, by Eq. (11.3),

[ , dt

'^d^^ + ^“de
]«•

dd
= n = -p,

so that the expression for the acceleration reduces to

On comparing this expression with Eq. (1), it is seen that

is the differential equation of the orbit, just as in I, 284.

(5)

(6)

Problems

X. The vectors Ai and Bi have the same origin. Ai and Bs have the same
origin, and likewise As, and Bs. If Ai + As + As *= 0, and if

Bi = iiAi -h (^i l)As,

Bj = ^sAj + (tj — l)Ai,

Bs == /sAs + (h — 1)A2,

the condition that Bi, Bs, and Bs shall be concurrent is

iMt » (1 - liHl

2. A and B are two sides of a parallelogram and C and D are the diagonals.

Prove that

C* + D* * 2(A* + B*),

and

C* - D* = 4AB cos
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3. The condition that two non-vanishing vectors are parallel is that their

cross product is zero; and the condition that they are mutually perpendicular

is that their scalar product is zero.

4. If

A ~ ttiL -f" ^^2^ -4" ttsNj

B = 6,L 4- 62M -h 63N,

C = ciL 4“ 4“ C3N,

show that

«! at aa

[ABC] = 6, 62 hz [LMN].

Cl C2 Ca

6.

By regarding the scalar product of two vectors, each of which is a

vector product of two vectors (A X B) • (C X D), as a scalar triple product

of the three vectors A, B, and C X D, namely,- A X B • (C X D), show that

(A X B) • (C X D) = A . C B • D ~ A • D B • C.

6. If A, B, C, and D are unit vectors with the same origin, they define a

quadrilateral on a unit sphere. Let A be the terminus of A, B the terminus

of B, etc., and, finally, let AB and CD be the diagonals of the quadrilateral.

Show that the interpretation of the formula in Problem 5 leads to Gauss’s

theorem for the spherical quadrilateral, namely,

sin AB sin CD cos I ~ cos AC cos BD — cos AD cos BC^

where I is the angle of intersection of the diagonals.

7. Show that

(A X B) X (C X D) = [ACDIB - [BCD]A = [ABDjC - [ABCID.

8. Show that, if i, j, and k are mutually orthogonal unit vectors,

i X (i X i) - 0, i X (i X j)
- -j, i X (j X k) = 0.

9. Show that the i, j, k system of vectors is its own reciprocal system.

10.

If A, B, C and a, b, c are reciprocal systems, show that

1
[ABC] -

[abc]

11.

The equations

R . A - aA, R . B = &B,

represent two planes. Let C «= A X B so that C = AB sin where 6 = AB.

Show that the vector equation of the straight line in which the two planes

intersect is

aAB • B
[ABC]

hBk • B^ ^ bBA' A — aAk • B,

[ABC]
'B -f t{k X B)

a — b cos 6 A
,

h — a cos ^B
, -dn

A + “"sm*

where t is a variable parameter.
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12. The scalar triple product [(A X B)(B X C)(C X A)] is equal to

[ABC]=*.

13. Also

[(A X P)(B X 0)(C X R)] + [(A X Q)(B X R)(C X P)]

+ [(A X R)(B X P)(C X Q)] s 0.

14.

The tortuosity of a curve T is the limit of the ratio of the angle through
which the osculating plane turns to the length of the arc; that is, it is the

magnitude of dh/ds, taken negatively, however. Show that

T = ds ds^ J

ds^ ‘
ds^

15.

If the origin of the velocity vector is a fixed point, the locus of its

terminus is called the hodograph. If i and j are unit vectors which have the
directions of the x- and t/-axis respectively, show that the hodograph for

Keplerian motion is

r' - ^[—sin -f (e + cos 0)j]

and that this locus is a circle.

16. For simple harmonic motion the force equation is

mr" =

Integrate this equation and show that the hodograph is an ellipse which is

similar to the path of motion.

17. If p and t are unit vectors in the direction of r and perpendicular to it,

show that the components of the velocity in plane motion along r and per-

pendicular to it, respectively, arc

r'9 and

and the components of the acceleration are

(r" ~ and (r0" + 2r'd%

18. If a, b, and c are constant vectors, and I is a parameter which can be
regarded as the time, show that the equation

r = + b

represents a straight line, and that

r = + ib + c

represents a parabola.



CHAPTER II

MOMENTS OF INERTIA

16. Definition of Moment of Inertia.—In treating the motion

of finite bodies, or systems of particles, two types of integrals

arise which belong essentially to the geometry of the body.

The first type, which defines the center of gravity of the body, or

system of particles, arises when the translation of the system is

considered. These integrals were discussed at sufficient length

in I, 76-91; but the second type of integrals, viz,, the moments
and products of inertia, which were discussed briefly in I, 91-99,

are worthy of further discussion. Both types belong to the

general class of inertial integrals

which was defined in II, 60; i, j, and k being positive integers, or

zero. For centers of gravity

i + j + jfc
=

and for moments or products of inertia

i “f" j “f” k — 2

The moment of inertia of a system of particles with respect

to a plane, line, or point is the sum of the products of the mass

of the particle into the square of the perpendicular distance from

the particle to the plane, line, or point (or merely the square

of the distance in the case of a point). If nii are the masses of

the particles and p* are the perpendicular distances mentioned,

the moment of inertia has the form

I = mipi^ + m2P2^ + • '
• + rrinPn =

If the system of particles forms a continuous body this sum
passes over into the definite integral,

/ = J^P^ dm.

31
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If ly, is the moment of inertia with respect to the yz-plane,

then

or fx^dm,

and similarly,

I,x = or fydm,

Ixy “ or J^z^ dm.

The moments of inertia with

respectively are

respect to the x-, y-, and 2~axes

Ix = + 2(2), or + 2 *) dm,

ly = 2:m((2(2 + X(2), or
J^(2*

+ dm,

I, = Sm,(a;.-2 + j/,*), or + y2) dm.

From these definitions it is evident that

/x

h
I.

hI xy + lyzj

lyz + /»!.

The moment of inertia with respect to the origin is

/o = + Zi’^), or

~ -fyjr Jtx “f“ xy

= + /y + /.).

+ 2/^ + z^) dm,

Since the choice of the coordinate system is entirely arbitrary,

it is seen from these relations that:

The moment of inertia with respect to any line is the sum of the

moments of inertia with respect to any two mutually perpendicular

planes which pass through that line.

The moment of inertia with respect to any point is equal to the

sum of the moments of inertia with respect to any three mutually

perpendicular planes which pass through that poird, or one-half

the sum of the moments of inertia with respect to any three mutually

perpendicular lines which pass through that point.
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16. Products of Inertia.—Similar expressions which involve

tfie products of the coordinates are called products of inertia.

They are

l^miViZi, ZrriiZ^Xi, 'LmiXiyi,

and can be denoted by Pyj and P, respectively. Since

(y
- ^ 0

,

it is evident that

and therefore

(y^ + z^) ^ 2yz,

J^(y^
+ ^ 2

) dm ^ 2j^yz dm,

that is

/x ^ 2P,;

and similarly,

Iv ^ 2P„
/. ^ 2P„

and

lo > (Px +Py+ P,).

17. The Radius of Gyration.—Suppose that the entire mass

M of the body, or system of particles, is concentrated into a

single particle of mass M at a distance k from the plane, line, or

point, with respect to which the moment of inertia is /. If k

is chosen so that

Mk^ = /,

it is called the radius of gyration with respect to that plane, line,

or point.

The principal radius of gyration is the radius of gyration with

respect to a parallel plane or line which passes through the center

of gravity.
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18. The Principal Radius of Gyration Is a Minimum.—Let

I be the moment of inertia with respect to a given axis, which

will be taken as the z-axis of a coordinate system. Let k be the

radius of gyration of the body with respect to this axis and

fco the radius of gyration with respect to a parallel axis through

the center of gravity, so that ko is a principal radius of gyration.

Let xoj 2/0, Zq be the coordinates of the center of gravity, and

^ = ^0 + ^ = 2/0 + 77, z = Zo + f

;

so that rj, and i* are the coordinates with respect to the center

of gravity. Then

Mko^ = + ^.2
)^

and

= I,mi7}i = = 0 .

Also

Mk^ == + Vi^)

= Smi[(xo + + iyo + Vi)^]

= Smi($<2 + rji^) + M(xo^ + yo^) + + 2y()I.mir)i,

If p is the perpendicular distance between the two axes, then

= ^0^ + 2/0^

and the above expression reduces to

= Mk^ + Mp\

or

P = k,^ + (1)

Since p^ is always positive or zero, it follows that a principal

radius of gyration is smaller than the radius of gyration for any

other parallel axis.

If k is the radius of gyration with respect to a plane, fco the

radius of gyration with respect to a parallel plane through the

center of gravity, and p is the perpendicular distance between

the two planes, Eq. (1) still holds, and the principal radius of

gyration is a minimum.



18
]

MOMENTS OF INERTIA 35

Similarly, if k is the radius of gyration with respect to a point,

fco is the radius of gyration with respect to the center of gravity,

and r is the distance between these two points, it is found that

k^ =

and the radius of gyration with respect to the center of gravity is

smaller than the radius of gyration with respect to any other point.

For the products of inertia it is easily shown that

^rUiXiyi = Mxoyo + SmifiTji,

that is, the product of inertia with respect to any two perpen-

dicular axes is equal to the product of inertia with respect to a

parallel set of axes through the center of gravity plus the product

of inertia with respect to the original axes of a particle of mass M
situated at the center of gravity. Since the product Xoyo may
be either positive or negative, there is no minimum principle

involved.

19. The Direction of the Axis Varies.—In the preceding sec-

tion it was shown how the moment of inertia varies from any
axis to any parallel axis, the constant element being the direction

of the axes. In the present Section the constant element will

be a fixed point 0, and attention will

be directed to the changes which

occur in the moment of inertia as the

direction of the line through 0
changes.

Let the point 0 be taken as the

origin of a system of rectangular

coordinates. Fig. 11; let OL be any

line through 0, and a, /?, y be its

direction cosines. Let a be any Fiq,

point of the body with the coordin-

ates X, y, z; ab = p the perpendicular from the point a to the line

OL] and r the distance Oa, Then

p
2 = ^2 _ ^2

(1 )

The direction cosines of the lines r and OL are, respectively,

X

r*

y
r^ r

tx, /3, y.
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If CO is the angle between these two lines, then

cos (0 == a—|- p—h y-f
r r

and

Ob = r cos <j3 = ax + + yz.

Hence, from (1),

p
2 = (^.2 4- 2^2 ^ 2:

2
)
_ + 7 -2)^

== (^2 + 1/2 + 22)(^2 + ^2 ^ 2
)
_ 4. ^2/ + 72 ) ^

since

^2 4. ^2 4. 72 1

On expanding, it is found that

p2 ^ ^2(^2 4. ^2) 4- ^2(^2 4. ^2) 4 -^2(^2 4 y
2
)

— 20yyz — 27 af2:a: — 2a^xy.

If the mass of the particle at a is m, the moment of inertia

of the system of particles, or the body, with respect to the line

OL is

II = Smp2 = a^Xm(y^ + z^) + + x^) + y'^Xm(x‘^ + y^)

— 2fiyXmyz — 2yal^mzx — 2afiZmxy.

Let

A = llrn(y^ + B = ^m{z^ + x^), C = 2;m(x2 4- y^)^

D = 2mi/2
,

E = Sm2:x, F = I,mxy.

(2)

These quantities are the moments and products of inertia of

the body with respect to the coordinate axes, and are therefore

independent of the direction of the line L, With this notation

then,

'^mp^ IL Aa^ + + Cy^ — 2Dfiy — 2Eya — 2Fa^, (3 )

and the moment of inertia with respect to the line L is thereby

expressed in terms of the direction cosines of L and the moments
and products of inertia of the body, or system of particles,

with respect to the coordinate axes.
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20. Cauchy’s Ellipsoid of Inertia.—The relation Eq. (19.3)

can be represented in a simple manner to the intuition by taking

a point P on L at such a distance from 0 that

. ^ MX*
(1)

where M is the total mass and X is an arbitrary length. Then,

on setting,

OF = p, pa == pfi = v> py = (2)

Eq. (3) becomes

Ae + - 2Z)r7f - 2En - 2Pf)? = MX*. (3)

This is a central conicoid which, evidently, is an ellipsoid, since

the moment of inertia is essentially positive, and therefore p

is always real and finite. There is but one possible exception

and that is the moment of inertia of a straight line with respect

to itself. In this case the ellipsoid of inertia is an infinitely long

cylinder which has the given line as its axis.

This ellipsoid is called the momental ellipsoidj or the ellipsoid of

inertia. It was introduced by Cauchy,^ but owing to the skillful

use made of it by Poinsot, it is sometimes called Poinsot's

ellipsoid of inertia. Since the surface is an ellipsoid, there exists,

in general, a direction for which the moment of inertia is a maxi^

mum and one for which it is a minimum, these directions corre-

sponding to the minimum and maximum axes of the ellipsoid.

In order to find the values of the moments of inertia which

correspond to the axes of symmetry of the ellipsoid, consider the

direction cosines of the normal at a point f of the ellipsoid.

If the equation of the ellipsoid is Vy f) = 9, the direction

cosines of the normal are proportional to

d(p dip

df' dri^

and the direction cosines of the radius vector to the point under

consideration are proportional to rj, f . At the ends of the axes

Cauchy, ^^Exercices de Math6inatique,*' Vol. II, p. 93 (1827).
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of symmetry the direction of the normal coincides with the direc-

tion of the radius vector. Hence, at these points,

— Fti — __ Bri — Z)f — jpf _ j

i V ^

or, on account of Eq. (2),

Aa — Ffi — Ey ^ — Dy — Fa _ Cy — Ea —
__ j

a 7

If the numerator and denominator of the first of these ratios is

multiplied by a, the second by jS, and the third by y, then, since

<2l CL2 0,S 0>l Cii O'S

hi 62 63 i>i + 62 + 63

it is found that the common value of these ratios is /. The
following three equations then follow easily:

{A - I)a -Ffi -E7 = 0,

-Fa + (B - I)fi -Dy = 0,

-Ea -Dfi + (C - I)y = 0.

In order that these three linear equations may be compatible,

it is necessary, since a, /3, and 7 cannot all be zero, that the

determinant shall vanish. That is,

(A - I) -F -E
-F {B - I) -D =0. (4)

-E -D (C - I)

The three values of I which are determined by this cubic equa-

tion are the moments of inertia of the body with respect to axes

which coincide with the three axes of symmetry of the ellipsoid

of inertia at the point 0. If the direction of the axes of reference,

which up to this point have been arbitrary, are chosen in such a

way as to coincide with the axes of symmetry of the ellipsoid,

Eq. (3) reduces to

Ae + Bv^ + Cr" = M\\ (5)

and therefore the products of inertia, D, E, and F, referred to

these axes, all vanish; it will be observed also that the roots of

Eq. (4) become A, J5, and C, as, of course, they should.
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Lines which coincide with the axes of symmetry of the ellipsoid

of inertia at the point 0 are called the principal axes of inertia

at the point 0, and the moments of inertia with respect to these

lines are called the principal moments of inertia at the point 0, If

the point 0 is the center of gravity of the system, the ellipsoid is

called the central ellipsoid of inertia. If the ellipsoid of inertia is

a spheroid, every axis in the plane of its equator is a principal

axis; and if it is a sphere, every axis through the point 0 is a

principal axis.

It is evident that if a body has three planes of symmetry which
are mutually perpendicular these three planes are the principal

planes of the central ellipsoid of inertia.

Imagine that the ellipsoid of inertia at the point 0 has been

drawn. The moment of inertia of any line OL which passes

through O and intersects the surface of the ellipsoid in the point

P is

II
M\^ _
OP^ p

"
’

It is evident from this that II is a maximum when p is a

minimum, and conversely. Furthermore, if a, f), and c are the

semiaxes of the ellipsoid, with respect to which Ay By and C are

the moments of inertia, and if

A < B < Cy then a > b > c.

Example 1.—It is seen from I, 98, that if the edges of a right

parallelopiped are 2Sxj 2>Sy, 2Sz and are parallel to the x-, y-y

and ^-axes respectively, the principal moments of inertia of the

central ellipsoid are

A =

B =

C =

M\^
a^

M\^

M\^
C2

+ -Sx*),

M
f + Sy^).

For an ordinary brick the dimensions are 8, 4, and 2 inches.

The axes of the central ellipsoid expressed in inches, X = 1 inch,

are

a = vT = 0.775,

h = = 0.420,

^ ~ ~ 0.388.
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Example 2.—For a homogeneous ellipsoid, the corresponding

results are (II, 48)

A = + S.»),

= y(-s.» + 5.*),

C' = + Sy^).
c o

If Sxi Sy, and are the same for the parallelepiped and the

ellipsoid, the central ellipsoids for the two bodies are similar, since

the axes are proportional. The long axis of the ellipsoid of

inertia is the same as the long axis of the body, and the short axis

of the ellipsoid of inertia coincides with the short axis of the body.

For a cube, or a sphere, or any regular polyhedron, the central

ellipsoid of inertia is a sphere.

21. Not All Ellipsoids Are Possible.—If a, &, and c are the axes

of the ellipsoid of inertia, and if, for definiteness,

then,

A i B

a ^ b ^ c.

From their definitions, Eq. (19.2), it is evident that the sum of

any two of the three quantities A, B, C is greater than the third,

equality not excluded; in particular

A + B^C.
If Cm and By are the eccentricities of the ellipsoid in the planes

2 = 0 and y = 0 respectively, it is found that

, B-A ^ , C- A ,,,6/ = — and Cy^ = —^ (1)

Starting with the inequality

1 ^ 1 ^ 1

B-C^A+B'
multiply through by —A and add +1 to each member; there

result the inequalities

^ C - 4 ^ B
^—c^^r+TB (2)
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or, Eq. (1),

0 g c.* g c,* ^ (3)

That is, for a given value of the values of €y are restricted.

This result is shown graphically in Fig. 12, the shaded area

representing the possible positions of

the point The lower limit

is attained, as is seen from Eq. (1),

if B == C; and the upper limit is

attained if

A+ B C.

In the first case, B — Cy the ellip-

soid of inertia

Ae + Brj^ + = M\^ Fig. 12.

is a prolate spheroid about the {-axis, and its eccentricity may
have any value from zero to one; that is, the prolate spheroid

may be anything from a sphere to an infinitely long cylinder, the

latter being attained if all of the particles lie on a straight line.

In the second case, A + = C, it is necessary that, Eq. (19.2),

Smz* = 0,

which means that all of the particles lie in the xy-plane, or, in the

case of a continuous body, is a disk of some sort.

The third limiting case is e,* = 0, or A == J5. In this case the

ellipsoid is an oblate spheroid. It is evident from the diagram,

Fig. 12, that the maximum value of is one-half. Hence, while

there may be prolate spheroids with any degree of prolateness

from a sphere to an infinitely long cylinder, the oblate spheroids

range only from the sphere to the spheroid of maximum oblateness

(V2 - 1)/V2.

22. A Property of the Central Ellipsoid,—In order that the

;?-axis, say, may be a principal axis of inertia at the origin, it is nec-

essary that the products of inertia which are linear in z should

vanish; that is

D « Zmyz = 0, E = Smxz == 0. ( 1 )
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Suppose these conditions are satisfied at a certain point 0, and

that Oi is any other point on the 2-axis at a distance h from 0. In

order that the 2-axis may be a principal axis at Oi it is necessary

that

I,mx(z — A) = 0, 'Lmy{z — A) = 0,

and therefore

h'Zmx = 0, h'Emy = 0.

These conditions are satisfied if, and only if, the 2-axis passes

through the center of gravity of the system.

Theorem,—A principal axis of inertia of the central ellipsoid is a

principal axis of inertia for all of its points. Conversely, if any

axis is a principal axis of inertia for any two of its points, it is a

principal axis of inertia for all of its points, and it passes through

the center of gravity,

23. Envelope of Planes with Respect to Which the Moment
of Inertia Is Constant.—Let the coordinate system be chosen so

as to coincide with the principal axes of the central ellipsoid of

inertia. Let the moments of inertia with* respect to the coordi-

nate planes be

Md^ = Mh^ = l^my^, Mc^ = Xmz^,

where M is the total mass of the system. The moment of inertia

with respect to the plane

+ vv + = 1 ( 1 )

is

Mk^
(uXj + vyi + wZj — ly

+ v^ +
On expanding the numerator of this expression and bearing in

mind that by virtue of the choice of coordinate axes

Smx = 'Zmy = 'Zmz = 0,

2m2/2 = Sm2X = l,mzy = 0.

there results

Mk^ = Ma^u^ + MbV + Mc^w^ + M
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Cleared of fractions this becomes

43

- a^) + v^{k^ - 60 + “ cO = 1, (2)

a relation that must exist between the given constant fc and the

coefficients of Eq. (1). It is evident that k^ must be greater

than the smallest one of the three quantities a^, 6^, c^.

On account of this relationship, Eq. (2), the coefficients u, v,

and w can be regarded as functions of two independent parameters,

Qi and Qz. On taking

Eq. (2) takes the familiar form

^ ^ (3 )

Since Eq. (3) represents a conicoid, I, 363 suggests the para-

metric representation

,,J = - gO
(a^ - - T*)

'

, ^
-

g2)

(0^ - - T^)
'

,,,2 = - qi)(y’‘
-

ga)

(7* - «*)(7* - 0^)

The elimination of qi and q2 between the three equations

/(»., «.) - 1, - 0, - 0,

where f(qi, q^) is the left member of Eq. (1), gives the envelope

of the planes which satisfy Eq. (2). These three equations are

+ vrj + = 1
,

-
5
—^ + -T^—w'f = 0,

a* - gi /3* - gi 7 * - gi

-r~—

+

:5r~— *'’> H— — “’f = 0,
a* - g* 0^ - qt 7* - gs

which are linear in u^, vij, and wf. By subtracting the first col-

umn from each of the second and third, removing common factors,
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and then repeating the operation, it is found readily that the

determinant is

j. ^ (gg - - 7^)(g2 - qi)

(g2 - qi){a^ - - qi)(fi^ - q2){y^ - qi)(y^ - ^2 )

The solution follows easily

w*
af = -)

a

t;2 ^ V

=
J,>

or

w'^ w
II II J

7" 7

and the substitution of these results in this last column in Eq. (3)

gives the desired eliminant

+ + = 1;

or, in terms of the original constants a^, c^, and

The envelope, therefore, is a surface of the second order, or a

conicoid. Through any given point 0($, 77 , f) there pass three

of these surfaces which are mutually perpendicular, and the

values of the parameter for these three surfaces are the three

values of which satisfy Eq. (4).

Let these three roots be denoted by ki^, k^^, For definite-

ness these quantities can be arranged in order of magnitude as

follows:

0 < c2 < A:j2 < 62 < ki^ < o2 < ki\

Then these surfaces are

e
h

’'* +
>2

fc,* - c*
“ ^ (ellipsoid).

t,' - o'
^h + =1 (hyp. of one sheet),

. (6)

kt* - a*
^h +

>2
^ = 1

fc,* - c*
(hyp. of two sheets).
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The tangent planes at a point F(io, voy fo) are respectively

J

fcl»-

[

^

^ fc,* -

fof , VoV
1,

fof

k2^ — a^ -

fof
1. Von

•r; H
fof

Y 0 0

== 1 (ellipsoid),

= 1 (hyp. of one sheet),

= 1 (hyp. of two sheets).

> (6 )

24. Binet’s Theorem.—It is possible now to prove the very

beautiful theorem due originally to Binet.^

The three principal planes of inertia at the point P({o, ’yo, fo)

are the three planes which are tangent to the three confocal conicoids

which pass through the point P(fo, ^o, fo); and the moments of inertia

with respect to these three planes are Mki^, and Mkz^

respectively.

Since the f-axes coincide with the principal axes of

inertia at the center of gravity, it will be recalled that

= Ma\ Xmrj^ = Mb\
= 0

,
= 0

,
Xm^rj = 0

,

Smf = 0, Xmrj = 0, Smf == 0.

Let a new system of axes be taken with its origin at the point

^0 , Voi f 0 with the x-axis normal to the ellipsoid, the y-axis normal

to the hyperboloid of one sheet, and the 2:-axis normal to the

hyperboloid of two sheets. The equations of transformation are

{ = ^0 + (XlX + a2y + OCsZy\

= ^70 + PlX + 02y + > ( 1 )

f = fo + y\X + 722/ + 732.

j

Since the direction cosines ai, . . . , 73 in this transformation

are proportional to the coefficients in Eqs. (23.6), it is easily

verified that

ai = Pi
fo

ki^ - a^^
a2 = P2

fo

k2^
(Xs == ps

fo

O _ Vo a Vo ^ _ rjo

7i = Pi
fo

ki^ — c^' ^^k2^ — — c'

Binbt, J., Journal de VScale Polytechnique (1813).

fo = P8T
fo

> (2 )
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where

f.
- + (e^=)’ + (e^)-

Since, from Eq. (2),

oii^o + 0iVo + Ttfo = Pi,

the inversion of Eqs. (1) gives

X - aii + j8i»j + 7if — pi,

y = 0( 2 ^ + fiiV + T 2f “ Pi,

Z = aal + fizv + Taf — Pz-

The moment of inertia with respect to the yz-plane, that is, the

plane tangent to the ellipsoid, is

= Sm(aiJ + /Snj + 7if — pi)^

= Mia^ai^ + + pi^)

= Mp,
,/_a^
\iki^ -

bw
I

, 1
• 9. l.9\9 ' /7- 9. ^9\9 ~l”

1^)2 ' (A;,* - b^y ' (A:i=* - c^)=

But since, by the first of Eqs. (23.5),

)

this reduces to

+
(ky - b’^y

+
(*i“ - c^y

- 1 = 0
,

Smx* = Mkypy\(_Jl_
\{ky - d + +

^y ' {ky - b^y ' {ky - c^)-2),

or

'Zmx^ = Mki^y by Eqs. (3);

and similarly,

= Affc2S

The products of inertia vanish, as is readily verified. The
ellipsoid of inertia at P is, then,

{k2^ + kz^)x^ + {kz^ + ki^)y’^ + {ki^ + k^^)z^ = X^;

its longest axis is normal to the ellipsoid which passes through

P, and its shortest axis is normal to the hyperboloid of two sheets.
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26. The Equimomental Cone.—The intersection of the ellipsoid

of inertia at P with a sphere whose center is also at P defines a

curve L upon the ellipsoid of inertia which has the property that

all of its points are equidistant from P. Hence the cone which is

described by a straight line through P which always touches the

curve L is an equimomental cone, that is, the moment of inertia

with respect to the straight line is constant.

In order to find the equation of this cone, let I be the given

moment of inertia, and a, y the direction cosines of a line

through P with respect to the principal axes of inertia. Then for

any line of the cone

Aa^ + B/3^ + Cy^ = I
= I(a^ + + 72).

Hence

(A - 7)^2 + (B - 7)02 + (C - 7)72 - 0;

or, in rectangular coordinates

(A - I)e + (B -w +(C -
7)f2 = 0, (1)

which is a cone of the second order.

If

A <B <C,

it is evident that

A < 7 < C,

since the terms of Eq. (1) cannot all have the same sign. If

7 is equal to A, the cone degenerates into a straight line which

coincides with the f-axis. If 7 equals C, the cone degenerates

into the f-axis. But if 7 = B, the cone opens out into two planes

which are defined by the equation

26. The Principal Point of a Line.—Given a body, or a system

of particles, B, and any line L, Does there exist on L a point

P{Xf y, z) at which L is a principal axis of inertia for the body B?
Obviously, the point P must lie on the line L, if it exists at all.
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Consider first the case in which the central ellipsoid of inertia

is a sphere. In this case every line through the center of gravity

is a principal axis for all of its points. If the line L does not pass

through the center of gravity, drop a perpendicular A upon it

from the center of gravity. At the point of intersection A is a

principal axis, and the ellipsoid of inertia at that point is a

spheroid about A as an axis. Since L lies in the equator of this

ellipsoid and intersects A, it, too, is a principal axis of inertia, and

the point of intersection is the point P which is required. The
point P is called the principal point on the line L, and there

always exists such a point if the central ellipsoid of inertia is a

sphere and the line L does not pass through the center of gravity.

Suppose the central ellipsoid of inertia is not a sphere, and that

the principal moments of inertia of the central ellipsoid are

Afa^, Af6 *, Afc*, and that the coordinate axes are chosen so as to

coincide, with the principal axes of the central ellipsoid. If the

direction cosines of L are a, 7 ,
the parametric equations of

L are

X = Xo +
y = yo + Pt,> ( 1 )

z = Zo + yt-)

If the point P{x, y, z) is a principal point of L, one of the three

surfaces through P, which are defined by the equation, Eq. (9.4),

,

y^
I

g*

- c*

must be normal to L. This condition gives

= 1, (2)

the three equations

a

y

\ at

R k^ -
I yo -i- Pt

,

Rk^ - b^’

1 Zo yt

Rk^-

where

(3)
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If the line L passes through the center of gravity,

= X, (4)
a 13 y

and the three equations, Eq. (3), can be satisfied only if two of

the three quantities a, y are zero and the third is unity, and

this requires that L shall coincide with one of the coordinate axes.

Hence if L passes through the center of gravity and does not

coincide with a principal axis, a principal point on it does not

exist.

If L does not pass through the center of gravity, Eqs. (3)

become

t> _ Xo + _ yo fit _ Zo yt

a{¥ a2) fi(k‘^ - 6^)
“ y(k^ - ^

The second and third members of this equality give the equation

k'^ — fi Xo + at

On subtracting unity from both members and then multiplying

by suitable factors, it is found that

2/0 Xo

Xo + at
,
P a

aik^ - a")
” —

and similarly,

5? _ yo

Vo + 7 >
- b^) 62 -

Xo _ Zo

Zo + yt] a _7,
- c2 —

Hence, on account of Eqs. (5),

Vo
^
Xq Zq 2/0

/3 a y P a 7
-^2 ^ - c* C2 «- a2

(6)
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This condition on the given constants must certainly be satisfied

if a principal point exists. The third member of Eq. (6) is merely

a consequence of the equality of the first two and does not impose

a second condition. It reduces to the single equation

_ ^2 ^2 _ ^2
xq H ^—yo H Zo

a y
0 .

This is the equation of a plane through the origin, if the direction

cosines a, /3, y are regarded as given
;
and the line L lies in it as is

easily verified by means of Eq. (1). Lines parallel to this plane,

but not lying in it, cannot have a principal point, even though the

direction cosines are a, and 7.

From Eqs. (5) and Eq. (2), it is found that

- a^) + - b^) + R^y^k^ - c^) = 1, (7)

or

R^k^ - R^a^a^ + + c^y^) = 1. (8)

Hence

This equation determines uniquely, since R is given by Eq. (6).

From the equations just preceding Eq. (6) are obtained

t = - a’‘}
-

oc

t = Rik^ - b^) -

H = Rik^ - c*) - -•
7

If the first of these equations is multiplied by a^, the second by

and the third by 7^ and are then added, there results

t = Rk^ — R(a^a^ + + c^y^) — (aXo + fiyo + 7^0);

and by virtue of Eq. (8) this reduces to

^ ^
- {aZQ + Pyo + yzo). (9)
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Thus which is the distance from the given point Xo, 2/0, 20, to

the principal point, also is uniquely defined, and, in general, there

is but one principal point on a line, if there is any at all. The
three principal axes of the central ellipsoid are exceptions, and
also, of course, if the ellipsoid is a spheroid, all lines in the plane

of the equator which pass through the center of gravity.

27. The Ellipsoid of G3rration.—The ellipsoids

{E,)

and

m

^ t ^ ^
a2 62 c2

are called reciprocal ellipsoids because the products of the

corresponding axes, that is, the two x-axes, the two 2/-axes, and
the two 2-axes, are constant and equal to

If p is the perpendicular distance from the center of the ellipsoid

El to a tangent plane and a, y are the direction cosines of this

perpendicular, then

p2 == ^2^2 + 52^2 + ^272. (1)

Let the point Q on this perpendicular be at a distance q from the

center of Ei, and let q be related to p in such a way that

pq = g\

Then the locus of the point Q is the ellipsoid E2] for if Eq. (1)

is multiplied by q^j there results

p2^2 ^ g4 + ^27),

or in rectangular coordinates

{E2) ^2x2 -f- 622/2 + 02^2 = ^4

If the same operations are carried out starting with Et and

the product pg = 1 /g^, it is found that Ei is the locus.

The ellipsoid of inertia at any point 0, referred to axes which

coincide with the principal axes of inertia, is

AX2 + B2/2 + ^
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The reciprocal ellipsoid

B ^ C M
where M is the mass of the body, is called the ellipsoid of gyration j

since its a:-axis is the radius of gyration for the ^-axis, and

similarly for the and 2:-axes. That is

= A, Mky^^ = B, = C.

This relation holds only for the principal axes. It does not

hold for directions in general, since the inversion of an ellipsoid

by reciprocal radii gives a surface of the fourth order, and not

another ellipsoid.

Problems

1. The moment of inertia of a rectangle, the sides of which are 2a and

26, about an axis in its plane and perpendicular to the side 2a at its center is

and about an axis through its center and perpendicular to its plane isW -f h^)-

2. The moment of inertia of an ellipse whose axes arc 2a and 26 about the

axis 2a is 16^; about the axis 26 is Ja*; and about an axis perpendicular to its

plane through its center is i(a^ H- 6*).

3. The moment of inertia of an ellipsoid whose semiaxes are a, 6, and c,

about the axes g, 6, and c, is lM(b^ -h c^), \M(c^ -f- a*), and -f 6*)

respectivel3^

4. Show that if a > b > c are the semiaxes of an ellipsoid of inertia,

the semiaxis c is always greater than the perpendicular dropped from the

center of the ellipsoid to the straight line that joins the extremities of a and 6.

6.

The moment of inertia of a right parallelopiped whose edges are 2a,

26, and 2c about an axis through its center and parallel to the edges 2a is

\M{b^ -h c2).

6. Show by differentiation that the moment of inertia about the a-axis

of an infinitely thin homogeneous ellipsoidal shell which is bounded by two
similar and similarly placed ellipsoids is lM(b^ H- c^).

7. Show that the expressions

A B A- C,
AB d- BC A-CA - D^ - - FS
ABC - 2DEF - AD^ - BE^ - CF\

are always positive, and at any fixed point are independent of the axes of

reference.

8. If d is the length of a diameter of an elliptical disk whose semiaxes

are a and 6, show that the moment of inertia of the disk about this diameter is

MM*
4 d*

’
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If k\, k 2 ,
and kz are the radii of gyration of a body B with respect to the

principal planes of the central edlipsoid, and is a homogeneous ellipsoid of

the same mass as B and which, referred to the principal axes of the central

ellipsoid is defined by the equation

= 5,

then the ellipsoid E (Legendre’s ellipsoid) and the body B are equimomental;

that is, they have the same moments of inertia with respect to any given line

or plane.

10

.

Let a body B be transformed into the body A by the method of

reciprocal radii with respect to a point O and a sphere *S’ of radius a (see II,

106 ). If r is the distance of a point in B from (), and p is the distance of the

corresponding point in A from 0, then rp = a^. If the ratio of the density

at the transformed point to the density at the original point is

(:)' (:)• ”

according as the body B is a volume distribution of matter, a surface distri-

bution, or a line distribution, the moment of inertia of the body B with

respect to any line L which passes through O is the same as tlu^ moment of

inertia of A with respect to the line L, and therefore the two ellipsoids of

inertia at 0 for B and A are identical.

11

.

Continuing from the preceding problem: let 0i be any point at a

distance ri from O, and let O 2 be the corresponding transformed point.

Let Ib be the moment of inertia of the body B relative to the point Oi, and

I

A

be the moment of inertia of the body A relative to the point O 2 . Prove

that

if the ratio of the density at a point of A to the density at the corresponding

point of B is

according as the body B is a volume, a surface, or a line distribution of

matter.

12 . Show that an edge of a tetrahedron will coincide with a principal

axis of inertia at some point if, and only if, it is perpendicular to the opposite

edge.

13 . In order that there may exist a point at which the ellipsoid of inertia

is a sphere, it is necessary that the central ellipsoid of inertia be an oblate

spheroid. If this condition is satisfied, there exist two such points, both of

which lie on the axis of revolution of the central ellipsoid of inertia.
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14

.

Show that the plane

- 1

is a principal plane at the point where it intersects the straight line

ax — A — by ~ B - cz — C.

15. Show that any straight line drawn on a lamina is a principal axis of

inertia at some point.

16. A line L is drawn through a fixed point O. The radius of gyration of

a given body with respect to L is k. At a distance k from O a plane is drawn

perpendicular to L. Show that the envelope of these planes, as L varies in

direction, is an ellipsoid.

17 . Show that of all homogeneous bodies of a given mass the moment of

inertia with respect to a fixed point O is least for a sphere which has 0 as its

center.

18. If Tii is the distance between the particles rrii and w,, and ixi ~ nix!

where Af = mi + W 2 -f • • • -h mn, show that the moment of inertia of

n particles, distributed in any manner in space, with respect to the center

of gravity of the particles can be written

I

n n

19

.

Assuming the earth to be a sphere which is homogeneous in concentric

layers, the law of its density as given by Laplace has the form

sin mp
<r = (To—: »

p sin m

where <ro is the surface density, m is a constant which depends upon the

earth *8 mass, and p is the relative distance of the point from the earth’s

center, so that if o is the radius of the earth, and r is the distance from the

center

r

^ a

Show that with this law of density the mass of the earth is

. , sin m — m cos mM * Arorofl’ r—: »

m* sin m

and its moment of inertia with respect to a diameter is

, 8 ,:(3m* — 6) sin m — (m^ -- 6m) cos m
I = -

T-v--—

‘ (3m* — 6) sin m — (m^ ~ 6m) cos m l

m*(Bin m m cos m) J
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Taking the radius of the earth at 3958 miles and the mean density at

6.6 show that

m = 14r 40.'5 - 2.4727

and

I = .335ilfa*.

20

.

Given a closed plane area, and a point 0 in the plane. Show that

there exists an inertial ellipse for the plane area at the point 0, similar to

the ellipsoid of inertia for a volume, and that for properly chosen axes its

equation is

6 * CW'

where A: is a factor of proportionality that has the dimension of a length, C is

the area, and b and a are the radii of gyration of the area with respect to the

X- and y-axis respectively.

21

.

The moment of inertia of a homogeneous, solid, right circular cone

about a generator of the surface is

3 r* + 6/i*

20 r* +
Mr^,

where h is the height of the cone and r is the radius of the base.

22.

If D has the dimensions of a moment of inertia show that the three

principal moments of inertia of any body can be written in the form

A = (1 + n)D, B = (1 + MD, C = (1 - ?)D,

where { and ?? are pure numbers that lie between minus one and plus one.



CHAPTER III

SYSTEMS OF FREE PARTICLES

28. The Equations of Motion.—If r is the position vector of

a free particle of mass m relative to a fixed point 0, and if F is

the resultant of all of the forces which are acting upon the

particle, then in accordance with Newton's laws of motion,

mr" = F (1)

is the equation of motion of the particle in vector notation.

It is a vector differential equation of the second order. If i, j, and

k are three mutually perpendicular unit vectors, if

r = xi + yj + 2k, \ .2^

F = Xi + Fj + Zk, /
^ ^

and if equation (1) is resolved into its three components, it yields

the three ordinary differential equations,

ma:" - X,
]

mt/" = F, > (3)

mz" - Z, j

which is a system of differential equations of the sixth order.

Six integrals are required for a complete solution and therefore

six independent constants of integration. These six constants

can be regarded as the three coordinates of position and the three

components of velocity at the time / = 0.

If a system of n free particles is given, a vector differential

equation similar to Eq. (1) is required for each particle. If m,

is the mass of the jth particle, Tj its position vector, and Fy is the

resultant of all of the forces which are acting upon it, these

differential equations are

rnyfy" = Fy, j = 1,
• •

•

, 71, (4)

and these n vector differential equations can be transformed

into 3n ordinary differential equations each of the second order

56
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similar to Eqs. (3). The problem is therefore of the order 6n.

If the initial coordinates of position and velocity are given, the

subsequent motion is determined by Eqs. (4) for as long a period

of time as Eqs. (4) remain valid.

29. The Nature of the Forces.—It will be assumed that the

particles of the system attract or repel one another according

to some law, and that the mutual action of any two particles is a

pair of forces which lies in the line that joins them. In accord-

ance with Newton^s third law these two forces are equal and
opposite. Forces of this kind will be called interior forces.

Necessarily, they occur in pairs, the two members of which are

collinear, equal in magnitude and oppositely directed.

A second class of forces is represented by the mutual action

of the particles of the system under consideration with other

particles which are exterior to the system. Forces of this

kind will be called exterior forces. Exterior forces also occur

in pairs, the two members of which are equal and opposite and

have the same line of action; but only one of the two members
acts upon the given system, the other member acting upon some-
thing else which is exterior to the system under consideration.

It is this difference which gives rise to the classification of interior

and exterior forces.

If is the resultant of all of the interior forces that are

acting upon the particle m„ F/*^ is the resultant of all of the

exterior forces that are acting, and F, is the resultant of all of

the forces of every kind that are acting, then

Fy = Fy<*' + Fy'*\

and Eqs. (4) become

myry" = Fy^^> + Fy<*\ j = 1,
• •

•
,
n. (1)

30. The Equation of Motion of the Center of Gravity.—Let

M = Smy, and MG = (1)

then M is the total mass of the system and G is the position

vector of the center of gravity of the system. By differentiation,

it is seen that

MG' = Smyr,' (2 )
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is the total momentum of the system. Stated in words this

equation says that the total momentum of the system is the same

as the momentum of a particle of mass M that moves in such a way
as to be always at the center of gravity.

If the sum of all of the equations in Eqs. (29.1) is taken, there

results

Smyr/' = (3)

Since the interior forces occur in pairs, the members of which

are equal and opposite, it follows that

= 0
;

and since my and M are constant,

Smyry" = (Smyry')' = (MG')';

so that Eq. (3) reduces to

(MG')' - (4)

This equation can be stated in words as follows: The time rate of

change of the total momentum of the system is equal to the vector

Fig. 13 .

sum of all of the exterior forces that are

acting on the system.

This theorem can be represented

geometrically as follows: Let F be the

vector sum of all of the exterior forces,

and let A be the total momentum of the

system; then

A = MG' and F = SFy''\

Equation (4) now becomes

A' = F. (5)

Since A' represents the velocity of the terminus of the vector A,

it is seen that the velocity of the terminus of the vector A is

equal and parallel to the vector F, Fig. 13.

If a single particle of mass M were at the center of gravity

of the system and had the same velocity at the instant, say

t — 0
,
and if forces, which are equal to the exterior forces that

are acting upon the individual particles of the system, were
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acting upon it (that is, upon M) the particle M would move
exactly like the center of gravity of the system.

Examples .—Suppose a handful of small pebbles is thrown into

the air, that the resistance of the air can be neglected, and that

gravity acts upon the pebbles in lines that are parallel. Since

the mutual attraction of the pebbles upon one another is neg-

ligibly small it can be said that the only forces that are acting

are the exterior forces myg, where g is the acceleration of gravity;

and since

y:^Ae) = 2m ;g = Mg,

Eq. (4) becomes

MG" = Mg, or G" = g.

The acceleration of the center of gravity is therefore constant,

and the center of gravity describes a parabola relative to the

surface of the earth, just as a single particle with the same velocity

does.

On the other hand, if the moon in its motion around the earth

should explode, the exterior forces which would act upon the

fragments would be directed towards the center of the earth, and
after the fragments had scattered somewhat the vector sum of

the forces which were acting upon the fragments would not be the

same as they would be if the fragments were united into a single

unit, the original moon. Therefore the motion of the center of

gravity of the system would be altered by the explosion. The
mutual attraction of the fragments, however, would not affect

the motion of this common center of gravity.

31. The Motion of the Center of Gravity of an Isolated Sys-

tem.—A system is isolated if there are no exterior forces acting,

or if the exterior forces are so small as to be negligible. The sun

with its attendant family of planets is such a system for an

interval of time which is not too great. In this case the equation

of motion of the center of gravity, Eq. (30.4), reduces to

MG" = 0, (1)

an equation which is immediately integrable. The first integral

is, after removing the mass factor,

G' = V, (2)
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where F is a constant of integration. Hence the velocity of

the center of gravity, G', is constant. The second integral is

Q = tv + Go, (3)

in which Go is the value of G at the time t = 0. This is the

vector equation of a straight line, the parameter being in this

case the time.

Hence the center of gravity of an isolated system moves on a

straight line with constant speed. It will be observed therefore

that Newton’s first law of motion can be extended to the motion

of the center of gravity of any isolated system.

The resultant attraction of all of the stars upon the solar system

must be very small. Relative to the stars in its neighborhood

the sun is moving in the general direction of the bright star

Vega with a speed of about 12 miles per second. Millions of

years must elapse before either its direction or its speed is sensibly

altered by the attraction of other stars. It is only for such inter-

vals of time that the system can be regarded as isolated, but in

hundreds of millions of years its direction, and probably its speed

also, will undergo sensible changes. In the strict sense of the

term there are probably no isolated systems in existence.

32. The Moment of Momentum of a Free System.—The
equations of motion of any system of free particles are

Eqs. (29.1),

m,r/' = F/^> + F j = 1,
• •

•
,
n. (1)

Let the ^*th equation of this system be multiplied by ryX and

then summed as to j. There results the single equation

X r/O = X X (2)

3 3 3

The resultant force F,^'^ which is acting upon the jth particle is

the vector sum of the interior forces which are acting upon it. If

fjk is the force acting upon the jth particle which is due to the

jfcth particle, then

= Jf,*, k ^ j
k

fy X Fy^*^ = X f/Ac,

k

and
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is the moment of with respect to the origin. Let ikj be the

action of the jth body on the kth body, then by Newton's third

law

tjk —

and the two forces lie in the same straight line. Consequently

(r, X fjk) = -(r, X f.;),

or

(ry X f;A;) + (rji: X fki) = 0.

That is the sum of the moments of these two equal and opposite

forces which lie in the same straight line with respect to the origin

is zero. Indeed, it is zero with respect to any point whatever.

Therefore

2(r, X F/") = X
; j k

which is merely the sum of the moments of all such pairs of forces

with respect to the origin, is necessarily zero.

Since

2(r, X F/'*) = 0,

J

Eq. (2) reduces to

X r/') = ^(r; X F/«>), (3)

3

the right member of which is the sum of the moments of all the

exterior forces which are acting upon the system with respect

to the origin. The left member can be written

Y^rUjiTj X r/O =2)m,[(r, X r/') + (r/ X r/)] = 2)w,(r, X r/)',

3 3

since

r/ X r/ = 0.

Consequently Eq. (3) can be written

X r/) = X r/)' = X F,•<«>).

3 j j
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Finally, since

2)w,(r,- X r/)

3

is the moment of momentum of the system with respect to the

origin, Eq. (4) can be stated in words as follows:

The time rale of change of the total moment of momentum {or

angular momentum) of any system of free particles with respect

to any point 0 of fixed space is equal to the sum of the moments

with respect to 0, of the exterior forces which are acting upon the

system.

This theorem, like the theorem on momentum. Sec. 30, can be

represented geometrically as follows:

Let L be the total moment of momentum of the system, and

let N be the sum of the moments of the forces; then

L = 2m, (ry X r,-') and N = 2(r/ X

Equation (3) now becomes

V = N, (5)

that is, the velocity of the terminus of the vector L is equal and

parallel to N, Fig. 14.

In this theorem the moment of momentum and the moment
of the forces are taken with respect to any point in fixed space.

But since, I, 134, the moment of a

vector with respect to any axis which

passes through a given point is equal

to the projection upon that axis of the

moment with respect to the given

point, it follows that:

The time rate of change of the total

moment of momentum {or angular

momentum) of any system of free par-

ticles with respect to any axis which is fixed in space is equal to the

sum of the moments with respect to that axis of all of the exterior

forces that are acting upon the system.

The moment of momentum of the system with respect

to any axis A which passes through the origin and for which a

is a unit vector is

Ma = a • 'Lmj{Tj X r/) a = 2m,[ar>r,'] a.
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If there are no exterior forces acting, the monaent of the

exterior forces is zero and the moment of momentum with respect

to any fixed axis is constant. Even though the exterior forces

are not all zero, there may exist fixed axes with respect to which
the sum of the moments of the exterior forces is always zero.

In this event the moment of momentum of the system with
respect to such axes is constant. For example, if the system of

exterior forces is a system of forces parallel to a given axis fixed

in space then the sum of the moments of the forces with respect

to such an axis is zero, for the moment of each force separately

is zero.

33. Extension of the Theorem on Moment of Momentum.

—

The preceding theorem, which relates to an axis fixed in space,

can be extended to an axis w^hich passes through the center of

gravity of the system, and therefore moving with it, but fixed

as to direction, as follows:

Let G be the position vector of the center of gravity with respect

to a point 0 of fixed space, and let Qj be the position vector of the

particle rrij with respect to the center of gravity, so that

= 0
,

- 0 . ( 1 )

Then

= G -f

r/ = G' + p/;

and

ry X r/ = G X G' + py X G' + G X py' + ^y X ^y'.

With this change of variables Kq. (32.4) becomes

2my(G X G')' + 2m, (py X G')' + 2m,(G X e,')' +
2my(py X 9/y = 2(G X Fy^^O + ^(py X (2)

But

2my(G X GO' - M{G X GO' = M{G X G'O,
2my(py X GO = (2mypy) X G' ^ 0, by Eq. (1),

2m;(G X pyO = G X 2mpy' = 0, by Eq. (1).

Hence Eq. (2) reduces to

M(GX G'O + 2my(py X p,')' = 2(G X F,>>) +
2(e;XF/^0. (3)
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From Eq. (30.4),

MG" = 2F/->,

and therefore

M(G X G") = 2(G X F/^0. (4)

On subtracting Eq. (4) from Eq. (3), there remains

2m, (py X 9/y = 2 (9 , X Fy^^O, (5)

which is the same in form as Eq. (32.4). The origin of the vectors

9 y, however, is the center of gravity of the system instead of a

point in fixed space. The desired theorem follows at once,

namely:

The time rate of change of the moment of momentum of the system

with respect to any axis which passes through the center of gravity

{and therefore moves with the system) and is fixed in direction is

equal to the moment of the exterior forces with respect to that axis.

If the system is an isolated one the moment of momentum with

respect to any axis which passes through the center of gravity is

constant. In this case the plane which passes through the center of

gravity and is perpendicular to the vector which represents the total

moment of momentum is called the invariable plane.

Since the moment of momentum with respect to any axis is the

projection of the total moment of momentum on that axis it

follows that the tensor of the total moment of momentum is the

maximum for all axes.

34. The Energy of the System.—The equations of motion

of the system, Eqs. (29.1), are

myr," - Fy^^> + F,^^>, j = 1,
• •

•
,
n.

If the jth equation of this system of equations is multiplied by

r,'- , and then summed as to j, there results

2myry'. ry" = 2(ry'. Fy<^> + ry'. Fy^^O. (1)

Since

r/' r/' = |(r/- r,')',

it is seen that, if Eq. (1) is multiplied by dt and then integrated

from U to ty

r/ - r/)o = / S(F/«- dr, + dr,). (2)
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myf/ • r/ =

where r, is the speed of the particle m,. Hence the left side of

Eq. (2) is the change in kinetic energy of the system in the inter-

val of time specified.

The right member of Eq. (2) cannot be integrated formally

without further information, but since and Fy^®^ are forces

and dTj is the displacement of the jth particle, it is readily seen

that right member represents the total amount of work done on

the system by both the internal and the external forces. If the

kinetic energy of the system is denoted by T, so that

T = 2imyi;y2 = 2|myry' . ry',

and if is the total work done by the interior forces, and

is the total work done by the exterior forces, Eq. (2) can be

written

T - To ^

or, expressed in words, the change in the kinetic energy of the system

in any interval of time is equal to the total work done on the system by

both the interior and the exterior forces during that interval of time.

The change in the momentum and in the moment of momentum
of the system due to a pair of equal but oppositely directed

interior forces is zero; but the work done by such a pair of forces

would vanish only if the components of the displacements of the

two particles, on which the forces were acting, in the line of the

forces were the same in both magnitude and direction. Since, in

general, this is not the case, the work done by the interior forces

does not vanish in general.

36. Interior and Exterior Kinetic Energy.—The position

vectors r, of the particles are referred to a point 0 of fixed space.

Let G be the position vector of the center of gravity of the

system, and p, the position vectors of the particles referred to

the center of gravity. Then

ry = G + py, Tj = G “h py >

and

XmjQi = 0, SWypy' = 0,
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Since

r/ . r/ = G' ‘ G' + 2G' • p,' + py' • py',

and

2myG' • py' = G' • 2myp/ = 0,

it is easily seen that

iSmyr/ . ry' = ^MG' • G' + l^mypy' • py', (1)

where M = Smy is the total mass of the system. The expression

iSmypy' • py'

is the kinetic energy of the system relative to the center of gravity,

and, for the sake of a name, may be called the interior kinetic

energy. The expression

iMG' . G'

is the kinetic energy which the system would have, relative to

fixed space, if it were a particle of mass M moving like the center

of gravity, and may be called the exterior kinetic energy. Hence
the total kinetic energy of the system relative to fixed space is the

sum of the exterior and the interior kinetic energies.

It is seen from Sec. 31 that a change in the exterior kinetic

energy is due to the exterior forces. Indeed, [Eq. (30.4)],

MG" =

therefore

MG' . G" = 2F, • G',

and on integrating,

\MO' G' - hM{G' • G')o = / 2F/^> • dG. (2)

That is, the change in the exterior kinetic energy in any interval of

time is equal to the work done on the system by the exterior forces in

the displacement of the center of gravity that actually occurs.

This does not, however, represent the total work done on the

system by the exterior forces; for the total work done by all

of the forces is, Eq. (34.2),

J S(F/>> + F/'O . (dG + dQi) = J 2F/’' • dG + J 2F/'> • dG +
/ 2(F/« + Fy"') . dpy.
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The first of these integrals

67

/ 2F/’> dG = f dG- SF/o

vanishes, since the sum of the interior forces vanishes. Hence
the interior forces have no effect upon the exterior kinetic energy.

It is the second integral that affects the exterior kinetic energy, as

is indicated in Eq. (2).

The third and fourth integrals

/ 2(F,<‘> + F,<«>) . dp,

measure the change in the interior kinetic energy due to the

interior and the exterior forces. The interior work done by the

exterior forces is

/sF,<'>.dp,.

This does not vanish in general, but it may do so; for example,

if

F/^> -

where F is independent of the letter j, the expression

f • dgj becomes JF • Sm, dpy,

which vanishes, since

Zm,dpj = 0 .

The exterior forces that are acting upon the solar system are of

this type, in so far as they are due to the attraction of the stars, on

account of the remoteness of the stars; but if in the course of time

the solar system should pass close by some star, then the exterior

forces acting on the various members of the solar family, due to

the attraction of this star, would not be parallel, and the internal

energy of the solar system would be altered.

36. There Exists a Potential Function.—If a single particle is

moving in a field of force for which there exists a potential

function [/(x, y, z)y the force acting upon the particle, by Eq.

(11.6), is
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and therefore the equation of motion of the particle is [Eq. (13.8)]

nir" = VU.

For a system of many particles, rn,, an operator can be

defined, namely,

y. dll, dlJ

.

,

dlJ,
^slJ =

uXg dyg dZs

and the equations of motion are

m^rj' — VgUy 5 = 1,
• •

'
,
n, (1)

provided, of course, a potential function U{Xg^ y,, Zg) exists.

Let Eq. (1) be multiplied by r/ •, and the n equations so

derived be added. It is found then that

'ZwgTg' • r/

On multiplying this equation by dt and integrating, it is found

that

. r/ = Ji; (It. V.U. (2)

The left member, evidently, is the kinetic energy T. The right

member can be written

. dlJ , . dU
1 +

dyg dZiJ2 + (iy-j +

‘J2(S
= f dU = U + E,

where B is a constant. Thus Eq. (2) becomes

T - U = E,

,
,dU.

,
dU ,

dx, + — dy, + dz,
dyg dZg )

(3)

in which T is the kinetic energy, — is the potential energy, and
E, the total energy, is a constant. Consequently, if there exists

a potential function which depends only upon the positions of

the particles, and not at all upon their velocities, or the time, the

sum of the kinetic and potential energies is constant.

37. The Problem of N Bodies.—In the problem of n bodies it is

assumed that the exterior forces are zero and that gravitation is

the only interior force. The positions and the velocities of the
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bodies at some specified instant are supposed to be given, but they

may be anything whatever. It is required to find the positions

and velocities of the n bodies at any time whatever in the future.

It is assumed further that in their mutual attractions they act

like particles, and are therefore centrobaric (II, 110). The most

important class of centrobaric bodies, undoubtedly, are spheres

which are homogeneous in concentric layers.

Since gravitation is a conservative force, there exists a poten-

tial function (II, 76), namely.

h2

U 9^ V, ( 1 )

where is the gravitational constant, niu is the mass of the uih

body, and

T'VU \^(^U ^v)^ (yu Vv)^ “b (^^u ^v)^

is the distance between the centers of gravity of the two bodies

rriu and m». In its expanded form

ri2 TlZ

m^rriz
+ 0 +

?*23

+

r2i

nizmi

rzi

+

+

+
,

rrinmi+ 1"

^nl

mzrriz

rz2

rrinm .̂

rn2

+ 0 + •

+ "T̂
n8

+

+

+

miirin

Tin

m^rrin

r2n

mzrrin

rzn

+ 0,

the duplication of terms accounting for the factor

The equations of motion are

(2 )

m,r/' = V,t/, s = 1,
’ •

•
, 71, (3)

which resolved into their three rectangular components give rise

to 3n differential equations, each of the second order. The entire

problem therefore, from the point of view of differential equations,

is of order 6n.
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On carrying out the operation V,{7 in accordance with its

definition in Sec. 36, it is seen that

t9^a.

} (4)

1

where is a vector with its origin at m, and its terminus at

so that

Tst = Tt - r,.

Hence the equations of motion can also be written

rrisTe - = ‘-2 - r.).
I $t

(5)

1

t9^8.

Since the only forces acting are the interior forces, and these

are collinear in pairs, the members of which are equal and

oppositely directed, the six integrals of the center of gravity

(Sec. 31) and the three integrals of moment of momentum
(Sec. 32) are immediately applicable. Therefore:

The center of gratrity of the system moves uniformly in a straight

linSj and

The total moment of momentum of the system is constant; that is,

the vector which represents the moment of momentum is fixed in

magnitude and in direction.

Finally, since the potential function exists (Sec. 36), the sum

of the potential and kinetic energies of the system is constant.

Thus ten of the 6n integrals which are necessary for a complete

solution are known, and they are all algebraic when expressed in

rectangular coordinates. In Acta Mathematica (1887) Vol. 11,

there is a proof, given by Bruns, that no more such algebraic

integrals exist. In Vol. 13 of the same journal a proof is given by
Poincar6 that, if n > 2, there do not exist any uniform trans-

cendental integrals for values of the masses sufficiently small

other than the above ten integrals, which are frequently called

the ten classical integrals.
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38. Permanent Configurations in the Problem of Two Bodies.

On removing the mass factor m„ Eq. (37.5) becomes

n

r," = t ^ s, s = 1,
• •

,
n; (1)

and if the origin of the vectors is at the center of gravity of the

system, there exists also the relation,

= 0. (2)

By a permanent configuration is meant a configuration in

which the ratios of the distances between the bodies remain

constant throughout the motion. In the problem of two bodies,

the two masses always lie on a straight line, and the ratio of the

distances from the center of gravity is

Ti _ m2
r2 mi

irrespective of the type of the orbit described. As this ratio is

constant, the straight-line configuration of the two bodies is a

permanent one, although the distance between the two bodies

themselves may be constantly changing.

For the two-body problem the equations of motion are, from

Eq. (1),

ri
// k^m2

7^7
ri2> T2

ri2®
r2i, (3)

and, if the motion is referred to the center of gravity,

miTi + 7n2r2 = 0.

Let M be the sum of the two masses, then since

and

ri2 == 12 — Til 121 — Ti — r2i

Mti = m2(ri — 12 )
= —m2Ti2i

Mt2 = mi(r2 ~ Ti) = -mirai,

Eqs. (3) can also be written

„ km
^12

km
3^2- (4 )
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Thus the two vectors ri and X2 satisfy the same differential equa-

tion, in which

ri2 = ri + rg.

The solutions of Eqs. (4), of course, are Keplerian conics. Let

Ui and a2 be the major semiaxes of the conics which are described

by mi and m 2 relative to their common center of gravity, and let

ai 2 be the major semiaxis of the conic which m 2 describes relative

to mi. Then

ai2 = Ui + a2,

and

^12 _ ^ /C\

ri2
~

ri
~

r2

for all values of the time. Again, let

k’^M = w^ai2®,

then Eqs. (4) become

r/' = r„ r," = r.,

and, by virtue of Eqs, (5), they can also be written,

ri" = -co^^^yri, r/' = (6)

If the motion is circular, so that ri = ai and r2 = a2 ,
Eqs. (6)

become the equation of simple harmonic motion with the period

27r 27rUi2^

~ k\/M'
(7)

and since the period of Keplerian motion is independent of the

eccentricity (I, 309), Eq. (7) is the general expression for the

period.

39. Permanent Configurations in the Problem of N Bodies.

—

The equations of motion of the n-body problem are, Eqs. (38.1),

n

r,
f/

s = 1, ,
n; ( 1 )
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and, if the origin is at the center of gravity, as will be assumed.

vtiTi + + • •
• + wj„r„ = 0.

Suppose there exists a configuration of the n bodies such that

S = 1, n, (2)

where the a’s are constants which can be regarded as the values

of r’s at some instant, and such that

(^8t _ ^
r,t Ti

CL2

r2

dn

Tn
(3 )

at every instant, that is, the ratios of the mutual distances are

constants. Equations (1) then become

5 = 1
, (4 )

which are satisfied by Keplerian motion in conics for which the

major semiaxes are a, [Eqs. (38.6)], with the common period

0)

Suppose

r* “ a^i T^t — Sy t 1,
* *

*
,

ti, (5)

for which the tensors a, and a,f are constants, is a solution of Eqs.

(2), then whatever positive value p may have

r, = pa., = pa.t (6)

also are solutions, since Eqs. (2) are homogeneous in the r's. This

is equivalent to saying that the validity of Eqs. (2) does not

depend upon the size of the configuration, and evidently it does

not depend upon its orientation. It depends only on the nature

of the configuration.

If the tensors of the vectors r. and r,* are constant, Eqs. (5), the

configuration is a rigid one, and the motion of each body is a

circle with its center at the center of mass of the system. Equa-

tions (4) become simply

r." =
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and the period of the motion is

0)

Since the accelerations are always directed toward the center of

mass and the ratios of the mutual distances are constants, the

n bodies must lie in the same plane.

If the tensors of the vectors r* and are not constants, the

general solutions of Eqs. (4) are conics, Eq. (38.6), and by

I, 294,

r, = a,{l — e, cos E,),

if the orbits are ellipses, where 6, is the eccentricity and is the

eccentric anomaly (I, 297) of the ellipse associated with the sub-

script s. Equations (3) then require that

1 — cos El = 1 — 62 cos E2 = * • • = 1 — 6 n cos En,

or

61 — €2 * * 6n,

El = E2 = • • * = En‘

That is, the various conics described by the n bodies are all

similar, and their positions in the conics all have the same eccen-

tric angle, which is the same as saying that the bodies occupy

corresponding positions in their orbits at any given instant.

Evidently the ellipses must all lie in the same plane.

If the configuration which satisfies Eqs. (2) is a space con-

figuration, as, for example, any four masses at the vertices of a

regular tetrahedron, Eqs. (3) can be satisfied only if the motion

is along straight lines through the center of mass. In this case

the differential equations (4) become algebraic, and can be written

which, on integrating, becomes

(s)"
= + ')
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If the constant of integration, c, is the same for every s, it is

readily seen that

— = fit, c),
tig

where c) is a function of the time which is independent of the

subscript 5, and therefore Eqs. (3) are satisfied. That is, the

configuration is preserved. If the motion is toward the center of

mass, the n bodies arrive at that point at the same instant, and
the configuration is permanent only in the sense that it lasts as

long as the differential equations are valid. But if the motion is

away from the center of mass and the constant c is positive, the

configuration is permanent in a real sense; it is merely expanding,

and this it can do without limit.

40. The Permanent Configurations of Three Bodies.—It

remains to be shown that there exist configurations for which

I]qs. (39.2) are satisfied, and this is essentially a matter of

geometry. The first solutions of this kind, the equilateral tri-

angle and the straight-line configurations of the problem of three

bodies, were given by Lagrange^ in his widely known memoir
on the problem of three bodies. They were the only rigorous

solutions of the problem that were known until the method of

periodic solutions was developed by Poincar^.^

Written out in full, Eqs. (39.2) for three bodies are (on taking

= 1 )

1712 rn^ _
51*12 ~ 51*31 — ""W ri,

ri2^

rriz mi __—31*23 31*12 —
^23

m\

r*3i

ri2**

m2

r23^

-co2r2,

m2

3^31
~ —3^23 3>

( 1 )

to which must be added

miri + m2r2 + m^Xz = 0,

'Lagrange, ^^Collected Works, Vol. VI, p. 229 (1772).
2 PoiNCAR^, H., ^^Mcthodes Nouvelles de la M6canique Celeste,’^ 3 Vols.

(1892).
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which expresses the fact that the center of mass is at the origin.

Since

ri2 = r2 ““ Ti,

r23 = Ts — 12,

Tsi = fi ~ fg,

all of these vectors can be expressed in terms of ri and 12 alone,

namely,

ri2 = — Ii +
7221 m2 + mz

r23 = *~~ri ” 1*2,

mz mz

mi + mz
,

7222

Tai = ri +
rriz mz

722

1

m 2

Tz = n — 12.

mz mz

For simplicity of notation, let

-1 ^ .

3
— lUjy

Eqs. (1) become

— Rzx[{mi + mz)Ti + 772212]
— R\2[m2ri — 7?22r2] = — w^ri,

+/2i2[miri — 722112]
— J?23[miri + {m2 + 7223)12]

=

+ 7722i228[^iri + (7222 + m^T^ + 722 ii23i[ (7221 + ^23)11 + 7222r2]

= +a;2[miri + 7222r2];

and finally

[—(7221 + 7223)^31 — 7222/^12 + t*J^]ri + [~\'Ri2 i?3l]7222r2 “ 0,

[i2i2 — -R23]miri — [7221^12 + (^2 + mz)R2z — w2Jr2 = 0,

[72227^23 + {rrii + mz)Rzi — u,’^\mxTi

+ [(^2 + ^ 3)7223 + miRzi — a>^]7722r2 = 0.

Equilateral Triangular Configuration ,—If ii and 12 are not

collinear, that is, the three bodies do not lie in a straight line, all

the coeflScients in Eqs. (3) must vanish. It is readily seen that

this condition requires, and is satisfied by,

Rn = R2Z = Rl\y

or

ri2 — ^28 — ^31 — T*
f
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CO
2

mi + 'fn2 + niz _ M
^3 ^3

Thus the triangle is equilateral whatever the masses may be, and

there is no other triangular configuration.

Straight-line Configuration .—If Ti and To are collinear, Eqs. (1)

become algebraic and r,* and may be positive or negative. In

order to be precise, let the order

of the masses on the line be
j
*' ' —

\ ^ ^
mi, m2, ms, so that ri, measured ^3
from the center of gravity, is Fio. 15.

negative, and rs is positive.

In order to simplify the notation, let (Fig. 15)

ri2 = r, and r23 = xr,

so that

ri3 = (1 +

Then

m2 + (1 + x)7rh _ +mi - rn^x^

M M
(1 + x)mi + X7n2

r, = r;

and Eqs. (1), neglecting the second which is superfluous, become

(1 +
nil

,

^ + (1 +
CO"w

,2

+ “A = ^[(1 + + xmsjr.
(1 + x)V2 xV M

(4 )

On eliminating co^ between these two equations and then clearing

of fractions, the following equation, which determines x, results:

(mi + m2)x® + (3mi + 2m2)x^ + (3mi + m2)x^ — (m2 + 3mz)x^

— (2m2 + 3mz)x — (m2 + m3) = 0. (5)

This quintic equation was first obtained by Lagrange. Since

there is but one change of sign in the coefficients, there is one,

and only one, real positive root,^ and therefore, for a given order

^ By Descartes^ rule of signs.
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of the masses, one and only one distribution of the masses along

the line which satisfies the conditions of the problem.

If X is the real positive root of Eq. (5), it is found from Eqs. (4)

that

2 ^ M 1712(1 + xy + niz

^
7712(1 + x)^ + 7nz(l + x)^

— ^ -mix^ + 1712(1 + xY _ M mix^ — 1713^
r® 7nix^(l + x)^ + 1712X^(1 + xy miX^ — msx^

Orbits for the equilateral triangular configuration and for the

straight-line configurations are shown in Figs. 16 and 17. In

these examples

: 1 :2:3,

and the eccentricity of the orbits is i\/3-
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41. The Permanent Configurations of Four Bodies.—It was

shown by F. R. Moulton^ in 1900 that the straight-line con-

figuration exists in the problem of n bodies. That is, given any

n centrobaric masses and their order on a straight line, there

exists one, and only one, configuration of the masses that can be

preserved under Keplerian motion. Particular instances of other

configurations have been given by Hoppe, Andoyer, and Longley.

An exhaustive analysis of the permanent configurations of the

problem of four bodies was given in 1932 by MacMillan, and

Bartky.2 The character of the analysis is similar to that of

Secs. 39 and 40, but is very much more complicated and too

lengthy for reproduction here; although some of the principal

results can be stated without proof.

If any four centrobaric masses are placed at the vertices of

a regular tetrahedron, the resultant acceleration of each mass

due to the attraction of the other three is directed toward the

center of gravity of the system and in magnitude is proportional

to the distance of that mass from the center of gravity. The
bodies can therefore move along the lines which join them to the

center of gravity in such a way that the tetrahedron remains

regular. If the four masses are particles and they fall to the

center of gravity, all four arrive at the center of gravity at

the same instant and collision occurs; the configuration is not

permanent in the proper sense of the term. But if the masses

are moving away from the center of gravity with speeds sufficient

to carry them to infinity, the configuration of the regular tetra-

hedron can be preserved permanently.

The regular tetrahedron whose orientation also is preserved

is the only space configuration that is permanent. All of the

others are plane or straight-line configurations. The plane

configurations, excluding those that form a straight line, are

quadrilaterals of two distinct types, convex quadrilaterals and
concave quadrilaterals. A quadrilateral is convex if a string

which is passed around it and drawn taut touches all four corners.

If the string forms a triangle, one corner is in the interior of the

triangle and the quadrilateral is concave. If there exists a set

of four masses for which a given quadrilateral can form a per-

^ “Periodic Orbits/' Carnegie Institution of Washington, p. 285 (1920).
^ “Permanent Configurations in the Problem of Four Bodies," Transactions

of the American Mathematical Society, Vol. 34, p. 838 (1932).
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manent configuration, the quadrilateral is said to be an admissible

quadrilateral. If four equal masses are placed at the corners

of a square and are given suitable velocities, the four masses

will always form a square. Hence a square is an admissible

quadrilateral. In the problem of three bodies there is but one

admissible triangle, namely, the equilateral triangle. An isos-

celes triangle is not admissible unless it is equilateral; and a right

triangle is never admissible.

In the problem of four bodies there is an infinite variety of

admissible quadrilaterals, and yet not all quadrilaterals are

admissible. The ratio of the diagonals of a convex quadrilateral,

for example, must lie between 3^ and 3”i, if the quadrilateral is

an admissible one; each of its interior angles must lie between

60° and 120°; and the interior angles must be divided by the

diagonals into two angles, each of which is less than 60°.

There are two classes of admissible quadrilaterals that possess

an axial symmetry. If ri, r2 ,
rs, and r4 are the sides of the

quadrilateral taken in order, one class of symmetrical admissible

quadrilaterals is that in which adjacent sides are equal in pairs,

for example ri = ra, = r4 . In this case the two masses which

do not lie on the diagonal of symmetry are always equal. Such

quadrilaterals may be convex or concave. A second class is

formed by isosceles trapezoids, that is, trapezoids in which the

non-parallel sides are equal, whose interior angles lie between 60°

and 120°. In this case the two masses on the base of the trape-

zoid are equal, and the remaining pair of masses also are equal.

For the general case let the masses be numbered in order mi, m2,

m3, m4 and the sides likewise ri, r2, rs, and r4 ,
as in Fig. 18. Let
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P be the period of the motion, w = 27r/p, and let r without

subscript, be defined by the relation

CO
2
M
y«3

just as in the problem of three bodies, where M is the sum
of the four masses. In any admissible convex quadrilateral the

inequalities

ri, r2, rs, ^ r ^ ra, re

are satisfied, where re and re are the diagonals, re joining mi and

mzy and re joining and Let the notation be chosen so that

Fig. 19.

Ti is the longest of the four sides. Then in any admissible

concave quadrilateral the corresponding inequalities are

ri, r2, re ^ r ^ ra, r4, re.

Let the line joining mi and m2 be ri. With mi and m2 as

centers and a radius equal to r, draw semicircles which intersect

in the point 0
,
Fig. 18 . With 0 as a center and the same radius,

draw the semicircle which passes through mi and m2. These

semicircles define two areas, A and B, If m3 is any point in B,

there exists one and only one point m4 in A, and none at all

outside of it, such that mim^rn^mA forms an admissible, convex

quadrilateral; and if any point in A is chosen, there exists

one and only one point m3 in and none outside of it, such that

mimimzm^ forms an admissible convex quadrilateral.

A similar representation is possible for concave quadrilaterals.

Fig. 19
,
but the areas so defined Si, S2; Ti, T2, which correspond
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to the regions A and B of Fig. 18, are somewhat too large; but

if they are properly restricted, as indicated in the figure, a

theorem similar to the above can be stated, namely: For each

point Mi of the area Ti + T2 there exists one and only one point

m3 in the area Si + S2 such that mintimz and forms an

admissible concave quadrilateral; and for each point niz of

Si + S2 there exists one and only one point mi in Ti + Tz such

that mim^mz and mi forms an admissible concave quadrilateral.

Furthermore if m3 lies in aSi, mi lies in T^i, and if m3 lies in 182,

mi lies in

If an admissible quadrilateral is given, the masses are uniquely

determined, with the exception of the single case of three equal

masses at the vertices of an equilateral triangle and a fourth

mass at its center. In this case the masses can be anything

whatever. If four masses are given it is possible to state that:

For every jour given masses and assigned order
^
there exists at least

one admissible convex quadrilateral.

A corresponding theorem for concave quadrilaterals was not

proved.

42. The Moment of Inertia with Respect to the Center of

Mass.—The moment of inertia of a system of particles with

respect to the center of mass is

I = 2^m,r,2 == 2m,r, • r„ (1)

the origin of the vectors r, being at the center of mass. If this

expression is differentiated twice with respect to the time, it is

found that

^/" = 2m,r, • r/' + Sm,r/ • r.'. (2)

If the equations of motion are

m,r/' = F.,

this equation becomes

J/" = 2m,r/ • r/ + 2r. • F, (2a)

If the system is a conservative one, there exists a potential

function U, such that

m,r/' = V*[7, s = 1,
. .

.
,
n. (3)
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On multiplying Eq. (3) by r, • and then summing with respect

to s, there results

STO,r, • I," = 2r, • V.f/,

which is the value of the second term of Eq. (2). Now

(xi + !,i + 2k).('^i + |j + |k'

d d d= X-z h y-z h Z-:-‘
dx ^dy dz

Hence

" 2 *^* ‘ ~ 2 (

dV
,

dll
,

^
dx, dy, dz,

j

2 dU ...

'w.-

A function /({i, . . . , fm) is said to be homogeneous of degree

n in the letters ^i, . . . , fm if, on replacing each letter ft by Xf,,

it is true that

/(X^I, • *
•

, XU ^ X”/(fi,
• •

•
, U. (5)

On differentiating Eq. (5) with respect to X, it is seen that

3

Since this is true for every value of X, it is true in particular for

X = 1. Hence, if /(ft) is homogeneous of degree n in the letters

ft, i = 1,
• •

•

,
m, it is true that

m

which is Euler’s theorem on homogeneous functions.

If the only forces that are acting upon the particles arise from

their mutual gravitational attractions, it is seen from Eq. (37.1)

that is a homogeneous function of degree —1 in the letters

2:,, 5 = 1,
• •

•
,
n. Hence, by Euler’s theorem,

-C7.
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On substituting this expression in Eq. (2) and setting

Dm,!/ . r/ = 2r,

where T is obviously the kinetic energy of the system, it is found

that Eq. (2) becomes

i/" - 2T - U, (6)

a result which is due to Jacobi. Also, by Eq. (36.3),

E = T - U (7)

where the total energy of the system, is a constant. If T
is eliminated between Eqs. (6) and (7), there is obtained finally

= 2E + IJ, (8)

If the system of particles is in a steady state, as seems to be

the case with the globular star clusters, the moment of inertia I

is a constant, and Eq. (6) reduces to

2r = {/, T ^ -E, [/ = -2E, (9)

and, since U is the negative of the potential energy of the system,

this can be phrased in the theorem:

In a steady state of a system of particles which are acted upon only

by their mutual gravitation^ the kinetic energy is constant and is

equal to one half of the negative of the potential energy.

A particular instance of an exact steady state is found in the

permanent configurations when the orbits are circles about the

center of mass. In the globular star clusters it is probable that

the steady state is only approximate.

The moment of inertia with respect to the origin is a homogene-

ous function of degree +2, and the potential function for gravita-

tion is a homogeneous function of degree —1. Therefore if the

r, in Eq. (1) are replaced by Xr„ the ratios of the mutual distances

remain constant while the configuration expands or contracts

according as X ^ 1, and

I = X^/i,

where /i is the value of / for X = 1. Similarly, since U is

homogeneous of degree —1,

U - x-^c/i.
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Consequently,

(10 )

where ki is a constant which may be called the configuration con-

stant, since it depends upon the nature of the configuration but is

independent of the size of the system.

If then the system expands or contracts in such a way that the

ratio of the mutual distances is preserved, the relation

U = kj-i

holds, and Eq. (8) becomes

i/" = 2E + (11)

an equation that can be integrated. On multiplying through by
47' and integrating, it is found that

/'* = SEI + 8kiD + C, (12)

where C is the constant of integration.

Let a new constant k 2 be introduced by the relation

^ _ 2{k,^-k2^),

E

then Eq. (12) becomes

/'“ = |l(2E/i + k,y - (13)

The energy E may be either positive or negative, since the

potential energy is always negative. If E is negative and a new
variable <p is defined by the equation

k 2 cos <p = 2ED + fci,

and the ratio k2/ki is replaced by the letter e, it is found that

Eq. (13) reduces to

(1 — € cos (p)(p = —

r

——f

which, by integration, becomes Kepler’s equation (I, 297),

(— 2J5)*
<p — esin — -—

r

——{t — U). (14)
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It follows from I, 300 that v? is a periodic function of t with the

period

p _ 2irki

{-2Ey

Therefore the period is a function of the total energy and the con-

figuration constant alone.

If the energy E is positive and the substitution

k 2 cosh <p = 2EI^ + ki

is made, Eq. (14) takes the form

e sinh (p
— ip — (t — h)y

ki

and the system, if it is expanding, continues to expand indefi-

nitely. If it is contracting, the moment of inertia attains a

minimum at = 0, namely

and thereafter the system expands indefinitely. It follows

therefore that if the energy is positive the moment of inertia, and

therefore the size of the system, eventually will increase beyond

all limits.

Application to the Kinetic Theory .—According to the kinetic

theory, the temperature of a solid, liquid or gaseous mass is

proportional to the mean kinetic energy of its molecules. In a

solid or liquid the motion of the molecules is one of oscillation

about a mean position that is fixed in the case of a solid or slowly

movable in the case of a liquid. In the case of a gas the mole-

cules move about freely except for their mutual collisions. These

collisions are assumed to be perfectly elastic, so that there is no

loss of energy.

According to Eq. (2a) the kinetic energy is

T = i/" - |2r..F„

and for solid or liquid masses at rest and for homogeneous gases

in an enclosed vessel, the moment of inertia with respect to the
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center of gravity is essentially constant, so that /" = 0,

Therefore

r = — Sr, • F,.

The mean value of the expression

-|Sr,.F, = S

is the quantity which was called the virial by Clausius.^ Hence

his theorem : The kinetic energy of the system of particles is equal to

its virial.

Imagine the mass to expand in such a way that the ratio of the

distances between the particles remains constant, and therefore

r, = (1 + dX)r,o,

or

dr, = r, d\.

The work done in the expansion is

= S dr. . F,

= (Sr, .F,)dX = -2Sd\.

Similarly for the volume

To — J dx dy dz^ F = (1 + dX)^J dx dy dZy

so that

F - Fo = dF = 3FdX.

The elimination of dX then gives

S ”2 dF*

If the work done in expanding is due to interior forces, this

expression represents the interior virial.

For exterior forces, consider the case of a mass subject to a

pressure p which is ^everywhere normal to the surface. Let n,

be a unit vector to the surface where r = r,. Then

F, = ~pn„

* Phihaophical MagadnCy August, 1870.
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and the expression for the virial becomes

S = +|pSr, • Hi,

the sum being taken over the entire surface. In order to evaluate

it let doi be an element of the surface; then

S — "Ip/r * ^ do).

By the formula II, 66,

Wn dco,

where F, G, and H are the x-, y-^ and ^-components of a vector W
and Wn is the component of W normal to the surface. In the

present case,

W = r, F = Xy G y, and H = z.

Hence

^
^fv ~ ^

and

S = ipF.

For a small mass of gas enclosed in a vessel, the interior forces

are vanishingly small and the interior virial vanishes, and there

remains

T = = |pF.

The fundamental law of perfect gases is

pF = nROy

where R = 82,600,000 (in the c.g.s. system) is the gas constant,

Q is the temperature, and n is the number of molecules present.

From these two equations it follows that the kinetic energy of a

chemically homogeneous perfect gas is

T = ^Rnd,

where 6 is the absolute temperature measured in centigrade

degrees, and T is expressed in ergs. The energy is expressed in

small calories by dividing the above result by 4.19 X 10^.
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Problems

1 . The particle mi with the velocity Vi collides and unites with a particle

m 2 with the velocity Vt. If V is their common velocity after collision, write

the vector equation which relates these three velocities.

2 . A stone tied to the end of a string is describing a circle with the linear

speed 8, If the string is allowed to wind around a cylinder at the center of

the circle what is the linear speed of the stone when the string is shortened

by one half?

3 . Two spheres are free to slide on a light rod. The two spheres are tied

together with a weak string and the system is tossed into the air. The string

breaks while the system is in motion and the spheres move out to the ends of

the rod. What effect does the breaking of the string have on the rate of

spin? What effect does it have on the motion of the center of gravity

of the system?

4 . In the equilateral triangular configuration let mi == mi = mi = 1 and

let the length of the side of the triangle be the unit of length. Find the

radius of the circle which a particle of negligible mass would describe around

one of the bodies in the same period as that of the three equal masses about

their center of gravity. Ans. r — 1/v^-

6.

If the masses are in the ratio

mi:m2;mi: : 1 :2:3

and the side of the equilateral triangle is 1, what are the distances in the

straight-line solution which has the same period?

Ans. n = .84923, r, = 1.51220, r, = .66297.

6. Show that the distances of the three masses from the center of gravity

in the equilateral configuration are given by

Ti ^ Ti ^ Tl

V^mi* + mima -f y/mz'^ -f msmi mi* \/mi* -f mimi -h mi*

7. Prove that if the particles are at rest in any configuration that admits

a solution of the problem of n bodies in which the ratios of the distances are

constant they will all fall to the center of gravity in the same time.

8. Show that, if three masses each equal to the sim are at the vertices of

an equilateral triangle the sides of which are one astronomical unit, the

period of revolution about the center of gravity which is necessary to main-

tain that configuration with circular orbits is 210.9 days, and that if they are

in the straight-line configuration with one astronomical unit between them
the period is 326.7 days.

9. If the two masses at the ends of each diagonal of a rhomb are equal,

there exists a solution of the problem of four bodies for which the rhomb
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configuration is maintained, provided the ratio of the diagonals, 5, satisfies

the inequalities

-^ < i < Vs.
Vs

The ratio of the two masses at the end of a side is

mi
m2

8 - (1 +
85 - (1 -h

(Ix)ngley).

10 . If two equal finite masses move in circles in the xy-plane with the

center of gravity at the origin, the motion of an infinitesimal particle which

moves along the ^-axis can be determined by an elliptic integral.

11 . Two equal particles are constrained to move one along the x-axis and
the other along the 2/-axis, without friction, subject only to their mutual
attraction. Show that their center of gravity moves just as though it were

a particle which is attracted toward the origin by a force which varies

inversely as the square of the distance. Generalize to a force that varies

inversely as the nth power of the distance.



CHAPTER IV

GENERAL THEOREMS ON THE MOTION OF A RIGID
BODY

43. Definition of a Rigid Body.—A rigid body is a system of

particles bound together by interior forces which lie in the lines

that join the particles, and are of such a nature that the mutual

distances between the particles are constant, whatever the

exterior forces may be. It is a mechanical ideal that is useful

because many natural objects are close approximations for many
purposes.

An alternative view is that the particles are subject to the

constraints

r„- = \/(Xi - XjY + iyi - y,y + {zi - ZjY = constant,

iy j ^ \y *
*

*
,

71
,

where Xiy Zi are rectangular coordinates of the ith particle and

n is the number of particles in the body. There are, of course,

n{n — l)/2 such constraints, but they are not all independent.

It is readily seen that if four particles are at the vertices of a

tetrahedron, the six constraints are independent, since any one

of the six distances can be altered without changing the other

five. A fifth particle can be added, and its position is uniquely

defined if its distances to any three non-collinear particles of the

tetrahedron are given. The distance to the fourth particle is

then determined. Of the ten constraints, nine are independent

and one is dependent. If a sixth particle is added, three of the

additional constraints are independent and two are dependent,

and so on. For each particle added after the third three of the

new constraints are independent and the remainder are depend-

ent. But for the first four particles the number of independent

constraints is six instead of twelve. Hence, for a system of n

particles which form a rigid body, there are 3n — 6 independent

constraints. Since 3n parameters x, y, z are necessary to define

the positions of the n particles and there are 3n — 6 independent

91
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constraints, it follows that there are only six parameters that are

free. That is, a rigid body has six degrees of freedom (I, 313).

The number of degrees of freedom, of course, can be reduced

by outside constraints, but for a single body the number cannot

be increased.

Since a rigid body is a system of free particles in which all

of the interior forces lie in lines which join the individual particles,

all of the theorems of Chapter III for which these forces were

not specialized are applicable to the motion of rigid bodies.

They are the principle of momentum, the principle of the moment
of momentum, and the principle of energy.

44. The Principle of Momentum.

—

The time rate of change of

the momentum of a body is equal to the vector sum of all of the

applied {or exterior) forces that are acting upon it. If M is the

mass of a body and G the position vector of its center of gravity

relative to a point of fixed space, the momentum of the body in

fixed space is MG', and if F is the vector sum of all of the applied

forces, the principle of momentum is expressed in the formula

MG" = F. (1)

It must be carefully noted that F is the vector sum of all of

the forces that are actually acting upon the body, that is, what
the force at the center of gravity would be if each particle,

together with the force which is actually acting upon it in its

initial position, were moved to the center of gravity, and the

sum of the forces were then taken. This may be, and in general

is, very different from what the force would be if each of the

particles were moved to the center of gravity and then the force

which would act upon it at the center of gravity were taken.

