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PREFACE 

For several years, the author taught radio engineering in out-of- 
hour courses to the engineers of the Electronics Receiver Division of 
the General Electric Company. In developing these courses it was 
found that there was no textbook available dealing with many of the 
subjects with which a radio engineer should be familiar. The present 
book has been written in answer to this need. It gives a comprehen¬ 
sive discussion of the important subjects of Fourier integral analysis, 
modulation and random noise. A companion volume entitled “ Trans¬ 
formation Calculus and Radio Transients” will deal with transient 
solutions of radio circuit problems with the aid of Laplace transforms. 

Most of the material in the present book has never before been 
treated in any textbook. Some has not appeared even in the periodical 
literature and is original with the author. 

To a considerable extent the different groups of chapters can be 
read independently. It has been assumed that many readers will 
want to use the book as a reference volume, and an attempt has been 
made to make it possible for the reader with a reasonably good back¬ 
ground to get considerable information on any particular subject 
by reading only those sections dealing with that particular subject. 
The prerequisite training for reading the book is a knowledge of 
calculus and a good general knowledge of radio en^eering. 

In writing a book of this character the author has, of course, drawn 
upon previous writers in various fields of mathematics and of radio 
en^eering. Where the work of specific persons is used, credit is 
given in the course of the text. 

The author is indebted to many of his friends and associates for 
encouragement and assistance in the preparation of the manuscript, 
especially to A. W. Sear, R. B. Dome, Max Scherberg, and J. F. 
McAllister, Jr. He also wishes to thank I. J. Kaar imd C. G. Fick for 
arranging for the General Electric Company’s sponsorship of the work. 
Finally, he wishes to thank E. R. Kretsmer and T. P. Cheatham for 
valuaUe advice and criticism. 

Stantobd Goldican 
CAHBMDas, Maw. 
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INTRODUCTION 

The Phenomena of Mathematics. Every educated person in the 
Western World knows that there are physical phenomraia, biological 
phenomena, aniTnatural phenomena of many other kinds. Compara¬ 
tively few, however, consider that mathematics also has its phenomena. 
Most people think of mathematics merely as a compact and exact 
method of expressing ideas, i.e., as an abbreviated language. To be 
sure, the expression of ideas in mathematical language is a shorthand 
method of S3rstematizing thought, and certainly it tends to discourage 
loose thinking and to encourage quantitative work. However, i^ 
i^thematics were limited to its use as a language, it would never have 
outgrown its short pants as a tool of science. Surprisiag as it may 
seem, the chief importance of mathematics lies in the existence and 
usefulness of certain phenomena of mathematics. 

A short consideration of this point of view of mathematical 
phenomena is now in order. Consider, for instance, the Fourier 
series expansion, the fact that any arbitrary periodic function can be 
shown to consist of a simple sine wave and its harmonics taken with 
proper phase angles. This is the type of fact that we call a phenome¬ 
non of mathematics. Even though its truth can be proved, it had 
to be discovered. It is not a consequence of the use of mathematics 
as an abbreviated language. We shall have many occasions to show 
that this particular mathematical phenomenon is very us^ul in radio 
engineering. 

The existence of complex quantities that obey the laws of the 
algebra of real quantities is another phenomenon of mathematics. 
Thw applications in radio en^eering are not so obvious as those of 
Fourier analysis, but once established they are no less important, as 
the widespread use of the idea of impedance testifies. 

The student nught question to w^t extent <fifferential and integral 
calculus deal with mathematical phenomena, rather than with ordinary 
logic. To clarify this rituation, it may be p<d0ed out that the exist¬ 
ence ci derivatives and int^^rals generally foDows from logical ocm- 
riderations alcme; but the fact that the doivatives and integrals of 
ample function are usually also simple functions, this ampUeity 

1 



2 FREQUENCY ANALYSIS, MODULATION AND NOISE 

being the basis of the usefulness of calculus, is clearly a phenomenon 
of mathematics. 

In years to come, new mathematical phenomena with radio applica¬ 
tions will no doubt be discovered, and new applications for known 
mathematical phenomena will likewise come to light. However, a 
wealth of mathematical phenomena applicable to radio is already 
known, and certain of these will be first the subject matter and then 
the tools of the present book. 

Bigor and '>^or in Mathematics. Modem mathematics has been 
based upon a logical foundation whose depths are magnificent. This 
tsrpe of thoroughgoing analysis is called rigorous mathematics. 

Rigorous mathematics has a rightful place of honor in human 
thought. However, it has wisely been said that vigor is more impor¬ 
tant than rigor in the use of mathematics by the average man. In the 
particular case of this volume, the amoimt of rigor will be used that is 
necessary for a thorough understanding of the subject at hand by a 
radio engineer; but when it appears that rigor will confuse rather than 
clarify the subject for an engineer, we shall trust in the correctness of 
the results established by rigorous methods by the pure mathe¬ 
maticians and use them without the background of a rigorous proof. 

The Debt of Radio to Mathematics. Although it is not generally 
appreciated even by radio engineers, radio owes its very existence to 
mathematics. In 1866, the British scientist James Clerk Maxwell 
showed that a so-called "displacement current” must exist in space 
for the differential equations of the electromagnetic field to be con- 
(dstent. He thus arrived at the famous set of differential equations 
that bear his name. He then was able to predict by solving these 
equations that electromagnetic radiation should exist. These deduc¬ 
tions of Maxwell were a subject of much scientific controversy for the 
next 20 years. In 1886-1888 Hertz undertook an elaborate experi¬ 
mental program to verify Maxwell’s mathematical deductions and 
thereby for the first time in history generated and detected radio waves. 

The Aims of This Book. While the language and methods of the 
present book are mathematical, its fundamental mm is not the teach¬ 
ing of mathematics but rather the exposition and clarification df cer¬ 
tain fields of radio. Mathematics is used only as a means to this end. 
It so happens, however, that, for the problems at hand, mathematics 
is such a powerfiil tool that it is worth while spending many chapters 
in developing the stttdmrt’s mathematical knowledge and facility. 



CHAPTER I 

FOURIER SERIES 

1.1 Introduction. There is one phenomenon of mathematics that 
is perhaps more widely used in radio engineering than any other—^the 
phenomenon of Fourier series expansion. Its importance is so funda¬ 
mental that many who never heard 
of a Fourier series nevertheless know y-f(it) 
about its most salient feature, 
namely, the existence of harmonics. i < 
In this and the following chapter we | i 
shall develop the theory of Fourier j ! 
series and shall learn how to use it —-0-^ 
in the solution of a variety of radio 
_ -I 1 _ Fig. 1. A function defined in the 
problems. interval from to +ir. 

The fundamental fact upon which 
the use of Fourier series is based is that any^ function f{x) (see Fig. 1) 
defined in the interval from —ir to +t can be expanded in a series of 
trigonometric functions such that 

Fig. 1. A function defined in the 
interval from —ir to H-t. 

f{x) = -^ + (ui cos X + 6i sin x) + (02 cos 2x + 62 sin 2x) 

+ (o* cos 3x -f 6» sin 3x) -I- • • • 
+ (on cos n® + 6» sin nx) + 

or, in compact form 

/(x) = ^ + ^ (On cos TlX -f- 6n sin nx) 

In this series the a’s and b’a are constants whose values we shall 
soon determine. The series of sines and cosines on the right side of 
Eq. (1) or (la) is known as a Fourier series. 

It can be proved, although we shall not do so here^ that, so long 
as /(x) has only a finite number of discontinuities and a finite number 

Subjeot <mly to exceptions of no importance in engineering. 
' Proofs are given in many texts on function theory, for example, H. S. Ckrslaw, 

"Theory of Fourier Series and Integrals,” Cihap. VII, or Whittaker and Watson, 
"Modem Analysis,” See. 0.42. 

8 



4 FREQUENCY ANALYSIS, MODULATION AND NOISE 

of maxima and minima in the interval from —*■ to +«•, and provided 
that 

/-t" ^ 

is finite, then a Fourier expansion is always possible. It is by no means 
necessary for the function to be expressible by a single equation in the 

Fig. 2. A square-wave function. 

interval. Thus the function shown in Fig. 2, which is f{x) = 1 from 
—ir to 0 and /(x) = — 1 from 0 to +t, can readily be expressed in a 
Fourier series. Fourier series expansions are thus possible for a 
much wider variety of functions than Taylor series expansions, the 

latter requiring that the function 
be continuous and have continuous 
derivatives of all orders. 

It should be pointed out that 
if there is a point of discontinuity, 
such as that shown at B in Fig. 3, 
the Fourier series will converge to 

KLfiW +/,(x)] 

where /i(x) and ft{x) are the two 
different values that the function 
approaches as it comes to B from 

the positive and negative directions. Furthermore, for the values 
X “ -l-T and X = —ir, the Fourier series convei^ to 

Ml/(+ir) +/(-»)] 

If /(») “ /(-»), these are then no different from ordinary points. 
The series (1) can be expressed as a angle series of ones or of 

oodnes, if phase aisles are introduced. Hius it can be ei^ressed as 

at X >■ B. 

/(*) “ ^ + ill cos (* + ^i) + As cos (2* + ^j) + ' ’ • 

+ An COB (n* + • (2) 



FOURIER SERIES 5 

whore 

An = VaJ + (3) 
and 

(4) 

1.2 Values of the Fourier Coefficients. In order that the series 
expansion in Eq. (1) should be useful we must be able to determine 
the values of the o’s and 6’s. We shall now see how to do this. 

To find Oo, we multiply through Eq. (1) by dx and integrate from 
—Tto+x. Thus 

f(x) = ^dx+ J at 

+ /*+' I bi sm X dx + • 

sinnxdx + 

cos X dx 

• + /: 
since all the other integrals of the series terms 

On cos nx dx 

/_ ^ (®) 
vanish. Therefore 

(6) 

To find any other a coefficient, such as o„, we multiply through Eq. (1) 
by cos nx dx and integrate from —t to +t. Thus 

/: fix) cos nx'dx 
/•+'ao , /•+' 

= / ^ cos nx dx + / ai cos X 

Now 

cos nx dx + 

/•+' 
+ J bi sin X 

cos nxdx 

cos nx dx + • • • (7) 

sin px cos 8X dx “ 0 (8) 

if p and g are any integers whatever, and 

cos px cos (pr dx s 0 (9) 

if P is any int^^ not equal to 9. If p = 9, then 

cos* pxdx ^ r (10) 
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Therefore all integrals, excepting one, on the right side of Eq. (7) 
will vanish. As a result, we have 

J 
f f{x) cos nxdx ^ Un cos^ nxdz ^ Onir (11) 

or 

1 P' 
— - 1 f(x) COS nx dx 

^ J —r 
(12) 

In a similar manner, in order to find K, we multiply through Eq. (1) 
by sin nx dx and integrate from — v to +». We then find 

1 /"■*■' 
bn = - 1 f(x) sm nx dx 

J —T 

(13) 

with the aid of the equations 

sin px sin qx = 0 (14) 

a p ^ q and 

sin* pxdx= V (15) 

Equations (6), (12), and (13) give us the values of the Fourier 
coefficients.^ 

By an entirely similar process, it can be shown that, if a function 
is defined in the interval from 0 to 2t, it can be expanded into a Fourier 
series of the same form as Eq. (1), only this time the coefficients 
are given by the formulas 

* Looking over the derivation of Eq. (6) and comparing it with Eq. (1), we see 
that ao/2 is just the average value of f{x). Since each sine and cosine term in 
Eq. (1) has an average value of zero between —ir and these terms are elimi* 
nated by the integration process of Eq. (5), which is essentially an averaging 
process. 

The derivation of the formulas (12) and (13) for an and bn is carried out by what 
may be called a 'Weighted” averaging process. Each term on the right of Eq. (1) 
when multiplied by one of the sine or cosine functions has an average value of zero 
in the range from —r to unless that particular sine or cosine function is also a 
factor of the term. In this way all terms are eliminated except that involving 
the particular sine or cosine function in question. Equations (8) to (10)’, (14), and 
(15) thus supply a means of segregating any desired term from Eq. (1) for special 
consIderatiQn. A similar mathematical phenomenon also occurs in the expansion 
of a function in a series of any of the types of what are known as orthogonal 
functions. 
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1 
On = - 1 f(x) COS na; da: (16) 

1 P' 
b» = - / f(x) sin nx dx 

X Jo 
(17) 

Earlier mathematicians such as d’Alembert, Euler, and Clairaut 
had employed special Fourier series before the time of Fourier, and 
had even used Eqs. (6), (12), and (13) for the calculation of the Fourier 
coefficients. However, the great advance made by Fourier was in 
pointing out that the possibility of the expansion into a Fourier series 
is not limited to a few special functions but is a general phenomenon 
true for arbitrary functions. Fourier used the type of series that now 
bears his name in a number of classical investigations on the conduction 
of heat. The first of these was presented to the French Academy in 
1807.1 

1.3 Some Examples of Fourier Expansions, a. Let us now con¬ 
sider a few examples of Fourier expansions. First we shall find the 
Fourier expansion of the function shown in Fig. 2. This function is 

2/ = 1 (in the range —tt < a? < 0) 
y = — 1 (in the range 0 < a? < tt) 

According to Eq. (6), we then have 

do — ~f f(x) dx = - f (+l)d® + - / i—l)dx 
IT J ^ y —ir ^ y0 

IT T 

Ac6ordiiig to Eq. (12), 

1 /■+' 
o« = - / f(x) cos nx dx 

"X J -T 

i r if’ 
* - / (+1) cos na: da: + - / (—1) cos na: da: 

IT y —IT y 0 

_ 1 sin nx P _ 1 sin nx K _ q ^ q _ q 
IT n |~,P IT n lo ~ 

(18) 

(19) 

* For an interesting historical review of the mathematical side of Fourier series, 
see H. S, Oarslaw, ^'Theory of Fourier Series and Integrals.’’ 



8 FREQUENCY ANALYSIS, MODULATION AND NOISE 

According to Eq. (13), 

1 /"+' 
= - / /(*) sin nx dx 

1 r 
-- I (+1) Bin nx dx + 

fT J —ir 
1 cos nx ° 

V , 
, 1 cos nx 

X n 
1 1 1 1 

irn xn xn xn 

rn Tcn 
_ 1 

m 

( — 1) sin nxdx 

(if n is odd) 

(if n is even) 

Therefore 

f(x) = • ^sin X 
. sin 3x , sin 5x , 

3 5 

is the Fourier expansion of the function shown in Fig. 2. 

liy /y-»(x) 
i ^ T / • function shown in Fig. 4. Thb 
i\.y kXl function is 

y/^ j y = —X (from —*• to 0) 

__I_ and 
=» To +»* ==*; 

Fio. 4. A triangalar-wave function. V ~ "t”® (from 0 tO x) 

Thus 

-;/I = 
“» + & + £ + »-' 

-u:- 

f(x) cos nx dx 

-X ooBnxdx + - I 
W Jo 

zoos nxdx 

Now, integrating by parts, 

eoBnxdx ^ X 
sin /* sin « 

*—-j — 

sin nx , cos nx 
*—+ -^ 
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Therefore 

On = 
. nx , cos 

n* / 

nx COB 

— 1 / Bin 1 
=-lx- 

T \ n 
, 1 /x sin nx , cos nxM 

n n* /I 

T \ n* n* ny 

\ + \ = 0 (whenniseven) IT \ n* n* n* n y ^ 

(when n is odd) 

Furthennore, 

Now 

Therefore 

1 /*+' 
= - / /(x) sin nx dx 

T J 

I r 1 /*' 
= - I —X sin nx dx + “ / x sin nx dx 

iry-, iryo 

/. , cos nx , /* cos nx , 
X sin nx dx = —x-h / -dx 

n y n 
—X cos nx , sm nx 

+ n n* 

- — 1 / cos nx , sin nx\ 
bn - — I —ic-1-z— ) 

T \ n n* / 

1 / —X cos nx , sin nx\ 
x \ n n* / 

Thus 

K-^0- 

K+s-s)- 

0 (when n is odd) 

0 (whenniseven) 

cosx4-^co83x + ;^oqb6x + 

is the Fourier expansion for the function shown in fig. 4. 

Exerdses 
i. FindtheFoaiierexputaonof the half due wave diown in the figure. 

y«0' 
in 

ywsinx 

(26) 

(26) 

(27) 

(28) 

(29) 
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2. Expand the function 

/(a?) ■» e* from 0 to 2ir 

into a Fourier series, 
AiMwer: 

«e <0 

1 /I I Y cos n» Y ** 
\2 4 1 + n‘ 4 1 + n* / 

n — 1 

(Sokolnikoff) 
8. With the aid of Eq. (29), show that 

^ 3* ^ 5* ^ 7* ^ 
IT* 

¥ 

1.4 Fourier Expansions of Periodic Functions. Let us suppose 
that the functions shown in Fig. 
2 and 4 are periodic, as represented 
in Fig. 5, i.c., that every value of 
the function is repeated after each 
27r interval. Then the Fourier 
expansions of Eqs. (21) and (29) 
will continue to be valid through¬ 
out the whole range in which the 
functions are periodic. This is 
true because, if x is increased by 
27r, every term on the right side 
of Eqs. (21) and (29) has again 

Fiq, 6, Examples of periodic functions. the B&me value, and Since /(x) has 
a period of 2ir, it also has again 

the same value. Periodic functions may therefore be represented 
throughout their whole range by a single Fourier series. 

Since every periodic function of the various types that arise in 
engineering can be represented by a single Fourier series, we know that 
every engineering quantity arising from periodic excitation can be 
represented by a Fourier series whose fundamental period is the period 
of the excitation. Thus, we know that the steady-state current from 
a generator can consist only of a direct-current component plus funda¬ 
mental and harmonic components of the period of rotation of the 
generator. Likewise, we know that the rectified current arising from 
an alternating current must consist only of a direct-current component 
plus fundamental and harmonic components of the period of the excit¬ 
ing current. These statements, of course, assume that the excitation 
is purely periodic, i.s., that it repeats itself exactly. 
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The foregoing are important physical facts that must follow from 
the mathematical phenomenon of Fourier series. Another such conse¬ 
quence is the presence of interference from a broadcast transmitter at 
harmonics of its carrier frequency. 

1.6 Odd and Even Functions. Iff(x) in Eq. (1) is an odd function, 
i.e., if 

K-x) = -fix) (30) 

all the On’e vanish and the Fourier series consists of sirw terms alone. 
We have already come across a case of this kind in the case of Fig. 2, 
(or Fig. 5o) and have found the Fourier expansion [Eq. (21)] to con¬ 
sist of sine terms alone. To prove the truth of this phenomenon in 
the general case, consider the equation 

1 
a„ = - / fix) cos nx dx 

fix) Gos nxdx 

Since 

COB B = cos i—B) 

for any value of B, it follows that 

fix) cmnxdx — — fix) cob nxdx (33) 

provided that/(—a:) = —fix). Substituting Eq. (33) into Eq. (31), 
we see that all the On’s vanish in this case. Furthermore, 

' ao — - f fix) dx = - f fix)dx + - f fix) dx = 0 (34) 
Tj-r rj~w r Jo 

if /(—x) = —fix), so that oo also vanishes. The Fourier expansion of 
an odd function thus consists of sine terms alone. 

Next, let tis consider fix) to be an even function, i.e., 

fi-x)^fix) (36) 

In this case all the b»8 vanish, and the Fourier series consists of cosine 
terms alone, “plus a possible constant. We have seen an examine of 
such a function in Fig. 4 (or Fig. 6b) and have found the Fourier^ 
expansion [Eq. (29)] to contain only cosine terms plus a constant. 

ir y-x 
/(x) cos nz dx + 

- rr Jo 
(31) 

(32) 
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To prove the general theorem, consider the equation 

•+» 
f(x) sin nx (Zx 

Since 

--f 
1 ro I fir 

= - / /(^) sin nx dx + - I f(x) 8m nxdx 
IT J —,r V Jo 

dn 0 = — sin (—0) 

for all values of 0, it follows that, if /(—x) = /(x), then 

f f(x) sin nx dx = ~ Jj sin tix dx 

(36) 

(37) 

(38) 

so that all the K’s vanish. The Fourier expansion of f(x) will then con¬ 
sist only of cosine terms plus perhaps a constant. 

The student will, of course, realize that by no means all functions 
are either even or odd. The Fourier expansions of functions in general 
will therefore contain both sine and cosine terms. It is interesting to 
note, however, that, according to Eq. (la), every function capable of 
Fourier expansion must consist of the sum of an even part plus an 
odd part since 

/(*) 

n— «p n— • 

= ^ + V o« cos nx + ^ b» sir 

n—1 n*! 

o« cos nx + 7 &n sin nx 
n* 1 

even part odd part 

(39) 

This fundamental fact concerning the composition of functions has 
not generally been considered very important by engineers, but in 
the opinion of the author an appreciation of its value is likely to grow. 
It is worth while noting that it follows directly from the dementary 
identity 

/(*) s /(^) + /(~^) 4. /(a?) - /(-«) 
2 2 

(40) 

even part odd part 

Equation (40) also ^ves a very simple means for separating a 
function into its even and odd parts. 

In practical Fourier analysis, it is desirable to choose the orij^ so 
tiiat the funetitm to be expanded is either even or odd, provided that 
the function has 'tiie necessary symmetry to make such a ehoioe pqs* 
nble. The caleulation of dther the b or the a eo^Bkiimts is thus 
eiiminated. 
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SzerdM 

Show that ai&h x is the odd port of e* and ooek x is the vrea part. Draw a 
graph of e*, ooeh x, and sinh x from x >■ —8 to a — +3, and compare with Fig. 9. 

1.6 Functions Whose Expansions Contain Only Odd or Only Even 
Harmonics—Symmetry. The subject of odd and even ftmctions 
discussed in the preceding section should not be confused with the 
subject of functions whose expansions contain only odd or only even 
harmonics. Regarding this latter matter, we shall now prove a useful 
theorem. 

If a function f(x), homing a period 2ir, is such that 

fix + t) = -fix) (41) 

then the function has only odd harmonics in its Fourier expansion. If 

fix + w) = Jr fix) (42) 

then the function has only even harmonics in its Fourier expansion. 
The proof of Eqs. (41) and (42) is as follows: 
Let On and hn be the Fourier coefficients of the nth harmonic. Then 

r fr f2, 

fix) cos nxdx — j fix) cos nxdx + j fix) cos nx dx 

(43) 
r tT rzw 

fix) Bva nxdx = / fix) sin nx dx + j fix) mn nxdx 

cos [n(x + w)] = cos nx cos mr — ^ nx sin mr 
= cos nx (ifniseven) | 
= — cos nx (if n is odd) / 

rin [n(x + *■)] = sin nx cos nr + cos nx sin nx 
M sin nx (if n is even) | 
*= — sin nx (if n is odd) / 

sm nx 
— sin nx 

Let us dedpud^ as case A 

andasoaseB 

f(x + r) « -/(x) 

fiat + r) « + fix) 
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Then 

fi,^) cos nxdx ^ Jj f{x) cos nx dx 
(case A, n odd) 1 
(case B, n even) J 

(49) 

Sip^) cos nx /(x) cos nx dx 
(case A, n even) ] 
(case B, n odd) J 

(60) 

Likewise, 

/(x) sin nx dx = Jj /(x) sin nx dx 
(case A, n odd) 1 
(case B, n even) J 

(51) 

/(x) sin ?ix dx = ^ fj ^ ^ 
(case A, n even) 1 
(case B, n odd) j 

(52) 

Therefore 

a. = P* fix) cos nxdx = 2 fj fix) cos nxdx \ 

bn = fix) sin nx dx = 2 jj fix) sin nx 

(case A, n odd) > 

dx (case B, n even) j 

(53) 

while 

f 2ir 
On = L fix) COS nx dx = 0 (case A, n even) 

bn = L fix) sin nx dx = 0 (case B, n odd) 

We have thus proved that if fix + jt) = —fix), which is called 
case A, then fix) has only odd harmonics, since the coefficients of the 
even harmonics are zero. Likewise, if fix + *•) = +/(x), which we 
call case B, then fix) has only even harmonics. 

We can also separate a function very conveniently into parts con¬ 
sisting of its odd harmonics and its even harmonics, respectively, 
with the aid of an identity similar to Eq. (40), as follows: 

f(x) s + *•) ^ /(a^) - fix + it) 
2 2 

even harmonics odd harmonics 

At this point we wish to introduce some definitions concerning 
symmetry properties. 

D^nitums: A function fix) is symmetrical about b if 

fib + x) « fib - x) 

Thus even functions are ssmimetrical about zero. 

(66) 
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A function f(x) is antisymmetrical about b if 

fib + x) = -fib - x) (67) 

Thus odd functions are antisymmetrical about zero. 
A periodic function fix) of period 2T is mirror-symmetrical if 

fix + r) - -fix) (58) 

An examination of the symmetry properties of the sines and 
cosines of the harmonic frequencies shows that the cosines of the odd 

A Periodic Function 
Having Only Even 

Harmonics 

harmonics are antisymmetrical about +ir/2, while the cosines of the 
even harmonics are symmetrical about +7r/2. On the other hand, 
the sines of the odd harmonics are symmetrical about +w/2, while 
the sines of the even harmonics are antisymmetrical about +t/2. A 
consideration of these facts in conjunction with Fig. 9 allows us to 
draw the following conclusions: 

1. A necessary and sufficient condition that a function have only 
even harmonics in its Fourier expansion is that the actual fundamental 

A Periodic Function 
Having Only Odd. 

Harmonics ^ 

Fig. 7. 

frequency of repetition be twice the fundamental used for formal 
Fourier expansion. As an example, the rectified current of a full- 
wave rectifier shown in Fig. 6 h^ a repetition frequency twice as high 
as that of the sine wave from which it was derived and therefore has 
only even harmonics in its Fourier expansion. 

2. A necessary and sufficient condition that a function have only 
odd harmonics in its Fourier expandion is that it be mirror-symmetrical. 
An example of such a function is the output of a push-pull amplifier 



16 FREQUENCY ANALYSia, MODULATION AND NOISE 

shown in Fig. 7, which consequently has only odd harmonics in its 
Fourier expansion. 

3. While the oddness or evenness of a periodic function may change 
with a shift of the origin, the absence of particular harmonics is 
unchanged by such a shift.* Every radio engineer wiU realise that 
this agrees with his experience, for harmonics have a real existence 
quite independent of any choice of origin. A function that is changed 

+1 ^f(X) 

-W2 0 '/2 3,^ 5^ 

-1 

+1 

-Iv -jr 0 V 2Jr 

-1 ~x‘ 

/(*).^(co«*+22|i£ + 22p+...) 

Fio. 8. A funotion which changes from even to odd by shift of the origui. 

from even to odd by a shift of origin is shown in Fig. 8. Note that the 
harmonic composition is unchanged. (See also Exercise 2 of Sec. 1.9.) 

Exercise 

Give a formal proof of the above items 1,2, and 3. 

1.7 Synunetiy Analysis of a Function. Any fimction fix) that is 
capable of Fourier expansion may be expressed as 

/(*) =^ + 01 cos ® + o» cos 2x + • ‘ • 

+ hi8in» + b*sin2a: + • • • (69) 

* It is only in mcc^tional oaaes that an odd funedon can be made an even funo> 
thm, and vice versa* by a shift in origin as dunm in Fig. 8. A general type ai odd 
funotion aa shown hi Fig. 9m cannot be made even by a daft in origin, nor can a 
general ^e ot even fiincti<m aa riiown in Fig. 9i be made odd (see Ekerdaea 1 
awl8of8ee. 1.7). 
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We have already shown that such a function consists of an even part 

da 
fi(x) * -g + <*i cos ® + a* cos 2® + • • • (60) 

and an odd part 

ft(x) = bi sin ® + b* sin 2® + • • * (61) 

In order to evaluate the a and b coefficients it is necessary to carry 
through an integration process. This may be difficult if the original 
function is not expressed in a convenient analytical form. However, 
/i(®) and ft(x) can easily be obtained from the original function by 
graphical means without any integration operation. This is done 
with the aid of Eq. (40). Thus 

/.(») - (62) 

Mx) = (63) 

Equations (62) and (63) make it possible to plot fi{x) and /*(®) from 
the curves of /(®) and /(—®) by the mere addition and subtraction of 
ordinates. 

It is possible to continue the separation of a function into its parts 
having various types of symmetry by using either the Fourier series 
expansions or functional equations similar to Eqs. (62) and (63). 
The latter are especially suitable for graphical analysis. The forms 
and properties of various symmetrical parts are taWlated in Fig. 9 
and are there illustrated for the case of a general t3rpe of function, 
i.e., one not having any special sjrmmetry. In the figure are shown 
both the functional forms of the various symmetrical components 
and also thmr series expansions. These formulas hold for all functions 
and are therefore useful for reference purposes. 

Exercises 

1. %ow that an odd function having only odd harmonics can be made an even 
function by shifting the origin by an amount r/2, 

t. fflmw that on even function having only odd harmonics can be made an odd 
function by shifting the origin by an amount w/2. 

1.8 Qumge of llie Interval of Expansion. So far we have restricted 
our Fourier oiqumsions to functions defined in the interval from —r 
to 4‘sr or from aero to 2r. We can very eanly transform these expan¬ 
sions, however, for functions defined in the interval from — T/2 to 
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f(x) - (a) - (e) - (c) + (d) - to) + W - (fc) + (1) + to) + (9) 

OD 

Original function s /(x) « ^ -f ^ (o„ cos na; + sin nar) 

n -1 

/(x + t) a* — — ai cos X — 6i sin x 

+ as cos 2x + sin 2x + • • * 

/(—X + it) *= “ — ai cos X + 6i sin * 2 
+ as cos 2x — 6a sin 2x + • • • 

n-1 

/(X) 4-ir) 

2 
I A 

“ ~ + aa cos 2z 
fix) +/(-g) 

2 
oo . 
Y + Ol cos X 

-f 6s sin 2x + • • • + aa cos 2x + • ■ * 

> ai cos X 4* 6i siiL x 
/(g) - fix -t- y) 

2 

4“ Of cos 3x 4* 6i sin 3x + • • • 

Odd Part (Antisymmatrical 
about Zero) 

+ 61 sin 3x 4" * * 
Fiq. 9. Symmetry analysis of a function. 
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/(x) +/(-») 
2 

+ Ol cos X 

+ as COB 2x 4- 

(m) 

/(x) -/(-») 
B &i sin a; + sin 2a; 

+ hi sin So; H~ • • 

(Symmetrical about Zero) 

/(of + ir) -h /( -a? + «•) ao 
--- - ~ - ai cos x 

-f as cos 2aj — at cos So; + • • 

(Antisymmetrical-about Zero) 

/(x -f tt) - /(-g H- it) 

2 

+ 6a sin 2x + 6t sin 3a; + 

—6i sin X 

Even Harmonics of Even Part 
(Double Frequency) 

Symmetrical about 0 and ± r/2 
fix) +/(-g) +/(g -fir) +/(~g -fir) 

■■ ■— + at cos 2a; + at cos 4x + 
iS 

(p) 

Even Harmonics of Odd Part 
(Double Frequency) 

Antisymmetrical about band ±^/l 
fix) -fi-x) +f(x+T) 

4 
** 6a sin 2a; + 64 sin 4a; 4* * • 

Odd Harmonics of Even Part 
(Mirror Symmietrical) 
Symmetncal about Zerot 
Antisymmetrical about ± w/2 

fix) -fjx+T) 4-ir) 

m 0} 008 » 4* <*• 008 3as 4“ • * • 
Fio, 9. iCoftHned) 

Odd Harmonics of Odd Part 
(Mirror Symmetrical) 
Antisymmetrical about Zero, 
symmetrical about ± e/2 

fix) ^fi-^x) - fix +T) 4-/(-a;4-y) 
4 

■■ 61 sin a; 4“ sin 3ap 4“ * * 
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+r/2 or from 0 to T, where T is any constant. In this case we should 
have 

/(®) = ^ + ai cos Y a: + 02 cos 4 ^ X + • • * 

‘IT StT 
4- o„ cos 2n ^ X + • • • + 61 sin Y ® 

+ ?>* sin 4 ^ X + • • • + sin 2n ^ X + • • • (64) 

where 

2 

b« = |/^'^/(x)8in?^dx (67) 

The student can easily develop these formulas just as the original 
formulas were developed earlier in the chapter. 

In a particular interval we are thus able to expand a function J{x) 
into different Fourier series, having different fundamental periods 
(see exercise below). However, in the case of a periodic function, it is 
of course only possible to use the same Fourier series to express the 
value of the function over the whole range, provided that the period of 
the function is the same as the fundamental period of the Fourier 

series. 
It may also be proved, although we shall not prove it here, that, 

/or a given fundamental 'period^ a Fourier expansion is unique, t.s., 
that for a given function there is only one possible set of a and h coef¬ 
ficients for a given fundamental period. 

Ezerdse 
Expand the saw-tooth function 

/(«) "■ m (from —«• to +r) 

toto a Fourier series. 
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Anwfer: 
f(x) -• 2(sin a5 — H sin 2a; + K sin 3a; — sitt 4» + • • • ) 

If —ir/2 to +ir/2 is used as the fundamental period of expansion, the Fourier 
series will be 

f(x) ■■ sin 2aj — ^ sin 4x -f 4 sin 6a; 4* • * • + (—I)**"* - sin 2nx + • • • z o n 

In the range from —t/2 to +ir/2 there are thus two Fourier expansions. The 
latter expansion, however, does not hold outside the range --7r/2 < x < 4 ir/2. 

1.9* Complex Form of Fourier Series. The Fourier expansion (1) 
or (la) and its auxiliary formulas (6), (12), and (13) can be put into 
much simpler and more elegant form with the use of complex expo¬ 
nentials. In order to do this, we shall first express the general term of 
Eq. (1), namely, 

On cos nx + bn sin nx 

in complex exponential form, using the exponential expressions for 
the cosine and sine.^ Accordingly, 

^—inx ^nx ^ 

On COS na; + 5n sin tm; = an-g-^ ^- 

_ _L ®" ■+■ r-inx 

~ 2 ^ 2 
(68) 

Coneequently, if we write 

/T( _ On — jbn 
(69) 

a» + jbn ’ 
O-n - 2 (70) 

tuid 

(71) 

^ These expreseiotts follow from the Euler identity 

fat ooa 9 4 i sin 
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Eq. (la) becomes 

Six) = (72) 

We note that the summation is taken over negative as well as positive 
integral values of n, including also zero. 

The form (72) is certainly very simple, and we shall now show that 
there is also a simple formula for determining the C’s from the original 
function /(i). To do this we substitute the values of o« and bn from 
Eqs. (12) and (13) into Eqs. (69) and (70) and thus obtain 

Cn = °** 2~" ~ ^ f f(3>)i<iosnx — jsinnx) dx 

1 /■+' 

C-n = ^ J /(a:)(cosna: + jsinnx) dx 

1 /*+' 

Furthermore, from Eqs. (6) and (71), 

(73) 

(74) 

(75) 

If we let n take on all positive and negative integral values, including 
zero, then the three formulas (73), (74), and (75) are all of the same 
form, namely, 

Cn = ^ J^yix)€-i'^dx (76) 

Equations (72) and (76) are thus the only two formulas necessary for 
the expression of a Fourier expansion in complex form. Compared 
with them, the usual trigonometric expressions (1), (6), (12), and (13) 
seem clumsy indeed. 

The simplicity of the expression (72) arises from the fact that each 
harmonic component is expressed in it as the sum of two conjugate^ 

^J£ z » a ’h jb IB A complex quantity, then a — is called its complex con¬ 
jugate quantity and is written as z* (or 2). The following formulas involving 
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complex quantities, i.e., 

^nx 4. 't «->■>« 

= an cos nx + K sin nx (77) 

The sum of these conjugate complex quantities is real, but the complex 
form allows the information concerning the harmonic phase angles to 
be contained in it without the necessity of expressing it explicitly. 

If the interval of expansion is changed from — tt to +ir to a new 
interval 0 to T, as is done in Sec. 1.8, then formulas (72) and (76) 
become 

na--f 00 

fix) = ] 
.2x71* 

> cj r 00
 

N.
—

/ 

n — — 00 

11 
fT .2m* 

/ /(x)* ' dx (79) 

The complex form of the Fourier expansion is often preferable to 
the trigonometric form in practical as well as in theoretical work, 
especially in problems involving differentiation and integration. To 
illustrate the complex form we shall now work some examples. 

Exercises 

1. Write the formulas corresponding to Eq. (78) and (79) for the interval Ti to 
T2 instead of 0 to 7". 

2. Show that if the origin is shifted in the positive direction by an amount aJi, 
the magnitude of each Cn in the complex Fourier expansion of any function is 
unchanged, but its phase is decreased by an amount 2imxi/T. This is a general¬ 
ization of conclusion (3) of Sec. 1.6. 

1.10 Examples, a. Square Wave, In order to compare the use of 
the complex form of Fourier series with the trigonometric form, let us 
solve the example already worked out in Sec. 1.3a, but this time by 

complex conjugates may be found useful in solving problems in various parts of 
the book. 

(1) z • z* - a* + 6* 
(2) z + ** * 2a 
(3) z - z* - i2h 
(4) zj 4* *3 " (21 4* 
(6) zt-zj « (zi-z,)* 

(7) (z*)* - z 
(8) (z*)- - (z-)* 

(10) If z is a real quantity, then z* *■ z 
(11) If z is a pure imaginary, then z* ■■ —z 
(12) (E€^4)♦ s where R and ^ are real 
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using the complex form. In this case (see Fig. 2), the fimction is 

f(z) =5= +1 (from —T to 0) 
fix) « — 1 (from 0 to ir) 

Substituting these values into (76), we get 

f{x)€^^ dx 

dx 

10 

1 . -I 
2rJo 

dx 

2Tjn + I 2Tjn 

1) 
-1 

2rjn 
(2 — — e-^"') (80) 

(81) 

(82) 

(83) 

(84) 

From £q. (80) it follows that if n is an even integer or zero^ 

C« = 0 
once in that case 

^nw ss ss 1 

On the other hand, if n is an odd integer, 

SO that 

c 
* 2rjn jm 

Substituting Eqs. (81) and (84) into £q. (72), we get 

, 2/«#* - «-^A 2 
j—) 

2 /e^** - 

5ir\ i ) 
—4/. , sinSx , ^6x , \ 

Equation (86) is the same as Eq. (21) so that the results obtained 
are the same in mther case. The actual manipulation vdiien the oom- 

* Tp general answer at the right of Eq. (80) beoames indetecminate when 
» » 0. However, in thia ease we lefw bade to the (xiginal integral and get 

" S /-Ir ^ ^ hr f "^h fo d* ■■ 0 

(86) 

(86) 
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plex form is used is somewhat simpler since sines and cosines need not 
be handled separatdy. Furthermore, the complex form (85) is fre¬ 
quently more convenient for practical use than the trigonometric form 
(86) in the solution of problems. 

b. Pulses of Arbitrary Length. As another example, let us find the 
Fourier composition of a series of pulses of arbitrary length. Such a 
series of pulses is shown in Fig. 10a. These pulses have a length 
tt — ti and are repeated at intervals of length T. 

Fio. 10. Properties of periodically repeated narrow pulses. (If — fi)» 
then for each integral value of n, the function in Fig. 10a has a Fourier component 
whose amplitude is given by the curve in Fig. 10&.) 

To find the Fourier composition of this series of pulses we use 
Eqs. (78) and (79). We shall change the variable from x to t, since 
the independent variable is usually time when this problem is met in 
practice. 

Thus 
fit) = A (from it to it) 

and 

/«) = 0 

elsewhere in the interval from 0 to T. 
Substituting these values into Eq. (79), we obtain 

(87) 



26 FREQUENCY ANALYSIS, MODULATION AND NOISE 

Therefore, the Fourier expansion is 

XA ximu 2imi\ 

n«« — 00 

\ .2im(<—<j) 2vn(,t — t\) —/i) 

Wn^' ’ ■■ ' +•“' ' 1 

= ^0 + 
X^['“ 

27rn(< — U) . 2Trn{t — <i) 

where, according to Eq. (87), 

A dt ^ 
A{t2 O 

To get the harmonic magnitudes of /(O we expand Eq. (89) to get 

m * Co + 
. 2irnt %cnh . %taU 

sm cos -y-cos -y sm 

00 
„ , V —A. \( 2wnt2 2jrn<A . 2jrn< 

- + X-sr K"”-T--j T- 

(. 2irntt . 2jmt\ 2fimt] 
sm -Bin-jr-) cos I 

00 

“ Co + ^ I -2 sin Y (<2 + «i) j sin - <0 j sin 

- 2 sin (<» - «i) j cos (<* + ^i)] ®o® 

= Co + ^ ^ jsin (*• ~ j (91) 

. 2)rn/ 2im<i , ^nt . 2mti 
- sm cos -y- + cos -jr sm "y" 

2irn<2 2jrn<A . 2jrn< 
cos -y-cos -f-j sm -jT 

where 

2im tt + <1 
r 2 
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When <1 = — T/2 and ti = 0, Eq. (91) reduces to 

TO- 1 

where m takes on only odd values. This result agrees with Eqs. (21) 
and (86), the direct-current component being, of course, different by 
A/2 and the value of A in Eq. (93) being equivalent to 2 in Eq. (86). 

According to Eq. (91) the magnitude of the nth harmonic is the 
absolute value of 

^sin^ih-h) (94) 

A case of particular interest occurs when the repetition period T is 
much greater than the pulse length tz — ^i. A diagram showing the 
frequency distribution of harmonic magnitudes in this case is shown in 
Fig. 106, where the magnitude given by the expression (94) is plotted 
as a function of n. The regions marked (—) in the diagram just 
indicate a 180-deg phase change; but as far as magnitudes are con¬ 
cerned, these portions of the curve may be replaced by the dotted 
line. 

The distribution shows a principal maximum at zero frequency and 
subadiary maxima when 

1 T , k tl /ACM 
n = ---7 tan xn —— (96)^ 

IT tz — 1 

Miiuina, of zero amplitude, occur when 

T 
n = a multiple of -- (96) 

»* “ n 

Exercises 

1* Find the Fourier expansion of the pulse shown in the figure below, and dis¬ 
cuss its properties. 

^ The function sin x/x has amplitude maxima when x tan x. This can 
readily be shown by differentiation. 
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2. In Fig. 10a, move the y axis to the center of one of the pulses so that U —fs* 
This makes the series of pulses an even function. Derive the Fourier expansion of 
this function, and note how simply the expansion is obtained. In practice, it is 
generally desirable whenever possible to locate the y axis so that the function is 
either even or odd in order to simplify the Fourier expansion. 

1.11 Average Value of the Product of Two Functions Eiqpxessed in 
Terms of Their Fourier Consitants. Let/(a;) and g(x) be two functions 
expressible in Fourier series in the interval from 0 to 2ir as 

f(^) = ^ ^ cos nx + bn sin nx) 

and 
n»l 

A. V 
?(*) ~2 2j 

n* 1 

(97) 

(98) 

Thoa the average value of the product of the two functions in the 
interval from 0 to 2*- is 

n — 1 

That Eq. (99) is the expected answer can readily be seen by substitut* 
ing Eqs. (97) and (98) into the integral in Eq. (99) and integrating 
term by term. We then have integrals of the forms 

OpB, cospa; sin qxdx 

OpAq cos pa; cos QX dx 

qanjaswigxdt 
JrSr 

^ iiaoa cos nx dr 

OtBni&nnxdst 

and 
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These aU vanish except 

cos* tucdx = vanAn 

f 2w 
/ hnBn sin® nxdx ^ irbnBn 

and 

(100) 

(101) 

The foregoing indicates the truth of Eq. (99). A complete proof 
would require a demonstration of the convergence and integrability 
of the product series. Such a proof may be found in Carslaw’s text, 
to which reference has previously been made.^ We shall accordingly 
assume the truth of Eq. (99). The student can easily show that the 
equivalent of Eq. (99) in complex form is 

+•• 

2irjo - 
f(x)g(x) dx (102) 

where 

- 2 

On + jbn 
^ 

and 

and 

✓V _ An jBn 
On 2 

— An + jBn 

As a corollary to Eqs. (99) and (102) we have 

1 Ti 
2r7o ' 

lKx)]^dx £? 4- 
4 2 

or 

00 

(o5 + bl) 

5X 
CnC-n 

(103) 

(104) 

The foregoing theorems will be of value when we discuss effective 
values of currents and power consumption in the next chapter. 

Bzordse 

Prove that, for a given fundamental period, the coefficients of a Fourier expan> 

aion are unique. 

1.12 Convergence of Fouriw Series—Differentiatioa and btegra- 
tioo.* In all problems of intOTest in radio the Fourier series arising by 

* CaasiMW, H. S., “Theory of Fourier Series and Integrals.” 
* Chapter X of Guillemin’s “Communication Networks,” Vol. I, contains a^ 

ticRud informatioa concerning Fourier series, especially regarding summation 
finmulas. The autiior is indebted to Guillemin’e book for valuable material used 

in the present timpter. 
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expansion of a function can be depended upon to converge. How¬ 
ever, not all, by any means, converge with the same rapidity. Thus 
Eq, (21) converges as 1/n, while Eq. (29) converges as 1/n^. In the 
study of infinite series it is found that a series must vary with w to a 
higher power than the first in 1/n in order to ensure absolute conver¬ 
gence. On this basis, the convergence of the series (21) is not ensured 
by the coefficients but depends on the properties of the sine factors 
as well. This difference between series in the rapidity of convergence 
has an important bearing on their differentiability. 

Since there are well-known formulas both for differentiating and 
integrating cos nx, sin nx, and it is always possible to perform for¬ 
mally both differentiation and integration of any Fourier series. How¬ 
ever, differentiation of cos nx, sin nx, or with respect to x will 
introduce a factor of n multiplying the corresponding term and will 
thereby decrease the rapidity of convergence. In an analogous man¬ 
ner, integration will make the convergence more rapid. Consequently, 
the series of derivatives of the Fourier terms will not necessarily con¬ 
verge. On the other hand, the series of integrals of the Fourier terms 
will always converge to the value of the integral of the function from 
which the series was derived. 

The foregoing does not mean that Fourier series cannot be differen¬ 
tiated, but rathen that when they are differentiated the question of 
convergence should be investigated. 

Exercise 

Differentiate the series (29), and compare the result with Eq. (21). Is this 
result to be expected from a comparison of Figs. 4 and 2? 

1.13 Hannonic Analysis—Gibbs’s Phenomenon. Following the 
terminology used in music, all terms of the form cos {nx + 0n) are 
so-called **harmonics” of A\ cos {x + ^i), the latter being called the 
fundamental term. The frequencies of the terms are likewise called 
the harmonic and fundamental frequencies, respectively. 

It is often an important technical problem to ascertain the harmonic 
composition of a given function of interest, say a voltage or current 
wave form. If the wave form is periodic and is given or can be trans¬ 
lated into electrical form, its composition can be determined with the 
aid of electrical apparatus^ containing tuned circuit filters of variable 
frequency. This apparatus gives the amplitude and frequency of the 
Fourier components. It does not give the phase, but this is often not 
important. 

^ Such as the wave analyser manufactured by the General Badio Company. 
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A numerical method of determining approximate values of the early 
Fourier coefficients in the analysis of a curve is also available and 
may be found described elsewhere.* 

Furthermore, there are several types of mechanical machines avml- 
able, called harmonic analyzers. These machines^ give both amplitude 

yrx-2 -) (“■’<x<+») 
Fio.. 11. Graphical representation of terms in a Fourier series, and sums of terms, 

showing appearance of Gibbs’s phenomenon. 

and phase of the harmonics of a drawn curve. In one apparatus of 
Michelson and Stratton, harmonics up to n = 80 could be determined. 
The apparatus can also be used to synthesize a curve, if the harmonic 
composition is ^ven. 

A rather curious phenomenon was noted when the apparatus of 
Michelson and Stratton was used to synthesize the curve given by a 

* See SoKOunKOFF, I. S., and E. S. Sokolnikoff, “ffigher Mathematics f<nr 
En^em and Physicists,” pp. 645-550. 

*See Bush, VAmrKVAB, Harmonic Analysis, Encyclopedia Brifannica, 14th 
ed., for a description of harmonic anatyaers. 
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series such as Eq. (21). As the higher harmonics were added, the 
synthesised curve approached the form of the original function, except 
at points of discontinuity. Here little towers appeared, as shown in 
fig. 11. As more harmonics were added, these towers pushed closer 
to the points of discontinuity, so that the infinite series ultimately 
approached the form of the function, except for these extensions at 
the points of discontinuity. These irregularities are called Gibbs’s 
phenomenon in Fourier series, for it was first shown by the American 
scientist J. W. Gibbs, after the discovery of Michelson and Stratton, 
that the phenomenon is a consequence of Fourier expansion and is not 
a mechanical error in the apparatus. It may be shown that if D is 
the magnitude of the discontinuity, such as 

/»(*) -hix) 

in Fig. 3, then the length of the extension is in general 0.08952),^ for a 
function whose period is 2*-. 

Gibbs’s phenomenon is an interesting example of the peculiarities 
that may occur in limiting processes. On page 80 there is a further 
discussion of the little towers that characterize Gibbs’s phenomenon. 
It is there pointed out that these towers are actually equal to the 
negative of the sum of the terms beyond the last term used in making 
the graph of the function from its Fourier series. As the number 
of terms used is increased, the total area of a tower decreases; but, 
instead of decreasing in height, the tower becomes narrower. How¬ 
ever, this is not surprising; for as the limiting process progresses, 
the tower represents higher and higher frequency terms. The limit¬ 
ing process of summing the Fourier series thus has no necessary effect 
on the height of the tower even though it continually decreases 
its area. 

It is riiown in Chap. IV that Gibbs’s phenomenon is of technical 
importance because of its relation to “ oven^oot ” and sharp cutoff. 

1.14 Forffier Discussion. Before going on to the more practical 
radio apjdications of Fourier series, a few general remarks are in order. 
In the first place it should be pointed out that series expansionsof 
gmeral functions are possible in Wms of many other types of functions 
besides ones and cosines. In fact, series expansions are possible in 

* Cabbuw, H. S., “Foiirier Series sad Integnds,” p. 294. The timiting vshte 
of the exteaskm has sa exact value [(2/r)Si(r} — 1]2>. The foaotiHi 8i(«) is 
dsSaed aad discussed ia Chi^. IV. 
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terms of practically any complete^ set of orthogonal functions, as 
well as other sets of functions.^ However, the predominant impor¬ 
tance of Fourier expansions, in mathematics, is due to the simplicity 
of sines and cosines. Furthermore, in all physical phenomena, 
including radio, harmonic vibrations (t.c., sines and cosines) are the 
only kind that always retain their form in every linear system.* Thus 
in electrical circuits, harmonic vibrations retain their form in any 
circuits in which L, R, and C are independent of amplitude and time. 
Finally, regarding radio applications, because of the exact periodicity 
of harmonic vibrations they are the only ones suitable for the series 
expansion of the periodic functions so important in radio. 

In closing this chapter, it will be of interest to note a passage from 
Rayleigh’s ‘'Theory of Sound” concerning the importance of harmonic 
vibrations in acoustics. 

Seeing now that notes are usually compound, and that only a particular 

sort called tones are incapable of further analysis, we are led to inquire what is 
the physical characteristic of tones, to which they owe their peculiarity? 
What sort of periodic vibration is it, which produces a simple tone? Accord¬ 

ing to what mathematical function of the time does the pressure vary in the 
passage of the ear? No question in acoustics can be more important. 

The simplest periodic functions with which mathematicians are acquainted 
are the circular functions, expressed by a sine or cosine; indeed there are no 
others at all approaching them in simplicity. They may be of any period, and 

admitting of no other variation (except magnitude), seem well adapted to 
produce simple tones. Moreover it has been proved by Fourier, that the most 

general single-valued periodic function can be resolved into a series of circular 
functions, having periods which are submultiples of that of the given function. 
Again, it is a consequence of the general theory of vibration that the particular 

type, now suggested as corresponding to a simple tone, is the only one capable 

' The fact that a complete set of orthogonal functions is generally required for the 
expansion of a function makes it clear that these series expansions (including 
Fourier series) are a distinct phenomenon of mathematics. Thus it cannot be 
supposed that the possibility of a Fourier expansion is just due to the fact that an 
infinite number of terms are available so that any function can necessarily be 
matched by juggling the coefficients. For example, the set of sines and cosines 
would still be infinite in number if sin Zx were removed from the set, but it would 
not be possible to expand the function shown in Pig. 2 or Fig. 6o if sin 3a; were 
removed from the set. 

• See Whxttamb and Watson, '^Modwn Analysis,” Chap. VIII. 
* This is due to the fact that sin z and cos z are of identical shape and that 

they may be treated as the real and imaginary components of The latter Is 
xemark^e in that its absolute value is independent of z and is the same as that 
of its derivative or integral of any order. 
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of preserving its integrity among the vicissitudes which it may have to undergo. 
Any other kind is liable to a sort of physical analysis, one part being differ¬ 
ently affected from another. If the analysis within the ear proceeded on a 
different principle from that effected according to the laws of dead matter 
outside the ear, the consequence would be that a sound originally simple might 
become compound on its way to the observer. There is no reason to suppose 
that anything of this sort actually happens. When it is added that according 
to all the ideas we can form on the subject, the analysis within the ear must 
take place by means of a ph3rsical machinery, subject to the same laws as 
prevail outside, it will be seen that a strong case has been made out for regard¬ 
ing tones as due to vibrations expressed by circular functions. We are not 
however left entirely to the guidance of general considerations like these. In 
the chapter on the vibration of strings, we shall see that in many cases theory 

informs us beforehand of the nature of the vibration executed by a string, and 
in particular whether any specified simple vibration is a component or not. 
Here we have a decisive test. It is found by experiment that, whenever 
according to theory any simple vibration is present, the corresponding tone 
can be heard, but, whenever the simple vibration is absent, then the tone 
cannot be heard. We are therefore justified in asserting that simple tones 
and vibrations of a circular type are indissolubly connected. This law was 

discovered by Ohm. 

Fundamental Formulas of Chapter I 
For the interval —x < x < +x, 

w 

f(x) ^ ^ (cif» cos na; “h &n sin nx) 

n*l 

— ^ (ai cos a? + sin a;) -f (oi cos 2x -f h% sin 2x) 

+ • * • + (on cos na; + 6« sin nx) + • • • 

^ -4- Ai cos (x 4“ ^i) 4* Ai cos (2x -h 0*) + • • • 

4- An cos (no; 4- 4- • • • 
+ - 

- 1 C../- 
flM — 00 

(1) 

1 
Oo ■* “ 

^ d 
dx~2Ct (2) 

1 

J 
^ ^*/(*) cos «* (i* — C, + C_« (8) 

»J 
/(*) mxt nx dz - j(Cn - C_) (4) 

A* - V oj + h* - 2 (8) 

tan““^ («) 

where 
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C-« - ^»+i^ - ^ pjf(x)e<’^dx - c: 
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For the general interval Ti < x < T^y 

../X oo . / 2ira; , 1 ._ 2vx \ 
f(x) - -g- + (^a. cos + 6. Bin 

, , ( 2vnx , , 2irna; \ 
■f • • * + (fln COS + o„ Sin ijT-zrfl) 

CO 

flo , V / 2irnx , , 2irnx \ 
“ 2 2 (^a»coB y^ _ y^ + b»sm y^ _ yj 

where 

n-l Z. 2rnx 
CjTt-Tt 

Cq '■ 

0>n 

bn' 

dx 

2imx , 
cos t;;-7^dx 

TT- Ti Jt, T2 - T, 
2 X . 2vnx 

1 f r» . 2imx , 
” ft~ f[ jTi 'r.-ri ** 
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(7) 

(8) 

(9) 

+ • • • 

(10) 

(11) 

(12) 

(13) 

(14) 



CHAPTER II 

RADIO APPLICATIONS OF FOURIER SERIES 

2.1 The Full-wave Rectifier. As a simple example of a radio 
application of Fourier series, we shall first consider the full-wave 
rectifier. In Fig. la is the schematic diagram of a full-wave rectifier, 
and in Fig. 16 is its simplified equivalent circuit, the effect of circuit 
reactance being neglected. During one half of a cycle of the impressed 
voltage, the plate of diode 1 is positive with respect to its cathode so 
that the diode conducts. During the next half cycle, the plate is 
negative with respect to the cathode so that the diode acts essentially 

r 
E^sin «it 

L 

Rt-Load Resistance 
rp-Resistance of Diode and 

One Side of Transformer, 
yia. 1. A full-wave rectifier. 

as an infinite impedance and does not conduct. Therefore the coiv 
rent through diode 1 consists of half sine waves as shown in Fig. 2a. 
At the same time current goes throu^ diode 2 during the alternate 
half cycles as diown in Fig. 26. Since both these currents go throuf^ 
the load Rl, the current through the load is that of a rectified sine 
wave as shown in Fig. 2c. 

It is an important practical matter to know the magnitude of the 
direct-current oomponmit of the rectified cuirait gdng throu|^ and 
also the magnitude of the hannonies. These can readily be deter- 

M 
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0 
Fig. 2. Currents in various branches of a full-wave rectifier. 

mined by expanding the function > representing the rectified 
ICl r Tp 

current, into a Fourier series. Using Eqs. (6), (12), and (13) of Chap. 
I, we get 

1 rui^2w 1 t <at* 
, = i / d{o>t) = i / 

E sin (at 

0 + Tp 

+ COS 0)t = -rs—i—\ ( ~ ut + cos ut ) 
T(xvl “T ^p) \ «^»0 / 

= -T (1 + 1 + 1 + 1) = (1) 
’t{Rl + Tp) v(Rl + r,) 

1 A 

j rtat^2r 
a„ = - I /(«<) cos ntijf d(«f) 

1 f’ E SOD. at cos nut ,, 
“ - I -p j_ z- *• Jo rti T 

-E 1 
T(i?x + r„) 2 

1 ICOB [(n + l)a)<] _ cos [(n — !)<«><] | 
2l n + 1 n — 1 ) 

f*' —E sin ut cos nut ,, .. 
. —rt+t;— 

2 i + Tp) 2 

1 f cos [(n + !)«)<] _ cos [(n — l)a)<ll 
n + 1 n — 1 
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-E 

2tr(«ii + 
+ _L_ + _i_L- 

rp)\ n + l~n — 1 n + l~n — 1 n + 1 

-I-1-1-1-^^ 
~n — 1 n + l~ n — 1/ 

-iE . 
-75—I-TT-j-rr (if n IS even) 
ir(ftx, + r,)<n* - 1) 

-E /__!_1_1__JL_1 
2ar(i?x. “I" fp) \n -HI ^ — 1 n \ n — 1 n-f-l 2»-(i?x. + Tp) 

__J_^+_J_^ = 
n — 1 n + l^n— 1/ 

0 (if n is odd) (3) 

Since the function in Fig. 2c is clearly an even function, we know by 
Sec. 1.5 that the h coefficients must vanish. Therefore we have 

E sin Qit ^ 2E 
Rl + Tp v{Rl + Tp) 

/ 2 cos 2ft 
V 22-1 

2ft7^ 2 cos 4t(at 
1 42 - 1 

The direct-current component of the rectified current is thus 

2E 

Tc(Rl + Tp) 

We note that there are no odd harmonics, a characteristic that 
would follow even without calculation from the fact that the current in 
Fig. 2c has a frequency of repetition of (a/ir as well as (a 12m* 

Exercises 

1. Analyze the full-Tvave rectifier problem, using the complex form of Fourier 
series instead of the trigonometric form. 

2. The current from a half-wave rectifier has the approximate wave form shown 
in the figure below, which is a series of half sine waves. Find the magnitude of 
(a) direct current; (6) fundamental; (c) second harmonic. 

2.2 Saturated Amplifiers. A common occurrence in amplifiers is 
cutoff or saturation of signal at a given level. Such a situation is 
depicted in Fig. 3. This condition causes a certain amount of har- 

♦ For an excellent analysis of a variety of types of rectifiers see ‘‘Electrmiics” 
by Millman and Seely. 
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monic generation and a certain amount of signal loss at the funda¬ 
mental frequency. We shall now calculate these amounts. 

Suppose that the signal in Fig. 3 is^ A cos o)t except where satura¬ 
tion takes place and that saturation takes place at the level A cos ^ 

Fig. 3. The phenomenon of saturation. 

from — to +<l>. Analyzing the resultant signal in a Fourier series, 
we have 

Uo 

1 /•+» . J 
= - / f(o)t) d(o3t) = - / A cos ootdicot) + - / A cos <l>d(o>t) 

sin 
-0 

+ {(J3t) COS 0 

+ 

+ sin o)t 
* — 0 r) 

A cos d{(at) 

= — sin cos <^ + 0 cos <l> — sin 
TT 

2A 
= — (</» cos (p — sin (5) 

1 a„ = - I f(wi 
, ^ J —r 

t) COS d(a)0 

A COS (at COS d((at) + 1 f'^* A COS <l> cos nost d(ut) 

+ A COS (at COS TUat d{(at) 

sin [(n + l)w<] . sin [(n — l)co<] 
2(n +1) 2(n ~ 1) 

* The choice of time origin does not affect the relative magnitudes of harmonics 
and can therefore be chosen to simplify the calculation of Fourier coefficients. We 
have accordingly used the form A cos cdf which makes the function even every¬ 
where, including the region of saturation, thus eliminating the calculation of sine 
coefficients. 
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A COS 4> (sin 7t«A[' 

n A 
, ^ /sin [(y 

2(« 
_ A r — sin (n + 1)^ 

“ ir L 2(n + 1) 

sin [(n + l)wi] , sin [(n — 1)«<]| 
2(n + 1) ^ 2(n - 1) 

l)4> n sin (n - 1)^ 
2(n - 1) 

, A cos 6/aianA , sin n<t>\ 
-^-T-\rir + -ir) 

4 fn sin (n + 1)« , n sin (n - I)*! 
T L 2(n + 1) 2(n - 1) J 

=r ^ f— sin (n + 1)0 , 2 cos ^ sin _ sin (n — 1)^1 
T I n+1 n n—ij 

sin (n + 1)^ , ^ sin (n — 1)^ 
2(n +1) ^ 2(n - 1) 

2 cos 0 sin = sin (n + 1)0 + sin (n — 1)0 (7) 

we obtain 

— ^ rsin (n + 1)0 sin (n — 1)0] 
^ TT L + 1) n(n — 1) J ^ ^ 

When n =s 1^ Eq. (8) breaks down and we must return to the 
original Fourier equation to obtain 

1 1 P 
ai « - / A cos* fat d(<at) + “ I A cos 0 cos (at d{(at) 

T J —, W J —^ 

+ ^ y* A cos* (at d((at) 

~ T V2 

cos sin in <at\ cos 0 / . 
-j H-^ (sm <at) 

— 0 . T COS 0 sin 0 
2 ■+‘2 2 

«|. ^ cos (at sin j' 

“) 
i ^ COS 0/* 
H-^ (sin 0 + sm 0) 

+ i(|_| + 0-S-^) 

{*■ — <H- (sdn ^ 008 
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As a result of Eqs. (5), p. 39 (8), and (9), we have 

A A 
Signal = fiat) = — (^ cos ^ — sin H— (t — ^ + sin ^ cos coswf 

T T 

+ sin (n + 1)0 
n(n + 1) 

sin (n — 1)^1 
n(n — 1) J 

cos nut (10) 

If there were no saturation, the signal would be 

A cos ut (11) 

Comparing this with Eq. (10), we see that saturation introduces a 
direct-current component of amount 

(4> cos 4> — sin 

It causes a reduction of fundamental of amount 

Ail 
T — ^ + sin 0 cos ) 

Finally, it introduces harmonics of amount 

SB 

V fsin (n -I- 1)4> sin (n - 1)<^1_, 
47L~vifr;+i)-„(„-!) 
fi-2 

In the special case that 

Eq.‘ (10) gives the output of a half-wave rectifier, but with reversed 
mgn. Thus the output of a half-wave rectifier such as is shown in 
Fig. 4 is 

Signal 
A A 
--35 COS ut — 
r 2 

(—1)^ cos nut 
(n + 1)(» — 1) 

(12) 

The algebraic ogns in front of the harmonics in Eq. (12) do not 
have much dgnifioance since they represent phase angles that change 
with a shift in the origin chosen for the time axis. 

Tlie saturation of actual amplifiers is, of course, never as perfect 
as shown in fig. 3. The above analyris, however, pdnts out the 
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general features of the phenomenon even when the saturation is 

incomplete. 
At the outset of this section, it is stated that saturation causes a 

certain amount of signal loss at the fundamental frequency. This 
statement, and in fact the entire analysis leading up Eq. (10), referred 
to the case shown in Fig. 6a, where part of a given signal is removed by 

cos 6>t 

A /\ /\ 
0 

Fig. 4. Output of a half-wave rectifier. 

limiting. Suppose now that we consider the somewhat different cases 
shown in Figs. 66 and 6c. Here the signal is limited by the peak sig¬ 
nal amplitude that the system will pass. In Fig. 66 the amplitude is 
limited only in the positive direction. In the two cases shown in 
Figs. 66 and 6c the amount of fundamental actually increases as 
the signal becomes saturated. 

The case of Fig. 6c (considered in Exercise 2 below) is of the most 
practical importance. In this case, for complete saturation (f.e., 

(a) (b) (c) (d) 
Fio. 6. Various types of limiting. 

a square wave), the signal at the fundamental frequency becomes 
(4/ir)il, which is an increase of about 27 per cent.* In addition, the 
decrease in plate dissipation in the latter case actually makes it pos- 
rable to use even larger values of A. For these reasons, a push-pull 
power stage of a radio transnoitter is usually operated as Shown in 
Fig. be, rather than as shown in Fig. 5d. 

1 - 62% 

* Hie power mcreeae is 
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Exercises 

1. Find the harmonic composition of the output of the asymmetrical limiter in 
Fig. A. 

2. Find the harmonic composition of the output of a symmetrical limiter, f.c., 
when d « ^ in Fig. A, 

2.3 The Generation of Harmonics by Second-power and Higher- 
order Distortion Terms—Sum and Difference Tones. If a vacuum- 
tube amplifier is operated over a plane portion of its characteristic 
ip, Bp, Bg surface, the variational component of the plate current is 
exactly similar in shape to the grid voltage. If the plate load is 
resistive, a grid voltage E cos a>t will then give rise to a plate current 
expressible as / cos o)L On the other hand, if there is a reactive com¬ 
ponent in the plate-circuit impedance, then the expression for the plate 
current must include a phase change and thus becomes I cos (<ot — <f>). 

In the foregoing case, we say that the tube is being operated over 
a linear portion of its characteristics. By this we mean that, for a 
resistive load,^ the variational plate current ip may be expressed as a 
linear function of the variational grid voltage Bg, so that 

^ ip = tto + di^g (13) 

As long as only small variational grid voltages and plate currents 
are under consideration, the above relation (13) will usually hold good. 
However, when the variational grid voltages and plate currents are 
large, Eq. (13) is no longer a sufficiently good approximation and 
the plate current must then be expressed as a power series in terms of 
the grid voltage,^ i.c., 

ip = Uo + aiBg + azBl -|- ascj + • • • (14) 

^ We shall limit our analysis to the case of a resistive load in this section. For 
reactive loads, see the exercises at the end of the chapter. 

* In a given experimental setup, ip may be expressed as a function of Bg alone, 
since variations of Bp that occur as a consequence of variations in ip are a property 
of the setup and are therefore included in the constants oo, ai, at, etc. 
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Equation (14) means that for a given setup (t.e., given circuit constants 
and supply voltages) having no reactive components^ the instantane¬ 
ous value of the variational plate current depends only on the instan¬ 
taneous value of the variational grid voltage. 

Now suppose that a variational grid voltage 

e, = E cos at (15) 

is applied 

i, = 

to the system. Then the variational plate current is 

Oo + aiE cos ut -|- OjE* cos* wt -f aJS* cos* «<+••• 

^Oo -f- ^ E* -f- • • E* 

-f- jB* -f- ■ ' 

+ -H • • •) cos -h • • • (16)* 

The right side of Eq. (16) is a Fourier series, although we have not 
arrived at it by the conventional method of using Eqs. (6), (12), and 
(13) of the last chapter. The fact that only cosine terms can be 

Fig. 6. Nonlinear reaponse and its effect upon wave shape in a resistive circuit. 

present is also obvious from the symmetry properties of Fig. 6, which 
show that tp is an even function. Equation (16) shows how the second- 
power coefficient at of Eq. (14) and the hi^er coefficients at, a*, . . . 
give rise to harmonics in ip. In particular, it shows whidi coefficients 
tpve rise to which harmonics. 

If the applied voltage has components of mote than one frequency, 
thoi sum and differmtce tones ate generated, as well as harmonics, as 
soon as the operation is nonlinear. While this is not a Fourier series 

* If than aie naothre cbcuit ocunponente present, the instantaneous value of the 
variational jdate current will depend upon ^e wave shape of the grid voltage as 
wen as upon its instantaneous value, aliioe the stored oiergjr in the reactive com* 
ponents will affect tiie plate enirait. Equation (14) can tiien no kogw be used. 

*Sincecos*ii) ■ - + 
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phenomenon, it is closely related to the subject at hand. For example, 
if 

e* *= El cos uit + Et cos (17) 

and if t, is given by Eq. (14), then 

i, = l^oo + ^ (FJ + E|) + • • • 

+ (uiEi + ^aiE\ + + • • •) cos wit 

+ (aiJ?2 + + ^aiElE2 + • * *) cos 

+ EI + • • cos 2a>it + EI + • • ^ cos 2«2^ 

+ ifliEiEt + • • •) cos [(c*>2 + 

+ (aJSiE^ + • • •) cos [(w2 — «i)i] 

+ -Ef + * * *) 

+ ^“4^ EiE\ + • • •^ cos [(2a92 + 

+ E1E2 + • • cos [(2w2 

+ E!E, + • ‘ •) cos [(2«i + «0<] 

+ E!E, + ’ ■ cos [(2«i - «,)<] 

+. (18) 

The terms in Eq. (18) of frequencies («» + «i)/2ir and («j — wi)/2ir 
are called sum and difference frequencies or sum and difference tones. 
The terms of frequencies (2wj + ai)/2r, (2«* — m)/2ir, (2wi + ws)/2ir, 
(2ui — at)/2ir, etc., may be called sum and difference frequencies of 
M^er order. The difference tone (»> — <0i)/2ir is employed in the 
operation of the first detector in a superheterodyne receiver. Other- 
xvise, sum and difference tones usually represent distortion in a system 
and are eliminated in so far as is possible. It is believed that sum and 
difference tones represent a more annoying type of audio distortion to 
the ear than ordinary harmonics in a program. 

BxerelM 

A piece of thyrite is a noncdunie redetor whose voltage-cunent charaoterisiio 
miqr be expressed as 

< - ibs* 
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If a cosinusoidal voltage 

e ^ E cos (d 

is applied to a particular piece of thyrite having the constants 

B * 3.57 

k = 1.3 X 10-^° 

and if 2,000 volts, what is the ratio between the magnitudes of second harmonic 
and fundamental in the resultant current? 

2.4 Push-pull Amplifiers. In the output circuits of a radio trans¬ 
mitter or receiver, it is generally desirable to operate the tubes over a 

(a) 
Fio 7. Circuit and wave shapes in a push-pull amplifier. 

wide range of their characteristic curves in order to realize maximum 
output from them. This usually means that the tubes are operated 
beyond their linear range, and thus harmonics are produced. Since 
these harmonics represent distortion of the signal, it is desirable to 
reduce their magnitude as far as possible. 

One way to reduce harmonic distortion very considerably is to use 
a push-pull amplifier, such as is shown in Fig. 7a. If the tubes have 
essentially identical characteristics, balanced midtapped input and 
output transformers are used, and the effective load is resistive, than 
the grid voltages and plate currents of the output tubes may be repre¬ 
sented as 

E cos wt 
CgS “ —S cos <I>1 

(19) 
(20) 
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^Oo + -B® + • • "t" E* ^ 

+ jE* + ■ ■ 2w< 

• + B» + • • -^ cos 3<o< + • • • (21) 

[oo + I* (-B)® + • • •] 

+ o.(-B) + ^ (-^)> + • • • j cos 

+ I* (-B)® + • • • j cos 2wt 

+ (-B)‘ + • • • j cos 3«< + • * • (22) 

The plate currents ipi and ip2 go through the output transformer in 
opposite directions. Therefore their effective value is 

i(t) = ipi — ip2 = 2 ^aiE + ^E^ + • • cos cai 

+ 2 B® + • • cos 3«« + • • • (23) 

We thus see that the push-pull arrangement eliminates even harmonics 
from the output. Since the second harmonic is usually the strongest 
distortion term, its elimination in the push-pull amplifier causes a 
marked reduction in distortion. 

The fact that even harmonics are eliminated in a push-pull amplifier 
with any type of load, whether resistive or not, can be seen by con¬ 
sideration of Figs. 7c and d without the necessity of any series expan¬ 
sion. Since the two sides of the amplifier, 1 and 2, have identical 
characteristics, the curves in Figs. 7c and d are mirror-symmetrical. 
Therefore, by the argument in Sec. 1.6, there are no even harmonics 
in their series expansions. 

Exercise 

Which of the sum and difference tones in Eq. (18) are eliminated in a push-pull 
amplifier? 

2.6 Effective Value of Current and Power Consumption in Terms of 
Harmonic Composition. Suppose we have a periodic current of 
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arbitrary wave shape expressible as 

*• = ? + ^ (a„ cos nut + 6n sin rud) 

n — 1 

(24) 

If this current goes through a resistance R, the power dissipated is 

P = PR (25) 

Therefore, by Eq. (103) of Sec. 1.11, the average value of the power 
dissipated in R is 

Jl PR d(wt) 

12oS . 1 
4 ■*‘2 

where 

and 

n*»l n»l 

^ s- -- iTOs value of nth harmonic 

(26) 

(27^ 

(28) 

We conclude from Eq. (26) that each harmonic makes its own separate 
contribution to the average power dissipated just as though the others 
were not present. This means that any interaction between harmonics 
in contributing to the power dissipated averages out to sero-over a 
cycle. 

If we define the effective value of the current» as where 

(») 

then by Eq. (26) 

i-f = V»1 + »! + t1 + • • • (30) 

In other words, the effective value of a current of arbitrary wave shape 
is equal to the square root of the sum of the squares of the rms values 

its cinupcments. 
Next suppose that a periodic voltage espresmble as 
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is impressed upon a circuit by a power source and that a periodic cur¬ 
rent of the same fundamental period is made to flow in the circuit. 
The current may then be expressed as 

so 

* = ^ ^ (on COS nut + 6« mn nut) (32) 
n- 1 

The instantaneous power delivered by the source is then 

P = e* (33) 

The average value of the power delivered is then, by Eq. (99) of Sec. 
1.11, 

to 

n*! 

Thus the average power is equal to the sum of the rms power 
products of the individual harmonics. This means that the power 
products between different harmonics average out to zero over a 
complete cycle. Therefore, if a sinusoidal voltage is impressed upon 
a nonlinear circuit, the average power drawn from the source is equal 
to the power product of the voltage and the fundamental component 
of the current. 

Exercises 

1. Find the efFective value of a square wave of current. 
S. Find the effective value of pulses of current of duration ti and repetition 

period T. 

2.6 Some General Considerations with Respect to Distortion. A 
circuit (or network) in which all the resistance, capacitance, and 
inductance values are independent of the magnitude of the current is 
called a linear circuit (or network). Such a system is governed by 
linear differential equations. If the values of the circuit elements 
also do not vary with time, they may correctly be described as circuit 
ccmstants, and the linear differential equations that govern the 
behavior of the system then have constant coefficients. 

The steady-state solution the system corresponds to the particu¬ 
lar integral of the differential equations, while the transient solution 
o<n!Tes|xmd8 to the ccmiplementary function. We shall limit our con- 
ttderatioDS in this section to the steady-state case. When the circuit 

arc constants, each separate frequency component m the 
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applied emf gets an independent response in the circuit current which 
is distinct from that of every other frequency component.^ We can 
thus separate an applied voltage into its frequency components 
(whether they are harmonically related or not), find the response of 
the circuit to each frequency component, and then add the results. 
This is called the principle of superposition (as applied to frequency 
components). 

In any system such as an amplifier, any difference in the wave 
shape of the output signal from the input signal is called distortion. 
Now, according to the discussion in the last paragraph, a system whose 
circuit elements are constants will add no new frequency components 
not present in the applied emf. Therefore the output can differ from 
the input only in the relative magnitude and phase of the frequency 
components already present. Because such systems are governed by 
linear differential equations, it is customary to describe distortion of 
the foregoing type, which does not involve the generation of new 
frequency components, as linear distortion. The priruyiple of super¬ 
position applies to a system having Only linear distortion; t.e., the 
response of each frequency component can be considered independently 
in such a system. 

In the earlier sections of this chapter we dealt with systems in 
which, either directly or in equivalent form, the values of the circuit 
elements were hot independent of the current. There we found that 
new frequency components were introduced by the system. When 
we considered only the case of a single-frequency component in the 
input, we foimd only its harmonics in the new components generated. 
However, when we had more than one-frequency component in the 
input, we also found sum and difference frequencies in the output. 
Distortion of this type in which new frequency components are intro¬ 
duced by circuit elements whose values vary with current is called 
nonlinear distortion. In the case of nonlinear distortion, frequency 
components cannot be treated independently, since their interaction 
has an important effect. We describe this situation by saying that 

^ This follows from the properties of particular integrals of Type V discussed 
in the author^s Transformation Calculus.’^ In a system governed by linear 
differential equations with constant coefBcients, the responses to the superposition 
of voltages/i(0 and/jt(0 can be added algebraically, when fi{t) and fi{i) are super¬ 
imposed. This is true whether/i(0 and/2(0 single-frequency components or 
not. This is the origin of the principle of superposition. It can be applied without 
question only if the coefficients of the differential equation are functions neither 
of amplitude nor of time. 
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the principle of superposition does not apply to a system having non¬ 
linear distortion. 

There is another type of distortion, distinct from the foregoing 
types, which arises when the value of a circuit element varies with 
time. An example of such a case is a carbon microphone or a con¬ 
denser microphone. The value of a circuit parameter in these cases 
varies with time in accordance with the instantaneous intensity of 
the impinging sound wave. From the point of view of the differential 
equations of the circuits these are cases where the circuit coefficients 
are functions of time, rather than of current. It may be shown^ 
that harmonics and sum and difference frequency distortion terms 
jire created in these cases. The presence of sum and difference terms 
shows that the principle of superposition is not applicable here. 

The foregoing gives a general outline of the types of distortion that 
may arise in electrical systems. It has become customary to describe 
distortion that consists of changes in the relative magnitudes and 
phases of the frequency components in the signal but that does not 
involve the generation of new frequency components as linear distor¬ 
tion. Distortion consisting of the generation of new frequency com¬ 
ponents is generally described as nonlinear distortion. There is some 
confusion in these definitions since the linear differential equatiofns 
(with variable coefficients) which govern a system in which the magni¬ 
tude of a circuit element varies with time are thus said to create 
nonlinear distortion. However, the confusion is not serious since 
the designation of nonlinear distortion as that type which involves 
the generation of new frequency components seems to be accepted 
everjrwhere. 

Exercises 

L Equivalent plate-circuit theorem. Suppose that a tube is operated over a 
portion of its characteristics in which the second- and higher-order partial deriva¬ 
tives may be considered as zero. Then find the plate current in terms of the grid 
voltage, if the plate-circuit impedance has a reactive component. Show that the 
plate current is stiU a linear function of the grid voltage but that the constants in 
the function are complex. Use the complex expressions for current and voltage. 

2. Discuss the equivalent circuits of a triode and the location and magnitude of 
generator voltages in the generation of harmonics. Express the phase lag intro¬ 
duced by plate-circuit reactance in the case of harmonics. 

2. Find the effect of external plate-circuit resistance on the generation of 
harmonics. 

‘ See, for instance, Guillemin, ''Communication Networks/' Vol. I, pp. 403-416. 
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i. A triode-connected 6L6 with a 10,000-obm resistive plate load is operated at 
Ec ■■ —5 and Eb ■■ 300. Find the approximate values of ai and as in Eq. (14) 
for this setup from the published curves of the 6L6. 

B. Show that if a Signal consists of the superposition of n different frequency 

components in the form 

Ai cos («i( 4” 4“ Ai cos 4" <h) 4” * * • 4* An cos (<ant 4" ^n) 

then the average value of the square of the signal amplitude is 

A! -f a; 4- - > + a; 
2 

6. If an oscillator signal Ei cos mt and a radio-frequency signal Ei cos <*>sl are 
simultaneously applied to the grid of a mixer tube having a characteristic equation 

ip ■■ ao 4" 4“ 02^1 4“ 

find the magnitudes and frequencies of all terms in the plate current. 
Consider a superheterodyne receiver with the oscillator designed to operate at 

466 kc above the radio-frequency frequency and a frequency scale extending from 
640 to 1,700 kc. Suppose that an incoming radio-frequency signal of 1,000 kc is 
present. At what locations on the tuning scale (corresponding to oscillator 
frequencies 466 kc higher than the tuning setting) will there be a response from 
the receiver? 

7. If the voltage wave shown in Fig. a is applied to the circuit in Fig. b, find 
the dissipation in R. 

(c) (d) 
6. If the voltage wave shown in Fig. c is applied to the circuit hi Fig* d, find 

^e diisipatiosi in R, 



CHAPTER III 

FOURIER INTEGRALS 

3.1 Origin of the Fourier Integral Formula. In many branches of 
physics, particularly in radio engineering, the steady-state character¬ 
istics of systems or equipment are readily studied and the results are 
well known; but the study of transient characteristics is a more dif¬ 
ficult matter. In this chapter, however, we shall introduce a very 
powerful tool, the Fourier integral, which allows the behavior of linear 
systems in the transient state to be described in terms of their steady- 
state characteristics. 

In Fig. 1 is shown a transient signal. We shall now show how this 
can be considered as the superposition (t.c., algebraic sum) of a large 
number of steady-state components and thus introduce the Fourier 

Fio. 1. A transient sisnal. 

integral. First of all, we recall that in Sec. 1.8 we showed that, in 
the interval from — r/2 to +ir/2, any function, with but few restric¬ 
tions, may be analyzed into fimdamental and harmonic components 
of the period T. Accordingly, in the range from —TtJ2 to +Ti/2, 
the signal in Fig. 1 may be expressed as the sum of components of 
the frequences of 1/Ti and its harmonics 2/Ti, Z/Ti, etc. The rda- 
tive magnitudes of the various components in this case are diown in 
Fig. 2a. If the length of the expancon interval is now successively 
increased to Tt, T$, Tt and is finally made indfinitely long, the respective 
harmoic ampUtude distributions will then be similar to, those 
shown in Fig. 2b for Tt and Fig. 2e for T » «. We note that, as T 
becomes longer and longer, the frequency sparing between hannomes 
becomes smaller and smaller. Fimdly, as T approarixes infinity. 

08 
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the frequency spacing between harmonics approaches zero and we 
approach the condition of a continuous distribution of frequency 
components. 

Next, it should be pointed out that, when T becomes infinite, the 
individual harmonic components become infinitely long, so that they 
are essentially steady-state components. The graph of Fig. 2c may 
thus be considered a graph of the (steady-state) frequency composition 

(a) Fundamental 
Period is Ti L 1 1 - 

0 
1 

2 
Ti 

3 ——Frequency 
h 

(b) Fundamental l_ I I, 1 1 
Period is Tj 0 , 2 

Tj 
1 4 5 6 

T* T* 
2 1—►Frequency 
Jz Tj 

CD 

(C) True Frequency ]S H 
Analysis. Funda- j| ^ 
mental Period is g 
infinitely Long S p 

o 
Pio. 2. Fourier analysis of the signal in Fig. 1 based upon fundamental periods of 

different lengths. 

of the signal in Fig. 1. Accordingly, we should expect that the Fourier 
series expansion formula 

G(t) ~ ^ 
n — 1 

might go over into an equation of the form 

G(t) = f: a(«) cos <atdw + 5(«) sin <at do) (2)^ 

The notation a(ci>) and &(ai) means a that is a function of a azid h that is a 
function of «. The zero frequency limits in Eq. (2) take care of the direct-current 
term in Eq. (1), except for cases in which there is a direct-current term lasting from 
— 00 to 4* Buch cases represent signals having infinite energy and require 
special and individual consideration when they arise. The unit step function dis- 
cussed in the next chapter is such a case. 
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when the expansion interval is made infinitely long. Such a formula 
would then give the frequency composition of the function G{t). 
Now it can be proved* that, if G(t) satisfies certain conditions* which 
are actually satisfied by all functions representing radio »gnals, then 
G{t) may be represented as shown in Eq. (2), where 

and 

o(w) = G{t) cos ut dt 

6(«) sin ut dt 

(3) 

(4) 

Thus we have the Fourier integral formula, sometimes called the 
Fourier integral identity: 

G(t) G(t) cos o)t dt^ cos do) 

+ 1 /;[/:: G(t) sin o)t dt I sin ot do) (5) < j sii 

With the aid of this formula, we can make frequency analyses of tran¬ 
sients, as we shall show. 

Equation (5) may also be written 

G{t) S(o)) cos [o)t + 0(w)] 

where 

S(«) - u: G{t) cos o)t dt^ 

(6)» 

(7) 

* See Carslaw, H. S., ** Fourier Series and Fourier Integrals," Chap. X, or 
Whittaker and Watson, “Modem Analysis," Chap. IX. 

* These conditions are that the function may have only a finite number of 
points of discontinuity and a finite number of maxima and minima in any finite 

interval and that |(!?(<) I df shall be finite. This latter condition might at first 

glance seem to be serious, since it rules out functions with a constant direct-current 
component. However, if the direct-current component is present only for a finite 
length of time, which is always the case in practice, the condition is satisfied. 

’Just as in the corresponding Fourier series case, if 0(t) has a point of disconti¬ 
nuity, then the right sides of £qs. (6), (5), and (2) will give the value 

at the point of discontinuity. 
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and 

tan 0(«) = 
— G(t) sin (at dt 

G{t) cos (at dt 
(8) 

If now we plot 8((a) as a function of w, it will show the frequency 
composition of G(t), Such a plot is shown in Fig. 2c. 

It may be noted in passing that, if it were not for the Fourier 
integral formula, there would be no justification for assuming that a 

nonperiodic function had a fre¬ 
quency composition at all. 

3.2 Examples of Frequency Dis¬ 
tributions. Suppose that G{t) is a 
harmonic function cos over a 
small interval and that it is zero 
everywhere else (see Fig. 3). Let 
us find the frequency distribution 
of this function. This is a good 

fimction to study, for it will show us how the length of the wave train 
affects the frequency distribution and will indicate the transition from 
Fourier integrals to Fourier series. 

We begin by calculating the integrals. 

Fia. 3. A cosine wave of a specified 
length. 

0(t) cos ut dt = 0 cos at dt 

+ jr%08«.<C08«<dt + j[/0 COS (at dt 

* cos (ad cos (at dt 

(») 

la a naiilar manner, 

ut dt = j^' cos wot Mn wt dt 

r_=i— 
L2(w + Wo) 

cos (w + wo)t + 
-1 

2(w — Wo) 
cos (« — Wo)<j| (10) 

With the aid of Eqs. (7), (9), and (10) we can find the value of iS(w), 
tot idl values of w, except wo. When w » wo. 
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COB Wot COS bA dt =r cos* (i)o2 dt 

I" 1 — cos 2(i)o< _ r* si® 2uAy* 
Ju 2 “ [2 4«« J,. 
— 2 ~ (sin 2c»dli — sin 2<i>o<i) 

cos aot sin uot dt 
sin 2o)ot 

= — ^ (cos 2a>ofe — cos 2a)o^i) 

(11) 

(12) 

With the aid of the foregoing formulas we can find the value of the 
frequency-distribution function /S(w) for any length of the wave train. 

