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PREFACE TO THE FOURTH EDITION 

An understanding of the quantitative principles of physical 
science is required not only by the physicist, but also by students 
of engineering and chemistry. Very frequently no attempt is made 
in books to correlate one scientific subject with another, and even 
when such correlation is attempted it is done, very often, too briefly 
and in a manner which does not encourage the reader to study 
more closely the related subjects. 

This book, which was first published in 1929, is intended primarily 
for the physicist. It embodies the results of much practical experi¬ 
ence in the teaching of physics, and presents a fairly complete 
survey of the fundamental properties of matter, with the special 
aim of developing those branches of the subject, such as surface 
tension, osmosis, and viscosity which verge towards chemistry, and 
hydrodynamics and vibrations which are of importance and interest 
more particularly to the mathematician and engineer. By this 
development, and throughout the book, the aim has been to 
emphasise the essential unity of scientific knowledge. 

The necessary mathematics are explained, step by step, and 
there are no gaps in the reasoning for expert readers to fill and the 
less experienced to neglect; but the assumption has been made 
that students who use the book will be equipped with a sufficient 
mastery of the fundamental processes of the calculus to make its 
methods familiar and its advantages appreciated. Although it is 
suggested that some parts may be omitted by the less advanced 
students, no indication of such possible omissions has been made. 
They will depend upon individual ability, requirements, and initial 
equipment. 

Modern theories of surface tension and lubrication, depending, 
as they do, on the orientation of surface molecules, have received 
liberal consideration. The study of the molecular structure and 
the kinetics of surfaces has advanced with great rapidity through 
the pioneer work of Rayleigh, Hardy, and Langmuir, whose re¬ 
searches indicate how widely molecular orientation enters into 
natural phenomena. 

Elasticity and gravitation—the former of fundamental import¬ 
ance to engineers—have been treated as fully as possible, with 
special emphasis on experimental investigations, while the Eotvos 
gravity balance and the gyro-compass are described at some length. 
The provision of numerical examples, with answers, adds to the 
usefulness of the book as an aid to students reading for Degrees. 

One of the minor consequences of the war was the destruction 
by enemy action of the blocks, diagrams, and remaining stock of 
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the third edition of this book in 1940. The stringency of material 
and labour prevented the immediate replacement, but owing to the 
co-operation of Messrs. Arnold & Co. it has been possible to produce 
a fourth and entirely revised edition of the book. The most im¬ 
portant new matter is a chapter on the production and measurement 
of low pressures. Every chapter has been revised and brought up 
to date, and, in addition to the provision of new material, some 
portions of the book have l)ccn re-arranged. In place of the biblio¬ 
graphies previously appended to each chapter, additional footnote 
references have been given as these, by their direct indication of 
the subje(‘t-matter, have proved more useful. 

F. II. N. 
V. H. L. S. 

1946. 
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J HE (GENERAL PROPERTIES OF MATTER 

CHAPTER I 

(JENKRAL PRINCIPLES 

1. Weight and Mass. -The mass of a body, usually described 
as the quantity of matter in it, is one of the fundamental entities 
which are more easily understood than adeciuately defined. To call 
it a particular aggregation of substance is no more than a restate¬ 
ment of the previous definition in parallel terms, but from this 
deseri[)tion the constancy of the mass of a body can be recognised 
more easily, since one of the basic hypotheses of S(‘ience is the in¬ 
destructibility of substance. The definition, however, is not of great 
practical importance, as we are more concerned with the effects of 
mass than with its (ixact formulation. The most important of these 
effects, or qualities, is that of iveight, and this is attributable to the 
attraction which the earth exercises on bodies near its surface. Since 
this weight is due to the earth’s existence, as well as that of the 
body, it must be fundamentally dilTerent from the mass, which is 
evidently a property peculiar to the body itself, and is independent 
of any neighbouring bodies. The difference between weight and 
mass is illustrated in another way by the consideration that, while 
the effect of the former is to cause the body to move, the mass of 
the body gives it the characteristic quality of inertia, or reluctance 
to movement. At the same time common experience shows that 
there is some essential connection between weight and mass, since, 
with bodies of the same material, the effort necessary to move them 
against the earth’s attraction is greatest in the case of the largest 
body, while exact experiment shows that this connection is one of 
direct proportionality. 

To prove this it is necessary to show that all bodies, moving under 
the sole action of their weights, have a common acceleration at the 
same place. Experimental evidence of this fact was first obtained 
by Galileo in 1590 by simultaneously releasing two bodies of different 
masses from the top of the leaning tower at Pisa. They reached the 
ground together, thus showing, at least approximately, equal accelera¬ 
tions. Cases of apparent disagreement, such as the slow fall of fine 
rain, the ascent of a balloon, the almost imperceptible vertical drift 
of thistledown, can be explained by the forces opposing downward 
motion which reduce, or even reverse, the downward acceleration. 
As these counter-forces are continually reduced, the downward 
acceleration increases to that constant value denoted by g. 

A more exact confirmation of the proportionality of mass and 

Q.P.M. 1 B 



2 GENERAL PRINCIPLES 

weight is given by pendulum experiments, in which the acceleration 
of free fall is measured. If two pendulums of different masses are 
used, then different values for g should be dedticed from their times 
of vibration, unless the weight of each is exactly proportional to 
its mass. Newton, and later Bessel, using pendulums with cavities 
in the bobs for the insertion of materials having different densities, 
showed that no variation greater than the possible limit of accuracy 
could be detected. In some cases experimenters have detected an 
apparent small difference in the weight of equal masses of different 
substances, but these results lack confirmation. 

The most precise experiments proving the })roportionality of 
weight and mass are those of Eotvos,^ w^ho, by an ingenious applica¬ 
tion of the torsion balance, succeeded in raising the precision to 
6 parts in 10®. In these experiments two masses, of diff erent materials 
but equal weights, were suspended from the arms of a torsion balance. 
They were acted upon by the gravitational attraction of the earth, 
i.e, their weights, and by a centrifugal force, due to the rotation 
of the earth, which was proportional to each mass. If the masses 
were unequal the centrifugal forces on the two bodies would have 
been different and a torque, supplied by the suspension thread, 
would have been necessary to hold the beam in an east-west posi¬ 
tion. This torque would have been reversed when the balance was 
turned through 180°. In practice, as described in Art. 25, the 
whole apparatus, including an observing telescope and scale, was 
rotated. Thus the effect sought would have been disclosed by a 
change in the equilibrium reading. 

If X is the latitude of an observing station then the horizon¬ 
tal components of the centrifugal forces are mRoy'^ cos X sin X and 
rriiRa)^ cos'k sin X, respectively, where m and V7?i are the two masses, 
R is the radius of the earth and o) its angular velocity about the 
polar axis. These forces act in a southerly direction in the northern 
hemisphere and the resultant torque on the beam, when E-W, is 

IRo}^ cos X sin X (m ~~ni^) 

where 21 is the length of the torsion beam. If the balance is turned 
through 180° the direction of this torque is reversed and the equi¬ 
librium position, relative to a telescope and scale moving with the 
instrument, is changed by an amount 0, Thus 

rd^2lRo}^ cos X sin X (rn—nij) 

where t is the torsional rigidity of the suspension thread. If T is the 
periodic time of vibration of the torsion balance and / the moment 
of inertia of the suspended system, and thus 

B~IRT^ sin 2X(m— 

in which t is the periodic time of rotation of the earth. Tims a zero 
value of d indicates the equality of masses having equal weights. 

The constants and sensitivity of Eotvos’ balance were such that 

^EotvOs, Ann, d, Fhysik, 68, 1, 11 (1922). 



THE BALANCE 3 

a value of {m—-m^/my exceeding 6 parts in 10^, could have been 
detected. 

The unit of mass is chosen arbitrarily. We might select any piece 
of matter and state that it contains one, or any number of units. If, 
then, care is taken to preserve the selected specimen from damage 
and disintegration, the unit would remain definite and consistent. 
This is the actual procedure. In England the selected unit of mass 
for commercial purposes, called the Imperial Standard Pound, is a 
piece of platinum, housed at the Board of Trade Standards Office. 
The scientific unit, the gramme, is defined as having one-thousandth 
t)f the mass of the International Kilogramme. Replicas of these 
standard masses are widely distributed, and are more or less accur¬ 
ately represented in the multiples and submultiplcs contained in 
a box of “ weights.” 

2. The Balance.—The mass of a body in terms of standard 
units is obtained by “ weighing ” the body. This term has obtained 

A J 
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universal sanction, and arose from the fact that if, at one place, two 
bodies have the same weight, they must have the same mass also. 
It must be remembered, however, that the ordinary beam-balance 
merely indicates equality of weights and does not give an absolute 
measure of them. 

As a rule the beam-balance has the same sensitiveness over a 
considerable range of loads, the sensitiveness for any particular load 
being defined as the deflection, in scale divisions, produced when 
an excess weight of 1 milligramme is added to a scale-pan. The 
factors which influence the sensitiveness may be seen from the fol¬ 
lowing considerations. Suppose a vertical section is taken through 
the centre of the beam, cutting the knife-edges at A, J5, C (Fig. 1). 
Let / be the length of each arm, d the depth of the centre of gravity 
G below C, and h the height of A and B above C when the balance 
is at rest with the beam horizontal. Let the mass of the beam be 
M, and the masses of the scale-pans with their loads m and m-f-cr, 
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where x is very small. Finally, let the beam come to rest inclined 
at an angle a to the horizontal. 

Taking moments about C, 

{7n -\~x)g{l cos cx.-\-h sm oi)=Mgd sin cc-\~7ng(l cos ol —h sin a), 

iu\ x[l cos a+A sin a)=Md sin 0L —27nh sin a. 

If a is sufficiently small, sm oL=oi and cos<x = \, and, neglecting 
the small term xh,sinoLy 

xl^{Md—2inh)ix, 

or . 
X Md—2nih 

If tlic knife-edges are coplanar the sensitiveness is independent of 
the load, but if A and B are above the central knife-edge the sen¬ 
sitiveness increases with the load ; if below, it decreases. Greater 
sensitiveness may be obtained V)y decreasing the mass of the beam 
and by increasing the length of each balance-arm, but the necessity 
for sufficient stillness in the beam limits extensions in these directions. 
Very sensitive balances have beams of lattice structure to combine 
stiffness with lightness. As d decreases, the sensitiveness increases, 
and accurate balances are provided with a small weight, adjustable 
in a vertical direction through C, whereby d may be varied. Tiu^ 
disadvantage of excessive control is the accompanying loss of 
stability, and the beam has a long period of swing. 

3. Faults in a Balance.—(a) Arms Unequal in Length.—This 
error may be detected by counterpoising any body of mass M ~ 
not necessarily known—against a mass and then changing the 
mass M to the other, say the right hand, scale-pan. If a different 
mass Mg is required to counterpoise, this indicates inequality in the 
arms. Let I be the length of the left hand, and r that of the right 
hand, balancc-arrn. Taking moments in each case, 

and Mg,r=M^J, 
ix. 

L¥l L /Mi 
l’ r~sj 

and 

M2=:MiM2, or 

Thus the ratio of the arm lengths and the true mass are determined. 

(b) Weights Inaccurate.~A set of weights may be tested to a 
limited extent by comparison with one another. It is usual to assume 
one, generally that of the highest denomination, to be correct, and, 
by comparing, say, the 50 gm. with the 20-f 10+10+5-f2-f24-1, 
and then recomparing the 20 against 104-54-24-24-1, etc., the errors 
in the lower denominations are determined. Finally, the assumed 
standard should be tested against a mass whose value in terras of 
the International Kilogramme is known. 
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(c) Knife-edges.—In the course of time these become rounded, 
and the line of contact with the support plane changes, as the beam 
tilts from the horizontal. This is equivalent to a small change in 
the length of the balance-arms. 

4. The Laws of Motion.—In his monumental Principia Newton 
[)Ostulated a number of definitions of quantity of matter, inertia, 
centripetal force, etc., and then stated the three fundamental laws 
of motion w^hich have been used as the foundations of dynamics. 
Tiiese laws may be enunciated as follows :— 

Law I.—Every body perseveres in its state of rest, or uniform 
motion in a straight line, except in so far as it is compelled to change 
that state by forces impressed on it. 

Law II.—Change of motion is proportional to the moving force 
impressed, and takes place in the straight line in which that force 
acts. 

Law III.—An action is alwa\^s opposed by an equal reaction, or 
the mutual actions of two bodies are always equal and act in op{)osite 
directions. 

The first law may be regarded as a definition force—i.e. force 
is the agency by which a body’s state of motion is changed. 

To understand the implications of the second law, it is necessary 
to consider what Newton meant by the ‘‘ motion ” of a body. In 
his definition he states : “ The quantity of motion of a body is the 
measure of it arising from its velocity and the quantity of matter 
conjointly.” Thus the motion referred to is momentum, and the 
law may be expressed thus:—The rate of change of momentum is 
proportional to the impressed force. It should be realised, however, 
that even this definition can be regarded only as formulating a 
suitable way by which forces may be measured, that is, by the 
accelerations they produce, ix. 

Force oc 

If the mass of the body remains constant, 

Force oc cc ma. 

The third law contains a principle of great importance, whicli 
may be illustrated by the following examples. When a body falls 
towards the earth the latter moves to meet the body, and a shell 
fired from a gun projects the gun backwards. The sun attracts the 
earth, and consequently is itself attracted by the earth with a pre¬ 
cisely equal force, so that, as in an action confined to a given system 
of bodies, the forces generate movements reciprocally proportional 
to the masses acted upon, the centre of mass of the whole system 
remains stationary. 

From these laws of motion the unit of force is defined as that 
force which, acting on unit mass, produces unit acceleration. In 
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the C.G.S. system such a unit is called a dyne, and in the F.P.S. 
system a poundal. They are the fundamental units of force. 

The weight of a body is a conveniently available force, so that 
in most practical cases such forces are used as units; but these 
are only secondary units, and must be capable of expression in terms 
(>r dynes, or poundals. The weight of a body is given by 

where ?/t is its mass and g is the acceleration due to gravity. Thus 
one pound xveight is equivalent to g poundals, and one kilogramme 
weight is equal to lOOOg dynes, the actual value of g being that 
appropriate to the system of units employed. 

5. Motion of a Massive Particle. -Consider a particle acted 
upon by a constant force P, so that its velocity changes from u to v 
in time t while a distance x is traversed, then 

and 

or 

v-~u=at, 

v^—u^~-2a,v, 

mv-~mu—mai—-Pt . . . (1) 

\mv^'-\mu^—max—Px, . . • (2) 

where Pt is called the impulse. Thus impulse is equivalent to change 
of momentum, and (2) expresses the fact that the change in the 
kinetic energy of a particle is equal to the work done by the force. 
The work expended by a force is not always transferred into kinetic 
energy, since the force may be opposed by a practically equal one, 
resulting in no acceleration. In this case the work done raises the 
potential energy. Thus ti^e total energy of a body is partly kinetic 
and partly potential, and is measured relative to a chosen arbitrary 
zero of velocity and of position. The chief units in the British and 
Metric systems arc as follows :— 

Table I.—Units 

Quantity. Metric Unit. British Unit. 

Length 
Time . 
Mass . 
Force , 
Momentum 
Energy 

i ! 
, ! Centimetre | Foot 
. I Mean solar second i Mean solar second 
. : Gramme i Pound 
. I Dyne j Poundal 
. I Dyne-second I Poundal-second 
. I Erg I Foot-poundal 

6. Rotational Movements of Massive Bodies.—When a body 
revolves about a fixed axis, there is no progressive linear motion of 
the body as a whole, and new terms of description are required in 
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discussing such a motion. The change from the familiar terms of 
the rectilinear movement of a massive particle is, however, easily 
made, since, in rotational motion, it is the angle between the instan¬ 
taneous position of any line in the body, passing through the axis 
and in the plane of rotation, and its initial position, which varies 
continuously with time. Thus this angular displacement is analogous 
to the linear displacement in the previous case. Before a complete 
analogy can be made, it is necessary to find expressions for those 
characteristics of rotational motion that correspond to force, mass, 
momentum, etc,^ of rectilinear motion. 

If OP is the })osition at time t of any line through the axis of 
rotation at O and OA is the position of the line at the angle 

AOP~0 is the angular displacement in time t while usually 

denoted by co, is called the angular velocity. Any point, such as P, 
on the line has linear velocity and acceleration and, since the arc AP, 
the linear displacement of P in time /, is rO, where r is the length 

of OP, the linear velocity of P is body is rigid, 

and its linear acceleration is or r--™* 
(It df^ 

Hence the linear motion 

of any j)oint in the body may be correlated with the angular motion 
of the body as a whole. 

The total kinetic energy of a rotating body is the sum of the 
separate kinetic energies associated with each of its parts, i,e, the 
summation over the whole body of these contributive elements. If 
a particle of mass rn occupies the position P then the kinetic energy 
of this massive particle is and, since o) is constant for all 
parts of the body at a given instant, the kinetic energy of the whole 
body is or where I represents the summation Umr- 
over the whole body, and is termed the Moment of Inertia of the 
body about the given axis of rotation. Comparing this with the 
expression for the kinetic energy in translational motion, \Mv^, and 
remembering that co is the rotational analogue of i?, I corresponds 
to M, and represents the effect of the mass and its space distribution 
in rotational dynamics. 

7. Calculation of Moments of Inertia.—The value of I in 
many particular cases may be found by simple integi'ation. Thus, 
if dm represents an infinitesimal part of the whole mass and is 
situated at a distance r from the axis of rotation, then 

=1' 

r^,dm, 

the limits of the integral being chosen to cover the whole of the 
body concerned. 

Consider a rod having a uniform linear distribution of mass m. 
The moment of inertia of an element of length die, situated at a 
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distance x from an axis, passing through the centre of gravity and 
perpendicidar to its length, is and 1 is given by 

i 

/—2p ^ (3) 
Jo 

where JSI is the mass of the rod. 
The moment of inertia about a parallel axis tlirough the end of 

the rod is 

/—I mx^.dx— 
J 0 

M/2 

8 ’ 

The moment of inertia of a circular disc about an axis through 
its centre, and per})endicular to its plane, is obtained by dividing the 
disc into thin circular rings. Consider one of these rings of radius 
X and width d.r. Then, if w is the mass per unit volume and t the 
thickness of the disc, the moment of inertia of this elementary ring 
is 271X .vd ,x^ .dx, and 

r Mr- 

JO ^ 

M being the mass of the disc. 
For an annular disc of inner and outer radii 7\ and fg* 

J ft 

but M, the mass of the disc, is and hence 

M 

In many cases the evaluation of moments of inertia is simjditied 
by applying the following general theorems :— 

. (a) Parallel Axes Theorem.—Let Iz be the moment of inertia 
of a body about a given axis QZ (Fig. 2) (r/), Ig that about a parallel 

Fig. 2.-”Moments of Inertia. I^araixel Axes Theorem. 
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axis OG through the centre of gravity of the body, and a the distance 
between these axes. Then, if rn is the mass of a particle situated 
at P, such that the angle PGZ is 0, 

Iz=::=Zm..PZ^=i:vi(PG^~\ GZ/^ 2PG.GZ,(os d) 
2a.UrnPG.cos 0. 

If the body is suspended at G (Fig. 2) (/;), with the triangle PG7j 

vertical and G7j horizontal, it will be, by the properties of the centre 
of gravity, in equilibrium. Thus the sum of the turning moments 
of its individual particle weights about G will be zero. The turning 
moment of acting vertically downwards through P, is }ng.GN, 
i.e. m^.PG.cosO. Hence Umg.PG.cos 0 is zero, and 

.... (4) 

(b) Perpendicular Axes Theorem, Laminar Body,—Let 
IjTn hj, Jz be the moments of inertia of a laminar body about three 

Fic;. a.—Moments of iNiarriA. Fekpendiculah Axes Tiieoiiem fou 
Two I^IMENSIONS. 

mutually ])(T])cndicular axes ()a\ Oy, Oz—(Iv and Oy being in the 
plane of the lamina—and let a particle of mass tn be placed at P 
(.r, y) (Fig. 3). Then 

, , • (5) 

(c) Perpendicular Axes Theorem, Three-dimensional Body. 
—liCt Ix, lyy Iz be the moments of inertia about any three mutually 
perpendicular axes 0,v, Oy, Oz (Fig. 4), and let a particle of mass 
m be situated at P {x, y, z) so that PM^z, MN^y, NO~x, Draw 
PR, PN, and PQ perpendicular to Oz, Ox, and Oy, respectively. 
Then 

Ix^Im,PN^==l7n{y^+-^), 
ly^Ein, Pq^^Em(z^+x^), 
Iz=:E7n,PR^^Em.MO^==E7n{x^~\y^), 
lQ~E7n, 



10 GENERAL PRINCIPLES 

Hence 
Ix+Iy+Iz^2i:vi{x^+y^+z^)^2J^, . . (6) 

where is the summation Srnr^ about the origin O. 

Fig. 4.—Moments of Ineutia. Perpendicular Axes Theorem for 

Thtiee Dimensions. 

These three theorems can be applied in the following examples, 
where M in all cases denotes the mass of the body. 

Rectangular Plate about an Axis through its Centre and 
Perpendicular to its Plane.—Let O be the centre of the plate and 
Oz the given axis. Draw Ox and Oy parallel to the length a and the 
width h of the plate, respectively. From (8) 

Hence 

and 

(7) 

Circular, or Annular, Disc about a Diameter.—If Oz be an axis 
through the centre of the disc, or annulus, perpendicular to its plane, 
and Ox, Oy perpendicular axes in the plane of the disc, or annulus, 

Mr^ M 
then, since for a disc for an annulus and 

h=Jy, from (5), 

Mr* 
lx (disc) = 

Jx (aimulus)='^r2*+r^*). 

(«) and 
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Circular Disc, or Annulus, about a Tangent. - In this case the 
axis is at a distance r from the centre for the disc and r., for the 
annulus. Thus, from (4), 

Mr^ 
It (disc) 

4 
aod 

Jr (annulu 

M, . 
f-ri") 

Thin Spherical Shell.—All parts of a thin spherical shell being 
equidistant from the centre 0, Iq—Mt-, If Ix~ly—Iz is the moment 
of inertia about a diameter, then, from (6), 

and 
/^==:p/r2.(10) 

For a splierieal slu‘ll about a tangent, 

. . . (11) 
Solid Sphere about a Diameter.—In this case it is convenient 

first to find Iq. Divide the sphere into thin concentric shells of which 
a typical one has a radius x and thickness dx. If ni is the mass per 
unit volume, the mass of the shell is 47Ty^.77i.dx. Hen(‘e for the 
whole sphere 

47rxhnx'‘^.dx= ^Mr^ . . . (12) 
Jo 

If is the moment of inertia about a diameter, then, by (6), 

and 
.(13) 

For a solid sphere about a tangent, 

lT=Ix+Mr^=lMr^, . . . (14) 

If part of a body is removed, the moment of inertia about any 
axis is reduced in value by that of the portion taken away. Hence 
the moment of inertia of a body containing a cavity is determined 
by the difference between the moment of inertia of the complete 
body and of the part which would completely fill the cavity. 

In all the examjiles quoted above the moment of inertia is ex¬ 
pressed in the form Mk^, where A* is a quantity depending on the 
size and shape of the body, and is called the radius of gyration of 
the body about the given axis. Its significance may be understood 
by assuming that the mass is distributed uniformly in a ring of 
radius k, whose centre lies on the axis, the plane of the ring being 
perpendicular to this axis. This ring, revolving about the axis, has 
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the same inertial properties as the rotating body. In other words, 
the radius of gyration indicates the influence of the mass distribution 
in space on the moment of inertia. 

8. Uniform Angular Acceleration.—Uniformly accelerated 
angular motion is produced by a couple—two equal, parallel, and 
oppositely directed forces, not in the same straight line. Such a 
system has no tendency to change the mean position of the body 
on which it acts, but merely produces a rotation. The magnitude 
of this turning elfort is called the moment, or torque, and is given 
by PtV, where each force is of magnitude P, and x is the perpendicular 
distance between them. If one point in a body is fixed, then a 
single force not passing tlirough this point will, together with the 
reaction at the pivot, constitute a couple, whose moment is the 
product of the magnitude of the for(;e and the perpendicular distance 
between the pivot and the line of action of the force. This product 
is the moment of the force about the point. 

The general equations (1), (2) of uniform linear acceleration may 
be adapted to the case of angular motion, or rotation, by identifying 

and ti, the final and initial linear velocities, with w and the final 

and initial angular velocities, a with the angular acceleration, 

X with 0, the angular displacement, and P with the tonpie P, Hence 

. . . (15) 

. . . (10) 

la) is called the ungular viomentum and the angular kinetic 
energy. 

If a point P in the body has linear acceleration and if at 

this point a force p acts perpendicularly to OP, the radius passing 

through P, then* p is given by where m is the mass of the 

particle at JP. This force has a moment about 0, and the 

sum of the moments about O of all the unbalanced forces acting 
on the body is F, the torque. Hence 

do) 

dt dt ’ 
(17) 

so that, from (15), Ft is equal to the change of angular momentum, 
and is termed the angular impulse, or impulsive moment. Similarly, 
from (16), the change of angular kinetic energy is FO, and is the 
work done by a couple of moment F in moving through an angle 0. 
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The similarities between rectilinear and rotational dynamical units 
are given in Table II. 

Table II.—Units in Rectilinear and Rotational Dynamics 

! Rectilinear Motion. 

Displacement, x. 

Velocity, v, u. 

I dv 
. Acceleration, - ’ «• 
I di^ dt 

I Mass, M. 

j Force, P - nia. 

j Momentum, mv 
! Impulse, Pt — m(v~ u). 
i Kinetic energy, 
i Work, Px. 

Rotational Motion. 

j Displacement, 0, | 

I xr ^ ' I Velocity, to, a>o. i 

' - . d'^d dii) \ 
i Acceleration, - i 
! dt^ dt 

Moment of inertia, i, Mk-. i 

Torque, F | 

Momentum, Ia>. I 
! Impulsive moment, 77—/(a> -a)„). 1 
j Kinetic energy, ! 
: Work, re. ' " i 

9. Torsional Oscillations.—A simple but important example 
of angular motion occurs in torsional oscillations. If a body is 
suspended in such a way that its displacement about a given axis 
produces a couple tending to prevent further displacement in the 
same direction, then, in many cases, this couple is proportional to 
the displacement, and an equilibrium position is reached when the 
opposing torque is equal in magnitude to the displacing torque. If, 
now, the latter is removed, the restoring coiqile is unbalanced and 

generates an angular acceleration given by F being the 

torque externally applied. Since the restoring couple is proportional 
to the angular displacement, r==rO, where t is a constant for the 
given type of suspension. Hence 

the negative sign indicating that the displacing and restoring torques 
act in opposite directions. Thus the equation of motion of such a 
body is 

, T« 
(18) 

The angular acceleration is proportional to the angular displacement, 
and thus the motion is simple harmonic and may be represented by 
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where Oq is the amplitude and /q is the periodic time of oscillation. 
If this value of 6 is substituted in (18), we obtain 

10. Vectors and their Graphical Representation.—The total 
moment of inertia of any number of bodies about a given axis is 
the direct sum of their separate moments, and, similarly, the combined 
mass of a series of bodies is the sum total of their separate masses. 
Physical quantities such as these, which may be compounded by 
direct algebraic addition, are called scalar quantities. There are 
other quantities which cannot be added in this manner. Thus the 
resultant of two individual displacements, and do, is not neces¬ 
sarily di+^2* l^he resultant displacement only if d^ and dg 
both lie in the same straight line. Similarly, if two forces Pj and 
Pg act on a body, their resultant is again Pj+Pg only if they act 
in the same direction. Quantities such as displacement, velocity, 
acceleration, force, and momentum which require, for their complete 
description and compounding, a statement of direction as well as 
magnitude, are called vector quantities. They are most conveniently 
added by a graphical method, in which the vector is represented 
by a straight line, whose length is proportional to the magnitude 
of the quantity, and whose direction, relative to any convenient 
reference line, represents its direction. 

Any quantity which is derived from a vector, or which is obtained 
by a combination of vectors and scalars, remains vectorial. Thus 
linear velocity, depending on linear displacement (vector) and time 
(scalar), is a vector. 

In rotational dynamics some quantities are directional, in the 
sense that they are confined to a plane, and are called plane vectors. 
By means of a simple convention the rule for the addition of linear 
vectors may be applied also to these plane vectors. The two- 
dimensional vector is represented by a straight line drawn normal to 
its plane, and of length proportional to the magnitude of the vector, 
the sense of the latter being given by the side of the plane from 
which the normal is drawn. 

It must be remembered that a change of direction, without change 
in magnitude, is a variation of velocity, etc. For example, a body 
moving in a circular orbit with constant speed has a velocity at any 
instant along the tangent, and the body is maintained in its circular 
path only because of an acceleration towards the centre of the circle. 
This acceleration constantly changes the direction of the velocity but 
does not alter the speed. Thus we may have uniform acceleration 
at constant speed. In a similar manner it is possible to have angular 
acceleration at constant angular speed. In this case the plane of 
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rotation changes direction at a given rate, without any variation in 
the rate of rotation about the rotation axis. Such a change in the 
plane of rotation is called precession^ and is caused by the action 
of a torque, whose plane is always perpendicular to the instantaneous 
plane of rotation. If the torque remains constant in magnitude, 
the result will be a constant precessional motion. 

EXAMPLES 

1. Define the sensitivity of a balance and obtain a formula con¬ 
necting the sensitivity with other constants of the balance. In using 
such a balance it is found that the sensitivity for no load is 8*00 scale 
divisions per mg. and for a load of 100 gm. is 2*70 scale divisions per mg. 
Find the sensitivity for a load of 200 gm. assuming the beam to be 
rigid ; indicate the relation between the knife-edge positions. 

[2*45 ; end knife edges below centre.] 

2. Show how the rest point of a balance may be deduced while the 
pointer is still swinging over the scale. If successive turning points on 
a scale with its zero at one end are 10, 2 and 8 divisions deduce the rest 
point. [5 *48.] 

8. A glass sphere of density 2*50 gm. per c.c. is being weighed, and 
is counterpoised by brass weights of density 8 (i0 gm. per c.c. The 
counterpoising weights are 25*188 and 25*206 gm. wlien in the right- and 
left-hand scale pans respectively. Find (a) the ratio of the balance arm 
lengths, (b) the apparent weight of the sphere in air, (c) the true mass 
of the sphere if the density of air is 0 00129 gm. per c.c. 

[(a) 1*0011 ; (b) 25*172 gm. ; (c) 25*181 gm.] 

4. A Catherine wheel when burning has its initial moment of inertia, 
/, reduced at a uniform rate, k. If the couple, G, acting on it is con¬ 
stant, find the connection between the time, t, and {a) its angular velocity, 
w, (b) its angular acceleration da)fd1, 

[(a) Gt=^-(jo{l~kt); (b) {I- kt)Kdco/dt==GI,] 

5. A stream of water issues horizontally from an orifice of cross- 
sectional area 0 03 sq. cm. at the rate of 20 c.c. per sec., and impinges 
perpendicularly upon a flat plate. Calculate approximately the mean 
pressure which is exerted on the plate. [4*4 x 10*^ dynes per sq. cm.] 

6. A sphere of radius 2r and density d has an internal spherical cavity, 
of radius r, the diameter of which is a radius of the sphere. Find the 
moment of inertia, /, of the body about an axis perpendicular to the 
common diameter of sphere and cavity and at a distance x from the 
centre of the sphere. [15/=4;rr®d(57r2zblOra).] 

7. A cylinder has a mass M, length /, and radius r. Find the ratio 
of / to r if the moment of inertia about an axis through the centre and 
perpendicular to the length is a minimum. [ \/3 : V^.] 



CHAPTER II 

TUK ACCELERATION OF ORAVITY 

11. The Acceleration of Gravity.—The acceleration of gravity, 
g, is the acceleration produced in any body by the earth’s attractive 
force, and, as aetnally measured, is the acceleration due to the earth’s 
attraction, less the centrifugal acceleration of the earth’s rotation. 
The importance of this physical quantity has been stressed in deal¬ 
ing with the relation between mass and weight, and its value may be 
found experimentally by various methods. 

12. Atwood’s Machine. -The most direct method for the 
measurement of g is by means of Atwood’s machine. In the ribbon 

form, which is sliown in Fig. 5, equal inter¬ 
vals of time are given by the transvers(‘ 
vibrations of a steel strip A. A light j)ulley 
A runs on ball-bearings and carries, over its 
flat rim, a strij) of paper f’, to which are 
attached two equal weights M. The strip A 
is rigidly clamped at one end, and carries at 
the other a brush By which is impregnated 
with ink and which just touches the surface 
of the paper band stretched over the pulley. 
The two w'cights M carry a similar paper 
strip below, so that in the motion no addi¬ 
tional excess weight is transferred from one 
side of the pulley to the other. Resting on 
M is a small rider m, while premature move¬ 
ment is prevented by the platform P, Before 
the system is set into motion the brush B is 
moved across the paper to indicate the 
starting-point, and then, by means of trigger 
releases, P is allow^ed to fall, and the spring 
is simultaneously set into oscillation. Owing 
to the acceleration produced, the inked line 
traced on the paper is a gradually lengthen¬ 
ing wave, for which one wavelength represents 
the distance moved by any point on C in 

the periodic time of the spring. Thus, by measuring the distances 
occupied by each complete wave, the successive distances covered 
by the system in the 1st, 2nd, etc,^ periods of the spring are 
known. 

Then, if a is the acceleration of the falling weight, the period 

FiCJ. 5. - 
Ribbon form of 

Atwood’s Machine. 

16 
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of the spring, and iTg, elc.^ are the distances covered in successive 
periods, 

^2 = ^^0 ^ == 2 

or (.^2—x^~{i\^~~X2)~etc.~atQ^, 

Thus, being known, a is determined. 
If V is the velocity acquired after a distance the kinetic energy 

gained must be equal to the potential energy lost. Hence 

J /ru ^ +1 [ 2 M + ?/2 ] u 2 ~ yngx. 

where I and m arc the moment of inertia and instantaneous angular 
velocity of the pulley. But, since v=ro)y where r is the radius of 
the pulley, 

or 

W, written for -v 

_, 
' lP+2M-f-m 

being the equivalent mass of the pulley wheel. 

If we compare this with the expression for uniform acceleration, 
v^=2aXy it is evident that 

W may be eliminated by carrying out experiments with two different 
masses and Mg, in which case 

^_2[M,-M2j^ 

It has been assumed that the pulley is not retarded by friction. 
To ensure this, the weight M, carrying the rider, is loaded by means 
of a small auxiliary rider until, if the main rider m is removed and 
the system is given an initial velocity, there is neither acceleration 
nor retardation. The weight of this rider then just neutralises the 
friction, and both may be ignored in the subsequent experiment. 

13. Body Rolling down an Inclined Plane.—If a body rolls, 
without slipping, down an inclined plane, a value may be obtained 
for g by timing the motion between two points whose distance apart 
is known. Suppose the body commences from rest at a position A, 
and has acquired a ti’anslational velocity v after rolling a distance 
a:, measured along the plane and reaching a point B, Then the 
kinetic energy at B is equal to the potential energy lost from A to 
B. The former is partly translational and partly rotational, and if 
CO is the angular velocity at /f, then, since the point of contact with 

O.P.M. c 
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the plane is momentarily at rest, u=ra), where r is the radius of 
the body. Thus the kinetic energy at B is 

k being the radhis of gyration about the axis of the body. The 
potential energy lost from .1 to B is fn^.v sin 0, and, therefore, 

sin d, 

where 0 is tlie iiielination to the horizontal. Thus, 

1+^ 

But, since v^=^2(u\ the acceleration of the body rolling down the 
plane is given by 

.... (-20) 

1 + [.. 

The following eases are iinportanl : 
(^/) Solid sphere : 

k'---~ir“, 

(/>) Solid cylinder or solid disc : 

k^ — h'*^, a--lg sin 0. 

(e) Hollow eylinder or hoop : 

k^~- r2, a|g sin 0. 

14. Body Rolling on a Concave Surface.—If a ball is made to 
roll down the line of maximum slope of a spherical surface, placed 
with its concavity upwards, the oscillation about the lowest point 
in the surface will be simple harmonic. Su])pose that the ball is 
released from rest at A (Fig. 0). Then, by the conservation of 
energy princi[)le, 

hnv'^ 1 hfik'^-^nigh, 

2gh 

v+f 
But h, the vertical distance between A and B, is related to the 
amplitude, of the motion by ai^=h[2R—h], where K is the 

Fig, 6.—Motion on a Concave Surface. 
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difference in the radii of curvature of the surface and sphere. If r is 
very small compared with /?, the latter is then approximately equal 
to the radius of the surface. Hence if h is small, and 

,,2_%_.£! 
, . A* 2K’ 

i.e. z> is pro})orti()j)al to This is the ease in sin(j)le harmonic 
motion where 

„ „/27r\2 J2n 

‘'•[X 
and thus we have, equating these values of 

15. Simple Pendulum.—The simple pendulum consists of a 
light string supporting a small massive body, usually a sphere, and 
fixed firmly at its upper end. If such a pendulum is given a small 
displacement, and then oscillates in a vertical plane it describes a 
simple harmonic motion, for, if I is its length and d its instantaneous 
displacement (Fig. 7) (rt), the restoring force on the bob is nig sin 0, 
where mg is the weight of the bob. This generates an acceleration, 
towards the centre, of g sin 0, or, if 0 is small, of g0. But, since the 

velocity of the bob in this position is the acceleration towards 

the centre is ' so that 

^-^+^-0=0. 

This, again, represents a simple harmonic motion of period (q given by 

.... (22) 

16. Conical Pendulum.—If the bob of the simple pendulum is 
projected so as to describe a horizontal circle, then its periodic time 
may be used to measure g. Let v be the uniform speed of the bob 
(Fig. 7) (0), and let r be the radius of its circular path. The inclina¬ 
tion, 0, of the string to the vertical is given by r—Z sin 0. The three 
forces which maintain equilibrium are the weight of the bob acting 

Tnv ^ 
vertically down, the centrifugal force — acting horizontally, and F, 

the tension in the string, acting at an angle 0 to the vertical. For 
ntv^ 

vertical equilibrium F cos d==mg, while horizontally F sin d==~- 
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Fig. 7.—Simple and Fonjcal Pendulums. 

17. Bifilar Suspension.—In the bifilar experiment a heavy 
uniform rod is suspended in a horizontal position by two equal 
vertical threads of length I and distance 2d apart. The rod is then 
displaced, about a vertical axis, through an angle 0. Let 
(Fig. 8) be the equilibrium position of the rod—whose weight is mg 
—and let DB be its position when displaced through the angle 
A'OB==d, where 0 is sufficiently small for sin 6=0, and cos d=\, 
within the errors of experiment. The suspension threads AB, CD 
are inclined at an angle (f> to the vertical when in the displaced 
position. 

For vertical equilibrium 2F cos (f)~mg, but since 

1(f)=dO, cos (/>=cos ^ > 

F—approximately. and 
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Tlie Iiori/.oiitul coinpoiicnt of tJic tension F, acting along BA\ is 

F sin 

and, as BA' is sensihly at right angles to OB, the restoring torque 
. 'itwL. ^ , 
IS 0.2(1. 

TIenee the restoring torque for unit twist is -y-, and 

Fig. 9 represents the arrangement of the hifilar suspension with 
non-parallel threads. Let the distance between the threads at the 
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bottom and top, respectively, be 2di and 2^2, and let 
For vertical equilibrium, 2F cos <f>-=^mg. Also, 

A'B^Vd^^+d^^~~-2did^ cos d 

d^ -approximately. 
In addition 

, Bli' 
rnsi,-: ^ .. ^ . 

and tiuis 
mgl 

F- - -• 

The restoring torque is 

F sin (f> sin a. 2dj 

= 2./, 
7ngl X . 

•- s'ui a. 

Rut 

and tlius 

d^ _ A'B_x 

sift OL sin 0 0 

sin 
X 

so that the restoring torque for unit twist is 

mgdidj 

Hence, 

mk^VP-~X“ 
rngd^d^ 

If y is the vertical distance between the ends of either suspension 
thread, then 

and 

This reduces to the previous case if d^^d^^d, and y=l, i,e, if 
the threads are vertical in the equilibrium position. 

18. Compound Pendulum.—Despite its apparent simplicity in 
construction and use, the simple pendulum is not convenient for the 
exact measurement of g, for, to support the bob, a suspension thread 
of appreciable mass has to be used, while the bob has a motion which 
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is not merely one of translation, since it turns about the point of 
suspension. It is therefore necessary to evaluate the moment of 
inertia of the whole system to take these factors into account. 
Additionally, the suspension thread slackens when approaching the 
limits of swing, and introduces a complication into the motion which 
limits the accuracy of the experiment, unless complex corrections 
are made to eliminate the effect of flexure. The last defect is absent 
from the compound pendulum, a rigid body,swinging in a vertical 
plane about any horizontal axis passing through the body. 

^0 

40 30 20 70 0 10 20 30 40 
cm. 

Fio. 10.—Compound Pendudum. Variation of Period with Distance 

OF Axis from the Centre of Gravitv. 

Let O be a point on this axis, G the centre of gravity of the 
body, and 0 the angular displacement, at time /, from the equi¬ 
librium position OA, Let OG=L The restoring torque is ingl sin Oy 
or, if 0 is small, nigld. Thus the restoring torque for unit displacement 
is rngl, and the period /q is given by 

where I is the moment of inertia of the body about the axis of 
suspension. 

If k is the radius of gyration about a parallel axis through Gj 
then, by equation (4), 

and (27) 



24 THE ACCELERATION OF (;RAVITY 

If diflcrent values of I arc taken, and the corresponding values 
of Iq found and plotted, then the result is as shown in Fig. 10, and 
the following conclusions may be drawn :— 

(a) The minimum time of vibration is obtained when the body 
is suspended from points, represented by X and F, situated at equal 
distances l^—MX^MY from the centre of gravity. This may also 
be deduced by differentiating equation (27) with respect to I and 
equating the result to zero. This gives 

Iq-/t, 

and thus, if two points arc identified, one on each side of the centre 
of gravity and in line with it, such that about each as centre of 
oscillation the time of vibration is the minimum period their 
distance apart is 2k\ and 

The body now acts like a simple pendulum of length 2k\ i,e. XY, 
(b) Any line above XY, at right angles to the time axis, cuts the 

curve in four points, such as A, B, C\ I), which are placed by pairs, 
AD and BC, symmetrically about the centre line. Let AN~ND—lu 
RiV=:iVC=/2, and 0N=t^. Then, 

or 

and 

(28) 

Thus the length of the simple equivalent pendulum in this case is 
(^i+4)» which is given by AC or BD. 

The bar form of eompound pendulum consists of a heavy uniform 
rectangular bar along the length of which a regular series of holes 
has been bored. The bar is supported by a horizontal knife-edge, 
placed in turn in each of these holes, and the various periods of 
vibration for these suspensions are measured. The distance from 
one end of the bar to each of these axes is measured, and the rela¬ 
tion between the period and distance is similar- to that shown in 
Fig. 10. In using this graph to measure g, lines such as ABCD are 
drawn, and an average of the distances AC and BD is substituted 
in equation (28). Thus a mean value of g may be obtained. 

19. Kater’s Reversible Pendulum.—The compound pendulum, 
used in 1817 by Kater ^ in his celebrated measurement of the value 

^ Kater, PhiL Trans., 108 (1818). 
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of g at London, is represented in Fig. 11. The rod carried three 
weights—the bob W and two adjustable weights A 
and B, It could be pivoted at either of the knife- | 
eciges and K2- The larger weight A was moved JL 
until the times of swing about the two knife-edges 
were nearly equal, and was then fixed in position. 
The smaller weight B was moved by means of a screw 
until the number of swings made in twenty-four hours 
about the two knife-edges differed only by a small 
fraction of one vibration. Within the limits of ex¬ 
perimental error and A^2 were then reciprocal f)oints 
of oscillation and suspension, and their distance apart 
was carefully measured. This distance gives the length nc"! 
of an ideal simple pendulum of tlie same period, ^ |T 
and thus could be used to calculate g accurately. 

The adjustment of the })cndulum to exact equality 
of period is extremely tedious, and, as was ])ointcd 
out by Bessel, is not absolutely necessary, for, if 
the two times, and arc very nearly equal, and V. 
/j, /g are the distances of from the centre of | 
gravity, * 

a.. /c2 + /2. ^ r/ _ /c2-fL2 FlO. ll.-> 
2. 

4s71^ ^ 
and 

so that 

Fig. 11.—> 
Katkr’s 

Reversible 
Pendulum. 

-f 2 
'2 _le c Since is very nearly equal to the term is small com- 

f 2_1_/ 2 

pared with y—and thus does not require such exact evaluation. 

The length {I1+I2) is given by the distance between the knife-edges, 
while (/j—4) is obtained with sufficient accuracy by balancing the 
pendulum horizontally on a knife-edge to locate the centre of gravity. 

To determine the period a method of coincidences, such as that 
described by Horton ^ and suggested by Poynting, may be used. 
Two mirrors are observed through a telescope, one being fixed and 
the other attached to the vibrating body, so that, when parallel, thej 
both reflect the 1-second flashes of light produced by a standard 
clock. Thus one flash always occurs at a fixed point in the field of 
view, while the other may have any position. As an example of 
the method, assume that the period is known to be approximately 

* Horton, Phil, Tram., A, 204, 1 (1904)* 
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4*116 seconds, and suppose also that an exact coincidence has just 
occurred. Calling this moment 0, then after 4 seconds the mirrors 
will not be exactly parallel again, since the moving one has lagged 
slightly behind. If, however, we wait for such a number of seconds, 
n, as is very nearly an exact multiple of the time of vibration, then 
at the ;ith fixed flash the mirrors will be very nearly parallel, and an 
approximate coincidence occurs. For example, 9X4*116=37*044, 
so that after 37 seconds the time-lag of the moving flash is only 
0*044 second. After this 37th second count one, two, three, e/c., up to 
37 again, then restart counting again, and so on. Every 37th flash 
will appear to have lost on the preceding one—i.e. the lag increases 
—until after say A sets of 37 seconds one second has been lost, and 
the 1st second of the next set will be a time of exact coincidence. 
Then the vibrator has made 9A vibrations in 37A+1 seconds, so 
that the period is given by 

9Mo=87.V-[-1, or /o-=¥+g^- 

III general an exact coincidence is very rare, and that nearest to 
coincidence is taken. Thus suppose that at one 37th flash the 
separation of the images is a lead of x scale divisions in the tele¬ 
scope, and at the next 37th flash it is a lag of y divisions. The 

exact coincidence must then have occurred at the fraction —— 
x~\-y 

of an interval after the first observation, and we have 

/ _A_, 
^0- 9 +o(A-(-a) 

where a has been written for — 
x+y 

To estimate the accuracy of the method, suppose A' is 20. The 

maximum error wliich can arise in a is and 

approximately, 

so that the error cannot exceed ^ or 0*000027 second. 
90 X 400 

20. Corrections Applicable to the Use of the Compound 
Pendulum.—For very accurate measurements with the compound 
pendulum a number of corrections are necessary. 

{a) Finite Arc of Swing,—The formula given in equation (27) 
was obtained on the assumption of a vanishingly small angular ampli¬ 
tude, and only in these circumstances will the motion beiruly simple 
harmonic. It is therefore necessary to investigate the effect on the 
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period of the finite magnitude of the amplitude. The energy equation 
of motion may be written in the form :— 

{k =2gZ [cos 9 -cos a). 

where a is the atnplitude and 0 is the displacement at time I. On 
intu^nitin^ this wc li«avx' 

(10 

where is the period. Thus, 

IM p dt^ r 

?riod. Thus, 

2\J \ 

TP ^ . a . , 
II we put ,sin - sin <p, 

Vcos 0 —cos a 

dO 

I • n OC , 0 
/ ATM- —Sin- -- 

o\J 2 2 

<0 r¥~ 

or 

,-1 

" V 4' \ L • 2 « • 2 , 
I /I - sin^ -- sm^ <b 

0 \J 2 ^ 

d<l> 

or 

/o='i +l xin^ 

where is the period for an infinitely small amj^litude, and is 
the observed period for an amplitude a. 

If, during an experiment, the amplitude falls from to a*, where 

each is small, we may put sin — > sinand thus obtain 
Z 2 2 2 

(30) 

where is the “ corrected ” period. 

(b) Air Correction.—Since the pendulum swings in air and not 
in vacuOt it is necessary to investigate the corrections arising from 
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the reaction of the medium. The formula given above assumes that 
the pendulum itself is a conservative system, but actually the energy 
conservation applies to the pendulum and its associated medium. 
Kater, following Newton, took into consideration only the huoyancy 
effect which produces a virtual diminution in the weight of the pendu¬ 
lum, and he assumed that the air effect was eoinpletely represented 
by the equation 

tm 

in which vV is the mass of air displaced by the pendulum. From 
this we should have, as the length of the simple equivalent pendulum, 

and 7Yi' may be calculated from the volume of the j^endulum and 
the density of air at the time of the experiment. 

Bessel, however, showed that the effect is more complicated, for 
the resultant accelerating force acts not only on the pendulum, but 
also on the associated parts of the medium, and produces an effect 
on each part of the energy equation : 

-‘Imgl cos e=C\. 

In the first place there will be a loss in accelerating force due to motion 
communicated to the fluid. This loss will depend on the velocity 

and external shape of the body, and may be expressed as/ In 

a time di the diminution in C\ will be dO and after a time 

Cl becomes 

Secondly, kinetic energy is generated in each moving particle, and 
if dm' and v are the mass and velocity of one such particle, the first 

term must be increased by an amount {v^dni\ where the integral 

includes all the affected portion of the medium. Finally, the remain¬ 
ing term must be increased by 2m'gs cos 0, where m' is the mass of 
air displaced, and s is the distance between the centre of gravity 
of the displaced fluid and the rotation axis. 

Thus the equation of motion becomes 
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The quantity diminishing Q is merely a damping factor which, 
in the case of a pendulum moving in air, has negligible effect on the 
period.^ 

The integral which should be taken throughout the 

affected medium, has not been completely investigated, but if it 
is assumed that each particle is in motion onlv while the body is 

' . fd6\ 
moving, the velocity v will be proportional to (^)» a^^d will dcj)en(l 

on the shape of the body and the position of the particle. Thus 

where Kq is a constant. The modified equation of motion then 
becomes 

and the equivalent sinipic ])cnduhmi length is 

The previously neglected effect is thus a virtual addition to the 
moment of inertia, and may be realised by assuming that the pen¬ 
dulum carries with it an adherent mass of the medium. The 
quantity is constant, or variable, according as the motion of the 
fluid is, or is not, proportional to the amplitude, and an experiment 
is necessary to test this. It is found that, very approximately, 
Kq is constant. 

For a reversible pendulum let and /g be the j)eriods about the 
two knife-edges, and Zj, the corresponding distances of the centre 
of gravity. Then from expression (31), 

7/1 

\-mX) 

^ A, 

~ h h m 4 ' /j ' ’ 

wlierc products of small quantities are neglected. Also, 

A-f 2- I k^+h^ , Aj 

471® * L L m ly ' ' ' 

^ See Chapter XII, Article 187. 
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Hence, 

Approximately, 

111 V 

' h k " ’ 
where I is the length of the simple ecjuivaleiit j^endiiluiTi. Thus, 
substitutiiijT I for these quantities and dividing through by (/i -/2)» 
we have 

// I 7 \ 1 ^ «Vx — .^2 [ ~ ^2 

Both quantities on the right are small eorreetivc terms and so need 
merely approximate evaluation. Also (tV^—may be obtained, with 

suflieient accuracy, by calculation. The last factor 
PI is obtained by the use of two pendulums of the 

I 14 same size and shape, but of different masses. The 
JJL quantity 7n{K-^—K2) will be the same for both 

/(tixi-D pendulums, and thus the two equations may be 
solved to find the value of this factor. It will be 
noticed that, if the pendulum is symmetrical in form 
about the middle point, and the 
correction due to air effect is eliminated. A pendu- 
him fulfilling this condition was constructed by 
Repsold, and is shown in Fig. 12. A bar L is fixed 
into two rings and into wdiieh, in turn, are 
screwed two short rods, terminating in knife-edges 
Aj, A2, and carrying the two bobs A and B, of which 

^ is solid and the other hollow. These bobs are 
adjusted by screwing them up or down on the sup- 
porting stem, and thus the periods about and A'2 

[~]J5 can be brought to practical equality. 
U The whole of the air effect may be made neg- 

Fig 12 — ligible by swinging the pendulum in a reduced 
Repsold’s pressure, and this is now the usual procedure. At 
Pendulum. low pressures the residual effect is a linear function , 

of the pressure, and thus measurements may be 
made at two or three different pressures and the graph extrapolated 
to find the period at zero pressure.^ 

(c) Curvature of the Knife-edges.—The effect of knife-edge cur¬ 
vature may be avoided by having plane bearings on the pendulum 
and a fixed knife-edge on the support. 

This is now the accepted practice,^ the knife-edge being ground 
to a fairly sharp edge, and the plane bearings being accurately flat 
and always replaced in the same position on the knife-edge. 

1 Heyl and Cook, Bur. Stds. J. Res., 17, 805 (1936). 
* Heyl and Cook, loc. cit.; Clark, Phil. Trans., 238A, 65 (1989). 
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(d) Yielding of the Support.—^Unless the support is very rigidly 
fixed, it will be forced to oscillate coperiodically with the pendulum. 
This motion may be resolved into vertical and horizontal components. 
Of these, the latter has much greater efiect on the period, and may 
become an extremely disturbing factor. It is thus necessary to 
arrange that the support is fixed rigidly, particularly in a lateral 
direction, and to ensure that no cumulative resonance efiect is 
permitted. 

Let O be the ])oint of support of the knife-edge on the plane, 
and A the centre of gravity, where ()A~l^. Suppose that the sup¬ 
port yields in a horizontal direction by an amount a per unit force. 

d^O d^6 
The acceleration horizontally is thus the force is 

But 
(ly^ giyd 

and so the force P on the support is give n by 

since Hence tlic yield, (>()\ for an angular dis]>laeement 0 
is given ))y 

00' 

Thus the centre of oscillation is raised to (' where and 
(XYr-df), so that 

' I k 
I’tie period is tlierefore given by 

‘ (^rlTii) 

A: 2 

For the other knife-edge we have 

a,nd so 
477 ■U h 

^2'1 ^2 

477*^ 
~J2“4 •_ ^ I 2 4 A / I _/ 2_/A 

h^2 ^ 41-^1 " 

-{li+h 
h-h 

(^1^1 ^2^2) 

Ji%S 
4 + ^2^ 

^h+h+'tnga. 
since 
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There is also a varying vertical force on the support, but since 
the pendulum’s vertical acceleration, due to oscillation, is of the 
second order of smallness in 6, this force will have only a small 
effect, compared with that due to the horizontal yield. 

It will be observed that the correction factor n?ga is the move¬ 
ment of the support, produced by a horizontal force equal to the 
weight of the pendulum, and this may be found by hanging the 
pendulum over a pulley by a string wliieh is attached horizontally 
to the support. Then the quantity 7??ga is measured by means of 
a microscope. 

An additional possible source of error was investigated in the 
Potsdam measurements made, under the supervision of Helmert, by 
Kuhnen and Furtw^angler. ^ This is the elTect of the elasticity of 
the pendulum in causing a periodic extension due to varying longi¬ 
tudinal tension, and flexure due to changing bending moment. The 
latter is, in general, the more important,*^ and has the effect of 
reducing the effective length of the pendulum. 

Until recently, the Potsdam value was accepted as a standard 
of reference, but the work of Clark and of Heyl and Cook ® has 
shown it to be about 17 parts in a million too high. Reference to 
this work will show how the various measurements arc made, and 
how accuracy to about one part in a million is attainable. The 
American experiments utilised fused silica pendulums in simple rod 
form with attached flats, one at an end and the other about two- 
thirds along the rod, the periods being adjusted to practical equality 
by grinding away one end of the pendulum. 

21. Variations of Gravity.—Measurements ofg at widely separ¬ 
ated localities establish that this quantity is a constant only for a 
given place, and changes decidedly from place to place, particularly 
if the alteration in locality involves a marked difference in latitude, 
or altitude. The acceleration of gravity is intimately connected 
with distance from the centre of the earth, and thus the variations 
observed in g are due, in the main, to those two changes in position 
—latitude and altitude—which produce correspondingly different 
distances from the centre of the earth. It must be remembered, 
however, that the value of g, measured by the pendulum, is really 
the resultant acceleration due to (a) the attraction of the earth, and 
(b) the tendency of the body to move in a straight line. In other 
words, the attraction of the earth produces two effects : (i) it supplies 

hYhV^ 
the necessary centripetal force, to maintain constant the dis¬ 

tance, 22, of the body from the centre of the earth; and (ii) the 
remainder of the attraction generates the acceleration which the 
pendulum measures. Thus, to deduce the value of the acceleration 
produced in the body by the earth’s attraction acting alone, it is 

^ Kuhnen and Furtwangler, Veroff, Preuss. geodat. Inst, JV.F., No. 27 (1906). 
* See Clark, loc. ciL * loc. dU 
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necessary to make allowance for the radial acceleration due to rotation 
about the earth’s polar axis. 

22. Shape of the Earth.—-The pendulum experiments of Richer, 
in 1672, established the difierence in g at Paris and Cayenne, and this 
was ex})laine(l by Newton by assuming tliat the earth acted as a 
uniformly gravitating fluid globe which would, by reason of its 
rotation, necessarily hav(‘ an equatorial protuberance. Taking into 
account both the variation in attra(‘tion and in centrifugal action, 
lie calculated the ratio of the axes of the spheroid to be 230 to 220. 

Later Clairaut, in his Theory of flu* Figure of the Earth., deduced 
the result ol* supposing that the earth’s surface is a spheroid of equili¬ 
brium, i,e, such that a layer of water would spread evenly over it, 
and he further assumed that the internal density was such that layers 
of uniform density were concentric and similar spheroids. This latter 
assumption was shown by Laplace,^ and later by Stokes,^ to be un¬ 
necessary, the latter proving that no special law of density is required, 
if the external surface is a spheroid of equilibrium. Clairaut’s result 
may be exj)ressed in the following way : Let and gA be the v^alius 
of grav ity at the equator and latitude X, respectiv(‘ly ; let and r^j 
be the e((uatorial and polar radii, and m, the ratio of the centrifugal 
acceleration to gra^'ity at the e(|uator. Then 

gA---g.| 1 ■ ^‘) sin-Xl 

where e, the cllipticity, 

It follows from this that if the earth is an oblate spheroid, two 
determinations of gravity at stations of widely differing latitude 
should be suflicieiit to determine its elli[)ticity. Actually, local 
variations interfere, and it is necessary to compare a large number 
of determinations made at scattered stations. As a result of con¬ 
sidering data obtained in experiments, ranging over all inhabited 
latitudes, Hc'lmert ^ gave as the value of gravity : 

g,=978-00[l+0*005310 sin2 A] . . (32) 

and 

More recently the International (ieodetie Association ado])ted 
the value :— 

gA--078*040[l -| 0 0052884 X - 0 0000059 sin- 2X\ 

which agrees very closely with the value suggested by Jeffreys ^ from 
which the ellipticity of the Earth became 1 : (296*4+0*5). 

23. Divergences from Clairaut’s Theorem.—Although to a 
first approximation the spheroid of equilibrium—ellipticity — 
represents the figure of the earth, the result of numerous pendulum 

^ Laplace, Micanique Celeste, Bk. 3. 
* Stokes, Math, and Phys. Papers, 2, 104. 
»Helmert, Berl. Ber., p. 820 (1901); p. 843 (1902); p. 650 (1903). 
* Jeffreys, Roy. Astron. Soc. M.N., 97, 8 (1986). 

G.P.M. D 
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experiments indicated the large variation j)roduced by local elfects. 
Of these, altitude is most important, as was first pointed out by 
Bouguer. If there were no matter above sea-level, the correction 

for altitude would be simple, since the decrease should be of the 

sea-level value, where h is the altitude. The eentrifugal force would 
act in an opposite manner, though to a negligible extent. When 
tested, this formula gave a greater decrease with altitude than that 
actually observed, and the dift'erence must be due to the attractive 
action of elevated masses. Bouguer suggested as the correct 
expression, 

^hd 1 
2liD ’ 

where g is the sea-level value, d is the density of the earth’s surface 
constituents in the locality of the station, and D is its mean density. 
This formula—known as Bouguer\s Rule—was once widely used, but 
better results are obtained by the application of Faye's Rule, which 

replaces the term of Bouguer’s rule, by one taking into account 

the attraction of the excess of matter under the station and above 
the average level of the district. 