It is worthy of note that, since the vector sum of a couple is

zero, a couple that is acting on a rigid body, irrespective of the

points of application of the forces of the couple, has no effect upon

the motion of the center of gravity of the body.

First Example.—Suppose two iron balls each of mass 2 are

connected rigidly by a glass rod of mass 1, and that 0 is a center

of magnetic force (Fig. 20). The iron balls are attracted

toward 0 just as though they were particles of mass 2 located

at the centers of the spheres, while the glass is not attracted at

all. Suppose the centers of the balls are at distances of 2 and 3

respectively from the point 0. Since the magnetic force varies
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inversely as the square of the distance, the forces Fi and F2 which

are acting upon the balls are directed toward 0 and are in the ratio

of 9 to 4. The total mass M of the rigid body is 5, and

F = Fi + F2

acts at the center of mass. It will be observed that, in general,

F is not directed toward the point 0 as would be the case if the

entire mass were concentrated at the center of mass and then

acted upon by the magnetic force. Obviously, F depends not only

upon the distance of the center of mass from 0 but also upon the

orientation of the body with respect to 0. The equation of

motion of the center of mass is

5G" -

and the constraint

Ri R2 = L) ^0

where L is constant, must be

satisfied.

Second Example .—Suppose the same rigid body as in the

previous example were thrown into the air and that the resistance

of the air could be neglected. A force equal to mg acts upon

each particle of the body, g being the same for each particle.

In this case,

F = Zmg = Mg,

which is independent of the orientation of the body with respect

to the earth.

The equation of motion of the center of gravity is therefore

MG" = Mg, or G" = g,

where g is a constant vector. Doubtless, the body is spinning

in some fashion. But whatever the spin may be the center df

gravity describes a parabola, just as a single particle would

do (Sec. 13).

Third Example .—Suppose every particle of a rigid body is

attracted toward a fixed point 0 by a force which is proportional

to the mass of the particle and directly proportional to its distance

from 0. Required the motion of its center of mass.
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In this case

F = -k^lmR = -kmOy

and the equation of motion is

JkfG" = —k^MGj or simply G" = — fc^G,

which is the equation of simple harmonic motion (Sec. 13).

In this case also the force acting upon the center of mass is

independent of the orientation of the body and the motion of

translation is entirely independent of the motion of rotation.

46. The Principle of Moment of Momentum.—The time rate

of change of the moment of momentum of a rigid body with respect

to any point 0 of fixed space is equal to the sum of the moments of

the applied (or exterior) forces with respect to that point (Sec. 32).

This principle can be extended to the center of gravity of the

body, and for this case the statement is:

The time rate of change of the moment of momentum of a rigid

body with respect to its center of gravity is equal to the sum of the

moments of the applied (or exterior) forces with respect to the center

of gravity (Sec. 33).

This theorem is true whatever the motion of the center of

gravity may be, but the directions of the vectors are to be

interpreted as the directions of fixed space, and not one that is

in rotation with respect to a fixed space. By a fixed space is

meant space referred to a coordinate system that is at rest relative

to the center of mass of the galaxy (the system of the fixed stars)

or in uniform translation with respect to it. If the time and

space scale under consideration is so great that this definition is

inadequate, an extension to the system of visible spirals would,

perhaps, serve. At any rate, as the time and space scale under

consideration increases, larger and larger material systems are

necessary to which fixed directions can be referred. At the

present time the system of spirals is the largest system that can

be recognized.

It will be observed that the moment with respect to the center

of gravity of a force which acts at the center of gravity is zero.

Consequently, a force which acts at the center of gravity of a rigid

body has no effect whatever upon the rotation of the body.

This theorem and the analogous theorem on the motion of the

center of gravity, in Sec. 44, together constitute the principle
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of the independence of the motions of rotation and translation

of a rigid body.

If L is the moment of momentum of the body and N is the

moment of applied forces, the formulation of either of the above

principles gives

L' = N, (1)

(See Fig. 14). It is evident from the discussion in Sec. 33 that

the moment of momentum of any system of particles of total mass M,
rigid or otherwise, with respect to any point 0 of fixed space is equal

to the moment of momentum with respect to the point 0 of a single

particle of mass M moving with the center of gravity plus the moment

of momentum of the system of particles

with respect to its center of gravity.

If the field of force in which the

body is moving is of such a nature

that the force F acting on the center

of gravity is independent of the

orientation of the body and depends

only upon its position, the path

described by the body is independent of the manner in which

the body rotates; and if the moment of the forces N is independ-

ent of the position of the center of gravity, the rotation of the

body is independent of its translation. It rotates just as

it would if its center of gravity were fixed and the same

forces were acting. Both of these conditions are satisfied

in a limited field of the earth^s gravity. But in general, rotation

and translation are not independent of each other because the

forces acting depend upon both position and orientation.

46. The Moment of Momentum of a Rigid Body with Respect

to a Fixed Axis about Which It Is Turning.—In Fig. 21, let the

line in which <i> lies be the axis about which the body is rotating,

and w the angular velocity; let 0 be any point on the axis, r the

position vector of any particle p of the body, and m the mass

of the particle. In its motion of rotation about w the particle p
describes a circle in a plane perpendicular to w. If a is the radius

of the circle, the speed of p is

= aw == rco sin rw,

Fig. 21.

V
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and the direction of its motion is perpendicular to a plane which

passes through <«> and r. Hence

r' = w X r. (1)

The moment of momentum of the body with respect to the

point 0 is therefore

Lo = r X r' - 2m r X (a> X r),

= 2m[r2(o — (r • w)r] by Eq. (5.7). (2)

The moment of momentum with respect to an axis through 0 is

the projection upon that axis of the moment of momentum with

respect to the point 0. That is, if L is the moment of momentum
with respect to the axis, its scalar value is

L = 2m[r X (w X r)]
- ^

““

= Sm[r2co — cos^ r<o] = Zma^co.

Hence, if I is the moment of inertia of the body with respect to

the fixed axis

L = /<*>. (3)

From Fig. 21, it is seen the r can be written

where f is the perpendicular distance from 0 to the plane and a

is a vector that coincides with the arm a in the diagram. If this

expression for r is substituted in the formula

Lo = Smr X (<o X r),

it is found, after reduction, that

Lo = Jw — coZmfa. (4)

Since the scalars f depend upon the position of the point 0,

the moment of momentum with respect to the point 0 depends

upon the position of 0 on the axis, while the moment with respect

to the axis, which is the component of does not depend

upon the position of 0.

If io and jo are mutually perpendicular unit vectors each of

which is perpendicular to the axis of rotation and fixed in the

body, the vector a can be written

a = 00 + ’7jo>
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+ Smr;fjo

= P]io + P2jo>

where Pi and P 2 are products of inertia at the point 0. Conse-

quently

= Piio + P2jo = P

is a certain vector which is fixed in the body and which depends

upon the products of inertia of the body at the point 0. It is

obviously perpendicular to the axis of rotation.

The moment of momentum of the body with respect to the

point 0, Eq. (4), can therefore be

written

Lo = (5)

47. Example.—The two ends of

a straight uniform bar AB (Fig.

22) of length 2a and mass 7n are

constrained to move without fric-

tion on the circumference of a fixed

horizontal circle of radius r. A
bug of the same mass m is placed

on one end A of the bar, and the

entire system is at rest. Eventually, the bug begins to crawl

along the bar with a constant speed with respect to the bar.

Determine the motion with respect to a fixed horizontal plane.

Let j) be the perpendicular OC from the center of the circle

to the center of the bar, OX a fixed line in the plane, p the radius

vector Orn of the bug, the angle between the fixed line and p,

and B the angle between the fixed line and p. If t is measured

from the time the bug is at the center of the bar, s is his speed

with respect to the bar, and d is his distance from the center

of the bar, then

Cm — d — st.

Just before the bug started to move, the entire system was at

rest. Therefore the exterior forces, the weight of system, and

the reaction of the plane have a zero resultant and a zero moment
resultant, which is equivalent to saying that there are no exterior

B
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forces acting. When the bar is in motion the reactions of the

circle on the bar pass through the axis of the circle and their

moment with respect to the axis is zero. The upward reaction

of the plane is parallel to the axis. Hence the exterior forces

which act on the system have a zero moment, and therefore the

moment of momentum with respect to the axis is a constant.

Inasmuch as it was zero at the start it remains zero throughout

the motion.

If is the moment of inertia of the bar with respect to the axis

of the circle, the moment of momentum of the bar is mk^d\

The moment of momentum of the bug is mp^<p\ since (^' is the

angular velocity of the bug. Hence

mk^d' + wpV' = 0,

or

k'^B^ -i" == 0. (1)

Since p is constant and d is equal to it is evident that

p =

and that

ip = 6 tan“'
P

These values, substituted in Eq. (1), reduce the problem to a

quadrature, namely,

p/ ^ sp

/c2 + p2 + 52^2^

for which the solution is

e = Bo tan~‘
y/k^ + p2

The radius of gyration ki of the bar with respect to its own

center is a/y/S (I, 97), and the square of the radius of gyration

of the bar with respect to the center of the circle is (I, 96)

k^ = ki^ + p2,

= ™ + r* - a* = - fa^,
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When the bug started to move at A the value of t was —a/s,

and when it arrived at B the value of t was +a/s. Hence the

angle through which the bar turned during the entire motion was

I —a^ a

It was turning most rapidly when the bug was at the center of the

bar.

48. The Principle of Energy.—If M is the mass of a rigid body,

and G is the position vector of its center of gravity relative to

fixed space, the theorem of Sec. 35 becomes:

The change in the exterior kinetic energy of a rigid body in any

interval of time is equal to the exterior work done on the body by the

exterior forces in the displacement of the center of gravity that

actually occurs.

Expressed as a formula, this statement is [Eq. (35.2)]

§MG' • G' - WiG' • G')o = /F • dG, (1)

where

F =

and dG is the displacement of the center of gravity that actually

occurs.

Example,—A rigid body falls freely under the action of gravity.

What is the change in its exterior kinetic energy?

Let V be the speed of the center of gravity relative to the surface

of the earth, and h its height above the surface. Equation (1)

gives

^Miv^ - Vo') = /Mg • dG = Mgj dh = Mgh.

Since g is a constant vertical vector, g • dG is the scalar g multi-

plied by the vertical component of dG, or g dh. Therefore the

change in the exterior energy is its weight multiplied by the

vertical distance through which its center of gravity has fallen,

whatever the horizontal displacement may be, and whatever the

state of its rotation may be.
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The work done by the interior forces of a rigid body vanishes. The

expression used in Sec. 35 for the work done by the interior forces

was • dp;. In this expression is the sum of all of the

individual forces, due to the other particles, on the particle m,*.

Therefore

F,'« =
A;

where FjA: is the force on mj due to the particle nth. The force

F;fcy, due to the action of nij on nik is equal and opposite. Hence

the work done by this pair of forces is

dW jk = F;/t • dp; + ^kj • dpAr — F;A: • (dp; “ dpA;).

But,

py = + 9}ki

so that

dp; — dp* = dp;*,

and since the tensor of py* is constant,

Py* * pyfc ~ Pjk^) 9jk • dp;* = Oj

therefore dpy* is perpendicular to p,* and likewise to Fy*. Hence

dW jk
— Fy* • dpy* = 0,

and the interior forces of a rigid body, whatever they may be, do

no work. The change in the interior kinetic energy is equal to the

interior work done by the exterior forces; and the equations of

Sec. 35 give

iSmp' .
p' - K^mp' . p')o = • d^j,

the vectors p having their origin at the center of gravity.

These two statements can be combined into the single state-

ment: The change in the kinetic energy of a rigid body in any interval

of time is equal to the work done upon it {both interior and exterior)

by the applied {exterior) forces in that interval of time.

49. The Kinetic Energy of a Rigid Body Which Is Rotating

about a Fixed Axis.—Let the angular velocity of rotation be w

;

then the direction of <i) coincides with the axis of rotation. Let 0
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be any point on the axis, r the position vector of any particle of the

body relative to 0
,
G the position vector of the center of gravity

of the body, and p the position of the particle relative to the

center of gravity. Then

r = G + 9.

Since the particle is in rotation about a fixed axis,

r' = CO X r = (a> X G) + (t. X 9),

by Eq. (46 . 1 ). The kinetic energy of the body is therefore

^ 2mr' • r' == -2-2m[(<o X G) + (<0 X 9)] • [(o> X G) + (co X 9)]

= \M{(^ X G) • (co X G) + X 9) • (<*> X 9),

since the cross product term (to X G) * X 9) vanishes by

virtue of the fact that vanishes. But

X G) • (<») X G)

is the kinetic energy of a particle of mass M moving with the

center of gravity about the axis (the exterior kinetic energy),

and the term

|2m(G> X 9) • (<*> X 9)

is the kinetic energy of body rotating with the angular velocity

o) about an axis through the center of gravity and fixed in the body
(the interior kinetic energy).

If a is the distance from the center of gravity to the axis, the

exterior kinetic energy Te is obviously

Te =

As for the interior kinetic energy Ti let p be the distance of the

particle from the parallel axis through the center of gravity.

Then

(w X 9) • (o> X 9)
=

and

Ti = lcx)^Xmp^ —

if I is the moment of inertia of the body with respect to the axis

through the center of gravity. If k is the radius of gyration with
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respect to this axis,

I = Mk^,

and the interior kinetic energy is

Ti = ( 1 )

Hence the total kinetic energy T of the body with respect to the

original fixed axis through 0 is

T =

The square of the radius of gyration with respect to this axis is

[Eq. (18.1)]

ki^ = a2 + k\

and the expression for the total kinetic energy can be written

T =

60. The Kinetic Energy of the Earth.—The two conspicuous

motions of the earth are its revolution about the sun and its daily

rotation about an axis approximately fixed in the earth. With

respect to the sun its kinetic energy of translation is

Te =

where r is its distance from the sun and coi is its angular speed

about the sun.

Its kinetic energy of rotation is

Ti = = .335Afa2a?2, by Chapter II, problem 18,

where M Ls the mass of the earth, a is its radius, and co is its

angular speed of rotation.

The ratio of these two kinetic energies is

since

= 1.63 X 10-^
1

6,130'

- = 4.26 X 10-‘ and — = 366.25.
r 0)1

The kinetic energy of translation is therefore 6,130 times the

kinetic energy of rotation.
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The mass of the earth is 5.994 X 10^^ grams, its radius is

6.374 X 10® cm., and

« = 5^^ = 0.00007292 = 7.292 X 10"*.
86,164

Consequently

Ti = 4.334 X 10®« ergs,

== 7.232 X 10® ergs per gram.

Since there are 4.186 X 10^ ergs in one calorie of heat, the

kinetic energy of the earth’s rotation expressed in heat units is

17.28 calories per gram. If Q is the number of calories of heat

per gram of mass that is applied to a body, and is the specific

heat of the body, the temperature of the body is raised Q/r\

degrees centigrade. Assuming that the specific heat of the earth

is I, and this is merely a guess, the interior kinetic energy of the

earth is sufficient, if converted into heat, to

raise the temperature of the entire earth 121®

centigrade.

The temperature of a mathematically rigid

body is necessarily zero, if temperature is

defined as the mean kinetic energy of the

molecules; for the particles of a rigid body have
no independent motions. The concept of

rigidity is a very useful one for many mechani-

cal purposes, since many bodies act as a rigid

body would do. A definition of rigidity that

would satisfy mechanical requirements and

also satisfy the requirements of thermal changes would,

perhaps, be difficult.

61. Example.—A tape of negligible weight and thickness is

wound tightly around a heavy cylinder of radius a, the length

of the cylinder being equal to the width of the tape. The cylinder

is held in a horizontal position with the tape taut and the free end

of the tape in a vertical position is fastened to a rigid support.

The cylinder is then allowed to fall freely. Describe the motion

that ensues.

There are two forces acting on the cylinder, namely, its weight

and the tension of the tape (Fig. 23). Both of these forces are
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vertical. If M is the mass of the cylinder and T is the tension

of the tape, the equation of motion of the center of gravity of the

cylinder is

MG" = Mg + T. (1)

Let 2 be a vertical axis, taken positively upward; then Eq. (1)

becomes

M2" = -Mg + T, (2)

The motion of the cylinder about its center of gravity is

evidently a rotation about the axis of the cylinder. The moment
of inertia of the cylinder with respect to its axis is ^Ma^. If 6

represents the angle through which the cylinder has turned at the

instant t, the angular speed oj is and the principle of moment
of momentum then gives

= aT,

or

Mae" = 2T. (3)

On eliminating T between Eqs. (2) and (3) and removing the

factor M, there is obtained

~ ^ae" = -g. (4)

Now from the nature of the constraints,

z — Zo — aS, (5)

where Zo is the initial height of the center of gravity. Hence

z ==
,

and Eq. (4) becomes

and then from Eqs. (3) and (2)

T = iMg, z" = -§ff,

and the center of gravity falls with exactly two thirds of the

acceleration of a body that is entirely free, whatever the radius

of the cylinder may be.
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That the cylinder falls vertically is evident from the fact that

at every instant the forces acting upon it are resolvable into a

force Mg + T which acts vertically at the center of gravity, and

a couple whose moment is aT. The couple has no effect

upon the motion of the center of gravity, and inasmuch as the

center of gravity had no horizontal motion initially, it cannot

acquire one.

The kinetic energy of rotation absorbs one third and the

kinetic energy of translation absorbs two thirds of the potential

energy lost in falling.

62. The Three Angles of Euler.—The six parameters that are

used to define the position of a rigid body to a large extent are

a subject of choice. Three parameters, for example, are neces-

sary to define the position of some fixed point 0 of the body with

respect to a given coordinate system. Two more are necessary

to define the direction of a line through 0 which is fixed in the

body; and one is necessary to define a rotation of the body about

this line.

The last three of these parameters are angles which define

the orientation of the body. Imagine a trihedron, f, 17, {*, rigidly

attached to the body, and a second trihedron, x, y, z, in fixed

space. The position of the body in fixed spa(5e is determined

if the origin of the f, t/, f trihedron, Xo, 2/0, ^o, relative to the x, y, z

trihedron, together with the nine direction cosines of the

r;-, and f-axes are given. If then 77, f is a point fixed in the

body, its coordinates in fixed space are

2/ = 2/0 + + 02V + ^sf, \ J (1)

= Zo + + y2V + Tsf-j

The nine direction cosines ai, . . . , 73 ,
however, are not inde-

pendent, for there exist six independent relations among them,

namely,

ai^ + 01
^ + 7i^ = 1, «i«2 + 0102 + 7i72 = 0,)

Oi2^ + 02^ + 72 ^ == 1
,

«2«3 + 0203 + 7278 ~ 0
, ^

(2)

+ 03^ + 73^ = 1, ctzoti + 0301 + 7871 = O.j

The equations in the first column hold because 0 %, and 7» are

the direction cosines of the 77-, and f-axes, and the sum of the
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squares of the direction cosines of any straight line is unity;

the equations in the second column hold because ry-, and f-axes

are mutually perpendicular.

The nine direction cosines, therefore, can be regarded as

functions of three independent parameters. These parameters

will be chosen as follows: Let i

f-axes, Fig. 24, and therefore

z

be the angle between the 2- and
also the angle between the xy-

and the fry-planes; ^ the longi-

tude of the ascending node of the

fry-plane, on the xy-p\2ine\

and (p the angle between the line

of nodes, OX, and the f-axis. Of.

These three angles and p
are known as Euler^s angles. It

will be observed that d and ^
determine the direction of the

f-axis, while p defines a rotation

about the f-axis. It is desirable

to have the nine direction cosines

explicitly as functions of 0, and

Fig. 24.

In any spherical triangle in

which a, 6, and c are the sides and B, and C are the angles

opposite these sides the three equations

cos a — cos b cos c + sin b sin c cos A,

cos B sin a — cos b sin c — sin b cos c cos A, (3)

sin S sin a = sin b sin A,

hold. In the triangle fxP, Fig. 24, the sides are lettered

a, by and c; the angle B is denoted by z, and A = 90°. Hence

cos a = cos b cos c,

cos i sin a = cos 6 sin c,

sin i sin a = sin 6,

= cos fx,

= cos fj/,

= cos f2 .

By applying the first of Eqs. (3) to the triangle ^Py it is found

that

cos ft/ = cos (90° — c) cos b = cos b sin c.
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iz = 90® - fe,

cos == sin h,

and obviously

cos = cos a.

On applying Eqs, (3) to the triangle x^K it is seen that

ai = COS = cos a = cos ^ cos — sin sin ^ cos

= cos iy = cos t sin a = sin ^ cos (jp + sin ^ cos ^ cos

7 i = cos fz = sin i sin a = + sin (p sin 6,

The formulas for a 2 , i^ 2 ,
and 72 are derived from the above

merely by changing <p into 90® + v?, since a rotation of 90®

about the f-axis brings the ^-axis to the original position of the

r/-axis.

In order to get 0: 3 ,
and 73,

it is necessary merely to draw
the triangles xfz, in which fz = ^, xz = 90® and the angle at

z = 90® — xpf and yfz, in which the angle at z is equal to 180® — i/',

and then apply the first of Eqs. (3). There results the following

table of values of the nine direction cosines as functions of the

three Euler angles

:

ai = — sin <P cos 6 sin + COS COS ^>11

01 = + sin cos 6 cos + cos sin (4)

7i = + sin <P sin dy
J

1

a2 = — cos cos B sin — sin COS 1

02 = + cos cos 6 cos — sin 9 sin (5)

72 = + cos sin 6, J1

az = + sin d 1sin

03 = — sin e cos ypj (6)

73 = + cos e. I

The position of a body is uniquely defined by the six obviously

independent parameters, Xq, yo, Zo; (p, 6. If a body moves in

such a way that p, and 6 remain constant, the motion is a pure

translation; and if it moves in such a way that Xo^ yo, and Zq

remain constant the motion is a pure rotation about the origin

of the trihedron which is fixed in the body. A rigid body has

therefore three degrees of freedom of translation and three
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degrees of freedom of rotation. The freedom of a rigid body can

be reduced by various kinds of constraint, but under no circum-

stances can the number of degrees of freedom exceed six.

63. The Laws of Friction.—It was first pointed out by Coulomb

(1781), and later confirmed by Morin (1834), that within very

wide limits, sliding friction is governed by two laws, namely,

1. Friction is proportional to the normal pressure between the

surfaces in contact, and therefore is independent of the areas

of the surfaces.

2. Friction is independent of the speed with which one surface

slides over the other.

Nevertheless these laws are not mathematical laws in the sense

that they hold under all circumstances. If the normal pressures

are very high and have been long continued, the friction between

the surfaces is notably increased. The friction between two

surfaces relatively at rest (static friction) is greater than when
the two surfaces are in motion (kinetic friction), and the friction

is again diminished when the relative speeds are very high.

However, for ordinary pressures and speeds, these laws represent

the action of friction in a satisfactory manner.

If N is the normal force between the two surfaces in contact

and F is the tangential force that is just necessary to produce

slippage, the ratio

F

is called the coefficient of friction, and its value depends only on

the nature of substances in contact (I, 113).

If one body rolls upon another, both bodies are deformed and

instead of a point of contact there is a small area in contact.

In addition to the normal force and the force of sliding friction,

there enters a frictional couple C, whose axis lies in the tan-

gent plane perpendicular to the direction of motion. It was

found by Osborne Reynolds^ that this couple is very small and

can usually be neglected. Of course, if the body has an angular

velocity about the normal at the point of contact, there is also

a frictional couple T which is called the couple of twisting friction.

^ Philosophical TransactiorSf 1876 .
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This also is usually very small, but if the frictional force also is

very small, both of these couples may be important.

Problems

1.

A cannon resting on a rough horizontal plane is fired and the muzzle

velocity of the projectile with respect to the cannon is v. If rrii is the mass
of the cannon, ?/?2 the mass of the projectile, the mass of the powder being

negligible, and /i is the coefficient of friction, show that the distance of recoil

of the cannon is

/ 71121} V 1

Vwi -h m 2) 2yLg

2. Two men each of mass m 2 are standing at the center of a uniform

horizontal beam of mass nii which is rotating with uniform angular speed w

about a vertical axis through its center. If the two men walk out to the

ends of the beam and on is then the angular speed, show that

mi
0)1 = r-7;—0.

nil + 6m2

3. If a shell at rest explodes and breaks into two fragments, show that the

two fragments move in opposite directions along the same straight line with

speeds that are inversel}^ proportional to their masses.

4. A sheet of paper on which is drawn the circumference of a circle of

radius a rests on a smooth table. A pin is pushed through the circumference

into the table, so that the paper is free to turn about the pin. A bug of mass
m is placed at rest at the end of the diameter through the pin and crawls with

uniform speed along the circumference to the pin. If I is the moment of

inertia of the paper with respect to the pin and

Atna^
M = -j -

prove that the angle 0 through which the paper has turned when the bug

arrives at the pin is

e

6. A circular hoop of mass m\ and radius a lies on a smooth table, and a

bug of mass m 2 is placed at rest on the hoop. The bug starts to crawl along

the hoop with constant speed with respect to the hoop. If i and j are two

relatively prime integers such that

f > (3 + 2y/2)j,

nu ^ (t — 3j) ± Vt* — 6t; +
m% 2j

and if
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show that when the bug has traveled around the hoop i times both the bug

and the hoop are in their initial positions relative to the smooth plane.

6. Show that in the two-body problem for circular orbits

= k^(mi 4- W 2 ),

where is the gravitational constant, r is the distance between the two

bodies, and co is the angular speed in the orbits.

7. Tidal action of the moon on the earth is slowing down the rotation of

the earth and lengthening the month. Neglecting the action of the sun and

planets on the earth-moon system, and assuming that the orbits of the earth

and moon are circles about their common center of gravity, show that the

earth and moon will revolve just as though they were a single rigid body

rotating about an axis through the center of gravity when the day and the

month have a common period of approximately 48 days. The kinetic

energy in the final state is approximately 10 per cent of the present kinetic

energy of the system.

8. If n is the coefficient of friction, the couple necessary to start into

rotation a right circular cylinder of radius a and weight iv that is standing

on its base on a rough horizontal plane is IwaiJ.. For a square cylinder of

side o, it is .743{caM.

9. A uniform plank of thickness 2h rests in equilibrium on the top of a

rough, horizontal cylinder of radius a. Show that, if a > h the equilibrium

is stable, and that if the plank is started to oscillating, the energy equation is

-f /i* + + g[ae sin 0 — (a -f- /?)][! ~ cos 6] - const.,

as long as the motion is a pure rolling.

10. A rod of length 2a and mass m slides without friction on a horizontal

plane. A bead of the same mass m slides freely on the rod. Find the

motion of the system and the constraint between the rod and the bead.

Let 6 be the angle which the rod makes with a fixed line in the plane and 2r

the distance of the bead from the center of the rod. In the particular case

in which the center of gravity of the system is at rest and r' = 0, the path of

the bead is given by the equations

(r* 4- ikW - c,

r'’' 4 (r* 4 = h,

and therefore r can be expressed as an elliptic function of d. (Greenhill,

'^Elliptic Functions,” page 74.)

11 . A uniform rod of mass m bent into the form of a plane curve slides

without friction on a horizontal plane. Referred to its center of gravity G
and a polar axis GA associated with the rod the equation of the curve is

6 ^ f(r). A bead also of mass m slides freely on the rod. Let a be the

angle at G which the bead makes with a fixed direction in the plane, and /3

the angle which OA makes with the same direction.
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The principle of energy gives the equation

r'’ + r*a'* + = h,

and the principle of angular momentum gives

-f 2k^ti' = C;

and finally

a - ^ = 0 ^ f(r).

These three equations determine a, and r as functions of the time.

12 . Given a circle of radius a in a vertical plane and a vertical line L
through its center. A heavy bar of length 21 has one extremity constrained

to move without friction on L and slides without friction on the circle. The
bar is placed initially at rest in a horizontal position and then released.

Examine the motion. Show that, if 2a = \/3^) the angle 0 which the bar

makes with the horizontal oscillates between 0 and x/3.

13 . A horizontal windlass of two heavy coaxial cylinders of different

radii, ry and r 2 ,
rigidly connected has two ropes wound in such a manner that

when the windlass turns, one rope winds up and the other unwinds. Two
weights w\ and xvi are attach (;d to the ends of the ropes. If equilibrium does

not exist under the action of the two weights, one weight will ascend while

the other descends. Show that the motion is uniformly accelerated, and
that the tension in the descending rope is less, and in the ascending rope

greater, than it would be if the windlass were clamped and the entire system

were in equilibrium.

14 . Find the motion of a system composed of two uniform bars AB and
C/), of the same length and mass, if the extremities of the bars A and C, also

B and Z), are connected by light strings of length 1. The upper bar pivots

at its mid-point and the motion is confined to a vertical plane.

15 . A heavy body is rigidly attached to an axle of radius r in such a way
that its center of gravity is on the axle. The axle is supported in a hori-

zontal position by two bearings in which the axle is free to turn. It is acted

upon by a vertical force F through the axle and a couple of moment C.

Show that the equation of motion of the body is

MkW — C — Fr sin c,

where e is the angle of friction.

16 . Given a horizontal wheel with hollow spokes, and in each spoke a ball

which can be regarded as a particle of mass m. Initially the balls are all at the

same distance from the center. An angular velocity w is given to the system

and it is then left to itself. Show that if there is no friction the equation of

the path of each ball has the form

r cn 0 — c.

(Greenhill, '^Elliptic Functions/' p. 76.)



112 DYNAMICS OF RIGID BODIES

17, A horizontal cylinder rolls down the side of a wedge that rests on a

horizontal plane. Determine the motion under the assumption that there

is no friction between the wedge and the plane on which it rests.

18. A solid triangle ABC of weight w\ pivots at the corner C on a smooth

horizontal plane. A particle of weight is constrained to move without

friction along the side AB by an elastic string, of length h equal in length to

the perpendicular from 0 io AB, attached to the point 0. Determine the

motion of the system.



CHAPTER V

MOTION PARALLEL TO A FIXED PLANE

ONE DEGREE OF FREEDOM

54 . Introduction.—Since a perfectly free rigid body has six

degrees of freedom, three of translation and three of rotation, a

body that has but one degree of freedom may have one degree of

freedom of translation without rotation, or it may rotate about

a fixed axis without translation, or it may have both translation

and rotation, the translation and rotation being related in some
definite manner. The problem of translation does not differ

essentially from the problem of motion of a single particle, since

the center of gravity moves just as though all of the mass and
all of the forces that are acting upon the body were concentrated

at that point. It is only the forces of constraint that require

additional attention.

55 . Motion of Translation.—A uniform bar is free to slide

along a straight line which it touches in two points (the end
points), Fig. 25. An elastic string of negligible mass passes

Fiq. 25 .

through a small hole at 0 and is attached to a point P of the bar,

so that OP represents the stretch of the string. Determine the

motion under the assumption that all of the constraints are

smooth.

Taking 0 as an origin, let P be the point at which the string

is attached, and G the center of gravity. Then

P = G + a, ( 1 )



114 DYNAMICS OF RIGID BODIES

where a is a constant vector which will be assumed parallel to

the line of motion. The force acting on the bar due to the

stretched string is

T = -^2P,

where is a constant factor of proportionality, and the forces

of constraint, Ri and R 2 ,
are perpendicular to the line along which

the bar slides. The principle of momentum (Sec. 44) gives

MG" - -k^P + Ri + Rz. (2 )

Let i be a unit vector parallel to the line of motion, and let Eq. (2)

be multiplied by i •. There results

Mi.G" = -Pi.P, (3)

since

1 • R] = i * R2 = 0.

By Eq. (1),

P" = G",

and

i.G'^ = i-P'' = (iP)".

Let i • P, the component of P in the line of motion, be denoted

by Pi. Then Eq. (3) becomes

MPi" =

which is the equation of simple harmonic motion. Therefore,

whatever the initial conditions may be, the bar slides back and
forth in simple harmonic motion.

Since the bar does not rotate, the sum of the moments of the

forces with respect to the center of gravity is zero. Let L and L
be vectors, with origin at the center of gravity, perpendicular

to Ri and R 2 respectively and terminating in them. Then the

equation of moments is

(li X Ri) + (I 2 X R2 ) + A;-(a X P) - 0, (4)

with

= I
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If P* is the component of P which is perpendicular to the line

of motion, Eq. (4) gives the scalar equation

-IR, + IRi - k^aPi = 0 . (5)

The sum of the forces perpendicular to the line of motion

also vanishes, and this gives

Ri + Rz- k^Pi = 0, (6)

and from Eqs. (5) and (6) it is found that

Ri = and R, =

Since P 2 is constant, the constraints Ri and R 2 likewise are

constant. The magnitudes of the constraints depend upon the

point of attachment of the elastic string, a, but the period of the

motion, 27r/fc, does not.

66. A Rough Cylinder Slides Down an Inclined Plane.—

A

right circular cylinder resting on its base slides down a plane

which makes an angle a with a hori-

zontal plane, the coefficient of sliding

friction being fx = tan e. Determine

the motion (Fig. 26).

Let i, j, k be a system of unit

vectors in fixed space, the k~axis

being parallel to the intersection of

the inclined and horizontal planes, the j-axis horizontal, and
the i-axis vertical downward. Let io» jo, ko be a system which is

fixed with respect to the cylinder, the ko-axis parallel to the k-

axis, the jo-axis directed up the plane and the io-axis normal to the

inclined plane. Then

i = io cos a jo sin a,

j
= io sin a + jo cos a.

The forces acting on the cylinder are its weight, Mg i, and the

constraint, or reaction, of the plane. The constraint of the plane

is equivalent to a single force F acting at the center of gravity

and a couple (I, 160). Since the cylinder does not rotate in any

manner, the couple is obviously zero, and the principle of momen-
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turn gives the equation of motion

jl/G" == i + F
= Mg{cos a io — sin a jo) + F,

the origin of G being arbitary.

On taking

F = Fiio + F2jo +

it is evident that

Fz = 0, and Fi = ~~Mg cos a,

since there is no motion normal to the plane. The frictional

component F2 in magnitude is /x times the normal component Fi

and is directed up the plane. Hence

F = ~Mg cos a io + MgjjL cos a jo,

AfG" = Mg(iJi cos a — sin a)jo

sin (a — e),= -Mg ^
^jo.

cos e

The angle a must be equal to or greater than the angle e, since

friction certainly will not make the cylinder slide up the plane.

The acceleration is zero or down the plane and is constant in

magnitude.

67, Rotation about a Fixed Axis.—If a rigid body moves about

an axis which is fixed in the body and fixed also in space, the

axis must be supported by outside forces; that is, the axis is

constrained to remain in a fixed straight line, and it will be

assumed that the axis cannot slip along this line. Two supports

acting at Qi and Q2 (Fig. 27) are sufficient for this purpose, and

the constraints which are acting at these points will be denoted

by Ri and R 2 .

The applied forces that are acting on the body, whatever they

may be, are equivalent to a single force F, which is acting at the

center of gravity, and a couple C (I, 160). Let a plane be passed

through the center of gravity perpendicular to the axis, and let

the intersection of the axis and the plane be the point 0. With
0 as the point of reference, let G be the position vector of the

center of gravity, and therefore perpendicular to the axis.
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If M is the mass of the body, the principle of momentum
(Sec. 44) gives the equation

MG" = F + Ri + R2. (1)

Let the axis of rotation be the k-axis of an i, j, k system of

mutually orthogonal unit vectors in fixed space. The moment of

F with respect to the point 0 is G X
F; and if

OQi = Zij and OQ 2 = 22 ,

{zi is negative in the diagram), the

moments of Ri and R 2 with respect to

the point 0 are

2i(k X Ri) and z^Qs. X R 2).

The moment of all of the forces with

respect to the point 0 is

therefore Fio. 27.

N. = C + (G X F) + 2i(k X Ri) + 22(k X R 2 ). (2)

The moment of momentum of the body with respect to the

point 0 is, by Eq. (46.5),

Lo ==/<*> — caP,

where I is the moment of inertia with respect to the axis of

rotation; <0
,
which coincides in direction with the axis, represents

the angular velocity about the axis; and P is a vector, perpendicu-

lar to the axis and fixed in the body, which depends upon the

products of inertia of the body at the point 0. Since P is fixed

in the body,

P' = <0 X P,

and

Lo' = 7g>' — Oj'P — w(<0 X P).

The principle of moment of momentum [PJq. (45.1)] now gives

the equation

U = No,

or

- co'p -- co(<D X P) = [C + (G X F)] + k X [^lRl + Z2'Rz]. (3)
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If Eq. (3) is multiplied by k •, there results the scalar equation

7a;' = k . [C + (G X F)], (4)

which determines the motion about the axis.

68. Determination of the Constraints.—Since Eq. (57.4) con-

tains only quantities that are given in the problem, it is reducible

to an ordinary differential equation of the second order. Suppose

this equation has been solved and therefore w is known. There

remains the determination of the constraints Ri and R 2 .

Multiply Eq. (57.3) by k X. Since (o is fixed in direction,

(!>' has the same direction as a>. Therefore

7 k X <*>' = 0.

The vector P is perpendicular to o), so that

k X P = P90,

where Pso is the vector obtained by rotating P forward through

90®, keeping it perpendicular to g). By Eq. (5.4)

k X (g> X P) = — a>P,

k X [k X {ziRi + 2;2R2)] = [k • (^iRi + 2^2R2)]k - (ziRi + Z2R2)-

The vector [k • (ziRi + 2r2R 2)]k is the k-component of

(^^iRl + 2^2R2)
;

let it be denoted by the letter K. The result of multiplying

Eq. (57.3) by k X is therefore

2iRi “b 22R 2 = A = (o'Pgo — a)^P -j- k X [C -|- (G X F)] — K. (1)

Since

G' - a> X G, and G" = (a>' X G) -

Eq. (57.1) gives the relation

Ri + R 2 = B - il7(o>' X G) - -- F. (2)

If Z2 — Zij which is the distance between Qi and Q 2 in Fig. 27, is

denoted by the letter h, the solution of Eqs. (1) and (2) gives the

expressions for the forces of constraint

hRi == —A -j- 22B,\

hR^ ~ “hA — Z\R,j
(3 )
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The vector A contains an unknown vector K, which is parallel

to the axis. The k-components of Rj and R2 are therefore

undetermined, and it is obvious from Fig. 27 that this must be so;

for if any force parallel to the axis is introduced at Qi, and the

same force reversed is applied at Q 2 ,
the operation would have no

effect upon the motion of the body and no effect upon the com-

ponents of the constraints perpendicular to the axis. Hence,

although the sum,

Ri + R 2 = B,

is uniquely determined, the difference

A.(R2 — Ri) ~ 2A — (zi ^ 2 )3 ,

contains an arbitrary vector which is parallel to the axis. The
components perpendicular to the axis are completely determined

by Eq. (3),

69. The Nature of the Constraints.—It will be observed

that the vector A contains the term and that B contains

the term In rapidly rotating machinery these terms may
rise to very high values, since a? itself is large, unless P and G
vanish, and they may be large even though P and G are merely

small. As is seen from Eqs. (58.3), B occurs in Ri and R 2 with

the same sign, if the body is rotating between the two points of

support.

The term corresponds to centrifugal force. It acts

in the same direction, perpendicular to the axis, on both bearings.

The term w^P, which occurs in A, enters Ri and R 2 with opposite

signs, forming a couple whose axis is perpendicular to the axis

of rotation. Since P and G are fixed in the body the constraints

are reversed at each half revolution. It is not difficult to see that

a very rapid rotation will soon tear a machine to pieces unless

P and G are extremely small or zero.

The condition G = 0 means that the center of gravity of the

body lies on the axis of rotation, and the condition P = 0 means
that the axis of rotation is a principal axis of inertia at the point 0.

If both of these conditions arc satisfied, the axis of rotation coin-

cides with a principal axis of inertia at the center of gravity; the

component of A which is perpendicular to the axis of rotation

vanishes, and B is reduced to — F. The constraints and the
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force F are a system of forces in equilibrium and produce no effect

upon the rotation. Equation (57.4) reduces to

/o>' = k . C. (1)

60. The System of Forces Has a Unique Resultant Which

Passes Through the Axis.—Let two forces F and —F be intro-

duced at any point Q on the axis, and let the distance from

O to Q (Fig. 28) be z, taken positively if Q
is above 0 and negatively if below. These

two forces form a system in equilibrium,

and have no effect upon the body or upon

the constraints. The force —F at Q and

the force +F at G form a couple, namely,-F

Q.

(G - zk) X F.

Fig. 28 .

Consequently the two forces at Q and the

single force at the center of gravity are

equivalent to a single force F which passes

through the axis and a couple. If this

couple neutralizes the couple C, then the couple C and the

single force acting at the center of gravity are equivalent to

a single force F which passes through the axis at Q. Hence,

the condition that the forces acting upon the body should have

a unique resultant which passes through the axis is

(G - zk) X F = -C,

C + (G X F) = z(k X F),

where z is some scalar.

Now

k.kXF = kXk.F = 0,

and Eq. (57.4) becomes

W = 0, (1)

from which it follows that o is a constant, and the body spins

about the axis with a constant angular speed.

Also

-k X (k X F) = F - (k . F)k
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is the component of F which is perpendicular to the axis. Let it

be denoted by Fp. The expressions for A and B become, neglect-

ing the k-components,

A = — co^P — z¥pj

B = -C.WG - F/>;

and the constraints are

hRi = +coHP - z^MG) - (Z2 - z)¥py

HR, = -a)2(P - ZiMG) + (2 i
- z)¥p.

The vector P in these expressions is the vector defined in

Sec. 46 and is associated with the point 0. If and P<?, are

the corresponding vectors associated with the points Qi and Q 2 ,
it

is a simple matter to show that

Pg, = P — ZiMGy Pgj = P — Z^MGj

so that

hRi = +co2Pg, — {Z2 — 2)Fp,\

hR, = + (z. - z)Fp./
^ ’

If the axis of rotation is a principal axis of inertia at the point

Qi, Pg, vanishes, and if 2 = 2 i, that is if F passes through Qi, the

constraint at Q 2 disappears altogether. Hence the theorem

:

Theorem,—If a solid body, rotating about a fixed point, is acted

upon by forces which have a unique resultant which passes through

that point, and if the axis of rotation is a principal axis of inertia

at the fixed point, then the body will continue to turn indefinitely

about this axis with constant angular velocity.

For this reason the principal axes of inertia at any point are

sometimes called the permanent axes of rotation.

Under what conditions can the constraint at Qi also vanish?

Equation (2) gives the condition

OJ^Pg, = h¥p.

Since the vector Pg, is fixed in the body, it is necessary that ¥p
should be constant in magnitude and rotate about the axis with

the same speed as the body; or, that

¥p = 0, Pg, = 0.

These last conditions will be satisfied if there are no exterior
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forces, and if the axis of rotation is a principal axis not only at

Qi but also at Q 2 . By the theorem of Sec. 22, if any line is a

principal axis of inertia for two of its points it is a principal axis

for all of its points, and the line passes through the center of

gravity. (Consequently

;

Theorem,—A rigid body that is turning about a 'principal axis

of inertia of the central ellipsoid and is not acted on by any exterior

force will continue to turn about that axis with constant speed., with-

out any constraints.

This fact has given to the principal axes of the central ellipsoid

of inertia the name the spontaneous axes of

rotation.

61. The Compound Pendulum.—Any
heavy rigid body that turns freely about

a horizontal axis and is acted upon by no

exterior force except gravity is a compound
pendulum.

In accordance with the previous nota-

tion, the horizontal axis of rotation will

be taken as the k-direction of an i, j, k system, the j-direction

being horizontal, and the i-direction vertical downward (Fig.

29). The only forces acting upon the body arc its weight,

F = Afg i,

acting at the center of gravity, and the constraints acting on the

horizontal axis.

Inasmuch as there is no applied couple, Eq. (57.4) gives the

equation of motion, namely,

/co' = k-G X F. (1)

In Fig. 29 the line OiGO% passes through the center of gravity G
and is perpendicular to the horizontal axis of rotation, so that

G = 0^,
and

e = iG

.

Now

k • G X F = Mg k • G X i = —Mg j
• G = ~ Mgh sin 6.
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It is convenient here to depart from the customary notation and

let

tensor of G = OiG = U.

As usual,

/ = Mk,\

where ki is the radius of gyration of the body with respect to the

axis.

Since

o) = d\

Eq. (1) becomes, after removing the mass factor Af,

/ci20
" = —gh sin 0 . (2 )

On comparing this equation with the equation of motion of a

simple pendulum of length h + Z2 ,
namely,

(h + 12 ) 6
'' = sin

it is plain that the motion of a compound pendulum is the same
as that of a simple pendulum w^hose length is

h + h== or Uih + U) = (3)

On the straight line OiG measure a length O 1O 2 equal to h + U.

The particle at O 2 of the solid body moves just as though it were

tied to the axis by a thread without weight and were not acted

upon by the rest of the body.

Let fco be the radius of gyration about an axis through the center

of mass parallel to the axis of rotation, and let k^ be the radius of

gyration relative to a parallel axis at O 2 . Then

ki^ = ko^ + Zi^ and k 2
^ = ko^ + (4)

On eliminating ki'^ between Eq. (3) and the first of Eqs. (4), it is

seen that

Z1Z2 ==
(5)

Since h and ko^ are positive, the same is true of Z2 ,
and the center

of gravity lies between the points 0 i and O 2 .

On the line O 1O2 erect a perpendicular at G equal to fco (Fig. 30).

Join the extremity of this perpendicular to the points 0\ and O 2 .
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By Eqs. (4), these lines represent ki and kz in magnitude and they

are mutually perpendicular, by Eq. (5). If ^ is the angle

between fco and fci, then

fci = fco sec \kt h = ko tan

k 2 = ko cosec yp, 1% = fto cot rp.

It is evident from Fig. 30, and also from Eq. (5), that if the

point Ox recedes from G the point Oz approaches Gf and vice

versa. Since

h + h — 2ko cosec 2^,

the distance between the two points has a minimum when

li = I2 ~ ko‘

For small oscillations the period of the pendulum is

P = 2t.
+ h
g

27r-

I 2ko
^

g sin 2\p

Therefore for a given direction of the axis with respect to the body

there exists a minimum of period* The
period of oscillation cannot be less than

Pmin — ^

V g
0

|
l( & I2 O2

Fio. 30. matter where the axis may be in the

body.

The axis through Oi is called the axis of suspension, and the

parallel axis through O 2 was given the name the axis of oscillation

by Huygens, who first analyzed this problem correctly. From
the symmetrical manner in which the lengths h and U enter the

formulas, it is evident that if the axis through O 2 be taken as the

axis of suspension, the axis through 0i becomes the axis of

oscillation, and that the period of oscillation is unaltered. The
point O2 is called the center of oscillation.

62. The Reversible Pendulum.—The fact that the axes of

suspension and oscillation are interchangeable without alteration

of period was utilized very cleverly by Captain Henry Kater^ in

1818 for the construction of what is equivalent to a simple

pendulum. Kater^s reversible pendulum was a bar of rec-

» Philosophical Transactions, 1818, 1819.
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tangular cross section with two steel knife-edges perpendicular

to the plane of the bar and fixed in position, their distances from

the center of mass being unequal. A heavy ring, movable

micrometrically along the bar, permitted a slight change in the

position of the center of mass. The bar was allowed to oscillate

first on one knife-edge and then on the other and the heavy ring

was adjusted until the times of oscillation on the two knife-edges

were equal. When equality was attained, the distance between

the two knife-edges was the length of the equivalent simple

pendulum.

In order to obtain the time of oscillation accurately, the

pendulum is placed before the pendulum of an astronomical

clock whose rate is accurately known. On the clock pendulum
is fastened a white surface on which is ruled a black line such

that when the two pendulums are at rest the experimental

pendulum coincides in position with the black line. The pen-

dulums are then set into motion. Assuming that the periods

of the two pendulums are approximately, but not exactly, the

same, the instant of a coincidence, with the two pendulums
moving in the same direction, is noted. At the end of the first

complete oscillation after this instant one of the pendulums will

have gained on the other and coincidence will have ceased.

After a suflSicient interval of time there will be a second coinci-

dence with the two pendulums moving in the same direction.

If the clock pendulum has made n swings (n half periods) the

experimental pendulum will have made n + 2 or n — 2 swings,

according as it swings more rapidly or more slowly than the clock

pendulum. Assuming that the clock pendulum swings in exactly

one second, the time of swing of the experimental pendulum
(the half period) is

T = — seconds,
n ± 2

In an experiment of this kind, it was observed by Biot and
Mathieu that a pendulum oscillated 7015.5 in 7017.5 seconds.

Consequently the time of a single swing of the pendulum was
1.00026251, and if an error of 5 seconds was made in the observed

value of n, the time of oscillation was 1.00026253 seconds, a
difference of only two hundred-millionths of a second. The
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distance between the two knife-edges, the equivalent simple

pendulum, is, of course, obtained by a very careful measurement.

Routh has listed the following points to which careful attention

should be paid in the construction of a reversible pendulum.^

1. The axes of suspension, or knife-edges, must not be at the same

distance from the center of mass. They should be parallel to each

other.

2. The times of oscillation about the knife-edges should be nearly

equal.

3. The external form of the body must be symmetrical, and the same

about the two axes of suspension.

4. The pendulum must be of such regular shape that the dimensions

of all of the parts can be readily calculated.

These conditions are satisfied if the pendulum be of rectangular shape

with two cylinders placed one at each end. The external forms of these

cylinders should be equal and similar, but one solid and the other hollow,

and such that the distance between the knife-edges is as nearly as

possible equal to the length of the simple equivalent pendulum found

by calculation.

5. The [Xindulum should be made, as far as possible, of one metal,

so that as the temperature changes it may always be similar to itself.

In this case since the times of oscillations of similar bodies vary as the

square root of their linear dimensions, it is easy to reduce the observed

time of oscillation to a standard temperature. The knife-edges however

must be made of some strong substance not likely to be easily injured.

63. Determination of the Constraints.—The vectors which

determine the constraints are [Eqs. (58.1) and (58.2)]

A = w'Pgo - + k X (G X F),

B = M((o' X G) - Ma)2G ~ F.

For definiteness it will be assumed that the body is symmetrical

with respect to a plane which passes through the center of gravity

perpendicular to the axis of rotation. With this assumption

P = P 90 = 0,

since the axis of rotation is a principal axis of inertia at the point

Oi. Both of the vectors F and G are perpendicular to the axis

of rotation, and therefore G X F is parallel to the axis. From
this it follows that

^ Routh, E. J., ** Elementary Rigid Dynamics,” 6th ed., p. 84 (1891).
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k X (G X F) = 0,

and the vector A is always zero.

Suppose the axis has two supports equidistant from 0\, and

that the distance is a. Then

— Zi = Z2 = n,

and the constraints are [Eq. (58.3)]

Ri = R2 = iB = X G) -- - ^F.

From Eq. (61.2) it is seen that

G)' = ^

Let io and jo be mutually orthogonal unit vectors rigidly

attached to the body perpendicular to the axis of rotation, and
let io coincide in direction with G. Then

i = io cos 0 — jo sin

and

(o' X G

Since

sin 0(k X io) = sin d jo.

F = Mg i,

the expression for B becomes

B = -M sin e jo + L + (/(io cos 6 - jo sin d )

}

]

On multiplying Eq. (61.2) by 2(o and then integrating, it is

found that

CO* = C + 2^g cos e,

and with this value of co*, the expression for B becontios

B = ko^' "h 3fi" Mg COS 6 — MCl\ io + Mg sin 6 jo.
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If w vanishes for 6 = So,

and the expression for B can be written

[

h 2 _L 3/ 2 -1

— —-

^

-yM^(cos e — cos So) — Mg cos Sq io

If So is real and cos > 0, the io component of B is always

negative, but if cos So < 0, this component changes sign at the

point where

cos 6 _ 2li^ 2

cos ^0 ^0 ^ + 3Zi^ 3

The jo component changes sign with sin 6 always. If the center

of gravity is on the right side of a vertical plane through the axis,

the jo component is directed toward the right of this plane; and
if the center of gravity is on the left side, the jo component of the

constraint is also directed toward the left of this plane.

64. A Cylinder Rolls Down an Inclined Plane.—A cylinder of

radius a rolls down an inclined plane, the inclination being a,

from a position of rest. Determine the motion under the assump-

tions that there is no slipping and that the rolling couple of

friction can be neglected.

Since the constraints do no work and the kinetic energy

initially was zero, the kinetic energy at any instant is equal to

the work done upon the cylinder by gravity.

In Fig. 31, let the i-direction be downward normal to the plane,

the j-direction up the plane, and the k-direction parallel to the

horizontal axis of the cylinder. Let G, the center of gravity, be

measured from its initial position and the angle 6 regarded as a

vector be measured along the k-axis. The principle of energy

(Sec. 48) gives the equation, after removing the factor M/2,

o> • w = 2gf sin a G • j, (1)

where k is the radius of gyration of the cylinder with respect to

its axis, and not the tensor of k which is unity. Now

G == a(i X 6) = a(i X ^k) = j

G' = —awj,
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SO that

* 0), or <i> • g> = —^G' • G',
a*

and Eq. (1), by the elimination of <*> • 6>, becomes

—
. G' = - 2^ sin a G • j, (2)

which by differentiation gives

G' • " — G"^ + ^sina
jj

= 0.

Since these two vectors are not perpendicular and G' ^ 0, it

follows that

G" = (3)

If the cylinder were sliding

down the plane without friction,

and not rolling, the corresponding

equation would be

G" = -g sin a j, (4)

which is what Eq. (3) becomes for = 0. The rolling accelera-

tion is constant, but the cylinder rolls down more slowly than

it would slide down without friction.

This analysis assumes that the center of gravity lies on the

axis of the cylinder, but it does not assume that the cylinder is

homogeneous. If it is homogeneous.

and
2

3
'

Let the constraint of the plane be denoted by MR. The
principle of momentum furnishes the equation

G" == g cos a i — g sin a j + R.

Using the value of G" from Eq. (3), this equation gives

^2
R = — cos a i + (5)
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The ratio of the interior kinetic energy to the exterior kinetic

energy is

This also is constant, and since is never greater than a- the

kinetic energy of rotation never exceeds the kinetic; energy of

translation.

66. A Bifilar Pendulum.—A straight

rod of length I is suspended by two light

strings each of length a from two points

in the ceiling. The distance between the

tw^o points of suspension also is Z, so that

w hen the rod is at rest in its position of

equilibrium, it is horizontal and the two

strings are parallel (Fig. 32). It is

assumed that the center of mass is at the

center of the rod, but otherwise the load-

ing of the rod may be anything whatever.

The rod is turned through a certain angle and released from a

position of rest in which the rod is horizontal and the center of

mass lies in the same vertical line as it did in the position of

equilibrium. It is required to determine the motion and the

tensions in the strings.

Let i, j, k be a system of unit vectors fixed with respect to the

bar, i being directed along the bar, j directed 90"^ ahead and k

directed vertical upward; and let io, jo> ko be a corresponding

system in fixed space, the two systems coinciding when the rod

is in its position of equilibrium. For any other position, in

which the bar is turned through an angle

io = cos ^ i — sin ^ j, \

jo = sin ^ i + cos ^ j, V (1)

ko = k.
j

Let MTi be the tension directed along ai, and MT^ the tension

in ^ 2 . From symmetry

Ti = 3^2 == T,

Let G be the position of the center of gravity with respect to

the equilibrium position. Then, from I, 149
,
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G = a - Va^ - P sin® \e. (2)

From the principles of momentum and moment of momentum,

G" = -gk + Ti + Ta, (3)

Pg)' = Mi X (Ti - T2)]-k k; (4)

and from the principle of energy

G' . G' + . G> = 2^(Go - G) . k. (5)

By differentiation of Eq. (2), it is found that

.y, P sin 6

and then from Eq. (5)

- «) w
Let ai and be unit vectors which have the directions of Ti

and Tj. It follows from the geometry of Fig. 32 that, if X = l/a,

1 — X® sin® ko,

1 — X® sin® ^9 ko;

or, by virtue of Eqs. (1),

El = —X sin® — X sin cos j + -s/l — X® sin® ^9 k,

At = +X sin® i + X sin 5 ^ cos ^9 j + \/l — sin® 5 ^ k.

Therefore

Ti + T2 = 2T\^1 — X® sin® ^9 k,

Tj — T2 = 2T\{— sin® ^9 i — sin \9 cos j),

and

[i X (Ti - Tj)] • k = - rx sin 9.

Hence, from Eqs. (3) and (4),

G" = -g + 2TVI - X* sin® ^9, \
fc®<o' = — ^IT\ sin 9, /

&i = +^(1 ~ cos 9) io — ^
sin 0 jo +

At = —^(1 — cos 0) io + ^
sin 0 jo +

(7)
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If Eq. (6) is differentiated, the value of 6" = oj' replaced by the

second of Eq. (7), and the resulting equation then solved for T,

it is found that

T = 8gak^
- G +

[16A:2(a - G)= + D sin''* 6]

8{Go - G)[a^iP a^) + (a - GY]
\l&k%a - GY + sin'= BY

' ^

which, by virtue of Eq. (2), can be expressed wholly in terms of

8 or of G.

If 8/2 is replaced by ip, Eq. (6) can be written

si^^Vcbs^
d^ = v^ dt.

>4(a^ — P sin^ ^){Go — a + A/a^ — P sin^ <p)

The relation between the angle 6 and the time ^ is a quadrature,

which, unfortunately, cannot be effected. But if the oscillations

are very small (infinitesimal), the terms of lowest order in

Eq. (6) give

= g~(8Y - BY,

and, by differentiation, the harmonic equation

8
” +

40***
= 0 .

Hence the period of a small oscillation is

P =

For a uniform rod 2k = 1/^/3 (I, 97), and the period of a small

oscillation is

P^ - 2x^^.

If the rod swings without rotation, it is essentially a simple

pendulum with the period P 2 = 2ir\^ajg. The ratio of these

periods gives the equation

P2 = Pi\/3.



MOTION PARALLEL TO A FIXED PLANE 133

The rod oscillates more rapidly when rotating than when it is

merely swinging, provided both oscillations are small.

TWO DEGREES OF FREEDOM

66. The Cylinder Rolls and Slides.—Returning to the problem

of Sec. 64, it is seen from Eq. (64.5) and Fig. 31, that the tangent

of the angle which the reaction of the plane R upon the cylinder

makes with the normal to the plane is

"(a2 + k^)
tan a,

which, for a given cylinder, is a constant. In order that the

cylinder may roll only, it is necessary that the angle between R
and the normal to the plane shall be less than the angle of

friction €, and therefore

^2
tan a < M, (1)

where m is the tangent of e and therefore the coefficient of friction.

If the inclination of the plane, a, is so large that Eq. (1) is not

satisfied, the reaction of the plane makes the constant angle c

with the normal; for by the nature of friction this is the largest

angle which the reaction can make. Slipping begins at once, and
the cylinder both rolls and slides.

Using the notation of Sec. 64, the principles of momentum and
moment of momentum give the equations

G" = g + R,
\

kW = a(i X R)./ (2)

The energy equation, Eq. (64.1), no longer holds, since part of the

work done in falling is dissipated by friction. Since

G = -Gj,

g — g cos a i — ^ sin a j,

R = cos 6 i + -R sin e j,

Eqs. (2) lead at once to the scalar equations

G" = ^ sin a — R sin c,

k^o)' = aR sin €,

0 = R cos c — gf cos a.

(3 )



134 DYNAMICS OF RIGID BODIES

The last of Eqs. (3) gives

sin € = fig cos a,

and then the first two become

. sin {a — e)
G = ^(sin a — iJL cos a) = g ;

= agfjL cos a.

s = G — ad, (5)

represent the distance through which the cylinder has slipped.

Then from Eqs. (4),

s" = ^—(sin (a — e) — % cos a sin
cos €\ ' }

sin a cos € cos a sin e

which is positive, since, by hypothesis,

M “•

If the first of Eqs. (4) is multiplied by G' and integrated, and

the second is multiplied by d* and integrated, and the two

equations are then added, it is found that the kinetic energy is

+ m'') = itfgp—

+

atxd cos a
Id COS €

= Mg[G sin a — s/jl cos a].

A comparison of this equation with Eq. (64.1) shows that the

loss of energy due to slip is

Mgsfi cos a,

an expression that could have been anticipated.

When the cylinder rolls without slipping the position of the

center of gravity depends upon the radius of gyration, Eq. (64.3),

but if it rolls and slides, it is independent of the radius of gyration,

Eq. (4).

67. A Rocking Pendulum.—If a rigid body rolls upon a

cylindrical axis instead of pivoting upon a linear axis, it is a
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rocking pendulum. The motion may be a pure rolling, -a roll and

a slip, or there may be no friction of any kind.

It will be assumed that the rolling axis is a right circular

cylinder of radius r, that the distance of the center of gravity from

the axis of the cylinder is Z, that k is the principal radius of

gyration, and that the pendulum is symmetrical with respect to a

plane through the center of gravity and perpendicular to the axis.

Let 0 be the position of the axis. Fig. 33, when the pendulum
hangs at rest and let G be the position of the center of gravity

referred to the point 0. Finally, take an i, j, k system of unit

vectors with i directed vertically downward, j horizontal and
perpendicular to the axis of the cylinder, and k parallel to this

axis. By virtue of symmetry the reaction MR of the horizontal

surface on which the cylinder rolls can be regarded as lying in the

plane through the center of gravity perpendicular to the axis

of the cylinder. Let a be the angle which R makes with the nor-

mal. The vector R lies on the left side of the normal in Fig. 33,

and therefore a is positive, if the pendulum is descending, that is

CO, or d\ is negative, and to the right, if d' is positive.

With the symbolism thus established, the principles of momen-
tum and moment of momentum give the two equations

G" = g + R,\

fcV = L X R,/
( 1 )
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where L is a vector from the center of gravity, perpendicular to

the line of R. It is seen from the geometry that

L = Z sin — a) + r sin a,

so that

L X R = —R[l sin {6 — a) + r sin a] k.

Equations (1), therefore, can be written

G" — {g — R cos a) i — R sin a j, \ /q')

k'W = —R[l sin {6 — a) + r sin a] k,/

and to these can be added the energy equation, except in the case

of rolling and slipping,

G' • G' + . G> = 2g(G - Go) • i, (3)

where Go is the initial value of G.

The equations of constraint depend upon the nature of the

motion and the three cases will be considered separately.

(A) No Friction,—In case there is no friction and the pendulum
is released from a state of rest, the first of Eqs. (2) shows that

the center of gravity falls vertically from its initial value Go, since

a is zero. Therefore

G = Z cos 6 i.

With this expression for G, the energy equation [Eq.

becomes

+ Z^ sin^ d)B'^ = 2^Z(cos B — cos ^o),

and, by differentiation and simplification,

„ _ gl sin B I" 2Z^ cos ^(cos B ~ cos Bq)

k^ + P sin2 b[ ^ P sin^T~

(4)

(3)]

(5)

(6 )

which for infinitesimal oscillations reduces to that of the com-
pound pendulum [Eq. (61.2)].

The second equation of Eqs. (2) then gives the reaction

/? =- [i 4.
^(cos B — cos Bq)

I sin B k^ + P sin^ ^

(7 )
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(jB) Pure Rolling ,—In case friction exists the motion is one of

pure rolling as long as the angle of the reaction a with the normal

is less than the angle of friction, e. It will be shown that a is not

a constant and that the pendulum may roll for a while and then

slip. As long as the motion is one of pure rolling, the equation

of constraint is

G = I cos ^ i + (Z sin 0 — rd) j. (8)

If the couple of rolling friction be neglected, no work is done by
friction and the energy equation holds. By the use of Eq. (8),

and the substitution h = I cos do, Eq. (3) becomes

^ 2g(l cos e - h)

P + r^ + k^ - 2rl cos e’
^

and again, by differentiation and simplification,

e"
P + r^ + k^ - 2rh

[P -hr^-j-k^ - 2rl cos 6]^^^ (10)

For small oscillations, this equation becomes

0
” = -gle

{I
- r)* + k^’

and the period of the oscillation is

= 2iryj
{I — rY +

gi

On differentiating Eq. (8) twice, it is found that

G" = — [Id" sin 6 + cos i + [IS" cos S — IS'' sin S] j

;

and if this result is substituted in Eq. (2), there results

R sin a = — (Z cos S — r)S" + IS'' sin sA q.n
R cos a = g + I sin SS" + IS'' cos S, )

Since S" [Eq. (10)] carries sin ^ as a factor and iZ > 0, the first

equation of Eq. (11) shows that a has the same sign as and
vanishes with S, If therefore the angle of friction 6 is not zero, for

small values of a < €, and the pendulum begins to roll and it

will continue to roll as long as tan a < /x. In order to abbreviate

the expression as much as possible let

— P + X — I cos S,
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The expression for tan a in terms of B is then

tan a =
{[-n2(r + 2h) + 2r^h] + [3n“ + 2rh]x - Arx'^]l sin 6

+ 2rh]x^ - Arx^'

( 12 )

This expression is too complicated to solve for 6 in terms of «,

and therefore of m- Suppose however a series of increasingly

large oscillations are made. For what value of h will the pen-

dulum be on the point of slipping at the end of its swing? Under
these conditions I cos 6 is equal to /i, by Eq. (9). Then from

Eqs. (10) and (11) it is found that

- tWp '~

+ (A — r)2
(13)

an equation that determines h in terms of ju, 7*, ^ and 1.

(C) Rolling and Slipping .—The angle a cannot exceed e in

magnitude. When a — ^ sliding begins. Let s represent the

amount of the slide. Then

G = [Z cos ^1 i + [Z sin 0 — rO — .s] j

and Eqs. (2) become

G" = \g
— It cos e]i — [R sin e] j,

kW = —R[l sin (B — e) + r sin eJA:.

The angle e is now a constant, and s is a new variable. These

equations are equivalent to the scalar equations

Z sin BB" + Z cos BB'^ = —g + R cos e,

(Z cos B — r)B^' — Z sin = 6‘" — R sin e,

= —Rl sin (^ — e) + Rr sin e.

The result of eliminating R from the first two equations is

fZ sin {B — e) — rB cos e]" — —g sin e + s'' cos €.

If R is eliminated from the third equation by means of the first,

there results a differential eqiiation which contains only B and its

derivatives. If this equation

k'^B" — [Z sec € sin (0 — e) + rij]{l cos B)" == grp

could be integrated, the other functions would be obtained by
quadratures and the problem would be solved completely.
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The loss of energy due to the sliding is

AfJjK sin tds.

68. A Billiard Ball.—If the stroke of a billiard cue on the

ball is like the one indicated in Fig. 34 and the line of the force

lies outside the cone of friction of the ball with the table and
inside the cone of friction of the cue with the ball, the ball moves
forward on the table and at the

same time spins on a horizontal

axis that is perpendicular to the

line of motion of the ball. It

is desired to follow the subse-

quent motion of the ball, neglect-

ing the couple of rolling friction.

Let G be the position of the

center of gravity of the ball,

relative to its initial position.

The ball is assumed to be uniform

in density and therefore the

center of gravity is at the center

of the ball. Let co be the angular velocity about the horizontal

axis which is perpendicular to the plane of the paper in Fig. 34.

The principles of momentum and moment of momentum give

at once the two scalar equations

MG" = -MR sin 6,

MkW = —MaR sin 6,

where MR is the reaction of the table. Siiu^e the ball has no

motion in a vertical direction

MR cos € = Mg,

Therefore R is constant and, since the equations of

motion become

G"

co'

with the initial conditions

2 a')

f? = 9,

G' = r,

( 1 )

^ - 0
,

6
' = a>o»
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Then, by integration,

+ vty ^ + 0)0^.

The differential equations, Eq. (1), are valid as long as the

ball slips on the table, and the solutions, Eq. (2), also. The
speed of the lowest point of the ball is (7' + ad\ Therefore

Eqs. (1) and (2) are valid until

G' + ad' = 0,

when the sliding stops; and since, from Eqs. (2),

G' -(- a6' = —
^gfj't -f- ucoq -f" Vj

this happens for

2 acoo "b V

At this instant

G' = -\-^v — '|aajo,

and

a$' = — “h ^aojQ,

If the condition

V — ^acoo (3)

is satisfied, translation and rotation cease at the same instant,

and the ball stops. The reaction AfR changes abruptly and

becomes normal to the table, and in magnitude is equal to Mg,
The forces which are acting upon the ball form a system that is

in equilibrium, and since the ball is at rest, it continues at rest.

If the condition Eq. (3) is not satisfied, let

V =

where w is a new constant. Then at the instant sliding ceases

G' = u, ad' = — w. (4)

Since the point of contact with the table is at rest, while the
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center of the ball is moving, the ball begins to roll, in a forward

direction if u is positive, and backward if u is negative.

Suppose that at this instant the table became perfectly smooth.

The reaction MR would be normal to the table, passing through

the center of the sphere. The equations of motion would be

G" == 0, /c20" = 0.

With the initial conditions [Eq. (4)] the geometrical relation,

G + ad — constant = ^ (5)
25 gM

would be satisfied, and the ball would roll with constant speed.

Continued friction, therefore, is not necessary to make the ball

roll. It will roll without friction. It is here that the couple

of rolling friction becomes important for the ball certainly will

not continue to roll with constant speed.

The force which has been represented by MR now' makes
an unknown angle a with the normal and it does not represent

the entire reaction of the table. There must be added the fric-

tional couple, which can be denoted by MCag, the axis of which

is parallel to the table and perpendicular to the line of motion.

The equations of motion are

(?" = —R sin a,

—aR sin a + Cag.

The geometrical relation,

25 gjj,

still holds, and of course

R cos a — g.

On differentiating the geometrical relation twice and then sub-

stituting from the other relations, it is found that

tan a = +4^^.

Eqs. (6) now become

G" = = +lCag, ad'' = ^Cg. (7)

The sign of the constant C depends upon 6'; in fact, it is opposite



142 DYNAMICS OF RIGID BODIES

in sign, since the friction opposes rolling. If w > 0
,
it is readily

seen from Eqs. (4) that

G" > 0
, < 0, C > 0

, G" < 0 and 6" > 0 ;

and if M < 0
,
the inequalities are all reversed.

The integration of Eqs. (7) shows that the rolling ceases when

^ = lii
5 Cg’

t being counted from the instant when rolling began. The total

amount of time elapsed from the beginning of the motion to the

end is therefore

rp _ 2 acoo + V
j

7 u
__

2 acoo + u _^7 u

The reaction of the table and the frictional couple can be

combined into a single reaction Ri, Fig. 35, but the point of

application is displaced forward. Since Eqs. (7) must be satis-

fied it is evident that

Ri = R.

Let 6 be the distance from the center of the sphere to the line of

Ri. The moment of Ri with respect to the center of the sphere

is then Rd, and therefore

2^ .2 C
Rd = TjCag, or ^ 7

The vector R must therefore be displaced parallel to itself by an

amount

5 C 2 C C
a sin a -f 5 = ^

-^ag +
y
j^ag = ^ag = Ca cos a,

and the horizontal displacement is Ca.
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The couple of rolling friction is due to a slight deformation of

the table, or of the ball, or of both.

69 . The Instantaneous Axis of Rotation—Centrodes.—Since

any displacement of a rigid body i)araliel to a fixed plane can

b(i effected by a rotation about a suitable axis perpendicular to

the plane (I, 124 ) any continuous motion of a body parallel

to a fixed plane can be resolved into a series of infinitesimal rota-

tions about an axis which, in general, is itself in continuous

motion both with respect to the body and with respect to the

plane. If the motion of the axis were discontinuous, the motion

of the body also would l)e regarded as

discontinuous.

The axis about which the body is rotating

at any instant in this resolution of the

motion is called the instantaneous axis of

rotation. The locus of the instantaneous axis

in the body is called the body centrodey

and the locus of the axis with respect

to the fixed plane is called the space centrode. It is fairly evident

that the motion of the body is just the same as though the body-

centrode, rigidly attached to the bod}^, were rolling without

slipping upon the space centrode. In order to make this clear,

however, imagine a series of small but finite rotations. In

Fig. 36 let Si, 52, S3, S4 be four consecutive positions of the instan-

taneous axis on the fixed plane at the instants ti, ^2, U, Uy and

61, 62, 63, ^4 be the positions in the body at the same instants.

In the interval U ~ t\ the body pivots on h\ which coincides with

Si. This rotation brings into coincidence with S2. In the

interval (<3 — h) the body pivots on S2 and 62 until 63 is brought

into coincidence with S3, etc. The motion is the same as the

rolling of one polygon on another. The motion is discontinuous

at each corner, and the axis jumps by finite amounts. The rate

of rolling may vary in any manner whatever, but the displace-

ment at each pivot is definite. If the sides of the polygons are

diminished indefinitely, the centrodes become smooth curves,

and if the motion of the body is continuous, the body centrode

rolls without slipping upon the space centrode. The instan-

taneous axis is at the point of contact of the two centrodes and
the motion is always one of pivoting on the instantaneous axis.

Fig. 36.
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70. The Centrodes for the Billiard Ball.—In the case of a

sphere rolling on a plane, the body centrode is a great circle

of the sphere, and the space centrode is the straight line along

which the sphere rolls. It is otherwise, however, if the ball

both rolls and slides.

Consider again the motion of the billiard ball described in

Sec. 68. Let Oi and O2 be the center of the ball at any two

instants (Fig. 37), and let OiAi

and OiBi be two radii which

include the angle B. Let O1O2 be

denoted by G. If the ball has

turned through the angle B in the

interval of time in which the center

of the ball has advanced from Oi

to O2, and if OiBi was vertical at

the first instant, O2A2 was vertical

at the second instant. The chord

^ijBi in the first position has

become the chord A 2B2 in the second position. The point of

intersection, 0, of the perpendicular bisectors of AiBi and ^2-62 is

the center of a pure rotation which will bring the ball from the

first position to the second. The point 0 is at a distance

y
jG

tan ^B

above the line of centers
;
and the limit of this expression as the

two instants of time approach coincidence is

y =
dB'

and this is the distance of the instantaneous axis above the center

of the ball at any instant.

Let giit be denoted by r. Then Eqs. (68.2) become

G' = t; — r, 2gfjLG = + 2vTy

= Wo — hgixB = + Swor.

The solutions of the two equations in the second column give

two expressions for r; one in (?, and one in namely.
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and

T = 0 - -n/»* -
1

(2 )

5r = 2aa)o — 2\/a*a)o^ — bagixBJ

Since

^ 2a(v - r)

^ do 6' 2awo 5t

is the ordinate of the instantaneous axis above the line of centers

and G = X is the abscissa, the equation of the space centrode

in rectangular coordinates is

_ 2a-\/v^ — 2gfjLX

^ (2ao)o — 5v) + 5\/ — 2gjjiX

The equation of the body centrode in polar coordinates is

_ _ lOav — 4a^coo + 4a-\/ — bag^B
^ ^

10\/ — bag^B

which, evidently, is a spiral.

As a particular example, suppose the ball is 2\ inches in

diameter, or ^ of a foot, ^ = 32, m = i; that the ball advances
9" before it begins to retreat, and that it begins to roll when it

reaches its initial position.

It is found from the first of Eqs. (1) and (2) that

2; = ri = 4,

when G' vanishes, and

2V = 72 = 8,

when the ball begins to roll. The ball reaches its most advanced
position in I of a second, and it begins to roll in J of a second.

Since

G^ = clB^ = 0 = V 4” cujOo — -| r2 ,

when the ball begins to roll, it is found that

awo *= 24, and wo ~ 256.
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The equations for the space and body centrodes become

« = 1 VO - 12x
^ 16 21 + 5V9 - 12x

„ = 1. V576 - 5(9~ 4̂

80 x/57t^5i

The space centrode is shown in Fig. 38. It is not practical to

draw the entire body centrode, as there are too many coils

and they are too close together; that part of it which lies between

Fig. 38.

6 = 112 — 27r and 6 = 112 + 2t is shown in Fig. 39. The value

of 6 when the ball begins to roll is 112, and for values of 6 larger

than this the body centrode is a circle. For values of 6 smaller

than 112 it is a spiral, as indicated. The body centrode rolls

on the under side of the upper branch of

the space centrode when the ball is advancing,

and on the upper side of the lower branch

when it is retreating.

71. The Friction on a Sliding Base.—If

any object is sliding on a rough plane, its

motion at any instant is one of rotation

Fig. 39. about some axis which is perpendicular to

the plane. It is desired to find the single

force, and its line of action, which is equivalent to the friction

that is acting on its base. For perfectly rigid bodies this problem

is indeterminate, since three points are sufficient to support the

object and by hypothesis the base and the plane are in contact

in infinitely many points. The concept of perfect rigidity must
be laid aside. It will be assumed that plane yields slightly to

the pressure that is applied to it and that the amount it yields is

proportional to the pressure, the surface of contact still remaining

a plane.

Consider first the normal pressures when the object is at rest

upon a horizontal plane. Let the undistorted rough plane be
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taken as a reference plane and the center of area of the base be

taken as the origin of a rectangular coordinate system, the axes

coinciding with the axes of the inertial ellipse at the center of

area. Then, if dw is an element of area at the point Xy t/,

/x doi = 0, do) = 0, jxy do) = 0. (1)

Let A and B be the moments of inertia of the area of the base with

respect to the x- and 2/-axes, so that

A = Jy^ do), B = fx^ do),!
^2)= = Ca^, )
^ ^

where 13 and a are the radii of gyration of the area of the base with

respect to the x- and y-axes, respectively, and C is the area of the

base.

Let the equation of the plane of contact be

z — ax + by + c, (3)

By Hooke’s law the pressure of the plane on any element do)

of the base is kz do), where k is the factor of proportionality.

Since the total pressure on the plane is the weight W of the

object, it follows that

kjz do) = W, (4)

or

W — kf(ax + by c) do) — kajx do) + kbjy do) + kcj do).

By virtue of Eqs. (1), this reduces to

W = kcC, and c
W
kC

If Xo, t/o is the projection of the center of gravity of the body
on the xy-plane, the principle of moments gives the tw 0 equations

kjzxdo) = Wxq, kjzydo) = WyOy (5)

which, in view of Eqs. (3), (1), and (2), give

_ Wxo , _ Wyo
kCa}'

^ ^

Hence the equation of the surface of contact is

^ Wf XoX
, J/oJ/ , , 1
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Since the pressure on any element of the base is kz c^o?, it follows

at once that, if

a-o = 2/0 = 0,

the pressure is everywhere the same. Hence the theorem:

Theorem.—If the projection of the center of gravity of a body npon

its base coincides with the center of area of the base^ then when the

body is resting upon a horizontal plane, the pressure of the body

upon the plane, due to its weight, is uniformly distributed over the

base.

The equation of the inertial ellipse of the base is

|/2 1

r. 4- (7)

and the equation of the line through the center of area and the

projection of the center of gravity upon the base is

yox — xoy = 0 .

The lines of equal pressure on the base, Eq. (6),

^ constant,

are therefore parallel to the conjugate of the diameter of the

inertial ellipse which passes through the point Xq, yo. If the iner-

tial ellipse is a circle the lines of equal pressure are perpendicular

to the line which joins the center of area to the projection of the

center of gravity.

Since negative pressures are not admissible, it is necessary for

this analysis that the line of zero pressure,

x^x
, 2/02/ ,

.

^2 + ^2 + A = 0
,

shall lie outside of the base, so that the pressures on the base are

everywhere positive. This will be the case if the point Xo, 2/o is

not too far from the center of area.

Translation.—If the body is sliding without rotation, and the

coefficient of friction is p, the frictional force acting on the

element dw is

dF = kpz do),
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and since these elements of force have all the same direction the

total force of friction is

F = kjjijzdo) = WjjL,

The system of forces dF is a system of parallel forces and the

magnitude of each force is independent of the direction. For a

pure translation therefore the friction acting on the plane base of

a sliding body is quite similar to the force of gravity acting on the

particles of a rigid body, and the equivalent single force passes

through a fixed point of the base whatever the direction of the

friction may be. This point will be called the center of friction.

Let { and rj be its coordinates. The moment of F with respect

to the origin is (1, 132 )

M = {^F sin 6 — r)F cos 6) = sin B — W cos B, (8)

where B is the angle that F makes with the x-axis.

The moment of dF acting at the point x, y with respect to the

origin is

X dF sin ^ — y dF cos B,

Since

dF = kyz do)y

the moment of the entire system of frictional forces is

kfjL sin Bfzx do) — k^i cos Bfzy do?,

which, by Eqs. (5), becomes

TF/xXo sin B — sin B]

and a comparison of this expression with Eq. (8) shows that

{ = xo, 17 = yo.

The center of friction, therefore, coincides with the projection of

the center of gravity on the base.

Rotation .—The pressure P per unit area at any point x, y is

kz. If the body is rotating about some point 0, the friction per

unit area is Pm, and its direction is perpendicular to the radius

from the point 0. The element of friction at the point x, y is

then, by Eq. (6),

...
XoX

, yoy
, 1

1 ,= + _ + ijd«. (9)
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The magnitude, but not the direction, of the friction is constant

along the lines of equal pressure. If the diameter of the inertial

ellipse at the center of area which is parallel to these lines is taken

as the ^-axis of a rectangular coordinate system (Fig. 40), and the

angle between the $-axis and the x-axis is 7, the equations of

transformation are

X = f cos 7 + 1? sin 7,

y == - ^ sin 7 + 7? cos 7.

where

sm 7 =
\/ + a^yo^

cos 7 = oc^yo

V + a^yo^
( 10 )

The element of friction dF then takes the form

to the element do) makes with the f-axis. If fi, t?i are the coordi-

nates of the point 0, and $, ri are the coordinates of the element

do)y

and

r = VCf — fi)* + (>; — vi)^

COS $ = f

sin 6 =

dr

drj

The components and F, of the single force F, which is

equivalent to the friction acting on the base, are
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In order to locate the line of action of the equivalent single

force, it is necessary to have the sum of the moments, M, of the

elements of friction, and this must be the moment of F, It is

evident that

=-/ {Hiri + 7/2) COS 6 do) (Hiv + 772)

M = + ff 2)r df dry.

If p is the perpendicular distance from 0 to the line of F, the

equation

pF = M
determines the length of p, and therefore the line of action of F,

The direction of F is determined by its components F^ and jP„.

By taking

- vi)r - (? - sinh-‘
ĉ
— + + Ih)r

and

Qt = (Hit] +
it is easily verified that

F
{
= +JJ d^, and F„ = — j'J

Consequently^

the integrals being taken around the boundary of the base in the

counterclockwise direction.

Using the method of integration by parts, it is found that

J(i - hy smh-> - fi)’ sinh-*
j

_ 1 rr
3j L r d£ r

^ Goursat-Hedrick, ^‘Mathematical Analysis/^ VoL 1, p. 263.
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When restricted to real values, the inverse of the hyperbolic

sine is a single valued function. Consequently when the integral

is taken around the boundary the integrated term returns to its

initial value and contributes nothing to the integral. That is,

fcf - sinh-‘ -
JB f

- (n - m)d^].

For convenience of notation let

*-//«, <S-f,rd„

fjv-vOrd(, - fjv - Vi)rdv, (12)

«S -

Jb t

It is then found without further difficulty that

Fi - - (//iT?, + //2)Sl - IH,{® - 3^),

f,
= ~ - {Hm + //2)(g, (13)

M = + //2)® + - ®).

Thus in the general case seven line integrals are required for a

complete description of the friction; of course, these integrals can

be evaluated only when the size and shape of the base are given.

If the projection of the center of gravity coincides with the center

of area, Xo = yo — 0, and, as is seen from Eq. (11), Hi vanishes.

The integrals £ and g are not required, and to this extent the

computation is simplified by a uniform distribution of the

pressure.

72. The Sliding Base Is a Circle.—For a circle the center of

area is at the center of the circular base. The inertial ellipse also

is a circle, for, if the radius of the base is a [Eq. (71.2)]

The lines of constant pressure are perpendicular to that diameter

which passes through the projection of the center of gravity
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upon the base. Let this diameter be the ?;-axis, the perpendicular

diameter the {-axis, and the coordinates of the projection of the

center of gravity be 0, 770 . The lines of constant pressure are

77 = constant,

and the line of zero pressure is

^
4770

The Base Is Entirely in Contact .—The line of zero pressure lies

outside of the base, or is tangent to it, if

ho I
g la,

and in what follows it will be assumed that this condition is satis-

fied, and the entire base, therefore, is in contact with the plane

on w^hich it slides.

Let 0({i, 771 ) be the point in the plane about which the base is

turning, and p, S its polar coordinates
; let the distance from O to

any point on the circumference whose polar angle is ^ 0 be r;

and, finally, let the supplement of ^ be 2(p (Fig. 41). Then

7*2 — ^2 p
2 ^ 2ap cos 2<p,

= (a -h p)^ — 4ap sin® (p,

^ cos {2<p — 9) — p cos 9,

== -l-2a sin (2^ — 9) d^py

77 — 771 == +a sin {2<p — 9) — p sin 0,

d77 = -|-2a cos {2ip — 9) dip.

Now if a and p are positive, whatever their values may be

(a + p)® ^ 4ap.
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Let

= < 1
(a + P)“

= and = \/l — sin^ ip.

Then

r = (a + p)Av?.

In tracing the circumference in the counterclockwise direction,

^ increases from 0 to 27r, and (p decreases from +7r/2 to — 7r/2.

Bearing this fact in mind, it is then found that

21 == 4a(a + p) sin “ 2 sin^ v?)A(p dip,

TT

23 = — 4a(a + p)“ sin^ 6^^A<pd(p — 16a2(a + p) cos 20 ^

T X

sin^ ^ cos^ <pA<p dip + 8ap(a + p) sin^ 0 sin^ (pA(p dip,

X

E = 4a(a + pY sin 2 sin^ <p)AV

X

@ = — 4a(a + p) cos — 2 sin^ ip)j^ipdipj

X

5 = — 16a2(a + p) sin 20j|*^^ sin^ ip cos^ (pA(p d<p — 4ap(a + p) X
- ?

sin 20j|^^ sin^ V^A^? dip + 2a(a + p)^ sin 2dJ^Aip dipy

X X

@ — D = 4a(a + p)“ cos“ 0 f ~ cos 20 f ^
Jo o + p Jo A<p

X

+ [
—8a(a + p)(2a + p) cos^ 0 + 16a^ sin^ 0

] f dtp +
Jo

X

r 16aHa + 2p) cos* 0 - 16a*^^ sin* 0] d<f,.

L a + P JJo Av>

are

ndv> j n ,
I T- and I A<p dtp
Jo Av5 Jo

Legendre’s complete elliptic integrals of the first and second
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kinds for the modulus k, and are represented by the letters K and
E respectively. The other integrals are reducible to these, for

TT

^ sin“ if cos

. , ^ ,
1 - *V 1 - 2A:'insm^ d<e = --^- K

, ^ , 2 - Zk^ + k*
,

2 - 2k^ + 2k*
cos^ =

:rETi K + E,

I

15fc^

AS j 1 - *V ,

4 - 2k^„AV d<p = ^—K H 5 E,

15k*

. , ,
3-7fc" + 4fcV 3-lZk^+Sk*„smVAVd^ = K :rET:^ E,

15k^ 15**

psin°

Jo

smV. 2 + ** 2 + 2**- ~^E,

<P , 8 + 3** + 4*V 8 + 7** + 8*<

A^-
= K jgp E.

