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PREPACK TO FIRST EDITION 

The volume now presented must be regarded as the opening one of a 
series forming a Text-Book of Physics, which the authors are preparing. 
The second volume, that on Sound, has already been issued, and the re¬ 
maining volumes dealing with Heat, Magnetism and Electricity, and Light 
will be published in succession. 

As alreadv stated in the preface to the volume on Sound, “The Text- 
Book is intended chiefly for the use of students who lay most stress on 
the study of the experimental part of Physics, and who have not yet reached 
the stage at which the reading of advanced treatises on special subjects is 
desirable. To bring the subject within the compass thus prescribed, an 
account is given only of phenomena which arc of special importance or 
which appear to throw light on other branches of Physics, and the mathe¬ 
matical methods adopted are very elementary. The student who possesses 
a knowledge of advanced mathematical methods, and who knows how to 
use them, will, no doubt, be able to work out and remember most easily a 
theory which uses such methods. But at present a large number of earnest 
students of Physics are not so equipped, and the authors aim at giving an 
account of the subject which will be useful to students of this class. Even 
for the reader who is mathematically trained, there is some advantage in the 
study of elementary methods, compensating for their cumbrous form. They 
bring before us more evidently the points at which the various assumptions 
are made, and they render more prominent the conditions under which the 
theory holds good.” 

In the present volume the authors deal with weight, mass, gravitation, 
and those properties of matter which relate chiefly to change of form, such 
as Elasticity, Fluid Viscosity, Surface Tension, Diffusion and Solution. The 
molecular theory of matter has necessarily been introduced, inasmuch as 
investigators have almost always expressed their work in terms of that theory. 

But the detailed account of the theory, especially as applied to gases, will 
be given in the volume on Heat, in connection with the account of the 
phenomena which first brought it into prominence. 

V 



REVISER’S FOREWORD TO 

FOURTEENTH EDITION 

It would be almost sacrilege to mutilate the text of a book which, after 

some forty years’ existence, is still regarded as a classic in its treatment of 

the fundamental properties of matter. The reviser, an old student of both 

the eminent authors, has made additions which he ventures to think will 

maintain the original intention of the work and at the same time secure the 

continued interest of present-day students. 

Where new material has been added the style and treatment has been 

designed to conform with that of the original authors. 

G. W. T. 

Newcastle-upon-Tyne, 1947. 
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PROPERTIES OF MATTER 

CHAPTER I 

WEIGHT AND MASS 

Contents.—Weight—Mass—Definition of Mass—Mass proportional to Weight at the 
same Point—Constancy of Mass—Unit of Mass. 

Introductory remarks 

Physics is the study of the properties of matter, and of the action of one 

portion of matter upon another, and ultimately of the effects of these actions 

upon our senses. The properties studied in the various branches, Sound, 

Heat, Light, and Magnetism and Electricity, are for the most part easily 

classified under these headings. But there are other properties chiefly 

connected with changes in shape and relative position within a system which 

are grouped together as ‘‘General Properties of Matter.’’ Among these 

latter properties are Elasticity, Surface Tension, Diffusion and Viscosity. 

The most general properties of matter are really those studied in Statics 

and Dynamics: the relation between forces when the matter acted on is in 

equilibrium, and the motion of matter under the mutual action of the various 

portions of a system. But in Statics and Dynamics the recourse to experi¬ 

ment is so small, and when the experimental foundation is once laid the 

mathematical structure is so great, that it is convenient to treat these 

branches of Physics separately. We shall assume in this work that the 

reader has already studied them, and is familiar both with the conditions of 

equilibrium and with the simpler types of motion. 

We shall, however, begin with the discussion of some questions which 

involve dynamical considerations. We shall show how we pass from the 

idea of weight to that of mass^ and how we establish the doctrine of the 

constancy of mass. We shall then give some account of the measurement of 

gravity at the surface of the earth, and of the gravitation which is a property 

of all matter wherever situated. We shall then proceed to the discussion of 

those properties of matter which are perhaps best described as involving 

change of form. 

Weight 
AU matter at the surface of the earth has weight, or is pulled towards 

the ground. The fact that the pull is to the earth at all parts of its surface 
1 A 



2 PROPERTIES OF MATTER 

shows conclusively that it is due to the earth. Apparent exceptions, such 

as the rising of a balloon in air, or of a cork in water, are of course explained, 

not by the levity of the rising bodies, but by the greater gravity of their 

surroundings. Common experience with the balance shows that the ratio 

of the weights of two bodies is constant wherever they are weighed, so long 

as they are both weighed at the same point. Common experience shows 

too that the ratio is the same, however the bodies be turned about on the 

scale-pan of the balance. 

The balance does not tell us anything as to the constancy of weight of 

a given body, but only as to the constancy of ratio; for if the weights of 

different bodies varied, and the variation was always in the same ratio, the 

balance would fail to indicate it. But here experiments with pendulums 

supplement our knowledge. A given pendulum at a constant temperature 

and in a fixed position has, as nearly as we can observe, the same time of 

swing from day to day and from year to year. This implies that the pull of 

the earth on the bob is constant—that the weight at the same place 

remains the same. 

This constancy of weight of a body at the same point appears to hold 

whatever chemical or physical changes the matter in it may undergo. 

Experiments have been made on the weight of sealed tubes containing two 

substances which were at first separated, and which were then mixed and 

allowed to form new chemical compounds. The tubes were weighed before 

and after the mixture of their contents. But though Landolt * and 

Heydweiller f have thought that the variations which they observed were 

real and not due to errors of experiment, Sanford and Ray :j; have made 

similar experiments, and considered that the variations were observational 

errors. Where variations have been observed they are so minute and so 

irregular that we cannot as yet assume that there is any change in weight. 

Again, temperature does not appear to affect weight to any appreciable 

extent. It is extremely difficult to make satisfactory weighings of a body 

at two different temperatures. Perhaps the best evidence of constancy is 

obtained from the agreement in the results of different methods of measuring 

liquid expansion. In Dulong and Petit’s U-tube method of determining 

the expansion of mercury, two unit columns have different heights but 

equal weights, and it is assumed that the cold column would expand into 

the hot column without change of weight. But in the dilatometer method 

nearly the whole expansion is directly measured, and only the small 

expansion of the envelope, measured by assuming the expansion of mercury, 

introduces the assumption of constancy of weight with change of tempera- 

* Zeit.J. Phystk. Cbew., xii. 1, 1894. 
t Zeit.J. Pbysik., August 25, 1900, p. 627. 
i Pbys. Rep:, V. 1897, p. 247. 
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ture. The close agreement of the two methods shows that there is no large 

variation of weight with temperature. 

We may probably conclude that, up to the limit of our present powers 

of measurement, the weight of a body at a given point is constant under 

all conditions. 

But when we test the weight at different points this constancy no longer 

holds. The common balance used in the ordinary way fails to show 

variation, since both pans are equally affected. 

But very early in the history of the pendulum, as we shall show in the 

next chapter, experiments proved that the seconds pendulum had different 

lengths at different places, or that the same pendulum had different times 

of swing at different places. In other words, the weight of the bob varied. 

Thus a body is about 1 in 300 heavier at London than at the Equator. 

As early as 1662 an experiment w'as made by Dr. Power * in which a 

variation of weight with change of level over the same point was looked 

for. A body was weighed by a fixed balance, being first placed in the 

scale-pan and then hung far below the same pan by a string. The experi¬ 

ment was repeated by Hooke, and later by others, but the variation was 

quite beyond the range of observation possible with these early 

experimenters, and the results they obtained were due to disturbances in 

the surroundings. The first to show that the balance could detect a variation 

was von Jolly (chap. iii. p. 55), who'in 1878 described an experiment in 

which he weighed a kilogramme on a balance 5*5 metres above the floor and 

then hung the kilogramme by a wire so that it was near the floor. He 

detected a gain in the lower position of 1*5 mgm. Later he repeated the 

experiment on a tower, a 5 kgm. weight gaining more than 31 mgms. 

between the top of the tower and a point 21 metres below. In 1898 

Richarz and Krigar-Menzel found a variation in the weight of a kilogramme 

when lowered only 2 metres (chap. iii. p. 55). 

The evidence then is convincing that the weight of a body varies from 

point to point on the earth’s surface, and also varies with its distance above 

the same point. 

The question now arises—Is there any measurable quality of matter 

which remains the same wherever it is measured Experiment shows that 

there is constancy in that which is termed the mass of matter. 

Mass 

Without entering into any discussion of the most appropriate or most 

fundamental method of measuring force, we shall assume that we can 

measure forces exerted by bent and stretched springs and similar con- 

* Mackenzie, The haws of Gravitation^ p. 2. 
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trivances independently of the motion they produce. We shall assume 

that, when a given strain is observed in a spring, it is acting with a definite 

force on the body to which it is attached, the force being determined by 

previous experiments on the spring. Let us imagine an ideal experiment 

in which a spring is attached to a certain body, which it pulls horizontally, 

under constraint free from friction. Let the spring be always stretched 

to a given amount as it pulls the body along, so acting on it with constant 

force. Then all experiments and observations go to show that the body 

will move with the same constant acceleration wherever the experiment is 

made. This constancy of acceleration under a given force is expressed by 

saying that the mass of the body is constant. Though the experiment we 

have imagined is unrealisable, actual experiments on the same lines are made 

for us by good chronometers. The balance-wheel of a chronometer moves 

to and fro against the resistance of the hair-spring, and its acceleration is very 

accurately the same for the same strain of the spring at the same temperature 

in different latitudes. The weight of the balance-wheel decreases by 3 in 

1000 if the chronometer is carried from London to the Equator. If the 

acceleration under given force increased in the same ratio the rate of the 

chronometer would change by 3 in 2000, or by two minutes per day, and 

the chronometer would be useless for determinations of longitude. Again, 

a tuning-fork, making, say, 256 vibrations per second at Paris at Ih"’ will 

have very accurately the same frequency at the same temperature wherever 

tested. The same portion of matter in the prongs has the same acceleration 

for the same strain, and, presumably, for the same force all the world over. 

This constancy of acceleration of a given body under given force holds 

true likewise whatever the nature of the body exerting the force may be— 

whether it be a bent spring, a spiral spring, air pressing, a string pulling, 

and so on. 

Further experiment shows that the acceleration of a given body is 

proportional to the force acting on it. Thus, in a very small vibration of 

a pendulum the fraction of the weight of the bob tending to restore it to 

its central position is proportional to the displacement, and the simple 

harmonic type of the motion with its isochronism shows at once that the 

acceleration is proportional to the displacement, and therefore to the force 

acting. When a body vibrates up and down at the end of a spiral spring 

we again have simple harmonic motion with acceleration proportional to 

the distance from the position of equilibrium. The variation in the force 

exerted by the spring is also proportional to this distance, or acceleration 

is proportional to force acting. Indeed, elastic vibrations with their 

isochronism go, in general, to prove this proportionality. If, then, we 

accept the view that we can think of forces acting on bodies as being 

measurable independently of the motion which they produce—measurable. 
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say, by the strain of the bodies acting—we have good experimental proof 

that a given portion of matter always has equal acceleration under equal 

force, and that the accelerations under different forces are proportional to 

the forces acting upon it. 

We can now go a step farther and use the accelerations to compare 

different masses. 

Definition of Mass 

The masses of bodies are proportional to the forces producing equal accelerations 

in them. 

An equivalent statement is, that the masses are inversely as the 

acceleration produced by equal forces. It follows from our definition that, 

if equal accelerations are observed in different bodies, then the masses are 

proportional to the forces acting. 

Observation and experiment further enable us to say that: 

The masses of bodies are proportional to their weights at the same point. To 

prove this it is only necessary to show that all bodies have equal acceleration 

at the same place when acted on by their weights alone—to show, in fact, 

that the quantity always denoted by g is constant at the same place. 

A very simple though rough experiment to prove this consists in 

tying a piece of iron and a piece of wood to the two ends of a thread and 

putting the thread across a horizontal ring so that the two weights 

depend at the same height above the floor. The thread is now burnt 

in the middle of the ring and the iron and wood begin to fall at the same 

instant. They reach the floor so nearly together that only a single bump 

is heard. If the surfaces presented to the air are very different the air 

resistance may interfere with the success of the experiment. But the more 

the air resistance is eliminated the more nearly is the time of fall the same. 

Thus, if a penny and a sheet of paper are placed on a board some height 

above the floor, and if the board is suddenly withdrawn, the penny falls 

straight while the paper slowly flutters down. Now crumple up the paper 

into a little ball and repeat the experiment, when the two reach the ground 

as nearly as we can observe together. 

Newton (Principiuy Book III., Prop. 6) devised a much more accurate 

form of the experiment, using the pendulum, in which any difference of 

acceleration would be cumulative, and suspending in succession equal 

weights of various kinds of matter. He says (Motte's translation): 

“It has been, now of a long time, observed by others, that all sorts of heavy 
bodies (allowance being made for the inequality of retardation, which they suffer from 
a small power of resistance in the air) descend to the Earth from equat heights in equal 
times; and that equality of times we may distinguish to a great accuracy, by the help 
of pendulums. I tried the thing ki gold, silver, lead, glass, sand, common salt, wood, 
water, and wheat. I provided two wooden boxes, round and equal. X filled the one 
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witli wood, and suspended an equal weight of gold (as exactly as I could) in the centre 
of oscillation of the other. The boxes hanging by equal threads of eleven feet, made 
a couple of pendulums perfectly equal in weight and figure, and equally receiving the 
resistance of the air. And placing the one by the other, I observed them to play 
together forwards and backwards, for a long time, with equal vibrations. And 
therefore the quantity of matter in the gold (by Cor. 1 and 6, prop. 24, book 2) was 
to the quantity of matter m the wood, as the action of the motive force (or vis mo/rix) 
upon all the gold, to the action of the same upon all the wood; that is, as the weight of 
the one to the weight of the other. And the like happened in the other bodies. By 
these experiments, in bodies of the same weight, I could manifestly have discovered a 
difference of matter less than a thousandth part of the whole, had any such been.” 

Newton here uses “quantity of matter” where we should now say 

“mass.” Bessel (Berlin Ahh.y 1830, Ann, Pogg.y xxv. 1832, or Memoires 

relatifs a la Physique^ v, p. 71) made a series of most careful experiments 

by Newton’s method, fully confirming the conclusion that weight at the 

same place is proportional to mass. 

Constancy of Mass 

The experiments which have led to the conclusion that weight at the 

same place is constant now gain another significance. They show that the 

mass of a given portion of matter is constant, whatever changes of position, 

of form, or of chemical or physical condition it may undergo. 

The study of nuclear physics has produced evidence that there is no 

essential difference between mass and energy. Experiments on the artificial 

transmutation of atoms indicate that a disappearance of mass can t'^ke place 

accompanied by an equivalent appearance of energy. The fantastic value 

of the factor (ergs per gram = 9 x 10^®) for the conversion of mass to energy 

explains why a loss of mass has never been observed in ordinary chemical 

processes. 

When we “weigh” a body by the common balance, say, by the counter¬ 

poise method, we put it on the pan, counterpoise it, and then replace it by 

bodies from the set of “weights” having an equal weight. 

But our aim is not to find the weight of the body, the pull of the earth 

on it. We use the equality of weight possessed by equal masses at the same 

point of the earth’s surface to find its mass. In buying matter by weight 

we are not ultimately concerned with weight but with mass, and we expect 

the same mass in a pound of it whether we buy in London or at the Equator. 

A set of weights is really a set of masses, and when we use one of them we 

are using it as a mass through its weight. 

Unit of Mass 

Wc can make a definite unit of mass by fixing on some piece of matter 

as the standard and saying that it contains one unit or so many units. So 

long as wc arc careful that no portion of the standard piece of matter is 
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removed and that no addition is made to it, such a unit is both definite and 

consistent. 

In this country the unit of mass for commercial purposes is the piece of 

platinum kept at the Standards Office at Westminster, marked “P.S. 

1844 1 lb.’’ and called the Imperial Avoirdupois Pound. But for scientific 

purposes all over the world the unit of mass is the gramme, the one- 

thousandth part of the mass of the piece of platinum-iridium called the 

‘‘Kilogramme-International,” which is kept at Paris. Copies of this 

kilogramme, compared either with it or with previous copies of it, are now 

distributed throughout the world, their values being known to less, perhaps, 

than (H)l mgm. For example, the copy in the Standards Office at West¬ 

minster is certified to be 

1*000000070 kgm. 

with a probable error of 2 in the last place. 

According to a comparison carried out in 1883, the Imperial pound 

contains 

453*5024277 grammes, 

though Parliament enacted in 1878 that the pound contained 

453*59245 grammes. 

Of course one piece of matter only can be the standard in one system of 

measurements, and the enactment of 1878 only implies that we should use 

a different value for the kilogramme in England from that used in France, 

The difference is, however, quite’negligible for commercial purposes. 

An interesting discussion on the history and construction of standards 

should be consulted in Proc, Roy, Soc, A. 186, p. 152, 1946. 



CHAPTER 11 

THE ACCELERATION OF GRAVITY. ITS 
VARIATION AND THE FIGURE OF THE 

EARTH 

Contents.—Early History—Pendulum Clock—Picard's Experiments—Huygens’ 
Theory—Newton’s Theory and Experiments—Bouguer’s Experiments—Bernouilli’s 
Correction for Arc—Experiments of Borda and Cassini—Kater’s Convertible Pendulum 
—Bessel’s Experiments and his Theory of the Reversible Pendulum—Repsold’s 
Pendulum—Yielding of the Support—Defforges’ Pendulum—Variation of Gravity 
over the Earth’s Surface—Richer—Newton’s Theory of the Figure of the Earth— 
Measurements in Sweden and Peru—Bouguer’s Correction to Sea-level—Clairaut’s 
Theorem—Kater and Sabine—Invariable Pendulum—Airy’s Hydrostatic Theory— 
Faye’s Rule—Indian Survey-Formula for ^ in any Latitude—Von Sterneck’s Half- 
second Pendulums—His Baryineter—Gravity Balance of Threlfall and Pollock—The 
Hotvos Balance. 

We shall describe in this and the following chapter the methods of measuring 

two quantities; the acceleration of falling bodies due to the earth, at its 

surface (the quantity always denoted by g); and the acceleration due to unit 

mass at unit distance (the quantity known as the gravitation constant and 

denoted by G). The two may be measured quite independently, but yet 

they are closely related in that ^ is the measure of a particular case of gpavita- 

tion, while G is the expression of its general measure. The two together 

enable us to find the mass and therefore the mean density of the earth. 

The Acceleration of Gravity * 

We shall briefly trace the history of the methods which have been used 

in measuring for in so doing we can set forth most clearly the difficulties 

to be overcome and realise the exactitude with which the measurement can 

now be made. We shall then give some account of the experiments made 

to determine the variations of gravity and the use of the knowledge so 

gained to determine the shape of the earth. 

Early History 

The first step in our knowledge of the laws of falling bodies was taken 

about the end of the sixteenth century, when Stevinus, Galileo, and their 

* A collection of the most important original papers on the pendulum constitutes 
vols. iv and v. of Mimoires relatifs d la Physique. It is prefaced by an excellent history of the 
subject by M. Wolf, and contains a bibliography. The fifth volume of The G. T. Survey of 
India consists of an account of the j>cndulum operations of the survey, with some important 
memoirs. In the Journal de Physique^ vii. 1888, arc three important articles by Commandant 
Deffbrges on the theory of the pendulum, concluding with an account of his own pendulum. 
The description given in this chapter is based on these works. 
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contemporaries were laying the foundations of the modern knowledge of 

mechanics. Stevinus, the discoverer of the Triangle of Forces and of the 

theory of the Inclined Plane, and Galileo, the founder of Dynamics, were 

both aware that the doctrine then held that bodies fall with rapidity pro¬ 

portional to their weight was quite false, and they asserted that under the 

action of their weight alone all bodies would fall at equal rates. They 

pointed out that the different rates actually observed were to be ascribed to 

the resistance of the air, which has a greater effect on the movement of light 

than of heavy bodies of equal size. There is an interesting but discredited 

story that Galileo made an experiment to verify this fact by dropping bodies 

of different weights from the top of the Leaning Tower of Pisa, and showing 

that they reached the ground in the same time. The air-pump was not yet 

invented, so that the later verification by the “guinea and feather” was not 

then possible. But Galileo did not stop with this experiment. He made 

the progress of dynamics possible by introducing the conception of equal 

additions of velocity in equal times—the conception of uniform acceleration. 

His first idea was that a constant force would give equal additions of velocity 

in equal distances traversed, but investigation led him to see that this idea 

was untenable, and he then enunciated the hypothesis of equal additions 

in equal times. He showed that, by this hypothesis, the distance traversed 

is proportional to the square of the time. Not content with mere mathe¬ 

matical deductions, he made experiments on bodies moving down inclined 

planes, and demonstrated that the distances traversed were actually pro¬ 

portional to the squares of the times-7-/,^., that the acceleration was uniform. 

By experiments with pendulums falling through the arc of a circle to the 

lowest point, and then rising through another arc, he concluded that the 

velocity acquired in falling down a slope depends only on the vertical height 

fallen through and not upon the length of the slope, or, as we should now 

put it, that the acceleration is proportional to the cosine of the angle of the 

slope with the vertical. He thus arrived at quite sound ideas on the accelera¬ 

tion of falling bodies and on its uniformity, and from his inclined plane 

experiments could have obtained a rough approximation to the quantity 

we now denote by g. But Galileo had no accurate method of measuring 

small periods of time in seconds. The pendulum clock was not as yet 

invented, and he made merely relative measurements of the time intervals 

by determining in his experiments the quantity of water which flowed 

through a small orifice of a vessel during each interval. 

To Galileo we also owe the foundation of the study of pendulum 

vibrations. The isochronism of the pendulum had been previously 

observed by others, but Galileo rediscovered it for himself, and showed by 

further experiment that the times of vibration of different simple pendulums 

are proportional to the square roots of their lengths. He also used the 
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pendulum to determine the rate of beating of the pulse and recognised the 

possibility of employing it as a clock regulator. He did not publish his 

ideas on the construction of a pendulum clock, and they were only discovered 

among his papers long after his death. 

From Galileo, therefore, we derive the conception of the appropriate 

quantity to measure in the fall of bodies, the acceleration, and to him we 

owe the instrument which as a free pendulum gives us the acceleration of 

fall, and, as a clock regulator, provides us with one of the best means of 

determining the time of fall. 

Soon after Galileo’s death, Mersenne made, in 1644, the first determina¬ 

tion of the length of a simple pendulum beating seconds, and a little later 

he suggested as a problem the determination of the length of a simple 

pendulum equivalent to a given compound pendulum. 

Pendulum Clock 

But it was only with the invention of the pendulum clock by Huygens 

in 1657 that the second became an interval of time measurable with con¬ 

sistency and case. At once the new clock was widely used. Its rate could 

easily be determined by star observations, and determinations of the length 

of the seconds pendulum by its aid became common. 

Picard’s Experiment 

In 1669 Picard determined this length at Paris, using a copper ball an 

inch in diameter suspended by an aloe fibre from jaws. This suspension 

was usual in early work, the aloe fibre being unaffected to any appreciable 

extent by moisture. Picard’s value was 36 inches lines Paris measure. 

The Paris foot may be taken as or T065 English feet, and there are 

12 lines to the inch, so that the length found was 39*09 English inches. 

Picard states that the value had been found to be the same at London and 

at Lyons. 

Huygens’ Theory 

In 1673 Huygens propounded the theory of the cycloidal pendulum, 

proving its exact isochronism, and he showed how to construct such a 

pendulum by allowing the string to vibrate between cycloidal cheeks. He 

determined the length beating seconds at Paris, confirming Picard’s value, 

a 
and from the formula which we now put in the form ^ — he found - the 

2 

distance of free fall in one second, the quantity which was at first used, 

instead of the full acceleration we now employ. His value was 15 ft. 1 in. 

li lines, Paris measure, which would give ^ = 32*16 English feet 
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Huygens at the same time gave the theory of uniform motion in a 

circle and the theory of the conical pendulum, and above all in importance 

he founded the study of the motion of bodies of finite si2:e by solving 

Mersenne’s problem and working out the theory of the compound pendulum. 

He discovered the method of determining the centre of oscillation and 

showed its interchangeability with the centre of suspension. 

Newton's Theory and Experiments 

Newton in the Prinetpia made great use of the theory of the pendulum. 

He there for the first time made the idea of mass definite, and by his pendulum 

experiments {Principia^ sect, vi.. Book II., Prop. 24), he proved that mass is 

proportional to weight. He used pendulums too, to investigate the 

resistance of the air to bodies moving through it, and repeated the pendulum 

experiments of Wren and others, by which the laws of impact had been 

discovered. But his great contribution to our present subject was the 

demonstration, by means of the moon’s motion, that gravity is a particular 

case of gravitation and acts according to the law of inverse squares, the 

attracting body being the earth. In Book III., Prop. 4, he calculates the 

acceleration of the moon towards the earth and shows that, starting from 

rest with this acceleration, it would fall towards the earth 15 ft. 1 in. If, lines 

(Paris) in the first minute. If at the surface of the earth, 60 times nearer, the 

acceleration is 60^ times greater, the same distance would here be fallen 

through in one second, a distance almost exactly that obtained by Huygens’ 

experiments. 

In a later proposition (37) he returns to this calculation, and now, 

assuming the law of inverse squares to be correct, he makes a more exact 

determination of the moon’s acceleration, and from it deduces the value 

of gravity at the mean radius of the earth in latitude 45°. Then by his 

theory of the variation of gravity with latitude, of which we shall give 

some account below, he finds the value at Paris. He corrects the value 

thus found for the centrifugal force at Paris and (in Prop. 19) for the air 

displaced, which he takes as of weight of the bob used in the 

pendulum experiments, and finally arrives at 15 ft. 1 in. IJ lines (Paris), 

differing from Huygens’ value by about 1 in 7500. 

Bouguer's Experiments 

Though Newton was thus aware of the need of the correction for the 

buoyancy of the air, it does not appear to have been applied again until 

Bouguer made his celebrated experiments in the Andes in 1737. These are 

especially interesting in regard to the variations of gravity, but we may here 

mention some important points to which Bouguer attended. While his 
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predecessors probably altered the length of the pendulum till it swung 

seconds as exactly as could be observed, Bouguet introduced the idea of an 

“invariable pendulum,” making it always of the same length and observing 

how long it took to lose so many vibrations on the seconds clock. For this 

purpose the thread of the pendulum swung in front of a scale, and he noted 

the time when the thread moved past the centre of the scale at the same 

instant that the beat of the clock was heard. Here wc have an elementary 

form of the “method of coincidences,” to be described later. He used, 

hot the measured length from the jaw suspension to the centre of the bob, 

which was a double truncated cone, but the length to the centre of oscillation 

of the thread and bob, and he allowed for change of length of his measuring- 

rod with temperature. He also assured himself of the coincidence of the 

centre of figure with the centre of gravity of the bob by showing that the 

time of swing was the same when the bob was inverted. He determined 

the density of the air by finding the vertical height through which he must 

carry a barometer in order that it should fall one line, and he thus estimated 

the density of the air on the summit of Pichincha at that of the copper 

bob of his pendulum. Applying these corrections to his observations he 

calculated the length of the seconds pendulum />/ pacuo. 

Correction for Arc 

In 1747, D. Bcrnouilli showed how to correct the observed time of 

vibration to that for an infinitely small arc of swing. The observed time is 

to a first approximation longer than that for an infinitely small arc in the 

ratio 1 + where a is the amplitude of the angle of swing.* The correction 

has to be modified for the decrease in amplitude occurring during an 

observation. 

Experiments of Borda and Cassini 

The next especially noteworthy experiments are those by Borda and 

Cassini made at Paris in 1792 in connection with the investigations to 

determine a new standard of length, when it was still doubtful whether the 

seconds pendulum might not be preferable to a unit related to the dimensions 

of the earth. The form of pendulum which they used is now named after 

Borda. It consisted of a platinum ball nearly inches in diameter, hung 

by a fine iron wire about 12 Paris feet long. It had a half-period of about 

* The observed lime for an amplitude a can be shown to be equal to 

where Tq is the time for an infinitely small arc of swing. 
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two seconds. The wire was attached at its upper end to a knife edge—the 

advantages of a knife-edge suspension having been already recognised— 

and the knife edge and wire-holder were so formed that their time of swing 

alone was the same as that of the pendulum. In calculating the moment of 

inertia, they could therefore be left out of account. At the lower end the wire 

was attached to a shalh^w cup with the concavity downwards, and the ball 

exactly fitted into this cup, being made to adhere to it by a little grease. 

The ball could therefore be easily and exactly reversed without altering 

the pendulum length, and any non-coincidence of centre of gravity and 

centre of figure could be eliminated by taking the time of swing for each 

position of the ball. The pendulum was hung in front of a seconds clock, 

with its bob a little below the clock bob, and on the latter was fixed a black 

paper with a white X-shaped cross on it. The vibrations were watched 

through a telescope from a short distance away, and a little in front of the 

pendulum was a black screen covering half the field. When the pendulums 

were at rest in the field the edge of this screen covered half the cross and half 

the wire. When the swings were in progress the times were noted at which 

the pendulum wire just bisected the cross at the instant of disappearance 

behind the screen. This was a “coincidence,’' and, since the clock bob 

made two swings to one of the pendulum, the interval between two successive 

“coincidences” was the time in which the clock gained or lost one complete 

vibration or two seconds on the wire pendulum. The exact second of a 

coincidence could not be determined but only estimated, as for many seconds 

the wire and cre^ss appeared to pass? the edge together. But the advantage 

of the method of coincidences was still preserved, for it lies in the fact that 

if the uncertainty is a small fraction of the interval between two successive 

coincidences the error introduced is a very much smaller fraction of the time 

of vibration. For, suppose that the wire pendulum makes n half swings 

while the clock makes 2// + 2. If the clock beats exact seconds the time of 

vibration of the wire pendulum is 

/ 
2/7 + 2 

n 

1 
2 1+- 

If there is a possible error in the determination of each of two successive 

coincidences of m seconds, or at the most of Im in the interval of 2/7 + 2 

seconds, the observed time might be 

/-2 1 + 
n±m, 

-2{1 + ■ 1+ - )}-2 1 +- + 
I 

In one case Borda and Cassini employed an interval of 2/7™ 3000 seconds, 

and found an uncertainty not more than 30 seconds for the instant of 

coincidence. Thus 
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w 30 ^ 1 

ri^ " 1500-* “ 75()0()’ 

Now, as they observed for about four hours, or for five intervals in succession, 

the error was reduced to jj, or <^f the value of /. Practically the 

method of coincidences determined the time of vibration of the pendulum 

in terms of the clock time with sufficient accuracy, and the responsibility for 

error lay in the clock. The pendulum was treated as forming a rigid 

system, and the length of the equivalent ideal simple pendulum was calculated 

therefrom. Corrections were made for air displaced, for arc of swing, and 

for variations in length with temperature. 

The final value obtained was: Seconds pendulum at Paris 

= 440-5593 lines (Paris). As the metre = 443-296 Paris lines, 

this gives 993-53 mm., and, corrected to sea-level, it gives 

993-85 mm. 

Kater’s Convertible Pendulum 

The difficulties in measuring the length and in calculating 

the moment of inertia of the wire-suspended or so-called simple 

pendulum led Prony in 1800 to propose a pendulum employing 

the principle of interchangeability of the centres of oscillation and 

suspension. The pendulum was to have two knife edges turned 

inwards on opposite sides of the centre of gravity, so that it could 

be swung from either, and was to be so adjusted that the time 

of swing was the same in both cases. The distance between 

the knife edges would then be the length of the equivalent simple 

pendulum. Prony’s proposal was unheeded by his contempor¬ 

aries, and the paper describing it was only published eighty years 

later.* 

In 1811, Bohnenberger made the same proposal, and again 

in 1817 Captain Kater independently hit on the idea, and for 

the first time carried it into practice, making his celebrated 

determination of g at London with the form of instrument 

since known as “Kater’s convertible pendulum.” This pendu¬ 

lum is shown in Fig 1. On the rod are two adjustable weights, 

Kater*s ^ larger weight w is moved about until the 
Convertible times of swing from the two knife edges are nearly 
Pendulum, equal, when it is screwed in position. Then s is moved by 

means of a screw to make the final adjustment to equality. Kater 

determined the time of vibration by the method of coincidences, his 

use of it being but slightly different from that of Borda. A white circle 

* Mimoires relaiifs d la Physique^ iv, p. 66. 
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on black paper was fastened on the bob of the clock pendulum; the con¬ 

vertible pendulum was suspended in front of the clock, and when the two 

were at rest the tail-piece t of the former just covered the white circle on the 

latter as viewed by a telescope a few feet away. A slit was made in the focal 

plane of the eyepiece of the telescope just the width of the images of the 

white patch and of the pendulum tail. A coincidence was the instant during 

an observation at which the white circle was quite invisible as the two 

pendulums swung past the lowest point together. A series of swings were 

made, first from one knife-K^dge and then from the other, each scries lasting 

over four or five coincidences, the coincidence interval being about 500 

seconds. The fine weight was moved after each scries till the number of 

vibrations per twenty-four hours only differed by a small fraction of one 

vibration whichever knife edge was used, and then the difference was less 

than errors of observation, for the time was sometimes greater from the one, 

sometimes greater from the other. The mean time observed when this 

stage was reached was corrected for amplitude, and then taken as the time 

of the simple pendulum of length equal to the distance between the knife 

edges, this distance being carefully measured. A correction was made for 

the air displaced on the assumption that gravity was diminished thereby in 

the ratio of weight of pendulum in air to weight of pendulum in vacuo. The 

value was then corrected to sea-level. The final value of the length of the 

seconds pendulum at sea-level in the latitude of London was determined to 

be 39T3929 inches.* 

Bessel’s Experiments and his Theory of the Reversible Pendulum 

In 1826 Bessel made experiments to determine the length of the seconds 

pendulum at Koenigsberg. He used a wire-suspended pendulum, swung 

first from one point and then from another point, exactly a “ Toise of Peru ’’ f 

higher up, the bob being at the same level in each case. Assuming that the 

pendulums are truly simple, it will easily be seen that the difference in the 

squares of the times is the square of the time for a simple pendulum of 

length equal to the difference in lengths, and therefore the actual length need 

not be known. But the practical pendulum departs from the ideal simple 

type, and so the actual lengths have to be known. As, however, they enter 

into the expression for the difference of the squares of the times, with a very 

small quantity as coefficient, they need not be known with such accuracy as 

* The experiments are described in a paper in the Phil, Trans, for 1818, “7\n account of 
experiments for determining the length of the pendulum vibrating seconds in the latitude 
of London/* and in a paper in the Poil. Trans, for 1819, “Experiments for determining the 
variations in the length of the pendulum vibrating seconds/* Kater applies further correc- 
tions and gives the above value. 

f The “Toise of Peru” was a standard bar at the Paris Observatory, 6 Paris feet or 
about 1949 millimetres long. 
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their differences. Bessel took especial care that this difference should be 

accurately equal to the toise. At the upper end, in place of jaws or a knife 

edge, he used a horizontal cylinder on which the wire wrapped and un¬ 

wrapped. lie introduced corrections for the stiffness of the wire and for the 

want of rigidity of connection between bob and wire. The necessity for the 

latter correction was pointed out by Laplace, who showed that the two, bob 

and wire, could not move as one piece, for the bob acquires and loses angular 

momentum around its centre of gravity, which cannot be accounted for by 

forces passing through the centre, such as would*alone act if the line of the 

wine, produced, always passed through the centre. In reality the bob turns 

through a slightly greater angle than the wire, so that the pull of the wire 

is now on one side and now on the other side of the centre of gravity. The 

correction is, however, small if the bob has a radius small in comparison 

with the length of the wire. 

If / is the length of the wire, r the distance of the centre of gravity of 

the bob from the point at which the wire is attached to it, and k the radius 

of gyration of the bob about an axis through the centre of gravity; then, 

neglecting higher powers than the equivalent simple pendulum can be 

shown to be 

, /k^ 
/ -f r 4- - -I- ; , 

/ f r r(/ + ry 

the last term being due to the correction under consideration. As an 

illustration, suppose the bob is a sphere of 1 inch radius and the wire 

is 38 inches long; then the equivalent simple pendulum in inches is 

39 +'010256-f ■000102, and the last term, 1/400000 of the whole length, 

need only to be taken into account in the most accurate work. 

Bessel also made a very important change in the air correction. The 

effect of the air on the motion may be separated into three parts— 

(1) The buoyancy, the weight of the pendulum being virtually 

decreased by the weight of the air which it displaces. 

(2) The flow of the air, some of the air moving with the pendulum, 

and so virtually increasing its mass. 

(3) The air drag, a viscous resistance which comes into play between 

the different layers of air, moving at different rates, a resistance trans¬ 

mitted to the pendulum. 

As far back as 1786 Du Buat had pointed out the existence of the second 

effect, and had made experiments with pendulums of the same length and 

form, but of different densities, to determine the extra mass for various 

shapes. Bessel, not knowing Du Buat’s work, reinvestigated the matter, 

and again by the same method determined the virtual addition to the mass 

for warious shapes, and among others for the pendulum he used. 
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The viscous resistance was first placed in its true relation by Stokes’ 

investigations on Fluid Motion in 1847. In pendulum motion we may 

regard it as tending to decrease the amplitude alone, for the effect on the 

time of vibration is inappreciable. We may represent its effect by introduc¬ 

ing a term proportional to the velocity in the equation of motion, which 
thus becomes 

0 vd + aO =0. 
^ 4 

Now fji^ must be greater than v^/4 for oscillations to take place and if the 

time / is reckoned from an instant when ^^0 then the solution of this 

equation is 

0 == Ae ^ sin p/. 

where p and A is a constant. 

The period is T = - 

Approximately T == or the time is increased by the 

viscosity in the ratio 1 H-: I, 
8^ 

or since — (nearly), in the ratio 1 + 
a^TT^* 

To see the order of this alteration, suppose that represent two 

succeeding amplitudes on opposite sides of the centre— 

Pj = A‘e and p^ = Ae " • 

The logarithmic decrement A =Iog-“(4-4)* 
P2 2 

1 • J and since ~ -T and 4 = “T, 
4 4 

A 
vT 

Now in one of Kater’s experiments the arc of swing decreased in 

about 500 seconds from 1*41° to 1-18®, or in the ratio 1*195: 1. 
B 
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» 

Then 
\P2^ 

whence A-- 

-M95 and 50()A-log, M95-(M78, 

.... VT2 A2 

327r2 27r2 
= 6 X 10“® about. 

In Borda's pendulum the effect was about the same—one that is 

practically quite negligible. 

Bessel also used the pendulum to investigate afresh the correctness of 

Newton’s proof that mass is proportional to weight, carrying out a series 

of experiments which still remain the best on the subject. But Bessel’s 

chief contribution to gravitational research consisted of his theory of the 

“reversible pendulum.” He showed that if a pendulum were made 

symmetrical in external form about its middle point, but loaded at one 

end, to lower the centre of gravity, and provided with two knife edges, 

like Kater’s pendulum, one very nearly at the centre of oscillation of the 

other, the length of the seconds pendulum could be deduced from the 

two times without regard to the air effects. Laplace had shown that the 

knife edges must be regarded as cylinders, and not mere lines of support. 

Bessel showed, however, that if the knife edges were exactly equal 

cylinders their effect was eliminated by the inversion, and that if they were 

different cylinders their effect was eliminated by interchanging the knife 

edges, and again determining the times from each—the “erect” and 

“inverted” times as we may conveniently term them. 

We shall consider these various points separately. 

In the first place, Bessel showed that it was unnecessary to make the 

erect and inverted times exactly equal. For if Tj and T2 be these times, 

if h-^ and be the distances of the centre of gravity from the two knife 

edges, and if k be the radius of gyration round an axis through the centre of 

gravity, the formula for the compound pendulum gives 

At 2 At 2 _ 

477* ^ ’ 477* ^ 

Multiply respectively by subtract and divide ty and we 

have 

477* 
=+ ^2* 

Let us put 
T 2 _ A T 2 

We shall term T the computed time. We see that it is the time corresponding 

to a length of simple pendulum It niay be expressed in a more 

convenient form, thus: 
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2 2 

then Tj* —r^ T^* =r^ and substituting in T® we get 

/a-4 
r-® +^‘ 

A+>^2 Ti2~T,2 

A "A 
+ 

A ""A 

Now A+A measurable with great exactitude, but A A» 

therefore A ~ A> cannot be determined with nearly such accuracy. The 

method of measuring them consists in balancing the pendulum in horizontal 

position on a knife edge and measuring the distance of the balancing knife 

edge from each end knife edge. But the formula shows that it is not 

necessary to know A “ A exactly, for it only occurs in the coefficient of 

- Tg^, which is a very small fraction of + Tg*^. Knowing, then, A + A 

exactly and A “ A approximately, we can compute the time corresponding to 

A + A times in the erect and inverted positions and avoid the 

troublesome series of trials which Kater made before obtaining exact 

equality for them from each knife edge. 

Now let us consider the air effect. Take first the erect position of the 

pendulum. We may represent the buoyancy by an upward force applied 

at the centre of gravity of the displaced air, and equal to its weight mg. 

Let this centre of gravity be distant s from the centre of suspension. 

The mass^ of air flowing with the pendulum will have no effective weight, 

since it is buoyed up by the surrounding air. It is merely an addition to 

the mass moved and serves to increase the moment of inertia of the 

pendulum. Let us represent it by the addition of a term when the 

pendulum is erect. 

Then we have 
477* 

2 + K^) + m'd^ _ M(A2 + /c2) + m'd^^ 

M A - M A 
1 + 

MA 

A^ + ^ A^ + ^ 
+—— •—+—, 

neglecting squares and products of "" and -, since in practice these 
MM 

quantities arc of the order 10~^. 

Now invert and swing from an axis near the centre of oscillation. 

The value of m is the same, but its centre of gravity may be at a different 

distance from the new suspension, say j*'. The air moving may be different, 

so that we must now put m'^d^ instead of m'd^. We have then 

gT^^ A^ + + ic® ms' m"d^ 
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If we put ^ 

small terms containing ^ 

as an approximation in the coefficients of the 

the computed time T is given by 

4,7* 4n*r hi-b^ j M -A^)' 

But if wc make the external form of the pendulum symmetrical about 

its middle point, so that the two knife edges are equidistant from the centre 

of figure, then / and ~m'\ and 

Then the air effect is eliminated in the computed time. It is necessary 

here that the barometer and thermometer should 

give the same readings in each observation; if 

not, corrections must be made; but, as they will 

be very small, an exact knowledge of their value 

is unnecessary. 

In investigating the effect of the cylindrical 

form of the knife edges we shall for Simplicity 

suppose them each to have constant curvature, the 

radius of the erect one being that of the in¬ 

verted one p2- If Eig. 2, is the centre of 
curvature of the knife edge, O the point of con¬ 

tact, G the centre of gravity, then CG - 

and the work done is the same as if G were moved 

Fig. 2,—Effect of cylindrical in a circle of radius + pi, since the horizontal 
Form of Knife Edge. travel of C does not affect the amount of work. 

The instantaneous centre of motion is the point of contact O. The kinetic 

energy is therefore 

6'^ 

But OG2 =■ OC2 + CG2 - 20C . CG cos 6 

-Pi^+(pi +biy - 2pi(pi j approximately 

= (Pi -Pl)® +Pl(Px +^l)^ 

neglecting pib^B^ and smaller quantities. 

Then the kinetic energy is + k^) 



ACCELERATION OF GRAVITY 21 

The work done from the lowest point is 

+Pi)(l - cos 0) =Mg(4 +pi)^ 

Hence the erect time is given by * 

477^ bi + Pj bi 

the inverted time is given by 

Pi 

'h. 
and 

A2+K-'! 

1 - 
P2 

h,) 47T^ 4 
In the computed time we may put in the coefficient of the small 

quantities pi and p.^, and therefore 

Now interchange the knife edges. Assuming that 

no alteration is made except in the interchange of 

and p2, the computed time T' is given by 

adding the two last equati(jns together and dividing 

by 2, 
g T2+T'2 

2 ^ 
-bi +^2* 

Repsold’s Pendulum 

Bessel did not himself construct a pendulum to 

fulfil these conditions, but, after his death, Repsold in 

1860 devised a form with interchangeable knife edges 

and of symmetrical form now known as Repsold’s 

Reversible Pendulum (Fig. 3), in which he carried out 

Bessel’s suggestions. The stand for the instrument was, 

perhaps fortunately, far from sufficiently firm, for as the 

pendulum swung to and fro the stand swung with it. 

Attention was directed to the investigation of the source of error. Its 

existence was already known, but its magnitude was not suspected till 

Peirce and others showed how seriously it might affect the time. 

* If in simple harmonic motion the kinetic energy at any point is and the work 

from the centre of swing is then the periodic time is easily seen to be 2Tr^^’ 

Fig. 3.—Rcpsold’s Re¬ 
versible Pendulum. 
The Russian Pen¬ 
dulum used in the 
Indian Survey. 
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Yielding of the Support 

The centre of gravity moves as if all the forces acted on the whole mass 

collected there, so that if we find the mass acceleration of the centre of 

gravity; and subtract the weight, M^, we have the force due to the support. 

Reversing, we have the force on the support. 

The acceleration of the centre of gravity is h-Jd along the arc and 

towards the point of support. Resolving these horizontally and vertically, 

horizontal acceleration = h^O cos 0 - sin 0 ~approximately; 

vertical acceleration hJS sin 6 + cos 6 = h^OB + approximately; 

but O ’ 
gh,B 

Then the horizontal force on the stand is Mje B 

h^B . 
— since 

If a is the amplitude of 0, then ^ ~ {c^ ~ 02) 
-J- 

and the vertical force upwards, on the pendulum 

C 

Fig. 4.—Yielding 
of the Support. 

j6i202 

Now in finding the yielding of the stand we only 

want the varying part of this. Reversing it, the variation 

in the force on the stand 

= 2Mj- = ^ ( 

which is of the socond order in 0, and it can be shown 

that the effect on the time of swing is negligible in com¬ 

parison with that of the horizontal yielding. 

Let the yielding to a horizontal force be e per dyne. 

Let OC (Fig. 4) be the vertical position, AG the position 

when displaced through angle 0. 

Then the yielding OA 

Produce GA to O', then OO' =»OA/0 w 
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or the instantaneous centre is raised above O, and the centre of gravity is 

moving in a circle of radius 

K 

Let the instantaneous centre be raised 

is inverted. 

Hence the erect time is given by 

e ,-~g when the pendulum 
^1 ■^"2 

the inverted time by 

47r^ ^2 + ^2 ^ ^ ^2 + 

and the computed time by-+ eMg, since /?j^d2 = 
47r^ 

We see that is the horizontal displacement of the support due to 

the weight of the pendulum applied horizontally. 

Defforges’ Pendulums 

Starting from this point, Commandant Defforges introduced a new 

plan to eliminate the effect of yielding, using two convertible pendulums of 

the Repsold type, of equal weight, of different lengths, and with a single pair 

of knife edges, which can be transferred from one to the other. The ratio 

of : hg is made the same for each. 

Let the radii of curvature of the knife edges be denoted by pi p2> 

” 4 fi^st pendulum, b\ + h\ - 4, refer to the second. 

The effect of yielding is the same for each, increasing the length by 8. 

Ixt TT' be their computed times. 

then 

and ^=4 + 8+^v_-^-,0>3-/>2). 

and - r») =A -4 +0>*-Pi)( 
4 

hi hi —h^ 

since ^ the coefficient of - pi disappears, and it is not necessary 
^2 ^2 * 
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to interchange the knife edges on the same pendulum. Hence the pen¬ 

dulums are convertible, and we have 

(T2-r2)=4 -4- 

The United States Coast and Geodetic Survey have constructed a 

pendulum in which the planes are on the pendulum and the knife edges 

on the support. The one disadvantage is the difficulty of so suspending 

the pendulum that the same part of the plane is always on the knife edge, 

but against this is to be set the probable greater accuracy of measurement 

of /j^ 'i-^2 the freedom from the necessity of interchange of knife edge. 

Further, should a knife edge be damaged it can be reground without 

affecting the pendulum, whereas in the ordinary construction regrinding 

really alters the pendulum, which practically becomes a different instrument. 

Variation of Gravity over the Surface of the Earth 

Richer 

The earliest observation showing that gravity changes with change of 

place was made by Richer, at the request of the French Academy of Sciences, 

in 1072. He observed the length of the seconds pendulum at Cayenne, and 

returning to Paris found that the same pendulum must there be lengthened 

li Paris lines, 12 to the inch. 

Newton’s Theory 

This observation waited no long time for an explanation. Newton 

took up the subject in the Principia (Book III., Props. 18-20) and, regarding 

gravity as a terrestrial example of universal gravitation, he connected the 

variation with the form of the earth. He showed first that if the earth is 

taken as a homogeneous mutually gravitating fluid globe, its potation will 

necessarily bring about a bulging at the Equator, for some of the weight of 

the equatorial portion will be occupied in keeping it moving in its daily 

circle while the polar part has but little of such motion. A column, there¬ 

fore, from the centre to the surface must be longer at the Equator than at the 

Pole in order that the two columns shall produce equal pressures at the centre. 

Assuming the form to be spheroidal, the attraction will be different at equal 

distances along the polar and equatorial radii. Taking into account both 

the variation in attraction and the centrifugal action (o i„ of gravity at the 

Equator), Newton calculated the ratio of the axes of the spheroid. Though 

his method is open to criticism, his result from the data used is perfectly 

correct, viz., that the axes are as 230: 229. Taking a lately measured 

value of U of latitude, he found thence the radii, and determined their 
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difference at 17T miles. He then found how gravity should vary over 

such a spheroid, taking centrifugal action into account, and prepared a 

table of the lengths of 1of latitude and of the seconds pendulum for every 

5*^ of latitude from the Equator to the Pole. From his table the pendulum 

length at Cayenne, in latitude 4^" 55', should be 1 line less than at Paris in 

latitude 48° 50'. He assigns part of the difference of this from the diminution 

of 1 f lines observed by Richer to expansion of the scale with higher tempera¬ 

ture near the Equator. 

The Swedish and Peruvian Expeditions 

Newton’s theory of the figure of the earth as depending on gravitation 

and rotation led early in the eighteenth century to measurements of a degree 

of latitude in Peru and in Sweden. If the earth were truly spheroidal, and 

if the plumb-line were everywhere perpendicular to the surface, two such 

measurements would suffice to give the axes a and b, inasmuch as length of 

arc of 1° 1 - € +3e sin 
A + A' 

2 / 
a -h 

3600 sin 1" where e - =^the ellipticity 
a 

and AA' are the latitudes at the beginning and end of the arc.* 

We know now that through local variations in gravity the plumb-line 

is not perpendicular to a true spheroid, but that there are humps and hollows 

in the surface, and many measurements at different parts of the earth are 

needed to eliminate the local variations and find the axes of the spheroid 

most nearly coinciding with the real surface. But the Swedish and Peruvian 

expeditions clearly proved the increase of length of a degree in northerly 

regions, and so proved the flattening at the Poles. These expeditions 

have another interest for us here in that pendulum observations were made. 

Thus Maupertuis, in the northern expedition, found that a certain pendulum 

clock gained 59T seconds per day in Sweden on its rate in Paris, while 

Bouguer and l.a Condamine, in the Peruvian expedition, found that at the 

Equator at sea-level the secemds pendulum was 1-26 Paris lines shorter than 

at Paris. Bouguer’s work, to which wc have already referred, was especially 

important in that he determined the length of the seconds pendulum at three 

elevations: (1) At Quito, which may be regarded as a tableland, the station 

being 1466 toises f above sea-icvel; (2) on the summit of Pichincha, a 

mountain rising above Quito to a height of 2434 toises above sea-level; 

and (3) on the Island of Inca, on the river Esmeralda, not more than thirty 

or forty toises above sea-level. The Equator runs between Quito and the 

third station, and they are only a few miles from it. In space free from 

* Airy, “Figure of Barth,’’ Uncyc. AJe/., p. 102. 
f The toise is (i Paris feet, or 6*395 English feet. 
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matter rising above sea-level gravity might be expected to decrease according 

to the inverse square law starting from the earth’s centre, so that 'i£ hh the 

height above sea-level and r is the earth’s radius, the decrease should be 2/^/r 

station. 
Abore 

Sca-level 
in Toises. 

Observed 
Seconds 

Pendulum 
in Lines. 

Correction 
for Tem¬ 
perature. 

Correction 
for 

Buoyancy. 

Corrected 
Seconds 

Pendulum. 

Fraction 
less than 
at Sea- 
level. 

Fraction 
given by 
Inverse 
Sfiuare 

Law 2 A/r, 

Piohincha . 2484 48870 -05 + 04 438-69 fir wh 

Quito . 1466 438-83 — + *05 438*88 T^Vr rAs 

Isle of Inca — 439-07 + •075 + •06 439-21 — 

of the original value. In the table above, Bouguer’s results arc given. 

In the last column but one is the decrease observed at the upper stations, 
and in the last column the decrease calculated by 2^/r. 

It will be seen that gravity decreased more slowly than by the inverse 

square law. Centrifugal force would act in a contrary way, though, as 

Bouguer showed, by a negligible amount. The excess of gravity, as 

observed, above its value in a free space must therefore he assigned to the 

attraction of the matter above the sea-level. Bouguer obtained for the 

value of gravity on a plateau of height as compared with its value at 

sca-level 

8\ 

2 r A r 

where 8 is the density of the plateau and A the density of the earth. 

This formula, now known as Bouguer’s Rule, seems to have dropped 

out of sight till it was again obtained by Young in 1819, but on its revival 

it was generally employed to reduce the observed value at a station to the 
sea-level value in the same latitude. 

Putting it in the form | 
gs ^ A/ 

3993 
and using the values at Quito and sea-level, A = -—8, 

^ 850 

Bouguer remarked that this result sufficed to show that the density of 

the earth was greater than that of the Cordilleras, and consequently that 

the earth was neither hollow nor full of water, as some physicists had 

maintained. We now know that the value of A so obtained is far too great, 

and shall sec later what is the probable explanation. 
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Clairaut’s Theorem 

In 1743 Clairaut published his great treatise, Thiork de la Figure de la 

Terrey which put the investigation of the figure of the earth on lines which 

have ever since been followed. In this work he takes the surface of the 

earth as a spheroid of equilibrium—such that a layer of water would 

spread all over it, and assumes that the internal density varies so that layers 

of equal density are concentric co-axial spheroids. Denoting gravity at the 

Equator, Pole, and latitude A, by^^,^^,^;^ respectively, and putting m = centri¬ 

fugal force at Equator Ig^, and c =ellipticity = difference of equatorial and 

polar radii / equatorial radius, he shows (1) that 

+»sia^X) (1) 

where « is a constant: (2) that 

So 2 
(2) 

From (1) and (2) we get 
C / \ \ 

a result known as Clairaut’s Theorem. 

Laplace showed that the surfaces of equal density might have any 

nearly spherical form, and Stokes Pljys, PaperSy vol. ii. p. 104), going 

further, showed that it is unnecessary to assume any law of density so long 

as the external surface is a spheroid of equilibrium, for the theorem still 

remains true. 

From Clairaut’s Theorem it follows that, if the earth is an oblate 

spheroid, its ellipticity can be determined from pendulum experiments on 

the variation of gravity without a knowledge of its absolute value, except 

in so far as it is involved in m. And if the theorem were exactly true, 

two relative determinations at stations in widely different latitudes should 

suffice. But here again, as with arc measurements, local variations interfere, 

and many determinations must be made at widely scattered stations to 

eliminate their effect. 

Kater and Sabine. Invariable Pendulums 

During the last half of the eighteenth century much pendulum work 

was carried on, but hardly with sufficient accuracy to make the results of 

value now, and we may consider-that modern research begins with Kater, 

who constructed a number of “ invariable pendulums,” nearly beating secotids, 

and in shape much Hke his convertible pendulum without the reverse knife 
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edge. The principle of ‘‘invariable pendulum^’ work consists in using the 

same pendulum at different stations, determining its time of vibration at 

each, and correcting for temperature, air effect, and height above sea-level. 

The relative values of gravity arc thus known, or the equivalent, the relative 

lengths of the seconds pendulum, without measuring the length or knowing 

the moment of inertia of the pendulum. Kater himself determined the 

length of the seconds pendulum at stations scattered over the British Islands, 

and Sabine, between 1820 and 1825, carried out observations at stations 

ranging from the West Indies to Greenland and Spitsbergen. About the 

same time Frcycinct and Duperry made an extensive series ranging far into 

the Southern Hemisphere, and other observers contributed observations. 

Now, though different pendulums were used, these scries overlapped and 

could be connected together by the observations at common stations; and 

Airy in 1830 {Encyc. Met., “Figure of the Earth”) deduced a value of the 

ellipticity of about ^ g a. 

Breaking down of Bouguer’s Rule 

Subsequent work brought into ever-increasing prominence the local 

divergencies from Clairaut’s formula, and it gradually became evident that 

on continents and on high ground the value of gravity was always less than 

would be expected from ClairauFs formula when corrected by Bouguer’s 

rule, while at the sea coast and on oceanic islands it was greater. ^ 

Indian Survey 

Thus, in the splendid series of pendulum experiments carried out in 

connection with the Indian Trigonometrical Survey between 1865 and 1875 

(G. T. Survey of India, vol. v.) the variations were very marked. In these 

experiments, invariable pendulums, Kater’s convertible and Repsold’s 

reversible pendulum were all used, and observations were made by Basevi 

and Heaviside from More, on the Himalayas, at a height of 15,427 feet, 

down to the sea-level. The series was connected with others by swinging 

the pendulums at Kew before their transmission to India, and very great 

precautions were taken to correct for temperature, and the air effect was 

eliminated by swinging in a vacuum. At More the defect of gravity was 

very marked. 

Airy’s Hydrostatic ” Theory. Faye’s Rule 

Airy {Phil. Trans., 1855, p. 101) had already suggested that elevated 

masses are really buoyed up by matter at their base lighter than the average; 

that in fact they float on the liquid or more probably viscous solid interior 

very much as icebergs float on the sea. If the high ground is in equilibrium, 
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neither rising nor falling, we may perhaps regard the total quantity of matter 

underneath a station as being equal to that at a station at sea-lcvcl in the same 

latitude. This hydrostatic theory has led Faye to suggest that the term 

?>hh 

2 Ar 
in Bouguer’s rule should be replaced by a term only taking into account 

the attraction of the excess of matter under the station above the average 

level of the near neighbourhood, a suggestion embodied in Faye’s rule. 

Work by the American Survey {u'hner. Journ. Science^ March 1896, G. R. 

Putnam) has shown that on the American continent Faye’s rule gives results 

decidedly more consistent than those obtained from Bouguet’s rule. 

By a consideration of the results obtained up to 1880 by the pen¬ 

dulum, Clarke {Geodesy, p. 350) gives as the value of the ellipticity 

^ ... a value almost coinciding with that obtained from measure- 
292-2 ±1-5 ^ 

ments of degrees of latitude. Helmcrt, in 1884, gave as the result of 

pendulum work-^ , and we may now be sure that the value differs very 
299*3 

little from 
3(K) 

Ilelmert {Theorieen der hoheren Geoddsie, Bd. II. p. 241) also gives as the 

value of g in any latitude A, 

=978-00(1 + 0 005310 sin^ A) 

and this may be taken as representing the best results up to the present. 

Von Sterneck’s Half-second Pendulums 

The labour of the determination of minute local variations in gravity 

was much lessened by the introduction by von Sterneck, about 1880, of 

half-second invariable pendulums, and his improved methods of observation 

have greatly increased the accuracy of relative determinations at stations 

connected by telegraph. 

With half the time of swing the apparatus has only one-fourth the 

linear dimensions, and it can be made at once more steady and more portable. 

The size of the pendulum being thus reduced—it is about 10 ihches long— 

it can without much trouble be placed in a chamber which can be exhausted 

and which can be maintained at any desired temperature. Each pendulum 

can therefore be made to give its own temperature and air corrections by 

preliminary observations. The form of the pendulum is shown in Fig. 5. 

The chief improvements in the mode of observation introduced by von 

Sterneck consist, 1st, in the simultaneous comparison with the same clock 

of the swinging of two pendulums at two stations at which gravity is to be 
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compared. For this purpose the two stations are connected by an electric 

circuit containing a half-seconds “break circuit’’ chronometer, which sends 

Fig 6. 

a signal through each station every half-second, and thus clock-rates are of 

little importance. And, 2nd, the method of observing the coincidences of 

the pendulum with the chronometer signals. In the final form this consists 

in attaching a small mirror on the pendulum knife edge (not shown in Fig. 5, 
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which represents an earlier form) perpendicular to the plane of vibration of 

the pendulum, and placing a fixed mirror close to the other and parallel to it 

when the pendulum is at rest. The chronometer signals work a relay, 

giving a horizontal spark, and this is reflected into a telescope from both 

mirrors. When the pendulum is at rest the image of the spark in both 

mirrors appears on the horizontal cross-wire, and when the pendulum is 

vibrating a coincidence occurs when the two images are in this position. 