Fio. 4. Cosine wave trains of different lengths and their frequency distributions. 

In ilg. 4 is a diagram showing the frequency distributions for wave 
trains of various lengths. These are obtained by substituting the 
values of i» and ti for the wave train xmder consideration into Eqs> 
(9), (10), (12), and (7). We see that, the more cycles there are in the 
periodic wave train, the more peaked is the frequency distribution. 
As the wave train Incomes infinitely long, we approach the case of a 
Fourier series component. In the latter case, 8(u) is sero except 
at (iH, whmi Oijt) « A cos uA. If 6(0 is an infinitely long perio<fic 
wave train, of period 2r/u», but not a pure cosine wave, then 8{ti) is 
sero for all valoes of« except»«and its harmonies. 
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Exercises 

1. Plot 5(w), for a signal cos wo/ of just one cyclers duration, that is, h « ir/2, 

h » 5ir/2. 
2. Find the frequency composition Sica) of the group of two square waves in 

Fig. A. Plot S{<a) as a function of frequency. 

I 

t=j:0 t-T t«2T t*3T t 
I 

Fig. X. 

S.S Complex Form of Fourier Integrals—^Fourier Pairs. The 
Fourier integral formula, given by Eq. (5), can also be expressed in 
complex form, in which case it takes on some new properties of sym¬ 
metry. According to Eq. (5), any real function G{t) may be expressed 
as 

G{t) r ^ Jo L J - « 
G(g) cos o>g dgj cos o>t dw 

+ G{g) sin tag dg sin o)t cUo (13) 

In Eq. (13) we have replaced with p^s those <^s of Eq. (5) which are 
eliminated by integration. 

We shall now show that Eq. (13) is exactly equivalent to the 
equation 

= /-V [ f-J dg\ df (14) 

where 

/= £ (15) 

To prove this equivalence, we expand Eq. (14) into its real and 
imaginary parts. Thus 

G(t) = j df 

= ^ J Gig) COB 6>(t - g)d^do 

Gig) An «(< — g) dgj du (16) 
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Now since 
sin «(< — fir) = — sin [(—«)(< — p)] (17) 

and 

cos «(< — g) — + COB [(—«)(< — p)] (18) 
we have 

PJ [ P^" G(g) cos u{t — g) dg da 

= 2^ [ P^ G(g) cos u(t — g) dj; j da (19) 

and 

PJ [ P* G(g) sin w(< - ^) j d<o = 0 (20) 

Therefore Eq. (14) reduces to 

m -\1‘ 
- f+» 1 

/ G(g) cos a(t — p) dfir da 
- •/ “ * J 
- /•+- 1 

/ G(g) {cob ag cos at + sin ag sin at) dg da (21) 

The right side of Eq. (21) is the same as that of Eq. (13). We 
have thus shown that Eq. (14) is an equivalent expression for the 
Fourier integral identity. 

Next, let us define the function F(f) as 

Then by Eq. (14) (since 

G{t) = pj df (23) 

or, writing the same thing in a different way, 

G{g)^ jp (24) 

Equations (22) and (24) are a pair of remarkable relationships 
existing between the functions F(j) and G{g). Functions that show 
these relationships to each other are known as Fourier transforms or 
Fowner pairs, and one is called the mate of the other. 

The functions F(f) and G(,g) are a hi^y symmetrical development 
of the fimctions S(w) and G(t) defined at the beginning of the chapter. 
In a sense, we might also call them a vectorial development. To show 
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this, let us expand Eq. (22) into its real and imaginary parts. Thus 

G(g) coa ug dg — j G{g) mnagdg (26) 

Comparing this with Eqs. (3), (4), and (7), we see that 

Real part of F(f) = ra(u) = real part of F{—f) (26) 

Imaginary part of F(/) == — ir6(<i») = — imaginary part of F(—/) (27) 
Absolute value of |F(^1 = S(<t>) = |F(—/)| (28) 
Thus 

F(-f) = [FU)]* (29)‘ 

Since F(f) separates the in-phase and quadrature components of 
S(u), it is really a more valuable and certainly a more concise formu¬ 
lation. Equations (22) and (24) are the equivalent in Fourier integral 
theory of Eqs. (76) and (72), respectively, of Chap. I in the theory of 
Fourier series. 

If we wish to use u instead of / as the second variable in Eq. (23) 
or (24), then we can write 

G(t) = ^ «'“'»(«) do (30) 

where 

Q(«) = P" dt = Fif) (31) 

Quite recently, R. V. L. Hartley* has pointed out that the Fourier 
integral identity may be written in the fdllowing completely sym¬ 
metrical real form: 

G(t) = J 4'(.o)(cob ut -f- mn wf) d<a (32) 

where 

iff (fa) = —^ j 0(0 (cos at + son aC) dt (33) 

Tim reader may show as an exerdse that this form can be derived 
frmn the earlier forms, Eq. (6) or (13). 

The effect of a diift of the origin of 0(t) on its Fourier transform 
F(J) follows eanly from Eq. (22). Thus the Fourier transform oi 

* The atteridc is Eq. (29) rigsifiei the complex conjugate. 
*iVee. I.RJB., Mareh, 1042, ii. 144. 
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0(t — T), where !P is a constant, is This is the analogue 
of the result derived in Exercise 2 of Sec. 1.9 for Fourier series. 

Just as in the case of Fourier series, the complex formulation of 
Fourier integrals frequently gives a 
more simple and rapid solution to 
practical problems than the separa¬ 
tion into trigonometric components. 
We shall now illustrate the use of 
the complex formulation by solving 
an example. 

3.4 Frequency Distribution of a 
Rectangular Pulse. Suppose we 
have a pulse of arbitrary length, 
such as is shown in Fig. 5, and we 
wish to find the frequency distribution of its components. To do this, 
we use Eqs. (22) and (31) and obtain /+« fT 

t-i-nQig) dg = / €-^“0 dg 

,-fuT _ 1 1 

Then, by Eq. (28), the frequency distribution 

5(«) = IFCOI = ^ Vein* uT + (cos u>T - 1)» 

= ^ VI - cos «r = ?sin(^) (36) 

The frequency distribution thus has minima of zero amplitude 
wh^ 

^ = 5-? <“) 
where n is any integer. 

The frequency distribution will have maxima when 

which reduces to 

«r . (o»T\ 
T “ tan 

(87) 

(88) 

—0 

(34) 
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A singular case occurs when / = 0. In this case we expand 
sin {uT/2) in a Maclaurin series and disregard higher power terms as 
/->0. Thus 

lim - sin 

In Fig'. 6 is given a curve of S{<a) showing the frequency distribution 
of the components of a rectangular 
pulse. Comparing this with Fig. 106 
of Chap. I for the frequency distri¬ 
bution of periodically repeated pulses 
or comparing Eq. (36) of this chapter 

« with Eq. (94) of Chap. I, we see that 
the frequency range distributions are 

Fig. 6. Frequency distribution of similar but that the Components are 
the component* of a rectangular pulse. punched together at the harmonic 

frequencies in the case of periodically repeated pulses. The transition 
is shown precisely in Exercise 1 at the end of the chapter. 

Equations (34) and (35) show the remarkable simplicity in the use 
of the complex form of the Fourier integral in this case. 

3.6 Odd and Even Functions.* Fourier integrals just like Fourier 
series provide a means for separating a function into its odd and even 
parts. Starting with Eq. (2^) and making use of Eq. (22), we write 

Urn /S(«) » 
w—>0 

G(t) = ^MtF(j)dS 

1 " 

— ^ j (®os + i "0 F(f) da 

(40) 

(41) 

[&(9) cos ug cos at + G(si) ^ ug ^ u(\ dg da 

i * f 
+ ^ / j [0(g) cos ug sin at — G(g) an ug cos at] dg da (42) 

The imaginary component of Eq. (42) vanishes if G(t) is assumed 
to be a real function of t. Therefore 

* Our discuBsion is limited to the cue in which OH) u a real function of f. 
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I r+oo 

G{t) ~ ^ cos (ag cos cct dg dca 

1 /’+•/’ + * 

+ ^ / j G(g) sin wg sin dg do) (43) 

The first term on the right of Eq. (43) is the even part of G(t), 
and the second term is the odd part. This is a consequence of the 
fact that 

cos [a>( —0] = cos o)t (44) 
while 

sin [co( —= — sin o)t (46) 

Since G(t) is assumed to be real, it follows from Eq. (41) that, if F(f) 
is real, 

= i- 
27r J - 00 

cos o)tF(f) do) 

so that G{t) is an even function of t On the other hand, if F(f) is a 
pure imaginary, then Eq. (41) tells us that 

G(t) = ^ j sin u>tF{f) (47) 

so that G(i) is an odd function of t More generally, if F{f) is complex, 
its real part gives rise to the even component of G(0, while its imaginary 
part gives rise to the odd component of G(t), 

Let us next expand F(f) into its real and imaginary components. 
Thus, from Eq. (22), 

F(J) = PJ dg 

— JP Gig) cos ug dg — j pj Gig) sin ug dg (48) 

We now note also that the real part of Fif) is an even function of u, 
and therefore of f, while the imaginary part of Fif) is an odd func¬ 
tion of w and of /. We may therefore conclude that, if Fif) is an even 
function of if), then Git) is an even fimction of t. On the other hand, 
if Fif) is an odd function of /, then Git) is an odd function of t. The 
converses are also true. 

The foregoing facts can frequently be put to use in simplifying 
calculations. For example, in performing the frequency analysis of 
the pulse in Fig. 5, in case the origin of time is not fixed by some other 
conation in the problem, it is convenient to move it to the center of 
the pulse, thus making the pulse an even function of time. It then 
follows from the foregoing paragraphs that Fif) will be a pure real 
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quantity, and no vectorial manipulation will be necessary to f nd the 
frequency distribution. Thus we would have 

-iMo da sa 

—i2r/| r 
2 

-i2tr/ 
2 . o>T 

= - sin -5- 
w 2 

Let us now return once more to the general case. F(J), being a 
complex quantity, may be expressed as 

F(D = P(S)^^ (49) 

wh^ P(/) and Q(J) are real. From Eq. (48) it follows that 

P(/)=P(-/) (50) 
and 

— Gig) sin ctgdg 
Qif) = tan-* r.in <0 

Gig) cos cog dg 
-Qi-f) 

Therefore Pif) is an even function of /, while Qif) is an odd function. 
Now 

P(f) “ P fe) “ 1P(/)I “ S(«) (52) 

Qif) = <^(«) 

Therefore Eq. (23) may be rewritten as 

where 
= S{-u>) 

^(«) == — (66) 

The foregoing symmetry properties are a consequence of the fact that 
Q(t) is a pure real function of t. 

Szerdfes 

1. Show that if we write 

F(f) - a{ft>) + 

then aM is even, while is odd, provided that 0(() is reaL 
S* With «(») and 0M as dedned in Exercise 1, show that 

«(«) -jjj" a(u) eoB utdt^^dt 

0(u) mu iri d« J dt 
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8.6 Tabulation of Fourier Pairs. In a very valuable publication/ 
Campbell and Foster have listed a large number of Fourier pairs that 
have been worked out by various persons since Fourier first published 
his work. This tabulation gives the pairs F(f) and G(g) and therefore 
the frequency analysis of a wide variety of functions. It is extremely 
useful as a reference table. The text of the monograph also gives 
much valuable general information concerning Fourier integrals. 

Since the Campbell and Foster monograph is available, no exten¬ 
sive table of Fourier pairs is presented in this book. For purposes of 
illustration, however, listed in Appendix D are those Fourier pairs 
which are used in the present volume. Thus the pairs derived in 
Secs. 3.2 and 3.4 are listed as pairs 3 and 4 in the table. When a 
table is used, it is, of course, unnecessary to derive the pairs as we have 
done. 

Despite the great value of the Campbell and Foster table, it fre¬ 
quently happens that in specific cases, it is simpler to perform the 
integration in Eqs. (22) and (24) than to try to find the desired form 
in the table. The greatest value of the table is in those cases where 
it is a task of extreme difficulty to evaluate the integrals. Most of 
these cannot be evaluated by ordinary means but require contour 
integration in the complex plane. 

In comparing the results of Sec. 3.5 with Campbell and Foster's 
discussion of The Elementary Properties of Pairs it should be remem¬ 
bered that our discussion is limited to cases where G{t) is a real function 

of t. 

Exercises 

1. Find the frequency distribution of m pulses of length Ti and repetition period 
Ti as shown in the figure. Draw the frequency-distribution functions S(<a), for 
m •• 2 and for m « 10. 

8« Find the frequency distribution of the trapesoidal pulse shown in the figure. 

» Camfbbll, G. a., and R. M. Fostbb, Fourier Integrals for Practical Applica¬ 
tions, Bdl SyHem Mono. B584. Our notation F{f) and 0{g) follows that 

used by Gampbril and Foster. 
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Aiirj 

o(t) - /.• a(<i>) cos cot dco + J h(o3) sin at da 

-ipu:: 0(g) cos (001 J cos at da 

0(g) sin (o^ J sin td da 

1 r • 1 /* + • 
-■ / S(a) COS [at + da jr- / S(a) COS [at -f* ^(w)] da 
TT Jo ATt J— » 
1 . 

« i r 8(co) cos [at + da ^ ^ f S(a) ( 
IT Jo ATt J— » 

« 1 da 
2ir 00 

‘ f-- [ f-‘ 

» tl*’f>F(S) d/ = ^ ti“‘F(f) du 

o(») •“ - G(t) cos Oil dt 
IT J-~ to 

b(a) « i Z*”^ G(t) sin at dt 
w y~ 00 

S(—(o) ** ^(0 cos cot dt~^ ^ [/-^oe 

IF(f)l /■^ 00 
G(ff) sin (i^ 

^- 
Lawj jJjG(^)coso^dg 

F{f) - dt 

= y G(0 cos utdt — j Git) wn oft dt 

where 

where 

« a5(,<o; 

F(-/) » [i^(/)l* 

Git) - i €**<Q(«) da 

QM - o-i‘’>Git) dtooFif) 

1 /* + * 
0(0 ■» —= / ^((o) (cos at -f sin at) da 

V2ir J- • 

^(a) _ -4= /’■*■ “ 0(t) (cos + sin ai<) <« 

0(») - 5(«)€W«) 



CHAPTER IV 

RADIO APPLICATIONS AND PHYSICAL INTERPRETATION 
OF FOURIER INTEGRAL ANALYSIS 

4.1 Introduction. The Fourier integral identity 

G{t) = “ / S(ci)) cos [o>t + 0(«)] do) (1) 
IT Jo 

expresses any function of t as the integral (t.c., summation) of steady- 
state frequency components. We shall show in the following sections 
of this chapter that this gives us a means of reducing problems in 
transients to steady-state problems. The latter are usually easier to 
handle. 

In the practical use of Fourier integrals in this chapter, the problem 
involved will usually be to find the effect of a transmission system, with 
a given frequency characteristic, on a particular signal of interest. 
The general method of solution will be as follows: 

1. Find the frequency composition, S(«) or F(/), of the signal of 
interest. 

2. Apply the characteristics of the transmission system to the result 
of 1, and obtain a resultant frequency composition. 

3. Find the signal equivalent to the resultant frequency composi¬ 
tion in 2. This is the desired answer. 

' The foregoing procedure will be illustrated by numerous examples in 
the following pages. It should be noted in passing that this procedure 
makes use of the superposition theorem, which, while almost obvious, 
is derived and made precise in Sec. 4.6. 

Although the method is limited to systems to which the superposi¬ 
tion theorem applies, i,e., linear systems, this restriction is generally 
not serious. As a matter of experience, Fourier integral analysis has 
turned out to be the most powerful method available for investigating 
the required frequency responses in radio apparatus. At the end of 
the chapter, after we have worked out several practical examples, we 
shall look further into the general aspects of the method. 

4.2 Frequency Distribution and Selective Circuite—Transients. 
Let us suppose that a voltage pulse of the form shown in Fig. la is 

67 
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sent into a frequency-selective network, such as that shown in Fig. 16. 
The frequency-distribution function of the pulse is shown in Fig. Ic, 
and the frequency response curve of the network is shown in Fig. Id. 
Now, according to the method outlined in Sec. 4.1, the frequency 
response curve of the voltage output of the network will be the product 
of S(«) and F(w). This product is shown in Fig. le and it is obviously 
sharply peaked at «i. 

Frequency Distribution of Pulse Frequency Response Curve 

Frequency Response Curve of Quasi-steady State Voltage 
Voltage Output of Network Output of Network from 

[S(«). Y(«)] a Single Pulse Input 

(e) (f) 
Fxg. 1. The effect of a tuned circuit on the wave shape of a pulse signal. 

The curve in Fig. le is much steeper and more sharply peaked at 
«i>i than Sifa) is at »o. Let us find the meaning of this. Since the 
voltage output is so sharply peaked at 01, it must consist of a wave 
train several periods long of frequency (i>i/2ir. From the orthodox 
pdnt of view, this output is called the tranrient response of the.tuned 
circuit due to shock exdtation. However, from the pdnt of view d 
Fourior integral andysis, it is just the ordhuiry selectivity d the net> 
work operating on the frequency distributicm of the incoming voltage. 

iJ Distortioidess nnaamtaataa. We dull next find tl^ ocmdi* 
tiona under whidi a mgnal d arbitrary wave form «i& be transmitted 
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without distortion through a system. Let the signal be a voltage 
represented as 6{t). Then by Eq. (1) 

G(t) = - / <S(m) cos \ut + ^(w)] da (2) 
*■ JQ 

Next let us represent the transfer impedance of the system at any 
frequency «/2ir as 

Z{u) = (3) 

The output will then be 

m = i ^*||^ cos M + «(«) - B{a)] da (4)‘ 

In any signal of technical importance, S(a) will have an appreciable 
value only in a finite frequency range, say from wi/2ir to w*/2r, where 
wi/2ir may be zero in special cases. We may therefore rewrite Eq. (4) 
as 

“ V X, |f^ 
Suppose now that in the frequency range ui/2k to at/2w the trans¬ 

mission of the system is uniform with frequency and the phase shift 
is proportional to frequency; then we may write 

\Z(a)\ = K (6) 
B(«) = aT (7) 

where K and T are constants. Substituting these values into Eq. (5) 
we get 

. /(<) = ^ J S(a) cos [«(< — T) ^(u)] da 

= (8) 

Thiis the output signal is of exactly the same wave fonn as the 
input; but it has its amplitude altered by the factor 1/Ky and it is 
d^y^ in time by an amount T. Therefore, a transmission system 

^ If ZM has the dimensions of an electrical imjpifidance and 0(t) is a voltage, 
then / (0 is a current. The argument of this section is, however, not limited to this 
particular case. ZM may represent any type of transfer characteristic, and G(t) 
and /(I) may be any types of signals. The only limitation is that the dimenaiona 
of €f(l) be equal to the product of the dimensums of ZM and J(f). 
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whose transmission characteristics are of the form given by Eqs. (6) 
and (7) will give distortionless transmission. The foregoing argument 
shows that Eqs. (6) and (7) are sufficients^ condition for distortion¬ 
less transmission. If we reverse the line of thought in Eq. (8), it 
follows that for the transmission system to cause only a change in 
amplitude and a time delay, but no change in wave shape, the condi¬ 
tions described by Eqs. (6) and (7) are also necessary. In other 
words, Eqs. (6) and (7) are the only forms of |Z(a?)| and B(w), that 
will give a transmitted signal of the form {l/K)G{t — T), The fore¬ 
going results could readily have been predicted from the effect that a 
shift in the origin of time has on the Fourier transform, as discussed in 
Sec. 3.3. 

4.4 Negative Frequencies and Symmetry Properties of the Trans¬ 
mission Characteristics of a System. If we use the complex form of 
the Fourier integral in making a frequency analysis of a signal G(t), 
then according to Eq. (23) or Eq. (30) of Chap. Ill, we write 

(?(<) = do, (9) 

In either of these forms, G(t) has negative as well as positive frequency 
components, so that the transmission characteristics of systems for 
negative frequency components become a matter of interest. 

In Eq. (29) of Chap. Ill it is shown that F{—f) is the complex 
conjugate of F(f), that is. 

F(-f) = [F(/)]* (10) 
Similarly, 

0(—«) = [!!(«)]* (11) 
Consequently, 

= i (S((i)) cos M + ^(m)] (12) 

where 
»(«) = (13) 

From Eqs. (1), (9), (12), and (13) it then follows that the use of nega¬ 
tive frequencies is a means for combining the amplitude arid phase 
characteristics of the frequency distribution of G(t) into a single com¬ 
plex function. 

Suppose now that the signal G(t) enters a transmission system hav¬ 
ing a frequency characteristic such that at any frequency u/2tr the 
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amplitude is multiplied by a factor d.(co) and the phase is advanced 
by an angle B(«). Consequently, the component 

— S{ta) cos [<d2 + ^(«)] (14) 

will be altered to become 

- S((o)^(«) cos M + «/►(«) + B(«)] (16) 
1C 

It follows from the foregoing that the signal which leaves the system, 
say Gi{t)j may be expressed as 

Gi(t) = ”• / iS(a))A(a)) cos [o)t + 0(a>) + BCuiyi d(a 
T Jo 

do) (16) 

where 
Qiiw) = B(«)^(a))e»1*<“)+*(“>1 (17) 

and 

Oi(-<o) = [n,(«)]* (18) 

From Eqs. (13) , (17), and (18) it follows that the transmission 
characteristic l/z(jo)) of any system may be expressed in complex 
form, as 

(19) 

where 
A(-«) = AM (20) 

and 
B(-«) = -B(«) (21) 

In other words, 

zi-jo)) = [2(+iw)]* (22) 

Equations (20), (21), and (22) show how the transmission character¬ 
istics of a system for negative frequencies can be obtained from the 
values for positive frequencies. 

It follows from the above formulas that, if a signal sin cat entering a 
system comes out as A sin (a>< + JB), then a signal sin [(—«)<] entering 
the system will come out as A sin [(—«)i — B]. Since sin <at == 
— sin (—0)0 and sin {wt + B) - — sin (—o)< — B), this result agrees 
with what we know by ordinary common sense must happen. 



72 FREQUENCY ANALYSIS, MODULATION AND NOISE 

It is hoped that the foregoing account will make clear to the reader 
what is reidly going on physically when negative frequencies are used 
in the Fourier analysis of a physical problem. 

4.6 Bandwidth and Detdl in Video and Pulse Amplifiers.^ Let us 
next determine the effect of the width of the pass band of a video or 
pvilse amplifier on various elementary types of signals that it may be 
called upon to transmit. In Fig. 2 are examples of such elementary 
signals. Figures 2a and h represent demarcation lines between black 

I (a) * (b) 

-1 -1 

(C) (j) 

1 n p— 

<e) (0 

T-Jl (g) * 
Fig. 2. £21ementary signal types. 

and white portions of a television picture, while Figs. 2e, /, and g are 
types of fine picture detail that may commonly occur. Figures 2c 
and d would be isolated fine spots or lines in a picture and are therefore 
not particularly important in television in their own right. However, 
we diall find that c can be used as a convenient means for analyzing 
all the other tjrpes of picture detail. Furthermore, it is the bamc 
dgnal in pulse amplifiers. We shall therefore begin our analysis by 
finding the effect of a transmisdon system on a dgnal of the type shown 
in Fig. 2c. 

Let us assume an amplifier having uniform transmission in the 
frequency range from zero tO'w./23r and no transmisd<Hi above this fre- 

* Hie realisatioii of the importuioe of frequmcy bandwidth in the transmudon 
of detail and in the toanamiesion of information in general is largely doe to H. 
Nyquist and B. V. L. Hartley. 
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quency. Furthermore, let us assume that the phase shift of the amplifier 
is proportional to frequency (within the transmission band) since it has 
been shown that this is a desirable characteristic for low distortion 
and since, furthermore, this is a condition which can approximately 
be obtained in practice. Let us now find the shape of the output signal 
of such an amplifier when the input is a signal of the type shown in 
Fig. 2c. Since the characteristics of the amplifier are given as a 
fimction of frequency, we first transform the input signal into fre¬ 
quency elements so that we can find the effect of the amplifier upon it. 
Accordingly we use Eq. (30) of Chap. Ill and write 

where 

1 T" 
Input signal s G{t) ^ / 

/+« fTt 

(23) 

dt = 
-*i«l 

(24) 

The transmission of the amplifier is uniform, say equal to A*, from 
0 to «./2ir, and the phase shift is proportional to frequency, say = — gw, 
where g is a constant. Therefore, the output signal is^ 

Output signal ^ Q{t) 

‘tj: 
a—r,)   a—I*!) 

w -] 
d<a 

s= HL I rC08 u){t — g — Tj) _ cos ujt — g — Ti) 
^ JIL « « . 

, . rsin w(t — g — Tt) _ sin u(t — g — Tpl 

“ J du (26) 

<0 a 

— g — Tt) _ sin ujt — g — Tt) 
u 

Now cos (uA)/w is an odd function of w, while sin (uA)/u is an even 
function of u, where A is any quantity independent of u. Therefore 

' cos <aA 

and 
/ fa 

dai as 0 

y-is. ta Jo fa 

(26) 

(27) 

* Stnce we are using the complex foim of the Fourier integral, we must include 
negative as well as positive frequencies. 
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Thus Eq. (26) becomes 

Output dgnal ^ Q{t) 

= _ ^ J“' pip a{t — g — Tt) _ sin u(t — g — 

w.(/—JTi) 

I 

Now /(sin x/x) dx cannot be integrated in closed form in terms of 
elementary functions, but it can be integrated in a power series. This 
integral is so important in technical problems that a function Si(x) 
has been defined by the equation 

Si(x) = / dx (29) 
yo X 

and tables of its values have been calculated, as in Table I (page 76). 
The function Si(x) is called the sine integral of x. Making use of this 
new function, Eq. (28) may be written as 

Output signal = Cr(0 

= - {Si[a).« -g- T,)] - -g - T*)]} (30) 
IT 

Graphs of Si(x) and of Q{t) are shown in Fig. 3. Equation (30) 
is the solution to our problem. We should have arrived at the same 
answer, of course, if we had used the trigonometric form of the Fourier 
integrid instead of the complex form. 

The function Si(x) is fundamental in the theory of pulse transmis- 
non as related to bandwidth. In Fig. 3a we see that its value is 
approximately —t/2 over the range in which x < 0 and approximately 
+ir/2 over the range in which x > 0. Around x = 0 the function 
Si(x)/T rises from a minimum of —0.69 at —ir to a maximum of +0.69 
at +ir. Outside the range —t < x < t the function (l/ir)Si(x) has 
slight and rapidly decreasing oscillations about the value —0.6 when 
X < —r and about the value +0.6 when x > +jr. At x = 0 the rate 
of rise of (l/x)Si(x) is 1/t. Let us now see how these properties of 
Si(x) affect the transmission of picture detail. 

Looking at Eq. (30) and Fig. 3e we see that the ^pe of the leading 
edge of the pulse is essentially 

l\l + Si[«.« - g - Ti)]} 
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except for a very slight effect due to the lagging edge. Neglecting 
this effect we see that the leading edge rises from 0 to l.OQfr in the 

(a) The sine integral 
function, Si(x) 

(b) A pulse 

tat(t —g— Ti) 

-dx 

This shows the effect 
of a low-pass filter on 
the rising step function 
at Ti in Fig. 3(6). 

This shows the effect of 
a low-pass filter on the 
falling step function at 
Tt in Fig. 3(6). 

(e) =/ 
b»»(,t—g — Ti) 

sin X j 
-dz 

' iOfii—g-Tii 

Output of a low-pass 
filter having the pulse 
signal in Fig. 3(6) as in¬ 
put. 

Fio. 3. Important signals in the transmission of step functions and pulses through 
a low-pass filter having sharp cutoff at (These figures illustrate the time delay 
in transmission, the finite rate of rise and fall, anticipatory transients, and overshoot.) 

time from — (1.92/w,) to g + Ti + (3.14/«,). In other 
words, in a length of time 

5.06 

O’* 

0.805 
cutoff frequency 

the signal rises from sero to its maximum value* At jr + Ti, when the 
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Table I.—Sine Inteobal, Si(aj)* 

SiC*) - J 
'o u 

X SiW X Si(®) 

0.0 0.00000 3.6 1.83313 
0.1 0.09994 3 6 1.82195 
0.2 0.19966 3.7 1.80862 
0.3 0.29860 3.8 1.79333 
0.4 0.39646 3.9 1.77660 

0.6 0.49311 4.0 1.76820 
0.6 0.68813 4.1 1.73874 
0.7 0.68122 4.2 1.71837 
0.8 0.77210 4.3 1.69732 
0.9 0.86047 4.4 1.67683 

1.0 0.94608 4.5 1.65414 
1.1 1.02869 4.6 1.63246 
1.2 1.10806 4.7 ! 1.61101 
1.3 1.18396 4.8 1.58998 
1,4 1.26623 4.9 1.66956 

1.6 1.32468 5.0 1.64993 
1.6 1.38918 5.1 1 1.63126 
1.7 1.44969 6.2 1.61367 
1.8 1.60682 6.3 1.49732 
1.9 1.66778 6.4 

1 
1.48230 

2.0 1.60641 5.6 1.46872 
2.1 i 1.64870 6.6 1.46667 
2.2 1.68763 6.7 1.44620 
2.3 1.72221 6.8 1.43736 
2.4 1.76249 5.9 1.43018 

2.6 1.77862 6.0 1.42469 
2.6 1.80039 6.1 1.42087 
2.7 1.81821 6.2 1.41871 
2.8 1.83210 6.3 1.41817 
2.9 1.84219 6.4 1.41922 

3.0 1.84866 6.6 1.42179 
8.1 1.86166 6.6 1.42582 
3.2 1.86140 6.7 1.43121 
3.3 1.84808 6.8 1.43878 
3.4 1.84191‘ 6.9 1.44570 

* From PBoswinr, P. O. Radittiion from m Vertical Antanaa brer Flat Parfectly Coodiietinf 
Rartb, O. C. Oud,, C^nhafeiif Denmark^ 
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Tablb I.—Sine Intbobaii, Si(*).—(Continued) 

X Si(*) 1 ^ 8i(x) 

7.0 1.45460 11.0 1.57881 
7.1 1.46443 11.1 1.56927 
7.2 1.47609 11.2 1.56042 
7.3 1.48644 11.3 1.55182 
7.4 1.49834 11.4 1.54356 

7.6 1.51068 11.5 1.53571 
7.6 1.52331 11.6 1.52835 
7.7 1.53611 11.7 1.52155 
7.8 1.54894 11.8 1.51535 
7.9 1.56167 11.9 1.50981 

8.0 1.57419 12.0 1.50497 
8.1 1.58637 12.1 1.50088 
8.2 1.59810 12.2 1.49755 
8.3 1.60928 12.3 1.49501 
8.4 1.61981 12.4 1.49327 

8.5 1.62960 12.5 1.49234 
8.6 1.63857 12.6 1.49221 
8.7 1.64665 12.7 1.49287 
8.8 1.65379 12.8 1.49430 
8.9 1.65993 12.9 1.49647 

9.0 1.66504 13.0 1.49936 
9.1 1.66908 13.1 1.50292 
9.2 1.67205 13.2 1.50711 
9.3 1.67393 13.3 1.51188 
9.4 1.67473 13.4 1.51716 

9.5 1.67446 13.5 1.52291 
9.6 1.67316 13.6 1.52905 

• 9.7 1.67084 13.7 1.53352 
9.8 1.66757 13.8 1.54225 
9.9 1.66338 13.9 1.54917 

10.0 1.65835 14.0 1.55621 
10.1 1.65253 14.1 1.56330 
10.2 1.64600 14.2 1.57036 
10.3 1.63883 14.3 1.57733 
10.4 1.63112 14.4 1.58414 

10.5 1.62294 14.5 1.59072 
10.6 1.61439 14.6 1.59702 
10.7 1.60556 14.7 
10.8 1.59654 14.8 1.60851 
10.9 1.58748 14.9 1.61360 
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Table I.—Sine Integral, Si(x).—{Continued) 

X Si(*) X Si(a;) 

15.0 1.61819 19.0 1.51863 
16.1 1.62226 19.1 1.51967 
15.2 1.62675 19.2 1.52122 
15.3 1.62865 19.3 1.52324 
15.4 1,63093 19.4 1.52572 

15.5 1.63258 19.5 1.52863 
16.6 1.63359 19.6 1.53192 
16.7 1.63396 19.7 1.53357 
15.8 1.63370 19.8 1.53954 
16.9 1.63280 19.9 1.54378 

16.0 1.63130 20.0 1.54824 
16.1 1.62921 20.1 1.55289 
16.2 1.62667 20.2 1.56767 
16.3 1.62339 20.3 1.56253 
16.4 1.61973 20.4 1.56743 

16.5 1.61573 20.6 1.57232 
16.6 1.61112 20.6 1.57714 
16.7 1.60627 20.7 1.58186 
16.8 1.60111 20.8 1.58641 
16.9 1.59572 20.9 1.59077 

17.0 1.59014 21.0 1.59489 
17.1 1.58443 21.1 1.59873 
17.2 1.57863 21.2 1.60225 
17.3 1,57286 21.3 1.60543 
17.4 1.56711 21.4 1.60823 

17.6 1.66146 21.5 1.61063 
17.6 1,55698 21.6 1.61261 
17.7 1.56070 21.7 1.61415 
17.8 1.64668 21.8 1.61525 
17.9 1,54097 21.9 1.61590 

18.0 1,53661 22.0 1.61608 
18.1 1.53264 22.1 1.61582 
18.2 1.52909 22.2 1.61510 
18.3 1.62600 22.3 1.61395 
18.4 1.52339 22.4 1.61238 

18.5 1.52128 22.5 1.61041 
18.6 1.51969 22.6 1.60806 
18.7 1.51863 22.7 1.60586 
18.8 1.51810 22.8 1.60234 
18.9 1.51810 22.9 1.59902 
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Table I.—Sink Integral, Si(x).—{Continvsd) 

X 8i(x) X Si(®) 

23.0 1.59546 24.5 1,53897 
23.1 1.59168 24.6 1.53672 
23.2 1.58772 24.7 1.54484 
23.3 1.58363 24.8 1.53333 
23.4 1.57945 24.9 1.53221 

23.5 1.57521 25.0 1.53148 
23.6 1.57097 50.0 1.55162 
23.7 1.56676 
23.8 1.56262 
23.9 1.55860 

24.0 1.55474 
24.1 1.55107 
24.2 1.54762 
24.3 1.54444 
24.4 1.54154 

signal is rising most rapidly, its rate of rise is^ 

Max. rate of rise = — = 2k times cutoff frequency 
T 

—_^_ ^32) 
period of cutoff frequency ^ 

These latter values are probably the most descriptive of the sharpness 
of the sides of the outgoing pulse. 

We note from Fig. 3c that there is a time delay, numerically equal 
to g, between the input and the main output signal. The output, 
however, shows two additional effects besides those already discussed. 
These are 

1. Overshoot 
2. Anticipatory transients 
Overshoot is the phenomenon of the signal exceeding its distortion¬ 

less value before settling down. (There is about 9 per cent overshoot 
in Fig. 3c.) Concerning this phenomenon (as well as that of antici¬ 
patory transients, discussed below) we may point out that the fre¬ 
quency components outside the range — w, < « < w, (which have not 
been passed by the amplifier) would just cancel the effect. 

^ The rate of fall of the lagging edge is the same. 
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Without contradicting the foregoing, we may note, however, that 
at each edge considered separately, as shown in Fig. 3c or d, the 9 per 
cent overshoot in the pulse only becomes narrower but does not 
decrease in peak value as the pass band is increased. It therefore 
continues to exist even when w* , only it becomes infinitesimally 
thin. This is then an example of Gibbs's phenomenon in Fourier 
integrals, and we note that it has the same 9 per cent value as Gibbs's 
phenomenon in Fourier series^ (see Sec. 1.13).^ In the case of a narrow 
pidse, however, when there is interaction between the edge effects of 
Ti and T2f the overshoots may be eliminated for some pulse widths. 
This is illustrated by Fig. 66. 

Finally, a word should be said about anticipatory transients. These 
constitute the phenomenon of the existence of output signal ahead of 
the main pulse. If these transients exist beween T\ and + fif, 
they may just be considered as ordinary transients in the transmission 
system. However, if they occur before t = Ti, they violate the law 
of cause and effect by letting the effect appear before the cause. This 
may happen when we have assumed amplitude and phase character¬ 
istics of the amplifier that cannot simultaneously be exactly satisfied. 
In the author's Transformation Calculus" it is shown that certain 
particular relations must exist between the amplitude and phase 

^ In the case of a square edge of unit height the frequency components in the 
pass band add up to (l/ir)[ir/2 -f- Si(w^)] as shown in Fig. A. It is of interest to 
consider briefly the properties of Gibbs’s phenomenon in this case. The frequency 
components between and infinity add up to the curve in Fig. B, which is the 
difference between 1 /T[ir/2 + Si {taj) ] and the square edge. As o). is made larger, the 
curve in Fig. B is compressed in the horizontal direction, but not in the vertical. 
Consequently as eo, the curve in Fig. B represents less and less energy, but its 
tnftyimiim amplitude is unaffected. Gibbs’s phenomenon thus represents the effect 
of those frequency components which have been omitted. 

Fio. A. Besponae of a low-pass filter to a Fio. B. Resultant of the frequency 
unit step. components in a unit step which are not 

pass^ by the low-pass filter. 

*The ovendioot phenomena discussed here are related to sharp cutoff and 
are discussed in more detail in Sec. 4.19a. Another type of overshoot, that due 
to the quadrature component in asymmetric sideband transmission, is discussed in 
Sec. 4.9. 
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characteristics of a system. In the particular case of our amplifier, 
if we consider its cutoff characteristics as beii^ due to a low-pass 
filter, it is found that an infinite number of sections are necessary (and 
therefore an infinite time delay g) in order to get absolutely sharp 
cutoff at (0,. This eliminates the violation of the law of cause and 
effect. 

Despite the foregoing demonstration that our assumed conditions 
cannot be satisfied exactly, they can be satisfied to a sufficiently close 
approximation, so that all the principal phenomena described in this 
section can be observed in practice. Thus the relation between pass 
band and the sharpness of rise of a pulse can be verified experimentally. 
Also, the phenomena of overshoot and of oscillations preceding the 
main pulse can be observed directly in an oscilloscope, and they can 
be seen as striations in a television picture at a line of demarcation 
between black and white. Later in this chapter we shall discuss 
means of reduction of this latter undesired effect. 

4.6 The Superposition Theorem of Fourier Integral Analysis. In 
Eq. (30) we have the analytical expression for the output of a low-pass 

video amplifier when the input is a pulse Suppose next that we con¬ 
sider any system in which the input is a group of signals as shown in 
Fig. 4 and that the individual details in Fig. 4 are called Gi{t), Giit), 
. . . , Gn(t), respectively.' In that case, 

F(/) = = PJ ri^’nGiit)+G,(t)+ • • • +Gn(t)]dt 

= fP -f- • • • + jp t-^**f*Gn(t) dt 

= FiOf) +F,(/) + • • • +FnU) " (33) 

Suppose, furthermore, that the system^ causes a phase lag g(w) 
and introduces an amplitude multiplication factor K{q)) at any fre- 

' There may be overlap between signals, as shown between Op(t) and Gq(t) in 
Fig. 4, without disturbing the following argument. In fact, it is just in such 
owlap cases that the theorem is most useful. 

* The assumption that the effect of the system can be completely expressed by 
a phase shift g(w) and an amplitude mult^lication factor, K(ta)j is equivalent to 
aas^iitiing that the system is linear. 
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quency u/Tnt. Then the output signal is 

Output signal = ^(<) 

+ ^ do) + • • • 

+ h /_V 
= + (?2(0 + * ‘ * + (3^) 

(a) Transmission Characteristics 

0 Fi Fj - 

(b) Original Signal 

(C) Response to Shaded 
Transmission System 

(d) Response to Cross • Hatched 
Transmission System 

(6) Response to Combined 
Transmission System 

/GdtT+Gjd) 

Fio. 5. niustration of the principle of superposition as applied to frequency ranges. 

We see from Eq. (34) that the analytical expresaon for the output 
of a group of signals is just the sum of the expressions for the outputs 
of the infhvidual signals. This we may call the superpoidtion theorem 
of Fourier integral analysis. We shall find this theorem very useful 
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Fio, 6. Effect of bandwidth on pulse shape. (Low-pass filter with outofF. at /,.) 

characteristics Fiif) and FtiJ) has responses Cri(<) and then the 
signal obtained when the original signal goes through a transmission 
system whose response is F\{j) + Ftif) will be Gi(0 + (?*(<). This is 
illustrated in Fig. 5. 

4.7 Bandwidtii and Detail in Video and Pulse Amplifiers—^Band- 
widfii Requirements. Let us return now to the case of pulses going 
through a low-pass filter. So far we have said nothing about the 



84 FREQUENCY ANALYSIS, MODULATION AND NOISE 

important matter of how much bandwidth is required to pass a pulse 
of given length. Equations (31) and (32) show that the steepness of 
the mdes is proportional to the bandwidth, but the best approach to 
the question of true bandwidth requirements is a series of actual 
graphs of Eq. (30) for a fixed value of Tt — Ti and a variable value of 
0),. Such a group is given in Fig. 6.^ There we see that once the band¬ 
width is reduced beyond about f, = l/2(r* — Ti), the output-signal 
amplitude starts to decrease rapidly. Since the signal must exceed 
the noise level, this effect will introduce a bandwidth requirement for 
optimum mgnal-to-noise ratio that will be discussed later in the chapter. 
Another observable effect in Fig. 6 is that the location of the leading (or 
lagging) edge of the pidse becomes less accurately determined as the 
bandwidth is decreased. This also will put a bandwidth requirement 
on the system if the pulses are used for radar pmposes. Bandwidth 
requirements for television purposes, however, caimot readily be 
determined from a study of single pulses. To handle this question 

properly it is necessary to study a pair 
of pulses, which, accordingly, we shall 
now proceed to do. 

In Fig. 7 is a group of two pulses 
with a space between them equal to 
the pulse width. This is more or less 
equivalent to the lines used in test 

patterns to determine the resolution of a television system. By 
the superposition theorem of Sec. 4.6, in conjunction with Eq. (30) 
we can then write for the output agnal from the amplifier when the 
input tdgnal is that of Fig. 7, 

Output signal = ^ {Silw,(f — g — Ti)] — Si[ti»,(f — g — Ti)] 

+ Si[«.(f - g - Ti)] - Si[«.(« -g- r4)]} (36) 

The calculation of the curves in Fig. 6 is quite simple. Consider, for example, 
Fig. 6a. If there is no attenuation, Eq. (30) gives us 

©(O— i (ffiKO -g- Ti)] --g- r*)l| 

- i {SiKO -g- Ti)] - Si[«4,« - a - Ti) - - rOU 

- i I8S(*) - «(* - 4t)] 

whm 9 •• «#,(! — ^ T%). 
The out|mt 0(i) Is then obtained for a series of values of z from about to 

while the input is just a unit pulse from 0 to 

0 T, T, T, T4 

T4-T3«T3-T2-T2-Ti 

Fio. 7. A pair of test pulses. 
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With the lud of Eq. (35) the patterns in Fig. 8 have been calculated. 
As a general conclumon from Fig. 8, we may say that the required band¬ 
width for good detail is about that of Fig. 8c, i.e.. 

/.= <i>, _ 1 
2r " - Ti) 

(36) 

where T* — Tiia the width of the smallest detail that it is demred to 
show in the television picture. If the bandwidth is decreased below 
this value, the detail rapidly becomes “washed out.” The effect of 
increasing the bandwidth ^yond the value given by Eq. (36) is 
principally to sharpen the sides of the edges. 

-jj i-- J_ 

■■ 

\\ 
1 

S} 

*2 

f 

Fia. 8. Effect of bandwidth on the transmission of detail. (Low-pass filter with 
cutoff at/«.) 

Figure 8 is sufficiently important so that it is worth while conrader- 
ing a,numerical example. Suppose that we have two rectangular 
pulses, each 1 ^tsec long, and that they are separated by an interval of 
1 Msec. If these pulses pass throu^ a transmission system having a 
bandwidth ol 250 kc, we have the case of Fig. 8e. In this case the 
bandwidth is insufficient to show any sign of the detail between the 
pulses. If the bandwidth is increased to 333 kc, shown in Fig. 8d, 
the detail is still completely hidden but the general broadening of the 
output starts to show a hint of the existence of two pulses. Next, 
as the bandwidth is increased from 333 to 500 ko, the detail rather 
suddenly shows up clearly (see Fig. 8c). Further increases of the band¬ 
width to 1 me (Fig. 86) and to 2 me (Kg. 8a) have the effect of riiarpen- 
ing the edges the pulses. 
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Exercises 

1. Find the output signal for the pulses in Fig. 7 if the video amplifier is not 

low-pass but band-pass from ci7i to with linear phase shift in the pass band as 

before. Discuss the importance or lack of importance of the very low frequencies. 

2. Find the output signal from the low-pass amplifier of Sec. 4.6 for the input 

signal shown in Fig. A, 

1~T 
b t 

c 
i 

Answer: 

Output signal {a Si[«,(f — 17 — Ti)] — a Si[wa(< — g 

4- h Si[coay — g - Tz)] ~ h Si[w,(f — g — !r4)] 4* c SiK(e — g — Ti)] 
- c — g — Te)]! 

3. Find the output signal from an amplifier having the input signal shown in 

Fig. B, if the characteristics of the amplifier are those shown in Fig. C. 

Fig. B. 

Fio. C. 

4. In the circuit of Fig. D, assume that the input is a voltage pulse of unit 

height and length Tz T’l. Find the output by the methods of Fourier integral 

analysis. The table of integrals in Appendix B may be used. 

r 

C Output 

Fig. D, 

4.8 Bandwidth and Detail in Intennediate-lrequency Ancydiflera— 
STBunetrical Sideband Case. Let us next suppose that the detail of 
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Fig. 2c is used to amplitude-modulate an intermediate-frequency 
carrier, giving a signal as shown in Fig. 9a. 

Let the frequency of the intermediate-frequency carrier be wc/27r, 
and suppose that the intermediate-frequency amplifier has uniform 
transmission, equal to K, from o>c — Wp to wc + wg. Furthermore, 
assume that the phase shift is linear and symmetrical in the pass 
band, i.e., 

Phase lag = g{o) — (Ob) (37) 

The signal of Fig.'9a is 

G{t) == cos o)ct (from Ti to T^) 1 
G{t) = 0 (elsewhere) / ' 

a Carrier I.F. Amplifier 
Fig. 9. 

We shall analyze this signal with the trigonometric form of the 
Fourier integral (Eq. (5) of Chap. Ill) since this is the most convenient 
in this case. Accordingly the coefficients a(co) and &(a>) are 

1 
a(w) = “ / G{t) cos (at dt 

IT y ~ oe 

1 
' I cos (j)ct cos (at dt 
jTi 

1 z*^* 
= ^ / [cos (o) — (a^t -f- cos {(a Wc)^!] dt 

s- si^^ (<«> ctf()T2 sin (a? + o?c)T2 ___ sin (a? — (a^Ti 
2ir(cij — Wc) 2ir(6) -h ««) 2ir(w — a>c) 

1 , 1 
bUa) = - / G(t) sin wi cK = - / cos caJL sin (at dt 

VjTt 

1 
— tT I 

Air J Ti 

sin (g? + a>c)Ti 
2ir(co + <0c) 

cos (o) — fa>c)Ti ^ cos (<i> -f c>)c)Ti _ cos (o) — a>c)y2 

2ir(w — «c) 2t(co + ««) 27r(6) — Wc) 

_cos ((a (a^T% 
2r(w + We) 
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If, as we shall assume, the carrier frequency is very high with 
respect to the modulation frequency range, the terms with » + we in 
the denominator become negligible with respect to the others. There¬ 
fore, approximately. 

<?«) 

=/.'[- 

a(a) cos <d do) + 

+ 

/ b((o) sin cot dco 
Jo 

sin (co — a?e)^2 ^ sin (co —- Ci>c)ri1 
2ir(aj — Wc) 2r{(jo — cOe) J 

/* * r cos (o) — (ae)Ti ^ cos (g? — . 
Jo [ 2ir(a) — OOe) 2v(c0 — COe) J ® 

cos cot dco 

sin cot dco (41) 

If now we send 6(t) through the intermediate-frequency amplifier, the 
output is 

6{t) = 
K p^^^Tsin (o-<^c)Tt 
2ir L (« — Wc) 

- cos M - gi» - «»)] dm 

p+“*rco8(a.-a»«)ri 

— d*i (42) 

To evaluate these integrals, let 

and 
wi = a> — «* (43) 

giut — ub) = 9 (44) 
Then 
cos [«< — g(u — «»)] = cos [wo< — gi<i»e — a*) + (w — ae)t — p(« — ««)] 

= cos [(«,< — ff) + wi{t — p)] 
= cos [wi(< — flf)] cos ((dot — 9) 

— mn I(di(t — p)] mn (ed«t — 9) (45) 
and 
sin {(dt — giu — (»»)] =* an [(d«t — giue — Ob) + (uc — Uc)t — g(u — «*)] 

* sin [({dot - fl) -1- ui(t - j^)] 
=» sin I«i(t — p)] cos {ujl — 9) 

+ cos I(di(t — p)] ^ (<d«t — 9) (46) 
Furthermore, 

dcdi » da (47) 
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Substituting these eqtiations into Eq. (42), we obtain 

Q(t) = — _ sin wirA 
^ J-u, \ wi m ) 

{cos [wi(< — g)\ cos (wci — B) — sin [wi(i — g)] an (uj — B)} dui 

^ — f uiTi _ cos wirA 
2fr J-a, \ «i 0)1/ 

{an [wi(« — g)] cos {<aj, — 9) + cos Iwi(< — g)'\ sin {mj, — @)} dui 

/sin wiT* _ r sin wiTi , 

1~^ ~ 

+ sin [«i(< - g)\ - sin [«i« - i;)]| dwi) 
<01 <01 ) f 

cos((0c< — B) 

, K( /■+"•/sin«ir, . , 
+ s(j-.. W< - »)] 

SlU • r /j \T I COS CUlT^l r /, vq -sm [a)i(< — g)\ H-cos [«i(< — g)\ 
<a\ 0)1 

cos taiT^ 

K [ /•+"• fsin <0, 
2tU-«, L 

sin m{t - g - Ti) 

J dwi^ sii cos [wi(^ — fir)][ d(Di) sin (««< — B) 

— sin wi{t -- g T% 
COl 

cos mit — g Ti) 
Wl 

— cos mjt — g — Tj) 
wi 

'H 
cos (<o«i — B) 

rin {taj, — B) 

r r+»,(i-»-ri) sin X J 
-dx — 

U -oplt-g-Ti) X fr,) X J 
K r COSI^ __ r+-»-»- 

2»-Lyro ® J-^At-g-T.) X J 
sin (uft — B) (48) 

Equation (48) is the solution for the output signal. We shall now 
analyse its meaning, ccmadering first the case of sjrmmetrical sde- 
band transmisaon. In this case <o« is in the middle of the pass band, 
so that we many write 

«« ®= <0, * <o» (49) 
wd 

(o« = cot (so that ■» 0) (5tf) 
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where Um/2iic is one-half the wdth of the pass band of the intermediate- 
frequency amplifier. For this case, we note that 

r'5ii£<fc_2 
J—fi ^ Jo ^ 

J-^ * 

(51) 

(62) 

where /* is any quantity whatever. Therefore, in the case of sym¬ 
metrical sideband transmission. 

■ill. 
17“ r«) 

COS (Cct 

= — (Si[wn,(< — g — Ti)] — Si[wm(< — g — Ti)]} cos wj, 
TT 

Equation (53) expresses a carrier cos a>c^, amplitude-modulated by 
a signal of exactly the same form as Eq. (30). Thus for the trans¬ 
mission of pulses and detail, an intermediate-frequency amplifier with 
symmetrical sideband transmission is exactly equivalent to a low-pass 
video amplifier of one-half the pass band. It is unnecessary to go 
further into the details of this transmission, since we have already 
studied it (see Figs. 6 and 8). 

Exercises 

1. If G(f) has the Fourier transform F(/), show that regardless of the signal 
shape of (r(0, the Fourier transform F(f) of Gif) cos larJt is 

P(j) « F(/4-/c)-fF(/->/.) ^ F(/c-h/)-f[F(/c “•/)]* 

Plot curves of |F(/)1 and l/^(/)| in case Git) is a pulse such as shown in Fig. 2c. 
2. Work out the solution for the problem of the transmission of the pulse- 

modulated carrier of Fig. 9a through the transmission system in Fig. 96 by using 
the complex form of the Fourier integral instead of the trigonometric form. Which 
form allows the solution to be obtained more easily? 

4.9 Bandwidth and Detail in Intermediate-frequency Amplifiers— 
Asymmetrical Sideband Case, Quadrature Components.^ The case of 
asymmetrical sideband transmission differs mathematically from the 
symmetrical case in that the integrals of the type 

^ This problem is dealt with from the standpoint of general modulation theory 
in Sec. 5.6. 
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in Eq. (48) no longer vanish. To handle this case we shall define a 
new function, the cosine integral function. This is defined as 

Ci(x) = - (54) 
J X -C 

A curve of Ci(a;) is shown in Fig. 10, and Table II gives some of its 
values.^ With the aid of Eq. (54) we may write 

cos X j cos X j cos X , cos X , 

-a ^ J —a ^ Ja X Ja ^ 

Ci(x) 

Fia. 10. The cosine integral function, Ci(«). 

We may now write Eq. (48) in the general form 

(5(0 = ^ {Si[a,,(f -g- TO] + Si[«,(f - g - Ti)] 

— Si[w*(< — g — TO] — Si[a>p(< — g — T*)]} cos («ef — 9) 

+ § {Ci[a,.(« - g - Ti)] - CiM - g - Ti)] 

- Ci[«g(< — — ^2)] 
+ CiMt - g - Ta)]} sin ~ S) (56) 

= M cos io)et -- d) + N sin (wot — B) 
= VM^ + N^ cos {uct + (67) 

In Eq. (67) the quantities M and N are the coefficients of 
cos (oiet — B) and sin {coet — fi), respectively, in Eq. (56). Thus 

Af* + is the envelope of the output signal, which is the matter 
of interest, and is an inconsequential intermediate-frequency phase 
shift. 

At this point, we could study the envelope \/M^ + for various 
input signals and various amounts of asymmetry in the location of 

^ For small values of Oi(a;) may be calculated from its series expansion 

a(») - c + log.* - ^ ^ • 

where C « 0.6772 • * • is Euler’s constant. 
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TaBUD II.—COBINX Intbobai., Ci(«)* 

Jx X 

X CiW 1 Ci(*) 

0.00 — 00 -0.05797 
0.05 -2,4191 -0.08190 
0.10 -1.7279 -0.1038 
0.15 -1.3255 -0.1235 
0.20 -1.0422 -0.1410 

0.25 -0.8247 -0.1562 
0.30 -0.6492 -0.1690 
0.35 -0.5031 -0.1795 
0.40 -0.3788 -0.1877 
0.45 -0.2715 4.5 -0.1985 

0.50 -0.17778 4.6 -0.1970 
0.55 -0.09530 4.7 -0.1984 
0.60 -0.02227 4.8 -0.1976 
0.65 +0.04265 4.9 -0.1948 
0.70 +0.10051 5.0 -0.1900 

0.75 +0.15216 6 -0.06806 
0.30 +0.1983 7 +0.07670 
0.85 +0.2394 8 +0.1224 
0.90 +0.2761 9 +0.05535 
0.95 +0.3086 10 -0.04546 

1.0 +0.3374 11 -0.08956 
1.1 +0.3847 12 -0.04978 
1.2 +0.4025 13 +0.02676 
1.3 +0.4457 14 +0.06940 
1.4 +0.4620 15 +0.04628 
1.5 +0.4704 

20 +0.04442 
1.6 +0.4717 25 -0.00685 
1.7 +0.4670 30 -0.03303 
1.8 +0.4568 35 -0.01148 
1.9 +0.4419 40 +0.01902 
2.0 +0.4230 

45 +0.01863 
2.1 +0.4005 50 -0.00563 
2.2 +0.3751 55 -0.01817 
2.3 +0.3472 60 -0.00481 
2.4 +0.3173 65 +0.01285 
2.5 +0.2859 

70 +0.01092 
2.6 +0.2533 75 -0.00533 
2.7 +0.2201 80 -0.01240 
2.8 +0.1865 85 -0.001935 
2.9 +0.1529 90 +0.009986 
3.0 +0.1196 

95 +0.007110 
3.1 +0.08699 100 -0.005149 
3.2 +0.05526 110 
3.3 +0.02468 120 +0.004781 
3.4 -0.004518 130 -0.007132 
3.5 -0.03213 
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the carrier in the pass band. However, in order to increase the practi¬ 
cal interest in our study we shall consider the somewhat more impor¬ 
tant pass band shown in Fig. 11. 

Fig. 11. Symmetrical transmission characteristic of an intermediate-frequency 
amplifier. 

For the case of the transmission characteristics in Fig. 11, it may 
be shown by the same^ methods as those used in Sec. 4.8 that M and 
AT in Eq. (67) have the values 

M ^P{t-g-Ti)-Pit-g- T^) (58) 
N = Qit-g-Ti)-Qit-g- T,) (59) 

where 
1 r(wj —«•)* 

^(a^) = 5—7-\ I 2rxim — «$) 

-0., +J_ p-"->»sinMj^ 
2ir(wi — Ws) y(«t—«•)« J M 

^ /•(wi—«•)» 

I — W2) J («!-«.)* 2irx{<ai 
sin fi dti 

+ «4 — 

Qix) 
2irx(m 

jj^ f(tn—u$)x 

i — W8)y («,-«.)* 

2ir(cu4 
-a>. r-*- 
— Ws) y(«- 

—«•)* .. 
(60) 

(*•)« M 

COS M dfl 

($)c — (az cos M 
2ir(cPi »«) 

2irx(w4 

d/i + 
2ir jCwi—M0)x y —M«)X 

^ r(w4~«»«)s 

-  / COS /* d/i 
4 W2/ y(<M—Ms)x 

/*(u4-«*e)x 
"" Ctffl I 

►4 — W2) 

COS n 
dfJL 

+ 0)4 — COS M 

2ir(a> 
dM (61) 

^ The {irooedurc la simple but lengthy, and it will therefore be omitted here. 
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Curves of P{x) and Q(x) for various locations^ of the carrier in the 
pass band in a particular case of television interest that has been 
studied by the author^ are given in Fig. 12. Comparison of Fig. 12 

Fio. 12. Graphs of P(x) and Q{x) (normalized). {From Goldman^ S.^Proc, I,R.E,, S7» 
November, 1939.) 

with Fig. 3, and of Eqs. (56) through (61) with Eq. (30) shows that 
P{x) tends to reproduce the signal, while Q(x) is a pure distortion effect 
which increases in magnitude with the amount of asymmetry in the 

* In order to get a clearer picture of what is actually happening, Figs. 12 and 16 
show normalized response. In normalization, the values corresponding to position 
IV are multiplied by those corresponding to position V are multiplied by 2, 
and those corresponding to i)osition VI are multiplied by 4. This equalizes the 
iyigTm.1 level for all positions, as might be done with a volume control in a television 
receiver. 

‘Goldman, Television Detail and Selectivenaideband Transmission, Proc, 

I,R,E,, November, 1939, p. 726. 
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location of the carrier. It is customary to call the P(x) terms the 
inphase component of the signal and the Q(x) terms the quadrature 
component, since they are the 
multipliers of the inphase and 
quadrature components of the 
carrier, respectively, in Eq. (57). 

Using Eqs. (56) through (61) 
and Fig. 12, we can readily find the 
envelope (which is then also the 
detected video signal) of the output 
signal for the two important types of input signal shown in Fig. 13. 
The output corresponding to Fig. 13a will show the sharpness of 
edges in the picture, while that corresponding to 136 will show the 
ability of the system to transmit fine detail. In order to find the 

I ’*-3| Megacycles—J 

h h 1*3 T4 

(a) (b) 
Fig. 13. Telovision test signals. 

*11 *1 

Carrier Positions 

Novevnber^ 1039.) 

response in the case of Fig. 13o we let T2-* <*> in Eqs. (58) and (59). 
In the case of Ilg. 135 we use the superposition theorem of Sec. 4.6 and 
write 

Tt) + P(t - g - Tt) 
-Pa-ff-rO (62) 
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N^Q(i-g-Ti)-Q(t-g- T,) + Q(t - g - T.) 
-Q(t-g-Tt) (63) 

and then find the envelope 
In Figs. 14 to 16 are shown the results of carrying through such 

operations. The pulse dimensions and spacing in Fig. 16 were so 
chosen as to find: out whether it is worth while to use asymmetric idde- 
band transmission (usually case V or IV), rather than the symmetric 

Fxo. 15. Normaliied responae to a unitHStep-function signal. (From Cfddman, 3; 
Proc. S7, November, 1939.) 

case I, in order to obtmn maximiuu picture detail for a ipven trans¬ 
mission band, iigure 16 indicates that asymmetric sideband trans¬ 
mission is definitdy worth while^ for picture detail, but figs. 14 and 
15 show that it is of no value for showing sharp edges in the case con¬ 
sidered here, i.e., when the no-signal carrier level is xero. 

We shall, show in the next section, however, that there is an 
improvonent vdien the no-«gnal carrier level is not xero. 

iAcompariaimof Figs. 16amd8,if w. » 21^ me in tiie latter, shows that case V 
requires about half the bandwidth of ease I. 
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The reason for the improvement in detail but not in the sharpness 
tA edges in the asjrmmetric sideband case is that the quadrature func¬ 
tions Q(z), which produce distortion in the picture, cancel midway 

I. __ J U. _ » — I_I l_ ^ _ _ _l U—J 

Case IV Fc“Po-2 CawV Fc-Fo-2| Case VI Fc-Fo-aJ 

Fio. 16. Effect of carrier position on the reproduction of detail. {From Ooldman, S,, 
Proe. J,R.E,, 17, November, 1939.) 

between the pulses in Fig. 16 but show no cancellation effect in the 
case of a tingle sharp edge. It is worthy of note that if ui — a>s, the 
cutoff range on the carrier tide, is made too narrow, or if the carrier is 
moved too close to a, for any reason, 
then the quadrature distortion be¬ 
comes so large as to cause a serious 
reduction in picture quality. 

4.10 The Case in Which the 
No-signal Caixier Level Is not Zero. 
The for^^oing discussion applied to 
the case in which the no-signal 
carrier levd is sero. Let us next see 

Fio. 17. A step-type signal modulat¬ 
ing a carrier. 

what differences result from the use 
of a no-signal carrier level that is not swo. Accordingly, let us study a 
signal of the type shown in iig. 17, which depicts an edge in a tele- 
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vision picture. As we have seen, all pulse-type signals can be obtained 
from this signal with the aid of the superposition theorem. 

To find the output signal G{t) when the input is the signal shown in 
Fig. 17, we use the superposition theorem and write 

G{t) = {fe[P« -g- To)- P(-»)] 
■f a[P(-f oo) — P{t — g — To))! cos — 6) 
+ m(t-g-To) -Q(-<^)] 
+ a[Q(+«>) — Q{t — g — To)]) sin {wct — 6) 

= f(6 + o)P(-l- «) + (b — a)P(t — g — To)] cos (uct — 9) 
-f (6 — a)Q(t — g — To) sin {wct — 6) (64) 

since 
P(-oo) = -P(-hoo) (65) 

and 
O(-oo) = Q(-t-oo) =0 (66) 

The envelope function, i.e., video signal, is then 

G(t) = U(6 + a)P(cc) + (b- a)P(Jt -g- To)]» 

+ [(6 - a)Q{t -g- To)»}* (67) 

If o = 0, Eq. (67) reduces to the case depicted in Fig. 14. However, 
if & — a is small in comparison with 6 o, we can expand Eq. (67) in a 
Taylor series and obtain 

G{t) = (6 + a) jp(=o) + ^P« -g-To) 

+ [terms in (68) 

In this case, then, the quadrature functions become of negligible 
importance. The sharpness of edges in case V is about twice as good 
as in case I for small changes in the percentage of modulation. This 
can be seen by reference to Fig. 12 in conjunction with Eq. (68). 
As the value of (6 — a)/(6 + a) increases, the importance of the 
quadrature functions increases with it and the distortion that they 
cause becomes more pronounced.^ ^ 

4.11. Optimum Transmission Bands for Pulse Receives to Obtain 
Best Signal-to-noise Ratio. In the design of pulse receivers, it is 

^ It should be noted that only in cases I and V is there a uniform distribution of 
sideband energy sensitivity vs. frequency. The nonuniformity in the other oases 
is at relatively low frequencies and shows up in Fig. 12 in the length of time 
required for the P{x) functions to reach the st^y state. 
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desirable to know the optimum bandwidth for the carrier-frequency 
(over-all radio frequency plus intermediate frequency) amplifier and 

^-Video Bandwidth-|(i. t Bandwidth) 

Fio. 18. Bandwidth vs. relative signal-to-noise ratio in pulse amplifiers. 

for the low-frequency amplifier. With the aid of the analysis in the 
preceding sections^ we are now in a good position to consider these 

matters* 



100 FREQUENCY ANALYSIS, MODULATION AND NOISE 

The usual objective in the design of a pulse recdver is to get 
maximum signal-to-noise ratio. Now, in our chapters on noise, we 
wha-ll show that the amplitude of random noise varies as the square root 
of the bandwidth of the transmisaon system. Consequently, in our 
present analysis we shall have to take into accoimt the fact that the 
noise, with which the output signal is to be compared, varies in magni¬ 
tude as the square root of the bandwidth of the system. No attmnpt 
will be made, however, to cover such matters as nonlinear phase 
characteristics or nonuniform frequent^ characteristics in the pass 
band. 

In Fig. 18 is ^own the effect of bandwidth on the transmission of 
a l-/i8ec pulse throu^di a video amplifier. This same figure likewise, 
shows the effect of a double sideband transmission system (of twice the 
bandwidth) since we have shown that the two are the same. The 
response curves have been taken from Fig. 6. The signal-to-noise 
ratio of Fig. 18c has arbitrarily been set equal to 1, and the others 
have been compared with this, taking into account that the noise 
amplitude varies as the square root of the bandwidth. 

The best signal-to-noise ratio is obtained with sidebands going out 
to about ^ me == 3/4(T* — Ti) from the carrier (Fig. 18d). If the 
reader will glance at Fig. 6 of Chap. Ill, where the frequency com¬ 
ponents of a pulse are shown, he will see that the sidebands fall off 
rapidly in amplitude beyond about 

so that it is not surprising that this value ^ves about the best rignal- 
to-noise ratio. 

The next question to be considered is whether any worth-while 
improvement can be obtained by the use of asymmetric sideband 
reception. Figure 19 shows that very marked asymmetry gives 

1. Less sensitivity 
2. Poorer signal-to-noise ratio ^ 
3. A poorer pulse shape 
These undesirable effects are due to the influence of the quadrature 

component. A moderate amount of asymmetry mi^t actually be 
hdirfoL Owing to the large frequency drifts in the apparatus at the 
radio frequencies at which most pulse transmission tidees place at 
present, actual reoeptiem probably changes from the symmetric to 
the asymmetric ^rp® many times every minute. Consequently, it is 
indbably useless to design the apparatus fmr one rather than the othm. 
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As a general conclusion, we may therefore say that for best signal- 
to-noise ratio we should use approximately 

3 1 
Video pass band = | y (70) 

and, because of upper and lower sidebands, 

3 2 
Modulated carrier-frequency pass band = ;j y (71) 

If it is esaential to have sharply defined edges for the pulses, i.e., 
for accurate radar ranging, and if Mgnal-to-noise ratio is not a serious 
problem, a glance at Fig. 6 of Chap. Ill shows that good values to use 
for bandwidth are 
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7 1 
Video pass band ^ ^ 

7 2 
High-frequency pass band = ^ ^ 

(72) 

(73) 

Larger high-frequency pass bands than called for by Eqs. (71) 
and (73) may, of course, be required owing to frequency drift of the 
equipment. 

4.12 The Interpretation of Distortion as Paired Echoes. We come 
next to a remarkable application of Fourier analysis to find an approxi¬ 
mation to the effects of various types of distortion. This method was 
first published by H. A. Wheeler^ but was independently developed by 
L. A. MacColl. The analysis given here, however, follows more 
closely that of C. R. Burrows.^ 

Let us assume that we have an input signal G{t) going through a 
system with a transmission characteristic Now, by Eq. 
(64) of Chap. Ill, G(t) may be expressed 

(?(0 = ^ dw (74) 

Consequently, the output signal is 

Output signal = (75) 

In Sec. 4.3 we showed that, if A(co) is a constant and JS(w) is pro¬ 
portional to frequency, then G{t) is transmitted through the system 
without distortion. We now wish to investigate what happens to 
the output when the transmission characteristic has small deviations 
from the properties necessary for distortionless transmission. 

CcLse I. Firstrorder Amplitude Distortion, In this case let us 
assume that the phase shift is proportional to frequency, t.e., 

R(«) « (76) 

but that the amplitude characteristic is 

•4.(«) = ^ + ai cos cw (77)» 

where ai is small in comparison with ao. Such a frequency character¬ 
istic is shown in Fig. 20. The value of c is ordinarily so chosen that 

* Free, LB,E., June, 1989, p. 359. 
* Prac, June, 1939, p. 384, 
* In See, 4.4 it is shown that A (w) is an even function of w, while B(<i>) is an odd 

function. 



RADIO APPLICATIONS OF FOURIER INTEGRAL ANALYSIS 103 

most of the frequency components of G{t) lie within the range 

Fio. 20. A nonuniform amplitude-transmission characteristic. 

Substituting Eqs. (76) and (77) into Eq. (75), we have 

S[m) + Oi cos cw^ ^ 

— ^ j S(,os) e'™ + ^ du 

-S(w)e'l“<‘-‘*>+*(“» dw 

1 ^ ^ -S(«)«»t‘*<‘-»*+')+*<“>l da 

+ 5(„)««“«-*-«)+*(“)l da 

- ^G(t - bo) + ^G(t -bo + e) + ^G(t -bo-c) (78) 

in which we have used the formula 

4- e-*. 
cos X ■= -n- (79) 

Equation (78), as depicted in Fig. 21, shows that in this case the 
output of the system consists of the main undistorted transmitted 
dgnal, (oo/2)Cr(i — bo), plus two “echoes,” similar in shape to the 
undistorted aignal but displaced from it on either side by an amount of 
time f »» c. These echoes are the terms (ai/2)<7(t — bo + e) and 
(ai/2)0(jt — bo — c), respectively, and they represent the distortion in 
the transmitted dgnal. 
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Case II. First-order Phase Distortion, In this case we assume Ilia 
the amplitude characteristic is independent of frequency, t.e., 

A(o,) = 1“ (80) 

but that the phfise shift may be represented as 

B(w) = — 6oci) + bi sin Ciw (81) 

where bi is small in comparison with bo. Such a frequency character¬ 
istic is shown in Fig. 22. 

-^G(t-bo) 

Fig. 22. A nonlinear phase-characteristic. 

Substituting Eqs. (80) and (81) into Eq. (75), we have 

Output signal = 0(1) = ^ /_ 'S(«) j (82) 

In Appendix £ it is pointed out that 
4- • 
^ /»(»)*#** 

«■ Jo(x) + lJt(x)^ + J-i(»)<r**} + • • • (88)* 
* lUa k Bq. (11) of Atqtendix E. 
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If X is small, we may neglect any higher-order terms in the expression 
on the ri^t in Eq. (83). The functions Ji(x), J-i(x), etc., are 
types of Bessel functions, which are discussed in Appendix E. Their 
values as functions of x are given in Fig. 23, and this is all that we need 

to know about them for the present. If we use the approximation of 
Eq. (83) in Eq. (82), we obtain 

(5(0 =1 y^^_*5(«)|V^"‘+*<“>-^H^o(6i)+/i(6i)e'«“+y_i(6i)*-^'«^^ 

= 1“ y,(6i)(?(< - 6«) -I- 1“ J,ibi)Git - bo + Cl) 

+ ^J-iibi)G(t-bo- Cl) 

= ^ Joibi)Git - bo) + § Jiibi)G(,t - bo + Cl) i 

-^Jiibi)G(.t-bo-Ci) (84) 

In the foregoing equation, we have used the known relation in 
Bessel functions that J-.t(x) = (—l)V»(x). 

Equation (84) shows t^t in this case the output of the system con- 
Eosts of the main undisto^d transmitted agnal (ao/2)Jo(6i)G(i — bo), 

plus a pomtive echo {ao/2)Ji{bi)G(t — 6o + ci), rimilar in shape to 
the undistorted transmitted signal but preceding it by a length of 
time Cl, and a negative echo (.—ao/2)Ji(bi)G{t — bo — ci), similar in 
diape to the undistorted transmitted signal but following it by a 
length oi time Ci. This situation is depicted in Fig. 24. In Fig. 246 
the value of ci has been changed to a smaller value cl so that there is 

iuxtiq>oeition of the transmitted wgnal and its echoes. The 
eampodte dgnal is also diown. This type of distortion is actually 
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more common than the case in which the transmitted signal and its 

echoes are completely separated. 

Case III. Combined First-order Amplitude and Phase Distortion. 

In this case we assume an amplitude characteristic 

i4.(aj) = ^ + Ui cos CO) (85) 

and a phase characteristic 

5(co) = —6oa? + 6i sin Ciw (86) 

Proceeding as in the previous cases, we get for the output signal 

Q{t) = y ^ S(«) + ai cos du 

=y ^ s{u) ^ €>"‘+♦<">"*•"1 

[/o(fei) + 

= ^ Jf>{hx)G{t - 6,) + ^ Ji(]bi)G(t - 6o + ci) 

- |Vi(6i)(?« - 6o - Cl) 

+ ^ J o(]l>i)0(t — bo + c) + ^ J o(bi)(?(< — bo — c) 

+ ^Vl(bi)(?« - bo + C + Cl) 

- ^ Ji(]bi)6it - bo + c - Cl) + ^ Ji{bi)G(t - bo - c + Ci) 

- |Vi(bi)<?(< - bo - c - Cl) (87) 
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Equation (87) shows the main undistorted transmitted signal 
(ao/2)/o(6i)(?(< — bo). It also shows four first-order echoes involving 

(d) 

(6) “ J Ji(.bi)0(.t - 6, + 2c) (e) /o(6>) - j Gif - 6o - c) 

(e) - + J >^«(&<) ] (/) = - y Ji(6i)G(« - bo- 2c) 

G(t — bo *+■ c) 

Fig. 26. Combined amplitude- and phase-distortion echoes according to Eq. (87) 
(assuming ci » c). 

either (ao/2)Ji(bi) or {ai/2)Jo{bi). Finally, it shows four second- 
order echoes involving (ai/2)Ji(6i). If ai and bi are relatively small, 
these second-order echoes should be negligible. Case III is depicted 
in Fig. 25, where Ci is shown equal to c, in order to get a simpler picture. 

Discussion of the General Case. In the general case the distortion 
will not be limited to first-order terms. It is then still possible to 
expand the distortion terms in A(a)) and J5(a?) in Fourier series and 
obtain 

and 

A(co) On COS nco) (88) 

00 

B(«) = — 6o<u + ^ sm mcft) (89> 

These values may be substituted in Eq. (75). The result will be a 
main undistorted signal plus an infinite series of echoes displaced in 
time from the main signal by multiples of c. All the echoes will be 
of the original shape, but they will be of varying magnitude, and some 
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will be negative. Such a representation, however, is of more theo¬ 
retical than practical interest. 

In its practical application, the method of paired echoes is an 
approximation method. The complete distortion of a transmission 
system does not consist of just a pair of amplitude-distortion echoes 
and another pair due to phase distortion, or even of a finite number of 
echoes. However,.if the distortion of the amplitude characteristic 
of the system can be expressed to a first approximation as a single 
cosine term and that of the phase characteristic as a single sine term, 
which will often be possible, then the method of paired echoes will 
give a good approximation to the actual distortion. The size of c 
or Cl to be used in Eqs. (85) and (86) is for the person performing the 
analysis to decide. If these quantities are so chosen as to make the 
approximations (85) and (86) fit closely to the exact values, then the 
resultant calculated echoes will closely approximate the actual dis¬ 
tortion of the signal. 

For a more thorough study of the method of paired echoes, the 
student should refer to the original paper of Wheeler.^ 

Exercise 
A pulse shown in Fig. a is sent through a transmission system having the 

characteristics in Fig. h. Find the output. 
Note that the main transmitted signal and its echoes are similar, not to the 

pulse, but to the transmitted signal of a pulse passing through a low-pass filter. 

0 t, - 
(a) 

^Proe. IJt.E^ June, 1039, p. 369. 
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4.13 The Fourier Integral Energy Theorem. In Sec. 2.5 it is 
shown that, in the case of a periodic current which can be analyzed by 
means of a Fourier series, the average power dissipated is equal to 
the sum of that dissipated by the individual frequency components 
separately. The interaction between different harmonics thus does 
not contribute to the average power. It is also shown in the same 
section that, when an emf, expressible as a Fourier series, is impressed 
upon a circuit, the power delivered to the circuit is equal to the sum 
of the powers delivered at the different harmonics. Interaction 
between a voltage of one harmonic and a current of a different har¬ 
monic does not contribute to the average power delivered. 

The foregoing propositions were based upon Eq. (102) of Chap. I, 
namely, 

^j^fix)gix)dx= ^ ft.CL» (90) 

n** — «o 

or upon its trigonometric equivalents. A formula corresponding to 
Eq. (90) can also be derived for Fourier integrals.^ This is 

/_V dt = /_■*■/ Fi(/)F*( -/) df (91) 

where Fi and Gi are a Fourier pair, as are also Fj and (r*. Now accord¬ 
ing to Eqs. (26) and (27) of Chap. Ill, we may write 

Therefore, mnce 

and 

Fi(/) = T[a,(«) - jbiM] 
Fi(—/) = *r[o*(«) -f- ji>2(«)] 

o(—«) = a(b)) 

6(-«) = -6(«) 

we may rewrite Eq. (91) as 

(92) 
(93) 

(94) 

(95) 

(96) 

j dt J Uoi(«)oj(«) -H 6i(«)6*(«)] 

-i" j[cii(<a)bi((a) — a2(«)6i(w)]} d<a 

= - / 5i(a))S2(c»)) cos [4>iM ■“ ^a(«)] do9 (97) 
ir Jo 

^ See the Campbell and Foster table, p. 39 (Table I, part 2, footnote); Titch- 
UAASH, £. C., Introduction to the Theory of Fourier Integrals,^’ Oxford, 1937. 
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For convenient reference, we recall here the defining equations of 
o(w) and 6(«), namely, 

G{t) cos dt 

G{t) sin (at dt 

As a corollary lo Eq. (97), we have 

/_V jj ^ 
= - / [S(,w)y du 

^ Jo 

Equation (100) is called the Fourier integral energy theorem and 
was originally derived by Lord Rayleigh. Since the energy of a dis¬ 
turbance G(t) is generally proportional to the square of its amplitude, 
the Fourier integral energy theorem shows that the total energy of a 
disturbance is equal to the sum (i.c., integral) of the energies of its 
frequency components. Incidentally, it shows that cross products 
of different frequency components do not contribute to the energy.^ 

Equation (100) has a wide variety of applications. For example, 
with its aid we can study the transfer of power due to various signals 
in terms of the frequency characteristics alone of the transmission 
system. This is especially valuable in later chapters when we study 
the important topics of modulation and noise. 

The more general equation, (97), allows us to calculate the energy 
absorption in terms of frequency components in a system in which a 
current I{t) is flowing when a voltage E{t) is applied. Equation (97) 
shows that the energy absorption depends only on the power products 
of the components of the same frequency and is independent of any 
interaction between components of different frequencies. 

Exercises 

1. Calculate the energies in the pulses of Fig. 37, and show that the answer is 
the same whether G(t) or whether S(<a) » |F(/)| is used as the basis of calculation. 

2. Using £q. (91), show that 

PS - JP mF*(f) df - \F(f)\^<if 

This shows that the Fourier integral energy theorem applies to complex as 
well as real frequency distributions. 

^ This proposition is, of course, limited to systems to which the Fourier integral 
applies, linear systems. 
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4.14 The Principle of Stationary Phase.* We come next to a prop¬ 
osition of wide applicability in many branches of radio engineering, 
as well as in many fields of physics. As a first step in arriving at this 
proposition, consider a quantity 

^ ^ ju tF(i)] cte = Re I ctej (101)* 

in which U{x) varies only slowly with x, while cos [F(a:)] goes through 
a large number of periods within the range of integration. In particu- 

V(x) 

Shaded blooka 
above x axis show 
positive regions of 
cos V{x). 
Shaded blocks be¬ 
low X axis show 
negative regions of 
COB Vix). 

U {x) varies slowly 
while cos Vix) goes 
through many 
periods. The value 
of 

fUix)coB lV(x)]dx 

is essentially the 
area of the large 
central shaded 
region in Fig. 2^, 
which is the region 
of stationary phase 

Fig. 26. Graphical illustration of the principle of stationary phase. 

lar, it is assumed that U{x) changes by only a small fraction of itself, 
while V{x) changes by 2?r. Under these circumstances the value of 
the above integral usually will be small, for those portions of it in 
which cos [F(x)] is negative will tend to cancel those portions in which 
cos [V(x)] is positive. An exception will occur, however, if V(x) has 
any stationary values, i.e., values for which 

i trwi. 0 

^See also Watson, G. N., ^‘Theory of Bessel Functions,” 2d ed., Sec. 8.2. 
• Be stands for “the real part of.” 
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In this case a substantial contribution may be made to the value of 
P by the portion of the integral in the range of stationary phase. 
This is shown in Fig. 26b, where the shaded areas show contributions 
of one sign and the crosshatched areas show contributions of the 
opposite sign. There will, in general, be cancellation of positive 
against negative areas except for the range of stationary phase. 

The proposition that in an integral of the type of Eq. 101 there is 
general cancellation of positive and negative portions of the integral 
except for ranges of stationary phase is called the principle of stationary 
phase. Its formal enunciation is credited to Lord Kelvin. 

In the practical use of the principle of stationary phase, the inte¬ 
grand is usually a function of a parameter, which we may call a, 
as well as the variable of integration x. Since the variable of inte¬ 
gration disappears when we substitute the limits of integration, the 
integral is actually only a function of the parameter. Thus Eq. (101) 
may be rewritten 

P(a) = U(x,a) cos V(x,a) dir = Re { dx} (102) 

We can therefore rephrase the principle of stationary phase to 
state that P(a) mU have its greatest valves for those values of a for which 
V(x,a) has stationary valves. This is the form of the statement of 
the principle of stationary phase that is ordinarily the most useful 
in radio engineering. We shall now use it in dealing with a number 
of practical examples. 

4.16 Examples of the Application of the Principle of Stationary 
Phase, a. Location of a Signal. Suppose we have a signal G(t). 
Then G(t) may be represented by a Fourier integral as 

G(t) = - I S(») cos [o>t + ^(«)] d« (103) 
v Jo 

According to the principle of stationary phase, if Siw) varies only 
slowly with a while cos [td -f ^(w)] goes through a large number of 
pmiods, then the major portions of the signal are located where 

£l“'+*(“)l = ‘ + S-0 (104) 

or 

* dk) 
(106) 
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Equation (105) gives the approximate location in time of the signal. 
The situation is depicted in Fig. 27 by the signal G{t). In case d^/dw 
varies with w, then the average value of d^/dw in the frequency range 
containing most of the energy of the signal should be used in Eq.(105). 

x6(t) 
Original / 
Signal/7l Transmitted /O 

Signal /Ty 

-d4 
<l« (!• 

Fio. 27. The location of aignals according to the principle of stationary phase. 

6. Distortionless Transmission. Next suppose that the signal in 
Eq. (103) goes through a transmission system with a transmission 
characteristic whose amplitude is independent of frequency and equal 
to 1/itL and whose phase shift is proportional to frequency and equal 
to — wT. These are the characteristics of a system having distortion¬ 
less transmission, as in Sec. 4.3. Then the output is 

(S(«) cos [wt + ^(<o) — wT] da (106) 

According to the principle of stationary phase, the major portions of 
the signal are then located where 

Comparing this with Eq. (105), we see that the phase shift in the trans- 
misfflon system has caused a time delay of amount T for the signal 
The situation is shown pictoiially in Fig. 27. 

c. Paired Echoes of Distortion. Let us next consider the paired 
echoes of distortion disciueed in Sec. 4.12. To be specific, let us con- 
eider the case of first-order amplitude distortion. The other cases 
can be treated by exactly similar means. For the case of first-order 
amplitude distortion, Eq. (78) i^ves us 
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G{t) = ^ <S(6)) + ai cos dM 

+ ^ /^ * I -Sr(«)e'“»-‘«+'> d« 

+ ^ ^ ^ d« (109) 

The three integrals on the right side of Eq. (109) are of the same 
type as Eq. (102). Consequently, the major portion of the first 
occurs when 

£ [«(< - to)] = f - to = 0 or i = to (110) 

of the second when 

^ [o){t — bo + c)] = ^ — 5o + c = 0 or t= bo — c (111) 

and of the third when 

[o)(t — bo — c)] = < — bo — c = 0 or t = bo + c (112) 
a<a 

Thus the principle of stationary phase can be used to locate both the 
main transmitted signal and its echoes. 

In the foregoing example, the original amplitude function was 

iS(aj) + Ui cos co)^ 

Since cos cw varied more than slowly with w, it was necessary to trans¬ 
fer this factor into the phase portion of the integral, before applying 
the principle of stationary phase. 

d. Spectral Distribution of Frequency Components.^ The foregoing 
examples have shown us how to find the location in time of signals 
under various circumstances. We shall now study an example of 
locating the principal frequency ranges in the distribution of the 
components of a signal. 

^ In this connection, see John R. Carson and Thornton C. Fry, Variable Fre¬ 
quency Electrical Circuit Theory, Appendix I, Bdl System Tech. October, 1987, 
p. 513. The author first became acquainted with the principle of stationary phase 
through this article* 



RADIO APPLICATIONS OF FOURIER INTEGRAL ANALYSIS 115 

Consider a signal (see Fig. 3 of Chap. Ill) 

G{t) = cos a>o< (from Ti to I 
(?(0 = 0 (elsewhere) j 

In this case the complex frequency-distribution function is 

cos( dt 

(113) 

/+ • fTi 
(?(0e-^'"‘ dt = 

-j. jwo< 

rr 

JTi 

Ti ^ 
dt 

dt "f" re. 
Jt, 

•2(«+Wo)* 
dt (114) 

According to the principle of stationary phase, the major portion 
of the first integral on the right side of Eq. (114) is located where 

d 
dt 

[(co — a>o)fl = 0? — c*)o = 0 

or 
0) = +a>o 

while the major portion of the second integral is located where 

d 
[(w + <ao)t] == o> + Wo = 0 

(115) 

or 
CO = —Wo (116) 

Equations (115) and (116) thus tell us that the major portions of 
F(f) for the signal of Eq. (113) are located around wo and —wo. The 
reader can verify this conclusion by referring to Fig. 4 of Chap. Ill, 
remembering that 

S(co) = |F(/)1 (117) 

So far we have used the principle of stationary phase for the 
location of the major portions of a signal both in time and in the 
frequency spectrum. In the next section we shall use it for locating 
a signal in space and shall thus develop the important concept of 
group velocity, 

4.16 Signals Travel with Group Velocity. If a plane wave of one 
frequency is traveling through space or an electric wave of one fre¬ 
quency is traveling down a transmission line, either may be represented 
analytically as 

A cos (118) 
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where A = amplitude factor 
t ^ time 
r = distance traveled 

V ~ velocity of propagation. 
The expression (118) is derived and discussed in most elementary 

texts in physics and radio engineering and is no doubt familiar to 
the reader. The situation, however, is no longer as simple as that 
expressed in Eq, (118), if a disturbance^ G{t), which is made up of the 
superposition of waves of a band of frequencies, from a)i/27r to w2/27r, 
is traveling down the line, in case the velocity of propagation is different 
for each frequency. Let us see with what velocity this disturbance is 
propagated. 