The complementary modulus is fci, where

<=> - 1 -

consequently

If p is zero, A;i == +1, and as p tends toward infinity hi tends

toward —1. Hence the correspondence

p = 0 • •
• a • • • 00,

fci = +1 • •
• 0 • • • -1;

P ==
1 - *1

1 +fci
a.

and
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On replacing p by its value in terms of k\ and taking

/iW =
I

- 2(1 - k')K + (2 - k')E],

Mp) = ^6lt(-20 + 35A:2 - 15A:^) + A:i(+20 - 25k^ + 5A;*)]/C

+ [(+20 - 25k^ + 15k*) + A:, (-20 + ISA;* - lOA:^)]^)^

flip) = ^.ll(-•2 + 23** - 11*<) + *.(12 - 13** + *^)1A:

+ [(12 - 17** + 7k*) + *.(-12 + 7** - 2fc*) l£:|,

Mp) = ^^^^^-—11-2 + 3** - *<1A: + [2 - 2** + 2k*]E\,

it is found that

31 = /i sin d, @ = —/i cos e,

33 = /s cos 26 — 3/2 , 5 = +f3 sin 26,

Q = 3/4 sin 6, CM — (D = 8/3 cos 26 + 3/2 ;

then, by substitution in Eq. (71.13),

F( = +// 1/2 — ffi/s cos 26 - (fftni + //s)/i sin

F„ = — Hjfi sin 26 + (Hivi + H2)fi cos 6, >

M = - Hxfi sin 6 + 2{Hxv\ + ^j)/2 . j

( 1 )

(2)

Table of Values of the / Functions

k = sin /3

/»

a*

/2 /a u
a*

- 0
° + .0000 + 1.0472 + .0000 + .00000

lO'^ + .0240 + 1.0472 + .0007 + .00601

20 *^ + .0977 + 1.0480 + .0013 + 02443

30 " + .2264 + 1.0612 + .0061 + .06660

40° + .4163 + 1.0610 + .0207 + . 10473

60
° + .6791 + 1.0842 + .0666 + .17380

60 ° + 1.0326 + 1.1339 + .1297 + . 27266

70° + 1.4926
i

+ 1.2331 + .2774 + .41943

80° +2.0647 + 1.4631 + .6686 + . 66263

90° +2.6667 + 1 . 7778 + 1.0667 + 1.06667

100
° +2.9324 + 2.4211 + 1.8434 + 1 . 8698

110 ° +3.0441 + 3 3011 + 2.9239 + 3.6688

120
° +3.0974 + 4.7782 + 4.6189 i + 7.3618

130° +3.1229 + 7.2668 + 7.0968
! + 16.906

140° +3.1347 + 11.884 + 11.7796 + 46.048

160° +3.1396 + 21.893 + 21.836 + 162.66

160
° +3.1412 + 60.628 + 60.606 + 812.76

170° +3.1416 +204.94 +2
,
062.06 + 13

,
417 .

180
° +3.1416 + 00 + 00 + 00
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Let Fp and Fe be the components of F in the direction of p

and perpendicular to it; and let r)\ be replaced by its value

p sin 6 . There result the somewhat simpler expressions

Fp = +//i(/2 - U) cos d, )

Fe = + /3 - p/i) sin e + //2/1, > (3 )

M = + 2pU) sin e + 27/2/2. j

If the projection of the center of gravity coincides with the center

of the base, H\ vanishes, and these expressions become simply

Fp = 0, Fe^ M = 2/72/2. (4 )

The Base Is Not in Contact.—If the distance from the projec-

tion of the center of gravity to the center of the circle is greater

than a/4
,
the entire base is not in contact with the plane upon

which it slides. The line of zero pres-

sure cuts across the base, and it is desired

to find the position of this line.

The center of area, O2 (Fig. 42 ) is no

longer at the center of the circular base,

Oi ]
and the inertial ellipse is no longer a

circle. The portion of* the base which

is still in contact, however, is symmetrical

with respect to the diameter which is per-

pendicular to the line of zero pressure. By virtue of this sym-

metry, the center of area lies on this line, and this line is an axis

of the inertial ellipse. The projection of the center of gravity upon
the base, G, lies on the diameter of the ellipse that is conjugate

to the diameter which is parallel to the line of zero pressure
;
that

is, it lies upon the line of symmetry just mentioned.

Let the line of symmetry be the 77-axis and the line through

the center of area O2, parallel to the line of zero pressure, be

the {-axis. The coordinates of the projection of the center of

gravity are then 0, 770. Let the distance O1O2 be g. Then, if y
is measured from an x-axis through the center of the circle,

y ^ 9 + nj 2/0 = ^ + ^70.

The equation of the line of zero pressure is

^7^70 =

where [Eq. (71.2)]
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^
J"

{y - qY do)y

C = J 6/co.

It is not difficult to evaluate these expressions, and it is found

that

C = l<p — ^ sin 2<p]a^y

where <p is the supplement of dy and 26 is the angle subtended

by that portion of the line of zero pressure that lies within the

base; and

Then

_ 4a sin^ (p

^ 3(2<p — sin 2(p)

y- dw -

_ (4:<p
— sin A(p)a^ - g^-

8{2<p — sin 2<(>)

Now on the line of zero pressure

171J0
=

or

{y - g)(yo - g) = + g^;

whence

yyo - g{y + yo) = -/8i“.

For the line of zero pressure, y is equal to a cos <p. Therefore

_ -/3i® + cos ^
yo — ;

a cos <p — g

Ul -- —12^ + 8 sin 2(p ~ sin 4^
a 48^ cos <p — 36 sin ^ — 4 sin 3<p

and
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This equation determines <p if the ratio y^/a is given, and there-

fore the position of the line of zero pressure.

Problems

1

.

A heavy beam of length I and mass nii turns about a hinge at O at one
end of the beam. The other end A rests upon a wedge of mass and angle

a. The wedge rests on a horizontal plane which passes through 0, and the

l)(!am lies in a vertical plane that passes through the center of the wedge and
is perpendicular to the edge. All contacts are smooth. If 0o is the angle

which the bciam makes with a horizontal plane when the system is at rest,

show that when the beam has fallen to the horizontal position the speed of

the wedge is given by the formula

2 _ 3m iff/ sin Oq

3m 2 + mi tan a

2 . A door is hung by two hinges in a fixed axis that makes an angle ol

with the vertical. Set up the equations of motion of the door and deter-

mine the constraints on the hinges.

3 . If a (rompound pendulum swings in a complete circl(‘, show that the

io-component of the constraint is always negative if

yf angular speed at top
^^^ 0

^
-f 5/i* angular speed at bottom

^

4

.

A solid homogeneous hemisphere rests on a smooth horizontal plane

with its base parallel to a smooth vertical wall with which the spherical

surface is in contact. Initially at rest, it slips down under its own weight.

Show that, when the base is horizontal,

CO
2 15ff

8 a

where v is the horizontal speed of its center of gravity, and the remaining

letters have their usual significance. Show also that while it is sliding on
the horizontal plane the angle between the base of the hemisphm-e and the

plane of the horizon never exceeds

co8“^ iVs-

6. Show that the tensions in the strings of the bifilar pendulum, Sec. 65,

is a maximum at the lowest point, where

T = (2ak>+G.n^,.

6 . A homogeneous spherical shell, for which the outer and inner radii

are a and b respectively, rolls down a plane for which the angle of inclination

to the horizontal is a. Show that the acceleration is constant and in magni-
tude is equal to
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5a*(a* -
7a« - 5a*6» - 26® g

sin a.

For a cylindrical shell the acceleration is

2a*

Hence for the same values of a and b the sphere rolls faster than the cylinder.

7

.

If the rod of the bifilar pendulum is uniform and of negligible diameter,

but not negligible mass, let two spheres of the same size with small holes

bored through their centers be placed symmetrically on the rod. Let I be

the length of the rod, al the radius of the spheres, the distance of the

spheres from the center of the rod, Mr the mass of the rod, and M, the mass
of each sphere. In order that the periods of swing and rotation for infini-

tesimal oscillations may be equal, it is necessary that

bMr = (24a* 4- 60^* - 15)M,.

8 . A uniform disk of radius a which is spinning with the angular speed

o) about a vertical axis is placed upon a horizontal table. If the disk presses

uniformly upon the table and the coefficient of friction is show that the

disk will come to rest in

3 aoi ,

7 — seconds.
4 QfA

9. A circular steel hoop of radius a and mass m per unit length spins with

an angular speed u) about a vertical axis through the center of the hoop, the

plane of the hoop being horizontal. Show that the tension in the hoop is

T = ?na*a>*.

If the breaking tension of the steel'is 10^ pounds per sq. in. and its density is

7.86j show that the angular speed of the hoop cannot exceed

973
OJ = t

a

where a is expressed in feet.

10 . A cylinder slips and rolls down an inclined plane in the time Ti.

The friction is then increased until the motion is a pure rolling, and the time

required to roll down the plane is Tj. Show that Tt > T\.

11 . A heavy bar is constrained to move in a vertical plane with one point

of it. A, in contact with a fixed horizontal line and another point, B, in

contact with a fixed vertical line. Thus the mid-point of A and B describes

a vertical circle. Find the equation of motion and show that it leads to a

hyperelliptic integral.

12. Show that the angle 6 at which the rocking pendulum, Sec. 67, begins

to slide is determined by the formula

.
/ r I

~ *sm »; = I^r + ^ ^ ^

•

provided, of course, that x > h.
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13 . A pair of uniform wheels of radius a and mass m\ are rigidly attached

to a solid axle of radius h and mass m^. One end of a string of length I is

attached to a point at the center of the axle and is wound about the axle; to

the free end is attached a weight w. The wheels run on a track under the

motive power of the weight w. Initially the weight is on a level with the

axle and the entire system is at rest. Under the assumption that the weight

cannot swing and that there is no friction other than rolling friction, show
that the motion is one of uniform acceleration except when the weight w is

within a distance b of its lowest point.

14 . A uniform rod leans against a smooth wall and rests upon a smooth
floor. If it is released from a given position in a vertical plane, it will slip

downward. Show that contact with the wall ceases when the upper end has

fallen through one third of its original height.

16.

A rocking pendulum is constructed of two cylinders joined together

by a bar 12" long and 1" square, as in Fig. 31. The rolling cylinder has a

length of 2" and a radius 1". The second cylinder is 4" long and has a

radius of 2". Show that if A > 1 1.92 inches the pendulum will rock without

sliding; but if A = Z/2, the pendulum will begin to slide when B = 11°43',

assuming that sin « = H.

16 . A right circular cylinder rests on a rough horizontal plane. The
plane is moved horizontally in any manner in a direction perpendicular to

the axis of the cylinder. Prove that the cylinder will come to rest as soon

as the plane does.

17. A uniform solid hemisphere of radius a rests upon a rough horizontal

plane. It is rolled through a small angle and then allowed to rock freely.

Show that the period of oscillation is the same as that of a simple pendulum
of length

I = \la.

18 . A homogeneous right circular cylinder of radius a rolls without slip-

ping on the inside of a fixed cylinder of radius oo, the axes of the two cylinders

being parallel. Show that the axis of the moving cylinder oscillates exactly

like a simple pendulum of length

i = (l + ^)(ao - a) = |(ao - a).

19. By using power series expansions for K and E in Eqs. (72.1) show"

that Fp in Eqs. (72.3) vanishes for k\ — —1, and is equal to

twn''- cos e
o a

for ki = H“l; that Fe is equal to Wtx for ki — —1, and equal to

— sin e
d a

for ki == +1, and finally that M is infinite for Ai = —1, and equal to

-\Wixa
for k\ = +1*
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20 . Let the knife-edges in a reversible pendulum be replaced by cylinders of

equal radii. Show that when the periods of oscillation are equal the length

of the equivalent simple pendulum is equal to the shortest distance between
the cylinders.

21 . A triangular prism of mass Wi rests on one of its sides on a smooth
horizontal plane. A uniform sphere of mass m 2 ,

starting from a position of

rest, rolls, without slipping, down the central line of greatest slope of one of

the sides of the prism which makes an angle a with the horizontal plane.

If y is the distance along the inclined plane through which the sphere has

rolled, and x is the horizontal distance through which the prism has slipped,

show that

(mi + m^)x = may cos a,

and that

ly — X cos a — Igi^ sin a.

22 . A uniform rod of length a has one extremity in contact with a hori-

zontal plane. Released from rest with an inclination a to the plane, the rod

falls freely. Show that when the rod has reached a horizontal position, its

angular velocity is given by the equation

whether the plane is smooth or rough, and that the end of the rod which is

in contact with the plane will remain in contact.

23

.

A homogeneous sphere of radius a is placed at rest on top of a fixed

sphere So of radius ao. The equilibrium being unstable, S rolls down So

without slipping. If 0 is the angle which the line of centers makes with the

vertical, show that

e
/2 1^ g

7 a -f* oo
(1 — cos 0),

and that S leaves So at the point where

cos 0 =

24

.

If, instead of being fixed as in the previous problem, rests upon a

smooth horizontal plane, and if the masses and radii of the two spheres are

equal, the two spheres move in such a way that the same two points of the

two spheres remain in contact. Show, also, that

(7 + 5 sin* 0)a0'^ = 10y(l ~ cos 0),

and that when the two spheres separate

cos* ^ — 6 cos ^ + 4 = 0.

25

.

Let G be the center of gravity of a rigid body and 0 any point of the

body. Any line through 0 in the plane that is perpendicular to GO can be

regarded as an axis of suspension for the rigid body considered as a com-
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pound pendulum. Investigate the relation that exists between the direction

of an axis of suspension through O and the period of oscillation of the equiva-

lent simple pendulum. What are the restrictions on the position of the

point 0 if the period of the equivalent simple pendulum is given (Brbklen,

Journal fur Mathematik, Vol. 93)?

26. If the latus rectum through one of the foci of a uniform elliptical disk

is an axis of suspension and the latus rectum through the other focus is the

axis of oscillation, show that the eccentricity of the ellipse is

27. A heavy circular arc, convex upward, pivots in a vertical plane about

its mid-point. Prove that the length of the equivalent simple pendulum is

independent of the length of the arc, and its length is twice the radius of the

circular arc.

28. A heavy uniform rod of length 21 pivots freely in a vertical plane

about one of its end points, the other end being just out of contact with the

ground when the rod is in its equilibrium position. An angular velocity w

is imparted to the rod when it is at rest in this position, and when the rod

arrives at a horizontal position the constraint at the pivot breaks. If the

rod strikes the ground in a vertical position, show that

where p is any odd multiple of ir/2.

29.

A heavy ladder of length 21 rests against a vertical wall making an
angle 0 with the wall. If the coefficient of friction with the wall and with

the floor is unity, the ladder is in equilibrium in all positions. The ladder

is given a push that starts it sliding downward. Show that the equation of

motion is

k^O" = — gl cos 6.

If

P gl = ^
2

’

this equation has the integral

(sin d — \ cos B),
1 + X*

The ladder will slide with increasing angular speed, or with decreasing

angular speed, according as the initial value of $' is greater or less than

4M cos 00

If it comes to rest before reaching the ground, it remains at rest in a position

of equilibrium. (Appell.)

80 . A homogeneous sohd cylinder of given mass oscillates about an axis

that is parallel to one of its generators. What are the shape of the cross-
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section and position of the axis of suspension if the period of the equivalent

simple pendulum is a minimum? Ans. The cross section is a circle and the

axis of suspension passes through the mid-point of a side of an inscribed

square. (De Saint Germain, Bulletin de la Soc, Math, de France^ 2, p. 64.)

31 . A rod of mass M is bent into the form of a circle, and pivots freely

about one of its points 0 in a horizontal plane. A bead of mass m slides

freely on the rod and is repelled from the point 0 by a force that is propor-

tional to the distance from 0. Find the motion under the assumption that

initially the system is. at rest.

32 . A uniform heavy bar is tied to a fixed point 0 by a light inextcnsiblc

string attached to its center point. Initially the string is taut and the bar

is horizontal at rest. Find the motion.

33 . A rod OA of mass m and length I pivots freely at G in a horizontal

plane. A second rod AB of mass ni and length 21 is smoothly jointed to the

first rod at A. The rnid-point C of AB is attracted toward 0 by a force

that varies inversely as the cube of the distance from 0. Let 6 be the angle

that OA makes with a fixed line OX in the plane, and let if be the angle

COA. Initially the system is at rest with ^ = 0and<,f = 7r/4. Discuss

the motion of the system.

34 . A heavy rigid body turns about a fixed horizontal axis. The axis

about which it turns is subject to the condition that it passes through a

fixed point of the body and that the equivalent simple pendulum has a given

length. Show that the axes which satisfy this condition are the generators

of a quartic cone.



CHAPTER VI

MOTION OF A RIGID BODY IN SPACE

73. Historical.—The differential equations of motion of a

system of free particles and the ten classical integrals which are

associated with them were first published by Clairaut, but the

first discussion of the motion of rotation of a free rigid body was

made by d'Alembert in his work on the Precession of the

Equinoxes" published in 1749. According to Appell, d'Alembert

was familiar with three of the six conditions necessary for the

equilibrium of a rigid body, namely, that the vector sum of all

of the forces that are acting upon the body must vanish, but he

was not familiar with the other three conditions, namely, that

the sum of the moments of the forces also must vanish. His

work was based upon the principle now known as d'Alembert's

principle (I, 383) and the principle of moments was derived by
him.

The equations of motion of a rigid body, one point of which is

fixed, in the form in which they are used at the present time, are

due to Euler, 1758. Euler also found the integrals that exist

when the applied forces have a resultant that passes through the

fixed point; for example, a rigid body which is supported at its

center of gravity alone, and Jacobi completed the solution of this

problem by expressing the nine direction cosines in terms of ellip-

tic functions of the time.

Further contributions to the analysis of this problem were

made by Lagrange, Laplace, and Poisson. Lagrange found in

1815 that if the ellipsoid of inertia at the fixed point is a spheroid,

the axis of which passes through the center of gravity, the equa-

tions of motion are integrable; and Poisson made the same dis-

covery somewhat later. A very beautiful discussion of Euler's

problem by Poinsot from a geometrical point of view appeared

in 1851 ;
and finally, Mme Kowaleski in 1889 found that if the

ellipsoid of inertia at the fixed point is a spheroid the equator of

which passes through the center of gravity, and if the principal

moments of inertia satisfy the relation

166
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A - JS = 2C,

then, again, the equations of motion can be integrated.

The theory of screws was developed largely by Sir Robert S.

Ball during the latter half of the nineteenth century.

THE THEORY OF SCREWS

74. Displacement of a Point by a Rotation about a Fixed Axis.

In Fig. 43 let a be a unit vector having the direction of the axis of

rotation, and let Tq be the position vector of a point Ro of the body

referred to a point 0 on the axis of

rotation, and therefore fixed rela-

tive to the rigid body. As the body

rotates the point Ro describes a

circle in a plane perpendicular to

the axis. Let P be the center of

this circle, and let PQ be directed 90°

ahead of the vector PRo. Then PPo,

PQ, and a form a right-handed

system of mutually orthogonal

vectors, so that

PQ = a X To,

PRo = ~a X (a X ro).

These two vectors have the same length a, namely,

a = ro sin o

;

where a is the perpendicular distance from Ro to the axis.

If the body is rotated through an angle the vector To is

transformed into the vector r {
— OR), and

r = OP + PP
= [ro + a X (a X ro)] + [- a X (aX ro) cos (^ + (a X ro) sin ip],

so that the displacement RoR is

r - ro = (a X ro) sin ^ + a X (a X ro)(l — cos (p),) qx
= (a X ro) sin + a X (a X ro) vers ip, /
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If the angle ip is very small, say A<p, and the equation is divided

through by At, it becomes

ATq

At
(a X to)

A(p At A(p At

then, on passing to the limit, in which r = lo,

r' = (a X r)v>',

since

i. sin v? ,,
, vers A(p

lim — = 1, and lim —r = 0.
Atp A<p

Now

(p'SL ==

is the angular velocity of the body about the axis of rotation.

Consequently, the equation,

r' = <0 X r, (2)

represents the velocity with respect to fixed space of any particle

of a rigid body which is rotating about an axis which is fixed both

in the body and in space [Eq, (46.1)].

76. The Most General Displacement of a Rigid Body.—It was
shown at 1, 123 that the most general displacement of a rigid body
can be effected in infinitely many ways by a translation and a

rotation about an axis which is fixed in the body. The most
general rotation is represented by Eq. (74.1) which depends upon

To, since the displacements of the various points of the body are

different
;
and To has its origin at a point 0 which lies on the axis

and is therefore fixed in the body. In the translation T, all

points of the body have the same displacement which is therefore

independent of Tq. Hence the ihost general displacement of a

rigid body is represented by the equation

D = T + (a X To) sin ^ + a X (a X ro) vers (1)

Since the displacement which is due to rotation is in a plane

which is perpendicular to the axis of rotation, the projections of the

rotational displacements upon the axis are all zero. Since the

translational displacements are all equal it follows that for any
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displacement of a rigid body the projections of the displacements

of the individual particles upon the axis of rotation are all equal.

This can be verified by multiplying Eq. (1) by a •, and then

evaluating the right member.
It was also shown at I, 123 that the choice of the point of refer-

ence 0 was entirely arbitrary, but that after this point is chosen

then, for a given displacement, the straight-line translation and
the rotation are uniquely determined. It will be of interest to

compare the same displacement referred to two different points.

Let 0i be any point different from 0, and let

OOi = p.

The position of the point Rq (Fig. 43) with respect to O is To, and
with respect to 0i is ri. Similarly let the two translations be

T and Ti. When referred to the point 0, the displacement of 0i

is a translation T and a rotation a X 9 sin <^ + a X (a X p) vers v?,

but when referred to 0i the displacement is merely the translation

Ti. Hence

Ti = T + a X 9 sin ^ + a X (a X 9) vers (2)

Let b be a unit vector for the rotation about an axis through

Oi, and let d be the angle of rotation. Then, for any point of the

body,

= Ti “Hb XTi sin 0 b X (b X fi) vers (3)

and

Do = T + a X To sin ^ + a X (a X To) vers

Now

To = Ti + 9,

and therefore

Do == T + a X 9 sin ^ + a X (a X 9) vers tp

+ a X ri sin ^ + a X (a X Ti) vers <p]

or, by Eq. (2),

Do = Ti + a X Ti sin ^ + a X (a X ri) vers (4)

Since

Do> Dx
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for every ri, it follows from Eqs. (3) and (4) that

b X Ti sin ^ + b X (b X ii) vers 6 ==

a X Ti sin V? + a X (a X ri) vers (p.

By Eq. (74.1) the left member represents a rotation of the point

ri through an angle ^ in a plane perpendicular to b, while the right

member is a rotation of the same point through an angle ^ in a

plane perpendicular to a (Fig. 44). In order that these two dis-

placements be the same, it is necessary and sufficient that

a = b and (p = $;

and, if these conditions are satisfied, Eq. (2) is satisfied for

every Tq.

It follows therefore that in the two modes of representing the

displacement, the two axes of rotation are parallel and the two
angles of rotation are equal. Since O and Oi are any pair of refer-

ence points, it follows that the direction of the axis and magnitude

of the angle of rotation are independent of the reference point which

is chosen.

76. Rotation about Parallel Axes without Translation.—Con-
sider two equal rotations, without translation, about parallel axes

which are fixed in the body. Let Oi and O2 be the two points of

intersection of the axes with a plane P which is perpendicular to

both axes. Let the position of a particle with respect to Oi be ii,

and with respect to O2 be r2 ; and let the position of Oi with respect

to O2 be p. Then

r2 = Ti + 9* ( 1 )
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If Di is the displacement due to a rotation through an angle (p

about the axis through Oi, D2 the displacement due to an equal

rotation about the axis through O2, and a is a unit vector which

has the direction of the axes of rotation, then

Di = (a X Ti) sin + a X (a X rO vers v?,

and

D2 = (a X T2) sin V? + a X (a X r2) vers (py

or, on account of Eq. (1),

D2 == [a X (ri + p)] sin (p + [bl X (a X (ri + 9) 1 ]
vers tp

= (a X ri) sin (^ + a X (a X ri) vers (p

+ (a X 9) sin ^ + a X (a X 9) vers <p;

and therefore

D2 — Di = (a X 9) sin V? + a X (a X 9) vers (p. (2)

The difference between the two displacements is independent of

Ti. It is the same for all points of the body, and is therefore a

translation. This translation is the displacement of the point Oi

in the rotation about O2, and is therefore perpendicular to the

axes of rotation.

77. A Particular Representation of a Displacement.

—

The
general expression for a displacement of a rigid body,

D = T + (a X r) sin + a X (a X r) vers <pj

contains an arbitrary element, namely the position of the axis of

rotation with respect to the body. For a given displacement the

direction of the axis and the angle of rotation are determined. It

will be shown that for any given displacement the position of the

axis can be chosen in such a way that the translation is parallel

to the axis of rotation.

Suppose a given displacement is represented by the expression

D = T + (a X ii) sin ^ + a X (a X ii) vers (p, ( 1 )

the origin of the vectors ri being at a point Oi on the axis of rota-

tion. Through Oi pass a plane P perpendicular to the axis of

rotation. Let b be a unit vector in the plane. Then b, a X b,

and a form an i, j, k system of unit vectors.
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In the direction b from Oi choose a second reference point O2

with respect to which the vectors are r2. If the distance between

Oi and O 2 is p, then

O 1O 2 = pb,

and

Ti = pb + r2.

This expression for ri substituted in Eq. (1) gives

D = T + (a X b)p sin <p + a X (a X b)p vers A
+ (a X T2) sin + a X (a X r2 ) vers

^ ^

The translation T, which is a definite

one, can be represented by

T - Tia + r2C,

where c is some unit vector in the plane P.

If p and the vector b are chosen in such

a way that

T2C + (a X b)p sin + a X
(a X b)p vers <p

— 0, (3)

the expression for D becomes

D = Tia “1- (a X r2 ) sin ^ + a X (a X 12) vers (4)

an expression for the displacement in which the translation has

the same direction as the axis of rotation. It remains to be

shown that Eq. (3) can always be satisfied.

The vector

(a X b) sin + a X (a X b) vers (p = d

represents the displacement of the terminus of the vector b when
it is rotated through the angle (p (Fig. 45). Equation (3)

becomes

T2C + pd = 0, (5)

that is, d is parallel to c, but oppositely directed. Evidently

cb = 90® — |<p.

The tensor of d is 2 sin J<p, as is seen from the diagram. Con-
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sequently Eq. (5) gives

^ 2 sin i(p

The distance p and the vector b are therefore uniquely deter-

mined provided (p is not zero or a multiple of 27r, and in this

exceptional case the rotational element of the displacement D
vanishes, and D is a pure translation.

78. Screws and Twists.—The theorem that has just been

proved, namely, that any displacement of a rigid body can be

effected in one and only one way by a rotation about a certain

axis and a translation parallel to that axis, is due to Chasles.

This type of displacement is similar to the displacement of a nut

on a threaded bolt. Hence the following definitions:

Definition,—A screw is a straight line with which a definite

magnitude called the pitch is associated.

Definition.—A rigid body is said to receive a twist about a screw

when it is rotated uniformly about the screw and at the same time is

translated uniformly in a direction parallel to the screw through a

distance which is equal to the product of the pitch and the circular

measure of the angle of rotation.

If in Eq. (77.4)

Ti ^ piP,

the expression for the displacement becomes

D ~ p<pa + a X r sin <p + a X (a X r) vers (1)

and if ip is proportional to the time, so that

= constant,

the displacement, which is a continuous function of the time, is a

twist about a screw. The screw is the straight line which passes

through the origin of r and has the direction of a, and its pitch is p.

The angle (p is called the amplitude of the twisty and is called the

twist velocity.

The kinetic energy of the twist due to the translation of the

body is ^Mp^tp'
,
and the kinetic energy due to the rotation about

the axis is \Mk^<p^* (Sec. 49); since these two motions are per-
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pendicular to each other, the total kinetic energy of the twist is

the sum of the two, or

(2)

k being the radius of gyration of the body with respect to the

screw.

At I, 161 it was shown that any system of forces that is acting

at any instant upon a rigid body can be replaced by an equivalent

wrench, that is, by a single force and a couple, the axis of the

couple being parallel to the single force—a theorem due to

Poinsot. From the point of view of dimensions (I, 71) the

moment of a couple divided by a force is a length. If M is the

moment of a couple, F is the force, and p is the quotient,

M = pF,

If the force is directed along a screw whose pitch is p, the system

of forces is called a wrench on a screw. The moment of the

couple is then the product of the force and the pitch of the screw.

Six algebraic quantities are necessary for a complete specifica-

tion of a twist about a screw, namely, four for a complete specifi-

cation of a line, one for the pitch, and one for the amplitude

of the twist. Likewise six magnitudes are necessary for a com-

plete specification of a wrench on a screw, namely five for the

screw itself and one for the intensity of the wrench, or the magni-

tude of the force which, associated with the couple, constitutes

the entire wrench.

The application of the theory of screws is limited to states of

equilibrium, impulsive forces, and small oscillations, and will not

be pursued farther here. The theory has been developed largely

by Sir Robert S. Ball, and any one who is interested in it should

consult his Theory of Screws (1900).

THE MOTION OF A RIGID BODY THAT HAS ONE POINT FIXED

79. The Moving Trihedron.—Imagine a rigid body one point

of which is fixed relative to fixed space. Let the fixed point 0 be
taken as the origin of a rectangular trihedron, x, y, z, which is

stationary relative to fixed space, and also let 0 be taken as the

origin of a rectangular trihedron, rj, f, which is fixed relative

to the body. Then as the body moves relative to the fixed point,

the t, 77, f trihedron moves with it, and in order to describe the
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motion of the body it is sufficient to describe the motion of the

V, f-trihedron relative to the x, y, 3-trihedron, the two tri-

hedrons having always the same origin 0.

Let r be the position vector of a particle m of the body, and let

i, j, k be unit vectors which have the directions of the tj-, and

f-axes respectively. Then

r = |i + I? j + f k. (1)

Since the particle is fixed in the body, its coordinates f, and f

are constants, and it is only the unit vectors i, j, and k that vary

as the body moves; that is, relative to fixed space,

dr = I di -f 7) dj -}- f dk. (2)

Inasmuch as dr is a vector, it is expressible in terms of i, j, and k.

By Eq. (6.5),

dr = (dr • i)i -f- (dr • j)j -b (dr • k)k. (3)

On substituting the expression for dr from Eq. (2) in the right

member of Eq. (3), there results

dr = [I i • di i • dj -b f i • dk] i

+ [I j
• di -b 1? j • dj -b f j • dk] j

-b k • di -b 7? k • dj + f k • dk] k.

But

j
• di = — i • dj, i • di = j • dj = k • dk = 0,

k • dj = — j • dk, i • j = j • k = k • i =0,
i-dk=— k*di, = =k-k =1.

The above expression for dr therefore reduces to

dr = (fi • dk — Tjj • di)i -f (^j • di — fk • dj)j -b (Tjk • dj — |i • dk)k;

and by Eq. (3.3) the right member of this equation is expressible

as a vector product, namely,

dr = (k • dj i -b i • dk j -b j • di k) X (^ i -b tj j -b f k).

or

dr = u) X r d<, (4)

if the infinitesimal vector

k • dj i -b i • dk j -b j • di k
(5 )
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is denoted by <*> dt. Thus the displacement of the point r;, f is

perpendicular to a plane that passes through r, which depends

upon the point ry, f ,
and through a vector a> which is independent

of the point rj, The line through 0 that has the direction of

(0 is therefore an axis of rotation, and w is the angular velocity.

From this it is evident that at any instant the state of motion of a

rigid body, one point of which is fixed, is a rotation about some
axis through the point 0, and the motion is just the same as

though the axis were fixed in space [Eq. (74.2)] although at a

succeeding instant the position of the axis may be different. It

is possible therefore to speak of the instantaneous axis of rotation

y

and this is the common practice. If Kq. (5) is divided by dty there

results

r' = w X r, (6)

just as though the axis were fixed [Eq. (46.1)].

In particular, it follows that for a moving trihedron with a fixed

origin

i' = 6> X i, j' = CO X j, k' = G) X k. (7)

Acceleration .—Equation (6) is the velocity with respect to

fixed space of a particle m that is fixed in the body. This particle

also has an acceleration with respect to fixed space. If ry, and f

are constants,

r = ^i + r;j+fk,

and

r' = U' + T
7
j' + f k' = o> X r, (8)

r" = j" + f k" = G>' X r + G> X r'. (9)

Thus the acceleration of a particle, whose position is r in a rigid

body, one point of which is fixed, whose angular velocity is g>, is,

by virtue of Eq. (6),

r" = G)' X r + G> X (co X r). (10)

80. Extension to an Arbitrary Vector.—In the preceding

section, r was a vector fixed in the body. If the restriction that

the coordinates of its terminus, f, rj, and f ,
be constants is removed,

then, in the expression

r = r i + ^ j + fk,l

all the letters are variable, and

( 1 )
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r' = (ri + Vj + f'k) + ({ i' + ^ j' + f k'), (2)

r" = ({"i + V'j + r"k) + 2({'i' + Vj' + f'k') +
Ui" + ^r + fk")- (3)

Now let

p = { i + T7 j + f k, (4)

P' = n + t?'j + f'k, (5)

9" = + V'j + f"k. (6)

Then g and r are identical, but g' is the velocity of the terminus of

g relative to the moving trihedron, and g" is the acceleration

relative to the moving trihedron. They are termed the relative

velocity and the relative acceleration respectively. The vectors

r' and r" are called the absolute velocity and absolute acceleration

of the terminus of r, or that is, the velocity and acceleration

relative to fixed space.

From Eqs. (2), (5), and (79.8),

r' = e' + (« X e). (7)

The vector w X 9 is the absolute velocity which the terminus of g

must have in order to maintain its position in the] body. It is

therefore called the velocity offollowing. Expressed in words, Eq.

(7) states that:

The absolute velocity of the terminus of any vector is equal to

its relative velocity plus the velocity of following.

As is seen from Eq. (79.9),

^ i" + 77 j" + f k" = 0)' X p + <0 X (to X p) (8)

is the acceleration of a point which is fixed in the body. It is

therefore the acceleration offollowing. By Eqs. (79.7), the vector

2(ri' + v'y + f'k') = 2 CO X e', (9)

and is called the compound centrifugal acceleration. It is perpen-

dicular to the plane that passes through the axis of rotation and
through the vector of relative velocity. It is twice the velocity

which the terminus of the relative velocity vector would have if

it remained fixed in the body. Its magnitude vanishes if the

rotation vanishes, if the relative velocity vanishes, or if and to

are collinear. The vector + i7"j + f"k is simply the relative
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acceleration p". Hence Eq. (3) becomes

X*" = p" -|- 26) X X 9 + <*) X (<*> X p)]j (10)

which, expressed in words, gives the theorem

:

The absolute acceleration is equal to the relative acceleration plus the

acceleration offollowing j
plus the compound centrifugal acceleration^

which is the theorem of Coriolis.

Equation (10) can be derived directly from Eq. (7) by differen-

tiation if it is kept in mind that the vectors p and p' are not fixed in

the body; that is, the derivative of p is p' + t») X p and the

derivative of p' is p" + X p'.

81. Infinitesimal Rotations Are Vectors.—That finite rotations

are not vectors is readily shown by an example. Take a book in 'a

horizontal plane; rotate it through an angle of OO"" in a forward

direction about a horizontal, east and west axis; then rotate it in

a forward direction through an angle of 90° about a vertical axis.

Note the final position of the book, and then return it to its

initial position. Repeat the operations in a reverse order,

rotating first about a vertical axis, and then about an east and
west axis. It will be observed that the final position of the book
is not the same as it was in the first trial. Since the final result

depends upon the order of the operations, it is evident that the

operations are not vectors, notwithstanding the fact that a finite

rotation can be represented by a directed magnitude, namely a

length, equal to the angle of rotation, along the axis of rotation.

Infinitesimal rotations, however, are vectors, and it is desirable,

perhaps, to emphasize this fact. Let a rigid body be rotated

about an axis L\ that passes through a fixed point 0, through

an angle coj d/, and then about an axis L2 ,
that also passes through

0, through an angle 0)2 dt. The first rotation can be denoted by
G>i dt and the second by <*>2 dt. By the first rotation a vector r

becomes

Ti = r + dr = r + G>i X r d^.

By the second rotation the vector ri becomes

r2 = fi + dri = T\ + <*>2 X Ti di,

= r + wi X r d^ + (*>2 X {t + u>i X r dt] dt,

= r + X r d/ + <02 X r d^ + <.>2 X (<oi X r) {dt)^.
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Hence

lim —^
^ = r' = <oi X r + 0)2 X r, (1)

since the last term 02 X (<*>i X r) di vanishes.

Now let CO be the vector sum of 0)1 and t02, or the resultant

according to the parallelogram law, and let the rigid body be

rotated through the angle cu dt about an axis that coincides with

G). Then

r' = G> X r = (toi + <02) X r = G>i X r + g> 2 X r. (2)

That is, the single displacement about the axis <*> is the vector

sum of the two displacements about 6>i and g> 2, and infinitesimal

rotations are vectors, since the directed magnitudes which repre-

sent them obey the parallelogram law. Angular velocities differ

from infinitesimal rotations, only by the scalar factor di, so that

angular velocities also are vectors.

If G> is the angular velocity of a rigid body about an instan-

taneous axis through the fixed point 0, it can be resolved into

components, g>i, g>,, wa along the i-, j-, and k-axes, so that

G) = <i>i -f- G>/ + G)Jt,

and G)<, G)„ are angular velocities of the body about the i-, j-,

and k-axes in the sense that an infinitesimal rotation co,- dt about
the i-axis, plus an infinitesimal rotation a), dt about the j-axis,

plus an infinitesimal rotation Wk dt about the k-axis, the rotations

being taken successively in any order, or even simultaneously,

give precisely the same displacement of the body as a single

rotation through the angle w dt about the axis of g>.

In Sec. 79 it was found that

(k . dj)i -f (i . dk)j + (j • di)k = g> dt.

Hence

G) = (k . j')i + (i • k')j + (j • i')k, (3)

and

C0< = k • j', coy = i . k', cofc = j
• i'. (4)

82. The Moment of Momentum Expressed in Terms of the
Angular Velocities.—Since the motion of a rigid body about a
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fixed point at any instant is a rotation about some axis that

passes through the fixed point, the moment of momentum and the

kinetic energy of the body are expressible in terms of the angular

velocities. It was found in Secs. 32 and 45 that the moment of

momentum L of the rigid body with respect to the fixed point 0 is

L == 2m r X r', (1)

where m is the mass of a particle of the body, r is its position

relative to the point 0, and r' is its linear velocity in fixed space,

or its absolute velocity. For a rigid body one point of which is

fixed, Eq. (79.6) gives

r' - (0 X r.

Hence for such a rigid l)()dy the moment of momentum relative

to the fixed point is

L = 2m[r X (o> X r)]

= Zmr^G) — 2mr • <»> r, by Eq. (5.4). (2)

Since the unit vectors i, j, and k are mutually orthogonal,

L = (L . i)i + (L . j)j + (L.k)k; (3)

and from Eq. (2)

L • i = 2mr^ w • i — 2m (r • g>) (r • i),

L • j
= 2mr2'o) • j

— 2m (r •(*>)(!• j),

L • k = 2mr^ o> • k — 2m (r • co) (r • k).

Since

and

r-U + ’jj+fk,

ti) == + a>J + w^k,

it follows that

r • w = fWfc.

On using the notation of Sec. 19,

A = 2m(7;2 + j-2), D = 2mr?f,|

B = 2m(f2 + {2), E = 2mr^,} (4)

C - 2m($2 + ^2)^ E ^ 2m$ij,J
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for the moments and products of inertia, it is found that Eq. (3)

becomes

L = {Ao^i — Fci)j — Ecx^kYi + (Bcoj — Dcok — Fcx)i)}

+ (Co), - Eo^i - /;co,)k. (5)

If the vectors i, j, k coincide in direction with the principal

axes of inertia at the fixed point 0, the products of inertia vanish;

that is

1) E = F = 0,

and the expression for the moment of momentum is much
simplified, namely

L = Acot^ “h Bcojj -f- Co)fJsi» (6)

By comparing this expression for the moment of momentum
with that of the instantaneous axis of rotation,

o> = cuti + o)ji + a>itk, (7)

it is evident that the direction of the two axes does not coincide*,

in general. They will do so if

A = B = C,

that is, if the ellipsoid of inertia is a sphere; and also in case

two of the angular velocities are zero, in which event both the

instantaneous axis of rotation and the moment of momentum
coincide with one of the principal axes of inertia of the body

at the point 0.

83. The Kinetic Energy in Terms of the Angular Velocities.

—

The kinetic energy of the body relative to the system of fixed

axes, or the x-, y-, 2;-system, is

T = = fSmr' • r' = • (o X r),

= ^2m[r'cor] = |^Zm[a>rr'], by Eq. (4.2),

= • r X r' = • Smr X r',

= Jo) • L, by Eq. (82.1). (1)

The kinetic energy, therefore, is equal to one half the scalar

product of the angular velocity and the moment of momentum.
If the scalar product of Eqs. (82.5) and (82.7) is taken, the

expression for the kinetic energy in terms of the angular velocities

and the moments and products of inertia is found to be

2T = Ao)i^ + B(joY + — 2Do)j(ji)k — 2E<jik0ii — 2FcoiO)y. (2)
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Of course, if the i-, j-, and k-, axes coincide with the principal

axes of inertia at the fixed point 0, the above expression reduces

to

2T = AiCi^ + + CW, (3)

since Z>, Ey and F vanish.

If ay jly and y are the direction cosines of g> with respect to tlie

i'y V'y f-axes, it is evident that

coi — ao)y

and these values, substituted in Eq. (2), give

2T = _ 2D^y ~ 2Eya ~ 2Fafi)c^\

or

2T = /co2, (4)

where I is the moment of inertia of the body with respect to the

instantaneous axis of rotation.

Equation (4) can be derived directly from the definition of the

kinetic energy, as follows:

2T = 2mr' • r' = Xm w X r • w X r

= sin^ fco by Chapter I, Problem 5.

- 70)2.

By comparing Eq. (2) with Eq. (48.2) it will be observed that

the moment of momentum can be wTitten

dT.
,

do)/ do)j dwjfc
(5)

84. The Rate of Change of Moment of Momentum.—If the

f-, and f-axes, which are rigidly attached to the body, coincide

with the principal axes of inertia at the fixed point 0, the moment
of momentum of the body with respect to the origin is

L = Aci)ii + Boij] + Ccjjfek. (1)

The time rate of change of L with respect to a set of axes that

is fixed in space, the x-, y-, 2f-system, is

= {Auiii Bo)/} -f* Cojjk^k) + (Aa>ti^ -h Boijy + Cwjfek^).
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Now, by Eq. (79.7),

i' = O) X i = COifcj
— coyk,l

j' = w X j
= a)»k - o)kiy V (2)

k' = <0 X k = — a)J,
j

since

(i) = CUji “h coj Ci)A;k.

The substitution of these values of i', j' and k' in Eq. (2) gives

L' = [Ao:.' + (C - B)c^jc^k]i + [Bo^/ + (A - C)o^ko^i]}

+ [Cc,' + {B - A)a,,a;y]k. (3)

This equation can be derived by the method used in Sec. 80.

Let the moment of momentum when referred to axes which are

fixed in space, the x-, 2/-, 2-system, be L, and when referred to

axes which are fixed in the body be A. Then

L' = A' + X A. (4)

The rate of change of the total moment of momentum is there-

fore equal the rate of change relative to the system of axes which

are fixed in the body plus a vector <0 X A, which is perpendicular

to the plane which contains o> and A and represents the velocity

of the terminus of A as it is carried forward by the rotation w.

Since, Eq. (1),

A = Aooii -j- Bo)j} -J- Ccofck,

the expression for A' is

A^ = A cut^i T" Bit)/} -f- Cwjt^kj

and

to X A =
1

OJi

Ao)i Bo)j

03k

C03k

,
by Eq. (3.4), (5)

(C — B)o3i03ki *4" (A — C)o3k(*3ij -[- {B — A)wiWjk,

The vector o) X A is called the centrifugal couple. It repre-

sents the sum of the moments of the centrifugal forces with

respect to the fixed point, the centrifugal forces being due to the

rotation about the instantaneous axis, as will be shown.



84] MOTION OF A RIGID BODY IN SPACE 183

Imagine a particle of mass m at the terminus of the vector r,

Fig. 43. The centrifugal force f at m due to the rotation about

the instantaneous axis is equal to in magnitude, where p is

the length of the perpendicular from m to the instantaneous axis,

Since f is perpendicular to the axis and is directed away from it

f = X (a X r)

= — rru^ X (<*> X r) = moyh — mm • r a>.

The moment of f with respect to 0 is (I, 133),

rXf==m<i)*r6>Xr,

and the resultant Q of the moments for all of the particles is

Now

and

Q = • r o) X r.

G) X r =
i j k

,

^ V ^

o> • r = ^coi + rjccj + fw/c;

therefore the product w • r w X r gives

Q = (C — B)o)jO)ki (A — C)o)kO)i} {B — (6).

since the products of inertia are all zero.

A comparison of this expression with Eq. (5) shows that

Q = G> X A,

as was to be proved.

86. Euler’s Equations.—Let N be the moment of the exterior

forces that are acting on the body. Then, in accordance with the

principle of moment of momentum, Sec. 45,

L' = N. (1)

If N is expressed in terms of the unit vectors i, j, k,

If ^ Nil + Nij + NkK (2)

where and Nk are the moments of the exterior forces with

respect to axes that are fixed in direction, but which instan-
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taneously coincide with the i-, j-, and k-axes of the moving body.

In view of Eq. (1), a comparison of Eqs. (2) and (84.3) gives

the three scalar equations

+ {C - = Ni,]

Be,/ + (A -
(3)

Cck (B — A)o)iO)j
—

which are the equations of motion of the body that were given by

Euler in 1765. The rate of change of the angular velocities, since

they are referred to axes that are moving with the body, depends

not only upon the moments of the applied forces N, but also upon

the inertial, or centrifugal, couple g> X A. The advantage of

using axes that are fixed in the body is, obviously, that the

moments and products of inertia with respect to such axes are

constants.

In Eq. (3) the variables cji, coy, and o)k are the angular velocities

about the J-, and f-axes which are fixed in the body and

coincide with the principal axes of inertia at the origin 0. In

order to define the motion, the angular velocities must be related

to some set of geometrical coordinates, and for this purpose

Euler's angles will be chosen (Sec. 52).

In Fig. 46 the fixed point of the body is at 0; the x-, y-, 2-axes

have their origin at 0 and are stationary relative to fixed space.

The f-, T?-, f-axes also have their origin at 0. They are fixed in

the body but are movable relative to fixed space; in other
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Words they are free to turn about the fixed point. At any
instant the ^r;-plane intersects the x

2/-plane in a straight line

OK, Let the angle between the positive end of the x-axis and the

positive end of the line OK be denoted by yp. Let the dihedral

angle which the ^?7-plane makes with the a:
2
/-plane be denoted

by 6, and finally let the angle which the {-axis makes with the line

OK be denoted by (p. The line OK is called the line of nodes, xp

is the longitude of the ascending node if, 6 is the inclination, and

ip is the angle of rotation. That these names are appropriate will

be seen by imagining the body merely spinning about the f-axis

in the positive direction.

The table of direction cosines is

V r

X Oil Ot2

y ^2

z yi y-i 73

The values of these direction cosines in terms of Euler^s angles

are given in Sec. 52.

The angular velocities \p\ tp', and 6' can be represented by
vectors along the 2;-axis, the f-axis, and the line Oif, respectively,

for these lines are perpendicular to the planes in which \p, (p,

and 0 lie. The angular velocities coy, and Wk are then the sum
of the projections of tp', and 0' upon the {-axis, the 77-axis,

and the f-axis, respectively. These projections are easily read

from the diagram. Fig. 46, and give

coi = yp'yi + 6' cos (py

— 0' sin ipy

o^k = yp'yz + (p\

and, by inserting the values of 71 , 72 ,
and 73 from Sec. 52,

CO, = \p' sin 0 sin ip + 0' cos
j

o)j = \p' sin 0 cos ip — 0' vsin ip, / • (4)

Wa. = \p' cos 0 ip'
, ]

Equations (3) and (4) taken together form a complete set of

differential equations of the motion. If co,, coy, and co^ were elimi-

nated between them there would result three differential equa-

tions in ypy ipy and 0, each of the second order. From the point of

view of differential equations, therefore, the problem of the

motion is of the sixth order.
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If (Pf and d are known functions of the time coy, and cok are

given directly by Eq. (4). But if w*, wy, and oj* are known
functions of the time rp, and 6 are defined by the differential

equations

6' = Wi cos (f — o)/ sin (py
I

sin dyl/' = oji sin + ojy cos ip, / (5)

— (ci)i sin ip + a)y cos ip) COt B + o^kj]

which are obtained by solving Eqs. (4) for B', and ip'

.

It has

been shown that the solution of these equations can be made to

depend upon the solution of a Riccati equation with complex

coefficients.^

86. The Only Applied Force Is the Weight.—If the only force

acting upon the body is its weight Mg, and if the body pivots

upon the fixed point 0 without friction, the forces acting form a

conservative system, and there exists, evidently, an^ energy

integral.

The weight acts at the center of gravity G, and the moment of

the weight with respect to 0 is (I, 133)

N = MG X g.

Hence Eq (85.1) becomes

L' =MGXg, (1)

and by multiplication by o) •,

G> . L' = Mu> • G X g. (2)

The expression for the kinetic energy in terms of L and co is,

Eq. (83.1),

T = ^(i) • L,

so that

r = !(<*>' • L + CO . L').

Now, by Eq. (84.4),

g>*L' = <*)*A+<*>*coXA — CO* a'
= Ao)iO)i + BoiyO)/ + Ccojtcojfc';

1 Darboux, “Lemons sur la th^rie g^ndrale des surfaces, Vol. 1, chap. 2.
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and if (o and have the same relative significance as L and A

L-6>'=L*Q'+
= A(j)iCji)i -f- BcOjU)/ + Coik^k ,

Hence

Ci> * L ~ ti> * L)

and therefore

r=a>-L'. (3)

Also

G>‘GXg=6>XG*g,

and since G is a vector that is fixed in the body

X G = G^

Equation (3) can therefore be written

r = MG'
. g,

and, by integration

T - To = MG- g, (4)

which is the energy integral. It holds whatever may be the

position of 0 relative to the center of gravity. If the fixed

2:-axis is vertical with the positive end upward,

G-g = -gh,

where h is the distance of the center of gravity above the x2/-plane,

and Eqs. (4) and (83.3) express the energy integral in the form

= 2To - 2Mgh. (5)

Since the weight is parallel to the a:-axis, its moment with

respect to the 2-axis is always zero. Let ko be a unit vector in

the direction of the z-axis; then

g = -ifko.

If Elq. (1) is multiplied by • ko> there results

L' . k« = 0,

since

MG X g • ko = MG • g X ko = 0.
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Consequently

L • ko = constant
; (6)

that is, the moment of momentum with respect to the 2:-axis is

constant. Since the cosines of the angles which the i-, j-, and

k-directions make with the z-axis are 71 , 72 ,
and 73 ,

Eq. (6) can

be written also

L • ko = Aui^yi + Ba),72 + Co^kyz = constant. (7)

Equations (5) and (7) are the only integrals knowm that hold

without further restrictions on the nature of the body or the posi-

tion of the fixed point 0 in the body. There are several integrable

cases when such restrictions are made, namely, Euler’s case, in

which the point 0 is at the center of gravity; Lagrange’s case,

in which the central ellipsoid of inertia is a spheroid and the point

0 is located on the axis of the spheroid; and Mme Kowaleski’s

case, in which also the central ellipsoid of inertia is a spheroid, but

the point 0 is located in the plane of the equator of the spheroid.

Before taking up these cases, however, it is desirable to determine

the constraint that is acting at the fixed point 0.

87, Determination of the Constraint.—If F is the vector sum
of the applied forces and R is the constraint at 0, the equation of

momentum is

MG" = f + r.

Since G is a vector that is fixed in the body, by Eq. (79.10)

G" = a>' X G + (O X (a> X G).

Hence

Since

R = MJ X G + Mo> X (w X G) - F. ( 1 )

CUii' + coj' + WAjk' = 0,

as is seen from Eqs. (84.2), it follows that

iji = COi^i -|- 00/2 “f" (2)

By substituting the values of o)*', c*>/, and from Euler’s

equations [Eq. (85.3)] in Eq. (2), there results

B C
,
N

—UjUk +A (3 )
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where the symbol S means that the letters following it are to be

permuted circularly, and the sum of the three expressions so

derived is to be taken. If the coordinates of the center of gravity

are ij, f,

G = + vi + fk.

and then

R = -F +

+ + Cra.*)a., i. (4)

It will be observed that R reduces to •— F, if the fixed point 0 is

at the center of gravity.

If the only force acting is the weight, then

F = Mg;

the moment of F with respect to 0 is [Eq. (86.1)]

N = M{G X g);

and

Ni == MG X g • i = M(7(72f - 73^),]

Nj = MG X g • j
= Mg{ys^ -

7if), > (5)

Nk = MG X g • k = MgijiTj - 72|).j

The first line in the expression for R becomes

-Mg + + Cysf) - + Cp)]i; (6)

the second line are inertial effects which arc due to the state of

rotation, and are independent of the applied forces.
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Problems

1 . Using the formulas of Soc. 80 prove the following statements: If the

origin of a set of rectangular axes O is fixed but the axes themselves are mov-
ing about O, the components of the absolute velocity of a moving particle in

the t;-, ^-directions are

= U 4-

Vj = T/' -f-

V* = i*'
4“ ~

The components of the absolute acceleration of the particle in the ??-,

^-directions are

ctx = C' 4“ — ri'oik) 4“ 4“ 4" 4“

«J = 4“ 2(Uw* — 4“ -* !(*>%') 4- {^Oii -f- y)Q0j 4- ^0>k^0)j — »;«*,

otk = C* 4" “ C<^}) 4“ ~~ ^<^}') 4"
-f- 7)0)

J -f- ^Wk)o)k —

If s is the absolute velocity of a particle and d — <r»i -f aA -j- (^kk is the

same vector referred to the moving trihedron, then

s' = d^ 4“ <*> X d,

and the components of the absolute acceleration in the i-, j-, k-directions

are

= <ri' 4-

ay = <ry' -f" (TtO)* ““ cr*Wt,

OCk = <Tk 4- (rjiOi — (TiO)].

If Ct is the angular velocity referred to fixed space and g> = wj 4- wyj -}- w*k

is the angular velocity referred to the moving trihedron, then

a' = w'.

If the angular momentum referred to fixed space is 1 and referred to mov-
ing space is ^ = X,i 4* Xyj 4- X*k, then T = X' 4- w X X, the components of

which are

li' — X»' 4* XifcWy — Xya>*,

1/ — Xy' 4- X»a>t — X*6>,-,

Ik = X*' 4“ Xya)» — X»wy.

2. The particUis of a rigid body, one point of which is fixed, that have the

same speed with respect to a set of fixed axes lie on a right circular cylinder.

3. The origin of a rectangular set of axes is at some point on the axis of a

screw. If x', i/', 2 ' are the components of velocity of a particle of a body
that is twisting about the screw with the angular velocity w, prove that

the expression x'w, 4- y'<^v 4- 2'w, has the same value for all particles of the

screw and that

4“ y^f^v 4- z'iat

4" Wy* 4“ ^

is the pitch of the screw.
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4 . If at any instant vectors which represent the velocities of the particles

of a rigid body that is moving in any manner are drawn with the same origin,

the termini will all lie in the same plane.

6.

The envelope at any instant of the tangents to the trajectories of all of

the particles of a moving body that lie on a straight line is a hyperbolic

paraboloid.

6. A rigid body is moved from one position to any other. Straight lines

are drawn connecting the initial and terminal position of each particle. If

the mid-points of these lines be regarded as forming a rigid body, this rigid

body will permit an infinitesimal displacement in which each point moves

along its own line. Also, all of the lines that pass through the same point lie

on a cone of the second order. (Caley, Report to the British Association

1862.)

7. Show that the components of the instantaneous rotation along the

axes that are fixed in space are

w* = sin d sin ^ -f- cos

03 y
— —tp' sin B cos ^ sin

ot), = cos B -}-

8. Parameters of Rodrigues. The nine direction cosines ai, a 2 ,
. .

73 were expressed in Sec. 52 as functions of the three Eulerian angles ip, \h,

and d. By making the substitutions

X = T sin i$ cos — <p), V — T cos id sin + ^)»

fx = T sin id sin i{\p — ip), p = —r cos id cos

the nine direction cosines can be expressed very simply in terms of the

four ratios X/r, p/r, vjr and p/r. The result is

= x^ —
*

/U* —
• T^0L2 == 2(Xai -f- vp),

= 2(Xm — vp)^ = — X* + + P*,

T^j] — 2{Xp + pp), r^y2 — 2{pv — Xp),

T^aa = 2(Xv ~ pp),

T^/^a = —2(pv + Xp),

t^78 = — X* — p*
-f- "f P^t

and the relation

r2 = X* -f- P* + -f p*.

If r is eliminated it is seen that the nine direction cosines are expressed

rationally in the ratios of any three of the other letters to the fourth.

For a discussion of these parameters see G. Konig, ‘‘Legons de Cin^mat-
ique/^ pp. 197, 340, 343; Klein and Sommerfeld, ^^tJber die Theorie des

Kreisels,^^ chap. L
9 . In Sec. 85, show that

71 = 72W3 — 730)2,

72 = 73Wi — 7l‘*>3,

7i' ~ 710)2 — 720)1



CHAPTER VTI

INTEGRABLE CASES OF MOTION OF A RIGID BODY
ABOUT A FIXED POINT

I. EULER’S CASE. THE SUM OF THE MOMENTS OF THE APPLIED
FORCES VANISHES

88. The Differential Equations and Their Integrals.—If th(>

sum of the moments of the applied forces is zero,

N = 0,

and therefore Eq. (85.1) for the moment of momentum gives

L' = 0
; ( 1 )

and Euler’s eqtiations become

Ao)/ -f- {C — — 0,1

Ro)/ + (A - C)<o*co. =
0,f

(2)

Cuik {B — A)u)iUj = O.j

From Eq. (1) it follows that

L = 1, (3)

where 1 is a constant vector, that is, constant with respect to

fixed space. Likewise, Eqs. (86.3) and (1),

T' = <0 . L' = 0,

and the kinetic energy also is constant. That is,

2T = “1“ Buj^ -j- = hf (4)

where h is a positive constant. Furthermore, since by Eq. (83.1)

2r = w • L,

it follows that the component of the instantaneous angvdar

velocity, wj, in the fixed direction 1 is constant and equal to

h
= r
192
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If the equation

L • L = = P (5)

is multiplied by h, Eq. (4) is multiplied by P and then subtracted

from Eq. (5), it is found that

(Ah - l^)Aoii^ + (Bh - + (Ch - = 0.

Let T7 , f be a point on the instantaneous axis. Then

Oii 0}j 0)k

i V r'

and for points on the instantaneous axis,

A{Ah - Z2)^2 4. B(Bh - + C(Ch - = 0,

which shows that the instantaneous axis always lies on a cone

of the second order.

Now let a new quantity D be defined by the relation

I = Dco/, and therefore h =

The equation of the cone becomes

A{A - D)e + B(B - DX + C(C - - 0. (6)

Suppose the axes of the moving trihedron, which coincide

with the principal axes of inertia at the fixed point, are so lettered

that the f-, or i-, axis coincides with the longest axis of the

ellipsoid of inertia and the f-, or k-, axis coincides with the shortest

axis. Then in magnitude the moments of inertia A, and C
have the order

A <B <C,

It will be observed from Eq. (6) that if Z>, which has the dimen-

sions of a moment of inertia, is equal to A, the coordinates { and
rj must both be zero and the cone reduces to the {-axis.

If D is equal to By the cone degenerates into the two planes

_ . lAjB - A)
^ -V C(C - B)^’

and if D is equal to C, the cone reduces again to a straight line

which is this time the f-axis. In order that the cone be real, it

is necessary, evidently, that
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A ^ D ^C.

89. The Angular Velocities Are Elliptic Functions of the

Time.—If the first and third of Euler’s set of equations [Eq.

(88.2)] are replaced by the integrals of energy [Eq. (88.4)] and

moment of momentum [Eq. (88.5)], the angular velocities are

determined by the three equations

Bo)/ + (A — C)u)k03i = 0, 1

Ac^i^ + Bc^j^ + J
(1)

The solution of last two of these equations for 03i^ and gives

07
.2 =

WJt
2 ~

B{C ~ B)

A{C - A)
B(B - A)

C(C - A)

(P - co/^),

{g^ - o)/),

where

where

^ DjC - D)
^ B{C - B)

9^
D{D - A)

~ BiB - A)

(2)

Since

P-9^
D(C-A)iB-D) ,

B{C - B){B - A'f‘
’

P is greater than if D lies between A and B, and P is less than

if D lies between B and C. In either case 07/ must be less

than the smaller of the two.

For definiteness, it will be assumed that

A < B < D < Cy

so that

g^>p.

Then

—f < 07y < + /,

and the smallest value of 07^.2 is

B(B - A)
C(C - A)

(9^ -P)
D(D-B)

,

C{C - Bf‘-
(3)

As 07* never vanishes, and therefore never changes sign, it can

be regarded as always positive; but 07, vanishes whenever

w/ == ±f.
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From the first equation of Eqs. (1), namely,

, C - A
== —g

—

and the substitution of the values of w, and cok from h]q. (2), it is

found that

= ±-\/
(C - B){B - 71)

AC ViP - 0>nig^
-

(4 )

If (jik is regarded as being always positive, w,' has always the

same sign as Wi. Consequently to, is increasing, algebraically, as

long as a)» is positive; and decreasing as long as Wi is negative.

It is evident that t is expressed in terms of w/ by Eq. (4) as

an elliptic integral. This integral is reduced to the first normal

form of Legendre by taking

ojy = fs and
(B ^ A){C - D)
[D - A){C - By

where 5 is a new variable. Obviously, is less than one. It

is convenient also to introduce a new independent variable r,

which is related to the time by the equation

r 4
D{C - B)(D - A)

ABC
— to)y

SO that Eq. (4) becomes

r
ds

The inversion of this integral gives

8 = sn r.

and then

Wi - fyj-

w, = /«

B(C - B)

A{C - A)
Vi 8^ = +w/

= +Wi

4

4

D(C - D)
A{C - A)

cn T,

D{C-D) _ ,,,

B{C - B) ’’’

U)h
<'4§(§-kV ~ +“‘\/c(C - A) '
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By adding to Eqs. (2) it is found that

0)^ — COi* + CO/® + cot® =
D(A - D + C) , (B - A)iC - B)

AC -C0| AC
and then, on replacing co, by its value from Kq. (5),

2

c

= CO,®/^

B - DA-C
B

1 + {C

sn® T +
A - D + C

-
»)(t 0]’

which never vanishes since C — D is positive.

The period in r of these functions is

and the period in t is

P

\/(l - - kV)’

4K
DiC - B)(D - A) CO,

cn® r
j,

At the expiration of this time, that is when t = P, the angular

velocities, w*, wy, and oi* retake their initial values. The instan-

taneous axis has completed its journey around the cone and

retaken its initial position in the body, but, in general, is not in

its initial position in fixed space, as will be demonstrated in

Sec. 96.

90. The Angles of Euler as Functions of the Time.—In order

to know the position of the body at any instant it is necessary

to know the values of Euler^s angles at that instant. It has

been found that the moment of momentum of the body with

respect to fixed space is constant. That is, the vector 1 is con-

stant in magnitude and in direction. The orientation of the

fixed X, 2/, z system is so far arbitrary. Let the orientation be

chosen so that the 2:-axis coincides in direction with 1.

The magnitude of the moment of momentum is Z, and its com-
ponents in the i-, j-, and k-directions are Awy, Pcoy, and Cw*.

The cosines of the angles between the 2-axis and the i-, j-, and
k-axes are 71 , 72 ,

and 73 ,
respectively. Hence

Z7 i
= Z sin ^ sin d =

Z72 == Z cos <p sin 6 = Pwy,

Z78 = Z cos d = Cwjb.

( 1 )
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These equations do not contain and their solutions, there-

fore, give directly ip and 6 as functions of oj,, a>/, and wjt, and conse-

quently as functions of <, without further integration. Indeed,

the quotient of the second equation by the first gives

cot <p =
A(i)i

C - A
^

AC - B (2)

while the third equation gives

cos B = Cuik

I 4 D - A
D C

dn T. (3)

For the calculation of Eqs. (85.4) give

o)i == sin 6 sin (p + 6' cos (py

ojj — yj/' sin 6 cos (p — 6' sin (p.

The elimination of B' between these two equations shows that

==
0),- sin ip -f- o)j cos ip

^

sin B ^

and if the first of Eqs. (1) is multiplied by o^i, the second by coy, and

the two equations are then added, there results

oii sin ip + coy cos ip
Acoy" + jBcOy^

I sin B

Consequently

^Acoy^ + -Bcoy^

sin^

and since the sum of the squares of the first two of Eqs. (1) gives

B sin* e = AW + BW,

there results finally

, _ Ao>i^ + _ D(Z)w,* - CW)
^AW + BW BW - CW^
D
C

D{C - DW 1

DW - CW^y (4)

Thus yp' is always positive, and if the extreme values of w** from

Eq. (89.5) are substituted, it is found that
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wj «i

B ^ D ^ A’
or I

B < ^' <

The angle of precession ^ always increases, and the rate of pre-

cession always lies between the two limits just indicated. If A
and B differ but little, the precessional rate is nearly constant.

The angle ^ is determined by a quadrature, which, however,

contains an elliptic function. It will not be attempted here.

Jacobi has shown how to integrate it in Vol. 39 of Crelle's Journal

(1850), and how to determine the nine direction cosines as func-

tions of the time. Since 71, 72, and 73 do not depend upon ^
their values in terms of t can be written down at once. Since

[Eq. (1)]

A(jJi = Z71,

it follow^ that

Bo)j = lyi, Co)k = lyzf and

A oii Ia(C - D) _ )
~ Dwi~ Vz)(C - A)

B o)j jB(C - D) i

C (j)k

yz ~Tr\D 0)1

IC(D-A)^ 1

yjDic -

/ = Dosiy

(5)

91. Particular Values of Z>,—It was observed in Sec. 88 that

if D coincides with C, the cone degenerates into the f-axis. The
instantaneous axis is fixed in the body, and coincides with one

of the principal axes of inertia. Hence

C0» = 0, Q)j = 0, COk = w.

Either one of the integrals in Eqs. (89.1) shows that and
therefore w also, is constant.

If D coincides with A, the cone degenerates with the ^-axis,

and the body again spins with uniform angular speed about a

principal axis; this time the f-axis.

If D is equal to the mean axis of inertia B, the cone opens up
into the two planes

f _ w* _ ^ IA(B - A)

{ 0,,- -ylc{c-By
and the instantaneous axis moves in that one of the two planes in

which it happens to be initially. From Eqs. (89.2) it is seen that
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and that

= 1 .

The elliptic functiona reduce to hyperbolic functions as will

be shown. The definition of t becomes

Consequently,

(C ~ B)(B - A)

s = tanh r =

AC o)i(t — to)*

and then

B{C - B)

A{C - A)
0)1 sech T,

0)1 tanh T,

0)k - 4.

B{B - A)
coj sech T.

IC(C - A)'

The expression for the square of the angular velocity, to*, becomes

“ =c[ 1 + (C -B) tanh^ + sech®

B ' A

As the time increases indefinitely so also does r, and

tanh r — + 1
,

sech r 0 .

Hence

COi —> 0, OJjfc
—> Oj 0)j —> 0)ly 0) —> 0)1.

The instantaneous axis approaches the r;-axis asymptotically

and the ly-axis at the same time approaches the fixed z-axis

asymptotically, for

7 i

A o)i

BZ'/
72 = —)

0)1

Cc^
Bo)/

and, in the limit,

7i = 78 = 0, 72 = 1.
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The rate of precession also has the limiting value as is seen

readily from Eq. (4).

92. The Ellipsoid of Inertia Is a Spheroid.—If B = the

ellipsoid of inertia is a spheroid about the f-axis, and, since

C > Ay the spheroid is oblate; but in what follows it does not

matter whether the spheroid is oblate or prolate. It is seen from

the equations of Sec. 89 that as B A^P remains finite, while

tends toward infinity. Therefore 0, and the elliptic func-

tions degenerate into circular functions; that is,

sn r —> sin r, cn r —> cos r,

and

D{C - A){D - A)
A^C

b)l(t — <o)‘

Consequently

D(C-D) _ 1

'A(C-Ar^^^^'
lD(C - D)

Wi = ^A(C-Af‘ sm r,

— 1

ID(D - A)
Uk-

yj C(C - Af‘- j

( 1 )

Thus (i)k is a constant, as is evident from the third Euler equation

[Eqs. (88.2)]. It is also evident from an inspection of Eqs. (1)

that = 03i^ + + (at? is constant, and, indeed,

D{A - DA- C)
AC -W/. (2)

From the third of Eqs. (90.1) it is found that the Eulerian

angle B, the inclination, is constant, and that

sin 6
^AiC - D)

COS B - 4,Id(c ~ aY
The expression for <p in Eq. (90.2) becomes

cot (p = tan T,

so that

C(D - A)
D{C ~ A)

and <p' = --yj-
D(C - A)(D - A)

A^C (3)
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and finally, as is seen from Eq. (90.4),

and the body precesses uniformly. Thus 0, (p', and are

constants.

It was pointed out in Sec. 85 that w is the vector sum of 6',

4', and ijf'. Since 0' is zero, g> is the diagonal of the parallelogram

constructed on and ijr', Fig. 47. The vector

i(f' coincides in direction with the 2:-axis and is

therefore fixed in space. The vector 4' coincides

in direction with the f-axis which makes the

constant angle B with the 2-axis. As the body
precesses the f-axis describes a right circular cone yf/'

about the 2-axis with the generating angle B.

Since <p' and are constants, to also makes a

constant angle with the 2-axis and therefore to also

describes a right circular cone about the 2-axis.

The angle between the instantaneous axis to and the f-axis also

is constant so that the instan-

taneous axis describes a cone in

the body.

93. The Rolling Cones.—It

is an interesting fact that the

body moves just as though the

cone which to describes in the

body rolled without slipping

upon the cone which to describes

in fixed space. This is made
evident in Fig. 48. Let p be a

point on the instantaneous axis.

Through p pass a plane per-

pendicular to t|r' cutting the axis

at a distance a from the apex; then pass a second plane

through p perpendicular to cutting the axis at a

distance b from the axis. Let the generating angles of the two
cones be a and p respectively. Suppose the body cone rolls on
the fixed cone and that in the interval of time dt the plane through

it' and turns through the angle Then the point of

0
Fig. 47 .
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contact p of the the two circles describes an arc on the circle of the

fixed cone equal to a tan axp' dt, since the radius of the circle is

a tan a. It also describes an arc of the same length ds on the

circle of the body cone; that is

ds = a tan a\p' dt.

It is evident from Fig. 48 that

a sec a — b sec

and from Fig. 47 that

sin a = ip' sin 0,

Hence

tan a = bip' tan

and

ds = bip' tan 0 dt.

Since the radius of the circle on the body cone is b tan /3, the

angle through which the body cone has turne^d around its axis

is <p' dt. The rolling motion therefore gives a displacement

dt plus a displacement dtj and since

dt dt = iti dty

the resulting displacement in the interval of time dt is just the

same as though the angular velocity were w.

Figure 48 does not represent the only possibility, however. It

is easy to imagine cases like Figs. 49 and 50. In Fig. 48 the

rolling, or body, cone lies outside of the fixed cone and <*>, which

lies in the line of contact of the two cones, is between the axes

of the two cones. In Fig. 49 the rolling cone envelopes the fixed

cone but still rolls on the outside of it. The 2:-axis, which is the

direction of tt', lies between to, the instantaneous axis, and the

f-axis, in which lies the vector In Fig. 50 the f-axis lies

between the z-axis and the instantaneous axis and the body cone

rolls on the inside of the fixed cone.

By the terms z-axis and f-axis is meant the positive end of

these axes. With this understanding it is easy to show that,

Fig. 49 corresponds to the case developed in Sec. 92. According

to the conventions there made and m are positive and by
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Eq. (92.3), is negative. These are the conditions which are

satisfied in Fig. 49, as is seen from the parallelogram of angular

velocities in the figure. If it had been assumed that C < A
instead of C > A, ip would have been positive and the cones

would have been as in P"ig. 48. In order to have a case like

Fig. 50 it is necessary to have \p' negative, if and 03k are positive;

or positive if both <^' and are negative.

The difference between positive and p negative for

positive in both cases is brought out in Figs. 51 and 52, cones

being replaced by cylinders.

Let z be the axis of the fixed

cylinder and f the axis of the

rolling cylinder in both figures.

Since is positive in both cases

the f-axis makes a circuit in the

positive direction about the z-

axis. Let 0 be the point of con-

tact at the beginning of a circuit

and let the arc 01 be equal to

the circumference of the fixed

cylinder. At the end of the first

circuit, when f has returned to

its initial position the point 1

is in contact with the fixed cylinder. It is seen in Fig. 51 that

the rolling cylinder has turned through an angle correspond-

ing to the arc 01 about the f-axis in a positive direction, while



204 DYNAMICS OF RIGID BODIES

in Fig. 52, it has turned through the angle corresponding to the

arc 01 in the negative direction.

POINSOrS METHOD^

94. General Theorems.—Consider the ellipsoid of inertia at

the fixed point 0. The instantaneous axis pierces the surface

at a point m which Poinsot called the pole. Let the distance Om

be denoted by p. Without making any assumptions as to the

nature of the forces that are acting, the following theorems are

easily derived.

Theorem /.—The vis viva of the body is

The term vis viva means twice the kinetic energy. By Eq.

(83.4)

2T =

where T is the kinetic energy, / is the moment of inertia of the

body with respect to the instantaneous axis, and w is the angular

velocity. Since the moment of inertia of the body, I, is equal

to 1/p^ [Sec. 20], the theorem follows immediately.

Theorem IL—The plane which is tangent to the ellipsoid of

inertia at the pole m is perpendicular to the vector L that represents

the total momerd of momentum.
The direction cosines of the instantaneous axis are

Wi W/ , 0)k— , —

y

and —

•

CO ca CO

^ Journal de Liouville/^ vol. 16 (1851).
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Therefore the coordinates of the pole m are

CO,- CO,- COt

Xm — P— > ym = P » — P
CO CO CO

( 1 )

The equation of the ellipsoid of inertia is

and therefore the equation of the tangent plane at the pole is

AXm^ “h "h ~

where ry, and f are the running coordinates of the plane.

Hence, by substitution from Eqs. (1), the equation of the tangent

plane becomes

^4c0i^ + BcOjT] + CcOjfcf = -• (2)
p

The direction cosines of the normal to this plane are proportional

to

AoOt, CcOAr,

and so also are the direction cosines of L, for, Eq. (82.6),

L == Aojii -f” BcM)jj -f- Cco/bk.

Hence the tangent plane at m is perpendicular to L.

Let d be the perpendicular distance from the point 0 to the

plane that is tangent at the pole m. Let h be the vis viva and I

the total moment of momentum. Then:

Theorem III.—The perpendicular distance from the point 0 to

the plane tangent at the pole is equal to the square root of the vis viva

divided by the total moment of momentum; or, in formula,

d = VA
I

(3)

By the usual formula of analytic geometry, the perpendicular

distance from the origin to the plane

AciJit + = -
P
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is

^
^ 1 _ \/h

^
p +“(?w

by Eq. (88.5) a-nd Theorem I.

96. Application to Euler’s Case.—The above theorems are

independent of the nature of the forces and are always valid.

If they are applied to Euler's case in which the applied forces

are equivalent to a single force which passes through the fixed

point, and if the notation of Sec. 88 is used, the vis viva is con-

stant, and h = Doi{^. Therefore

“ = Va = VT)^i- (1)
p

Since the moment of the forces that are acting is zero, the

moment of momentum is constant, and the vector L is fixed

both in magnitude, Z, and in direction. On taking,

I == Dwi, (2 )

as in Sec. 88, there follows from Theorem III

thus

«
where a, 6, and c are the principal semiaxes, and d is the perpen-

dicular from the origin to the plane which is tangent to the

ellipsoid of inertia at the pole m. It follows from Eqs. (3) and

(2) that d and oii are constants. Since d is constant and the

tangent plane is perpendicular to a fixed line, L, by Theorem II,

it follows that the tangent plane is fixed in space. Its point of

contact with the ellipsoid of inertia is the pole m through which

the instantaneous axis passes.

Since

CO = \/

h

p. (5)



96] INTEGRABLE CASES OF MOTION OF A RIGID BODY 207

the angular velocity about the instantaneous axis is proportional

to the distance of the pole m from the fixed point 0.

96. The Polhode and the Herpolhode.—The path of the pole

on the ellipsoid of inertia was called the polhode^ by Poinsot,

and the path which the pole describes on the fixed plane was
called the herpolhode

r

The cone which is fixed in the body
[Eq. (88.6)] has the instantaneous axis as a generator and the

polhode as a directrix. The cone which is fixed in space has the

instantaneous axis as a generator and the herpolhode as a

directrix, but as the herpolhode is not, in general, a closed curve,

the cone which is fixed in space is not a closed cone.

In order to obtain the motion it is necessary merely to roll

the first cone upon the second in such a way that the angular

velocity at each instant shall be proportional to p, the distance

Fig. 53.

of the pole from the fixed point. The argument is given in detail

in Sec. 93 for the case in which the cones are right circular cones.

In the general case in which the cones are not right circular the

true cones can be replaced at any instant by the osculating right

circular cones and then the argument of Sec. 93 suffices to show
that the motion is merely the rolling of one cone upon the other.

Suppose a material cone is constructed similar to the cone

which is fixed in the body, terminating at the surface of the

ellipsoid of inertia, so that the edge of the cone is a polhode

(Fig. 53). Let OP = d be the distance of the fixed point 0 from

the fixed plane P. Let the apex of this cone pivot on the point 0
and let the edge of the cone roll on the plane P. If the cone

rolls in such a way that its angular velocity is proportional to

^ Tr6\ot axis, 6d6s path.

* The serpentine path.
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the generator Om with the proper factor of proportionality, then

the cone of the model will move just like the cone which is fixed

in the moving body. On the fixed plane P it will trace out the

herpolhode, since the corresponding arcs of the polhode and

herpolhode are equal.

97. The Polhode in Rectangular Coordinates.—The equation

of the ellipsoid of inertia is

+ + = 1
, ( 1 )

and the equation of the cone described in the body by the instan-

taneous axis is [Eq. (88.6)]

A{A - D)e + B{B - DW + C{C - = 0. (2)

This last equation can be written

A^e + BW + = D{Ae + Brj^ + Cf2);

and for points on the cone which lie also on the surface of the

ellipsoid, that is, for points on the polhode, this becomes, by Eq.

(1 ),

AH^ + = D. (3)

By virtue of the relations in Eq. (95.4) these equations define

the polhodes as the intersections of the ellipsoid

— + — + -

with the family of ellipsoids

1! 4. !?! 4. L' = 1.
(4 )

where a, b, and c are the principal semiaxes of the ellipsoid of

inertia, and d is the perpendicular distance from the center to the

tangent plane. It is evident that d cannot be larger than

the largest of the three principal semiaxes or smaller than the

least. This gives a geometric interpretation to the inequalities

that limited D in Sec. 88. When D — A, d — a and the fixed

plane is tangent to the ellipsoid of inertia at the extremity of the

f-axis.
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If

A < B < C, then a > b > c,

and d has its maximum value. The cone has shrunk down upon
the f-axis. The polhode is reduced to a point, and the herpolhode

also. The instantaneous axis is fixed in the body and fixed also in

space, and the body spins with \inifonn angular speed about it.

Similarly, if

/) = C, then d = r.

If

Fig. 54.

and d has its minimum value. The cone shrinks down upon the

f-axis, which is fixed in the body and in space, and again the body
spins with constant angular speed.

But if D = 5, the cone opens up into the two planes

-4
'A{B - A)

C(C - B)

[Eq. (88.7)]. These two planes, which pass through the jj-axis,

intersect the ellipsoid of inertia in two ellipses that intersect

in the ij-axis on the ellipsoid. These two ellipses, which are

themselves polhodes, separate the polhodes on the surface of the

ellipsoids into two classes; in one class the curves are closed



210 DYNAMICS OF RIGID BODIES

around the f-axis^ and in the other they are closed around the

f-axis. Since the polhodes arc the intersection of the surface

of the ellipsoid with a cone, Eq. (3), whose apex is at the center of

the ellipsoid, and since the cone has two nappes^ there are two

curves on the ellipsoid for each value of d. They are, of course,

symmetrically placed on the ellipsoid. Which one of these two

polhodes belongs to the motion under consideration depends upon

the initial conditions. The pole m can follow but one of them.

In Fig. 54 polhodes of both classes are drawn for the ellipsoid

in which a = 4, 6 = 3, and c = 2, as seen from the point f = 7,

T
7 = 10, f = 5. Ford = 2 the polhodes are merely the two

points where the f-axis pierces the surface. For d = 2.05 the

polhodes are the small curves about the f-axis, the next ones are

for d = a/5 and V?- For d = \/9 = 3 the polhodes are the

ellipses which pass through the ?7-axis. The polhodes around the

^-axis are drawn for d = a/IO, \/12, a/14; and finally, for

d = 4, the polhodes are again points, this time where the f-axis

pierces the surface. For one class of polhodes d lies between

b and c, and for the other class d lies between a and 6.

98. The Herpolhode.—The radius vector of the herpolhode

(see Fig. 53) is

r = a/p^ ““

Since d is constant and p has both a maximum and a minimum,
r also has a minimum and a maximum. The herpolhode, there-

fore, lies between two concentric circles. It is a transcendental

curve in general, but it has been shown by Hess^ that it is always

concave toward the origin and the name herpolhode (snakelike)

given it by Poinsot was not justified, although in Poinsot^s own
diagram it was serpentine.

A few facts with respect to it, however, are fairly obvious. If

d = a, or d = c, the herpolhode reduces to a point, since then the

instantaneous axis is fixed both in the body and in space. If

d = bf the polhode is one of the two ellipses that passes through

the T;-axis [Fig. 54], and the herpolhode is a spiral about the origin

since the limiting value of r is zero. This spiral has infinitely

^ A simple proof of this is given by Ix^cornu, Bull, de la SociSU Mathi-

matique de Francey 34, p. 40 (1906).
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many turns about the origin, but its length is finite since it is

equal to the length of the corresponding arc of the polhode.

If the ellipsoid of inertia is a spheroid, the polhode and the

herpolhode are circles.

99. Stability of the Rotation about the Principal Axes.—The
concept of the polhodes furnishes a ready answer to the question

of stability of the rotation of the body when it is around one of

the principal axes. It was shown in Sec. 60 that if a body is

spinning about a principal axis of inertia it will continue to do so

indefinitely with a uniform angular speed. It is natural to ask

whether an infinitesimal disturbance would or would not result

in a finite change in the state of rotation. If it does not for any

infinitesimal disturbance, the motion is stable; otherwise it is

unstable. The question is similar to that which arises in the

equilibrium of a rigid body, which was discussed at 1, 168. If the

axis of rotation is a principal axis, its state of rotation is a steady

one. The polhode is a point. Suppose the axis of rotation is

slightly displaced. The polhode of the new state of rotation

is one in the neighborhood of the original one, the point polhode.

In the case of the or the f-axis, the polhodes are small closed

curves, and in following these curves the axis of rotation departs

only infinitesimally from its initial position; the motion is there-

fore stable. But if the rj-sixis was the initial axis of rotation, the

polhodes in its neighborhood are all convex toward the axis. A
very small displacement of the axis to one of these polhodes w^ould

result eventually in a large displacement of the axis of rotation

and therefore the rotation about this axis is unstable.

This result can be summed up into the single statement: If a

body is rotating about a principal axis which is one of either maxi-

mum moment of inertia or minimum moment of inertia^ the state of

motion is stable; but if the axis of rotation is the intermediate

principal axis, the state of motion is unstable,

100. The Motion of the Invariable Axis in the Body.—It will

be remembered that the total moment of momentum of the body
L is constant. The axis through the fixed point 0 which is

parallel to L is therefore fixed in space, but as the instantaneous

axis does not coincide with it, this fixed axis which can be called

the invariable axis, moves in the body, and indeed descHbes a cone.
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It coincides in direction with the perpendicular d to the fixed

plane.

Using the notation of Sec. 90, its direction cosines with respect

to the axes which are fixed in the body arc 71 , 72 , 73 . It follows

then from Eqs. (90.1) that

7i^ 72^
,

73^

A ^ B C + Co)k^) == ^

and therefore, by Sec. 94,

+ 6^72^ + 6*2732 = d\ ( 1 )

The coordinates of a point on this line at a distance r from 0 are

f = 7'7i, ^ = ^72, f = rjz.

Multiply Eq. ( 1 ) by r2 and then take r = 1 /d. There results the

equation

+ c2f2 = (2)

which is called the reciprocal ellipsoid (E2), Sec. 27, since its axes

are the reciprocals of the axes of the ellipsoid of inertia (Ei).

The two ellipsoids are not similar, although they have the same
eccentricities. The longest axis of Ei coincides in direction with

the shortest of E^] the shortest axis of Ei coincides in direction

with the longest axis of E^] and the two intermediate axes have
the same direction. In Fig. 55 two reciprocal ellipses are drawn,

the broken line circle being the unit circle. Reciprocal ellipses,

however, are similar.
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The invariable axis pierces the surface of the reciprocal ellipsoid

in the direction of d at a distance 1 /d from 0 , Since d is constant

throughout the motion, the curve traced by the invariable axis

on the reciprocal ellipsoid is given by the two equations

+ hW + ^2^2 = 1,

and

= j,-

The cone described by the axis is obtained multiplying the second

equation by d^, and subtracting from the first. Its equation is

therefore

(a2 - d^)e + - d^W + - d2)r2 = 0.

101 . The Polhodes in Elliptic Coordinates.—The elliptic

coordinates of a point t?, f referred to an ellipsoid whose

semiaxes are a, 6, and c are the three roots gi, ^2, and gs of the

cubic equation which is obtained from the equation of confocal

conicoids,

^2 rj2 ^2

h Tg 1 2 = 1, (1)— q — q -- q

by clearing of fractions (I, 363), namely,

(fc2 ^ ^ + (^2 ^)(^2 ^ ^)^2 + (^2 ^ (^2 ^ _
(a2 - q){b^ - g)(c2 - g) = (g ^ gi)(g - g2)(g - gg) = 0. (2)

The coefficient of g^ is +1 in both members of the identity. If

the terms in g^ are removed, and the other terms are taken to the

left side, there remains an equation of the second degree that has

three roots. It is therefore an identity in g and the coefficient

of each power of g vanishes separately. From the coefficients of

g**, g\ and g^ it is found that

(£0 bVe + cWrj^ + == ^252^2 _
(3 )

(E^) (62 + c2){2 + (c2 + + (a2 + 52)^2 ^
a^b ^ + 6V ^ ^2^2 _ (^q^q^ ^ q^q^ ^ (4)

(S) e + + + + iqi + g 2 + ga). (5)

If the order of magnitudes of the axes is

a > b > c.
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then

o* ^ ^ 6 * ^ 92 ^ c* ^ 93 ;

and

93 = 0

is the original ellipsoid, as is seen from Eq. (3 ). More generally,

919293 = constant

represents an ellipsoid similar to the original;

9i92 + 9293 + 9391 = constant

is another ellipsoid
;
and finally,

9i + 92 + 93 = constant

represents a sphere. The intersection of these surfaces with the

original ellipsoid, E\, is obtained by setting gs = 0 in Eqs. (4 )

and (5), that is,

+ c*)^2 ^ (c2 4. a2)„2 4. („2 4. 52)^2 =
+ b^c‘^ + c^a‘‘ - 9 ,92 , (6)

in which

and

with

QiQt = constant;

e + r,^ + !:^^ a^ + b^ + c^- (9 , + 92), (7 )

9i + 92 = constant.