The method admits of exceedingly accurate determination. We shall see 

later how von Sterneck used the method in gravitation experiments. Here 

it is sufficient to say that he has used it in many local determinations of gravity, 

and that his pendulums have been used without the simultaneous method for 

determinations at various stations in both hemispheres. The American 

Geodetic Survey has adopted very similar apparatus and methods, and it 

appears probable that we shall soon have a knowledge of the variation of 

gravity over the surface of the earth of a far more detailed and accurate kind 

than could possibly be obtained by the older methods. 

Differential Gravity Meters 

Before invariable pendulums were brought to their present accuracy 

and portability, there was some hope that for relative determinations the 

pendulum might be superseded by a statical measurer of gravity which 

would do away with the need for time measurements. Such an instrument 

must essentially consist of a mass supported by a spring, and the variation 

in gravity must be shown by the alteration in the spring due to the alteration 

in the pull of the earth on the mass. The earlier instruments devised for 

the purpose need not be described, for they were quite incapable of the 

accuracy attained by invariable pendulums. The first instrument which 

promised any real success was devised by von Sterneck, and is termed by 

him the Barymeter {Mittheilungen des K, K. Militar-Geog. Tnst,^ Wien, v. 1885). 

Von Sterneck’s Barymeter 

A brass plate P (Fig. 6), 30 cm. 

X 20 cm., is balanced on a knife edge, 

s. Along a diagonal is a glass tube 

terminating in bulbs O and U, 5 cm. 

x6 cm., so that in the equilibrium 

position O is about 25 cm. above U. 

The tube and about \ of each bulb is 

filled with mercury, and above the 

mercury is nitrogen. The apparatus 

is adjusted so that at 0*^ C. and for 

Fig. 6.—Von Sterneck*s Barymeter. 

certain value of gravity the edges 
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of the brass plate are horizontal and vertical, a level W showing when 

this position is attained. If now gravity were to increase, the weight of 

the mercury would be greater, and it would tend to flow from O and 

compress the gas in U. Thus the balance would tilt over to the left, 

and the tilting still further increasing the pressure on U, the flow downwards 

is increased. The instrument can thus be made of any desired sensitiveness, 

and its deflections can be read by scale and measured in the usual way. To 

compensate for changes of temperature, a second tube terminating in smaller 

bulbs 0 and u, each about 6 cm. x 3 cm., is fixed along the other diagonal. 

This contains some mercury, but above the mercury in u is alcohol, and 

only 0 contains nitrogen. If the temperature rises the mercury becomes less 

dense, and on this account it is driven from U to () in the larger tube, but 

still more is it driven in this direction from the fact that the increase of 

pressure of the gas in U is greater than in O. Meanwhile, the alcohol in u 

expanding, drives the mercury in the smaller tube into o, and by suitable 

adjustments of volume the two can be made to balance sufficiently for such 

small temperature variations as will arise when the whole is placed in a box 

surrounded with melting ice, and it is thus that the instrument is used. With 

this instrurnent von Sterncck could detect the change in gravity in going from 

the cellar of a building to a height of 25 metres. 

Threlfall and Pollock’s Quartz-thread Gravity Balance 

In the Phil, 'Frans,, A. 193, 1899, p. 215, Threlfall ancf Pollock describe 

an instrument for measuring variations in gravity statically, which is both 

accurate and portable. 

The essential features of the instrument arc represented in Fig. 7. 

Fig. 7.—Threlfall and Pollock’s Quartz-thread Gravity Balance. 

A and B are two metal rods which can slide along their common 

axis. C is a coach-spring attached to A. H I is a quartz thread 30*5 cm. 

long and *0038 cm. in diameter stretched horizontally between B and C, 
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D is a piece of gilded brass wire soldered to the quartz thread. Its weight is 

•018 gm., its length 5-3 cm., and its centre of gravity is a little to one side of 

the quartz thread. Its weight therefore tends t<j pull it into the vertical 

position and twist the quartz. But such a twist can be put on the quartz 

thread by rotating the arm G, which carries a vernier, that D is brought into 

the horizontal position. For this about three whole turns are required. 

The end of D when in the horizontal position is on the cross-wire of the 

horizontal microscope E. The horizontal position of the brass wire is only 

just stable. If it be twisted a few degrees more the point of instability is 

reached and the wire tends to continue moving round, and would do so but 

for an arrester. The mode of using the instrument consists in determining 

the twist put on the quartz thread by the arm G to bring it into the horizontal 

position. If gravity increases, the moment of the weight of D increases and 

a greater twist is required. To calibrate the instrument the change in 

reading of the vernier on G is observed in passing from one station to another, 

at both of which g is known—the two stations selected being Sydney and 

Melbourne. Of course, temperature corrections are necessary both on 

account of the change in length of D and the change in rigidity of the quartz. 

Preliminary determinations of these were made at one station. For the 

details of the instrument and the mode of using it we refer the reader to the 

original account. 

The Eotvos Balance 

An extremely sensitive instrument for measuring gravity gradients 

was devised by Eotvos in 1896 {Wkd, 59, 385) but its value in in¬ 

dustrial research was not realised for more than a quarter of a century later. 

Since the instrument can be made portable it is very convenient for field 

prospecting for the presence of mineral deposits. It consists of a light 

uniform beam suspended from a torsion head by a long fibre. From one 

end of the beam a small mass is suspended by another long fibre and the 

weight of this mass is counterpoised by distributing, symmetrically about 

the axis of the beam, additional mass at the other end of the beam. 

If the gravitation field about the instrument is not uniform a couple 

will act on the suspended system and, owing to the asymmetrical distribution 

of the suspended mass, it will vary as the instrument is rotated about its 

vertical axis. By means of a scale and telescope fixed to the case of the 

instrument and a concave mirror attached to the beam, the latter can always 

be brought back to a fixed position relative to the case of the balance by 

turning the torsion head. 

In using the balance the instrument is set so that the beam lies in a 

definite direction, say east and west, and the reading of the torsion head is 

noted* The whole instrument is then rotated about its vertical axis through 
c 
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a known angle and the torsion head turned until the beam is brought into 

its original position with respect to the balance case. Since there are five 

unknowns in the working equation, the readings of the torsion head must 

be made for at least five azimuth angles. If is the reading at azimuth 

angle d and r is the reading which would be observed if the gravitation field 

were constant at all points in the neighbourhood of the balance it can be 
shown that 

where A and C are constants of the balance, U is the gravitation potential 

at the place of experiment and x^j and refer to north, east and vertical 

directions respectively. (See Shaw and Lancaster Jones, Proc. Phys, Soc., 
35, J5J; 35, 204.) The five unknowns are 

a^ij' r f)*i3 ■ ^ a^u 1 r 8^[] 1 
Idy dx-_ ’ ifx.djy 

and 

... ■■ 
1 

The quantity is of course the acceleration of gravity g and its gradient 

along a northerly direction is or A--. Similarly the gradient of 2 in 
c)x c)t(^,()x ^ * 

an easterly direction will be given by 



CHAPTER III 

GRAVITATION 

Contents.*—The Law of Gravitation—The Gravitation Constant and the Mean 
Density of the Earth. 

The full statement of Newton’s Law of Gravitation is that any particle 

of mass Mj attracts any other particle of mass Mg distant d from it with a 

force in*the line joining them proportional to The evidence for 

the law may be briefly summed up as follows: 

Starting with any single planet—say the earth—and referring its 

position to a system, fixed relatively to the sun and the distant stars, direct 

astronomical observation shows that it may be described with a close 

approximation to the truth, as moving in an ellipse with the sun in one 

focus, at such speed that the line from the centre of the sun to the centre 

of the planet sweeps out equal areas in equal times. This implies, as 

Newton showed, that the acceleration of the planet is towards the sun and 

inversely as the square of its distance from that body. 

Now, comparing the different planets, observation shows that (length of 

year)‘^/(mean distance)^ is the same for each, and from this it follows that 

the constant of acceleration is the same for all, or that at the unit distance 

from the sun they would all have the same acceleration if the law holding 

for each in its own orbit held for it at all distances. 

So far this is mere time-geometry, or a description of position and rate 

of change of position, and we might have other equally true, if less con¬ 

venient, modes of description referred to other standards, such as the 

epicyclic geocentric mode of the ancients, or the practical mode in common 

use in which the co-ordinates of a planet are measured with regard to some 

observatory, its meridian, and horizon. 

But if we regard the accelerations as indicating forces, the different 

methods of description are no longer equivalent. We must select that 

which gives a system of forces most consistent in itself and most in accord 

with our terrestrial experience. Here the heliocentric method, with the 

modification described hereafter, is immensely superior to any other, and, 

adopting it, we must suppose that the accelerations of the planets indicate 

forces towards the sun, and since the constant of acceleration is the same 

* This chapter is largely taken from The Mean Density of the Barth, and papers com¬ 
municated to the Royal Institution and the Birmingham Natural History and Pnilosophical 
Society, by J. H. Poynting. 

35 
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for all, that the forces on equal masses are inversely as their distances 

squared from the sun, whatever planets the masses belong to. In other 

words, the sun has no favcjurite among its attendants, but pulls on each 

pound of each according to the same rule. 

But the assumption that the accelerations indicate forces of the kind 

we experience on the earth, carries with it the supposition of equality of 

action and reaction, and so we conclude that each planet reacts on the sun 

with a force equal and opposite to that exerted by the sun on the planet. 

Hence, each acts with a force proportional to its own mass, and inversely 

as the square of its distance away. If we suppose that there is nothing 

special in the attraction of the sun beyond great magnitude corresponding 

to great mass, we must conclude that the sun also acts with a force propor¬ 

tional to its mass. But we have just shown that the force is proportional 

to the mass acted on. Hence, we have the force on any planet proportional 

to mass of sun x mass of planet / (distance apart)^. 

Now, turning to any of the smaller systems consisting of a primary 

and its satellites, the shape of orbit and the motion of the satellites agree 

with the supposition that the primary is acting with a force according to 

the inverse square law. It is important for our special problem to note 

here that in the case of the earth we must include in the term “satellite’’ 

any body at its surface which can be weighed or moved. 

We are therefore led to conclude that the law is general, or that if we 

have any two bodies, of masses and Mg, at d distance apart, the force 

on either is 

GMiMg 

where G is a constant—the constant of gravitation. 

The acceleration of one of them, say Mg, towards the other is 

If this conclusion is accepted, we can at once determine the masses of 

the various primaries in terms of that of the sun for— 

^ Mass of primary 
acceleration of satellite towards primary ==G—--— 

distance of satellite^ 

, , . - . , * ^ Mass of sun 
and acceleration of primary towards sun ==G---• 

distance of primary^ 

By division G is eliminated, and we obtain the ratio of the masses in terms 

of quantities which may be measured by observation. 

As an illustration, let us make a rough determination of the mass of 

the sun in terms of the mass of the earth. 
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We may take the acceleration of the moon to the earth as approxi¬ 

mately £Ojj2 X dy^, where tojj is the angular velocity of the moon and its 

distance from the earth, and the acceleration of the latter to the sun as 

X where is the angular velocity of the earth, and d-^ its distance 

from the sun. Let the mass of the sun be S and that of the earth be E, 

Acceleration of Moon xd^ Ex d^^ 

Acceleration of Earth xd^ S x d^^^^ 

whence 
S (x)yS]^ 

E oj^dy^ 

27 Y/^>2()0000() 

,365/ \ 2400()() 
= 300000. 

A confirmation of the generality of the law is obtained from the 

perturbations of the planets from the elliptic orbits which we have for 

simplicity supposed them to describe. 

These perturbations, in any one planet, can at least approximately be 

analysed into separate disturbances, each due to one of its fellow planets, 

acting with a force inversely as the square of its distance away, and if we 

assume this force proportional to the mass of the disturber we obtain another 

measure for this mass in terms of that of the sun. 

The concordance of the two methods is as complete as we could 

expect. 

The determination of the masses of the different members of our system 

in terms of that of the sun enables us to choose a still more satisfactory 

origin for our system of reference than the centre of the sun—viz., the 

centre of mass of the whole system. The change is small, but without it 

we could not account for all the motions merely by a set of inverse square 

forces in which action and reaction were equal and opposite. 

We have for simplicity considered the sun and planets as without 

appreciable dimensions as compared with their distances apart. But 

measurement shows that they are all approximately spheres, and the 

attraction on a sphere with density varying only with the distance from 

the centre—consisting of homogeneous concentric shells, if it is con¬ 

sidered as the resultant of the attractions on the separate particles, all 

according to the same inverse square law, is the same as that on the whole 

mass collected at the centre of the sphere. Further, if the attraction is due, 

not to the attracting body as a whole but to its separate parts, each acting, as 

it were, independently and according to the same law, then an attracting 

sphere acts as if it were all concentrated at its centre. Since the planets, 

with a close approximation, behave as if they were merely concentrated 

masses at their centres, and since the deviations from this behaviour, such 

as the earth’s precession, can all be accounted for by their departure from 

sphericity, we have strong presumption that the attraction is really the 
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resultant of all the attractions, each element of one body acting on each 

element of the other with force 

Astronomical observation enables us, then, to compare the masses of 

the various members of the solar system with each other, and, by taking 

into account the sizes of the planets, to make a table of specific gravities, 

choosing any one as the standard substance. Thus, if we take the earth 

as standard, the mean specific gravity of the Sun is about 0*25, that of 

Mercury about T25, that of Venus and Mars about 0-9, and so on. 

But this does not give us any idea of the specific gravity in terms of 

known terrestrial substances or any idea of the masses in terms of the 

terrestrial standards, the kilogramme or the pound. It is true that Newton, 

with little more than the astronomical data at his command, made a cele¬ 

brated guess on the specific gravity of the earth in terms of water, which 

runs thus in Motte’s translation of the Principia (vol. ii. p. 230, ed. 1729, 

Book III., Prop. 10): “But that our globe of earth is of greater density 

than it would be if the whole consisted of water only, I thus make out. 

If the whole consisted of water only, whatever was of less density than 

water, because of its less specific gravity, would emerge and float above. And 

upon this account, if a globe of terrestrial matter, covered on all sides with 

water, was less dense than water, it would emerge somewhere: and the 

subsiding water falling back, would be gathered to the opposite side. And 

such is the condition of our earth, which, in great measure, is covered 

with seas. The earth, if it was not for its greater density, would emerge 

from the seas, and according to its degree of levity, would be raised more 

or less above their surface, the water and the seas flowing backwards to the 

opposite side. By the same argument, the spots of the sun which float 

upon the lucid matter thereof, are lighter than that matter. And however 

the Planets have been form’d while they were yet in fluid masses, all the 

heavier matter subsided to the centre. Since, therefore, the common 

matter of our earth on the surface thereof, is about twice as heavy as water, 

and a little lower, in mines is found about three or four, or even five times 

more heavy; it is probable that the quantity of the whole matter of the 

earth may be five or six times greater than if it consisted all of water, especially 

since I have before shewed that the earth is about four times more dense 

than Jupiter.” 

It is not a little remarkable that Newton hit upon the limits between 

which the values found by subsequent researches have nearly all lain. 

In order, then, to complete the expression of the law of gravitation we 

must connect the celestial with the terrestrial scale of densities. In fact, 

we must do for the masses of the solar system that which we do for their 

distances in the determination of the solar parallax, though we cannot 

proceed quite so directly in the former case as in the latter in connecting 
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the qjlestial and terrestrial measures. If we could measure the acceleration, 

say, of the moon, due to any terrestrial body of known shape and density— 

if, for instance, we knew the form and extent of our tidal-wave and its full 

lunar effect—we could at once find the mass of the earth in terms of that 

of the wave, or its density as compared with sea-water. 

But at present this cannot be done with any approach to accuracy, and 

the only method of solving the problem consists in finding the attraction 

between two bodies on the earth of known masses a known distance apart, 

and comparing this with the attraction of the earth on a known mass at 

its surface instead of its attraction as a heavenly body. Since the law of 

attraction is by observation the same at the surface of the earth and at a 

distance, we can thus find the mass of the earth in terms of either of these 

known masses. 

To take an illustration from an experiment hereafter described, let us 

suppose that a spherical mass of 20 kilos, is attracted by another spherical 

mass of 150 kilos, when the centres are 30 cm. apart with a force equal to 

the weight of J mgm. or 80()(T0(J(>() of the weight of the 20 kilos, when the 

latter is on the surface of the earth and 6 x 10® cm. from its centre, we have: 

Mass of Earth 150000 ^ 

“~(6 X W = "30^ 

whence mass of earth = 5 x 10^^ grammes nearly. 

The volume of the earth is about 9 x lO'^® c.c., whence the mean density 

of the earth A is about 5*5. 

Or, using the experiment to give the constant of attraction, and 

expressing the masses in grammes, the weight of I mgm. or 

•00025^ = 
X150000 X20000 

302 

Whence, if = 981, 
981 X-00025 X302 7 
- - - (nearly), 

150000 x20000 10®^ 

A determination of G completes the expression of the law of 

gravitation. 

This example shows that the two problems, the determination of the 

gravitation constant G and the determination of the mean density of the 

earth A, are practically one, inasmuch as our knowledge of the dimensions 

of the earth and the acceleration of gravity g at its surface at once enable 

us to determine G if we know A, or to determine A if we know G. 
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The Methods of Experiment 

These naturally fall into two classes. In the one class some natural 

mass is selected, either a mountain or part of the earth's crust, and its mass 

and form are more or less accurately determined by surveys and mineralogical 

examination. Its attraction on a plumb-bob at one side, or on a pendulum 

above or below it, is then compared with the attraction of the whole earth on 

the same body. 
In the other, the laboratory class of experiment, a smaller mass, such as 

may be easily handled, is placed so as to attract some small suspended body, 

and this attraction is measured. Knowing the attracting and attracted 

masses, the attraction gives G. Or, comparing the attraction with the 

attraction of the earth on the same body, we get A. 

The Experiments of Bouguer in Peru 

The honour of making the first experiments on the attraction of 

terrestrial masses is to be accorded to Bouguer. He attempted both by the 

pendulum experiments described in the last 

chapter, and by pluml.vline experiments, to 

prove the existence of the attraction of moun¬ 

tain masses in the Andes, when engaged in the 

celebrated measurement of an arc of the 

meridian in Peru about the year 1740. The 

pendulum experiments are sufficiently described 

in the last chapter. 

In his plumb-line experiments he attempted 

to estimate the sideway attraction of Chim¬ 

borazo, a mountain about 20,000 feet high, on 

a plumb-line placed at a point on its side. 

Fig. 8 will show the principle of the method. 

Suppose that two stations are fixed, one on 

- Fig. 8.—Bouguer’s Plumb-line of mountain due south of the 
Experiment on the Attraction summit, and the other in the same latitude, but 
of Chimborazo. ^ . 

some distance westward, away from the in¬ 

fluence of the mountain. Suppose that at the second station a star is 

observed to pass the meridian—we will say, for simplicity, directly over¬ 

head, then a plumb-line hung down will be exactly parallel to the observing 

telescope. At the first station, if the mountain were away, it would also 

hang down parallel to the telescope when directed to the same star. But 

the mountain pulls the plumb-line towards it, and changes the overhead 

point so that the star appears to northward instead of in the zenith. The 

;method simply consists in determining how much the star appears to be 
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shifted to the north. The angle of apparent shift is the ratio of the horizontal 

pull of the mountain on the plumb-bob to the pull of the earth. 

To carry out the experiment, Bouguer fixed the first station on the 

south slope of Chimborazo, just above the perpetual snow-line, and the 

second nearly on the same level, several miles to the westward. He 

describes {Figure de la Terre, 7th section) how his expedition reached the 

first station after a most toilsome journey of ten hours over rocks and 

snow, and how, when they reached it, they had all the time to fight against 

the snow, which threatened to bury their tent. Nevertheless, they 

succeeded in making the necessary observations, and a few days later they 

were able to move on to the second station. Here they hoped for better 

things, as they were now below the snow-line. But their difficulties were 

even greater than before, as now they were exposed to the full force of the 

wind, which filled their eyes with sand and was continually on the point 

of blowing away their tent. The cold was intense, and so hindered the 

working of their instruments that they had to apply fire to the levelling 

screws before they could turn them. Still they made their observations, 

and found that the plumb-line was drawn aside about 8 seconds. Had 

Chimborazo been of the density of the whole earth, Bouguer calculated, 

from the dimensions and distance of the mountain, that it would have 

drawn aside the vertical by about twelve times this, so that the earth appeared 

to be twelve times as dense as the mountain, a result undoubtedly very 

far wide of the truth. But it is little wonder that under such circumstances 

the experiment failed to give a good result, and all honour is due to Bouguer 

for the ingenuity and perseverance which enabled him to obtain any result 

at all. At least he deserves the credit of first showing that the attraction 

by mountain masses actually exists, and that the earth, as a whole, is denser 

than the surface strata. As he remarks, his experiments at any rate proved 

that the earth was not merely a hollow shell, as some had till then held; nor 

was it a globe full of water, as others had maintained. He fully recognised 

that his experiments were mere trials, and hoped that they would be repeated 

in Europe. 

Thirty years later his hope was fulfilled. Maskelync, then the English 

Astronomer Royal, brought the subject before the Royal Society in 1772, 

and obtained the appointment of a committee “to consider of a proper 

hill whereon to try the experiment, and to prepare everything necessary 

for carrying the design into execution.” Cavendish, who was himself to 

carry out an earth-weighing experiment some twenty-five years later, was 

probably a member of the committee, and was certainly deeply interested in 

the subject, for among his papers have been found calculations with regard 

to Skiddaw, one of several English hills at first considered. Ultimately, 

however, the comnoittee decided in favour of Schiehallion, a mountain near 
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L. Rannoch, in Perthshire, 3547 feet high. Here the astronomical part of the 

experiment was carried out in 1774, and the survey of the district in that and 

the two following years. The mountain has a short east and west ridge, 

and slopes down steeply on the north and south, a shape very suitable for 

the purpose. 

Maskelyne, who himself undertook the astronomical work, decided to 

work in a way very like that followed by Bouguer on Chimborazo, but 

modified in a manner suggested by him. Two stations were selected, one 

on the south and the other on the north slope. A small observatory was 

erected first at the south station, and the 

angular distance of some stars from the 

zenith, when they were due south, was 

most carefully measured. The stars 

selected all passed nearly overhead, so 

that the angles measured were very small. 

The instrument used was the zenith 

sector, a telescope rotating about a hori¬ 

zontal cast and west axis at the object- 

glass end, and provided with a plumb-line 

hanging from the axis over a graduated 

scale at the eyepiece end. This showed 

how far the telescope was from the vertical. 

After about a month’s work at this station the observatory was moved 

to the north station, and again the same stars were observed with the zenith 

sector. Another month’s work completed this part of the experiment. 

Fig. 9 will show how the observations gave the attraction due to the hill. 

Let us for the moment leave out of account the curvature of the earth, and 

suppose it flat. Further, let us suppose that a star is being observed which 

would be directly overhead if no mountain existed. Then evidently at S. 

the plumb-line is pulled to the north, and the zenith is shifted to the south. 

The star therefore appears slightly to the north. At N. there is an opposite 

effect, for the mountain pulls the plumb-line southwards, and shifts the zenith 

to the north; and now the star appears slightly to the south. The total 

shifting of the star is double the deflection of the plumb-line at either station 

due to the pull of the mountain. 

But the curvature of the earth also deflects the verticals at N. and S., and 

in the same way, so that the observed shift of the star is partly due to the 

mountain and partly due to the curvature of the earth. A careful measure 

was made of the distance between the two stations, and this gave the 

curvature deflection as about 43'". The observed deflection was about 55", 

so that the effect of the mountain, the difference between these, was about 12". 

The next thing was to find the form of the mountain. This was before 

Fic;. 9.—Maskelyne’s Plumb-line Hx- 
periment on Schiehallion. 
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the days of the Ordnance Survey, so that a complete survey of the district 

was needed. When this was complete, contour maps were made, giving 

the volume and distance of every part of the mountain from each station. 

Hutton was associated with Maskelyne in this part of the work, and he 

carried out all the calculations based upon it, being much assisted by valuable 

suggestions from Cavendish. 

Now, had the mountain had the same density as the earth, it was 

calculated from its shape and distance that it should have deflected the 

plumb-lines towards each other through a total angle of 20-9", or 1 ^ times 

the observed amount. The earth, then, is 1;^ times as dense as the 

mountain. From pieces of the rock of which the mountain is composed, 

its density was estimated as 2| times that of water. The earth should 

have, therefore, density I f, x 2| or 4J. An estimate of the density of the 

mountain, based on a survey made thirty years later, brought the result 

up to 5. All subsequent work has shown that this number is not very far 

from the truth. 

An exactly similar experiment was made eighty years later, on the 

completion of the Ordnance Survey of the kingdom. Certain anomalies in 

the direction of the vertical at Edinburgh led Colonel James, the director, 

to repeat the Schiehallion experiment, using Arthur’s Seat as the deflect¬ 

ing mountain. The value obtained for the mean density of the earth was 

about 5^. 

Repetitions have also been made of the pendulum method, tried by 

Bouguer in the Andes. 

The first of these was by Carlini, in 1821. He observed the length of 

a pendulum swinging seconds at the Hospice on Mont Cenis, about 6000 

feet above sea-level, and so obtained the value of gravity there. The value 

due to mere elevation above the sea-level was easily calculated, but the 

observed value was greater than that calculated by about 1 in 5000. In 

other words, the pull of the whole earth was 5000 times greater than that of 

the mountain under the Flospice. Knowing approximately the shape of the 

mountain, and estimating its density from specimens of the rock, Carlini 

found the density of the earth to be about 4 J times that of water. 

Another experiment of the same kind was made by Mendenhall, in 

Japan, in 1880. Here he determined the value of gravity on the summit 

of Fujiyama, a mountain nearly 2| miles high. He found it greater than the 

value calculated from the increased distance from the earth’s centre by about 

1 in 5000, as Carlini had done on Mont Cenis. Fujiyama, though the 

higher, is more pointed and less dense than Mont Cenis. Mendenhall 

estimated the mean density of the earth as 5*77. 

Airy applied the pendulum to solve the problem in a somewhat different 

way, using, instead of a mountain, the crust of the earth between the top 
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and the bottom of a mine. His first attempts were made in 1826, at the 

Dolcoath copper mine, in Cornwall. Here he swung a pendulum first at 

the surface and then at the bottom of the mine. At the point below we 

may consider that the weight of the pendulum was due to the pull of the 

part of the earth within the sphere with radius 

reaching from the earth’s centre to the point (Fig. 

10). Knowing the value of gravity below, it was 

easy to calculate what it would have been at the 

level of the surface had no outer shell existed, and 

had the change in value depended merely on the 

greater distance from the earth’s centre. The 

observed value was greater than this through 

the pull of the outer shell, and it was hoped that 

the difference would be measured sufficiently accur¬ 

ately to show how much greater is the mass of the 

earth than that of the crust. The first attempt was brought to an end by 

a curious accident. As one of the pendulums used was being raised up 

the shaft, the box containing it took fire, the rope w^as burnt, and the 

pendulum fell to the bottom. Two years later another attempt w^as made, 

but this was brought to an end by a fall in the mine, which stopped the 

pump so that the lower station was flooded. 

Many years later, in 1854, the experiment was again undertaken by 

Airy, this time in the Harton coal-pit, near Sunderland. The method was 

exactly the same, a pendulum being swung above and below the surface, 

and the diminution in gravity above carefully determined. The experiment 

was carried out with the greatest care and in a most thorough way, two 

pendulums being swung at the same time—one above and one below—the 

two being interchanged from time to time. Several assistants were occupied 

In taking the observations, which extended continuously night and day 

for about three weeks. Now gravity at the surface was greater than it 

would have been, had no outer shell existed of thickness equal to the depth 

of the pit, by about 1 in 14,000, so that the pull of the earth was about 

14,000 times that of the shell. The density of the shell was determined from 

specimens of the rocks, and Airy found the density of the earth about GJ. 

Some very interesting experiments have since been made in a similar 

way by Von Sterneck in silver mines in Saxony and Bohemia. Using the 

invariable pendulums described in the last chapter he obtained different 

results with different depths of mines, the value of the mean density in¬ 

creasing with the increasing thickness of the shell used. This shows very 

evidently that there were sources of disturbance vitiating the method. 

Von Sterneck found, on comparing his observations at the two mines, that 

the increase in gravity on descending was much more nearly proportional 

Fig. 10.—Principle of Airy’s 
Harton Pit F^xperiment. 
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to the rise of temperature than to the depth of descent. This appears to 

indicate that whatever disturbs the regularity of gravity disturbs also the 

slope of temperature. 

All the methods so far described use natural masses to compare the 

earth with, and herein hes a fatal defect as regards exactness. We do not 

know accurately the density of these masses and what is the condition of 

the surrounding and underlying strata. We can really only form, at the 

best, rough guesses. Indeed, the experiments might rather be turned the 

other way about, and assuming the value of the mean density of the earth, 

we might measure the mean density of the mountain or strata of which the 

attraction is measured. 

The Cavendish Experiment 

We turn now to a different class of experiment, in which the attracting 

body is altogether on a smaller scale, so that it can be handled in the 

laboratory. , The smallness of the attraction is compensated for by the 

accuracy with which we know the size and mass of the attracting bocly. 

The idea of such an experiment is due to the Rev. John Michell, who 

completed an apparatus for the purpose but did not live to experiment 

with it. 

MichelFs plan consisted in suspending in a narrow wooden case a 

horizontal rod 6 feet long, with a 2-inch sphere of lead hung at each end 

by a short wire. The suspending wire for the rod was 40 inches long. 

Outside the case were two lead spheres 8 inches in diameter. These were 

to be brought up opposite the suspended spheres, one on one side, the 

other on the other, so that their attractions on those spheres should con¬ 

spire to turn the rod the same way round. Now moving each large sphere 

on to the other side of the case so as to pull the suspended sphere with 

equal force in the opposite direction, the rod should turn through twice the 

angle which it would describe if the spheres were taken altogether away. 

Hence half this angle would give the twist due to the attractions in one 

position alone. Knowing the torsion couple of the suspending wire for a 

given angle of twist and the length of the rod, the attracting force would 

be calculable. To find the torsion couple, Michell proposed to set the rod 

vibrating. From its moment of inertia and time of vibration the couple 

could be found. 

Neglecting all corrections, the mathematics of the method may be 

reduced to the following: 

Let the two suspended balls have mass m each, the two attracting balls 

mass M each. Let the rod have length 2a and with the suspended balls 

moment of inertia I; let ^ be the distance apart of the centres of attracting 
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and attracted balls, and let d be the angle through which the attraction 

twists the rod. 

If /X is the torsion couple per radian twist, and G the gravitation 

constant, then 

The time of vibration 

whence, elimina'ting jj,. 

fjbO = 

2GMma 
----- 

N =27r V^I/^x, 

inne 2GUma 

Now we may obtain another equation containing G by expressing the 

acceleration of gravity in terms of the dimensions and density of the earth. 

4 r^A 
77-”- 

3 
"GAC, 
3 

where r is the radius, C the circumference, and A the density of the earth. 

Eliminating G between the last two equations and putting for the 

length of the seconds pendulum L—a useful abbreviation—we find 

Mma 
X 

N2 

ie" 

where all the terms on the right hand are known or may be measured. 

On Michell’s death the apparatus which he had collected for his 

experiment came into the possession of Prof. Wollaston, who gave it to 

Cavendish. Cavendish determined to carry out the experiment, with 

certain modifications; but he found it advisable to make the greater part 

of the apparatus afresh, though closely following MichelFs plan and 

dimensions. 

The actual work was done in the summer of 1797 and the following 

spring of 1798.* 

He selected for the experiment, according to Baily, an outhouse in his 

garden at Clapham Common, and within this he appears to have constructed 

an inner chamber to contain the apparatus, for he states that he “resolved 

to place the apparatus in a room which should remain constantly shut, and 

to observe the motion of the arm from without by means of a telescope,’’ 

in order that inequalities of temperature and consequent air currents within 

the case should be avoided. 

l^xpefiments to determine the density of the earth. Phil, Trans,^ Ixxxviii., 1798. 
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The torsion rod h h (Fig. 11, reduced from the figure in Cavendish’s 

paper) was of deal, 6 feet long, strengthened by a silver wire tying the ends 

to an upright m g in the middle. The two attracted balls x x were lead, 

2 inches in diameter, and hung by short wires from the ends of the rod. 

The torsion wire was 39} inches long, of silvered copper, and at first of 

such cross section as to give a time of oscillation about 15m. This was 

soon changed for one with a time of oscillation about 7m. 

The position of the rod was determined by a fixed scale on ivory divided 

to 0^0 th inch near the end of the arm, the arm itself carrying a vernier of 

Fig. 11.—Cavendish’s Apparatus. h torsion rod hung by wire Ig\ x x, 
attracted balls hung from its ends; W W, attracting masses movable 
round axis P. T T, telescopes to view position of torsion rod. 

five divisions. This was lighted by a lamp outside the room, and was 

viewed through a telescope passing through a hole in the wall. 

The torsion case was supported on four levelling screws. The attract¬ 

ing masses, lead spheres 12 inches in diameter, WW, hung down from a cross 

bar, being suspended by vertical copper rods. This bar could be rotated 

by ropes passing outside the room round a pin fixed to the ceiling in the 

continuation of the torsion axis. 

The masses were stopped when u inch from the case by pieces of wood 

fastened to the wall of the building. When the masses were against the 

stops their centres were 8*85 inches from the central line of the case. 

The method of experiment was somewhat as follows; The torsion rod 

was never at rest, and the centre of swing was taken as the position in 

which it would be if all disturbances could be eliminated. This centre of 

swing was determined from three succeeding extremities of vibration when 
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the attracting masses WW were against the stops on one side. They were 

then swung round so as to come against the stops on the other side of the 

attracted masses, and the new centre of swing was observed. In a 

particular experiment the difference between the two centres was about 

six scale divisions. The time of vibration was observed from several 

successive passages past the centre of swing, the value obtained in the same 

experiment being about 427 secs., and the masses were then moved back to 

their first position, giving a second value for the deflection. 

In computing the results various corrections had to be introduced into 

the equivalents of the simple formulae which have been given above. 

Taking the attraction formula, 

2Mma 

a correction had to be made, because the attracting masses were not quite 

opposite those attracted, as the suspending bar was a little too short. Then 

allowance was necessary for the attraction on the torsion rod, and a negative 

correction had to be applied for the attraction on the more distant ball. 

The copper suspending rods were also allowed for, and a further correction 

was made for the change in attraction with change of scale reading—Le., 

for change of distance between attracting and attracted masses. This 

correction was proportional to the deviation from the central position, 

and may be regarded as an alteration of /x. 

As to the case, it would evidently have no effect when the rod was 

central, but it was necessary to examine its attraction when the rod was 

deflected. Cavendish found that in no case did it exceed 1/1170 of the 

attraction of the masses, and therefore neglected it. 

Turning now to the vibration formula, 

N ==27TV'i//x; 

this was correct when the masses were in the ‘"midway” position—Le., in 

the line perpendicular to the torsion rod. But when they were in the 

positive or negative position, the variation in their attraction, as the balls 

approached or receded from them, made an appreciable alteration in the 

value of the restoring couple, and thus virtually altered The time had 

therefore to be reduced by 8/185 of its observed value where 8 was the 

deflection in scale divisions due to the change of the masses from midway 

to near position. 

But it is to be observed that, if the weights were moved from one near 

position to the other, and the time of vibration was taken in either 

position, then the same correction having to be applied to fx in both formul® 

it might be omitted from both. 
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In all, Cavendish obtained twenty-nine results with a mean value of 

A-5-448 i’033. 

By a mistake in his addition of the results, pointed out by Daily, he 
gave as the mean 5*48. 

Rej^etitions by Reich, Baily and Cornu and Bailie 

His experiment has since been repeated several times. Reich made two 

experiments in Germany by Cavendish’s method, obtaining in 1837 a 

value 5*49, and about 1849 a value 5-58. In England it was repeated by 

Baily about 1841 and 1842. Daily’s experiment excited great attention 

at the time, and the result obtained, 5-674, was long supposed to be very 

near indeed to the truth. But certain discrepancies in the work gradually 

impaired confidence in the final result, and in 1870 MM. Cornu and Bailie, in 

France, undertook a repetition, with various improvements and refinements. 

In planning out their own work they succeeded in detecting probably the chief 

source of error in Daily’s work. The final result given in 1878 (Comptes 

Rendus, 86, 1001) was: 

G-6-618 xl0~8; A-5-56. 

Boys’s Cavendish Experiment 

In the Philosophical Transactions for 1895 (vol. 186, A. p. 1) is an account 

of a determination of the gravitation constant carried out with the greatest 

care by Prof. Boys. He had discovered a method of drawing exceedingly 

fine quartz fibres and had found them exceedingly strong and true in their 

elastic properties. They are therefore pre-eminently applicable in torsion 

experiments where small forces are to be measured. Using a quartz fibre 

as the torsion wire in a Cavendish apparatus, he was able to reduce the 

attracted weight and the whole apparatus and yet reduce the diameter of the 

suspending fibre so far that the sensitiveness was as great as in earlier 

experiments. At the same time the smallness of the apparatus allowed it to 

be kept at a much more uniform temperature, and the disturbances due to 

convection air currents were much lessened. These disturbances had much 

troubled the earlier workers. In Fig. 12 is a diagrammatic representation 

of the apparatus. The attracted masses mm were of gold, one pair 0*2 inch, 

another pair 0*25 inch in diameter. The torsion rod N was 0-9 inch long 

and was itself a mirror in which the reflection of a scale distant about 23 feet, 

and divided to 50ths of an inch, was viewed. The quartz fibre was 17 inches 

long. 

The attracting masses MM were lead balls 4^ inches in diameter. Had 
D 
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the masses all been on one level, as in the original arrangement, with such 

a short torsion rod the attracting masses would have attracted both gold 

balls nearly equally. To avoid 

this, Boys had one attracting 

and one attracted mass at one 

level and the other two at 

a level six inches below. The 

balls mm were hung from the 

torsion rod by quartz fibres 

inside a tube about 1| inches 

diameter. The attracting masses 

MM were hung from the re¬ 

volving lid of a concentric 

tubular case about 10 inches 

in diameter. These masses 

were arranged in the position 

in which they exerted the 

maximum couple on the gold 

balls first in one direction 

and then in the opposite. The 

deflection varied from 351 to 

577 divisions, accoiding to 

the balls used and the times 

of vibration from 188 to 242 

seconds. The apparatus was 

most exactly constructed and 

Fig. 12.—Diagrammatic Representation of a Section measured, and the results were 
of Boys’s Appatatus. concordant. 

The final value, probably the best yet obtained, was: 

G =6-6576 X 10-«; whence A =5-5270. 

Braun’s Experiment 

{penkschrift, der Math» Nat, Classe der Kais. Akad, Wien, 1896. Bd. Ixiv.) 

In 1896 Dr. Braun published an account of an experiment carried out by 

him. He used the torsion-rod method, and though his apparatus was 

considerably larger than that of Boys, it was still much smaller than that of 

Cavendish, Reich or Baily. The rod was about 24 cm. long and was 

suspended from a tripod by a brass torsion wire nearly one metre long and 

0-055 mm. in diameter. The whole torsion arrangement was under a glass 

receiver, about a metre high and 30 cm. in diameter, resting on a flat glass 

plate. The receiver could be exhausted and in the later experiments the 
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pressure was about 4 mm. of mercury and the disturbances due to air currents 

were very greatly reduced. The attracted masses at the end of the rod were 

gilded brass spheres each weighing about 54 gms. Round the upper part 

of the receiver, and outside it, was a graduated metal ring which could be 

revolved about the axis of the torsion wire; from this were suspended, about 

42 cm. apart, the two attracting masses. Two pairs were used, one a pair 

of brass spheres about five kgms. each, the other a pair of iron spheres filled 

with mercury and weighing about nine kgms. each. 

Special arrangements had to be used to determine the position of the 

rod by means of a mirror fixed on its centre, the beam being reflected down 

through the bottom of the plate. The time of vibration was about 1275 secs. 

The result obtained was very near to that of Boys, viz.; 

G -6-65786 x i0 -«; A-5-52725. 

Wilsing’s Experiment 

About 1886, Dr. Wilsing, of Potsdam, devised a modified form of 

Cavendish’s experiment, in which a sort of double pendulum is used— 

one with a ball below and another at a nearly equal distance above the 

suspension. The pendulum is then in a very sensitive state, and a very small 

horizontal force pulls it through a large angle. 

It is then just like a torsion balance, but with a vertical instead of a 

horizontal rod. If weights are brought up, one to pull the upper ball to 

one side and the other to pull t]be lower ball to the other side, the 

pendulum twists round slightly. From the observed twist and the time 

of swing the attraction can be measured and compared with the pull of the 

earth. Wilsing found that the earth had a mean density of 5-579. 

Heyl’s Experiment 

In 1927 a new type of torsion beam experiment was carried out in 

America by Heyl {Nat. Acad. Set. Proc., 13, 601). Two small masses of 

about 50 grams each were attached to the ends of a 20-centimetrc beam 

suspended from its centre by a fine tungsten filament 1 metre long. Two 

large attracting masses of about 70 kilograms each could be swung into 

position near the ends of the beam so that the attractions of the larger 

masses on the smaller ones wer^ along the direction of the rest position of the 

beam. Thus when the beam was set oscillating with small amplitude its 

time of oscillation was controlled not only by the torsion in the suspension 

but also by the couple due to the attracting masses. 

In the absence of the large attracting masses, or with them in a line at 

right angles to the beam, ^he time of oscillation is given by Tq - 27t 
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where I is the moment of inertia of the suspended system and A is the 

couple producing a twist of one radian. With the large masses at the 

ends of the beam the period is given by 

where A' is the couple per radian twist produced by the attraction of the 

large masses. It is obvious from Fig. 13 that for a twist 6 due to the 

attraction, the couple is 

C.5“”.BP 

GM/^ 
= --- -2/8111 f 

But 

(IS \ 
sin <^ = sin (y -f = sui ^ ^ -f 0 j nearly 

id ie\» 
6+ . - 0-f . +. •I 

Hence, for very small displacements, the couple per radian twist due to the 
attraction is 

A'^ 
GMm^ 

2/( ^ ^’ 

so that 

A 

Heyl obtained the result 

A+A' 2GMw// i\ 

G =(6-664 ±0-002) x 10-*. 
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Zahradnicek’s Experiment 

In this experiment an oscillating heavy torsion balance with large lead 

spheres mounted on the ends of a beam shaped in the form of a wide inverted 

U induces oscillations in an independently suspended torsion balance having 

a light beam with small equal spherical masses attached to its ends. The 

two torsion balances have coaxial suspensions, the lighter balance swinging 

in the space between the inverted-U beam of the heavier one. Owing to the 

gravitational forces between the heavy and light spheres the two systems may 

be regarded in the same way as two ‘‘coupled” electric oscillating circuits. 

In the actual experiment the two oscillating systems are adjusted to resonance 

Fig. 14. 

and in this condition the ratio of the amplitudes of vibration can be related 

with the constants of the apparatus and the gravitation constant {Phjs. 

Zeits., 34, 126). 

In Fig. 14 (tf) M M and mm are the positions of the large and of the 

small masses respectively at an instant when the heavy beam is displaced a 

and the light beam is displaced 6 from their rest positions. The co-ordinates 

of the small masses are 0, and -j/j, 0, and those of the large 

spheres are X2,j'2» "^2> "J2» attraction between large and 
small masses is F = GMm/r^ where _j_ ^2 horizontal component 

is f—Fpjr, and its turning moment on the light beam is fp. Hence the 

couple on the light beam due to the attractions of M, M, is 2Vppjr, It will 

be seen from Fig. 14 {b) that 

==2 . area A OBC =Ri. Rg sin (a - ff), 

Flence the couple =2FRjR2(a - 0)jr provided (a -* 6) is small, 

~ 2GM;5^fRiR2(a - 0)jr^, 
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Since -- (x^ - x^Y + (ji -J2)^ 

==: (Rj cos 0 - R2 cos a)2 + (Rj sin 0 - Rg sin a)^ + 

~ Rj^ + R22 _ 2RjR2 cos (a — 0) + 

= (Ri - Rg)^ + since (a - 6) is small. 

Hence the couple = 2GMwRiR2(a - 0){(Ri --R2)^ 

Assuming the heavy system is not damped and that its oscillations produce 

forced oscillations in the damped light system the equation of motion of 

the latter is given by 

Kd + P^ + D0 = 2GMwRiR2(a - 0)S, where S =■ {(Rj - R2)^ + 

= E(a - 9) say. 

Le., K6 + P^ + - Ea, where Dj ~ D 4- E. 

Let a — Uq cos oj/. 

Then the particular solution of the equation of motion is 

0 ^Oq cos {ojt - e), 

where 

Differentiating with respect to co we find that the condition for resonance, 

i.e. for 0Q maximum, occurs when 

0,=Eao 'p|a>*+](|)y. 

Giving E its value and rearranging we get 

G =0(,^|w*+ ] I /aoMwRjRjS. 

The ratio OJa^^ is obtained by observing the turning points of both systems 

when they are adjusted to resonance. K is the moment of inertia of the 

light system and w = 27r/T where T is the period of the heavy system. Since 

the equation of motion of the light system when no forcing is present is 

the value of P/2K is 2A// where A is the logarithmic decrement and / is the 

period of the light system when the heavy system is absent (see page 17). 

Zahradnicek obtained the value 

G (6-659 ±0-02) X10-8. 
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Experiments with the Common Balance 

Von Jolly’s Experiment 

In 1878 and in 1881 Professor von Jolly described a method which he 

had devised. He had a balance fixed at the top of a tower in Munich, and 

from the scale-pans hung wires supporting two other scale-pans at the 

bottom of the tower (21 metres below). Imagine that two weights are 

balanced against each other at the top of the tower. If one is now brought 

down and put in the lower scale-pan on the same side it is nearer the centre 

of the earth, and, therefore, heavier. Von Jolly found a gain of about 

32 milligrammes in 5 kilogrammes. He now built up a large lead sphere 

under the lower pan, a yard in diameter, so that its attraction was added to 

that of the earth. The gain on transferring the weight from the upper to the 

lower pan now came out to about half a milligramme more, so that the 

attraction of the sphere was this half milligramme. The earth's attraction 

was about 10,000,000 times that of the sphere, and its density was calculated 

to be 5*69. 

Experiment of Richarz and Krigar-Menzel 

An experiment very much like that of von Jolly in principle has been 

carried out by Drs. Richarz and Krigar-Menzel at Spandau, near Berlin 

{Ahhand, der Konigl, Preuss Akad. Berlin, 1898). A balance with a beam 

23 cm. long was supported at a height above the floor, and from each end 

were suspended two pans, one near the beam the other near the floor, more 

than two metres lower. Fig. 15. In principle the method was as follows: 

Spherical gilded or platinised copper weights were used, and to begin with 

these were placed, say, one in the right-hand top pan, the other in the left- 

hand bottom pan. Suppose that in this position they exactly balanced. The 

weights were then moved, the right-hand one into the right lower pan, when 

it gained weight through the increase of gravity with a descent of over two 

metres; the left-hand one into the left upper pan, when it lost weight through 

the ascent of the same amount. The result after corrections was that the 

right-hand pan appeared heavier by T2453 mgm., half this being due to the 

change in position of a single kilogramme. 

A lead paraUelopiped was now built up of separate blocks, between the 

upper and lower pans, 2 metres high and 2T metres square, horizontally, 

with passages for the wires suspending the lower pans. The weighing of 

the kilogrammes was now repeated, but the attraction of the lead, which was 

reversed when a weight was moved from bottom to top, was more than 

enough to make up for the decrease in gravity, and the right-hand now 

appeared lighter on going through the same operation by 0*1211 mgm.; 

whence the attraction of the lead alone made a difference of 1*3664 mgm. 



56 PROPERTIES OF MATTER 

This is four times the attraction of the lead on a single kilogramme. Know¬ 

ing thus the pull of a block of lead of known form and density on the kilo¬ 

gramme at a known distance, and knowing too the pull of the earth on the 

Fig. 15.—Richarz and Krigar-MenzcFs Experiment. 

same kilogramme, viz., 10® mgm., the mean density of the earth could be 

found. 

The final result was: 

G-()-685 xlO -8, 

A-5-505. 

Poyiiting’s Experiment 

The method of using the balance in this experiment will be gathered 

from Fig. 16. A B are two lead weights about 50 lb. each, hanging down 

from the ends of a very large and strong balance inside a protecting wood 

case. M is a large lead sphere, weighing about 350 lb., on a turn-table, so 

that it can move round from under A till it comes under B. The distance 

between the centres of M and A or M and B is about one foot. When under 

A, M pulls A, and so increases its weight. When moved so as to come 

under B the increase is taken from A and put on to B. The balance is free 

to move all the time, so that it tilts over to the B side an amount due to 

double the attraction of M on either, m was a balance weight half the mass 

of M, but at double the distance. Before this was used it was found that 

the movement of M tilted the floor, and the balance, which was a very 

sensitive level, was affected by the tilt. 



EXPERIMENTS TO DETERMINE G 57 

To observe the deflection due to the alteration in weight, a mirror was 

connected with the balance pointer by the ‘^double suspension” method, 

due to Lord Kelvin, and shown in Fig. 17. 

come under either A or B. w, balancing mass. A' B', second positions for A 
and B. In this position the attraction of Af on the beam and suspending wires 

- is the same as before, so that the difference of attraction on A and B in the 
two positions is due to the difference in distance of A and B only, and thus the 
attraction on the beam, &c., is eliminated. 

With the suspension the mirror turned through an angle 150 times as 

great as that turned through by the balance beam. In the room above was 

a telescope, which viewed the reflection of a scale in the mirror, and as the 

mirror turned round the scale moved across the field of view. The tilt 
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observed meant that the beam turned through rather more than 1", and that 

the weight moved nearer to the mass by about o of an inch. The weight 

in milligrammes producing this tilt had to be found. This was done 

virtually (though not exactly in detail) by moving a centigramme rider about 

1 inch along the -beam, which was equivalent to adding to one side a weight 

of about {^0 milligramme. The tilt due to the transfer was observed, and 

Fig. 17.—Double Suspension Mirror (half sij^c). 

was found to be very nearly the same as that due to the attraction, so that 

the effect of moving M round from A to B was equivalent to increasing B by 

milligramme, or g of its previous weight. The pull on either is 

half this. In other words, the earth pulled either about 100,0(X),0(X) times 

as much as the mass M, and the earth, the centre of which is 20,()0(),000 times 

as far away, would at the same distance have exerted 4(X),0()0,(X)0,()00,()0() 

times I0(),0()0,(K)() times the pull, and is, therefore, so many times heavier. 

Thus we find that the earth weighs about T25 = 1lb. In obtaining the 
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attraction of M on A or B, the attraction on the beam had to be eliminated. 

This was done by moving the masses AB into the positions A'B' one foot 

higher, and finding the attraction in this position. The difference was due 

to the change in A and B alone, for the attraction on the beam remained the 

same throughout. 

The final result was— 

G-6*6984 x lO'S, 

A-5-4934. 

.Experiments on the Qualities of Gravitation 

The Range of Gravitation 

The first question which arises is, whether the law of gravitation holds 

down to the minutest masses and distances with which we can deal. All 

our observations and experiments go to show that it holds throughout the 

long range from interplanetary distances down to the distances between 

the attracting bodies in the laboratory experiments described above. 

The first step in the descent from celestial spaces is justified by the fact 

that the acceleration of gravity at the earth’s surface agrees with its value 

on the moon, as attracted by the earth. The further step downward appears 

to be justified by the fair agreement of the results obtained by the various 

forms of Cavendish, balance, and pendulum experiments on the mean 

density—experiments which have been conducted at distances varying from 

feet down to inches. Where the law ceases to hold is yet a matter for 

experiment to determine. When bodies come into what we term “contact,” 

the adhesion may possibly still be due to gravitation, according to the inverse 

square law, though the varying nature of the adhesion in different cases 

seems to point to a change in the law at such minute distances. 

Gravitation not Selective 

It might be possible that some matter is attracted more than in propor¬ 

tion to its mass and some less. The agreement of astronomical observations 

with deductions from the general law is not perfectly decisive as to this 

possiblity, for there might be such a mixture of different kinds of matter in 

all the planets that the general average attraction was in accordance with 

the law though not the attraction on each individual kind. 

With regard to ordinary terrestrial matter, Newton’s hollow pendulum 

experiments {Principia^ Book III., Prop. 6) repeated with more detail and 

precision by Bessel {yersuche uher die Kraft^ mit micher die Erde Korper von 

persebiedemr Beschaffenheit arrsteiht^ Abhand. der Berl. Ak. 1830, p. 41; or 
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Me moires relatifs d la Physique^ tome v. pp. 71-133) prove that the earth 

as a whole is not selective. Still, the results might just conceivably be 

due to an average of equal excesses and defects. But again we may quote 

the various mean density experiments, and especially those made by Baily, 

in which a number of different attracting and attracted substances have been 

used with nearly the same results. 

Gravitation not Affected by the Medium 

When we compare gravitation with other known forces (and those 

which have been most closely studied are electric and magnetic forces) we 

are at once led to inquire whether the lines of gravitative force are always 

Fig. 18.—Paramagnetic Sphere placed Fig. 10.—Diamagnetic Sphere placed 
in a previously Straight Field. in a previously StraightJFicld. 

straight lines radiating from or to the mass round which they centre, or 

whether, like electric and magnetic lines of force, they have a preference for 

some media and a distaste for others. We know, for example, that if a 

magnetic sphere of iron, cobalt or manganese is placed in a previously 

straight field, its permeability is greater than the air it replaces, and the lines 

of force crowd into it, as in Fig. 18. The magnetic action is then stronger 

in the presence of the sphere near the ends of a diameter parallel to the 

original course of the lines of force, and the lines are deflected. If the 

sphere be diamagnetic, of water, copper, or bismuth, the permeability bei^g 

less than that of air, there is an opposite effect, as in Fig. 19, and the field is 

weakened at the ends of a diameter parallel to the lines of force, and again 

the lines arc deflected. Similarly, a dielectric body placed in an electric 

field gathers in the lines of force, and makes the field where the lines enter 

and leave stronger than it was before. 
If we enclose a magnet in a hollow box of soft iron placed in a magnetic 

field, the lines of force are gathered into the iron and largely cleared away 

from the inside cavity, so that the magnet is screened from external action. 

Astronomical observations are not conclusive against any such effect of 

the medium on gravitation, for the medium intervening between the sun 

and planets approaches a vacuum, where so far we have no evidence for 
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variation in quality, even for electric and magnetic induction. In the case 

of the earth, too, its spherical form might render ol^scrvation inconclusive, 

for just as a sphere composed of concentric dielectric shells, each with its 

surface uniformly electrified, would have the same external field in air, 

whatever the dielectric constant, if the quantity of electrification within 

were the same, so the earth might have the same field in air whatever the 

varying quality of the underlying strata as regards the transmission of the 

action across them, if they were only suitabljr arranged. 

But common experience might lead us at once to say that there is no 

very considerable effect of the kind with gravitation. The evidence of 

ordinary weighings may, per¬ 

haps, be rejected, inasmuch 

as both sides will be equally 

affected as the balance is 

commonly used. But a spring 

balance should show if there 

is any large effect when used 

in different positions above 

different media, or in differ¬ 
ent enclosures. And the ordi- Big. 20.—Effect of interposition of more permeable 

, , . , . . Medium in radiatine Field of Force, 
nary balance is used in certain 

experiments in which one weight is suspended beneath the balance 

case, and surrounded, perhaps, by a metal case, or, perhaps, by a water- 

bath. Yet no appreciable variation of weight on that account has yet 

been noted. Nor does the direction of the vertical change rapidly from place 

to place, as it would with varying permeability of the ground below. But 

perhaps the agreement of pendulum results, whatever the block on which 

the pendulum is placed, and whatever the case in which it is contained, gives 

the best evidence that there is no great gathering in, or opening out of the 

lines of the earth’s force by different media. 

Still, a direct experiment on the attraction between two masses with 

different media interposed was well worthy of trial, and an experiment of 

this nature has been carried out by Austin and Thwing.* The effect to be 

looked for will be understood from Fig. 20. If a medium more permeable 

to gravitation is interposed between two bodies, the lines of force will 

move into it from each side, and the gravitative pull on a body, near the 

interposed medium on the side away from the attracting body, will be 

increased. 

The apparatus they used was a modified kind of Boys’s apparatus 

(Fig. 21). Two small gold masses in the form of short vertical wires, each 

•4 gm. in weight, were arranged at different levels at the ends virtually of 

* Physical Review^ v. 1897, p. 294. 
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f 

a torsion rod 8 mm. long. They arc represented in the figure by the two 

thickenings on the suspending fibre. The attracting masses were 

lead, each about .1 kgm. These were first in the positions shown by black 

lines in the figure, and were 

then moved into the positions 

shown by dotted lines. The 

attraction was measured first 

when merely the air and the 

case of the instrument inter¬ 

vened, and then when various 

slabs, each 3 cm. thick, 10 cm. 

wide and 29 cm. high, were 

interposed. With screens of 

lead, zinc, mercury, water, 

alcohol or glycerine, the 

change in attraction was at 

the rpost about 1 in 500, 

and this did not exceed the 

errors of experiment. That 

is, they found no evidence of 

a change in pull with change 

of medium. If sucirchange 

exists, it is not of the order 

of the change of electric pull 

with change of medium, but something far smaller. It still remains just 

possible, however, that there are variations of gravitational permeability 

comparable with the variations of magnetic permeability in media such as 

water and alcohol. 

Fig. 21.- -Experiment on Gravitative Permeability 
(Austin and Thwing). 

Gravitation not Directive 

Yet another kind of effect might be suspected. In most crystalline 

substances the physical properties are different along different directions in 

a crystal. They expand differently, they conduct heat differently, and they 

transmit light at different speeds in different directions. We might then 

imagine that the lines of gravitative force spread out from, say, a crystal 

sphere unequally in different directions. Dr. Mackenzie * made an experi¬ 

ment in America, in which he sought for direct evidence of such unequal 

distribution of the lines of force. He used a form of apparatus like that of 

Professor Boys (Fig. 12), the attracting masses being calc spar spheres about 

2 inches in diameter. The attracted masses in one experiment were small 

* Physical Revienfy ii. 1895, p. 321. 
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lead spheres about I gm. each, and he measured the attraction between the 

crystals and the lead when the axes of the crystals were set in various positions. 

But the variation in the attraction was merely of the order of error of experi¬ 

ment. In another experiment the attracted masses were small calc spar 

crystal cylinders weighing a little more than | gm. each. But again there was 

no evidence of variation in the attraction with variation of axial direction. 

Practically the same problem was attacked in a different way by Poynting 

and Gray.* They tried to find whether a quartz crystal sphere had any 

directive action on another quartz crystal sphere close to k, whether they 

tended to set with their axes parallel or crossed. 

It may easily be seen that this is the same problem by considering what 

must happen if there is any difference in the attraction between two such 

spheres when their axes are parallel and when they are crossed. Suppose, 

for example, that the attraction is always greater when their axes are parallel, 

and this seems a reasonable supposition, inasmuch as in straighforward 

crystallisation successive parts of the crystal are added to the existing crystal, 

all with their axes parallel. Begin, then, with two quartz crystal spheres 

near each other with their axes in the same plane, but perpendicular to 

each other. Remove one to a very great distance, doing work against 

their mutual attractions. Then, when it is quite out of range of appreciable 

action, turn it round till its axis is parallel to that of the fixed crystal. This 

absorbs no work if done slowly. Then let it return. The force on the 

return journey at every point is greater than the force on the outgoing 

journey, and more work will be got out than was put in. When the sphere 

is in its first position, turn it round till the axes are again at right angles. 

Then work must be done on turning it through this right angle to supply 

the difference between the outgoing and incoming works. For if no work 

were done in the turning, we could go through cycle after cycle, always 

getting a balance of energy over, and this would appear to imply either a 

cooling of the crystals or a diminution in their weight, neither supposition 

being admissible. We arc led then to say that if the attraction with parallel 

axes exceeds that with crossed axes, there must be a directive action resisting 

the turn from the crossed to the parallel positions. And conversely, a 

directive action implies axial variation in gravitation. 