The disturbance may be represented by the Fourier integral 

G{t) = /: -A(a)) COS dw (119) 

By the principle of stationary phase the major portion of this disturb¬ 
ance is located where 

f)] “0” (120) 

Solving Eq. (120), we obtain for the location of the disturbance 

~ 1 _ J!L^ 
V 

(121) 

If we call the velocity at which the disturbance is traveling va, then we 
have by the very definition of velocity 

r = vd 

Comparing Eq. (121) with Eq. (122), we have 

Va~ V V* da ~ dw\v) 
If we write 

(122) 

(123) 

(124) 

* A disturbanoe is the general term used in wave studiea to describe any type of 
variation, for example, a radio signal. 
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where X is the wavelength corresponding to a, we can transform Eq. 
(123) into the standard form as derived by Rayleigh, 

_ _ dikV) 
dim/V) dk 

(125) 

va, the velocity at which the disturbance as a whole is traveling, 
is called the group velocity. On the other hand, F, the velocity at 
which the phase of a wave of one frequency moves down the line, is 
called the phase velocity or wave velocity. 

Phase velocity can be determined by measuring the steady-state 
characteristics of a line, such as the wavelength of standing waves, 
and we can study the variation of this phase velocity with frequency. 
However, the velocity at which a disturbance travels down the line, 
f.c., the velocity at which energy travels down the line, is ordinarily the 
group velocity. 

If the phase velocity is independent of frequency, Eq. (125) tells 
us that it is then equal to the group velocity. It is probably for this 
reason that the distinction between phase velocity and group velocity 
was not at first recognized. An interesting historical case may be cited 
in this connection. When Michelson first measured the velocity of 
light in a medium other than air (he used carbon bisulphide) by a 
method that actually measured the time required for light to travel 
between two points, he found that the measured velocity differed 
markedly from the figure obtained by dividing the velocity of light in 
air by the known index of refraction of carbon bisulphide for the color 
used. The difficulty was resolved when Gibbs and Rayleigh pointed 
out that the velocity of light determined by the index of refraction 
method was the phase velocity, while Michelson measured the velocity 
at which light energy actually traveled, t.e., the group velocity. They 
then calculated the difference term, k dV/dk [see Eq. (125)] from the 
known variation of the index of refraction with frequency and found 
that it accounted for the discrepancy. 

4.17 Criteria on The Phase Characteristics of Video and Pulse 
Amplifiers. In earlier sections of this chapter we studied the way in 
which bandwidth affects the output of video and pulse amplifiers. 
In particular, we made approximate determinations of the bandwidth 
necessary to transmit various amoimts of detail and to allow the 
accurate location of sharp edges of pulses. In this section we shall 
attempt to establish criteria for the requirements in transmission phase 
characteristics to do the same things. 
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a. Criteria for Detail, In Sec. 4.7 we found that a frequency band¬ 

width of 
1 

fa = 
2 X pulse length 

(126) 

is sufficient to pass fine detail of equal pulses and spaces. However, 
a bandwidth of 

/ 1 
4 X pulse length 

(127) 

completely washes out the detail. We now propose to study this case 
in terms of distortion and paired echoes and by analogy with it derive 
corresponding criteria for the phase characteristic. Accordingly, we 
shall now study the echoes corresponding to Eq. (127). 

7^ 

-— First Order 
Approximation 

^ -«sl 

-Fc 

Fiq. 28. Amplitude vs. frequency characteristic of a low-pass filter and its first- 
order approximation. 

In Fig. 28 is shown the frequency characteristic corresponding to 
Eq. (127). We shall consider only the first-order amplitude-distortion 
echoes corresponding to Fig. 28 and accordingly shall consider only the 
fimdamental in the Fourier expansion of Fig. 28. Referring to Fig. 8 
of Chap. I and Fig. 20 of this chapter, w e see that the magnitude of 
the fundamental chstortion term is (4/7r)(ao/2). If we now refer to 
Eq. (78) of this chapter, we see that the echoes corresponding to 
this fimdamental wrill be 2/r times as large as the imdistorted signal 
and will be displaced from it by a time 

__ 1C 

2(aai ^icfai 
original pulse length (128) 

by Eq. (127). The situation is depicted in Fig, 29. 
Although the transmitted signal in Fig. 29 shows a similarity to 

the original signal, the detail is entirely due to the distortion echoes 
and is therefore fortuitous. For our purposes, in accordance with 
Eq. (127) we shall assume that a pair of positive echoes of 63 per cent 
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2/fr) of the size of the undistorted signal and displaced from it by 
the pulse length will completely wash out the signal detail. 

Let us next consider the phase-distortion echoes. In this case we 
have one obvious difference from the amplitude-distortion case in 
that one of the echoes is negative. With equal pulse lengths and 
spaces as shown in Fig. 29 this would have the effect of the negative 
distortion eliminating the positive distortion when the echoes were 
displaced from the main signal by the pulse length as called for in 
Eq. (128). It therefore appears that a larger displacement can be 
tolerated for the phase-distortion echoes. If the displacement is 
made equal to % times the pulse length, the picture becomes about 
as bad as that of Fig. 29d. Accordingly, we shall assume that a com- 

(a) Undistorted Signal 

(b) Advanced Echo 

(C) Retarded Echo 

(d) Combined Effect 

Fio. 29. The loss of signal detail owing to amplitude-distortion echoes. 

plete loss of detail due to phase distortion will result from phase- 
distortion echoes of magnitude 2/ir times the undistorted signal and 
displaced from it by % the pulse length. 

Let us next transform the distortion conditions just described into 
properties of the phase characteristic. Referring to Fig. 22, we see 
that a displacement of 

Cl = I X pulse length = ~ (129) 
A (i) Zj 

is equivalent to a variation from a linear phase characteristic in a 
frequency band of 

^ ~ 3 X pulse length (^30) 

The amount of variation is determined by the echo size, namely, 2/r as 
mentioned above. According to Eq. (84), this means that 

Ji(bi) 2 
Mbx) “ ? “ 

-TUWl 
I I I I I i i I 
! I I I I I III 

•I III I 
I 11 11 I tn-fuw 

Ml! Ill 
I I I I 

0.636 (131) 
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Therefore, according to Fig. 23 this means that 

6i = 1 (approx) (132) 

Equations (130) and (132) thus give us our first criterion, namely: 
If the variation from a linear pha^e characteristic is as much as 1 

radian in a frequency range of 

_1 
3 X pulse length 

a complete loss of signal detail may he expected. This criterion cor¬ 
responds to Eq. (127) as a criterion for the amplitude characteristic. 
Corresponding to Eq. (126), we shall then somewhat arbitrarily write 
the second criterion: 

If the variation from a linear phase characteristic is no more than H 
radian in a frequency range of 

_1 
3 X pulse length 

(here will probably he no serious 
loss of signal detail. 

The foregoing criteria can lay 
no claim to great accuracy, but it 
is believed that they were ob¬ 
tained from reasonable arguments. 
They should therefore be of some 
value in judging the adequacy of 
a phase characteristic. 

As an example, consider the phase characteristic in Fig. 30. The 
system is expected to pass pulses of length T, so that the bandwidth is 
made 

U = (133) 

according to Eq. (126). According to our second criterion, we then 
require that the deviation from linearity in % of the above bandwidth 
diall not be more than radian. These deviations are shown as MN 
or M'N' in Fig. 30. If neither of these is more than H radian, the 
phase characteristio is satisfactory for the transmission of detaiis 
length T. 

The foregmng criteria refer to the frequency bands that contain the 
major porticm of the signal energy. Thus, if there is a large deviation 

R 

Fig. 30. A phase shift vs. fre¬ 
quency characteristic of a transmission 
system. 
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from pha43e linearity in a very narrow frequency band (illustrated at R 
in Fig. 30), its effect upon detail can probably be ignored, unless this 
particular narrow frequency band happens to contain a large per¬ 
centage of the signal energy. In that case the whole situation would 
have to be reconsidered. 

b. Criteria for Sharp Edges. In Sec. 4.11 we foimd that while a 
bandwidth of 3/4T gives the best signal-to-noise ratio in a pulse ampli¬ 
fier, an increase in bandwidth to 7/AT gives a worth-while improve¬ 
ment in the sharpness of edges, if these edges must be accurately 
located. Let us now see what stipulation must be made concerning 
the phase characteristic of the amplifier in this added frequency range 
so that the additional frequency range shall not be wasted. 

The transmitted signal may be expressed as 

1 
G{t) = ^ / 

1 

where 

(?(<) = ^ 

is the original signal and 

(134) 

(135) 

(136) 

is the transmission characteristic of the system. 
Applying the principle of stationary phase to Eq. (134), we see that 

the main^ part of the energy of the first integral is located at 

(137) 

where the derivatives in Eq. (137) are average values between fre¬ 
quencies 0 and 3/47, and the main part of the energy of the second 

^ Most writers on television have assumed that the transmission system intro¬ 
duces a time delay for the frequency components of the signal in a given range of 
amount B/o), instead of dBldta, This procedure is correct only if the phase shift is 
linear, which is not the case when there is phase distortion. Such a procedure is 
analo^us to assuming that the phase velocity is equal to the group velocity in 
wave tranemiesion, 
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integral is located at 

(138) 

where the derivatives are average values between the frequencies S/4T 
and 7/4:T, If wje refer to Fig. G, we can sec the improvement to be 
expected in the sharpness of edges by the extension of the frequency 
range if the values of dB/do) are constant and equal in both ranges. 

(b) Phase Characteristic 
Fio. 31. 

For practical purposes, the edge of a pulse rises from zero to unity, 
as shown in Fig. 31, in a time (see Sec. 4.5) 

tr = time of rise = (139) 

where «./2ir is the cutoff frequency. For the signal of Eq. (137) the 
time of rise is therefore 

U = 
3.84 X 4r 

Gtt 
= o.8ir (140) 

If the bandwidth is extended to 7/47’, the time of rise becomes 

Ui = = 0.35T (141) 

We shall arbitrarily say that the error in the location of an edge is 
equal to about 34 the time of rise. Therefore, for the 7/47’ bandwidth 
case, the error in the location of an edge is about 

Ui» = = O.ossr (142) 

Let us then say that the location of the energy of the second integral 
in Eq. (134) shall not be displaced from that of the first by more than 
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O.OSSr. Expressing this mathematically, we write 

s o.ossr (143) 

as the criterion for maximum allowable difference between the average 
slopes of the phase characteristics in the two frequency ranges. If 
the difference in slopes exceeds this value, it would appear that the 
phase characteristic causes more inaccuracy in the location of edges 
than the bandwidth limitation. 

The criteria in both parts a and h of this section present more of an 
approach than they do an answer to the problems under considera¬ 
tion. With these limitations in mind, it is felt that the foregoing 
discussion shows how the methods of this chapter may be applied to 
these important practical problems, which it would be difficult to 
treat by other means. 

il- 

(a) 0(t) 0 

1 

(b) 0 

ro t 
L _ __ 

k 

(C) kU(t-t2) 0 

'0 t, —>• t 
L 

to -^1 
Fio. 32. Step functioiiB. 

4.18 Step and Impulse Functions. There is a class of singular 
functions that is very important in advanced radio theory and that 
we shall now consider. These singular functions have points of dis¬ 
continuity, and it is precisely at the points of discontinuity that the 
most salient characteristics of the functions are located. The impor¬ 
tance of these functions arises from the fact that they give a better 
insight and approximation to certain characteristic radio phenomena 
than any of the common elementary functions. We shall use them 
particularly in our study of noise. ^ 

^ These same functions are also very important in the study of transients. See 
the author’s Transformation Calculus.” 
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a. Step Functions. The unit step is a function of an independent 
variable say t, that has a constant zero value for all negative values of t 
and a constant value of unity for all positive values of t. At t = 0, 
the function has a discontinuity. The function is shown graphically 
in Fig. 32o. We shall designate it as 17(<). A similar function, but 
with its discontinuity at < = ti, will therefore be U{t — <i). If the 
magnitude of the step is different from unity, we need only multiply 
U(t) by the proper constant to describe it (see Fig. 32c). 

In order to find the frequency distribution of the unit step, we 
cannot apply the Fourier integral formulas directly, since 

/-V ^(0 d< = d< = 00 (144) 

Nevertheless, the frequency distribution may be found by analyzing 
a pulse of finite width, as is done in Sec. 4.5, and then letting the 
width extend from zero to +oo. Thus, from Eqs. (25) to (27), 
letting A- = 1 and = 0, we get 

V Jo <0 V Jo 0) 

Equation (145) represents the output of a pulse of unit height extend¬ 
ing from Ti to Tt and passing through a low-pass transmission system 
having unity transmission from zero to To proceed toward the 
unit step, first let Ti = 0 and let approach + «>. Call this(?2(0* 

Then 

sin o(t - Tt) 
«(< - Ti) 

dl«(t - T,)] 

_1 p* sin 

TT Jo X 

1+1 r*— 

^ 1C Jo Ctf 

dx “1” 

d<a 

1 sin (at 

T jo w 

+ 1 f Bin.(f -T.)^ 
T Jo (0 

do) 

We next let « and thus obtain the unit step. 

rr/j\ 1 f 1 f * sin , 
U{t) - o + - I -d(a 

2 1C Jo « 

• Bin* j » 

10 “‘**"2 

(146)» 

(147) 
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The integral on the right of Eq. (147) is equal to Si (+ <») = ir/2 for 
all poffltive values of t and to Si( — «) == —t/2 for all negative values 
of t. Equation (147) thus agrees with the original definition of 
the unit step, and our method of derivation is evidence that it really 
shows the distribution of the frequency components. Equation (147) 
tells us that the unit step consists of a constant (direct-current) com¬ 
ponent of magnitude plus a distribution of frequency components of 
magnitude l/ir«. The frequency components are all antisymmetrical 
with respect to f = 0, that is, all the components are sine functions. 

The frequency distribution of the energy in the unit step will also 
be found of interest in later work. This may be found by application 
of the Fourier integral energy theorem. According to Eq. (100), 
the energy is distributed among the frequency components in propor¬ 
tion to [/S((i>)]*. For the unit step 

S{ta) = i (148) 
6) 

so that the energy is distributed proportional to 1/w*. The energy in 
any frequency band for which < <0 < ws is then proportional to 

(149) 

The total energy for all frequencies above any frequency (i>o/2ir is 
accordingly proportional to 1/wo, while the total energy below this 
frequency is infinite. The energy of the frequency components in a 
unit step is therefore concentrated at the extremely low frequencies.* 

h. Ordinary Impulse Functions. We next wish to consider impulse 
functions and begin with the definition of a unit impulse, which we 
shall call h{t). A unit impulse is a fimction whose value is zero except 
in an arbitrarily small interval around t == 0, where it becomes infinite 
in such a way that 

5(0 dt = 1 (150) 

In Eq. (150), a and h are any finite positive quantities. 
Special types of unit impulse functions may be defined by limiting 

processes in various ways. For example, we can use 

5(0 — lim 
4l-*0 A2 

* Hm total energy in a unit st^ u infinite, since the unit step is an infinitely 
longrignal. 
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These cases are illustrated in Fig. 33a, 6, c, and d, respectively. The 
net result of using any of these forms is always the same in practice, 

(a) (b) (c) (d) 
Fig. 33. Various forms which become unit impulse functions as r 0. 

SO that the particular form should be chosen that is most easily manipu¬ 
lated in the problem at hand. Equation (151), (152), or (153) shows 
that the unit impulse is formally equivalent to the derivative of the 
unit step. Furthermore, it is clear that 

- O 
expresses a unit impulse at < = C; and it may be shown^ that 

/_V g(t) Kt -C)dt = giO (155) 

provided that g(t) is a finite and continuous function of t 

* A derivation of Eq. (166) would proceed as follows; 

g(t) «(< - C) <* - g(C) S(t - C) * - g(0 

where # is a very small quantity. If one of the specific forms of S(t) (Eqs. (161) to 
(154)1, is chosen, the derivation can easily be made rigorous. 
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If P{t) is an impulsive function in general (i.c., not necessarily 
a unit impulse), then 

is called the strength or magnitude of the impulse, where the impulse 
lies entirely between U and ^2. Accordingly, we can say that a unit 
impulse is an impulse of unit strength. 

The Fourier frequency distribution of a unit impulse can readily be 
obtained with the aid of Eq. (155). Thus 

^U) = 5(0 cos o)t dt '-j S(t) sin cvt dt 

= cos (0) + j sin (0) = 1 (156) 

The Fourier frequency distribution is thus constant and equal to unity 
for all frequencies in the case of the unit impulse. We may therefore 
write 

S(0=ir- = - f coswtdu (167) 
J ^ 00 T Jo 

Inspection of Eq. (157) shows that all the frequency components are 
in phase at < = 0, which is the reason for the great height of the 
impulse. 

The frequency distribution of the energy in the unit impulse Is 
found by application of the Fourier integral energy theorem as in the 
case of the unit step. For the unit impulse 

Sio>) = 1 (158) 

so that the energy is uniformly distributed for all frequencies. The 
energy of a unit impulse in any frequency band is thus proportional 
to the bandwidth. The total energy for all frequencies below any 
frequency (ao/2ir is accordingly proportional to «o, while the total 
energy above this frequency is infinite. The energy of the frequency 
components in a unit impulse is therefore concentrated at the extremely 
high frequencies. It is worthy of note that although 

PJ d(t)dt 

is finite, the energy that it represents and that is proportional to 

fp imvdt 
is infinite (but see footnote, page 129). 
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Step functions and impulse functions never appear in practice 
except as approximations. Thus the condition in which a quantity 
changes by a finite amount in an interval so short that a fraction of 
the interval would be of no practical interest and in which the new 
value is then retained for the duration of the period of interest of the 
problem is treated by specifying the quantity as a step function. As a 
practical example, the closing of a switch connecting a battery to a 
circuit is analyzed by assuming that a step function of voltage is 
applied to the circuit. In a similar manner, the condition in which a 

Fio. 34. Blocking of a grid by a voltage impulse. 

quantity has so great a value in an interval of negligible duration that a 
finite change is effected in the state of the system is treated by specify¬ 
ing the quantity as an impulse function. As a practical example, 
consider a voltage pulse entering the grid circuit of a vacuum tube 
as shown in Fig. 34. This pulse may be considered an impulse if its 
duration is negligibly short in comparison with the RC time constant 
oi the circuit and its magnitude is so great that it has an appreci¬ 
able effect on the circuit despite its short duration. In the case of 
the impulse in Fig. 34 the ultimate effect is to drive the grid voltage 
so far negative that the tube is cut off for an appreciable length of 
time. The actual magnitude and duration of the voltage pulse ei 
are not separately important in thb case, but the time integral of Ci 
(tLe., the strength <4 the voltage impulse) detennines how far negative 



RADIO APPLICATIONS OF FOURIER INTEGRAL ANALYSIS 129 

the grid voltage goes and how long the tube is cut off. Thus Ci, in 
this case, is an impulse function.^ 

1 
a 

Unit Step U(t) 

Unit Impulse 
(as a—^O) 

Unit Doublet Impirtsa 
(as b-»-0) 8'(t) 

Unit Triplet Impulse 
(a$c~^0) 

Unit Quadruplet Impulse 
(as d—►©) 

Fio. 35. Impuiaes of various orders. 
Impulses of still higher order are developed in em analogous manner. (Note that 

the heights of shaded blocks are proportional to the binomial coefficients, t.e., +!• 
for S'(0; +1. -2, +1 for +1, -3, +3, -1 for etc.) 

c. Impulses of Higher Order. In addition to step fimctions and 
ordinary impulse functions, there are also other singular functions of 

^ It is worth while pointing out that the energy associated with et (or ft) in 
any actual case is finite, not infinite as in the ideal case. The reason for this is 
that the heights and durations of all practical impulses are finite. Ther^ore, U&e 
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the same set that are sometimes of practical importance. The early 
members of this set of singular functions are shown in Fig. 36. Next 
to step functions and ordinary impulse functions, doublet impulses are 
of the most practical importance. 

An example of a practical doublet impulse would be the current in 
the external circuit due to an electron that returns to the cathode after 

Path of an Electron 
which induces a 
Doublet impulse 
of Current in 2 

Anode 

Cathode 
z 

□ 
(a) Diode Circuit 

t 

Time 

(b) Current Thru Z Due to an Electron which is Turned 
Back Before Reaching the Virtual Cathode.(This 

'Current has the Properties of a Doublet Impulse 
in the Low Frequency Range) 

Fig. 36. A practical doublet impulse. 

emission because it has not enough emission velocity to pass the virtual 
cathode (see Fig. 36). This current will have an average value of 
zero, and its low-frequency spectrum will be that of a doublet impulse. 
At frequencies so high that the duration of the current pulse is an 
appreciable fraction of a period, the correspondence between the 
current pulse and a true doublet impulse will no longer be exact. 

uniform distribution of frequency components, which is characteristic of impulses, 
extends only up to some finite frequency and thereafter falls off. The arbitrarily 
high frequency components that carry the infinite energy of an ideal impulse are 
thus absent in practice. 

From a physical point of view, the fact that the energy of this practical 
impulse is finite, despite its almost infinitesimal duration, means that, because of 
its great amplitude, the impulse is able to cause a sizable charge to be acciunulated 
on the condenser in this very short time. The discharge of the condenser then 
create a decaying current after the impulse has passed, as shown in Fig. 34. 
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To find the frequency distribution of the doublet impulse, we write 

/+ •» 

dl 

1 
e-’"' dt 

^—j2bib (159) 

As 6 —> 0, we find the value of F(f) by expanding the exponentials in 
power series and neglecting the higher powered terms. 

Thus 

™ “ it |[' + - 1 - [l - j2-!. + 

= ^ = ju, (160) 

and 
S{o>) = |F(/)| = c. (161) 

The frequency distribution of the doublet impulse thus rises linearly 
with frequency. 

Just as in the case of the unit impulse shown in Fig. 33, the impulses 
of higher order may also be considered as the limiting forms of a num¬ 
ber of different sets of functions,^ as long as their frequency distribu¬ 
tions are the proper powers of <a. We may also note that, in a general 
way, each impulse function may be considered as the time derivative 
of the impulse of next lower order. We shall use the properties of 
impulse functions derived in this section in order to obtain important 
practical results in the chapters on noise. 

4.19 Further Discussion of Fourier Pairs. In the discussion 
preceding the actual tables in the article^ by Campbell and Foster, the 
reader will find a description of additional important properties of 
various Fourier pairs. Furthermore in the author^s ‘‘Transformation 
Calculus,^' we shall find the Laplace transforms there used to be closely 

^ One such set that is different from the set shown in Fig. 35 is given by Camp¬ 
bell and Foster in Bell Telephone System Mono, B584, p. 17. 

* Campbell, G. A., and R. M. Foster, Fourier Integrals for Practical Applica¬ 
tions, Bell Telephone System Mono, B584. 
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related to Fovirier pairs, and the study of one will throw light upon 
the other. In fact, a table of Laplace transforms can be used as a 
table of Fourier pairs, and vice versa, provided that certain slight 
changes are made. 

Fio. 37. Curves of some important Fourier transforms. 

Before closing our discussion of Fourier int^als, we shall now con- 
dder certain goieral phenomena of wide application. 

a. The Effect of Sharp Cutoff. In Sec. 3.4 we found that, if 0{t) 
is a pulse (i.e., a rectangular block), then its frequency distribution 
|F(/)| is spread out as shown in fig. 37a. Oa. the other hand, if a 
agnal has a frequen<^-dlistribution function F(J) that is a rectangular 
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block, then the signal itself is spread out as shown in Fig. 376. ‘ We 
thus see, in these cases, that, if one mate of a Fourier pair has sharp 
cutoff, the other trails on indefinitely. 

In Sec. 4.18 we found that an impulse of infinitesimal duration has a 
constant frequency distribution with no phase shift for all frequencies. 
This is shown in Fig. 37c. Consequently, if such an impulse went 
through a transmission system having the frequency characteristic 
shown in Fig. 376, the output would be the signal G{t) shown in Fig. 
376. 

Consider next the unit step shown in Fig. 37e. If it is subjected 
to sharp cutoff as shown in Fig. 37/, it develops, not only trailing, but 
also overshoot. These phenomena have already been discussed in 
Sec. 4.5. All the above-mentioned phenomena are closely related to 
the phenomena of diffraction in optics and acoustics and to Gibbs’s 
phenomenon in Fourier analysis. It is a well-known diffraction 
phenomenon that a sharp discontinuity will cause characteristic 
periodic fluctuations in intensity. In the absence of a sharp dis¬ 
continuity, these fluctuations are smoothed out. 

Now there are certain functions that have the remarkable property 
of being their own Fourier transforms. These are discussed in the 
article by Campbell and Foster already mentioned. Probably the 
simplest of these Fourier pairs is 

F{f) = e-'/* (162) 
0{t) = r^’ (163) 

which is shown as Fig. 37g. In view of the pairs shown in Fig. 37, 
especially o and 6, the above pair, (Fig. Z7g) may be considered as 
giving the smoothest cutoff.* The foregoing general considerations 
suggest that a frequency characteristic as shown in Fig. 37g has less 

* Hie derivation is very simple. 

* The above reciprocal pair gives rise to the interesting fact that, if a signal of 
the form goes through a system having a frequency characteristic 
tiie emergent signal will be of the form Thus, in a universe in which all 
signals were of tbe form and all systems had frequency characteristics of the 
form all transmission problems coidd be discussed in terms of a single 
system of number couples (ilf,m) in which the first stood for amplitude and the 
second for exponential multiplier. This is analogous to the universe of linear 
systems in which sine waves of a given frequency can change only in amplitude and 
phase. The number couples for the latter, we know, are complex quantities. 
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tendency to cause trailing oscillations and overshoot than one having 
sharp cutoff, even for signals other than that shown in Fig. Z7g. 

Wheeler and Loughren' have studied means of improving television 
detail by the use of signals and frequency characteristics that are self- 
reciprocal. In this same paper will be found an extensive discussion 
of the effects of sharp cutoff. 

(c) 
Flo. 38. Examples of reciprocal spreading. 

5. Reciprocal Spreading. Another phenomenon closely related to 
the Fourier transforms shown in Fig. 37 is what may be called reciprocal 
spreading. This is the phenomenon that, as one member of a Fourier 
pair becomes narrower, the other spreads out. The phenomenon is illus¬ 
trated in Fig. 38. As an immediate consequence of reciprocal spread¬ 
ing, we have the relation that the bandwidth necessary to reproduce 
a pulse is inversely proportional to the pulse width. As another con- 

‘Proe. I.R.E., May, 1938, p. 540. 
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sequence, we have that the build-up transient time of a tuned circuit is 
proportional to the selectivity of the circuit. 

In dealing with reciprocal spreading, we use S(cj), instead of F(/). 
This avoids the necessity of separate consideration of negative and 
positive frequencies and of real and imaginary parts of F(/). If we 
designate the width^ of the main part of aS(w) as A<o and the width of 
the main part of G{t) as A^, then for each type of signal we may write 

where the symbol « in this case means ''is proportional to and is of 
the order of magnitude of . . . 

If we take the phenomenon of reciprocal spreading into three 
dimensions, we find that the directivity of an antenna is proportional 
to the path difference in wavelengths between its extreme rays. For a 
given frequency this means that the directivity of an antenna is pro¬ 
portional to its diameter. For a given diameter the directivity is 
proportional to frequency. 

Among the applications of reciprocal spreading in physics we have 
the fact that the resolving power of a spectroscope is proportional to 
the path difference in wavelengths of its extreme rays. Also, the 
resolving power of a telescope is proportional to the path difference in 
wavelengths between its extreme rays. 

In all the foregoing examples the fundamental principle involved 
is that, in order to sharpen a characteristic in terms of one variable, it 
is necessary to increase its breadth in terms of the conjugate variable. 
This also forms the basis of the principle of uncertainty in modem 
quantum mechanics now used in atomic theory. There, the famous 
relationship of Heisenberg 

ApAqf^h (165) 

is used in place of Eq. (164). In Eq. (165) the quantity h is the uni¬ 
versal quantum constant, and p and q are any " canonically conjugate’’ 
variables. 

c. Energy Storage and Selectivity. A phenomenon that is closely 
related to reciprocal spreading is the relation between energy storage 
and selectivity. Let us first consider the selectivity of a single tuned 
L-J2-C circuit. Let /o be its resonant frequency, and let us define its 

^ The exact manner in which and M are defined is optional, so long as they 
describe the width of the main body of the signal energy. 
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quality factor Q as 

_ 2rfoL _ 1 
i2 "" 2ir/oC/J 

(166) 

In Fig. 39 are shown a series tuned circuit and a parallel tuned circuit 
of this type. 

The curve of the impedance of a tuned circuit as a function of 
frequency exhibits a sharp peak (or dip), 
and the frequency at which the peak or 
dip occurs is called the resonant fre¬ 
quency. As a measure of the selectivity 
of the impedance, it is customary to 
define 

Selectivity = -r (167) 
J2 — Jl 

where /o is the resonant frequency, /2 is 
the frequency above resonance at which 
the impedance differs from its resonant 
value by a factor of \/2, and fi is the 

frequency below resonance at which impedance differs from its resonant 
value by a factor of \/2- 

Let us now calculate the selectivity of the impedance in Fig. 39a 
for a high-Q case. For any frequency, 

z = R+j(uL-^^ =‘R+jX (168) 

Near resonance, we can expand X about the resonant frequency, in a 
Taylor series. Thus 

Series Tuned Parallel Tuned 
Circuit Circuit 

(a) (b) 
Fig. 39. Elementary types of 

single-tuned circuits. 

- 0 + (z,+^)(« -«.) + • ■ ■ 

■» (w — «o) (approx) (169) 

or 

z R+ j2QR —~~S (approx) (170) 
CdO 

At resonaaoe 
* - B (171) 
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* will rise to ^/2 B when 

Equation (172) determines the frequencies ft and fi. 
Thus 

(173) 

Therefore the selectivity of the series tuned circuit is 

(174) 

Since the selectivity of a series tuned circuit has thus been shown to be 
equal to its quality factor Q, we may, and frequently do, use the same 
symbol Q for both the selectivity and the quality factor. The reader 
can show in the exercise below that a similar situation holds for parallel 
tuned circuits. 

We shall next derive an interesting relationship that exists between 
energy storage and dissipation on the one hand and selectivity on the 
other. The energy stored in the tuned circuit in Fig. 39a at any 
instant is 

Energy stored == + Li^) (176) 

Now this energy flows back and forth between the inductance and 
capacity, and at those times during a cycle when the magnetic energy 
in the inductance is a maximum the electrical energy in the condenser 
is zero.^ We can therefore find the total stored energy by finding, say, 
the energy in the inductance at the instant of a current peak. Thus if 

i — I ^ut (176) 

then, at tiie current peak, 
sin wf s 1 (177) 

and 
Stored energy — (178) 

The energy dissipated per cycle in the resistance B of the tuned circuit 

is 

Energy dissipated per cycle “ J Q ^ 

^ This loUows from the 90-deg phase difference between current and voltage in a 
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Therefore, at resonance, 

_Stored energy ^ ^ ^ ^ 
Energy dissipated per cycle {2Tr/(aQ){}/^RP) 2tH 2w^ 

This gives an additional alternative significance to Q. From Eqs. 
(174) and (180) it follows that for a simple series tuned circuit 

Q = selectivity = 2x 
_stored energy_ 
energy dissipated per cycle 

(181) 

The reader can show in the exercise below that a similar relation 
holds for a parallel tuned circuit. The same relation also holds for 
tuned transmission-line sections. The relation between selectivity 
and energy storage and dissipation is thus apparently quite general; 
we shall now show that it is closely connected with reciprocal spreading. 

When the applied steady-state emf is removed from a tuned circuit, 
the duration in cycles of the decay transient is a measure of the ratio 

_Stored energy_ 
Energy dissipated per cycle 

It is shown in the author^s ^'Transformation Calculus^' that the 
characteristic transient response of a circuit is the same for all applied 
emfs. We shall therefore get the same transient by applying a unit 
impulse of emf to the tuned circuit as is obtained when a steady-state 
emf is removed. Since the impulse has zero duration, the response is a 
pure transient except at the instant of application of the impulse. 
It is shown in Sec. 4.18 that a unit impulse has a uniform amplitude 
distribution for all frequencies, so that the response of the circuit to a 
unit impulse, and therefore also the decay transient, has the same fre¬ 
quency distribution as the circuit transmission characteristic. As a 
consequence of reciprocal spreading, the duration of the decay transient 
is therefore proportional to the circuit selectivity. 

Exercise 

Near resonance the resistance and reactance of a high-Q parallel tuned circuit 
may be expressed as 

. _Eg* 

1 -f 

2Eg* « — wo 

1 +4g* 
(w — wo\* 

wo / 

X 



RADIO APPLICATIONS OF FOURIER INTEGRAL ANALYSIS 139 

Prove that 

a , /o n n Stored energy Selectivity » —7- « Q * 2ir--j:—:—-j- -y- 
/a—/i energy dissipated per cycle 

for this case also. 

4.20 Conclusion. The Fourier integral, as we have seen, is a 
tool of great power in analyzing general phenomena and general 
problems. It actually is not usually readily applicable to the solution 
of specific circuit problems. For that purpose the methods of differ¬ 
ential equations and the more powerful methods of transformation 
calculus should be used. 

In using the Fourier integral we usually deal with idealized systems, 
t.e., rectangular pulses, sharp cutoff, linear phase shift. Nevertheless, 
the Fourier integral gives us a remarkably clear picture of what is 
actually going on in practical systems. In fact, we might almost say 
that it often answers the important problems and ignores those which 
are not important. It answers such general problems as how much 
bandwidth is necessary to handle various types of signal, how much 
phase shift is permissible, and what general types of distortion may be 
expected. This is the type of information that is usually desired 
before designing a specific piece of apparatus, and this is precisely the 
type of information that Fourier integral analysis is qualified to give. 

4.21 Biographical Note. We have already touched upon the 
researches of Lord Rayleigh in Fourier analysis, including the discovery 
of the Fourier integral energy theorem and the formula for group 
velocity. John William Strutt (third Baron Rayleigh, 1842-1919) 
had a remarkable talent for the application of mathematics to experi¬ 
mental science. He used this talent in all branches of physics, and 
many of his investigations are basic in radio theory. He put the 
theory of skin effect on a quantitative basis and derived the formulas 
that are still used for the depth of penetration of high-frequency current 
into a conductor. He made the first important investigation in the 
theory of guided waves some 50 years ago. Although he did not follow 
up this investigation, it is a tribute to the greatness of his work that 
this early paper is still considered one of the basic investigations in 
wave-guide theory. 

Lord Rayleigh is probably best known to radio engineers for his 
work in acoustics. His great textbook Theory of Sound’’ is still 
today, a half century after it was written, the standard work on the 
subject. Much of the basic theory of sound was worked out by Ray- 
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leigh himself. He also devised and performed many classical experi¬ 
ments in acoustics. 

Lord Raylmgh's investigations in other branches of physics are no 
less important. He was the first to put the theory of the resolving 
power of telescopes and spectroscopes on a quantitative basis. He 
worked out the theory of the scattering of light. He performed 
fundamental experiments in the field of thin films, which has since 
become an important subject owing to the researches of others, notably 
Langmuir, in the present century. He also founded the branch of 
mathematical physics known as dimensional analysis. In collabora¬ 
tion with Sir William Ramsay, he discovered the inert gases argon, 
neon, krypton, and xenon. 

Perhaps the most remarkable characteristic of Lord Rayleigh’s 
work is its quality of enduring and increasing in importance with the 
passage of time. This is a great tribute to the soundness of his judg¬ 
ment on what is of fundamental importance as well as to the reliability 
and correctness of his conclusions. 



CHAPTER V 

MODULATION 

6.0 Introduction. In any useful system of radiobroadcasting or 
radio communication there must be some way of separating the 
various signals that are simultaneously present. This is accomplished 
in practice by letting each signal modulate a carrier, and the separation 
of signals is then accomplished by separation of carriers.^ The various 
types of modulation used in practice are the subject matter of this 
chapter. Our discussion will be limited to modulation theory. For a 
discussion of apparatus and devices used in modulation and demodula¬ 
tion, the reader is referred to various books on radio engineering.* 

5.1 Amplitude Modulation, a. Fundamental Definitions, The 
carrier used in most systems of communication is a high-frequency 

^ There are also other reasons for using modulation. For example, the usual 
type of intelligence (audio, video, or other) transmitted in modem communication 
systems covers many octaves of frequency. Over such a wide range of frequency, 
propagation characteristics would vary greatly, so that the transmitting medium 
would introduce large amounts of uncontrollable frequency discrimination. This 
can largely be avoided by using a carrier, so that only the relatively narrow fre¬ 
quency range (considered in terms of octaves) of the modulated carrier is involved 
in transmission. Furthermore, if the energy is to be radiated into space, it is 
necessary to use a carrier because it is possible to obtain efficient radiation only at 
high frequencies. It is interesting to note that the human body has solved a 
corresponding problem in sound radiation in a similar manner. The movements 
of the muscles of the mouth and oral cavity occur at a rate below 10 per second. 
However, the human mouth is too small an opening to be an efficient radiator at 
the wavelength corresponding to 10 cycles/sec, that is, 110 ft. Consequently the 
vocal cords are used to generate a much higher carrier frequency, which can then 
be modulated by the other speech-regulating elements in the oral cavity. 

* For example, Sec. 7 of Terman, Radio Engineers’ Handbook.” 
An extensive bibliography on frequency modulation and on modulation in 

general will be found in the textbook “Frequency Modulation” by August Hund; 
this book itself gives an extensive discussion of a wide variety of topics related 
to frequency modulation* 

No attempt has been made in this or any chapter of the present book to decide 
questions of priority in the discovery and development of any item, and the refer¬ 
ences cited should not be interpreted to have such significance. The cited refer¬ 
ences are almost entirely in American publications, and they are listed for the 
purpose of teUing where additional information can be obtain^. 

U1 
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sinusoidal wave of the form 

A sin (2irF< + ^) (1) 

In this wave, A is called the amplitude, F is called the carrier frequency, 
and <l> is called the phase. If the information that it is desired to 
transmit is conveyed by variation of the amplitude of the carrier, the 

•Envelope 
/ ^Signal 

laaaaaakwaaaaaaaae 

MMBaaaaiwi^ 
(b) Modulated Carrier 

Fio. 1. Illustration of amplitude modulation. 

latter is said to be amplitude-modulated. Thus, if the carrier is ampli¬ 
tude-modulated by a signal 

B cos 2Tryt (2) 

then the amplitude-modulated carrier is of the form 

o = .4(1 -f m cos 27ryLt) sin {2vFt + (3) 

where a is the instantaneous value of a variable^ (such as current oi 
voltage), m is called the modulation factor or the degree of modulation, 
and m times 100 per cent is called the percentage modulation. The 
function B cos 2riit is called the modulation, information, or intelligence 
and p is called the modulation frequency, 

* Generally speaking, a is considered to be an amplitude vector) type of 
variable {i.e,, one to which the principle of superposition applies). Its square is 
proportional to the instantaneous power in the signal 
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In Fig. 1 are shown carriers with and without amplitude modulation. 
The broken curves in Fig. 1 showing variations of the peak signal 
amplitude are called envelopes of the signal. The shape of the envelope 
is the same as that of the information which it is desired to transmit. 

In the general case the modulation will consist of a general function 
of time g{t). In such a case the modulated signal will be 

a = il[l + ^^(0] (^tFI “1“ 0) (4) 

The degree of modulation in this case is defined in Sec. 6.3&. 
A somewhat different definition is used for percentage modulation 

in systems, such as television, in which the 
carrier level is at a maximum with no 
modulation and modulation can only de¬ 
crease the carrier level. Such a signal is 
shown in Fig. 2. In this case, g(t) in Eq. 
(4) may be considered as including a direct- 
current (i.e., zero-frequency) component. 
For the case of Fig. 2 the maximum avail¬ 
able carrier level is called 100 per cent 
modulation, and the percentage modulation 
in general is defined as the percentage of 
maximum available carrier level. In the 
remainder of this chapter, it will usually be 
clear from the context which definition of 
percentage modulation is being used. 

b. Spectrum and Energy Distribution, 
If the modulation consists of only a single frequency, then the form of 
the modulated carrier is given by Eq. (3). This modulated carrier may 
also be broken down into its frequency components. Thus 

Fig. 2, Television sig¬ 
nal. (Variations at carrier 
frequency shown by shading.) 

A(1 cos 2irnf) sin {2icFt + 0) 
= A sin {%tFt + ^) + Am cos %rnt sin (2tF'< + 4>) 

» 4 sin (2»-F« + ^) + ^ sin [%t{F + ^)t + 

+ ^ sin [ar(F - + «] 

(5) 

(6) 

according to Eq. 41 of Appendix C. The effect of modulation may 
therefore be expressed as the addition to the original carrier, A sin 
(2irF< + ^), of a pair of sinusoidal components of amplitude Am/2 
and differing, respectively, in frequency from the carrier by plus and 
minus the modulation frequency. These added sinusoidal components 



144 FBBQVBNCr ANALYSIS, MODULATION AND NOISE 

due to the modulation are called aiddmnds. In Fig. 3a is shown the 
frequency spectrum of this modulated carrier. 

If the carrier is modulated by a general tsrpe of signal g(t), then 
assuming that the system is linear, each frequency component of git) 
^ves rise to a pair of side bands. If the frequency comporation of git) 

A (l+incos2«'/it) sin (2»Ft+4) 

(C) 

A [l + mg (t)]sin (2vFt+4) 

Fio. 3. Frequency spectra of various signals. 

is tiiat shown in Fig. 3I>, then the frequency compomtion of the signal 
in which git) modulates a carrier is that shown in Fig. 3e. 

The enei^ of a signal, as we have often had occamon to note, is 
proportional to the square of the signal amplitude. From Exercise 5 at 
the end of Chap. II or by the Fourier inte^al energy tiieorem*^. we also 
know that tiie energy at a mgnal is equal to the sum of the eneargies of 
its individual £requency components. For example, the energy of 

•See. 4.18. 
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the signal in Eq. (6) is proportional to 

4. + (;^y + (^)’-A>(i + ^) (7) 

Thus amplitude modulation generally adds to the energy of a signal. 
In the particular t;ase of Eq. (7) the amount of energy due to modula¬ 
tion is Ahn^/2, 

c. Life History of an Amplitude-modulated Signal. In Fig. 4 is a 
block diagram shoAving what may be called the life history of an 
amplitude-modulated signal. This shows the wave shape of the sig¬ 
nal at various stages between the origin of the signal and its final 
utilization. 

6.2 Angle Modulation—Frequency and Phase Modulation. 
a. Fundamental Definitions. In the preceding section we pointed out 
how a sinusoidal wave of the form 

u = ^ sin {2vFt + 4>) (8) 

can be made to carry information by modulating (i.e., varying) the 
amplitude factor A, thus giving what is called an amplitude-modulated 
signal. This, however, is not the only way in which a carrier wave, 
such as Eq. (8), can be made to carry information. It is, for example, 
possible to keep the amplitude A constant and vary the argument of 
the sine function in accordance with the signal to be transmitted. This 
may be called angle modulation. Two simple schemes for doing this 
are called phase modulation ond frequency modulation, respectively. 

In phase modulation, the phase ^ in expression (8) is varied in 
accordance with the signal. Thus, if the carrier is phase-modulated 
by a signal cos 2Tpt, the phase-modulated carrier is of the form 

a = A sin [2TrFt + (<^o + A0 cos 2arixt)] (9) 

The quantity cos %rpt in expression (9) is called the phase devia¬ 
tion, and its instantaneous value may be expressed in radians. The 
degree of modulation is usually defined as the ratio of A^ to the maxi¬ 
mum phase deviation that the particular transmitting or receiving 
apparatus of interest at the moment is capable of handling. The 
degree of modulation in phade modulation is thus not a property of the 
signal alone, as it is in amplitude modulation, but is also defined in 
terms of the properties of the system in which it is used. A graphical 
representation of a phase-modulated signal is shown in Fig. 5. 
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In frequency modulation, the instantaneous frequency of expression 
(8) is varied in accordance with the signal. So far, how'ever, we have 
not defined instantaneous frequency—in fact, the phrase sounds almost 
like a contradiction in terms since it is hard to see how a frequency 
can be established in an instant. Nevertheless, particularly if the 
carrier frequency is very high in comparison with the modulation fre- 

Modulation 

'WWWVWW Unmodulated Carrier 

AAAAAA/WWXAAA; (Frequency Modulated) 

sAAAAAAAAAAAAA/ (Phase Modulated) 

Fig. 5. Angle-modulated signals. 

quency, a reasonable and useful definition is possible. This definition 
is 

1 dB 
Instantaneous frequency (10) 

when the frequency-modulated signal is expressed as 

fl = A sin ^ 
If ^ = %rFt, then 

- F 
2irdt 

so that the definition agrees with the usual one in case F is a constant. 
Let us next find the form of a frequency-modulated signal in accord¬ 

ance with the foregoing definition, when the modulation is cos 2wfxL 
As a consequence of Eq. (10) we may write 

= F + AFcos2tm< (13) 

in which F and AF are constants. Integraticsi of Eq. (13) 3rields 

(11) 

(12) 

9 »= 2tF< H-sin 2jrui + (14) 
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Thus the frequency-modulated signal is 

a » ^ sin 0 sin ^ sin 2irM^ + ^oj (15) 

A graphical representation of a frequency-modulated signal is also 
shown in Fig. 5. 

If both F and AF are large in comparison with the modulation 
frequency /x, then the rate at which carrier cycles of Eq. (16) 
are completed will be F + AF cos 2iry,L The definition used for a fre¬ 
quency-modulated signal is therefore reasonable.^ 

The quantity AF cos 2viit in Eq. (13) is called the frequency devia¬ 
tion while AF itself is called the peak frequency deviation. The degree of 
modulation is usually defined as the ratio of AF to the maximum per¬ 
mitted frequency deviation allowed by law or as the ratio of AF to the 
maximum frequency deviation of which the system is capable. The 
definition of degree of modulation, just as in the case of phase modula¬ 
tion, thus does not depend only upon properties of the signal itself but 
also involves other things such as equipment or statutes.^ 

It may be noted that Eqs. (9) and (15) are of the same general form, 
80 that if the modulating signal has only one frequency component 
there is no important difference between a frequency-modulated and a 
phase-modulated signal except a difference in percentage of modula¬ 
tion. However,’if the modulating signal has components of many 
frequencies, the frequency-modulated and phase-modulated signals 
are definitely different, the latter having greater deviations at high 
modulating frequencies because of the 1/m factor in Eq. (15). If 
the modulating signals are audio signals, so that the phase difference 
between cos 2tm< in E^. (9) and sin 2irfit in Eq. (15) is not important,’ a 
frequency-modulated system can be changed into a phase-modulated 
system by preemphasizing the modulating frequency components by 

* The reader may wonder why 

A sin [2ir(F + AF oos 2irM0^ -f ^ol 

is not used as the definition of a frequency-modulated signal. If F and AF are 
large in comparison with fi, a good physical picture of the frequency deviation 
is given by the number of extra carrier cycles completed per unit time, i.e., the 
number of extra pairs of crossings of the axis. In the above expression, the 
peak frequency deviation during a modulation frequency cycle would be laiger 
every cycle, which is absurd. 

* A definition of degree of modulation as aF/F would have absolute significaneei 
but it is usually of no inraotical value in ordinary frequency modulation. 

* When there is more than one modulating frequency, these phase differeneei 
vm change the wave shape of the detected signal* 
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an amount proportional to their frequency (m)i before modulating 
the carrier, and correspondingly deemphasizing the high-frequency 
components after detection. A corresponding change from phase 
modulation to frequency modulation can also be made. 

The abbreviations AM, FM, and PM (or <^M) are widely used for 
the lengthy terms amplitude modulation, frequency modulation, and 
phase modulation, respectively. We shall often use these abbrevia¬ 
tions in the present book. 

&. Spectra and Energy Distributions. Let us next determine the 
spectra of frequency-modulated and phase-modulated signals. This 
is a simple exercise in the manipulation of trigonometric and Bessel 
functions. 

For a frequency-modulated signal, we start from Eq. (15) and 
obtain^ 

a = A sin -f — sin 2ir/i< + ^oj 

sin {2wFt + Oo) cos sin 

+ cos (2irF< + Oc) sin sin j (16) 

Now, according to Eqs. (3) and (4) of Appendix E, 

sin — Jo + 2 2 cos 

+ J* © cos Srid + 

cos 

and 

sin «n = 2 sin 2Kiit 

+ Jt SviU ' 'j 
Furthermore,* 

sin {2irFt + do) cos 
— )^{sin [2jr(F + nit)t + ^ I2x(F — nfi)t + flo]} 

and 

(17) 

(18) 

(19) 

OOB (2rFf + $o) mn 2irn/it 
» Misin l2r(F + nit)t + flj — mn [2t(F — nit)t + So]} (20) 

* By Eq. (11) of Appendix C. 
* By Eq. (41) of Appendix C. 
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Substituting Eqs. (17) through (20) into (16), we obtain 

a = 

+ 

+ 

+ 

+ 

+ 

A 

J 

J 

J 

J 

sin j^2irFt + ^ sin 2iriit + doj 

I Jo sin (2tF< + <>«) 

1 sin [2r(F + ii)t + flol - Ji 

sin [2ir(f' + 2/i)t + ®oJ + ^2 

[2t(/^ + 3/i)< + So] — Ji 

4 sin [MF + 4/i)t + So] + Jt 

sin [2t(F — 

sin [2jr(F — 

sin [2ir(F — 

sin [2ir(F — 

+ tfo] 

2^)t + ^o] 

3^i)t + ^o] 

Atx)t + ^o] 

• •) (21) 

Equation (21) separates the frequency-modulated wave into its 

frequency components. We see that the magnitude of the carrier is 
reduced from unity for the unmodulated wave to a value of Jo {AF/n) 
during modulation. We see also that an infinite number of sidebands 
are produced which are separated from the carrier in the frequency 
spectrum by integral multiples of the modulating frequency. How¬ 
ever, a glance at Fig. 3 of Appendix E shows that the value of Jn(k) 
diminishes rapidly when n > k. Therefore the sideband amplitudes 
diminish rapidly outside a region ±AF removed from the carrier. 
These characteristics are illustrated in Fig. 6, which shows the spectra 
of some frequency-modulated signals. 

The energy of each sideband is proportional to the square of its 
Bessel coefficient,^ and, by Exercise 5 at the end of Chap. II, the total 

energy is just equal to the siun of the energies of the carrier and indi- 
vidud sidebands. Now since the amplitude of the envelope is 
unchanged, the average energies of the modulated and unmodulated 
signals are the same. Frequency modulation thus removes energy 
from the carrier and puts it in the sidebands. Furthermore, it then 

> The coefficiente JJ.NF/11) in £q. (21) are called Be»»d coefficients of the FM 
sidebanda. 
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follows from Exercise 5 at the end of Chap. II and Eq. (21) that 

['•©r-W¥)l'-['.(¥)l-* 
+ 2 [ (y) j +•••=! (22) 

Equation (22) holds for all values of AF/^t and is an important relation 

-150 kc. T-H 

(a) aF-75kc. 
Ill - 15 kc. 

...I. I I I I I I I I I I I I I I . 

(b) aF-75kc. 
fiz * 7.5 kc. 

(C) AF-75kc. 
Ha - 3.75 kc. 

(d) AF-75kc. 
M-*-0 

(See Exercised) 

F-aF F F + aF 
Fio. 6. Frequency spectra of FM signals of the same peak frequency deviation but of 

different modulating frequencies. 

in the theory of Bessel functions. It is interesting that we should be 
able to derive it with the aid of physical reasoning. 

The derivation of the sideband and energy formulas for phase 
modulation are carried out in an entirely similar manner. Thus we 
obtain, for a phase-modulated signal, 

F-aF F F + aF 
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o »• /I sin {2iwFt + ^0 + cos 2rixt) 
= A sin (2rFt + ^o) cos (A^ cos 2ritt) 

+ cos (2rFi + ^o) sin (A^ cos 2rnt) 

« A{8in(2irFt+^o)[/o(A^)—2J2(A^)cos4ir/nt+2/4(A^)co8 8irM^-•] 
+ cos (2irF4+^o)[2Ji(A<^) cos 2ir/it—2J»(A^) cos 6ir/i<+ * * ' ]l 

«= A{Jo(A0) sin (TfirFt + ^o) 
+ Ji(A4>) cos [2t(F+ ft)<+^o]4*«/i(A^) cos [27r(F—/i)^+^o] 
— Js(A^) sin [2r(F+2ix)t+4>^—Ji(Ail>) sin [2jr(F—2m)<+Ao] 
— Js{A<f>) cos f2T(F+3M)<+0o]—t/»(A0) cos [2»-(F—3m)/+^o] 
+ Ji{A<l>) sin [2jr(F+4M)<+^o]+/4(A«) sin [2ir(F-4M)<+«o] 
+.} (23)» 

h- 300 kc 

(a) A^'iOF 
«ii“15kc 

F-f<i^4 F F+/iiA4 
I f I 

(b) A^-10 Radians 

• 

1 
M2-7.5kc ,1 1, 
_dlL 1l i L ± i UjJ .ilL_ 

F F+AiaA^ 
.1 ! I. 

(c) A^« 10 Radians ll ll M3-3.75 kc 
_J. 1 111 ill ilk_ 

F“*M3A0 F F+#i3A^ 

(d) A^-10 Radians 
M*^0 

F 
Fig. 7. Frequency spectra of PM signals of the same peak phase deviation but of 

different modulating frequencies. 

The phase shift in this case takes the place of the deviation 
ratio AF/m in frequency modulation. The values of Jn(A^) diminish 
rapidly when n > A^, which means that sidebands diminish rapidly 
in magnitude when they are displaced from the carrier by more than 
M A^. The width of the frequency spectrum in phase modulation is 
thus proportional to the modulating frequency. This phenomenon is 
illustrated in Fig. 7, which shows the spectra of some PM signals. 

^ AF//A in Eq. (21) and in £q. (23) are sometimes called the ffutdvlaUon 
index and are designated by the Gredc letter A AF/m m frequency modulation is 
also frequently called the denaiion raiio. 
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In PM, just as in FM, the average energies of the modulated and 
unmodulated signals are the same, modulation just causing a transfer 
of energy from the carrier into the sidebands. 

We note in passing that in FM and PM the percentage modulation 
affects the bandwidth, but not the peak or average power, while in 
AM the percentage modulation affects the peak and average power, 
but not the bandwidth. 

c. Life History of FM and PM Signals, In Fig. 8 is a block diagram 
showing the life history of an FM or PM signal. The principal dif¬ 
ference between this diagram and Fig. 4 is the addition of the limiter 
in the receiver. The purpose of the limiter is to strip any residual 
amplitude modulation from the signal, leaving it a pure FM or PM 
signal. This enables the system to have the full benefit of certain 
characteristic advantages of FM and PM systems, which are described 
later. While the limiter affects the signal levels entering the frequency 
detector, it does not affect the frequency, since it does not affect the 
number of radio-frequency cycles per second. 

The limiter has the incidental effect of producing avc (automatic 
volume control) because it fixes the carrier amplitude level. How¬ 
ever, it is sometimes necessary to provide additional avc of the rectified 
voltage type in order to prevent possible overload of the tuned stages, 
with its resultant detrimental effect on selectivity. 

Exercises 

1. A frequency-modulated signal 

a A sin + — sin 

has the following constant values: 

F a* 45,000,000 cycles/sec 
NF =• 60,000 cycles/sec 

/i = 6,000 cycles/sec 

Tabulate the numerical magnitudes and frequencies of all sidebands having more 
than 0.1 per cent of the total energy of the signal. 

2. In Fig. 6(d), let the frequency of any individual sideband be designated as 
F + A/. Show that the curve of the envelope of sidebands has ordinates pro- 

Fi portions! to ^ t j j 

5.3 Simultaneotts Modulation by Two or More Frequency Com¬ 
ponents. a. Sidebands, In amplitude modulation, if the modulating 
signal has two or more frequency components, each of these com¬ 
ponents causes its own pair of sidebands and there is no apparent 
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interaction between them. Thus, 

A[1 “b Titi cos 2rnit "t" JHs cos {2/7riX2t -|- <#>s)] sin 2/KFt 

= A sin 2irF< + — {sin [2r(F + mi)<] + sin [2a-(F - 

+ ^2 ^ + <^2] 

+ sin [2ir(F — nt)t — ^s]} (24) ‘ 

The situation in FM and PM however, is, not quite so simple. We 
have already found that in both FM and PM the modulating frequency 
and all its harmonics cause sidebands. We shall now discover that, 
when more than one modulating frequency is present in FM or PM, 
sidebands are caused by all the sum and difference frequencies between 
the harmonics, as well as by the harmonics themselves. Thus, con¬ 
sider the FM signal 

A sin ^2TFt + sin 2TiJLit + sin (27r/Li2< + <^2) j 
A jsin 2trFt cos 

/ AiF ^ 
(—^ sin 1 cos 1 gin -|- <^2) 

L M2 

+ cos 2irFt sin | 
^ ^ jp V 
—^ sin 2iruit 1 

< Ml / 
/ rt \ 

cos 
A F 
-sin (2x/x2^ + ^2) 

. M2 

+ cos 2jrFt cos 1 f gjn sin sin {^fruit + <^2) 
. M2 

— sin %rFt sin ^ sin 22r/AiA 
. Ml / 

sin sin (27r/i2^ + ^2)^| 

If the factors in the terms of Eq. (25) are now expanded with the 
aid of Eqs. (17) and (18) and the product terms are combined and 
separated, it is clear that terms of the form 

sin [2ir(F ± m/ii ± niA2)t ± n<l>2] (26) 

for all integral values of m and n will appear in the final result. The 
actual carrying out of this reduction is too tedious and is not sufficiently 
important to be set down here in detail. 

6. Degree of Modulation, If the modulated signal is of the form 

a il[(l + mi cos (2irMi< + ^1) + cos (2irM2< + ^2) + • • • 
+ Mp cos (2irMp< + <l>p)] sin 2wFt (27) 

* For complete generality it is necessary to introduce the phase angle 
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then, by Eq. (24) in conjunction with Exercise 5 at the end of Chap. II, 
the total energy of the signal is proportional to 

'‘•(i + t + t+■••+¥) w 
Comparing Eq. (28) with Eq. (7), it is reasonable to define the effective 
value of the degree of modulation as 

nutt = y/ml + ml + 

With this definition, mji is also proportional to the average value of the 
low-frequency (for instance, audio) energy. 

In a like manner, on the basis of the average value of the low-fre¬ 
quency energy, we define the effective value of the degree of modulation 
of an FM signal 

sin \ 2rFt + 
L /*i 

sin {2fKiiit -b ^i) -I- 

+ ^ sin (2irM(i< + ^«) 

^(AxF)* + (A^)* + • • • + (A^)* 
D 

(30) 

(31) 

where D is the nominal maximum frequency deviation allowed in the 
system. 

The percentage modulation is obtained in any case by multiplying 
the degree of modulation by 100 per cent. 

Exercises 

1* Find the percentage modulation of the signal 

if 
a » (1 + 0.2 cos + 0.3 cos sin 2wFt 

F 45,000,000 cycles/seo 
Ml ■■ 6,000 cycles/seo 
Ml 3,000 cycles/seo 

Anmoer: 36 per cent. 
2. Find the percentage modulation of the signal 

a A tin (2wFt + ^ 
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F — 45)000,000 cycles/sec 
m - 6,000 cycles/sec 
fit «■ 3)000 

AiF - 10)000 
AjF - 6,000 

D - 50,000 

cycles/sec 
cycles/sec 
cycles/sec 
cycles/sec 

AuBwer: 23 per cent. 

6.4 The Superposition of Harmonic Vibrations. Most of this 
chapter, dealing as it does with carriers and sidebands, involves the 
superposition^ of harmonic vibrations. We shall therefore consider 
this subject more carefully, starting 
with some elementary topics, which, 
in all likelihood, are already familiar / 
to the reader. / \ \ 

a. Superposition of Vibrations of I \ \ 
the Same Frequency. In elementary qI-^ 
books on kinematics, a simple har- \ ® ^ j 
monic vibration A cos <at is described \ j 
as the motion of the projection on a \ / 
straight line of a point moving with N. 
uniform angular velocity a? on the 
circumference of a circle of radius A. development circle of simple 

, . «r-i. ^ harmonic motion. 
This IS shown m Fig. 9. There P 
moves around the circle in a counterclockwise direction with constant 
angular velocity «, while its projection P' on the line COB n^oves back 
and forth about the center 0 of the circle according to the equation 

a = OP' = A cos (at (32) 

In tKis figure, distances to the right of 0 are considered positive, while 
distances to the left of 0 are considered negative. 

According to Eq. (32) the point P coincides with B at time t = 0. 
If the point P does not coincide with B at time t ^ 0 but is at such a 
point that the angle FOB equals ^ at time t » 0, then 

a » OP' « A cos {(at + ^) (33) 

describes the motion of the projection of P on the line COB. 

^ SuperpoBition aa used in this book meiiiiB the simultaneoiiB existence in a 
linear ssnrtm and is equivalent to algebraic addition. 
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Let us next consider the pictorial representation of two super¬ 
imposed simple harmonic vibrations of the same frequency, z.e., 

a = Ai cos {o)t + <^>i) -jr A2 cos + <t>2) (34) 

In Fig. 10 two circles are drawn corresponding to the two terms on 
the right side of Eq. (34). Since the angular velocities of both terms 
are the same co, the angle between the rotating lines OPi and OP2 

remains constant, and is always equal to <^2 — <^>l, its value at < = 0. 
Furthermore, the two terms on the right of Eq. (34) can be combined 
into a single term. Thus 

a ~ Ai cos (o>t + ^1) + A2 cos (oyt + <^2) 
= Ai(cos (at cos <^i — sin (at sin <t>i) 

+ A2( cos (at cos <#>2 — sin (at sin <#>2) 
= (Ai cos <t>i + A2 cos 02) cos (at — (Ai sin + A2 sin ^2) sin (at 

« As cos ((at + ^3) (35) 

where 

As = V"(Ai cos <Ai + As cos (#>2)^ + (Ai sin <^i + A2 sin <^2)^ (36) 
and 

/(37) 
\^i COS if>i + At cos tl>t/ 

It follows from Eq. (35) that, if two harmonic vibrations of the same 
frequency are superimposed, the 
net result is another harmonic 
vibration of the same frequency. 
Furthermore, it follows from Eqs. 
(36) and (37) in conjunction with 
Fig. 10 that the amplitude and 
phase of the resultant vibration 
are obtained by completing the 
vector parallelogram of OPi and 
OPi. Thus the projection on COB 
of the point Ps, rotating in its circle 
in Fig. 10, represents the super¬ 
imposed harmonic vibrations. 

Since the linePiPt is equal and parallel to OPt andPaPs is equal and 
parallel to OPi, we may conclude that, in dealing with simple harmonic 
vibrations the same frequency, the vibrations may be represented 
by vectors such as OPi and PiPs (or their equivalent OP* and P*Pi) 
in Fig. 10, and the resultant of two vibrations is obtained by com- 

Fig. 10. Geometrical analysis of 
the superposition of two simple har¬ 
monic vibrations of the same frequency. 
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pletion of the vector triangle, i.c., the resultant is represented by OPg. 
Clearly, this process can be generalized to cover the superposition of 
any number of vibrations of the same frequency. Thus 

a ^ Ai cos {o)t + (pi) A2 cos (cat + <^2) "f* * ' * 
+ i4n cos {cot + 0n) (38) 

may be obtained by completing the vector polygon in Fig. 11, thus 
representing the resultant as OP«. This line of reasoning also shows 
that superposition of any number of simple harmonic vibrations of 
the same frequency leads only to another simple harmonic vibration 
of the same frequency. This is an 
important result. 

All the foregoing results are also 
consistent with the interpretation 
of OP in Fig. 9 and all the other 
vectors representing simple har¬ 
monic vibrations in the succeeding 
figures as rotating vectors in the 
complex plane, their real compo¬ 
nents being equal to the simple 
harmonic vibrations themselves. 
Thus a vector of length A and 

Fig. 11 Vectorial superposition of n 
simple harmonic vibrations. 

initial angle (p rotating with uniform angular velocity co in the complex 
plane is ; and since 

A cos {cot + <P) + jA sin {cot -f- <p) (39) 

the real component of the complex rotating vector is clearly equal to 
the simple harmonic vibration itself. The superposition results that 
we have just derived could therefore have been deduced immediately 
from the properties of complex quantities. 

We also should note that a simple harmonic vibration A cos {cot + <P) 
may be expressed completely and exactly as the sum of the two con¬ 
jugate vectors 

11 
2 

and ^ g—/(»«+♦) 

which rotate in opposite directions with the absolute angular velocity 
w. Thus 
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^ ^ [cos (w< + ^) + i sin (a)< + 0)] 

+ ^ [cos (co< + sin («< + 4)] 

= -4 cos {a>^ + 4) 

Equation (40) is depicted in Fig. 12. Since it is an exact representa¬ 
tion, it is applicable in all problems dealing with simple harmonic 
vibrations; in particular, it may be used in dealing with the superposi¬ 
tion of these vibrations even w^hen they are not of the same frequency. 

Fia. 12. Representation of simple harmonic motion by moans of a pair of rotating 
conjugate vectors in the complex plane. 

6. Superposition of Vibrations of Different Frequencies—Amplitude 
and Angle Modulation of the Resultant. Let us next consider the super¬ 
position of two simple harmonic vibrations of different frequencies, i.e., 

a ^ Ai cos <ait + Az cos (41) 

Since «i and «2 are assumed different, it is unnecessary to include any 
initial phase angles 4i &nd ^2, since both of these can be made to vanish 
by properly choosing the time when i = 0. 

Equation (41) can be expressed in a form more descriptive of its 
behavior. Thus 

a ^ Ai cos (ait + At cos cott 
» Ai cos (ait + At cos + {(at — wi)(l 
as Ai cos (ait + At cos (ait cos {(at — «i)i — At sin (ait sin (a>2 — (ai)t 
»« [Ai + At cos {(at "" c>)i)f] cos (ait — A2 sin {(at — (ai)t sin (ait 
“ \/ii} + cos {(at — (ai)t -H AI 

- [a, tTot'-U]} (“> 
Hie resultant ci the two simple harmonic vibrations ai different 

frequeneieB is thus a single vibration whose amplitude varies up and 
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down with the difference frequency (wa — «i)/2t and whose phase 
varies back and forth, also at the difference frequency. The com¬ 
ponents as well as the resultant are depicted in Fig. 13. The variation 
in amplitude is the well-known phenomenon of beats, and the difference 
frequency is called the beat frequency. The variation in phase 
has long been known, but in the past it has not been of such great 
importance. 

VVVWVWWWVWWV 
(b) VWWWWWWWWWWVWV A2cos«pt 

AI cos <ait 4“ Ai cos 

* y/A i* 2AiAi cos {m — oJi)t + At^ coslcoi^ 4- tan-i F 
{ [_Ai Ai cos (wi — 

Fia. 13. Superposition of vibrations of different frequencies, showing the phenomenon 
of the beat frequency. 

If Ai is greater than A 2 and if wi is much greater than 0)2 — wi, 
then Ai cos (ait may be considered a carrier and A 2 cos (a^i a sideband. 
The coefficient 

\/Af + 2A1A2 cos («2 — «i)i + A\ 

is then considered the instantaneous amplitude and the time derivative 
of 

+ t.„-. r J 
LAi d” A2 cos (w2 — (aijtJ 

is conridered the instantaneous frequency. Since both these quantities 
vary at the difference frequency («t — «i)/2v, the resultant of the 
superposition of two simple harmonic vibrations is both amplitude- 
and angle-(frequency) modulated at the difference frequency. We 
found in Sec. 5.16 that the addition of just one more simple harmonic 
component of frequency «i — (wj — «i), of amplitude At, and of 
proper phase (t.e., the AM sideband on the other side of the carrier) is 
sufficient to remove all angle modulation from the resultant. The 
diininatioa of amplitude modulation is a more complicated matter, 
as we found in Sec. 5.2b. 

This is probably as good a place as any to say a word about the 
mdttif ci sddbands. Certun persons have found it hard to conodve 
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of sidebands as having physical reality. Apparently they consider 
them as a convenient mathematical fiction, probably something like 
V — l- Such persons usually find no difficulty in ascribing reality to 
the component vibrations that give rise to beats, since they have 
seen tuning forks, which separately give pure tones, giving rise to 
beats when sounded together, or have heard the audio beat note 
between two high-frequency sine-wave generators. However, they 
find it hard to imderstand how a low-frequency variation in the ampli¬ 
tude of a sine wave can really give rise to a pair of high-frequency 
sine waves. About the only simple thing one can say in this connec¬ 
tion is that a sharply tuned circuit will tune to the carrier and side¬ 
bands separately. The acoustical analogue could also be constructed 
with tuning forks, but this would entail equal amplitudes of the side¬ 
bands and the even more difficult matter of proper phasing. By way 
of analogy, one may say that sidebands have the same type of reality 
as the harmonics in the output of a nonlinear amplifier or as the 
prismatic colors in white light. 

c. The Persistence of Period in the Steady State. Another matter 
that is worth some thought is the persistence of period in the steady 
state. By this is meant essentially the fact that a driving force which 
is exactly repeated at a constant period of repetition can give rise only 
to effects of the same period in the steady state. By the steady state, 
we mean the state in which the condition of a system at any time 
ti is exactly repeated at another time h so that it is impossible to tell 
from the properties of the system whether the time is ti or If this 
is true, then the identical condition must again be repeated at time 

<8 = <2 + {h — ^i) 

and again at 

<4 = <8 + (^2 — <i) 

etc. Otherwise the conditions of the system at h and U would not 
be the same. Furthermore, every other condition of the system, 
such as shown at Ti in the simplified diagram, Fig. 14, must also be 
exactly repeated with the same period, <2 — otherwise, there would 
be a noticeable difference between h and U. 

As a consequence of this type of reasoning, in conjunctioi; with 
Fourier^s theorem, it follows that the response of a system to a sinus¬ 
oidal driving force can contain no frequency components other than 

^ This is the type of condition reached by a network at time < oo when a 
periodic emf is annlied. 
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harmonics of the frequency of the driving force, in addition to the 
fundamental and direct-curent components. This is true whether 
the system is linear or not. The only requirements are that there 
shall be no other driving force and that the laws of operation of the 
system shall be always the same. 

As another consequence of this type of reasoning, it follows that 
while the wavelength or velocity of electromagnetic waves may be 
different in different parts of a transmission-line system in the steady 
state, depending upon the dielectric, the frequency is everywhere the 
same. 

One phenomenon that may appear to be in disagreement with the 
foregoing arguments is the Doppler effect. This is the difference in 
frequency between incident and reflected waves when the point of 

reflection is moving. However, in this case the location of the point 
of reflection changes with time so that the system is no longer the same. 
Consequently, the foregoing reasoning regarding persistence of period 
cannot be expected to apply, for a steady state is never reached. 

5.6 Comparison of Coxnmon-channel Interference in FM and AM. 
We have now covered enough of the fundamentals of modulation 
theory so that we can analyze an interesting and important phenome¬ 
non, namely, the apparent freedom from common-channel interference 
enjoyed by FM. We shall analyze common-channel interference in 
both AM and FM and find to what extent it is reduced in FM. 

Common-channel interference is the undesirable effect occurring in 
radio reception due to the interference between the desired signal and 
an interfering signal of approximately the same carrier frequency. 
The modulation produced on an unmodulated desired carrier by the 
interfering carrier and its sidebands will be used as the measure of 
common-channel interference. We shall analyze the case in which the 
interfering signal is small in comparison with the desired signal, since 
this gives a clear and simple picture of the general phenomenon.^ 

> For a more detailed discussion of the FM case, including the effects of circuit 
components, see H. A. Wheeler, Common-chaxmel Interference between Two 
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As a first step in this analysis, let us find the form assumed by Eq. 
(42) for the superposition of two cosine waves of different frequencies, 
when the amplitude of one is small in comparison with the other. 
Thus let 

Ai-»At (43) 

Then, when iising Taylor expansions and neglecting terms in At/A\ 
higher than the ^rst power, the amplitude and angle of Eq. (42) 
become, respectively. 

+ 2AiAi cos («i — toi)t + A\ 

= ^ cos («s — «i)<j (approx) (44)^ 

and 

fait + tan~' 
j r Ai sir 
[ill + At 

sin (wj — <i>i)< 1 
cos («2 — <i»i)<J 

= «i< + 4^ sin (w* — «i)< (approx) (46) 
"1 

The further superposition of an additional small signal^ 

At cos (fait d* ^t) 

would make the resultant amplitude 

ill |l + ^ cos («* — «i)< + ^ cos {(«8 — wi)< + ^»]| (approx) (46) 

and the resultant angle 

»i< + 4^ sin («s — «i)i + 4^ sin [(«» — (ai)t +r^»] (approx) (47) 
AI AI 

Frequency*modiilated Signals, Proe. January, 1942, p. 84, and articles 
referred to there. 

A discussion of the AM case for arbitrary ratios of interference to signal and 
including modulation of both signals is given by C. B. Aiken, Theory of the Detec¬ 
tion of Two Modulated Waves by a Linear Eectifier, Proc. April, 1988, 
p. 601. 

For an interesting illustration of the peculiarities induced in the wave shape 
in the FM case when the interference is large, see the exercise at the end of this 
section. 

^ For additional discussion of how a single frequency component As cos 
can be equivalent to two pairs of sidebands, see Secs. 5.6 and 6.7. 

* When more than two signals axe involved, even though they are of different 
fluencies, a phase angle such as must be included, for choice of the time f « 0 
akM will no longer ensure that all signals are in i»haae. 
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The effect of further additional small signals can be handled in an 
analogous maimer. 

The frequency corresponding to Eq. (47) will be its derivative, 
namely, 

^ i + («* ~ “i) ~ cos (W2 — <»l)t 

+ {o>t ~ Wl) ^ cos [(«8 — (48) 

In Fig. 15 are shown desired carriers and the carrier and sidebands 
of an AM and FM interfering signal, respectively. Let us assume that 

ttx (Desired Carrier) Desired Carrier) 

a>2(Carrier of 
interfering 

Signal) 

■ 1 I » I I 111 I < I I ■ 
a>2(Carrier of 

interfering 
Signal) 

AM Case FM Case 
Fia. 15. Sideband pictures in interference. 

the two interfering signals (carrier plus sidebands) have equal energies, 
that the two desired carriers also have equal energies, and that they 
are much greater than the energies of the interfering signals. We now 
wish to compare the degree of interference modulation in the FM 
system with that in the AM system. 

Lei 

A cos at 

be the expression for the desired carrier in both systems, and let the 
interfering carrier have an amplitude B and its sidebands have ampli¬ 
tudes Bi, Bi, ... ,B,m the AM system, while the interfering carrier 
in the FM system has an amplitude C and its sidebands have ampli¬ 
tudes Cl, Cl, , Cq. Thus, by the hypothesis of equal energies 
for the interfering signids. 

C* -1- CH- Cf + • • • + C» - + BI + ^ + • • • + BJ (49) 
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The degree of modulation of the desired carrier caused by the 
interference in the AM system is then according to Eq. (29) 

WtAM 
+ • • • + Bl)^ 
A 

(50) 

On the other hand, the degree of modulation of the desired carrier 
caused by the interference in the FM system is, according to Eq. (31), 

mpM 
Kf^cy + (MiCi)^ + + • • • + ,,,, 

_ (51) 

where D is the nominal maximum frequency deviation allowed in the 
FM system (corresponding to m = 1) and the in Eq. (51) are the 
difference frequencies between the various frequencies components 
and the desired carrier. In particular, n without a subscript is the 
beat frequency between the desired and undesired carriers. 

With the aid of Eqs. (49) to (51) we can now write for the relative 
values of common-channel interference under similar conditions in 
AM and FM 

mAM 

mpM 

+ Cf + Cj + - ■ eg 

+ + 
(52)1 

In ‘‘wide-band’^ frequency-modulation systems, which are the type 
now commonly used, the value of D exceeds the highest audio fre^ 
quency. Thus in the FM broadcasting band in the United States, 

D = 75 kc (53) 

On the other hand, the audio systems of FM receivers will not pass 
frequencies above, say, 12 kc. Thus the majority of the terms in the 
denominator of Eq. (52) are eliminated by the audio system, and only 
those with relatively small values of ii/D are passed. Consequently, 
the value of the ratio (52) is always much greater than unity. Thits FM 
is inherently less susce'ptihle to commonrchannel interference than AM,^ 

1 This equation assumes that the AM receiver does not respond to frequency 
modulation in the signal and that the FM receiver does not respond to amplitude 
modulation in the signal. The first condition is generally unimportant, for, as 
we shall see, the amount of frequency modulation is small. The second condition 
is approximately fulfilled if the receiver has a well-balanced detector and a good 
limiter. Wheeler (Common-channel Interference between Two Frequency- 
modulated Signals, Proc. January, 1942) discusses the case when the second 
condition is not fulfilled. 

* Interference and noise reduction in FM is discussed quantitatively in the 
next chapter. 
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A simple physical explanation of the reduced common-channel 
interference in wide-band FM systems is that the essentially random 
phase relationship of the sidebands (and carrier) of the interfering 
signal with the carrier of the desired signal spreads out the beat 
frequencies between the two signals throughout the entire deviation- 
frequency range, so that most of the interference is eliminated by the 
restricted frequency range of the audio system (including the human 
ear). Furthermore, only those sidebands which are relatively inef¬ 
fective in causing frequency modulation, i.e., those near the desired 
carrier, are passed by the audio system, which further reduces the 
interference. On the other hand, a desired frequency-modulated 
signal has a specified set of relations between the amplitudes, phases, 
and frequencies of its sidebands so that they all, including those far 
removed from the carrier, work together to produce a maximum 
amount of frequency modulation, and furthermore the frequency 
modulation that they produce is all in the pass band of the audio 
system. 

In contrast with the FM situation, in AM all the interfering side¬ 
bands, including the undesired carrier, are equally efficient in produc¬ 
ing interference; and their efficiency exceeds that of the most efficient 
FM interference-producing sideband by the ratio of the maximum FM 
deviation frequency to the width of the audio pass band. 

Exercise 

(Large-magnitude Interference in FM) 

If a desired carrier A sin 2irft and an interfering carrier B sin 2irQt are received 
simultaneously, show that the exact expression for the frequency modulation of 
the resultant is 

1 M 

2t dt {Q 
cos [2ir(y ” + 3 \ 

Plot a curve of (l/2ir) {d<t»/dt) for 1 cycle of the beat frequency {g --f) for 
{B/A) ox* 0.1, 0.5, 0.9, and 1.0. What is the physical explanation of the sharp 
spikes that appear as B/A approaches unity? 

6.6 Symmetrical and Unsymmetrical Sideband Distributions.^ 
a. Introduction. In the elementary cases of pure amplitude and pure 

‘ This section is a development of H. Nyquist, Certain Topics in Telegraph 
Transmission Theory, Trans. AJ.E,E,, April, 1928, p. 617, and H. A. Wheeler, 
The Solution of Uns3rmmetrical Sideband I^blems with the Aid of the Zero- 
frequency Carrier, Proc. /.E.E., August, 1941, p, 446. 
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angle modulation considered in Secs. 5.1 and 5.2 the sidebands were 
always present in pairs whose frequencies were symmetrically located 
with respect to the carrier.^ Thus, if F was the carrier frequency and 
there was a sideband at F + then there was always a sideband of 
equal magnitude at F — /x. 

We now wish to consider cases in which these simple relationships 
no longer hold. This condition is sometimes produced intentionally 
and at other times is due to shortcomings of apparatus or to outside 
interference. When the condition is produced intentionally, its pur¬ 
pose is economy in frequency bandwidth, or else noise reduction, or 
both. Thus, while pure modulation produces both upper and lower 
sidebands, either the upper or the lower set of sidebands alone is 
actually sufficient to convey the information, even though the lack of 
the other set will produce distortion. There are consequently many 
practical situations in which only one set (upper or lower) is trans¬ 
mitted. This practice is described as single-^sideband transmission^ 
In single-sideband transmission, it is customary not to transmit the 
carrier but to supply a large carrier locally at the receiver. In this 
way, the percentage modulation can be kept down, so that there is 
little distortion despite the fact that only one set of sidebands is used. 
By using single-sideband transmission, only half the frequency spec¬ 
trum of ordinary double-sideband transmission is required. Further¬ 
more, vre shall See in the next chapter that a worth-while noise 
reduction can be obtained. In single-sideband transmission, it is some¬ 
times desirable to transmit the carrier at a reduced level and use it to 
operate the automatic frequency control and automatic volume control 
at the receiver. When principally, but not exclusively, one set of side¬ 
bands is transmitted,^ the more general terms selective or asymmetric 
sideband transmission are used. We shall presently develop simple 
methods for analyzing the properties of signals in which any type of 
unsymmetrical distribution of the sidebands occurs. 

^ In frequency modulation, when there is more than one modulating frequency, 
the sideband distributions need not be symmetrical. This aspect of unsymmetri¬ 
cal sideband distributions, however, will be of only incidental interest in the present 
section. 

* For information on practices followed and apparatus used in single-sideband 
transmission in communication, consult Terman, “Radb Engineers’ Handbook” 
by way of the index and the original papers cit^ by Terman. For asymmetric 
siddband transmission in television, see Zworykin mid Morton, Television.” 

*The words ^transmitted” and ”transmission” in this chapter refer to the 
over-all transmission system, including both transmitter and receiver, as weU as 
the transmitting medium. 
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Umntentional cases of unsymmetrical sideband distributions occur 
in cases in which the transmission system has characteristics that are 
not symmetrical with respect to the carrier frequency. We shall also 
show how common-channel interference can be analyzed as a case of 
an imsymmetrical sideband distribution. 

6. Symmetrical and Aniisymmetrical Sidebands: Inphase and 
Quadrature Components. 

Definition: If A cos {2KFt + 4!) is a carrier wave, then the pair of 
sidebands 

Ai cos [%r{F + /*)< + ^1] and A% cos [2^{F — ii)t + ^2] 

is said to be symmetrical if 

A\ = A^ and ^ = —(^2 — ^>), that is, <^2 = 

The superposition of a carrier and a pair of symmetrical sidebands 
gives a pure amplitude-modulated signal, since 

A cos {2^Ft 4“ 0) H" cos [2ir{F -j- ii)t 4- 

4“ Ai cos [2t(F — /;*)< 4“ (2^ — 0i)] 
= A cos (^2nrFt 4“ 4* -di cos [{2wFt 4" <^) 4“ (2irjn< 4“ <^i — 0)] 

4“ di cos [{2irFt 4* — {2Trfil 4“ — ^)] 

2Ai 1 
* A 14“ cos i2irpt 4- cos (2irF^ 4“ 4>) 

=* A 14—cos ^2irfi< 4“ 2 {flarFt 4“ (54) 

Equation (54) is an exact equation for all values of A and Ai. 
Definition: If A cos (2irF< 4“ 4>) is a carrier wave, then the pair of 

sidd)ahds 

Ai cos [2ir(F 4* + 0i] A2 cos [2ir(F — p)t 4“ ^2] 

is said to be antisymmetrical if 

Ai «■> •*“At and » ““•(^2 “* 40f that is, 4^2 ** 24> 4^i 

We shall now show that the superposition of a carrier and a pair of 
smaU antisymmetrical indebands gives rise to an approximately pure 
angle^odulated signal. As a first step in this direction, let us perform 
the following expansicm: 
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[AF 
(2rF< ■J" "I" + 

-1 cos i^rPt + 4) cos 
Faf . , 
I — sm (2jrM< + 

— sin (2rFt + <!>) sin 

= A jcos (2irFf + <t>) (y) + 2Ji cos [2(2)r/*< + »)] + 

- sin (2tF< + 4,)^2J I sin (2t/x< + 6) + ■ 

= A cos (2»F< -{■ 4) — A sin (2irA»< + 6) sin (2irF< + 

(approx^) (55) 

provided that AF/fx is small in comparison with unity. Now 

«] 

sin j^— sin (2t/i< + ^)j| 

■] 

]) 

A — sin (2ir(it + 0) sin {2irFt + <^) 

= 4— icos IMF - m)< + (« - 0)] - cos [2t(F + m)« + {<!> + 0)]1 

(56) 

by Eq. (42) of Appendix C. Therefore Eq. (55) becomes 

A cos |^(2»'Ff "1“ 0) H-sin {2irfU ®)J 

= A cos (2rFt + ^) + 4 — cos [2t(F + it)t + (^ + fl)] 
A ft 

- 4 ^ COS [MF - /*)< + (^ - «)] (57) 

again provided that AF//x is small in comparison with unity. 
It follows from Eq. (57) that if Ai is small in comparison with A, 

then 

^This is true when AF//i is small because Jo(x) »• 1, Ji(x) « x/2,^ 

Jiix) « 0 « J%{x) » Ja{x), 

etc.^ as a first-order approximation, when x is small. These results follow from 
Eqs. (12) to (14) of Appendix E. 
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^ COS {2irFt + 4>) "t” -^1 cos [2ir(F H- “f* ^i] 
— ill cos [2v(F — ii)t + (2<t> ~ 

2A% 
= A cos {2TFt + <^) H—^ sin [27r/x^ + (<^i — 0)] 

= ^ cos (2tF< + 4*) + ^ sin j (68) 

Thus the superposition of a carrier and a pair of small antisymmetrical 
sidebands gives rise to an approximately pure angle-modulated signal. 

Let us next consider the more general case of the superposition of 
a carrier and a pair of antisymmetrical sidebands, the latter no longer 
being required to be small. Using the same notation as above, we 
write 

A cos (2TrFt + -f” Ai cos [(2ir(f'd- tj,)t -|~ <^i] 
— Ai cos [2t{F — fjL)t + (2<^ — ^i)] 

= A cos (2TrFi 4” “h ill cos \i2TrFt + <^) 4“ {2irixt 4" ^i — <^)] 
— AI cos [{2TFt 4~ — (2irfjLt 4" — ^)] 

=* A cos (2irFt 4" 
4* Ai[cos (2TcFt 4“ cos {2Tnt 4” 
— sin (27rF^ 4“ <F) sin (27rM< 4- — <^)] 
— i4i[cos (2xFf 4" <!>) cos {2jrfjkt + <l>i — <t>) 

4“ sin {2TrFi 4" sin {2nriJLt 4~ — </>)] 
“ ^ cos (2TFt + <l>) — 2AI sin {2Trnt 4" </>i — </») sin {2TrFt 4- <t>) (59) 
= ‘s/A^ 4" lilf sin^ {2TrfjLt 4” — 4>) cos {2TrFt 4“ ^ 4" 

I 
= i4 .Wl 4~ 2 cos [2(2ir^^ 4" 0)] cos (2irFt 4” 0 4“ 0) (60) 

where 

= tan“^ 2 sin (2^fj,t 4" 01 — 0) 

Equation (59) tells us that the pair of antisymmetrical sidebands gives 
rise to a component in quadrature (z.6., 90 deg out of phase) with 
the original carrier. To find the over-all resultant envelope, we must 
take the square root of the sum of the squares of the amplitudes of 
the inphase and quadrature components as indicated by Eq. (60). We 
note that the amplitude modulation due to the quadrature component 
consists entirely of even harmonic distortion. 