24. Gravity Surveys.—In order to obtain data applying to a 
more detailed examination than is possible using the full technique 
of an absolute determination of gravity, it is more usual to combine 
with such widely separated, but accurate absolute measurements, 
some form of comparative readings. The means adopted will vary 
with circumstances but include the following :— 

(a) Invariable Pendulums for place-to-place comparisons in 
regions where no marked local abnormalities exist. 

(b) Gravity Balances for use as prospecting instruments for the 
moderately accurate surveying of abnormal conditions due, for 
example, to high- or low-density surface constituents. 

(c) The Eotvos Balance for the most sensitive small-scale measure¬ 
ments of gravity variations. 

The Invariable Pendulum.—This usually takes the form of a 
rigid pendulum of invar steel oscillating in a partially evacuated 
vessel from the support provided by a substantial tripod. If such 
a pendulum vibrates in two different places then, if no other change 
than a variation in g affects the motion, the ratio of the g values 
is the inverse ratio of the squares of the times for a given number 
of vibrations. By standardising the air pressure the various air 
corrections are made constant, and the only variable condition 
which may affect the simple relation stated above is that of tem¬ 
perature. In addition to making this small by the use of invar 
steel, the change of period with temperature may be directly deter¬ 
mined and thus corrected for, and in this way the accuracy of the 
gravity ratio is that of a timing operation which, with frequent 
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and precise broadcast time signals, is of a high order. Since the 
original period and the correction terms are obtained at a base 
station where g is known, this makes the dependent determination 
of the same order of accuracy as that of the absolute measurement. 

The use of time signals at the field station may be eliminated 
by the technique adopted by Bullard ^ in accurate determinations 
of g in East Africa. Two pendulums are necessary, one at the base, 
in this case Cambridge, and the other at the field station. An 
agreed wireless signal, e.g. the Rugby weather forecast, in Morse 
is recorded alongside the pendulum vibrations on a photographic 
trace, and about an hour later this is repeated. The Morse signals 
give equal time intervals with which to compare the pendulum 
periods. 

Gravity Balance or Meter.—in order of sensitivity and 
closeness of investigation come the gravity meters, of which several 

different forms are now in commercial employment. One of the 
earliest was that described by Threlfall and Pollock ^ in 1899. A 
fine quartz thread, anchored at one end, can be twisted at the other 
end by means of a pointer which moves over a circular scale. Fused 
athwart the thread near the centre is a short metal rod which is 
weighted so that its centre of gravity is on one side of the thread. 
Thus to pull it into a horizontal position it is necessary to twist 
the thread by means of the pointer. This position is only just 

1 Bullard, Roy. Soc. Proc., 141A, 238 (1938); Phil. Tram., 235A, 445 (1936). 
* ThrelfaU and Pollock, Phil. Tram., 193A, 215 (1900). 
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stable, since a slight additional movement causes the rod to rotate 
completely. An arrester prevents this excessive movement, but its 
tendency to occur makes the position of approaching instability 
readily determinable. The instrument is calibrated by means of 
pointer readings at two places where g is accurately known and 
the linear calibration curve makes it available at other places. The 

readings may be made rapidly and, when correction 
is made for temperature effects, they have considerable 
accuracy. 

A more recent form of instrument in which the con¬ 
trolling element is a thin spring under flexure is the 
Boliden ^ gravity meter which is shown diagrammatic- 
ally in Fig. 13. The mass M is sustained by the 
supporting springs F, F and ends in two flat plates 

Q2 which arc parallel to, and a short distance from, 
the plates Q^, These are insulated from the main 
frame of the instrument by the insulating slabs B, B, 
The plates Pg form a parallel plate condenser which 
is part of an oscillatory circuit, the frequency of which 
is compared with that of an independent standard 
oscillator. The leads C establish contact with the con¬ 
denser Pj, Pg. If the gravitational field intensity 
changes, the gap between Pj and Pg undergoes a pro¬ 
portional change owing to the altered bending of the 
spring, and this produces a capacity change 6c given by 
6c 

c t ' 
where t is the original separation of the plates 

and 6iv is the change in separation. Thus 

where 6N is the frequency change produced. The 
calibration may be made by applying known potential 
differences to the lower pair of plates Qg, calculating 
the consequent force of attraction, and constructing 
a graph of attracting force against frequency change 
or, conversely, in the field the necessary potential 
difference to restore the frequency to the original value 
may be measured as applied to the plates Pj, Pg or 

Another form of gravity meter is shown in Fig. 14. 
CiRAviTY This instrument, which is known as the Gulf Gravity 
Meter. Meter,^ makes use of the fact that a spiral spring, 

constructed from a flat ribbon of metal, tends to 
unwind, or wind up, when the load it sustains is increased, 
or decreased. The spiral, fastened to a torsion head at the top, 

1 See Sundberg, K., Bull. Instr. Min. Met.y London^ 402 (1938). 
®Wyckoff, R. D., Oeophys.^ 6, 18 (1941). See also Reports on Progress in 

Physics, Vol. IX, 198 (1942-8). 
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sustains a load, including the mirror M, at the bottom and the 
constants are such that the load produces an untwisting of about 
8 revolutions. Thus any alteration in the weight of the attached 
mass will produce a proportional rotation of M, A beam of light 
is then reflected to and fro between M and a fixed reflector so 
j>r()dueing a magnified deviation, and after four such reflections, 
the illuminated slit image is observed by mear)s of a microsco})e 
with a micrometer scale in the focal plane of the eyepiece. The 
operation of the optical system can be understood by reference to 
Fig. 15 in which M, a plano-convex lens, faces a similar lens N 
through which passes the light from a slit at S. Each of the plane 
faces of the lenses has a thin aluminium film, the density of which 
is arranged to produce maximum intensity in light which has made 
two transmissions and four reflections. A series of such images is 
seen, as indicated by Z?, C\ />, in which A is the direct image, 
B that seen after 2 reflections, cic. 

Fio. 1.5. 

In both these instruments the effect of temperature change, 
though small, is appreciable and control to about 0 02'' C. is neces¬ 
sary. The Boliden instrument is sensitive to about lxl0~® cm. 
per sec. per sec. and the Gulf Meter to about 5xl0~^ cm. per sec. 
per sec., or 5 x 10“ ^ viilligals. The last-named unit is now commonly 
used for small changes in g and is defined by the relation 

1 cm. per sec. per sec. = 1000 milligals, 

25. Eotvos Balance.—The accuracy of the pendulum is insuffi¬ 
cient to permit its use for the measurement of small variations in 
gravity, caused, by such neighbouring masses as buildings or com¬ 
paratively small geological deposits. For this purpose some instru¬ 
ment much more sensitive to changes in g must be used. The 
Eotvos ^ balance has the necessary sensitiveness. It aims at 
measuring the gravity gradient, so that it is only comparative. 

The essential parts of the balance are shown in Fig. 16. A 
torsion head T is comiected to a platinum iridium suspension 

iE6tv58, Wied. Ann,, 59, 385 (1896). 



88 THE ACCELERATION OF GRAVITY 

T 

Fig. 10. - FjOTVos 
Bai.ance. 

thread /I, 60 cm. long, which supports the 
torsion beam B of length 40 cm. At one end 
of B a fine platinum wire 65 cm. long, 
supports a small platinum weight D about 
25 gm., while at the other end is a counter¬ 
poise weight i\ A light aluminium rod h\ 
joined to the beam at its centre of gravity, 
carries a circular mirror M, which is used, in 
conjunction with a telescope and scale, to 
measure the deflections of the beam. 

If the value of g varies from point to 
point in the neighbourhood of the instrument, 
a couple will act on the suspended system 
and will produce some twist in the wire, 
deflecting the beam from that (unknown) 
position which it would occupy if gravity 
were constant. When the equilibrium posi¬ 
tion of the beam makes an azimuth angle 
0 with the north-south direction, and n arc 
the scale readings in this and the (unknown) 
direction 1‘or no gravitational tor<|ue, re¬ 
spectively, the relation betweiai them is 
given by 

dn 20+2^1 cos 2d 

C 
dzdx 

cos 0, (83) 

where A and C are instrumental constants, U is the gravity potential, 
and 

du 
A—^ is the value of the gravitational attraction along the 

north direction, 

dlJ 
F=^—- is that along the east direction. 

Z- 
dlJ 

dz 
is that in the vertical direction. 

This formula may be deduced as follows ^:— 
The beam is in equilibriuni under the opposite actions of the 

force systems due to 
(«) The force of gravity, and 
(b) Torsion in the suspension. 

* See Shaw and Lancaster Jones, Phys. Soc, Proc., 35, 151 (1928); 35, 204 
(1923); Lancaster Jones, Reports on Progress in Physics, Vol. II, 97 (1935). 
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With respect to {a) it is assumed that the complete system has a 
potential function IJ, which is uniform in the neighbourhood of any 

dZJ BU 
point external to the earth, and of which the derivatives 

ox oy 
3 7* f ri 2 7" r 
„ , „—,-, etc.y are also uniform at such points for any system 

dz dxdy 
of rectangular axes. 

Fi(.. 17. 

In Fig. 17, axes Ox, Oy, Oz arc chosen so that Oz is vertical, 
while Ox and Oy are horizontal. Let X, Y, Z be the forces along 
these axes on unit mass at a point (xyz). At 0 we have A=F=() 
and Z—gQ, if we assume that the resultant force at O is along 0;^. 
At the point xyz, 

^ , /dX\ , /dX\ 

, /dz\ , 

and if we assume that, in the region covered by the balance, the 
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forces A, F, Z are so nearly uniform that we can neglect terms in¬ 
volving etc., and the second derivatives of X, F, Z, then 

and the torque about Oz will be 

r==^{Yx-Xy)dm, 

where the integral extends over the whole suspended system, lienee, 

dm dm 

In the equilibrium position tiie beam is inclined at an angle 0 
to the Ox axis and thus x—r cos 0 ; y~r sin 0, where r is the distance 
of tlie particle from the axis. Substituting these values wc have 

sin 20, 

/y“)dm----cav 20^rHfn~l cos 20, 

zxdtn -- cos O^Zi 

yzdni~sin ojr: 

rdm -~}n/tl cuss 0, 

Aim — in Id sin 0 

in whicli 1 is the moment of inertia about the axis. The latter 
results follow from the symmetry which exists about the axis of 
the beam. Thus 

~\-}n Jd[ cosO- 
\dydz 

where the quantities etc., are supposed to have the values at 

the origin. For equilibrium F—rcj}, where <f) is the angle of twist. 
Let nj be the scale reading corresponding to the 6 position, and let 
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n be the reading for the true zero when F—O, Then if d is the 
distance from the mirror to the scale, 

and 
2d,ir/dHJ dw\sin20 dm 

If, now, we write 

we have 

and C 
T 

2d.mhl 

T 

2d. mill 

'dm . dm . . 
----- cos t/—- sin 0 
di/dz dzdx 

—r sin 6 (' cos 0 

which is equation (33). 
The quantities / and t are instrunienlal constants, and are evalu¬ 

ated as follows :— 

(a) Determination of X*—An accurately turned lead sphere— 
placed alternately on the left and right sides of in in a line perpen¬ 
dicular to the beam and at a measured distanc*e from m—is used 
to produce a deflection of the beam. Then 

where (n — u') is the displacement of the zero, .1/, th(‘ mass of the 
sphere, s, the mean distance of the centre of the sphere, from the 
axis of the suspended cylinder, b, the length of the cylinder, and 
G is the constant of gravitation. 

{b) Determination of L—The quantity 1 is most (*onvenicntly 
determined by hanging the suspended system from a shorter and 
thicker suspension—in its usual form the period is very long—and 
finding the time of vibration first alone, and then with added masses 
on the beam. This is the usual torsion balance method of measuring 
moments of inertia. 

By these preliminary experiments and measurements of d, m, b, 
and Z, the quantities A and C arc determined, and thus observations 
of nj in five different azimuths arc sufiicient to determine n and the 
quantities 

\dy'^ &r 2 j ’ y d.rdy) \ dydz) \ dzdx) 

at the point 0, 
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It is convenient to take readings of for six different azimuths 
at intervals of 60° ; the one superfluous reading then affords a check 
on the observations and enables the readings to be immediately 
repeated, if any discrepancy of unusual magnitude is disclosed. 

Equation (33) may be rewritten 

“.'F sin 20~\-B' cos 20 -\ -C' sin 0 \-l)' cos 0 , (34) 
where 

dHJ 

V 

dHr 

dx'^ 
B'- 

r ( 
renr 

dzdx_ ’ 

dHJ' 

dijdz 

dHJ' 
dxdif 

If we put 60°, 120°, 180°, 240°, ; 
corresponding values of /q are /q, n^, /q 

l'^^3 I 1 'b f nf. =^Sn 

2 \4t1'=--'2(??2 -W3)- (/?! 

100° 

. n,, 

in (34), ajul 
n^ we hav(' 

the 

2B'—ni-\-n^~2n, n^, 

2 V8C'=2K-/g-(//,i - »,). 

Thus all the derivatives in equation (33) are determinc'd. In 
particular the rate of change of northwards is given by —C'/C 
and that eastwards by D'/C. 

To estimate their magnitude, and thus to obtain an idea of the 
necessary sensitiveness, we may apply Ilelrnert’s formula ^ to the 
latitude of London, viz. 51° 30'. At London g~l)81*1806, and thus 

dx 
dHJ 
dzdx 

^7-9376x10- 

/dW dHJ\ 
[dy^ dx^J 

dxdtj^ 

-:r:r4•005Xl0-^ 

In one of Ebtvos’ instruments the constants A and C were 
0*05162x10® and 0*14087x10®, respectively. Thus for 6-~90°, 

-n — (4*005 X 0*05162) — (0*14087 X 7*9376) 

~-~l*3, approximately. 

This difference in reading would be easily noted. If there arc large 
local masses, the differences in reading may be as much as ten times 
the above quantity.^ The limit of accuracy with pendulum experi¬ 
ments is about 1 X10“^ C'.G.S. units, while that of the Eotvos balance 
is of the order 1 x 10“® C.G.S. units, and because of its great sensitive¬ 
ness the balance has been used commercially in the survey of oil 
fields, while Shaw and Lancaster Jones used it to map the local 
gravitational field in a laboratory. 

1 Equation (82). ‘See Shaw and Lancaster Jones, loc. ciU 
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26. Geophysical Prospecting.—Geophysical prospecting is the 
location of mineral deposits by means of measurements of gravita¬ 
tional, electrical, magnetic, and seismic magnitudes, which have 
been modified from the normal values by the nature and position 
of the deposit. There are peculiar difficulties associated with the 
work, owing to the extreme smallness of the magnitudes measured, 
the exigencies of field work, and the aggregation of effects, sin(‘e 
it is impossible to isolate the deposit from its surroundings. 

The gravitational method, with which we are concerned, depends 
upon the fact that local anomalies of density affect to a measurable 
extent the space variations of the gravity force which operates upon 
some type of balance or (^radiometer, as it is now commonly termed. 
There are many types of such instruments, Eotvos balance, 
Oertling and Cambridge gradiometers, but in all cases the readings 
obtained by means of the instrument are reduced to provide the 

desired values of the gravity gradients, relating to sub¬ 

terranean anomalies. The procedure is then as follows : — 
These subterranean gravity gradients are combined into gradient 

and curvature vectors, c.g. 

dm d (di 
d A d^ 
Udv\ ag 
\dz)~dx 

where is the gradient of g at a point O in the direction O.v, the 

dm d<i 
axis of ;3 being taken as vertical. In a similar manner 

dydz dy 
i.e. the gradient of g in the direction Oy. Thus the resultant hori¬ 
zontal gradient, G, is known in magnitude and direction. 

Putting I7j~- 
dm dm 

and remembering that the magnitudes 

of and of I/j are fixed in s})ace, and depend only upon the 

field of gravity at the point considered, we can combine these quan¬ 
tities to form a vector, specified by a magnitude R in a direction 

making an angle X with OeV, where fan 

solutions Xi and X2 differ by 71/2, and give the directions of the two 
principal axes of curvature of the level surface, or as it is called, 
the equipotential surface at O, 

The values of the gradients G and curvature vectors R at the 
various observing stations in a gravity survey are plotted, the 
direction of X2 being such that secant 2X2 is of opposite sign to U^. 

In this manner a representation of the gravity variations over the 
region is obtained, and from the gradients a series of closed lines, 
called isogamsy can be drawn on the plan. These isogams resemble 
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contour lines on an ordnance map, and arc everywhere perpendicular 
to the gradients. 

Such an isogam chart is an eflective visual guide to the inter- 
f)retation of the subterranean anomalies which give rise to the 
gravity variations. If the isogams are parallel and equally spaced, 
it can b(^ assumed that the structure below the surface is uniformly 
monoclinic in type, whereas dome-like subterranean structures give 
ris(‘ to isogams resembling the contour of a surface dome. 

The variations of the magnitude of the gravity gradient, along 
a section line of the area, is also used as a means of the interpretation 
of structures, a type of profile chart being constructed for selected 
sections. For success in geophysical prospecting, considerable ex¬ 
perience, both in the use of instruments and in the interpretation 
of their indications, is necessary. 

27. Acceleration of Gravity at Sea.- The measurement of 
gravity at sea presents many dilliculties, but Dufheld ^ carried out 
a scries of experiments during a visit of the British Association to 
Australia in 1914. The underlying principle was to compare the 
atmospheric pressure, given by a special marine barometer, with that 
found by an aneroid barometer. The reading of the former, only, 
varies with gravity. The value of g is found from 

f* J-.1 jy 
where is the value of gravity in latitude 45°, and p, B are the 
pressures given by the aneroid and mercury barometers, respectively. 

In addition to the temperature correction, the ship’s motion in¬ 
volves a correction for the change in centrifugal effect. This amounts 
to about 0*05 millibar per knot at latitude 50°. A vertical accelera¬ 
tion of the barometer is produced by the rolling and j^itching of the 
ship, or by its rise and fall as a whole. When the mercury is 
oscillating from this cause, it is necessary to take a mean of successive 
maxima and minima readings. 

The results show that the general deviation of gravity from the 
theoretical value, over oceans of 6000 metres depth, is not greater 
than 0-3 cm. per sec. per sec. There appears to be a defect of gravity 
over very deep oceans and on the edge of a continental mass, especi¬ 
ally if there is a coastal mountain range. Higher values are obtained 
over island stations than over deep seas. 

In a gravity expedition, undertaken by the U.S. Navy,^ measure¬ 
ments of g were made in a submarine at forty-nine stations in the 
Gulf of Mexico, the Caribbean Sea, and on the way to and from 
the Hampton Roads. At the same time, echo soundings of the 
depth were made. The results showed a generally high value of g 
over almost the whole of the Gulf of Mexico, but over very deep 
water the expected decrease in gravity was observed. 

iDuffield, Ptoc. Roy, Soc., 92, 505 (1916). 
* Meinesz, K, Akad, Amsterdam^ 32, 2, 94 (1929). 
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A furtlier survey from Curacao to the Azores lias been made and 
discussed by Meinesz,^ using a more robust form of apparatus. 

EXAMPLES 

1. Two masses 90 gin. and 100 gm. respectively are supported verti¬ 
cally by a weightless inextensible string passing over a light frictionless 
pulley. If the pulley is pulled upwards by a force of 200 gm. weight 
find the acceleration of each of the masses relative to the ground. 

|g/9 upwards ; 0.] 

2. If, in the above question, the mass, radius, and moment of inertia 
of the pulley were 100 gm., 2 cm., and 200 C.G.S. units respectively, 
find the linear accelerations of the suspended masses and of the pulley 
relative to the ground. [0-280 g ; 0-338 g ; 0-309 g.] 

3. Two cylinders of equal size, one solid, the other hollow but with 
closed ends, roll without slipping down an inclined plane. If the wall 
thickness of the hollow cylinder is half the external radius while each 
end thickness is one-eighth of the external length, compare the times 
for equal distances dowm the plane and the distances for equal times of 
travel assuming that each cylinder starts from rest. 

[0-972; 1-058.] 

4. A uniform horizontal circular disc is suspended by three equi¬ 
distant vertical threads of length I attached to the rim of the disc. The 
disc is now given a small angular horizontal displacement and released. 
Find the time of one complete oscillation and show that it is independent 
of the number of supporting threads. [27t\^{l/2g)>] 

5. A magnet of moment M is suspended in the magnetic meridian 
by a bifilar support with inclined threads each of length /, their distance 
apart being 2a and 26 at the top and bottom respectively. In order to 
bring the magnet, whose mass is m, into a position perpendicular to the 
meridian it is found necessary to revolve the upper points of attachment 
of the threads through 180 degrees about the vertical symmetrical line. 
If the horizontal component of the earth’s magnetic field is II show that 
MH = abmg/ \/(l^ —a^ —6^). 

6. A pendulum consists of a metal sphere of radius I cm. and mass 
35 gm., and a metal thread of mass 2 gm. and length 100 cm. Calculate 
the periodic time of swing (a) neglecting rotational energy about the 
centre of mass, (6) taking account of this energy. Take g as 981 cm. 
per sec. per sec. [I-980 see. ; 2-007 sec.] 

7. A uniform square lamina of side 30 cm. oscillates in a vertical 
plane about an axis perpendicular to the lamina and within its boundary. 
Find (fl) the minimum periodic time of oscillation and (b) the locus of 
points of suspension about each of which the periodic time is a minimum. 

[0-993 see. ; circle radius 12-25 cm.] 

8. A thin metal rod is supported by parallel bifilar supports con¬ 
nected to its ends, each thread being equal to the length of the rod. 
Compare the periodic time of oscillation in a horizontal plane with that 
when the rod swings as a rigid pendulum about a horizontal axis through 
one end. [I : v'2.] 

' Meinesz, K. Ned, Akad, Wet, Proc,, 43, 278 (1940), 
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9. In an experiment with a Kater pendulum the mean periodic time 
about the first knife edge was 1*6248 sec., while the arc of swing of the 
other knife edge decreased from 8*5 to 6 ] cm. On reversal the mean 
periodic time about the second knife edge was 1*6232 sec., while the arc 
of swing of the first knife edge decreased from 8*4 to 5*8 cm. If the 
distance between the knife edges was 65*77 cm., and the first and second 
knife-edge distances from the centre of gravity were 42*8 and 23*0 cm. 
(to the nearest mm.) calculate the value of g. [981*6.] 

10. If the value of gravity in latitude X at sea level is given in 
cm. per sec. per sec. by 

g-978*00[l +0*005310 ; j 

and the equatorial radius of the earth is 3985 miles, show that the earth 
is a spheroid produced by the rotation about its minor axis of an ellipse 
of eccentricity 0*0819 and calculate the value of the polar radius. 

[3972 miles.] 

11. A simple pendulum, with spherical bob of mass 1 kg., has a 
length of 100 cm. and hangs from the end of a metal rod which is fixed 
horizontally into a wall. If the rod is pulled sideways by 1 cm. when 
a horizontal force of 1 kg. acts parallel to the wall, estimate the per¬ 
centage error in a measurement of g when this yielding of the support 
is neglected, [0-99.] 

12. A common hydrometer has its 1*00 and 0*90 specilic gravity 
divisions 1 cm. apart. When it floats in water its vertical oscillations 
are found to have a periodic time of 0*7 sec. Calculate its periodic time 
on the assumption that gravity (g=^981) is tlie only controlling force 
and explain the difference between the calculated and observed values. 

[0*6 sec.] 

13. A wheel and axle rotates about a horizontal axis without appre¬ 
ciable friction. The motion is caused by the descent of a mass m sup¬ 
ported at the end of a thread which is wound around the axle of radius r. 
If the descending mass falls a distance x from rest in t sec. find the 
moment of inertia of the wheel and axle. \1 

14. A massive hoop oscillates in its own plane about a horizontal 
axis at a distance x above the centre of the hoop. Find the value of x 
if the periodic time is to be a minimum. Hence, or otherwise, show that 
when X equals the radius of the hoop the addition of a massive particle 
at the lowest point of the hoop makes no difference in the periodic time. 

[ic = a.] 

15. A double inclined plane in the form of an inverted V has a light 
frictionless pulley of radius 2 cm. at its apex and, passing over this 
pulley, is a light inextensible string which is connected at one end to 
the axis of a solid cylinder of mass 400 gm. and radius 4 cm. and, at 
the other, to the axis of a thin hollow cylinder of mass 100 gm, and 
radius 4 cm. These cylinders run freely along the directions of greatest 
slope of the inclined planes each of which is at 30° to the horizontal. 
Find (a) the acceleration of the system if the plane is rough enough to 
prevent sliding, (b) the tension in the string. 

[3g/16 ; 87*5 gm. wt.] 

16. A heavy uniform rod of length I swings in a vertical plane about 
a horizontal knife edge passing through one end. Find at what point a 
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concentrated mass may he placed so that the time of swing may be 
unaltered. [2//3.] 

17. A balance has arms of 10 cm. each and all three knife edges in 
the same i)lane. Each scale pan is H cm. below its supporting knife 
edge and the periodic time of oscillation with no load is 4 sec. When 
ca(‘h scale pan carries a concentrated load of 100 gm. the time of swing 
becomes 5 sc(‘. What will be the time of swing for (*onceiitrated loads 
of 200 gm. in each scale pan? g-981. [5-83 sec,] 



CHAPTER III 

(iHAVlTATION 

28. Newton’s Law of Gravitation. shows that 
the attraetioii exerted by auy portion of matter on anotlier depcauls 
only on their masses and distance apart. Each body may be re¬ 
garded as an aggregation of massive particles, and the total gravita¬ 
tional action is the resultant of the individual actions of these 
constituent elements. The law of gravitational attraction which 
Newton discov(^red may be enunciated thus ; Any particle of 
mass attracts another of mass distant d away, with a force, 
in the line joining them, proportional to the product of the masses 
divided by tiu* scpiare of the distance of separation.” Tn symbols 
this becomes 

where G is a universal constant whose value depends ojily on the 
chosen imits of mass, distance, and force. 

This law has been regarded as the most perfect generalisation of 
experience in the whole of Physics, because, on the one hand, its range 
is so wide and, on the other, there is such a vast amount of confirm¬ 
atory evidence—the divergences, indeed, being so few that until 
recently it was thought that they were due to undiscovered perturbing 
influences, rather than to a want of exactness in the law. It is now 
realised, however, that serious objections may be raised to the above 
enunciation as a complete description of gravitational force, although 
these cannot, of course, destroy the harmony between the over¬ 
whelming majority of cx})crimental facts and the predictions arising 
from the Newtonian formula. We shall later discuss the evidence 
in favour of this law, and review briefly the considerations for the 
modern view introduced by Einstein. 

29. Gravitational Attraction and Potential.—At any point 
in the space surrounding a gravitating particle, there will be a 
definite attracting action on another particle placed at that point. 
Thus the whole of this space may be regarded as permeated by the 
gravitative influence of the original mass, and we may speak of the 
attraction at a point, when we mean the force which would act on 
a particle of unit mass placed at that point. Also, to move this 
unit mass, from one point to another in the gravitational field, would 
require an expenditure of work against the attraction. The amount 
of this work—which may be positive or negative according to the 
direction of movement—is called the difference in gravitational potential 
at the points. The absolute measure of the potential at either point 

48 
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will be indeterminate, until some arbitrary choice of zero potential 
is made. This zero is conventionally taken to be that at a point 
at an indefinitely large distance from all attracting matter, or, as 
it is usually expressed, at infinity. We then have the definition : 
“ The (negative) gravitational })otential at a given point, due to 
any system of attracting masses, is the work done in bringing unit 
mass from infinity u}) to the point/' 

It will be realised that tlie attraction at a ])oint is a vector 
quantity, while the potential is scalar. If the jiotcntial had direction, 
it would be possible to accumulate energy by bringing the unit mass 
up to the point along the potential direction, and removing it to 
a very large distance away in some other direction. It would then 
be })ossibic to regain the original (infinitely distant) starting-point 
through a path each point of which is at zero potential, and this 
would require no expenditure of work. Thus there would be a net 
gain of energy without a compensating loss at another point, and 
this is contrary to the jirinciple of energy conservation. 

30. Connection between Attraction and Potential. - If at any 
point in a gravitational field the attraction component in a specified 
direction is F, then the work done in moving unit mass an infinitesimal 
distance ds, against the attraction, is Fds, Rut this is the difference 
in potential dV between the points at a distance ajiart ri.9. Thus 

d('--=-Fds, or • • • (S-"') 

To find the dilference in potential at two points, separated by a 

finite difference, we have V~^Fds\ where the limits for 6" apply to 

the two points considered. 

31. Special Cases of Attractions. -The following cases of 
attraction arc important: — 

(i) Thin Spherical Shell. - In Fig. 18 F is a point placed at a 
distance a from the centre (> of a thin spherical shell of radius r, 
mass 3/, and wall thickness /. Ry symmetry the attraction at P 

Fig. 18.—Attraction of a Sphkricai. Siiei.t.. 

E 
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will be along OP, Divide the shell into thin circular rings, with 
centres on OP^ of which the typical one has radius QN=r sin 0 and 
width rdd. Each element of this ring is at the same distance, 
from P. Its attraction at P along PO is given by 

, ^ sin 6. rdO. t. m 
clFrr^G -„ . 

iV- 
eos qPO, 

where m is the mass ])er unit volume of the shell. Thus 

,^2,7irHtn sin Odd a — r cos 0 
dP^G 2 • 

X 

This equation contains two variables, 0 and a\ To eliminate one 
we mav utilise the relation 

or 

and 

so that 

and 

\ 2ar cos 0, 

xdx—a?' sin ddO, -^ 

a r cos 0 - 
2a 

j 27Tmtr\vdx a“-\-x’^-~r- 

x^ar 2ax 

.;a7nrtcr . 

where the limits of the integral are given by the ])osition of P, 

(a) P External to the Shell. 

« J—L ■' J 

ijir^nrt M 
--(r-;—~G~ - 

(P 
, (36) 

Thus the shell attracts an external particle as if its mass were con¬ 
centrated at its centre, 

(h) P on the Surface of the Shell. 

A difficulty appears here, since it seems that the second term of the 
integral is zero for a=r. This is not so when aJ=0. To find the 
true value of the integral, we may suppose P to be very near the 
surface, and thus a=^r-\-d, where d is very small, and find its value 
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when d becomes indefinitely small. Then 

dx 

^mrt f J. 2r5' 
2" 

•> when b vanishes, 

\inG)ni J 

(r) P Itiside fhe Shell. 

=0 

(;i7) 

(.-58) 

There is thus no resultant attraction, due to the shell itself, at any 
internal point. 

Solid Sphere and Thick Shell.—A thick shell and a solid 
sphere may be supposed to consist of concentric thin shells, and 
thus the results proved above may be utilised in determining their 
force of attraction. 

(a) P External to Shell or Solid Sphere.—The whole mass may 
be supposed to be conccjitrated at the centre, and thus the field is 
given, over the range a==co to «—r, by 

.... (39) 

(b) P in the Thick Shell Cavity. —The ])oint now considered is 
within all the constituent thin shells, and thus there is no resultant 
attraction. 

(c) P in the Material of the Shell.—Those constituent shells 
external to P will exercise no attraction, while those inside will act 
as if their masses were all at their common centre. Thus, if a is 
the distance of P from the centre, and it has a value intennediate 
between the external and internal radii of the shell, 

gMra«-ri»~ 
a® r*—’ 

(40) 

where is the internal radius and p the density of the material of 
the shell. 
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(d) P in tiw Maferial of the Solid Sphere.—In this case >i=0, and 

G 

_4 jipGo,=G 
Ma 

(41) 

Thus the attraction, which, of course, is directed towards the c(*ntrc, 
is directly proportional to the distance* from the centre. 

32. Special Cases of Potential.—As potential is of the greatest 
importance in the th(‘ory of gravitation, the value of the function, 
due to a given mass system, will be determined in a few eases from 
the fundamental definition. 

(t) Potential due to a “ Massive Particle.** -Consider the 
j)otcntial at a distance a from the particle of mass ]\I. The attrae- 

GM 
tion at a distance fv is towards the particle, and the work done 

in moving unit mass away from the point by the small amount dx, 

is The total work done in moving the unit mass from a 

distance a to infinity is 

. Va - f GM GM 

a 

The work performed in bringing unit mass from infinity to the 
distance a from the jiartiele is 

GM , , 

a ^ ' 

(ii) Potential due to a Thin Spherical Shell.—Let the shell be 
divided into rings, such that each clement of a particular ring is at 
a distance x from P (Fig. 18), and thus the potential dV at P due 
to this ring is, from equation (42), 

^27zr sin 0. rdO. nit 
dV~--G 

X 

^27irmt, 
— 

Vp: 

a 

*2jinnt, 
~G-dx, 

a 

and, again, the limits of integration depend on the jiosition of P. 
(a) P External to the Shell. 

Vp^~G 

G 

a 

Ajirhnt 

I dx 
J a--r 

a (43) 
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and this would be the result, if all the mass of the shell were placed 
at 0. 

{b) V on the Shell.~ln this case and 

Vi 
^27trrnt f-', 
G-1 ax 

« Jo 

a 
M M 

r 
(41) 

so tliat the whole' mass of tlie shell may still be suj>posed situated 
at its centre. 

(c) F Inside Ihe Shell 

1, 
(45) 

i.e, the potential inside the shell is constant and equal to its surface 
value. 

(Hi) Thick Spherical Shell and Solid Sphere. ~(a) P External 
to Shell, or Sphere.—A constituent thin shell of mass |)roduces 
a potential dP at P, given by equation (43), i.e. 

dV-~=-~G Ml 

V 
a • 

-\x- (46) 

(h) P in Cavity of Thick Shell.—^A constituent thin shell of radius 
X and thickness dx produces, at an internal ])oint, a potential dV 
given by 

dl ~G-— * 
X 

Thus, for a shell of radii r and 

Vp^ - G.4i7Tp[ xdx 
Jr, 

z=t—G. 2.7rp[r “— 

(47) 

(c) P in the Material of the Thick Shell.—Tiie part of the shell 
exterior to P produces a potential given by 

Vx^-~G.2np[r^—a^]. 

The remainder, to which P is external, produces a potential T\, 
where 
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rr ^ 2 G. 2 - f (rt.»- r 1») 

-r-- =G.^^| -rt3 f3rt;-2 

]\I :V/r- -2/*!^ a'^ 
(4S) 

((/) P in Ihe Malerinl of the Solid Sphere. -In this ease P is 
external to a solid sphere of radius a, and internal to a thick shell 
of radii r and a. The potentials, !\ and Fg, at P due to these 
two parts are :— 

l\^~G,27ip[r^~-a^l 

and Vr^T, + J\^ ~G.271 p\r^---<r^ l-^a^ 

GM 
;3r- 

2/‘ 
(49) 

This result is also given by putting / j—0 in (18). It is left to the 
student, as an interesting exercise, to represent these potentials 
graphically, and to deduce the attractive forces from tlie |)0tentials 

by means of the relation F~ . • As an exam[)le, consider equa¬ 

tion (48) : -- 
3ar“- 2ri^'—a-n 

- /y ^ 

P —   r„- G -- ' 
da a'^ r^ 

and this is the attraction given by (40). 

33. Constant of Gravitation—Mass and Density of the 
Earth.—The attraction exerted by the earth on a body near its 
surface is merely a special case—-although an important one—of 
universal gravitation, and thus follows the same law. If M is the 
mass of the earth and R is its radius, while //? is the mass of a body on 

the earth’s surface, the gravitational force F is given by F^~G^^* 

M 

since the earth is so nearly spherical that its mass may be supposed 
to be concentrated at its centre. The acceleration generated, if the 
body is able to fall freely, is 

^Mm GM 
(50) 

The radius of the earth is known, and thus, sinee the aceeleration 
due to gravity is also known, a measurement of either G, or M, 
suffices to determine the other. An experiment which aims at the 
measurement of M is sometimes called “ weighing the earth,” but 
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such a term is used only in the inaccurate sense in which we speak 
of weighing a body by means of a beam-balance. The earth cannot 
properly be said to have any weight, if we restrict the latter term 
to the attraction which the earth exerts on a body near its surface. 
Experiments on the constant of gravitation arrange themselves 
naturally into two classes. In the first, the primary measurement 
is that of M, and then G is deduced from (50), while, in the other, 
the direct measurement is of 6r. A knowledge of M and R gives 
a value for the mean density I) of the earth, since 

.... (51) 

34. The Measurement of M.—(a) The Mountain Experi¬ 
ment.—In his experiments in the And<‘S, Bouguer attempted to 
demonstrate the presence and tin* magnitude of a plumb-line’s local 
deflection, due to the neighbouring large' mass of Chimborazo. If 
an instrument is set by means of a j)lumb-line, it will observe in a 
vertical plane, only if the line is accurately vertical. If the bob is 
drawn aside towards the north, the axis of the observing telescope 
will intersect the celestial sphere to the south of the meridian, and 
a star in the meridian will appear to have been displaced in a 
northerly direction, the angular displacement being equal to the 
divergence of the plumb-line from the vertical. At a second station 
in the same latitude, some miles to the east or west of the first, the 
attraction of the mountain is inappreciable, and thus the star has 
no apparent displacement. These two observations determine the 
ratio of the two attractions—the mountain’s and the earth’s—this 
ratio being the tangent of the star’s angular displacement. From 
the dimensions and structure of the mountain its local attractive 
action may be calculated, and thus the mass of the mountain is 
compared with that of the earth. Bouguer’s experiment was carried 
out in very dilhcult circumstances, and, although successful in 
detecting the expected effect, his result, which attributed to the 
earth a mean density of about twelve times that of the mountain, 
was too high. 

The experiment was repeated under the direction of Maskelyne, 
who was then the Astronomer Royal. The mountain selected was 
Schiehallion in Perthshire, and it was elaborately surveyed to obtain, 
with the greatest possible accuracy, both the mountain’s mass and 
the position of its centre of gravity. The plumb-line deflection was 
determined by means of a zenith sector, the two stations being at 
equal distances from the centre of gravity and in a north-south 
line. The apparent shift of a star gave a value double that of the 
plumb-line deflection produced by the mountain. The estimated 
average density of the mountain was 2*5 gm. per c.c., while the 
total relative deflection of the plumb-lines was 12 sec. of arc. From 
these results the earth’s mean density was calculated to be 4-5 gm. 
per c.c. This value was increased to 5 0 gm. per c.c, after a 
resurvey of the mountain. 
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(6) Airy’s Mine Experiment.—In this experiment Airy compared 
the earth’s mean density, il, with that, d, of the surface constituents, 
by determining the values of g at the top and bottom of a coal-mine 
shaft. If gi and gg these two values as measured by means of 
a pendulum, then, from (50) and (51), 

where li is tin? depth of the shaft; or 

g^_[R~hY D 

■<2 It RD-Ud 

2h iilid ■ , \ \ 
H ^ Ri) 

• (approxiniatdv) . . (52) 
/? Z> ' ' * 

After two failures through accident, Airy performed the experiment 
at the Harton coal-pit. The pendulum readings were taken with 
the greatest care, and this part of the experiment extended over 
three weeks. Samples of the rocks through which the shaft was 
bored were assayed, and the value of d was found to be 2*5 gm. 
})er C.C., and the mean density of the earth was calculated to be 
6*5 gm. per c.c. 

In these and other attempts to utilise large natural masses in the 
measurement of ]), the source of greatest error lies in the calculation 
of the comparative mass, and the divergence of Maskelync’s and 
Airy’s values for D must be attributed to this difficulty. 

35. The Measurement of G.—(a) The Cavendish Experi¬ 
ment.—As an alternative to using large masses and comparing their 
attractions with that due to the earth—which, as we have seen, docs 
not yield results of high accuracy - it is possible to deal directly with 
the mutual attraction between bodies of comparatively small size. 
In this case the gravitational forces are so small that refined methods 
of observation are needed, and all other forces affecting the body 
must be negligibly small, or accurately measurable. Mitchell sug¬ 
gested that a torsion-balance might be used, but he was prevented 
from carrying out the experiment, and his apparatus and suggestion 
passed to Cavendish,^ giving rise to the famous Cavendish experiment. 

A long light rod carried at each end a small massive sphere m, 
and the whole was supported by a suspension wire attached to a 
torsion head. Two large spheres M were brought near to the ends 
of the rod, so that the line of centres was horizontal and at right 
angles to the rod. In this way the attraction between the spheres 

1 Cavendish, Phil, Trans,, 83, 388 (1798). 



THE MEASUREMENT OF G 57 

produced a couple which tended to twist the suspension thread, 
and the beam was deflected until the restoring torque, due to the 
twist in the fibre, equalled the displacing couple. If 0 is the deflec¬ 
tion, d the distance between the centres of the interacting spheres 
in that position, and I the length of the beam, then the deflecting 
couple r is 

The restoring coiqfle is proportional to the relalixe twist between 
the ends of the thread, and so, for equilibrium, 

, rOd^ 

where r, a constant for the given suspension, is known. 
The apparatus actually used by Cavendish was rather large*. 

The beam was 6 feet long, the torsion wire—whieli was of silvered 
copper—was over 3 feet long, the deflecting masses M were spheres 
of lead 1 foot in diameter. A sj)eeial room was erected to liouse the 
apparatus, and all manipulations and readings were made from the 
outside. Despite this, it was found impossible to avoid all tempera¬ 
ture gradients, and air currents produced erratic movements of the 
suspended system, so that the torsion-beam was never at rest. The 
equilibrium position was estimated by observing a number of swings, 
when the masses M were on either side of the beam. These read¬ 
ings were taken by means of a telescope, and the beam carried, at 
each end, a vernier moving over a fixed scale. Thus a value equal 
to 2d was obtained. 

(k)rrections were ap[)lied for the following errors :— 
(i) Each large sphere attracted also the more distant small sphere, 

and thus an apj)reciable opposing gravitational couple was produced. 
(ii) There was an attraction on the torsion-beam tending to 

increase P. 
(iii) The rods supporting each large mass il/ tended to increase 

the deflecting couple. 
The mean result calculated from 29 readings gave :— 

G=[6-754db0-041]xl0-8 C.G.S. units. 
i)=5*448±0-033 gm. per c.c. 

This experiment was repeated many times by other observers, 
and the results of these and other determinations are given in 
Table III. 

(b) Boys* Modification of the Cavendish Experiment.—In the 
original Cavendish experiment the accuracy of determination was 
limited by the following factors:— 

(i) The suspension was necessarily rather thick to support the 
heavy beam. This entailed a comparatively large value for r and 
a correspondingly small deflection. 
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(ii) The method of measuring 0 by verni(*rs was not capable of 
great accuracy. 

(iii) Temperature gradients in the large apparatus could not be 
avoided, and the elimination of the accompanying disturbances due 
to convection currents was impossible. 

(iv) The counter gravitational couple still further reduced 0. 
Professor C. V. Boys,^ by using fine quartz fibres of great strengt h 

and regularity in elastic properties, constructed a smaller apparatus 
on the Cavendish principle with increased sensitiveness ; for quartz 
threads, though as strong as steel wires of the same size in breaking 

stress, have a much smaller resistan(*e to 
torsion. The defleetiou in his experiment 
was observed by means of a mirror and 
illuminated scale, and was therefon' 
measurable to a much higher d(‘gree of 
accuracy. The small size of the apparatus 
made it easier to avoid air currents, and 
thus the most troublesome diliiculty ex¬ 
perienced in th(‘ earlier work was rcrnovcfl. 
Finally, owing to the short torsion-arm 
used. Boys found it necessary, in order to 
reduce the opposing gravitational couple, 
to place tbe pairs of masses M and m at 
dilTerent levels. The main features of the 
Boys apparatus are shown in Fig. 19. T 
is the torsion thread, 17 in. long, attaelied 
to a torsion head 1) and supfiorting the 
arm AB, wliieh w^as about 1 in. long, and 
acted as the mirror for reflecting the light 
from the illuminated scale of an observing 
telescope. The small masses m were about 
I in. in diameter and of gold, while the 
large masses M were lead spheres 4| in. 
in diameter. 

The results obtained agreed well among 
themselves, and gave as final values :— 

G=6-6576xl0-8 e.G.S. units. 
D = 5’5270 gm. per c.c. 

P. R. Heyl ^ repeated a method of using the torsion balance first 
employed by Braun. Braun’s apparatus was larger than that con¬ 
structed by Boys, the distance between the centres of the small 
masses—each of 54 gm.—being about 25 cm, and that between the 
large masses—9 kg. each—about 42 cm. All the centres were at 
the same level, and the apparatus was maintained at a low pressure 
to minimise convection currents. 

iBoys, Phil Trans., A, 186, 1 (1895). 
*Heyl, Bureau of Standards Journ. of Research, 5, 1243 (1930), 

Fio. 19. - 
Hoys’ Modification of 

THF Cavendish Experi¬ 

ment. 
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Heyl's experiments were carried out in a constant-temperature 
room. The large attracting masses were steel cylinders, while the 
small masses were spheres of gold, glass, or platinum at the ends of 
an aluminium torsion rod, supported by a tungsten thread about 
1 metre long. When set swinging with an angular amplitude of 
about 4^^, the system (continued to oscillate or about 20 hours. 
The attracting masses were arranged in two ways : with all 
four centres in line horizontally, and (b) with the horizontal line 
joining the large masses bisecting the torsion bar at right angles. 
In the first, the near ” position, the gravitational attraction 
accelerates the swing, while in the second, the “ distant ” position, 
a retardation is produced. The calculation of the gravitational 
attractions is complicated by the cylindrical form of the large 
masses, but when performed for all the mass elements of the oscil¬ 
lating system, the restoring torques are respectively {r-\-AG) and 
(r—BG) per unit twist, A and B being instrumental constants—-in 
practice A w^as 422,312 and B 176,229 C.G.S. units. Thus the 
periodic times increased from about 1750 see. to about 2000 sec*, 
and the elimination of r from the periodic time ec^uations rendered 
(t in terms of known quantities, lleyrs weighted mean values 
arc* : 

G = [6-670±0-005]x10-8 C.G.S. units. 
D = [5‘515db0*004] gm. per c.c. 

A redetermination made by Ileyl and Chrzanowski, ^ using the same 
method, showed no significant variations from these results. 

(c) Poynting*s Balance Experiment.—It was suggested by von 
Jolly that, if the counterpoise of a balance is disturbed by placing, 
under the mass hanging from one arm of the balance, an additional 
large mass, then the extra attraction could be measured, and thus 
G might be found. The dilTiculty of the experiment lies in the fact 
that this extra pull is necessarily very small, so that the balance must 
be extremely sensitive—and therefore very susceptible to disturbing 
influences—and the corresponding deflection of the beam must be 
measured by some very delicate method. Von Jolly carried out 
such an experiment with fair success, and J. H, Poynting ^ per¬ 
formed a balance experiment on a much more elaborate scale. A 
sensitive bullion-balance w^as placed in an underground room, and 
was totally enclosed to diminish disturbances due to air currents. 
All manipulations were made by mechanisms controlled by rods 
from the outside. First the sensitivity of the balance was observed 
by noting the deflection, produced by a change in the position of 
a rider on the beam. Then the tilt, produced by introducing a 
large lead sphere underneath one of the suspended masses, was 
measured in the same way. The ratio of these deflections gave 
a measure of the additional pull in terms of the weight of the rider, 

' Heyl and Chrzanowski, Bureau of Standards, J. of Res., 29, 1 (1942). 
* Poynting. Phil. Trans., A, 182, 505 (1891). 
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and enabled G and L) to be calculated. The general arrangenient 
of Poynting's experiment may be seen in Fig. 20. 

The masses m at A and B were lead spheres oJ’ about 50 lb. each, 
and the main deflecting mass My—which was also of lead and about 
850 lb.—could be brought under or R, by rotating its supjK)rting 
turntable about the pivot P, a compensating mass, to avoid 
tilting the floor as My was moved, was about half the w(‘ight of My. 
'File clefleetion })rodueed by (‘hanging My from position (' to ])osi- 
tion I) was due to the excess attraction in the two eases, and, to 

Fie.. 20.—PoYNTiNc/s Bauanck Kxpkrimicnt. 

eliminate the effect of My and M^ on the beam of the balance, the 
experiment was repeated with the masses hi at A' and about 
1 foot higher. The change in deflection was then due only to this 
shift in position. 

Neglecting the effect of M^, G may be calculated as follows:— 
Let the deflection due to the movement of a rider of weight ng, 

through a distance x, along the beam be <f>. Then, where 
k is a constant for small deflections of the balance. 

Let d be the distance between tlic centres of Aly and in in eacli 

position A and B. Then the change in torque is G~^2l^ where 

2l is the length of the balance-beam. If the resulting deflection 
is dy then 

6'^.2/=*0, 

2Myml <f> 
or 
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A correction has to be applied for the effect of and the cross 
effect of Ml on the sphere m, suspended from the opposite end of 
the balance-arm. 

Both the angles 0 and ^ are small, and to measure them the 
double-suspension mirror suggested by Lord Kelvin was used. Its 
action may be followed from Fig. 21. The balance-pointer P has 
an arm N fixed to it at right angles to its plane of swing, and a 
second fixed arm M is placed so that a small gap AB -which may 

Fkj. 21. —Kklvin’s Double-suspension Mikror. 

be varied by moving M—is formed. From A and B bifilar sup¬ 
ports CC sustain a mirror JR, which is used to detect the movement 
of P. If AB is small, the system becomes extremely sensitive—the 
effects of air currents on R are minimised by the damping vanes F, 
which are immersed in oil—and a very small movement of P pro¬ 
duces a measurable deflection. If both (f> and 6 are measured with 
the same setting of the double suspension, there is no need to (*ali- 
brate the system or to measure the distance AB. Poynting’s final 
result was 

G=6*6984xl0~8 e.G.S. units. 
D=5*4934 gm. per c.c. 

36. Summary of Results in Experiments on G and D.— 
Table III gives the values for G and D obtained in the most important 
of the experiments on the constant of gravitation, 
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Table III.—Summary of Results eoji G and I) 

Experimenter and Date. Type of Experiment. 
Gx 10* 
C.G.S. 
Units. 

j D |?m. 
per c.c. 

! i 

1775. Maskelync and Ilntton Mountain 
1 

7-4 5-0 
1798. Cavendish Torsion balance 0-754 5-448 ! 
1843. Rally .... ,, 0-49, 0-02 5-07, 5-50 ; 
1854. Airy .... Mine 5-7 0-5 I 
1878. Cornu and Bailie Torsion balam^e 0-018 5-50 j 
1881. von Jolly Chemical ,, 0-405 5-092 ' 
1887. Preston*. . . . j Mountain : 0-01 ! 5-57 
1891. Poyntin^ . . . i Chemical balanc(‘ 1 0-098 5-493 
1895. Boys . . . . ! Torsion ,, 0-0570 1 5-5270 i 
1890. Braun . . j jj «> ' 0-058 i 5-.527 
1890. Eotvos . . . . 1 
1898. Kieliarz and Krigar- 

; 0-00 1 5-.53 

Menzel . . . i Chemical , 0-084 5.505 
1901. Burgess . . . . | Torsion ,, 1 0-04 .5-.55 
1930. Heyl . . . i ^5 1 0-070 5-517 

In a recent review of these results Rir^^e ^ has sn^g(‘sted as the 
most probable values ;— 

G=:[6-670±0-005]xl0-8 C.G.S. units. 
/; = [5*517±0'004] gm. per c.c. 

The manner in which the materials of the earth arc distributed 
is still largely in the stage of theoretical discussion, although the 
data of seismological research arc continually adding ])recision to 
knowledge of the layers near the surface. According to Jelfrcys ^ 
the most probable constitution comprises an outer shell of about 
iiOOO km. thickness and density varying from about 2-7 gm. per c.c. 
at the surface to about 5-0 gm. per c.c. at the lowest level. This 
surface crust is solid in character and encloses a molten core which 
consists mostly of iron with a density, under the conditions of 
pressure existing, of about 12 gm, per c.c. 

37. Qualities of Gravitation. - -We shall now discuss some of 
the circumstances in which the law of gravitation might be expected 
to vary. 

Permeability,—In both magnetism and electricity, where the 
fundamental laws of interaction between the relevant physical quan¬ 
tities have a close resemblance to the Newtonian Law of Gravitation, 
it is found that the attraction depends on the nature of the inter¬ 
vening medium. In the gravitational experiments described above, 
air was the medium between the attracting masses, but the accuracy 
of astronomical predictions, assuming the same law, indicates that 
G cannot be greatly different for free space than for air. This, how¬ 
ever, is not conclusive, for a similar result is obtained in electrostatics 

' Phys, Soc, Prog. Reps., 8 , 00 (194.1). 
* Jefieys, Roy. Astron. Soc. M.N., 97, 3 (193C). 
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and nuigueiisni. The direct experiment performed by Austin and 
Thwing,^ in which slabs of various materials were interposed between 
the attracting elements of a modified Boys’ experiment, showed that 
no change in G could be detected within the limits of the experi¬ 
ment. The effect, if present, is certainly on a much smaller scale 
than in the cases of magnetic permeability, or specific inductive 
capaeity. Finally, the agreement between pendulum cx})criments 
in which different materials are used for the base—and are thus 
interposed between the pendulum and the earth—indicates again 
that the effect sought, if present, is small. 

Selectivity. Aci^onVing to Newton’s Law the nature of the 
attracting masses is unimportant, and it is the magnitude of the 
mass, and not the type of atom, which determines the gravitational 
field. If we could regard cohesion as merely a static aggregation, 
obeying the inverse square law of attraction, then the force of 
cohesion could be determined from molecular size and mass, and 
the varying tensile strengths of materials would appear to indicate 
a decided selectivity of gravitation. Such assumptions, however, 
are invalid, and no such conclusion may be drawn. The negative 
results of Bessel’s hollow bob pendulum experiments, on the other 
hand, are not m^cessarily conclusive evidence of non-selectivity, since 
they merely show that the s})ecial case of the earth's gravitation 
—which is due to many types of material—is, on the whole, non- 
selective. This may be due to its various parts exerting an average 
equality of intensified and diminished attractions. The chief experi¬ 
mental foundation for the belief that the quality of the attracting 
matter is not important, is the agreement among the results of the 
Cavendish type of experiment which has been made with a variety 
of different substances as interacting masses. 

Directivity.—When crystals grow from solution their character¬ 
istic molecular structure seems to indicate a directive action in the 
inter-molecular gravitation, and this supposition is supported by their 
well-known directive properties towards light, heat, and electricity. 
It is necessary, therefore, to test experimentally whether or not the 
gravitational attraction between crystalline masses depends on their 
mutual orientation. This was attempted, directly, by Dr. Mac¬ 
kenzie 2 in a type of Cavendish experiment but with negative results. 
Poynting and Gray,® with the same object in view, utilised the theory 
of forced oscillations by revolving a quartz sphere in close proximity 
to another suspended sphere. This continued revolution would, if 
directive action were present, cause a simple harmonic couple to act 
on the stationary sphere, and if the period of the forcing couple and 
the free period of the suspended system are nearly equal, a large 
oscillation of the latter should ultimately result. No positive 

^ Austin and Thwing, Phys. Rev., 5 (1897). 
2 Mackenzie, Phys. Rev., 2 (1895). 
* Poynting and Gray, Phil. Trans., A, 192, 245 (1899)., 
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evidence of such a forced vibration could be obtained. This experi¬ 
ment affords the best evidence that gravitation, even in the case of 
crystals, is not directive, at least for distances large compared with 
molecular dimensions. 

Temperature.—Experiments by Poynting and Phillips/ by Lan- 
dolt 2 and others,^ show that gravitation is unalfeetcxl by temperature, 
although Shaw,^ using a torsion-balance of the Roys-Cavendish type, 
found that C apj)eared to increase slightly as the attracting bodies 
were heated. Later results, however, showed that, within the limits 
of experimental error, if G varies according to the law, G~Go[l+a/], 
then a is numerically less than 1-6x10“®, so that, for a temperature 
range 0“ C. to 250° C., G remains appreciably constant. The earlier 
statement of a decided change was due to systematic errors introduced 
by slight displacements of the beam masses. 

We are thus fi?ially led to believe that gravitational attraction is 
a function only of the attracting masses and of their distance apart. 

38. Evidence for the Newtonian Law of Gravitation. 
Kepler’s Laws.—In tlie year 1618 Kepler ])ublished the third of his 
famous laws which were deduced from the astronomical data, 
especially those obtained by Tycho Brahe, on the motion of Mars. 
The first law dealt with the shape of a plarud's orbit in its motion 
around the sun, the second with the relation between the orbital 
speed and the corresponding distance from the sun, and the third, 
whose discovery followed many fruitless attempts, with the connec¬ 
tion between the size of the planetary t)rbit and the time for its 
description, i.c. the planet’s year. The laws may be enunciated as 
follows :— 

Law I.—Each jdanet moves in an ellipse with the sun at one 
focus. 

Law II. The line joijung a planet to the sun traces out etpial 
areas in equal times, i.r. the areal velocity of the radius vector is 
(‘onstant. 

Law III.—The square of the time for the completion ol‘ one 
circuit of the orbit (the planet’s year) is proportional to the cube 
of the major axis of the orbit. 

It should be realised that these laws are purely deductions from 
astronomical observations, and no special law of gravitation is 
assumed. Indeed, the formulation of the third law was long delayed 
through the accident that the numerical relation given above was not 
tested until many other possibilities had failed. It follows, there¬ 
fore, that for any suggested law of gravitation to be provisionally 
accepted, it must immediately satisfy the test of these empirical 
laws. That the Newtonian Law does so without requiring sub- 

^ Poynting and Phillips, Proc, Roy. Soc., A, 76, 445 (1905). 
2 Landolt, Preuss. Ak. Ifm. Berlin^ Sitz. Ber., 8 (1900); 16 (1908). 
»See above papers. * Shaw, Phil. Trans.^ A, 216, 849 (1910). 
* See Chapter XII, Article 198. 
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sidiary hypotheses is strong evidence in its favour. We shall see 
later ^ exactly how the inverse square law fulfils this condition. 
Briefly, the process is as follows. From any hypothetical law of 
gravitation—and, therefore, of gravitational accelerations—a system 
ot* particle dynamics may be built up by purely matlieniatical 
methods. The shapes of orbits under given initial conditions^— 
i.e. their geometry—and the velocity-distance relations—i.e. their 
kinematics—follow from the assumed law of acceleration, and the 
results of immediate importance are :— 

(i) If a particle moves so that its acceleration is always directed 
towards some fixed point, the areal velocity of the radius vector, 
drawn from that point, is constant. 

(ii) If an inverse square law of acceleration towards that point 
is assumed, then the path is a conic with the point as one focus. 

(iii) According to the same law, if the orbit is a closed curve— 
i,e, an ellipse or a circle—the periodic time is related to the semi- 
major axis of the ellipse, or radius of the circle, a, thus 

tQ^cca^. 

If we compare these deductions with Kepler’s Laws the following 
properties of celestial bodies become evident:— 

From Law II.—Planets are under the action of central accelera¬ 
tions directed towards the sun. 

From Laws I and III.—The central acceleration varies with 
distance according to the inverse square law. 

This correspondence shows that, in so far as Kepler’s Laws are 
strictly true, gravitation over planetary distances follows the New¬ 
tonian Law. The latter, however, is much more general than this, 
and its applicability to terrestrial distances is shown by the general 
agreement between determinations for G over distances, varying 
from many yards to a few inches, and also by the fact that the 
moon’s motion is correctly accounted for by the assumption that 
the known attraction of the earth on a body, near its surface, is 
modified at the moon by the inverse square law. The minimum 
distance at which the law holds is not yet known with certainty, 
but it probably breaks down at distances of less than molecular 
magnitude. 