The straightforward mode of testing the existence of this directive 

action would consist in hanging up one sphere by a wire or thread, and 

turning the other round into various positions, and observing whether the 

hanging sphere tended to twist out of position. But the action, if it exists, 

is so minute, and the disturbances due to air currents are so great, that it 

would be extremely difficult to observe its effect directly. But the principle 

of forced oscillations may be used to magnify the action by turning one 

* PM. Tram., 192, 1899, A. p. 246. 
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sphere round and round at a constant rate, so that the couple would act 

first in one direction and then in the other alternately, and so set the 

hanging sphere vibrating to and fro. The nearer the complete time of 

vibration of the applied couple to the natural time of vibration of the hanging 

sphere, the greater would be the vibration set up. This is well illustrated 

by moving the point of suspension of a pendulum to and fro in gradually 

decreasing periods, when the swing gets longer and longer till the period 

is that of the pendulum, and then decreases again. Or by the experiment 

of varying the length of a jar resounding to a given fork, when the sound 

suddenly swells out as the length becomes that which would naturally 

give the same note as the fork. Now, in looking for the couple between 

the crystals, there are two possible cases. The most likely is that in which 

the couple acts in one way while the turning sphere is moving from parallel 

to crossed, and in the opposite way during the next quarter turn from crossed 

to parallel. That is, the couple vanishes four times during the revolution, 

and this we may term a quadrantal couple. But it is just possible that a 

quartz crystal has two ends like a magnet, and that like poles tend to like 

directions. Then the couple will vanish only twice in a revolution, and may 

be termed a semicircular couple. Both were looked for, but it is enough now 

to consider the possibility of the quadrantal couple only. ^ 

The mode of working will be seen from Fig. 22. The hanging sphere, 

*9 cm. in diameter and 1 gm, in weight, was placed in a light aluminiffirn wire 

cage with a mirror on it, and suspended by a long quartz fibre in a brass case 

with a window in it opposite the mirror, and surrounded by a double-walled 

tinfoiled wood case. I’he position of the sphere was read in the usual way 

by scale and telescope. The time of swing of this little sphere was 120 

seconds. 

A large quartz sphere, 6*6 cm. diameter and weighing 400 gms., was 

fixed at the lower end of an axis which could be turned at any desired rate 

by a regulated motor. The centres of the spheres were on the same level 

and 5*9 cm. apart. On the top of the axis was a wheel with 20 equidistant 

marks on its rim, one passing a fixed point every 1T5 seconds. 

It might be expected that the couple, if it existed, would have the 

greatest effect if its period exactly coincided with the 120-second period of 

the hanging sphere—i,e.^ if the larger sphere revolved in 240 seconds. But 

in the conditions of the experiment the vibrations of the small sphere were 

very much damped, and the forced oscillations did not mount up as they 

would in a freer swing. The disturbances, which were mostly of an im¬ 

pulsive kind, continually set the hanging sphere into large vibration, and 

these might easily be taken as due to the revolving sphere. In fact, looking 

for the couple with exactly coincident periods would be something like 

trying: to find if a fork set the air in a resonating jar vibrating when a brass 
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band was playing all round it. It was necessary to make the couple period, 
then, a Uttle different from the natural 120-second period, and accordingly 
the large sphere was revolved once in 230 seconds, when the supposed 
quadrantal couple would have a period of 115 seconds. 

Fig. 22.—Experiment on directive Action of one Quart? Crystal on another. 

Figs. 23 and 24 may help to show how this tended to eliminate the 
disturbances. Let the ordinates of the curves in Fig. 23 represent vibrations 
set out to a horizontal time scale. The upper curve is a regular vibration 
of range ± 3, the lower a disturbance beginning with range ± 10. The 
first has period 1, the second period 1-25. Now, cutting the curves into 
lengths e^jual to the period of the shorter time of vibration, and arranging 
the lengths one under the other, as in Fig. 24, it will be seen that the maxima 
and the minima of the regular vibration always fall at the same points, so that 
taking 7 periods, and adding up the ordinates, we get 7 times the range, 
viz., ±21. But in the disturbance the maxima and minima fall at different 
points, and even with 7 periods the range is only from +16 to -13, 

B 



66 PROPERTIES OF MATTER 

or less than the range due to the addition of the much smaller regular 

vibration. 

In the experiment the couple, if it existed, would very soon establish 

Fig. 28.—Upper Curve a regular Vibration. Lower Curve a 
Disturbance dying away. 

its vibration, which would always be there, and would go through all its 

values in 115 seconds. An observer, watching the wheel at the to^ of the 

revolving axis, gave the time signals every 1T5 

seconds, regulating the speed if necessary, and 

an observer at the telescope gave the scale read¬ 

ing at every signal, that is, 10 times during the 

period. The values were arranged in 10 

columns, each horizontal line giving the read¬ 

ings of a period. The experiment was carried 

on for about hours at a time, covering, say, 

80 periods. On adding up the columns, the 

maxima and minima of the couple effect would 

always fall in the same two columns, and so the 

addition would give 80 times the swing, while 

the maxima and minima of the natural swings 

due to disturbances would fall in different 

columns, and so, in the long run, neutralise each 

other. The results of different days’ work might, 
Fig. 24.~ResuJts of Supcrposi- course, be added together, 

non of Lengths of Curves in ^ 
Fig. 23 equal to the Period of There always was a small outstanding 
the regular one. effect such as would be produced by a quad- 

rantal couple, but its effect was not always in the same columns, and 

the q,et result of observations over about 350 periods was that there was^ 
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no 115-sccond vibration of more than 1 second of arc, while the disturbances 

were sometimes 50 times as great. The semicircular couple required the 

turning sphere to revolv® in 115 seconds. Here, want of symmetry in the 

apparatus would come in with the same effect as the couple sought, and 

the outstanding result was, accordingly, a httle larger. But in neither case 

could the experiments be taken as showing a real couple. They only showed 

that, if it existed, it was incapable of producing an effect greater than that 

observed. Perhaps the best way to put the result of the work is this: 

Imagine the small sphere set with its axis at 45° to that of the other. Then 

the couple is not greater than one which would take 5] hours to turn it 

through that 45° to the parallel position, and it would oscillate about that 

position in not less than 21 hours. 

The semicircular couple is not greater than one which would turn from 

crossed to parallel position in 4| hours, and it would oscillate about that 

position in not less than 17 hours. Or, if the gravitation is less in the 

crossed than in the parallel position, and in a constant ratio, the difference 

is less than 1 in 16,000 in the one case and less than 1 in 2800 in the other. 

We may compare with, these numbers the difference of rate of travel 

of yellow light through a quartz crystal along the axis and perpendicular 

to it. That difference is of quite another order, being about 1 in 170. 

Other possible Qualities of Gravitation 

Weight might conceivably change with temperature, but experiments * 

show that if there is any change it is probably less than 1 in 10^^^ of the weight 

per 1° C. 

It is possible that weight might change when the bodies weighed enter 

into chemical combination. Many experiments have been made to detect 

such a change, the most extensive and exact by Landolt.f At first it 

appeared as if in some cases a diminution of weight occurred on combination, 

but ultimately the effect was traced to an expansion of the containing vessel 

through the heat developed. The vessel did not return at once to its 

original volume on cooling and so there was a slight increase in the buoyancy 

of the air in the weighing after combination. The experiments show that 

the change, if it exists, is too small to measure. 

No research yet made has succeeded in showing that gravitation is 

related to anything but the masses of the attracting and the attracted bodies 

and their distance apart. It appears to have no relation to physical or 

chemical conditions of the acting masses or to the intervening medium. 

* Poynting 6c Phillips, P.R.S., A 76, 1906, p. 446; Southerns, P,R.S., A 78, 1906, 
P- 392. 

t Landolt, Prtuss, Ak, Whs, Berlin^ Sit^, Ber,^ viii. 1906, p. 266, and xvi. 1908, 
March 19. References to other work are given in the first paper. 



CHAPTER IV 

ELASTICITY 
Contents.—^Limits of Elasticity—Elastic after-effect—Viscosity of Metals and Elastic 

Fatigue—Anomalous Effects of first Loading a Wire—Breaking Stress. 

In this chapter we shall consider changes in the conformation of solid 

bodies and the connection between these changes and the forces which 

produce them. 

Many of the points with which we shall have to deal are well illustrated 

by the simple case of a vertical metal wire the upper end of which is fixed 

while the lower end carries a scale-pan. If we measure the increments of 

elongation of the wire when different weights are placed in the scale-pan and 

plot our results as a curve in which the abscissae are the elongations of the 

wire—i.e.^ the extension of the wire divided by its unstretched length, and 

the ordinates the stretching weight (inclusive of the weight of the scale-pan) 

divided by the area of cross section of the unstretched wire, we obtain 

results similar to those shown in Fig. 25 (from A History of th^Theory of 

Elasticity and of the Strength of Materials)^ which represents the results of 

experiments made by Professor Kennedy on a bar of soft steel. 

The first part of the curve—when the stretching force per unit area is 

less than a certain value, is a straight line—i,e,^ up to a certain point the 

elongation is proportional to the load per unit area of cross section,* and 

up to this point we find that when we remove the weight from the scale-pan 

the stretched wire shortens until its length is the same as it was before the 

weights weTe put on (the elongations in this stage are so small that on the 

scale of Fig. 25 this part of the curve is hardly distinguishable from the axis 

AB). When, however, we get beyond a certain point B on the curve— 

when the stretching force per unit area is greater than the value represented 

by AB, the curve becomes bent, and we find on removing the weights that 

the wire does not return to its original length, but is permanently lengthened, 

and is said to have acquired permanent set. 

The range of elongations over which the wire, when unloaded, recovers 

its original length, is called the range of perfect elasticity \ when we go beyond 

this range we are said to exceed the elastic limit. 

After passing the point represented by B a stage is reached where the 

* This seems to be only approximately true for certain kinds of iron. (A History of 
the Theory of Elastkitj and of the Strength of Materials, Todhunter and Pearson, VoL i. 
p. »93.) 
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extension becomes very large. The scale-pan runs rapidly down and the 

wire looks as if it were about to break. By far the greater part of this 

extension is permanent, and the wire, after passing the state represented 

by C, is not able to sustain as great a pull as before without suffering further 

elongation; this is shown by the bending back of the curve. The place C 

where this great extension begins is called th.t yield-point\ it seems to be 

always farther along the curve than the elastic limit B. 

The part of the increment of elongation which disappears on the 

removal of the stretching weight, between the elastic limit and the yield- 

point, is proportional to the stretching weight, and the ratio of this movement 

to the stretching weight per unit area is, according to the experiments of 

Professor Kennedy, the same as that within the limits of perfect elasticity 

{see Todhunter and Pearson’s History of Elasticity^ p. 889). 

After passing the yield-point the elongation increases very rapidly 

with the load, and at this stage the wire is plastic, the elongation depending 

upon the time the stretching force acts. The extension rapidly increases 
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and the area rapidly contracts until the breaking-point E is reached. The 

apparent maximum for the load per unit area shown in Fig. 25 is due to the 

contraction of the area, so that the pull per unit area of the stretched wire 

is no longer represented even approximately by the ordinates. About the 

point D the wire begins to thin down or flow locally, so that its cross section 

is no longer uniform, some parts being now smaller than the rest. 

The portion GHG' of the curve represents the effect of unloading 

and reloading at a point G past the yield-point. We see, from the shape 

of this portion of the curve, that the limit of perfect elasticity for this 

permanently stretched wire has been extended beyond the yield-point of 

the wire before it was permanently stretched. The range between the 

limit of perfect elasticity and the breaking-point is very different for different 

substances; for ductile substances, such as lead, it is considerable, while 

for brittle ones, such as glass, it is evanescent. 

We are thus from our study of the loaded wire led to divide the 

phenomena shown by substances acted upon by forces into two divisions— 

one division in which the solid recovers its original form after the removal 

of the forces which deformed it, the other division in which a permanent 

change is produced by the application of the force. Even within the limits 

of perfect elasticity different bodies show distinct differences in their 

behaviour. Some recover their form immediately after the removal of the 

force, while others, though they recover it ultimately, take cofisiderable 

time to do so. Thus a thread of quartz fibre will recover its shape immedi¬ 

ately after the removal of the tensional and torsional forces acting upon it, 

while a glass fibre may, if the forces have been applied for a considerable 

time, be several hours before it regains its original condition. This delay 

in recovering the original condition of the substance is called the elaytic after¬ 

effect ; it may be conveniently studied in the case of the torsion of glass fibres. 

Take a long glass fibre and fasten to it a mirror from which a spot of 

light is reflected on to a scale, twist the fibre about its axis and keep it twisted 

for a considerable time. Then remove the twisting couple: the spot of 

light will at once come back a considerable distance towards its old position, 

but will not reach it, and the rest of the journey will be a slow creep towards 

the old position, and several hours may elapse before the journey is com¬ 

pleted. The larger the initial twist and the longer the time for which it 

was applied the greater is the temporary deflection of the spot of light from 

its original position. 

The general shape of the curve which represents the relation between 

the displacement of the zero—the displacement of the position of the 

spot of light—and the time which has ilapsed since the removal of the twist, 

is shown in Fig. 26. In this curve the ordinates represent the displacement 

and the abscissae the time since the removal of the twist. 
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The altitude PN, when the abscissa ON is given, depends upon the 

magnitude of the initial twist and the time for which it was applied; the 

curve is steep at first but gets flatter and flatter as the time increases. The 

longer the initial twist is applied the more slowly does the izero approach 

its original position. Very complicated movements of the zero may occur 

if the fibre has been twisted first in one direction and then in the opposite 

for a considerable number of times. The general features of this phenomenon 

Fig. 20.—Curve showing the Elastic After-effect in a Twisted Glass Threa<l. 

will be illustrated by the following simple case. Suppose that immediately 

after the removal of the first twist, whose after-effect, if it were alone, would 

be^ represented by the curve (I), Fig. 26, a second twist in the opposite 

direction is applied for a time represented by ON and then removed. Suppose 

that the deflection of the zero due to this twist alone is represented by the 

dotted curve (IT) (as the twist is in the opposite direction, the ordinates 

represent negative deflections). Then if we can superpose the effects, the 

displacement of the zero at a time NK after the removal of the second 

twist will be represented by the differences between the ordinates KR, KS 

of the two curves. The ordinate of the second curve may be above that 

of the first at the time the second twist is removed, and yet, as the curve 

is very steep, just after the removal of the twist, curve (II) may drop down 

so quickly as to cut the first, as shown in the figure. Thus in this case we 

should have the following effects: immediately after the removal of the 

second twist there would be a displacement of the zero in the direction of 
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the last applied twist, the spot of light would then creep back to the zero 

but would not stay there, but pass through the zero and attain a maximum 

deflection on the other side; it would then creep back to the zero and would 

not again pass through it. In this way, by superposing twists of different 

signs, we can get very complicated movements of 

the zero, which are a source of trouble in many 

instruments which depend upon the torsion of 

fibres. With quartz fibres the residual effect is 

exceedingly small, and this is one of the chief causes 

which make their use so valuable. The residual 

after-effect in glass is a cause of trouble in ther¬ 

mometry, each change of temperature causing a 

temporary change in the zero. 

The magnitude of the elastic after-effect seems 

to increase very greatly when there is a want of 

homogeneity in the constitution of the body. In 

the most homogeneous bodies we know, crystals, 

it is exceedingly small, if it exists at all, while it is 

very large in glass which is of composite character, 

being a mixture of different silicates; it exists in 

metals, although not nearly to the same e^ytent as 

in glass. A similar dependence upon want of uni¬ 

formity seems to characterise another similar effect 

—the residual charge of dielectrics {see volume on 

Electricity and Magnetism), the laws of which are 

closely analogous to those of the elastic after-effect. 

The phenomenon of elastic after-effect may be illustrated by a mechanical 

model similar to that shown in Fig. 27. 

A is a spring, from the end, B, of which another spring C is suspended, 

carrying a damper D, which moves in a very viscous liquid. If B is moved to 

a position B' and kept there for only a short time, so short that D has not 

time to move appreciably from its original position, then when B is let go 

it will return at once to its original zero, for D has not moved, so that the 

conditions are the same as they were before B was displaced. If, however, 

B is kept in the position B' for a long time, D will slowly move off to a 

position D', such that D' is as much below B' as D was below B. If now B' 

is let go it will not at once return to B, for in this position the spring between 

B and D is extended, B will slowly move back towards its old zero, and will 

only reach it when the slow moving D' has returned to D. 



ELASTICITY 73 

Viscosity of Metals and Elastic Fatigue 

If two vertical wires, one made of steel and the other of zinc, are of the 

same length and diameter, and carry vibration Imrs of the same diameter, then 

if these bars are set vibrating the vibrations die away, but at very different 

rates: the steel wire will go on vibrating for a long time, but the zinc wire 

will come to rest after making only a small number of vibrations. This 

decay in the vibrations of the wire is 

not wholly nor even mainly due to _o' o o_^ 

the resistance of the air, for this is the 28. 

same for both wires; it is due to a 

dissipation of energy taking place when the parts of a metal wire are in rela¬ 

tive motion, and may, from analogy with the case of liquids and gases, be said 

to be due to the viscosity of the metal. We can see that elastic after-effect 

would cause a decay in the vibrations of the wire. For suppose O, Fig. 28, 

represents the original zero—i.e., the place where the force acting on the 

system vanishes, then if the wire is displaced to A and then let go the new 

zero will be at O', a point between A and O; thus the force will tend to stop 

the vibration as soon as the wire passes O'—sooner, that is, than it would do 

if there were no after-effect. Again, when the wire is on the other side of O, 

the zero will be displaced by the elastic after-effect to O", a point between O 

and B, and thus again the force tending to stop the vibration will begin to 

act sooner than it would if there were no elastic after-effect. We can see 

the same thing from the study of ti'ic model in Fig. 27, for some of the 

kinetic energy will be converted into heat by the friction between the viscous 

fluid and the damper D. 

Lord Kelvin discovered a remarkable property of the viscosity of 

metals which he called elastic fati^e. He found that if a wire were kept 

vibrating almost continuously the rate at which the vibrations died away 

got greater and greater; in fact, the wire behaved as if it got tired and could 

only with difficulty keep on vibrating. If the wire were given a rest for a 

time it recovered itself, and the vibrations for a short time after the rest did 

not die away nearly so rapidly as they had done just before the rest began. 

Muir {Proc. Roy, Soc,y Ixiv. p. 337) found that a metal wire recovered from 

its fatigue if it were warmed up to a temperature above 100° C. 

Anomalous Effects on first Loading a Wire 

The extension produced by a given load placed on a wire for the first 

time is not in general quite the same as that produced by subsequent loading; 

the wire requires to be loaded and unloaded several times before it gets into 

a steady state. The first load after a rest also gives, in general, an irregular 
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result. It seems as if straining a wire produces a change in its structure from 

which it does not recover for some time. 

Great light has been thrown on this and the other effects we have 

Fig. 20. Fig. 30. 

been considering by the examination by the microscope of sections of the 

metals. When examined in this way it is found that metals possess a 

structure coarse enough to be easily 

rendered visible. Figs 29, show 

the appearance under the microscope of 

certain metals. It will be seen from 

these figures that in these metals we 

have aggregates of crystals of very great 

complexity—the linear dimension of 

these aggregates is sometimes a consid¬ 

erable fraction of a millimetre. These 

large aggregates arc certainly altered by 

large strains. Thus Ewing and Rosen- 

hain {Proc, Roy, Soc,^ xlv. p. 85) have 

made the very interesting discovery that 

when a metal is strained past its yield- 

point there is a slipping of the crystals, 

which build up the aggregates along 

their planes of cleavage.' The appear¬ 

ance of a piece of iron after straining 

past the yield-point is shown in Fig. 

32; the markings in the figure are due to the steplike structure of the aggre¬ 

gates caused by the slipping past each other during the strain of the crystals 

in tjhe aggregates, as in Fig. 33, Plasticity may thus be regarded as the 

Fig. 31. 
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yielding, ot rather slipping past each other of the crystals of the large 

aggregates which the microscope shows exist in metals. 

In harmony with this view is the observation of McConnel and Kidd 

{Proc, Roy. Soc.^ xliv. p. 331) that ice in 

mass is plastic when consisting of 

crystals irregularly arranged. In later 

experiments {Proc. Roy. Soc.^ xlix. p. 

323), McConnel found that a single 

crystal of ice is not plastic under press¬ 

ure applied along the optic axis, but that 

it does yield under pressure inclined to 

the axis, as if there were slipping of the 

planes perpendicular to the axis. 

If there is a general change in 

these aggregates under large strains it 

is possible that there are some aggre¬ 

gates which are unstable enough to be 

broken up by smaller strains, and that the first application is accompanied 

by a breaking up of some of the more unstable groups, so that the structure 

of the metal is slightly changed; we can then understand the irregularities 

observed when a wire is first loaded and also the existence of the elastic 

Fig. 32. 

Before straining. 

jTTrrrrm 

After straining. 

F^g. 33. 

after-effect. Indeed, it would seem almost inevitable that any strain among 

such irregular-shaped bodies as those shown in Fig. 30 would result in some 

of them getting jammed, and thus becoming exposed to very great pressures, 

pressures which might be sufficient to break up some of the weaker 

aggregates, and thus give relief to the system. The existence of such a 

structure as that shown in Figi«30 causes us to wonder whether, if a succession 
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of very accurate observations of the elastic properties of a metal were made, 

the results would not differ from each other by more than could be accounted 

for by the errors of experiment. 

The term viscosity is often used in another sense besides that on p. 73. 

We call a substance viscous if it cannot resist the application of a small force 

acting for a long time. Thus we call pitch viscous 

because, if given a sufficiently long time, it will flow 

like water; and yet pitch can sustain and recover 

from a considerable force if this acts only for a 

short time. Fig. 34 shows the way in which some 

very hard pitch has flowed through a vertical funnel 

in which it has been kept in the Cavendish Labor¬ 

atory for many years. In an experiment, due to 

Lord Kelvin, pieces of lead placed upon a plate of 

pitch found in course of time their way through 

the plate. Many substances, however, show no 

trace of viscosity of this kind, for the existence of 

sharp impressions on old coins, the preservation 

of bronze statues and the like, show that metals 

can sustain their shape indefinitely (or at any rate 

so nearly indefinitely that no appreciable ^hange 

can be detected after thousands of years) even under the application of 

small forces. 

Breaking of Wires and Bars by Tension 

The following table, due to Wertheim, gives the load in kilogrammes 

per square millimetre necessary to break wires of different substances; 

Lead 2*1 Copper . 40-3 

Tin . 2-5 Platinum . 34*1 

Gold . . 27 Iron . 61 

Silver . . 29 Steel Wire . . 70 

Zinc . 12-8 

The process of drawing into wire seems to strengthen the material, 

and the finer the wire the greater is the pull, estimated per unit area of 

cross section, required to break it. This is shown in the table opposite 

given by Baumeister (Wiedemann, Annalen^ xviii. p. 607). 

The effect cff temperature on the pull required to break a wire is com¬ 

plex. Iron wire shows several maxima and minima between 15° C. and 

400° C. (Pisati, Rend, Acc, Lincei^ 1876, 76); the strength of copper, on the 

other hand, steadily diminishes as the temperailjjl^ increases. 
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Material. Diameter of wire 
Pull in kilogrammes 
per sq. mm. required 

in mm. to break the wire. 

Swedish Iron . *72 . 64 
. -50 . 83 

» . *30 . 96 
. -25 . 97 

>9 . *15 . 98 

99 99 . -lO . 123 
Brass . '75 . 76 

>9 * . ‘25 . 98 

99 * . ‘10 . 98 

The strength of a material is sometimes'very seriously affected by the 

addition of only a small quantity of another substance. Thus Sir William 

Roberts-Austen found that gold, to which 2 per cent, of potassium had 

been added, could only sustain 1/12 of the weight required to break pure 

gold. In the case of steel, the addition of small quantities of carbon to 

the iron increases the strength. The microscopical examination of the 

structure of metals, such as is shown in Figs 29-32, may be expected to 

throw a good deal of light on effects of this kind. In this way it has been 

shown that the foreign substance is sometimes collected between the 

aggregates of the crystals of the original metals forming a weak kind of 

mortar, and thus greatly reducing the strength of the metal. In other 

cases, such as steel, a carbide is formed, and the appearance of a section 

of the steel under the microscope shows that the structure is much finer 

than in pure iron. It would seem from Sir William Roberts-Austen’s 

experiments that the addition to gold of a metal of greater atomic volume 

than the gold diminishes, while a metal of smaller atomic volume increases 

the strength. 



CHAPTER V 

STRAIN 

Contents.—Ifomogcneous Strain—Principal Axes of Strain—Pure Strain—Elongation— 
Dilatation or Compression—Contraction—Shear—Angle of Shear. 

When a body changes in shape or size it is said to be strained^ and the 

deformation of the body is called strain. 

Homogeneous Strain 

We shall restrict ourselves to the most simple class of strain to which 

bodies can be subjected; this is when any two lines which are equal and 

parallel before straining remain equal and parallel after straining. This 

kind of strain is called homogeneous strain. 

Fig. 35. 

Thus by a homogeneous strain a parallelogram is strained into another 

parallelogram, though its area and the angle between its sides may be altered 

by straining; parallel planes strain into parallel planes, and parallelepipeds 

into parallelopipeds. Figures which are similar before straining remain 

similar after the strain. 

It follows from the definition of homogeneous strain that the ratio of 

the length of two parallel Lines will be unaltered by the strain. Let AB and 

CD (Fig. 35) be two parallel lines. Let the ratio of AB to CD m \n. 

Then, if m and n be commensurable, we can divide AB and CD respectively 

into Nw and N/;, equal parts each equal to a. Then, as before straining all 

these parts are equal and parallel, they will remain so after a homogeneous 

strain. Thus AB, after straining, will consist of and CD of Nn parts, 

each equal to a'; and the ratio of the strained lengths is m in^ the same as that 

78 
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of the unstrained lengths. If m and n are not commensurable we can deduce 

the same result in the usual way by the method of limits. 

From this result'^we can at once prove that a sphere is strained into an 

ellipsoid, and that three mutually perpendicular diameters of the sphere 

strain into three conjugate diameters of the ellipsoid. As some of our 

readers may not be familiar with solid geometry, we shall confine our 

attention to strains in one plane and prove that a circle is strained into 

an ellipse; the reader who is acquainted with solid geometry will not 

have any difficulty in extending the method to the case of the sphere. Let 

n 

AB A'B' (Fig. 36) be a circle, centre C, which strains into aba'b\ corresponding 

points on the two figures being denoted by corresponding letters. Let P be 

a point on the circle, PL and PM parallel to CA and CB respectively; let 

these lines on the strained figure be denoted by pi, pm. 

Thus, since the ratio of parallel lines is not altered by the strain, 

PL Jl 

CA ca 

PM pm 

But since P, A, B are on a circle whose centre is C, 
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Of p is on an ellipse of which ca and ch are conjugate diameters. Thus a 

circle is strained into an ellipse, and two diameters at right angles to each 

other in the circle strain into two conjugate diameters of the ellipse. Now 

there arc two, and only two, conjugate diameters of an ellipse (unless the 

ellipse degenerates into a circle) which are at right angles to each other. 

Hence there are two, and only two, diameters at right angles to each other 

before straining which remain at right angles after the strain. Now, 
though in general these dia¬ 

meters will not have the same 

direction after straining as 

they had before, yet we shall 

not be introducing any real 

limitation on the strain in so 

far as it affects the forces 

called into play by elasticity 

if we suppose they retain the 

same direction after straining 

^ ^ ^ as before. For, suppose OA, 

OB (Fig. 37), are the un- 

strained directions, O^, O^, the strained ones, we can make Oa^ Ob coincide 

with OA, OB by rotating the strained system as a rigid body through the 

angle KOa, This rotation as a rigid body will not involve ^ny relative 

motion of the parts of the system, and so will not call into play any forces 

depending upon the elasticity of the system; if, then, as is at present the 

case, our object is to investigate the connection between these forces and the 

strains, we may leave the rotation out of account. 

The three directions at right angles to each other which remain at right 

angles to each other after straining arc called the principal axes of strain. 

If these axes have the same direction after straining as before, the strain is 

said to be a pure strain; if it requires a rotation to make the principal axes 

after straining coincide with their position before the strain, the strain is 

said to consist of a pure strain and a rotation. 

Thus the most general homogeneous strain may be resolved into 

extensions (regarding a compression as a negative extension) along three 

directions at right angles to each other. Take these directions as the axes 

of K respectively, then if a line of unit length parallel to the axis of x 

has, after the strain, a length I +e; one parallel to the axis ofj, a length 1 +/; 

and one parallel to the axis of a length 1 + ^,/, g are called the principal 

elongations. If then a sphere strains into a sphere, or any figure 

into a similar figure, the strained figure being an enlarged or diminished 

copy of the unstrained one. These cases, which are called uniform dilatation 

or compression^ involve changes in size but not in shape. 
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A cube whose sides were parallel to the axes before straining and one unit 

in length becomes after straining a rectangular parallelopiped, whose edges 

are 1 + 1 +/, 1 -f ^ respectively, and whose volume is (1 + (1 +/) (1 +^). 

If, as we shall suppose all through this chapter, the elongations 

e, /, g are such small fractions that the products of two of them can be 

neglected in comparison with /, or the volume of the parallelopiped 

is 1 4* ^ 4-y 

Hence the increase of unit volume due to the strain is ^ This 

is called the cubical dilatation. We shall denote it by 8, and we have 

+g. 

If the strain is a uniform dilatation e ~ f ^g, and therefore 

B -3e 

so that in this case the cubical expansion is three times the linear elongation. 

Resolution of a Homogeneous Strain into Two Strains, one of which 

changes the Size but not the Shape, while the other changes the 

Shape but not the Size 

Let us consider the case of a strain in one plane. Let OA, OB (Fig. 38) 

be the principal axes of strain. Let P be the initial position of a point, P' its 

position after the strain. Then if e,f are the elongations parallel to OA and 

OB, ^ and rj the displacements of P parallel to OA and OB respectively, 

^ := ^ON - l{e 4-/)0N + ~/)ON, 

rj =./OM - l{e +/)OM - l(e 

From these expressions we see that we may regard the strain e,f as made 
up of a uniform dilatation equal ^ 

to together with an 

elongation - f) along OA, and 

a contraction \{e-f) along OB. 

Thus the strain superposed on 

the uniform dilatation consists 

of an expansion along one of 

the principal axes and an equal 

contraction along the other. 

This kind of strain does not 

alter the size of the body; for 

if or is the elongation along OA 
and the contraction along OB, then a square whose sides are one unit in 

length and parallel to the principal axes becomes a rectangle whose sides are 
F 

M f M 
/ ‘Fig. 38. 
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1 + a, and I - o- respectively; the area of this rectangle is 1 - cr^, or since 

we neglect the square of a the area is unity, and thus is not altered by the 

strain. A strain which does not alter the size is called a shear. Thus any 

strain in one plane can be resolved^ into a uniform dilatation and a shear. 

We have considered a shear as an extension in one direction and an 

equal compression in a direction at right angles to this; there is, however, 

another and more usual way of considering a shear, which may be deduced 

as follows: 

Let OA, OB (Fig. 39) be the axes along which the extension and con¬ 

traction take place. Let OA = OB = OA' = OB' = 1, so that before straining 

ABA'B' is a square; let this square after straining be represented by aha'h\ 

which will be a parallelogram. 

Since Oa = 1 -f a 

and O^ = 1 - <7, 

<2^2^2+2(72 

-2, 
as we suppose that <7 is so small that its square may be neglected. Thus 

ah = AB. Hence we can move aba'b' as a rigid body and place it so that ab 

coincides with AB, as in Fig. 40. Then, since the area of aba'b’ is equal to 

that of AB A'B', when the figures are placed so as to have one side in common 

they will lie between the same parallels. Thus, if <2"^" be the position of a'b* 

when ab is made to coincide with AB, a^b” (Fig. 40) wiU lie along A'B'; 

hence, except with regard to the rotation, the expansion along AO and the 
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contraction along OB is equivalent to the strain which would bring ABA'B' 

into the position AB^'/?". But we see that this could be done by keeping 

AB fixed and sliding every point in the body parallel to AB through a 

distance proportional to its distance from AB. We can illustrate this kind 
of strain by a pack of cards 

lying on the table, with their 

ends in vertical planes; now 

shde the cards forward, keep¬ 

ing the lowest one at rest in 

such a way that the ends are 

still flat although the planes 

are no longer vertical; each 

card will have been moved 

forwards through a distance 

proportional to its distance 

from the lowest card. The 

angle A'B^^" through which a 

line is displaced which to 

begin with is perpendicular to 

AB is called the angle of shear. 

the direction of motion and at right angles to the fixed plane. 

The relation between Q—the circular measure of the angle of shear—and 

the elongation a along OA, and the contraction o along OB can be found as 

follows. Before the rotation making ah coincide with AB, ha! makes with 

BA' the angle ^qh\ to make ah coincide with AB (Fig. 39) the system has to 

be rotated through the angle ^ph^ so that after the rotation ha! will make with 

BA' the angle B^^+B^^. Now by the figure, Bqh =^Bpby hence the angle 

of shear is 2zBqb ^2LapA. If Am is perpendicular to ap (Fig. 39), 

then, since the angle apA is by hypothesis small, its circular measure 

Am Aa sin 45 Aa 

~Ap ~ iAOV2 

hence 0, the circular measure of the angle of shear, = 2ct. 

If e and / are the extensions along two principal axes in the general 

case of homogeneous strain in two dimensions, we see from p. 81 that this 

strain is equivalent to a uniform dilatation +f) and to a shear the circular 

measure of whose angle is e -f 

B 

The plane of the shear is a plane parallel to 



CHAPTER VI 

STRESSES. RELATION BETWEEN 
STRESSES AND STRAINS 

Contents.—General Considerations—Hooke’s Law—Work required to produce any 
Strain—Rectangular Bar acted upon at Right Angles to its Faces. 

In order that a body may be strained forces must act upon it. Consider a 

small cube in the middle of a strained solid, and suppose for a moment that 

the external forces are confined to the surface of this solid. Then the forces 

which strain this cube must be due to the action exerted upon it by the 

surrounding matter. These forces, which are due to the action of the 

molecules outside the cube on those inside, will only be appreciable at 

molecular distances from the 

surface of the cube, and may 

therefore without appreciable 

error be supposed to be con¬ 

fined to the surface. The most 

general force whichican act on 

a face ABCD of the cube may 

be resolved into three com¬ 

ponents, one at right angles to 

ABCD, the other two com¬ 

ponents in the plane of ABCD, 

one parallel to AB, the other 

toBC: similarly over the other 

faces of the cube we may 

suppose similar forces to act. These forces are called stresses \ the component 

at right angles to a face is called a normal stress^ the component parallel to 

the face a tangential stress. The intensity of any component of the stress 

is the amount of the component over the face divided by the area of the 

face. We shall for brevity leave out the word “intensity” and speak of it 

simply as the stress. The dimensions of a stress are those of a force divided 

by an area or M/LT^. It is measured in dynes per square centimetre; on 

the e.G.S. system of units the pressure of the atmosphere is. about 10® units 

of stress. 

When we know the stresses over three planes meeting at a point O 

(Fig. 42) we can determine the stresses on any other plane through O. For 

let OABC be a very small tetrahedron, AOB, BOC, COA being the planes 

84 
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over which we know the stresses, and ABC being parallel to the plane across 

which we wish to determine the stress. Then as this tetrahedron is in 

equilibrium under the action of forces acting on its four faces, and as we 

know the forces over three of the faces, OAB, OBC, OCA, we can determine 

the force, and hence the stress, on the fourth. We need not take into 

account any external forces 

which are proportional to the 

volume on which they act, for 

the forces due to the stresses are 

proportional to the area of the 

faces, that is; to the square of 

the linear dimensions of the 

tetrahedron, while the external 

forces are proportional to the 

cube of the linear dimensions, 

and by making the linear dimen¬ 

sions of the tetrahedron exceed¬ 

ingly small we can make the 

effect of the volume forces 

vanish in comparison with that 

of the surface forces. 

The stresses in a strained B 

solid constitute a system of 

forces which are in equilibrium at each part of the solid with the external 

forces acting on the solid. If we call the external forces the load, then if a 

load W produces a system of stresses P, and a load W' a system of stresses 

P', then when W and W' act together the stresses will be P + P' if the 

deformation produced by either load is small. 

Hooke’s Law 

The fundamental law on which all applications of mathematics to 

elasticity are based is due to Hooke, and was stated by him in the form ut 

tensio sk vis, or, in modern phraseology, that the strains are proportional to 

the loads. The truth of this law, when the strains do not exceed the elastic 

limit {see p. 68), has been verified by very careful experiments on most 

materials in common use. Another way of stating Hooke’s Law is that if a 

load W produces a strain S, and a load W' a strain S', then a load W + W' will 

produce a strain S -l- S'. Hence, it follows from the last article that if a 

system of stresses P correspond to a system of strains S, and a system of 

stresses P' to a system of strains S', then a system of stresses P + P' will 

correspond to a system of strains S+S'. Hence, if we know the stress 
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corresponding to unit strain, we can find the stress corresponding to a 

strain of any magnitude of the same type. Thus, as long as Hooke’s law 

holds good, the stress and strain will be connected by a relation of the form 

Stress ==^ X strain 

where ^ is a quantity which does not depend either upon the stress or the 

strain. It is called a modulus of elasticity. Thus, if the strain corresponds 

to a change in size but not in shape, then the stress is a uniform pressure, 

and the strain the diminution in volume of unit volume of the unstrained 

substance; in this case c is called the modulus of elasticity of bulky or more 

frequently the hulk modulus. Again, if the strain is a shear which alters 

the shape but not the size, the strain is measured by the angle of shear and 

the stress by the tangential force per unit area, which must be applied to 

produce this shear. In this case c is called the modulus of rigidity. If we 

stretch a wire by a weight, the stress is the weight divided by the area of 

cross section of the wire, the strain is the increase of length in unit length 

of the wire, and in this case c is called Youngs modulus. Since we can 

reduce the most general system of homogeneous strain to a uniform 

expansion or contraction and a system of shears {see p. 81) it follows that 

if we know the behaviour of the body (1) when its size but not its shape is 

changed, and (2) when its shape but not its size is changed, we can^determine 

its behaviour under any homogeneous strain. This is true when, and only 

when, the properties of the substance are the same in all directions, so that 

a uniform hydrostatic pressure produces no change in shape, and the 

tangential stress required to produce a given angle of shear is independent 

of the plane of the shear. This statement is equivalent to saying that it only 

requires two moduli—i.e.y the bulk modulus and the modulus of rigidity, 

to fix the elastic behaviour of the substance, so that all other moduli, such as 

Young’s modulus, must be expressible in terms of these two. 

Work required to produce any Strain 

The result for the most general case, and the method by which it can be 

obtained, may be illustrated by considering the work required to stretch a 

► wire. Let us suppose that the load is added so gradually that the scale-pan 

in which the weights are placed never acquires an appreciable velocity, so 

that none of the work done is converted into kinetic energy, but all is spent 

in stretching the wire. When this is the case, the weight in the scale-pan 

when in any position never exceeds by more than an infinitesimal amount 

the weight required to stretch the wire to that position. 

Let the straight line AB, Fig. 43, represent the relation between the 

weight in the scale-pan and the extension of the wire, the weight being the 
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ordinate and the extension the abscissa; let OA represent the unstretched 

length of the wire. Consider the work done in stretching the wire from L 

to M, where L and M are two points very near together. The force will be 

approximately equal to PL; thus the work done in stretching from L to M 

will be PL X LM—i.e., the area PLMQ'; similarly, the work done in stretch¬ 

ing the wire from M to N will be represented by the area QMNR', and thus 

the work spent in stretching the wire from OA to OC will be represented 

by the sum of the little rectangular areas; but when these rectangular areas 

are very small, their sum is equal to the area ABC, and this equals |BC x AC 

—i,e., one-half the final weight in the scale-pan x extension of the wire. 

Let a be the area of cross section of the wire and / the length, then BC 

stress and AC — / x strain. Thus the work done in stretching the wire is 

equal to al x\ strain x stress. Now al is the volume of the wire, hence the 

energy in each unit volume of the wire is \ strain x stress. Though we 

have considered a special case, it will be seen that the method is of general 

application, and that the result will hold whenever Hooke’s law is true. 

We have considered two ways of regarding a shear: one where the 

particles of the body were pushed forward by a tangential force as is re¬ 

presented in Fig. 40. In this case the work done on unit volume, which is 

the energy possessed by the sheared body, is 

where T is the tangential force per unit area and 6 the angle of shear. 

The other way of regarding a shear is to consider it as an extension in 

one direction combined with an equal contraction in a direction at right 
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angles to the extension. Let e be the magnitude of the extension or con¬ 

traction, P the pull per unit area producing the extension; this is equal to 

the push per unit area producing the contraction. Considering unit volume 

of the strained body, the work done by the pull is | P^, and that by the push 

is also J Ve\ hence the energy per unit volume is | P^ + J P^ ==P^, but this 

energy is also equal to ^ T0, hence 

p^ = ¥re. 
But we know (p. 83) that d ^ 2^, hence 

P=T. 

Hence the pull or push per unit area in the 

one way of considering a shear is equal to 

the tangential stress per unit area which 

occurs in the other way. 

If n is the coefficient of rigidity, then 

by the definition of n given on p. 86, 

T-//0. 

Hence P = 2ne 

P 
or ^ 

Rectangular Bar acted on by Forces at 

Right Angles to its Faces 

Let ABCDEFGH, Fig. 44, be a 

rectangular bar. Let the faces CDEF, 

ABGH be acted on by normal pulls equal to P per unit area, the faces ABCD, 

EFHG by normal pulls equal to Q per unit area, and the faces DEGB, CFHA 

by normal pulls equal to R per unit area. We shall proceed to find the 

deformation of the bar. Considering the bar as made up of rectangular 

parallelopipeds, with their faces parallel to the bar, we see that these will ail 

be in equilibrium, whether they are in the interior of the bar or whether 

some of their faces are on the surface of the bar, if the normal stresses parallel 

to AC, DE, CD are respectively equal to P, Q, R, and if there are no tangential 

stresses. Each of these parallelopipeds will be subject to the same stresses, 

and will therefore be strained in the same way. Let g be the extensions 

parallel to P, Q, R respectively. Consider for a moment what the strains 

would be if the stress P acted alone: P would produce an extension pro¬ 

portional to P in the direction of P; let us call this AP; it would also produce 

contraction proportional to P in any direction at right angles to P; and if the 

pro{,)erties of the strained substances were the same in all directions, then the 
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contractions would be the same in all directions at right angles to P; let 

these contractions be ^P. Then when P acts alone the extensions parallel 

to P, Q, R respectively are AP, -fsiP, -^P; similarly when Q acts alone 

the extensions in these directions are -fxQ, AQ, -(jlQ, and when R acts 

alone the extensions are -/xR, - fiR, AR; consequently when these stresses 

act simultaneously we have 

e -- AP - " [xK I 

/^-/xP + AQ-/xR (1) 
-/xP-/iQ + AR ) 

Now we have seen (p. 86) that the elastic properties of the substance are 

completely defined if we know the bulk modulus, which we shall denote 

by and the modulus of rigidity which we shall denote by n. Hence we 

must be able to express A and fx in terms of n and k. We proceed to do this. 

If we apply a uniform tension to each side of the bar equal to P the dilatation 

of unit volume is equal to P/k, by the definition of k; but in this case the 

dilatation is uniform in all directions, and the linear dilatation is one-third 

of the volume dilatation—i.e., it is equal to P/3^. 

P 
Hence, when P Q R, e ==g=- , 

hence, from equations (1), ~ 
ote- 

Lct us now shear the body in the plane of PQ—/.<?., put Q = - P and 

R -0. In this case e - -f -Pj2n {see p. 88); hence by equations (1) 

1 , 
+ /X. 

1/ ' \ 1 \ 3A - 2n 
Thus 

^%n Zk; ~ ISnk' 

X 1/ 1 1 \ 3/4 + n 
And A-- 

3^ n Zk' 9nk 

Young’s Modulus 

A very important case is that of a bar acted on by a pull parallel to its 

length, while no forces act at right angles to the length. In this case 

Q = R = 0, and we have 

« = AP,/= -/xP,^= -juP. 

But in this case the stress, divided by the longitudinal strain, is called 

Youngs modulus \ hence, if we denote Young’s modulus by we have 
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P=^^, or 
^nk 

'dk+n 

This equation gives Young’s modulus in terms of the bulk modulus and 
the rigidity. 

Poisson’s Ratio 

Poisson’s ratio is defined to be the ratio of the lateral contraction to the 
longitudinal extension for a bar acted on by a stress parallel to its length. If 
we denote it by a, then by this definition 

Thus 

cr — - - when Q-R=^0. 
e 

fjb 3^ - 

Since // is a positive quantity, we see from this expression that a must 
be less than 1/2. According to a molecular theory worked out by Cauchy 
and Poisson, or, for all non-crystalline substances, is equal to 1/4. The 
determinations of a given in the table of clastic constants on p. 126 do 
not lend much support to this view. 

Bar stretched longitudinally, with its Sides fixed 

The equations (1) may be written 

p_a(Q + R) 

/=- Q-a(P+R) 

^ = ^(R-<r(P + Q) 

hence 

If the bar is prevented from contracting laterally, 

/=^=0; 

aP 
Q=R = 

iT-a 

2a2 

1 - O’/ 
so that 
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Hence the elongation is less than if the sides of the bar were free in 

the ratio of 1-to 1. In the case of a steel bar for which a = *268 
1 -cr 

the elongation if the sides were fixed would be about 4/5 of the elonga¬ 

tion when the sides are free. 

Determination of Young’s Modulus 

A simple way of measuring Young’s modulus for a wire of which a 

considerable length is available is the following: Fix as long a length of the 

wire AB, Fig. 45, as is available firmly to a support. Another 

wire, CD, which need not be of the same material, hangs from 

the same support down by the side of the first wire. CD carries 

a millimetre scale, the length of the scale being parallel to the 

wire; a weight is attached to the end of this wire to keep it 

straight. A vernier is attached to the wire AB and moves 

against the scale fixed to the wire CD. The wire AB carries a 

scale-pan into which various weights can be placed. By reading 

the vernier when different weights are on the scale-pan we get 

the vertical depression of a fixed point on the vernier, that is of 

a known point on the wire, produced by a given weight. Let 

this depression be €, when the weight in the scale-pan is increased 

by W. Measure the length of the wire between the fixed 

support and the point of attachment to the vernier; let this be 

/, then the elongation per unit length is e//. If to is the cross 

section of wire, then the stress^ which produces this elongation 

is W/cu, so that, as Young’s modulus is stress divided by strain, 

it is equal to 

W/ 

toe 

To determine the cross section, the most accurate way is to 

weigh a known length of the wire, first in air and then in water. 

The difference of the weighings in grammes will be the volume 

of the wire in cubic centimetres, and if we divide the volume 

by the length we get the cross section. Preliminary measure¬ 

ments should have been taken with a screw gauge to see that 

the wire was uniform in section. It is advisable to load and 

unload the wire several times before making the final measure¬ 

ments. This serves to straighten the wire, and avoids the anomalous 

results which, apart from straightening, are obtained when a wire is loaded 

for the first time after a rest. 

We owe the following improvements of this method to G. F. C. 

a 
Fig. 45. 
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Searle. Two brass frames, CD, C'D', Fig. 46, hang from the lower ends of 

the wires and support the two ends of a sensitive level L. One end of the 

level is pivoted to the frame CD by the pivots H, the other end of the level 

rests Upon the end of a vertical screw S working in a nut attached to the frame 

C^D'.. The two links, K, K', prevent the frames from twisting relatively 

to each other about a vertical axis, but freely allow vertical relative motion. 

Fig. 46. 

When these links are horkontal the two wires are parallel to each other. A 

mass M and a pan P hang from the lower ends of the frames, and the weights 

M and P are sufficient to straighten the wires. The connections between 

the wires and the frames are made by the swivels F, into which the ends of 

the wires are soldered. The swivels prevent the torsion of the wire. The 

head of the screw is divided say, into ICO parts, while the pitch of the screw 

may be *5 mm.; thus each division on the head corresponds to 1/200 mm. 

The measurements are made in the following way : Adjust the screw so that 
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one end of the bubble is at zero; if a weight be placed in the pan P the wire A' 

is stretched, and the bubble moves towards H; bring the bubble back to 

zero by turning the screw; the distance through which the screw is moved 

is equal to the extension of the wire. 

When the substance for which Young’s modulus is to be determined 

is a bar and not a wire, the extensions obtained by any practicable weight 

would be too small to be measured in the way just described. In this case 

Ewing’s extensometer may be used. This instrument is represented in 

Fig. 47. A is the rod whose extension is to be measured, B and C are 

pieces attached to A by set screws about the axes of which they revolve; 

the arm B' fixed to B ends in a rounded point P, which^fits into a V-shaped 

slot cut- transversely across the end of the piece C. Thus, when the rod A 

is stretched, the point P acts as a fulcrum, and Q, the opposite end of C, 

moves down through a distance proportional to the extension between 

the axes of the set screws. The displacement of Q is PQ/OP times the 

extension of the bar. This displacement is observed by a microscope which 

is attached to the bar B, and sights an object at Q. The displacement is 

measured by means of a micrometer scale engraved on glass in the eye-piece 

of the microscope; extensions of 1/20,000 of a centimetre are readily 
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measured in this way. There is a fine screw, with a divided head between B' 

and the point P. This serves to bring Q into a convenient position for 

sighting, and also to determine what is the absolute amount of extension 

corresponding to a division of the eye-piece scale; for if we know the pitch 

of the screw we know the displacement of Q when the screw-head is turned 

through one revolution; if we find how many divisions of the micrometer 

scale this corresponds to we can at once standardise the scale. The pull is 

applied to the bar by means of a small testing machine. 

Optical Measurement of Young’s Modulus 

Michelson’s method of interference fringes, produced by the aid of 

semi-transparent mirrors, gives a very delicate way of measuring small 

extensions. 

The principle of the method is shown in Fig. 48. A and B are plane 

plates of very carefully worked glass of the same thickness. One surface of 

A is coated with a thin film of metal, preferably platinum. The platinum 

may be deposited on the glass by placing the glass near a platinum cathode 

in an exhausted tube, and sending a current from an induction coil through 

the tube. The platinum sputters from the terminal and is deposited on the 

glass. This film is so thin as to be semi-transparent; it allows part of the 

light to pass through it. Suppose a beam of light, starting from S, falls on 

the plate A, some of it is reflected from the upper surface of the plate, and 
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after being reflected from the mirror C returns and passes out of the plate A 

and enters the eye at E; another part of the beam passes through the plate A, 

is reflected at D, returns to the plate A, where it is reflected to E» Even 

when the difference of path is great, if A and B are very truly plane and of the 

same thickness the first part of the beam from S will interfere with the second 

part and produce interference bands. If the distance between one of the 

mirrors and the plate A is altered, the bands are shifted; an alteration of the 

distance through 1 /4 of a wave-length will make the dark bands and light 

bands interchange their position; by observing the position of the bands 

we can measure movements of the mirror amounting to 1/50 of the wave¬ 

length of sgdium light, or say a millionth of a centimetre. To apply this 

method to the determination of Young’s modulus we keep one of the mirrors 

fixed while the other is carried by the wire whose extension we wish to 

measure. Since we can measure accurately in this way very small extensions 

we are able to use comparatively short wires, and so have all the conditions 

of the experiment under much better control than when a long wire is used. 

This method has been used by G. A. Shakespear at the Cavendish Laboratory. 

He has also used the method described on p. 57 for multiplying the small 

movements of the pointer of a balance, to multiply the movement due to the 

extension of a wire. 

Other methods of determining q will be given in the chapter on the 

Bending of Rods. 



CHAPTER VII 

TORSION 
Contents.—Torsion of Circular Tubes and Rods—De St. Venant’s Researches— 

Statical and Dynamical Methods of Measuring Rigidity. 

Torsion of a thin Cylindrical Tube of Circular Section 

The case of a thin cylindrical tube of circular section fixed at one end and 

twisted by a couple whose axis is the axis of the tube, admits of a very simple 

solution. We can prove that each cross-section of the tube made by a 

plane at right angles to the axis is twisted as a rigid body in its own plane 

through an angle proportional to its distance from the fixed end, and that 

there is no displacement of any point in the tube either radially or longitudin¬ 

ally. The last result follows at once from the symmetry of the tube about 

its axis; for from the symmetry, if the radial displacement is outwards at 

one part of the section it will be outwards at every point, so that there would 

be a swelling of the tube; reversing the couple applied to the tube would, 

however, reverse the displacement (since we suppose Hooke’s Law to hold); 

hence a couple in one direction would cause the tube to swell, while one in 

the opposite direction would cause it to contract; it is evident, however, 

that whether the tube swells or contracts under a twist about its axis cannot 

depend upon the direction of the twist, hence we conclude that there is no 

radial displacement. Similar reasoning will show that the longitudinal 

displacement must also vanish. 

We shall now show that the tube will be in equilibrium when each cross 

section is twisted as a rigid body through an angle proportional to the 

distance of the section from the fixed end. 

For suppose ABCDEFGH is a rectangular parallelopiped cut out of 

the tube before the twist was applied, suppose the distance between the 

planes ABCD, EFGH is d, and let k be the distance of the plane EFGH from 

the fixed end of the tube. Then, since the angle through which each section 

is twisted is proportional to its distance from the fixed end, if be the angle 

through which the section at unit distance from the fixed end is twisted, 

the rotation of EFGH is and that of ABCD is {k +</) <f>. If a is the 

radius of the tube, and if its thickness, is small compared with a, each 

point in EFGH will be moved through a distance aA<f>^ and each point of 

ABCD through a distance a (k+d) hence after the twist the shape of the 

parallelopiped ABCDEFGH will be similar to EFGHA'B'C'D', where 

AA'«wBB'=CC'=DD'Hence the deformation of the elements 

will ht a shear of which the angle of shear = AA'/AE =a<f>. The tangential 

96 
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stress T will therefore be na^. Hence the stresses on the elements will be as 

shown in Fig. 49, horizontal tangential stresses equal to T on the faces 

ABCD, EFGH, and vertical tangential stresses equal to T on the faces 

ABEI^ CDHG. As ^ is uniform for all parts of the tube these stresses are 

constant throughout the tube, and therefore each portion of the interior will 

be in equilibrium under these stresses. To find the 

condition for equilibrium under the external couple, 

consider a portion ABCD, Fig. 50, cut from the 

Fig. 50. 

tube; this portion is in equilibrium under the action of the tangential stress T 

on its cross-section, and the external couple whose moment we shall suppose 

is C. For equilibrium the moment of the tangential stresses round the axis 

must equal C. The moment of the tangential stresses is, however, T x area 

of cross-section of tube x radius of tube, which is equal to 

n<f>27Ta^f', 

hence we have C = n<f>2TTa^t 

which gives the rate of twist />., the twist per unit length, when the 

external couple is known. 

Case of a Solid Rod of Circular Section 

We can regard the rod as made up of a series of tubes, and hence from 

the preceding investigation we see that each cross-section of the rod will be 

twisted as a rigid body through an angle proportional to its distance from 

the fixed extremity.* The couple C required to twist the rod will be the sum 

of the couples required to twist the tubes of which it is built up, or jn the 

notation of the integral calculus, 

* For if the cross-sections of the different tubes were twisted through different angles, 
so as to shear one tube past the next, there would be twisting: couples acting on the inner 
parts of the tube, and, since the outside of the rod is free, nothing to balance these on the 
outside. 

G 
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C — 27r;y<^ J rHr 

*= \nn^a^ 

if a is the radius of the solid cylinder. If <!> is the angle through which 

the lower extremity of the rod is twisted and / the length of the rod, then 

/^=<D; 

hence 
O 

C ^\nn -aK 

Thus the couple required to twist the lower end of the bar through a given 

angle varies directly as the fourth power of the radius and inversely as the 

length of the bar. If instead of a bar we have a thick tube whose inner 

radius is b and outer radius the couple C required to twist its lower 

extremity through an angle <I) is given by the equation 

The work required to twist the cylinder through an angle <I) can be shown 

by a method exactly similar to that given on p. 87 to be equal to ^€<1); hence 

in the case of a solid rod the energy is 

<1)2 
\rrn-ja^ ^lTTnl<j>^a^, 

The volume of the rod is hence the mean energy stored up in unit 

volume of the rod is 

When the cross-section of the bar is not a circle the problem becomes 

much more difficult. It has, however, been solved by St. Venant for a 

considerable number of sections of different shapes, including the ellipse, 

the equilateral triangle and the square with rounded corners. In every case 

except the circle a cross-section made by a plane at right angles to the axis does 

not remain a plane after twisting but is buckled, part of the section being 

convex and part concave. In these cases there is a longitudinal displacement 

of the particles, some moving up and others down. The longitudinal 

movement is the same for all particles that were originally in a straight line 

parallel to the axis of the cylinder. We can see in the following way that there 

must be longitudinal displacements of the particles and find the direction of the 

displacement. Let us take the case when the section is an ellipse; then, if each 

section were rotated round the axis without any longitudinal displacement* 

the stress in each section at any point P would be at right angles to the line 

joining O to that point. Thus, if Fig. 51 represent the section of an elliptic 

cylinder, twisted in the direction represented by the arrow, the fixed end of 
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the cylinder being below the plane of the paper and the twist applied to the 

end above the paper, the stress in the section, if there were only rotation, 

would be at right angles to OP; now, if P is a point on the ellipse, the 

tangent to the elHpse will not be at right angles to OP except at the extremities 

of the axes; hence in general the stress would have a component along the 

normal to the cylinder. Since, how¬ 

ever, the sides of the cylinder are 

supposed to be free and not acted 

upon by forces, there cannot be 

equilibrium unless the stress along 

the normal to the cylinder vanishes; 

hence there must be some other dis¬ 

placements which will produce a 

stress to balance the normal com¬ 

ponent of the stress at right angles 

to OP. This component is directed 

outwards in the quadrants AB, 

A'B', inwards in the quadrants 

BA', B'A; hence the additional stress must be directed inwards in the 

quadrants AB, A'B', and outwards in the quadrants BA', B'A. Now 

suppose PQRSTUVW, Fig. 52, represents a parallelepiped cut from the 

quadrant’ AB, the faces PQRS, TUVW being at right angles to the axis of the 

cylinder and the latter nearer to the fixed end, the faces PQTU, RSVW being 

at right angles to OP; then there must be a stress in the 

plane PQRS directed from R to Q; but if there is a stress 

in this direction there must be a stress in RSVW parallel 

to RV, otherwise the parallelopiped would be set in 

rotation and could not be in equilibrium. Now the stress 

in RW parallel to RV implies either that the longitudinal 

displacement in the direction RV is greater than that in the 

same direction in the face PQTU—Le,, that the longitudinal 

displacement increases as we recede from the axis or else that 

the longitudinal displacement in the opposite direction VR is less than that 

in the face TPQU—that the longitudinal displacement diminishes as we 

recede from the axis. But as the longitudinal displacement vanishes at the 

axis itself, it seems clear that it must increase as we recede from the axis; 

hence we conclude that the longitudinal displacement is in the direction R V— 

—towards the fixed end of the cylinder. In the quadrant B'A' the 

tangential stress at right angles to OP has a component along the outward 

normal, hence the longitudinal displacement is again towards the fixed end 

of the cylinder. In the other quadrants BA', B'A the tangential stress has a 

component along the inward normal, and in this case the longitudinal 
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displacement will be in the opposite direction—i.e,^ away from the fixed end 

of the cylinder. Along the axis of the ellipse there is no longitudinal dis¬ 

placement. In Figs. 53, 54, 55, taken from De St. Venant's paper, the lines 

of equal longitudinal displacement are given in Fig. 53, when the cross- 

Fig. 53. Fig. 54. 

section of the cylinder is an ellipse, in Fig. 54, when it is an equilateral 

triangle, and in Fig. 55, when it is a square. The dotted lines represent 

displacements towards the fixed end of the cylinder, the full lines displace¬ 

ments away from it. The direction of twist is indicated by the arrows. It 

will be seen that in all cases the displace¬ 

ment is towards the fixed end or away 

from it, according as the comppnent of 

the tangential stress at right angles to 

OP along the normal to the boundary is 

directed to the outside or inside of the 

cylinder. The reason for this we saw 

when we considered the elliptic cylinder. 

The appearance of cylinders under 

considerable twist is shown in Fig. 56; 

this case can be realised by twisting a 

rubber spring of elliptic or rectangular 

section and observing the distortion of 

lines drawn on the spring. 

In the case of the elliptic cylinder, De St. Venant showed that the 

longitudinal displacement w reckoned positive when towards the fixed end 

of the cylinder at a point whose co-ordinates referred to the principal axes 

of the elUpse are x, j is given by the equation 

where a and b are the semi-axes of the ellipse, and ^ the rate of twist. Thus 

the lines of equal longitudinal displacement are rectangular hyperbolas with 

the sixes of the ellipse for asymptotes. 
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The couple C required to produce a rate of twist (j> was shown by De St. 

Venant to be given by the equation 

C = n<i)7T-r —• 

In the case of a thin strip of elliptic section where b is small compared 

with a this equation is approximately 

C — n(j)7rab^. 

