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PREFACE 

This is a textbook on applications of the liaplace transforma¬ 
tion. The aj)plications are chiefly to problems in eiipneering 
and physics that- involve differential ecpiations, with emphasis on 

boundary value probkiins in partial differential eciuations. 
Jn partial diffcirent-ial eciuations the mc^thod of usinj*; the Tjaplace 

transformation, which is the oj)crational method, and the more 

classical one of usin^ Fourier series supi)lemcnt one another. 
Thus this book is a companion volume to the author’s earlier 
book entitled “Fouric'r 8(‘ries and Boundary \'alue Problems.” 

No ])r(‘vious preparation in th(^ subject of partial differential 
eciuations is rcHiuiivd of the studcait; in fact very little previous 
experience with oixlinary differential eciuations is actually needed 

here. A year of colleg’e physic*s would seem to furnish a sufficient 
backp;round foi- thc^ physicid and engineering problcans treated 
liere, since' t-hesc' problc'ins are kept on a fairly elementary level. 

The first, four chaplc'rs of this book arci sornc^what more ele- 
mc'iitary tlian the' matc'rial in the c'aiiic'r volume. These chapters 
iiic'lude a treatmc'iit of problcans in ordinary as well as })artial 

diffc'rc'iitial eciuations. They have servt'd as a textl)Ook for a 
short basic course in o])C'ratic)nal mathemahics given to juniors 
and sc'iiiors at- the Univc^rsity of Michigan and to rcjsearc.'h engi- 

nec'rs in DcTroit. Chapter X, whicdi rc'i)resents the operational 

propertic'S of finite Fourier transformations, can well be included 
in such a c'ourse. 

The remaining chapt-c'.rs are more advanced. Thciy make use 

of certain material, described in Chajiter V, from the theory of 
functions of a complex variable. For sevc'-ral years the material 

in tluisc^ chai)t-(^rs has been includcid in a graduate course on 

methods in partial differciiitial equations. 
Important results are stated as theorems. Thus the readcu' 

who is primarily interested in engineering or physics rather than 

in applied mathematics should find it possible to skip over 
details in mathematical derivations. An attempt has been made 

to keep the mathematical analysis on a level that is as elementary 
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as possible without impairing the usefulness of the results. 
Such a program tends to make .some developments more tedious, 
however, than they need be if more advanced concepts in function 

theory had been used. 
The selection of material has been influenced by a large num¬ 

ber of authors and by many suggestions from students. The 

book by G. Dootsch was probably the greatest single influence. 
The dissertation of H. Kniess, one of JJoetsch’s students, fur¬ 
nished the incentive for Chapter X. The pui)lications of II. 8. 
Carslaw, J. C. Jac^ger, N. W. McLachlan, and others have 

influenced the selection of j^roblems. 
The author is grateful to Professor P. D. Rainvilie for his 

generous assistance in the reading of ])roof and for valuable sug¬ 

gestions and wishes to express his thanks to Miss Alyra K. Schwan 
for her skillful and untiring efforts in the preparation of the 

manuscript. 
Ruel Y. Chuuchill. 

Ann Arbor, Mich., 

May, 1944. 
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MODERN OPERATIONAL MATHEMATICS 

IN ENGINEERING 

CHAPTER I 

THE LAPLACE TRANSFORMATION 

1. Introduction. Binc^e tlui time of its introduction the oper¬ 

ational calculus of Oliver Tieaviside (1850-1925) has held a 

prominent place in the treatment of pro})lems in electric circuits. 
It was also put to other less prominent but even more interesting 

uses, including applications to many applied problems in partial 

differential equations and the evaluation of certain integrals. 

Jlut in its original form this method rested on rules of procedure 

that had no satisfactory logical justification. Nor were the 

rules always reliable. 

Idle modern form of this operational calculus consists of the 

use of th(^ La]dace transformation. This is a mathematical 

pro(‘.edure which not only yields the rules of the operational 
calculus in a straightforward manner, but which demonstrates 

at the same time conditions under wdiich the rules are valid. 

In addition to this, the theory of the Laplace transformation 
introduces a laige number of additional rules and methods that 

are important in the analysis of problems in engineering and 

physics. 

In this chapter \\c shall present the most important one of these 

rules, one concerning the transformation of derivatives of func¬ 

tions into products. J^y means of it we shall be able to make 
remarkable simplifications in certain types of problems in dif¬ 

ferential equations. 

In the following chapters, further properties of the Laplace 

transformation will be derived and applied to problems of engi¬ 

neering and physics. The applications of this method to the 

solution of applied problems in partial differential equations will 

form our major interest. We shall give considerable attention 
1 



2 OPERATIONAL MATHEMATICS IN ENGINEERING [Sec. 2 

to other applications, however, including the solution of problems 

in ordinary differential equations. A sufficient development of 
the theory of the transformation leads to the theory of expanding 
an arbitrary function in scries of characteristic functions of 
Sturm-Liouville systems. Such expansions in series form the 
basis for the solution of boundary value problems by separation 
of variables, a classical method of great importance in partial 

differential equations. 
In addition, we shall introduce certain Fouj‘ier transforms and 

show how th(\v can be used in a similar way to solve important 
types of boundary value problems. 

2. Definition of the Laplace Transformation. If a function 
F{i), defined for all positive values of the variable /, is multiplied 

by and integrated with respect to t from zero to infinity a 

new function f{s) of the variable s is obtained; that is, 

JJ” e-‘F{l) dt = /(s). 

This operation on a function F{t) is called the Laplace iransforma- 

lion of F{i). It will be abbreviated here by the symbol L{F), 

or by L\F(t)]] thus 

L\F\^ dt. 

The new function f(s) is called the Laplace transform of F{t). 

Wherever it is convenient to do so, we shall denote the original 

function l^y a capital letter and its transform by the same letter 
in lower case. At other times we shall use a bar to indicate the 
transform, for example. 

Pis) =L{F{t)]. 

For the present, the variai)lc s is assumed to be real. Later on, 

we shall let it assume complex values. The limitations on the 
character of the function F{t) and on the range of the variable s 
will be discussed soon. 

Let us note the transforms of a few functions. First, let 
F{t) = 1 when t > 0. Then 

= I e~’* dt ~ — i ; 
Jo s Jo 
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hence, when 5 > 0, 

L{1) =i. 
s 

Let F{t) = e** when < > 0. Then 

^ CO 

J4F] = I e'“e-‘dl 

hence, when s > 

g—(«—k)t 

With the aid of elementary methods of integration, the trans¬ 
forms of many other functions can Ix^ written. For instance, 

and 

■ Llsinkt] 

but we phall soon have still simpler ways to obtain these trans¬ 

formations. 

Th(i transformation s(‘ts up a correspondence b(‘tween the 

j\airs of functions F{i) and/(,s), called the ohjcct and refiult func¬ 

tions, respectively, of the transformation. For instance, 

and l/(s — k) are corresponding functions. The reader is 

familiar with the transformations known as differentiation and 

integration, d/dl{F(t)} and which set up other corre¬ 

spondences lietween })airs of functions. As in the case of these 

familiar transformations, the Laplace transformation is linear; 
that is, if A and B are constants then 

L{AF{i) + Ba{t)\ = AL\F{()] + BL\G{t)]. 

This follows from the definition of the transformation. 
We can illustrate this linearity by writing 

L 

I/{sinh kt] — 

1 
- k 

k 
2 - /C2‘ 

1 1 

25 + 
that is, 
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PROBLEMS 

Obtain the following transformations; 

1. Lla + bt\ = -+-• 2. L{f’) = jl- 

3* /v{(X)s kl] ~ j //{cosli Lt} ^^2_i^y 

3. Functions of Exponential Order. A function F{t) is 
sectionally confinuotis on a finite interval t ^ h \i it is possible 
to subdivide that int(‘rval into a finite number of subintcr- 
vals in each of whii^h P^{f) is coiilinnous and has finite limits as t 

approaches cither end point of the subinterval from the interior. 
Any discontinuities of such a function in the interval (a, h) are 
of the type known as ordinary points of disconiiiiuity, where the 

value of the function makes a finite jump. Of course, this class 

of functions includes continuous functions. Also, the integral 
of every function of this class exists over the interval. 

The step function 

Skit) = 0 when 0 < t < k, 

— ! when t > k, 

is an example of a function that is sc^ctionally continuous in the 
interval 0 ^ ^ ^ 7' for every iK)sitive number T (Fig. 1). The 
Laplace transform of this function is 

^00 f* 'fi 

J dt — 1 

thus, assuming .s > 0, 

dl 

fi—ha 

L{S,{t)} =^--. 

A function F(t) is of exponential order as t tends to infinity 
provided some constant a exists such tluit the product 

er-^\F{t)\ 
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is bounded for all t greater than some finite number T. Thus 

|F(0I does not grow more rapidly than as ^ > co, where M 
is some constant, l^his is also expressed by saying that F{t) 

is of the order of or that F{t) is O(c“0. 

The function Sk{i) above, as well as the function ^”(n ^ 0), is 
of the order of as < —» oo for any « > 0; in fact for the first 

function and, when ?? = 0, for th(j second, we may take a = 0. 

The function is of exponential order with a ^ 2; but the 
function rP is not of exponential order. 

The Laplace transform of a function F(l) exists if F(i) is sec- [ 

tionally continuous in every finite interval in the range ^ ^ 0 I 
and if the function is of exjxmential order as > co. This 
follows from a well-known test for the convergence of infinite 

intogralg. For under the conditions stated, the integrand of the 
Laplace integral is integrable over the finite interval 0 ^ t ^ T 
for every positive number T, and 

where M is some constant, T^ut the integral from 0 to co of the 

function on the right exists provided s > a. These facts estab¬ 

lish* not only th(^ convergence, but also the absolute con¬ 
vergence', of the Laplaces integral when > a. 

The above conditions for the existence of the transform of a 
function are elementaiy and practical for most of our applica¬ 

tions; but liny are sufficient rather than necessary conditions. 

The function F(/) may have an infinite discontinuity at i ~ 0, 
for instance, provided remains bounded there for some 
positive n < 1; then if F(i) satisfies the above conditions when 
f > 0, its transform still exists. Let F(t) = tri, for example. 
Then its transform is 

I di — I dx (s > 0), 
Jo vs Jo 

and hence 

(s>o). 

See, for instance, Philip Franklin, **Treatise on Advanced Calculus,'' 
p. 271, 1940. 
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4. Transforms of Derivatives. By ti formal integration by 

parts we have 

L{F’{t)\ = jj" e-'F’{l)dt 

Let F{i) be of order e"' as t approaeli(\s infinity. Then for every 
5 > a the fn‘st term on the right becomes ”/'’(()) and it follows 

that 

(1) L[F\t)} = sf(.) 

where /(.s) = L[F{t) ]. 
Therefore in om* corr{‘SjK)ndenc(‘ b(‘1ween functions, differcniia- 

iion of the object function corresponds to tlie multi pi icai ion of 
the result function by its variabh' s and the addition of the 
constant ~F(()}, Foiinula (I) thus gi\'es the fiin<lanu‘ntal 
operational i)rop(*rty of the La])lae(‘ transformation, the proj)crty 
that makes it possible to re]>lace the o)K‘ralion of differentiation 
by a simple algcTraic opiTation on tin* transform. 

As noted a])ove, formula (1) was obtained only in a formal 

manner. It is md. even cornad when F({) has discontinuities. 
The folloAving th(‘or(un will sliow to extent. W(; can j*ely on 
our formula. 

Theorem 1. Let the function F{i) he confimious with a scctionaUy 

co7itinuous derivativeF'(t), in crcry finite interval 0 S f ^ T. Also 
let F{t) he of order e"^ as t —>■ oc. The7i when s > a, the transform 
of F'(t) exists and 

(2) L\F'(t)] = .s7.{F(01 -/'(+0). 

The symbol F(+0) denoU^s the limit of F{t) as t approaches 
zero through positive values. 

To prove this theorem we not(‘ first that 

i{."(0} = lim r e-"‘F'it)dt 
T->oo Jo 

and write the integral here as the sum of intc'grals in each of 
which the integrand is continuous. F'or any given 7\ let fi, 

^2, ’ * * , 4 denote those values of t between / = 0 and t = 7^ 
for which F'(t) is discontinuous (Fig. 2). Then 
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e-‘F'(t) dt = e-“F'(0 dt + £ e-'‘F'{t) dt + ■ • ■ 

+ C e-“F'(t) dt. 
m/in 

After integrating each of these integrals by j^arts, we can write 
their sum as 

e-‘F(0]‘^ + e-'F(0]|| + • • • + + sfj e-“F(t) dt. 

Now F(t) is continuous so that F(ti — 0) = F(ti + 0), etc., and 

heiKie 

(3) £ c-‘F'(t) dt = -/'’(+0) + e-*'-/'’(7’) + .S £ er^>F{i) dt. 

Since l^'(0l < for large t for some constants a and AI, it 
follows that 

\c-^TF(r)\ < 

and since s > a this i>roduct vanishes as T oo. Also the last 

integral in equation (3) approaches L{F\ as T tends to infinity. 
Hence the left-hand member of (3) has a limit and Theorem 1 
is established. 

If F{t) is continuous ('xcept for an ordinary discontinuity at 
t = Uf the other conditions remaining as stated in the theorem, 

we can sec from the above proof that our formula (2) must be 

replaced by the formula 

(4) L{F'{t)] = sf{s) - F(-bO) - [F(U + 0) - F{h - 0)]c-^^\ 

The quantity in brackets is the jump of F(^) at / = to. 

The reader should note that we use the symbol F'{i) here and 
in the se(iuel to denote the derivative of F{t) wherever the 

derivative exists, even though F(i) fails to have a derivative for 

certain values of t. In the case of our step function Sk(t)j for 
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instance, 
S^ii) == 0 when 0 < i < k and when t > k, 

but Sl.(k) has no value. 
To obtain the transformation of the derivative of the second 

order we apply Theorem 1 to the function Let 
F'(t) be continuous and F^'(t) sectionally continuous in each 

finite interval, and let F(t) and F^(t) be of exponential order. 

Since F'{i) is continuous, it follows that F(t) is continuous. 
Then 

L{F"(0} = sL{F\t)} -F'(+0) 
= s[sL{F(t)} - F(+0)] - F(+0). 

Hence we have the transformation 

(5) L(F"(0) = s^f(s) - sF(+Q) - F'(+0). 

By applying Theorem 1 in the same manner to the derivative 
of order n, the following theorem is obtained. 

Theorem 2. Let the function F{t) have a continuous derivative 
/P(n-i)(^) o/ order n — 1 and a sectionally continuous derivative 

F^'^'^(t), in every finite interval 0 ^ t S T, Also let F{t)j F\t), 

• • • , F^^~~^^(t) he of order as t tends to infinity. Then the 
transform of F^^^{t) exists when s > a and it has the following 

algebraic expression in terms of the transform f{s) of F{t): 

(6) = s^f(s) ~ s^-W(+0) - s^^F'{+0) 
-s«-3F"(+0) « • • • - F^n-l)(+0). 

6. Examples. The Gamma Function. In order to gain famili¬ 
arity with the above fundamental operational property of the 
transformation, let us first use it to obtain a few transforms. 

Example 1. Find L{t}, 

The functions F(t) = t and F'(t) = 1 are continuous and of 
exponential order for any « > 0. Hence, 

L{F'(0} ^sLlF(t)} -F(0) is>0), 
or 

L{1} = 8L{e). 

Since Z/{1} = 1/s, it follows that 

m - i (* > 0). 
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Example 2. Find L[biji hi]. 
The function F{t) = sin kt and its derivatives are all con¬ 

tinuous and bounded, and therefore of exponential order with 
a == 0. Hence 

L[F'\t)\ - s^L{F{t)\ - sF{0) - F'(0) (s > 0), 
or 

—A;2L{sin kt\ = s®L{sin kt\ — k. 

Solving for L{ sin A;^), we see that 

L{8in kt\ = (s>0). 

Example 3. Find L{V^] where m is any positive integer. 

The function F{t) = t”* satisfies all the conditions of Theorem 2 
for any positive a. Here 

F(0) = F'(0) = • • • - = 0, 
= ml, = 0. 

Applying formula (6) with w = m + 1, we find 

^ 0 = s«+iL{r}'- ml, 

and therefore 

(1) Lm {s> 0). 

This formula can be generalized to the case in which the 

exponent is not necessarily an integer. To obtain L{t^} where 
k > — 1, we make the substitution x = in the Laplace integral, 

giving 

I dt == I x^e“* dx (s > 0). 
JO s Jo 

The integral on the right represents the gamma function, or 

factorial function, with the argument A; + L Hence 

(2) L{<*) = (k >-!,«> 0). 

Formula (1) is a special case of (2) when A; is a positive integer. 

Example 4. Find E F(r) drj when F(t) is sectionally con- 
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tinuous and of exponential order. 
Let 

G(t) =£ F(r) dr. 

Then Git) is continuous and of exponential order, and G^(0) = 0. 
Also 

and therefore 

That is, 

(3) 

G'(t) = Fit) 

sLlGit)] =L{F(01. 

This operational property for integration will be derived in 
another way later on. 

PROBLEMS 

1. Obtain the following transforms with the aid of Theorem 2: 

(a) L{cos kl] = (6) L{sinh kt] = -5^,; 

(c) LI cosh kt\ — ^2_^2* 

2. From the formula = (tt/s)^ obtained in Sec. 3, show that 

Also show that this follows from the formula in Theorem 1, even though 
the derivative of the function is not sectionally continuous. This 
illustrates the fact that the conditions in our theorems are not the 
necessary conditions. 

3. Using the result of Prob. 2 and Theorem 2, show that 

1 ■ 3 • 5 ■ — (2yi -h 1) 
(n = 0, 1, 2, • • • ). 

4. Apply formula (4), Sec. 4, to the step function St(t) to find L{ -S^CO). 

6. The Inverse Transform. Let the symbol L-‘{/(s)l denote 
a function whose Laplace transform is /(s). Thus if 

^'{^’(0} =/(«) 
then 

m = L-M/(s)}. 
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Using two of the transforms obtained in the foregoing sections 
we can write, for instance, 

This correspondence between functions/(s) and F(t) is called the 
inverse Laplace transformation^ F{t) 
being the inverse transform of/(.9). 

In the strict sense of the concept 
of uniqueness of functions, the 
inverse Laplace transform is not 
unique. The function Fi{t) — e** 

is an inverse transform of 
l/(s — A:); but another, for in¬ 
stance, is the function (Fig. 3) 

, Fiit) = when 0 < ^ < 2, or i > 2, 
= 1 when t = 2. 

For the transform of ^2(0 is 

e~‘^F2(t) (It = J? * 

and this is the same as L{e^^\. The function F2(0 could have 
been chosen equally well as one that differs from Fiit) at any 
finite set of values of t, or even at such an infinite set as i = 1, 

2, 3, • • • . 
A theorem on the uniqueness of the inverse transform, due to 

Lerch, states that if two functions Fi(t) and F2{t) have the same 
Laplace transform f{s) then 

F2(0 = F,{t) + A(0, 

where N (t) is a null function, that is, a function such that 

ff Nit) dt = 0 

for every positive T. In the above example, N{t) = 0, except 
when < = 2, and iSr(2) = 1 — c-*. We shall take up the proof 
of Lerch^s theorem later on. 

In view of this theorem, we can say that the inverse transform 
is essentially unique, since a null function is usually of no impor- 
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tance in the applications. As a consequence of the theorem, a 
^venlufiction f (s) cannot have more than one inverse transform 
F(t) that is continuous for each positive t But a function /(s) 

may not have a continuous inverse transform. This is illustrated 

by the function ~ whose inverse transform is the step func- 
s 

tion Sk(t)- It is well to note here that not every function of 5 is a 
transform. Th^ class of functions f(s) that are transforms is 
limited, as we shall see, by several conditions of continuity, 
among which are the requirements that /(«) be continuous when 

s > a and that/(s) vanish as s tends to infinity. 
We have noted that 

L\AF(t) + BG(t)] = Afis) + Bg{s), 

where A and B are constants. This relation can be written 

L-HAf(s) + Bg(s)} = AF(t) + BG{t) 

= AL~Hf{s)} + BL-^{g{8)\. 

Therefore the inverse transformation is a linear transformation of 
functions. 

The most obvious way of finding the inverse transform of a 

given function of s consists of reading the result from a table of 
transforms. A fairly extensive table is given in Appendix III. 

But we shall take up methods of obtaining inverse transforms of 
certain combinations and modifications of functions of s, as well 

as methods of resolving such functions into those listed in the 
tables. With the aM^of such procedures, we shall be able ^o 

make mucE’liise of the transformation. In addition, there are 

exj^cif formulas for The most useful of these for¬ 
mulas involves an integral in the complex plane. To use this 
integral, we must let s be a complex variable and we must be 

prepared to employ a few important theorems in the theory of 
functions of a complex variable. 

7. A Theorem on Substitution. Let the function F(t) be such 
that its Laplace integral converges when s > a. Then, replacing 

the argument of the transform f{s) by s — a, where o is a con¬ 
stant, we have 

f(s - a) = dt ^ e-*^e^F(t) dt, 
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when 8 -- a > a. Therefore 

(1) f{s - a) = L{e^^F{t)] (s > a + a). 

Let us state this simple but important property as a theorem. 
Theorem 3. The substitution of s — a for the variable s in the 

transform corresponds to the multiplicaiion of the object function 
F(t) by the function e®*, as shown in formula (1). 

To illustrate this property, let us recall that 

ffi! 
^ = Z/lf*”} (m = 1, 2, • • • ; 8 > 0). 

Hence 

(8 > a). 

As another illustration, 

Jfcoa kt] = (s>0), 

and therefore 

Lie- cos U] = (s > -a). 

8. The Use of Partial Fractions. A few examples will show 
how the theory of partial fractions can be used in finding inverse 

transforms of quotients of polynomials in s. In the next chapter, 
a more systematic use of this procedure will be introduced. 

Example 1. Find 

The denominator of the function of 5 here is of higher degree 

than the numerator and has factors that are linear and distinct. 
Therefore constants A and B can be found such that 

8+1 ^A B 
s(5 + 2) 8 8 + 2 

for all values of s. Clearing fractions, we have 

s + 1 == (A + 5)s + 2A, 

and this is an identity if A + = 1 and 2A = 1. Thus 
A = B == i and hence 

5 + 1 _ 11 1 1 
8^ + 28 28^^28 + 2 
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Table 1.—A Short Table op Transforms 

m 

A
 

<0 « 

1 1 
1 
s 0 

2 e“* 
1 

a 8 — a 

3 <» (n = 1, 2, ■ • • ) 
n\ 

gn+l 0 

4 rc**' (n = 1, 2, • • • ) 
nl 

(s — a)""*'! a 

5 sin hi 
k 
+ k^ 0 

6 cos kt 
s 

s* + /b* 0 

7 sinh kt 
k 

m 

8 cosh kt 
s 
- A;2 \k\ 

9 6“®* sin kt 
h 

(s + a)^ 4“ k"^ —a 

10 e’~^* cos kt 
8 -h a 

is 4* c)2 4- /c* — 0 

11 ■\/lr 
0 

2 \/^ 

12 
1 

Vi 's 
0 

13 {k > -1) r(A: + 1) 
■«*+! 0 

14 th^* {k > -1) r(fc +1) 
is ~ 

a 

15 Skit) (Sec. 3) 0 
S 

16 gat — (^a > h) a — b 
(s - a)(« - 6) 

o 

17 - Sin ai — -r sin ht 
a 0 

6> - o» 
0 

(s» + 0»)(8» + b>j 

18 cos at — cos bt (6» - o»)* n 
(8« + 0>)(8« + 6*) 

U 

Since we know the inverse transforms of the two functions on the 
right, we have the result 

~ 1 1 - 
2 2 ^ 
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The procedure can be shortened for such a simple fraction by 
writing 

s + 1 = + 2) + is, 

and hence 

s + 1 ^11, 1 1 
s(s + 2) 2 s 2 s + 2 

Example 2. Find L~ 
{«(«+«)“} 

In view of the repeated linear factor, we write 

B _ 
s(s i" g)^ s s -j- g (s -h g)" 

Clearing fractions and identifying coefficients of like powers of 
s as before, or else by noting that 

we find that 

a2 = (^ + ay — s(s + a) — gs, 

g^ — 1 — _g 
s(s + g)2 s s + g (s + g)^ 

Referring to Table 1, we can now write the result 

i_£ I 
\s(s + a)-/ 

1 — 

Example 3. Find L~^ 7 .,n r ^vhe^e a- ^ h^. 
{{s^ -j- g")(s- + h-)} 

S _ S (6*2 + g2) - (.s2 + ?>2) 

(s2 + g2)(s2 + 62) g2 - (6*2 + a^){8^ + 62)“ 

«_\ 
[;2 - a2Vs'' + g' 6'2 -1- 62/ 

when g2 9^ 62, it follows that 

Us* + o*)(s* + 6*) 

Example 4. Find F(t) if /(s) = 

} b* - o* 
(cos o< — cos bt). 

5s + 3 
(s - l)(s» + 2s + 5) 
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In view of the quadratic factor, we write 

5s + 3 _ A Bs + C 
is ~ i)(s2 + 2s + 5) s - I s'-* + 2s + 5‘ 

Proceeding as before, we find that yl = 1, i? = —1, and C = 2, 

so that 

ffA =_I__ 
s - 1 (s + 1)2 + 4 

_ 1 s + 1 3 
s 1 (s + 1)2 + 4 (s + 1)2 + 4 

Referring to Table 1, or to Theorem 3, we see that 

F(t) = — e”*(cos 2^ — I sin 2t). 

PROBLEMS 

1. Obtain the following inverse transforms: 

2. Derive the inverse transforms shown in entries 16 and 17 of Table 1. 

9. The Solution of Simple Differential Equations. The use 
of the Laplace transformation to solve homogeneous and non- 
homogeneous linear ordinary differential equations, or systems of 
such equations, can now be made clear by means of examples. 
Such problems can of course be solved also by the methods 
studied in a first course in differential equations. Later on, 
when we have developed further properties of the transformation, 
we shall solve further problems of this sort with greater efficiency. 

We shall also be able to solve much more difficult problems in 
differential equations. 

Example 1. Find the general solution of the differential 
equation 

Y"{t) + r^Yit) = 0. 

Let the value of the unknown function at i == 0 be denoted by 

the constant A and the value of its first derivative at < = 0 by 
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the constant B] that is, 

7(0) - A, 7'(0) = B, 

In view of the differential equation, we can write 

L{7"(0} +k^L[Y{t)\ = 0. 

If the unknown function satisfies the conditions of Theorem 2, 

then 

L{7"(0} = s^y{8) - As-B, 

where y(s) = L{Y(t)]. Hence yis) must satisfy the equation 

8^y{s) - As - B + k^y(s) = 0, 

which is a simple algebraic equation. Its solution is clearly 

/ \ A ® I ^ ^ 

J/(s) s2 + JfcS + ^ 82 + ^2- 

Now Y{t) == I/~^{2/(s)}, and the inverse transforms of the 
functions on the right of the last equation are known. Hence 

Y(t) = A cos kt + ^ sin kty 

— A cos kt + sin kt^ 

where A and B^ are arbitrary constants since the initial conditions 
were not prescribed. 

It is easy to verify that the result is the solution of the dif¬ 
ferential equation so it is not necessary to justify the use of 

Theorem 2. However, the function A cos kt + sin kt does 
satisfy the conditions of that theorem, and the order of the steps 
taken above can be reversed to show in another way that this 

function does satisfy the differential equation. These remarks 
on the verification of the solution apply equally well to the other 
examples and problems to follow in this section. 

Example 2. Find the solution of the differential equation 

7"(<) - 7'(0 - 67(0 = 2 

satisfying the initial conditions 

7(0) « 1, 7'(0) = 0. 
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Applying the transformation to both members of the differen¬ 

tial equation, and letting y(s) denote the transform of Y(t), we 
obtain the algebraic equation 

2 
s^y{s) — s — sy(s) + 1 — 6y(s) = 

o 

where we have used the initial conditions in writing the trans¬ 

forms of F"(0 and Hence 

(s» - s - 6)j/(s) = ^ 

or 

s(s - 3)(s + 2) + 2 

Evaluating the coefficients A, B, and C as in the last section, we 
find that 

/N _ 11,8 1 ,4 1 
3s'^15s-3‘*'5s + 2’ 

Hence 

Y(() = ~ i 

This result is easily verified. 

Example 3. Find the functions Y(t) and Z{t) that satisfy the 
following system of differential equations: 

F''(0 - Z"{t) + Z'(0 ~ Y{t) = e* ~ 2, 
2F"(0 - Z"(0 - 2F'(0 4- Z{t) = -t, 

F(0) = F'(0) = Z(0) = Z'(0) = 0. 

Let y{s) and z{s) denote the transforms of Y{t) and 
respectively. Then in view of the differential equations and the 
initial conditions, these transforms satisfy the following simul¬ 
taneous algebraic equations: 

B^y{s) ~ s^z{s) + 8z{8) — y{s) 

2s^y{s) — s^z(s) — 2sy(s) + z(s) 

These equations can be written 

(s + l)y(s} - sz(s) = - 

2ay(*) - (s + l)*(s) = - 
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Eliminating 2(5), we find that 

(52 - 2s - l)y{s) = 

With the aid of partial fractions, we find 

- 1)2 

2/(s) = •: 
1 = ^ + 

S(S — 1)2 5 

1 
5 

- 1 ^ (s - 1)^ 

’ + ^ 

Therefore 

Likewise we find that 

52(5 - 1) 

5-1 * (s - 1)2 

Y{t) = 1 - e* + teK 

/ N _ 25 - 1 _ 1 , 1 
o2/o _ 1\2 r.Q - (5 - 1)2 

and therefore 

Z(t) = -< 4- teK 

Example 4. Solve the problem 

F"(0 ~ 2F"(0 + 5F'(0 = 0, 
7(0) = 7'(0) = 0, 7"(0) = 1. 

Proceeding as before, we have the equation 

s^y{s) - 1 - 2s-y{s) + 5sy{s) = 0, 

whose solution is 

1 1 
2/(«) 

25 + 5) 5 
(1 _ _ 
Vs s'* - 2s + 5/ 

This can be written 

= 11 _ 1 + 1_2_ 
5 s 5 (s - 1)2 + 4 ^ 10 (s - 1)» + 4 

and therefore the solution is 

Y{t) — i cos 2t + -A e* sin 2t. 

PROBLEMS 

Solve the following problems and verify your solution. 
1. 7"(0 - k^Yit) = 0. Ans, Y{t) = Cie*‘ + 
2. 7'TO - (a + h)Y\i) + 057(0 = 0. 

19 

Am. 7(0 — Cic®* + C^, 
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3. F"(<) + A;»F(t) = 0. Ans. F(<) = Ci sin kt + Ct cob h + p- 

4. F''(0 + 2kY'(t) + **F(0 = 0. Ans. Y(i) = 6-*'((7i + (7,0. 

6. F"(t) - 2aF'(0 + (a» + 6*)F0) = 0, F(0) = 0, F'(0) = 1. 

Ans. F(<) = ^ e“‘ sin bt. 

6. F"(<) + 4F(<) = sin t, F(0) = F'(0) = 0. 
Ans. Y(t) = 7 sin < — -ff sin 2t. 

7. F"'(0 + F'(<) = F(0) = F'(0) = F"(0) = 0. 
Ans. Y{t) = — i + -iVe** — i sin t + f cos <. 

8. Y"(t) + F'(t) = P + 2t, F(0) = 4, F'(0) = -2. 
Ans. F(<) = iP + 26-* + 2. 

9. F<«(0 + Y"'(t) = cos I, F(0) = F'(0) = F"'(0) = 0, F"(0) arbi¬ 
trary. Am. Y(t) = — 1 -b t -b Ct’* -b i(e~' -t- cos t — sin 0- 

10. Y'(t) - Z'(0 - 2F(t) + 2Z(0 - 1 - 2<, F"(<) + 2Z'{t) -1- F(0 = 0, 
F(0) = Z(0) = F'(0) = 0. Am. F«) = 2 - 26-* - 2te-‘, 

Z{t) = 2 - 26-* - 2te-‘ - t. 



CHAPTER II 

FURTHER PROPERTIES OF THE TRANSFORMATION 

10. Translation of F(t). There are several further operational 

properties of the Laplace transformation that are important in 

the applications. Those properties whose derivations and appli- 

cations do not necessarily involve the use of complex variables 

will be taken up in this chapter. 

We begin with an analogue of Theorem 3 of the first chapter. 

According to that theorem, the multiplication of the object func¬ 

tion by an exponential function corresponds to a linear substitu¬ 

tion for s in the transfo^:m. Now let us note the correspondence 

arising from the multiplication of the transform by an exponential 

function. 

Let F{t) have a transform, 

Then 

fis) = X” "-“^(0 

e-»-/(s) = ^“ dt, 

where t is a constant, assumed to be positive. Substitiiting 

f + 5 3= we can write the last integral in the form 

^ 6“'"F(r — h) dr. 

Thus if we define a function Fb(t) as follows, 

(1) 

we see that 

Fh(t) = 0 when 0 < ^ < 6, 

= F{t — h) when t > h, 

f{s)e~^^ = e~^^Fb(T) dr. 

The following property is therefore established. 
21 
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Theorem 1. If f(s) = L\F{t)} then for any 'positive constant b, 

(2) =X{F»(0}, 

where Fb(t) is the f unction defined by equation (1). 
The function Fh{t) is illustrated in Fig. 4. Its graph is obtained 

by translating the graph of F{t) to the right through a distance of 
h units and making 74(0 identically zero between < = 0 and 
t = h. On some occasions, it is convenient to define F{t) as zero 
for all negative values of t^ and when this is done the graph of 
Fh(t) is simply a translation of the graph oi F{t). We can refer 
to Fh{t) as the translated function. 

Our step function Sk{t) is the translation of F{t) = 1 (/ > 0), 

and it serves as a familiar illustration of the above theorem. Its 

transform is As another example, we know that 

and consequently 

Similarly, 

ije^ ^ 
" \s^ + ki 

= sin k(t — 

t — h 

when 0 <t < b 

b) when t > b. 

when 0 < i < 6, 

when t > h. 

In Theorem 1 the substitution of ^ — b for the variable t was 
involved. Consider the simpler linear substitution of replacing 

thy at where a is a positive constant. Since 

L{F(at)} e~*^F(at) dt 

00 ^ s 

e " F{t) dr = 
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we have established the following theorem. 
Theorem 2. If L{F(01 = f(s) when s > a, then 

(3) L{F{at)) = 1/ (s >aa, a >0). 

This correspondence can of course he written in the form 

(4) L-M/(cs)) (oO). 

Given, for example, that 

= L{c08 «}, 

it follows from formula (3) that 

s 
s \ k j. f ... 

— =L{co8kt]. 

\k) + ^ 

The effect of a general linear substitution for s can be seen from 
formula (4) and Theorem 3, Chap. I, since 

(5) /(„-!,).(.>0). 

11. Difference Equations. Some types of problems in differ¬ 
ence and difference-differential equations can be solved with the 
aid of Theorem 1. 

Example 1. Find the function Y{t) that satisfies the first- 
order difference equation 

(1) 7(0 ~ aY{t -h) =: F(t) 

and the boundary condition 

(2) 7(0 =0 when t < 0, 

where a and h are prescribed constants, /i > 0, and the given 
function F{t) is zero when t < 0. 

In view of the condition (2), the function Y{t — h) is zero when 

t < h and, according to Theorem 1, its transform is e~^*y(s). 
We are assuming that 7(0 has a transform 2/(s). Transforming 
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both members of equation (1), we have 

y{8) - o€-*V(8) = /(«), 
or 

By taking a sufficiently large, \ae-~^‘\ < 1 and hence 

--= 1 + + • • • 
1 — 06 

00 

= 1 + ]^ o"e-"**. 

Therefore 
00 

y{s) = f(s) + 5) o’‘6-"‘'^*/(s). 

According to Theorem 1, 

= F(/ - nh), 

where it is to be recalled that the function on the right is zero 
when t — nh < 0. Assuming that it is permissible to apply the 
inverse transformation to the above infinite series term by term, 

00 

that is, assuming that the order of the operators and ^ can 

be interchanged, it would follow that 

(3) 7(0 = F(t) + 2) a-F{t - nh). 

The series in (3) is finite for each fixed since F(t — nh) = 0 
when nh > t. Let mh < t < {m + l)/i, where m = 0,1, 2, • • • ; 
then our result can be written 

(4) 7(0 « F{t) + aF{t -h) + a^F{t - 2h) + • — 
+ a”^F{t — mh). 

By writing our difference equation in the form 

7(0 = aY{t -h)+ Fit) 

and considering first those values of t between 0 and hy then 

between h and 2hy etc., it is evident that the function (4) is the 
required solution. 
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When F(J) = c, (/ > 0), and a = 1, it follows from formula (4) 
that the solution is 

(5) Y{t) = c(m + 1) when mh < t < (m + l)/i (w = 0, 1, 2, • • •). 

This function, sometimes called the staircase function, is shown 
graphically in Fig. 5. If we denote it by caS(/i, our first formula 

for y{8) indicates that 

(O) ilSd. 01 - - i (i + »th I). 

This transformation can be verified, for a > 0, by evaluating the 
Laplace integral of the staircase function. 

When F{f) = ^, < > 0, and a = — ^ in the above example, 
our solution becomes 

1^(0 - ■ ■ ■ + ^{i - mh), 

when mh < t < (m + l)/i. The graph of this function is shown 
in Fig. 6. 

Example 2. Find the function Y{t) that satisfies the second- 
order difference equation 

(7) Y{t) + 2Y{t ~ 1) - ZY{t - 2) = F(0, 

where the given function F{t) is zero when < < 0, and the bound¬ 
ary condition 

(8) Y{i) =0 when ^ < 0. 

Transforming both members of the equation we have, in view 

of the condition (8), 

y{s) + 2c~*2/(s) — 36~2«y(5) = 
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and thus, with the aid of partial fractions, 

= (1 - e-'ld + 3e-') (l - e- FT^') 

= /(s) + i [1 + (-l)“3»+i]e—/(s). 

Then, formally, 

(9) F(0 = F{1) + i X II - (-3)"+'F« - n). 
1 

This result can be written 

Y{t) = F{t) -hiia - 3‘^)F(t - 1) + (1 + 3^)Fit - 2) 
+ ...+[!_ 

where m < ^ < m + 1 (rw = 0, 1, 2, * • • ). Consequently, 

2y(^ - 1) = 2Fit - 1) + i{(l - 3^)F(t -- 2) + • • • 
+ [1 - (-3)iF(<~m)l, 

since F(t — m — 1) = 0 when t < ni + 1. Similarl}", 

-SYit - 2) = -3F(t ~ 2) - i{(l - 3^)F(t - 3) + • • • 
+ [1 - (-3)--^]F{t - 7n)\. 

Upon adding the corresponding members of the last three equa¬ 
tions, we see that our function does satisfy the difference equa¬ 
tion (7). It clearly satisfies the condition (8). 

When F{t) = 1 for ^ > 0 in Example 2, it can be shown from 

formula (9) that, for m < < < w + 1, 

Y{t) = M7 + 4m + (~3)-+2] (m = 0, 1, 2, • • • ). 

The above method can be used successfully in some problems 
involving derivatives as well as finite differences of the unknown 

function. 
Example 3. Solve the difference-differential equation 

F'(/) - aY{t - 1) = 6 (^ > 0), 

under the condition that 

Y{t) =0 when ^ ^ 0, 

where the constant h is to be replaced by zero when ^ < 0. 
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Applying the transformation as before, we have 

syis) — ae-‘y(s) — -• 
s 

Therefore 

y(«) = ‘ 

and consequently 

y(„. 6 + 

where {t — is to be replaced by zero when t — n < 0 

(n = 0, 1, 2, • • ‘ ). Thus when m < t < m + 1, we have 

Y(t) = 6 [< + I « - ir + |-b<-2)3+--- 

(m = 0, 1, 2, • * • ). This result can be verified directly. 
It should be noted that the above method is limited to the 

solution of linear difference equations with constant coefficients, 
under the boundary condition 

Y{t) = 0 when ^ < 0. 

This boundary condition arises, or it can be used, in some appli¬ 
cations of difference equations, but not in all.* 

PROBLEMS 

Solve for Y{t), and verify your result. 
1. Y{t) - (a + b)Yit ~ A) 4- abY(t - 2i^) = F«), Y{t) = 0 when 

< < 0, where F{t) = 0 when < < 0 and a 9^ b, 
to 

Am. Y{t) = F(0 + - nh). 
'l 

* For a further study of methods, and examples of physical applications, 
of difference equations see, for example, Gardner and Barnes, ''Transients 
in Linear Systems,’* Chap. IX, 1942; and Kdrmdn and Biot, “Mathematical 
Methods in Engineering,’* 1940, and the bibliography in those two books. 
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2. r«) - 2aY(l -h) + a*Y(t - 2h) = F(t), Y(t) = 0 when t< 0, 
where F(t) “ 0 when < < 0. 

00 

Am. Y(f) = F(t) + 2 + Da^Fit - nh). 
1 

3. y"W - Y{t - 1) - 6, Y{t) = 0 when t ^ 0, Y'{+ 0) = 0, 
where 6 is to be replaced by zero when t < 0. 

00 

.4ns. Y(t) = ^ bi^ 4 b ^ (2n ^'2)i where and 

{t — are to be replaced by zero when t <0 and n> t, respectively. 

12. Derivatives of Transforms. Let F{t) be a function that 
is sectionally continuous in each finite interval 0 ^ t ^ T and 
of exponential order as t tends to infinity; that is, 

\F(t)\ < 

where M and ao are constants. Then if s ^ a where a is any 

constant greater than ao, 

The function is independent of s and its integral from 
zero to infinity converges. Therefore the integral 

X 
00 

e~‘^F{i) dt 

is uniformly convergent with respect to s when s ^ a. 

more, since 

IX' e~*^F{t) du 

Further- 

it follows that J'*" M 
e-(a-«o)t dt = —— (s ^ a). 

0 a — ao 

From this property of the transform of F{t) we may obtain a 
useful result on the behavior of /(s) as s tends to infinity. If we 

let $ = a, we have 

(2) l/OI < 

consequently f(s) must vanish as 5 tends to infinity. 
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If n is any positive integer, then 

where i^n is the maximum value of the function 

Therefore it follows as before that the Laplace integral of the 
function t^F{t) converges uniformly with respect to s and vanishes 
as s tends to infinity. We have thus demonstrated the following 
theorem. 

Theorem 3. If F(t) is sectionally continuous and of the order of 
then each of the Laplace integrals L{F{t)\y L[tF{t)\y L\tW{t)\^ 

• • * , fs uniformly convergent vnth respect to s when s ^ a where 
a > ao; moreover 

lim f(s) = 0 
a—► 00 

and 
lim I,{rF(<)l = 0 (n=l, 2, •••)• 
a—> 00 

When F{t) is sectionally continuous, the derivative, with 
respect to the parameter s, of the infinite integral 

f” er-nt) dt 

is equal to the integral of the partial derivative of the integrand, 
provided the latter integral is uniformly convergent and that the 
first integral converges.* According to Theorem 3, these con¬ 
ditions are satisfied provided F{t) is of exponential order, and 

hence 

(3) f'(s) = e-'(-0F«) dt = L{-tF{t)}. 

Similarly, in view of Theorem 3, 

/"W = ff dt = L{tW{t)], 

and likewise for derivatives of higher order. The following 
theorem is now established. 

* See, for instance, H. S. Carslaw, “Fourier^s Series and Integrals,’* 
D. 200, 1930. 
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Theorem 4. Differentiation of the transform of a function 

corresponds to the multiplication of the function by 

(4) =I-{(-<W<)l (n=l,2, •••); 
moreover 

lim = 0. 

These properties hold true whenever F{t) is sectionally continuous 
and of the order of if s > a in formula (4). 

Since a function is continuous wherever its derivative exists, 

it is true that/(s) and each of its derivatives are continuous when 

s> a. 
To illustrate the last theorem, we can note that since 

^^^2= L\sm.kt\ (s>0), 

it follows that 

(52 + A;2)2 
= L{ —t sin kt\ 

> 0), 

L[t sin kt] = {s > 0). 
- ^^2 _|_ ^2)2 V® ^ 

The conditions in our theorem are satisfied here with a = 0. 
We noted in Sec. 5 that the division of a transform by 5 corre¬ 

sponds to an integration of the object function. Since 

r I r SI 
Jo 

sin kr dr = ^ (sin kt — kt cos kt), 

it follows from the transformation (5) that 

L{sin kt — kt cos kt] = (s2 + A;2)2 (s > 0). 

Formulas (6) and (6) are useful in finding inverse transforms with 
the aid of partial fractions. 

13. Differential Equations with Variable Coefficients. We 
have seen that 

L[t-Y{t)] = (-1)-|»L{F(0} = (-1)V^>(5), 

and therefore we can write the transform of the product of by 
any derivative of Y(t) in terms of y(s); for instance, 
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jD{t*F'(0} = ^ (sj/(s) - F(0)] = 8y"is) + 2y'{B), 

L\tY"(t)\ = - ^ - sF(0) - F'(0)] 

== — sVW — 2sy(s) + F(0). 

A linear differential equation in Y{t) whose coefficients are poly¬ 
nomials in t transforms into a linear differential equation in yis) 
whose coefficients are polynomials in s. In case the transformed 

equation is simpler than the original, the transformation may 
enable us to find the solution of the original equation. 

If the coefficients are polynomials of the first degree, the trans¬ 
formed equation is a linear equation of the first order, whose 

solution can be written in terms of an integral. To find the 
solution of the original equation, however, the inverse transform 

of the solution of the new equation must be obtained. This is 

frequently a difficult task. 
Example 1. Find the solution of the problem 

F"(0 + tY'{t) - 7(0 = 0, 7(0) = 0, 7'(0) = 1. 

The transformed equation is 

s^y{s) - 1 — l/(s) = 0, 

or 

2/'(s) + (f “ ®) = “ 7 

which is a linear equation of the first order. An integrating 

factor is 

^/(a ®) s= 

so the equation can be written 

Integrating, we have 

where C is a constant of integration. But C must vanish if y{9) 
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is a transform since y{8) must vanish as s tends to infinity. It 
follows that 

Y(f) - t, 

and this is readily verified as the solution. 
Example 2. Solve Bessers equation with index zero, 

<F"(0 + Y\t) + tY{t) = 0 

under the condition that 7(0) = 1 and that Y{t) has a transform. 
The point ^ = 0 is a singular point* of this differential equation 

such that every Y{t) that satisfies this equation and is finite at 
^ = 0 satisfies the condition F'(0) = 0. 

The transformed equation is 

- ^ [sV(s) - s - I^'(O)] + S2/(S) - 1 - ^ y(«) = 0, 

or 
(s2 + 1)2/'(s) + sy{8) = 0. 

Separating variables, we have 

dy 8 ds 
y 8^ + I 

and upon integrating and simplifying, we find that 

. _C_ 

where C is a constant of integration. 

Expanding the function for y{s) by the binomial series we have, 
when s > 1, 

^ (2«n!)2 

Applying the inverse transformation formally to the terms of this 
series, we find 

• 8ee E. D. Rainville, ‘‘Intermediate Differential Equations,” 1943. 
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If this function is to satisfy the condition Y (0) = 1, it is necessary 
that C = 1, and our formal solution becomes 

(-1)- 
{2^n\y 

This power series is easily seen to be convergent for all t, and 

it is not difficult to show that it satisfies the differential equation. 
The function defined by the series is BesseFs function Jo(0; that is 

r //N -- 1 ^ 4_ _^_ 4. • . . 
o 1 2^ 22 * 42 22 • 42 • 62 

Our first formula for y{s) above indicates that 

(1) L[j,m = 
1 

a transformation that can be established rigorously for s > 0. 

Example 3. Find the solution of BesseFs equation of index n, 

(2) + tY\t) + (^2 _ n2)F(0 = 0 

that has a Laplace transform, where n is a positive integer. 
Here again the point f = 0 is a singular point of the differential 

equation and, except for an arbitrary constant factor, there is 
only one solution that is finite at < = 0. 

The reader can show that, regardless of the values of the con¬ 

stants 7(0) and 7'(0), the transformed equation reduces to 

(3) (52 + l)t/"(s) + 3s2/'(s) + (1 ~ n^)y{s) - 0. 

This seems to be no simpler than the original equation, unless 

n = 1. 
However, if we substitute tr^Z(t) for Y{t) in equation (2), so 

that 
Zit) = t-Y{t), 

we find that the equation in the new unknown function becomes 

one with linear coefficients, namely. 

tZ"{t) + (1 - 2n)Z'(0 + tZ{t) = 0. 

Observing that Z(0) = 0, we find that the transformed equation 

becomes 
(52 + i)z\s) + (1 + 2n)szis) = 0. 
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After separating the variables here, we obtain the solution 

^ \ (g2 4. lyn+i) s2n+l ^ ^ ^2J 

where C is a constant of integration. With the aid of the bino¬ 
mial expansion, this formula for z(s) can be written 

^ (-1)^ (2n + 2k)l 
(2n)! ^ 22*=/c!(n + k)! s2«+2/k+i 

when 5 > 1. Formally performing the inverse transformation 

term by term, we have then 

Z(t) - (-1)* . t2n+,k 
(2n)\^2»k\in + k)\ 

and our required function Y(f) is obtained by dividing Z{t) by r. 

If the constant C is taken so that 

= i 
(2n)! 2- 

our solution becomes 

where Jn(0 is Bessers function of the first kind. The power 
series in equation (4) is convergent for all values of t and it 

satisfies Bessel’s equation (2). Our formula for z{s) above indi¬ 

cates that 

(5) ilW.WI - 

a transformation that is correct when s > 0. 

When n = 1, we noted that equation (3) in the transform of 

Y{t) is a simple one even though coefficients of degree higher 

than the first occur in the original equation. In this case it will 
be left to the reader to show that the solution of equation (3) is 

»(s) = 
Cis 

+ C, 

where Ci and are constants of integration. As a tends to 
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infinity, this function approaches Ci + C2, and so we must take 
Cl + C2 = 0. Therefore 

Since Jo(0) = 1, we have, in view of equation (1), 

and therefore 

- 1, 
Vs^ + 1 

Y(t) = c.j;(o. 
When Cl = —1, this funetion is the same as ./i(<). Thus a 
particular solution of Bessel’s equation with n = 1 is 

F(o = j,{t) = -j;(o. 

It also follows that 

(6) L{/i(01 = 
-y/s^ + 1 - s ^_1_ 

\/+ 1 -y/s^ + 1 (s + \/s^ + i) 

PROBLEMS 

1. With the aid of Theorem 2 and the above transformations, show 

that 

1 
(a) L[Jo{at)] — 

{b) L{J,{at)} = 
__a__ 

\/{s -{- \/+ a^) 

2. Find the solution, which has a transform, of 

iY"(t) + (1 ~ n - t)r(t) -f 7iV(t) = i - 1, 

if y(0) = 0, where w is a positive constant and n 1. 

Ans. y(l) = + Ct\ 

3. Find the solution, which has a transform, of 

tr'(t) + (2t + 3)Y'(t) -h (< + 3)Y(t) = ae~^ 

Ans. Y(t) (c + 11) ( 
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4. Find the solution, which has a transform, of 

- (2t + l)r(0 + (t + 1)7(0 = 0, 

if 7(0) = 0. Ans. 7(0 = CPe^. 

14. Convolution. Let Fi(i) and 7^2(0 be two functions that 
are sectionally continuous and of the order of and let 

/i(s) =L1F,«)1, Ms) = L\F,it)}. 
Then 

/i(s)/s(s) = ^“ e-‘’Fi(x) dx£“ e-'«'Ft{y) dy (s > a). 

The product of the integrals on the right is the limit as a —> « of 

/(a), where 

1(a) = e-*^Fi(x) e-^^F^iy) dy 

-SI e~^^^+v)Fi(x)F2(y) dx dy, 
^ A 

where the region of integration of this double integral is the 
square bounded by the coordinate 
axes and the lines x ia and y = ia 

(Fig. 7). 
Since I (a) has a limit as a oo, 

the integral I(2a) has the same limit, 
where I(2a) is the integral over the 
square in Fig. 7 bounded by the 
dotted lines and the coordinate axes. 
Plence 

lim [I(2a) — 7(a)] = 0; 
o-^ w 

that is, the double integral over the region consisting of the tri¬ 
angles Bij B2y and B^ has the limit zero. This is also true if Fi(t) 
and F2(t) are replaced by their absolute values, since these 
functions are of exponential order. Hence the integrals over the 
triangles Bi and B2 must approach zero, and 

fi(s)f2(s) = lim J(a) 

where J(a) is the double integral over the triangle made up of 
the square A and the triangles Bi and B2. 
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Introducing the new variables 

t ^ X + y, r ^ y, 

so that X — t — Tf y = Tf the region 
X > Oj y > Oy X + y < a becomes 
the region < > t, r > 0, ^ < a in the 
ir-plane (Fig. 8). The element of 
area dx dy becomes, in the new 
plane, 

Ida; dy\ 
dl di 
dx dy 
dr dr 

dt dr = 
1 0 

-1 1 

Fig. 8. 

dt dr — dt dr. 

Hence 

Jia) = T So 

and letting a tend to infinity, we have the result 

(1) fl(s)/2(s) = X” ^ 

(afl) 

The combination of the two functions Fi{t) and F2{t) appearing 
inside the Laplace integral here is called the convolution of these 
functions. It is also known as the Faltung integral. We denote 

it by the symbol Fi * F2, so that 

(2) £F,{t-r)F,{T)dr. 

Substituting ^ — r = X, this becomes 

X‘F2(< -X)Fi(X)dX =Fs*Fi; 

therefore 
(3) 

The result obtained in equation (1) can now be written as follows. 
Theorem 6. The multiplication of the transforms of two func¬ 

tions corresponds to the convolution of the functions: 

(4) mm =L{F,{t)*F,{t)}. 

The transform on the right exists, and this formula is valid provided 
Flit) and ^2(0 are sectionally continuous and of the order of e^, 
when 5 > a. 
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We can now write the inverse transforms of products of trans¬ 
forms, since 

For example, 

ft -^1 = < • 
s — a) 

X = I (^ - dr = -z (e"' - at - 1). 
;o o" 

When Fi{t) — F^it) = F(^), we have 

[f{s)Y^L[F*F]. 