The equations which define the polhodes on the ellipsoid of

inertia are [Eq. (97 .4 )]

1
'

a*

i!
a*

4- 1 +^
i,2
^

+ — +

L'
c"

£!
c*

= 1
,

d^'

and (8)
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If the first of Eqs. (8) is multiplied by + a^b^) and

the second is multiplied by — and the two are then added,

there results

(62 + C2){2 + (c
2 + a2 ) r72 + (^2 -f ^2)^2

62c2 + c2a2 + a262 (9)

which equation also defines the polhodes on the ellipsoid. A
comparison of Eqs. (6) and (9) shows that the equation of the

polhodes in elliptic coordinates is simply

gm =
d'^

qz = 0.

Equation (7) gives

p2 = q 2 ^ ^2
-f. c2 - (grj + q^).

The parameter of the family of polhodes is, of course, d.

If the equation of the reciprocal ellipsoid is

with

r2 ^ ^
'

' y20^
1

,

a
a

y =
p
c

where I is an arbitrary length (not to be confused with the letter I

which represents the magnitude of the vector L) this ellipsoid also

has its system of elliptic coordinates which can be denoted by

Ph P 2 , Pzf and the order of magnitudes can be written

^ Pi ^ ^ P2 ^ ^ P3.

In this system pa == 0 is the reciprocal ellipsoid itself, and there

are two other equations similar to Eqs. (4) and (5). In this

system it is interesting to notice that it is the second family of

surfaces [corresponding to Eq. (5)] whose intersection with the

reciprocal ellipsoid gives the curves traced by the invariable axis

on the reciprocal ellipsoid (Sec. 100).

A one to one correspondence between the points of the ellipsoid

of inertia and the points of the reciprocal ellipsoid can be set up
by taking

P P
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It is evident, by taking the product of these two expressions,

that if

then

and if h is defined by the relation.

then

7>iP2

Q^2p2y2

The polhodes on the ellipsoid of inertia transform into the

curves that would be polhodes on the reciprocal ellipsoid if the

reciprocal ellipsoid were regarded as an ellipsoid of inertia.

The correspondence between the points of the two surfaces,

generally, is

*
a*qiqi^

’ ^ b*qiqi^
’ ^ c^ql ’

and

is invariant.

n. LAGRANGE’S CASE, THE CENTER OF GRAVITY OF THE BODY
LIES ON THE POLAR AXIS OF THE SPHEROID OF INERTIA

102, The Ellipsoid of Inertia Is a Spheroid.—It was observed

in Sec. 86 that when no restrictions are made there are but two

known integrals of the differential equations of motion of a rigid

body that is spinning about a fixed point under the action of its

own weight. It has been seen that when the fixed point is at

the center of gravity, Euler^s case, the problem can be com-

pletely integrated whatever the shape of the central ellipsoid of

inertia may be. It was shown by Lagrange in the ninth section

of the ^^M4canique Analytique'' that the equations can also

be completely integrated when the central ellipsoid of inertia is a
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spheroid and the fixed point lies anywhere on the axis of revolu-

tion of this central ellipsoid.

Assuming that this condition is satisfied, the ellipsoid of inertia

at the fixed point also is a spheroid, and the center of gravity of

the body lies on its axis of revolution.

103. The Differential Equations.—As before, let the x-, y-,

z-axes with origin at the fixed point 0 be fixed in space with the

^-axis vertical, and let the f-, t;-, f-axes, which have the i-, j-, In-

directions coincide with the principal axes of inertia at the point

0, and be fixed in the body. Of course, any diameter of the

equator of the ellipsoid of inertia at 0 is a principal axis.

The two general integrals are the energy integral [Eq. (86.5)]

+ Co)k^ =c A — 2Mgz, (1)

where z is the height of the center of gravity above the horizontal

plane through the point 0
;
and the moment of momentum with

respect to the z-axis integral [Eq. (85.7)]

Aoiai + + C(j)kyt = Ky (2)

where K is the constant of integration, and 71 , 72 , 7s are the

cosines of the angles between the z-axis and the v, i“-axes

respectively, which, expressed in terms of Euler's angles, (Sec.

52) have the values

7 1 = sin 6 sin 1

72 = sin 6 cos fp, ? (3)

7i = cos B, J

To these can be added Euler's third equation [Eq. (85.3)]

Coik + (-S — A)a;,W; = Nk> (4)

By hypothesis, the center of gravity lies on the f-axis; therefore

Nky which is the moment of the weight with respect to the f-axis,

vanishes. Also, by hypothesis, the f-axis is the axis of revolu-

tion of the spheroid of inertia at O; therefore A and B are equal.

It follows from Eq. (4), then, that

wjfc == constant. (5)

Equations (1) and (2) can now be written

Wt® + wy* = a — a cos By \
sin B{o3i sin (p + w/ cos <p)

^ — bo)k cos B,f
(6)
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where, since

2 = f cos B,

the constants a, 6, a, and /3 have the valutas

h -
a

h

2Mg^

= ^
A'

(7)

The constants a and b depend only on the body its(*lf and the

position of the fixed point. If it is agreed that the positive end

of the f-axis passes through the center of gravity, they are both

positive. The constants a and however, are equivalent to

constants of integration, and therefore are arbitrary. The
angular velocity ojk also is a constant of integration, but since the

motion reduces to that of a compound pendulum for a)k = 0, it

will be assumed in what follows that w* is not zero.

The system of differential equations is made complete by add-

ing to Eqs. (6), which are equivalent to Euler^s equations, Eqs.

(85.4), which are

o)i = xj/' sin 6 sin xp + B' cos <py\

u)j = sin B cos ip — B' sin (^, / (8)

oJk = cos B A- (p\ )

104. Reduction of the Differential Equations.—The elimina-

tion of o)i and CO/ from Eqs. (103.8) by means of Elqs. (103.6)

gives the three equations

sin^ B + B'^ = a — a cos By 1

sin^ B = — bcjk cos / (1)

xp' cos B A" xp' ~ ^kj }

in which the only variables are the angles of Euler, By ip, and

If is eliminated between the first and second of Eqs. (1),

there is obtained

{fi — 6cojfc cos By + sin^ B = sin^ B{a a cos B),

an equation that depends upon B alone. This equation is simpli-

fied somewhat by taking

A == A.
bwk CcOfc

u = cos B, (2)
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It then becomes

w'* = (a — au)(l — u^) — — u)* = a/(w). (3)

The second equation of Eqs. (1) now is

r = (4 )

and the third,

- "•(* - ®
Equation (3) shows that u is an elliptic function of L If this

equation is solved, so that u is a known function of t, Eqs. (4)

and (5) show that (p and ^ are obtained by quadratures.

Fig. 66.

The polynomial /(w) in Eq. (3) is negative for 2^ = — — 1,

and +1, and positive for w = + Since u is the cosine of 6^

and for real motion 0 is real, there are two real roots, and

U2 f
between w = — 1 and w = +1, and a third root, Ui greater

than +1. The character of the graph of f(u) is therefore like

that shown in Fig. 56, and the polynomial /(w) has the form

f{u) = (u - W3)(w - ll2){u - Wi), (6)

with

— 1 < 7/3 < W2 < + 1 < Wl.

Since

m'’ = af{u), and < 1,

it is evident (I, 264) that u oscillates between the values wj and

106. The Constants of Integration Expressed in Terms of the

Three Roots.—The constants of integration are a, Ut, and and
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the three roots of f(u) are wi, u^y and uz. If the polynomials in

Eq. (104.3) and (104.6) are expanded in powers of w, a comparison

of the coefficients shows that

1 _L "
I

U\ U2 + Uz 1
;

a ait o 1U\U 2 + UiUz + UzUi = 2U4 1,
a

a b^iOk^
UiUiUz = -- H —

-

d d
Ui^.

Let/(+l) be — pi and /(— I) be — P2 . Then

/(+ 1 ) = +(1 - w,)(l - M2)(1 - «s) = -p„
/(— I) = — (1 + M,)(l + Wj)(l + Mj) = - P2 ,

where pi = (Ui — 1 )^, and

( 1 )

Pi = —^ (W4 + !)
(2)

are two positive numbers. If Ua is positive, pi > Pi ', and if Ua is

negative ps < pi. By addition and subtraction of Eqs. (2), it is

found that

\{pi — pi) = 1 + (MiMj + UtUt + W8Ui),\

hiPi + Pi) = (“l + “2 + Ms) + M1M2M8; /

and by division that

El = {
~ ~ ^ 1 — M2 1 — Ms

Pi \U4 + 1/ Ml + 1 1 + W2 1 + Ms

From the first of these two equations [Eqs. (4)] there is obtained

.. _Wt + y/pi .. _\/Ti-Vp\
W41 ^ /~~~^ and W42 y— /~~~*

VP2 ~ V Pi V P2 + VPi

These two values of are both positive or both negative, but

in either case the two are mutually reciprocal, that is

W41 • W42 = +1, with > 1.

Thus, if Ui, Uzy and uz are given, there are two values of Ua that

satisfy all of the conditions of the problem.

If, however, uz, Uz, and Ua are given, Ui is determined uniquely;

for, let

Ua — l\* 1 ”
1
” W2 1 “t" ^3

^W4 + 1/ 1 — W2 1 — Uz
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Eq. (4) then shows that

1+5
I - s

and since Ui > + 1
,
it is necessary that 0 < s < 1 .

The three roots wj, W 2 ,
and Uz are restricted by the conditions

— 1 <UZiU2 < + 1
,

and +1 < ui.

For given values of U 2 and Uzy which are the limits of the variable

u, the value of also is restricted. To show this, let

1 — Uz I — Uz

1 + '

1^2 1 + “^3

Then Eq. (4) gives

Ui — 1

Wi + 1
= 7?2 < 1.

+ 1/

1 +
1 - f,’

1 - iv

1 + iv

If f is kept fixed while rj runs over its entire range from +1 to

zero, it is found that, if { < 1
,
both values of Ui lie in the interval

1 + f
^ ^ 1 - r

but if f > 1
,
both values of M4 lie outside of the interval

i±i
f - 1

< u < f - 1

I + 1

From the definition of ? it is readily verified that { ^ 1 according

as Ms + M* ^ 0 .

From the second of Eqs. (1) there is derived

a 2ut
- = (1 + U1U2 + UsMs + MjMi),

or, by the first of Eqs. (3),

_ Pi — Pi

a 4u4
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Since for given values of Wi, W2, and Uz there are two values of

W4, so, also, there are two values of namely,

<0*^ = - W\)'\ if «4 = M41,

and > (6)

+ VPl)^ if «4 = W42.

;

Finally, the first of Eqs. (1) gives

a — a{ui + W2 “1“ W 3 )
— b'^LOk^. (7)

106 . The Value of cjjb as a Function of Ui.—The value of o^a:

likewise is restricted. By Eq. (105 . 1 ),

^ a 1 + {u2 + Uz)U{ + U2UZ .= _ (1)

If W2 and Uz are kept fixed, the value of varies in a definite

manner with Wi, since ua is a function of Ui [Eq. ( 105 .3 )]. If u\

is equal to + 1
,
so also is Ua, and Eq. (1) gives for this value of Ui

= ^2(1 + “*)(1 + Wa). (2 )

By differentiating Eq. ( 1 ) with respect to Ui and then reducing

by means of the formulas of Sec. 105
,
it is found that

do)** r.. I . ^ V^fl - M2^)(1 - Ma^)l
^-25-. [(«= + «.) +

^7j=r^rT J’

the upper sign to be used if 1/4 < 1 and the lower if W4 > 1.

Consider the case in which U2 + Uz > 0. If Ui increases from

+ 1 to 4- 00 along the series for which U4 < 1, the derivative of

o)k^ is everywhere positive. Therefore increases steadily

from the value given in Eq. (2) to + by Eq. (1).

Along the series for w'hich W4 > 1
,
however, the derivative

is negative until the bracket in the right member of Eq. (3 )

vanishes, and this happens for

1 + W2W3
Ui = ^7^— ;

Ui + Uz
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which is greater than +1, if ^^2 + > 0; and cok^ has decreased

from the value given in Eq. (2) to its minimum value, namely,

__
a 1 + U2Uz

“ ¥ Ui
= ~(u, + Ua). (4)

For larger values of Ui the derivative is positive and increases

indefinitely with Ui.

107. Reduction of the Elliptic Integral to a Normal Form.—If

the independent variable i is changed by the substitution

\/a
dl = dri,

(1)

the differential equation [Eq. (104.3)] becomes

(I)’

"

= 4(u — Ui)(u — U2)(u — Us).

Let also a new dependent variable s be defined by the relations

s = u — Wo, (2)

wliere

+ W2 + Us)’,

and further, let

Wi — Wo ~ ^1, W2 — Wo = ^2, Us — Wo = 6s, (3 )

so that

Cl > ^2 > es,

and

+ 62 + ^3 = 0.

The differential equation now becomes

= 4(s - ei)(s - es)(s - es).

This is the normal form of Weierstrass^ and the solution which

^ See Schwarz, “Formeln und Lehrs&tze zum Gebrauche der Elliptischen

Funktionen,’' or Appell and Lacour, “Fonctions Elliptiques et Appli-

cations/’
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is infinite for 7 1
= 0 is

s = u -
“Wo == &Ti;

with

i^O == ± 00, = eiy == 62, == 63. (4 )

Figure 57 shows the parallelogram of half periods. Starting

at the origin and proceeding along the real axis, ^ri decreases

from +00 to ei as ri increases from zero to wi which is one half

of the real period. If ti moves from wi to 0)2 parallel to the

purely imaginary axis, Pti continues to be real and decreases

from ei to €2 . As ri moves parallel to the real axis from C02 to W3,

the purely imaginary half period, is real and decreases from

6* to ez; and finally as ri moves along the purely imaginary axis

from <ji)z to the origin, Pti decreases from 63 to — cx> . Thus Pti is

real along the boundary of the parallelogram of half periods, and,

if Ti traces the boundary in a counterclockwise direction, pri is

always real and decreases steadily from +00 to — 00

.

Along the real axis from 0 to q)i, P'ti (the derivative of Pt\)

is real and negative; along the boundary from wi to 0)2, P'ti

is a pure imaginary, and p^/i > 0; along the boundary from

W2 to ci)3y jp'ri is real and positive, and along the purely imaginary

axis between ws and 0, pWi is a pure imaginary and P^/i < 0.

Let w be the value of ri for which u == +1, and v the value

of Ti for which w = — 1. Then [Eq. (2)]

[pw = 1-1^0, pv = -1 - uo; (5)

and since, by Eqs. (3) and (4),

Po)i - Ui — Uoy Paf2 - U2 — Uo, PcJz = Us — tio,

it is evident that, in tracing the boundary of the parallelogram

of half periods, these points are encountered in the following

order;

Tl = 0, Wi, W, 0)2, 0)8, V, 0,

corresponding to

Ui, +1, U2 , Us, ~1, -00. (6)

Thus w and v lie on the rectangle as indicated in Fig. 57 ; and,

algebraically, have the form

ID = 0)1 + irrii = 0)2 — m2, t) = 0 + ini = 0)3 — iu2 ,
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where m/ and Uj are real positive constants. Furthermore,

since the variable u lies between Uz and Uz, the values of ry that

belong to the problem lie on the axis through the points wa and
0) 2 ;

and therefore

Ti = 0)8 + T,

where r is real. Equation (2) then gives

W = 2^0 + + 0)3),

and for 7 = 0,

2/3 = + Cj.

Hence'

u Uz

and since^

j?(r + W3) — 63 =

— (r + 0)3) = V {ex — €z)(e2 — «8)-(r),
cr 0^3

6, - e* = 2/, - W*,

it is found, using the t^-functions,* that

U — Uz — 4A*\/ (2ii — Uz){Ut ~ Uz) X
r sin f — A* sin sin 5{ + • * •

[1 — 2A cos 2( + 2A^ cos — 2A* cos +
1 Schwarz, p. 21.

* Idem.f p. 27.

* Idem.f p. 62.

(7)
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where

h ~ etoT* and f -
nr

2(t)i

In terms of Legendre's integrals^

^ p dip

‘s/ui — UsJo \/l — sin^ (p

r

I d(p

\/ui — uzjo \/l — ki^ sin^ v?'

with

Since

Ui — Us Ui — Us

where K and Ki are Legendre's complete elliptic integrals of the

first kind for the moduli

jfci = and fcj* = 1 - = —
U\ — Us Ui — Us

respectively, is always real and negative, it follows that A < 1,

except for the case Ui = U2 in which it is equal to 1. The series

used in Eq. (7) are convergent, therefore, for all values of the

argument J, real or complex.

108. The Integration for the Angle of Precession.—On chang-

ing the independent variable from t to ri, Eq. (104.4) becomes

_ 2hu)k U4 — u

\/a 1

or again, by resolving the right member into its elements,

dyp ^ ba)k /W4 ”1“ 1 *^4 — 1\

dr I y/~a + 1 W — ly

» Schwarz, p. 61.
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After multiplying by 2i, (i == this equation takes the

form

2i-^ = + 1 _ Uj — 1\

dri Va + 1 u — 1/ ( 1 )

and since this equation remains unaltered if the signs of U4 ,
w*,

and u are changed, it is sufficient to consider only the case in

which U4 is positive.

Since

du _ ds

dr I dr I

= 9'ri,

and

P{t + 0)z) + Uo U, -h th = + 1
, ipv + th =

it is seen from Eq. (107.1) that

-1,

and

since, Sec. 107,

Likewise

^'w = -
1), if u. > 1,

ip'w =
2bojki / - 1). if Ut < 1,

-^> 0 .

t

2b(jJki

^ ^ + 1)> > Of

(2)

(3 )

since

e^<o.
I

This assumes, of course, that w* is positive. If it is negative,

the signs must be reversed.

Now

w + 1 = (w — Wo) + (1 + + CUj) —
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M - 1 = (m - Uo) — (1 - Mo) = ip{r + wj) - ^W,

consequently Kq. (1) becomes

fa)
dr — jP(r+ W3) ““ jpt;

and

(h) 2t^ =
I

dr P{r+o)^)—^w &ir+cjO!i)—pv

if W4 > 1,

if Ua < 1.

These expressions are in the normal form of Weierstrass for

elliptic integrals of the third kind,^ and integration gives

/ N . 1, a{v + T + o)2i)<r(w + T + ojz)

+!(„))

+ constant,

, 1, <r(p 4- T + toj)<r(M) — r — aij) rfa' . o',
<*> * - a'°^(,-r-».v(i.+. - fcw - 7("’V

+ constant.

If the constants of integration are chosen in such a way that

^ = ^0 for r = 0, these expressions reduce to^

/ N , ,
1 1

OTsCr + v)<Ts(t + w) r(o'' . (t' , A
)

or I (6)

I / 1 1
^3(r + V)<Tz {7 — w) t((t\ .

or' . A
(i.) io8 -

;\7W - 7W).
J

according as W4 > 1 or W4 < 1.

109. Transformation to the Theta Functions.—It was observed

in Sec. 107 that

w wi + imi = C02 — im2y

== 0 + iui == a>8 — in2,

1 Schwarz, p. 95.

*/dem, p. 26.
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where mi, mj, ni, and n2 are real, positive numbers, and

nil + m2 = —
Til -j- 712 = —

Since v and w are complex numbers, the form of ^ — ^0 in

Eqs. (108.6) is complex notwithstanding the fact that ^ ~ ^0 is

real. It is necessary therefore to transform these equations

into others that are real and better suited for computation.

For this purpose take first the terms which depend upon v or

w only, and consider the function

r/ \ 1 1 + r) ra' .

Let the Jacobi H and 0 functions be defined by the equations

t?o(s) = 1 — 2h cos 2s + 2h^ cos 4s — 2h^ cos 6s + • •

j>i(s) = 2A* sin s — 2A* sin 3s + 2h’^ sin 5s + • •
•

,

t>2 (s) = 2A* cos s + 2h^ cos 3s + 2/i’^ cos 5s + • •
•

,

«>3 (s) = 1 + 2/i cos 2s + 2h* cos 4s + 2A* cos 6s + • •

Then for any argument

(3)

(Tk{u) = Ck+ie

provided

6
ut

2coi

fc = 0, 1,2,
3,

1

(4)

and Ck+i is a certain constant which is of no importance here.

In this notation cro(u) is the same as cr(w), and t^4 = ??o.

Now take

f
= TT

2ct>i

then

myTT
and

njT

gs(r + r) ^ + r) >1

<^3(t - r)
'

t>o(f - f/

1 Schwarz, p. 62.
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and

,JL + JL^'(f).
2ct7i 2ct)i

In the left member of this last equation the accent means differ-

entiation with respect to tt, and in the right member differentia-

tion with respect to s. This accounts for the factor ir/(2wi).

From these equations it follows that

f{r) = j- log
+ r)

Mi ~ r)
(5)

For the terms in

rr
,

.

= 2 + or _ TT
,

OJsTT

2
tM2;

and for the terms which depend upon

f ^ or f = ^ -

There are, therefore, four values for the argument f in Eq. (5), and

accordinglyfour different expressions for/(r) when /(r) is expressed

in a form that is real. When the argument u in Eqs. (4) is

increased, or decreased, by a half period, wi, W 2 ,
or ws, the argu-

ment s is increased, or decreased, by the amounts

Pi

Now^

2 ^ 2«,
or Ps

WgTT

2(t>i

± Pi) = <^8(s), ^i(s -b pi) = M^),
± P2)

— 1^ 2 (5), + P2) =
^o(S ± Ps) = t^lis+Ps) =

by means of which Eq. (6) can be reduced when the four values of

f, namely, + pi, —tM 2 + P2,
—iv2 + Psj and ivi + 0, are

substituted in succession in it. There results from these

substitutions

1 These formulas can be derived from the properties of the H and 0 func-

tions of Jacobi. See, for example, Appbll and Lacour, ^^Fonctions

Elliptiques,"' p. 404.
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/(wi + mi) = 1. lof,
2i Mi -

t#*i)

ifit)

-al°8 +

i t>i

i M
(tMi),

I t/a

/(to, - int) = ^ log -

1

- in)
, { ^

Mi
/(0 + .„,)-slog|f^ -I ?(-.).

i

If X + iy = pe*^ is any complex number

where

^ + ^ g2ix

X — iy '

tan X = -*
X

Accordingly, since ± ii?) = t?iki ± i^kiy where dki and t^k 2

are real, is a complex number,

where

and X* is real. Then

+ iy)

^kii ~ iv)

tan Xfc =

=

^k{^ +
— iv)

= ±X*, (6)

the signs to be chosen so that X* is positive. Likewise

= ±iq„ (Y)

where Qk is a real, positive number.

On substituting the complex arguments in the unctions,

Eq. (3), and then separating the real and imaginary parts, it is

found that

tan Xo

tan Xt

tan Xi

tan Xi

2k Binh 2 fi Bin 2t — oinh 4>i ain 4{ + 2X* einh 6yi sin 6t — • • ‘ ''

1 — 2X cosh 2fx cos 2{ + 2X* cosh 4ri cos 4t — 2A* cosh 6ri cos 6( + ‘
’

cosh »> sin t — A* cosh 3y» sin 3€ 4- A* cosh 6vt sin 5( — • • •

sinh cos { — A* sinh 3f» cos 3( + A* sinh Si's cos S| — • • •'

sinh fit sin | 4- A« sinh 3ms sin 3{ + k* sinh 5mi sin 6{ -f
• • •

cosh itt cos t A* cosh 3mi cob 3| + A* cosh S/*t cos 64 -1- • • •*

2A sinh 2mi sin 24 4- 2A* sinh 4/n sin 44 -j- 2A* sinh Smi sin 64 -f • • •

.

1 -I- 2A cosh 2mi cob 24 + 2A* cosh 4^1 cos 44 + 2A* cosh 6mi cos 64 + * *
‘

,
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Also

ih sinh 2 v2 — sinh + 12fe^ sinh 6 v2

1 — 2A cosh 2 v2 + 2h* cosh 4^2 “ cosh 6 v 2 +
cosh vi — 3h^ cosh 3pi + 5/i® cosh 5vi — • • •

sinh vi — sinh 3vi + sinh 5pi — • * •

sinh /ii + 3A^ sinh 3mi + 5/t^ sinh 5/xi + • • •

cosh /ii + cosh 3mi + A® cosh S/xi + • • •

4/t sinh 2/i 2 + 8 /i® sinh 4/^2 + 12/i^ sinh 6m 2 +
1 + 2A cosh 2/12 + 2A^ cosh 4^2 + 2A® cosh 6m 2 + ' *

* j

which are real.

From Eq. (108.6a) it is seen that if Ui > 1
,

^ - lAo = f{v) + f{w).

Equation (108. 6fc) is obtained from Eq. (108.6a) merely by
changing w into — t/;, and, since /(— t/r) = -'f{w)y it is evident

that Eq. (108.66) becomes ^ = f{v) — f{w). Now

f{v) = /(O + ini) = /(cos - in2)

= gif + Xo = gof + Xi,

and ^ (10)

f{w) = /(coi + imi) = /(cos - W2)

= ~gsf + X2 = +g2f ““ Xs,
,

go =

9^1
=

=

gs ==

so that there are four forms of the solution in each case, namely,

Case a: U4 > 1

^ — ^0 = (gi — gs)f + (Xo + X2),

= (^1 + g2)f + (Xo — Xs),

= (go — Qz)i + (Xi + X2),

= (go + g2)f + (Xi — Xs).

Case b: Ui < 1
^ ^

^ — ^0 = (gi + ga)^ + (Xo — X2),

= (gi — ^2)^ + (Xo + Xs),

= (go + ga)^ + (Xi — X2),

= (qo
-

g2)f + (Xi + Xs).J

The choice of form depends upon the positions of the points

V and w. Since

mi + m 2 = ni + ^2 ~ —cost,
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it is evident, on multiplying through by that

Ml + M2 = J'l + Vtl

and therefore, unless

(aiTTl

2it3\

Ml = M2 = log* h,

either mi or m 2 is less than this value, and the choice will naturally

be the smaller one; and similarly for vi and p 2 ‘

It will be observed that for ^ = w/2

Xi = X2 = 2^ Xo = X3 = 0.

Consequently, by setting f = t/2 in Eqs. (10 ), it is found that

~ ^0 = 1 and g2 + ^3 = 1
;

and therefore

Xi = f + Xo, X2 = ^ — Xs.

110. The Precession Has the Same Sign as An interesting

proof that the precession for a complete period has the same sign

as Oik has been given by Hadamard.^ From Eq. (104.3) it is seen

that

dt
du du

y/a{u\ — u){u2 — u){u — Uz) y/af(u)
( 1 )

the positive sign being taken before the radical as u increases

from Uz to Uz] and, by the elimination of dt between Eqs. (104.3)

and (104.4), for the complete half period

_ bojfc r^*U4 — u du
(2)

If U 4 > W 2 the integrand is positive always; therefore the

integral is positive and ^ — ^0 has the same sign as co*. But if

U4 lies between Uz and Uzy the integrand changes sign at u == 2/ 4 ,

^J. Hadamard, Bulletin dee Sciences Math&matiqueSf 2 Series (1895),

Vol. 19, 1, p. 228.
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and it is not immediately evident that the integral is positive.

To see that this is true, consider the integrand / as a function

of the complex variable u. Its Rieman surface consists of two

sheets with poles at +1 and —1, and branch points at Wi, W2 , Ws,

and 00
. The function is made single valued on this surface by

cuts along the real axis : the first cut joins and Ua, and the second

cut joins Wi to Now let two circuits Ci and C 2 be con-

structed as shown in Fig. 58. The first consists of a circle with

large radius about the origin and a narrow lane with a small

circle about uu The second consists of a narrow lane joining

U2 and uz with small circles about these points.

Within the region which is bounded by these two circuits the

integrand I is single valued with poles at —1 and +1. By
Cauchy's theorem the value of the integral taken around the

boundary is equal to the sum of the residues of I at the two poles.

Let these residues be denoted by i2( — 1) and R{+1), Then

fi(-l)
W 4 -f* 1 1 ‘W 4 “b 1

2 V/Fi) ” + wi)(i + w*)(i

and

«(+l) - M« - 1 1

2 Vfi+T)

M4 — 1

2i\/ (wi — 1)(1 — M»)(l — M3)
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Since Ui is less than unity, these residues have opposite signs,

and by Eq. (105.4) they are numerically equal. Hence

7(j(+i) + ie(-i) = 0,

and the value of the integral taken around the entire boundary is

zero. Therefore

(3 )

and, since the integral around the large circle vanishes by itself,

Eq. (3) reduces to

But I is positive for all values of u greater than Ui; therefore the

integral is positive, and the precession has the same sign as cok.

111. The Integration for the Angle of Spin.—On replacing

t by r, Eq. (104.5) becomes

d<p

dr

Va
(1 ~ t) + bu)k /ua + I

A/a\^ + 1
( 1 )

By the same substitutions that were used in Sec. 108, this equa-

tion becomes

dip 4w*i‘

(6) ii'k .
va

^ + “3 ) ~ Pi’’’ + ‘<'3 ) •“
^

P'w ^'v
^

~ p(T + W3)-pW ~ P(r + a>s) - Pv\

(2)

In case (a) u. > 1, and in case (6) M4 < 1.

Since

2»(1 _ l), . ip(i - !,)( .
V a air
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if

4cOjfcCOi

\/air
(1 — b) = go,

a comparison of Eqs. (2) with Eqs. (108.4) shows that

{<P — <A))a = Qoi +(’/' — ^o)6,l

and > (3)

{<p — <po)b = go^ + (^ — May)

where the subscripts a and b are used to indicate that U 4 > I and

Ui < 1 respectively.

Equations (3) are formal only, in the sense that the formulas

are the same, but if the Ui that is greater than unity is the

reciprocal of the Ui that is less than unity, not only are the expres-

sions formally the same but they are numerically the same, if the

U2 and Ub of the one are the same as the U 2 and us of the other.

If Uif U2 j
and Uz are given, there are two values of Ui which

satisfy all of the conditions of the problem, and these two values

of U4 are mutually reciprocal. The elliptic functions defined in

Sec. 106 depend upon Ui, U 2, and Uz but not upon ua. On the

surface it would appear that the two expressions for in

Eqs. (108.2) depend upon W4 ,
and so they do formally. But,

taking the positive values of cok from Eq. (105.6),

~ Vpi if > 1,

V a

and

= \/^ + if Ua < 1.

The corresponding values of ua are [Eq. (105.5)]

uai
\/^ +W2 - Vpi

and Ua2

VVi + Wi
If these values are substituted in Eqs. (108.2), it is seen that the

two expressions for are the same, namely,

P'w = 2i\/pi = 2\/(l - Wi)(l W2)(l - Wa).
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112. Determination of v and w.—There still remains the prob-

lem of determining v and w in terms of Wi, Ui, and Uz. It was

shown in Sec. 105 that

V = mi, = C03 — m 2 ,
and it; = wi + mi, = C02 — m 2 ,

where m, and n, arc real positive constants. Since

^ri = u — uoy

and

Ck = Uk —

it follows that^

so that

— Ck U — Uky

— (ti) = ±Vu - Uk. ( 1 )
(T

If Ti is equal to y, u is equal to — 1. On taking A; *= 3, Eq. (1)

becomes

^(mi) = —(o3z — m2)
= — f\/l + Uz. (2)

O' O'

If Ti is equal to w, u is equal to + 1 . On taking A; = 1 and A; = 2,

it is found that Eq. ( 1 ) becomes

~(a?i + iuii) = — 1
,
and ~(a?2 '- m2 ) = +\/l — U 2.

O' O'

Now**

(3)

—(+mi + wi) = —V (ei — e2)(ei — 63)— (mi),
O' O'!

— ( —mj + W2) = —iV(ci — e2)(e2 — 63)— (m2),
O’ 0’2

— (— tn2 + wj) = — \/(ei — 63) (e2 — C3)—(m2);
O' O'S

1 Schwarz, p. 21.

* Idemy pp. 27, 62.
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and

-(mi) = ^{ei — ez){ei - e3)-^(ii'i),
<T Ul

^(e, - eMe. - e.)

-^(e, — e4)(e! — ej)

Since

^Ar “ tfy ^A;>

and the expansions of the theta functions are given in Eqs. (109 .3 ),

it is found without further difficulty that

^ jUi — Uz){U2 — Uz) ^
2h^\/1 W3

sinh vi — sinh 3 vi + sinh — * *

* _
1 — 2h cosh 2^1 + 2h^ cosh 4 pi — 2h^ cosh 6 pi + •

Vl + Us _
2h^^ (ui — uz){u2 — Us)

sinh P2 — sinh 3^2 + sinh 5 p2 ~ •

1 — 2h cosh 2p2 + cosh 4 p2 — 2h^ cosh Gi'z + *

— 1 ^
^ {ui — U2)(Ui — Uz)

sinh Ml — sinh 3mi + sinh 5mi ~ •

cosh Ml + cosh 3mi + A® cosh 5mi + ’ * *

^

a/I — W2 _
2A1 -y^(ui — 1/2) (^^2 — W3)

sinh M2 — sinh 3m2 ~f sinh 5m2 — • •

1 + 2A cosh 2m 2 + 2A^ cosh 4m2 + 2h^ cosh 6m2 + •

Since A is a known function of wi, W2, and Wg, the left members
of these equations are known. The series in the right members
converge with great rapidity so that there is little difficulty in

solving them for m?' and vj by the method of trial and error, but if

h is small, so that terms of degree higher than the fourth can be

neglected, the third equation can be reduced to a cubic equation

in tanh mu and the others to quartics in sinh M2 or sinh

(4 )

—
; (5)

(6)

(7 )
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As for hy it, too, is readily computed by series.^ Let

then

A = Z + + 15Z» + 150Z'3 + . .
.

. (9)

113. General Properties of the Motion.—A general description

of the motion can be obtained from the properties of the differ-

ential equations without integration; and even though the inte-

gration can be effected, as has just been done, such a study of the

motion is valuable.

Imagine a unit sphere drawn about the fixed point of the spin-

ning body as a center. The f-axis, which is fixed in the body,

pierces the unit sphere in a point, and as the f-axis moves about

the z-axis, which is fixed in space, this point describes a curve C
on the sphere. The principal point of the discussion that follows

is to exhibit the character of this curve.

The differential equations referred to are given in Eqs. (104.3)

and (104,4), namely,

w'* = (a — au){l — u^) — b^o)k^(ui — uY = af{u)\
= a(ui — u){u 2 — u){u — wa), /

and

where

U = cos dj

and

Ui ^ +1 ^ ^t2 ^ w ^ ws ^ —1.

The extreme values of u are u% and Uz, corresponding to the

extreme angles 62 and 6z. Let two cones be constructed with the

apex of each at the fixed point with generating angles 62 and 0%

respectively. These two cones intersect the sphere in two circles

C 2 and C*. Since uz is less than W2 ,
the angle Bz is greater than the

angle 62 - Therefore the circle C2 lies above the circle Cs, and the

Schwarz, p. 61 .
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curve C lies on the sphere between these two circles, touching

first one and then the other. In case the two circles C2 and Cs

coincide, the curve C also is a circle, and

U = U2 = Uz,

The f-axis in this case makes a constant angle with the 0-axis;

the rate of precession, is a constant; and Eq. (104.5) shows

that the rate of spin, likewise is constant.

If ui 9^ uzy let the point where the f-axis pierces the unit sphere

be represented by the arc vector = 6 and the angle
,
which

is the longitude, X, of the pole of the {77-plane. The longitude

z

of the pole is 90° greater than the longitude of the node (the line of

intersection of the {77-plane with the xy-plane), and since the

longitude of the node is it follows that

and

Since

u' = Vaf{u),

X' ba>k
Ut — u
1 -

and
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there follows, by the elimination of t,

dx = du,
(1 - U*)Vo/(w)

( 1 )

which is the differential equation of the locus of f ,
or the curve C.

Let 7 be the angle which the curve C makes with the arc vector

(Fig. 59). It is seen from the figure that

tan 7 =
dS

sin 6,

or

tan 7 = — (1 —
du

Therefore, from Eq. (1),

tan 7 ==

\/a{u — Ui)(u — 'W2)(w — Ui)
(2)

and it is evident that tan y is infinite whenever u is equal to

Uz or Uz, Therefore the curve C is tangent to the circle Cz or Cz

whenever u has one of its limiting values. This is certainly true

unless the numerator of the right member of Eq. (2) vanishes

at the same time that the denominator does
;
that is, Ui is equal to

either uz or Uz. In this event, tan y vanishes instead of becoming

infinite, for the numerator vanishes in the order one, while the

denominator vanishes in the order one half. Thus the curve C
has a cusp on the circle for which this happens.

If Ui does not lie in the interval between uz and W2, X' never

vanishes and never becomes infinite. It therefore never changes

sign, and the f-axis moves around the z-a,xis always in the same

direction. The curve is shown in Fig. 60 for Oz = 30° and

^3 = 70°, for which Uz = .8660 and Uz = .3420. The values of

Ui and Ui are Ui = .91 and Ui = 1.135. The precession in the

curve C is 266.°15 for the complete period.

If Ui lies between Uz and uz, d\/du vanishes and changes sign

at the point u = Ui, It has therefore one sign on the upper

circle, and the opposite sign on the lower circle. The curve C,

which is still tangent to Cz and Cs, describes loops, as is shown in

Fig. 61. In this figure dz = 30° and ^3 = 70°, as before; but

Ui = 2.096 and W4 == *80. The precession in the curve C is 99.°04.
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Finally, if the curve C has a cusp on the circle C2 ,
as

is shown in Fig. 62. In this figure ^2 = 30°, ^3 = 70°, = 1.3432,

1/4 = W 2 = .8660, and the precession in the curve C is 188. °37.

In these three diagrams t/2 = .8660 and Uz = .3420 have been

kept fixed. Therefore, Sec. 105, U\ is limited to the range

.684 < i/4 < 1.462,

and i/4 cannot equal i/3. Indeed, i/4 can never equal i/s, and there

can never be a cusp on the lower circle. In order to show that

this is true, retake Eq. (105.4),

(

1 ~ iZ/V _ i/i — 1 1 i/2 1 — i/3

1 + i/4y i/j + 1 1 + i/2 1 + i/3
(3 )
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and set Ua = Us. A factor (1 — uz)/{\ + uz) can then be

removed, leaving

1—^3 ^
— 1 1 -- U 2

1 + ^3 Wi + 1 1 + U2

But this is impossible, for, since Uz < W 2 ,
necessarily

i . 1 — ^2

1 -j- ^3 1 + W2

which contradicts Eq. (4), since

0 < < + 1 .+ 1

Therefore Ua cannot equal Wa, and there cannot be a cusp on the

lower circle.

114. The Common Top.—Aside from element of friction, this

theory applies, of course, to the common top when the point of

the top is kept fixed, but not when the point slides as it will when
spinning on a plate of glass. Suppose, by way of illustration

that a rapidly spinning top is released gently so that its axis,

initially at rest, makes an angle 6^ with the vertical. At the

initial instant, is the rate of spin and coi and a?, are zero. If

Wo = cos ^0 ,
Eqs. (103.6) give

a — aiiQy f— = 2/4 = wq
Oct)k

and these values, substituted in Eq. (104.3) give

u'^ = a(wo — w)(l — u^) — b^ook^{uo — uY
= (wo — w)[a(l — u^) —• h^o)Y{uQ — w)].

Thus Uo is one of the roots of /(w); the other w,, that marks the

limit of the variation of w, is a root of the bracket, that is

a(l — W;^) — b'^u)Y{uQ — Uj) == 0;

whence

Wo Wy
( 1 )
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Since w,* is less than unity, the right member of this expression is

positive, and Uj is less than Uq. Hence

Wo ~ ^2 and w ,* *“ W3,

and since Ua also is equal to W2, the case is one in which there is a

cusp on the upper circle; also, the faster the spin, the smaller is the

variation in w.

The expression for

(2)

shows that as the top falls it begins to precess, and the precession

is always positive, or zero, if w* is positive.

If 03k is large [Eq. (1)]

~

shows that U2 differs but little from Ws, so that the two circles

C2 and C3 are very nearly together. The precession is slow; for,

in view of the fact that

W2 — W < W2 — W8

a(l ~ uz^)

b^o}k^
^

Eq. (2) gives

The fraction

<
a(l — W3^)

6cOA:(1 — U^)

1 — W3*

1 - w2

differs but little from unity, and therefore approximately

Hence the faster the spin the slower the precession, and conversely.

As friction and air resistance dimmish the rate of spin, o)h

decreases and the distance between the circles C2 and Cz increases.

There is more vertical motion and precession becomes faster.
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Finally the angle 6 becomes so large that the top touches the

ground and begins to roll.

The rate of spin of the top is given by the equation

ip' = OOk — u\f/'.

On the upper circle = 0, and <p' = coj^, which is the maximum
value. On the lower circle has its maximum value, and

therefore its minimum value. The top spins fastest when
most nearly vertical.

115. The Sleeping Top.—Suppose the upper circle C 2 shrinks

to a point on the f-axis; then U2 == 1, and

u' = ±\/a(l — u)(ui — u)(u — uz), (1)

Equation (105.4) shows that both values of ua also are equal to

+ 1, and Eq. (105.1) that

~ ^i)(l + ^3)- (2)

If 1^3 == — 1, is zero, and the body becomes a compound
pendulum in which the amplitude of the oscillation is tt, and there-

fore an infinite time is required for a single oscillation; or, it

hangs from the point of suspension in a state of rest (stable

equilibrium) in which u = — 1 ;
or it stands upright on the fixed

point in a state of rest (unstable equilibrium) in which m = +1.

If Ub is different from -- 1 and fixed in value, the problem con-

tains the single parameter Ui, The equation of precession

becomes

and

r b(j)k

1 — u

1 —
bcok

1 + u

<p' = 0)k
--

(3)

(4)

It is evident from Eq. (2) that increases with wi, and that

its smallest value is given by Ui = 1. For this value Eq. (1)

becomes

U' = ±V^(1 — W)\/U — Uzj

the general solution of which is

u ~ = (1 — Uz) tanh^ i\/l ~ — ^0). (5)
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The top requires an infinite time to rise from C3 to the vertical

position for every < 1 . But if Wi > 1, the three roots of

Eq. (1) are distinct, and the f-axis oscillates between the circle

Cs and the pole, but the time required is finite. Furthermore,

the f-axis does not approach the pole with a zero velocity; for,

although u' [Eq. ( 1 )] vanishes for t/ = 1
,

, _ u' _ ja(ui ~ l){u - Us)

i+u

does not vanish. When the angle 6 passes through zero the

ascending node changes to the descending node, and if ^ desig-

nates always the ascending node, it is necessary to suppose that

^ jumps ±180°, and 6 is then always positive. But if ^ always
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designates the same node, irrespective of its ascending or descend-

ing character, d oscillates from +Bz to —^3 and back again, and

there is no discontinuity.

In Figs. 63 and 64 the projections of the curves C upon the

plane of the equator are shown for 02 == 0 and 03 = 30"*. In

Fig. 63 the value of ui is 2 and in Fig. 63 the value of is 4.

In both cases = 1, Eqs. (105.4).

Finally if Uz also is equal to +1, the oscillations cease and the

top remains stationary in the vertical. It is said to *
‘sleep.’'

Equations (85.4) show that = w, = 0, and Eq. (2) then shows

that

CO = OJA = ^\/a(l + Ui).

The motion is evidently stable. The angles (p and ^ cease to

have any significance and co is the rate of spin.

116. The Steady State of Motion.—It has been noticed that

if the circles C2 and C3 approach coincidence, u approaches a

constant value, and so also do and p] the top spins and

processes in a steady state of motion and the axis of the top

preserves a constant angle with the vertical. It will be of interest

to examine the limiting values of these functions as U 2 tends

toward Uz.

From the definition of I in Eq. (112.8) it will be observed that

I and therefore h also vanishes if = Uz. Equation (107.7)

gives at once

u =

since — Uz r, and sin f is finite. Equations (109.8)

show that Xo and X3 also vanish, so that Eqs. (108.9) become

(a) 'I'
- io = {q I + - UiT,

(b) i = {qi - qi)y/ui — U3T,

provided qi and ^2 remain finite.

Equation (112.6) reduces to

tanh fjLi =

and Eq. (112.4) gives

( 1 )
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or, on setting,

1 ^Ui — Uz — ^Ui — Uz

2 — Us + \/wi — W2

. , Uz 4(W2 — Ui)^Ui — Ui
Sinn vx = lim—-p=

2vl + waLv^i — ws ” V

2\/l + M3

from which it follows that at the limit

^Ux — Uz

/l + «s

_ lui + 1

\Ui — Us

From Eqs. (109.9) and Eqs. (1) and (2), it is found that the

limiting values of qi and qs are

_ lu, + 1

\ui - Us’
j

ui — 1

lui — Us

Hence the expressions for the precession reduce to

(a) 4' ~ 'f'o
= [a/

M

l + 1 + \/wi — i]r

= ^iVui + 1 + Vmi - 1](

(b) ^ — >/'o
— [a/Mi + 1 — -y/ui — 1]t

= ^[VMl + 1 i, - 1](« - <o);j

which agree with the results obtained directly from Eq. (104.4).

Turning now to the angle of spin [Eq. (110.3)], it is found that

gof = to*(l - b)it - to)',

and, if the positive values of w* are taken from Eq. (106.6),

W M - i) X

[(1 + Us)VMl + 1 - (1 - Us)VMl - l](f - to),

W - i) X

[(1 + us)y/ui + 1 + (1 — Ms)\/wi — 1](< - fo)-
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Hence

the upper signs to be used in case 6, W4 < 1, and the lower signs

to be used in case a, H4 > L
The constants a and h depend only upon the body and the

position of the fixed point. It will be observed that in the case

of steady motion the precession depends only upon a and the

root Ui [Eqs. (3)]. The constant 6 and the root Uz do not appear;

but all four of these quantities appear in the rate of spin fEq.(5)].

117. Jacobi’s Theorem on Relative Motion.—At the end of

the second volume of Jacobi’s collected works there are three

previously unpublished Fragments” in which Jacobi develops

certain phases of Lagrange’s case of a spinning body. In the

second of these Fragments,” jB, there is stated without proof

the following very remarkable theorem:

Jacobies Theorem.—The rotation of any heavy body of revolution

about any point of its axis can be replaced by the relative motion

of two non-accelerated bodies (Euler^s case) which are turning about

the same fixed point and which in their rotations have the same

invariable plane and the same mean oscillatory motion.

According to the editor of these Fragments,” E. Lottner, it

would seem that just previous to his death Jacobi had in mind
a complete memoir on Lagrange’s case, but his studies were

never completed. Nevertheless there was sufficient material in

these Fragments” to enable Lottner to construct a proof, which

will be found in Vol. II, p. 510, of Jacobi’s Collected Works;

published in 1882. Jacobi’s proof probably depended upon the

properties of the elliptic functions.

In Vol. C of the Comptes RenduSy Halphan restated the theo-

rem, remarking that Jacobi’s statement was defective. In the

Journal de Mathematiques (1885) the theorem is again restated

by Darboux, as follows: Consider a heavy body (P) of revolution

fixed at the point 0, At every instant a system C with axes Oxi,

Oyij Ozi moving about the point 0 can be determined in such a way
that both the absolute motion of C and its motion relative to P shall
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be identical with the motion of a solid body, fixed at the point 0
,

which is not acted upon by any applied force. In the first of these

motions the invariable plane is a horizontal plane; and in the second

it is the plane perpendicular to the axis of the body.

Darboux continues,

However, it is necessary to understand that in the two motions of C
the moments of inertia are different, and that they do not necessarily

satisfy the inequalities which characterize the moments of inertia of a

real body. They are motions which satisfy" the equations of Euler

where the constants B, and C can be regarded as taking any values

whatever. On recalling the geometric representation of Poinsot it can

be said that these motions would be reproduced not by making an

ellipsoid of inertia roll on a plane, but any ellipsoid whatever or even

any central surface of the second order.

The reader who is interested in pursuing the matter farther

is referred to a volume entitled Resume de la theorie du mouvement

d^un corps solide autour d^un point fixe^^ (1887) by A. de Saint-

Germain and a note by Greenhill at the end of VAnnuaire des

Mathematiciens (1902).

III. THE CASE OF MME. KOWALESKI

118. The Differential Equations.—If, aside from the con-

straint, the only force acting upon the body is its weight, the

moment of all of the forces with respect to the fixed point 0 is

i j k
N = MG X g = +Mg yi 72 73 ,

I V f

where |, rj, f are the coordinates of the center of gravity, and

7i, 72, 73 are the direction cosines of the f-, 77-, f-axes with respect

to the fixed 2-axis. Hence Euler's equations [Eq. (85.3)] become

Awf + {C — B)o)jWk = Mg{y 2^ — 73“),

1

Ho)/ + (A - = Mgiysi -
7if),V (1)

Cm' + {B — A)o)i00i = Mg{yifj — 72^).]

Since the center of gravity is fixed in the body, fj, f are

constants, and the only variables that occur in these equations,

aside from the angular velocities co„ a?/, m, are the direction

cosines 71, 72, and 73.
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Consider a fixed point on the fixed 2:-axis at a unit distance

from the fixed point 0. Relative to the f-, tj-, f-axes that are

fixed in the body its coordinates are 71, 72, and 73. Its absolute

velocity, which is zero, is the sum of its relative velocity plus

the velocity of following (Sec. 80). Hence if p is its position

vector

p' + X 9 = 0,

or

i j k
p' = 7i 72 73 ;

0)i CO/c

and since

p = 7ii + 72j + 73k,

it follows readily that

7/ = y20>k — yzcojy

72' = 73C0,- — yic*)k,

yz = 7i^j — 72^1.

(2 )

Equations (1) and (2) form a complete set of differential

equations for the variables w*, w,, o)kl 7i, 72, and 73: but they

are not sufficient to define the motion, since 71, 72, and 73 do not

depend upon the angle of precession It is necessary to add the

equation of precession, Eq. (85.5)

sin d\l/' = Wi sin ^ + w/ cos (p. (3)

It is evident at once that Eqs. (2) admit the integral

7i^ + 72^ + 73^ = 1. (4)

which must be satisfied since 71, 72, and 73 are the direction

cosines of a line.

Equations (1) admit two integrals that were derived in Sec. 86,

namely the energy integral

Au)i‘^ + + Cook^ = — 2Mgz + constant, (5)

and the integral of angular momentum

Ayi(^i + By^c^i + Cyzo^k = constant. (6)

Thus three of the six integrals for the system of Eqs. (1) and (2)

are known for every case.
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119. The Existence of a Fourth Integral.—It was discovered

by Mme. Kowaleski that a fourth integral can be found if the

conditions

A = B = 2(7, and ? = 0

are satisfied. Assuming these conditions, the ^-axis can be

directed so that it passes through the center of gravity and

therefore f\ also is equal to zero. If in addition, the units are

chosen so that

Mg^ ^ .

C

the differential equations [Eq. (118.1)] become

2a)/ = +c*>/wjfc,

2a)y' = — WjbOJt + 73,

0 — 72,

7i' = 72WJt — 730),-,

72
' = 73Wi — 7itOA,

73
' = 7l^^; — 72Wi,

( 1 )

in which the coefficients are purely numerical; and the integrals

take the form

2a)/ + 2a)/ + a)jb^ = Ci — 27 ],!

2710)4 + 2720),* + 730)* = C 2, > (2)

7/ + 72 ^ + 73^ = 1. j

If the second equation in the first column of Eqs. (1) is multiplied

by i = 'y/— 1 and added to the first, and the same thing is done

in the second column, there results

2(a)i + iWjY = — fa)*(a)» + icoj) + ijs,

(71 + n2)' = — fcojfc(7i + iy^) + iysicoi + zo),).

If the first of Eqs. (3) is multiplied by (o)* + io;,) and the second

is subtracted from it, 73 is eliminated, and there results

^[(w< + iw,)* - (ri + 172)] — + iu),)* — (71 + iji)],

or again,

^ log [(w< + io),Y — (71 + iyi)\ = -uok.

Likewise, by changing i into — i,

^ log [(w,- — —
(Vi — 172)]

=
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therefore, by addition,

~ log [(coi + - (71 + t72)][(«< - -
(71 iyt)] - 0.

By integration, it is seen that

[(wi + 10)jY — (71 + i72)][(cot — io)jy — (yi — 172)]
= Cz,

or, in a real form,

(o)i^ — 0)j^ — 7i)2 + (2o)iO}j — yzY = Cz,

which is a new algebraic integral.

In Mme. Kowaleski^s memoir it is shown that a>„ o)j, w*; 71 , 72 ,

78 can be expressed in terms of two auxiliary functions Si and 82

that are hyperclliptic functions of the time, but the demonstra-

tion is too long for insertion here. Her memoir will be found in

Vol. 12 of Acta Mathematica (1888). In Vol. 17 of the same
journal (1893), Fritz Hotter in dealing with the same problem

has effected noteworthy simplifications, but the problem is still

very complicated. A discussion of the problem by G. Kolossoff

will be found in Vol. 56 of Mathematische Annalen (1903).

Kolossoff reduces the problem to two differential equations, each

of the second order, which can be regarded as the equations of

motion of a particle which moves under the action of two forces

which are directed toward two fixed points in the plane. These

equations are integrated by the method of Hamilton-Jacobi.

A list of references to the literature of Mme. Kowaleski's

problem is given by Whittaker.^

Problems

1. If the left members of Eqs. (4), (5), (6), and (7) in Sec. 112 are

denoted by a<, as, ae, and ar respectively, show that, if — 1^2 = — i log h,

04 = a. = 1;

and if Ml = = - i log h,

_ 1 - Al - fi* + A* + AV _ aV _ aV -I-
, . .

®*““’“i+ai+ai+a»+av+av + aVh- . .

2. If the left number of Eq. (112.6) is denoted by a and if

X
1 + A*’

t = tanh fii,

* ** Analytical Dynamics,'' 3d ed., p. 166.
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the solution of the cubic

- a(l - x)t^ - (1 - + a = 0

gives the value of tanh m correctly up to terms of degree 6 in h.

3.

If

• 1 J L ^(?/i — Uz)(7l2 ~ Ui)
s = sinh VI and b ~ »

2/iVl + U3

the quartic equation

166/iV + 4 /i*s3 - 46/i(l - W)s^ - (1 - ^

6h^)s -f h(l - 2/i + 2h^) - 0

gives the correct value of sinh vi up to terms of degree 5 in h. Show that

the solution of this equation as a power series in h is

5 = 6(1 “f* 8ih + 4“ Sih^ -f~ s^h* +•••)>
where

«, = -2 - 462,

52 - + 3 + 2062 + 326*,

5, = -6 - 7662 _ 2726* - 3206%

54 - +11 4- 25662 + 1,5686* + 3,9046* + 3,5846*.

4. In Fig. 65 0 is the center of a circle of unit radius. The arc pa is

equal to 62 and the arcs pc and pc\ are each equal to 62 , Draw the chord ca

and the secant c\a intersecting the line Op in the points w and wi. Let ua

be a point on the line Op, extended if necessary, such that the length Oua is

equal to the number Ua, Sec. 105. Prove that for ^ < 1 the point ua lies in

the interval wwi.

How is this construction modified for the case ^ > 1? (Bartky.)

5. Given wi, uty and wa, show that the two values of Ua are given by the

following geometrical construction (Fig. 66) : With 0 as the center of a unit

circle, draw 0/ equal to uu then the two tangents /6 and/61, and the two arcs

pa = 02, pc == 0j. The chord ac intersects the line Op at ic, just as in Fig. 66.
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Take the arc ye - 90®, and let g be the point where the chord through e and

XV cuts the circle again. The two values of are the points of intersection

of the chords bg and b\g with the line Of.

This construction will serve for the determination of any one of the four

quantities wi, ^ 2 ,
if the other three are given. (Bartky.)

6. If the fixed point is at the centt^r of gravity, show that the cone

5 L . j 1 = 0
„2 _ ^ 52 _ ^2 ^

which is fixed in the body, rolls without slipping upon a plane through O
parallel to the fixed plane. (Poinsot, p. 305.)

7. A uniform straight rod of length a is constrained to move on a right

circular cone the generating angle of which is a, pivoting at the apex of the

cone. If the axis of the cone makes an angle with the vertical show that

the angular motion of the rod around the axis of the cone is the same as that

of a simple pendulum of length la sin a/sin

8 . The coordinates of the extremity of the vector to with respect to the

axes fixed in the body are cot, toy, and m. Since, in Lagrange's case, co* is

constant, the terminus of a lies in a plane which is perpendicular to the ^-axis

and fixed in the body, and to traces a curve in this plane, and a cone in the

body. If p and u are the polar coordinates of this curve, show that

p2 = — aUf

and

- Tj^kib — 2)p
2 + ^-640* (of — axu).

9. If Wx, and Wz are the coordinates of the terminus of to in fixed

space, that is, relative to the set of fixed axes x, y, z, show that

wx == sin d sin \p
6' cos Wj, = —<p' sin 0 cos \p -j- 6' sin

Cos 6 *p'

f

and then

(1 — b)cjk(<Ajx^ -h -f <*,,2) 4- aofx ~ (1 — b) (a -i~ <^k^) -f

where a, 5, and are the constants defined in Eq. (103.7). This equation

shows that in fixed space the terminus of co traces a curve that lies on a

sphere whose center lies on the ^-axis below the origin. Since there is no

motion of the instantaneous axis, the plane curve that is fixed in the body
rolls without slipping on the spherical curve that is fixed in fixed space.

In the particular case in which the ellipsoid of inertia is a sphere, 6 = 1
,

and the above sphere becomes the plane = U4 .

10.

If a body is acted upon by no forces other than a couple whose axis is

always parallel and proportional to the angular momentum, Euler's equations

are

AitJi' -f" (C — B)wfO)k = XAo),-,

Bui/ (A ~~ C)<j)ki>ti ~ XBcoy,

Cu}k “f* (B — A)ufnt>f = XCw*.
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The transformation

cj» = <aj =* CD* == €'~'^*o)kt Xr « 1 —

removes the right numbers of these equations without otherwise altering

their form. (Greenhill, ** Elliptic Functions," p. 106.)

11

.

A sphere which is homogeneous in concentric layera is turning about

its center, which is fixed, under the action of no forces. A brake is applied

to the surface at a point that is constant in fixed space. What are the

equations of motion after the brake is applied?

Ana. If the 2-axis in fixed space is chosen so as to pass through the brake,

the equations of motion are

“ m[(Ti* — l)wi -h 7iT2Cuy + TiTawjbl,

~ ^[71720),- -f (72
^ — l)coy + 7273C*>ifc],

= m[7i 73C*^» -f- 7273W/ + (73
® — l)c«>Jfcl,

where /x is a positive constant, and

7i' = 72£0jfc — yzojjf = 73«» 7i£^i:, li = 7iwy — 72Wi.

These equations are interesting because they are linear in the w’s. There

are two integrals, namely,

7i* + 72* + 7»* = 1,

and

7lWl -f" 72^2 -|- 7 sC»> 3 = c;

and since

\w -f -I- a,**)' = -m(7i'* -f 72'^ + 73 '^),

the kinetic energy steadily decreases.

12 . Show that the problem of a rigid body which is turning about a fixed

point admits the integrals

Awi* -h Bco,* + = 2 /1
,

(Aco. + 4- (Ba,y» + hY + (Ca,y + cY = k\

if the equations of Euler are

Aw/ -f- (C — B)u>i(ak
~

&wjfc — Cwy,

5wy' + (A — C)(aicMi = cw» — awifc,

Cw*' {B — A)wiWy = awy — hwi,

where a, 6, and c are constants. Then show that the integration can be

reduced to quadratures. (Volterra, 1895.)

13. In the problem of Mme. Kowaleski, show that by the use of the

fourth integral the problem can be reduced to the form

d}x
__ ^ d^y

__ dv

dr^ dx dr^ dy

when V is a function of x and y only. The problem is thus reduced to the

motion of a single particle in a certain field of force.

14

.

Show that the equations of motion of a body turning about a fixed

point can be reduced to quadratures if A — B = 4C provided the momen-
tum of the body about the vertical is zero. [Kolossoff, Rend, del Circolo

Matematico di Palermo (1902).]



CHAPTER VIII

ROLLING MOTION

120. Historical.—The first general discussion of the motion of

a rigid body that is so constrained as to be always touching a

fixed plane was made by Poisson in 1838, and he assumed that the

contact was smooth. A few years later, in volumes 5 and 8 of

Crelle’s Journal, Cournot introduced the element of friction. A
particular case, that of a sphere, was discussed by Coriolis in

1 835. In 1848 and 1852 Puiseux applied the equations of Poisson

to the motion of a rigid body of revolution in contact, without

friction, with a plane. In the Quarterly Journal of Mathe-

matics for 1861 Slesser gave the equations of motion of a rigid

body that is constrained to roll and pivot without sliding on a

horizontal plane. Slesser’s method is followed by Routh in his

discussion of the rolling and pivoting of a sphere on any surface.

Ferrers took up the case of a rolling hoop in the Quarterly Journal

of Mathematics in 1872. Other writers on this subject have been

Shouten (Amsterdam, 1889) Newmann, Mathematische Annalen,

1886, and Kortweg and Appell, Rendiconti del Circolo Matemaiico

di Palermo, 1899.

121. The Rolling of a Sphere on a Given Surface.—As a first

example of rolling motion consider Routh’s case of a sphere that

rolls and pivots on a given surface, but does not slide. Let the

surface referred to a set of fixed axes be /o(z, y, z) =0; let the

radius of the sphere be a and its mass be m. If a normal at each

point of /o is drawn with the length a, the termini of these normals

will form a new surface /(x, y, z) = 0, and the center of the rolling

sphere will always lie in the surface /.

The motion will be referred to a moving trihedron, the origin of

which is at the center of the sphere 0. It is assumed that the

sphere is homogeneous in concentric layers, or, perhaps more

generally, the center of gravity is at 0 and the central ellipsoid of

inertia is a sphere. The f-axis of the moving trihedron is the

normal to / at 0 which coincides with the normal to /o at the

257



258 DYNAMICS OF RIGID BODIES

point of contact. The and i?-axes lie in the tangent plane of

at 0, Fig. 67.

The trihedron so defined moves, not only with respect to a

fixed trihedron x, z of space, but also with respect to a trihe-

dron that is fixed in the body of the sphere. The f-, i?-, f-axes

will be regarded as the i«, j-, k-directions of a vector system as

usual. The angular velocity of the moving trihedron with

respect to a system of axes of fixed space with origin at 0 will be

denoted by 0, and the angular velocity of the sphere will be

denoted by o, so that, referred

to the moving trihedron,

0 = Bii + + ^A:k,

C»> = Wii + C*);j + OJyfck.

Let the velocity of the point

0 with respect to fixed space be s

which, when referred to the

moving trihedron, is d. Then,

by See. 80,

s' = d^ + 0 X d, (0)

Let rriRj acting at the point of

contact, be the reaction of the

surface /o on the sphere and mF, acting at the center of the sphere,

be the resultant of the applied forces. It is one of the hypotheses

that F passes through 0. The principle of momentum (Sec. 45)

then gives the equation

d' + e Xd - F + R. (1)

When the ellipsoid of inertia at the fixed point 0 is a sphere, the

instantaneous angular velocity coincides in direction with the

angular momentum. If k is the radius of gyration of the sphere,

the principle of moment of momentum gives the equation

A 2
(a>' + e X «) = -a k X R. (2)

To these two dynamical equations must be added a geometrical

equation, or an equation of constraint, which expresses the

fact that the point of contact with/n does not slide. In addition

to the motion of translation d which each particle shares with the
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entire sphere, there is a velocity due to rotation about the instan-

taneous axis. This velocity varies from point to point of the

sphere. The position vector of the point of contact is ~ak, and
its velocity due to rotation of the sphere is —a{i^ X k). Since

the particle at the point of contact is at rest, it follows that

d - a(<o X k) = 0; (3)

and since 0 always lies in the tangent plane of /,

(Tk = CTk = 0. (4)

A resolution of Eqs. (1), (2), and (3) into their i-, j-, and k-com-

ponents gives the following system of differential equations

(Ti + 0 — Bk(Ti = -F » + RiA
Momentum ^ - 0 =F} + RiA (5)

0 + diC] — Bjdi = Fik + Rk\]

Angular momentum

Constraint

a>i' + Bj(j)k BkO)i =

coy' + Bk(J^x ~ B^b)k = ~^Tr2^

cok' + BiO)j — BjWi = 0;

<Tx
— Oco, = 0,^

(T; + acoi = 0,
J

(^k =

(6)

(7)

122. Elimination of the Surface Reaction.—If Eq. (121.1) is

multiplied by ak X and then added to Eq. (121.2) the vector R
is eliminated, with the result

k X (d' + 0 X d) + + 0 X w) = k X F. (1)

For convenience of notation, let V,y be the projection of V (any

vector) upon the ij-plane; then

~k X (k X V) = V,y.

If Eq. (1) is multiplied by ~k X, there results

(d' + 0 X d)iy — ~[k X (<•>' + 0 X 0))] = Fi,.
Of

(2)
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By Eq. (121.3)

— k X = H—

i

a
Wi = — fj’

a
co, = +-, (3)

and

k X (6 X <*>) = co/fcOty — dkibiij.

But it is found also that

(6 X <j)»y = 0jfc(
— (Tyi + orj) = aBki^ij]

therefore

k X (e X o>) = 6>*eo - ^(e x <*);/,

and Eq. (5) becomes

+ 6 X d)yy = Fyy + ~a)Ar6,„

or

(j2 J^2

(<J' + e X d)u- = -i ^
„• + ^2 ^ (4)

The left member of this equation is the i, j-component of the

absolute acceleration of the center of the sphere. The center of

the sphere, therefore, moves just as though it were free under the

action of two forces, the first of which is the i, j-component of

the resultant of the applied forces, and the second depends upon
the angular velocities u* and 6,y.

The angular velocities Oy, 6y, and 6* are related to the linear

velocities dy and dy of the center of the sphere and the curvatures

of the surface. Let the and 7?-axes coincide in direction with

the tangents to the lines of curvature, c» and cy, at each point.

These directions change, of course, from point to point of the

surface /. Let py be the radius of curvature of the normal plane

section of / through the tangent to the curve Cy, taken positively

if the center of curvature lies on the positive end of the k-axis;

and py the radius of curvature of a normal plane section of /
through the tangent to the curve Cy, taken positively if the center
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of curvature lies on the positive end of the ft-axis. It will be

verified without difficulty from Fig. 68 that

dt = Oy X Ptk>

d/ = X P;k,

and therefore

e, = (5 )
Pj Pi

In order not to confuse the figure p* and py are drawn negatively.

The angular velocity 0*= depends upon the rate of change of

direction of the tangents to the lines of curvature as the sphere

Fig. 68.

moves. Let Cyo be the orthogonal projection of c* upon the

tangent plane, and pyo its radius of curvature taken positively if

the center of curvature lies on the positive end of the j-axis and

negatively if the center of curvature lies on the negative end of

the j-axis. If an infinitesimal displacement d* dt of the center of

the sphere is made, it is evident that the fr^-axes rotate about the

f-axis through an angle dt, and that

6idt = — e*' X Ptojd^ = +Pio6k^*^idt;

therefore

PiO

From a similar displacement dy dt, it is found that

Pja
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In the displacement that actually occurs, dt, dt = (d* + d,) dt,

the {i;-axes rotate through the angle

Oa dt - dt;

and therefore

PjO

Now let ai be the angle between the osculating plane of c* and

the normal plane of / through the tangent of Ct. If p is the radius

of curvature of c* in the osculating plane, p* the radius of curva-

ture in the normal plane, and pto the radius of curvature of Cio in

the tangent plane (see I, 336), then by Meusnier^s theorem*

cos ai __ 1 sin _ 1

P Pi P PiO

from which it follows that

1 _ tan ai

PiO pi

and similarly

1 _ tan a/

p/o Pi

Hence

Bk
(Ti tan a{

Pi

oTf tan aj

Pi
(6)

From Eqs. (3), (4), and the third of (121.6) it is seen also that

(Ti<rif 1 _
« \Pi Pi)

(7 )

Finally, the resolution of Eq. (4) into its components gives the

two ordinary differential equations

O’/ — dkfJ j =

/ + Bkai =

a2

a

Fi +
*2

a2 +
2 ]r2 (8)

a* + '
' a® +

^Eisekhart, ** Differential Geometry/* p. 118 .
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123. Integration of the Equations.—If the first of Eq. (122.8)

is multiplied by Vi, the second by <r„ and the equations are then

added, there results

q2
(Tiffi + a,<r/ = + F jffj) + qi ^

( 1 )

From Eqs. (122.5) it is found that

BiCfi + SjCTi = — i-
)
= — awji'.

\pi Pi/

In the first term of the right member of Eq. (1) Fi<Ti + F;<ry

represents the rate at which the applied forces are doing work.

The component perpendicular to the plane does no work, since

there is no displacement in that direction. That is, since ck = 0,

Ftdi + F j(T
j
= Fi(Tx + F j(Tj + Fi^k

represents the entire work of the applied forces, and, if there

exists a potential function V of the applied forces,

Fi<ri + = r.

Equation (1) is therefore an exact differential, and since, by

Eq. (122.3),

(Ti = +aa;y, aj = —aw,,

the integral can be written

(a2 + + a)y2) + fcw - 2F + c. (2)

This integral is easily interpreted. Since at any instant the

sphere is pivoting on the point of contact, the left member is

twice the kinetic energy of the sphere. Equation (2) is therefore

the en(‘rgy integral. Further integration requires a knowledge of

the given surface /.

Suppose the surface /(x, z) = 0, referred to its lines of curva-

ture, is given by the parametric equations

X = x{u, v), y = y(u, v), z = z{u, v),

and that is understood to mean dx/du, etc. Then if the f-axis

of the moving trihedron is tangent to the curve u-constant and
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the 17-axis is tangent to the line v-constant, and if u and v are arc

lengths along these curves,

(Ti = u' and aj = v';

therefore

X — Xu<^i -f-

y' = yu<Ti + j/vo-,', > (3)

Z' — 2u(Jk + Z^(Tj.
j

The position of the body in fixed space is determined by these

three equations after the velocities <Ti and cr, are known.

The surface reaction is found from Eq. (121.1) to be

R = d' + eXd~F,
and the normal pressure is

Rk = -hk»0Xd — k»F,

124. The Surface Is a Plane.—Important simplifications in

the equations of motion occur when the surface on which the

sphere rolls is a plane. Since the curvature of a plane is every-

where zero, the radii of curvatures p* and p, are everywhere

infinite, and any set of rectangular axes in the plane can be taken

as lines of curvature. From Eqs. (122.6) and (122.6) it is found

that

Si = Sj = = 0
, ( 1 )

and the moving trihedron does not rotate. Since

a X d = 0, (2)

Equation (121.0) shows that cr' is the absolute acceleration.

Equation (122.4) becomes

‘‘.v = (3)

Since the equation of motion of a particle, which is constrained

to move in the plane and is acted upon by the same force, is

di/ =

provided the mass of the particle is the same as the mass of the

sphere, it is seen that the center of the sphere moves just as

though it were a particle of the same mass, and the force acting
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upon it were the force that is actually acting multiplied by the

constant factor

a*

a* +

For a homogeneous sphere

Jk* = - and
5 o» + A* 7

Hence the equation of motion of a homogeneous sphere that is

rolling upon a fixed plane is

«*./ = (4)

The equation of momentum, Eq. (121.1), gives the surface

reaction

R = d' - F =

a* +
(5)

and the normal pressure of the sphere on the plane is F*,

The equation of angular momentum [Eq. (121.2)] becomes

(6)

Example ,—A homogeneous sphere rolls on a horizontal plane

and is attracted toward a fixed point in the plane by a force that

acts at its center and that in magnitude is directly proportional

to the distance from the fixed point. It is required to describe

the motion of the sphere.

Taking the fixed point as an origin, let r be the position vector

of the center of the sphere, m the mass, and a the radius of the

sphere. If Wi^ is the factor of proportionality,

F I

m

when g is the acceleration of gravity. Let the Jfc-axis be vertical,

directed upward, so that

g * -ffk.
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Let

A o

p =*= r.„ and

then Eq. (4) becomes

p" =

which is the equation of simple harmonic motion, P]q. (13.2).

If the i- and j-directions are properly chosen the solution of this

equation is

Q — h cos 7iti-\-c sin nt j,

where b and c are constants and represent the semiaxes of the

ellipse in which the motion occurs; also

p. = cos ntf F

j

= sin nty Fk = —lan^ ~ g.

Equation (6) now^ gives

the constants of integration vanishing since, by the equations of

constraint [Eq. (121.7)]

= Pi = acoj, cTj = p/ = —aooi.

With respect to the trihedron that moves with the sphere, the

direction of the axes remaining fixed, the instantaneous axis of

rotation of the sphere describes an elliptical cone. The reaction

R is

R = + (lan^ + g)k.

In order that the motion be one of pure rolling

jn^P

lan^ + g
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must always be less than the coeflScient of friction. That is, the

ellipse on which the sphere rolls must not be too large.

126. The Sphere Rolls and Slides.—A modification of the

argument must be made if the state of motion of the sphere is

such that both rolling and sliding occur. If Secs. 121 and 122

are re-examined with the idea that the sphere rolls and slides, it

will be found that the equation of momentum, Eq. (121.1), and

moment of momentum, Eq. (121.2) hold without any alteration;

that is,

R> (1)

and

+ 0 X G>) = -ak X R. (2)

The angular velocities 6i, 0;, and also have the same expres-

sions, that is

tfi = —) Uj ==
> tfk = > w;

9i Pi Pi Pi

as before, Eqs. (122.5).

The equation of constraint, however, Eq. (121.3) no longer

holds, but becomes

B - a(G> X k) = —v; (4)

that is the velocity of the point of contact of the sphere with the

surface is — v, and not zero, as before. As an offset to this new
variable, however, the frictional component of the surface reac-

tion bears, in magnitude, a constant ratio to the normal com-

ponent of R, and has the direction of v. Therefore, if u is a unit

vector in the direction of v, the frictional component R,; of R is

Rt'y “ (5)

where m is the coefficient of sliding friction; and

R = J?jk(iuu + k). (6)

The surface reaction can be eliminated just as in Sec. 122, and

the same equation, Eq. (122.2) results, namely,

(B' + e X d),,- - ^[k X (u>' + e X ca)] =
(JL

(7)
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but the transformation of k X (<•>' + 0 X w) is different. This

time

— ak X w' = v' + d',

and

-ak X (6 X w) = (e X d)i/ + (e X y)ii
-

where v' means the relative derivative

v' = Vii + v/i,

and not the total derivative

v' = v,'i + v/i + ViV + uj'.

Eq. (7) now reduces to

(d' + e X 6)ii + -2 + e X v) =

^2 U2

(8 )

which corresponds to Eq. (122.4).

Obviously, an energy integral exists only when v = 0, but

Eqs. (8) can be resolved into its two rectangular components

just as in Sec. 122.

126. The Billiard Ball.—The game of billiards furnishes an

ideal example of a sphere that rolls and slides upon a plane sur-

face. In this case the plane upon which the ball rolls is hori-

zontal and the cue ball, especially, rolls, slides, and pivots.

The only forces that are acting on the ball are the weight of the

ball mg and the reaction of the table mR. Since the curvature

of the table is zero, Eqs. (125,1, .2, .4, ,8) reduce to

6' = g + R, (1)

fcW = — ak X R> (2)

— ok X w = d + V, (3)

^ o* +
• (4)

The k-direction is vertical upward. Hence

g = -flfk, Rk = gt
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R<j —

Equation (1) becomes

= R., = (5)

and this result combined with Eq. (4) gives

But

, a2 + *2

V = vu, and v' = t;'u + vn\

(6)

and since u is a unit vector, u' is perpendicular to u.

(6) therefore can be written

/ , Avu + vvi p— gfxUy

which shows that

u' = 0, and V = a2 + k^

Equation

The vector u therefore is fixed, not only in magnitude, but in

direction also, and

+ k^ . ..V
V = Vo (7 )

where Vq is the initial value of v. Likewise, from Eq. (5),

d = do “h Qtdxi. (8)

If r is the position vector of the center of the sphere (Sec. 121)

d = s = r'.

Integration of Eq. (8) gives, after replacing d by r',

r = To + ^do +
from which it is evident that, if do is not collinear with u, the

path described by the center of the sphere is a parabola.

As for the instantaneous axis, it follows from Eq. (2) that

the component perpendicular to the table, is constant, since the

vector k X R lies in the plane of the table. Rotation about the

vertical axis is called pivoting, and since the contact of the ball

with the table is regarded as a point, friction does not affect this

component of the rotation. It would do so if the contact were
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regarded as a small area, which, actually, it is. On multiplying

Eq. (3) by k X, it is found that

where

0>iy = - k X (d + v)

— k X Uj

— -(do + Vo).

This result follows also from Eq. (2), but, as Eq. (3) shows, the

constant vector of integration is not arbitrary. The change of

direction of the instantaneous axis with respect to a set of axes

which has its origin at the center O of the sphere and fixed in

direction is shown in Fig. 69. Since o)k is constant, the hori-

zontal plane through its terminus is at a fixed distance above the

able. If ci>o is the initial value of w and — k X u is a unit vector

as represented in the diagram, the terminus of <*> moves from its

initial position in the direction of —k X u with constant velocity.

Consequently the terminus of w always lies in a fixed plane.

This motion of a> continues until slipping ceases, which occurs

at the instant

. ^
(a^ + k^)gM
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At this instant <o = g),, where

avo
,

and the ball begins to roll. In the situation shown in the dia-

gram the tensor of g> decreases until the terminus of w reaches the

perpendicular p from the vertical line through 0, after which it

increases, provided it passes that point. The value of t at this

point is obtained by minimizing o)^ — to • to, or by imposing upon

(*>,, the condition that it shall have the direction — u. If tOm is

the minimum value of to, it is found that

ti)m = Wo — ^(k • u X do)k X u.

If k • u X tJo is positive and

^ffMk.uXd,

the terminus of to will pass the minimum point and the spin will

increase if the upper inequality sign holds, but will stop short of

the minimum point if the lower sign holds. If k • u X do is

negative the terminus of to moves away from the minimum point

and the rate of spin always increases. From this it is seen that

the spin of the ball may steadily fall, steadily rise, or it may sink

to a minimum and again rise; but it cannot rise to a maximum
and then fall.

127. Euler’s Angles for the Billiard Ball.—In order to complete

the problem of the motion of a billiard ball, it is necessary to assign

the position of the spot on the ball, or the several spots if there

are that many, at any instant. This requires a determination of

Euler’s angles for the ball as functions of the time. From
Problem 7, Chap. VI, it is found that

o)i == sin B sin ^ cos V',)

ojy = —ip' sin 6 cos ^ sin / (1)

ctik — cos B *T J

In the present case w,, co, and cok are known functions of the

time, namely,

uj, WfO I Qtf Sin X,

Wy == a)»o ~ gt cos X,

0)k = WaO,

(2)
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where X is the angle which the vector u makes with the vector i,

and accordingly

i • k X u = — j
• u = — sin X,

j*kXu = +i*u = + cos X,

and, for brevity of notation,

a
Q = pi/M.

The solution of Eqs. (1) for d\ and gives the differential

equations

9' == (wio + qt sin X) cos ^ + (w,o — qt cos X) sin ^,1

sin 6<p' = (co.o + qi sin X) sin ^ — (w,o — qt sin X) cos / (3)

= o)ko
— cos j

In these equations a>,o, o)jo, and X are constants. Not'

withstanding the apparently simple character of these equations,

a satisfactory solution of them has not been found. They can be

solved, however, if g = 0, which is equivalent to the assumption

that there is no friction. For this case the equations become

9' = iOio cos ^ + a>jo sin

sin 6<t>'
= a>io sin ^ — co,o cos > (4)

xj/' = o)ko — <p' cos 6. j

The instantaneous axis is fixed in the body, if the f-axis is taken

to coincide with it, and if coio and wyo are given the forms

^*0 ~ tan do sin

03 jo
= —wjLo tan ^0 cos

the equations become

6' = o3ko tan $0 sin {\po
—

^),

sin dtp' = o}ko tan cos (^o — ^),

cos 6,

for which the particular solution

6 - 9of ^ == ^0, <p = (po
^

is evident. This solution contains but one constant of inte-

gration, namely (p, but it is not difficult to derive the complete

solution of Eqs. (4) from it. All that is necessary is to refer the
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motion to an arbitrary set of axes that are fixed in the body
instead of referring it to a particular set.

In Fig. 70 let C, Co, and Ci be great circles on a unit sphere, the

circle C is horizontal, Co is perpendicular to the axis of rotation,

and Cl is in the fn-plane of the arbitrary set of axes. Let

P, Po, and Pi be the poles of these great circles; and N, iV'o, the

nodes, or points of intersection

of the circles. The points where

the x-y or f-, axes pierce the

sphere are indicated by dots on

the respective circles. Let the

arc NipQ he ^ and the arc Nip be

ifi. These arcs may have any

values whatever without affect-

ing the spherical triangle NNqN i

;

they are constant throughout the

motion, and so also is The
values of the sides and angles

of this triangle are as indicated in the diagram, and likewise for

the triangle formed by the three poles.

If Eqs. (52.3) are applied to the triangle PPaPi, it is found that

cos 6 = +COS ^0 cos 6

1

+ sin do sin Si cos (^o A
cos {tp --

(pi) sin ^ = — cos sin Bi + sin cos Bi cos (ipo — ip),

f

sin (<p — ipi) __ sin (^o — <p) _ sin (^o
—

and
(6 )

Hin

These equations define the Eulerian angles of the arbitrary

trihedron as functions of the time through Eqs. (5). They
contain the three arbitrary constants Biy ^i, and (p that are

necessary for the complete solution of Eqs. (4).

It follows therefore that, if w.-o, wyo, and were constants, the

ball would spin uniformly about some axis that is fixed in the

body, and the point of contact of the ball with the table would

describe a small circle on the sphere. As the instantaneous axis

moves toward or away from the vertical, it changes its position

in the body and the small circle of the point of contact decreases

or increases in size. Since Eqs. (6) and (7) are the complete

solution of Eqs. (4), the complete solution of Eqs. (3) can be
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obtained from them by the method of variation of parameters

(I, 381).

128. Rolling and Slipping on an Inclined Plane.—The equa-

tions of motion for an inclined plane do not differ greatly from

the equations of motion for the horizontal plane. For the hori-

zontal plane the applied force is normal to the plane; for the

inclined plane it is not. Let the inclination of the plane to

the horizontal be a, let the i-direction be directed down the plane,

and the k-direction be normal to the plane directed upward.

The equations of motion then are almost the same as in

Sec. 126, namely,

d' = g + R,

fcV = ~ak X R, d' +

-ak X <*> = d + V,

oV =
a2 _|.

( 1 )

o* +
the last equation only differing by virtue of the fact that there is

a component of the weight in the i, j-plane, namely,

gij = +9 sin a i.

The reaction of the plane on the sphere evidently is

R — g cos a(MU + k),

where u is a unit vector in the direction of v, just as before.

The first of Eqs. (1) becomes

d' = cos a n + g sin a i (2

and if d' is eliminated from the fourth of Eqs. (1) by means of this

expression, it is found that

I k ^

v' = —g sin a i ^

—

jjLg cos a u. (3)

For brevity of notation, let

and

then

+ jfc2—

—

f^9 ot m.

g sin a = n;

v' = —mu — ni, (4)

which, for a = 0, reduces to Eq. (126.6). This equation shows

that v' is not collinear with u, and therefore, while u is still a unit
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vector, its direction is not fixed. The component of v' in the

direction of u is obtained by multiplying Eq. (4) by u •, and the

component perpendicular to u is obtained by multiplying through

by — u X (u X, Eq. (5.2).

Now if p, 6 are the polar coordinates of the terminus of v,

u • v' = p',

and
— u X (u X v') = pS'k X u,

k X u being the unit vector in the plane perpendicular to u. On
the right side of Eq. (4)

u • u = 1, u • i = cos B

u X (u X u) = 0, +u X (u X i) = +sin X u.

The components of Eq. (4), therefore, give the differential

equations

p' = — n cos 6 -- m,
p^' = +n sin 6,

By the elimination of the time between these two equations, there

is obtained

(h ( . ^ w A— = I — cot B cosec B J dB.
P \ n /

^

and, by integration, this becomes
m

— (
^ ^\tan|^/ sin^^ (6 )

Po and Bq being the initial values of p and B.

If Eq. (6) is substituted in the second of Eq. (5), it is found by a

second integration that

1
t = 2^0 sin Bo larm

2

(cot

m + n m — n

The second of Eqs. (5) also shows that B always increases. The
direction of v moves in the direction of the line of greatest slope

upward, that is, the slip is downward. The limit of p, Eq. (6),

as B tends toward t is zero if m/n > 1, that is, if

(cot ^ (cot ^B)^~

m + n m -- n (7 )
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Slipping ceases, and the ball begins to roll (Sec. 124).

By direct integration of the fourth of Eq. (1) it is found that

which determines d; and by multiplying the third of Eqs. (1) by

k X it is seen that

^ ^0 + ^ _^
-
j^

-

2
[k X (v - Vo) + gi sin aj].

A determination of Euler^s angles does not seem very promising.

129. A Coin Rolls and Spins.—Some interesting results on the

problem of rolling hoops and coins were given by Appell and

Kortweg' in 1899.

Let there be a set of axes Ti, movable with respect to fixed

space and with respect to the coin, but having its origin always at

the center of the coin, the f«, or k-, axis perpendicular to its plane,

and the or i-axis always horizontal. Let there be a second set

of axes T2 j
fixed with respect to the coin, with its origin also at the

center of the coin and one of its axes perpendicular to its plane

and therefore coinciding with the k-axis. With respect to Ti the

trihedron T2 merely turns about the k-axis. If 6, <p, and ^ are

Euler's angles for the axes that are fixed in the body, 6> the

instantaneous rotation of T2 ,
and H the instantaneous rotation of

Ti, then

o) = <0 “f* ^^k.

^ Rendiconti del Circolo MatemaMco di Palermo^ XIV, pp. 1, 7 (1899).
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It is evident from Fig. 71 that

(hi == (hj = sin oj* = cos df (1)

a result that can also be obtained by taking = 0 in Eq. (85.4).

The moment of momentum of the coin is

L» = A. = Actiii *4" j} 4“ (7coA;k!.

For the distinction between L and A the reader is referred to

Sec. 84.

The principle of moment of momentum gives the equation

L' = A' 4- w X A = -aj X Rm, (2)

if a is the radius of the coin, m its mass, and R is the acceleration

due to the reaction of the plane. Since the k-axis is fixed in the

coin and every axis in the plane of the coin is a principal axis,

the moments of inertia with respect to these axes are constants,

and A = The mass factor can be eliminated by taking

A == mAi, B = mAi, C = mCu
Then

~L' = [Aiihi 4“ {Ci(fik — Aia);fc)a>,]i +
[Aid)/ 4" (Aid)*; — Ci(*>k)(hi]j 4“ [Ciu)*;'Jk. (3)

Since the point of contact of the coin is at rest, the equation

of constraint is

d — «<.> X j
= 0. (4)

In this equation ci> can be written

CJ == d),i + ihjj + 0)kky

and then

d — aw X j = (cr; 4- awA:)i 4- 4“ {(Tk — ad)»)k = 0,

from which it is seen that

O’

i

' QXfJkf ^

j

““ (JL(jii» (^)

From the principle of momentum it follows that the equation

of motion for the center of gravity is

d^4"wXd = g4‘R> (6)

where

% — —g sin B} -- g cos ^k
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is the acceleration of gravity.