Let us compare this with the couple C' required to produce the same 

rate of twist, in a wire of circular section, the area of the cross-section being 

Fig. 66, Fig. 57. 

the same as that of the strip. If r is the radius of the cross-secti6n, then 

{see p. 98) 

C' — ^n<j)7rr^y 

so that 
C _2ab^ 

C ’ 

Now, as the areas of the cross-sections are the same 

hence 

irr^ =7Tab; 

C _^2b 

c~7' 
Thus, as b is very small compared with C is small compared with C'. 

Thus, if we use the torsion method to measure small couples, the strip will 

be very much more sensitive than the circular wire. Strips of thin metal 

are employed in some delicate torsion balances. 

The greatest strain was shown by De St. Venant to be in the parts of 

the boundary nearest the axis—Le,, the extremities of the minor axis in the 
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case of the elliptic cylinder and the middle points of the sides in the case of 

the triangular cylinder. 

The stress vanishes at a projecting corner, as, for example, at angles of 

the triangle and square. On the other hand, it becomes infinite at an 

internal angle, such as is shown in Fig. 57. These should, therefore, be 

avoided in shafts subject to torsion, or if they 

have to be used the angle should be rounded 

off. 

Determination of the Rigidity by Twisting 

The coefficient of rigidity n is frequently 

determined by means of equation, 

O 
C = ; 

{see p. 98) which gives the relation between the 

couple C required to twist a circular rod of 

radius a and length / and the angle O through 

which the end of the rod is twisted by the 

couple. The ratio of the couple to the angle may 

be determined (1) statically; (2) dynamically. 

In the statical method a known couple is 

applied to the wire or rod by an arrangement 

such as that shown in Fig. 58, and the angle 

through which a pointer or mirror attached to 

the wire is deflected is measured. This gives 

C and O, and if we measure a and /, the preced¬ 

ing equation gives n. 

In the dynamical method for determining 

the rigidity, the wire whose rigidity is to be 

determined hangs vertically, and carries a 

vibration bar of known moment of inertia. If 

this bar is displaced from its position of 

equilibrium it vibrates isochronously, and the time of its vibration can be 

determined with great accuracy. The torsional couple tending to bring 

the bar back to its position of equilibrium when it is displaced through an 

angle O is equal to 

<D 
\niTa‘^ 

hence, if MK^ is the moment of inertia of the bar, the time T of a complete 

vibration is given by 
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hence 

T=27r J MK2 ^ 

SttMKV 

This experiment is easily made and T can be measured very accurately. 

The values of n found by this method are, as a rule, higher than those found 

by the statical method. Both methods are open to the objection that, as a 

occurs to the fourth power, if we make an error of 1 per cent, in the deter¬ 

mination of a the use of the formula will lead to an error of 4 per cent, in the 

determination of n. Again, the use of wire in the determination of elastic 

constants is objectionable, as the process of wire-drawing seems to destroy 

the homogeneity of the metal, the outer layers differing from the inner. 

Unless the material is homogeneous it is not justifiable to use the equation 

of page 98, and any abnormality in the outer layers would seriously affect 

the torsion, as it is in these layers that the strain is greatest. The values of 

ft for all metals are found to decrease as the temperature increases. (Horton, 

Proc. Roj. Soc, 73, p. 334.) 



CHAPTER VIII 

BENDING OF RODS 

Contents.—Bar bent into a Circular Arc—Energy in Bar—Bar Loaded at one End 
—Depression of End—Bar Loaded in Middle, Ends free—Bar Loaded in Middle, 
Ends clamped—Vibration of Loaded Bars—Elastic Curves—Stability of Loaded 
Pillar—Young’s Modulus determined by Flexure—Table of Moduli of Elasticity, 

By a rod in this chapter we mean a bar of uniform material and cross-section 

whose length is great compared with its transverse dimensions. We shall 

suppose that such a bar is acted on by two couples, equal and opposite, 

applied at the two ends of the rod, the plane of the couples passing through 

the centres of gravity of all the cross-sections of the rod, and intersecting 

the cross-sections in a line which is an axis of symmetry of the cross-section. 

Let the couples act so that the upper part of the bar is extended while the 

lower part is compressed. There will, therefore, be a part of the bar between 

the top and the bottom which is neither extended nor compressed. This part 

of the bar is called the neutral surface^ and the section of it by the plane of the 

couple is called the neutral axh. Let us suppose the bar divided into thin 

filaments parallel to its length. We shall now proceed to show that the bar 

will be in equilibrium if each filament above the neutral surface is extended, 

each filament below that surface compressed, the extension or compression 

being proportional to the distance of the filament from the neutral surface, 

the filaments being extended or compressed as they would be if the sides 

of the filament were free from stress; so that if P is the tension and e the 

elongation, F -qe where q is Young’s modulus. , 

First consider the equilibrium of any filament; the strain is a uniform 

extension or contraction, according as the filament is above or below the 

neutral surface. The strain will, therefore, be a uniform longitudinal 

tension or compression, since there will be no shearing stresses and no stresses 

at right angles to the length of the bar; all these statements hold whether 

the filament abuts on the surface or not. As the only forces acting on the 

filament are at right angles to its ends, and are equal and opposite, the 

filament will be in equilibrium. Thus each internal portion of the bar is in 

104 
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equilibrium, and the bar as a whole will be in equilibrium if the stresses due 

to the strain are in equilibrium with the external forces. 

Suppose that the bar is cut at C, and that EFGH (Fig. 60) represents a 

cross-section of the bar, O being the centre of gravity of the section; then 

the forces acting on the portion CA (Fig. 59) of the bar are the external 

couple, whose moment we shall take to 

be C and the stresses acting across the 

cross-section. Thus the condition for 

equilibrium is that the stresses across 

this section should be equivalent to a 

couple in the plane of bending whose 

moment is C. Now the tension acting 

on the cross-section of a filament at 

P is equal per unit area to qe where 

e is the elongation of the filament. 

Now € is proportional to PN if ON is 

perpendicular to the plane of bending 

and PN perpendicular to ON; let 

^=aPN. Thus the force acting on 

the filament parallel to the length of the rod is ^.a.PNco where w is the cross- 

section of the filament, and the forces on all the filaments into which the 

bar may be supposed to be divided must be together equivalent to a couple 

of moment C in the plane of benditig. The conditions for this are (1) that 

the resultant force should vanish; (2) that the moment of the forces about 

OM, which is perpendicular to ON, should be zero; and (3) that the moment 

of the forces about ON = C. All these conditions can be fulfilled if OM, 

ON are the principal axes of the cross-section. 

For the resultant force is S^a.PN.a> where S^a.PN.co denotes the sum 

of the prbduct ^a.PN.cu for all the filaments; this vanishes since SPNco —0, 

O being the centre of gravity of the cross-section. The moment of these 

forces about OM is equal to S^aPN.PMco; this vanishes since SPN.PM =0, 

as OM, ON are principal axes. The moment of the tension about ON is 

S^a.PN^.co; this is equal to qaAk^ if Ak?' is the moment of inertia of the 

cross-section about ON. Hence the tensions will be in equilibrium with 

the external forces if qaAk^ = C. 

To find a, let us consider the deformation of a rectangle ABCD (Fig. 61) 

in the plane of bending, AB being a portion of the neutral axis. Let A'B'C'D' 

be the strained configuration of this rectangle; then, since there is no shear, 

the angles at A' and B' will be right angles, and C'A', D'B' will be normals 

to the curve into which the neutral axis is bent; if these normals intersect in 

O, then O is the centre of curvature of the neutral axis. Wc have from the 

figure 
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C'D' C'O 

A'B' ”A'0 

B»t A'B' = AB, since the neutral axis is not altered in length by the 
bending, and AB =CD; 
, C'D'-CD A'C' 
hence --=-r”' 

CD A'O 

But if e is the elongation along CD, e ■ 
CD'-CD 

, A'C' A'C' AC 
hence e = —— =-=-approximately, 

AO p p 

where p is the radius of curvature of the neutral axis at A. But with the 

previous notation e =a.AC, so that a =-• 
P 

Ak^ Ak^^ 
Since qaAk^-C, we have q— =C; or, p 

p C 

Thus the radius of curvature of the neutral axis is constant, so that the 

neutral axis is a circle. 

The fact that a thin bar or lath is bent into a circle by the appUcation 

couples is often 

\ j utilised for the purpose of 

AV-—■" —iB* drawing circles of large 

\ / radius. \/ The bending of the 

/ bar will be accompanied 

/ by a change in the shape 

/ of the cross-section. The 

/ elongation of the upper 

, / filaments will be accom- 

\ / panied by a lateral con- 

V / traction equal to a times 

\ / the elongation where cr is 

\ / Poisson’s ratio {see p. 90), 

V O while the shortening of 

the lower filaments will 

be accompanied by a lateral expansion. Thus the shape of the cross-section 

supposed to be originally a rectangle will after the bending be as represented 

in PQLM (Fig. 62). 

Suppose LM is the line where the neutral surface cuts the cross-section, 

then the lateral contraction of PQ is equal to 
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LM-PQ 

LM 

and the longitudinal extension is equal to 

LM-PQ QM 
Hence - - - -— — • 

LM p 

But if LP, MQ intersect in O', 

LM-PQ QM 

QM 

then 
LM LO' 

hence ~ 
p LO' 

But LO' is equal to the radius of curv¬ 

ature of the neutral surface in the plane at right angles to the length of the 

rod. If this is denoted by p' we have 

ap 

Thus the ratio of the two curvatures is equal to Poisson’s ratio. 

Energy in the Bar 

Consider one of the filaments into which the bar was supposed (p. 104) 

to be divided. Thus, if e is the elongation in this filament, / the length of the 

filament (which is equal to the length of the bar), a> the area of its cross- 

section, the energy in the filament is by p. 87, 

\qe^u)l 

But a. PN; 

hence the energy in the filament is ^^a^PN^cu/. The energy in the bar is the 

sum of the energies in the filaments, and is thus J^aVSPN®a>; but SPN^co = 

A>4^, and a = 1 /p where p is the radius of curvature of the neutral axis, and 

thus the energy is equal to ^qAkV/p^, Again, qakJ^ =C, where C is the 

couple applied to the bar, hence the energy = JC - - half the product of the 
P 

couple and the angle between the tangents at the extremity of the bar. 

This result could be deduced at once by the method already given. 

Rod bent by a Weight applied at one End 

In the case just considered the stresses in the bar were entirely normal; 

in this case, however, we sec that for equilibrium the normal stresses must be 
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accompanied by tangential ones. For, suppose ACB, Fig. 63, represents the 

bar, the weight being applied at B while A is fixed; consider a section 

through C made by a plane at right angles to the length of the bar. Then 

the portion CB of the bar must be in equilibrium under the action of the 

stresses across the section at C and the weight W at the end of the bar; 

thus the stresses across C must be equivalent to a vertically upward force 

Fig. «3. 

W and a couple whose moment is W.BC: there must be, therefore, tangential 

stresses acting across the section whose resultant is a force W acting upwards.* 

We shall show, however, that if the lateral dimensions of the bar very 

small, then, except quite close to the end B, the tangential stresses will be 

very small compared with the normal stresses. For let EFGH represent 

a section of the bar, O the centre of the section, and ON an axis at right 

angles to the plane of bending. Then, if A is the area of the cross>section, T 

the average tangential stress over the area 

TA-W. 

Let N represent the normal stress at a point P, doj a small area round P, then 

since these normal stresses are equivalent to a couple whose moment round 

ON is W.BC, We have 

|N.PN</t,>=W.BC. 

Thus the average normal stress must be of the order of magnitude 

W.BC 

'aT'’ 
where d is z quantity comparable with the depth of the bar. Hence, since 

W 
- ==^T, the magnitude of N is comparable with T xBCJd, so that if the 

A 

* For simplicity of treatment the effect of the weight of the bar itself is neglected. In 
any case this effect is usually small. 
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r 

distance of the section from the end is large compared with the lateral 

dimensions of the bar, the normal stresses will be very large compared 

with the tangential ones. In the subsequent work we shall confine our 

attention to the effect of the normal stresses, but this must be regarded as 

an approximation only applicable to very thin rods. Let Fig. 64 represent 

a small rectangular parallelopiped cut out of the bar, the faces EFGH, 

ET'G'H' being at right angles to the length of the bar, while the faces 

FF'H'H, EE'GG' are parallel ^ 

to the plane of bending, then 

the actual state of stress may 

be thus described. The normal 

stresses are confined to the faces 

EFGH, ET'GTT, there being 

no normal stresses over the 

other faces; there are tan¬ 

gential stresses on the faces 

FF'HH', EE'GG', and also on 

the faces GGTIH' and EETF', but there are no tangential stresses over the 

faces EFGH, E'F'G'H', 

We may proceed to find the bending of the rod produced by the weight 

at its end in the following way. Suppose PQRS (Fig. 65) represents 

a portion of a rod bent as 

on p. 104, by couples of 

moment C acting at its ends, 

then the stresses in the bar 

are such as to cause a couple 
with moment C to act across PQ and a couple whose moment is C to act 

across the section RS. The stresses which produce these couples, as we have 

seen on p. 106, correspond to a state of strain such that the central axis of 

the portion of the bar is bent into a circle whose radius p is given by the equation 

\ 1 

F 
\ 

\ \ 
h r i //' 

1^'iG. 64. 

P R 
iNl- b 

Q S 

Img. 65. 

3a 

A/fe* _ 
q--— C. 

P 

Now suppose that PQRS, instead of being a portion of a bar acted on by 

a couple, is a portion of one acted on by a force at the end A: then neglecting, 

for the reasons given above, the tangential stresses across the section, the 

stresses are equivalent to a couple W. AN across the section PQ and a couple 

W.AM across the section RS, and as AN and AM differ but little from AL 

where L is the middle point of MN, we may regard the ends of PQRS as 

being acted on by equal and opposite couples whose moment is W.AL. 

Hence, by what we have just seen, the central axis of PQRS will be bent 

into the arc of a circle whose radius p is given by the equation 
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hk^ 
= W.AL; 

hence, when the bar is acted on by a weight applied at one end, the neutral 

axis of the bar is bent into a curve such that the radius of curvature at a 

point varies inversely as the distance of the point from the end to which 
the weight is applied. 

If the weight per unit length of the bar is w there will be an additional 
AL 

moment w.KL x . so that 
2 

A>^2 

q-=W.AL+|»^.AL2. 
P 

Depression of the Bar; Angle between Tangents at two Points on the 
neutral Axis 

Suppose Fig. 66 represents the curved position of the neutral axis.* 

Suppose R, S are two points near together on the neutral axis, then the angle 

I 
I 

Fig. 66, 

between the tangents at R and S is equal to KS/p where p is the radius of 

curvature of RS; but 1/p is equal to W.AR/^.A^^ hence AS the angle 
between the tangents at R and S is equal to 

W 
AR.RS; 

or, in the notation of the differential calculus, if j = AR, we have 

AS 
W.J 

q.Ak^ 
ds. (1) 

* Though this figure shows for dearness' sake considerable curvature, yet it must be 
remembered that in all these investigations we ate only dealing with cases in which the 
bending is very slight and the neutral axis consequently nearly straight. 
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Hence S, the angle between the tangents at A and P, is given by the equation 

W 

,, q.Kk^ 
sds (2) 

w 
q.hJ^ 

AP^ 

Suppose the tangent at P cuts the vertical through A in the point T, 

we shall proceed to find an expression for AT. Let the tangents at R,S, 

cut the vertical line through A in the points M,N, then, remembering that 

these tangents are very nearly'horizontal, we have approximately, if AS is 

the angle between the tangents at R and S, 

W.j-2 
MN = AR. AS « by (1) 

q.hk^ ^ ^ ^ 

Now AT-SMN- 
W.j*^ W-APS 

qKi^ 3 X qh!^ 
(3) 

If the end B of the bar is clamped so that the tangent is horizontal, 

then the distance between A and the point where the vertical through A 

cuts this tangent will be the vertical depression of A produced by the weight 

W; hence, if d be this depression we have by (3) 

W 

ZqK!^ 
AB8. w 

Thus the vertical depression of the end is proportional to the weight, to 

the cube of the length, and inversely proportional to the moment of inertia 

of the cross-section about an axis through its centre at right angles to the 

plane of bending; it is also inversely proportional to the value of Young’s 

modulus for the material of which the bar is made. 

The added effect due to the weight of the bar can be introduced as 

follows. The moment at R is 

^- 
P 

W.AR+»^.AR. 
AR 

2~’ 

so that equation (1) becomes 

AS 
1 

(y^s^\m^)ds. 

and equation (2) is 

1 
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1 / n> \ 
= W.AP* + . AP3 \ 

2^.A/fe2' 3 / 

The reader will now obtain easily the corrected equation (4) as 

from which it will be seen that the lowering of the end of the unloaded 

beam is 

d, - , .AB4. 
^q. kk?- 

Since the depression is proportional to the weight, the energy stored 

in the bar is equal and this by equation (4) is equal to 

W2 

We shall now proceed to find the depression PM (Fig. 67) of any point 

P on the bar below the hori2ontal tangent at B. Let the tangent to the 

central axis at P cut the vertical line through A in the point T, and let the 

horizontal line through P cut this line at O; then the vertical depression of 

P is 

PM-AN - AT-TO. 

Now TO - PO X angle the tangent at P makes with the tangent at 

B, and since PO is approximately equal to AP, and the tangent at A makes 

with the tangents at P and B angles whose circular measures are respectively 

W.A?^l2qAk;^ and W,AB^l2qAk^ (by equation (2)), we have 

TO 

By equation (3) we have 

AP.W 

2qA^ 
:(AB2 ^ aP2). 

AN: 
w 

AB3. 
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Thus 

W 
AT =---AP3. 

Hence 
PM W |AB3-AP3 AP(AB2-AP2)| 

’ qA/kH. .3 “ 2 j 

qAk^ \ /■ 
(5) 

Let us now find what would be the depression of A if the weight W 

were applied at P. In this case AP would be straight, and if AN, Fig. 68, 

is the depression of A, 

AN ==PM +AP X angle which tangent at P makes with the horizontal. 

Now by (4) 

W 
, BP‘\ 

t^qAk^ 

and by (2) the angle the tangent at P makes with the horizontal is equal to 

Hence 

(6) 

Comparing equations (5) and (6) we see that the depression at P when the 

load is applied at A is the same as the depression at A when the load is 

applied at P. In the case we have just been considering one of the points 

is at the end of the rod. The theorem, however, is a general one, and 

holds wherever the points A and P may be. 

Case in which Bending is Considerable 

When the depression of A (Fig. 69) is considerable it is no longer a 

close approximation to take the moment at R as W.AR since A will not 
H 
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be vertically below T. Thus 1/p is not now equal to W.AR/^.A^^. If 

the end B (Fig. 69, a) is clamped so that the tangent is horizontal, the bending 

moment at any point R is 
Ak^ 

W(DA - CR) = W(^ ~x)^ q (7) 
p 

and if the angle between the tangents at R and S (Fig. 60, h) is da^ then 

1 da 

p ds 

da dx 

dx ds 

da' 
«= - .cos a. 

dx 

Substituting in (7) gives 

W(i2 -x)dx - q.Ak^.cos a.da. 

The position of the point R is given by 

or. 

wf (^2 - x),dx =^q.AkA cos a.da 
Jo Jo 

-1==^.A^2 sin a. 

If the tangent at A makes an angle 6 with the horizontal we have for the 
point A 

W-=^.AyfeS'.sin0. 
2 ^ 
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It is interesting to note that when W is big enough to bend the beam so 

that the tangent at A is vertical 

W = ^=- constant. 
2 ^ 

Any further increase in W maintains the tangent at A vertical and 

1 

^^2 hk?' 

Beam Supported at the Ends and Loaded in the Middle 

The relation between the depression and the weight given by equa¬ 

tion (4) gives us a means of determinang'^ by measuring the flexure of a 

beam. In experiments made with this object, however, it has been more 

usual to use the system considered in the next paragraph, that of a beam 

supported at the ends and loaded in the middle. 

w 
lao. 70. 

The ends of the beam (Fig. 70) are supposed to rest on knife edges in 

the same horizontal line. The tangent at C, the middle point, is evidently 

horizontal, and the pressure on each of the supports is W/2. Considering 

now the portion AC of the rod, it has the tangent at C horizontal, and it 

is acted upon by a vertical force equal to W/2 at A, The conditions are 

the same as for a rod of length AC clamped at C and acted on by a vertical 

force W/2, the case just treated; hence by equation (4), d, the vertical 

distance between A and C, is given by the equation 

W AC3 

~ 2qAk^ Y 

W 
AB3. 

48^A>^2 

Rod Clamped at Both Ends and Loaded in the Middle 

Suppose AB (Fig. 71) is a rod loaded at C, its middle point, and clamped 

at the ends A and B, which are supposed to be in the same horizontal line. 
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The action of the supports A, B on the rod will be equivalent to a vertical 

force and a couple. The magnitude of the vertical force is evidently W/2 

if W is the weight at C. We can find the value of the couple r* as follows. 

By the action of the force W/2 alone the tangent to the neutral axis at A 

would make, with the tangent at C, an angle whose circular measure is 

W AO 

2 

But since the tangent at A is parallel to the tangent at C, the couple must 

bend the bar so that if it acted alone the tangent at A would make with 

C 

V 
w 

Fig. 71. 

that at C an angle equal and opposite to that just found. Through a couple 

r* applied to the bar the tangents at A and C would make with each other 

an angle whose circular measure is 

Hence 

or 

W AO r _ -==-AC 

r =1W.AC. 

To find the depression of the middle point, we consider the effect of the 

force W/2, and the couple p separately. In consequence of the action 

of the force W/2, the middle point,.»C, would by equation (4) be depressed 
below the line AB by 

W AC3 

iqKk^ 3 * 

The couple p would bend the bar into a circle whose radius p is qKk^j p. 

This would raise the point C above A by 

AC® 

. ^ rAO> W ACS 
t.e.. bv -— = ——-- 

^ 2qAk^ 'iqKi? 4 
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The depression of C when both the force and the couple act is therefore 

W Aa W AC3 

2^Ak^ s ''Ak^ 4 

W W.AB3 
- AC3 = 

24^A^‘'^ 192^A^2 

The depression of the middle point of the brr when the ends are fixed is 

thus only 1/4 of the depression of the same bar when the ends are free. 

The case may be treated in a way similar to the treatment used for a 

beam supported at the ends and loaded in the middle. The points of 

inflection occur at D and E at ^ AB from the clamped ends. Each of the 

four portions AD, CD, CE and BE can be regarded as beams clamped at 

one end and acted on by a vertical force W/2 at the other end. Hence by 

equation (4) the vertical distance J between A and D and between C and D 

is given by the equation 

W 

1 AD3, 
Sq,Ak?‘ 

so that the depression of C below A is 

W I AB 

Sq,Ak^ y 4 / 

W 
* , -AB^. 

Vibration of Loaded Bars 

Since the deflection of the bar is in all cases proportional to the 

deflecting weight, a bar when loaded will execute isochronous vibrations, 

the time of a complete vibration being equal to 

27rVM//x, 

where M is the mass of the load and /x the force required to produce unit 

depression. From the preceding investigations we see that .qAk^jl^ 

where / is the length of the bar and p a numerical factor, which is equal 

to 3 when the weight is applied at the end of the bar, to 48 when the 

weight is applied at the middle point of a bar with its ends free, and to 

192 when the load is applied to the middle point of a bar with its ends 

clamped. 
To take a numerical example. Let us suppose we have a steel bar 

30 cm. long, 2 cm. broad, and *2 cm. deep, loaded at the end with a mass 
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of 1(X) grammes. Then since for steel ^ = 2T39xlO^^, and in this case 

M==10{), ^=3, /=^=30, Ar--4, (-1)2 = *0033, we find by substituting 

in the formula that the time of vibration is about J of a second. 

To take another case, suppose a man weighing 70 kilogrammes stands 

on the middle of a wooden plank 4 metres long, 30 cm. wide and 4 cm. 

deep, supported at its ends, what will be the time of swing? For wood we 

may take ^ = 10^’; putting /> 48, M ^ 7 x 10^ / = 4 x 10^, A = 120, J 

(2)2 = 1*33, we find that the time of swing is about *5 seconds. 

Elastic Curve 

Let us now consider a case like that of a bow where the force is parallel 

to the line joining the ends of the bar. Consider the equilibrium of the 

portion CB (Fig. 72) under the stresses at C, and the tension the string 

at B. 

C 

Fir,. 72. 

Thus the stresses across C must be equivalent to a couple T. CN and a 

force T, CN being the perpendicular from C on the line of action of the 

force. Confining our attention to the couple, we see that if p is the radius 

of curvature at C of the neutral axis of the rod. 

A;^2 

^- 
P 

-T.CN, 

where q is Young’s modulus for the rod, Ak^, the moment of inertia of the 

cross-section of the rod about an axis through its centre at right angles to 

the plane of bending. We see that 1/p is proportional to CN; hence the 

curve into which the central axis is bent is such that the reciprocal of the 

radius of curvature at any point is proportional to the distancif^^of the point 

from a straight line. Curves having this property are called elastic curves 

or elasticas; curves such as those shown in Fig. 73 are included in this 

family; they may be produced by taking a flexible metal ribbon, such as a 

watch-spring, and pushing the ends together. One of these curves is of 

especial importance—viz., the one where the distance of any point on the 

bent rod from the line of action of the force is very small. We shall show 

that this curve is the path of a point near the centre of a circle when the circle 

rolls on a straight line. To prove this it is only necessary to show that the 

reciprocal of the radius of curvature of this path is proportional to the distance 

from the straight line which is the path of the centre of the circle. Let us 
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suppose that the circle rolls with uniform angular velocity to along a 

straight line. Let C, Fig. 74, be the centre of the circle, P any position 

of the moving point, G the point of contact of the circle with the line 

I’lG. 7:^ 

along which it rolls, PN the perpendicular on GC. Then if v be the 

velocity of the point, p the radius of curvature of the path, 

— - acceleration of P along the normal to its path. (8) 
P 

Now since the circle rolls on the line without slioointr. the velocity of G is 

zero. Hence the system is turning about 

G, so that the velocity at P is at right 

angles to PG and equal to coPG; hence 

PG is the normal to the path and 

Now the acceleration of P is equal to 

the acceleration of C plus the acceler¬ 

ation of P relative to C; since C moves 

uniformly along a straight line the 

acceleration of C is zero, and since P 

describes a circle round C, the acceleration of P relative to C is equal to 

cu^CP and is along PC. Thus the acceleration of P along the normal to its 

path is equal to 

cu^CP cos CPG, 

and we have therefore by (8) 

-^co^CP cos CPG 
P 

1 CP cos CPG 

Since the angle PGC is very small, the angle CPG is very nearly equal to 
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the angle PCN, and PG is very nearly equal to a, the radius of the rolling 

circle; hence approximately 

Thus 1/p is proportional 

by C. 

From the equation 

1 CP cos PCN CN 

p 

to the distance of P from the straight line described 

= T.CN 

^Ay4^ 
we see that *32 „ „ . 

I'hc shape of the curve is shown in Fig. 75. The distance between 

Fig. 75. 

two points of inflection, that is, between two points, such as A and B> 

where 1 /p vanishes, is equal to na. 

Stability of a Loaded Pillar 

The preceding result at once gives us the condition that a vertical 

pillar with one end fixed vertipally in the ground should 

not buckle when loaded with a weight W—i.e., the 

condition that the pillar should be stable. For, suppose 

the pillar bends slightly, assuming the position AB, 

Fig. 76, then AB is an elastica and B must be a point 

of inflection, while, since A is fixed vertically in the 

ground, the tangent at A is parallel to the line of action 

of the force. The distance—measured parallel to 

the base-lines—between a point of inflection and the 

point where the tangent is parallel to the base-line is 

half the distance between two points of inflection, and 

is, therefore, equal to or, substituting the value 

of a, to 

I w 
Fig. 76. where W is the weight; hence, in order that the 

pillar should be able to bend, /, the length of the pillar, must not be less than 
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r, in order to avoid unstable bending, 

W< 
4/2 (^0 

If the cross-section of the pillar is a circle of radius then A^^ „ \ rrb^. 

Thus the weight which a vertical pillar can support without becoming 

B 

A 
Fig. 77. 

unstable is proportional to the fourth power of the radius and inversely 

proportional to the square of the length of the pillar. To take a special 

case, let us consider a steel knitting-needle, 20 cm. long and *1 cm. in radius 

and take ^ ==2*14 x 10^®. We find W less than 1-04x10^—less than 

about 1056 grammes. 

If the rod, instead of being fixed at one end, is pressed between two 

supports so that the ends are free to bend in any direction, Fig. 77, the 

ends must be points of inflection, the distance between which is ira or 

hence 

itV^A>/W; 

w 

in the limiting case when the pillar can bend. 

W< 
TT^qkk^ 

Hence for stability 

(10) 
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In the case where both ends are fixed (as in Fig. 78), the tangents at 

the ends must be parallel to the line of action of the force, and there must 

be two points of inflection at h and c; hence the distance between the ends 

is twice the distance between two points of inflection, so that 

/ ~27ra 

Hence for stability W< (11) 

Comparing (9) and (1J), we see that a rod with both ends fixed will, without 

buckling, support a weight sixteen times greater than if one end were free. 

Since a pillar can only support without buckling a finite weight, and 

as this weight diminiishes as the length of the pillar increases, it follows that 

a pole of given cross-section would, if high enough, begin to bend under its 

own weight, so that there is a limit to the height of a vertical pillar or tree 

of given cross-section. Suppose W is the weight of the pillar, and suppose 

as an approximation that the problem is the same as if the weight were 

applied at the middle point of the pillar, then if I is the length of the pillar 

we see from (9) that 

w < 
/2 

or 

A more accurate investigation, which 

mathematics, shows that the accurate relation 

requires the aid of higher 

is 

/< 2‘8 

Let us take the case of a pine tree of uniform circular section from top to 

bottom, let the diameter of the tree be 15 cm. For deal ^=10^^, and 

taking the specific gravity of deal as *6, we have 

152 
W = -6^/A; 

,2 

/V 

or / < 2-7 X 102 cm. 
I 

Thus the height of the tree cannot exceed about 27 metres. 

we get /2< 
7JI X IQii X Ij 

•6 xH^^xTe 
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Determination of Young’s Modulus by Flexure 

Young’s modulus is often determined by measuring the deflection of 

a beam supported at both ends and loaded in the middle. If d is the 

depression of the middle of the bar, then (see p. 115) 

W 
d-=: 

where W is the load, AB the length of the bar, q Young’s modulus, Ak^ 

the moment of inertia of the cross-section of the bar about an axis through 

the centre of gravity of the section at right angles to the plane of bending. 

The value of d can be determined by fixing a needle point to the middle 

of the bar, and observing through a microscope provided with a micrometer 

eyepiece the depression of the beam when loaded in the middle with various 

weights. Another method of measuring d is by means of a very carefully 

made screw, the end of which is brought into contact with the bar; by 

measuring the fraction of a turn through which the head of the screw 

must be turned to renew the contact after the bar has been loaded we can 

determine the value of d corresponding to given loads. The most accurate 

method, however, would be an optical one, in which, by Michelson’s method, 

interference fringes are produced by the interference of light reflected from 

two mirrors, one of which is fixed while the other is attached to the middle 

point of the bar. By measuring the displacement of the fringes when the 

load is put on we could determine d^ and the method is so delicate that the 

displacements corresponding to very small loads could be measured. 
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Another method, due to Konig, consists in measuring the angle through 

which the free ends of the bar are bent. The method is represented in 

Fig. 79. AB is the rod resting on two steel knife edges Sj, Sg. The mirrors 

Pj, P2, which are almost at right angles to the rods, are rigidly attached to 

it. The vertical scale S is reflected first from the mirror Pg, then from 

the mirror P^, and then read through 

the telescope F. The weight is applied 

to the knife edge r, which is exactly 

midway between the knife edges S^, 

Sg. On looking through the tele¬ 

scope we find one of the divisions ‘ 

of the scale coinciding with the cross 

wires; on loading the beam another 

division of the scale will come on 

the cross wire, and by measuring the 

distance between these divisions we 

can determine the angle (j> through 

which each free extremity of the bar 

has been bent. For, let us follow 

^ c the ray backward from the telescope; 

’ when the mirror Pj is twisted through 

an angle the point where the reflected ray strikes the mirror Pg is shifted 

through a distance 2d<j>, where d is the distance between the mirrors; thus, 

if the light reflected from Pg were parallel to its original direction, the scale 

reading would be altered by 2d<f>y but the light reflected from Pg is turned 

through an angle 4:<l>; this alters the scale reading by 4D<^ where D is the 

distance of the scale S from the mirror Pg, hence v, the total alteration in 

the scale reading, is given by 

Thus 
V 

^+'4D’ 

but (see p. Ill) 
W 

2.qKk^ 8 

where / is the distance between the knife-edges. 

Thus, knowing v we can determine q. The advantage of this method is 

that Vy the alteration in the scale reading, may be made very much greater 

than the depression of the middle of the bar. 

The following convenient method for determining both n and q for a 

wire was given by G, F. C. Searle in the Philosophical Maga^iine, Feb. 19Q0. 

AB, CF> (Fig. 80) are two equal brass bars of square section, the wire under 
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observation is firmly secured by passing through horizontal holes drilled 

through the centres G, G' of the bars. The system can be suspended by 

two parallel torsionless strings by means of hooks attached to the bars. 

If now the ends B and D are made to approach each other through equal 

distances and are then set free the bars will vibrate in a horizontal plane. 

To a first approximation the centres G and G' remain at rest, so that the 

action of the wire on the bar, and therefore of the bar on the wire, is a pure 

couple; the wire will, therefore, be bent into a horizontal circle and the 

couple will be qKJ^jp. Here q is Young’s modulus, the moment of 

inertia of the cross-section of the wire about an axis through the centre of 

gravity at right angles to the plane of bending, p the radius of curvature of 

the wire, which is equal to //2<^ if / is the length of the wire and (f> the angle 

through which each bar is twisted. Hence, if K is the moment of inertia 

of CD about a vertical axis through G, we have 

qKJ^ 2qAk^ 

hence, if Tj is the time of vibration, 

Ti = 277 V K/ 

2.qAk^ 
(12) 

The bars arc now unhooked from the strings and one clamped to a 

shelf, so that the wire is vertical; if we make the wire execute torsional 

vibrations, and Tj, is the time of vibration. 

Tg =277 
2K/ 

•nna* 
(13) 

(see p. 103), n being the coefficient of rigidity and a the radius of the wire. 

As the wire is of circular section. 

hence by (12) and (13) we have 

n Ti2 

[Table 
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* TABLE OF MODULI OF ELASTICITY 

The values of the moduli of elasticity vary so much with the treatment a metal has 
received in wire-drawing, rolling, annealing, and so on, that whenever they are required 
for a given specimen it is necessary to determine them, if any degree of accuracy is required. 
The following table contains the limits within which determinations of the moduli of 
different metals lie. They are taken from the results of experiments by Wertheim, Kiewiet, 
Lord Kelvin, Pisati, Baumeister, Mallock, Cornu, B'verett, and Katzenclsohn. The values 
are given in C.G.S. units, n is the rigidity, q Young’s modulus, k the bulk modulus, and <r 
Poisson’s ratio. 

n/iuu g/io» */lon cr 

Aluminium 2*38—3 -36 7-4 •13 
Brass . 3*44__4 03 9-48—10-76 10-2—10-85 •226—*469 
Copper. 8-5—4*5 10-3—12-8 17 * •25—-36 
Delta-Metal . 8*6 9T 10 — 

Glass . 1*2—2-4 

00 1 8-4—4*2 •20—-26 

Gold , 3-9—4*2 /6-48 (drawn)\ 
\ 8 (rolled) / — •17 

Iron (oast) . 3*5—6-3 9*8—16 9*7—147 •23—-81 
Iron (wrought) 6‘6—77 17—20 — — 

Lead . T8 •6—1-8 87 •376 
Phosphor Bronse . 3*6 9*8 — — 

Platinum 6*6—7*4 16—17 — i -16 
Silver . 2-6—2-6 7-0—7*6 — •37 
Steel 77—9*8 18—29 14*7—19 •26—-38 
Tin . , . 1-6 4*2 — 

Zinc 8-8 87 — •20 



CHAPTER IX 

SPIRAL SPRINGS 
Contents.—Flat Springs—Inclined Springs— Angular deflexion of Free F"nd 

on Loading—Vibrations of Loaded Spring. 

The theories of bending and twisting have very important applications 

to the case of spiral springs. By a spiral spring we mean a 

uniform wire or ribbon wound round a circular cylinder in such 

a way that the axis of the wire makes a constant angle with the 

generating lines of the cylinder. 

The first case we shall consider is that of a spiral spring 

made of uniform wire of circular cross-section, and wound round 

the cylinder so that the plane of the wire is everywhere approxi¬ 

mately perpendicular to the axis of the cylinder—/.<?., a “flat” 

spring. Let us suppose that such a spring is hung with its 

axis vertical, and that a weight W, acting along the axis of the 

cylinder, is applied to an arm attached to the lower end of the 

spring. 

Considering the equilibrium of the portion CP of the spring, 

the stresses over the cross-section P must be in equilibrium 

with the force W at C, and hence these stresses must be equi¬ 

valent to a tangential force W acting upwards, and a couple 

whose moment is Wtf and whose axis coincides with the axis of 

the wire at P, a being the radius of the cylinder on which the 

axis of the wire lies. If the diameter of the wire is very small 

compared with a we may, by the principles explained on p. 108, 

neglect the effects of the tangential force in comparison with 

that of the couple and consider the couple alone. This couple 

is a torsional couple and is constant all along the wire; it 

will produce, therefore, a uniform rate of twist; if is the rate of twist, 

b the radius of the wire, and n its coefficient of rigidity, then we have 
(see p. 98), 

We get this uniform rate if we suppose that the turns of the wire 

instead of being horizontal are inclined so that the normal to the plane of 

the wire (the osculating plane) makes a constant angle a with the vertical. 

If OZ is vertical, OQ and OQ' parallel to the normals to the osculating 

planes at P and P' respectively, then < ZOQ = < ZOQ' «= a, and since the 

127 
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radii from P and P' at right angles to the axis of the cylinder are at right 

angles to OQ, OQ' respectively, the angle between the planes ZOQ, ZOQ' 

is equal to 8^, the angle between these radii. Hence the angle QOQ' 

= sin a.SO but QOQ'/PP' ~<f>, the rate of twist, hence 

, . SO sin a cos a , 1 , sin a cos a , 
0 sm a-^ , hence mrh^ - W^/ 
^ PP' 2 a 

or, if a IS small, a=— - • 
mrb^ 

If is the vertical displacement at a point at a distance / from the fixed 

end of the spring, ^ = /a, hence the vertical extension of a spring of length / 

is equal to 

2W/ 

fiTrb^ 

Thus d varies directly as the area of the cross-section of the cylinder 

and inversely as the square of the area of the cross-section of the wire. We 

see that the depression of the weight is the same as the displacement of 

the extremity of a horizontal arm of length a attached to the end of the 

same length of wire when fulled out straight and hung vertically, the end 

of the horizontal arm being acted on by a horizontaTforce equal to W at 

right angles to the arm. 

To take a numerical example: suppose we have a steel spring t300 cm. 

long wound on a cylinder 3 cm. in diameter, the diameter of the wire 

being *2 cm. 

/;=8 xlO“ ^-1*5, = 

If this spring is loaded with a kilogramme so that W =981 x 10^ the 

depression d will be given by 

^_600 X 981 xl0»x (1-5)2 

= 5 cm. approximately. 

Energy in the Spring 

Q, the energy stored in the spring, is (see p. 98) given by the equation 

Q = 

2W^ 
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thus 
WW 

nrtlr^ 

= md. 

This result illustrates the theorem proved on p. 87. 

Springs inclined at a Finite Angle to the Horizontal Plane 

The flat spring, as we have just seen, acts entirely by torsion; in inclined 

springs, however, bending as well as torsion comes into play. Let the axis o£ 

the spring make a^omtjmt angle 

zontal. Let the spring (Fig. 82) be stretched by 

a weight W acting along the axis of the cylinder 

on which the spring is wound. Then, consider¬ 

ing the equilibrium of the portion AP of the 

spring, and neglecting as before the tangential 

stresses at P, we see that the stresses at P must 

he equivalent to a couple whose moment is W^, 

and whose axis is PT, the horizontal tangent to 

the cylinder at P. This couple may be resolved 

into two:—one with the moment cos a and 

axis along the wire PQ, tending to twist the spring, 

the second, having the moment sm a and its 

axis PN at right angles to the plane of the spring 

at P tending only to bend the spring. Now the 

twisting couple Wa cos a will produce a rate of 

twist (f) given by 

'Wa cos a 

>k: ’ 

where C is a quantity depending on the shape 

and size of the cross-section of the spring. 

When the spring is a circular wire of radius h, we 

have seen that The couple W^7 sin a 

will bend the spring and will alter the inclination of the tangents at two 

neighbouring points PQ by 

sin a 
..PQ, 

where D = the moment of inertia of the area of the cross-section of 

the wire of the spring about an axis through its centre of gravity at right 

angles to the plane of bending. 

I 



130 PROPERTIES OF MATTER 

Let us jiow consider the effect of thes^e changes on the radial arms 

which we imagine fixed to the spring. Let us first consider the vertical 

displacements of the ends of the arms at two neighbouring points PQ. 

'Faking first the torsion, the relative motion of the ends is VQ(f>a, but in 

consequence of the inclination of the spring this relative motion is inclined 

at an angle a with the vertical so that the relative vertical motion is 

PQ4 cos a == 
PQ. Wa^ cos^ a 

»C 

Thus, if / be the length of the wire m the spring, the vertical displace¬ 

ment of the end of the spring due to torsion is 

IWa^ cos^ a 

nC 

Now consider the effect of the l)ending on the vertical motion of the 

ends of the rods at PQ. in consequence of the bending, the relative motion 

is in a plane making an angle a with the horizontal plane and is equal to 

sin 

qV) 

I'o get the vertical component of this we must multiply by sin a, and we 

see that the vertical displacement due to bending is 

PQ 
Wa* sin2 a 

' qD 
or for the whole spring 

sin2 a 

qb 

Thus the total vertical displacement is 

V nC qD j ^ 

In addition to the vertical displacement there will be an angular dis¬ 

placement of the pointer at the end of the bar which we may calculate as 

follows. First take the torsion. The arm at P is twisted relatively to the 
77* 

arm at Q through an angle in a plane making an angle —a with th 
2 

horizontal plane equal to PQx<^; the angular motion in the horizc 

plane is, therefore. 
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or PQ 
Wi/ sin a cos a 

nC 

And the direction is such that, as we proceed along the spring, the arms are 

rotated in the direction in which the spring is wound, so that this angular 

movement due to the torsion is such as to tend to coil up the spring. The 

angular deflection due to torsion for the whole spring is, therefore. 

/.Wa sin a cos a 

nC 

Let us now consider the angular deflection due to bending. The arm at 

P is bent relatively to that at Q through an angle 

PQ 
^ Wtf sin a 

qD 

in a plane making an angle a with the horizontal plane; projecting this 

angle on the horizontal plane the relative angular motion in this plane of 

the two arms is 

PQ 
W<7 sin a cos a 

thus the angular deflection due to bending for the whole length of the 

spring is 

/W^ sin a cos a 

The deflection in this case is in the opposite direction to that due to the 

torsion, and is such as to tend to uncoil the spring. The total angular 

deflection is thus 

[1 1 1 
a sm a cos a< - - — r 

[nC qYy J 

in the direction tending to coil up the spring. The angular deflection is 

thus proportional to sin a cos a and is greatest when a = 7r/4. The deflection 

tends to coil up the spring or uncoil it according as 

1> J_. 
«C'=^D’ 

if the spring is very stiff to resist bending in its own plane, it will coil up 

under the action of the weight; if, on the other hand, it is very stiff to resist 

torsion, it will uncoil. This is exemplified by the two springs shown in 

Figs. 83, 84. The first, which is made of strip metal, with the short 

dimension in the plane of bending, is very weak to resist bending, and so 
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tends to uncoil when stretched, while the second, which is also made of a 

stnp of metal, but with the long side in the plane of bending, is very stiff 

to resist bending, and so tends to coil 

up when stretched. Jn the case of a 
circular wire of radius b 

C == 

so that 

112/1 2| 
«C ■rrb*\n 

For metals q is greater than 2», so that 

1 _ 1 

nC qT) 

is positive, and thus a spring made of 

circular wire lends to coil up when 
extended. 

Vibrations of a Loaded Spring 

We can use the up and down 

oscillations of a flat spiral spring to 

determine the coefficient of rigidity 

of the substance of which the spring 

is made. Let us take the case of a flat 

spiral spring made of wire of circular 

cross-section; then, if the spring is 

extended a distance x from its position 

of equilibrium, the potential energy 
in the spring is (see p. 128) equal to 

-vS 

Fig. 83. Fig. 84. 

where « is the coefficient of rigidity, b the radius of cross-section of the 

llnSh'^oftr^'"' ^Wch the spring is wound, and / the 

the kinetic energy of this mass is equal to 
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The spring itself is moving up and down, so that there will be some kinetic 

energy due to the motion of the spring. To a first approximation* the 

vertical motion of a point on the spring is proportional to its distance from 

the fixed end, so that the velocity at a distance .r from the fixed end will be 

s dx 

Idi 

Ifp is the mass of unit length of the spring, the mass of an element of 

length ds is pds and its kinetic energy is 

dt / 
: ds. 

Integrating this expression from s^o to s^l, we find that the kinetic 

energy of the spring is 

Jdx\^ 

or if m be the mass of t] 

Hence the total kinetic energy is ec^ual to 

dx 

'dt; ‘ 

Since the sum of the kinetic and potential energy is constant, 

/ m\idx\^ \2 irnb^x"^ 

3 

is constant; hence, differentiating with respect to /, wc have 

\ ^ ! di 

m \d^x irtth^ 

This equation represents a periodic motion, the time T of a complete 

vibration being given by the equation 

T-27r J.. M + ml3 

nnb*j2/a^' 

When T has been determined, » can be found by this equation. 
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Angular Oscillations * 

Wc can prove in a similar way that T^, the time of vibration of a 

suspended bar about the vertical axis, is given by the equation 

+ mays 
TTqbyi 

where jg the moment of inertia of the bar about the vertical axis and 

q Young’s modulus for the wire. By measuring T^ we can determine q. 

* Ayrton and Perry, Proc, R.S., vol. xxxvi., p. 311; Wilberforce, Pbi/. Mag,^ 
Oct. 181)4. 
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Lxperiments--Hxamplc of Co]IisK)n of Railway (Carnages—ffcftz’s Investigations— 
Table of Coefficients. 

Coefficient of Restitution 

An interesting class of phenomena depending on the elasticity of 

matter is that of collision between elastic bodies. The Jaws governing 

these collisions were investigated by Newton and his contemporaries, who 

used the following method. The colliding bodies were spherical balls 
suspended by strings in the way shown 

in Fig. 85; the balls, after falling from 

given heights, struck against each other 

at the lowest point, and after rebounding 

again reached a certain height. By 

measuring these heights (and allowing, 

as Newton did, for the resistance of the 

air) the velocities of the balls before 

and after collision can be determined. 

Newton in this way showed that when 

the collision was direct—/.cc, when the 

relative velocities of the two bodies at 

the instant of collision was along the 

common normal at the point of impact— 

the relative velocity after impact bore a constant ratio to the relative 

velocity before impact—the relative velocity being, of course, reversed 

in direction. Thus, if v arc the velocities of the bodies before impact, 

u being the velocity of the more slowly moving body, while L), V are the 

velocities after impact, then 

(1) 
where ^ is a quantity called the coefficient of restitution, and Newton’s 

experiments showed that e depended only on the materials of which the 

balls were made, and not on the masses or relative velocities. A series of 

experiments were made by Ilodgkinson, the results of which were in 

general agreement with Newton’s. Hodgkinson found, however {Report 

of British Association, 1834), that when the initial relative velocity was very 

large e was smaller than it was with moderate velocity. 
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Vincent * has shown that the coefficient of restitution is given by the 

equation e — - bu^ where u is the velocity of approach and and b are 

constants. 

Equation (1) and the equation 

mu 4- yiv ~ wU + MV (2) 

which expresses that the momentum of the system of two bodies is not 

altered by the impact, m and M being the masses of the bodies, are sufficient 

to determine U, V; solving equations (1) and (2) wc find 

mu -f M/^ M 
U ==- -\re — (v 

?}i ^ M m 4 M 

mu 4- M/> r>i 
V- - - -(v~u\ 

m 4 M m + M 

Hence we have 

Mm 
ImV^ 4 i MV2 ^,mu^ 4- IMp^ -.1(1- r) (p - uY. 

M +;// 
(3) 

Thus the kinetic energy after impact is less than the kinetic energy 

before impact by 

Mm 

Thus, if e is unity there is no loss of kinetic energy. In all other cases 

there is a finite loss of kinetic energy, some of it being transformed during 

the collision into heat; a small part only of it may in some cases be spent 

in throwing the balls into vibration about their figures of equilibrium. 

Collision of Railway Carriages 

To get a clearer idea of what goes on when two clastic balls impinge 

against each other, let us take the case of a collision between two railway 

carriages running on frictionless rails, each carriage being provided with a 

buffer spring. When the carriages come into collision, the first effect is to 

compress the springs, the pressure which one spring exerts on another is 

transmitted to the carriages, and the momentum of the carriage that was 

overtaken increases, while that of the other diminishes; this goes on until 

the two carriages are moving with the same velocity, when the springs 

have their maximum compression and the pressure between them is a 

maximum. The kinetic energy of the carriages is now less than it was 

before impact by 

Mm 

jsi 4 w 
(p uy 

* Vincent, Proceedings Cambridge Philosophical Society^ vol. x. p. 332. 
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and this energy is stored in the springs. The springs having reached 

their maximum compression begin to expand, increasing still further the 

momentum of the front carriage and diminishing that of the carriage in 

the rear. This goes on until the springs have regained their original 

length, when the pressure between them vanishes and the carriages separate. 

There is now no strain energy in the springs, and the kinetic energy in 

the carriages after the collision has ceased is the same as it was before it 

began. 

The reader who is acquainted with the elements of the differential 

calculus will find it advantageous to consider the analytical solution of 

the problem, which is very simple. Let x, y be the co-ordinates of the 

centres of gravity of the first and second carriages respectively, fjL, jx the 

strength of the springs attached to these carriages (by the strength of a 

spring we mean the force required to produce unit extension of the spring), 

7] the compressions of these springs, and P the pressure between them; 

then we have 

m -P, 
dt^ 

Ud‘^y 

/i'77=P, P^-P. 

X -y = constant - (^ +17). 

The solution of these equations is 

Vim 
P -sin o}t 

M -f w 

/ aa M 4- m 
where a» = ^/-, ; u and v are the initial velocities of the 

^ IJL+IX Vim 

carriages, and / is measured from the instant when the collision began, 

integrating we get 

dx m 
pf -4. ]V[^|. 

dt M-j-m ^ 

Mm 

M + m 
(p - u) cos wt 

On 

and 
dy M Mm 

M ,“7-^ --(y ~u) cos ojt. 
dt M-^rPt M-^m^ 

Thus the springs have their maximum compression when 
dx 

dt 

dy 

dt' 
i.e.. 

when a>/ = Tr/2, or / = - ; at this instant the energy stored in the first 
2cl> 

=ip^ 

P'*^ W NO 
- I - - l(v ^ , 

fx M+m 

spring 
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while the energy in the second spring 

P^ u M/// 

fx /X + /X M + w 

At the instant of greatest compression the amounts of energy stored 

in the two springs are inversely as the strengths of the springs. 

The springs regain their original length and the collision ceases when 

P — 0—Le., when aj/ = Tr, or 

TT / M/// /X + fX 
t—- —TT L / ^--, 

CO y M + m fijx 

This is the time the collision lasts. We see that it increases as the masses 

of the carriages increase and diminishes as the strengths of the springs 

increase. It is independent of the relative velocity of the carriages before 

impact. 

In the case of the collision between elastic bodies the elasticity of the 

material serves instead of the springs in the preceding example. The 

bodies when they come into collision flatten at the point of contact so 

that the bodies have a finite area in common.* In the neighbourhood of 

this area each body is compressed; the compression attains a .maximum, 

then diminishes and vanishes when the bodies separate. The theory of 

the collision between elastic bodies was worked out from this point of 

view by Hert:^ (see Collected Papers, English Translation, p. 146), who found 

expressions for the area of the surface in contact between the colliding 

bodies, the duration of the contact and the maximum pressure. The 

duration of contact of two equal spheres was proved by Hertz to be equal to 

2*JM32R^» 
257r2.f2(l -(7^)2 

vrhere R is the radius of either of the spheres, j* the density of the sphere, 

^ and cr respectively Young’s modulus and Poisson’s ratio for the substance 

of which the spheres are made. Hamburger has measured the time two 

spheres are in contact by making the spheres close an electric circuit whilst 

they are in contact and measuring the time the current is flowing. The 

results of his experiments are given in the following table. They relate 

to the collision of brass spheres 1 *3 cm. in radius: 
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The duration of the impact is several times the gravest time of vibra¬ 

tion of the body. In order to start such vibrations with any vigour the 

time of collision would have to be small compared with the time of vibration. 

We conclude that only a small part of the energy is spent in setting the 

spheres in vibration. 

As an example of the order of magnitude of the quantities involved in 

the collision of spheres we quote the results given by Herts; for two steel 

spheres 2-5 cm. in radius meeting with a relative velocity of 1 cm. per second. 

The radius of the surface of contact is *013 cm. The time of contact is 

•00038 seconds. The maximum total pressure is 2*47 kilogrammes and the 

maximum pressure per unit area is 7300 kilogrammes per square centimetre. 

In this theory and in the example of the carriages with springs we 

have supposed that the work done on the springs is all stored up as 

available potential energy and is ultimately reconverted into kinetic 

energy, so that the total kinetic energy at the end of the impact is the 

same as at the beginning. This is the case of the impact of what are 

called perfectly elastic bodies, for which the coefficient of restitution is 

equal 1;^ unity. In other cases we see by equation (3) that, instead of the 

whole work done on the springs being reconverted into kinetic energy, 

only the constant fraction of it is so reconverted, the rest being ulti¬ 

mately converted into heat. Now our study of the elastic properties of 

bodies has shown many examples in which it is impossible to convert the 

energy due to strain into kinetic energy and the kinetic energy back 

again into energy due to strain without dissipation. We may mention 

the phenomena of elastic fatigue or viscosity of metals (see page 73), 

as exemplified by the torsional vibrations of a metal wire, where the 

successive transformations of the energy were accompanied by a con¬ 

tinued loss of available energy. Again, the elastic after-effect would 

prevent a total conversion of strain energy into mechanical energy. 

For example, if we load a wire up to a certain point, and measure the 

extension corresponding to any load, then gradually unload the wire, 

if the straining has gone beyond the elastic limit the extensions during 

unloading will not be the same as during loading; and in this case there 

will in any complete cycle be a loss of mechanical energy proportional to 

the area included between the curves for loading and unloading. The per¬ 

centage loss in this case would depend upon the intensity of the maximum 

stress; if this did not strain the body beyond its elastic limit there would 

be no loss from this cause, while if the maximum strain exceeded this limit 

the loss might be considerable. This may be the reason why the value 

of t diminishes as the relative velocity at the moment of collision increases, 

for Hertz has shown that the maximum pressure increases with the relative 

velocity being proportional to the 2/5th9 power of the velocity, while it 
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is independent of the size of the balls. Thus the greater the relative 
velocity the more will the maximum pressure exceed the elastic limit and 
the larger the amount of heat produced. In addition to the loss of energy 
by the viscosity of metals and hysteresis there is in many cases of collision 
permanent deformation of the surface in the neighbourhood of the surface 
of contact. This is very evident in the case of lead and brass. The harder 
the body the greater the value of e. We can see the reason for this if we 
remember that the hardness of a body is measured by the maximum stress 
it can suffer without being strained beyond the elastic limit, while any 
strain beyond the elastic limit would increase the amount of heat produced 
and so diminish the value of e. 

When we consider the various ways in which imperfections in the 
elastic property can prevent the complete transformation of the energy due 
to strain into kinetic energy and vice versa^ it is somewhat surprising that 
the laws of the collision of imperfectly elastic bodies are as simple as 
Newton’s and Hodgkinson’s experiments show them to be, for these laws 
express the fact that in the collision a constant fraction, of the initial 
kinetic energy is converted into heat, and that this fraction is independent 
of the size of the spheres and only varies very slowly with the relative 
velocity at impact. For example, Flodgkinson’s experiments show that 
when the relative velocity at impact was increased threefold the value of e 

in the case of the collision between cast-iron spheres only diminished from 
•69 to *59. A series of experiments on the impact of bodies meeting with 
very small relative velocities would be very interesting, for with small 
velocities the stresses would diminish, and if these did not exceed those 
corresponding to elastic limits some of the causes of the dissipation of 
energy would be eliminated, and it is possible that the value of e might be 
considerably increased. 

We find, too, from experiment that bodies require time to recover even 
from small strain, so that, if the rise and fall of the stress is very rapid, there 
may be dissipation of energy in cases where the elastic limit for slowly 
varying forces is not overstepped, 

Hodgkinson gives the following formula for the value of when 
two different bodies A and B collide, in terms of the values of for the 
collision between two bodies each of material A and the value for the 
collision between two bodies each of material B; ' 

^ __ ^2 

^AB i " 1 ^ 1 I 
*• -f- ' 

and he finds this formula agrees well with his experiments. 
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The following considerations would lead to a formula giving in 

terms of and Herts? has shown that the displacements of the 

bodies A and B in the direction of the common normal to the two surfaces 

over which the bodies touch are proportional to 

^2 

where Uj, are the values of Poisson’s ratio for the bodies A and B and 

the values of Young’s modulus. Now the stresses are equal, so that, 

assuming that the quantities of work done on the two bodies are in the 

ratio of the.displacements, then, if E is the whole work done, 

1 

l-ai^ 

- and 
(72^ 

^2 A 

will be the amounts done on the two bodies. Now the first body converts 

1 second 1 of this work into heat; hence the energy 

converted into heat will be 

and this must equal 

1 — 1 
- --+0-O 

^1 ^2 

0 -e\;)E; 

hence — ^ AB 
1 - 

1 -02^ 

J2. 

^2 

The following table of the values of e is taken from Hodgkinson’i 

Report to the British Association, 1834: 

Cast-iron balls . . . . -60 
Cast-iron—lead . . . . *13 
Cast-iron—boulder stone . . *71 
Boulder stone—brass . . . '62 
Boulder stone—lead . . . -17 
Boulder stone—elm . . . -56 
Elm balls . . . . . -60 
Soft brass (16 pt. Cu and 1 pt. Sn). *36 
Bell metal (16 pt. Cu and 4 pt. Sn). *59 
Lead . . . . . '20 
Lead—elm . . . . *41 
Elm—soft brass . . . . *52 

Clay.-17 
Clay—soft brass . . . . -16 
Glass ..... -94 
Cork.-65 
Ivory . . , . '81 
Lead—glass . . . . *26 
Soft brass—^glass . . . '78 
Bell metal-—glass . . . -87 
Cast-iron—glass . . . . -91 
Lead—ivory . . . . *44 
Soft brass—ivory . . , -78 
Bell metal—ivory . . . -77 
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The case where a permanent deformation is produced has been in¬ 

vestigated by Vincent {Proceedings Cambridge Philosophical Society^ vol. x. 

p. 332). The case taken is that of the indentation produced in lead or 

paraffin by the impact of a steel sphere. He finds that the volume of 

the dent is proportional to the energy of the sphere just before impact; 

that during the impact {i,e.^ while the lead is flowing) the pressure between 

the sphere and the lead is constant and varies from 6 x 10® to 13 x 10® dynes 

per square centimetre for different specimens of lead; for paraffin the 

corresponding pressure is about 10® dynes per square centimetre. 



CHAPTER XI 

COMPRESSIBILITY OF LIQUIDS 

Contents.—Changes in Volume of a Tube under Internal and External Pressure— 
Measurements of Compressibility of Liquids by methods of Jamin, Rcgnault, Buchanan 
and fait, Amagat—(compressibility of Water—Effects of Temperature and Pressure— 
Compressibility of Mercury and other Liquids —'^I’cnsile Strength of Liquids. 

The fact that water is compressible under pressure was established in 1762 

by Canton, and since then measurements of the changes of volume of 

liquids utidcr pressure have been made by many physicists. 