Since 0 varies with the audio frequency, there is also angle modula¬ 
tion of the carrier, an effect that was absent in the case of symmetrical 
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sidebands as indicated by Eq. (64). In fact, in the case of antisym- 
metrical sidebands, when ili is small in comparison with A, Elqs. (60) 
and (61) show that the frequency modulation is a first-order effect, 
while the amplitude modulation is only a second-order effect. This is 
in harmony with the result already obtained in Eq. (58). 

Looking back at Eq. (54), we now note that a pair of symmetrical 
sidebands gives rise to a component in phase with the carrier. 

We shall investigate the use and significance of the foregoing results 
in many of the following pages. 

c. Expression of an Arbitrary Unsymmetrical Sideband Distribution 
as the Sum of Symmetrical and Antisymmetrical Pairs. The practical 
uses of the results of subsection b depend on the fact that any arbi¬ 
trary unsymmetrical sideband distribution can be expresed as the 
siun of symmetrical and antissrmmetrical pairs. ‘ To show this, let 
us first take a single pair of unsymmetrical sidebands 

B\ cos [2ir(^’ 4“ y^t Oi] (62) 
and 

Bi cos [2ir(/'’ — y^t — ^2] (63) 

separated from the carrier 

A cos %eFt (64) 

by frequencies +ju and —y, respectively. No relation whatever is 
assiuned to exist between B\ and Bt or between B\ and Bt. In particu¬ 
lar, either Bi or Bz may be zero. We shall now show that the sum of 
the two sidebands (62) and (63) can be expressed as the sum of a sym¬ 
metrical pair of sidebands plus an antisymmetrical pair. 

We note first that 

Bi cos [2ir(f'' 4" /t)t 4" 4" Bi cos [2ir(i'' — y)t — tfi] 
= .6i[cos ^Ft cos (2ryt 4- Bi) — sin 2rFt sin (2rfit 4- ^i)] 

4- B2[co8 2rFt cos (2rMt 4- 0*) 4- sin 2rFt sin (Sryd 4- ®»)3 
= [B2 cos (2iryt 4" Bt) 4- Bi cos (2iryt 4- ^i)] COS 2iiFt 

4- [JBj sin (2ryt 4- Bt) — Bi sin (2ryt 4“ fli)] sin 2rFt (65) 

Now the term in cos 2rFt is the inphase term and is Hierefore the sum 
of a pair of symmetrical sidebands, while the term in rin 2rFt is the 
qxiadrature term and is the sum oi a pair of antisymmetrical side¬ 
bands. In order to find the actual pair of symmetrical sidebands, we 
let ^ »= 0, .4i = A„ and in Eq. (54), so that, after subtracting 

‘ This shustton ia siinilar to the eomporitkm of an aihitraty funotwa as the 
sum oi aa eves and an odd part. 
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the carrier, Eq. (64) becomes 

cos [2ir(F + ij)t + + Am cos [2ir(F — — 4>»\ 

= 2At cos {2TryLt + 4>») cos 2nrFt (66) 

Then, equating coefficients of cos 2irFt in Eqs. (65) and (66), we have 

2-4, cos (2irfj,t + ^,) B2 cos (2rfjLt + 62) + Bi cos (2ir/i< + ^1) 
jB2(cos 2irtit cos $2 — sin 2irfj,t sin ^2) 

+ Bi(cos 2irfit cos Bi — sin %ryt sin ^1) 
»= {B2 cos 62 + Bi cos 61) cos 2iryt — (B2 sin 62 + Bi sin di) sin 2Tixt 

— 2-4,(cos 2Tfit cos 4>t — sin 27rfit sin ^,) (67) 

Equating coefficients of cos 2irid and of sin 2iriit on opposite sides of 
the equation, we have 

241, cos = B2 cos 62 + Bi cos ^1 (68) 
2Am sin il>M = B2 sin $2 + Bi sin 61 (69) 

Therefore 

2A. 

and 

-s/(.82 cos 62 + Bi cos ^1)^ + (82 sin 62 + 81 sin ^1)^ 

\/8| -f* 8f + 28182 cos (^2 — ^1) (70) 

i. / ^2 sin ^2 + 81 sin 
V82 cos 02 + 81 cos ej 

(71) 

According to these equations, the magnitude -4, and angle <#», of the 
symmetrical pair of sidebands can be 
obtained from (81, ^1) and (82,^2) by 
vector addition as shown in Fig. 16. 

In an entirely similar manner, a 

Fio. Id. VeotorUl eombination of 
sidebands to obtain symmetrical side¬ 
band components. 

Fiq. 17. Vectorial combina¬ 
tion of sidebands to obtain 
antisymmetrioal sideband com¬ 
ponents. 

compariaon of Eqs. (59) and (65) gives 

-f- Bf — iBiBt cos (fit ~ 6i) (72) 
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, . sin Oi — Bi sin dA 
\ R. on« A. - R. o J 

for the antisymmetrical pair of sidebands. According to Eqs, (72) and 
(73), the magnitude A a and phase <l>a of the antisymmetrical pair of 
sidebands can be obtained from (jBi,^i) and (^2,^2) by vector addition 
as shown in Fig’ 17. 

As a consequence of the foregoing, we may express the original 
unsymmetrical pair of sidebands as the sum of a symmetrical and an 
antisymmetrical pair of sidebands as follows: 

Bi cos [27r(F + m)^ “H ^1] 4" ^2 cos [2^{F — fjL)t — ^2] 
= At cos [2t{F + m)^ “H cos [2t(F — /i)^ — 

+ Aa cos [2ir(F + + <l>a] - Aa COS [2t(F - ti)t ~ (74) 

The values of and 4>a are given in Eqs. (70) to (73). 
Let us now suppose that we have a distribution of sidebands as 

shown in Fig. 18a, which, for the sake of generality, is assumed to be a 

Fio. 18. Resolution of an arbitrary distribution of sidebands into symmetrical and 
antisymmetrical distributions. 

continuous distribution. Equations (70) to (73) still give the values 
for A„ At, and ^ for every pair of sidebands displaced ±m from the 
carrier, where m is an arbitrary frequency. The curves of At, A,, 
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and 4>a can therefore readily be calculated and plotted. The situation 
is particularly simple when the phases of the sidebands are a linear 
function of frequency. In this case 

= 02 == ^ (75) 

so that Eqs. (70) to (73) simplify to 

A. = M + BI + 2B1B2 = HiBr + B*) (76) 
4>, = e (77) 

VBI + BI- 2BiB* = - Bt) (78) 
4>a = e (79) 

The symmetrical and antisymmetrical components of such a distribu¬ 
tion in Fig. 18a are plotted in Figs. 186 and c. Since the phase shifts 
for any frequency are here the same for all curves, a mere addition of 
Figs. 186 and c gives Fig. 18a. 

Exercise 

Given the carrier 
500 cos 27rFt 

and the two sidebands 

2 cos [2ir(F + 1,000)<] and 5 cos [2ir{F - 1,000)<] 

Find (o) the percentage of amplitude modulation of the composite signal; (6) the 
peak frequency deviation of the composite signal. 

d. The Interpretation of Interference as an Unsymmetrical Sideband 
Distribution. Any type of signal interference can be interpreted as an 
unsymmetrical sideband distribution for the desired carrier. Thus 
any particular interference frequency component 

B cos [2t(F + a)t + (80) 

may be interpreted as a pair of symmetrical sidebands plus a pair of 
antisymmetrical sidebands for the carrier 

A cos 2irF^ (81) 

In order to find these sidebands, we can let 

B (82) 
Ba * 0 (83) 

and 
0 - ^ (84) 
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in Eqs. (76) to (79). Cimsequently, 

tpa = Ip 

(85) 

(86) 

(87) 

(88) 

By Eqs. (54), (85), and (86) we know that the symmetrical pair of 
the above sidebands is equivalent to a component in phase with the 
carrier and that they cause amplitude modulation with a degree of 
modulation of amount B/A. On the other hand, by Eqs. (57), (59), 

(87), and (88) we know that the antisymmetrical pair of sidebands is 
equivalent to a component in quadrature with the carrier and that, if 
B A, they cause frequency modulation of modulation index B/A, 
i.e., a peak frequency swing of amotmt {B/A)ot. These results agree 
with what we learned when we studied common-channel interference 
in Sec. 5.5. 

The pairs of symmetrical and antisymmetrical sidebands into 
which the interference signal [Eq. (80)] can be broken down are shown 
in Fig. 19. The sidebands of frequency F — a in this case are truly 
a mathematical fiction since there is actually no signal energy at the 
frequency F — a. 

This method of looking at interference is very instructive, and 
readily allows a quick estimate to be made of its ejGfects. . 

e. Unsymmetricdl Sideband DietributionB and TeUvieion TrantmU- 
tionA We shall now use the methods of this section to amplify prob- 

* This sobjeot has been diaeuaeed in the following pspera: Pooh, W. J., and 
D. W. Enxnnr, Partial Suppreaaion tA One Side Band in Tekvinon Reeeptknk, 
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lems in the unsymmetrical sideband transmission of televienon 
signals. Such problems have already been considered in Secs. 4.8 to 

(a) 

u<.t) Ilf*® sin 27r/i^ , 

a+jjo — 

/. 

(b) 

^2 Ik 

ir 

«» sin [2r/i(^ — jTi)) — sin — ri)] + sin [2TriAit — T*)] — sin [2ir^(^ — T4)] , 
-■ an 

M 

-T 
A 

_i 
m-(f) 

A[l +m[-l +G(01} co8 2irF'< 

Flo. 20. Television test signals as video and as modulated carriers. 

4.10, but we shall now see how the same results can be obtained in a 
more simple and straightforward manner. 

Proc, LR,E,, January, 1937, p. 15; Goldman, S., Television Detail and Selective 
^de Band Transmission, Proc. November, 1939, p. 725; Ntquist, H., and 
K. W. Pplbosr, Effect of the Quadrature Component in Single Sideband IVans- 
mission, Bell Syetem Tech. January, 1940, p. 63; Ksll, R. D., and G. L. Fbeden- 
DALL, Elective Sideband IVansmission in Television, R.C,A, Rev., April, 1940, 
p. 425; Kallmann, H. E., R. E. Spsncbb, and C. P. Singbb, Transient Response 
of SlngteHudeband Systems, Froe. December, 1940, p. 557. The discussion 
given here follows most closely Uiat of Nyquist and Pfleger. 
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As pointed out in Chap. IV, the two best test signals for studying 
television transmission are probably 

1. The unit step 
2. A pair of rectangular pulses 
The first of these gives information concerning the sharpness of 

edges in the picture, and the second gives information concerning fine 
detail. These t*est signals are shown in Fig. 20, both as pure video 
and as modulating signals. The frequency-distribution form of the 
unit step is given by Eq. (147) of Chap. IV and is 

f ^ (g9) 
J W Jo n 

The frequency-distribution form of the pair of pulses follows from 
the foregoing equation in conjunction with the principle of superposi¬ 
tion and is 

G{t) 

sin [2^r/t(/ — Ti)] — sin — ^2)] 
+ sin [2Trn{t — Ts)] — sin [2Trtx{t — T4)] ^ 

(90) 

If these signals are used to modulate a carrier in the special manner 
of television signals, as shown in Fig. 20c and d, the corresponding 
modulated carriers are 

• A{1+ m[-l + C7(0]} cos 2jrFt (91) 
and 

A{l+m[-l+ G(t)]} cos 2irFt (92) 

respectively. We shall find that we will actually not need Eq. (90) or 
Eq (92), since the required results can all be obtained from Eqs. (89) 
and (91) with the aid of the principle of superposition. 

Let us now suppose that these signals are sent through two unsym- 
metrical transmission systems in cascade as shown in Figs. 21a and &, 
which represent the characteristics of a television transmitter and 
receiver, respectively. If 

yiO'w) = (93) 

(94) 

represent the respective transmission characteristics of the transmitter 
and receiver, then 

represents the over-all transmission characteristic. This is shown in 
Fig. 21c. 
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Yi(«) 

(a) Transmission 
Characteristic of 
Television Trans* r 
mitter. —► ^ 

(b) Transmission 
Characteristic of 

1.0- 

0.5- 
7 \ 

Television Receiver. ^ y __ g — -4) 

Fia. 21. Resolution of an unsymmetrical television transmission system into sym¬ 
metrical and antisymmetrical components. 

Let US next send the signal of Fig. 20c through the transmission 
system whose characteristics are shown in Fig. 21c. The signal in 
Fig. 20c may be written 

{1 + —1 + 17(0]} cos ^wFt 

= 4 1^1 + m 1 ^ ” J j 

^1 — cos 2frFt + 

^1 — cos 2irFt 

. cos H- /i)< + 5 j + cos |^ar(/!’ - n)t - ij 
~ aT io ^ 

A 

A 

Am 
^ Jo M 

(96) 
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Thus, for every value of fi, there is a pair of symmetrical sidebands 

—cos j^2gr(F + fi)t + ^ j (97) 

and 

• ~ ~ i] 

The relative magnitude of these sidebands is proportional to 1/m so 

that the distribution is as shown in Fig. 22. 
When the signal [Eq. (96)] is sent through the transmission system 

with characteristics shown in Fig. 21c, each sideband magnitude is 
multiplied by the corresponding value of Fs. Since the phase shift 
is linear, it has no effect on the sideband magnitudes or on whether 

they form symmetrical or anti- 

symmetrical pairs. In Figs. 21d 

and e the over-all transmission 

characteristic is broken down into 

its S3rmmetrical and antis3anmetri- 

cal components, and for conven¬ 

ience the frequency variable is 

changed to m- Now the product 

of a symmetrical distribution of 

sidebands and a symmetrical transmission characteristic gives a new 

symmetrical distribution, while the product of a S3Tnmetrical distri¬ 

bution of sidebands and an antisymmetrical transmission characteristic 

gives a new antisymmetrical distribution of sidebands. The final 

signal may thus be written 

components in signal of Fig. 20(c). 

Yzf cos 2TFt 

[ •+• cos 27r(F — ti)t 

2ir(F + m)^ + 2 

i-]l dji 

- C08 |^2!r(F - -• I - 5iuj| dn m 
where 

0t(«) » Bft (100) 
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By Eqs. (54) and (69), Eq. (99) may also be written 

^ (l - Y^, cos 2irF/ 

“ ^ /o ®°® (2^^^ + i + ■^^) ®o® 2irF< 

+ ~ sin + I + sin 

= [^ (1 - ^) F„ + ^ “ F*.(E + m) + j cos 2KFt 

+ [~fj Y^F + M) d^] sin (101) 

The coefficient of cos 2wFtj in accordance with our previous ter¬ 
minology, is called the inphase component of the envelope, and 
the coefficient of sin 2TrFt is called the quadrature component. The 
resultant amplitude envelope is the square root of the sum of the 
squares of the inphase and quadrature components. The inphase 
and quadrature components of Eq. (101) and their resultant for the 
case that m = 1 and for the values of Yt» and Fsa in Fig. 21 are shown 
in Fig. 23a, The actual calculation of the integrals in Eq. (101) is 
usually complicated, unless the transmission characteristic is idealized, 
as is done in Secs. 4.8 and 4.9. 

Once the transmitted signal has been calculated for unit-step modu¬ 
lation, the transmitted signals for the other details shown- in Figs. 23& 
to d can be calculated from Fig. 23a by the principle of superposition. 
It should be remembered that all the inphase components must be 
added separately and all the quadrature components must be added 
separately, before taking the square root of the sum of the squares for 
the final resultant. 

The problem of television detail and unsymmetrical sideband trans¬ 
mission has already been discussed in more detail in Chap. IV. The 
present section, however, has presented a more general outlook upon 
the subject. 

6.7 Vectorial Interpretation of Modulation.^ In Sec. 5.4a and 
Fig. 12 it is pointed out that a simple harmonic vibration A cos (cjt + 4) 
may be represented as the pair of rotating complex vectors (A/2)e^<"*+^^ 
and (il/2)«*^’("*+^> which rotate in opposite directions in the complex 

»An eqtuvaleiit discussion of this subject is given by H. A. Wheeler, Ihe 
Solution of Unsymmetrical Sideband Problems with the Aid of the Zero-frequency 
Carrier^ Proo. LB.E.f August, 1941, p. 446. 
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plane with angular velocity «. The carrier and sidebands of an 
amplitude-modulated carrier may therefore be represented as six 
complex vectors, three of them rotating clockwise and three rotating 

For any value of time, 

Resultant » \/(in phase)* + (quadrature)> 

(The time delay between transmitted and received signals is not indicated in this figure.) 
Fio. 23. Envelopes of inphase and quadrature components of signals passing 

through the asymmetrical transmission system of Fig. 21(c), (From Nyquist and 
PfiegeTt BtU System Tech, J,, January^ 1940, reprinted by permieeian.) 

counterclockwise. The sum of the six vectors is always real and is 
equal to the instantaneous value of the amplitude-modulated wave, 
lliis is shown in Fig. 24 
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Since three of the six vectors are conjugate to the other three, one 
set of three gives all the information about the system, so long as it is 
kept in mind that the conjugate vectors are also part of the complete 
picture. We shall therefore conduct our studies in terms of the posi¬ 
tive rotating (counterclockwise) set.^ We also note that the upper- 

Sidebands of Positive 
Rotating Carrier. 

Sidebands of Negative 
Rotating Carrier. 

Positive Rotating 
Complex Carrier 

Resultant Signal 
Amplitude. 

Negative Rotating 
Complex Carrier. 

(a) Complete Vector Representation, Shovi^ing Both Sets of the Conjugate Vectors 

k 
upper Frequency Sideband 
Rotating Counter • Clockwise 

Rotating 

- Carrier Vector(Stationary} 

equencv S 
Clockwise 

(O) Abbreviated Representation as the Positive Rotating Set 
Fiq. 24. Representations of an amplitude-modulated signal. 

frequency sideband vector is rotating in a positive (counterclockwise) 
direction about the carrier at the angular velocity of the modulation 
frequency, and the lower-frequency sideband vector is rotating in a 
clockwise direction about the carrier with the same angular velocity. 
In studying sidebands it is sometimes convenient to consider the carrier 

^ For simplicity, we shall often omit the factors when dealing with only one 
of the two sets of oppositely rotating vectors. 
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vector as stationary and to study the motion of the sidebands with 
respect to the carrier. 

According to Eq. (54) the upper-frequency sideband vector in AM 
is always as many radians^ counterclockwise from the carrier as 
the lower-frequency sideband vector is radians clockwise from it, as 

Sidebands of Positive 
Rotating Carrier' 

Sidebands of Negative 
Rotating Carrier 

Positive Rotating 
Complex Carrier 

Resultant Signal 
^^^Amplitude 

^ Negative Rotating 
Complex Carrier 

(a) Complete Vector Representation. Showing Both Sets 
of the Conjugate Vectors 

Resultant 
Quadrature 

Carrier at 
Maximum 
Deviation 

Sidebands K^Unmodulated 
Carrier 

(c) Abbreviated Representation as the Positive Rotating Set 

Fig. 25. Repreaentations of a frequency-modulated signal. 

shows in Fig. 24c. In the particular case of Fig. 24c, that is, of Ek}. 
(54), the resultant of the two sidebands is thus always in the direction 
of l^e carrier (or 180 deg away from it) so that the sidebands cause 
amplitude modulation of the carrier but no phase (or frequency) modu¬ 
lation. The vector picture thus shows tl^t symmetrical sidebands 
add an inphase component to the carrier and give pure amplitude 
modulation. 

* That is, Zrid + — 4 radians. 
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In the case of pure frequency modulation, of small index, the com¬ 
plete rotating-vector representation of Eq. (69), is shown in Fig. 25a, 
and the modulated wave is shown in Fig. 266, The stationary- 
carrier picture is shown in Fig. 26c. Here we see that the resultant of 
the antisymmetrical sidebands is a component in quadrature with the 
carrier and causes amplitude modulation only as a second-order effect. 
However, the phase of the resultant of the carrier plus sidebands shifts 
from the unmodulated phase to excursions of ±AF/fjL radians at the 
rate of the modulation frequency fi. Thus there is frequency modula¬ 
tion. Since the instantaneous frequency is proportional to the time 
derivative of the phase, the maximum frequency excursion (i.c., FM 
modulation peak) occurs, not when the phase deviation is a maximum, 
but rather when the phase is changing most rapidly. This happens to 
be when the resultant is in phase with the carrier. On the other hand, 
PM modulation peaks occur at the time of maximum phase deviation. 

A case of pure frequency modulation of large index is diflScult to 
illustrate in a diagram. Here a large number of sidebands are neces¬ 
sary, and the resultant is much larger than the carrier. The resultant 
remains of constant length but rotates about the carrier to the extent of 
AF/2irfi full rotations away from the carrier phase and back again while 
the audio goes through one half cycle. During the next half audio cycle 
the process is repeated, but with reversed angular directions of rotation. 
The process is not hard to visualize, but it is hard to show in a diagram. 

Exercise 

Show that phase modulation of small index gives rise to a pair of antisymmetri¬ 
cal sidebands just as FM does. 

6.8 Vectorial Discussion of the General Problem of Interference.^ 
The vector representation throws new light on the general problem of 
interference. Let the vector A in Fig. 26 represent the signal, and let 
B represent the interference, which may be either noise or an undesired 
signal. The resultant of the two is R, Changes in the length of E 
represent the total effective amplitude modulation, while the rate of 
change of the angle 4>r is the total effective frequency modulation. 
In Sec, 6.6 we made an analytical investigation of the problem for 
the special case in which B was an undesired signal and the ratio B/A 
was small in comparison with unity. We now wish to consider the 
more general case of imrestricted values of P/A, and we shall not 
consider that B is limited to any particular type of signal. 

* Bonsa, H., Noise in i^Vequency Modulation, BUetronusM^ May, 1987, p. 22, 



186* FREQUENCY ANALYSIS, MODULATION AND NOISE 

It is apparent from Fig. 26 that in a cycle of the difference fre¬ 
quency, the amplitude of the resultant varies between (A + B) and 
(A — B) so that the amount of the total amplitude modulation rises 
and falls uniformly with the amplitudes of A and JB. At the same 
time, it is also apparent from Fig. 26 that if B < A then angular 
variations in B even of thousands of degrees will cause little change in 
(t>R, for the maximum angle between R and A cannot exceed sin-^ 
{B/A), Therefore, if the modulation of A has a large deviation ratio, 
such as is characteristic of wide-band frequency modulation, so that A 
(and therefore R) has several com¬ 
plete revolutions in one audio cycle, 
the relative effect of B on the over¬ 
all frequency modulation will be 
very small, considerably smaller than 
in the corresponding case of ampli- 

reduction in frequency modulation when 
the incoming signal level exceeds that of 
the interference. 

tude modulation. On the other hand, if B should exceed A, the situa¬ 
tion would be exactly reversed and the frequency modulation of A 
would then have relatively little effect on the total effective frequency 
modulation of R. The relative importance and the variation of inter¬ 
ference are thus quite different in AM and FM. In the former the 
interference-to-signal ratio varies smoothly with the ratio B/A, while 
in the latter there is very little interference until the ratio B/A = 1 
is approached and then the interference rapidly rises to a value that 
blankets the desired signal. The situation is shown diagrammatically 

in Fig. 27. 
According to the foregoing discussion there is a rather shao^p transi¬ 

tion between good and poor interference-to-signal ratios in FM. 
Consequently, in the distribution of FM transmitters around the 
country, the service areas may be expected to be more clearly defined 
than is the case with AM. However, even with FM since both the 

interf^rcQCO »ad the signal are likely to have some amplitude modula- 

Fia. 26. Vectorial combination of sig¬ 
nal and interference. 

Fig. 27. Illustration of interference 
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tion superimposed upon their frequency modulation, the contours of 
the transition value of B/A = 1 are not as sharply defined as they 
might be. Nevertheless, the useful service areas are still much more 
definitely bounded than is the case with AM transmitters. 

An anal3rtical and graphical investigation has been made by Roder* 
of FM interference for relatively large values of B/A. His results are 
in substantial agreement with the foregoing discussion. 

(a) 
Intensities and 
Frequencies of 
incoming Signals 

46 db 
40db^ 

20 db 

Odb 

Frequency 

(C) 
Intensities and 
Frequencies of 
Signals at Limiter 

Fio. 28. Effect of selectivity in reducing adjacent-channel interference (FM). 
{Goldman, 8,, Electronics, August, 1941, reprinted by permission.) 

6.9 ’Adjacent-channel Interference in FM.^ The discussion in the 
preceding section serves as a good introduction to the problem of 
adjacent-channel interference in FM. Suppose that we consider the 
frequency-modulated signals of two adjacent channels as shown in 
Fig. 28a. These signals will be assumed to be pure FM signals, t.e., 
of constant amplitude but variable frequencies. The numerical 
values chosen in Fig. 28 are reasonable for present-day FM reception. 
An assumed selectivity curve of a receiver is shown in Fig. 286 and the 
final signal levels arriving at the limiter are shown in Fig. 28c. 

^ Rodeb, H., Effects of Tuned Circuits upon a Frequency Modulated Signal, 
Pfoc. /.R.E., Dec^ber, 1937, p. 1617'. 

* Goldman, S., F.M. Noise and Interference, ElectronicSf August, 1941, p. 37. 
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In accordance with our previous discussion, if the desired signal 
exceeds the interference during all portions of all audio cycles, the 
interference will cause negligible frequency modulation of the resultant 
signal arriving at the limiter. However, let us next consider the case 
in which the interference exceeds the desired signal level at the limiter 
for an average of n per cent of the time (see Fig. 29). During the time 
when the interference exceeds the desired signal, the interference 
modulation is received. Even if the interfering signal were unmodu¬ 
lated, the “gaps” in the desired signal would produce distortion in the 
same way as interference. The effective ratio of distortion to signal is 
thus approximately n/100. It is desirable to keep this ratio as small 
as possible. 

For negligible interference from the adjacent-channel signal it is 
practically essential that the level of the desired signal shall exceed that 

Fia. 29. Interference gaps in an FM signal. (Interference exceeds signal during Tt 
intervals.) 

of the irUerfering signal at the limiter during all "portions of the audio 
cycles. To ensure this condition, FM receivers should be designed to 
satisfy the inequality 

AGt > EGi (102) 

where A is the level of the desired signal at the input of the receiver, 
Gi is the gain of the receiver at the frequency of maximum deviation of 
the signal toward the adjacent channel, E is the level of the adjacent- 
channel interfering signal at the input of the receiver, and Gt is the 
gain of the receiver at the frequency of maximum deviation of the 
adjacent channel toward the signal channel. 

According to Eq. (102) there must be enough receiver selectivity 
in the frequen<^ range between the frequencies of maximum deviation 
<A the signals toward each other to take care of the difference in level 
of the desired and adjacent-channel signals at the input of the receiver. 

When c<mdition (102) is satisfied, the level of the adjacent-channel 
interference can be calculated as the sum dl interference between the 
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various received sidebands of the adjacent-channel signal and desired 
carrier. The method for such calculations is indicated in the exercises 
below. The actual calculation is not of sufficient importance to be 

Channel A Channel B 
SOOO^Audio SOOO^Audio 

75 kc Max. Deviation 75 kc Max. Deviation 

(a) Magnitudes of Adjacent Channel Sidebands 
at Receiver Input 

(C) Magnitudes of Adjacent Channel Sidebands 
Arriving at Limiter 

Fio. 30. Sideband picture of the effect of selectivity in reducing adjacent-channd inter- 
ferenoo (FM). {OMman^ 8,, Eleetroniea, August^ 1941, reprinied by permUwm,) 

reproduced here, since the interference level is of the order of 60 db 
below the level of the desired signal when Eq. (102) is satisfied. In 
Eig. 30 the figures corresponding to Fig. 28 are shown for the individual 
vdebands. 
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Exerciies 

1. If two frequency-modulated signals 

A sin -f ^ sin 

B sin 1^ (w -h /3)< -i- ~ sin + C J 
and 

are superimposed and if 

B « 1 

show that the phase of the resultant is 

4- ^ sin Ai/ -f- ? sin (fit -|- C + ^ sin — - sin /lA 
n A \ V Ik f 

2. Tabulate the magnitudes and frequencies of the FM interference sidebands 
in Exercise 1. 

8. Discuss the magnitude of FM adjacent-channel interference in the light of 
Exercises 1 and 2. Calculate the interference-to-desired-signal ratio in a typical 
case, and determine the audio frequencies of the principal interference terms. 

6.10 Adjacent-channel Interference in AM. a. Carrier Beat and 
Monkey Chatter. Adjacent-channel interference in AM is funda¬ 
mentally a simple matter. The receiver selectivity reduces the signal 
in the adjacent channel to a relatively small value, and the adjacent- 
channel interference is then due to interaction of the adjacent-channel 
carrier and its sidebands with the desired carrier, all other interaction 
from the adjacent channel being second-order effects. The action of 
receiver selectivity in reducing the adjacent-channel carrier and its 
sidebands is illustrated in Fig. 31. 

The difference frequency between the two carriers is called the 
carrier beat, and in the broadcast band in the United States it gives a 
10-kc audio note whose frequency remains practically constant. The 
difference frequencies between the desired carrier and the nearer 
adjacent-channel sidebands give what is known as inverted speech 
since, the larger the value of the adjacent-channel modulation fre¬ 
quency, the lower the difference frequency a fi. 

These difference frequencies vary with the frequencies in the pro¬ 
gram of the adjacent channel and give completely unintelligible noise, 
which is usually known by the fanciful name ‘'monkey chatter.'^ The 
beat notes between the desired carrier and the sidebands on the far side 
of the adjacent-channel carrier are also included in the term monkey 
chatter, but their intensity is usually very small and their audio fre^ 
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quency is so high that they are practically eliminated by the audio 
system of the receiver. 

The apparent interference modulation due to the frequency com¬ 
ponents in the adjacent channel can be written down immediately in 
view of Sec. 5.6d and Eq. 6. Thus, if the amplitude of the desired 
carrier is A and the amplitude of a particular frequency component in 

Adjacent Channel 

(c) Spectrum of Desired Carrier and 
Adjacent Channel Interference 
at Detector Input. 

Fio. 31. Sideband pictures of adjacent-channel interference in AM, showing effect of 
receiver selectivity. 

the adjacent channel is C, then this frequency component causes a 
degree of modulation of the desired carrier of amount 

C 
A 

(103) 

6. Masking of a Weak Signal by a Strong One.^ An interesting 
phenomenon that occurs in both adjacent-channel interference and 
common-channel interference in AM receivers is the masking of a 
weak signal by a strong one. To study this let us suppose we have a 

' This subject has been exhaustively investigated by C. B. Aiken in Theory of 
the Detection of Two Modulated Waves by a Linear Rectifier, Proc, April, 
1933, p. 601, and the references there quoted. 
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strong carrier 
A cos 2TFt (104) 

which for simplicity will be considered as unmodulated, and a much 
weaker modulated carrier 

J5(l + m cos 2ir/Lt^) cos \^{F + a){\ (105) 

If these two signals are superimposed in an AM receiver (i.c., simul¬ 
taneously received without frequency selection), then the resultant is 

A cos 2irFt + 5(1 + m cos 27r/i0 cos [2ir{F + a){\ 
— [A+ 5(1 -f m cos 2irnt) cos 2^a{\ cos 

— [5(1 + cos 25r/i<) sin 2nra{\ sin 2TFt 
— [[A+ 5(1 + m cos 2irfji,t) cos 27rat]^ 

+ [5(1 + m cos 27riJLt) sin 2ratY]^ cos (2irFt + 8) (106) 

where 5 is a phase angle that is not of interest in this case. Now, by 
h3rpothesis, the value of 5 is small compared with A. We can there¬ 
fore expand the amplitude of Eq. (106) in a power series in B/A and 
neglect higher power terms of B/A. Thus^ the received AM signal, 
i.e., the amplitude of Eq. (106), is 

\/[A + 5(1 4- m cos 2irtit) cos + [B{\ + m cos sin 2f!rai]^ 

=A 1(1+m cos cos (1+m cos 2x^0 sin 

s®Aj^l4-j(l + ?w cos 2m^id) cos 2firat 

, 5* (1 + m cos 2vnty sin* ^at , 1 
^ A^ 2 -t- • • • J 

A + 5 I cos 2ira< + ^ cos [2ir(a + n)(\ + ^ cos [2ir(a — /x)^]| 

+ ^ ^1 + + m cos 2iryLt + ^ cos Awfit | ^1 + ®os Atrat 

— ^ cos [2ir(2a + ^)i] — ^ cos [2ir(2a — )u)<] 

— ^ cos [Air{a + f/)t] — ^ cos [Ajr{a — m)<3| + • • • (107) 

The first-order terms in Eq. (107) are the carrier beat and monkey 
chatter already considered in subsection a. The second-order terms 

^ The reader can easily derive the following Taylor expansion, 

VfTToSF+W - 1 + oaf H- + • • • 

which is the basis for £q. (107). 
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include, among other things, a term in the signal itself, namely, 

^ cos 2Trnt (108) 

In the absence of the strong carrier, this term would have been ampli¬ 
tude modulation of amount 

Bm cos %rtit 

The strong carrier has thus reduced the signal by a factor 

2A 

which accordingly is called a masking factor. 
This masking factor has probably been observed, even if not recog¬ 

nized, by all users of radio receivers. Thus, late at night when a strong 
local transmitter ''leaves the air,^^ an entirely new signal on the same 
channel or an adjacent channel^ suddenly appears without retuning 
the receiver. The only previous indication of the presence of this 
signal has been a carrier beat (whistle) and some background monkey 
chatter. 2 

The importance of the masking effect in reducing interference in 
AM receivers should not be exaggerated, since the larger first-order 
interference terms are always present. However, if the audio system 
of the receiver has a rather low frequency cutoff, both carrier beat and 
monkey chatter may be effectively eliminated from adjacent-channel 
interference by the audio system itself. In this case, the masking 
effect will greatly improve the apparent selectivity of the receiver. 
Part of the importance of masking is also due to the psychological 
fact that an intelligible interfering signal is more distracting than 
noise. 

(109) 

(110) 

Exercise 

Assume that receiver selectivity makes one sideband in the adjacent channel 
twice as large as the other, and investigate whether or not masking is thereby 
affected. 

6.11 Some General Considerations with Respect to Modulation 
Distortion. There are certain types of distortion, particularly types 
that vary with tuning, that are a consequence of special sideband 

^ We have neglected the selectivity of the receiver in our discussion. This will 
have a certain amoimt of influence on the masking of an adjacent-channel signal 
because it makes the sidebands unequal. 

•This phenomenon will occur both with and without avc in the receiver. 
However, the use of a square-law detector, which gives distortion of the amplitude 
envelope, tends to eliminate the phenomenon. 
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distributions. They are thus closely related to modulation theory 
and will therefore be considered at this point. We shall call them 
modulation distortion. 

a. Distortion in Amplitude Modulation. In Sec. 5.6& we found 
that a symmetrical distribution of sidebands gives a component in 
phase with the carrier and gives only amplitude modulation at the 

difference frequency between the 
sidebands and the carrier, A sym¬ 
metrical transmission system will 
therefore introduce no new modula¬ 
tion frequency components into an 
originally symmetrical distribution 
of sidebands.^ 

As an example of a transmission 
system that leaves an originally 
symmetrical distribution of side¬ 
bands in a symmetrical condition, 
we have the tuned transmission 

Fig. 32. A symmetrical transmission system in Fig. 32, in which the 

carrier is tuned to that frequency 
of the pass band about which the transmission system is symmetrical. 

If Fig. 32 represents the transmission characteristic of a receiver 
and the receiver-is tuned so that the carrier is not located at the 
center of symmetry, then the output will no longer have a symmetrical 
distribution of sidebands. According to Sec. 5.66 and c this will 
introduce a quadrature component in the signal. We shall now show 
that such a quadrature component gives rise to nonlinear distortion 
in the envelope. 

According to Eqs. (54), (59), and (74) a carrier plus a pair of unsym- 
metrical sidebands can be expressed as 

[A + 2A, cos (2ir/u< + <!>$)] cos 2irFt — 2Aa sin {2irfit + <^a) sin ^Ft 

= \/[A 2A« cos (2irfit -|- 0»)]^ "h [2ila sin {2wfit ^o)]* 

where 

In this equation 

cos (2irFt + ^) (111) 

- tan-^ \. 1 (112) 
lA + 2A. cos (2firtit + 0.) J , ' _A + 2A, cos (2firid + 

A cos 2irFt 

is the carrier, and A„ Aa, and are the magnitudes and phases of 

1A tranmuMum system -will be defined as symmetrical if its output has a 
symmetrical distribution of sidebands when the input distribution is symmetrical. 
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the pairs of symmetrical and antisymmetrical sidebands into which 
the original pair of unsymmetrical sidebands can be resolved by the 
method of Sec. 5.6c. 

Now the amplitude factor 

\/[A + 2At cos {27rfit + + [2-4a sin (113) 

although complicated, is clearly periodic in time with a period 

M 

since increasing t by any integral multiple of l//i leaves the above 
amplitude factor unchanged. The amplitude factor can therefore be 
expanded in a Fourier series in the fundamental and harmonics of the 
frequency /x. Furthermore, harmonics will always be present unless 
Aa = 0. Since Aa will be zero only if the sideband distribution is 
symmetrical, we conclude that an unsymmetrical transmission system 
introduces harmonic distortion. 

The distortion caused by tuning the carrier away from the center of 
symmetry of the pass band may properly be called mistuning distor¬ 
tion. If there is more than one modulation frequency present in the 
signal, there will, of course, be sum and difference tones as well as 
harmonics in the distortion. A numerical example of the amount of 
distortion introduced by mistuning in a practical case is given in the 
exercises below. 

Exercises 

1. A carrier with 1,000-cycle modulation is sent through a radio receiver with a 

transmission characteristic as shown in Fig. B, If the receiver is mistuned 3 kc, 

find the per cent second-harmonic distortion and third-harmonic distortion for a 
30 per cent modulated signal. Also do the same for a 100 per cent modulated 
signal. Assume that the phase-shift curve is linear. 

Fio. B, 
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2. Work the same problem with the modulation frequency changed to 2,CX)0 
cycles. 

b. Distortion in Frequency Modulation, A symmetrical transmis¬ 
sion characteristic is not a sufficiently severe requirement for dis¬ 
tortion-free transmission in frequency modulation. For distortion-free 
FM transmission, all the FM sidebands must retain their relative 
values, and furthermore their relative phase relations must be main¬ 
tained.^ Consequently, for no distortion in FM, uniform (i.e., con¬ 
stant) amplitude transmission is required throughout the frequency 
band in which the FM signal has sidebands of appreciable value, and 
furthermore the phase shift must be linear. These requirements are 
very severe, and we shall now investigate what happens when they are 
not met. 

For simplicity, let us consider a hypothetical transmission system in 
which transient effects are unimportant so that the steady-state curves 
of Fig. 33a can be used for the instantaneous frequency of the signal. 
Then a modulation signal as shown in Fig. 33Z), which causes a corre¬ 
sponding deviation of the carrier frequency, will have its instantaneous 
values of frequency deviation changed to those shown in Fig. 33c 
because of nonlinearity in the phase shift of the transmission system. 
This would then be the wave shape of the output of the frequency 
detector, except that the amplitude characteristic in Fig. 33a causes 
a certain amount of flattening of the wave tops and bottoms; this effect 
is shown in Fig. 33d. The ultimate over-all resultant output of the 
frequency detector is shown in Fig. 33c. If the FM receiver has a 
good limiter, the latter flattens the frequency characteristics (the 
absence of any transient effects still being assumed) so that all the 
distortion is then due to curvature of the phase characteristic. 

On the basis of the foregoing quasi-steady-state theory, we can 
make the following tentative observations about distortion in FM 
systems: 

1. The requirements for distortionless transmission in FM systems 
are more severe than in AM systems. This holds regardless of whether 
or not a quasi-steady-state situation is assumed. 

2. Mistuning of an FM receiver introduces distortion of an amount 
that rises rapidly with the extent of mistuning. 

3. A good limiter will decrease distortion in FM systems Because it 
flattens the frequency characteristic. 

^ (Except for a possible phase shift of each sideband which is proportional to the 
frequency difference between the sideband and the carrier, the effect of which 
would be merdy to cause a time delay of the whole signal.) 
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4. In FM receivers with a good limiter, most of the modulation 
distortion is due to curvature of the phase-shift characteristic. 

6. The amount of modulation distortion rises rapidly with the 
degree of modulation, i.e., with the extent of the frequency deviation. 

Amplitude 

A xC 
Phase 

(a) Frequency Transmission 
Characteristics of 
System. 

(b) Input Modulation Signal 
(R.F. Frequency vs. Time) 

(C) Effect of Phase Curvature 
in (a) on Signal in (b) 

Effect of Non-Uniform Trans- 
/ ^ \ mission in (a) on Signal in (b) 
^ ' (The flattening of the peaks 

is here due to reduced dis¬ 
criminator output, not to re¬ 
duced frequency excursion.) 

Fio. 83. 

(e) Final Output of Frequen¬ 
cy Detector, Showing 
Combined Effects of 
(c)and(d) 

EfiFeot of amplitude and phase oharactoristios in producing FM distortion. 

6. In a general way, FM distortion due to nonlinearity in the phase- 
shift characteristic will increase with the number of tuned circuits in 
the transmission system. The reason for this is that each tuned cir¬ 
cuit adds 180 deg to the total phase-shift difference between low and 
high frequencies, so that nonlinearity will tend to cause larger numeri¬ 
cal values of frequency distortion when more tuned circuits are 

involved* 
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7. If the amplitude and phase-shift characteristics of the trans¬ 
mission system are symmetrical about the carrier frequency, there will 
be only odd harmonics in the distortion, since the output (see Figs. 33c 
and e) will be mirror-symmetrical. 

Since it is usually not practical to measure phase-shift character¬ 
istics of FM receivers, it is hard to set up any useful formulas for 
over-all modulation distortion. Quantitative investigations of FM dis¬ 
tortion have been made by Roder^ and especially Jaflfe^ for single 
stages. 

c. Selective Fading^ {Multipath Reception). Probably the most 
serious type of modulation distortion occurring in radio communica¬ 

tion is that due to multipath recep¬ 
tion. The typical case is that which 
occurs at night at the fringes of the 
primary service area of a transmitter 
where the ground wave and sky wave 
are of about equal intensity. Al¬ 
though the two signals reach the 
receiver with approximately equal 
intensities, the sky wave has come by 
a longer path, as shown in Fig. 34, 
and therefore lags behind the ground 
wave in phase. Furthermore, owing 
to variations from moment to moment 

in local conditions at the ionosphere, the length of path of the 
sky wave also varies from moment to moment. There is thus a 
rapid fluctuation of the phase difference between the ground and 
sky waves, and consequently a rapid change back and forth from 
reinforcement to cancellation between them. This condition is known 
as fading. 

The seriousness of fading is greatly enhanced by the fact that fading 

^ Rodeb, H., Effects of a Tuned Circuit on a Frequency Modulated Signal, 
Proe. I.R.E., December, 1937, p. 1617. 

* Jaffe, D. L., a Theoretical and Experimental Investigation of Tuned-circuit 
Distortion in Frequency-modulation Systems, Proc. I.R.E., May, 1945, p. 318. 

* Bown, R., De L. K. Martin, and R. K. Potter, Some Studies in Radio 
Broadcast Transmission, Proc. I.R.E., February, 1926, p. 57; Potter, R. K., 
Transmission Characteristics of a Short Wave Telephone Circuit, Proc. LR.E. 
April, 1930, p. 581; Crosby, M. G., Frequency Modulation Propagation Charac¬ 
teristics, Proc. I.R.E., Jime, 1936, p. 898; Crosby, M. G., Observations 
of Frequency Modulation Propagation on 2^ Megacycles, Proc. I.R.E,f July, 
1941, p. 398. 

Heaviside Layer 

Fig. 34. Multipath reception. 
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conditions are different for the carrier and the various sidebands.^ 
The phenomenon is therefore more completely described as selective 
fading. In mild cases of selective fading there is asymmetry in the 
sideband distributions, which, as we have seen, causes a certain amount 
of distortion. In severe cases in AM the carrier may fade so much 
more than some sidebands that the index of modulation rises above 
unity, which results in so much distortion as to make the signal com¬ 
pletely unintelligible (see Fig. 35). In severe cases of selective fading 
in FM the resultant distortion is also bad, but the explanation cannot 
be given so simply. It is still a matter of controversy whether AM or 
FM is more sensitive to selective fading. 

^ The reason for fading conditions varying with frequency is easily explained. 
The analytical form of a traveling wave is 

+ 00^ (a) 

This may also be written 

A cos -f (5) 

where t is time, x is the distance traveled, / is frequency, V is wave velocity, and 
^0 is an initial phase. The phase difference between the ground and sky waves is 
therefore 

Phase diff. = (c) 

where Ax is the difference in length of travel path. In a typical case, if 

/ = 10* cycles/sec 
F « 3 X 10* km/sec 

Ax =» 100 km 
then 

^ radians (d) 

which is an enormous phase difference. Let us now see how this phase difference 
varies with frequency. Taking differentials of Eq. (c), we have 

df (e) 

J . 2irl00 
“ 3 X 10‘ 

in the above case. If ** 1,600 cycles, then d A4> ** ir, so that a frequency 
difference of 1,500 cycles is all that is required for a complete reversal from wave 
addition to wave cancellation. In this case, the fading conditions are therefore 
highly selective with respect to frequency. It may also be noted that the value of 
dA^ depends only on the frequency difference dfy not on the absolute carrier 

frequency /. 

A cos 
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It is rather curious that the interference-reduction properties of FM 
lose part of their effectiveness in combating selective fading, but an 
elementary analysis will show why. The interference-reducing prop¬ 
erties of FM depend for the most part on two facts, as shown in 
Sec. 6.6. 

1. The interference sidebands are ordinarily so related in ampli¬ 
tude, frequency, and phase with respect to the desired carrier that they 
are inefficient in producing frequency modulation as compared with 
the sidebands of the desired signal. 

2. The frequency modulation produced by the most effective side¬ 
bands of the interference is of too high an audio frequency to pass 
through the audio system of the receiver. 

Neither of these properties is as effective in combating distortion 
due to selective fading, since the interference carries the same intel- 

30^ Modulation 90% Modulation Overmodulation 

Fio. 35. Origin of envelope distortion in AM due to overmodulation. 

ligence as the desired signal and can therefore act directly against its 
sidebands. 

The foregoing statement has assumed that the path difference 
between the desired and interfering waves is sufficiently small so that 
the two may be considered coherent. If the path difference is so large 
that the waves cannot be considered coherent and, in particular, if 
the instantaneous modulation has had time to change, then the fore¬ 
going discussion no longer applies and the regular interference- reduc¬ 
ing effects of FM wiU come into play. Let us now apply these 
considerations to see whether the use of frequency modulation of the 
picture carrier would tend to reduce the ^'ghosts” due to multipath 
reception in television, as compared with the present condition in 
which the picture carrier is amplitude-modulated. In this^ problem 
the effective instantaneous intelligence of the two signals is different, 
so that the interference cannot act directly against the sidebands of 
the desired signal.^ The interference-reducing effect of FM therefore 

^ The fundamexital difference between the television and the audio eases is 
that the modulation frequency of the direct signal remains the same in the time 
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should come into play, and the signal of smaller intensity will just act 
like interference. Consequently, the effect of “ghosts” will be 
greatly diminished if FM video is used. 

6.12 Subcarriers and Pulse Modulation. In certain t3q)es of 
communication, a double tuning process is used. In this case, a wide 
frequency channel has a main carrier, which is simultaneously modu¬ 
lated by several secondary modulated carriers. The latter are called 
subcarriers. Tuning to the individual subcarriers can be accomplished 
either at the original radio frequency or else at some lower frequency 
where sharper tuning is available after frequency conversion of the 

Fiq. 36. Sideband distribution in a sisnal having subcarriers. 

original signal. The spectrum of a signal with several subcarriers is 
shown in Fig. 36. This type of operation allows several signals to be 
transmitted simultaneously by a single transmitter and allows the 
high-frequency spectrum to be more completely utilized, despite 
relatively large frequency drifts of the main carrier. There are also 
other advantages for special purposes. 

In the example shown in Fig, 36 both the main and subcarriers are 
amplitude-modulated. While it is usually necessary to amplitude- 
modulate the main carrier, in order to prevent the overlapping of 
subchannels, it might be perfectly practical to frequency- or phase- 
modulate the subcarriers. 

interval between the arrival of the direct signal and the echo in the audio caae, 
but not in the television case. Furthermore, in the audio case we are interested 
only in the tumUnear distortion, which is generally a second-order effect from an 
energy point of view. 
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A variation of the subcarrier technique that is of particular value 

A/V\A 
AUDIO SNmAL 

at extremely high frequencies ‘ is 
pulse modulation. Generally speak¬ 
ing, a pulse-modulated signal is one 
in which the energy is grouped into 
certain chosen intervals (pulses) and 
absent from other intervals, so as to 
increase the ratio of peak to average 
power. The modulation in such a 
signal is carried by change in loca- 

PULSC FREQUENCY MODULATION (P F M ) 

tion, amplitude, number, duration, 
or shape of the pulses in response to 
the intelligence being transmitted. 

Several types of pulse-modulated 
signals are shown in Fig. 37. The 

PULSE AMPUTUDE MODUUTION (PAM.) 

outlined areas in these figures indicate 
the presence of a high-frequency 
carrier. It is shown in the next 
chapter that these types of modula¬ 
tion may have valuable noise-re- 

PULSE LENGTH MODULATION (P.LM.) 

PULSE POSITION (PULSE PHASE)MODULATION (P.P.M.) 

PULSE NUMBER MODUUTION (PN.MJ 

Fig. 37. Types of pulse modula¬ 
tion. (Pulse-modulation terminology 
has not yet been standardized.) 

ducing properties. By way of 
illustration, block diagrams of a 
PFM transmitter and receiver are 
shown in Fig. 38. It has been sug¬ 
gested that pulse modulation of the 
synchronizing pulses should be used 
for the audio of television programs. 
The subject of pulse modulation is 
currently very active, both in theory 
and practice. 

6.13 General. As stated at the 
outset of this chapter, carriers and 
modulation are necessary for the 

separation of signals that exist simultaneously. Frequency separation 
of modulated carriers by means of tuning is by far the most widely 

^ One reason why pulse modulation is particularly appropriate for Extremely 
high frequencies is that the characteristically high peak voltages of pulse modula¬ 
tion give better transmitter oscillator efficiencies at these frequencies. INirtber- 
more, oscillators are subject to large frequency drift at these frequencies, which 
would disturb ordinary frequency modulation, and also the osdHators do not 
respond smoothly to amplitude modulation. 
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used method of separation, although the discussion in the preceding 
section shows that other types of separation are possible. The dis¬ 
cussion could have been continued to show that separation can be 
achieved by means of individual pulse lengths or pulse locations. In 
general, it may be said that the number of possible t3T>es of modulation 
and of carrier separation arc almost limitless, although few are of 
practical importance. 

HH 

jmmw 
SUPERAUDIBLE 

CHANNEL 
OSCILLATOR 

-4- 

MODUUTiNG 
PULSE WAVE 

SHAPER 
R.F. 

OSCILUTOR 

(a) Block diagram of a PFM transmitter. 

ANTENNA 

(6) Block diagram of a PFM receiver. 

Fxa. 38. A PFM transmission system (showing wave shapes at various points). 

For many years, amplitude modulation was almost the only type 
of modulation used. When the sideband analysis of amplitude 
modulation was first made and it was shown that amplitude modula¬ 
tion requires a bandwidth of twice the audio frequency, narrow-band 
frequency modulation was proposed as a means of decreasing band¬ 
width requirements. However, when it was shown that even narrow¬ 
band frequency modulation requires more bandwidth than amplitude 
modulation, interest in frequency modulation lagged. Many years 
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later, the subject of frequency modulation became of interest again 
when Prof. Armstrong^ showed that wide-band frequency modulation 
is an effective means of noise reduction, a subject that we shall discuss 
in detail in the next chapter. Since then, frequency modulation has 
been a subject of lively interest. 

The present, American system of FM broadcasting is actually a 
hybrid of frequency modulation and phase modulation. The trans¬ 
mitter broadcasts a signal that is frequency modulated, but in the 
modulation-frequency range above 2,000 cycles there is selective pre¬ 
emphasis of an amount proportional to the audio frequency. The 
net result is that the broadcast signal is frequency-modulated below 
1,000 cycles and phase-modulated above 2,000 cycles, with a transi¬ 
tion range in between. At the receiver there is an inverse amount of 
frequency compensation, so that the over-all system is equalized. 

With this type of frequency compensation the receiver is less sensi¬ 
tive to high modulation frequencies, which are the largest elements in 
interference and noise. A considerable amount of interference and 
noise reduction is thus obtained, as will be shown in the next chapter. 
The fact that the high modulation frequency components in the desired 
signal are invariably of low energy content makes it practical to use this 
type of compensation without exceeding the limit of frequency devia¬ 
tion permitted ip the transmitter. 

The relatively low levels of interference and noise in the reception 
of good FM signals make it practical to increase the d3mamic range^ 
in broadcast programs. Furthermore, the larger available frequency 
bandwidths per channel in the present FM broadcast band make it 
practical to retain even the highest audio modulation frequencies in 
the program. For these reasons, including the low interference and 
noise levels, the FM broadcast band has been singled out for the 
transmission of particularly high-quality musical programs. 

^ Abmstboxo, £. H., Method of Reducing Disturbances in Radio Signaling by 
a System of Frequency Modulation, Proc. I,R,E,, May, 1936, p. 689. 

* Dynamic range is the ratio of maximiun to minimum per cent modulation in a 
signal. This is probably most informative when expressed in -decibels. Reduc¬ 
tion of the inteirference and noise levels increases the available dynamic range 
since it makes possible smaller useful minimum percentages of modulfition. In 
the absence of interference and noise there is no theoretical limit to the minimum 

possible percentage of modulation in any type of modulation, so that the dynamic 
range is also unlimited. 



CHAPTER VI 

NOISE I: GENERAL AND PRACTICAL DISCUSSION 
AND THE SOLUTION OF NOISE PROBLEMS 

6.0 Introduction. One of the fundamental topics in radio engineer¬ 
ing is the subject of noise. The transmission of a signal is of no value 
if the signal is drowned out by noise, and, in the case of signals trans¬ 
mitted for entertainment purposes, the entertainment value declines 
sharply as the relative amount of noise rises. Noise thus sets a limit 
upon the useful operating range of radio equipment, whether this limit 
is a matter of service range in miles, dynamic range in decibels, or 
range of practically any kind. 

Certain types of noise are of an eliminable character, such as noise 
due to faulty contacts, vibrations of equipment, or even the neighbor's 
electric razor. While the elimination of such noise is not necessarily 
an easy matter, it is possible, at least theoretically, to remove it alto¬ 
gether. The study of the nature and methods of elimination of noise 
of the foregoing types is outside the scope of this book. However, 
we shall learn how to deal with a different type of noise, which is more 
important and fundamental and which can never be wholly eliminated, 
even theoretically. This is the noise which is due to the atomic nature 
of matter and electricity and which may be described by the general 
term fliictuation noise. This includes thermal noise, shot noise, mag¬ 
netic fluctuation noise, and other such phenomena. We shall learn 
how to calculate the amount of such noise and how to design equip¬ 
ment so that as little of it as possible appears to interfere with desired 

signals. 
The part of this book devoted to the subject of noise is divided into 

four chapters. In the first chapter, topics of general interest in con¬ 
nection with noise are discussed, and methods for the solution of noise 
problems are given, by use of formulas derived in the following chap¬ 
ters. In this first chapter, practically all the information and formulas 
are given that are needed to handle most problems and questions that 
arise in connection with noise in circuit design. The first chapter is 
of a relatively elementary nature. The other three chapters on noise 
are devoted to the development of fundamental noise theory and the 

205 
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derivation of noise formulas. These chapters are of a more advanced 
and mathematical nature. 

6.1 General Characteristics of Random Noise. The fundamental 
type of noise present in radio equipment due to the atomicity of matter 
and electricity is remarkable in that it is completely without regularity 
in its detailed properties. It is consequently called random noise. 
However, its average energy is usually definite and determinable, and 
so is the average frequency distribution of its energy, i.e., its so-called 
power spectrum. On the other hand, the phases of the frequency com¬ 
ponents are distributed completely at random. These matters are dis¬ 
cussed in detail in Sec. 7.14. 

In this book we shall use the term quadratic content for the time 
integral of the square of the amplitude. The quadratic content of 
noise is thus proportional to the average noise power or noise energy. 
Probably the most important wave-shape property of random noise is 
that, if two independent random^noise signals are superimposed, the 
quadratic content of the combined signal is equal to the sum of the quad¬ 
ratic contents of the individual signals. In other words, noise powers are 
additive. This property is proved in Sec. 7.14^ and is used in many 
problems later in the present chapter. It may also be shown (see 
Sec. 7.14c and e) that the amplitude of random noise has what, in 
probability theory, is called a normal distribution. By this is meant 
that the amplitude I at any particular time cannot be predicted 
exactly but that the likelihood, or probability, of its having a value 
between I and J dJ is equal to 

(1) 

VP (2) 

Thus all values of / are possible, but the likelihood of any particular 
value is determined by Eq. (1). 

The properties of random noise expressed as a function of frequency 
are analogous to its properties when expressed as a function of time. 
Thus while the average frequency distribution of the energy of noise 
is a smooth curve, if we consider the noise during any specific^ interval 
of time, such as a particular oscillogram of random noise, a diflgTfl.Tn 
of the frequency distribution of its energy would ^ow the same fine* 
grained fiuctuation as the original amplitude vs. time curve which 
constituted the oscillogram. 

where 

a I = -%/mean square value of I = 
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A detailed discussion of the properties of random noise is given in 
Sec. 7.14. 

6.2 Types of Noise, a. Introditction. Noise in radio equipment 
may arise through almost countless causes. In addition to thermal 
noise, shot noise, and magnetic fluctuation noise, to which reference 
has already been made, practically every type of radio equipment 
introduces its own characteristic types of noise. These noises are 
usually assigned descriptive names such as ‘‘scratch,'' “hiss," “howl," 
“flutter," “wow," “hum," and “motorboating" by the men who work 
with them. In addition, there are natural noises, such as atmospherics 
(sometimes called “static"), and also atomic and quasi-atomic noises 
not yet mentioned. 

The analysis in Chap. VII shows that noise which arises as the 
resultant of a large number of individual, but not necessarily identical, 
overlapping disturbances which occur without any specifiable regu¬ 
larity will have the general character of random noise. On the other 
hand, noise that exhibits definite regularities has more of the character 
of signal interference. To illustrate the difference between the two, 
consider the difference in the way in which their wave shapes vary 
with the bandwidth in the transmission system. In the case of ran¬ 
dom noise, if the bandwidth is increased, the general character of the 
signal remains the same, showing only an increase in average height 
and a finer structure. The effect of increased bandwidth is thus some¬ 
thing like an accordion compression of the noise wave. On the other 
hand, the effect of increased bandwidth on the wave form of signal 
interference is to bring out the detail of the wave form. The effect 
of increased bandwidth in this case is similar to bringing the wave shape 
of the signal interference into sharper focus. 

In the case of random noise due to a large number of impulsive-type 
disturbances of irregular occurrence, such as the noise due to film 
scratches on the sound track of a sound-on-film recording, the dimin¬ 
utive contact breakdowns in a noisy resistor, or the fluctuations in 
electron emission in a vacuum tube, it is shown in the next chapter 
that the noise will have a uniform frequency distribution of its energy 
in the low-frequency range. Neglecting the frequency characteristics 
of the transmission system, this uniform frequency distribution will 
continue up to frequencies at which the elementary disturbances can 
no longer be considered to be of an impulsive type. This frequency 
limit will occur at high audio frequencies for film-scratch noise, but 
will not occur up to far beyond a thousand megacycles for thermal 

noise. 
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In the remainder of this section we shall discuss some of the 
properties of the more common types of noise that occur in radio 
systems. 

6. Flicker Effect,^ Superimposed upon the shot noise, there is, 
in vacuum tubes, another source of noise that at low audio and sub- 
audible frequencies becomes large enough to exceed the shot effect 
by several orders of magnitude. This second source of noise was 
named the flicker effect by Schottky, who, following Johnson, con¬ 
sidered it as due to a kind of flickering of the electron emission from 
the cathode. As a general theory of flicker effect, we give the follow¬ 
ing quotation from J. B. Johnson. 

The electron emission at any time depends upon the condition of the 

cathode surface, and the surface is probably in a continual process of change 

due to such causes as evaporation, diffusion, chemical action, structural 

rearrangements, and gas-ion bombardment. These changes would go on at 
different rates in different parts of the surface, and would cover areas very 

large compared with that involved in the emission of one electron. The 
changes involving the greater area or larger amplitude might be expected to 

require a longer time, while changes so small as to affect only a few electrons 

would lose their significance in the general statistical emission. The general 

effect of these changes would be a variation in the total space current super¬ 

imposed upon the fluctuations of the Schottky effect, having little influence at 
the high frequenx^ies and an increasing effect as the natural frequency of the 
measuring circuit becomes lower. 

Unlike shot effect, flicker effect can be reduced continually by 
proper processing of the cathode, so that it is not considered an ulti¬ 
mate source of noise like shot effect or thermal noise. Because of 
flicker effect, tubes for very low frequency applications, such as use in an 
electrocardiograph, frequently have their cathodes specially processed 
to reduce flicker effect. 

c. Contact and Breakdown Noised Another general category of 
random noise may be described as contact and breakdown noise. This is 
noise due to the breakdown of insulation or the loss of contact in minute 
paths in the components of equipment. This noise includes the exces¬ 
sive noise that occurs in certain types of commercial resistors, the noise 
that occurs in a condenser microphone having a high direct-cmrent 
voltage between closely spaced plates, the so-called wallrchnrge noise 
in vacuum tubes, and other types of noise due to intermittent conduo- 

^ For further information, see MouUin, '^Spontaneous Fluctuations of Voltage,’’ 
Chap. VI, where r^erences to the originai lit^ature may also be founds 

* Moulun, "Spontaneous Fluctuations of Voltage,” pp. 20^215. 



NOISE I: GENERAL AND PRACTICAL DISCUSSION 209 

tion. This noise can all be avoided, although the necessary steps to 
be taken are not always easy. Wall-charge noise in vacuum tubes is 
reduced by coating the walls with a semiconductor (Aquadag). Con¬ 
denser-microphone noise is reduced by cleaning the space between the 
condenser plates. The reduction of resistor noise is a more involved 
and complicated matter, which we cannot enter into here. Generally 
speaking, the amount of noise of any of the contact and breakdown 
types rises rapidly with the current or voltage present. 

d. Dirt Noise and Grain-size Noise. Dirt noise and grain-size noise 
are due to minute irregularities in the equipment's structure, either 
innate in the specific material used or developed in the material during 
handling. The background noise of a phonograph or a sound-on- 
film recording is of this type. 

e. Incidental Noise of Atomic Origin in Vacuum Tubes.^ In addi¬ 
tion to the shot noise that occurs in vacuum tubes, there are also other 
smaller sources of tube noise of atomic origin. Generally speaking, 
they can be eliminated by changing the operating conditions of the 
tube. This noise includes noise due to secondary emission, to 
collision ionization, and even to fluctuations in the emission of posi¬ 
tive ions. 

/. Atmospherics^ Interstellar Interference, etc.^ An important type 
of noise, especially in warm weather and warm climates, is the noise 
of atmospheric origin picked up by a receiving antenna and col¬ 
loquially called ‘‘static" in the United States. Much of this noise 
originates in thunderstorms, in discharges between clouds, and in 
similar ways. Atmospherics have somewhat of the general character 
of random noise but their intensity is spasmodic. Measurements 
showing the variation in intensity of atmospherics with frequency* 
and with the time of the day in the northeastern United States are 
given in Figs, 1 and 2, due to R. K. Potter. Above 50 me, practically 
all atmospherics are local, for there is usually no reflection from the 
Heaviside layer. 

1 Moxtllin, ^^Spontaneous Fluctuations of Voltage,” Chap. VI; Thompson and 
Nobth, R.C.A. Rev., January, 1941, p. 262. 

* PoTTEE, R. K., Proc. I.R.E., ^ptember, 1932, p. 1512; Jansky, K. G., Proc. 
I.R.E., December, 1939, p. 763; Chakbavaeti, Ghosh, and Ghosh, Proc. I.R.E., 
December, 1939, p. 780. 

* The following quotation from Terman is of interest in this connection: ''The 
field strength of static appears on the average to be approximately inversely pro¬ 
portional to frequency. This indicates that the electrical discharge that generates 
the radio wave representing the static interference is a ptilse having relatively long 
duration, and there is experimental evidence to bear this out.” 



210 FREQUENCY ANALYSIS, MODULATION AND NOISE 

Another natural source of noise that originates outside the radio 
equipment is interstellar interference.^ This is quasi-random noise 
whose direction of arrival is such that it appears to originate in the 
heavens in the general region of the Milky Way. 
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Fig. 1. Heliable variation of radio noise intensity with frequency for northeastern 
United States as measured on simple vertical antenna. {From PUter, R, JRT., Proc. I,R.E.t 
September^ 1932, reprinted by permission,) 

g. Nonrandom Noise. So far we have considered only random 
noise. However, there is also noise in radio equipment that is not of a 
random nature and that has characteristic wave shapes of its own. 
This includes ^'hum,^' i.e., the power-line frequency and its various 
harmonics, which get into the equipment in one way or another. Then 
there is '^wow,^' due to some irregularity that is periodic at the fre¬ 
quency of rotation of some mechanical equipment, such as a phono¬ 
graph turntable. Microphonics are noises due to mechanical 
vibrations of the radio equipment, chiefly electrodes of the vacuum 
tubes. ^‘Howl'' and ‘‘motorboating” are due to over-all feedback 
and oscillation of the system. Howl usually involves feedback caused 
by the final sound output, whereas motorboating is generally feedback 
through the power supply. All these types of noise are of an elimin- 
able nature if proper precautions are taken. In addition to the fore¬ 
going, there is interference that comes into a receiver from the qutside, 
by way of the antenna. This may be undesired broadcast signals, or it 
may be nonbroadcast interference such as automobile ignition noise. 

One special characterist^ic of ignition noise and noise of similar origin 
is that it is of an impulsive type. If these impulses are of random 

^ Janskt, K. G., Proc. I.R.E., October, 1935, p. 1168. 



NOISE /; GENERAL AND PRACTICAL DISCUSSION 211 

occurrence and are so closely spaced that the individual wave shapes 
are not separated by the radio equipment, then the noise has the 
wave shape and characteristics of random noise. However, if the 
individual impulses are separated, as is usually the case, then 

Local Time 
Fio. 2. Average diurnal variation of atmospheric noise, representative of wveral 
frequencies. {From Potter^ R. K.^ Proe, I.R,E,^ September^ 1932, reprinted by permission,) 

the interference no longer has the wave shape of random noise. In 
particular, it then has an amplitude which is directly proportional to 
the bandwidth of the transmission system, instead of being proportional 
to the square root of the bandwidth, as is the case with random noise. 

6*3 Thermal Noise, a. The Fundamental Formula, Inl928, J. B. 
Johnson showed that the minute currents caused by the thermal 

mptipn pf the ppnduptipn eleptrpns in a resistpr pan be detpctpd as 
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noise in a high-gain amplifier. He called this thermal noise. At the 
same time, H. Nyquist was able to show on the basis of the statistical 
theory of thermodynamics that the thermal-noise voltage generated 
in an impedance Z is given by the equation 

W = 4MkTAF (3)‘ 

where E = rms value of thermal-noise voltage 
R = resistive component of the impedance, in ohms 
T — absolute temperature (f.e., centigrade temperature plus 

273.1°) 

E2-4RkTAF 

k = Boltzmann's constant = 1.37 X watt-second/deg 
AF = bandwidth of measuring system, in cycles/sec 

This noise voltage appears in series with the impedance Z as shown in 
Fig. 3. 

The derivation of Eq. (3) as well as the underlying theory, is given 
in Chap. IX. It is also shown there that thermal noise is random 

noise. Equation (3) shows that thermal 
noise has a uniform distribution of power 
throughout the frequency spectrum^ and 
that the quadratic content (f.e., power) of 
thermal noise is proportional to the abso¬ 
lute temperature. A more surprising fact 
about thermal noise, indicated by Eq. (3), 
is that the thermal-noise voltage generated 
depends only on the resistive component 
of Z and is independent of the reactive 
component. The reasons for this are dis¬ 

cussed in detail in Chap. IX. The existence of thermal noise sets a 
limit to the usable gain of an amplifier. 

If Eq. (3) is applied to two resistors Ri and in series, as shown in 
Fig. 4, the voltages generated in Ri and iZ*, respectively, are given 
by the equations 

Fig. 3. Schematic dia¬ 
gram of an impedance as a 
generator of thermal noise. 

JSf" AiR-JcT AF 
and 

Wi - 4RJcT^ 

(за) 

(зб) 
Since Ei and Et are both random noise, their combined effect, accord- 

1 We shall ordinarily use the averaging bar across E* since the value of F in 
short Intervals may fluctuate. However, this is not mandatory as long as it is 
understood that F is an rms value. 

* This bolds up to frequendea of the order of a million megacycles. 
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ing to Sec. 6.1, is equivalent to that of a single voltage whose quadratic 
content is equal to the sum of the quadratic contents of Ei and E2. 
Thus 

F = = 4(/2i + Ri)kT AF (3c) 

This is precisely the voltage we would have obtained by applying 
Eq. (3) to the series combination of Ri and B2. Thus Eq. (3) is con¬ 
sistent with the property of the addition of quadratic contents for 
random noise. 

b, A First Example. Let us now calculate the thermal-noise 
voltage in a simple case. Consider the resistive input circuit of an 

audio amplifier shown in Fig.-.5. Let us calcu¬ 
late the effective thermal-noise voltage ap¬ 
pearing in the grid circuit. By the effective 
thermal-noise voltage we mean that portion 
of it which lies within the frequency band 
passed by the amplifier. Let us assume, for 
simplicity, that the amplifier has uniform 
transmission from zero to 5 kc and has no 

R 

'—5“ 

Fiq. 5. Input circuit of an audio 
amplifier. 

transmission outside this band. Let us also assume that R ^ 10,000 
ohms and that its temperature is 20^C (that is, 293abs). Let us 
further assume that the effect of the input capacitance of the tube is 
negligible in the pass band of the amplifier. Then by Eq. (3) the 
thermal-noise voltage on the grid of the first tube is 

- ViRkTAF_ 
- V4 X 10,000 X 1.37 X 10-*» X 293 X 5,000 
- 0.9 X 10-* volt (4) 

In order to obtain a high-quality signal from the amplifier, it is c(m- 

Fio. 4. Diagrammat¬ 
ic representation of two 
resistors in series, each 
generating thermal noise. 
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sequently necessary that the input signal shall exceed the noise voltage 
given by Eq. (4) by a large factor. 

c. A Second Example, Let us next calculate the thermal-noise 
voltage appearing on the grid of the tube shown in Fig. 6. This can 

be obtained directly from Eq. (3), 
using the resistive component of 
the grid-to-ground impedance. 
Substituting this value into Eq. (3) 
of the present chapter, we have 
plotted the thermal-noise grid-volt¬ 
age square in Fig. 7. In the same 
figure is also shown a typical receiver- 
gain vs. frequency (radio-frequency 
plus intermediate-frequency) tuning 

curve. By multiplying the thermal noise by the square of the gain, 
we obtain a curve showing how the thermal-noise sideband quadratic 
content varies with frequency at the detector. To get an idea of the 
order of magnitude of the thermal-noise voltage, we note that for the 

grid circuit. 

Fio. 7. Effect of amplifier selectivity on the frequency distribution of thermal noise in 
its output. 

circuit of Fig. 6 the resistive component of the impedance at resonance 

X 10- X ^ X le-V . (5) 

Consequently, at the top of the resonance curve (i.e., at 1,000 kc) the 
thermal-noise voltage is 

V4 X 169,000 X 1.37 X lO'** X 293 X 1,000 
== 1.6 X 10-« volt/ kcM (6) 

It should be remembered that, since thennal noise is random noise. 
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its amplitude is proportional to the square root of the bandwidth 
and is not directly proportional to the bandwidth itself. 

The reader may wonder whether the same value of thermal-noise 
voltage on the grid would be obtained by considering the 15.9-ohm 
resistor in Fig. 6 as the source of the thermal-noise voltage. The 
answer must, of course, be yes, since otherwise Eq. (3) would give 
contradictory answers. In Chap. IX it is proved that such answers 
will always be the same when Eq. (3) is used, but as a matter of inter¬ 
est we shall now give a numerical verification for the particular case 
of Fig. C. The thermal-noise voltage sljds&sed generated in the 15.9- 
ohm resistor will be 

E = \/4 X 15.9 X 1.37 X IQ-^^ X 293 X 1,000 
= 0.016 X 10-® volt/kc^^ (7) 

The thermal-noise current flowing in the circuit at resonance will be 

^ E 0.016 X 10-« , „ ,, 
/ = ^ =-jg-g-= 1.006 X 10 ® ampere/kc^^^ (8) 

The thermal-noise voltage on the grid will be the voltage drop that 
this current creates across the condenser. This will be 

I 1.006 X 10-“» 1 A 1A-6 U/l 14 /an 

wC 2w X 10» X 100 X 10-‘* ^ volt/kc (9) 

in agreement with Eq. (6). It is therefore apparently immaterial 
whether we consider the thermal-noise voltage as generated in the 
resistive component of the impedance or whether we go back to the 
ultimate resistive elements themselves as the source. Equation (3) 
will give the same answer in either case. The electron theory, dis¬ 
cussed in Chap. IX, indicates, however, that the resistive elements 
are the real source of thermal noise. 

d. Amplitude and Frequency Modulation of a Carrier Due to Random 
Noise, We next shall determine what amount of amplitude and 
frequency modulation of the carrier of the incoming signal is caused 
by random noise. For simplicity, we shall assume that the carrier of 
the incoming signal is large in comparison with the random noise. 
Then according to Sec. 5.6c the random noise can be resolved into 
symmetrical and antisymmetrical sidebands of the carrier. If the 
carrier is large, the symmetrical sidebands will then cause amplitude 
modulation, while the antisymmetrical sidebands will cause frequency 
modulation. 

According to Eqs. (29), (66), and (70) of Chap. V, if A is the carrier 
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amplitude, Bai is the noise-sideband amplitude a cycles above the 
carrier, and Bat is the noise-sideband amplitude a cycles below the 
carrier, then the degree of amplitude modulation due to random 
noise is 

1 

quadratic content of noise 
quadratic content of carrier 

(10) 

The cross-product terms reduce to 

^ 2BalBa2 cos (0a2 — ^al) = 0 

since the average value of cos (6a2 — ^«i) is zero in any range of values 
of a, because of the randomness of phase of noise sidebands. Cor¬ 
respondingly, Eqs. (31), (58), and (72) of Chap. V show that the 
effective degree of frequency modulation of the carrier by the random 
noise is 

a 

In the special case of Fig. 7, if the carrier is at the tuning frequency of 
1,000 kc and if AT* is the ordinate variable of the effective thermal- 
noise voltage square vs. kilocycle ciuwe, then 

and 
(13) 

(14) 

where the factor 2 is required because AT is an rms value. Equations 
(13) and (14) show the d^ree of noise modulation of the oarrihr as it 
enters the detector. ‘ 

e. The Superposition of Thermal-noise VoUages—AUemaiwe Methods 
of Calculation. Let us next concdder a case in which we hftve two 

1 In thk eonneetion the reader will $3so find See. 6.8e ef interest. 
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thermal-noise voltages in series, such as are shown in Fig. 8, and 
let us suppose that we wish to calculate the thermal-noise voltage 
across (7i, this voltage being designated eg. We can determine this 
voltage in three different ways, all of which are instructive and all of 
which must lead to the same answer. Ac- p 
cordingly we shall carry out this determi- £ 
nation by three different methods, the last mm 
of which will be a superposition method. -1 eg 

1. Let us first determine the total im- 
pedance from the point P to ground. If i I __ 
the resistive component of this impedance ~ "g ^ network 

is multiplied by 4kT AP, the resultant 
product must give the square of the desired thermal-noise voltage. 
Let the impedance from P to ground be called Zp, and let the imped¬ 
ance of Pa and Ca in parallel be called Za. Then 

7 _ P2_• R\(j)C2 /y 
* ^2 + (i/i«C2) “ 1 + Rh>^\ ^ 1 + Rh>^l ^ 

(T> I R\ti)Ci 1 
= L\ * 1 + Rwcy ^ 1 + jmCi 

f/p I ^ 1 I 1 
L\"‘ 1 + Riw^cy ^ 1 + iwCi 

1 + Rlw^Cl 

(* + («■ + 
. Rt y , Rl^^ /, . i2|«W2 

V”* 1 + Rho^cy 1 + RWCl V 1 + RWCl/ 

The square of the thermal-noise voltage across Ci is then 4kT AF times 
the resistive component of Zp. Thus 

' I Y , .r-(p , Rt Y ^ ^ 
V 1 + j +uCi\Ri+ 

2. We next determine the thermal voltage across Ci by finding the 
thermal voltage developed in the impedance Zi, shown in Fig. 9, 
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and then seeing what voltage this develops across Ci when it is put in 
series with Zi, With the aid of Eq. (15) we have 

Zi ^ Ri Z2 
R2 N • 

1 + 1 + Rlu^Cl 
(18) 

Then the thermal voltage ei developed in Zi is given by the equation 

The thermal voltage across Ci in Fig. 8 is therefore 

(19) 

^2 _ pi —* Cl 
jtoCl 

\Zi + - 
jwCi 

, RWCiC, \ , R, \ 
V 1 + RWCl) + " + 1 + Rlo>^c\) 

(20) 
This value of el agrees with that already found in Eq. (17). 

(a) The Impedance Z| (b) The Impedance Z2 
Fia. 9. Terminology for parts of the network in Fig. 8. 

3. Finally, we shall determine the thermal-noise voltage across Ci 
by the superposition of the thermal voltages that the equivalent 
generators in Ri and Zj separately develop across (7i. 

The equivalent generator in Ri develops a thermal-noise voltage 
squared AF, of which 

ARikT^F 
l/jwC, * 

Zi + (l/i«Ci) = ^ (21) 

appears across Ci. In Eq. (21), esi is the thermal-noise voltage gen¬ 
erated in i2i that appears across C\. 

The equivalent generator in Zg develops a thermal-noise voltage 
squared 
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of which 

4 
R2 

1 + Rlo>^Cl 
kTAF 

Zi + (l/jwCi) — ^Z2 (23) 

appears across Ci. In Eq. (23), ez2 is the thermal-noise voltage gen¬ 
erated in Z2 that appears across Ci, 

The total thermal-noise voltage appearing across Ci is obtained by 
superposition of the thermal voltages across Ci due to Ri and Z2 

Fiq. 10. Diagram showing a circuit in which two resistors are generating thermal-noise 
voltage. 

separately. Since these are both random noise, the superimposed 
quadratic content is obtained, according to Sec. 6.1, by addition of the 
separate quadratic contents. Thus 

AkTAF\ 

RIMC2) 
1 + RWC\) 

R2 ] 
1 -h 

1 + Rl<^^ClJ 

This value of agrees with that already obtained in Eqs. (20) and (17), 
as was to be expected. 

/. No Power Transfer from Resistor to Resistor at the Same Tern-- 
perature. We shall now show that, if two resistors are at the same 
temperature, there is no resultant transfer of power from one to the 
other due to thermal-noise voltages. Consider the circuit in Fig. 10, 
showing resistors Ri and R2- For generality, a reactance X is also 
shown. Let h be the current due to the thermal-noise voltage in Ri, 
and let I2 be the current due to the thermal-noise voltage in R2. Then 
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The power absorbed in /?2 due to the thermal-noise voltage in Ri will 
then be 

Tffi* = 
^IcTAFRiR^ 

{Ri + R^r + {Ri + R2Y + (26) 

At the same time, the power absorbed in Ri due to the thermal-noise 
voltage in R2 will be 

llRi 
'^\Ri _ AkT AFR2R1 

(Ri + R2Y + ” (Bi + R^^ + X^ 
(27) 

Since the powers shown in Eqs. (26) and (27) are equal, there is no 
resultant transfer of energy from one resistor to the other. Further¬ 
more, the reactance X absorbs no average power but acts only as a 

place of temporary storage of energy 
of any frequency for certain portions 
of a cycle. 

g. Circuit with Elements at Differ¬ 
ent Temperatures, Finally, let us 
consider the case of a circuit with ele¬ 
ments at different temperatures, as 
shown in Fig. 11. In this case, each 
resistive element just generates its 
expected thermal-noise voltage for its 
own temperature, and as in the con¬ 
stant-temperature case these voltages 

determine the current that flows. Thus, in the case of Fig. 11, if the 
thermal-noise voltage from P to ground is called E, while that portion 
of it due to Ri is called Ei and that portion of it due to Rz is called E2, 
then 

P 

Fio. 11. A circnit in which 
there are elements at different tem¬ 
peratures. 

and 

F* 

El 4JcTiRiAF 

M - 4kTtRt^F 

M + - 4*AF 

RI + (l/cu»C«) 
(Ri + /?*)* + (1/«*C») 

gf 
(Ri + g*)* + (1/«*C*) 

(Ri + «,)* + 

(28) 

(29) 

(30) 

As a check on Eq. (30), we note that if 

Ti- T 
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and if the capacitor is short-circuited, i.e., if 

C = 00 

then Eq. (30) becomes 

which is the thermal-noise voltage to be expected of the two resistors 
in parallel. 

When Ti and T2 are different, there is a net power transfer between 
the resistors. For simplicity, let us take the case of Fig. 12. Here 
the power transferred from Ri to R2 is 

_ E1R2 _4ikT 1R1R2 

At the same time, the power transferred from R2 to Ri is 

_ W2R1 _4:kT 2R2R1 AF 

* ‘ “ (Ri + R^y ~ {Ri + R^Y 

If y* > Ti, there is a net power transfer from Ri to Ri of 

(32) 

(33) 

(UBi - T\Ri) = (gf!^ iTi - TO (34) 

Despite the apparent simplicity of Eq. (34), it is difficult to interpret 
in a practical way whether or not the en¬ 
ergy flow between Rt and Ri due to 
thermal-noise voltage is a large fraction 
of the total energy transfer due to ther¬ 
mal conductivity. The reason for the 
difficulty is that the inherent inductance 
and capacity of any physical resistors 
affect the value of AF to be used. In a 
general way, however, it may be said that, except in highly artificial 
cases, the energy transfer due to thermal-noise voltages represents only 
an inconsequential fraction of the total energy transfer due to thermal 
conductivity. 

6.4 The Equivalence of Current- and Voltage-generator Sepre- 
sentationa. In Fig. 3 and Eq. (3) it is shown how the generation of 
thermal noise in an impedance may be represented and calculated as a 
voltoge generator in series with the impedance. We shall now show 
that there is an eqwvalent current-generator representation which will 

Fio. 12. A circuit consisting 
of two resistors at different tem¬ 
peratures. 
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in all cases give exactly the same results as the voltage-generator 
representation. 

In Fig. 13a is shown a voltage-generator representation of thermal 
noise in accordance with Nyquist's formula discussed in Sec. 6.3a. 
Here the thermal noise originating in a general impedance Zi creates a 

(a) (b) 
Fig. 13. Equivalent voltage* and current-generator representations. 

thermal-noise voltage E across a general external impedance Z2. Let 
us see if we can find a value oi I sin the current-generator representa¬ 
tion in Fig. 136 that will give exactly the same voltage E across Z2 

and will thus be exactly equivalent to Fig. 13a. 
In the first place, from elementary circuit theory, we require for 

complete equivalence 

^ 
and 

E = 
Z\Zt 

Zi + Zi 
(36) 

From Eqs. (36) and (36) it follows that 

^ so that 1% = (37) 

This is the fxmdamental equation relating equivalent current- and 
voltage-generator representations. 

By Eq. (3), 

2^ = 4A:7’i?iAF -(38) 

where /Zi is the resistive component of Zi. Consequently, from Eqs. 
(37) and (38) 
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where 

2 (40)^ 

is the conductance of Zi. 
Since In given by Eq. (39) will always give the same external effects 

in the current-generator representation of Fig. 13fc, as En given by Eq. 
(3) will give in the voltage-generator representation of Fig. 13a, Eq. 
(39) may be considered as completely equivalent to Eq. (3). When we 
discuss shot effect in the next section, we shall start with a current 
generator and use Eq. (37) to find the equivalent voltage generator. 

6.6 Shot Effect, a. Introduction, In 1918, W. Schottky pointed 
out that, since the electric current emitted from a hot cathode consists 
of the combined effect of a large number of independently emitted 
electrons, the emission current is never steady but exhibits minute 
fluctuations due to the finite charge of an electron in combination with 
its random emission. Part of these emission-current fluctuations also 
become plate-current fluctuations. In a high-gain amplifier, such 
plate-current fluctuations of the early tubes produce noise in the final 
output. Tube-current fluctuations thus will limit the useful gain of 
an amplifier, just as thermal noise does. In fact, tube-current fluc¬ 
tuations and thermal noise are the two principal causes of the unavoid¬ 
able noise in a high-gain amplifier. 

The fluctuation noise created by the electrons in the tube current 
reminded Schottky of the noise caused by a hail of shot striking a 
target. He therefore named the phenomenon 8hot effect, a name which 
has been retained in the literature for tube noise due to the ‘‘grain 
size” (i,e., finite electronic charge) of the emission current. 

The theory of shot effect is discussed at length in Chap. VIII. In 
this chapter we shall describe the results obtained in Chap. VIII and 
use them in the solution of practical problems. 

6. Shot Effect in the Temperature4imited Case, The theory of shot 
effect is simplest when the tube in question is operated in the tem¬ 
perature-limited state, i.e,, when the plate voltage is so high that all 
the emission current gets to the plate. In this case, it is shown in 
Chap. VHI that, ii In is the rms v^ue of the fluctuating component of 
the plate current, then 

71 * 2kIAF (41) 

M 1 Rt-jXi Ri . Xi 
Zi~ Ri+ jXt “ + X| “ |Z»I* ^ \Zi\* 

Thua Oi ~ Ri/\Z\\* is the real component of 1/Zt. 

G'.+J-Sf, 
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where k is the electronic charge (= 1.60 X coulomb); I is the 
average value (i.c., direct-current component) of plate current, in 
amperes; AF is the bandwidth, in cycles; and In is given in amperes. 

Equation (41) holds for diodes or negative-grid triodes in tempera¬ 
ture-limited operation or for any tubes for which the entire emission 

current goes to one collector electrode,^ since 
fundamentally Eq. (41) gives the fluctuation 
component of the emission current. Equa¬ 
tion (41) holds up to frequencies for which 
transit times are important. When transit 
times become important, the eflEective value 
of K must be revised. 