39. Newton’s Law as an Approximation. Einstein’s 
Theory of Relativity.—In the preceding paragraph it was shown 
that the Newtonian Law of Gravitation is upheld over a large range 
by a vast body of experimental evidence. It must follow, then, that, 
if any observations indicate divergences from its predictions, they 
are due to the law being only an approximation—though certainly 
an extremely close one—to the true law. Before the outstanding 
discrepancies are discussed, however, there are two difficulties 
inherent in Newton’s enunciation which are the chief reasons for 
criticism. In the first place, the mass of a body varies with its 

1 See Chapter XII, Article 194. 

G.P.M. F 
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velocity, and we are left in considerable doubt as to what value is 
the correct one for insertion in the formula. Secondly, distance is 
not as fundamentally simple as it appears to be, since the measure¬ 
ment assigned to a distance depends upon the circumstances of the 
observer making the measurement. It is not intended here to pre¬ 
sent a full description of Einstein’s relativity theory, but reference 
to the Michelson-Morley experiment will indicate that the numerical 
value, assigned to the distance between two points, varies according 
to the system of space co-ordinates chosen, /.e. to the observer 
making the experiment. The negative result of this experiment is 
usually explained by the Fitzgerald contraction of bodies in their 
line of motion. There is therefore a similar ambiguity about the 
remaining term in the Newtonian Law. Tliese two differences are, 
of course, small, but it was by taking them into account—an inci¬ 
dental consequence of the theory of relativity—that the outstanding 
deviations from the Newtonian Law were explained. 

There are two main sections of the relativity theory, one, the 
restricted or special theory, which deduces the consequences of an 
invariable velocity of light to all co-ordinate systems having no 
relative accelerations. For our immediate purpose only three of 
these results need be mentioned. If a body A moves with reference to 
an observer Oj with velocity n, while 0^ moves in the same direction 
with velocity v relative to a second observer Og, then the velocity 
of A relative to 0^ is given by 

instead of of classical Newtonian mechanics. From this 
it follows that if u is the velocity of light in a medium stationary 
with reference to 0^, the velocity apparent to 0^ will be given by 
V above or, neglecting v‘^, compared with c“ we have 

or, 

where is the refractive index of the medium. This is the well- 
known Fizeau formula in optics. Secondly, by reason of relative 
motion the inertial effect of a body is increased, so that the mass 
is a function of the velocity. The connection between the rest 
mass Wq and the moving mass is:— 
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and as a third immediate deduction the energy of a body is given by 

E=mc^, 

so that a body at relative rest has an energy 
The other section of tlie relativity theory, the general theory, 

determines the necessary transformation equations for systems of 
co-ordinates with mutual accelerations, and again three conclusions 
are of particular importance. Firstly, the inertial mass which enters 
into normal dynamical formulje and the gravitational mass are 
identical. Secondly, natural orbits undergo a continuous preces- 
sional motion, such as that of the perihelion in the orbit of Mercury, 
the exact amount of which was given by the theory. Thirdly, a 
ray of light has a mass which is appreciable by reason of its great 
velocity, and thus should be deflected when moving in a strong 
gravitational field. The deflections, and thus the apparent shift of 
the light source, may be calculated according to both laws. There 
is, at present, no possibility of making a test of this effect on a 
terrestrial scale, owing to the extremely minute lateral displacement 
in a moderately long ray path, but conditions are favourable during 
a total solar eclipse, when stars may be seen in a direction close to 
the edge of the sun. In these circumstances the apparent displace¬ 
ment is of the order of one second of arc which, with a long focal 
length telescope, is easily measured with accuracy. Einstein’s theory 
predicts a movement double that given by Newton’s Law, and experi¬ 
ment has shown again in this case that the former is verified, as 
accurately as experimental errors permit. 

A further experiment in favour of the relativity law of gravitation, 
and to that extent against the older law, is concerned with the relative 
positions in the spectrum of lines due to similar sources on the sun, or 
other celestial body, and earth, respectively. The former should be 
displaced, relatively to the latter, towards the red end of the spectrum. 
The experiment is one of great difficulty by reason of the smallness of 
the effect and the relatively large movements produced by pressure, 
etc., but it has been successfully carried out by W. S. Adams ^ 
of the Mount Wilson Observatory. The observation was made on the 
companion of Sirius. The corrected value of the observed shift was 
21 km. per sec., or 0*32 Angstrom units. This value, interpreted as a 
relativity displacement, gave a radius for the star of about 18,000 km. 
The result agrees with measurements of the size based on other 
methods, and affords direct evidence from stellar spectra for the 
validity of the third test of the theory of general relativity. 

In conclusion, we may say that, for all except the smallest dis¬ 
tances and one or two outstanding phenomena, the Newtonian Law 
of Gravitation is very approximately true, but to explain these 
differences and to achieve greater definiteness and philosophical 
satisfaction, the ICinstein theory of relativity is necessary. 

* Adams, Proc, Anier. Acad, Sci,, II (1925). 
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EXAMPLES 

1. Find the attraction due to a thin circular disc, of radius r and mass 
per unit area w, at a point, distant x from the disc, on the line through 
the centre and perpendicular to its plane. Find also the value of this 
attraction when the point is indefinitely close to the disc. 

[27T.G7n{l ~x/ -\~r^)) ; 27iGni.] 

2. If a spherical mass of radius a and density d has an eccentric 
sj)Iierical cavity of radius show that the attraction at any two points 
in the cavity is the same in magnitude and direction and find its value 
if tlic distance of tlie centre of the cavity from that of the sphere is c, 

[^nGdcr^.] 

3. In a spherical mass the density varies inversely as the distance 
from the centre. Show that the attraction is tlic same at any two 
internal points. 

4. If a uniform sphere has a mass M and radius r find the attraction 
which one hemisphere exerts upon the other. 

5. Find the attraction produced by a long, thin uniform rod of mass vi 
per unit length at a distance r from the rod, if r is small compared with 
the length of the rod and the distance of each end of the rod is large 
compared with r. [2mG/rJ] 

6. Find the total gravitational potential energy of a uniform sphere 
of mass M and radius r. Discuss the significance of the negative sign. 

[-3GM2/5r.l 

7. Prove that the value of gravity at a point on an elevated tableland 
of height h is given by Bouguer’s rule : 

g[l -~2h/R^Shd/2RD\, 

where R is the earth’s radius, d the surface density, D the mean density 
of the earth, and g the sea-level value of gravity. [Use tfie relation 
obtained in question 1 above.] 

8. If the density of the earth at a distance x from the centre is 
14-5 — 12cc/iii gm. per c.c. where R is the radius of the earth, which is 
supposed to be spherical, show that the initial rate of increase of gravity 
per cm. below the surface of the earth is 14-7 G where G is the constant 
of gravitation in C.G.S. units. 

9. If the moon’s distance from the earth is 240,000 miles, the earth’s 
radius is 4000 miles, g at the surface of the earth is 32*2 ft. per sec. per 
sec., find the time taken by the moon to complete one circuit of its orbit 
around the earth. [27-37 days.] 

10. Compare the minimum velocity with which a particle would 
circulate around the earth near its surface with the minimum vertical 
velocity with which the particle must be projected in order to move 
completely beyond the earth’s influence. [1 : ^/2.] 

11. A smooth straight narrow tunnel is bored through an isolated 
uniform sphere of density d and a small particle is allowed to move 
in it from a position of rest. Show that the resulting motion is simple 
harmonic whose period is independent of the direction of the tunnel 
and of the size of the sphere. Find the periodic time of one vibration. 

[T2-3;i/Gd.] 
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12. A sensitive bullion balance has a sensitivity such that when a 
milligram rider is moved 1 cm, along the balance arm the deflection of 
the balance is 500 scale divisions. Two small spheres each of mass 
350 gm. and radius 2 cm. are counterpoised on the balance and hang 
at a distance of 20 cm. apart. Then a lead sphere of radius 10 cm. 
and density 11-4 gm. per c.c. is moved from under one hanging sphere 
to a position directly beneath the other in each ease nearly touching 
the smaller spliere. Find the constant of gravitation if the consequent 
delleetion of the balance is 08-6 scale divisions. g=^981. 

[6*67xl0"8.] 

13. In a Cavendish type of experiment to measure the constant of 
gravitation the spheres at the end of the beam had masses of 2 gm. 
each. The length of the beam, whose mass could be neglected, was 
10 cm., and the deflecting spheres were of mass 14 kg. each. The dis¬ 
tance between centres of adjacent attracted and attracting spheres was 
15*5 cm. in a horizontal direction perpendicular to the beam. If the 
restoring torque per radian twist between the ends of the suspension 
was 0 05 dyne-cm. find the deflection, on a screen placed 2 metres from 
the beam, of light rays incident upon a mirror fixed to the beam. Take 
f; as 6-67x10-8. ‘ [210 mm.] 

14. Find the gravitational potential and the attraction at a point 
on the axis of a circular hoop of mass M and radius r if the distance of 
the point from the plane of the hoop is Hence find the value of iv 
when (a) the potential and (5) the attraction is a maximum. 

GMx/(r^-i-x^)^/^; 0; 

15. A uniform sphere has a radius 2 cm. Find the percentage in¬ 
crease in its weight when a second sphere of radius 20 cm. and density 
12 gm. per c.c. is brought underneath it and nearly touching it. g = 981 ; 
« = 6-67 X10-8. [5-65 X10-8.] 

16. If the mean density of the earth is 5 5 gm. per c.c. and its radius 
4000 miles, while the average surface density in the vicinity of a mine 
shaft 0-5 miles deep is 2-5 gm. per c.c., find the acceleration due to 
gravity at the bottom of the shaft given that the surface value of g is 
981-200 cm. per sec. per sec. [981’278.] 



CHAPTER IV 

GYROSCOPIC MOTION 

40. Precessional Torque. -It has been shown previously, in 
Article 10, that a rotating body under the action of a constant torque, 
whose axis is at right angles to the rotation axis of the body, reacts 
to the couple by changing its plane of rotation. This type of motion 
is called precession, and the couple causing it is called the yrecessional 
torque. Its magnitude may be obtained as follows. 

If I is the moment of inertia of the rotating body about its revolu¬ 
tion axis, and ca the angular velocity of rotation, then the angular 
momentum Ico may be rc[)resented vcctorially at any instant by a 
line, drawn normal to the plane of rotation, of length proportional* 
to Ico. Thus, suppose the body is a, disc revolving about its geo¬ 
metrical axis, and let MN (Fig. 22) be the edge of the disc whose 
plane is revolving about an axis, perpendicular to the figure at a 

\y 
I 

precessional rate Q, After a short interval of time, the disc moves 
to through an angle Q.di, and the angular momenta at the 
beginning and end of this interval are represented by OA and OB, 
where the angle AOB is Q.dt. The vectorial change in angular 
momentum is AB—Iw.Q.dt, and thus the rate of change of angular 
momentum is IcoQ. This rate of change is equal to the applied 
torque and, thus, the precessional torque Pj is given by 

70 

or (54) 
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Tlie (‘hatige of angular momentum is along AB, i,e. it is parallel 
to the plane of rotation and perpendicular to the axis of rotation, 
so that AB must be the axis of the 
applied torque. Hence we see that, 
if the axis of rotation is along Oy 
and the axis of the apj)lied torque 
is along Or, then the body ])recesses 
about the third mutually perpen¬ 
dicular axis Oz, This fact is illus¬ 
trated in Fig. where the disc is 
shown in perspeetiv^e. The two 
forces, P, form the couple about the 
axis Or, and the processional motion 
will tend to bring M towards B and 
N towards S, It will be noticed 
that, if the disc were not revolving, 
the couple would tend to move the 
disc about the line MN, and T 
would move towards R and IJ 
towards Thus the rule for the 
direction of precession may be ex¬ 
pressed as follows : The direction of precession is such that a motion 
of 90^ in that direction would bring the plane of the disc into the 
original plane of the precessional couple and, when this parallelism 
is complete, the direction of the rotation is that of the original torque, 

41. Gravitational and Centrifugal Torques.—In most cases 
of precessional motion the body is supported at a point, not on the 
vertical through the centre of gravity of the body, and, as a result, 
there is a gravitational couple which tends to rotate the body into 
a position of smaller potential energy, i^e, to lower the centre of 
gravity. If the body is not revolving, this is the sole result of the 
gravitational couple, but if the body is also revolving about some 
axis, the gravitational couple supplies the torque necessary to produce 
precession, and if, further, no other couple acts on the body, these 
two torques are equal, and the precessional rate maintained by the 
gravitational torque, I\, is given by 

1(0 

This motion is termed gyroscopic, and the body is called a gyroscope. 
Such a case is illustrated in Fig. 24, which represents a heavy disc 

revolving at high speed, o), about its geometrical axis, AOB, which 
is supported at R by a vertical pivot BC. If OB~l and mg is the 
weight of the disc, the gravitational couple acting on the disc is 
r^:=zmgl, and the precessional rate which can be maintained by this 

= i.(M) 
mk^fo k^(o 
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where k is the radius of gyration of the disc about the axis A OB, 
Thus one complete cycle of the preccssional motion is made in the 
periodic time 

k^(o 

This is the precession which, once started, may be maintained 
by the gravity torque. If a quicker rate is given, then the axis AOB 
will rise, while, if the precession is retarded, the axis yiOB will fall. 
The phenomenon of a possible oseillation of the rotation axis on 
each side of the steady precession position has important results, 
wliieh will be studied later under the heading of nutation. 

Generally, there is a third couple acting on the body, due to 
centrifugal forces. In Fig. 24 the centripetal reaction at B is along 

Fig. 24.—Precession of a Gyrostat under Gravity. 

the line AOB, while the centrifugal effort is along BOA, and these 
two equal forces, acting in the same straight line, give an effect, 
in a practical case, which merely increases the frictional constraint, 
at the pivot, to precession. If the centrifugal effect and opposite 
reaction at the support are not in the same straight line, they 
constitute a third couple called the centrifugal torque, 

42. Lanchester’s Rule.—In order that the body shall not move 
outwards from the centre of precession, it is necessary for the centri¬ 
fugal torque to be balanced by an equal and opposite centripetal 
torque. This balancing efi’ect is derived from the gravitational 
torque, and the resultant is available to produce precession. 

Let r^, A. A be the magnitudes, supposed in the same direction, 
of the gyrostatic, gravitational, and centripetal torques, respectively. 
Then, from the considerations above, we have 

r2 r3=7^1, .... (56) 
and if it happens that is clockwise when F^ is anticlockwise, then 
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in (56) above the sign of is negative. We have assumed here that 
the gravitational torque exceeds the centripetal torque, and that F^ 
has the same sign as ±2* ’^'^is is not obviously true, and it is necessary 
to enunciate some rule which shall give, for any given direction of 
precession, the necessary sense of the torque producing it. A general 
rule of this kind was enunciated by Lanchester in the form : View the 
gyrostat from a point in its plane with the line of sight perpendicular 
to the axis of the given precession. Now let the gyrostat move 
slightly in the direction of precession. A point on its circumference 
is seen to describe an ellipse, and the sense of its path gives the 
direction of the precessional torque, while the line of sight is its 
axis. An example of the applieation of this rule is given in the 
next section. 

Fig. 25.—Thk Gyrostatic Pendulum. 

43. Gyrostatic Pendulum.—As an example of the application 
of equation (56), consider the case of a small heavy gyrostat revolving 
about a light rigid rod AB (Fig. 25) as axis, with angular velocity co, 
and precessing about the vertical AC at a rate Q, Such an arrange¬ 
ment is called a gyrostatic pendulum. The three torques acting on 
the pendulum are :— 

(f) Gravitational Torque Pg.—If the weight of the gyrostat, 
which may be supposed all concentrated at the point R, is mg, then 
the gravitational couple is composed of this force mg acting down- 
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wards through B, and an equal upward reaction of the support at A, 
These together form a couple given by 

r^^mgl sin a, 

where a is the angle BAC, 

(ii) Centripetal Torque —-The centrifugal force on the 

gyrostat is acting along CB, and an opposite reaction of the 

support, acting at ./, produces a centrifugal couple equal to 

7nv^, 
-1 cos OL, 

r 

where v is the s})(‘ed of the gyrostat around the circle of radius CB~ f\ 
The o|)posing centripetal torque is thus 

and acts in the same direction as F^. 

(Hi) Gyrostatic Torque —The rod AB is always perpendi¬ 
cular to the plane of rotation of the gyrostat, and so the rate of pre¬ 
cession Q is the angular velocity of AB, In a lime dt the point B 
moves through a distance vdt, and thus AB moves through an 

, vdt 
angle or 

Q 
7’ 

so that, from equation (54), 

/\ ^ItoQ—mix hoy 

where k is the radius of gyration of the gyrostat about the axis AB, 
To find the direction of this gyrostatic torque, apply Lanchester’s 
rule. Let MN (Fig. 25) (h) be the edge of the gyrostat when at B 
the line of sight being EB at right angles to CB and AB, Then 
when the pendulum moves to />, a point on the disc appears to 
rotate in the direction shown at D, This is opposed to the sense 
of F^ and /"g, and so 

Fi=~mk'^a}-j» 

if it is to be substituted in (56). 
The periodic time is given by vtQ~2nr, and thus from (56), 

m/27rr\2 
-I — I Icosoi, 
r\to ) 

- mk^co^^=mgl sin a- 
IqI 

or 
. /27t\ 

sin a( - “ - 
• VoJ 

-gl sin a - -F sin a cof 
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and, putting — ==p, we have 
*0 

pH^ cos ai~pk^(o—gl=Of 

which gives 

^ A:^ft>^+4gZ^ cos a ^ ^ 

2cos a * ‘ 

To decide between the two possible values of p put a>~~(K The 
system then becomes a conical pendulum for which 

?^=p=4. /Ill, 
sj i cos a 

so that the positive sign in (57) is required. 

44. Rolling Disc.- —Another familiar example of gyroscopic 
motion is that of a thin disc, ])rojected to roll over a horizontal 
surface with its plane vertical. While its translational velocity is 
greater than a certain critical value, its path is a straight line, but 
below this velocity the plane of the disc inclines to the vertical, 
and, at the same time, the path becomes curved towards the “ side 

M 

Fig. 26. —Rolling Disc. 

of leafi.” This curvature of the resulting j^atii increases as the 
velocity is decreased by friction. Thus the path followed on the 
horizontal surface is spiral in form until the disc falls flat. 

Let MN (Fig. 26) be the edge of the disc when the linear velocity 
of its centre C is v, and its plane makes an angle a with the vertical. 
The three torques acting on the disc in a clockwise direction are 

PN = —mgr sin ol, 

^3 = 

A= 

a 

-vik^coQ- 

7nv^ 

I cos a 

r I 

r cos a — —mv^ tan a. 

~7nk^.irzJa7i a. 
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Hence, from (56), 
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,^.tan cn—mgr sin tan a, 

and thus 
r 

This gives tlie angle of lean for a given velocity, and the critical 
velocity, or minimum forward speed for straight line motion, is 

ar 
r,2__ 

For a disc k^=h'^, and 

For a hoop k^r, and 
v = V^gr. 

V = V\gr, 

The radius of curvature of the path on the horizontal surface 
T T 

is the distance ON——~—= , - > and thus is given by 
sinoL Vl-cos^o: 

r 

45. General Case of Precessional Motion.—In the preceding 
cases a simple form of treatment was possible by reason of a tacit 
assumption that, for the purposes of calculating the gravitational 
and centrifugal torques, the mass of the body could be assumed to 
be concentrated at its centre. A little reflection will show that this 
is not generally possible, because only points on the rotation axis 
move around the axis of precession in circular paths and, even for 
these points, the radius of the circular path is different for each. 
(3ther points have a much more complicated path, compounded of 
their motions about the axes of rotation and precession, respectively. 
It is necessary, therefore, to consider the results of these varied 
motions of different particles before the more general cases of 
precessional motion, such as that of the spinning top, can be treated 
fully. 

46. General Expression for Angular Momenta.—Since in 
the following cases of gyroscopic motion it is more convenient to 
use axes fixed in the body and not in space, we shall deduce ex- 
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pressions for the angular momenta about such axes, the 
limitation being that the origin is supposed fixed. 

Let Ox, Oy, Oz (Fig. ^ 
27) be three mutually 
perpendicular axes, 
coi, co2> CO3 the 
angular velocities of 
the body about these 
axes, and h2i and 
//g the corresponding 
angular momenta. 
Suppose that P(^, y, 2) 
is a point in the body 
at which is placed a 
particle of mass m, 
and let u, v, w be its 
velocity components 
along Ox, Oy, Oz, 
respectively. Then, 
from the figure, 

only 

Fig. 27. -Gknehal Expression for Angular 

Momenta. 

w=C03)fy—a>22"j 
v=xv^Z’—(x)2X> .... (58) 

Te=a)2‘^—coi?yJ 

hY~^^fi{vz—ivy) 
=Z'm{WiZ^~-a)2Zx—co2xy +C0iy^), 

h 2--==Em{wx ~~uz) 

h^~Em{uy—vx) 
co^jz — (x)izx+(JO 2^' ^), 

so that 

—f • • ■ (59) 
/ig=/3CO3—(jo^myz —co^Em zx, J 

where /g, and /g are the moments of inertia of the body about the 
three axes. The other factors such as Evixy are called products oj 
inertia and, in many cases of practical importance, disappear. 

The kinetic energy of the mass m at P is given by 

so that the total kinetic energy of the body is 

E~\Em{u^~\-v^-\-w^) 
== \Em[ {(jo^—oy^Y+(cojS—oo^Y+{oy^—(^iyY\ 
=Ja)i^i>n(«/2+22)+Jco2^rm(224-a;2)4-Jco322;m(a?2+2/2) 

—oo^oy^^'niyz—(o^o^iEmzx —(jo^oo^^mxy 
=\IiO>Y+—ft)2tn32’m2/2 

—co^cOiE^zx. (60) 
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Comparing this with equation (59) we have 

'dma 
(«1) 

. . . (62) 

47. Angular Acceleration for Steady Precession.—To find 
the angular accelerations about a set of moving axes, when a body 
is in a state of steady precessional motion, let Oi}\ Oi/, Oz (Fig. 28) 

cj:>n 

Fig. 28.—Angular Accei.kkation for Steady Precession. 

be three axes fixed in space, and suppose that Oz is the axis of pre¬ 
cession. Let OC be the axis of rotation of the body whose angular 
velocity is co, and suppose that the angular velocity of any point 
in OC, about Oz, is f). The line 0.1 is fixed in the body at right 
angles to OC and in the plane zOC, while OB is perpendicular to 
both OA and OC, Let 0^, O2, and O3 be the angular velocities of 
these axes OA, OB, and OC about their instantaneous positions, and 
suppose OA, OB, and OC are of unit length. In the time dt, C 
moves to C', so that CC'sin 0L,dt, and the angular velocity of 
the body about OA is 

i ^ 
dt OC 

- Q sin a, 

where the positive sign is used, in the conventional way, to indicate 
counter-clockwise rotations when viewed looking towards the origin. 
The angular velocity about OB is zero, and about OC is co. If ^ 
moves to in time dt, 

AA'=Q cos oL.dt, 
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and thus we have 

di^—Dsinotf 02~0, cos or, ^ . (63) 

Let the angular momenta of the body about the axes OA, OB, 
OC be //|, //g, (Eig. 29). The precession of the angular momentum 
//j, with angular velocity about 0(\ rccpiires a torque about OB 

C 

Fkj. 29.—Torques for Steady Precession. 

equal to Similarly, h.^ processes about OA at a rate and 
requires a torque about OB equal to Finally, since may 

change with time, an additional torque is needed about OB, 

Thus, if Ti, Tg, and Tg be the torques about these three axes OA. 
OB, and OC\ 

Similarly, 

and 

(64) 

In the case for steady precession these become from (63) 

Ti = 

'^'2 = 

^3 = 

dhi 

dt 

dh^ 

It 

dK 
dt 

cos a, 

A-h^Q sin a+/?ii2 cos a, ^ 

—fegl? sin or.. 

(65) 
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48. Steady Precession of a Top.—From these results we may 
now deduce the precessional motion of a spinning-top. Since the 
latter is a body of revolution about the rotation axis, the products 
of inertia vanish, and the angular momenta arc, from (59), 

end 

/i=4 
Thus, in Fig. 80, OC is the axis of rotation of the top, and it makes 

2 

Fig. 30.—Precession of a Spinning-Top. 

an angle a with the axis of precession Oz, The angular velocities 
about OA, OB, and OC are, from (63), 

—Qsincn, 0 and co, . . (67) 

and, on substituting these values in the expressions (60) for the 
angular momenta about these axes, we have 

—I^Q sin a, 
^2=0, 

11 being the moment of inertia of the body about OA, and 1^ that 
about OC. Substituting these values in the expressions (65) for the 
torques about the axes, 

d 
{—IiQ ffln a)=0, 

r^^I^coQ sin sin ol cos ol, 
T3=0. 

If the torque T2 is produced solely by gravitational forces, then 

T2=mgZ sin a, 
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where mg is the weight of the top and /is the distance of its centre 
of gravity from 0, Thus ♦ 

mgl^I^ioQ -1 cos a . . . (()8) 

This giv(‘S the condition for the to]) to preccss steailily at the given 
rah; U. If a--0()'', tlie conditions of Article 41, Ecjnaf ion (55), are 
ol)taincd. 

Since IVoin (68) there are, in general, two values of I?, two different 
rates of precession may be maintained by the gravitational couple, 
i,e. for the given inclination to the vertical. If k is the radius of 
gyration about OC, and that about an axis through the centre 
of gravity perpendicular to OC, 

J^--=mk^, and I-^^m{kj^-\-l^), 
and thus 

which gives 

p—'—~ k^(o'^—4i(ki^-\~P)gl cos a 
-7^"" 2(k^^+T^) COSOL ^ ^ 

where /q the periodic time of precession. 
The minimum value of a>, which gives a real value for i?, is 

obtained from 

k^co^.=4s(ki^-{-P)gl cos a, 
or 

a>---p^V{ki^~\-l^)gl cos cc . . . (70) 

Initial Conditions,—We have considered thus far only a main¬ 
tained steady precession without imposing any initial conditions, but, 
in a more general case, both the rate of precession and the inclination 
to the vertical vary. Suppose that the initial conditions of the top 
are as indicated in Fig. 80, the original angle between the planes 
zOx and zOA being <f). The only external torque—neglecting friction 
—is that due to gravitation, and this acts about the axis OB, Thus 
the angular momentum h about Oz is constant, and the angular 
velocities of the axes OA, OB, OC are 

and so 

dS . 
-Jsma, 

doL 

It 

hi — sin a= —m(Ari^+/^) sin ol 
CLZ 

=IzCO- 
Q,V,M. O 
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The angular momentum about Oz is given by 

h^hy{~- sin a)“f-//3 cos a —l-/^) sin‘^ cos a, 

ami since this must be constant, 

?// + sin- (Xr~\ nik\o co.s a.~~v)k\o cos . (71) 

where ao is the initial value of the angle a. 
Additionally, from the conservation of energy principle, the sum 

of the kinetic and potential energies must remain constant. The 
kinetic energy is given by (60), ?.e. 

df 
stn a 

the products of inertia being zero. The potential energy 7% is 

— cos a, 

so that, by the conservation of energy, 

r/# . /da\2“ 
~\-2n}gl cos ai-^2mgl cos a^. (72) 

The subsequent motion is given by (71) and (72) and, from (71), 

d<f>_k^(jo\cos oHq—cos a] /r^Q\ 

~dt~~ [ki^+F\ sin^ y. 

Nutation*—When a==ao, placed in the given 

position does not immediately precess. Instead, it falls slightly under 

the action of gravity ; thus ~ has a finite value, and precession 

begins. The fall of the axis, however, has a limit, a^, after which 
it rises again to the value and this oscillation between the two 
inclinations and ag, accompanied by a correspondingly varying 
precessional rate, is called mdaiion. To indicate this phenomenon 

we may combine equations (73) and (72) and, eliminating we 

have 

kW[cos 
[k^^+l^] sin^ a +[h^+i^] 

fdaY o I —) =2gi 
\dtj 

ao—a]. . (74) 

da 
Maximum and minimum values of a are given by 

k*a)^[cos Xq—cos y]=^2gl[ky^-\-P] sin^ a or cos y~cos ag. (75) 
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From (75) 

sin- ^■I"2g/[V+T2](^ a-co5 ao)-(), 

or 
cos^ OL—2d cos OL+2d cos ao -1 ~0, . . (76) 

where 2d is written for ^ o . The solution of (76) is 
2<^l[k^^-\P\ 

cos Vl -\~d'^-~2d cos a^,, 

and since cos ol must be less than unity, only the negative sigji is 
possible, so that 

cos oLi—d—Vl -\-d^—2d cos a^. 

lienee tlie axis of the top, as it })reecsses, varies its inelination to the 

vertical between the values ao and a^, and, siiuie when 

i,e, the precession momentarily ceases, at such times the end C of 
the axis reaches a cusp in its nutation movement. At the lower 
value aj, howcv(T, the rate of precession is a maximum whose value 
may be obtained from (73) and (74). Thus 

=^k-0j(C0S OCn - cos 7,)-ty 
" dt 

df 

and so, when 

0 I .vm-a 

(^) I + =2g/(«M a„-mva), 

lc'^u){cos ao cos a.i~='2,gl{cos olq -cos a), 

(hj> 
which gives a—ao when 

dt k'^o) 

Minimum Velocity for the Top to ** Sleep.*'—^A top is said to 
“ sleep ” when it spins with its axis vertical. The motion will be 
stable only if, when slightly displaced, the top returns again to the 
vertical position. The necessary condition may be obtained by 

doL 
putting ao=0 in the equation for —> and finding in what circum- 

stances, for a small displacement, is negative. Thus, substituting 
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ao=0 in (74), we have 

or 

2 

= 2gl(l—c()S a) 
1c*(0^l—cos a) 

(ki^ + l^)(\ +coA‘ a) 

2{k,^+P) ~2gl sin a 
d(x 

dt 

kho‘^ 2 sin a dx 
ki^ + Z2 (yA df 

and since a is small, 

kW - 

so that, if is negative, 

or 

k^m^ , , 

a>2> 

This result may also be deduced from equatioji (69). 

49. Alternative Method for Spinning-Top.—The problem of 
the spinning-top may be investigated in a simpler way—though one 
which is open to objection—by considering the three torques of 
Article 41. If a particle of mass is situated at a distance 
from 0 (Fig. 30), it describes a circle, due to precession, about Oz 
of radius Z^ sin a, and the centrifugal force due to this motion is 

-> acting horizontallv, where v, is its speed in the circle. This, 
Zi sin on ^ 
together with the corresponding reaction at 0, forms an elementary 

centrifugal couple of magnitude -Z^ cos a and, if Zq is the periodic 
t-j sm oc 

time, VjtQ^27ili sin a. The total centrifugal torque is given by 

r. — 1 sin a cos a=ii(1 sin a cos a, 

where is the moment of inertia about OA, 
If the top is viewed from the direction BO (Fig. 30), the three 

torques, acting in a clockwise direction, are 

~ Ism oc, 
r^~ —ingl sin oL, 

sm OL cos OL, 

where 1^ is the moment of inertia about OC, Putting Qi^~2n, and 
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•substituting these values in equation (56), we have 

or 

Vk^Q)^ —‘\<^l{k^^-\-V^) cos OL 

<0 COS OL 

which is the same as (69). 

50. The Earth’s Gyroscopic Effect. —The earth in its revolu* 
tion about the polar axis may be regarded as an enormous gyrostat, 
which will be capable of precession and nutation, if a couple acts 
about an axis at right angles to the north-south line. If the earth 
were truly splicrical and of uniform density, such a couple would 
be impossible, but the existence of equatorial protuberances gives 
rise to both solar and lunar precessions and nutations. The earth 
is represented in Fig. .31, with exaggerated ellipticit}^, by the ellipse 
WE. If the sun is situated along the direction Ox, then the 
eastern protuberance is nearer the sun, and its gravitational reaction 
to the sun is slightly greater than it would be if the sun w^ere situated 

Fig. 31.— Gyroscopic Motion of tuf Earth. 

along the line NS, at the same distance from the centre. In the 
latter case let the attraction on each half of the ellipsoid be F. 
Then, in the figure F-\~e and F~ e are the forces of attraction on 
the two halves NFS and NWS, respectively. Thus, in addition to 
the total attraction 2F, there is a couple formed by the two forces e 
about an axis at right angles to NS and to the diagram. This 
couple constitutes a gyroscopic torque, which will cause the earth 
to process, so that, under the conditions shown, N rises up from 
the plane of the diagram while S goes down. The polar axis thus 
intersects the celestial sphere in a point which describes a preces- 
sional circle, whose angular radius is 23° 27' about the pole of the 
ecliptic. Owing to changes in the moon’s position and in the sun’s 
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declination, the resultant torque fluctuates in value, and thus the 
simple circle becomes a “ wavy eireular track, due to the corre¬ 
sponding nutation rnoA^ement. 

51. The Gyroscopic Compass.^—If a gyrostat is suspended in 
frictionless gimbals, so that it has three degrees of freedom for any 
position of the outside frame, then no movement of the latter can 
cause a torque to act on the gyrostat. The latter therefore retains 
its direction in space. In particular, such a system, mounted on a 
ship, would be uninfluenced by the pitching, tossing, or direction of 
the vessel. This inherent stability of the gyrostat suggests its use 
as a compass, and the many practical difllculties have been overcome 
with sufficient success to render the gyro-compass prcrerablc, par¬ 
ticular! 3^ in submarines, to the magiietic compass. 

The simple system just described lacks the essential })ro{)crty of 
returning, after a disturbance, to the original direction, as obviousl3^ 
any position of the gyrostat is inherently stable. It does, however, 
enable the rotation of the earth to be demonstrated, since the axle 
will, in the absence of disturbing torques, retain its original orienta¬ 
tion, and, if this is truly north and south, it will apparently turn 
so that its north pointing end travels towards the east, owing to 
the non-parallelism of two north-south lines. This movement 
relative to the earth’s surface is due to the changing orientation 
in space of lines—such as floor and wall edges—fixed relative to 
the earth. A complete cycle of relative movement will be com¬ 
pleted in twenty-four hours, and includes not only the easterly 
rotation referred to, but also a change in the inclination of the 
rotation axis to the horizontal. The latter varies according to the 
latitude of the experiment. 

Pendulum Gyro-Compass* —A gyrostat, mounted in the manner 
described above, may be given 
the necessary restorative pro¬ 
perty by the simple addition of 
a small weight, hung below the 
rotating fly-wheel. The essen¬ 
tials of such a pendulum gyro¬ 
compass are shown in Fig. 32. 
The gyrostat is mounted by its 
axle ends A, B, in a horizontal 
ring which carries a vertical 
stirrup, fixed rigidly to it, and 
weighted immediately below 
the centre of the fly-wheel by 
means of the weight W* This 
horizontal ring may turn freely 
around the axis CD within a 
vertical ring, which is similarly 
free to move about the vertical 
axis FG within the frame //. 

Fig. 82.—Model of the Pendui.um 
Gybo-compass. 
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To ensure complete freedom of movement, this frame H is also carried 
in horizontal gimbals, of which Tv, J form the first pair. Such an 
arrangement is stable only when the end B points truly north, as 
will be understood by reference to Fig. 33. Consider the gyro¬ 
compass at the equator with its axis pointing North-South, the end 
B towards the north. The inner ring will be horizontal with the 
weight directly beneath. There is thus no torque due to gravity, 
the system is stable, and, since the axis of the wheel is parallel to 
the earth’s polar axis, no tendency to move will accompany the 
earth’s rotation. Suppose now the axis .//T is forced into an east- 
west direction with the end B pointing east (Fig. 33) (1). The 
earth’s rotation from position (1) to (2) in Fig. 33 will tend to 

Fia. 33.—Pkndulum Gyro-compass at the Kquator. 

produce the state of affairs shown at (2), with the axle AB parallel 
to its previous direction. This gives rise to a gravitational couple 
owing to the weight W being no longer vertically below the centre 
of AB, and precession occurs about FG, so that B swings around 
towards the north. When the north-south direction is achieved, 
the position is, as seen already, stable. 

If the end B had pointed west (Fig. 33) (3), the position (4) would 
have resulted in a similar gravity torque, but, since the rotation of 
the fly-wheel is reversed, relative to the diagram, the precessional 
motion is reversed also, and B swings from the west towards the 
north, instead of from the east to the north. Thus B—viewed from 
which the gyrostat rotation is anticlockwise—is the north-seeking 
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end of the revolution axis. (It is useful to remember the correspond¬ 
ing rule for the magnetic effects of currents.) It is therefore clear 
that an accidental disturbance of AB from the south-north line 
calls into existence a directive force of restoration. 

When the gyro-compass is not at the equator, the effect is appar¬ 
ently different. In Fig. 34 the system is represented in latitude X. 
The axle is horizontal and the end B is placed facing east. The 
gyroscopic action will, as already explained, tend to force AB into 
alignment with the polar axis, i.e. along LM. This can be done 
by a rotation about FG of 00°, succeeded by a rotation about CD 
equal to X. The former movement takes place without any gravity 

L 
I 

Fig. 34.—Pendulum Gyro-compass at Latitude A. 

torque, and the axis AB \h then in the meridian. The second move¬ 
ment, however, produces a gravitational couple which causes AB to 
process, B moving towards the west. It seems then that the north- 
south direction of BA is immediately followed by a wandering of B 
towards the west, and that the readings of the compass are no longer 
to be relied on. This, however, is merely apparent because—except 
at the equator—this westerly movement is necessary to keep BA 
pointing north-south. The seeming contradiction in this statement 
will be understood by reference to the paragraph above, where it 
was shown that, if no such processional movement of AB occurs, 
the end B apparently wandered off to the east. Thus the gravity 
torque produces just that change in the space cy^rection of the gyrostat 
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axis required to maintain it always parallel to the north-south 
direction of its immediate locality. 

Magnitude of the Directive Effect.—The mafrnitude of the direc¬ 
tive tendency depends on the three factors - 

[a) The moment of inertia of the fly-wheel, 
{h) Its angular velocity, 
(e) The rate of rotation of the earth. 

Of these, the last is fixed, and thus, to make the gyro-compass 
sensitive, it is necessary to have the first two as large as possible. 
The limits of their magnitude are fixed by considerations of safety, 
and the necessity of avoiding temperature effects due to tlie irreducible 
minimum of friction. Since the three (piantities (a), (^), and {c) above 
arc constants for a given instrument, it would seem that the compass 
is equally sensitive at all latitudes. This is not so, because, although 
the restoring moment is the same everywhere, its horizontal effect 
diminishes from the equator to the pole. At the latter place the 
horizontal force is zero, and, except for the weight IF, the axis AB 
would set itself vertically. 

It should also be noticed that, although an increase in the directive 
forces may be obtained by a larger and stronger instrument, it does 
not follow that the sensitiveness is increased proportionally, since 
these forces then act upon a much more massive body. The sensitive¬ 
ness depends to the greatest extent on the elimination of friction. 

52. Errors of the Gyro-Compass.—Brown,^ whose gyro¬ 
compass is used in the British navy, found that, in practice, many 
instrumental difficulties occur, and in most cases a compromise is 
necessary between the actual instrument and its simple ideal. This 
causes a number of errors in the reading which must be corrected for. 
The chief of these are :— 

(a) Latitude Error.—The freedom of movement of the compass 
necessitates some form of damping to permit a reasonably quick 
reading to be taken. This damping agency prevents the gravity 
torque from acquiring its full value, and thus the compass has insuffi¬ 
cient westerly precession. There is therefore an easterly deviation, 
called the latitude error, and this is usually corrected for by an 
alteration of the lubbar line—or zero mark—in the vessel. 

(&) North Steaming Error.—If a vessel is travelling due north 
or south, the axis of rotation of the compass is now slightly inclined 
to the polar axis, due to the resultant velocity of the earth and 
vessel. This error applies equally to all forms of gyro-compass, and 
is corrected for by the use of tabulated values, giving the error for 
different northerly or southerly speeds. 

(c) Acceleration Error.—When the vessel is changing speed 
in a north-south direction, the inertia effect of the control weight 
causes a virtual change in the direction of gravity, and the compass 

1 Brown, Nature, 105, 44, 77 (1920). 
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will give an incorrect reading while the speed is changing. Readings 
are therefore taken under steady steaming conditions. 

{d) Error due to Pitching and Rolling,—-Rolling and pitching 
of the vessel, when on a due east“West or north-south course,, is 
negligible in effect, but for intermediate directions the effect is 
extremely complicated, and the elimination of error from this cause 
necessitates a great increase in instrumental complexity. In one 
case—that of the Anschutz gyro-compass ^ designed in 1912—three 
extra gyroscopes were fitted. One of these has its axis in the north- 
south direction, while tliose of the other two are in the same hori¬ 
zontal plane and make angles of 80'’ on either side of the main rotor. 
The three are joined by a system of links in such a way that the 
virtual moment of inertia about the north-south line is increased. 
The whole assembly is attached to a spherical float, which swims 
in a vessel containing mercur}^ in the interior of the instrument. 
There is also an attachment by means of which the master compass 
actuates a number of dials in different parts of the ship. 

In recent years much development work on the design of gyro¬ 
compasses has resulted in their employment by both the United 
States Army Air Force and the Royal Air Force in aircraft. Their 
special advantage, a direct result of the large rotational inertia, is 
their steadiness of reading during rapid changes of direction, when 
the magnetic compass is liable to errors which cannot be exactly 
computed, and can be allowed for only empirically. Additionally 
in large aircraft, repeater dials can be installed so as to give infor¬ 
mation of course changes to members of the crew at different stations. 
Such gyro-compasses still show precessional effects, and it is neces¬ 
sary to check their readings by reference to the magnetic compass 
at frequent intervals while on a straight and level course. 

53. Other Gyroscopic Applications. -The inherent directional 
stability of a rapidly revolving body has other important applications 
of which a few may be mentioned. Rifle and artillery barrels are 
rifled to give their projectiles a rapid spin about an axis in the direc¬ 
tion of motion. This ensures greatly increased uniformity of flight 
by improving their resistance to small deflective forces. The rolling 
of hoops, and the riding of bicycles—-both cases of statical instability 
—are possible only because of the gyroscopic effect which, as in the 
rolling disc, produces a movement of the plane of rotation, tending 
to counterbalance the disturbing action of gravity. The single track 
train, or mono-rail, of Brennan is stabilised by gyrostats, while a 
similar use to stabilise vessels was suggested by Schlick. 

More recently, aircraft instruments such as the automatic pilot, 
modern bomb sights, the artificial horizon, and turn and bank 
indicators have been developed on gyrostat-controlled principles. 

1 See Martienssen, Zdts. Vereins, deutsch, Ing., 67, 182 (1923). 
® Witherow and Hansen, Trans. Amer. Inst. Elec. Eng., 63, 204 (1944) ; see 

also Engineery I^ondon, 179, 177* 188 (1946). 
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In all such cases the operative process is the relation of a virtually 
fixed datum plane, provided by the gyrostat, to a movable plane 
in the aircraft, and the result of their relative change of orientation 
is an instrumental indication much more reliable than personal 
judgment. 

EXAMPLES 

1. A unifonn disc of mass 500 gm. and radius 5 cm. revolves about 
an axis through its centre and perpendicular to its plane at a rate of 
50 revolutions per sec. Find the periodic time of the horizontal pro¬ 
cessional motion of the axis if the flywheel is supported at a point on the 
axis 3 cm. from the centre of the disc and projected with axis horizontal 
without subsequent nutational motion, g—981. [8*39 sec.] 

2. If, as a result of friction at the support, the axis of the disc in 
the previous question dips below the horizontal at an angle of 30'^ while 
the rotational speed remains unaltered, find the new precessional period. 
Hence show that for large variations of axis inclination to the horizontal 
the precessional period is practically unchanged. sec.] 

3. (a) An iron hoop of radius 2 ft. is bowled along a horizontal rough 
surface. Find the minimum forward speed of the hoop at which it will 
roll with plane vertical. 

(6) If the coefficient of friction between the hoop and the ground is 
0 4 find the forward speed at which the hoop finally slips and falls flat. 

[(a) 5*68 ft. per sec. ; (b) 5*47 ft. per sec.] 

4. A top consists of a flat disc of radius 2 cm. with an axle, of 
negligible thickness, whose point is 2 cm. from the centre of the disc. 
Find the minimum rate of rotation at which the top will spin. 

[13*25 revs, per sec.] 

5. If the top in the previous question is given a spin of 30 revs, 
per sec. and placed on a rough horizontal j)lane with its axis at 15° to 
the vertical, find the angle through which the axis sways in its initial 
nutation movement. 

6. Find the minimum rate of rotation of the top in question 4 if it 
is to spin stably with axis vertical. [15*^ revs, per sec.] 

7. An aeroplane has a rotary engine which revolves in a clockwise 
direction as seen by the pilot. Show that a pitching moment is ex¬ 
perienced when the aeroplane is making a horizontal turn, and find the 
direction of this moment when the turn is being made to the right. 
If the aeroplane speed is 100 miles per hour, the engine revolutions 
1500 per minute, the moment of inertia of the engine about its rotation 
axis 500 ft.-lb. units and the radius of the turn 200 yd., find the magnitude 
of the pitching moment. [Nose down; 1*92x10^ ft.-lb. units.] 

8. A bullet projected from a rifle has a right-handed spin imparted 
to it by the rifling and, in its flight, grazes a vertical wall. Show that 
the result is a deflection upwards, or downwards, according to whether 
the wall is on the left, or right, respectively of the bullet as judged by 
the firer. 



CHAPTER V 

FXASTICITY 

54. Elastic Bodies.—The development of dynamics proceeds 
from the conception of a massive particle—i,e, a body so small that 
all its parts may be regarded as having the same displacement— 
to that of a rigid body, in which the distance between any two 
points is unaffected by forces acting on the body. In order to 
bring physical theory into line with the behaviour of actual bodies, 
it becomes necessary to take into account a possible relative move* 
ment in the parts of a body under the action of forces which, acting 
on a rigid body, would be in equilibrium, and thus have no eifect. 
Actually, no body is perfectly rigid, although a substance, such 
as steel or glass, is practically so for small forces. Materials may 
be subdivided according to their behaviour when the forces which 
produce deformations are removed. If the body retains completely 
its altered shape and size, it is said to be perfectly plastic^ as, for 
example, putty. If, on the other hand, the body recovers its original 
size and shape, it is said to be perfectly elastic. This method of 
differentiation is not absolute, since no body is perfectly elastic, 
when subjected to very large deformations, while it is probable that 
even putty recovers, at least partially, from very small alterations 
of shape or size. 

55. Hooke’s Law and Elastic Limits.—Over a considerable 
range it is found, by experiment, that the deformation, produced 
by forces, is proportional to the magnitude of those forces. This 
statement of proportionality is called IIooke\^ Law and is the basis 
of the theory of elasticity. The point at which Hooke’s Law just 
ceases to hold is called the elastic limit of the substance, and is 
determined, experimentally, by plotting the magnitude of the special 
type of deformation against the value of the applied force system. 
The point of departure of the resulting curve from a straight line 
gives the elastic limit of the specimen, for that particular kind of 
alteration in its size or shape. Sometimes the elastic limit is defined 
as the magnitude of the applied forces which produce the maximum 
amount of recoverable deformation. In this case its experimental 
measurement is rather different, and consists in loading the specimen, 
and then measuring its dimensions on removal of the load. This is 
repeated with increasing loads until the recovery on unloading is not 
complete, i.e, until a definite permanent set—or change of shape— 
is formed. The amount of this permanent set is plotted against the 
load, and an estimate is made of the point at which the set begins. 

92 
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With most materials these two definitions of the elastic limit give 
practically the same values. 

The actual elastic limit can be obtained only by the use of very 
delicate instruments. The yield point occurs with greater forces, 
and is that point at which there is an increase in the deformation 
of the body, without a corresponding addition to its load. With 
some substances, such as iron and mild steel, the yield point is well 
marked, but it is non-existent in hard steel, bronze, and most alloys. 
For tliese substances the rate of extension with load increases beyond 
the elastic limit without discontinuity. 

56. Stress and Strain.—The change in the dimensions of a 
body, produced by a system of forces in equilibrium, is called a strain^ 
and its character will evidently depend on the nature of the force 
system producing it. The latter is called the stress and is always 
measured by the applied force per unit area of the body. The 
method of measuring the strain varies according to its character. 
Consider a long wire clamped at its upper end and loaded at the 

Fig. 85.—Shear Strain. 

bottom. An increase in the load produces an elongation of the 
wire, and in this case the strain is measured by the increase in 
length, per unit length, of the wire. If, however, a body is uni¬ 
formly compressed in all directions, it will be unaltered in shape if 
it is isotropic—i,e, if its elastic properties are uniform in all directions 
—but it undergoes a change of volume, and the strain is measured 
by the alteration in volume, per unit volume, of the original body. 
Finally, suppose (Fig. 35) a unit cube of a substance is under the 
action of tangential forces as shown in (a). The result will be a 
change in shape, the face ABCI) becoming the rhombus A'B'CD 
(Fig. 85) (5), but its size remains constant, since the area A BCD is 
equal to that of A'B'CD, and the body is unchanged in dimensions 
in a direction perpendicular to ABCD, This type of strain is called 
a shear and is measured by the angular deformation d. The shear 
may be regarded as produced by progressive slidings of planes, such 
as ABGII, in a direction parallel to a chosen datum plane, say 
DCEF^ the amount of the movement being proportional to the 
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0~tan 0 = 

distance from the selected datum plane. The magnitude of the 
shear may also be defined as the relative displacement of two planes, 
whose distance apart is unity. This reduces to the same definition 
as before, since, if 0 is small—a necessary assumjition in the theory 
of elasticity and one which is realised in practice—we have 

BB' __ relalive displacement 
BC distance of separation" 

A shear may, alternatively, be regarded as a combination of an 
(‘xtension, together with a contraction perjiendicular to the extension, 
for (Fig. ;35) (0) the diagonal DB beeoriies of length 1)B\ and if BM 
is drawn perpendicular to DB\ the extension along DB is 

MB' MB' BB' 1 ^BB' 0 
DB ~1)M"" 

Similarly, the fractional contraction of the diagonal AC is 

0 

AN i. 

Thus a shear 0 is equivalent to an extension - together with a com¬ 

pression both at 45to AB, the direction of shear. 

57. Moduli of Elasticity.—Adopting the terms stress and strain, 
Hooke’s Law may now be stated as ; the ratio of streiss to strain is 
constant. The value of this constant is called an elastic modulus. 
Thus, in the case of a body under a tcnsional stress, the ratio of stress 
to strain is known as Young's modulusy 1". For a uniform volume 
compression, or dilation, the modulus is called the bulk modulus^ K ; 
while, for a shear, the corresponding modulus is termed the modulus 
of rigidity, n. 

Another elastic constant called the axial modulus x defined in 
terms of the principal stress needed to produce a simple elongation 
without lateral change. The complete stress is a Young’s Modulus 
stress, together with two perpendicular stresses of such a magnitude 
as will prevent lateral contraction. The ratio of the extensional 
stress to increase in length per unit length is We thus have 

Y Applied load per unit area of cross-section 
Increase in length per unit length 

Compressive, or tensile, force per unit area 
A = 

Decrease, or increase, in volume per unit volume 

Tangential force per unit area 
Angular deformation 

^ Longitudinal load per unit area of cross-section 
Increase in length per unit length 

Although the definitions of Y and x ^^e similar, the total force 
system and complete strains differ in the two cases. 
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These moduli are not independent constants, since any possible 
change in the size and shape of a body may be obtained by first 
changing the size, but not the shape—i,e. by a volume strain—and 
then changing the shape, without altering the size—by means oi' 
shears. Thus a suitable combination of volume and shear strains 
may produce any kind of strain and, in particular, a linear tensile 
strain. This interrelation of the elastic moduli will be considered 
later. 

Careful measurement shows that, when a body undergoes a linear 
tensile strain—i.e. is under the action of two equal and oppositely 
directed forces—it cxfieriences a lateral contraction in addition to 
its longitudinal extension, and also that this contraction is directly 
proportional to the extension. The ratio of lateral strain—measured 
by the deerease in width per unit width to the longitudinal strain 
is called Poisson's ratio, a. 

58. Direct Measurement of Young’s Modulus.—The value 
of Y for a material in the form ol* a long thin wire may be obtained 
by an apj)aratns desigru'd by G. F. C, Searle,^ and shown in Fig. 80. 

Fig. ao.—Searle’s Spirit-level Apparatus for the Measurement of 

Young’s Modulus. 

The wire A is clamped firmly at its ujiper end alongside another 
wire B, The lower ends of these wires are connected to the frame E, 
which carries a sensitive level L, and the latter may be tilted by 
means of the micrometer 31, Each wire is initially loaded sufficiently 
to straighten it, and the bubble is adjusted. An additional load is 
then added to the specimen under test, and the corresponding move- 

1 G. F. C. Searle, Camb. Phil Soc, Proc,, 10, 318 (1900). 
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merit of the micrometer, necessary to restore the level, measures the 
extension produced. This loading is continued, and extensions are 
plotted against the corresponding loads. The result is a straight 
line whose slope gives tlie extension for unit load. From this result, 
knowing the length and radius of the wiri', Young's modulus may 
be calculated. 

For thicker and shorter specimens some form of extens()met(T is 
required, such as that devised by Ewing. ^ 

59. Determination of Poisson’s Ratio.—The most direct 
method of measuring Poisson’s ratio consists in using an extensometer 
in combination with an instrument for the simultaneous measure¬ 
ment of lateral strain and this is the usual practice in engineering 
establishments where facilities exist for the application of the large 
stretching forces necessary for the production of measurable lateral 
strains in thick rods. For thinner rods and wires, indirect methods, 
such as are described in Articles 6G and* 67, are available. It is 
clear from equation (110) of Article 65 that a must lie between 0 
and 0-5 and, for many materials, it is nearly 0-33. 

The values of a for some substances are given in Table IV bellow. 

Table IV.—Values of Poisson’s Ratio g 

Substance. a. ;| Substance. cr. 

Glass 0 25 Tin . 0-33 
Steel . • 1 0-27-0-30 i Aluminium 0*34 

Copper 
1 

• 1 0-31-0-34 ■' Cadmium . 0-30 
Brass. 1 0-32-0-35 i! Silver. 0-38 

Delta metal 0-34 i Platinum . 0-39 

Muntz metal 0-34 i Gold . 0-42 
Lead . 0-43 || Marble 0-27 

60. Torsion of a Cylinder.—Consider a cylinder, fixed at one 
end and twisted at the other by means of a couple of moment F, 
whose axis coincides with the axis of the cylinder. The angular 
displacement 0, at a distance I from the fixed end, is proportional 
to both I aud F. This is an example of a pure shear, since there 
can be no change in either the length, or the radius of the cylinder, 
for reversing the couple would reverse any such change, and the 
response of the cylinder to the couple is clearly independent of the 
latter’s direction. Each circular cross-section is rotated about the 
cylinder’s axis, by an amount which is determined by its distance 
from the fixed end. Thus, in Fig. 37 (a), a wedge of the cylinder 
is strained from the position A BCD into the position ABED, so 
that CE^Ticf), where is the radius of the cylinder, and, in Fig. 87 (6), 
an element FGHI of the lower end is moved to JKLM. Suppose 
BF~r and FG=dr, while FH—dx, then the parallelepiped, with 

1 Ewing, Proc. Roy, Soc.t A, 58, 128 (1895). 
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FGHI as base, is sheared as shown in Fig. 37 (c), where 
The force, f, acting tangentially on the face FGHI and producing 

f 
the shear 6, constitutes a shearing stress of magnitude Thus 

tlie modulus of rigidity is given by 

/ n- 

or, since W- rcj), 

f^ndnh 

Odrd£ 

/ 

This force f has a moment fr about the axis of the eylinder, and 
thus the total moment is 

The integral of dx must be taken round the circle of radius i\ and so 

Fio. 37.—Torsion of a Cylinder. 

If the cylinder is solid this becomes 

21 
(77) 

and if hollow, of outer and inner radii and respectively, 

i - 2/ J • (78) 

O.P.M. H 
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The quantity -j - the torque to produee unit twist between the 

ends of the specimen—is usually called the torsional rigidity, and is 
designated by r. 

K(|uations (77) and (78) may 

Fig. 38.—Static Experiment to 
Measure the Torsional Rigidity 

OF A Rod. 

be applied directly to the measure¬ 
ment of T for a cylindrical wire, 
using either a static method, or 
a torsional pendulum.^ For the 
static experiment, which is suit¬ 
able for comparatively thick 
specimens, an arrangement shown 
in Fig. 38 may be used. The 
specimen y\B is clamped at A 
and fixed firmly into a wide 
cylinder C at B. Two mirrors 
and Mg are fixed to AB at a 
distance I apart, and two flexible 
cords, attached to C, pass over 
freely running pulleys and Fg. 
They carry weights mg and act 
tangentially on C, so that the 
couple applied to the end B is 
r=2nigRy where R is the radius 
of the cylinder C, The relative 
twist 0, between and Mg, is 
measured by the usual lamp-and- 
scale method, and thus we have 

r 2mgR 

where t is the torsional rigidity of a length I of the specimen. If 
an absolute measure of the rigidity modulus is required, this is 
obtained from 

futrA 

One advantage of the method is that the radius r^, being com¬ 
paratively large, is susceptible to accurate measurement. This is 
important since it is raised to the fourth power, and any error in 
becomes seriously magnified in n. Secondly, since this is a static 
experiment, the specimen is not subjected to periodic changes in 
the strain which may result in a slightly large value for 

In the torsional pendulum method, a body of known moment of 
inertia, /, is attached to the end F, and the system is made to execute 
torsional oscillations. Then, from (19), the period is given by 

^ See Article 9. *See Article 77. 
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and thus x may be measured. For a sufficiently slow oscillation with 
a substance of high rigidity, a long and fairly thin wire is necessary, 

61. Torsion of Bars of Non-circular Cross-section.—For 
bars of which the section is not circular, the problem of deducing 
the torsional rigidity becomes very much more difficult. The cases 
where the section is elliptic, equilaterally triangular, and square 
with rounded corners were treated successfully by St. Venant,^ who 
showed that the torsion involved a longitudinal displacement in the 
cross-section. This displacement is not uniform, but is an axial 
elongation at some points in the section and an axial contraction 
at others. Thus the particles in any cross-section arc no longer 

■ 
H 

Fig. 39,—Torsion of a Bar—St. Venant. 

coplanar when strained. The cross-section is divisible by radial 
lines into sectors, which are alternately places of axial extension 
and contraction, ix, alternate depressions and protuberances, the 
magnitude of the axial movement increasing with distance from the 
axis, and from the radial lines demarking adjacent sectors. For 
example, St. Venant gives the following cases. For a square, 
Fig. 89 (a), the section is divisible into eight sectors by median and 
diagonal lines, and the axial displacement is alternately towards and 
away from the fixed end. If the twisting is in the direction of the 
arrow, then the dotted lines show displacements towards the fixed 

^ See Love, Maih, Theory of Elasticity^ 2nd ed., Cliapter XIV. 
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end, while the full lines indicate opposite displacements. This effect 
is shown in perspective in Fig. 39 (b). For an equilateral triangle 
the effect is as shown in Fig. 39 (c), while, for an ellipse, it is as in 
Fig. 39 (cl). For such an elliptic cross-section, St. Venant showed 
that the torsional rigidity is given by 

uji di^bi^ 

where (ii and arc the major and minor semi-axes, respectively. 
If is large compared with the specimen becomes a strip and 

njcfub.^ 
r. —- 

Coiiiparing this torsional rigidity with that, t, for a circular cross- 
section, we have 

Ti 

so that, since for equal breaking stresses the cross-sections arc equal, 
r^^=a^bi, and 

T _ 

ri~2bi 

As is large compared with biy tlu; torsional rigidity of a flat 
elliptic strip is much less than that of a circular ware of the same 
material and equal cross-section. 

When a uniformly thin, flat, rectangular strip is twisted, its plane 
becomes a helicoid, and St. Venant’s treatment shows that the 
torsional rigidity tg is given by 

ned^ 

where c is the width, d the thickness, and I the length of the strip, 
and thus 

T : Tj 
^ 2Z^i 2jrd 

T2=1 : —- : 
^ 3c 

for circular, elliptic, and rectangular strips of the same cross-sectional 
area and equal lengths. Rectangular strips are used as suspensions 
in galvanometers. These strips have very small torsional rigidity, 
and possess the additional advantage of offering a comparatively 
large surface area for the dissipation of heat produced by the current. 