The problem is one beset with experimental difficulties, some of which 

may be illustrated by considering the case of a liquid enclosed in a vessel 

such as a thermometer; when pressure is applied to the liquid, the de¬ 

pression of the liquid in the stem will be due partly to the contraction of 

the liquid under pressure and partly to the expansion of the bulb of the 

thermometer. In order, then, to be able to determine from the depression 

of the liquid the compressibility of water we must be able to estimate the 

alteration in volume of the tube under pressure. We shall therefore 

consider in some detail the alteration in volume of a vessel subject to 

internal and external pressure. We shall take the case of a long cylindrical 

tube with flat ends exposed to an external pressure and an internal 

pressure The strain in such a cylinder has been shown by Lam^ to be 

(1) a radial displacement p given by the equation 

p=Ar+ - 
r 

where r is the distance of the point under consideration from the axis of 

the cylinder and A and B constants, and (2) an extension parallel to the 

axis of the cylinder. 

The radial displacement p involves an elongation along the radius equal 

to dpfdr and an elongation at right angles to p in the plane at right angles 

to the axis of the cylinder equal to pfr. Let the elongations along the 

radius, at right angles to it and to the axis of the cylinder, and along the 

axis be denoted by ^,/, g respectively, and let P, Q, R be the normal stresses 

in these directions; then by equation (1), p. 89, we can easily prove 

143 
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P- [k- > ■'ji) 

/ 4a/ \ , 
[k- 

2n\ 
+0 Q = ■3)^^ 

/ in\ 2a; \ 
+/) R- \k [k- )(e 

3 r 
where k is the bulk modulus and n the coefficient of rigidity. 

Since 

B 

,-t and 
dr r 

we have ?=A- 
B 

Thus the radial stress is equal to 

2/? '/ . 3B^ , 1, 2« \ 
A- - + {k- ^ 

\ r~) \ 3 / 

(1) 

If a and h are respectively the internal and external radii of the tube, 

then when r~a the radial stress is equal to - and when r ~h the radial 

stress is equal to -hence we have 

The whole force parallel to the axis tending to stretch the cylinder is 

TTO^pQ-TTb^p^-, 

hence the stress in this direction is equal to 

tto^Pq ~ 'Trb^Px 

The stress parallel to the axis is, however, equal to 

2n 
12 A; 

\ \ 3/ 
hence we have 

-4?—PM^+- x+U--- 2A. 
\ Sr \ 3/ 

From (2), (3) and (4) we get 

1 

2,k IP-a^ 

(4) 
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B 
Since the radial displacement is Ar 4 , the internal volume of the 

r 
tube when strained is 

a +Aa 4- ) /([ 

where / is the length of the tube; hence, retaining only the first powers 

of the small quantities A, B and we have, if is the change in the 

internal volume. 

82*1 — Trd^/' I ^ Po-Pi 
f h~ - k b'^ — }• 

and if hiK^^ is the change in the external volume. 

87'2 - Txh^^l 
r ■2 - «2 ■■ n 

Methods of Measuring Compressibility of Liquids 

There are two cases of special importance in the determination of the 

compressibility of fluids: the first is when the internal and external pressures 

are equal; in this case and we have • 

Ttd^l 

Thus the diminution of the volume is independent of the thickness of the 

walls of the tube. Some experimenters have been led into error by supposing 

that, if the walls of the tube were very thin, there would be no appreciable 

diminution in the volume of the tube. If the vessel had been filled with 

liquid which was subject to the pressure />(,, the diminution in the volume 

of the liquid would be Trd^Ipjyi, where K is the bulk modulus of the liquid. 

The diminution of volume of the liquid minus that of the vessel is 

therefore 

TTd^lp^\ 
1 1 

Thus by experiments with equal pressures inside and out, which was 

Regnault’s method, we determine 

1 I 

so that to deduce K we must know k. 

Another method, used by Jamin, was to use internal pressure only, 

when the apparent change in the volume of the liquid is the sum of the 
K 
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changes of volumes of the liquid and of the inside of the vessel. Jamin 

thought that he determined the change of volume of the vessel by placing it 

in an outer vessel full of water and measuring the rise of the water in a 

graduated capillary tube attached to this outer vessel; by subtracting this 

change in volume from the apparent change he thought he got the change 

in volume of the liquid without requiring the values of the elastic constants 

of the material of which the vessel is made. A little consideration will 

show, however, that this is not the case. Let 8^^ be the change in the 

volume of the liquid, 8^^^ the change in the internal volume, 82^2 

external volume; it is 82^2 measured by the rise of liquid in the 

capillary tube attached to the vessel containing the tube in which the liquid 

is compressed. 

Observations on the liquid inside the tube give 

82^ + 82^1. 

If we subtract Jamin’s correction we get 

82^ + 8^*1 - 824. 

Substituting the values of and 82^2 when —0 we find 

S.8... S..nd 8..”“^^". 

Hence, after applying Jamin*s correction, we get 
/ jl X ^ 

TTaVpl-- ) the same quantity as was determined 
\K k/ 

by Regnault’s method, so that to get K by Jamin’s 

method we require to know k. 

The apparatus used by Regnault in his experi¬ 

ments on the compressibility of liquids {Mh»oires de 

rinsfitut de France, vol. xxi. p. 429) was similar to 

that represented in Fig. 86. The piezometer was 

filled with the liquid whose compressibility was to 

be measured, the greatest care being taken to get 

rid of air-bubbles. The liquid reached up into the 

graduated stem of the piezometer, the volume be¬ 

tween successive marks on the stem being accurately 

known. The piezometer was placed in an outer 

vessel which was filled with water and the whol^ 

system placed in a large tank filled with water, 

the object being to keep the temperature of the system constant. The 

tubes shown in the system were connected with a vessel full of com¬ 

pressed air, the pressure of which was measured by a carefully tested 
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manometer; the tubes were so arranged that by turning on the proper taps 

pressure could be applied (1) to the outside of the piezometer and not to 

the inside; (2) simultaneously to the outside and the inside; (3) to the 

inside and not to the outside. The piezometer used by Regnault was in 

the form of a cylindrical tube with hemispherical ends. For simplicity let 

us take the case (represented in the figure) of a piezometer in the form of 

a cylinder with fiat ends, to which the foregoing investigation applies. 

If a>2, are the apparent diminution in the volume of the liquid in 

the three cases respectively, the pressure being the same, we have by the 

preceding theory 

coi - - 

iraW fl ] \ 
. pi - + - 

~a^ \k n 

oja 

""k «j’ 

Hence coj-f ojy 

a relation by which we can check to some extent the validity of the 

theoretical investigation. Such a check is very desirable, as in this investi¬ 

gation we have assumed that the material of which the piezometer is made 

is isotropic and that the walls of the piezometer are of uniform thickness, 

conditions which are very difiicult to fulfil, while it is important to 

ensure that a failure in any one of them has not been sufficient to 

impair appreciably the accuracy of the theoretical investigations. Regnault 

in his investigations adopted Lame’s assumption that Poisson’s ratio is 
3 

equal to 1/4; on this assumption so that the measurement of o)i 

gives the value of k, and then the measurement of the value of K, the 

bulk modulus for the liquid. This was the method adopted by Regnault. 

It is, however, open to objection. In the first place, the determinations 

which have been made of the value of Poisson’s ratio for glass range from 

•33 to *22, instead of the assumed value -25, while, secondly, the equation 

by which k is determined from measurements of a>i is obtained on the 

assumption of perfect uniformity in the material which it is difficult to verify. 

It is thus desirable to determine k for the material of which the piezometer 

is made by a separate investigation, and then to determine the compressi¬ 

bility of the liquids by using the simplest relation obtained between the 

apparent change in volume of the liquid and the pressure; this is when the 

inside and outside of the piezometer are exposed to equal pressures. The 

most direct, and probably the most accurate, way of finding k for a solid 
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is to measure the longitudinal contraction under pressure. An arrangement 

which enables this to be done with great accuracy was described by Amagat 

in the Journal de Physique^ Series 2, vol. viii. p. 359. The method was first 

used by Buchanan and Tait. Another method of determining k for a solid 

is to make a tube of the solid closed by a graduated capillary 

tube as in Fig, 87. The tube and part of the capillary being 

filled with water, a tension P is applied to the tube, the tube 

stretches and the internal volume increases, the increase in volume 

being measured by the descent of the liquid in the capillary 

tube; if v is the original internal volume, hv the increase in this 

volume, then we see by the investigation, p. 89, that 

hv ^ P 

V 3/fe 

If we have found then K can be found by means of the 

piezometer. 

If we can regard the compressibilily of any liquid, say 

mercury, as known, the most accurate way of finding the com¬ 

pressibility of any other liquid would be to fill the piezometer 

first with mercury, and determine the apparent change of volume 

when the inside and outside of the piezometer are e:^posed to 

the same pressure; then fill the piezometer with the liquid and 

again find the apparent change in volume. We shall thus get 

two equations from which we can find the value of K for the 

liquid and k for the piezometer. 

Results of Experiments 

The results of experiments made by different observers on 

the compressibility of water are given below. 

Rcgnault.*—Temperature not specified; pressures from 

1 to 10 atmospheres— 

compressibility per atmosphere ==0‘00004B. 

Tait f found that the effect of temperature and pressure, for 

temperatures between 6° C. and 15° C. to pressures from 150 to 500 

atmospheres, may be represented by the empirical formula 

=0-0000489 - 0-00000026/ - 0-00000000676 

where v is the volume at 1° C. under the pressure of p atmospheres and y, 

* Regnault, Mimoires de VInstitut de France^ 21, p. 429, 1847. 
t Tait, Properties of Matter^ 1st ed. (1886), p. 190. 

Fig. 87. 
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GRASSI.* PAGUANIend VICENTINI. t RONTQBN and SCHNEIDER. J 

Temp. Compressibility Temp. Oompressibillft Temp. Compressibility < 
per atmosphere. per atmosphe. ! per atmosphere. ! 

00 603 X 10-7 0.0 603 X 10-7 0*0 612 X 10-7 
1-6 615 2-4 ' 496 9*0 4.'.1 
4-0 499 16*9 450 18-0 462 

max. density 
P^- 

10-8 

49-3 403 

480 61-1 389 

13-4 477 66*2 389 

18-0 462 77*4 398 

25.0 466 99.2 409 

34*5 453 
43 0 442 
53 0 441 

the volume at f under one atmosphere. Thus the compressibility diminishes 

as the pressure increases. 

The numbers given above, from Grassi’s experiments, indicate that 

water has a maximum compressibility at a temperature between 0° and 4° C.: 

this result has not, however, been confirmed by subsequent observers. The 

results of Pagliani and Yicentini indicate a minimum compressibility at a 

temperature between and C. 

The results of various observers on the compressibility of mercury are 

given in the following table: 

Observer. 

Colladon and Sturm § 

Aime|| 

Regnault 5 

Amaury and Descamps ** 

Tait ft • • • 
Amagat , 

De Metz §§ . 

(.'ompicssibility 
per atmosphere. 

. 35-2 X 10 -7 

. 39-Ox 10'7 

. 35-2 X 10- 7 

. 38-6x10-7 ^ 

. 36-0 x 10-7 

. 39-0x10-7 

. 37-4 X 10-7 

Mean.37-9 x 10“ 7 

The compressibility of mercury, like that of most fluids, increases as the 

* Grasst, AnnaJes de Chimie et de Physique [3), 31, p. 437, 1851. 
f Pagliani and Vicentini, JSJuovo Cimenio [3J, 16, p. 27, 1884. 
:j; Rontgen and Schneider, Wied. Ann.^ 33, p. 644, 1888. 
§ Colladon and Sturm, Ann. de Chimie et de Physique^ 30, p. 137, 1827. 
II Aimc, Annales de Chimie et de Physique [3], 8, p. 268, 1843. 
j Regnault, Memoires de Vlnstitut de Prance^ 21, p. 429, 1847 

** Amaury and Descamps, Compt. Rend.^ 68, p. 1564, 1860. 
ff Tait, Challenger Report., vol. ii. part iv. 

Am^gSLt, Journal de Physique [2j, 8, p. 203, 1889, 
§§ De Metz, Wied. Ann.] 47, p. 731, 1892. 
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temperature increases. According to De Metz, the compressibility at C. 

is given by 

37*4 X 10-7 4-87*7 xl0“i<>/. 

The compressibilities of a number of liquids of frequent occurrence 

are given below. 

Fluid. 
0)nipr<!SBil»ility per 

a.t.rno8j)here. 
Temp. Observer. 

iSea-water .... 4;i(i X10 7 17-5 Orassi 
Ktlier. .... 1156 X10-’ 0'^ Quincke 

1110 X10' 7 0'-' Grass! 
Alcohol .... 828 X10-7 (r Quincke 

.... 959 X10'7 I7^ry^ 
828 X10“7 (xrassi 

Methyl alcohol 9i:{ X10 7 13-5" 99 

Turj)etiiinc .... 582 X10-7 0 ' Quincke 
,, .... 779 X10-7 18-6'^ 

Chlorofoni) .... 625 X l<r 7 8-5''^ Grassi 
Olyccritu* .... 252 X10 7 0" Quincke 
Olive oil .... 486 X 10 7 0" 
C'arbon hisulpliido 539 X10-7 0" ,, 

638 X10-7 17 
IV-strolcuio .... 650 X 10' 7 0‘ 

99 , - . . 745 < 10- 7 19-2 

i ** 

Quincke’s paper is in Wiedemann's Annalen^ 19, p. 401, 188t3. References to 

the papers by the other observers have already been given. An extensive 

series of investigations on the compressibility of solutions was made by 

Rontgen and Schneider {Wied, Ann.^ 29, p. 165, and 31, p. 1000), who 

showed that the compressibility of aqueous solutions is less than that of 

water. For the details of their results we must refer the reader to their 

paper. 

Tensile Strength of Liquids 

Liquids from which the air has been carefully expelled can sustain a 

considerable pull without rupture. The best known illustration of this is 

the sticking of the mercury at the top of a barometer-tube. If a barometer- 

tube filled with mercury be carefully tilted up to a vertical position, the 

mercury sometimes adheres to the top of the tube, and the tube remains 

filled with mercury, although the length of the column is greater than that 

which the normal barometric pressure would support, and the extra length 

of mercury is in a state of tension. Another method of showing that 

liquids can sustain tension without rupture is to use a tube like that in 

Fig. 88, filled with water and the vapour of water, and from which the air 

has been carefully expelled by boiling the water and driving the air out by 
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the steam.* If the water occupies the position indicated in the figure, the 

tube mounted on a board may be moved rapidly forward in the direction 

of the arrow, and then brought suddenly to rest by striking the board 

against a table without the water 

column breaking, although the 

column must have experienced 

a considerable impulsive tension. 

If the column does break, a 

small bubble of air can generally 

be observed at the place of 

rupture, and until this bubble has . | 

been removed the column will 

break with great ease. On the 

removal of the bubble by tap¬ 

ping, the column can again sus¬ 

tain a considerable shock without 

rupture. ^ 

Professor Osborne Reynolds 

used the following method for 

measuring the tension liquids 

would stand without breaking. 

ABCD, Fig. 89, is a glass U-tube, closed at both ends, containing air-free 

liquid ABC and vapour of the liquid CD. The tube is fixed to a board and 

whirled by a lathe about an axis O a little beyond the end A and 

perpendicular to the plane of the board. If CE is an arc of 

a circle with centre ~ O, then when the board is rotating 

the liquid EA is in a state of tension, the tension 

increasing from E to A, and being easily calculable if we 

know the velocity of rotation. By this method Professor 

Osborne Reynolds found that water could sustain a tension 

of 72*5 pounds to the square inch without rupture, and 

Professor Worthington, using the same method, found 

that alcohol could sustain 116 and strong sulphuric acid 

173 pounds per square inch. This method measures the 

stress liquids can sustain without rupture. Berthelot used 

a method by which the strain is measured. The liquid 

freed from air by long boiling nearly filled a straight thick-walled glass 

tube, the rest of the space being occupied by the vapour of the liquid. 

The liquid was slightly heated until it occupied the whole tube; on cooling, 

* Dixon and Joly {Ph'I. Trans. B. 1896, p. 668) have shown that air or other gases 
held in solution do not affect these experiments. 7’hc boiling is pn)bably efficacious only 
in removing bubbles or free gases. 

B 

Pict. 89. 
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the liquid continued for some ti^e to fill the tube, finally breaking with a 

loud metallic click, and the bubble of vapour reappeared: the length of 

this bubble measured the extension of the liquid. Berthelot in this way got 

extensions of volume 1/120 for water, 1/93 for alcohol, and 1/59 for ether. 

Worthington improved this method by inserting in the liquid an ellipsoidal 

bulb filled with mercury and provided with a narrow graduated capillary 

stem; when the liquid is in a state of tension the volume of the bulb expands 

and the mercury sinks in the stem; from the amount it sinks the tension can 

be measured. The extension was measured in the same way as in Berthelot’s 

experiments. In this way Worthington showed {Phil. Trans. A. 1892, p. 

355) that the abs(dutc coefficient of volume elasticity for alcohol is the same 

for extension as for compression, and is constant between pressures of +12 

and - 17 atmospheres. 



CHAPTER XII 

THE RELATION BETWEEN THE PRESSURE 
AND VOLUME OF A GAS 

Contents—Boyle’s Law—Deviations from Boyle’s Law—Regnault’s Experiments 
—Amagat’s Experiments—Experiments at Low Pressures—Van der Waals’ Equation. 

In this chapter we shall confine ourselves to the discussion of the relation 

between the pressure and the volume of a gas when the temperature is 

constant and no change of state takes place; the liquefaction of gases will 

be dealt with in the volume on Heat. 

The relation between the pressure and the volume of a given mass of 

gas was first stated by Boyle in a paper communicated to the Royal Society 

in 1661. The experiment which led to this law is thus described by him. 

‘‘We took then a long glass tube, which by a dexterous hand and the help 

of a lamp was in such a manner crooked at the bottom, that the part 

turned up was almost parallel to the rest of the tube, and the orifice of 

this shorter leg of the siphon (if 1 may so call the whole instrument) being 

hermetically sealed, the length of it was divided into inches (each of which 

was subdivided into eight parts) by a straight list of paper, which, con¬ 

taining those divisions, was carefully pasted all along it. Then putting in 

as much quicksilver as served to fill the arch or bended part of the siphon, 

that the mercury standing in a level might reach in the one leg to the 

bottom of the divided paper and just to the same height or horizontal line 

in the other, wc took care, by frequently inclining the tube, so that the 

air might freely pass from one leg into the other by the sides of the 

mercury (we took, I say, care), that the air at last included in the shorter 

cylinder should be of the same laxity with the rest of the air about it. 

This done, we began to pour quicksilver into the longer leg of the siphon, 

which by its weight pressing up that in the shorter leg did by degrees 

strengthen the included air, and continuing this pouring in of quicksilver 

till the air in the shorter leg was by condensation reduced to take up but 

half the space it possessed (I say, possessed not filled) before, we cast our 

eyes upon the longer leg of the glass, on which was likewise pasted a list 

of paper carefully divided into inches and parts, and we observed not 

without delight and satisfaction that^.the quicksilver in that longer part 

of the tube was 29 inches higher than the other . . . the same air being 

brought to a degree of density about twice as great as that it had before, 

obtains a spring twice as strong as formerly.” Boyle made a scries of 

153 
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measurements with greater compressions until he had reduced the volume 

to one quarter of its original value, and obtained a close agreement 

between the pressure observed and “what that pressure should be according 

to the hypothesis that supposes the pressures and expansions * to be in 

reciprocal proportions.” Although Mariotte did not state the law until 

fourteen years after Boyle had published his discovery, “the hypothesis 

that supposes the pressures and expansions to be in reciprocal proportions ” 

is often on the Continent called Mariotte’s Law. 

If V is the volume of a given mass of gas and p the pressure to which 

it is subjected, then Boyle’s Law states that when the temperature is 

constant 

pv — constant. 

Another way of stating this law is that, if p is the density of a gas under 

pressure 

/>=Rp. 

where R is a constant when the temperature is constant. Later researches 

made by Charles and Gay-Lussac have shown how R varies with the 

temperature and with the nature of the gas. These will be described in 

the volume on Heat; it will suffice to say here that the pressure of a perfect 

gas is given by the equation 

p^KNT, 

where T is the absolute temperature, N the number of molecules of the gas 

in unit volume, and K a constant which is the same for all gases. 

From the equation pp we see that if Ap, Ap are corresponding incre¬ 

ments in the pressure and volume of a gas whose temperature is constant, 

then 

Ap.p +pAp =0 

but the left-hand side is by definition the bulk modulus of elasticity, hence 

the bulk modulus of elasticity of a gas at a constant temperature is equal 

to the pressure. 

The work required to diminish the volume of a gas by Ap is pAp; the 

work which has to be done to diminish the volume from to p^ is therefore 

or, since by Boyle’s Law p — cjp, when the temperatuire is constant, we see 

that in this case the work is 

' * Or volumes in modern English. 
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f 1 i\ Pi 
A i/«'=<rlog„- =A»'ilog<. • 
Jr.*' "2 "2 

whereis the pressure when the volume is 

Deviations from Boyle’s Law 

The first to establish in a satisfactory manner the existence in some 

gases, at any rate, of a departure from Boyle’s Law was Despretz, who, in 

1827, enclosed a number of different gases in barometer-tubes of the same 

length standing in the same cistern. The quantity of the different gases 

was adjusted so that initially the mercury stood at the same height in the 

different tubes; pressure was then applied to the mercury in the cistern, 

so that mercury was forced up the tubes. It was then found that the 

volumes occupied by the gases were no longer equal, the volumes of 

carbonic acid and ammonia were less than that of air, while that of hydrogen 

was greater. This showed that some of the gases did not obey Boyle’s 

Law; it left open the question, however, as to whether any gases did obey 

it. The next great advance was made by Regnault,* who in 1847 settled 

the question as to the behaviour of certain gases for pressures between 

1 and about 30 atmospheres. Regnault’s method was to start with a 

certain quantity of gas occupying a volume p in a tube sealed at the upper 

end, and with the lower end opening into a closed vessel full of mercury, 

and then by pumping mercury up a long mercury column rising from the 

closed vessel to increase the pressure until the volume was halved. By 

measuring the difference of height of mcrcurj^ in the column and in the 

tube the pressure required to do this could be determined. Air under this 

pressure was now pumped into the closed tube until the volume occupied 

by the gas was again p; mercury was again pumped up the column until 

the volume had again been halved and a new reading of the pressure taken; 

air was pumped in again until the volume was again and then the pressure 

increased again until the volume was halved. In this way the values of pv 

at a series of different pressures could be compared. The results are shown 

in the table on p. 156; is given in millimetres of mercury, is the 

value of pv at the pressure given in the table, p^v^^ the value at double this 

pressure. The experiments were made at temperatures between 2"^ C. 

and 10° C. 

It will be seen from these figures that between pressures of from about 

1 to 30 atmospheres the product pv constantly diminishes for air, nitrogen, 

and carbonic acid, as the pressure increases, the diminution being most 

marked for carbonic acid; on the other hand in hydrogen pv increases with 

the pressure. Natterer, who in 1850 published the results of experiments 

* hUmoins de I'lnstitut de FrafU^, \ol. xxi. p. 329, 
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AIR. NITROGEN. CARBONIC ACID. HYDROGEN. 

To To^olViVi To To foVoIpjV, p. Tov^/Pjv^ 

788 72 
206870 
4219'06 
6770-15 
9336-41 

11472-00 

1-001414 
1-002709 
1 -003336 
1 -004286 
1-006366 
1-005619 

7 6$‘96 
1159-43 
2169-22 
3030-22 
4963-92 
6967-96 
7294-47 
8628 54 
9767-42 

10981-42 

1-001012 
1-001074 
1-001097 
1-001960 
1-002952 
1-003271 
1-003770 
1-004768 
1-005147 
1-006456 

764-03 
1414-77 
2164*81 
3186-13 
487977 
6820-22 
8393-68 
9620*06 

1-007697 
1-012313 
1-018973 
1-028494 
1-045625 
1-066137 
1-084278 
1-099830 

2211-18 
3989-47 
6846-18 
7074-96 
9147-61 

10861-88 

0-998684 
0-996961 
0-996121 
0-994697 
0-993268 
0-992827 

on the relation between the pressure and volume of a gas at very high 

pressure, showed that after passing certain pressures pv for air and nitrogen 

begins to increase, so that pv has a minimum value at a certain pressure; 

after passing this pressure air and nitrogen resemble hydrogen, and pv 

continually increases as the pressure increases. This result was confirmed 

by the researches of Amagat and Cailletct. Each of these physicists worked 

at the bottom of a mine, and produced their pressures by long columns of 

mercury in a tube going up the shaft of the mine. Amagat’s tube was 

300 metres long, Cailletct’s 250. Amagat found that the minimum value 

of pv between 18° and 22° C. occurred at the following pressures: 

Nitfogca . , 50 metres of mercury. 
Oxyuen . . 100 
y\ii . . 55 

Carbon monoxide 50 metres of mercury. 
Marsh gas . 120 ,, 
Hthylene . 55 ,, 

Fig. 90.—Ethylene. 

The results of his experi¬ 

ments are exhibited in the 

following figures; the ordinates 

are the values of pv^ and the 

abscissje the pressure, the unit 

of pressure being the atmos¬ 

phere, which is the pressure 

due to a column of mercury 

760 mm. high at 0° C., and at 

the latitude of Paris. The 

numbers on the curves indicate 

the temperature at which the 

experiments were made. It will 

be noticed that for nitrogen 

the pressure at which pv is a 

minimum diminishes as the 

temperature increases, so much 
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so that at a temperature of about 10(L C. the minimum value of pv is 

hardly noticeable in the curve. This is shown clearly by the following 

results given by Amagat: 

J) 17-7 ' (!. .'io-r (!. 75-5" 0. joo r 0 
pv ■pv pi) pv pv 

.‘iO TTiotreK 274.^> .3080 33.30 3575 
! 00 „ . . . 2740 2875 ' 3100 :mi) .3610 
! 100 „ . . . 2790 2930 .3170 .3445 ! 3695 

200 . .3220 .3405 37.50 4020 
;i20 „ 

L. 

.3075 .3915 4210 4475 

Amagat extended his experiments to very much higher pressures, and 

obtained the results shown in the following table; the temperature was 

15° C., and pv was equal to 1 under the pressure of 1 atmosphere: 

1 1 
p (in atmospheres). j A ir. 1 Nitrogen. Oxygen. Jlyiirogon. 

1 
; 

750 
1 

1 1 •<>.-.(. 
1 

1 -0905 
1000 1 1 -974 2-0.32 1-7.35 1 1-088 
1.500 ! 2 •50.3 [ 2-044 2-2.38 j 2-010 
2000 1 .3-1.32 : .3-22(; 2-740 2-322 
2.500 3-072 ! .3-787 .3-235 i 2-017 
.3000 i 4-20.3 4-.3.3H 

!_ _ 1 
3-705 2-892 

A question of considerable importance in these experiments, and one 

which we have hardly sufficient information to answer satisfactorily, arises 
from the condensation of 

gas on the walls of the man¬ 

ometer, and possibly a pene¬ 

tration of the gas into the 

substance of these walls. It 

is well known that when we 

attempt to exhaust a glass 

vessel a considerable amount 

of gas comes off the glass, 

and if the vessel contains 

pieces of metal the difficulty 

of getting a vacuum is still 

further increased, as gas for some time continues to come from the metal. 

Much of this is, no doubt, condensed on the surface, but when we 

remember that water can be forced through gold it seems not improbable 

that at high pressure the gas may be forced some distance into the metal 

as well as condensed on its surface. * 

Fig. 91.—Nitrogen. 
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Boyle’s Law at Low Pressures 

The difficulty arising from gas coming off the walls of the manometer 

becomes specially acute when the pressure is low, as here the deviations 

from Boyle’s Law are so small that any trifling error may completely vitiate 

the experiments. This is probably one of the reasons why our knowledge 

of the relation between the pressure and volume of gases at low pressures 

is so unsatisfactory, and the results of different experiments so contradictory. 

According to Mendeleeff, and his result has been confirmed by Fuchs, pv 

for air at pressures below an atmosphere diminishes as the pressure 

diminishes, the value of pv changing by about 3*5^ per cent, between the 

pressure of 760 and 14 mm. of mercury. If this is the case, then pv for air 

has a maximum as well as a 

minimum value. On the 

other hand, Amagat, who 

made a series of very careful 

experiments at low pressures, 

was not able to detect any 

departure from Boyle’s Law. 

According to Bohr, and his 

result was confirmed by Baly 

and Ramsay, the law connect- 

ing p and v for oxygen 

changes at a pressure of about 

•75 mm. of mercury. It has 

been suggested that this is due to the formation of ozone. The investiga¬ 

tions by Lord Rayleigh on the relation between the pressure and volume 

of gases at low pressures did not show any departure from Boyle’s Law even 

in the case of oxygen. 

The results of Amagat’s experiments are in fair accordance with the 

relation between p and Vy arrived at by Van der Waals from the Kinetic 

Theory of Gases. This relation is expressed by the equation 

Fig. 02.—ilytirogen. 

where ay hy R are constants and T is the absolute temperature. Thus p in 

Boyle’s equation is replaced by ^ + ajv^ and vhy v -b. The term ajv^ or ap^y 

where p is the density, arises from the attractions between the molecules 

of the gas; this attraction assists the outside pressure to diminish the 

volume of the gas. If we imagine the gas divided by a plane into two 

portions A and B, then ap^ is the attraction of A on B per unit area of the 

plane of separation; it is the quantity we call the intrinsic pressure in the 

theory of surface tension {see chap. xv). The v of Boyle’s Law is replaced 
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by V - h. Since the molecules are supposed to be of a finite although very 

small size, only a part of the volume “occupied” by the gas is taken up 

by the molecules, and the actual volume to be diminished is the difference 

P 

between the space “occupied” by the gas and that filled by its molecules; 

h is proportional to the volume of a molecule of the gas. 

Van der Waals’ equation may be written: 

so that if pv and p == jse, 
V 

we have {j 4 ax){l - bx) = RT. 

Thus, if the temperature is constant, the curve which represents the relation 

between pv and p is the hyperbola 

(j 4 ax){\. - bx) = constant. 

The asymptotes of this hyperbola arcj+^x=(?, \~bx^0. There is a 

minimum value of pv at the point P (Fig. 93) where the tangent is horizontal. 

The value of x at this point is easily shown to be given by the equation 

a{l--bxf^bKi:. 
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If hKVja is less than unity there is a positive value of x given by this 

equation. This corresponds to the minimum value for pv in the cases of 

air, nitrogen, and carbonic acid. We see, too, from the equation that as T 

increases x diminishes, that is, the pressure at which the minimum value 

of pv occurs is lower at high temperatures than at low. This agrees with 

the results of Amagat’s experiments on nitrogen. When T gets so large 

that /;RT/^ is unity x-0; at all higher temperatures it is negative— 

P is to the left of the vertical axis, there is thus no minimum value of pv, 

and the gas behaves like hydrogen in that pv continually increases as the 

pressure increases. 



CHAPTER XIII 

REVERSIBLE THERMAL EFFECTS 
ACCOMPANYING ALTERATIONS IN STRAINS 

CJoNTi'NTS.—Application of Thermodynamics —Ratio of Adial>atic to Isothermal 
Idasticity. 

If the coefficients of elasticity of a substance depend upon the temperature 

an alteration in the state of strain of a body will be accompanied by a 

change in its temperature, if the body is stid'er at a high temperature 

than at a low one, then, if the strain is increased, there will be an increase 

in the temperature of the strained body, while if the body is stiffer at a low 

temperature than at a high one, there will be a fall in the temperature when 

the strain is increased. Thus, if the changes in strain in any experiment 

take place so rapidly that the heat due to these changes has not time to 

escape, the coefficients of elasticity determined by these experiments will 

be larger than the values determined by a method in which the strains are 

maintained constant for a sufficiently long time for the temperature to become 

uniform; this follows from the fact that the thermal changes which take 

place when the strains are variable are always such as to make the body 

stiffer to resist the change in strain. In those experiments by which the 

coefficients of elasticity are determined by acoustical methods—by 

methods which involve the audible vibration of the substance—the heat 

will not have time to diffuse, and we should expect such methods to give 

higher values than the statical ones wc have been describing. When we 

calculate the ratio of the two coefficients we find that the theoretical differ¬ 

ence is far too small to explain the considerable excess of the values of 

the constants of elasticity found by Wertheim by acoustical methods over 

those found by statical methods. 

We can easily calculate by the aid of Thermodynamics the thermal 

effects due to a change of strain. To fix our ideas, suppose we have two 

chambers, one maintained at a temperature Tq, the other at the tempera¬ 

ture T^; these temperatures are supposed toffie absolute temperatures, and 

Tjj to be less than T^. Let us suppose that we have in the cool chamber a 

stretched wire, and that we increase the elongation e by Se; then if P is the 

tension required to keep the wire stretched, the work done on the wire is 

Pa/S^ 
where a is the area of the cross-section and / the length of the wire. Now 

transfer the wire with its length unaltered to the hot chamber, and for 

161 L 
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simplicity suppose the thermal capacity of the wire exceedingly small, so 

that we can neglect the amount of heat required to heat up the wire; if 

the stiffness of the wire changes with temperature the tension P' required 

to keep it stretched will not be the same as P. Let the wire contract in the 

hot chamber until its elongation diminishes by then the work done by 

the wire is 

Va/Se, 

Now transfer the wire with its length unaltered back to the cold chamber; 

it will now be in the same state as when it started. The work done by 

the wire exceeds that done on it by 

(F -P)a/S^; 

hence the arrangement constitutes a heat engine, and since it is evidently 

reversible it must obey the laws of such engines. These engines work 

by taking heat SH from the hot chamber and giving 8^ out in the colder 

chamber, and from the Second Law of Thermodynamics we have 

8H_S/^_SH-S/> 

Now by the Conservation of Energy 

8H - 8/^ == mechanical work .done by the engine 

-(P'~P)a/S^; 

(P' -P) 
hence 8^ = T,,)^ --Jalhe 

Ti-Tfl 

Now hh is the amount of heat given out by the wire when the elongation 

is increased by 8^, and al is the volume of the wire; hence the mechanical 

equivalent of the heat given out per unit volume, when the elongation is 

measured by 8(?, is equal to 

y 
If this heat is prevented from escaping from the wire it will raise the 

temperature, and if hS is the rise in temperature due to the elongation 

8^, we see that 
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where p is the density of the wire, K its specific heat, and J the mechanical 

equivalent of heat. We see that this expression proves the statement made 

above, that the temperature change which takes place on a change in the 

strain is always such as to make the body stiffen to resist the change. 

We can readily obtain another expression for S0, which is often more 

convenient than that just given. In that formula we have the expression 

(8P/8T)f constant. Now, suppose that, instead of keeping e constant all 

through, we first allow the body to expand undet constant tension; if oj 

is the coefficient of linear expansion for heat, and ST the change in 

temperature, the increase in the elongation is cuST; now keep the 

temperature constant, and diminish the tension until the shortening due 

to the diminution in tension just compensates for the lengthening due to 

the rise in temperature. In order to diminish the elongation by coST we 

must diminish the tension by ^a>ST where q is Young’s modulus for the 

wire, hence 

8P- -^a>8T, 

or 

hence by equation (1) 

SP 

\8T/, 
== -qco; 

8^- - 
1 Q<7a»S^ 

JKp * 

But q8e is the additional tension 8P required to produce the elongation 8^, 

hence the increase in temperature 86 produced by an increase of tension 

8P is given by the equation 

80= - 

T^coSP 

JKp * 
(2) 

Equations (1) and (2) are due to Lord Kelvin. 

Joule {Pbi/, Trans, cxlix. 1859, p. 91) verified equation (2) by experi¬ 

ments on cylindrical bars of various substances, and the results of his 

experiments are given in the following table. The changes in temperature 

were measured by thermo-electric couples inserted in the bars. 

T P m E 6P hB 
observed. 

hB 
calculated. 

Iron • 286-3 7-5 l-24xl0-» •110 109 X 10* - *1007 -•107 
Hard steel « 274-7 7-0 1-23 xlO-* •102 ]09x 10* - -1620 - -125 
Cast iron « 282-8 6-04 1-11 xlO-* *120 1-10 X 10* - -1481 - *115 
Copper 274*2 8*96 1-7182x10-* •093 ! 

, 1 
1-08 X 10 -•174 -*164 
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A qualitative experiment can easily be tried with a piece of india- 

rubber. If an |ndiarubber band be loaded sufficiently to produce a 

considerable extension and if it be then warmed by bringing a hot body 

near to it, it will contract and lift the weight; hence the indiarubber gets 

stiffer by a rise in temperature; by the rule we have given, it ought to 

increase in temperature when stretched, since by so doing it becomes 

stiffer to resist stretching. That this is the case can easily be verified by 

suddenly stretching a rubber-band and then testing its temperature by 

placing it against a thermopile, or even between the lips, when it will be 

found perceptibly warmer than it was before stretching. 

We can easily calculate what effect the heat produced will have on the 

apparent elasticity if it is not allowed to escape. The modulus of elasticity, 

when the change in strain takes place so rapidly that the heat has not time 

to escape, is often called the adiabatic modulus. 

Ratio of Adiabatic to Isothermal Elasticity 

Suppose we take the case of a wire, and suppose the tension increased 

by 8P, if the heat does not escape the increase 8^* in the elongation will be 

due to two causes—one from the increase in the pull, the other from the 

increase in the temperature. The first part is equal to 8P/^, where q is 

Young’s modulus for steady strain; the second part is equal to 80a> 

where hO is the change in temperature, o) the coefficient of linear expansion; 

hence 

but by equation (2) 

+ a>80; 

80- - 
a>To8P 

JKp ’ 

hence 

or 

8^ = 
8P 

8^ 

SP""^' 

■jKp 
8P 

0.3 

JKp 

But if q' is the adiabatic “Young’s Modulus,” 

1 _8« 

^'“SP 

_1 

rjKp' (3) 
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It follows from this equation .that 1/^' is always less than IJq or q is 

always greater than q^ as we saw from general reasoning must be the 

case. By equation (3) we can calculate the value of q'jq. The results 

for temperature 15° C. are given in the following table, taken from Lord 

Kelvin’? article on “Elasticity” written for the 9th edition of the Encjdopadia 

Brttannica (reprinted in his Mathematical and Physical Papers, iii.): 

Substance. P K w • g/lOii deduced 
from equat. 8. 

Zino 7-008 •0927 •0000249 8-56 1*008 
Tin • 7-404 •0514 •000022 4-09 1*00362 
Silver , • 10-369 •0557 •000019 7-22 1 *00315 
Copper , • 8-933 •0949 •000018 12*20 1-00326 
Lead • • 11-215 •0293 •000029 1-74 1-00310 
Glass • • 2-942 •177 •0000086 6-02 1-000600 
Iron . • 7-653 •1098 •000013 18-24 : 1-00259 
Platinum 21*275 •0314 •0000086 16-7 1*00129 

Thus we see that in the case of metals q' is not so much as 1 per cent* 

greater than q. In Wertheim’s experiments, however, the excess of q 

determined by acoustical methods over q determined by statical methods 

exceeded in some cases 20 per cent. This discrepancy has never been 

satisfactorily accounted for. 



CHAPTER XIV 

SURFACE TENSION 
CoNTLNis.—Surface Tension and Surface Energy—Rise of Liquid in a Capillary 

Tube—Relation between Pressure and Curvature of a Surface—Stability of Cylindrical 
Film—Attractions and Repulsions due to Surface Tension—Methods of Measuring 
Surface Tension—Temperature Coefficient of Surface Tension—Cooling of Film on 
Stretching—'Jension of very Thin Films—Vapour Pressure over Curved Surface— 
Effects of Contamination of a Surface. 

^ There are many phenomena which show that liquids behave as if they 

were enclosed in a stretched membrane.^Thus, if we take a piece of bent 

wire with a flexible silk thread stretching from one side to the other and 

dip it into a solution of soap and water so as to get the part between the 

Fig. 94. Fig. 95. 

silk and the wire covered with a film of the liquid, the silk thread will be 

drawn tight as in Fig. 94, just as it would be if the film were tightly 

stretched and endeavouring to contract so that its area should be as small 

as possible. Or if we take a framework with two threads and dip it into 

the soap and water, both the threads will be pulled tight as in Fig. 95, the 

liquid again behaving as if it were in a state of tension. If we take a ring 

of wire with a liquid film upon it and then place on^thc film a closed loop 

of silk and pierce the film inside the loop, the film outside will pull the 

^ilk into a circle as in Fig. 96. The effect is again just the same as it would 

^ 166 
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be if the films were in a state of tension trying to assume as small an area 

as possible, for with a given circumference the circle is the curve which 

has the largest area; thus, when the silk is dragged into the circular form, 

the area of the film outside is as small as possible. 

Another method of illustrating the tension in the skin of a liquid is 

to watch the changes in shape of a drop of water forming quietly at the end 

of a tube before it finally breaks away. The observation is rendered much 

easier if the water drops are allowed to form in a mixture of paraffin oil 

and bisulphide of carbon, as the drops are larger and form more gradually. 

The shape of the drop at one stage is shown in Fig. 97. 

Fig. 97. Fig. 9S. 

If we mount a thin indiatubber membrane on a hoop and suspend it 

as in Fig. 98, and gradually fill the vessel with water and watch the changes 

in the shape of the membrane, these will be found to correspond closely 

to those m the drop of water falling from the tube; the stage corresponding 

to that immediately preceding the falling away of the drop is especially 

interesting; a very marked waist forms in the membrane at this stage, 

and the water in the bag falls rapidly and looks as if it were going to burst 

away; the membrane, however, reaches another figure of equilibrium, and 

if no more water is poured in remains as in Fig. 98. 

Again, liquids behave as if the tension in their outer layers was 

different for different liquids. This may easily be shown by covering a 

white fiat-bottomed dish (Fig. 99) with a thin layer of coloured water and 
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then touching a part of its surface with a glass rod which has been dipped 

in alcohol; the liquid \<^ill move from the part touched, leaving the white 

bottom of the dish dry. This shows that the tension of the water is greater 

than that of the mixture of alcohol and water, the liquid being dragged 

away from places where the tension is weak to places where it is strong. 

There is one very important difference between the behaviour of 

ordinary stretched elastic membranes and that of liquid films, for while the 

tension in a membrane increases with the amount of stretching, the tension 

in a liquid film is independent of the stretching, provided that this is not 

so great as to reduce the thickness of the film below about five millionths 

of a centimetre. This can be shown by the following experiment: bend 

a piece of wire into a closed plane curve and ^4 j:^ 

dip this into a solution of soap and water so 

as to get it covered with a film, then hold the 

wire in a nearly vertical position so as to 

allow the liquid in the film to drain down; 

I) 

Fig, 09. Fig. JOO. 

this will cause the film to be thinner at the top than at the bottom; the 

difference in thickness is very apparent when the film gets thin enough to 

show the colours of thin plates, yet though the film is of very uneven 

thickness the equilibrium of the film shows that the tension is the same 

throughout,* for if the tension in the thin part were greater than that in 

the thick, the top of the film would drag the bottom part up, while if the 

tension of the thick part were greater than that of the thin the lower part 

of the film would drag the top part down. 

Definition of Surface Tension 

Suppose that wc have a film stretched on the framework ABCD 

(Fig. 100) of which the sides AB, BC and AD are fixed while CD is movable; 

then, in order to keep CD in equilibrium, a force F must be applied to it 

* If the film is vertical the tension at the top is very slightly greater than that at the 
bottom, so as to allow the difference of tension to balance the exceedingly small weight of 
the film. 
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at right angles to its length. This force is required to balance the tensions 

exerted by each face of the film; if T is this tension, then 

2T.CD-F; 

the quantity T defined by this equation is called the surface tension of the 

liquid; for water at IS'" C. it is about 73 dynes per centimetre. 

Potential Energy of a Liquid arising from Surface Tension ^ 

If we pull the bar CD out through a distance x, the work done is Fx, 

and this is equal to the increase in the potential energy of the film, but 

Fx=2T.CDx“T X (increase of area of film). Thus the increase in the 

potential energy of the film is equal to T multiplied by the increase in area, 

so that in consequence of surface tension a liquid will possess an amount of 

potential energy equal to the product of the surface tension of the liquid 

and the area of the surface. Starting from this result we can, as Gauss 

showed, deduce the consequences of the existence of surface tension from 

the principle that when a mechanical system is in equilibrium the potential 

energy is a minimum. Suppose that we take, as Plateau did, two liquids of 

the same density, say oil and a mixture of alcohol and water, and consider 

the equilibrium of a mass of oil in the mixture. Since the density of the 

oil is the same as that of the surrounding fluid, changes in the shape of the 

mass will not affect the potential energy due to gravity; the only change 

in the potential energy will be the change in the energy due to surface 

tension, and, by the principle just stated, the oil will assume the shape in 

which this potential energy is a minimum—i.e., the shape in which the 

area of the surface is a minimum. The sphere is the surface which for a 

given volume has the smallest surface, so that the drops of oil in the liquid 

will be spherical. This experiment can easily be tried, and the spherical 

forni of the drops is very evident, especially if the oil is made more distinct 

by the addition of a little, iodine. 

If a drop of liquid is not surrounded by fluid of the same density, 

but is like a drop of mercury on a plate which it does not wet, then any 

change in the shape of the drop will affect the potential energy due to 

gravitation as well as that due to surface tension, and the shape of the 

drop will be determined by the condition that the total potential energy is 

to be as small as possible; if the drop is very large, the potential energy 

due to the surface tension is insignificant compared with that due to gravity, 

and the drop sffteads out flat so as to get its centre of gravity low, even 

though this involves an increase in the potential energy due to the surface 

tension. If, however, the drop is very small, the potential energy due to 

gravity is insignificant in comparison with that due to surface tension, and 

the drop takes the shape in which the potential energy due to surface 
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tension is as small as possible; this shape, as we have seen, is the spherical, 

and thus surface tension will cause all very small drops to be spherical. 

Dew-drops and rain-drops are very conspicuous examples of this; other 

examples are afforded by the manufacture of spherical pellets by the fall of 

molten lead from a shot tower and by^e spherical form of soap-bubbles. 

We shall show later on that if the volume of liquid in a drop is the same as 

that of a sphere of radius tj the liquid will remain very nearly spherical if 

is small compared with T/^p where T is the surface tension and p the 

density of the liquid. Thus, in the case of water, where T is about 73, 

drops of less than 2 or 3 millimetres in radius, will be approximately 

spherical. 

Another important problem which we can easily treat by the method 

of energy is that of the spreading of one liquid over the surface of another. 

Suppose, for example, we place a drop of liquid A on another liquid B 

(Fig. 101), we want to know whether A will spread over B like oil over 

^ water, or whether A .will con- 

-vtract and gather itself up into 

^ drop. The condition that 

the potential energy is to be 

as small as possible shows that 

A will spread over B if doing so involves a diminution in the potential 

energy; while, if the spreading involves an increase in the potential energy, 

A will do the reverse of spreading and will gather itself up in a drop. Let 

us consider the change in the potential energy due to an increase S in the 

area of contact of A and B where A is a flat drop. We have three surface 

tensions to consider: that of the surface of contact between A and the air, 

which we shall call T^; that of the surface of contact between B and the 

air, which we shall call Tg; and that of the surface of contact of A and B, 

which we shall call Tjg. Now when we increase the surface of contact 

between A and B by S we increase the energy due to the surface tension 

between these two fluids by T^g x S, we increase that due to the surface 

tension between A and the air by Tj x S and diminish that due to the surface 

tension between B and the air by Tg x S. Hence the total increase in the 

potential energy is 

(T,-HT,g-Tg)S, 

and if this is negative S will increase—A will spread over B; the con¬ 

dition for this to be negative is that ^ 

Tg > Tj +Tj2> 

so that if this condition is fulfilled the liquid A will spread out into a thin 

film and cover B, and there will be no place where three liquid surfaces 

meet. If, on the other hand, any one of the tensions is less than the sum 
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of the other two—i.e.^ if we can construct a triangle whose sides are pro¬ 

portional to Ti, Tg and then a drop of one liquid can exist on the 

surface of the other, and we should have the three liquid surfaces meeting 

at the edge of a drop. The triangle whose sides are proportional to Tj, 

^2» ^12 is often called Neumann’s triangle; the experiments of Quincke, 

Marangoni and Van Menshrugghe, show that for all the liquids hitherto 

investigated this triangle cannot be drawn, as one of the tensions is always 

greater than the sum of the other two, and hence that there can be no 

position of equilibrium in which three liquid surfaces meet. Apparent 

exceptions to this are due to the fouling of the surface of one of the liquids. 

Thus, when a drop of oil stands on water, the water surface is really covered 

with a thin coating of oil which has spread over the surface; or again, 

when a drop of water stands on mercury, the mercury surface is greasy, 

and the grease has spread over the water. Quincke has shown that a drop 

of pure water will spread over the surface of pure mercury. 

Though three liquid surfaces cannot be in equilibrium when there is a 

line along which all three meet, yet a solid and two liquid surfaces can be 

in equilibrium; this is shown by the equilibrium of water or of mercury 

in glass tubes when we have two fluids, water (or mercury), and air, both 

in contact with the glass. The consideration of the condition of equilibrium 

in this case naturally suggests the question as to whether there is anything 

corresponding to surface tension at the surface of separation of two 

substances, one of which is a solid. Though in this case the idea of a skin 

in a state of tension is not so easily conceivable as for a liquid, yet there 

is another way of regarding surface tension which is as readily applicable 

to a solid as to a liquid. We have seen that the existence of surface tension 

implies the possession by each unit area of the liquid of an amount of 

potential energy numerically equal to the surface tension: we may from this 

point of view regard surface-tension as surface energy. There is no 

difficulty in conceiving that part of the energy of a solid body may be 

proportional to its surface, and that in this sense the body has a surface 

tension, this tension being measured by the energy per unit area of the 

surface. 

--it’et us now consider the equilibrium of a liquid in contact with air and 

both resting on a solid, and not acted upon by any forces except those due 

to surface tension. Suppose A, Fig. 102, represents the solid, B the 

liquid, C the air, FG the surface of separation of liquid and air, ED the 

surface of the solid. Let the angle FGD be denoted by 0; this angle is 

called the angle of contact of the liquid with the solid. Let the surface 

of separation FG come into the position F'G' parallel to FG. Then if FG 

represented a position of equilibrium, the potential energy due to surface 

tension must be a minimum in this position, so that it will be unaffected 
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by any small displacement of the, substances; thus the potential energy 

must not be altered by the displacement of FG to F'G'. This displacement 

of the surface causes B to cover up a long strip of the solid, the breadth of 

the strip being GG'. Let S be the area of this strip. Then if Tj, Tg and 

Ti2 are respectively the surface tensions between A and C, B and C, and 

A and B, the changes in the energy due to the displacement are: 

(1) An increase T^gS due to the increase 

S in the surface between A and B. 

(2) An increase TgS cos d due to the 

increase S cos 6 in the surface between B 

and C. 

(3) A diminution T^S due to the diminu¬ 

tion S in the surface between A and C. 

Hence the total increase in the.xnergy is 

S(Ti2+T2 cos(9-Ti) 

and as this must vanish when we have equi¬ 

librium we have 

112 + Tg cos ~ Tj ; 

T ~T 
or 

Thus, if Ti is greater than Tjg, cos 6 is 

—positive and 6 is less than a right angle; if 

Tj is less than Tjg, cos 6 is negative, and d is 

greater than a right angle; mercury is a case 

of this kind, as for this substance 6 is about 140°. The angle 0 is termed 

the angle of contact. Since cos 6 cannot exceed unity, the greater of the 

two quantities Tj or must be less than the sum of the other two. If 

this condition is not fulfilled the liquid B will spread over the surface A. 

Rise of a Liquid in a Capillary Tube 

We can apply the result we have just obtained to find the elevation or 

depression of a liquid in a tube which it does not wet and with which it 

has a finite angle of contact. 
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Suppose h is the height of the fluid in the tube above the horizontal 

surface of the fluid outside, when there is equilibrium; and suppose that 

r is the radius pf the tube at the top of the fluid column. Let be the 

surface tension between the tube and air, Tg that between the liquid and air 

and Ti2 that between the tube and the liquid. Then, if there is equilibrium, 

a slight displacement of the fluid up the tube will not alter the potential 

energy. Suppose then that the fluid rises a short distance x in the tube, 

thus covering an additional area Ittvx of the tube, and diminishing the area 

of the tube in contact with the air by this amount. This increases the 

potential energy due to surface tension by 2'77rx(Ti2 - T^). 

The increase in the potential energy due to gravity is the work done 

(1) by lifting the mass Trr^ x p xx, where p is the density of the liquid, 

against gravity through a height h—this is equal to gp^irr^x; and (2) by 

lifting the volume v of the meniscus through a height x—this work is equal 

to gpvx. 

Hence the total increase in potential energy is 

27rrx(Ti2 - T^) ^gpbirr^x -vgpvx, 

and as this must vanish we have 

-Trr^ gpr 

but if 6 is the angle of contact, we have just proved that 

T^cosfl^Ti-T,^; 

V 2T2 cos 
hence = 

Ttr^ gpr 

When the fluid wets the tube 6 is zero and cos ^ = 1. If the meniscus 

is so small that it may be regarded as bounded by a hemisphere, v is the 

difference between the volume of a hemisphere and that of the circum¬ 

scribing cylinder—i,e.y 

. 2 ^ 77r3 
V = —irr^ = - ; 

3 3 

hence h + - 
3 gpr 

If d is greater than a right angle h is negative, that is, the level of the 

liquid in the tube is lower than the horizontal surface; this is strikingly 

shown by mercury, but by no other fluid. The angle of contact between 

mercury and glass was measured by Gay Lussac by causing mercury to 

flow up into a spherical glass bulb; when the mercury is in the lower part 

of the buib the surface near the glass will be very much curved; as the 
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mercuty rises higher in the hulh the curvature will get less; the surface 

of the mercury at different levels is represented by the dotted lines in 

Fig. 104. There is a certain level at which the surface will be horizontal; 

at this place the tangent plane to the sphere makes with a horizontal plane 

an angle equal to the supplement of the angle of contact between mercury 

and glass. A modification of this method is to make a piece of clean 

plate glass dipping into mercury rotate about a horizontal axis until the 

surface of the mercury on one side of the plate is flat; the angle made by 

the glass plate with the horizontal is then the supplement of the angle of 

contact between mercury and glass. 

The angle of contact between mercury and glass varies very widely 

under different circumstances; thus the meniscus of the mercury in a 

ii 
Fig. 105. 

thermometer may not be the same when^the mercury is rising as when it 

is falling. We should expect this to be the case if the mercury fouls the 

glass, for in this case the mercury when it falls is no longer in contact 

with clean glass but with glass fouled by mercury, and we should expect 

the angle of contact to be very different from that with pure glass. Quincke 

found that the angle of contact of a drop of mercury on a glass plate 

steadily diminished with the time; thus the angle of contact of a freshly 

formed drop was 148° 55', and this steadily diminished, and after two days 

was only 137° 14'; on tapping the plate the angle rose to 141° 19', and 

after another two days fell to 140°. 

If we force mercury up a narrow capillary tube and then gradually 

diminish the pressure, the mercury at first, instead of falling in the tube, 

adjusts itself to the diminished pressure by altering the curvature of its 

meniscus, and it is only when the fall of pressure becomes too large for such 

an adjustment to be possible that the mercury falls in the tube; the con¬ 

sequence is that the fall of the mercury, instead of being continuous, takes 
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place by a series of jumps. This effect is illustrated by the old experiment 

of bending a piece of capillary tubing into a U-tube (Fig. 105), pouring 

mercury into the tube until it covers the bend and stands at some height 

in either leg of the tube; if the tube is vertical, the mercury can be made by 

tapping to stand at the same height in both legs of the tube. Now slowly 

tilt the tube so as to cause the mercury to run up the left leg of the tube; 

if the tube is slowly brought back to the vertical, the mercury will be 

found to stand at a higher level in the left leg of the tube than in the 

^ A B C D ^ ^ 

llG. 10«. 

right, while the meniscus will be flatter on the left than on the right. This 

principle explains the action of what are called Jamin's tubes, which are 

simply capillary tubes containing a large number of detached drops of 

liquid; these can stand an enormous difference of pressure between the 

ends of the tube without any appreciable movement of the drops along the 

tube. Thus, suppose that AB, CD, EF (Fig. 106) represent three consecu¬ 

tive drops along the tube, then in consequence of the different curvatures 

of AB at A and B the pressure in the air at A will be greater than that at B, 

while the pressure at C will be greater than that at D, and so on; thus 

each drop transmits a smaller pressure than it receives; if we have a large 

number of drops in the tube the difference of pressure at the ends arising 

in this way may amount to several atmospheres. 

Relation, between Pressure and Curvature of a Surface 

If we have a curved liquid surface in a state of tension the pressure on 

the concave side of the surface must be greater than that on the convex; we 

shall proceed to find the relation between 

the difference of pressure on the two sides 

and the curvature of the surface. 

Let the small portion of a liquid film, 

represented in Fig. 107 by ABCD where AB 

and CD are equal and parallel and at right 

angles to AD and BC, be in equilibrium 

under the surface tension and a difference 

of pressure p between the two sides of the 

film. When a system of forces acting on 

a body are in, equilibrium we know by 

Mechanics that the algebraical sum of the 

work done by these forces when the body suffers a small displacement 

is zero. Let the fiilm ABCD (Fig. 107) be displaced so that each point of 

A' 

Fig. 107 
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the film moves outward along the normal to its surface through a small 

distance x, and let A'B'C'D' be the displaced position of ABCD. Then 

the work done by the pressure is equal to 

p X area ABCD x x; 

the work done against the surface tension is T x increase in area of the 

surface; and since a film has two sides the increase in the area of the film 

is twice the difference between the areas A'B'C'D' and the area ABCD. 

Hence the work done against surface tension is equal to 

2T x(area A'B'CD' - area ABCD). 

Hence by the mechanical principle referred to 

p X area ABCD x x = 2T(area A'B'C'D' - area ABCD). (1) 

If we are considering a drop of water instead of a film we must write T 

instead of 2T in this equation. 

Spherical Soap-bubble 

In this case ABCD will be a portion of a spherical surface and the 

normals AA', BB', CC, DD' will all paSvS through O, the centre of the 

sphere. Let R be the radius of the sphere, then by similar triangles 

A'B' - AB^^- = Ab(i + 
OA \ R/ 

OB' / x\ 

/ X\2 
The area A'B'CD' - A'B'. B'C' - AB. BC 1 + 

R/ 

as we suppose x/R is so small that its square can be neglected. 

/ 2x 
Hence area A'B'C'D' =:area ABCDt 1 + ~ 

\ R 
Substituting this value for the area A'B'C'D' in equation (1), the equation 

becomes 

4T 

so that the pressure inside a spherical soap-bubble exceeds the pressure 

outside by an amount which is inversely proportional to the radius of the 
bubble. 
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General Case of a Curved Soap-bubble 

If the element of the film ABCD forms a portion of a curved surface, 

we know from the theory of such surfaces that we can find two lines AB, 

BC at right angles to each other on the surface such that the normals to the 

surface at A and B intersect in O, while those at B and C intersect in a 

point O'. The lines AB, BC arc said to be elements of the curves of 

Fig. 108. J^iG. 100. 

Principal Curvature of the surface, and AO and BO' are called the Radii of 

principal curvature of the surface. We must now distinguish between two 

classes of surfaces. In the first class, which includes spheres and ellipsoids, 

the two points O and O' are on the same side of the surface, and the surfaces 

are called synclastic surfaces; in the second class, which includes surfaces 

shaped like a saddle or a dice-box, O and O' are on opposite sides of the 

surface; and the surfaces are called anti-clastic surfaces. We shall consider 

these cases separately, and take first the case of synclastic surfaces. In this 

case (Fig. 108) we have by similar triangles 

M 
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OA' 
A'B' = AB.AB( 1 + *" ) if R is the radius of principal curvature OA. 

R OA 

Similarly B'C' = BC( 1 + —, ) if R' is the radius of principal curvature O'B. 

Hence area A'B'CD' =^area ABCDl 1 )( 1 + ; 
R R' 

= area ABCD( I +x( - + - - 

\ \R R' 

as we suppose x/R, x/R' both so small that we can neglect the product of 

these quantities in comparison with their first powers. Substituting this 

value for the area A'B'C'D' in equation (1) we get 

/-2Ti 
1 1 \ 

(3) 

Let us now take the case of an anti-clastic surface, represented in 

Fig. 109. In this case we have 

O'B' / X 
B'C=BC—-BC 1 - - 

OB \ R'y 

Hence area A'B'CD' - area ABCD 1 +x| 
1 1 \N 

R *R' 

Substituting this value of the area A'B'C'D' in equation (1) wc get 

/I 1 \ 
R R' 

w 
We can include (3) and (4) in the general formula 

if we make the convention that the radius of curvature is to be taken as 

positive or negative according as the corresponding centre of curvature 

is on the side of the surface where the pressure is greatest or on the opposite 

side. 