For example, 

(5) L-^ {( 
+ k^) }- 

cos ht * cos kt 

= I cos k{t — t) cos kr dr 
Jo 

== ^ (sin kt + kt cos kt). 

If we have three functions Fi(t)y F2(t), and Fs(t) that satisfy 
the conditions of our theorem, then 

Therefore 

(6) 

=L{F^{t) *L~HMs)Ms)\\- 

Ms)f2{s)Ms) =L{F^*F2*Fs}. 

The same is true for the product of any number of transforms. 

When Fi(t) = 1 and F2(t) = F(0, we have as a special case of 
formula (4) 

\j{s) = L{1 *^(0} = L dr|- 

When Fy(t) = F2(t) = 1 in formula (6), we have the special case 

i/W - (l • X' nr) *} - i {X X "W * *}■ 

The following property of the transformation, already noted in 

Sec. 5, is therefore a special case of the last theorem. 
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Theorem 6, Division of the transform of a function by s corre¬ 
sponds to integration of the function between the limits 0 and t: 

(7) = JV(r)dr, 

(8) = X X ^ 

etc., for division by s”, provided F{t) is sectionally continuous and 
of the order of {ct > 0), where s > a. 

As examples, we note that 

WSlTi)} - * - J (I - «» «). 

sin k\ d\ dr = (kt — sin kt). 

Our formula (4) on the transformation of the convolution of 

two functions is sometimes called the Borel formula in opera¬ 
tional calculus. The conditions for its validity stated in 

Theorem 5 are somewhat narrower than necessary. When 
Fi{t) = 1“^, for example, the formula is valid, because the Laplace 
integral of Fi(t) is still absolutely convergent. Thus 

and if we make the substitution X = \/t here we have the result 

where erf (a;) is the error function* defined as 

erf {x) = r dX. 
y/Tc Jo 

Other transformations follow readily from (9). For instance, 

1 ^ V^ + I ^_JL_ , _L/i . __L\ 
s-l s-lj’ 

* This function is also called the probability integral. See, for instance, 
B. O. Peirce, Short Table of Integrals,” 1929; H. B. Dwight, Mathe¬ 
matical Tables,” 1941. 
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and therefore 

(10) 

Since substitution of s + 1 for s corresponds to multiplication 
by e"“*, we obtain, directly from (9), the transformation 

(11) L-‘ I = erf (VT). 
(s \/s + 1) 

15. Differential and Integral Equations. The operational 
methods that we have developed at this point can be applied to 
the solution of nonhomogeneous linear differential equations in 
which the given function is an arbitrary one. 

Example 1. Find the solution of the differential equation 

(1) F"(0 + = F(0, 

where F{t) is a given function. 
Assuming for the present that F(0, as well as the unknown 

function Y{t)y satisfies the conditions in our theorems, the equa¬ 
tion in the transform y{s) becomes 

s^y{s) - 5F(0) - r(0) + k^y{s) ^ f{s), 
or 

/ N 1 ^ t/ \ \ Vff\\ ® ^ 
ks^ + s* + fc’* k s* + A:*' 

The first term on the right is the product of the transforms of 
(1/A;) sin kt and F(t)j so its inverse transform is the convolution 
of those functions. Thus 

r(<) = i sin kt *F{t) + r(0) cos kt + sin kt; 

hence the formal solution of our differential equation can be 
written 

(2) Y(t) ~ ^ J* cos kt + C2 sin kt, 

where Ci and C2 are arbitrary constants. Using the rule, derived 
in advanced calculus, for differentiating a definite integral with 
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respect to a parameter, we find that the derivative of the integral 
on the right, with respect to is 

k ^ cos k(t -- t)F(t) dry 

and the derivative of this function is 

-k^ sin k(t - t)F(t) dr + kF(t). 

We have assumed only that F(t) is a continuous function. It 

follows easily that our function Y{t) does satisfy the differential 
equation. 

We may note, however, that even when 

F{t) = sec^ kty 

a function that has discontinuities, our result (2) reduces to 

Y{t) = ^ [cos kt — I + sin kt log (sec kt + tan 

when Cl = Cz = 0. This satisfies the differential equation 
except at the points of discontinuity of Y{t), 

An equation in which the unknown function occurs inside an 
integral is called an integral equation. In certain applied 

problems, which we shall illustrate in the following chapter, the 

integral in the equation is the convolution integral. Such 
integral equations of the convolution or Faltuiig type transform 

into algebraic equations. 

Example 2. Find the function Y{t) that satisfies the integral 

equation 

F«) = a< + sin {t - t)F(t) dr. 

We can write this equation in the form 

Y{t) -= at + Sint* Y{t), 

Applying the transform to both members, we have the algebraic 

equation 

a 1 
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whose solution is 

Therefore 
7(0 = a{t + 

which can be verified directly as the solution of the above integral 
equation. 

The general integral equation of the convolution type has the 
form 

(3) F(0 = F(t) t) F(t) dr, 

where the functions F(t) and G(t) are given and 7(0 is to be 
found. Since the transformed equation is 

y(s) = f(s) 4- g{s)y{s)y 

the transform of the unknown function is 

<‘> ''W - T^hi- 
Even if equation (3) is modified by replacing 7(0 by linear 

combinations of 7(0 and its derivatives, where the coefficients 
in these combinations are constants, the transform of the modified 
equation is an algebraic equation in y{s). For instance, the 
integrodifferential equation 

(5) ant) + bY'it) = Fit) +J^G(t- r)F(r) dr, 

where a and h are constants, gives rise to the transformed equation 

(a + hs)y{s) - 67(0) = /(s) + gis)y{s), 

which is easily solved for y{s). 
The equation 

(6) Fit) = C it- r)-*F'(r) dr (0 < 6 < 1), 

is known as AbePs integral equation. The unknown function 
could of course be considered here as V'(t) instead of 7(0; but 
no advantage is gained in this way. The solution of this equation 
is 

(7) 
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valid when F{t) satisfies certain conditions of continuity.* The 
formal derivation of this solution can be left to the reader. 

PROBLEMS 

Solve the following differential equations: 
1. y"(0 - k'^Yit) = F(0, if F(0) - K'(0) - 0. 

Arts. Y{t) = ~ e-^-F(r) dr - e"** e^^Fir) dr]. 

2. Y"{t) - 2kY'{t) -f k^Y{t) - Fit). 

Ans. Y{t) = j^Ci + (^2^ + 0 — r)€~~‘^^F(r) dr], 

3. F"(0 + 4F'(0 -h 5K(0 - Fit). 

Ans. Y{t) = 6~2<(Ci cos t + C2 sin t) -f* F(t) * sin 0- 

4. Y"'it) - Y\t) = F(0, if y(0) = K'(0) = F"(0) - 0. 

i4ns. Y(t) — sinh t * F(r) dr. 

6. r'"(t) + Y'(t) = F(f). Let F(t) = tan t, finally. 

Ans. Y(t) == Cl -j- C2 sin t -h O3 cos t — log cos t — sin t log (sec t -f 
tan t). 

6. Show that the solution of the system of differential equations 

Y'd) ~ 2Z'(t) - F(t), 
r'(t) - Z"(t) + Z(f) = 0, 

under the conditions 7(0) == y'(0) = ^(0) = Z'(0) = 0, is 

Y(t) — F(r) dr — 2 cos t * F(t), Z(t) = — cos i * F(t). 

7. Solve the integral equation 

Y(l) a sin t sin (t — r)Y(r) dr. 

Ans. Y(t) == at. 
8. Solve the integral equation 

Y{t) =0 sin "h cj^ sin b(t — r)Y(r) dr, (b > c> 0). 

Ans. Y(t) = 
ab 

Vb^ - be 
iin t -s/5* — be. 

* For a fuller discussion of Abel's integral equation, see G. Doetsch, 
‘^Theorie und Anwendung der Laplace-Transformation," p, 203, 1937, and 
the references given there. 
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9. Show that the formal solution of the integrodifferential equation 

^ X ^ *]’ 
when F(0) = 0, is 

y(t) = e‘(erf (v7) + 1] - 1. 

10. Show that the transform of the nonlinear integral equation 

2F«) = F«) + £r(t- r)y(r) dr 

has the solution 

2/(s) = 
_J(sJ_^ 

1 -f Vi ~/(V) 

When F(t) ~ sin t, show that ¥(0 = 

16. Heaviside’s Partial Fractions Expansion. Let us now 

obtain a more efficient method of finding the inverse transform 

of the quotient of two poljmomials in 5. Let 

/(«) = Eli) 
9(s) 

where p(s) and g(s) are polynomials with no common factors and 
the degree of p(s) is low^r than that of q(s). 

Suppose first that the factors of q(s) are all linear and distinct, 

that is, 

q(s) = (s - ai)(s - 02) • ‘ ~ aw), 

where the a^s are distinct constants. Then according to the 

theory of partial fractions, constants Ci, C2, • * • , Cm exist such 

that 

(1) g(8) s — ai S — O2 8 — On 

+ • + 
Cm 

8 — am 

In order to determine Cn, we multiply both members of this 
equation by (s ~ On) and let s approach a„. Thus we find that 
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Since the limit of p(s) is p(an), and since 

lim 
8—*an 

S - On 

9(«) 
lim 

B—^an 

1 _ 1 
q'is) q'ia^y 

where we have differentiated the numerator and denominator 
of the first fraction, it follows that 

q'iOn) 
Therefore 

1^} ^ ^ P(Qn) 1 
^ ^ q{sj ^ q'iOn) S - Or! 

Carrying out the inverse transformation of the terms on the 

right, we have the formula 

which is known in operational calculus as one of Heaviside's 
expansions for F(t), 

It is true that the transform of c®* is l/(s — a) even when the 
constant a is an imaginary number, although we have considered 
only real constants and variables up to the present time. More¬ 

over our derivation of formula (2) is valid whether the factors 
of qis) are real or imaginary. Consequently, the expansion 

formula (3) is equally true when any of the numbers On are 

imaginary. 
As an illustration of the use of this formula, let 

sis + l)(s - 2) 

Since we can write the derivative of the denominator in the form 

g'W = I(« + 1)(« - 2)1 + (S + 1)(8 - 2), 

it foDows that (?'(0) = —2. Similarly, considering q{s) as 

the product of s + 1 and s(s — 2), it is seen that g'C”"!) = 
( —1)(—3). Likewise g'(2) = 6, and therefore 

F(t) ^ 
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As another illustration we can write the inverse transform of 

s/(s^ + with the aid of formula (3). Here 

p(s) 
q'{s) ““ 2i 2 

and Oi == ffc, 02 = —ik, where i = -v/—1. Therefore 

since this combination of imaginary exponential functions is 

cos htj by definition. 
The first of the above illustrations suggests a somewhat simpler 

way of determining the coefficients in the expansion. Let s — o 

represent any linear factor, not repeated, of q{s), and let <^(s) 

denote the function left after removing that factor from the 
denominator of f{s); that is 

f{^) = 
qi.^) s — a 

According to the theory of partial fractions then, 

</>(g) 
s — a + K^)y 

where h{s) represents the sum of the partial fractions corre¬ 
sponding to the other factors of g(s), regardless of the type of 

those factors. Multiplying by s — a and letting s —> a, wc have 

C = <f>(ay 

Hence the term in F(t) corresponding to this factor s ~ a in 
q{s) is 

(4) 

When all the factors of q(s) are of this type, that is, when 

q{s) = (5 - aOGs ~ a2) • • • (s - a,„)» 

then if qnis) denotes the product of all these factors except the 
factor e — ttn, it follows that 
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The essential results can be given as follows. 

Theorem 7. If f{s) is the quotient p(s)/g(s) of two polynomials 
in s such that q(s) has the higher degree and contains the factor s — a 
which is not repeaiedy then the term in F{t) corresponding to this 
factor can he wriiien in either of these two forms: 

(6) e“‘, or <^>(o)e»‘, 

where <t>(s) is the quotient of p{s) and all factors of q{s) except s — a. 
Example. Find the function Y(t) such that 

d^ ___ 
dt^' dt^ 

d^Y dY 
+ = 6F(0 

if Y and its first three derivatives are zero when t = 0. 

The equation in the traasform y{s) is 

{s* - 2s^ - + 2s)y(s) = 0/(s). 

After factoring the polynomial in s here, we can write 

2/(s) = /(s) ^7ir])(s'+ l)(s~2)' 

With the aid of Theorem 7, or formula (5), we can write the 

inverse transform of the fraction on the right at once. Note 
for instance that <t){s) corresponding to the factor s — 1 is 

G/[6(s 4- l)(s — 2)]. Using the convolution to express the 
inverse transform of the product of f(s) by that fraction, we have 

the result 

Y{t) = F(0 * (3 - ~ C-* + e*0- 

PROBLEMS 

1. Find the inverse transforms 

distinct constants. 

J(s) 

(r-^KT^ 

(s - a)(s - 5) 

(g — a)(s — 5)(g — c) 

m 
f>at gW 

a — h 
ac“* — he^^ 

a — h 
4“ (c — + (q ~ h)e^ 

(a — h){h ~ c)(c — a) 

tabulated below, where n, 6, and c are 
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Note also that F(t) in part (6) arises by differentiating F(t) in part (a), 
and similarly that, in part (c), if the numerator of /(s) is changed to 
either s or s* the inverse transform of the resulting function can be 
written at once. 

2. Solve the differential equation 

y"(0 - y(o - 1 + 
Ans. Y(t) = CV* + C2e~* — 1 + 

3. Solve 
y'"(0 4- y"(0 - 4y'(o - 41x0 = f(o 

under the conditions that Y(0) = 0, y'(0) = 2, y"(0) = 0. 
Ans. Y(t) = sinh 2t -|- — 4e~^). 

17. Repeated Linear Factors. Quadratic Factors. Wc now 

consider the case in which the denominator of /(s) contains a 

linear factor to the power r. We write 

(1) is - ay’ 

where pis) and qis) are polj'nomials, p(s) being of lower degree 

than qis), and where <t>is) is the quotient obtained by removing 

the factor (s — a)' from the denominator. 
In this case the sum of the partial fractions representing /is) 

has the form 

(2) is - a)' 
1 4---- 

« — a ^ (s — a)* 

+ • • 

1 
(s — a)'* 

where the are constants and h(s) is the sum of the partial 
fractions corresponding to those factors in ^(s) other than (s — a)’’. 

Multipl3dng by (s — a)% we have 

= Ai(s — + • * * + Anis — ay »» + • • • 

+ .dr 4" (s ~ ayh(s). 
Letting s a, it follows that 

Ar — <f>{ay 

Differentiating both members r — n times and letting s a, we 

find that 
^(r~n)(^) = (r — n)Un. 
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Thus the constants An are determined and it follows from (2) 

that 

(3) Fit) 
-4^ 

(a) f , 

+ <^(a) 
{r 

1 
- DU 

This result can be stated as follows. 
Theorem 8. The terms in F(t) corresponding to a factor {s — aY 

in the denominator of f(s) are 

(4) ^ (r - n)! (n - 1)!’ 

wJiere </>(s) is defined by equation (1). 

In case r = 2, for instance, the terms corresponding to the 
factor (s — ay are 

e^^l<t)'(a) + 0(a)fl. 

As an example, let 

= is - 1)(8 - 2)»’ 

Here the term in F{i) corresponding to the factor s — 1 is 

Corresponding to the factor (s — 2)2, we have 

.(.) - 
so that <^(2) = 1 and = — 1 and the terms in F(t) are 

Consequently, 

e^(~l +0- 

F(t) = & + e^\t ~ D- 

Since the number a may be imaginary and since a factorization 
of every polynomial into linear factors, real or imaginary, exists, 

our last two theorems give a systematic way of finding the inverse 

transform of p(s)/q{s) in all cases. If imaginary factors are 

present, however, the result is given in terms of imaginary 

exponential functions. The reduction of the latter to real func¬ 

tions is sometimes awkward. 
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When the coefficients in q{s) are real, the imaginary linear 

factors arise from quadratic factors of the type 

+ as + Pf 

where — 40 < 0. By completing the square in s, we can 
write such factors in the form 

is + by + 

Proceeding as before, we write 

^ (s a* "" 

As + B 

(s + by + + his), 

and after multiplying through by the quadratic factor and letting 

s approach — 6 + at we find that 

0(—5 + at) = Ai—h + at) + B = <#>i 4“ t^2, 

where 0i and <j>2 are the real and imaginary parts of the complex 
number <^( — 6 + at). Equating real and imaginary parts, we get 

clA = <f)2i B = 01 -f" bA ] 

hence the partial fraction corresponding to the quadratic factor is 

i 4~ 5)02 4~ cL<t>i 
a (s + 6)2 + a2’ 

Consequently the corresponding terms in Fit) are 

(6) i e'~^*i<t>2 cos at + 0i sin at), 

which can be written in the form 

(7) i ■\/<l>i + 4>l sin {at + t) 

where tan e = 02/0i. 
As an illustration, let 

fis) = is + k)is^ + a*) 

Corresponding to the quadratic factor here, 0(s) = s/(« + k) and 

“■ fc + at "■ A;* + a*' 

hence 0i = a^/ia^ + A;*) and 0* = ak/ia^ + jfc*). Accounting for 
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the linear factor s + A; in the usual way and including the 
terms (6), we find that 

F{t) = - -j- Vo (Aj cos at + a sin at — 
a^ “t" 

When q{s) contains a repeated quadratic factor, a similar pro¬ 
cedure can be used to obtain F{t) directly in terms of real func¬ 
tions. We confine our attention here to the important case in 
which the square of the factor is present, so that p(s)/2(s) can 
be written 

4>{s) _ As + B Cs + D \ \ 
1(5 + hy + {s + by + [(s + by + a2]2 

Multiplying through by the scpiare of the quadratic factor and 
differentiating once with respect to s, then substituting —b-\-ai 
for 5 in the two resulting equations, we can solve for A, B, C, 

and D in terms of the numbers <^i, <^2, 4>h 04, where 

<f)( — b A" o.i) = <^i + 102, <j>'{-'b + ai) = 03 + ^*04. 

With the aid of transforms found in Sec. 12, we can then write 
the terms in F{i) corresponding to the repeated factor as follows: 

(8) ^ e“^'^[(02 — U03) cos at + (0i + a04) sin at 

+ at(<f>2 sin at — 0i cos at)]. 

The presence of the cube of the quadratic factor will intro¬ 

duce terms of the above type and additional terms of the type 
l2Q-ht at and t-e~^^ cos at. Our principal results can be stated 

as follows. 
Theorem 9. When f{s) = p{s)/q{s) where p(s) and q(s) are 

polynomialsy the terms in F(t) corresponding to a distinct quadratic 
factor (s + 5)'^ + in q{s) are the terms (6), and those correspond¬ 
ing to such a factor to the second degree are the terms (8). 
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(«‘ + o»)«» 
,, «*-a* 

2. Solve the differential equation 

y"(0 - 2Y'{t) 4- y(0 - 1. 
Am, Y{t) « (Cl + + 1. 

8. Solve the equation 

y"(0 + y(0 = 3 sin i 

^4 (cos Oi - 1) + ^ /* 

t cos at 

if 7(0) = 1, 7'(0) = - t. 
Am, Y(t) = (1 — 1^) cos L 

4. Solve the equation 

7<4H0 + 27"(0 4- Y{t) - 0 

if y(0) = 0, 7'(0) - 1, 7"(0) = 2, 7'"(0) == -3. 

Am. 7(0 == i(sin t 4" cos t). 

18. Integration of Transforms. Let F(t) be sectionally con¬ 

tinuous in each finite interval and of the order of e*"* as < tends to 
infinity. Then when x > a, 

= So’ 

and this integral is uniformly convergent with respect to x. 
Consequently we can write, * for any s > a and any b > a, Xb nb 

f{x) dx = \ I €^*‘F(0 dt dx 

b 

e""** dx dt 

-X'qs 
Now if the function F{i) is such that F{t)/t has a limit as t 

tends to zero, then the latter function is also sectionally con¬ 
tinuous and of exponential order. It follows that the last 
integral is uniformly convergent with respect to b and that the 

* See, for instance, Carslaw, op, dt., p. 199, for a discussion of the inte¬ 
gration of infinite integrals. 
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limit of this integral as h tends to infinity is the same as the 

integral of the limit of its integrand, that is, 

Thus we have established the following theorem. 
Theorem 10. Division of the function F{t) by t corresponds to 

integration of the transform of the function, in this manner: 

(1) f{x)dx. 

This formula is valid provided F{t) is sectionally continuous and 
of the order if s > a, and provided that the limit of Fit)/t 
exists as t—^ +0. 

As an example, 

C" k dx T 

2 
arctan 

where s > 0. Hence 

(2) L 
r /sin kt\ 

arccot 

Recalling that integration with respect to t corresponds to 

division by s, we can now write the transform of the sine-integral 
function 

Si«) = 
JO T 

This is a function of considerable importance in applied mathe¬ 

matics. Its values have been tabulated in the more extensive 
mathematical tables. It follows from (2) with A; = 1 that 

(3) JL{Si(0} = - arccot s (s > 0). 
s 

As another example, 

L 

= log 

X + a 

X + 
a; + 6 

X + hj 
I dx 
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where a > —a and s > —b. Hence 

/.i\ T h~°‘ ~ 1 s + 6 (4) ^-|=log — 

Note that when a = 0 and 6 = 1 we have the transformation 

(5) L = log (l +1) (s> 0). 

19. Periodic Functions. I^et F(i) be a periodic function with 
period a; that is, 

F(t + a) = F(l). (t > 0). 

If it is sectionally continuous over a period 0 ^ t ^ a, then its 
transform exists and we can write it as the sum of integrals over 
successive periods: 

/(s) = £“ e-’‘F(0 dt=X Xa 
n “0 

If we substitute t = i — na and note that F(r + no) = F{t) 
because of the periodicity of the function, we get 

f(s) = V e-"** p dr. 
0 

The integral on the right is a factor of the series, and the sum of 
the geometric series with terms is (1 — The 

following result is therefore derived. 

Theorem 11. If F(t) is periodic with the period a, then 

(1) m = 1 - 

Let us apply this formula to the function 

M(c, 0 = 1 when 0 < t < Cy 
= — 1 when c < t < 2cy 

M(Cy t + 2c) — M{Cy i). 

This is sometimes called the square wave or the meander function 
(Fig. 9). Since 

t) dt = dt 
2c f 

e-.« (ft = i (1 
« 
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M(e.t)| 

(04) 

(2c,0) 

Fia. 9. 

1 

the transform of Af(c, t) is 

(1 - e-")^ _ 1 - e-" 
s(l — e-^") ~ s(l + e-")" 

Hence 

(2) L{M{c, 01 = - tanh f (s > 0). 

The integral of the function M(c, t) from 0 to ^ is the function 
/f(c, t) defined as follows; 

S (c, i) = t when 0 < < < c, 
= 2c — ^ when c < t < 2c, 

Hie, < + 2c) = Hie, t). 

This function, whose graph is the triangular wave shown in Fig. 

10, has the transform 

(3) L{H(c,01 =itanh|. 

Since 

i(l+tanh|) 
2 

s(l + 

it follows from the transformation (2) that 

(4) + 
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Note that the function i t) has the value 1 when 
0 < t < c and 0 when c < t < 2c and that it is periodic with the 
period 2c; thus in the terminology of electrical engineering this 
function represents the half-wave rectification of the function 

M(c, t). 
Consider the half-wave rectification F(t) of the function sin t, 

(5) F{t) == sin t when 0 < f < ir, 
= 0 when w < t < 2iry 

where F(t -f 2ir) = F(t)y (Fig. 11). By applying formula (1), 
the reader can verify that 

(6) m = 

1 
(s2 -f 1)(1 ~ 

By translating the graph of F(t) through a distance w along the 
i-axis, which corresponds to multiplying the transform (6) by 

F(t)| 

Fig. 11. 

and then adding the ordinates from this graph to those in 
Fig. 11, we obtain at once the transform of the full-wave recti¬ 
fication |sin ^1 of the sine function: 

m LiMn <11 - pit 1^" - i4rr T 

The above observations are easily generalized. If F{t) is any 
antiperiodic function, that is, if 

(8) F{t + c) = -F(0 it > 0), 

then F(t + 2c) = F(t) and it can be seen from formula (1) that 
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Let Fi{t) denote the half-wave rectification of this function F{t), 
Then, according to formula (1), 

In view of formula (9), it follows that 

(10) = 

lienee the transform of the half-wave rectification of any anti- 
periodic function is simply the transform of the function divided 
by 1 — The half-wave rectification of sin kt^ for example, 
has the transform 

1 - e * 

By translating the grapii of Fi{t) to the right to a distance of c 

unites and adding the oi'dinates in this graph to those in the 
graph of F[(t)^ we obtain at once for the transform of the full- 

wave rectification of the antiperiodic function described by (8), 

(12) L||F«)I} =/(s)coth|, 

provided that F{t) ^ 0 when 0 < ^ < c. li F{t) is negative at 
some points of that interval, our formula (12) should be written 

(13) L{i^.(0} =/(s)coth|, 

where Ft{t) is the full-wave rectification of the antiperiodic 

function F{t)] that is, F^iji + c) = i^2(0 

^2(0 = F(t) when 0 < < < c. 

20. Tables of Transforms and Operations. A list of the 
operations on the function F{t) and the corresponding operations 
on the transform /(s) will be found in the Table of Operations in 

Appendix II. This list will serve as a summary of our results 
to date on the theory of the Laplace transformation. 

The Table of Transforms in Appendix III contains a fairly 

extensive list of transforms of particular functions. The deriva- 
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tions of a number of these have been indicated in the preceding 

pages. The following transformation, whose derivation has not 

yet been given, is of considerable importance. 
Let 

(1) F{i) = {k > 0), 

a function that arises in certain problems in heat conduction and 

diffusion. Then 

/(s) = J e dt 

"tjo exp (-^^) (-i^) 

where we have made the substitution t = k/(2 V^), and where 

exp (x) = c*. 

Combining the exponents in the last integral and completing 
the square in the exponent, we have 

(2) exp[-(r-^)]rfr. 

We now let k \/s/2 = 6 and h/r = X. Then 

and upon adding the integral on the left to each member of this 
equation, we have the equation 

‘I O+p) 
-9>- 

Finally we substitute x = \ — h/\ in the last integral to get the 
formula 
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Therefore, in view of equation (2), our result becomes 

(3) /(s) = 

that is, 

(4) L (A > 0,8 > 0). 

Since multiplying by t corresponds to differentiating with 
respect to s and changing sign, it follows from Theorem 4 and 

formula (4) that 

(5) L ^ (fc ^ 0, s > 0). 
/ v« 

Note that when A; = 0 this reduces to the known transformation 
of {irt)-K 

Finally, in view of the transformation (4), we note that 

Therefore 

1 e-tv;| = 1 - erf (A: ^ 0, s > 0), 

where erf (x) is the error function defined in Sec. 14. This 
formula can be written 

(7) L jerfc \ ^ 0, s > 0), 

where the complementary error function erfc (x) is defined as 

erfc (a-) = 1 — erf (x) = —^ C d\. 
V’T Jar 



CHAPTER III 

ELEMENTARY APPLICATIONS 

The properties of the Laplace transformation that we have 

derived up to this point enable us to solve rnany problems in 

engineering and physics involving ordinary and pai tial differential 

equations. In this chapter we shall solve a number of problems 

in elastic vibrations involving ordinary differential equations. 

These are problems in which our method is very convenient, 
although not at all essential. We shall also treat one or two 

simple applications of integral equations. 

The next chapter contains applications that involve partial 

differential equations. The solution of problems of this type is 

the primary objective of this book. In later chapters we shall 

extend our treatment of such problems. 

21. Free Vibrations of a Mass on a Spring. I.et a body of 
mass m attached to the end of a coil spring (Fig. 12) be given an 

initial displacement and an initial velocity and allowed to vibrate. 

The other end of the spring is assumed to bo kept fixed, and the 
spring is assumed to obey Hooke's law, so that the force exerted 

by the free end is proportional to 

the displacement of that end. 

The factor k of proportionality is 

X called the spring constant. We 

also assume that the mass of the 
spring can be neglected in com¬ 

parison with the mass m and that no frictional forces or other 

external forces act on m. 

Let X denote the displacement of m from the position of equi¬ 

librium, that is, let the origin 0 denote the position of m when 

the spring is not deformed. Then according to Newton's second 
law of motion, 

I k m 
|AAAAAAAp 

Fio. 12. 
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Let iTo denote the initial displacement and vo the initial velocity, 

so that the function X(t) satisfies the conditions 

(2) X{0) = X'{0) - Vo. 

We can determine the function X{t) by applying the Laplace 
transformation to both members of equation (1) and using the 
conditions (2). Thus if x(s) denotes the transform of X(t)f it 

follows that 
in[s2a;(s) — sxo — vo] = —kx(s)f 

and therefore 

Hence 

(3) 

where 

x(s) Xo 

m 

+ Vq 
.92 + 

m 

XU) = Xo cos o3ot + “ sin wot 
0)0 

+ “)» 

tan a = 
Xo0)o 

Vo ’ 

The motion described by formula (3) is a simple vibration with 

angular frequency <oo, called the natural frequency of this system, 

and phase angle a, and with the amplitude [xo + {vo/o)o)^Y^. 

^AAAAAAAD— 

Fig. 13. 

If a damping force proportional to the velocity also acts upon 
the mass m, as indicated by the presence of a dashpot c in Fig. 13, 

the equation of motion becomes 

(4) wZ"(/) = -kX(t) - cX'(t). 

In this case let the mass start from 0 with the initial velocity v©, 

X(0) = 0, X'(0) = Vo. 

The equation in the transform a:(s) becomes 

ms^is) — mvo = —kx(8) — C8x(8) 
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or, if we let 26 = c/m, and again write = fc/m, 

(5) a:(s) ^ 26°8 + (s + by + - 6^' 

If b* < wS, that is, if the coefficient of damping is small enough 
that 

< 4km, 
then the formula for the displacement is 

(6) X{t) = vM - sin t V^o “ 6*. 

In the case of critical damping, that is, when wo — b or 

= 4km, 

it follows from equation (5) that 

(7) X(t) = vote-^^. 

It can be seen from this formula that the mass m moves in the 
direction of vo until the time t = 1/6, then reverses its direction 
and approaches 0 as t tends to infinity. 

When > 4km, a similar motion of the mass takes place. The 
discussion of this case and the case of other initial conditions can 
be left to the problems. 

The mathematical problem treated in this section can be inter¬ 
preted also as a problem in electric circuits. This well-known 

analogy between problems in vibrations 
of mechanical systems and electric-cir¬ 
cuit theory will be easy to see in other 
problems of this chapter. Naturally, 

the notation and terminology differ in 
the two types of problems. 

In the electric circuit shown in Fig. 14, 

let Q be the charge accumulated in the 
capacitor C at time t, and I the current in the circuit, so that 

/ = Q'(0. 

If the circuit has a resistance R and a coil of inductance L, the 
differential equation in Q{t) is 

lq"(0+W(0+5<2«)=o. 

^^Q00QQQ; 
L 

«-WW^ 
R 

Fiu. 14. 
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Except for the notation used, this equation is the same as equa¬ 

tion (4). When the resistance is negligible, 12 = 0, the equation 
reduces to our equation (1). 

The initial conditions in the electrical problem can be made the 

same as those in the mechanical problem. For example, if the 
capacitor has an initial charge Qo and if the initial current is /o, 
then 

Q(0) = Qo, Q'(0) = 7o, 

which are the same as the initial conditions (2) in our first 

mechanical problem. 

PROBLEMS 

1. When c® > Mem in the above problem of damped vibrations, show 
that the mass m moves in the direction of Vo until the time 

t 
(6 4- a) 
(b - ay 

where a = (6* — when it turns and approaches the origin. 
2. When the mass m in the problem of damped vibrations is initially 

displaced to X = zo and released from that position with initial velocity 
zero, show that 

X(t) — Xo~ sin + a) 

when c* < 4km, where wi = and tan a — «i/6. 
3. When c* = 4km in Prob. 2, show that 

X(0 = -f- bt)f 

and hence that the mass m never moves across the origin if & ^ 0. Also 
discuss the motion in case c* > 4km, 

22. Forced Vibrations without 
Damping. Let an external force 

F(t) act upon the mass in the 

mechanical system of the last 
section, assuming there is no damping (Fig. 15). The displace¬ 

ment X(t) of the mass m then satisfies the differential equation 

(1) mX"(t) = -kX(t) + F(t), 

If the initial conditions are 

(2) X(0) = xo, X'{0) = Vo, 

|AAAAAAAP“ “F(t) 
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the equation in the transform x{s) becomes 

?n[s2a:(s) — sxa — t;©] = —kx(s) + f(s) 

where f{s) is the transform of the force function F(t), Let wo 

again denote the natural frequency of the system 

and we can write 

(3) x(s) = 
XoS Vo 

+ <»l + Oil 

Hence th© displacement for any F(t) can be written, with the aid 
of the convolution, as 

V if* 
(4) X(t) = Xo cos o3ot + — sin a)o< H-I sin o)o(t — t)F{t) dr, 

O3o VflOio Jo 

a result that can easily be shown to satisfy (1) and (2) above. 

But the motion of the mass under particular external forces 
Fit) is more interesting than this general formula (4). In these 

special cases it is often easier to refer to the transform (3) than 
to (4). When F{t) is a constant Fo, as in the case when the Z-axis 
is vertical and the force of gravity acts on m, equation (1) can 
be written 

mX"it) = -k [x«) - 

If F == X — Fo/h^ this becomes mF" = —A:F; so the motion is 

the same as free vibrations if displacements are measured from 
an origin Fo/k units from 0. 

Consider the following special case, taking Xo == vo — 0 for con¬ 
venience. Let 

In this case 

Fit) = Fo when 0 < t <tof 
= 0 when t > U, 

As) - Fo a 
and, since *o = fo = 0, it follows from equation (3) that 

(5) a;(«) = ^»r_jL— 
m Ls(»* + wj) 

g~*“* 1 

S(8* + Uo) J 
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and if we write 

\l/(t) == sin^ ^(ji4 when i > 0, 
= 0 when / < 0, 

it follows from equation (5) that 

€yp 
(6) x(t) = ^ im - - «„)]. 

The graph of this function can be drawn easily by composition 
of ordinates. When is approximately the graph is the 
full-drawn curve in Fig. 16. 

When to = 27r/«o, it follows from Fig. 16 that the mass m 
performs one oscillation and then remains at the origin (Fig. 17). 

23. Resonance. Let the external force in the problem of the 
last section be 

F{t) = Fo sin <>)t, 
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where Fo and <a are positive constants, 
tion (3) of Sec. 22, 

Then according to equa- 

(1) x(s) 

and, if 07 7^ O7o, 

Xq8 4- Vo Fo 
s* Hh ojq m + Wo) (5* + w^) 

(2) X{t) = x« cos + 1 [t;„ + sin «o< 

" m(a>’' - uS) 

That is, the motion is the superposition of two simple harmonic 
motions, one with frequency wo and known as the natural com¬ 

ponent of vibration, and the other with frequency w which is 

called the forced component of the vibration. Note that the 
natural vibrations are not present if we make 

xo = 0, Vo 
_Fow_ 

m(a?o “■ w^) 

When « = Wo, however, we have 

(3) ~ ^0^ 4~ VQ I ^ Wq 

^ ^ 52 4- W§ m (§2 + w§)2' 

The presence of the repeated quadratic factor in the denominator 
here shows that X{t) will contain a term having the form of the 
product of / by a sine or cosine function. In fact. 

(4) X(t) — Xo cos O3ot 4—2 ( Vqwo + o~^ I sin dot — i cos wo^. 
Wo \ zm/ 2mwo 

In view of the last term here, the amplitude of the oscillations 
of m increases indefinitely. 
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Id this case the force F(t) is said to be in resonance with the sys¬ 

tem. We note in particular that if rro = 0 and vo = “-Fo/(2mwo) 
the resonance type of motion reduces to 

shown in Fig. 18. 

24. Forced Vibrations with Damping. When a force F{i) acts 

on the mass of the damped system of Fig. 13, the equation of 
motion becomes 

Xl) mX"(0 = -kX(t) - cX\t) + F{t), 

Let 
X(0) = 0, X'(0) = 0; 

then the transformed equation has the solution \ 

(s + 5)2 + o>l-b^ 

where as before wo is the natural frequency of the undamped 
system and 2h = c/m. 

Again let 
F(t) = Fo sin (at. 

U b < 0)0, it follows from equation (2) and Theorem 9, Sec. 17, 
that X(t) will consist of terms of type sin {<ait + ai) and sin 
{(at + a)j where o)? = ojJ — and where ai and a are constants. 

Consequently the component of the motion with frequency o)i 
is nearly damped out after a sufficiently long time and the steady- 
state motion 

(3) X(t) = A sin {(at + a) 

remains, where A is a constant. 

The constant A in formula (3) depends on o). The value of cj 
for which A takes on its maximum value is called the resonance 
frequency in the case of damped motion. Equation (2) shows 

that there is no value of the frequency (a of the exciting force 
which will induce terms of the type t sin {cot + a) in the dis¬ 
placement X{t)y unless 6=0. For if 6 5*^ 0 the formula for 

x{s) shows that there can be no repeated factors of the type 

-f 0)2)2 in the denominator. 
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PROBLEMS 

1. Find X(t)y and describe the motion for the system above when 

F{t) = Fo sin Oil and b ~ wo. 

2. Obtain the formula for A in equation (3) above, and show that the 

resonance frequency has the value V^co5 — 2^^ when 2b‘^ < wj. 

3. In the solution of tlie problem of undamped vibrations of Sec. 22 

with a;o = — 0 and F{t) = Fq Avhen t < <0, F{t) = 0 when t > <0, let 

F{Jtf) = /, a constant, and let and show that the limiting value of 

X{t) is 

X(t) = sin ojo/'. 

Also note that lim f(s) — I and that the above formula for X(t) can be 
to - ■♦0 

obtained formally by replacing f(s) by 

the constant / in equation (3), Sec. 

22. Here / is the impulse or increase 

in momentum given to the mass m at 

t - 0. 

4. The electric current 7 and the 

charge Q on tlie capacitor C in the 

circuit shown in Fig. 19 are functions 

of t that satisfy the conditions 

L^ + RI + ^ = Eo, Q = £ 7(r) dr, 1(0) = 0, 

where t is the time after closing the switch K, and where Q and I are 

initially zero. The electromotive force Eo if^ constant. 

(а) Derive the formula 

7 = sin cait 

u r ^ , 2 1 ^ 
where » = ^ and wf = — ^2 > 0* 

P2 1 

(б) If ^ > 0, show^ that 

7 = ^ sinh kt. 

26. A Vibration Absorber. Wo have seen that in the simple 

vibrating system with damping, with an exciting force Fo sin o)t, 

the forced component of the vibration remains undamped. Let 

R 
Fig. 19. 
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another spring and mass be connected in series with the original 

mass (Fig. 20), where the second system is undamped. Let us 

see whether it is possible to ch<K>se the spring constant and mass 

of the auxiliary system in such a way as to eliminate the forced 

vibrations of the first mass. 

Let X and A^i denote the displacements of the masses m and 

respectively, from the i)ositions they have when neither spring is 

deformed. If the exciting force is 

F{t) = Fo sin 03t, 

and if m and rrix are initially at rest at their respective origins, 

then the displacements X{t) and X\(t) satisfy the following 

system of differential equations: 

m~^p-= -kX + kiiXi - X) -c-^ + Fo sin wt 

= -k^(X, - X), 

X(0) = A^'(O) = A'i(O) = A;(0) = 0. 

The transforms x(.s) and a:i(6*) of X{1) and Xi(t) therefore satisfy 

the simultaneous algebraic equations 

(ms^ + C5 + A; + kx)x(s) — hiXi{s) = 

kix(s) — 4- ki)xi(s) = 0. 

Eliminating xi(s)f we find that 

(t) x{s) = Foco 
miS® + ki 

where 

(2) q{s) == + ki){ms^ + cs + k kx) — kl. 
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In view of the presence of the quadratic factor in the 

denominator of the right-hand memher of equation (1), it follows 

that X{t) will contain a term of the type 

(3) C sin {(jdt + a) 

unless ki/mi — a?-, in which case the numerator of the above 

fraction cancels with the factor in the denominator, leaving 

(4) x(s) = 

By substituting s = ir in (2), where r is real, it is seen that q(s) 
can have no pure imaginary zeros. Therefore it can have no 

quadratic factors of the type 5“ + r“. In fact, if c is small, the 

real part of any zero of q(s) can he shown to be negative, so the 

other terms in X(i) represent damped oscillations, as one should 

expect. The component (3) of forced vibration is then the only 

undamped component of the motion of the mass w. But when 

= co^, this latter component disappears and our conclusion 

is as follows. 

The forced vibration of the mass m is eliminated by the system 

mi, provided the natural frecpiency of that system is equal to 

the frequency a? of the exciting force. Tims all but the damped 

component of the vibration of rn is absorbed, and the mass m 

approaches a fixed position as t increases. 

This is the principle of the Frahm vibration absorber, which 

has been put to use in such j)ractical apjdiances as electric hair 

clippers.* 

By solving the above equations for ri(.s), the Header will see 

that the mass mj has an undamped component of motion of the 

type (3). 

PROBLEMS 

1. Show that when the absorber system mi, ki in Fig. 20 also has 

damping the forced vibratioii.s cannot be completely absorbed as they 

are in the case above. 

2. If there is no damping in the system discussed in this section, that 

is, if c = 0, shovsr that resonance in the motion of the mass m cannot 

occur if k]/mi — Also show that when r = 0 the quartic factor 

q(s) has zeros of the type ±i>i, ±ir2 and, hence, that there are two 

resonance frequencies w = ri, w = for the system rriy k. 

* Den Hartog, J. P., ‘‘Mechanical Vibrations,” pp. lOSif., 1940. 
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3. Show that the theory of the vibration absorber in this section is 

not affected by assuming initial conditions other than X(0) = X'(0) = 0, 
or Xi(0) = X[i0) = 0. 

4. If in the system of this section the force is replaced by the force 

F{t) = Fo sin (ojt + a), where a is any constant, show that the forced 

vibrations are absorbed as before when ki/yrii = o)^. 
6. Show that the vibration absorber cannot be adjusted to absorb all 

forced vibrations when 

F(t) = Ai sin o)it A‘2 sin 0)^1 

where the ^^s and a)^s arc constants and wi 9^ wo. 

6. If the force F{t) is removed from m in Fig. 20 and the point A of 

support of the spring k is forced to move so that its distance from the 

wall is F({)/k, show tliat the differential ecpiations of motion are the 

same as in the case of the fixed support with force F{t) ])resent. Thus 

the motion is identical to that already treated. 

26. A Damped Absorber. Thc^ damping in the system of the 

foregoing section was located in the main part of the system 

(Fig. 20). If it is located in the absorber instead, the system is 

essentially as shown in Pig. 21. Although the forced vibrations 

of m cannot be completely absorbed by any adjustment of the 

latter system, the coefficient of damping of the absorber can be 

adjusted to give the optimum range in amplitudes of the forced 

vibration for a range of frcHiuencies 00 of the impressed force. 

The corresponding electrical network is shown in Pig. 22. 

Let the displacements X{l) and Xi(t) of the masses m and mi 

be measured from the positions of these masses when the system 

is in equilibrium, and let the initial disi)lacements and velocities 

be zero. Then if the impressed force is Fq sin w/, the etjuations 

of motion are 
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d^X 

‘ df^ 

d^Xx 

-kX + kxiXx -X)+c - ^) + ^» sin wt, 

d^Xx , /dXx dX\ 
mx A:i(Ai A) c ^ j, 

A(0) = A'(0) = Zi(0) = a;(o) = 0. 

The transforms x(s) and Xi(s) therefore satisfy the equations 

ms'^x = —kx + ki(xi — 0*) + cs(xi — a;) + 

niis^xi == —ki(xi — x) — cs(Xi — x). 

Therefore 

0 

s^ + 

and we find that 

(1) 

where 

(2) rPis) - Fo 

Xi(s) = - 
^ mis^ + cs + ki ^ ' 

Wl,s2 + CS + ki 

(?rhs‘^ + cs + k])(nis- + cs + k + kj) — (cs + ki)^ 

When c 9^ 0, it is therefore clear that the factor s^ + o)^ will 
always be present in the denominator of x(s) and hence that the 

vibration X(t) of the main mass will have a forced component of 

the type 

(3) A sin (it)t + a). 

Moreover, it follows from the expression (7), Sec. 17, that the 
amplitude A is j^(za?)]. This is easily computed from equation 
(2). We find that 

^ ^ FI I(mco2-/c)(mico2-^J-m]A;ia)2]2+cM(m+miV^ 

The effectiveness of the damper can be studied from this 
equation.* The relation between A^ and c* here, when co and 

all other parameters are kept fixed, shows that is least either 

when c is zero or infinite, depending upon the magnitudes of 
mi, w, etc. But a study of ^ ^ as a function of co^ shows that there 

is a finite positive value of c for which the range of values of 

See Den Hartog, op. cit.j pp. 118 ft., for a detailed dissuasion. 
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will be as small as possible for all frequencies w. This optimum 
value of c is one of importance in the applications. 

27. Motion of a Particle. As an example of another type of 
problem in mechanics leading to linear ordinary differential 

equations with constant coefficients, consider the following 
problem in the curvilinear mo¬ 

tion of a particle in the X T-plane. 

A particle of unit mass is acted 
upon by two forces, one always 
directed toward the origin and 

proportional to the distance of 
the particle from the origin, and 
the other the force of gravity in 

the direction of the negative 
F-axis (Fig. 23). 

If the particle starts from the point (a, 0) with a velocity Vf^ 
in the vertical direction, the equations of motion arc 

Z"(0 = ~/c2X(0, F"(0 = - g, 
X(0) = a, X'(0) = 0, F(0) = 0, F'(0) = 

The transforms of X{t) and Y{t), therefore, satisfy the equations 

(§2 -f /c2)x(s) = sa, {s^ + h’^)y{s) = 

and it follows that 

(1) X{t) = a cos ktj Y{t) = ^ sin kt — — cos kt). 

These are the parametric equations of the trajectory. If ro 9^ 0 

and a 9^ Oy the trajectory is an ellipse whose major axis is not 
parallel to cither coordinate axis. 

PROBLEMS 

1. Eliminate the parameter t from equations (1) above and show that 
when Vo 9^ 0 and a 9^ 0 the trajectory is an ellipse. 

2. A particle of mass m moves on a vertical A"-axis under two forces: 
the force of gravity and a resistance proportional to the velocity. If the 
axis is taken positive downward, the equation of motion is 

i'lG. 23 

mX"(0 kX\t). 
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Show that its solution, under the conditions X(0) = 0, X'(0) = t^o, is 

•X'(0 = p [(K - ff)(l - e"“) + bgl], 

where h = A;/m, and discuss the motion. 

28. Static Deflection of Beams. We shall now illustrate the 

possibility of using the transformation in some problems with 
respect to a variable that has a finite range and also in which 
discontinuous functions are involved. 

Let be the static transverse displacement at the point x 
in a uniform beam due to a load distributed in any manner along 

the beam. It is shown in mechanics that 

(1) S= 

where a = \/{EI)y E being Young\s modulus of elasticity and I 
being a moment of inertia of the cross section of the beam, 

and where W(x) represents the load per unit length along the 

beam. At any point where there is no support, not only the 
function Y but also its derivatives of the first three orders must 
be continuous. 

Let both ends of a beam of length 2c be built in (Fig. 24), that 
is, 

(2) F(0) = y'(0) = r(2c) = 7'(2c) = 0, 

and let the load per unit length be zero over one half of the beam 
and a constant wo over the other half. Thus 

(3) W{x) = when 0 < a; < c, 
= 0 when c < x < 2c. 

Let us extend the definition of the function W(x) here, making 

it zero for all x > 2c. Then the Laplace transform of this 
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function, with respect to the variable is 

w{s) =» ( “ — - e“ 
\s s 

Also let y{s) denote the transform of the deflection Y{x) in a beam 
extending infinitely far to the right, having the load zero on the 

extended part. Disregarding the conditions at the point x — 2c, 

and using the conditions at a; = 0, the transform of equation (1) 
becomes 

s^y{s) - sY"iO) - y'"(0) = (1 - c-“). 

The constants F"(0) and F'"(0) which wo shall write as A and 

i?, respective^ly, will be determined from the conditions at the 
end X — 2c. 

Since 

. . A . B awo 
2/(s) =-^ + V4 + -.r 

e-c. 

we find that 

(4) y(a;) 

where the function {x — c) has the following interpretation: 

(5) {x ~ c} = 0 when x < c, 
= X — c when x > c. 

The conditions F(2c) == F'(2c) = 0 can now be applied to 
the function (4) to determine the constants A and B. After 

solving for A and Bj our result is found to be 

(6) 
F(x) _ 11 

= — c^x^ — 
awo 90 

13 

96' 

where 0 ^ x ^ 2c and where the last function on the right is 

defined by equation (5). 
The problem here is one that can be solved, of course, by 

successive integrations of equation (1). But the continuity 

conditions upon the first three deriA^atives of F(x) at x = c which 

must be applied in that method make the method less direct 

than the transformation method. 
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PROBLEMS 

1. Find the formula for the deflections in a uniform beam with both 

ends x = 0 and x — 2c hinged, so that y(a:) and Y"{x) vanish at the 

ends, under a uniform load Wq per unit length. 

A ns. Y(x) - awois^x^ — icx^ -f 
2. Find the formula for the deflections in a uniform beam with the 

load bx per unit length on the interval 0 < x < c and 6 (2c — x) on the 

interval c < x < 2c, if the end a; = 0 is built in and the end x — 2c 
hinged. 

A?is. YM 
ab 32 64' 120 60 

29. The Tautochrone. We shall now discuss a problem in 
mechanics that leads to a simple integral equation of the con¬ 
volution type. 

The problem is that of determining a curve through the origin 

in a vertical xy-plane such that 
the time required for a particle 
to slide down the curve to the 
origin is independent of the 
starting position. The particle 
slides from rest under the action 

of its weight and the reaction 
of the curve on which it is con¬ 

strained to move. The required curve is called the tautochrone. 
Let a denote the length of arc of the curve, measured from the 

origin 0, and l(?t (x, y) be the starting point and (J, r\) any inter¬ 
mediate point (Fig. 25). Equating the gain in kinetic energy to 
the loss of potential energy, we have 

where m is the mass of the particle and t is time. Thus 

da = — \/% \^y — 'n dtj 

and upon separating variables and integrating from n] — y to 

rj = 0 we have 
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where T is the fixed time of descent. Now 

77 

cr = my\ 
where the function H {y) depends upon the curve, and therefore 

(1) TV^ = (y - ri)-iir(r,) dv. 

This is an integral equation of convolution type in the unknown 
function ir(y). We may write it in the form 

TV^:=y~i*ir(y), 

Let h(s) be the Laplace transform of II(y) with respect to the 
variable y. Recalling that 11(0) = 0 and that the transform of 

the convolution of two functions is the product of the transforms, 
it follows formally from equation (1) that 

That is. 

hence 

(2) 

T\/2g- = sh(s)L 
s 

H'{y) =1^-1.. 
^ Vy 

We can see that this function does satisfy our integral equation 

(1) by substituting it into that equation and performing the 
integration. 

Since 

«'(y) - I - Vi + (ly. 
the differential equation of the curve in terms of the variables 

X and y is, according to equation (2), 

1 + 2gT^ ^ a 

TT^y y’ 

where a = 2gT^/vK Separating variables here, we have 
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and the necessary integration can be performed easily by sub¬ 
stituting y = a sin^ for we then find that 

dx = a cos“ ^ 0 ^ (1 + cos 6) dd. 

Noting that x = 0 when 2/ = 0, the parametric equations of the 
tautochrone are therefore 

(3) X = I (0 + sin e), ?/ = I (1 - cos 6). 

These equations represent the cycloid generated by a point P 
on a circle of radius ia as the circle rolls along the lower side of 
the line y a. The parameter 6 is the angle through which the 
radius drawn to the point P has turned, where the initial position 

of P is at the origin. Our tautochrone is of course just one arch 
of this cycloid. Since a — 2gT^/Tr^, the diameter of the generat¬ 

ing circle is determined by the time T of descent. 
The above problem can be generalized in various ways so as 

to lead to other interesting questions; in fact it was a generaliza¬ 

tion of the problem of the tautochrone that led the great Nor¬ 

wegian mathematician Niels Abel (1802-1829) to introduce the 
subject of integral equations.* 

If the time T of descent is a function F{y), for example, our 

integral equation (1) becomes 

(4) V^gFiy) = f“(y- vr^n'iv) dv. 

In case T is a linear function of the arc length, 

(5) T = a + bc = a + bll{y), 

our equation becomes the integrodifferential equation 

(6) a + hH{y) = f" (v - dv- 

The transformed equation is 

- + hh{s) = \/7r^ h{s), 
s 

This leads easily to a formula for H'(y). In case b = '\/t, for 

* See B6cher, M., '‘Integral Eetuations,” p. 6, 1909. 
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instance, we have 

sh{8) = —y=. — 

and, according to formula (10), Sec. 14, 

Il'iy) = —^ [1 + erf 
’T V 2/ 

30. Mortality of Equipment. Let the function F{t) denote 
the number of pieces of equipment on hand at time t, where the 
number is large enough that we can consider it as a continuous 

variable instead of a variable that takes on only integral values. 
The equipment wears out in time, or is lost from service for other 

reasons, so that out of N{0) pieces introduced at time ^ = 0 the 

number N(t) in service at time t is given by the formula 

(1) N{t) = N{0)H{t). 

where H{t) is a function that determines the surviving equip¬ 
ment after t units of time. Note that i/(0) = 1, necessarily. 

If R{r) is the total number of replacements up to time r, then 
R'{r) dr is the number of replacements during the time interval 
from t^T to t — T +dr and the number of survivals at any 
future time t, out of these replacements, is 

R'(T)II(t - r) dr. 

The total amount of equipment in service at time t is the sum 

of these survivals from the replacements during every time 

interval dr between t = 0 and t = t, increased of course by the 
survivals from the new equipment on hand at time < = 0. 

Therefore 

(2) Fit) = F(0)H(t) + R'ir)II{t - r) dr. 