If Eq. (6) is multiplied by aj X, Eq. (2) is multiplied by 1/m,

and the two equations are then added, R is eliminated, and there

results

aj X d' + aj X (w X d) + ^L' = aj X g. (7)

Since

aj X d' = acki ~ oa/k
= a^LOi'i + by Eq. (5),

and, since a

j

= 0,

flj d) — CLo) j(T

^

dcOy^A-k,

the components of Eq. (7) give the equations

(a^ + A\)(^i + [(a^ + C\)i»>k A] 0)k]o>j = cos By I

-Aiw/ + [Aio)k — Cio)k]o)i = 0, / (8)

(a^ + C)(»)k — ci^o)iO)j = 0. j

If osi — 6'
0, the time can be eliminated from the last two

of these equations, since

and

/ do)

j

_ do)j

, do)k^, _

dS dd

After removing the factor w* and replacing o)k by w, cot By they

become

Ai~^ + AiWy cot 0 — C\0)k — 0,

rf
<9)

(«’ + C,)^ - o=«, . 0.

J

These equations define w/ and w* as functions of B. If w, is

eliminated between them, there results a single equation of the

second order for cjk, namely,

d^<ji)k

'W + cot B-

^do3k

dB

a^Ci

A,Cl + aU,“*
0. ( 10)

If the independent variable is changed by the substitution

COS^ B ^ 8y and if
a^C,

P
4Ai(a» + C,)’
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~ + V2
“ ^V'de

~
P"* “

The differential equation of the hypergeometric series of Gauss^

is

Xil - x)g + [y - a +a + p)x]^ - a/3j/ = 0; (12)

and its complete solution, if y is not an integer, is

y = MF{a, y; x) + Nx^~^F{ai, ^i, yi) x), (13)

where

ai = a + 1 — 7 , /?! = jS + 1 — 7, 7 i
= 2 — 7 ,

and

^’(a, 0,y,x) = 1 +
api

1 • 7
X +

a(a + 1 )^(^ + 1 )

12 7(7 + 1 )

+ • •
•

. (14)

It is evident then from Eq. (11 ) that

o)k = MF(a, 7; cos^ e) + N cos 6F{aiy 71 ;
cos^ ^), (15)

where M and N are constants of integration, and that

7 = 1 ,
a + = + ap — p;

« = i + ^ i - wi - i6p.

For a coin that can be regarded as a thin, homogeneous,

circular disk p = i, and for a hoop that can be regarded as a

homogeneous circular circumference p = + In both cases a and
are conjugate complex numbers.

After having determined Uk as a function of By w, is obtained

from the second of Eq. (9),

The first of Eq. (8 ) then gives, by integration.

(a^+C,r ,

a»(a^+4.)"*

2agsine 2^i(a»+C,)^ C{<^\
a®+^i a*ia^+Ai) j\dej cot 9d$.

Finally, the time is defined as a function of 0 by the first of

Eqs. ( 1 ),

» “ Werke,” III, p. 207.
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and Eqs. (5) give the linear velocities also as functions of S.

It should be remarked that since there is no loss of energy,

+ (Tk^ + + a)y2) 4- CiO)k^ = A — 2ga sin d,

where h is a constant. It will be remembered of course that

0)i = U)j = O)/,

but the distinction in notation has been preserved for the sake of

clarity.

A Particular Solution .—It is natural to enquire whether the

coin or hoop can roll with constant speed around a circle. In

such a motion w/, and oik are constants, and Eqs. (8) reduce to

[(a^ + Cx)o3k — Aiiiik]o>i —ag cos 0o, 1

[A\(jik “ Ci(»)k]i^i = 0, / (16)

= 0. j

The last two of these equations are satisfied by Wi = 0. The
vector ^ is vertical, positive upward. Hence

wy = 03 sin Bof CO* == w cos ^0.

Since the angular motion of the center of gravity is constant,

w is constant, and therefore is constant. Likewise ^' = co is

constant and also is constant. The first of Eqs. (16) gives

(
A * a cot ^0

The linear velocity of the center of gravity is, by Eq. (5),

<Xi = --aco*, <ry = 0, (T*

Thus d is constant; then Eq. (6) gives

where

R == *-~aco*w h — g,

h = cos ^ j
— sin ^ k

0.

(18)

is a horizontal unit vector that is always directed toward the axis

of the circle on which the coin rolls.

From Eq. (17) it is found that

= (a^ + Cl — Ai) sin B^ + ^ 03 cot ^0

03^
_ a^ 4“ Cl

(19)
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so that is opposite in sign to The angular velocity of the

center of gravity as it moves in its circle is w, and if p is the radius

of this circle, pw = (n = —ao)k* Hence

= (if
- sin

ao) cot do

+ Cl

The radius of the circle on which the coin rolls is

r = p + a cos ^0 = |^(a2 + Cl — ^i) sin

An examination of these equations shows that twO of the four

constants, r, v?', oj, and So, can be chosen at will; the other two
are then determined. For example, the radius of the circle on

which the coin rolls and the inclination of the coin 6o can be

chosen, then Eq. (20) determines o), and Eq. (19) determines

If r is kept fixed and tends toward zero, a> tends toward

infinity. The limit cannot, of course be attained physically,

for Rk [Eq. (18)] also tends toward infinity.

If d) is kept finite and do tends toward ir/2, r tends toward

zero, and the coin merely spins, the rate of spin being arbitrary.

But if do tends toward t/2, and at the same time w tends toward

zero in such a way that

where Q is an arbitrarily chosen constant, then r tends toward

infinity, and is arbitrary. The coin rolls uniformly along a

straight line. In the particular case in which v?' also is zero,

the coin stands at rest in an equilibrium that is, of course,

unstable.

130. Other Forms of the Hypergeometric Series.—The hyper-

geometric series that were given in the last section are convenient

when cos d is small, that is when the coin or hoop is nearly in a

vertical plane. They are not convenient when the angle d is

small and the coin is nearly horizontal. For this case a series

in the sine of d converges more rapidly.

If the transformation

X ^ 1 -t

is made in the differential equation of the hypergeometric series,

Eq. (129.12), the equation becomes
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<(i - 0^ + [1 + « + ^ - 7 - (1 + « +m
( 1 )

and if the substitutions

«2 = /?2 = /?, >2 = 1 + a + /3 — 7

are made, the equation is unaltered in form. Since, however,

in the present case

a + ^ == i and 7 = 1,

72 is equal to 1, and Eq. (1) does not admit two distinct hyper-

geometric series as solutions. It does, however, admit one such

series as a solution and, since i = sin- 6
,
one solution for Eq.

(129.10) is

Wk = (^2, 1; «iu- S).

A second independent solution is^

o)k = N 2 log sin^ 6F{a 2 j ^ 2 ) 1; sin^ 6) + N 2G{a 2 , 1; «in^

where

C = JL 4. i 1
1 • 7\a2 ^ 02 1

sin^ ^ + • •
•

,

the G scries being the same as the F series, with the omission of

the constant term, except that each coefficient is multiplied by a

factor, called the adjunct which consists of the sum of the recip-

rocals of the factors of the numerator diminished by the sum of

the reciprocals of the factors of the denominators. The complete

solution, therefore, can be written

03k = [M2 + 2N 2 log sin 6]F{a2 t 02, 1; siri^ S)

+ N2G{oi2, 02, 1; sin^ 6),

Kortweg gives another form of the series^ in which the arguments

are 2 sin^ and 2 cos^ thus avoiding the logarithmic terms

that indicate the character of the solution in the neighborhood

of ^ = 0.

131. A Body of Any Shape on a Horizontal Plane.—With the

experience derived from the previous examples, it is not a difficult

^Johnson, “Ordinary and Partial Differential Equations,” p. 202.

* Appjbjll, “M^canique Rationeile,” 4th ed., VoL II, p. 264.
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matter to write down the differential equations of motion for a

body of any shape that rolls or rolls and slides on a horizontal

plane under the action of gravity and the reaction of the plane.

Let the moving trihedron of reference have its origin 0 at

the center of gravity of the body and its axes have the directions

of the principal moments of inertia. It is therefore fixed in the

body. With respect to this set of axes the surface of the body
can be denoted by

f) = 0. (1)

Let the position vector with respect to 0 of the point of contact

with the plane be r, and let n be a unit vector that has the

direction of the outward normal to the surface at the point of

contact, and therefore

n =
; 4- 4-

\/(d^/dO^ + (dv’/dv)^ + (d^/dt)^
(2)

Let d and A be the absolute velocity of the center of gravity

and the moment of momentum of the body referred to 0; and
finally, let R be the reaction of the plane. For simplicity of

notation the mass of the body will be taken as the unit of mass.

The principles of momentum and the moment of momentum
then give the two equations

and
d' + <i> X d = + R,

A' + wXA = rXR.

(3)

(4)

Since the plane is horizontal, the normal at the point of contact

is always vertical, and the outward normal is directed downward,

so that, if g is the acceleration of gravity,

g =

With respect to fixed space n is constant, therefore

n' + to X n = 0. (5)

Equations (3), (4), and (5) hold in all cases provided (p is of

such a nature that there is but one point of contact with the plane,

and at that point there is a definite tangent plane.

Pure Rolling ,—The equation of constraint, however, depends
upon the character of the motion. If the motion is a pure rolling.
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and pivoting, the point of contact of the body is at rest relative

to the horizontal plane. Its velocity of translation is 6 and its

velocity due to the instantaneous rotation is co X r. Hence

d + X r = 0.

Rolling and Sliding,—If the body is sliding and rolling, the

absolute velocity of the particle of the body that is in contact

with the plane is not zero, and the equation of constraint is

d + G> X r = -v,

where —v is the absolute velocity of the particle in contact with

the plane. The negative sign is attached because the frictional

component of R is opposite to the direction of motion
;

has the

same direction as v, and R • v is positive.

As long as the body is sliding the reaction of the horizontal

plane makes a constant angle e with the normal, where e is the

angle of friction, and

R • n == i2 cos €.

Since the three vectors R, n, and v lie in the same plane, their

scalar triple product, Sec. 4, vanishes, that is

V • R X n = 0.

Smooth Contact.—In the case in which there is no friction the

particle in contact with the plane moves in the plane, and the

equation of constraint is

n • [d + w X r] =0.

The reaction is normal to the horizontal plane, and therefore

R = —Rn.

Since all of the forces that are acting upon the body are collinear

with n, the components of d that are parallel to the plane are

constants. It is only the component that is perpendicular to the

plane that varies.

Problems

1. In the illustrative example of Sec. 124, show that a horizontal plane

section of the cone described by the instantaneous axis is an ellipse similar

to that described by the center of the sphere but turned through an angle of

90®. Show also that the surface described by the instantaneous axis in

fixed space is of the fourth degree.



131] ROLLING MOTION 2852.

If a sphere is rolling on a curved surface the normal pressure of the

surface on the sphere is

Pi

zjI

Pi
-Fk,

Compare this expression with the normal pressure of a surface on a particle

which is sliding on a surface (I. 333).

3. Show that a necessary and sufficient condition that the pivoting of

the sphere about the normal is constant, (wk = constant), is that the center

of the sphere is moving along a line of curvature.

4. If the moving trihedron defined in Sec. 121 moves in such a way that

the ^-axis is always tangent to the path described by the center of gravity

of the sphere instead of being tangent to one of the lines of curvature, if p is

the radius of curvature of a normal section of the surface through the tangent

to the path at the center of gravity and if r is the radius of geodetic torsion,^

then (Tj and ooi are always zero, and

di = = and 0* = - tan a,
P

where, as before, a is the angle between the osculating plane and the normal

plane. The components of Eq. (122.4) now give the equations

a = a*
+

4- k

or'**
C» I

a‘ +
fc* cr

a—

and the third of Eqs. (121.6) becomes

awk =
r

6.

If <r 0, prove that the angular velocity w* is constant when and only

when the center of gravity of the sphere moves along a line of curvature.

6. Show that if a homogeneous sphere is moving along a line of curva-

ture without spin about the normal to the surface, the j-component of the

applied force is equal to the j-component of the centrifugal force'regarding

the mass of the sphere as concentrated into a particle at the center of grav-

ity, multiplied by 1.

7. If there are no applied forces, show that

^ ~ constant, aci)jfc = tan a,

^log (|+tan«a) 2^— tan a
T

and that the path will be a geodesic if and only if the path is a plane curve.

Under these circumstances the velocity, d, of the center of gravity is constant.

8.

A sphere of radius a rolls without slipping on the inside of a spherical

bowl the radius of which is a + ?>• If the center of the bowl is taken as the

1 Eibenhart, “Differential Geometry,** p. 138.
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origin of a rectangular coordinate system with the 2-axis vertical, the coordi-

nates of the center of the rolling sphere are

X — b cos (f cos y ~ b cos v’ sin z — b sin ip.

Let the moving trihedron have its k-direction toward the center of the bowl,

the i-direction along the meridian toward the north pole, and the j-direction

tangent to the circle of latitude at the center of the rolling sphere. Prove

the following formulas:

ai = bip\ <Tj — b cos iprp'j ak — 0;

pi — pj — by ai — 0, aj = (p;

0,
= —

-r tan <p;
0

03%
—

03j
—

H »

a a

Fi = —g cos <py Fj = 0,

03k = constant;

Fk = -\~g sin <p',

(fi + tan <p =
0

, <Ti<Ti ,

cry ^ tan <p =

a* /r* n

A'2

a2 -f hi b

k^o3k a, .

’'i cos V = ^(2. - 0),

where 2o and Zi arc constants of integration, and

Rk = g

Then

2'’ =

r =

6(a* + *«)

2
(70

*

|2a*zo - (3o* + k^)z].

bHa^ + fc*)

k^duk Zi — z

o* + A:» 6> - z’

(zu - z)ib- - Z-)
A'^cofc a.

-H kn"

Compare the last two equations with those of the spherical pendulum, I, 341.

9.

If the coefficient of sliding friction is i and the initial speed of slid-

ing is 11.27 feet per second, a billiard ball will slide for one half of a second

before it begins to roll.

10. If P is the point of contact of a billiard ball on the table and Q is the

center of oscillation of the ball with respect to P, show that the particle of the

ball that is at Q has a velocity v that is constant throughout the motion, and
that in the purely rolling motion the velocity of the center of the ball is ^v.

11. If the initial velocity of the center of the ball is v, the straight-line

path of the pure rolling intersects the initial line which has the direction v

at a point Pi which is at a distance vT/2 from the initial point, P being the

time of sliding.

12. On any surface of revolution the lines of curvature are the meridians

and the parallels of latitude. Discuss the equations of motion of a sphere

rolling on the inside of such a surface.
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13. A homogeneous right circular cylinder whose altitude is equal to the

diameter of the base rolls on a rough horizontal plane with its axis inclined

45° to the vertical. If n is the angular velocity of the cylinder about its

axis and m is the angular velocity of its center of gravity, show that

~ = 30

14. If V is the speed of the center of gravity of a coin that is rolling along

a straight line (tlie edge of the coin being regarded as a line), show that

> \ag, and for a hoop v* > \ag.

16. If a cone of any shape is rolling on a fixed plane, it has but one degree

of freedom, and the energy integral gives the differential equation of motion.

Suppose the cone is a heavy right circular cone with the generating angle /3,

the length of the generator being Z, and that it rolls on a plane whose inclina-

tion to the plane of the horizon is a.

If d is the angle between the line of greatest slope on the plane and the line

of contact with the cone, show that the angle 6 satisfies the differential

equation

-f
g sin a

l(l
sin ^ ~ 0,

which is the equation of motion of a simple pendulum of length

lik -f cos^ fi) cosec a.

16. A heavy, solid, homogeneous cylinder of radius r and mass m rolls on

the inside of a cylindrical shell of radius li and mass M which is supported by
its axis and turns freely about it. If B is the angle which the plane through

the two axes makes with the vertical plane through the axis of the cylindrical

shell show that the angle B satisfies the differential equation

B" 4. ^
' ZM mR — r

sin B ~ Oy

which is the equation of motion of a simple pendulum of length

3M + m
2M -f m

(R ~ r).

17. A sphere of radius r rolls down the cycloid

X = a{2B -j- sin 2^), y = — a(l + cos 20).

Show that the speed of its center at the lowest point is given by the equation

V* = K^-g(2a — r).



CHAPTER IX

IMPULSIVE FORCES

132- Definitions.—When the force to which a body is sub-

jected rises from zero to great magnitude and then sinks back to

zero again in an interval of time that is very short, the force is

said to be an impulsive one. Various names are used to denote

this type of action: for example, a baseball struck by a bat is said

to have received a blow; two balls on a billiard table are said to

collide; the countryside is said to have received a shock from an

earthquake; a bullet is driven from a gun by an explosion; we
speak of the impact of a bullet on its target; etc. The chief

characteristic of impulsive forces being the extremely short

interval of time during which they act, an interval so short that

the action is over with before the object has sensibly left its

initial position. Also the force is so great that the ordinary

forces that are acting, such as gravity, are completely negligible

during the brief interval of the impulse.

Consider a particle, or a mass that is not rotating. If r is its

position vector and m is its mass, the equation of momentum is

mr" = F, (1)

where F is the sum of all of the forces that are acting on it. The
time integral

mr' - mta' = J'f dt (2)

measures the change in momentum of the particle, or body, in

the interval of time t — If F is an impulsive force and the

time interval t — is very short, the integral

I = £f dt

is called the impulse. It has the dimensions of momentum
and must be distinguished from F which is the impulsive

force. Equation (2) states that the change in the momentum of

the particle^ or mass, is equal to the impulse which it has received,

288
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Similarly, if L is the moment of momentum of a particle, or

mass, which is acted upon by an impulsive force F at a point

whose position when referred to a point of fixed space, or to the

center of gravity of the mass, is r, then, by Sec. 45,

L' = r X F,

and since r does not change sensibly during the impact,

L - Lo = r X jy dt = T Xli

that is, the change in the moment of momentum of a particle, or

mass, due to an impact, is equal to the moment of the impulse.

133. General Theorems for Impulsive Forces.—Notwith-

standing the fact that impulsive forces are singled out as a class

and given a name, they are still forces, and the general theorems

for systems of free particles that were derived in Chapter III still

hold, provided only the individual particles of the system act

upon one another only in the lines that join them. Indeed, if

all of the particles that participate in an impulsive action are

regarded as a system by itself, it can be regarded as an isolated

system, since other forces that are acting upon the system are

negligible during the action of the impulse. Since for every

isolated system the momentum and the moment of momentum
are constant, it follows that the momentum and the moment of

momentum of the system are not altered by an impulsive action,

for the forces of an impulse belong to the class of interior forces.

A reference to Sec. 34 will show that this is not the case, in

general, with the energy of the system. The exterior kinetic

energy is not altered by interior forces, but the interior kinetic

energy can be altered by interior forces.

As an example, consider two masses mi and m^ that are mov-
ing with the velocities Vi and V2, but are not rotating. Fig. 72.
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Suppose these two masses collide and unite into a single mass

+ W.2 that has the velocity v and is not rotating, as, for

example, a bullet shot into the center of gravity of a block of

wood. If the velocities, referred to the center of gravity of the

system, are Ui and U 2 ,
and v is the velocity of the center of

gravity itself,

Vi = + ui, V2 = V + U2. ( 1 )

The expression for the momentum of the system,

shows that

miVi + m2V2 = (mi + m2)v,

miUi + m2U2 = 0. (2 )

If T is the total kinetic energy, Te and Ti the exterior and

interior kinetic energies respectively, then

T = ^miVi • Vi + |m2V2 • V2 ,

Te = + W2)v- V,

Ti = |miUi • Ui + ^m2U2 • U 2 .

It will be found readily from Eqs. (1) and (2) that

T = Te + Ti.

Before the collision T* 9^ 0, but after the collision, owing to the

hypothesis that the united mass is not rotating, Ti
—

0, since

Ui = U2 = 0. The total kinetic energy is reduced to Te which

remains unaltered, since mi + m% and v remain unaltered.

In accordance with the principle of the conservation of energy,

this amount of energy, Ti, appears in vibrations or in molecular

motions whose total momentum is zero, or in some other form,

such as radiation, for example.

134, Head-on Collision of Two Elastic Spheres,—A collision

between two spheres will be called a head-on collision if the

motion of each relative to their common center of gravity lies in

the straight line that joins their centers. It is assumed that the

center of gravity of each sphere is at the geometric center.

Under this assumption the impulse of collision acts at the points

of contact of the two spheres and in the line of centers. Vector

notation is not necessary since the motion is entirely straight-

line motion.
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Let mi and m 2 be the masses of the two spheres, Vi and V2 their

velocities relative to their common center of gravity before

impact, Ui and U 2 their velocities after impact, and let the impulse

of collision be written

mim2
I =

i

V,
mi + m2

Then, if the notation

mim2M = — ; J fJLi
— mi

mi + ni2 mi + m2
M2 = m2

mi + m 2

be adopted.

1 = + tJ>2vA

2 = V2 — ^ivj

Ui =
U2

( 1 )

(2)

(3 )

The momentum relative to their common center of gravity is

niiVi + 'f^2V2 = 0, (4)

and the vis viva before collision is

V = mi?;i^ + m2V^.

After collision the vis viva is

\J = mxu^ + m2U^j

which by virtue of Eqs. (3) becomes

[/ = F + M[v^ + 2v{vx - V 2)l (5)

Now, by Eq. (4),

y = ——vif M{vi — V 2 ) = miVi, and MV =m2

so that, on multiplying through by M, Eq. (5) becomes

MU — {Mv + miViY, (6)

Suppose the kinetic energy is altered by the collision and that

U = eW,

6^ being a positive number. Equation (6) then reduces to

e^m\Hi^ = {Mv + mi^O^,

whence
Mv = (

— 1 ± e)miVif
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and, Eqs. (3),

Ui = ±evi, Uz == ±ev2 ^

The hypothesis used in this analysis has been merely that the

kinetic energy has been altered by the collision. If a bullet were

shot through the center of a wooden sphere, the bullet and the

sphere would continue in their original directions and the positive

sign would be taken before e in the above expressions; but if the

spheres rebound and separate, the negative sign must be taken,

since, by hypothesis, the velocities have changed sign. In either

case, if e — 1, there is no loss of kinetic energy; but obviously

work is done by the bullet in boring its way through the sphere

in the first case, and one can scarcely doubt but that vibrations

are set up in the spheres in the second case, and these vibrations

absorb a certain amount of kinetic energy. On the other hand

if there were an explosive at the point of contact e might be

greater than one, the increase of kinetic energy coming from the

explosive. In any event, whether e is greater or less than one the

speeds of the two spheres after collision are proportional to their

speeds before impact. If e == 0, the two spheres unite and the

interior kinetic energy is reduced to zero, just as in the example

considered in the previous section.

It was found by Newton from experiments on balls of different

kinds that for any two given spheres the value of e is less than

unity and is independent of the relative velocity, provided this

velocity is not high enough to deform the spheres permanently

or to break them, and this experience of Newton's has been con-

firmed by others. In a general way the harder the two balls are,

the more nearly e approaches unity.

The impact begins when the first two points of the spheres are

in contact. As the impact proceeds the contact widens into an

area owing to an elastic deformation of the spheres. The veloci-

ties relative to the center of gravity of the system are rapidly

reduced to zero, at which time there is a maximum deformation of

the spheres. The elastic forces that have been called into play

by the deformation then begin to restore the figures of the spheres.

This restoration of the figures drives the centers of the spheres

apart and acts until the surfaces are no longer in contact. The
forces of restitution could equal the forces of compression only

if the spheres had no residual vibrations of any kind. This is a

conceivable possibility, but does not seem very probable. In
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this event c, which is called the coefficient of restitution is equal to

one, but in general the forces of restitution are smaller than the

forces of compression in the ratio e:l.

It is also doubtful if e is independent of the relative sizes of the

two spheres. During the interval of compression a compression

wave is set up in both spheres. If the spheres are of the same
size and the same material, the two periods are the same and both

waves participate in driving the spheres apart, but if the periods

are different as is the case when the two spheres are very unequal,

the wave in the smaller sphere will return first and effect a

separation before the return of the longer period wave. More
energy remains therefore in the larger sphere in the form of vibra-

tion, and e is smaller than when the two spheres are of the same
size.

136. Glancing Collision of Two Smooth Spheres.—Let the

motion be referred to the center of gravity of the system. If Vi

and V2 are the velocities before collision and Ui and U2 the veloci-

ties after collision, then, by the principle of momentum,

miVi + m2V2 = 0,1

and / (1)

miUi + m2U2 = O.j

The velocities Vi and V 2 are collinear but the centers of the two

spheres do not move in the

same straight line. Likewise

Ui and U2 are collinear, Fig. 73.

Let a be a unit vector in the

line joining the centers of the

spheres at the instant of impact,

directed from the center of m2

toward the center of mi. Since

the spheres are smooth, the

impulse acts in the line of centers and it can be written

I = ±
mim2——VB,.

mi + m2

the positive sign giving the impulse on mi and the negative sign

on m2 ;
and as before

M mim2
mi + tn^

Ml = mi

mi + m2 M2 ==
m2

mi -h m2
f Ml + M2 = 1.
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The equations of momenta, then, are

™,u. . m.», + u, .v, + «,.A
,2)

m2U2 = m2V2 — Afi;a, U2 = V2 — ixiVSl.)

The difference between the equations in the last column gives

U 2 — Ui = V2 — Vi — ya,

and on multiplying through by • a, it is found that

= (V2 — Vi) • a — (U2 — Ui) • a.

Since the impulse acts in the line of centers, the components

of the velocities perpendicular to this line are not altered, but

by Sec. 134 the components in the line are multiplied by —e,

where e is the coefficient of restitution. Hence

and
(U2 - Ui) • a = -e(v2 - Vi) • a,

V = {1 + e)(v2 - Vi) • a.

P>om Eqs, (1) it is found that

V2 -- Vi = — =
»

Ml M2

so that the expression for v can also be written

1+6 1+6
V = V2 • a = Vi • a. (3 )

Ml M2

The equations in the second column of Eqs. (2) then become

and

Ui = Vi - (1 + e)vi

U2 = V2 - (1 + 6)V2

•a a,l

• a a./ (4)

±7 = +(1 + 6)m2V2 • a = — (1 + e)miVi • a.

By taking the dot product of Ui into itself it is found that

Ui • Ui = Vi • Vi — (1 — e^){vi • a)2.

If now b is a unit vector that has the direction of Vi, this equation

can be written

= v,^[l - (1 - e2)(b.a)2],

or

Ui = cvi; and similarly U2 = €*^2 ,
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where

€ = Vl ~ (1 ~ e2)(b* a)2.

Thus the ratio of the speeds with respect to the center of mass
after collision is the same as before collision, which is evident

more directly from Eqs. (1). The letter e is independent of Vi

and V2y but varies, of course, with a and b. It is equal to e

if a and b are collinear, and equal to 1 if they are mutually

perpendicular.

If m2 = 00 and Vo = 0, the second of Eqs. (4) shows that

U2 = 0. The mass m2 can be regarded as a solid surface and Vi

as the velocity of mi with respect to this surface. The first of

Eqs. (4) is then the equation of rebound of an elastic sphere from

a solid surface.

136. The Stroke of a Billiard Cue.—In the game of billiards

the cue ball is started into motion by a sharp blow with the cue.

The tip of the cue is well chalked so as to make the coefficient of

friction of the cue with the ball as large as possible, in the neigh-

borhood of unity, perhaps. The ball rolls on a hard level surface

which is covered with broadcloth and is therefore inelastic.

The coefficient of friction between the ball and the table is small.

Experiments carried out by Morin at the request of Poisson

showed that the laws of friction are the same under impulsive

forces as they are under forces of smaller magnitudes. Assum-
ing that this is true and that there is no slippage at the tip of the

cue, it is desired to find the state of motion of the ball due to the

stroke of the cue at the instant after impact.

Let M be the mass and a the radius of the ball, and Mn the

impulse of the stroke. The velocity u may have any direction

subject to the restriction that its vertical component must be

downward, or zero, but not upward. Let Aft be the reaction

of the table. This also is an impulse, so that the ball is subjected

to two simultaneous impulses. If slippage occurs between the

ball and the table, as is usually the case when the motion is not

one of pure rolling, the impulse Aft lies on the cone of friction

whose apex is at C and whose generating angle is c. Finally,

let i, j, k be a system of mutually orthogonal unit vectors, and
let r with origin at the center of the sphere be the position vector

of the point of application P of the impulse (Fig. 74). The
system of unit vectors is chosen so that the ij-plane through the
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center of the sphere is horizontal and the ki-plane is parallel to

the vector u.

The elements of the problem that are given are a, Af, u, r, and

€. It is required to find the reaction of the table t, the velocity

of the center of the sphere, v and the angular velocity, or rate of

spin, CO. As a matter of notation, let

u = u(uii + Uj] + WA:k), V = v(vii + y,j + vjfck),

r = a(rii + r,j + r^k), t = t(tii + tjj + tkk)^

CO == a)(cOci + C*jj + C»>A:k),

so that Ui, Uu Uk, etc. are the direction cosines of the vectors, and

/ 1

[k \
( ^ \
I

i 1

J
Table

C
Fig. 74.

Uy Vy r, etc. are their tensors.

Since the table is hard and in-

elastic, the upward, or vertical,

component of t is equal in mag-
nitude and opposite in sign to the

vertical component of u, that is,

ttk = —uuky

and, since t lies on the cone of friction.

Hence
tk = cos c.

cos €

From the manner in which the i, j, k-vectors were chosen

Uj = 0.

The velocity of the center of the sphere, then, is

V = u + t =
L\ cose/ \cos e/^J

The sum of the moments of the two impulses with respect to

the center of the sphere is the change in the moment of momen-
tum of the ball. Since initially the ball was at rest, the change

in the moment of momentum is the same as the moment of

momentum of the ball after impact. The radius of gyration

of the ball is \/f^- Therefore

= r X u — ak X t,
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since r is the point of application of u and — ak is the point of

application of t. The evaluation of this expression gives

aLV cos €/ \ cos €/ J

The velocity of the point of contact C of the ball with the

table is V — a <0 X k. Since the frictional component of t is in

the same straight line as this velocity, but opposite in direction,

U + t - ^(r X u) X k + ^(k X t) X k = Zk X (k X t),

where I is some constant, and —k X (k X t) is the projection

of t on the ij-plane. If it is agreed to consider only the com-
ponents of the vectors that lie in the ij-plane, this equation can

be written in the simplified form

u + ^k X (r X u) = mt,

where m is some constant. The evaluation of this expression

gives

+ ^{viUk ~ ji + ^UTjUk] =

The ratio of the coefficients of j to i in this equation gives

Sr/Ujfc

(2 — brk)ui + bViUk J = tan say,

and this equation, combined with the equation

= sin^ e,

which exists by virtue of the fact that tk = cos e, determines ti

and tj-; namely

ti = sin € cos /3,

tj = sin € sin /9,

tk = cos 6.

Hence, if m is the coefficient of friction,

t = —uuklfi cos i + M sin j + k].

If the stroke of the cue is horizontal, Uk = 0, Ui = 1 and t van-

ishes; and, if r* ~ cos <p cos Vj == cos <p sin S, Vk = sin <pf then

V = w 1
,

G) = •|w(sin ^ j
— cos V? sin $ k).



298 DYNAMICS OF RIGID BODIES

The ball spins about the j-axis in the forward direction if (p is

positive and in the negative direction if v? is negative, provided

0 — X. If ^ > T, there is in addition a positive spin about the

vertical axis, and if ^ < x a negative spin. Whatever or ^

may be the center of the ball moves in the direction of the stroke,

but the spin depends upon both (p and 6.

If the stroke is nearly vertical, as in a mass^ shot, if 0 = x and

Ui ^ ti— < = /X,

Uk cos €

the ball will not slip either on the table or at the tip, and the

ball does not move at all, for friction will not give a negative

motion.

137. The Rebound from a Rail.—As in the preceding section,

let M be the mass of the ball and a its radius. Let Vi be the

velocity of the center of the ball just before contact with the

rail and V2 the velocity just after contact; let (*>i be the spin

before contact and 0^2 the spin just after contact; let Mr be the

impulse of the rail and Mt the impulse of the table, and finally,

let i, j, and k be a system of unit vectors with i parallel to the

rail, j perpendicular to the rail, but parallel to the table, and k

vertical, directed upward (Fig. 75) so that

Vi = Viii + Vij] 4" 0 k, <1)1 = witi + 0)1,J + o)iA:k,

V2 = V2ii + V2j] + V2}^y <*>2 = 0)2

A

“h 0)2 fj + t*J2fck,

r =r*i+ r,j + r*k, t == Ui + /yj + tkk.

In order not to complicate the problem unnecessarily it will

be assumed that the rail lies in the horizontal plane through the

— s. center of the ball, that the coeffi-

X J \ cient of friction ju with the table

same as that with the rail,

I i

j
and that there is slippage at both

\ / points of contact.

Rail The friction between the ball

Fio. 76. and the rail, and also between

the ball and the table, is opposite in direction to the velocities

of the points of contact of the ball. As these velocities change

their directions, in general, during the impact, a rigorous treat-

ment of this change would require a complete theory of the
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elasticity of the materials in use, which is out of the question

here. Furthermore, since the rail is made of rubber, the contact

of the ball with the rail is by no means a point. An approximate

solution, therefore, is all that can be undertaken. Of course,

the solution of every mechanical problem is, in reality, the solution

of an idealized problem, and is therefore but an approximation

to any concrete application, and the degree of the approximation

in every case is a worthy subject of enquiry. In the present

case it will be assumed that the friction throughout the impact

has the same direction as at the first instant of contact, the

change of direction being ignored. This is not the best approxi-

mation that could be made, but it is, perhaps, the simplest one.

Let P be the point of contact with the rail and C the point of

contact with the table. The velocity of the particle of the ball

at P is

Vi + a j X wi,

and the component of this velocity in the plane perpendicular to

j is

by taking

W = {vu + ao>u)i - awiik;

Vu + acoijfc = w cos a,

0 — aojii = w sin a,

the expression for w becomes

w = w{i cos a + k sin a).

Similarly the velocity at the point C is

Vi + a k X coi,

and the component in the plane of the table is

u = (e;it — ac.;iy)i + (vij + acoji)j;

by taking

Vu ao^ij = u cos /5,

Vij + ac*)it = u sin

the expression for u becomes

u = u{i C08 13 + i sin /3).

It will be observed that if the state of the ball just before impact

is given, the angles a and ^ may be regarded as known.
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If e is the coefficient of restitution with the rail, the normal

impulse of the rail gives

V2j = -evij, Tj = -(1 + e)vii,

which is positive since Vij is necessarily negative. The frictional

impulse is then

— ryW

Hence
(1 + e)v\j^[\ cos a + j sin a].

r = (1 + e)vij[iii cos a — j + sin a].

Similarly,

t = tk[ — iiJL cos — jju sin + k].

The principle of momentum

V2 = Vi + r + t

gives

V2 = [vit + (1 + e)vijyL cos a ~ cos fi]i — [evij — tkfx sin /3]j

+ + (1 + e)viifx sin ajk.

In case the ball does not lose contact with the table the coeffi-

cient of k vanishes, and

4 = —(1 + e)vijfi sin a,

which must be positive. Hence sin a must be positive and wh
must be negative. This value of tk makes

V2 = [vii + (1 + e)vi,vu(cos a + M sin a cos fi)]i

+ [— e + (1 + e)fjL^ sin a sin (1)

The principle of moment of momentum then gives

— aj X r — ak X t,

which, after evaluation, becomes

5
W2 = 0)1 + ^t;i,At[sin a{ (

— 1 + /x sin
i
3)i + /x cos j} + cos a k].

(2)

In case sin a is negative, tk changes sign and also becomes
negative; that is, a downward constraint is necessary to hold the

ball on the table, but as no such constraint exists the ball loses

contact with the table and jumps.
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A solution of closer approximation can be obtained by assum-

ing the lines of friction are a mean between their initial and

final directions, that is,

w = [|(vii + — 2U(wii + W2i)k,

U == [1(^1* + l>2i) — \a{(j>ij + a)2y)]i

+ IK^I; +
but the resulting equations, though solvable, are more compli-

cated.

138. General Equations of Im-
pact.—The general equations for

the impact, or collision, of any
two bodies can easily be written

down, although the working out

of a solution in a given particular

case may be very complicated.

With subscripts 1 and 2 to dis-

tinguish the two bodies and (?o

the common center of gravity of

the two masses, let

m be the mass,

G the center of gravity,

C the particle of m at the point of impact,

9 the point of impact referred to G,

V the velocity of G with respect to Go before

impact,

u the velocity of G with respect to Go after impact,

<i> the angular velocity before impact,

a> the angular velocity after impact,

Aj Bj C, Dy Ey F the moments and products of inertia of m at G.

Reference to Fig. 76 will make this notation clear. The impulse

of the impact will be denoted by R, with the component N
normal to the surfaces at the point of contact and the component
T in the tangent plane.

Since other forces that are acting during the collision are of no

importance, the principle of momentum gives the two equations

miUi == miVi + Ri>

m2U2 = 7n2V2 + R2>
and Ri “f” R 2 — 0.

}
(1)

Likewise the principle of angular momentum gives the equations
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/2aW2 = /26<*>2 4" p2 X R2)

where I\a and hh are the moments of inertia of mi at (?i with

respect to the instantaneous axis of rotation immediately after

and before impact. Since, by Eqs. (82 .5 ), the components of

I la^i — I are

^l(wit — Wii) — Fi(<Oi/ — 6)1;)
— — 6>u),|

-Bi(6)1; — Wiy) — 6)ijt) F i(6)ii 6)it), / (3)

Ci(6>U <*>lJfe)
““ — 6>it) — Z)i(6>i; — 6)i;)>j

and similar equations with subscript 2, no new unknowns are

introduced by the use of the letters /lo, /i6, ha, and hb-

The four equations in Eqs. (1) and (2) contain five unknown
vectors Ui, U2, wi, 6>2f and R. The fifth equation which is neces-

sary for a solution depends upon the nature of the bodies and

their surfaces.

A, The Bodies Are Inelastic and Perfectly Rough,—The
velocities of the particles Ci and C2 just after impact are

respectively

Ui + wi X pi)

and

U2 + <*>2 X p2*

If the bodies are inelastic and perfectly rough, the two particles

C\ and C2 do not separate after collision and their relative velocity

is zero. The fifth condition is therefore

U2 — Ui + <^2 X 92 — X pi = 0 .

B, The Bodies Are Inelastic and Perfectly Smooth,—Imagine a

rectangular system of unit vectors i, j, k in which k is parallel

to the normal of the surfaces at the point of impact and i and j

are parallel to the tangent plane.

If the two bodies are inelastic and perfectly smooth, the

i- and j-components of the relative velocity of Ci and C2 are

unaltered; or, perhaps more simply, the i- and j-components of

the momenta are unaltered. But the k-component of velocity

of C2 with respect to Ci is reduced to zero. The fifth condition is

therefore represented by the three equations
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(Ui - Vi) - (Ui - Vi) • k == 0,

(U2 - V2) - (U2 - V2) • k = 0,

(u2 ““ U] + J)2 X p2 ~ <»>i X pi) • k = 0.

C. The Bodies Are Elastic and Perfectly Smooth,—-At the

instant of greatest compression the k-component of the velocity

of C 2 with respect to Ci is zero, and the magnitude of the impulse

up to this instant can be computed just as in case B, This value

multiplied by 1 + e, where e is the coefficient of restitution, gives

the entire magnitude of the impulse; and since its direction is

normal to the surfaces, the impulse R is entirely known, and
Eqs. (1) and (2) are sufficient.

D, The Bodies Are Elastic and Partially Rough,—If the collision

is of such a character that slippage occurs, the limiting value of

friction is called into play, and the impulse lies on the cone of

friction. The direction of slip may change during the impact, or

it may even cease. If, however, the slip is alw^ays in the same
direction and is the coefficient of friction, the magnitude of the

frictional impulse is yN] and the normal component N of the

impulse is computed just as in case C, The frictional impulse

lies in the tangential plane and its direction is opposite to the

relative motion of its point of contact.

There are, of course, other possibilities, for example, the bodies

may collide at two or more points simultaneously or even in areas.

What happens shortly after the impact depends upon the sur-

faces of the bodies at points other than those at wffiich collision

occurs. The bodies may separate immediately like the billiard

balls; one or both bodies may be given a violent spin; a lead

bullet striking the concave side of a steel target may slide so far

that it is completely worn out; the surfaces may roll upon each

other, or roll and slide; etc.

Problems

1. A loaded freight car of mass mi moving with a speed Vi collides and
unites with a stationary empty car of mass m 2 . The two cars then move
together with a speed v. Show that

mi
V ~

i
Vi.

mi + mi

2. A nail, driven into a beam by a 2-lb. hammer moving 20 feet per

second, advances one fourth of an inch at each blow. Assuming that the

resistance of the beam to the nail is constant show that its value is 600 lb.

and its duration is 1/480 second.
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3. A sphere is thrown against a vertical wall which it strikes at right

angles. Neglecting the rotation of the sphere and the resistance of the air,

show that, if a is the distance to the wall and e is the coefficient of restitution,

the ball will strike the ground at a distance ae from the wall.

4 . A ball strikes a horizontal floor at an angle of 45° and rebounds at an

angle of 46°. Show that

1 - €

^ 1 -be*

Discuss the change in rotation of the ball.

6« A heavy cylinder of height h and diameter d rests on a horizontal

board. If the board is started suddenly into motion with the acceleration

a, show that the cylinder will remain at rest relative to the board if and

only if a is less than both isg and gd/h.

6.

Two spheres Si and of the same mass m are acted upon by an

impulse I and by a constant force F respectively in the same direction along

the line joining them. The sphere «i is at a distance a behind «*. In order

that Si may overtake sj show that it is necessary that

I* > 2amF.

7.

An elastic ball falls from rest at a height h and rebounds repeatedly.

If e is the coefficient of restitution show that the ball will come to a state of

rest in

1 4-e

1 — c
sec.,

and the total distance which it will have traveled is

-h e

- e*

8.

Two equal elastic spheres moving in the same straight line collide

with velocities relative to the ground of

—V and

show that the faster of the two is reduced to a state of rest.

9.

Show that the greatest possible change in the direction of motion of

the cue ball when it strikes an object ball at rest occurs when the direction

of projection of the cue ball makes angle

with the line joining the centers of the bails, a being the diameter of the balls

and c the initial distance between the centers of the balls. Assume that the

balls are smooth.

10.

A stiff uniform rod of length 2a and weight w is pivoted at its cen-

ter point slightly out of contact with the floor and a weight w\ is placed on
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one end of it. A second weight w% falls from a height /12 and strikes the rod

at a distance c from the pivot, thus throwing w\ upward. Show that the

height h\ to which xv\ rises is

\w\ W 2 iw a)

11.

A uniform thin plate of mass per unit area is bounded by the axis

ON of a parabola = 4ax, an arc of the parabola OP, and an ordinate NP,
The corner of the plate at O is the vertex of the parabola. If the plate is at

rest with the point 0 fixed and a blow of impulse B perpendicular to the

plate is struck at P, show that the plate will begin t^ turn about the line OQ,
where Q is a point on the ordinate NP such that

NQ = g’sATP,

and that the instantaneous angular velocity is

where

^ -^ 00
26 iiac^

ON.

12. Given a plane and an ellipsoid. There exist two parallel planes that

are tangent to the ellipsoid. The straight line through the points of tan-

gency passes through the center of the ellipsoid and is called the diametral

line of the plane with respect to the ellipsoid.

If an impulsive force acts upon a rigid body that has one point fixed, the

impulse and the constraint of the fixed point together form an impulsive

couple. Show that the instantaneous axis of rotation (the axis about which
such a body begins to turn) is the diametral line of the plane of the couple

with respect to the ellipsoid of inertia of the body at the fixed point.

Thus the instantaneous axis is perpendicular to the plane of the couple

only when the plane of the couple is parallel to a principal plane of inertia

of the body at the fixed point.

13. An entirely free body that is acted upon by an impulse begins to turn

about some axis. The line in which the impulse acts is called the line of

'percussion^ and the line about which the body turns is called the spontaneous

axis of rotation. Prove the following statements:

() The line of percussion is perpendicular to the plane that passes through

the spontaneous axis and through the center of gravity.

() The spontaneous axis is a principal axis of inertia at the point where
it is cut by a plane through the line of percussion perpendicular to the spon-

taneous axis. Therefore a line that does not contain anywhere a principal

point (Sec. 26) cannot be a spontaneous axis for any impulse.

(c) The perpendicular distance between the line of percussion and the

spontaneous axis is equal to the distance of the center of oscillation (Sec. 61)

from the axis of suspension.

(d) If the spontaneous axis is parallel to a principal axis at the center of

gravity, the line of percussion passes through the center of oscillation.
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14 . A free inelastic plate of any form, turning in its own plane about an

instantaneous center of rotation Sy strikes a fixed point P on the line through

the center of gravity G and S. Show that there are two points, Pi and P2,

equidistant from Sy for which the magnitude of the blow is a maximum and

that the magnitudes of these blows are inversely proportional to the dis-

tances of Pi and P2 from G.

16 . A tripod with three uniform equal legs at right angles with one

another is dropped from a height h and the three feet strike a smooth inelas-

tic floor. Show that if the legs are freely jointed at the top the velocity of

the center of gravity is diminished on striking by one-half.

16 . To one end of a uniform rod that lies on a smooth horizontal table an

impulse parallel to the table, and applied at that end, imparts a velocity v.

If i and j are unit vectors parallel to the table in the direction of the rod and

perpendicular to it and w is the velocity imparted to the other end of the

rod, show that

w • i = V • i and w • j
= — iv • j.



CHAPTER X

THE DIFFERENTIAL EQUATIONS OF ANALYTICAL
DYNAMICS

139. The Generalized Coordinates of Lagrange.—In the

preceding chapters a free use has been made of vector notation

and a free appeal has been made to the intuition. These methods
have led in the end to certain differential equations, the solution

of which, after all, presents the essential difficulties of the problem.

In the present chapter analytic methods, due to Lagrange, lead

to the differential equations in nearly every case with a minimum
use of the intuition. Indeed Lagrange states in the preface to his

‘^M^canique Analytique’’ that no diagrams are to be found in

his book.

In Chapter III, Sec. 28, it was shown that a system of n free

particles leads to differential equations each of the second

order and in Chapter IV that a rigid body may be regarded as a

system of free particles subject to 3n — 6 constraints, and there-

fore a rigid body that is entirely free has six degrees of freedom

—

that is, the position and orientation of the body are completely

specified by six independent parameters.

It is possible to generalize this and to say that any material

system can be regarded as a system of free particles subject to

3n — k independent constraints, and having therefore k degrees

of freedom. That is to say, the coordinates of the particles

Vii can be expressed by means of k parameters, or by means

of k parameters and the time if the constraints depend upon the

time in a known way. These parameters are known as the

generalized coordinates of Lagrange.

Consider, for example, a single rigid body the coordinates of

whose particles are Xi, t/ij Zi with respect to some fixed trihedron

of reference. Imagine another trihedron with origin at the center

of gravity of the body, rigidly attached to the body. With

respect to this trihedron the coordinates of the particles are

(i, Vif ft which, no matter how the body may move, remain fixed

constants throughout the motion. If x, y, z are the coordinates

307
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of the center of gravity of the body with respect to the fixed

trihedron of reference, the equations of transformation are

Xi ~ X + ai^i + oi2Vi +
Vi = y + + 03ft, / (^)

Zi — z + + 72’?t + Taft-;]

where on, 0: 2 ,
. . . , Ts are the nine direction cosines that define

the orientation of the trihedron that is attached to the body with

respect to the fixed reference trihedron. These direction cosines

can be regarded as functions of the three Eulerian angles

and as in Sec. 52 w^here the functional relationship is given.

If the direction cosines in Eq. (1) are replaced by their values

from Sec. 52, all of the coordinates Xi, iji^ and Zi, are expressed in

terms of the six independent parameters Xy y, 2
;

By and if the

values of these parameters at any instant are known, Eq. (1)

gives the position of each particle of the body. It is desirable

therefore to have the differential equations of these parameters

which are the Lagrange coordinates in this case.

I. HOLONOMIC SYSTEMS

140. The Differential Equations of Lagrange.—Each particle

of any system must satisfy a set of differential equations of the

form

TtiiXi' = Xiy 1

rriiyi' == Fi, z = 1,
• •

•
,
n. > (1)

rriiZi" = Ziy j

where Xi Yi and Zi represent the components of the resultant

of all of the forces, both interior and exterior, that are acting upon
it, Sec. 28. While these equations must be satisfied, they are not

independent if constraints exist. Suppose that constraints do

exist and that the system has only k (<3n) degrees of freedom.

Then there exist equations of transformation that relate the

coordinates Xi, 2/t> and Zi and the k parameters (Lagrangian

coordinates) that are needed to express the k degrees of freedom,

as in Eqs. (139.1). Let these equations be

• •
•

, Qk; 0 ,|
y.' = • •

,
(2)

» Qk'i 0»j
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which may or may not contain the time: it is immaterial. In the

following analysis, it will be understood that

dXi _ dipi dyi _ d^i dZi __ do3i

dqi
~ dq/ dqi “ dq- dq, ” dqj

If the first of Eqs, (1) is multiplied by dxildqj, the second by

and the third by dZifdqj and the three equations are then

added, there is obtained

m
V9/

‘

" +
dqf dq&") - i = 1,

where, for brevity of notation,

dqj dqi dqj

(3)

(4)

It will be verified without much diflEiculty that Eq. (3) can be

written in the form

d
'

dt[^
(dXi ,

^tl ^ Xx “1“

\dq, .

^ If;''')]

j
— m. +v'(^

‘\dqj :;)
^

"'(I;) ]

- <?,„)

where, as usual.

(5)

If the equations of transformation are differentiated with

respect to the time, it is seen that

i-i
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From these equations it is found that

result from the identities

dXt' ^ d‘^x,
, d‘^Xi ^ /^x*Y

dQj .jiLJdqi dqj^^ didqj \dqj/
1

By virtue of the equalities in Eqs. (7), Eqs. (5) can now be

written

and if the sum of these equations with respect to the letter i is

taken, there results

Since the kinetic energy of the system is

r = i + y/' + Zi'),

1-1

it is readily seen that Eqs. (8) become

1-1
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if, for brevity

0. - S'?" - +
t- 1

+ Z
dqi

( 10)

Equations (9) are the general form of the equations of Lagrange.

They are valid for all systems in which the constraints are

expressible in an integral form, or, if they are in a differential

form, these differential forms are integrable. Systems of this

type are called holonomic. If the constraints are expressed in

non-integrable differential forms, or if the equations of trans-

formation involve the derivatives, q/, . . . , qkf it is readily

seen that the above analysis does not hold and the system is

non-holonomic. An example of such a system is a sphere rolling

upon any given surface, for instance, a plane. In this case the

point of contact describes a curve upon the sphere and upon the

given surface, and one of the constraints is that there is no
slipping. This requires that an arc element on the sphere be

equal to the corresponding arc element of the curve on the given

surface. That is, the constraint is differential in form, and this

differential form is non-integrable.

It is evident from Eqs. (6) that the x/, y/, and z/ are linear

functions of qi\ . . . , gjt' and therefore T is quadratic in the

g'^s. Furthermore T is homogeneous of the second degree in

the g'^s if the time does not occur explicitly in the equations of

transformation, that is, if the constraints are not moving con-

straints
;
otherwise T is quadratic but non-homogeneous.

141. There Exists a Potential Function.—The equations of

Lagrange have a very simple form when there exists a potential

function for the exterior forces.

The forces Xi, F,, Z, [Eqs. (140.1)] that act upon the individual

particles of the system are divisible into two classes: the interior

forces and the exterior forces. Therefore

Xi - Xi<^^ + X/2), Yi = F/^> + Zi - + Z/*>;

and [Eq. (140.10)]
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the interior forces being represented by the superscript 1, and the

exterior by superscript 2.

The components of the vector that represents the displacement

of the particle at Xt, ?/», 2t, are (I, 360)

dqi dq,- dqj

assuming that gy alone varies, the other parameters remaining

fixed. The components of the resultant of the interior forces

that are acting on this particle are Yi^^\ and Hence

n

t- 1

represents the work done on the system by the interior forces in an

infinitesimal displacement due to a change dgy in the parameter

gy; or, for short, an infinitesimal displacement in the gy direction.

It was shown in Sec. 48 that the work done on the particles of a

rigid body by the interior forces is zero, and therefore for a rigid

body
n

This result can be extended to systems of rigid bodies that are

connected by pivots, or sliding and pure rolling contact in so far

as the friction of pivoting, sliding or rolling can be ignored; in

these cases either there is no displacement, as in pivoting and

rolling, or the displacements are perpendicular to the pressures

as in the case of sliding. For all such cases of articulated systems

of rigid bodies the work done by the interior forces vanishes.

The work done by the exterior forces is, of course.

n

t-1

For the sake of a name, therefore, it is convenient to call Qy the

component of the force in the g, direction. Aside from a certain

factor, this is strictly correct in the case of a single particle

(I, 360). In the case of systems of many particles dg, represents
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a change in configuration of the system due to an infinitesimal

change in the coordinate the other q^8 remaining fixed. Since

Qjdqj is the work done by the forces acting in this change of

configuration, it is convenient to retain the language that is

applicable to a single particle, and say that the Q, are the com-

ponents of the resultant force in the qj direction.

If there exists a potential function C/(xi, t/i, Zi] Zi]

. . . ;
of the exterior forces, so that

V.(2) _“ ax/
y .(2) = dU

dyi
7’.( 2 ) — dU

dz-
1

,

then, for all systems in which the work done by the interior

forces vanishes,

Qi =
dXi dqj

1

+
dlJ dyi

,

dt/ a^A
dyi dqj dZi dqj) dq-

Under these circumstances the equations of Lagrange [Eqs.

(140.9)] become

/ arV _ (^\ ^ ^
\dq/) \dqj) dqj'

or

/arV diT + U)

\dq/) dqj
= 0

, i = 1, k. ( 1 )

If a new function L is defined by the relation

L = r + 17, (2)

the equations of Lagrange can be written

since U does not depend upon g/, ^2 ', . . . , qu- The function

L is called the kinetic potential, or the Lagrangian function. Since

Uy the potential function, is the negative of the potential energy,

it is seen that the Lagrangian function is the difference between the

kinetic and the potential energies of the system.
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If one knows how to write down the kinetic and potential

energies in terms of the parameters adopted, Qij • . • , Qk and

their derivatives gi', . . . , qk\ Eqs. (3) furnish the scheme for

deriving the differential equations of motion. It will be noticed

that the constraints do not appear in the equations; that is, the

constraints have been eliminated.

Equations (3) apply only to holonomic systems; that is, to

systems for which the equations of transformation appear in

finite form and independent of the velocities; or, if they are in

differential form, these forms are integrable. Otherwise the

system is non-holonomic, and Eqs. (3) are not valid in general

even when they can be formed.

142. The Energy and Other Integrals,—Suppose the con-

straints are independent of the time. Then the equations of

transformation also are independent of the time, and Eqs. (140.6)

are both linear and homogeneous in r;/, . . . , qk] and the

expression for the kinetic enc^rgy T is homogeneous and quadratic

in these letters.

Let Eqs. (141.3) be multiplied by q/ and then summed with

respect to the letter j. There results

Now

and

( 1 )

Qj
n

Hence

Since T is a homogeneous quadratic form in qi\ * • • , qk j
it

follows from Euler^s theorem on homogeneous functions that
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Hence

= 2T.

is an exact differential; and, by integration,

T — V — E = constant. (2)

Since T is the kinetic energy and — IJ is the potential energy, the

total energy E is constant. Equation (2) is the energy integral.

It is evident, at once, from Eqs. (141.3) that if for any j

dL
dcjj

^ 0
,

the remaining part of the differential equation is an exact differ-

ential, and that

dL
, ==/?; = constant (3)

aq
j

is an integral. Under these conditions qj is called an ignorable

or cyclic coordinate because it does not occur in L. For each

ignorable coordinate, there is a corresponding integral.

143. Systems That Are Constrained to Rotate Uniformly.

—

If any holonomic system is placed upon a table that is rotating

uniformly, it will still be holonomic when referred to the rotating

table and Lagrange’s equations are still valid. Let the axis of

rotation be taken as the z-axis, then

Xi — pi cos + 0)t)

yi = Pi sin {Bi + wt)

~ ^ i

in which the angular velocity co is constant. The polar coordi-

nates p and B then refer to a polar axis that is at rest relatively to

the table. The kinetic energy becomes

T = + yi' + z/')

= iSmCr/’ + p/’ + Pi^B/') + i^Zniipi^Bi' + W^rmpi^
= T2 “f" o)T

)

4“ (ji}^T Q.
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In this expression T2 represents the terms homogeneous of

degree 2, Ti homogeneous of degree 1, and To homogeneous of

degree zero in the accented letters. If the equations of trans-

formation do not otherwise contain the time, T2 will be a homo-

geneous function of degree 2 in g/, . . . , Qky T\ and Tq will be

homogeneous of degree 1 and 0 respectively in the same letters,

and all three in general will be functions of the coordinates

gi, . . . qk>

The equations of Lagrange then become

If the coefficient of w in this equation vanishes and if a new
potential function C/2 is taken such that

C/2 = C/ +
the above equation reduces to the previous form

/aTaV _^ ^
\dg// dg/ dg,

The motion of the system is just the same as though the table

were at rest and the term were added to the potential

function, or were added to the potential energy, and
these are called the centrifugal force terms.

The coefficient of a> vanishes if every d/ vanishes, for then

Ti = 0. This is impossible for a rigid body that is actually

moving with respect to the table except for a translation parallel

to the axis, but it is possible for discrete particles, or a straight rod

or a thin plane sheet. The coefficient also vanishes if Ti is an

exact differential, say

Ti = S',

for then

\dq/) \^Q/) \dqi) dg, dq/

and this condition is always satisfied if A; = 1, for then Ti has the

form

Ti^fiqi)qi'.

144. Reduction of the Order of the Differential Equations

When There Are Ignorable Coordinates.—In 1876 Routh
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showed that if the system has s (<k) ignorable coordinates the

resulting integrals can be used to reduce the order of the differ-

ential equations by s and still preserve the Lagrange form of

the equations. It is the purpose of the present section to

exhibit this reduction.

It will be supposed that the notation has been chosen in such

a way that the integrals [Eqs. (142.3)] are

^”-7 = i = 1, 2, . . . .. (1)
dqj

These equations are linear in g/, . . . , g/, and are independent

of . . . ,
Equations (1), therefore, can be solved for

g/, . .
. ,

in terms of 0i, . . . ,
and

, gjt. Now
form the function

a

and eliminate gi', . . . ,
from it, so that -K becomes a function

of ^a-fl> • ’
' } Qk) Qa+l y

• • • j Qk ) ^ly • • • > ^a»

If the letters q^ q/y are given small arbitrary variations the

functions L and R also will receive small variations, so that

«

Since L does not contain gi, . . . , g,,

and since by Eqs. (1),

it is seen that

j = 1, s,

8

J-1

«

J-1 j -

1
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;«s+l y*s+l

But if the variations are formed directly from R,

“ - 2 w/”' + 2 + 25S*'*''
*’>

y-fl+1 y=>»a+i

Therefore, if the variations in p]qs. (3) and (4) are the same,

and, since the variations are arbitrary, it follows that

dL dR dL dR .
, ,

TiTT ; = .S' + 1,
• *

•

,
h,

dQj dqj dqj dq,

and

,
dR=

-w;
The equations of motion [Eqs.

i = 1,
• •

•
,

.s*.

(141.3)] therefore become

Qi

i = s + 1,
• •

•
,

/b,

i = 1,
• •

•
,

5. (5)

Thus, if the dynamical system has k degrees of freedom and s

ignorable coordinates, the problem can be reduced to one with

k — s degrees of freedom and s quadratures.

146. The Integral of Angular Momentum.—Without assuming

the existence of an energy integral, suppose a dynamical system

has the kinetic energy T. Suppose further that a variation of the

coordinate qij the other q^s remaining constant, corresponds to a

rotation of the entire system about a fixed axis and that qi is an

ignorable coordinate; that is, qi does not enter in T, and Qi = 0.

Then Eq. (140.9) gives
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Gf)'-.
dT

or -— = constant.
dqi

Let the fixed axis be takciii as the 2:-axis of a rectangular

coordinate system, then

dT
dq

r ^ f idx . ,dy ^ ,dz\

Passing to })olar coordinates, let

X — r (;os 0, y — r sin 6, z = z,

so that

dx

dqi

Then

dT
dq

— —r sin 6 — —
?/,

a V o^ = r cos e = +x, = 0.
dqi dqi

'
~ ~ y^'') — = angular momentum.

The angular momentum is constant. Hence the theorem:

Whenever a system ran be rotated as if it were rigid about a fixed axis

without violating any of the constraints and without altering any

of the forces that are acting on it, then the moment of momentum of

the system about this axis is constant.

Again, suppose that q\, having the same meaning as before, is

not an ignorable coordinate. The kinetic energy will not depend

upon (/i, although it does depend upon qf

,

since

IVL {xr + yr + z/G = + r^-B^ + z’'),

does not depend upon the angles The Lagrange (‘quation

(Eq. (140.9)1 for the coordinate q\ becomes

Since Qi dqi is the work done in an infinitesimal rotation, Qi

is the couple that is acting on the system, or the sum of the

moments of all of the forces, including the constraints, with

respect to the fixed axis. Since dTJdqf is the angular momen-
tum, as has just been seen, the theorem on angular momentum
(I, 32) again presents itself, namely: the time rate of change of the
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angular momentum about any fixed axis is equal to the sum of the

moments of all of the forces with respect to that axis,

146. Reduction of the Order of the Differential Equations by

Means of the Energy Integral.—In 1900 Whittaker effected a

reduction in the order of the differential equations by means
of the energy integral in a manner somewhat similar to that of

Routh (Sec. 144) for the ignorable coordinates, the Lagrange

form of the differential equations being preserved.

If the time does not occur explicitly, the kinetic energy is a

homogeneous quadratic form in qij . . . , qk, and the energy

equation [Eq. (142.2)] can be written

since

-L = E,

f
dL

i9j'— = 27’ and L = r + 17.

If the substitution

?/ = 3 = 2,, k,

( 1 )

(2 )

is made, equation (1) can be solved for qi as a function of the

letters 'p%, pk] qi, , qk, or it can be regarded as

defining such a function implicitly. By the same substitutions

the Lagrangian function L passes over into another function W i,

so that

•
• 9*';?!,

• •
•

, 9*) = Wi{qi; pt,

Now
k

dL _ dWi _ q/ dWi
dqi

~
Bqi dpi

'

dL ^ 1 dWi
dq/ qi' dpi’

dqj dq,-
’

Let the function

j-2

3 = 2
.

3 = 1,

dL q/W = Qi

^dq/qy’

Phy Qlf

,
k,

,
k.

, Qk).

(3 )
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be formed and the substitutions Eq. (2) made in it. By the use

of Eqs. (3), it is found that

W = dWi
dgi'’

(4)

and the energy equation becomes

gi
,dWi
dqi'

Wi = E.

If this expre.ssion is differentiated with respect to p,- and g,-

respectively, and it is remembered that gi' is a function of these

letters, it is seen that

'dWi dq/ 4_
d^Wi \ _ aiTi

^9a
^.dqi'^ dPi dq/ dpi) dPi’

9i'(
dWi

/ 0

dq/
+ dWi \ -

’

dqi dqi dq/ dqi) dqi ,

Eq. (4),

(5)

dW _ dWx dqi' dWi
dpi

dW
dqi^ dpi dqi dpj

aWi dqi' aWi
dqi

(6)

dqi dqi dqi dqi dq, }

A comparison of Eqs. (5) and (6) shows that

dW 1 dWi
dpi qi' dpi’

and

^ = Jl
dqi qi dqi

’

and then, from Eqs. (3),

dW dL , dW 1 dL

dpi dq/ dqi qi dqi
2

,

(7)

The equations of Lagrange [Eqs. (141.3)] then become

Since the time does not occur explicitly in L, it does not occur

in W. After forming the derivatives dW/dpjj the letters p, can

be replaced by their equivalents



322 DYNAMICS OF RIGID BODIES

Pi = IL
9/ dqi

It is then seen that Eqs. (7) are Lagrange equations for a new
system in which W is the kinetic potential and plays the role of

the time. If these equations can be solved, ^ 2 ,
. • • , ^a: will be

expressed as funct ons of qi, and these values substituted in the

energy equation [Eq. (5)J will give qi as a function of the time by a

quadrature. Thus by means of Whittaker^s transformation,

the energy integral reduces a dynamical system with k degrees of

freedom to another system with fc ~ 1 degrees of freedom, and a

quadrature.

147. Motion with Reversed Forces.—Suppose there is given a

dynamical system in which the constraints are independent of the

time and the forces depend only on position. Lagrange’s

equations are then

Under the hypotheses made, T is a homogeneous quadratic

function of
, qk\ and Qj depends only upon ^ 1 ,

. . . qk.

Suppose also that the solutions of these equations are

Qi ~ fi *
*

*
>

‘
'

y Pfcy 0 ;^ /qn

Q/ = , aA.;
• •

•
, fik] t)yj

^ ^

where the as and /3’s are constants such that

Qi(0) = ay, gy'(O) = ^y, j = 1,
• *

*
,

fc. (3)

Suppose further that t is changed into ir, i = y/ Since

{dT/dq/y and (dT/dq,) are homogeneous of degree —2 in dt, and

Qj is independent of dt, the differential equations (1) become

where

•••,?*) = Tiqi', •
•

•
, g*'),

the accents denoting differentiation with respect to t and the dot

differentiation with respect to t. On account of the homogeneity

of Tf Ti is precisely the same function of the arguments
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Qu • • • t 4h that T is of g/, . . . ,
g*'. The solutions however

become

Qi = •••,«*; iSi, •••
, fik] ir), (5)

Qi • *
•

> ttfc; /?i,
• •

•
, iSife;ir);

and the initial values are

gy(0) = ay, gy(0) = i/3y, j = 2,
• •

•
,

A:. (6)

Equations (4) differ from Eqs. (1) only in that the forces are

reversed. If t is the time in Eqs. (1) and r is regarded as the time

in Eqs. (4), Eqs. (2) are the solutions of Eqs. (1) and Eqs. (5)

are the solutions of Eqs. (4). If the letters a and have the

same values in the two cases and if the initial values are real in

both cases, it is necessary that /S, = 0 for every j; that is, the

system must start from rest. Under these conditions the solution

for] Eqs. (4) is obtained from Eqs. (2) merely by changing t

into itj and since Eqs. (5) also are real, C

it follows that g,- is an even function

of t and q/ is an odd function.

For example, the simple pendu- /
lum (Fig. 77) oscillates in the arc / \

BAD of the vertical circle with a ; 0 ;

certain period Pi, the pendulum • *
;

being at rest at the points B and D. \ j
If the forces be reversed, or, its ^

equivalent, if the circle be rotated X
through 180® about a horizontal axis

through the center 0, the pendulum a

oscillates in the arc BCD with a

certain other period P2 . Consequently, if d represents the angle

which the pendulum rod makes with the vertical, ^ is a periodic

function of the time, say

0 =

and ip{t) has the real period Pi. If the forces are reversed

B =

is real with the periodP2 . Thus (p{t) is a doubly periodic function

of t with the periods Pi and iPz, Therefore fp{t) cannot be

functionally simpler than an elliptic function. If it were known
that <p{t) is a uniform function, this would be sufficient to show
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that it is an elliptic function, which is actually the case. (See

also I, 306.)

148. Lagrange’s Equations for Impulses.—The changes in the

momenta or the velocities that occur during an impulse are very

simply derived from the Lagrangian equations of motion, which

are

for on multiplying through by dt and integrating from 0 to

there results

The first term is immediately integrable and represents the

change that occurs in dTIdq/ during the impulse; that is

dT dTi I

dq/

the first term representing the values at the end of the impulse,

and the second the values at the beginning. The second integral

vanishes, for the integrand dT/dq, is finite and the interval of

integration is infinitely short. The third integral,

j^Q? = / ;,

is the impulse in the qj direction, or the (//-component of the

impulse.

Hence for impulses, the equations of Lagrange become simply

dT
dq/

dT
dq/ t-o

i = 1;
• •

k.

These equations are linear in the q/’s, since T is quadratic in

these letters. The determinant does not vanish, as is shown
in Sec. 162. The equations can therefore be solved, and the

changes in the momenta that occur during the impulse can be

determined.

149. The Atwood Machine.—As a simple problem illustrative

of Lagrange^s method consider the Atwood machine in which a

rope with weights of mass mi and m2 attached at each end is
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placed over a pulley of radius a and moment of inertia with

respect to the axis. Determine the motion when the system is

released from a state of rest under the assumption that there is no
friction, and that the rope is without mass.

Let the free ends of the rope initially be of length h and hy and
let 6 be the angle of rotation of the pulley. The kinetic energies

of the two weights are evidently

and

respectively, and the kinetic energy of the pulley due to its rota-

tion is [Eq. (49.1)]

therefore

T == + mk^]6'^.

The potential energies of the two weights with respect to the level

of the axis of the pulley are

+ d^) and —rn 2gil 2 ~ dd)f

and the potential energy of the wheel is constant and equal to

zero. Hence

U == migih -f cid) + w^2^(^2 — dd)y

and

L = Wirrii + m2)a^ + + viig{li + ad) + m^gil^ — dB),

The system has but one degree of freedom, and Lagrange^s

equation,

(dL\ ^ dL^

\dd') dd'

gives the differential equation

[(mi + m2)a^ + mk^]d'^ = (mi — m2)gay

or

= (mi - m2)ga

(mi + m2)a^ + mk^

The motion is therefore a uniformly accelerated one.

160. The Double Pendulum.—To a simple pendulum of mass

mi and length li is attached a second one of mass and length h.
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Determine the equations of motion under the assumption that

the system is constrained to move in a vertical plane (Fig. 78).

Let 0 be the fixed point of suspension of h ;
let

Bi be the angle which h makes with the vertical,

and ^2 the angle which 1% makes with Zi. If O is

the origin of a rectangular system of coordinates

with the i/-axis vertical, the equations of trans-

formation are

Xi = +Zi sin ^1,

X2 = +li sin di + h sin {6i + ^2),

t/i = -Zi cos $1,

y2 = —h cos — I2 cos (^1 + 62);

Fig. 78 .

from which, since

T = 2/1'*) + ^^2(0:2'’ + 2/2'’),

U == — - m2gy2y

is readily derived

T == -f* v%2ij'i^ "I” 2ZiZ2 cos 02 “f*

*4” ^2[ZiZ2 cos 62 ”4“ "4" ^ 1̂1^2^02
i

U = {nil + ni2)lig cos 0i + m2l2g cos {0i + ^2)^

The Lagrangian function is

L = T + t/.

Hence

dL

601
7 — [7/I1Z1* “b ni2{li^ “b 2Z1Z2 cos 02 "h l2^)]0i “h

m2[ZiZ2 cos 02 + Z2^]^2',

602

601

6L t—— = 7712/1/2 sin 0201
*

+ 7712/1/2 sin + niUg sin {0i + ^z).
OU2

7
= 7n2[/l/2 COS 02 + /2^]^l' + 7712/2^^2',

= (ttii + m2)lig sin + 7712/2^^ sin (^1 +

The differential equations of Lagrange
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now become the differential equations of motion,

[mih^ + m2ili^ + 2I1I2 cos 02 + l2^)]0i' — 2m2lih sin 0201 02 —
ITI2I1I2 sin 0202^ ”h 'f^2[lil2 cos 02 “h l2^]02'^ "I"

(mi + m2)l\g sin 0 i + m2l2g sin (^1 + ^2) = 0, (1)

and

m2[ZiZ2 cos 02 4“ l2^] 0 i' 4“ f^2l2
^
02

^'
4" m2ZiZ2 sin 020 i

4- 'in2l2g sin (^1 4- ^2) = 0. (2)

Since there are no ignorable coordinates, no integrals can be

obtained from this source. The energy integral

T — U = constant,

holds, and this is the only integral that is evident.

If I2 = 0, the double pendulum reduces to the simple pendulum.

The second equation [Eq. (2)] is satisfied identically, and the first

[Eq. (1)] reduces to

(mi 4- wi2)Zi^^i" + (mi 4" m2)Zig sin 0 == 0,

which, after removal of the factor (mi 4- m2)Zi, is seen to be the

equation for the simple pendulum. Likewise, if h == 0, the

double pendulum becomes a simple pendulum. In this event it is

seen that Eqs. (1) and (2) become identical, namely,

m2l2^{0\' 4" ^2") 4* m2Z2^ sin (^1 4* ^2) = 0.

The equations again reduce to the equation of motion of a simple

pendulum, since ^1 + 02 is the angle which U makes with the

vertical. Evidently, 0 \ can be taken equal to zero.

161 . The Motion of a Rigid Body about a Fixed Point.—

A

single point of a rigid body is fixed in position, but the body
otherwise is free to move. Find the equations of motion.

This problem was treated in Chapter VI, and the discussion

there led to the establishment of Euler's equations [Eqs. (85.3)].

In the present section the approach is through the method of

Lagrange.

Let 0 be the fixed point, which will be taken as the origin of a

trihedron f, 77, f that is rigidly attached to the body, and also

as the origin of a trihedron x, t/, z that is regarded as fixed in space.

In order to define the position of the body in space it is necessary
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merely to define the position of the moving trihedron 77, f with

respect to the fixed trihedron x, y, z, and, as is shown in Sec. 52,

this is conveniently done by means of the three angles of Euler,

By (py yf/y whcrc B is the angle between the z- and the f-axes, ^ is the

angle between the x-axis and the line OK (Fig. 24) the ascending

node of {?;-plane on the xy-plane, and <py called the angle of

rotation, is the angle between the line of nodes OK and the

{-axis. These three angles will be taken as the coordinates of

Lagrange.

If the y]-y and ^‘-axes coincide with the principal axes of

inertia of the body at the point 0 (Sec. 20), the kinetic energy

of the body is, by Eq. (83.2),

T = + cv^),

where, as before, Ay By and C are the principal moments of

inertia of the body at the point 0, and co,, and are the

angular velocities which, expressed in terms of the Eulerian

angles and their derivatives are [Eqs. (85.4)]

sin 0 sin B^ cos (py

dir, = sin B cos (p — B' sin (py ( 1 )

Taking Lagrange^s equations in the form

\dq:) dq,

and identifying the coordinate g, with the coordinate v?, it follows

that

Now

(21)' -?I = Q
\d<p'J dq>

dT _ dT „

d(p' d(t){ dtp'

(2)

since <p' enters in T only through Wf, and

^ ^ dT dw(
,
dT dw,

dtp

for

dT . dw(

due dp

dot dp dw, dp

= sin B cos (p — B^ mn (p
^ +w,,
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D It ' a ' at—— = — —\L' sm 0 sin tp — 6 cos <^
= —cot.

dco, dv?

Hence Eq. (1) gives

CcOf^ + (jB — ^)cOfCO,; = (3)

in agreement with the third equation of Eqs. (85.3). Since

the product of dip is the work done on the body in an infini-

tesimal displacement \p and 6 remaining constant, evi-

dently, is the (f-y or f-, component of the couple that is acting

on the body. It is represented by in P^q. (3) in conformity

with the notation in P]qs. (85.3).

Equation (3) does not contain the coordinates d explicitly,

and the symmetry with respect to the angular velocities gives

the other two equations of Euler,

ylc,' + (C - J?)c.,C.f = N,y\

+ {A - = N,y j

without computation. The actual computation of these equa-

tions by the method of Lagrange is much more laborious than is

the derivation of Eq. (2), but it involves no particular difficulties

if it is recognized that

sin 6 = sin ip + Qe cos v? sin 0 cos 6 sin <p, 1

Nr, sin 6 — cos (p — Qe sin v? sin 0 cos B cos tp, > (5)

iVr = + Qy, J

for which a study of P'ig. 46 is recommended, Qe being the couple

about the line OK, the couple about the z-axis, and the

couple about the f-axis.

162. Motion of a Top on a Smooth Horizontal Plane.—It will

be assumed that the top is the common top of revolution and
that the f-axis coincides with the axis of the top. The central

ellipsoid of inertia is then one of revolution with A — B. If Z is

the distance from the point of the top to the center of gravity,

the height of the center of gravity above the plane is I cos 6, and
its potential energy is Mgl cos 6,

Since the plane is smooth the components of the velocity of

the center of gravity parallel to the plane are constants which
for the present purpose can be taken equal to zero. The z-com-

ponent of the velocity of the center of gravity is —IS' sin $,
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Hence the exterior kinetic energy (Sec. 35) is sin^ 6. The
interior kinetic energy is, as in the previous section,

and the angular velocities are related to the Eulerian angles just

as in Eqs. (151.1).

The Lagrangian function is therefore

L = sin^ $ + sin^ 6 + B'') + i-C(^' cos B + B^Y
— Mgl cos B.

It will be observed from this expression that ^ and tp are ignorable

coordinates; and therefore

nr

= A\l/^ sin^ B + C cos B (^' cos B + B') = ci, (1)

HI

-P, = C(^P' cos ^ + /) = (2)

are integrals; and, in addition to these two, there is the energy

integral

sin^ B + hA{yl/'^ sin^ B + B'') + \C{yl/' cos B +
+ Mgl cos B = C 3 . (3)

Inasmuch as these three integrals are suflBcient to determine the

motion it is not necessary to write down the differential equations

of motion.

Equations (1) and (2) are linear in p' and and their solution

gives

r = Cl — 02 cos B

A sin^ B

{A sin^ B + C cos^ B) — Cci cos B

AC sin^ B

(4)

(5)

The elimination of and between Eqs. (1), (2), and (3) gives

(MP sin* e + A)e'' + ^ + 2Mglco8 e = 2c»-A sin^ B C
and by taking

cos B = Xj

A - Ma\ C = Afc2, Cl = C2 = MyaS

2c, - = Mr,*,
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it reduces readily to the equation

a^[a^ + P {1 — — (71
^ ““

— 2a^glx{l — x^), (6)

The variables are separable in this equation, but x is, in general,

a hyperelliptic function of the time. After B has been expressed

as a function of the time, Eqs. (4) and (5) give ^ and <p as func-

tions of the time by two quadratures. The entire problem is

therefore reduced to three quadratures.

II. NON-HOLONOMIC SYSTEMS

163. Example—the [Rolling [Sphere.—Let a:, y, z be the

coordinates of the center of the sphere and and B its Eulerian

angles. If U is its potential function, the Lagrangian function

L is

L = \M{x'^ + x/ + 0'’) + + U (1)

where the angular velocities oj,,, and are related to B\

B' as in Eqs. (151.1).

If the sphere is entirely free, the system is holonomic, and the

equations of motion are formed in accordance with the method of

Lagrange; the sphere has six degrees of freedom. If the sphere

is constrained to be always in contact with the xy-plane and

the contact is smooth, it is necessary to write merely

2 ~ a, 2' = 0, (2)

and the degrees of freedom are reduced from six to five. The
constraint [Eq. (2)] leaves the system holonomic; but if the

sphere is constrained to a pure rolling contact, or rolling and

pivoting, it is necessary to formulate the fact that the velocity

of the particle of the sphere in contact with the x^z-plane is

always zero. These conditions are given in Eqs. (121.7) in the

form

crX ““ Cl(j)y ~~ 0, Cjf 4— €L(j)x ~ X (^)

where d is the velocity of the center of the sphere, and therefore

cr* = X
,

^ y f
<r* = Z

,

and w», wy, are the components of the instantaneous angular

velocity with respect to the x-, y-, and z-axes. Now
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Wx = aicof + a20)r} + aacof,)

and (4)

where the a's and p's are the direction cosines, as in Sec. 52

where their expressions in terms of Euler’s angles are given.

On substituting in their values and inserting the values of

and from Eqs. (151.1), Eqs. (3) become

x' — aO^ sin \p + a<^' sin 6 cos \p = 0,

y' + ad' cos \p + a<p' sin 6 sin \p
= 0, (5)

or, on multiplying through by d/,

dx — a sin \p dd + a sin 6 cos \p d(p = 0^

dy + a cos 4/ dd a sin B sin d(^ = 0. (6)

Only such displacements as satisfy Eqs. (6) are possible, or,

if preferred, only such velocities as satisfy Eqs. (5). There are

two of these constraints in addition to the constraint in Eq. (2),

and the degrees of freedom of the sphere are reduced to three.

As Eqs. (6) are not exact differentials it is not possible to express

the admissible geometric positions and orientations of the sphere

by means of three independent parameters. Hence the system

is non-holonomic, and the equations of Lagrange cannot be used

without modification.^

164. An Extension of Lagrange’s Equations for Non-holonomic

Systems.—Let x, y, z be the coordinates of any particle of mass

w, and n the number of degrees of freedom, so that the coordi-

nates $' 1 ,
. . . ,

can be regarded as entirely free. Suppose

further that for any arbitrary variations {t constant)

bx = aibqi + a^bq^ ^ an^^n,!

by = hibqi + h^bq^ + • *
' + (1)

bz = C\bqi + C2bq2 + * *
* + Cnbqn*]

* The first extension of Lagrange's equations to non-holonomic systems was
made by Febrebs, Quarterly Journal of Mathematics XII, (1873). See also

C. Neumann, Berichte der kdnigl. Gesellschaft der Wissenschaften zu Leipzig

(1888); and Vierkandt, Monatshefte ffir Mathematik und Physik,"

III, (1892); Hadamabd, Sociiti des Sciences de Bordeaux^ 1895; Carvallo,
Journal de VScole PolyiechniquCf 1900; Kortweg, Nieuw Archiefs 1899.
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In these equations the coefficients ai, ^2, . . . ,
c„ are functions

of the coordinates q 2 )
> • • y Qn and the time, and possibly k

other parameters pi, . . . ,
whose variations are related to

the variations of the (/^s by the equations

5p\ — otn^qi + oL2\hq2 -f-
*

* + OLni^qn

6pk — oiu6q\ + ot2k^q2 + ‘ ‘
‘ + ank^qn^

(2 )

Under these conditions the displacement of the particle that

occurs in its motion in the interval of time dt is given by the

equations

dx = fli dqi + a 2 dq 2 + • •
• + Un dqn + ao dt^

dy = bi dqi + 62 dq2 + *
' + 6n dqn + ho di, (3 )

dz = Cl dqi + C2 dq2 + *
•

* + Cn dqn + Codt;

and the changes that take place in the p’s are given by the

equations

dpi = an dqi + a2i dq2 + • *
* + otni dqn + aoi dtj

(4)

dpk = a\k dqi + a2k dq2 + * *
* + oLnk dqn + otok dtj

the added coefficients Uo, 60, co, ao, . . . aoA: vanishing if the

constraints are independent of the time.

It follows then that

x' = aiqi + a2q2 + * *
* + anqn + ao,

j

y’ = 61^1' + h2q2 + * *
* + hnqn + / (5)

2^ = Ciqi + C2q2 + * *
* + Cnqn + CoJ

also

Pi = oLiiqi + a2iq2 + * ‘
* + otniqn + aoi,

j

;••••(

From Eqs. (3) and (5) it is seen that

dx _ dx/ _ ^ ^y^ ^ —

but, unlike Eqs. (140.7),

(7 )
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for

and

/ \t " ‘

I dx\ , , ,

'S^da,
,

wj -2,5?,’-
t-0 »-l

n A;

^ (8 )

dx'~ _ ,

t-0 i-0 «-l

in which go is to be taken equal to t.

It is possible however to write

(9)

where rjj^ and f ,
are functions that can be obtained by taking

the difference between the equations in the two lines of Eqs. (8).

It is needless to write out their forms explicitly; it is sufficient to

notice that they are linear in g/, . . . , gn'-

The equations of motion for each particle are

mx" = X, my" = F, m^" = Z.

Let the first of these equations be multiplied by dxldqj^ the

second by dy/dqjf the third by dzldq, and the three equations

then added. On summing these equations over all of the

particles, there results

where Qj has the same significance as in the holonomic case.

The transformation of the left member proceeds just as in

Sec. 140, except for the added terms in {y, rjjj and f y.

On setting

T = + y'” +

TFy = Zm(fyx' + lyyy' + ^^z'),

and
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Eqs. (10) become

(0 - i - «' ^ (»)

which are the same as for the holonomic case with the addition

of the term —Wj. These terms are somewhat troublesome to

compute since the function must be formed
for each particle and then summed over the entire system.

166. The Equations of Motion for a Homogeneous Sphere

Rolling on a Plane.—It will be assumed that the center of

gravity of the sphere is at its center and that the central ellipsoid

of inertia also is a sphere, conditions that are satisfied if the

sphere is homogeneous, or homogeneous in concentric layers. It

will be assumed also that the applied forces act at the center of

the sphere. With these assumptions the principal moments of

inertia are equal, and

^ B = C = Mk\ (1)

where M is the mass of the sphere and k is the radius of gyration

with respect to a diameter.

The potential function U depends upon the position of the

sphere, but not upon its orientation; that is is a function of

X and y, the coordinates of its center, but not upon the Eulerian

angles 0, v?, and The 2-axis is perpendicular to the plane so

that the 2-coordinate of the sphere is

2 = a, 2 ' = 0.

If the values of the angular velocities, given in Eqs. (151.1),

are substituted in Eq. (153.1), the Lagrangian function is found

to be

L = + 2/'*) + hMk^iO'* + + 2v:>V' cos 6) + U;

and the constraints are, Eqs. (153.5),

x' = +a$' sin ^ — a^' sin d cos

2
/' = —ad' cos ^ — a(p' sin 6 sin

Since the sphere has only three degrees of freedom, three of the

five variables Xy y, 0, and \[/ can be regarded as primary and two

as secondary. For example, if By 99 ,
and yp are regarded as entirely
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free, or primary, the coordinates x and y are secondary; or if

X, y, and ^ are primary, then d and ip are secondary. The
problem will be considered for both cases.

The Equations for Euler^s Angles .—In accordance with the

method of Sec. 154 the equations of Lagrange become

From Eqs. (2) it is seen that

x'* + + (/?'* sin^ 0),

and therefore the kinetic energy T can be expressed in terms of

the Eulerian angles and their derivatives alone. Its expression is

T = sin2 6) +
+ 2v:>V' eos e). (4)

The equations of transformation for the individual particles

are given in Eqs. (139.1). Let these equations be written

Xi == X + Ai, = 2/ + Bi, Zi = a + Ci, (5)

where

Ai = a\^i + a^'m + asfi,

Bi = + ^2>7t +
Ci = 7i(i + 72Vi + 73r%.

The direction cosines ai, . . . , 73 are functions of <p, and ^
alone, (Sec. 52), and

^niiAi = ^miBi = ^miCi = 0,

i i %

the sum being extended over the entire sphere. Any partial

derivative of these sums with respect to $, <py and ^ also vanishes.

From Eqs. (5) and (2) it follows that
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( de

dC,,

a cos — a sin 6 sin +

+

SBi ,

dCi.,
dj'f'-

From these expressions it is found that

= +a cos 6 cos xj/ tp' + a cos ^
Tje = +a cos 6 sin \p (p^ + a sin ^

— a cos 6 cos xf/
6' + a sin d sin xj/ xj/'j

7]^
= —a cos d sin xf/

6^ ~ a sin 6 cos

— a cos xp 6' ~ a sin d sin xp ip\

TJ4,
= —a sin xp 6' + a sin $ cos p <p\

= 0 .

These functions are the same for every particle. Hence in the

formation of

We — + rjByi + W^p = • •
•

^
etc.,

the terms that depend upon ZviiAi, XniiBi, SmiCt and their

derivatives do so linearly, and therefore vanish. The partial

derivatives that occur in x/, t//, and z/, therefore, can be set

equal to zero at once, and it is then found that

We — — ikTa^fsin 6 cos 6 xp^' + sin 6 ip'xp']^ 1

— +Afq^[sin d cos B B'ip^ + sin $ B'xp'\^ > (6)

= 0, J

The remaining terms of the equations of motion are computed
in the usual manner. The resulting equations are therefore

M{a^ + kW' + sin

Ma^[<p^' sin2 6 + ip'B' sin 0 cos B — B'xp^ sin B] +
cos B — B'xp' sin

dip

Mk^u^" + p" cos e - ,p'd' sin «] = 0.