The temperature-limited case, although 
simple in theory, is not very important in 
practice because vacuum tubes cannot be 
used as amplifiers in temperature-limited 
operation. 

c. The Current-generator Representation and the Shunting Effect of 
Plate Impedance, We shall next see what currents are produced external 
to the tube by shot effect and also examine the effect of the plate 
impedance. In Chap. VIII it is shown that, for calculating the results 
of shot effect, a tube may be considered a current generator, as shown 
in Fig. 14. The plate impedance rp of the tube acts as a shunt on the 
current generator. In the temperature-limited case, In is given by 
Eq. (41). In the more important space-charge-controlled cases, the 
formulas for In are given in the following pages. These formulas give 
the external current provided that the electrodes are grounded for 
alternating current. When the electrodes are not groimded, the 
shimting effect of the internal impedance must be included in accord¬ 
ance with Fig. 14. 

d. Operation in the Space-charge-controlled Region. Most tubes are 
used in the space-charge-controlled region of operation, in which the 
entire emission current does not go to the plate, but rather the amount 
of plate current is a function of plate voltage. In Chap. VIII a dis¬ 
cussion is given of how the space-charge cloud of electrons which exists 
in this case operates to eliminate a large amount of the shot flqctua- 

^ A photoelectric tube is a good example of this type. In a phototube, the emis¬ 
sion of photoelectrons exhibits the same type of statistical fluctuations as the 
emission of electrons from a hot cathode. If all the emitted photoelectrons go to 
the collector anode, which is usually the case, the fluctuations of the phototube 
current I will be c^en by Eq. (41). - ^, 

Fig. 14. Schematic dia¬ 
gram showing the shunting 
effect of plate impedance on 
the generation of noise 
current. 



NOISE I: GENERAL AND PRACTICAL DISCUSSION 225 

tions from the plate current, so that the shot effect in space-charge- 
controlled operation is considerably less than the value given by Eq. 
(41). The shot effect is then given by the modified equation 

Tl = T^2kI AF (42) 

where F* is a positive constant less than unity, which may be called a 
space-charge noise-reduction factor. 

The actual form of F® tends to be quite complicated. It may, 
however, be shown that other more usable formulas than Eq. (42) 
can be derived for space-charge reduced shot effect which hold for most 
practical ranges of operation. These formulas are 

7% = 0.644 AkTcg AF (43) 
for diodes and 

71 = (44) 
(T 

for negative-grid triodes. In Eqs. (43) and (44), Te is the absolute 
temperature of the cathode, usually about 1000® for oxide-coated 
cathodes, and k is Boltzmann’s constant. In Eq. (43), g is the plate 
conductance of the diode, whereas gm in Eq. (44) is the transconduct¬ 
ance of the triode. The quantity a in Eq. (44) is a tube parameter, 
which usually lies between 0.5 and 1.0. Equations (43) and (44) bear 
a striking resemblance to Eq. (39) for thermal noise. Except in limit¬ 
ing cases, however, the resemblance is more formal than intrinsic. 

The current-generator representation of Fig. 14, including the 
shunting effect of plate impedance, holds for space-charge-controlled 
operation as well as for the temperature-limited case. In the case of a 
triode, the true plate impedance Bep/Sip is used in Fig. 14, and not a 
reciprocal of the transconductance, as might be suggested by Eq. (44). 

e. Transformation to Equivalent Input Resistance Values. The 
principal sources of background noise of local origin in radio equip¬ 
ment are, as previously stated, thermal noise and shot noise. It 
would therefore be convenient to express them in comparable units. 
It so happens that this can be done quite conveniently for triodes and 
other amplifying tubes by expressing the plate-current fluctuations of 
shot noise as equivalent grid-voltage fluctuations. These grid- 
voltage fluctuations may then be expressed as the thermal-noise volt¬ 
age fluctuations of an equiv^ent grid resistor. Thus since 

ip « Qmeg (46) 

according to the definition of g^^ if ip and Cg are the variational com- 
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ponents of plate current and grid voltage, respectively, Eq. (44) may 
be transformed to 

gl (TQm 
(46) 

where En represents the noise voltage of the equivalent grid resistor. 
Comparing Eq. (40) with Eq. (3), we see that the size of the equiva¬ 
lent grid resistor is 

_ 0.644 Tc 1 

0- T Qm 
(47)^ 

where T is the temperature chosen for the equivalent grid resistor. 
Equation (47) holds for the same range of operation as Eq. (44), 

which is the normal range of operation of most amplifying tubes. 
To get an idea of the size of i^ea, let us use T = 20®C = 293® abs, 
Te = 1000® abs, and a = 0.75 as typical values. Then corresponding 
to values of gm of 1,000, 6,000, and 10,000, we obtain from Eq. (47) 
the respective values of JZeq as 2,940 and 588 and 294 ohms, respectively. 
The value of Rea, since it is proportional to the quadratic content of 
shot noise, can be added directly to the resistive component of the 
grid impedance in order to calculate the combined shot plus thermal 
noise. A glance at the above values of Rea indicates that the resistive 
component of the actual grid impedance greatly exceeds Rea in the 
usual broadcast receiver, ^ but, in the case of a microwave receiver, Rea is 
likely to be predominant. Numerical examples of the calculation of 
total receiver noise are given in Sec. 6.7, and a table of the noise 
characteristics of specific tubes is also given on page 234. 

Since the noise magnitude indicated by Eq. (47) is referred to the 
grid circuit and is equivalent to input noise, it can be used as a measure 
of the effect of the tube on the signal-to^-noise ratio. The equation 
thus tells us that, if shot noise is the predominant noise, the signal-to- 
noise ratio improves directly as \/^- 

/. Shot Effect in Multicollector Tubes. There is a general tendency 
for triodes to be quieter than tetrodes and pentodes. In the case of 

1 We could, of course, similarly transform the thermal noise of the grid resist¬ 
ance into plate-current fluctuations and obtain 

IffjV ^^l^TRo ^F 

where loif is the fluctuating plate current due to the resistive component Ra of 
the grid impedance. This equation however, is not frequently used. 

* If the first tube in the receiver is a converter, this is likely not to be true any 
more. See Sec. 6.7a« 
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tetrodes, it was at first thought that the excess noise might be intro¬ 
duced by secondary emission from the screen grid. While there is no 
doubt an effect of this kind, it is only part of the story, for the same 
type of excess noise is also present in pentodes, where the suppressor 
grid should eliminate secondary emission. D. O. North has developed 
a comprehensive and quantitative theory showing how excess noise is 
due to the division of the tube current between the collector electrodes, 
whereby the noise-reduction effects of space charge are decreased. 
This theory is presented in Sec. 8.7 of the present book. 

The general results of North’s theory are contained in two equa- 
tions. 

Tfg = r|2<J,AF (48) 

and 

r* = 1 - ^ (1 - r*) (49) 

where Iq = space current to the gth electrode 
It = total space current to all electrodes 

= space-charge noise-reduction factor of the total space 
current as defined in Eq. (42) 

Inq = fiuctuating component of the space current to the gth 
electrode 

K = electronic charge, in coulombs 
AF = bandwidth, in cycles/sec 

All currents in the above equations are measured in amperes. Equa¬ 
tions (48) and (49) apply to tubes of 

Cathode 

(a) 

ilii 
I Cathod* • 

(b) 
Fig. 15. 

the type in which the space-current | ^piate 
streams to the different electrodes are _ 
essentially superimposed, as shown in - 
Fig. l'5o. However, they cannot be |——| 
expected to apply to tubes with 
aligned grids of the beam type, and 
they will definitely not apply to tubes 
such as are shown in Fig. 156, in which the space-current streams 
to the different electrodes are not superimposed. 

Let us apply the above equations to the most important practical 
case, namely, that of a pentode. Let us write 

It = plate current 
lea — screen current 
iga — quadratic c<mtent of fluctuating component of screen current 
^ = quadratic content of fluctuating component of plate current 
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/«==/» + /«a *= total space current of tube 
ti — quadratic content of fluctuating component of total space 

current 
Then, it follows from Eqs. (48) and (49) that 

r*7.s + h 
Ic»2k AF 

*1 = aF (51) 
J-a 

Furthermore by Eq. (42) 

= T\Ia2KhF) (62) 

Generally speaking, it is7| that appears in the output and is there¬ 
fore of most importance. Consequently, let us transform t| into 
equivalent grid noise. Since 

c, = (53) 

where is the transconductance of the pentode, we may rewrite 
Eq. (51) as 

-(54) 
Vm « 

If the tube were operated as a triode, it is usually found, and will 
therefore be assumed for our purposes, that 

7t2<cAF 

gt ~ gm 

where gt is the transconductance of the tube operated as a triode. 
Substituting Eq. (55) into Eq. (54), we obtain 

- A -u 
■ V Ar*; jr? 

,2icAF 

Now, according to Eq. (42), the equivalent grid noise of the tube oper¬ 
ated as a triode is given by 

:,_r*7.2KAF 

where e| is the avwage quadratic content the equivalent grid noise 
vcdtage when the tube is operated as a triode. Therefore 

g-( • + 7^)5 (68) 
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Eq. (58) shows that pentode noise exceeds triode noise in the ratio 

1 + lei 

/»r* (59) 

To obtain this ratio in a more practical form we find the value of 
from Eqs. (42) and (44), namely, 

0.644 4*7’. 
—saFr® 

Consequently, with the use of Eq. (56), we obtain 

Ie2 _ Ic2 f 
hT^ ^ g. ~ 

^ ^ _ Q 1,000 
re0.644 2A Tc 

Substituting this value into Eq. (58), we obtain 

(60) 

(61) 

(62) 

If we write (pentode) for the equivalent grid noise resistance of 
the tube operated as a pentode and (triode) for the equivalent grid 
noise resistance of the tube operated as a triode, then 

(pentode) = (63) 

(triode) = (64) 

Therefore, from Eq. (62) 

(pentode) = {1 + 8.7<r — Rea (triode) (65) 

The value of E., (triode) is given by Eq. (47) as 

(tnode) = y - (66) 

Let us now apply these formulas to the case of a pentode for which 

Te “ 1000® flf» = 1,200 micromhos 
let 0.0005 amp gt = 1,500 micromhos 

«r - 0.83 

and let 7* be taken as 293® (that is, 20®C). Then 

(triode) _ ^ - 1,770 to (67) 
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ie«. (pentode) = |^1 + 8.7(0.83) 1,770 = 7,100 ohms (68) 

It is clear that the tube is much noisier in pentode operation. 
g. Shot Effect in Converters,^ We shall next study fluctuation noise 

in converters. Let us first consider a triode mixer. The plate noise 
at the intermediate frequency is given by Eq. (44) as 

Jl (69) 
<r 

where ^ is the average value, over the conditions during an oscillator 
cycle, of the transconductance of the tube considered as a triode 
amplifier. If this value is translated into equivalent grid noise at 
the radio frequency, we have 

where Qc is the conversion conductance. Therefore the equivalent 
grid noise resistance of a triode mixer is 

D /X • j • \ 0.644 Tc Qm 
R„ (triode mixer) = “ -<r ' T 

For pentode mixes’s the use of Eq. (65) will then give 

T> / . j ^ /i , o ,, 7c2 1,000\ 0.644 Tc g,, 
R„ (pentode mixer) = ^l + 8.7 — Y p 

(71) 

(72) 

Since the operating transconductance of a triode or pentode is 
three to four times its conversion conductance and since even the 
average transconductance over an oscillator cycle is greater than the 
conversion conductance, it follows that any given tube will be con¬ 
siderably noisier as a mixer than as an amplifier. This is one reason 
why it is usually desirable to have a stage of radio-frequency amplifica¬ 
tion ahead of the converter in a receiver. 

Multigrid converters and mixers are the noisiest of all. In this 
case, currents to electrodes other than the plate are so large that there 
is not very much space-charge reduction of shot effect in the plate 
current, and Eq. (49) becomes approximately 

^ Hebold, E. W., Rev.j January, 1940, p. 324, and Proc, LR.E.j Febru¬ 
ary, 1942, p. 84. 
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where q refers to the plate. With this value of r|, Eq. (48) becomes 

IVp = — T 2x7, AF (74) 

The equivalent grid noise resistance is then 

iZeq (multigrid converter) 
gl^kT AF 

2k It — Ip 

4^ gilt Ip (75) 

for T = 293°. The value of ge in a multigrid converter or mixer is 
usually smaller than in a triode or pentode mixer, which further 
increases the noise. In addition, some noise is also introduced into 
the system on the oscillator electrodes, but this noise is probably small 
unless there is an appreciable impedance from these electrodes to 
ground at the signal frequency. 

According to Eqs. (71), (72), and (75) the optimum operating 
condition of a converter or mixer from a noise standpoint is generally 
that for which the conversion conductance ge is a maximum. 

h. Equivalent Grid Noise resistance Formulas,^ At this pftnt we 
shall summarize our results for the noise produced in various types of 
tubes by giving simple practical formulas for the equivalent grid noise 
resistance. We shall first list these formulas and then show that they 
are practical approximations for formulas previously derived. 

For triode amplifiers. 

= 
gm 

For pentode amplifiers, 

r, _ h /2.5 , 207.A 
h + lAg’n ^ gi ) 

For triode mixers, 

72« = 
2.5fl^,. 

gc 

which can usually be further simplified to 

(76) 

(77) 

(78) 

4 

gc 
(79) 

* Habbis, W. a., R.C.A. Rev., April, 1941, and July, 1941, has given the for¬ 
mulas listed in this subsection. 
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For pentode mixers, 

i2«i = 
/.*( 

2.5p„ + 
Ih + ic2 \ g\ 

which can usually be further simplified to 

ift + let \ge gi / 

For multigrid converters and mixers, 

^ _ 2Qh{Ia - h) 

20^2\ 
g\ } 

(80) 

(81) 

(82) 

In the foregoing formulas, 
Jf2«, *= equivalent grid noise resistance, in ohms 
gm = transconductance, in mhos 
h — average plate current, in amperes 

let = average screen current, in amperes 
Qm, average value, in mhos, of transconductance of tube con¬ 

sidered as an amplifier, the transconductance being averaged 
over the voltage conditions existing during an oscillator cycle 

g^ « conversion conductance, in mhos 
la = total space current of tube in amperes (t.e., sum of currents 

from cathode to all other electrodes) 
Equations (76) to (82) are not exact, but they are practical 

approximations. Equation (76) is obtained from Eq. (47) by letting 

<r = 0.88 
Tc = 1000*^ abs 
T - 293*^ abs = 20*^0 

Equation (77) is obtained from Eqs. (65), (66), and (76) by letting 

and 
Qm “ Hgt 

h “ 41., 

in addition to the values of a, Tc, and T already listed. With these 
values, the multiplier of let in Eq. (77) is actually 19.2 rather thim 20. 
However, since the values of <r, Tc, etc., chosen above are not exact in 
any case, it is just as well, and very probably just as accurate, to use 
the simpler miiltiplier 20. 

Equation (78) is obtained from Eq. (71) by using the values of a, 
Tc, and T aixeady used above. Equation (79) is then dbtmed from 
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Eq. (78) by using the approximation 

Qm = l.SfiTo 

Equation (80) is obtained from Eq. (72) by the same methods as 
those used in the derivation of Eq. (77). Equation (81) is then 
obtained from Eq. (80) by using the above approximation for 

Equation (82) is an approximation to Eq. (76) with certain changes 
in notation. A glance at Table I shows that multigrid converters and 
mixers are quite noisy. 

In Table I (taken from Harris) is a list of the calculated values of 
Rta for many practical tubes. Some comparisons with measured values 
are also given. This table and the foregoing formulas will be used in 
Sec. 6.7 in the solution of practical problems. 

6.6 Magnetic Fluctuation Noise. Another t3rpe of fluctuation 
noise that may appear in amplifiers is magnetic fluctuation noise, 
sometimes called Barkhausen effect. It has certain mathematical and 
physical similarities to shot effect. When a piece of iron is being mag¬ 
netized, the fact that it is not a uniform and continuous magnetic 
material but rather consists of minute magnetic grains which can be 
lined up in the direction of the field causes the magnetization to take 
place in discrete steps, which gives rise to fluctuation noise. 

The most important practical example of Barkhausen effect is 
the case of a modem radio receiver of the type having a loop antenna 
and an iron-core power transformer. In such a receiver the iron of 
the power transformer is magnetized and demagnetized at the power 
frequency (60 cyles/sec in the United States). The magnetic fluctua¬ 
tion noise generated in the iron core during the magnetization cycles is 
picked up by the loop antenna; and if the coupling between the loop 
and the power transformer is not kept very low, this noise may limit 
the sensitivity of the receiver. To reduce the coupling, it may be 
necessary to use extra shielding on the transformer and to turn it in 
such a direction that its stray lines do not thread the loop. The 
mathematical theoiy of magnetic fluctuation noise is developed in Sec. 
8.6. 

6.7 Receiver Noise. As a practical application of the foregoing 
theory we shall calculate the noise in a radio receiver in a few typical 
oases and discuss certain important matters related to receiver noise. 

a. First Tube a Converter^ Let us first consider the case shown in 
Fig. 16, in which the first tube in the receiver is a 6SA7 converter. 

^ Examples a and h are closely patterned after similar examples in the article by 
Harris (R.C.A. Rev., AptH sM July, 1641). 
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According to Table I this tube has an equivalent grid noise resistance 
of 240,000 ohms. Let us assume that the grid-to-ground impedance 
of the grid circuit has an average resistive component of 150,000 nhma 
in the pass band. Now since shot noise and thermal noise are both 
random noise, their quadratic contents are additive when they are 

Fig. 16. Input circuit of a radio receiver with a converter tube in the first stage. 

superimposed, according to Sec. 6.1. Therefore their equivalent noise- 
resistance values are additive. The total equivalent noise resistance 
of the stage in Fig. 16 might then be expected to be 

240,000 + 150,000 = 390,000 ohms (83) 

However, this is incomplete, for noise at the image^ frequency will also 
pass through the intermediate-frequency amplifier. A glance at 
the frequency characteristics of a parallel tuned circuit^ will show, 
nevertheless, that the resistive component of the grid impedance will 
be negligible at the image frequency. Thus Eq. (83) gives a good 
approximation to the equivalent noise input resistance of the stage in 
Fig. 16. Translated into microvolts, Eq. (83) says that the receiver 
noise m this case (for an effective bandwidth of, say, 6kc) is equivalent 
to 

VUTRAF - X L37 X lO^^* x 293 X 390,000 X 6,000 volts 
« 6.1 microvolts (84) 

of noise on the grid of the converter. 
In the foregoing example we have assumed that the resistive com¬ 

ponent of the grid impedance could be considered at the temperature 

^ The image frequency of a superheterodyne receiver is the frequency located 
on the opposite side of the oscillator frequency from the desired carrier and dis¬ 
placed from the oscillator frequency by an amount equal to the intermediate 
frequency. 

• Tebman, ‘^Badio Engineers^ Handbook,” p. 145* 
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of the receiver. This amounts to assuming that the radiation resist¬ 
ance of the antenna does not reflect into the grid impedance an appreci¬ 
able percentage of the latter^s resistive component. For ordinary 
broadcast receivers this is usually true. A more detailed discussion of 
the situation when this is not true will be given in a later example. 

5. Superheterodyne with a Radio-frequency Amplifier, Let us 
next consider the case of a superheterod3me receiver with a stage of 
radio-frequency amplification as shown in Fig. 17. We shall use an 
untuned radio-frequency stage between the radio-frequency amplifier 

Fig. 17. Input circuit of a superheterodyne receiver having a radio-frequency amplifier 
stage. 

and the converter, not because this is supposed to be desirable in 
practice, but because it will allow us to illustrate certain points in 
noise calculation. 

In the case illustrated in Fig. 17 the noise generated in both the 
radio-frequency and converter stages must be taken into account. 
In order to transform all the noise to a comparable basis, we shall 
express it all in terms of an equivalent noise resistance at the grid of the 
radio-frequency stage. Thus, for example, the converter tube noise, 
which is listed in the table as having an equivalent grid ncnse resistance 
of 240,000 ohms, becomes 

240,000 
64 

3,750 ohms (86) 

when referred to the radio-frequency grid, it being assumed that the 
power gain of the radio-frequency stage is Qi (t.e., a-voltage ^un d 8). 
The resistive component of the grid impedance of the converter stage 
is, say, 3,000 ohms. When referred to the radio-frequency grid, this 
becomes 

8,000 
64 

47 ohms (86) 
which is negligible. 
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The tube noise of the radio-frequency tube is listed as 10,600 ohms, 
referred to its own grid. However, this represents only the noise that 
the tube generates at the radio frequency. We shall now show that 
several additions must be made to this value, for the radio-frequency 
tube also generates noise at several other frequencies, which gets 
through the receiver. To be specific, let us suppose that the radio 
frequency is 1,000 kc and the intermediate frequency 456 kc. Then 
the image frequency is 1,910 kc (assuming that the oscillator is at 
1,455 kc). Now the shot current at point A in Fig. 17 has components 

Fio. 18. Helative noise power outputs at various frequencies due to the shot noise 
introduced into the receiver by the 6SK7 in Fig. 17. (From W. A. Harris, RCA Review, 
Jvly, 1941.) 

of all frequencies, so that all frequencies for which a signal introduced 
at A gives an output will contribute to the noise. The relative con-r 
tributions to the noise for various frequencies at A are shown in Fig. 
18. This shows the relative power sensitivity of the receiver for a 
constant-current signal generator substituted for the radio-frequency 
tube at A. According to Fig. 18, we see that the equivalent grid 
resistances due to noise at other frequencies than the radio frequency 
are 

2.2 X 10,500 =■ 23,100 ohms 
0.6 X 10,500 ™ 6,300 ohms 
0.1 X 10,500 « 1,050 ohms 

0.06 X 10,500 630 ohms 

(for 455 kc) ' 
(for 1,910 kc) 
(for 2,455 kc) 
(fw 3,365 kc) I 

(87)' 

‘ The noiae compoitente in Hg. 18 at frequencies other than ihe signal frequency 
ate largely eliininated if there is a circuit tuned to the si^ud frequency between 
tiie point A and the grid of the otmverter. 
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The total equivalent grid noise resistance of the radio-frequency tube 
is therefore 

10,500 + 23,100 + 6,300 + 1,050 + 630 = 41,580 ohms (88) 

The grid-circuit resistance of the radio-frequency tube is, say, 100,000 
ohms at the radio frequency and is negligible at the other frequencies. 
Then the total equivalent noise resistance referred to the grid of the 
radio-frequency stage is 

100,000 for the radio-frequency grid-circuit resistance 
41,580 for the radio-frequency tube 

47 for the converter grid-circuit resistance 
3,750 for the converter tube 

145,377 ohms total 

Assuming an effective bandwidth^ of 6 kc, the receiver would have an 
amount of noise equivalent to 

V^^kTRAF = \/4 X 1.37 X lO-^s x 293 X 145,000 X 6,000 volts 
== 3.7 microvolts (89) 

of noise on the grid of the radio-frequency tube. 
c. Antenna Noise and the Optimum Coupling of an Antenna to the 

Input of the First Tube, One important question left open in the 
preceding examples is the optimum value of coupling between the 
antenna and the grid circuit. This depends greatly upon the amount 
of antenna noise. Now the noise of an antenna is partly due to ohmic 
resistance in the antenna circuit and partly due to noise absorbed by 
the antenna from space. The ohmic-resistance noise can be handled 
like any other thermal noise, but the noise absorbed from space 
deserves special consideration. 

The noise absorbed from space includes atmospherics, man-made 
noise and interference generated in the vicinity of the antenna, and 
the thermal noise of radiation resistance. ^ We can add the quadratic 
contents of the various components of this noise and obtain a total 

^The effective bandwidth that should be 
used is the effective bandwidth of the receiver 
for a signal at the radio-frequency grid. This 
does not include the selectivity of the radio¬ 
frequency grid circuit and the receiver input cir¬ 
cuit. The meaning of effective bandwidth” 
is the bandwidth of a sharp cutoff system that 
would give rise to the same amount of noise as 
the actual system [see Sec. 6.9d(3)]. 

* The thermal noise of radiation resistance is discussed in Sec. 9.8. 

Noise Power 
Output as a 
Function of 
Frequency 

H—aF—H ► Freq. 

(The area under the broken- 
line rectangle is equal to that 
under the solid curve.) 
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antenna-absorbed noise voltage squared Then, if Ra is the radia¬ 
tion resistance of the antenna, we can write 

and thus obtain what may be called the effective noise temperature 
Ta of the radiation resistance of the antenna. The value of Ta is 
above room temperature in probably all practical installations, but it 
is much higher in some locations than in others. With the aid of this 
fictitious temperature, which is really only a description of the noisi¬ 
ness of the receiver location, we shall now continue with our discussion 
of the coupling problem. 

M 

Rq* Ohmic Resistance of Antenna Circuit Rb 
R^^Radiation Resistance of Antenna. 

XA*Reactance of Antenna Circuit 

Fig. 19. Equivalent simplified schematic diagram of an antenna and input circuit. 

Consider a simplified antenna and input circuit such as that shown 
in Fig. 19. There will be four^ sources of noise in this circuit, which 
we may list as follows: 

1. Tube noise 
2. Thermal noise in the input circuit 
3. Thermal noise (ohmic) in the antenna circuit 
4. Antenna noise 
Let us now see how each of these can be expressed as an equivalent 

noise resistance between grid and ground of the first tube. 
1. The tube noise is already expressed as an equivalent grid noise 

resistance in Table I or a similar table. Let us call this Ri, 
2. The thermal noise of the input circuit is that due to Rb- This 

causes a series voltage in the input circuit given by 

e% = AUTRb AF (91) 

^ In parts a and h of this section, we, in effect, assumed that antenna-circuit 
noise was negligible. 
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This in turn causes a current 

AkTRa AF 

where 
\Zb + (coWVZ^)|» \Zb + («wvz^)P 

Zb ’= Rb 3 

+ (94) 

The grid voltage due to ii is given by 

, _ t1 _ AkTRa AF 
“ «*C'| “ u)^CI\Zb -J- 
= AkTRi AF (95) 

The equivalent grid noise resistance of the input circuit is then 

* “ «*C||Zb + («WVZ^)1* 

3. The antenna-circuit impedance 

Za = (Ro -|- Ra) ■+• jXa 
reflects an impedance 

_ «W*[(i2o + Ra) - jXA] 
Za (Ro + Ra)^ + 

into the input circuit. This has a resistive component 

of which 

u^M^(Ro -b R/^ 
(Ro + Ra)^ -I- XI 

<B*Mmo 
(Ro + Ra)^ + x\ 

has the equivalent temperature T of Ro and 

noo) 
(Ro + Ra)^ + X\ 

has the equivalent temperature Ta of Ra. Thus, if we substitute Eq. 
(99) for Rb in Eq. (96), we obtain Rt, the equivalent grid noise resist¬ 
ance of the ohmic resistance of the antenna circuit. Accordingly, 

a*M*Ro 

(w*M*/Za) 
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4. The equivalent grid noise resistance of the absorbed antenna 
noise is next obtained by substituting Eq. (100) for Ra in Eq. (96) and 
multiplying by Tj^/T to take care of the difference in effective tem¬ 
perature. Thus 

Jf_u>mmATWT) 
“ [(E« -H Ha)^ + XHIZb -1- (a.*MV^^)|*«*C* 

The total noise voltage squared on the grid is consequently 
e% == 4A-r AF(Ri -|- E* -|- E, + ««) 

AkT AF 
\ZjiZa + 

^RiIZaZs + -f 
RalZal^ 

[(Ro + RaV + X\WCl ^ Tlifio + RaY + (103) 

To compare with this, the signal voltage on the grid obtained by solv¬ 
ing the network of Fig. 19 is given by 

<A^C%\Zj,Zb -I- 6,W*|* 
(104) 

The signal-to-noise power ratio is then obtained by dividing Eq. (104) 
by Eq. (103). This is 

^ ^ _ 

AkT AF -|- R,Za * 

^ (Eo A-RaY + XI^ T[(Eo + RaY + XilI 

The largest (i.e., optimiun) signal-to-noise ratio is obtained by making 
Eq. (105) a maximum. This can be done in any particular case by 
actually maximizing the expression (105) if the temperature Ta is 
known. However, we can draw some general conclusions from Eq. 
(105) without the labor of maximizing it. 

a. If most of the noise originates in the antenna circuit or is picked 
up by the antenna (i.e., Rz + Riy> Ri + Rt), the signal-to-noise ratio 
is independent of the mutual inductance M as long as Jf is large 
enough so that the foregoing inequality holds. 

b. If most of the noise originates in the input circuit (i.e., 
Rs^ Ri + Rt + Ri), the signal-to-noise ratio continues to improve 
as the mutual inductance if is increased. 

c. If most of the noise originates in the tube 

(i.e., El ^ E| -f- E| + B«), 
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then Eq. (105) will have a maximum for the value of M for which 

\Zj,Zb + wW2|2 

has a maximum. If the value of M thus obtained is physically real¬ 
izable, then the maximum signal-to-noise ratio will be obtained by 
using this value of M, 

d. If antenna noise is negligible but both tube noise and input- 
circuit noise are important, then Eq. (105) will have a distinct maxi¬ 
mum for a value of M that can be obtained by maximizing 

Ri\ZaZb + + R^\z^\^ 

If the value of M thus obtained is physically realizable, it will give the 
best signal-to-noise ratio. 

Two additional observations are also in order. In the first place, 
if the denominator of Eq. (105) varies widely in the pass band AF, 
then, instead of multiplying the quantity in braces by AF, it becomes 
necessary to integrate it with respect to F over the range AF. In 
the second place, it is shown in Sec. 6.10 that, when the input conduct¬ 
ance of the tube becomes important, a correction must be made for 
its effective temperature. 

6.8 The Measurement and Output Characteristics of Noise and 
Noise plus Signal, a. General. The peculiar and impredictable 
wave-shape properties of noise make it difficult to interpret the 
measurements of noise as obtained from the usual measuring systems. 
It is, of course, possible to measure the energy (i.e., the quadratic 
content) of a noise signal with a thermal meter and thus determine the 
rms value of the noise signal. There are, however, other things we 
should like to know about noise measurements. These matters are 
dealt with in detail in Sec. 7.17 to 7.19, and in the present section we 
shall give the results there derived and developed. Besides the question 
of measurement, the question of resultant output in the combination of 
noise and signal is also of great importance. This matter will also be 
treated in the present section. The background noise in a radio or 
television program is a familiar phenomenon, and it will be of interest 
to deal with it on a quantitative basis. 

A good idea of the combination of signal and noise is given in Fig. 
20, which shows an oscilloscope representation of the superposition of 
noise on a pulse-t3rpe signal. If this represents a television signal, the 

noise will cause a grainy, fine structure in the background of the 
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picture. As the signal becomes smaller, it gradually becomes lost in 
the background of noise. It will be noted that both height and dura¬ 
tion (z.e., power X time = energy) of the signal are important in making 
it perceptible through the noise. 

We mention in passing that it is shown in Chap. VII that, while 
random noise will change its general wave shape with changes in the 
frequency characteristics of the transmission system, it will still retain 
the properties of random noise. This is important, for, as a conse¬ 
quence, the various formulas of (fe), (c), and (d) of this section will be 
independent of the frequency distribution of the noise power. 

Fig. 20. Superposition of noise on a pulse-type signal. 

The output signal, consisting of noise plus desired signal, in Fig. 20, 
is usually the envelope of a radio-frequency signal having the carrier 
frequency of the desired signal. The tuning of the receiver, which 
transmits only a narrow band of frequencies in the neighborhood of 
the carrier of the desired signal, selects from the total noise generated 
only a portion of it, which is approximately periodic at the tuning 
frequency rate and which has an envelope whose frequency components 
have a frequency range about equal to the bandwidth of the receiver. 
The envelope of this signal is what appears in the regions marked N 
in Fig. 20. 

b. The Envelope of Noise and of Noise plus a Carrier. If cy is a 
random-^noise amplitude function such as the radio-frequency noise 
function whose envelope is shoAvn in the N regions of Fig. 20, then the 
value of ey at any instant cannot be predicted ahead of time since it is a 
random function. All that is known about such a function is the 
probability of its having a particular value. Thus, according to Eq. 
(1), we do know that the probability of e^ lying between a particular 
value eN and e^ + des is 

A 

P{eN)deN = deN (107) 
VT 

where 

^ X «_\_ 
2^ 2 X mean square value of ej( 

(108) 
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According to Eq. (108), A is a measure of the average noise level. If 
A is known, the probability of Bn lying in any particular narrow range 
is given by Eq. (107). One method of determining A, as already 
mentioned, is by measuring ejyr with a thermal meter. Other methods 
wiU be given below. 

If the probability distribution of the values of is given by Eq. 
(107) and if the frequency components of bn are limited to a relatively 
narrow high-frequency channel, it is shown in Sec. 7.17 that the 
probability distribution of the envelope of bn is 

P(R^)dRN = dRN (109) 

where Rn is the amplitude of the envelope of bs, and 

= (110) 

The foregoing equations apply to pure noise. However, suppose 
that this noise, of mean square value 1/2^^, is superimposed on a car¬ 
rier K cos so that the combined signal is 

Bn + K cos 2irFt (111)^ 

Let R be the envelope of Eq. (111). Then it is also shown in Sec. 7.17 
that the envelope of the combined signal has a probability distribution 

P{R)dR = 2A ^KR)dR (112) ^ 

Equation (112) tells, better than anything else can, what will be 
seen in the plot of a signal, such as Fig. 20. In Fig. 21, Eq. (112) is 
shown graphically for various values of the ratio y/2AK. This shows 
the probability P{R) of the amplitude R depending upon the values of 
the carrier strength K and the rms value of noise \/Ay/2. An exact 
description of the wave shape in Fig. 20 cannot be given. However, 
we do know that the frequency distribution of the noise power deter¬ 
mines the ^'fineness of grainof the noise wave shape. 

At one time, it was quite common to discuss the ‘‘crest factor'' of 
noise. The crest factor was defined as the ratio of the amplitude of 
the highest peaks to the rms value of the amplitude. Experimental 

^ The product * 

a. nns carrier 
rms noise 

is usually the quantity of interest when a carrier is present. 
* /o is the modified Bessel function of the first kind of zero order, which is 

discussed in Appendix E. 
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values between 3.4 and 4.6 were obtained for this ratio. If we look 
at Eq. (112), we see that there will be peaks of practically infinite value 
if the observer is only willing to wait for them. However, the form of 
the pure noise curve {y/2AK = 0) in Fig. 21 shows that values between 
3.4 and 4.6 are what may be expected in practical intervals of observa¬ 
tion for the crest factor.^ 
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Fig. 21. Probability distribution of the envelope when random noise is super¬ 
imposed upon a carrier, (F is the ratio of envelope amplitude to rms noise, while AK 
is the ratio of rms carrier to rms noise.) {From S. O. Rice, Bell System Tech, J,, January, 
1946.) 

c. Rectified Output and Low-frequency Output in Linear Detection. 
Let a noise plus carrier signal of the form of Eq. (Ill) be applied to a 
linear detector having the characteristic 

r = 0 (whenF<0) 1 ..... 
= aF (whenF>0) ( 

where I is the detector current and F is the applied voltage. Then it is 
shown in Sec. 7.18 that the direct-current component of the detector 
current is 

^ Rice, S. O., Bell System Tech. January, 1945, has also derived a formula for 
the probability distribution of the amplitudes of the wave maxima and has plotted it 
on p. 85 of his article. This is somewhat different from the probability distribution 
of the instantaneous values of the amplitudes given by £q, (112). However, 
Eq. (112) actually gives a better idea of how long one must expect to wait before 
observing an amplitude of a given large value. 
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+ (114)1 

Equation (114) shows how the direct-current component of the 
detector current varies with A and K. The equation shows that /i)c is 
proportional to the rms noise voltage \/A \/2 but otherwise depends 
only on the signal-to-noise ratio AK, For the case of pure noise 
{K = 0), Eq. (114) reduces to 

Idc = 
a 

2 A x/tt 

1 a 

A V2 
0.40 

A V2 
(115) 

Since 1/A \/2 is the rms value of noise voltage, it follows that the 
output of a linear detector is only 40 per cent as great for noise voltage 
as it is for a direct-current voltage with the same rms value. ^ It is to 
be noted that Eqs. (114) and (115) are true regardless of the frequency 
distribution of the random noise power. 

If jfiC is derived from a signal generator and is variable at will, then 
A can be determined from Eq. (115) with a linear detector and K can 
be determined from Eq. (114). Generally speaking, it is more con¬ 
venient to measure A and K with a linear detector than with a thermal 
meter. Equation (114) is plotted in Fig. 22, which shows how the 
direct-current output rises with increase in the carrier-signal level. 

Another matter of great interest is the magnitude of the detector 
output (audio, video, or other) in the case of linear detection. Suppose 
we let I AC stand for the detector current from which the radio-fre¬ 
quency and the direct-current components have been removed. It is 
shown in Sec. 7.18 that the average quadratic content (pow’^er) of /xcis 

[ (1 + A^K^)U (116)« 

1 /o is the modified Bessel function of the first kind of zero order, and 11 is the 
modified Bessel function of the first kind of the first order. Both are discussed in 
Appendix £. * 

* By way of comparison, it may be noted that the output of a linear detector 
for an applied sinusoidal voltage is (V^/’r) ** 0.45 times its output for direct- 
current voltage with the same rms value. 

•The value of Eqs* (HO) to (118) includes all the frequency com- 
ponenta (excepting the direct current) in the rectified envelope. It is therefore 
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For the case of pure noise {,K = 0) Eq. (116) reduces to 

Wc = 4^ (4 - t) (117) 

On the other hand, for large K, Eq. (116) reduces to 

7!: = (118) 

Thus, for large K, the output-signal level is independent of K but 
depends only on the radio-frequency noise. This situation will, of 

Fig. 22. Direct-current output of a linear detector with a random noise plus carrier 
input. 

course, change if the signal carrier is modulated, as discussed below. 
Equation (116) is shown graphically in Fig. 23. 

The ratio of Eq. (118) to Eq. (117) gives the increase in apparent 
noise that is always observed in a radio receiver when a carrier is 
tuned in. This ratio is 

(aV4ir2^2)(4 _ 4 ^ = 2.33 (119) 

The ratio given in Eq. (119) is actually the minimum value that 
can be observed for the ratio of noise with and without a carrier. In 

essential in using these equations that the measuring system should not attenuate 
any frequencies of consequence in the rectified envelope. 
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actual receivers, two characteristics tend to increase this ratio, often 
manyfold. One of these characteristics is the frequency characteristic 
of the low-frequency amplifier. Thus, if the carrier is located at the 
center of the pass band of the noise and the carrier is of large amplitude, 
the low-frequency noise output is pretty well confined to a band extend¬ 
ing from zero frequency to a frequency of one-half the width of the 
radio-frequency noise pass band. The reason for this is that the low- 
frequency noise in this case arises from beating of the carrier with the 
separate noise components. However, when the carrier is absent. 

Fig. 23. Alternating>current power output of a linear detector with random noise plus 
carrier input. (Components in the carrier frequency range are not included.) 

the beating of noise components gives rise to important frequencies 
extending from zero up to the entire width of the pass band, although 
the output does fall off at these higher frequencies. Furthermore, the 
asymmetrical noise sidebands, which practically give rise only to 
frequency modulation when a large carrier is present, will, in the 
absence of a carrier, also give rise to harmonics of the noise beat fre¬ 
quencies, thus still further extending the low-frequency range. Con¬ 
sequently, unless the low-frequency amplifier has a very wide pass 
band, it will act to increase the ratio given in Eq. (119).^ 

The other characteristic of a receiver that tends to increase the 
ratio in Eq. (119) is nonlinearity of the detector at low amplitudes. 
This will make the detector relatively insensitive at the low amplitudes 
that may occur when noise alone is present, thus often causing amany- 
fold increase in the ratio given by Eq. (119). For this same reason it 

* The aoymmetrical sideband effect will be very marked in television systems of 
present-day standards. 
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is important that large signal levels be present when Eq. (114) is used 
to evaluate noise measured with a diode meter. 

If the carrier K cos 2fifFt is modulated, so that the radio-frequency 
signal is 

K{1 + w cos %ryLt) cos %rFt (120) 

then standard linear-detector theory tells us that the altemating-cur- 
rent-signal power output is 

(121) 

Comparing this with Eq. (118), we see that, for low noise conditions, 
the signal-to-noise power ratio is 

lies _ a^m^K^/27r^ (122) 

Thus the apparent degree of noise amplitude modulation is 1/AK (see 
also Exercise 3 below). 

Exercises 

1. Show that according to the definition in Sec. 5.36 

Effective value of degree of amplitude modulation 

V2 average power of symmetrical sidebands 
average power of unmodulated carrier 

This equation is applicable in all cases in which the antisymmetrical sidebands are 
small. 

2. Show that according to the definition in Sec. 6.3&, when there is only one 
pair of antisymmetrical sidebands and the degrqe of modulation is small, 

Effective value of degree of frequency modulation 

83 \/2 ftv^rage power of antisymmetrical sidebands 
D ^ average power of unmodulated carrier 

$. Show that according to Eq. (122), when the degree of noise modulation is 
small, 

Effective value of degree of noise amplitude modulation _ V average power of noise 
average power of carrier 

Comparison of this result with that of Exercise 1 and noting of the disappearance 
of the factor of 2 show that there is an equal division of energy between the sym¬ 
metrical and the antisymmetrical sidebands in the noise. This is fundamentally a 
consequence of the random phases of the noise sidebands. 

i« Suppose that the output of the intermediate-frequency amplifier of a receiver 
is fed into a linear detector and that the internal noise of the receiver causes a 
direet-ewent component of I ma in the output of the detector. Next, suppose 
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that an unmodulated carrier is added to the noise. What is the direct-current 
output reading when (a) the average carrier power is equal to the average noise 
power; (6) the average carrier power is equal to twice the noise power? Figure 22 
may be used in finding the answer. 

Answer: (a) 1.44 ma., (6) 1.82 ma. 

d. Quadratic Txansmission System, Particularly a Square-law Detec¬ 
tor, Next suppose that we are dealing with a quadratic transmission 
system having a response characteristic 

I ^ aV^ + fiV + y (123) 

where I is the output of the system, V is the applied voltage, and 
a, fi, and y are constants of the system. 

The foregoing system may be a vacuum tube operated on a non¬ 
linear portion of its characteristic, or it may be a square-law detector. 
For such a system it is shown in Sec. 7.19 that the rectified output is 

Idc = ^2 (1 + + y (124) 

Since 7 is a constant, it can usually be balanced out of the reading or 
removed from it by subtraction, so that Eq. (124) becomes 

= ^2 (1 + (125) 

For pure noise, if = 0, so that Eq. (125) becomes 

= (126) 

In this case, the direct current then measures the mean square value of 
noise. 

Let us next consider the low-frequency output for the quadratic 
detector with the characteristic given in Eq. (123). For this case, it is 
shown in Sec. 7.19 that 

Ti; = (1 + 2A^K^) (127) 

For this case, we see that the noise output rises continuously with 
increasing values oi K. As in the case of the linear detector, the pure 
noise terms have a wider frequency spectrum than the original fre¬ 
quency band, so that narrowing the pass band of the low-frequency 
amplifier will discriminate against noise. 

6.9 Noise Ratings and Noise Figures, a. Introdiiction. In order 
to be able to discuss noise in a simple and intelligent manner, it is 
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desirable to have concise quantitative descriptions of the noise prop¬ 
erties of the things we are talking about. We shall briefly discuss the 
quantitative noise ratings of 

1. Signals 
2. Receivers or amplifiers 
3. Complete receiving installations 
4. Complete transmission systems 
6. The Noise Rating of Signals. The noise rating of a signal is 

usually described in terms of the signal-to-noise ratio (S/N ratio). 
This measure has not been weW standardized so that the S/N ratio 
may refer to 

Rms signal voltage 
Rms noise voltage 

or 
Peak signal voltage 
Peak noise voltage 

or 
Average signal power 
Average noise power 

(128) 

(129) 

(130) 

or various other ratios. It is therefore desirable to tell precisely what 
is meant in speaking of a signal-to-noise ratio in any particular case. 
Probably the most commonly used S/N ratio is the ratio of rms 
voltages. 

Another method of rating the noise content of a signal is to give 
the number of decibels by which the signal exceeds the noise. Thus 

10 logio 
average signal power 
average noise power 

db level of signal above noise (131) 

Equation (131) gives a rather good rating of tho noisiness of an audio 
signal. 

In many important cases, as in a discussion of the noise properties 
of FM and pulse-modulation systems, the foregoing definitions are 
quite inadequate, and it is necessary to describe noise properties in 
detail. Furthermore, in an FM or a pulse-modulation receiver, the 
same signal will have S/N ratios in the intermediate frequency and in 
the audio that are almost completely unrelated, regardless of definition. 
Consequently, the 8/N ratio cannot be considered a complete measure 
of the noise properties of a signal, since a more detailed story will often 
be required. 

c. The Equivalent Noise Sideband Input. Prior to the war, a 
widely used measure for the noisiness of radio receivers was the egtw- 
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aUnt noise sideband input (ENSI). This measure has the practical 
advantage that it is easy to determine experimentally. There are 
important objections to it, however, especially in the case of 
short-wave receivers in which the receiver is designed for use with a 
specific type of antenna. Nevertheless, the ENSI is likely to continue 
in use as a standard for broadcast receivers, since it is a good practical 
measure for that purpose. 

Standard Dummy Antenna 

C,-200M/*f C2-400/*Mf L-20Mh R-400n 

Fio. 24. Arrangement of equipment in measuring the equivalent noise sideband input. 

To measure* the ENSI, a receiver is coimected as shown in Fig. 
24. The ENSI is then defined as 

ENSI = mEs (132) 

where = rms noise power output when signal input is reduced to 
zero 

PJi = rms signal power output when signal is applied 

(n»n) 
Eg = signal carrier (rms of unmodulated carrier) input voltage 
m ^ degree of modulation of signal carrier 

By definition, the modulation frequency is 400 cycles, and the degree 
of modulation of the carrier by both noise and signal is kept relatively 
small. The standard signal generator should be of very low or very 
high impedance, so that it is as completely mismatched as is practical 
from the dummy antenna and receiver and thus will not transfer 
appreciable noise power into the receiver. As defined above, the ENSI 
measures the rms value of the noise input voltage, it being assiuned that 
the receiver is operated without distortion. On this same assumption, 
the ENSI is independent of the exact value of the input voltage, dP 
the sensitivity of the receiver, and of the volume-control setting. It 
is a direct measure (referred to the level of the receiver input) (rf 
the noise generated in the dummy antenna and the receiver, if it is 
assumed that no appreciable noise is transferred to the receive from 
the signal generator. 

* I.R.E. Standaids on Radio Reoeiven (1988). 
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The ENSI is a good practical measure for the noise rating of broad¬ 
cast receivers. However, it is not flexible enough to rate fairly a 
receiver that has been designed specifically for use with a nonstandard 
antenna. For this purpose, in recent years, a more fundamental rat¬ 
ing has been defined. This is the noise figure, which we shall define 
and discuss after presenting a few preliminary definitions. 

Signal 4 Terminal External 
Generator Network Output Circuit 

Fig. 25. Equipment for measuring noise figure. 

d. Some Preliminary Definitions. 1. Available Signal Power. 

If a signal generator is connected to a network as shown in Fig. 25 
and if the resistive component of the internal output impedance of 
the generator is Ra (ohms) and the emf that it generates is Eft (volts), 
then the maximum power that the generator can deliver is 

M. 
4iio 

(133) 

This is the power that is delivered under the conditions of matched 
impedances, i.e., when 

Ri — Rfi and Xt — ~Xo (134) 

where Ri — resistive component of network input impedance 
Xi = reactive component of network input impedance 
Xo = reactive component of internal output impedance of the 

generator 
We shall call the maximum power that can be removed from the gen¬ 
erator (for a given setting of its controls) the available signal power 
and designate it by the symbol S,. Thus 

El 
4i;» (135) 

2. Available Power Gain. The output terminals of the four-ter¬ 
minal network in Fig. 25 may be considered as a source of power in 
exactly the same way as the signal generator. Thus if the internal 
impedance of the output circuit of the network is R and the signal 



264 FREQUENCY ANALYSIS, MODULATION AND NOISE 

voltage generated in the output circuit is E, then the available signal 
power in the output circuit is 

5 = g (136) 

We shall now define the available power gain (designated as O) of the 
network as 

<? = £ (137) 

Since the network will in general have some kind of frequency-selec¬ 
tivity characteristic, we shall define G as the ratio (137) for the fre¬ 
quency of the middle of the pass band, unless some other frequency is 
specifically designated in a particular case. 

3. Effective Bandwidth. If Gf is the available power gain of the 
network for the frequency /, then the effective bandwidth B of the net¬ 
work is defined as 

B=^^jGfdf (138) 

4. Available Noise Power. An ideal signal generator, from a noise 
point of view, will generate no noise other than the thermal noise of its 
internal resistive component Ro, Thus the available noise power in the 
frequency interval df from an ideal signal generator will be 

E^ _ AkTRo df __ j rr 
(139) 

If the network in Fig. 25 were a lossless transformer or a filter made 
of pure reactive components, the internal resistive component of its 
output circuit, R, would then merely be the reflected impedance due 
to Ra of the signal generator. Since the network would have no noise 
sources of its own, the available output noise power would be merely 
that due to the thermal noise of f2o transformed to the impedance level 
of R, but still of magnitude 

kTdf 

If the network had power gain but generated no noise of its own, the 
entire available output noise power for all frequencies would then, in 
view of Eq. (138), be 

kTBG (140) 

Since Eq. (140) gives the available output noise power of an ideal 
network that generates no noise of its own, we define 

N, - kTB (141) 
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as the ideal available input noise power of a network having the same 
gain characteristic as the ideal network. 

If a signal generator is not ideal from a noise point of view, it will 
make available more noise than the amount indicated by Eqs. (139) 
and (140). Generally speaking, the network in Fig. 25 will act as a 
nonideal signal generator. We shall designate its available output 
noise power as N, 

e. The Noise Figure of a Network,^ With the aid of the foregoing 
definitions, we shall now introduce the noise figure of a network as a 
measure of its noise-generation properties. We define the noise figure 
F of a network as the ratio 

available input signal power/ideal available input noise power 
available output signal power/available output noise power 

Sa/kTB _ N 
S/N GkTB 

(142)2 

The noise figure of a network is thus the ratio of the actual available 
output noise power to the available output noise power of an ideal 
network having the same gain characteristic. Therefore the noise 
figure of an ideal network that generates no noise itself is F = 1; and, 
correspondingly, the part of the noise figure of any network due to 
internally generated noise is F — 1. 

In order to complete the definition of the noise figure we must 
specify the temperature T of the ideal signal generator. For con¬ 
venience in calculation, we shall follow Friis and specify 

T = 290° abs = 17°C = 63°F (143) 

With this specification of T, we have 

A-r = 4 X lO”"®! watt/cycle (144) 

After some discussion of the measurement and combination quali¬ 
ties of noise figures, we shall return to a consideration of the merits 
and demerits of the noise figure as a measure of the noise quality of a 
network. 

^ The use of the noise figure of a network originated with H. T. Friis, Proc, 
LR.E,, July, 1944, p. 419. Much of Sec. 6.9 follows closely the development in 
Friis^s paper. 

* The noise figure is frequently transformed into decibels, to give the decibels of 
noise above that of an ideal receiver. However, when noise powers are added, 
it is confusing to use decibels. Thus they should be used only to express over-all 
receiver noise performance. They should not be used in intermediate calculations. 
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/. The Measurement of Noise Figure. The measurement of noise 
figure is usually performed with connections as shown in Fig. 26. 
According to the definition the output impedance of the generator 
should be made to match the input impedance of the network over the 
entire frequency range of interest, so that the network receives the 
entire available power of signal and noise. Usually, however, this 
condition is relaxed in practice since impedance matching conditions 
are the same for both signal and noise, and matching is usually obtained 
only at the midband frequency and sometimes not at all. Owing to 
the difference in frequency distribution of signal and noise, this will 
introduce some error. Similar considerations apply to the output of 
the network. 

If the output of the signal generator is adjusted so that the final 
output of noise plus signal is double that due to noise alone, then 

Since, we also have 

it follows from Eq. (142) that 

8^N 

S = GSg 

(145) 

(146) 

„ _ Sa _ El _ E'o 
^ ^ kTB ^okTB ^ WTB 

(147) 

where kT is assigned the value given in Eq. (144) and 
Eq = terminal voltage of signal generator 

= Eq/2 when impedances are matched 
Rq = input resistance of network = i2o(when impedances are 

matched) 
The use of the last form of Eq. (147) is permissible only if the reactance 
of the output circuit of the signal generator is equal in magnitude and 
opposite in sign to the reactance of the input circuit of the network, 
t.e., if the circuit reactance is tuned out. 

Equation (147) is the standard equation for use in measuring noise 
figure. The technique of determining JSo, iJo, and B or Eq, Rq, and B 
at very high frequencies, although quite important, is outside the scoi>e 
of this book. A random-noise generator is frequently used as the 
signal generator, for such a generator is easily adjusted and calibrated 
at low power levels, and it is then easy to measure the combined noise- 
plusHsignal output. There is then also no question about whether the 
second detector treats signal and noise differently. A discussion of 
random-noise generators justifies our brief attention. 

g. Noise Oeneraiors. One of the simplest and most practical types 
of noise generators is the temperature-limited diode. Its noise power 
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output can be calculated very accurately with the aid of Eq. (41) in 
the frequency range below that in which transit time is important and 
above the range in which flicker effect is of consequence. By using 
high anode voltages and close electrode spacing the operating frequency 
range can be extended to quite high 
frequencies. At still higher frequen¬ 
cies the output can be calibrated 
with a thermal meter or a rectifier. 

According to Eq. (41) the noise 
output current of a temperature- 
limited diode is 

71 = 2kIAF (148) 

where k is the electronic charge 
= 1.60 X 10”^® coulomb; I is the 
average anode current, in amperes; 
AF is the bandwidth, in cycles per seconds; and In is given in amperes. 

By connecting the diode as shown in Fig. 26 it follows from Sec. 
6.4 that the diode will act as a noise voltage generator of voltage 

En = \/{RI + XI)2kI^ (149) 

and having an output impedance Rq + i^o. The internal alternating- 
current impedance of the diode is to be included in calculating the 
effective value of Rq and Xo in accordance with Sec. 6.5c. The resistive 
component of the internal impedance of a temperature-limited diode 
is usually so large that it can be neglected, but the shunt capacity is 
important. When noise figures are measured, Xo should be adjusted 
to a value which tunes out the input reactance of the network being 
measured. Then the noise generator may be considered to generate 
a voltage JBo \/2kI A F, and to have an internal series impedance Ro, 
and to operate into a resistive input. These are the most convenient 
conditions for the measurement of noise figures. The output of the 
noise generator can readily be varied by adjusting the cathode heating 
current and thus changing /. The temperature-limited diode is a 
very convenient noise generator for the broadcast and medium-high- 
frequency ranges. At the highest frequencies, specially designed noise 
generators of more complicated types must be used. 

h. Noise Figures for Two or More Networks tn Cascade, Let us 
suppose that we have two networks in cascade, as shown in Fig. 27, 
and that we wish to know the noise figure of the combination in terms 
of the noise figures of the individual networks. To find this, let us 

To Receiver 
Input 

Fig. 26. A temperature>limited di¬ 
ode connected as a random-noise gen¬ 
erator. (i2o and Xq are varied to 
match the receiver input.) 
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first consider the combination as a single network. Then, according 
to Eq. (142), the available noise output Ndb is 

A^«5 = F^GaJcTBab (150) 

where the subscript ab refers to the combination, and a and b refer to 
the individual networks. For simplicity, let us assume that the band- 

Network Network 

(a) (b) 
Fio. 27, Combination of two networks in cascade. 

widths of the two networks are identical and equal to the bandwidth 
of the combination. Thus 

= Ba = = B (151) 

From Fig. 27 it is also clear that 

Gai = (?.(?» (152) 

and, applsdng Eq. (142) to the single network o, we also have 

Na = FaGakTB (153) 

Now this noise would cause a noise output from h of 

Gj^a = F/^iGJcTB (154) 

if there were no noise generated in the network b itself. Furthermore, 
according to Sec. 6.9e, the noise output of b due to noise generated 
within it is 

(Ft - l)6ikTB (155) 

The total noise output of 6 is then the sum of Eqs. (154) and (165). 
Accordingly, 

Na = (Ft - l)GJcTB + FjGjGtkTB 

= (f„ + GMTB = (Pa + GatkTB (166) 
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Comparing Eq. (156) with Eq. (150), we have 

Fab = F^ + (157) 

This gives the noise figure of the combination of the two networks in 
cascade in terms of the noise figures of the individual networks and 
the gain of the earlier one. The derivation of Eq. (157) involved the 
assumption of equal band widths for the two networks. If this assump¬ 
tion is not justified, the formula for Fab will be more complicated. 

Formula (157) can readily be generalized for more than two net¬ 
works in cascade. Thus, if the three networks a, 6, and c are in cas¬ 
cade, we have 

Fau = F^ + =Fa + (158) 
Cjob iJa^b 

If the gains of the individual networks are appreciably greater than 
unity, only the noise figures of the earlier ones will be important. 

The discussion in Sec. 6.7c of the effect of coupling between the 
antenna and input circuits on the signal-to-noise ratio shows that the 
best noise figure for a combination of two networks^ is not necessarily 
obtained when the impedances of the networks are matched. The 
methods of Sec. 6.7c can be used as a guide in analyzing any particular 
case of interest. 

i. The Measurement of Noise Figures with Networks in Cascade. 
When two networks are in cascade, as shown in Fig. 27, if the gain of 
the earlier network is low, it may be necessary to determine its noise 
figure by indirect means. This may happen, for example, if the net¬ 
work a is the radio-frequency stage of an ultra-high-frequency ampli¬ 
fier. In this case, if Fh and Fab can be determined by the standard 
means of measuring noise figure and if the gain Ga of the network a 
can be determined by inserting and removing the network a, then Fa 
can be determined by substitution in Eq. (157). 

A second method of measurement of Fa and Fab is based upon what 
is known as the Y figure of a divided network. Suppose that the inpUt 
of the network b is connected to a passive impedance^ having the value 
of the output impedance of the network a. Then the noise output of 
the network b is 

Nb - FiPbkTBb (159) 

^ The two networks in that case were the antenna circuit and the rest of the 
receiver. 

* A passive impedance is one that generates no emf other than its normal 
thermal noise. 
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Let us now define Y by the equation 

r = ^ (160) 

From Eqs. (150), (159), and (160) it then follows that 

(161) 
(jo J^ah 

If we continue with the previously made simplifying assumption of 
the equality of band widths, then Eq. (161) becomes 

= ^ (162) 

Substituting Eq. (162) into Eq. (157), we obtain 

„ _ Ft(Y - 1) + 1 
^ a (163) 

Equations (162) and (163) are often convenient formulas for deter¬ 
mining Fa and Fab* It is frequently easier to measure Fby F, and Ga 
directly than it is to measure Fa or Fab* 

j. The Noise Figure as a Afeasure of Noise Quality. The noise 
figure of a network, particularly a receiver, has come into widespread 
use in recent years as a fimdamental measure of noise quality. We 
now wish to pause briefly to consider the merits and demerits of the 
noise figure for this purpose. 

The outstanding merit of the noise figure is that it directly com¬ 
pares (or should compare) the actual noise obtained with that which 
would be obtained if the network were ideal from a noise standpoint. 
This is an absolute measure of quality and immediately tells whether 
it is possible and worth while to try to improve the noise characteristics. 
A second advantage of the noise figure is that it applies to four-ter¬ 
minal networks in general and is not limited to receivers. Finally, 
the noise-figure method has the convenient property that it has simple 
means for combining the noise figures of networks in cascade. 

Against these advantages, there are certain disadvantages whose 
importance should be weighed. The fundamental disadvai^tage of 
the noise-figure definition is that it assumes that the actual selectivity 
(gain vs. frequency) curve of the network is also the optimum possible 
for best signal-to-noise ratio in the output. In Chap. IV, we discussed 
the effects of the width of the pass band on the signal-to-noise ratio 
for the elementary case of uniform transmission in the pass band, and 
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we found that there is an optimum value. According to the noise- 
figure definition a network is not penalized for an improper selectivity 
characteristic, even though this may cause serious deterioration of its 
noise quality. To separate the noise and selectivity characteristics, 
it has been suggested that noise figuue shall be defined for each narrow 
frequency band df by the ratio 

F = 
dN 

GfkTdf 
(164) 

This differential noise figure’^ may then be plotted as a function of 
frequency to show the noise characteristics of the network. While 
this has considerable value, the real quantity of interest is the ratio of 
the actual total noise to the amount that it could be under the best 
possible noise conditions. In other words, a properly defined total 
noise figure F is what is really desired, and this includes a determina¬ 
tion of how near the selectivity characteristic of the receiver is to what 
it should be for best signal-to-noise ratio. 

Another important point is the matter of noise in the intermediate- 
frequency and image channels of a receiver. If a receiver responds to 
input noise in the intermediate-frequency and image channels, it 
should be penalized for so doing. To take care of this question, we 
can limit the integral in Eq. (138) to the signal-frequency channel. 
Then any gain that the complete receiver has in the intermediate-fre¬ 
quency and image channels will not contribute to the bandwidth B, 
which is used in Eq. (142) in determining the noise figure. If this 
change is made in the definition of B, the noise figure cannot be criti¬ 
cized for not taking intermediate-frequency and image-channel noise 
into account. 

k. The Absolute Sensitivity,^^ or ^^Field-strength Sensitivity,^^ of a 
Receiving Installation,^ We have now discussed the noise ratings of 
signals and of receivers or networks. Let us next turn to the noise 
rating of a complete receiving installation. In rating a receiving 
installation the question of interest is how large a field strength is 
Inquired of the incoming signal in order that the signal should override 
the noise. In order to be specific, North has rated receiving installa¬ 
tions on the basis of the field strength required to give a signal output 
equal to the noise output. He has called the numerical value of this 
field strength the absolute sensitivity of a receiving installation. As a 
somewhat more descriptive name, we shall call it the field-strength 
sensitivity. 

1 Nobth, D. O., The Absolute Sensitivity of Radio Receivers,” R,C.A. Rev.^ 
January, 1942. 
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In Fig. 28 is a schematic diagram of a receiving installation. If 
Ra is the resistive component of the antenna impedance, then the 
available signal power that the receiver can get from the antenna is 

{Eh)^ 
(166) 

where E is the field strength of the incoming field and h is the effective 
height of the antenna. At the same time, the total available noise 
power is 

U(TaRa + TR)B (166) 

where Ta = effective temperature of radiation resistance [defined in 
Eq. (90)] 

B = bandwidth 
Ra = radiation resistance of antenna 
R = ohmic component of antenna resistance 

so that 
Ra + R = Ra (167) 

The signal power output of the receiver 
will be 

{Ehy 
Ra "}" R 

cG (168) 

Fio. 28. Schematic diagram 
of a receiving installation. 

where G is the power gain of the receiver and 
c is the ratio of the actual signal power into 
the receiver divided by the available signal 
power. At the same time, the noise power 
output of the receiver is 

4kTRBdG + AkTARABdO + ^kT{RA + R){F - l)BcG (169) 

where the last term in Eq. (169 is due to noise generated within the 
receiver. The constant c in Eq. (169) may be assumed equal to c in 
Eq. (168) for a reasonably well-designed installation. 

According to the definition given above the field-strength sensi¬ 
tivity is that value of E for which Eqs. (168) and (169) are equal. If 
we call the field-strength sensitivity Es, then 

[TR + TaRa + T{Ra + R){F - 1)3 (170) 

The effective height h depends upon the polarization and direction 
of arrival of the incoming wave. North^ has shown that the effective 

^ North, D. D., The Absolute Sensitivity of Radio Receivers, R.C.A. Rev., 
January, 1942. 
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height can be expressed in terms of the wavelength X, the power 
directivity of the antenna, and the radiation resistance Ra- 
In particular, 

(iny 

where a and are angular coordinates defining the direction of arrival 
of the incoming wave and ^ defines its direction of polarization. Sub¬ 
stituting Eq. (171) into Eq. (170), we have 

El = 
4k{RA + R)B 

\2irJ \120)r/ 

[TR -b TaRa + T(Ra + RKF-1)] (172) 

This is a general formula for field-strength sensitivity. If 22 is neg¬ 
ligible, it reduces to 

Ta Qmr^kTB 

where, by previous convention, we have chosen T == 290°. The 
quantity F + Ta/T — 1 has been called the operating noise factor by 
North. Equation (173) shows the effect on the field-strength sensi¬ 
tivity of the wavelength, antenna directivity, receiver noise, and the 
incoming noise field. However, the practical value of the equation is 
limited by the difficulties in determining {oC)P,4>) and Ta- But 
these difficulties are by no means insuperable; and since the field- 
strength sensitivity is the real quantity of interest in rating receiving 
installations, determinations of Ea may come into more common use. 

The quantity Ta, the effective temperature of radiation resistance, 
is of great practical importance. This quantity depends upon the 
directional receiving pattern of the antenna as installed and upon the 
wavelength. In the broadcast band, owing to atmospherics, Ta is 
much higher than the standard temperature (T = 290°). At fre¬ 
quencies above 50 me, Ta continues to be higher than the standard 
temperature in urban localities in the daytime owing to diathermy 
noise and in all localities in certain directions of reception at all times 
owing to interstellar interference. However, it appears that at 
extremely high frequencies, with an antenna directed to eliminate 
interstellar interference as far as possible, values of Ta below the 
standard temperature might be obtainable. 

1 D^(a,fi,<t>) is normalized so that its average value for all possible values of 
a, i9, and ^ is unity. 
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1. The Noise Rating of Transmission Systems. Before closing the 
subject of noise rating, a few words should be said about the noise 
ratings of transmission systems, including both transmitter and 
receiver. One quantity of interest here is the power required to obtain 
a certain operating range in miles. Another matter of interest is the 
so-called ^'noise^educing'' properties obtainable with the system 
after a certain signal-to-noise threshold is exceeded. The noise-reduc¬ 
ing properties of FM and pulse modulation are considered in later 
sections. All that need be said here is that, as far as operating range 
as determined by the ability to get information through above 
unavoidable random noise is concerned, it appears that no system can 
do better for a given average power than ordinary amplitude modula¬ 
tion. In fact, the way in which all systems seem to find this an insup¬ 
erable limit suggests that we are here operating with something like a 
law of nature, of the type of the second law of thermodynamics, but 
here applied to information vs. fluctuation noise. A somewhat dif¬ 
ferent situation exists in noise-reduction schemes for signals already 
above the noise threshold, in which the amount of noise reduction 
obtainable depends upon the bandwidth and upon special characteris¬ 
tics of the type of modulation.^ 

Exercises 

1. Show that, if all the internal noise generated in an amplifier is due to the 
noise generated in the resistive component of the grid circut of its first tube, then 
the noise figure of the amplifier is F »> 2. 

2. Show that, if the input leads of an amplifier go directly to grid and ground 
of the first tube, and if the first tube has a high gain and has a negligible equivalent 
grid noise resistance, then the noise figure of the amplifier is F »« 1. All the 
noise in this case comes in with the signal. None is generated in the amplifier 
itself. 

8. If the input circuit of an amplifier has a resistive component Ro between 
grid and ground, and if the first tube has an equivalent grid noise resistance Ewi 
show that 

provided that no appreciable noise is generated in the amplifier after the first tube. 
4. In the circuit of Fig. 16, assume that the input circuit is critically coupled 

when the antenna is connected and that there is no resistance in the antenna circuit 
primary except the radiation resistance of the antenna. Assume that the grid-to- 

^ In a paper written after the present book was in process of publication, the 
author has analyzed more fully the problems discussed in this paragraph from the 
point of view of general information theory. This paper, entitled Some Funda¬ 
mental Considerations Concerning Noise Reduction and Range in Radar and 
Communication, will be published in Proc* I.R.E. 
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ground resistance of the input tube, when the antenna is connected, is 150,000 
ohms and that the of the tube is 240,000 ohms. Show that 

F « 2 I 240,000\ 
V 150,000/ 

5.2 

6. In the circuit of Fig. 17, assume that the input circuit is critically coupled 
when the antenna is connected and that there is no resistance in the antenna circuit 
primary except the radiation resistance of the antenna. For the numerical values 
given in Sec. 6.76, show that 

F 2.9 

6.10 Noise at Frequencies for Which Input Conductance Is Appre¬ 
ciable, a. Introdtiction. The theory of the shot effect at frequencies 
so high that transit time is no longer negligible is discussed in some 
detail in Sec. 8.8. Here we shall only outline the results and show 
their practical application. Theory predicts that for the temperature- 
limited diode the shot noise should gradually fall off with frequency as 
the transit time becomes appreciable. On the other hand, for the 
space-charge-limited diode, theory predicts that the shot noise will rise 
with frequency as transit angles become appreciable, because the noise- 
reduction effects of space charge deteriorate. For the more important 
case of the negative-grid triode operated in the space-charge-controlled 
region, in addition to the rise in shot noise that occurs for the cor¬ 
responding diode, there is also additional shot noise due to noise 
induced in the grid circuit by the plate-current fluctuations as they 
pass the grid. It so happens that, at the same frequencies for which 
this grid-induced shot effect becomes important, the triode also starts 
to show input conductance. In Sec. 8.8 it is pointed out that the size 
of the grid-current fluctuations due to grid-induced shot effect are 

given by the formula 
= lA3{4kTcg, AF) (174) 

where Qg is the input conductance of the tube and To is its cathode 
temperature. It thus appears that the input conductance of the tube 
may be considered as a source of thermal noise. However, its effective 
temperature (1.437^) is about five times as high as room temperature, 
so that, corresponcflngly, the noise power that it generates is five 
times as great. We may therefore conclude that, owing to transit 
times, the shot effect in tubes rises with frequency and, furthermore, 
that it is considerably worse for tubes with grids than it is for diodes. 

6. The Conversion Conductance of a Linear Rectifier. At this point, 
we shall digress for a moment to calculate the conversion conductance 
of a linear rectifier. Suppose that we have a linear rectifier having 
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the current-voltage characteristic 

i = ge (when e > 0) ) . . 
= 0 (when e < 0) / ^ ' 

where i is current, e is voltage, and ^ is a constant. Such a rectifier 
might be either a diode or a crystal operated at high signal levels. 
Next suppose that we apply to the rectifier a voltage 

e ^ A cos c*)i + S cos [(w + a)(\ (176) 

where A cos <^1 is the large signal coming from the local oscillator of a 
superheterodyne receiver and B cos [(ca + a)t] is the relatively small 

^^Acos «t+Bcos[(» + a)tl 

-iiiiiiiiliiliiiiiiiiiiiiiiilililiiiliiiiiiiii 

Fia. 29. 

incoming signal. The voltage e is shown in Fig. 29, and so is its enve¬ 
lope. If we let R stand for the envelope of e, then, according to Eqs. 
(42) and (44) of Chap. V if B/A « 1, 

R = A + Bcosat (177) 

If the output of the linear rectifier to which the voltage e is applied 
has the high frequencies w and <a + a, etc., filtered out of it and if 

a, it is clear from Fig. 29 that the remaining output ii will be 
approximately 

= + (178) 

since the average value of a half sine wave is l/ir times its peak value, 
t.c., 

t lo 
Since a is' the intennediate frequency of the signal corresponding to 
£q. (176), it follows from Eqs. (176) and (178) that the conversion 
conductance of a linear rectifier is 

(180) 
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c. Ultra^high^frequency Converters, In the light of the foregoing 
development, we now shall briefly discuss ultra-high-frequency con¬ 
verters from the standpoint of noisiness. Since converters are one of 
the principal sources of noise, if not the principal source, at the highest 
frequencies, this subject is of special importance. 

In Sec. 6.5/1 it is pointed out that triode mixers are less noisy than 
pentode or other types of multigrid mixers or converters. Conse¬ 
quently, the triode is to be preferred over the other types of converters 
discussed in Secs. 6.5g and h. However, at ultra-high frequencies, 
the grid-induced shot noise present in a triode suggests that a diode, 
since it does not have such noise, may be a less noisy converter. In 
Eq. (71) it is shown that the equivalent grid noise resistance of a 
triode mixer at low frequencies is 

(triode) (181) 

When transit times become appreciable, we must add to this the 
equivalent resistance of the grid-induced shot noise according to (174) 
and obtain 

(triode) = ^ ^ + 1.43 ^ (182)‘ 

would be still further increased if we took into account the fact 
that space-charge noise-reduction effects have started to get out of 
phase. 

To compare with (182), we have for a diode rectifier, according to 
Eqs. (43) and (180), 

R,^ (diode) = 0.644 ^ - 

= 0.644 5 - = 0.644 J - (183) 
T g, T g 

For a crystal rectifier, we have, according to Eq. (180) 

(crystal) = — = ^ (184) ^ 
Qo g 

^ The last term in Eq. (182) may give the erroneous impression that the larger 
the value of gg, the less noisy the triode mixer. Actually, the term \,^ZTc/Tgg 
represents an equivalent grid noise resistance only if is much larger than the 
external grid-circuit admittance. When this is not the case, the external grid 
circuit by-passes a major portion of the grid-induced shot noise. 

* Crystal noise generally exceeds that due to the crystals resistance and tem¬ 
perature alone, so that there is apparently some ‘‘contact” noise present. 
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From Eqs. (182) to (184) we may conclude that, of the three cases 
studied, least noise is generated in the converter when a crystal is used 
and most noise is generated in the converter when a triode is used. 
These conclusions are contingent upon the practical obtainable values 
of the various conductances involved and upon whether or not it is 
practical to develop the impedances in the antenna and input circuits 
required to match the input impedance of the converter, or, more 
accurately, to develop the impedances required for optimum mismatch 
to obtain minimum noise. It should also be pointed out that the 
higher conversion gain of a triode, especiallv at lower frequencies, 
makes it less likely that later tubes in the receiver will generate appreci¬ 
able noise when a triode converter is used. Consequently, one cannot 
make a dogmatic statement about what type of converter is best in any 

particular case without studying the 
situation in detail. 

_ , d. Input Loading Due to Cathode 
ei =i::c p 2p Lead Inductance,^ Earlier in this sec- 
i-X-—J tion, we mentioned the fact that a 

***!§*“ ' triode develops input conductance I I owing to transit time, and we pointed 
I—*--—I .— out that this input conductance may 

be considered a source of noise. We 
shall now discuss another important 

cause of input conductance at ultra-high frequencies, namely, cathode 
lead inductance, and investigate its effect upon noise. 

In Fig. 30 is a schematic diagram of the input circuit of a tube show¬ 
ing the grid-to-cathode capacity C and the cathode lead inductance 
L. We shall now show that feedback across L gives rise to input 
conductance. 

Let Co = grid-to-ground (input) voltage 
Cl = grid-to-cathode voltage 

Fia. 30. Input circuit of a tube 
having cathode lead inductance. 

Then 

Now 

z’o 

tp 

voltage across L 
input current 
plate current 

®o Cl + Cl = — + i^uL 

MCl —JliU 
aC(r, + Z,) 

(186) 

(186) 
” rp + Zp 

^ A more complete dsBcuesion of this and related subjects is giveo bjr Strutt and 
YaoPerZid, Ptve, August, 1988, p. 1011, 



miSB I: GENERAL AND PRACTICAL DISCUSSION 269 

where r, = plate impedance of tube 
Z, = load impedance of tube, and rp + «I< 

Substituting Eq. (186) into Eq. (185) we have 

Co o)L + j 
Ho>L 

(*3C(rp + Zp)_ 
The apparent input impedance is then 

Co 

to 

fJLOsL 

Let us assume that 
o)C(rp + Zp) (tsC 

and 
tio)L 

uyC{Tp + Zp) ^ o>C 

(187) 

(188) 

which is generally true in practice, and transform the apparent series 
resistance in Eq. (188), n<aL/cjC(Tp + Zp)j into an equivalent parallel 
resistance. Using the method of Fig. 31, we obtain 

Effective parallel input resistance (l/a>0^ 
yL(j>L/(aC(rp + Zp) 
Tp + Zp 

fxc^^LC 
(189) 

This may also be expressed as an equivalent parallel input conductance 

(190) 

Equation (190) or (189) gives the input loading due to cathode lead 
inductance. 

Comparison of Eq. (190) with Eq. (61) of Chap. VIII shows that 
both the input loading due to cathode inductance and the input load¬ 
ing due to transit time increase with the square of the frequency. 
The situation with respect to noise, 
however, is different. The increased 
noise due to cathode loading is the in- R 
creased noise due to feedback of the -- 

shot fluctuations of the plate current x »r r . 

L. However, to same fe^- 3^ TWormation of a 

back causes a regeneration of the Slg- high paraUel resistance into a low 

nal of essentially the same amount, series resistance. 

Since the feedback voltage across L is in quadrature with both the grid 
voltage and the plate current, the feedback signal and feedback noise 
are both combined with the original values on an addition-of-power 
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basis. Consequently, the signaUto-noise ratio is essentially unaffected by 
feedback in the cathode lead indwtance. 

Methods of neutralizing the loading effects due to both transit time 
and cathode lead inductance may be found elsewhere.^ However, 
such neutralization does not remove the grid-induced shot noise. 

6.11 Noise Reduction in Frequency Modulation, a. Introduction, 
In Secs. 5.5 and 5.8 we discussed the reduction in common-channel 
interference obtained by using wide-band frequency modulation rather 
than amplitude modulation. A closely related phenomenon is the 
reduction of noise obtained by using FM. Before discussing this 
subject quantitatively, we shall consider a physical picture of what 
occurs. 

In wide-band frequency modulation of a carrier the carrier fre¬ 
quency is varied by relatively large amounts in response to a signal. 
To be specific, consider the simple FM signal 

a = A sin ^tFI + ^ sin (191) 

In Eq. (191) a is the instantaneous value of the amplitude of the FM 
signal, A is its peak value, t is time, F is the carrier frequency, m is the 
modulation frequency, and AF is the peak value of the deviation of the 
carrier frequency from its unmodulated value F. If AF is much greater 
than the signal is said to have wide-band frequency modulation. 

Fig. 32. Sideband distribution in a wide-band frequency-modulated signal. 

The amplitude and frequency distribution of the sidebands of Eq. 
(191) are shown in Fig. 32. A detailed investigation of the relations 
of the magnitudes, phases,^ and frequencies of these sidebands with 
respect to each other and with respect to the carrier will show that 
these relations are such as to be very effective in causing a large devia¬ 
tion AF of the carrier frequency at the rate of the modulation frequency 
n. If the magnitudes and phases of the sidebands were distributed at 
random, the frequency deviation obtained at the rate of the modular 

^ Tbbman, ''Radio Engineers' Handbook," pp. 472-478. 
* The phases are given in 8eo. 5.2. 
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tion frequency /x would be very much reduced. Here we have the 
first reason for the noise-reducing properties of FM, since noise con¬ 
sists in a random distribution of sidebands. 

When a carrier Ai cos and a single sideband A2 cos o>2t are super¬ 
imposed, the frequency deviation of the carrier caused by the side¬ 
band, according to Eq. (48) of Chap. V, is proportional to a>2 ~ wi and 
the modulating frequency is (l/2ir)(o)2 — wi). Consequently, if a 
random distribution of noise sidebands is superimposed on a carrier, 
those sidebands which are most effective in causing frequency devia¬ 
tion of the carrier will cause high modulation frequencies. In wide¬ 
band frequency modulation, as, for example, in the FM broadcasting 
system in use in the United States, most of these modulation-frequency 
components are of too high an audio frequency to pass through the 
audio amplifier of the FM receiver. Consequently, they cause no 
noise. Thus only those noise sidebands which are near the carrier 
frequency and are therefore relatively ineffective in producing fre¬ 
quency modulation will generally cause noise in an FM receiver. This 
is in decided contrast with the signal, which has effective sidebands 
far removed from the carrier and all of whose sidebands act together 
to swing the carrier frequency at the rate of the signal modulation 
frequency. Here we have the second reason for the noise-reducing 
properties of FM. 

The discussion of the foregoing two reasons for FM noise reduction 
requires that the signal level shall exceed the noise, preferably by a 
good margin of safety. If the noise amplitude exceeds the signal, then 
(see Sec. 5.8) the noise supplies the effective carrier and the magni¬ 
tudes, frequencies, and phases of the signal sidebands are no longer 
correct for causing efficient swinging of the effective carrier frequency. 
Thus, when the noise level exceeds the signal, the foregoing noise- 
reducing properties of FM are lost. 

It will be noted that we have so far said nothing about the limiter or 
the balanced discriminator of the FM receiver, which are widely 
believed by the public to be the cause of FM noise reduction. These 
are very valuable in an FM receiver, but the function of the limiter is 
to strip the signal of amplitude modulation, while the balanced discrim¬ 
inator makes pure amplitude modulation ineffective in causing output. 
With the aid of these devices, the receiver is left sensitive only to fre¬ 
quency modulation, so that the previously mentioned FM noise- 
reduction properties can take effect without being masked by any 
amplitude-modulation disturbances. Both the limiter and balanced 
discriminator are usually necessary in practice, since neither is perfect 
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in operation. The limiter is good with respect to random noise, but its 
time constant might cause it to miss the early parts of sharp impulses. 
The latter are largely eliminated from the output by a well-balanced 
discriminator. 

6. The Reduction of Random NoiseThe degree of frequency 
modulation and pf amplitude modulation by random noise of a specified 
amount cm a carrier of given size has already been found in Eqs. (13) 
and (14); 

= j \//2N* da (192) 

THr = '\//2aW® da (193) 

These equations were derived for the standard case in which the carrier 
is at the center of the pass band. In the above equations 

mA = degree of amplitude modulation by the noise 
Mf = degree of frequency modulation by the noise 
AF = maximum deviation frequency permitted in FM system 
N = rms value of noise in the frequency interval da 
a = frequency difference of a given frequency F from the carrier 

Fo, that is, a = F — Fq, 
In the case of any particular receivers the integrals in the above 
equations are integrated over the pass bands of the receivers. If we 
make the simplifying assumption that the receivers have uniform gain 
in the pass band so that N, if it is due to shot and thermal noise, is a 
constant, then the above equations become 

Ma -i€ 
+ HBa JV /- 

2N* da = VWji 
HBa ^ 

Mr = 
1 

^ AF € HBr A 2 AF -v/S 

(194) 

(196) 

when the pass band of the AM receiver has a width of Ba and the pass 
band of the FM receiver has a width of Br. 

Now let F. be the width of the audio pass band of the AM ;recdver. 
Normally, we shall then have 

Fa = }iBA (196) 

* For a thorough study, including the case when limiting is incomplete, see 
Carson and Fry, Bell Syetem Teoh, October, 1987. 
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The effective noise-to-signal ratio at the output of the receiver, referred 
to a 100 per cent modulated signal, will then be 

/eT 
= -j- VFa 

Let us assume that the FM receiver has the same audio pass band 
Fa as the AM receiver. Since, as previously pointed out, the audio 
frequency of the noise will be equal to the frequency difference between 
the original radio-frequency noise and the carrier, only that noise in 
Eq. (195) due to components in the range ±Fa from the carrier will 
pass through the audio amplifier. Therefore, the effective noise-to- 
signal ratio at the output of the FM receiver, referred to a 100 per cent 
modulated signal, will be 

1 I 
2NV da = 

2N Fg VFa 
A AF 

Comparing Eq. (197) with Eq. (198), we obtain for the noise reduction 
due to FM as compared with AM 

Noise-voltage-reduction factor = E = — = \/3^ (199) 
nr r a 

A pictorial idea of the noise reduction^ of FM is shown in Fig. 33. 
In the American system of FM broadcasting (see Sec. 5.13) there 
is an accentuation of high audio frequencies at the transmitter and 
a compensating reduction of highs at the receiver. Figure 33c shows 
how this compensation still further decreases the noise in an FM 
receiver. The corresponding change in Eq. (199) is readily shown to 
be approximately 

where R' is the noise-voltage-reduction factor of a compensated FM 
system. 

c. The RedwMon of Impulse Noise. Let us next consider the way 
in which FM reduces impulse noise. In Sec. 6.2o and g it was pointed 
out that noise of an impulsive type, such as automobile ignition noise, 
will show increasingly fine detail as the bandwidth of reception is 
increased, provided that the bandwidth is sufficient to separate the 
individual impulses. We found in Chap. IV that impulses have a 
uniform distribution of frequency components throughout the fre- 

* The shaded areas in Fig. 33 do not have quantitative significance since the 
abscissas are drawn on a power basis and the ordinates on a voltage basis, 
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quency spectrum and that these components are all in phase. Conse¬ 
quently, the peak amplitudes of received impulses are proportional to 
the band\vidth of reception. Furthermore, because of the relations 
between bandwidth and detail worked out in Chap. IV, the durations 
of impulses are inversely proportional to the bandwidth of reception. 
As applied to the reduction of impulse noise in FM reception, the most 

rc--- - - 

1 
(C) Equalized 

B 
A 

F. M. Receiver | 
_j t 

r 
f-D 1-Fa. f-150af,f+1500, f+Fa f+D 

Fiq. 33. Pictorial presentation of the relative amounts of random noise in AM and 
FM reception. (AF = D,) 

important of the foregoing characteristics is the fact that the amplitude 
of impulse noise is proportional to the bandwidth. In this respect it 
differs from random noise, whose amplitude is proportional to the 
square root of the bandwidth. 

We shall now examine the problem analytically and show that an 
impulse will generally cause both frequency and amplitude modula¬ 
tion of the carrier and that the FM and AM modulating signals will be 
of a similar nature. Suppose that we have a carrier A cos 2wFt and 
an impulse of strength S occurring at time t = Then, according 
to Sec. 4.18, this may be expressed as 

a = -4 cos 2irF^ + Sb{t — ^i) 

= A cos ^Ft + ^ ^ "" ^i)] (201) 
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If this signal is passed through the receiver having a pass band from 
F — (B/2) toF + {B/2), it becomes 

ai — A cos 2irFt + 
s 

cos o>(t — ti) dci) 

= A cos 27rFt + cos [27r(F + M)i — 27r(F + d/i 

The phase angles 27r(F + m)<i of the sidebands in Eq. (202) are not 
symmetrical with respect to the carrier because of the presence of F, 
unless ti = 0. Therefore, according to Sec. 5.6, they will cause fre¬ 
quency modulation as well as amplitude modulation. Using the 
method and notation of Sec. 5.6c, we can readily determine the amount 
of amplitude and of frequency modulation. We shall assume that 
the impulse noise in Eq. (202) is small with respect to the carrier so that 
the simple analysis for small sidebands will apply. Thus, in the nota¬ 
tion of Sec. 5.6c, 

0, = ~2ir(F + M)ti (203) 
^2 = +27r(F - M)ti (204) 

= (205) 
IT 

A = A (206) 

Substituting in Eqs. (70) and (71) of Chap. V, we have 

2As = - ^/(l + cos 4wFti) =^ScoB 2wFti (207) 
TT TT 

tan 4*8 ~ 
sin [27r(F — M)i^i] + sin[ —27r(F + m)^i] 
cos [2Tr{F — + cos[ —27r(F + 

= — tan27rAi<i (208) 

4*8 = —2^}iti (209) 

Thus the symmetrical sidebands are of amplitude 

—rr S cos %rFti 
V \/2 

and have a phase shift proportional to frequency. According to Eq. 
(66) of Chap. V, the AM signal is then 

Jo r 
cos 2wFti cos [2Trix{t — ^i)] dii 

\/2S cos 
7r2?r(< - 

>s %rFti . 2-1 
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The peak value 

The fonn of Eq. 
tion is 

of Eq. (210) occurs at i = h, for which 

Oam (max) = '\/^S{B/2) 2iKFti (211) 
TT 

(210) is shown in Fig. 34. The peak degree of modula- 

uam ^ax) ^ V2S(B/2) ^2^2) 

Fio. 34. Amplitude modulation of a carrier due to an impulse at t ^ h (carrier at 
center of pass band of transmission system). 