When a soap film is exposed to' equal pressures on the two sides /> =0, 

and we must therefore have 

1 1 
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In this case the curvature in any normal section must be equal and opposite 

to the curvature in the normal section at right angles to the first. By 

stretching a film on a closed piece of wire and then bending the wire we 

I’lG. I lo. 

can get an infinite number of surfaces, all of which possess this property; 

we can also get surfaces with this property by forming a film between the 

rims of two funnels open at the end, as in Fig. 110. By moving the 

funnels relatively to each other we get a most interesting series of surfaces, 

all of which have their principal curvatures equal and opposite. If the 

film is in the shape of a surface of revolution—one which can be traced 

out by making a plane curve rotate about a line in its plane—we know from 

the geometry of such surfaces that (Fig. Ill) 

R-PO R'=PG 

"where O is the centre of curvature of the plane curve at P, and G the 

point where the normal at P cuts the axis AG about which the curve 

rotates. 

If the pressures on the two sides of the film are equal we must have 

PO« -PG. 
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The only curve with this property is the catenary, the curve in which 

a uniform heavy string hangs under gravity, and this, therefore, is the 

shape of the cross-section of a soap film forming a surface symmetrical 

about an axis, when the pressures on the two sides are equal. 

The Shape of a Liquid Surface in Contact with a Plane Solid Surface 

Let YZ (Fig. 112) be a plane plate inclined at an angle p to the vertical 

and dipping into a liquid of which the undisturbed horizontal level is OX. 

Fig. 112. 

If the contact angle lies between 0° and 90° the surface of contact will have 

the form YPX. The radius of curvature perpendicular to the plane of the 

diagram will be infinite. Consider the point P. The pressure in the liquid 

will be less than that in the atmosphere above by T/R where R is the radius 

of curvature at P in the plane of the diagram. This deficiency of pressure 

is equal to the hydrostatic pressure due to a column of liquid of height 

PM. Thus 

T 

p being the liquid density. If the tangent to the surface at P makes an 

angle 6 with the horizontal then 

1 dd d6 dj 

K ds dj ds 

= -- • sin 0. 
dj 

(Compare the treatment of a considerably bent beam on page 114.) We 

Have therefore 
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&P ■ n y = sm 6, 
dj 

The height of the point P above the normal surface of the liquid will be 

given by 

sin 6. d6 
^ 0 0 

2T 
-(1-COS0). 
gp 

The height of the line of contact above the normal liquid surface is given by 

UJL «tj( 

y.dy = ~\ 
Jo gph> 

T r^o - a ^ 
sin 6. dd 

2T 
OY^ ~ —{1 - cos (90 - a + B)} 

gP 

= '^^{1 -sm(a + /3)}. 
iP 

If the plate is vertical (jS =0) and the contact angle is zero (a =0) then 

/2T 
OY=./ —. V 

For water T = 70 dynes/cm. so that OY 

gp 

140 

981 
cm. =3-7 mm. 

Stability of Cylindrical Films 

Let us consider the case of a symmetrical film whose surface approaches 

closely that of a right circular cylinder. Let EPF (Fig. 113) be the curve 

which by its rotation about the straight line AB generates the surface 

P 

Fig. 113. 

occupied by the film. EPF will not differ much from a straight line, and 

PG, the normal at P, will be very nearly equal to PN where PN is at right 

angles to AB. Hence, if R is the radius of curvature at P and /> the constant 

difference of pressure between the inside tind outside of the film, we have 
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P (1) 

Let j be the height of P above the straight line EF and a the distance 

between the lines EF and AB, then 

PN —a -hj; 

and as j is very small compared with a we have approximately 

1 

PN ^ 

J 

Substituting this value of 1/PN in equation (1) we get 

1 

R -2T a aA,'^ \2T aj] ^ ' a d‘’ a‘’\- \2T 

if j' is the distance of P from a horizontal line at a distance 

2T aj 

below EF. Since the film is very nearly cylindrical, p is very nearly equal 

to 2T/tf, so that the distance between this line and EF will be very small. 

Hence we see from equation (2) that the reciprocal of the radius of 

curvature at a point on the curve is proportional to the distance of the 

point from a straight line. Now we saw (p. 119) that the path described 

by a point fixed near to the centre of a circle when the circle rolls on a 

straight line possesses this property, hence we conclude that the cross- 

section of a nearly cylindrical film is a curve of this kind.* The curve 

possesses the following properties: it cuts the straight line, which is the 

path of the centre of the circle, in a series of points separated by half the 

circumference of the rolling circle, its greatest distance from this line is 

equal to the distance of the point from the centre of the rolling circle, 

while the reciprocal of the radius of curvature at a point is proportional 

to its distance from this line. 

Let us now consider what is the pressure in a nearly cylindrical bubble 

with a slight bulge.‘ Let us suppose that the length of the bubble is less 

than the distance between two points where the curve which generates the 

surface crosses the path of the centre of the rolling circle. The section of 

the bubble must form a part of this curve. Let A and C, Fig. 114, be the 

ends of the bubble, APC the section of the film. Let the dotted line denote 

the completion of the curve of which APC forms a part. Then if p is the 

excess of pressure inside the bubble over the outside pressure and P any 

point on the curve. 
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P 
1 
- 4- 
P 

1 

where p is the radius of curvature of the curve at P. Now if we rake 

P at Q, a point where the curve crosses its axis 1/p ~0, hence 

P 
2T 

QK 

ML K 

Fig. iff 

Now if the film were straight between A and C the excess of pressure 

p' would be given by the equation 

, 2T 

^ "am’ 

As QK is less than AM, p is greater than p\ hence the pressure in the film 

which bulges out is greater than the pressure in the straight film. We 

can prove in the same way that in a film that bends in, as in Fig. 115, if the 

Fig. lir>. 

distance between the ends is less than the distance between the points 

Q and Q' on the curve, that is, if the length of the film is less than half 

the circumference of its ends, the pressure is less than the pressure in the 

straight film. 

If the distance between the ends of the film is greater than half the 

circumference of the ends of the film these conditions are reversed. 

For let Fig. 116 represent such a film bending in; as before, the excess 

of pressure p will be given by the equation 
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2T 

where Q is the point where the curve of the film crosses its axis. If the 

film were straight between A and Q p\ the excess of pressure, would be 

given by the equation 

2'r 

^ ‘'AM* 

Since in this case AM is greater than QK, f is less than />. Hence 

the pressure in the film which bends in is greater than that in thf^ straight 

film. In a similar way we can prove that in this case the pressure in a film 
which bulges out is less than 

the pressure in a straight 

film. Hence we arrive at the 

result that, if the length of 

the film is less than half the 

circumference of its end, the 

pressure in a film that bulges 

out is greater than that in a 

film which bends in, while if 

the length of the film is 

greater than its semi-circum¬ 

ference the pressure in the 

film that bulges out is less 

than the pressure in one that 

bends in. Boys devised a 

very beautiful experiment which illustrates this point. The arrangement is 

represented in Fi^. 117. A and B are pieces of glass tubing of equal diameter 

communicating with each other through the tube C; this communication can 

be opened or closed by turning the tap. E and F are pieces of glass tubing 

of the same diameter as A; they are placed vertically below A and B re- 

c 

B 
— — 

F 
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spectively. The distance between A and E and B and F can be altered by 

raising or lowering the system ABC. First begin with this distance less 

than half the circumference of the glass tube. Fig, 118, close the tap and 

blow between A and E a soap bubble which bulges out, and between B and F, 

one that bends in. Now open the tap; they will both tend to straighten, 

air going from the one at A to help to fill up that at B, showing that the 

pressure in the one at A is greater than in that at B. Now repeat the 

experiment after increasing the distance between A and E and B and F to 

more than half the circumference of the tube. We now find on opening 

the tap that the film which bulges out is blown out still more, while the 

one that bends in tends to shut itself up, showing that air has gone from 

B to A or that now the pressure at B is greater than that at A. 

It follc^s from this result that the equilibrium of a cylindrical film is 
unstable when its length is --p 

greater than its circumference, 

while shorter films are stable. 

For let us consider the 

equilibrium of a cylindrical film 

between two equal fixed discs, 

A and B, Fig. 120, and consider a c jf 

the behaviour of a movable 

disc C of the same size placed between them. Suppose the length of the 

film is less than its circumference and that C is midway between A and B; 

move C slightly towards B, then the film between B and C will bulge out 

while that between A and C will bend in. As the distance between each of 
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the films is less than half the circumference, the pressure in the film which 

bulges out will be greater than m that which bends in, thus C will be pushed 

back to its original position 

and the equilibrium will be 

stable. If C is not midway 

between AB but nearer to B 

than to A, then even if AC is 

greater than the semi-circum¬ 

ference so that when C is 

pushed towards B the pressure 

in AC is greater than when 

the film is straight, yet it is 

easy to prove that the excess 

of pressure in BC is, in con¬ 

sequence of its greater cur¬ 

vature, greater than that in 

AC, so that C is again pushed 

back to Its old position and the 

film is again stable. 

Suppose now that the 

distance between A and B is 

greater than the circumference 

of the film, and that C, origin¬ 

ally midway between A and B, 

is slightly displaced towards B. 
CB will bulge out and CA will bend in; as the length of each of these 

films is greater than the semi-circumference of the film the pressure in 

BC will be less than that in AC, and 

C will be pushed still further from 

its original position and the equilib¬ 

rium will be unstable. The film 

will contract at one part and expand 

in another until its two sides come 

into contact and the film breaks 

up into two separate spherical 

portions. 

These results apply to fluid cyhn- 

ders as well as to cylindrical films. 

Such cylinders are unstable when 

their length is greater than their cir¬ 

cumference. Examples of this instability are afforded by the breaking up of 

a liquid jet into drops. The development of inequalities in the thickness 
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of the jet is shown in Figs. 121 and 122 taken from instantaneous photo¬ 

graphs. The Httlc drops between the big ones are made from the narrow 

necks which fojrm before the jet finally breaks up. Another instance of this 

instability is afforded by dipping a glass fibre in water, the water gathers 

Fig. ]2,3. 

itself up into beads. A very beautiful illustration of the same effect is that 

of a wet spider’s web, shown in Fig. 123, when again the water gathers 

itself up into spherical beads. 

If the fluid is very viscous the effect of viscosity may counterbalance 

the instability due to surface tension; thus it is possible to get long thin 

threads of treacle or of molten glass and quartz. 

Force between two Plates due to Surface Tension 

Let A and B (Fig. 124) be two parallel plates separated by a film of 

water or some liquid which wets them; then, if d is the distance between 

Fig. 124. 

the plates and D the diameter of the area of the plate wet by the liquid, the 

radii of curvature at the free surface of the liquid are approximately -^//2 

and D/2, hence the pressure inside the film is less than the atmospheric 

pressure by 

or if d is very small compared with D the difference of pressure is approxi- 

2T 
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Now the plate A is pressed towards B by the atmospheric pressure 

and away from B by a pressure which is less than this by 2T/^/; hence, if 

A is the area of the plate wet by the film, the force urging A towards B is 

2AT 

The force varies inversely as the distance between the plates; thus, 

if a drop of water is placed between two plates of glass the plates are forced 

together, and this still further increases the pull between the plates as the 

area of the wetted surface increases while the distance between the plates 

diminishes. 

Attractions and Repulsions of small Floating Bodies 

Small bodies, such as straw or pieces of cork, floating on the surface 

of a liquid often attract each other and collect together in clusters; this 

occurs when all the bodies are wet by 

the liquid, and also when none of 

them is wet; if one body is wet 

and one is not wet they repel each 

other when they come close together. 

To investigate the theory of this 

effect, let us suppose that , A and B 

(Fig. 125) are two parallel vertical 

plates immersed in a liquid which 

wets both of them, the liquid will 

stand at a higher level between the 

plates than it does outside. We shall 

begin by showing that the horizontal 

force exerted on a plate by a meniscus 

such as PRQ, is the same as 

the force which would be exerted 

if the meniscus were done away with 

and the liquid continued horizontally up to the surface of the plate. 

For consider the water in the meniscus PQR; it is in equilibrium under 

the horizontal tension at P, the vertical tension at Q, the force exerted 

by the plate on the liquid, the vertical liquid pressure over PR, and the 

pressure of the atmosphere over PQ. The resultant pressure of the 

atmosphere over PQ, which we shall call tt, in the horizontal direction is 

equal to the pressure which would be exerted on QR, the part of the plate 

wet by the meniscus, if this were exposed directly to the atmospheric 

pressure without the intervention of the liquid. The horizontal forces 

acting from left to right on the meniscus are 

i 7r - T - force exerted by plate on meniscus. 
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Since the meniscus is in equilibrium the horizontal forces must be in 

equilibrium; hence 

force exerted by meniscus on plate = T - tt. 

But this is precisely the force which would be exerted if the meniscus were 

done away with and the horizontal surface of the liquid prolonged to meet 

the plate. Hence, as far as the horizontal forces are concerned, we may 

suppose the surfaces of the liquid flat, and represented by the dotted lines 

in Fig. 125. Considering now the forces acting on the plate A, the pulls 

exerted by the surface tension at R and u are equal and opposite; on the 

Fig. J2(), Fig. 127. 

left the plate is acted on by the atmospheric pressure, on the right by the 

pressure in the liquid. Now the pressure in the liquid at any point is less 

than the atmospheric pressure by an amount proportional to the height of 

the point above the level of the undisturbed liquid; thus the pressure on 

A tending to push it towards B is greater than the pressure tending to push 

it away from B, and thus the plates are pulled together. 

Now suppose neither of the plates is wet by the liquid—a case repre¬ 

sented in Fig. 126. We can prove, as before, that we may suppose the 

fluid to be prolonged horizontally to meet the plates. The force tending to 

push the plate A towards B is the pressure in the liquid, the force tending 

to push it away is the atmospheric pressure. Now the pressure at any 

point in the liquid is greater than the atmospheric pressure by an amount 

proportional to the depth of the point below the undisturbed surface of 

the liquid; hence, the pressure tending to push A to B will be greater than 

that tending to push it away from B, so that the plates will again appear to 

attract each other. 
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Now take the case where one plate is wet by the liquid while the other 

is not. The section of the liquid surface will be as in Fig. 127, the curvature 

of the surface being of one sign against one plate, and of the opposite sign 

against the other. When the plates are a considerable distance apart, the 

surfaces of the liquid will be like that shown in Fig. 127; between the 

plates there is a flat horizontal surface at the same level as the undisturbed 

liquid outside the plates; in this case there is evidently neither attraction 

nor repulsion between the plates. Now suppose the plates pushed nearer 

together, this flat surface will diminish, and the last trace of it will be a 

horizontal tangent crossing the liquid. Since the curvature changes sign 

in passing from A to B, there must be a place between A and B where it 

vanishes, and when the curvature vanishes, the 

pressure in the liquid is equal to the atmospheric 

pressure; this point, at which the tangent crosses 

the surface, must be on the prolongation of the 

free surface of the liquid. Now suppose that 

the plates are so near together that this tangent 

ceases to be horizontal, and the liquid takes the 

shape shown in Fig. 128. We can show, by the 

method given on p. 188, that the action on the 

plate A of the meniscus inside A is the same as 

if the meniscus were removed and the liquid 

surface stretched horizontally between the plates, 

the surface tension in this surface being equal 

to the horizontal component of the surface tension 

at the point of inflection. Now consider the plate A; it is pulled from 

B by the surface tension and towards it by only the horizontal component 

of this. The force pulling it away is thus greater than the other, and the 

plates will therefore repel each other. If the plates are pushed very near 

together so that the point of inflection on the surface gets suppressed, the 

liquid may rise between the plates afxd the repulsion be replaced by an 

attraction. 

Methods of Measuring Surface Tension 

By the Ascent of the Liquid in a Capillary Tube 

A finely divided glass scale is placed in a vertical position by means of 

a plumb line, the lower end of the scale dipping into a vessel V, which 

contains some of the liquid whose surface tension is to be determined (Fig. 

129). The capillary tube is prepared by drawing out a piece of carefully 

cleaned glass tube until the internal diameter is considerably less than a 

millimetre; the bore of the tube should be as uniform as possible, for 
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although the height to wlhch the fluid rises in the capillary tube depends 

only on the radius of the tube at the top of the meniscus, yet when we cut 

the tube at this point to determine its radius, if the tube is of uniform bore^ 

no error will ensue if we fail to cut 

it at exactly the right place. Attach 

the capillary tube to the scale by two 

-elastic bands, and have a good light 

behind the scale. Dip the capillary 

tube in the liquid, and the liquid 

will rush up it; then raise the 

capillary tube, keeping its end below 

the fluid in V. This will make the 

meniscus sink in the tube and ensure 

that the tube above the meniscus is 

wetted by the liquid. Now read off 

on the scale the levels of the liquid 

in V and the capillary tube, and the 

difference of levels will give the height 

to which the liquid rises in the tube. 

To measure r, the radius of the tube 

at the level of the meniscus, cut the 

capillary tube carefully across at this 

point and then measure the internal 

radius by a good microscope with a 

micrometer scale in the eyepiece. 

If the section, when observed in the 

microscope, is found to be far from 

circular, the experiment should be repeated with another tube. The 

surface tension T is determined by the equation (p. 173). 

T: = \pi{hr + 
\ 

If the angle of contact is not zero a knowledge of its value is required 

before T can be determined by this method. 

/' 
By the Measurement of Bubbles and Drops 

This method is due to Quincke. The theory is as follows: suppose 

that AB, Figs. 130 and 131, represents the section of a large drop of mercury 

on a horizontal glass plate or, when turned upside down a large bubble of 

air under a glass plate in water. Let a central slab be cut out of the drop 

or bubble by two parallel vertical planes unit distance apart, and suppose 

that this slab is cut in half by a vertical plane at right angles to its length; 

where p is the density of the fluid. 
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consider the equilibrium of the portion of this slab above the horizontal 

section BC of greatest area in the case of the drop, and below it in the case 

of the bubble. 

I'lG. 130. 

D 

The horizontal forces acting on the upper portion are the surface 

tension T, and the horizontal pressures acting over the section ADEC 

and the curved surface. If the drop is so large that the top may be considered 

as plane there will be no change of pressure as we pass from the air just 

above the surface of the drop to the mercury just below it; * in this case 

the difference in the horizontal components of the pressure over ADEC 

and the pressure of the atmosphere over the curved surface is, since AD is 

unity, equal to 

J^p.DE2. 

As this must be balanced by the surface tension over AD we must have 

T = J^p.DE^ (1) 

By considering the equilibrium of the portion ABFGHD of the drop 

we have 

T(1 +COS w ) = (2) 

where h is the thickness of the bubble or drop, and o) the angle of contact 

at F between the liquid and the plate. From equation (2) we have 

CO 
4T cos2 - 

^2^- 

ip 
Thus the thickness of all large drops or bubbles in a liquid is independent of 

the size of the drops or bubbles. By measuring either DE or b, and using 

equation (1) or (2) we can determine T. In the case of bubbles it is more 

* If the drops arc not large enough for this assumption to be true, a correction has 
to be applied to allow for the difference in pressure on the two sid<is of the surface through A. 
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convenient to use, instead of a flat piece of glass, the concave surface of a 

large lens, as this facilitates greatly the manipulation of the bubble. In 

this case, if we use equation (15), we must remember that h is the depth of 

the bottom of the bubble below the horizontal plane through the circle of 

A 

contact of the liquid with the glass. Thus, in Fig. 132, h is equal to NE and 

not to AE. It is more convenient to measure AE and then to calculate 

NE from the radius (jf curvature of the lens and the radius of the circle of 

contact of the glass and the liquid. Determinations of the surface tension 

of liquids by this method have l)cen made by Quincke, Magie, and Wilber- 

force.* Magie used this method to determine the angle (.)f contact, as it is 

evident from equations (I) and (2) that 

(u h 
cos = 

2 a2.DH 

By this method Magie {Phil. voJ, xxvi. 188(S) found the following 

values for the angle of contact with glass: 

Angle zero. Angle linirc. 
(0 

Ethyl alcohol Water (?). . . small 

Methyl alcohol Acetic acid . 20" 

Chloroform Turpentine . . 17" 

Formic acid Petroleum . 26" 

Benzine Ether. . . . 16" 

Determination of the Surface Tension by Means of Ripples 

The velocity with which waves travel over the surface of a liquid 

Fig. 133. 

depends on the surface tension of the liquid. The relation between the 

' velocity and surface tension may be found as follows: Let Fig. 133 represent 

* See foot-note on opposite page. 
N 
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the section of a harmonic wave on the surface of the liquid, the undisturbed 

level of the liquid being xy. If gravity were the only force acting, the 

increase in vertical pressure at N due to the disturbance produced by the 

wave would be equal to ^pPN, when p is the density of the liquid. 

The surface tension will give rise to an additional normal, and therefore 

T 
approximately vertical, pressure equal to where R is the radius of 

R 

curvature of the section of the wave by the plane of the paper; the radius 

of curvature in the normal plane at right angles to the plane of the paper 

is infinite. Now if the amplitude of the wave is very small compared 

with the wavelength, the wave curve may be regarded as generated by a 

point fixed to a circle rolling in a straight line; the amplitude is equal to 

the distance of the point from the centre of the circle, and the wavelength 

is equal to the circumference of the rolling circle. The line xy is the 

path of the centre of the rolling circle. Now we saw (p. 120) that for such 

a curve 

1 _PN 

R ~ ^2 ’ 

where a is the radius of the rolling circle; but if A is the wavelength 

27Ta - A, so that 

1 Itt^PN 

R ~ A‘^ 

Thus the pressure at N, due both to gravity and surface tension, is 

Hence we see that the effects of surface tension are the same as if gravity 

were increased by 4:Tr^TjX^p. Now the velocity of a gravity wave on deep 

water is the velocity a body would acquire under gravity by falling vertically 

through a distance A/47r, where A is the wavelength—i.e., the velocity is 

\/gA/27r. Hence the velocity of a wave propagated under the influence 

of surface tension as well as gravity, is given by the equation 

The velocity of propagation of the wave is thus infinite both when 

the wavelength is zero and when it is infinite; it is proportional to the 

square root of an expression consisting of the sum of two terms whose 

product is constant. It follows from a well-known theorem in algebra 

that the expression will be a minimum when the two terms are equal. Thus 

the velocity of propagation of the waves will be least when 
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Le.^ when A =277 

In this case the velocity is equal to 

In the case of water, for which T = 75 dynes per cm., 

A = 1-7 cm,, and 2; = 23 cm./sec. 

Hence no waves can travel over the surface of water with a smaller 

velocity than 23 cm. per second. For any velocity greater than this it 

is possible to find a wavelength A such that waves of this length will travel 

with the given velocity. Waves whose lengths arc smaller than that 

corresponding to the minimum velocity are called “ripples/' those whose 

lengths exceed this value “waves." A wave is propagated chiefly by 

gravity, a ripple chiefly by surface tension. 

The velocity of a “wave" increases as the wavelength increases, while 

that of a “ripple" diminishes. Interesting examples of the formation of 

ripples are furnished by the standing patterns often 

seen on the surface of running water near an 

obstacle, such as a stone or a fishing-line. The dis¬ 

turbance caused by a stone, in a stream running 

from right to left, gives rise to ripples which travel 

upstream with a velocity depending upon their 

wavelength. Close to the stone the velocity 

of the water is zero, so that the ripples travel 

rapidly away from the stone. When, however, 

we g9jt so far away from the stone that the 

velocity of the water is greater than 23cm./sec., 

the ripples adjust their wavelengths so that the velocity of propaga¬ 

tion over the water is equal to the velocity of the stream, and they become 

stationary, forming a pattern of crests and hollows. As the velocity of the 

water increases as we recede from the stone the ripples which appear 

stationary must get shorter and shorter in wavelength, and thus the crests in 

the pattern wiU get nearer and nearer together as we proceed up stream. 

Where the water velocity is constant the ripples have a constant wavelength* 

We see that the condition that the pattern should be formed at all is that the 

velocity of the stream must exceed 23 em./sec. Fig. 134 is taken from a 
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photograph of the ripples behind a stone in running water. A similar 

explanation applies to the pattern in front of a body moving through the 

liquid. 

Lord Rayleigh was the first {PhiL xxx. p. 386) successfully to 

apply the measurement of ripples to the determination of the surface 

tension, and his method was used by Dorsey {Phil. Mag.^ xliv. p. 369) to 

determine the surface tension of a large number of solutions. Rayleigh’s 

method is to generate the ripples by the motion of a glass plate 

attached to the lower prong of an electrically driven tuning-fork, and 

dipping into the liquid to be examined. To render the ripples (which for 

the theory to apply have to be of very small amplitude) visible, light reflected 

from the surface is brought to a focus near the eye of the observer. On 

account of the rapidity with which all phases of the waves are presented 

in succession it is necessary, in order to see the waves distinctly, to use 

intermittent illumination, the period of the illumination being the same as 

that of the waves. The illumination can be made intermittent by placing 

in front of the source of light a piece of tinplate rigidly attached to the 

prong of a tuning-fork, and so arranged that once on each vibration the 

light is intercepted by the interposition of the plate. This fork is in unison 

with the one dipping into the liquid. It is driven electro-magnetically, and 

the intermittent current furnished by this fork is used to excite the vibrations 

of the dipping fork. By this means the ripples can be distinctly seen, the 

number between two points at a known distance apart counted, and the 

wavelength A determined. If r is,the time of vibration of the fork vr — A, 

and since + — -, 
277 Ap 

, • T A=> 
we obtain =0 

p 277T“ 477^ 

an equation from which T can be determined. The second term in this 

expression is in these experiments small compared with the first. 

i 

Determination of Surface Tension by Oscillations of a Spherical Drop 

of Liquid 

When the drop is in equilibrium under surface tension it is spherical; 

if it is slightly deformed, so as to assume any other form, and then left to 

itself, the surface tension will pull it back until it again becomes spherical. 

When it has reached this state the liquid in the drop is moving, and its 

inertia will carry the drop through the spherical form. It will continue to 

depart from this form until the surface tension is able to overcome the 

inertia, when it is again pulled back to the spherical form, passes through 
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it and again returns; the drop will thus vibrate about the spherical shape. 

We can find how the time of vibration depends upon the size of the drop 

by the method of dimensions, and the problem forms an excellent example 

of the use of this method. Suppose the drop free from the action of 

gravity, then /, the time of vibration of the drop, may depend upon a the 

radius, p the density, and S the surface tension of the liquid; let 

t - 

where C is a numerical constant not depending upon the units of mass, 

length, or time. The dimensions of the left-hand side are one in time, 

none in length, and none in mass, which, adopting the usual notation, we 

denote by [T]^ [L]*^ [M]^; the right-hand side must therefore be of the 

same dimensions. Now a is of dimensions [T]^‘ [L]^ [M]‘h g, [T]^^ [L]' ^ [M]^; 

and S, since it is energy per unit area, [Tj~2 [L]“ [M]’; hence the dimensions 

of a^pvS^ are, [L] -3i/4-x [MY<y. As this is to be of the dimensions 

of a time, we have 

-.3y+x-(), j + 

therefore x = j - L- 

So that /, the time of vibration, varies as Vpa^jS; Le., it varies as the 

square root of the mass of the drop divided by the surface tension; a more 

complete investigation, involving considerable mathematical analysis, shows 

that / = 
7T 

v>2 
, where t is the time of the gravest vibration of the drop. 

The reader can easily calculate the time of vibration of a drop of any size 

if he remembers that the time of vibration of a drop of water 2*5 cm. in 

radius is very nearly 1 second. The vibrations of a sphere under surface 

tension can easily be followed by the eye if a large spherical drop of water 

is formed in a mixture of petroleum and bisulphide of carbon of the 

same density. Lenard (Wiedemann’s Ama/en, xxx. p. 209) applied the 

oscillation of a drop to determine the surface tension of a liquid. He 

determined the time of vibration by taking instantaneous 

photographs of the drops, and from this time deduced the 

surface tension by the aid of the preceding formulae. 

Determination of Surface Tension by the Size of Drops 

The surface tension is sometimes measured by determin¬ 

ing the weight of a drop of the liquid falling from a tube. 

If we treat the problem as a statical one and suppose that 

the liquid wets the tube from which it falls, then just on the point 

of falling the drop below the section AB (Fig. 135) is to be regarded 

i 

Fig. 135. 
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as in equilibrium under the surface tension acting upwards, the weight 

of the drop acting downwards, the pressure of the air on the surface 

of the drop acting upwards, and the pressure in the liquid acting 

downwards across the section AB. If is the radius of the tube, T the 

surface tension, then the upward pull is 27r^T. If we suppose at the 

instant of falling that the drop is cylindrical at the end of the tube, the 

pressure in the liquid inside the drop will be greater than the atmospheric 

pressure by Tja (see p. 178). Hence the effect of the atmospheric pressure 

over the surface of the drop and the fluid pressure across the section AB is a 

downwards force equal to Tra^TIa or ttoT. Hence, if w is the weight of 

the drop, we have, equating the upwards and downwards forces, 

ttoIl ; or rrali ~w. 

The detachment of the drop is, however, essentially a dynamical pheno¬ 

menon, and no statical treatment of it can be complete. We should not 

therefore expect the preceding expression to accord exactly with the results 

of experiment. Lord Rayleigh * finds the relation 3-8^T —wto be sufficiently 

exact for many purposes. Most observers who have used this method 

seem to have adopted the relation ^ formula which gives little 

more than half the true surface tension; the error comes in by neglecting 

the change of pressure inside the drop produced by the curvature of its 

surface. 

Wilhelmy’s Method f 

This consists in measuring the downward pull exerted by a liquid on 

a thin plate of glass or metal immersed in the liquid; the liquid is supposed 

to wet the plate. The pull can be readily measured by suspending the 

plate from one of the arms of the balance and observing the additional 

weight which must be placed in the other scale-pan to balance the pull on 

the plate when it is partially immersed in the liquid, allowance being made 

if necessary for the effect of the water displaced. If / is the length of the 

water-line on the plate, T the surface tension, then if the liquid wets the 

plate the downward pull due to surface tension is T/, 

Method of Detachment of a Plate 

Some observers have determined the surface tension of liquids by 

measuring the pull required to drag a plate of known area away from the 

surface. The theory of this method resembles in many respects that by 

which we determined the thickness of a drop or air bubble (see p. 192). 

Let us take the case of a rectangular plate being pulled away from the 

surface (Fig. 136), and let the figure represent a section by a plane at right 

* Lord Rayleigh, PhiL 48, p. 321. 
t Glazebrook and Shaw, Practical Physics, ch. vii. § 1. 
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angles to the length of the rectangle. Considering the equilibrium of the 

portion whose section is EBCF, and whose length perpendicular to the 

paper is unity, the horizontal forces acting upon it are: (1) the forces due 

to surface tension—2T acting from left to right; (2) the atmospheric 

pressure on the curved 

surface BC acting from 

right to left, which is equal 

to where 0 is the atmo¬ 

spheric pressure and d is 

the height of the lower 

surface of the plate above the undisturbed level of the liquid; and (3) the 

fluid pressure acting across the surface BF from left to right. The 

pressure in the liquid at F is equal to 11, and therefore the resultant fluid 

pressure across EF is equal to 11^ - ^gpd^, where p is the density of the 

liquid. Hence, equating the components in the two directions, we have 

2T+n^-|^pi2^nJ, or 

Now the fluid pressure just below the surface is less than the atmospheric 

pressure by gpd^ hence the upward pull P required to detach an area of the 

plate equal to A is equal to ^gpdy and substituting for d its value, we find 

P=2Av''T^p. 

Jaeger’s Method 

In this method the least pressure which will force bubbles of air from 

the narrow orifice of a capillary tube dipping into the liquid is measured. 

The pressure in a spherical cavity exceeds the pressure outside by 2T/^ 

where a is the radius of the sphere, hence the pressure required to detach 

the bubble of air exceeds the hydrostatic pressure at the orifice of the tube 

by a quantity proportional to the surface tension, '"^his method, which 

was used by Jaeger, is a very good one when relative and not absolute 

values of the surface tension arc required; when, for example, we want 

to find the variation of surface tension with temperature.'^*' 

The following are the values of the surface tension at 0° C., and the 

temperature coefficients of the surface tension for some liquids of frequent 

occurrence. The surface tension at F C. is supposed to be equal to T^, - jS/. 

Liquid To 
Ether (QHioO) . . 19-3 . -115 

Alcohol (CgHgO) . . 25-3 . -087 

Benzene (C^H^) . . 30-6 . -132 

Mercury . 527-2 . -379 

Water . 75-8 . . -152 
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The surface tension of salt solutions is generally greater than that of 

pure water. If T,„ is the surface tension of a solution containing n gramme 

equivalents per litre, T,„, the surface tension of pure water at the same 

temperature, Dorsey* has shown that T„ - T^,,-i-R//, where R has the 

following values: NaCl(l*53); KCl (1'71); KNaj^CO^) (2-00); 

(1-77); J(ZnS04)(l-86). 

On the Effect of Temperature on the Surface Tension of Liquids 

The surface tension of all liquids diminishes as the temperature 

increases. This can be shown in the case of water by the following 

experiment. A pool of water is formed on a horizontal plate of clean 

metal; powdered sulphur is dusted over the surface of the water and heat 

applied locally to the under surface of the metal by a fine jet. On the 

application of the heat the portion of the water immediately over the dame 

is rapidly swept clear of the sulphur; this is due to the greater tension in 

the cold liquid outside pulling the sulphur away against the feebler tension 

in the warmer water. 

Eotvos {W'lecL Atw., 27, p. 448) has pointed out that for many liquids 

d{^v^)ldt is equal to - 2*1, being inplependent of the nature of the liquid and 

the temperature; here T is the surface tension of the liquid, v the “molecular 

volume”—the molecular weight divided by the density-and i the 

temperature. It is clear that, if we assume that d(Xv^)ldt has this value 

for a liquid whose density and surface tension at different temperatures 

are known, we can determine the molecular weight of the liquid. I'he 

method has been applied for this purpose, and some interesting results 

have been obtained; for example, water is a liquid for which Eotvos’ rule 

does not hold, if wc suppose the molecular weight of water to be 18. 

If, however, we assume the molecular weight of water to be 36—i.e., that 

each molecule of water has the composition SlhO, then Eotvos’ rule is 

found to hold at temperatures between lOO ' and 200'^ C.; below the lower 

of these temperatures the molecular weight would have to be taken as 

greater than 36 in order to make Eotvos’ rule apply. Hence, Eotvos con¬ 

cluded that the molecules of water, or at any rate the molecules of the 

surface layers, have the composition 2H2O above 100° C., while below that 

temperature they have a still more complicated composition. 

It follows that if Eotvos’ rule is true, 

Tr^ ==2-1(4-/) 

where 4 is some constant temperature, which can be determined if we 

know the value of T and 2^ at any one temperature; 4 is the temperature at 

which the surface tension vanishes, it is therefore a temperature which 

* Porsey, PM. 44, 1897, p. 369. 
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probably docs not differ much from the critical temperature; the values of 

4 for ether, alcohol, water are roughly about 180'', 295", 560" C. Their 

critical temperatures arc estimated by Van der Waals to be 190", 256", 

390" C. 

Cooling due to the Stretching of a Film 

Since the surface tension changes with the temperature, any changes 

in the area of a film will, as they involve work done by or against surface 

tension, be accompanied by thermal changes. We can calculate the amount 

of these thermal changes if wc can imagine a little heat engine which works 

by the change of surface tension with temperature. A very simple engine 

of this kind is as follows. Suppose that we have a rectangular framework on 

which a film is stretched, and that one of the sides of the framework can 

move at right angles to its length. Let the mass of the framework and 

film be so small that it has no appreciable heat capacity. Suppose we have 

a hot chamber and a c<dd chamber, maintained respectively at the absolute 

temperatures 0i and $2, where and do are so near together that the amount 

of heat required to raise the body from to is small compared with the 

thermal effect due to change of area. Let us place the film in the hot 

chamber, and stretch it so that its area increases by A, then take it out 

of the hot chamber and place it in the cold one, and allow the film to 

contract by the amount A; the film has thus recovered its original area. 

Let it be now placed again in the hot chamber. If the surface tension of 

the film when in the cold chamber is greater than when in the hot, then 

the film when contracting may be made to do more work than was 

required to stretch it, so that there will be a gain of work on the cycle; 

the process is plainly reversible, so that the film and its framework and 

the two chambers constitute a reversible engine. Hence, if is the 

heat absorbed in the hot chamber, Hg that given out in the cold, 

both being measured in ergs wc have by the Second Law of 

Thermodynamics, 

e,-0, 
arc respectively the surface tensions at the temperatures di 

and (92, then the work done in stretching the film=2T0iA, while the work 

done by the film when contracting is 2Tg2^> hence the mechanical work 

gained-=2(T^2 principle of the Conservation of Energy 
the mechanical work gained must equal the difference between the 

mechanical equivalents of the heat taken from the hot chamber and 

given up to the cold; hence 
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and from (1) = 2^| -- - ^ 
0^1 - ^2 

If P is the temperature coefficient of T, then 

T - T ' 
O * fll ^ 02 

Hence = - 2diAp. 

Thus Hj is positive when P is negative, so that when the surface 

tension gets less as the temperature increases, heat must be applied to the 

film to keep the temperature constant when it is extended—Le,, the film 

if left to itself will cool when pulled out. This is an example of the rule 

given on page 162 that the temperature change which takes place is such 

as to make the system stiffer to resist extension. For water P is about 

T/550, so that the mechanical equivalent of the beat required to keep the 

temperature constant is about half the work done in stretching the film. 

Surface Tension of very thin Films 

The fact that a vertical soap film when allowed to drain shows different 

colours at different places and is yet in equilibrium shows that ,,the thick¬ 

ness of the film may vary 

within wide limits without 

auy substantial change in 

the surface tension. * The 

connection between the 

thickness of the film and 

the surface tension was in¬ 

vestigated by Rucker and 

Reinold.* The method 

used is represented diagram- 

matically in Fig. 137. Two 

cylindrical films were 

balanced against each other, 

and one of them was kept 

thick by passing an electric 

current up it; this keeps the film from draining, the other film was 

allowed to drain, and a difference of surface tension was indicated 

by a bulging of one of the cylinders and a shrivelling of the other. 

When films ate first formed the value of their surface tension is very 

irregular; but Rucker and Reinold found that, if they .were allowed 

* Riicker and Remold, Phil, Trans,, 177, part ii. p. 627, 1886. 
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to get into a steady state, then a direct comparison of the surface tension 

over a range of thickness extending from 1350 [jifji (jLt/x is 10"'^ cm.) down 

to the stage of extreme tenuity, when the film shows the black of the first 

order of Newton’s scale of colour, showed no appreciable change in surface 

tension, although, had the difference amounted to as much as one-half per 

cent., Reinold and Rucker believed they could have detected it. A large 

number of determinations of the thick¬ 

ness of the black films were made, ,— . i— -1 

some by determining the electrical re¬ 

sistance and then deducing the thick- 

ness, on the assumption that the specific resistance is the same as for the 

liquid in bulk, others by determining the retardation which a beam of light 

suffers on passing through the film, and assuming the refraction index to 

be that of the liquid in mass: all these determinations gave for the thickness 

of the black films a constant yalue about 12 ju/x. At first sight it appears 

as if the surface tension suffered no change until the thickness is less than 

12 fx/x. The authors have shown, however, that this is not the right 

interpretation of their results, for they find that the black and coloured 

parts of the film arc separated by a sharp line showing that there is a dis¬ 

continuity in the thickness. In extreme cases the rest of the film may be 

as much as 250 times thicker than the black part with which it is in contact. 

The section of a film showing a black part is of the kind shown in Fig. 138. 

The stability of the film shows that the tension in the thin part is equal to 

that in the thick. It is remarkable that in these films there are never any 

parts of the film with a thickness anywhere between ] 2 /xju and something 

between 45 and 95 fxfx; films whose thicknesses are within this range are 

unstable. This is what would occur if the surface tension first begins to 

diminish at the upper limit of the unstable thickness, and after diminishing 

for some time, then begins to increase as the thickness of the film gets less, 

until at 12 /x^lx it has regained its original value; after this it increases for 

some time, and then diminishes indefinitely as the thickness of the film 

gets smaller and smaller. The changes in surface tension are represented 

graphically by the curve in Fig. 139, where the ordinates represent the 

surface tension and the abscissae the thickness of the film. For suppose we 

have a film thinning, it will be in equilibrium until the upper part gets the 

thickness corresponding to the point P on the curve; as the tension now 

gets less than in the thicker part of the film, the thicker parts pull the thin 

part away, and would certainly break it, were it not that after the film gets 

thinner than at R the tension increases until, when the film rSiches the 

thickness corresponding to Q, the tension is the same as in the thick film, 

and there is equilibrium between the thick and the thin pieces of the film. 

This equilibrium would be stable, for if the film were to get thinner the 
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tension would get greater, and the film would contract and thicken again, 

while if it got thicker the tension would fall and the film would be pulled 

out until it regained its original thickness. Thus all the films which are in 

contact with thick films must have the constant thickness corresponding 

to Q, The equilibrium at A, when the tension has the same value as at Qy 

is unstable, for any extension of the film lowers the tension, and thus makes 

the film yield more readily to the extension. The region between R and P 

is unstable, so is that between T and O. The region TR would be stable, 

but would be very difficult to realise. If we start with a thick film and 

allow it to thin, the only films of thickness less than that at P which will 

endure will be those whose thickness is constant and equal to the thickness 

at Q. Johannot {PhU. Mag.y 47, p. 501, 1899) has shown that a 

black film of oleate of soda may consist of two portions, one having a 

thickness of 12 /x/x, the other of 6 ju./x. In this case there must be another 

dip between S and R in the curve representing the relation between surface 

tension and thickness. 

Vapour Pressure over a Curved Surface 

Lord Kelvin was the first to show that in consequence of surface 

tension the vapour pressure in equilibrium with a curved surface is not 

the same as the pressure of the vapour in equilibrium with a flat one. We 

can see from very general considerations that this must be the case, for 

when water evaporates from a flat surface there is no change in the area 

of the sflPrface and therefore no change in the potential energy due to 

surface tension; in the case of a curved surface, however, such as a spherical 

drop, when water evaporates there will be a diminution in the area of the 

surface and therefore a diminution in the potential energy due to surface 
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tension. Thus the surface tension will promote evaporation in this case, 

as evaporation is accompanied by a diminution in the potential energy. 

Thus evaporation will go on further from a spherical drop than from a 

plane surface; that is, the pressure of the water 

vapour in equilibrium with the spherical drop 

is greater than for the plane area. 

Lord Kelvin’s determination of the effect 

of curvature on the vapour pressure is as 

follows. Let a fine capillary tube be placed 

in a liquid, let the liquid rise to A in the tube, 

and let B be the level of the liquid in th<i outer 

vessel. Then there must be a state of equi¬ 

librium between the liquid and its vapour both 

at A and 7^, otherwise evaporation or con¬ 

densation would go on and the system would 

not attain a steady state. Let />, p* be the 

pressures of the vapour of the liquid at B and 

A respectively, h the height of A above if. 

+pressure due to a column 

of vapour whose height is h 

=/)'+^Wa (1) 

where cr is the density of the vapour. If r is 

the radius of the surface of the liquid, at A^ 

then T being the surface tension,' 

2T 
= difference of pressure on the two sides of the meniscus. 

Now the pressure on the liquid side of the meniscus is equal to 11 

where p is the density of the liquid and 11 the pressure at the level of the 

liquid surface in the outer vessel; the pressure on the vapour side of the 

meniscus is 11 -goh\ thus the difference of pressures is equal to g{p -a)h, 

so that 

2T 
=g{p-a)h* 

gah- 
2T 

r p -a 

* In the investigation of the capillary ascent in tubes given on p. 173, n is neglected in 
comparison with p. 
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^ X u 

Hence by equation (!) - --• -•* 
r p - or 

Hence the equilil^rium vapour pressure over the concave hemispherical 

surface is less than that over a plane surface at the same temperature by 

2Tcr/(p - a)r. We may write this as a>o-/(p - a) where a> is the amount by 

which the pressure below the curved surface is less than that below the plane. 

If the shape of the liquid surface had been convex, like that of a dewdrop, 

instead of concave, the pressure below the curved surface of liquid would 

be greater than that in the plane surface instead of being less, and the pressure 

of the water vapour over the surface would be greater than that over a plane 

surface. It can be shown that if an external pressure to were apphed to a 

plane surface the vapour pressure would be increased by cjajp (see J. J. 

Thomson, Appitcations of Dynamics^ p. 171). Unless the drops are exceed¬ 

ingly small, the effect of curvature on the vapour pressure is inappreciable; 

thus if the radius of the drop of water is one-thousandth part of a milli¬ 

metre the change in the vapour pressure only amounts to about one part 

in nine hundred. As the effect is inversely proportional to the radius it 

increases rapidly as the size of the drop diminishes, and for a drop 1 /xfc 
in radius the vapour pressure over the drop when in equilibrium would be 

more than double that over a plane surface. Thus a drop of this size 

would evaporate rapidly in an atmosphere from which water would condense 

on a plane surface. This has a very important connection with the 

phenomena attending the formation of rain and fog by the precipitation 

of water vapour. Suppose that a drop of water had to grow from an 

indefinitely small drop by precipitation of water vapour on its surface; 

since the vapour pressure in equilibrium with a very small drop is much 

greater than the normal, the drop, unless placed in a space in which the 

water vapour is in a very supersaturated condition, will evaporate and 

diminish in size instead of being the seat of condensation and increasing 

in radius. Thus these small drops would be unstable and would quickly 

disappear. Hence it would seem as if this would be an insuperable difficulty 

to the formation of drops of rain or cloud if these drops have to pass 

through an initial stage in which their size is very small. Aitken has 

shown that as a matter of fact these drops arc not formed under ordinary 

conditions when water and water vapour alone are present, even though 

the vapour is considerably oversaturated, and that for the formation of 

P\ 
* The formula in the text gives the value for p* ~p when this is small compared with 

the general equation for p' may be proved to be (neglecting a in comparison with p) 

J 
KS 

where S is the absolute temperature and R the constant in the equation for a perfect gas— 
pp~lW. 
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rain and fog the presence of dust is necessary. As the water is deposited 

around the particles of dust, the drops thus commence with a finite radius, 

and so avoid the difficulties connected with their early stages. The effect 

of dust on the formation of cloud can be shown very easily by the following 

experiment (Fig, 141). A and B arc two vessels connected with each other by 

a flexible pipe; when B is at the upper level indicated in the diagram the 

globe A is partly filled with water; if the vessel B is lowered the water runs 

Fig. 14J. 

out of A^ the volume of the gas in A increases, and the cooling caused by 

the expansion causes the region to be oversaturated with water vapour. If 

A is filled with the ordinary dusty air from a room, a cloud is formed in A 
whenever B is lowered; this cloud falls into the water, carrying some dust 

with it; on repeating the process a second time more dust is carried down, 

and so by continued expansions the air can be made dust free. We find 

that, after we have made a considerable number of expansions, the cloud 

ceases to be formed when the expansion takes place; that the absence of 

the cloud is due to the absence of dust can be proved by admitting a little 

dust through the tube; on making the gas expand again a cloud is at once 

formed. 

^ It was supposed for some time that without dust no clouds could be 

formed, but it was shown by C. T. R. Wilson that gaseous ions can act as 
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nuclei for cloudy condensation if the supersaturation exceeds a certain value, 

and he also showed that if perfectly dust-free air has its volume suddenly 

increased T4 times a dense cloud is produced. However, though dust is thus 

seen to be not absolutely essential for the formation of clouds, the conditions 

under which clouds can be formed without dust are very exceptional, 

inasmuch as they require a very considerable degree of supersaturation. 

Movement of Camphor on Water 

Jf a piece of camphor is scraped and the shavings allowed to fall 

on a clear water surface they dance about with great vigour. This, as 

Marangoni has shown, is due to the camphor dissolving in the water, the 

solution having a smaller surface tension than pure water; thus each little 

patch of surface round a particle of camphor is surrounded by a film having 

a stronger surface tension than its own, it will therefore be pulled out and 

the surface of the water near the bit of camphor set in motion. For the 

movements to take place the surface tension of the water surface must be 

greater than that of the camphor solution; if the surface is greasy the 

surface tension is less than that of pure water, and may be so much reduced 

that it is no longer sufficient to produce the camphor movements. Lord 

Rayleigh measured the thickness of the thinnest film of oil which will 

prevent the motion of the camphor; the thickness was determined by 

weighing a drop of oil which was allowed to spread over a known area. 

He found that to stop the camphor movements (which involved a reduction 

of the surface tension by about 28 per cent.) a layer of oil 2 /x/r thick was 

required (1 cm.), and that with thinner films the movements 

were still perceptible. This thickness is small compared with 12 jtx/x the 

thickness found by Rucker and Reinold for black films, but it must be 

remembered that the surface which stops the camphor movements is still 

far from acting as a surface of oil; the surface tension, though less than 

that of water, is greater than that of oil. The manner in which the tension 

of a contaminated water surface varies with the amount of contamination 

was investigated by Miss Pockels and also by Rayleigh {Phil. Mag.^ 48, p. 321). 

Miss Pockels determined the surface tension by measuring the force required 

to detach a disc of known area from the surface; Rayleigh used Wilhelmy’s 

method. The amount of contamination was varied by confining the greased 

surface between strips of glass or metal dipping into the water; by pulling 

these apart the area of the greased surface was increased and therefore the 

thickness of it diminished, while by pushing them together the thickness 

could be increased. 

The way in which the surface tension is affected by the thickness of 

the layer of grease is shown by the curve (Fig. 142) given by Rayleigh. 

In this curve the ordinates are the values of the surface tension, the abscissas 
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the thicknesses of the oil film; both of these arc on an arbitrary scale. It 

will be seen that no change in the surface tension occurs until the thickness 

of the oil film exceeds a certain value (about 1 /xjuc); at this stage the 

surface tension begins to fall rapidly and continues to do so until it reaches 

the thickness corresponding to the point C (about 2 fiix); this is called 

the camphor point, being the thickness required to stop the movements of 

J 

the camphor particles. After passing this point the variation of the surface 

tension with the thickness of the film becomes much less rapid. Rayleigh 

gives reasons for thinking that the thickness 1 /xyu is equal to the diameter of 

a molecule of oil. 

Thus, when the amount of contamination is between the limits corre¬ 

sponding to a thickness of the surface layer between 1 and the smallest 

thickness required to give the surface tension of oil, any diminution in the 

contamination such as would be produced by an extension of the surface 

would result in an increase in the surface tension. This is a principle of 

great importance; it seems first to have been clearly stated by Marangoni. 

Suppose we push a strip of metal along a surface in this condition, the metal 

will heap up the grease in front and scrape the surface behind, thus the 

surface tension behind the strip will be greater than that in front, so that 

the strip will be pulled back; there will thus be a force resisting the motion 

of the strip due to the variation of the surface tension. This is Marangoni’s 

explanation of the phenomenon of superficial viscosity discovered by Plateau. 

Plateau found that if a vibrating body such as a compass-needle was dis- 
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‘turbed from its position of equilibrium and then allowed to return to it 

(1) with its surface buried beneath the surface of the liquid, (2) with 

its face on the surface of the liquid, then with certain liquids, of which 

water was one, the time taken in the second case is considerably greater 

than that in the first. Wc see that it must be so if the surface of the 

liquid is contaminated by a foreign substance which lowers its surface 

tension. 

W. B. Hardy has shown (Proc. Roy. Soc.^ 86, p. 610) that some 

substances, such as cymene, heavy paraffin oil, and especially benzene, do 

not when spread in thin layers over the surface produce anything like the 

same diminution in the surface tension as thin layers of croton, olive, or 

castor oil. A layer of croton oil 1*5 fjLfx thick will produce as much diminu¬ 

tion in the surface tension as one of cymene from 300 to 600 jUju thick, 

though the surface tension of pure cymene is less than that of croton oil, 

and with benzene the thickness of the layer required to produce the same 

diminution in surface tension is even greater. Hardy describes some 

heavy paraffin oils which do not spread over the surface of pure water, 

but gather up into lenses. Unless there is a film of air between the oil and 

the water, this result shows that in considering the spreading of one 

substance over another it may be necessary to take other considerations 

into account besides the surface tension when this is define^ in the usual 

way. It should be noticed, however, that Hardy has shown that it 

requires a very thick layer of oils of this character appreciably to diminish 

the surface tension of a water surface contaminated by them, so that when 

a drop of oil is placed on the surface the effort of surface tension to promote 

spreading will at first be very small. 

Calming of Waves by Oil 

Similar considerations will explain the action of oil in stilling troubled 

waters. Let us suppose that the wind acts on a portion of a contaminated 

surface, blowing it forward; the motion of the surface film will make the 

liquid behind the patch cleaner and therefore increase its surface tension, 

while it will heap up the oil in front and so diminish the surface tension; 

thus the pull back will be greater than the pull forward, and the motion of 

the surface will be retarded in a way that could not occur if it were perfectly 

clean. The oiled surface acts so as to check any relative motion of the 

various parts of the surface layer and so prevents any heaping up of the 

water. It is these heaps of water which, under the action of the wind, 

develop into a high sea; the oil acts not so much by smoothing them down 

after they have grown as by stifling them at their birth. , 

A contaminated surface has a power of self-adjustment by which the 

surface tension can adjust itself within fairly wide limits; a film of such a 
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liquid can thus, as Rayleigh points out, adjust itself so as to be in 

equilibrium under circumstances when a film of a pure liquid would have 

to break. Thus, to take the case of a vertical film, if the surface tension 

were absolutely constant, as it is in the case of a pure liquid when the film 

is not too thin, this film would break, since there would be nothing to 

balance the weight of the film. If, however, the film were dirty, a very 

slight adjustment of the amount of dirt at different parts of the surface 

would be sufficient to produce a distribution of surface tension which would 

ensure equilibrium. It is probably on this account that films to be durable 

have to be made of a mixture of substances, such as soap and water. 

This effect is well illustrated by an experiment due to W. B. Hardy, 

where great tenacity is given to a water-surface by covering it with an 

exceedingly thin layer of olive oil. 

Collision of Drops 

If a jet of water be turned nearly vertically upwards the drops into 

which it breaks will collide with each other; if the water is clean the drops 

will rebound from each other after a collision, but if a little soap or oil is 

added to the water, or if an electrified rod is held near the jet, the drops 

when they strike will coalesce instead of rebounding, and in consequence 

will grow to a much larger size. This can be made very evident by 

allowing the drops to fall on a metal plate; the change in the tone of the 

sound caused by the drops striking against the plate when an electrified 

rod is held near the jet is very remarkable. 

The same thing can be shown with two colliding streams. If two 

streams of pure water strike against each other in dust-free air, as in 

Fig. 143, they will rebound; if an electrified rod is held near, however, 

they coalesce. 



CHAPTER XV 

LAPLACE’S THEORY OF SURFACE 
TENSION 

Contents.— Intrinsic Pressure in a Fluid—Work required to move a Particle from 
the Inside to the Outside ol a Liquid -W'ork required to produce a new Liquid Surface 
— Effect of Curvature of Surface—Thickness at which Surface Tension changes effect 
of abruptness of transition between two Liquids in contact. 

Laplace’s investigations on surface tension throw so much light on this 

subject, as well as on the constitution of liquids and gases, that no account 

of the phenomena associated with surface tension would be complete without 

an attempt to give a sketch of his theory./Laplace started with the assump¬ 

tion that the forces between two molecules of a liquid, although very intense 

when the distance between the molecules is very small, diminish so rapidly 

when this distance increases that they may be taken as vanishing when the 

distance between the molecules exceeds a certain value c\ <r is called The 

range of molecqjai;^ action. We shall find that we can obtain an explana¬ 

tion of many surface tension phenomena even although we do not know 

Fig. 144. 

the law of force between the molecules. Let the attraction of an infinite 

flat plate of the fluid bounded by a plane surface on a mass m 2X 2i point 

at a distance ^ above the surface be where cr is the density of the 

fluid; in accordance with our hypothesis vanishes when ^ is greater 

than c. It is evident, too, that ma. will be the attraction at a point on 

the axis of any disc with a flat face whose thickness is greater than c and 

whose diameter is greater than 2r. 

Suppose we imagine a fluid divided into two portions A and 5 by a 

plane; let us find the pull exerted on B by A, Divide B up into thin layers 

whose thickness is then if ^ is the height of one of these layers above the 

surface of separation the force on unit area of the layer is equal to cr. . ad^\ 
Too 

hence the pull oi A on B per unit area is equal to cr® 

'Svhich, since vanishes when ^ is the same as 1 
Jo 

212 
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This pull between the portions A and B is supposed to be balanced by a 

pressure called the “ intrinsic pressure,” which we shall denote by K. K then 

is equal to 

We shall find that the phenomena of capillarity require us to suppose that, 

in the case of water, the intrinsic pressure is very large, amounting on the 

lowest estimate to several thousand atmospheres. We may remark in 

passing that the intrinsic pressure plays a very important part in Van der 

Waals* Theory of the Continuity of the Liquid and Gaseous States; it is 

the term ajv^ which occurs in his well-known equation 

{see p. 159) 

We see, too, at once from the preceding investigation that K is equal 

to the tensile strength of the liquid, so that if the common supposition 

that liquids are as “weak as water,” and can bear only very small tensile 

stresses without rupture, were true, Laplace’s theory, which, as we have 

seen, requires liquids to possess great tensile strength, would break down 

at the outset. We have seen, however, p. 150, that the rupture of liquids 

under ordinary conditions gives no evidence as to the real tensile strength 

of the liquids, for it was shown that when water and other liquids are care¬ 

fully deprived of gas bubbles—in fact, when they are not broken before 

the tension is applied—they can stand a tension of a great many atmospheres 

without rupture; thus on this point the properties of liquids are in accordance 

with Laplace’s theory. 

There is another interpretation of K given by Dupre which enables 

us to form an estimate of its value. Consider a film of thickness A (where 

A is small compared with c) at the top of the liquid; the work required 

to pull unit area of this film off the liquid and remove it out of the sphere 

of its attraction is evidently 
roo 

cr^Zl • 

Jo 

Thus the work required to remove unit volume of the liquid and 

scatter it through space in the form of thin plates whose thickness is small 

compared with the range of molecular attraction is K. Now the work 

required to take one of these films and still further disintegrate it until 

each molecule is out of the sphere of action of the others will be small 

compared with the work required to tear the film off the surface of the 

liquid; hence K is the work required to disintegrate unit volume of the 

liquid until its molecules are so far apart that they no longer exert any attrac¬ 

tion one upon another; in other words, it is the work required to vaporise 
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unit volume of the gas. In the case of water at atmospheric temperature 

this is about 600 calories or 600 x4-2 x 1(P =25'2 x 10^ ergs; or since an 

atmosphere expressed in these units is 10® this would make K equal to about 

25,(X)0 atmospheres.* 

Work required to move a Particle from the Inside to the Outside 

of a Fluid 

Consider the force on a particle P at a depth ^ below the surface; the 

force due to the stratum of fluid above P will be balanced by the attraction 

of the stratum of thickness ^ below P; thus the force acting on P will be that 

due to a slab of liquid on a particle at a distance ^ above its surface— 

Hence the work done in bringing the particle to the surface is foci 

o'-'Afe)^=MK/CT); 

as an equal amount of work will be required to take the particle from the 

surface out of the range of molecular attraction, the total amount of work 

required is thus 2w(K/(7). 

Hence, if a particle moving with a velocity v towards the surface starts 

from a depth greater than c it cannot cross the surface unless 

2///K 
\mv^ >-or > - 

4K 

In the case of water, for which or = l and K on the preceding estimate 

is 25,()()() atmospheres or 2-5 x Kfl®, we see that a particle would not cross 

the surface unless its velocity were greater than 3*2 x 10^* cm./sec. The 

average velocity of thermal agitation of a molecule of water vapour at 

0° C. is about 6 x 10^ cm./sec., so that if the water contained molecules of 

water vapour it would be only those possessing a velocity considerably 

greater than the mean velocity, which would be able to escape across the 

surface. 

Work required to produce a new Liquid Surface 

Let us consider the amount of work required to separate the two 

portions A and B into which a plane C divides the liquid. Dividing B up, 

as before, into slices parallel to the interface, then the work done in removing 

the slice, whose thickness is and whose height above the plane is is per 

unit of area equal to 
poo pco I if y = I 

^ \'an dcr Waals gives the following values of K deduced frona his equation: 
water 10,500-10,700, ether 1300-1430, alcohol 2100-2400, carbon bisulphide 2900—2890 
atmospheres. 
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Hence the work required to remove the whole of the liquid B standing 

unit area away from A is 
^00 

a^vd^-, 
Jo 

integrating this by parts we see that it is equal to 

r r dp 
a\v - 

- 0 Jo 

Now the term within brackets vanishes at both limits, and - == - 

pco 

hence the work required is cr^j 
Jo 

For this amount of work we have got 2 units of area of new surface, 

hence the energy corresponding to each unit of area (Le.y the surface tension), 

which wc shall denote by T, is given by the equation 

Jo 

Young, at the beginning of the century, showed how from T and K it 

was possible to calculate the range of molecular forces. He did this by 

assuming a particular value for the force, but his argument is applicable 

even when we leave the force undetermined. 