If such a rectangular strip acts as the suspension of a torsional 
pendulum, the period Iq is given by 

where I is the moment of inertia of the suspended system. Thus 
n may be determined. 

According to St. Venant’s mathematical treatment of non-circular 
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sections, if Ox, Oy, Oz are axes taken in a plane perj^eiulicular to 
the axis of the bar, and if 0 is the displacement at a point {x, y), 
due to the “ warping ” which occurs when the bar is twisted, <f> must 
satisfy the equation 

d“(l> 

.<™' 
aiul the boundary condition 

Ox~x cos Oy, . . . (80) 

where is the change of <y& in a direction normal to the boundary 

of the section, and Ox, Oy are the angles between the normal at the 
point {x, y) and the axes of x and ?/, respectively. Functions which 
satisfy (79) always occur in pairs, and it‘ yj is tlie function conjugate 
to cf), it is related to cf) by the equations 

df d<j>_ dtp 

dx~dii dy~~^~dx • ■ ■ 

Thus, if we can find (/> is given by (81). The function y) must 
satisfy (70) and its boundary condition 

y Ox—x cos Oy, . . . (82) 

wliere is tlie rate of cliange of round the boundary. But 

0? 3 
cosOx--~==i~ and cosOy-—--\^ so that (82) reduces to 

os ^ os 

and the boundary condition is 

y)-=l{x^ i y^) \~(i constant . . . (83) 

If another function f is defined by 

f~f 

then it evidently satisfies 

. ■ ■ (-> 
at all points in the section, and 

f—constant .... (85) 
at the boundary. 

For an elliptic cross-section, bounded by the curve 

b^x^+a^y^==a^b^, 

the function / is given by 

/^--(bV+aWia^+b^), 
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sinceat all points of the boundary, and thus 

xp—— ’ 

which ^ives 
y{€L^—h^) 

dx By ^ 
and 

^V'__ x(a^~-b‘'^) 

By Bx a’^+b^ 

This, on integration and putting ^=0, at the centre gives, 

i^y{al-h^) 

and the axial displacement is given by the family of hyperbolas, 
which have the axes of the ellipse as asymptotes, and agrees with 
the diagram of Fig. 39 (d). 

The torque F on the bar in each case can ])c shown to satisfy 
the relation 

where 6 is the twist l)etween the ends of the bar. Thus 

l{a^+b^)r^'inB^\^(b\t-‘^a^y^)dxdy, 

the integral being taken over the cross-section. This reduces to 
St. Venant’s relation 

l{a^+b^)r=^rmda^b^. 

In only a few cases is it possible to obtain mathematical expres¬ 
sions for <f), y), and /, and thus there is no general method of ex¬ 
pressing the strain in a bar in a mathematical form. In cases other 
than those of the ellipse, square, equilateral triangle, and a few more 
simple forms of cross-section, further investigation must be made by 
experiment, utilising equations (84) and (85). It has been pointed 
out by various experimenters that these equations represent other 
physical phenomena which are more susceptible of direct measure¬ 
ment. For example, Prandtl,^ in what is known as PrandtVs Analogy^ 
drew attention to the fact that there is a similarity between / and 
the deviation, from the plane, of a soap film which covers a hole 
of the same size as the cross-section, and which is under an excess 
pressure on one side. In such a case, if S is the surface tension, 
p the excess pressure, and z the displacement at any point {x, y) 
from the plane of the section, then 

d^z d^z p 

dx^^dy^^2S 
(86) 

> Prandtl, Phys. Zeita., 4, 758 (1908). 
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z being zero at the boundary. Thus, if z is measured on such a scale 
4Sz 

thatequations (84) and (86) are identical, and measurements 

of z at various points on the film will, together with a knowledge of 
p and S, give / everywhere over the cross-section. The soap film 
may be regarded as a graphical representation of the function /. 

If n is the modulus of rigidity and 0 the twist in the bar, then 
the shear stress at any point may be found by multiplying the slope 
of the surface, representing / at that point, by n0, so that if a is 
the inclination of the soap film to the cross-section, the stress P 
is given by 

P 
while the torque F on the bar is 

r ==271 j* J /. dojdy=V, 

where V is the volume between the film and the plane of the cross- 
section, 0 being equal to 10. 

62. The Bending of Beams.——When a rod is bent 
from its natural shape by the action of applied forces, it will recover 

its original form on removal of those forces, provided that no part 
of it has been strained beyond the elastic limit. In the strained 
position, its shape will be governed by the opposing action of the 
rigidity of the rod against the type of stress applied, and by the 
magnitude of the stress system. In Fig. 40 (a) a beam CB is shown 
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clamped at one end and supporting an applied load at the free 
extremity. Such a system is called a cantilever. If we imagine a 
section of the rod to be drawn at the point A, the internal forces, 
over the section A, applied by the remainder AC of the beam, must, 
together with the external load IF, keep the part AB in equilibrium. 
The force W acting vertically downwards at B is balanced by an 
equal vertical force IF, acting upwards at A. These two forces 
constitute a couple, of moment IF xAB, called the bending moment 
at A, and thus there must be, in addition, an internal couple of 
equal moment and opposite sense. Certain lines along the length 
of the beam are extended, others arc compressed, while some arc 
unaltered in length. The latter lie in a surface, called the neutral 
surface, which is parallel to the axis about which bending occurs. 
Thus I)E, which is the intersection of the neutral surface by the 
plane of the diagram, retains its original length. Fibres within the 
})eam above J)E will be extended, and the extension will increase 
with greater distance from the neutral surface, while fibres below 
DE will undergo longitudinal contractions. The resultant elastic 
rea(?tion will produce forces such as pi, p2 in both parts of the beam, 
and these will constitute a system of couples, whose resultant may 
be called the moment of resistance, and balances the bending moment 
W xAB. We therefore conclude that the combined moments, due 
to the forces p about the point I), are' equal and opposite to the 
external bending moment. Hence the internal forces give rise to :— 

IF 
(i) A shearing stress of valuewhere a is the width of the rod 

and b is its depth. 
(ii) A moment of resistance whose magnitude equals W xAB. 
The first of these causes a shear of the beam, producing a lowering 

of the end B relative to C. This effect, however, is small compared 
with the depression of B, 
due to the bending, as 
proved below. To olDtain 
expressions for the de¬ 
pression, and for the 
form of the beam when 
it is bent, consider an 
element MNTJT (Fig. 41) 
of the beam. The neu¬ 
tral surface PQ subtends 
an angle <j> at its centre 
of curvature, and, if the 
radius of curvature is R, 
then PQ~R<f>. Draw QF 
parallel to PM, and, 
since FG is the length 
of a stretched fibre, 

situated at a distance z above the neutral surface, FW^PQ=s, say, 

Fig. 41.—Expression for the Internal 
Bending Moment. 
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is tlie normal length, while WG^ds is the extension it has under¬ 

gone. Thus its tensile strain is and if p is the magnitude of 

the internal force which produced this extension, 

■ . .... (87 

where a is the cross-sectional area of the fibre and Y is Young’s 
modulus for the material of the beam. But PQ~.s =^R(f)y and ds^Z(f>, 

Hence 
s R 

V z Y 
and - =Y i;* or p ~ ^zol, 

OL R ^ R 
Y 

The moment of p about Q is pz- thus the internal bending 

moment" - or moment of resistance -which is the sum of all such 
terms, is 

F „ 

The quantity 2j'olz^ is analogous to the moment of inertia about the 
neutral axis, and is called the geometrical moment of inertia of the 
cross-section about that axis. It is equal to where A is the cross- 
sectional area and k is the radius of gyration. We thus have 

YAk^ 
Internal Bending Moment^—. . (88) 

and this must balance the moment of the external forces at the sec¬ 
tion. The quantity YAk^, which measures the resistance of the 
beam to bending, and which is quantitatively defined as the external 
bending moment required to produce unit radius of curvature, is 
called the flexural rigidity. 

To apply this fundamental equation, choose axes Ox, Oy (Fig. 
40) (c) along, and perpendicular to, the unstrained position of the 
beam. Let the co-ordinates of A be x, y, and suppiose that the 
curvature of the beam is small. The co-ordinates of B then are /, 
dy where 5 is the depression of B, due to bending, and I is the length 
of the beam. The external bending moment at A is W{l—x) and, 
if we consider a short length ds of the beam, its curvature at a point 

is ^5 where \p is the angle the tangent makes with the x axis. 

Hence the curvature 
I dy) d d^y 

K-S 
since v) is small, and thus y)—tan yn Hence 

(89) 
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By integration, we have 

When so that and 
ax 

YAIo^w{y-y^ .... (90) 

At the loaded end .r™/, arul 

dij__ JVP , . (91) 

which gives the slope of the beam at that point. If (00) is integrated, 
we have, since when ?y—0, 

Y,lkhj„w(^^y ■ ■ ■ (92) 

which is the equation to the beam. At B the maximum displace¬ 
ment, d, from the horizontal position occurs, a —/, and 

WP 

SYAk^ 
(93) 

For a bar of rectangular section and thus 

W 
The depression (3i, due to the shear stress » is 

<5i 
m 

ahn 

where n is the modulus of rigidity. Therefore 

(5i Wl Yah^ Y/by 
d 'abn 4>n\l) ’ 

and for a moderately long and fairly thin beam is very small. 

Thus di is small compared with <5, and the whole depression of B 
is sensibly equal to d. 

The foregoing treatment assumes that the weight of the beam 
produces no appreciable bending. If this is not so, we may take 
this weight into consideration by adding, to the external moment 
due to Wf the moment about A, due to the portion AB of the beam. 
If the beam weight per unit length is Wy this amounts to a force 
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w(l—x), acting at the centre of gravity of AB, that is, at a distance 
\{l—x) from A. Thus equation (89) becomes 

or, on integrating twice, 

-6j+"\x ¥+2lj' 
which gives at B 

V ^I.2A (94) 

where Wj^=2Jol is the weight of the bean). 
Formula (93) may be used iu determining the value of Young’s 

modulus for the beam by measuring the depression produced by a 
given load. In a similar manner, by utilising equation (91), Y may 
be found in terms of the angular deflection of the loaded end of the 
beam. The latter method is more delicate, because the optical lever 
may be employed to magnify the movement. 

Beam Supported at its Ends and Loaded at the Centre.— 
Suppose that the beam AB (Fig. 42) is supported at, or near, its ends, 
and carries a load W at tlie centre-jioint P. The external forces 

IV 
acting are —- at eacli end, due to the siqiport tlirusts, and IV acting 

downwards at P. The tangent at P will be horizontal, and thus 

~D 

D 

Fig. 42.—Beam loaded at its Centre and supported near its Ends. 

each half of the beam is equivalent to a cantilever, clamped at the 

point P and displaced by an end force relative elevation 

3 of or _B, above P is, from (98), 

A- ’tl® 
^~A&YAk^ 

(95) 
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A similar result may be obtained by the direct integration of 

. . (96) 

and correction for the weiglit of the beam is made in tlie same 
manner as previously. Equation (95) is used in the determination 
of Y by observing d for a known value of W, Also, the first stage 
of integration of (96) gives 

dy WP UV 

4" 

At the end of a rectangular bar ai—O and 

d/y Wl^ 

(Ivr'^ahW 
(97) 

Thus Young’s modulus may be found by means of the following 
experiment. A pair of pillars, with small mirrors d/^. Mg (Fig. 42) 
attached to the upper ends, are fixed near the ends of the beam, the 
mirrors being practically normal to its length. A scale S is viewed 
by means of a telescope at the light from the scale having suffered 
two reflections from the mirrors. Suppose that the diff'erence in the 
scale readings in the telcsco[)(‘, before and after putting on a load W 
at the centre of the beam, is ,v. If L is the horizontal distance be¬ 
tween the two mirrors, and D the horizontal distan(.*e from the S(*ale 
to the mirror il/g, then, from simple geometry, 

Equating this value to (97) we have 

mi\2D+L) 

A more complete treatment of the internal forces of a bent beam 
is possible for any part of the beam between points of application 
of discrete external loads. If the element MNIJT of the beam, 
shown in Fig. 41, is only slightly bent, and the forces on the sec¬ 
tion MT are a shearing force/upwards and an anticlockwise couple 

while the length FQ is dx, then these forces become/+^/ down¬ 
wards and G-\~6G clockwise in the section NIL Thus for vertical 
equilibrium we have :— 

or • • (98) 

w being tlic weiglit per unit length. Similarly by taking moments 
about T « 2 

G=G+(5G+{/+a/)(5a;+H.^. 

or. 
dx~ ^ 

ignoring second and higher order terms. 

(99) 
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The iiitegratioii of these equations yields 

.... (100) 
and 

. . . (101) 

where/o is the upward shearing force at the point a.’~0, and is 
the anticlockwise internal bending moment at the same point. 

For example, in the beam shown in Fig. 42 taking the origin at 
the left-hand support and measuring x positively to the right, it is 
evident that 

JF+IFi 
Jo— ‘ 2 

wlicre JFj is the weight of the beam, and the supports are assumed 
at its ends. Thus 

and if this is oquated to its integration will give the form 

of tlic beam when its own weight is not negligible. The result will 
be applicable between A and P. 

63, Beam Bent with Considerable Curvature.—If a beam 
is so strongly bent that the tangent of its inclination to the unstrained 
position can no longer be regarded as small, and the curvature cannot 

dhf 
be taken as equal to the original form of equation (88) must be 

retained. In many problems the resulting dilfcrential equation is 
not easily solved, but in 
some cases interesting re¬ 
sults may be obtained by 
simple means. Consider 
a flexible cantilever—for 
example a piece of thin 
clock-spring—carrying a 
constant load and 
clamped successively at 
various points along its 
length. In this case the 
horizontal distance be¬ 
tween the clamp and the 
loaded end approaches a 
maximum value. Thus 
OPQ (Fig, 48) is the spring Fig. 4a.—Stkongly Bent Cantilever. 

in a strongly bent posi¬ 
tion, and P is a point with co-ordinates x, y. The tangent at P 
meets the Ox axis at an angle ip, while that at the end Q—of which 
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the co-ordinate is a—is The bending moment at P is W{a—x)^ 
so that 

and 

or, 

iy(a -x)==YJIc^^=r^YAk^ cos 

f W(a—ir)diV~ YAkf cos yKly), 
Jo Jo 

IVa^ 
YAk^ sin (f> (102) 

At (fy - AMY the co-ordinate of the loaded end is given by 

YAk‘^-=^ 
2 

or (loa) 

The equation (102) may be employed to determine Y for a very 
flexible beam by observing the inclination to the horizontal of the 
loaded end, while (103) enables Y to be measured from the value 
of ag, the maximum horizontal distance between clamp and loaded 
end. In these cases the limit of accuracy is imposed by the accuracy 
with which the thickness of the strip is measured, for, in a rectangular 
cross-section, the thickness is raised to the third power in Ak^, 

Columns and Supports.—When a beam is loaded in the direc¬ 
tion of its length, as with vertical columns and supports, the method 

(a) 

Fig. 44.—Columns and Supports, 

of treatment is different. Suppose, for example, a long thin column, 
with rounded ends so that it can bend along its whole length, sup¬ 
ports loads of P at each end, as shown in Fig. 44 (a). Then, for 
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small bending, we have as the bending moment at 

where a is the lateral displacement at the eenfral |)oint (), The 
solution to this equation is 

yr:=:za{ \ — COS \x), 

I ~7'’ ~ / 
where X is equal to / When .r™- I being the length of 

the beam, y^a. Thus P is given by 

pjriWAk^ 

and is independent of a, i.e. the force P will maintain the beam in 
any slightl}^ bent form. This value of P is the critical load since, 
for a smaller value, no bending will occur and the beam will be in 
stable equilibrium. For loads greater than this critical value the 
beam will bend more and more. 

If the beam is clamped rigidly at each end, its slightly deformed 
shape is as shown in Fig. 44 (h). In this case the length AB is under 
similar conditions of bending as in the previous case, and, substi¬ 

tuting the condition y^a when we find that P, the critical 

load, is now 
4atWAk^ 

P 

64. Spiral Springs.—The principles and formulae developed for 
bending and torsion are immediately applicable to the theory of spiral 
springs. A common spiral spring consists of a uniform wire, shaped 
permanently to have, when unstrained, the form of a regular helix. 
If the top end is held fixed and the lower end is attached to a bar, 
the spring may be acted on, through this bar, by forces such that, 
in its altered form, it is still a regular helix. This condition is 
obviously fulfilled if an infinitely small force, and an infinitely small 
couple, are applied to the bar along the axis of the spring and in 
a plane perpendicular to it. If the force and couple are increased 
to any degree, but always kept along and in the plane perpendicular 
to the axis of the altered spiral, this condition is still realised. We 
may imagine the spiral spring formed by winding the wire uniformly 
on a cylinder of radius R. Two cases arise. The plane of the wire 
may either be practically perpendicular to the axis of the cylinder, 
or it may make a small angle with it. The type of spiral spring 
formed in the first case is referred to as flat. 

Flat Spiral Springs.—Suppose a weight W is attached to the 
free end. Then, considering the equilibrium of the part of the 
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~2R- 

spring below a section at A (Fig.. 45), there must be a shearing 
force equal to W acting vertically over the section, and a couple 

of moment IVR. The efl’ect of the latter 
is to produce a uniform twist, say <^, per 
unit length of the wire, and this is balanced 
by the torsional resistance wliere r, 
the radius of the wire, is supposed small 
compared with R, For equilibrium, 

n7ir^<j> r: 

W 

\WJl 
■BA 

WR 
WR: (104) 

It I is tlie total length of the wire, the 
twist at the free end is Z<^, and the work 
done in twisting tlie wire is 

ir/<^ 

^ JO 

which is stored up in the wire as potem 
tial energy. Suppose the weight W is 
depressed and then released. When its 
displacement is x, the twist in the wire is 
increased by an amount per unit length, 
such that x~-lR<f)i, and the additional 
potential energy is 

In this position W has been lowered by x and the centre of gravity 

of the spring by -> so that the change of potential energy from these 
Jd 

effects is 

W 
Fig. 45.—Spiral Spring. 

rmr^x^ 
Wx~ 

W^x 

UR^ 2 

where is the weight of the spring. At the same position the 
W/dx\2 

weight W will have kinetic energy equal to fhe spring 

itself possesses kinetic energy. The vertical depression at any point 
in the spring is proportional to its distance, .v, from the fixed end, 

s (dx\ 
measured along the wire, and the velocity will be "W ^1* If ^ is 

the mass per unit length, the kinetic energy of an element ds will be 

and of the whole spring, 

m /dx\^C^ ,W./dxY 
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Thus the total kinetic energy is 

and, from the principle of energy conservaticjii, 

^3 )\dt j ^ UR^ 2 

Differentiating this with respect to t and rearranging the terms, we 
have 

4 d\v nnr^gx \ ^ / nnr^gcr._ 

which represents periodic motion, taking place about a displaced 
zero with a ])eriod given by 

^ / IV 

The depression due to vertical shear has been neglected com¬ 
pared with that due to torsion, and that this is permissible may be 

W 
shown as follows. The shearing strain at A (Fig. 45) is-and 

so the total depression produced by this strain is The depres- 

, . 2Wm 
sion due to twist is IRcb. and from (104) this is equal to -r-’ 

^ ^ njzr^ 
Hence 

Depression due to vertical shear r^ 

Depression due to torsion 2R^ 

and this ratio, in general, is very small. 

Non-flat Spiral Springs,—If the spring is not flat, i.e. if an 
element of the spiral is inclined at an angle a with the horizontal, the 
section at a point of the wire, perpendicular to the length of the wire, 
will be inclined at the angle a to a plane passing through the point 
and the axis of the spiral. Thus the torsional moment, produced by 
the w^eight IF, may be resolved into two components, one WR cos a 
acting in the plane of the section at A and producing a twist <f) per 
unit length given by 

WK cos . . . (105) 

The other component, WR sin a, acting with its axis perpendicular 
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to the section at yi, constitutes a bending moment and produces 
a change in curvature at A given by (88), i.e. 

WB sin a mil sin a 

so that, if ds is an element of the length of the wire, this element 
is bent through an angle 

A^WR sin ceds 
.... (106) 

Considering the vertical displacements of the free end resulting 
from the twisting and bending, we have, from (105), since the section 
is inclined at an angle a to the vertical, a vertical displacement 
equal to 

, 2lf BA cos-oi 
Jilxb cos a — - ^ ^ 

and, arising from (100), an additional vertical movement, 

A\VB sin a 

nr 

t sin a f' 
.B sin a I ds- 

' ^ Jo 

AIVB‘^1 siu^oi^ 

nr'^V 

ITence tlu? total vertical disjdacement is 

cos- a 

Ttr* 

sin- OL 

Y 

In addition to this vertical movement of tlie free end, there will 
be an angular displacement in the horizontal plane. Tlius, from 
(105), the torsion gives rise to a horizontal angular shift of 

,, . 2WIB sin a cos ol 
16 sin a " - ^ » 
^ nnr^ 

and tends to coil up the spring. In a similar manner the bending 
will produce a liorizontal angular rotation of the free end, which, 
from (106), is given by 

4iri^ sin a cos af^ 4iWBl sin a cos ol 

J" nr^Y ~ ’ 

and this tends to uncoil the spring. The resultant movement tend¬ 
ing to coil up the spring is 

2 WBl sin a cos a F1 21 

nr^ Ln"~Fj 
and is greatest when a=45°. 

The spring tends to coil, or uncoil, according as 

1 2 

n Y 

For most metals F >2n, and spiral springs formed of wires of circular 
cross-sections tend to coil up when an extending force is applied to 
their free ends. 
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65. Relations between the Elastic Constants.—Since a com¬ 
bination of a uniform volume strain and three perpendicular shears 
is capable of producing any homogeneous strain, it is evident that 
the elastic constants F, /i, and g must be interrelated, and the 
connection between them may be obtained by a tabular method of 
designating stresses and their resultant strains. In Table V the 
first three columns indicate the applied stresses along any three 
perpendicular axes Or, O;/, 0~, while in the remaining columns are 
the consequent strains. If the stress is extcnsional, it is given a 
plus sign ; if comprcssional, it is regarded as negative and similarly 
with the strains. Thus a stress -\-P in the Ox column and 0, 0, in 
the Oy and Oz stress columns mean that an extcnsional Young's 
Modulus stress is applied alone along Or. Tlie consequent strain 

P 
is an extension +“ along Ox and two contractions each equal to 

- along O]! and Oz, 

In this way Table V (A) shows the result of applying three per¬ 
pendicular stresses, each +7^, in succession. The resultant stress is a 
pure volume stress -\-P and the strain is three perpendicular exten- 

P . . ZP 
sions each equal to —(1 - ‘icr), or a volume strain of -'^(1—2(7). But 

. . P 
by d(‘linition the volume strain is and thus 

P P 
or F-3A(1-2(t) . . (107) 

In Table V (B) two equal perpendicular stresses, one cxtcjisional 
the other comprcssional, are combined to produce an extension along 

P 
Ox of “(1 -\-g) and an equal compression along Oy. But these strains 

have been shown in Article 56 to be equivalent to a shear strain of 
2P 

magnitude —(l+o*) at 45° to Ox or Oy. Siju‘e the equivalent 

shearing stress is P, we have : - 

P 2P 
0 = 2n(l+a) 

Table V (C) shows the result of applying a set of stresses which 
will define the axial modulus if the lateral strains along Oy and Oz 
are zero, i.e. if 

F,=a(P^I\), or 

In this case the extension along Ox is 

Pf-, 2(t2\ P(H-ff)(l_2a) 
Y\ l-a)~Y (1-ff) 
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But as this by definition is also equal to —> we have 

r(l-ct)=;(;(1+ct)(1 

From these equations we may also obtain :— 

_ OhK SK~2n SK-{-4!n 

Taulk V. —Stresses and Strains 

(109) 

(no) 

Stros.scs applied aloiiff Strains produced along 

Ox ou Oz Ox Ou Oz 

■\-P 0 0 4 ■ 

aP 

Y 

aP 
■ -y 

0 1 p 0 
aP 

Y 4 aP 
- y M) 

0 0 +p ' 
aP 

-y 

aP 

Y 

, P 

\-p +p +p Jri-2e] ^[l-2aj {[l-Sal (Sum) 

-fp 0 0 
~ 

aP 
Y 

gP 

Y (B) 

0 

' - - ! 

0 +?i: i 
P 

Y y 
! 

4
- 

1 

0 
P 
y[l + o] -J[yha] 0 (Sum) 

1 
0 1 

1 
0 1' 

1' 

,P 
+ Y 1 

aP 
-y Y \ 

0 

1 

1 +^'1 0 i' 
aP, 

Y 

\ oP, 
Y 

(C) 

0 

1 

; 0 
! 

+Pl 
oP, 
■y 

aP^ 

Y 

+
 

+Pi +a| 

i 

\[P-2aP,] 

1 

^[P,-a{P\P,)] (Sum) 

66. Searle’s Method for the Elastic Constants.—G. P’. C. 
Searle ^ has described a very convenient method for the measurement 
of the elastic constants of a material in the form of fairly short 

' G. F. C. Searle, Pha. Mag., 49, 198 (1900). 
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and moderately thin wire. The specimen AB (Fig. 46) (a) passes 
into two small holes, drilled at the centres of two rods CD and EF 
of square or circular cross-section, and is lixed firmly by two set 
screws, which may conveniently be fitted with rings for the attach¬ 
ment of a bifilar form of support. The ends E, D are drawn together 
by means of a thread, thus forcing the wire into an arc, and when 
tlie system is released, the relaxation of the strain in the wire causes 
each rod to vibrate in a horizontal plane about its supporting thread 
with period This period is measured. If (Fig. 46) {b) I is the 
length of wire between the clamping screws, and a the angular 

Fi(i. 46. -Seaule’s Apparatus for the Measurement of the Elastic 

Constants of a Wire. 

deflection of each bar from its equilibrium position, then, since the 
bending moment is constant at any point in AB^ the latter will 
form a circular arc of radius R, such that /~2/^a. The bending 
rnomeht is, from (88), equal to 

YAk^ 2YAk^oL 

R " ~ I ’ 

and this is the restoring couple acting on each bar when the system is 
released. Thus the torque t per unit angular displacement is given by 

2YAk^ 
T-- ^ » 

and the periodic time of oscillation is, from (19), 

where 1 is the moment of inertia of the bar about its supporting 
thread. For a circular wire AB the radius of gyration is and thus 

/ 2/Z 
ti = 27l^ • • • (111) 

If, now, the bar CD is clamped horizontally with the wire AB 
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i^ertical, and EF is made to execute torsional oscillations, from (19), 
the period of the oscillating bar is given by 

Yii 
=2- m V 

(112) 

the value of I being the same in both experiments. From (111) 
and (112) Y and n may be found, while, utilising relation (108), 
a is given by 

Y 1 2 

It should be noted that this gives a method of determining a for a 
wire in terms of two accurately determinable quantities and 

67. Change in Cross-section of Bent Beams.—Although it 
has been assumed that the eross-sectional form of a bent beam is 

unaltered when the beam is 
/ \ strained, this is only approxi- 

/ \ mately true, since the exten- 
/ \ sioii of some fibres, and the 

contraction of others, will be 
accompanied by correspond¬ 
ing changes in lateral dimen¬ 
sions, those libres which are 
stretched iongitudinally dc- 
(^rcasing in width and vice 
versa. Hence, in practice, the 
form assumed by a section, 
which in the unstrained con¬ 
dition is rectangular, will be 

similar to that shown in Fig. 47 when stress is applied, while a rod of 
circular cross-section changes into an oval form with maximum width 
on the compressed side of the rod. If the rectangular section had 
width a and depth b in the unstrained position, AB becomes 

^ since the longitudinal extension at the distance lb from 

Fig. 47.- -CllOSS-SECTION OF A BfNT 

Beam. 

i'-m} 
the neutral line is, from Article 62, equal to where R is the 

radius of curvature of the beam. From Fig. 47, if r is the radius 
of curvature of the neutral surface EF in the plane of the diagram, 

EF AB 
r—ib' 

and thus 

Hence 
b / ab\ 

or 

r—:. 

R 
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This relation has been used in the measurement of a, but, since r 
is of the order 3/?, and is measured by determining the mutual 
inclination of AC and /IT), the method does not give accurate results. 
Whiddington’s method ^ of measuring small distances might be 
employed. In this the alteration of pitch in a heterodyne beat 
note, consequent on the differenee in capacity of an air condenser, 
produced by a change in the distance between its plates, is used to 
determine that small distance variation. The method has been 
suec^essfully applied to measure the cantilever depr(‘ssion of a fairly 
rigid steel bar under very light loads, aiid seems likely to be of great 
value where exeecdingly small changes in length are involved. 

If the upper surface of the beam is optically flat, an optical 
interference method ^ is available for the measurement of cr, utilising 
the relation ra-^K. A test plate of glass is mounted on the beam 
at its mid point, and the beam is bent by being supported near its 
ends on knife edges as in Fig. 42, but with loads applied at A and 
B instead of at P. Interference fringes can then be seen by light 
which is reflected vertically, as in the well known Newton’s Rings 
ex})eriment. These fringes comprise two sets of hyperbolas having 
common asymptotes. If horizontal axes Oii\ Gy are taken along 
and across the length of the beam, the depression s at any point 
(xy) is given by 

Hlirz-- ‘kv-r~{-R{a- — 4?y‘‘^), 

where a is the width of the beam. Along each fringe s is constant 
and, for the fringes passing through the centre, Hrz—a^. Thus the 
equation to the asymptotes is 

r.v^--Rr-, 
which is a pair of straight lines each making an angle 0 with the 
X axis, given by coi/^ 6—R/r—a, 

68. Expansion of a Hollow Isotropic Cylinder.—The expan¬ 
sion of a hollow cylinder under internal and external pressures is 
of importance in many ex{)eriments, designed to measure the bulk 
modulus of the material of the cylinder. Fig. 48 (a) shows the 
cylinder of internal and external radii R^ and R^, the internal and 
external pressures being and p^. The cylinder is supposed to 
have a length large compared with its radius, and to be closed by 
thick and flat ends. In general, there will be both axial and radial 
displacements at each point in the material. Suppose the axial 
strain to be C, and the radial displacement at a point distant r from 
the axis to be p. Then, as is shown below, p is given by 

where A and B are constants, 

^ Whiddington, PJiil. Mag., 40, 034 (1920) ; Engineering, 110, 384 (1920). 
* G. F. C. Searle, Experimental Physics, p. 89 (1934), 
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Thus the radial strain is while the transverse, or 
dr 

circumferential, strain ^=^4+^* Suppose the corresponding axial, 

radial and transverse stresses are P, Q, li respectively. Then, by 

P2 

Fig. 48.—Expansion of a Cylindkr. 

the method given in Article 65, the strains are given by 

P a{Q+R) 
-’ 

Q_a(Jlj±P) 
'r^~Y Y ’ 

B R a{P+Q) 
ri y" Y 

If these equations arc solved for P, Q, R we liave 

CrXl-o) , _ ‘iAYa 
(i+a){l-2(T) ^{l+(T){l-2ffj’ • 

^""(1 +(7)(1 ~ia) r=>(l +a)'*~(l +a){l-2a)' 

R-- 
CYa BY 

+/ 
AY 

'(1+(t){1-2<;)^ r®{l+a) ^(l+(T)(l-2(r) 

(113) 

(114) 

(115) 
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When ~ and when Q~~P2- 
Thus from (114). 

BY r 1 11 

and, by eliminating BY, 

Y{A+aC) ^ rp^R,^-p,R,n 

(l+(T)(l-2a) I R,^-R,^ J- • 

The axial stress P is given by 

Pni R^^—R^^) =pjjtRi ^ ~2)^nR^, 

and so from (113) 

Y[2aJ±C{Y~(j)\_ Mz^-_-PiRi^~ 
(l+(r)(l-2(T) ■ ~"[r^-R^^ 

Combining (116) and (117) 

Fyl Yc rpji,^-^pj{,n 

^\2aJ±C{Y~(j)\_ M^^-PiR^n 
(l+cr)(l-2(T) ■ ■■■[ 

I and (117) 

Fy/ _ JC: ^ _ rpJi^--prR^^- 
1-2(7 1-2ct |_ Ri^-R^^ 

From these values of A, B, C we have : 
Axial Strain 

.l' Y 
Radial Strain 

B_ (1 -■io)rp,R^jjjJ{^ , (l+(7)r R,‘^R. 
■■■_“£) n 

F 

Transverse Strain 

2_a_ ei'^1 ■"^iy'A2_ Ct> \ 

{p2-Pi)- 
(l-2ff) Pilh^-PiRi^ (1+<t) r 1 

Y R^-R^^ Yr^ t9
 1 

M
 t9

 
1_

 

Thus the new dimensions of the cylinder can be obtained from : 
Increase in length 

l{l-2a)rp,R,^-pJ{,n 
Y [ J’ 

Increase in external radius 

(5i?2 

AT? ——* [/’i^i^(2-ff)-paKi“(i+<^) 2(7)1 

=*“F R^^-Ri^ 
Increase in internal radius 

dR,=AR,+^, 

All -El bA’^(l-2g)4-Pl^2^(l+g)-P2lg2‘‘(2-ff)] 
» F Ra®-Rj* 
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The increase in internal volume is given by 

2dRi 
l\-I + R,’ 

dl\ -2a)+2pjR^%l+a)—PiRi%5-- io) 

f/" iW-V) .. 
and the increase in external volume dl^ ^ivtm by 

-~2a) 

'K~ 

The following special cases are of importanei* :— 

(a) Increase in length, for internal pressure only, the wall 
thickness being small, i.e. =: p^z= zero. Thus 

dl PR^^il-~2a) PR 

where R is the mean radius and <r the wall thickness. This is the 
theory of Mallock’s experiment. 

{h) Increase in internal volume under the action of an external 
pressure alone, i.e. p^ = zero, pg = P» Then 

^^_PR^^f4^a~5)_PR{4a- 5) 

This is the basis of Amagat’s experiments. 

(c) Increase in internal volume when external and internal 
pressures are the same, i.e. p^=: p2= P. 

dJ\ HP{l~~2a) P 

a result which would be obtained if the cylinder had been solid and 
under the action of an external pressure P alone. This result is 
of importance in Regnault’s rneasurement of the bulk modulus of 
liquids. 

To prove that the radial displacement p is of the form 

consider the following :—Fig. 48 (ft) represents a small curved element 
of the cylinder wall of unit depth, pQ being the circumferential stress. 
For radial equilibrium 

prdd—(p+dp){r Ydr)dd~PodrdO, 

or d{pr)=^~pQdr. 

The resultant axial strain is ^®^and, since this must be constant 

over the section, 

p—pQ—p -f == constant ™ M. 
or 
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Thus r“=M—2p 
dr 

which gives on integration, 

N 
M —» N being a constant. 

I'luTcforc 

2po-=2p~2M- - 

The total radial strain is 

dp 
dr 

and thus 

or. 

{V-\-apQ-\-aP) _ \Mr^l—a)+2oPr^--N{l+a)]y 
Y ■ 2Yr^ ' 

/3=-™|j^M(l-(T)+2(TP-^(l -I a)~^dr 

M{l~a)r aPr 
P=- - 2F F 2Yr^ 

p=-Ar+y 

69. The Bulk Modulus of Solids.—The bulk modulus of a 
solid may be calculated from the values of Y and n, using equation 
(110), and there are several methods by which a direct determination 
may be made. For example, Amagat measured K by observing 
the change in the internal volume of a cylinder under an applied 
traction. According to Article 65, this change is given by 

dV P P 
-77-—. . . (118) 

where P is the applied force per unit area, V the original volume, 
and dP the change in volume. In Amagat’s work dV was measured 
by filling the cylinder with water, which extended into a narrow 
calibrated capillary tube, and noting the alteration in the position 
of the meniscus when the cylinder was loaded. In another experi¬ 
ment the change, dVi, in internal volume, experienced by the cylinder 
under a uniform external pressure P, was measured by the same 
means. In such a case, as was proved in the previous article, dl\ 
is given by 

where Pg external and internal radii of the cylinder. 
By dividing (118) by (119) we have 

dF 1-2(7 

aFi"" *4(7-5’ 

and this gives an accurate means of determining Poisson’s ratio. 
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In Mallock’s method ^ of measuring K the material is in tlie form 
of a long and thin-walled tube which is subjected to internal pressure. 
The tube is supported in horizontal gimbals, one of which is held on 
a rocking support carrying a small reflecting prism. The latter has 
an index mark which is observed through a micrometer microscope, 
and thus the longitudinal extension is magnified and measured. If 
the thickness of the walls is small compared with tlie diameter of 
the tube, it is found that the change in length dejiends solely on 
the bulk modulus and, for isotropic substances, 

PR 

where dl is the longitudinal extension and R is the mean radius. Over 
the range of pressures employed -1 to SO atmospheres—the extension 
was proportional to the applied pressure, and thus indicated a con¬ 
stant value of the bulk modulus. Mallock’s experimental results, 
obtained with steel, brass, and copper, arc included in Table VI, 
and it is noteworthy that hard-drawn copper tubing proved to be 
stiffer than steel. With steel and brass, annealing produced only 
a small change in the bulk modulus, but with copper the elTect was 
very much greater. 

Bridgman ^ made a number of measurements of K for solids in the 
form of rods or tubes, utilising pressures up to 6,500 kg. per square 
centimetre—about 6,300 atmospheres—by two different methods. 

. In the first method the specimen, in the form of a rod, is enclosed in 
a heavy steel cylinder throughout the interior of which the hydro¬ 
static pressure is applied. The rod shortens under this uniform 
external pressure while the cylinder lengthens, the latter effect being 
only about 5 per cent, of the former. The extension dli of the 
cylinder is measured by placing it on the bed of a comparator, and 
noting the distance apart of two fine scratches before, and after, 
applying the pressure. In addition, the contraction (54 of the rod, 
relative to the cylinder, is measured. The rod passes through a 
ring which it fits with sufficient friction to retain it in position, and 
one end of the rod abuts against the cylinder end. The other end 
of the rod is free to contract through the ring, which is itself prevented 
from moving, relative to the cylinder, by pressing against an internal 
shoulder. Thus the relative movement, (54? is equal to the change 
of position of the ring on the rod, and this is observed by measuring 
the distance between two marks, one on each, before and after the 
pressure is applied. The absolute extension dl of the rod is then 
given by 

dl==dl^~dh. 

This gives the longitudinal strain, which is one-third of the volume 
compressive strain, and thus enables K to be calculated. 

1 Mallock, Proc. Boy, Soc,, A, 74, 50 (1904). 
* Bridgman, Proc, Amer, Acad,, 44, 255 (1908). See also The Physics of 

High Pressures, 
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Tabi.e VI.—Values of tue Elastic Constants of Solids 

(jRT, y, n m dynes per sq. cm. x 10^^) 

Alaterial. 

Steel . 

• 

Copj)er 
,, (hard) 
,, (annealed) 

Brass. 
jj ' • * 

Copper 
Glass 

5 J 

Aluminium 
Lead . 
Aluminium 
Lead 
Silver 
Platinum . 
Gold . 
Quartz 
Tin . 
Nickel 
Manganin . 
Constantan 
Cadmium . 
Phosphor bronze 
Delta metal 
Zinc . 
Bismuth 
Palladium . 
Bronze 
German silver 
Platinoid . 
India-rubber 
Oak . 
Mahogany . 
Boxwood . 
Catgut 

(M) Mallock. 

K. Y. n. a. 

(M) 18-3 
(B) • 19*4 
(A) 14-9 20-7 • • 0-207 

1(>4 20-9 8-12 0-287 
(A) US 12*3 • • 0327 
(M) 23 
(M) 14-3 
(A) 100 11 00 0-328 
(M) 10-9 

131 12 3 4 55 0-337 
(A) 4-61 709 , . 0-245 
(B) 4-67 
(B) 8*55 
(A) 3-78 1-58 0-428 

7-40 705 2-07 0-339 
4(M) 102 0-446 

109 7-90 2-87 0-379 
24*7 10-8 010 0-387 
160 8‘0 ' 2-77 0-422 

1-4 518 3-0 
5-20 5-43 ; 2-04 0-33 

17-6 20-2 7-70 0-309 
121 12'4 4-05 1 0*329 
15-5 10*3 0-11 0-325 

* 
i 4-12 1 4*99 1 1-92 0-30 
' .. 120 ' 4-30 0-38 

(A) 9-94 11-80 0-340 
00 8-28 3-80 
3-20 3-13 ! 122 0-33 

j 
11-3 1 5-11 0-893 
8-08 1 3-43 0-358 

* 1 11-0 4-5 0-37 
13-0 3-0 0-37 

• 1 0-05 0-00010 0-48 
1 1-3 

0-88 
3-0 

1 0-32 

(B) Bridgman. (A) Amagat. 

In Bridgman’s second method—which employs the same prin¬ 
ciples of measurement—the relative change in length of a rod with 
respect to a tube of another substance, when both are under a uniform 
pressure over the whole surface, is measured. If the bulk modulus 
of the material of the rod is known, that of the tube may be deduced. 
With glass tubes a seasoning effect is necessary, and this is produced 
by applying several cycles of pressure variation. 

In a succession of further experiments Bridgman ^ has raised the 

' Bridgman, Proc. Amer. Acad, Arts. Sci., 74, 18, 425 (1942), 
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maximum pressure used to about 100,000 kg. per sq. cm. or approxi¬ 
mately 97,000 atmospheres. Indirect methods were necessary to 
measure such pressures. In one, resistance elements of various 
metals were used, and the resistances plotted against pressure over 
the directly measurable range. For some the resistance increased, 
for others it decreased, in a strictly linear manner, and it was found 
that when they were used at much higher pressures their extrapolated 
graphs, at the measured resistance values, gave practically the same 
value of the pressure which was therefore accepted. No containing 
vessel was reliably able to withstand such pressures applied internally 
alone, so Bridgman placed the o})erative vessel within another by 
means of which a suitable external pressure could be applied of 
suflicient intensity to guard against risk of bursting. In this im¬ 
portant series of measurements data are provided for the P, F 
relations of 17 elements up to 100,000 kg. per sq. cm., and, to a 
lower maximum, of water and 20 organic liquids. In an investigation 
of the behaviour of substances under high shearing stress at high 
pressure, Bridgman found ^ that many normally stable substances 
become unstable and may detonate, while pairs of substances usually 
inert may combine explosively. 

70. Single Metal Crystals.—Normal polycrystalline metals 
have practically the same properties in all directions, but this uni¬ 
formity is the consequence of a chaotic crystal distribution giving 
a steady statistical average. The individual crystals are very small, 
and the discontinuities between them cause brittleness which increases 
with continuous, and particularly with continuously varying, strain. 
It is thus to be expected that the properties, especially those of 
elasticity, of large metal crystals are greatly influenced by the 
internal regularity of orientation of molecular fields. 

Many different methods of producing rods of monocrystalline 
structure have been used. Bridgman ^ first melted the tip of the 
rod or wire and then placed it in a glass tube in an almost non¬ 
oxidising atmosphere so that the oxide coating, which serves to 
hold the wire in cylindrical form, is neither destroyed nor unduly 
developed. Then a furnace, maintained slightly above the melting 
point, is drawn slowly along the wire, the melted end entering first. 
For a wire 0*1 cm. diameter the rate of passage through the furnace 
should be about 1 mm. per minute, and then each element, as it 
melts and subsequently resolidifies, takes up the crystal orientation 
determined by the already treated portion. The defect of the 
method is that no control is exercised over the crystal orientation 
relative to the length of the wire. To overcome this drawback, 
Kapitza ® describes a somewhat similar method in which a seed 
crystal, with the desired orientation, is fused to the leading end 
of the melted rod and thus directs the subsequent axial directions. 

1 Bridgman, Phys, Rev., 48, 825 (1935). 
* Bridgman, Proc. Amer, Acad, Sci.y 60, 807 (1925). 
^Kapitza, Proc, Roy, Soc,, A,, 119, 358 (1929). 
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In a third method Czochralski ^ melted the metal in a crueible 
maintained a few degrees above the melting point. A sheet of 
miea, with a hole giving the size of the desired rod, floats on the 
metal and a seed erystal, suitably oriented, is used to ton eh the 
melt through the hole, and is then drawn upwards by a eloekwork 
or eleetrie motor, at a rate whieh may be as great as 1 cm. per minute. 
Ry this means rods from 0*5 mm. to 5*0 mnj. diameter may be 
produced. 

As is to be ex{)eeted, praetieally all the normal physieal properties 
show directional variation in the monocrystalline state, and follow 
closely the law : - 

P:^P^ COS- a+^^2 ot 

in whieh P, P^, and P^ are the measures of that property at an 
angle a to the symmetry axis, parallel to that axis, and perpendicular 
to it, respectively. This is the case with electrical resistance, 
thermal conductivity, and thermo-electricity. 

Strength, Elasticity, and Plasticity,—In general, single crystals 
have smaller elasticity and markedly greater plasticity than poly¬ 
crystalline samples, and tliese reactions to stresses vary notably 
with direction. Because of regular molecular patterning, there are 
directional variations in tensile strength, and marked tendencies for 
fracture to occur along fixed cleavage planes. Thus if various planes 
are drawn in the metal, the breaking stress normal to the planes 
will exhibit defined minima of different magnitudes. Therefore the 
actual direction of fracture depends upon the ratio of stress com¬ 
ponent, perpendicular to one of the cleavage planes, to its particular 
breaking stress, and the break occurs at that plane for whieh the 
ratio is greatest. The cleavage planes naturally tend to be where 
molecular spacing is a maximum, but since most molecular fields 
are polar, this is not always true ; for ionic crystals it is more usual 
for cleavage planes to be determined by the direction of iso-ionic 
planes, so that cleavage exposes opposite faces of similar ions. 

It is in connection with plastic deformations that metal crystals 
show extraordinary and somewhat puzzling properties. For example, 
ordinary cadmium wire has a high value of n but single crystal wire 
shears into a permanent set under its own weight. Just as there 
are minimum breaking stress planes (cleavage planes), so there are 
minimum shearing stress planes, and plastic deformation occurs as 
a result of the mutual gliding of these planes over one another, but 
the exact mechanism is difficult to explain theoretically, as the glide 
elements are parallel slabs of metal about 10,000 cells apart. When 
the glide has gone on for some thousands of cell lengths the material 
stiffens considerably. This is the cause of the work-hardening pro¬ 
cess well known in engineering by which permanent sets produced 
by hammering, etc,, produce a tougher material. For example, a 
single crystal cadmium wire, after plastic extension to twice its old 

1 Czochralski, Z./. Phys. Chem,, 92, 219 (1917). 
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length, has its breaking stress increased tenfold. The process of 
glide deformation is shown diagraminatically in Fig. 49 {a) in which 
a longitudinal yield is indicated as the result of an inclined glide. 
The actual direction of glide depends, as with cleavage, on the plane 
in which the ratio of shearing stress to maximum bearable stress 
is greatest. For some simple crystalline forms, c.g. cadmium, there 
is only one glide direction. 

The stress-strain diagram for such a plastic extension shows, 
Fig. 49 (6), that the glide occurs as a series of jerks during which 
extension occurs without increase of stress, followed immediately 
by a small range of pseudo-elasticity, and so on in sequence. Finally, 
there is a fairly extensive region of regular elastic expansion. 

The onset of plasticity is most accurately delineated by the stress- 
strain graph, but it may also be studied by (a) the distortion produced 
in the Laue spots given by X-ray diffractions, or {h) the double 
refraction which is produced in transparent crystals. 

71. Elasticity of Fluids.—A solid possesses both rigidity and 
bulk moduli, but a fluid has no rigidity and thus cannot permanently 
resist a tangential stress. In a solid the stress at any point on a given 
element of area may have any direction with reference to that area, 
but in a fluid at rest it must act along the normal to the plane, and it 
follow^s that, in liquids at rest, the pressure at a point is independent 
of direction, and is thus a function of the position of the point alone. 
In a 'perfect fluid, whether at rest or in-relative motion, no tangential 
stress can exist, but, in practice, relative motion is* accompanied by 
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tangential forces tending to prevent that motion, and they persist 
as long as the motion lasts. Thus the fluid may be regarded as 
yielding to these stresses, different liquids yielding at very different 
rates. The condition at which yield takes place is determined by 
a i)roperty known as viscosity, and the latter may be regarded as 
a transient type of rigidity. This point is discussed further in th(‘ 
ehaj)ter on viscosity, 

A perfect liquid is usually described as a completely incompressible 
fluid. No liquid, in practice, is quite incompressible, although in 
many cases the change in volume, for moderate increases in pressure, 
is sufliciently small to be neglected in many problems. The quanti¬ 
tative study of the bulk modulus of liquids, and its relation to the 
other properties of the liquid, is a matter of great practical import¬ 
ance. It must be remembered, however, tliat the value of the 
modulus depends on the rate of application and removal of the 
stress. The two extreme cases, (i) slow stress changes under iso- 
tliermal conditions, and (ii) rapidly alternating stresses under 
adiabatic conditions, are of special importance. In either case the 
bulk modulus K is defined by the relation 

where dP is an additional stress, causing an increase dV in an original 
volume V, The coinpressihilily [i is deflned as the reciprocal of K, 
or 

A complete study of the isothermal compressibility of a substance 
involves a knowledge of the isothermal curves connecting P and 
at various temperatures, so that the density of the substance must 
be known at all pressures and temperatures. From sucli curves, 
or from corresponding data, the most important thermodynamical 
properties of the substance become known. 

72. Measurement of the Bulk Moduli of Liquids. -Experi¬ 
ments designed to measure K are beset with difficulties, which arise 
chiefly in the determination of the high pressures involved, the small 
change of volume to be measured, and, still more, the change in 
the size of the containing vessel. To correct for the last factor, 
accurate knowledge of the bulk modulus of the material of the 
vessel is required. In early experiments the vessels were of glass, 
but, since the elastic constants of glass are not very definite, it is 
essential to make preliminary measurements with the vessel to be 
used in the experiment. If the vessel is subjected to the same 
internal and external pressure, its internal volume does not remain 
constant, but decreases by an amount equal to that which would 
be caused if the vessel were solid and were subjected to the given 

G.P.M. K 
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stress, applied externally. A cylinder with flat ends, under a pressure 
P, experiences a change in internal volume dVi given by 

P 

v~k; 

where is the bulk modulus of the material of the vessel and T 
is its original VT>lume. If measurements are made of the apparent 
change b]\ in the volume of contained liquid under the pressure 
applied internally and externally, the true diminution is given by 

or 

where K is the bulk modulus of the liquid. This was the method used 
by Regnault, the liquid being ))laced in a glass piezometer enclosed in 
an outer vessel in such a way that, by means of three taps, pressure 
could be applied to the inside, to the outside, or on both sides of the 
piezometer. This flexibility of adjustment was necessary, since the 
previous theory assumes homogeneity of the elastic properties in 
the vessel, and this assumption, in the case of glass, is of doubtful 
validity. 

Regnault’s experiments were limited to moderate pressures up 
to 10 atmospheres. This range was extended by Tait to 500 atmo¬ 
spheres, by Parsons and Cook ^ to 2,000 atmospheres, and, more 
recently, in the important investigations by Bridgman ^ to about 
12,000 atmospheres. The latter experiments are the most complete 
yet carried out, and the resulting isothermals, for pressure and 
volume of many liquids, are now accepted as standards. The sub¬ 
stance under test was placed in a strong chrome-vanadium steel 
cylinder, and the pressure was produced by the advance of a piston 
of known cross-section, the amount of advance giving the apparent 
change in the volume of the liquid relative to the enclosing vessel. 
The pressure was determined by noting the change in the electrical 
resistance of a coil of manganin wire placed in the vessel, the resist¬ 
ance of this coil being about 100 ohms; and the relation between 
pressui'e and resistance was obtained by initial calibration with an 
absolute manometer of special type. This relation was found to be 
so accurately linear to pressures of the order of 12,000 atmospheres, 
that it could be extended by extrapolation to 20,000 atmospheres 
without serious error. To render the piston leak-proof at such high 
pressures, Bridgman used a special form of packing which, although 
somewhat inefficient at low pressures—thus necessitating an ordinary 
form of packing as an auxiliary—became automatically tighter with 
increase of pressure, so that the limit to the attainable pressure was 

1 Parsons and Cook, Proc. Boy. Soc,, A,, 85, 332 (1911). 
* Bridgman, Proc, Amer. Acad,, 48, 309 (1912); 49, 3 (1913); 66,185 (1931). 

See also The Physics of High Pressures, 
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determined by the strength of the cylinder. The principle of this 
packing is indicated in Fig. 50. Pressure is applied to the liquid L 
in the cylinder by the sliding mushroom head A which, in turn, is 
forced into the cylinder by the pressure of the rod P, acting on A 
through the hardened ring of steel D, the mild steel, or copper 
washers P, and the soft rubber packing C. Thus the compressional 
force on C must equal the total thrust on A and, since the cross- 
sectional area of C is less than that A, the pressure in the packing 
exceeds the pressure of the liquid, and the liquid can never leak. 
Tlie whole apparatus was maintained 
at a. constant temperature by thermo¬ 
static control, and, in the case of 
water, readings of the })rcssurc and 
volume were taken to 80° C. The 
correction for the expansion of the 
cylinder was determined by a set of 
auxiliary experiments in which jmrt 
of the liquid was replaced by steel, 
and the compressibility of the two 
together was found. 

Some of the many additional 
important results obtained by 
Bridgman in these experiments are 
summarised below. As will be seen 
these results do not yet permit many 
simple generalisations and, as a rule, 
they show irregularities due in all 
probability to the overlapping of 
different effects. For example, the 
compression under pressure appears 
to be due partly to a reduction in 
the spacing of the molecules and 
partly to an actual change in the 
effective molecular size. 

The elastic constants do not show an invariable increase with 
pressure, with some substances decreases are observed. Thermal 
conductivity, electrical conductivity, and Peltier coefficients also 
yield no general rule, and the two former show little mutual 
relationship. 

The value of K for water, obtained by difierent observers, is 
given in Table VII, where the units of K are 10^ kg. per sq. cm. 

73. Elasticity and Temperature.—As a general rule elastic 
moduli decrease with temperature, and for comparatively small 
ranges of temperature the relation is approximately linear. Schaefer 
indicated that, for temperatures from about 15° C. down to that 
of liquid air, the order of ascending temperature coefficients for 
Young’s modulus is also the order of increasing thermal expansion 
and diminishing melting-point, but, since he assumed a linear relation, 

Fig. 50.—Bridgman’s Experi¬ 

ments ON THE BuiiK Moduli 

OF Liquids. 
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his work does not indicate how the temperature coefficient changes. 
VVassmuth ^ determined the variation of Young’s modulus with 
temperature by means of bent beams. Lee and Shave, ^ and 
Andrews,^ working at teitiperatures to within 150° C. of the melting* 
points of the materials, found that the relation between Y and T 
was of an exponential form, 

where has one value for temperatures to about one-half the 
absolute temperature of the melting-point, and another value for 
higher temperatures. With quartz, F was found to change only 
slightly over the range 0° C. to 800° C. In connection with this it 
is interesting to note that the thermal expansion of this substance 
is also very small over the same temperature range. 

The first experiments on the temperature variation of the rigidity 
modulus were made by Kohlrausch and Loomis, who observed over 
a temperature range 15° C. to 100° C., and their results are expressible 
in the form :— 

nT~nQ(^ —aT-bT^). 

Schaefer ^ measured n at air temperature and at the temperature of 
liquid air, but again he assumed a linear law of change. Horton ^ 
carried out careful measurements with a number of metallic wires 
and also with quartz fibres. A torsional oscillation method was 
employed, and the temperature range was from 16"^ C. to 100° C., 
and in vSome cases to 126° C. A truly linear relation was found only 
for pure copper and steel, although it was very approximately linear 
with silver. In most other cases Horton found that the measured 
rigidity depended greatly on the previous heat treatment of the 
specimen. 

In general, the compressibility of liquids increases with rise of 
temperature, although Amagat found a minimum value for water 
at about 50° C. Pagliani and Vicentini determined the temperature 
of minimum compressibility to be between 60° C. and 70° C., while 
Grassi obtained a maximum compressibility between 0° C. and 4° C. 
This result does not agree with those of other observers, and Bridg¬ 
man ® found a continually decreasing compressibility over the range 
0° C. to 50° C. His results may be expressed in the form, 

K==A+BT~^CT^ 

which has a maximum value when B=2CT, and for all pressures 
this temperature of minimum compressibility was approximateh^ 
50° C, Curves deduced from Bridgman’s readings are shown (Fig. 51). 
For the other liquids studied by Bridgman no general rule can be 

1 Wassmuth, Phys, Zeiis,, 6, 755 (1905). 
®Lee and Shave, Proc, Phys. Soc.^ 36, 5 (1924). 
» Andrews, ibid., 37, 3 (1925). 
* Schaefer, Ann. d. Phys., 9, 8 (1902). 
® Horton, Phil. Trans., A, 204, 1 (1904). 
* Bridgman, loc. cit. 
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stated, and in a few cases the compressibility increased with rise 
in temperature. 

Fig. 51.^—Bulk Modulus op Water and Fressurk (Bridgman). 

74. Elasticity and Pressure.—There is no essential distinction 
in compressibility between a substance, ordinarily liquid, and a gas, 
after the first few thousand atmospheres. Ainagat showed that air, 
for example, at a pressure of 3,000 atmospheres is as dense as water, 
but the compressibility of solids is, in general, much less than that 
of fluids. In all cases the decrease in volume is the result of two 
effects, (a) a decrease in the space between the constituent molecules 
and (b) an actual decrease in the volume of the molecules themselves. 
The large initial compressibility of gases is due to the comparatively 
large distances between the molecules, and the initial decrease in 
volume is a result of effect (a), but after the first few thousands 
of atmospheres the major part of the loss of volume is due to (/i). 

In the case of all liquids the compressibility decreases with in¬ 
crease of pressure, at first rapidly and then much more slowly. The 
initial comparatively high compressibility arises by a decrease in the 
molecular spacing, while the final small value is probably due to 
a decrease in the volume of the molecules themselves. For water, 
at any given temperature, the bulk modulus K is a linear function 
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of the pressure which, from Bridgman’s results, is given by 

At 0° C., K^~{2 02 1-0 000656P) X 10^. 
At 50° C., A:-=(2-36+0 000598P) x104, 

where P is expressed in kg. per sq. cm. 
In the case of solids the occurrence of an initial comparatively 

large compressibility is much less apparent, and the compressibility 
decreases only slightly at high pressures. It is therefore probable 
that by far the larger part of the volume decrease is due to a 
reduction in the size of tlic molecules. 

The effect of pressure on rigidity was measured by Bridgman ^ 
by observing the change in extension of a helical spring, stretched by 
a constant weight and subjected to uniform pressure. The pressure 
range was about 12,000 atmospheres, measurements being made at 
intervals of 2,000 atmospheres, and the temj)erature was thermo¬ 
statically controlled. As the s})nng stretched it drew a sliding 
manganin wire over a fixed contact, as in the potentiometer, and 
the consequent difference of })otential between the contact and a 
fixed terminal on the wire was measured. The substances investi¬ 
gated were steel, glass, platinum, nickel, and several other metals. 
In general, the rigidity increases slightly under pressure, the order 
of the change being about 2 per cent, for an increase of pressure of 
10,000 atmospheres, but the experiments were not of sufficient 
accuracy to show any non-linear connection between rigidity and 
pressure. For glass a decrease of rigidity with pressure was found. 

Using these results Bridgman also deduced that both Young’s 
modulus and Poisson’s ratio show an increase of about 3 per cent, 
for 10,000 atmospheres increase in pressure. 

75. Compressibility of Gases. —The relation between the 
pressure P, volume F, and absolute temperature T of a perfect gas 
is given by 

PV=Bl\ .... (121) 

and thus the bulk modulus, K, under isothermal conditions is 

For adiabatic compressions—in which the heat of compression re¬ 

mains in the gas—PV^—const, and the adiabatic elasticity Ku is 
given by 

The adiabatic elasticity is greater than the isothermal value in the 
ratio y, which depends on the nature of the gas, being 1*66 for mon¬ 
atomic gases, 1*41 for air, and approaching unity with increasing 
molecular complexity. 