We have assumed here that the equipment F(0) on hand at time 

^ = 0 is all new; thus we take R{0) = 0. 
If the amount F{t) that must be in service at each instant is 

known and if the survival factor H(t) is known, then equation 

(2) is an integral equation of convolution type in R\t), Its 
solution gives the formula by which replacements must be made. 

The equation is an integrodifferential equation in the survival 

factor H(t) when F(t) and R(t) are known. 
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(4) r(s) 

In either case, the transformed equation is 

(3) /(s) - F{(S)h{s) + 

Then 
/(s) ~ F(0)/i(.) 

8h{s) ^ 

and R{t) is the inverse transform of this function. 

Suppose the mortality is exponential in character so that 

7/(0 = c-** 

and that the amount of equipment on hand is to be a constant, 

F{t) = h. 

Then h(s) = l/(s + k) and/(s) = 6/s, and it follows from equation 

(4) that 

r(s) = bk 

Therefore replacements must be made at such a rate that the 
total equipment replaced at each time t is 

Rit) = hkt, 

a result that is easily verified as the solution of equation (2). 
Thus replacements must be made at the rate of bk pieces per 

unit time. 
31. Evaluation of Integrals. Certain integrals containing 

parameters can be evaluated easily by means of the transfor¬ 

mation. In order to give more interesting examples of such 
integrals, let us first note the transforms of a few functions that 

are of considerable importance. 
We found in Sec. 18 that the transform of the sine-integral 

function is 

L{Si(01 = - arccot s. 
s 

The cosine-integral function Ci(0 is defined by the formula 

(1) Ci(0 = - J, dr. 

Substituting a new variable of integration x ^ r/t here, we have 

(2) Ci(0 X COS xt 
dx. 

X 
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The Laplace transform of Ci(0 is therefore 

8\ 

L{Ci(0) = 
dx 

x(6*2 + X^) 

1“ 

) + xy dx 

provided it is permissible to interchange the order of integration 
of the repeated integral arising when we transform the function 
on the right of equation (2). That step can be shown to be 
valid. * Thus 

(3) L{Ci{t) 1 = - ^ log (,v^ + 1) (s > 0). 

The exponential-integral function is usually defined as 

(4) ]<;i(0 = r‘ - dr « < 0), 
J— « r 

and hence J* —T P “ —Xt 

^ ^dx {t> 0). 

The transform of the function of t defined by (5) is therefore 

p dx 
Ji x{s + x) s + x/ 

ll 1 

that is, 

(G) L[ -Ei(-01 = \ log is +1) (s> 0). 
o 

As our first example in the evaluation of integrals, consider the 

integral 

(7) r —dx — 2 ^ sin ~ q) 
Jo Jo 

The transform of F(t) is 

* For conditions under which the order of repeated infinite integrals can 
be changed see, for example, J. Pierpont, “Theory of Functions of Ileal Vari¬ 
ables,” Vol. 1, p. 488, 1905. In connection with the condition of uniform 
convergence involved here, see H. S. Carslaw, “Fourier Series and Inte¬ 
grals,” p. 197, 1930. 
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since the interchange of order of integration can be justified as 
before. By writing 

= (2/2 - y + s)(2/2 + y + s) 

and breaking up the last integrand into its partial fractions and 
then integrating, we find that 

_ IT 1 

\/2 s 

Therefore the integral (7) has the value 

« > 0). 

As another example let 

«') - i' 

/(.).. I 

.^2 + 62 

* dx 
(§2 + X^){X^ + 62) 

_L_^ Jo \x- + 62 a;2 + sy ' 
TT 1 

Consequently the integral (9) has the value 

(10) F(t) = J e-*‘ (t^0,b> 0). 

Let us note that by writing 

cos t Si(0 — sin t Ci(0 = cos I f + sin < f 55^ dr 
Jo r Jt T 

, rsin r , 
= cos t I -dr 

Jo r 

— r * < sin r — sin t cos r 
Jt r ^ 
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COS t + 
“ sin {t - 

cos t + 
sin /(I — x) 

and performing the transformation with respect to we can show 
that 

(11) L{cos^Si(0 — siniCi(/)) = ; 

Now the transform of the integral 

r * 

Jo 

{(s') = - --_- * ■ 
2 s= + 1 + 1 

In view of (11) therefore, the integral (12) has the value 

I “ si(0 cos t + Ci(0 sin t. 

Observing that the integral in (12) is a Laplace integral, we 
can write our result as 

Ci(s) sin s. 

PROBLEMS 

Establish the following formulas: 

- r * cos tx . fir 

'■Jo 

2. r dx = 7rc~“‘ 

3. L[ —Ei(-o01 = ^ [log (s + a) — log (o)]. 

*• X j^,dx=|e<erfc(\/<). 

. f" sin <x . IT 
••J. —*-2- 

(1 > 0). 

(a > 0, t > 0). 

« > 0). 



CHAPTER IV 

PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS 

32. Displacements in a Long Stretched String. Let a stiing 
})e stretched along the x-axis, and let x and Y be ilm coordinates 

of any point of the string at time t. The function F(.c, t) then 

represents the displacement of each point at time L WheiKivcr 
the displacement of any clement is changing soh^ly because of the 

effect of the tension exerted upon it by the adjacent elements of 

the string, it can be shown that F(x, t) satisfies the partial 

differential equation 

(1) 
527 ,527 

'df‘ dx^’ 

where Pjdy P being the tension and 8 the mass per unit 

length. 

In the derivation of the equation of motion (1), it is assumed 

that the string is perfectlj’’ flexible, that the displacements are 

small enough for the tension P to be considered constant, and 

that the slope of the string is always small. The derivation 
follows quite readily from the fact that the vertical component 

of the tension exerted at the point (x, F) by the portion of the 
string on the left upon the portion on the right is* 

(2) Force =-P^. 

Consider now a semi-infinite stretched string, that is, one 

whose fixed right-hand end lies so far out on the x-axis that it 

may be considered to be infinitely far away. Let the left-hand 
end be initially at the origin, and let that end then be moved in 

some prescribed manner along the F-axis (Fig. 26); thus 

F = F{t) when a: = 0, 

* For a derivation of the equation of motion (1) see, for instance, the 
author’s book Fourier Series and Boundary Value Problems,” pp. 
mi. 

84 
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where F{t) is a prescribed continuous function and F{0) ^ 0. 
If the string lies initially along the a:-axis with no initial velocity 
and if the distant end is kept fixed, then 

dY 
Y = 0 and — = 0 when t — 0, and lim F == 0. 

It is convenient to let F«(rr, t) denote the partial derivative 

of F with respect to t and F«(x, t) denote d^Y/dt^^ etc. Then 
the above conditions on the unknown function F(x, t) can be 
written 

(3) Ft((x, t) = aW„{x, t) {X > Oyt > 0), 

(4) Y(x, 0) = Y,(x, 0) = 0, 

(5) 7(0, t) = F(t), lim Y{x, i) = 0. 
X—► 00 

A problem composed of such conditions is called a boundary 
value problem in partial dilTerential equations. We shall use a 

Fia. 20. 

formal method to solve it and then indicate how our final result 

can be verified as a solution. 
Let y(Xj s) denote the Laplace transform of F(.r, t) with respect 

to the variable t. Then in view of the initial conditions (4), 

L[Yuix, 0} = s^y{Xy s). 
Also 

L{YUx,()] = ^Je-‘Y(x,t)]dt 

= ^2 e-“Y{x, t) dt = s), 

provided the function F {x, t) satisfies conditions under which 
the order of integration with respect to t and dilTerentiation with 

respect to x can be interchanged as indicated. The variable x 

is independent of t, and it is therefore just a parameter in the 
Laplace integral. When the transformation is made on both 
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members of the equation of motion (3), we therefore obtain the 

equation 

s-y(Xy s) «= ahj^^(x, s) 

in the transform of our unknown function. We have also used 
the initial conditions (4) at this stage of our work. 

Applying the transform to the members of equations (5), we 

have the conditions 

2/(0. s) = /(s), lim y{x, s) = 0, 

provided it is permissible to interchange the order of taking the 
limit as a: —^ oo and integrating with respect to t. * The function 
f(s) is the transform of F(t). 

The transformed boundary value problem thus becomes 

(b) 

(7) 
dx^ 

2/(0, s) = /(s), 

«-.2/ = 0, 
lim y{x, s) = 0, 

where we have used the symbol for ordinary rather than partial 

differentiation since s is involved in the new problem only as a 
parameter. Differentiation occurs only with respect to x. The 

general solution of the ordinary differential equation (6) is 

—ff 
y(x, s) = Cie “ + C2e«, 

where Ci and C2 may be functions of s. This solution could of 
course be obtained by transforming the members of equation (6) 
with respect to the variable x. We consider s as positive since 

the Laplace integrals generally converge for all s greater than 

some fixed number. Since y(Xj s) is to approach zero as x tends 
to infinity, we must take €2 = 0. The first of conditions (7) 
shows that Ci = f{s) and thus 

(8) y{x, s) = e « /(s). 

* Since we can verify our final result, we need not be concerned about 
such conditions here. The simplest conditions under which this interchange 
of order of operations is valid, as well as the one above concerning partial 
differentiation with respect to Xj involve the uniform convergence with 
respect to a; of the Laplace integrals and the continuity of the integrals with 
respect to the two variables x and t. 
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Our translation property (Sec. 10) enables us to write the 
inverse transform of y{Xy s) at once, giving 

(9) Y(x,t) iff ^5, 

= 0 if f ^ - 
a 

This is the solution of our problem. Since any function of 
at — X Is easily shown to be a solution of the equation of motion 
(3) wherever the function has a derivative of the second order, 
the function (9) does satisfy our partial differential equation. 

The function clearly satisfies the boundary conditions (4) and (5). 

Y 

1 
T' 

h ' 

_ 
0 

Fig. 27. 

X 

According to the solution (9), a point of the string x units from 
the origin remains at rest until the time t = x/a. Starting at 
that time, it executes the same motion as the left-hand end of the 

string. The time x/a by which the motioii of the point x is 
retarded over the motion of the point x = 0 is the time it takes a 
disturbance to travel the distance x with the velocity a. 

It is interesting to note various instantaneous positions of the 
string for particular end movements. Suppose for instance that 

^(0 = r ^ when t ^ U, 
h 

= h when t ^ 

that is, the end is raised at a constant velocity to the height h and 

then held there. Although F{t) has a discontinuous derivative 
at f = <0, our formula (9) is still the solution of the problem. 

The reader can show that in this case 

F(x, 0=0 when x ^ aty 

= — (at -- x) when a(t — <o) ^ a; ^ at, 
ato 

= h when x ^ a(t — to). 
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Three instantaneous positions of the string are shown in Fig. 

27. 
33. Other Interpretations of the Problem. The function 

y(x, t) in the problem of the last section can have a number of 
physical interpretations in addition to the one already given it. 
It may denote, for instance, the longitudinal displacements of 

the sections of an elastic bar having the form of a prism or 

cylinder (Fig. 28). The variable x then denotes the distance 
from one end to the section when the bar is neither compressed 
nor elongated. The displacement per unit length, or the unit 

elongation or compression, is dF/dx and, assuming that Hooke’s 

Fi«. 28. Fig. 29. 

law applies, the force exerted by the left-hand portion of the bar 

across any section is 

where E is Young’s modulus of elasticity and A is the area of 
the cross section of the bar. It is not difficult then to show that 

Y{Xj t) satisfies the partial differential equation 

(1) Y«(x, 0 = a^Yxx{x, t), 

where aP" — Ejh and 5 is the mass of the material per unit volume. 

The above problem is therefore the problem of determining 
the longitudinal displacements in a semi-infinite bar with the 

distant end kept fixed when the end x = 0 is pushed in or pulled 

out in some prescribed manner. The bar is initially unstrained 

and at rest. 
If the bar is replaced by a column of air, the problem becomes 

one of importance in the theory of sound. 
Again, the function Y may denote the angle through which a 

section of a cylindrical shaft, x units from the end, has turned 

at time ^ as a result of the elasticity of the shaft in torsion. The 

constant in equation (1) is, in this case, 
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where E, is the modulus of elasticity in shear and 6 is the mass 
per unit volume (Fig. 29). 

These interpretations of Y(x, t) are more prominent in practical 
applications than that of the displacements in a string. More¬ 

over, fewer assumptions are used in deriving the equation 
of motion (1) when Y{x, i) denotes longitudinal or torsional 
displacements. * 

Among other applications it should be noted that equation (1) 
is a si)ecial case of the telegrajdi equation 

(2) g = XL g + {RK + SL) ^ + RSv, 

where v is either the electric potential or the current in a long 

slender wire with resistance Ry electrostatic capacity K, leakage 
conductance Sy and self-inductance L, all per unit length of wire. 

When R and S are so small that their effect can be neglected, this 

equation has the same form as equation (1). 
34. The Long String under Gravity. If the weight of a hori¬ 

zontal stretclu^d string is to be taken into account, a force 

— hg (lx must be included in the vertical forces acting upon each 

elemcmt, wIku-c g is the aeccjleration of gravity. As a conse- 
(luence, the equation of motion becomes 

(1) Yu = - g. 

Let the end x = 0 of the string be lield fast, and let the distant 
end 1)0 looped around a vertical sui)port that cannot exert any 

vertical force upon the string, so that Yx(x, t) vanishes at that 
end. Let the string be initially supported along the x-axis, and 
let the support be removed at the instant t = 0. Then the 
boundary conditions accomi)anying equation (1) are 

(2) Y{Xy 0) - Ytixy 0) = 0 (x > 0), 

(3) F(0, 0 = 0, lim Fa:(x, t) — 0. 

The problem in the transform ?/(x, s) is seen to be, formally, 

(4) s^y(x, s) = a^y„{x, s) - 
o 

* See, for example, Timoshenko, S., “Vibration Problems in Engineering,” 
Chap. V, 1937; and Den Hartog, J. P., “Mechanical Vibrations,” pp. 165- 

167. 1940 
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(6) y(0, s) = 0, lim y^ix, s) = 0. 
> CO 

The ordinary differential equation (4) has the solution 

!!£. n 

y(x, s) = Cie “ + Cjfi" - 
o 

In view of the second of conditions (5), C2 = 0, and in view 
of the first, Ci = g/s^. Therefore 

and it follows that lat 

V'(x, 0 = - I 0 ] when t ^ 5, 

when t ^ — 
a 

Our result can be written 

Y(Xy 0 = ~ 9 2 when x g at^ 

when X ^ at. 

It is easy to verify this as the solution of our problem. An 
instantaneous position of the string is shown in Fig. 30- We note 

Fig. 30. 

that at any time t all elements of the string to the right of the 
point X = at have moved like freely falling bodies. 

This is also the problem of the longitudinal displacements in a 
long bar with the end x = 0 held fixed, when a uniform force 
parallel to the bar acts on every element. This would be the 
case if the bar is hung vertically by one end. 
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If the external force per unit length of the string is 5F(0, the 
equation of motion is 

(7) Yu{x, t) = t) + F{t). 

When the boundary conditions (2) and (3) are used again, the 
solution of the transformed problem becomes 

J/(^. «) = p/(s) “ 

If we let G{t) denote the inverse transform of/(s)/s®, so that 

we can write the formula for the displacements in the form 

(8) F(x, ty = G{t) f) when t ^ 2, 

= G{t) when t ^ 
a 

36. A Bar with a Prescribed Force on One End. Let the 
end X = 0 of an clastic bar of 

length c be kept fixed, and let 

F{t) denote a prescribed force 
per unit area acting parallel to 

the bar at the end x = c (Fig. 

31). If the bar is initially un¬ 
strained and at rest, the bound¬ 

ary value problem in the longitudinal displacements Y{x, t) is 
the following, 

Ytt(Xj i) = a'^Y^xiXy t) {Q < X < c^t > 0), 

y(x, 0) = Yt{x, 0) = 0, 

y(0, t) = 0, EY^ic, t) = F(0, 

where E/h, E is Young^s modulus, and 5 is the mass per 

unit volume. 
The transform of Y (x, t) therefore satisfies the conditions 

s'^y{Xy s) = a^y^xiXy s), 
y(0, s) = 0, %,(c, s) = /(s). 
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and the solution of this transformed problem is readily found to be 

. , sx 
sinh — 

(1) y(x, s) = ^/(s) 
1 SC 

s cosh — 

Consider first the case of a constant force, 

(2) F{t) = Fo. 

Then 

(3) 

and, when a; = c. 

y{x, s) = 

. , sx 
sinh — 

a clF 0 

^ s^ cosh — 
a 

f x aJF*0 1 , . sc 

In Sec. 19 we found that s~^ tanh {hs/2) is the transform of the 
periodic function II{by t) of period 26, whose grai)h is the zigzag 

line (Fig. 10) whose segments have slopes ±1. Therefore the 
displacement of the end a; = c is 

(4) 

that is, the end moves by jerks as indicated in Fig. 32. 
To find the displacement at an arbitrary point, let us write 

OT. ?£ ic-x)8 

2sinh^ = e«[e « 
a 

(c+t)8 

= (cosh — + sinh [e 
\ a a/ 

(c-g)8 (c-fa:)g 

e " ]. 
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Then our formula (3) can be written 

(5) y{x, «) = 2F V + r* ® 

and therefore our result can be written 

(0) 

provided it is understood that — A;) =0 when t < k and that 

H t — = 0 when t < k. Thus 

L _ -L- = 0 when i g ^ 
( a j ( a j a 

. c — X , c — a:.. 
= ^-when- g t 

a a 

when t ^ 

and it is not difficult to represent Y(x, t) graphically (Fig. 33). 

Fig. 33. 

Let US illustrate another useful procedure for finding the 
inverse transformation in such problems. Referring to formula 

(3) for y{x, s) again, we write 
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since (1 + z)''^ — when 0 < 2 < 1. Therefore 

(2n + l)c + xj| 

Formally applying the inverse transformation to the terms of the 
infinite series, we obtain the formula 

(7) 

For any fixed t the series here is finite since each of the braces are 
to be replaced by zero when the quantity inside is negative. 
I'he number of nonvanishing terms in the series increases as t 
increases. 

The result (7) can be verified directly as the solution of our 
problem. The graph in Fig. 33 can be determined easily from 
formula (7). 

In the case of a general force function F{t)y we can write the 
formula for the displacement with the aid of the property of 
convolution. Referring to equation (1) and writing in the same 

manner as above, 

sinh — 

p(.x, s) =-^ 
5 cosh — 

a 

0 ' ^ 

we have 

(8) P(x, t) = Se^x{t) — Sc^{t) Szc-x{i) + Szc±x{t) + • • • 

(2n + l)c — X j 
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where Skit) is the step function defined in Sec. 3 (Fig. 1). In 
view of formula (1) for y{Xy s), then 

(9) Y{X, F(f - r)P(x, r) dr. 

Consider finally the motion of the end x = c when the force 

takes the form of an impulse. Let 

F(t) = Fo when t < to 
== 0 when t > to, 

so that 

(10) fis) = Y* (1 - 

and from formula (1) we obtain a fairly simple expression for 

y(c, s). In the case of a pure impulse we set 

F cf>Q = I 

and, keeping I fixed, let Fo increase and to approach zero. We 
should find the limit of Y(c, i) as this change takes place in 

F{t)] but the result turns out to be the same as that obtained 

by substituting the limit of /(s) into formula (1). In view of 

equation (10) 
7 1 — 

lim /(s) = - lim--- = 7; 
<0—+0 ^ to“*0 ^0 j 

thus in view of (1), 

y{c, 5) = ^ i tanh —• 
^ E s a 

The displacement of the end is therefore represented by the 

square wave function of Sec. 19 (Fig. 9), 

(11) y(..<)=.^M(|,<). 

Thus the end jumps suddenly back and forth between two 

fixed positions. It is possible to demonstrate a close approxi¬ 
mation to this behavior by substituting for the bar a loosely 
wound coil spring. If, when the spring is hanging from one 

end, the free lower end is given a sharp tap, the lower end tends 
to move as indicated. 
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PROBLEMS 

1. Solve the following problem in partial differential equations, and 

verify your result. 

F,(x, i) 4- xY,{x, t) -h F(x, 0 = xF{t), 

Y(x, 0) - 0, F(0, t) = 0, 

where F(t) is a prescribed function. 

Ans. Y(Xy t) = xc~^* e^^FCr) dr. 

2. Solve the problem 

2xYe(x, t) + Y,{x, t) « 2x, 

F(x, 0) = 1, F(0, 0 = 1. 

Ans. Y(x, t) = 1 -f- ^ when 0 ^ t ^ x^y 

== 1 + when t ^ x*. 

3. The force per unit area on the end x = 0 of a semi-infinite pris¬ 

matic bar is F(jt) (Fig. 34), so that — jE^F*(0, t) = F{t). If the infinite 

Y 

1_ \ 

-1; 
i- 

c X 

Fig. 34. 

end is fixed and the initial displacement and velocity of each section is 

*ero, set up the boundary value problem for the longitudinal displace¬ 

ments F(x, t) and derive the solution 

F(x,0=|c(«-^) when t >-t 
— a 

= 0 when t 
a 

where » \ 

(?(«) = f F(r) dr. 

Note that the displacement at the end x = 0 is 

y(0, 0=1 G{1). 

4. In Prob. 3 let the force be 

F(t) = F, 
* 0 

when t < toy 
when t > tot 
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and show that 

Yix, 0=0 when t ^ -> a 

— ^ (at — x) when ^ ^ ^ E 
F qcUo 
~E~ when < ^ <0 4" 

Study this function graphically. 

6. In Prob. 4 let 

Fo^o = -f, 

and let to tend to zero and Fo increase in such a manner that I remains 

constant. Either from the result of Prob. 4 or by replacing f(s) in 

Prob.3 by 

lim/W * /, 
£o-»0 

show that the displacement in this case of an impulse at x = 0 is 

Y{x, l)=§S,(t), 
a 

where Sk(t) is the step function defined in Sec. 3 (Fig. 1). Also note that 

y(0, i) = al/E, (t > 0), in this idealized case of the instantaneous 

impulse. 

6. A semi-infinite elastic bar is moving endwise with velocity —Vo 
when one end is suddenly brought to rest, the other end remaining free 

1 -j 

Fio. 35. 

(Fig. 35). The displacement F(x, i) of its sections then satisfies the 

conditions 

Yu(x, t) = a*F,*(x, t) 
y(x, 0) - 0, y,(x, 0) = -Vo 

7(0, t) = 0, lim F,(x, 0=0 

(x > 0, f > 0), 

(x > 0), 

(t > 0). 

Show that the solution of the transformed problem is 
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and hence that 

y(x, t) — —vot 

_ VqX 

a 

when t 
a 

when t ^ 
"■ a 

Also note that the force per unit area exerted by the support at a; = 0 

upon the end of the bar is Evja. 
7. A constant force Fq per unit area acts upon the end or = c of an 

elastic bar (Fig. 36). If the end x = 0 is free and the initial displace¬ 

ment and velocity are both zero, set up the boundary value problem for 

the displacements y(x, t) and show that the solution of the transformed 

problem is 

y{x, a) 

- xs 
aFo 1 o’ 
E 

sinh • 

(а) Find a formula for Y(Xf t). 
(б) Writing 

3/(c,s) = ^5l|^l(l+eothf)-i} 

and noting from Sec. 11 the transform of the staircase function S{h, /), 
show that the displacement of the end x = c is 

Examine this function graphically, and note that the end moves with a 

uniform velocity up to the time t — 2c/a, then with a greater uniform 

velocity up to the time t = 4c/a, and so on. 

8. Let the force per unit area on the bar of Prob. 7 be 

F (0 = Fq cos (t)if 

and show that when w == wa/(2c), 



Sec. 35] PROBLEMS IN PARTI AL DIFFERENTIAL EQUATIONS 99 

Hence, in view of formula (12) of Sec. 19, show that the displacement of 

the end is 

vf t\ _ Q 

^ - ttE 

irat 

9. When the force at the end x = c of the bar of Sec. 35 (Fig. 31) 

is constant, F{t) = Fo, determine with the aid of equation (3) the force 

exerted by the bar upon the support at x = 0. Note that 

%x(0, s) = Fo-= Foe"^- 
scosh- s(l+e “) 

thus, according to formula (4) of Sec. 19, the force is 

^F*(0, 0=0 when ^ 

= F„[l+J/(f,i-£)] when«>l 

Hence note that the force becomes twice the applied force during 

regular intervals of time (Fig. 37). 

fiY,(0.t) 

1 1 
1 
1 
1 

2 F, ; 

1 1_ 

1 
1 
1 
1 t 

1 
1 
1 
1 1 - 

1 
1 
1 
1 1 

~S 
•1 4 

t 

Fig. 37. 

10, When the end x = c of the bar of Sec. 35 (Fig. 31) is subjected to 

the force per unit area 

F{t) = Fo when t < U, 
— 0 when t > 

with the end x = 0 fixed, show that the displacement of the end x = c is 

where the function (aFo/J5^)//(2c/a, 0 is shown in Fig. 32, and where 

J/(2c/a, ( — to) = 0 when t ^ U- Consequently, show that when 

the displacement Y(c, 0 consists of the single oscillation shown in Fig. 38. 
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11. The end a; = 0 of a bar or heavy coil spring (Fig. 39) is free, and 

the end a; = c is displaced longitudinally in a prescribed manner, 

y(c, t) - Gif). 

If the bar is initially unstrained and at rest, set up the boundary value 

Oj c X 

Fiq. 39. 

problem for the displacements F(x, i), and show that 

(a) When Gii) — Fal where F© is a constant, show that the dis¬ 

placement y(0, t) of the free end is the function obtained by integrating 

the function FFxCO, 0 of Fig. 37 from 0 to t. 

show that the free end moves with a uniform velocity 26 to a new position 

and remains there (Fig. 40). 
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(c) When G(() is arbitrary, derive the solution 

+ o[,_®L±ik±^J|, 

where the function G is zero when its argument is negative, and hence the 
series here is finite for each fixed t. 

36. The Long String Initially Displaced. We now apply our 
method to a very well-known problem in order to display further 

manipulations. 

The formal manner of procedure is justified at the end, since 
oar result can be fully verified as the solution. Let the ends of a 

semi-infinite string stretched along the positive x-axis be kept 

fixed, and let the string be given some prescribed transverse 
displacement Y = ^(x) initially and released from that position 

with initial velocity zero (Fig. 41). Then the boundary value 

problem in the displacement F(x, t) is the following. 

(1) Ytt{x, t) = a-Yxx{x, t) (x > 0, < > 0), 
r(x, 0) = 4>(x), F,(x, 0) = 0, 

F(0, t) = 0, lim F(x, t) = 0. 
X—► W 

The problem in the transform y{x, s) is therefore 

(2) s-y{x, s) — s^(x) = a^y„{x, s) {x > 0), 
(3) 2/(0, s) = 0, lim yix, s) = 0. 

X—► * 

We shall solve the ordinary differential equation (2) by using the 
Laplace transformation with respect to x. Let u{Zy s) denote 
that transform of y{Xj s); that is, 

"" jo" 
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Since y(0, s) = 0, when we transform both members of equa¬ 

tion (2) we obtain the equation 

s^u{z, s) - s^{z) = d^[z^u{z, s) ~ 2/x(0, s)], 

where <p{z) is the transform of ^(ar). Let the unknown function 
of s, 2/x(0, s) be denoted by C. Then the solution of the last 
equation can be written 

u(z, s) = <p(^) 

and performing the inverse transformation with respect to z, 

with the aid of the convolution, w^e have 

(4) y(x, s) sinh “ - ^ f sinh ^ (a: - J) d^. 
s 0, <i Jo a 

In view of the condition requiring y(x, s) to vanivsh as x tends 
to infinity, it is necessary that the coefficient of on the right 

of equation (4) should vanish as x becomes infinite. Writing 

the hyperbolic sines in terms of exponential functions, that 
coefficient is seen to be 

Since the limit of this function is to be zero as x oo, we have 

Substituting this into equation (4) we can write the result in 
the form 

2ay(x, s) 
«(€—x) 

Let us integrate each integral here by parts in order to intro¬ 
duce a factor 1/s. Since $(0) = 0, this gives the formula 
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(5) y{x, s) = - ^(x) + 1 r%' 
2s 

(£)e » d£ 

Now 

1 r" o 

-sj. ♦'<0*' • sJ. • «• 
L-i e “I 1 when at > i — X, 

0 when at < ^ — x; 

that is, this function of J vanishes except when ^ < x + aty and 
the inverse transform of the second term of the right-hand mem¬ 

ber of equation (5) becomes 

1 ^'(£) = l4>(a: + at) 

Similarly, 

== 0 

i^ix). 

at > X + 

ii at < X + 

so that if ai > x this is unity when 0 < ^ < at — x, and if < a; 
it is zero for all positive Hence the third term on the right 

of (5) has the inverse transform 

— i d£ = — i^{at — a:) when at > x, 

0 when at < x. 

Likewise we find that the inverse transform of the last term in 
equation (5) is 

— i^(x) when at > x, 
— i<i*(a:) + — at) when at < x. 

Our formula for the displacements is therefore 

(6) Y{Xy t) ~ + x) — ^(at — a:)] when ^ 

= i[^>(a; + at) + ^{x — at)] when ^ 

It is not difficult to see that this function satisfies all the condi¬ 
tions of our boundary value problem. 
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It is interesting to note that instantaneous positions of the 
string can be sketched easily with the aid of this formula when 
^(x) is prescribed. The graph of the function ^(x — at) for 
X > at, for example, is obtained by translating the graph of 

^{x) to the right through the distance at. 

PROBLEMS 

1. A string is stretched between two fixed points (0, 0) and (c, 0). If 
it is displaced into the curve 

Y = b sin (tx/c) and released from 

rest in that position (Fig. 42), set up 

X the boundary value problem for the 

displacements and derive the formula 

for the displacement Y{x, t). Verify 

the result; that is, show that it satisfies all the conditions of the 
problem. Also describe the motion of the string. 

Arts. Y{xy t) - h cos — sin 
^ ' c c 

2. If the initial displacement of the string in Prob. 1 is changed to 

Y{x, 0) = 6 sill (0 ^ X ^ c)j 

where n is any integer, derive the formula 

T// j\ 1 n/jrol , 
i {Xy t) = h cos sin 

mrx 

c 

Note that the sum of two or more of these functions with different values 

of n and 6 is a solution of the equation of motion that satisfies all the 

boundary conditions except one. What is the initial displacement 

Y{Xy 0) corresponding to such a superposition of solutions? 

3. A string is stretched between the fixed points (0, 0) and (c, 0) and 

its points are given initial velocities Vosin (irx/c), so that the initial 

conditions are 

Y{Xy 0) = 0, Yi{Xy 0) = Vo sin 

Derive the formula 

V, voc . icat . irx 
Y (Xy t) — — sm — sin —> 

^ ^ ' Ta c c 

{O^x^ c). 

and describe the motion. 

4. A cylindrical shaft is rotating with an angular velocity os when its 

ends X = c and x — —c are suddenly clamped (Fig. 43). The angular 
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displacement Q(x, t) then satisfies the conditions 

Qu(x, t) = a^xxix, t) (~c < a; < c, ^ > 0), 
0(a;, 0) == 0, 0<(a;, 0) == w, 

0(-c, t) = 0(c, t) = 0, 

where a* = E,/h (Sec. 33). Derive the formula 

e{x, s) = 

for the transform of 0(a;, i). Fig. 43 

(a) Show that the formula for the displacement of the middle 
section is 

0(0, i) == (tit when t ^ 

= 0) - “ (till t — A when t ^ -> a ya ay a 

where H is the triangular wave function of Sec. 19 (Fig. 10). Show 
0(0, t) graphically. 

(6) The torque T across any section is — j&\70x, where I is the 
moment of inertia of the section with respect to the axis of the shaft. 
Show that the torque acting on the support at a; = c is 

r(c, 0 = 

where M is the square wave function of Sec. 19 (Fig. 9). 
(c) Derive a formula for 

0(a;, t). 

6. The end a; = 0 of a cylindri¬ 
cal shaft is kept fixed. The end 
a; = c is rotated through an angle 
^0 and, when all parts of the bar 

have come to rest, this end is released (Fig. 44). Thus the angular 
displacement 0(ar, t) satisfies the boundary conditions 

Fig. 44. 

e(a:,0) = tfoJ e,(a:,0)=0, 

0(0, t) = 0, e.(c, t) = 0. 
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Show that the displacement of the free end at each instant is 

e(c, <) = d„- 

where H is the triangular wave function (Fig. 10). 

6. An unstrained elastic bar is moving lengthwise with velocity Vo 

when its end a; - c is suddenly clamped (Fig. 45). Show that the 

force on the support at x — c is 
Vq > 

/ 
/ 
/ 
/ 

0 

VoEA 
M (t’*) 

where A is the area of the cross sec- 

Fio. 45. tion of the bar and M is the square 

wave function (Fig. 9). 

7. An infinite string stretched along the x-axis is given a prescribed 

initial displacement and released from rest in that position. Thus 

Yu(xj t) = a*F„(a:, t) (— « < a: < «, < > 0), 
F(x, 0) = ^(x), Vt(x, 0) = 0 (— 00 < X < oo)^ 

lim F (x, t) ~ 0, lim F (j, t) = 0. 

Derive the formula 

F(a:, i) = \mx + at) + ^{x - ai)l 

and verify this solution. 

8. Let the points of the infinite string of Prob. 7 be given a prescribed 

initial velocity ^(x) instead of an initial displacement; that is, 

F(x, 0) = 0, F,(x, 0) = yf/ix) (— w < a; < oo). 

Derive the solution 

Y{x, 0 = ^ [#(x + ai)- ^{x - at)], 

where 

*(x) = df. 

37. Temperatures in a Semi-infinite Solid. Let U(x, t) denote 
the temperature at each point of a homogeneous solid at time t 
when conditions are such that at each instant the temperature 
depends only on x, the distance of the point from a fixed plane. 
If K is the thermal conductivity, the time rate of flow of heat 
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per unit area, or the flux of heat, by conduction across any plane 

perpendicular to the x-axis is 

that is, the flux is proportional to the gradient of the temperature. 
As a consequence, it is not difficult to show that when the varia¬ 

tions in the function U{x^ t) are the result of heat transfer by 
conduction the function must satisfy the equation 

(2) 
dU _ . d^U 
dt ^ 

where k = K/{cb). The coefficient k is called the diffusivity, c 

is the specific heat, and 5 is the density. We have assumed that 
K is constant. 

This equation is a simple form of the equation of conduction, 

or the heat equation.* It i»also called the equation of diffusion 

since it is satisfied by the concentration V of a substance that is 
diffusing into a porous solid. 

Let us now derive the formula for the temperature C/(x, t) in a 
seimi-infinite solid a; ^ 0, initially at 
temperature zero, when a constant 

flux of heat is maintained at the 
boundary a; = 0 (Fig. 46). In this 

idealized case of a thick slab of ma¬ 
terial, we shall substitute, for the 

thermal condition at the right-hand 
boundary, the condition that U tends 

to zero as x tends to infinity. The boundary value problem is then 

(3) Ut{Xy i) — kUxxiXy t) (x > 0, < > 0), 
(4) U{x, 0) = 0 (x > 0), 

(5) -KUxiO, t) = </>o, lim U{x, 0=0 {t > 0). 

As in our earlier problems, it is advantageous to use a formal 

procedure to obtain the required formula, that is, a procedure in 

which we do not fully justify all steps, and then verify our final 
result as the required solution. 

* For a derivation of the heat equation see, for example, the author’s 
“Fourier Series and Boundary Value Problems,” Chap. 2. 
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Let u{x, s) be the transform, with respect to t, of the tempera¬ 

ture function U{x, t). Transforming the members of equations 
(3) and (5), we have the following problem in ordinary differential 
equations which u(Xj s) must satisfy: 

su(Xj s) = kuxx{Xj s) {x > 0), 

— s) = —y lim u{Xf s) = 0. 
5 X—» 00 

The solution of this problem is 

u(x, s) = <t>o Vfc --iVr 
Ks \/s 

According to formula (5), Sec. 20, we can write 

(V^ 

and in view of the factor 1/s in our formula for u(Xf s) it follows 

that 

2V^ 

where the second integral is obtained from the first by the sub¬ 

stitution X = x/(2 \/kT). Upon integrating the last integral 
by parts, we find that 

U(Xf t) = —“-^(2 \/Tue — 2x \ e~^“dX 
A V TT ^ ^ 

2y/kt 

We can therefore write our formula in terms of the comple¬ 
mentary error function (Sec. 20) in the form 

(6) V(^,,) - * [2 ^ , erf= 

We can show that the function (6) satisfies all our conditions 
(3), (4), and (5). Note, for instance, that 
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and since erfc 0 = 1 it follows that condition (5) is satisfied. 
Also 

and the product of this function by k is the same as dlJ/dt found 

from formula (6). Therefore our function satisfies the heat 
equation. It is easy to see that the condition (4) in the form 

U{Xf +0) = 0 and the second of conditions (5) is satisfied by 
our function (6). 

We observe that 

t7(0,0 = ^^V^. 
A vr 

Thus the temperature of the face of the solid must vary as \/t 

in order that the flux of heat through the face shall be constant. 

38. The Flux under Variable Surface Temperature. Let the 
temperatun; of the face of a semi-infinite solid a: ^ 0 be a pre¬ 

scribed function F{t) of time. If the initial temperature is zero, 
the temperature function lf{Xj t) is the solution of the boundary 
value problem 

Ut{Xj t) = t) {x > 0, t > 0), 
Uix, 0) = 0 (x > 0), 

r/(0, 0 = F(0, lim U{x, 0=0 (^ > 0). 

The transform u{Xj s) of U(Xf t), therefore, satisfies the con¬ 
ditions 

s) = kuj,x{x.j s) (x > 0), 

w(0, s) — /(«), lim u{x, s) = 0, 
X—► 00 

where /(s) is tVie transform of F{C), It follows that 

(I) u{x, s) = f{s) e 

Let us first study the flux of heat through the face of the solid, 

#(<) = -KUM <)• 
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The transform of this function, —Kux{0, s), according to formula 
(1) , is 

(2) ^(s) = Vs f(s) = ^ sfis) 

Since s~i = L\{Trt)~^ and sf{s) = L\F'{t)] -f- F(+0), assuming 
that F{t) is a continuous function, then 

and with the aid of the convolution it follows that 

when F{t) is continuous. 
Whenever F(4-0) 0, then the flux is infinite initially; in 

fact it is of the order of as ^ approaches zero. When F{t) is a 
constant Fo, for example, 

4)(i) = ’ 

Hence 

and therefore 

(4) Q(0 = 
V 

For €^xample, if 

(5) 

\/t^> \/1 

absorbed I 
is 

Q{t) = Hr) dr. 

The total amount of heat absorbed by the solid through a 
unit area of the face at time t is 

f jo V< - r Jo 
F{t - r) 

' V^ 
dr. 

F{t) = Fo 
= 0 

when t < /o, 
when t > <0, 

it follows from formula (4) that 

2KFo (6) Q{t) 
\/7r^ 

2KFo 

\/7r^ 
(Vt 

when t ^ ^0, 

\/t ~ to) when t ^ <0. 
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This function is shown in Fig. 47. Its greatest value is 

2KFo VQW, 

which is assumed at the instant t 
Returning to formula (1) for 

u{x, s) and noting that, accord¬ 
ing to formula (4) of Sec. 20, 

I = L I-e 
(2 ) Fig. 47. 

t 

we can write, with the aid of the convolution, 

U(x . t) = “nt - r) -il- 
e dr. 

Substituting a new variable of integration, we have for the 
general temperature formula 

(7) ■ 

2Vkt 

When the temperatuni of the surface is constant, 

(8) F(0 = F„ 

the temperature within the solid is therefore 

(9) 7,-<x,0-r..rt.(^g). 

Since this is a function of Fo and xly/ki only, it follows that the 
rate of heating is proportional to k\ for if k had been increased 
and t decreased so that kt is unchanged, the temperature at any 

given distance x from the face is the same. It is also interesting 
to note that for a fixed k tw’o points Xi and X2 will have equal 
temperatures at times h and t2 provided Xxly/tx = x^/'s/hy 
that is, if 

3^1 _ fil 
'X2 ~ 

This is sometimes called the law of times in the conduction of 
heat in semi-infinite solids. 
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When the surface temperature is 

(10) F(t) = Fo when 0 < t < U, 
= 0 when t > Iq, 

then F{t — x^/4kV) — Fo when X is such that 

and it is zero for other values of X. If ^ < /o, this inequality is 
true for every X, and if t > toy it is true if X < x/y/Ak^t — 

Thus it follows from formula (7) that 

(11) V{x, i) = erfc ( - wlicn i < 
\2 ■ykif 

(2 v^(“i„j) “ (w/Ti)] 

when i > <0. 

PROBLEMS 

1. A thick slab of iron with thermal diffusivity A; = 0.15 c.g.s. 
(centimeter-gram-second) unit is initially at 0°C. throughout. Its 
surface is suddenly heated to a temperature of 500°C. and maintained 
at that temperature for 5 min., after which the surface is kept chilled to 
0°C. Find the temperature to the nearest degree at a depth of 10 cm. 
below the surface (a) at the end of 5 min.; (b) at the end of 10 min. 

Ans. [a) 146°C.; (6) 82°C. 
2. Solve Prob. 1 if the slab is made of firebrick with k — 0.007 c.g.s. 

unit. uins. (a) 0°C.; (b) 0°C. 
3. The surface of a thick slab of concrete with k = 0.005 c.g.s. unit, 

initially at 0°C., undergoes the temperature changes described in Prob. 1. 
Show that at each instant the temjierature at any depth Xi in the con¬ 
crete sjab is the same as the temperature at the depth X2 = \/30 in 
the iron slab. Generalize this result for materials with diffusivities ki 
and k2 and any common time interval to of heating the surfaces of the 
slabs. 

4. At time i = 0, the brakes of an automobile are applied, bringing the 
automobile to a stop at time to. Assuming that the rate of generating 
heat at the surface of the brake bands varies linearly with the time, then 

17,(0, 0 = A{t - to), 

where A is a positive constant and x is the distance from the face of the 
band. If <0 is not large, the band can be assumed to be a semi-infinite 
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solid a; ^ 0. If the initial temperature of the band is taken as zero, 

show that the temperature at the face is 

t/(0, t) (O^t^ to). 

Hence show that this temperature is greatest at the instant t = ^to and 
that this maximum temperature is 

\/2 UiO, to). 

39, Temperatures in a Slab. The 
initial temperature of a slab of homo¬ 
geneous material bounded by the planes 
X = 0 and a; = Z is Uq. Let us find the 
formula for the temperatures in this solid 
after the face a: = 0 is insulated and the temperature of the face 
a: == Z is reduced to zero (Fig. 48). 

The temperature function Z7(a;, t) satisfies the following con¬ 

ditions 
UtiXf i) = kUxziXf t) {0 < X <l,t > 0), 
U{Xy 0) = iio (0 < x < Z), 

l/x(0, t) = 0, C7(Z, Z) - 0 (Z > 0). 

Fig. 48. 

The transform therefore satisfies the conditions 

(1) su{Xy s) — Wo = kUxziXf s), 
(2) Ux(0j s) — 0, w(Z, s) — 0. 

The solution of the ordinary differential equation (1) that 
satisfies the first of the conditions (2) is 

u(x, s) + C cosh X 

where C is an arbitrary function of s. Since w(/, s) = 0, it follows 

that 

C= - —L 
5 

cosh Z 

and therefore 

j ^ cosh X 

s s 
cosh Z 
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Let us write 

and note that 

cosh XQ , / . 1 
1 + 

= (i+-x)gj ^_'\^nQ—2nlq 

0 
OB 

= X (“1)" f®^P “ ^'=)] + exp f-g(mZ + x)]), 
n = 0 

where m = 2n + 1. We have seen (Sec. 20) that 

1 
s 

er^V» = 

Therefore 

- exp [ —g(mZ ± x)] — L 
s 

{cc s 0). 

and it follows formally from equation (3) that 

(4) V{X, 0 = Mo - Mo 2 '2^1-^ 

+ erfc 

2 \/kt 

(2n + 1)1 + X 

2 y/kt ]}■ 
We shall not take up the verification of this formula since a 

complete discussion would be lengthy. However, it is not diffi¬ 
cult to show with the aid of the ratio test that the series con¬ 
verges uniformly with respect to x and t and that the series can 

be differentiated term by term. Since the value of the comple¬ 
mentary error function here decreases rapidly as n increases, the 
convergence of the series is rapid, especially when t is small. 
Moreover the error function is one that is tabulated so that the 
series is well adapted to computation. 

40. A Bar with Variable End Temperature. Let us determine 
the formula for the temperature U(x, t) in a bar with its lateral 
surface insulated against the flow of heat when the initial tern- 
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perature is zero and one end is kept at temperature zero while the 
temperature of the other end is a prescribed function of t. 

If wc take the unit of length as the length of the bar (Fig. 49) 
and select the unit of time such that (1/A^) dUldt' becomes dU/dt, 

u-o 
U(X.0)=0 

rU«F(t) 

^77777777777777777777777777777777777 

Fui. 49. 

that is, so that i == ki^ where i' is the original and i the new 
variable, our boundary value problem can be written as follows. 

t) = UxxiXy t) {0 < X < I, t > 0), 
lJ{x, 0) - 0 (0 < :r < 1), 
r(0, 0 =0, =F(0 >0). 

The problem in tlui transform of U(Xj t) is therefore 

su{x, s) = u^xix, s), 

w(0, ,s) =0, w(l, s) =/(s), 

and the solution of this problem is 

u{x, s) = f{s) 
sinh X 

sinh \/s 

Proceeding as in the last section, we can write 

sinh Vs 

and thus, when 0 ^ a; < 1, 

/ sinh X 

I sinh Vs / 
x)e 

(m —j)« 
■ "4t 

— (m + x^e 
(tn-\-xp 

]. 
where m = 2n + 1. With the aid of a convolution, we can now 
write the inverse transform of u{Xj s). After the usual change in 
the variable of integration, our result can be written 
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(m — xy 
4X2 

“dX 

2y/i 
j * 

(m = 2n + ?), 

2V< 

When the temperature of the face = 1 is constant, 

(2) F(0 = Fo, 

our formula can be written 

(3, 

a result that is not difficult to verify as a solution. Note in 

particular that 
00 ^W4-1 

uil, t) = 

-0- 0 t/ n 
V 

= -^Fo C" e-^'d\ = Fo. 
Vir Jo 

e-^’ d\ 

Vi 

PROBLEMS 

1. The initial temperature of a semi-infinite solid x ^ 0 is zero, and 

the flux of heat through the face is a prescribed function of time 

-KU^iO, 0 - 4>(0. 

Derive the temperature formula 

'5'" <>’>'»■ 
2y/ki 

Also show that the temperature of the face must be 

^{T){t-TY\dT. 
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2. Let the flux of heat through the face of the serai-infiiiite solid of 
Prob.1 be 

^(0 = <l>o when t < to, 
== 0 when t > to, 

and let <t>dto = Qo be kept fixed while to approaches zero and 4>o grows. 
Show that under these conditions 

lim u{x, s) 
to—*0 

QoVk 

K Vs 

and thus obtain formally the formula 

lim U(x, 0 = % 
<0-^0 A 

£i 
"4^ 

wt 

3. Assuming the temperature function U(x, t) is such that the follow¬ 
ing integral exists, the total (quantity of heat that passes through a unit 
area of a plane perpendicular to the x-axis is 

Q{x) ^ Jl lJx{x, t) dt. 

Note that the integral here is the Laplace transform of Vx{x, t) when 
8 = 0, and hence, formally, that 

Q{x) = —Kux{x, 0) = —K lim Ux{x, s). 

In the semi-infinite solid of Sec. 3<S, show that 

Q(x) = lim Vs /(s), 
y/k »—0 

provided this limit exists. For the slab of Sec. 39, show that 

Q{1) = lim 
V/c 

tanhiy^ 

a/s 

Kuol 
k 

4. The initial temperature of a semi-infinite solid a; ^ 0 is 

U{x, 0) = Uo(x), 

where the function Uo(x) is prescribed. If the face a; — 0 is kept at 

temperature zero (t > 0) and if U{x, i) approaches zero as x —► oo, 
derive the formula 

iKx, t) - 
1 

2 X Uome 
Akt 

(g-fx)* 
4Jet 

— e ]d^ it>0). 
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5. Show that the sum of the temperature function found in Prob. 4 

and of the function (7) of Sec. 38 represents the temperature in the solid 

£r ^ 0 when the temperature of the face is F{1) and the initial temper¬ 

ature is Uq{x). 

6. If heat is being generated in a long wire a; ^ 0 at the rate of 

cpR{t) units per unit length, so that cpR{t) has such dimensions as 

n c 

^^7>'/7/7^7r//7777777/J///^/////7r/T^r -"W 

° U(x.0)-0 

Fro. 50. 

calories per centimeter per second, and if the lateral surface of the wire is 
insulated, the heat equation becomes 

Utix, t) = kl\^{x, t) + R{t). 

Let the initial temperature be zero and the end a; = 0 be kept at that 

temperature, and let the distant end be insulated (Fig. 50); that is, 

U{x, 0) = 0, U(0, t) = 0, lim Ux{x, t) = 0. 
X—* * 

Derive the formula 

i-fc 1) -«(.)- y XL ' sS-.) 
2Vlct 

where 

<?(0 = R{r) dr. 

7. In Prob. 0 lot the rate of generation of heat be constant, 

and derive the formula 

U(x, t) 

R(l) = Ro, 

8. In Prob. 6 let the heat be generated as follows: 

R{t) — Ro when t < to, 

= 0 when t > to. 

Show formally that if Roto — A where A is fixed, and Ro is permitted to 
increase, then 



Sec. ^l]PROBLEMS in partial differential equations 11^ 

9. The convex surface of a wire of unit length is insulated while its 
ends a: == 0 and a; == 1 are kept at temperature zero. Heat is being 
generated at a constant rate in the wire so that the heat equation takes 
the form 

Ut{x, t) = 0 + H (0 < a; < 1, < > 0). 

If the initial temperature is 

U(x, 0) = ^ (* - X*), 

derive the temperature formula 

mx, 0 = 5 (* - 

10. The initial temperature of a bar of unit length is zero, and the 
end a; = 1 is kept at that tempera- 
ture (Fig. 51). The convex surface 
and the end a; = 0 are insulated, ^777777777777777777777777777777^-j- 
and the unit of time is taken so ’ 
that A; == 1. If heat is generated 
in the bar such that the heat equation is 

Ut(x, t) = UUx, t) + R{t)^ (0 < a: < 1, ^ > 0), 

derive the temperature formula 

where 

E{x, t) 

Uix, t) = R R(t) dr — R{t t)E(jXj t) dr, 

41. A Semi-infinite Radiating Wire. If there is heat transfer 
at the surface of a long slender wire according to Newton^s law 

of transfer, that is, such that the rate of heat loss is proportional 

to the difference between the temperature of the wire and the 
temperature of the surroundings, and if the temperature of the 
surroundings is taken as zero, the heat equation becomes 

(1) Ui{x, t) = kU^x, t) - hU(x, t). 

The constant h is sometimes called the relative emissivity. Let 

the initial temperature be zero, and let the distant end be kept 
at that temperature. Then if the end x = 0 is kept at the con- 



120 OPERATIONAL MATHEMATICS IN ENGINEERING [Sec. 41 

I I 
U(x,0)-0 

Fig. 62. 

stant temperature (Fig. 52), the boundary conditions are 

U{x, 0) = 0 (x > 0), 
r/(0, t) = Fa, lim f7(x, 0=0 (^ > 0). 

X—* « 

The problem in the transform is then 

kuxxiXf 5) — (s -f- h)u(Xj s) = 0 {x > 0)f 

u(0j s) = —i lim u(Xy s) = 0. 
S X—* 00 

The solution of this problem is 

(2) «(x. s) = . 

Knowing the inverse transform of we can write, with 
the aid of our property on substitution of s + h for s (Sec. 7), 

2 \/irh 

It follows from formula (2) that 

U{x, t) 
2y/Trk. 

= fV'-’-e *i"T-idT 

2 v wk Jo 

f- 

where the second integral is obtained by the substitution 

X = ixl\/J^. 
The formula (3) can be changed to a more useful form with 

the aid of the integration formula 

(4) r e dX = cosh 2a — ^ erf ^6 + ^ 

- c-*® erf (-?)} 



Sec. 41J PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS 121 

where a and h are constants or parameters independent of X. 
TMs formula can be verified by noting that the derivative, when 
the parameter a is fixed, of the left-hand member with respect 

to 6, namely, 

is identical to the derivative of the right-hand member with 
respect to b, also that both members vanish as 6 —> 0. Setting 

a = ix \/h/k and b = \/ht in formula (4), we see that our 

temperature formula (3) can be written 

(5) Vix, 0 - [2 cosh * ^ - o'"''* erf (V*l + ~ j) 

+ e erf - 2^)]- 

It is not difficult to verify this as the solution of our problem. 
In obtaining formula (5) we have found a desirable form of the 
inverse transform of the function w(x, s) defined by equation (2). 

PROBLEMS 

1, Let the initial temperature of the long radiating wire {x ^ 0) be 
Wo, and let the end x == 0 be kept at temperature zero while the distant 

U»0v,_i-.. , ^ ^_y 

Off f f 
U(x.0J»Uo 

Fig. 63. 

end is insulated (Fig. 53). Derive the temperature formula 

2. Let the long radiating wire (x ^ 0) contain a constant source of 
heat so that the heat equation is 

Ut{Xj t) = kUzx{x, t) — hU(x, t) + Ro (x > 0, t > 0). 

If the initial temperature of the wire is zero and if the end x — 0 is kept 
at temperature zero while the distant end is insulated, derive the tem¬ 
perature formula 
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Integrate the integral here by parts, and use the method or the results of 
Sec. 41 to obtain a more useful formula for Uix, t), 

3. The initial temperature of a solid sphere of unit radius is zero, and 
- all points of the surface are kept at the 

temi)erature F{t) (Fig. 54). If t/i(r, t) is 
f the temperature at time t at a point whose 
/ 0/^ 1 distance from the center of the sphere is 
If/ r, the heat equation is 

U,(r.0)=0 
dl\ _ Id’^jrUi) 
dt ~ r dr^ 

(0 ^ r < 1, / > 0), 

where the time unit has been selected 
so that A; = 1. Tlie ))()iiiidary conditions are 

0)=0, (0^r<l); /) - m (^ > 0). 