If is always positive, then, since c is the greatest value of ^ for 

which has a finite value, we see from equation (1) that 

poo 

^(z)dz 

< IcK. 

If we take for water T = 75 dynes per cm., and K = 25,000 atmospheres 

“ 2*5 X 10^® ergs, then the above relation shows that r > 6 x 10""® cm. In 

this way we can get an inferior limit to the range of molecular action. 

This method, which was given by Young, was the first attempt to 

estimate this quantity, and it seems to have been quite overlooked for 

some years until attention was called to it by Rayleigh. 

It is instructive to consider another way of finding the expression for 

the surface tension. Consider a point P inside a liquid sphere (F'ig. 115). 

Then, if P is at depth d, below the surface, greater than r, the forces acting 

on it, due to the attraction of the surrounding molecules, arc in equilihrium. 

To find the force on P if its distance below the surface i> less tlcin ,, 
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describe a sphere with radius c and centre P, Then the force on P, acting 

towards the centre of the larger sphere, will be equal to the attraction which 

would be exerted on P by a quantity of the fluid placed so as to fill BACD 
the portion, outside the larger sphere, of the sphere whose centre 

is P). This portion may be regarded as consisting of two parts—(1) the 

portion above the tangent plane at A, the point on the large sphere nearest 

to P, and (2) the lenticular portion between this plane and the sphere. Now 

n 

the attraction of the portion above the tangent plane is the same as that of a 

slab of the liquid extending to infinity and having the tangent plane for its 

lower face, for the portions of liquid which have to be added to the volume 

ADHl to make up this slab arc at a greater distance from P than^, and so do 

not exert any attraction on matter at P. Thus, if AP the attraction of 

AFDP on unit mass at P^ using the previous notation, is the 

attraction of the lenticular portion at P can be shown to be 
R 

where 

R is the radius of the liquid sphere. Hence the total force at P acting 

on unit mass in the direction AP is equal to 

Consider now the equilibrium of a thin cylinder of the fluid, the axis of 

the cylinder being PA (Fig. 146); divide this cylinder up into thin discs, 
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then if is the thickness of a 

disc, ^ its distance from A and 

a the area of the cross-section 

of the cylinder, the force / \ 

acting on this disc is equal to f ^ \ 

10-“ ■'/'(=?;) 

This force has to be balanced Pj^.. 

by the excess of pressure on 

the lower face of the disc over that on the upper face; this excess of 

pressure is, if p represents the pressure, equal to ayd-:(^\ 

hence, equating this to the force acting on the disc, we get 

Thus the excess of pressure at a point at a distance c below A over the 

pressure at A is equal to 

[ o^->f>(xyz+\ o-^^<p(KyZ 
Jn J() R 

or with our previous notation K -f 

The pressure has the same value at all points whose depth below the surface 

is greater than The term 2T/R represents the excess of pressure due to 

the curvature of the surface; we obtained the same value by a different 

process on p. 178. If the 

surface of the liquid sphere 

had been concave instead of 

convex, an inspection of Fig. 

147 shows that to obtain 

the force on P we should 

have to subtract the attrac¬ 

tion due to the lenticular 

portion from the attraction 

due to the portion ADE 
instead of adding it; this 

would make the pressure 

at a point in the mass of 

the fluid less by 2T/R than 

that at a point in the fluid 

but close to the surface. Fig. 147. 
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Thickness at which the Surface Tension changes 

Wc can determine the point at which the surface tension begins to 

change by finding the change of pressure which takes place as we cross a 

thin film. Let Fig. 148 represent 

the section of such a film, 

bounded by spheres; if the thick¬ 

ness of the film is small, the radii 

of these spheres may be taken as 

approximately equal. Let P be a 

point in the film, APB a line at 

right angles to both surfaces, then 

the investigation just given shows 

that if AP ^ BP the force on unit mass at P is equal to 

a. ijjiz) + o-^<A(^) - . >/i(z') - 

where R is the radius of one of the films. We see, too, from the last paragraph 

that the pressure at B must be greater than that at A by 

(y2<^ 2(7^ C^' 

- AKz')W = p- vf’izyz 
J (j iv Jq Iv -iVjo 

where / is equal to AB, the thickness of the film. Hence, from the formula 

(p. 178) for the difference of pressure inside and outside a soap bubble, we 

may regard 

as the surface tension of a filrp of thickness /. Since vanishes when 

^ is greater than the surface tension will reach a constant value when / 

is as great as r; hence r, the range of molecular action, is the thickness of a 

film when the surface tension begins to fall off. When t is less than c we 

see from the preceding expression that, T being the surface tension, 

t/T 

Yt 

Now if T is represented by a curve like Fig. 139, dlildt is zero down to P 

positive from P to R, negative from R to T, and positive again for all thinner 

films; hence, since the force of a slab is attractive when ^ is positive, re¬ 

pulsive when ifi is negative, this would imply, on Laplace’s theory, that the 

molecular forces due to a slab of liquid at a point outside are at first attrac¬ 

tions; then, as the point gets nearer the slab, they change to repulsions, and 

change again to attractions as the point approaches still nearer to the slab. 

If t is so small that ^(/) can be regarded as constant, we see that T will vary 
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as so that ultimately the surface tension will diminish very rapidly as the 

film gets thinner. 

On the Efifect of the Abruptness of Transition between two Liquids 

on the Surface Tension of their Interface 

Laplace assumed that the range of molecular forces was the same for all 

bodies, and that at equal distances the force was proportional to the density 

of the substance. This implies that the function is the same for all 

bodies. This hypothesis is certainly not general enough to cover all the 

facts; it is probably, however, sufficiently general to give the broad outlines 

of capillary phenomena. Let us calculate on this hypothesis the surface 

tension between two fluids A and B. Let and o-g be the densities of these 

fluids; then to separate a sphere whose area is S from the liquid A requires 

the expenditure of work equal to 

Let us make a spherical hole of equal size in B. To do this will require 

the expenditure of an amount of work equal to 

Let us place the sphere A in the hole in B, and let the fluids come into contact 

under their molecular forces; during this process the amount of work done 

by these forces is 

Hence the total expenditure of work required to produce an area S of 

interface of A and B is 

jS(7i‘4 + iSCT24 
JU Jo Jo 

poo 

But this work is by definition equal to T^^S where is the surface 

tension between A and B; hence we sec that T^„ ^ (cii - U2)^C, where 

C = if K.4izyK 
Jo 

is a constant for all substances. This result is not a complete representa¬ 

tion of the surface tension, for if it were there would always be surface 

tension between liquids of different densities, so that two such liquids 

could not mix; it would also require that the surface tension between 

fluids of equal density should be zero, and that 
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Vf,„=VT,, + Vf,„ 

where T^^, T^o> surface tensions between fluids A and 

B, A and C, and B and C respectively. None of these results is in 

accordance with experiment. Let us, however, on the assumption that the 

surface tension is represented by an expression of this kind, calculate 

(following Lord Rayleigh) the eflect of making the transition between 

A and B more gradual; wc can do this by supposing that we have between 

A and B a layer of a third fluid C whose density is the arithmetical mean 

between the densities of AandB; then T^o = IT^u Hence, though 

now we have two surfaces of separation instead of one, the energy per unit 

area of each is only one quarter of that of unit area of the original surface; 

hence the total energy due to surface tension is only one half of the energy 

when the transition was more abrupt. By making the transition between 

A and B still more gradual by interposing rj liquids whose densities are 

in arithmetical progression, we reduce the energy due to surface tension to 

!/(« + !) of its original value. Thus we conclude that any diminution in 

the abruptness will diminish the energy due to surface tension. This result 

may have important bearings on the nature of chemical action between the 

surface layers of liquids in contact, for if a layer of a chemical compound 

of A and B were interposed between A and B the transition between A 

and B would be less abrupt than if they were directly in contact, arid therefore 

the potential energy, as far as it results from surface tension, would be less. 

Chemical combination between A and B would result in a diminution of 

this potential energy. Now anything that aids the diminution in 

potential energy resulting from the chemical combination promotes the 

combination; the forces that give rise to surface tension would, therefore, 

tend to promote the chemical combination. Thus, in the chemical com¬ 

bination between thin layers of liquid there is a factor present which is 

absent or insignificant in the case of liquids in bulk, and we may expect that 

chemical combination between thin layers of liquids might take place even 

though it were absent in ordinary cases. 

Similar considerations would lead us to expect changes in the strength 

of a solution near the surface whenever the surface tension of the solution 

depends upon its strength: if the surface tension increased with the strength 

there would be a tendency for the salt to leave the surface layers, while if the 

surface tension diminished as the strength of the solution increased the 

salt would tend to get to the surface, so that the surface layers would be 

stronger solutions than the bulk of the liquid. The concentration or 

dilution of the surface layerg would go on until the gradient of the osmotic 

pressures resulting from the variation in the strengths of different layers is 

so great that the tendency to make the pressure equal just balances the 

effects due to surface tension. 
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DIFFUSION OF LIQUIDS 

Contents.—General I..aw of Diffusion—Methods of determining the Coefficient 
of Diffusion—Diffusion through Membranes. Osmosis—Osmotic Pressure—Vapour 
Pressure of a Solution—-lUevation of the Boiling-point of Solutions—Depression 
of the Freezing-point—Dissociation of Klectrolytcs. 

If two liquids arc left in contact with each other and are free from the action 

of external forces, then if they can mix in any proportion they will of them¬ 

selves go on mixing until the whole mass is uniform in composition. This 

process may be illustrated by taking a vertical glass tube and filling the 

lower part with a strong solution of a coloured salt, such as copper sulphate. 

On the top of this clear water is poured very slowly and carefully, so as not 

to give rise to any currents in the liquid. 

The coloured part will at first be separated 

from the clear by a sharply marked surface, 

but if the vessel is left to itself it will be 

found that the upper part will become 

coloured, the colour getting fainter towards 

the top, while the colour in the lowtir part of 

the tube will become fainter than it was 

originally. This change in colour will go on 

until ultimately the whole of the tube is of a 

uniform colour. There is thus a gradual 

transference of the salt from the places where 

the solution is strong to those where it is 

weak and of water in the opposite direction, 

and equilibrium is not attained until the strength of the solution is uniform. 

This process is called diffusion. In liquids it is an exceedingly slow process. 

Thus, if the tube containing the copper sulphate solution were a metre long 

and the lower half were filled with the solution, the upper half with pure 

water, it would take considerably more than ten years before the mixture 

became approximately uniform; if the height of the tube were a centimetre, 

it would take about ten hours, the time required being proportional to the 

square of the length of the tube. 

The first systematic experiments on diffusion were made by Graham in 

1851. The method he used was to take a wide-necked bottle, such as is 

shown in Fig. 149, and fill it to within a short distance of the top with the 

salt solution to be examined; the bottle was then carefully filled up with 

221 
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pure water pressed from a sponge on to a disc of cork floating on the top 

of the solution; the bottle was placed in a larger vessel filled with pure 

water t() about an inch above the top of the bottle. This was left un¬ 

disturbed for several days, and then the amount of salt which had escaped 

from the bottle into the outer vessel was determined. Graham was in this 

way able to show that solutions of the same strength of diflerent substances 

diffused with different velocities; that solutions of the same salt of different 

strengths diffused with velocities proportional to the strength; that the rate 

of diffusion increased with the temperature, and that the proportion of two 

salts in a mixture was altered by diffusion, and that in some cases a decom¬ 

position or separation of the constituents of complicated salts, such as 

bisulphate of potash and potash alum, could be brought about by diffusion. 

Though Graham’s experiments proved many important and interesting 

properties of diff usion, they did not lead to sufficiently definite laws to enable 

us to calculate the state of a mixture at any future time from its state at the 

present time. This step was made by Pick, who, guided by Fourier’s law 

of the conduction of heat—the diffusion of temperature—enunciated in 1855 

the law of diffusion, which has been abundantly verified by subsequent 

experiments. Pick’s law may be stated as follows: Imagine a mixture of 

salt and water arranged so that layers of equal density are horizontal. Let 

the state of the mixture be such that in the layer at a height x above a fixed 

plane there are n grammes of salt per cubic centimetre; then across unit area 

dfi 
of this plane R grammes of salt will pass in unit time from the side on 

ax 
which the solution is stronger to that on which it is weaker. R is called the 

dijfusivity of the substance; it depends on the nature of the salt and the 

solvent, on the temperature, and to a slight extent on the strength of the 

solution. This law is analogous to Fourier’s law of the conduction of 

heat, and the same mathematical methods which give the solution of the 

thermal problems can be applied to determine the distribution of salt through 

the liquid. The curves in Figs. 150 and 151 represent the solution of two 

important problems. The first represents the diffusion of salt from a 

saturated solution into a vertical column of water, the surface of separation 

being initially the plane x-0. The ordinates represent the amount of salt 

in the solution at a distance from the original surface of separation repre¬ 

sented by the abscissas. The times which have elapsed since the commence¬ 

ment of diffusion are proportional to the squares of the numbers on the 

curve; thus, if the first curve represents the state of things after a time T, the 

second represents it after a time 22T, the third after a time S^T, and so on; 

for the same ordinate the abscissa on curve 2 is twice that on curve 1, on 

curve 3 three times that on curve 1, and so on; thus the time required for 

diffusion through a given length is proportional to the square of the length., 
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The curves ate copied from Lord Kelvin’s Collected Papers^ vol. iii, p. 432: 

for copper sulphate through water T =25,700 seconds, for sugar through 

water T = 17,100, and for sodium chloride through water T =5390. The 

O 1 S 4 5 e 
Ceniimetrec* 

Fig. ir)0. 

second figure, Fig. 151, represents the diffusion when we have initially a thin 

layer of salt solution at the bottom of a vertical vessel, the rest of the vessel 

being filled with pure water; the ordinates represent the amount of salt at a 

distance from the bottom of 

the vessel represented by the 

abscissae. The times which 

have elapsed since the com- 

mej^cement are proportional to 

the squares of the numbers on 

the curves. 

By stirring up a solution 

of a salt with pure water we 

bring thin layers of the solvent ^ 
and of the salt near together; 

as the time required for diffus¬ 

ing through a given distance 

varies as the square of the 

distance, the time required for 

the salt and water to become a uniform mixture is greatly diminished 

by drawing out the liquid into these thin layers by stirring, and as 

much diffusion will take much in a few seconds as would take place in as 

many hours without the mixing. We can see in a general way why the time 

required will be proportional to the square of the thickness of the layers; for 
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if we halve the thickness of the layers we not only halve the distance the salt 

has to travel but we double the gradient of the strength of the solution, and 

thus by Pick's law double the speed of diffusion; thus, as we halve the 

distance and double the speed, the time required is reduced to one quarter 

of its original value. 

Methods of Determining the Coefficient of Diffusion 

If we know the original distribution of the salt through the water and 

the value of R, we can, by Fourier's mathematical methods, calculate the 

distribution of salt after any interval T; conversely, if we know the dis¬ 

tribution after this interval, we can use the Fourier result to determine the 

value of R. Thus, if we have any means of measuring the amount of salt in 

the different parts of the solution at successive intervals, we can deduce the 

value of R. It is not advisable to withdraw a sample from the solution and 

then determine its composition, as the withdrawal of the sample might 

produce currents in the liquids whose effects might far outweigh any due 

to pure diffusion; it is, therefore, necessary to sample the composition of the 

solution when in sifu, and this has been done by measuring some physical 

property of the solution which varies in a known way with the strength of 

the solution. In Lord Kelvin’s method the specific gravity is the property 

investigated: the lower half of a vertical vessel is filled with a solution, the 

upper half with pure water. Glass beads of different densities are placed 

in the solution; at first they float at the junction of the solution and the 

water, but as diffusion goes on they separate out, the heavier ones sink and 

the lighter ones rise. By noting the position of the beads of known density 

we can get the distribution of salt in the solution, and thence deduce the 

value of R. The objection to the method is that air bubbles are apt to form 

on the beads when salt will' crystallise out on them, and thus alter their 

buoyancy. In the case of sugar solutions the strength of the different layers 

can be determined by the rotati<^n of the plane of polarisation. H. F. Weber* 

verified Pick's law in the case of zinc sulphate solution by measuring the 

electromotive force between two amalgamated zinc plates; he had previously 

determined how the electromotive force depends on the strength of the 

solutions in contact with the plates. The diffusion of diflhrent salts was 

compared by Long {Wkd, Ann, 9, p. 613) by the method shown in Fig. 162. 

A stream of pure water flows through the bent tube, a wide tube fastened on 

to the bent tube establishes communication with the solution in the beaker; 

after the water has flowed through the bent tube for some time the amount 

of salt it carries over in a given time becomes constant. As the water in the 

tube is continually being renewed, while the strength of the solution in the 

beaker may be regarded as constant, since in the experiments only a very 

stnall fraction of the salt is carried over, the gradient of concentration in the 
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neck will be proportional to the strength of the solution; so that the amount 

of salt carried off by the stream of water in unit time is proportional to the 

product of the diffusivity and the strength of the solution. By measuring 

the amount of salt carried over by the stream in unit time the diffusivides of 

different salts can be compared. As a result of these experiments it has been 

found that as a general rule the higher the electrical conductivity of a solution 

of a salt the more rapidly does the salt diffuse. The relative values of the 

diffusivity for some of the commoner salts and acids are given in the table 

below. The solutions contain the same number of gramme equivalents 

per litre, and the numbers in the table arc proportional to the number of 

molecules of the salt which cross unit surface in unit time under the same 

gradient of strength of solution. 

Substance. Substance. 
KOI • • 808 K1 828 
NH,01 • • • 689 Nal 672 
KaOl • • • 600 NH^NO, 680 
LiOl ■ • • 541 KNO3 . 607 
KCy • • • 767 NaNO, . 524 
BaCl, • « • 450 LiNO, • 512 
SiiCl, • • • 432 656 
CaOl, • • • 429 SrN.O, . 552 
MgCl. • • • 392 (NH,),SO. 724 
COCl, • • • 306 Na,SO, . 

MgSO, , 
678 

NiCL • • • 804 848 
KBr • • • 811 ZnSO, . 882 
NH,Br • • • 629 OuSO, . 816 
NaBr • *• • 509 MdSO, . 298 

These numbers show that as a general rule the salts which diffuse the most 

rapidly are those whose soludons have the highest electrical conductivity. 

The absolute values of the diffusivity for a large number of substances have 

been determined by Schuhmeister (Wien Akad, 79, p, 603) and Scheffer 

(Chem. Ber, xv. p. 788, xvi. p. 1903). The largest value of the diffusivity 
p 
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.found by Scheffer was for nitric acid; the diffusivity varied with the con* 

centration and with the temperature; for very dilute solutions at 90'' C. it was 

2 X 10' ® (cm.)7sec.—Le,, if the strength of solution varied by one per cent, 

in 1 cm. the amount of acid crossing unit area in one second would be about 

one five-millionth of the acid in 1 c.c, of the solution. For solutions of 

NaCl the diffusivity was only about one half of this value. Graham found 

that the velocity of diffusion of NaCl through gelatine was about the same 

as through water. 

Of recent methods for the measurement of diffusivity those involving 

the variations of the optical properties of the liquids with varying con¬ 

centrations may be mentioned here. Littlewood {Proc. Phjs. Soc,, A, 34, 

p. 71) measured the changes of concentration with depth due to diffusion by 

tracing the path of-a beam oP light, incident at grazing angle on the upper 

surface, through the liquid. The change in deviation of the rays, as they 

enter at the surface and leave the liquid through a side window at a known 

depth below the surface, depends on the refractive indices at these points. 

Clack {Proc. Phys. Soc,, 30, p. 4) using the same idea but with a more elaborate 

experimental method made a detailed investigation of the variation of the 

diffusivity with concentration. He found that in some electrolytic solutions 

the diffusivity passed through a minimum value as the concentration 

increased. 

Diffiision through Membranes. Osmosis 

Graham was led by his experiments on diffusion to divide substances 

into two classes—crystalloid and colloid. The crystalloids, which include 

mineral acids and salts, and which as a rule can be obtained in definite 

crystalline forms, diffuse much more rapidly than the substances called by 

Graham colloids, such as the gums, albumen, starch, glass, which are 

amorphous and show no signs of crystallisation. The crystalloids when 

dissolved in water change its properties in a marked degree; for example, 

they diminish the vapour pressure, lower the freezing- and raise the boiling- 

point. Colloidal substances, when dissolved in water, hardly produce any 

effects of this kind, in fact, many colloidal solutions seem to be little more 

than mechanical mixtures, the colloid in a very finely divided state being 

suspended in the fluid. The properties of solutions of this class are very 

interesting; the particles move in an electric field, in some cases as if they 

were positively, in others as if they were negatively, charged. The addition 

of a trace of acid or alkali is often sufficient to produce precipitation. The 

reader will find an account of the properties of these solutions in papers by 

Picton and Linder {Journal of Chemical Society^ vol. 70, p. 568, 1897; vol. 61, 

p. 148, 1892); Stoeckl and Vanino {Zeitsehrift f. Phys, Chem,y vol. 30, p. 98, 

1899); Hardy {Proceedings of Royal Society^ 66, p. 110; Journal of Physiology 
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24, p. 288). Colloidal substances when mixed with not too much water form 

jellies; tHe structure of these jellies is sometimes on a sufficiently coarse scale 

to be visible under the microscope (see Hardy, Proceedings Royal Society^ 66, 

p. 95, 1900), and apparently consists of a more or less solid framework 

through which the liquid is dispersed. Through 

many of these jellies crystalloids are able to diffuse 

with a velocity approaching that through pure 

water; the colloids, on the other hand, are stopped 

by such jellies. Graham founded on this a method 

for the separation of crystalloids and colkhds, 

called dialysis. In this method a film of a 

colloidal substance, such as parchment paper (paper 

treated with sulphuric acid) or a piece of bladder, is 

fastened round the end of a glass tube, the lower 

end of the tube dipping in water which is fre¬ 

quently changed, and the solution of crystalloids 

and colloids is put in the tube above the parchment 

paper. The crystalloids diffuse through into the 

water, and the colloids remain behind; if time be 

given and the water into which the crystalloids 

diffuse be kept fresh, the crystalloids can be entirely- 

separated from the colloids. 

The passage of liquids through films of this 

kind is called osmosis. The first example of it 

seems to have been observed by the Abbe Nollet, 

in 1748, who found that when a bladder full of 

alcohol was immersed in water, the water entered 

the bladder more rapidly than the alcohol escaped, 

so that the bladder swelled out and almost burst. 

If, on the other hand, a bladder containing water 

was placed in alcohol the bladder shrank. 

The motion of fluids through these membranes 

can be observed with very simple apparatus: all 

that is necessary is to attach a piece of parchment- 

paper firmly on the end of a glass tube, the upper portion of which is drawn 

out into a fine capillary tube. If this tube is filled with a solution of sugar 

and immersed in pure water, the top of the liquid in the capillary part of the 

tube moves upwards with sensible velocity, showing the entrance of water 

through the parchment-paper. Graham regarded this transport of water 

through the membrane as due to this colloidal substance being able to hold 

more water in combination when in contact with pure water than when in 

contact with a salt solution; thus, when the hydration of the membrane 
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corresponding to the side next the water extends to the side next the solution, 

the membrane cartnot hold all the water in combination, and some of it is 

given up; in this way water is transported from one side of the membrane 

to the other. 

Membranes of parchment-paper or bladder are permeable by crystalloids 

as well as by water. There are other membranes, however, which, while 

permeable to water are impermeable to a 

large number of salts; these membranes are 

called setni-permeable membranes. One of 

these, which has been extensively used, is 

the gelatinous precipitate of ferrocyanide of 

copper, which is produced when copper 

sulphate and potassium ferrocyanide come into 

conti^ct. This precipitate is mechanically 

exceedingly weak, but Pfeffer made service¬ 

able membranes by precipitating it in the 

pores of a porous pot. If such a pot is 

SoWzwn filled with a very dilute solution of copper 
sulphate and immersed in one of ferrocyanide 

of potassium the two solutions will diffuse into 

the walls of the pot, and where t^ey meet the 

gelatinous precipitate of ferrocyanide of 

copper will be formed; in this way a con¬ 

tinuous membrane may be obtained. For 

details as to the precautions which must be 

WemT taken in the preparation of these membranes 

the reader is referred to a paper by Adie 

{Proceedings of Chemical Society^ lix. p. 344). If 

a membrane of this kind be deposited in a 

porous pot fitted with a pressure gauge, as in 

Fig. 153, and the pot be filled with a dilute solution of a salt and immersed in 

pure water, water will flow into the pot and compress the air in the gauge, 

the pressure in the pot increasing until a definite pressure is reached depend¬ 

ing on the strength of the solution. When this pressure is reached 

there is equilibrium, and there is no further increase in the volume of water 

in the pot. 

Osmotic Pressure 

Thus the flow of water through the membrane into the stronger solution 

can be prevented by applying to the solution a definite pressure; this pressure 

is called the osmoHc pressure of the solution. It is a quantity of fundamental 

importance in considering the properties of the solution, as many of these 
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properties, such as the diminution in the vapour pressure, and the lowering 

of the freezing-point, are determinate as soon as the osmotic pressure is 

known. 

The work done when a volume v of water passes across a semi-permeable 

membrane from pure water into a solution where the osmotic pressure is P 

is equal to For, let the solution be enclosed in a vertical tube closed at the 

bottom by a semi-permeable membrane (Fig. 154), then when there is equi¬ 

librium the solution is at such a height in the tube that the pressure at the mem¬ 

brane due to the head of the solution is equal to the osmotic pressure. When 

the system is in equilibrium we know by Mechanics that the total work done 

during any small alteration of the system must be zero. Let this alteration 

consist in a volume v of water going through the semi-permeable membrane. 

This will raise the level of the solution, and the work done against gravity is 

the same as if a volume of the solution were raised from the level of the 

membrane to that of the top of the liquid in the tube. Thus the work done 

against gravity is vgph^ where h is the height of the solution in the tube and p 

the density of the solution; since the pressure due to the head of solution is 

equal to the osmotic pressure, gph~V. Hence the work done against 

gravity by this alteration is Vv, and since the total work done must be zero, 

the work done on the liquid when it crosses the membrane must be Vv. 

The values of the osmotic pressures for different solutions was first 

determined by Pfeffer,* who found the very remarkable result that for 

weak solutions which do not conduct electricity the osmotic pressure is 

equal to the gaseous pressure which would be exerted by the molecules of 

the salt if these were in the gaseous state and occupying a volume equal to 

that of the solvent in which the salt is dissolved. Thus, if 1 gramme 

equivalent of the salt were dissolved in a litre of water the osmotic 

pressure would be about 22 atmospheres, which is the pressure exerted by 

2 grammes of hydrogen occupying a litre. Pfeffer’s experiments showed 

that approximately, at any rate, the osmotic pressure was, like the pressure 

of a gas, proportional to the absolute temperature. If the cell is placed in 

another solution instead of pure water, water will tend to run into the cell 

if the osmotic pressure of the solution in the cell is greater than that of the 

solution in which it is immersed, while if the osmotic pressure in the cell 

is less than that outside the volume of water in the cell will decrease; if the 

osmotic pressure is the same inside and outside there will be no change in 

the volume of the water inside the cell. Solutions which have the same 

osmotic pressure are called isotonic solutions. A convenient method of 

finding the strengths of solutions of different salts which are isotonic was 

invented by De Vries.f He showed that the membrane lining the cell-wall 

* Pfeffer, Osmotische Untersuebmg^Oi Leipzig, 1877. 
t De Vries, Zeit.f, Pl^sik, Cbemie^ ii, p. 415. 
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of the leaves of some plants, such as TradescanHa discolor^ Curcuma rubricauliSy 

and Begonia manicata^ is a semi-permeable membrane, being permeable to 

water but not to salts, or at any rate not to many salts. The contents of the 

cells contain salts, and so have a definite osmotic pressure. If these cells 

are placed in a solution having a greater osmotic pressure than their own, 

water will run from the cells into the solution, the cells will shrink and will 

present the appearance shown in Fig. 155 h. Fig. 155 a shows the appear¬ 

ance of the cells when surrounded by water; the weakest solution which 

produces a detachment of the cell will be approximately isotonic with the 

contents of the cell. In this way a series of solutions can be prepared which 

are isotonic with each other. Dc Vries found that for non-electrolytes 

isotonic solutions contained in each unit of volume a weight of the salt 

proportional to the molecular weight; in other words, that isotonic solutions 

of non-electrolytes contain the same number of molecules of the salt. This 

is another instance’ of the analogy between osmotic pressure and gaseous 

pressure, for it is exactly analogous to Avogadro’s law, that when the gaseous 

pressures are the same all gases at the same temperature contain the same 

number of molecules per unit volume. Although the direct measurements 

on osmotic pressure hitherto made may seem a somewhat slight base for the 

establishment of such an important conception, an immense amount of 

experimental work has been done in the investigation of such phenomena 

as the lowering of the vapour pressure, the raising of the boiling-point and 

the lowering of the freezing-point produced by the solution of salts in water. 

The conception of osmotic pressure enables us to calculate the magnitude of 

these effects from the strength of the solution; the agreement between the 

values thus calculated and the values observed is so dose as to furnish strong 

iividence of the truth of this conception. 
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Vapour Pressure of a Solution 

The change in the vapour pressure due to the presence of salt in the 

solution can be calculated by the following method due to Van t’ Hoff: 

Suppose the salt solution Fig. 156, is divided from the pure water B by 

a semi-permeable membrane—/>., one which is permeable by water and not 

by the salt; transfer a small quantity of water whose volume is v from A to B 

by moving the membrane 

from right to left. If 11 is the 

osmotic pressure of the solu¬ 

tion the work required to 

effect this transference is \[v; 

now let a volume v of water 

evaporate from B and pass as 

vapour through the mem¬ 

brane into the chamber A and 

there condense. If V is the 

volume of the water vapour, 

hp the excess of the vapour 

pressure of the water over B 

above that oyer A, the work done in this process is S/?. V. The process is clearly 

a reversible one, and hence by the Second Law of Thermodynamics, since the 

temperatures of the two chambers are the same, there can be no loss or gain 

of mechanical work. Thus, since the work spent in one part of the cycle 

must be equal to that gained in the other, we have 

=3/.V. 

Suppose p is the vapour pressure over the water, let V' be the volume 

occupied at atmospheric pressure 11 „ by the quantity of water vapour which 

at the pressure p occupies the volume V; then by Boyle^s Law, 

so that 

n,v'-/>v 
hp 11 V 

7 V' 

but for water vapour vjV' =1/1200, hence 

_ n I 
7 "llo 1200* 

The osmotic pressure in a solution of 1 gramme equivalent per litre 

of a salt which does not dissociate when dissolved is about 22 atmospheres; 

thus for such a solution 

hp 22 

p T2(M ) 
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or the vapour pressure over the solution is nearly 2 per cent, less than over 

pure water. 
If the surface of the solution is subjected to a pressure equal to the 

osmotic pressure the vapour pressure over the solution will increase and 

will be equal to the pressure over pure w^ter. For let Fig. 157 represent a vessel 
divided by a diaphragm perme¬ 

able only by water and by 

water vapour, and let the salt 

solution in A be subject to a 

pressure equal to the osmotic 

pressure. Under this pressure 

the liquids will be in equi¬ 

librium, and there will be no 

flow of water across the dia¬ 

phragm. Ifthc vapour pressure 

of the water is greater than that of the salt solution, then water vapour from 

B will go across the diaphragm and will condense on A; this will make the 

solution in A weaker and reduce the osmotic pressure. Since the external 

pressure on A is now greater than its osmotic pressure, water will flow from 

yi to B across the diaphragm; thus there would be a continual circulation 

of water round the system, which would never be in equilibrium. As this 

is inadmissible, we conclude that the vapour pressure of the water is not 

greater than that of the solution; similarly if it were less we could show that 

there would be a continual circulation in the opposite direction; in this way 

we can show that the vapour pressure of the solution when exposed to the 

osmotic pressure is equal to that of pure water. This is an example of the 

theorem proved in J, J. Thomson’s Applications of Dynamics to Physics and 

Chemistry, p. 17J (see also Poynting, Phil. Alag., xii. p. 39), that if a pressure 

of n atmospheres be applied to the surface of a liquid the vapour pressure of 

the liquid, p, is increased by where 

hp density of the vapour at atmospheric pressure 

p density of the liquid 

Raising of the Boiling-point of Solutions 

The determination of the vapour pressure is attended with considerable 

difficulty, and it is much easier to measure the effect of salt on the boiling- 

point or on the freezing-point of the solution. 

Let and be vessels containing respectively salt solution and pure 

water, separated by a semi-permeable membrane, and let the temperatures 

of the vessels be such that the vapour pressure over the solution is the same 

as that over pure water. Let $ be the absolute temperature of the water, 

WoJier vfjiftotJU' 

axxd- fur 

Sohrtt/'Ti, 

I W(fX.^r vapour 
ftnxi cur 

Fig. 157. 

' McTnhr'ccnr 
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0+80 that of the solution. Now suppose a volume p of water flows from B 

to A across the diaphragm; if 0 is the osmotic pressure of the solution, 

mechanical work Yiv will be 

done in this operation. Ixt this 

quantity of water be evaporated 

from A and pass through the 

walls of the diaphragm and 

condense in B, As the vapour 

pressures are the same in the 

two cases, no mechanical work 

is gained or spent in this oper¬ 

ation. The system is now in 

its original state, and the oper¬ 

ation is evidently a reversible 

one, so that wc can apply the Second Law of Thermodynamics. Now 

by that law we have 

Heat taken from the boiler Heat given up in the refrigerator 

Absolute temperature of boiler Absolute temperature of refrigerator 

Mechanical work done by the engine 

Difference of the temperatures of boiler and refrigerator 

In our case the mechanical work done is II^'. The heat given up in the 

refrigerator is the heat given out when a volume v of water condenses from 

steam at a temperature 0; if A is the heat given out when unit mass of steam 

condenses and a the density of the liquid, the heat given out in the refrigerator 

is Act?-'; hence by the Second Law wc have 

Aa;^ \\p 80 11* 
~— or - = 

0 80 0 Aa 

Let us apply this to find the change in the boiling-point produced by dis¬ 

solving 1 gramme equivalent of a salt in .a litre of water; here II is 22 

atmospheres, or in C.G.S. units 22 xlO®. A is the latent heat of steam in 

ergs—Le., 536 x 4»2 x 10’, cr is unity, and 0 =373; 

, 373 x22 x10® - , 
hence 80= - -=*37 of a degree. 

536 X 4*2 X 107 ^ 

The experiments of Raoult and others on the raising of the boiling- 

point of solutions of organic salts which do not dissociate have shown that the 

amount of the rise in the boiling-point is almost exactly *37 of a degree for 

* The heat given out or taken in by the volume of water when going from one 
chamber to the other is negligible in comparison with that required to vaporise the water. 
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each gramme equivalent per litre, a result which is strong confirmation of the 

truth of the theory of osmotic pressure. 

Lowering of the Freezing-point of Solutions 

A similar investigation enables us to calculate the depression of the 

frecizing-point due to the addition of salt. Let B (Fig. 159) repiesen^; 

two vessels separated by a semi-pcrmeable membrane, A containing the salt 

solution at its freezing-point and B pure water at its freezing-point. Let a 

volume V of water pass across the semi-permeablc membrane from B to A; 

if n is the osmotic pressure of the solution, mechanical work 11?-^ will be 

gained by this process. Let this quantity of water be frozen in A, the ice 

produced taken from A placed in B^ and there melted. The system has 

MemJbrotJxe- 

now returned to its original condition, and the process is plainly reversible; 

hence we can apply the Second Law of Thermodynamics. If 6 is the 

absolute temperature of the freezing-point of pure water, B -hO that of the 

freezing-point of the solution, if A is the latent heat of water, and cr its density, 

the heat taken from the hot chamber B at the temperature 6 is Xav\ hence 

by the Second Law we have 

Xav j\v ho n 
- or = —• 

B he B Xa 

Thus in the case of water for which B~273, X^SO x 4-2 x 10^ a = l and 

when the strength of the solution is 1 gramme equivalent per litre, 

n -22 X 10«; hence 8^ -1*79°. 

This has been verified by Raoult in the case of solutions of organic salts and 

acids. The result of the comparison of theory with experiment for a variety 

of solvents is shown in the following table: 
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Solvent 

Acetic acid 
Formic acid 
Benzene . 
Nitro-btmzene . 
Ethylene-di bromide 

Lowering of freezing-point for organic salts, 
I gramme molecule dissolved in a litre 

Observed Calculated 

3-9 . . 3*88 
2-8 ... 2-8 
4‘9 . 51 
l-m . . . fv9 

. in . .11-9 

Dissociation of Electrolytes 

The preceding theory gives a satisfactory account of the effect upon 

the boiling- and freezing-points produced by organic salts and acids when 

the osmotic pressure is calculated on the assumption that it is equal to the 

gaseous pressure which would be produced by the same weight of the salt if 

it were gasified and confined in a volume equal to that of the solvent. When, 

however, mineral salts or acids are dissolved in water, the effect on the 

boiling- and freezing-points produced by « gramme equivalents per litre is 

greater than that produced by the same number of gramme equivalents of 

an organic salt, although if the osmotic pressure were given by the same 

rule, the effects on the freezing- and boiling-points ought to be the same 

in the two cases. The osmotic pressure then in a solution of a mineral 

salt or acid is greater than in one of equivalent strength (Le.y one for which 

n is the same) of an organic salt or acid; this has been verified by direct 

measurement of the osmotic pressure by the methods of Pfeffer and De Vries. 

This increase in the osmotic pressure is explained by Arrhenius as being due 

to a partial dissociation of the molecules of the salts into their constituents; 

thus some of the molecules of NaCl are supposed to split up into separate 

atoms of Na and CL Since by this dissociation the number of individual 

particles in unit volume is increased, the osmotic pressure, if it follows the 

law of gaseous pressure, will also be increased. According to Arrhenius, 

the atoms of Na and Cl into which the molecule of the salt is split are charged 

respectively with positive and negative electricity, which, as they move 

under electric forces, will make the solution a conductor of electricity. In 

this way he accounts for the fact that those solutions in which the osmotic 

pressure is abnormally large are conductors of electricity, and that, as a rule, 

the greater the conductivity the greater the excess of the osmotic pressure. 

This view, of which an account will be given in the volume on Electricity, 

has been very successful in connecting the various properties of solutions. 

Though the osmotic pressure plays such an important part in the theory 

of solution, there is no generally accepted view of the way in which the salt 

produces this pressure. One view is that the salt exists in the interstices 

between the molecules of the solvent in the state corresponding to a 

perfect gas. If the volume of these interstices bore a constant proportion 

to the volume of the solvent, then, whatever this ratio may be, we should 



236 PROPERTIES OF MATTER 

get the ordinary relation between the quantity of salt and the osmotic 

pressure to which it gives rise. For, suppose p is the pressure of the 

gaseous salt, v the volume of the interstices, V the volume of the 

solvent; then if a semi-permeable membrane be pushed so that a volume 

8V of water passes through it, and 11 is the osmotic pressure, then the 

work done is 118V; but if 8^ is the diminution in the volume of the 

interstices, the work done is phv\ hence n8V—/8f^. But if the volume 

occupied by the interstices bears a constant ratio to that of the solvent 

8V Sv . pv 
— , where V is the volume of the solvent; hence YiV ~pv otYi— ; 
Y V V 

that is, the osmotic pressure is the same as if the gaseous salts occupied the 

whole volume of the solvent. 

Another view (see Poynting, P>&/7. Mag,^ 42, p. 289) is that the 

phenomenon known as osmotic pressure arises from the molecules of salt 

clinging to the molecules of the water, and so diminishing the mobility and 

therefore the rate of diffusion of the latter. Thus, suppose we have pure 

water and a salt solution separated by a semi-permeable membrane, since the 

water molecules in the solution are clogged by the salt they will not be able 

to pass across the membrane as quickly as those from the pure water, and 

there will be a flow of water across the membrane from the pure water 

to the solution. Poynting shows that the mobility of the molecules of a 

liquid is increased by pressure, so that by applying ^ proper pressure to the 

solution we may make the mobility of the molecules of water in it the same 

as those of the pure water, and in this case there will be no flow across the 

membrane; the pressure required is the osmotic pressure. Poynting shows 

that this view will explain the properties of inorganic salts if we suppose that 

each molecule of salt can completely destroy the mobility of one molecule 

of water. 

By the aid of colloidal solutions Perrin (Annales de Chtmie et de Physique^ 

8.18, p. 5) has determined Avogadro’s constant—the number of molecules in 

a c.c. of gas at standard temperature and pressure. An emulsion of mastic 

prepared so that the solid particles were as uniform in size as possible was 

illuminated by very intense light and examined by a microscope. The 

particles, though too small for their shape to be seen through the micro¬ 

scope, scatter enough light for their presence to be detected, so that the 

number of them in any small volume can be counted. When the solution 

is free from currents the number in a given volume diminishes very rapidly 

as the height of the portion examined above the bottom of the vessel 

increases. Perrin’s experiments show that the particles behave like the 

molecules of a perfect gas. In such a gas 

pJnw (1) 
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where N is the number of particles in unit volume, w the average kinetic 

energy of the molecules of any gas at the given temperature. From the 

equilibrium of the emulsion we have 

dp 4 
(2) 

where jj; is the distance if measured upwards from the bottom of the vessel, 

N the number of particles per unit volume at this distance, a the radius 

of the particles supposed spherical, d, p the density of mastic and water 

respectively, and g the acceleration due to gravity. Substituting in (2) the 
value of p from (1) we get 

^.logN 
3^— — = _ 27Ta\d *- p)g or tp log (N/N^) = - 27Ta\d - p)g^ (3) 

where Nq is the value of N when ^ =0. 
Perrin counted the number of particles per unit volume at different 

heights, measured the value of a by several methods, one of which was by 

measuring the rate of fall of the particles through water (see p. 272), and found 

that equation (3) held i( w = -48 x 15^^®, giving for Avogadro's constant the 

value 2*75, x 10^®. If the assumption that the small solid particles behave 

like the molecules of a gas is correct, then (1), the value of should be the 
same whatever kind of particles we use; this was verified by Perrin, who 

found practically the same value of w for gamboge as for mastic, though 

the particles are much smaller: and (2) this value should be the same as that 

found for gases. This is also the case, as the value of Avogadro’s constant 

found by the most accurate electrical methods is almost identical with that 

of Perrin. 



CHAPTER XVII 

DIFFUSION OF GASES 

Contents.—Coefficient of Diffusion—Diffusion of Vapours—Explanation of 
Diffusion on Kinetic Theory of Gases—Effects of a Perforated Diaphragm—Passage 
of Gases through Porous Bodies—I’hcrmal Effusion—Atmolysis—Passage of Gases 
through India-rubber, Liquids, Hot Metals—Diffusion of Metals through Metal. 

If a mixture of two gases A and B is confined in a vessel the gases will mix 

and each will ultimately be uniformly diffused through the vessel as if the 

other were not present. If they are not uniformly mixed to begin with, there 

will be a flow of the gas A from the places where the density of A is great to 

those where it is small. The law of this diffusion is analogous to that of the 

conduction of heat or to the diffusion of liquids and may be expressed 

mathematically as follows. Suppose the two gases are arranged so that the 

layers of equal density are horizontal planes, and let p be the density of A 

at a height x above a fixed horizontal plane; then in unit time the mass of A 

which passes downward through unit area of a horizontal plane at a height 

X is proportional to the gradient of p and is equal to K 
dx 

where K is the 

interdiffusity of the gases A and B. The value of K has been measured by 

Loschmidt * and Obermayer f fqr-a considerable number of pairs of gases. 

The method employed by these observers was to take a long vertical cylinder 

separated into two parts by a disc in the middle. The lower half of the 

cylinder was filled with the heavier gas, the upper half with the lighter. The 

disc was then removed with great care so as not to set up air currents, and the 

gases were then allowed to diffuse into each other; after the lapse of a certain 

time the disc was replaced and the amount of the heavier gas in the upper 

half cjf the cylinder determined. From this the value of K was determined 

on the assumption (which is probably only approximately true) that the 

value of K does not change when the proportions of the two gases are 

altered. Waitz ij: used a different method to determine the coefficient of 

interdiffusion of air and carbonic acid; beginning with the carbonic acid 

below the air he measured by means of Jamin’s interference refractometer 

the refractive index of various layers after the lapse of definite intervals of 

time; from the refractive index he could calculate the proportion of air and 

* Loschmidt, Wien. Berichte, 61, p. 367, 1870; 62, p. 468, 1870. 
t Qbermayer, Wien. Berichte^ 81, p. 162, 1880. 
i Waitz, Wiedemam*s Jinnalen, 17, p, 201, 1882. 
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carbonic acid gas, and was thus able to follow the course of the diffusion. 

He found that the coefficient of diffusion depended to some extent on the 

proportion between the two gases, the values of K at atmospheric pressure 

at 0° C. varying between *1288 and *1366 cm.^/sec. The values found by 

Loschmidt and v. Obermayer are given in the following table. They are 

for 76 cm. pressure and 0° C. 

Gases. 

00, - N,0 • 

Loschmidt, 
K cm.®/sec. 

. -09831 

VON Obekmatbr. 
K cm.®/sec. 

. -09166 
CO, - 00. • . -14055 , -13142 
00,-0, . . -14095 . -13569 
00, - Air . -14231 . -13433 
CO, - OH, « . -15856 , T4650 
00,-H, • . -55585 , -53409 
00, - 0,H, ^ — . -10061 
00-0, . • . -18022 . *18717 
00 - H, . . -64223 . -64884 
00-C,H, ^ — . -11639 
SO, - H, . • , -48278 . — 

0, - H, • . -72167 . -66550 
O.-N, . 
O, - Air . 

• . — . -17875 
• • — . -17778 

H, - Air . • , — . -63405 
0 • — . -62544 

H,~ N,0 • , — . -53473 
IL - • . -45933 

. — . -48627 

We may, perhaps, gain some idea of the rapidity of diffusion by saying 

that the rate of equalisation in composition of a mixture of hydrogen and 

air is about half that of the equalisation of temperature in copper. 

As an example of the rate at which diffusion goes on we may quote the 

result of an experiment by Graham on the diffusion of COg into air. Carbonic 

acid was poured into a vertical cylinder 57 cm. high until it filled one-tenth 

of the cylinder. The upper nine-tenths of the vessel was filled with air and 

the gases were left to diffuse. They were found to be very approximately 

uniformly distributed throughout the cylinder after the lapse of about two 

hours. As the time taken to reach a state of approximately uniform dis¬ 

tribution is proportional to the square of the length of the cylinder, if the 

cylinder were only one centimetre long approximately uniform distribution 

would be attained after the lapse of about two seconds. 

The interdiffusity is inversely proportional to the pressure of the 

mixed gas; it increases with the temperature. According to the experi¬ 

ments of Loschmidt and v. Obermayer it is proportional to 6'^ where 6 is 

the absolute temperature and «*a quantity which for different pairs of gases 

varies between 1*75 and 2. 
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Diffusion of Vapours 

The case when one of the diffusing gases is the vapour of a liquid is of 

special importance, as it is on the rate of diffusion that the rate of evaporation 

depends. The methods which have been employed to measure the rate of 

diffusion of the vapour of a liquid consist essentially in having some of the 

liquid at the bottom of a cylindrical tube and directing a blast of vapour-free 

gas across the mouth of the tube. When the blast has been blowing for 

some time a uniform gradient of the density of the vapour is established in 

the tube; the value of this is 8// where 8 is the maximum vapour pressure of 

the liquid at the temperature of the experiment and / the distance of the 

surface of the liquid from the mouth of the tube. The mass of vapour which 

in unit time flows out of the tube (Le,, the amount of the liquid which 

evaporates in unit time and which can therefore be easily measured) is K8// 

where K is the diffusivity of the vapour into the gas; as 8 is known we can 

readily determine K by this method. A few of the results of experiments 

made by Stefan * and Winkelmann f are given in the following table: 

Value of K in cm.^/sfc. at 0 C. and 70(> mm. Pressure. 

Hydrogen. Air. Carbonic acid. 

Water-vapour . -687 . T98 . 181 
Ether . -296 . *0775 • . *0552 
Oarbon-bisulphide . -369 • *0883 . ; *0629 
Benzol . -294 . *0751 . . *0527 
Methyl-alcohol . . -oooi . . *1325 . . *0880 
Ethyl-alcohol . -3806 . . *0994 . . 0693 

Explanation of Diffusion on the Kinetic Theory of Gases 

The kinetic theory according to which a gas consists of a great number 

of individual particles called molecules in rapid motion, affords a ready ex¬ 

planation of diffusion. Suppose we have two layers A and B in a mixture 

of gases and that these layers are separated by a plane C. Let there be 

more molecules of some gas y in A than in B, then since the molecules are 

in motion they will be continually crossing the plane of separation, some 

going from A to B and some from B to A, but inasmuch as the molecules 

of y in A are more numerous than those in B, more will pass from A to B 

than from B to A. Thus, A will lose and B gain some of the gas y; this 

will go on until the quantities of y in unit volumes of the layers A and B 

are equal, when as many molecules will pass from A to B as from B to A, 

and thus the equality, when once established, will not be disturbed by the 

motion of the molecules. It follows from the kinetic theory of gases 

(see Boltzmann, Vorksmgen uher Gastheorie^ p. 91) that, if there are n molecules 

* Stefan, Wien, Jikad. Ber., 65, p. 323, 1872. 
f Winkelmann, Wied, Ann,, 22, pp. 1 and 162, 1884. 
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of y in unit volume of B, « + S// in a unit volume of A at a distance 8x from 

that in B, and if x be measured at right angles to the plane separating the 

layers, then the excess of the number of molecules of y which go across 

-unit area of C from A to B over those which go from B to A is equal to 

dn , 
•3502Ai? -- , where A is the mean free path of the molecules of y, and c their 

dx 

average velocity of translation; the quantity A^' is evidently proportional to 

the diffusity. 

Now c depends only upon the temperature, being proportional to the 

square root of the absolute temperature, while A is inversely proportional 

to the density, and if the density is given it docs not, at least if the 

molecules are regarded as hard elastic spheres, depend upon the temperature. 

If the pressure is given, then the density will be inversely, and A therefore 

directly proportional to the absolute temperature. Thus, on this theory 

the coefficient o{ diffusion should vary as where 0 is the absolute tempera¬ 

ture. The experiments of Loschmidt and von Obermayer seem to show 

that it varies somewhat more rapidly with the temperature. 

Another method of regarding the process of diffusion, which for some 

purposes is of great utility, is as follows. The diffusion of one gas A through 

another B when the layers of equal density arc at right angles to the axis of x 

may be regarded as due to a current of the gas A moving parallel to the axis 

of X with a certain velocity u through a current of B streaming with the 

velocity V in the opposite direction. To move a current of one gas through 

another requires the application of a force to one gas in one direction and an 

equal force to the other gas in the opposite direction. This force will be 

proportional (1) to the relative velocity u -hp of the two currents, (2) to the 

number of molecules of A per unit volume, and (3) to that of the molecules 

of B. Let it then be equal to \2pip2(^ + ^) volume of gas, where 

Aj2 ^ quantity depending on the nature of the gases A and B, but not upon 

their densities nor upon the velocity with which they are streaming through 

each other; and p2 are respectively the densities of the gases A and B—Le., 

their masses per unit volume. Hence, to sustain the motion of the gases a 

force Ai2pip2(^ + parallel to x must act on each unit of volume of A and an 

equal force in the opposite direction on each unit volume of B. These forces 

may arise in two ways: there may be external forces acting on the gases, and 

there may also be forces arising from variations in the partial pressures due 

to the two gases. Let Xj, Xg be the external forces per unit mass acting on 

the gases A and B respectively, and the partial pressures of the gases 

A and B respectively. Considering the forces acting parallel to x on 

unit volume of A, the external force is Xjp^, and the force due to the varia¬ 

tion of the partial pressure is -dpjdx; hence the total force is equal to 

- dpjdx + Xipi, and as this is the force driving A through B we have 

Q 
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similarly, 

dpx 

dx 
+ X^p^ ^A^.^p,p.{u + v); 

dpi 
dx 

+ X2P2 ~ “ ^12Plp2(^ ^)* 

(1) 

(2) 

Let us consider the case when there are no external forces and when 

the total pressure p-^ + is constant throughout the vessel in which diffusion 

is taking place. In this case the number of molecules of A which cross unit 

area in unit time must equal the number of molecules of B which cross the 

same area in the same time in the opposite direction. Let this number be q\ 

then if //j, are respectively the numbers of molecules of A and B per unit 

volume, 

q ~ n^u — 

If ^2 are the masses of the molecules of A and B respectively. 

Hence +■ '^2)^- 

Now +«2 is proportional to the total pressure, and as this is constant 

throughout the volume, will be constant. Putting X = 0 in equation 

(1) and writing N for 4-«2> we get 

_ 
dx 

Now P\ pQ 

where is the number of molecules of a gas in unit volume at a standard 

pressure p^; hence 

P« dn^ q ■= —--- ■ • 

N/70A12W1W2 dx 

Now q is the number of molecules of A passing unit surface in unit 

time and dn^ldx is the gradient of the number per unit volume; hence, from 

the definition of K, the interdiffusity, given on p. 238, we see 

^ Po . 

or^if P is the total pressure 

Thus, if Ai2 is constant, K varies inversely as P, and directly as 

Since the pressure of a given number of molecules per unit volume is pro- 
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portional to the absolute temperature, K, if is constant, varies directly 

as the square of the absolute temperature. 

We can determine Ajg if we know the velocity acquired by one of the 

gases A when acted upon by a known force. Suppose that the gas A is 

uniformly distributed, so that dpjdx === 0, and that when acted upon by a 

known force it moves through B with a velocity u; suppose, too, that B is 

very largely in excess and is not acted upon by the force, we have then v 

very small compared with //, and from equation (1) w'e have 

P2" 

Thus, if we know /^, the velocity acquired under a known force X, we can 

find Ai2, and hence K, the difTusivity. This result is of great importance 

in the theory of the diffusion of ions in electrolytes, and Nernst has developed 

an electrolytic theory of diffusion in fluids on this basis. Another im¬ 

portant application of this result is to determine X from measurements of K 

and u. Thus, to take an example, if the particles of the gas A are charged 

with electricity and placed in an electric field of known strength, the force X 

will depend upon the charge; hence, if in this case we measure (as has been 

done by Townsend) the values of K and //, we can deduce the value of X, 

and hence the charge carried by the particles of A. 

On the Obstruction offered to the Diffusion of Gases by a perforated 

Diaphragm 

If a perforated diaphragm is placed across a cylinder it does not diminish 

the diffusion of gases in the cylinder in the ratio of the area of the openings 

in the diaphragm to the whole area of the diaphragm, but in a much smaller 

degree, for the effect of the perforation is to make the gradient in the density 

of the gases in the neighbourhood of the hole greater than it would have 

been if the diaphragm had been removed, and therefore the flow through 

the hole greater than through an equal area when there is no diaphragm. 

Thus, to take a case investigated by Dr. Horace Brown and Mr. Escombe 

{Proceedings Royal Society, vol. 67, p. 124), suppose we have COg in a cylinder, 

and place across the cylinder a disc wet with a solution of caustic alkali which 

absorbs the COg, so that the density of the COg next the disc is* 2:ero. Then 

if p is the density of the COg at the top of the cylinder, the density gradient 

is pjl where / is the distance between the disc and the top of the cylinder, so 

that the amount of COg absorbed by unit area of the disc will be kpjl where k 

is the diffusivity of COg through itself. Now suppose, instead of a disc 

extending completely across the cylinder, we have a much smaller disc of 

radius a, then at the disc the density of the COg will be zero, but it will 

recover its normal value p at a distance from the disc proportional to a; thus 
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the gradient of density in the neighbourhood of the disc will be of the order 

pja and not pji, and the amount of CO2 absorbed by the disc will be pro¬ 

portional to k(pla)7Ta^—Le.y will be proportional to a; so that the absorption 

of the COg will only diminish as the radius of the disc and not as the area. 

This was verified by Brown and Escombe, and it has very important applica¬ 

tions to the passage of gases through the openings in the leaves of plants. 

Passage of Gases through Porous Bodies 

There are three processes by which gas may pass through a solid 

perforated by a series of holes or canals, the size of the holes or pores 

determining the method by which the gas escapes. If the plate is thin and the 

pores are not exceedingly fine, the gas escapes by what is called effusi6n\ this 

is the process by which water or air escapes from a vessel in which a hole 

is bored. The rate of escape is given by Torricelli’s theorem, so that the 

velocity with which a gas streams through an aperture into a vacuum is 

proportional to the square root of the quotient of the pressure of the gas 

by its density, and thus for different gases under the same pressure the 

velocity will vary inversely as the square root of the density of the gas. 

Bunsen founded on this result a method of finding the density of gases. 

This case, strictly speaking, is not one of diffusion at all, but merely the 

flow of the gas as a whole through the aperture. If the gas is a mixture 

of different gases its composition will not be altered when the gas passes 

through an aperture of this kind. 

The second method is the one which occurs when the holes are not too 

fine, and when the thickness of the plate is large compared with the diameter 

of the holes. In this case the laws are the same as when a gas flows through 

long tubes; they depend on the viscowsity of the gas, and are discussed in 

the chapter relating to that property of bodies. No change in the com¬ 

position of a mixture of gases is produced when the gases are forced through 

apertures of this kind; this is again a motion of the gas as a whole, and not 

a true case of diffusion. The third method occurs when the pores are 

exceedingly fine, such as those found in plates of meerschaum, stucco, or a 

plate of graphite prepared by squeezing together powdered graphite until 

it forms a coherent mass. In this case, when we have a mixture of two 

gases, each finds its way through the plate independently of the other, and 

the composition of the mixture is in general altered by the passage of the gas 

through the plate. The laws governing the passage of gases through pores 

of this kind were investigated by Graham, who found that the volume of the 

gas (estimated at a standard pressure) passing through a porous plate was 

directly proportional to the difference of the pressures of the gas on the two 

sides, and inversely proportional to the square root of the molecular weight 

of the gas. Thus for the same difference of pressure hydrogen was found 



DIFFUSION OF GASES 245 

to escape through a plate of compressed graphite at four times the rate of 

oxygen. Thus, if we have mixtures of equal volumes of hydrogen and 

oxygen and allow them to pass through a porous diaphragm, since the 

hydrogen gets through at four times the rate of the oxygen, the mixture, 

after passing through the plate, will be much richer in hydrogen than in 

oxygen. The rate of diffusion can be measured by an instrument of the 

following kind (Fig. 160). A porous plate is fastened on the top of a tube 

which can be used as a barometer tube. 

A vessel for holding the gas being 

attached to the upper part of the tube, 

this and the space above the mercury 

are exhausted; gas at a definite pressure 

is then let into the vessel, and the rate 

at which it passes through the dia¬ 

phragm into the vacuum over the 

mercury is measured by the rate of 

depression of the mercury column. 

The laws of diffusion of gases 

through fine pores are readily explained 

by the Kinetic Theory of Gases; for if 

the pores are so fine that the molecules 

pass through them without coming into 

collision with other molecules, the rate 

at which^ the molecules pass through 

will be proportional to the average 

velocity of translation of the molecules. 

According to the Kinetic Theory of 

Gases this average velocity is inversely 

proportional to the square root of the molecular weight of the gas and 

directly proportional to the square root of the absolute temperature. 

Hence at a given temperature the velocity with which the gas streams 

through the apertures will be inversely proportional to the square root 

of the molecular weight; this is the result discovered by Graham. 

Thermal Effusion 

The same reasoning will explain another phenomenon sometimes called 

thermal effusion. Suppose we have a vessel divided into two portions 

by a porous diaphragm; let the pressures in the two portions be equal 

but their temperatures different, then gas will stream from the cold to the 

hot part of the vessel through the diaphragm. For since the pressures 

are equal the densities in the two parts of the vessel are inversely 

proportional to the absolute temperatures while the velocities are directly 
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proportional to the square roots of the absolute temperatures. Hence 

the number of molecules passing from the gas through the diaphragm, 

which is proportional to the product of the density and the velocity, will be 

inversely proportional to the square root of the absolute temperature; thus 

more gas will pass from the cold side than from the hot, and there will be a 

stream of gas from the cold to the hot portion through the diaphragm. 