In real gases the relation (121) is very closely obeyed for moderate 

1 Bridgman, Proc, Amer. Acad,, 63, 401 (1928); 64, 39 (1929). 
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ranges of temperature, but at very low temperatures and at high 
pressures, considerable deviations from the perfeet gas law occur. 
This is to be expected, since in these circumstances the assumptions 
made in deducing the perfect gas law from the kinetic theory of gases 
no longer apply. 

At constant temperature the relation between pressure and 
volume for a perfeet gas is 

PV=coiistan1, 

and this equation is known as Boyle’s Law. Despretz enclosed a 
number of gases in barometer tubes standing in the same cistern, so 
that they had equal volumes under the same initial pressure. This 
system was then placed in a vessel filled with water, and when pres¬ 
sures was applied it was found that the previous equality of volumes 
was destroyed. Thus some at least of the gases did not obey Boyle’s 
Law. Of all the gases examined, hydrogen was found to be least 
compressible, although it was only at high pressures that a difference 
was observable between hydrogen and air. llegnault enclosed a 
gas in a closed tube which dipped into the rncreury filling a vessel. 
By pouring more mercury into the vessel through a side tube, the 
volume of gas was approximately halved and the corresponding 
pressure recorded. Then gas was pumped into the closed tube to 
restore the old volume condition under the new pressure, and the 
latter was then increased again to compress the gas to half volume. 
In no case was PV found to be constant, and with all gases except 
hydrogen the product decreased with increasing pressure. A series 
of important experiments was begun by Amagat, who worked at 
the bottom of a mine-shaft and produced the pressures by means 
of mercury in a tube 300 metres long extending up through the shaft. 
He experimented with nitrogen, oxygen, air, carbon monoxide, 
marsh gas, and ethylene. At low pressure PV for nitrogen decreased 
to a minimum, and then increased as the pressure was continually 
raised. A similar variation, still more strongly marked, was found 
with ethylene, particularly at lower temperatures ; in fact, this type 
of variation occurs with all gases, including hydrogen, as the critical 
temperature is approached. For very high pressures the relation 
between PV and P is sensibly linear, and thus the curves are of 
the form, 

P(V~b)=c, 

where b and c are constants, the former depending on the nature of 
the gas and the latter on the temperature. When V=b the pressure 
is infinite, and so b may be regarded as the least volume which can 

be occupied by the gas particles. Amagat found that the ratio -p 

at a pressure of 760 mm. of mercury was 0 00078 for hydrogen and 
0*00231 for ethylene. The experiments of Amagat were extended 
to pressures as high as 3,000 atmospheres, using a method similar to 
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that employed for studying the compressibility of liquids,^ but the 
dillieulties were much greater owing to the very small volumes into 
which the gas was compressed by such high pressures. The bulk 
moduli at 3,000 atmospheres of hydrogen, oxygen, nitrogen, and air 
were found to be 

6-39 X10«, 10-15X10*', 1015x10'^ and 10-90 X10*' 

dynes per sq. cm., respectively. 

76. Characteristic Equation of a Fluid.—Many attempts 
liave been made to obtain a general expression connecting the pres¬ 
sure P, volume V, and absolute temperature T of a substance 
throughout the range from gas to liquid. Such equations are 
modifications of the perfect gas law PV~K'J\ to which they must 
approximate at high temperatures. The most celebrated of these 
is Van der Waals’ ^ equation, 

b)=RT, 

in which the tennis introduced to account for tlic intermolccular 
J - 

attractions of the gas particles which produce an internal, or intrinsic, 
pressure in addition to that, P, exerted on a confining boundary.^ 
The quantity b is proportional to the effective volume occupied by 
the actual particles of the gas, and is shown ^ from considerations 
of probability to be four times the actual volume of the particles 
themselves. Van der Waals’ equation is limited in its applicability, 
is not in accord with later experiments, and does not hold for 
any real liquid. The quantity a varies with the temperature, 
and Clausius ^ suggested the equation, 

RT 
F-a'“T{F+/?)2 

where P, a, /?, and C are constants. This formula gives, generally, 
good agreement with experiment, and it is a special form of the 
general relation suggested by Amagat,® 

in which it is assumed that the internal pressure varies with volume 
and temperature. Finally, we may note the equation suggested by 
Dieterici,’ jix q 

iri’r, 
E—o 

which reduces to Van der Waals’ form if (Quantities other than those 
of the first order of smallness are neglected. 

^ Amagat, Comptes Rendus^ 115, 638 (1892-3). 
* See Threlfall and Adair, Mems. Phys. Soc.j Vol. I, part 3, p. 337. 
® See Article 140. * loc, cit. 
* Clausius, Wied. Ami., 9 , 337 (1880); Phil. Mag., 9, 393 (1880). 
® Amagat, Ann. d. Chim. et d. Phys., 28, 480 (1893). 
’Dieterici, Wied. Ann., 69 , 685 (1899). 
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77. Isothermal and Adiabatic Elasticities. -When a body 
is suddenly strained, thermal effects arc produced which tend to 
increase the resistance offered to further strain. This effect is quite 
general, and as a result it is necessary in measuring elastic moduli 
to note the conditions under which the straining occurs. The 
adiabatic modulus is always greater than the isothermal value, and 
in the case of a gas, the ratio of the two is given by 

where y is the ratio of the specific heals at constant pressure and 
constant volume. The same type of law applies to the bulk moduli 
of liquids, although the ratio is smaller than it is for gases. 

The relation between the adiabatic and isothermal values of the 
different moduli may be obtained by an appropriate Carnot’s cycle. 
For example, suppose that a stretched wire undergoes the cycle repre¬ 
sented in Fig. 52. The independent variables are F, the stretching 
force, and or, the increase in length. Let .iH be the 7’ isothermal 
whose slope gives the value of the isothermal modulus. From A to 
B the wire is stretched isothermally by an increase dF—BM in the 
stretching force, and the corresponding extension is oc~-=AM, The 
heat absorbed is, say, h ergs. From F to C a further expansion 
occurs adiabatically, the temperature changing from T to T—dT. 
An isothermal contraction CD at T -~d7\ followed by the adiabatic 
contraction DA, restores the wire to its original state, and by the 
laws of thermodynamics 

h Area ABCD ABGN AN ,BM 
T~ ST ~ ST dT 

But AN is the decrease in length at constant tension for a fall of 
temperature dT, Thus AN~l(x.d7\ where I is the length of the 

Fig. 52.—Isothermal and Adiabatic Values of Young’s Modulus. 
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wire and a is its coeflicient of linear expansion, while BM—dF. 
Hence 

T 
loidT.dF 

ST 
=--l(x,dF, 

or, //, the heat supplied to maintain constant temperature conditions, 
when an increase dF is made in the stret(*hing force, is given by 

h^lToL.SF, 

and if a is positive, h and SF are either both positive, or negative, 
so that a stretching under adiabatic conditions for such a wire or 
rod results in a cooling effect. 

If this cooling effect is conserved, a fall of temperature dT will 
occur and 

where p» and are the specific heat, density, and cross-sectional 
area of the wire, respectively. Thus 

Toi dF l\dP 

JCp (h Ji^p ’ 

dT-^ (122) 

where dP is the increase in tensile stress. This result has been 
verified within the limits of experimental accuracy by Joule. ^ 

During an adiabatic expansion, the actual increase in length is due 
to the combined results of the increased tension and the consequent 
cooling. Thus, if a change dP is made suddenly in the stress on 
a wire, and the total resultant fractional extension is de, then 

where Ft/ is the adiabatic value of Young’s modulus. The exten¬ 
sion de may also be produced by a combination of the isothermal 
expansion and the contraction due to cooling. Hence 

de- -oL.dT- 
dP Toi^P 

T Yt 
where Ft is the isothermal value of Young’s modulus, 
these values of we have 

By equating 

dP dP Tol^P 

Yh Yt Jcp 
or 

1 1 

Yr^Yirf^p ‘ 

(123) 

From a knowledge of Fj', Yn may be calculated and thus their 
ratio obtained. For metals, equation (123) gives a value of the 
order 1*005. 

Acoustic experiments give F//, and Wertheim and Breguet found 
that the ratio of Yn to Yt was greater than that given by (128) 

> Joule, Phil. Trans., 149, 91 (1859). 
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above. No satisfactory explanation of this discrepancy has been 
suggested. 

The cooling of a wire, when it is suddenly stretched, is a particular 
exam})le of a general principle which states that, in the case of bodies 
which expand on being heated, an increase of pressure is accompanied 
by the development of heat and ince versa. This general principle 
may be proved thus : From the first law of thermodynamics, 

dq^dE+P.dV, 

where P.dV is the work done on the body, dK and dQ being the 
resulting change of internal energy and heat within the l)ody. Since 
dQ is T.d0, where d0 is the change of entropy, 

dE=T.d0^P,dV 

or 

and 

dE\ 
df), t(^\ 

(dhy _ 
\dp).. 

U: 

dV\ 
dp), 

(124) 

(125 

But dE and d0 are perfect dilTcrentials, and we may differentiate 
(124) and (125) with respect to P and T, respectively, and equate 
the results so that 

/d^\ _ 

\dP}- 
or 

\dp)~- 

,dT), 

-TVk, 

where 
l/dF\ 

V\dT), 

Hence, if k is positive, 

is the volume coefiicient, /r, at constant pressure. 

•(; dp). is negative, and a quantity of heat must 

be taken away from a body in order to maintain its temperature 
constant when the pressure is increased, so that a sudden increase 
of pressure is accompanied by a development of heat, in the case of 
bodies which expand on being heated, and similarly a lowering of 
temperature results with those bodies, such as india-rubber, which 
contract when heated. This principle was verified experimentally 
by Joule, ^ who found that, for water above 4*^ C. when suddenly 
compressed, there was a rise in temperature, while, at temperatures 
below 4° C., the opposite effect occurred. He enclosed the liquid in 
a strong vessel, furnished with a cylinder in which a piston worked. 

»Joule, PhiU Tram., 149, 133 (1859). 



THE THEORY OF ELASTICITY 141 

The pressure could be changed by a sudden addition of weights to 
the piston. The change of temperature was measured by means 
of a thermo-electric couple of copper and iron wires, one junction of 
which was placed in the centre of the liquid and the other in a 
bath of water. 

78. The Theory of Elasticity.—The mathematical theory of 
elasticity is developed from the dynamics of a particle, of rigid bodies, 
and thence to the action of forces on deformable bodies. Its appli¬ 
cation is limited to the extent to w^hich actual bodies fulfil certain 
fundamental hypotheses. One of these is that their behaviour is 
independent of their fnevious history, and it is also usual to assume 
that the elastic displacements are small quantities whose products 
and powers may be neglected. The former assumption is approxi¬ 
mately true, unless overstraining—which may materially affect 
subsequent values of the moduli—has occurred, and the second 
is in(4uded in the applications made of Hooke’s Law, except for 
abnormally elastic substances sueh as india-rubber. 

Fig. 53.—Theory of Elasticity—Stress and Strain. 

Consider a body, in equilibrium when subjected to any external 
system of forces, and choose axes Ox, Oy, Oz (Fig. 53). A small rect¬ 
angular parallelepiped of the material will be in equilibrium under 
the action of a number of internal forces. Acting on the face ABC!) 

p 
will be a force P, and is the average stress over that face. As 

A BC D 

the area of the face is continually decreased by the approach of D 
and B towards A, the value of this average stress tends towards 
some definite limit which is called the stress at It may act at 
any angle to an element of area at A, and thus may be fully repre¬ 
sented by its components Py, and Pz acting along Ox, Oy, and 
Oz, respectively. 

Under the action of the stresses on its faces, the parallelepiped 
may be strained so as to produce a change in length of any, or all. 
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of its edges and an alteration in the size of its angles. If A'B' is 

the new position of AB, its fractional elongation is — —» and 

the limit of this ratio as B approaches A is termed the extension 
at A along Ox, In a similar way the change in the angle DAE is 
measured by the quantity dx~DAE~D'A'E', Hence there are 
two fundamental types of strain, longitudinal and shear. 

stvess 
From Hooke’s Law we have — =co}isfani, and to mve definite 

strain 
significance to this constant it is necessary to consider various types 
of strain. ^The stress on any })lane may he resolved into three eom- 
ponents, one normal and two tangential, to th(' plane, of which the 
former produces conij^ression or dilation, while the latter are shearing 
stresses. If the co-ordinate axes arc parallel to these stresses, and 
we consider the deformation of a rectangular j^arallelcpipcd, there 
will be, in general, three different normal stresses which may con¬ 
veniently be called AV. Yy, Zz, and three different pairs of shearing 
stresses Xy=Yx, Zx=Xz, Yz==Zy, In this notation the capitals indi¬ 
cate the direction of the force, and the subscripts show^ the direction 
of the normal to the surface on which it acts, c.g. Yz means a force 
acting along Ot/ on a face which is perpendicular to the Oz axis, t.e. 
in the xf/ plane. That these constitute the whole components of a 
uniform stress system is easily seen, since the most general distribu¬ 
tion ot forces on the parallele[>iped would give eighteen different 
values, viz., one normal and two perpendicular tangential com¬ 
ponents on each of the six faces. For no translational motion in 
any direction, oppositely directed normal or tangential forces must 
be equal. Thus there can be, at the most, only three different 
normal components and six different tangential components, while 
the condition that there shall be no rotation reduces the number 
of the latter to three. Hence the six different values given above 
represent the most general homogeneous stress system. 

In a similar way a uniform strain may be resolved into six com¬ 
ponents which will represent the effect of the stress system. The 
extensions along the co-ordinate axes, due to normal displacements, 
may be designated Cxx, Czz, the double subscript being used to 
indicate that it is the relative displacement of tzw planes, originally 
unit distance apart, which is being considered, and both of these 
planes are normal to the Ox, Oy, Oz axes, respectively. The shears 
can be converted into extensions by the alternative definition of the 
shear strain as the relative tangential displacement of planes unit 
distance apart. They will thus take their places in the notation 
adopted as 

eyz — Czy, €zx—Cxz^ Cyx—Cxiyy 

where eyz is the relative displacement of planes perpendicular respec¬ 
tively to Oy and Oz. Thus, again, only six different values are 
required to specify the strain completely. 
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Principal Strains,—Through any point of the body there will 
be three directions which are mutually perpendicular before and after 
straining. These are called the acres of the strain^ and the corresj)ond- 
ing magnitudes are called the principal strains. For isotropic sub¬ 
stances these axes will be the din^ctions of the normal stresses, and 
thus the complete stress-strain relations may be given by the ratios 
of the princij)al stresses and their corresponding strains. Consider 
a sim[)le linear tensile stress It might be expected that there 
would be a corresponding strain in the same direction, and none at 
right angles. Such is not the case, for it is found that the resulting 
tensile strain is accompanied by compressions which are perpendicular 
and proportional to the tensile strain. If acts along Olv, then 

II Yy—i), 

CxX jr ’ 
p, 

€yy — ezz~ - -af 

wIktc Y is Young’s modulus and a Poisson’s ratio. 

Principle of Superposition.—At a point the most general stress 
is Pi along Ox, Pg Oy, and P3 along Oz. Thus Ax “Pi, 
Yy — P^^ Zz—P^, and Xy~Yz= Zx~0. It is assumed that each 
component stress produces the same efPect if acting alone, as it con¬ 
tributes to the final result when acting in conjunction with the others. 
This assumption is known as the Principle of Sniperposition. 

The strains corresponding to these stresses will be 

^yy~^Pi~~'^{Pz^Pi)\' 

and eiy—eyz~ezx=^- 

Solving these equations, for P^, Pj, and P3 we have 

''■“(I 

or, as they are more generally written, 

P1 =X^-f*. Cxx) 

P^=Xd+2n.eyy\, . . . (126) 

P3 =X(5-f-2/1. J 
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oY Y 
where d-=-.exx+eyy+ezz, X=-7^-~-v7- - , and 2/? = --—• The dila- 

(l+aXl'—icr) 1+cr 
Hon, d, is tlic sum of the principal elongations, and measures tlic 
fractional change of volume. By adding equations (120), 

If 

6 
SP 

3X+2n 
(127) 

and we obtain the fractional change of volume under a unii'orm 
tension in all directions. By definition the bulk modulus K is given, 
from (107), as 

M/IX |-2n] 

Considering a cube which is subject to a simple stress of magni¬ 
tude F on four of its sides (Fig. 54), the stress across the diagonal 

Fig, 54.— Stkkss in Diagonai. Plane. 

plane DBJH will be purely normal, tensile, and of magnitude F. 
Across a diagonal plane ACGE it will be normal but compressive. 
Thus, if axes Ox, Oy, Oz are chosen parallel to NC, ND, NM, the 
stress system is 

Xx==F, Yy^~-F, Zz=i), Xy^Yz^Zx^O, 

and the corresponding strains are 
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Aft(T the strain has t.akori place, 

tan 
A'N' M-e,c AN l+e^. 

The change produced in tlie ri^ht angle DJH is 

DAB D’A’B’ 'iirA'N', 

and is the shear strain 0. Thus 

0 71 

so that 

lienee 

D'A'N\ 

0__1—/a/i D'A'N'^ CxT,—eyy 

2 1 JJ A N '"^A'^'xxA'^yy 

F 
0~e XX ^’yy~2(t -[~cy)Y>‘ 

The eoeflleient, or modulus, of rigidity is defined by 

F Y 
"'“6/“2(1+(t)’ 

and is thus identified with the n of equation (108). 
The principle of superposition, from which these results are 

deduced, is not self-evident. Indeed, its use limits subsequent 
applications of the theory. However, experiment shows that in 
the case of isotropic bodies'under small strains, the deductions 
from the principle may be verified. It follows from the principle, 
that the order of applying the stresses is immaterial, and this deduc¬ 
tion affords a means of testing its applicability. Thus, by experi¬ 
ment, one might measure Young’s modulus for a wire in a twisted 
and untwisted state, respectively. If the above principle is true, 
the values should agree. 

79. Strain Ellipsoid.—With a uniform homogeneous strain a 
parallelepiped becomes strained, in general, into another paral¬ 
lelepiped, a circle into an ellipse, and a sphere into an ellipsoid. 
Projective properties are retained, and thus conjugate diameters 
of the sphere become conjugate diameters of the ellipsoid. In par¬ 
ticular, the three principal diameters of the ellipsoid are derived 
from three perpendicular diameters of the sphere and thus are, by 
the previous definition, the axes of the strain. The ellipsoid, result¬ 
ing from the deformation of a sphere, is called the strain ellipsoid, 
and its equation assumes a simple form, when referred to the axes 
of strain. Calling the principal strains along Ox, Oy Oz, a, b, c, 
respectively, unit length becomes 1+a, 1+&, 1+c in these directions, 
and a sphere of unit radius becomes the ellipsoid, 

+(l+c)* ^ 
(128) 

Q.P.M. L 
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In some cases tliis elli})soid reduces to a spheroid. For example, 
in a Young’s modulus extension along Olv, the elongations are 

«=a, - aa, e = - era, 

and the strain ellipsoid becomes the j>rolate splieroid, 

a: 2 

(7S) 

For a uniform dilation a~b=^c, and the unstrained sphere is still 
spherical when strained, while for a uniform shear in the ZiV plane 
we have h=0, c~~~a, and the ellipsoid becomes 

.1-2 

‘ ir + r.-ro-L (l^if 
To find the directions in which the elongation has a given value 

—which must, of course, be intermediate between the largest and 
smallest of a, b, and e—it is necessary to determine the intersection 
of the strain ellipsoid and a sphere, of radius equal to tlie given 
extended length. Thus, if the extension is d, the required directions 
arc found by solving the equations, 

and 

x^ , if jv2 

(1 +i>V 

Subtracting, we have 

where a is written for (l+a), ^ for (l -fd), etc. This is the equation 
to a general conical surface, called the cone of constant elongation, with 
its vertex as origin. In some cases this equation may be simplified. 
For example, a Young’s modulus extension along Ox gives 

which is a right circular cone with axis along Ox, For a simple 
shear we have, if 5=1, 

a"* a 
-5—h, or X— 

which gives two planes intersecting along the y axis and inclined 
at 45"^ to the axes of shear. These planes evidently give the two 
circular sections of the ellipsoid, and indicate the directions of no 
change in size or shape. 
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EXAMPLES 

1. Two cylindrical shafts have the same len^^th and mass and are 
made of the same material. One is solid, while the other, which is 
hollow, has an external radius twice the internal radius. Compare their 
torsional rigidities and the maximum strains produced by equal twisting 
torques. [3:5; 1 : 1*44.] 

2. A suspension thread of length 2/ consists of a wire of length I and 
radius r rigidly joined to a second wire of equal length, of radius 2r 
and similar material. The top end is clamped, while the lower end is 
twisted about the axis. Find (a) the torsional rigidity of the complete 
suspension thread if the rigidity modulus is r; and (b) the ratio of the 
relative angles of twist between the ends of the two parts. 

[(a) ^nriry^ll; (h) 10 : 1.] 

3. A horizontal bar of weight W is suspended by two parallel vertical 
wires each of length I and radius r. The rigidity of the wires is ?/ and 
they are at a distance d apart. If the upper end of each wire is twisted 
about its own axis through an angle 0, find the angle through which 
the bar is deflected. [47f/;r^0/(Trd“+47Tryr^).] 

4. Prove that if a number of rods are joined end to end the torsional 
rigidity of the combination is given by tlie same formula as that for a 
number of resistances in parallel. Hence, or otherwise, find the tor¬ 
sional rigidity of a tapering wire of length /, rigidity modulus y and 
end radii a and b, [lim]a%^/2l{b^ab 

5. A long thin rod has a length 100 cm. and an elliptic cross-section 
2 cm. wide and 0-5 cm. deep. When clamped at its upper end and 
supporting at the lower end a body of inertia moment 5-21 xlO^ C.G.S. 
units, the periodic time of torsional oscillations is 0-313 sec. When 
supported horizontally on knife edges at its ends and carrying a load 
of 450 gm. at its mid-point, the sag produced is 6*12 mm. Find the 
value of each of the usual elastic constants. 

fry =4-55 xlQi^ ; 1^-12-25x10^^ X-13-3xl0ii; or-0-35.] 

0. A cantilever beam mounted horizontally has a negligible weight. 
Show that the depression at any point P due to a vertical load applied 
at a second point Q is the same as the depression at Q produced by 
a similar load at P. 

7. A flexible steel strip is bent into a strongly curved form by a string 
tied to its ends. Find the value of Young’s modulus for the strip if the 
tension in the string is 3 kg., the distance between the centre points of 
string and strip being 15 cm. The strip has a width of 2 cm., a thickness 
of 1 mm., and string and strip meet at right angles, g—981. 

[1-99 X 10^2 dynes per sq. cm.] 

8. A light cantilever beam is clamped horizontally and carries a load 
of 3 kg. at its free end, this being such as to produce only a slight amount 
of bending. When depressed and released the beam vibrates with a 
^periodic time of 0*30 sec. The projecting length of the beam is 50 cm., 
*its width is 2-5 cm. and depth 0-5 cm. Find the value of Young’s 
modulus for the beam. If the mass of the projecting beam is 500 gm., 
what percentage error in the value of Young’s modulus is made by 
neglecting to take this mass into account ? 

[2105x10^2 dynes per sq. cm. ; 4 per cent.] 
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9. A spiral spring whose diameter is 3 cm. consists of 200 turns of 
wire of radius 1*0 mm., the length of the spring when hanging vertically 
being 50 cm. The rigidity modulus of the wire is 8 x 10^^ dyne per sq. 
cm., while its Young’s modulus is 20x10^^ dyne per sq. cm. Calculate 
the depression of the free end when a weight of 50 gm. is hung on the 
lower end, the upper end being fixed. How much of this depression is 
due to (a) bending, (6) torsion ? 

[1*655 cm. ; (a) negligible ; (6) practically all.] 
10. A thin-walled brass tube closed at each end is mounted horizon¬ 

tally, so that one end is prevented from moving and the pressure inside 
is gradually increased from 1 to 5 atmospheres. The other end, free to 
move, carries one mirror of a Michelson interferometer and 44*5 com¬ 
plete fringe displacements are observed using light of 6000 A.U. The 
tube has a length of 100 cm., an external radius of 2 cm. and a wall 
thickness of 1 mm. Find the value of the bulk modulus of brass. 

[10*12 X 10^^ dynes per sq. cm.] 
11. A glass vessel of volume 1 litre is filled with water and placed 

under the receiver of a compression pump ; the pressure is increased 
from 1 to 3 atmospheres. The meniscus, formed in a capillary tube of 
internal radius 0*160 cm., is found to descend through a distance of 
1*18 cm. If the bulk modulus of the glass is 4*61x10^^ dynes per 
sq. cm., find the bulk modulus of water at the temperature of the 
experiment. [2*04 x 10^® dynes per sq. cm.] 

12. A body is under stress along three perpendicular axes Oa?, Oy, Oz 
such that there is no linear strain along Oy or Oz. It is then stressed 
along the same axes so that the linear strains along Oy and Oz are equal 
and there is no strain along Ox. Compare the ratio of stress to strain 
along Ox in the first case with that along Oy or Oz in the second. 

[(1 -a): 1.] 

13. Taking the same stresses and strains as in the last question 
express each of these stress-strain ratios in terms of the bulk modulus k 
and the rigidity modulus rj. [k+4irj/Q; 2k + 2r}/S.] 

14. A 400-day clock is controlled by the torsional oscillations of a 
horizontal brass disc supported by a fine brass wire. If the coefficient 
of linear expansion of brass islSxlO-^ and the thermal coefficient of 
rigidity of brass is 4*6 x 10“^, find the error of the clock in 24 hours 
at 10° C. if it keeps correct time at 0° C. [Loses 3 min. 11 sec.] 

15. A circular bar, supported horizontally on horizontal knife edges 
40 cm. apart, has a length of 60 cm. and carries a load of 10 kg. suspended 
from each end. The radius of the bar is 4 mm., and when the loads are 
applied the centre point rises by 4*88 mm. Find the value of Young’s 
modulus for the bar. [20*0 x 10^^ dynes per sq. cm.] 

16. The bar in the previous question is now rigidly clamped in a 
vertical position and at a distance of 50 cm. below the clamp a couple 
of magnitude 5 x 10’ dyne-cm. is applied. As a result a mirror fixed to 
the lower end of the bar deflects a spot of light by 155 mm. on a scale 
1 metre away. Find the value of the modulus of rigidity fqr the bar. 

[8-02x10^^ dynes per sq. cm.] 

17. Calculate the bulk modulus and Poisson’s ratio for the material 
of the rod in the previous two questions. 

[18-2 X10^^ dynes per sq. cm.; 0-24.] 
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18. A uniform thin rod of weight W is supported at its ends and is 
initially horizontal. If it bends slightly under its own weight and the 
final sag of the middle point below the horizontal through the supports 
is d, show that the loss of gravitational potential energy is 161fS/25, 
and that half of this is represented by the energy of strain, in the final 
equilibrium position. 

19. A rod of uniform cross-scetion is supported horizontally at three 
points, one at each end and one in the middle at the same level. Show 
tliat the greatest sags occur very nearly at one-fifth of the length from 
each end. 



CHAPTER VI 

SURFACE TENSION 

^ 80. Molecular Forces.—Any two particles of matter exercise 
a mutually attractive influence, whose magnitude depends upon the 
masses of the particles and upon their distance apart. Let us fix 
our attention on any one molecule, m, inside a body. It is sur¬ 
rounded by a group of molecules, and if we take all those molecules 
which lie within a sphere of extremely small radius and whose centre 
is m, there is a special action exerted on m by each of these molecules, 
those nearest to in exerting a more })owcrful influence than those 
near the surface of the sphere. This is true, whatever V)e the sizes 
and shapes of, or distances between, the molecules. Beyond a 
certain distance these special actions are assumed to be negligible, 
and this distance is the radius of the sphere, called fJie sphere of 
molecular act wily. 

If dni^ and dmg are two elements of mass, the linear dimensions 
of each being very small, the mutual action is a force of magnitude 

f{r)dtnfim.2, 

where r is the sej)aration distance. 
In the study of the fortiis, assumed by Ikjuid surfaces in contact 

with each other and with solid bodies, it is these molecular torches 
with which we have to deal. The component of the force along 
the X axis is 

^-^-;^~fir)dm^dvi2^ 

where and cTg are the co-ordinates of d?n^ and dni^, and the total 
force acting on dnij^ is 

the integration being ])erformed between the limits 0 and /q, where 
Tq is the radius of the sphere of molecular activity. 

If these molecular forces exist, it follows that, within a layer of 
fluid at the surface and of extremely small thickness, r-Q, there is a 
special intensity of pressure, which increases in magnitude as we 
travel from any particle in the surface, along the normal to the 
surface, and towards the interior of the fluid. Now, if we describe 
round this surface particle aS centre, the sphere of molecular activity, 
only a hemisphere exists in the fluid, and the molecular forces acting 
on the particle arise from the molecules of this hemisphere. It is 
obvious that the symmetrical grouping of these molecules results in 

150 
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the produc*tit)ii of a, resultant force, directed towards the interior of 
the fluid. 

It is well known that if a glass tube of small bore be dipped in 
water, the water rises inside the tube to a higher level than that of 
the water outside ; and if a liquid is spilt on a table, it has a definite 
bouTulary, the curved edges clinging to the table. These phenomena, 
and many others, are ex7)lained by the fact that, at the surface of a 
homogeneous body, the sphere of molecular activity of a particular 
molecule is incomplete, and that the molecule also falls within the 
field of action of the particles of whatever matter is on the other 
side of the boundary surface. 

Also, if we assume that tlie dimensions of the field of action are 
very small, compared with the radius of curvature of the surfaces, 
then at all j)oints on the surface of separation between the two 
substances, there are similar conditions as far as molecular forces 
are concerned. 'Unis the surface potential energy, due to these 
molecular forces, must be in a constant ratio to the surface area, 
the constant depending on the nature of the substances in contact. 

If a liquid is contained within a vessel, the containing walls of the 
latter will liave their own sphere of attraction and corresponding 
resultant forces opposed to those of the liquid itself. The tendency 
of a particle to move will be determined by the direction of the 
resultant of these forces. For the liquid surface in contact with a 
gas, the tendency to move wnll be towards tlie interior of the liquid, 
and over such a surface there will be a universal trend to inward 
movement, or an attempt to reduce the n\unber of surface molecules 
to a minimum. For a given volume the geometrical form with a 
minimum surface area is a sphere, and thus we conclude that the 
natural shape of a uniformly gravitating li(|uid w ill be, in the absence 
of other forces, a sphere. If, however, the earth’s attraction on the 
parts of the liquid is not negligible, the natural form wall depart 
from the spherical into one more closely approximating to a hori¬ 
zontal plane as the earth’s effect increases. The various forms 
assumed by mercury drops illustrate this, for with very small drops 
the shape is practically spherical. Slightly larger drops are approxi¬ 
mate spheres, with a slight flattening at the top and bottom, while 
a large pool of mercury is flat. 

The fact that a liquid surface contracts spontaneously shows 
that there is free energy associated with it, that work must be done 
to extend the surface. This free surface energy is of fundamental 
importance, but to simplify calculations it is usual to substitute for 
it a hypothetical tension, acting in all directions parallel to the 
surface and equal to the free surface energy. This tension is known 
as surface tension and it has the same dimensions as a surface energy, 
as well as the same numerical magnitude. The work done in extend¬ 
ing a surface which is pulling with a tension S dynes per cm., by 
1 sq. cm., will be S ergs per sq. cm., hence the free surface energy 
of such a surface will be S ergs per sq. cm. 
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The conception of surface tension can always be used in consider¬ 
ing the properties of surfaces which depend solely on the existence 
of free surface energy. It should be realised, however, that the 
term “ surface tension ” is misleading by reason of its suggestion 
that there is a real stretching force tangential to the surface of a 
liquid. There is no special “ contractile skin,” or physical tension, 
parallel to the surface of liquids. It is more useful to regard the 
surface tension as that force which, as a tension in the surface, would 
produce the real effects actually due to the asymmetrical spacing 
of interrnolecular attractions at, and near, a boundary between two 
media. 

' 81. Total Surface Energy.—It is im})ortant to notice that the 
above quantity of work does not represent tlie whole of the energy 
expended when a fresh surfaee is formed. If the enlargement is 
made suddenly, the liquid is cooled, or the surface energy is increased 
at the expense of the internal energy. At the same time the force 
to be overcome increases, by reason of the increase in surface tension 
with falling temperature. During a slow isothermal change an 
equivalent amount of heat flows in from neiglibouring bodies to 
maintain the temperature constant. Thus, when the surface area 
is increased by 1 sq. cm. the additional total surface energy, Ey is 
related to the mechanical work, S, done in stretching the surface 
isothermally, and to the heat, //, absorbed, according to the equation, 

E==S+1u 

To find the corresponding value of //, we may suppose that the film 
is subjected to a Carnot cycle. Thus (Fig. 55) let the surface tension 

Surface Area 

Fig. 55.—Total Surface Energy. 

at absolute temperatures T, T—dT be S and S—dS, respectively. 
Then, since surface tension is independent of area, the work done 
when the film is stretched isothermally from a condition represented 
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by l)y to thaUrcxjreseiited by C\ is S,SA, and the heat Laken in is 
h.dA, From C to B there is an adiabatic contraction, the tempera¬ 
ture changing from T to T—dT, From B to A, let the surface 
contract isothermally, so that when it expands adiabatieally, it 
finally arrives back at its original state, as represented by D, This 
cycle is clearly reversible, and so, from the laws of thermodynamics, 

Net work done during cycle ST 

Heat absorbed at higher temperature 

or (s - A - S.dA 
V dr J s'r 

h.bA f’ 

and 
//- -7’^'’’. 

(IT 

lienee 

j dr ■ (129) 

We thus see that the total surface energy is numerically equal 
to the surface tension only if T=0, i,e, at the absolute zero, or if 

With all liquids the surface tension decreases with rise in 

temperature, and thus ^ is negative, E being greater than S, If, 

however, we are concerned with the net gain in energy of the surface 
and its surroundings, this is evidently equal to S, since the heat 
given to the surface is taken from its surroundings. 

82. Liquid in Contact with a Solid.—The surface of a liquid 
near its place of contact with a solid body must, in general, be 
curved, even when gravity is the only external force acting through- 
ouJt the mass of the liquid. Thus let PAB (Fig. 56) represent the 

Fig. 56.—Inclination of Free Liquid Surface to the Horizontal. 
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surface of a liquid iu contact at P with the surface PQ of a solid 
body. If we consider the forces acting on a molecule at P^ we have 
the force of gravity acting vertically along PN, the molecular forces 
of the solid })roducing a resultant along PN^—normal to the solid 
at P—and the molecular forces of the li(|uid molecules, adjacent to 
P, giving a resultant PR, which acts somewhere between the tangent 
plane to the liquid surface at P and the surface of the solid. In 
all eases the resultant of tliese forces, acting on a molecule of a 
perfect liuid at its free surface, iTUist be normal to that surface. 
TIence the resultant of PN. PNand PR will determine the direction 
of the normal to the fluid surface at. P. In gcaieral this respltant 
will not act along PN, so that the surface of the fluid at P is not 
usually horizontal. 

At points remote from the solid body there arc^ oidy two forces 
acting, viz., gravity and the molecular attraction, the latter of which 
is normal to the fr('e surlai'c. Thus the former must act in the same 
direction and the free* surface is horizontal. 

• 83. Pressure on a Curved 

Fig. 57.—Pressure on a Curved 

Membrane. 

Membrane of Uniform Tension. 
—If we consider a curved mem¬ 
brane, it is evident tlnat an clement 
of the membrane is in equilibrium, 
only if an excess pressure acts on 
the concave side to counterbalance 
the surface tension effect. The 
magnitude of this excess pressure 
may be obtained as follows : — 

Let ABCD (Fig. 57) be an 
element of the curved surface 
having principal radii of curvature 

and rg. Suppose the excess 
pressure on the concave side is p 
dynes per sq. cm., and let the 
surface area xy be given a small 
normal displacement, dz, so that 
it reaches the position indicated 
by A'B'C'D', The work done by 
the pressure will be 

'.y.6z. 

and, since tVic increase in surface area is d{xy), the work done is 
also given by 

2S.d[xy), 

remembering there are two surfaces. Thus 

pxy .dz=^2S{xdy ~\'ydx), . . . (ISO) 

The triangles ABO, A'B'O are similar, and thus 

X dx ^ x 
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Similarly, dy=^~d: so that, from (130), 

or (131) 

This expression is true also for the exeess pressure inside a liquid 
bubble. If there is only one surface—as, for cxanq)le, in the ease of 
a liquid drop, or an air bubble in a liquid-— 

(132) 

84. The Shape of Films. If the [>ressure is the sanu^ on both 
sides of the surface, the latter must fulfil the condition )\^ or 
the ])rineipal curvatures at any point are equal in ma<>intude and 
oppositely directed. A series of films which satisfy this condition 
may be obtained experimentally by the use of two funnels. A 
coating of soap solution is obtained by di[)ping the t)road end of 
one funnel into a soap solution and sharing it with the second funnc‘1 

0 
\ 

by placing the two, rim to rim. On drawing the funnels apart, the 
required film surface is jirodueed between them, and in this case 
is a surface of revolution. A section of such a film is shown in 
Fig. 58. If P is any poijit on the curve, and O is the centre of 
curvature in the plane of the diagram, then, when OP is })roduced 
to meet the axis of symmetry AB in Q, PQ is the other radius of 
curvature, and P0~—PQ. Such a relation is a property of the 
catenary curve, and the surface is a catenoid of revolution about 
AB as axis. 

If the film collected between the two funnels is given an additional 
pressure inside, it may be rendered nearly cylindrical. Such films, 
however, are not perfectly cylindrical; for consider a section which 
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has the general form shown in Fig. 59. The points A and B are 
points of inflexion, and if P is any other point on the surface, the 
normal at P cuts the axis of symmetry UM in Oj. Then OjP is 
the radius of curvature in a plane perpendicular to the plane of the 

Fio. 59.—Nearly Cylindrical Films. 

figure. Suppose OgP is the radius of curvature in the plane of the 
diagram. The excess pressure p inside the film is, from (131), 

where r~O^P and R^O^P. At the point R, say, and 
qC 

/?=oo, so that p=—• If PN—df r=fl+^> 

approximately. This equation represents the locus of a point X 
(Fig. 59) (b) situated at a distance h^CD from the centre Y of 
a circle of radius as the circle rolls along the line UM, Points 
such as A and B (Fig. 59) (a) are obtained with successive hori¬ 
zontal positions of AF, the distance between two such adjacent 
positions being given by UM^AB—na, 

The following typical cases occur:— 
(i) The film has a length less than half the circumference of the 

generating circle and is convex. In this case, as shown in Fig. 60 (a), 

25 25 
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These results have been confirmed experimentally with the 
apparatus shown in Fig. 61 by Rucker and Reinold. A tube shaped 
like the letter H was fitted w^ith three taps 7\, 1\, and the vertical 
ends terminated in cups A and R, which were placed over end-pieces. 
If a film is collected between xi and and a little air is drawn out 
through 7\, the film is coiistricied at the centre and is stable, while Tg 
and 7\ remain closed. A short film ivideu.ed at the centre may be 
collected between B and 1). If now the ta}) is oi)ened, then, since 
the excess pressure pj in the film BD is greater than that pg in /fC, 
air flows from B to A and the films tend to the same form. On the 
other hand, if the films have lengths greater than half the circum¬ 
ference of the generating circle (Fig. 61) (/>), the excess })ressurc pg 

Fig. (il.—ItucKEK and Keinold’s Apparatus for the Study of 

Cylindrical Films. 

is less than p^, and air flows from A to R, so that R becomes still 
more convex, wdiile A collapses to disruption. Both these predicted 
results were confirmed by the experiment. 

Cylindrical films of the type described above are stable only if 
their lengths are less than their circumferences, because, if we imagine 
a movement of air from one half to tlic other within a film of length 
greater than 27ra, then the half which loses air will be constricted 
at the centre, and since its length is greater than half its circum¬ 
ference, the pressure rises to p^. In the other half, which becomes 
convex, the pressure is reduced to p^, so that the resulting pressure 
change produces a continued movement of air in the same direction 
as the original disturbance, and the film is unstable. This is evident 
also from Fig. 61 (6), since such a long film may be represented by 
placing the two films shown in the figure end to end. Thus any 
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small chajigc from the ])urely cyliiulrical form, pnKlueed by an 
infinitesimal movement of air, will introduce the instability shown 
by the experiment, oiui half ex})anding at the expense of the other. 
On the other hand, if the film length is less than *271(1, it will be 
stable, as may be seen by imagining the two films of Fig. 01 (a), 
placed end to end. These considerations, and the foregoing theory, 
need modification if the film eommuni(;ates with a large volume of 
air in addition to that eneloscd within the film. For example, 
O. F. C. Searle ^ shows that if V‘‘^/7T‘^(t^ is rrr//large, I' being the volume 
of air enclosed by the film, eomu'cting tubes and any communicating 
vt^ssel, then instability begins for a film length greater than na. 

Similar eoiU‘lusions apply to liquid cylinders, and explain the 
tendency of a jet of liquid to break u]) into drops when its length 
exceeds its eireumferen(*e. If the liquid has a large coefficient of 
viscosity, the relative movements of the parts of the jet which accom¬ 
pany disruption will be opposed, and greater length of cylindrical 
drop is possible without instability. For this reason very viscous 
liquids, such as molten glass and (piart/, may be drawn into fine 
threads of great length. 

85. The Forms of Liquid Films in General, Ecjuation (133) 
above was obtained on the assum])tion that 6 was \'crv small. If 
this restriction is removed, th(‘ geiu'ral shape of a liquid film may 
be obtained as follows. 

y 

Fig. 62.—General Form of Film Surfaces of Revolution. 

Consider a film in equilibrium under its own molecular forces, 
the existence of practically flat films indicating that the action of 
gravity may be neglected compared with the tension of the film. 
In this case we have, from (131), 

where p, the excess pressure inside the film, may be maintained by 
closing its ends and assuming that the volume of air enclosed remains 
constant. We shall consider only surfaces of revolution. In Fig. 62 

^ G. F. C. Searle, Experimental Physics, p. 150 (1984). 
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the curve ABC generates the surface by revolution around the x axis, 
and, if r is the radius of curvature in the plane of the diagram and 
the length of the normal AG is /, the principal radii of curvature 
are r and /, and 

14.1=ii. .... (134) 
I 2S ^ ' 

(Is 
Let the tangent at A make an angle 0 with the x axis so that r — 

where ds is an element of the arc measured along the curve from A 
towards R, and AE~y=l cos d. Hence, from (1B4), 

.... (J35) 
ds y 2S 

and, from (135), 

y cos Q - 

where is a constant. All curves satisfying (136) are traced out 
by the foci of conic sections rolling, without sliding, along the axis 

V 
of X, Thus, substituting in (186) cosQ^y 

But, if L is the length of the perpendicular, drawn from the focus 
of an ellipse on the tangent at any point, and R is the distance of 
this point from the focus, 

(188) 

where (i^ and are the semi-axes. Comparing (137) and (138) we 
see that the point A is the focus of an ellipse which touches the x 
axis at G, the semi-axes being given by 

This is true for any position of A, and thus the locus of A is traced 
out by the focus of the ellipse as it rolls along KG. This curve is 
known as the unduloid and is sinuous in form. 

If the pressure is the same on both sides of the film, (187) becomes 

.... (139) 

In a parabola the ratio of the square of the perpendicular, from the 
focus on a tangent at a point, to the distance of the point from the 
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focus is constant. Hence we see that the locus of A in this case 
is the curve traced out by the focus of a parabola as it rolls along 
EG. This curve is a catenary, and the surface of revolution is a 
catenoid. Under certain eonditions two catenaries can be drawn 
between two points, the surface generated by the revolution of the 
upper ojie being a niiniinuin. On the otlier hand, it is not always 
possible to draw’ Ji catenary, which shall pass through two given 
points and have a given line as directrix, so that it is not always 
possible to obtain a film joining two circular lines, or the ends of 
two funnels. In other cases two catenoid films are possible, but 
only one of these is stable. 

Plateau realised the case of liquid drops, unacted upon by external 
forces, by immersing a drop of olive oil in an alcohol-Wtater mixture 
of the same specific gravity. By holding the drop between two wires 
in the shape of closed curves, or by allowing it to form around a solid 
of any shape held in the water-alcohol mixture, a large number of 
liquid surfaces may f)e obtained. Th(‘y may also be produced by 
a suitable manipulation of soap bubbles. 

# 186. Experimental Methods for the Measurement of Surface 
Tension, (i) Jaeger*s Methods—If a spherical air bubble is pro- 

2S 
duced in a liquid, the excess pressure inside the bubble is p = -~ > 

wdicre r is the radius of the bubble. Jaeger utilised this relation in 
measuring surface tensions by observing the pressure necessary to 
produce such bubbles. The apparatus is shown diagrammatically in 
Fig. 68. A pressure pump is connected to a large vessel A, which acts 
as a reservoir and is joined, through a tap to the manometer M 
and the vertical tube BC, the latter having a fairly narrow orifice of 
radius r at C. As the tap is opened, the pressure at C increases until 
a bubble breaks off with a corresponding change in the manometer 
reading. Another bubble begins to form, and the manometer registers 
a pressure difference h, which is a maximum when the bubble is com¬ 
pletely formed. The experiment consists in noting the value of h 
when the bubbles form at the rate of about one every second or even 
slower. The maximum pressure inside the bubble is then given by 

where B is the atmospheric pressure and p is the density of the mano¬ 
meter liquid. The pressure pg j^^^t outside the bubble is 

p^=^B+xdg, 

where d is the density of the liquid and x is the depth of C below 
its surface. Thus the excess pressure p inside the bubble is 

2S 

SO that 

S=^[ph-xd] .... (140) 
<6 

Q.P.M. M 
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The experiment in this form docs not give accurate values for *S', 
chiefly because instability of the bubble is not reached when its radius 
is equal to that of the orifice. For a given tube and a steady rate 

Fig, 63.—Jaeger’s Method of Measuring Surface Tensions. 

of bubbling, the equilibrium position will be some definite function 
of the radius r, say f{r), and the equation should be 

• S=f(r).^[ph-xd]. 

This result may be utilised to measure the relative values of the 
surface tension at different temperatures, since then f(r) will be the 
same for all the experiments. These relative values may be con¬ 
verted into absolute determinations if the surface tension at any 
one temperature is known. 

Jaeger ^ has also described a method by which the bubble is 
produced in the liquid contained in a long narrow bulb. A tube 
of glass, or platinum, is sealed into the top of this bulb and dips 
into the liquid, while its upper end is connected to a reservoir of 
pure nitrogen. A second tube, sealed into the bulb near its top 
and placed horizontally, is joined to one side of a manometer 
whose other limb connects to the first tube. The manometer 
measures the maximum excess pressure p of the bubble as in the 
earlier method, and the surface tension is given by 2 

where 

’ Jaeger, K. Akad, Amsterdam Proc,, 17, 521 (1914). 
* Schrodinger, Ann. d. Phys.^ 46, 413 (1915); Verschaffelt, K. Akad. Amster¬ 

dam Proc., 21, 366 (1919). 
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r is the internal radius of the tube, and p, pi are the densities of the 
liquid and of the fluid issuing from the orifiee, respeetivcly. This 
formula renders Jaeger’s method probably the most accurate one 
for determining surface tensions, and the above modification enables 
the apparatus to be maintained at any temperature, while no large 
quantity of liquid is required. 

The same principle was applied by Rireumshaw ^ to measure the 
surface tension of liquid metals from their melting points to about 
1000° C. in some eases. The liquids used were tin, lead, bismuth, 
cadmium, zinc and antimony, and in all eases the maximum pressure 
was measured when bubbles were blown at a depth i below the liquid 
surface from each of two coaxial tubes of radii 1\ and The values 
of rj and were too large to use in the formula given above, and 
so use was made of Sugden’s ^ correction in the form :— 

7i2=- = ir/4A-<), 

in which p is the liquid density, {h~t) the excess pressure inside the 
drop expressed in cm. of the same liquid and k the numerical cor¬ 
rection obtained by Sugden from the basic capillary curve data 
provided by Bashford and Adams.^ The value of k has been given 

T 
by Sugden for all values of ^ from 0 to about 2, and thus by suc¬ 

cessive approximation, the exact value may be obtained from an 
approximately deduced value of S, Hence if k^ and k^ arc the 
vjilues of rk for the two tubes, we have :— 

7 7 

from which 27?2~^ i 21 2 this method is used for the 
k2~ki 

surface tension of mercury dilflculties are caused by the insufficient 
adhesion between the liquid and the jet. The difficulty can be 
overcome by using an amalgamated copper jet of which the internal 
and external radii are practically the same. 

(«) Rayleigh's Jet Method.—The breaking up of a liquid jet 
into drops was used by Rayleigh ^ in determining the surface tension 
of a liquid. When the drops first form, their various parts are in 
relative motion, and the shape oscillates about the mean spherical 
form. This effect is noticeable also just before the drops have 
separate existence, by reason of the cyclic alteration in the lateral 
dimension of the jet, measured in a particular direction. Thus, in 
Fig. 64, two points A and B include one complete cyclic change in 
the cross-section of the jet. The time, of vibration of a liquid 

1 Bircumshaw, Phil. Mag., 2, 841 (1926); 3, 1286 (1927). 
® Sugden, Journ. Chem. Soc., 121, 858 (1922). 
» Bashford and Adams, Capillary Action, Cambridge (1883). 
♦Rayleigh, Proc. Roy. Soc., 29, 71 (1879). 
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previous experiment. If the liquid is witluri a liorizontal capillary 
tube with no pressure difference between its ends, its two meniscus 
surfaces will be similar, but if an excess pressure is applied to one 
of them, the liquid will be blown to the far end where its meniscus 
changes from concave, through plane, to convex form. If this 
meniscus is used as a reflecting surface, an image of a source of 
liglit will be formed near the pole of the meniscus while its radius 
of curvature is relatively small, but the appearajice of the illuminated 
surface changes very rapidly to become a practically uniform field 
in the observing microscope at the instant of planeness. Assuming 
that the bore is sufficiently small, that the distorting effects of 
gravity are negligible—Ferguson suggests 1 mm. bore to be the 
limiting size—and that the angle of contact is small, then the simple 
formula connecting the necessary excess pressure ]) and the radius 
of the tube is. 

2S 

r being the radius of the tube. The method is also applicable to 
an interfacial tension if the surface tension of either liquid—air 
interface is known, and it can be assumed that the interface contact 
angle is small. 

87. Application of the Principle of Virtual Work.—When 
under the action of any forces, a system of particles is in equilibrium, 
and this system receives, or is imagined to receive, any small disturb¬ 
ance, the total amount of work done by all the forces acting on the 
various particles is zero. In other words, the potential energy of 
the system is a minimum. We shall now apply this principle to 
the equilibrium of a homogeneous liquid at rest in a vessel under 
the action of gravity. 

Let z be the height of an elementary volume, dxdydz, of the 
liquid. The potential energy of the whole system is composed of 
four parts. 

{a) Gravitational energy equal to 

gp j* j* fs. dxdydz. 

(b) Energy 
(c) Energy 
{d) Energy 

Hence 

of the liquid-air surface, 
of the liquid-solid surface, 
of the air-solid surface. 

. dxdydz+AS ^+BS^+CS^ 

mhst be a minimum, where A^B^C represent the areas of the surfaces 
(^)» (<^)> (^)> and S^i Sq are the surface tensions. 

Consider a slight displacement of the surface A, so that if dl 
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denotes the movement of A along its normal, the gravitational 

Fig. 65.—Virtual Displacement of 

Liquid Surface. 

energy varies by 

and if we supjiose that tlie 
line of contact of the liquid 
with the vessel renuxins 
stationary, B and C are con¬ 
stant and .4 changes to 
Let the elementary area d.t 
(F'ig. 65) change to so 
that if ?\ and 7*2 represent 
the principal radii of curva¬ 
ture of the arcs dl^, dl^y 

also 

or. 

= and 

(lAi - dA =:dl^dl^-dl^dli 

dh 

From the principle of virtual work, 

or, 

(141) 

subject to the condition that the volume remains constant, i.e. 

UldA^O .... (142) 11^ 

The condition of unchanged volume, combined with the principle 
of virtual work, is expressed by multiplying (142) by an arbitrary 
constant and adding it to (141), Hence the complete equation is 

where k is a constant. Integrating this, we have 

•Sx 

or. 

=gp(z-k). 

=p-}-comtant, 
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where p is the pressure just within the surface of the liquid. If the 
left-hand size is zero—which is the case when the surface is flat— 
then where Pq is the atmospheric pressure. Hence, finally, 

so that the effect is the same as if the surface were in a state of 
tension. 

Again, suppose that the line of contact of the liquid with the 
vessel is displaced from WX to YZ (Fig. 66). Draw normals to 

Fig. 66.—Virtual Displacement of Meniscus. 

the surface A from all points on WX, and let these normals meet 
the surface A^ along the line W^X^, so that the surface Ai may be 
supposed to consist of two parts, that enclosed by the line WiXi 
and denoted by and that enclosed between W^Xi and YZ and 
denoted by ag. Then 

di —A — dldA^ as before. 

If dL denotes the distance between the lines WX and YZ, may 
be considered as the projection of the elements dLds of the surface 
of the vessel on the new liquid surface Ai, w here ds is an element of 
the line of contact. Thus, if 0 is the angle between the normals 
to the surfaces A and B, 

lco5 B.dLds. 
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But dB~ and since the potential energy is stationary, 

d^gp^^ZAlvdydz ] .i*S\ f ii.V.,+ra3j --^0, 

or 

gpj*j';3. dldA 4-S2(^2 +^^2—) I” 2^^^ -{-S^dC =-4), 

i.e. 

^ ^ *^^2 S,)dlAls^.O, 

The first integral extends over the whole surface of the liquid, and 
since the displacement dl is quite arbitrary, each element of this 
integral must vanish. Hence, as before. 

-p Po* 

The second integral must also be equal to zero, and thus 

cos O A-S^—S^—O, 

so that the liquid surface is inclined at the same angle 0 to the surface 
of the vessel at all points. This angle is called the angle of coniact 
between the liquid and the solid, and is the angle between the normal 
to the liquid surface, drawn into the substance of the liquid, and 
the normal to the solid, directed towards the substance of the solid. 

88. The Capillary Curve.—If a perfectly clean glass plate 
dips vertically in a liquid then, close to the plate, the surface of 
the liquid assumes a definite shape. A section of the surface made 
by a vertical plane, perpendicular to the glass plate, gives the form 
assumed by the liquid at the place of contact, and is termed the 
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capillary curve. Let the glass plate, or wall, be supposed normal 
to the plane of the diagram (Fig. 67), which represents the section 
of the plane and the liquid surface, this section being far removed 
from the edges of the plate OF. Of the two principal radii of 
curvature of the liquid surface at any point P, one will be infinite 
and the other will be r, the radius of curvature of BPQ at P. 

Taking the x axis horizontally and the axis of y vertically, we 
obtain 

where p is the difference of pressure on the two sides of the surface 
at P, and y is measured from the level of the horizontal portion, 

S 
while p is the liquid density. Denoting ™ by 7?^, we have 

d'^y 

div^ y 

dy 
and putting from (143), 

dq 

dx __ ^a y _ y 

(1 

dq 

% 
Integrating, 

dy 
When /y~0, so that C^— -‘J, and thus 

Putting y~2B sin cf)^ 

- 2 sin 
sin <f> T j T 

dx 

-B 

dy 

(143) 

(144) 

(145) 

(146) 

dx 
If the angle of contact is acute, cannot be oo, or ^ cannot be 

zero, so that — is always negative. Hence y is always less than 

Ra/2, the negative sign of (145) must be used, and the integration 
of (146) gives 

2 cos (f> f ■ log ian ^ t X 

B 
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When 0—0, or 0, x=cOy and the capillary curve is asymptotic 
to the plane surface of the liquid. 

— —cot 0 and, from (144) 
B 

_ 2 OB^ ^ 

W+cot^ 0~ 
or, 

OI}=n\/2{l -sin 0)= ^sin 0), 
V gp 

wliich determines the height to which the liquid rises against the 
plate. If 6 is known, the surface tension may he found by measur¬ 

ing this height. If the angle of contact is zero, co at R, and 

or 

The Problem of a Floating Needle. -A needle (uirefully 
placed on t!ie surface of water floats. This well-known experiment 
can be explained by means of surface-tension elTeets. Let Fig. 08 
represent a section of the needle lying on the surface of the water, 
the section being perpendicular to the axis of the needle. The 
forces acting are :— 

{a) The tensions at A and R. 
The weight of the needle ; and 

If 0 is the angle of contact 

Fig. 68.—Floating Needle. 

(c) The water-pressure acting on AFBy equal to the weight of 
a volume of water whose cross-section is DCAFBD, 

These forces are in equilibrium, and, resolving horizontally, the 
horizontal component of the surface tension at Ay together with 
the horizontal pressure on GH due to the water, is equal to the 
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surface tension at G, where GII and All are, respectively, vertical 
and horizontal. Hence 

2S ,sin — sin (fy cos ^~2zr sin ^'\=mg (147) 
and 

gp(r cos (f) -~ z)^~4fS sin^ ^(cf)~ 0), . . (148) 

where 0 is the angle of contact between the liquid and the tangent 
to the needle at A, the mass per centimetre of the needle of 
radius r, 2:, tlie height of its axis above the free level of the water, 
2(f), the angle BOA, and p, the density of the liquid. 

Equations (147) and (148) determine the equilibrium of the needle, 
and if 0—0, they become 

2S sin + sin ^ cos (f)~2zr sin <jj]— 
and 

gp{r cos (l)~z)^=4>S sin^ 

When is eliminated from tliese, the equilibrium position is defined 
by the resulting relation between r and 

90. Shape of a Large Drop.—It was shown in Article 80 that, 
under the combined action of the earth’s attraction on its parts and 
its own interniolecular forces, a moderately large drop has a form 
intermediate between a sphere and a horizontal plane. Some of the 
characteristics of such a drop may be deduced in the case where the 
liquid does not wet the surface, i,e, if the potential energy is not 
reduced by a spreading of the liquid over the supporting surface, as, 
for example, mercury on glass, or water on paraffin wax. Suppose 
the drop is sufficiently large, so that its upper surface is horizontal 
and its diameter is large compared with its thickness. A section 

cc 

of such a drop is shown in Fig. 69. At any point P{x, y) on the 
surface, draw a tangent making an angle y) with the x axis. Since 
P is distant, OP'=y below the horizontal surface, the pressure at 
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P is P”Po+g/5?/, where is the external pressure. But if the 
principal radii of eurvature at P arc r and R, in and perpendicular 
to the plane of the diagram, respectively, then 

and since R is large compared with r, 

The curvature is - — 
r as 

S 

where ds is an element of the periphery of 

the drop at R in the plane of the diagram, and since 

d\i) dip di'U dip \ 

. dw 

or, 

which gives 

gpl ydy—S\ sin y)dy), 
Jo Jo 

S£f-^S[l-cosy,]. 

At the point where the tangent is vertical, y — QA'=h, and 
cos ^==0. Hence 

^=*v.(149) 

At the point of contact B, the angle y) becomes 6, the angle of contact, 
and y=^OB' the thickness of the drop. Thus 

8pH\ 
‘z=S[l~-cos 0], (150) 

and from equations (149) and (150) both S and d may be determined. 
The assumptions made above that R is everywhere large compared 

with r and that the curvature at the apex is negligible, produce 
errors which, while not greatly affecting the angle of contact, may, 
for drops of the size commonly employed in such measurements, 
amount to as much as 8 per cent, in the value for S, the simple 
formula giving results which are too high. A corrected formula,^ 

„ g{p-a)h' 

is more nearly exact in which a is the density of the air while r} is 
the positive root of the cubic 

0*6095^,^ j 
ri=—-(!-»?)% 

1 See G. F. C. Searle, Experimental Physics^ p, 197 (1934). 
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c being the maximum horizontal radius of the drop. For a drop 
with c—2 cm. and /i=0-3 cm., 7^—0-()8(). 