Assuming that t) has a finite transform, show that 

, . 1 , sinh r \/s 
Ui{r, s) 

Biuh 

and hence that 

Ui(r, f) « ^ U(r, t) 

where U(Xj t) is the function given by formula (1), Sec. 40. 

42. Temperatures in a Semi-infinite Composite Solid. Let us 
find the formula for the tempera¬ 
tures in a solid x ^ 0 composed 
of a layer 0 ^ x ^ a of one 
material initially at the uniform 
temperature A in contact with 

a semi-infinite solid x a of 
another material initially at tem¬ 
perature zero, when the face 
re = 0 is kept insulated (Fig. 55). 

Let U(Xf t) denote the temperature in the solid. If the thermal 
conductivity and diffusivity are Ki and /ci, respectively, in the 
first part and and k2 in the second part, the boundary value 
problem is the following one: 

(1) Ut(x, t) = kiUxxixy t) {0 <x < ayt> 0), 

(2) Ut{x^ t) — k2Uxx{Xy t) {x > ajt > 0), 
(3) i:f(x, 0) = A(0 < X < a), I/(x, 0)-0 {x>a), 
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(4) Uz{0, t) = 0, lim U{x, <) = 0 (i > 0), 
00 

(5) U{a - 0, 0 = U{a + 0, t) (^ > 0), 
(6) KiU,{a - 0, 0 = i^2^/x(a + 0, t) {t > 0). 

Condition (5) states that the temperature at the interface 
X = a is the same after ^ = 0 when the point approaches the 
interface from either direction. Condition (6) states that the 

flux of heat out of the first part through the interface must be 
equal to the flux into the second part, at each instant. 

The problem in the transform of U (x, /) is then 

(7) su(x, s) — A = k^U:cx(x, s) (0 < :r < a), 
(8) su(x, s) = k2Uxx{x, s) (x > a)f 
(9) Wz(0, «) = 0, lim u{x, s) — 0, 

X—► 00 

(10) u(a — 0, s) = u{a + 0, s), 

KiUxia — 0, s) = KiUxia + 0, s). 

The solution of equation (7) that satisfies ihe first of conditions 

(9) is 

u{Xj s) = Cl cosh x ^ (0 ^ a: < a), 

and the solution of (8) that satisfies the second of conditions (9) is 

u{Xj s) = C2C {x > a). 

By applying the conditions (10) to these functions, the values 

of Cl and C2 are easily found. The formulas for ?/(.r, .s) can then 

be written 

(11) 

(12) 

[[1- . \ g—<r(o—x) g—(tCo+x)*! 

1(1 + X) 

i — ~ J 

where we have put 

(0 < a: < a), 

(x > a), 

<T = 
K\ \/^/C2 — A 2 \/k\ 

K-i '\^’2 ~f" K.2 y/ki 

and therefore <r/i = \/s/k2 and |X| < 1. 
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Since > 0, 

1 
1 — 2 

0 

and equation (11) can be written 

= 1 _ + e-»c™a+*)] (0 < a: < a), 
A S ji S 

n = 0 

where m = 2n + 1, and (12) can be written 

^ ^ ^ ~ «'(2na4-/i'3C~M®)   <r(2»a4'2a4-M®—Mo)j ^ 

n=«0 

When 6 is a positive number independent of s, we know that 

It therefore follows from the last two expressions for u(x, $) that 

(13) U(x, t) = A-2 ^ 

+ erfc 

00 

1 + , 

J o (2n + l)a — xl 

2 ■\/hit J 

(2n -{- l)a 1 

2^^“ I 
(0 < X < a), 

(14) U(x, t) = A 

_ erfc [ + M(a: - «) 
[_ 2 

2na + m(^ ■“ «)1 
N iyl lly 

2 Vki J 

’]} {x > a). 

This is the formal solution of the problem. It can be verified 
as the actual solution.* The convergence of the series here is 

quite rapid, especially when t is small. 

PROBLEM 

The entire surface of a long bar is insulated. The bar is composed 
of two semi-infinite bars, the first ( — oo < x < 0) made of material with 
thermal coefficients Ki and A^i, and the second (0 < a; < «) of material 

* This verification together with a discussion of the uniqueness of the 
solution is included in a paper by the author in the Philosophical Magazine^ 
Ser. 7, Vol. 31, pp. 81-87, 1941. 
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with coefficients K2 and k2 (Fig. 56). If the initial temperature of the 
first part is zero and of the second part is uq, the boundary value problem 

7^ 
,U(x.0)-0 .U(x.0)-Uo 

K,.k, K^.kz V. 
v7777777^777777^^777777777777777. x* 

Fig. 56. 

In the temperature function is 

Ut{x, t) = t) (x <0,t> 0), 
= k2U^j,(x, t) (x > 0,« > 0), 

C7(x, 0) = 0 (x < Oj, 
= Mo (x > 0), 

U{-0, t) = m+Q, t), KxU.(-Q, t) ^ K,U.(,+0, i) (t>0), 
lim Ur(x, t) - 0, lim Ux(x, t) — 

X—► — «o X—* 00 
0. 

Derive the temperature formula 

(x < 0), 

1 (x > 0), 

where 

\ rk2 
^ ~ K2 

This problem is of considerable importance as a diffusion problem, in 
which case 17(x, t) is the concentration of the diffusing substance. 

43. Observations on the Method. All the problems treated 
in this chapter involve partial differential equations and boundary 
conditions that are linearj that is, of first degree in the unknown 
function and its derivatives. The limitation of our operational 
method to the treatment of such linear boundary value problems 
is a natural one, since we have presented no formula giving the 
Laplace transform of the product of two functions in terms of 
the transforms of the individual functions. It is known that the 
transform of the product of two arbitrary functions can be 
expressed by a convolution integral of the two transforms, where 
the integration is one in the complex plane of s. But it is safe 
to say that no advantage can be anticipated in replacing nonlinear 
differential forms by complex nonlinear integral forms. 
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We have dealt essentially in problems with constant coeffi¬ 

cients. If the coefficients are functions of the variable with 
respect to which the transformation is made, the transformed 

problem is not likely to be simpler than the original one. For 
even when the coefficients are polynomials in /, the transformed 

problem involves derivatives with respect to s in place of the 
derivatives with respect to t present in the original one. If 

the coefficients are not functions of t, the transformed problem 
will be simpler; but it may still be a difficult problem. 

We have made the transformation w^ith respect to time t in all 
our problems in partial differential eciiiations. If the physical 
problem involved the first derivative Ut, the initial value U(x, 0) 
was prescribed; if it involved F^, then F(x, 0) and Yt(x, 0) were 

both prescribed. Consequently, when we applied the formula 
for the transformation of these derivatives, for example, 

L{ Ut{x, t)] = su{x, s) — U(x, 0), 

u(x, s) was the only unknown function arising. But suppose the 
transformation with respect to x had been applied in the tempera¬ 

ture problems. Then if L[U{Xf 01 = 0; 

L{uux, t)] = 0 - t) ~ r/;,(o, 0, 
and ordinarily not both of the functions f7(0, t) and t) would 

be prescribed, since both the temperature and the flux of heat at 
the surface a: = 0 are not usually presci*ibed. Thus one of these 

unknown functions may have to be determined with the aid 
of other boundary conditions, and that determination is often 
awkward. There are problems, however, in which a transforma¬ 
tion with respect to a variable other than time t is useful. 

In case there are more than two independent variables, say x, ?/, 
and tj a transformation of the equation with respect to t still 

leaves us with a partial differential equation in the independent 
variables x and y. This may be attacked by one of the classical 
methods, such as the method of separation of variables, by one 

of the Fourier transformations with respect to x or y, or by a 

Laplace transformation with respect to x or y. The choice should 
depend on the particular problem. 

The operational method of solving partial differential equations 
is of course not limited to equations of the second order. We 
shall soon take up a more powerful method of obtaining inverse 
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transforms, and then we can attack problems whose solutions 

depend upon more involved inverse transformations than those 

in this chapter. 

Finally, it is worth noting that the operational method is well 

adapted to the solution of problems in differential equations in 

which some of the given functions or their derivatives are dis¬ 

continuous. This has been illustrated in the last two chapters. 

It is one of the remarkable features of the method. 



CHAPTER V 

FUNCTIONS OF A COMPLEX VARIABLE 

For the reader’s convenience, we present in this chapter a 
synopsis of some important definitions and theorems that are 
needed in the further development of the theory of the Laplace 
transformation. For a more extensive study of these topics 
and for proofs of the theorems, the reader may refer to books on 

the theory of functions of a complex variable. A partial list 
of such books will be found at the end of the chapter. 

44. Complex Numbers. Let i denote the unit imaginary 

number \/—1 having the property = — 1. If x and y arc 
real numbers, the number 

2 = X + ty 

is called a complex number with real part x and imaginary coeffi¬ 
cient 2/, writte n 

(Si{z) = X, d{z) = y. 

The conjugate of the complex number z, denoted by 2, is the 
number 

2 = X — iy. 

Two complex numbers are equal if and only if their real parts 
are the same and their imaginary parts are the same, and hence 

X + iy ^ 0 

if and only if x = 2/ = 0. Addition, subtraction, multiplication, 
and division of two complex numbers Xi + iy\ and X2 + iyi are 
based on the rules 

{xi +• iyi) ± (X2 + iy2) = {xi ± x^) + i{yi ± 2/2), 

(xi + iyi)(x2 + iy2) = (0:1X2 ~ 2/12/2) + i{xiy2 + X22/1), 

3^1 + iyi ^ (xi + iyi){x2 - iyt) ^ xiX2 + 2/12/2 , X22/1 ~ xiy^ . 

X2 + iy% xl + yl xl + 2/1 x| + 2/2 

128 
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A complex number zi — x\ + iyi is represented geometrically 

either by the point (oJi, i/i) or by the vector from the origin to the 
point (xi, t/i) in the complex plane (Fig. 57). In view of the 

above rule for the addition of two complex numbers, Zi + Z2 is 
represented by the vector sum of the two vectors representing 

Zi and Z2. The length of the vector representing z is called the 

absolute value of z, 

\z\ =4 \/x* + t/2 = \/zz. 

Let (r, 6) be the polar coordinates of the point (x, y). Then 

\z\ = r and 

z = X + iy = r(cos 6 + i sin 6), 

For two complex numbers in polar form, it can be shown that 

Z1Z2 = rir2[cos {di + 62) i sin (di + ^2)], 

— = — [cos {61 — $2) + i sin {di — 62)]; 

also, 

2” = r"(cos nd + i sin n0), 

where n is any rational numbtir. It follows that 

1^1221 = 1211122!, N 
hr 2- = zp 

46. Analytic Functions. Let it? be a complex variable whose 
value is uniquely determined by the value of the variable 
z = X + iy] that is, it? is a single-valued function of z, 

^ = /(2) = u(x, y) + w{x, y)y 

where u and v are the real and imaginary parts of w. Thus if 



130 OPERATIONAL MATHEMATICS IN ENGINEERING [Sec. 45 

w == 2*, then 

f{z) = (x + iyY = — y^) + 2xyi 

so that u = — y’^ and v — 2xy. 
The derivative of ly at a point z is 

dw 
dz 

= /'(«) = lim ^ = Urn 
•' '' AJ-.0 AZ A2-.0 Az 

/(z) -, 

Az = Ax. Then since Aw = 

provided this limit exists. But 
here Az = A.t + i Ay and the value 
of the limit may depend upon the 
direction of the A^cctor represent¬ 
ing Az (Fig. 58). Suppose, for 

instance, that Ay = 0 so that 
Aw- + i Ay, 

dw 
dz 

du , . dv 

dx ^ dx 

But if Ax = 0 so that Az = i Ay, then 

dz ^ ^ dy'^ dy 

If the two values of dw/dz so found are to be the same, it is 
therefore necessary that u and v satisfy the two conditions 

du _ dv dv _ du 
dx dy dx dy 

These are known as the Cauchy-Ricmann conditions. 
Let u and v be functions whose partial derivatives dujdx^du/dy, 

dv/dXy and dv/dy are continuous functions of x and y and satisfy 
the Cauchy-Riemann conditions, in some region about a point 
(x, y). Then it can be shown that the derivative dw/dz of the 
function 

w u + iv 

exists at that point and has the same value regardless of the 
manner in which Az tends to zero. 

A single-valued function f{z) having a unique derivative at 
each point in some region of the xy-plane that includes the point 
z in its interior is called analytic at the point z. li f{z) = u + iv 

is an analytic function, then the partial derivatives of u and v 
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of the first order are continuous and satisfy the Oauchy-Riemann 

conditions. Conversely, when these conditions on u and v are 
satisfied, u + iv is an analytic function. 

Consider, for example, the function 

Here 

f{z) — + 2xyi, 

dv 

dy 
du 

and it follows that the function z"^ is analytic at every point 2, 

where z is finite. Just as in the case of real functions it follows 
from the definition of the derivative that/'(2) = 2z, 

If n is any positive integer, the function f{z) = 2” is analytic 

at each finite point 2, and/'(2) = n2”~h 
Similarly it can be seen that the function 

/(2) = ± == i 
z X + ty xr + y- x“ + y^ 

is analytic except at 2 = 0, where u and v and their derivatives 
do not exist. Also,/'(2) = —l/z^{z7^0). 

The sum or product of any two analytic functions is an analytic 
function, and the quotient is analytic except at those points where 

the denominator vanishes. Consequently, every polynomial 

da CLlZ d2Z" -f- • • • -f- 

is an analytic function, and the quotient of any two polynomials 
is analytic except at the points for which the polynomial in the 

denominator vanishes. In fact, it can be shown that an analytic 
function of an analytic function is analytic. Given, for example, 

that sin 2 is analytic; it follows that sin (1 + 2") is analytic and 
that sin 0/z) is analytic except at 2 = 0. 

Consider now some examples of single-valued functions that 

are not analytic. The conjugate of 2, 

2 = X - iy, 

is a function of 2 since its value is determined by 2. In this case 

u — X and = — 2/; hence 
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and the Cauchy-Riemann conditions are not satisfied. Therefore 

f{z) = z is not analytic at any point. The reader may find it 
instructive to apply the definition of the derivative to this 
function and show directly that the value of f'{z) in this case 

depends upon the manner in which Az tends to zero. 
As another example, let 

f{z) = \zl" = + y^. 

Here v = 0, and du/dx — 2x, du/dy = 2y, so that the Cauchy- 
Riemann conditions are not satisfied. There is no region in 

which this function of z is analytic. 

The functions (S{{z) — x, ^(z) — y, the sum or difference of 
these functions, and such a function as 

f{z) = x® + 

are further examples of single-valued nonanalytic functions of z. 

46. Exponential and Trigonometric Functions. The expo¬ 
nential function mth imaginary exponent may be defined by 

the equation 

(1) c**' = cos y + i sin y. 

This definition is suggested by formally replacing t by iy in the 
00 

power series expansion ^ t^/n\ of Thus 

nf 
2/' , _ 

2! "^4! 

= COS y -V i sin y. 

If the exponent is complex, we write 

(2) c* = f(j-+iy) = e*(cos y + i sin y). 

The reader can show that the Cauchy-Riemann conditions are 
satisfied by the real and imaginary parts of the function so 

that the function is analytic for every finite z. 
According to the above definition of 

(3) 6“**' = cos y — f sin y 

and by eliminating first sin y and then cos y between equations 

(1) and (3) we find that 
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cos y 

sin y = 

where, by definition, 

gty ^ g-ty 

2 
giv — 

2t 

, c* + c * 
cosh Z — -; 

It is not difficult to show that 

= cosh (iy)f 

== — i sinh {iy)f 

. , e* - c~* 
sinh z =-jz- 

cosh z — cosh X cos y i sinh x sin y, 
sinh z — sinh x cos y -h i cosh x sin y. 

These are analytic functions for every finite z. Each of the 
remaining hyperbolic functions of z, 

tanh z = 

sech z = 

sinh z 
cosh z 

cosh z 

coth z — 

csch z = 

tanh z 

„ i_ 
sinh z 

is analytic except at those points where the denominator on the 
right-hand side vanishes. 

The circular functions of z can be defined as follows: 

cos z = 
g7* ^ g- 

sin z = 
e’* — e"** 

2i ^ 
tan z = 

sin z 
cos z 

the remaining three being the reciprocals of these. The functions 
cos z and sin z are analytic for every finite z. In view of these 
definitions, it follows that 

cos iy = cosh y, sin iy = i sinh y. 

All trigonometric identities for the functions with real argu¬ 

ments can be extended without change of form to the functions 
with complex arguments; for example, 

sin^ z + cos^ 2: = 1, sin (zi + zi) = sin Zi cos Z2 
+ cos Zi sin Z2. 

The same is true for the relations between the six hyperbolic 

functions. Furthermore, the formulas for the derivatives of all 
these functions, including e*, retain the same form when the 
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argument is complex as they have when th(^ argument is real; thus 

d , , d . d 
-r e‘ — e*, -r sin z = cos z. cos 2 = — sin z. 
dz ^ dz ^ dz ^ 

and so on. 

PROBLEMS 

1. Show that 

(n) Zt + S2I g |zil + Izal; (b) \zi - z-^ S Hzi] - lz-.|i; 
m I m 

(c) X - X ;!7i I ,fri 

2. If u'x and are analytic functions of s, use the definition of the 

derivative to show that 

f \ d . , . dwi dwz 
(a) ^ (UH + w^) (6) 

(«) 

f dwi 

dz / 

... d . - dwx dwt 
id) rf,- 

d f . dwi . 
Tz dz + 

dwx 
dz * 

3. A function f{z) is continuous at z — if /(^o) exists and 

lim /(20 + A.2) = J{zo), Sliow that if f{z) is analytic at Zq it is ncces- 
A*—>0 
sarily continuous there; but not conversely. 

4. For all finite 2, show that the function 

}{z) = QxX + hi]} 4- Cl 4- i{a^jpc; + h^y 4* c-.), 

where the coefficients and hn are real, is analytic if and only if the 

coefficients are such that 

}{z) = (ai — ih^z 4- Cl 4- tC2. 

6. Show that 

(a) |e*| ,?= e*; (6) e~^ — (c) ^ c^h-'k 

6. Show that 

{a) sin « = sin a; cosh y % cos x sinh y] 

(6) cos z — cos X cosh 2/ — t sin x sinh y\ 

(c) sin 2« = 2 sin z cos 0; 

(d) cos {zi + Z2) — cos Zi cos 22 — sin 21 sin 2?.; 

(e) cosh (21 4- 22) == cosh 21 cosh 22 4- sinh 21 sinh 22. 
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7. Prove (a) that the zeros of sin z, that is, the values of z for which 
the function is zero, are z = ±nir (n = 0, 1, 2, • • • ); Q>) that the 
zeros of sinh z are z = ± mri. 

8. Show that tanh z is analytic except at the points z = ± (2n — l)7ri/2 
(n = 1,2, • • . ). 

9. If w is an analytic function of z, show that 

, . rf dw ... d . dw 
(6) -sm«; = eos«.-^; 

/ . rf . , .dw 
(c) Sinn w = cosh ^~ nw^~^ • 

47. Branches of Multiple-valued Functions. According to 
Sec. 44, if n is a positive integer ttuni 

1_ 1 / Q q\ 
— y.n I CQy-y. I „ ] . 

\ n n) 

here represents the positive nth root of r. Since 

z = r(cos ^ + z sin = r[cos (ii + 27rr?i) + i sin (0 + 27rm)], 

where ni is any positive integer, the function has n distinct 
values 

z" = 
V 

i co.^- 
6 + 27rm ... 0 + 2T7n\ 

os-- + t sm-) 
n n ) 

(m = 0,1, • • • , n — 1). 

When n = 2, for example, we have the function -y/z with the 
t wo values 

/i(z) = s/r (cos I + » sin 

fii^) — j^cos j “ 
for each z. We may select a definite range for 0, say 

—TT ^ 5 < tt; 

then TT S 6 + 2t < Sw and /i(z) is a complex number in either 

the fourth or first quadrant of the complex plane, since 

while /2(z) is a number in either the second or third quadrant. 
The functions/i(z) and/aCz) are called branches of \/z. 
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If we restrict the polar representation of z by writing, for 

instance, 

z = r(cos (i> + i sin <^) (—tt ^ 4> < v) 

with the agreement that the angle in the polar representation 
will be confined to the range — ir to tt, and if we write 

-\/i = \/r^ cos — + ^ sin 

the function \/z so prescribed is single valued. It is the branch 
fi{z) of the double-valued function. This function is analytic 
in the region r>0, ’-w < <l> < t. The region of the plane of z 

in which this function is single valued 
and analytic can be indicated by 
running a line, called a branch cut, 

from O along the negative half of the 
real axis and requiring that z is not 
to fall on or cross that line (Fig. 59). 

Any other ray through 0 making 

an angle (f>o with Ox, so that <I>q < <t> < <t)o + 2%^ would similarly 

prescribe a definite branch of \/z. The point 0 is called a 

branch point of \/z- 

The function has n branches one of which is jirescribed by 
writing 

z = r(cos <f> i sin <t>) (<^o ^ </> < + 2ir) 

for any fixed ^o, and 

\/z = \/r ^cos ~ + z sin —Y 
\ n n/ 

The single-valued function so defined is analytic when r > 0, 

<l>o <t> 27r, also, 

We may define log z by writing 

z = r(cos 6 + i sin 6) = re*® 

where —ir ^ ^ < t, say, and 

log z == log r + log e*® = log r + id. 
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But z is not affected by adding a multiple of 2ir to $j and thus, 
without limiting the range of 6, the function is multiple valued, 

log 2 = log r + i(d + 2nir) (n = 0, 1, 2, • • • ). 

Each one of the branches of this function is an inverse of the 
exponential function; that is, if 

ly = log 2 then z = e^. 

K, 6 K. $0 “h is Any one of the single-valued branches 
analytic for r > 0, and 

d , 1 

dz ^ z 

The inverse trigonometric and inverse hyperbolic functions are 
also multiple valued. They can be expressed in terms of square 
roots and logarithms, and hence they are single valued in suitably 

restricted regions. 
48. Properties of Analytic Functions. Let C be a circle r == a. 

The integral of the function z^ around this circle can be written 
in terms of real integrals, 

dz = dd 
C& 

= aH cos 30 do — a® 30 dO, 

- 

and therefore 

2* dz = 0. 

z-1+4 

Similarly, if C is any closed curve, the integral can be expressed 
in terms of real variables with the aid of 

the equation of the curve, and the value of 
the integral is zero. Suppose, for example, 
that C is a square with (0, 0) and (1,1) as 

opposite vertices (Fig. 60). Then 2 = a; 
on the lower side, z = 1 + iy on the 

right-hand side, etc., and integrating in 

the counterclockwise direction around C 

we have Fio. 60. 

a:* dx + (.^ + dy + {x + i)^ dx 
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The second integral on the right can be written 

(1 + iy)H dy = -2 £ y dy + i £ (1 - y^) dy, 

and in this way it can be seen that the integral of around the 

square is zero. 
If any function f(z) is analytic in a region R of the complex 

plane, then 

£fiz) dz = 0, 
where C is any closed curve lying entirely within the region R. 
This is the Cauchy-Goursai theorem. Moreover, if the integral 
of a single-valued continuous function around every closed curve 

in some region R is zero, that function is analytic in R, so that 
this property is a characteristic one for analytic functions. 

As an immediate consequence of the theorem, the line integral 

rV(i) df = F{z) 

along any path joining 2o to z is independent of the path as long 
as the path lies within a region in which }{z) is analytic. Also 

F'{z) = f{z) so that F{z) is the indefinite integral of f{z) when Zo 
is an arbitrary constant. 

The contour integral of the function must therefore vanish 
when taken around any closed curve not containing z = 0. But 
if the curve is, for example, the circle r — a enclosing z = 0, then 

Jc Z Jo Jo 

The value of a function /(z), analytic in a region K, is deter¬ 
mined at a point Zo by the values 
of the function at the points on 
any curve C lying within R and 

enclosing the point Zo (Fig. 61) as 
follows: 

/(2o) = ±.CfJi 
2iri Jc z 

f(z) dz 

Zo 

where the z traverses C in the 
counterclockwise direction. This is Cauchy^s integral formula. 
Note that the integrand is not analytic at z = Zo. 
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One of the most important characteristics of analytic functions 
is that they can be represented by convergent power series. A 

necessary and sufficient condition that f{z) be analytic at 2 = 20 

is that 

f{z) = ao + a^{z — 2o) + a^iz — z^Y + • • • 

+ an{z - 2o)” -f * • • , 

where the coefficients are complex constants depending on the 
function and on the point Zq^ and where the series converges for 

all z within some circle about Zq. The series can be differentiated 
term by term, and the new seric^s rei)resents f{z) within that 
circl(‘. C^)iise(iueritly the derivative of any order(2) is also 
analytic at Zq. In fact the coefficients in the above scries have 

the values 

ao=/(2o), «» = 

that is, the series is Taylor^s series for J{z). 

The power seri('s rc'presentations of the elementary functions 

have the same forms when their arguments are complex as they 
have when their arguments are real. For example, 

^ ^ Sin 0 - ^ , 

0 1 ^ ^ 

where we have taken Zq — 0. These two series converge and 
represent their functions for every finite z, so the radius of the 

circle of convergence is infinite. 
We have noted various possible methods of determining 

whether a single-valued function is analytic. It may be an 
analytic function of a function that is known to be analytic. 

It may be i*epresented by a convergent power scries. We may 
show that its real and imaginary parts satisfy the Cauchy- 

Riemann conditions, or that J'{z) exists and is unique, or that the 

function satisfies the conditions of the Cauchy-Goursat theorem. 

49. Poles and Residues. A point at which a single-valued 

function fails to be analytic is called a singular 'point. An isolated 

singular point is a point interior to a region throughout which the 

function is analytic except at the point itself. The function 
(1 — 2)“', for example, has an isolated singularity at 2 = 1. The 
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ftmction 

m = 
sin g 

z 

has such a singularity at 2 = 0. But if we define this function 
at 2 = 0 as/(0) = 1, then at all points 

f{z) = 1 — + 
3! ' 5! 

this function is analytic at 2 = 0. Any such singular point that 
can be removed by properly defining the function at the point 
is called a removable singular point. 

The circle of convergence of the power series representation of 
an analytic function extends to the nearest singularity. Thus 
the circle of convergence of the series in powers of 2 for the 
function (2 — 1)”^ is the circle r = 1. 

If a function f{z) becomes infinite at 2 = 2o in such a manner 
that, for some positive integer n, the function 

4>{z) = (2 - 2o)^/(2) 

has a removable singularity at 20 and <^(20) 7^ 0, then 20 is called 
a pole of order n of J(z). Here 4>{zo) denotes the value that must 
be assigned to 0(2) at Zq in order to make the function <t>{z) 
analytic at 20. If n = 1, the pole is a simple pole. 

The simplest examples of functions with poles are quotients of 
polynomials. Thus the function has a pole of order 2 at 
2 = 0. The function 

Kz) = 
2^ + 1 
2^ — 1 

_^ + 1 
(z - \ j{z + 1) 

has simple poles at 2 = 1 and 2 = — 1. Here the function <^(2) 
corresponding to the pole 2 = 1 is (2^ + \)/{z + 1). 

The function 

coth 2 = 
cosh 2 
sinh 2 

has simple poles at 2 = 0, ±7ri, ±27rf, • • • . For the pole at 
2 = 0, 

cosh 2 
4>{z) = 2 coth 2 = 
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provided </>(()) = 1, and the function on the right is analytic at 

2 = 0, since it is the quotient of two analytic functions and the 
denominator does not vanish at 2 = 0. Likewise it can be shown 

that 2 = TTZ is a simple pole by expanding sinh z in powers of 
(2 — TTz). For 

sinh 2 = sinh iri + {z — iri) cosh tti + ^ W + • • • 

= - (2 - TT?:) - (2 — iriy — ^ — ^0® - • ■ • 

and it follows that (2 — ti) coth 2 is analytic at 2 = iri provided 
this product is defined to be 1 when 2 = ti. In the same way, 

it can be shown that 2 = ± mri are simple poles. 

Let 2o be a simple pole of the function f{z). Then 

0(2) = (2 - Zo)f(z) = A^i + A o(z - 2o) + id 1(2 - 2o)2 + • • • 

where A^] = 0(2n) is the value 0(2) must have at Zq in order to 

be analytic there. This value can be written 

(1) A^i - 0(20) = lim (2 — 2o)/(2). 
2—»zo 

We therefore have the representation 

(2) f{z) — ..A- AQ Ai{z — 2o) + /12(2 — 2o)^ + * • ‘ . 
2 

The number A^i is called the residue of f(z) at the pole 2o. In 

case f{z) is the quotient p{z)/q{z) of two analytic functions, 

where p(2o) 9^ 0, formula (1) for the residue at the simple pole 20 

can be written 

(3) ^-1 
lim (z - z»)p(z) P(go). 
z-^z, 9(2) 9'(20) 

The function e^/{z^ — 4), for instance, has simple poles at 

2 = ±2. The residue at the pole 2 = 2 is cV4, and at 2 = —2 
the residue is — c”V4. 

If 2o is a pole of order n of the function/(2), then 

(4) 0(2) = (2 - ZoYfiz) = A_n + A^n+l{z - 2o) + • • • 
+ A^i{z - 2o)"”^ 4. . . . 
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in some circle about Zo, and thus 

(5) f(z) = + 
(z — Zo)" {z — Zo) ul=i + 

+ ^^+'^A,(z-Zoy. 

The number A-i is the residue oi j{z) at z^. Its numerical value 
may be found in any particular case b}" writing out the expansion 
(4), or b}^ the formula 

(6) = (n - l)U_i, 

obtained by differentiating (4) successively and setting z = Zq. 

.Let 72 be a region in which f{z) is analytic except for a pole 

at Zq with residue A-x. Then if C is a closed curve in R enclosing 
2o, it can be shown that 

J. 

2irt 
dz — A-x, 

where the point z describes C in the counterclockwise direction. 

This important result can be generalized to any number of 

poles. Let pi, pa, * * ’, Pm denote the residues of f{z) at the 
poles ZxyZ2y • * * , Zmy respectively, and let R be a region in which 
J{z) is analytic except at those poles. Then if C is any closed 
curve in R enclosing all those poles, 

(7) ff(z) dz = 2« ^ 
t'= I 

Pyj 

where C is described in the counterclockwise direction. This is 
Cauchy’s residue theorem. 

As an example, the integral of z~^ around any closed path 
enclosing 2 = 0 is 27rf. As another illustration consider the 
function 

/(z) = 
_ 1 _ 
2^(1 — z)^ 

which has a pole of order 2 at 2 = 0 and a simple pole at 2 = 1. 

To find the residue at the first pole, we may write 

/(«) = {l+z + z’‘ + ■ ■ ■) 

(1 + *) (i + 7 + 1 + * + *' + \z z 
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so that the total coefficient of 1/z on the right, or the residue at 
2 = 0, is 2. The residue at 2 = 1 is —2 since 

lim (s - \)f{z) = lim - = -2. 
2—♦! 2—+1 2 

According to the residue theorem then, the integral of f{z) over 
any closed path enclosing both 2 = 0 and 2 = 1 is zero. 

An isolated singular point of f{z) that is not removable and 

not a pole is called an essential singularity. For example, the 
point 2 = 0 is an essential singularity of the function 

We have noted that any single-valued function that is analytic 
in a region It including 2o is representcMl by its Taylor series about 

Zo throughout any circle, with center at 2o, lying entirely within R. 

If the function has an isolated singularity at 2o and is otherwise 

analytic in the function can be represented by a series of posi¬ 
tive and negative powers of (2 — 20), in any circle with center 

at 2o lying entirely withm R, except of course at 20 itself. The 
scries is Laurent’s series: 

00 

(8) /(«) = 2) ~ *»)" (=* ^ *“)• 

The coetticients have the values 

An _L r 
2xz Jc (z — 

where C is any closed curve about 20 lying entirely within Ry 

and where 2 describes C in the counterclockwise direction. 
If 2o is a simple pole, the coefficients A„ (n = — 2, — 3, • • • ) 

in formula (8) are zero and the expansion is that given by equa¬ 

tion (2). Equation (5) is another special case of (8). 

PROBLEMS 

1. Let p(z) denote a polynomial in 2. Show that the residues of the 
function 

P(g) 
(2 — zi)(z — Z2) 

at the poles Zi and 22, when Zi 9^ 22, are p{zi)/(21 — 20) and pizi)/(22 — 21), 
respectively. 

2. The function f{z) = l/z^ is already written as a Laurent series, 
with all coefficients zero except one. Hence its residue at 2 = 0 is zero. 
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In the converse of the Cauchy-Goursat theorem (Sec. 48), what con¬ 

dition is not satisfied by f{z) at 2? == 0? What are the residues of the 

functions z~^ (w = 3, 4, • • • ) at the pole 2 = 0? 

3. Find the value of the integral of the function (a -j- 4- c9^)/z^ 
around the circle r = 1 (a) directly; (h) by using the residue theorem. 

A ns. 27rci. 
4. Show that the function tan z is analytic except for simple poles 

at 2 = ± (2n — l)7r/2 and that its integral around the square bounded 

by the lines x — ±2, y = ±2 has the value — 47rf. 

6. Show that the integral of tanh z around the circle r = tt has the 

value 47rt. 
6. Show that 2 = 0 is an essential singularity of the functions sin (I/2) 

and cos (I/2). 

7. Using the Cauchy-Riemann conditions, show that if f(z) — u + iv 
is analytic at a point then u and v satisfy Laplace’s equation in two 

variables there, 

-L. ~ n — _u — 
dx^ ’ dx’^ dy^ ~ 

60. Analytic Continuation. If a function, knowm to be 

analytic in a region R, is defiined at all points on an arc of some 
curve interior to R, the function is uniquely dettirmined through¬ 
out R. If the function is zero on the arc, it must therefore vanish 

throughout R since J{z) =0 is an analytic function. 
The function 

0(2) = 1 -f 2 + 2- + 2=^ + • • • 

is defined by the scries and is analytic for all z within the circle 

of convergence r = 1. Its value there is (1 — 2)“^ Now the 

function 

m - 
is everywhere analytic except at 2 = 1 and f{z) ^ <l>(z) when 

I2I < 1. There can be no othe^r function analytic outside the 

circle r = 1 that is identical to <^(2) inside the circle. The func¬ 
tion/(2) is called the analytic continuation of <^(2). 

As another example, consider the function 

<t>(z) = f^’ e~“ dt. 

Since ethe integral converges and the function 
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is defined only if a; > 0. Its value is I/2. Now the function 

m 
1 
z 

is everywhere analytic except at z = 0, and it is identical to 4>{z) 
when (H(z) > 0. Hence/(z) is the analytic continuation of 0(z). 

In either example, <^(z) is called an clement of the function/(z). 

61. An Extension of Cauchy’s Integral Formula. In Sec. 48 
we noted that the value of an analytic function/(z) at any point Zo 

inside a closed curve C is given in terms of the value of the func¬ 
tion on C by Cauchy^s integral formula 

r f(z) dz 
JcZ - Zo* 

In the next chapter we shall need an extension of this formula 

to the case in which C is replaced by a straight line parallel to the 

axis of imaginaries and *.0 i« any point to the right of that line. 
To establish such an extension of the theorem, let us first intro¬ 

duce the notion of order of a function of a complex variable. A 

function /(z) is of the order of as z tends to infinity, written 

/(z) = 0(z*) as z —> 00, 

if some positive numbers M and Tq exist such that |z“*/(z)| < M 

when |z| > ro; that is, if 

\m < M\z\^ 

for all |z| sufficiently large. 
Theorem. Let the function f(z) he analytic when (R(z) ^ 7 and 

of the order 0(z~*) as lz| —> 00 tn that half-plane, where 7 and k are 

real constants and k > 0, Then if Zo is any complex number with 

(R(zo) > 7, 

(1) /(^o) = 
Az) dz 

z — Zo 

The notation here is intended to imply that the integration 
takes place along the line x = y, where z = x + iy, from the 

point 7 — ijS to 7 + ip. The limit of this integral as /3 —> 00 is 

called the Cauchy principal value of the integral from y = — 00 
to y = 00 along the line. 
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Consider the rectangle (Fig. 62) with vertices 7 ± ip, p ± ip, 

where jS > |t1 and p is large enough that the fixed point Zq lies 
inside the rectangle. Let S denote the path consisting of the 
open rectangle obtained by removing the left-hand side of our 

rectangle, where z traverses S in the counterclockwise direction. 

j3+ij3 

• Zo 

'~0 r X 

S 

J3-IJ3 

Fig. ()2. 

Applying Cauchy’s integral formula to the closed rectangle, we 
can write 

(2) 
j_r_ r/(5)rf?l 

L Jr-i» Z - Zo Js z - ZoJ 
/(Zo). 

It is not diflBcult to show that the integral of a function <t>{z) 
of a complex variable over a path Q satisfies the inequality 

I ^ 0(z) dz] g |0(z) dz\, 

also that jiizl is the length of the path Q. Now the absolute 

value of the integrand of the second integral in equation (2) 
satisfies the following inequality, in view of the order condition 
on /(«): 

fiz) . M _ M 

Z — Zo Ml* - «ol |2|*+I 2^ Zq 

Z 

Since z is on S, we can take p large enough to make \zo/z\ < i; 

then |1 — zo/z\ > h Also l^l ^ jS on the path S, and therefore 
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It follows that 

I r f{z) dz 
IJs 2 - 2o 

m 2M 

Z — Zi 

2M i 
IJdzl = 

^.+1 J 
since the length of S is 40 — 2y. Since k > 0, the expression on 
the right vanishes as /3 —> co. 

Conse^iuently, the sc'cond integral in eciuatiori (2) tends to 

zero as 0 oo, and since the first integral is the one in our 
theorem the theorem is proved. 

Under the conditions in the theorem, it can be seen that the 

infinite integral along the line x — y exists; that is, our formula 
(1) could be written 

f(y + iy) dy 
y 4r iy — 2o 
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CHAPTER VI 

THE INVERSION INTEGRAL 

We shall now extend our theory of the Laplace transform by 
letting the letter 5 in the transform /(.s) represent a complex 

variable. As before, F{t) represents a real fuiuition of the 
positive real variable /; but the transform f{s) can assume com¬ 

plex values. We shall see that the properties of the transforma¬ 
tion already obtained by assuming that s is real carry over to the 

case in which s is complex. 
Some of the properties derived in this chapter could have been 

found when s is real without the use of complex variables; but 

of course once these have been established for complex 3 they 

are valid in the special case when s is real. Others involve such 

concepts as analytic functions, residues, and line integrals in 

the complex plane. The complex variable is of course essential 
for the derivation and use of such properties. 

62. Analytic Transforms. When s is the complex variable 

s = X -h iyj 

the Laplace transform of the real function F{t), 

f{s) = e-^^c-'y^F(t) dt, 

can be written at once in terms of real integrals, 

(1) /(s) = cos ytF{t) dt — i sin ytF{t) dt. 

Thus 

/(s) = u{x, y) + iv{x, y) 

where 

(2) m(x, y) == Jq" cos ytF{t) dt, 

2/) = sin ytF(t) dt. 

148 
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Replacing s by its conjugate, we see that 

- iy) = u{x, y) - iv{x, y), 

which is the conjugate of /(s). Hence the conjugate f(s) of the 
transform is the same as the transform with its argument replaced 
by the conjugate: 

(3) M = fG), 

whenever tlie Laplace integral converges. 

If F{t) is a sectionally continuous function in each finite 
interval, for t ^ 0, and if it is of exponential order as ^ > oc, 
then a positive constant M and a constant Xo exist such that for 
all t ^ 0 

|F(0| < 
The fuindion 

y\ i) = COR ytF{t), 

which is the integrand of the integral r(;pros(‘nting 'u(x, y), then 
satisfies the inequality 

\<t>{x, y, 01 ^ ^’'*1^(01 < 

Let X be confined to a range x Xi where Xi is a constant greater 
than 0^0. Then a: — Xo ^ — aro > 0 and 

|</)(x, y, 01 < 
The function is independent of x and ?/, and its integral 
from zero to infinit}^ converges. According to the Vi^eierstrass 
test* for the convergence of infinite integrals the integral 

iltix, y, f) dt, 

representing u{Xf y, t), is uniformly convergent with respect to 
X and y when x ^ Xi and for all y. The integral is also absolutely 
convergent. 

Now <f>{x, y, t) is the product of the sectionally continuous 
function F(0 by a continuous function of x, y, and and the 

* This test is derived in most hooks on advanced calculus or on the theory 
of functions. For a careful statement of the conditions when tlie inte¬ 
grand is a function of two variables, the reader may refer to H. S. Carslaw, 
“Fourier’s Series and Integrals,” p. 196, 1930. The case in which the inte¬ 
grand contains three variables is an immediate extension of this test. 
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integral of ()> is uniformly convergent with respect to x and y. 

Under these conditions,* the integral represents a continuous 
function of x and y\ that is, u{x^ y) is a continuous function of its 

two variables for every y and for every x > xq. This conclusion 

clearly applies to ?;(rr, y) as well since the integrand theni differs 
from that of u(x, y) only to the extent of containing the factor 
sin yt instead of cos yt. Thus /(&*) is a continuous function of 

X and y and, therefore, of 

Let us now show^ that 

(4) lx ^ ~ X 
where the integral is obtained by differentiating the first integral 

in equations (2) under the integral sign. The integral here is the 
same as that representing n{xy y) except that tF{t) has replaced 

h\t). Since F{i) is of exponential order can write 

and if we take e > 0, the function has a maximum value, 

say M'y for all positive t so that 

That is, tF(t) is of order for every a > Xq. 

The argument used above on w(t, t) therefore show’s that the 
integral in equation (4) is uniformly convergent with respect 

to X and y and represents a continuous funct ion of those variables 

w^henever x > Xq. The uniform convergtmce of the integral 
and the sectional continuity of F{t) ensure the validity of the 

differentiation under the integral signf so that formula (4) is 
valid and du/dx is continuous, w^hen x > a’o. 

Likewise, the functions du/dy, dv/dXy and dv/dy are continuous 

when X > Xo, and since 

~ cos {yt)tF{i) dt, 

it follows that du/dx = dv^dy. Similarly, du/dy — —dv/dx. 

Since the Cauchy-Riemann conditions are satisfied, the function 

f(s) is analytic when x > Xo. 

* See, for instance, Carslaw, op. cit., p. 198, 
f Op. cit.y p. 200. 
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The derivative of an analytic function /(s) is independent of th« 
manner in which As tends to zero. If we keep y constant, then 

“X yt- i sin yt)F{t) dt; 

that is, 

/'(s) = - <c-'F(0 dt = -L{tF{t)}. 

Since tF{t) is sectionally continuous and of exponential order, 

our result can be applied to that function as well as to F{t)j so 

that 
/"(s) =^Limt)\ {x >Xo), 

The same is true for t^F{t)y and our results can be stated as 
follows: 

Theorem 1. Let the function F(t) he sectionally continuous in 

each finite interval and of the order for i ^ 0. Then the 

Laplace transform of F(0> 

^ X” ■^'{^(0! {s = x + iy), 

is an analytic function of s in the half plane x > Xo. The Laplace 

integral converges absolutely and uniformly with respect to x and y 

in that half plane. The derivatives of f{s) are given by the formula 

(5) /W(s) =L{(-0»F«)1 (a:>Xo). 

Formula (5) was found in Sec. 12 (Theorem 4) for the special 

case in which 5 is a real variable. 
The conditions in Theorem 1 can be made less narrow. For 

instance, let F{t) satisfy the conditions as stated except that it 

becomes infinite at ^ = fo ^ 0 in such a way that |(^ — io)*F(01 
remains bounded as ^ Uy where A; < 1. Then the conclusions 

in the theorem are still valid. As an example, the transform 
of F{t) = Ms analytic in the half plane x > 0 and formula (5) 

applies to it. 

53. Permanence of Forms. We have seen that the Laplace 
integral of F{t) leads to a function f{s) that is analytic in the half 

plane x > a:o, where s = a" + iy^ If the integration is performed 
when s = x, a real function is obtained that is identical to 
/(«) to the right of Xo along the real axis; that is, ^(x) = /(x) when 
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X > Xo. If (t>{s) is an analytic function in the half plane, then 

it must be identical to /(s) since two different analytic functions 
cannot be identical along a line in the complex plane (Sec. 50). 

It follows that transforms can be found by carrying out the 

integration as if s were a real variable. That the function f{s) 
so found is analytic when 6\{s) > Xq can bo seen in the particular 

cases; but it is true in general because the integration formulas 

are the same whether the parameter in the integral is complex 

or real. The transform of F{t) = for instance, was found to 

be when s is real. Now P is of the order f^r 

Xo > 0, and 2s”'® is analytic except at s = 0. Therefore 

ii<-i -1 

for all complex s in the half plane x > 0. 
All our transforms of particular functions, tabulated in Appen¬ 

dix III, are valid when s is complex. We seldom need the value 

of Xo which determines the half plane in which s lies; the existence 
of the number xo usually suffices. 

The operational properties of the transform developed in the 

first two chapters and tabulated in Appendix II are likewise valid 
when s is a complex variable in the half plane x > xo. For the 

sake of simplicity, we may make an exception of operation 10, 
Appendix II: 

= J"/(X) (A, 

and agree that s is real here. 

The permanence of the forms of those properties is again a 
consequence of the fact that the steps used in their derivations 
are independent of the real or complex character of the parameter 

s. However, the derivations could be rewritten with s = x + iy 

by proceeding as we did in the derivation of formula (5), Sec. 52. 

In deriving the formula for the transform of the derivative, 
for example, we can write 

L{F'(0} = jj" e~^*' cos ytF\t) dt — i c”®* sin ytF'{t) dt. 

The integrals here are real. Upon integrating each of them by 

parts, we find that 
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L{F\t)} = 6~^^(cos yt — i sin yt)F(t)^^. 

Jo ^ 2/0^(0 ^ §i 2/0^(0 

Carrying out the indicated differentiations and collecting terms, 
we get the familiar result 

L{P'\t)\ = —F(d-O) + (x + iy) c“^^(cos 7/i ~ t sin yt)F{i) dt 

^sL{F{t)\ -F(4-0) (x>xo). 

We have assumed in this derivation that F{t) is of the order of 
as t —> CO and that s is confined to the half plane x > Xo. We 

have also assuiiKjd that F(l) is continuous. As pointed out in 

Sec. 4, the derivative F'(0 be a sectionally continuous 
function. 

64. Order Properties of Transforms. We have seen that the 

transform ot every sectionally continuous function of exponential 

order is an analytic function /(.s) in a right half plane. We shall 
now show that the behavior of f(s) as either \s\ or Gl(s) increases 

is sul)ject to restrictions. 

Theorem 2. If F{t) is sectionally continuous and of exponential 
order 0(6=^“'), then Us transform is of the order 0(l/x) in the half 

plane x ^ Xi where Xi is any number greater than Xo and where 
s — X iy; that fs, a constant M exists such that for all s in the 

half planej 

(1) \xj{x + iy)\ < M {x ^ Xt). 

Note that it follows from the theorem that the analytic func¬ 
tion f{s) satisfies the condition 

(2) lim /(x + iy) = 0. 
a'—> 00 

The function /(.s) = s, for instance, does not satisfy this con¬ 
dition ; henc(^ it cannot be the transform of any function F(t) that 
is s('ctionally continuous and of exponential order. Actually, 

it is not the transform of any function. The same is true of 

f(s) = 1. 
To prove the theorem, we may first write 

(3) /(x + iy) — c~~^^ cos yt F{t) sin yt F{t) dL 

Using the fact that the absolute value of an integral is not greater 
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than the integral of the absolute value of its integrand, we have 

cos yt F(t) dt\ c“^'|cos ytF(t) \ dt 

e-^*Mdt 
Mx 

X — Xo 
{x > Xo)j 

where Mi is such that |F(0I < Mx€^<^ when x ^ xq. The second 
integral in equation (3) satisfies the same inequality, and 
thus if Xo ^ 0, 

(4) x\f{x + iy)\ < 
2M,x 

X — Xo 
< 

2Mx 

X 

lix'^ Xx where Xi > .ro, the smallest possible value of the quantity 
1 — 2:0A is 1 — xo/xi and therefore 

x\f{x + iy)\ < (x ^ xO- 

Xi 

The fraction on the right can be taken as the number M in the 

theorem. The demonstration is similar if Xo < 0. Thus Theorem 
2 is proved. 

Acconling to this theorem, f{s) tends to zero as the point s 

moves to the right in the half plane. Under slightly different 
conditions on the function F(t), the transform /(s) tends to zero 
as s moves farther out in the half plane in any direction. One 

set of conditions under which this is true is contained in the 
following theorem: 

Theorem 3. Let the function Fit) be continuous with a sec- 

tionally continuous derivative F'{t)y and let Fit) and F'it) he of 
order Oie^^). Then /(s) is of the order 0(1/s) in the half plane 
X xI where Xi > Xo] that iSj a constant M exists such that 

(5) Wis)\ < M (x ^ xi). 

Under the conditions of this theorem, we know that 

LlF'it)} = sfis) - F(+0) ix > Xo); 

therefore 

sfis) =L{F'(0} +F(+0). 

Since F'it) is sectionally continuous and of exponential order, it 

follows from the inequality (4) that when 2:1 > a number Mi 
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\L{F'm < 
2Mi ^ 2Mi 

tC ~~~ QOq 3^0 

Consequently for all x xi^ 

|s/(s)l < + 1^(+0)|. 
Xi — Xo 

The quantity in the right-hand member here can be taken as the 
number M in the inequality (5), and the theorem is proved. 

Note, for instance, that the functions f(/) — 1, F(t) = t, and 
F(t) — cos kt satisfy the conditions in the theorem when Xo is 
any positive number. Their transforms, which are 

1 i 
s' 6-2' ^2^ 

respectively, are of the prder of 1/s in finy half plane x Xi > 0. 
In fact, the second of these transforms is of the order of 1 a 
conclusion that would follow from the character of the function 

F{t) = t alone, with the aid of the following extension of 
Theorem 3. 

Theorem 4. If the functions F{t), F'{t), and F"(t) arc of the 
order continuous^ and if F"{t) is scctionally con¬ 

tinuous, then 

(6) \s^f{s) — 5F(+0)| < M {x xi > Xo); 

if, in addition, F(+0) = 0 then f{s) = 0(1/52); that is 

(7) 152/(601 < M {X ^ xO. 

Under the conditions on F{i) and its derivatives, we know^ that 

L{F'{t)} = 52/(5) ~ sF{+0) - F'(+0) (X > Xo). 

Since L {F"{t)) is a bounded function of s in the half plane x ^ Xi, 

when Xi > Xo, the function 

52/(5) - 5F(+0) = LlF"{t)} + F'(+0) 

is bounded. This is the statement (G). When F(+0) = 0, the 
inequality (7) follows at once. 

The extension to higher orders is immediate. For instance, 

(a: ^ Xi) 
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provided that F{t) and its derivatives of the first three orders are 
of exponential order, that F"(/) is continuous and F"\t) is sec- 
tionally continuous, and that 

F(+0) = F(+0) = 0. 

The function F{t) — for example, satisfies these conditions. 
In Theorem 3 the condition that F{t) he continuous is intro¬ 

duced in order to have a simple proof of the order property 
/(s) = 0(l/s). By using the second theorem of the mean for 
definite integrals, it can be shown that this order property is true 

if for some Xo ^ 0 the function F{t) is such that the product 
e~^^F{t) is bounded and scctionally inonotonic for all ^ ^ ().* A 
sectionally monotonic function is one such that the positive f-axis 

can be divided into segments 0 ^ ^ /i, h ^ f ^ /o, * * * , none 
of whose lengths is less than some fixed positive number e, such 
that in each segment the function is either nonincreasing or non¬ 

decreasing as t increases. The step function Sk{i)y for example, 

satisfies these conditions with Xo = 0. Its transform i« of 
the order of in any half plane x ^ Xi > 0. 

The conditions on F{t) under which /(«) is of the order of 

can be relaxed in the same manner by using tlie above result in 
conjunction with the transformation of derivative's. Conditions 

that arc more elegant and more eflfteient than those given here 
can be found in the literature on the tlu^ory of the transforma¬ 
tion; but the concepts involved in their statements are somewhat 
more advanced than those used here. 

PROBLEMS 

1. Determine an order property of /(s) from the character of the 

function F{t) in each of the following cases, and verify your result by 

writing /(s): 

(a) F{t) — sinkt] 

(c) F(t) — t sinh 

(6) F{t) = cos kt] 

(d) m = j 
0 when 0 < ^ < 

t — k when t > k. 

2. Show that under the conditions of Theorem 3 it is true that lxs/(5)| 

is bounded in the half-plane Xi provided F(4-0) == 0. 

* A proof will be found in a paper by the author entitled “The vStdution 
of Linear Boundary-value Problems in Physics by Means of the Laplace 
Transformation, Part 1,” Mathematische Annalen, Vol. 114, p. 597, 1937. 
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55. The Complex Inversion Integral. According to the exten¬ 
sion of Cauchyintegral formula presented in Sec. 51, a function 
/(s) that is analytic in a half plane (5l(s) ^ 7 and of the order 

there, where A; > 0, can be expressed in terms of its values 
along a vertical line by a line integral: 

/(s) = 5—. lim 
Zirl 00 i -zfi 

/(g) dg 
s — 

where (R(s) > 7. Let us formally apply the inverse Laplace 
transformation to the function of s on either side of this equation 
assuming that, on the right, the order of the operator L~^ and the 
integration along the line 6l(z) = y can be interchanged. Then 

If f(s) is the Laplace transform of a function F(t), then, since the 
inverse transform of l/(s — z) is it would follow that 

1 ^7 + »/3 
(1) F{t) = jim j ^ e“f{z) dz. 

The expression in the right-hand member is called the complex 
inversion integral of the Laplace 
transformation. We introduce the 
symbol here for the transfor¬ 

mation of /(s) represented by the 
inversion integral; that is, 

(2) irM/(s)! = 

0-7 lini I e‘‘S{z) dz. 
ZTTl oc Jy-ip 

It is intended that the symbol will 
carry the suggestion of an integra¬ 

tion as well as that of an inverse 
Laplace transformation. 