Next, to find the FM signal, we substitute in Eqs. (72) and (73) of 
Chap. V, to obtain 

2.4. = - Vl - cos 4^Fti = ^ -S sin 2irF<, (213) 
W TT 

and 

tan 0a 
sin [ —27r(f + m)<i] — sin [27r(F -- fx)ti] 
cos [ —2ir(F + n)ti] — cos I27r(F — /x)^i] 

= cot (2irjiJLti) (214) 

or 

I — 2r/iti (215) 

Thus the antisymmetrical sidebands cause a carrier phase, according 
to Eqs. (57) and (74) of Chap. V, of 

B 

2irF< + sin 2tF<i sin [^27rM(< - <i) + d/t (216) 

The instantaneous frequency is 1/2t times the time derivative of 
Eq. (216) and is accordingly 

B 

f~F+[ * 2:^^ sin 2tF< 
irA 

1 cos j^2irM(< — <0 + gj dll 

Jo ^ 2irF<i sin ]^ii{t — <i)] d/i 
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=.F - 
V2iS sin 2firFii 

where 

irAV^it - <i)]* 

|—2jr^ (< — h) cos j^2jr ^ (< — <i) j + sin [^2ir^ (< - <i)j| 

„ ^/2SiB/2y sin %rFti ( cos x , sin a:\ 
= F-^-{--ir +1^) vA 

X = 2w^(t — <i) 

(217) 

(218) 

(219) 

The form of Eq. (219) is shoAvn in Fig. 35. The peak frequency devia- 

The frequency deviation is thus 

-\/2s(^Y sin2«^<i 
/ COS a; , sin x\ 
\ X J 

Fio. 36. Frequency modulation of a carrier due to an impulse at ^ *» fi (carrier at 
center of pass band of transmission system). 

lion occurs when x = 1.265, for which value 

_COSX Si^^pggy 

X x^ 

Thus the maximum frequency deviation is 

:AfFM = 

0.357 sin27rF^i 

wA 

The peak degree of frequency modulation is then 

Afru (^)* 
AF tA AF 

(220) 

(221) 

(222) 

Since only those frequencies which get through the audio system 
will be heard, we must substitute F. (the width of the audio pass band) 
for B/2 from Eq. (217) on, to get the true audio output. Substituting 
F. for B/2 in Eq. (222), we obtain for the peak output (referred to a 
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100 per cent modulated signal) 

0.357 V^SiFaY sin 2wFti 
tA af 

(223) 

For the AM receiver, B/2 is equal to Fa so that Eq. (212) becomes 

^/2SFa 
irA 

cos 2nrFti (224) 

To find the noise-voltage-reduction factor of FM for impulse noise, 
we then divide Eq. (224) by Eq. (223) and obtain 

R impulse 
cot 2TrFii AF 

0.357 Fa 
(225) 

Equation (225) for impulse noise is rather difficult to interpret, 
because of the factor cot 27rF^i. This factor expresses the fact that 
the answer to the question of how much amplitude modulation and how 
much frequency modulation of the carrier are caused by the impulse 
depends upon h, the time of occurrence of the impulse. After the 
impulse passes through the amplifier of bandwidth B, it becomes a 
wave train of the approximate frequency F, but its phase relation to the 
carrier is still determined by ^i. If we ignore this phase-relation effect, 
since sin 27rFfi and cos 27rF/>i have the same average value for random 
values of t\, we obtain for the remaining noise-voltage-reduction factor 

1 AF ^ ^ 
0.357 Fa Fa 

(226) 

This may be compared with the corresponding value for random noise 
given by Eq. (199), and we see that the noise reduction in both cases is 
proportional to AF/Fo. 

The practical importance of Eqs. (225) and (226) depends upon 
whether or not practical impulse noise is similar either to a series of 
ideal impulses or whether it at least gives wave trains after passing 
through an amplifier of bandwidth B that are similar to those produced 
by ideal impulses. There is experimental evidence that there is 
actually considerable similarity. In any case, the theoretical noise- 
reduction properties of FM for random noise and impulse noise are 
quite similar, so that the factor AF/F* at least may be expected to hold 
for practical impulse noise. 

The foregoing analysis applies to impulse noise that is smaller than 
the signal carrier as it reaches the frequency detector. For impulse 
noise that is larger than the carrier, the wide bandwidth of the amplifier 
ahead of the limiter keeps the impulses short, so that not too much FM 
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quadratic content is left in them after they pass through the limiter. 
Thus the limiter in wide-band FM tends to reduce impulse noise even 
if it exceeds the carrier strength. As previously mentioned, both the 
limiter and the balanced discriminator are relied upon to remove 
residual amplitude modulation due to impulse noise in an FM receiver. 

Entering Limiter 
Fig. 36.—Illustration of the improvement threshold (quieting threshold) in FM. 

d. Improvement Thresholds and FM Quieting, The noise-reducing 
properties of FM systems, especially with regard to random noise, 
require that the signal level shall exceed the noise level. When the 
noise exceeds the signal, the situation becomes reversed and the noise 
tends to wipe out the signal. The corresponding phenomenon for 
interference is illustrated in Fig. 27 of Chap. V; the same figure will 
serve as well to illustrate noise reduction and is reproduced here as 
Fig. 36. For a given receiving installation, having a specified amount 
of noise, there is consequently a sharp threshold value of FM input 
signal 'above which the output signal is relatively free of noise and 
below which the output signal is practically all noise. This threshold 
is often referred to as an improvement threshold. 

The receiver noise level for random noise at the input to the limiter 
is proportional to the square root of the high-frequency bandwidth; 
and since the bandwidth is approximately equal to twice the peak 
deviation frequency AF, the noise level at the limiter is proportional to 
V®. On the other hand, the FM noise reduction for random noise 
is \/3 AF/Fa^ Consequently, the larger the value of AF, the greater 
the signal required to reach the improvement threshold; on the other 

^ 20 logio (AF/Fu) is sometimes called the decibel quieting effect of an FM 
system. 
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hand, the greater the noise reduction once the improvement threshold 
is reached. Therefore, the optimum value of the maximum frequency- 
deviation AF in an FM system is a compromise between the service 
range in miles required and the decibel quieting effect of FM desired.* 

Before leaving the general subject of FM quieting, it should be 
mentioned that, whereas the presence of a carrier increases the back¬ 
ground noise in an AM receiver, as pointed out in Sec. 6.8c, the presence 

Fig. 37, Pulse-phase-modxilation signal with superimposed noise. 

of a carrier decreases background noise in an FM receiver because the 
carrier^ takes control of the receiver signal and reduces the frequency 
deviation due to noise to a small value. Consequently, FM receivers 
are notably quiet during pauses in a program. This phenomenon is 
not actually different from ordinary FM quieting already discussed, 
but its effect is especially notable during the passages in a program 
when there is no signal modulation. 

e. Noise Reduction in Pulse-modulation Systems.^ Various pulse- 
modulation systems discussed in Sec. 6.12 also have noise-reducing 
properties. Consider the pulse-phase-modulation signal^ in Fig. 37, 
in which a background of superimposed random noise is also shown. 
In this case, the desired signal, say audio, modulates the pulse phase. 
The pulses themselves occur at a superaudible rate, say 50,000 per 
second, and their length is perhaps 1 or 2 /isec. These pulses in turn 
modulate the radio-frequency carrier. The two dotted lines in Fig. 
37 represent the levels of operation of top and bottom limiters, so that 

1 This subject is ably and extensively discussed by M. G. Crosby, The Service 
Range of Frequency Modulation, R,C,A, Rev., January, 1940, p. 349. Crosby 
and V. D. Landon are responsible for much of the analysis of the noise reduction by 
FM systems. 

* This requires that the carrier shall exceed the noise level, as explained in 
Sec. 5.8. 

* Only random noise will here be considered. 
^ This signal has also had the radio frequency removed. 
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only the signal between the two dotted lines reaches the final pulse- 
phase detector. Offhand, it might appear that the noise has been 
completely eliminated, but we shall see on closer investigation that that 
is not the case. 

In Fig. 38 is shown a single pulse 
from Fig. 37. It will be noted that 
its sides do not rise and fall verti¬ 
cally but have a finite slope limited 
by the bandwidth of the system. 
The dotted sloping lines represent 
the original signal pulse, and the 
solid lines represent the pulse with 
the noise superimposed. The dis¬ 
tances N and N' represent the noise 
amplitudes during the pulse rise and 
fall, respectively. 

If the pulse-phase detector operates by location of the leading edge 
of the pulse, the noise in Fig. 38 will cause a change At in the location of 
the pulse where 

At ^ N cot 6 (227) 

If 1/T ^ fp is the unmodulated pulse rate, then the pulse-phase 
shift due to the noise is 

Time 

Fig. 38. Expanded view of a single 
pulse from Fig. 37. 

= 2jr 2ir ^ cot 0 = cot 6 (228) 

Furthermore, 

^ = nme4riii = 2/c-S (approx) (229) 

where /« is the bandwidth of the frequency components in the pulse 
(see Sec. 4.7). Substituting Eq. (229) in Eq. (228), we have 

(230) 

This is the pulse-phase shift caused by noise. 
Not all this noise, however, gets through the audio amplifier. If 

Fa is the bandwidth of the audio amplifier, then only noise components 
lying within -|-F« of the pulse frequency or its harmonics will cause 
noise that will get through the audio amplifier. Thus, if the noise 
has components up to the frequency/b (corresponding to a bandwidth 
2/b for the intermediate-frequency amplifier of the receiver), then only 
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a factor 

2^ ^ = 2 — 
fp fs fp 

(231) 

of the total noise power represents effective audio noise power. The 
factor fs/fp in Eq. (231) represents the number of harmonics of the 
pulse frequency l3dng within the receiver's bandwidth, and the factor 2 
is inserted because components on either side of a pulse-frequency 
harmonic can cause audio noise. 

• Reducing Eq. (231) to a voltage basis and inserting it in Eq. (230), 
we have for the pulse-phase shift caused by effective audio noise 

<I>N — 4 '2Fa^N 

fp' fc S 
(232) 

If A<f> represents the maximum pulse-phase shift available in the sys¬ 
tem, then _ 

niN = 
4>n' 

A<t> 
± 
^<l> \ fp fc s (233) 

represents the degree of effective audio noise modulation. We thus 
see that despite the top and bottom limiters in Figs. 37 and 38 there 
still is a definite amount of random noise in a pulse-phase-modulation 
receiver. 

Next let us determine the noise-reduction factor of a pulse-phase- 
modulation system. Other things being similar, the input noise 
powers in an AM and a PPM receiver stand in the same ratio as their 
bandwidths. Therefore, if N' represents the AM receiver noise volt¬ 
age and N represents that of the PPM receiver 

N' 
N 

(234) 

where the bandwidth of the AM receiver is 2Fo. At the same time, 
owing to the fact that all the PPM signal power is concentrated into 
the pulses, the ratio of AM and PPM power levels, for the same aver¬ 
age power, is 

' fp (236) 

where a is the pulse length and T — \/fp is the time between pulse 
centers. Combining Eqs. (234) and (235), we have 

W _N [fT 
S' ~ 8 yjfpafp 

(236) 
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Since the degree of effective audio noise modulation in the AM receiver 
is N'/S', we have for the noise-voltage-reduction factor of PPM, 
accor^ng to Eqs. (233) and (236), 

^ fc 
IT ^/2 V afa fp 

Since 

fs =fc = ^ (approx) 

in a well-designed PPM receiver, Eq. (237) reduces to 

If we next let 

■RpPM 
_ A<l> ^ ^ A<t> / 1\ 

TT \/2 fp TT \/2 \^/P/ 

A<t) = TT 

which is a reasonable value, we obtain 

= J_ J_ 1 T 
V2^fp \/2« 

(237) 1 

(238) 

(239) 

(240) 

(241) 

The noise reduction is thus inversely proportional to the fraction of the 
total time that the pulses are on. 

The foregoing discussion of noise reduction in pulse-phase modula¬ 
tion illustrates the general methods to be used in calculating the noise 
reduction in any type of pulse modulation. The reader can calculate 
the noise reduction of any other type of pulse modulation shown in 
Sec. 5.12 by similar means. 

/. /Some General Facts about Improvement Thresholds, In subsection 
d above we noted the existence of an improvement threshold in the 
case of an FM receiver. It should be realized that the presence of an 
improvement threshold is not limited to FM systems but is a character¬ 
istic of all modulation detectors whose operation depends upon the 
amplitude, phase, and frequency relations between a transmitted 
carrier and one or more sets of sidebands. This includes practically 
all modulation systems in use today except single-sideband amplitude 
modulation, in which the carrier is supplied at the receiver. 

In the case of pulse-phase modulation discussed above, the improve¬ 
ment threshold occurs when the signal pulses are twice as high as the 

1 This result was independently derived by H.O. Peterson. 
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peak noise fluctuations that are likely to occur during the reception 
of a message. At this level it is possible to use top and bottom limiters 
to remove all noise except that which occurs during the time of rise 
and fall of the pulses. If the signal falls below the improvement- 
threshold level, the reception of noise between pulses causes a sudden 
great increase in the noise output, usually so great that it will blanket 
the desired signal. 

In the case of FM, when the signal exceeds the noise entering the 
detector, the frequency modulation of the signal by the noise is rela¬ 
tively small, as has already been explained. If, however, the noise 
exceeds the signal, then it is the noise which controls the phase of the 
signal-plus-noise combination, and the various sidebands of the desired 
signal are no longer coherent in phase with the effective carrier and can 
no longer operate effectively in unison to give large amounts of fre¬ 
quency modulation. The transition level between larger signal and 
larger noise is the improvement threshold in frequency modulation. 

In the case of double-sideband amplitude modulation, there is also 
an improvement threshold. Below this threshold, the noise is large 
enough so that the carrier is modulated more than 100 per cent most 
of the time by the noise sidebands. This eliminates most of the desired 
signal or transforms it into distortion. Above the threshold the upper 
and lower sets of sidebands of the desired signal, because of their 
phase relation with respect to each other and with respect to the effec¬ 
tive carrier, have double efficiency in causing amplitude modulation. 

In all three cases when the signal-to-noise ratio exceeded the 
improvement threshold, the detector was able to use the coherence of 
the signal carrier and its sidebands to give the desired signal a magni¬ 
fied response with respect to the noise. Below the improvement 
threshold, the detector loses its ability to distinguish the coherent 
sidebands, because it loses its standard of coherence. This standard 
is the location of the pulses in pulse-phase modulation; it is the fre¬ 
quency and phase of the desired carrier in frequency modulation, and 
it is the frequency and phase of the desired carrier in amplitude 
modulation. 

The maximum operating range of any communication system is 
determined by the location at which the signal falls below the iipprove- 
ment threshold. When this occurs, even in ordinary (double-side¬ 
band) amplitude modulation, there is a relatively sudden large rise 
of the noise level which effectively blankets the signal. A realization 
of this fact is important in the design of communication systems. 
For example, in the design of an amplitude-modulated communication 
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or radar receiver, if the signal-to-noise ratio is much higher than 
the improvement threshold, the bandwidth of the receiver prior to 
the second detector can be increased manyfold in order not to lose the 
signal in case there is frequency drift of either the transmitter or the 
receiver oscillator. There will be no loss in signal-to-noise ratio in 
the final output, despite the increased predetection noise caused by the 
increased bandwidth, so long as the bandwidth is again narrowed to its 
optimum value by the audio (or video) amplifier. The situation, 
however, is quite different in case the signal-to-noise ratio is near the 
improvement threshold. In that case, widening of the predetection 
bandwidth to the extent that the signal-to-noise ratio falls into the 
range^ of the improvement threshold will cause a rise in noise which 
cannot be erased by narrowing the bandwidth of the audio (or video) 
amplifier. For this reason, if maximum range is desired, the predetec¬ 
tion bandwidth should not be increased beyond its normal value of 
twice the modulation frequency range except insofar as is absolutely 
necessary because of frequency drift. 

Finally, it may also be noted that, if by some ingenious means, we 
can maintain the coherence standard of the detector beyond its normal 
operating range, the useful range of transmission may be increased. 
The synchronization of a radar display by the transmitted pulses is an 
example of this type. Any method of transmitting additional properly 
phased carrier to an AM receiver to enhance that normally received 
with the modulated signal carrier would serve a similar purpose. 

^ The improvement threshold has a narrow range of about 3 or 6 db, depending 
on the type of modulation. The coherence standard is gradually lost as the input 
signal-to-noise ratio falls to the bottom of this level. 



CHAPTER VII 

NOISE H: BASIC MATHEMATICAL PHENOMENA 

7.0 Introduction.^ The basis for noise theory is to be found in a 
group of curious mathematical phenomena mostly concerned with 
fluctuations and random distributions in the theory of probability. 
This fascinating subject will now be briefly introduced and those parts 
of it which we shall require will be developed. This work will then 
serve as a foundation for the mathematical theory of random noise that 
is developed in the remainder of the chapter and for the theory of shot 
noise and thermal noise developed in the following chapters. 

7.1 Permutations and Combinations—^Binomial Coefficients. Sup¬ 
pose we have the letters a,b,c, and d written on four slips of paper, 
and let us further suppose that these four slips of paper are folded up 
and placed in a hat. Let us suppose that these slips of paper are used 
to let chance decide some issue. Accordingly, the letters may, for 
example, represent the names of dancing partners, or they may repre¬ 
sent parts of a Thanksgiving turkey to be assigned to their holders, or 
any of countless other items. Now if three persons in a specified order 
draw letters from the hat, the following different situations may 
occur as indicated by different letter arrangements! 

Table I 
abc acb bac bca cab eba 
abd adb bad bda dab dba 
acd adc cad eda dac dca 
bed bde cbd cdb dbc deb 

The 24 different possible situations indicated by Table I are called 
24 different permutations of the four letters a,b,c, and d taken three at 
a time. If we ignore different arrangements of the same letters but 
consider only what letters are involved, then there are only four dif¬ 
ferent possible situations shown in Table I and these are thfe four 
shown, for example, in the first column. We describe this situation 
by saying that there are four different combinations of four letters 

^ For an excellent source of additional information on the subject matter of the 
early parts of this chapter, see T. C. Fry, “Probability and Its Engineering Uses,’' 
D. Van Nostrand Company, Inc., New York, 1928. 
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taken three at a time. In the foregoing example, these combinations 
tell which dancing partners are chosen or which parts of the turkey are 
eaten, but they do not tell who got them. 

Let us use the symbol Pj to stand for the number of different pos¬ 
sible permutations of m things taken n at a time. Then a little thought 
will show that 

Pj = m{m — l)(m ~ 2) • • • (m — n + 1) 

{m-n)\ 

To show this, we point out that for the first letter there are m choices 
but for the second only m — 1, since the first has already been removed; 
for the third only m ~ 2 choices; and so on. For the particular case 
of Table I, Eq. (1) tells us that 

= = 24 (2) 

which agrees with what we have found. 
As a special case of Eq. (1), we have 

P;S = m! (3) 

which means that m things can be arranged in m\ different orders. 
For example, the letters abc can be arranged in the orders 

abc, acb, bac, bca, cab, cba 
This is 

3! = 6 

different orders, in agreement with Eq. (3). 
Let us next use the symbol to stand for the number of different 

possible combinations of m things taken n at a time. Then, clearly, 

_ ^ _ m! m(m - 1) • • • (m - w + 1) . , 

“ PS w!(m-n)! nl ^ 

Again, in the particular case of Table I, we have 

4! 
3!1! 

24 
6 

4 (5) 

which also agrees with what we have already found. The reader will 
shortly be given a chance to test his proficiency in dealing with permu- 

‘ The sign I stands for the factorial, that is, nl=lX2X8X ••• X(» — 1) 
X n. It should also be remembered that, by special definition, 01 1. 
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tations and combinations by working a number of exercises dealing 
with games of chance. 

The quantities Cj are also known as binomial coefficients, since they 
are the coeflScients of a binomial expansion. Thus 

(a + x)”^ == Cya*” + Cfa^-^x + (6) 

To show that the coefficients in the expansion (6) agree with the 
definition of Cj in Eq. (4), the reader need only expand (a + x)”* in a 
Taylor series. 

7.2 Probability. As a woman goes to the delivery room of a 
hospital to have a child, her husband is asked the question: What is the 
probability that the child will be a girl? His answer is: It is as likely 
to be a girl as not to be a girl. For the state of the husband’s knowl¬ 
edge, his answer is correct. However, since the child is already fully 
developed, the question of whether it is a boy or a girl is in fact settled: 
the uncertainty is in the mind of the father. In many scientific 
problems dealing with probability a similar situation occurs. The 
actual facts may be settled, but owing to incomplete data, probability 
theory must be used to deal with a situation. 

As far as the father is concerned, the question of whether this 
particular child is a boy or a girl is a matter of considerable conse¬ 
quence, since it will affect the pattern of his family life. However, as 
far as society is concerned, the question of whether this particular 
child is a boy or girl is of little consequence. On the other hand, the 
question of the numerical probability that a child born will be a girl— 
which will consequently determine the approximate ratio of men to 
women in the world—^is a matter of the greatest consequence to society. 
Thus, for example, the social, economic, and political life of the country 
would be greatly affected if the ratio of men to women departed 
markedly from its normal approximate value of 1 to 1. 

In the foregoing example the father was interested in a particular 
event, while society was interested in averages. A somewhat parallel 
situation exists in the theory of random noise. There we deal with the 
Fourier components of a noise signal. Each component can be dealt 
with by the laws of electric-circuit theory. However, our practical 
interest is in the noise signal, which is the superposition of a very large 
number of these components. It will be our task in the present chap¬ 
ter to develop the mathematical technique for dealing with phenomena 
which are the result of the superposition of many individual com¬ 
ponents of random occurrence, each of which can be dealt with by 
known laws when it exists by itself. 
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Another aspect of probability theory, and one of great scientific 
importance, is the matter of jlactuations. Thus, while there is essen¬ 
tially the same likelihood that a child to be bom will be a boy as it is 
that it will be a girl, it is common knowledge that a family with six 
children will not necessarily have three boys and three girls. For 
instance, the family may have five boys and one girl. Such a deviation 
from the average is called a fluctuation, and it will be one of our tasks 
in this chapter to develop the probability laws of fluctuation. We 
shall find that they are at the very heart of noise theory. 

7.3 The Mathematical Development of Probability Theory. In 
order to develop a mathematical theory of probability, it is necessary 
to assign numerical magnitudes to probabilities. In the quantitative 
theory, it is customary to assign a unit value of probability to an event 
that is certain to occur. Thus, if a coin is tossed, we say that the 
probability that it will be a head is 0.5 and the probability that it 
will be a tail is 0.5, while the probability that it will be either a head or a 
tail is unity. The foregoing also illustrates another feature of the 
scale, or measure, of probabilities, namely, that, if two probabilities are 
mutually exclusive, the probability that either one or the other will occur is 
equal to the sum of their separate probabilities. 

When we say that the probability that a coin about to be tossed 
will be a head is 0.5, what we mean mathematically is that, in an 
arbitrarily large number of independent trials of tossing the coin, 0.5 
represents the fraction of the total number of trials which will yield 
heads. Furthermore, if the matter is controlled purely by probability 
considerations, it is also true that the probability of obtaining heads is 
unaffected by what has happened in preceding trials. Thus, the fact 
that even the 10 preceding trials yielded heads does not affect the 0.5 
probability of obtaining heads in the next trial. ^ It may appear to 
the reader that there is some logical inconsistency in the foregoing; 
but this is resolved by the fact that, as we shall see, the probability of 
any perceptible percentage fluctuation from the average approaches 
zero when the number of trials is made sufficiently large.* A situation 
that is controlled by true probability is called a random process. More 
specifically, a random process is a process in which the probability of 
obtaining a particular result in any trial is independent of the results 
obtained in any other trials, 

^ However, in practice, it might lead to the suspicion that the probability in 
the preceding trials was not really 0.5, since the a priori probability of obtaining 
10 consecutive heads on a 0.6 probability is only 1/1,024, as we shall see. 

* For example, see £q. (64) and Sec. 7.7. 
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Another important law or axiom of probability theory is that the 
probability of the simultaneous occurrence of n events is the product 
of the n individual probabilities of the n events. Thus, if the prob¬ 
ability of the occurrence of a head in the tossing of a coin is 0.5, the 
probability of obtaining two heads in the tossing of two coins is 

0.5 X 0.5 = 0.25 (7) 

On the other hand, the probability of obtaining one head and one 
tail in tossing two coins is greater than 0.25 since one head and one 
tail can be obtained in two different ways. Thus, if the first coin 
tossed is a head and the second a tail, one head and one tail will be 
obtained, while, if the first coin tossed is a tail and the second a head, 
the same result of one head and one tail will also be obtained. Now 
these two possibilities are mutually exclusive (i.6., if one occurs, the 
other cannot), so that the probability that either one or the other will 
occur is the sum of their separate probabilities. Consequently, we 
have 

Probability of obtaining one head and one tail in the tossing of two 
coins 

= probability that first is a head and second is a tail + 
probability that first is a tail and second a head 

= (0.5 X 0.5) + (0.5 X 0.5) = 0.25 + 0.25 = 0.50 (8) 

The probability of obtaining one head and one tail in the tossing of two 
coins is therefore 0.50. 

With the aid of the foregoing simple rules of probability theory just 
illustrated,^ we shall now derive the probability distribution laws that 
will serve as the basis of noise theory. 

7.4 The Bernoulli Distribution Law. a. Derivation, We shall 
use the symbol Pm{n) to stand for the probability that an event will 
occur exactly n times in m independent trials. We shall now show 
that, if the probability of the event occurring in any particular trial is 
p, then 

Pm(n) = C^p”(l - p)”*-" = n\(rn"- n) i ~ 

Equation (9) is called the Bernoulli distribution formula. 
To prove this formula, we note that the result of n occurrences in 

m independent trials requires n occurrences (each having a probability 
p) and m n ‘‘not occurrences(each having a probability 1 — p). 

^ Concerning the logical basis for these rules, see T. C. Fry, Probability and 
Its Engineering Uses,’^ D. Van Nostrand .Company, Inc., New York, 1928. 
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If we distinguish between the m independent trials by, for example, 
assigning different letters to each, then the probability of a particular 
group of n occurrences in m trials is 

Now there are CZ different ways of obtaining n occurrences in m 
trials, since there are Cjf different combinations of m things taken n at 
a time. Consequently, 

Pm{n) = — p)^-^ (10) 

which is what we set out to demonstrate. 
As an example, let us calculate the probability of obtaining three 

heads in five tosses of a coin, using Eq. (10). In this case 

.p = 0.5 (11) 
1 - p = 0.5 (12) 

n = 3 (13) 
m = 5 (14) 

” 3!2! 6X2 
(15) 

Pm(n) = lomnnr = (16) 

To illustrate this result in tabular form, let us designate the trials as 
a, b, c, d, and e; a being the first, b the second, and so on. The possible 
ways of obtaining three heads are then having heads in the trials 

Table II 
abc 
abd 
abe 
acd 
ace 
ade 
bed’ 
bee 
bde 
ede 

The probability of obtaining three heads in any particular one of these 
arrangements is 

(0.5)»(1 - 0.6)* = H2 (17) 

Consequently, the probability of obtaining three heads in five trials is 
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Exercises 

1. Show that the probability of obtaining (a) one head in five trials is 5^2; 
(6) two heads in five trials is ; («) four heads in five trials is %2) (d) five heads 
in five trials is H2> («) zero heads in five trials is ^2- 

2. Show that the probability of obtaining either zero, one, two, three, four, or 
five heads in five trials is unity. 

8. a. What is the probability of obtaining a sum of 7 when two dice are thrown? 
Answer: 

6 X (^)* - “ K 

6. What is the probability of obtaining a sum of 2 when two dice are thrown ? 
Answer: 

1 X (M)* - Me 

6. The Average Value of a Bernoulli Distribution, Let us next find 
the average value of the Bernoulli distribution [Eq. (9)]. As an intro¬ 
duction, we shall calculate the average number of heads that would be 
obtained in five tosses of a coin if the process were repeated a large 
number of times. According to the preceding discussion and the 
exercises, the probability of obtaining zero heads is one head is 
%2} two heads is ^%2t three heads is ^out heads is ^2> and five 
heads is Hz* The average number of heads obtained will therefore be 

(0 X H2) + (1 X H2) + (2 X ^%2) + (3 X ^%2) + (4 X H2) 
+ (5 X Hz) = ^H2 = 2H (18) 

This, of course, is precisely what we should have expected, since, by 
hypothesis, heads are just as likely to occur as tails. 

We shall next calculate the average value of a Bernoulli distribution 
in general. If n stands for the average value of n, we have 

n — w n«»m 

n = ^ nPm(n) = ^ nCyp"(l — p)"-" (19) 
n-l n-l 

The value of it can be obtained by a rather neat trick. Let p and q be 
any two constants, and let u be a variable. Then, by the binomial 
theorem [Eq. (6)], 

(q + pu)” = + Cfq^^pu + + * • • 
+ CZ(pu)'^ (20) 

and, by differentiation of Eq. (20), 

^ (? + pw)" “ C5'g"~*p + C?g"*“*2p(ptt) + * • • 

+ CSpip(jm)"^^ (21) 
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According to the regular formula of differentiation, we also know that 

^ (g + pu)^ = mp{q + (22) 

Therefore, it follows from Eqs. (21) and (22) that 

C^qfn-ip -j- C'^q^-^2p{pu) + • • • + CZrnp{pu)^^^ 

= mp{q + (23) 

Equation (23) is true for all values of p, g, and w. For our purposes, let 
us now set 

g = 1 ~ p (24) 
u = 1 (25) 

Then Eq. (23) becomes 

(7r(l — p)*”'“^p + C?(l — p)’”“*22p2 ^ C'Simp^ = mp (26) 

Comparing Eq. (26) with Eq. (19), we see that we have obtained the 
required value of n. Thus 

n = mp (27) 

This is an important formula. We might almost have considered that 
it followed directly from the definition of p, but it is well to have an 
independent derivation. The latter shows that the Bernoulli formula 
(9) does not lead to contraditions. 

Exercise 
Show that 

n*»m 

y P„(n) - 1 

n-0 

for a Bernoulli distribution. This is as it should be, since the value of n must 
(dearly lie in the range 0 < n < m. 

7.6 The Poisson Distribution, a. Derivation. If the probability p 
of the occurrence of an ^vent is very small but the number of inde¬ 
pendent trials, m, is very large and if m n, then the Bernoulli dis¬ 
tribution formula (9) can be simplified considerably. The simpler 
form is called a Poisson distribution, and we shall now proceed to 
derive it. 

According to Eq. (9), 

Now, by Eq. (27) 

(29) 
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Furthermore, by definition of the factorial 

m! 
(m — n)! 

Thus (28) may be rewritten 

m{m — l)(m •— 2) 

= m(m — l)(m — 2) (m — n + 1) (30) 

Pm{n) = 
(m — n + 1) 

©‘O-r 

If we assume that my:> n and m is very large, 

- ^) (i -1) • • • (i - 1 (^2) 

^1 - =1 (approx) (33) 

(l - !)■ . (34). 

Therefore Eq. (31) becomes 

Pmin) = (35) 

Equation (35) is called the Poisson distribution formula. It is much 
simpler and more practical for our purposes than the Bernoulli for¬ 
mula [Eq. (9)], since it involves only n and n, which are usually avail¬ 
able, at least theoretically, and does not involve m and p, which are 
usually not available in our problems. It must, of course, be remem¬ 
bered that the Poisson distribution requires that m be large and that 
it 'be much larger than n, and furthermore p is required to be small. 
It should also be realized that, for either Eq. (35) or (9) to hold, p must 
be a constant. 

6. A First Example of a Poisson Distribution—Tossing Pennies, As 
an introductory example of a Poisson distribution, let us consider suc¬ 
cessive trials of tossing five pennies at a time. Let us calculate the 
probability of obtaining six sets of all five heads in 100 trials. 

^ We have not previously used the relation (34), but the reader can easily show 
that when m is very large, the binomial expansion of the left side of Eq. (34) is 
equal to the Taylor expansion of the right side. 
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In this case, 
m = 100 (36) 

and 
n = 6 (37) 

n — mp = 100 X H2 = 3.12 (38) 

since we know that the probability of obtaining five heads out of five 
is 

p = (Hy = H2 (39) 

Substituting these values into Eq. (35), we obtain 

Pioo(G) = !_!:i°(3.12)» ^ p (40) 

The probability of obtaining five heads out of five, six times in 100 
trials, is thus 0.0566. 

The probability of obtaining five heads out of five, 7 times in 100 
trials, can now also readily be calculated. It is 

Pioo(7) = = 0.0252 (41) 

It is 

-0.1 Amp. 

Anode 

Similar probabilities can be calculated in a like manner, 
easy to see that Pioo(^) is a maximum in 
this case when n = 3. 

c. A Second Example of a Poisson 
Distribution—Thermionic Emission, As 
a second example of a Poisson distribu¬ 
tion, let us consider the emission of 
electrons from a hot cathode. Let us 
consider the temperature-limited case, 
i.e., the case in which all emitted elec¬ 
trons flow to the anode. Let us suppose 
that the total emission current is 0.1 amp. 
Since the charge on an electron is 1.59 X 10“^® coulomb, this means 
that there are 

1 59 = 6.3 X electrons (42) 

Hot 
Cathode 

Fig, 1. Flow of electrons in 
case of thermionic emission. 

emitted by the cathode per second. 
So long as we consider intervals of time of the order of seconds, the 

number of electrons emitted in successive intervals is approximately 
constant. We shall see why this is so when we study Gaussian dis¬ 
tributions in the next section. However, let us now consider intervals 



296 FREQUENCY ANALYSIS, MODULATION AND NOISE 

of time of the order of 10“*® sec. In such an interval there is a certain 
probability p that an electron will be emitted (and incidentally a 
negligible probability that more than one electron will be emitted). 
We shall assume it to be a law of nature that an electron is just as 
likely to be emitted in one of these 10““*®-sec intervals as another.^ 
Thus we are really just assuming that p is a constant. It is also small 
in comparison with unity. Let us now calculate the probability that, 
say, six electrons will be emitted in a longer interval of 10“^^ sec. This 
longer interval consists of 1,000 of the shorter intervals. We can 
consider each of the shorter intervals as one trial in the use of Pois¬ 
son's formula, and the probability of the emission of an electron in 
this trial is p. Since each trial has equal probability, we can as well 
as not, in considering 1,000 trials, consider them to be consecutive and 
thus make up one of the long intervals. Consequently, we have 

m = 1,000 (43) 
and, according to Eq. (42) 

n = 6.3 (44) 

for use in Poisson's formula (36). Thus the probability of the emission 
of just six electrons in a 10“^^-sec interval is 

P(i.ooo)(6) = «-*•* = 0.160 (46) 

We note in Eq. (45) that the actual values of m and p do not really 
appear but rather only the values of n and n. This is typical of the 
use of the Poisson formula. 

Exercises 

1. What is the probability that there are exactly four electrons emitted in a 
10“^^-sec interval in the foregoing example? 

2. What is the probability that there are exactly eight electrons emitted in a 
10”^^-sec interval in the foregoing example? 

7.6 The Gaussian Distribution. When the value of n becomes 
very large, as it does in most cases that will be of interest to us, the 
calculation of n\ and (n)** in the Poisson formula becomes unwieldly. 
For such cases, we shall now show that the Poisson formula reduces to 
the renowned formula of Gauss. 

According to the Poisson formula (35), 

(46) 

^This condition of equal probabilities for all intervals is also described as 
random emianon of the electrons. 
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Then 
logi [PmCn)] = —n + n log n — log (n!) (47) 

Now, by Stirling’s approximation,* 

log (n!) = (n + 3^) log n — n + 3^ log 2jr (48) 

when n is very large. Therefore, 

log [Pm(n)] = —+ n log « — (n 4- 3^) log n + n — 3^ log 2ir (49) 

If we now let 
D = n - n (50) 

then Eq. (49) becomes 

log [P»(n)] = - + 0 log n + log n - | log n 

; log 2ir + (n — n) 

= - (n + Z) + 0 log (l + + D - ilog2irn (51) 

In the region of interest \D/n\ <3C 1, so that we can expand 
log [1 + {P/fi)\ in a power series and disregard higher power terms. 
Thus 

Substituting this value into Eq. (51), we obtain 

log [P«(n)] = - (n + D + 0 + D - ^ log 2x« 

H 1 1 i) , D* 1, „ . 
(53) 

If now we assume 
Z)»l (54) 

in addition to the previously made assumption 

ll«’ 
(55) 

then Eq. (53) reduces to 

log[P«(n)] = (56) 

^ See WxLBON, Advanced Calculus,” p. 386. 
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It follows from Eq.- (56) that 

Pn.{n) 
y/%m 

“2n 

\^2wn 
2fi (57) 

This is the Gaussian distribution formula. It is the formula that 
applies and is most convenient for use when all the numbers involved 
are very large. 

Equation (57) is sharply peaked at the value n = n. To show this, 
let us introduce the variable 

y - (f) (58) 

SO that y represents the fractional deviation from the average value n. 

Then Eq. (57) may be written as 

P„(n) = (69) 

If n is a very large number, as has already been required by Eqs. (54) 
and (55), then Pmiv) is very small except in the neighborhood of y = 0, 
that is, the neighborhood of n = n. Pm(,n) is therefore sharply peaked 
at n = n. 

If we let 

k = 

V2n 
(60) 

we can see that the right side of Eq. (57) becomes the well-known 
Gaussian error function. 

As an example of the application of the Gaussian distribution 
formula, let us consider the case of the thermionic emission of elec¬ 
trons already considered in Sec. 7.5c, but let us consider intervals of 
10~* second duration. Thus 

m = 10“ (61) 

meaning that there are 10“ intervals of duration 10”*“ sec in one of 
the new intervals. Furthermore, by Eq. (42), 

n = 6.3 X 10“ X 10-» = 6.3 X 10» electrons (62) 

Then by Eq. (57) the probability that there are exactly 6.3 X 10* 
electrons emitted in any particular 10“*-sec interval is 

P«(n) 
1 

(63) 

This probability is, of course, small, since it is unlikely that there will be 
exactly A electrons emitted in any particular 10~*-sec interval. How- 
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ever, the probability of a deviation of, say, 1 per cent from n is breath- 
takingly much smaller. Thus 

Pm(l.Oln) 
“f(O.Ol)* 

\/27rrl 

^-31,600 
2Q~18,700 

\/2Tn 

It is thus clear that, when the numbers involved are large, the 
probability of a large percentage deviation from the average in a 
random distribution is slight indeed. Nevertheless, it should be 
pointed out that it is the deviations, as we shall see, that give rise to 
such phenomena as shot effect. 

7.7 Discussion of the Distribution Formulas, a. Cause of the 
Sharp Peak, There is probably nothing in all human experience that 
even approaches in the smallness of its numerical magnitude the small 
probabilities of sizable percentage fluctuations from the average in 
the random distributions of large numbers of units. We are therefore 
led to inquire further into the cause and meaning of this remarkable 
behavior. 

Let us first investigate why the Gaussian distribution is so sharply 
peaked. To get at the root of this, let us consider the Bernoulli 
distribution (9), of which the Gaussian distribution is a special case. 
This tells us that 

Here Pm(n) is, as before, the probability that an event will occur 
exactly n times in m independent trials. If n is changed to n + 1, 
then, according to Eq. (65), Pm{n) is increased by the ratio 

P _ m — 71 p 

Now, according to Eq. (66), R always decreases as n increases, 
sequently Pm{n) will have a maximum^ for 

(66) 

Con- 

_ m — n p 
^ 7^ + 1 1 — p 

1 (67) 

In the case of a Gaussian distribution, n while 1 and p <§C 1, 
so that Eq. (67) reduces to 

R = ^ = 1 (approx) (68) 

as the condition for maximum Pmin), 
^ If jB were greater than 1, Pm(w) would be increasing with n, while, if R were 

less than 1, Pm{n) would be decreasing with n. Since R decreases with n, the 
maximum value of PmW occurs when J? =» 1. 
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Equation(68) in conjunction with Eq. (27) shows that the maxi¬ 
mum of Pm(w) occurs when 

n = mp = n (69) 

To show why the peak is so sharp, we note that, as soon as the ratio 
R differs appreciably from unity, each unit change of n causes an 
appreciable decrease in Pm{n). Therefore, if n is an extremely large 
number (such as 6.3 X 10* in the example of Sec. 7.6), a small percentage 
change in n still means a change of n by a very large number of units 
(that is, 6.3 X 10* in the example). The resulting change in the value 
of Pm(n) according to Eqs. (68) and (27) is therefore of the order of 
magnitude of 

(1.005)«•***»**« ~ 1018.700 (70)1 

This is the reason for the sharp peak in Pm{n). 

b. Elementary Significance of Pm(n). Now that we have found that 
P,n(w) has such remarkable properties, let us consider once more what 
Pm{n) really means. To do this, let us consider the electron-emission 
problem of Sec. 7.6 but consider a length of time consisting only of 
five of the short 10"“^*-sec intervals discussed in Sec. 6.5c. Thus 
m = 5. While this value of m is too small to make the distribution a 
Gaussian or even a Poisson distribution, it has the merit that it is 
small enough to let us get a good grasp of Pm{n). According to our 
original notation, we let p stand for the probability of the emission of 
an electron in one of the short intervals, and we assume that it is 
wholly unlikely that more than one electron will ever be emitted in 
one of the short intervals. If now we let 

1 s an interval in which an electron is emitted 
0 » an interval in which no electron is emitted 

then the 32 possible combinations exist that are shown in Table III. 
Each of these 32 combinations has a certain probability ^Veight” 

p"(l — where n is the total number of electrons emitted accord¬ 
ing to that possible arrangement. Now there are combinations 
giving a total number of n electrons emitted. Therefore 

Pn.{n) = Clp-{1 - p)*- ^ (71) 

is the probability that n electrons will be emitted. The. values of 
Pm(n) are placed next to each group of combinations in Table III. 

^ 1.005 is used as an approximation to the average value oi R ^ wp/n in the 
range 0.99 ft < n < fi. 



NOISE IT: BASIC MATHEMATICAL PHENOMENA 301 

Table III 

n 
Combina-' 

tions 
p«(n) n Combina¬ 

tions p«(«) 

0 00000 (1 - p)‘ 00111\ 
00001^ 1 oioir 1 
00010 1 lOOlli 

1 00100 ► 6p(l - p)‘ OllOli r 
01000 10101\ 10p»(l - p)» looooJ ! 3 11001/ 

oiiiol 
> 

OOOlU 10110' 
001011 110101 
01001i 
lOOOlf 

iiiooi 

2 
00110\ 
01010/ > 10p»(l - p)* 

oiiin 
101111 1 

100101 i 4 non > 6p*(l - p) 
01100 11101' 
10100 1 nnoJ f 
11000/ 

5 11111 P‘ 

The probability weights 
pn(l _ p)6-'n 

insert the probability p of the emission of an electron in a short interval 
into the calculation. To convince ourselves that they do this cor¬ 
rectly, let us find, according to Table III, the probability of the 
emission of an electron in one of the short intervals, say the first. 
Noting the occurrence of V& in the first column under Combinations of 
Table III, we have 

Probability of emission of an electron in first interval according to 
Table III 

p(i - py + 4p2(i - py + - py + 4p^(i -p) + p^ 
(1 - py + 5p(i - py + iop2(i - py + iop\i - py 

+ 5p^(l - p) + p® 

p[p + (1 - p)3« .72) 

[p + (1 - p)]‘ ^ ^ ^ 

Table III is thus in agreement with the definition of p. 
In the li^t of the foregoing discussion it is hoped that the reader 

wfll see more clearly the significance of Pm(») and the reason why it 
can have such a remarkably sharp peak. In the particular case of 
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the electron-emission problem we have seen that the fundamental 
assumptions are random emission of constant probability p, with the 
additional assumption that not more than one electron can be emitted 
in one of the small intervals. Since the actual values of p and of m 
do not enter into the Poisson or Gaussian formulas, the error due to 
this additional assumption is not significant since it can be reduced at 
will by decreasing the length of the small interval. 

For convenience in reference we collect here the three distribution 
formulas and note the specialization that leads from one to the other. 

fn I 
(Bernoulli) P^(n) = p’^il - p)”— 

This specializes to 
(fi\n (when m » n ] 

(Poisson) Pm(n) = 6-*^ ^ p «1 > 
m» 1) j 

This specializes further to 

1 
(Gaussian) Pm(n) = 

\/2wn 
2fi 

(when n ;:$> 1 

« 1 
n 

n — n';^ 1) 

(73) 

(74) 

(75) 

7.8 A First Discussion of Fluctuations.^ At this point we shall 
consider briefly the probability of fluctuations about the average in the 
case of the Gaussian distribution formula (57), which we recall here. 

Pm{n) = 
\/27r^ 

(n —n)» 
2fi (76) 

In this formula, Pm{n) is the probability that an event will occur 
exactly n times in m independent trials, and n is the average value of 
n,* 

According to these definitions, 

D (77) 
^ A brilliant but advanced and somewhat difficult discussion of fluctuation 

theory is given by S. Chandrasekhar, Rev. Modem Phya., January, 1943. 
* It is worth pointing out that the specific meaning of is that, if m trials are 

repeated a very large number of times, the average value of n per m trials will be 
found to be fi. We have previously shown in Eq. 27 that 

fl — mp 

The entire number of repetitions of the m trials is called an ensemble of repetitions, 
and fl is then the average taken over the ensemble, or just the ensemble average. 
In probability theory, fl is also frequently called the expectation of n. 
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is the deviation from the average value, and the probability of obtain¬ 
ing a particular deviation D is of course numerically the same as the 
probability of obtaining the value n, since they are just different ways 
of saying the same thing. Let us write 

for the probability of obtaining the deviation D for a given value of n. 
Then, by Eq. (76), 

1 (n-g)« , _D« 

i»rfD)=P.(,).^r (78) 

The fact that n is not always equal to n, that is, that D is not always 
zero, is described by saying that the phenomenon in question exhibits 
fluctuations.^ In the case of electron emission we know that the 
emission is not always equal to its average value; rather there are slight 
fluctuations, which give rise to the shot effect. In a more elementary 
type of example, when two pennies are tossed, we do not always get 
one head and one tail but sometimes get two heads and sometimes zero 
heads. The numbers involved in this last example are too small for a 
Gaussian distribution, but variations from the average value of one 
head per two pennies tossed are perfectly good examples of fluctuations. 

We shall now examine how fluctuations vary in size with the value 
of n. We have already had occasion to note in Sec, 7.6 the small prob¬ 
abilities of appreciable percentage deviations from n in a Gaussian 
distribution when n is large. If the value of n is doubled, the prob¬ 
ability of a sizable percentage deviation is tremendously decreased. 
Thus, according to Eq. (78), 

P'2n(2D) = -7^6 (79) 
V V 2 

Consequently, if D/n is a sizable value and n is a very large number, 
P\n(2D) is practically vanishingly small as compared with P'n{D). 
This means that if n is doubled, the probability of the same percentage 
fluctuation is greatly decreased. 

We shall now show, however, that, if the value of n is doubled, the 
magnitudes of corresponding deviations in the new situation go up by a 

^Fluctuations are sometimes more specifically described as a time function 
due to D in cases where random values of n follow one another. We shall not 
specialize the definition of fluctuations in this manner for our present purposes, 
however. 
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factor of y/^. According to Eq. (76) 

(V2D) = (80) 

The significance of this situation will best be seen by reference to Fig. 2. 
If n is doubled, a point A of deviation D in the original distribution 
goes over to appoint A' of deviation \/2 D in the new distribution. 
Now it may be seen from the figure that values of n in a range of width 

Fiq. 2. Change in shape of a Gaussian distribution curve as the number of trials is 
doubled. 

An in the original distribution go over into values of n in a range of 
width \/2An in the new distribution. Therefore, even though the 
probability P\n{y/2D) in the new distribution corresponds to the 
probability P'n{D) in the original distribution, the numerical values of 
probabilities in the new distributions ar^reduced by a factor l/\/2> 
as shown in Eq. (80), since there are y/2 times as many values of n 
in corresponding ranges of the new distribution. We have thus 
shown, in effect, that, when n is doubled, the average deviation goes 
up as the square root of 2. Equation (80) can readily be generalized 
to 

P'.»(V5D) = (81) 
VO 

which, in view of the foregoing, shows that if ii goes by a factor a 
then the average value of D goes up by a factor y/a in a' Gaussian 
distribution. 

Finally, we shall derive a ample but very important formula for the 
average value of D* in any Bernoulli distribution, including the 
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Poisson and Gaussian distributions as special cases, 
us write 

Average value of D* = U* = (» — n)* = n* — 
= n* — 2nii + — 

Now 

Accordingly, let 

2 nn + n* 
(n)* (82) ‘ 

n — m 

^5= ^ n*P„(n) 
n-1 

(83) 

To evaluate Eq. (83) we use a procedure similar to that used in 
Sec. 7.46. Starting from Eq. (21), we have 

[^« ^ (? + pw)" j = + C'?g”-®4p* 

+ ' ' ' + C5»»*p(p«)*~‘ (84) 

By the regular formula of differentiation, we also have 

= mp(g + pu)““‘ + to(ot — l)p*(3 + pM)"“* 
(85) 

From Eqs. (84) and (85) it follows that 

Cfg'"~*p + C'"g*'~*4p* + • • ■ + C'S»w*p(pM)“~* 
= mp{q + pu)*"“‘ + m(m — l)p*(g + pu)"“* (86) 

As in Sec. 7.4, we now set 

and 
5 = 1 - p 

« = 1 

Accordmg to Eqs. (10) and (83), Eq. (86) then becomes 

(87) 

(88) 

n—m 

^ ra*P«(TO) = mp + m(>» — l)p* (89) 
n» 1 

Now, from Eq. (27), we already know that 

n = mp (90) 

so that from Eqs. (89) and (83) 

^ = « + («)*- pn (90o) 

‘ E* is Bometames called the “dispersion" of n, and y/E* is called the "standard 
deviation," 
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Substituting Eqs. (90a) and (90) into (82), we obtain 

=: ^ (n)2 = n + (fiy -- pn {nY = n(l — p) (91) 

For the special case of a Gaussian distribution, p <$C 1, so that Eq. (91) 
becomes 

= n (92) 

A simple argument will show that Eq. (92) is actually a consequence 
of Eq. (81), but we have given a separate derivation since the method 
and intermediate results are of interest. P^quation (92) is sometimes 
called the law of large numbers. Because of it, percentage [devia¬ 
tions from the average become small when the number of trials is 
large. It is the backbone of fluctuation theory. 

Exercise 

If 100 pennies are tossed and n represents the number of heads obtained, then 
n « 50. Compare the probability of obtaining 48 heads when 100 pemiies are 
tossed with the probability of obtaining 196 heads when 400 pennies are tossed. 
Compare the result with Eq. (81). 

7.9 Superposition of Two or More Probability Distributions. We 
shall next derive some important results regarding the superposition 

of two probability distributions. To get 
a picture of what we are talking about, 
we shall consider as an example a ther¬ 
mionic tube in which two separate hot 
cathodes are emitting electrons as shown 
in Fig. 3. These cathodes have respec¬ 
tive probabilities pi and p^ of the emis¬ 
sion of an electron in an elementary 
interval as discussed in Sec. 7.5c, for 
example. 

In a larger interval, consisting of m elementary intervals, the prob¬ 
ability of the emission of n electrons by the respective cathodes may be 
called 

Pim(n) and P2m(n) 
♦ 

respectively. We now wish to find the probability P»«(«) of the total 
emisfflon of n electrons by both cathodes together. Taking a numerical 
case, suppose that we wish to find the probability of the total emission 
of five electrons. This will occur in the situations 

"--R 
No. 1 

--R 
No. 2 

Fig. 3. Two separate cath¬ 
odes emitting thermionic elec¬ 
trons independently. 
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Cathode 1 
emits 

Cathode 2 
emits 

Total 
emission 

0 5 5 
1 4 5 
2 3 5 
3 2 5 
4 1 5 
5 0 

[ 
5 

Now the probability of the simultaneous emission of zero electrons 
by cathode 1 and five electrons by cathode 2 is 

Pim(O) times Pim(5) 

and so on, for the other combinations. Therefore 

P.«(5) = Pi„(0) • PUB) + Pim(l) •Pj™(4) + PU2)PUS) 
+ Pxm(3) • PU2) + Pi»(4)P2„(1) + Pi„(5)P»„(0) (93) 

In the general case, the equivalent of Eq. (93) may be written 

P8m(w) = 2 Pim(ni) • P^mina) (94) 
ti = wi+ns 

where the summation is taken over all values of ni and 712 for 
which ni + 712 = n. Equation (94) is the general equation for the 
superposition of two probability distributions. However, it is clearly 
not limited to the foregoing example but holds for any probability 
distributions. 

Let us next find the average value of n in the combined distribu¬ 
tion. This is 

2m 2m 

« = 2 nP,«(n) =2 'I (Hl “f" Tl^P* P2m(72-2) 
n —0 n“0n—m-i-na 
n —2m 

~ X X [”l^l>»(”»)P!!m(W!) + naPim(ni)P2»(»2)] (96) 
n««0 n—ni+na 

Therefore 
m m 

n = [ X WiPi-C^i)] [ Yt 
m m 

+ [ 2 Pi»(ni)] [ Y (96) 

ni*0 

m<"0 na»0 

The final expression for n in Eq. (96) is just a different arrangement of 
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the terms of the expression in (95). Now 

m 

^ niPi«(ni) = 
m»0 

m 

^ = Ui 

(97) 

(98) 

and 
n*»0 

(99) ^ PIm(Wl) 1 — ^ 2m(^2) 
ni*0 nj — 0 

Substituting these values into Eq. (96), we obtain the important 
formula 

n == ni + n2 (100) 

Expressing Eq. (100) in words, we may say that, if two probability 
distributions are superimposed, the average value of the new distribution 
is equal to the sum of the average values of the original distributions. 

Another important relation is obtained by finding the average value 
of the square of the deviation of the superimposed distributions. 
Thus 

2m 

F* = (n - ny = ^ (n - nyPUn) 
n — O 

2m 

-I[<” ^ ■Plm(^l)'P2m(^a) J 
n«»0 n —ni+ni 
2m 

2 ^ (ni + n2 — ni — n2)*Pim(ni)P2m(n2) 
n»0 n«"ni4-ni 
2m 

“ Z — wi)* + 2(ni — fii)(re2 — 
fiMO n — ni-fnt 

+ (W2 — «*)0Pi«(wi).P8»(ns) 
m m 

= [ 2 (nt - fli)»Px«(nO] 2 Ptmint) 
ni«»0 n**"0 

TTi 

+ 2 ^ (ni — «i)Pi«(ni)J ^ ^ (n* — «2)P*«(n2) j 
ni"*0 

m m 

+ [ 2 “ ^*)*^»«(”*)] 2 

ni»0 

fii—0 ni*0 

as (m — fli)® + 0 + {n% — ^2)* 

^ See Exercise 2 below. 

(101)‘ 
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In other words, 

(n - ny = (n, - niy + (W2 - n*)» (102) 

Stated in words, Eq. (102) says that, if two probaMlity dietributions 

are auperimposedy the average value of the squares of the deviations of 

the new distribution is equal to the sum of the average values of the squares 

of the deviations of the original distributions. 

Equations (100) and (102) express two of the basic mathematical 
phenomena used in noise theory. 

Exercises 

1. Show that 
n^2m 

y PzM«1 

n-O 

if P%m is defined by Eq. (94) and 

m ' m 

^ -Pim(ni) = 1 = ^ P^mint) 

ni — O n*“0 

2. Show that 

^ (ni — ni)Pim(ni) = 0 =» ^ (n2 — 
ni—O ni — O 

in Eq. (101). 

7.10 A Generalized Superposition Theorem for Large Numbers 
and Continuous Distributions. If n is a function of ni and nz and if 
ni and n2 are large numbers in all the important regions under con¬ 
sideration or if they are continuous variables, then the results of the 
preceding section can be generalized to the following theorem: 

If . 
n = Ani + Bn^ . (103) 

where n, ni, and n^ are stochastic^ variables, then 

n = Aril + Bh2 (IW) 

and 
255 « ^255 + j5225| (105) 

^ The following definition is taken from Uspensky: Definition: Variable quanti¬ 
ties with a definite range of values each of which, depending on chance, can be 
attained with a definite probability are called chance variables” or, using a 
Greek term, ^'stochastic variables.” 
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To prove the theorem, let 

P(n) dn = probability of n between nandn + dn (106) 
Pi(ni) dui = probability of Ui between Ui and Ui + drii (107) 

and 

P2(n2) dn2 = probability of between and ng + dn^ (108) 

where 

P{n) dn = 1 = Pi(ni) dui = dn^ (109) 

For the sake of generality, we have included the possibility that the 
variables n, ni, and may take on negative as well as positive values. 
If negative values are ruled out, then P is just zero when the variable is 
negative. 

Now according to the second rule in Sec. 7.3, 

P(n) dn = Pi(ni) •*P%{n^ dn\ dn^ (110) 

when the element dui dn<i consists of the values of ni and n% that cor¬ 
respond to the element dn in accordance with Eq. (103). 
Thus 

QQ r 00 /* *4" ^ 
nP(n) dn = / ^ ^ {Ani + Pn2)Pi(ni)P2(n2) dni dn2 

00 ^ f VO 
AniP{ni) dni / P^in^) dn^ 

00 P 00 
BnzP2(n2) dnz ^ Pi(ni) dni 

= Afii + Bfii (111) 

Similarly, 

= (n — ny = (n — nyP{n) dn 
/"f* 00 r 00 

^ ^ (^ni + Pn2 — -4ni — Bn2yP{ni)P{n^ dni dn^ 

= PJ pj {[Aim - ni)]* + 2[A{m - n,)B{n^ - «*)] 

+[B(n2 — n*)]®}.P(ni)P(ns) dni dut 

= jP [A{ni - ni)YP{ni) dni PJ Pirn) dn, 
/~f* * r *4" ^ ' 

A(ni — ni)P(ni) dni / ^ B(ns — flt)P{n,) dn, 

+ jp [B{nt — ■fii)yP(n,) dn, jp P{n{) dn. 
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since 

"" dni = 0 = B(n2 - n2)P(n2) dna (113) 

If rii and ne have only integral values but have Gaussian distribu¬ 
tions! the values of n, ni, and n2 are very large in all regions of impor¬ 
tance, so that Eq. (110) can be used as an accurate approximation. 

Using the same method, we can also easily obtain the more general 
result that if 

n = Aifii + A2n2 + • • * + A^Ut (114) 
then \ 

n = Aifii + -42^2 + • • • + Atfit * (115) 
and 

+ • • • + A^JD\ (116) 

7.H Probability Distributions of Identical Functions, a. Intro-- 
duction. So far we have been concerned with the probability distribu- 

Fio. 4. A diode and external Fio. 6. Plate current due to the 
circuit. passage of a single electron between 

cathode and anode. 

tion of isolated events between which there could be no interaction. 
We shall now generalize our considerations to cover certain cases in 
which'there is at least a possibility of interaction between the events 
of which the probability distributions are being studied. 

Consider, once more, the emission of electrons, which we have so 
often used as an example. Up to the present, we have always talked 
about the fluctuations in electron emission but never really about the 
fluctuations in plate current. However, the fluctuations in plate 
current are the real shot effect that is of such great technical impor¬ 
tance. The two are very closely connected, but they are by no means 
the same thing. Thus, if a single electron is emitted from the cathode 
and moves toward the anode, then if the plate circuit is closed, as 
shown in Pig. 4, plate current starts to flow in the external plate circuit 
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as soon as the electron leaves the cathode and continues to flow until 
it arrives at the anode. The actual form of the plate current as a 
function of time depends on the geometry of the tube and the potential 
distribution in it and the velocity of the electron. Thus the plate 
current as a function of time for a single electron may be like G{t), 
shown in Fig. 6, where A< represents the transit time of the electron. 
In the case of ane^ctual tube with a plate current of, say, 100 ma (that 
is, 6.3 X 10^^ electrons per second) and with a transit time of 10*"® 
sec, there will be a constant overlap (i.c., superposition) of the plate 
currents due to individual electrons. It will now be our problem to 
find the result of the superposition of functions distributed in occur¬ 
rence according to some probability distribution and thus learn how to 
deal with such phenomena as shot effect. 

We shall begin our study with the case in which all the functions 
are of identical form and size. Such a case would be approximated in 
practice by the temperature-limited shot effect in which the plate 
voltage is so high that variations in the emission velocities of individual 
electrons are of little consequence. Our discussion, however, will be 
more general and will deal with probability distributions of identical 
functions without specifying what they represent and will thus not be 
limited to shot effect. 

6. Quadratic Content in the Low-frequency Range, If we make a 
Fourier integral analysis of G{t) in Fig. (5), we can write 

G{t) = “ / S{(a) cos [(at + 0(cu)] dw (117) 
rc Jo 

Since the range of appreciable values of G{t) is limited to the interval 
0 < t < At, we know (see Sec. 4.19) that G{t) acts like an impulse of 
strength 

M = G(Jt) dt = G{t) dt (118) 

in the low-frequency range. Therefore, by EJq. (156) of Chap. IV, 

S(u) = M = G(t) dt (119) 

and 
«(«) = 0 ’ (120) 

in the low-frequency range, for which the transit time At is inap¬ 
preciable. 

For our purposes at preedit, it will be more c<Hiv«aient to express 
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G(t — Ti) as & Fourier series in terms of a long fundamental interval* 
extending from 0 to T (see Fig. 6). Thus we may write (see Sec. 1.8) 

to 

G(t - ^ ^ cos + b, sin (121) 

where 

= - Tr) dt==~ (122) 

f Jo Ti) cos ^ cos (123) 

^ io ^ = ^ sin (124) 

Substituting these values into Eq. (121), we have 

n/* m\ ^ I 2ifefV l27rq(t — Ti)^ 0(t - Ti) = ^ + -y-> cos .y-^ (125) 

flli 

Equation (125) is of course restricted to the low-frequency range in 
which G(t) may be considered as an impulse. 

0 

(t-Ti) 

Ti Vat 
# — 
T - 

Fig. 6. A long interval of duration T, showing the location of the plate current due to a 
single electron between Tt and Ti -f Af. 

We shall next consider what happens when a whole probability 
distribution of these functions of the form G{t) and distributed at 
random along the time axis is superimposed. Let us call the resulting 
function I(t). We shall be interested particularly in two properties 
of 7(0, 

fT 
1. Linear content, / I(t) dt, that is, direct-current component 

fT 
2. Quadratic content, / P{t) dt^ that is, alternating-current 

energy 
^ This int^val may be thought of as the entire time of observation in the experi¬ 

ment under consideration. The use of a Fourier series thus does not imply that 
there is any periodicity in the phenomenon* 
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We shall, of course, be particularly interested in the frequency 
distribution of the quadratic content. 

If we consider some specific Fourier component in 7(0 

C cos (126) 

then each individual G{t — Ti) contributes an “elementary” 
ponent 

2irq(,t - TO m 
T 

cos 

com- 

(127) 

to Eq. (126). However, these components are not all in phase and so 
must be added vectorially as described in Sec. 5.4a. The phases of 

dTi dT, dT, 
_^TT_;*|r_;tJ;-_ 

Fio. 7. Intervals at which phases of cos [2irg(f — Ti)]/T are repeated. 

the elementary components depend on the value of Ti, Also, the 
phases repeat for values of Ti at distances T/q apart on the time axis. 
Therefore we may consider the value of as ranging from 0 to 2wy 
and it will be our problem to add vectorially all the components in this 
2jr range. For any particular range of 0, between 0 and ^ 
there are, in the time T, q small time intervals of length 

dTi 
Td<l> 
2vq 

(128)1 

Any G(t — Ti) with its Ti in these intervals will contribute an ele¬ 
mentary” component in this phase range. Now, if the average num¬ 
ber of G(tys per second is K, then the average value of the number 
giving rise to phases in the interval between <t> and 4> + d<l> is 

^ ^ Td<l> KTdit> 
(129) 

where n is the number of G{ty^ giving rise to phases in the interval 
between ^ and <l> + d<l> in any particular trial.* Let us now divide the 

^ The value of d<l> here is small but not infinitesimal. dif> will be considered 
large enough so that a large number of Oit — TiYs will have their phase-deter¬ 
mining i>oints Ti between 0 and ^ 

* The meaning of fi here as in all the preceding cases is the average value of 
what would be found for n by investigating the same conditions a very large 
number of times, In other words, it is an ensemble average. 
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phase range between 0 and into a large number of equal intervals of 
size d4>. Then the average value of the sum of the elementary Fourier 
components of frequency q/T in any particular phase range 4* to 
4> + d4> will be _ ^ 

KTd<l> 2M 
27r T 

KM 

cos ^ 

Now, if all the average resultants \ yj^ 
of the type Eq. (130) are added \ / y\\ j 
together vectorially for the entire \ / \\ \. J 
phase range between 0 and 27r, they V / \ \ 
will form a closed circular polygon 
as shown in Fig. 8, so that the com- j 
bination of the averaqe resultants is Vs ^2 

zero. However, if the actual val- of Circular Polygon - ^ 
Ues of H are used instead of their Fio. 8. Voctor diagram showing 

average values, each differential superposititm of the average re- 
, . 1 . /i . . sultants of the different phase intervals. 

vector IS subject to a certain amount 
of fluctuation about its average length of (KM/7r)d4>, Let us number 
the different vectors 1,2, . . . , 5 and call their lengths Fi, F2, . . . , F*. 
Let us call the length of the combined resultant F.^ Then we have for 
the X and y components of these F vectors, 

F* = Fix + F2« + • • • + F,x = Fi cos 4>i + F2 cos <^2 + • • • 
+ F, cos 0, 

2M cos I 2M cos ^2 , 
-JT- T-JT- W2 + 

, 2M cos 4>m 
H-2?- 

Fy = Fiv + F2V + • • • + Vmv = Fi sin 4n + F2 sin <#>2 + • * • 
+ F, sin 4>g 

_ 2M sin ^ 2Af sin <^2 ^ , ... , 2ilf sin <t>, ^ 
““ 2» I IJJ ^2 r * * "i jr (lo2) 

We know from Fig. 8 that the average values of F* and of Fy are zero. 
Therefore we may let F» stand for the deviation of F*, and we may let 
Fy stand for the deviation of Fy. It then follows from Eqs. (114), 
(116), and (131) that 

(1^ cos* 01 + -Of cos* 02+ • • • + J5f cos* 0,) (133) 

^ V is thus equal to C in Eq. (126). 
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and since ni, rit, ... ,n, have Gaussian distributions, it then follows 
from Eqs. (133), (92), and (129) that 

T1 = (ni cos* <l>i + n, cos* + 

Similarly, 

Now 

W*^ /•2r 

r> 2t /; cos* d<i> = 
2M^K 

2M^K 

F* = F* + y* 

Therefore, by Eq. (114) and the foregoing, 

m « rn 

+ n, COB* ^,) 

4Af*X’ 

(134) 

(136) 

(136) 

(137) 

The quantities F*, FJ, and F* are essentially fluctuations of the 
entire circle in Fig. 8, and they may be expected to have distributions 
somewhat similar to that of D* in Eq. (78) rather than n*. In any 
individual case, we may thus expect relatively large percentage devia¬ 
tions of D* from its average. In particular, it is clear from symmetry 
and physical considerations that all values of 

i, = tan- (138) 

are equally probable. 
It follows from Eq. (137) that the Fourier component in Eq. (126) 

C cos = F cos 

has an average mean square value of 

r77^ H ^ 1 _ 
[(/ «)rma]^ — g y *“ 

2M^K 
T 

(139) 

(140) 

As mentioned in the foregoing paragraph, however, the percentage 
deviation from the average in any particular case is likely to be large. 

In practice, we encounter, not individual Fourier components, but 
rather the resultant of those in a frequency band of width, say, AP. 
Now the frequency* of any Fourier component such as shown in 
Eq. (139) is 

F 1 
T 

(141) 

^See also Sec. 8.2 m this oonnection. 
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Therefore the number of Fourier harmonics in the bandwidth AF is 

Lq^TAF (142)1 

According to Sec. 2.5 the mean square values of Fourier components 
are separately additive, there being zero average interaction between 
them. Consequently, the average mean square value of the resultant 
of the Fourier components in the bandwidth AF is 

[(i^Ajr)mi*]* = Ag 
2M^K 

T 
TAF 

2M^K 
T 

= 2M^Kt^ (143)* 

It is shown in Sec. 7.15 that as Ag becomes large in comparison with 
unity, the percentage deviations of this mean square value from its 
average tend to become very small. Consequently, when Ag is large, 
there is little likelihood of appreciable deviation from 2M^K AF in any 
actual measurement of [(/af)™]*. Equation (143) is of fundamental 
importance in noise theory, since, as we shall see, it enables us to 
calculate the noise energy in the bandwidth AF. 

c. Quadratic Content in the High-frequency Range, In the high- 
frequency range, t.6., the range in which G{t) cannot be considered as 
impulsive, the Fourier expansion for G(0 can be written (see Chap. I) as 

G{t) = ^ + £ C, cos 

where 

= G{t)dt (146) 

c,=1[jo ^ 
[ 

' Git) aia {2irqt/T) dt' 
= tan-> - (147) 

Git) cos i2rqt/T)dt 

Oit - Ti) = I® + £ C, (148) 

4>q = tan“ 

Combined resultants for the whole distribution of 0{t — TiYs for any 
high-frequency harmonic can now clearly be obtained in exactly the 

^ In practioS) T AFib large enough so that Aq is large in comparison with unity. 
* This same formula is derived in Sec. 7.20 at the end of the chapter on the 

basis pi true hrequenoy distributions rather than Fourier components. 
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same way as was done for the low-frequency case in Sec. 7.116, only M 
is now no longer a constant but varies with frequency. The expression 
for M is, according to Eqs. (125), (144), and (146), 

G{t) cos ^ sin ^ (149) 

For zero frequency the value of M is 

Mo==fjG(i)dt (150) 

With this understanding, Eq. (140) then applies to all harmonics, 
whether of low or high frequency. For the equivalent of Eq. (143) 
we then have 

Average of the mean square values of the 
resultant of the Fourier components in 
bandwidth AF 

2MIK 
T 

(151) 

The right side of Eq. (151) is actually not very useful in practice and 
can be replaced by its Fourier integral equivalent. Thus 

R7ICT = 2K [«(«)]* df (162) 

where _ 

5(«) = v[r; G{t) cos G{t) sin <at dt^ (153) 

and 

= 27r/ 

d. Total Linear and Quadratic Content, If we let I{t) stand for the 
resultant of the entire probability distribution of (?(0's, then we have 
for the average value of the linear content of I(t) 

F I(t) dt = i^ilfo = iicrjifo (154)« 

As previously pointed out, this average value is the average of what 
would be found for 

IJi(t)dt 
if the same conditions were investigated a large number of times. 
Because of the enormous value of N and its Gaussian distribution, 
perceptible deviations from the average are completely unlikely, so 
that we may treat 

^ N stands for the total number of (r(<)'s in the entire interval from 0 to T and 
has a Gaussian distribution, so that its percentage fluctuations are small. 
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as the actual value of what will be found in any practical trial, 
fore, we obtain 

/dc = direct-current value of I{t) 
I 
T 

I{t) dt = ifilfo 

There- 

(155) 

In other words, the total direct-current component is equal to the sum 
of the direct-current components of the individual G{tys. Similarly, 
according to Eq. (103) of Chap. I in conjunction with the results of 
the foregoing sections, 

^ r P(t)dt = MIK^ + 5 y (156) 

If we let 

Gj>c ^ G(t) di ^ (157) 

and 
GAc(t) = G(t) - Gjyc (158) 

then according to Eq. (103) of Chap. I and the foregoing 

c-l 

Substituting Eq. (159) into Eq. (156) we obtain 

J, r P{t) dt = MIK^ + K r GIS) dt (160) 
J 0 Jo 

Next let 
lAc(t) ^ I (t) — I DC 

Then 

f dt 

(161) 

= i [/«) - Ii>cV dt=^\, [P{t) - 2I{t)I^ + zy dt 

= 1 -2/*o + zyd< 

= 1 flPit) - ^>c]dt 

rT 
= Glcit) dt (162) 

In other words, the average value of total alternating-current energy 
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is equal to the sum of the alternating-current energies of the individual 
G(<)’s. The net result of the random distribution of the Cr(0*s is thus 
on the average to cancel out any interaction energy between the 
elementary functions. 

Because of the large number of frequency components that go into 
the making of 

perceptible deviations from the average in any particular case are 
completely unlikely (see Sec. 7.15), so that Eq. (162) may be taken as 
the actual value of the total alternating-current quadratic content. In 
practical problems this is, of course, proportional to the noise energy. 

7.12 Superposition of Probability Distributions of Different Classes 
of Functions. In Sec. 7.11 we dealt with a distribution of G(0's all of 
exactly the same form and occurring at an average rate of K per second. 
We shall now consider the more general case in which there are several 
t3rpes of functions 

• • • ,(?,(0 
having respective average rates of occurrence of 

Kaj Kh, * * * > Kp 
per second. We shall investigate the linear and quadratic content of 
the resultant and also the frequency distribution of the quadratic 
content. 

Let 

M„ = Grit) COS Grit) sin di)^ (163) 

stand for the coefficient of the gth harmonic of Gr{t) in accordance with 
our previous notation, and let 

Mt>r = Grit) dt (164) 

Then we can carry through exactly the same steps as in Sec. 7.11 to get 
the required results. These steps will not be duplicated here. How¬ 
ever, the equivalents of the crucial Eqs. (131) to (134) will now be 

2 
F* = {M^nia + M^n\h+ • • • + cos 

2 
+ y + • • • + Mqptitp) cos ^2 

+. 
2 

+ y (M^riga + -f. • . • il/^n,j,) cos 4** (166) 
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^ ^ ^* + * * * + UE cos* <l>,) 

+ (2)i» cos* 01 + Djt cos* 0s + • • • + US cos* 0.) 

+. 
+ (Ufi cos* 01 + 751^ cos* 08 + • * * + U^ cos* 0.) (166) 

and 

^ cos* 01 + cos* 02 + • • • + nlT cos* 0.) 

+ - jTs®^ (raifc cos* 01 + ^ cos* 02 + • * • + cos* 0.) 

+. 
4J|f 2 _ _ _ 

+ (”n> cos* 01 + nsj, cos* 02 + • • • + ».p cos* 0.) 

-J, *■**) + (-& io * ''V 

+ • • • COS*0d0j 

= I (iif*^/(:<, + Jif*^» + • • • + Mipifp) (167) 

For the final results we obtain for the average of the mean square value 
of the gth Fourier component [equivalent to Eq. (140)] 

RTCT - I {M^K, + M\,K, + • • • + JiPM (168) 

The equivalent of Eq. (143) for the low-frequency range is 

R7I;CT - 2(MIK„ + MlKi + • • • + MlKp) AF (169) 

and th^ equivalent of Eq. (152) for a range of any frequency is 

roron* = 2 {iir.[-Sa(«)]*+ii:6[5»(«)]* + • • • 
‘ + Ji:p[£r,(«)]*} df (170) 

The equivalent of Eq. (155) for the direct-current component is 

Idc = KaMa -f- KtMt -!-•••+ K^p (171) 

and the equivalent of Eq. (162) for the total alternating-current 
quadratic content is 

f rim - i^cVdt - riK/n^^io + irrf?2uo(0 + • • • 

+ K^,ucmdt (172) 
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The net result of Eqs. (168) to (172) for the superposition of sets of 
random distributions of functions as described above may be combined 
into the following rule: 

If a number of sets of random distributions of functions are super¬ 
imposed, 

1. The direct-current components of the sets are additive. 
2. The altemaiing-current quadratic contents of the sets are additive 

for any frequency range. 
This rule is of fundamental importance for the superposition of 

noise currents or voltages. It is used in the preceding chapter in 
dealing with the superposition of random noise from different sources 
and in the next chapter in dealing with space-charge-limited shot effect. 

According to the discussion in Sec. 7.15 the probability of any 
deviation from the average value in the practical application of Eqs. 
(169) to (172) is so very small that it can be ignored. Consequently, 
the averaging lines across the quantities on the left sides of these 
equations can be removed in practice. 

7.13 Normal Distributions. Up to the present point in this 
chapter, we have derived all the formulas we have used. This has 
been done so that the reader would understand completely the type of 
reasoning upon which our results and conclusions were based and so 
that he could use them with complete confidence. We shall now 
discuss an important generalization of these results, which, however, 
we shall not derive, since its derivation is more involved mathe¬ 
matically than is justified in a book of this type and, besides, no 
thoroughly satisfactory derivation has yet been given. 

This generalization deals with the question of normal distributions. 
In Sec. 7.6 we derived the Gaussian distribution formula [Eq. (57)] for 
the probability of a variable (n) having a given value as the result of 
a particular random process, when the number of independent random 
events involved became very large. This is a particular case of a very 
general mathematical phenomena, sometimes called the central-limit 
theorem,^ concerning the limiting form of distribution approached by 

^ As far as the author is aware, a completely general proof of the central-limit 
theorem has never been given. An informative limited proof may be found in 
Uspensky, “Introduction to Mathematical Probability,“ pp. 314 ff. It appears 
from Rice, Bdl System Tech. J., July, 1944, pp. 330-332, that a more general 
discussion may be found in H. Cramer, Random Variables and Probability 
Distributions, Cambridge Tract 36 (1937). A related discussion to the general 
case is also given by Chandrasekhar, Rev. Modern Phys. In the absence of a 
proof of the theorem which precisely specifies its limitations, there is some 
question as to the range of validity of the results dependent upon it. 
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the resultant of m random contributions as m approaches infinity. 
In our derivation of the Gaussian distribution formula, the m random 
contributions were the results of the m trials to see whether an event 
occurred whose probability of occurrence in any one trial had a con¬ 
stant value p. This is called a one-dimensional distribution since the 
results of the m trials were directly additive to give a final value n. 
An example of a quantity having a two-dimensional distribution is 
the amplitude F of a particular noise frequency component (see Sec. 
7.116), since it is made up of the superposition of a large number of 
random inphase and quadrature components that are separately 
additive. Now the central-limit theorem deals with the form of the 
distribution function in the general case of any number of dimensions 
as the number m of the individual random contributions approaches 
infinity. 

The form of the distribution function indicated by the central-limit 
theorem becomes quite simple in the special case when the following 
two requirements are met: 

1. The ensemble average value of the contributions in each dimen¬ 
sion is zero. 

2. The contributions in the different dimensions are independent 
of one another. 

Then, if the dimensions are x, y, z, etc., the central-limit theorem 
states that the probability that the resultant will lie in the volume 
element dx dy dz , . . is 

~ -4= *“*’*'’dy• • • (173) 
Vir Vir y/ TT 

where a^, 6*, c*, etc., are given by the equations 

o* = 6* = etc. (174)» 

and al is the ensemble average value of x^, with corresponding mean¬ 
ings for o-y, <r„ etc. It should be pointed out that the above form indi¬ 
cated by the central-limit theorem is not limited to the particular type 
of random process used by us in deriving the Gaussian distribution 
but holds for any type of random process. 

For the central-limit theorem to be safely applicable it is also necessary 
that no one of the m random contributions shall be comparable with the 

1 This significance for a*, etc., follows from the formula 

2a* 
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resultant of all the osiers, or, more precisely, 

lim -^ = 0 
fn—* 00 Ittn 

where w, is some particular contribution and Rm is the resultant of all 
the others. 

We may note^ as an example of Eq. (173), that the deviation D 
in Eq. (57) is made up of contributions from the m trials which have 
an ensemble average value of zero. Since D is obtained by a one¬ 
dimensional random process, it then follows from Eq. (173) that its 
distribution function is 

P(D) = «-»•"* (175)‘ 
Vir 

We know the ensemble average value of D®, since by Eq. (92) we have 

25^ = n (176) 

for a Gaussian distribution. Therefore, by Eq. (174), 

a = 
2fi 

(177) 

Thus Eq. (176) becomes 

which agrees with Eq. (57). 
The form of the distribution function specified by the central-limit 

theorem is called a normal distribution. 
7.14 Random Noise, a. The Distribution Function for Iq. We 

shall now apply the central-limit theorem to find the probability dis¬ 
tribution of the Fourier components in I{t) of Sec. 7.11 Thus we let 
Iq stand for the amplitude of the qth harmonic and Iqx and for its 
cosine and sine components, i.6.. 

where 

Jg = J, cos 

. ^rqt 
= cos 

, - . 2rqt 
+ 7w sin (179) 

/» - 7*. + IJ, and • (180) 

^ The notation P{x) dx stands for the function which gives the probability that 
the X variable lies between x and x + dx. P{x) is not a specific function like sin x 
or log X because the form of P(x) depends on the nature of x. 
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According to the derivation in Sec. 7.115, and I^ are each the 
resultant of a very large number of random contributions no one of 
which is comparable with the resultant of all the others, and further¬ 
more the contributions of the x and y components are independent of 
each other and _ _ 

/,x = 0 = (181) 

Therefore the central-limit theorem applies to !«. Consequently, 

P(/,,) dl,. = and P(/^) dl^ 

According to Eqs. (174), (134), and (135) 

T 
a* = and 5® = 

y/r 

T 
AM^K 

(182) 

(183) 

The distribution of Iq itself is two-dimensional. In order to find 
the form of the distribution for /«, we shall therefore transform from 
rectangular to polar coordinates. It then follows that 

dlqx dlqy = Iq dlq (184) 
Therefore 

/_V /-V to) dl qx dl qy 
m r» r2T Tit* 

-cliK 
m /• • Tit* 

For a two-dimensional normal distribution, such as that of Iq, the 
form of the distribution function is thus 

P{lq)dlq = 

where 
1 T 

^ Ji AM^K 

^ This follows from the formula of integration 

' r*2A*re-^'^dr - p 

(186) 

(187)1 
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in the above case. We note from Eq. (187) that l/A® is a measure of 
the noise energy. 

P(7,) has a maximum when 

i.e., when 
dl„ 

7.= 1 _ VJl 
\/^ V2 V T 

(188) 

(189) 

Thus, while we cannot predict the exact value of in any particular 
case, we do know that its most 
probable value is given by Eq. 
(189). Futhermore, the average 
value of its square is given by Eq. 
(187). 

The quantity/! is not the square 
of an rms value averaged over time 
but rather is the average obtained 
for the square of the peak current 
/g when a large number of trials 
are made. The ensemble average 

of the mean square values averaged over time of the gth Fourier 
component of /(^) of Sec. 7.116 is thus, from Eq. (187), 

Fig. 9. Representation of Iq in rec¬ 
tangular and polar coordinates. 

I\ _ 2M^K 
2 T 

(190) 

Equation (190) gives the ensemble average of the quadratic content of 
the gth Fourier component. 

6. Definition of Random Noise. The foregoing study of /« suggests 
the following definition of random noise: Definition: Any stochastic 
function of time of specified length whose Fourier series components each 
have a two-dimensional normal distribution and random phase will be 
called random noise, provided that ihe quadratic content of no single 
component is an appreciable percentage of the total.^ 

According to this definition, random noise will still be random noise 
even after going through a linear transmission system having any 
selectivity characteristic whatever. 

^ The random phase requirement means that the average values of the sine and 
cosine components are equal at every frequency. The requirement regarding the 
smallness of every component in the above definition is equivalent to saying that 
the number of comx>onente must be large and that there is no appreciable direct- 
current component. 
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It is shown at appropriate places in the following chapters that 
both shot noise and thermal noise are random noise, in accordance 
with the foregoing definition. This definition is more general than is 
usually necessary. For most purposes we can restrict our considera¬ 
tions to white random noise. In the latter case the average value of 
I\ is independent of q. 

c. The Distribution Function for the Amplitude of Random Noise. 
Let us next find the distribution function for the amplitude of I(t) for 
a particular^ time t, where I{t) is any random noise. Now I(t) is the 
resultant of the superposition of contributions 

7, cos 

from each Fourier component. These contributions are random 
since they depend on random values of Ig and </><,. Furthermore, the 
average value of I(t) is zero, since positive and negative values of any 
size are equally probable. If T, the total length of the observation 
time, is made sufficiently long so that there are a very large number of 
Fourier harmonics used in the superposition of which I{t) is the resul¬ 
tant, then the conditions required for the central-limit theorem to be 
applicable are fulfilled. Therefore, for any particular value of 
it follows that 

p(7) = —^ (191) 
(Ti v27r 

where 
<r* = T‘ (192) 

The distribution is one-dimensional, for all the components that go 
into the making of I(t) are directly additive if the proper sign is used. 

For the particular case studied in Sec. 7.116, 

7* = 2M^KAF 
so that Eq. (191), becomes 

PiD = 
_i_AF 

V4tM*K AF 

(193) 

(194) 

d. The Principle of Lmo-frequency Composition. Suppose that we 
have two ftmctions pi(0 and gtlf) whose appearance is the same except 
in the very fine details. We shall express this mathematically by 

*■ The meaning of a particular value of time t in the case of a stochastic function 
like I(t) refers to a particular length of time from the beginning of the interval of 
length T. Repeated trials are then made of intervals of length T to find the 
stochastic distributions. 
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saying that 

gi{t) dt = g»(JL) dt (195) 

in every interval of length tb ta which is short enough so that 
cos {2imt/T) and sin {2imt/T) do not vary perceptibly in the interval 
h — ta- Let us next divide the whole interval T into short intervals of 
length tb — ta. It then follows from the formula 

CUl — Ont = ^ - ^s(<)] COS dt 

= I ^ cos £ Mt) - = 0 (196)* 

and the corresponding formula for bni — bn2 for the difference between 
the Fourier coefficients that the two functions have the same frequency 
composition for frequencies below (n/T). Similarly, if the frequency 
composition is the same below F = n/T, then Eq. (196) holds. We 
shall call this proposition and its converse the principle of low-frequency 

composition. It follows from this 
principle that the fine structure of a 
function contributes only compo¬ 
nents of high frequency to its Fourier 
composition. 

e. Demonstration that the En¬ 
semble Distribution of the Amplitude 
of Random Noise Is Also a Time Dis¬ 
tribution. Description of Random 
Noise as a Function of Time. We 
shall now demonstrate that the en¬ 
semble distribution of the amplitude 
of random noise is also its time dis¬ 
tribution. In other words, we shall 

show that the fraction of time which I spends in the range between I 
and I + dl VEL an actual case of sufiGicient duration is proportional to 

P(/). 
Let us divide the long interval T in which random noise is being 

studied into very short intervals of equal length these latter inter¬ 
vals being so short that I is effectively constant for the duration of 
any one of them in any particular trial of an ensemble.^ Now the 

^ The summation in Eq. (196) is taken over all the intervals of length 4 *** 4* 
* All random noise has an upper frequency limit above which it has essentially 

g, (t) 

Fiq. 10. Two functions differing only 
in fine details. 
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probability distribution of I in any particular to is exactly the same 
as the distribution in every other and is equal to P(/) itself since 
all values of time have the same probability of having any particular 
noise amplitude in the random noise that we have been studying. It 
follows that, on the average, the fraction of time which I spends in the 

Fio. 11. The result of one particular determination of the values of I(t) in the range 
from 0 to r for a given set of experimental conditions. Many such trials would make 
up an ensemble. (The random noise shown in Fig. 11 is not white noise, but rather is 
the noise in a narrow frequency channel.) 

range between I and I + dl is proportional to P{I) itself. While there 
are fluctuations from this average condition, if the interval T is made 
long enough, the fluctuations will be small. 