The same treatment is possible in the case of a large gas bubble 
entrapped under a horizontal plate and within the liquid. In either 
case, a formula of sufficient accuracy has been derived by elementary 
means by Ferguson.^ In the expression for the excess pressure we 
have, from Fig. 69, 

1 siii w , 1 . dw 
- and 

r ^ dy 

and, putting IP for 

R X 

S 

y stn s^n • 

Neglecting the small term 

y — 2B\l~cos y)), approximately, 
from which 

C0Sf=^ oji‘i ' ■ 

If the origin is transferred to a point above A and AA^ — c we hav e, 
dividing throughout by c, 

xy , IP . , • dw B^x . dw 
~-+y=- nn y,+B^ sm V^+--- •«« 

The first and last terms are small and very nearly equal and therefore 

y^=B^ sin 

and this when integrated gives, after substituting ^=0 when ^=0, 

y^:==2B^{l-~cosxp)-~~^IP---ij^)l- 
3c 

Therefore 

//2=.2R2~^(4R2_/,2)i 
3c 

3c ' 

8R3 

' 3c 

and, after simplification, 

IP^4>B^ ms’21+ 
2 

the angle Q being assumed acute. 
A simple method of producing and measuring such gas bubbles 

has been described by Bate.^ 

91. Force between Two Plates separated by a Thin Layer 
of a Liquid.—If two glass plates are well wetted and placed 

1 Ferguson, Proc, Phys. Soc,, 53 , 554 (1941). 
* Bate, Ptoc. Phys, Soc,, 53, 408 (1941). 
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together, it will be found that, although they slide over each other 
comparatively easily, it requires considerable force to draw them 
apart normally. Indeed, in doing so there is great risk of breakage. 
The force required for this normal separation—which measures the 
attractive force produced by surface tension—may be evaluated as 
follows :— 

If the wetted area of each plate is A, its circumference /?, and 
the angle of contact 6, while the distance between the plates, which 
are assumed to be parallel, is d, then the normal component of the 
surface tensional force around the periphery is BS sin 0. The pres> 

sure inside the film is less than that outside by an amount S 

where r and R arc the principal radii of curvature of the meniscus. 
The former is given by d~2r cos 0 and thus the resultant excess 

pressure force acting downwards on the upper plate is 
2AS 

d 
cos 0, 

and the resultant attraction is 

(151) 

For most liquids which wet the plates this becomes, with suilicient 
accuracy, 

d 

and with very nearly plane surfaces d will become so small that 
F will be large, showing that the liquid can withstand a state of 
great tension. 

92. Force to Pull a Plate from a Liquid Surface.—If a flat 
plate is placed in the surface of a liquid and then raised, a layer of 
the liquid will adhere to the plate and will thus be elevated. Con¬ 
siderable force is necessary to produce separation by a purely normal 
pull, and the magnitude of this force may be determined by con¬ 
sidering Fig. 70 (a), which represents the state of affairs when the 
liquid, having been raised the maximum amount, /?, is about to 
break away. If the area of the plate is A, and j)q is the external 
pressure, the force acting downwards on the top surface of the 
plate is PqA, At a point Q just below the plate, the pressure p 
is given by 

P=Vo-gpf>> 
where p is the density of the liquid. Thus the force acting upwards 
is pA~A[pQ—gph], and the tension F, necessary to pull the plate 
away from the liquid, is 

F==poA-A[po-gph]:=Agph . . (152) 

To find h, consider the horizontal equilibrium of a slice of the 
elevated liquid, I cm. wide (Fig. 70) (b). Two forces, each equal 
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to S, will act tangentially to the meniscus, while the hydrostatic 
pressure F on the vertical rectangular end of the slice acts in the 
same direction. The magnitude of this force is 

rh^h[p,^lophi 

The external pressure will he directed in the oj^posite direction and 

4_I P B 

) i-T 
C (cl) ^ 

— 

t 

a 

>-5 

-^S 

(b) 

Fig. 70.—Force to Separate a Feate from a Liquid Surface. 

will produce a force equal to p^li. Thus, for horizontal equilibrium, 

pji -= hpf>] + 

Substituting this value in (152\ we have 

(153) 

If this force is measured by means of a chemical or torsion 
balance, it (Miables an approximate value to be obtained for S. 
The formula (153), however, is only approximately true, and the 
correct expression was given by Ferguson ^ in a form which may 
be exj)ressed as 

(154) „ r„ z?2 BV'ii 
F—2A^p B—~-- » 

where B is written for / A and r is the radius of the plate. Thus 
V gp 

(153) is only the first of these three terms. The last term is small, 

1 Ferguson, Phil. Mag., 26, 925 (1913). 
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but needs inclusion for accurate work, unless r is over 6 cm. It must 
be remembered also that wc have assumed the plate to be perfectly 
wetted by the liquid, and thus the expression will be modified if the 
liquid has a finite angle of contact. When equation (154) is used 
this method is capable of measuring S with considerable accuracy. 

Adhesion Ring. —By replacing the plate witli a ring du Nouy ^ 
somewhat simplified the calculation of the adhesion force. The ring 
was of platinum-iridium and could tliiis easily be cleaned, and the 
radius of the circular wire of which it was made was sufliciently 
small, 0*015 cm., for the weight of liquid elevated to be small com¬ 
pared with the downward pull due to surface tension. Thus an 
approximation to the adhesion force is given by 

F=4>7iRS\ 

R being the mean ring radius. But in fact the process of detach¬ 
ment is more complicated in this case as well, and an empirical 
calibration of the ring may be made ^ in which, using liquids of 
known surface tension and with rings having similar ratios of R to r, 
the radius of the wire, graphs may be drawn connecting the dimen- 

sionless variables — and Ihen m measuring an unknown 

surface tension, one of these rings is used, or at least one with the 

same — and, from the measured value of the corresponding 

^ value is found. 
F 

• 93. Capillary Ascent.—If a clean narrow-bore tube is placed 
vertically with one end below the surface of a liquid, the latter will 
rise inside the tube—exce23t in the case of mercury with which a 
depression occurs—to a level above that in the vessel outside. The 
height h of this capillary ascent may be calculated by considering 
the forces maintaining the elevated liquid column. If h is measured 
vertically from the bottom of the meniscus to the horizontal part 
of the free surface, the weight of a cylinder of liquid of height h, 
density p, and radius r—which is the internal radius of the capillary 
tube—is balanced by the surface tension acting around the contact 
circle, whose radius is also equal to r. If the angle of contact is 0, 
the equation for equilibrium is 

27rnV cos O—nrVipgy 
or, 

rhpg 
2 cos d 

(155) 

This ignores the weight of liquid in the meniscus above the horizontal 
part. As a first approximation the meniscus is a hemisphere of radius 

idu Nouy, Journ. Gen. Physiol., 1, 521 (1919). 
‘Harkins, Young and Cheng, Science, 64, 388 (1926). 
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r, and the weight of liquid above the horizontal tangent plane to the 
meniscus is The corrected formula is 

S 
2 cos 6 

(156) 

'J'hus the correction becomes a})preciable only if, within the limits of 
an experiment, Jr is comparable with //, The af)proximate formula 
may be used with a very narrow capillary tube. 

A further simplification occurs for liquids such as water, alcohol, 
chloroform, cfc,, whose contact angle is usually assumed to be zero. 
In these cases 

If the radius of the capillary tube is so large that -- approximates 
ft 

to unity, this correction for the meniscus will not be sunieiently 
accurate. For slightly wider tubes the meniscus may be treated as 
having a semi-elliptical section, and the corrected formula ^ is 

[‘ 

r 

3 A 
(Ml.,-, I 

which is substantially the same as that obtained by Rayleigh ^ by 
more complicated analysis, viz. 

rpgh~ 
2 - 0-1288f.+01312 

3/i n ^ 

This degrc'c of approximation gives results accurate to 1 in 2000 
for values of r up to 0-2 //. Beyond this, Sugden ^ calculated the 

values of against ^he methods suggested by Bash- 

ford and Adams.^ In use, an approxinuite value of S is used to give 
lap 

r! --- from which a corrected value of h is determined from the 

^rph 
2S 

table. Thus a corrected figure of S is determined, and the pro¬ 

cess may be repeated until a constant value is found for S. Usually 
no more than two siich references are needed to the fables. 

If two vertical plates are placed close together, each with one 
edge beneath a liquid surface, then a corresponding ascent is 
obtained between the plates. Considering the forces maintaining 

^ Ferguson, Mechanical Properties of Fluids^ p, 24 (1925). 
•Rayleigh, Proc. Roy. Soc., A, 92, 184 (1916). 
• Sugden, Journ. Chem. Soc., 119, 1488 (1921). 
• he. cit. 

O.P.M. N 
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This is the equation to a hyperbola with the axes as asymptotes, 
and it gives the shape of the surface line between the plates when 
they are inclined at an angle to one another in a horizontal plane. 
It should be remembered, however, that this is true only when the 
separation distance is small. 

94. Measurement of Contact Angles.—The direct measure¬ 
ment of contact angles is dillicult and uncertain. More accurate 
and consistent values are obtained by measuring the surface tension 
separately by two methods, one of which is independent of, and the 
other involving in a known manner, the angle of contact. Thus 
Jaeger’s method may be combined with an experiment such as that 
due to Wilhelmy,^ in which the additional force, due to surface 
tension, on a plate suspended vertically from a balance-arm is 
measured. If the lower edge of the plate is in the level of the 
undisplaced liquid surface, the equation of equilibrium is 

fng^^Sl coff f)y 

where mg is the additional weight required to balance the vertical 
effect of surface tension, and I is the length of the line of contact. 
This method is superior to the capillar}^ tube experiment, since 
the plate is easily cleaned and its contour line can be accurately 
measured. 

alternative method due to Anderson and Bowen ^ utilises the 
variation of the meniscus radius of curvature R at its apex witli 
radius r of the capillary tube in which the meniscus is formed. 
The former, Ry is measured by using the meniscus as a refracting 
surface for parallel light and when it is plotted against r, the curve 
approaches the origin at an angle <f> for which tan <l>~cos 0. 

After reviewing this and other methods Ferguson ^ suggested 

^ Wilhelmy, Pogg, Ann., 119, 176 (1863). 
* Anderson and Bowen, Phil. Mag., 31, 143 (1916). 
• loc. cit. 
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that direct methods, e.ff, the tilting of a plate until the liquid met 
the plate without meniscus formation, are probably preferable. 

95. Measurement of Surface Tension by Means of Ripples. 
—The rate at which short waves or ripples travel over the surface 
of a liquid depends on the surface tension, their velocity beang given 
in Article 220, 

» 2jt.S , gX 

pX ^271 

where X is the wave-length. Rayleigh ^ and Dorsey ^ used th(‘se 
ripples when determining the surface tension, by causing a style 
attached to an electrically maintained tuning-fork to touch the 
liquid surface. A copcriodic ripple system was formed and viewed 
stroboscopically by means of another fork having the same frequency. 
The ripples then appeared stationary and the wave-length could be 
measured. If n is the frequency of the fork, v^nX, and 

^ 271 ~ 

In the case of mercury, the procedure may be simplified by using the 
mercury in the fork circuit. Each time the })latinuni wire, which is 
attached to the prong, leaves the surface of the mercury, a small 
spark occurs at the same phase of the ripple formation, and the 
system, viewed by means of this spark illumination, appears at rest. 
The wave-length is measured by means of a travelling microscope, 
and for n =100, X is about S mm. Since the wave-length is raised to 
the third power, it is this measurement which limits the aecuracy of 
the experiment. 

A review^ of possible stroboseopic methods of illumination which 
render possible the projection of ripple images upon a screen has 
been given by Tyler.^ This improves the aecuracy of measurement 
of the wave-length, and Tyler shows that the most satisfactory 

method of utilising the results consists in graphing X/f“ against ™ 
X^ 

and measuring the slope of the resultant straight line. Another 
recent measurement of considerable precision was made by Brown,^ 
in which current from a valve oscillator was used to produce both 
the ripple system and its intermittent illumination. 

• 96. Surface Tension and Temperature.—The surface tension 
of all liquids decreases linearly with rising temperature, over small 
temperature ranges, so that the surface tension St at C. is given 

by 
(is 

St—S^il -oaf), and = —k, 

* Rayleigh, Phil. Mag., 30, 380 (1890). 
nWrsey, iUd., 44, 869 (189T). 
“Tyler, ibid., 31, 209 (1941). 
♦ Brown, Proc. Phys. Soc., 48, 812 (1936). 
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AV, 
At the critical temperature the value of S is zero, and the inter- 
e between liquid and vapour disappears, so that the absolute 

value of the surface tension depends on how far the temperature is 
from the critical value. Van der Waals suggested the relation. 

where is the surface tension at absolute temperature 1\ and 
is the critical temperature, A being a constant for a given liquid. 
From this 

1 dS _ 3 / X 

dS 
and both S and ^ are zero at the critical temperature. 

A modified formula 

St=A 

where n varies for different liquids, but is in the neighbourhood of 
1*21, is more accurate.^ 

In practice, however, the surface tension curve approaches the 
critical point tangentically, and becomes negligibly small at some 
degrees below the critical point. 

If M is the molecular weight and p the density of the liquid, the 
surface area occupied by a gramme molecule, assuming the molecules 

are symmetrical in shape, is proportional to (?)• and is known 

as the molar surface. The surface energy in the molar surface is 

proportional to S 
<?)■ 

> and is termed the molar energy, so that 

K being a universal constant of approximate value 2*2. This relation 
is known as Ebtvos' Lazv,^ which states that the molar free surface 
energy of any liquid should be proportional to the difference between 
its temperature and the critical temperature, and to a universal 
constant. This law is analogous to the gas law pv=R7\ where pv 
corresponds to the free molar energy of the gas. Ramsay and 
Shields * modified the relation giving 

s(^y=^K(Tr-T-d), 

1 Ferguson, Trans, Far, Soc,, 19, 408 (1923). 
*E0tv68, Wied, Ann., 27, 448 (1886). 
» Ramsay and Shields, ZHts. Phys, Chem., 12, 488 (1893). 
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where (Tc—d) is the temperature at which the surface tension 
vanishes. This may be written 

" constant — 

and, as already stated, K is 2*2 for many liquids. With some organic 
liquids, however, much higher values of K are obtained, and this is 
explained by the now generally accepted theory of molecular orienta¬ 
tion in the liquid-gas surface. A high value of K corresponds to an 
arrangement of the molecules with their greatest dimension placed 
normally to the surface, and, from the value of K for a substance, 
interesting conclusions may be drawn as to the orientation of its 
surface molecules. 

A more satisfactory relationship between the molar free energy 
and temperature is obtained by taking into account the effect of 
the vapour atmosphere above the liquid, and Katayama ^ suggested 

tlie definition of the molar free energy as S 

vapour density. Then it is found that 
p-pi 

Pi being the 

d 

df 

Ei^a(n.-T), 
where a is a constant. 

From equation (129) we sec that the total surface energy E is 
d S 

greater than S, and since is approximately constant, so that 

dT ' dT^ * 
approximately, 

the total surface energy remains constant over a considerable range 
of temperatures. From a critical examination of the total surface 
energies of various liquids, Langmuir ^ and Harkins ^ have concluded 
that pure liquid surfaces consist of a layer of oriented molecules, 
with their active parts drawn inwards. In the case of water, for 
example, there is supposed to be such a layer of directed molecules, 
while with benzene the molecules probably lie on the surface in 
a flat ring. 

It must be remembered, however, that these surface molecules are 
continually evaporating and recondensing on the surface, the rate of 

C V 
evaporation and recondensation being given by where p is 

the vapour pressure and Cj is a constant. .In the case of water at 
20° C. the rate of evaporation is about 10^2 molecules per sq. cm. 
per sec., so that the life of a molecule on the surface is only about 
10““’ seconds, and during this time the molecule must become oriented 

^ Katayama, Tohoku Univ. Sci, Rep., 4, 373 (1916). 
‘Langmuir, Amer, Chem, Soc. Journ., 38, 2221 (1916). 
‘Harkins, ibid,, 39, 354 (1917); 39, 641 (1917); 42, 700 (1920); 43, 35 

(1921). 
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in a vertical position about which it oscillates. Since the moment 
of inertia of a molecule is extremely small, the short time available 
for taking up a definite position does not necessarily invalidate the 
theory. 

97. Liquid—Liquid Interfaces.—It is to be expected that, at 
the interface between two immiscible li<|uids, a new phase will come 
into existence possessing a definite surface energy depeiid(‘nt on the 
composition of the two liquids. Antonow ^ stated that the inter¬ 
facial tension between two liquids in equilibrium is ecpial to the 
difference between the surface tensions of e^ach separately. This rule 
applies only to mutually saturated solutions. Since the surface 
tension of one is often reduced by the addition of the second, the 
measurements must be made with the liquids in equilibrium. For 
example, the difference between the surface tension of an aqueous 
layer on benzene and that of a benzene layer on water is equal to 
the tension of the water-benzene interface. The following results 
obtained by Reynolds ^ may be quoted in support of this rule : — 

Tablk VJII.— iNTKUFACrAL SuiiFACi: Tknsions 

I.iquid. 

I 

1 Benzene 
I Ether 
I Aniline 
j Chloroform 
I Carbon tetraefiloride 
I Amyl alcohol 
j Cresol 

Surface Tension 
in 

dynes per cm. S for 

Tension of 
Interface 

in dynes per cm. 

Water 
Layer. 

1 Li(piid 
1 I^ayer. 

Pure 
Lirpiid. 

• 

Cal- 
cu luted. 

Ob¬ 
served 

03 2 ; 28’8 28*4 34*4 34-4 
281 i 17-5 17-7 100 100 
46*4 ! 42 2 1 41-9 4 2 4-8 
59*8 1 20*4 i 27-2 33*4 33*3 
70 2 20-7 ; 26-7 ; 43 5 43-5 
20 3 21 r, ! 244 4’8 4-8 
37-8 1 34-3 1 i 37-1 I 1 3*5 3-9 

I 

Since the interfacial tension betw^ecn two liquids can be expressed 
as the difference of two surface tensions, the value is, as a rule, small, 
and increases as the solubility in the second liquid diminishes. It 
also decreases with rise of temperature. 

A consideration of the magnitude of various interfacial tensions 
leads to interesting conclusions concerning chemical constitution. 
Thus if Sij S2, and are the surface tensions of two pure liquids 
and of their interface, then, by Antonow’s rule, 

and during the process of mutual saturation there will be a decrease 
in the free energy of the system. The work of cohesion, which is 
the work done when a liquid of unit cross-section is pulled apart 

1 Antonow, Journ, d, Chim, Phys,, 5, 372 (1907). 
* Reynolds, Journ, Chem, Soc,^ 119, 460 (1921). 
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against the cohesive forces, is given by 

or 2^2, 

for the two liquids, respectively. Tlic work of adhesion IV„ is the 
work required to separate a composite layer, consisting of two liquids, 
at the junction, and is evidently equal to the decrease in free energy 
when the two liquids arc brought into contact, t.e. 

A break should occur with the least cx{)enditurc of energy, and 
so the molecules are oriented at the surfaces such that this work of 
separation is a minimum. On this theory, IFc for some liquids 
should be the sa?ne. For instance, the molecules of octyl alcohol 
shoiild orient themselves so that the break occurs between parts of 
the molecule which arc similar to those parts of the octane molecule 
at which a break o(‘curs, i.e. between the ends of the hydrocarbon 
chains. We should, therefore, expect I Fa to be the same for octane 
as for octyl alcohol. Harkins ^ finds the values slightly different, 
and he accounts for this by assuming imperfect orientation due to 
thermal agitation. 

Similarly, with an octyl alcohol-water interface, the polar groups 
of the alcohol molecules are immersed in the water and, to separate 
the surfaces, polar groups must be separated from their strong mutual 
attraction. In this case JJ\ must be large. Differences between JFr 
for an organic liquid, and IFa for the liquid and water, is a measure 
of the asymmetry of the organic liquid molecules. 

The intcrfacial tension between two liquids may be measured by 
the drop-weight method.^ In this experiment the weight /ng is found 
for a drop of one liquid, density falling from a tube, of external 
radius r, which dips below the surface of the second liquid of density 
P2* If the detachment is regarded as a case of approximately static 
equilibrium, at the moment when the pendulous drop has a cylindrical 
form where it is attached to the tube, the equation of equilibrium 
of that portion of the drop which is hanging is 

7/W 
(pi—Pa) 

Pi 
-p7tr^=27trSi 

where p is the exc^ess pressure inside and is equal to ^12 Thus 

m- 
f^{pi-P2) 

But the detachment of the drop is essentially a dynamical problem 
for which dimensional analysis gives * 

1, . . (157) 
SiPi-pi V (pi -P2)J 

^Harkins, Amer. Chem, Soc. Journ,, 38’, 228 (10]6) ; 42, 700 (1920). 
2 See Guye and Perrot, Arch. Sci. Phys. et Nat.y 11, 225 (1901). 
* Article 284. 
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where cj) is some arbitrary function of the non-dimensional variable 

*^12 

The same problem was attacked by Harkins and Brown ^ who 

observed that the non-dimensional quantity must be given by 

equal values of the other non-dimensional ratios and where 

V is the volume of the drop and B is written for / — a 

Thus ^ 

IS before, 

Sr 

Using liquids of known N, thus giving /?, the values of and ^ 

were obtained together with Curves were then drawn connecting 

(«) with or 

(b) with or / 
"r "] 

This was done with water, benzene, carbon tetrachloride, and ethylene 
dibromide and the points for different liquids and different ti])s fell 
smoothly on the same curves. Therefore these curves could be used 
subsequently to find an unknown surface tension by determining 

771 and r. Then ^ can be calculated, and the gTaf)h determines 

the value of or ^ from which S is directly derivable. 

Instead of using the graph with its unavoidable limit of accuracy, 
reference may be made to the tabulated values from which the 

graphs were constructed and, since the tabiilated values of ~ with 

/{^^J are obtained with greater smoothness, it is preferable to deter- 

mine ^rom the one set of results, transfer this value to the 

other set, and thus obtain ^ from which S is calculable. If the 

value of an interface tension is being measured, and strictly all are 

»Harkins and Brown, Journ. Amer. Chem. Soc., 1, 499 (1919). 
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interface tensions, it is obtained by substitution in 

^ '¥) 
being the mass of an equal volume of the lighter fluid. 
Lord Rayleigh, using water drops in air, showed that the value 

of the non-dimensional variable in equation (157) was nearly constant 
at 3-8 for a large variation in r. Therefore 

m~ 
3*8*S22^Pi 

g{pi P2) 

If the drop forms in air so that pg neglected, the tension 
S of the liquid-air surface is given by 

ing—^'SSr. 

The weight of one drop is obtained by collecting and weighing 
a known number of drops, and the value of r should be about 3 or 
4 mm. The method gives accurate values, and is probably the best 
means of measuring the tension of liquid interfaces. 

The Wilhelmy method, in conjunction with a torsion balance, may 
also be used for measuring interfacial tensions. The two liquids are 
contained in a beaker, and the vertical plate, suspended from the arm 
of the torsion balance, is fully immers€‘d in the upper liquid. When 
the beaker is raised, equilibrium is maintained until the interface is 
reached. Then the additional pull on the plate forces it downwards 
from the balanced position. The plate is restored to its original 
position by twisting the torsion head, and the angle of twist measures 
the force 18^2 where I is the horizontal perimeter of the plate and 
S12 is the interface tension. This assumes that the angle of contact 
is zero or, more accurately, that cos 0 does not vary appreciably 
from unity. 

98. Surface Tension and Other Constants of the Liquid.— 
Several attempts have been made to connect the surface tension of 
a liquid with its other constants. For instance, Macleod ^ showed 
that, for any given liquid at different temperatures, 

S=C\{p-p,)\ 

where C\ is a constant and p, pj are the densities of the liquid and 
saturated vapour, respectively. Ferguson ^ indicated that the con¬ 
stant Cl could be expressed in the form 

A^Tc 

where is a constant independent of the liquid, M, the molecular 
weight, Tcf the critical temperature, and pc, the critical density. 

Attempts to test the Macleod law in its generalised form, 

^ Macleod, Trans, Far. Soc.y 19, 38 (1928). 
* Ferguson, ibid., 19, 40T (1923). 
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by a logarithmk? graph of S and (p—pi), show that, 
for many liquids for which the power law is closely followed at lower 
temperatures, there are considerable deviations from the Macdeod 
law in the neighbourhood of the critical temperature. Moreover, in 
the range for whicli the logarithmic curve is linear, there are devia¬ 
tions from the value —4. These are sufficient to produce ajipreci- 
able errors into the numerical value of the parachor, if the common 
practice is followed of taking the fourth root instead of tlie 7/th root 
in the calculation for the parachor. 

Richards and Matthews ^ found that, for a large number of non- 
associated liquids, 

^constant, 

where [i is the compressibility. Finally, Hiamett and Mitchell “ 
showed that, as already mentioned, the total surface energy E is 
constant over a large range of temperatures, and suggested this 
relation as a test of association into molecular aggregates. 

99. The Parachor.—Macleod's equation, given above, can be 
written in the form ;— ^ . 

P~Pl 
and since both M and C are constants for a given liquid, MS\/p is 
constant. It has been termed by Sugdeu ^ the parachor of the 
substance, and is independent of temperature over a wide range, 
Neglecting p^ in comparison with p, we may express the parachor. 

P, in the form p^VSi 

where V is the molecular volume of the substance. Thus we may 
regard the parachor as the molecular volume of a substance when 
the surface tension of the latter is unity, aiiTl parachors of different 
substances should be proportional to the molecular volumes, at 
temperatures at which the liquids have the vsamc surface tension. 
For example, the ratio of the parachor to the molecular critical 
volume Vc of a given compound should be constant for all substances, 
as illustrated in the following table :— 

Substance. P P/Vc 

Hydrogen 351 46*9 0*75 
Benzene .... 206*3 250*1 0*81 
Chlorobenzene . 244*5 307*8 0*80 
Methyl ether . 211*7 j 281*9 0*75 
Carbon tetrachloride. . i 219*9 276*1 0*80 
Methyl formate . . j 188*6 172*0 0*81 
Ethyl acetate . . . j 217*1 i 286*0 0*76 

^ RichaMs and Matthews, Zeits. Phys, Chem.y 61, 49 (1908). 
2 Bennett and Mitchell, ibid., 84, 475 (1913). 
® Sugden, Journ. Chem, Soc., 125, 32, 1177 (1924). See also The Parachor 

and Vcdency, by Sugden (1980). 
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The additivity law applies to parachors ; isomeric substances of 
similar constitution have the same parachor, and the difference in 
parachor between successive members of a homologous series is con¬ 
stant and independent of the type of compound. Thus the parachor 
of the group CHg is the difference between the parachors of 
and C3ir8. 

The additivity law applies also to atomic parachors, so that by 
subtracting from the parachor for a paraffin, 
groups, as determined above, the paraehor equivalent to two atoms 
of hydrogen can be found. Thus the atomic paraehor of hydrogen 
can be determined, and in a similar manner other atomic parachors. 
The most interesting applications of the parachor have been made 
in connection with problems of chemical structure. 

100. Surface Tension of Solutions.—Wc have hitlierto re¬ 
garded the boundary separating twx) phases, such as liquid and 
vapour, simply as a geometrical surface, upon one side of which 
tliere is a phase of uniform properties, and on the other a second 
phase, everywhere distinct from the first and homogeneous in itself. 
Actually this is not the case, nor do the contiguous layers shade, as 
it were, rapidly but continuously one into the other. We must 
regard the boundary as a film or lamina of finite, though minute, 
thickness, consisting of an entirely different phase with definite and 
measurable properties. 

With solutions, the composition of the interface phase, or surface 
layer, is mostly different from that of the solution itself in bulk. 
In the case of a pure liquid, the interface energy is a minimum—as 
indeed it must be for all interfaces—but with pure liquids S is con¬ 
stant, and the energy can decrease only by a contraction in area. 
With solutions this is not so, for the surface tension varies with the 
concentration, and the possibility exists that S tends to a minimum 
value with changing concentration. To effect this, the surface layer 
must be more dilute than the remainder of the solution, if S increases 
with concentration. If, on the contrary, S decreases as the con¬ 
centration is raised, then the dissolved substance will collect in the 
surface layer. This enrichment, or impoverishment, of the surface 
phase does not continue indefinitely, for a point is reached at which 
the action is balanced by the counter-movement due to diffusion. 
The excess, or deficiency, of solute in the superficial phase may be 
calculated by Gibbs’ equation, which may be developed from his 
adsorption theorem, 

101. Gibbs’ Adsorption Theorem.^—Consider a solution of 
which the surface, area A, and the volume, are subjected to 
independent reversible alterations, and let the osmotic pressure of 
the solute be p. Then the work done on the system by increasing 
the area by dA—the volume remaining constant—is SdA, and that 
on increasing the volume by dv—the surface remaining constant—is 

1 See Milner, Phil, Mag,, 13, 96 (1907). 
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pdv. These operations may be performed successively, and the final 
result is independent of the order in which they occur. Hence 

so tliat 
_ _ dp 

dv dA 
(158) 

Thus the surface tension will vary with the volume of the solution, 
ix, with the concentration, only when the osmotic pressure depends 
upon the surface area. In other words the concentration of the 
solute in the thin surface film, which is the seat of the capillary forces, 
must be different from what it is in the bulk of the solution. If 
there is an excess concentration within the surface, any surface area 
increase will result in the removal of a certain amount of solute from 
the interior of the solution, and the osmotic j)ressure within the latter 
will decrease. Let be the number of gram-molecules of the solute 
in the bulk of the solution originally, and (\ the number of grani- 
molecules of solute, per sq. cm. of the surface, which are withdrawn 
from the interior of the solution. Then the final concentration C 
in the interior, upon which both the osmotic pressure and the surface 
tension depend, will be given by 

Thus 
dS _dSdC C dS 
dv'' dC dv "v 'dC' 

and 
dp dp dC 

~d€'dA~^~ V dC 

Utilising equation (158) 

_r~-r ^ 
dC ^dC 

If the osmotic pressure obeys the ordinary gas laws, then p~-CRT 
and so 

RTdC 

In all inorganic solutions the surface tension increases linearly with 
concentration, so that Cg is negative, C^/C is constant, and there is 
a defect of salt in the surface film of an amount proportional to the 
concentration. 

Gibbs’ theorem has been verified experimentally and the field 
which it covers is very wide. Thus the addition of a solute to a 
solvent will cause marked changes in the composition of the surface 
phase, if the solvent and solute possess different surface tensions. 
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For example, on the addition of a material of low surface tension 
to water, the surface phase becomes rich in the solute and the surface 
tension of the solution will fall rapidly. 

The surface-tension-concentration curve for mixtures of two 
substances will, as a rule, run a simple course between the surface 
tension lines of the two substances, but there is a large number of 
substances which raise the surface tension of water. For these 

Sl—Sm j 

where Sjl, Sm a^re the tensions of the solution and solvent, respectively, 
k is a constant, and C is the concentration. Jaeger ^ found a similar 
behaviour in the case of solutions of benzoic acid, camphor, aniline, 
naphthalene in methyl and ethyl alcohols. Aqueous solutions of 
sodium chloride and other inorganic salts, sugars, glycerine, etc,y 

produce similar results. On the other hand, substances which lower 
the surface tension of water are alcohols, aldehydes, fatty acids, 
camphor, etc. Considerable lowering of the surface tension is caused 
at low concentrations, but at intermediate and high concentrations, 
Sl changes comparatively little and mostly tends towards the value 
possessed by the organic liquid. An experimental formula proposed 
by Szyszkowski ^ to represent the change is 

Sm—Sl ,1 /C" , ,\ 
i. log 

where k and b are constants. 
The marked lowering of the surface tension of water by small 

amounts of some substances is evident in many phenomena. Thus 
ether vapour produces a lively motion in a water surface, as the 
lowering of Sl does not proceed equally strongly at all parts of the 
wSurface, and the water is drawn from a place with lower surface tension 
to one where the surface tension has a higher value. The same local 
differences in Sl cause the motion which pieces of camphor exhibit 
upon a pure water surface. It is actually the camphor vapour which 
is responsible for this effect. 

102. Theories of Capillarity.—Many attempts have been made 
to associate the results of surface tension with the conception of 
intermolecular forces, and their variations are due mainly to the 
possible hypotheses regarding surface structure and the law of force. 
The Newtonian law of gravitation, i.e. the inverse square law of 
attractions, is not adequate to explain capillary phenomena, and 
various alternatives have been suggested. In one of the early 
attempts, Young ^ solved many of the problems of capillarity, 
including most of those afterwards treated by Laplace,* by assuming 

1 Jaeger, Wien. Akad. d. Wiss., 101, 158 (1892). 
* Szyszkowski, Zeits. f. Phys. Chem.^ 64, 885 (1908). 
» Young, “Cohesion of Fluids,” Phil. Tram., A, 95, 65 (1805). 
* Laplace, Micanique Celeste, Suppl. to Book 10. 
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that intcrmolecular action was the resultant of two opposed types of 
force; one, an attraction which remains constant throughout its 
effective range, and the other a repulsion which, though preponderat¬ 
ing at very close distances of approach, decreases rapidly with 
distance. Young’s explanations were rendered obscure by his 
avoidance of mathematical symbols. 

Laplace ^ offered a treatment of the subject which was entirely 
mathematical, while his results agreed in many respects with those 
of Young. He investigated, without assuming any special distance 
law^ of attraction, the force acting on the fluid contained in an 
infinitely thin canal normal to the fluid surface and arising from the 
attraction of the fluid outside the canal. The pressure at a })oint 
in the interior of a fluid was of the form 

where iv is a constant pressure which is probably large but which is 
not a surface effect, and k is another constant upon which all capillary 
phenomena depend. 

Gauss ^ in 1830 developed the principle of virtual displacements 
into practically what is now called the conservation of energy, and 
by its means he formed an expression for the total potentials arising 
from the action between each pair of particles. This aggregate— 
which with reversed sign is now called the potential energy—is the 
result of three different actions : 

(i) The external effect of gravity ; 
(ii) The mutual actions of the fluid particles ; 

(iii) The interactions between the fluid and its boundary media. 

The condition of minimum potential energy gave the equation to 
the free surface in Laplace’s form, and also indicated the conditions 
governing angles of contact. Thus Gauss supplemented the results 
of Laplace's theory. 

In 1831 Poisson published his New Theory of Capillary Action in 
which the chief advance was the suggestion, for which he gave 
strong reasons, that there is a rapid variation in density near the 
liquid surface. Laplace’s assumption of uniform density is not 
necessarily true—indeed, as we have seen, recent developments 
indicate that it is certainly not the case—and thus Poisson rendered 
valuable service in directing attention to this fundamental point. 

Gauss’ method has been modified in the light of Poisson’s sugges¬ 
tion and its language brought more into line with modern descriptions. 

Because of the influence which it has exerted on surface tension 
theory, a brief indication of Laplace’s method will now be given. 

In Fig. 71 AB is the boundary surface of the liquid, P, any point 
in ABy and CZ>, the tangent plane at P. A narrow cylinder PR is 

^ Laplace, loc, cit. 
* Pauss, Prindpia generalia theorice flgurce fluidorium in statu equilibrii. 
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described, having its length normal to the surface at P and with 
cross-sectional area a. At a distance PQ—equal to the extreme range 
of molecular action—a surface FQG is drawn parallel to APB. 
Thus the liquid between APB and FQG represents the surface layer 
in which the surface effects are built up, and the molecular pressure 
produced at Q will relate also to all points in QR, or QR continued, 
it is thus necessary to deal only with the transition distance PQ. 

Fig. 71.—Laplace’s Theory of Capillarity. Pressure inside a 
Curved Surface. 

Laplace assumed that the attraction between two elementary masses 
and rz/g, whose separation distance is r, is given by 

F=^7nim^.f{r\ .... (159) 

where/(r) is a function of the distance, such that when r is indefinitely 
small, F is large but finite, while, when r equals the range of 
molecular action, F is zero. The cylinder PR is maintained in 
equilibrium under the action of the pressure at R and the attraction 
along PR of the rest of the liquid. If we suppose the liquid to extend 
up to CPD, the attraction thus calculated will differ from the true 
value by the amount contributed by the liquid between APB and 
CPD, both reckoned in the direction PR. But since the latter 
evidently acts along RP, it must be added to the former. Let the 
attraction of the completed liquid be iva, where K is a constant. 

At a point M erect a small cylinder of length MN, width in the 
plane of the diagram dx, and breadth at right angles to the figure 
x.dd, where 0 represents the angle between the tangent PC and that 
at P in the principal plane, PM=Xy the principal radius of curvature 
being 7^^. If the radius of curvature in the plane of the figure is R^ 

then and if PE^z and EM—r, then by (159) the attraction 

on an elementary mass dm at E is 

F=dyn^xdx. pdd ./(r), 
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where p is the liquid density, and the component of this force along 
QP is 

Z=pdm~d.r.d6.fir)^. 

But since 
1 cay- d sin^ 0 

where jRg second principal radius of curvature, we have, on 
integrating this expression from 0=0 to 6=27t, 

and since and orda^rdr, the last expression becomes 

f . . (IGO) 

Let 
f{r)dr== d\<l>{r)\. 

Since/(r) diminishes as r increases, <f>(r) is positi\'c. On integrating 
(160) from r---~z to r = rQ or oo, we obtain 

But 

Hence 

cf){oo)=0 and ^-~-r^d{<f}{r)]= 

^00 ^C30 

I -~rhl[(f>{r)]:^z^(l>{z)^ 2j rcf>{r)dr, 

and thus (161) becomes 

np {hx-y- J r<f)[r)dr . (162) 

Again, define a function y){r) such that r(j>{r)dr = 
positive and f(oo}=0. Then (162) becomes 

np z\p{z)dni 

-dy){r), y}(r) being 

(163) 

But dm=poLdz^ where dz is the thickness of the element at measured 
along PQ. Thus we have for the meniscus attraction, 
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and this, integrated from 2=0 to z^Tq or oo, gives the action of the 
meniscus liquid on the cylinder PR, Putting 

00 

z\p(z)dz~H^ 

(163) becomes 

If p is tlie molecular pressure at any point in PR below Q, we have 

pa=iTa+71^20^ J, 

or, 

p=K+npm^~+-^^ . . . (1C4) 

Thus the distance function is connected with the surface tension 
S by the relation 

S=7ip^H~7ip'^^ ztf{z)dz, . . . (165) 

and from (164) we have the following results : 

(i) Inside a liquid with a flat surface the molecular pressure is K, 

which was called by Rayleigh the intrinsic pressure and is the “ 

term of Van der Waals’ equation (see Article 140). 
(ii) The pressure within a liquid, bounded by a convex surfac'e, 

r 1 1 
is greater than K by an amount npHl 

\Jix 7^2 

(iii) Both of these molecular pressures are built up in a surface 
layer of thickness equal to the range of molecular action. 

To find the relation between Tq, and \p, consider Fig. 72 {a) 
in which PR is a similar thin cylinder of the liquid whose bounding 
surface is MP, and its cross-sectional area is again a. Then Kol has 
been defined as the attraction of the remainder of the liquid on the 
cylinder. Construct a coaxial thin cylindrical shell of radius PM 
and thickness dx, extending indefinitely into the liquid. Let MA 
and consider an element at A of length dy and depth, perpendicular 
to the figure, db. Its mass will be p.'dxdydb, and its attraction on a 
mass dm at B is 

p. dm. dxdydb .f{r), 

where r=AB. The vertical component will be 

p,dm,dzcdydb,f{r)^~-^^ . . . (166) 

where z=PB, But since r^=x^+(z~-y)^, then, keeping both x and z 
a.p.M. o 



194 SURFACE TENSION 

constant, rdr^{y- z)dy, and (106) becomes, on integrating from 
r^BM~a to r~oo, 

p. dm, dxdb . . . . (107) 

Maintaining x constant, the integral of d/> around tlu‘ cylindrical shell 
is 27r.r, and so we obtain from (167) 

^p, dm. 27[xdx. 

Fio. 72.—Laplack’s Theory of Capillarity. Intrinsic Pressure 

AND Latent Heat of Evaporation. 

and this must be integrated from a’—0 to .t=oo. Since xdx~=aday 
the limits for a are a~z and a—oo, and thus 

27ipdm{ a^{a)da^2T[pdm ,y){z) . . (168) 

If the element of mass dm is due to a thickness dz of the cylinder 
PR, we have dm- padz, and integrating (168) from 0 to 2:™oo 

or, 

KoL—^2Tip'^ai 

K 

From (169) and (165) we have 

K 

S 

(169) 
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Since the denominator must be less than 

K 2 2S 

-s>7: 
For water, S may be taken as 78 dynes per cm., and Van der Waals 
gives A"--10,500 atmospheres or 10-5 xlO^^ C.G.S. units. Thus, for 
wa i cr, 

^0 

U6xl0“'» 

10-5 
1-4x10-8 cm. 

Eipiation (168) shows that the attraction on a, })article of mass dw^ 
at a distance below a flat surface, is 

2jTpdnni){z). 

In moving this particle an extra distance, — towards the surface, 
the work done is ~27rpdm\p{z)dz, and thus to bring the particle to 
the surface, from well inside the liquid, requires a total expenditure 
of Avork W equal to 

When at a distance above the surface the attraction of the liquid 
will be 2npdniy){z), for (Fig. 72) (h), if through C, such that BC=BP, 
a surface is constructed parallel to the true surface, the attraction due 
to the liquid between B and P is equal and opposed to that of the 
liquid between B and C\ Therefore, in taking an element din from 
the surface to a distance outside the range of attraction, an equal 
expenditure of work is required. Thus the total work in evaporating 
the element dm is, ignoring work done against external pressure, 

2W ~2Kdm/p, 

but since dm/p~dv, tlic volume of the element, the internal work done 
in evaporating unit volume of the liquid is 2K. Thus 2K~pLi where 
Li is the internal latent heat. For water at atmospheric temperature 
(15° C.) the internal latent heat is about 556 calories, or 556 x 4*2 x 10’ 
ergs, and this gives 

A^--278x 4-2x10’ 
= 11-7x10^ C.G.S. units, 

which is of the same order of magnitude as Van der Waals’ results. 
Laplace’s theory is usually criticised because he assumed uniform 

density, and, also, the integration methods are not above suspicion. 
It must be remembered that the upper limit of integration is 
comparable with molecular dimensions, and, on this scale, a liquid 
has not the homogeneity, tacitly assumed in an application of the 
integral calculus. It is particularly difficult to realise what the lower 
limit 2=0 means. Even if molecules may be regarded as rigid 
spheres, and that true collisions occur, the closest distance of approach 
of their centres would be the molecular diameter. It is this distance 
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which forms the lower integration limit. Additionally, the separation 
distance between the molecules of a liquid is comparable with the 
size of the molecules, and thus it is only over very much larger 
distances than Tq that the liquid may be regarded as homogeneous 
in structure. To some extent this objection is countered by the 
undefined character of the distance function y){z), but we should 
expect the two effects to produce real divergences between the pre¬ 
dictions of the theory and the results of experiment.' For example, 
the theory does not give correctly the dependence of surface tension 
on temperature in the neighbourhood of the critical point. 

Modern theory suggests that the interface is a special phase, and 
its thickness may be assumed equal to the radius of molecular action. 
All layers of molecules lying at the boundary, which have properties 
different from those of the molecules in bulk, may be regarded as 
belonging to the surface layer, and all layers which still have above 
them, in the direction of the vapour, sufficient molecules to exert the 
regular internal pressure attraction are under similar conditions of 
internal pressure. This necessary thickness is also equal to the range 
of molecular action, and thus the total transition layer will be of 
thickness equal to twice the radius of molecular activity. Many 
considerations lead to the conclusion that the latter is not sensibly 
greater than the diameter of the molecule, so that the transition layer 
at the boundary of two phases would consist of two unimolecular 
layers, one in each phase. Einstein ^ has shown that the radius of 
molecular action is equal to the diameter of the molecule, i,e. that 
only adjacent molecules are under the influence of mutual forces, 
and he considers the surface layer to be a particular phase of 
unimolecular thickness. 

It has been shown by Langmuir ^ that films do occur which are 
only one molecule in thickness, such, for example, as the very thin 
films of oil and other substances on water. If Cj is the surface con¬ 
centration in gramme molecules per square centimetre of a uni¬ 
molecular layer, then the surface area occupied by each molecule is 

where Nm is the number of molecules in a gramme molecule. 
CiJ\ m 

He measured a by dropping a known quantity of oil on water, and 
stretching this oil film until its measured surface tension changed. 
This occurred when the film occupied its maximum area, i,e. when it 
was only one molecule thick. His values, calculated for different 
substances, are in agreement with those found experimentally for 
insoluble films by X-ray methods. 

Langmuir’s theory ® of capillary phenomena supposes that solids 
and liquids consist of atoms held together entirely by chemical forces. 
The ordinary conception of the molecule is thus almost completely 
eliminated, except in the case of gases, and a solid, or liquid, is looked 

1 Einstein, Ann, d. Phys., 34, 165 (1911). 
’Langmuir, Amer, Soc, Joum,, 38, 2221 (1916). 
» Langmuir, iUd., 39, 186T (1917). 
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upon as consisting of a single large molecule. Solid polar compounds 
are, in general, built up of atoms bound together by secondary or 
residual valencies. Solid non-polar compounds consist, in general, 
of group molecules in which the atoms are usually held together by 
primary valencies. Since energy must be expended in separating the 
atoms of a solid, the surfaces of solids must contain more potential 
energy than that corresponding to atoms in the interior, and thus the 
interatomic forces are more intense in the surface than in the interior. 

In view of the work of Laue and Bragg ^ on crystalline structure, 
it is believed that solid bodies are not built up of molecules but of 
atoms arranged in definite ways, and that the atoms are arranged in 
groups which are called group molecules. These group molecules 
are held together by chemical forces to form single large molecules, 
and Langmuir proposes a similar theory for the structure of liquids. 
Each atom of a liquid is regarded as being combined with all the 
adjacent atoms, this union being effected by primary and secondary 
valencies. The atoms held together by primary valency usually 
constitute group molecules, while the secondary valency serves to 
hold the group molecules together. The structure of the surface 
layer of atoms is regarded as the principal factor in determining the 
surface tension, or rather the surface energy of liquids. This theory 
is supported by numerous data on the surface tension of organic 
liquids. The group molecules of these liquids arrange themselves in 
the surface layer, so that the active portions are drawn inwards ; 
by active portion is meant a part which is characterised by a strong 
stray field or residual valency. Since chemical action may be 
assumed to be due to the presence of electromagnetic fields surround¬ 
ing the atoms, surface tension, or surface energy, is a measure of the 
potential energy of the electromagnetic stray field which extends 
out from the surface layer of atoms. The molecules in the surface 
layer arrange themselves so that the stray field is a minimum. The 
surface energy of a liquid depends, therefore, upon the least active 
portion of the molecule. The fact that the surface energies of the 
hydrocarbons of the paraffin series and the corresponding alcohols 
are practically identical, is explained by the fact that the surface 
layer in these cases is always CJ/g. Further experimental verifica¬ 
tion of this orientation of the molecules at the surface will be 
encountered when we consider the spreading of films. 

There is now almost conclusive evidence that the surface phase 
of films is only one molecule thick, and that the molecules of an 
insoluble material adsorbed on the liquid are oriented in a vertical 
direction, being attracted to the liquid surface in the case of a complex 
molecule by some particular group or groups. Even more conclusive 
evidence, in favour of the hypothesis of at least partial orientation, is 
that derived from a consideration of the latent heats of evaporation 
and the divergences noted in the Eotvos constant for unsymmetrical 
and undissociated molecules. 

^ Bragg, X-Rays and Crystal Structure. 
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103. Surface Tension and Evaporation.—When a drop is 
evaporating under constant temperature conditions, energy must be 
supplied to provide the latent heat of the vapour, and part of this is 
obtained from the surface energy which is lost through decreasing 
the surface area. Thus a drop will continue to evaporate into a 
space which would be in vapour ecpiilibrium with a flat surface, and 
there can be no equilibrium between a drop and a surrounding 
atmosphere of saturated vapour, for, as the drop becomes smaller, a 
stage is reached when the surface energy loss, due to contraction, is 
sufficient to supply all the latent heat of va})orisation. The converse 

is also true, and a drop requires a nucleus 
for its initial stage of formation, and, for 
condensation, a degree of supersatura¬ 
tion is required to an extent dependent 
on the size of available nuclei. \Vilson ^ 
showed experimentally that these nuclei 
rnay^ be dust particles—for which only a 
small degree of supersaturation is neces¬ 
sary—or electrically charged molecules. 
Electrification of a drop virtually opposes 
the surface tension effect owing to the 
mutual repulsion of similar charges. 

To determine how the equilibrium 
between a vapour and a liquid surface 
depends on the curvature, suppose a 
closed vessel A (Fig. 73) contains the 
liquid and its vapour only, and that a 
naiTow capillary tube, of material which 
is not wetted by the liquid, is placed in 

Fig. 73.—Vapoub Pressure the liquid. The meniscus, which may 
OVER A Curved Surface. be regarded as a hemisphere, is depressed 

to a depth h below the outside horizontal 
surface. Let p be the saturation pressure above the flat surface, 
and pi, the equilibrium pressure above a curved surface of radius r. 
The pressure difference Pi—p equals the weight of a column of 
vapour of height /?, and thus 

Pi-V^ (170) 

where a is the vapour density. The pressure at B is p, while that at 
C, at the same horizontal level as the meniscus, is p-\-gph, and, since 

there is an excess pressure inside the curved surface of — > we have 

p+gph- 

Pi-P=Spfi— 
. (171) 

> Wilson, Phil. Trans., A, 189, 265 (1897); 192, 408 (1899); 193,289 (1899). 
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where p is the density of the liquid and r is the radius of the capillary 
tube. Elquating (170) and (171), we have 

or. 

r 

a)(lh. 

But a is connected with the pressure by the relation 

(Ip ~ gadh. lienee 

'h ” I,” 
since a is small compared to p. Thus 

2A 

r 
log V^, 

or, 
2S 

plifr 

and 

This equation gives the ratio of the vapour pressures, p^ and p, 
for equilibrium with the curved surface of radius r and a flat surface, 
respectively. For a given degree of supersaturation—i.e, a given 
value of Pi—drops of radius less than r will continue to evaporate, 
while those of greater size will continue to grow. To obtain an idea 
of the magnitude of this effect, it may be noticed that for water at 
0"^ C., the ratio of p^ to p is as follow* - 

])ianu*ler of Water Drop Ratio -• 
in mrn. X10~*. P 

100 1 1 02 
10 1 26 
5 1-59 
2 3 2 
1 10*2 

These considerations apply also to the phenomenon of boiling. A 
pure liquid may be raised to a temperature, much in excess of its 
normal boiling-point, if no dissolved gas affords possible nuclei for 
the bubbles of vapour to form. When this formation occurs, how¬ 
ever, the growth of the bubble is very rapid, since the surface tension 
is increasingly insufficient to counteract the excess pressure inside. 
Then boiling with bumping occurs. In the normal process of boiling, 
the bubble contains some gas, as well as vapour, and is in equilibrium 
when the pressure p2» due to the gas, equals the necessary excess 
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pressure inside over that outside the bubble. If ]) is the external 
pressure and the vapour pressure inside the bubble, 

2S 
Pl+P2=P + ~^ 

For eonstant temperature is constant—A:, and 

(Pi-P)==^ r 
At the equilibrium position 

k 
^3 

so that 

d 

dr 
~(pi~p)=-0 or 

Pi~P = 
4S 

"sr* 

Hence ebullition begins with a bubble of radius r, when the vapour 
4S 

pressure in it exceeds the outside pressure by — • 

104. Latent Heat and Surface Energy.—The internal latent 
heat of a liquid is, presumably, a measure of the work done against 
the internal pressure.; and that done by the molecules in reaching the 
surface—i.e, half-way from the interior to the outside—is measured 
by the potential energy acquired as surface energy. From this it is 
argued, according to the Laplace theory, that one-half of the latent 
heat must be equal to the molar surface energy, which is proportional 

S 
to or SVf^, where F is the volume of a gramme molecule. 

pn 
Bakker has suggested tnat 

\dV=:L^, . . . . (172) 
i: 

where K is the intrinsic pressure which is identical with the — term 

of Van der Waals’ equation, is the volume of 1 gm. of the liquid, 
Fjj that of the vapour, and is the internal latent heat. Bakker 
used the values of a at the critical temperature and deduced the value 
of />! at the boiling-point for many liquids. 

Harkins and* Roberts ^ found that the relationship between sur¬ 
face energy and latent heat, as expressed by 

Molar total surface energy , , 
i r / constant. 

Molar internal latent heat 

is not true. Instead, the value of this expression increases with tem¬ 
perature, and is less for strongly unsynrunetrical molecules, such 
as C2H5.O//, than for symmetrical molecules, such as those of 
nitrogen. 

^Harkins and Roberts, Amer, Chem. Soc, Journ., 44, 658 (1922). 
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The process of evaporation, as already indicated, takes place in 
two stages. During the first stage, molecules are brought from the 
interior up to the surface, overcoming the surface tension effect, 
and during the second, they vaporise from the surface film. An 
equality of work in these two actions—such as is indicated by the 
Laplace theory—can be obtained only for pc^rfectly symmetrical 
molecules. With more complicated asymmetrical molecules the 
second stage becomes more important, and the energy associated 
with the rupture from the surface is a large fraction of the total 
energy of vaporisation. An examination of the surface energy and 
latent heat of vaporisation, for a large series of compounds, confirms 
this theory. These results, obtained by Harkins and Roberts, are 
given in Table IX. 

Tablk IX.—M0LKCU1.AH Enkrgy Vat.uks for thf. Vaporisation of Liquids 

AT a Corresponding Temperature equal to 0*7 of the Critical 

Temperature. 

Total 
Surface 

Iiiternal 
T.atent Heat 

of 
, Vu];K)nsation 

Energy changed 
from Potential 

to Kinetic when 

liiquid. 
t^nergy 

per 
Molecule moves 

from Surface 
e 

molecule 
X 10^* 
ergs. 

per 
molecule 

X 10*^* ergs. 

to Vapour 
per molecule 

X 10*^ ergs. 

A 

c. j ™ A — e. 

Nitrogen 3-84. 8*7 4-8 0-441 
Oxygen 4 50 10 8 61 0-417 
Kthylether 150 36 5 20-9 0-427 
Carbon tetrachloride . 18*2 40-2 22 0 • 0-453 
Benzene 18-4 41-7 23-3 0-441 
Chloral benzene . 20-3 48-8 28-5 0-416 
Methyl alcohol 8-5 51-6 431 0-165 
Fjthyi alcohol 11-2 59-3 48«1 0-189 

The effect of lack of symmetry in the molecule is to lower the 
molecular free surface energy, latent heat of surface formation, and 
total surface energy, and to increase the energy of thermal emission, 

€ 
An increasing value of - indicates an increasing symmetry of the 

A 
molecule. 

105. Drop of Liquid resting on Another Liquid.—When 
liquids do not spread on other liquids, there is a definite contact 
angle as with solids, but usually no two of the three surfaces con¬ 
cerned are continuous. Let Fig. 74 represent a drop of one liquid 
resting on the surface of another, the area of contact being B, the 
free surface of the drop in contact with air having an area A, and 
that of the supporting liquid in contact with air, (\ When the 
sides of the containing vessel are very distant from the drop, we 
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may neglect the change in the area separating the liquid and the 
vessel in considering a small deformation of the system. 

Let S^, S2 be the surface tensions in the surfaces A, B, C, 
and diy 6i2> ^2 angles these surfaces make, respectively, with the 
X axis at P, where suppose that P is displaced to 
Pj, a point in the xz plane. This displacement may be resolved 
into compoiKjnts dx and dz along the x and axes, respectively, and 

I Z 
I 

I 

Fie. 74. Liquid 1)iu>p on a laQuii) Surface. 

the sum of the potential (‘iiergy changes for these two component 
displacements is equivalent to that taking pla(‘e during the displace¬ 
ment from P to P^. 

From Article 87 the change of potential energy in the surface A, 
due to the displacement dx, is 

Sl^dA+ cos OiSxds, 

where ds is an element of the line of contact of the drop on the 
liquid. Thus the equation of virtual work for the whole system is 

8l,dA + 

+ j'(<S^i6U9 01+‘^12 COS 612—^2 COS O2)dxds=^0, 

where dli, 6/2, are the normal displacements of the surfaces A, P, C, 
and pi, p2 are the densities of the drop and the supporting liquid, 
respectively. The r terms are the corresponding principal radii of 
curvature. To the left-hand side of this equation must be added 
the terms. 

ki^dlidA -{-k2^6l2dB-\-k2^dl2dC, 

which are rendei’ed necessary by the constancy of volume in the 
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liquids during the supposed displacement of the system. As before, 
the coefficients of 61^, <54, and also the coefTieient of dx, vanish. 
Hence, for example, we have 

cos 01+6^2 <'OS 0j2~~'^2 02* • (173) 

Siniilarly, by cor»sidering the displaeeinent, 6z, of P along the 
axis, the equation of virtual work for tlic whole sysleni is 

®i2 ^1 02)fe/,s--™O, 

and so, as before, 

lS’i2 sin 012- *^'i sin 0^ sin O^-A) . . (ITt) 

Thus, from equations (173) and (174), we see that the three forces 
6’j, Si2f ^2 equilibrium, and must therefore be represented by 
the three sides of a triangle, if the drop is to remain on the surface 
without spreading. This condition of equilibrium is sometimes 
referred to as Nmnuuui's triangle,^ and we have 

>S2 

Thus if one liquid rests as a drop on another, without spreading, 
then none of the three surface tensions is greater than the sum of 
the other two. The experimental verifi(*ation of Neumann’s triangle 
is not accurate because the angles, and probably the surface tension 
of the various liquids resting on another, change with time. 

A drop of liquid placed upon the surface of another liquid does 
not, in general, remain stationary but spreads out into a thin layer. 
If the liquids in equilibrium are completely miscible, t^i^ds to 
become zero and the drop will spread if Experiment con¬ 
firms this rule, that of two completely miscible liquids, the one 
having the lower surface tension spreads over the other. From 
Gibbs’ Theorem we have seen that a small quantity of a dissolved 
substance can lower the surface tension greatly, but cannot raise it 
to any great extent. If a substance raises the tension, its concen¬ 
tration in the surface layer is less than in the bulk of the solution, 
but on the other hand, if the dissolved substance lowers the surface 
tension, practically all of it may be contained in the surface. Spread¬ 
ing occurs if S2>Si-\-S^2^ and any condition which lowers 
favours spreading. This happens with a dissolved substance which 
markedly depresses substance is soluble in the drop, 
both Si and Si^ are lowered, and the conditions for spreading are 
doubly favoured. In the case of substances, which are soluble also 
in the liquid, the formation of drops is favoured. Adsorption occurs 

ij^eumann, Vorlesungen uber d, Tfieorie der Kapillaritat (1894). 
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witli great ease on mercury surfaces, and such contamination lowers 
considerably the surface tension. A drop of liquid placed upon 
such contaminated mercury may not spread if for the mercury 
surface, is less than other hand, if the mercury sur¬ 
face is perfectly clean, may be greater than *S\+>S\2 and spreading 
oc(*urs. 

Harkins has called the dinVrence or IT,,- the 
spreading coelbcient of liquid A on liquid C\ Since ft a is the work 
of adhesion of A to C and the cohesioji of A, tlie condition of 
spreading is simply that the upper liquid must adhere to the lower 
one more strongly than it adheres to itself. 

Water has a high cohesion and therefore does not s}>read on 
organic liquids. The latter liavc usually a moderate cohesion and 
spread on water unless the adhesion to water is unusually low. 
Any diminution of the surface tension of the lower liquid by a film 
decreases the tendency of the upper liquid to spread. This may be 
regarded as due to the surface pressure of the film ojiposing the 
outward spreading pressure of the liquid A, 

The condition for spreading is clearly the same as that for zero 
contact angle in the liquid A, and is therefore the same as that for 
complete wetting of a solid surface by a liquid. If A spreads on B, 
then it is clearly impossible for B to spread on A, It is, however, 
possible for neither liquid to spread on the other. A non-spreading 
liquid, such as a heavy paraffin, may be caused to spread on water 
by dissolving in it a fatty acid, or some substance which increases 
fVa, the adhesion between the oil and the water. If neither liquid 
will spread on the other, a denser Ihjuid can be made to float on 
a lighter one in just the same manner as solid substances, which 
have a finite contact angle, can float on water. 