Although the inversion integral is an integral in the complex 
plane along a line parallel to the axis of imaginaries (Fig. 63), it 
can be written as a real infinite integral. The variable of integra¬ 
tion is 2: = 7 + fj/ where 7 is fixed; hence we can write 
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1’'^+^ e''/(2) dz = ef' P e‘<^f(y + ty)i dy 

= iC* e‘‘'‘/(7 + iy) dy + e'’>‘f{y + iy) dyj- 

In the first integral of the last line, we replace the variable of 
integration y by — y. Then the sum of the two integrals becomes 

[e“’'"/(7 - iy) + + iy)] dy. 

Now is the complex conjugate of When /(s) is a 

transform, we noted in Sec. 52 that/(7 — iy) is the conjugate of 

/(t + iy)‘ Therefore the product — iy) is the conjugate 
of the product + iy) so that the sum of the two products 

is twice the real part of one of them. Let 

f{x + iy) = tc(x, y) + iv(x, y). 

Then 

+ w)] = w.(7, y) cos yt — v(yy y) sin y(. 

Consequently, tlie inversion integral (2) can be written 

(3) LrM/(s)l = “ I b(7, v) cos yt - v{y, y) sin yt] dy. 

This is the real form of the inversion integral. We shall see 
that the function of t represented b}^ this formula is independent 
of the constant y as long as that constant is taken sufficiently 

large. The form (3) is presented here for the purpose of showing 
that the inversion integral is subject to the rules of operation 

that apply to real integrals. The integration involved in this 

real form, even for very simple functions /(s), is generally too 

difficult to perform. For the purpose of evaluating Lj-^{f{s)], 
we shall use the complex form (2) in conjunction with certain 

auxiliary line integrals and the theory of residues. 
In the following sections, conditions on either f{s) or F(t) will 

be established under which the function LT^{f(s)\ is the inverse 

Laplace transform F(t) of f{s); thus our equation (1), which can 
be written 

(4) F(0 =L-M/(s)l, 

becomes an explicit formula giving F(t) in terms of f{s). 



Sec. 56] THE INVERSION INTEGRAL 159 

Other formulas for the inverse transformation are known. 

The reader will find accounts of them in the books by Doetsch 
and Widder.* The form (4) is, however, the only one that has 
been found useful, up to the present time, in the actual deter¬ 

mination of inverse transforms of particular functions. 
66. Conditions on f(s). The following theorem gives con¬ 

ditions on the function /(s) sufficient to ensure the validity of the 

inversion integral formula of the last section. Certain properties 

that the function F{t) must satisfy as a result of the order con¬ 
dition imposed on f{s) are also noted. 

Theorem 6. Let f(s) be any function of the complex variable s 
that is analytic and of the order 0(s“*), in some half plane (H(s) ^ xo, 
where Xq and k are real constants and k > Then the inversion 

integral LY^{f(s)\ along any line x = where y ^ Xo, converges 
to a function F{t) that is independent of 7, 

(1) /-(O =LrM/(s)), 
whose Laplace transform is f(s): 

(2) L{F(0i=/(s) ((R(s)>7). 

Furthermore the function F{t) is continuous for each t ^ Q and 

(3) F{0) - 0; 

also F{i) is of the order 0{e^^) for all t 0. 
In view of the order property on/(2:) a constant M exists such 

that |/(z)| < 71/in the half plane. Let/(2:) = u + iv. Then 

on the line (R{z) = 7, 

■y/u^ -j- ^ ^)- 

Consequently \u{y, y)\ and |y(7, y)\ separately are less than 
71/(7^ 4- and hence the integrand in the real form (3), 

Sec. 55, of Lz^ {/(«)! satisfies the inequality 

(4) \u(y, y) cos yt - v{y, y) sin yt\ < 

When A; > 1, the function of y on the right has a convergent 

integral from zero to infinity, and since the function is inde¬ 

pendent of t the inversion integral converges uniformly with 

* Doetsch, G,, ^‘Theorie and Anwendung der Laplace-Transformation,*’ 
1937; Widder, D. V., **The Laplace Transform," 1941. 
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respect to t in every finite interval a ^ t ^ h. It is also abso¬ 
lutely convergent. Since the integrand of the integral is a 
continuous function of y and ty the function F{t) represented by 
the inversion integral is continuous for every t, positive or 

negative. 
It also follows from the inequality (4) that 

> 1), 

and since the coefficient of here is a constant our function 

y 
B C r'+i0 

0 7 r X 

A D 1-ip 

Fig. 64. 

F{t) is of the order of 
Let us show next that the value 

of the inversion integral is inde¬ 
pendent of 7 as long as 7 ^ xq. 
Consider a second path a; = 7' 

where 7' > 7* Since €^%z) is ana¬ 
lytic when X yy the integral of 
that function around the bound¬ 
ary of the rectangle A BCD (Fig. 

64) is zero. On the side BCy 

z = X + iPf and in view of the 
fact that |/(z)| < M\z\~^y 

\e'‘m\ < 

Consequently the integral on that line satisfies the inequality 

€‘^/{z) dz\ dx. 

Hence as ]8 —> 00 that integral tends to zero. The same argu¬ 
ment applies to the integral along the side AD. We have used 
only the fact that k > 0 here. 

Since the sum of the integrals over the paths AB, BCy CD, and 
DA is zero, it follows that 

IfyX' + fr+0 
or 

lim e^^f(z) dz — lim f^^^^e^^f(z)dz. 

The function {/(s)} is therefore independent of 7. 
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To establish the formula (2), that is, to show that F{t) is the 
inverse transform of /(s), we can write 

^ ^ 00 ^00 

(5) L\F{1)) = - j I {u cos yt — v sin yt) dy dt 

where u is written for u{y, y) and v for v{yy y). Let s = a + ib, 

where a > 7. The absolute value of the entire integrand of the 
repeated infinite integral here is less than 

_—_ 

(7^ + yy'^ 

and when ^ ^ 0 it follows that the integral in equation (5) with 
respect to y converges uniformly with respect to t and that the 
integral vdth respect to t converges uniformly with respect to y. 
In the latter case, for instance, we use the fact that the absolute 

value of the integrand is less than the quantity 

g-(o—jr)t 
2M 

ItK 
obtained by setting ?/ = 0 in the expression above. 

Finally, the integral 

{u cos yt — V sin yt) dt dy 

is uniformly convergent with respect to T, because the absolute 
value of the integrand obtained upon integrating with respect 
to t is less than 

2M 1 - 

(7' + s - y 
< 

1 AM_ 
a — y (72 -j- yy^ 

Under these conditions of uniform convergence the interchange 
of the order of integration in equation (5) is valid.* Upon 
inverting the order and returning to the complex form for con¬ 
venience, we can write equation (5) in the form 

L{F{t)\ = di dz 

dz. 

* See, for instance, Carslaw, op. dL^ p. 209. 
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The last expression represents /(s) since that function satisfies the 
conditions (Sec. 51) under which the extension of Cauchy's 
integral formula applies. 

When < = 0, the inversion integral becomes 

where Zq is any fixed complex number with (il(2o) > t- Now the 
function 

<^(2) = (2:0 - z)f{z) 

is analytic and of the order 0(2“^+^) where ^ > 1, in the half 
plane x y. Since the last expression for F{0) is Cauchy's 
integral formula for the function <^(2), it follows that its value 

is </>(2o). Therefore 

F{0) = 4^{z,) = 0. 

The proof of Theorem 5 is now complete. 
67. Conditions on F(t). Uniqueness of the Inversion. The 

foregoing conditions under which the inversion integral formula 
is valid are quite severe. They are not satisfied, for example, by 
the function /(«) = I/5, since this function is not of the order 
of l/s* with A; > 1. Hence Theorem 5 does not ensure the con¬ 
vergence of the inversion integral in this case to the function F(<). 
By using a Fourier integral theorem and qualif3dng the function 
F{t) instead of /(s), we can relax the conditions so that the inver¬ 
sion integral formula can be seen to be valid in nearly all cases 

of interest to us. In fact, we shall see that our formula is only a 
modified form of the Fourier integral. 

Let G{t) be a function defined for all real values of t, sectionally 

continuous over each finite interval of the /-axis, and let it tend 
to zero when |/| is large in such a manner that the integral 

^^(0 dt 

is absolutely convergent. Also let G' (t) be sectionally continu ous. 
We agree to define G{t) at each point U where it is discontinuous as 
the mean value of its limits from the right and left at to; that is, 

(1) G(to) = i[G(/o + 0) + G(to - 0)]. 
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Any such function can be represented by its Fourier integral:* 

(2) G{t) = - f f G{t) cos y{i - t) dr dy. 
^ Jo J- «> 

The integral here can be written 

Hence the Fourier integral formula takes the exponential form 

Ije't F{t) be a function defined for ^ ^ 0, sectionally continuous 

together with F'(/), and of exponential order O(e'°0- we take 

G{t) — 0 when < < 0, 
= when t > 0, 

where y > then G(t) satisfies the above conditions and it is 
represented by the Fourier integral formula (3). Hence when 
t > 0, 

F{t) = ~ lim I {t) dr dy. 
zir J-fi Jo 

Let z = y + iy; then this formula can be written 

(4) F(t) = lim I e“fiz) dz = L,-M/(s)l, 
JiTTt 00 J-y —1/8 

where/(s) is the Laplace transform of F{t). 

According to equation (1), the value of F{t) given by formula 
(4) at any point of discontinuity is 

(5) F{to) = i[F(^o + 0) + F{to - 0)]. 

Since G{t) = 0 here when t < 0, the inversion integral vanishes 

* See, for instance, “Fourier Series and Boundary Value Problems,” 
pp. 89jf. 
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when i < 0; also in view of equation (1) the inversion integral 
(4) must therefore assume the value i[/^(+0) + 0] at < = 0. 
Our results can be collected in the following form: 

Theorem 6. If f(s) is the transform of any function F(t) which 

is sectionally continuous and of order 0{e^^^){t ^ 0), then if F'{t) is^ 
sectionally continuous, the inversion integral of f{s) converges along 

any line x — y where y > xq and it represents F{t): 

(6) F{t) =/.rM/(s)l a >0). 

At any point to of discontinuityy the inversion integral represents 

the mean value (5), at t = 0 it has the value i/'X+b), and when 
t < 0 it has the value zero. 

We can now show that the inverse transform of a given func¬ 

tion of s is a unique function F{t). Suppose there were two 

Tunctions Fi(t) and /'XCO having the same transform/(s), 

L{/X(01 -L\F,{t)} ^f(s). 

We limit our discussion to functions of t that are sectionally 
continuous and of exponential order and define the functions 

at points of discontinuity as their mean values (5). The differ¬ 

ence of the two functions, 

m = F,{t) - Fxo, 
is then sectionally continuous and of exponential order. Since 

JAHt)] -/(S) = 0, 

it follows from Theorem 6 that ^{t) = Lr^{0j =0 (^ > 0). 
Therefore 

Fi(f) = F2{t) (^ > 0). 

In particular, it is not possible to obtain two different functions 
by using two different values of y in the inversion integral. 

Theorem 7. There is ?iot more than one function F{t) corre- 
spending to a given transform f{s), where F{t) is sectionally con-^ 

tinuouSy of exponential ordery and defined by equation (5) at each 
point where the function is discontinuous. 

As an illustration, we know that the function F{t) — 1 has the 
transform /(s) = 1/s. There can be no other continuous func¬ 

tion of exponential order with the transform 1/s. As we observed 

in Bee. 6, a function that differs from F{t) only at discrete points, 
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such as the function 

Fi{t) = 1 when t 7^ \ and t 7^ 2, 
= 0 when ^ = 1 and t = 2, 

does have the transform 1/s. But the mean value (5) of Fi(0 
at < = 1 and at ^ = 2 is 1 so that F\{f) is the same as F(f) under 
the conditions of Theorem 7. According to Theorem 6, the 
inversion integral of 1 /s converges to the following values, 

1 + 
lim I — dz — \ when i > 0, 

2?^ ♦ 00 */7—i/S 

= i when t = 0, 
= 0 when ^ < 0. 

The inverse transform is unique under somewhat broader 
conditions than those stated above. It is known that any two 
functions vith the same transform can differ at most by a null 
function, that is, by a function N{() such that 

N{t) dr = 0 for every t ^ 0. 

The function N{t) cannot differ from zero over any interval of 
positive length along the ^-axis. If the two functions are continu¬ 
ous, they must be identical for all positive L The proof of these 
statements, known as Lcrch’s theorem, can be found in the more 
theoretical books on the transformation.* 

68. Derivatives of the Inversion Integral. When the solution 
of a boundary value problem is found in the form of an inversion 
integral it is often possible to verif}' completely that 
solution by examining the function/. The two theorems in this 
section are useful for that purpose. Their proofs follow at once 
from Theorem 5 and the i)roperties of uniformly convergent 
infinite integrals, t 

When the inversion integral is differentiated with respect to 
t under the integral sign, we obtain Lj-^{sf{s)): 

(1) 
2irz 

lim 
J^7 + t-/9 

y-t/9 

e‘^zf{z) dz. 

* Doetsch, op. ci(., p. 35; Widder, op. cit.y p. 63. 
t Carslaw, op. cil.^ pp. 198/".; Pierpont, J., “Theory of Functions of Real 

Variables,” Vol. 1, pp. 474^^., 1905. 
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If the function s/(s) as well as/(s) satisfies the conditions imposed 

upon the function/(s) in Theorem 5, the integral (1) converges 
uniformly with respect to t and represents the derivative, with 

respect to of That derivative satisfies the con¬ 
tinuity conditions stated for the function F{t) in Theorem 5. 
The additional condition needed on f{s) here is that sf{s) == 
where k > 1, or that f{s) be of order 

By replacing f{s) in the last paragraph by the function s/(s), 
it follows that the second derivative with respect to t of {/(.s)) 

is {s-/(s)), and so on. Thus we have the following theorem: 
Theorem 8. Let f(s) he any f miction of the complex variable s 

that is analytic and of order in some half plane (R(s) ^ X(^ 
where k > I and m is a positive integer. Then the inversion 

integral along any line x = y where y Xq converges to the inverse 
transform F(t) of f(s)y 

(2) z,rM/(s)l =F(0, 

and the derivatives of this function arc given hy the formula 

(3) /'’'“'(O = LfU’iis)] (n = 1, 2, • • • , m); 

furthermore F{t) and each of its derivatives (3) are continuous 
functions of t{t ^ 0) of order 0{e’*^)y and they vanish at t = Oy 

(4) F(0) = F'(0) - • • • = F(->(0) = 0. 

It follow’s from this theorem, for example, that the inverse 
transform of the function 

/(s) 
1 

which is of the order 0{s~^) in a right half plane, is the transform 

of a function F{t) represented by the inversion integral, that 
F'(0 is continuous {t ^ 0), and that 

F(0) = F'(0) = 0. 

The function F{i) here is given in terms of a Bessel function in 

Appendix III, No. 57. 
It will be recalled that formula (3) cannot hold true without 

rather severe restrictions on either F{t) or f{s). For according to 

our basic property of the transformation of derivatives, 

«”/(«) - s"-'F(0) ~ • -F<^-^>(0)}, 
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when is sectionally continuous and is continuous 
and the functions here are of exponential order. If F^^^{t) is to 

be the inverse transform of is essential that F'(0), 
F"(0), • • • all vanish. 

Of course the function / in the above theorem may involve 
constants or variables independent of s provided the statements 

in the theorem are understood to apply for fixed values of those 

parameters. Concerning differentiation and continuity with 
respect to such a parameter r, the following theorem can be seen 

from the properties of uniformly convergent infinite integrals. 
Theorem 9. Let f{r^ s) and d/dr[/(r, s)] be continuous funciions 

of the two variables r, s, analytic with respect to s in some half plane 

61(s) ^ Xo, and let both functions be less in absolute value than 

M/\s\^'(^ > 1)) I'hxit half plane, where the constant M is inde¬ 
pendent of r for all values of r involved. Then the inverse transform 
of f{r, s) with respect to s is 

Fir, t) == LrHfir, s)} 

where the path of integration is a line x = 7(7 ^ a^o), (xnd 

(5) lF(r,0 = 

Moreover for each t ^ 0, F(r, i) and its derivative (5) are continuous 
functions of r. If the parameter r has an infinite range r ro 
and if fir, s) —> (his) as r 00, uniformly with respect to s on the 

line X = y, then 

(6) lim Fir,t) ^LTH<f>is)\. 
r—* 00 

The theorem can be applied to the function d/dr[fir, s)] to 
obtain corresponding results for d-/dr^[Fir, /)]; the same is true 
for the higher ordered derivatives. 

Illustrations of the use of these theorems will be presented in 

the next chapter. 
69. Representation of the Inverse Transform by a Series. 

Throughout this section, let/(s) be a function that is analytic in 

the finite complex plane of the variable s except for a set of poles 

S2, ’ ’ ’ , Sn, ' ' ’ } 

confined to some left half plane (R(s) < 7. Also left /(s) satisfy 
conditions under which its inversion integral along the line x = 7 
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converges to the inverse transform F{t), say the conditions in 

either Theorem 5 or 6. We shall show that F{t) can be repre¬ 
sented formally by a series, infinite if there is an infinite number 

of poles and finite if the number of poles is finite, and we shall 

establish practical conditions in the following section under which 
this representation is valid. When the poles are all simple and 
/(s) has a fractional form, the series is a generalization of lleavi- 
side^s partial fractions expansion (Sec. 16). 

Fia. 65. 

Since c** is analytic and not zero, the singularities of the prod¬ 

uct are precisely the poles of f(z). Let Pn(0 denote the 

residue of that product at 5n, for any fixed t: 

(1) p„(0 == the residue of at s = Sn- 

According to Cauchy’s residue theorem the integral of 

around a path inclosing the points 5i, ^2, • * • , Sat, has the value 

2'iri[pi{i) -h P2(0 + * ’ ‘ + P^(0]- 

Let the path be made up of the line segment joining the points 

7 — ifisy 7 + and some curve Cat beginning at the second 
and ending at the first of these two points and lying in the half 

plane x ^ y (Fig. 65). Then 

The first of the two integrals here has the same value as the 
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inversion integral Li'^[f{s)] when <», since the inversion 
integral is the limit of the corresponding integral involving 
as /3 —> 00 in any manner. 

Let the numbers 0n{N = 1, 2, * • • ) be selected so that fis 
tends to infinity as N increases, and let the curves Cn and the 

line X = 7 enclose the poles Si, §2, • • * , Sjv, if the number of 
poles is infinite. If the number is finite, let Cat be such that all 

the poles are enclosed when N is greater than some fixed number. 
Then if f(z) satisfies additional conditions under which 

it follows, by letting iV —> « in equation (2), that 

= X 
n=l 

The series on the right is necessarily convergent since the limit, 
as —> 00, of the left-hand member of equation (2) exists. If 
the number of poles is finite, there is only a finite number of 

terms in the series. 
Since the inversion integral represents F{t) by hypothesis, the 

inverse transform of /(s) is represented as the series of residues 

of ei{z): 

(4) F«) = X P-W- 
n“ 1 

It is not essential that the line x — y and the curve Cn enclose 
exactly N of the poles, of course. For example, if two poles 

are included in the ring between Cn and Cn+u the residues at 
these two poles are sim})ly grouped as a single term in the series. 

When a pole Sn is a simple pole, the residue can be written, 
according to Sec. 49, as 

p„(0 = Hm {z - Sn)e^i{z), 
Z-*8n 

or 

(5) p„(0 = e'”‘ lim (2 — s„)/(2). 

If in particular /(«) has the fractional form 

(6) /(*) = 
y(g) 
«(g)’ 



170 OPERATIONAL MATHEMATICS IN ENOINEERINO [Sec. 69 

where p{z) and q{z) are analytic at 2; ~ and p(«n) 3^ 0, the 
residue at the simple pole Sn is 

(7) = 

Therefore when dll the poles of f{s) are simple and f{s) has the 

fractional form (6), the series representation (4) of the inverse 

transform becomes 

(8) F{t) 

When p(s) and q{s) are polynomials, the number of poles is 

finite and formula (8) becomes the Heaviside expansion formula. 
It is often convenient to use the expansion (8) directly and in a 

formal way, without regard to the conditions under which the 

inversion integral converges and the integral over Cm tends to 

zero. The function F{t) so found may be such that its transform 
can be shown to be the given function/(s), or such that it satisfies 

a differential equation whose solution was sought by the trans¬ 
formation method. We shall see in the following pages that the 
conditions under which formula (8) is valid are not severe, so 

that the formula is usually applicable when the function p(s)/g(«) 
has only simple poles. 

If Sn is a pole of order m, we know that f{z) is represented in 

some circle about the point Sn by its Laurent series (Sec. 49): 

(9) /(*) 
I I 

Z - 8n^ (Z - Sn)^ ^ 

“h ^v,niz SnY* 

The function 6*' is represented by its Taylor’s series about ««, 

C«< = e**‘ 1^1 + <(z - «„) + ^ (2 - «,)* + • • • 

+ (J_ 1)! - «»)"■' +•••]■ 

Hence the coefficient of (z — Sn)^^ in the product of the two series, 
or the residue of e*f(z) at is 
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(10) Pn(0 = + tA^2,n + ^ -4-8,n + * * * 

r A \ 
^ (m - 

Note that the residue of e^*f(z) at the pole s„ of order m is 
therefore the inverse transform of the sum of the terms containing 
negative powers of (z — s„) in the Laurent series (9) for f(z). The 
coefficients in the series (9) can be found, for instance, by writing 
the Taylor's series for the function 

4>n{z) = (2 ~ Sn)”i{z)) 

thus it can be seen that 

(11) A_,.n = 1 «?-'>(«») C*- = 1, 2, • • • , m), 

where 4>nKsn) denotes <^n(sn). In particular cases, they can be 
found b^ fecial devices. 

Suppose f{z) has two simple poles of the type 

z = ±io). 

The residue of f{z) at 2 = fco can be written 

ri = lim {z — io})f{z) = lim {z •— iiS}f{z), 

But (z — io3)f(z) is the conjugate of (z + tw)/(z), since/(z) is the 
conjugate of /(z), and the limit as z —> — of the latter product 
is the residue r2 of /(z) at z = — ioj. According to formula (5), 

the terms in the expansion of F{t) corresponding to those two 
poles are therefore 

which is twice the real part of Thus the terms in F(t) are 
the real simple harmonic terms 

(12) 2[(5l(ri) cos cot ~ ^(ri) sin cot]. 

In case all the poles of /(z) consist of the simple poles 

z = ±tnci> (n ~ 1, 2, • • • ), 

then F{t) will be periodic with angular frequency «. 
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An examination of formula (10) will show that corresponding 
to two poles of the second order of the type 

(13) « = ±tw, 

F{t) will contain a real term of the type 

(14) i(A sin (*)t + B cos 

wliich we call a resonance type. If the poles (13) are of the mth 
order, terms of the resonance type 

sin (d + cos d) (j^ = 1, 2, * • • , m — 1) 

in addition to the harmonic term = 0 will appear in F{t), 

60. Validity of the Series Expansion. In the foregoing sec¬ 
tion, we found that the expansion of the inverse transform in 

series of residues, 

(1) m = X 
n-1 

is valid when/(s) contains only 
poles for its singularities and 
has a convergent inversion in¬ 
tegral, provided the integral of 
c*y(2) over the curves Cn satis¬ 
fies the condition 

(2) lim f e*‘/(z) dz = 0. 
N—* 00 

Let us put this last condition in a more practical form. 
One of the most convenient curves to use for Cn is an open 

rectangle with sides along the lines y = ±Pn and x — —pN 
(Fig. 66). The curve Cn must not pass through any of the poles 
«n of course since the integral in equation (2) must converge. 
We assume 7 ^ 0 in this discussion since the case 7 < 0 is the 
simpler of the two; also the value of 7 can always be made larger 
without altering the validity of our results. 

Suppose the function /(«) is such that numbers Pn can be 
selected for which 

(3) \f(,x ± ipN)\ < 8n {-pN 
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where the positive numbers are independent of x and where 

(4) lim Stf «» 0. 

This is a requirement that, when the point z is on the upper or 
lower side of the open rectangle Cjv, the function/(z) will approach 
zero as iV —> <», uniformly with respect to x. When z is on 

either of those two sides, the integrand of the integral in equation 

(2) satisfies the inequality 

\e^^f(z) dz\ < dxy 

so the absolute value of the integral over each of those sides is 
less than 

(5) f dx = ^ (e-" - {i > 0). 
J-0ff ^ 

Since this quantity ten^ to zero as W —> oo, when t > 0, the 

integral of e^^f{z) over that part of the path approaches zero. 
Suppose also that f{z) is bounded when z is on the left-hand 

side of the rectangle: 

(6) + iy)\ < M (-/?;, g y g 

where M is independent of the integer N. The absolute value 

of the integral of e^‘J{z) over that side is then less than 

a quantity that approaches zero when N tends to infinity, 
provided ^ > 0. The condition (2) is therefore satisfied, and 

we-can state sufficient conditions for the validity of the series 
representation of the inverse transform as follows: 

Theorem 10. Let f{s) he a function for which the inversion 

irdegral along a line x = 7 represents the inverse transform F{t) 

f(^)} let f{s) he analytic for all finite s except for poles 
«„(n = 1, 2, • • • ) in the half plane x < 7. Then if positive 
numbers j8jv(iV' = 1, 2, • • • ) can he found where ► «> as 
iV —> 00, such that 

(7) \f{x ± t/3w)i < bs, |/(-|8w + iy)\ < M 

{—pn ^ ^ 7, |y| g fij,), 
where 6n is independent of x and Bn —^0 as N 00, and the con- 
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$tant M is independent of y and N, the series of the residues of 

e^^f{z) at the poles Sn converges to F(t) for all positive t: 

(8) = «>0). 

Various expressions for pn(t) were given in the last section. 
In applying the theorem, the numbers Pn can generally be chosen 

as any convenient numbers such that the sides of the rectangle 
in Fig. 66 pass between the poles. This will be illustrated in 

some of the problems of the next two chapters. 
The conditions (7) are satisfied if |/(2:)| < B\z\-^f {k > 0), for 

all points z on the open rectangle Cn where the constant B is 
independent of N, When A; > 1; that is, if 

(9) IA*)1 < i|j (fc > 1) 

on Cjti then the condition (2) is satisfied even when t = 0 and 

(10) XrM/(s))L = Xpn(0). 

For in view of (9) the absolute value of the integral in condition 
(2), with ^ = 0, is less than 

£ 
= B 

2y + 4/3iyr 

This quantity tends to zero as when > 1. 
The open rectangles Cn can of course be replaced by other 

paths. It can be seen, for example, that the expansion (8) is 
valid if the conditions (7) are replaced by the condition that/(2;) 
be of the order 0(z~^) where A; > 0 at all points z on the arcs of 

the circles \z\ = to the left of the line x = y. Parabolic 
arcs, which are convenient whcn/(s) involves \/s, can be sub¬ 
stituted for the circular arcs. 

61. Transformations of the Integral. When the function /(s) 
has singularities other than poles, it is often possible to reduce 
the inversion integral to a desirable form of a real integral by 

transforming the path of integration. We illustrate the pro¬ 

cedure here by finding an inverse transformation that was 
arrived at in another way in Sec. 20. 
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Consider the function 

(1) /(8)=ie-v;, 

which has a branch point at s == 0. Let us write 8 = rc*® and 

.e / 6 
(2) \/s = Vr e 2 = I COB 2 + ^* sin 

where — tt < ^ < ;r. With this restriction on the function 

\/s as defined in equation (2) is single valued and analytic at 
all points in the finite complex plane except on the negative end 

of the real axis and at the origin. Since f(s) is an anal3rtic func¬ 

tion of /(s) analytic in the same region. 
Let 7 be any positive constant. When s is in the half plane 

^(s) S 7, then — ir < 6 < iir and cos id > l/\/2; hence 

!/(«)! = fire- /« 1^1 ^ 

It follows that r^|/(s)| is bounded in the half plane for A; > 1, in 
fact for every constant A:, or that f{s) = 0(s“*). Therefore the 

inversion integral along the line x = y converges to the inverse 
transform F(t) of /(s): 

> 00 —- iff Z 

The integral in this formula plus the integral along the path 

ACDD'C'A'y consisting of the circular arcs and line segments 

shown in Fig. 67, is zero. For the closed curve so formed lies 
in a region in which the integrand is analytic. Thus if Iac 

denotes the integral of over the arc AC, and so on, we 

can write 

2iW% id 2 

I CD 'A" IdD' + Id'C' + Ic'A')- 

Let R and r© denote the radii of the large and small circular 
arcs; thus 72* = 7® + so that /3 —♦ « when ► 'vj. Along 



176 OPERATIONAL MATHEMATICS IN ENGINEEBINO [Seo. 61 

the arc AC, z — Re dz = iRe^^ d$, and \/5 = ^/R Hence 
the integrand of the integral is a continuous function of e for 
every 6^0, where e is the angle between DC or D'C' and the 
negative real axis. For any fixed R, the limit of the integrals 
Jac and Ia'c*, as € —> 0, therefore exists. Likewise for any 
fixed ro > 0 the limits of the integrals over the other parts of the 
path exist. Since formula (4) is true for every positive e and the 
integral on the left is independent of e, it follows that we can let 
each of the integrals on the right have their limiting values as 
€ —> 0, and consider hereafter the path in Fig. 68. 

Fig. 67. Fig. 68. 

Let Jac = lim Iac, and so on, for the integrals over the other 

arcs and lines. We shall now let r© —^ 0 and R oo, so that the 
left-hand member of equation (4), which is incidentally inde¬ 

pendent of ro, becomes the inversion integral or F{t). 

When z is on the circle r = u, z = and y/z ^ y/r^ 
so that the integral over that circle can be written 

and the integrand is a continuous function of % and ro when 

ro ^ 0. Therefore 

lim /dix — i \ * dB ^ —2iri, 
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On the line CD, z » and \/i == \/r thus as 

€ —♦ 0, z--* and \/i —♦ i \/r. On the limiting position of 

D'C', however, 2 = —r and ^/^ = Vf- Therefore 

JcD + Jiy<r = f ^ + f ~ 
Jb r jr^ r 

o* sin \/r » = 2i I ^ dr, 
Jro ^ 

and 

lixn (J CD JD'o') ~ (* 
ro-*o Jo r 

= 4i 
Jo /i 

Consequently we can write, in view of formula (4), 

(5) F{t) = - i Urn (>^o + JcAd + 1 - ? f" e-*-’ ^ d^. 
JTrt Jo M 

Now when 2 is on the arc AB, the real part of the exponent 
iz — is not greater than ty. Hence 

z 

and, if is the angle B at A, 

1Jjib| ^ do = ■— 

Since 6a ir/2 when /2 —► <», it follows that Jab vanishes as 
jR —> 00. Likewise Js^r tends to zero as R tends to infinity. 

Finally, on the arc BC the real part of the exponent tz — \/i 
is less than tR cos 6 and 

IJbcI < r ^ d<(t, 
2 

where we have substituted ^ + ir/2 for 6. Since 2^/ir < sin 0 
when 0 < ^ < ir/2, 

2tR 
(1 - e-«) (< > 0), 
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and hence Jbc vanishes as R becomes infinite, when ^ > 0. 

Similarly, the limit of Jc^b^ is zero. 
Therefore the integrals over the large circular arcs AC and 

C'il' vanish as R becomes infinite, and it follows from equation 

(6) that 

^(0 = 1- - f" 
^ Jo M 

It is shown in advanced calculus* that 

•0 

cos ail dll 
1 fir 

“ 2'\/7' 

2.* 
4< 

and upon integrating both members of this equation with respect 

to a from zero to one it follows that 

2 
IP i = 4= f 

/* y/rlJa 

a* 
da = — f y/r Jo 

L- 
2yA 

Thus we can write our result in the form 

(6) F(0.i-erf(^)-ertc^) 

See, for mstance, Sokolnikoff, I. S., Advanced Calculus,^* p. 359, 1939. 



CHAPTER VII 

PROBLEMS IN HEAT CONDUCTION 

' U(x,0)-0 
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We shall now illustrate the use of the theory just developed in 
solving further boundary value problems in the conduction of 
heat in solids. Wc present examples of problems that cannot 
be fully treated with the more elementary theory used in solving 
the problems of Chap. IV. 

The formal solution of the problem in the next section is 
followed by a complete mathematical treatment of that problem. 
The purpose is to illustrate a means of rigorously establishing the 
solutions of such problems. Since the procedure is lengthy, the 
reader is advised to use it sparingly, if at all, in his work on 

the sets of problems tha^. follow. A clear understanding of the 
formal method of solution is of primary importance. 

62. Temperatures in a Bar with Ends at Fixed Temperatures. 
Let U(Xy t) denote the tempera¬ 
ture at any point in a bar (Fig. 
09) with insulated lateral surface 
and with its ends a; = 0 and 

X = \ kept at temperatures zero 
and Fo, respectively, when the 
initial temperature is zero throughout. 

In Sec. 40 we obtained a formula for [/(x, t) in the form of a 
series of error functions, a series that converges rapidly when t is 
small. We shall now obtain another series representation of this 
temperature function. This series will converge rapidly for 
large t. Let us proceed formally to the solution here, leaving the 
full justification of our result to the next section. 

We have taken the unit of length as the length of the bar, and 
we observed earlier that, by a proper choice of the unit of time, 
we can make k = 1 in the heat equation, where k is the diffusiv- 
ity. The boundary value problem in f7(x, /) is then 

Utix, t) = Uzx{x, t) (0 < x < 1, < > 0), 
TJ{x, +0) = 0 (0 < a; < 1), 

C/(+0, t) = 0, C7(l - 0, 0 - {t > 0). 

where Fo is a constant. 

Fig. 69. 

179 
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The problem in the transform of U(x, t) is then 

s) « Ux»(Xj a) (0 < a; < 1), 

w(+0, s) = 0, u(l — 0, s) = —* 
s 

Since this problem in ordinary differential equations has a solu¬ 

tion that is continuous at a; = 0 and x = 1, w(+0, $) = u(0, s) 

and u{l — 0, s) = u{l, s). The solution is 

(1) uix, s) = n 
s sinh vs 

As long as we use the same branch of the function \/s in both 

the numerator and denominator, we can define the quotient of 

hyperbolic sines as follows: 

(2) 
sinh X \/i 

sinh \/i 

+ . . . 

Vi + (V^)* 
3! 

, x^s 
X+ 3|- + 

Since the quotient of two convergent power series in s is analjrtic 
except where the denominator vanishes, it follows that w(x, s) is 

analytic everywhere except at s = 0 and the zeros of sinh Vs. 
These singularities, 

s = 0, s = —nV (n = 1, 2, • • • ), 

are easily seen to be simple poles. They all lie to the left of the 

line (R(s) = y when y is any positive number. 

It follows from equation (2) that the residue of s) at the 
pole s = 0 can be written 

lim 8u(Xf s) = FoX. 
f-+0 

Since u(x, s) has the fractional form p(x, s)/g(s), the terms in 

the series expansion of the inverse transform of w(x, s) that 

correspond to the remaining poles are 

p(x, -n^) 

g'(-nV) (n - 1, 2, • • • ), 

according to Sec. 59. For our function, these terms can be 
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Fo_? ?■!!_1 = 2Fo 
i Vs cosh \/s + sinh \/sJ#--»»»*■« 

The inverse transform of u(x, s), or our required temperature 
function, is therefore determined as 

(3)’ U{x, 0 = -fo 2 ”*■*]• 

This formal solution can be verified by showing that the func¬ 
tion defined by formula (3) satisfies all the conditions of our 
boundary value problem. Thus when t approaches zero, the 
series in brackets must vanish for all a:(0 < a: < 1). But we shall 
now see that the theory in the preceding chapter enables us to 
make the verification in another way which has some advantages 
over this method. 

63. The Solution Established. We have seen that the function 

u(Xf s) = Fo 
sinh X \/s 

8 sinh Vs 

is analytic with respect to s in any half plane (R(5) ^ y where 
y > 0. To examine its order in this half plane, let us write 

s = rc*®, 

then (R( V«) 

sinh X V® 

sinh V® 

^/r cos (6/2) > y/Tj2 ^ y/y/2. Thus 

l + e 

1 — e 

^ Me 

where M * 2/(1 — Thus if x ^ 1, r*u(x, s) is bounded 
throughout the half plane for every fixed k. In fact if xi < 1 
and 0 ^ X ^ xi, then a constant M', independent of x in that 

interval, exists such that 

M' 

W |u(x, «)| < («(•) S y). 
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In view of this order condition, it follows from Theorem 8, Sec. 

58, that the inversion integral of u{x, s) along the line (R(s) = y 
converges to the inverse transform of u{Xy s), 

(1) u(x, 1) = LrHu(x, s)} 

when 0 ^ a; < 1; also that the function U(x, t) is continuous 
with respect to t{t ^ 0) and satisfies the condition 

(2) U{x, +0) = U{x, 0) = 0 (0 ^ a: < 1), 

and that 

(3) Ut{Xj t) = Li-^[su{Xy 5)) (0 g a; < 1). 

Condition (2) is the initial condition in our boundary value 
problem. 

The derivatives of u(x, s) with respect to x, 

/ \ cosh X "^^8 r V y 
UxiXj S) = Fq ■ 7:. U^^ix, 8) = 8U{x, S), 

V« sinh V ^ 

are also of the order 0(s~*) for any constant k in the half plane, 
uniformly with respect to x(0 ^ x ^ Xi) where Xi < 1. This is 
evident when these functions are compared with u{x, s). Hence 

Theorem 9, Sec. 58, applies and the second derivative with 
respect to x of the function (1) can be written 

Uxx(Xj t) = LtHUxx(x, 8)} (0 < X < 1). 

Since tt*»(x, s) = 5w(x, 5), it follows from equation (3) that the 

function (1) satisfies the heat equation 

Ut{x, t) = Uxx{x, t) (0 < X < 1). 

Furthermore, the inversion integral represents a continuous 

function of x when 0 ^ x ^ Xi, and therefore 

U(+0, t) = C/(0, 0 = LtHu(0, 8)} = 0, 

since w(0, s) = 0. 
.We have now shown that the function (1) satisfies all the 

conditions of oiu: boundary value problem except the end 

condition 

(4) U{1 - 0, 0 = Fo it > 0). 
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Of course it is evident that the function (1) satisfies the condition 

17(1, t) = 8)} = Lr‘ {y} 

and, since Fo/s is the transform of Fo, that C7(l, t) = Fo. But 
this does not assure us that our function approaches Fo SiS z 

approaches 1, which is the condition that the temperature 

function should satisfy. 
Let us write 

sinh X yA ^ 

sinh y/s 

/I -• 

\1 - 

g-(l-x) I 1 + 
g-2\/8 _ g-2x\/«\ 

1 — 

^ u(x, 8) i e-a-*)VI + g(x, s), 

where 

g(x, s) = 1«-(!-.) 

The first term on the right of equation (5) is the transform of a 
known function (Sec. 20): 

^ (y^)} = i (0 ^ a: g 1). 

The complementary error function here is continuous and 
bounded with respect to for each fixed x, so that it is represented 
by the inversion integral (Theorem 6, Sec. 67) along the line 

(R(s) = y: 

{s = erfc (0 S a: g 1). 

If we note that 

s \ 1 - / 

it follows, when (R(s) ^ 7 so that <R(\/s) > 'V^r/2, that 

l-/_ _2 \ /n ^ \g{x, s)| ^ i 8 5 (0 g * g 1). 
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That is, g{x, s) is of the order 0(s~*) in the half plane, where A; is 
any constant, uniformly with respect to x. Consequently the 
inversion integral of g{Xy s) represents a function (r(x, t) that is 

continuous with respect to x, and thus 

G{1 - 0, 0 = Gil, t) = LzHgih s)} = 0, 

since s) = 0. 

In view of formulas (5) and (6), therefore, 

(7) V{x, t) = F„ [erfc + G{x, t) ] 

and, when < > 0, 

C/(l - 0, 0 = f^olerfc (0) + Gil, t)] = Fo. 

Our function (1) thus satisfies the end condition (4), and it is 

therefore completely established as a solution of our boundary 

value problem. Moreover we have shown that the transform 
of our temperature function is the function uix, s) from which we 

obtained Uix, t). We shall see that some interesting properties 

of Uix, t) follow from the order properties of uix, s). 
We still have to prove that the series obtained in the last 

section represents our solution (1). 

64. The Series Form Established. We have seen that the 
function 

, V „ sinh X 
uix, s) = Fq —— 

s smh 

is analytic except for the poles 5 = 0 and 

s = —nV* (n = 1, 2, • • • ) 

and that its inversion integral converges to a function Uix, t) 

that is a solution of our boundary value problem. The series 
representation of Uix, t) given in Sec. 62 is valid provided the 
integral 

z) dz, 

taken along a curve Cn of a family of curves (n = 1, 2, • • • ) 
between the poles, tends to zero as n tends to infinity (Sec. 59). 

Owing to the presence of the h3q)erbolic function of here a 

very convenient selection of the curve Cn is that of the arc of a 
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parabola with focus at the origin and axis along the real axis 
(Fig. 70). The equation of Cn is then 

We take 

r 
1 — cos ^ 

a* CSC® 
e 
2 

an = (n — i)ir 

so that the vertices of the parabolas lie between the poles. The 
intersections y ± ipn of the parabola and the line (S^{z) = y are 
such that ^ when n oo. 

When the point z = re*® lies on C«, we can now write 

y/z = On 1 cos ^ i jsin0 ^ an(c ± i) (-T < B 

where c = |cot 0/2| since cos d/2 ^ 0. Now when a + ih is any 
complex number, it follows, by noting the real and imaginarj^ 
parts of sinh (a + ib), t|at 

[sinh (a + ih)\^ = sinh® a + sin® b. 

Consequently, 

^ _ sinh® (xanc) + sin® (xUn). 

~ “sinh® (unc) + sin® an ' 

but sin® ttn = 1, and 0 ^ a; ^ 1, so that 
the numerator here is not greater than 
the denominator. Thus our function 
satisfies the order property 

\zu{Xj z)\ ^ Fo 

on the parabolas Cn. 
We noted at the end of Sec. 60 that Fig. 70. 

when u{Xj z) satisfies this order condition the series of residues of 
€^u{Xf z) converges to the inversion integral for all positive values 
of t Hence the series found in Sec. 62 does converge to the 
solution of our problem; that is, our solution can be written 

U{x, t) = Fo + ~ 2 c-"*’"** sin nirx j {t > 0). 

It is possible to relax the order condition on tt(x, s) so as to 
show that the series here converges to U (x, 0) when t = 0 and, 
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hence, that 

X 
V n 

1 
sin rvKX (0 ^x< 1). 

This is the Fourier sine series representation of the function 
<lf{x) = a; on the interval 0 g a; < 1. We shall use just this 

procedure in a later chapter to establish a generalization of the 
Fourier series representation of an arbitrary function. 

66. Properties of the Temperature Function. It was shown 
in Sec. 63 that for any constant k the transform u(Xj s) of our 
temperature function U(x, t) is of the order of |s|“* in the right 
half plane of s, uniformly for all x in any interval 0 ^ a: ^ a:i 

where a;i < 1. The derivatives of u(Xy s) with respect to x also 
satisfy this order property. As a consequence, our temperature 
function possesses the following properties, according to Theo¬ 

rems 5, 8, and 9 of the last chapter. 

The function J7(x, t) is a continuous function of both x and t 
whent ^ OandO g a; < 1, and each of its derivatives with respect 

to a; or i has this continuity property. 
At any interior point of the bar, the temperature begins to 

change very slowly at the time t = Oj since 

(1) Ut(Xy 0) = UttiXy 0) = UutiXy Q) = » * * = 0 
{0^x< 1). 

The temperature at each interior point does begin to change at 
time i = 0, however. For if the function U{Xy t) were zero 
during any time interval 0 < < < <o, for some fixed x, we know 
that its transform would have the form 

U{Xy S) = e~*^^{Xy S)y 

where ^(x, s) is the transform of a translation of U(x, t). In 
view of the known form of w(x, s), it follows that 

^(x, s) = 
sinh X \/s 

s sinh \/8 « 1 e-2v^ 
exp [«/o (1 - x) Vs]- 

Thus ^(x, s) becomes infinite as s tends to infinity through real 

values, wi^n > 0 and 0 < x < 1, which is contradictory to 
the statement that ^(x, s) is a transform. 
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It was found in Sec. 40 that 

® 0 - F. ;2 

Since the quantity in the brackets is positive when i > 0 and 

0 < a; < 1, this temperature formula also shows that the tem¬ 

perature immediately after the time i = 0 is not zero. In fact 
if Fa > 0, then 

(3) U{xj 0 > 0 when t>0 (0 < x < 1). 

The flux of heat through any section x = xo is 

«‘(xo, t) = —KUx(xoy i)y 

where K is the thermal conductivity. Its transform is 

4>{xo, s) = -KFo 
cosh xo y/s 

Vs sinh \/s 

and we can see by the usual argument that 

(4) 4>(xo, 0) == 4>i(xo, 0) = 0) ==•••= 0 (0 g Xo < 1); 

also that the flux through every section begins to change at the 

time ^ = 0. In fact from formula (2) it can be seen that, if 

Fo > 0, 

(5) 4>(x, t) < 0 when t > 0 (0 ^ Xo g 1). 

In Sec. 63 we found that 

U{x. t) = Fo [erfc + Gix,«)]. 

where the function G{Xy t) and each of its derivatives vanish as t 

approaches zero, when 0 ^ x ^ 1. Therefore the flux through 
the right-hand face of the bar is 

€»(1, t) = —ZFo 0 

and 
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That the flux of heat at that face becomes infinite like 

KFo 

y/vi 

or it is of the order of l/y/iy as i ► 0. 
This infinite flux is the result of the discontinuity in the tem¬ 

perature of that face at i = 0, a discontinuity we have introduced 
in our idealization of the problem of temperatures in a bar when 

the temperature of one face is quickly raised or lowered. 
The total quantity of heat that has passed through a unit area 

of any section up to the time t is 

i) = £ Hxo, r) dr. 

Consequently its transform is 

q(xo, s) = i 8) = -KF, 
^ s y/s smh v ^ 

It follows from the order of g(l, s) that 

(7) lim Q(l, 0 - 0, 

a condition that would not be satisfied if there were an instan¬ 
taneous source of heat over the surface a; = 1 at ^ = 0. Such a 

source is an idealization of an actual situation in which a large 
quantity of heat is generated over a surface in a very short time 
interval, by combustion, for instance. 

66. Uniqueness of the Solution. Our treatment of the bound¬ 
ary value problem is not strictly complete until we have shown 

that our solution is the only one possible. The physical problem 
of the temperatures in a bar with prescribed initial temperature 

and prescribed thermal conditions at the boundary must have 
just one solution. If we have completely stated the problem as 
one in mathematics, that problem must also have a unique 

solution. 

The conditions we have imposed on U(Xf t)y namely, 

(1) Ut{Xy t) « U^{Xy t) (0 < X < 1, ^ > 0), 
(2) E7(x, +0) = 0 (0 < X < 1), 
(3) U(+0, t) - 0, U(1 - 0, 0 = Fo it > 0), 
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are not sufficient to ensure just one solution. They do not 
exclude the possibility of instantaneous sources of heat at the 
ends of the bar at < == 0. The equation of conduction (1) is the 

statement that heat distributes itself interior to the bar after 
the time < = 0, by conduction. In the derivation of that equa¬ 

tion, it is assumed that the functions U, Uty U»f and I7*p are 
continuous with respect to the two variables x and interior to 
the solid and after conduction starts. We shall therefore require 
that our solution have these properties of continuity. Physically, 
the presence of heat sources interior to the bar after ^ = 0 is then 
prohibited. 

Let the required temperature function satisfy the conditions 
(1), (2), and (3) and the following continuity and order conditions. 

(a) U (Xf t) is continuous in x and t when t ^ 0 and 0 ^ x < 1, 
and when / > 0 and 0 ^ x g 1. Also, |C/(x, t)\ < Me*^* for all 
t ^ 0 and all X (0 ^ x ^ 1), where M and a are constants. 

(h) The derivatives l?*(x, t) and I/<(x, t) are continuous func¬ 
tions of X and t whose absolute values are less than when 

t ^ 0 and 0 ^ X ^ Xi, where JV, p, and xi are constants and 

Xi < 1. 
Of course, satisfies the conditions imposed on Ut since the 

two functions are required to be identical. 

We have seen that the function 

(4) 
K s sinh \^s) 

satisfies the conditions (1), (2), and (3) and that it is continuous, 
together with each of its partial derivatives, when 0 ^ x < 1 

and t ^ 0. When 0 ^ x ^ xi < 1, the transform of this func¬ 

tion, or that of any of its derivatives, is of the order of in any 
right half plane (R(5) ^ y > 0, uniformly with respect to x, 

where k is any constant. Hence the derivatives of the function 

(4) satisfy the conditions (6), 
In Sec. 63 it was found that the function (4) can be written 

mx, 0 = F, [erfc + ^(x, <)]• 

The function (/(x, 0 is continuous in x and t and less in absolute 
value than Afs**^* when t ^ 0 and 0 ^ x ^ 1, for any y > 0. 
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This follows from the character of g{xy s). Although the error 
function here is not a continuous function of x and t when x ^ 1 
and ^ = 0, it is bounded for all x and t and continuous with 
respect to x and t when ^ > 0. Consequently the function (4) 
satisfies the conditions (a). 

Suppose there is another function Vix, t) that satisfies the 
conditions (1), (2), (3), and (a) and (b). Then the function 

(5) W(x, t) = U{x, t) - V{x, 0, 

where U{x, t) is the function (4), also satisfies the continuity and 
order conditions {a) and (6). Since both U and V satisfy the 
heat equation and boundary conditions, W must satisfy the 
homogeneous conditions 

(6) Wt(xy t) = Wsx(x, t) {0 < X < If t > 0), 
(7) W{Xf 0) = 0 (0 < a: < 1), 
(8) WiOf t) = 0, lim W{Xf 0=0 {t > 0). 

z-*l 

Since W and Wt are continuous functions of x and < (f ^ 0, 
0 ^ X ^ a^i) which are of exponential order in tj uniformly with 
respect to x, we know that their transforms exist, also, in view of 
condition (7), that 

L{Wi{Xf 0} = S)i L[Wxx{x, S)} = s). 

Moreover, the transform w{Xf s) and its derivatives with respect 
to X are continuous functions of x and analytic functions of s 
when 0 ^ X < 1. According to equation (6) then 

(9) sw{Xf s) = Wzx(x, s) (0 < X < 1), 

when 8 is in some right half plane. According to conditions (8) it 
also follows that 

(10) w(0f s) = 0, 

and that 

L{limTF(x,0} = 0. 

Let us show that the last condition can be written 

(11) w(l, a) = 0. 
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If S and to are any small positive numbers, then 

I,{Tr(l - 0) = er*‘Tr(l - S, t) dt + e—W(l - «,<) di. 

According to conditions (a), the last integral represents a con¬ 
tinuous function of 1 — 3, (5 ^ 0), when a(s) > a, and, since 

W{lyt) = 0, the limit of that integral as 3 —»0 must be zero. 

Consequently, for each fixed U we can make the absolute value of 
that integral less than any given small positive number e by 

taking 3 sufficiently small. Since W(Xy t) is of exponential order 

with respect to uniformly for all x, the integrand of the first 
integral on the right is bounded, and 

Ie-‘W(l - S, t) dt\< J^M dt [(R(s) > a], 

where Af is a constant. Hence this is less than € if to is taken 
sufficiently small. Therefore 

lim L{W(x, t)} = lim w(x, s) = 0. 
X—»1 X-+1 

Since w(l, s) = L{ 1^(1, 01 and since W(l, 0=0 for each < > 0, 
the function w{Xj s) is continuous with respect to x at a? = 1 and 
condition (11) is satisfied. 

In the theory of differential equations, it is shown that a linear 
ordinary differential equation with prescribed end conditions, 
such as equation (9) with conditions (10) and (11), has just one 

solution that is continuous with a continuous derivative Wx{x, s). 
In our problem, that solution is clearly 

(12) w(x, s) = 0. 

Since w{Xf s) is the transform of the difference W of the two solu¬ 
tions U and V, then W{xy ^) = 0 for all t and 

(13) V{x, t) = U{x, t), 

for all L We have used the fact that there is not more than one 
continuous function of t having a given transform. 

The proof that the problem consisting of the conditions (1), (2), 
(3), and (a) and (6) has just one solution is now complete. The 
conditions (a) and (6) could have been relaxed somewhat. It is 

necessary to do so, for instance, when there are discontinuities in 

either the initial temperature distribution or in the prescribed 

surface temperatures. 
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67, Arbitraiy End Temperatures. Let the temperature of the 
end a; a 1 of the bar be a pre- 

U-0 U(x,0)-0 U-F(t) 

V{x, +0) a 0, 

Ui+0, t) 

Fio. 71. 

and the end conditions 

scribed fimction F{t) (Fig. 71). 

The temperature function U 
then satisfies the heat equation 

Ut = ?7»», the initial condition 

0, mi - 0, 0 a Fit) it > 0). 

As noted in Sec. 40, the solution of the transformed problem is 
then 

(1) u(x, a) = /(«) 
sinh X 

sinh y/i 

Let F(«, 0 denote the temperature function found in the 
preceding sections when Fit) = i. Then 

(2) 
since 

uiXf a) a sfi8)vixj s) 

vix, 8) a 
sinh X y/s 

8 sinh y/s 

Now 8vix, 8) is the transform of Vtix, t) when 0 g a; < 1. In 
view of the convolution property, it follows from equation (2) that 

(3) Vix,t)^ — T)7«(a:, r) dr. 

It was shown that 7(a;, t) is represented by a series: 

7(a:, t) — X + - gin 
T JmJi n 

1 

The series obtained by differentiating this series term by term 
with respect to t does not converge when / a O; but it was shown 

that the function 7<(a;, 0 ^ ^ ^ OandO ^ x < 1 
and that 

Vtix,0)^0 i0^x<l). 

The differentiated series simply fails to represent 7i(a;, t) at 
<a0. 
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To arrive at another form of the temperature function C/, we 

assume that F{t) is continuous^ that F*{t) is sectionally continu¬ 

ous, and that these functions are of exponential order. Then 

= 8f{B) - F(+0), 

and 

u{Xf b) = F(+0)f;(a;, b) + L{F{t)\v{x, s). 