So far, in our discussion of random noise we have spoken only of 
probability distributions. In the light of the preceding paragraphs, we 
can now specify the conditions under which we should describe a 
particular signal of finite duration, such as a particular oscillogram, 
as random noise. Thus if 

1. The signal has a very large number of Fourier series components 
2. The ratio of the quadratic content of any one component in 

comparison with the total is vanishingly small 
3. The phases of the components are distributed at random. 
4. There is no direct-current component 

then we shall describe the signal as random noise. ^ Such a signal will 
have the amplitude distribution and other properties that we have 

no components, so that it follows from the principle of low-frequency composition 
that a sufficiently small interval U exists in which I is effectively constant. The 
high-frequency limit to shot noise is brought about by finite transit time, the high- 
frequency limit to thermal noise is due to quantum effects, while the high-frequency 
limit to artificial random noises is ensured by their finite energy content. 

> This definition requires clarification for those who have not read the earlier 
parts of the present chapter. The fundamental period used in the Fourier series is 
the total time of observation of the signal. Thus, a snapshot oscilloscope picture 
of a interval of thermal noise of 1 me bandwidth would not be classified as 
random noise because the early Fourier series components each have an appreci¬ 
able percentage of the total quadratic content. However, if the interval of obser¬ 
vation is extended to 1,000 /isec, then the signal in the picture would be classified 
as random noise* 



330 FREQUENCY ANALYSIS, MODULATION AND NOISE 

already found for random noise. The only other information neces¬ 
sary to specify it completely is a knowledge of how much quadratic 
content it has as a function of frequency, or, in common terminology, 
a knowledge of its power vs. frequency spectrum. 

If the power vs. frequency function is a constant, the noise is said 
to have a white spectrum, by analogy with the optical case. Most 
random noise as it originally arises has a white spectrum band begin¬ 
ning at low frequencies and extending for an appreciable frequency 
range. 

/. Artificial Random Noise. We shall apply the term ^'artificial 
random noise to man-made random noise such as film-scratch noise, 
which is usually the resultant of the superposition of a large number 
of individual, but not necessarily identical, functions that occur at 
random intervals. Probably man-made noise is never truly random, 
for there is usually some regularity in it. However, some such noise 
is close enough to true random noise so that the superposition laws of 
random noise can be applied to it. 

Since the individual functions referred to above are usually of short 
duration, they may be considered as impulsive in the low-frequency 
range. Consequently, the value of 7^ for any particular low-frequency 
harmonic will have a two-dimensional probability distribution, the 
value of 0-2 being the same for all low-frequency harmonics. This type 
of random noise will therefore have a uniform energy distribution in 
the low-frequency range. 

g. Superposition Laws. Random noise has certain characteristic 
superposition laws, which will now be stated and proved. 

1. The superposition of two or more random-noise functions gives 
another random-noise function. This follows directly from the defini¬ 
tion in Sec. 7.146, since the superposition process just adds infinitesimal 
Fourier components of a given frequency together, which still leaves 
the components infinitesimal. Therefore, by the central-limit theorem, 
the resultant function still has a two-dimensional normal distribution. 

2. If two or more random-noise functions are superimposed, the 
ensemble averages of their squares are additive. 

The proof of this follows directly from Eq. (116), for the average 
value of any random-noise function is zero, so that the actual values 
may be considered as fluctuations. Thus since 

7 = /i + /2 + • • • + 7n (197) 

and all the 7’s are stochastic functions, it follows that 

7* = 7f+ 71+ • • • +71 (198) 
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From Eqs. (191) and (198) we also obtain 

P(7) = - --- . .. .. £2(o’i*-fcra*+* • •+»»»*) 
■\/2T{<r\ + <rl + • • • + <r“) 

(199) 

3. If two or more random-noise functions are superimposed^ the 
quadratic contents are additive. 

The proof follows directly from Eq. (198) and the fact demon¬ 
strated in Sec. 7.14e that the ensemble distributions of /, 7i, 12, etc., 
are also their time distributions. Consequently, 

fjpdt = ffndt + fj'ndt+ • • • + ffndt (m 
7.16 The Crowding of Values of the Resultant around the Average 

as the Number of Dimensions in a Normal Distribution Is Increased. 
In Section 7.14a we found that in a two-dimensional distribution in 
which a vectorial law of addition applies, z.e., 

r2 = -h (201) 

the distribution of the resultant has a maximum for a value of r which 
is determined by the average values of and We shall now show 
that, as the number of dimensions is increased, this maximum tends to 
become very sharp. This has important applications in noise problems. 

For simplicity we shall study the symmetrical case in which the 
standard deviations a are the same in each dimension. Suppose that 
we are dealing with an W-dimensional distribution, and let us call the 
coordinates 

Xi, X2j • ' ' ,Xn 

We shall assume that N is an even number, since this is the usual case 
of interest. 

Then 
r^^x\ + xl + • — + xl (202) 

Now, we know by definition that 

j’Pij)dr = l (203) 

and we know by geometry that 

+" 
P(a;i)P(x2) P{xn) dxi dxi dxn 

a\a2 I ' r• • • +.»•«»•) dXi dXt 
M)" J-„ 

dxit 
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since by hypothesis 

of = o| = • • • — a% = say o* 

Since N is an even niunber, 

/; 20^^ 

so that by Eq. (203) 

A = 
2a^ 

Thus 

P(r) = - 

P(r) has a maximum when 

(205) 

(206) 

(207) 

(208) 

~ -2oV)] = 0 (209) 

i.e., when 

or 
(N -1) - 2oV* = 0 

_ 1 IN 
ay 2 

(210) 

(211) 

To show that the maximum is sharp when N is large, we need only 
note that decreases rapidly on the low-r side of the maximum, 
so that low values of r are improbable; and decreases rapidly on 
the high-r side, so that large values of r are improbable. When N 
increases, the value of r for maximum P(r) increases according to 
Eq. (211), so that the maximum moves out to a region in which 
e"^**’* is decreasing more rapidly. The maximum thus becomes sharper 
on both the high- and low-r sides as N increases. The reader can work 
out some numerical cases as exercises. 

The most common application of the foregoing mathematical 
phenomenon in our work occurs in the calculation of the energy in the 
superposition of different frequency components, each of which has a 
normal distribution. Each frequency component adds two dimensions 
(one inphase and one quadrature) to the over-all picture. Con¬ 
sequently, when the number of frequency components is large, 
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appreciable deviations from the average energy value are extremely 
improbable. Therefore, if the time of observation T is long enough 
so that there are a large number of Fourier components in the fre¬ 
quency band AF, then the power or energy measured in AF will show no 
appreciable fluctuations in practice. 

7.16 Coherence. When two identical signals are added in phase, 
it is well known that the energy (quadratic content) of the resultant is 
equal to four times that of either signal taken separately. On the 
other hand, if the two signals are added out of phase, the resultant has 
zero energy. In general, if we have two signals Ei{t) and E^it) and 
the two are superimposed, the resultant quadratic content is 

/[Fi(0 + Em^dt = i[E\{t) + 2Ei(t)E,{t) + EKt)] dt 
^S[El(t) + Em dt + ^2E^(t)E2(t) dt (212) 

The first integral on the right of Eq. (212) represents the quadratic 
contents of the two signals taken separately, while the second integral 
represents an interaction quadratic content. The ratio 

= (213) 

will be called the coherence ratio between the signals Ei{t) and J?2(0* 
The value of the coherence ratio thus must lie between —1 and +1. 
The coherence ratio represents a normalized version of the interaction 
quadratic content. 

In accordance with the foregoing definition, we see that two inde¬ 
pendent noise signals have a zero coherence ratio, since we know that 
their quadratic contents are directly additive. Furthermore if the 
integration is carried out over a sufficiently long time, two signals of 
different frequencies 

. Cl cos mt and C2 cos 

have a zero coherence ratio. Two signals of the same frequency but 
90 deg out of phase will likewise have a zero coherence ratio if the 
integration is extended over a very large niunber of cycles. Signals 
having a zero coherence ratio are called orthogonal. Signals having a 
coherence ratio of +1 or —1 may be called unicoherent. 

Any signal can be divided into Fourier series components (each 
component having a sine and a cosine term). Therefore, if two signals 
are considered over a long period of time, it follows that they can be 
separated into orthogonal and unicoherent components. We can 
therefore state the following rule: 

J2Ei(t)E2(t) dt 
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The resultant average quadratic content in the superposition of a 
number of signals is equal to the sum of the average quadratic contents of 
the individual signals plus twice the sum of the average values of the 
products of the unicoherent components, each product taken with proper 
sign. 

As an example, let us find the average quadratic content in the 
superposition of Ci cos (at and C2 cos {(at + 4). Here the unicoherent 
components are 

Cl cos (at and C2 cos 4 cos <at 

and the only orthogonal component is 

— C2 sin 4 sin cat 

The total average quadratic content is therefore 

+ ^ co8» + f sin^ <(, + 2^ cos « = ^ ^ + CxC, cos « 

(214) 

It is a general practical fact that any two signals arising from inde¬ 
pendent sources are orthogonal. Even in the case of signals of presum¬ 
ably the same frequency, if the signals are independent there will 
always be a wandering of the phase between them so that over a long 
time the average value of the interaction term C1C2 cos 4 in Eq. (214) 
will be zero. 

The different sidebands of a modulated wave are orthogonal. 
This is true regardless of the type of modulation, since the sidebands 
are of different frequencies. Nevertheless, the sidebands have 
definitely specified amplitude, phase, and frequency relationships with 
respect to each other. On the basis of these relationships, as we have 
seen in the last chapter, it is possible to obtain improved signal-to- 
noise ratios. It is therefore reasonable to call these sidebands coher¬ 
ent, even though their interaction energy is zero. We thus arrive at 
the following general definitions: 

Any two signals, or any two parts of the same signal, which have a 
specified relationship between their detailed values (i.e., between their 
amplitudes as a function of time or between the phases of their frequency 
components) are coherent. Two signals, or two parts of the same,signal, 
are incoherent if they are independent of each other (i.e., if there is no 
specified relation between their detailed values). 

On the basis of these definitions, all incoherent signals are orthog¬ 
onal, but orthogonal signals are not necessarily incoherent. 
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Since the quadratic contents of incoherent signals are additive, 
any deviation from exact addition is an indication that the signals are 
not independent. In particular, any decrease (or increase) in the 
normal fluctuations of a random process can be brought about only by 
the introduction of some coherence whose effect is to make the process 
no longer random. 

For example, in Sec. 7.11, we derived the formula 

[(/AF)rn«]2 = 2M^K AF (215) 

for the fluctuation in the resultant of a large number of identical 
impulsive functions occurring at random, but at the average rate of K 
per second, and of impulsive strength M, Since the quadratic content 
in the bandwidth AF of a single impulse is 2M^ AF, Eq. (215) states 
that the quadratic contents of random impulses are additive, i.e., 
their average interaction energy is zero. Applying Eq. (215) to the 
case of shot effect, we have 

M = e = electronic charge (216) 
and 

MK = / = plate current (217) 
Thus 

l{lAF)ru^y - 2elAF (218) 

Now, in the presence of space charge or when there is an external load 
impedance, the actual fluctuations in place current are less than the 
amount given by Eq. (218). We can therefore conclude that the pres¬ 
ence of space charge or the external impedance must introduce coher¬ 
ence between the impulses which make up the plate current. To 
state this in other words, we may conclude that both space charge and 
external impedances cause interaction between electrons traveling in a 
tube so that the arrival of individual electrons at the anode is no longer 
a randotai process. Nevertheless, in the case of shot effect (see Sec. 8.4) 
the anode current is still random noise in accordance with the defini¬ 
tions in Sec. 7.14, since its wave form is unchanged by these coherent 
influences and only its magnitude has been affected. Coherent 
influences of such types are thus quite similar to regeneration or 
degeneration. 

Exercises 

1. Discuss the amount and effects of coherence when a chorus of n persons is 
singing a song. 

2. If a number of people are speaking at random in a room, the question arises 
as to whether the addition of more speakers will tend to increase the general noise 
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level or whether it will tend to decrease it, owing to phase reinforcement and 
cancellation. Show that the average noise level (measured in terms of sound 
energy, which is proportional to amplitude squared) is directly proportional to the 
number of people speaking, if each is speaking with the same average loudness. 

7.17 The Envelope of a Noise Signal and of a Noise plus Carrier 
Signal.^ In many cases in radio engineering in which random noise is 
important, the noise passes through a radio-frequency transmission 
system which is quite narrow, say perhaps 10 to 30 kc wide for audio or 
3 to 6 me wide for television. The noise or noise plus signal then passes 
through a detector, so that what is really important is the envelope of 
the noise or noise plus signal. We shall therefore now calculate the 
probability distribution function of the amplitude of the envelope of a 
noise function and of a noise plus carrier signal. 

a. Noise. A noise signal according to Sec. 7.14a consists of fre¬ 
quency components of the form 

where has a two-dimensional normal distribution and is a random 
phase. In order to find the envelope of the noise signal, we express 

as a modulated carrier in the form 

iq = Iq cos 

= Iq cos 

1
-
1

 

1 -f) 11 + 2irFt + 

-f) I i cos 2irFt 

— Iq sin \2w ^ — Fjt + <t>q\ sin 2prFt (220) 

In Eq. (220) F is the carrier frequency, which may be chosen in the 
center of the pass band, although this particular choice is not neces¬ 
sary. The term with cos 2TrFt as a factor may be considered the 
inphase component and the term with sin 27rFt as a factor may be 
considered the quadrature component of Eq. (220) in accordance 
with the terminology of Chap. V. The total noise signal may then be 
expressed 

ty = le cos 2irFt — I, sin 27rFt 
= Rn cos (27rFt + 6) (221) 

where 

/. = + (222) 

^ The methods used in this and the following two sections are due to 8. O. 
Rice, Bell System Tech. J., July, 1944. 
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and 

/. = (223) 

and the summation is taken over all values of 9 in the pass band. 
Furthermore, 

Rh = (224) 

where Rk is the amplitude of the envelope. 
Both Ic and I, satisfy the conditions required by the central- 

limit theorem, so that each has a one-dimensional normal distribution. 
Consequently, Rk has a two-dimensional normal distribution, which 
may be expressed, according to Eq. (186), as 

P(Rt,) dRs = 2A^Rn€-^'^''' dRi, (226) 
where 

A* = ^ (226) 

From Eq. (221) it aleo follows that 

Hr (227) 

since the average value of the cos* is and since, according to Sec. 
7.146, an ensemble distribution of random noise may be considered a 
time distribution. Therefore 

^ "" 2(mean square total radio-frequency noise signal) 

Equation (225), with the value of A* given by Eq. (228), is the 
desired probability distribution of the envelope amplitude of random 
noise. 

For’future reference we now also note that from Eqs. (226) and 
(224) it follows that 

^ = 7! = (229) 

Therefore the distributions of I» and 7. are, according to Eq. (174), 

Pil,) die = (230) 
Vir 

and 

P(7.) die = -4^ dl, 
Vv 

(231) 



338 FREQUENCY ANALYSIS, MODULATION AND NOISE 

b. Noise plus Carrier. Let us next consider the case in which we 
have a carrier in addition to the noise, and let the carrier be 

K cos 2vFi (232) 

The coefficient of the inphase component is now 

r,^K + ic (233) 

and that of the quadrature component is 

II (234) 

The amplitude of the envelope is 

R = VI? + I? (236) 
SO that 

Ic = R COS d (236) 
and 

r, = R sin 6 (237) 
where 

✓ 

II (238) 

The probability distribution of /' is the same as that of /*, namely, 

= A-^-Au.'>dr, (239) 

Since 2^ is a constant, the probability distribution of le 
Eqs. (230) and (233), A 

is, according to 

P(0 dl'. = dll 
V*’ 

(240) 

According to the method used in Eq. (185) it then follows from Eqs, 
(239) and (240) that 

P{R) dR = I — 

A 2 
= / — h dR do 

Je^o IT 

= ftAtKR cc t dR 

= 2A ^KR) dR (241)» 

where /o is the modified Bessel function of the first kind of zero order 
(discussed in Appendix E). 

^ This follows from the formula 

1 rsT 
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Equation (241) is the desired probability distribution for the 
amplitude of the envelope of a combined random noise plus carrier 
signal. The value of A^ is given in Eq. (228).^ 

Exercise 

In certain low-frequency amplifiers, the noise and signal are superimposed and 
observed directly without a detection process. For such a case, find the prob¬ 
ability distribution of a superimposed direct-current pulse and random noise. 
This will be the analogue of Eq. (241). 

7.18 Linear and Low-frequency Quadratic Content of the Rectified 
Envelope of Noise and Noise Plus Carrier Signals (Linear Detection). 
We shall next determine the output of a linear detector when the input 
is either pure noise or noise plus carrier. We are interested in finding 

1. The direct-current output (diode current), since this can then 
be used as a measure of the noise and the carrier. 

2. The mean square value of the low-frequency alternating-current 
output, since this is a measure of the output energy (audio, video, or 

Fig. 12. A modulated carrier showing the envelope and indicating the portion passed 
by a linear rectifier. 

Let US suppose that the linear rectifier has a characteristic 

1 = 0 (when F < 0) 
= aV (when F > 0) 

(242) 

where F is the input signal amplitude and / is the output signal ampli¬ 
tude. In Fig. 12 is a diagram of the envelope X of the signal, and the 

^ Since 

Rms value of carrier « —■=. 
V5 

and 

it follows that 

Rms value of noise ** —■=— 
V2A 

Rms noise 1 
Rms carrier “* AK 
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actual radio-frequency signal is also shown. Now 

5/.'“ 
sin xdx ^ - 

TT 
(243) 

Consequently, a glance at Fig. 12 shows that the total of direct-current 
plus low-frequency output of the rectifier is 

/rx = — = /i.c + /ao 
V 

(244) 

where the subscript tl is an abbreviation of total low'' and Iac in 
Eq. (244) stands for the low-frequency (i.e., excluding radio-frequency) 
components in the output. 

To find /pc, we need only find the average value of Itl- Thus, 
according to Eq. (241), for noise plus a carrier 

/' r Jo 

It Jo 

RP(R) dR 

2.4 Vir 
(1 + (^) -I- 

(A*K^' 

\ 2 )] (245) > 

where h is the modified Bessel function of the first kind and first order. 
For the case of pure noise, we can either let = 0 in Eq. (245), or we 
can find I dc directly from Eq. (225). Thus, for pure noise. 

/pc - - f " R^P(Rh) dRy = - r " dR^ = —^ 
IT /o TT Jo " 2A \/5r 

(246)2 

This is also the value of Eq. (246) when K = 0, The value of A is 
given in Eq. (228). 

1 This follows from the formula 

d* - [(1 + A*K*)U (^) + A»K‘/i (^)] 

Equation (246) is credited by Hice to W. E. Bennett and D. O. North. 
* This same value of Idc should be obtainable by direct rectification of the 

noise amplitude given in Eq. (191), since the direct current should not depend 
upon whether the noise is considered as a modulated carrier or not. The rectified 

direct current according to Eq. (191) is ^ 

a f" IP{I) dl - a f” —^ *~^dl 
^ Jo y/2v 

ctffi a 

“ -v/S ” 24 Vr 
■inoe n 1/4 •y/i awarding to Eqa. (192) and (228). Hus agroM with Eq. 
(248), 
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Equations (246) and (245) allow noise and noise plus signal to be 
measured with a diode meter. Equation (245) is plotted as a function 
of K in Chap. VI (Fig. 22). 

Let us next determine the low-frequency quadratic content of these 
rectified envelopes, namely, According to Eq. (244), 

Itl ~ (/dc + IacY = I%c + 2IdcTac + 
^ lie+ (247) 

since 
TTc^O (248) 

Thus 

= ^TL ■” ^lo (249) 

Now, according to Eqs. (244) and (241), 

pmdR 

= *-“(«•+*«) Io(2A’‘KR) dB 
Jo 

Combining Eqs. (249), (250), and (245), we obtain 

[ (1 + A^K^)Io 
2 V 

y + A^K^I (251) 

Equation (251) is plotted as a function of K in Chap. VI (Fig. 23). 
For very large and for very small values of K the values that it gives 
for become much simpler. Thus, when A^K^ is very small [see 
Eqs. (15) and (16) of Appendix E], 

BO that Eq. (251) becomes 

^ + X') - 435 (' + ^‘*’ + I + 
^ This follows from the integration formula 

! J.(2A*Xx) d» - 

(252) 

(253) 
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li K = 0, Eq. (264) reduces to 

(4-t) (255) 

This same value could also have been obtained by using Eqs. (225), 
(244), (246), and (249) for the case of pure noise. 

When is very large, we can use the asymptotic expansions for 
the Bessel functions [Eq. (21) of Appendix E]. We thus obtain, for 
large values of A^K^, 

and 

h 

'A^K^\ t 2 

. 27 AK y/w 

A'K' 
€ 2 

. 2 ) AK \/t 

+ 

Substitution of these values into Eq. (251) gives 

+ 

n; - ^ (1 + Ku*) A=K>+?+ 
v2 

) 

•) 

(256) 

(257) 

a- 

2k^A^ 

G-4-.)] 
(258) 

We thus see that for large values of K, the carrier level, the output 
signal is independent of K and depends only on the radio-frequency 
noise 1/2^1®. 

The ratio of Eq. (258) to (255) gives the increase in apparent noise 
that is always observed in a radio receiver when a carrier is tuned in. 
This ratio is 

aV2ir242 

aV(47r2A2)(4 - ir) 
= 2.33 

4 — TT 
(259) 

The ratio given in Eq. (259) is actually the minimum value that 
can be observed for the ratio of noise with and without a carrier. In 
actual receivers two characteristics tend to increase this ratio, often 
man3rfold. One of these characteristics is the frequency characteristic 
of the low-frequency amplifier. Thus, if the carrier is located at the 
center of the pass band of the noise and the carrier is of large ampli- 
tudet the low-frequency noise output is pretty well confined to a bwd 
extending from zero frequency to a frequency of one-half the width of 
the radio-frequency noise pass band. The reason for this is that the 
low-frequency noise in this case arises from beating of the carrier with 
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the separate noise components. However, when the carrier is absent, 
the beating of noise components gives rise to important frequencies 
extending from zero up to the entire width of the pass band, although 
the output does fall off at the higher frequencies. Furthermore, the 
asymmetrical noise sidebands, which practically give rise only to fre¬ 
quency modulation when a large carrier is present, will, in the absence of 
a carrier, also give rise to AM harmonics of the noise beat frequencies, 
thus still further extending the low-frequency range. Consequently, 
unless the low-frequency amplifier has a very wide pass band, it will act 
to increase the ratio given in Eq. (259). 

The other characteristic of a receiver that tends to increase the 
ratio in Eq. (259) is nonlinearity of the detector at low amplitudes. 
This will make the detector relatively insensitive at the low ampli¬ 
tudes that may occur when noise alone is present, thus often causing a 
manyfold increase in the ratio given by Eq. (259). For this same 
reason it is important that large signal levels shall be present, when 
Eq. (245) is used to evaluate noise measured with a diode meter. 

Exercises 

1. Wlien K is large, express the effective percentage of noise modulation in 

terms of A and K. 
2. Find the output of a linear detector for an input wave 

Answer: 

K(1 +171 cos at) cos o»t 

y aK , otmK . 
I TL—-1-cos at 

TT V 

a^Tn'^K* 
Uc - -2ir- 

^ aK 
iDC ^ - 

7.19 Effect of a Quadratic Transmission System on Random Noise 
and the Envelope of Noise Plus Carrier (Square-law Detection). We 
shall next determine what happens when noise or noise plus carrier 
passes through a quadratic transmission system (square-law-tjrpe 
detector) such as the curved portion of a vacuum-tube characteristic. 
Let us assume that the characteristic of the transmission system is 

I = aV^ + fiV + y (260) 

where V is the amplitude of the input signal, I is the amplitude of the 
output signal, and a, and y are constants of the transmission system. 
Let the input signal consist either of pure random noise or noise plus 
a carrier. In either case, as shown in Sec. 7.17, the input may be 
considered a modulated carrier 

V = R cos (2rF< -f 4>) (261) 
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where B is the envelope and F is the carrier frequency. The notation 
of Sec. 7.17 will be used in the following discussion. 

From Eqs. (260) and (261) it follows that 

I — oiB* cos* (2irFt "b 0) "I" fiB cos (2irFt d" 0) “b y 

= ^ cos {AkFI + 20) + fiB cos (2irFf + 0) + y (262) 

Now suppose that we have a filter to remove high frequencies, in the 
carrier range or higher. Then Eq. (262) reduces to 

r = (263) 

where /' is that portion of I from which the high frequencies have been 
removed. 

If we let R be the envelope of carrier plus noise as given by Eq. 
(241), then the direct-current component of the output is 

/do = ^ + y = ^ ^ I^{2A'^KB) dB + y 

The integral in Eq. (264) has previously been evaluated in Eq. (250). 
If there is no carrier, then K is just set equal to zero in Eq. (264). 
The value of 4*-is given in Eq. (228). 

To find the alternating-current quadratic content (power) of I', 
we first note that according to Eq. (249) 

= Itl /do (265) 

where is the average value of /'*. Thus 

2 + y* 

U{2A^KB) dB 

+ ay h(^2A*KB) dB + y* 

+ + + + + (266)* 
^ The first integral is evaluated by the formula 

* 2A*x*t-^*<^**^ h(2A*Kx) ^ ^ + iSC* 

The second integral has been evaluated previously. General formulas for evalu- 
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Consequently, 

(ss?) 

In Eq. (267), K is the carrier amplitude, and 1/24* is the mean square 
value of the total radio-frequency noise signal. For pure noise, we 

just set if = 0 in Eq. (267). As in the case of the linear detector, 
the pure noise terms have a wider frequency spectrum than the original 
frequency band, so that narrowing the band of the low-frequency 
amplifier will discriminate against noise. 

Exercise 

Using Eq. (191) for the amplitude distribution of random noise, show that 
Ijxi ** (a/2A*) + y for random noise passing through a quadratic transmission 
system. 

7.S0 Relation between Fourier Harmonics and Frequency Com¬ 
position in a Signal of Finite Duration. Before closing Chap. VII 
we shall discuss briefly the relation between the Fourier series com¬ 
ponents and frequency composition of random-noise currents. In 
Fig. 13 is shown diagrammatically the total current I{t) and its qth 

ating this type of integral are given by Bice in his equations 3.10-12 and 4B-1. 
It idiould be noted that, when n is an even integer, Rice’s series 4B-1 terminates 

with the -f l^th term. 
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Fourier harmonic 

C, cos 

Since T is finite, the gth Fourier harmonic is just a wave train of finite 
length; and according to the discussion in Sec. 3.2 it consists not of a 
single frequency component, but rather of a whole distribution of fre- 

Fiq. 14. Superposition of the functions \Fq+n(J)\^ to give lF(/)l* in accordance with 
Eq. (271). 

quency components. However, if the wave train consists of many 
complete cycles of 

Cj cos 

the frequency distribution is sharply peaked in the neighborhood of 
the frequency q/T, Consequently, it is customary to speak of the 
gth Fourier component as having a frequency q/T, especially when q 
is large, but it should be kept in mind that each Fourier component 
really represents a distribution of frequency components. 

For many theoretical as well as practical purposes it is desirable to 
have an expression for the actual frequency distribution of 7(0, not 
just the amplitudes of its Fourier series components. We shall there¬ 
fore proceed to find the frequency distribution. Our method will be 
to find the complex frequency distribution F(f) of each Fourier series 
component and then add these frequency distributions for all the 
Fourier series components. According to Eq. (33) of Chap. IV this 
will give us the frequency distribution of I{t), 

Let us first find the frequency distribution Fq(f) of the general 
Fourier component 

_/2iro< N 
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Ca COS COS 2t/< dt 

~ ^ jo ^T' ~ 

(/+f,) 
sin 2T(f + - 4,, 

H- 

4ir 

( c. , 

+i( 
'iir (/ + |;) 

+ — 
c, 
-- COS 

^2t (f + ^ t — </>gj 

Jlo 

For the high Fourier series harmonics, $ is a large number, so that 
the first terms inside the braces in Eq. (268) become negligible in 
comparison with the second and the second are appreciable only in 
the neighborhood of / == q/T. Under these circumstances, we have 
approximately 

F,(f) = —7^ 
4ir(/- 

{ sin [2t(/ - i) r + - sin j 
(/ - I j 

j cos [2^ (f - 1) ?' + «»] - cos <!>, } 
>r(/-|) 

After a little trigonometric manipulation,^ this reduces to 

F,(f) = 

(-1) 

{2-2COS P 

In Fig, 14 we have plotted 

irw 
* Using Eqs. (24) and (26) of Appendix C. 
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as a function of /. Since <t>q in Eq. (270) is a random phase angle, the 
values of for the different values of q will be additive just like 
the values of the quadratic content of random noise. Consequently^ 
for any frequency / the total value of |F(/)P will be 

TO' = ra)p + F;OT + i^^ • • • 

• + + • • • (271)‘ 

Now we note that _ 

= 04/ |2 - 2 CO. [2^ - 2,(8 + »)1| 

(272) 

where 

/o = ^ (273) 

Therefore 
4* • 

TOF - (2 - 2 CO, 2,^ ^ 

fl- “ • 

Now the case of greatest interest (see Sec. 9.5) is that in which we 
consider the range of frequencies in which g is a large number and is 
a constant for all values of q. We shall therefore consider this case 
j&rst. In this case, physical reasoning tells us that should be 
independent of frequency. There are two general cases in which we 
can find the value of First of all, if / is one of the Fourier 
harmonic frequencies, 

f = nfo = ^ (276) 

where n is an integer. Then Eq. (274) becomes indeterminate, so 
that the operation in Eq. (272) is no longer justified and we must write 
the equation in its original form 

' .1 [4, (JL !)]■ i" ~ ^ 
For this case, 

COB [2r (/ - f ) T*] = cos [2r(n - g)] = 1 (277) 

80 that all the terms in Eq. (276) vanish except when g » n. When 

^ The averaging bar over a quantity stands for an ensemble average, as has 
been customary in this chapter. 
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q ^ n, the corresponding term in Eq. (276) becomes 

14,(8 12 - 2 12'(J - 4))1 (278) 

which is indeterminate. To evaluate this term, we expand the cosine 
in a power series and obtain 

[4ir(g - g')/o]* 

4/? 

2-2^1- (2ir)»(g - qY + ]1 
(279) 

Equation (279) shows that p(7)F has the value for all integral 
cjr* 

multiples of /o. As already stated, physical reasoning tells us that 
|^(/)|* must be independent of frequency, so that we must then have 

WUW = ^ (280) 

for all frequencies, if C\ is a constant for all values of q. It would be 
preferable to have a mathematical proof of this statement, but the 
author has been irnable to sum the series (274) for all values of /, in 
order to prove it. However, if 

/ = (n + M)/o (281) 

i.e.f midway between the Fourier series harmonics, we can also sum 
the series Eq. (274). In that case 

and 
cos 2ir/r = — 1 

(4t)=/? 

3 + H)foV 

\lHy (4)’ 

+ + + 1 

8 ( 
+ 

1 + ^* + ^* + 

(4t)*/? * 8 " 4^ 

) 

‘The aeries 
1 4. 1 a. 1 4- 1 4. 

To show this, wo need only substitute a <■ t in Eq. (29) of Chap. I. 

(282) 

(283)' 
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Thus, midway between the harmonics, we also get the value given by 
Eq. (280). If we could sum the series (274), it would undoubtedly 
give the same value of [F(/)p for all values of /. 

Let us next find the value of in terms of the frequency 
composition. If we include all frequency components of I{t), then, 
by the Fourier integral energy theorem, 

u:::) jJiHt) dt = ^ j^wwdj (284) 

Consequently, 
_ o _ 9 r 
R7ICT = -f WW\ df = ^j^ 

Fi4*AF 7^772 

Fi 4 

According to Eq. (137), 
775 _ 

^ q rp 

(285) 

(286) 

Substituting this value into Eq. (285), we obtain 

AF (287) 

in agreement with Eq. (143). It thus appears that we get the same 
answer for [(/AF)r'nu.]^ whether we consider the random-noise signal in 
terms of its Fourier series components or whether we consider it in 
terms of its frequency composition. 

Finally, it may be pointed out that all the discussion in the fore¬ 
going chapter concerning Fourier series components and frequency 
composition does not require that the current I(t) shall be periodic 
(see Fig. 13a). The reader should refer to Sec. 1.2 to see that the 
derivation of the original Fourier series expansion does not assume that 
the function is periodic. A periodic function has the advantage in 
Fourier series analysis that the same Fourier expansion derived for one 
interval can be extended outside this interval (see Sec. 1.4). How¬ 
ever, Fourier analysis is not in any way limited to periodic functions, 
and the reader should not get the impression that there is any assumed 
periodicity in the random noise analyzed in the foregoing chapter. 

7.21 General. In the foregoing pages, we have developed those 
portions of the mathematical theory of probability and of random noise 
which are used in this book. For particular problems on the wave 
form and frequency distribution of noise under special circumstances, 
more advanced mathematical methods involving the correlation func- 
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tion and the theory of matrices are required.^ However, the results 
thus attainable have not appeared to the author to be of sufficient 
value as yet to justify including the necessary mathematical back¬ 
ground in the present book. 

The theory of probability is of great intellectual interest. When 
the number of trials involved is very large, the mathematical phenomena 
that emerge, such as normal distributions, are amazingly simple. 

^ A discussion of these is given in Rice, Bell System Tech, J,, July, 1944. 



CHAPTER VIII 

, NOISE IH: SHOT EFFECT 

8.1 Introduction. The phenomenon of thermionic emission is of 
the greatest importance in radio engineering and has been the subject 
of an extensive literature. Owing to the fact that this emission takes 
place in terms of electrons, which have a finite charge and are emitted 
at random times, the emission current is never completely steady but 
exhibits minute fluctuations. The result of these fluctuations in 

Cathode Anode 

Xfn 

Fiq. 1. Thermionic emission Fig. 2. Distribution of electron density 
of electrons. in a diode. 

emission on the circuits in which the thermionic emitter operates is 
called shot effect,^ 

Our interest in shot effect arises from the fact that it places a limit 
upon the useful amount of amplification possible in an amplifier. The 
methods used and the results derived in the mathematical analysis of 
shot effect are the subject matter of the present chapter. 

8.2 Thermionic Emission and Space-charge Effects. The theory 
of thermionic emission shows that a hot body will emit electrons into a 
vacuum of such an amount as to give an emission current per unit area 

Ic = (1) 

where A and &o are characteristic constants of the emitting material, 
T is its absolute temperature, and i = 2.71828 .... The theory 

^ Shot effect was first noted and correctly interpreted by W. Schottky, Ann. 
Physik, 57, 541-567, 1918. He called it shot effect as a description of the noise 
that it caused in an amplifier. 

352 
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also shows that the electrons are not all emitted with the same velocity. 
Rather, the emission velocities have a normal distribution.^ 

In particular, if 
8 = electron velocity perpendicular to the emitting surface 

m == mass of an electron 
K = charge of an electron 
k = Boltzmann’s constant^ 
T — absolute temperature of cathode 
lo = emission current per unit area of emitting surface 

dlc9 = portion of emission current whose electron velocities are 
between s and « + ds 

then 

dlcM m 

If the emitting material is the cathode of a diode and if the anode 
voltage is suflSciently high, all the emitted electrons will reach the 
anode and thus become part of the anode, or plate, current. How¬ 
ever, if the anode voltage is not very high, the emitted electrons will 
form a charged ^'cloud” of electrons (called a space charge) in front of 
the surface of the cathode. This charged cloud will repel electrons 
and will therefore tend to slow down electrons emitted from the cathode 
and moving toward the anode, at the same time as the electric field 
due to the anode voltage tends to make them go faster. The net 
result is shown by the potential distribution curves (J5i and in 
Rg. 3. Near the cathode the potential at first falls, reaching a mini¬ 
mum at Xm, after which it rises until it reaches the anode potential. 
Thus, between 0 and x^, the space-charge field is stronger than the 
anode field so that electrons emitted from the cathode are slowed 
down; if their velocity reaches zero before they get to Xmi the electric 
field then gives them velocity toward the cathode so that they ulti¬ 
mately return to the cathode without becoming part of the anode 
current. On the other hand, those electrons having sufficient emission 
velocity so that their velocity has not been reduced to zero by the time 
they reach Xm will cross Xm into the region of rising voltage where the 
anode field is stronger than the space-charge field so that the residtant 
acceleration is in the direction of the anode. These electrons will 
consequently reach the anode and thus become part of the anode 
current. 

^See Section 7.18 for a disouesion of normal distributions. 
* See Sec. 9.2 for the meaning and numerical value of Boltsmann’s constant. 
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The net result of space charge is thus to produce a potential barrier 
at Xn,, called the virtual cathode. Those emitted electrons which have 
sufficient emission velocity to cross this barrier will ultimately reach 
the anode and become part of the external current. Those emitted 
electrons which do not have sufficient emission velocity to cross this 
barrier will ultimately return to the cathode and will thus not become 
part of the anode current. 

In Fig. 3 are shown potential distribution curves for various anode 
voltages. When the anode voltage becomes sufficient high, the virtual 

Fio. 3. Potential distribution in a diode for various anode voltages. 

cathode becomes coincident with the actual cathode so that the entire 
emission current reaches the anode. 

In Fig. 4 are shown curves giving the anode current vft. anode 
voltage for various temperatures. The rising portion of these curves 
is called the space-charge portion, since it corresponds to the case in 
which the virtual cathode is removed from the actual cathode so that 
increasing the anode voltage will increase the anode current. The 
flat portions of these curves are called the temperature-limited portions. 
These portions correspond to the case in which the virtual cathode is 
coincident with the actual cathode so that the entire emission current 
becomes anode current. In these portions, increasing the anode 
voltage will not increase the anode current, for the entire emission 
current already reaches the anode. The anode current in the tempera¬ 
ture-limited range is thus determined solely by the emission current, 
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which, according to Eq. (1), is a function only of the temperature, for 
a given cathode.^ 

Since shot-effect theory is simplest in the temperature-limited case, 
we shall analyze that case first. We shall then return to a discussion 
of space charge. 

Fig. 4. Anode current in a diode for various cathode temperatures. 

8.3 Shot Effect in Diodes in the Temperature-lixnited Case. 
When a diode is operated in the temperature-limited condition, as 
mentioned in the previous section, 
all the electrons emitted from the 
cathode reach the anode and be¬ 
come part of the anode current. 
During the entire time of flight of the 
electron between the cathode and 
the anode, there is current flow¬ 
ing in the anode circuit, as already 
explained in Sec. 7.11a, due to charges 
that the electron induces on the 
surfaces of the cathode and anode. If ii is the current induced in the 
anode circuit by the flight of some particular electron, then the form of 
ti as a function of time will be something like that shown in Fig. 5, 
the exact form of the curve depending upon the geometry of the diode, 
the potential distribution within it, and the emission velocity of the 

Fig. 6. Anode current due to the 
flight of a single electron (not a scale 
drawing). 

* In an oxide-coated cathode, the anode current is never truly limited. Tem¬ 
perature-limited theory will therefore never apply exactly to oxide-coated cathodes. 



SS6 FREQUENCY ANALYSIS, MODULATION AND NOISE 

electron. However, electrical theory tells us that we must have 

ti dt = K’= charge of an electron (3) 

The emission of electrons from the cathode, as already discussed in 
Sec. 7.5c, is a random process and is therefore subject to fluctuations of 
the amounts liiere indicated. Furthermore, the niimber of electrons 
emitted per second from any actual cathode is so great that we can 
separate them into quasi-constant emission-velocity groups, each 
group consisting of those having emission velocities Isdng between any 
particular s and s -|- As, and there will stiU be a very large number of 
electrons in each velocity group. Consequently we can apply the 
restilts derived in Sec. 7.11 to the anode currents of each velocity 
group separately, and we can superimpose the currents due to the 
different velocity groups by the methods of Sec. 7.12. It therefore 
follows from Eq. (170) of Chap. VII that the mean square anode fluc¬ 
tuation current in any frequency band, AF, from Fi to Fi AF, is 

(/Ar)Sn. = 2 -f- XJ-SkCo,)]* -!-••• 

H-dF (4)‘ 

The different subscripts a, 6, . . . , p refer to the different velocity 
groups; Kaj Kh, etc., refer to the number of electrons emitted per 
second in the different groups; and 

iSa(«) = [ iu sin (at (5) 

If AF is in a frequency range that is low enough so that transit time 
can be ignored, i\a acts like an impulse, so that 

Sa(«) = iia dt—K — electronic charge = Shisa) = • • • = /Sp(w) (6) 

Furthermore, the total average anode current is 

I = {Ka + -fiL6 + • • • + K^k = total average anode current (7) 

Consequently, it follows from Eqs. (4), (6), and (7) that the mean 
square anode fluctuation current in the frequency band AF is 

(/Air)L. = 2K/AF , (8)* 

^ QLF)m in this chapter has the same meaning as [(/af)™!* in the last 
chapter* The average bar is omitted because it was shown that the likelihood of 
any appreciable fluctuation from the average, in practice, is exceedingly small. 

* This formula shows very clearly the effect of the finite electronic charge on 
eurrent fluctuations. If the charge of an electron (that is, k) became vanishingly 



N0I8E III: SHOT EFFECT 867 

Equation (8) is the desired equation for the shot effect of the anode 
current for a diode operated in the temperature-limited range. The 
derivation has been made under the assumption that the transit time 
is negligibly short in the frequency range of interest. Even when this 
assumption is not justified, Eq. (4) still holds and can be used as a 
starting point for investigation. However, except at very high fre¬ 
quencies, the assumption of negligible transit time is justifiable, and 
Eq. (8) can be used for the temperature-limited case. 

It is noteworthy that the velocity distribution of the electrons turns 
out to be of no importance in this case. This is because the transit 
time has been assumed to be negligible, regardless of the initial velocity. 

Exercise 

Show that if interaction between the current impulses due to the individual 

electrons can be neglected, then Eq. (8) of this chapter is a direct consequence of 

Eq. (92) of Chap. VII. The result of the analysis in Sec. 7.11 shows that the 

above-mentioned interaction is negligible. 

8.4 The Reduction of Shot Noise by Space Charge. In Eq. (8) 
we found the amount of shot noise in a temperature-limited diode. 
We shall next see how space charge affects the shot noise. Because of 
space charge, not all the electrons emitted by the cathode reach the 
anode. Rather, only those having a sufficient initial velocity to get 
past the virtual cathode will reach the anode. The rest will return to 
the cathode. The necessary velocity Sc to reach the virtual cathode is 
given by the equation 

}4msl = kE„, (9) 

according to the conservation of energy. It therefore follows from 
Eq. (2) that the total anode current is 

* w 

as iclTm 

«= -Zrf"**’’ « Jce"*** (10) 
’ Wl 

The emission current /«is the result of a random process and there¬ 
fore has fluctuations. In the temperature-limited case, all the emission 
current becomes anode current, so that the shot effect for the low- 
frequency range in the temperatiu^limited case given by Eq. (8) is 

small, then for tiie same average current I the fluctuation currents would also 
become vanishingly small 
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also a measure of the fluctuations of the emission current in the low- 
frequency range, since transit time was neglected. Furthermore, 
these fluctuations in emission current are essentially unaffected by 
anything which happens external to the cathode, so that the same 

fluctuations in emission will occur 
even if space charge is present. 
However, space charge can affect 
the extent to which these fluctua¬ 
tions are converted into fluctua¬ 
tions in the anode current. In 
particular, a change (^.e., fluctu¬ 
ation) in the cathode current will 
change the location of the virtual 
cathode and consequently the 
magnitude of This in turn 
changes the percentage of the av¬ 

erage cathode current le that will reach the anode according to Eq. (10). 
It is clear that the sign of the change in En will be such as to decrease 
any fluctuation in le as it is transferred into a fluctuation in anode 
current. 

The calculation of the actual amount of the decrease in cathode- 
current fluctuations caused by space charge as these fluctuations are 
transformed into anode-current fluctuations is a complicated matter. 
The reader is referred elsewhere^ for the details since they require 
tedious manipulations in space-charge theory that are outside the scope 
of this book. The result of the calculation shows that, under the 
space-charge operating conditions of usual interest in a tube, 

= 3 (l - j) ^Tg AF = {0M4)^Tg AF (11)* 

where g is the anode conductance of the diode (which varies with anode 
voltage) and T is the cathode temperature. However, if the value of 
the anode voltage is reduced to the potential of the virtual cathode, 
the fluctuation current becomes 

^ 2kTg AF (11a) 

*In this chapter we shall use the term ‘‘motion of the virtual ^cathode” 
synonymous with the term “change in the potential Em-** 

* North, D. O., R.CA- Rev., April, 1940, p. 441; Rack, A. J., Bell Syetem 
Tech. J., October, 1938, p. 692. 

* Equation (11) for the space-charge-reduced shot noise is a good form for 

practical use, since T *>» 1000“ abs approximately in most modem oxide-coated 

cathodes. 

Fig. 6. Variation of anode current 
in a diode as a function of the potential 
of the virtual cathode. 
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On the other hand, when the anode voltage is raised so high that the 
diode goes into temperature-limited operation, the virtual cathode 
becomes coincident with the actual cathode and can no longer be 
moved by minute fluctuations in emission. The entire fluctuations of 
the cathode current then appear as fluctuations in the anode current, 
provided that transit time can be neglected, and the shot effect is 
then given by Eq. (8). 

J -|- t is the actual in¬ 
stantaneous anode 
current. 

I is the average anode 
current. 

I + ii is the anode 
current which would 
flow in the absence of 
motion of the virtual 
cathode. 

ii is anode current due 
to motion of virtual 
cathode which is 
caused by the fluc¬ 
tuating current ii 
{ii is coherent with ts 
but is 180 deg out of 
phase with it). 

ii is the anode current 
due to motion of the 
virtual cathode 
caused by fluctuation 
in the emission of 
electrons which have 
insufiicient emission 
velocity to cross the 
virtual cathode, 

i *= ii + 12 + 

Fiq. 7. Important components in space-charge-reduced shot effect. 

The derivation of Eq. (8) is such that it must give the correct value 
for the mean square fluctuation current, provided that / is due to the 
superposition of impulses occurring at random times. The fact that 
the anode-current fluctuations in the presence of space charge are less 
than indicated by the 2kI AF value is therefore evidence that there 
is a certain amount of coherence between the impulses of anode cur¬ 
rent due to the individual electrons. This matter has already been 
mentioned in Sec. 7.16, The over-all situation^ is shown in Fig. 7. 
There I is the average anode current and I + ii is the anode current 
exhibiting a pure random amount of fluctuation. Thus the square of 
the rms value of the portion of ii in the frequency band AF is 2kI AF. 
it is the anode current due to motion of the virtual cathode caused by 

' A more detailed discussion is given in Sec. 8.7. 
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the fluctuating current ix, is is the anode current due to motion of the 
virtual cathode caused by fluctuations in the emission of electrons that 
have insufficient emission velocity to cross the virtual cathode, and 
/ + f is the actual instantaneous plate current, where 

i = ii + is + is (12) 

We note that is is coherent with ii. It is almost equal in magnitude 
to ii but is in the opposite direction and thus acts like a degenerative 
current. It is the cause of the noise reduction in space-charge-con¬ 
trolled operation. 

The current is, due to motion of the virtual cathode caused by 
electrons that are emitted from the cathode but never reach the anode, 
causes a small increase in the anode-current fluctuations. The cur¬ 
rent is is incoherent with ii and is. The quadratic content of the actual 
fluctuating component of the anode current is therefore 

dt = /(u + ^2)* dt + /^i dt (12a) 

It is worth pointing out that both ii and is are random noise 
since they arise from the superposition of impulses occurring at ran¬ 
dom times. Furthermore, ii + is is random noise since it has the same 
wave shape as ii, but reduced amplitude. Therefore, the actual fluc¬ 
tuating current i, which is the superposition of ix + is and is, is also 
random noise according to Sec. 7.14g. Therefore, shot noise is random 
noise in the space-charge-controlled case as well as in the temperature- 
limited case. 

For convenience in certain calculations, it is customary to express 
the magnitude of the shot noise in the space-charge-controlled case as 

- V\2kI^) (13) 

where Ilf is the portion of i in the frequency band AF and is a 
positive constant less than 1 that takes into account the space-charge 
effects.^ The value of F^ depends upon the particular space-charge 
conditions which exist in the tube. In some cases calculated by North 
the value of F^ is less than 0.02 so that the reduction of shot effect 
by space charge can be very great. Because of the complicated nature 
of the detailed expression for F*, Eq. (13) is too cumbersome for prac¬ 
tical use, and Eq. (11) is used instead.^ 

‘ When r* « 1, there is no space-charge reduction of the shot effect. We 
accordingly call 2kI AF the magnitude of the **free’’ shot effect. 

* The derivation of Eq. (11) is actually obtained from Eq. (13) under the special 
conditions prevalent in space-charge operation when the anode voltage is not too 
low (see D. O. North, R.C,A. Rev., April, 1940). 



NOISE III: SHOT EFFECT 361 

The reader may wonder to what extent the foregoing theory agrees 
with experiment. This matter is discussed at length by D. O. North. 
Shot-noise formulas for the temperature-limited case agree very well 
with experimental data. The agreement is also quite good when the 
theory is applied to space-charge-limited triodes operated under 
normal circumstances, which is the most important case. However, 
for many space-charge-limited diodes and for triodes operated outside 
their normal ratings, the measured values of shot noise are higher than 
those predicted by theory. It is believed 
that these discrepancies are due to certain 
effects discussed by North, ^ which have 
not been taken into account in the fore¬ 
going theory. 

8.6 The Current-generator Repre¬ 
sentation and the Shunting Effect of In¬ 
ternal Impedance.^ In Fig. 8 is shown 
a diode with an external impedance be¬ 
tween its anode and the source of anode 
voltage. In this case, any fluctuations 
in the anode current will cause fluctua¬ 
tions in the voltage drop across Z. This in turn will cause fluctua¬ 
tions in the anode voltage, which in their turn will affect the anode 
current. We shall now determine quantitatively the effect of the 
external impedance on anode-current fluctuations. 

Let 

Z r 
Fio. 8. Diode with load in its 

anode circuit. 

to = fluctuating portion of anode current if anode voltage is main- 
tained always at its average value 

i = actual fluctuating portion of anode ciurent in presence of Z 
r = internal alternating-current impedance of diode 

Then ' 
Zi reduction in anode voltage due to fluctuating current 

Consequently, 
Zi 
— ^ reduction in fluctuating current due to fluctuations in the anode 

voltage 
Thus 

to — t = (14) 

* See North, R.C.A. Res,, April, 1940. 
* In the other oeotions of this chapter, it is assumed, unless otherwise stated, 

that the electrode potentials are constant and do not fluctuate. This is equivalaat 
to asmiming that they are grounded to alternating current for all frequenciee. 
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Solving Eq. (14), we obtain 

* “ 1 + (Z/r) " V + z) 
(16) 

As defined above, to is the fluctuating current that would be 
obtained if the anode voltage were maintained constant. The formulas 
of Sec. 8.3 and 8.4 thus give io, since they did not take into account any 
current fluctuations due to anode-voltage fluctuations. Thus, accord¬ 
ing to Eq. (15), a diode acts like a constant-current generator of strength 
to, shunted hy its internal impedance r, as shown in Fig. 9. 

It is worthy of note that the changes in current fluctuations due to 
fluctuations in the anode voltage are coherent with the original fluctua¬ 
tion current. It is for this reason that they are able to reduce the 
value of (/af)Li. 

Flo. 9.. Shot-current-generator 
representation of a diode. 

Grid 

I Cathode I 
Fig. 10. A triode. 

8.6 Shot Effect in Triodes. In Secs. 8.3 and 8.4 we dealt with the 
shot effect in diodes, since that is the simplest theoretical case. We 
shall now see how the results there obtained are modified when we deal 
with the more important practical case of a triode. In Fig. 10 is 
shown a diagram of a triode. For simplicity, let us assume that the 
grid is at negative potential so that there is no grid conduction cmrent. 
If now the triode is operated in the temperature-limited condition, all 
the cathode emission current now becomes plate current. Conse¬ 
quently, all the fluctuations in emission current become fluctuations in 
plate ciurent, so that Eq. (8) gives the correct value for plate-current 
fluctuations, i.e., 

(/Ar)So. = 2<t/AF ■ • (16) 

where I is now the plate current and k is the electronic charge. As 
pointed out in Sec. 8.5, Eq. (16), like Eq. (8), must be modified when 
the external plate impedance is not zero. The triode in the tem¬ 
perature-limited case is thiis no more complicated than the diode. 
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Let us next consider the space-charge-limited case. In this case, 
just as for the diode, the virtual cathode moves coherently with the 
plate-current fluctuations, causing a reduction of shot noise. How¬ 
ever, since the space-charge potential conditions are different for the 
case of a triode, Eq. (11) is replaced by another equation. In this case 
it is 

(/af)?™ = AF 
(T 

(17)‘ 

where Qm is now the transconductance of the tube. Tc is the cathode 
temperature, and <t is a tube parameter given approximately by the 
equation 

''=[‘+K‘+^)r (18) 

In Eq. (18) 

(19) 
_ grid-anode spacing 

^ grid-cathode spacing 

The value of <r usually lies between 0.5 and 1.0. 
Equation (13) will of course apply to the case of the triode also, with 
a positive constant less than one. However, as in the case of the 

diode, the formulation of is very complicated, so that Eq. (17) is 
the equation for practical use. In Chap. VI, the way in which Eq. 
(17) is used and further transformed for practical purposes is discussed 
in detail. 

The current-generator representation and the shunting effect of 
the internal plate impedance, derived for the diode in Sec. 8.5, will 
clearly apply equally well to a triode. 

8.7 Shot Effect in Multicollector Tubes. It is widely known that 
triodes have a tendency to be quieterthan tetrodes and pentodes. 
In the case of tetrodes, it was at first thought that the excess noise 
might be introduced by secondary emission from the screen grid. 
While there is no doubt an effect of this kind, it is only a part of the 
story, for the same type of excess noise is also present in pentodes, 
where the suppressor grid should eliminate secondary emission. D. 
O. North^ has developed a comprehensive and quantitative theory 
showing how the excess noise is due to the division of the tube current 
between the collector electodes, when the tube is in space-charge- 
limited operation. Because of the practical importance of North's 
theory and because it is a good example of the use of the methods 
developed in Chap. VII, we shall discuss it in some detail. 

^ North, D. O., R,C.A, Rev., April, 1940. 
* E.C.A. Rev., October, 1940, p. 244, 
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As a first step in the development of North's theory, we shall have 
to analyze the reduction of shot effect by space charge in more detail. 
It will be necessary for us to use a rather involved notation and to draw 
some careful distinctions. However, if the reader will follow the 
derivation, he will find that the final result is surprisingly simple. 

As pointed out in Sec. 8.2, the electrons emitted from the cathode 
do not all have the same velocity; rather they have a velocity dis¬ 
tribution as given by Eq. (2). The exact velocity distribution is not 
important for our present purposes, so long as we keep in mind that 
there is a velocity distribution. Since the time that an electron spends 
in the space-charge region is dependent upon its initial velocity, the 
effect of the electron upon the location of the virtual cathode will also 
depend upon its initial velocity. Accordingly, we theoretically divide 
the total instantaneous emission current io into parts ic» whose electrons 
lie in narrow ranges of velocities. Then 

Zc = ^ ie9 (20) 
« 

where the summation is taken over the entire range of electron emis¬ 
sion velocities. The individual current components Zc* may now be 
considered to consist of electrons having essentially the same emission 
velocities and thus the same effect on the space-charge conditions. 
Furthermore, if is the average total emission current and Ie» the 
average emission current of electrons with the velocity s, then 

le = ^ /o0 (21) 
0 

Now the emission of electrons, of any velocity class, from the 
cathode is a random process, so that according to Eq. (8) and Sec. 7.11 
we can write 

= '^2kI„AF (22)1 
M 9 

where 
Aic = ie — Ic and iu — le, (23) 

Equation (22) gives the quadratic content of the fluctuating component 
of the emission current and shows how it is divided betwe^' the cur¬ 
rents consisting of electrons of various velocity classes. We may call 
this a “free*’ shot effect since its magnitude is determined entirely by 
the random mission process. By way of distinction, the space-diarge- 

* The subaciipt nos u omitted in this seotioa. 
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reduced shot effects of the currents in the external circuits of the 
various collector electrodes will be called ‘^reduced’’ shot effects. 

Let us next consider a multicollector tube such as is shown in Fig. 
11a. In this tube a certain number of the emitted electrons do not 
have sufficient emission velocity to 
pass the virtual cathode. These —---.-.-IZg*** 

electrons return directly to the IIIIIIIIIJZgJ 
cathode without going through any f cathode I r’cathode I 
external circuit. The rest of the (b) 
emitted electrons get past the virtual Fiq. ii. Multicollector tubes 

cathode and go to one of the col- 
lector electrodes.^ The algebraic 
sum of the currents to all the collector electrodes will be called It 
{t for total). Electrons that do not have sufficient velocity to pass 
the virtual cathode will be called a-electrons, while those which do have 
sufficient velocity to get past will be called jS-electrons. Accordingly, 

Cathode I I Cathode i 

(a) (b) 
Fiq. 11. Multicollector tubes 

showing superposition (a) and inde¬ 
pendence (&) of the electron streams. 

/c = 2 ^ lei 

et fi 

^ Ic, 

where the significance of the a and p under the summation signs is now 
obvious. 

In the discussion of the reduction of shot effect by space charge in 
Sec. 8.4, it was pointed out that any fluctuation in emission of electrons 
of any velocity class causes a minute change in location of the virtual 
cathode, which thus causes a change in anode current. We may 
express this mathematically by writing 

Ait == ^ Aica (1 ^ Aietbt (26) 
0 a 

where 6, is a function of s. The quantity 6, Ate is the change in it due 
to the change in location of the virtual cathode caused by Ate*. Since 
this quantity is smalli it is proportional to Ate#. The magnitude of 5, 
is less than unity for all values of 8 and the sign of 6, is negative. 

It follows from Eqs. (8) and (26) of this chapter and Eq. (198) of 
Chap. YII that 

^ For the purposes of this discussion, the suppressor grid in a pentode is also 
considered one of the collector electrodes. 
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(A*,)!,' = 2 (1 + J h\{Aic.)l, 
$ a 

= ^ (1 + b.p2Klr. AF + 2 h\2Kh. AF (27) 
/9 a 

In accordance with Eq. (13) we now define the space-charge noise- 
reduction factor^ F^, as 

T12 ^ 

2Klt AF 
(28) 

From Eqs. (27) and (28) it follows that 

J (1 + b.ri„ + 2 Wc 

r* = 
It 

(29) 

In order to find numerical values of F^, it is first necessary to evaluate 
b» from space-charge theory. This has been done by North, but it will 
not be necessary for our present purposes. 

Consider next some particular collector electrode, say the nth, 
and let us call the instantaneous current that goes to this electrode 
in and its average value In. If now the electron streams that go to the 
different collector electrodes are practically independent, as shown in 
Fig. 116, then.there will be no interaction between the fluctuating 
currents of the different electrodes. Accordingly, the mean square 
fluctuating current to the nth electrode would be 

(Ai„)i, = T^2Kln AF (30) 

where F^ is given by Eq. (29). 
In actual tubes, however, the most usual case is just the opposite, 

namely, that shown in Fig. 11a, in which the current streams to the 
different electrodes are practically superimposed. In this case a shift 
in the location of the virtual cathode due to a fluctuation in current to 
the nth electrode will consequently change the current to every elec¬ 
trode by the same amount as an equal shift caused by a current 
fluctuation in any other electrode. The fluctuation current to the 
nth electrode is therefore given by the formula 

0 Pa 

whose terms will now be explained. 
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In Eq. (31), for any electron emission velocity s, Aiona represents 
the fluctuation current that would go to the nth electrode in the 
absence of motion of the virtual cathode. However, owing to the 
motion of the virtual cathode, a quantity (In/It)b» times the original 
fluctuation current, and coherent with it, is added to the original 
fluctuation current. The reason why this multiplier is (In/It)ba 
rather than 6, itself is that In receives only a fraction In/It of the 
current flowing in the tube. Thus in Eq. (31) the first term on the 
right represents the effects of the fluctuations in emission of the current 
that would have gone to the nth electrode in the absence of motion of 
the virtual cathode. In a similar manner, the second term on the 
right of Eq. (31) represents the effect of the fluctuations in emission of 
the current that would have gone to all the electrodes except the nth in 
the absence of motion of the virtual cathode. Finally, the third term 
on the right of Eq. (31) represents the effect of emitted electrons that 
do not have sufficient emission velocity to cross the virtual cathode. 

From Eqs. (8) and (31) above and Eq. (198) of Chap. VII, it 
follows that 

= X (i + X + X {t, 
+ X 6.)* (AQI; 

a 

= [l - ^ (1 - r*) j /„2k AF (32) 

where r* is defined in Eq. (29) and use is made of Eq. (25). We can 
also write Eq. (32) in the form 

(A*;;)!; = r*2ij„AF (33) 

where 

n = 1 - r (1 “ r*) (34) 

Comparison of Eq. (13) or (28) with Eqs. (33) and (34) shows the 
effect on shot noise of division of current between the collector elec- 
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trodes. The value of Fj rises monotonically^ for decreasing values of 
In/Iu When/n//< = 1, thenF* = F* so that the shot effect of current 
in the circuit of the nth electrode is equal to the space-charge-reduced 
value of that of It- However, as IJIt approaches zero, FJ approaches 
unity and the shot effect of current in the circuit of the nth electrode 
approaches its free value. 

The practical use and significance of Eqs. (33) and (34) are dis¬ 
cussed in Chap. VI. However, as a general interpretation of the fore¬ 
going results we may say that division of the space current between 
different electrodes decreases the amoimt by which space charge 
reduces the shot noise. The principal reason for this is that in this 
case only part of the coherent currents due to motion of the virtual 
cathode (which reduce shot effect in a triode) will now go to the elec¬ 
trodes with the currents of which they are coherent. 

Equations (33) and (34) apply to tubes of the type in which the 
space-current streams to the different electrodes are essentially super¬ 
imposed, as shown in Fig. 1 la. However, they cannot be expected to 
apply to tubes with aligned grids of the ‘‘beam^^ type without a more 

Fiq. 12. Schematic diagram 
showing variational components of 
some electrode currents in a pentode. 

detailed examination of each particu¬ 
lar case. They will definitely not ap¬ 
ply to tubes such as those shown in 
Fig. 116 in which the space-current 
streams to the different electrodes are 
not superimposed. 

It is interesting to note that the 
current in the cathode circuit of a mul¬ 
ticollector tube, such as it in Fig. 12, 
shows no loss in the value of F*, since 
all the coherent noise-reduction cur¬ 
rents due to motion of the virtual 
cathode are fully utilized in the cath¬ 

ode current. Consequently it follows from item 5 of the next paragraph 
that there is generally less shot current in the cathode circuit than in the 
circuit of any collector electrode. 

For tubes to which Eqs. (33) and (34) do apply, D. 0. North* 
has listed the follo^ving conclusions: 

1. No fluctuation current is greater then the free shot effect for the current 
considered. 

^ Monotonic variation is variation without maxima or minima. 
* B.C.A. Rw., April, 1940. 
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2. The smaller the fraction of the total current an electrode collects, the 
more nearly the noise in that current approaches the free shot effect. 

3. For vanishingly small F, the mean-square fluctuation in the current 
collected at any electrode is equal to the product of the free shot effect for said 
current and the fraction of the total current not collected at said electrode. 

4. The ratio of actual noise to free shot effect in a divided portion of the 
total current exceeds the corresponding ratio for the total current itself. 

5. The noise in the current of an electrode exceeds the noise in the total 
current provided 

r2 

1 -r* 
< 1. 

In conventional tubes this is usually true for all collector electrodes. 
6. With constant F, the noise in a given collector electrode current is a 

maximum (against variations in /„) when 

_ 1 
It 2(1 - 

In other words, provided F* < the noise in no collector lead should exceed 

1 
4(1-F*) 

• 2kAF 

8.8 Shot Effect at Frequencies for Which Transit Time is Impor¬ 
tant, a. Introduction—Temperature-limited Diode, Up to the pres¬ 
ent, we have considered only the shot effect at frequencies for which 
transit time is unimportant. This allowed very considerable simpli¬ 
fication of the problem to be made. However, we shall now consider 
the frequency ranges for which this approximation cannot be made. A 
satisfactory quantitative theory of shot effect in this frequency range 
does not appear in the literature. However, we shall outline the basis 
of a general theory and shall show the general way in which shot effect 
may be expected to vary with frequency. 

In Sec. 8.3 we derived a formula, namely, Eq. (8), for the shot effect 
at low frequencies in the temperature-limited case. This formula was 
derived on the assumption that the current due to an individual elec¬ 
tron, such as is shown in Fig. 5, could be considered an impulse of 
strength k. It is obvious that, at frequencies for which the transit 
time is an appreciable fraction of a period, this assumption is no longer 
tenable and that, in accordance with Eqs. (4) and (5), the shot effect 
due to pulses of current of the type shown in Fig. 5 will fall with 
frequency after the transit angle^ has reached the order of magnitude 

‘ The transit angle is 2r times the frequency times the transit time. 
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of a radian. We may thus expect the shot effect of a temperature- 
limited diode to fall with frequency after the transit angle has reached 
the order of magnitude of a radian. 

6. Space-^harge-controlled Diode. If the diode is space-charge- 
controlled, we shall now show that the shot effect may be expected to 
rise as the transit angles become appreciable. The rise of the shot 
effect with frequency in the case of a space-charge-controlled diode is 
due to several obvious causes. When we first considered space-charge 

Low Frequency 
Component 

_Length of the _^ 
I Space Charge Cloud | 

t I 

High Frequency 
Component 

Very High Frequency 
Component 

Toward 
the Cathode 

(The Ordinate in all 
Cases is Charge Density) 

Toward 
the Anode 

Fio. 13. Variation in charge density through the space>charge cloud due to com¬ 
ponents of different frequencies in the emission-current fluctuations. (This figure 
refers to electrons of a particular emission velocity. For other emission velocities, the 
curves are similar, but the distances between wave nodes increase with the emission 
velocity. The total space charge is obtained by the superposition of the space-charge 
curves due to electrons of all emission velocities.) 

noise reduction, it was pointed out that a fluctuation in emission cur¬ 
rent causes a corresponding fluctuation in space charge. The latter 
largely cancels the fluctuation in emission current before it is trans¬ 
formed into a fluctuation in plate current. However, if we consider 
a very high frequency component of the fluctuation in emission cur¬ 
rent, its effect is not in the same phase throughout the space-charge 
cloud (see Fig. 13). Consequently, at very high frequencies, when the 
average transit time of electrons through the space-charge cloud is 
many cycles, there is a general cancellation between the effects of 
pontive and negative phases of the fluctuation and the potential of 
the virtual cathode is almost unchanged. - The space-charge noise- 
reductitm effect thus deteriorates as the frequency rises, Furthw- 
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more, a phase difference arises between the original fluctuation current 
and the coherent current, due to fluctuation of the virtual-cathode 
potential. This further decreases the magnitude of the space-charge 
noise-reduction effect. 

Fig. 14. Doublet-impulse type of current due to an a-electron. 

The second cause of the rise of shot noise with frequency lies in the 
a-electrons. The effect on noise due to the motion of the virtual 
cathode that is induced by fluctuation in the emission of a-electrons 
is included in the derivation of Eq. (11). However, an additional 
effect, which is inconsequental at low frequencies but which becomes 
more important at high frequencies, will 
now be considered. The a-electrons never 
reach the anode but return to the cathode. 
Consequently, the pulses that they cause 
in the anode current are of a doublet-im¬ 
pulse type, as shown in Fig. 14. Such 
pulses have a rising frequency character¬ 
istic^ up to a frequency at which their duration is equal to many radians, 
after which it eventually declines. In a wide region of high frequencies 
these doublet impulses may therefore be expected to make a substan¬ 
tial contribution to the shot noise. 

As a consequence of all the foregoing reasons, the shot effect of a 
space-controlled diode may thus be expected to rise with frequency 
as transit angles become appreciable, ultimately equaling and even 
exceeding the ‘‘free'’ value of shot noise. 

c* Orid-current Fluctuations Induced by Plate-current Fluctuations 
in a Negative-grid Triode, Let us next consider the case of a negative- 
grid triode. Consider the case of an electron that goes from the 

^ See Sec. 4.18. 

I X-Plate 

Grid-•— 

I Cathode I 
Fig. 15. A triode. 
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cathode to the plate in the triode shown in Fig. 15. As the electron 
approaches the grid, its image in the grid causes a pulse of grid current 
as shown between 0 and n in Fig. 16a. Then, after the electron has 
passed through the grid and travels toward the plate, its image in the 
grid causes ^ pulse of grid current of opposite sign as shown between 
r — T2 and t in Fig. 16a. The actual pulses are not really rectangular, 
as shown in the figure, but they have been idealized to simplify some 
future calculations. 

(a) 

Grid Current Due 
to an electron of , 
the Plate Current. 

(b) 

Plate Current Due to the Same Electron. In a High Mu Triode 
(i.e. with Fairly Complete Shielding of the Plate by the Grid) 
the Plate Current Pulse is the Negative of the Corresponding 
Part of the Grid Current Pulse. 

Fzo. 16. External currents due to the flight of an electron in a triode. 

Let US now calculate the frequency characteristic of this grid cur¬ 
rent. We shall then later calculate its effect on the plate current. 
For the pulse shown in Fig. 16a we may write (for a high-/i triode) 

[S(w)]® = cos o)tdt — J ^ cos (at 

+ ( f — sin (otdt — f — sin <at dn (36) 
\Jo / 

where k is the charge of an electron. After integration we obtain 

[iS(w)P = |— sin ioTi-sin tar + — sin [w(r — t*)]! 
(WTi <07% (07% J 

+ 1-^ (cos <071 — 1) + — cos (07-^ cos [w(r — 7%)] I (36) 
( «Ti (07% (07% ) 

When the frequencies are low enough so that we can write 

sina: — a; \ 

c.-l-fj (approx) 
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Eq. (36) reduces to 

(37) 

Thus, for small transit angles Eq. (37) shows that the frequency con¬ 
tent of each grid-current doublet impulse rises directly with frequency. 
On the other hand, when the frequency is extremely high, Eq. (36) 
shows that >S(w) will fall proportionally to frequency. 

In the range of frequencies for which Eq. (37) holds, the value of 
S((a) in the plate current for a single electron is Just 

S{o>)p = /c (38) 

as is obvious from our earlier analysis of impulses. In this same range 
of frequencies, the total plate current is approximately that due to the 
superposition of the pulses of the individual electrons which arrive at 
the plate. Since the same electrons give rise to the grid current, the 
quadratic content of the grid current in any bandwidth AF in this 
range is therefore 

times the quadratic content of the plate current. Therefore, from (16), 
(17), (37), and (38), we have for the grid current, approximately, 

= r*(2«, AF)«* (t -1 - 5)* 

= 0,^ (r - g - jy ^ 4JcT^^ AF (39) 

As the value of the transit angle 

(Tl T*\ 

2 2) 

becomes appreciable, the grid-current fluctuations thus approach the 
order of magnitude of the plate-current fluctuations. However, before 
investigating the effect of these grid-current fluctuations on the tube 
noise, we shall first determine the effect of transit time on the grid 
impedance of a tube. 

d. Effect of Electron Transit Time On Grid Impedance.'^ A sine 
wave of voltage 

Ae, » AEg sin at (40) 

' Nobih, D. D., Free. IJB.E., M, 108, 1030; FiastB, W. R., JProe. IJt.E., 
M, 82,1030; Umwblvts, F. B., B^.T. 14,050,1086. 



374 FREQUENCY ANALYSIS, MODULATION AND NOISE 

on the grid, due to any cause (either signal or fluctuation noise), will 
cause a change in potential of the virtual cathode, giving rise to a 
change in plate current 

Alp = Qnt Acg = Qn, AEg sin uit (41) 

where gm is the transconductance of the tube. The phase of Aip given 
by Eq. (41) is its phase at the virtual cathode. Its phase at any other 
location^ in the tube is shown by the equation 

Aip = gm AEg sin [(a{t — T)] (42) 

where T is the transit time required for electrons to move from the 
virtual cathode to the location of interest. 

To find an approximate value for the grid current, we shall again 
use the idealization shown in Fig. 16a for the grid current due to pas • 
sage of a single electron of the plate-current stream. Then we have 
as an approximate expression for the grid current 

Aig = Aip ^at — Aip 

(43) 

where To is the transit time between the point designated as 0 in Fig. 
16a and the virtual cathode. If the transit angles involved are small, 
we can treat Eq. (43) as a differential effect. Thus 

- 2 cos[»(( -n - 5 + J - y)] Bin [<.(5 - J (44) 

[" 0 ” ? " To)] -sin - T + p - n)] 

= « (t - J - cos [^<0 - To - I + J j (approx) (46) 

^ When we speak of the phase of At, at a particular location, we mean the phase 
of the current made up of the Aip electrons as they pass the location in question. 
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Substituting Eq. (46) into Eq. (43), we obtain 

At, = ff„ AF,(o - p) cos j^« - To - I + ^ j (46) 

From Eqs. (40) and (46) we obtain for the grid admittance in complex 
form 

- i") (47) 

= - i-‘) (^’o +1 - f + ^)] (approx) (48) 

+ «/»«» - p - ^) (t’o + ^ - J (49) 

(T Ts Ti 1 

effect of space charge is thus to increase the input capacity by an 
amount 

(50) 

and to cause an inphase input conductance, usually called Qg, where 

»,-p.»-(r-2_j)(n + I-2 + p) (51) 

• The expressions (60) and (51) are only approximate since they have 
assumed the idealized form shown in Fig. 16a for the grid current due 
to a single electron, and they have neglected changes in this wave shape 
due to the presence of the grid voltage. Nevertheless, the above 
expressions give a good idea of the effects of electron transit time on 
the circuit. Equation (50) shows that there is an apparent increase 
in the grid-to-cathode capacity, i.e., a difference between the cold and 
hot capacity, which is independent of frequency. In addition, accord¬ 
ing to Eq. (51), there is input conductance that is proportional to the 
square of the frequency and to the product of the two transit times 

T — ^ ^ and 3^0 + ^ ^ This input conductance is the 

grid-circuit loading, which, as is well known, limits the tuned input 
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impedance that can be developed between grid and cathode of a tube 
at high frequencies.^ 

e. The Grid^-induced Shot Effect According to Eq. (39), the grid- 
current fluctuations due to transit time have a quadratic content of 
amount 

= 2:^ AF (r - J - j)* (62) 

Substituting Eq. (51) into (62), we obtain 

I7i;)L = 
_ n _ r2 

0.644 ’’2 2 

m I "^2 I ri 
(53) 

for the grid fluctuation current in terms of the grid conductance. 
North and Ferris‘ state that they have derived a formula 

(71751; = 1.43(4A-r.^, AF) (64) 

which agrees rather well with experiment. The derivation of the 
approximate formula (53) given here indicates that their result is 
reasonable. 

Now if Mg is an induced fluctuation in the grid current, then 

= Zg Aig (65) 

is the corresponding fluctuation in the grid voltage, where Zg is the 
external impedance between grid and cathode of the tube. There¬ 
fore, if we consider the plate grounded for radio frequency, as is usual 
in calculating shot-current generation, we obtain 

Aip = gn,Zg Aig (56) 

as the fluctuation in plate current corresponding to Eq. (56). It 
then follows from Eq. (52) that the fluctuations in plate current due to 
the grid induction effect are given by the equation 

^7i;5S;<,uw, = ^ AF«* (r - J - (67) 

^ The significance of the two transit times can be seen from Fig. 16a in conjunc¬ 

tion with the definition of To. Thus To +1 ^ ^ is the transit time 

between the virtual cathode and the mid-point between the ri and n blocks. 

Furthermore r — ^ ^ is the transit time between the mid-points of the n and n 

blocks. 
*Proc. LR,E,, February, 1941, p. 49. 
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Looking back at subsection we see that according to the approxi¬ 
mations we have used the fluctuations in Eq. (57) are 90 deg out of 
phase with the original fluctuations in plate current which caused 
them, provided that Zg is resistive. When this is the case, the quad¬ 
ratic content of Eq. (67) can be added directly to that of Eq. (17) to 
get the total shot noise in the plate current. When Zg is not resistive, 
there is coherence between the fluctuations indicated by Eqs. (57) 
and (17) and this fact must be taken into account. 

Comparing Eq. (67) with Eq. (17), we see that for the highest 
frequencies for which Eq. (67) is valid the grid-induced shot effect in 
the presence of space charge may well exceed the low-frequency value 
of shot effect given by Eq. (17). In any case, the general effect of 
grid-induced shot noise will be to cause a large increase in shot noise 
when transit times become appreciable. At very high frequencies, 
when space-charge noise-reduction effects deteriorate, the grid-induced 
shot noise increases (in line with the increase of the original plate- 
current fluctuations) to values much higher even than that given by 
Eq. (67). According to the foregoing theory there should be a cyclic 

effect of rise and fall of shot noise as the transit time " ^ 

goes through complete periods. This cyclic effect is superimposed 
upon the general rise in noise due to the deterioration of space-charge 
noise reduction. 

Exercise 

Since no electrons actually strike the grid despite the existence of input con¬ 
ductance at high frequencies in a negative-grid triode, where does the dissipation 
due to grid conductance occur? Show the relation between this phenomenon and 
the question of coherence discussed in Sec. 7.16. 

8.9 Magnetic Fluctuation Noise. Another type of fluctuation 
noise that may appear in amplifiers is magnetic fluctuation noise, 
sometimes called Barkhausen effect. It has certain mathematical 
and physical similarities to shot effect. When a piece of iron is being 
magnetized, it is not a uniform and continuous magnetic material but 
rather consists of minute regions of magnetization, which line up as 
semi-independent units in the magnetic field. When there is a change 
of the applied field strength, certain of these regions grow at the 
expense of others. This activity is subject to probability fluctuations, 
and the magnetization process is therefore not uniform, but rather 
has minute random fluctuations superimposed upon it. These random 
fluctuations in magnetization give rise to random noise currents in any 
eoil that is threaded by the magnetic lines from the iron^ 



378 FREQUENCY ANALYSIS, MODULATION AND NOISE 

The most important practical example of Barkhausen effect is 
the case of a modem radio receiver of the type having a loop antenna 
and an iron-core power transformer. In such a receiver the iron of 
the power transformer is magnetized and demagnetized at the power 
frequency (60 cycles/sec in the United States). The magnetic 
fluctuation noise generated in the iron core during the magnetization 
cycles is picked up by the loop antenna; and if the coupling between the 
loop and the power transformer is not kept very low, this noise may 
limit the sensitivity of the receiver. To reduce the coupling, it may 
be necessary to use extra shielding on the transformer and to turn it in 
such a direction that its stray lines do not thread the loop. 

An idealized model of the magnetization process which will readily 
allow us to apply the methods developed in the present chapter to the 
calculation of magnetic fluctuation noise is the following. We will 
assume that the magnetic material is made up of a large number of 
elementary magnetic particles and that the magnetization process 
consists of the alignment of these particles in the magnetic field. 
To simplify our mathematics, we shall analyze the case of an iron- 
core coil representing the power transformer and having an inductance 
L and carrying a current 

i — I sin (at (68) 

We shall assume that the magnetic energy of the transformer is practic¬ 
ally all in the iron but that there is a small stray mutual M between 
the iron-core coil and an air-core loop antenna. The voltage gener¬ 
ated in the loop we shall call so that 

e, = I {Mi) (59) 

With these simplifications, we are now ready to proceed with the 
analysis. 

According to standard magnetic theory^ 

+ + AwsH = H(1 + Ars) = (60) 
Thus 

M = 1 + (61) 

where H = magnetic-field strength in the core 
= permeability of the core 

standard textbook covering magnetism on an engineer’s level is S. G. 
Starling’s ** Electricity and Magnetism,” See especially pp. 269-270 and pp. 561- 
576. We shall use the system of CtO.S* units used by Starling. 
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B = magnetic induction in the core 
8 = magnetic susceptibility of the core 
j sH magnetic moment per unit volume 

Suppose we let 
V = volume of the iron core 
m = magnetic moment of an elementary magnetic particle 
n = total number of elementary magnetic particles lined up by 

the field strength H in the volume V 
According to magnetic theory, as long as ii is constant, the ratio of 
n/H has a constant probability. 

Then the total magnetic moment is 

These approximations are reasonably accurate if the m is high. 
Next, let us assume that 

Mi = N ^ Cn (64) 

where N is the number of magnetic lines threading the loop and C is a 
constant of proportionality. The accuracy of Eq. (64) will depend 
upon the magnetic configuration. However, by using it, we shall in 
any case get a good idea of the order of magnitude of magnetic fluctua¬ 
tion noise and of the way in which it varies with the different param¬ 
eters involved. 

For a unit fluctuation in n the corresponding voltage impulse is 

f €2(11 — AN = C An = — An = — An = — (65) 
J n u u 

where the fluctuation in n is 

An = 1 (66) 

We can now find the formula for the fluctuations in secondary- 
voltage by the same methods as those used in deriving the temperature- 
limited shot effect. Thus, iM/n corresponds to the electronic charge, 
and Ct = M di/dl corresponds to the average anode current. Without 
repeating the steps in the derivation, we can write 
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= 2^’^to^AF (67) 
L t dt ^ 

For the particular primary current given by Eq. (68), 

^ = 0)1 cos (at (68) 

so that Eq. (67) becomes 

^ 2—y ^ (®9) 

Equation (69) shows how the magnetic fluctuation noise varies 
with the different parameters. M is the mutual inductance between 
the loop and the iron-core coil, L and H/i are constants of the coil, (a is 
2ir times the power frequency, I is the peak value of the power current, 
and AF is the bandwidth of the receiver. The constant m in Eq. (69) 
is the magnetic moment of an elementary magnetic particle of the type 
aligned in the magnetization cycle. If Eq. (69) is used to calculate m 
from the observed magnetic fluctuation noise in a loop receiver, the 
value found for m corresponds to magnetic particles of microscopic but 
far larger than atomic size. The exact value found for m does not have 
very much significance, since the model used in the derivation of 
Eq. (69) was so highly idealized, and since coherent interaction between 
elementary magnetic regions was neglected. 



CHAPTER IX 

NOISE IV: THERMAL NOISE^ 

9.1 The Two Laws of Thennodynamics. In this chapter we shall 
briefly review the statistical theory of thermodynamics, and on the 
basis of this we shall derive the formulas for thermal noise. As a 
first step, we recall the two laws of thermodynamics. 

The first law of thermodynamics is essentially a restatement of the 
conservation of energy and says that if an amount of heat energy dQ 
flows into a system, and during the process the system does an amount 
of work dW on the outside world, then, if d 17 is the increase in energy 
contained in the system, 

dU^dQ- dW (1) 

The differential form is employed in Eq. (1) as a convenience for use 
in the second law, although as far as the first law is concerned the 
quantities involved need not be infinitesimal. 

The second law of thermodynamics determines the amount of 
thermal energy in a system and the way and the extent to which it 
can be transformed into other types of energy. There are several 
equivalent formal statements of the second law, such as 

1. Heat will not flow of itself from a body of lower temperature to 
a body of higher temperature. 

2. It is impossible to perform a cyclic process whose only effects 
will be the removal of thermal energy from a body and its conversion 
into work. 

We shall not here go through all the reasoning carried out in 
thermodynamics by means of which it is shown that these laws lead 
to the final results which we shall use. Instead, we shall merely out¬ 
line and interpret the results. 

In thermodynamics, a quantity S is defined by the equations 

= ^ or 8^ j^ +So (2)* 

^ It is expected that the reader already has a general knowledge of thermal noise, 
such as may be obtained from Chap. VI. 

* Throughout this chapter, the temperature T will always mean the absolute 
temperature, i.e., oenfigrade tmperature phis 273. 

381 
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where dQ represents heat which enters a system, T is the temperature 
at which it enters, and the integral in Eq. (2) is taken from an initial 
state 1 to a final state 2 along a reversible path.^ The quantity S 
in Eq. (2) is called the entropy of the system, and it is proved in thermo¬ 
dynamics that the entropy of a system in a given state (i.e., given 
temperature, pressure, volume, etc.) has a definite value which is 
independent of the manner in which the system arrived at that state. 
It is further shown that the quantity 

TS = temperature X entropy 

represents what may be called the ^‘bound energy^' or ^^thermal 
energy” of the system; and this energy cannot be removed from the 
system and transformed into work^ unless there is some means of 
lowering the temperature of the system, such as by letting it deliver 
heat to another system at lower temperature. The difference between 
the total energy U of the system and the thermal energy TS is called 
the ‘^free energy” or available energy” ^ of the system at the 
temperature T, Thus 

-TS (3) 

The available energy ^ is the energy which can be removed from 
the system at* the temperature T and can be used to perform work on 
other systems. 

9.2 Statistical Interpretation of the Results of Thermodynamics.^ 
During the general period of the second half of the nineteenth century 
a statistical theory of thermodynamics was developed.^ This theory is 
called statistical mechanics. According to statistical mechanics, the 

^ A reversible path is one whose direction of operation can be reversed by 
infinitesimal changes in the external conditions. Operations along a reversible 
path consequently take place with only infinitesimal speed. If the path in Eq. (2) 
is not reversible, which is usually the case in practice, then it may be shown that 

s-s,> 

We shall not go into the details of thermodynamics here, such as the real meaning 
of cyclic processes and reversible paths, since they are not necessary for the use 
that we shall make of thermodynamics. 

> Latent heats can be removed from a system, but they cannot be transformed 
into work at the temperature of the system, so that they do not represent available 
energy. 

’ In order to read the remainder of this chapter, the reader should be acquainted 
with the ideas and terminology of Chapter VII. 

* By such men as Maxwell, Boltzmann, and Gibbs. 
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thermal energy of a system consists of the energy associated with the 
to-and-fro irregular motions of the individual atoms, molecules, or 
electrons in a system with respect to each other. These motions are 
essentially random in nature, and for this reason it is impossible to 
get at the energy associated with them in order to convert this energy 
into other types except to the extent that is permitted by the laws of 
thermodynamics.^ The theory points out that the macroscopic* 

large-scale) properties of a system are statistical in nature and 
are subject to fluctuations. In particular, it is shown that any prop¬ 
erty (for example, the pressure) which determines the state of a system 
is subject to fluctuations; and if the free energy can be expressed as a 
pure quadratic function of these fluctuations, then the fluctuations 
have a normal distribution. Thus, the probability that a property 
shall have a value lying between x and x + dx is 

P(x) dx = dx (4) 

where xo is the most probable value of x. If x has a one-dimensional 
normal distribution, then jB is a constant; otherwise, it is a function 
of X. Statistical mechanics also shows the connections between Eq. 
(4) and the laws of thermodynamics. Thus, it shows that for the 
exponent in Eq. (4), 

—a\x — Xo)* = ^.Y" 

where S is the entropy corresponding to the value x for the observable 
property. So is the entropy corresponding to Xo, and A* is a universal 
constant, called Boltzmann’s constant or the gas constant per molecule. 
The value of k is 

k = 1.371 X 10~^® erg/deg — 1.371 X 10~** watt-sec/deg 

^ While thermal energy cannot be converted into work without a change in 
temperature, if a second and cooler system is present so that the original system 
can have its temperature decreased by transfer of heat to the cooler system, a 
certain amount of its thermal energy can be converted into work. Thus 

d{TS) « TdS-i-SdT « dQ+SdT 
and the quantity 

- j SdT 

represents work that can be obtained from the system in the course of lowering 
its temperature. 