If the spreading is imagined to take place very slowly, with time 
allowed for the complete mutual saturation of the upper and lower 
liquids, the spreading coefficient will gradually diminish, as the sur¬ 
face of the lower liquid C becomes covered by a surface film of 
liquid A, and its surface tension diminishes. The contact angle 
remains zero as long as the spreading coefficient is positive, the 
sum of the two surface tensions being less than Spread¬ 
ing ceases when S2 is equal to point the contact 
angle is still zero, but any further diminution in surface tension of 
the lower liquid aSj would result in the angle becoming finite. 

Hence in the case of two liquids whose surface and interfacial 
tensions are such that one would spread on the other before they 
are mutually saturated, it is to be expected that when they are 
mutually saturated, one will rest on the other with zero contact 
angle and 

From this follows Antonow’s claim that for two liquids, mutually 
saturated with each other, interfacial tension is equal to the differ- 
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ence between the surface tensions of the two liquids separately. 
Summarising we have :— 

(a) If Si-{-Si2=^2’ evident that the system will be in equi¬ 
librium, as no decrease in free energy can take place by the spreading, 
of the contraction of the drop. 

(5) The drop will spread over the surface of the supporting liquid 
if as, for example, a drop of ether on water. 

(c) The drop assumes the shape of a lens, forming a re-entrant 
angle with the liquid, if iS'2<6\+AS^i2* example of this is a drop 
of petroleum placed on water. The actual shape of the drop depends 
on a complicated balance between spreading coelTicients, densities 
of liquids, and the linear tension round the perimeter of the drop. 

(d) Although the effect of dissolved substances may 
result in <^2'—where ^2' surface tension of the con¬ 
taminated liquid. This occurs with benzene, or oils containing fatty 
acids, dropped on water. 

It appears then that, in spreading, the drop does not extend as a 
homogeneous thin lamina but undergoes a superficial solution. If 
the spreading substance is volatile, it may vaporise from the surface 
of the liquid and condense on the clean surface. This decreases the 
free energy of the latter, and we obtain another type of spreading 
through the vapour phase, even if S2<S\-j-Si2» For example, 
carbon sulphide will spread on water by this means. 

106. Spreading of Films on Liquids.—When a drop of some 
fluids is placed upon a clean water surface, a film of small thickness— 
about 1 micron—rapidly spreads from it in all directions. Hardy, ^ 
who has investigated the phenomenon, calls this ^primary spreading. 
In addition, sometimes the drop itself extends into a film, of thick¬ 
ness from 50 to 500 microns, which is in tensile equilibrium with the 
invisible film. The whole may then settle down into an irregular 
pattern, the apparent spaces of which are occupied by the invisible 
film. There are thus two distinct processes, the spreading into the 
very thin film, and the extension of the drop into a layer. The 
latter effect is called secondary spreading, Dx’ops of certain fluids 
of low chemical activity and negligible vapour pressure, such as 
paraffin, can be placed on a clean water surface without the formation 
of the film. 

Hardy placed drops of acetic acid on a glass plate, water vapour 
being rigorously excluded. Although, apparently, all the drop 
remained in position, there had, in fact, spread from it an invisible 
film, and existence of the latter was proved by a measurement of 
the static friction of the glass surface before and after the drop had 
been placed upon it. 

Secondary spreading occurs when a drop of acetic acid contain¬ 
ing water is placed on a glass plate, and if several drops of acetic 
acid are present on the plate, the existence of the invisible film is 

1 Hardy, Proc, Boy, Soc,, A, 88, 816 (1913). 
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manifested in a curious way. Drops which are not more than one 
or two centimetres apart attract one another. They become oval 
in outline, the long axes being directed towards one another^ and 
move slowly across the plate until they meet and coalesce. The 
invisible film is nowhere greater than 1 micron in thickness, and 
yet it is capable of pulling larger drops of fluid along. 

If a layer of sensible thickness of a pure liquid, such as benzene, 
is formed on water and allowed to thin or evaporate, a sudden ruj>- 
ture occurs when a critical layer thickness is reached, and the benzene 
(‘ollects into a number of flat discs, or lenses. If evaporation is 
stoppe^d, these lenses will coalesce into a single large lens surrounded 
by an area of water, covered with a very thin layer of benzene. The 
liquid underneath is saturated witli benzene, so that the vapour 
pressure above the lens must be identical with that above the thin 
layer. The formation of such primary layers on water takes place 
from the drop itself, only when the sum of the tensions of the upper 
and lower surfaces of the lenticular drop is considerably less than 
that of water, or 

S2^Si~\~Si2* 
For example, with oleic acid, 

74>15 I 81. 

When slightly less than iS'g, the drop does not 
flash over the water surface, but remains apparently unaltered. It 
is, however, the vapour phase which condenses to form the primary 
composite surface. Thus, wnth octane, 

74 >20-6 4 53. 

Whether primary, or secondary, spreading does, or does not, 
occur on a fluid face depends mainly upon the relative values of the 
surface tensions, but on a clean solid face it must depend wholly 
upon the vapour tension. If vapour is given off, it will condense 
to form a primary composite surface, and this, being contractile, 
may pull the drop itself into a secondary surface. The fact that 
paraffin and castor oil do not spread at all on clean glass is due to 
their low vapour tensions, and is no evidence as to the tension of 
the glass-oil interface. 

It has been noted previously that, in the case of the spreading of 
insoluble oils on water, the thin layer in equilibrium with a lens of 
an oil, such as oleic acid, is unimolecular in character. Langmuir 
pointed out that, if the molecules in the film are regularly oriented 
on the surface of the water owing to the attraction between the latter 
and the active groups of the organic liquid, such groups as COOH 
and CH^OH are dissolved in the water. Long hydrocarbon chains 
are attached to these groups, and these molecules have no tendency 
to dissolve, but stand vertically in the surface. There is no par¬ 
ticular reason, therefore, for another layer of oil molecules to spread 
out over the first to form a second layer. Langmuir measured the 
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(Toss-scction and length of the molecules in tlie surface layer, and 
showed that in many eases, such as oleic acid, palmitic acid, ctc.^ 
the length is greater than the cross-section, lx. the molecules are 
asymmetric. As the chain length increases, the lateral adhesion 
increases, and the area occupied by two adjacent molecules is reduced. 
This has been jioted experimentally. 

As regards the mecdianism of the spreading of liquids, Langmuir ^ 
suggested that the molecules of water cause an expanding movement 
of the oil drop. The water molecules are in constant motion parallel 
to the surface, diffusing long distances. The oil molecules adhere to 
them and arc carried outwards along the; surface^ by reason of these 
surface-diffusing motions. If the liquid is one which spreads stably, 
then the spread film has a low^er potential energy than the drop, 
so that the molecules which have left the drop to form a film, adhere 
to the surface—the surface-diffusing motions go on continually being 
pushed out farther by the surface pressure of those just leaving the 
drop. If the liquid is a non-spreading one, a few molecules may 
difluse out along the surface a little way, but being less stable on 
the surface than in the drop, they will soon return to the drop, and 
will not adhere to the surface. 

Since the films of fatty acids and other substances a})pcar to be 
only one molecule in thickness, and to have all the molecules arranged 
in similar orientation™ often simply pcr])endicular to the surface— 
measurement of the mechanical projierties of films, consisting of a 
known number of molecules of a pure substance, affords umisually 
direct information concerning the force fields round individual 
molecules. 

It is very useful to look upon the lowering of the surface tension 
of water, produced by the presence of an oil film, as being the result 
of a spreading force F, produced by the action of the adsorbed 
molecules on one another. This force may be defined as 

F—Nq -Sy 

where is the surface tension of pure water, and S is the surface 
tension of the w^ater after the introduction of the film. 

The spreading force Fy which characterises any given adsorbed 
film, is entirely analogous to the pressure p which a gas or liquid 
exerts on the w'alls of a container. The pressure of a gas, or liquid, 
depends upon the concentration and on the temperature, the rela¬ 
tion between these quantities being referred to as an equation of 
state. F may be measured by a surface tension balance. In this 
apparatus the surface of water in a long rectangular tray is divided 
by a floating barrier, which is attached to the pointer of a balance, 
so arranged that a horizontal force exerted on the barrier can be 
measured. When there is pure water on both sides of the barrier 
the balance reads zero. A definite amount of an oil is placed on the 
water on one side of the barrier, and this is confined in area by a 

1 Langmuir, Trans. Faraday Soc.y 17, 673 (1922). 
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second barrier parallel to the first. By moving the second barrier 
the film can be compressed, or extended, so that it exerts a force 
on the balance and at the same time the area, «, covered by the 
film can be measured. By progressively changing the area, by 
moving the second barrier, the force F may be measured in terms 
of a and tfie absolute temperature T, 

A typical surface tension balance—due to Adam ^—^is illustrated 
in Fig. 75. The trough A is completely filled with water and the 
barrier C is a glass strip. The lower torsion wire GG carries a 
mirror F in a light holder which has a lug projecting downwards to 
within about 2 rnra. from the water surface. The float B is of thin 
metal foil having a small upward projecting lug J. The upper 
torsion wire MM has a light rigid framework PRS soldered to its 
mid-point—the lower end, a stirrup JFf, coming to about 2 mrn. from 

Fig. 75. — Surface Tension Trough. 

the surface of the water. This stirrup and the two lugs are joined 
by fine wire so that all three move together when twist is applied 
to the wire—the tension being secured by means of the torsion head 
on the lower wire. The upper wire has a large divided torsion head. 

The instrument is calibrated by suspending weights on the 
hook S which forms the end of the framework PRS, Knowing the 
distance from the end of R to the junction with the wire, and 
the distance from this place to the bottom of the stirrup, the force 
in dynes on the centre of the float is determined for a known weight 
on the hook. From this the force in dynes per cm. on the float 
can be calculated. 

In practice, the surface is first cleared by sweeping the barrier 
across the water surface. The main torsion head is set to zero, and 
the spot of light brought to the zero position on the scale. The 
film-forming substance—preferably dissolved in a solvent immis¬ 
cible with water—is then put on the water surface, and the spot 

. lAdam, Proc, Roy, Soc,, A, 110, 428 (1926). 
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of light brought back to the zero position by turning the torsion 
head. The area of the tilin may be varied by altering the ]:»osition 
of the barrier—the area Ix'ing ])ounded by the latter and the float. 
Forces from 0*01 dyne u}>wards may be measuretl with the a])])aratns. 

Any eejuation wliieh (‘xpresses F as a fimetion of a and T is tims 
an equation of state for tin* two-dimensional adsorbed him. If the 
adsorbed molecules do not exert any force on one another, but exert 
forces only on the barri(Ts which prev(*nt the thermal agitation of 
the molecules from causing indefinite sj)r(‘ading, then they should 
behave as an ideal two-dimensional gas. The equation of state 
should be 

Fa^kl\ 

or, if a is the area ])er molecule, 

F=r,akl\ 

where k is Boltzmann’s constant, and a is the number of molecules 
per unit area in the adsorbed film. Thus these two-dimensional 
gases should be analogous to a typical threi-dimensional one, and 
experiments by Adam have shown that there arc some substances 
which form films on winter that behave in this manner. 

The typical films, produced on water b}^ fatty acids and other 
substances have, however, })roperties which indicate that they are 
two-dimensional liquids, or solids, rather than gases, for they do 
not spread indefinitely, but the value of F becomes zero when the 
surface concentration a falls to a definite value. The mechanical 
properties of these films indicate clearly that they can exist in either 
the liquid or the solid stale. For exam])le, films of fatty aends on 
water which is slightly alkaline are definitely solid, as is seen from 
the fact that without external pressure they can withstand consider¬ 
able shearing stresses. On the other hand, a monomolecular film of 
cetyl alcohol on water behaves like a tw’o-dimensional liquid, for even 
under high surface eoirqiression it can be made to eireiilatc freely by 
gently blowing ujion it. 

When films are below a critical tenijierature, the value of whic h 
depends upon the constitution of the molecules, there* is a rc'gion of 
constant surface pressure, apparently analogous to va[)our pressure. 
In this region of constant pressure, the isothermals indicate that 
there must be two surface phases in ecpiilibrium, liquid and gaseous- 
The liquid film, to which the gas film condenses, may be either what 
is termed a condensed film, or a liquid-expanded film. In the former 
the molecules are closely packed and oriented nearly perjiendieular 
to the surface. The liquid-expanded filuis are more compressible, 
and have a greater area than the condensed films. 

The latter are the most closely packed form of films, but a con¬ 
siderable variety of different packings is possible. When the polar 
group adjacent to the water is small enough, the molecules pack to 
20*4 square Angstrom units per molecule under the forces of cohesion 
alone, without external compression. In the closely-paeked-heads 

G.P.M, P 
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type of film the area generally depends upon the nature of the head, 
and is a measure of the maximum cross-section of the end group, 
as packed in the films. 

Many substances, the amides, acids, bromo-acids and nitriles, 
condense from the gaseous state of the films into tlie liquid-expanded 
film. The area is about 48 square Angstrom units p(T molecule at 
no compression ; the films are compressible to two-thirds, or less, 
of this area by forces of the order of 20 dynes per cm. The area of 
the liquid-expanded film of 48 square Angstrom units does not 
appear to depend, cither upon the length of the cliain, or upon the 
nature of the head ; it must therefore be determined by the chain, 
oriented in such a ^vay that the length does not affect the area. The 
area of the chain, packed as nearly vertical as possible, is 20*4 square 
Angstrom units. 

In conclusion it may be stated that the experimental facts of 
surface tension may be interpreted in a qualitative w^ay, by assuming 
a similar orientation of the surface film of a homogeneous liquid. 
We may say that the surface phase of jnire liquids consists of a 
layer of oriented molecules with the active portions drawai inwards, 
and that the total surface energy is deterjnined by the nature of 
the external groups of the molecules. 

107. Contact Angle and Wetting.—The properties of a solid 
surface may be modified, when it is exposed to the vapour of a 
liquid, on account of the formation upon it of an adsorbed layer 
of the liquid. Moreover, the properties of the adsorbed layer differ 
from those of the liquid in bulk, especially if the liquid is strongly 
polar, so that there is a high degree of orientation of its molecules. 
For example, the contact angle between an organic liquid and a 
hydrophilic solid, i.e, a water-attracting one, such as quartz or Pyrex 
glass, is increased by previous exposure of the solid to water vapour, 
and the higher the vapour pressure, the greater is the contact angle. 
In addition, the contact angle in the organic liquid becomes prac¬ 
tically independent of the nature of the solid, if the latter is covered 
with an adsorbed film formed from saturated water vapour, even 
though, in the absence of the water layer, the angles for the various 
solids may be very different. If organophilic solid surfaces—organic 
vapour—attracting ones—are exposed to organic vapours, and 
measurements made of the contact angle in a water drop on the 
surface, it sometimes happens that when the liquid is being removed 
from the drop, that the contact angle becomes zero. This indicates 
that the advancing water drop has swept the organic film off the 
solid surface. Taking the case of an organic liquid—of surface 
tension Sl—on a surface completely covered with a water film—of 
surface tension S'w—and assuming that interfacial tension Slw 
between the water and the drop is the same as that between the 
two liquids in bulk, we have 

S'w^Siw^Sl cos 6, 



EXAMPLES 211 

where 0 is the static contact angle. Calculations carried out for 
adsorbed organic films indicate that the surface tension of such films 
is greater than the bulk value in the case of polar liquids, but that 
there is little difference with non-polar liquids. 

A thick film of liquid on a solid surface is not stable. Water 
poured on a freshly-formed glass surface breaks up into drops, which 
arc separated by a rnonomolecular layer of water adhering strongly 
to the glass surface. On the other hand, if water is poured on to 
a wax surface, the area not occupied by drops is not covered with 
a rnonomolecular layer, although the drops themselves are held fixed 
to the surface by adhesion. This suggests that good and bad “ wet¬ 
ting ” are characterised, respectively, by the formation, or absence, 
of the rnonomolecular film—conditions which in turn are indicated 
by the time taken for the formation of drops after wetting. Thus 
rapidly formed drofis represent poor “ wetting.” The hydrophobic, 
or hydrophilic nature, of t he surface of a jiartieular substance depends 
very much upon the mode of [ircparation of the surface. Its nature 
is not likely to be uniform over large areas ; in some ))Iaces the 
water-attracting ends of the molecules may be exposed, and in others 
they may be hidden. This explains the adhesion of water drops to 
a window pane—the drops attaching themselves to regions wlicre 
the surface is hydrophilic. Some substances when dissolved in 
water increase its tendency to wet a given solid surface. One such 
agent, aerosol O.T. Dry, will overcome the proverbial non-wetability 
of the duck. 

EXAMPLES 

1. If the surface tension of mercury is 520 dynes per cm., its angle of 
contact with glass 140^^, its density 13*6 gm. per c.c., find the maximum 
length of a mercury thread which can be supported by surface tension 
in a vertical capillary tube of radius 0 010 cm. [1-81 cm.] 

2. If the rate of change of the surface energy of a liquid with 
temperature is proportional to the absolute temperature 7\ show that 
dE/dT + dS/dT is constant, and that the surface tension S is a quadratic 
function of the temperature. 

3. A cylindrical film with closed ends is formed between two wire 
rings of radius 2 cm., and distance apart 5 cm. Find the volume of air 
enclosed by the film. [69-7 c.c.] 

4. A small hollow vessel which has a small hole in it is immersed in 
water to a depth of 40 cm. before any water penetrates into the vessel. 
If the surface tension of water is 78 dynes per cm., find the radius of 
the hole. [0 0037 cm.] 

5. The surface tension of water is calculated by measuring the thick¬ 
ness of the meniscus of a water surface in contact with a vertical plane 
glass surface. The measurement is made with a travelling microscope 
reading to 0 005 mm., and is found to be 3*85 mm. Determine the 
limits within which the surface tension must lie. g=981 ; density of 
water 1 gm. per c.c. [71*8 and 73*7 dynes per cm.] 
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(). A lar^e air bubble is collected between the lower side of a concave 
^lass surface of radius 50 cm. and the upper surface of some etlier. The 
followiiig observations are made ; radius of circle of cont act of air bubble 
and glass plate 5 cm., depth of ether surface below cent re of glass surface 
0 505 ern., height of widest horizontal section of bubble above bottom 
point 0-225 cm. If the density of ether is 0-714 gm. per c.e. and g ^981, 
find the surface tension of an air-ether surface and the angle of contact 
between ether and glass. 117-7 dynes j)er cm. ; lOi^.] 

7. A convex lens of wliich the lower face has a radius of curvature 
of 40 cm. stands on a flat glass plate, and a little water, surface tension 
78 dynes per cm., is run between them. If the angle of contact between 
water and glass is very small and the wetted surface has a radius of 
2 cm., cak'ulate the force due to surface tension with which lens and 
plate are drawn together. |8G-9 gm. wl. ; 8-02x10* dynes.] 

8. Calculate the vertical force necessary to detach a Jiorizontal Oat 
circular plate of radius 4 (an. from the surface of a Ikpiid of surface 
tension 80 dynes per cm., density 1 gm. per c.e., and zero angle of contact. 

117-1 gm. wt,.] 

9. The molecular weight of (dher is 74 and its density at 0^ C. is 
0-787 gm. per c.c. If the surfar*e tension at 0 C. is 19-2 dynes per cm. 
and the Edtvds eotistaut k is —2-10, calculate at)proximately the critical 
temperature of ether. If, also, the coefluacnt of thermal expansion of 
ether at O ' C. is 0-00108, find the rate of ciiange of surface tension with 
temperature. |192''C. ; 0-121 dyne per cm. per deg. C.] 

10. In a drop-weight determination of the surface tension between 
water and chloroform a glass tube of 4 Turn, external diameter was used 
and 50 drops of chloroform, density 100 gm. per c.c., were allowed to 
fall in the water. The weight of these drops was 8-43 gm. Find the 
interfacial surface tension. [29-5 dynes per cn\.] 

11. If the latent heat of water is 000 <*alorics per gm., its density 
1 gm. per e.c., and its surface tension 78 dynes per cm., (calculate the 
minimum radius a drop can have if it is free to evaporate but prevented 
from rec^eiving heat. [0 X 10“® cm.] 

12. At 100^' C. the saturation vapour pressure of water increases by 
27 mm. of mercury per 1"^ C. If water under an external pressure of 
70 cm. of mercury has to be superheated to 100*0° C. before boiling occurs, 
calculate the radius of the largest air bubble available as a vaporisation 
locus. The surface tension of water at 100' C. is 58*4 dynes per cm. 

[8-0 x10-3 cm.] 

18. A narrow-bore tube of internal radius r is in the form of an 
inverted U, and at its top point air can be forced in through a tube 
connected by a T joint. If the vertical limbs stand at depths hi and 
in two liquids of densities dj, dg, and surface tensions *S\, hnd the 
condition that bubbles shall be formed in the liquid of density d^, and 
show that as the depth hi is increased the bubbling will suddenly change 
over to the other liquid. 

14. A capillary tube of internal radius 0-025 cm. stands vertically 
in water of surface tension 73 dynes per cm. It is then slowly depressed 
vertically until a length of only 3 cm. is above the outside level. Des¬ 
cribe what happens. Would any difference occur (a) if the lowering of 
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the lube were rapid and (b) if the tube were iiielined eontimiously side¬ 
ways, instead of beiii^ lowered vertically, until the top is 3 crn. above 
the outside level ? 

[Ant»le of contact (K)'; ((t) small oscillations ; 
(/>) radius of nicnis(‘us .^ill 0 ()40(> (‘m.| 

15. A lar^e drop of aniline^ of radius 3 cm. and sp. ()-97r> is sus¬ 
pended in water at 75" ami floats in c(|uilil)rium. VViien slii^htly 
deformed the drop oscillates about its mean spherical form wiili a 
f)eriodic time of 5-25 sec. Calculate the interfacial surface tension. 

[4*71 dynes per cm. | 

16. A soap bubbl(‘ of surface tension 30 dynes per cm. is slowly en¬ 
larged from a radius of 2 cm. to a radius of 20 cm. ('alculate the amount 
of work necessary for this enlar<j[ement and cx])lain why this is less than 
if the increase were made at a faster rat(‘. [2-99 x 10^ 

17. 4\vo soap bubbles of radii a and b coalesce to form a single bubble 
of radius e. If the external ]>ressure is Vi, show that I he surface tension 
S is given by —b'^)/4^(a^-\ b'^ e^). 

18. A soap him of surface tension S has energy e per unit area, if 
at any subse([iient time the mass per unit area of the him is m, show 
that 

S r-e - 7n,de ^dni, 

19. One gram of mercury is placed between two plane sheets of glass 
which are [)ressed together until the mercury forms a circular disc of 
uniform thickness and 5 cm. radius, (-aleulate the force exerted upon 
the upper plate by the mercury if its surface tension is 440 dynes {)er 
cm,, its angl(‘ of contact 140“, its density 13'6 gm. per c.c. 

[.5 51 xlO^ dynes.] 
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VISCOSITY 

» 108. Introduction.—It is customary to define a fluid as a sub¬ 
stance which is incapable of sustaining shearing stress. In the case 
of actual fluids, however, this property applies only when the fluid 
is at rest. If relative motion occurs, a measurable resistance is ex¬ 
perienced, and the fluid is said to exhibit imcosUy, or internal friction. 
It was assumed by Newton that, for a fluid moving in parallel layers, 
the shearing stress at any point—where the velocity gradient per¬ 

pendicular to the direction of motion is —is directly proportional 
(IZ 

to the value of the gradient, so that the frictional force, /, per unit 
area is given by 

(175) 

where ry a characteristic constant for the fluid, is called the coefficient 
of viscosity. 

This assumption is found, by experiment, to be true when the 
fluid is in stream-line motion, but does not hold for turbuleiu^e, or 
disorderly flow. 

» 109. Critical Velocity.—In practically all experiments designed 
to measure coefficients of viscosity, stream-line flow is assumed to be 
present, and it is of importance to consider the conditions favourable 
to its production. With steady flow the work done by the agent 
causing motion is dissipated, chiefly in overcoming the viscous drag 
exerted between different layers of the liquid, and thus the viscosity 
coefficient will affect the critical velocity which marks the transition 
from stream-line motion into turbulence. The dimensions of the 
channel through which the liquid flows will also have effect, and, in 
general, steady motion will continue at higher velocities for viscous 
than for mobile liquids, and will be aided by restricting the width 
of the channel. On the other hand, when turbulence occurs, the 
energy required to produce the motion is used mainly in causing eddy 
currents, and thus the density of the liquid is involved. Osborne 
Reynolds showed, by experiment, that the critical velocity v is 
related to the density p of the liquid, its viscosity r], and the lateral 
dimension r of the channel by the equation 

and also that, for narrow tubes, k which is called Reynaldos number^ 
214 
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is approximately 1000. This formula may be deduced by the method 
of dimensions as shown in Chapter XV. 

For velocities well below the critical value, the rate of flow is 
independent of the density of the liquid, while for high velocities, 
i,e, under large pressures, the rate of flow depends to a far greater 
extent on the density than on the viscosity. This explains the 
comparatively rapid flow of the very viscous lava during volcanic 
eruptions. 

110. Fugitive Elasticity.—Maxwell ^ regarded viscosity as a 
limiting case of an elastic solid when the material breaks down under 
shear. This conception is a useful one when applied to those sub¬ 
stances, such as pitch and sealing-wax, whose behaviour is some¬ 
times that of a solid, but which have also properties characteristic 
of fluids. In an elastic solid the shearing stress on any plane is 
proportional to the displacement gradient, perpendicular to the 
direction of shear, while tlie viscous drag in a fluid is proportional 
to the velocity gradient, perpendicular to the direction of motion. 
It is thus possible to regard a liquid as capable of exerting and sus¬ 
taining a certain amount of shearing stress for a short time, after 
which it breaks down, and the shear recommences. Suppose the 
rate at which the shear breaks down is proportional to the magni¬ 
tude of the shear 0 and is given by XO. Then, if x is the displace- 

dx 
ment, the shear is given by 9= v*’ ai'd the rate of formation of 

dZ 

shear is 
d (dx\^du 

dt ~~dz\dt j dz 
dt'lJi 

where u is the velocity in the same plane. Thus X0=^“ and, since 

the shearing stress/is given by f=n9, where n is the fugitive rigidity, 
we have 

n du 
dz' 

n 
or 

The quantity ~ is called the time of relaxation, and measures the 
A 

time for the shear to disappear if its formation is discontinued. 

i 111. Flow of a Liquid through a Narrow Tube.—When a 
liquid flows through a narrow tube under a pressure difference P 
between its ends, and in stream-line motion, a relation may be 
established between P, the radius a of the tube, its length Z, the 
viscosity coefficient t], and the volume V of liquid flowing through 
the tube per second. The stream lines will be parallel to the axis 
of the tube, and, from Bernoulli’s theorem,^ since there is no radial 
flow, the pressure will be constant over any given cross-section. It 

^Maxwell, Phil. Trans., 156 (1866); Scientific Papers, 2, 1. 
* See Article 202. 
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was further assumed by Poiseuille,^ who ap[>lied this method to a 
series of aeeurate viscosity determinations, that the liquid in con¬ 
tact with the walls of the tube was at rest. This assumption has 
been proved by experiment to be correct. 

Suppose that, when steady conditions are reached, the velocity 

at a distance r from the axis of the tube is u. Then the velocity 

gradient is -y and the viscous drag per sq. cm. is This acts 

over the surface of tlie inner cylinder of liquid in a direction opposed 
to the pressure gradient. The force, due to the pressure difference, 
tending to aeccierate this liquid cylinder is and, for steady 
conditions, 

Ulr 
or, 

(177) 

At tlie wall of the tube and 11=^ i), so, 
to r--)\ wc have 

integrating from 

or. 

This gives the velocity at any distance from the axis of the tube 
The volume tlF of liquid which flows through the tube per second 

between the radii r and r~\-dr is given by 

Ptx 
dV =^27Trdr,u~- -r-)rdr, 

2r]r ^ 

and the total volume flowing through the tube per second is 

'-ft 
Jo*" 

^Pjt 

•rfi 
,{a^~~r^)rdr- 

Pna^ 
S}]i 

(179) 

♦ 112. Corrections to Poiseuille’s Formula.—Although equa¬ 
tion (179) represents approximately the flow through a long narrow 
tube, under a pressure diflerenee sufficiently small for the liquid to 
drop from the outlet end, in accurate work it is necessary to insert 
corrections for two factors which have been neglected in the treat¬ 
ment above. In the first place, the pressure difrerenceJ^ is utilised 
partly in communicating kinetic energy to tliehquid, anH^ secondly* 
it has been assumed that there are no accelerations along the axis 
of the tube.^ This second condition is not fulfilled near the inlet end 
of the tube, as the accelerations do not decrease to zero value until 

1 Poiseuilltf, Comjftes Itendits, 15, 1167 (1842). 
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an appreciable length of the flow tube has been traversed, after which 
the velocity distribution becomes uniform. To correct for this error, 
the value of I is irutreased by a factor where is a constant 
which may be taken to be 1*64 in all cases. 

To evaluate the other correction factor, suppose that is the 
elTective pressure dilTerence which overcomes viscosity. In one 
second the work done against viscosity is P^V, while the kinetic 
energy given to tlie licpiid is 

I lp.2w'flr.u.iP 
J 0 

j 

/P^y /P^Tia^y p 

8 Srjl J ^ 

efrom (178) 

The total loss of eiiergy is 

p,r 

and thus must c^qual Pr\ Hence 

P,^-P 
F2. 

71% 
P 

2.. 4 

This correction has been investigated experimentally, notably by 
Hagenbach, Couette, and Wilberforce. and has been found to 
render results more consistent and accurate. It is, however, only 
approximately true, and the correction should be 

/>,=--p k^P 

where is a constant whose value depends upon the form of appar¬ 
atus, and, although always nearly unity, its value must, for the most 
accurate work, be obtained by calibration. 

When these two corrections are applied to roiseuille's formula, 
(179), it becomes 

Tz^a^ 
jia^=:=:Srj[l -f kiU J F, 

or, 
Pjrn^ Vpk2 

8 F[ Z + Y- G4rt 1 “ 8.^[ r+ Y 6 tft ] 
(180) 

The eoefiicient rj is sometimes called the dynamic viscosHy and 

its e.G.S. unit is named the poise, but the ratio - is called the 
P 

kinematic viscositu and the name stokes has been suggested for its 
e.G.S. unit. 

113. Measurement of the Viscosity of Water.—The direct 
applicatio?! of this equation to the measurement of the viscosity 
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coefficient for water may be made with fair accuracy by means of 
the apparatus shown in Fig. 76. ^ is a moderately large vessel in 
which water is maintained at a constant level by the inflow and 
outlet tubes B and C, The capillary tube DE, of length I and 
radius is fixed horizontally at a depth h below the free surface 
in A. The volume, F, of water flowing per second is obtained by 
collection, during a measured time, in a weighed vessel. The total 
pressure difference P is given by P=gph, and thus all the quantities 
in equation (180), except rj, are known. 

A modification of the experiment may be used to determine the 
variation of r/ with temperature. In Fig. 77, A is a wide vessel con- 

Fig. 76.—Measuuement of Viscosity Fig. 77.—Viscosity of Liquids 
Coefficients for Liquids. .4nd Temperature. 

taining water, or other liquid, at a measured temperature, while the 
outflow tube BDC has a fairly wide bore from B to i>, and DC is 
the capillary tube. An index point M is fastened to the tube on the 
same level as ZI, and as the level of liquid in A falls slowly, the tube 
BDC is lowered to keep M just touching the surface. The excess 
pressure P is given by P=gph, where h is the vertical distance 
between B and D. 

114. Effect of Temperature on the Viscosity of Liquids.— 
The viscosity of liquids is dependent on temperature to a very marked 

'^extent, but although the relationship has been the subject of many 
investigations, no satisfactory simple formula has been suggested 
to express the connection with any great degree of accuracy. The 
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empirical formula of Slot to, 

— Jjo , 

is not very aceordaiit witli ex[)criment, wliile a modification, 

‘ (1 +BtY 

where A, R, and c are constants, though applicable to pure liquids, 
is inconveniently cumbersome, and does not apply to the important 
practical case of oils, which are mixtures of chemical compouTids not 
easily separable. 

In Andrade’s theory ^ of liquid viscosities it is suggested, on 
certain assumptions of the mechanism of liquid viscosity, that a 

c 

temperature relation of the form r]~Ae^ applies as a first approxi¬ 
mation, A and c being constants. This formula gives very fair 
agreement with experimental results, and satisfies the empirical 
criterion pointed out by Porter ^ that if T and 7\ are two tem¬ 
peratures at which two liquids have the same viscosity, then tlie 

T , 
graph of -^7 against T is a straight line. A more detailed application 

of Andrade’s theory gives the. more complex viscosity-temperature 
relation : — 

c 

riv'-. — AeA\ 

in which v is the specific volume. This formula agrees closely with 
the results for many liquids. 

In Table X the viscosity coefficient for water is given at various 
temperatures. 

Table X.—Variation of the Viscosity of Water with Temperature 

'rem|). ''' C. ' Viscosity, e.G.S. units. 

-i - - ^ 

1 001793 

Temp. ®C. 1 Viscosity, C.G.S. units. 

0 40 i 000657 
5 001522 50 000550 

10 001311 ' 00 1 0*00409 
1,5 0*01142 1 70 0*00400 
20 j 001000 !' 80 1 0*00350 
25 ! 000893 90 1 0*00310 
30 i 000800 ! 100 000284 

• 115. Torque on a Cylinder placed in a Rotating Fluid.— 
If a cylinder is suspended inside a coaxial cylinder, which is made 
to rotate about the, common axis with constant angular velocity, 
and the space between the two cylinders is filled with a viscous 

^ Article 122. 
* Porter, Phil. Mag., 23, 458 (1912). 
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fluid, a iiieasureiiieiit of the viscosity may be obtained from the 
couple which acts on the stationary cylinder. Suppose the inner 
and outer cylinders have radii a and b, res|)ectively, and the fluid 
covers a length I of the inner one. The inmost layer of fluid will 
be at rest, while the outer layer has a speed where coj is the 
angular velocity of the external cylinder. Consicler the forces act¬ 
ing over the side of the fluid cylinder whose radius is r, where r is 
intermediate in value between a and h. The velocity gradient at 
the distance r from the centre will be 

d 

dr 
(ra))—co-\ r 

d(o 

dr' 

but of these terms only the second one is o]>erativc in producing vis¬ 
cosity effects, since tlie velocity gradient (o is necessary to prex^etd 
any relative slipping in a uniformly rotating fluid. 'I'hus the viscous 
tor(]ue Tj, acting over the side of the cylinder of radius /% will be 

Ti-27TrLr.7].r 
dco 

dr 
— 27Trjlr 

dr' 

and, since the fluid between this boundary and the inner cylinder 
is in a ste^ady state, must also be the torqiie on the iiiner cylinder. 
Thus 

and, if this is integrated between the limits 
assuming no slipping. 

I ir 
1 

(I and h. we have, 

(181) 

Tj, however, gives merely the torque over the side of the cylinder. 
There is also a couple Tg, due to viscosity, acting over the bottom 
surface. The magnitude of this will depend on the values of a and 
b and the distance between the bases of the two cylinders. If this 
distance remains fixed while the length of the inner cylinder acted 
upon by the fluid varies, retains the same value and may be 
expressed by b). Thus, for two different lengths of the 
inner cylinder. 

Aairj 
h). 

whence 

This expression, derived from first principles, applies equally to 
liquids and gases, and may be used over a considerable range. In 
the case of liquids, the change from to is made by increasing 
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the liquid used in the first determination, while, for ^ases, two 
cylinders are used of the same cross-section but of different lengths. 
The torques r and t' arc generally measured by the twist i^rodueed 
in a suspension of known tor- -- 
sional rigidity. n 

G. F. C. Searle ^ has described 
a simple viscometer for (fie 
measurement of the viseosify 
co(‘flieicnt for very viscous 
liquids, which is a modification 
of the rotating cylinder nu'thod. 
In Fig. 78 a, solid cylinder i\ 
of radius is fixed to an axle 
AB which is pivoted freely at 
its ends. Attached to the same 
spindle are a disc F and a 
drum K. The former is us(‘d, 
in conjunction with an index G, 
to measure the rotation period 
of G under the combined action 
of the two weights n/g and the 
viscous friction of the liquid L. 
The W{‘ights are support'd by 
llcxible strings which pass over 

Fie.. 78.—Skaiu.k's t^xPEiuMENr jo 
Detkiiminj'. the Viscosity of 
Viscous Liquids. 

ball-bearing pulleys PP. An outer cylinder />, of radius h, contains 
the liquid, and a length I of the cylinder C is acted upon by the 
viscosity drag. In the cx[)(Timent the period of rotation of G is 
measured. 

If the steady angular velocity of G is Oj, then—neglecting the 
end effect—wc have, from equation (181), 

47rr/l 

where r is the cou})lc due to gravity and is the viscosity coenicient 
of the liquid. If d is the diameter of K, since a)if(y—27r. 

rnf^ 

^ S7r:W^ ’ I 
(182) 

Thus, if the end correction is negligibly small, the grajih of 7nfQ and I 
should be a straight line passing through the origin. Actually, this 
curve, which is linear, intersects the I axis on the negative side of 
the origin, showing that the term I should be corrected to {l+k), 
where k is obtained from the curve. Equation (182) then becomes 

' (l+k)' 
and all the quantities, except r], are known. Searle used liquids 

^Searle, Proc, Camb. PhiL Soc.^ 16, 600 (1912). 
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of large viscosity—syrup and treacle—and thus coin})aratively large 
values—about 30 see.—were obtained for Iq when the other con¬ 
stants were a“1*9 cm., h~2-5 cm., m —100 gm., /=6-4 cm., and 
d —1-91 cm. 

In tliis case, as for the flow in a tube, there will be a limiting 
value of coji, for a given apparatus, beyond which the simple law 
breaks down. This occurs when the assumed stream-line motion 
ceases and turbulence begins. 

The conditions which govern the transition point from orderly 
to turbulent motion have been investigated, mathematically, by 
Taylor,^ who showed that, beyond a certain fixed value of the 
velocity, the motion changed into a form containing helical vortices, 
which were located within compartments, in the space between the 
(‘ylinders, produced by consecutive planes j)erpcndicular to the 
common axis, and se])araled by a distance approximately equal to 
the radii difference. This result was confirmed by an experiment 
in which, following the method of Reynolds, the motion was ren¬ 
dered visible by the introduction of a little coloured liquid. The 
onset of turbulence was thus determined. 

An alternative method was described by Andrade and Lewis ^ and 
appears to have many advantages, since it may be applied to other 
eases of liquid flow. Using a coaxial cylinder apparatus, Andrade 
and Lewis introduced suspended colloidal particles into the liquid. 
This enabled them to illuminate any portion, and to study its be¬ 
haviour either visually or photographically. The advantages of this 
method are : (1) the motion may be studied for any length of time, 
since the transitory effect of interdiffusion, which limits the other 
method, is avoided ; and (2) the velocity distribution may be found 
by giving a known exposure, in which case each particle shows a 
distance of travel proportional to its velocity. 

♦ 116. Viscosity of Very Viscous Liquids.—A simple method 
of determining the viscosity of very viscous liquids is one which 
depends on Stokes’ Law.^ According to this law, the resistance P, 
due to viscosity, acting on a small sphere falling through the liquid, 
is given by P—Qnypv, where v is the velocity, rjy the viscosity, and 
r, the radius of the sphere. In such a case of resisted fall, the 
body attains a te^rminal velocity which then remains constant, the 
retarding viscous drag being equal to the gravitational force, i.e. 

67zrjrv=^7tr^g{p~a)y . . . (183) 

where p and a are the densities of the sphere and liquid, respectively. 
Thus, by measuring the terminal velocity v, a value is obtained for 
Stokes’ formula is true only if vr is small compared with and this 
rule affords a test of its application in any special case. The viscous 
drag, Qjtrjrv, is deduced for a sphere falling in an infinite ocean of 

^ Taylor, Phil. Trans.y A, 223, 289 (1923). 
^Andrade and Lewis, Journ. Sci. Inst, 1, 373 (1924). 
* Stokes, Collected Papers, 3, 1. 
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the liquid, and in a practical case there will be two corrective fac¬ 
tors, due to boundary conditions at the walls and bottom of the 
cylinder containing the liquid. If the length of liquid is divided 
into three equal parts, and the centre one of these is used for the 
velocity measurement, tlien, as was shown by Ladeiiburg,^ to correct 
for the wall effect, the tru(‘ velocity is given by 

wliere v is the observed velocity, R is the radius of the vessel, and 
is the velocity in a medium of infinite width. 
To correct for the end eflect. 

OD 

where h is the total height of the liquid. Tims the (‘orreeted formula 

■r(n2.4)(l + 8 3|) 

A more accurate form of the wall correction, due to Faxen, has 
been verified by Bacon ^ in the form :— 

A good method of producing very small spheres is to blow melted 
Wood’s metal through the fine aperture of a glass tube into cold 
water. The radii of these spheres may be measured by means of 
a microscope. 

^ 117. Effect of Pressure on the Viscosity of Liquids.—With 
fairly mobile liquids the effect of pressure on viscosity is small. For 
example, at 20° C. the viscosity of ether is raised by about 60 per cent, 
for an increase of 500 atmospheres, while with water at atmospheric 
temperature, the viscosity decreases for the first few hundred atmo¬ 
spheres. With some liquids, however, the effect is much greater— 
c.g. for liquids of large viscosity, such as mineral oils, the ratio of 
the eoeflicients under 1 and 1,000 atmospheres is of the order 1 to 10, 
and with all liquids, except water, the effect of pressure increases 
at higher pressures. For pressures up to about 2,000 atmospheres, 
Andrade’s theory gives reasonably good agreement with the experi¬ 
mental results obtained by Bridgman,^ the formula connecting ?] 
with pressure being :— 

* Ladenburg, Ann. der Physik., 23, 9, 447 (1907). 
* Bacon, Jour. Franklin. Inst., 221, 251 (1936). 
® Bridgman, Proc. Amer. Acad., 11, 603 (1925). 
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where v is the speeilic volume and K is the adiabatic bulk modulus. 
At high pressures it would be unreasonable to anticipate any good 
agreement since, in these cireurnstances, the molecules undergo 
deformation. 

• 118. Torque on a Disc in the Surface of a Rotating Liquid. 
—A method of measuring viscosity coeiricients, which is very similar 
to that of the rotating cylinder, is based on the cou})lc which acts on 
a suspended disc when it is in contact with a rotating fluid. Two 
discs are mounted coaxially, and the lower one is made to rotate 
with Jingular velocity c>. A layer of fluid bctwetai them wall suHer 
no slipping at cither disc, and thus tlie vertical velocity gradient 

TCO 
at a distance r from tlie common axis will be, on an average, 

where a: is the sef)aration distance between the discs. Thus the 
elementary torque dr, acting on an annulus, radius r and width dr, 
of the upper disc, is 

dr—2jTrdr-^tjr, 
'V • 

and, for the total torque t, 

Jo 
(185) 

wdiere a is the radius of the upper disc. 
This relation is only approximate, because the average velocity 

gradient is not necessarily that at the surface of the disc, and 
cc 

also because, at the edge of the disc, the distribution of stream lines 
is complex. To reduce error arising from this second elTect, it is 
usual to mount a guard ring around the suspended disc, of sullicicnt 
width to reduce the edge effect to a minimum. 

This method, also, is applicable to both liquids and gases, and, 
of course, has similar restrictions on tlie maximum value of to as 
in the case of the rotating cylinder experiment. 

119. Damping due to Viscosity. -If a body is oscillating in 
a viscous Iluid, it^ motion will be damped by the internal friction of 
the medium, and the corresponding logarithmic de(*rement affords 
a measure of the viscosity. The calculation of the elfect is not a 
simple one, and readers may be referred to Maxwell’s treatment of 
the problem.^ The method, which is again applicable to both liquids 
and gases, has been used by Maxwell,^ Coulomb, and Meyer,the 
formula given by the latter for use with liquids being 

16M2 pi-Xp 

1 Maxwell, Collected Papers, 2, 1. 
-Meyer, Pogg. Ann,, 113, 55 (1861). 
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where 
Af=moment of inertia of the suspended system, 

R and 5 == radius and thickness of the disc, 
fp== periodic time in air, 

Xq and Xj—logarithmic decrements in air and in the liquid 
respectively, 

p“density of tlie liquid. 

Meyer’s theoretical deduction of this formula is not above criticism, 
but it may be regarded as an empirical formula wliicli accords well 
with measurements made by other methods. 

Table XI.—Viscosity Coefficients (Liquids) 

I Liquid. 
I 

ViHcoaity. 
C.G.S. 
units. , 

Mercury 

Glycerine 

Olive oil 

Rape oil 

Aniline 

Chloroform . { \ 

l| 
Sulphuric acki | 
(dens. 103) ' 

0 0170 0 
001.57 20 
00122 1(K) 

42-2 3 
8-30 20 
4*94 26*5 
0-989 15 
3-85 10 
1*63 20 
0*96 i 30 
0*0440 ; 20 
0*0319 ! 30 
0 0241 1 40 
000626 10 
0*00504 20 
0*00511 30 
0*00973 1 25 

Liquid. 
Viscosity. 

c.c.s. Temp. 
“C. 1 units. 

[i 0*00759 10 
! Ronzene . ; 0*(X)649 20 

1 t 0*00562 30 
f 0*00258 10 

' Ether . . <: 0*00234 20 
1 [ 0*00212 30 

1 Turpentine J 
(dens. 0*87) | 

f 0*0178 
1 0*0149 

[1 0*0127 

10 
20 
30 

i Carbon di- J 
oxide (liq.) | 

ri 0*00089 
0*00085 

[ 0*00071 

0 
10 
20 

Black treacle . i 400 12 3 
Glacier ice 12X1013 ! — 

:: Pitch . 1*3X1010 1 15 

Soaa glass • {l i 

Other applications of the damping, produced by viscosity as a 
means for measuring ?], are Stokes’ ^ decrement measurements for 
a pendulum vibrating in a fluid, and Helmholtz’s and Piotrowski’s 
determinations of the damped vibrations of a hollow sphere filled 
wnth the liquid and oscillating about a diameter. This last method 
has been examined anew by Andrade and Chiong ^ and a more 
satisfactory formula obtained for the torque on a revolving sphere, 
due to the viscosity of an internal liquid. This was utilised as a 
means of measuring the viscosity by observing, either the resultant 
logarithmic decrement, or the necessary electrical energy which will 
maintain the torsional oscillations at constant angular amplitude. 

• 120. Commercial Viscometers.—The absolute determination 
of viscosity, necessitating an exact measurement of the dimensions 

^ Stokes, Trans. Catnb. Phil. Soc., 9, 8 (1850). 
* Andrade and Chiong, Proc. Phys. Soc., 48, 247, 261 (1936). 

Q.P.M. Q 
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of the viscometer, is laborious, and in industrial practice some 
simpler instrument is used and calibrated by means of liquids of 
known viscosity. Such instruments, known as commercial vis¬ 
cometers, make use of either the capillary flow or rotational torque 
principle. Of the former the best known, and most widely used, 
is that due to Ostwald. It comprises a U-tube, of which one side 
is occupied by the capillary tube, and its use involves the time of 
fall of the meniscus from one fixed mark to another, the instrument 
containing a standard volume of the liquid. In these circumstances 
the operative formula is 

k being the kinematic viscosity, t the time of flow. A, B instrumental 
constants. For liquids of high viscosity the second term, which is 
the kinetic energy correction, is very small and, if it is neglected, 

the ratio of kinematic viscosities is simply which was the 
•^2 ‘2 

formula used by Ostwald. It is, however, much more satisfactory 
to calibrate with more than one liejuid and to obtain the graph of 
k against i. 

In England the Redwood ^ viscometer is widely used. It com¬ 
prises a cylindrical vessel in the bottom of which is a small ca})illary 
outlet, drilled through an agate plug, 1 cm. long and 1*5 mm. 
diameter. All the dimensions are standardised, and the time is 
taken for the level of liquid to fall between two fixed marks. In 
testing the instrument at the National Physical Laboratory it was 

found that, as suggested by theory, a graph of -- against was 

a straight line, the intercept giving A and the slope B, The values 
obtained were A==^0<)0260 and R=l-715 in C.G.S. units. During 
the test the apparatus is surrounded by a constant-temperature 
bath. The Engler ^ viscometer, widely used on the Continent, 
operates in a similar manner, as also does the Saybolt instrument 
designed by the Standard Oil Company and used in the United 
States.^ If only a small quantity of the liquid is available, the 
Michell, cup and ball, instrument is available. A few drops of 
liquid are placed in a hemispherical cup, which is then inverted 
over a steel ball, internal contact being prevented by three small 
projections. The whole is then lifted, and the time is measured 
for which the sphere is held in position. A graph connects the 
viscosity with this time. 

121. Viscosity of Colloidal Solutions.—The theoretical treat¬ 
ment of the viscosity of colloidal solutions is one of considerable 
difficulty. If the usual definition of rj, equation (175), is employed, 

1 Redwood, Chem. Ind. Soc. J., 5, 121 (1886). 
* Engler, Zeits, Chem,, 9, 189 (1885). 
3 Bureau of Standards, Tech. Paper No. 100 (1917), No, 112 (1918). 
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i.e» if it is assumed that the frictional force between contiguous 
layers is proportional to the velocity gradient, then the experiments 
show that 7] is not a constant independent, for example, of the 
pressure difference between the ends of a flow tube. This may be 
expressed by saying that the apparent viscosity decreases with in¬ 
creasing pressure in the capillary tube experiment, or increasing 
angular velocity in the concentric cylinder experiment. In other 
words the viscosity coefficient must be assumed to vary according 
to some function of the velocity gradient. Many attempts have 
been made to formulate such a relationship,^ but it is likely that 
little progress will be made until some method, analogous to that 
of Andrade and Lewis, is available for a point to point study of the 
moving liquid. 

In this connection it is relevant to mention the study of thixo¬ 
tropy, or the property possessed by gels of changing from a jelly or 
semi-solid state into the fluid form as a result of agitation, by means 
of viscometers.2 The quantity generally measured in such experi¬ 
ments is the apparent viscosity, but it is not easy to assess the 
significance of a quantity, defined on the assumption of equation 
(175) when, in all probability, that assumption does not apply, 

t 122. Andrade’s Theory of Liquid Viscosity.—It was sug¬ 
gested by Andrade ^ that, since the viscosity of liquids decreases 
with rising temperature, the mechanism of its occurrence must differ 
from that in gases, and a simple momentum interchange process 
is inadequate. The molecular spacing, and therefore the density 
and molecular force intensity, cannot be greatly different in liquids 
and solids, particularly at low temperatures, and thus many of 
the characteristics of solid molecular qualities must survive in the 
liquid. Among these Andrade assumes to be the normal frequency of 
vibration about the equilibrium position which how^ever is liable, as 
a result of fluidity, to movement. There is, in no real sense, a liquid 
mean free path, but the amplitude of vibrational movement is taken 
to be larger than in the solid, and sufficient for molecules in adjacent 
laminae with relative velocity to come into contact and by this 
method of interaction to share momenta. Thus the manner by 
which interlayer force is produced has similarities with the kinetic 
theory explanation of gaseous viscosity, but the frequency of such 
interchange, and the factors determining its efficiency, are derived 
from the theory of solids. When the temperature changes it will 
affect several of the relevant factors, but chiefly the probability that 
the contacts of adjacent molecules will be effective in the momentum 
sharing. The time of mutual association will depend on mutual 
molecular orientation on encounter, and this will be less regular at 
higher temperatures. If this is alone considered as the temperature 
effect on viscosity, the simpler exponential expression of Article 114 

^ See Hatschek, The Viscosity of Liquids^ p. 211 (1928). 
* Pryce Jones, Journ* Oil and Colour Chem, Assocn., 17, 305 (1984). 
«Andrade, Phil, Mag., 17, 497, 698 (1934). 
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results. In addition, however, two smaller effects are taken into 
account; the change in molecular spacing which affects the specific 
volume and the change in vibrational frequency. The first is allowed 
for in the second formula of the same article, but an incorporation 
of a frequency change produces results less in accord with experi¬ 
mental data. It is interesting that this is the case also for solids. 

To account for the effect of pressure, Andrade uses the previously 
obtained relationship of the viscosity with vibrational frequency 
which, in the theory of solids, is connected with the adiabatic bulk 
modulus. The constant A of the previous formulte includes the 
vibrational frequency, and taking account of its variation with 
density, Andrade defines another constant A' by 

av~=aVk, 

K being the adiabatic bulk modulus. The substitution of this 
modification into the previous formula gives the final expression 
slated in Article 117. 

123. Flow of a Compressible Fluid through a Narrow 
Tube.^—^In deducing Poiseuille’s formula it was assumed that the 
volume crossing any section of the tube was constant. This is the 
same as supposing that the density is independent of the pressure, 
and although true for liquids, it is not the case for compressible 
fluids, ix, gases. For these, it is the mass which crosses any section 
in a given time which is constant, ix. 

poiv ^constant, 

where p is the density at a point in the section, area a, of a tube of 
flow and v is the velocity. The product an is the volume flowing 
through the area per second. Considering an element of the tube 
of length dx, if the difference in pressure between its ends is dP, 
then from (179) the volume V leaving the element per second is 
given by 

.... (186) 
8// dLr 

the negative sign being used, since P decreases as x increases. If 
Pi is the pressure at the inlet end, and is the volume entering 
the tube per second, then, since the cross-sectional area is constant, 

and 
Tra^ ^dP 

so that 
Srj dx 

Wj 
PdP, 

where Pg is the pressure at the outlet end of the tube. 

(Pl2-.p,2)^^4 
Hence 

I6r]l 
(187) 



VISCOSITY OF GASES 229 

124. Viscosity of Gases.—Grindley and Gibson ^ dctcnuincd 
the viscosity of a gas by noting the pressure difference between the 
ends of a flow tube, through which the gas streamed from one con¬ 
tainer to another. The flow was produced by forcing water into 
one container, and thus the volume passing through per second was 
known. The coefficient of viscosity was then calculated from (187). 
The flow tube and containers could be raised to any desired tem¬ 
perature between 0° C. and C., and it was found that the 
variation in rj agreed closely with Sutherland’s theoretical formula,'** 

kVr 
»?=%-TV’ 

and was independent of the pressure. Both of these results are in 
accordance with the predictions of the kinetic theory of gases. 

The value of rj for air may be determined by means of the follow¬ 
ing simple experiment. One side of a U-tube consists of tubing— 
radius about 15 mm.—while the other side is a capillary tube of 
length I and radius a. The excess pressure at the lower end of the 
latter is produced by means of a pellet of mercury, weight mg. The 
time /, taken by the pellet to fall between two marks on the wider 
tube, is noted. If Q is the volume between these marks, then the 
volume of air, passing through the capillary tube per second is 
Q 

The pressure at the entrance end is where B 

is the atmospheric pressure, h the pressure due to the pellet, i.e. 

and d the sticking coefficient, or virtual reduction of the excess pres¬ 
sure due to friction between the pellet and the walls of the fall tube. 
If these values of Pj and Fj are inserted in (187), we have 

{B+h- 
(B+b-d)^-B^ 

ignoring terms in 

■ Srjll 

-d theorist^ 

^ Grindley and Gibson, Proc. Roy. Soc.^ A, 80, 114 (1908). 
* See Articles 120, 188. 
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If experiments are carried out with two pellets of dilTercnt sizes and 
the times of fall are t and we have 

and thus d is determined and may be inserted in (188) to give 
Another method, suggested 

by Searle/ may be carried out 
with the apparatus shown in 
Fig» 79. A large vessel M, of 
volume V, is filled with air 

5 through a cycle valve E, until 
the initial difference in level, //j, 
between A and 2? of the mercury 
manometer, is somewhat less 
than that for which turbulent 
flow occurs. When the gauge 
readings have become steady the 
tap is opened, for a measured 
time, and is then closed. The 
new difference in level, //g, is 
then recorded. Suppose Pj and 
Pg are the pressures in M at the 
beginning and end of the ex¬ 
periment, and let P be the 

Fig. 79.-Seaklk’.s Method or Pressure at an interval t after 
Determining the Viscosity commenced to flow. 
OF Air. Then 

P2 = (// + //2)dg, 
P=={H~\-h)dg, 

11 being the height of the barometer, and h the difference in the 
mercury levels after a time t sec. Let be the volume of air enter¬ 
ing the capillary tube CD per second at time i. In the interval dt 

the pressure changes to P+dP, and for a slow rate of flow 

{P+dP)(V+V,dt)^PV, 
or, 

dP 

dt 
= -PF,. 

But, from (187), 

PT\^ -=— 
16»j/ 

where B=Hdg. Hence 
dP 

dl=Adt, 
imr 

^ G. F. C. Searle, Camh. Phil. Soc. Proc., 17, 183 (1912). 
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A being written for the constant 
Tia'^ 

Thus 

or, 

16r]lV' 

],P~li ],P+B 

(P,~B)(P^+U) 
(P,-B){P^+B)’ 

///i 2H M 

-log 

Hdiina^i 
---log 

<M 

SrjlV " ^ \h^ 2JI-\-h^ 

Finally, we may notice an experiment due to Hankine ^ which is 
a[)plicable to various gases and enables the 
effect of pressure to be studied. In this ex¬ 
periment a closed-tube system (Fig. 80) is 
used. The tube ABCDEF, of a})out 3 mm. 
diameter, is joined to FA the capillary tube. 
Two fixed marks M and N are made, such 
that the volume F4 of ABM equals that of 
FFN. A mercury pellet P again produces 
the excess pressure, and in this ease the 
time i is the interval between' the top sur¬ 
face of the pellet passing M and the bottom 
surface reaching N. Let F3 be the total 
volume ABMNFF. If the apparatus be 
placed horizontally, the pressure throughout 
has a uniform value, p say, and let the 
density of the gas at this pressure be pp, 
where p is the density at unit pressure. 
The mass of gas enclosed is ppV^ and re¬ 
mains constant. At the beginning of the 
interval t, the pressure in ABM is while 

tliat in MDF is given by 
a 

where w is the weight of the pellet and a is 
the cross-sectional area of the fall-tube. 
Then, as the mass of gas is constant, 

<N 

Fie. 80. - H A N K I N e’s 

Apparatus for the 

Measurement o v 

Viscosity Coeffi¬ 

cients FOR Gases. 

or, 

and 

TV W F4 - I - - 
3 '’•■‘f’-i+iv 

P,-P+~/y‘ ■ ■ ■ a f 3 

' Rankine, Proc. Roy. Soc., A, 83, 265 (1910). 

. (189) 

. (190) 
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At the end of the time t these become 

w w Fa—J't 
P2=P--“V a a Fg 

w V, 

and 

--P+».?V=£4 
’‘“P+a F, 

(191) 

(192) 

Hence the mass of gas which has passed through the capillary is 

PlP{Vz-y2)-P2pVA 
w Fg-F,, 

F 

Thus the average rate of flow in grams per second is 

^{-(V,-2V,) .... (193) 

But, from (187), 

p V _iPi^-Pi^)^»* 
^ 16t^l 

where is the initial volume per second entering the capillary 
tube. Thus the initial mass per second entering is 

pj'ip 16r]l 

'wi) equations. (190) and (189), 

and the average rate of flow in grams per second is 

Tta^p w 

I6rjl a 
.2p. 

Equating this value to that obtained in expression (198), we have 

F3 —2F4 w Tia^ 

t OL Sr]l' 
(194) 

where (F3—2F4) is the volume between the two marks M and iV, 
less the volume of the pellet. 

In this experiment correction must be made for the sticking of 
the pellet in the fall tube in the manner already described. 

Rankine, by means of this apparatus, measured the viscosities 
of many gases and showed that they were, as predicted by the 
kinetic theory, independent of the pressure. 

If it is required to measure a gas viscosity with the highest 
degree of accmacy as, for example, in the determination of the 
electronic charge by Millikan’s oil-drop method, the uncertainties 
of the capillary tube experiment render it unsuitable, and a rotat- 
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iiig cylinder apparatus is employed. In Bearden’s form ^ the inner 
cylinder, which was hollow, closed at both ends and revolved be¬ 
tween accurately machined centres, was magnetically driven. The 
outer cylinder was much shorter and end effects were rendered 
negligible by the provision of coaxial guard cylinders, the effective 
length of the driven cylinder being its actual length plus half the 
sum of the small clearance distances. The space between the 
cylinders could be evacuated and subsequently filled with any gas 
at controllable pressure. The formula, of course, is exactly the 
same as that applicable to liquids. Bearden’s value for air at 
23° C. was 

(l-82462±(> 000()6) X lO”-^ poises. 