Consequently we have the formula 

(4) U(x, t) = F(+0)F(x, 0 + £F'{t - r)V{x, r) dr. 

The two formulas (3) and (4) give the temperature 17(x, t) in 

terms of the temperature F(a;, t) corresponding to a fixed surface 

temperature. They are two forms of DuhamePs formula. The 
above series for y(a;, /) can be substituted into formula (4), and 

it can be shown that the temperature function can be written 

(6) U{x, t) = xFit) + 2 «« 

+ ^ sin nirx J F'{t — T)e^***^ dr. 

Other forms in series can be found by using formula (3), or by 

substituting the series of error functions found in Sec. 40 for 

y(x, 0 into either formula (3) or (4). 
Our formulas (3) and (4) can be established as solutions either 

from the series forms directly, or from the order properties of 

u(x, b) and /(«), showing that the inversion integral is the solution 

and finally that the convolution integral represents that solution. 
68. Special End Temperatures. When the end temperature 

F(0 is a known function, a convenient formula for C7(x, t) may be 

found directly. 
For example, let 

(1) Fit) - At 

in the problem of the last section, where A is a constant. Then 

u(x, s) = A 
sinh x Vs 

s* sinh y/t 
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a function with a pole of the second order at« = 0. We noted in 
Sec. 62 that 

sinhxV; /+ 31 + -^+ • • ' 

sinh 1 j- £ 4. £l 4. . . . 
^3! ^ 5!^ 

By carrying out the indicated division here, the first two terms 
are found to be a; + x{z^ — l)s/3!; hence u{Xy s) has the following 
representation in the neighborhood of s = 0: 

u(z, s) = ^ 1^ J 4- + 2 “»(*)«“]• 

The residue of e*^u(xy z) at z ~ 0 is therefore (Sec. 59) 

The residue of e^*u{x, z) at the simple pole z = — nV^ is 

sinh a; Vil 

Z cosh “^^Z jg B — fiiypi 

=s ?AL.^.l}— sin 

Consequently the formula for the temperatures can be written 

(2) U(x, t) = A [^--g - + 2:* + ^ 2 ““^5—e-^’-'smnTTxj- 

This function can be completely verified as a solution of the 
boundary value problem by just the same procedure that was 
used in Secs. 63 and 64. But the procedure can be simplified 
in this case in view of the fact that u{x, s) is of the order 0(s“®) in 
a right half plane and on the parabolas Cn, uniformly with respect 
to X when 0 ^ a; ^ 1. Consequently U{Xy t) is a continuous 
function of its two variables for all x and < (0 ^ x ^ 1, < ^ 0); 
also the series representation (2) is valid at ^ = 0. Since 
U(x, 0) =s 0, it follows from equation (2) that 

X X* 
n* 

sin tiTTX (0 g X ^ 1), 
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which is the Fourier sine series expansion of the function x — 
on the interval 0 ^ a; ^ 1. 

As a second example, let the face a; = 1 of the bar be kept 
at a fixed temperature A from t = C io t = U and thereafter at 
temperature zero (Fig. 72): 

(3) II when 0 < t < to, 
= 0 when t > to. 

Then 
... . 1 - e-‘»* 
/(«) = A ^ 

and 

s sinh Vs 

Again let V{Xj t) denote the temperature function when F{i) — 1, 

obtained in the foregom| sec¬ 
tions; also let V{Xf t) = 0 when 
t < 0. Then 

(4) U{x,t)^AlV{x,t) 

— Vix,t — to)]. 

The total quantity of heat 
conducted across any section 
X = a;o, per unit area, from time t = 0 on, is 

lim Q{xo, t) = —K f " Ux(xoy r) dr. 

The integral on the right is the transform of (7*(xo, 0 with 8 = 0, 
provided the integral converges; that is, 

(5) lim Q(a:o, t) = --Kuxixo, 0). 

Fig. 72. 

In our second example, where F{t) has the form (3), 

Ux(xo, s) = A cosh a^o a/s ~ , 
sinh V ® ® 

and the limit of this function as s 0 is Ato. Therefore 

(6) lim Q(a;o, 0 = — KAto. 
00 
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The reader can show that, in the general case, 

(7) lim (2(xo, t) = -K f" F(r) dr 

when the end temperature F(i) is such that L(F(t)} exists when 
« S 0. That is, the total quantity of heat per unit area that is 
conducted through the bar, or through a wall, is proportional to 
the integrated temperature of the face whose temperature varies. 

PROBLEMS 

1. Derive formula (7) above. 
2. If the length of the bar is I, show that 

lunQ(xo,l) = -jX''j^(r)dT 

when the temperature F(t) of the surface x — I k such that LlF(t)) 
exists when s ^ 0. 

3. Derive the formula 

U(x, t) 
_ 4 ^ (-1)*-^ 

r 2n — 1 
(2n — VjTcx 

cos-Hi-exp 21 
(2n - 1)V^1 

4P J 

for the temperatures in a wall with its 
face a; 0 insulated and its face x ^ I 
kept at temperature U = 1, if the initial 
temperature is zero (Fig. 73). 

4. Obtain the solution of Prob. 3 
as a series of error functions (compare 
Sec. 39). 

6. Establish the formula in Prob. 3 
as a solution of the boundary value 
problem. 

3. Obtain the solution of the problem 
in Sec. 39 in the form 

V{x, t) 
ir 271 — 1 cos 

(2n — l)irx 
-21- 

(2n - 
41^ J' 

7. Let the temperature of the face x - I of the wall in Pl*ob. 3 be 
F{t)j where F(t) is continuous, F'(t) is sectionally continuous, and 
F(0) ■= 0. Derive the temperature formula 

£^(*,0 -F-O) 2» - 1 
(2w — l)irx 

<?.(*.«), 
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On(x,t) = ^ F'(t-T)exp|^- 
(2» - 1)VV 

41* 

8. Obtain the solution of the temperature problem 

Utix, t) = U..(x, t) (0 < * < 1, <> 0), 
V{x, 0) - 1, i;(0, t) = 17(1, 0 = 0, 

in the form 

4 sin (2n — l)irx 
exp [—(2n — 

9. Obtain the temperature formula for Prob. 10, Sec. 40, in a new 
form. 

10. At the face x — 0 of a wall the loss i ^ 
of heat at each instant is proportional 
to the temperature of that iice, so that ^ U(x.0)-0 y/iiwi 

i;.(+o, t) « hU(^o, t). ^_ 

If the other conditions on the temper- ^ ^ 
ature function are (Fig. 74) 

Utix, t) = U„{x, i) ^ 

(0 < a; < 1, <> 0), __ 
U{x, +0) » 0 (0 < a; < 1), Fio.: 

17(1 - 0, 0 * 1 (f > 0), 

show that 

( \ 1 h sinh X + VT cosh x y/i 

^ * « A sinh VF -f y/s cosh \/s 

Derive the formula 

t+“2' 

On « (A* -H A + aj) sin 2a* 

and a, a*, • • • are the positive roots of the e(luation 

tan a « — 

Show how those roots can be approximated graphically when the numer¬ 
ical value of A is known; also show that, for any A > 0, a* is only slightly 
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greater than (w — when n is large. To show that the singularities 
of u{Xy s) are all real and negative, and hence that they are the points 
s —aj, let \/« = X -h show that (A sinh y/s + \/s cosh y/s) 
cannot vanish unless X = 0. The singularities are all simple poles. 

11. If heat is extracted from each unit area of the face a; = 1 of a 
slab at a constant rate <^o, while the face a; = 0 is kept at the initial 
temperature zero, the boundary value problem can be written 

Ut{x, t) = Uxxix, t) {0 < X < 1, t > 0), 
U(x, 0) = Z7(0, t) = 0, -KUx(h t) = </>o, 

where K is the thermal conductivity of the material. Derive the 
solution 

U(x, t) » 
iC \ T* ^ {2« - 1)2 

sin 
(271 — l)7ra; 

2 

(2w - 

4 If 
12. Derive the solution of Prob. 11 in the form of a series involving 

error functions. 
13. If heat is extracted from each unit area of the face a? = 1 of the 

Fig. 75. 

slab in Prob. 11 at the constant rate 
</>o from time < = 0 to time t = to and 
if that face is insulated thereafter, 
show that the temperature V {x, t) can 
be written 

F(x, 0 = XJ{Xy t) — U{x, t — to)f 

where U{Xf t) is the temperature 
function given in Prob. 11 when ^ > 0, 
and U{Xy 0=0 when t <0, 

14. Derive the formula 

U{x, t)^B + iC - B)x 

C(~l)" - B 
n sin {mrx) exp 

, 4Asin (2n — l)7ra? ^ 

for the temperatures in a slab with initial temperature A and surface 
temperatures B and C at a; = 0 and a; — 1, respectively (Fig. 75), where 
k is the thermal diffusivity of the material. 
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69. Arbitrary Initial Temperature. Let the initial tempera¬ 
ture of the bar or slab be any prescribed function g(x) of the 
distance from one face. Selecting 
the units of length and time in the 
usual way, the boundary value 
problem in the temperature U(Xj t) 
in the bar can be written as follows, 
when the lateral surface is insulated 
and the ends are kept at temperature zero (Fig. 76). 

U(x,0)-g(x) 

0^ '^777777777777777777777777777^!“^ 
X-1 

Fiq. 76. 

Viix^ t) = Uxsi^y t) (0 < X < If t > 0), 
U(Xf +0) = g(x) i0<x< 1), 
C7(+0, 0 = U(1 - 0, 0 = 0 (t> 0). 

The transformed problem becomes 

(1) su(xr4) ““ g(^) = '^xxiXy s), 
(2) u(0f s) = u(ly s) = 0. 

We may solve this problem by transforming with respect to the 
variable x. The differential equation (1) has a solution that is 
defined for all positive x. Let u(z, s) denote the transform, with 
respect to Xy of any solution u{Xy s); that is, 

U{Zy S) = f: s) dx. 

Let the function g{x) be defined in some arbitrary manner when 
a; > 1, say g{x) =0 when a: > 1, and let g(z) denote the trans¬ 
form of that function with respect to x. Then since w(0, s) ~ 0 
the transform of equation (1) can be written 

8u{Zy s) — g{z) = z'^uizy s) — ^*(0, s). 

The solution of this algebraic equation is 

fi(2, s) = M,(0, a) 

Making the inverse transformation with respect to z, with the 
aid of the convolution, we find that 

(3) y/8u{Xy s) == tt»(0, s) sinh xy/s 

- jT ff({) sint (a: - {) V* 
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In view of the condition u(l, a) = 0, it follows that 

«,(0, «) == -J y- f* g(i) anh (!-{)>/« df. 
Sinn V s Jo 

Let the last integral be written as the sum of the integrals from 
{ = 0 to f = X and from f = x to { = 1. Then upon substitut¬ 
ing Ux{0y s) into equation (3) and making elementary simplifica¬ 
tions, we can write the result in the form 

(4) u(x, a) = JT* g{QR(x, f, a) df, 

where 

(5) i2(*, f, «) = whenO^fg®, 
V 8 sinh V ® 

sinh X -x/i sinh (1 — f) -v/s , ^ ^ i == -y. _ V.. ^ V . ^Yien X g f ^ 1. 
V « smh V « 

This is the solution of equation (1) and conditions (2), in a con¬ 
venient form. The function R is called the Green’s function for 
the system of equations (1) and (2). 

Now R is an analytic function of s except for the simple poles 

8 — —nV (n = 1, 2, • • • ). 

If the function g(x) is continuous or sectionally continuous, it 
follows that u(x, s) is also analytic except for those simple poles. 

For the sake of brevity, we assume here that g(x) is a con¬ 
tinuous function (0 ^ x ^ 1). According to our extension of 
the partial fractions expansion (Sec. 69), the residue of e**M(x, z) 
at any pole z = — nV® is then 

Since sin nir(l — x) = — cos nir sin nxx the residue can be written 

2 sin mrx J g(^) sin mri 

Therefore if u(Xy s) satisfies the required order properties in a right 
half plane and on the parabolic arcs Cn passing between the poles, 
our temperature function has the following series representation: 
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(6) U(x, t) *= 2 sin nrx g(Q sin nirf 

When / * 0, the series here becomes the Fourier sine series 
for the function g(x) on the interval 0 < a; < 1. In fact, the 
boundary value problem in U{x, t) here is one that is somewhat 
better adapted to the classical method of solution, by using 
separation of variables and Fourier series, than to the trans¬ 
formation method. We shall discuss the classical method 
briefly in Chap. IX. 

Assuming that the derivative of g{x) is a sectionally continuous 
function, a careful study of the series will show that the function 
defined by equation (6) satisfies the heat equation and the 
boundary conditions. Let us outline here, however, the method 
of establishing our solution from the order properties of the trans¬ 
form, a method that does not rest on the theory of Fourier 
series. % 

The function R{x, J, «) is of the order of -J—e”**”^*"^* in any 
VS 

right half plane (Jl(s) ^ y where 7 > 0. A direct use of this 
fact along with the boundedness of g{x) shows that u{xy s) is of 
the order of 1/s, which is not sufficient to show that the inversion 
integral converges. If we let Ri(Xy £, s) denote the function R 
when 0 < f < a; and R%{Xy f, s) denote the function R when 
a; < f < 1, equation (4) becomes 

«(*, *) = J[ 9(.&Ri(x, «) I, s) df. 

Integrating both of these integrals by parts and simplifying, we 
find that 

(7) u(x, 8) = ^ - g(0)P{x, 0, s) + 1, s) 

- ?'(£)P(a:, f, s) d£, 

where P is the following integral of R, with respect to 

/o\ n/ > \ smh (1 — x) y/s cosh £ y/i , ^ ^ 
(8) P{Xy £, b) =--——r-when 0 ^ £ < x, 

s sinh y/B 

sinh X y/B cosh (1 — £) y/i 

B sinh y/i 
when X < £ ^ 1. 
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The integral in equation (7) is a function of s of the order of 
so that its inversion integral converges for all x and t We 

found earlier in this chapter that the inversion integral of the 

function P{x, 1, «) converges for all x and L Also, 

-P{x, 0, s) = P(1 - X, 1, s), 

and L’^^{g{x)/B] = g{x). Hence the inversion integral of w(a:, s) 
converges to a function U{x, t) having u{x, s) for its transform. 

It also follows that U(x, +0) — g(x) == 0 and that the end con¬ 

ditions are satisfied when I > 0, 
Assuming g'(x) and g"(x) continuous, two further integrations 

of the integral in equation (7) by parts can be performed to show 

that U(x, t) satisfies the heat equation and, hence, that 

(9) U(x,t) = Lt^{u(x,8)} 

is a solution of the problem. 
From equations (4) and (5) it can be seen that u(x, s) is of the 

order of l/\/s when s is on the parabolic arcs 

r = ,r*csc*|. 

Therefore the series (6) represents the solution (9) when ^ > 0. 
In addition to this, we can see from equation (7) that the 

inversion integral of the function u(x, s) — g{x)/s converges to 

zero when < = 0 and that it is represented by its series of residues 
when ^ = 0, provided 0 < a; < 1. It follows that 

2 sin riTX g(f) sin nirf — g(x) =0 (0 < a; < 1), 

which is the Fourier series expansion. 

The results hold true if g{x) or its derivatives are sectionally 
continuous, instead of continuous. The proof is longer, since 

it involves the writing of each integral as the sum of integrals 
over intervals on which the functions are continuous. 

70. Temperatures in a Cylinder. Let us derive formally the 
temperature function C7(r, t) for a solid circular cylinder of 

infinite length whose initial temperature is zero and whose 
surface is kept at unit temperature (Fig. 77), Selecting the 
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unit of length as the radius and making the usual choice of the 
unit of time, the heat equation becomes 

(1) Ut{r, t) = U„ir, 0 + i Ur{r, t) (0 ^ r < 1, <> 0), 
T 

where r is the distance from the axis of the cylinder. The 
boundary conditions are 

U(r, +0) = 0 (0 ^ r < 1), U(1 - 0, 0 = 1 (t > 0). 

In addition, the function C/(r, t) must, of course, be continuous 
at r = 0. 

The transformed problem is therefore 

(2) 8u{r, s) = Urrir, s) + ^ Ur(r, s), 

m(1. s) = "i 
O 

Also w(0, s) must at least be finite. A 
solution of Bessers equation (2) that is 
finite at r = 0 is 

w(r, s) = CIo{r Vs), 

where Io(x) is Bessel’s function of the first kind corresponding to 
an imaginary argument: 

Io(x) = Mix) = 1 + g + + 2^4^, + 

lu view of the condition w(l, s) = 1/s, it follows that 

The roots of the equation Jq{z) = 0 are all real and form an 
infinite sequence. Their values are tabulated. Let ±ai, ±a2, 
• • • denote their values: 

/o(±afi) = 0. 

Then w(r, s) has singularities when i \/s = ±or 

s = ~aj. 
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These singularities are simple poles of b)^ and a » 0 is another 
simple pole. The residue of u{r, z)e^ bXz » 0 is 1, and the residue 
at = —a* is 

/o(r y/z) = _2 JoM 

Since Io{x) = BJidJoiz) = ’-Jiiz) = /i(—«), this residue 
can be written 

Ji(an) ^ * 

The formula for the temperatures in the cylinder is therefore 

I7(r, 0 = 1-2 
J ojotnr) 

anJ liotn) 
C““***. 

To write this formula in terms of standard units of length and 

time, centimeters and seconds, for example, let p denote the radial 
distance and r the time in such units. If the radius of the cylinder 
is po and the thermal diffusivity of the material is k, then to trans> 

form the heat equation (1) into Ur = k(Upp + Up/p) (0 ^ p < po) 

we put 

where r and t are the variables used in formula (4). Also let 

y(p, t) = AU{r, t) so that the constant surface temperature is 
arbitrary: 

F(po, r) = A. 

Our temperature formula then takes the form 

(5) 

where aj, <*2, * • • are the positive roots of the equation Jo(a) “ 0; 
in particular, 

ai « 2.405, at ~ 5.520, a% = 8.654, a4 « 11.79. 
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PROBLEMS 

L The initial temperature of a slab is U{x, 0) * Ax, If the faces 
X = 0 and X ^ I are kept at temperature zero, derive the temperature 
formula 

2. Derive the following formula for the temperature function in 
Prob. 1: 

l/(x, i) = Ax 
(2n -f 1)/ - a? 

2 y/kt 

3. If the slab in Prob. 1 is 20 cm. thick and is made of iron with 
k = 0.15 c.g.s. unit, and if the initial temperature varies uniformly 
through the slab from 0® 100®C., find 
to the nearest degree the t^perature at ^ ^ “k 
the center after the faces have been kept ^ r ^ ^ 
at 0®C. (a) for 1 min., (6) for 100 min. ^ u(x.o)-g(x) ; 

Ans, (a) 48®C.; (6) 0®C. ^ ^ 
4. Solve Prob. 3 if the slab is made of ^ i^ 

concrete with k = 0.005 c.g,s. unit. i ^ 
6. If the faces a; == 0 and a; — Z of a ^ ^^ \ 

slab are insulated (Fig. 78) and the initial ^ ^ 
temperature is U{Xj 0) = g{x)y set up the ^ ^ ^ p 
boundary value problem for the tempera- ^la. 78. 
ture U{Xj 0 and derive the formula 

,2"^ nvx f' ... riTj / nV%\ 
+ J- ^ COS — ^({) cos — dj exp ^-^J- 

6. In Prob. 5, let the initial temperature distribution be 

g{x) = A when 0 < a; < }Z, 
- 0 when \l <x <L 

Show that 

t^(*, <) “ 2 T ^ 2n - 1 I 
- l)irx r (2n — 1)V*A;Z ] 
I—-p—J- 
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7. Two slabs of iron (A; = 0.15 c.g.s. unit) each 10 cm. thick, one 
at 100°C. throughout and the other at 0°C. throughout, are pressed into 
contact and their outer faces are insulated. Find the temperature at 
the plane of contact 4 min. later. 

8. The face a: = 0 of a slab is kept at temperature zero while the 
face a: = 1 is insulated. If the initial temperature is == gr(a;), derive 
a formula for the temperature [/(x, t)^ taking k = 

9. The initial temperature of a cylinder of infinite length is zero. 
If the surface r = 1 is kept at temperature A from i = 0 to i = <o and 
at temperature zero thereafter, derive the following formula for the 
temperatures in the cylinder: 

Tf(r, t) = A[U(r, t) - C/(r, t - t,)l 

where C/(r, t) is the function defined by formula (4), Sec. 70, when 
< ^ 0 and f7(r, 0=0 when t < 0. 

10. The flux of heat into an infinite cylinder through its surface 
r = 1 is a constant, so that Uril, t) = A, If the initial temperature is 
zero, derive the formula 

U(r, t) = 2A 
V 
4 

2Jo(Pnr) 1 

where /Si, P2, ' ’ ' are the positive roots of the equation Jiifi) — 0. It 
can be seen from Bessel’s equation that —Jq{x) = Joix) — Ji{x)Jxy 
and since —Jq (x) = J^ix) the denominators in the series can be found 
from tables. 

71. Radiation at the Face of a Semi-infinite Solid. In the 
following problem, the transform has 
a branch point so that a transforma¬ 
tion of the path of the inversion 
integral will be used to obtain 
the temperature function in the 

form of a real integral. Unless an 
extension of the Fourier integral is 
first developed, this problem cannot 

be solved by the method of sepa¬ 
ration of variables. We give only a 

formal solution here. Otherwise the analytical details that would 
be involved become quite lengthy. 

Let U(x, t) denote the temperature in a semi-infinite solid 
X ^ 0 whose initial temperature is a prescribed function g(x) of 
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the distance from the face (Fig. 79). Let transfer of heat take 
place at the face into a medium at temperature zero, in accord¬ 
ance with Newton’s law of transfer: 

-KU,{0, t) == -i^[C7(0, t) - 0], 

where K is the thermal conductivity of the material of the solid 
and E is the external conductivity of the face. 

The boundary value problem can be written as follows: 

Ut{x, t) = Uxx{x, t) {x > 0yt> 0), 
U{x, 0) = g{x), C7,(0, 0 = t), 

where h is the relative emissivity, h = E/K, In addition, some 
order condition must be imposed on U(xy t) when x tends to 
infinity, a condition that takes the place of a condition at the 

right-hand boundary. It will be convenient to require that g{x) 

be bounded for all x and fl^Jen impose the condition that, for some 
constant M and all x and t, 

\V{x, 01 < M. 

The transform u{x, s) then satisfies the conditions 

(1) u^x{x, s) - su(x, s) = -g(x)f 
(2) Wx(0, s) = hu(0, s), \u{x, s)\ < N. 

By transforming here with respect to x the reader will find that 
the solution of equation (1) satisfjdng the first of conditions (2) is 

(3) u{x, s) = KVs + + (\/i - A)e-*Vi] 
2 V 5 

-^ f ff(() sinh (x - {) V® di. 
V® Jo 

The coeflicient of here is 

u(0, s) 
\/s + h __ 1 

2 \/s 2 \/i i: g(()e~c^d(. 

In view of the condition \u{Xf s)l < it is necessary that this 
coeflSicient. vanish as x tends to infinity; that is, 

u(0, a) = 
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When this value of w(0, s) is substituted into equation (3), the 
result can be reduced to the form 

(4) w(x, «) = g{i)R{x, s, s) ds, 

where the Green’s function R is defined as follows: 

(5) B(x, s) = i V? 
Vs (Vs + h) 

(0 ^ g x), 

h sinh X Vs + Vs cosh x Vs ^ x 
= -/-7^7 Vn-^ ^ Vs (Vs + h) 

Let s = rc*® where —tt < 0 < tt, and Vs = Then Vs 
has a positive real part and Vs + h never vanishes since /i > 0. 

Since sinh (a Vs)/V^ can be defined as an anal3rtic function for 
all finite s, the function R is analytic except for the branch point 

« = 0 of the factor or When the function g(x) 
satisfies appropriate order and continuity conditions, the function 

u{x, a) is analytic except at the origin, since —t < 9 <v, and it 

is of the proper order in a right half plane (R(s) ^ y > 0 so that 

U(x, t) = Lt^{u(x, s)}. 
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Moreover the integral of e*^u{xj z) over the circular arcs ABC 
and (Fig. 80) tends to zero as the radius becomes infinite. 
Let ro be the radius of the small circle about the origin. We find 

that 

lim i2(ai, roe'O = ^ - 
rr-*0 n 

_ hx + 1 
h 

(0 g f g x), 

When z is on this circle, dz = tVoC** dS. When g(x) satisfies 
appropriate conditions then the integral of e**u(Xf z) dz over the 
small circle vanishes as ro —► 0, since roR(Xj z) has this property. 

The limiting values of the integrals along the lines C'D' and 
DCf as € and ro tend to zero and the radius of the large circle 
becomes infinite, can be seen by setting z = rc”**" and z = re" 

and writing \/z = = — \/r in the first case and 

= \/r = “s/r in the second. The sum of these integrals 
is equal to the inversion integral: 

(6) Lz^u(.x, s)} = ^. e-^u{x, re-*') dr 

— e~'‘u(x, re**) dr j 

~^fo Jo 

- €, »•«'')] di. 

When ( > X 

R{x, {, re^O 

and 

h sin X \/r + y/r cos x \/r 

\/r {h ~ i \/r) 

R(x, f, re") = 
h sin X y/r + \/r cos x y/t 

y/r {h + i y/r) 

The difference of these functions becomes, after simplifying, 

2i 

y/r + r) 
{h sin x y/r + y/r cos x \/r)(^ sin { y/r 

+ Vr cos f y/r). 

(7) 
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This function is symmetric with respect to x and f, as is the func¬ 
tion R] that is, R{Xf f, b) = x, s), for all x and Therefore 

the function (7) is also the difference of the limits of R at the upper 

and lower sides of the negative real axis when 0 < ^ < x. 
The formula (6) can thus be written 

Uix, t) 
1 r * h sin x \/r + Vr cos x y/r 

^ Jo y/r {h^ + r) 

dr r gii)(h sin { y/r + y/r cos { y/r) df. 

Introducing the new variable of integration a = V?, our tem¬ 
perature formula becomes 

(8) u(x, 

where 

(9) ^(«> *) = 

>0=1 (' 
^ Jo 

€r^^^4>{oty x) da I g{()4>{ot, () df, 

sin aa; + a cos ax 

When < = 0 here, we have the following generalization of the 
Fourier integral representation of the arbitrary function g(x): 

(10) g(x) = ^ «(«, «) da {) d{. (a; > 0). 

When h == Of this becomes the Fourier cosine integral formula for 
the function g(x), 

72. The Use of Iterated Transformations. Let ?7(x, y, t) be 

the temperature function for a semi-infinite slab a: ^ 0,0 ^ ^ 1 

with initial temperature zero, when C/ = 0 on the faces a; = 0 and 
y — 0 and C/ = 1 on y = 1 (Fig. 81). The boundary value 
problem in U{x, y, t) can be written 

Ux* + Uyy = Ut (^ > 0, a; > 0, 0 < y < 1), 
U(Xf y, 0) = 0 (a; > 0, 0 < 2/ < 1), 
U(0, 2/, 0 = 0 (^ > 0, 0 < 2/ < 1), \U{Xf y, 0| < M, 

U{xy 0, t) = 0, ij{Xf 1, 0 = {t>0fX> 0). 

The problem in the transform of U with respect to i is still one 
in partial differential equations, namely, 
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V'xx(x, y, s) + Uyy{x, y, a) = au{x, y, a), 

«(0, V,s)=0 (0 <y < 1), \u{x, V, 8)1 < M', 

u{x, 0, s) = 0, u{x, 1, a) = \, (x > 0). 
o 

Let u(z, y, s) be the Laplace transform of u(xj y, s) with respect to 
Xf and let 

<t>(yy s) = w*(0,2/, s), 

a function that is not prescribed directly by the boundary condi¬ 
tions. Then 

(1) 22^(2, 2/, s) — <f>(yy s) + Uvt,(z, yy s) = su{Zy y, s), 

(2) u{Zy 0, s) = 0, u(Zy 1, s) = 
sz 

also, |fi(z, y, s)| < M". 

Fia. 81. 

The solution of the ordinary differential equation (1) satisfying 
the conditions (2) can be written 

S'’ ■) - al^ r •)»"ft - ■.) ■<- 

where 

= 2^ — 5. 

Now the function u(z, y, s) is to be bounded for all values of its 
arguments when the complex variables z and s lie in some right 
half planes. But the function sin p is zero When p = inx, that 
is, when 

2 = ± 'y/s + nV (n = 0, 1, 2 • • * ). 

Therefore it is necessary that the function in the brackets in 

equation (3) be zero when z = + wV*; otherwise for each 
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fixed real a there can be no right half plane of z throughout which 
il{z, a) is bounded. Setting the function in the brackets to 
zero when z has those values, we obtain the following conditions 
on the unknown function a): 

(4) 
1 

a \/s + nV 
+ cos nir 

Jo 
s) sin ninj dri ^ 0 

(n = 1, 2, • • • ). 

The points z = Oandz = — \/s + nV are left as singularities 
of the function u(Zy y, a) for each fixed a and y. They are simple 
poles. The singularities of this function of z that arise from the 
branch points of p are removable since we can set 

sin py _ ^ 3! 

sin p - 1 ^ , 
3! 

y - 

1 - 

{z^ ~ 8)y^ 
3! 

(g" - g) , 
3! 

and similarly for sin {cp)/p where c is independent of z. 
The residue of y, s) at z = 0 is 

sinh y y/a 

a sinh ^/a 

The residue at z = — y/a + nV is 

_nir sin nry [“ —1 

^/a + nV* cos nr %/» + wV 

+ ^ r ^(17, a) sin nwri dri \ 
nr Jo J 

In view of condition (4), this residue reduces to 

Therefore 

2(-l)» 
rnr sin niry 

8{8 + nhr^) 

(5) u{x, y, a) 
sinh y \/s 

a sinh V* 

■ w(-l)" 
a a + nV* 

The inverse transform of the first term on the right, with respect 

to a, was found earlier in two different forms (Sec. 40 and Sec. 62). 
Let it be denoted by F(y, t)\ then 
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The function V{y, t) represents the temperature in a slab 0 < 2/ < 1 
initially at zero, when F — 0 on the face y = 0 and F = 1 on 
2/ = 1. It is one of the theta functions. 

To obtain the inverse transforms of the terms of the series in 
formula (5) in a convenient form, we write 

1 
8{8 “h nhr^) ^ 

_Lfi 
7lV \S 

1 \ 
8 + nV) ^ 

X \/« + 

Since the inverse transfb^ of is erfc {^x/y/t)^ it fol¬ 
lows that 

From formulas (2) and (5) of Sec. 41 it follows that 

’ erfc f ^ (8) 2L~^ 1“ = e’**’® erfc + nir y/^ 

-f 6“”®* erfc ■“ y/^- 

Let t) denote the difference of the two inverse transforms 
just found: 

(9) En{x, .o-K guTi erfc 

+ e-'' erfc - n. V*)] - erfc 

Then our temperature function can be written formally from 
equation (5) as 

(10) V(x, y, 0 = 0 +12 

where the function F(y, t) is defined by equation (6). 
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Since the values of the terms of the series in formula (10) can be 
found from tables, and since the functions En{x^ t) tends to zero 
quite rapidly as n increases, it can be seen that our formula is not 
an inconvenient one for the computation of temperatures. 

In verifying the function (10) as the solution, it should be noted 
that 

? 2 ””■2/ = -y (0 ^ y < 1), 
1 

for this series arises when we put a; = 0. The function F(2/, t) 
satisfies the original heat equation for U(x, y, t). Also note that 
each term of the remaining series on the right of formula (10) 
will satisfy that heat equation if it is shown that the functions En 
satisfy the equation 

nVE,, = in = 1, 2, 

The verification is left as a problem. 
73. Duhamel’s Formula in Heat Conduction. In Sec. 67 we 

obtained a formula for the temperatures in a bar with variable 
end temperature, in terms of the temperature function when the 

end temperature is constant. Let 
US now obtain a more general 

jT formula that simplifies heat-con- 

X u-0,t-0 duction problems in the same way. 
gf / Let U {Xj y, z, t) be the temper- 

Y atures in any solid, filling a region 
U-o\. ^ R, that is initially at temperature 

throughout. Let the temper¬ 
ature at every point of some part <S 

of the boundary be a prescribed function F{t) of time, and let 
the remainder S' of the boundary be kept at temperature zero 

(Fig. 82). 
If X(C/) represents the linear differential form or operation 

the equation of conduction can be written 

(2) Ut = HU) {Xy yy zmRyt > 0). 
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We assume that the thermal coefficients if, c, and 3, representing 
conductivity, specific heat, and density, are either constant or 
vary with x, y, and 2, but not with time. The boundary value 
problem in U consists of equation (2) and the conditions 

(3) C/(x, y, 2, 0) = 0 interior to JK, 
(4) C/ = 0 on ,S', U = F{t) on S, 

The transform w(x, 2, s) then satisfies the conditions 

(5) 8u = \{u) in R, 
(6) w = 0 on /S', u = f{s) on S. 

Let V(Xj y, 2, t) be the temperature function U when F(t) == 1; 
that is, V satisfies the heat equation (2), the initial condition (3), 
and the surface condition 

(7) 7 = 0 on /S', 7 = 1 on S. 

Then the transform 2, s) satisfies the differential equation 
(5) and the conditions ^ 

(8) V = 0 on /S', ^ J 

Since s is a parameter in the linear homogeneous differential 
equation (5), the product of sf(s) by the solution v is also a solu¬ 
tion. But according to conditions (8), 

sf{s)v = 0 on /S', sf{s)v = f(s) on /S; 

thus the function sf{s)v satisfies all the conditions (5) and (6), and 
it is therefore the same as the function u: 

(9) u{x, y, 2, s) = sf(s)v{xy y, 2, s). 

Since sv is the transform of 7<, it follows from equation (9) with 
the aid of the convolution that 

(10) U(Xy y, 2^1 0 = J[ — t)7«(x, y, 2, r) dr. 

This is the formula of Duhamel, giving the temperature U cor¬ 
responding to a variable surface temperature in terms of the 
temperature 7 corresponding to a constant surface temperature. 

If the function F{t) is continuous {t ^ 0) and F{0) = 0, then 
bJ{8) is the transform of F'(t) and it follows from equation (9) that 

J[V'« - r)V{x, y, z, r) dr. (11) U{x, V, z, 0 = 
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When F{0) 0, then 5/(s) = L{F*{t)] + F{0) and an additional 
term appears in the form (11) of DuhameFs formula. Another 
form is the following: 

(12) V{x, y,z,t) = ^ - rWix, y, z, t) dr. 

These forms can be verified directly under broad conditions on 
the function F{t) as solutions of the boundary value problem in U. 

The differential operator X could clearly be replaced by any 
linear differential operator in space coordinates with coefficients 
that are not functions of 

PROBLEMS 

1. The face a; == 0 of a semi-infinite solid (Fig. 83) is exposed to a 

medium at constant temperature A. Heat is transferred from that 

medium to the face of the solid according 

to Newton^s law; that is, the flux of heat 

is E[A — f/(0, 0] where 17 (x, t) is the 

temperature in the solid. Thus the 

boundary condition at the face becomes 

l/.(0, t) = hlU{0, t) - A], 

where h — E/K, If the initial temper¬ 

ature is zero, derive the following formula 

with the aid of the tables in Appendix III: 
Fig. 83. 

U(x, t)~ A [erfc erfc (ft Vkt + 

Examine the variation of the temperature 17(0, t) of the face. 

2. Let V{Xf t) be the temperature function for the solid in Prob. 1 

when A = 1. Let W(x, t) be the temperature of the solid when the 

constant A is replaced by a function <f>(0, so that the medium to which 

the face is exposed has a variable temperature. Derive the formula 

TF(x, t) « — T)Vt(x, t) dr. 

3. The temperature of the face of a semi-infinite solid a? ^ 0 varies 

in the following manner: 

C/(0, 0 ~ A sincoL 

* A similar derivation of more general forms of DuhameFs formula will be 
found in a paper by R. C. F. Bartels and R. V. Churchill, Resolution of 
Boundary Problems by the Use of a Generalized Convolution, Bulletin of 
the American Mathematical Sodety^ Vol. 48, pp. 276-282, 1042. 
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Taking the initial temperature as zero, for convenienoe, show that when 
t is large the temperature at each point is approximately 

U{Xj t) ^ A sin — X exp 

a simple periodic function of time. Note that the closed contour in 
Fig. 80 will enclose two simple poles « = ±ilw of u(x, s) in this case. 
Also note that the above formula could be obtained without the use 
of the transform by assuming that U(x, t) has the form 

f(x) sin o)i + g(x) cos cot 

and solving for/(a;) and g(x). 
4. The diffusivity of the earth^s soil in a certain locality is A; = 0.0049 

c.g.s. unit. The temperature of the surface of the soil has an annual 
variation from —8 to 22°C. Assuming the variation is approximately 
sinusoidal (Prob. 3), showjb|iat the freezing temperature will penetrate 
to a depth of less than 170 im. (considerably less, because of the latent 
heat of freezing). 

6. Use DuhameFs formula to write a formula for the temperatures in 
the semi-infinite slab of Sec. 72 when the condition on the surface g — 1 
is replaced by the condition 

U(x, 1, t) - F(th 

the other conditions remaining unchanged. 
6. Show that DuhameFs formula applies if the surface S' in Sec. 73 

is insulated, instead of being kept at temperature zero. Problem 7 of 
Sec. 68 is a special case. 

7. Let the functions 7(a;, t) and TF(2/, t) satisfy the heat equations 
Vt = kVxx and Wt = kWyyj respectively. Prove by direct substitution 
that the product of those functions, 

V. i) » V{x, t)W{y, e), 
satisfies the heat equation 

Ut = k{Usx + Vyy). 

If in addition 7(0, t) = 7(a, 0 — 0 and T7((), t) = T7(6, t) == 0, and 
if 7(x, 0) “ /(x) and T7(|/, 0) = g(y), then show that 17(x, t) represents 
the temperatures in a rectangular plate (Fig. 84) with insulated faces, 
if the edges are at temperature zero and the initial temperature is 

^7(x,y,0) ^f{x)g{y). 
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8. Use the product of solutions (Prob. 7) to obtain the following 
formula for the temperatures in an infinite prism with a square cross 
section, if the initial temperature is A and the surface temperature is 
zero, taking the unit of length as the side of the square and = 1: 

V{x, y, t) = Amx, tmy, t), 

where U is the temperature function found in Prob. 8 of Sec. 68. 

U-0 

U-0 
y 

fa M 

U(x,y,0)-f(x)g(y) (0.1) 

u-0 
u-0 

U»0 

Fig. 84. 

U=0 

U(x,y,0)-1 

U-0 

Fig. 86. 

9. With the aid of Prob. 7, derive the formula 

... .. i ,/ X \ sin (2n - l)y 
V(.x, y. 0 - erf [^2 V</ 2n - 1 

for the temperatures in the semi-infinite slab x^O, with its 
boundary at temperature zero and i7(x, y, 0) — 1 (Fig. 85), taking 
A; = 1. 

10. Generalize the method of Prob. 7 to the case of three dimensions, 
and give an illustration of its use in finding the temperatures in a cube. 



CHAPTER VIII 

PROBLEMS IN MECHANICAL VIBRATIONS 

This chapter contains further illustrations of the uses of those 
properties of the Laplace transformation that involve complex 
variables. The problems taken as illustrations deal with vibra¬ 
tions and resonance in continuous mechanical systems—systems 
in which the mass and elastic characteristics are distributed over 
the system. Consequently these problems are boundary value 
problems in partial differential equations, of the type treated in 
Chap. IV. 

It is the intention here to present fairly simple physical prob¬ 
lems in their mathematical form, even though the same mathe¬ 
matical problem has a more important physical interpretation. 
In particular, it may be advis¬ 
able to examine the telegraph 
equation [Sec. 33, equation (2)] 
and to note that, when certain 
electrical coefficients in a trans¬ 
mission line can be assumed to 
have the value zero, the equa¬ 
tion is the same as the equations of the second order involved in 
this or the preceding chapter. Interpretations of the problems 
in terms of potential or current in a transmission line are then 
possible and frequently of interest. 

74. A Bar wi^ a Constant Force on One End. In Sec. 35 we 
derived a formula for the longitudinal displacements in an elastic 
bar in the form of a prism, when one end of the bar is fixed and a 
constant force Fo per unit area acts parallel to the bar on the 
other end (Fig. 86). Let all parts of the bar be initially at rest 
and unstrained. The displacements Y{Xf t) then satisfy the 
conditions in the boundary value problem 

t) = a^Yxx(Xy t) {0 < X < c,t> 0), 
Y{Xy 0) = Yt{Xy 0) = 0, 

7(0, 0 = 0, EY,{cy t) = Fo, 
219 

Fig. 86. 
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where a* = i&/5, E is Young^s modulus of elasticity, and 6 is the 
mass per unit volume of the material. 

Let us obtain another formula for Y(x, t) here. 
By transforming the above problem, we found that the trans¬ 

form of Y(Xf t) is 
sx 

„ sinh — 
y(x 8) “ 

s* cosh ~ 

We can write 
1 , , sx X . s^x^ , sV , 
- sinh — = - + + 
s a a 5Ia^ 

a function that is analytic at s = 0. The function y{xy s) then 
has a simple pole at s = 0. The residue at that pole is 

qF 0 35   Fq 
'Wa~ E^' 

The remaining singularities of y{Xy s) are the zeros of the func¬ 

tion cosh {sc/a); that is, s — Sn where 

s» = ^(2n-l)|» (n = 0, ±1, ±2, • • • ). 

By expanding the function cosh {sc/a) by Taylor^s series in 
powers of (s — Sn), it will be seen that the product {s — Sn)y(35, s) 
is analytic at s = Sn. Hence the singularities Sn are all simple 
poles. The residues of e‘^y{Xj z) at these poles, according to 
Sec. 59, are 

Pn = 

ap Sinh^ 
dt 0 d 

”a a 

FqC _ 
sin 

(2n — l)7r3; 
2c 

4cFo(*~l)’* . (2a — l)vx 
.iE(2n-ir^-2c- 

f (2n — l)Ta< .] 
L 2c 

The poles Sn consist of a set of points on the positive imaginary 
axis and their complex conjugates. Let us add the residues pi 
and po, corresponding to the poles ±Trdi/{2c): 

Px + Po = 
AcFo . vx I 
tt^E 2? 

ScFo 

r /wdtt\ , / xa^AI 

vx 

exp 
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Adding the residues corresponding to any pole and its conjugate 
we find, in just the same way, 

. _i_ ^ _ 8cFo ( —I)** (2n — Vjirx {2n — 1)to^ 
P» + P-(»-a) - ^ (2^-171)2 -2c- -2t^- 

Fonnally, then, the inverse transform of y(x, s) is 

(1) Y(x, t) = 

£ [ ^ ^ (2« - 1)2 2c 2c 

Every term in this series is a periodic function of t with the period 

<2) T,.ii-4c^. 
Hence every point of the bar vibrates with this period. 

76. Another Form of the Solution. Since Y{x, 0) = 0, our 
formula (1) of the foregoing section indicates that 

X == 
8c 

1 

(-1)- 
(2n - 1)2 sin 

(2n — \)irx 
2c (0 < X < c). 

Moreover the values of the terms of this series remain the same 
after x is replaced by 2c — x, and the terms are antiperiodic with 
respect to x with the period 2c. Hence if the range of the vari¬ 

able X is unlimited, this series should represent the triangular 
wave function H{x) shown in Fig. 87 and defined as follows: 

(1) H{x) == X when 0 < x < c 

= 2c — X when c < x < 2c, 
= ~H(~x); 

H{x + 4c) = H{x) for all x. 

Incidentally, this function can be described easily in terms of the 
function H (2c, x) of Sec. 19. Thus, for all real x, we should have 
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(2) (2n - 1)2 
sin 

(2n — V)tx 
2c 

The series here is actually the Fourier series representation of 
the periodic function H{x)^ and therefore formula (2) is valid. 

In our formula for the displacement F(a;, <), let m = 2n — 1 
and write 

. rriTX rmrat 
2 sin cos -jr— 

2c 2c 
= sin 

mfr(x + at) 
2c 

+ sin 
mir(x — at) 

2c 

Then 

Fo ( 4c(-1)*“^ r • 
= sm 

n-1 L 

mir{x + at) 
2c 

+ sin 
. mir(x at) 

2c ]}■ 
. and, in view of formula (2) above, our formula can be written 

(3) Y(x, 0 = § [x - i H(x + ol)-\ H(x - a<) ]• 

This formula is simple enough that it can easily be verified as 
the solution of our problem. In showing that it satisfies the 
end condition ^F*(c, t) = Fo, it is necessary to observe that the 
derivative of the function H(x) is the following square wave 
function: 

H'(x) = 1 when ~c < a; < c, 
= —1 when c < X < Sc; 

H'{x + 4c) = IF {x) for all x. 

Incidentally we have obtained the following useful inverse 
transformation here: 

(4) 
^ 2a sinh — ^ 

ai 

$2 cosh — 1 
a 

= 2a; — H{x + at) -- H{x — at), 

a forn\ula that can be verified by transforming the periodic func¬ 
tion of t on the right. 

Formula (3) is well adapted to graphical descriptions of the 
variation of Y {x, t) with either x or L The graph of H(x + at) 
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for a fixed for example, is obtained by translating the graph 
of Hix) to the left through a distance at 

The displacement of the end x = c is 

Y{c, t)^^^c-\H{at + c)+ \H(at - c)]- 

But H{x + 2c) = —H{x) and hence H(at + c) = —H(at — c); 

therefore 

(5) nc,t)=^lc + H{at-c)]. 

This function is shown graphically in Fig. 32. 

The reader can examine the force at the fixed end x = 0 and 
show that it assumes the values 2Fo and zero periodically. 

76. Resonance in the Bar with a Fixed End. Let a simple 

periodic force per unit area, 
*• ji 

f\t) = A sin o)ty 

act at the end a? = c of the bar. If the end a; = 0 is fixed and 

the initial displacement and velocity are zero, we need to change 
only the end condition at a; = c in the problem of Sec. 74 to read 

EYx{c, t) = A sin 

The transform of the displacement now becomes 

y{x, s) = 
B 

. , sx 
sinh — 

^2 

$ cosh 
sc 

where B = aAw/E, 
Now y(xy s) is an analytic function of s except at the points 

s = ±1^ and s = Sn, where 

_ (2n — l)wa 

2c 
i (w = 0, ± 1, ±2, 

If tco is not equal to any one of the numbers Sn, that is, if 

(2n — l)7ra 
2c 

(n = 1, 2, 

)• 

), 

the singularities are all simple poles. They fall along the imagin¬ 

ary axis and are distributed symmetrically with respect to the 
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origin. It follows from Sec. 59 that the function Y(x, t) can be 

written formally as a series of the type 

(1) Y{x, t) = ao(x) sin + /S»(x) cos ut 

+ 2) loCn(x) sin OJnt + fin(x) COS 

where 

(2) 
_ (2n — l)ira 

2c (n = 1, 2, • • • ). 

At this time we shall not obtain the residues of e^*y(x, z). This 
would be the way to find the functions an(x) and /3n(x). We can 
see from formula (1) that the motion of each point of the bar is 

the superposition of two periodic motions, one with frequency w 
and the other with frequency cji = ira/c. 

But if the frequency « of the external force coincides with one 

of the frequencies w«, 

(2r — l)7ro 

where r is some positive integer, then y(x, s) has poles of the 
second order at 5 = Corresponding to these poles, 
Y(x, t) wiU contain a term of the resonance type (Sec. 69) 

tlCri^x) sin + I>r{x) COS Ci>rt], 

which can be written in the form 

(3) tMr(x) sin [cart + €r{x)]. 

Thus one component of the displacement will be an oscillating 
motion with an amplitude that grows indefinitely as t increases. 
The remaining components consist of a periodic motion with 
frequency 

This type of vibration of the bar is called resonance, for the 
idealized case in which there is no damping. The external force 

is in resonance with the bar when its frequency coincides with 
any of the frequencies 

(4) 
_ (2r - l)iro 

2c 

which can now be called resonance frequencies, 

(r =. 1, 2, • • • ), 
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We shall see that the set of resonance frequencies depends upon 
the manner in which the bar is supported, as well as upon the 
physical properties of the bar. For example, if the end a; = 0 is 
free, the resonance frequencies are not the same as the frequencies 

(4). 
For any prescribed force F(t) at the end x = c, the transform 

of Y(Xf i) is 

y(x, s) = ^/(s) 

. V SX 
sinh — 
_ 

, 8C 
8 cosh — 

a 

Consequently, if the function F(t) contains a term of the type 
Ai sin o)it or Bi cos osit, then y(Xj s) will contain a term with the 
product (s^ + wf) cosh (sc/a) in the denominator, and Y(Xy t) 
will contain a resonance ierm (3) with r = 1. Similarly, if the 
force has a simple periodic component with the frequency Wr, 
resonance will occur. Thus to cause resonance it is not necessary 
that F(t) be limited to the simple form F{t) = A sin 

In fact, whenever F(t) is any periodic function with frequency 
wi, resonance will occur. This can be seen either from the 
Fourier series representation of F{t) or from the form in Sec. 19 
of the transform of a periodic function. The frequency «i, may 
be replaced by any other frequency Wr given by equation (4). 

77. Resonance When Damping Is Present. In actual mechan¬ 
ical systems, some damping of vibrations is always present, at 

Y 

,tF(t) 

(C.0) X 

Fiq. 88. 

least in the form of internal resistance to the motion. Let us 
consider a case in which the damping force is proportional to the 
velocity. 

We shift to another physical interpretation of the problem 
considered up to this point, namely, that of the transverse 
displacements Y(Xy t) in a string stretched from the origin and 



226 OPERATIONAL MATHEMATICS IN ENGINEERim [Sec. 77 

looped around a smooth support a; = c (Fig. 88). In view of the 
damping, the equation of motion can be written 

Yu(x, t) = a^YzxiXj t) — 2hYt(x, t) (0 < a; < c, < > 0), 

where a® is the tension divided by the mass per unit length and 
5 is a damping coefficient (6 >0). 

If the applied vertical force on the loop is proportional to sin 
(Jit and the string is initially at rest along the a;-axis, the boundary 
conditions are 

F(a;, 0) = Yt{xy 0) = 0, F(0, t) = 0, y*(c, t) — A sin co^. 

The transformed problem 

a^VzxiXy s) — (s2 + 2hs)y(x, s) = 0, 

y(0, 8) = 0, 2/.(c, s) = jrq—2' 

has the solution 

where 

s2 + ^2 p cosh pc 

— + 2hs 

The function y(Xf s) has singularities at « == ±i(a and at the 
zeros of the function cosh pc, which are the roots of the quadratic 
equation 

+ 2bs 
{2n - l)Va^ 

4c2 

When 26 < va/c, these roots can be written 

(1) s = -5 ± ifin 

where 

Since their real parts are —6, these roots cannot coincide with 
±ictf. Regardless of the value of the singularities of y{x, a) 
are all simple poles. 

Corresponding to the poles s = ±fa>, Y{x, t) will have a term 

of the type 

(2) Yi[x, 0 = Mtaix) sin M + €«(x)], 
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and corresponding to the poles (1) it will have a series of terms 
of the type 

00 

(3) Ytix, t) = e““ ^ an(x) sin [/3„< + f„(x)]. 

That is, V(x, t) is composed of two components: 

(4) y(x, t) = Yi{x, t) + Y^{x, t). 

The component Y\{x, t) is called the forced vibration. The 
component Y^ix, t) is the transient vibration, one that is negligi¬ 
ble for large t. In fact, by transforming the problem in the case 
of an arbitrary initial displacement and velocity, an examination 
of y{x, s) will show that the component Y^ix, t) disappears under 
the proper choice of those initial conditions. 

The resonance frequencies are now those frequencies for which 
the amplitude M^{x) of Fi(x, t) is greatest. The determination 
of Mu{x) from y{x, s) is a straightforward matter, but rather 
lengthy. When h is small, the resonance frequencies are close 
to those found when damping is not present. 

Thus resonance with damping consists of 
a sustained periodic motion with maximum 
amplitude. The amplitude may be great 
enough to cause the mechanical system to 
fail. 

PROBLEMS 

1. An elastic bar is clamped along its length c 
so as to prevent longitudinal displacements and 
then hung from its end a; = 0. At the instant 
/ = 0, the clamp is removed and the bar vibrates longitudinally due 
to its own weight (Fig. 89). Thus 

Ytt(x, t) = a^Y„(x, t) + g (0 < a; < c, i > 0), F,(c, t) « 0, 

where g is the acceleration of gravity. Complete the boundary value 
problem, and derive the formula 
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2. Derive the following formula for the angular displacements in the 
spinning shaft of Prob. 4, Sec. 36, whose ends a; = ±c are clamped at 
the instant t ^ 0: 

I '(2n ~ 1)*' 
(2n — l)7rx . (2n — l)vat 

B(x, 0 = ^ ^ 2c 2c 

3. Derive another formula for the displacements in the bar of Prob. 7, 
Sec. 35. 

4. A simple periodic force acts on all points of a bar with the end 
a; = 0 fixed and the end x — c free. If the initial displacement and 
velocity are zero, the displacements satisfy the conditions 

Yu(x, t) = 0*7*,(a?, 0 + sin 
y(x, 0) = y.(x, 0) = y(0, t) - y.(c, t) * o, 

where co is the frequency of the applied force. Show that the frequencies 
at which resonance will occur are 

(2n — l)7ro 
2c (n « 1, 2, • • • ). 

5. The end x = 0 of a bar is fixed and the end x « c is forced to move 
in the manner Y(c, t) = A sin cot. Show that the resonance frequencies 
are 

w» == 
nira 

c - 1, 2, • • • ). 

6. A simple periodic transverse force acts on all points of a stretched 
string of length c with fixed ends, so that the equation of motion has 
the same form as the equation in Prob. 4. Show that the resonance 
frequencies are 

(On 
(2n — l)wo 

c (n = 1, 2, • • • ). 

7. Determine the resonance frequencies when simple periodic forces 
act on both ends of a bar. Show that when the forces are equal and 
opposite the set of frequencies is different from what it is when the 
frequencies are distinct. 

8. Show that the values of the resonance frequencies are independent 
of the initial conditions, using the problem of Sec. 76 to demonstrate 
this. 