* As distinguished from microscopic properties, which pertain to the individual 
atoms, molecules, or electrons. 

® It follows from Eqs. (4) and (5) that <8o is a maximum value of S, Thus the 
most probable state of a system is that in which the entropy is a maximum. 
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It follows from Eqs. (4) and (5) that 

8-So 

P(x) dx — B€ * dx (6) 

The entropy of a system is thus intimately tied up with its statistical 
properties.^ • 

9.8 The Equipartition Theorem. Suppose that the free energy of 
a system includes a term which is a positive quadratic function of 
some variable y, where y is the measure of the fluctuation (from the 
most probable state) of some property of the system. Let us further 
suppose that, except for this term, y does not otherwise appear in the 
thermal or the free energy. ^ Then we may write 

^ = ^0 + h^y^ 

where is independent of y] and, from Eq. (3) 

^ T T 

(7) 

(8) 

Substituting Eq. (8) into Eq. (6), we have 

P(y) dy = Bt dy (9) 

where 5 is a constant. Since by definition 

P(y) dy = 1 (10) 

it follows that 
h^V* D 

Bt dy = 1 VdFr = 1 
/- 

(11) 

or 

(12) 

^ While the foregoing discussion gives us the equations we shall require, it is . 
completely inadequate for the reader who has had no previous acquaintance with 
fluctuation phenomena in physics and their relation to thermodynamics. Such 
readers are strongly advised to get additional knowledge of the subject from a 
textbook on statistical mechanics, such as E. C. Tolman, Statistical Mechanics.’' 
A more advanced but very fine discussion is also given by S. Chandrasekhar, Rev» 
Modem Phye^ January, 1943. 

^ y may, for example, be the charge on the condense C, in Fig. 1, due to thermal 
noise in R, Then 
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The ensemble average value of is then 

bY 
b h*y* 

dy 
^ ..1 lirk*T* 

VrkT° 2\ 6« 

2 
(13) 

Equation (13) tells us that the average value of the free-energy fluctua¬ 
tions, due to a term of the type of is If the free energy con¬ 
sists of the sum of n independent quadratic terms of the type of b^y% 
then, by following the same procedure as that used above, we should 
find the average value of the total free-energy fluctuations to be nj^kT. 
This result is called the equipartition theorem. It is very useful in 
practice. 

With the aid of the foregoing very brief outline of some of thermo¬ 
dynamics and its statistical interpretation, and in conjunction with the 
fluctuation theory developed in Chap. VII, we shall next derive the 
laws and formulas for thermal noise. 

9.4 Thermal Noise—^Introduction.^ In the beginning of the 
twentieth century, von Smoluckowski and Einstein used the fluctua¬ 
tion theory of statistical mechanics to explain such known natural 
fluctuation phenomena as the Brownian movement and the opalescence 
of liquids in the critical state. They also pointed out that fluctuation 
phenomena due to thermal energy would appear in a variety of other 
ways, among them as fluctuations of electric current in a circuit. 
This matter, however, was of no practical interest until 1928, when 
J. B. Johnson* showed that such fluctuation currents were observable 
in a high-gain amplifier and actually set a limit to its sensitivity. 
Working in conjimction with Johnson, H. Nyquist also derived the 
now. well-known formula for the noise power developed in a given 
frequency band. The researches of Johnson and Nyquist in thermal 
noise are among the classical investigations of radio engineering. 

In beginning the study of thermal noise let us consider a vacuum 
tube with a grid resistor and let' the input capacity of the tube be 
C. Let us consider fluctuations in the entropy of the R-C circuit as 
indicated by the free energy that is stored in the input capacity of the 
tube. Since there is no free energy in the resistor itself, the variations 

^An interesting and stimulating account of thermal-noise experiments and 
theory will be found in the first chapter of Moullin, Spontaneous Fluctuations of 
Voltage.*' 

•Johnson, J, B., Phy%. Bev., 88, 97, 1928; Ntquist, H., Phy9. Rev., 88, 110, 
192a 
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in entropy are, according to Eq. (3), just the negative of the energy 
delivered to the capacitor divided by the temperature so that 

S- So 
1 CE^ 
2 T (14) 

where E is the thermal-noise voltage across C. Letting E be the x of 
Eq. (6) for our problem, we then have 

CE* 
P(E) dE = Be dE (15) 

The voltage E, as in Sec. 7.14, has a one-dimensional distribution so 
that JB is a constant. Therefore, since 

r + 00 /• +» CE* 
/ P(E) dE = 1 Be 2*^ dE = (16) 

it follows that 

(17) 

Since P{E) measures the probability of finding the voltage between E 
and E + dE, then according to Sec. 7.14e, it also represents the frac¬ 
tion of time that the voltage will be between E and E + dE, There¬ 
fore, the mean square value of the voltage is 

E^P{E) dE y2irkT 

y2TkT 2 \ 

Eh 
cm 

'2kT dE 

C (18) 

1 
-j.- 

“T* 

The answer given by Eq. (18) for the mean square value of the 
thermal-noise voltage is unfortunately not in a very useful form. In 

practice, there is usually a tuned am¬ 
plifier following the source of thermal 
noise, and thus it would be desirable 
to know the frequency distribution of 
the thermal noise. This will be ob¬ 
tained in the next section. For the 
present, however, we shall consider 
further some general matters pertain¬ 
ing to thermal noise. 

One point that we note immedi¬ 
ately is that, since the capacitor is 

considered as the storage medium for the free energy of the resistor, 
we could have predicted from the equipartition theorem that the mean 

Fio. 1. Example of a resistor 
which stores free energy in a 
capacitor. 
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square voltage across the capacitor would be kT/C, for the energy of 
the capacitor is so that we should have 

== HkT (19) 

We have gone through the detailed derivation, however, in order to 
show the significance of the equipartition theorem. 

Finally, before taking up Nyquist’s derivation of the formula for 
thermal-noise voltage, we may point out that, if it is assumed that a 
resistor is a voltage generator of thermal noise of an amount which is 
equally distributed throughout the frequency range, then the above 
methods are sufficient to determine the amount of noise per megacycle. 
To show this let 

A^df (20) 

be the mean square voltage in an infinitesimal bandwidth df generated 
in the resistor. Then the amount of this appearing across the capaci¬ 
tor will be 

(l/27r/C)^ ^ A^df 
222 + (1/2t/C)2 47r2/2C2222 -f 1 (21) 

Since, according to the Fourier integral energy theorem, mean square 
voltages of different frequencies may be added directly, the total mean 
square voltage across the capacitor will be 

L A^df 
0 + 1 

_A^ 
%rCR 
A* *• 

2irCR2 

tan-‘ (2trfCR) 

r 
4CR 

/-o 

(22) 

From Eq. (18) we also know that the value of the mean square voltage 
is kT/C, so that 

A* _ kT 
^CR C (23) 

or 
A* = 4RkT (24) 

Thus, the mean square noise voltage generated in a resistance 22 in a 
band of width Af is 

A^Af^ARkTAf (25) 

This is Nyquist’s formula, but it has been derived under the thus far 
unproved assumption that a resistor is a noise-voltage generator which 
generates equal amounts of voltage throughout the frequency range. 
We shall next give a derivation that does not require this assumption. 
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9.6 Derivation of the Thermal-noise Formula of Nyquist.^-^ The 
derivation in the preceding section suggests that, if, in place of a 
capacitor, we use a free-energy storage medium which is not selective 
to frequency, it will enable us to determine directly the frequency 

(a) 

(b) Forward Wave 

(c) Backward Wave 

Fio. 2. The storage of thermal-noise energy in a lossless transmission line. 

distribution in thermal noise. Such a medium is available, at least 
theoretically, in the form of a lossless transmission line. Accordingly, 
let us connect a resistor 22 to a lossless transmission line of surge 
impedance 22, as shown in Fig. 2, and let the line be open-circuited at its 
far end. Then the resistor will deliver noise energy into the line. This 
will be in the form of an electric wave that flows along the line. Since 
the line is open at the far end, there will be complete reflection of the 
energy there; and since 22 is the surge impedance of the line, the 
reflected wave will be completely absorbed again at the resistor. In 
Fig. 26 is shown a diagram of the voltage Ef oi the forward wave, and 
in Fig. 2c is a diagram of the voltage Eh of the reflected (back) wave. 
According to the fundamental form of Fourier's theorem, each of 
these voltages can be expanded in a Fourier series of the form 

«e 

Ef = 0/0 + ^ (aft cos + &/« sin (26) 

fl-1 

1 The derivation given here has been altered somewhat from Nyquist's, but the 
use of a transmission line as an energy storage medium, which is the crux of the 
matter, is still the same. 

It is recommended that the student read Sec. 7.20 as a preliminary to this 
section. 

* The method, used in this section, of applying the second law of thermo¬ 
dynamics to highly idealised elements in a physical process has a time-honored 
position in the history of physics. The reader who has had no previous acquaint¬ 
ance with it should not be led by its artificiality to belittle its reliability or its 
importance. The method has had many great successes in the past, a most 
notable achievement being that it led Planck to the cniginal formulation of ths 
quantum theory. 



NOISE IV: THERMAL NOISE 389 

Eh = abo + 
f 2irqx , , . 2wqx^ 
abq cos + bhq sm —^ 

where d is the length of the line; and the corresponding currents can 
be obtained by dividing these voltages by the surge impedance of the 
line 

where L is the series inductance per unit length of the line and C is 
the shunt capacity per unit length. 

The energy of the gth Fourier harmonic of either the forward or 
the backward wave is 

/o 
_ C(al + K)d _ (al + b^)d 

2 2Rv 
where 

is the velocity of traveling waves along the line. The total energy in 
the transmission line is then 

00 

Energy = ^ (a% + alo) + ^ ^ («/« + *’/« + oj, + (31) 

t-i 

Npw all the a and h components are independent of each other, and 
each has a one-dimensional probability distribution. Therefore, if 
the transmission line is considered as the storage medium for the free 
energy of the resistor, it follows from the equipartition theorem that 

As far as the forward wave alone is concerned, the average energy 
of the ^h harmonic is 

+ = (33) 

^ The energy per unit length of a transmission line is 

aCE^ + HL/* 
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and the energy delivered by the resistor into the line per second com¬ 
prising the gth harmonic is 

r ^ 7T2 I ^2 ^1 “I” (34) 

At this point, we should realize that the gth harmonic of the Fourier 
expansion of Fig. 26 consists not of a single frequency, but rather of a 
narrow band of frequencies, since it is a wave train of finite length 
(see Fig. 4 of Chap. Ill and Sec. 7.20). This band centers about the 
frequency 

Fa (35) 

which is the local frequency of the gth Fourier harmonic. 
If the line is very long so that its fundamental frequency 

(36) 

is very low, then there will be many line harmonics in any given fre¬ 
quency band AF of interest. Each of these line harmonics will be at 
the center of a band of frequencies of the noise energy, and the bands 
will overlap’to give a smooth energy vs. frequency curve.^ The 
number of harmonics in a frequency band of width AF will be 

Fi 
(37) 

so that the total noise energy delivered by the resistor into the line per 
second in the frequency band AF is 

AF vkT 
Fi d 

AFkT (38) 

Equation (38) is a very important result. It is the rate at which 
thermal-noise energy is delivered by a resistor R into another resistor * 

^ It is clear physically that this curve will be smooth since it cannot be affected 
by the line length, because the properties of the forward wave are independent of 
line length. 

* The transmission line acts like a resistor to the forward wave, even though 
an open line in the steady state would look like a pure reactance. A transmission 
line acts like a pure resistance of magnitude Zo to the forward wave and to the 
backward wave taken separately, regardless of the termination of the line. The 
termination determines the magnitude and phase of the reflected wave, but not 
the ratio of current to voltage in it. 
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of the same size. An equal amount of noise power is delivered by the 
second resistor (the line) to the first (i.e., by the back wave), so that 
thermal equilibrium is not disturbed. 
The peculiar properties of a trans¬ 
mission line, which allow us theo¬ 
retically to separate the forward and 
backward wave, f.e., the noise en¬ 
ergy leaving and entering the re¬ 
sistor, and which allow us to express 
this energy in terms of its frequency 
components, make a transmission line ideally well suited to our 
purposes. 

Now that we know how much energy the resistor sends into the 
line, let us next terminate the far end of the line with an impedance 

Zm = Rm + jXm (39) 

as shown in Fig. 3, and let Zji# be at the same temperature T as R. 
When the noise energy of the forward wave from R arrives at Zjif, a 
fraction of it equal to \K\^ times the original value is reflected, where K 
is the voltage-reflection coefficient. We know from transmission-line 
theory that 

Zm — R (Rm — /2) + jXm 
(40) 

SO that 

“ (Rm + ii:)* + Xi, (41) 

Furthermore, a fraction 
1 IR-I’ - 4i2J?M 

“ (Rm + Rr + X*, 
(42) 

of the forward wave is absorbed in Zm* 
In order to simplify our analysis, we shall assume that Zm is of a 

band-pass nature, being infinite except in a narrow frequency band, 
AF. Thus, except in the band AF, the line will be open-circuited at 
the Zm end and will behave as in the case previously analyzed. We 
shall next concentrate on what happens in the relatively narrow fre¬ 
quency band AF, in order to get at the heart of the thermal-noise 
question. 

Now we have assumed that R and Zm are at the same temperature. 
Then, according to the second law of thermodynamics, the thermal- 
noise energy going from Zm to R must equal the thermal-noise energy 
going from R to Zm- Otherwise, R would get colder while Zm got 

Line Zq-R 
ZmtRm+jXm 

Fig. 3. A transmission line termi> 
nated by its sur^e impedance at one 
end and by an arbitrary impedance at 
the other end. 
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warmer, or vice versa, in violation of the second law. Accordingly, 
we conclude from Eqs. (42) and (38) that the terminating impedance 
Zm delivers noise power of the amount 

ARRmI^T AF 
(Rm + Ry + x% 

into the line, which is all then absorbed at R, The values of R, Ruf 
and Xm in Eq. (43) are their values for the frequency range AF. 

Line 

ZlM 

“VaRmKTaT 

Fid. 4. Circuit of operation of the thermal noise generated in Zim» 

The form of Eq. (43) shows that the thermal-noise power delivered 
hy Zjii into a resistance R is the equivalent of what would occur if 
there were a thermal-noise generator in Zm, delivering a voltage of 
magnitude E such that 

W^:=4RMkTAF (44) 

By dividing the reactance Xm of Fig. 3 into two parts X and Xim, as 
shown in Fig. 4, such that 

Xm^X + XtM (46) 

it follows that a general impedance 

ZiM = Rii + jXiM * (46) 

will deliver an amoimt of noise power into another general impedance 

Z^R+jX (47) 

as though ZiM were a voltage generator with a voltage of the amount 
shown in Eq. (44). We see that is proportional to Rut to the tem*^ 
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perature T, and to the bandwidth AF, and that it is independent of the 
location of AF in the frequency band since the absolute frequency does 
not appear in Eq. (44). Furthermore E does not depend on the load 
impedance R + jX, nor does it depend on the reactance Xim of the 
generating impedance. The latter fact shows that resistances alone 
are sources of noise voltage, a fact that can also easily be shown by 
other means. 

Equation (44) is Nyquist’s famous formula for thermal noise. 
We note here that Rm is the resistive component of an impedance 

in the frequency range AF and that the derivation of Eq. (44) would 
hold just as well if Rm is due to the power factor of a condenser or any 
other cause. Equation (44) is not limited to any specific type of Rm- 

According to Sec. 6.4 this equation can also be written in the 
equivalent current-generator form 

P==^4GMkTAF (44a) 

where Gm is the real part of 1/Zm, that is, Gm is the conductance of 
Zm- In this case the impedance Zm is in shunt with the current 
generator. 

It may be noted that, since according to Eq. (44) the total mean 
square voltage has equal contributions from every frequency band of 
width AF, the total mean square voltage in the complete frequency 
range from F = 0 to F = <» should be infinite. A similar difficulty 
arises in the theory of heat radiation in physics when the simple 
equations (4) to (6) of classical statistical mechanics are used. How¬ 
ever, if these equations-are revised in accordance with quantum theory, 
the results are essentially unchanged up to a frequency of the order of 

F = ^ (48)‘ 

but above this frequency the energies involved decrease rapidly. In 
our case, if 

1 In quantum theory the energy per degree of freedom is 

— (where v is frequency) 

Inetead of kT, as in olassioal statistical mechanics. The kT result for classical 
statistical medianiGS is a consequence of the equipartition theorm in conjimotion 
wiffi the fact that eaeh degree of freedom contributes two quadratic terms to the 
total eneigy. 
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T = 293® (that is, 20®C) 
A* = 1.37 X 10”"^® erg/deg 
A = 6.6 X erg-sec (the quantum constant) 

then 
IcT 

. F = ^ = 6.1 X 10^2 cycles = 6,100,000 me (49) 

Consequently, we may expect that Nyquist’s formula gives the correct 
value for thermal-noise voltage up to frequencies of the order of those 
indicated by Eq. (48) and (49). This includes all frequencies of inter¬ 
est in radio engineering at present. Above these frequencies, it is to 
be expected that the classical statistical mechanics upon which our 
results were based will give erroneous results and that the true results 
will show a falling off of energy with frequency in accordance with 
quantum theory. 

In concluding this section, we note that it follows from Eqs. (4), 
(26), and (29) that thermal noise is random noise in accordance with 
the definition in Sec. 7.14. 

9.6 Thermal Noise as Fluctuation Noise of the Conduction Elec¬ 
trons.^ In the foregoing section, we have derived Nyquist^s formula 
for thermal noise from the statistical theory of thermodynamics with¬ 
out any reepurse as to the nature of the mechanism that produces 
thermal noise. This is highly desirable from the standpoint of rigor, 
since it does not make our results depend upon any particular theory of 
electrical conduction. It is nevertheless of interest to know whether 
or not the modem theory of electrical conduction supplies a mecha¬ 
nism that generates thermal noise of the correct amount. This we shall 
now investigate, with no attempt at great accuracy, however, but only 
with the purpose of seeing whether thermodynamic and conduction 
theories are in general agreement. 

According to the theory of metallic conduction, any metal has a 
large number of free electrons moving about in it. In the absence 
of an external emf, these electrons derive their velocities from collisions 
with the atoms of the metal. The motion of the free electrons is thus 
essentially thermal in nature. In any metal the atoms are so close 
together that an electron can travel only a short distance before it 
collides with an atom. During the collision the speed and direction 
of the electron motion are completely changed. The average distance 

^ The disouBsion presented here is a development of a corresponding discussion 
given by Moullin, “Spontaneous Fluctuations of Voltage,” p. 65-67. Moullin 
attributes the original development to D. A. Bell and states that Bell has published 
a further development of the theory in J.LE.E., 62,529,1938. 
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between collisions in the electron’s travels is known as the mean free 
path of free electrons in the metal in question. The numerical value 
of this mean free path for free electrons is a physical characteristic of a 
metal. Furthermore, the number of free electrons per cubic centi¬ 
meter is also a physical characteristic of a metal. It is shown in 
Drude’s theory of metallic conduction that the specific resistivity 
of a metal is given by the formula 

6kT 
(50)» 

where D = mean free path 
N = number of free electrons per cubic centimeter 

K = electronic charge 
V = average thermal veloc¬ 

ity of free electrons 
p = specific resistivity 

Let us now consider the metallic 
resistor, shown in Fig. 6, in which 
there are free electrons traveling 
with thermal velocities, and let us 
suppose that the resistor is located ^ metallic resistor connected to 

in a closed circuit. Then because 
of electrical and magnetic induction, the current i that flows in the 
resistor will also flow in the external circuit. * Let us now calculate the 
fluctuation current i that flows in the resistor owing to the thermal 
velocities of the free electrons. 

As an electron travels between one collision and another, it creates 
an equivalent current in the resistor in the direction around the circuit. 
This equivalent current is of the order of magnitude of 

d 
(51) 

where d is the length of the resistor. That is, on the average, an elec¬ 
tron traveling with a velocity component v* in the x direction will cause 
approximately the same induction effects as a current KV^/d flowing 
through the entire length d.of the resistor. Electronic flights between 
collisions are thus on the average equivalent to current impulses of 
strength 

^ Jeans, J. H., “Dynamical Theory of Gases,” p. 303. 
’ Another way of saying this is to say that the motion of electrons inside the 

resistor will induce a general motion of the entire “cloud” of free electrons in the 
circuit in such a way that the external current i will be uniform around the circuit. 
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± ± ^ 1^ _ _L (52)^ 

where r =» D/v = average time between collisions 

ftJI] == ^.verage of the absolute values of Vx 
Now the average number of impulses per second due to each free 
electron is 1/r, and the total number of free electrons in the resistor 
is NdA, 
where d = length of the resistor 

A = area of cross section of the resistor 
Consequently, the total number of impulses per second due to the 
thermal motion of the free electrons is (N/t) dA,^ Therefore, by Eq. 
(143) of Chap. VII, the fluctuation current due to these impulses is 

{CT: = 2'^^dA^F (53) 

According to Eq. (50), the resistance R of the resistor is 

„ _ d _ ekT d _ QkTr 1 
“ ~ A ~ NK^m A ~ Nk*D* a ^ 

Substituting- Eq. (54) into (53), we obtain the formula 

= (65) 

for the fluctuation current. This fluctuation current either can be 
absorbed in the resistor itself or else will flow in the external circuit. 
Thus, the thermal motion of the free electrons in the resistor R will 
cause fluctuation currents as indicated in Fig. 6a or fluctuation volt¬ 
ages as shown in the equivalent form in Fig. 65. Since these fluctua- 

^ It may be shown [by integration of Eqs. (90) and (92) of Tolman, Statistical 
Mechanics”) that 

so that 

13 „ 1 
t 2 

^ Approximately half of these impulses will be in one direction around the 
circuit, and half will be in the opposite direction. However, except at sero fre¬ 
quency, this fact will affect only the phase of the frequ^cy components and not 
their magnitudes, so that we can ignore it, since we are considering the components 
to be of random phase in any case. 
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tions are of nearly the same magnitude as the thermal noise generated 
in a resistor, according to the thermod3mamic theory, we conclude 
that the theory of metallic conduction supplies a fairly satisfactory 
mechanism for the generation of thermal noise in metallic resistors. 
If we refined the methods of calculation and averaging used in this 
section, it is quite likely that an even better agreement with the 
Nyquist formula would be obtained. In any case, the Nyquist for¬ 
mula is based upon a rigorous theoretical foundation, and furthermore 
it agrees with experiment, so that it is the formula to be used in calcu¬ 
lating thermal noise. 

Fio. 6. 

(a) 

Current Generator 
Representation 

Magnitude of thermal noise in a metallic resistor according to Drude’s theory of 
metallic conduction. 

It would seem that an accurate calculation from a correct theory of 
metallic conduction would have to yield the true value of thermal 
noise. It would be of considerable interest to make such a calculation 
based on the quantum-mechanical theory of metallic conduction, and 
compare it with a derivation of the Nyquist type revised in accordance 
with quantum statistics. A comparison with experiment in any 
frequency range in which the two methods of calculation give different 
results, if there turned out to be such a frequency range, might 3rield 
important information concerning metallic conduction and radiation 
theory. 

9.7 Further Discussion of Thermal Noise.^ a. Consistency of 
Nyquisfs Formula in Complex Networks. For the Nyquist formula to 
be of general validity, it is necessary that it should be self-consistent 
when applied to a complex network. Since all networks are made up 
ci combinations of series and parallel sections, a general test of the 
consistency of the formula would be given by testing it in the circuits 
shown in Fig. 7. Let us therefore make such a test. 

«Further Information on the subjects discussed in this section will be found in 
Moullin, ^'Spontaneous Fluctuations of Voltage.” 
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The total impedance in Fig. 7a is 

Z = Zi + ^2 == {Ri + ^^2) + i(^i + ^2) 
The total thermal-noise voltage generated is obtained by adding the 

quadratic contents of the noise voltages generated in Zi and Z2, 

Ri+jXi 

R2+jX2 

(a) (b) 
Fiq. 7. Schematic diagrams of general impedances in series and parallel combinations. 

according to Sec. 7.14^, since both are random noise. Therefore, 
according to Eq. (44), 

= C^TafP + (E2 
= AkTRi AF + 4kTR2 AF = 4kT{Ri + R2) AF (56) 

This is also the value that would be obtained by applying Eq. (44) to Z 
directly. Therefore Eq. (44) leads to consistent results when applied 
to series circuits. 

Consider next the parallel circuit in Fig. 76. Here the answer 
can best be obtained by using Eq. (44) and the equivalent current- 
generator representation (see Section 6.4). Thus, we have for the 
admittance 

Y = G+jS = ^=YA + YM = ^ + j-^ 

= (Ga + JSa) + {Gb + jSa) = {Ga + Gb) + ji^A + Sb) (57) 

The total thermal-noise current generated in Y is obtained by adding 
the quadratic contents of the noise currents generated in Yi and Y2. 
Thus 

(lAr)m — {IjL + {Ib AF)m 

= UTGaAF + ikTGBAF 
= 4kTiGA + Gb) AF (68) 

This is likewise the value that would be obtained by applying Eq. 
(44a) directly to Fig. 7b as a whole. Thus Nyquist’s formula also 
leads to consistent results when parallel impedances are present. 
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Exercise 

Show that according to Eq. (44) the thermal-noise power absorbed hy Zb from 
Za in Fig. 7b is equal to the thermal-noise power absorbed by Za from Zb> If 
this were not the case, one impedance would steadily get warmer while the other 
got cooler, and this condition would violate the second law of thermodynamics. 

b. Reactances Generate No Thermal Noise, According to the dis¬ 
cussion in Sec. 9.5 reactances generate no thermal noise. There is an 
obvious physical reason for this, namely, that pure reactances of them¬ 
selves do not contain numerous individual elements in statistical 
equilibrium, like the free electrons in a resistor, and therefore they 
cannot be expected to be the source of statistical fluctuations. From 
the point of view of the electron theory of conduction the reason why 
reactances generate no thermal noise is that there are no sudden 
interruptions to the motion of an electron in a pure reactance such as 
are caused by its collisions with the atoms of a resistor. The most 
convincing argument is, of course, the fact that, as the calculation of 
thermal noise in Sec. 9.5 shows, the voltage generated is independent of 
the size of the reactance. The matter is, however, so fundamental 
that F. C. Williams has made an independent experimental investiga¬ 
tion to confirm it. He showed that in a circuit consisting of a resistor 
and a capacitor, the thermal-noise voltage generated is proportional to 
the temperature of the resistor but is independent of the temperature 
of the capacitor. 

An independent theoretical verification of the fact that reactances 
generate no thermal noise can be obtained by applying the second law 
of thermodynamics directly to Fig. 8. If either reactance in Fig. 8 
generated a thermal-noise voltage, it would send power into the 
resistor. Since over a long period of time a reactance cannot absorb 
any average power, it would therefore continually get cooler, while 
the resistor got warmer. This would violate the second law of thermo¬ 
dynamics. 

c. Superposition of Direct Current or a Signal on Thermal Noise, 
In most cases in which thermal noise is of interest the thermal noise is 
superimposed upon a signal which it is desired to transmit. It is 
therefore of interest to know whether or not the presence of the signal 
affects the amount of thermal or other fluctuation noise generated. 
This problem cannot be handled by the thermodynamic arguments 
that we have previously used for pure thermal noise, since we are no 
longer dealing with a system in thermal equilibrium because of the 
PR generation of heat by the signal current /. Our information must 
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therefore come from a theoiy of the detailed mechanism involved and 
of course, from experimental results. 

The matter has been investigated experimentally by MouUin and is 
discussed in his book ''Spontaneous Fluctuations of Voltage.^' He 
concludes from his measurements that a superimposed steady current 
has no effect on the thermal-noise current generated, provided that 
the circuit elements involved, particularly resistors, are of stable form. 
Thus, there are certain commercial resistors available whose resistance 
involves numerous granular contacts. Such resistors (called "crazy- 

(a) (b) 
Fia. 8. Simple circuits containing a resistance and a reactance. 

contact ” resistors by the British) will generate extra noise when cur¬ 
rent is flowing through them, the extra noise actually being due to 
resistance variation rather than to any new emf. Except for noise of 
this type, wliic^ can be avoided by using high-quality resistors, the 
experimental evidence indicates that a superimposed signal or direct 
current has no effect on thermal noise. 

Purely from the point of view of noise theory we can say that, if 
the impedances involved are linear, then the principle of superposition 
indicates that the frequency components of signal and thermal noise 
will be independent of each other except for cases in which the two 
have some frequency components in common. For such frequencies 
the frequency components will add vectorially. However, owing to 
the random phases of the frequency components of a thermal-noise 
signal, there will be no average change in thermal-noise power due to 
the presence of the signal. On the other hmid, if the signal generates 
fluctuation noise of its own, it may be added directly to the thermal 
noise on a power basis. 

The matter thus seems to be reduced to a question of whether or not 
the signal generates an independent fluctuation noise of its own. Now, 
since electric current is electronic in nature, the finite size of an elec¬ 
tron, in conjunction with the random fluctuations in the density of 
(hstribution of electrons in a conductor, will always introduce some 
statistical fluctuations, similar to shot effect. However, the cloud of 
free electrons in a metal will b^ve as a btiffer, just Uke the space 
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charge in a tube, and will introduce coherent fluctuations which will 
largely cancel the effect of the original fluctuations. In order to get 
an approximate value for the final residual increase in noise, we refer 
to the analysis in Sec. 9.6 and note that the effect of the superimposed 
signal is to increase the ratio of ^/v in Eq. (52), Now according 
to the electron theory of conduction, signal currents are ordinarily due 
to average drift velocities of the electrons in the direction of the emf 
of the order of magnitude of 1 cm/sec. On the other hand, the 
average thermal velocity at 20®C is around 5 X 10® cm/sec. The 
factor of increase in ^/v due to the signal is around the ratio of the 
drift velocity to the thermal velocity. As just pointed out, this ratio 
is exceedingly small. The increase in fluctuation noise due to the 
signal is consequently only a negligible fraction of the ordinary thermal 
noise and is too small to be detected experimentally. 

d. Parts of Circuits at Different Temperatures. If parts of a circuit 
or network are at different temperatures, then we can just calculate 
the noise voltage due to each resistor at its own temperature and solve 
the circuit or network equation on that basis, remembering that the 
quadratic contents of noise signals are additive in any frequency range. 
The only other question involved is then whether or not a temperature 
gradient will cause the generation of any additional noise voltage. As 
far as the author is aware, this matter has never been investigated in 
detail. It is, of course, known that a temperature gradient will cause 
a flow of heat and also a generation of direct-current electric voltage 
(the Thomson effect). According to electron theory, this direct- 
current voltage is due to an average resultant drift velocity of the 
electrons caused by the temperature gradient. Using a similar argu¬ 
ment to that of Sec. 9.7c, it follows that the fractional increase in the 
thermal noise, due to the temperature gradient, will be too small to be 
detected experimentally. 

9.8 Thermal Noise and Radiation Resistance. The input circuit 
of a radio receiver is invariably connected to an antenna. Since the 
antenna has radiation resistance, the thermal noise generated in this 
radiation resistance is likely to be an important part of the total 
receiver noise. It is therefore important to consider the thermal noise 
developed in the antenna’s radiation resistance. 

Hre entire difficulty in calculating the thermal noise developed in 
the radiation resistance of an antenna is the difficulty in determining 
the effective temperature of this resistance. If the antenna were 
surrounded by a distant enclosure all at the same temperature T as 
the antenna itself, then it must follow from thermodynamic reasoning 
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that the temperature of the radiation resistance would just be T. 
However, actual antennas are not surrounding by enclosures of uni¬ 
form temperature, so that the problem is not a simple one. 

To get at the heart of the problem, we shall first show that the noise 
power of the radiation resistance originates not in the antenna, but 
rather in its surroundings, whether near or distant, which are capable 
of radiating power to the antenna. To show this, consider the ideal¬ 
ized antenna shown in Fig. 9, which has radiation resistance and react¬ 
ance but no ohmic resistance. Let us first consider the case in which 
the antenna is not connected to any circuits. In this case, if Ia is 
the antenna current (at its mid-terminal), the antenna will receive 
power of amount where Ra is the radiation resistance, and radiate 
power of th6 same amount. The antenna thus is not the source of 
any power but merely acts to reflect or scatter the power that comes to 
it from the outside. If the antenna has ohmic resistance /2o, then it 
will also have free electrons traveling in interrupted paths, so that it 
will generate a thermal-noise voltage AkTRo AF of its own; but, in the 
absence of such ohmic resistance, the antenna will not be the original 
source of any thermal-noise power. 

If the antenna is connected to the antenna circuit of a radio 
receiver, then it will deliver some of the thermal-noise power that it 
receives from the outside to the receiver. The amount of this noise 
power that it delivers can be determined by assuming that it is a source 
of voltage of quadratic content 

(EI;)^-^^RaTsAF (69) 

delivered through the antenna impedance Za» The mean thermal 
temperature Ts of the radiation resistance is then an average tem¬ 
perature of the antenna^s surroundings that can radiate power to it. 
In estimating this average the various directions must be given weights 
proportional to the eflSciency of radiation and reception of the antenna 
in these directions. The value of Ts is consequently a kind of weighted 
average of the earth’s surface temperature, the effective temperature 
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of the Heaviside layer, and the mean thermal temperature of galactic 
space. 

In practice, it is impossible to separate the thermal noise due to 
radiation resistance from other random noise picked up by the antenna, 
such as atmospherics, interstellar interference, and man-made random 
noise. Consequently, the entire random-noise voltage appearing at 
the antenna terminals, except that due to the ohmic resistance of the 
antenna, is lumped together into a voltage (-Bl^)rnu, and the effective 
temperature Ta of the radiation resistance is determined by the equation 

Ta 
4kRA^F 

(60) 

As thus defined, Ta is a measure of the noisiness of the antenna in 
its operating location. It depends upon the directional receiving 
pattern of the antenna as installed and upon the wavelength. In 
the broadcast band, owing to atmospherics, Ta is much higher than 
room temperature. At higher frequencies, particularly above 50 me, 
the intensity of atmospherics declines; but while Ta may fall, it con¬ 
tinues well above room temperature for a variety of causes. Among 
these are interstellar interference and, in urban localities in the day¬ 
time, diathermy.^ 

* Very recently, elaborate and ingenious techniques have been evolved to 
measure the effective temperatures of various areas and layers of the sun by means 
of the thermal noise radiated from the regions in question. Investigations are 
also being made of the Milky Way. While there is still a wide divergence of opin¬ 
ion in the interpretation of the results, there is no doubt that they are important. 





APPENDIX A 

TABLE OF PRINCIPAL SYMBOLS, NOTATIONS, AND 
ABBREVIATIONS 

Symbol Meaning 

Page 
defined 
or first 
used 

Equals 3 
m “Is identical with** 40 
< “Is less than** 21 
> “Is greater than** 126 

“Approaches** 80 
< “Is less than or equal to** 7 

“Is greater than or equal to** 7 
« “Is much less than** or “is negligible in 

comparison with** 297 
» “Is much greater than** 25 

! “Factorial** 287 
00 “Infinity** 3 

“Is similar to,** “is proportional to,** “is of 
the order of magnitude of,** or “cycles per 
second** 300 

/ Symbol of integration 4 

r The definite integral from a to 6 4 

z Symbol of summation 3 

V" 
n 

Square-root sign 48 

I Summation from p » 1 to p « n 3 

p~i 
h Average value of n or “ensemble average** 

value of n 292 

m Ensemble average of f{t) 318 

kt) A function related to 6^(0 73 
• Symbol of complex conjugate, that is. 

— complex conjugate of z 23 

1 1 Absolute value sign, that is, |A;| is the abso¬ 
lute value of h 4 

/(*) A function of ^ 3 
A funclion of z and y 112 
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TABLE OF PRINCIPLE SYMBOLS, NOTATIONS, AND 
ABBREVIATIONS—Continued 

Page 

Symbol Meaning 
defined 
or first 
used 

Ensemble average of x^ 323 
P(x) The probability of x 324 

Ho Input conductance of a tube 265 
•R«i Equivalent grid noise resistance 226 
Ra Radiation resistance of antenna 239 
AM Amplitude modulation 149 
FM Frequency modulation 149 
PM Phase modulation 149 

J„{x), I.(x) Bessel functions of x 417 
Bi(.x) Sine integral function of x 74 
Ci(*) Cosine integral function of x 92 
m The impulse function (of argument t) 125 
Ax Increment or small change (in x) 125 
AF Bandwidth in cycles/sec, deviation fre- 

quency 212, 147 
U(t) The unit-step function (of argument t) 124 

«'(0, «"(<), etc. Impulse functions of higher order 129 
Pm(n) 1 The probability that an event will occur n ' 290 

P'n(D) 
times in m independent trials 

The probability of a fluctuation D from an 
average 303 

K Permutation symbol 287 
Cl Combination symbol 287 

G(0, F(f), SM, </.(«), See Fourier integral formulas at conclusion 
o(ci))j b(<i}) of Chap. Ill 66 
a», 6» Fourier series coefficients 3 

9m Transconductance of a tube 225 
9c Conversion conductance of a tube 230 

df hf Cf df h \ 
A, By CyDyK 1 Constants 3 

U, Vy Wy Xy yy Z) 

Uy Vy Wy XyYyZi Variables 3 

a Amplitude (variable with time) 142 
A Fixed amplitude 115 

Cy C Capacity, capacity per unit length 33 
D (1) Maximum deviation frequency 166 

(2) A fluctuation 302 
e, E Voltage 36 

f Frequency 58 
F (1) Complex frequency-distribution func¬ 

tion 59 
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TABLE OF PRINCIPLE SYMBOLS, NOTATIONS, AND 
ABBREVIATIONS—Conimwed 

Symbol Meaning 

Page 
defined 
or first 
used 

F (2) Frequency, especially carrier frequency 142 
(3) Noise figure 255 

9.0 Conductance, conductance per unit length 223 
H Magnetic-field strength 378 

h I Current 43 
i 21 
J See Bessel functions 417 
k A constant; Boltzmann’s constant 46, 212 

l,L Inductance, inductance per unit length 33 
m (1) An integer 287 

(2) Modulation factor 142 
M Mutual inductance 240 

n, N An integer 3, 318 
N (1) Noise voltage or power 251 

(2) Number of magnetic flux lines 379 

P (1) Probability of occurrence 290 
(2) A number (an integer) 5 
A number (an integer) 5 

Q (1) Quality factor 136 
(2) Quantity of heat 381 

• r,R Resistance or resistance per unit length 33 
s (1) Electron velocity 353 

(2) Magnetic susceptibility 379 
S (1) Signal voltage or power 251 

(2) Entropy 381 
t A variable, usually time 25 

^1; etc. Particular values of t 25 

T Period — j 20 

T, Tit ®tc. 
J 

Particular values of t 25 

T Temperature 212 
U Total energy of a system 381 

%v Velocity 116 

X, X Reactance 136 

y, Y Admittance 178 

Zf Z (1) Impedance 69 
(2) Any complex quantity 22 

a Type of electrons that do not get past the 
virtual cathode 365 

Type of electrons that get past the virtual 
cathode 365 
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TABLE OF PRINCIPAL SYMBOLS, NOTATIONS, AND 
ABBREVIATIONS—Continued 

Symbol Meaning 

Page 
defined 
or first 
used 

r* Space-charge noise-reduction factor 225 
See impulse function 125 

A Symbol for an increment or small part 125 
c The number 2.71828 . . . , which is the 

base of natural logarithms 10 
$ (1) An angle or phase angle 11 

(2) Phase of a complex quantity 21 
K Kectronic charge 1.60 X 10“^* coulomb 224 
X Wavelength 116 

M (1) Amplification factor of a tube 363 
(2) Modulation frequency 142 
(3) Magnetic permeability 378 

It The number 3.14159 . . . 3 

P Specific resistivity 395 
9 A tube-structure constant 225 
T An auxiliary time variable 372 

(1) An angle or phase angle 4 
(2) Phase of a complex quantity 178 
(1) A phase angle 171 
(2) Free energy '382 
Angular velocity — 2ir X frequency 36 

0 The Fourier transform (of a time function) 
expressed as a function of ia 60 



APPENDIX B» 

SHORT TABLE OF INTEGRALS 

following brief table includes principally those integrals which 
are of particular use in connection with the present book. For a more 
extensive list, the reader should consult the various standard tables of 
integrals.) 

(1) 

(2) 

(3) 

u dx J audx = a j 
j (u + v)dx = j udx + jy dx 

J (u — v) dx = j udx — J vdx 

/ 
(5) 

(6) I x*dx 
n + 1 

+ C 

(7) 

(8) 

(9) 

(10) 

(11) 

^dx = j + C 

{fi*dx = + C 

/ 
/“ “-'"hiogTi 

J — log, x + C - log, kx 

j mo. xdx^ —co8» + C 

cosxdrsBsins + C / 
/ (12) / tanxdx ^ — logcoax + C 

(13) j wbx dr *>» log sin » + C 

> AU in tills table have the base «. 
409 
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(14) / 

(15) / 

(16) / 

(IT)/ 

(18) J 

(16)/ 

(20) j 
(21) j 
(22) J 
(63) / 

(64) / 

(65) / 

(66) / 
(27) f 

(28) j 

(69)/ 

sec* ajda; = tan x + C 

CSC* = — cot x + C 

tan X sec xdx = sec x + C 

cot X CSC xdx = — CSC X + C 

sinh xdx ^ cosh x + C 

cosh xdx ^ sinh x + C 

= sinh“^ + C = log. (x + + a*) + C 
V^* + <3t* 

= cosh“^ + C = loge (x + \^x^ — a*) + C 
va?* — o* \®/ 

- - i ooth-. (£) + C - i log. (^) + C 

-■ = zl sech-1 + C 
X *%/a* — X* ® \®/ 

-■ = - i csch-^f-') + C 
a: Va* + x* <* \o/ 

= i,<*.(l±v^-) + C 

X 1 X 1 
Bin* a:de = 2 — gcosa:8inaj + C = 2 — |8m2a! + C 

(0
1^
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(30) j cos* a: cte = ^ ^ cos a:sina: + C = ^ + isin2a:H-C 

(31) / sin mx sin nx dx = - + C 
J 2{m - n) 2(m + n) ^ 

(m^ 5^ n^) 

(32) / cos mo: cos m: c?a; 
sin [(m — n)x] , sin [{m + n)x] 

2(m — n) 2(m + n) 
(m* 5*^ n*) 

/oo\ I • J cos [(m — n)a*] cos [(m + n)a:] , ^ 
(33) J .mvn^mdz-- zj, + „) ^ + g 

jxA sin X dx = sin X — X eo8 X + C 

(35) J X QOBxdx = cosx + xsinx + C 

/o£>\ f • 1. J, sin bx — h cos hx) , ^ 
(36) / sin hx dx = —^ -' + C 

(37) / €"* cos 6x dx 
€®®(a cos + 5 sin 6x) 

lo = 

/o = 

/*" 1 
/ e~**’x dx = s- 

yo 2a 

a* + i>* 

/7^ --- 

a**,r5 /7-r = 

(46) = ^ 

(46) J ^dx^^ + C 
(47) j €“x dx — — 1) + O' 
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(48) J dx = ~ ^ J 
(49) ~ dx == Si(a:) 

(50) j" ^^dx= -dix) 

(51) J dx — r(n) = (n — 1) I (if n is an integer) 

i: (52) 

(53) / 

dx — erf(x) 

«-** dx = erfc(a:) 

(64) 
-r r Jo 

cos (n0 — X sin = 7*(a:) 

1 (55) ~ / sin(xsin0)sinn^(f^ 
IT Jo 

1 /*' (56) - / cos (a: sin 0) cos = 
T Jo • 

(57) 

(58) 

(69) 

(60) 

(61) 

-T IT yo 

f * ^ 
Jo X 

r * cos 6x 
yo l+o;* 

p tan 

yo a; 

i/:- 

(where n is any positive 
integer, including zero) 

{J»(x) (if 71 is an odd positive integer) 
0 (if 7^ is an even positive integer) 

(Jn(x) (if 7» is an even positive 
integer) 

/O (if n is an odd podtive 
integer) 

cos (x sin ^) s Jq{x) 

dx = l 

dr = \ 
-t-* 
2 

2^ 

(if 771 is poffltive) 

(if 6 is a positive integer) 

(if 6 is a negative integer) 

X J V 
-dr = 5 

♦ d^ — /«(*) 
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TABLE OF TRIGONOMETRIC IDENTITIES 

(1) 

(2) 

(3) 

(4) 

(6) 

(6) 

(7) 

sin A 

COB A 

tan A 

1 
CSC A 

1 
sec A 

1 _ sin A 
cot A ~ cos A 

on A = cos 

cos A — sin 

tan A = cot 

cot A tan 

(i-) = sin (t — -4) = — sin (—^) 

— cos (t — -4) = cos (—A) 

= sin (a + l) 

— tan (»• — A) = — tan (—A) 

= tan (A + t) 

— cot (it — A) = — cot (—A) 

*= cot (A + t) 

(8) sin* A + COB* A = 1 
(9) 1 + tan* A = sec* A 

(10) 1 + cot* A = CSC* A 
(11) mn (A + B) = sin A cos B + cos A mn B 
(12) sin (A — B) = sin A cos B — cos A sin B 
(13) oob(A + B) = cosAoosB — sinAsinB 
(14) cos (A — B) “ cos A cos B + sin A sin B 

. . . tan A + tan B 
(16) tan (A + B) - i _ tan A tanB 

. - tan A — tan B 
(16) tan (A - B) - i + tan A ta£~3 

(17) abaA-2ainAcoBA 
41S 
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(18) cos 2A = cos* A — sin* A = 2 cos* ^4 — 1 = 1 — 2 sin* A 
/if.\ X o ,4 2 tan A 

(20) sin 2 A 

(21) cos ^ A 

(22) tan^^ 

(23) sin A + 
(24) sin A — 
(25) cos .1 + 
(26) cos A — 

= 

cos A 

+ cos A 

cos A 1 — cos A sin A 

(27) tan A ± tan B = 

(28) cot 4 ± cot 5 = 

(29) sin* A — 
(30) cos* A — 
(31) cos* A T- 

(32) sin* A = 

(33) cos* A = 

+ cos A sin A 1 + cos A 
sin B = 2 sin M(-4 4- B) cos }4{A — B) 
sin B = 2 sin }4{A — B) cos }4i.A + B) 
cos B = 2 cos J^(A + B) cos J^(A — B) 
cos B = —2 sin )^(A + B) sin ^{A — B) 

sin (A ± B) 
cos A cos B 
± sin (A + B) 

sin A sin B 
sin* B = sin (A + B) sin (A — B) 
cos* B = — sin (A + B) sin (A — B) 
sin* B = cos (A + B) cos (A — B) 
1 — cos 2A 

2 
1 + cos 2A 

2 
(34) sin* A = % sin A — sin 3A 
(35) cos* A = cos 3A + % cos A 
(36) cos* A cos B = 3^ cos B + ^•^[cos (2A + B) + cos (2A — B)] 
(37) cos* A sin B = H sin B + J4[sin (2A+ B) — sin (2A — B)] 
(38) cos A sin* B = 3^ cos A + 34[cos (2B + A) + cos (2B — A)] 
(39) sin* A sin B = K sin B + 34[8in (2A - B) - sin (2A + B)] 
(40) cos A cos B = 3^[co8 (A + B) + cos (A — B)] 
(41) cos A sin B = 3i[sin (A + B) — sin (A — B)] 

= >^[8in(A + B) + sin (B - A)] 
(42) sin A mn B = 3^[co8 (A — B) — cos (A + B)] 
(43) sin 3A » 3 sin A — 4 sin* A 
(44) cos 3A = 4 cos* A — 3 cos A 
(45) sin 4A = 8 cos* A sin A — 4 cos A sin A 
(46) cos 4A B 8 cos* A —8cos*A4-l 

(47) sin“‘ A ” I — cos“‘ A 
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(48) tan* 

(49) sin" 
(50) cos~ 
(51) tan" 
(52) cot- 
(53) sin" 
(54) sin" 
(55) cos" 
(56) COS" 

(57) tan" 

(58) tan" 

‘ A = ^ — cot~‘ A 

* ^ = ± 2m + sin~* A 
* A — +2m + COS'* A 

A = ±im + tan~^ A 
A = ±m-\- cot~^ A 

(where n is integral) 
(where n is integral) 
(where n is integral) 
(where n is integral) 

-A^) 

_A^) 

A^Xl - B^)] 

A + sin“* B = sin {A v 1 — -B® -I" B y/T 
^ A - sin-» B = sin-» (A \/\ - B^ - B Vl- 

+ cos~‘ B = cos~*[^B— -v/(l— -i4^)(l 
A — cos~* B = cos "•* [AB + •\/(l 

■* A + tan~* B = tan~* 

*^-tan-‘5 = tan-(nir:^) 
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SAMPLE TABLE OF FOURIER PAIRS 

G(g) = df 

F(f) = jy G{g)t-i^-fodg 

(jj = 2irf 

No. m <?(») Remarks 

1 Ol ±02 ± • • • ± (?n Superposition 
theorem of Sec. 
4.6 

2 kF(J) 

3 
— wo) 2j(<a — «o) 

2j(<^ “i" «o) 2{/(w + Wo) 

cos wofir 

(Ti<g < Tt) 

Example in Sec. 
3.2 

4 
~ [sin wT + j(cos <aT — 1)] 
w 

K 
{0 <g <T) 

Example in Sec. 
3.4 

5 1 {8i[«.(^ - r,)i 

- r.)]) 

Example in Sec. 
-jta 

(—w« < w < w*) 
4.5 assuming 
zero phase shift 

6 r*/« 

Vir 

7 Special case of 
I pair 6 when 

k » Vi 

8 
(-/.</< +/0 

-^nn 
Example in 8eo. 
4.18 

416 



APPENDIX E 

BESSEL FUNCTIONS 

Bessel functions have considerable importance in many branches 
of radio engineering and are studied in some detail in the author’s 
“Transformation Calculus.’’ For the reader who is unacquainted 
with them and for reference purposes, certain of their fundamental 
properties and formulas are listed below. 

A Bessel fimction is very much like a damped sine or damped cosine 
wave. However, while all sine and cosine waves are idmilar in shape, 
each different type of Bessel function has a different shape. The 
differmt Bessel functions are distinguished by different subscripts, 
called orders. Thus, Ja{x), Ji(x), and Jt(x) are called Bessd functions 
of the first kind of aero ordw, of the first or^, and of the second order, 
raspeotively. The capital J indicates that the Bessel function is of 
the first kind. The variable x in the above cases is usually called the 
ai^unent the Bessel function in questicm. l^or ^cample, Ji{x) is 
called ft Bessel function of the first Idnd, of the first order, and of aigu- 

417 
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ment x. Curves of some Bessel functions of the first kind are shown in 

Fig. 1. 
Closely related to the Bessel functions are a group of functions 

/o (x), Ii(x), l2(x), etc., which are known as modified Bessel functions. 

0 1 2 3 4 5 6 7 

Fio. 2. Some modified Bessel functions of the first kind. 

In the general theory it is shown that the modified Bessel functions are 
complex multiples of Bessel functions of imaginary argument. Thus, 

and in general 
hix) = Jo[(\/-l)x] 

(V3I). 

(1) 

(2) 

Curves of some modified Bessel functions of the first kind are shown in 
Fig. 2. 

There are certain relations between trigonometric functions and 
Bessel functions that can be derived and that are very important in 
modulation theory. We record them here for reference. 

cos (x ran 
=* Jo(x) + 2[/*(x) cos 2^ + /.(x) cos 4^ + • • * ] (3) 

ran (x sin 
= 2{/i(x) sin ^ + Jt(x) sin 3^ + /s(x) sin 6^ + • • • ] (4) 

cos (x cos a: jg(x) — 2[/*(x) cos 2^ — J«(x) cos 4^ 

+ Jt(x) cos 6^ — Js(z) cos + • • • ] (5) 
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sin (x cos <l>) = 2[Ji{x) cos — J%{x) cos 3^ + Jb{x) cos 50 
— Ji{x) cos 70 + • • • ] (6) 

Because of the importance of the series (3) to (6) in modulation 
theory, Fig. 3, showing some Bessel functions of constant argument and 
variable order, is of considerable interest. 

0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200 500 1000 

Fio. 3. Curves of Bessel functions of constant argument and variable order. 

The above relations show that the Bessel functions of integral 
order are particularly important in modulation theory. For Bessel 
functions of integral order, we also have the following relations: 

Jni — X) = (-!)«/„(*) (7) 
J-n{x) = (-l)“/»(x) (8) 

Joix) = 
1 
- / cos (x sin <l>) d<l> 
fT Jo 

(9) 

and, if n is positive, 
r ^ 

Mx) = 1 1 cos (n0 — X sin 0) d0 (10) 

Another relation that we have found useful in the study of paired 

echoes in Chap. IV is 

A* — » 

/o(*) + [JiixW* + 
+ lMx)tf** + /-*(*)€-*•*♦] + (11) 
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Jxist as the trigonometric functions can be expanded in power series, 
so also can the Bessel functions be expanded in power series. Thus, 
we have 

Joix) = 1 -Ij + + • • • (12) 

•'■(*)" I (•-2^2+ 2r^3-) (13) 

/.(*) = Tl_£_ + * 4- 
L 2*(n + 1) ^ 2 • 2«(n + l)(n + 2) ^ . _(-lrx*p_ 
^ p!2*»>(n + l)(n + 2) • • • (n + p) 

To(x) 1 + 2* 2* • 4* 2* • 4* • 6* 

^i(*) 2(^"^2*-2'*’2-2<-2-3’^ * * ’) 

^ 2»(n + 1) (2 • 2*(n + l)(n + 2) + ' * ‘ 

Furthermore, for large values of the argument x, it may be shown 
that the following formulas are excellent approximations: 

where 

rr _ 2 (J* - 4»*)(3» - 4n*) 
2!(8ip 

(l»-4n«)---(7*~4n»)_ 
^ 4!(&c)* 

„ _ 1 - 4n* (1 - 4n*)(3* - 4n*)(6* - 4n*) . 
r - --+ . . . (20) 

r/-%_ *• r, . l*-4n* , (1* - 4n*)(3*-4«*) . 1 _ 

VKI‘+-^ +-21^)1—'+---J <”> 

For very large values of z, Eqs. (18) and (21) reduce further to the 
very simple forms 

/,(.)-^00. (»-^-|) 

v^S* 
(28) 
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TABLE OP BESSEL FUNCTIONS OF THE FIRST KIND OF 
CONSTANT INTEGRAL ARGUMENT AND VARIABLE INTEGRAL 

ORDERS 

V /p(i) JA2) jp&) /,(4) /»(6) 
I 

0 4-0.76620 +0.22389 -0.26005 -0.39714 -0.17760 
1 4-0.44006 +0.67672 +0.33906 -0.06604 -0.32768 
2 4-0.11490 +0.35283 +0.48609 +0.36413 +0.04657 
3 +0.01966 +0.12894 +0.30906 +0.43017 +0.36483 
4 +0,0*2477 +0.03400 +0.13203 +0.28113 +0.39123 

5 +0.0*2498 +0.0*7040 +0.04303 +0.13208 +0.26114 
6 +0.0^2094 +0.0*1202 +0.01139 +0.04909 +0.13105 
7 +0.0*1602 +0.0*1749 +0.0*2547 +0.01518 +0.06338 
8 +0.0^^9422 +0.0*2218 +0.0*4934 +0.0*4029 +0.01841 
9 +0.0*6249 +0.0*2492 +0.0*8440 +0.0*3986 +0.0*6520 

10 +0.0*2631 +0.0*2515 +0.0*1293 +0.0*1950 +0.0*1468 
11 +0.01*1198 +0.0^2304 +0,0*1794 +0.0*3660 +0.0*3509 
12 +0.01*5000 +0.0*1933 +0.0*2276 +0.0*6264 +0.0*7628 
13 +0.01*1926 +0.0*1495 +0.0^2659 +0.0*9859 +0.0*1521 
14 

1 
+0,01*689 +0.01*1073 +0.0*2880 +0.0*1436 +0.0*2801 

^ Appendix F is of particular use in determining the sideband magnitudes in 
frequency and phase modulation. The values of Jp(30), Jp(31), Jp(32), and Jp{33) 
did not appear in the earlier tables of Jahnke-Emde and of Gray, Matthews, and 
MacEoberts. These values were obtained through the courtesy of Mr. John A. 
Harr from the proof sheets of the magnificent new tables of Bessel functions being 
published by the Computation Laboratory of Harvard University. 
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V m /,(8) Jp{9) ./p(lO) 

0 +0.1506 +0.3001 +0.1717 -0.09033 -0.2459 

1 -0.2767 -0.0*4683 +0.2346 +0.2453 +0.04347 

2 -0.2429 -0.3014 -0.1130 +0.1448 +0.2546 

3 +0.1148 -0.1676 -0.2911 -0.1809 +0.05838 

4 +0.3576 +0.1578 -0.1054 -0.2655 -0.2196 

5 +0.3621 +0.3479 +0.1858 1 -0.05504 -0.2341 

6 +0.2458 +0.3392 +0.3376 +0.2043 -0.01446 

7 +0.1296 +0.2336 +0.3206 +0.3275 +0.2167 

8 +0.05653 +0.1280 +0.2235 +0.3051 +0.3179 

9 +0.02117 +0.05892 +0.1263 +0.2149 +0.2919 

10 +0.0*6964 +0.02354 +0.06077 +0.1247 +0.2075 
11 +0.0*2048 +0.0*8335 +0.02560 +0.06222 +0.1231 

12 +0.0*5452 +0.0*2656 +0.0*9624 +0.02739 +0.06337 

13 +0.0*1327 +0.0*7702 +0.0*3275 +0.01083 +0.02897 

14 +0.0^2976 +0.0*2052 1 +0.0*1019 +0.0*3895 +0.01196 

15 +0.0*6192 +0.0^5059 +0.0*2926 +0.0*1286 +0.0*4508 

16 +0.0*1202 +0.0*1161 +0.0*7801 +0.0*3933 +0.0*1567 

17 +0.0*2187 +0.0*2494 +0.0*1942 +0.0*1120 +0.0*5056 

18 +0.0^3746 +0,0*5037 +0.0*4538 +0.0*2988 +0.0*1524 

19 +0.0*6062 +0.0^9598 +0.0*9992 +0.0*7497 +0.0*4315 



APPENDIX F 423 

p ^,(14) 

0 -0.1712 +0.047.69 +0.2069 +0.1711 -0.01422 
1 -0.1768 -0.2234 -0.07032 +0.1334 +0.2051 
2 +0.1390 -0.08493 -0.2177 -0.1520 +0.04157 
3 +0.2273 +0.1951 +0.0*3320 -0.1768 -0.1940 
4 -0.01504 +0.1825 +0.2193 +0.07624 -0.1192 

5 -0.2383 -0.07347 +0.1316 +0.2204 +0.1305 
6 -0.2016 -0.2437 -0.1180 +0.08117 +0.2061 
7 +0.01838 -0.1703 -0.2406 -0.1508 +0.03446 
8 +0.2250 +0.04510 -0.1410 -0.2320 -0.1740 
9 +0.3089 +0,2304 +0.06698 -0.1143 -0.2200 

10 +0.2804 +0.3005 +0.2338 +0.08501 -0.09007 
11 +0.2010 +0.2704 +0.2927 +0.2357 +0.09995 
12 +0.1216 +0.1953 +0.2615 +0.2855 +0.2367 
13 +0.06429 +0.1201 +0.1901 +0.2536 +0.2787 
14 +0.03037 +0.06504 +0.1188 +0.1855 +0.2464 

15 +0.01301 +0.03161 +0.06564 +0.1174 +0.1813 
16 +0.0*5110 +0.01399 +0.03272 +0.06613 +0.1162 
17 +0.0*1856 +0.0*5698 +0.01491 +0.03372 +0.06653 
18 +0.0*6280 +0.0*2152 +0.0*6269 +0.01577 +0.03463 
19 +0.0*1990 +0.0*7590 +0.0*2452 +0.0*6824 +0.01657 

20 +0.0*5931 +0.0*2512 +0.0*8971 +0.0*2753 +0.0*7360 
21 +0.0*1670 +0.0*7839 +0.0*3087 +0.0*1041 +0.0*3054 
22 +0,0*4458 +0.0*2315 +0.0*1004 +0.0*3711 +0.0*1190 
23 +0.0*1132 +0.0*6491 +0.0*3092 +0.0*1251 +0.0*4379 
24 +0.0*2738 +0.0*1733 +0.0*9060 +0.0*4006 +0.0*1527 
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p /p(16) /p(18) /p(19) /,(ao) 

0 -0.1749 -0.1699 -o.oiase +0.1466 +0.1670 
1 +0.09040 -0.09767 -0.1880 -0.1057 +0.06683 
2 +0.1862 +0.1584 -0.0*7533 -0.1578 -0.1603 
3 -0.04385 +0.1349 +0.1863 +0.07249 -0.09890 
4 -0.2026 -0.1107 +0.06964 +0.1806 +0.1307 

5 -0.05747 -0.1870 -0.1554 +0.0*3572 +0.1512 

6 +0.1667 +0.0*7153 -0.1560 -0.1788 
7 +0.1825 +0.1875 +0.05140 -0.1165 -0.1842 
8 -0.0*7021 +0.1537 +0.1959 +0.09294 -0.07387 
9 -0.1895 -0.04286 +0.1228 +0.1947 +0.1251 

10 -0.2062 -0.1991 -0.07317 +0.09155 +0.1865 
11 -0.06822 -0.1914 -0.2041 -0.09837 +0.06136 
12 +0.1124 -0.04857 -0.1762 -0.2055 -0.1190 
13 +0.2368 +0.1228 -0.03092 -0.1612 -0.2041 
14 +0.2724 +0.2364 +0.1316 -0.01507 -0.1464 

15 +0.2399 +0.2666 +0.2356 +0.1389 -0.0*8121 
16 +0.1775 +0.2340 +0.2611 +0.2345 +0.1462 
17 +0.1150 +0.1739 +0.2286 +0.2559 +0.2331 
18 +0.06685 +0.1138 +0.1706 +0.2235 +0.2511 
19 +0.03544 +0.06710 +0.1127 +0.1676 +0.2189 

20 
i 

+0.01733 +0.03619 +0.06731 +0.1116 +0.1647 
21 1 +0.0*7879 +0.01804 +0.03686 +0.06746 +0.1106 
22 I +0.0*3354 +0.0*8380 +0.01871 +0.03748 +0.06758 
23 +0.0*1343 +0.0*3651 +0.0*8864 +0.01934 +0.03805 
24 +0.0*5087 +0.0*1500 +0.0*3946 +0.0*9331 +0.01993 

25 +0.0*1828 +0.0*5831 +0.0*1658 +0.0*4237 +0.0*9781 
26 +0.0*6253 +0.0*2154 +0.0*6607 +0.0*1819 +0.0*4624 
27 +0.0*2042 +0.0*7586 +0.0*2504 +0.0*7412 +0.0*1981 
28 +0.0*6380 +0.0*2553 +0.0*9057 +0.0*2877 +0.0*8242 
29 +0.0*1912 +0.0*8228 +0.0*3133 +0.0*1066 +0.0*3270 
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p /,(21) /j>(22) J,{2Z) /,(24) 

0 +0.03658 -0.1207 -0.1624 -0.05623 1 +0.1711 +0.1172 -0.03952 -0.1540 2 -0.02028 +0.1313 +0.1590 +0.04339 8 -0.1750 -0.09330 +0.06717 +0.1613 
4 -0.02971 -0.1568 -0.1415 -0.0*3076 

6 +0.1687 +0.03630 -0.1164 -0.1623 
6 +0.1076 +0.1733 +0.09086 -0.06455 
7 -0.1022 +0.05820 +0.1638 +0.1300 
8 -0.1757 -0.1362 +0.0*8829 +0.1404 
9 -0.8175 -0.1573 -0.1576 -0.03643 

10 +0.1485 +0.0*7547 -0.1322 -0.1677 
11 +0,1732 +0.1641 +0.04268 -0.1038 
12 +0.03293 +0.1566 +0.1730 +0.07299 
13 -0.1356 +0.0*6688 +0.1379 +0.1763 
14 -0.2008 -0.1487 -0.01718 +0.1180 

15 -0.1321 -0.1959 -0.1588 -0.03863 
16 +0.01202 -0.1185 -0.1899 -0.1663 
17 +0.1505 +0.02358 -0.1055 -0.1831 
18 +0.2316 +0.1549 +0.03402 -0.09311 
19 +0.2465 +0.2299 +0.1587 +0.04345 

+0.2145 +0.2422 +0.2282 +0.1619 
21 +0.1621 +0.2105 +0.2381 +0.2264 
22 +0.1097 +0.1596 +0.2067 +0.2343 
23 +0.06767 +0.1087 +0.1573 +0.2031 
24 +0.03857 +0.06773 +0.1078 +0.1550 

25 +0.02049 +0.03905 +0.06777 +0.1070 
26 +0.01022 +0.02102 +0.03949 +0.06778 
27 +0.0H806 +0.01064 +0.02152 +0.03990 
28 +a0*2143 +0.0*5084 +0.01104 +0.02200 
29 +0.0>9094 +0.0*2307 +0.0*5357. +0.01143 

+0.0>3682 +0.0*9965 +0.0*2470 +0.0*5626 
81 +0.0*1427 +0.0*4113 +0.0*1085 +0.0*2633 
82 +0.0*5304 +0.0*1626 +0.0H561 +0.0*1176 
88 +0.0*1895 +0.0*6171 +0.0*1837 +0.0*5024 
84 +0.0*6521 +0.0*2253 +0.0*7110 +0.0*2060 
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/,(26) jp&Q) Jp(27) y,(28) /p(29) 

+0.0963 +0.1560 +0.0727 -0.1478 
-01254 +0.0150 +0.1366 +0.1306 +0.0069 
-0.1063 -0.1548 +0.0825 +0.1483 
+0.1083 -0.0389 +0.0135 
+0.1323 +0.1459 +0.0302 -0.1455 

-0.0660 +0.0838 +0.1548 +0.0879 -0.0537 
-0.1587 -0.1137 +0.0271 +0.1393 +0.1270 
-0.0102 -0.1362 +0.1062 
+0.1530 +0.0403 -0.0757 
+0.1081 +0.1610 +0.0828 BBB -0.1480 

-0.0752 +0.0712 +0.1564 +0.1152 -0.0161 
-0.1682 -0.1063 +0.0330 +0.1418 +0.1369 
-0.0729 -0.1611 +0.1200 
+0.0983 -0.0424 -0.0376 
+0.1751 +0.1187 -0.1537 

+0.0978 +0.1702 +0.1345 +0.0142 -0.1108 
-0.0577 +0.0777 +0.1625 +0.1461 +0.0391 
-0.1717 -0.0745 +0.0582 +0.1527 +0.1539 
-0.1758 -0.1752 +0.0394 +0.1414 
-0,0814 -0.1681 +0.0216 

+0.0520 -0.0704 -0.1131 
+0.1646 +0,0597 -0.1776 
+0.2246 +0.1669 +0.0668 -0.1441 
+0.2306 +0.2227 +0.1688 +0.0732 -0.0410 
+0.1998 +0,2271 +0.2209 +0.1704 +0.0790 

+0.1529 +0.1966 +0.2238 +0.2190 +0.1718 
+0.1061 +0.1510 +0.1936 +0.2207 +0.2172 
+0.06778 +0.1053 +0.1491 +0.1908 +0.2176 
+0.04028 +0.06776 +0.1045 +0.1473 +0.1881 
+0.02245 +0.04063 +0.06773 +0.1038 +0.1456 

+0.01181 +0.02288 +0.04096 +0.06769 +0.1030 
+0.0*5889 +0.01217 +0.02329 +0.04126 +0.06763 
+0.0*2795 +0.0*6147 +0.01253 +0.02368 +0.04155 
+0.0*1267 +0.0*2957 +0.0*6400 +0.01287 +0.02405 
+0.0*550 +0.0*1360 +0.0*3118 +0.0*6648 +0.01320 
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p Jp(30) ^1.(31) jp&B) 

0 -0.08637 +0.05121 +0.13808 +0.09727 
1 -0.11875 -0.13302 -0.02659 +0.10062 
2 •fO.07845 -0.05979 -0.13974 -0.09117 
3 +0.12921 +0.12531 +0.00912 -0.11167 
4 -0.05261 +0.08404 +0.14145 +0.07087 

6 -0.14324 -0.10362 +0.02624 +0.12885 
6 +0.00486 -0.11747 -0.13325 -0.03188 
7 +0.14519 +0.05815 -0.07621 -0.14042 
8 +0.06289 +0.14373 +0.09991 -0.02775 
9 -0.11164 1 +0.01603 +0.12616 +0.12697 

10 -0.12988 -0.13442 -0.02894 +0.09701 
11 +0.02506 -0.10276 -0.14425 -0.06818 
12 +0.14825 +0.06150 -0.07023 -0.14246 
13 +0.09354 +0.15037 +0.09158 -0.03543 
14 -0.06718 +0.06462 +0.14464 +0.11454 

15 -0.15625 -0.09200 +0.03498 +0.13262 
16 -0.08907 -0.15365 -0.11184 +0.00602 
17 +0.06124 -0.06661 -0.14683 -0.12678 
18 +0.15848 +0.08060 -0.04416 -0.13664 
19 +0.12893 +0.16021 +0.09715 -0.02228 

20 +0.00483 +0.11578 +0.15952 +0.11098 
21 -0.12248 -0.01081 +0.10225 +0.15681 
22 -0.17631 -0.13043 -0.02531 +0.08859 
23 -0.13610 -0.17431 -0.13706 -0.03869 
24 -0.03238 -0.12823 -0.17171 -0.14252 

25 +0.08429 -0.02424 -0.12051 -0.16861 
26 +0.17287 +0.08914 -0.01658 -0.11295 
27 +0.21535 +0.17376 +0.09356 -0.00937 
28 +0.21476 +0.21354 +0.17447 +0.09761 
29 +0.18553 +0.21199 +0.21176 +0.17502 

30 +0.14394 +0.18309 +0.20934 +0.21000 
31 +0.10234 +0.14237 +0.18076 +0.20680 
32 +0.06757 +0.10166 +0,14087 +0.17853 
33 +0.04181 +0.06750 +0.10099 +0.13944 
34 +0.02441 +0.04205 +0.06742 +0.10035 

35 +0.01352 +0.02475 +0.04228 +0.06734 
36 +0.00713 +0.01382 0.02507 +0.04250 





INDEX 

A C 

Absolute sensitivity, 261-263 
Adjacent-channel interference in AM, 

190-193 
Adjacent-channel interference in FM, 

187-190 
Amplitude modulation (AM), 141-146 
Antenna directivity, 135 
Antenna noise, 233, 238-242, 401-403 
Anticipatory transients, 79-81 
Antisymmetrical functions, 15 
Antisymmetrical sidebands, 169-185, 

193-195, 215-216, 273-279 
Artificial random noise, 330 
Asymmetric sideband transmission in 

television, 90-98, 176-182 
Atmospherics, 209 
Automatic volume control in FM, 154 
Available energy (see Free energy) 
Available noise power, 254 
Available power gain, 253-254 
Available signal power, 253 

B 

Bandwidth, effective noise, 212, 2d8n., 
254 

Bandwidth requirements in video and 
pulse amplifiers, 72-102 

Barkhausen effect (see Magnetic fluctu¬ 
ation noise) 

Beat frequ^cy, 161 
Bernoulli distribution law, 290-293 
Bessel coefficients, 150n. 
Bessel functions, 417-427 

asymptotic expansions of, 420 
lonnuias involving, 418-419 
table of, 421-427 
TaykMT expanskms of, 420 

BiPltan>sa>li*s constant, 388 

Carrier, 141 
effect on noise, in AM, 247-248 

in FM, 280 
Carrier beat, 190 
Cathode-lead-inductance effects, 268- 

270 
Central-limit theorem, 322-324 
Coherence, 333-335 
Combinations, CJ, 287 
Common-channel interference, 163-167 
Complex conjugate, 22n., 160 
Complex form of Fourier series, 21-27 
Complex form of Fourier integral, 58-61 
Conjugate (see Complex conjugate) 
C!onversion conductance of a linear 

rectifier, 265-266 
Convertors (see Noise in converters) 
Correlation function, 350 
Cosine integral function, definition of, 

92 
table of, 91 

Crest factor, 244-245 
Current generator representation of 

noise source, 221-223, 361-362 

D 

Degree of modulation (see Modulation, 
degree of) 

Deviation frequency, 148, 166 
Deviation ratio, 152 

as related to interference and noise 
reduction, 166-167, 273, 278 

Difference frequmioy, 161, 161-167, 
272-273 

(See also Sum and difference tones) 
Diffraction, 133 
Dimensional analysis, 140 
Diode (see Noise in diodes) 
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Discontinuous functions, Fourier ex¬ 
expansion of, 4, 55n. 

{See also Gibbs's phenomenon) 
Distortion, in asymmetrical sideband 

transmission, 90-97 
linear, 50, 51' 
modulation, 193-201 
nonlinear, 50, 51 
paired echoes of, 102 
in pulse amplifiers, 79-81 

Distortionless transmission, 68-70 
Doublet impulse, 129-131 

as related to tube noise and input 
conductance, 369-376 

Dynamic range, 204 

E 

Echoes, distortion {see Distortion, 
paired echoes of) 

Effective value of current, 47-49 
Electron emission, 352-355 

probability distributions in, 295-296, 
306-309 

Electronic charge, 295 
Energy, of modulated signal (audio), 

156 
of noise, 206, 246-250 
of sidebands, 143-146, 149-154 
velocity of, 117 

Energy storage and selectivity, 135-139 
Ensemble, 302n. 

average, 302n. 
Ensemble distribution and time dis¬ 

tribution, 328-329 
Entropy, 381-384 

and probability, 383-384 
Envelope, of AM signal, 142-143, 145, 

183, 200 
of FM signal, 147, 153, 184 
of noise, 243-245, 336-339 
of noise plus carrier, 244-245, 336- 

339 
Equipartition theorem, 384-387, 389 
Equivalent grid noise resistance (E«|), 

225-235 
Equivalent noise sideband input 

(ENSI), 251-253 
Equivalent temperature of radiation 

resistance, 240-241, 402-403 

Euler's constant, 92n. 
Euler identity, 21n. 
Even functions, 11-12, 16-19, 62-64 
Even harmonics, 13-16, 16-19 
Even part of function, 12, 16-19, 62-64 
Expectation, 302n. 
External impedance, effect on thermal 

noise, 212, 215, 221-223, 391-393 
effect on tube noise, 221-223, 224, 

361-362 

F 

Field-strength sensitivity, 261-263 
Flicker effect, 208 
Fluctuation noise formula, 335 
Fluctuations, 302-306, 335 
FM broadcasting, 204 
FM quieting, 270-280 
Fourier integral, 53-140 

complex form, 58-61 
Fourier integral energy theorem, 109- 

110 
Fourier integral identity, 55, 59 
Fourier pair (Fourier transforms), 58- 

65, 131-135 
self-reciprocal pair, 133 

Fourier series, 3-52 
change of interval of expansion, 17-21 
characteristics of odd and even func¬ 

tions, 11-13, 16-17 
coefficients of, 5-7, 21-23 
containing only odd or only even 

harmonics, 13-17 
convergence of, 29-30 
differentiation of, 30 
expansion formula for, 3-^ 

in complex form, 21-23 
expansion of periodic functions by, 

10-11 
Gibbs's phenomenon in, 30-32 
integration of, 30 

Free energy, 388-385 
Free shot effect, 360n. 
Frequency analysis {see Fourier integ¬ 

rals; Fourier series) 
Frequency characteristic, 70-72 
Frequency composition or frequency 

distribution, 53-62 
of Fourier series com jionents, 345-350 



INDEX 

Frequency deviation, 148 
Frequency modulation, 146-157 

noise reduction in, 270-280 
Frequency spectra, of AM signal, 143- 

146, 156 
of FM signal, 149-151, 156 
of PM signal, 152 

Full-wave rectifier, 36-38 
Fundamental period or frequency of 

Fourier series, 30 
in noise analysis, 313-314 

G 

Gaussian distribution, 206-299 
fluctuations in, 302-306 

Gibbs’s phenomenon, in Fourier in¬ 
tegrals, 79-81 

in Fourier series, 30-32 
Grid-fluctuation noise {see Shot effect 

at high frequencies) 
Grid-induced shot effect {see Shot 

effect at high frequencies) 
Group velocity, 115-117 

H 

Half-sine wave, 9, 38, 41 
Harmonic, 30 
Harmonic analysis, 30 
Harmonic distortion, 43-47, 49-51 
Harmonic vibrations, 157 

I 

Image frequency, noise at, 237-238, 261 
Imaginary part of frequency distribu¬ 

tion, 63-64 
Improvement thresholds, 279-280,283- 

285 
Impulse functions, 125-131 

of higher order, 129-131 
unit, 125-127 

Incoherent signals, 334 
In-phase component due to sidebands, 

169-175 
Input conductance! due to transit 

time, 873-876 
due to cathode inductance, 268-270 

431 

Input conductance, effect on tube noise, 
265, 269-270, 376-377 

Instantaneous frequency, 147, 148 
Interference, of large magnitude in 

FM, 167 
reduction of, in FM, 166-167 
vectorial discussion of, 185-187 
as an unsymmetrical sideband dis¬ 

tribution, 175 
{See also Common-channel inter¬ 

ference; adjacent-channel inter¬ 
ference) 

Intermediate-frequency amplifier, 86- 
93, 236-238, 285 

Internal impedance, effect on thermal 
noise, 212, 215, 221-223, 391-393 

effect on tube noise, 221-223, 224, 
361-362 

Interstellar interference, 209-210 
Interval of expansion of Fourier series, 

17-21 

L 

Law of large numbers, 306 
Limiters, 153, 154 
Limiting, 42 
Linear circuit, 49-51 
Linear differential equation, 49-51 
Linear distortion, 49-51 
Linear network, 49-51 
Linear system, 49-51, 67, 81-83 
Low-frequency composition, principle 

of, 327-328 

M 

Macroscopic properties, 383 
Magnetic fluctuation noise, 233, 377- 

380 
Masking of weak signal by a strong one 

in AM, 191-193 
Mate in Fourier pair, 59 
Mathematics, phenomenon of, 1 
Microscopic properties, 383 
Mirror symmetry, 15 
Modified Bessel function, 418 
Modulated carrier, Fourier transform 

of, 60 
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Modulation, 141-204 
amplitude (AM), 141-146 
angle, 146-154 
degree of (also modulation factor) in 

AM, 142 
in PM, 146 
in FM, 148 

distortion, in AM, 193-195 
in FM, 196-198 

effective value of, 156 
in human speech, 141n. 
percentage of, 142 
phase (PM), 146-154 
pulse, 202-203, 280-283 
vectorial representation of, 181-185 

Modulation frequency, 142 
Modulation frequency (FM), 146-154 
Modulation index, 152n. 
Monkey chatter, 190 
Multipath reception, 198-200 

in television, 200 

N 

Negative frequencies, in Fourier in¬ 
tegrals, 58-60 

in Fourier series, 21-23 
in transmission problems, 70-72 

Noise, 205-403 
calculation in receivers, 233-242 
envelope of, 243-245, 336-339 
at high frequencies, 265-270, 369-377 
magnetie 6uctuation of, 233, 377-380 
measurement of, 242-2^ 
modulation by, 215-216 
nonrandom, 210-211 
in phototube, 224n. 
random, 206, 311-322, 324-331 
statistical theory of, 286-351 
superposition of, 206, 330-331 
thermal {see Thermal noise) 
tube (me Shot effect) 
types cl, 207-211 

Noise 253-266 
Noise fluctuation, 311-322 
N<m generator, 266-257 
Noise impiilBe, 21(^211 

reduetum in FM, 278-279 
Noise fating, 269-264 

Noise reduction in FM, 270-280 
Noise reduction in pulse modulation, 

280-283 
Noise-voltage-reduction factor, of FM 

for impulse noise, 278 
of FM for random noise, 273 
of pulse-phase modulation for random 

noise, 283 
Nonlinear distortion, 43-47, 50-51 
Nonlinear system, 50-51 
Normal distribution, 322-324 
Nyquist formula for thermal noise, 212, 

388-394 

O 

Odd functions, 11-12, 16-19, 62-64 
Odd harmonics, 13-16, 16-19 
Odd part of function, 12, 16-19, 62-64 
Orthogonal functions, 33 
Orthogonal signals, 3^334 
Overshoot, 79-81, 132-134 

P 

Peak frequency deviation, 148, 151 
Peak phase deviation, 152 
Pentode, noise in (see Shot effect) 
Period, 10, 162-163 
Periodic function, 16-11 
Permutation (PJ), 286-287 
Persistence of period in the steady 

state, 162-163 
Phase of a carrier, 142 
Phase characteristic, linear, 68-70 

nonlinear, 104-108,117-123,196-198 
Phase-distortion criteria, 117-123 
Phase-distortion echoes, 104-108 
Phase modulation (PM) (see Modula¬ 

tion, phase) 
Phase shifty 23, 66-61 
Phase velocity, 117 
Phototube, noise in, 224fi. 
Poisson diikribution, 293-296 
Power consumption in terms of Fomrisr 

coefficients, 47-49 
Power Bpeotamm M timm^ 206,880 
lriiiri|4e iff low Irequsmjy 

m-m 
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Principle of stationary phase, 111-117 
derivation, 111-112 
and distortion echoes, 113-114 
and frequency composition, 114-116 
and group velocity, 116-117 
and location of signals, 112-113 
and transmission of signals, 113 

Principle of superposition, 4^61, 81-83 
Probability, 283-290 
Probability distributions (see Bernoulli 

distribution; Gaussian distribu¬ 
tion; normal distribution; Poisson 
distribution) 

Pulse, Fourier analysis of, 23-27, 61-62 
Pulse modulation, 202-203 

noise reduction in, 280-283 
Pulse receiver designed for least noise, 

98-102 
Pulse transmission in intermediate- 

frequency amplifiers, 86-98 
Pulse transmission in video amplifiers, 

72-86 
Push-pull amplifier, 46-47 

Q 

Q (of tuned circuit), relation to energy 
storage, 136-1^ 

Quadratic content, 206 
Quadrature component, 169-176 

in television transmission, 90-98 

R 

Radar, asymmetric sideband transmis¬ 
sion in, 101 

optimum receiver bandwidth, 98 
Radar range, 284-285 
Random distribution, dimensionality 

of, 323 
Random noise (see Noise, random) 
Random process, 289 
Random variable (see Stochastic vari¬ 

able) 
Riyieil^, Lord, biographical note, 139 
Recaiver noise, 233-242 
Rec^rocal tqvreadmg, 134-135 
Rectifier, full wave, 30 

hel^wave, 38^ 41 

Reversible path, 382 
Rotating vectors in modulation, 183, 

184 

S 

Saturated amplifier, 39 
Saturation, 38-43, 364-366 
Selective circuits, transients in, 67-68 

relation to energy storage and dissi¬ 
pation, 135-138 

Sensitivity, 261-263 
Sharp cutoff, relation to overshoot, 132- 

134 
Shot effect, 352-377 

in converters, 230-231 
in diodes, 223-226, 356-361 
effect of plate impedance, 224, 361- 

362 
at high frequencies, 265, 267,369-377 
in mixer tubes, 230-231 
in multicollector tubes, 226-230,363- 

369 
in pentodes, 229-230 
space-charge controlled, 224-225, 

367-361, 362-369 
temperature limited, 223-224, 267, 

355-357 
in triodes, 226, 362, 363 

Sidebands, in amplitude modulation, 
143-144 

antisymmetrical, 169-186, 193-195, 
216-216, 273-279 

in frequency modulation, 149-161 
in phase modulation, 151-162 
reality of, 161-162 
resolution into symmetrical and anti¬ 

symmetrical parts, 172-175 
symmetrical, 169—186, 193—195, 216— 

216 
^gma (see Ensemble average) 
Signal-to-noise ratio, 216, 2732-285 

relation to bandwidth in pulse 
receivers, 98-102 

Sine integral function, 74 
Sine integral table, 7fk79 
Single sideband transmission, 160 

in television, 90-98, 176-182 
Space-chaige noise reduction, 357-361 
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Space-charge noise-reduction factor, 
226, 227, 860, 366, 367 

Spurious responses, 62 
Square Wave (see Pulse) 
Static (see Atmpspherics) 
Stationary phase (see Principle of 

stationary phase) 
Statistical mechanics, 332-386 
Steady state, 60, 162-163 
Step function, 123-126 
Stochastic variable, 309n. 
Subcarriers, 201 
Sum and difference tones, 43-46 
Superposition, 167 

principle of, 60 
of probability distributions, 330-331 
of random noise functions, 331 

Superposition theorem, 81-83 
Superheterodyne, noise in, 233-238 
Symmetrical functions, 14-16 
Symmetrical sidebands (see Sidebands, 

symmetrical) 
Symmetry, about a point, 14-16 

mirror, 16 
Symmetry analysis of functions, 16-19 
Symmetry properties of transmission 

characteristics, 70-72 

T 

Television, asymmetric sideband trans¬ 
mission in, 90-98, 176-182 

detail in, as related to bandwidth, 
72-86 

detail in, as related to phase distor¬ 
tion, 117-123 

modulation in, 143, 177 
multipath reception in, 200 
transients in, 72-81 

Television test signal, 72, 177 
Temperature-limited operation, 223- 

224, 267, 366-367 
Thermal energy, 382 
Thermal noise, 211-221, 381-403 

electron theory of, 39^397 
generated in reactance, 399 
genmted in resistance, 393 

Thermal noise, Nyquist formula for, 
212, 388-394 

and radiation resistance, 401-403 
relation to quantum theory, 393-394 
upper frequency limit of, 393-394 

Thermionic emission, 352-356 
Thermodynamics, 381-385 

laws of, 381 -382 
statistical interpretation of, 382-386 

Threshold of interference reduction in 
FM, 186 

(See also Improvement thresholds) 
Tone, pure, 33-34 
Tones, sum and difference, 43-45 
Transformation calculus, 60n., 123n., 

131, 417 
Transit angle, 369n. 
Transit time, 311-312, 369-377 
Triangular wave function, 8 
Triode, noise in (see Shot effect) 
Tube noise (see Shot effect) 

U 

Uncertainty principle, 134-135 
Unicoherent signals, 333-334 
Uniqueness of Fourier expansion, 20, 29 
Unit impulse, definition of, 125-126 

frequency composition of, 127 
Unit step, definition of, 124 

frequency composition of, 124-126 

V 

Vectorial interpretation of modulation, 
181 

Video amplifier, 72-86 
Video signal, 72 
Virtual cathode, 364 

motion of, 368, 368n. 
Voltage generator representation of 

noise source, 212, 221-223, 392-393 
Volume control in FM, automatic, 164 

W 

White noise, 827, 380 