By eliminating \p" from the second equation, using its value

from the third, the second of these equations takes the simpler

form

M(a^ + k^)[ip” sin* B + if>'0' sin 6 cos 0 — sin d] = (8)
dip
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The third of Eqs. (7) gives the integral

\p' + ip' cos ^ = Cl (9)

which expresses the fact that the moment of momentum about

the diameter which is normal to the plane of motion is constant.

This integral together with the equations of constraint, Eqs. (2),

gives the three equations

ad' = x' sin — y' cos

— ap sin 6 ~ x' cos + y' sin > (10)

\l/' + ip' cos 6 = Cif j

which define the orientation of the sphere when x' and y' are

known.

The Equations for the Center of the Sphere .—Now let the

primary variables be X, 2/, and xf/. Then the equations of imotion

are

/dT\ dT
\dx'/ dx

-w
3x

/dTV dT
\dy') dy

-w =
dy’

(11)

/dT\' dT
\di’/ di.

- = 0;
>

and the iequations of constraint, Eqs. (2), become

$'
x' .

= H— sin ^ -
a

- “ cos xpy

a ' (12)

f _ x' cos ^ y' sin ^
a sin 6 a sin 6 ’

so that

36 _
1

sin ^ 3ip _ cos 1

dx a 3x a sin T
36 _ cos \l/ 3(p sin

(13)
dy a

^

3y a sin
6'

In the equations of transformation, Eqs. (5),

Xi = X + Ai, Vi = y + Bi, Zi == a + Ct,

the variables x and y enter in Ai S* and C< implicitly through

6 and and this must always be remembered in forming the
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derivatives with respect to x and y. It will be found without

much difficulty that

- _ cos d

sin^ 6

cos 6

dip

dAiZ'

dip CL^

dAi
, ,

dA

i

sin ^
shTe

dA i . ,
dA i COS if/— sm yp

-
gjjj ^

K
a

—

;

a

de
cos ^

^At sin ^
sin 0 Jo*

^

r dAi . ,, dAi cos
I

(14)

The expressions for 7?x, rjyy and are obtained merely by replacing

A* by in Eqs. (14) ;
and fx, fy and are obtained by replacing

A. by C<.

Since

Xi r ,

dAi
.

,

[“ + Td
- dA i cos \f/ x'

dip sin B \ a

dAi
,

dAisin^lt/'
,
[dAi

and similar expressions, in which A* is replaced by Bi and Ci, for

2// and 2 /, it is seen that

TTx = 2mt(Jxa:/ + VxVi + == * *
*

,
etc.,

are quadratic in the partial derivatives of A*, Bi and C*. In

forming the sum it will be remembered that the linear terms

vanish, since Xrrii^i = 0, etc, and also the cross product terms

of the form Zmi^irn vanish, since the products of inertia at the

center of the sphere are equal to zero. There remain only the

terms in the squares, and since

= 2)m»77i2 = = Affc^

where k is the radius of gyration of the sphere with respect to a

diameter, it is found that

n /*
t

sin \l/ cos B . sin ^ cos B k^
TFx = 0 x' H .-3-r 32/' H Z—

sin® B o® ^ ^sin B a

. cos \p cos B k’^ f ,
sin ^ cos ^ cos* B k^ , ,,

+ rin-» P‘>' SHT
1 + sin* ^ cos* 6 , ,

Sn*l o*^'^’



340 DYNAMICS OF RIGID BODIES

^ _ _cos \l/ cos ,2 cos \p cos 6

*' sin^ 6 ^ ^ ^sin 6 a

sin \p cos 6 k^
, f ,

1 + cos^ yp cos^ 6 k^
, ,-

-Syn-a-’* +
ni,^)

* +

sin yJ/ cos ^ cos^ 6 k^
, ,,

iisn—^ *

sill yl cos yl/ cos^ 6 k^ ,2 sin yp cos yp cos^ 0 /c“ ,2
, , ,2= - ~,x' -jy' + Oyp'

sin^ ^ sin^ 6

(sin^ yp — cos^ i/^) cos^ 6 k^
, , sin \p cos 6 k^

^ ^

sin^ 6 sill 6 a 2
+

cos yp cos 0

On eliminating 0' and from the expression for the kinetic

energy by means of Eqs. (12), it will be found that

T = + y'') +

1 itfi J n ^ ® y' ^-
gjj^ Q

- )
-,

and the equations of motion [Eqs. (11)] become

,,a^ + ,, cos \k cos 6M x" X

M—^y'

a sin 6

k^ sin yp cos 6

cos yp cos 6 t/' sin yp cos 6

a sin 6

V _
) dx'

a sin 6

x' cos yp cos S _ y' sin yp cos _ dU
a sin ^ a sin ^ / dy

^

Mfc2 yp
f x' cos yp cos 0 y' sin yp cos ^

a sin ^ a sin ^

The last equation gives the integral

, , X cos \k cos d y sm ^ cos 6 ,, , > „ ^ i.

w ^—2 ^—2
— = '(' + <f> cos 0 = constant,

o sm ^ o sin 0

which is the same integral as in Eq. (9). Also, by virtue of the

third equation, the first two equations reduce to
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Mx'
dU ]

dx

My" = dU
dy

^

(15)

and as these equations do not contain any dependent variables

other than x and y^ they show that the center of the sphere moves
just as though it were a free particle acted upon by the same
forces as the sphere but reduced in the ratio a^\d^ + k^, a theorem

that was proved otherwise in Sec. 124.

If Eqs. (15) can be solved, x' and y^ become known functions

of the time, and the problem is then reduced to the solution of

Eqs. (10), which are of the third order.

166. AppelPs Equations for Holonomic or Non-holonomic

Systems,—In 1899 P. Appell gave a general form for the equa-

tions of motion that are valid whether the system is holonomic

or non-holonomic. ' The same hypotheses are made as in Sec. 124,

and therefore the first six sets of equations of that section hold.

Just as before, the equations of motion of the individual particles

are

mx" = Z, my" = F, mz" = Z. (1)

On multiplying the first of these equations by bXj the second

by by^ the third by bz, then adding and taking the sum over all

of the particles, there is obtained

i:m{x"bx + y"by + z"bz) = S(X5a: + Yby + Zbz), (2)

If in this equation bXj by, and bz are replaced by their values

from Eqs. (154.1) and it is remembered that . . . , bqn are

entirely arbitrary, Eq. (2) is resolved into the following set of

n-equations:

Xm{x"ai + y"bi + z"ci) = 2(Zai + Ybi + Zci),]

2:m(V'a2 + y"b 2 + z"c2) = X{Xa 2 + F62 + ZC2), I

i:m{x"an + 2/"6n + z”cn) = 2(Xa„ + F6„ + Zcn).j

In the right member of Eq. (2)

^(X5a: + F3!/ + Zbz) = ^Qjbqj,

^ P. Appell, Comptea Rendus, Aug. 7, 1889; Journal fur Mathematik 121;

‘^M^canique Rationelle,'' Vol. 2, chap. 24.
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where

Qj = X(Xaj -f- Ybj + Zcj)j

is the work done in the displacement; so that, just as before, Qj
is the component of the force in the g, direction, Sec. 141. On
differentiating Eqs. (154.5) with respect to the time there is

obtained

x" = CLlQl' + + * *
* + ClngJ' + (

* ‘
* )>!

y" = big/' + 62^2^' + ‘ •
* + bngj' + (***)>/ (4 )

z" = + Cig2^ + * •
* + Cngn^ + (

' ’
‘ )> j

where the terms not written, (...), do not contain g/', 92",

. . . ,
gj'- From Eq. (4) it follows that

_ ax" _ ay" _ dz"
"

dq/'’
“

dq,"’ dq/'’

so that Eqs. (3) can be written

/ „dx'' „dy" ,,dz''\ n IK\
^

Now form the function

S = ^2m(x"’ + y"’ + z"‘),

a function which, on account of its form, has received the name
the energy of acceleration of the system. It is evident then that

Eqs. (5) become

= Qi, i = 1,
• •

•
.
n, (6)

dgj

and these are AppelPs equations.

In forming the function S it is necessary that it contain the

second derivatives of Anly, since the g^s are regarded as being

entirely arbitrary. If it contains the second derivatives of the

p’s, these can be eliminated by means of Eqs. (154.6). The n

equations in Eqs. (6) and the k equations in Eqs. (154.6) together

form a system of n + fc equations that determine the n + k

letters p and q. It should be remarked that in computing S it

is necessary to retain only those terms that contain the g/',

since the other terms drop out in the process of differentiation. On
comparing Eqs. (154.5) and (4), it is evident that the coefficients
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of the terms of the second degree in the g"^s in S are the same
as the corresponding coefficients of the terms of the second degree

in the g^s in the kinetic energy T] but this similarity does not

extend, in general, to the linear terms.

167. Application of Appell’s Equations to the Sphere Rolling

on a Plane.—As an application of Appell's method of deriving

the equations of motion, consider the sphere rolling on a plane,

the problem treated in Sec. 155.

Let Xiy yiy Zi be the coordinates of a particle of the sphere when
referred to a set of fixed axes and fi, ??*, f* when referred to a

system of axes that are rigidly attached to the sphere with origin

at the center of the sphere. Then,

Xi — X + ocift + a2Vi +
Vi — y

Zi — Z -j-
-f- y2Vi + 78ft,

where x, y, z are the coordinates of the center of the sphere

relative to the fixed system and ai, ^2 ,
. . • i Ts are the direction

cosines as indicated in the table in Sec. 85. Throughout the

motion f,, Tji, and fi are constants; hence on differentiating twice

= x" + ai'^i + ot2''r}i + as^^ft,

y'' - 2/" + + ^2"^t +
Zi" = 2" + 7i"ii + T/'rjt + 78"ft.

With these expressions it is found that the energy of acceleration is

S = + yr + 2/'’) = + y"’) +
/?*"’+ 0*"'+ 7i"*+ 7*"*+ 7."'),

where k is the radius of gyration of the sphere with respect to

a diameter. Thus the acceleration energy, like the kinetic

energy, is the sum of the exterior acceleration energy,

mix"' + y"')y

and the interior acceleration energy; for the remainder of the

expression is what the acceleration energy would be if the center

of the sphere were fixed.

It is necessary to compute the interior acceleration energy in

terms of Euler’s angles, Sec. 52, and their derivative. For this

purpose let



344 DYNAMICS OF RIGID BODIES

a = — cos 6 sin ypj

p = +COS 0 cos

y = +sin 6;

which, since

aai + + 77 i
= sin aaj + + 772 = COS

a«3 + + 773 = 0,

are the direction cosines of a line in the f7;-plane that is perpen-

dicular to the line OK, Fig. 24. Also let

Then
X = cos M = sin

ai = a sin ^ + X cos <p,

^ sin <^ + M cos <p,

7i = 7 sin

dec
aa =

a 2 = « cos (p — \ sin

02 P COS (p — n sin

72 = 7 COS V?,

d0 dy

Te’
-

de'

After a straightforward, but somewhat lengthy, computation,

it is found that the interior acceleration energy is

+ <p"' + + 2/V" cos 9 (1)

+ 2 sin diepYe'^ - - ^W")
+ terms that do not contain the second derivatives}

.

By differentiation of the equations of constraint [Eqs. (155.2)]

it is found that the exterior acceleration energy, insofar as it

depends upon the second derivatives, is

^Afa2{0"* + sin2 0 + 2 sin

+ S^fp'ip^' cos 0) + *
‘

1 , (2)

and the sum of these two expressions is Appeirs function S.

Since, by hypothesis, the potential function U depends only

upon X and y, and by virtue of the equations of constraint,

d\f/

= 0
,

it follows at once that

1 dS
Mk^ 3^"

+ fp" cos 9 9^ ip sin 0 = 0; (3)
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and therefore

\l/' + (p' cos ^ = Cl, (4)

just as in Eq. (155.9).

By means of Eq. (3), the exterior acceleration energy, Eq. (2),

can be given a variety of forms, and in particular the same
form as Eq. (1) for the interior acceleration energy. Hence

S = -f- -f- -f- cos 6

+ 2 sin - ^W")
+ terms that do not contain the second derivatives}, (5)

and the equations of motion in terms of Euler^s angles and their

derivatives are

= M{a^ + k^)(d'' + sin 6) = +a(^sin\p —'^cosyl^,

r~77 = M(a^ + cos 6 — sin 6) =
o<p

— ol — cos ^ + — sin sin 0
,

<9 C

^yrt = M(a* + k^)(,4'" + <*>" cos 6 — d'lp' sin 8) = 0.
oy/

The three degrees of freedom can also be represented by the

letters x, y, and
\f/

as primary, with 6 and <p as the secondary

functions, namely,

aO' = +z' sin — y' cos \p,

a(p' sin 6 = —x' cos \p
— sin \p.

With these letters AppelFs function is

s = + y"' + 0 r'

+ terms that do not contain second derivatives)

;

and the equations of motion for these variables are
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Thus the equations reduce to the equations of motion of the

center of gravity, the ^-equation reducing to an identity. Hence

Mx"
dx'

dU^

dy

just as in Eqs. (155.15).

168. The Motion Referred to Axes that Are Not Fixed in the

Body.—That the motion is usually referred to axes that are

fixed in the body is due to the fact that the moments of inertia

are constants when referred to such axes, and when the principal

axes of inertia are used, the products of inertia are zero. If the

central ellipsoid of inertia is a sphere, or even a spheroid, both

of these advantages can be retained even though the axes are not

fixed in the body, and it may be desirable to choose such a set

even though the moments of inertia are not constants.

Let the t?-, f-axes be referred to the center ot gravity, let

the moving trihedron have the instantaneous angular velocity

6 with respect to a set of fixed axes, and let i, j, and k be unit

vectors having the direction of the rj-j and f-axes, so that

e = 04 + 0yj + e,k. (1)

Let M be the mass of the body, D its momentum and L its

moment of momentum when referred to axes fixed in space, and

A and A respectively when referred to the moving trihedron.

Then by Eq. (80.7)

D' = A' + e X A, and L' = A' + 0 X A. (2)

If F is the sum of all of the exterior forces that are acting

upon the body, including the constraints, and N is the sum of

their moments with respect to the center of gravity, the princi-

ples of momentum [Eqs. (30.5)] and moment of momentum
[Eq. (32.5)] give the equations

D' = F, and L' = N;

or, by Eqs. (2),

A' + 0 X A = F, A' + 6 X A = N. (3)

If O'*, cTf, and ak are the components of the velocity of the center

of gravity, the exterior kinetic energy is

T, = iM(<ri^ + -f
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and if w*-, w,, and o>k are the components of the angular velocity of

the body, the interior kinetic energy is [Eq. (83.2)]

Ti ^ ^[A(jJi^ *

4- Bo)j^ -4“ Co)k^ — 2Dci)jO)k —

The total energy is therefore

T = Ti+ Te.

Since

D = A = M(<Tii + ajj + (Tjfck),

it can be written

A =
dai d<Tj^ d(Tk

^

and, by Eq. (83.5),

L = A = ^ dT
doj/ du)j du3k

If these expressions for A andA are substituted into Eqs. (3)

and the equations are then resolved into their components, the

following six scalar equations, which determine the motion, result:

If the moving trihedron has its fij-plane tangent to the surface

on which the center of a rolling sphere lies, with the and i;-axes

coinciding with the lines of curvature and the f-axis coinciding

with the normal, Eqs. (4) reduce to the equations used in Sec. 121.

169. Sphere Rolling on a Surface of Revolution.—For a sphere

whose center of gravity is at the center and whose central

ellipsoid of inertia is a sphere, the kinetic energy is

T = 4- 0,**). ( 1)

If the surface on which the sphere rolls is one of revolution, the

surface on which its center lies can be represented parametrically

by the equations

^ = /i(^) cos d. y = /i(v?) sin d, z = St{ip), (2)
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If the axis of the surface is vertical, 6 is the azimuth of a point

on the surface and tp is the angle which the normal to the surface

directed inward makes with the vertical axis directed upward.

The lines of curvature are then the meridians (6 = constant)

and the circles of altitude ((p
= con-

Fig. 79 ,

stant). A right-handed trihedron is

then defined by taking the f-axis along

the inward normal, the {-axis tangent to

a meridian directed upward, and the

77-axis along a parallel in the positive

direction of 6 .

With this understanding as to the

axes of reference, at is the component of

the velocity of the center of the sphere

along a meridian, aj the component of

motion along a parallel, and cr^ ^ 0.

Hence

From the discussion in Sec. 122 the angular velocities 0,, dj. Ok

are found to be

n n <^i a O'i tan a, (Ty tan a, , .

tti = — ; tfj ; Ok = —
J (4 ;

Pi P% Pi Pi

where p* and pj are the radii of curvature of the meridians and
parallels respectively and a^, a, are the angles which the osculating

planes make with normal planes through their tangents. For
surfaces of revolution, evidently (Fig. 79)

Bi = e\
(6)
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The equations of motion [Eqs. (158.4)] are

M{(Ti — dkCTj) = —Mg sin ip +
M{cr/ + OkCTi)

— 0 + MCrff\ (7)

M Oicr

j

— OjCfi) = —Mg cos ^ 0, J

Mk^{u3i + Ojo^k — = +aAfcT,,)

Mk^{(j)/ + ^i^k) = — aMcf, / (8)

Mk^{cOk "f" j

where Mc^ and Mcr, are the components of the frictional forces

acting at the point of contact in the f and r) directions respectively.

The elimination of these quantities between Eqs. (7) and (8) and

the removal of the factor M gives the set

tt(cr/ — OkO" j) “f" k^(o)/ + dk(j>>i — — — cig sin

a (cry' + BkOi) — + BjCtik — Bk(j>j) — 0,
^

dicfj — Qj<Ti ~ —g cos ipy

^k H“ Bn>ij — OjCOi = 0;

to which the constraint at the point of contact [Eq. (121.3)]

the two equations

(T i CXOi y y ^7 ”” CL(ji %

.

By the elimination of co* and wy, Eqs. (9) can be reduced some-

what, but as they cannot be integrated, in general, the matter will

not be pursued farther. The only general integral is the energy

integral. If the surface of revolution is a sphere, the motion of

the center of the rolling sphere can be expressed in terms of

elliptic integrals.

(9 )

adds

( 10 )

Problems

1. One end of a uniform bar of length 21 is constrained to move along a

horizontal line and the other end along a vertical line. If the minimum
distance between the two lines of constraint is 2a, the radius of gyration of

the bar with respect to its center is A:, and the angle which the bar makes at

any instant with a horizontal plane is show that the energy equation is

1 - Mgl sin cos* ip - a*)
^M(l> + =

(/* - a») cos* v-

By taking a; = sin v? this reduces to an elliptic integral of type /, and ip

is an elliptic function of the time.

2. A heavy uniform bar of length 21 slides down a helicoid, the equation

of which is

X = r C08 y - r Bin e, z = 6^,
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pivoting at one end on the axis of the helicoid and always horizontal.

Show that the equation of motion is

41*
-h

36*'

3 . A uniform plank of length 21 and negligible thickness is balanced on a

horizontal cylinder of radius a. If the plank is started to rocking (rolling

without slipping) show that the energy equation gives

,t _ 6g(h -f- 1 — cos ^ ^ sin d)

T* + 3a*e*
’

where h is the constant of integration. If 0 < 10°, 1 — cos d 0 sin 6

differs from — id* by less than one per cent. Hence an approximate form

for snii 11 oscillations is

I* + ’

which defines 6 as an elliptic function of the time.

4 . A heavy rod of length of length 21
,
symmetrical and of radius of

gyration k with respect to its center, moves with its two ends in contact

with the interior of a smooth spherical surface of radius a. Find the equa-

tions of motion.

The Lagrangian function is found to be

L = \M\b*[e'' -f cos* 6\ + k*[tp'^ -h sin* ip -f ^'*(1 — sin* p cos* 0)]1

— Mgh sin B,

where 6 is the distance from the center of the sphere to the center of the

rod, B and ^ represent the altitude and azimuth of the radius of the sphere

through the center of the rod, and tp the angle of rotation of the rod about

this radius.

6. The surface on which a sphere rolls is a horizontal cylinder. Show
that the projection of the center of the sphere on a plane perpendicular to

the axis of the sphere coincides with the motion of a smooth sphere that

merely slides on the cylinder in the perpendicular plane, the initial conditions

being the same but the force reduced in the ratio a* : a* k*.

6. If a dynamical system possesses an energy integral and q\, in the

notation of Sec. 144, is an ignorable coordinate, show that the reduced sys-

tem admits an integral of the same type as the energy integral, by means of

which the system can again be reduced.

7. If the Lagrangian function of a dynamical system is

L = hf\{g2)qi* +
show that for the reduced system (Sec. 146)

W = {2E -2Mq,)\Hpt* +Mq2}\\
and that an integral of the energy type exists. Reduce the problem to

quadratures. (Whittaker.)
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8 . The Bifilar Pendulum .—A uniform bar of length 2a and mass M is sus-

pended at its extremities from two points Oi and 02(0i02 ~ 2a) in the same
horizontal plane by two weightless strings of length 1 . If 0 is the mid-point

of the line O1O2 and C is the mid-point of the bar, let a be the complement
of the angle which the line OC makes with the line O1O2, 6 one half of the

angle between the bar and the line O1O2, and ^ the angle of rotation of the

entire system (as if rigid) about the line 0j02. Also let a = 2a//. Show
that the Lagrangian function is

sin* 0 cos* 9 o /,N/ /2 I /9 9 \
(1 — 0-2 gjn* 0)(cif' -f-

*

cos* a)
or* sin* 6

+ 6

cos* 6

sin* 6 sec* a
,
sm* e sin* 26 sec/ a

0'
^ ^ a' 4. sin* 26
1 — sm* 6 sec* a

. 2 sin 6 sm* 26 sec* a , , 8 cos 6 sm* 6 tan a
H 7

—
<p

' . -—r-rr—7:Trr:r-- (f 6

Vl — sm* 6 sec* a y/ 1 — sm* 6 sec* a

8 sin* 6 cos 6 sec* a tan a
,jan ^ PQg 1 — a2 giji2 0^

1 — sin* 6 sec* .

and for infinitesimal oscillations about the position of equilibrium

L = iAf[Ja*0'* + /*(«'* 4 ip'^) 4 lg{a^6^ 4 a* 4 «^*)].

9.

If a homogeneous sphere rolls on an inclined plane, the inclination of

which is a, the center of the sphere describes a parabola. If the initial

horizontal velocity is v, show that the latus rectum of the parabola is

sin a).

10 . A homogeneous sphere rolls without slipping in a spherical bowl.

Show that the complete solution for the center of the sphere can be obtained

by means of elliptic integrals.

11 . Show that the two following problems are mathematically equivalent:

() A uniform bar of length 2a is pivoted at one end to the rim of a wheel

of radius 2a, radius of gyration k, whose axle is horizontal and fixed. The
other end of the bar is constrained to morve on a straight horizontal line that

passes through the axle and is perpendicular to it. The only force acting is

gravity. Determine the motion.

() A circular disk is constrained to move in a vertical plane, but slides

without friction on a horizontal plane. Determine the motion under the

assumption that the center of gravity is not at the center of the disk and
that the only force acting is gravity.

12 . A thin circular disk rolls on a helicoid whose equations are

X — r cos y — r sin 6y z = 60,

the z-axis of which is vertical. At every instant the disk is in a vertical

plane and its center is at the distance a from the axis of the helicoid. If the

radius of the disk is c show that the motion of the center of the disk satisfies

the equation

fl" =
6(o* + 6») + c*'
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Ck)mpare with Problem 2.

13. Four similar uniform heavy rods of the same length 21 are joined end
to end by smooth hinges so as to form a rhomb. A smooth horizontal

cylinder of radius a is placed inside the rhomb which is then allowed to rest

on the cylinder in a plane perpendicular to the axis of the cylinder. In the

position of equilibrium two of the sides of the rhomb are in contact with the

cylinder and two are not. The rhomb is displaced from the configuration

of equilibrium in such a way that the center of gravity is displaced vertically

and is then released. If 6 is the angle which the rods make with the hori-

zontal at any instant, show that t is determined by a quadrature, namely,

/ / _ ^ cos 0 -h a sin B)n

2V^J L h- (21 sin sec 0) ~ J

where A is a constant related to the total energy.

14. A uniform bar of mass M and length 21 slides without friction on a

horizontal plane. Every particle of the bar is attracted toward the x-axis

which lies in the plane, by a force which is proportional to its distance from

the axis, 7* being the factor of proportionality. Show that the center of

gravity of the bar describes a curve of the form

2/
= A sin (ax -f- (i),

where A, a, and /3 are constants.

If 6 is the angle which the bar makes with the x-axis,

0
'*

ss 5* — sin^ 0,

where 5 is a constant of integration. Thus if 5* > 7^ the bar turns always

in the same direction. It oscillates if 5* < 7 and

tan id = tanh iyt,

if 5* = yi. In this last case the bar becomes perpendicular to the axis

asymptotically.

15. A uniform bar AyBi pivots without friction in a vertical plane on its

center point Oi. A second bar AjBa, also uniform and of the same mass, is

attached to the first by two light strings of the same length at the ends of the

bars, so that the two bars and the two strings form a parallelogram. The
entire system is constrained to a vertical plane, but the initial state of motion

is arbitrary in that plane provided the strings are kept taut.

(a) Show that the bar AiBi rotates with uniform angular motion.

(b) Show that the point O2, the center of the second bar AtB^, moves like

a simple pendulum about the point Oi.

16. A homogeneous spherical shell of mass mo slides without friction on a

horizontal plane. A particle of mass m slides without friction in the interior

of the shell. Show that:

(a) The system has seven degrees of freedom.

(b) Since the actions of the particle and the plane on the shell pass through

the center of the shell, the shell continues to rotate uniformly about the

initial instantaneous axis.
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(c) The center of gravity of the system moves uniformly along a straight

line.

(d) If the system is referred to a rectangular trihedron, the

plane of which is the horizontal plane through the center C of the sphere and
the origin at the projection g of the center of gravity G of the entire system

on this plane, the and 77-axes being fixed in direction; if 8 is the angle

which the line gC makes with the f-axis and fp the angle which the line CG
makes with the vertical; and if

X = - XWo -h w niQ m

where R is the radius of the sphere, then the energy and moment of momen-
tum with respect to the f-axis give the equations

6' sin* <p = constant,

(woX* -H sin* ^ -f [(woX* -f- cos* v’ d- w/?* sin*

= —2mgR cos <p -f constant,

which, by the elimination of d\ gives ^ as a function of <p by a quadrature.

17. A straight homogeneous beam of length 2/ and mass wi and a right

circular cylinder of mass m 2 and radius r rest on a smooth horizontal plane.

The beam lies across the cylinder in the vertical plane through its center

of gravity and perpendicular to its axis with one end in contact with the

plane. If all contacts are smooth, show that the motion can be reduced to a

quadrature.

18. Two fixed points A and B on the axis of a homogeneous solid of

revolution are constrained to slide without friction on two non-parallel

lines Li and I/ 2 ,
and the only force acting is gravity. Let the a;y-plane bisect

perpendicularly the common perpendicular to Li and L 2 . If 0 is the angle

which the projection of AB on the a;2/-plane makes with the x-axis and p is

the angle of rotation of the body about AB^ show that the motion is deter-

mined by the two equations.

ip = 6 cos \ A" pd V

I — f
28 A- ^ sin 2g -f T

J ^ a cos 8 A- b sin 8 A- c
de.

where X, 7 ;
a, 6, c are constants.

19.

Two heavy wheels of the same mass and diameters but with different

radii of gyration are mounted on a light axle about which they turn freely

without friction. The system is placed on a rough inclined plane on which
the wheels roll without slipping. Determine the motion for arbitrary initial

conditions.

Let ki and k% (k2 > ki) be the radii of gyration, pi and p2 the angles of

rotation of the wheels about the axle, 6 the angle which the axle makes with
the line of greatest slope in the plane, r the radius of the wheels, a the dis-

tance between the wheels and a the angle of inclination of the plane with a

horizontal plane. Show that 8 satisfies the equation of the simple pendulum

W* = — ^ sin 8,
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where

, ,
2a\T^ -f + fc 2») + + fc,«)(2r« + A:i» +

2a*r(A; 2
® — A;i*) sin a

Show further that the point p on the line of the axle at the fixed distance

a\2r^ + -f 2r*(A;,* +
2a{k2^ - ki^)

from the center of the axle describes an elastica curve (I, 228), the curve

assumed by a flexible rod when its ends are drawn together, with constant

speed and that the line of the axle is always normal to this elastica curve,

whose points of inflection lie on a horizontal line.

If the initial values of <pi and <p2
'
satisfy the relation

<P2' ^ a^{r^ + ki^) + -f k2^)

W -f ^2*) + r^ki^ -f k^^)'

the speed of the point p is zero and the center of the axle describes an arc of

a circle of radius d, moving like a simple pendulum of length 1. This is the

case when the wheels are released on the plane from a state of rest.

Discuss the case when ki = ki, and show that the motion is related to the

cycloid.

20. Lagrange's Equations with Multipliers .—Suppose a configuration of

any system is completely specified by n coordinates
, qn. If the

system has n degrees of freedom, the system is holonomic and the equations

of Lagrange, [Eqs. (140.9)] apply, namely,

but if in addition there are constraints that are expressed by s non-integrable

equations of the form

an dqi + a»2 dq2 + • • * -f dg« =0, i = 1,
• •

•
, » (1)

where the coefficients a,* are functions of gi, . . . , g„, then the system has

n — 8 degrees of freedom and the Q, do not represent all the forces that are

acting. Let Fj be the additional forces that are due to the constraints, so

that the equations of motion are

Qj +

it will be assumed that these constraints do no work, so that

T^Fi dqi = 0 .

Show that there exist multipliers Xi, , . . , X, such that

Fi =» XiUi/ + X2aay +••••+• X,a,/, j = 1,
• •

•
,
n

and therefore the equations of motion can be written

(

dT \
* dT

^ -f-
. . . -f x,a,y, y ~ 1,

• •
•

, «.

These n-equations of motion and the s equations of constraint are sufficient

to determine the n -f- « unknowns gi, . . . , 7„; Xi, . . . ,
X,.



CHAPTER XI

THE CANONICAL EQUATIONS OF HAMILTON

160. Historical.—In following out certain analogies between

the differential equations of dynamics and of optics Sir William

R. Hamilton^ was led in 1834 to a new form for the differential

equations of dynamics, which on account of their simplicity of

form, and also the fact that n differential equations each of the

second order are replaced by 2n equations each of the first order,

are called canonical.

The first step in Hamilton’s transformation was made by

Poisson^ who derived half of Hamilton’s equations in 1809, and
in 1810 Lagrange® expressed the rate of change of the elements of

a planetary orbit due to perturbations in the canonical form, but

the development of the general theory is due to Hamilton who
showed that the equations of motion for any conservative, holo-

nomic, dynamical system can be expressed in this form. The
extension to cases where the constraints depend upon the time

was made by Ostrogradsky^ and Donkin.^ It was also shown by
Ostrogradsky that all of the differential equations that arise in

the calculus of variations in which there is but a single inde-

pendent variable also can be expressed in the canonical form.

Indeed, according to C. Lanczos,® the proper field of the canonical

equations is the calculus of variations, and their occurrence in the

field of mechanics is of an accidental nature. However this may
be, the equations of Hamilton form the basis of most work in

modern dynamics.

161. Derivation of Hamilton’s Equations.—Suppose the sys-

tem is holonomic and that there exists a force function U which

^British Association Reportf p. 513 (1834); Philosophical Transactions^

1835, p. 95.

* Journal de VScole Polytechnique, Vol. 8; Cahier 15, p. 266.

* Oeuvres, Vol. 6, p. 814.

* MUanges de VAcadimie de St. PStersbourg, 1848; M^, de VAcad, de St.

PU., 6, p. 385, 1850.

^Philosophical Transactions, 1854, p. 71.

^ Annalen der Physik, Bd. 20, p. 6^ (1934).

355



356 DYNAMICS OF RIGID BODIES

may or may not contain the time explicitly. Then Lagrange’s

equations are

z = 1,
• •

•
,
n.

( 1 )

It was Poisson’s idea, and later Hamilton’s, to introduce new
variables, p*, by the definitions

where

_ dL _ dT
dQi dQi’

T+U,

(2 )

and T is the kinetic energy. In the right members of Eqs. (2)

the Qi occur linearly, so that Eqs. (2) can be solved for the q/ as

functions of the pt, and these functions, as will be observed, are

linear in the p*-

A new function known as the Hamiltonian function, is intro-

duced by the definition

H - - L, (3)

and in this function the letters g/ are replaced by their equivalent

expressions in the letters p, so that H is to be regarded as a func-

tion of the letters p and g, while L is to be regarded as a function

of the letters g' and g. Evidently

^ ' 4- XIt)^
dpi 2j^‘dpi hi

3 3

3

and since the parentheses vanish, by Eqs. (2), the interesting

reciprocal relationships

and (4)

are established.

Furthermore, from Eq. (3),

L + H - Ipiq/ = 0
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is a function of the letters g', g', and p. On differentiating with

respect to these letters, regarding ty if it occurs explicitly, as a

constant, there results

+ H) d,. + dp
f

which, by virtue of Eqs. (4), reduces to

Since the differentials dgi are independent and arbitrary, it

follows that

dL^

dq^

Equations (1) now become

dji

dQi

dH
dgi

and these equations, together with the second set of Eqs. (4),

are Hamilton's canonical equations, namely,

Since

t = 1,
• •

'
,
n. (5 )

and T can be written

T = T2 + T 1 + To,

where T^j Ti, and To are the terms in T that are homogeneous
of degree two, one, and zero respectively in the g/, it is evident

from Euler ^s theorem on homogeneous functions that

Sp^g/ = 27^2 + Ti + OToy

and therefore

H = Sp^g/ ~ L = {2T2 + Ti) ~ (7^2 + Ti + To + U)
^ T2- To - U.
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If the equations of transformation, Eqs. (140.2), do not contain

the time explicitly, Ti = Ta = 0, and

H == T - U,

which is the energy, provided C/ is a function of the coordinates

Qi, ‘ Qn alone, that is it does not contain the time explicitly.

Suppose the time does not occur explicitly. If the first of

Eqs. (5) is multiplied by p/ and the second by — g/, and the two
are then added and summed with respect to i, it is found that

dH2(dH
,
,dH \

- 0 .

Hence

H = h,

and this is the energy integral. If the time does occur in H
explicitly, it is found that

The magnitudes denoted by the letters pi are called the general-

ized momenta for reasons that are explained in I, 366.

162. The Transformation Is Always Possible.—The trans-

formation from the letters g/ to the letters pi defined by Eqs.
(161.2) depends upon the non-vanishing of the determinant of

the g'^s in their right members. In order to get the proof that
this transformation is always possible in a manageable form, it is

desirable to revise the notation.

Instead of using t/*, t == 1,
• •

•
,
m as the coordinates of

the m particles let these coordinates be denoted by the single

letters ft, i = 1,
* '

•
,
3m. The equations of transformation

can then be written

ii = ^i{qu
' '

' y^nyt), i = 1,
• •

•
,
3m, (1)

and the expression for the kinetic energy is

3m

T =

If, as a matter of notation.

_ dvtdipi
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the generalized momenta p/ are defined by the equations

3m 3m

i-1 i-1

or since

(Pi = ^(PikQk + (PiOt

ifc=l

the expressions for the p, become

3m 3m

Pi — ^^^i(pii^^ (pikQk ”f“ ^^'l^i(pij(PiOy

or,

t-1 Jfc-1

n 3m

i = 1

3m
(2)

Jfc -

1

» «

1

1=1

If the g’s in Eqs. (1) are given small variations, the time

regarded as constant, it is seen that

n

T = 1,
• •

•
,
3m;

i* 1

and if the g^s are true coordinates representing n real degrees of

freedom, there will not exist any set of variations 5gy, j = 1,
* *

*
,

n, for which = 0, i = 1,
* '

•
,
3m, except the set 6g, = 0 for

every j. It is assumed therefore that

^ 0 for every z, (3)

j-i

unless every 5g, is zero. In other words, every change in the

coordinates q implies some actual displacement of the system.

Equations (2) can be solved for the g'^s in terms of the p’s

and g’s if the determinant

A =
3n

^ '^i(Pii(Pik 0 .

Suppose this determinant is zero. Then there exist sets of

hqky not all of which are zero, that satisfy the linear equations

i == 1,
* *

*
,
n.



360 DYNAMICS OF RIGID BODIES

Multiply the jth equation of this set by and then sum with

respect to j. There results the single equation

n n 3m

y « 1 ifc « 1 t * 1

which, by rearrangement, becomes

3m

= 0 .

Save for notation, the two parentheses in this equation are not

different. It can be written therefore

3n / ”

t-i v«i

and since the rrii are real and positive and the (Pijdqj are real, this

compels the relations

~ 0 , Z ~ 1
,

* ’
*

,
^Tfty

which contradicts the hypothesis [Eqs. (3)] that this is not so.

It follows, therefore, that the determinant does not vanish

identically, and that the transformation of Hamilton's is always

possible.

163. An Equivalent Form of the Equations.—Suppose the

equations of Hamilton [Eqs. (161.5)] have been completely

integrated; that is, the variables p* and have been expressed

as functions of the time t and 2n constants of integration ai, . . . ,

a 2n that satisfy the differential equations, whatever the a’s may
be. The functional determinant of the p^s and g^s with respect

to the a^s is not zero, for, if it were, there would exist one or more
relations between the p^s and g’s, independent of the a^s, and
it w’ould not be possible to choose the initial values arbitrarily.

If the p's and g^'s so determined are substituted in the Hamil-

tonian function, then 7/, too, becomes a function of t and the

a's. Let H be differentiated with respect to any one of these

constants of integration, say a*. It is found then that

dH _ I
dqi

dak .i^ dpidak dqi dak
ife = 1,

• *
*

,
2n. (1)



163] THE CANONICAL EQUATIONS OF HAMILTON 361

There exists also the identity

n

i- 1

n n

as is readily verified by carrying out the dififerentiations indicated

in the left member. If the values of the p*' and g/ from Eqs.

(161.5) are substituted in the right member, then, by virtue of

Eq. (1), Eq. (2) becomes

d dpi

i -

1

n

i- 1

/b = 1,
* *

•
,
2n. (3)

On the other hand, if by any means it is known that Eq. (3)

holds, then, by virtue of Eqs. (1) and (2), it can be shown that the

variables p* and Qi satisfy Eqs. (161.5). Suppose this is the case,

and it is known that Eq. (3) holds for a set of variables pi and g*.

Then, in view of Eq. (2),

dak

n

(4 )

On subtracting Eqs. (1) from Eqs. (4), there results

- - 2 (^.' -m = »•

A: = 1,
• •

•
,
2n. (5)

These equations are linear and homogeneous in the quantities

dH\
dgj

and the determinant is not zero,

for it is the functional determinant of the p^s and q^s with respect

to the as; and it is not zero by hypothesis.

Therefore

Qi == and p/ = t = 1,
• •

•
,
n, (6)

which are Eqs. (161.5).

It follows that Eqs. (3) and Eqs. (6) are equivalent, since

each implies the other.
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164. Contact Transformations.

—

If a transformation is made
from the variables pi and g* to a new set of variables Pi and Q<,

and if the two sets of variables satisfy a relation of the form

n n

dpi - '^Qi dPi = dS, (1)

i-1

where dS is an exact differential, the transformation was called

by Sophus Lie a contact transformation.

As an example, suppose

Qi = pij Pi = -qiy i = 1,
• •

•
,
n. (2)

Then

X^idpi - %QidPi = -^PidQi - XQidPi

= -d(XPiQ,),

which is an exact differential, and the transformation is a contact

transformation.

As a second example, suppose

Pi = VQi + fi{Pi)e’‘‘ \v = 1 . . . t

qi = VQT+MPde-^r
’

where /<(P<) is an arbitrary, but integrable, function of Pi. It

is found that

Qi dpi - Qi dPi = idQi + ^ ^dPi + fi(Pi) dPi

i = l,' •
• ,k,

and equal to zero for the other values of i. Hence, if

k

s = x(^Qi + mPi) + ffi dPi),

it is evident that

n n

dPi - X^*



164] THE CANONICAL EQUATIONS OF HAMILTON 363

and the transformation is a contact transformation whatever

the /<(P<) may be.

As an example of linear transformations, let

n

Qi ~

j » 1

n

Pi = ^bikPky t = 1,
* •

•
,
n,

A:«l

where the coefficients a*,- and ha are constants. Let A be the

determinant of the letters a*/, and the minor of the element

aij in A. Suppose also that

then

XPiQi = XpiQi.

Since dPi are related to the dpj by the same equations that relate

the Pi to the p/, it is evident that

dPi - dpi = 0,

which is exact, and therefore the transformation is a contact

transformation.

Suppose finally that Pj) is any function of the 2n variables

^ 1 ,
. . , , Qn'y Ply • • • ) Pny aod that the transformation of

variables is defined by the equations

,
dF ^ dF .

= av = 5P7
^

• •
•

.
”•

Then

i t

dpi + '^pi dqi — ^pi dqi - dPi
i i i %

Piq,^ - dF,

since
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Hence,

dpi - dPi = d^piQi -

is an exact differential, and the transformation so defined is a

contact transformation. With one exception, namely the

transformation

Pi
Px = CiQif Qi ^

all contact transformations can be derived in this manner. This

method is due to Jacobi.

166. Contact Transformations Leave the Canonical Form of

the DilBferential Equations Unaltered.—Suppose the transforma-

tion is from the pi and qi to the variables Pi and Qi and that the

relation

Xqidpi-'^QidP,^^ dS (1)

is satisfied, where dS is an exact differential, the time if it occurs

explicitly being regarded as a variable. Suppose also that the

Pi and qi satisfy the canonical equations

<li Pi
m
dqi

(2)

From Eqs. (1) it follows that

» i

and also that

% ^

Let the first of these equations be differentiated with respect

to ak and the second with respect to t. The right members
being the same, the two left members are equal. Hence

i

dt

d

dak (3 )
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or, on account of Eq. (163.3),

d

dt da,’

but this is merely Eq. (163.3) in the new variables. Hence, by
Sec. 163,

Q/ =
dH
dP’

(4)

the change of variables is canonical, and it is necessary merely

to transform H from the variables pi, qi to the variables Pi, Qi.

It will be observed that in these transformations the time i has

been left unaltered. If the time, too, is transformed, so that the

transformation is

Qi = QiiQi, P,; T), Pi = Pi{Qi,Pi\ T), t = t{Qj,Pj] T);

and if the relation

+ (SI?-' “ H)
i

where S is some function (arbitrary) of Q,*, Fy, and T, is satisfied,

the transformation is still a contact transformation with the new
Hamiltonian function

The term contact transformation as here used is a generalization

to space of n-dimensions of the contact transformation of

Sophus Lie. A contact transformation is independent of the

Hamiltonian function, as will be observed.

A transformation is said to be canonical if the Roman let-

ters Xif t/i, are replaced by the Greek letters fy, 77 ,, r, in the

transformation

Xi = Xi{^jy rj j f
t)

f 2/i ~ y V j f )
I'
~ (7)

if first, the functional determinant

Vif 0 ^ r\
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and if, second, there exist three functions

Vi) r), yi) t), S(xi, yi] t)

for which the relation

^Vi df/ — Hi dr — "^yi dxi— H dt + dS
j i

is satisfied identically by virtue of Eqs. (7); and such trans-

formations leave the canonical form of the differential equations

unaltered. The above contact transformations are therefore

canonical transformations, but canonical transformations, in

general, are relative to the H function, and therefore, in general,

are not contact transformations.^

166. Hamilton’s Partial Differential Equation.—Suppose the

differential equations

dH
Pi

dpi

H = Xp.?/
- L,

have been completely integrated, and that the solution is

( 1 )

Q.i Qi(.^j ^2} *
*

*
) C2n) f

Pi Pi(J^f ^1} ^2)
’ *

*
> ^2n)>

where ci, C 2 ,
. . . ,

C2n are the 2n constants of integration. If

these values are substituted in H, then H becomes a function of t

and the 2n constants Ci, C 2 ,
. . . ,

C 2n; that is

H = H(t*y Cl, C2, * *
*

> C2n) •

Let Ck be any one of these constants. Then

dCk

dH dqi

% dCk2 djl ^pi

dpidck ^^dqi
i i

i i

d ^ ,
d's;^ dOi

by Eqs. (1);

(identity).

^ For a discussion of the general canonical transformation the reader is

referred to Chap. 5, by C. Carath^odory, of Riemann-Weber's Differential

gleichungen der Physik. Vol. 1, edited by Dr. Richard v. Mises (1926).
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and since

367

^ ,
t _ dH _ dL

dcic dcic
i

it is seen that

i:(T + f/), by Eqs. (1);

_a_

dck
t

P
dqi

'dCk

from which it follow's, by integration, that

+ = <2,

i X

where pio and Qio are the values of pi and g» for t = to.

The function

,S = f\T + U) dt (3)
%/to

was called by Hamilton the principal function of motion of a sys-

tem, because, as he remarked ‘^The variation of this definite

integral S has therefore the double property, of giving the differ-

ential equations of motion for any transformed coordinates when
the extreme positions are regarded as fixed (Hamilton's principle),

and of giving the integrals of those differential equations when
the extreme positions are treated as varying/^ The function S
is not unique, however, in this respect, as he gave two other,

though allied, functions which will serve the same purpose.

Regarding S and the coordinates Qi as functions of the time t

and the 2n constants of integrations Ci, C 2 ,
. . . ,

C 2n, it is evident

that these functions vary with the variations of the constants.

In accordance with the notation of the calculus of variations

these variations will be denoted by the symbol S, These vari-

ations are related to the variations of the constants by the

equations

k k

Now let Eq. (2) be multiplied by dck and then summed with

respect to the letter k. In view of Eqs. (4), there results

SS = '^Pidqi — '^PioSqta,

i i

(5)
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and in these variations the time is not changed, or varied.

Expressed in terms of t and the constants of integration

Qi — ^1)
' ’

*
> C2n)>

QiO ~ ^io(^O) Cl, C2,
* ’

'
) C2n)> 1 >

’ *
*

>

*8~aS(^,Ci, 6*2,
* *

*
, C2n)*

The first 2n of these equations can be thought of as solved for

Cl, ... ,
C 2n in terms of ^i, ^lo, . . . , gn, Qnot and and these

results substituted in the last equation
;
so that

S = Sit; ^ 1 ,

* •
•

, Qn] qio, • •
, ^no). (6)

If this expression is varied {t and to fixed), the variation of S takes

the form

dS

3? to

A comparison of Eqs. (5) and (7) shows that

dS j dS
. ,= Pi, and ^ = -pio, i = 1,

aQi cfQio

(7 )

,
n, (8)

since the variations dgi and 5g,o are entirely arbitrary. Equa-

tions (8) form a complete set of integrals of the differential

equations, for the equations

dS
, _ ,

dqio
"

could be solved for ^i, . . . ,
in terms of t and the initial

values Qio and pm] and these values of the Qi substituted in the

equations

would give the pi as functions of the same arguments.

The problem can be solved therefore if the S function, or the

principal function, can be found. As a step in this direction, let

Eq. (6) be differentiated totally with respect to the time. There

results
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S' = as
,
sc^ds ,

at

and, since by its definition [Eq. (3)],

S' = T + V = L, and = L + //,

by Eq. (161.3), it follows that

— + gi,
• •

•
, g,.; pi,

• •
•

, p,) = 0. (9)

If the Pi in this expression for H are replaced by their equals

dS/dQiy Eq. (9) becomes

at ^v’ aqi’
‘

’ dgj

which is a partial differential equation of the first order and
second degree, since the // function is a quadratic in pi, . . . , p„.

Hamilton's S function, therefore, satisfies this partial differential

equation.

167. Hamilton’s Principle.—The functions gi, . . . ,
can be

regarded as the coordinates of a point in space of n-dimensions.

Consider the curve described by this point in the interval of

time <0 • • • ti- Let the initial point be Po and let the terminal

point be Pi. All along this curve the differential equations are

satisfied. Passing through the fixed points Po and Pi are infi-

nitely many other geometrically possible, but dynamically

impossible, curves whose coordinates Qi + dqi can be represented

parametrically as functions of the time, for example,

Qi + ^Qi — QiiO
~~

At the instants to and ti these points on the varied curves coincide

with Po and Pi, and for other values of the time will differ from

the point on the dynamical curve by as little as may be desired,

if the (Pi are continuous in the interval, though otherwise arbi-

trary, and if the constants €< are taken sufficiently small.

With the limitation that they vanish at and ti the 8qi are

entirely arbitrary. No restriction is placed upon velocities
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along these curves other than that just mentioned, so that

which are linear combinations of the also can be regarded as

arbitrary. Furthermore, as is easily seen,

{bqiY = bqi\

Hamilton's principle asserts that the principal function S has a

stationary value in passing from one infinitely close geometrical

curve through the dynamical curve to another infinitely close

geometrical curve. In other words,

&S = I'diT +U)dt = 0. (1)
Jto

Furthermore, the differential equations of motion can be derived

from the assumption that this condition is satisfied, whatever the

coordinate system may be.

From the definition of H,

i

it is seen that the variation of S can also be writt(Mi

From the two identities

and

^ Xp'^^' + Xp''^^'>

it is found by subtraction that

5 :

and since

which is true by virtue of the fact that 8qi = 0 at both limits, it

is seen that Eq. (2) can also be written

bS = ^ bpi — Pi bqx —
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or

From this form of the variation of *S, Hamilton’s principle fol-

lows at once. If the differential equations are

^Vi
Vi

dH
hq:

the variation vanishes since the integrand vanishes identically;

and if bS = 0 for all variations of the pi and it is necessary

that

dH
dpi

Vi
dj{

~ dq'

which are the differential equations of motion. It will be

observed that in all of these variations the time is regarded as a

constant.

Since the potential function V is the negative of the potential

energy F, and since

is the average value with respect to the time of the difference

between the kinetic and potential energies, it is seen that Hamil-

ton’s principle asserts that in the motion that actually occurs the

time average of the difference between the kinetic and the

potential energies has a stationary value when compared with any
other infinitely near motion between the same two points, pro-

vided the time interval and the potential functions are the same

for both motions.

168. Jacobi’s Extension of Hamilton’s Partial Differential

Equation Theorem.—Given the function H expressed in terms

of the variables gi, . . • , Pi, . . . , Pn,

q\) . . . j Pl| . . . , Pn)>

and the differential equations
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the principal function

-S = + U) dt

satisfies the partial differential equation

dS
dt

qi, Qn \

dS
( 1 )

which is formed merely by replacing the p, in H by dS/dqj, adding

the term dS/di, and equating the result to zero. Hamilton

imagined the function S expressed in terms of the time, the

coordinates gi, . . * , Qm and their initial values gio, . . . , Qnot

and then showed that a complete set of integrals of the differential

equations could be obtained by writing

Pi =
d^
dq-

PiO =
dS

dqio
i = 1,

• •
•

,
n,

where the new constants pio are the initial values of the pt,

Sec. 166.

Jacobi advanced the matter an additional step by showing

that if

Ql} • • • > Qnj OClf • • • >
Ofn)

is any complete solution of Eq. (1), a complete set of integrals

of the equations of motion can be derived from it by writing

Pi =
dS

Pi =
dai

i = 1, (2)

By a complete solution is meant a function S that, in addition

to the arguments t\ qu • . • j q^ contains n arbitrary constants

an, which when substituted in Eq. (1) reduces it to an

identity. Of course, if S is a solution, so also is S + C a solution,

where C is any constant. The constants ai, . . . ,
ofn are

independent of C and independent of one another in the sense

that dS/dai form a set of n independent functions of the argu-

ments 9 i, . . . , gn, 80 that their functional determinant

d^S

dai dQj
9^ 0 . (3)

From the symmetry of this functional determinant in the

arguments and qj, it could equally well be stated that the
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are independent constants in the sense that the partial derivatives

dS/dqi form a set of n independent functions of the arguments

aif ...
f an, for the condition that this should be so also is the

non-vanishing of the determinant [Eq. (3)].

Suppose a complete solution S of Eq. (1) is known, and the

functions pi and the constants /S* are defined as in Eqs. (2).

If the second set of Eqs. (2) are differentiated totally with respect

to the time, there results

d^S ^ d^S
,

dai dt .^^dai
3

= 0
, (4)

since the a^s and |3^s are constants.

If the first set of Eqs. (2) are substituted in Eq. (1), there

results

— + H{i] qi,
' '

'

, qn; Pi,
* *

*

, pj = 0; (5)

and if this equation is differentiated with respect to ai, it is found

that

d^S dpj ^
dt dai dp

j dai
^

3

since the constants enter the H function of Eq. (5) only

through the p^s. On account of Eqs. (2), this equation can also be

written

dt dai -^dpy dqj dai
^

3

On forming the difference between Eqs. (4) and (6), there is

obtained

dH\ d^S ^
dpJdqj dai

i = 1,
• •

•

,
n.

This is a set of linear equations that is homogeneous in the

quantities

/ . dH\
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The determinant

d^S

dqj dai

by hypothesis. It follows therefore that

9/ = j = 1,
• •

•
,
n, (7)

which is the first half of Hamilton’s set of equations.

In order to obtain the second half, differentiate the first set of

Eqs. (2) with respect to the time. The result is

' - 4_ ^

dQidt .jiLJdgidqj^^
^

j

which, in view of Eqs. (7), can be written

, _ d^s dii

dqi dt -^dgi d(ji dpi
^ ^

On differentiating Eq. (5) with respect to and bearing in mind

that, on account of Eqs. (2), the are functions of the ^’s, there

results

d^S
,
dH

, ^ d^S dH
0 = -i!?.. + -~ + (9)

dqi dt ^ dqi ^ ^dqi dq^ dp,
^

and by subtracting Eqs. (9) from Eqs. (8), it is found that

, dH .

'P^
"" ’ i - 1,

•
•

, M.
dqi

which is the second half of Hamilton’s equations.

It is true, therefore, that if

Q.^1 • ' • ) Qn) OClj • • > ^n)

is any complete solution of Hamilton’s partial differential

equation,

dS dS\ _ ^
dt dqi’ ’ dq„)

~

a complete set of integrals of the differential equations can be

obtained by writing

,
. . . ,

dS ^ dS
i = 1,
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If the second set of these equations is then solved for
, gn,

a complete solution

qi = qi{i] ai,
• *

*
, , fin)

will be obtained in which the qi are expressed as functions of the

time and ^he 2n arbitrary constants ai, . . . y
an] fiiy . . . , i

3 n.

169. The Restricted Case in Which the Time Does Not Occur

Explicitly.—If the time does not occur explicitly in H, it is

possible to take

S = -ait + Siiqiy •
*

*
, ^n; ai,

• •
•

,
cxn), (1)

and Hamilton partial differential equation becomes

Tj/ d>Si dSi\ __‘

‘

dgl)
~

which does not contain the time explicitly. It is sufficient

then to find a function of the arguments gi, . . . , gn which in

addition to the constant ai contains n — 1 new constants

^ 2 ,
. . • ,

dn^ The set of integrals becomes

Pi = Pi =

^aSj dSi
Pi = n

"" h fii = n—

^

oai oai

35,

dQi’

dSi

dai

35,

dqi’

i = 2,

or, on taking /3,
= — <o

t - U =

(3)

(4)

This situation arises, in particular, when the system is a

conservative one, for then

H = gpi?/ - (T + U) ^ 2T - {T + U) = T - U,
t

which is the energy. On replacing 35i/3a, by pj in Eq. (2), it is

seen that

Hiqi, •
•

•
, g»; Pi, •

•
•

, Pn) = ai;

and therefore a, is the energy constant.

Another procedure has been used by Poincar6. Suppose a

function 5,(5,, . . . , g.; ai, • • • , «„) has been found, which
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when substituted in the left member of Eq. (2) reduces it to a

constant. This constant will be a function of ai, . . . ,
otn, say

qij
’ *

•
,

dSj

d?,
’

’ dq
V>(ai,

• •
•

, an). (6)

As before, take

dSr dS,
Pi - 3— > Pi = T )

dqi oai
(6)

without, however, making any hypothesis as to the nature of the

iS^s. Equations (6) can then be regarded as defining a trans-

formation from the variables pi, qi to the variables ^i, and by
Sec. 164, this transformation is canonical; that is

dH
,

dH

In the new variables

H = ‘
, «n),

so that Eqs. (7) become

f,! = . 0.
oai

(7)

(8 )

Again it is evident that the aiS are constants, but the 0iS are

linear functions of the time. If the partial derivatives d^p/dai

are denoted by <pij it is clear that the pi are constants and that

fix — pit + fixQi

where the fiiQ are n constants of integration.

170. Example: The Compound Pendulum.—The compound
pendulum was discussed in detail in Sec. 61, and the notation of

that article will be adopted here. Let the angle between the

vertical plane through the axis of suspension of the body and the

plane through the axis of suspension and the center of gravity

of the body be B. Let the mass of the body be ikf, its radius of

gyration with respect to the axis of suspension be fci, and the

perpendicular distance from the center of gravity to the axis of

suspension he h. The energy equation is then

H = — Mgli cos ^ = a,
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and since the body has but one degree of freedom subscripts on

the variables are not necessary. On taking,

P = II
=

it is found that

H Mgl\ cos 6 = a.
2Mki^

Since the time does not occur explicitly,

S = dt Si {B)y

and Hamilton’s partial differential equation is

( 1 )

(2)

which is obtained by replacing p in Eq. (1) by dSi/dB.

As B is the only variable in this equation, it is an ordinary

differential equation of the first order. Its solution is

Si = \/2Mk? a + Mgli cos B dB.

Then, by Eq. (169.4),

da

On substituting

= t - t

2,/ \/

a

V2Mki^ de

it becomes

l-t - ^
t — to — H

2.; Va + Mgh cos B

a = —Mgli cos ^0 ,

dB

2 J v^sin^ ^^0 ~ sin^ \ b
'

and the further substitutions,

sin = fc sin ipy fc = sin

put it in the normal form of Legendre
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On taking ki^ = Ih, it is seen that this is the integral for the

simple pendulum of length I (I, 319).

171. Lagrange’s Case of a Spinning Body.—As a second

example of the use of canonical variables, consider the problem

of spinning tops in which one point of the body is fixed, the

ellipsoid of inertia at the fixed point is a spheroid, and the center

of gravity is on the axis of this spheroid.

In terms of the angular velocities and moments of inertia at

the fixed point the kinetic energy is [Eq. (86.5)]

and the potential energy is

~U ~ -i-Mgl cos dy

where I is the distance from the fixed point to the center of

gravity; hence

TI — T — JJ — -{- Bit) "i“ C(j)k") ~j“ AIqI cos 0.

The angular velocities in terms of Euler^s angles and their

derivatives are [Eq. (85.4)]

cot = xk' sin 6 cos + 0' cos (py\

ojy = \k' sin 6 sin ip — Q' sin (p, > (1)

Oik = xk' ('OS e + <p'; j

and, since A — B, the expression for H becomes

UAxk'^ sin2 6 + AO'^ + C{ip' + xk' cos 0^] + Mgl cos 8. (2)

Then on associating pi with 0, p 2 with v?, p^ with xky it is found that

dH . fW =

dH
d<f>‘

> == P 2 = C(ip' + xk' cos d)j

m
dxf

y = Pz = Axk' sin^ 8 + C((p' + xk' cos 8) cos 8;

from which it follows that

e -j,

ip' + 4^' cos 0
Pi

C’

f ,i„. « = P- - P; °°°
».

A.

(3)
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In terms of the canonical variables, therefore,

H = ifPll
2\ A

+ +I i/^ I

(ps Pi cos ey\
-f" MqI cos d — a: I,

[C ' A sin^ 0 /

where ai is the energy constant. Hamilton's partial differential

equation is, therefore,

^ f Y

+

Lf 4- L
A\d0/ C\d.pJ A

COS
dSV
d^J

+ 2Mgl cos 6 = 2ai (4)

Since this equation does not contain either /, or ^ explicitly,

it is sufficient to take

*S = ~ait + a2<p + OLi\p +
where a 2 and are two new constants, and Si{B) is a function

of 0 alone; and the substitution of this form in Eq. (4) reduces it

to the ordinary differential equation

If the substitution

cos 6 = Uf = (1 - u^)

2

is made, and if, for brevity of notation,

(^2/1 - ga./ - 2AMgluy\ - u^) - (a; - =

it is found, oti integrating that

/(«),

Then

SAB) du.

da I

doi

= t - l„
A du

\/f(u)

^ _ Aa2
f*

du
j

f*u(a3 — a2u) du-
-C-- VJB’

^ =
dui

= ^ -
J

az — azU du

Vf(u)

(6)

(7)

(8)

(9)
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In order to bring the notation used here into agreement

with that used in Sec. 104, it is necessary to take

ai = 2Mgl = ila,

^2 = Ahoiki I = f,

(j
az = Aboik'i^i, ^ ~

]4

Equation (7) gives w as a function of the time, and Eqs. (8) and

(9) give (p and ^ as functions of u. Since u is equivalent to 0,

the solution of the problem is complete.

172. Poisson’s Brackets.—Suppose

“(9i.
• •

•
I ?»; Pi,

• •
•

. p«: t) = c

is an integral of the canonical differential equations

dpi
( 1 )

Differentiation of this integral with respect to the time gives

du

It
= 0

,

i

which, by the use of Eqs. (1), can be written

dw dH ^ do) dH\
dt ^\dqidpi dpidqi /

^ ® (2)

that is, this expression vanishes whatever values pi, qi, and t

may have. Conversely, if w satisfies this relation w = constant

is an integral.

Suppose ^ is a second function of the same arguments, the

notation

dtp d(i>

dQi dpi

dip d(i)\

dpidqij
(3)

was adopted by Poisson, and the symbol [ip, w] is called Poisson’s

bracks. Some of its more evident properties are

:

(a) If c is a constant, [c, w] = 0.

(b) \ip, «] = -[«, Ip], [-Ip, w] = -[ip, «],
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(c) If

^ then [f, w] = ttf]-

J j

If yp and u) contain the time explicitly,

r , 1
^/d(a^/dO do) didyP/dt) do) \

381

_d

dt

'^^/dyp d{do)/di) dxp d(dw/dO\

dpi dpi dqi f

or

jd

dt
(4 )

173. Poisson’s Identity.—For still further brevity, let Eq.

(172 .3 )

a = [4/, <tf] =
i

Then

Now

and

IV?! a] =
•^•^/dip doi _
^^\dqi dpi

i *

r

dai _ do) av do) d^yp

dpi dpi dqt dpi dqi dpi dpi

dai _ do) do) d^ip

dqi dpi dqi dqi dqi dpi dqi

dyp d^oo dyp d^o)

dip d^o) d\p d^o)+

On multiplying the first of these expressions by dipjdqjf the

second by —dip/dpiy and then taking the double sum, there

results

W[^, «]] = ( 1 )

i

du) dip dV _
dpi dqj dqi dpi dpi

do) dp

J *

du> dp dhf/ du> dp dSp

dp d\ff d*oi>

dpj dqi dqi dqi dqi dpi dpi dqi dpi dpi dqi

dp d}// dp diff d^<j» dp dip d*u>+
dqi dqi dpi dpi dpi dqi dqi dpi dqi dpi dpi dqi dpi

dip d*<if
f

! 9pi Bqi dqi )

'
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except that in the last line the subscripts i and j have been inter-

changed. This is permissible since the sum is taken with respect

to both i and and the interchange can be made on any of the

terms.

On permuting the letters cc circularly twice in Eq. (1)

and then adding, it is found that the right member vanishes

identically, that is,

W, [<P, “]] + [t*", d] + l‘>>. W, H] = 0, (2)

which is Poisson^s identity.

174. Poisson’s Theorem on Integrals.—Suppose

* ’
*

) Qny Pi) *
*

*
) Pny 0 ~

’ *
*

> Qny Plj ‘
> Pri) 0 ~

are two integrals of Eqs. (172.1). Then, by Eq. (172.2),

[vt, H] + ^ = 0,

and >

k//] + ^ = 0.

/

Also, by Poisson’s identity, Eq. (173.2),

[Hj [\p, o)]] + [iP, [w, H]] + [w, [//, iP]] - 0.

For simplicity of notation, let

[}p, w] =
, VhI p\) •

•

•

, Pn] 0;

then, by Eq. (172.4),

From Eqs. (2) and (3), it is found that

or

[H) <p]
-

\p)Yi + ^
d\l/

’ Tt
= 0 .

k,Hl + ^-0;

( 1 )

(2)

(3)

(4)

that is, by Eq. (172.2)

*p = C3 (5)
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also is an integral. For example, if Eqs. (1) are two of the

integrals of momentum in the problem of n bodies, it will be

found that Eq. (5) is the third integral of momentum.
It is natural to assume that Eq. (5) is a new integral, but, it

will be observed, the theorem does not say this. It merely

says that Eq. (5) is an integral. It may be a function of the

integrals in Eqs. (1), or it may be merely a trivial identity.

Notwithstanding the fact that Poisson’s theorem gives an inter-

esting relation among integrals, it cannot be said that it has led

to integrals that were not already known. As a matter of fact

it has been singularly sterile.

Another interesting relationship is found when H does not

contain the time explicitly. In this event // = Ci is the energy

integral. Suppose ip{qk) Pk] t) = is a second integral; then by
the above theorem

[//, = ea (6)

also is an integral. But since (p = ('2 is an integral,

[ipy ~

which, by Eq. (6), becomes

d<p

Thus if V?
== C 2 is an integral that contains the time explicitly,

d(p/dt = C3 is a second integral; and similarly d^(pldU = C4 is a

third integral, and so on: but, if ip does not contain the time,

Cs = 0, and

[//, d ^ 0. (7)

176. Lagrange’s Brackets.—Another set of brackets, different

from those of Poisson, is due to Lagrange, although the setting

in which it is found here is due to Poincar^.

Suppose the canonical equations [Eqs. (172.1)] have been

integrated, so that the Qi and the pi are expressed as functions

of the time t and 2n constants of integration ai, . . . ,
a 2n.

The brackets

(«/, Oik)
dqi

daj dak dak dajJ
( 1 )
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are called Lagrange^a brackets.

It was shown in Eqs. (163.3) that, as a consequence of the

differential equations, the following relations hold:

d

dt
fc = 1,

• •
•

,
2n,

which can also be written

and similarly

If Eq. (2) is differentiated with respect to Eq. (3) with

respect to a*, and the second result is then subtracted from the

first, it is found that

d ( dpi d ^ dpA ^ ^ Q
d\daj,^J ^dak di\^j\dajdak dakdajj *

«*) = 0, 3,k =
,
2n. (4)

It follows therefore that a Lagrange bracket is independent of

the time and therefore a function of the constants a only. In

addition to the obvious relations

(a» «j) = 0, (a,-, a*) = - (a*, o,),

among the Lagrange brackets, there exists the identity

diuj, at)
,

diak, a<)
,

d(ai, a,) _ ^

for any three of the 2n constants ai,
, ajn. As has just been

seen, at Eq. (4) and above.



175 ] THE CANONICAL EQUATIONS OF HAMILTON 385

Ifjthe first of these equations is differentiated with respect to

the second with respect to «/, the third with respect to akj and the

sum is then taken, it is seen that the right member vanishes

identically, and there remains the identity, Eq. (5).

176. The Method of Variation of Parameters.—The solution

of the problem of two bodies shows that each of the two bodies

describes an ellipse (or, in general, a conic) about their common
center of gravity; or, if preferred, each describes an ellipse (or

conic) about the other. When a third or fourth body is intro-

duced into the system, none of the bodies describes a conic, that is

to say, conic section motion does not satisfy the differential

equations. Notwithstanding this fact, it is true, however, that

the orbits of the planets about the sun continue to be elliptical in

character and the motion Keplerian. The constants that define

the elliptical orbit, namely, a the major semiaxis, e the eccen-

tricity, it the longitude of the node, w the longitude of perihelion

from the node, i the inclination of the plane of the orbit, and,

finally, T the time of perihelion passage, are not exactly the same
from year to year, but the changes are small. As a consequence,

the astronomers continued to think of the planetary orbits as

ellipses about the sun even when the perturbations of the other

planets were taken into account. The elements of the orbit,

a, e, t, it, w, and T, were regarded as varying slowly with the time,

but the motion in the ellipse at any moment was Keplerian.

From the point of view of differential equations, the constants of

integration of the two-body problem were to be regarded as

variables for the solution of the perturbation problem. The
success of the method is due to the fact that the perturbative

function, as it is called, is small and remains small. Evidently

the method is available for the solution of other mechanical

problems that exhibit similar characteristics, and the method is
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known as variation of parameters. It was developed extensively

by Lagrange for planetary theory, and the properties of Lagrange’s

brackets were known to every astronomer.

Suppose the differential equations are canonical, and that

they are

,
dll

dpi

dll

dqi
i = 1, n. ( 1 )

Suppose further that the function H can be broken up into two

parts

H = Ho + Hu

in which Hi is small as compared with //o- In the planetary

theory Ho is the Hamiltonian function for the two-body problem

and Hi is the ensemble of terms that must be added to Ho when
the perturbative action of the planets is taken into account.

Suppose, finally, that it is known how to solve the equations

,
dll 0 , dHo ,

q, =
, p, = ; ? = 1,

•

dpi ^ dqi

That is to say, a function

S'(^l, . . . , <7n’, 01, . .
. y

t)

(2 )

can be found, in which 0ij . , . , fin are n independent, arbitrary

constants, that satisfies the partial differential equation

dS
+ Ho^qxy

dS

The integrals of Eq. (2) are then defiiied by the relations

dS

dq!
OLi

dS

did:

'

,
n, (3)

where the ai are new arbitrary constants.

The 2n equations, PJqs. (3), can be solved for the pi and qi as

functions of the 2n constants and the time t] that is

Pi *
'

>
Otny ^ly y ^ny /^\

q%
’

’

’
> ^ny Ply *

’
’

> Pny 0 »/

and these expressions substituted in Eqs. (2) reduce the differen-

tial equations to an identity.
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Equations (4) can be regarded, however, not as solutions of

Eqs. (2) which, of course they are, but as equations of trans-

formation from the letters p, and qi of Eqs. (1) to the letters

ai and /3t. On account of Eqs. (3), it is seen that

dp, - d^i ^ dpi -f- dq^ ~
1 — t — I — I

+ ^a.

= d'^ip.g,) -
t i

= d(Zpiqi - S),

which is an exact differential. The transformation of variables

therefore is a canonical one, and

a
dHi

z = 1,
* •

*
,
n.

The term Ho disappears from the Hamiltonian function by
virtue of the fact that if Hi — 0, the a, and are constants, that

is

= 0 .

It is necessary only to transform the function Hi from the letters

Pi and qi to the letters a* and ^i by means of Eqs. (4).

Application of this method to the problems of the perturbations

of the planets and to the theory of the rotation of the earth taking

into account the actions of the sun and the moon will be found in

Vols. 1 and 2 respectively of Tisserand^s ^'M(5canique C61este.^^

In Vol. 3 is given a r6sum4 of Delaunay^s theory of the motion

of the moon in which this change of variables is made over and

over again, each time cutting out one term from the perturbative

function. Hamilton himself adopted this method of developing

the S function, separating it into two parts, S = So + Si just as

H is separated into two parts, H = Ho + H.

Problems

1. Derive Lagrange’s equations of motion by means of Hamilton’s

principle.

2. Show that

d^k _^da*

detk
-3 ^ f

dq. dqi

dqi _ da*
II

d/3* dpi da* dpi
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Given the canonical equations

Vi’
dH_

dXi

If X is Hamilton’s principal function

dJC

di
== 0 .

Suppose there is a canonical change of variables from the letters Xi y% to the

letters pi, so that

Qi
dp.

Pi' =
dqi'

and if Q is the principal function

dt
- 0 .

Show that, in general, the function Q is not merely the transform of the

function X,

4

.

Given the canonical equations

in which

» = 1,
—

•
, n.

• • • » Pit • • ' > p*t 0

contains the time explicitly. Show that H can be replaced by

Hi = H(qif ’ '
'

, q^y Pu '
'

t Pn', ^n+l) “h Pn+l,

which is simply H with i replaced by qn\.\ and is then added, and the

equations are still canonical

dJU^

dpi
I = 1,

•
•

,
n -f 1.

The time t does not occur explicitly in //i, but evidently

since

9'n+l — iy

Qn^l
dH_

dpm^l
= 1 .

Thus a system in which the time occurs explicitly can always be replaced by
another system, but with one more degree of freedom, in which the time does

not occur explicitly. Also interpret the new variable pn+i.

5

.

Suppose the set of differential equations

=• Qiiqu Pi. •••
. p»: 0.

Pi ~ Fi{qif •
‘

. qnt Pi.
* *

I P»J 0} “ 1.
' *

'
.
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admits two known integrals

<Pl = Cl, <P2 = C2.

Show that the differential equations can be expressed in the canonical form.

6. Liouville*8 Theorem .—Suppose and Ui are functions of g, alone,

for each t; that

2T = (-di -f- ^‘2 + • •
• + >l„)(Bigi* + -f-

• • •
-f-

and that

// = f/2 + • • ‘

~i~ Un
A.I -j- Az • •

• + An

Show that the problem can be reduced to quadratures.

7. SiaeckeVa Theorem .—Given n* functions tpn such that the function

tPij is a function of g, alone, for each j. Let

A =
I I

be the determinant of these functions, and let 4>iy be the minor of A for the

element If

where C/, is a function of gy only, the problem can be reduced to quadratures.

Show that Liouville's theorem is a particular case of StaeckeLs theorem.

8 . Show that Hamilton’s principal function also satisfies the partial

differential equation

dS
dt
+ n(t; ~r

dqio

dS

aqj

where the g,o is the initial value of g,, and that

dS

dq^ii
Pio =



CHAPTER XII

THE METHOD OF PERIODIC SOLUTIONS

177. Introduction.—It was doubtless perceived early in the

study of mechanics that in many problems, perhaps one might

say in most problems, of mechanics the differential equations of

motion cannot be integrated. This statement is understood to

mean that integrals that are algebraic in character, or even simply

transcendental, in sufficient number to form a complete system,

cannot be found.

This fact has led to the development of solutions that are

expressible in infinite series of one kind or another. For example,

if the initial values of the variables are such that the differential

equations are regular (in the sense of the complex variable theory)

a solution can be developed in powers of the time. The series so

obtained are convergent for values of the time sufficiently small,

and they satisfy the differential equations. They are, therefore,

solutions of the problem in a mathematical sense, but, in gen-

eral, have very little value in a mechanical sense in that they do

not reveal the essential, or interesting, properties of the motion.

In numerical cases, by a process known as mechanical quadra-

ture
^
the motion can be followed step by step for as long a period

of time as may be desired; although, as a matter of practice, the

time so desired is rather short on account of the great labor which

the method requires. This method has been used by the

astronomers, particularly in the determination of perturbations,

but, like the previous method, it does not give any general

theorems about the motion. The information which it gives is

limited to the particular solution that is followed and to the

particular interval of time that is used.

A third method is the development of solutions in powers of a

parameter. The parameter or parameters, in powers of which

the expansions are made, may occur naturally in the differential

equations, or they may be introduced into the differential equa-

tions intentionally for purposes of expansion. This method has

the advantage that the series which represent the solutions are

390
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convergent for any assigned interval of time provided the

parameters are sufficiently small; that is, the question of con-

vergence is thrown onto the parameters, and the interval of time

is left free. The coefficients of the various powers of the parame-

ter, or parameters, are functions of the time and these functions,

in general, become very complicated as the powers of the parame-

ters increase. But suppose the initial values of the variables can

be chosen in such a way that at the expiration of the time P all

of the dependent variables have returned to their initial values.

It is evident then, if the time does not occur explicitly in the

differential equations, or if it does occur explicitly it does so in a

form that is periodic with the period P, that the motion is

periodic with the period P; for, by virtue of the differential

equations, not only have the variables returned to their initial

values but all of their derivatives have done likewise. These

series, when expressed in a periodic form are convergent, if the

parameters are sufficiently small, for all values of the time in

the interval 0 ^ ^ ^ P, and are therefore convergent for all

finite values of the time. The properties of the motion revealed

for one cycle are thus made known for all values of the time; and

it is this fact that gives to the method of periodic solutions the

high position that it occupies in modern analysis.

It is the purpose of the present chapter to show how these series

can be constructed; but before this is done it is necessary to

establish the legitimacy of the processes that are used: in other

words to lay a logical foundation for the construction of the

series. This requires certain theorems in the domains of implicit

function and of differential equations; in particular, there is given

a complete theory of linear differential equations with constant

coefficients that is due to W. Bartky, a method that depends

upon the theory of matrices.

I. CERTAIN THEOREMS CONCERNING IMPLICIT FUNCTIONS

178. Solutions of Simultaneous Equations as Power Series in

a Parameter.—Suppose there are given n analytic functions

Pt(ai,
• •

•
,
an; m) = 0,

which have the following properties:

(a) P<(0, 0,
• •

•
, 0; 0) = 0. i = 1,

• •
•

,
n;
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(b) the functional determinant,

\dF.

does not vanish at the origin, that is for

ai — a2 — • * * = Ofn = M — 0;

and finally,

(c) the partial derivatives dFi/d/j, are not all zero at the origin.

The functions Fi are expansible in the neighborhood of the

origin in powers of ai, . . . , an, and tx. For compactness of

notation the letter ^ will be denoted by ao. Then, on taking the

terms that are linear in ai, . . . , an to the left side of the equa-

tion, these expansions have the form

+ X X
J - 1 ; - 0 * » 0

n j k

X X + • *
*

, (1)

/»0

in which the letters / are constants, and i = 1,
• •

•

,
n. By

hypothesis, the determinant which is the functional

determinant at the origin, is not zero; and, also, not every is

zero.

By the method of undetermined coefficients, Eqs. (1) can be

formally satisfied by taking

«; = j = 0, 1,
• •

•
,
n, (2)

in which, of course, since ao = ao,

001 = 1, and == 0, 5 = 2,
•

•
,

oo,

while the remaining are constants to be determined in such a

way that Eqs. (1) are reduced to identities.

If Eqs. (2) are substituted in Eqs. (1), there results

n j *0

y »

1

• «

1

X X w + X XX
y»o jfc-0 «-

1

n j k oo to

+x i X XX +
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Since the left and right members of these equations must be

identical, a comparison of the coeflBicients of the first, second, and

third powers of ao give the following sets of equations, and it is

evident that the process can be carried as far as is desired:

(1) X t = 1,
• •

•
,
n,

1

(2)

y-o*«o
n n j

(3) = S +PM
j=»l j ^ 0 k "*0

n j k

;«0;k»0f*0

In set (1) the /?,! are the only unknowns; the equations are

linear in these letters and the determinant is not zero. The
equations have therefore a unique solution for the /3,i, and since,

by hypothesis, not all of the/o^'^ are zero, not all of the are zero.

In the left members of the second set the letters /3,2 enter just

as the letters do in the first set, and therefore have the same
determinant. The right members contain only known quan-

tities, since the /3,i are all known. This set of equations therefore

determine the letters /3,2 uniquely.

In general, the mth set of equations determine the letters

for these letters are in the left members only. They enter

linearly, and the determinant is
|

which is independent of

m. Since enter in the right members and are

all known, the right members can all be regarded as known.

Thus the series, Eqs. (2), can be developed step by step, and the

development can be carried as far as may be desired.

It is a simple matter to extend the solution to cover many
parameters instead of only one, if the functional determinant is

not zero.

179. Convergence of the Solutions.—For purely theoretic

purposes the above equations can be simplified by making a

linear change of variables. If the substitutions

= Ox,

y-1

ao = ao, ( 1 )
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be made, Eqs. (178.1) take the form

n j n j k

ai = po‘‘'ao + 5) + X X + '

y-0A:*=0 y»Oife«0/«0

which by the substitution

Clj j 0, y (^)

a =» 1

with

feoi = 1, and 6o« = 0, s = 2,
• •

*
,

oo,

becomes

00 n J 00 OO

Xbi.ao’ = Po'‘> + X 2 2 2^'*'*’^''^*'®“'^' + • •
•

. (4)

5=1 j «0 A;»0 «»1 e -1

A comparison of the coefficients on the two sides of these equa-

tions gives the results

bn = po^'^ i == 1,
* •

•

,
n,

bii = X %Vik^''bjihi2,

y = 0 A: = 0

n J n j k

6.3 = X2 V ik^^\b jihki + bkibji) +222 p jki^ b jibkibiif

y = 0A:«0 y»0fc-0Z = 0

(5)

and so on. These equations are already solved for the letters bu

and are therefore simpler for purposes of comparison.

It should be remarked that Eqs. (2) converge if Eqs. (178.1)

converge, since the substitution from the a\s to the a*s is linear.

Since the determinant
| |

is not zero, Eqs. (1) can be solved

for the in terms of the a^s. Let this solution be

Then, if the series

converges, the series

j-i

90

O, = X^J*®'>'
«-« 1

= X
y-1

(6)

ai (7)
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also will converge. It is necessary, therefore, to show that the

series in Eqs. (6) converge.

If the series, Eqs. (2), converge for

I

ay
I
^ r, i = 0,

* •
*

,
n,

where r is some positive number, it can be assumed without

loss of generality that r = 1, for the substitution a,- = hjV would

give a series convergent for
|

Ay
|
^ 1. It is assumed therefore

that Eqs. (2) converge for
|

a,
|
^ 1, and therefore there is a

maximum value of the coefficients in these series. Let M be a

positive number larger than this maximum value. Then the

equations

00

= Mxo + * +3*n)^ 2 = 1,
* •

* (8)

dominate Eqs. (2) ;
that is, the coefficient of each term in the right

members of Eqs. (8) is positive and numerically greater than the

corresponding coefficient in Eqs. (2). They can be solved just

as Eqs. (2) were solved; that is, by substituting

00

T; = '^C„Xo’ (9)

and equating coefficients, there results a series of equations

corresponding to Eqs. (5) that determine the coefficients Cja

successively. It will be observed that in Eqs. (5) only positive

signs occur. The terms in the right members of the cy« are all

positive and dominate the corresponding terms in the equa-

tions. Hence, for every s and every j,

Ci. >
I

b,, |.

It follows therefore that if the series P>|s. (9) converge so also

do Eqs. (3) converge. Equations (8), however, can be solved in

another manner. Let

^ = Xo + 3*1 + • •
• + Xn,

and let the sum of the n equations in (8) be taken. There results

00

y = {Mn + l)xu + Mn'^y’,

= {Mn + l)xo + Mn^- ;

\ — y
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whence, on setting Mn + 1 = m and clearing of fractions,

— (1 + mx(^y + mx^ = 0.

The solution of this equation that vanishes with xo is

y =
1 + mxo
2m

L 4m^xo
[1 (1 -f mxo)^_

which, evidently, is expansible in powers of Xo; and this expansion,

for m > 1, is convergent if
|
Xo

|

< 1/m.

Since Eqs. (8) are all alike it is clear that

Xi — Xz = • * • = Xnf

and if x is the common value of these quantities,

which also is expansible as a convergent power series in xo, and

therefore the series in Eqs. (8) are convergent. Since Eqs. (9)

dominate Eqs. (3), it follows that Eqs. (3) also are convergent;

and likewise Eqs. (7).

180. The Functional Determinant Vanishes, but Not All of Its

First Minors.—If the functional determinant vanishes at the

origin without the vanishing of all of its first minors, it is possible

to solve n — 1 of Eqs. (178.1), say for az, as, . . . ,
a„ as power

series in ao and ai, ai playing merely the r61e of another parame-

ter. If the values of az, • . • any so obtained are substituted in

the nth equation, the result, if it is not an identity, is an equation

in ai and ao,/(ai, ao) = 0, but the linear term in ai will be missing

since its coefficient is the functional determinant, which is zero.

Other terms of low degree in ai and ao also may be missing.

This equation is solvable for ai in terms of ao, but the power series

expansion may be in fractional powers of ao instead of integral

powers.

In the discussion of this equation in ai and ao the following

theorem,^ which is a variation of the Weierstrass theorem on the

factorization of a power series, will be useful

:

1 MacMillan, Bulletin of the American Mathematical Society

^

Vol. 17,

p. 116 (1910).
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Theorem,—If f{y] a:i, . . . ,
Xp) is a convergent power series in

2/; Xi, . . . ,
Xp such thatf{y; 0, 0, . . . , 0) begins with a term of

degree n, there exists a convergent power series ip{y) Xi, . . . ,
Xp)

with a constant term different from zero^ such that the product

is a polynomial in y of degree n in which the coefficient of 2/" is

minus one and the coefficients of the remaining powers of y^ai^ . . . ,

a„, are convergent power series in Xi, . . . ,
Xp that vanish for

Xi = X 2 = * • • = Xp = 0.

For the purpose of determining the coefficients of the series,

it will simplify the notation to put Xt = ftX and then arrange in

powers of X. The series /, and can be written

/ = ”2/"(l - ho) + bix + + • •

•

,

= Co + CiX + C2x2 + • •
•

,

p(n) ^ ^ ^

where the coefficients bk are known power series in y and are

homogeneous of degree k in the bo being a power series in y
alone that vanishes for y equal to zero. The coefficients Ck

are power series in y whose coefficients are to be determined,

and the pk are polynomials in y, also to be determined, of degree

71—1.
By taking the product of f and <p it is found that

/. V.
— co(l - 60)2/” + [-(1 - bo)ciy^ + biCo]x -

+ [— (1 — 6o)C22/” + biCi + 62Co]x^

+

+

+
and this is equal to

— p” + Pix + pzx^ + * *
• + Pkx’^ + • •

•
.

A comparison of the coefficients of the various powers of x in

these two expressions gives the equations

(1 - bo)coy^ = y^j

(1 ~ bo)ciy^ = 61C0 — Pi,

(1 — bo)ciy^ = biCi + biCo — P 2 ,
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k

(1 - bo)cky^ = - pky

These equations can be solved successively for the p\s and e\s.

From the first follows at once

1 - bo

Since cq and bi are known power series in y, it is seen from the

second equation that pi can be chosen uniquely in such a way
that bico — Pi = /Si?/” is divisible by ?/”. The solution for ci is

then

Similarly p^ can be chosen uniquely so that

bici + 62C0 - ?>2
=

is divisible by ?/”, and then

and so on to as high a degree in x as may be desired. The proof

of convergence is by dominant series, but it will be omitted here.

The reader will find it in the article above cited.

Since

f'<P = = 0
,

and (p does not vanish in the neighborhood of the origin, since

it has a constant term, the roots of are identical with the

roots of / in the neighborhood of the origin. By the funda-

mental theorem of algebra, the equation = 0 has n roots, all

of which vanish with x. The same is true, therefore, of the

equation / = 0.

181. The Determination of the Series for Two Variables.

—

For the actual determination of the series for ai, in integral or

fractional powers of p, that satisfy the equation

/(«!, m) = 0, ( 1 )
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it is not necessary to form the corresponding algebraic equation.

The introduction of the Weierstrass theorem was merely for the

purpose of establishing the number of solutions. Since the

linear term in ai alone is not present, there are at least two
solutions; if the terms in ai‘^ alone also are missing, there are at

least three solutions; and so on. The vanishing of the func-

tional determinant therefore indicates the existence of multiple

solutions.

In order to find the expansions for these solutions, Newton’s

parallelogram^ will be found most useful. In this scheme the

terms that occur in the power series expansion of Eq. (1) are

plotted as points in a coordinate system. For example, if the

term occurs, that is the coefficient Ut, is not zero, it is

plotted as the point (z, j). The value of provided it is not

zero, is quite immaterial. If m is the smallest value of i for

which j is zero, and ri is the smallest value of j for which i is

zero, draw a dotted straight line through the points (0, n) and

(m, 0), and plot all of the terms of Eq. (1) that are below, or to

the left of, this line. Since its equation is

my + nx = mriy

for all points (z, j) above or to the right mj + ni > mn^ and these

points play no role. The terms for which mj + ni g mn are

the important ones, and these all lie in the first quadrant below

and to the left of the dotted line. Imagine these plotted points

to be pins or pegs in the plane and a string tied to the pin (0, 7i).