Atmolysis 

The diffusion of gases through porous bodies was applied by Graham 

to produce the separation of a mixture of gases; this separation was called 

by him atmolysis^ and to effect it he used an instrument of the kind shown in 

Fig. 161. A long tube made from the stems of clay tobacco-pipes is fixed by 

means of corks in a glass or metal tube. A glass tube is inserted in one of 

the end corks, and is connected with an air-pump so that the annular space 

Fig. I<)J. 

between the tobacco-pipes and the outer tube can be exhausted. The mixed 

gases whose constituents have to be separated is made to flow through the 

clay pipes. Some of the gases escape through the walls and can be pumped 

away and collected while the rest flow on through the tube. In the gas 

which passes through the walls of the tube there is a greater proportion 

of the lighter gas than there was in the mixture originally, while in the gas 

which flows along the tube there is a greater proportion of the heavier 

constituent. If the constituents of the mixture differ much in density a 

considerable separation of the gases may be produced by this arrangement. 

Passage of a Gas through India-rubber 

The fact that gases can pass through thin india-rubber was discovered 

in 1831 by Mitchell, who found that india-rubber toy-balloons collapsed 

sooner when inflated with carbonic acid than with hydrogen or air, and 

sooner with hydrogen than air. The subject was investigated by Graham, 

who gave the following table for the volumes of different gases which pass 

through india-rubber in the same time: 

N, . . 1 Ojj . 2*55(i 
CO . 113 iU - 5*5 
Air . 1149 COg . . 13-585 
OH4 , . . . 2-148 
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The speed with which the gases pass through the rubber increases 

very rapidly with its temperature. There is no simple relation between 

these volumes and the densities of the gas as there is in the case of diffusion 

through a porous plate, and the mechanism by which the gases effect their 

passage is probably quite different in the two cases. The passage of gases 

through rubber seems to have many points of resemblance to the passage of 

liquids through colloidal membranes such as parchment-paper or bladder. 

The rubber is able to absorb and retain a certain amount of carbonic acid gas, 

this amount increasing with the pressure of the gas in contact with the 

surface of the rubber. Thus the layers of rubber next the COg first get 

saturated with the gas, and this state of saturation gets transmitted from 

layer to layer; but as on the other side of the sheet of rubber the pressure 

of the COg is less, the outer layers cannot retain the whole of their COg so 

that some of the gas gets free. 

Passage of a Gas through Liquids 

This is probably analogous to the last case; the gases which are most 

readily absorbed by the liquid are those which pass through it most rapidly. 

Passage of Gases through Red-hot Metal 

Deville and Troost found that hydrogen passed readily through red-hot 

platinum and iron. No gas besides hydrogen is known to pass through 

platinum. Troost found that oxygen diffused through a red-hot silver tube; 

quartz is said to be penetrable at high temperatures by the gases from the 

oxyhydrogen flame. 

Diffusion of Metals through Metals 

Daniell showed that mercury diffused through lead, tin, zinc, gold, and 

silver. Henry proved the diffusion of mercury through lead by a very strik¬ 

ing experiment; he took a bent piece of lead ^nd placed the lower part of the 

shorter arm in contact with mercury; after the lapse of some time he found 

that the mercury trickled out of the longer arm. He also showed the 

diffusion of two solid metals through each other by depositing a thin layer 

of silver on copper; when this was heated the silver disappeared, but on 

etching away the copper surface silver was found. A remarkable series of 

experiments on the diffusion of metals through lead, tin, and bismuth has 

been made by Sir W. Roberts-Austen;* his results are given in the following 

table. K is the diffusivity. 

* Roberts “Austen, PbiL 7'rms,^ A, 1896, p. 393. 
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Diffusing MetaL Solvent. Temperature K cm.*/sea 
Gold Lead ... 492° ... 8*47 X io-» 

» ^ ••• »> ... 492° ... 8*55 X 10'* 
Platinum ... 492° ... 1*96 X 10'* 

>» »» ... 492° ... 1*96 X 10'* 
Gold 555“ ... 8*69 X 10* 

,, ••• Bismuth ... 655“ ... 5 23x 10-* 
» ••• Tin 555“ ... 5*38 X 10'* 

Silver »» 555“ ... 4*77 X 10* 
Lead >> ... 555“ ... 3*68 X 10'* 
Gold Lead 550“ ... 3*69 X 10'* 
Rhodium 550“ ... 3*51 X 10'* 

It will be seen from these results that the rate of diffusion of gold 

through lead at about 500° is considerably greater than that of sodium 

chloride through water at 18° C. Sir W. Roberts-Austen has shown that 

there is an appreciable diffusion of gold through solid lead kept at ordinary 

atmospheric temperatures. 



CHAPTER XVIII 

VISCOSITY OF LIQUIDS AND GASES 
Contents.—Defiriition of Viscosity—Flow of Liquid through Capillary Tube— 

Flow of Gas through Capillary Tube—Methods of Measurement of Coefficients of 
Viscosity—Effect of Temperature and Pressure on Viscosity of Liquids—Viscosity 
of Solutions and Mixtures—Lubrication—Explanation of Viscosity of Gases on 
Kinetic Theory—Mean-free Path—Effects of Temperature and Pressure on Viscosity 
of Gases—Viscosity of Gaseous Mixtures—Resistance to Motion of a Solid through 
a Viscous Fluid. 

A FLUID, whether liquid or gaseous, when not acted on by external forces, 

moves like a rigid body when in a steady state of motion. When in this 

state there can be no motion of one part of the liquid relative to another; 

if such relative motion is produced, say by stirring the liquid, it will die away 

soon after the stirring ceases. Thus, for example, when a stream of water 

flows over a fixed horizontal plane, since the top layers of the stream are 

moving while the bottom layer in contact with the plane is at rest, one part 

of the stream is moving relatively to the other, but this relative motion can 

be maintained only by the action of an external force which makes the 

pressure increase as we go up stream. If this force were withdrawn the 

whole of the stream would come to rest. The slowly moving liquid near the 

bottom of the stream acts as a drag on the more rapidly moving liquid near 

the top, and there is a series of tangential forces acting between the horizontal 

layers into vdiich we may suppose the stream divided; thus the force acting 

along a surface such as AB tends to retard the more rapidly moving liquid 

above it and accelerate the motion of the liquid below it; it thus tends to 

equalise the motion, and if there were no external forces these tangential 

stresses would soon reduce the fluid to rest. The property of a liquid 

whereby it resists the relative motion of its parts is called viscosity. The 

law of this viscous resistance was formulated by Newton {Principia, Lib. II., 

Sec. 9). It may be stated as follows: Suppose that a stratum of liquid of 

thickness c is moving horizontally from left to right and that the horizontal 

velocity, which is nothing at CD, increases uniformly with the height of the 

liquid, and let the top layer be moving with the velocity V; then the 

tangential stress which may be supposed to act across each unit of a surface 

such as AB is proportional to the gradient of the velocity—i,e,, to V/r—and 

tends to stop the relative motion, the tangential stress on the liquid below 

AB being from left to right, that on the liquid above AB from right to left. 

The ratio of the stress to the velocity gradient is called the coefficient of 

viscosity of the fluid; we shall denote it by the symbol rj. The viscosity 

249 
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may be defined in terms of quantities, which may be directly measured as 

follows: “The viscosity of a substance is measured by the tangential force 

on unit area of either of two horizontal planes at unit distance apart, one of 

which is fixed, while the other moves with the unit of velocity, the space 

between being filled with the viscous substance” (Maxwell’s Theory of Heat). 

It will be seen that there is a close analogy between the viscous stress and 

the shearing stress in a strained elastic solid. If a stratum of an elastic solid, 

such as that in Fig. 162, is strained so that the horizontal displacement at a 

A . 

C' 

Fig. F>2. 

point P is proportional to the height of P above the plane CD, the tangential 

stress is equal to n x (gradient of the displacement) where n is the rigidity of 

the substance. The viscous stress is thus related to the velocity in exactly 

the same way as the shearing stress is related to the displacement. This 

analogy is brought out in the method of regarding viscosity introduced by 

Poisson and Maxwell. According to this view, a viscous liquid is regarded 

as able to exert a certain amount of shearing stress, but is continually breaking 

down under the influence of the stress. We may crudely represent the state 

of things by a model formed of a mixture of matter in states A and B, of which 

A can exert shearing stress while B cannot, while under the influence of the 

stress matter is continually passing from the state A to the state B. If the 

rate at which the shear disappears from the model is proportional to the shear, 

say X6, where 6 is the shear, then, when things are in a steady state, the rate 

at which unit of volume of the substance is losing shear must be equal to the 

rate at which shear is supplied to it. If ^ is the horizontal displacement of a 

point at a distance x from the plane of reference, then 6 ~ —. The rate at 
dx 

d d^ 
which shear is supplied to unit volume is ddjdt ^^jdt is equal 

to the horizontal velocity of the particle, hence the rate at which the shear 

is supplied is dvjdx. Thus, in the steady state. 

dv 

dx 
■xe. 

If «is the coefficient of rigidity, the shear 6 will give a tangential stress equal 

to nB or 

n dv 

y~dx 
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If rj is the coefficient of viscosity, the viscous tangential stress is equal to 

dv 

Hence, if the viscous stress arises from the rigidity of the substance, 

r)=fjlX. 

The quantity 1/A is called the time of relaxation of the medium; it measures 

the time taken by the shear to disappear from the substance when no fresh 
shear is supplied to it. 

This view of the viscosity of liquids is the one that naturally suggests 

itself when we approach the liquid condition by starting from the solid 

state; if we approach the liquid condition by starting from the gaseous state 

we are led (see p. 265) to regard viscosity as analogous to diffusion and as 

arising from the movement of the molecules from one part of the substance 

to another. This point of view will be considered later. 

Flow of a Viscous Fluid through a Cylindrical Capillary Tube 

When the fluid is driven through the tube by a constant difference of 

pressure it settles down into a steady state of motion such that each particle 

of the fluid moves parallel to the 

axis of the tube, provided that 

the velocity of the fluid through 

the tube does not exceed a certain 

value depending on the viscosity 

of the liquid and the radius of the 

tube. The relation between the 

difference of pressure at the begin¬ 

ning and end of the tube and the 

quantity of liquid flowing through 

the tube in unit time can be 

determined as follows: 

Let the cross-section of the 

tube be a circle of radius OA = a, 

let V be the velocity of the fluid 

parallel to the axis of the tube 

at a point P distant r from this 

axis. Then dv/dr is the gradient of the velocity, and the tangential stress 

due to the viscosity is Tjdvjdrv this stress acts parallel to the axis of the tube. 

Consider the portion of fluid bounded by two coaxial cylinders through P 

and Q and by two planes at right angles to the axis of the tube at a distance 

apart. Let r, r + Ar be the radii of the cylinder through P and Q re- 

Fig. 163. 



252 PROPERTIES OF MATTER 

spectively. The tangential stress due to viscosity acting in the direction to 

dv 
diminish is at P equal to ri-; the area of the surface of the cylinder 

dr 

through P included between the two planes is 27TrA;^, hence the total stress on 

this surface is 

dv 

Similarly the stress acting on the surface of the cylinder through Q included 

between the two planes is 

27717 

and this acts in the direction to increase v\ hence the resultant stress tending 

to increase v is equal to 

r- lArA:^. 
dr^ 

Besides these tangential forces there are the pressures acting over the plane 

ends of the ring; if 11 denote the pressure gradient—the increase of 

pressure per unit length in the direction of v—then the effect cf the pressures 

over the ends of the ring is equivalent to a force 27rrAr.nAi^ tending to 

diminish v. Since the motion is steady there is no change in the momentum 

of the fluid, hence the force tending to diminish v must be equal to that 

tending to increase it; we thus get 

27777^(7'^^ jArAi^ = 277rri ArAi^ 

-rll. (1) 

Now since the liquid is moving parallel to the axis of the tube the pressure 

must be the same all over a cross-section of the tube; hence 11 does not 

depend upon r. Again, v must be the same for all points at the same distance 

from the axis, if the fluid is incompressible, for if v changed as we moved 

parallel to the axis down the tube, the volume of liquid flowing into the ring 

through P and Q would not be the same as that flowing out. Since 11 does 

not depend upon r, and the left-hand side of equation (1) does not depend 

upon anything but r, we see that 11 must be constant; hence, integrating (1), 

we get 
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where C is a constant; we have therefore 

Integrating again we have 

rjp == \r^W + C log r + C' (2) 

where C' is another constant of integration. Since the velocity is not 

infinite along the axis of the tube—i.e,^ when r—0, C must vanish. To 

determine C' we have the condition that at the surface of the tube the liquid 

is at rest, or that there is no slipping of the liquid past the walls of the tube. 

This has been doubted; indeed, Helmholtz and Piotrowski thought that 

they detected finite effects due to the slipping of the liquid over the solid. 

Some very careful experiments made by Whetham seem to show that under 

any ordinary conditions of flow no appreciable slipping exists, at least in the 

case of liquids. We shall assume then that -0 at the surface of the tube— 

i.e.^ when r a; this condition reduces equation (2) to 

(3) 

Now if Pi is the pressure where the liquid enters the tube, p2 the pressure 

where it leaves it, / the length of the tube, 

11= - 
0>i - A). 

I 

The negative sign is taken because the pressure gradient was taken positive 

when the pressure increases in the direction of v. Substituting this value 

for n, equation (3) becomes 

(4) 

The volume of liquid Q which passes in unit time across a section of 

the tube 
ptt 

•^0 

^Trrvdr, 

S/rj 
(5) 

This is the law discovered by Poiseuille for the flow of liquids through 

capillary tubes. We see that the quantity flowing through such a tube 

is proportional to the square of the area of cross-section of the tube. 

The reader wiU find it instructive to investigate the axial flow of a 

liquid between two concentric cylinders, when he should find that 
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4r)I L •«g'-i/>o log'‘i/'’o 

(pi~-p^^TT 

^ V ‘’1/ ' logr,/ro 

where r^j and are the radii of the inner and outer cylinders respectively. 

When the liquid flows through the capillary tube from a large vessel, 

as in Fig. 164, the pressure p-^ at the orifice A of the capillary tube differs 

slightly from that due to the head of the liquid above A, for this head of 

Fig. 164, 

liquid has not merely to drive the liquid through the capillary tube against 

the resistance due to viscosity, it has also to communicate velocity and 

therefore kinetic energy to the liquid, so that part of the head is used to set 

the liquid in motion. We can calculate the correction due to this cause as 

follows: let h be the height of the surface of the liquid in the large vessel 

above the outlet of the capillary tube, p the density of the liquid; then if Q 

is the volume of the liquid flowing through the tube in unit time, the work 

done in unit time is equal to gpPQ* This work is spent (1) in driving the 

liquid through the capillary tube against viscosity, and this part is equal to 

(Pi '-p2)Q if Pi and p2 are the pressures at the beginning and end of the 

capillary tube, (2) in giving kinetic energy to the liquid. The kinetic energy 

given to the liquid in unit time is equal to 

a 

XV X 27Trdr 

0 

where v is the velocity of exit at a distance r from the axis of the capillary 

tube. If we assume that the distribution of velocity given by equation (4) 

holds right up to the end B of the tube, then by the help of the equation (5) 
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Substituting this value in the integral we find that the kinetic energy possessed 

by the fluid issuing fn^m the tube in unit time is pQ^'^rr'^a*; hence, equating 

the work spent in unit time to the kinetic energy gained plus the work done 

in overcoming the viscous resistance, we have 

', Q‘" \ 
or P?\h-^,^yp,-p., 

Thus the head which is spent in overcoming the viscous resistance is not 

but Q2 

h- ^ • 

This correction has been investigated by Magenbach,* CouettCjf and 
Wilberforce, :j; and has been shown to make the results of experiments 
agree more closely with theory. It is probably, however, not quite accurate 
on account of the assumption made as to the distribution of velocity at the 
orifice. 

Viscosity of Gases 

The viscosity of gases may be measured in the same way as that of 

liquids, but the case of a gas flowing through a capillary tube differs some¬ 

what from that investigated on p. 252, where the liquid was supposed 

incompressible and the density constant; in the case of the gas the density 

will, in consequence of the variation in pressure, vary from point to point 

along the tube. Using the notation of the previous investigation, instead 

of V being constant as we move parallel to the axis of the tube, the fact that 

equal masses pass each cross-section requires pp to be constant as long as we 

keep at a fixed distance from the axis of the tube. Since p is proportional 

to /), where p is the pressure of the gas, we may express this condition by 

saying that pv must be independent of where is a length measured along 

the axis of the tube. Thus, since p varies along the tube, v will not be 

constant as ^ changes; this variation of v will introduce relative motion 

between parts of the gas at the same distance from the axis of the tube, and 

will give rise to viscous forces which did not exist in the case of the 

incompressible liquid. We shall, however, neglect these for the following 

reasons: if is the greatest velocity of the fluid, the gradient of velocity 

along the tube is of the order V^//, where / is the length of the tube; the 

* Hagcnbach, Poggendorff*s jt^nnalen^ 109, p. 386. SCouette, Annales de Chimie ef de Physique^ [6], 21, p. 433. 
Wilberforce, Philosophical Magazine, (6), 31, p. 407. 
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gradient of velocities across the tube is of the order where a is the 

radius of the tube; as a is very small compared with /, the second gradient, 

and theref(3rc the viscous forces due to it are very large compared with those 

due to the first. Wc shall therefore neglect the effect of the first gradient. 

dp 
On this supposition equation (1) still holds, and, since 11 - , we have 

d! dv 

dr\ dr 
=rll -r 

dp 

dK 

or, regarding p as constant over a cross-section of the tube, we have 

Jid{pv)\^^dp^Jp\ 
dr\ dr dx - d^ 

dp^ 
Since pv is independent of we see that - is constant and equal to 

- [p^ -p^)ll* Solving the differential equation in the same way as that 

on p. 252, we get 

- A/ 
8/ 

7]pP-^ 

and if is the volume entering, Vg that leaving the tube per second, we 

have 

16A 
TTCd, 

In 1904 the following method of measuring the viscosity of air was 

a routine experiment in Poynting’s laboratories at -Birmingham. The air 

pressure in a metal vessel T of capacity 45 litres (fig. 165) was raised to some 

30 cm, of water above atmospheric pressure by means of a bicycle pump 

connected to the tap a. A capillary tube C of known dimensions was put 
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into communication with the vessel at time / ^0 by means of the tap b. After 

the lapse of several minutes, measured with a stop-watch, h was turned off 
and the fall of pressure noted on the manometer M. 

Let the volume of air passing through the capillary in a time dt be dv 

measured at atmospheric pressure />, then from the formula obtained above 
we have 

p .dv ^-Tra^. 
^ 16/7^ 

where P is the pressure in the vessel. But 

p.dv'^Y.dV 

where V is the volume of the vessel and dV is the fall of pressure in the 

time dL Therefore 

Tta^ dV 
,dl^Y- 

l()/r; P2 -y)2 

Thus if the pressure in the vessel falls from P^ to Pg in time /, we have 

Wt) Jr. 

(P,+/.XP,^ 

^iP2+P)iPl-p) 
The comparatively minute change in the volume of V due to the movement 

of the manometer liquid is negligible. 

Meastirement of the Coefficient of Viscosity 

The viscosity r] has most frequently been determined by measurements 

of the rate of flow of the fluid through capillary tubes. An apparatus by 

which this can be done is shown in Fig. 166. G is a closed vessel containing 

air under pressure; the pressure in this vessel is kept constant by means of 

the tube D, which connects G with a Mariotte’s bottle; the pressure in C 

is always that due to a column of water whose height is the height of the 

bottom of the air tube in the Mariotte’s bottle above the end of the tube Z>. 

The glass vessel abcdef, in which de is a capillary tube, contains the fluid whose 

coefficient of viscosity is to be determined; this vessel communicates with 

G by means of the tube LKI; the pressure acts on the liquid in ahcdef^ 

and causes it to flow through the capillary tube from left to right; two 

marks are made at h and r, and the volume between these marks is carefully 

determined. Let us call it V; then, if T is the time the level of the liquid 

takes to fall from h to Qs=V/T. The area of cross-section of the tube 
a 
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has to be determined with great care, and precautions must be taken to 

prevent any dust getting into the capillary tube. As the viscosity varies 

very rapidly with the temperature, it is necessary to maintain the temperature 

constant; for this purpose the vessel ahcdef is placed in a bath filled with 
water. 

With an apparatus of this kind Poiseuille’s law can be verified, and 

the viscosity determined. It is found that, although Poiseuille’s law holds 

with great exactness when the rate of flow is slow, yet it breaks down when 
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the mean velocity QttIo^ exceeds a certain value depending on the size of 

the tube and the viscosity of the liquid. This point has been investigated 

by Osborne Reynolds, who §nds that the state of flow we have postulated 

in deducing Poiseuille’s law—/.f., that the liquid moves in straight lines 

parallel to the axis of the tube—cannot exist when the mean velocity exceeds 

a critical value; the steady flow is then replaced by an irregular turbulent 

~ - -- [^;-' ---- 

Fig. 1G7. Fro. 1G8. 

motion, the particles of liquid moving from side to side of the tube. This 

is beautifully shown by one of Reynolds’ experiments. Water is made to 

flow through a tube such as that shown in Fig. 167, and a littlte colouring 

matter is introduced at a point at the mouth of the tube: if the velocity is 

small the coloured water forms a straight band parallel to the axis of the tube, 

as in Fig. 167; when the velocity is increased this band becomes sinuous and 

finally loses all definiteness of outline, the colour filling the whole of the tube, 

as in Fig. 168. Reynolds concluded from his experiments that the steady 

motion cannot exist if the mean velocity is greater than 1000 7]jpa where rj 

is the viscosity, p the density of the liquid, and a the radius of the tube. The 

units are centimetre, gramme, and second. 

Measurements of the viscosity of fluids, both liquid and gaseous, have 

been made by determining the couple which must be applied to a cylinder to 

keep it fixed when a coaxial cylinder is rotated with uniform velocity, the 

space between the cylinders being 

filled with the liquid whose viscosity 

has to be determined. This method 

has been used by Couettc and 

Mallock.- The theory of the method 

is as follows: the particles of the 

fluid will describe circles round the 

common axis of the cylinders. Let 

Pj2 be points on a radius of the 

cylinders; after^a time T, let P 

come to P'y Q to j2', let OP' pro¬ 

duced cut QQ^ in Q"'. Then the 

velocity gradient at P will be equal to 

(2'^''/T) “T P'Q'\ if cu is the angular 

velocity with which the particle at P 

describes its orbit, cu + 8co that of the particle at then ~ 

Let OP~r, Oj2=^r + 8r, then since P'^" ^8r the velocity gradient at P is 
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(r + when Sr is very small, r —; hence the tangential stress acting on 

doj 
unit area of the surface at P is Now consider the portion of liquid 

bounded by coaxial cylinders through P and R and by two parallel planes at 

right angles to the axes of the cylinders and at unit distance apart. This 

annulus is rotating with constant angular velocity round the axis of the 

cylinders, hence the moment about this axis of the forces acting upon the 

annulus must vanish. Now the moment of the forces acting on the inner 
face of this annulus is 

doj dco 
ZTrrrjr ~r = 27Tr}r^—, 

dr dr 

and this must be equal and opposite to the moment of those acting on the 

outer surface of the cylinder; now R may be taken anywhere; hence we 

see that this expression must be constant and equal to the moment of the 

couple acting on unit length of the outer cylinder, which is, of course, equal 

and opposite to the moment of that on the inner. Let us call this moment 
r, then 

2Tr'qr^-- = p. 
dr 

Integrating this equation we find 

where C is a constant. If the radii of the inner and outer cylinders are 

a and ^ respectively, and if the inner cylinder is at rest and the outer one 

rotates with an angular velocity Q, then, since cu =0 when r and o) 
when r = we find 

Hence, if we measure r for a given velocity fi, we can deduce the value of rj. 

This case presents the same peculiarities as the flow of a viscous liquid 

through a capillary tube; the law expressed by the preceding equation is 

only obeyed when is less than a certain critical value. When Q 

this value the motion of the fluid becomes turbulent, and for values of Q 

just above this value the relation between r and £2 becomes irregular; it 

becomes tegular again when Q becomes considerably greater, but r is no 

longer proportional to £2, but is of the form a£2 + j3£2* where a and )8 are 

constants. These facts are well shown by the curve given in Fig. 170, 

which represents the results of Couette’s * experiments on the viscosity of 

water. The absciss* are the values of £2 and the ordinates the values 

* Couette, Atma/u dt Cbimit et dt Pl^sique, [6], 21, p. 438. 
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of p/fi. The instability set in at B when the outer cylinder made about 

one revolution per second; the radii of the cylinders were 14*64 and 14*39 

cm. respectively. 

This method can be applied to determine the viscosity of gases as well 

as of liquids. 

Method of the Oscillating Disc 

Another method of determining t], which has been used by Coulomb, 

Maxwell, and O. E. Meyer, is that of measuring the logarithmic decrement 

of a horizontal disc vibrating over a fixed parallel disc placed at a short 

distance away, the space between the discs being filled with the liquid whose 

viscosity is required. The viscosity of the liquid gives rise to a couple 

tending to retard the motion of the disc proportional to the product of the 

angular velocity of the disc and the viscosity of the liquid: the calculation of 

this couple is somewhat difficult. We shall refer the reader to the solution 

given by Maxwell {Collected Papers^ vol. ii. p. 1). This method, as well as 

the preceding one, can be used for gases as well as for liquids. 

Among other methods for measuring r\ we may mention the determina- 
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tion of the logarithmic decrement for a pendulum vibrating in the fluid 

(Stokes); the logarithmic decrement of a sphere vibrating about a diameter 

Tempm*€ttar.e. 

Fig. 171. 

in an ocean of the fluid; the logarithmic decrement of a hollow sphere filled 

with the liquid and vibrating about a diameter (Helmholtz and Piotrowski, 

Helmholtv^ Collected Papers^ vol. i. p. 172). The last method is well adapted 

for measuring viscosities over a wide range of temperatures and has been 

recently investigated and tested by Andrade and his collaborators {Proc. 

Pbys, Soc,^ 48, pp. 247 and 261). 
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Temperature C!oefficient of Viscosity 

In all experiments on viscosity it is necessary to pay great attention to the 

measurement of the temperature, as the coefficient of viscosity of liquids 

diminishes very rapidly as the temperature increases. This is shown by the 

curve (Fig. 171) taken from the paper by Thorpe and Rodger {PhtL Trans.^ 

1894, A, Part ii. p. 397), which shows the relation between the viscosity of 

water and its temperature. It will be seen that the viscosity of water at 80° C. 

is only about one-third of its value at 10° C. Thorpe and Rodger, who 

determined the coefficients of viscosity of a large number of liquids, found 

the formula given by Slotte to be the one that agreed best with their experi¬ 

ments. This formula is 

rj =C/(1 +bty\ 

where rj is the coefficient of viscosity at the temperature /, and C, b 

and n are constants depending on the nature of the liquid. For water they 

found that 

•017941 

^ ~ (T+-023f20/y®‘‘^^ 

where / is the temperature in degrees Centigrade. 

The following table, taken from Thorpe and Rodger’s paper {Pbil. 

Trans.^ A, 1894, p. 1), gives the value of y] in C.G.S. units for some liquids 

SUBSTANO* 0 ft 

Bromine . , . • • 012.635 •008936 1-4077 
Chloroform . , • •007006 •006316 1-8196 
Carbon tetrachloride . • • •013466 •010.621 1-7121 
Carbon bisulphide . • • •004294 •005021 1-6328 
Formic acid . , •029280 •016723 1-7164 
Acetic acid . • • •016867 •008912 2-0491 
£th} l ether • • e •002864 •007332 1 4644 
Benzene , • •009055 •011963 1-6564 
Toluene . • • •007684 •0088.60 1 -6522 
Methyl alcohol • • •008083 •006100 2-6793 
Ethyl alcohol • • • *017763 •004770 4 3731 
Propyl alcohol . • e •038610 •007366 8-9188 
Butyl alcohol; 

0* to 62" e % •0.61986 •007194 4-2462 
62" to 114* , • • •066959 •010869 8-2160 

Inactive amyl alcohol: 
0"to 40". • e •085358 •008488 4 3249 
40" to 80" • •093782 •012520 8*3395 
80* to m* • •162470 •026640 2 4618 

Active amyl alcohol: 
0* to 86" •111716 •009861 4*3736 
36" to 78* e •124788 •016463 1 8 2642 
73" to 124" . • •147676 •127683 2 0060 

Allyl alcohol • •021736 •009139 1 2-7926 
Nitrogen peroxide • • 006267 •007098 1-7849 
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of frequent occurrence. The table gives the value of the constants C, n 

in Slotte’s formula 

7) =C/(1 + 

Warburg found that rj for mercury at 17*2® is equal to *016329. A later 

determination by Umani {Nuov. Cim., [4], 3, p. 151) gives rj =*01577 at 10®. 

The value of rj for liquid carbonic acid is very small, being at ] 5® only 

1/14*6 of that of water. 

Effect of Pressure on the Viscosity ^ 

The viscosity of water diminishes slightly under increased pressure, 

while that of beny^ol and ether increases. Bridgman (Proc. Naf. Acad, Amer., 

11, p. 603) has measured the viscosity of a large number of liquids at pres¬ 

sures up to 12,000 atmospheres. He finds the behaviour of water to be 

quite different in character from that of other liquids. 

Viscosity of Salt Solutions 

A large number of experiments have been made on the viscosity of 

solutions, but no simple laws connecting the viscosity with the strength of 

the solution have been arrived at. In some cases the viscosity of the solution 

is less than that of water, and in many cases the viscosity of the solution is a 

maximum for a particular strength. 

Viscosity of Mixtures 

Here again no general results have been arrived at, although consider¬ 

able attention has been paid to this subject. In many cases the viscosity of 

a mixture of two liquids A, B is less than that calculated by the formula 

where are respectively the viscosities of A and B, and b are the 

volumes of A and B in a volume a ^b oi the mixture. 

Lubrication 

When the surfaces of two solids are covered with oil or some other 

lubricant they are not in contact, and the friction between them, which is 

much less than when they are in contact, is due to fluid friction. The laws 

of fluid friction discussed in this chapter show that, if we have two parallel 

planes at a distance d apart, the interval between them being filled with a 

liquid, then if the lower plane is at rest and the upper one moving parallel 

to the lower one with the velocity V, if V is not too great there is a retarding 
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tangential force acting on the moving plane, and equal per unit area to 

where 7; is a quantity called the coefficient of viscosity of the liquid. 

If we regard this as a frictional force acting on the moving plane we see that 

the friction would depend upon the velocity, and would only depend upon 

the pressure between the bodies in so far as the pressure affected the thickness 

of the liquid layer and the viscosity of the lubricant. 

The laws of friction, when lubricants arc used, are complicated, depend¬ 

ing largely upon the amount of lubrication. When the lubricant is present 

in sufficiently large amounts to fill the spaces between the moving parts 

the friction seems to be proportional to the relative velocity of these parts. 

When the suj^ply of lubricant is insufficient, part of it collects as a pad 

between the moving parts, as in Fig. 172; here the lower surface is at rest 

and the upper one rotating from left to right. Professor Osborne Reynolds * 

has shown that, as the breadth and thickness of this pad depend upon the 

pressure and relative velocity, it would be possible to get friction pro¬ 

portional to the pressure and independent of the relative velocity, even when 

the friction was entirely caused by the viscosity of a thin layer of liquid 

between the moving parts. 

The Kinetic Theory and the Viscosity of Gases 

Gases possess viscosity, and the forces called into play by this property 

are, as in the case of liquids, proportional to the velocity gradient; in fact, 

the definition of viscosity given on p. 249 applies to gases as well as to 

liquids. The most remarkable property of the viscosity of gases is that 

within wide limits of pressure the viscosity is independent of the pressure, 

being under ordinary circumstances the same at a pressure of a few milli¬ 

metres of mercury as at atmospheric pressure. This is known as Maxwell’s 

Law, as it was deduced by Maxwell from the Kinetic Theory of Gases; it 

has been verified by numerous experiments. Boyle has some claim to be 

regarded as the discoverer of this law, for about 1660 he experimented on 

the effect of diminishing the pressure on the vibrations of a pendulum, and 

found that the vibrations died away just as quickly when the pressure was 

* Reynolds, Phil, Trans,, 1886, pt. i. p. 157, 
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low as when it was high. This law follows very readily from the view of 

viscosity supplied by the Kinetic Theory of Gases. Thus, suppose we have 

two layers of gas A. and B at the same pressure, and that A has a motion as a 

whole from left to right, while B is either at rest or moving more slowly 

than A in this direction. According to the Kinetic Theory of Gases, 

molecules of the gas will be continually crossing the plane separating the 

layer A from the layer B. Some of these molecules will cross the plane from 

A to B^ and an equal number, since the pressure of the gas remains uniform, 

from B to A. The momentum parallel to the plane of those which leave A 
and cross over to B is greater than that of those which replace them coming 

over from B to A; thus the layer A is continually losing momentum while 
_________ 

B 

Fig. 173 

the layer B is gaining it. The effect is the same as if a force parallel to the 

plane of separation acted on the layer so as to tend to stop the motion 

from left to right, while an equal and opposite force acted on B, tending to 

increase its motion in this direction; these forces are the viscous forces we 

have been discussing in this chapter. If the distribution of velocity remains 

the same, the magnitude of these forces will be proportional to the number 

of molecules which cross the plane of separation in unit time. 

The molecules are continually striking against each other, the average 

free run between two collisions, called the free path of the molecules^ 
being extremely small, only about 10“® cm. for air, at atmospheric pressure. 

This free path varies, however, inversely as the pressure, and at the extremely 

low pressures which can be obtained with modern air-pumps can attain 

a length of several centimetres. When one molecule strikes against another 

its course is deflected, so that, although it is travelling at a great speed, it 

makes but little progress in any assigned direction. The consequence of 

this is that the molecules which cross in unit time the plane of separation 

between A and B can all be regarded as coming from a thin layer of gas next 

this plane, a deifmite fraction of the molecules in this layer crossing the plane. 

The longer the free path of the molecules the thicker the layer, the thickness 

being directly proportional to the mean free path. If n is the number of 

molecules per unit volume and t the thickness of the layer, the number of 

molecules which in unit time cross unit area of the plane separating A and B 
will be proportional to nt. Let us consider the effect on this number of 

halving the pressure of the gas. This halves n but doubles /; / is pro¬ 

portional to the free path, which varies inversely as the pressure, hence the 
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product nty and therefore the viscosity, remains unaltered. This reasoning 

holds until the thickness of the layer from which the molecules cross the 

plane of separation gets so large that the layer reaches to the sides of the 
vessel containing the gas. When this is the case no further diminution in 

the pressure can increase and as n diminishes as the pressure diminishes, the 

product nt and, therefore, the viscosity, will fall as the pressure falls. Thus 
in a vessel of given size the 

viscosity remains unaffected 
by the pressure until the 
pressure reaches a certain 

value, which depends upon 
the size of the vessel and the 
nature of the gas; when this 

pressure is passed the vis¬ 

cosity diminishes rapidly 
with the pressure. This is 
shown very clearly by the 

curves in Fig. 174, based on 
experiments made by Sir 

William Crookes \phiL 

Trans,, 172, pt. ii. 387), - In 
these curves the ordinates 
represent the viscosity and 

the abscissae the pressure of 

the gas. 
The diminution in vis¬ 

cosity at low pressures is well 
shown by an incandescent 

electric lamp with a broken 
filament. If this be shaken 
while the lamp is exhausted 
it will be a long time before 

the oscillations die away; 
if, however, air is admitted into the lamp through a crack made with a 

file the oscillations when started die away aLnost immediately. 
Another reason why the effects of viscosity are less at very low pressures 

than at higher ones is the slipping of the gas over the surface of the solids 
with which it is in contact. In the case of liquids, no effects due to slip 
have been detected. Kundt and Warburg * have, however, detected such 

effects in gases even up to a pressure of several millimetres of mercury. 

The law of slip {see Maxwell, “Stresses in a Rarefied Gas,” PhiL Trans., 

* Pogg. Atm., 166, p, 367. 

Milhonth’i ot on Srmc-xphere 

Fig. 174. 
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187) may be expressed by saying that the motion in the gas is the same as 

if a certain thickness L were cut off the solids, and that the gas in contact 

with this new surface were at rest. This thickness L is proportional to 

the mean free path of the molecules of the gas. According to the experi¬ 

ments of Kundt and Warburg it is equal to twice the free path; hence, as 

soon as the free path gets comparable with the distance between the solids 

in the gas, the slip of the gas over these solids will produce appreciable 

effects in the same direction as a reduction in viscosity. 

Mean Free Path 

If we know the value of the viscosity we can calculate the mean free 

path of the molecules of a gas: for if we calculate, from the principles of 

the Kinetic Theory of Gases, the rate at which momentum is flowing across 

unit area of the plane Ay By Fig. 173, we find that it is equal to 

dv 
•350rpAj- 

dx 

where v is the velocity of the stratum at a height x above a fixed plane, 

A is the mean free path, p the density of the gas, c the ‘‘velocity of mean 

square” (this can be calculated from the relation p ~\pc^ where p is the 

pressure in the gas). The rate of flow of momentum across unit afea is equal 

to the tangential stress at the plane AB; hence, if t) is the viscosity of the gas, 

7y=.35(V^A. Let us calculate from this equation the value of A for air; 

taking for the viscosity at atmospheric pressure and at 15® C. 17 =1‘9 x lO"*^, 

p at pressure 10® and temperature 15® C., 1*26 x 10”®, we get ^•~4*88 x 10^, 

and A = -OfXlOl cm. At the pressure of a millionth of an atmosphere the 

mean free path in air is 10 cm. 

The values of rj for a few of the most important gases are given in 

the following table; the temperature is about 15° C. These numbers are 

given by O. E. Meyer; they are deduced from his own experiments on the 

viscosity of air by the method of the oscillating disc and the experiments 

made by Graham on the relation between the rates of flow of different gases 

through capillary tubes. 

Gas 7} X 10* Gas r/ X 10* 

Air . 1*9 Sulphuretted hydrogen . 1-3 
Hydrogen •93 Hydrochloric acid . 1-56 
Marsh-gas 1-2 Carbonic acid . . 1-6 

Water-vapour . •975 Nitrous Oxide (N2O) . . 1-0 

Ammonia . 108 Methyl ether . 102 

Carbonic oxide . 1-84 Methyl chloride . 116 
Ethylene . 1 09 Cyanogen . 107 
Nitrogen . 1-84 Sulphurous acid (SOg) . 1-38 
Oxygen . . 2-12 Ethyl chloride . . 105 
Nitric oxide (NO) . . 1-86 Chlorine . . 1-41 
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Effect of Temperature upon the Viscosity of Gases 

Increase of temperature has opposite effects on the viscosities of liquids 

and of gases, for while, as we have seen, it diminishes the viscosity of liquids 

it increases that of gases. If j] is the coefficient of viscosity, and if this is 

assumed to be proportional to T'' where T is the absolute temperature, then, 

according to Lord Rayleigh’s * experiments, we have the following values 
for n: 

A.ir 
n 

. -754 . . 111-8 
Oxygen • . -782 , . 128-2 
Hydrogen . ^ . . -681 . . 72-2 
Helium • « . -681 . . 72-2 
Argon . . -815 , . 150-2 

: values of c relate to a formula suggested by Sutherland, according 

to which 7] •— thus, at very high temperatures, if this relation is 
1 +f/r' 

true, rj would vary as the square root of the absolute temperature. Accord¬ 

ing to Kochjf the viscosity of mercury vapour varies much more rapidly 

with the temperature than that of any other known gas. He concluded from 

his experiments that for this gas rj The results given above for 

helium and argon, both, like mercury vapour, monatomic elements, show 

that a rapid variation with temperature is not a necessary characteristic of 

monatomic gases. Rayleigh found, that the viscosity of argon was 1*21, 

and of helium 0*96 that of air. 

Coefficient of Viscosity of Gas Mixtures 

Graham made an extensive series of experiments on the coefficients 

of viscosity of mixtures of gases by measuring the time taken by a known 

volume of gas to flow through a capillary tube. He found that for mixtures 

of oxygen and nitrogen, and of oxygen and carbonic acid, the rate of flow 

through the tubes of the mixture was the arithmetical mean rate of the gases 

mixed; with mixtures containing hydrogen the results were very different; 

how different is shown by the following table, which gives the ratio of the 

transpiration time of the mixtures to that of pure oxygen: 

Hydrogen and Carbonic Acid Hydrogen and Air 

100 .. 0 . -4321 100 .. 0 . . -4434 
97-5 .. 2-5 . . . *4714 95 .. 5 . . -5282 
96 6 . -6157 90 .. 10 . , *5880 
90 10 . *5722 75 .. 25 . . -7488 
75 26 . -6786 60 .. 50 . . *8179 
50 . . 50 . *7339 25 ., 75 . . *8790 
25 75 , -7635 10 .. 90 . . -8880 
10 .. 90 . -7521 6 .. 95 . . -8960 
0 .. 100 . -7470 0 .. 100 . . -900 

* Rayleigh, Pro^, Rojf. So^., 66, p. 68. f Koch, IFVW. Ann., 19, p. 687, 
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It will be seen from this table that, while the addition of 5 per cent, 

of air to pure hydrogen alters the time of effusion by about 20 per cent., the 

mixture of half hydrogen, half air, has a time of effusion which only differs 

from that of pure air by about 8 per cent. Thus the addition of hydrogen to 

air has little influence on the viscosity, while the addition of air to hydrogen 

has an enormous influence. 

Viscosity of Colloidal Solutions 

The study of the viscosity of colloidal solutions and of even coarser 

suspensions in liquids has shown that the coefficient may vary with the 

velocity gradient. 

From a mathematical investigation Einstein (Ann» d. Physik^ (4), 19, 

p. 289), assuming that the aggregate volume of a suspension of rigid spheres 

was small compared with that of the liquid, arrived at the equation 

where is the viscosity of the suspension, •q that of the dispersing medium, 

and cj) the aggregate volume of spheres in unit volume of the suspension. 

While some suspensions give results agreeing with Einstein’s equation 

many do not. The particles may not behave as rigid spheres, and a further 

complication arises from the fact that colloidal particles generally carry an 

electric charge which Einstein’s investigation leaves out of account. Further 

difficulties arise when the particles of the disperse phase arrange themselves 

in long threads, or when they become hydrated so that they occupy a much 

bigger volume than that calculated from their concentration and density. 

It is not surprising, therefore, that no general formula involving the 

properties of the dispersed material has been found. 

There is no fundamental reason for assuming the constancy of 17 in the 

dv 
expression 

dx 
In normal liquids the assumption agrees with the 

results of observation. It seems likely that a more general formula should 

be obtained by taking 77 as a function of the velocity gradient. Considerable 

success for sols of low concentration has been obtained recently by Farrow, 

Lowe, and Neale (/. Text. Inst.^ 19, T. 18), who assume 

which gives for the flow through a capillary tube, 

^ V / / (N+3).2^ V 

For normal liquids N «1, which reduces the expression to that of Poiseuillc, 

For sols, both N and q' depend on the strength and nature of the sol. 
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Maxwell’s theory, referred to on p. 250, suggests the possibility of 

determining the true viscosity of any liquid or semi-liquid (PhiL Mag,, (4), 35, 

p. 133). On p. 88 we have seen that the relation between stress and strain 

for shear is T = » .d where n is the rigidity modulus. T is the internal stress 

produced in the material when it is sheared by an amount d. It is of course 

balanced by the imposed external forces. In a material free from viscosity, 

the stress and strain will persist with time so long as the shear is maintained, 

t.e., 

dT dO 

but if the material is viscous the internal stress will disappear with time. The 

simplest assumption to make is that the rate of disappearance is proportional 

to the stress, i,e.. 

dr dS 

dt dt 
-AT. 

If d is kept constant, then 

dr 
alt 

which on integrating gives 

T — const. X 

Since at t =--0, —nd, the internal stress at time t is. 

and when the internal stress becomes completely broken down. 

dQ 
If we assume that -y is constant, i,e., a steady flow, the integration gives 

dt 

A dt 

where C is a constant. When t is great, the second term becomes zero and 

the internal stress T becomes constant. The quantity /;/A is rj, the true 

viscosity. 

In normal liquids 1/A, the “time of relaxation,” must be a small fraction 

of a second, but in viscous sohds it may be hours or days, and then the 

rigidity modulus can be measured. The difficulties of measuring the time 

of relaxation are discussed in a paper by Freundlich and Rawitzer (KoJ/, 

Zeitscb*, 39, p. 300). 
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Resistance to a Solid moving through a Viscous Fluid 

When a solid moves through a fluid the portions of the fluid next the 

solid are moving with the same velocity as the solid, while the portions of 

the fluid at some distance off are at rest. The movement of the solid thus 

involves relative motion of the fluid; the viscosity of the fluid resists this 

motion, so that there is a force acting on the solid tending to resist its motion. 

Sir George Stokes has shown that in the case of a sphere moving with 

a very small uniform velocity Y through the fluid the force resisting the 

motion is equal to where a is the radius of the sphere, 7^ the viscosity 

of the fluid through which it is falling. Consider now the case of a sphere 

falling through a viscous fluid; just after starting from rest the velocity will 

be small and the weight of the sphere will be greater than the viscous resist¬ 

ance; the velocity of the sphere, and therefore the resistance, will increase 

until the resistance is equal to the weight of the sphere. When this velocity, 

which is called the critical velocityreached, the forces acting on the sphere 

will be in equilibrium, and the sphere will fall with a uniform velocity which 

may also be called the terminal velocity. Since the effective weight of the 

sphere is equal to 4:7Ta\p - where p is the density of the sphere and cr 

that of the liquid through which it moving, if V is the terminal velocity. 

or 

ilT 

~ -~ a^p - cr)g 

V = 
2 - a) 

0) 

SO that the terminal velocity is proportional to the square of the radius of 

the sphere. In the case of a drop of water falling through air for which 

7] X 10“^ we find, if the radius of the drop is 1/100 of a millimetre, 

V = T2 cm./sec. This result explains the slow rate at which clouds con¬ 

sisting of fine drops of water fall. Since r) is independent of the pressure, 

the terminal velocity in a gas will, since cr in this case is small compared with 

p, be independent of the pressure. 

As an application of this formula we may mention that the size of small 

drops of water has been determined by measuring the rate at which they fall 

through air; from this the value of the radius can be determined by equation 

(1). The expression for the resistance experienced by the sphere falling 

through the viscous liquid is obtained on the supposition that the motion 

of the liquid is so slow that terms depending upon the squares of the velocity 

of the liquid can t>e neglected in comparison with those retained. Now, if V 

is the velocity, p the density of the liquid, the forces on the liquid depending 

upon the squares of the velocity, are proportional to the gradient of the 

kinetic energy per unit volume—i.e., to the gradient of the forces 



VISCOSITY OF LIQUIDS AND GASES 273 

due to viscosity are proportional to the gradient of the viscous stress. If a is 

the radius of the sphere, the distance from the sphere at which the velocity 

may be neglected is proportional to hence the velocity gradient is of the 

order (Vja), and the viscous stress rf^ja. Hence, if we can reject the effects 

depending on the squares of the velocity in comparison with the effects of 

viscosity, must be small compared with rjVja, or pVa must be small 

compared with rj. Hence, if the preceding solution holds, we see, by 

substituting for V the value of the limiting velocity, that 
2 a%p - ct)p 

must be 
T 

small. Rayleigh * has pointed out how much this restricts the applica¬ 

tion of Stokes’ result; thus, for example, in the case of drops of water falling 

through air, the theory does not apply if the drops are more than about one- 

tenth of a millimetre in radius. When the velocity of the falling body 

exceeds a certain critical value the motion of the surrounding fluid becomes 

turbulent, just as when the velocity of a fluid through a capillary tube 

exceeds a certain value the flow ceases to be regular {see p. 259). When this 

turbulent stage is reached the resistance becomes proportional to the 

square of the velocity. Allen, f who has investigated the resistance ex¬ 

perienced by bodies falling through fluids, finds that this can be divided 

roughly into three cases—(a) where the velocity is very small, when the 

preceding theory holds, and the resistance is proportional to the velocity; 

(b) a stage where the velocity is great enough to make the forces depending on 

the square of the velocity comparable with those depending on viscosity; 

in this stage the resistance is proportional to the velocity raised to the power 

of 3/2; (^•) a stage where the velocity is so great that the motion of the fluid 

becomes turbulent; in this stage he finds the resistance to be proportional 

to the square of the velocity. When the resistance is proportional to the 

square of the velocity the method of dimensions shows that it does not for a 

given velocity depend upon the viscosity of the liquid. For, suppose the 

resistance is proportional to this expression must be of the 

dimensions of a force—i.e.^ 1 in mass, 1 in length, and ~2 in time; hence 

we have 

so that 

1 

-2- 

and the resistance is proportional to {^apl'qY{7flp); thus, if n~2 the 

resistance is proportional to Y'^a^p, and is independent of viscosity. The 

energy of the body is spent in producing turbulent motion in the liquid and 

not in overcoming the viscous resistance. 

* Lord Rayleigh, Pbil. Mag.y [5], 36, p. 354. 
t Allen. Phil. Mag., Sept, and Nov. 1900. 

S 
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A great deal of attention has been given to the resistance of bodies 

moving with high speeds, such as buUets. It is doubtful, however, if the 

viscosity of the fluid through which the bullet moves has any effect upon 

the resistance; we shall not, therefore, enter into this subject, except to say 

that recent researches indicate that for velocities less than about 30,000 

cm./sec. the resistance may be represented by av^ + bv^, where a and b a|e 

constants. 
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Acceleration due to gravity, 8-29 
Air, deviations from Boyle’s law as to, 156 
Airy, hydrostatic theory of earth’s crust, 28 

Dolcoath experiment, 44 
Harton pit experiment, 44 

Amagat, minimum value of 156, 157 
Andrade, log. dec. of liquid-filled hollow 

sphere vibrating about a diameter, 
262 

Angle of shear, 82 
Arc, correction for pendulum swing, 12 
Atmolysis, 246 

Bailie and Cornu’s experiment, 49 
Baily’s Cavendish experiment, 49 
Bars, bending of, 104-126 

vibration of, 117 
Barymeter, von Stcrneck’s, 31 
Beam with considerable bending, 113 
Bending of rods or bars, 104-126 
Bernouilli’s correction for arc of swing of 

pendulum, 12 
Boiling-point, raising of, in solutions, 232 
Borda’s pendulum experiments, 12 
Bouguer’s pendulum experiments, 11 

experiments on determination of 
density of earth, 40 

rule and exceptions, 26, 28 
Boyle’s law, 163 

at low pressures, 168 
deviation of various gases from, 155 

Boys’s Cavendish experiment, 49 
Braun’s Cavendish experiment, 50 
Breaking-point of stretched wires, 70 
Bubbles and drops, measurement of surface 

tension by, 191-193 

Camphor, movements of on surface of 
water, 208 

Capillarity, 166 
Laplace’s theory of, 212 

Capillary tubes, rise of fluids in, 172 
Carbonic acid, deviation of, from Boyle’s 

law, 166 
Carlo’s pendulum experiment, 43 
Cassini’s and Borda’s pendulum experi¬ 

ment, 12 
Cavendish experiment, 46 

by other observers, 49 
su Earthy determination of density of 

Ciairaut’s theorem, 27 

Collision, 136 
duration of, on impact, 138 
of drops, 211 
sec also Impact 

Colloids, 226 
Compressibility of liquids, see Liquids 
Computed times of pendulums, 18 
Contamination of films, 208 
Critical velocity in viscous fluids, 259 
Ciy^stalloids, 226 

Defforges’ pendulum, 23 
Degree of latitude, measurement of a, 26 
Diaphragm, diffusion through, 226-230 
Differential gravity balance, 31 
Diffusion of gases, see Gases 

of liquids, see Liquids 
of metals, 247 

Dilatation under strain, 80 
Dissociation of electrolytes, 236 
Dorsey’s measurement of surface tension by 

ripples, 196 

Earth, determination of density of, 38 
by Airy, 44 

Baily, 49 
Bougucr, 40 
Boys, 4il 
Braun, 60 
Carlini, 43 
Cavendish, 45 
Cornu and Bailie, 49 
Heyl, 61 
von Jolly, 65 
Maskclync, 42 
Mendenhall, 43 
Poynting, 66 
Richarz and Krigar-Menzel, 66 
von Sterncck, 44 
Wilsing, 61 
Zahraonicck, 63 

Effusion, thermal, 245 
Einstein, viscosity of suspensions, 270 
Elastic after-effect, 70 

curve, 118 
fatigue, 73 
limit, 68 

Elasticity, 68 
modulus of, 86 
see also Young*s Modulus 

Electrolytes, dissociation of, 235 
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Ellipticity of earth, 27 
Elongation under strain, 80 
Eotvos balance, 33 
Rdtvos’ rule, 200 
Equilibrium of liquids in contact, 170 
Equivalent simple pendulum, 14 

Fatigue, clastic, 73 
Faye’s rule, 28 
Films, contamination of, 208 

cooling effects, on stretching, 201 
stability of cylindrical, 181 

Flexure, 104™] 23 
Floating bodies, forces acting on, 188 
Flow of liquid between concentric cvhndcrs, 

253 
Fluid motion, effect of, on pendulums, 10 

surfaces, disruption of, 213 
Freezing-point, depression of in solutions, 

234 

Galileo’s observations respecting pen¬ 
dulums, fl 

Gaseous pressures and volumes, 153 
Ciases, diffusion of, 238 

kinetic theory as applied to the, 240 
obstruction to, offered by perforated 

diaphragms, 243 
through porous bodies, 244 

Gases, passage of, through india-rubber, 
240‘ 

through liquids, 247 
through red-hot metals, 247 

Gases, visc(3Sity of, 240 
influence of temperature upon, 203 

Gravitation, constant, 30 
Newton’s law, 35 
qualities of, 50 
see also harth, density of 

Gravity, acceleration of, 8 
history of research as to, 8 
Clairaut’s theorem, 27 
Newton’s theory of, 24 
Richcr’s observations pn, 24 
Swedish and Peruvian expeditions of 

investigation, 25 
Gravity balance, Thrclfall and Pollock’s, 

32; Eotvos, 33 
Gravity meters, differential, 31 

Half-seconds pcndulurp, von Stcrneck, 29 
Hardy’s experiments oh thin surface films, 

210 
Heyl’s determination of the gravitation 

constant, 51 
Hodgkinson’s table of values of e on 

impact, 141 
flomogeneous strain, 78 
Hooke’s law, 85 

Huygen’s pendulum clock, 10 
theory of pendulums, 10 

Hydrogen, deviations of, from Boyle’s law, 
158 

Hydrostatic theory, 28 

Impact, 135 
duration of collision on, 138 
kinetic energy of, 136 

Indian survey, experiments on pendulums, 
28 ' 

Invariable pendulum 29 

Jaeger’s method of dctcimining mean sur¬ 
face tension, 190 

jolly, von, experiments on gravitation, 55 

Katcr’s convertible pendulum, 14 
and Sabine’s experiments, 27 

Kelvin’s table of thermal effects accom¬ 
panying strain, 165 

Kinetic theory of gases, 265 
. explanation of diffusion by the, 240 

Laplace’s theory of surface tension, 212 
Latitude, determination of length of K of, 

25 
Liquids, capillarity of, 166 

compressibility of, 143 
diffusion of, 221 

determination of coefficient of, 222- 
224 

through membranes, 226 
films, stability of, 181 
flow of viscous, through cylindrical 

capillary tubes, 251 
in contact, 170 
potential energy of, due to surface 

tension, 169 
rise of, in capillary tubes, 172 
surface tension of, 168 

relation between curvature and 
pressure of surface, 175 

methods of measuring, 190 
by bubbles and drops, 191 
by ripples, 193 

temperature, effects on, 200 
table of compressibility of various, 150 
tensile stren^h of, 150 
vapour-pressure over curved surface of, 

204 
viscosity of, 249 

Loaded pillar, stability of, 120 
wires, anomalous effects in, 74 

Lubrication, 264 
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Mass, 3 
constancy of, 0 
definition of, 5 
energy relation, 
unit of, 6 

Maxwell’s law of gaseous viscosity, 
Mean free path, 266 
Mendenhall’s gravitation experiment, 43 
Mercury, compressibility of, 149 
Metals, difiusion of, through metals, 247 

elastic properties of, 68 
viscosity of, 73 

Michcll, Rev. J., 45 
Microstructure of metals under stress, 74 
Mt)dulus of elasticity, 8f> 

Young's, 91 
of rigidity, 96 

Newton’s theory of gravitation, 35 
theory of gravity, 24 

Nitrogen, deviation of, from Bovlc’s law, 
157 

Normal stress, 8‘1 

Oil, effect of, on waves, 210 
Osmosis, 22r> 
Osmotic pressure, 22s 

Pendulums, Bessel’s experiments, 15 
Borda and Cassini’s, 12 
clock, 10 
Defforges, 23 
formulic for, 14 -6 
llalf-seconds pendulum, 29 
Huygens’ theory of, lO 
Indian survey experiments, 28 
invariable, 27 
Kater’s convertible, 14 
Newton’s use of, 11 
Papers on the theory of, 8 
Repsold’s, 21 
von Stcrncck’s, 29 
U.S. survey, 28 
variation in length of seconds, 2 
yielding of support of, 22 

Permanent set, 68 
Perrin’s measurement of Avogadro’s con¬ 

stant, 237 
Picard’s pendulum experiments, 10 
Piezometer (the), 146 
Poiscuille’s law, 263 
Poisson’s ratio, "90, 107 
Poynting’s gravitation experiments, 56 
Pressure, effect of, on viscosity, 264, 267 

on volume, 163 
variations from Boyle’s law at low, 156 

Quartz thread gravity balance, Thrcl- 
fall’s, 32 

Reich’s Cavendish experiment, 49 
Relaxation time, 271 
Repsold’s pendulum, 21 
Resolution of strain, 81 
Reversible pendulum, theory of, 15 
Reversible thermal effects accompanying 

strain, 161 
Richer, observations on gravity, 24 
Rigidity, coefficient of, 102 

modulus of, 88 
Ripples, measurement of surface tension by, 

193 
Rods, stresses and strains of, 89-125 

Sabine’s pendulum, 27 
Salt solutions, viscosity of, 264 
Schiehallion experiment, 42 
Shear, 86 

angle of, 87 
Slottc’s formula, 2(>3 
Soap-bubbles, 176 
Sols, 270 
Solutions, depressionoffreezing-pointof, 234 

raising of boiling-point of, 232 
vapour pressure of, 231 

Spiral springs, 127 
energy of, 128 

Stability of cylindrical films, 181 
of loaded pillar, 120 

Stcrneck, von, Barymctcr, 31 
half-seconds pendulum, 29 
pendulum experiments, 44 

Strain, 78 
alteration of micro-structure conse¬ 

quent on, 74 
anomalous eitects of alternating, on 

wire, 73 
axes of, 80 
homogeneous, 78 

resolution of a, 81 
in relation to work, 86 
thermal effects accompanying, 

Stresses, 84 
on bars, 88 

Stretched film, 176 
cooling due to sttetching, 201 

Stretched wire, anomalous effects on 
loading, 73 

Surface tension, 166 
effects between two liquids, 219 

in thick films, 218 
forces between 2 plates due to, 187 
Jaeger’s method of measuring, 199 
measurement of, by detachment c^f a 

plate, 198 
Ovscillations of a spherical drop under, 

196 
of thin films, 202 
ripple method, 193 
Wilhelmy’s method, 198 

Swedish and Peruvian expeditions to deter¬ 
mine length of 1' of latitude, 26 
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Table of moduli of elasticity, 12(1 
thermal effects of strain, 161 

Tangential stress, 84 
Temperature, coefficient of viscosity, 263 

effects of, on surface tension, 200 
on breaking stress of wires, 76 

Tensile strength of liquids, 150 
Terminal velocity in viscous fluids, 259 
Thermal effects of strain, 161 

Kelvin’s table of, 165 
Thermal effusion, 246 
Thickness of films, influence of, on surface 

tension, 218 
Thin films, surface tension of, 202 
Threlfall and Pollock’s gravity balance, 32 
Torsion, 96 

in cylindrical tubes, 96 
in solid rods, 97 

United States Survey pendulums, 24 

Vapour, diffusion of, 239 
V’apour pressure, of solutions, 231 

on curved surfaces, 204 
Vibration of bars, 117 
Viscosity, 74, 249 

temperature coefficient of, 263 
determinartlon of coefficient of, 257 

by oscillating disc, 261 
effects of pressure upon, 204 

Viscosity, gaseous, effect of temperature on, 
269 

of colloidal solutions, 270 
of gases, 255 
of liquids, 249 
of metals, 74 
of mixtures, 264 
of salt solutions, 264 

Viscous fluids, resistance of, to motion of 
solids, 272 

velocity in, 273 
Volume and pressure of gases, 153 

Water, compressibility of, 149 
Waves, calming of, by oil, 210 
W'eight, 1 

standards of, 6 
Wilhelmy’s method of measuring surface 

tension, 198 
W’ilsing’s gravitation experiments, 51 
W’ork in relation to strain, 86 

Yield point, 69 
Young’s modulus, 89 

determination of, 91 
by flexure, 123 
by optical measurements, 94 

Zahradnicek’s method of treasuring the 
constant of gravitation, 53 
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