9. Determine the nature of the vibrations of the bar considered in 
this section when the damping is such that 2b ^ ra/c. 
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78. Verification of Solutions. When the formal solution of a 
problem can be written in terms of a finite number of simple 

functions, it is of course generally desirable to use that form to 
verify the result as the solution of the boundary value problem. 
This was illustrated in Sec. 75. But if a verification is required 

when the result is expressed only as an infinite series or an infinite 

integral, the procedure illustrated below may be useful. This 
procedure is based on the properties of the transform. It was 

illustrated for problems in heat conduction in Chap. VII. 
Consider again the problem of the displacements in a bar with 

the end a: = 0 fixed and with a force A sin (at per unit area on the 
end a; = c. In Sec. 76, we found that the transform of the dis¬ 
placement is 

y{x, 9-V= 
B 

• V BX 
smh — 

.sc 
8 cosh — 

When (Jl(s) ^ 7, where 7 > 0, 

. , sx 
smh — 

a 

1 sc 
cosh — 

a 

(c~ar)* 
1 — e 

2sc 

l+e 

< 2ye 

1 — e 

Consequently, for some constant M independent of x 

\v{x, s)l 

for all 8 in the half plane (il(s) ^ 7. Since y{x, s) is an analytic 
function of s in that half plane, it follows from Sec. 58 that the 

inversion integral {y(Xj s)} converges to a continuous function 

Y(x, t) of X and t and that Y{x, 0) = F(0, t) = 0. Also 

Y,{x, t) = Li^[sy{x, s)}, Y^(x, t) = Lfly^ix, s)). 

These functions are continuous. Moreover Yt(xj 0) = 0 and 

r.(c, 0 = LrHy.{c, s)} = ^ a. 

Hence the inversion integral is a function Y(x, t) that satisfies 

all the boundary conditions in the problem. 



230 OPERATIONAL MATHEMATICS IN ENGINEERING [Sec. 78 

To show that it satisfies the differential equation, we first write 

+ 0,2 52 ^2(^2 4. 

SO that the transform of t) can be written 

sy{x, s) = u(z, s) + v(x, s) 

where 

u(x, s)=B 

. , sx 
sinh — 

a 

cosh 
sc 

v{x, s) = 

. , sx 
2 sinh — 

+ “*) eosh 

Now v(Xy s) is of the order of s~^ in the right half plane, and there¬ 
fore = Vi(xj t)j where V(x, t) represents the inversion 

integral of v(x, s). 
The function u{Xy s) is of the weaker order 0(s“^). But we 

found in Sec. 75 that it is the transform of the periodic function 

U(x, 0 = ^ [2a; - H(x + at) - H(x - o<)]. 

Since Ut(x, t) is sectionally continuous with respect to t, we know 

that su{x, s) is the transform of the periodic function Ut{x, t). 
According to Theorem 6 of Sec. 57 then, = Ut(Xy t). 

Consequently, 

= Vt{Xy t) + Vt(Xy t) = YuiXy t) y 

where Y{xy t) is the inversion integral of y(Xy s). 
Since the differentiation of y{xy s) with respect to x introduces 

a factor s as the essential change, it can be seen in the same way 
that 

Bj'^lyxxix, 5)} = Yzx{x, f). 
Then 

Ytt(x, t) - a^YxxiXy t) = LT^[s^y{Xy s) - a^yxx(Xy s)} = 0, 

since y{Xy s) satisfies the transformed equation. The inversion 

integral is therefore established as a solution of the boundary 

value problem. Note that if y(Xy s) had been of the order 0(s“^) 

the separation of sy into the components u and v would not have 
been necessary. 
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Next we shall show that the series consisting of the sum of the 
residues of the function s) converges to the inversion inte¬ 
gral, so that we can conclude that this series represents the solu¬ 
tion. We do this by showing that s) satisfies the conditions 
of Theorem 10, Sec. 60. 

The poles of y(x, s) are the points 

ra 
s = ±<>n, 

, 3ira . , &tra . 

Let 5 = { + {rj. Then in Fig. 66 the lines rj = ±Pn will pass 
between the poles when N is sufficiently large if we take 

Since 

(iNT = 1, 2, • • • ). 

s) 

2<g 

' i B - 1 
8(8^ + ' 

e “ + 1 

it is easy to see that \y{x^ s)\ is bounded in the half plane J ^ — r 
uniformly with respect to x. Therefore \y{xy —/Sat + t»?)| is 
bounded. 

Now since 

|sinh (X -t“ in)\^ = sinh* X + sin* /x, 
I cosh (X + t/x)!* == sinh* X + cos* /x, 

it follows that, when s = { ± iPn, 

sinh —I 
, sc 

cosh ~ 

sinh* — + sin* 
a a 

sinh* — + 1 
a 

^ 1. 

Therefore \y(Xy s)| ^ when 8 = f ± iPir, and the 
conditions of Theorem 10, Sec. 60, are satisfied. In fact, since 
y(x, s) is of the order 0(s“®) on the rectangular path, the series of 
residues converges to the inversion integral for all t ^ 0. 

The series form of the solution is now rigorously established for 
any value of the frequency w. When w does not coincide with any 
of the resonance frequencies, the explicit form of our solution 
becomes 
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YM » 

. <jt)X 

0)* 

cos — 
a 

4 (-1)**-^ sm m^x 
sin wi H->, ---5-sin tn„o<, 

a)C c ^ ron «* — mja* ’ 
n" 1 

where = (n — i)ir/c. This is found by computing the 

residues in the usual manner. 

The solution found has continuous derivatives of the first 
order. Its derivatives of the second order are sectionally con¬ 

tinuous functions of either x or and the function and its deriva¬ 

tives are of exponential order for large U By following the 
method in Sec. 66, it can be seen that there is no other solution of 

this type. In this case the procedure is quite simple as a result of 

the favorable continuity conditions. 
79. Free Vibrations of a String. A string, stretched between 

the origin and the point (c, 0), is given a prescribed initial dis- 

placefnent Y = g{x) and released from rest in that position. To 
find the transverse displacements F(a;, t)y we must solve the 
problem, 

Ytt{x, t) = t) (0 < a: < c, < > 0), 

Y{x, 0) - g{x\ Y,{x, 0) - 7(0, t) = F(c, 0 == 0. 

The transformed problem, 

a^sz{x, 8) - s^y{x, s) = -$g{x)y 

2/(0, s) = 2/(c, s) = 0, 

can be solved easily by transforming with respect to x. Its 
solution can be written 

a sinh — 
a 

where 

^{x, «) * ednh ~ g({) sinh ^ df 

+ sinh — r fir(J) sinh ^-— df. 
d Jx d 

The function g{x) must naturally be continuous and vanish at 
X « 0 and a? = c. If its derivative is at least sectionally con¬ 

tinuous, the function 4>{x, s) is analytic for all finite s, and, except 
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for a = 0, the zeros of sinh sc/a are simple poles of y{Xy s). These 

poles are « = ±5n where 

«n = — « (n = 1, 2, • • • )• 

Since 

<l>(Xy 8n) = COS nir sin f g(i) sin dff = 
c Jo c 

c, . njTX 
H bn cos flT Bin -, 
A c 

where 

(1) = 7 r oii) sin ~ dj, 
c Jo C 

the sum of the residues of e^‘y{Xj s) at s = ±Sn is 

sin — ^exp j + exp — jj- 

The formal solution of the problem is therefore 

(2) Y{Xj 0 = ^.bn sm — cos-> 
C C 

1 

where the coefficients bn are given by formula (1). 
When ^ = 0, the series here becomes the Fourier sine series for 

the function g(x) on the interval 0 ^ x ^ c. By writing 

rfe 0 - i [ ^ t. .i. ^ h. d. 

an examination of the series indicates that 

(3) Y(x, t) - i[G(x + at) + G{x - at)], 

where G(x) is the periodic function defined as follows for all real x: 

G(x) = —G(’-x) = g(x) when 0 ^ x ^ c, 
G(x + 2c) = G{x) for all x. 

The result in the form (3) is easily verified as the solution of 
the boundary value problem. It is also a convenient form to use 
in studying the motion of the string. 
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80. Resonance in a Bar with a Mass Attached. The end 
a; = 0 of a bar is fixed. To the end a; = c, a concentrated mass 
is attached (Fig. 90). A longitudinal periodic force B sin (at acts 

on this mass. Let us find the resonance frequencies. The 
elastic displacements in the mass itself are assumed to be negligi¬ 
ble, and the bar is assumed to be too heavy to be considered 

simply as a coil spring without mass. 
Let A be the area of the cross section of the bar and Y(a;, t) the 

longitudinal displacement in the bar. The force exerted by the 

Fig. 90. 

bar on the mass m is then ~-EA F*(c, t), so that the end conditions 

are 

7(0, t) = 0, mYitic, t) = —EAY,{Cy t) + B sin (at. 

If the initial displacement and velocity are zero, the remaining 
conditions in the problem are 

YttiXy t) = a}Y,,^{Xy t) {0 < X < Cyt > 0), 
7(a:, 0) = Yt{Xy 0) = 0. 

This is also the problem of the torsional vibrations in a shaft 
with one end fixed and with a flywheel, on which a periodic torque 

acts, attached to the other end. Note that one end condition 
here involves the second derivative. 

The transformed problem is 

8^y{Xy s) = aVar»(x, s)y 

y(0, s) = 0, EAy^ic, s) + s) = ^4^- 
8^ -f- W* 

The solution of this problem can be written 

y(x, s) 

. , sx 
a sinh — 

a 

where 

s(8^ + sinh “ + jS cosh —^ 
\ a a/ 

Bus 

+ P cosh • 

am m 
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The last factor in the denominator vanishes when s is any root 
of the equation 

tanh ~ 
a s 

It can be shown that the roots of this equation are pure imaginary 
numbers. They can be written s = ±ia\Jc where are the 

positive roots of 

(1) tan X = 

and where k = fic/a. The roots of equation (1) are easily 
approximated graphically.* 

If the factor also vanishes when s has one of the values 
ia\n/Cf then 2/(x, s) will have a pole of the second order and 
Y(x, t) will contain a term of the resonance type. Hence reso¬ 

nance occurs when the frequency of the external force has any one 

of the values i 

(2) « = ^ (n = 1,2, • • • ), 

where the numbers X„ are the positive roots of equation (1). The 
frequencies (2) are the required resonance frequencies. 

The series form of Y(x, t) can, of course, be written in the usual 
way by computing the residues of s) at the poles. 

81. Transverse Vibrations of Bars. Let Y{Xj t) denote the 
transverse displacement of a point of a bar or beam whose cross- 

sectional dimensions are small in comparison with the length of 
the bar, where x is distance along the beam and t is time. The 
bending moment transmitted by one part of the bar to the other 

across the section at x is approximately EIYxxix^ where the 
product El is the flexural rigidity of the bar. When the cross 

section is uniform, the displacements at points where there is no 

external force acting satisfy the fourth-order equation 

where A is the area of the cross section and 6 is the mass per unit 

volume. Some further assumptions are used in the derivation of 

Compare equation (6) and Fig. 98, Sec. 92. 
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this equation.* If an external force, such as the weight of the 
beam, is to be accounted for, then a term proportional to this 
force must appear in the right-hand member of equation (1). 

Let the end a; « 0 be hinged, so that no bending moment is 
transmitted across the section at a: = 0 and the displacement is 
zero there. Let the end a; = c be hinged on a support which 
moves parallel to the F-axis in a simple harmonic manner (Fig. 
91). If the beam is initially at rest along the a;-axis, the boundary 
conditions that accompany equation (1) are then 

Y{x, 0) = Yt{x, 0) = 0, 
F(0, t) = 7^(0, t) = 0, 
F(c, t) — A sin F,*(c, 0 =*= 0. 

Y| 

X 

Fio. 91. 

Let US find the frequencies « at which resonance will occur. 
The problem in the transform y{Xj s) is 

(2) a«g + sV = 0, 

y{0, s) = y„(0, s) = y..(c, s) = 0, y(c, s) = 

It will be convenient to let 

Then the general solution of equation (2) can be written 

(4) y(x, 8) = Cl sin qx + C2 cos qx + C9 sinh qx + C4 cosh qx^ 

where the can be functions of the parameter s. When these 
constants are determined so that the boundary conditions on 

y{Xf s) are satisfied, the solution (4) becomes 

f ^ sin qx sinh qc + sinh qx sin qc 
y{x, s; - ^ 2 gin qc sinh qc 

* See, for instance, Timoshenko, S., “Vibration Problems *m Engineering,” 
1937; or Den Hartog, J. P., “Mechanical Vibrations,” 1940. 



Sec. 82] PROBLEMS IN MECHANICAL VIBRATIONS 237 

Now sin qc — 0 when qc = ±rwr(n = 1, 2, • • • ), and sinh 

gc = 0 when qc = ±imr. Hence the function y{x, «) has singu¬ 

larities at the points s for which 

8 = ±ta), gV = 

The last equation can be written g^c^ = nV^. In view of the 
relation (3) between g and s, the singularities are therefore 

, . , . nVa 
s = ± tcj, s = i * —9—* 

It can be seen that all these singularities are simple poles if w 

is distinct from all the numbers Wn, where 

nV^a 
(n = 1, 2, • • • ). 

In this case then the displacement will have the form 

Y{Xy t) = ao(x) sin [o)t + €o(x)] + 2) OLn{x) sin [««< -f €n(x)]. 

V 

If <a coincides with any «n, there will be poles of the second 

order at s = ±i(j>n and a resonance term will occur in F(a;, t). 
Hence the resonance frequencies are the frequencies 

(6) CO = aj„ = 

In case the hinge at a; = c is kept fixed and a simple harmonic 
torque acts on that end of the beam, the conditions at a; = c have 

the form 

Y(c, t) = 0, Yxx{c, t) = B sin coi. 

The reader can show that y(Xf s) then has the same denominator 
as it does in equation (5). Therefore the resonance frequencies 

are again those given by formula (6). Other cases are included 

in the problems at the end of the chapter. 
82. Duhamel’s Formula for Vibration Problems. As in the 

case of problems in heat conduction (Sec. 73), the convolution 

property of the transform displays a relation between the solu¬ 
tions of problems in vibrations with variable boundary conditions 
and corresponding problems with fixed conditions. Consider, 
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for example, the transverse displacements Y{x, t) in a string. 
If both damping and an elastic support are present, the equation 
of motion has the form (Fig. 92) 

(1) Yu{x, t) = a^YUx, t) - hYt{x, t) - hY{x, t). 

To permit the end a; = 0 to be elastically supported or kept 
fixed or to slide freely along the 7-axis, we can write the condition 

(2) Xi(7) =0 at a: = 0, 

where Xi(7) = hiY — If a prescribed force F{t) acts on 
the end a: = c, a fairly general boundary condition is 

(3) X2(F) = F(t) at a; = c. 

where X2(F) = /12F + /C2F*. Then if 

(4) F(a:, 0) = F,(a;, 0) = 0, 

the transform y(Xy s) satisfies the conditions 

(5) (s* + bs + h)y(x, s) = a^yxx{x, 5), 
(6) Xi[y(0, 5)] = 0, X2[2/(c, s)] = f(s). 

Let Z(Xy t) represent the displacement F(x, 0 in the special 
case in which F{t) = 1. 

Then z{x, s) satisfies equation (5) and the boundary conditions 

Xi[*(0, «)] = 0, X2[2(c, s)] = 
o 

It follows that the product sf{s)z{x, s) satisfies the conditions (5) 
and (6), and therefore 

(7) y(x, s) = sf(s)z(x, s). 

In view of the convolution property then, 

Y(X, <) = I £ Fit - r)Zix, r) dr, (8) 
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or 

(9) F{t — T)Zt{x, r) dr. 

These are two forms of DuhameFs formula for the resolution of 
the problem in Y{Xf t) with a variable end condition into one 

with a fixed end condition. Another form can be written by 
recalling that 

sf{8) = L{F\t)\ +F(0); 

thus, 

(10) Y{x, t) = F{Q)Z{x, t) + F'{t - 7)Z{x, r) dr. 

The derivation of these formulas can be extended easily to 
other problems. In the case of transverse vibrations of bars, 

for instance, the derivative of the fourth order with respect to x 

replaces Y^x{Xj t)y and ’additional boundary conditions are 

involved. In the case of transverse displacements in a mem¬ 

brane, the Laplacian of Y replaces Yxx in our problem. In these 

cases, the steps in the derivation of DuhamePs formula are the 
same as in the case treated above. 

PROBLEMS 

1. The end a; = 0 of a bar is elastically supported (Fig. 93), so that 

the longitudinal force exerted on that end is proportional to the longi¬ 

tudinal displacement; that is, 

7.(0, i) - hY{% t). 

^^VNAA 

^ WNA 
i I 

Fiq. 93 

If the force on the end x — c hs F{t) = A sin o)i, derive the following 

formula for the resonance frequencies: 

aan 

c (n - 1, 2, * • • )» 

where the numbers a» are the positive roots of the equation tan a ~ hc/a. 
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2. One end of a beam is built in (Fig. 94) so that, if Y{Xf t) is the 

transverse displacement, 

r(0, t) = r.(0, t) = 0. 

The unsupported end 05 = c is forced to vibrate in a simple periodic 

manner, so that 

7(c, 0 = -5 sin F,*(c, t) = 0. 

Show that resonance occurs when 

(n = 1, 2, • • • ), 

where is any root of the equation* tan a = tanh a, and where a is 

the coefficient in the differential equation (1), Sec. 81. 

3. One end of a bar of length c is free. The other end is built into 

a support which undergoes a transverse displacement Y = B sin tat 
(Fig. 95). Show that the transverse vibrations will be in resonance 

when 

" = ^ (« = 1, 2, • • • ), 

* Values of the first few roots of this and other similar equations will be 
found in Timoshenko, op. cU. 
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where a« is any root of the equation cos a = — sech a and a is the 
coefficient in equation (1) of Sec. 81. 

4. Both ends of a beam of length c are built in. A simple periodic 
force acts perpendicular to the beam at all points, so that the transverse 
displacements Y (x, t) satisfy the equation 

d^Y 

^ dx* B sin (d. 

Show that resonance occurs when 

Cl) 

where is any root of the equation cos a — sech a, 
6. A membrane is stretched across the fixed circle r = c. If a simple 

periodic force acts perpendicular to the membrane at all points, the 
transverse displacements Z(r, t) satisfy the equation 

Ztt = 4" “ -h A sin ct)f. 

Show that the resonance frequencies are 

han 

where a„ is any positive root of the equation Jo(a) = 0. 
6. A string is stretched from the origin to the point (c, 0) and given 

an initial velocity Yt{x, 0) — g{x) but no initial displacement. Derive 
the formula 

eo 

Y(x, t) — ^ ^5 - sin 
^ ^ ^ Tca jiLA n 

mrx . mrat 
-Bin- 

c c /: 9(f) sin 

7. The end a? = 0 of a bar is fixed. If the bar is initially stretched 
so that its longitudinal displacements are F(x, 0) = Ax and released 
from that position at ^ = 0 with no initial velocity, and if the end a; = 0 
is free, derive a formula for the longitudinal displacements y(x, t). 

8. Derive a formula for the longitudinal displacements in the bar of 
Sec. 74 when the constant force Fo is replaced by the force 

F(t) = At\ 

and make a complete verification of your solution. 



CHAPTER IX 

STURM-LIOUVILLE SYSTEMS 

83. Introduction. A Sturm-Liouville system is a system of 

equations consisting of a linear homogeneous ordinary differential 

equation of the second order and a pair of linear homogeneous 

boundary conditions. A certain coefficient in the differential 

equation contains a parameter, denoted here by the letter X. 

One boundary condition applies to each end of a prescribed 

interval. * 

We shall develop the theory of the Sturm-Liouville system 

X^^ix) - [X + q{x)]X{x) = 0, 

X(0) = 0, X(l) = 0, 

where q(x) is a prescribed continuous function on the interval 

0 ^ a: ^ 1. The theory for more general systems will be dis¬ 
cussed afterward. 

It will be found that this system has a solution X = Xn(x) for 

each value Xn of a discrete set of values Xi, X2, • • • of the param¬ 
eter X and that an arbitrary function F{x) on the interval can 

be expanded in a series of the functions Xn(x). The use of this 

important result in the solution of boundary value problems in 

partial differential equations will be illustrated. The expansion 

theorem is needed to complete the method of combining par¬ 

ticular solutions, one of the oldest and most important ways 
of solving boundary value problems. 

The solution of a problem in heat conduction together with our 

theory of the Laplace transform will be used here to obtain the 
theory of the above system. The results, however, are useful 

in problems to which the transformation method is not adapted. 

The theory is not simple. This could be expected since it is 

general enough to include the theory of Fourier series. When 

q(x) = 0 in the above problem, for example, it can be seen that 

• The first extensive development of the theory of such systems was pub¬ 
lished by J. C. F. Sturm and J. Liouville in the first three volumes of Journal 
dc mathifnalique, 1838-1838. 

242 
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Xn = '—nhr^ and Xn{x) = sin mrx. The series expansion of the 
arbitrary function is then the Fourier sine series for the interval 
0 < X < 1, The use of the theory in the solution of boundary 
value problems, however, is not difficult.* 

84. A Problem in Heat Conduction. Let U(Xj t) be the 
temperatures in a slender rod or wire in which the rate of loss 

of heat through the surface at each point is proportional to the 
temperature at that point. Let the ends of the wire be kept at 
temperature zero. If the initial temperature is a prescribed 

4 4 t ♦ 
u»or~~'"" .. lu-o 

0 ♦ ♦ j ♦ x-l X 

U(x.0)-F(x) 

Fio. 96. 

function F(x), then by a proper choice of the units of length and 

time the boundary value f^oblem can be written (Fig. 96) 

Ut(x, t) = Uxz{Xy i) — q{x)U{Xy t) (0 < a; < 1, ^ > 0) 

1/(0, t) = 0, C7(l, t) = 0, U{x, 0) = Fix). 

The coefficient qix)^ the thermal emissivity, is assumed to 
be a continuous function of x. To simplify the development 

here, we shall also assume that Fix) is a continuous function 
(0 ^ a; ^ 1) and that 

F(0) = F(l) = 0. 

The transform w(a;, s) of the function C/(a;, t) satisfies the 
conditions 

UxxiXy s) — [s + qix)]uix, s) = -Fix), 
u(0, s) = 0, u(l, s) = 0. 

We cannot expect to solve this problem in ordinary differential 

equations of the second order since the coefficient qix) is an 
arbitrary function. But by writing the solution in terms of 

solutions of somewhat simpler problems, and by other devices, 

we can determine several properties of the function uix, s). 

♦ This use is also illustrated in the author’s book, ‘‘Fourier Series and 
Boundary Value Problems.” Some of the simpler properties of the system 
are derived there. 
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Our experience with simpler problems leads us to expect that 

the function u{x, s) will have a set of poles si, «2, • • • and, if 
Pn{Xf t) is the residue of s) at the pole that 

so 

U(x, <) = ^ t). 

When < = 0, it should follow that 

= Xp»(*,0) (O^x^l). 
T 

This is a series representation of F{x) that turns out to be the 
Sturm-Liouville series. To establish this result it will not be 

necessary to complete the solution of the temperature problem. 
We shall be concerned primarily with the condition 

Uix, 0) = F(x). 

86. The Solution of the Transformed Problem. The problem 

in u{x, s) was found to be 

(1) u" — (s + q)u = —Ff u(0, s) = u{ly s) = 0, 

where the primes denote differentiation with respect to x and q 
denotes the function q(x). The solution of this problem can be 

written in terms of two solutions of the corresponding homoge¬ 

neous differential equation 

(2) y" - (s + q)y = 0. 

Let s) be a function that satisfies this equation and the 

conditions 

yi(0, s) = 0, y[(0, s) = 1, 

and let y^ix, s) be another solution of this equation that satisfies 

the conditions 

2/s(l, s) = 0, s) = 1. 

It is shown in the theory of differential equations that unique 

solutions y = yi{x, s) and y = y%(x, s) exist which, together with 

their first derivatives with respect to x, are continuous functions of 
X and s. Moreover, these functions are analytic with respect to 

9 for every finite s, 

* See, for instance, Ince, E. L.,''Ordinary Differential Equations,’' p. 72, 
1927. 
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The solution of problem (1) can now be written 

(3) u^x, s) = £ Gix, (£) df, 

where G is the Green’s function defined as follows: 

(4) G(x, £, s) = 
Vijx, s)yt(i, s) 

«) 
yi(a:. g) 

«) 

if € g *, 

if f ^ a;. 

The function G is continuous with respect to { at J = a;; but its 
derivative G^{x^ f, s) has a jump at { = a:. 

The reader can verify the above solution directly by writing 
equation (3) in the form 

“(a:, «) = s) Viik, s)F(i) d{ 

- yi{x, s) yiii, s)F{i) d£. 

It must be kept in mind that yi and y2 satisfy the homogeneous 
differential equation (2) and the conditions specified at a; = 0 and 
at a; = L 

The solution (3) can be derived by the method of variation of 

parameters. That is, the functions a{x, s) and p{Xj s) can be 
found so that the function 

u = ayi + py2 

satisfies the conditions of problem (1). If we require that a and 

j8 satisfy the condition 

(6) a'yi + p^yz = 0, 

then 

w' = ay[ + /Jyi, u" = a2/'i' + + a'^i + PY2. 

By substituting into the differential equation (1) and noting that 

yi and y* satisfy equation (2), we find that 

(6) a'y{ + PY2 = -F(x). 

Upon solving equations (5) and (6) we find that a' =* ytFjD 

and /S' = — yiF/D provided the determinant 

D = yi(Xy s)yiix, s) - y{(a?, s)y*(a;, s) 
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does not vanish. But = (s + q)yi and y^ = (s + g)y2, and it 
follows readily that D' == 0; hence D is the same for all x. When 

a? = 1, 
■D = s); 

therefore D has this value for all x. The solution then takes the 

form 

Viiy^ dx - y2!y\F dx 
U =-jz-r-- 

Writing the integrals here as definite integrals with the variable 
X as one limit in each, the other limits can be determined so that 
the boundary conditions in problem (1) are satisfied. This gives 

the solution (3). 
In view of the properties of yi and y^ and the continuity of F{x)y 

it can be seen from formula (3) that w, w', and w" are continuous 

functions of x and s, analytic with respect to s, except at the roots 
of the equation 

2/i(l, s) = 0. 

86. The Residues of u(x, s). Let Sn be a value of s for which 
2/i(l, s) = 0. Then s„ is a singularity of s). We found 

above that 

yi{x, 5)2/J(x, s) - y[{x, s)y2{Xy s) = 2/i(l, s). 

When s = it follows that yiy^ — y2y[ = 0 and hence that yi/y2 

is a constant: 

(1) y2(xy Sn) = Cyi(x, Sn), 

Since 2/i(0, 5) = 0 for all s and yi(l, «„) = 0, the function 
yi(Xf Sn) satisfies the conditions 

Vi - (Sn + q)yi = 0, yi(0, 5„) = yi(l, Sn) = 0. 

That is, X = 2/1 (x, s«) is a solution of the Sturm-Liouville system 

(2) X"(x) ~ [X + q{x)]X{x) = 0, Z(0) = X(l) = 0, 

corresponding to the value X = Sn of the parameter. 

The numbers are called the characteristic numbers of the 
system (2), and the functions yi{xt Sn) are the characteristic 
functions. 

Let us now show that none of the roots Sn of the characteristic 
equation yi(l, s) = 0 are multiple roots. Since 2/i(x, s) is analytic 
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at s = Snj it can be represented by its Taylor^s series about that 
point, namely, 

yi(x, s) = yi(x, 8„) + A(x, s^)(s - Sn) + B{x, 8n)(s -««)*+••*, 

where the first coeflBicient has the value 

s«) = ^ yi(x, «) 

Since 

yi(l, s) = A(l, Sn)(8 ~ O + • • • , 
the roots of the equation 2/1 (1, s) = 0 will be multiple roots only if 

A (1,0 =0. 
Since 2/i(0, s) = 0 for all s, the coefficients A, B, * must 

vanish when x = 0. Therefore 

^(0, O = 0. 

The differential equation that yi(x, s) satisfies can be written 

2/" - (? + Sn)y - (s - Sn)y = 0. 

If we substitute the series yi(x, O + A{Xy 0(« — O + * * * for 
y here, the resulting series in powers of s — Sn on the left must be 
zero for all s. In particular, the coefficient of the first power of 

5 — 5n must vanish; that is, 

A"(a;, O - (g + Sn)A{x, Sn) = yi{x, s„). 

Eliminating the function ^ between this equation and the 
equation 

«n) - (? + Sn)yi{x, O = 0, 

we see that A"yi — yiA = yl; that is, 

^IA'{X, 8r,)yi{x, 8n) - y'lix, Sn)A{x, s^)] = [yi{x, Sn)V- 

Upon integrating both members here from a; = 0 to a: = 1 and 
recalling that A(0, Sn) = 0 and yi(0, Sn) = yi(l, O = 0, we see 
that 

(3) -A(l, Sn)yi(l, ««) = fg [yiix, «■)]* dx. 

We shall show in the following section that the characteristic 
functions yi(x, Sn) have real values. The squares of these 
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functions are therefore nonnegative, and the integral in equation 
(3) is positive; consequently 

^n) tA 0. 

We can now see that the function s) has a simple pole at 
s = 5n, since the function 

a') =_I_ 
^ yi(ly s) ^(1, Sn) + B{ly 8n)(s ~ Sn) + * * * 

is analytic at s„. The residue of s) at s = is the limit of 
the function (4) as s Sn; that is, the residue is 1/A (1, Sn). 

The function u(Xf s) was found in the form 

«(*, S) = G(X, i, s)F(f) rff, 

where the Greenes function G is the quotient of an analytic func¬ 
tion and 2/i(l, s). Hence s) has simple poles at s = s^. In 
view of equation (1) we can write, for the numerators in the 

expressions for G (Sec. 85), 

5n)2/l({, Sn) = -Cyi{x, Sn)2/l(f, S„), 
-yi{x, Sn)y2ii, Sn) = -Cyi{x, Sn)yi{i, Sn). 

Consequently the residue of u(x, s) at s = 8„ is 

It follows from equation (1) that 

a.) = 8„) = 1, 

and from equation (3) that 

1 ^ _ yUl, 8») 

So ^ 
The expression (5) for the residue of u{x, s) can therefore be 
written 

(6) 
yi(x,«,) yi({, «»)F({) d£ 

fa \yi(p,«-)]’ dx 
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Let <l>n(x) denote a function that is proportional to yi(Xj Sn) 

and such that l<l>n(x)]^ dx = 1. The functions <^»(a;), called the 

normalized characteristic functions of our Sturm-Liouville system, 
are thus 

(7) ^.(a;) = yi{x, s„) [yi(x, «.)]* (fa;| *• 

In terms of these functions, the residue (6) of u(x, s) at s = can 
be written 

(8) Pn(x) = d^. 

87. The Characteristic Numbers and Functions. We have 
seen that X = yi{x, s„) is a solution of the Sturm-Liouville 
system 

(1) X"(x) -ls + q(x)]X(x) = 0, X(Q) = X(l) = 0, 

when the parameter s has the value Sn- Suppose there is a com¬ 
plex characteristic number 

s = a + ipf 

and let 

X(x) = u(x) + iv(x) 

be the corresponding characteristic function, where u and v are 
real. Substituting these expressions into problem (1) and 

separating the real and imaginary parts, we obtain the equations 

u" — (a + q)u + iSy = 0, 
v" — (a + q)v -- jSw = 0, 

(2) u(0) = w(l) == t>(0) = t;(l) = 0. 

Multipl3dng the first equation by v and the second by u and sub¬ 

tracting, we find that 

(3) u"v — v'^u = + v*). 

Since the expression on the left is the derivative of u'v — v'u, it 
follows upon integrating and applying the conditions (2) that 

So ~ ~ 

The integral here is positive. Therefore /3 = 0. 
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Thus every characteristic number Sn of the system (1) is real. 
Since jS = 0, it also follows from equation (3) that u^v — v^u is 

a constant. In view of the conditions (2), this constant is zero; 

hence v/w is a constant; v = ku. The original solution therefore 
has the form 

X = (1 + ik)u. 

But if any constant times w is a solution of the homogeneous 
system (1), then u itself is a solution. Hence if a characteristic 
function exists, it can be made real by multiplying by the proper 

constant. Thus we can assume without loss of generality that 
the Junctions yi(x, 5„) are real. 

Let Xm{x) and Xnix) be characteristic functions of the system 

(1) corresponding to the distinct characteristic numbers Sm and 
Sn, respectively. Then 

XZ = XZ = (sn + 

and, eliminating the function q between these equations, 

XZXn - XZXn. = (Sm - Sn)X„J[n. 

Therefore 

(s« - Sn) // dx = X'„X„ - 

The last expression vanishes since 

X^(0) = XmW = ^n(O) = Z„(l) = 0. 

Thus the characteristic functions of the Sturm-Liouville 
system (1) are orthogonal on the interval 0 < a; < 1; that is, 

(4) £ X,.{x)X.{x) dx = 0. 

We collect the principal results found so far in this chapter 
as follows: 

Theorem 1. The solution u{x, s) of our transformed temperature 
problem is analytic for all finite s except at the zeros Sn of the function 

yi(l, s). The numbers Sn are the characteristic numbers of the 

Sturm-Liouville system (1). They are all real^ and the correspond¬ 
ing normalized characteristic functions (t>n(x) form an orthogonal 
set on the interval 0 < a; < 1. The points s ^ Sn are simple poles 

of u{x, s), and the residue of u{x, s) at is Cn<t>n{x), where 

Cn - F{x)4>n(x) dx. 



Sec. 88] STURM^LIOUVILLE SYSTEMS 251 

The numbers ci, C2, • • * are called the Fourier constants of 
F(x) corresponding to the orthonormal set of functions <f>i{x), 
4>2(x)y • • • . Thus far, the function F{x) is only assumed to be 
continuous. It could equally well have been assumed sectionally 
continuous. 

88. Other Properties of the Characteristic Numbers and 
Functions. Our functions yi(Xf s) and s) are solutions of 
the equation 

(1) y"(x, s) - sy(x, s) = qix)y(x, s). 

Proceeding as if the function on the right were not unknown, we 
add the general solution of the equation y" — sy = 0 to a par¬ 
ticular solution of equation (1) to obtain the general solution of 
the latter. A particular solution of u" — (s + q)u = — F was 
written in terms of a Green’s function in Sec. 85. With the aid 
of that result, it follow^ that the general solution of (1) can be 
written in the form 

(2) y(Xf s) = Cl sinh x \/s + C2 sinh (1 — x) \/s 

+ g{x, k, s) di, 

where the Green’s function here is 

iy s) = 

sinh (1 — x) -y/s sinh { y/s 

Vs sinh Vs 

sinh X y/s sinh (1 — Vs 

Vs sinh Vs 

Equation (2) can be written 

if f < a:, 

\i X, 

(3) y{x, s) = 

sinh X Vs — J — 
0 Vs 

+ sinh (1 — x) Vs ( 

Vs sinh Vs 

sinh f Vs 

s) 

Vs sinh Vs 
QiOyUy s) df ]• 

Solutions of the differential equation (1) therefore satisfy the 

integral equation (3). 
The particular solution y = yi(x, s) satisfies the conditions 

s) = 0, 2/i(0, s) = 1. In this case, equation (3) reduces 

to the equation 

(4) Vs yi{x, s) = sinh x^s + s)q{i) sinh {x — f) Vsdf. 
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Likewise for the solution y = ya, which satisfies corresponding 
conditions at a; = 1, equation (3) becomes 

(5) y/sy2{Xy s) = — sinh {I — x) y/s 

+ ytii, s)q(.i) sinh (( - x) \/e d(. 

Since yi and ya are analytic functions of s for all finite s, we 
need be consistent only in our choice of the branch of x/s. Let 
—IT < ^ ^ TT when s = re*^. Then the real part of \/s is never 

negative. 
For a fixed s, let M(s) be the maximum value of the function 

\y/sy\{Xy s)e“*v^|, where 0 ^ a? ^ 1. Since that function is 
continuous with respect to Xy it has the value M(s) at some 

point a; = a:o; that is, 

M{8) = I Vs yi(a;o, s)c--*«v7|. 

Now sinh xo Vsl ^ ai^id in view of equation (4) it 
follows that 

M{8) ^ 1 

\y/s\ Jo 
I Vs sinh {xo ~ $) \/s| dj 

M(8)Q 
^ 1 + : 

where r = |s| and Q ^ lO'Cf)! df. It follows that 

(6) ilf(s) g < 2 when r ^ ro, 

where ro > 4Q2. 

A similar result can be obtained for the function y^ using 
equation (5). Consequently a fixed number ro exists such that 
for all 5 with r ^ ro, 

(7) iVs yi(a;, s)e-*v^l < 2, |\/s 2/2(0;, < 2. 

It follows now from equation (4) that, when r ^ ro, 

2 a/s 2/i(1; = 1 - ^ q (8) 
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where the last symbol denotes a function of s of the order of r- 
that is, a function whose absolute value never exceeds 
where C is some constant. We have seen that the zeros Sn of 
2/i(l, $) are all real. When s is sufficiently large and positive, 
the right-hand member of equation (8) cannot vanish. Hence 
the zeros Sn are all less than some fixed number y; also, our 
function u(Xf s) is analytic in the half plane (R(«) ^ 7. 

When s = —/x®, where /x is real, it follows from equation (8) 
that the equation 2/i(l, s) = 0 has the form 

sin /X -f 0 = 0. 

The large roots of this equation are approximately nir, and the 
following conclusions can be drawn. 

An irijinite set of characteristic numbers si, S2, * * • exist They 
are all real, and only a jvtdte number of them can be 'positive. When 
n is large, the numbers Sn are approximately equal to me; 
that is, 

(9) lim (\/~s„ — me) = 0. 
n*-+ « 

It can be seen from equations (4) and (7) that the functions 
\y/Tn yi{x, s„)| and \y[{x, Sn)| are bounded uniformly for all n 
and x. A direct estimation from these same equations shows 
that the square of the normalizing factor for the characteristic 
functions yi{x, Sn) has the property 

lim \sn\ P [yi{x, Sn)]^ dx = i. 
n—»00 •'0 

Hence the normalized characteristic functions 0»(x) of the 
Sturm-Liouville system have the following property. 

A fixed number K exists such that, for all n and x, 

(10) k.(x)l <K, ^ <K. 
“V 

89. The Inversion Integral. The Green's function G(x, {, s) 
is a function of f that satisfies the homogeneous differential 

equation of which yi(i) and j/2(f) are solutions. Therefore 

0{x, f, *) = - ^G{x, f, a). 
o o 
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When we substitute this expression for G into the formula 

Mx, s) = G(x, (, s)F(S) dl, 

we find, after an integration by parts, that 

(1) su(z, s) = F(x) - £ Gi(x, f, s)F'{k) di 

- £g{x, s)q{i)F{i) di. 

This step is valid if F{x) is continuous with a sectionally con¬ 

tinuous derivative F\x) and if 

(2) F(0) = F{1) == 0. 

If conditions (2) are not satisfied, or if F(x) has finite dis¬ 
continuities, additional terms occur in equation (1); but our 

principal results can still be derived. It is necessary, however, 

to break up those additional terms into functions whose trans¬ 

forms are known and functions of an appropriate order with 

respect to s. 
From the definition of G and the formulas of the last section, it 

can be shown that constants ro and ikfo exist such that when r ^ Tq 

(3) 

(4) 

s)l 

1-sA G(x, i, s)| 

^ H _ e-2Vi + 0{r-i)\ 

|1 — + 0(r“i)l 

Consequently, when (R(s) ^ 7, these functions are of the order 

of and, if ^({) is any continuous function, it follows 

that 

\G{x, I, ®)^({)| dj = O(r-0, 

\Gi{x, {, s)m\ di = OM), 

in the half plane, uniformly with respect to x. 
According to equation (1) then, when 61(a) ^ 7, 
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It follows from Theorem 5, Sec. 56, that the inversion integral 
of this function converges to a continuous function of t{t ^ 0) 
and that 

(5) Li^ 8) — = 0 when t = 0. 

We shall show next that this inversion integral can be repre¬ 
sented by the series of residues when t = 0. The residue of 
F{x)/s at the pole s = 0 is F{x), The residue of e‘^u{Xf s) with 
i = 0 is the residue of u(x, s) itself. 

90. The Sturm-Liouville Expansion. We have seen that the 
poles s = Sn of u(x, s) lie on the real axis and that \^—Sn 
approaches mr as n increases. When n is sufficiently large, the 
parabolas Pn with the equations 

(1) ^ ~ + 0 I (^ = 2, • • • ), 

therefore pass between the poles. 

When s is on the parabola Pn, then 

Vs = (n -b 0 TT ^jcot I ± 

and 

1 — e-2v7 = 1 + exp — (2?! -b l)7r jcot |j j > 1. 

It follows from an integration by parts, when s is on Pn and (f) is 

sectionally continuous, that 

£ iG((z, i s)^(f)i ds = 

and the corresponding integral with G( replaced by (r is of the 
same order. In view of equation (1) of the last section, therefore, 

(2) u(x, s) — = 0 ^0 when s is on P„. 

It was pointed out in Sec. 60 that when u(x, s) is of the order 
of with A; > 1, on the paths between the poles, the series of 

residues converges to the inversion integral when < = 0 as well 
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as for < > 0. Since Li^[u — F/a] = 0 when < = 0, it follows 

that 
w 

^ Cn<t>f,(x) “ F(x) = 0 

where 

(3) c« = Jq F(x)<t>n(x) dx. 

It can be seen in fact, from ahe uniformity of our order properties, 
that the series here is uniformly convergent with respect to x. 
We have now established the following expansion theorem. 

Theorem 2. Let he the normalized characteristic functions 

of the Sturm-Liouville system 

(4) X" - (X + q)X = 0, X(0) = X(l) = 0, 

where q is a continuous function of x on the interval 0 ^ x S 1* 
If F{x) is a continuous function on that interval^ if F"(x) ondF'(aj) 
are sectionally continuous^ and if F(0) = /^(l) = 0, the series 

00 

Cn4>n{x) converges uniformly to F{x); that is, 

(5) F(x) = ^Cn4>n(x) 1), 

where Cn are the Fourier constants (3). 

In case the function F{x) is sectionally continuous, together 

with its derivative F'{x), the representation (5) is still valid 
when 0 < a; < 1 except at the points of discontinuity. In fact 
the series is uniformly convergent in any interval that does not 

include a point of discontinuity of F{x), or either of the points 
a; = 0 or a; = 1, in its interior or at one of its end points. 

PROBLEMS 

1. Continue the treatment of the problem in heat conduction begun 
in Sec. 84, and thus derive the temperature formula 

U{x, 0 = 2^ 

proceeding formally. (This formula can be rigorously established as 
the solution.)* 

* The details are included in a paper in the Arnerican Journal of Molho^ 
meiies, Vol. 61, pp. 651-664, 1939. 
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2. Show that the characteristic numbers of the system 

X"ix) - (X 4- h)Xix) - 0, X(P) = X(l) = 0, 

where h is any real constant, are X = — X — nV(n = 1, 2, • • • ) and 
that the normalized characteristic functions are 4>n{x) = y/2 sin nirXf 
hence that any function F(x) satisfying the conditions of Theorem 2 is 
represented by its Fourier sine series 

F{x) = 2 sin nvx J F({) sin nir^ (0 ^ a; la 1). 

3. As a special case of the expansion in Prob. 2, show that 

X — x^ 

oe 

8 sin (2n — l)7rx 
7r» ^ (2n - 1)» {O^x^ 1), 

4. Let Pn denote the parabolas of Sec. 90, and let w(x, s) be the 
transform of the temperature function when F{x) is only required to 
be sectionally continuous, together with its derivative F'(x). For any 
fixed x between a; = 0 and a; = 1 at which Fix) is continuous, let 
v(x, s) denote the function uix, s) — P(a;)/«. Show that for each posi¬ 
tive angle Baida < ir), a constant Ma exists for which 

\viXf «)| < ilfolsl" * 

when —BoSB^ 0oand |«| ^ ro, where rois some positive number. Also 
show that |«v(a;, «)| is bounded when s is on P«. Under these conditions, 
show that the integrals of viXj s) over the arcs of the parabolas P« in the 
half plane (R(s) ^ y tend to zero as n —> « and, hence, that 

CO 

fix) = 2^ C,<i>nix). 

6. By writing the Sturm-Liouville equation in the form 

X" - gX = XX, 

X(0) = X(l) = 0, show that every characteristic function X = yiix^Sn) 
is a solution of the homogeneous integral equation 

Xix) = 

with X s= «n, provided 8 = 0 is not one of the characteristic numbers Sn. 

91. Other Sturm-Liouville Systems. The development above 
can be modified without diflSculty to permit the boundary condi- 
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tions to have the more general form 

(1) AiX{a) + AtX^a) = 0, BiX{h) + B^X^h) = 0, 

where the interval is now a ^ x ^ h. The principal results are 

the same. When a = 0 and 6 = 1, the numbers \/—Sn approach 
(n + as n increases in case just one of the constants A2OTB2 is 
Bero; otherwise approaches tit. 

Consider the general Sturm-Liouville equation 

(2) ^ [r(a:)X'(a:)] - [^(a:) + Xp(x)]X(a:) = 0. 

Let p, g, r, r', and (rp)" be continuous functions of x, and let r and 
p be different from zero, throughout the interval a S x ^ b. By 

introducing the new variables y and F, where 

and writing /x = C®X where 

F = (pr)iX, 

C = 

we find that equation (2) takes the form 

(4) - I** + = 0. 

The interval 0 ^ ^ 1 corresponds to the interval a ^ x ^ h, 

and the function qi(y) is continuous in that interval. This is the 
form we have treated above. Under these changes of variables, 
the boundary conditions (1) change to new conditions of the same 
type. Consequently, when the coefficients p, g, and r satisfy the 

conditions stated above, the system consisting of equation (4) 
and conditions 

(5) aiF(O) + i9iF'(0) = 0, a2F(l) + i82F'(l) = 0, 

is a standard form to which the system consisting of equations 
(1) and (2) can be reduced. 

It can be left as a problem for the reader to show that the char¬ 
acteristic functions Xn(x) of the system of equations (1) and (2) 

are orthogonal on the interval (o, b) with respect to the weight func- 

Hon p(x); that is, 

(6) jr‘p(x)X„(a:)X„(*) dx = 0 {m ^ n), 
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also that, if p(x) does not change sign in the interval, every char¬ 
acteristic number of the system is real. 

The above transformations of variables enable us to write the 
following results for the new system from the results found for 
the standard one. 

Theorem 3. Let p, 5, r, /, and (pr)" he continuous functions 

of X, where p and r are positive, on the interval a ^ x ^ h. Then 
the Sturm-Liouville system 

(7) {rXy - (g + Xp)Z = 0, 
AiX{a) + A^X^a) = BxX{h) + B^X'Qf) = 0, 

has an infinite set of characteristic numbers Xi, X2, • * * , only a 

finite number of which are positive. Let 

4>„(x) = z„(*) (^jyxidxy^ 

be the normalized characteristic functions. Then any function F(x) 
that is seciionally continuous and has a seciionally continuous deriva¬ 

tive F'{x) can be represented as follows: 

oe 

(8) F{x) = ^Cn<l>n{x) (a <x < b), 

at each point where F{x) is continuous, where 

Cn = F{x)p(x)<l>n{x) dx (n = 1, 2, • ’ * ). 

Moreover the functions \<t>n(x)\ and uniformly 
bounded for all n and x. 

Note that if the equation is BesseFs equation, 

(a:X'y-(j + a:x)z = 0, 

where is a constant, and if a = 0, then the conditions of the 
theorem are not satisfied. Such singular cases can be treated 

individually by the method we have used, to get corresponding 

expansion theorems. 
Representations of functions defined on infinite intervals in the 

form of infinite integrals, such as the Fourier double integral, can 
be obtained in a similar way; but a transfoimation of the inver¬ 

sion integral takes the place of the residue theory. This was 



260 OPERATIONAL MATHEMATICS IN ENQINEERINO [Sec. 92 

illustrated formally in Sec. 71. Extensions to differential equa¬ 
tions of higher order can also be made. 

92. Steady Temperatures in a Wall. Let U{x, y) be the 
steady-state temperatures in a semi-infinite wall bounded by the 
planes a; = 0, x = 1, and y = 0 (Fig. 97). Let the face a: = 0 be 
insulated, and let surface heat transfer take place at the face 
a; == 1, while the face 2^ = 0 is kept at temperature F(x), so that 
the boundary value problem becomes 

(1) C/*,(a:, y) -f Uyy(Xy y) = 0 (0 < a; < 1, y > 0), 
(2) t7.(0, y) = 0, y) = -hU{\, y) {y > 0), 
(3) U(x, 0) = F(x)f lim U(x, y) = 0 (0 < a; < 1), 

where the constant h is positive or zero, and the function F(x) is 
prescribed. 

This problem can also be interpreted as one in the electrostatic 

potential in a semi-infinite slot. 
The Laplace transformation is not well adapted to the solution 

of this problem. Although the variable 
y ranges through all positive values, the 
transform with respect to y of the deriva¬ 
tives Uyy{x^ y) involves the function 
Uy{Xf 0), which is not prescribed by the 
boundary conditions. The determination 

^ of such unknown functions appearing in 
the transformed problem is often quite 

_ difficult. 
Let us use the classical method of sepa¬ 

rating variables and combining particular 
solutions. We obtain all possible functions of the form 

U = X{x)Y{y) 

that satisfy the homogeneous differential equation (1) and the 
homogeneous boundary conditions. Then we try to determine a 
linear combination of those functions that will also satisfy the 
remaining condition U{x, 0) = F{x). 

liU — X(x)Y{y) is to satisfy equation (1), then 

X'^{x)Y{y) + X{x)Y-{y) = 0; 

MJ-F(x) (1.0) 

Fio. 97. 

that is, 
T^{x) _ r'(y) 
X(x) - Y{y)' 
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Since X'\x)/X{x) is a function of x alone, it does not vary with y. 
Similarly the function —Y”{y)/Y{y) does not vary with x, and 

the two functions can be equal only if they have some fixed value 
X; that is, if 

X"(x) - \X{x) = 0, T'{y) + \Y{y) - 0. 

liU ^ X(x)Y(y) is to satisfy the condition Ux(0, y) = 0 for all 
y > 0, then X'(0)Y(y) = 0. The solution Y(y) =0 for all y is 

trivial. Therefore X'(0) = 0. Similarly if the second of condi¬ 

tions (2) is to be satisfied, then X'(l) = '-kX(l). The function 
X(x) must therefore be a solution of the Sturm-Liouville system 

(4) X"(x) - XX(x) = 0, X'(0) = 0, Z'(l) + hX(l) = 0. 

We know that this system has solutions only for a discrete set of 
real values of the parameter X. The trivial solution X(x) ^ 0 is 
of course disregarded. 

Since I7(x, y) is to vanish Q.sy qo, the function Y{y) must be 

a solution of the system 

(5) Y"(y) + \Y(y) = 0, lim Y(y) = 0. 
y—* w 

Recalling that the characteristic numbers of the Sturm-Liou¬ 

ville system are negative, except possibly for some finite number 

of them, we write the function that satisfies the first two of 

conditions (4) in the form 

X{x) = C cos X \/~X, 

where C is an arbitrary constant. This function satisfies the 

condition X'(l) + hX(l) = 0 if X is a root of the equation 

a/—X sin \/—X — h cos \/—X = 0. 

Thus the characteristic numbers are X = — aj where «« are the 

positive roots of the equation 

(6) tan a = -• 

These roots are the abscissas of the points of intersection of the 
curves v = tan a and ri — hi a (Fig. 98). The number an is 

only slightly greater than nir when n is large. 

The characteristic function corresponding to X = —aj is 

JC = C cos anX» 
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To normalize the characteristic functions, let 

Since a„ is a root of equation (6), it follows that 

The normalized characteristic functions of the system (4) are thus 

Y {y) = CnC~^”yj 

where Cn is any constant. Hence the functions X{x)Y{y) that 
satisfy all the homogeneous conditions in our boundary value 

problem are 

X{x)Y{y) = c. 
cos anX 

V^n 
g-onl/ (n = 1,2, • • )• 

The sum of any number of these functions will also satisfy those 
conditions; but unless F{x) is a linear combination of a finite 

number of the functions cos anX, no finite sum will satisfy the 

remaining condition 

(9) lJ{x, 0) = F{x) 

The function represented by the infinite series 

cos anX 

X/K 

(0 < X < 1). 



Sec. 93] STURM-LIOUVILLE SYSTEMS 263 

formally satisfies the homogeneous conditions. According to the 
Sturm-Liouville theory, this function will reduce to the pre¬ 
scribed function F{x) when y = 0 provided the numbers c„ are 
the Fourier constants of F(x) corresponding to the orthogonal 
functions <t>n(x); that is, if 

1 
(10) Cn = I F(x) cos anX dx. 

V Jo 

(Note that the series Cn<l>n(x) here is not a Fourier series unless 

h = 0.) 
The formal solution of our problem is therefore 

(11) U(Xj y) = -~y.= cos anX 
1 V Pn 

where the constants Cn and. Pn are given by formulas (10) and (7). 
In the special case F{x) = 1, the temperature formula reduces 

to 
flO 

u(x, y) = h cos a„x. 
Of^Pn 

93. Verification of the Solution. If F{x) and F'{x) arc sec- 

tionally continuous functions, we know that the Sturm-Liouville 
series 

oo 2 cos OCnX fp. ^ 1 \ 
-=- (0 < a: < 1) 
VK 

converges to F(a:). Since the functions = 1, 2, • • • )are 

bounded for all n and y{y ^ 0), it follows from AbeFs test* that 

the series 

(1) cos anxe~^^^ 

is uniformly convergent with respect to y(y ^ 0). Conse¬ 
quently, the series represents a continuous function of t/ at y = 0 
and the temperature function found above satisfies the condition 

U{x, +0) = U{x, 0) = Fix) (0 <x< 1). 