Let the string initially coincide with the j-axis. Then let it be

moved to the right under a slight tension until it touches the

point (0, m). In the final position either it coincides with the

dotted line or it forms a broken line by contact with other pins.

It is the segments of this broken line and the points that lie on it

that are essential.

Suppose, for example, with coefficients omitted,

/(ai, m) = + (m + +
(/i^ + y^)ai +

where H includes all of the terms that lie above the dotted line.

The algebraic theory shows that there are five solutions for ai

that vanish with /n, and the Newton parallelogram (Fig. 80)

‘Chrystars “Algebra," Vol. 2, p. 362.
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shows three segments of the broken line, on each of which there

are at least two points, and on the middle one three points.

With each segment there is associated a group of solutions,

in number equal to the diflFerence in the ordinates of the end

points of the segment. In the above

example there are two solutions associ-

ated with the upper segment, two with

the middle, and one with the lower

—

five altogether.

If mjfc, rik are the coordinates of the

upper end point of any segment, and

mij ni are the coordinates of the lower

end point of the same segment, the

equation of the line in which the segment lies is

{mi - mk)y + (n* — ni)x = miUk - riimky

in which x and y are the running coordinates of the line. Except

the points that lie on the segment, all of the points that belong

to/(ai, y) lie above and to the right of this line. Therefore, if i

and j are the exponents of any term ai^'y* of /, it is true that

or, if,

(mi - mk)j + (Uk — ni)i ^ mm - Uinikj

a —

j + (ri ^

rik — n i .

mi — mk
mm — riimk

mi — mk
= m:

where <r, evidently, is the tangent of the acute angle which the

segment makes with the j-axis, and m is a perfectly definite

number.

Now let the variable ai be replaced by a by the substitution

ai = ayr (2)

The equation

00 00

/(“!> m) = = 0

becomes

= 0 ;
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and since for every i and j

j + ffi ^ m,

a factor can be divided out, leaving

00 00

= 0 .

In this expression the exponents of are integral multiples of

l/(mi — mjt); hence, if the substitution

1

V = (3)

is made, the above equation becomes

00 00

Tiol, v) = = 0, (4)

in which only integral powers of v occur. For = 0 the series

^(a, v) reduces to the terms whose plotted points lie on the seg-

ment under discussion, namely

^^*”*^”* "f"
* * *

“f" “ 0, ^5)

or

am^na^^ioc — ri)(a — r2)
•••(« — Vn^^n) = 0,

where the r’s are the rih — ui roots of Eq. (5) that are distinct

from zero; the ni zero roots are without interest here. Let r* be

any one of these roots, and let the substitution

a ^ fi + n (6 )

be made. Equation (5) then becomes a polynomial in ^ in which

the linear term in /3 is present, if Vk is a simple root. Assuming

that this is the case, the series v) [Eq. (4)] becomes a series

^(/3, v) which contains only integral powers of ^ and v and in

which the linear term in p is present. It can therefore be solved

in a unique manner for 0 in powers of j', and, going back through

the substitutions, Eqs. (6), (3), and (2), ai is expressed finally

as a power series in fractional powers of fx that vanishes with jx.

There is one such expansion for each non-vanishing, simple

root of Eq. (5), or n* — ni altogether. If rk is a multiple root

of Eq. (5), the power series p) will not contain a linear term

in j3, and the entire process must be repeated for ^(^3, v) just as
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for the original series /(ai, m)* Since there are rik — ni expan-

sions for each segment and rik — ni is the difference in the ordi-

nates of the end points of the segments, it is evident that there

are

2(nik - 71 1 ) = n

expansions altogether, as there should be.

182. All of the First Minors Vanish.—The cases in which the

functional determinant does not vanish, or, if it does, not all of

its first minors vanish, are particular cases of a general situation

in which n functions xi, . . . ,
Xn are defined by means of n

equations in Xi, . . . Xn, and k parameters )Ui, . .
. , ai*. A

separate treatment of these two cases is justified by their simplic-

ity and by their frequent occurrence. If all of the first minors

vanish, it is best to proceed at once to the general case. The
method of treatment rests upon a generalization of tiu? theorem

in Sec. 180.1

Suppose

m) b, t 1,
' *

'

y
71

j

are n analytic functions in Xi, . . . ,
x„, and ^ which vanish

with these variables. The function is said to be of order di

if, for /X = 0 in the power series (‘xpansion of . .
. , Xn; m)

in the neighborhood of the origin, the homogeneous polynomial

fi which is composed of the aggregate of terms of lowest degree

that actually occur in Ft(xi, . . . , Xn; 0) is of degree d, in Xi,

. , . ,
x„; and/i is called the characteristic jwlynomial of F,. An

eliminating determinant is a determinant that arises in the process

of forming the eliminant of the fi by Caley’s method.^ Let d

be a positive integer defined as follows:

d = I>di — n.

The theorem that is of interest here is the following

:

Theorem.—If

F i (x!,***> Xn y m) z ~ 1 ,

* *
*

j
n

* MacMillan, ‘‘A Reduction of a System of Power Series to an Equiva-
lent System of Polynomials,” Mathematische Annalen^ Vol. 72, p. 157 (1912).

* Caley, Cambridge and Dublin Mathematical Journal^ Vol. 3, p. 116

(1848). See also Salmon, “Modern Higher Algebra,” p. 87.



182] THE METHOD OF PERIODIC SOLUTIONS 403

is a system of power series in X\y . . . ,
and //, vanishing with

these variables
j of order di, and characteristic polynomials fx which

have an eliminating determinant different from zero^ then multipliers

i'iyCa-i,
• ,Xn; m), j = 1,

' ’
'

,

that vanish with Xi, . . . , Xn, and /x, and polynomials

-^i(Xl, . . . f Xnj m) >

of degree d and order d{y exist such that

(1 + 4>ii)Fi + ^12^2 + * *
* + ^\nFn — P \y

^2\F I + (1 + ^22)F2 + ‘ *
• + ^2nFn = F^y

^nlF

I

+ 4>„2^^2 + • *
• + (1 + ^nn)Fn P n-

Since the determinant of the coefficients of the F^s of the left member

does not vanish in the neighborhood of the origin^ it follows that

the system of equations

Pl= P2= • • = Pn = 0,

is equivalent to the system of equations

= Fs = • • = Fn = 0,

in the sense that they define Xi, . .
. ,

Xn as the same functions of

the parameter p in the neighborhood of the origin
y
and the number

of the solutions that vanish with p is II

Just as in the case of the single equation in two variables, the

above theorem gives the number of solutions in any particular

case. It is not lU'cessary to form the polynomials P,. In order

to obtain the exj)ansions of the Xt in powers of Py or fractional

powers as the case may be, the procedure is similar to that of the

single ecjuation, namely, by the use of Newton p)arallelograms,^

but the proof is too long to be given here. The reader is referred

to the papers cited.

II. THE SOLUTIONS OF DIFFERENTIAL EQUATIONS AS POWER
SERIES IN A PARAMETER

183. Formal Solutions of Differential Equations of T3rpe I.

—

The set of differential equations

Xi — pfi{X}y
' ’

’
J
Xnj y y

t')
y ^ ^ >

* *
’

> ( 1 )

1 MacMillan, “A Method of Determining the Solutions of a System of

Analytic Functions in the Neighborhood of a Branch Point," Mathematische

Annalen, Vol. 72, p. 180 (1912).
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are said to be of type I when the right members carry the

parameter M as a factor and the /» are analytic in xj, . . . , Xn, /x

and t and are regular at the point Xi = m = 0, for all values

of the time that lie in the interval 0 S t S T, Under these

conditions the functions are expansible in powers of (xi — a^)

and fXy and these power series are convergent for all values of t

that lie in the interval specified provided

i

:ri - at
I
g r* and

| m |
< P,

where r* and p are certain positive numbers, not zero.

The differential equations of mechanics are usually of the

second order, but, as has been seen in the chapter on Hamilton's

equations, they can always be reduced to a set each of which is

of the first order.

In order to show that Eqs. (1) can be solved formally as a

power series in the parameter, let the dependent variables x* be

changed to by the substitution

Xi di =

and, for compactness of notation let p == fo* After expansion

of the right members of Eqs. (1) in powers of and p, but not in

powers of f, Eqs. (1) become

fi' = fo

n n j

j =0 y»OJfc-o
(2)

where the coeffi.cients <p are functions of the time, or, if the time

does not occur explicitly, are constants.

Under the assumption that the can be expanded as a power
series in ^o, the time, of course, occurring in the coefficients, let

eo

U = (3)
r-1

with the understanding that {oi = 1, and $or = 0 if r > 1, since

necessarily, fo = fo. Let Eqs. (3) be substituted in Eqs. (2) and
the series then arranged according to powers of f o, namely

i/fo"* = V^tofo +
r » 1 r - 1 « 0

00 00 n

r*l -»0 Aj“0
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Since this equation is an identity in (o, the coefl&cients of the same

power of fo in the left and right members are equal. Hence

sequentially,

“ ^iOf t — ly * *
* ,71.

n

i-0
n n j

i»0 j^O k^O

If, whatever jjl may be, the initial values of the x* are the a*, it

is necessary that the initial values of the Ji be zero, and since

this is true whatever m may be, it is necessary that every

fir, r = 1,
• •

•
,

oo, 1 = 1,
• •

•
,
n, should vanish. The con-

stants of integration of Eqs, (5), therefore, must be chosen so as

to satisfy this condition. Since the (pio are known functions

of the time, the coefficients fii are determined by a quadrature;

and if

^<i(0 ~ (pioit) dty

then

fn =

With the f ti as known functions of <, the right members of the

second set are known functions of the time. Hence, if

n

t = 1,
• •

•
,

Ti,

;»0

it is evident that

ft2 — 4»t2(0i

and so on, as far as may be desired. Hence, formally, the differ-

ential equations [Eqs. (1)] can be satisfied by solutions of the form

= a< + (6)

r -1

which, if convergent, reduce at f = 0 to

X%(0) = diy
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as was desired, and it will be observed that the process everywhere

is unique.

184. The Solutions Are Convergent for y, Sufficiently Small.

—

It is no essential restriction upon the differential equations to

assume that the right members of Eqs. (183.2) are convergent for

I
f / I

~ I) j ~ ‘
1

provided t lies in the interval 0 ^ t S T; for, if it were not so, the

substitutions

= f'lVjy ^ = PM,

would result in equations of the same type in which assumption

was true. As it simplifies the notation, this assumption will be

made. It follows that for all values of t in the interval specified

the coefficients in the right members of Eqs. (183.2) are bounded,

.say each one is less than a certain positive numlx^r M. Consider

the comparison set of equations

t;/ = ~ ~ ^
,

/j. (1)

(1 - M)n -

The right members of these equations also can be expanded in

powers of the rji and Furthermore in these expansions every

coefficient is positive and numerically greater than the corre-

sponding coefficient of Eqs. (183.2).

Equations (1) can be solved by the method of Sec. 184, and

since the right members of the equations which correspond to

p]qs. (184.5) are greater than are tho.se of Eqs. (184.5), it follows

that if the solutions of Eqs. (1) converge so also will the solutions

of Eqs. (184.2) converge. Equations (1) can be integrated

otherwise, however. The right members of Eqs. (1) are all alike,

and the initial values of the rjt are all zero, and therefore all alike.

Consequently

Vl = V2
= • * • = Vn

for all values of the time. If their common value is denoted by

the letter it is seen that, from Eqs. (1),

Mfi

(1 - /i)(i -V (2)
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or

(1 - nvW =
1 - M

After integration and determination of the constant of integra-

tion so that rj vanishes with it is found that

n
--2^ 2

1 - m’
(3)

which, solved for rj, gives

V ifi- Ji -^'1, (4)

the minus sign being taken before the radical since rj vanishes

with tj and also with ji.

Equation (4) is expansible in powers of and this expansion is

convergent for all values of the time in the interval 0 ^ t S T
provided

I

.

I

f - M
^

that is, provided

I
M

I < fy 2MirT
^

Since the solution of Eqs. (2) by the method of Sec. 183 is

unique, the solution so obtained is the same as the expansion of

Eq. (4); it is convergent, provided
|
m

|
< Mo- The same is true

therefore of the solutions of Eqs. (183.2), and the series Eqs.

(183.6) are therefore convergent, provided
I
m

|

sufficiently

small.

186. Formal Solution of Differential Equations of T3rpe II.

—

Suppose the differential equations have the form

^ 9xi.^ly * *
) 0 "4“ tJ'fii.^ly

*
’

*
> ^ny Mj 0

i = 1,
• •

•

,
n, (1)

in which the functions ffi are not identically zero; if the Qi were all

identically zero, the equations would reduce to type I. Suppose

further that Xi = Xio{t) is a known solution of the differential
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equations for m ~ 0; that is, the functions x,o(0 satisfy the

differential equations

^tO ~ * *
* ^n0> t) 1 1)

'
’

f
7ly

and, for t = 0, reduce to Xio(O) =

In what follows, it will be assumed that the functions gi are

expansible in powers of Xi — Xio, and that the /» are expansible in

powers of Xi — Xio and and it is desired to find solutions of

Eqs. (1) that are expansible in powers of /x and that reduce for

^ = 0 to the same initial values Xi == a^.

For this purpose, let

Xi XiQ — i — Xy
' '

‘
f Tlf

and for compactness of notation let m = fo; the functions Qi and/i

are then, by hypothesis, expansible in powers of the f,, and the

differential equations (1) become

n n j

X + •

>-» 1 1 1

n n j

+ f(/i0 + '^fijk^j^k +

in which the coefficients gi,.. and /*... are, in general, functions of t.

In order to show formally that solutions in powers of m = fo

can be derived, let

PO

ft ~ i = 0,
’ ’ ‘

r-=l

with

foi = 1 and for = 0, r > 1, as before.

If these expressions are substituted in Eqs. (2), it is found that

f*/
“ = fo/iO + ^

r-l\ i-1 / r-1,-0
to CO n j

+ ^ + fo/tyfc)fyrfA:#fo''"^* + * *
*

. (3)

r-1 y- 1 fc- 1

A comparison of the coefficients of the first power of fo in the

left and right members of these equations, then the second power,

the third, and so on gives the following sets of equations:



186] THE METHOD OF PERIODIC SOLUTIONS 409

n >

in' - = fio, i = I, ,n.

i-i
n n n j

ft*/
— = ^fnin +

y-i y-o j-ifc-i

n

(ir = ^ir((klf *
*

'
j (k,r—lf Ot

i-1

(4)

These equations exhibit the following properties:

() The left members are linear and homogeneous in the f ,> and
their derivatives.

() The coefficients of the left members are the same from one

set to another, that is, they are independent of the subscript r.

(c) The right members contain only the letters for which s is

less than the corresponding subscript r of the left members.
The differential equations to be solved at each step are linear

and non-homogeneous, and the difference in these equations from
one set to another is in the right members only. If the equations

are solved step by step, in every case the right members are

known functions of t; the left members are the same at every step

and, of course, are known. The form of the general solution of

the linear, non-homogeneous differential equations

n

ii - Xgnii = 4>i«)

y-1

is

n

ft = + Fi{t)y

in which the Aj are constants of integration, the (pait) are func-

tions of t whose determinant
|
tpij

|

is not zero, and the Fi{t)

are functions that depend upon the

In the solutions of Eqs. (4) it is necessary to choose the con-

stants of integration in such a way that every fir = 0 at i = 0.

Since the determinant
| |

does not vanish, this condition can

be satisfied, and then every {ir becomes a definite function of the

time,

fir = 4'irit)^
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It follows, therefore, that the series
DO

Xx = Xio + (5)

r= I

formally satisfies Eqs. ( 1 ).

186. The Formal Solution is Convergent.—Before proceeding

to the proof that the series Eq. (185.5) is convergent for values of

/X sufficiently small, it is desirable to prove the following lemma:
Lemma.—If

ix = 4- hi{t) i=\, ,n

is a set of linear differential equations for tvhich the functions

gii{i) and hiit) have no singularities in the interval 0 ^ t ^ the

solution that vanishes with /, i.e.j ^1 = ^2= * ‘ * = fn = 0 for

/ = 0
,

is dominated by the solution that vanishes with t of the

differential equations

r)i = f = 1,
• •

•
,
rq

where M is a positive number greater than
\
gij

|

and
|

/?,»
|

for every

t in the interval ^ t ^ T

.

By Picard \s method of successive approximations^ a series of

sets of functions . . . and 77 *^^^ • • • ,

. . . are defined as follows:

fo^
i=l

. x'S"’"'*-” + XMdi,

' Picard’s, “Traits d’Analyse," Vol. 2, p. 340 (1906).
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It is readily seen from these series that for every t in the assigned

interval

>
I

and then from the second set that

>
I

and, in general, that

7).“' >
I

|.

By Picard’s theorem lim and lim t;.**’* = ij, for a suffi-

A: “ 00 A: * 00

(‘iently restricted rang? of tj which in the present case is the

original interval 0 ^ ^ ^ T, since the equations are linear. It

follows therefore that

Vv > U» 1

throughout the same interval, which proves the lemma. One of

the hypotheses with regard to Eqs. (185.1) is that the powder

series expansions, Eqs. (185.2), are convergent for the interval

0 ^ ^ ^ r provided
1
f/ 1

< r,, j = 0,
• •

*
,
n, where r, is some

fixed positive number. Just as before, it is no essential restric-

tion to assume that = 1 for every j, since the substitution

fy = rjXj would result in series of the same type that are con-

vergent for
I

Ty
I

= 1. Hence it is assumed that this is true

for the series in Eqs. (2), and that ry = 1. Since the series,

Eqs. (185.2), are convergent for
[ {y |

= 1, it follows that for

0 ^ t ^ T there is a maximum value of the coefficients. Let M
be a positive number that exceeds this maximum value, and let

the comparison equations be

( t?0 + ^1 + • •
• + Vn)

1 — iVo + ^1 + ’ *
* + Vn)

w^here vo = (1)

If the right member of this equation is expanded, it will be a

power series in the Vi that will dominate Eq. (185.2). It can be

solved in the same manner, that is, by taking

Vi = Xn
r » 1

VirVO
.
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there will result a series of sets of differential equations similar

to Eqs. (185.4) but which dominate them. If the rji vanish at

/ = 0, every rjir also vanishes. It follows from the lemma, there-

fore, that the solutions rur dominate the corresponding solutions

(ir, and therefore the series

00

fii = ^‘nir'nQ (2 )

r»l

dominates the series

00

(3)

r-1

t
Hence if the first series converges, the second also will converge.

It will be observed that the differential Equations, Eqs. (1),

for the tii are all alike, and, since they have the same initial value,

that

= ^72 = • ' ‘ ==
?7n

for all values of t. Let

f = ryi + ^2 + * •
* Vn, and nM = N»

The sum of the Eqs. (1) is then the single equation

t' = N ,

and the solution that vanishes with t is

or

log ^1 + - f = Ni,

f = /xCefc"' - 1).

Expanded in powers of f this expression becomes

f = il''‘
- 1)

,
/I-

. 1,,^ \
1 - 1 - 3 !^ ' /

which, expanded in powers of /x, is convergent for all values of f
and for

I
/X

I
< By the principles of Sec. 178, this equation

admits a unique solution for f as a power series in /x that converges
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for every t in the interval 0 ^ t ^ T, provided
|
ai

|

is sufficiently

small. Finally, since

_ _ f
rji - V2 - * * * - ’yn

-

a unique solution for r;* as a power series in n that converges for

I
/jL

(
sufficiently small has been derived. By virtue of the

uniqueness, this solution is the same as that in Eq. (2), which

dominates Eqs. (3). It follows that Eqs. (3) converge and

therefore Eqs. (185.5) also.

III. THEOREMS ON MATRICES AND LINEAR DIFFERENTIAL
EQUATIONS

187. Definitions and the Algebra of Square Matrices.—

A

matrix is a rectangular array, or table, of numbers. It is called

an m X n matrix if the array has m rows and n columns, and a

square matrix if m and n are equal; thus

K12 . . Kin

^21 K22 . K2n

Knl Kn2 • •• • Knn

is a square matrix, since it has n rows and n columns. If n

is equal to one, the matrix reduces to a single number. The
notation

I I b J ~ I>
' '

'

j

can be used to denote a matrix, or, even more briefly, the single

Greek letter, k.

If

-
1 1, ^j=l, (1)

are two square matrices, they are equal, if and only if,

(2)

for every i and j. Their sum is the matrix in which each element

is the sum of the corresponding elements in and so that

^(1) ^ ^(2) =
I 1

=
1
(#C</2) -(-

I

- ^(l).
(3)
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For example,

1 2
.

«'> 6 6 8

3 4 + 7 8 10 12

The product of a scalar and a matrix is a matrix in which eacli

element is the product of the corresponding element of the given

matrix by the given scalar. Thus if is a scalar and k is a

matrix,

(4)Sk 6*
I 1

=
1 («^u) i|.

Hence

P 0 . . .

K — K ~ K
{
— \)k = 0 0 . . .

I

0

in which each element is zero, ij-> called the n

The product of two matrices and in

I
oil,

=
II

+ k.2<'Vu/^> +

(5)

just as in the product of two determinants; thus

and

K (2),^(n

rows coFs

1 2 3 4 1-3 + 2- 5 1-4+2-6 13 16

3 4 5 6 3 • 3 + 4 -.5 3 • 4 + 4 • 6 29 36

rows coFs

3 4 Ijl 2||_||3-1 +4-3 3 • 2 + 4 • 4 15 221

5 6 m 4 b- 1 + 6-3 5 2 + 6 4

1

23 34

from which it is evident that the order of multiplication is

important, and, generally speaking,

^( 1 )^( 2 ) ^( 2 )^( 1 ).

For the product of a scalar and a matrix, however,

SK =
I
{SKii)

1
=

I
{kuS)

1
= KS,

and the order is not important,
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The identity matrix is defined to be

1 0 . . . 0

5 = 0 1 . . . 0

0 0 . ,. . 1

that is, ones down the main diagonal and zero elsewhere. If b

and K are each matrices, it is readily verified that

5k = k8 ~ K.

If and are three n X n matrices.

From these examples it is evident that the associative, dis-

tributive and commutative laws hold for addition and scalar

multiplication of matrices. The associative and distributive

laws hold for multiplication of matrices, but the commutative

law does not hold in general.

Finally, the derivative of a matrix whose elements are functions

of a variable, say /, is defined to be

t t !

^11 «21 ...
t t t

K21 «22 . . . Kn2

/ / ^
/

^nl Kfi2 . • . K Tin

which is obtained from k by differentiating each element of k.

188. The Determinant of a Matrix.— The determinant

^11 A' 12 Kin

K2\ ^22 . . K2n

Knl Ar,2 . « Knn

evaluated in the usual manner, is called the determinant of the

matrix k, and is written det k. While the matrix is an array of

numbers, its determinant is a scalar, that is, a single number.

The cofactor of the element #Ct, in Eq. (1) is the determinant

obtained from Eq. (1) by suppressing the fth row and the jth

column and then multiplying by (
— 1)’^. Let it be denoted by

Kji (observe the transposition of subscripts). The matrix
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Ku .

K = K^i K,, . . K^n

K„^ . E nn

is called the adjoint matrix of the matrix k. The effect of the

transposition of subscripts is merely to change rows into columns

in K. Since, from the theory of determinants,

n

r- 1

det Kf

0
,

it follows that

if i = i,

if i 9^ i,

^11 X 12 »C\n A'n An ... Km
kK =

K2 I K'22 f^2n

X Ku An ... Km

^nl ^Cn2 Knn A,

a

Kn, ... A„„

(det 0 . . . 0

= 0 (det k) 0 = det K s,

0 0 . . . (det k)

where b is the identity matrix.

189. Matrix Polynomials—The Characteristic Equation.

—

Since the product of two matrices is a matrix, it is possible to

have

KK = kkk =
1

and thus build up a polynomial

~ flrn— 1^”*
^

“f"
’ ’ *

"b a\h “f“ ^0^;

which also is a matrix, since it is merely a sum of matrices. It

is readily verified that the product of two powers of k is com-

mutative; that is

Let p(fi) be the corresponding scalar polynomial. Just as the

scalar polynomial

v{s) = am{8 - Si){8 — S2)
• *

• (« — 8m)

is factorable, so also is the matrix polynomial factorable, and

PW = am{K ~ — 82 b) •
•

• (k - Smb),
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since the coefficients and exponents obey the same laws in the

two cases.

Suppose

= (- 1 )"

det (k — \d)

Kii
^ X Ki2

•
• Kin

^21 /f22 — X •

K*ln

^nl ^n2
' Knn

— X” + a„_iX" ^ + * •
* + aiX + Uq.

The equation

p(X) = 0

( 1 )

(2 )

is called the characteristic equcUion of the matrix k, and its roots

X* are the characteristic numbers for k. If Eq. (1) has r distinct

roots and each X* is a root of multiplicity m*, then

= n,

1

and the polynomial can be written

p(x) = n (3)

The matrix

Kll — X Ki2 Kin

K21 K22 — X K2n

Kn 1 Kn2 Knn X
1

can be written k — X5, or simply ic(X), with /c(0) = k. If K{\) is

its adjoint matrix, then, by Sec. 188 and Eq. (1),

k{\)K{\) = [det k(X)]6 (4)

= (-l)-p(X)5.

The elements of the matrixK are polynomials in X of degree

not greater than n — 1. Hence the matrix K can be written in

the form
n— l

K(\) =
t-O
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where are matrices that do not contain X; and this expression

substituted in Eq. (4) gives, since k{\) = k — XS,

n — 1 n — 1

t = 0 t « 0

( — l)"(uo 4" ttiX + U2X“ + • *
* + X”)6. (5)

Since this equation is true for every X, the corresponding coeffi-

cients of the left and right members are equal. Hence

= (-l)”ao6,
= (-l)"a,5,

/cX'2) _ ^ (-l)’‘ao6,

_ K^n~.2) = (-l)«a.,_i6,

= (-lys.

If the first of these equations is multiplied by 6, the second by k,

the third by and so on, and the equations are then added, it is

found that the left member is the zero matrix and the right

member is (*-l)”p(/c)5. Hence

P{k) = ‘
‘ + diK + ao5 —

II
0 I, (6)

or again [Eq. (3)]

r

pW = ![(«-

=

II 0||. (7)

i=l

This shows that the matrix satisfies its own characteristic

equation, a theorem due to Sylvester.

Example,—If

"*|l ~ll
and

p(X) = X2 - 8X + 16 = (X - 4)2;

so that X = 4 is a double root. Consequently

It is evident that if

P(k) = k” + ftm-i*"*-* + •
• + 6 ik + bod, m > n, (8)
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is any other polynomial in k of degree greater than n, it can be

reduced by means of Eq. (6) to a polynomial of degree not higher

than n — 1, that is, it can be written in the form

P(k) = + • '
' + CiK + Co^.

190. Bartky’s Identity.—Before proceeding to the formulation

of this reduction it is desirable to establish an identity that is due

to W. Bartky.

Let Ei be an operator with the definition

E = 1 4- ^ 4- ... 4-

~
^ 1! (mi - 1)!

mt— 1

-sri(x -
^ x-r rfM*’

and let Kr, St be functions of X and /x respectively with the

definitions

r

^l(X) = JJ (X X;)"'4 j 9^ ty

r

= II (M - X;)~'"’>, j 9^ f.

1

(0)

It is assumed that if i and j are distinct Xi 9^ X,; that the rrii are

positive integers and that no m. is zero; and finally, that

= n;

1

so that the Rt are polynomials of degree not higher than n — 1.

If the Xi\s are all equal, R ~ S = ly and m = n, the subscript being

useless.

Bartky^s polynomial Q(\) is then defined to be

Qi\) = (1)

i-1 i-1

and it is readily seen that its degree in X is not higher than n — 1.

It will be shown that

Q(X) ^ 1.
(2 )
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It is fairly evident that for any t

Q(X0 = 1, (3)

since — Oj ii i 9^ t] while for i = Ei(\t) = 1, so that

QO^i) ~ Rt0^t)St(\t) — 1 .

When Ei in Eq. (1) is replaced by its definition, the polynomial

Q{\) becomes

r fn» — 1 r

i«l Jfc-0 *-l

where is the Ath derivative of for the value m = Xi*

The pth derivative of Q with respect to X is

r

t- 1

and, for X = X< and p < rrit,

= Oe^^XXi), (4)

since, for i 9̂ ty Qi has the factor (X —
In the neighborhood of Xe, St{\) can be expanded in the Taylor

series

Jfc*0

and therefore

mi —

l

^,(X) =

k^O

becomes
OB

Q,(X) = R,{\)St(\) -

k""fnt

The first term in the right member, RtSt, is equal to unity, and

the second term, the infinite series, carries (X — XO”' as a factor.

Hence, by Eq. (4),

= <?/’’’(X() = 0, provided 0 < p < m(.
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Since Q(X) — 1 and its first ?n< — 1 derivatives vanish for

X = X(, it follows that (X — X<)’"* is a factor of Q(X) — 1 ;
also that

r

Ucx - x<)”“

is a factor. Since Q{\) — 1 is of degree n — 1 at most and

I>mt = n, it follows that

therefore

Q(X) - 1.^ 0;

Q(\) ^ 1.

The corresponding matrix polynomial is

Q{k) = 5;

that is

in which

and

r tn»— 1

QM = >; ^ S,

$-1 Jfc-0

= (k — X»6), Ki^ = S,

r r

RiM = n == JJ j 9^ i.

y-1

(5)

(6)

If now the X* are the characteristic numbers of k, and the m*

their multiplicities, then, since the matrix k satisfies its own char-

acteristic equation [Eq. (189.7)], it is evident that

r r

= (7)

;-i y-i

and the summation with respect to k in Eq. (6) can be continued

to infinity, for all of the succeeding terms vanish. Furthermore,

this sum can be written symbolically

ib-O



422 DYNAMICS OF RIGID BODIES

where D^. = d/rf/x, and therefore

r r

QW = = S^‘-
1=1 1=1

Since Qi carries as a factor, it is evident from Eq. (7) that

=
I 0 ||. (9)

From this fact and the fact that Qj carries «:»”*• as a factor in

/iy(/c), it is readily seen that

QiQi = foil, (10)

when i 9̂ j\ and on multiplying the identity Eq. (5),

through by Qi, and then applying Eq. (10), that

QiQi = hQi =^Qi, f = 1,
. .

.
,

r. (11)

191. Functions of a Matrix.—Suppose k is a given matrix with

characteristic numbers Xt of multiplicity m,, and that

P,(X), ry = 1, 2, 3,
• '

•
,

is a sequence of polynomials in X of degree n^, not necessarily

constant. Suppose further that

limPg(Xv) = P(X,),
q 70

lim s = 1, 2,
• •

,
m, - 1.

ao ttA X=X,

For example,

P„(X) = 1, P.(X) = 1 - + rJ.

• •
• •

Evidently

P(Xi) = cos Xi.

Let Pq{K) be the corresponding sequence of matrix polynomials.

Then
Theorem A.—The limit for q equal to infinity of Pg(K) is a

matrix, F{k)] and, if hmi = n, F{k) can he expressed as a poly-

nomial in K of degree not greater than n ~ 1.
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Since, by Eq. (190.6),

Q(k) = zQi = a,

P,(\) can be written

PM = XQiPM- ( 1 )

For each ^^(X) can be expanded by Taylor^s theorem in the

neighborhood of the characteristic number Xt. That is,

P,(X)=P,(X.) + ^^

1 I ff'q‘

hence

r

PM = + • +
t «

1

~;i^/-’(Xi)]- (2)

Now, as was observed in Eq. (190.9),

Qi/c."*- =
I 0 ||. (3)

It is not necessary, therefore, to carry the expansion by Taylor's

theorem in Eq. (2) beyond the (m* — l)th term, since all of the

higher terms vanish. Hence, whatever Ug may be,

r m. = 1

PM =

»«1 ifc»0

which is a polynomial in k of degree not higher than n — 1;

for the factor
r

RiM = n
of Qi, which contains the /c, is of degree n — rrii and therefore

QiKi^ is of degree n — m* + fc, for A: ^ mi — 1. On letting q pass

to the limit, there results the desired formula

r mi— 1

PM =

»-l *-0

(5)
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in which F{k) is represented as a polynomial in k of degree not

greater than n — 1.

Ifforeach i the finite sequence of numbers
,

defined at the beginning of this section, be extended

in any desired manner to an infinite sequence of numbers

,
then, since, by Eq. (3),

== -
I 0 I, 5 = 0, 1, 2,

• •
•

, (6)

Eq. (5) can be written

r »

f{k) =
Jfe-o

or symbolically,

r

F{k) = (7)

where 12,* operates on F(Xi) to give From Eq. (190.8)

Q,- = (8)

and Eq. (7) becomes

r

F{k) = (9)

t-1

in which 12, operates only on F(Xi) and operates only on Si{y),

The expression of the exponential operator need be continued to

and including the term only, since the terms of degree m,

and higher vanish.

When the sequence of polynomials Pq{\) converges in a

region that contains Xi, . . . , Xr, to a function F(X), and the fcth

derivatives of the polynomials converge on the same interval

to the A;th derivatives of F(X), and this will be the case in the

following sections, the numbers F^*^(X,) can be taken to be

Q<«>F(X0 = F^<‘\\,) = -^,F{\) . fc = 1, 2, 3,
• •

•
,

*

aA* x-Xi

and then Eq. (9) becomes

r

(10)
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In this case the matrix F(k) is called the matrix associated with

the function F{\).

Theorem B.—If

F{\) = aiFi(X) + aaFaCX)

for X in a region containing Xi, . . . , Xr, then

F(k) = aiFi(ic) + (i2F2Mf

as is readily seen from Eq. (10).

Theorem C.—If

F(\) = F,(\)F2(\)

or X in a region containing Xi, . . . , Xr, then

F(k) = FMF2(k).

By Eq. (7)

i-l

J-1

On taking the product and bearing in mind that

QiQi = Qi and QiQi = 101, if i z,

it is found that

F^(K)F,(K) =
t-1

and since

[(/>x + D,yFi(K)F2Mh^^, = [I>x*Fi(X)/^2(X)]x-x.-,

it follows that

F,(k)F,(k) =
i-l

= F{k).

The following theorems also are easily proved and, for brevity,

the proofs will be omitted.



426 DYNAMICS OF RIGID BODIES

Theorem D,—If

=G(X;0

for X in a region containing Xi, . . . , Xr, then

^F{k- t) = G{k- t).

Theorem E ,—If

t) dt = 7(X; t)

for X in a region containing Xi, , . . , Xr, then

rV(/c; t) dt = I(k; t).
Jto

192. Example—the Matrix e*^—The matrix that is associated

with the function can be written Since

d

dt

it follows from Theorem D that

d

dt

Now, by Eq. (191.10),

r

i = l

(0 )

and since

it follows that

i

or, in an expanded form,

5 + ^« + i)J + • • •

J *1/ M-X<*
( 1 )
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If the characteristic numbers are all distinct, each = 1, and

(2)

1 = 1

and if they are all equal, = n, Xi = • ' * = X„, and

+ (3)

since, by definition for this case, Ri — Si = 1.

Numerical Example.—Suppose the given matrix is

+1-1-1 1 - X -1 ~1
K — —1 +1 —1, SO that ;^(X) = —1 1 — X — 1;

-1 -1 +1 -1 -1 1 - X

(let k(X) = -(X + 1)(X - 2)2.

The characteristic numbers X* of k and their multiplicities mi are

Xi = - 1
,

m, = 1
;

X 2 = 2
,

II1
Therefore

+2 -1 -1
1 07 II II -1 +2 -1

-1 -1 + 2

and
-1 -1 -1

K — \‘l8 = K‘i
= -1 -1 -1

.

-1 -1 -1

Also

Ri{k) = K2'j = (m - 2)-= 7^2W = Ki, *82 = (m + 1 )“

Equation ( 1 ) becomes

= c“^/?iWSi(Xi) + e^^R2(K)[6S2{\2) + K2{tS2{\2) + Sa^^^xon

= + K2(t — l)]y

which reduces to

since

= —Ig <K2 +

kiK 2 =
II
0

II

and #C 2
^ = — 3 k 2 .
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193. Homogeneous Linear Differential Equations with Con*
stant Coefficients.—Suppose k is an n X n matrix and x is an

n X 1 matrix, that is a matrix with n rows and but one column.

The product is an n X 1 matrix. Suppose, for example,

2/l ^11^1 “1" ^12^2 “f"
* * *

"f" KinXfij

( 1 )

2/» ^nl^l H” ^n2^2 "1“ ’ *

"f" f^nn^ny

is a set of linear equations. The right members of these equations

can be regarded as the elements of an n X 1 matrix obtained by
taking the product of the two matrices

^ =
I 1

and

Xi

X2

Xn

If this product is identified with the matrix

I

yi

y2

yn

then the matrix equation,

y = f^x, (2)

is equivalent to the set of linear equations in Eqs. (1).

If an n X 1 matrix is called a vector, its elements are the com-
ponents of the vector. Thus Xi, , , , , Xn are the components
of the vector x, and yi, . . . , 2/n are the components of the

vector y.

Suppose Xi, , , , ,Xn are functions of t and that xi\ , . . ,Xn
are the derivatives of these functions with respect to L The set

of linear differential equations,

Xi ^ KiiXi + K12X2 + •
* + ^nl^Tn,

j

Xn “ KnlXi “b Kn 2X2 “f" "b KnnXny }

(3)
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evidently, can be written in the vector form

— KXf (4)

since Xi,..., xj are the components of a vector which can be

denoted by x', and this is true even though the elements of k are

themselves functions of the time t.

Suppose, however, the K^J are constants, and that

t(0) = a,

where a is a vector with the components Ui, . . . ,

The solution of Eq. (4) is

X =

for by differentiating and using Eq. (192.0) it is seen that

and, for t = 0,

x' = Ke^^a = KX

x(0) = a.

(5)

Example .—If the differential equations are

Xi = +Xi — X2 - Xs,

X2 = — Xi + X2 — X3,

X 3
' = —Xi - X 2 + X 3 ,

the matrix of the coefficients of the right members is the same as

K of the numerical example in Sec. 192. Hence

and

e*' = —^e V2 +

X = —je~~^K2a +
which, expanded, gives

xi = + 26^0 + ia2(e-^ -

X2 = + Me-^ + 2e^0 + (6)

X 3 = iai(e~^ - + ja2(e-^ - -f- |a8(e“* + 2e2<).j

194. Linear Differential Equations of the Second Order.—If

each of the differential equations is of the second order instead of

the first, that is,

X\ — ^llXi ”1” * * *

“b fCnl^nf

X n KlnXl T"
• • *

-f- Knr^'m
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the eorresporiding matrix equation can be written

= —KXy

where k is the matrix

— Kii •
• * —K

^In
• —K,

and, as is easily verified, the solution is

= (cos "v/xOa +

with the initial values

a"(0) = a, ^'(0) = 6.

It will be observed that the vectors a and h in Eqs. (2) are multi-

plied on the right.

The matrices

ri j sin \/#c^
cos \/d and 7

=

—

are then computed by means of the general formula for the func-

tions of a matrix [Eq, (191.10)]. If

[a 2 .
1 3 . 1

8
+

J’

_ 1 r <
,

1 « ,
1 / 3< t^\

-2'^' + 8^'^' - 48(v
"

\/^L* 2x/* + (8X.^ 8X./‘

\ 16X.'>^8X,7

^
L2X, ‘ 8X/’ ^Vl6Xi’ 48X^2/*

^

it is found that, for X = Xi,

cos \/x< = wii cos \/\ii + 0) 2 , sill -y/Xit,

= 4'ii sin \/%t + ^2 . cos
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and then
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cos -\/Kt - cos \/\il + U)u sin

1*1
r

sin y/Xil + in cos y/^t)R,(K){e‘“^^Si{fi))^^Xi.
V K

t = 1

(5)

If Xi = 0 is a fharacteristic number of k of multiplicity the

det K also is zero, and therefore there exist constants ai/,

f = 1,
• *

•
,
niij such that the m, independent relations

+ OCi2^2' + ' *
‘ + OiinXn' = 0. Z — 1,

* *
*

,
mi (6)

exist; and by integration

«tl^l + Oii2X2 + * *
* + CiinXn = CtO + Cut. (7)

By means of these relations the order of the differential equations

can be r<‘duced by lUi. Tin* reduced equations have a matrix for

which zero is not a characteristic number and they can be solved

by the above method, although they arc non-hornogeneous.

Numerical Example.—Suppose the diff(‘rential equations are

Xi' = +Xi - 0*2 - x^,

X2' = —Xi + X 2 — X3,

Xz" = —xi — X 2 + Xz]

and therefore

-1 + 1 + 1 -1 - X + 1 +1
K = + 1 -1 + 1

, xW = + 1 -1 - X +1
+ 1 + 1 -1 + 1 +1 -1 - X

Then

det k{\) = -(X - 1)(X + 2)2,

-2 +1 +1 +1 + 1 +1
Ki = +1 -2 +1 ,

K 2 = + 1 +1 + 1

+1 + 1 -2 +1 +1 + 1

if the notation is chosen so that

Xj=--bl; = X2= 2, m2 = 2,
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It is easily verified that

Ki^ = —Ski = +3/C2,

also that

Ri{k) = ^2^ = 3/C2, RiM = Ki,

SrM = (m + 2)~S S2W = (m ~ !)-•

The application of Eqs. (5) now gives

cos y/^Kt = 5 cos ^ • 3/C2
*

^
+

^cosh V2t - sinh

= ^
cos t^Ki - cosh -\/2<^k,,

sin t j o 1 L
^ = S Sm t 3k2 jr +

-v/ IT y

^ sinh \/2t — iKi cosh —
|
— ^* 2

^

- (5 ‘Y
-

(3^ ^Y'
Hence

X = cos /^/cj — cosh -\/^^«ija +

or, in the expanded form,

3x1 - ai(co8 t + 2 cosh V^) + aj(coe t
— cosh ^/2t) + o»(cos t — cosh \/20

+ 6i(sin i + \/2 sinh y/2t) + fci^sin t — —— sinh y/2^ + 6i^8in t — —^sinh \^2t^,

3x* » ai(coB t ~ cosh \/2W) + at(co8 < 4* 2 cosh y/2t) + asCcos t — cosh y/2t)

-f hi^sin t — sinh + &s(8in t + "v/^ sinh \/2t) + 6i^sin i — —— sinh \/2t^

,

3xi -> ai(co8 t — cosh >/2t) + Of(co8 t ~ cosh V^) + aj(co8 i 2 cosh \/2t)

4- hi^ein < ~ sinh \/2<^ 4- hs^sin t — sinh + 6i(8in t + y/2 sinh y/2t).

196. Non-homogeneous Linear Differential Equations.—If

the differential equations are non-homogeneous, they can be

written
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X' = KX + <p(t)y (1)

where (p(t) is a vector with the components (pi(t)y (P2 (t)j • • • ,

(Pn(t). By the substitution

X = (2 )

wh('re y is a new vector, Eq. (1) becomes, by this substitution,

11 i

and, by integration.

?/ = a + dt. (3)

This value of y substituted in Eq. (2) gives

X V dty

which for t = 0 gives

(4)

:r(0) = a.

Since <pi^ 2i vector and e~'^^ is a matrix, their product is a vector.

The integral of this vector also is a vector whose components are

the integrals of the components of the vector Let yp be

this vector with the components
, ^n(0* The com-

plete solution of Eq. (1) is then

X = + yp). (5)

Suppose, for example,

x' — KX + <p{t)y

where k is the same as in the example of Sec. 193, and therefore

Ki^ = 3lfi, K2^ = ~3/C2, KiK2 = 10||.

As was shown in Sec. 192,

= —^e~^K2 +
Therefore, by changing the sign of ty

Hence

di = dt + di = ^,(0,
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and

dt = {
— — dt

+ dt)

= —jK2e~‘J^e‘)p dt -i- dt.

If

Wii = e~‘J^(pidt and Wa = dt,

the terms to be added to the solution given in Eqs. (193.6) are

xi^ UWu + Wn + W,i + 2Wn- W22- 1^82),

X2 - UWn + W2I + 1^31 - TF12 + 21^22 - 1^32),

0:3 = + 1^21 + Wzi - Wi 2 - W 22 + 2Ws2).

Of course the expression

F(k) = d/

can be evaluated by the general formula for the functions of a

matrix [Eq. (191.10)].

IV. THE EXISTENCE AND CONSTRUCTION OF PERIODIC
SOLUTIONS!

196. The Differential Equations.—Consider the differential

equations

V*
'

'
t

^
‘ (1)

in which the/* are analytic functions of its arguments. Suppose

that when the parameter m is zero, Eqs. (1) admit the known
periodic solution

yi = z == 1,
• •

•
,
n,

in which yi are either constants or periodic functions of the time.

Without loss of generality the period can be taken equal to 2tj

for it can always be made 2v by a suitable change of the inde-

pendent variable.

! MacMillan, “An Existence Theorem for Periodic Solutions,*^ Trans-

actions of the American Mathematical Society, Vol. 13, p. 146 (1912).
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In order to discuss the solutions of Eqs. (1) when y. is distinct

from zero, and there may be more than one such parameter, let

Vi = t = 1,
• •

•
,
n,

and suppose that the/i are regular for

Vi “ = M = 0,

for all values of t in the interval zero to 27r. If for convenience

of notation the parameter y is denoted by :ro, Eqs. (1) become, on

expanding in powers of the o-y,

n n j

;r.' + = 0n'‘>a-o + ^
j=rOA:=0
n j k

+ + • *
•

, (2)

j^O k^O 1 = 0

in which the coefficients are either constants or continuous,

periodic functions of t with the period 27r.

Before integrating Eqs. (2), consider the linear equations

= 0, (3)

that are obtained by setting the left members of Fjqs, (2) equal

to zero. These equations are linear and homogeneous with

periodic coefficients. Their solution can be written in the form^

n

•T. = (4)

J = 1

ill which the Ay are constants of integration and the functions

can be so taken that the determinant

A =
I
^/«(0)

I

= 1.

Expanded according to the elements of its fth line

n

A = 2a/<>J,«>(0) = 1, (5)

y-1

where Ay^'^ is the minor obtained by suppressing the ith line and

the jth column of A and multiplying by (
—

1 See Moulton and MacMillan, American Journal of Mathematics,

Vol. 33, pp. 63-96 (1911).
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197. Integration of the DijSerential Equations as a Power
Series in the Initial Values.—If the initial values of the Xi are

denoted by a*, and .To = m by oro, it follows from Cauchy^s exist-

ence theorem^ that the solutions of Eqs. (196.2) are expansible

as power series in the a,, reducing for f = 0 to

Xi(0) = a.,

and from Poincare’s extension^ of Cauchy’s theorem that these

solutions converge for all values of t in any preassigned range

for which the right members of Eqs. (196.2) converge, provided

the moduli of the a* are sufficiently small. That is, the solutions

of Eqs. (196.2) can be written

n

+ higher degree terms, z = 1,
* *

•
,
n, (1)

; = o

where

^/^>(0) = 1
, (2)

and all of the other coefficients vanish at ^ = 0. On substituting

Eqs. (1) in Eqs. (196.2), it is found that the differential equations

for the linear terms in ai, . . . , an are

n

These equations are the same as Eqs. (196.3), and the solutions

are therefore

hj = 1, ,
n.

k^l

From the initial conditions, Eqs. (2), it follows that

where

3^;^*^(0) — dijf

Hence

Su = 1 and 8ij = 0, ^ j)

ifc-i

^ Collect-ed Works, 1st series, Vol. 7.

^Les Mkhodes Nouvelles de la MScaniqve Cdestej Vol. 1, p. 55.
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Since the determinant of the left members is equal to unity, the

solutions of these equations are

and therefore
n

t, i = 1,
•

•
,
n. (4)

Since Xo = m = «o, the coeificients of ao are linear but not

homogeneous. They are

n

i = 1,
• •

•
,
n. (5)

A: == 1

The general solution of these noii-homogeneous equations can be

denoted by
n

= m^O + (6)

A-l

in which mi{t) is the particular solution and the are the

constants of integration.

From the initial conditions,

= 0
,

it follows that
n

;k = i

Hence
n

= -jA.O'm.CO), ^- = 1,
•

•
,
n,

and
n n

Xo«' = m.(0 - 2 i=l, ,n. (7)
A: *» 1 ;• « 1

The linear terms of the solutions as power series in the a’s are

therefore

n n n

5;xy«>a,. = 2 ~ "»<(0)«o] + m,(<)ao. (8)

i-0

198. A Change of Parameters.—It is convenient now to

change the parameters by the linear substitutions
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ao = /3o, - m<(0)Q'o] = /3t, A: = 1, •
,
n, (1)

3-1

which can be solved for the a^s in terms of the since the

determinant
| |

has the value unity. The result is

n

ao -
/3o, a,- - m,(0)^}o + j = 1,, n. (2)

k^l

Since Eqs. (1) as power series in ao, . . . , ocn converge if tlie

moduli of the ay are sufficiently small, the solutions of Eqs. (196.2)

can also be developed as power series in the which converge

if the moduli of the /3y are sufficiently small; and for t == 0 will

reduce to [Eqs. (197.7)] the linear terms

n

a:.(0) = m<(0)/3o + ^ (0)/3-i, i = ,
n. (3)

k^l

For, the transformation, Eqs. (1), are linear and homogeneous,

and the coefficient of every a of degree higher than the first

vanishes at ^ = 0. The same will be true, therefore, for the

series in the ^^s.

Expressed in terms of the ((?^s, the solutions of Eqs. (196.2) can

be written

n n j

Xi = m.-(0/3o + +
j=so k^o

n j k

X X + • •
•

. (4)

j^Ok^Ol^O

Since /3i, . . . , /?n are arbitrary, it is seen that they are merely

the constants of integration of the linear terms [Eqs. (196.3)].

Hence the following theorem, since the periodic properties of

Eqs. (196.1) have not been used:

Theorem.—If

(“^) '
y ^f^y M, Z = 1,

’ *
‘

,
71

is a system of differential equations in which the fi are analytic

functions 0/ Xi, . . . , Xn; and n, regular for all t in the interval

0 ^ t ^ Tj and vanish for = X 2 = ' * * = Xn = m = 0, o^nd

if the fi are uniform and csontinuous in the interval 0 ^ t S T;

and if
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(B) = 0

are the linear terms of {A) equated to zero, then the solutions of (A)

are expansible as power series in m and the constants of integration

of the solutions of (B), and these solutions converge in the interval

0 S t S T provided the moduli of /x and the constants of integration

are sufficiently small.

For homogeneity of notation, Eqs. (4) will hereafter be written

n n j

Xi = + 2 +
;=*0/:»=0

2 X + • •
•

, (5)

>«=o ;fc»o i-o

though it should be observed that the are the same as the

linear terms in Eqs. (4) and are not the same as the used in

Sec. 197.

On substituting Eqs. (5) in Eqs. (196.2) and rearranging as

power series in /3o, . . . ,
it is found that the terms of the

second degree in the are

n j

j^O A:-0 L
n j

dt
^

ifc=0 \n = 0 /\««0 /
n r / n j \

r-O it»0 \;«0 fc-O /
n J / n r \

j =OA:»o\r»0«-0 /

(6)

in which Cjk = 1 if j and k are different and C/y = Hence

r-O «-0

z = 1,
• •

•
,
n. (7)

Since the linear terms are known, the right numbers of these

equations are known functions of the time. The equations are
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therefore linear and non-homogeneous in the If a par-

ticular solution is the general solution of Eqs. (7) is

n

X,t«> = i = 1,
• •

•
,
n. (8)

i-1

111 order to satisfy the initial condition, it is necessary that

n

whence

A- 1

SO that Eqs. (7) become

- X (
9)

i= 1

Thus the terms of the second degree become known.

In a similar manner there is obtained for the terms of third

degree

n 3 k

222
J-O *=0

.XT'.
~W~ +

n p q

P “0 fl
*=0 r *=0 \;™0

222«-“ 2*''''^'I2-'-'^*
X

l-O / p = 0 « = 0 l\j”0

)^f2
;-0 *=0

22^'*''’^a -222
n j k

\y«0 A«0 / ) i-0 1=0
» p

« 1"+

lo^irr i+ + xj'p’xt<»’)x,'’’>j

" p r -I- (x,*<P’Xi<«> + x,*‘«’Xj<p>)1

1

2 (x,-,<p’x*<«> +x„<»>xt<p>)}

p=o 8-0 (+ (x«‘pV’’

+

a-«'’’a:/p>)J_

p=»0 <
jf“0 r=0
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The symbol em is 1 if i, k, and I are all different; ^ if two are alike

and different from the third; and J if all three are alike. The
symbol djki means that when two of the three letters k and I are

equal only one of two like terms are to be taken, and when all

three are alike, only one of three like terms is to be taken.

The right members of the differential equations in Eqs. (10) are

known since the and are all known functions of the

time. If ipjki^'^ is a particular solution, the general solution is

n

Wl = 1

and when the constants of integration are determined so that

every vanishes with t, the solution is

- 2 (
11 )

The integration, evidently, can be carried as far as may be

desired.

199. The Integration as Power Series in |t Alone.—Without
specifying the initial values of the Xi and without regard to the

convergence of the series so derived, the differential equations

can be integrated formally as power series in or any root of /x,

say fiUp, The integration will be carried out here as a power
series in /x, and the constants of integration arising at each step

left undetermined.

Let the assumed series

Xi ~ Xi^^'^jjL + ^ . .
.

^
z = 1,

•
‘

,
n. (1)

be substituted in the differential equations, Eqs. 196.2, and these

series then arranged in powers of n. From the coefficients of the

first power of fx it is found that

n

^ i = 1,
•

•
,
n. (2)

i-1

These differential equations are the same as Eqs. (197.6) and
have therefore the same solutions, Eqs. (197.6), namely

- m,(t) +
J - 1

i = 1, •
,
n, (3)



442 DYNAMICS OF RIGID BODIES

which can be written

(4 )

the being the same functions of t as in Eqs. (198.5), and
= 1 .

The coefficients of give the equations

j=0 A:=0 ^ p = 0

X I, 2 = 1,
•

,
n. (5)

The right members of these equations differ from thos(i in Eqs.

(198.6) only in that Ap^^^ is substituted for I3p. The solutions

are therefore, Eqs. (198.7),

j=0 k^O Z = 1

It is proposed to leave the constants of integration undeter-

mined, but it will be observed that if is given the form

^ - Va/^>V V^,,^^>(0)A/^^A,^^) +Ai^^\
h^l j^Ok-^0

where the are undetermined, the solution of Eqs. (5) takes

the form

X2"•-XX
j»0 ib«0 i=l k-l

n y (6)

J=»l ;=0/fc-0 >-0

where Ao^^^ is zero. The initial value of is then

a:2'‘’(0) = X^y‘^’x/*>(0),
i«o

which is undetermined, since all of the A are undetermined.
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From the coefficients of /»’ it is found that

+ 2
n p g

d/‘'x,u> = 2 2 2»-

'

P=: 0 q =.0 r =^0 \ j ~0

j,=^0 q = 0 ^;“0

22
2

which hec{)in(\s, on r(‘arraiiging the right members,

n j A: r n p g

+ 2'-"'-''’=2 2 2 222''“''-

y==l y = 0 k — O l — ()\_p=Q g <= 0 r — 0

71 P

On comparing these equations with Eqs. (198.10) and (198.6),

it is seen that the solution is

n 3 k

j = 0 A: = 0 I » 0

X + X^:
(3)t (i).

0 S0 )

and if the constants of integration are given the form
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A-l y-0*-0Z-0

+ X + A/”,

they become
n j k

-XXX
y = 0 *-0 i = 0

XX

J-1
or, more simply,

3-3<« = X X
j saQ k"*0 / “O

+ X + X4y<»>x/*>,
j«OA-o y«o

in which are the constants of integration, is zero, and

Xjk^'\ Xjki^^'^ are the same functions of t that occur in Eqs. (198.9)

and (198.11). Since these functions vanish with the initial

values of are
n

X3<‘>(0) = X^‘”-^/‘'(0).
y-0

The coeflBcients of the higher powers of /jl can be determined

in a similar manner. So far as they have been worked out, the

solutions as power series in /x are

;-0 A =«0

r n j k

;«:0*-0/-0

i-0
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in which = 1 and = 0, p > 1. All of the other

are undetermined.

A comparison of Eqs. (7) with Eqs. (198.5) shows that Eqs. (7)

could have been derived from Eqs. (198.5) by taking

/?o - M and 13

j

= A/^V + A/^v + ^ .( 3)^3 + . .
.

. (g)

This, of course, was to have been expected; for if 0 < < Af,

where M is a positive constant, the substitution, Eqs. (8), con-

verges for all /X < 1. Therefore the substitution of Eqs. (8)

will give solutions of the differential equations as power series

in fjL which converge for /x sufficiently small, and which, at ^ = 0,

reduce to
00 n

Jfc-l i-o

But these are exactly the conditions under which Eqs. (7) were

developed. The two series are therefore identical.

200. Conditions for Periodic Solutions.—From the hypothesis

on the coefficients in the differential equations, i.e,,

that they are constants or periodic functions of t with the period

2ir, it follows that sufficient conditions that the solutions shall be

periodic with the period 2kT {k an integer) are

Xi{2kTr) = Xi(0). z = 1,
• •

'
,
n.

If the Xi all return to their original values, it is obvious from

the differential equations that their first derivatives retake their

initial values, and therefore all higher derivatives do likewise.

Consequently, under these conditions,

Xi(t + 2kw) ^ Xi{t) z = 1,
• *

•
,
n.

If the difference between the value of a function at t = 2kw

and at i = 0 is denoted by a dash over the letter representing

the function, for example,

Xi s Xi(2kw) — Xi{0)j

the conditions for periodicity as derived from Eqs. (198.5) are

n n y

0 = + V +
j-0 j-Ofc-O

n j k

X X + • •
•

, (1)

-0*-0J-0
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and as derived from Eqs. (199.7),

0 A:»0

n j k

S S5
J = 0 *= 0(-0

M +
J «= 0

n

X^ +
;«0

n j

y = 0 Jk « 0

? (2)

J^O

Since the second set of conditions, Eqs. (2), can be derived from
the first set, Eqs. (1), by the substitution Eqs, (199.8), it is clear
that if the constants can be determined so as to satisfy
Eqs. (2), then the values of the d; as defined in Eqs. (199.8) will
also satisfy Eqs. (1). That is, the determination of the con-
stants in such a way as to make the series Eqs. (199 7)
periodic is equivalent to a solution of the (equations of condition
Eqs. (1). The convergence of the series so derived is assured
by the pneral theorem in Sec. 182. For any sort of scries for
t e d s in integral or fractional powers of n, that vanishes with
/i, and satisfies Eqs. (1) is convergent if the modulus of n is
sufficiently small, provided the determination of the constants
becomes unique at some stage of the procc.ss and remains .so.

It .should be stated however that F)qs. (1) may admit .solutions
that are not of the form Eqs. (199.8), which contains only
integral powers of n. There may exist solutions in fractional
powers of m, and none in integral powers. If this is true it is
necessary to have Eqs. (1), and Eqs. (1) can bo obtained from
Eqs. (2) by the substitution

= 0 p>l.
These results are embodied in the following theorem:
Theorem.—If

^

dt ~ > ^n't n] t),

ts a system of differential equations in which the fi are expansible
as power series in Xt, . . . ,

x„ and m, vanishing for

xi = • • = a-„ = ju = 0,
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with coefficients which are uniform^ continuous
^
and periodic func-

tions of t with the period 27r, and if the f» converge for 0 g ^ g 27r

when Xi < piy p < r, then the Xi(t) are expansible as power series

in p, or any fractional power of ju> which converge for all values of t

in the interval 0 ^ ^ 27r provided
|

/x
I

i^ sufficiently small. If

the constants of integration that arise at each stage of the process

can be determined so that the series arc formally periodic
^
then the

solution so determined will be periodic and will converge for all

finite values of t provided
j m 1

sufficiently small.

It has been assumed for simplicity that there is but one

parameter p. There may be several and the course of the argu-

ment is not altered. Suppose 5 is a second parameter and is

available for making the series periodic. If b can be determined

as a power series in p in such a way as to make the series periodic,

the equations of condition, Eqs. (1), will be satisfied and the

series so derived will converge.

V. ILLUSTRATIVE EXAMPLES

201. The Rocking Pendulum without Friction.—In Sec. 67 the

problem of the rocking pendulum was discussed and, for the case

in which there is no friction, the energy equation [Eq. (67.5)] gave

\dt/ " ( 1 )

where 6 is the angle which the axis of the pendulum makes with

the vertical, I is the distance of the center of gravity from the axis

of the rolling cylinder, p is the radius of gyration at the center of

gravity, and 6q is the amplitude of the oscillation.

Equation (1) requires but a single integration to effect a solu-

tion, but as an integral in terms of known functions cannot be

found, resort to integration by series is necessary. The problem

of the simple pendulum (I, 319) suggests the notation

M = sin lOo, X2 = (2)

and the substitution

sin 1$ = p sin <p. (3)

With these changes Eq. (1) becomes

/d<pV _ gl 1 — sin^ <p

\dt) r+ (4)
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a form that is suitable for expansion in powers of ix, A second

parameter X also occurs, but for a given pendulum X is a definite

constant, and therefore is not available for making the solution

periodic in form.

For /X = 0 the solution of Eq. (4) is simply

if ip vanishes with t. It is seen from Eq. (3) that as v? runs from
zero to 2ir the pendulum makes a complete oscillation. There-

fore, for M = 0, the limit of the period of the pendulum is

Presumably, the period of the pendulum depends upon the

amplitude of the oscillation, and this fact suggests a change of the

independent variable from i to r by the substitution

^^t = (1 + 5)r, (5)

where 5 is a new parameter that will be available for making the

solution periodic in t with the fixed period 27r. If this can be

done, the period in t will be

P = 2t(1 + 5)-^. (6)

Since 5 vanishes with it is seen that for ^ = 0, v?
= r. Hence,

in general, that is, for m 5*^ 0,

^ = r +

where ^ is some function of r that vanishes with /x. On intro-

ducing these new variables and using accents to indicate differ-

entiation with respect to r, Eq. (4) becomes

1 — sin* (r

4- sin^ (r 4- sir

Since /x occurs in this equation only in the form /lx*> it will be

assumed that the solution is a power series in /x®, and therefore

that
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+ 4'*m* + + • •
• i|

and

8 — SiH^ + SiH* + ieM* +••••)
(8)

The coefficients of the first series are functions of r to be deter-

mined by the differential equations, and the coefficients dj are

constants to be determined by the condition that the be

periodic in r with the period 2x.

If Eqs. (8) are substituted in Eq. (7) and the series are then

arranged in powers of mS it is found that

+ • •

• f
[2^2 ~ ^'(1 + 2T]fx

^

-f- [2^4 “f* ^2^ 52(1 "j" X^)(— 1 -f- cos 2r) — ^2^

+ (2X2 + X^)(f ^ cos 2r + i cos 4t) - ^2(1 + X2 sin 2t]m^

+ [256 + 262^4 + (^4 + i 52^)(l + X2)(— 1 + COS 2r)

-|- 252(2x2 -f- X^)(| — ^ COS 2t -f- J cos 4r) —
252^2(1 + X 2

) sin 2t

+ (X2 + 3X^ + X®)( — cos 2t — cos 4t + cos 6r)

- (1 + X2)i^22 cos 2r + (2X2 4. x4)^2 sin 2r

— (*2X2 -f iX^)i/'2 sin 4t — (1 X2)i/^ 4 sin 2t — 2^2V4']m®

+
A comparison of the coefficients of the two members of this equa-

tion shows that:

Coefficients of ix^,

= ^2 — i(l + X2) + J(1 4- X2) cos 2r.

In order that the solution of this equation may be periodic, it is

necessary that the constant term in the right member shall be

zero. This condition requires that

52 = i(l + X2),

and it is then found that

^2 = i(l + X2) sin 2r,

if the constant of integration is chosen so that ^2 vanishes with r.

Coefficient of /x^.

2\I/4 = 2^4 4“ ^2^ 4" ^2(1 4" X2)(— 1 4" cos 2r) — ^2^

+ (2X2 ^ x^)(f ~ ^ cos 2r 4- I cos 4t) - ^2(1 + X2) sin 2r.

If the values of ^2 and 62 that have just been determined are

substituted in the right member of this equation, it becomes
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2^ 4
' = (254 - ^ + AX^) + (i - w ~ JX^) cos 2t +

( 3^ + AX^ + AX^) cos 4r.

The condition that the constant term be zero requires that

^4 = A ~ AX^ - Axs
and then, by integration,

^4 = (A — iX2 — AX^) sin 2t + + iliX^ + -^luX^) sin 4r.

Coefficients of

It is found in an entirely similar manner from the coefficients

of fjL^ that

^6 = ^*^(25 - 5X2 ^ 15X4 + 5X6)^

and

4^, = (83 + X= + 237X^ + 79X‘)^^ +

(1 - 3X2 _ 15^4 _ 5X')?^^

+ (1 + 27X2 + 63X^ + 21X')|^-

The details of the computation 'will be left as an exercise. It is

evident that the term 252, occurs in the constant term in the

coefficient of and the condition that this term must vanish

determines 52/ for every j. Integration then gives yl/^jy and if

the constant of integration is chosen so that ^ 2/ vanishes with r

it is evident that the expression for ^ 2/ contains only terms that

are sines of even multiples of r, and the entire series vanishes
with r.

The solution for v’ is therefore

<^ = r + [-|(1 + X2) sin 2r]/x
2

+ [(iV - |X2 - AX^) sin 2r +
(Tie + il»X2 + sin 4r]M^

+
1^

(83 + X2 + 237X< + 79X»)|^ +

(1 - 3X2 _ 15X4 _ 5X«)?^jy^
Joo

+ (1 + 27X2 + 63X< + 21X«)^^jM'' + • •
• .

« = f (1 + X2)m 2 + (A - /jX* - WX^)/x‘ +
Th(5-X2 + 3X< + X*)M'>+ • •

•
.
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If it is borne in mind that the origin of time is arbitrary, it is

seen that Eqs. (9 ) are the complete solution of the problem.

AN UNSYMMETRICAL TOP

202 . The Differential Equations.—Suppose a rigid body is

moving about a fixed point O that is located on a principal axis

of the central ellipsoid of inertia at a distance h from the center of

mass. This line also is a principal axis of inertia at the point 0
(Sec. 22). Let it be taken as the k-axis of a rectangular system of

coordinates, i, j, k with the origin at 0, and the i- and j-axes

coinciding with the other principal axes at O. It will be assumed

that the center of mass lies on the positive end of the k-axis, and

therefore h is positive.

If, aside from the constraint at O, the only force acting is its

weight, the equations of motion are [Eqs. (85.3)]

Ao)/ = (B — C)u)jO)k. + rnghy^^

Bo)/ = (C — A)o)kO)i — mghyi,? (1)

Ccok' = (.4 — B)o3iO)j + 0; J

in which coi, cu/, and <j^k are the angular velocities, and yi, 72 ,

and 73 are the direction cosines of the fc-axis with respect to a set

of rectangular axes that are fixed in space with the z-axis vertical.

In terms of Euler's angles [Eqs. (85.4) and Sec. 52]

03

i

~ i/'' sin 6 s\n <p A- 0' cos <^, 71 = sin 6 sin

03

J

= \l/' sin 6 cos ip — d' sin ip, 72 = sin 6 cos (p, / (2 )

03k
= cos 6 + p, 73 == cos 6. j

The direction cosines yj satisfy the differential equations (Prob-

lem 9, Chapter VI)

7/ = ^/fcT2 — Wy73,|

72
' = a>v73 — aJA,7i, / (3)

73 ' = 03jyi — o3iy2.]

On dividing Eqs. (1) by B, and C respectively and then

taking

B - C . A -C A - B
A ’ " B ’ C

’

. mgh mgh
h, = h, = ~g-,

a =
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they become

Oii = + //1T2
,

1

o)/ = —bo)koy% —
f

(^)

o^k — co)iO}j “h 0. J

The constants a, 5, and c are not independent. They satisfy the

relation

j _ a + c

1 + ac

and therefore (Problem 22, Chap. II)

A = {I + c)D, il - (1 + ac)/), C == (1 - a)D

with

— l<Ca<C-l-l, — l<Cc<CT'l.

The moments of inertia related to points in the ac-plane have

the following order of magnitude:

First quadrant, a > 0, c > 0, A > B > Cy

Second quadrant, a < 0, c > 0, A > C > By if a + c > 0,

C > A > By if a + c < 0,
^

Third quadrant, a < 0, c < 0, C > B > Ay

Fourth quadrant, a > 0, c < 0, B > A > Cj if a + c > 0,

B > C > Ay ifa4“C<0.

The integrals of energy and moment of momentum [Eqs. (86.5)

and (86.7)] become

(1 + c)aji^ + (1 + ac)(ji(^ + (1 — a)o)k'^

= -^—73 + constant,

(1 + c)c*Ji7 i + (1 + ac)a>y72 + (1 — a)o)kyz = constant,

and, of course,

Ti^ + 72^ + 78^ = 1.

On account of the third of Eqs, (6), it is seen that Eqs. (3)

and (4) are really of the fifth order only, and not the sixth which

is the order of the complete set of differential equations. Since

the 7 's depend only upon the angles (p and By the angles tp and 6

are defined as soon as yi and 72 are known. The third of Eqs.

(85.5),

sin 6 }{/' = o)i sin (p + w,- cos <Py (7)
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is necessary to complete the set of differential equations. Equa-

tions (3) and (4) however are independent of Eq. (7), since they

do not contain the angle or its derivatives, explicitly. After

these equations have been solved, the angle \l/ is obtained from

Eq. (7) by a quadrature.

203. The Equations of Variation.—Equations (202.3) and

(202.4) admit two simple particular solutions. They are: First,

O). = = 7i = 72 = 0, 0)3 = n, 73 = ±1; (1)

in which n is arbitrary. In this case the body turns about a

principal axis that coincides permanently with the vertical.

Second,

o)i = + 0)0 cos I3ty 7i = + sin Oq cos

c = 0, o)j ~ — 0)0 sin pt, 72 = — sin sin / (2)

.*. a = b, o)k = n, 73 = + cos ^o, J

n =

0 =

coq cos So

{I — a) sin ^0

a 0)0 cos ^0

1 — a sin So

,
ho sin ^0

(1 — a)o)o

ho sin So

(1 — (l)o)o

ho — hi = h^j

and So and coo are arbitrary. In this solution the principal axis

of the body describes a right circular cone about a vertical axis

with an arbitrary rate of spin.

Either of these particular solutions can be regarded as a

generating solution for a family of periodic solutions of the

problem. The first will be selected here as the simpler, since

it does not contain the time, and therefore leads to expansions

with constant coefficients.

Let M be an arbitrary parameter, and let new variables Vi,

. . . ,
i;6 be introduced by the relations

yi == IJ-Vly (^i = M^3; \

72 = 0)j = HVij V (3)

73 = \/l -- (^1^ + t^2^)MS CO, = n + I1V3,)

with the condition upon the solution that initially

Vi^ + V2
^ = 1, and therefore m = sin So,

where is the initial value of the angle S. For m = 0 it is

evident that Eqs. (3) reduce to Eqs. (1), and therefore Eqs. (1)

are the generating solution for the family of solutions, Eqs. (3).
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After the substitutions and the removal of a factor the

differential equations, Eqs. (202.3) and (202.4), become

Vi' — 71V2 + = +V2Vt/JL + ^4(1 — \/l — (Vi^ +
V2 + nvi — Vs = —ViVi,IJL — t;3[l — \/l — (t^l^ + 1^2^)m^];

Vs — hiV2 — a7iVA = +av4Vs/Jif (4)

Vi + h2Vi + hnvs = —bvsVs^f

Vs — cvsViji;

and the last of Eqs. (202.3) can be discarded, since

73 = \/i — («^r^ + V2^)jji'^.

For M = 0, Eqs. (4) reduce to the linear equations

Vi — nv2 + V4 = 0, Vs — h\V2 — a7iVi = 0,1

V 2 + 7lVi — Vs = 0
,

Vi + h2Vi + b7lVs = 0,? (6 )

= 0
, j

which are known as the equations of variation.

204. The Characteristic Equation.—It follows from the last of

Eqs. (203.5) that Vs is a constant. The characteristic equation

(Sec. 189) of the remaining equations is

\ —n 0 1

n X - 1 0

0 —hi X —an
/12 0 bn \

= 0
,

or

X^ + [(1 + ab)n^ — {hi + /i 2)]X^ +
(an^ + hi){b7i^ + /12) = 0. (1)

This is an equation in X^, a property that is characteristic

of the equations of mechanics.^ The roots therefore occur in

pairs and the two members of the pairs differ only in sign.

Regarded as a quadratic in X^, the roots are real or complex

according as the discriminant

Dx = [(1 +'ab)n^ - (hi + Aj)]^ - 4(an2 + hi){bn^ + A 2) (2)

is positive or negative. As the character of these roots is funda-

mental in the problem, it is necessary to examine this discriminant

‘ Poincar£, “Mdthodes Nouvelles de la M^canique Celeste/' 1, p. 193.
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with care. For this purpose, let the notation be changed by

taking

_ X + y hi
a = X, c = y, b

— 1 < a: < "h If

The characteristic equation then becomes

I + y
l + xy' hi 1 + 3:y hi

-1 < y < +1, z> 0.

+ + 2xy + x^ 2 + y + xy
"+

I+*SI
1 + XZ

1 + xy
mi +

1 + xy
(1 + y + yz + xz)hi^, (3 )

and its discriminant

""
(1

- (2 + 2/ + xy)]'^ -

4(1 + xy){\ + xz){\ y + xz yz)\. (4)

The discriminant vanishes on the surface

(S) [(1 + 2xy + x^)z - (2 + ^ + xy)Y -
4(1 + xy){l + xz){l + y + xz + yz) =0; (5)

but only that portion of the surface that lies inside of the square

cylinder, C, whose edges are parallel to the 2:-axis and pass through

the points +1, +1; —1, +1; —1, —1; and +1, —1, and for

which 2 > 0, is of interest in the present problem.

Arranged according to powers of y the surface S is

[(1 ~ x)^ - %zx{l + x)]y^ - 22(1 + x)\Z + x)y +
(1 + x)^[{l ~ x^)^z^ - 42] = 0.

This equation is not only quadratic in y, it is also quadratic in

2. Thus for a given point y there are either two values of z or

none. In the hatched area of Fig. 81 the values of z are complex

and therefore the surface S lies over the remainder of the square.

Since both values of z are positive (or zero along the lines i/ = 0,

and a: = +1) there is a volume below S and above the xy-plane

within which D\ is positive. Inside of aS, D\ is negative, and the

two roots are complex. Above the second sheet of S, D is again

positive. The contour lines of 5 for 2 = 2, 3, and 4 are given in

Fig. 81. The surface S has a cuspidal edge along the straight

line X ^ —1, y — Q from 2 = 0 to 2 = +1, and the contour
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line for every z passes through the point +1,-1. As z increases

the contour lines, which are hyperbolas, tend toward coincidence

inside of C with the straight line x = +1. Thus for every point

X, y, with z sufficiently large, Dx is positive and the two roots

are real.

Inside of C and outside of S, D is positive, and the two values

of are real. Thus the four roots X are real or purely imaginary.

If all four roots are purely imaginary, the motion is said to be

stable, otherwise unstable. For periodic solutions at least two
of the roots X must be purely imaginary, that is, one root X^

must be negative; and for stability, both must be negative.

As is seen from Eq. (3), the two roots have the same sign if

(1 + xz)(l + y + xz + yz) > 0,

and opposite signs if this product is negative. One of the roots
changes sign if the point p{x, y, z) crosses the hyperbolic cylinder

{H) 1 + xz — 0,

or the ruled surface

(R) + y + xz + yz 0.

The intersection of the surfaces S and H with the plane
2/ = +1

is shown in Fig. 82. The surfaces S and R intersect in the plane

2/
== 0 along the hyperbola 1 + xz — 0.
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It is easy to find the lines of intersection of H and S\ for if p is

on both R and S it is necessary that

1 + xz — 0,

and, as is seen from Eq. (5), that

(1 + 2xy + x^)z — (2 + y + xy) = 0,

These equations give the line

(HS)
1

X = —

1

z
y ==

{z ~ 1)\
Sz - 1

*

and similarly, for the intersection of R and 5,

1
(RS)

?;2 -
X =

y =

2(2 - z)

->(2 - ly
(7)

(1 + 2)(2 - 2)

The projections of these lines

on the a:t/-plane are shown as

dotted lines in Fig. 81. It is

easy to see from Eq. (5) that

the surfaces H and R have con-

tact of the second order with

S and therefore do not cut

through it. For the discrim-

inant D\ has the form

Dx = - 4EG.

On the surface /S, D\ = 0, and

on the surfaces H and R either

= 0 or (? = 0. If a point p
moves along either H ov R

Dx =

which is positive except along

the lines of contact where it

vanishes. It follows that H lies entirely on one side of the

surface S, and R likewise.

The lines HS and RS, Eqs. (6) and (7), can also be regarded

as the intersection of the surface S with the surface

F = 0, where F = (1 + 2xy + x^)z — (2 + y + xy).

(6 )
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206. The Roots of the Characteristic Equation.—It is now
possible to discuss the character of the roots of the characteristic

equation, and this will be done by quadrants.

In the first quadrant

X > 0, y > Oy and A > B > Cj

as is seen by Eq. (202.5). In the volume above the a^y-plane

but below the first sheet of Sy both roots are positive; and

in the volume above the second sheet, both roots are negative.

In either of these volumes

Z>x > 0, H > Oy and i? > 0,

if it is permitted to write H and R for the functions 1 + xz and

I ^ y ^ xz + yz respectively. But above S the function F > 0,

and below Sy F < 0.

The second quadrant, x < 0, 2/ > 0, is more complicated since

it is cut by both the surfaces H and R. Also [Eq. (202.5)]

A > C > By if X + y > Oy

and

C > A > By if X + 2/ < 0.

Since R intersects S in the plane y = 0 in the hyperbola H = 0,

R lies inside of H in the second quadrant. Also H touches S in

the line HS. Outside of H and aS and below the line HS

Dx > Oy H > Oy R > 0

and both roots are positive. On crossing the surface H one

of the roots becomes negative, and on crossing the surface R also

both roots are negative. In this region, which is inside of H and

to the left of R, and in which both roots are negative,

Dx > 0, H <0, R <0.

But if the point p after entering H passes upward, and leaves H
above the line HSy it is above the surface S, and

Dx > 0, H > Oy R > Oy

and again both roots X^ are negative. There are therefore two
distinct regions in the second quadrant in which both roots are

negative.
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The third quadrant also is crossed by both H and i2, but in

this quadrant R is outside of H, For z sufficiently small both

roots are positive, and

Dx > 0, 72 > 0, 7/ > 0.

Between R and H one root is positive and one is negative.

Inside of 77 both roots are negative, and

7)x > 0, 72 < 0, H <0;

or, passing outside of 72 again above the surface F = 0, both roots

are negative and

7)x > 0, 72 > 0, Tf > 0, F > 0.

Thus again there are two distinct regions in which both roots

are negative.

In the fourth quadrant there is but one region in which both

roots are negative, namely,

7)x > 0, 72 > 0, 77 > 0, T’ > 0.

The surface 77 does not cross this quadrant, but 72 does. The
region indicated is to the right of 72 and outside of S above the

dotted line RS.

Thus in each quadrant there are regions in which both roots

are negative, but certainly not everywhere.

206. Solution of the Equations of Variation.—It will be

assumed that both X^ roots of the characteristic equation are

negative, and therefore all four X roots are pure imaginaries.

The constants a and c (which correspond to x and y of the last

two sections) depend upon the body and the point 0 about which

it turns. They are therefore fixed constants, but n^/Ai, which

corresponds to 2
,
is determined by the rate of spin. In a general

way, though not always, it is true, if the spin is sufficiently great,

that all four X roots are pure imaginaries as is here assumed to

be the case, namely,

+iXi, — iXi, “h7X2, "“iX2, i = \/— 1.

A particular solution of the equations of variation [Eqs. (203.5)]

Vi — nv^ + t;4 = 0, Vz — hiv^ — anVi = 0,

V2 + nvi — = 0, v/ + hiVi + bnvz = 0,
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can be obtained by taking

vi Ai cos \ity i>3 == As cos \ity

1^2 == A2 sin Xi^, 1^4 = A4 sin Xi^.

On substituting Eqs. (2) in Eq. (1), it is found that the constants

Aj must satisfy the linear equations

— XiAi — 71

A

2 OA 3 -f* IA4 = 0,1

nAi + XiA2- IA3+ 0A4 = 0,I

OAi — A1A2 — X1A3 — anA4 =
0,

j

^2Ai “h OA2 “I” hfiAz “f" XiA 4 = O.j

The determinant of the left members, A, is the characteristic

equation [Eq. (204.1)] for X = iXi, and therefore vanishes. Then,

on omitting the last equation, it is found that

Ai = Aai, A2 == Aa2, As = Aas, A4 = Aa4,

where

A41 = ai = — Xr — cin^ — Ai,

— A42 = ^2 = +n(l + a)Xi,

A43 = as = +n(a\i^ — an^ — /ii),

—'A44 = ai = — nr + hi)y

and A is an arbitrary constant.

A second particular solution is obtained from the first by
increasing t by a quarter period. A third and fourth solution is

obtained by using X2 instead of Xi. Thus a complete solution

of the equations of variation is

t;i = Aai cos Xi^ + Bai sin Xi^ + Cci cos Mi + Bci sin Mty

V2 = Aa2 sin Xi^ — Ba 2 cos \it + Cc2 sin Mi — Dc2 cos Mi)

Vz = Aas cos Xi^ + Baz sin Mi + Ccz cos Mt + Dcz sin Mi,

Vi = Aa4 sin Xi^ — Bai cos \it + Cci sin Mi — Dci cos Miy

in which A, By C, and D are constants of integration, and Cy is

obtained from aj by replacing Xi by X2.

207. The Non-homogeneous Equations.—Instead of the right

members of Eqs. (1) being all zero, suppose they were

mi sin kXity m 2 cos A;Xi^, m3 sin kMiy and mi cos A;Xi^ (1)

respectively, k being a positive integer. The particular solution

that depends upon these terms is obtained by assuming that

Vi = li cos kXity Vz = Iz cos A:Xi/,\

V 2 == I 2 sin kXity Vi = li sin kXityf
(2 )
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substituting in the differential equations, and solving the result-

ing algebraic equations. These equations are similar to Eqs.

(206.3) except that the ^’s are replaced by the /'s, Xi is replaced

by fcXi, and the right members are mi, m 2 ,
m 3 ,

and m 4 ,
respec-

tively. The determinant of the left members is now not zero,

since kXi is not a root of the characteristic equation, unless k — 1,

or k\i = X 2 . The equations can therefore be solved, and the

particular solution has the form given in Eqs. (2).

If A: = 1
,
the solution in general is not periodic. A periodic

solution of the form Eq. (2 ) wdth k = 1 exists, if the constants

m, satisfy the relation

= 0, (3)

I

where Aii is the minor obtained from A by suppressing the tth row

and the first column.

Assuming that fc = 1
,
the substitution of Eqs. (2) in the differ-

ential Eqs. (206.1) with the right members as in ( 1 ), there results

— XiZi — nl2 “b 0/3 “b li = mi,

"b^^i “b Xi/2 — ^3 “b 0/4 = m-2,

Oh — hih — X1Z3 — (inU = m3,

“b^ 2^i d” 0/2 “b hfih “b X 1 Z 4 = m 4 .

The determinant A of the left members is zero, but the equations

are consistent by virtue of the assumption (3). Not all the first

minors of A are zero, however, since its roots are simple roots, or,

at least they are in general. It is assumed here that they are

simple, and therefore not all of the first minors are zero. Suppose

A 41 9̂ 0
;
suppress the last equation and rewrite the other three

equations as follows,

— nh 4“ OZ 3 “b li = *4" ^ihy

4"XiJ2 — ^^3 4" Oli ~ ^2 — 'f^hy

— hiU — XZ3 — anlA = m3 4“ OZi.

ll D — A 41 is the determinant of the left members and Da are its

first minors, the solution is

= [4“-Dii^i 1^21^2 4” 1^ 31^3] 4“ [
4“ uD^'i^hy

Dlz = [
— Di2Till 4” 1)22^2 — 1^ 32^ 3] 4~ [

— ^iDi 2 — ^-D 22l^l)

Dli = [+£^i 3mi — Z)23m2 4" i^sa^s] 4“ [ XiZ)i 3 + nD23]liy
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in which U is arbitrary. The coefficients of h in the right

members are a2, as, and 04, of Eqs. 4, and D is ai. Hence, by

taking

it is seen that

1

1

—

h = Idit h — Pz 'i' IcLzj

^2 = P2 + ^4 = ^4 + Ictif

in which I is arbitrary, and p2, Ps, and p 4 are functions of the m^s

as defined above. Equations (2) then become

Vi = lai cos Xi^, vz = (pz + laz) cos Xi^,

V2 = (P2 + Idi) sin Xi^, Va = (p4 4- lai) sin Xif.

The terms which carry Z as a factor, however, are merely

terms of the complementary function [Eqs. (206.5)], and there-

fore, without loss of generality, I can be taken equal to zero.

208. A Periodic Solution of the General Equations.—It will

now be shown that the differential equations of motion [Eqs.

(203.4)] can be satisfied by power series of the following form:

= cos XiT 4* [1^12^^^ cos Xir 4- cos SXirj/x^ -j-

V2 = r2 sin XiT 4- [<^22^^^ sin Xir 4- sin SXitJ/x^ +
Vz = rz cos XiT 4- [^32^^^ cos XiT 4” cos 3Xir]/u^ 4-

Va == ta sin XiT 4* ^42^^^ sin Xir 4- Vaz^^^ sin 3Xir]/42 4-

Vb — [t;6i^°^ 4” Vbi^^^ cos 2Xir]ju +
4“ cos 2Xir + ^53^^^ cos 4Xir]/U^ +

’ >(1)

in which the are constants and r is a new independent vari-

able defined by the relations

< = (1 4" 5)r, 1

and ? (2)

6 = 82^^ + 54m" +•'•.)

This form of the solution is suggested by the following proper-

ties of the differential equations; If vi, Vz, Vz, and va are even func-

tions of jjL, and ^6 is an odd function, all of the terms of the first

four of the differential equations [Eqs. (203.4)] are even in /x, and
all of the terms of the last equation are odd. If Vi, V3, and Vb are

even functions of f, and Vz and Va are odd functions, all of the terms

of the first, third, and fifth equations are odd in <, and all of the
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terms of the second and fourth are even functions of t. It will be

observed that if r is increased by a quarter of the period, 7r/(2Xi),

the property of evenness and oddness in the time is reversed in the

series of p]qs. (1), with the exception of the last. The same is

true in the differential equations.

In order to effect a solution of the differential equations after

the change in the independent variable from t to r, let

Vi = Vio + VnjJi^ + Vum"* + * '
*

,

V2 = 1^20 + + V24ll^ + * *
'

,

Vs = Vso + Vs2/^^ + + *
*

, (3)

Vi = ViO + Vi2pL^ + ‘
‘

,

Vh = VhllJL + + ’ ’

)

in which the va are functions of the time to be determined, be sub-

stituted, and the differential equations then arranged in powers

of /i.

The Terms of Degree Zero.—The terms that are independent of m
are the same as the equations of variation [Eqs. (206.1)] and their

solutions are therefore Eqs. (206.5), except that the independent

variable is t instead of i. The period in r that has been chosen is

27r/Xi; the terms that contain the period 2x/X 2 are made to

disappear by taking the constants C and D equal to zero, and, for

simplicity, B also is taken equal to zero, although this last is not

necessary. There remain only the terms that have A as a factor.

It will be remembered that at Eqs. (203.3) the condition was
imposed upon the variables that for all values of ^

Vi^ + V2^ = 1.

It follows therefore that A is the reciprocal of ai, the minor of A,

that by hypothesis is not zero. Then, by taking

there is obtained

Vio = cos XiT, Vso = rs cos Xir,

V20 = ^2 sin XiT, Vio = Vi sin Xit.

which agrees with the first terms of Eqs. (1).

The Term of First Degree ,—There is but one term of the first

degree in m, namely,
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dvhx = CVzoVAOy

or, after substitution from Eqs. (4),

dvi,i 1 .

= 2
^r3r4 sin 2Xir.

The first term n of co^ is arbitrary. It will be assumed, therefore,

that the initial value of Vf, is zero, whatever /x may be. Therefore,

on integrating and choosing the constant of integration so that

this condition is satisfied, it is found that

Vsi ^r8r4(l — cos 2Xir). (5)

Terms of the Second Degree ,—When the values of Vio and vsi that

have been determined [Eqs. (4) and (5)] are used, it is found

that the differential equations for t;,2 are

dvu

~d^

dV2{

dr

— nV22 + Vi 2 =

[(nr2 — r4)52 + sin Xir + sin 3Xit,

+ nVi2 — ^32 =

[(
— n + ^3)52 + ^22^^^] cos XiT + m22^®^ cos 3 Xit,

— hlV22 — (inV42 ~

[(hir2 + anr4)62 + ^32^^^] sin Xit + mz2^^^ sin 3Xit,

+ h2Vi2 + bnvz2 =

[
— (/12 + bnrz)52 + ^42^^^] cos Xir + ^42^^^ cos 3Xit, J

dvzi

dr

dVi

(6)

in which the are constants that are not computed here.

The explicit values of the coefficients of ^2 are given, as their

values are necessary in order to show that the periodicity condi-

tion stated in Eq. (207.3) can be satisfied.

This condition, stated explicitly, is

[(nr2~'r4)An— (~n+r8)A2i+(Air2+onr4)A3i+(/i2+6nr8)A4i]52

+ [mi2^^^Aii -f- m22^^^A2i + mz2^^^^zi - W42^^^A4i] = 0;

and ^2 can be chosen so that the condition is satisfied provided the

coefficient of ^2 is not zero. Since A = 0, this coefficient can be

expressed in the form
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-2Xi2{[(l +2a + ah)n^ + (Ai ~ ~
(an^ + + 26 + ab)n^ — (Jii — 62)]}!

and, by the elimination of Xi^ finally in the form

-2(1 + a)(l +
where is the X discriminant defined at Eq. (204.4). The root

of the characteristic equation, X, vanishes on one of the two sur-

faces H and Jfi, D\ only on the surface S, and the other factors

on the walls and floor of the square cylinder C, The coeflicient of

62 does not vanish in the interior of the prescribed regions, and in

these regions the periodicity condition can always be satisfied.

The solution of ICqs. (6) then is, bearing in mind the discussion

in Sec. 207,

V12 = ( 0 + Z2) cos XiT + cos 3Xit,

t^22 = (P2 + h) sin XiT + 1^22^^^ sin 3Xir,

Vz2 = (P3 + U) cos XiT + cos 3Xir,

— (p4 + h) sin XiT + sin 3 Xit.

It is still subject to the condition that, for r = 0,

Vi^ + V2^ = 1.

Since V22 vanishes with r, the constant of integration h must be

chosen so that Vn vanishes with r; that is

I2 =

If this value of I2 is substituted in Eqs. (7), it is seen that the

expressions given in Eqs. (7) agree in form with the coeflScients of

in Eqs. (1).

Terms of Higher Degrees,—As developed thus far, Vi, Vz and ^5

are even functions of r, while V2 and Va are even functions. From
the properties of the differential equations already mentioned it is

seen that this property persists: Vu, Vzk and v^k are always even
functions, while V2k and Vik are odd functions. Furthermore,

Vik and vsk contain only cosines of odd multiples of Xir, while

contains only even multiples; and V2k and Vik contain only sines of

odd multiples of r.

Since the derivative of vsk is odd in r, it has no constant term

and the periodicity condition is satisfied automatically. The
constant arising in the integration can always be chosen so that

Vsk vanishes at r = 0.
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The integration of the coefficients of the even powers of /x is

quite similar to that of the second degree. The periodicity

condition is the same, and 5k occurs in this condition with pre-

cisely the same coefficient as in the terms of the second degree',

already discussed. Hence 5k can always be chosen so as to satisfy

this condition, and the constant of integration then arising can

always be chosen so that vanishes with r, and therefore, at

r = 0,

The solution therefore can be carried as far as may be desired;

and by the general theorems, the series are convergent if
1
m |

is

sufficiently small.

By changing the origin of r, these series will lose the property of

evenness and oddness with respect to r. Such series could have

been developed from the beginning, but as they are less simple and

add nothing essential to the solution, it is better to develop the

series as has been done here.

209, The Eulerian Angles*—From the second column of

Eqs. (202.2) it is seen that

tan ^ = —S sin 9 =
72

and therefore, in terms of the series developc'd in tlu^ last sec.tion,

Vi V2
sin (P

= cos ip = ^

\/vr +
sin 6 — iJLy/v{^ ^ ^ ^ ^ ^

At T = 0,

ei = +1, V2 Vi Vi, 0,

ra = ra + [
1^ 32 ' + V22^^%^ + * *

*
;

at T = 7r/2Xi, the quarter period,

Vl == Vi = 0, =: r2 + + ' •
•

,

^4 == r4 + ^42^^^ - V42^^^]lJ,^ + * •
•

,

Vi = +
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and at T = ir/Xi, the half period,

•'(S)
“

Thus ip, which initially is w/2, increases by tt during the half

period, and by 2t during the complete period. That is the body
makes one complete turn per period.

The initial value of sin 6 is fx. At the expiration of a quarter

period its value is

which is a maximum or a minimum value, since the derivative

vanishes at r = '7r/2Xi. At the expiration of a half period,

sin 6 has returned to its initial value. Thus the principal axis, the

k-axis, describes a curve on the unit sphere that always lies

between two parallels of latitude as in Figs. 60, 61, and 62.

The rate of precession [Eq. (202.7)] is

,, ViVz + V2Vi
* "ITW

At r = 0, the value of is ra, and at the quarter period its value

is

Vj ^ Tj + ^42
^^^ - V42^^W + ’ ’ ^

.

V2 r2 + [V22^^^ - + * * *

210. Concluding Remarks.—The solution just derived con-

tains four arbitrary constants, n, /i? and tq, since the initial

values of ^ and r can be regarded as arbitrary. It is a particular

solution, inasmuch as the differential equations are of the sixth

order, and therefore six arbitrary constants are needed for a

complete solution. In this respect it differs from the problem

first considered, the rocking pendulum.

It will be observed that the method of periodic solutions is

long and difficult. It is not possible therefore to multiply

examples here. A collection of problems in which this method has

been used will be found in a volume entitled “Periodic Orbits,

“

by F. R. Moulton and others, published by the Carnegie Institu-

tion of Washington, Publication 161; and many others are to be

found in the literature. As remarked by its originator, H. Poin-
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car6, it is the only worth-while method that is known for a wide

class of problems.

Problems

1 . Prove that the matrices cos kI and sin kI/k satisfy the matrix identity

(cos Kty

+

ic» = «•

2 . Given that dot k 0. Show that Eq. (191.10) defines at least one

matrix whatever the value of the scalar n (real or complex) may be.

For n ~ — 1,

-1 - ^
det x’

where K is the adjoint of k, is the reciprocal of the matrix k.

Then show that the solution of the set of linear equations

is

KX ^ y, X (xi, • •
•

, Xn)y

X = y = (yi, • •
•

, 2/n).

3

.

If det K 0 and n = i, the matrix xl = \/x is a square root of x,

that is

k — k.

How many such square roots are obtainable from Eq. (191.10)?

Ans. 2r, where r is the number of distinct characteristic values of x.

4

.

The matrix

a —a
V = 1

a —a
a

satisfies the equation

rj^ = 6.

Is 71 obtainable from Eq, (191.10)?

6. Prove that, if 77 is a matrix and tn is an integer,

det (e"**') = (det c’^)’".

Generalize this result for m a rational fraction.

[Let

det = c*,

then from the identity

« det (e^^)

show that

8 = coefficient of m in det (5 4* ^>7 )

« sum of diagonal terms of ly].
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6. If the scalar n is sufficiently small, there exists a matrix

vM = -log (5 — (mk)

= /LtIC -f + • •
*

I

such that

7. Let 0 stand for the operation of taking the sum of the diagonal terms

of a matrix; then show that

det
I
5 — MK

I

= eOnM^

= ^-(/iO(«)+^’o(«*)+ • •

• ).

= e+Mo[iog(a — >«)].

From this identity develop a method of finding the characteristic equation,

det
I

fc —
I

from the sum of the diagonal terms of k, /c*, k’, . . . . k^~K

8

.

Consider the non-homogeneous differential equation

~ - KX = eUiC,
(it

where C is a constant vector. Show that for det
|
k — Xo5

|
0, a particular

solution is

X = e^o<(— K + Xo5)~^C,

and for Xo = Xi, a characteristic root of k of multiplicity mi, a particular

solution is

where

and

Vfi* 1 /

RM - (-1V
det (k — X6)

(X - Xi)«i
'

— — l^i(Xi)
” (X - Xi)ie(Xi)

•

9.

Solve for the vector x the differential equation

with the initial values

where k is a matrix.

Ana.

ar(O) = a, '-^(0) = b.

V

JO y/K

y(t) = 5 — cos y/Kt fp(t) di.

where
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10. Let D denote the operation of differentiating with respect to t.

Express the matrix operator E(ic, dD) in terms of the scalar operators

D) multiplied by polynomials in the matrix k. Show that in terms

of this operational notation a solution of the equation

is

11. Develop the solution of the simple pendulum by the method of

periodic solutions.

12. Develop the solution of the rocking pendulum with friction by the

method of periodic solutions.
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Permanent configurations, 71, 72,

75, 79

Pitch of a screw, 172, 190

Plane, equation of, 13

Poinsot's method, 204

Poisson's brackets, 380

Poisson’s identity, 381

Poisson’s theorem, 382

Pole, 204

Polhode, 207, 208, 210, 213

Potential function, 67, 69

Power series in a parameter, 403

Precession, 198, 226, 233

Principal function, 367

Principal point, 47

Problem of n bodies, 71, 72, 75

Products of inertia, 33

Q

Quadrilateral solutions, 79

R

Radius of gyration, 33

Rebound, from a rail, 298

from a solid plane, 295

Reciprocal ellipses, 212

Reciprocal ellipsoids, 212, 215

Restitution, coefficient of, 293

Riemann surface, 234

Rigid body, definition of, 91

degrees of freedom of, 92

most general displacement of, 167

Rolhng cones, 201, 207

Rolling motion, 257, 283, 331, 335,

343, 347

Rotation about a fixed axis, 95, 116

S

Scalar triple product, 7

as a determinant, 8

Scalars, 1

Screws, 166, 172

Sigma functions, 229, 237

Simple harmonic motion, 23

Sphere, rolling on a cycloid, 287

on a cylinder, 287

on a plane, 265, 267, 274

on a sphere, 285

Spherical triangles, 106

Stability of rotation, 211

Staeckel's theorem, 389

Steady motion of tops, 247

Straight-line configuration, 77, 79

Stroke of billiard cue, 295

Suspension, axis of, 124

T

Tensor, 1

Tetrahedrons, 79

Theta functions, 225, 228-230

Tops, common, 243, 329

sleeping, 245
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Tops, unsymmetrical, 451

Tortuosity, 30

Transformations, canonical. 305

contact, 362

Trihedron, moving, 173

Twists, 172

U

Unit vectors, 6

V

Vector triple product, 8

evaluation of, 10

Vectors, algebra of, I

reciprocal systems of, 1

2

reference systems of, 11

scalar products of, 2

vector products of, 4

determinant form, 6

Velocity, absolute, 176, 190

of following, 176

relative, 176

Virial, 87

W

Weierstrass ^-function, 225

Wrench, 173



THEORETICAL MECHANICS: STATICS AND
DYNAMICS OF A PARTICLE

by William Duncan MacMillan

Beginning with elementary concepts and postulates peculiar to me>

chanics, this exceptionally clear and comprehensive text carries the

student through vectors and their applications, to a thorough exposi-

tion of the statics of a particle and an intermediate level exposition of

particle dynamics. Each new concept is carefully defined and then

illustrated through the solution of hundreds of basic problems in astron-

omy, ballistics, transmission of power, stress and strain, elasticity, and

related topics. 340 practise problems and many examples fully worked

out in the text make it possible for anyone with a working knowledge

of calculus and differential equations to test and extend the principles

developed in the text while 200 key diagrams make the exposition

clear and explicit.

Partial Contents: PART I. Vectors, Velocity. Acceleration. Mass and

Force. Work and Energy. Center of Gravity. Moments of Inertia.

PART II. Statics of a Particle. Statics of Rigid Bodies; 1 . Displacements.

2. Moments of Vectors. 4. Virtual Work. 6. Frameworks. Statics of

Deformable Bodies; 1, Funicular Polygons. 3. Elastic Solids. PART

ill. Motion In a Straight Line; 1. Gravity and Gravitation. 2. Harmonic

Motion. 3. Conservative Forces in General. Curvilinear Motion. Cen-

tral Forces: 3, The Newtonian Law with a Fixed Center. 4. The Two-

body Problem. Constrained Motion; 1. Linear Constraints. 3. Tauto-

chrones and Brachistochrones. 4, Surface Constraints. The Generalized

Coordinates of Lagrange. The Canonical Equations of Hamilton. The

General Principles of Mechanics: 1. D’Alembert’s Principle. 2. Prin-

ciple of Least Action. 3. Hamilton’s Principle. 4. Gauss’ Principle of

Least Constraint.

Complete and unabridged. 200 figures. 340 problems (about half

with answers), xvii 430 pp. 5-3/8 x 8.

S467 Paperbound $2.00



THE THEORY OF THE POTENTIAL

by W. D. MacMillan

The theory of the potential is usually presented as a single chapter in

books on applied mathematics or mathematical analysis. The republi-

cation of MacMillan’s long unavailable “Theory of the Potential,”

consequently, meets the current need for an extensive text in English

designed specifically as an introduction to this increasingly important

thoretical tool with applications in such fields as applied mathematics,

geophysics, gravitational mechanics, electrostatics, magnetostatics,

quantum mechanics, and particle physics.

Both physicists and mathematicians will find this work a connected,

well-balanced presentation of the theory of the potential. Only rea-

sonable mathematical proficiency is presupposed and all mathemati-

cal theorems are fully developed as they become necessary. Physicists

will especially welcome the great wealth of examples and particular

cases, which makes this work valuable as a reference as well as a text.

All mathematical material is treated in extensive detail and covers

gravitational mechanics as well as electrostatics and magnetostatics.

Problems are included at the ends of chapters.

The first chapter treats the gravitational attraction of finite bodies. The

second chapter considers the Newtonian potential function. Both in-

clude many concrete examples and illustrations. The third chapter is

an unusually clear account of vector fields. Surface distributions are

discussed in the next three chapters, beginning with a consideration

of the attractions of surfaces and lines and concluding with an account

of double-layers. The final two chapters deal respectively with the

essential properties of spherical and ellipsoidal harmonics.

“Obviously destined to fill a void in the American text-book literature,

and . . . will undoubtedly find a prominent place among the text-

books of first year graduate students,” REVIEW OF SCIENTIFIC IN-

STRUMENTS.

Index. 00 figures. Problems at ends of chapters, xiii -j- 469pp. 5 % x 8.

Paperbound $2.25



Catalogue of Dover

SCIENCE BOOKS

DIFFERENTIAL EQUATIONS
(ORDINARY AND PARTIAL DIFFERENTIAL)

iNTROOUCTION TO THE DIFFERENTIAL EQUATIONS OF PHYSICS, L. Hopf. Especially valuable
to engineer with no math beyond elementary calculus. Emphasizes intuitive rather than
formal aspects of concepts. Partial contents; Law ot causality, energy theorem, damped
oscillations, coupling by friction, cylindrical and spherical coordinates, heat source, etc,

48 figures. 160pp. 5^/8 x 8. S120 Paperbound SI-25

INTRODUCTION TO BESSEL FUNCTIONS, F. Bowman. Rigorous, provides all necessary material
during development, includes practical applications. Bessel functions of zero order, of any
real order, definite integrals, asymptotic expansion, circular membranes, Bessel’s solution

to Kepler’s problem, much more. “Clear . . . useful not only to students of physics and
engineering, but to mathematical students in general,’’ Nature. 226 problems: Short tables

of Bessel functions. 27 figures, x -f 135pp. SVe x 8. S462 Paperbound $ 1.35

DIFFERENTIAL EQUATIONS, F, R. Moulton. Detailed, rigorous exposition of all non-elemen-
tary processes of solving ordinary differential equations. Chapters on practical problems;
more advanced than problems usually given as illustrations. Includes analytic differential

equations; variations of a parameter, integrals of differential equations; analytic implicit

functions; problems of elliptic motion; sine-amplitude functions; deviation of formal bodies;

Cauchy-Lipshitz process; linear differential equations with periodic coefficients; much more.
Historical notes. 10 figures. 222 problems, xv -P 395pp. 53/8 x 8. S451 Paperbound $2.00

PARTIAL DIFFERENTIAL EQUATIONS OF MATHEMATICAL PHYSICS, A. G. Webster. Valuable
sections on elasticity, compression theory, potential theory, theory of sound, heat conduc-
tion, wave propagation, vibration theory. Contents include; deduction of differential equa-

tions, vibrations, normal functions, Fourier’s series. Cauchy’s method, boundary problems,

method of Riemann-Volterra, spherical, cylindrical, ellipsoidal harmonics, applications, etc.

97 figures, vii -P 440pp. 53/8 x 8. S263 Paperbound $2.00

ORDINARY DIFFERENTIAL EQUATIONS, E, L. Ince. A most compendious analysis in real and
complex domains. Existence and nature of solutions, continuous transformation groups,

solutions in an infinite form, definite integrals, algebraic theory. Sturmian theory, boundary
problems, existence theorems, 1st order, higher order, etc. “Deserves highest praise, a

notable addition to mathematical literature,” Bulletin, Amer. Math. Soc. Historical appendix.
18 figures, viii + 558pp. 53/8 x 8. S349 Paperbound $2.55

ASYMPTOTIC EXPANSIONS, A. Erd^lyi. Only modern work available in English; unabridged
reproduction of monograph prepared for Office of Naval Research. Discusses various proce-

dures for asymptotic evaluation of integrals containing a large parameter; solutions of

ordinary linear differential equations, vi + 108pp. 53/b x 8. S318 Paperbound $ 1.35

LECTURES ON CAUCHY’S PROBLEM, J. Hadamard. Based on lectures given at Columbia, Rome,
discusses work of Riemann, Kirchhoff, Volterra, and author's own research on hyperbolic

case in linear partial differential equations. Extends spherical cylindrical waves to apply

to all (normal) hyperbolic equations. Partial contents: Cauchy’s problem, fundamental for-

mula, equations with odd number, with even number of independent variables; method of

descent. 32 figures, iii + 316pp. 5% x 8. S105 Paperbound $1.75



CATALOGUE OF

NUMBER THEORY

INTRODUCTION TO THE THEORY OF NUMBERS. L. E. Dickson. Thorough, comprehensive, witn
adequate coverage of classical literature. Not beyond beginners. Chapters on divisibility,
congruences, quadratic residues and reciprocity, Diophantine equations, etc. Full treatment
of binary quadratic forms without usual restriction to integral coefficients. Covers infinitude
of primes, Fermat’s theorem, Legendre’s symbol, automorphs. Recent theorems of Thue,
Siegal, much more. Much material not readily available elsewhere. 239 problems. 1 figure.
VIII + 183pp. 5^8 X 8. S342 Paperbound il.65

ELEMENTS OF NUMBER THEORY, I. M. Vinogradov. Detailed 1st course for persons without
advanced mathematics; 95% of this book can be understood by readers who have gone
no farther than high school algebra. Partial contents: divisibility theory, important number
theoretical functions, congruences, primitive roots and indices, etc. Solutions to problems,
exercises. Tables of primes, indices, etc Covers almost every essential formula in ele-
mentary number theory! “Welcome addition . . . reads smoothly,’’ Bull, of the Amer. Math.
Soc. 233 problems. 104 exercises vtn + 227pp. 53/8 x 8. S259 Paperbound $1.60

PROBABILITY THEORY AND INFORMATION THEORY

SELECTED PAPERS ON NOISE AND STOCHASTIC PROCESSES, edited by Prof. Nelson Wax, U of

Illinois. 6 basic papers for those whose work involves noise characteristics. Chandrasekhar,
Uhlenback and Ornstein, Uhlenbeck and Mmg, Rice, Doob. Included is Kac’s Chauvenet-
Prize winning “Random Walk.’’ Extensive bibliography lists 200 articles, through 1953. 21
figures. 337pp. SVa x 9V4. S262 Paperbound $2.35

A PHILOSOPHICAL ESSAY ON PROBABILITIES, Marquis de Laplace. This famous essay explains

without recourse to mathematics the principle of probability, and the application of prob-

ability to games of chance, natural philosophy, astronomy, many other fields. Translated
from 6th French edition by F. W. Truscott, F. L. Emory. Intro, by E. T. Bell. 204pp. 53/8 x 8.

S166 Paperbound $1.25

MATHEMATICAL FOUNDATIONS OF INFORMATION THEORY, A. I. Khinchin. For mathematicians,
statisticians, physicists, cyberneticists, communications engineers, a complete, exact intro-

duction to relatively new field. Entropy as a measure of a finite scheme, applications to

coding theory, study of sources, channels and codes, detailed proofs of both Shannon
theorems for any ergodic source and any stationary channel with finite memory, much mote.
“Presents for the first time rigorous proofs of certain fundamental theorems . . . quite

complete . . . amazing expository ability,’’ American Math. Monthly, vii -f 120pp. 5'Va x 8

S434 Paperbound $1.35

VECTOR AND TENSOR ANALYSIS AND MATRIX THEORY

VECTOR AND TENSOR ANALYSIS, G. E. Hay. One of clearest introductions to increasingly
important subject. Start with simple definitions, finish with sure mastery of oriented
Cartesian vectors, Christoffel symbols, solenoidal tensors. Complete breakdown of plane,
solid, analytical, differential geometry. Separate chapters on application. All fundamental
formulae listed, demonstrated. 195 problems. 66 figures, viii 4- 193pp. 5% x 8.

S109 Paperbound $1.75

APPLICATIONS OF TENSOR ANALYSIS, A. J. McConnell. Excellent text for applying tensor
methods to such familiar subjects as dynamics, electricity, elasticity, hydrodynamics. Ex-

plains fundamental ideas and notation of tensor theory, geometrical treatment of tensor
algebra, theory of differentiation of tensors, and a wealth of practical material. “The
variety of fields treated and the presence of extremely numerous examples make this

volume worth much more than its low price,” Alluminio. Formerly titled “Applications of the
Absolute Differential Calculus.” 43 illustrations. 685 problems, xli + 381pp.

S373 Paperbound $1.85

VECTOR AND TENSOR ANALYSIS, A. P. Wilis. Covers entire field, from dyads to non-Euclidean
manifolds (especially detailed), absolute differentiation, the Riemann-Christoffel and Ricci-

Einstein tensors, calculation of Gaussian curvature of a surface, illustrations from electrical

engineering, relativity theory, astro-physics, quantum mechanics. Presupposes only working
Knowledge of calculus. Intended for physicists, engineers, mathematicians. 44 diagrams.
114 problems, xxxti -+ 285pp. 5 Vb x 8 S454 Paperbound $1.75
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DOVER SCIENCE BOOKS

PHYSICS, ENGINEERING
MECHANICS, DYNAMICS, THERMODYNAMICS, ELASTICITY

MATHEMATICAL ANALYSIS OF ELECTRICAL AND OPTICAL WAVE-MOTION, H. Bateman. By one
of century’s most distinguished mathematical physicists, a practical Introduction to develop-
ments of Maxwell’s electromagnetic theory which directly concern the solution of partial
differential equation of wave motion. Methods of solving wave-equation, polar-cylindrical
coordinates, diffraction, transformation of coordinates, homogeneous solutions, electromag-
netic fields with moving singularities, etc. 168pp. 5% x 8. S14 Paperbound ?1.60

THERMODYNAMICS, Enrico Fermi. Unabridged reproduction of 1937 edition. Remarkable for
clarity, organization; requires no knowledge of advanced math beyond calculus, only familiar-
ity with fundamentals of thermometry, calorimetry. Partial Contents-. Thermodynamic sys-
tems, 1st and 2nd laws, potentials; Entropy, phase rule; Reversible electric cells; Gaseous
reactions: Van't Hoff reaction box, principle of LeChatelier; Thermodynamics of dilute
solutions: osmotic, vapor pressures; boiling, freezing point; Entropy constant. 25 problems.
24 Illustrations, x + ISOpp. 5% x 8. S361 Paperbound $1.75

FOUNDATIONS OF POTENTIAL THEORY, 0. D. Kellogg. Based on courses given at Harvard,
suitable for both advanced and beginning mathematicians, Proofs rigorous, much material
here not generally available elsewhere. Partial contents: gravity, fields of force, divergence
theorem, properties of Newtonian potentials at points of free space, potentials as solutions
of LaPlace's equation, harmonic functions, electrostatics, electric Images, logarithmic po-
tential, etc. ix + 384pp. 53/8 X 8, S144 Paperbound $1.98

DIALOGUES CONCERNING TWO NEW SCIENCES, Galileo Galilei. Classic of experimental sciedce,
mechanics, engineering, as enjoyable as it is important. Characterized by author as “superior
to everything else of mine.’’ Offers a lively exposition of dynamics, elasticity, sound, ballistics,

strength of materials, scientific method. Translated by H. Grew, A. de Salvio. 126 diagrams,
xxi -f 288pp. 5% X 8, S99 Paperbound $1.65

THEORETICAL MECHANICS; AN INTRODUCTION TO MATHEMATICAL PHYSICS, J. S. Ames, F. 0.
Murnaghan. A mathematically rigorous development for advanced students, with constant
practical applications. Used in hundreds of advanced courses. Unusually thorough coverage
of gyroscopic baryscopic material, detailed analyses of Corilis acceleration, applications of
Lagrange’s equations, motion of double pendulum, Hamilton-Jacobi partial differential equa-
tions, group velocity, dispersion, etc. Special relativity included. 159 problems. 44 figures.
Ix + 462pp, 5% X 8. S461 Paperbound $2.00

STATICS AND THE DYNAMICS OF A PARTICLE, W. D. MacMillan. This is Pait One of “Theoret-
ical Mechanics.” For over 3 decades a self-contained, extremely comprehensive advanced
undergraduate text in mathematical physics, physics, astronomy, deeper foundations of

engineering. Early sections require only a knowledge of geometry; later, a working knowledge
of calculus. Hundreds of basic problems including projectiles to moon, harmonic motion,
ballistics, transmission of power, stress and strain, elasticity, astronomical problems. 340
practice problems, many fully worked out examples. 200 figures, xvii -f 430pp. S^/b x 8 .

S467 Paperbound $2.00

THE THEORY OF THE POTENTIAL, W. D. MacMillan. This is Part Two of “Theoretical Mechan-
ics.” Comprehensive, well-ba'anced presentation, serving both as introduction and reference
with regard to specific problems, for physicists and mathematicians. Assumes no prior

knowledge of integral relations, all math is developed as needed. Includes: Attraction of

Finite Bodies; Newtonian Potential Function; Vector Fields, Green and Gauss Theorems;
Two-la/er Surfaces; Spherical Harmonics; etc. “The great number of particular cases . . .

should make the book valuable to geo-physicists and others actively engaged in practical

applications of the potential theory,” Review of Scientific Instruments, xii + 469pp. S-Ve x 8.

S486 Paperbound $2.25

DYNAMICS OF A SYSTEM OF RIGID BODIES (Advanced Section), E. J. Routh. Revised 6th edi-

tion of a classic reference aid. Partial contents-, moving axes, relative motion, oscillations
about equilibrium, motion. Motion of a body under no forces, any forces. Nature of motion
given by linear equations and conditions of stability. Free, forced vibrations, constants of

integration, calculus of finite differences, variations, procession and mutation, motion of

the moon, motion of string, chain, membranes. 64 figures. 498pp. 53/8 x 8.

S229 Paperbound $2.35

THE DYNAMICS OF PARTICLES AND OF RIGID, ELASTIC, AND FLUID BODIES: BEING LECTURES
ON MATHEMATICAL PHYSICS, A. G. Webster. Reissuing of classic fills need for comprehensive
work on dynamics. Covers wide range in unusually great depth, applying ordinary, partial

differential equations. Partial contents: laws of motion, methods applicable to systems of

all sorts; oscillation, resonance, cyclic systems; dynamics of rigid bodies; potential theory;

stress and strain; gyrostatics; wave, vortex motion; kinematics of a point; Lagrange’s equa-
tions; Hamilton’s principle; vectors; deformable bodies; much more not easily found to-

gether in one volume. Unabridged reprinting of 2nd edition. 20 pages on differential

equations, higher analysis. 203 illustrations, xi 4- 588pp. 53/8 x 8. S522 Paperbound $2.35
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CATALOGUE OF
PRINCIPLES OF MECHANICS, Heinrich Hertz. A classic of great interest in logic of science.

Last work by great 19th century physicist, created new system of mechanics based upon
space, time, mass; returns to axiomatic analysis, understanding of formal, structural

aspects of science, taking into account logic, observation, a priori elements. Of great
historical importance to Poincar6, Carnap, Einstein, Milne. 20 page introduction by R. S.

Cohen, Wesleyan U., analyzes Implications of Hertz’s thought and logic of science. 13 page
introduction by Helmholtz, xlii + 274pp. 5% x 8. S316 Clothbound $3.50

S317 Paperbound $1.75

MATHEMATICAL FOUNDATIONS OF STATISTICAL MECHANICS, A. I. Khincnin. A thoroughly
up-to-date Introduction, offering a precise and mathematically rigorous formulation of the
problems of statistical mechanics. Provides analytical tools to replace many commonly
used cumbersome concepts and devices. Partial contents: Geometry, kinematics of phase
space; ergodic problem; theory of probability; central limit theorem; ideal monatomic gas;

foundation of thermodynamics; dispersion, distribution of sum functions; etc. “Excellent
introduction . . . clear, concise, rigorous,” Quarterly of Applied Mathematics, viii + 179pp.
5% X 8. S146 Clothbound $2.95

S147 Paperbound $1.35

MECHANICS OF THE GYROSCOPE. THE DYNAMICS OF ROTATION, R. F. Deimel, Prof, of Me-
chanical Engineering, Stevens Inst, of Tech. Elementary, general treatment of dynamics of

rotation, with special application of gyroscopic phenomena. No knowledge of vectors
needed. Velocity of a moving curve, acceleration to a point, general equations of motion,
gyroscopic horizon, free gyro, motion of discs, the damped gyro, 103 similar topics. Exer-
cises. 75 figures. 208pp. 53/8 x 8. S66 Paperbound $1.65

MECHANICS VIA THE CALCULUS, P. W. Norris, W. S. Legge. Wide coverage, from linear motion
to vector analysis; equations determining motion, linear methods, compounding of simple
harmonic motions, Newton's laws of motion, Hooke’s law, the simple pendulum, motion of

a particle in 1 plane, centers of gravity, virtual work, friction, kinetic energy of rotating
bodies, equilibrium of strings, hydrostatics, sheering stresses, elasticity, etc. Many worked-
out examples. 550 problems. 3rd revised edition, xii -f 367pp. S207 Clothbound $3.95

A TREATISE ON THE MATHEMATICAL THEORY OF ELASTICITY, A. E. H. Love. An indispensable
reference work for engineers, mathematicians, physicists, the most complete, authoritative
treatment of classical elasticity in one volume. Proceeds from elementary notions of exten-
sion to types of strain, cubical dilatation, general theory of strains. Covers relation between
mathematical theory of elasticity and technical mechanics; equilibrium of isotropic elastic
solids and aelotropic solid bodies; nature of force transmission, Volterra’s theory of
dislocations; theory of elastic spheres in relation to tidal, rotational, gravitational effects
on earth; general theory of bending; deformation of curved plates; buckling effects; much
more. “The standard treatise on elasticity,” American Math, Monthly. 4th revised edition.

76 figures, xviii •+- 643pp. eVs x 9V4, S174 Paperbound $2.95

NUCLEAR PHYSICS, QUANTUM THEORY, RELATIVITY

MESON PHYSICS, R. E. Marshak. Presents basic theory, and results of experiments with em-
phasis on theoretical significance. Phenomena involving mesons as virtual transitions
avoided, eliminating some of least satisfactory predictions of meson theory. Includes pro-
duction study of TT mesons at nonrelativistic nucleon energies contracts between tr and
mesons, phenomena associated with nuclear interaction of tr mesons, etc. Presents early
evidence for new classes of particles, indicates theoretical difficulties created by discovery
of heavy mesons and hyperons. viii + 378pp. 5% x 8. S500 Paperbound $1.95

THE FUNDAMENTAL PRINCIPLES OF QUANTUM MECHANICS, WITH ELEMENTARY APPLICATIONS,
E. C. Kemble. Inductive presentation, for graduate student, specialists in other branches of
physics. Apparatus necessary beyond differential equations and advanced calculus developed
as needed. Though general exposition of principles, hundreds of individual problems fully

treated. “Excellent book ... of great value to every student . . . rigorous and detailed
mathematical discussion . .. has succeeded in keeping his presentation clear and under-
standable,” Or. Linus Pauling, J. of American Chemical Society. Appendices: calculus of
variations, math, notes, etc. 611pp. 5% x 8%. T472 Paperbound $2.95

WAVE PROPAGATION IN PERIODIC STRUCTURES, L. Brillouin. General method, application to
different problems*, pure physics—scattering of X-rays In crystals, thermal vibration In

crystal lattices, electronic motion in metals; problems in electrical e 'gineering. Partial

contents: elastic waves along l-dimensional lattices of point masses. Propagation of waves
along 1-dimensional lattices. Energy flow. 2, 3 dimensional lattices. Math.eu's equation.
Matrices and propagation of waves along an electric line. Continuous elect(>c lines. 131
illustrations, xii + 253pp. 5% x 8. S34 Papfbound $ 1.85
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DOVER SCIENCE BOOKS
THEORY OF ELECTRONS AND ITS APPLICATION TO THE PHENOMENA OF LIGHT AND RADIANT
MEAT, H. Lorentz. Lectures delivered at Columbia Univ., by Nobel laureate. Unabridged, form
historical coverage of theory of free electrons, motion, absorption of heat, Zeeman effect,

optical phenomena in moving bodies, etc. 109 pages notes explain more advanced sec-
tions. 9 figures. 352pp. 53/8 x 8. S173 Paperbound $1.85

SELECTED PAPERS ON QUANTUM ELECTRODYNAMICS, edited by I. Schwinger. Facsimiles of
papers which established quantum electrodynamics; beginning to present position as part
of larger theory. First book publication in any language of collected papers of Bethe, Bloch,
Dirac, Dyson, Fermi, Feynman, Heisenberg, Kusch, Lamb, Oppenheimer, Pauli, Schwinger,
Tomonoga, Weisskopf, Wigner, etc. 34 papers-. 29 in English, 1 in French, 3 in German,
1 in Italian. Historical commentary by editor, xvii -f 423pp. SVe x 9Va.

S444 Paperbound $2.45

FOUNDATIONS OF NUCLEAR PHYSICS, edited 6y R. T. Beyer. 13 of the most important papers
on nuclear physics reproduced in facsimile in the original languages; the papers most often
cited in footnotes, bibliographies. Anderson, Curie, Joliot, Chadwick, Fermi, Lawrence, Cock-
roft, Hahn, Yukawa. Unparalleled bibliography-. 122 double columned pages, over 4,000
articles, books, classified. 57 figures. 288pp. QVb x 9Va. S19 Paperbound $1.75

THE THEORY OF GROUPS AND QUANTUM MECHANICS, H. Weyl. Schroedinger’s wave equation,
de Broglie’s waves of a particle, Jordon-Hoelder theorem, Lie’s continuous groups of trans-
formations, Pauli exclusion principle, quantization of Maweil-Dirac field equations, etc.

Unitary geometry, quantum theory, groups, application of groups to quantum mechanics,
symmetry permutation group, algebra of symmetric transformations, etc. 2nd revised edi-

tion. xxii 4- 422pp. 5% x 8. S268 Clothbound $4.50
S269 Paperbound $1.95

PHYSICAL PRINCIPLES OF THE QUANTUM THEORY, Werner Heisenberg. Nobel laureate dis-

cusses quantum theory; his own work, Compton, Schroedinger, Wilson, Einstein, many
others. For physicists, chemists, not specialists m quantum theory. Only elementary formulae
considered in text; mathematical appendix for specialists. Profound without sacrificing
clarity. Translated by C. Eckart, F. Hoyt. 18 figures. 192pp. x 8.

S113 Paperbound $1.25

INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT, Albert Einstein. Reprints
from rare European journals, translated into English. 5 basic papers. Including Elementary
Theory of the Brownian Movement, written at request of Lorentz to provide a simple
explanation. Translated by A. D. Cowper. Annotated, edited by R. Fiirth. 33pp. of notes
elucidate, give history of previous investigations. 62 footnotes. 124pp. 53/8 x 8.

S304 Paperbound $1.25

THE PRINCIPLE OF RELATIVITY, E. Einstein, H. Lorentz, M. Minkowski, H. Weyl. The 11 basic
papers that founded the general and special theories of relativity, translated into English.

2 papers by Lorentz on the Michelson experiment, electromagnetic phenomena. Minkowski’s
“Space and Time,” and Weyl’s “Gravitation and Electricity.” 7 epoch-making papers by Ein-

stein: “Electromagnetics of Moving Bodies,” “Influence of Gravitation in Propagation of

Light," “Cosmological Considerations,” “General Theory,” 3 others. 7 diagrams. Special

notes by A. Sommerfeld. 224pp. 5^8 x 8. S93 Paperbound $1.75

STATISTICS

ELEMENTARY STATISTICS, WITH APPLICATIONS IN MEDICINE AND THE BIOLOGICAL SCIENCES,
F. E. Croxton. Based primarily on biological sciences, but can be used by anyone destring
introduction to statistics. Assumes no prior acquaintance, requires only modest knowledge
of math. All basic formulas carefully explained, illustrated; all necessary reference tables
included. From basic terms and concepts, proceeds to frequency distribution, linear, non-
linear, multiple correlation, etc. Contains concrete examples from medicine, biology. 101
charts. 57 tables. 14 appendices. Iv 4- 376pp. 5% x 8. S506 Paperbound $1.95

ANALYSIS AND DESIGN OF EXPERIMENTS, H. B. Mann. Offers method for grasping analysis of

variance, variance design quickly. Partial contents: Chi-square distribution, analysis of

variance distribution, matrices, quadratic forms, likelihood ration tests, test of linear
hypotheses, power of analysis, Galois fields, non-orthogonal data, interblock estimates, etc.

15pp. of useful tables, x 4- 195pp. 5 x 73/8. S180 Paperbound $1.45

FREQUENCY CURVES AND CORRELATION, W. P. Eiderton. 4th revised edition of standard
work on classical statistics. Practical, one of few books constantly referred to for clear
presentation of basic material. Partial contents*. Frequency Distributions; Pearsons Fre-

g
uency Curves; Theoretical Distributions; Standard Errors; Correlation Ratio—Contingency;
orrectlons for Moments, Beta, Gamma Functions; etc. Key to terms, symbols. 25 examples.

40 tables. 16 figures, xi 4- 272pp. SVz x 8V2. Clothbound $1.49
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CATALOGUE OF

HYDRODYNAMICS, ETC.

HYDRODYNAMICS, Horace Lamb. Standard reference work on dynamics of liquids and gases.
Fundamental theorems, equations, methods, solutions, background for classical hydrody-
namics. Chapters: Equations of Motion, Integration of Equations in Special Gases, Vortex
Motion, Tidal Waves, Rotating Masses of Liquids, etc. Excellently planned, arranged, Clear,

lucid presentation. 6th enlarged, revised edition. Over 900 footnotes, mostly bibliograph-
ical. 119 figures, xv 4- 738pp. SVa x 9V4. S256 Paperbound ^2.95

HYDRODYNAMICS, A STUDY OF LOGIC, FACT, AND SIMILITUDE, Garrett Birkhoff. A stimulating
application of pure mathematics to an applied problem. Emphasis is on correlation of

theory and deduction with experiment. Examines recently discovered paradoxes, theory of

modelling and dimensional analysis, paradox and error in flows and free boundary theory.
Classical theory of virtual mass derived from homogenous spaces; group theory applied

to fluid mechanics. 20 figures, 3 plates, xiii + 186pp. SVs x 8. S22 Paperbound $1.85

HYDRODYNAMICS, H. Dryden, F. Murhaghan, H. Bateman. Published by National Research
Council, 1932. Complete coverage of classical hydrodynamics, encyclopedic in quality.

Partial contents: physics of fluids, motion, turbulent flow, compressible fluids, motion in

1, 2, 3 dimensions; laminar motion, resistance of motion through viscous fluid, eddy
viscosity, discharge of gases, flow past obstacles, etc. Over 2900-item bibliography. 23
figures. 634pp. 5% x 8. S303 Paperbound $2.75

ACOUSTICS AND OPTICS

PRINCIPLES OF PHYSICAL OPTICS, Ernst Mach. Classical examination of propagation of light,

color, polarization, etc. Historical, philosophical treatment unequalled for breadth and
readability. Contents; Rectilinear propagation, reflection, refraction, dioptrics, composition
of light, periodicity, theory of interference, polarization, mathematical representation of

properties, etc^ 279 illustrations. 10 portraits. 324pp. 5% x 8. S170 Paperbound $1.75

THE THEORY OF SOUND, Lord Rayleigh. Written by Nobel laureate, classical methods here
will cover most vibrating systems likely to be encountered in practice. Complete coverage
of experimental, mathematical aspects. Partial contents: Harmonic motions, lateral vibra-

tions of bars, curved plates or shells, applications of Laplace’s functions to acoustical
problems, fluid friction, etc. First low-priced edition of this great reference-study work.
Historical introduction by R. B. Lindsay. 1040pp. 97 figures. SVs x 8.

S292, S293, Two volume set, paperbound $4.00

THEORY OF VIBRATIONS, N. W. McLachlan. Based on exceptionally successful graduate
course, Brown University. Discusses linear systems having 1 degree of freedom, forced
vibrations of simple linear systems, vibration of flexible strings, transverse vibrations of

bars and tubes, of circular plate, sound waves of finite amplitude, etc. 99 diagrams. 160pp.
53/8 X 8. S190 Paperbound $1.35

APPLIED OPTICS AND OPTICAL DESIGN, A. E. Conrady. Thorough systematic presentation of

physical and mathematical aspects, limited mostly to “real optics.” Stresses practical
problem of maximum aberration permissible without affecting performance. Ordinary ray
tracing methods; complete theory ray tracing methods, primary aberrations; enough higher
aberration to design telescopes, low powered microscopes, photographic equipment. Covers
fundamental equations, extra-axial Image points, transverse chromatic aberration, angular
magnification, similar topics. Tables of functions of N. Over 150 diagrams, x -f- 518pp.
53/8 X 8%. S366 Paperbound $2.98

RAYLEIGH’S PRINCIPLE AND ITS APPLICATIONS TO ENGINEERING, G. Temple, W. Bickley.
Rayleigh’s principle developed to provide upper, lower estimates of true value of funda-
mental period of vibrating system, or condition of stability of elastic system. Examples,
rigorous proofs. Partial contents: Energy method of discussing vibrations, stability. Per-
turbation theory, whirling of uniform shafts. Proof, accuracy, successive approximations,
applications of Rayleigh's theory. Numerical, graphical methods. Ritz’s method. 22 figures,
ix + 156pp. 53/8 X 8. S307 Paperbound $1.50

OPTiCKS, Sir Isaac Newton. In its discussion of light, reflection, color, refraction, theories
of wave and corpuscular theories of light, this work is packed with scores of insights and
discoveries. In its precise and practical discussions of construction of optical apparatus,
contemporary understanding of phenomena, it is truly fascinating to modern scientists.
Foreword by Albert Einstein. Preface by I. B. Cohen. Harvard. 7 pages of portraits, facsimile
pages, letters, etc. cxvi -f- 414pp. 5% x 8. S205 Paperbound $2.00
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DOVER SCIENCE BOOKS
ON THE SENSATIONS OF TONE, Hermann Helmholtz. Using acoustical physics, physiology,
experiment, history of music, covers entire gamut of musical tone: relation of music
science to acoustics, physical vs. physiological acoustics, vibration, resonance, tonality,
progression of parts, etc. 33 appendixes on various aspects of sound, physics, acoustics,
music, etc. Translated by A. J. Ellis. New introduction by H. Margenau, Yale. 68 figures. 43
musical passages analyzed. Over 100 tables, xix 4- 576pp. GVs x 9V4.

8114 Clothbound $4.95

ELECTROMAGNETICS, ENGINEERING, TECHNOLOGY

INTRODUCTION TO RELAXATION METHODS, F. S. Shaw. Describes almost all manipulative re-

sources of value in solution of differential equations. Treatment is mathematical rather
than physical. Extends general computational process to include almost all branches of
applied math and physics. Approximate numerical methods are demonstrated, although high
accuracy is obtainable without undue expenditure of time. 48pp. of tables for computing
irregular star first and second derivatives, irregular star coefficients for second order
equations, for fourth order equations. “Useful. . . . exposition is clear, simple ... no
previous acquaintance with numerical methods is assumed,” Science Progress. 253 dia-

grams. 72 tables. 400pp. 5% x 8. S244 Paperbound $2.45

THE ELECTROMAGNETIC FIELD, M. Mason, W., Weaver. Used constantly by graduate engineers.
Vector methods exclusively, detailed treatment of electrostatics, expansion methods, with
tables converting any quantity into absolute electromagnetic, absolute electrostatic, prac-

tical units. Discrete charges, ponderable bodies. Maxwell field equations, etc. 416pp.
5% X 8. 8185 Paperbound $2.00

ELASTICITY, PLASTICITY AND STRUCTURE OF MATTER, R. Hoiiwink. Standard treatise on
rheological aspects of different technically important solids- crystals, resins, textiles, rubber,
clay, etc. Investigates general laws for deformations; determines divergences. Covers gen-
eral physical and mathematical aspects of plasticity, elasticity, viscosity. Detailed examina-
tion of deformations, internal structure of matter in relation to elastic, plastic behaviour,
formation of solid matter from a fluid, etc. Treats glass, asphalt, balata, proteins, baker’s
dough, others. 2nd revised, enlarged edition Extensive revised bibliography in over 500
footnotes. 214 figures, xvii 4- 368pp. 6 x 9V4. 8385 Paperbound $2.45

DESIGN AND USE OF INSTRUMENTS AND ACCURATE MECHANISM, T. N. Whitehead. For the
instrument designer, engineer; how to combine necessary mathematical Abstractions with
independent observations of actual facts. Partial contents: instruments and their parts,
theory of errors, systematic errors, probability, short period errors, erratic errors, design
precision, kinematic, semikinematic design, stiffness, planning of an instrument, human
factor, etc. 85 photos, diagrams, xii 4- 288pp. SVe x 8. 8270 Paperbound $1.95

APPLIED HYDRO- AND AEROMECHANICS, L. Prandtl, 0. G. Tietjens. Presents, for most part,

methods valuable to engineers. Flow in pipes, boundary layers, airfoil theory, entry condi-
tions, turbulent flow, boundary layer determining drag from pressure and velocity, etc.

“Will be welcomed by all students of aerodynamics,” Nature. Unabridged, unaltered. An
Engineering Society Monograph, 1934. Index. 226 figures. 28 photographic plates illustrating

flow patterns, xvi + 311pp. S^/a x 8. 8375 Paperbound $1.85

FUNDAMENTALS OF HYDRO- AND AEROMECHANICS, L. Prandtl. 0. G. Tietjens. Standard work,
based on Prandtt’s lectures at Goettingen. Wherever possible hydrodynamics theory is

referred to practical considerations In hydraulics, unifying theory and experience. Presenta-
tion extremely clear. Though primarily physical, proofs are rigorous and use vector analysis
to a great extent. An Engineering Society Monograph, 1934. “Still recommended as an
excellent introduction to this area,” Physikalische Blatter. 186 figures, xvi -4 270pp.
5% X 8. S374 Paperbound $1.85

GASEOUS CONDUCTORS: THEORY AND ENGINEERING APPLICATIONS, J. 0. Cobine. Indispensable
text, reference, to gaseous conduction phenomena, with engineering viewpoint prevailing
throughout. Studies kinetic theory of gases, ionization, emission phenomena; gas breakdown,
spark characteristics, glow, discharges; engineering applications in circuit interrupters, recti-

fiers, etc. Detailed treatment of high pressure arcs (Suits); low pressure arcs (Langmuir,
Tonks). Much more. “Well organized, clear, straightforward,” Tonks, Review of Scientific
Instruments. 83 practice problems. Over 600 figures. 58 tables, xx 4- 606pp.
5% X 8. S442 Paperbound $2.75

PHOTOELASTlCfTY: PRINCIPLES AND METHODS, H. T. Jessop, F. C. Harris. For engineer, spe-
cific problems of stress analysis. Latest time-saving methods of checking calculations in

2-dimensional design problems, new techniques for stresses in 3 dimensions, lucid descrip-
tion of optical systems used in practical photoelectricity. Useful suggestions, hints based
on on-the-job experience included. Partial contents: strain, stress-strain relations, circular
disc under thrust along diameter, rectangular block with square hold under vertical thrust,
simply supported rectangular beam under central concentrated load, etc. Theory held to
minimum, no advanced mathematical training needed. 164 illustrations, viii + 184pp.

X 9V4. 8137 Clothbound $3.75
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CATALOGUE OF
MICROWAVE TRANSMISSION DESIGN DATA, T. Moreno. Originally classified, now rewritten.
enlarged (14 new chapters) under auspices of Sperry Corp. Of immediate value or reference
use to radio engineers, systems designers, applied physicists, etc. Ordinary transmission
line theory; attenuation; parameters of coaxial lines; flexible cables; tuneable wave guide
impedance transformers; effects of temperature, humidity; much more. "Packed with informa-
tion . . . theoretical discussions are directly related to practical questions," U. of Royal
Naval Scientific Service. Tables ef dielectrics, flexible cable, etc. ix + 248pp. 5% x 8.

S549 Paperbound $1.50

THE THEORY OF THE PROPERTIES OF METALS AND ALLOYS, H. F. Mott, H. Jones. Quantum
methods develop mathematical models showing interrelationship of fundamental chemical
phenomena wtih crystal structure, electrical, optical properties, etc. Examines electron
motion in applied field, cohesion, heat capacity, refraction, noble metals, transition and
di-valent metals, etc. "Exposition is as clear . . , mathematical treatment as simple and
reliable as we have become used to expect of . . . Prof. Mott," Nature. 138 figures, xiii +
320pp. 53/fe X 8. S456 Paperbound $1.85

THE MEASUREMENT OF POWER SPECTRA FROM THE POINT OF VIEW OF COMMUNICATIONS
ENGINEERING, R. B. Blackman, J. W. Tukey. Pathfinding work reprinted from "Bell System
Technical Journal." Various ways of getting practically useful answers in power spectra
measurement, using results from both transmission and statistical estimation theory. Treats;
Autocovariance, Functions and Power Spectra, Distortion, Heterodyne Filtering, Smoothing,
Decimation Procedures, Transversal Filtering, much more. Appendix reviews fundamental
Fourier techniques. Index of notation. Glossary of terms. 24 figures. 12 tables. 192pp.
55/8 X 85/8. S507 Paperbound $1.85

TREATISE ON ELECTRICITY AND MAGNETISM, James Clerk Maxwell. For more than 80 years
a seemingly inexhaustible source of leads for physicists, mathematicians, engineers. Total
of 1082pp. on such topics as Measurement of Quantities, Electrostatics, Elementary Mathe-
matical Theory of Electricity, Electrical Work and Energy in a System of Conductors, Gen-
eral Theorems, Theory of Electrical Images, Electrolysis, Conduction, Polarization, Dielectrics,
Resistance, much more. "The greatest mathematical physicist since Newton," Sir James
Jeans. 3rd edition. 107 figures, 21 plates. 1082pp. 53/8 x 8. S186 Clothbound $4.95

CHEMISTRY AND PHYSICAL CHEMISTRY

THE PHASE RULE AND ITS APPLICATIDNS, Alexander Findlay. Covers chemical phenomena of
1 to 4 multiple component systems, the "standard work on the subject" (Nature). Completely
revised, brought up to date by A. N. Campbell, N. 0. Smith. New material on binary, tertiary
liquid equilibria, solid solutions in ternary systems, quinary systems of salts, water, etc.

Completely revised to triangular coordinates in ternary systems, clarified graphic 1 representa-
tion, solid models, etc. 9th revised edition. 236 figures. 505 footnotes, mostly bibliographic,

xii -f 449pp. 53/8 X 8. S92 Paperbound $2.45

DYNAMICAL THEORY OF GASES, James Jeans. Divided into mathematical, physical chapters for

convenience of those not expert in mathematics. Discusses mathematical theory of gas
in steady state, thermodynamics, Boizmann, Maxwell, kinetic theory, quantum theory, expo-
nentials, etc. "One of the classics of scientific writing ... as lucid and comprehensive
an exposition of the kinetic theory as has ever been written," J. of Institute of Engineers.
4th enlarged edition, with new material on quantum theory, quantum dynamics, etc. 28 figures.

444pp. 61/8 X 9V4. SI 36 Paperbound $2.45

POLAR MOLECULES, Pieter Debye. Nobel laureate offers complete guide to fundamental
electrostatic field relations, polarizability, molecular structure. Partial contents: electric

intensity, displacement, force, polarization by orientation, molar polarization, molar refrac-

tion, halogen-hydrides, polar liquids, ionic saturation, dielectric constant, etc. Special
chapter considers quantum theory. "Clear and concise . . . coordination of experimental
results with theory will be readily appreciated," Electronics Industries. 172pp. 53/8 x 8.

563 Clothbound $3.50
564 Paperbound $1.50

ATOMIC SPECTRA AND ATOMIC STRUCTURE, G. Herzberg. Excellent general survey for chem-
ists, physicists specializing in other fields. Partial contents: simplest line spectra, elements
of atomic theory; multiple structure of line spectra, electron spin; building-up principle,

periodic system of elements; finer details of atomic spectra; hyperfine structure of spectral
lines; some experimental results and applications. 80 figures. 20 tables, xiii + 257pp.
5% x 8. S115 Paperbound $1.95

TREATISE ON THERMODYNAMICS, Max Planck. Classic based on his original papers. Brilliant

concepts of Nobel laureate make no assumptions regarding nature of heat, rejects earlier

approaches of Helmholtz, Maxwell, to offer uniform point of view for entire field. Seminal
work by founder of quantum theory, deducing new physical, chemical laws. A standard
text, an excellent introduction to field for students with knowledge of elementary chemistry,
physics, calculus. 3rd English edition, xvi -F 297pp. 53/8 x 8. S219 Paperbound $1.75
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DOVER SCIENCE BOOKS
KINETIC THEORY OF LIQUIDS, J. Frenkel. Regards kinetic theory of liquids as generalization,
extension of theory of solid bodies, covers ail types of arrangements of solids; thermal
displacements of atoms; interstitial atoms, lons; orientational, rotational motion of mole-
cules; transition between states of matter. Mathematical theory developed close to physical
subject matter. “Discussed in a simple yet deeply penetrating fashion . . . will serve as
seeds for a great many basic and applied developments in chemistry,’’ J. of the Amer.
Chemical Soc, 216 bibliographical footnotes. 55 figures, xi + 485pp. SVa x 8.

594 Clothbound ^3.95
595 Paperbound $2.45

ASTRONOMY

OUT OF THE SKY, H. H. Nininger. Non-technical, comprehensive introduction to “meteontics"—science concerned with arrival of matter from outer space. By one of world's experts
on meteorites, this book defines meteors and meteorites, studies fireball clusters and
processions, meteorite composition, size, distribution, showers, explosions, origins, much
more, vni + 336pp. S^/e x 8. T519 Paperbound $1.85

AN INTRODUCTION TO THE STUDY OF STELLAR STRUCTURE, S. Chandrasekhar. Outstanding
treatise on stellar dynamics by one of greatest astro-physicists. Examines relationship be-
tween loss of energy, mass, and radius of stars in steady state. Discusses thermodynamic
laws from Caratheodory’s axiomatic standpoint, adiabatic, polytropic laws; work of Ritter,

Emden, Kelvin, etc.; Stroemgren envelopes as starter for theory of gaseous stars; Gibbs
statistical mechanics (quantum); degenerate stellar configuration, theory of white dwarfs;
etc. “Highest level of scientific merit,” Bulletin. Amer. Math. Soc. 33 figures. 509pp.
53/^ X 8. S413 Paperbound $2.75

LES mIthOOES NOVELLES DE la M^ANIQUE cIlESTE, H. Poincar6. Complete French text
of one of Poincare’s most important works. Revolutionized celestial mechanics: first use of
integral invariants, first major application of linear differential equations, study of periodic
orbits, lunar motion and Jupiter’s satellites, three body problem, and many other important
topics. “Started a new era . . . so extremely modern that even today few have mastered
his weapons,” E. T. Bell. 3 volumes. Total 1282pp. GVs x 91/4 .

Vol. 1 S401 Paperbound $2.75
Vol. 2 S402 Paperbound $2.75
Vol. 3 S403 Paperbound $2.75

The set $7.50

THE REALM OF THE NEBULAE, E. Hubble. One of the great astronomers of our time presents
his concept of “island universes,” and describes its effect on astronomy. Covers velocity-

distance relation; classification, nature, distances, general field of nebulae; cosmological
theories; nebulae in the neighborhood of the Milky way, etc. 39 photos, including velocity-

distance relations shown by spectrum comparison. “One of the most progressive lines

of astronomical research,” The Times, London, New Introduction by A. Sandage. 55 illustra-

tions. xxiv -f 201pp. 53/8 X 8. S455 Paperbound $1.50

HOW TO MAKE A TELESCOPE, Jean Texereau. Design, build an f/6 or f/8 Newtonian type
reflecting telescope, with altazimuth Couder mounting, suitable for planetary, lunar, and
stellar observation. Covers every operation step-by-step, every piece of equipment. Dis-

cusses basic principles of geometric and physical optics (unnecessary to construction),
comparative merits of reflectors, refractors. A thorough discussion of eyepieces, finders,

grinding, installation, testing, etc. 241 figures, 38 photos, show almost every operation
and tool. Potential errors are anticipated. Foreword by A. Couder. Sources of supply, xiii

+ 191pp. 6V4 X 10. T464 Clothbound $3.50

BIOLOGICAL SCIENCES

THE BIOLOGY OF THE AMPHIBIA, G. K. Noble, Late Curator of Herpetology at Am. Mus. of
Nat. Hist. Probably most used text on amphibia, most comprehensive, clear, detailed. 19
chapters, 85 page supplement: development; heredity,- life history; speciation; adaptation;
sex, integument, respiratory, circulatory, digestive, muscular, nervous systems; instinct,

intelligence, habits, economic value classification, environment relationships, etc. “Nothing
comparable to it” C. H. Pope, curator of Amphibia, Chicago Mus. of Nat. Hist. 1047 item
bibliography. 174 illustrations. 600pp. 5% x 8. S206 Paperbound $2.98

THE ORIGIN OF LIFE, A. I. Oparin. A classic of biology. This is the first modern statement
of theory of gradual evolution of life from nitrocarbon compounds. A brand-new evaluation
of Oparin’s theory in light of later research, by Dr. S. Margulis, University of Nebraska.
XXV + 270pp. 5% X 8 . S213 Paperbound $ 1.75
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CATALOGUE OF
THE BIOLOGY OF THE LABORATORY MOUSE, edited By G. D. Snell. Prepared in 1941 by staff
of Roscoe B. Jackson Memorial Laboratory, still the standard treatise on the mouse,
assembling enormous amount of material for which otherwise you spend hours of research.
Embryology, reproduction, histology, spontaneous neoplasms, gene and chromosomes muta-
tions, genetics of spontaneous tumor formations, of tumor transplantation, endocrine secre-
tion and tumor formation, milk influence and tumor formation, inbred, hybrid animals,
parasites, infectious diseases, care and recording. “A wealth of Information of vital con-
cern. . . . recommended to all who could use a book on such a subject,” Nature. Classified
bibliography of 1122 items. 172 figures. Including 128 photos, ix + 497pp. eVa x 9V4.

S248 Clothbound $6.00

THE TRAVELS OF WILLIAM BARTRAM. edited by Mark Van Doran. Famous source-book of
American anthropology, natural history, geography, is record kept by Bartram m 1770’s on
travels through wilderness of Florida, Georgia, Carolinas. Containing accurate, beautiful
descriptions of Indians, settlers, fauna, flora, it is one of finest pieces of Americana
ever written. 13 original illustrations. 448pp. 53/fe x 8. T13 Paperbound $2.00

BEHAVIOUR AND SOCIAL LIFE OF THE HONEYBEE. Ronald Ribbands. Outstanding scientific

study; a compendium of practically everything known of social life of honeybee. Stresses
behaviour of individual bees in field, hive. Extends von Frisch’s experiments on communi-
cation among bees. Covers perception of temperature, gravity, distance, vibration; sound
production; glands; structural differences; wax production; temperature regulation; recogni-
tion, communication; drifting, mating behaviour, other highly interesting topics. “This
valuable work is sure of a cordial reception by laymen, beekeepers and scientists,” Prof.

Karl von Frisch, Brit. J. of Animal Behaviour. Bibliography of 690 references. 127 diagrams,
graphs, sections of bee anatomy, fine photographs. 352pp. S410 Clothbound $4.50

ELEMENTS OF MATHEMATICAL BIOLOGY. A. J. Lotka. Pioneer classic, 1st major attempt to
apply modern mathematical techniques on large scale to phenomena of biology, biochem-
istry, psychology, ecology, similar life sciences. Partial contents: Statistical meaning of

irreversibility; Evolution as redistribution; Equations of kinetics of evolving systems; Chem-
ical, inter-species equilibrium; parameters of state; Energy transformers of nature, etc.

Can be read with profit by even those having no advanced math; unsurpassed as study-
reference. Formerly titled “Elements of Physical Biology.” 72 figures, xxx 4- 460pp. S^/e x 8.

S346 Paperbound $2.45

TREES OF THE EASTERN AND CENTRAL UNITED STATES AND CANADA, W. M. Harlow. Serious
middle-level text covering more than 140 native trees, important escapes, with informa-
tion on general appearance, growth habit, leaf forms, flowers, fruit, bark, commercial use,
distribution, habitat, woodlore, etc. Keys within text enable you to locate various species
easily, to know which have edible fruit, much more useful, interesting information. “Well
illustrated to make identification very easy,” Standard Cat. for Public Libraries. Over 600
photographs, figures, xiii -f 288pp. 5Vb x 6V2. T395 Paperbound $1.35

FRUIT KEY AND TWIG KEY TO TREES AND SHRUBS (Fruit key to Northeastern Trees, Twig key
to Deciduous Woody Plants of Eastern North America), W. M. Harlow. Only guides with photo-
graphs of every twig, fruit described. Especially valuable to novice. Fruit key (both deciduous
trees, evergreens) has introduction on seeding, organs involved, types, habits. Twig key
introduction treats growth, morphology. In keys proper, identification is almost automatic.
Exceptional work, widely used in university courses, especially useful for identification in

winter, or from fruit or seed only. Over 350 photos, up to 3 times natural size. Index of

common, scientific names, in each key. xvii -f 125pp. SYe x 83/%. T511 Paperbound $1.25

INSECT LIFE AND INSECT NATURAL HISTORY, S. W, Frost. Unusual for emphasizing habits, social
life, ecological relations of insects rather than more academic aspects of classification,
morphology. Prof. Frost’s enthusiasm and knowledge are everywhere evident as he discusses
insect associations, specialized habits like leaf-rolling, leaf mining, case-making, the gall

Insects, boring insects, etc. Examines matters not usually covered in general works: insects
as human food; insect music, musicians-. Insect response to radio waves-, use of insects in

art, literature. “Distinctly different, possesses an Individuality all its own,” Journal of
Forestry. Over 700 illustrations. Extensive bibliography, x 4- 524pp. 5% x 8.

T519 Paperbound $2.49

A WAY OF LIFE, AND OTHER SELECTED WRITINGS, Sir William Osier. Physician, humanist.
Osier discusses brilliantly Thomas Browne, Gui Patin, Robert Burton, Michael Servetus,
William Beaumont, Laennec. Includes such favorite writing as title essay, “The Old Human-
ities and the New Science,” “Books and Men,” “The Student Life,” 6 more of his best
discussions of philosophy, literature, religion. “The sweep of his mind and interests em-
braced every phase of human activity,” G. L. Keynes. 5 photographs. Introduction by G. L.

Keynes, M.D., F.R.C.S. xx 4- 278pp. 5% x 8. T488 Paperbound $1.50

THE GENETICAL THEORY OF NATURAL SELECTION, R. A. Fisher. 2nd revised edition of vital

reviewing of Darwin’s Selection Theory in terms of particulate inheritance, by one of

greatest authorities on experimental, theoretical genetics. Theory stated in mathematical
form. Special features of particulate inheritance are examined: evolution of dominance, main-
tenance of specific variability, mimicry, sexual selection, etc. 5 chapters on man’s special
circumstances as a social animal. 16 photographs, x 4- 310pp. 53/8 x 8.

S466 Paperbound $1.85
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DOVER SCIENCE BOOKS
THE AUTOBIOGRAPHY OF CHARLES DARWIN, AND SELECTED LETTERS, edited by Francis
Darwin. Darwin’s own record of early life; historic voyage aboard “Beagle;” furore surround-
ing evolution, his replies; reminiscences of his son. Letters to Henslow, Lyell, Hooker,
Huxley, Wallace, Kingsley, etc,, and thoughts on religion, vivisection. We see how he revo-
lutionized geology with concepts of ocean subsidence; how his great books on variation
of plants and animals, primitive man, expression of emotion among primates, plant fertiliza-

tion, carnivorous plants, protective coloration, etc., came into being. 365pp. 5% x 8.

T479 Paperbound $1.65

ANIMALS IN MOTION, Eadweard Muybridge. Largest, most comprehensive selection of Muy-
bridge's famous action photos of animals, from his “Animal Locomotion.” 3919 high-speed
shots of 34 different animals, birds, in 123 types of action; horses, mules, oxen, pigs,

goats, camels, elephants, dogs, cats guanacos, sloths, lions, tigers, jaguars, raccoons,
baboons, deer, elk, gnus, kangaroos, many others, walking, running, flying, leaping. Horse
alone in over 40 ways. Photos taken against ruled backgrounds; most actions taken from
3 angles at once: 90°, 60°, rear. Most plates original size. Of considerable interest to
scientists as biology classic, records of actual facts of natural history, physiology. “Really
marvelous series of plates,” Nature. “Monumental work,” Waldemar Kaempffert. Edited by
L. S. Brown, 74 page introduction on mechanics of motion. 340pp. of plates. 3919 photo-
graphs. 416pp. Deluxe binding, paper. (Weight: 41/2 lbs.) 7i/8 x lOVe.

T203 Clothbound $10.00

THE HUMAN FIGURE IN MOTION, Eadweard Muybridge. New edition of great classic in history
of science and photography, largest selection ever made from original Muybridge photos of

human action-. 4789 photographs, illustrating 163 types of motion, walking, running, lifting,

etc. in time-exposure sequence photos at speeds up to l/6000th of a second. Men, women,
children, mostly undraped, showing bone, muscle positions against ruled backgrounds,
mostly taken at 3 angles at once. Not only was this a great work of photography, acclaimed
by contemporary critics as work of genius, but it was also a gieat 19th century landmark
in biological research. Historical introduction by Prof. Robert Taft, U. of Kansas. Plates
original size, full of detail. Over 500 action strips. 407pp. 7% x lOVe. Deluxe edition.

7204 Clothbound $10.00

AN INTRODUCTION TO THE STUDY OF EXPERIMENTAL MEDICINE, Claude Bernard. 90-year old
classic of medical science, only major work of Bernard available in English, records his

efforts to transform physiology into exact science. Principles of scientific research illus-

trated by specified case histones from his work; roles of chance, error, preliminary false

conclusion, in leading eventually to scientific truth; use of hypothesis. Much of modern
application of mathematics to biology rests on foundation set down here. “The presentation
IS polished . . . reading is easy,” Revue des questions scientifiques. New foreword by Prof.

I. B. Cohen, Harvard U. xxv -f- 266pp. S^/e x 8. T400 Paperbound $1.50

STUDIES ON THE STRUCTURE AND DEVELOPMENT OF VERTEBRATES, E. S. Goodrich. Definitive
study by greatest modern comparative anatomist. Exhaustive morphological, phylogenetic
expositions of skeleton, fins, limbs, skeletal visceral arches, labial cartilages, visceral
clefts, gills, vascular, respiratory, excretory, periphal nervous systems, etc., from fish to
higher mammals. “For many a day this will certainly be the standard textbook on Vertebrate
Morphology in the English language,” Journal of Anatomy. 754 illustrations. 69 page bio-

graphical study by C. C. Hardy. Bibliography of 1186 references. Two volumes, total 906pp.
5% X 8. Two vol. set S449, 450 Paperbound $5.00

EARTH SCIENCES

THE EVOLUTION OF IGNEOUS BOOKS, N. L. Bowen. Invaluable serious introduction applies
techniques of physics, chemistry to explain igneous rock diversity in terms of chemical
composition, fractional crystallization. Discusses liquid immiscibility in silicate magmas,
crystal sorting, liquid lines of descent, fractional resorption of complex minerals, petrogen,
etc. Of prime importance to geologists, mining engineers; physicists, chemists working with
high temperature, pressures. “Most important,” Times, London. 263 bibliographic notes.
82 figures, xviii -f 334pp. SYs x 8. S311 Paperbound $1.85

GEOGRAPHICAL ESSAYS, M. Davis. Modern geography, geomorphology rest on fundamental
work of this scientist. 26 famous essays present most important theories, field researches.
Partial contents: Geographical Cycle; Plains of Marine, Subaerial Denudation; The Peneplain;
Rivers, Valleys of Pennsylvania; Outline of Cape Cod; Sculpture of Mountains by Glaciers;
etc. “Long the leader and guide,” Economic GeograjJhy. “Part of the very texture of geog-
raphy . . . models of clear thought,” Geographic Review. 130 figures. vi -f 777pp. 5% x 8.

S383 Paperbound $2.95

URANIUM PROSPECTING, H. L. Barnes. For immediate practical use, professional geologist
considers uranium ores, geological occurrences, field conditions, all aspects of highly
profitable occupation. “Helpful information . . . easy-to-use, easy-to-find style,” Geotimes.
X + 117pp. 5% X 8. T309 Paperbound $1.00
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CATALOGUE OF
D£ RE METALLiCA, Georgius Agricola. 400 year oid classic translated, annotated by former
President Herbert Hoover. 1st scientific study of mineralogy, mining, for over 200 years
after its appearance in 1556 the standard treatise. 12 books, exhaustively annotated, discuss
history of mining, selection of sites, types of deposits, making pits, shafts, ventilating,

pumps, crushing machinery; assaying, smelting, refining metals; also salt alum, nitre, glass
making. Definitive edition, with all 289 16th century woodcuts of original. Biographical,
historical introductions. Bibliography, survey of ancient authors. Indexes, A fascinating book
for anyone interested m art, history of science, geology, etc. Deluxe Edition. 289 illustra-

tions. 672pp. 63/4 X 10. Library cloth. S6 Clothbound $10.00

INTERNAL CONSTITUTION OF THE EARTH, edited by Beno Gutenberg. Prepared for National
Research Council, this is a complete, thorough coverage of earth origins, continent forma-
tion, nature and behaviour of earth’s core, petrology of crust, cooling forces in core,
seismic and earthquake material, gravity, elastic constants, strain chaiacteristics, similar
topics. “One is filled with admiration ... a high standard . . . there is no reader who
Will not learn something from this book,” London, Edinburgh, Dublin, Philosophic Magazine.
Largest Bibliography in print: 1127 classified items. Table of constants. 43 diagrams.
439pp. 6Vb X 9V4. S414 Paperbouncf $2.45

THE BIRTH AND DEVELOPMENT OF THE GEOLOGICAL SCIENCES, F. D. Adams. Most thorough
history of earth sciences ever written. Geological thought from earliest times to end of

19th century, covering over 300 early thinkers and systems; fossils and their explanation,
vulcanists vs. neptunists, figured stones and paleontology, generation of stones, dozens of
similar topics. 91 illustrations, including Medieval, Renaissance woodcuts, etc. 632 footnotes,
mostly bibliographical. 511pp. S-Ve x 8. T5 Paperbound $2.00

HYDROLOGY, edited by 0. E. Meinzer, prepared for the National Research Council. Detailed,
complete reference library on precipitation, evaporation, snow, snow surveying, glaciers,

lakes, infiltration, soil moisture, ground water, runoff, drought, physical changes produced
by water hydrology of limestone terranes, etc. Practical in application, especially valuable
for engineers. 24 experts have created “the most up-to-date, most complete treatment of

the subject,’’ Am. Assoc, of Petroleum Geologists. 165 illustrations, xi + 712pp. GVa x 9V4.
S191 Paperbound $2.95

LANGUAGE AND TRAVEL AIDS FOR SCIENTISTS

SAY IT language phrase books

“SAY IT” in the foreign language of your choice! We have sold over Vz million copies of

these popular, useful language books. They will not make you an expert linguist overnight,
but they do cover most practical matters of everyday life abroad.

Over 1000 useful phrases, expressions, additional variants, substitutions.

Modern! Useful! Hundreds of phrases not available in other texts: “Nylon,” “air-condi-
tioned,” etc.

The ONLY inexpensive phrase book completely indexed. Everything is available at a flip

of your finger, ready to use.

Prepared by native linguists, travel experts.

Based on years of travel experience abroad.

May be used by itself, or to supplement any other text or course. Provides a living ele-

ment. Used by many colleges, institutions: Hunter College; Barnard College; Army Ordinance
School, Aberdeen; etc.

Available, 1 book per language:

Danish (T818) 750
Dutch (T817) 750
English (for German-speaking people) (T801) 600
English (for Italian-speaking people) (T816} 600
English (for Spanish-speaking people) (T802) 600
Esperanto (T820) 750
French (T803) 600
German (T804) 600
Modem Greek (T813) 750
Hebrew (T805) 600

Italian (T806) 600
Japanese (T807) 750
Norwegian (T814) 750
Russian (T810) 750
Spanish (T811} 600
Turkish (T821) 750
Yiddish (T815) 750
Swedish (T812) 750
Polish (T808) 750
Portuguese (T809) 750
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DOVER SCIENCE BOOKS
MONEY CONVERTER AND TIPPING GUIDE FOR EUROPEAN TRAVEL, C. Vomacka. Purse-size hand-
book crammed with information on currency regulations, tipping for every European country,
including Israel, Turkey, Czechoslovakia, Rumania, Egypt, Russia, Poland. Telephone, postal
rates; duty-free imports, passports, visas, health certificates; foreign clothing sizes; weather
tables. What, when to tip. 5th year of publication. 128pp. 31/2 x 5V4. T260 Paperbound 60(

NEW RUSSiAN-ENGLiSH AND ENGLISH-RUSSIAN DICTIONARY, M. A. O’Brien. Unusually com-
prehensive guide to reading, speaking, writing Russian, for both advanced, beginning stu-

dents. Over 70,000 entries in new orthography, full information on accentuation, grammatical
classifications. Shades of meaning, idiomatic uses, colloquialisms, tables of irregular verbs
for both languages. Individual entries Indicate stems, transitiveness, perfective, imper-
fective aspects, conjugation, sound changes, accent, etc. Includes pronunciation instruction.

Used at Harvard, Yale, Cornell, etc. 738pp. 53/fe x 8. T208 Paperbound ^2.00

PHRASE AND SENTENCE DICTIONARY OF SPOKEN RUSSIAN, English-Russian, Russtan-English.
Based on phrases, complete sentences, not isolated words—recognized as one of best
methods of learning idiomatic speech. Over 11,500 entries, indexed by single words, over
32,000 English, Russian sentences, phrases, in Immediately useable form. Shows accent
changes in conjugation, declension; irregular forms listed both alphabetically, under main
form of word. 15,000 word introduction covers Russian sounds, writing, grammar, syntax.

15 page appendix of geographical names, money, important signs, given names, foods,

special Soviet terms, etc. Originally published as U.S. Gov’t Manual TM 30-944. iv + 573pp.
5% X 8. T496 Paperbound $2.75

PHRASE AND SENTENCE DICTIONARY OF SPOKEN SPANISH, Spanish-English, English-Spanish.

Compiled from spoken Spanish, based on phrases, complete sentences rather than isolated

words—not an ordinary dictionary. Over 16,000 entries indexed under single words, both
Castilian, Latin-American. Language in immediately useable form. 25 page introduction
provides rapid survey of sounds, grammar, syntax, full consideration of irregular verbs.

Especially apt in modern treatment of phrases, structure. 17 page glossary gives translations

of geographical names, money values, numbers, national holidays, important street signs,

useful expressions of high frequency, plus unique 7 page glossary of Spanish, Spanish-
American foods. Originally published as U.S. Gov’t Manual TM 30-900. iv -f 513pp. 5% x 8%.

T495 Paperbound $1.75

SAY IT CORRECTLY language record sets

The best inexpensive pronunciation aids on the market. Spoken by native linguists asso-
ciated with major American universities, each record contains:

14 minutes of speech— 12 minutes of normal, relatively slow speech, 2 minutes of

normal conversational speed.

120 basic phrases, sentences, covering nearly every aspect of everyday life, travel

—

introducing yourself, travel in autos, buses, taxis, etc., walking, sightseeing, hotels,
restaurants, money, shopping, etc.

32 page booklet containing everything on record plus English translations easy-to-follow
phonetic guide.

Clear, high-fidelity recordings.

Unique bracketing systems, selection of basic sentences enabling you to expand use of

SAY IT CORRECTLY records with a dictionary, to fit thousands of additional situations.

Use this record to supplement any course or text. All sounds in each language illustrated

perfectly—imitate speaker in pause which follows each foreign phrase in slow section,
and be amazed at increased ease, accuracy of pronounciation. Available, one language per
record for

French
Italian

Japanese
Polish

Spanish
Dutch
Russian
Swedish

German
Modern Greek
Portuguese
Hebrew

Engiish (for German-speaking people) English (for Spanish-speaking people)

7" (33 1/3 rpm) record, album, booklet. $1.00 each.

SPEAK MY LANGUAGE; SPANISH FOR YOUNG BEGINNERS, M. Ahiman, Z. Gilbert. Records pro-
vide one of the best, most entertaining methods of introducing a foreign language to
children. Within framework of tram trip from Portugal to Spain, an English-speaking child
is introduced to Spanish by native companion. (Adapted from successful radio program of

N.Y. State Educational Department.) A dozen different categories of expressions, including
greeting, numbers, time, weather, food, clothes, family members, etc. Drill Is combined
with poetry and contextual use. Authentic background music. Accompanying book enables
a reader to follow records, includes vocabulary of over 350 recorded expressions. Two
10'' 33 1/3 records, total of 40 minutes. Book. 40 illustrations. 69pp. 5V4 x IOV2 .

T890 The set $4.95
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CATALOGUE OF

LISTEN & LEARN language record sets

LISTEN & LEARN is the only extensive language record course designed especially to meet
your travel and everyday needs. Separate sets for each language, each containing three 33 1/3
rpm long-playing records— 1 1/2 hours of recorded speech by eminent native speakers
who are professors at Columbia, New York U., Queens College.

Check the following features found only in LISTEN & LEARN:

Dual language recording. 812 selected phrases, sentences, over 3200 words, spoken first

in English, then foreign equivalent. Pause after each foreign phrase allows time to

repeat expression.

128-page manual (196 page for Russian)—everything on records, plus simple transcrip-
tion. Indexed for convenience. Only set on the market completely Indexed.

Practical. No time wasted on material you can find in any grammar. No dead words.
Covers central core material with phrase approach. Ideal for person with limited time.
Living, modern expressions, not found in other courses. Hygienic products, modern
equipment, shopping, “air-conditioned,” etc. Everything is immediately useable.

High-fidelity recording, equal in clarity to any costing up to $6 per record.

“Excellent . . . impress me as being among the very best on the market," Prof. Mario
Pei, Dept, of Romance Languages, Columbia U. “Inexpensive and well done . . . ideal

present,” Chicago Sunday Tribune. “More genuinely helpful than anything of its kind,”
Sidney Clark, well-known author of “All the Best” travel books.

UNCONDITIONAL GUARANTEE. Try LISTEN & LEARN, then return it within 10 days for full

refund, if you are not satisfied. It Is guaranteed after you actually use it.

6 modern languages—FRENCH, SPANISH, GERMAN, ITALIAN, RUSSIAN, or JAPANESE one
language to each set of 3 records (33 1/3 rpm). 128 page manual. Album.

Spanish the set $4.95 German the set $4.95 Japanese* the set $5.95
French the set $4.95 Italian the set $4.95 Russian the set $5.95
* Available Oct. 1959.

TRUBNER COLLOQUIAL SERIES

These unusual books are members of the famous Triibner series of colloquial manuals. They
have been written to provide adults with a sound colloquial knowledge of a foreign lan-

guage, and are suited for either class use or self-study. Each book is a complete course in

itself, with progressive, easy to follow lessons. Phonetics, grammar, and syntax are covered,
while hundreds of phrases and idioms, reading texts, exercises, and vocabulary are included.
These books are unusual in being neither skimpy nor overdetailed in grammatical matters,
and m presenting up-to-date, colloquial, and practical phrase material. Bilingual presentation
is stressed, to make thorough self-study easier for the reader.

COLLOQUIAL HINDUSTANI, A. H. Harley, formerly Nizam's Reader in Urdu, U. of London. 30
pages on phonetics and scripts (devanagari & Arabic-Persian) are followed by 29 lessons,
including material on English and Arabic-Persian influences. Key to all exercises. Vocabufary.
5 X 7V2. 147pp. Clothbound $1.75

COLLOQUIAL ARABIC, OeLacy O’Leary. Foremost Islamic scholar covers language of Egypt,
Syria, Palestine, & Northern Arabia. Extremely clear coverage of complex Arabic verbs & noun
plurals; also cultural aspects of language. Vocabulary, xviii + 192pp. 5 x JVz.

Clothbound $1.75

COLLOQUIAL GERMAN, P. F. Ooring. intensive thorough coverage of grammar in easily-followed
form. Excellent for brush-up, with hundreds of colloquial phrases. 34 pages of bilingual
texts. 224pp. 5 x 7V2. Clothbound $1.75

COLLOQUIAL SPANISH, W. R. Patterson. Castilian grammar and colloquial language, loaded
with bilingual phrases and colloquialisms. Excellent for review or self-study. 164pp. 5 x IVi.

Clothbound $1.75

COLLOQUIAL FRENCH, W. R. Patterson. 16th revised edition of this extremely popular manual.
Grammar explained with model clarity, and hundreds of useful expressions and phrases-,
exercises, reading texts, etc. Appendixes of new and useful words and phrases. 223pp.
5 X 7V2. Clothbound $1.75
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DOVWR SClEN^l^

COUOauiAL PERSIAN, L. K EHwttrWmMI. B«$1 Introduction to modern PersM, With 90 page
grammatical section followed by ebnversationSg 35 page vocabulary. I39pp. Ofethbound $1.79

COLLOQUIAL CZECH, J Schwarz, former headmaster of Lingua Institute, Prague Full easily
followed coverage of grammar hundreds of immediately useable phrases, texts Perhaps the
best Czech grammar in print An absolutely successful textbook,” JOURNAL OF CZECHO-
SLOVAK FORCES IN GREAT BRITAIN 252pp 5 x 7V2 Clothbound $2.50

COLLOQUIAL RUMANIAN, G Nandris, Professor of University of London Extremely thorough
coverage of phonetics, grammar, syntax, also included 70 page reader, and 70 page vocabulary.
Probably the best grammar for this increasingly important language 340pp 5 x 7V2

Clothbound $2.50

COLLOQUIAL ITALIAN, A. L. Hayward. Excellent self study course in grammar, vocabulary,
idioms, and reading Easy progressive lessons will give a good working knowledge of ftalian

m the shortest possible time 5 x 7V2 Clothbound $1.75

MISCELLANEOUS

TREASURY OF THE WORLD’S COINS, Fred Reinfeld. Finest general introduction to numis-
matics non technical, thorough, always fascinating Coins of Greece, Rome, modern coun-
tries of every continent, primitive societies, such oddities as 200 lb stone money of Yap,
nail coinage of New England, all mirror man’s economy, customs, religion, politics, philos-
ophy, art Entertaining, absorbing study, novel view of history Over 750 illustrations.
Table of value of coins illustrated List of U S com clubs. 224pp 6V2 x 91/4

T433 Paperbound $1.75

ILLUSIONS AND DELUSIONS OF THE SUPERNATURAL AND THE OCCULT, D. H. Rawciiffe. Ra-
tionally examines hundreds of persistent delusions including witchcraft, trances, mental
healing, peyotl, poltergeists, stigmata, lycanthropy, live burial, auras, Indian rope trick,

spiritualism, dowsing, telepathy, ghosts, ESP, etc Explains, exposes mental, physical de-
ceptions involved, rraking this not only an expose of supernatural phenomena, but a valuable
exposition of characteristic types of abnormal psychology Originally “The Psychology of
the Occult.” Introduction by Julian Huxley 14 illustrations 551pp SYe x 8

T503 Paperbound $2.00

HOAXES, C. D. MacDougail. Shows how art, science, history, journalism can be perverted
for private purposes Hours of delightful entertainment, a work of scholarly value, often
shocking. Examines nonsense news, Cardiff giant, Shakespeare forgeries, Loch Ness monster,
biblical frauds, political schemes, literary hoaxers like Chatterton, Ossian, disumbrationist
school of painting, lady in black at Valentino’s tomb, over 250 others Will probably reveal
truth about few things you’ve believed, will help you spot more easily the editorial

“gander” or planted publicity release “A stupendous collection . and shrewd analysis,”
New Yorker New revised edition 54 photographs 320pp SVe x 8 T465 Paperbound $1.75

YOGA: A SCIENTIFIC EVALUATION, Kovoor T. Behanan. Book that for first t^me gave Western
readers a sane, scientific explanation, analysis of yoga Author draws on laboratory

experiments, personal records of year as disciple of yoga, to investigate yoga psychology,
physiology, “supernatural” phenomena, ability to plumb deepest human powers. In this

study under auspices of Yale University Institute of Human Relations, strictest principles

of physiological, psychological inquiry are followed Foreword by W A Miles Yale University.

17 photographs, xx -f 270pp SYa x 8. T505 Paperbound $1.65

Write for free catalogs!

Indicate your field of interest. Dover publishes books on physics, earth
sciences, mathematics, enghiecring, chemistry, astronomy, avthropoU
ogy, biology, psychology, philosophy, religion, history, literature, math-
ematical recreations, languages, crafts, art, graphic aids, etc.

Write to Dept, catr

Dover Publications, Inc,

Science B 180 Varick St,, N, Y, IJ^, N, Y,
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