"'See the author’s “Fourier Series and Boundary Value Problems,” 

Sec. 55. 
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Let 2/0 be any positive number. When y ^ 2/0, the absolute 
values of the terms in the series (1) are all less than a constant 

times Consequently the series is uniformly convergent 

with respect to x and y when 2/ ^ 2/o and 0 g g 1. Similarly 
the series obtained by differentiating that series term by term 
are uniformly convergent. The series can therefore be dif¬ 

ferentiated term by term when 2/ > 0. Since the terms of the 

series (1) satisfy the partial differential equation Uxx + Uyy = 0, 
it follows that the function represented by the series satisfies 

that equation when y > 0, In view of the uniform convergence, 
the function represented by the series, together with its deriva¬ 
tives, is a continuous function of x and 2/ (0 ^ g 1,2/ > 0). It 

follows readily that the remaining boundary conditions in the 
problem are satisfied. 

Thus formula (11) of the last section is rigorously established as 

a solution of the boundary value problem of that section. 

PROBLEMS 

1. Prove the orthogonality property (6), Sec. 91. 
2. If = 0 in the problem of Sec. 92, show that X == 0 is a character¬ 

istic number and that the solution is 

U(x, 2/) = dj + 2 ^ cos mrx P(J) cos riTrJ df. 

3. Derive the temperature formula in Prob. 1, Sec. 90, by the method 
used in Sec. 92. 

4. In the region 2/ = 0, a function U{x, y) satisfies 

f/x, + Uyy = 0, C/x(0, y) - 0, 1/(1, y) - 0, 0) - F{x)) 

also U{x, y) is bounded as Give a physical interpretation of 
this problem, and derive the formula 

U{x, y) - 2 ^ cos rrinX f. F(£) cos m„$ df, 
n-l 

where m„ — (n — i)T. 
5. Let U{x, y) be the steady-state temperatures in a thin plate in the 

shape of a semi-infinite strip. Let surface heat transfer take place at 
the faces so that 

Uxs +£/»»““ bU = 0 (0 < a; < 1,2/ > 0). 
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If U{Xf y) is bounded as 2/ oo and satisfies the conditions 

i/(0, y) = 0, U,(l, y) = -hU(.i, y), U(jx, 0) = 1 (0 < » < 1), 

derive the formula 
00 

U(x, y) = 2h 'S? ^2 sin a.®, 

where An = (1 — cos an)/{h -f- cos*a„) and ct\, * • * are the posi¬ 
tive roots of the equation tan a = —a/h. 

6. Let \J{Xy y) be the steady-state temperatures in an infinite prism 
bounded by the planes a; =- 0, t/ = 0, a; = 1, and y — 1. If C7 = 1 on 

the face y — 1 and if Ux = —hU at x = 1, and ^7 = 0 on the other 
two faces (Fig. 99), derive the formula 

U{.x, y) = 2h 2 An sinh anV . 
— —r-i—— sin anX, 
an sinh an 

where the numbers An and a„ are those described in Prob. 5. 
7. Solve the problem 

Uxrix, t) == (t + l)Ut(x, t), t/(0, 0 = 0, Ux{l, t) - 0, 
U{x, 0) = F{x), 

where 0 ^ a; ^ 1, / ^ 0. When F{x) — 1(0 < a: < 1), show that the 
solution becomes 

Sin m«x, 

where mn = (n — ^)7r. 
8. The end x == 1 of a stretched string is elastically supported (Fig. 

100) so that the transverse displacement F(x, t) satisfies the condition 
F.(l, t) = -^F(l, 0. I^et 

F(0, t) - 0, y(x, 0) - hx, Yt(x, 0) - 0. 
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Show that the solution of the equation t) — t) is then 

Y(x, t) = 2hh{h + 1) 
2 sin a» sin _ , —-cos anty 

alih + cos® an) 

where ai, aa, * • • are the positive roots of the equation tan a = —a/^. 
9. The longitudinal displacements F(x, t) in a certain nonhomo- 

geneous bar satisfy the conditions 

dx 

d®F />—* -.. 
* 

(0 < a: < 1, <> 0), 

r(0, 0 = 7(1, t) = 7,(®, 0^ = 0, 7(a:, 0) = F{x) (0 < a; < 1). 

Derive the formula 

F(Xj t) — ^n4^n{x) COS ^ntj 

where Pn = nire/{€ — 1) and 

<l)n{x) = VjSa/w sin Pn{l “ e-*)y Cn = F{x)e’-*<l)n{x) dx, 

10, The electrostatic potential F(r, z) in the space bounded by the 
cylinders r = a and r = 6 above the plane 2 = 0 satisfies Laplace^s 
equation (rFr)r + rF*, = 0 and the boundary conditions 

F(a, 2) = F(6, 2) = 0 (2>0), F(r, 0)=F(r) (a < r < 6); 

also F(r, z) is bounded as 2 oo. Derive the formula 
00 

7(r, z) 

where ^(ar) = Jo(ar)Yo(aa) — Jo(aa)YQ{ar)j Jo and Fo being Bessel 
functions of the first and second kind; the numbers an are the roots of 
the equation i^(ba) = 0, and 

P rF(r)^(anr) dr 

£r[^(a,r)]>* 



CHAPTER X 

FOURIER TRANSFORMS 

There are other integral transformations having operational 
properties similar to those of the Laplace transformation. Their 
uses in solving boundary value problems are limited to much 
narrower classes of problems; still these transformations serve 
as a useful supplement to the Laplace transformation and to the 
method of combining particular solutions. The finite Fourier 
sine and cosine transformations are particularly useful as addi¬ 
tional devices for solving boundary value problems. 

94. Finite Fourier Sine Transforms. Let F{x) denote a func¬ 
tion that is sectionally continuous over some finite interval of the 
variable x. By a proper choice of the origin and the unit of 

length, the end points of the interval become a; = 0 and a; = t. 
The Fourier sine transformation of F{x) on that interval is the 

operation 

F{x) sin nx dx (n == 1, 2, • • • ), 

denoted here by S{F{x)], This operation produces a function 
/,(n) called thQ finite sine transform of F{x); that is, 

(1) /S{F(a:)} = J F{x) sin nx dx = Mn) (n = 1, 2, • • • ). 

The transformation sets up a correspondence between functions 

F(x) on the interval 0 < a; < x and sequences of numbers fi(n) 
(n = 1, 2, • • • ). For example, the function F{x) = 1 has the 

transform 

/•(^) = J sin nx dx = --^ (n = 1, 2, • • • )• 

For the function F{x) = a;(0 < a; < ir), we have 

Six] == xBmnxdx V •—~— (n *= 1, 2, • • • )* 

967 
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Let the first derivative of F{x) also be a sectionally continuous 
function on the interval; moreover let F{x) be defined at each 

point xo of discontinuity as follows: 

(2) F(xo) = i[F(xo + 0) + F(a;o — 0)] (0 < xo < tt). 

Then the Fourier sine series corresponding to the function F{x) 
converges to the function 

F{x) = ? J ^(0 df (0 < X < ir). 

In view of the definition (1) of the sine transform, it follows that 

(3) F(x) = sin nx (0 < x < ir). 

This is the inversion formula for the transformation, giving the 

function in terms of the transform; that is, it is an explicit formula 
for the function whose sine transform is /*(n). It 

follows that the inverse transformation is unique. 
The sine transformation is clearly linear; that is, 

S[AF{x) + J5(?(x)} = i4S{F(x)} + BS{G(x)}, 

where A and B are constants. The inverse transformation is also 
linear. 

The transform of a function defined over an interval 0 < x < I 
can be written easily in terms of a transform on our standard 
interval. For, by substituting f « tx/Ij we can write the former 
transform as follows: 

X -FCx) sin ^ dx = i JT F (i sin nf df = i S {f 

As an example, the function F{x) = x on the interval (0,1) has the 
sine transform 

IT n (n = 1, 2, • • • ). 

96. Operational Properties of the Transformation. For the 
derivatives of even order, differentiation of F(x) corresponds to a 

simple algebraic operation on the transform /«(n}. Let F*{x) be 
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continuous and F"(x) sectionally continuous; then, integrating by 
parts, we have 

sin nx dx = F'{x) sin ^ F'{x) cos nx dx 

= — n cos na;F(a;) Jj F(x) sin nx dx. 

Thus 

(1) S{F"{x)} = -n^S{F(x)} -f n[F(0) - (-l)nF(^)]. 

Replacing F(x) here by F"(x) and assuming F'"{x) continuous 
and the fourth derivative sectionally continuous, we see that 

(2) = n^/S{F(a:)} - n»[F(0) - (~l)»i^(7r)] 

+ n[F"(0) - (-l)»F"(7r)]. 

Continuing in this manner we obtain the following theorem: 

Theorem 1. Let F{x) have a sectionally continuous derivative 
of order 2j/(y = 1, 2, • • • ) and a continuous derivative of order 

21^ — 1, where 0 ^ x ^ t. If /«(n) denotes the sine transform of 

F{x)f then 

(3) = (~n2)«'/.(n) - (-iyn^’'-^[F(0) - (~l)«F(7r)] 
- - (-1)-F"(7r)] - • • » 

+ w[F(2-2)(0) - (-l)«F(2»-2)(x)]. 

This is the basic operational property for the solution of dif¬ 

ferential equations. Note that the coefficients of the pol3aiomial 
in n, following the term { — n^yft{n), are determined by the values 
of F{x) and its derivatives of even orders at the end points of the 

interval. 
This property is also useful in obtaining transforms. For 

example, let F{x) = x^. Then F"(a;) = 2, and according to 

formula (1), 

S{2] = - n(-l)v2. 

Since ^{2} = 2^{1} = 2[1 - (-l)1/n, it follows that 

S{x^ = - (-!)"]• 

Let Fi(x) denote the odd periodic extension of F(x), with period 

2ir; that is, 

Fi(-x) = -Fi{x), Fi(x + 2ir) = Fi(rr), 
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for all real x, and 

^i(«) = Fix) when 0 < a: < t. 

Then if A; is any constant, we can write 

/,(n) cos nk = Fiix) sin nx cos nk dx. 

Since the integrand is an even function of the integral here is 

one half the integral from — tt to t; thus the integral can be written 

i J^^Fiix)[ain nix — A;) + sin nix + A;)] dx = 

i + i - k) sin n£ 

The integrands here are periodic functions of f with period 2wj so 
that the limits of both integrals can be replaced by the limits — r 

to V. Moreover 

Fi({ + k) sin nidi ^ ~ Fi(—X + A;) sin n\ dK^ 

and jPi(—X + A;) = —Fi(X — k). Making a corresponding change 
in the last integral of the preceding equation, we obtain the 

formula 

fsin) cos — i [^i(^ — A;) + Fiix + A;)] sin nx dx; 

that is, if fsin) is the transform of Fix), then 

(4) Mn) cos nfc = S + 

Let A; = TT. Since F] (a; + ir) = Fiix — tt) == —Fiiv — x), and 
since Fi(t — x) = F(t — x) when 0 < a; < ir, it follows that 
f$in) cos rnr is the transform of —F(7r — x); that is, 

(5) /,(n)(-l)«+^ = .S(F(T-a;)}. 

As an example, we can conclude from the transformation 

that 

Six] H-l) »+i 

S{t - x} = - 
' * n (» = 1, 2, • • • ). 
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PROBLEMS 

1, With the aid of Theorem 1, obtain the following transformations, 
in which c is any real constant and A; is a constant that is not an integer: 

(а) 5|e«} - (~l)-e-]; 

(б) S{8mkx] - sinirA;; 

71 
(c) iS{cos fca;} = ("’1)” costtA;]; 

2. IfF(O) =F(w) =0, then 

^,S{F"(x)\ = -S{F(.x)U 

hence obtain the inverse transformations 

3. If F{v — a) = F{x){0 <x <Tr)y show that /,(n) = 0 for even 
values of n, 

4. Show that, when |r| < 1, 

log (1 + re*^) = - 2 h 
tT 

Also, if U* = (1 + cos 0)® + r* sin® d and tan 0 = r sin 0/(1 + r cos 0), 
then 

log (1 “h re*^) = log = log R + i0. 

Thus by equating imaginary parts of the members of the first equation, 
show that 

arctan, 1 4- r cos 0 n 
sin n0. 
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When |r| ^ 1, this can be shown to be a Fourier sine series. Show that 
it follows that 

^ A; sin X ) 7r( —,\i\ ^ 
^ 1 + k cos 4 = 2 “IT" ^ 

6. Write a series for log (1 + re»^) — log (I — re*®), and proceed as 
in Prob. 4 to obtain the transformation 

. 2A; sin x) tI — ( —1)**, /iti ^ 
S <arctan - (I*:! ^ !)• 

As a consequence, show that 

. sinx\ ttI —(-1)" , ^ 
® = 2-n-*■”' ^ 0)- 

96. Cosine Transforms. The finite Fourier cosine trans¬ 
formation is the operation 

(1) C{F(a:)} = F(x) cos nx dx (n = 0, 1, 2, • • • ), 

on a function F{z) defined on the interval 0 < x < x. The result¬ 
ing function of n (n = 0,1, 2, • • • ) is the^m^e cosine transform 
fc{n). For example, if F{x) = 1, then 

/c(n) = X when n == 0, 
= 0 when n = 1, 2, • • • 

As another example, if F{x) = x, then 

x^ 
Jc{n) = -g when n = 0, 

1 — (~n)” ^ „ 
—-^^ when n = 1, 2, • • • , 

The inverse transformation can be written at once from the 
Fourier cosine series; that is, 

(2) F(x) = i/c(0) + - ^^fc{n) cos nx 
X X Jbrnm 

^C-HUn)] i0<x<T), 

if F(x) asd F'(x) are sectionally continuous functions. 
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Upon integrating by parts, we find that 

(3) ClF'ix)} = nSlF(x)] - F(0) + (-I)-F(t) 

(n = 0, 1, 2, • • • ), 

when F(x) is continuous and F\x) is sectionally continuous. 
Likewise, 

(4) S{F'(x)\ = --nC{Fix)\ (n = 1, 2, • • • )^ 

Integrating by parts successively, we find that 

(5) C{F"(x)l = ^n^C{F(x)} - F'(0) + (~1)-F'(7r); 

likewise we can establish the following theorem: 

Theorem 2. Let the derivative of order 2v(v = 1, 2, • • • ) o/ a 
function F(x) be sectionally continuous and the derivative of order 

2*^ — 1 he continuousj when 0 ^ a; ^ t. Then the cosine trans^ 
forms of the even-ordered defwatives of F(x) are algebraic functions 
of n and /c(n), namely^ 

(6) C{F<2^’(a:)} = {-n^Yfcin) - (-l)-in2-2[f^'(0) 
- (-l)«F'(7r)] - (-~l)'-2n2-4[F"'(0) - (-l)»F"'(7r)] - • • • 

Note that the values of only the odd-ordered derivatives of the 
function at the end points of the interval appear here. 

Let F^ix) be the even periodic extension of F{x); that is, 

F2(-x) = F2(x), F2(x + 2x) = F2(x), 

for all X, and 
^2(0;) = F(x) when 0 < a; < x. 

By the method used to derive formula (4) of the last section, we 
find that when fe(n) is the cosine transform of F{x), then 

(7) Un) cos «fe = C ~ 

(n = 0, 1, 2, • • • ), 

where k is any constant. Setting k ^ Wf it follows that 

(8) (-l)Yc(n) = C{F(x-a:)}. 

PROBLEMS 

1. Obtain the following transformations, assuming that the constant k 

is not an integer: 
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/ V . . (—l)*oosirA; — 1 
(o) Clsin feel = A:--; 

, (-1)*+* sin*-* 
(6) C{cosfe*! =A—„i _ —; 

(c) CIt - x] > when n — 0, 

1- (-1) 
w* 

when n = 1, 2, 

2. Doive the transformations 

TT^ 
(a) C|»*) s= when n = 0, 

(—1)» 
= 2ir 2 - when n = 1, 2, • • • ; 

^ ® when n = 0, 

( — ][)n 
= —^^2— when n = 1, 2, • • • . 

97. Convolution. Let P{x) be a function defined on the inter¬ 

val —27r < a; < 2t, and let Q{x) be defined on the interval 
—v < X <T. Then the function 

(1) P{x) * Q{x) = p P{x - i)Q(0 di 

is called the convolution of P and Q on the interval —v < x <w. 
The reader can show that this function of x is even if the functions 

P and Q are both even or both odd and that it is odd if one of 
those functions is even and the other odd. 

J£ F{x) and G{x) are two functions defined on the interval 
0 < a; < T, we can show that the product of their sine or cosine 

transforms is a transform of a function defined by the convolution. 

To prove this in the case of the productwe let /^i(a;) 
denote the odd periodic extension of F(a;), with period 29r, and 

let G2(x) denote the even extension of G(x); thus G2(x) is defined 
on the interval —x < x < v. Then 

Mn)gc(n) = f:" i(X) sin n\ d\ G2(fj) cos n/jL dfi 

= 1^i(X) sin n\ d\ cos n/i dti 

-irs. Fi0i)G2{/i) sin nX cos nn dK dfi. 
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Thus if A denotes the square bounded by the lines X = ±7r and 
M = the product/,(n)^c(w) can be written as 

(2) ^ ^f ^i(X)(72(/i) sin n(X + /x) dX dfi 

+*// Fi(X)(j2(/x) sin n(X — fi) dX dju. 

In the first integral, let X + m = a? and m = f. Then the linees 
X == ±ir in the X/u-plane become the lines a; — f = ±7r in the 

a;{-plane. The square A becomes the parallelogram B shown 
in Fig. 101. Since the Jacobian of X and ii with respect to x and 

Fia. 101. 

i is unity, the area element dX dfi becomes dx dj, and the first 

of the integrals (2) becomes 

Fi{x — sin nx dx dj. 
B 

Since F\{x — f) is a periodic function of x for each fixed the 

integral over the triangle Bi can be replaced by that over 
the triangle B^^ and the integral over Bs by that over B^, The 

resulting integral over the square can be written 

^Fi{x - i)Gt{i) d^dx = 

2 sin nx [Fi{x) * (j2(x)] dx, 

where we have used the fact that Fi * G2 is an odd function. 
In like manner, the second integral can be transformed into the 

integral above; hence 

f.in)gcin) = i * G'nC®)! sin dx. 

That is, this product is a sine transform of a convolution, 

Mn)gc{n) = /S{iFi(x) 
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The convolution integral can be written in terms of the original 
functions F and G. By making use of the descriptions of the 
extended functions Fi and G% in terms of those functions, it can 

be seen that 

(3) /?! *6, = - mo dk - X)G(0 d( 

+ - a: - OG(i) d(. 

The other cases included in the following theorem can be 
established by the above method. 

Theorem 3. Let F(x) and G{x) he two functions sectionally 
continuous on the interval 0 ^ x ^ t; let Fi{x) and F%{x) denote 
the odd and even periodic extensions of F, respectively^ and Gi{x) 

and (t2(x) the odd and even extensions of G, Then the products 
of the transforms of F and G can he written as follows: 

(4) Un)gc{n) ^ 
(5) f.{n)g.{n)^C{--iF,^G^], 
(6) /.(n)^«(n) =C{iF2*G2l, 
(7) fc{n)g.{n)^S{iF,*G,]. 

If Ji, 7f, Ja, and J4 represent the four integrals in the right- 
hand member of equation (3), it can be shown that the other 
three convolution integrals have the following expressions in 

terms of those integrals involving the original functions: 

(8) ~/4, 
(9) F2*(?2 = /i + /* + /s + /4, 
(10) F2*Gi=/i + J2-/s-/4. 

To obtain, for example, the inverse cosine transform of 
(n* — where k is not an integer, we can write 

1 _ n( —^ /sin « Jx) 

k^ ^ n^ — k^ n (sin kw) (ir/ 

According to formula (5), this product is the cosine transform 

of the function — ^Fx * Cri, where Fi is the periodic extension of 
the odd function sin A;a;/sin kx, with period 2ir, and Gi = x/v. 

Thus 
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Table 2.—Finite Sine Transforms 

f.(n) - sinnx(ix (n — 1,2, ■ 

1 

- X) 

1 - (-1)” 

n 
2 . nr 
n*““T 

n* 
1 - (-1)» 

_ 2[i - (-^)i 
n 

[1 - (-l)"e-l 

2 when n *= m 

. 0 when n m 

(m = 1, 2, • • • ) 

[1 - (-!)• costir] 

( X when 0 < a; < Tr/2 
j IT — X when Tr/2 < x < ir 

Xiir^ - £*) 
Ctt 

a; (it -^a;) 
2 

sinh c(7r ~ a;) 
sinh CTT 

sin A;(7r — g) 
sin kir 

(k ^ 1, 2, 

I' 
when n w *= 1, 2, 

when n ^ m 

J (|61 ^ 1) 

1 - (-1)’ b« (161 S 1) 

TT sin A;:c_x cos k{v — x) 
2FSn*~fcir 2A; sin Att 
2 ^ 6 sin a; 
^ 1—0 cos X 
2 26 sin x 
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Table 3.—Finite Cosine Tbanspobmb 
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(2) Y{x, 0) - Y^{x, 0) = 0, r(0, 0 = Y{7r, t) = 0, 

279 

where g is the acceleration of gravity and the F-axis is positive 
downward. 

Since the value of Y(a;, t) is given at a; = 0 and a; = tt, we use 
the sine transform with respect to a;, 

<)} = y.(«, 0- 

Then S(Ytt(x, <)) = 0 the transformation of both 

members of equation (1) leads to the ordinary differential 
equation 

(3) ^ v,(n, t) = -a^n%(n, /) + SfS{l}. 

We have used the lastjbwo of conditions (2) here in writing the 
transform of F**(a;, t). Transforming the first two of those 

conditions, we have 

(4) y,(n, 0) = 0, ^ y,{n, 0=0 when t = 0. 

The solution of equation (3) that satisfies conditions (4) is 

(5) y,{n, 0 = 1^ ^ ^|1} cos wo<^> 

where aS{1} = [1 — ( — 1)"]/^. If we make the inverse trans¬ 
formation with the aid of the Fourier sine series, our formal 

result takes the form 

o 

(6) F(a;, 0 = “ ^ 
1 

^ 1 ~ (-1)" (1 — cos tiaO sin nx. 

But we can write the solution in a more convenient form by 

first noting that (Table 2, No. 8) 

{2 *<'"*)}• 
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Then if Q(sc) is the odd periodic extension of the function 
ix(ir — aj), it follows from formula (4), Sec. 96, that 

-4iS{l} cos na< = 5iS{Q(x — at) + Q(x + o<)}. 

Consequently the inverse transforms of the terms in formula (5) 

can be written in closed form, that is, without using infinite 
series. The solution becomes 

(7) y(x, 0 = ^ - x) - Q{x - at) - Q(x + at)], 

where Q(x) = ix(T — x) when 0 < a; < ir, Qi—x) = —Q(x) 
and Q{x + 27r) = Q(x) for all x. 

Formula (7) is easily verified as the solution of the problem, 
A study of the function by composition of ordinates, for fixed 

values of shows that the string vibrates between the extreme 

positions F = 0 and Y «= (tx — x^)g/a^j as indicated in Fig. 102. 
The motion of each point is periodic with the period %r/a, 

99, A Horizontal String with Sliding Ends, Let the ends of a 
stretched string be looped about vertical supports along the 
lines a; = 0 and x ^ t (Fig. 103). The mass of the loops and 

the friction on the supports are assumed to be negligible. If a 

constant upward force acts on the right-hand loop, the displace¬ 

ments F(z, ^ the string falls from rest from the position 
y = 0, satisfy the conditions 
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Yu(x, t) = a^Y^ix, t) + g (0 < x < v, t > 0), 
Y(x, 0) = 0, Yt(x, 0) = 0, 

F,(0, t) = 0, F.Ctt, t) = 

where 6 is the magnitude of the force divided by the tension. 
Since the values of F* at the ends are prescribed here, we use 

the cosine transformation of F(x, t) with respect to x. Now 

C{Y:,^(x, 0) = -n^yc{n, t) - 

hence the above problem transforms into the new problem 

^2/c(n, t) + aH^ydn, t) = -a^h{-lY + gC{l], 

ydriy 0 = ^ 2/c(^i 0=0 when t = 0. 

When n = 0, C {1) = t and the solution of this problem is 

(1) yM t) - ^{Kg - a%)iK 

When n = 1, 2, • • • , O' {1) =0 and the solution is 

(2) Vein, i) = h 1^-^- cos nat - 

It will be convenient to consider the transform described by 
equations (1) and (2) as the sum of three transforms Wc(w, t), 
— Pe(n)f and Pe{n) cos natf where 

itc(n, 0=0 when n = 1, 2, • • • , Uc(0, 0 = “ a^h)t^, 

Pe{n) = h when n = 1, 2, • • • , pc(0) = 

The inverse transform of Wc(n, 0 is 

that of Pe{n) is 

(3) Fix) = ^ a;* (0 < a: < «•). 

When the argument of P(x) is outside the range 0 < x < x, let 
P(x) denote the even periodic extension of the quadratic function 
defined by equation (3). Then according to formula (7), Sec. 

96, 

cos nat] = i[P(x — at) + P(x + a<)]. 
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The formula for the displacements can then be written 

(4) Y{x, t) = + 5 [Pix -at)+ P(x + at)] - P{x), 

where P{x + 2t) = P{x) for all real x and 

P{x) = (”■'»■ < X <ir). 

The verification of this solution is easy if we note that P'{x) is 
an odd periodic function and that any function oix ± at satisfies 
the homogeneous equation F« — a^Yxx = 0. The discussion 
of the vibration can also be left to the reader. In particular, 
when a^h = tt^, the force on the right-hand end is equal to the 
weight of the string and the left-hand end executes the periodic 
motion 

7(0, t) = P{at). 

Thus the extreme positions of the end are 7 = 0 and 7 = irh/2, 
and the velocity changes suddenly from ah to —ah as the end 
reaches the latter position. 

Using the inversion formula, the solution of the problem can 
also be written 

00 

(5) Y{x, t) =- ydO, t) +- ^ t) cos nx, 
TT TT 

1 

where 2/c(0, 0 and 2/c(n, t) are given by formulas (1) and (2). 
100. Potential in a Slot. The two 

y illustrative problems treated above 
could have been solved also by means 
of the Laplace transformation. We 
now consider some problems that are 
not so well adapted to methods treated 

V«,0 V-1 earlier in this book. The first is a 
problem of a type that arises in the 
subject of electronics. 

^ Let 7(x, y) denote the electrostatic 
; V-0 ()r,0) potential in a space bounded by the 

planes a; = 0, a; = ir, and 2/ = 0 in 

which there is a uniform distribution of space charge of density 
A/(4ir). Then the function 7(a;, y) satisfies Poisson's equation 

(1) y) + Vyyix, y) = -h (0 < a; < T, y > 0). 
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Let the planes a; = 0 and y = 0 be kept at potential zero and the 
plane a; = tt at another fixed potential F = 1 (Fig. 104); also let 

V{x, y) be finite as y tends to infinity. Then 

(2) F(0, y) = 0, F(7r, y) = 1, {y > 0), 
(3) V(x, 0) = 0 (0 < a; < tt), |7(a:, y)\ < M 

(0^x^T,y^0), 

where M is some constant. Let us determine the function F(a:, y). 

This is also the problem of finding the steady-state tempera¬ 
tures in a semi-infinite strip with a uniform source of heat, of 
strength proportional to in every element of the strip. 

The problem in the sine transform of V (x, y) becomes 

dy 
2V.(n, y) - y) = n(-iy - hS{l]y 

Vs(n, 0)|= 0, \v^{n, y)\ < Mir. 

The solution of this problem is 

(4) v,(n, y) = —.^ -- (1 - ^ 

). 

The formula for the potential can therefore be written 

(6) V{x,y) = ^ 2 
]l 

In addition to this solution in terms of an infinite series we 

can derive a closed form of the solution. Referring to Table 2 we 

find that 

and 

o 1// 2 . e-»8i }=-arctanj^^ 
sin X 2 , sinx 

= - arctan - 
"*'cosx TT e*'+ cos X 

also, 

_ Wl - £r €111. s I? CW. 
n* n n (t e*' — cos x) ' * 
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The even extension of the function G{x) = x is (ir2(x) = |a;|. The 
inverse tangent function here is odd and periodic. Therefore, 
according to formula (4) of Theorem 3, 

^-1 = 1 ^arctan ^—\ ♦ |a;|. 
( n* ) ir\ e*' — cos a;/ ' ' 

The convolution here can be written in the form 

-£ 
{ arctan 

sin {x — f) 
— cos {x — {) 

+ X' J arctan 
sin {x — {) 
— cos {x — £) 

and we can substitute X for — f in the first integral to gain a little 
simplification of the form. 

The inverse transformation of the terms in formula (4), there¬ 
fore, leads to the formula 

^ x) arctan 
~ TT 

(6) Vix,y)^^^x(T , . ^ 

X [arctan 

Sin X 

+ — cos (x -{- X) 
+ arctan 

+ cos x 

sin {x — X) 
e*' — cos (x — X) 

c dX. 

It can be seen that this function V(x, y) does satisfy the conditions 
(1), (2), and (3) of our boundary value problem. 

101. Temperatures When Thermal Coefficients Vary with 
Time. First let us note that if '^{Xj t) is the temperature in a slab 
0 < z < TT, initially at temperature ^ 1, with its faces kept at 
temperature zero then, taking A; = 1, 

^t(x, t) = t) {0 < X <ir,t > 0), 
^{x, 0) = 1 (0 < X < t), ^(0, 0 = 0 = 0. 

If ^,(n, t) denotes the transform of this temperature function, 
then 

-nV.(n, t), Wn,0) =S(1): 

hence 

(1) i.in, t) = iS{l}e-»'‘ = - - (-i)v-‘ 
n 

and 

(2) ’*'(*, 0 = 
2^ 1 - (- 
T ^ n 

!)» 
—^ sin nx. 
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We can express more complex temperature functions in terms 
of such basic temperature functions.* 

Now let us find the solution of the problem 

(3) Ut{Xy t) == J{t)U^{Xy t) + git) io < X < Vy t > 0), 

(4) Uix, 0) = 0, 17(0, 0 = Uiir, t) = 0. 

Here Uix^ t) may represent the temperatures in a slender rod with 
thermal coefficients and heat sources or sinks that vary with 

time. The initial temperature is zero, and the ends are kept at 
temperature zero. 

Let w,(n, t) denote the sine transform of U(a:, Then 

(5) ^ u,{n, t) + n^f(t)u,{n, t) = ff(0S{l!, 

(6) ^ M.(n, 0) = 0. 

In terms of the functidh 

F{a,t) = £f(r) dr, 

an integrating factor of the linear differential equation (6) is 
g«*F(o. t) solution satisfying condition (6) is 

«.(n, = 5{1) dr. 

Since F(0, t) — F(0, t) = F(r, t), we can write 

(7) «.(n, <) = /* (/(r)S{ 1!« dr; 

thus one form of the solution is the following: 

(8) Uix, 0 ~ -^ sin nx J dr. 

To obtain another form we may apply the inverse transforma¬ 

tion to both members of equation (7) and formally interchange 

the order of the operator 5“^ and the integration with respect to t. 
According to formula (1) 

Fir, t)], 

* The function '^ix, t) here is a simple combination of derivatives of the 
theta functions described, for instance, in Doetsch, '*Theorie und Anwend- 
ung der Laplace-Transformation,” p. 306, 1937. 
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where 0 is the basic temperature function (2). Conse¬ 
quently 

(9) U{x,t)=^ P^g(jmx,F(r,t)]dr, 

where 

Fir, t) = fj{\) d\. 

The solution of many other boundary value problems whose 
coefficients vary with time can be expressed in terms of solutions 
of simpler problems with constant coefficients. * 

102. Transverse Vibrations of a Beam. Let us find the trans¬ 
verse displacements F(x, t) in a beam with the ends x = 0 and 

Fia. 105. 

X — T hinged, when a simple periodic torque is applied at the 
latter end (Fig. 105). The initial displacement and velocity are 
zero. Then the function Y(x, t) satisfies the conditions 

1^(0, t) = y„(0, l) = 0, Y(ir, t) = 0, r„(T, O = & sin 0,^, 

where o, 6, and a? are constants. 
The sine transform of Y (x, 0 thus satisfies the conditions 

dP- 
^ t) -f- t) = n(“l)”a26 sin oit, 

y, = ^ = 0 when < = 0. 

* A general study of such reductions for problems in heat conduction and 
vibrations was made by H. K. Brown, “The Resolution of Boundary Value 
Problems by Means of the Finite Fourier Transformation,” a thesis written 
at the University of Michigan in 1941, part of which appeared in the Journal 
of Applied Physics, Vol. 14, pp. 609-618, 1943. 
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The solution of this problem in ordinary differential equations is 

(^) y.(n, 0 * & ■ 
n(—*1)* ( . Cl) . ^ \ 

) —^—rVi I Sin -i sm n^at ]• 
„,-^yV - ) 

Instead of writing the inverse transform at once with the aid of 
the sine series, let us put w/a = and note that 

n( — I)** 

— k* 
_ 1 [«( 

2k^ L n + ** n* - it* 

_ „ / 1 /sinh kx _ ain fca;\\ 
~ \siiih kir sin for// 

rm of the function (1) can 

^sinh^^ ainr^y 

w(-l)”+i 

"‘-©’ 

] 
^sinh kr sin - 

The inverse transform of the function (1) can then be written 

(2) n.,i)-g sin Oil 

2hoi>' 

wa . 
sin n^at sin nx. 

We have assumed here that the value of \/w/a is not an inte¬ 
ger. When that value is close to some integer no, the component 

of Y(x, i) with frequency a? has a large amplitude; that is, the 
resonance frequencies are 

w = anl {no = 1, 2, • • • ). 

The solution of the problem here can also be found by means of 
the Laplace transformation. 

PROBLEMS 

1. When m is an integer, show that if the system 

Y''{x) + m^Y{x) = F{x), Y{0) - Y{t) - 0, 

is to have a solution then F{x) must be such that 

fjF(x)si Biamxdx 

2. A constant transverse force acts at each point of a string with 
ends a; = 0 and a? = ir fixed; thus 

Yu = + F{x), 7(0, i) « 7(ir, t) = 0. 
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If F(a, 0) ■» Yi(x, 0) •• 0, derive the formula 

r(», t) - i [G(x - «<) + G{x + at)] - ^©(x), 

where G''(x) « F{x) when 0 < » < x, G(0) *= (t(x) == 0 and, for all x, 
G{-x) = -G{x) and G{x + 2x) - G{x), 

3. If a constant transverse force acts at each point of a beam, the 
transverse displacements Y(x, t) satisfy an equation 

d^Y 

at* + Fix). 

If the ends a; = 0 and x — t are hinged so that Y and vanish there, 
and if the initial displacement and velocity are zero, derive the formula 

Yix, t) = -^ cos n'^ai sin nx, 
1 

where G^*Kx) *= Fix) and Gix) « G'^ix) = 0 at a: = 0 and at« =* x. 
4. Let F(aj, y) be a steady temperature or potential satisfying the 

conditions 

VxziXf y) + Vyyix, y) = 0 (0 < a: < x, y > 0), 
F(0,y)-0, F(x,i/)»A (y<0); F(a;,0)=J5 (0<a;<x); 

«dso ViXf y) is bounded. Derive the formula 

Vix, y) 
2A , 
— arctan 
X 

sm X , 2B — -1-arctan 
e*' -h cos !P ~ X 

sin X 
sinh y 

5. Let V(x, y) satisfy the conditions (Fig. 106) 

Vy» + Vyy ^ 0 (0 < a; < X, 0 < y < yo)> 
^"(0, y) « 0, F(x, y) « 1, Vyix, 0) « F(x, y,) « 0. 
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Derive the formulas 
m 

TT/ ^ ® . 2 (—!)• cosh ny _ F(*, ^-;j-33^. sm «« 

«o 

“ f ” f 2 ■*■ 

+o]a:, {2v + \)yt-y]\, 

where 

«(», s) « arctan 
sm X 

e* + cos X 

6. Solve the problem 

V„(a:, v) + F,,(a5, v) = F(a:) (0 < » < t, y > 0), 
F(0, y) = F(t, y) = y(x, 0) = 0, 

where F(x, y) is bounded; Obtain the solution in the forms 

F(x, y) = 0{x) + ^ 2 («)«■”' sin «* 
1 

= (?(*) -1 - mu, V) di, 

where (r"(x) = F(x), G(0) — G(ir) = 0, Fi{z) is the odd periodic exten¬ 
sion of F{x)f and 

P(.X, y) = J arctan dX. 

7. Obtain the temperature function U(Xj t) when 

f/i(x, t) = 0 - Ht)U{x, t)+A (0 < X < w, f > 0), 
C/(0, 0 = U(w, t) = I7(x, 0) « 0. 

Show that the formula can be written 

U(.x, t) = Ae-'W f - t) dr, 

where H(jt) = h(x)dT and '^(x, <) is the basic temperature function 

described in Sec. 101. 
8. Let 0(x, t) be the temperature function that satisfies the conditions 

01 » 0.. (0 < X < T,« > 0), 0(0, t) * 0(ir, t) « 0, 

e{*,o)-i-|. 
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Show that 0,(n, t) =« and 

0(*. <) “ I 2 n ®"**' *“■ 
1 

Then if U(x, t) satishes the conditions 

{0<x<w,t> 0), 17(0, 0 « 17(t, 0 = 0, 
U{x, 0) = Fix), 

obtain the function Uix, t) in terms of 0(x, 0- If Fix) is continuous 
and F(0) = F(jr) = 0, one form of the result is 

Uix, = F'(S.)lQ(,x +\,t)+ e(» - X, i)] dX. 

103. other Transforms. Other transformations oan be 
. (ievised for special types of boundary value problems. Con¬ 
sider the modification of the finite sine transformation, 

So{F(a;)} = J Fix) sinXnXdx (\n == n — 1,2, • • • ^ 

It can be seen after the usual integration by parts that 

SolF^'ix)] = XnF(0) - i-l)-F'iir) - X;5o{^(x)}. 

Hence certain problems in which the unknown function itself is 
prescribed at a; = 0 while its first derivative is prescribed at 
X = w can be simplified in the usual manner by applying this 
transformation. If/o(n) denotes the transform of Fix), it can be 
shown that 

“ ;;; sin X„a: (0 < x < ir). 
n— 1 

The Fourier sine transformation of a function Fix) defined for 
all positive x is usually written 

/S{F(x)} = ^ JT Fix) Bin ax dx ^ /•(«)* 

Assuming that the integral 
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converges and that F(x) satisfies certain conditions of continuity, 
it follows from the Fourier integral theorem that 

f-Cx) = ^ JT " /.(a) sin ox da = /S {/.(a)). 

That is, the inverse transformation is the same as the direct one. 

The second derivative transforms as follows: 

S{F"(x)) = -ai'SlFCx)) + aFiO) 

Thus the transformation is useful in certain problems in which the 

unknown function itself, but not its derivative, is prescribed at 

a; = 0. 
For the Fourier cosine transformation, on the other hand, F'(0) 

is involved in the transform of the second derivative. 
The common Fourier transformation is usually written in 

exponential form: 

^{F(x)} = 
1 

\/^ 
dx = f(a). 

Then, according to the Fourier integral formula, 

F(x) = J f{a)e da. 

The transformation of derivatives can be seen from the formula 

jE7{F'(a;)} = -iaE{F{x)} = -iaf(a). 

The condition that F(x) be absolutely integrable over the 

infinite range is a severe one. Other features combine with this 

one to limit the type of boundary value problems to which these 

infinite Fourier transformations can be applied to advantage.* 

• For other applications, see R. H. Cameron, Some Introductory Exercises 
in the Manipulation of Fourier Transforms, National Mathematics Magazincj 
Vol. 15, pp. 1~26, 1941. A few applications to partial differential equations 
are included in Titchmarsh, E. C., “Theory of Fourier Integrals,” Chap. 10, 
1937. 
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Table or Operations 

m /(») tion 

1 Fit) f\-“Fit)<U 2 

2 AFit) + BGit) Am + Bg(s) 2 
3 F'it) 8fi8) -F(-hO) 4 
4 «"/(«) «"“^F(-hO) 4 

- 8n-2F'(H-0) «... 

6 £ Fir) dr J/(.) 14 

6 ££F(X)dXdr i/w 14 

7 £ F,(t - r)F,(r) dr - F,*F, /tW/tW 14 

8 tF(l) -/'(») 12 
9 f*F(t) (_!)./(»)(,) 12 

10 l-m 18 

11 e«*F(t) /(» - a) 7 
Fit — 6), where Fit) « 0 

when ^ < 0 e-^m 10 

f(cs) 10 
ht 

m - h) 10 

Fit 4- a) « Fit) 
\£e-nt)di 

19 1 - e-« 

F(« + a)--F(0 19 1+ 
Flit), the half-wave rectifica¬ /(») 

19 tion of Fit) in No. 16 1 — 
F%ii), the full-wave rectificar 
tion of Fit) in No. 16 

7(») coth y 19 

y 
4 «'(«•) 

gis) - (« - ai)(« - as) 16 

•••(«— Cm) 

I - .... P(«) __ ^(«) 
17 g(«) (« - o)^ 

294 
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Table of Laplace Transforms 

^ Here a, b, and (in 14) e represent distinct constants. 

295 
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Tablb of Tju^sforms.—(CotUinued) 

* Ln(0 >a the Laguerre polynomial of degree n. 



APPENDIX III 297 

Table of Transforms.—{Continued) 

m m 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46* 

47 

48t 

49 

50 

51 

52 

\/« + a 

Vs 
« ~ a* 

Vs 
8 +a* 

1 

Vs {s — a') 

1 
Vs (s + a*) 

5* - a* 

(s - a^)(b -f Vs) 

1 

VS (Vs + a) 
1 

(s + a) Vs + 5 

b* ~ a* 

Vs (s “ a*) (Vs + 6) 

(1 - s)" 

(1 - s)- 

vr=r^ 
Vs 

-1 

Vs + o Vs + b 

(s+a)*(s + 6)* 

(s 4- o)*(s -h 6)1 

Vs + 2o — Vs 

Vs + 2o + Vs 

—^ — ae®*‘ erf c (a Vi) 
V 

—^ -f oe“** erf (o V^) 

_!_2o 

VS VS' 

i e®** erf (a Vi) 
a 

■x 
cX*dX 

■/. ex*dx 
a Vir Jo 

e®**[6 — a erf (a V^)l 
- 6e^>< erfc (6 VO 

e®** erfc (a Vi) 

" e~®* erf (V6 — a Vi) 
V 6 — a 

e®“ erf (a VO ^ J 

+ erfc (6 V?) 

H%n{Vi) 

Htn^.iVi) 

n\ 
(2n)! VS 

_ 
V^(2n + 1)! 

a€“*‘[/i(a/) 4- /o(a0] , 

e-»(•«)./„ 

7 e"®*/i(o<) 

JSr«(x) i« the Hermite polynomial, H*{x) «• «•* (e'*’). 

t !»(«) * where Jm ie Beeael’e Innotion of the fixet kind. 
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Table of Transfobms.—{CorUinued) 

(g - &)* 

(\/« + o + + t)** 

's/a y/s 4* g 

(A;>0) 

>> -1) 

V** + »’ 

(V«» + a« - »)’ 

V** + o’ 
(» > -1) 

(V^* + g* ~ «)* 

a*J /at) 

T{k) \2aJ 

ka^ r /_j\ 

(« - - g»)* 

'y/a^ — a* 

1 

(»'> -1) 

(a* - a*)* 
(Aj> 0) 

- (m > 0) 

1 - c”-** 

«(1 - «“*•) 

1 «(e*« — g) 

- tanh Aw 
9 

j«(l +«“*•) 

~ tanh Aw 
a* 

1 -h coth iA:» 
2a 

' when t > k 

(0 when 0 < < < A; 
* } 1 when t > k 

( 0 when 0 <t<k 
j — A: when t > k 
/ 0 when 0 < ^ < fc 

■! -when t > k 
I r(M) 
( 1 when 0 < ^ < A; 
I 0 when t>k 
S{ky t) ^ n when (n — 1)A; 

< t < nk{n - 1, 2, • • • ) 
(Fig. 6) !0 when (i < t < k 

1+ g + g* + • • • + g**"* 

when nk < t < (n + 1)AJ 
(n - 1, 2, . • • ) 

M{2kyt) - (-1)”“^ 
when 2Aj(n - 1)< « < 2A;n 

(n » 1, 2, • • • ) (Fig. 9) 

g M(A;, 0+2 2 

when (n — 1)A; < t < nk 

H(2k, t) (Fig. 10) 

68 
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Table op Transforms.—(Conimwed) 
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Tabls of Tbansfobms.—(Contintted) 

* The exponential integral funotion Ei(—<) dx (t > 0) is a tabulated fune- 

tion. For tablea of this function and other int^ral functions, see, for instance, Jahnke and 
Emde, “Tables of Functions." 

t The coeine integral funotion is defined as Ci(<) " “ d*. 1* defined in 

Sec. 18. 
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Table op Transforms.—{Continued) 

{ 0 when 0 < t < k 
( (tO"^ when t > k 

i sin (2fc Vt) 
irt 

_i_ e-2»Vi 

( 0 when 0 < < < 
( (t* — fc*)”* when t > k 
1 / k»\ 

* Knix) is Besaers function of the second kind for the imaginary argument. 
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Table of Transforms.—{Continued) 

/(«) F(l) 

118 i e^Ki(.kt) I y/t(t + 2k) 

119 
Vs 

120 -4- A’o(2 V^l) 
Vn 

121 xe~**Jo(fc*) 
{ lt(2k — 01"*^ when 0 < f < 2fc 
( 0 when t > 2k 

122* 
(-^-i-when 0 < t < 2k 
< Tk y/i{2k - t) 
{ 0 when t > 2k 

♦ Several additional transforms, especially those involving other Bessel functions, can bo 
^oundin the tables by G. A. Campbell and R. M. Foster, "Fourier Integrals for Practical 
^'Applications,” or N. W. McLachlan and P. Humbert, "Formulaire pour le calcul symbo- 

lique.” In the tables by Campbell and Foster, only those entries containing the condition 
0 <goT k <g, where g is our t, are Laplace transforms. 



INDEX 

A 

Abel, 78 
Abel’s integral equation, 42-43 
Analytic continuation, 144 
Analytic function, 12^130 

properties of, 137-139 
Analytic transforms, 148-151 
Angular displacements (see Y^brat- 

ing shaft) 
Antiperiodic function, 56 
Automobile brake bands, 112 

B 

Bar (see Vibrating bar) 
Beam, static deflection of, 74-76 

(See also Vibrating beam) 
Bessel’s equation, 32-35, 259 
Bessel’s function, 33-34, 203 

zeros of, 204 
Bibliography, 293 
Borel formula, 39 
Boundary value problem, 85 
Branch point, 136 
Branches of functions, 135-137 

C 

Cauchy principal value, 145 
Cauchy-Goursat theorem, 138 
Cauchy-Biemann conditions, 130 
Cauchy’s integral formula, 138 

extension of, 145 
Cauchy’s residue theorem, 142 
Characteristic functions, 246 

normalized, 249 
Characteristic numbers, 246 

Ci(0, 80 
Concentration, 107 

Conduction of heat, 179 
(See also Temperature) 

Conjugate, 128 
of transform, 149 

Convolution, 36-37, 274 
Cosine-integral function, 80 
Cosine transformation, 267, 272, 291 

of derivatives, 273 
inverse of, 272 

Cosine transforms, 272 
table of, 278 

Cycloid, 78 

D 

Damping, 61-63, 225 
critical, 62 

Dashpot, 61 
Derivatives of transforms, 28-30, 

151 
Difference-differential equations, 23, 

26-28 
Difference equations, 23-28 
Differential equations, 16, 40-52, 60 

first order linear, 31 
partial (see Partial differential 

equations) 
singular point of, 32 
system of, 18, 43, 69 
with variable coefficients, 30-36 

Differentiation of transforms, 30 
Diffusion, 107, 125 
Diffusivity, 107 
Division of transform, 39 
Duhamel’s formula, 193, 214-217 

in vibrations, 237-239 

E 

Ei(0, 81 
Elastic support, 238-239 
Electric circuit, 62, 68, 71 
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Electronics, 282 
Emissivity, 119 
erf (»), 39 
erfc {x)j 59 
Error function, 39 

complementary, 59 
Error functions, series of, 114, 117, 

119, 124, 213 
''Exponential-integral function, 81 
Exponential order, 4 

F 

Factorial function, 9 
Faltung, 37 
Flux of heat, 107 
Fourier constants, 251 
Fourier integral, 162-163, 210, 259 
Fourier series, 186, 195, 201-202, 

222, 225, 233, 242, 257 
Fourier transformation, 267, 290- 

291 
Fourier transforms, 2, 267 

{See also Cosine transforms; 
Sine transforms) 

Frahm vibration absorber, 70 

G 

Gamma function, 8-9 
Green’s function, 208, 245 

H 

Heat, generated in wire, 118-120 
quantity of, 188, 195 
source of, 121, 188-189, 283 

Heat equation, 107 
Heaviside, 1 
Heaviside’s expansion, 44-45, 168 

170 
Hooke’s law, 60 
Hyperbolic functions, 133 

identities in, 185, 231 

I 

Imaginary exponential function, 46, 
132 

Impulse, 68, 95, 97 
Integral equation, 40-44, 60, 77, 79, 

257 

Integral equation, nonlinear, 44 
Integrals, convergence of, 5 

evaluation of, 80-83 
Integration of transforms, 52-53 
Integrodifferential equation, 42, 44, 

78-79 
Inverse transform, 10-12 
Inverse transformation, 11 

as an integral, 157 
as a series, 167-174 
uniqueness of, 11, 162-165 

Inversion integral, 157 
derivatives of, 165-167 
real form of, 158 
transformation of, 174-178 

Iterated transformation, 210-214 

L 

Laplace integral, convergence of, 29 
Laplace transformation, 2 

convolution property of, 37 
of derivatives, 6-8 
operational properties of, 6-8, 

12-13, 21-57, 152, 294 
Laplace transforms, 2 

tables of, 12, 14, 295-302 
Laplace’s equation, 144, 260, 266, 

288 
l4iurent’s series, 143 
Law of times, 111 
Lcrch’s theorem, 11, 165 
Linear problems, 125 
Linear substitution, 21-23 
Linear transformation, 3, 12 
Longitudinal displacements {see Vi¬ 

brating bar) 

M 

Meander function, 54 
Mortality of equipment, 79-80 
Motion of particle, 73-74 
Multiple-valued function, 135-137 

N 

Natural frequency, 61 
Newton’s law of heat transfer, 119, 

207 
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Nonlinear problems, 125 
Null-fimction, 11 

O 

Object function, 3 
Operational property {see Laplace 

transformation) 
Order properties, 153-156, 159 
Ordinary discontinuity, 4 
Orthogonal functions, 250 

P 

Parabolic arcs, 174, 185 
Partial differential equations, 1, 84 

with variable coefficients, 96, 122, 
243, 265-266, 285, 289, . 

Partial fractions, 13-16, 44-51 
imaginary factors, 50 
linear factors, 44—49 
quadratic factors, 48, 50-51 

Periodic functions, 54, 171 
Poisson’s equation, 282 
Poles, 139-144 

of order n, 140 
simple, 140 

Potential, 260 
in hollow cylinder, 266 
in slot, 282-284, 288 

(See also Steady temperature) 
Probability integral, 39 
Products of Fourier transforms, 276 
Products of transforms, 38 

R 

Rectification, full-wave, 56-57 
half-wave, 56-57 

Replacement of equipment, 79-80 
Residue, 139, 141-142 
Resonance, 65-68 

in bar, 223-228, 234-235, 239 
in beam, 236-237, 240-241 
in membrane, 241 

Resonance frequency, 67-68, 224, 
227-228 

Resonance type, 172 
Result function, 3 

S 

Sectionally continuous, 4 
Separation of variables, 260 
Shaft (see Vibrating shaft) 
Sine-integral function, 53 
Sine transformation, 267, 290 

of derivatives, 269 
inverse of, 268 
properties of, 268-271, 276 

Sine transforms, 267 
table of, 277 

Singular point, 139 
essential, 143 
isolated, 139 : 
removable, 140 

Si(0, 53 
Sound, theory of, 88 
Spring, heavy, 100 

(See also Vibrating spring) 
Spring constant, 60 
Square wave, 54 
Staircase function, 25 
Steady temperature, 260 

in infinite prism, 265 
in semi-infinite strip, 264-265 
in semi-infinite wall, 260-264 

Step-function, 4 
String (see Vibrating string) 
Sturm-LiouviUe series, 244 

expansion in, 255-259 
Sturm-LiouviUe system, 2, 242, 257-' 

259 
Substitution, 12-13 
Superposition, 104 

T 

Tautochrone, 76-79 
Telegraph equation, 89 
Temperature, 106 

in bar, 114-116, 119, 179-202 
in brake band, 112-113 
in composite solid, 122-125 
in cube, 218 
in infinite bar, 124-125 
in infinite cylinder, 202-204, 206 
in infinite prism, 218 
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Temperature, in rod, 284r-286 Vibration absorber, 68-73 
in semi-infinite slab, 210-214, 218 
in semi-infinite solid, 106-113, 

116-124, 206-210, 216-217 
in slab, 113-114, 198-199, 205 
in soil, 217 
in sphere, 122 
steady-state (see Steady tem¬ 

perature) 
in wall, 196-197 
in wire, 118-122, 243, 256 

Torque, 105 
Transient vibration, 227 

Translation of function, 21-22 
Transverse displacements (see Vi¬ 

brating beam; Vibrating string) 
Triangular wave, 55 

U 

Units, 115, 204 

V 

Verification, 17, 181, 229-232, 263- 
264 

Vibration, damped, 61-63 
forced, 63-73 
forced component of, 66 

free, 60-64 
natural component of, 66 

damped, 71-73 

Vibrating bar, 88 

finite, 91-101, 219-225, 227-232, 
239-241 

loaded, 234-235 
nonhomogeneous, 266 
semi-infinite, 88, 90, 96-97 

Vibrating beam, 235-237, 240-241, 
286-288 

Vibrating membrane, 241 

Vibrating shaft, 88, 104-106, 228 
with flywheel, 234 

Vibrating spring, 60-73 

Vibrating string, 84 
equation of motion of, 84, 91 

finite, 104, 225-228, 232-233, 238- 
239, 241, 255-256, 27^-282, 
287-288 

infinite, 106 
semi-infinite, 84-91, 101-104 

Vibrating systems, continuous, 219 
simple, 60 

W 

Weierstrass test, 149 

Weight function, 258 