In Table XII arc given the values of // for a number of the 
more important gases. 

Table XII.—Viscosity (Coefficients ((Iasks) 

(lUS. 

Air . 

Hydrogen 

Oxygen . 

Nitrogen . 

Helium 

Argon 

Chlorine . 

Carbon dioxide 

Water (vapour) 

Nitrous oxide . 

Carbon monoxide 

125. Effect of Pressure on the Viscosity of Gases.—Maxwell 
showed from the kinetic theory of gases that viscosity is independent 
of pressure, and this result has been found to be true over a wide 
range of pressures. At low pressures—such that the mean free 

1 Bearden, Phys, Rev., 56, 1082 (1989). 

Penip. ®C. 
Viscosity j 

X 10* 
e.G.S. units, j 

—21-4 
1 

1-64 j 
0 1-71 

15 1*81 
99-6 2-21 
0 0-86 

99 106 
0 1-87 

54 216 
0 1-66 

54 1-90 

i 1-89 
67 1 2-35 
0 j 210 

100 i 2-74 

^ i 1*29 
20 1-47 
0 ! 1-39 

99 1-86 
0 0'90 

100 1*32 
0 ! 1-35 

100 1 *83 
0 1-63 1 

20 1*84 1 

1 Sutherland’s 
Const. C. 

120 

72 

127 

110 

80 

170 

240 

72 

813 

102 
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path of the molecules becomes of the same order of magnitude as 
the dimensions of the containing vessel—the viscosity continually 
decreases as the pressure falls ; the value of the pressure, at which 
this effect begins, dc})ends uj)on the size of the containing vessel and 
upon the nature of the gas. The diminution in gas friction at low 
pressures is shown by the long-continued vibrations of a broken 
lilament in a vacuum tube, and this effect is utilised in a number 
of decrement type pressure gauges. 

When the pressure is low, there is relative motion between the 
wall of the vessel and an adjacent layer of gas. In fact, appreciable 
“ slipping ” occurs, and this fact reduces the value of the coefficient 
of viscosity. For liquids no such effect has been detected, but 
with gases it has been observed - -notably in the experiments of 
Kundt and Warburg ^ —-for pressures up to several millimetres of 
mercury. Maxwell suggested that this slipping effect could be 
corrected for, by assuming an imaginary displacement of the walls 
away from one another by an amount which depends on the mean 
free path, and which, from the experiments of Kundt and Warburg, 
would amount to four times the mean free path. If tliis were done, 
the gas may be taken as at rest on the new boundaries. Thus, 
when the dimensions of the vessel approach in magnitude the mean 
free path, this slipping effect becomes very noticeable. 

* 126. Effect of Temperature on the Viscosity of Gases.- The 
viscosity of a gas increases with temperature, and Sutherland ^ 
deduced the relation 

rj, T + C \27S) ’ 

where r]t and are the viscosities at 7'® absolute and 0"^ C., respec¬ 
tively, and C is usually termed Sutherland’s constant. The value 
of C for various gases is given in Table XII. 

Sutherland’s formula agrees well with experimental data. 

% 127. Solid Friction and Lubrication.—When one solid surface 
slides over another, the force necessary to maintain motion measures 
the amount of kinetic friction between the surfaces. The ratio of 
this force to the normal reaction between the surfaces is nearly con¬ 
stant, and is called the coefficient of kinetic friction. It is indepen¬ 
dent of the velocity and of the apparent area of contact,® but the 
work of Bow^den and Tabor ^ shows that the latter is not a useful 
measurement, since actual contact occurs over a limited area, and 
this is a self-adjusting quantity in that greater mutual force between 
two surfaces produces a plastic deformation at the small areas of 
contact, thus increasing the area. This increase adjusts the area 
of contact so as to reduce the pressure to that at which the solid 

Kundt and Warburg, Pogg. Ann.y 155, 857 (1875). 
2 See Article 133. 
*Beare and Bowden, PhiL Trans.^ A, 234, 329 (1935). 
♦Bowden and Tabor, Proc. Roy. Soc.^ A, 169, 391 (1939). 
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material no longer flows plastically. The real area of contact is 
thus necessarily proportional to the load. Therefore the area of 
contact of a body with a supporting surface is independent of the 
way it is oriented. The friction which is normally measured is that 
between surfaces covered with adsorbed gases, or even thin films of 
oxide, and the eoelfieient for these is usually less than unity ; if 
two metal surfaces are thoroughly degassed by heating in a vacuum, 
the coeflicient rises very considerably, e.g, to values of 10 or more.^ 
Although it is usually stated that kinetic friction is less than static 
friction, the difference at low speeds is very small, and in all cases 
is probably due more to the effect of heating than to any difference 
in mechanism. Wlien sliding is occurring, however, oscillographic 
study shows that the relative motion is very complex and includes 
momentary pauses between positions of rapid slip ; this discon¬ 
tinuous motion is accompanied by equivalent temperature changes. 
Since the electrical conductance across the contact falls momen¬ 
tarily at the slip times, this is evidence of temporary welding over 
the real contact area, the frictional force being that necessary to 
break these bonds. It is not yet certain that this theory of sheared 
welds is, by itself, adequate to explain all the effects of friction. In 
particular it makes no allow^ance for the rougliness of the surface 
by reason of which there is some degree of mutual fitting together 
between the surfaces, so that in their relative movement, surface 
irregularities must be surmounted or shorn off. It was to this 
expenditure of energy that Coulomb attributed the whole of the 
frictional resistance and, according to his theory, there would be 
no friction between mathematically smooth surfaces whereas, as 
we have seen, degassed smooth metal surfaces exhibit large forces 
of friction. 

Lubricants separate the solid surfiices, either so completely that 
projections do not touch, or sufficiently to reduce greatly the con¬ 
sequent degree of seizure. From this point of view, therefore, the 
normal adsorbed films on the surfaces may be regarded as lubricants, 
but the name is more usually applied to substances added to the 
surfaces, in order to reduce the residual friction between the nor¬ 
mally adulterated solids. When the amount of lubricant present is 
sufficient to form a film at least several molecules thick, then the 
ultimate force to be overcome is due to the viscosity of the lubri¬ 
cant. The theory of this film lubrication was first given by Osborne 
Reynolds.2 In all the cases to w^hich it applies, the common feature 
is that the surfaces in relative motion are slightly inclined to one 
another, and into the wedge-shaped clearance between them the 
lubricant is forced, until the pressure so developed equals the pres¬ 
sure between the moving surfaces, which are thus maintained a 
sufficient distance apart for the liquid between to have the normal 
bulk properties, and thus to resist shear merely by its viscosity. 

1 Bowden and Hughes, Proc. Roy. Soc., A, 172, 268 (1939). 
2 Reynolds, Phil. Trans., A, 177, 157 (1886). 
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Hence this type of lubrication substitutes inter-liquid shear for the 
shearing of bridging welds. In order that the wedging action shall 
be effective, two conditions are necessary ; the liquid must have 
enough viscosity for one layer to drag another with it, and it must 
adhere adequately to the solid surface. From the first condition 
it is seen that there will be, in any given circumstances, a minimum 
viscosity which will enable the film to be maintained. When allow¬ 
ance has been made for the normal rise of working temperature and 
the adulteration, which is progressive with use, it is economic to use 
the minimum viscosity, but even more important as a practical 
consideration is the chemical stability of the lubricant. In this 
matter the mineral oils have a superiority over the vegetable oils, 
which tend more easily to oxidation and a consequent formation of 
tarry residues. The second condition was formerly disguised by 
the term oiliness, but is now recognised as the power of forming 
strongly adherent coatings on the solid surface. That this is of 
importance is shown by the fact that the most efficient lubricants 
have a high heat of wetting with metals, but this may not be the 
only essential property as there is evidence that, to produce good 
lubrication by such an adsorbed layer, some other property—possibly 
flexibility in the molecules—is needed. 

Such an adsorbed layer, even if only monornolecular on each 
surface, diminishes the friction very greatly and this form of lubri¬ 
cation, called boundary lubrication, has been very fully studied by 
Hardy ^ and his colleagues who measured the tangential force neces¬ 
sary to move a spherical slider which stands in a pool of the lubri¬ 
cant. In a short time the sphere penetrates the lubricant until 
only a boundary layer remains. It is not quite certain, though 
probable, that this layer is one molecule thick on each surface. 
According to Hardy’s results, ring compounds are less effective than 
long chain compounds, and in a homologous series it was possible 
to evaluate the contribution of each portion of the molecular chain 
to the resultant frictional reduction. For example, in the compound 
CH3(CH2)nX the coefficient of friction ^ is given by 

in which is the clean surface coefficient, d the effect due to the 
end groups CH3 and X, and c is that caused by each CHg group. 
The quantity d is very nearly independent of the kind of solid sur¬ 
face, and c also is independent of the solid, but varies with the 
series. The coefficient for two different solids A and B was the 
mean of those for A with A and B with B, Thus each solid, plus 
its adherent film, makes an individual contribution to the residual 
friction. The ability of substances to form these monornolecular 
films is governed by the same considerations as those which cause 
oriented unimolecular surface layers on liquids, and the better 
boundary lubrication of long chain molecules may be due to the 

^ Hardy, Collected Papers, Cambridge, (1990). 
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consequent reduction in attractive force to that of the weak methyl 
groups at the outer ends of the hydrocarbon chains. This is sup¬ 
ported by the fact that vegetable oils, which contain free fatty acids, 
are able to produce more strongly adherent boundary films than 
mineral oils. In order to obtain the value of both methods of 
lubrication, engineers now frequently use mineral oils with an 
admixture of vegetable oil, such as castor oil. The latter produces 
and maintains the boundary layer, while tlie former fulfils the role 
of film lubricant. As an additional precaution colloidal graphite 
also is sometimes added, with the resultant deposition of a thin 
film of graphite to the metal surfaces, so that even if solid contact 
should occur, the seizure would be between graphite layers in which 
the resistance to tangential slip is small. 

EXAMPLES 

1. A soaj) bubble of radius 4 cm. and surface lension 30 dynes per 
cm. is blown at the end of a tube of length 10 cm. and internal diameter 
0-200 cm. If the viscosity of air is 1-85x10 ^ L.Ci.S. units, find the 
time taken by the bubble to be reduced to a radius of 2 cm. 

[4 min. 50 sec.) 

2. Water flows through a horizontal tube of length 20 (*m. and 
internal radius 0 081 cm. under a constant liead of the liquid 20 cm. 
high. In 12 minutes 864 c.c. of liquid issues from the tube. Calculate 
the viscosity coefficient for water and verify that the conditions for 
stream-line flow exist. The density of water is 1 gm. per c.c. and g ^ 981. 

[00114 e.G.S. units; crit. vel. 140 cm. per sec.; 
max. vel. 116 cm. per sec.] 

3. Two vessels of equal cross-seTition, a, are joined near their bases 
by a horizontal narrow tube of length / and internal radius r. Initially 
the liquid surfaces are at heights 3/i and h, respectively, above the 
capillary tube. Calculate the time taken for the difference in level to 
become h if the coefficient of viscosity is // and the density d. The 
flow is assumed to be slow. [4?;/a log 2/7ir^dg,^ 

4. If the vessel with the lower level of liquid in the previous question 
is removed, find the new time for the liquid in the first vessel to fall 
in level from to 2-5/i. [8?/Ia log \-2/7ir^dg,^ 

5. A cylinder of radius 5 cm. and mass 1 kg. is suspended with axis 
vertical by a long fine thread of torsional rigidity t and is immersed to 
a depth of 10 cm. in a liquid of viscosity 1 -50 C.G.S. units contained in 
a coaxial cylinder, of radius 5-10 cm. Neglecting forces on the base of 
the suspended cylinder, find the condition that, on being twisted through 
a small angle, the cylinder returns to its equilibrium position without 
oscillation. [r <2-95 x 10® C.G.S. units.] 

6. If the viscosity of water at 0° C,, 20° C., 40° C., 60° C., and 80° C. 
is 0-01795, 0 01000, 0-00650, 0-00462, and 0 00339 C.G.S., find the rate 
of variation of viscosity with temperature t at these temperatures if 

; A and k being constants. 
[0 000242 ; 0 000120 ; 0-000069 and 0-000043.] 
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7. An air bubble, radius 1 cm., is allowed to rise through a long 
cylindrical column of syrup of radius 5 cm., and travels at a steady rate 
of 0-21 cm. per sec. If the density of the syrup is 1*47 gm. per c.c. find 
its viscosity at the temperature of the experiment. 

[103x10^ C.G.S. units.] 
8. A U-tube consists of a length of 40 cm., of capillary radius 

0 0135 cm., and 80 cm. of wider tubing, radius 0150 cm., and is placed 
vertically. Two marks are made on the wider tube 30 cm. apart, and 
a mercury pellet of weight 1*890 gm. is found to take 53*2 sec. to fall 
from one mark to the other. A second pellet of mass 1*360 gm. takes 
78*6 sec. If the atmospheric pressure is 1*00x10® dynes per sq. cm. 
calculate the viscosity of air at the temperature of the experiment. 

[1*82x10-'^ C.G.S. units.] 
9. A glass bulb of volume 500 c.c. has a capillary tube of length 

40 cm. and radius 0*020 cm. leading from it. The bulb is filled with 
hydrogen at an initial pressure of 86 cm. of mercury, density 13*6 gm. 
per C.C., and it is found that if the volume of the gas remaining in the 
vessel is kept constant the pressure falls to 80 cm. of mercury in 25*4 sec. 
If the height of the barometer is 76 cm. and 981, find the viscosity 
of hydrogen. [9*21x10-® C.G.S. units.] 

10. Two bulbs, each of 500 c.c. internal volume, are connected by a 
tube of length 20 cm. and internal radius 0 0150 cm. The whole system 
is filled with oxygen, the initial pressures being 10 and 15 cm. of mercury 
respectively. Calculate the time taken for the pressures to become 12 
and 13 cm. of mercury respectively. The viscosity of oxygen may be 
taken as 0*000199 C.G.S. [483 sec.] 

11. A cylindrical vessel is maintained full of a liquid to a depth of 
20 cm., and has protruding from it three similar horizontal capillary 
tubes, each 45 cm. long, fixed at heights 0, 5, and 10 cm., respectively, 
from the base. Show that the rate of supply to the cylinder is the same 
as would be necessary for a single‘outflow tube of length 20 cm. and 
similar radius protruding horizontally at the bottom of the cylinder. 

12. Two circular horizontal discs of radius 5 cm. and distance apart 
1 mm. are separated by a layer of oil of viscosity 1*01 C.G.S. The upper 
disc is fixed while the lower one is revolved in vertical frictionless bear¬ 
ings by the tangential pull of a flexible string, the tension in which is 
6000 dynes, which unwraps from a cylinder, radius 2 cm., coaxial with 
the disc and fastened rigidly to it. Find approximately the time taken 
by the rotating system to make one complete revolution. [5*2 sec.] 

13. A thin wire of radius h is placed coaxially in a narrow tube of 
length I and radius a. Find the volume of liquid which flows per second 
through the annular space between the wire and tube when a pressure 
difference P is maintained between the ends of the tube if ri is the 
viscosity of the liquid and steady-flow conditions exist. 

[F- {P7r/8^/}{a«-5^-(a2.-fc2)2/(log a-log 5)}.] 
14. Emery powder particles are stirred up in a beaker of water 

10 cm. deep. Assuming the particles to be spherical find the radius 
of the largest particle remaining in suspension after 24 hours. Take 
the density of emery as 4 gm. per c.c. and the viscosity of water as 
0*010 poise. [3*8x10-® cm.] 



CHAPTER Vlir 

THE KINETIC THEORY OF MATTER 

128. The Kinetic Theory of Matter.—The kinetic theory of 
matter, and more especially that of gases, rests essentially upon two 
fundamental assumptions. The first of these postulates is that 
matter is composed of extremely small particles, atoms, and mole¬ 
cules, and that the molecules of the same chemical substance are 
exactly alike as regards size, shape, mass, etc. The second postulate 
is that the molecules of a gas are in constant motion, and this motion 
is intimately related to the temperature. In fact, the temperature 
of a gas is a manifestation of the amount of molecular motion. The 
energy associated with atoms may exist as rotational and transla¬ 
tional kinetic energy together with potential energy, bdt polyatomic 
molecules possess, in addition to these forms, intramolecular energy, 
the constituent atoms of a molecule being in relative motion and 
contributing energy according to these motions. 

Solids, which are not subjected to external forces, maintain their 
shape indefinitely, and I'rom this fact it is assumed that, on the whole, 

'‘their constituent molecules and atoms move about some mean posi¬ 
tion. Their movements are, to a large extent, limited. Bragg has 
shown that the atoms, which constitute the molecules, are arranged 
in definite space lattices, and in this case the effect of temperature 
increase consists in augmenting the kinetic energy of vibration of 
the atoms about their mean equilibrium positions. 

The molecules of liquids not only move about mean positions but, 
by means of diffusion, they are slowly translated. The molecules 
and atoms in solids and liquids are sufficiently close together to react 
considerably on one another, and there is, accordingly, an internal 
or intrinsic pressure. This fact is confirmed by the great cohesion 
and resistance to compression wdiich they exhibit. In gases the 
average distance between molecules, although it varies with tem¬ 
perature, is many times greater than that existing in solids and 
liquids ; and the rapidity witli which gas molecules diffuse indi¬ 
cates that they are in a state of rapid motion. A relatively simple 
calculation, based on these assumptions, enables us to calculate the 
velocities of the molecules at any temperature. Their movements 
are assumed to be rectilinear and, on an average, uniform, provided 
that they do not approach too closely to other molecules. They 
continually collide with one another, and as there are many mole¬ 
cules present, even in the smallest volume, the time occupied in an 
actual collision must be extremely small, compared with the time- 
interval between successive collisions. At each impact the direc- 
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tion and magnitude of the velocity is suddenly changed, but the 
total translational energy before and after collision must be the same. 
This statement is true, only if the gas temperature remains constant, 
so that, although the kinetic energy of a particular group of mole¬ 
cules may change, the mean value of the kinetic energy of the whole 
remains constant. Each molecule as it rebounds from the wall of 
a containing vessel suffers a change in velocity, similar to that origin¬ 
ating from intermolecular collisions, and so it imparts momentum 
to the wall, equal and opposite to that which it receives. This 
change of momentum gives rise to a pressure on the boundary sur¬ 
face. When we consider that at normal pressure and temperature 
there are approximately 10^^ molecules per c.c., we see that, on 
any appreciable area of the boundary surface, there must be an 
enormous number of impacts per second, the average number of 
which over the whole area remains constant. Hence the average 
pressure exerted by the gas molecules will be the same everywhere. 

129. Laws of a Perfect Gas.—A perfect, or ideal, gas is one 
in which the molecules are assumed infinitely small, and exert only 
negligible forces on one another, except in the case of their collisions. 
Suppose there are N molecules per unit volume of gas, and let these 
be divided into classes, so that all the molecules in any one class 
have approximately the same velocity, both as regards magnitude 
and direction. Let Ni, • • • be the numbers of molecules in 
these classes, so that . =N. 

Let Vif Wi denote the components, along the a?, y, z axes, of*^ 
the velocity of the molecules of the first class, so that these mole¬ 
cules may be regarded as forming a group of molecules of density 

per unit volume, in which every molecule moves with the same 
velocity. The value of is the sum of the values of such 
terms for all the molecules in unit volume, and this is equal to Nu^, 
If in is the mass of each molecule, the mean kinetic energy of 
translation of a single molecule is given by 

where and C is called the root mean square velocity, 
the square of which is equal to the average of the squares of all 
the velocities. 

If we consider n molecules of a gas moving in all possible direc¬ 
tions, the probability that the velocity of a molecule shall lie along 
any one direction is the same for all directions. Let us take some 
fixed point 0 (Fig. 81) as- origin, and draw from this point a system 
of lines of length C to represent, in magnitude and direction, the 
velocities of the different molecules of the gas. These lines will end 
on a sphere of radius C. With O as centre and any direction OA 
as axis, construct cones of which the generatrices make with OA 
angles equal to 0 and O + dd, The difference between the solid angles 

of these two cones is the solid angle » and the number 
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of lines, i,e, the number of molecules moving between ilie directions 
6 and O-^dO is hq where 

no 271 sin QdO 
~~ > 

n 4jr 
or, 

n sin OdO 
2 (195) 

On XY, of area a^, construct a cylinder of which the generatrix 
makes with an angle 0, and of which the length is C\ ST being 
parallel to AB, The number of molecules within it is Na^C cos 6/, 

and all pass through the area XY per second. The number, Noy 
of these molecules whose directions make angles with ST comprised 
between the limits 0 and O+dO is, from equation (195), 

No^Ndj^C cos ff 
Mn Odd 

(196) 

and all these molecules impinge against the area per second. 
The change of momentum, normal to the area, at each impact is 
2mC cos dy so that the total force, ix, the rate of change of momentum, 
acting on the area is 

No2'mC cos 0= 1 2 mNa^C^ cos^ d sin OdO 

0 

niNa^C^ -, 
6 

and the force per unit area, or the pressure, exerted by the gas is 
given by 

p 
mNC^ pC^ 

3 “s' 

(197) 

G.P.M. R 
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where p is the density- If Vq represents the molecular volume of 
M 

the gas and M its molecular weight, p—j^- and 

a 
(198) 

From this equation arc derived the laws of perfect gaseb\ tlie well- 
known formula for perfect gases being written 

‘ . . (199) 

where T is the absolute temperature and Rm the gas constant re¬ 
ferred to one gram-molecule (8*318x10’ ergs per degree absolute). 
Comparing equations (198) and (199), the total kinetic energy of all 
the molecules in a gram-molecule is equal to 

and so 

Denoting /.e. 
* m 

\mC^=^lRT. i 
(200) 

the number of molecules contained in 1 gram- 

molecule, by Nm, we have, for the kinetic energy of translation of 
a molecule or free atom, at a temperature 7’^ absolute, 

where 
^ m 

(201) 

The formulae obtained for the pressure contain within them all 
the well-known gas laws. Thus, from equation (197), the value of 

Sp 
N is equal to ^ quantity which depends only on the physical 

state of the gas and not on the structure of its molecules, so that 
two different gases, at the same temperature and pressure, contain 
equal numbers of molecules in equal volumes. This result is known 
as Avogadro's Law, The actual number of molecules in a cubic 
centimetre of gas at standard pressure and temperature is 2*687 x 10^®. 
This number is frequently referred to as LoschmidVs number^ the term 
Avogadro's number being reserved for the number of atoms in a gram- 
atom, or the number of molecules in a gram-molecule. Avogadro’s 
important hypothesis on the identity of the numbers of molecules in 
equal volumes of different gases at the same pressure and tempera¬ 
ture was formulated in 1811, but Avogadro made no quantitative 
estimate of either of the above constants. The first actual estimate 
of the number of molecules in 1 c.c. of a gas under standard con¬ 
ditions was made in 1865 by Loschmidt, and from this the num- 
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ber of molecules (atoms) in a gram-molecule (gram-atom) was later 
evaluated. 

Again, from (200), and substituting this result in 
equation (197) p=NRT, If there is a mixture of gases, then 

p={N^+N^+ . . .)RT^N^RT+N^RT+ . . ., 

so that the pressure in a mixture of gases is equal to the sum of 
the pressures exerted separately by the several eornponents of the 
mixture. This is Dalion\^ Law, and from equations (197) and (200) 
we see that the pressure of a gas is proportional to its density, 
provided that the temperature remains unchanged. 

It is evident that the various laws, deduced above and confirmed 
by experiment, are true only within the limits imposed by the 
assumptions made in the deductions. The most important of these 
assumptions is that the volume of a molecule is so small, compared 
with the intermolecular distances, that it may be treated as a point. 
This is true only for ideal gases, and so the laws will hold for real 
gases within varying degrees of closeness, which depend on the 
extent to which the gas approaches the state of a perfect gas. These 
laws must apply to any medium, since the method by which the 
expression for the pressure was found, in no way required that 
the medium should be gaseous. They are found to be true for the 
osmotic pressure of weak solutions,^ and the conception of pressure 
can be extended to the pressure exerted by free electrons moving 
about in a conducting solid. 

The value of C may be calculated from the relation 

For instance, the mass of a litre of hydrogen is 0 08987 gni., at the 
standard pressure of 76 cm. of niercury and at C., so that 

p=76 X 18*59 X 981 “1-01822 X10^ dynes per sq. cm. 

and />=0*00008987 gm. per e.c. ; thus for hydrogen at 0° C., 

G=l*839xl0® cm. per second. 

Also from the relation 

in 

R R 
——4*129x10’ and from this value of — for hydrogen we can calcu- 
m m" 

late its value for any other substance. The mass of the hydrogen 
atom is 1*673 Xl0“24 2 Hence R—l ZSl xlO”^^ erg per degree, 
and since the number of molecules in a gram-molecule =6-023 X lO^^, 
the value of R^, is 8-318x10’ ergs per degree. 

^ See Article 152. 
^Birge, Reports on Progress in Physics, Vol. VIII, 180 (1941). 
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The quantity — has been denoted by a, so that 

2 072 X erg per degree, 

and the kinetic energy of a molecule at 0° C. is 

ar=2*07 X 10-i« X2r3=5‘65 X erg. 

130. Maxwell’s Law of Distribution of Velocities.—It is 
evident that even if all the molecules in a given volume actually 
possessed the same velocity at any initial instant, the collisions 
occurring would disturb this equal distribution of velocities, and a 
non-uniform distribution would soon be established. By applying 
the laws of probability, Maxwell ^ showed that it is possible to 
calculate the law according to which the velocities of the molecules 
would be distributed at any temperature. 

It is difficult to imagine the motion of a large number of spheres 
moving about in space, but we may consider the analogous motion 
in two dimensions, such as a number of billiard balls on a billiard 
table. Tlie cushions represent the walls of a containing vessel, and 
the resulting state of motion after the balls have been started at 
random, with random velocities, will give a representation of what 
is considered to be the condition of gas molecules. At any instant 
some of the balls may be brought to rest, while others, as the result 
of favourable impacts, will possess velocity far in excess of the 
average velocity of all the balls. 

Consider a gas in a state of thermal equilibrium, and assume that 
the molecular collisions do not disturb the density of the gas so that, 
on an average, it remains constant. In addition, it is usual to assume 
that the molecules having velocity components lying within any 
small specified limits are, at every instant throughout the motion 
of the gas, distributed at random, independently of the positions, 
or velocities, of the other molecules, provided that two molecules 
do not occupy the same space. Maxwell has shown that under 
these conditions the magnitudes of the molecular velocities are dis¬ 
tributed according to a law which is independent of the collisions, 
i,e, the law of distribution is not modified by collisions. 

Let u, V, w be the velocity components along the tV, y, z axes of 
a molecule moving with velocity q, so that 

^ ^ (202) 

Then the probability that any molecule has a component velocity 
along the x axis intermediate between u and ti-\-du may be stated 
asf(u)du, where f{u) represents some function of u. Similarly, the 
probability that the component velocities along the y and z axes 
are between v and v~\-dv, or w and tv-\-dw, respectively, is f{v)dv, 
or f{w)d'w, respectively. These three components are independent, 
so the probability that they occur simultaneously is given by 
f{u) f{v) f(w) du dv dw, or, if q is the resultant velocity, by 

1 Maxwell, Collected Works, 1, 880. 
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P(q) du dv dw, or du dv die, where E(g) is a function of q 
and ^(q^) a different funetion of q^. Hence 

Jii^) f(w)=<l>{q^)=<f>{ti’‘+v^+w^). . (203) 

Keeping q constant and differentiating, 

f'(u)du f’(v)dv f'(w)dxv 

7(«)-i W+7w ■ • t-"** 
where /'(^), rej)reseiit the lirst diflerenlials. Differentiating 
(202), keeping q eonstant, 

udu^vdv-\-ivdw^^0y . . . (205) 

and if we nuilti])ly (205) by X and add the results to (204) we obtain 

4 X?^ \du ] \v Xiv k/re-~0. (206) 

Every one of tliese terms is independent of the others, and so 

0 . . . (20 

together with similar equations in r? and 7e. 
Solving these equations, 

where Similar expressions hold for /(i^ and /(te). 

From the definition of }>robability it follows that 

f{u)du - L" 
together with similar expressions in x' and xv. Hut 

so that from (209) 

and thus 

f{u) f{l>) f{tv) du dv dw- 
V 

or, transferring to spherical co-ordinates, the probability of the 
velocity being between q and q-\-dq is 

I^l.e^^^*q^dq sin Odd 
V 

in which q makes an angle 0 with the axis of z and the plane con¬ 
taining q^ and the axis of z makes an angle /? with the axis of x. 
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Thus of the N molecules per c.c., the number, dNq, having a 
resultant velocity between q and q-\ dq is 

/jo 

'Le-’^'qHq OdO 
^=0 V 

d(i 

=4A^ (210) 

Hence the mean, or average, velocity of all the molecules will be 
the average value of q, and may be denoted by c. It is given by 

It is convenient to introduce a velocity C defined as being such 
that the mean value of is equal to ; for example, C w^as used 
in deducing an expression for the gas pressure. The mean kinetic 
energy of a molecule is then \7nC'^ and 

= . (212) 

In terms of C\ the average velocity c is given by 

The most probable velocity Cq may be found by differentiating 
equation (210) with respect to q and equating the result to zero. 
The result is 

and 

(214) 

^0 
C 

Vf (215) 

From equation (208) the number of molecules, Nx, which cross 
1 sq. cm. of a surface, perpendicular to the axis of x, in 1 second is 

Nx =j” wdiV„=: AT J'lue- 
N 

^ Vnil ’ 4 
(216) 

Maxwell’s deduction of the law for the distribution of velocities 
is not very satisfactory, because it assumes that the three velocity 
components are independent. Later he put forward another proof, ^ 
but it is doubtful whether this second proof is superior to the original 
one. The values of the molecular velocities are given in Table XIII. 

1 Maxwell, Collected TFor/cs, 2, 48. 
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Table XIII.—MoLECUiJiR Velocities ^ 

1 
C. c. 

Gas. 1 Root Mean Square Velocity Average Velocity 
at N.T.P. at N.T.P. 

Hydrogen 
1 

18*38 X 10* cm. per sec. 16*93 X 10* cm. per sec. 
Helium. . 13*11 >> 55 12*08 
Water vapour 6*15 55 55 5*65 ,, „ 
Neon . . ; 5*84 55 5*38 
Carbon monoxide . 4*93 55 55 4*54 ,, ,, 
Nitrogen . ; 4*93 55 4*54 ,, ,, 
Ethylene 4*93 55 55 4*54 ,, ,, 
Nitric oxide . 4*76 5 5 4*38 
Oxygen 4*61 55 55 4-25 
Argon . 4*13 55 55 3*80 
Carbon dioxide 8*93 55 3*62 
Nitrous oxide 3*93 55 55 3*62 
Krypton 2*86 55 55 2'63 „ „ 1 
Xenon . 2*28 55 55 210 „ „ 1 
Mercury vapour 1*84 55 5 5 1-70 „ „ 1 
Air 4*85 55 55 4*47 „ 1 
Ammonia 6*33 55 55 5*82 „ „ 1 

Table XIV gives the relative distribution of molecular velocities as 
calculated by Dushman.^ Under Ax is given the range of velocities 
in terms of the most probable velocity, whose value is taken as unity, 
and under Ay the fraction of the total number of molecules which 
have velocities corresponding to this range. Thus 16*1 per cent, of 
all the molecules have velocities which range between 0*9 and 
1*1 times the most probable velocity at any temperature. Similarly, 
it follows that 68*4 per cent, of the molecules have velocities ranging 
between 0*5 and 1*5 times the most probable velocity, while only 
3-1 per cent, have velocities that exceed 2*5 times the most probable 
velocity. 

Table XIV.—Relative Distribution of Molecular Velocities 
(Maxwell’s Law) 

Ax. Ay. 

0-0*1 1 0*001 
0*1-03 0*021 
03-0*5 1 0*063 
0-5-0-7 j 0-112 
07-0*9 0-149 
0-9-1 *1 0-161 
11-1*3 0-150 

05-1-5 0*684 
j 

Ax. ’ Ay. 

1-3-1-5 I 0112 
1*5-1-7 0*078 
1-7-1-9 0*058 
1*9-21 0*034 
21-2*5 0*030 
2*5-30 0*008 

0-2*5 0*969 

^ See Dushman, General Electric Revierv, 15, 952, 1042, 1159 (1915); also 
Jeans’ Dynamical Theory of Gases. 

* Dushman, General Electric Review, 23 , 493 (1920). 
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131. The Equipartition of Energy. -The total number of 
independent quantities, which must be known before the configura¬ 
tion and position of any system can be determined, is called the 
number of degrees of freedom of the system. This number depends 
on the capabilities of motion of the parts of the system. For 
example, in the case of an atom, which we jnay regard as a rigid 
body, its position can be fixed when .r, i/, sr, the co-ordinates of the 
centre of gravity of the body, and three angles 0, /?, y), determining 
the orientation of the body, are given. If we regard the atoms as 
points, each atom will have three degrees of freedom, corresponding 
to the iT, ?/, co-ordinate^; and since the number of degrees of free¬ 
dom of a complex system is equal to the sum of the numbers of 
degrees of freedom of the constituent systems, a diatomic molecule 
must necessarily have sir degrees of freedom. If the two atoms are, 
under any conditions, so closely bound together that their distance 
apart is fixed, the number of degrees of freedom is reduced to five, 
ftach molecule will possess an axis of symmetry, namely, the line 
joining the centres of the two atoms. Let us take any two other 
axes in the molecule in the plane perpendicular to the axis of 
symmetry. The kinetic energy, E, is given by 

where A:q, /cj are the radii of gyration about these two axes and the 
axis of symmetry, rui, CO3 being the components of the angular 
velocities about these three axes. 

Intermolecular collisions cannot affect the values of cog. This may 
be ignored in considering energy changes, and the energy which the 
gas molecules possess is uniformly distributed among the various 
possible degrees of freedom. This is known as the Equipartition of 
Energy theorem. Thus : 

7nu^=mv^—mw^=7nkQ^coi ^ 

where the bar indicates that the average value of the term through¬ 
out the gas is to be considered. It may be shown ^ that the value 
of each of these terms is RT, so that the mean kinetic energy of 
translation of a molecule is given by 

as stated in (200). 
Now if E is the mean energy possessed by each of the molecules 

in 1 c.c. of gas, the first law of thermodynamics may be stated thus : 

dq==NdE+pdV, 

where dV is the change in volume when heat, dQ, is supplied to 
the gas, i,e, 

dV 
dq^NdE+RNT~ . . . (217) 

^ Jeans, Dynamical Theory of Gases^ p. 87. 
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If Cv is the specific heat of the gas at constant volume, 

___ 1 (dQ\ 1 ilE 

" Nm\dr)v rndT " ' 

In a similar manner, if Cji is the specific heat of the gas at constant 
pressure, 

I (219^ 
Nm\dTJp m dT m * ’ - 

since at constant pressure (217) becomes 

dQ=NdE\RNdT. 

For many gases (\ and Cp are approximately independent of the 
temperature over a large range of pressures and temperatures, so 

that is constant, and therefore the mean energy of a molecule 

of the gas bears a constant ratio to the translational energy, the latter 
being proportional to the absolute temperature. Let us denote this 
ratio by (1+a). Then 

+a)|7HC2=:(] +a)t/^7’, . . (220) 

and 

SO that from equations (218) and (219) 

and CV=^[1+t(l-fa)j. 

Thus y, the ratio of the specific heats, is given by 

Although we do not possess sufficient knowledge of the molecule’s 
dE 

internal structure to evaluate the quantities ^ and a, we may deter¬ 

mine their values to some extent by measuring y experimentally and 
using equation (221). For example, in the case of air, experiment 
shows that y is almost independent of the temperature and approxi¬ 
mately equal to so that from equation (221) a is equal to |. 

The energy of a molecule having n degrees of freedom, in addition 
to its translational movements, may be wTitten 

RT 
where the value of each term on the right-hand side is • Hence 

Rl^ 
/?=^(3+-n), 
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and comparing this result with that given in equation (220) 7i=3a. 
From this we see that corresponding to n=0, 1, 2, etc,, a=0, etc,, 
and from equation (221) 

y (222) 

For monatomic gases y —1§ and m=0. There is no molecular energy 
except that of translation, so that the molecules of these gases are 
spherical bodies and eannot acquire rotational energy by collision. 

There is no gas, apparently, for which y —Ij, i.e, n~l, but for 
—2, y=:=lf, and hydrogen, nitrogen, oxygen, etc,, have, very approxi¬ 

mately, these values for n and y. We conclude, therefore, that there 
are jive decrees of f reedom in the diatomic molecule, and the struc¬ 
ture which our theory indicates is fully confirmed by experiment. 
In addition to the two terms representing the rotational energy, the 
atoms are capable of changing their relative distance apart, and tliis 
gives rise to another kinetic energy and another potential energy of 
vibration, the two atoms moving along their line of centres. 

For many gases and vapours the value of y approaches unity, 
and the molecules of these substances cannot be regarded simply 
as rigid bodies, since the energy of internal motion is comparable 
with the energies of translation and rotation. 

132. The Mean Free Path.—The average distance traversed by 
a molecule between successive collisions is termed the mean free path, 
or the mean path of the molecule. When we define the mean free 
path as the average distance traversed by all the molecules between 
successive collisions, it is assumed that the molecules actually collide 
like billiard balls, i,e. the molecules are assumed to be rigid elastic 
spheres possessing definite dimensions and exerting no attractive or 
repulsive forces on each other. This, however, is certainly not in 
accordance with the facts. We have every reason to believe that 
the structure of atoms and molecules is exceedingly complex. It is 
probably impossible to state definitely what is the diameter of a 
hydrogen atom or molecule. If we consider the velocity components 
of the molecules in a given direction, we find that at the end of 
a certain distance, L, the average value of the velocity components 
of all these molecules, taken in the same direction, has decreased 
by a certain amount; in other words, the average number of mole¬ 
cules travelling in the given direction is less after they have 
traversed the distance L, On this basis the term free path has a 
physical meaning which is independent of all ideas that we may 
form of the actual structure of the molecule, or of the nature of 
the intramolecular forces. 

Suppose that the centres of the molecules approach to within an 
average distance, a, from each other, where a is the diameter of a 
molecule. Let all the molecules except one be at rest, so that the 
centre of any other molecule cannot approach within the surface of 
a sphere, of radius a, which surrounds the moving molecule. This 
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sphere is known as the sphere of molecular action. The volume swept 
out per second by the moving molecule is where C is its velocity, 
and this volume includes the centres of na^NC molecules, this 
number representing the collisions made by the molecule per second. 
Then 

but ttiN-~py so that 
na^CN Tia^N 

ni 

Tia^p 
(223) 

and is inversely proportional to the gas pressure. Its magnitude 
under normal pressure and temperature is, approximately, 10cm., 
whereas at a pressure of 10”^ mm. of mercury, which is about the 
degree of vacuum in electric glow lamps, the mean free path for 
most gases is 5-10 cm. 

This equation has been deduced on the assumption that all the 
molecules, except the one projected, are at rest. Let C be the 
velocity of the projected molecule A, and C\ that of all the other 
molecules, remaining constant in magnitude but not in direction, 
although its distribution is uniform in all directions. Then the 
velocity of A, relative to the molecules which move in directions 
inclined at angle 0 to the direction of C, is -2CCi 
and since, if is the number of molecules per c.c. possessing velocity 

sifi 0 
Cl, the number which move between 6 and d+dd is -dO, 

the mean relative velocity Cr of all the molecules is 

Ni sin 0^ 
-{C^+Ci^-2CC\ cos e)idd. 

+CY-2CC1 cos d)l 
"1 71 

f 
_ 0 

and if C=Ci, Cr=^C. 
Thus the relative velocity of the projected molecule is greater 

than that assumed in deducing equation (223), and as the number 
C 

of collisions is increased in the ratio i.e. the mean free path 

is decreased in the ratio J, so that 

3 
“ ijiam • • • • (224) 

If we take Maxwell’s Law for the distribution of velocities into 
account, it can be shown ^ that the mean free path becomes 

1 

V27ta^N 
(225) 

^ Jeans, Dynamical Theory of Gases, p. 87. 
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Jeans has pointed out that this equation cannot be accurate since it 
does not take into account the persistence of velocities after collision, 
and he shows that in the case of two similar molecules, colliding 
with relative velocities that may vary from 0 to oo, the average 
value of the persistence is equal, approximately, to two-hfths of 
the value when the molecules collide with equal velocities, on 
an average, the molecules travelling in a given direction will, after 
collision, have lost three-fifths of their velocity component in that 
direction. He states that the formula should be 

1-311) 

V^Tza^N 
(226) 

These results are true only for rigid elastic spheres with no inter- 
molecular forces. Assuming the existence of such forces, the eflect 
is to shorten the free path,^ and under these conditions 

1*402 

V^jra^N 

where A is a constant for each gas and T is the absolute temperature. 
It must be realised that the idea of molecules and atoms being 

rigid elastic spheres is simply one of convenience and bears no rela¬ 
tion to the modern theory of molecular structure. The principle of 
indefiniteness and the nuclear structure of molecules preclude any 
definite size, and experiments on the scattering of electrons show 
that the effective cross-section of atoms and molecules for siudi 
scattering varies with the speed of the impinging electrons. 

Molecular velocities are distributed according to Maxwell’s Law, 
and the free paths of the molecides also differ from the mean free 
path, L. The law of distribution may be deduced as follows : 

The probability, 7\, that a molecule moving with a velocity c 
shall describe a free path at least equal to x is f{x), and the prob¬ 
ability that it will pass over the path x+dx is, therefore, 

■P*+dx=/(a!+da;)=/(a;)+/'(a:)ffa:, 

Ji I j 

After the molecule has described a distance x, the cliance of collision 
dx 

within a further distance div is —> and the probability that it will 

move over the distance dx is 

Now according to the rules of probability Px+dx~Px-Pdx, or the 
probability that the molecule will pass over the distance x+dx 

^ Sutherland, Phil. Mag,, 36, 507 (1803). 
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without a collision is equal to the product of the probabilities that 
it will pass over x and dx without a collision. Hence 

or, 

where K is an arbitrary constant. The probability that the mole¬ 
cule passes over the distance without a collision is unity, so 

iv~l and Px^c Hence the probability that a molecule lias a 
free path lying between the lengths x and x-^-dx is 

Px-Px+dx^je^d.x, . . . (228) 

which is obtained by dilTcrentiating the expression for Px^ 
It is clear from the form of this expression that free paths which 

arc many times greater than the mean free path will be extremely 
rare. For example, only one in 148 describes a path as great as 5//. 

133. The Coefficient of Viscosity.—A molecule describing a 
free path of length L is in effect transporting a certain amount of 
momentum, energy, and mass through this distance L, If the gas 
were in a steady state, each such transport would be exactly balanced 
by an equal and opposite movement in the reverse direction, and 
the net transport would be nil. Imagine, however, that this steady 
state has not been attained, and consider that the gas is moving, 
in the mass, along the x direction with a velocity this velocity 
being everywhere the same in a plane xy, but varying along the 
direction of the z axis, increasing as 2; increases. The molecules will 
cross the planes z—constant in both directions, but those which cross 
the plane z—Zq (Fig. 82) in a downward direction will possess less 
momentum than that appropriate to the plane 2;=2:0, because they 
come from a region where the velocity is less than it is at the plane 
z—Zq, In a similar manner those molecules which cross the plane 
z—ZQy moving upwards, will, on an average, have momentum greater 
than that possessed by the molecules in the plane 2:—2:0. Since there 
is, on the whole, no mass motion along the s axis, the number of 
molecules which cross this plane per second moving downwards is 
equal to the number moving upwards which cross the plane in the 
same time, so that, on the whole, there is a net gain of upward 
momentum, or an upward transport of momentum. 

Consider a molecule meeting the plane z—Zq in Q, having pre¬ 
viously come from a collision at P, so that the 2: co-ordinate of P 
is 20—L cos 0, where 0 is the angle that PQ makes with the 2; axis. 



254 THE KINETIC THEORY OF MATTER 

If the velocity gradient of the gas motion is uniform, we may state 
that 

U—Az, and Uq—Azq, 

where A is a constant, and the velocity parallel to the x axis, which 
the molecule possessed when at P, is 

u-\-(Zq—L cos d)A, 
where u is the velocity along the x axis due to the tiierinal agitation, 
and may be neglected since the transfer of momentum due to thermal 

Uo 

u 

\z 

Fig. 82,—Coefficient of Viscosity. Thermal Conductivity. 

agitation is, on the whole, zero. Thus the useful momentum, parallel 
to the X axis, which is transferred across the plane z^Zq by the 
molecule, is 

m^Q—L cos 6 

since 

\dU 

)dz’ 

u_m 
z dz 

If we suppose that the molecules possess an average velocity of 
agitation equal to c, then we have shown in equation (196) that the 
number of molecules, whose directions make angles with the z axis 
comprised between the limits 6 and 0-{-dd, which cross per sec. 
each sq. cm. of a plane xy is 

^Nc cos 6 sin ddQy 

so that the useful momentum transported per sec. per sq. cm. of 
plane z~Zq by molecules coming from the plane z=Zq--L cos 0 is 

cos 6)Nc cos 6 sin Odd 
d^ 

dz 

NmcL dU 

S dz ’ 
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But if we have a viscous fluid, of coeflieicnt of viscosity 97, moving 
with the velocity of the gas, the viscous drag per unit area of the 
plane z==Zq in the direction of the a; axis is 

dU 

and since the rale of change of monitaiiinn is force, we have 

NmcL pcL 

^'=“ir=-V • • • 

The gas behaves exactly like a viscous fluid. 
Chapman, 1 following Maxwell’s method, arrives at the formula 

.... (2»0) 
V27ta^ 

in a later paper ^ he corrects the factor 0*491 to 0*499, 
Theoretically is independent of the density of the gas, when 

the molecules are assumed to be elastic spheres, and since L, to a 
first approximation, is inversely proportional to the number of 
molecules per c.c., it is evident that, whatever structure we assume 
for the molecules of the gas, r] will be independent of iV. We thus 
obtain MaxwelVs Law that the coefficient of viscosity of a gas is inde¬ 
pendent of its density. This law is by no means completely con¬ 
firmed by experiment. For certain gases, such as carbon dioxide, 
it fails completely at high pressures, and there is a departure from 
the law at very low pressures when the free path becomes com¬ 
parable with, or even greater than, the dimensions of the vessel 
in which the experiment is being conducted. In this case the mean 
free path is limited by the size of the apparatus and cannot 
exceed some value, say Lq. Then rj cannot be greater than IpcL^ 
and tends to zero with zero value of p. This has been confirmed 
experimentally. 

If we consider equation (229) and remember that c is proportional 
to the square root of the absolute temperature, it is evident that rj 
should vary in a similar way, but in practice it varies to a greater 
extent than the square root of the absolute temperature. This is due 
to the size of the spheres decreasing as the mean molecular velocity, 
i,e^ as the temperature, increases. Thus 97 depends on the tempera¬ 
ture both through c and a in equation (230). If we assume that the 
law of force between two molecules, whose centres are distant r 

apart, is of the form -» then it can be shown that — is proportional 

2 

to and from equation (230) rj will vary as 2’" where 

2 

^—1 

^Chapman, Phil. Trans., A, 211, 488 (1911). 
»Idem,, Proc, Roy, Soc,, A, 93, 1 (1916). 
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For many gases we may say, therefore, that 

wliere n is given by 

-l’ 

Sutherland ^ assumed that 

(231) 

/v, being constants, <j^ being the value of o when T==co, and 
K is the temperature at which 2or^2 Hence if Li and are 
the mean free paths at temperatures T and 273"^ absolute, from 
equation (226), 

^1 ^273^_27 S 

/>2 Cfq* 1+f 
and 

ri _{cL,)t /ry^+273 

tJq (eL2)a73 \273y 

or, 
ri ( T\l K+273 

r]oy27s) ’ K+T ’ 
(282) 

which is Sutherland'^s formula for the viscosity of a gas at any 
temperature. 

Since the value of rj can be determined experimentally, the value 
of a can be calculated by means of equation (230). There is good 
agreement between the values for the molecular diameter calculated 
in this manner and those obtained by other methods, 

134, Thermal Conductivity.—The flow of heat is directly con* 
nected with the molecular motions, and a theory of thermal conduc¬ 
tion may be deduced in the same way as that employed for viscosity. 
As the molecules move from places of higher to places of lower 
temperature, they lose heat energy at the expense of their kinetic 
energy, which is converted into potential energy of attraction, brought 
about by passing into denser layers. Thus, in the case of a gas in 
which a temperature gradient exists, there is a continual passage 
of the faster moving molecules from the hot side across any plane 
to the colder side. 

^ Sutherland, Phil. Mag,, 5, 36, 507 (1893). 
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Let E denote the mean energy of a molecule at P (Fig. 82), where, 
as before, the co-ordinate of P is Zq~L 6, The mean energy of 
the molecules arriving at the plane z—Zq, and originating from the 
gas layer corresponding to P, is 

E L cMsO, 
dE 

dz 

where 
dE 

dz 
is the energy gradient along the z axis. As before, the 

number of molecules which cross unit area of the plane z=Zq in a 
direction making an angle between 6 and d+dO with the 2; axis, per 
second is 

^Nc cos 6 sin OdO, 

and tlie total energy flow across this unit area per second is 

J ^E ~ L cos 0 sin OdO - 
NcL dE 

"a ~dz' 

the negative sign denoting that the energy flow is in the direction 
in which decreases. The rate of flow of heat across unit area is 

dP dT 
where k is the thermal conductivity and ^ tlie temperature 

gradient, so that 

ar JVcL dE NcJ^ dE dT 

^'dz~~]i ' dz' 'dT~dz 

Rut from (218) 

Hence 

and from (229) 

——mCt). 

, NcLin^^ 

k V* (233) 

If the molecules are treated as elastic spheres, it may be shown 
that the relation between k and ?/ is 

k~er}Cvy 

where £ — 1*395. Chapman ^ found e to be 2*500. 

Comparing the calculated and experimental values of there 
f]Cv 

does not appear to be uniformity in the results. The two values 
agree for monatomic gases, but show poor agreement for gases in 
which the molecules are of the most complex structure, such as 
ethylene, carbon dioxide, etc. 

^Chapman, Phil. Trans., A, 211, 433 (1911). 
G.P.M. S 
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135. Thermal Transpiration.—If two vessels, containing gas 
at low pressure and at different temperatures, are joined by means 
of capillary tubing, there is a flow of gas from the colder to the 
hotter chamber, and this flow continues until a certain pressure 
difference, depending on the temperature difference, is established. 
This phenomenon is known as thermal transpiration and was dis¬ 
covered by Osborne Reynolds,^ who used apparatus similar to that 
shown in Fig. 83. Two chambers (1) and (2) were separated by 
means of a plate of porous material, and they could be maintained 
at different temperatures by passing through the jackets, C and Z>, 
water and steam, respectively. A mercury manometer indicated 

Water Steam 

Fig. 88.—Thermai. Transpiration. 

the pressure difference in the two compartments (1) and (2), and 
by means of the tap T the pressures could be equalised. With T 
closed, the pressure in (1) gradually rises as the gas passes from (2) 
to (1) through the porous material. When the mean free path of 
the gas molecule is large compared with the size of the pores, the 
final pressures in the two chambers are directly proportional to 
the square root of the absolute temperatures, and this result is 
independent of the nature of the gas. A simple explanation of 
this is as follows : 

Let be the number of molecules per c.c., Cj the square root 
of the mean squares of their velocities, the absolute tempera¬ 
ture, in compartment (1), and let similar symbols with the suffix 2 
refer to the other compartment. Then, if m is the mass of each 

^ Osborne Reynolds, ibid.. A, 170, 727 (1879). 
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molecule a^id S the area of an orifice, the mass of gas passing normally 

through the orifice per second from (1) to (2) is 
N^C^mS 

and 

similarly from (2) to (1) 

when 

N^C\mS 
---j 

6 

N^C^rnS 

so that equilibrium is established 

N^C^mS^ 

6 6 

Rut if Pi and pg final pressures when equilibrium is attained, 

Pi ^NpuCi ^ __ Cl 

Ih C« 
(234) 

and the same formula holds when the two compartments are con¬ 
nected by means of a fine bore tube along which a temperature 
gradient is maintained. Experiment shows that when the diameter 
of this tube is large compared with the mean free path, i,e. at high 
pressures, two currents of gas pass along the tube. The outer layers 
move from the cold to the warm end, and the central layers move 
in the opposite direction. When the diameter is small in compari¬ 
son with the mean free path, what is termed molecular flow occurs, 
and there is no fluid flow of the gas layers. 

The simple theory given above does not hold at higher pressures.^ 
Thus, consider an area of 1 sq. cm. in a section perpendicular to 

dT 
the length of the tube along which a temperature gradient, is 

maintained. If all the molecules at this section have the same 
average velocity c, and we consider another section distant L cos 0 
away, towards the hot end, the velocity of the molecules coming 
from this second section, and moving in a direction d to the axis 

^c 
of the tube is cos 0. Thus we may take the average velocity 

of all the molecules arriving at the unit area, and coming from the 
L dc 

hot end of the tube, to be ^+2 assume that, on an 

average, the molecules arriving at the area are those which come 

from a distance — away from the area. We have shown previously, 

equation (216), that the number of molecules which cross 1 sq. cm. 
Nc 

of surface perpendicular to the x axis is ---> so that the number 
4 

crossing the unit area under consideration per second is 

Nc , d /Nc\L . , , 

4r+^(Tj2’ 

1 See West, Proc, Phys, Soc., 31,278 (1919). 
by West. 

The treatment follows that given 
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Hence the total mass of gas flowing per second through this unit 
area from the hot to the cold side is 

m 

4 

LN dc , Lc d. 

2 dx 

Similarly, the total mass flowing from the cold to tlu' hot side is 

■ LN dc LcdN- 

2 dx 2 dxj 

and the resultant flow is obtained by adding these masses together, 
Lc. 

Rut 

and 

mNLc 

4 
1 
N dx 

1 dc 

c dx 

V 

dp _JT. 

)nNC^_^7TmNc- 

8 , 

JN , 71 

dx 8 dx 
^ Nine 

dc 

dx 

n 
N dx c dx 

Taking 
?y=0*31mYLe, 

the mass of gas moving through the tube, of radius r, per second 

Tir^ rj Vl dp 1 dc~ 

4 0*31 \j) dx c dx * 

is 

and since is proportional to T, this mass becomes 

Ttr^rjri dp 1 3Tn 

l^\p dx~^''dx] 
(235) 

This flow will continue until a sufficient pressure is developed on the 
hot side to cause an equal flow of gas in the reverse direction. The 
mass of gas discharged from a tube by a small pressure gradient is, 
according to Poiseuille,^ 

n pipr^ ^ 

8 Tj dx' 
(236) 

where is the density of the gas at and under a pressure of 
1 dyne per sq. cm. This formula takes no account of slip which 
occurs at the surface of the tube. 

Now in deducing equation (235) we assumed that all the mole- 
yules possessed the same velocity, but it is more accurate to use 

1 See Article 123. 
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Maxwell’s distribution law, so that the mass of gas flowing across 
the section is 

371 nr^riVl dp 1 dT~ 

8 

arid f‘{{nating this to exj)ression (236), 

'I dp 1 dTl 
—2-98/- 

p dx 27’ dx 

7t pipr^ dp 

8 ry dx 

the negative sign being used as the flows are in opposite directions. 
Whence 

dp 

dT 2rj^f 
-i-+65popr 2 

where is the density of the gas at 0° C. 
1 dyne per sq. cm. 

If p is very small, this reduces to 

dp__p 

(237) 

under a pressure of 

i,t\ 

pxVT, 
which agrees with equation (234), so that the thermal transpiration 
formula (235) is true for high and low gas pressures. It also appears 

dp 
to hold at intermediate pressures. At high pressures ^ becomes 

inversely proportional to the pressure, and is dependent on the 
nature of the gas. The pressure difference rises less rapidly and 
eventually reaches a maximum. It then begins to fall oft’ and 
finally diminishes inversely as the pressure. 

136. The Flow of Gases at Low Pressures.—If the tempera¬ 
ture is maintained constant, the rate of flow of gases through narrow 
tubes is governed by Poiseuille’s Law at high and moderate pres¬ 
sures, and the rate is limited by the collision frequency between 
molecules. At very low pressures, where the value of the mean 
free path is greater than the radius of the tube, the intermolecular 
collisions become less numerous than the collisions of the molecules 
with the containing walls, and the term molecular flow was suggested 
by Knudsen ^ to designate the condition of gases flowing through 
tubes at such low pressures. At this stage the coefficient of vis¬ 
cosity loses all significance, and the flow is governed by the collisions 
with the wall of the tube. 

Knudsen assumes that any plane surface, no matter how smooth 
it may appear, contains, in reality, projections which are due, prob¬ 
ably, to one or more atoms being piled above the surrounding atoms. 

1 Knudsen, Ann. d. Phys., 28, 75 (1908); 28, 999 (1909). 
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and these projections of molecular dimensions are irregularly dis¬ 
tributed over the surface. Consequently, a gas molecule on striking 
the surface is repelled in a direction which is totally independent of 
the direction of incidence, and the distribution of directions of an 
infinitely large number of molecules after reflection from a surface 
follows the cosine law which holds for the reflection of light from 
an illuminated surface. 

Kundt and Warburg ^ found, at these very low pressures, there 
was distinct evidence that the gas molecules “ slipped over ” boun¬ 
dary surfaces, so that the apparent viscosity was decreased. The 
amount of this slip increased as the pressure was lowered, varying 
inversely as the pressure at the lowest pressures. If we denote the 
coefficient of slip by d, the tangential force per sq. cm., or the amount 
of momentum, //, transferred per second by the molecules striking 
unit area of the boundary surface, supposed at rest, is 

rjU 

^~d+2d, 

where is the velocity gradient and t] the coefficient of viscosity. 

Since at very low pressures d is inversely ])roportionaI to the pressure, 
we may write 

d=bL, 

where b is a^constant. Hence, neglecting d compared with L, 

tiU 

but from equations (199), (200), (223), and (229) 

L 7i 

SM 

nUmT' 

wliere M is the molecular weight of the gas in grams, so that 

2pU l'~M 

^ ' 36 V 27iEmT‘ 

It has been found that equation (229) is only approximately true, 
and that a better representation is 

7j~0'S5pcL, 

If we use this value for ry, 

2x0-35 /~M 

2nRmT 
(238) 

Neglecting the number of intermolecular collisions, we may consider 
that U is the velocity of flow of the gas as a whole along the tube, 
so that the mass flowing through per second is given by 

Q—7tr^pU^ .... (239) 

^ Kundt and Warburg, Pogg, Ann,, 155, 340 (1875). 
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where r is the radius of the tube. If I is its length, and the 
pressures at its ends, then the condition for steady flow is that 

//.27rrZ=[pi—. . . (240) 

and from equations (238), (239), and (240) 

but 

so 

Q 
nr^ph. 
1 -4ilp \Vi-Vi] 

‘InlimT 
M 

P R,nT 
p ^ M ’ 

^1) 
Q=ir,j\P. Ihl (241) 

All experimenters are agreed that the exact value of b must depend 
upon the ratio of the number of molecules reflected according to the 
laws of reflection to the number striking the surface. Knudsen 
assumes that, in general, this ratio is practically zero, or the momen¬ 
tum of all the molecules striking a surface is almost completely trans¬ 
ferred to the surface. On this assumption he derives the relation 

2*88 
b~-» and so (5=0*917L. 

n 
The expression (241) for the rate of flow of a gas along a tube 

at very low pressures agrees well with experimental results. As the 
rate varies as r^, great resistance to flow is exerted by narrow bore 
tubes. This is a point to be considered when modern high-speed 
pumps are exhausting at very low pressures. The rate of flow along 
the tube connecting the pump to the vessel being exhausted is 
governed by equation (241), and to use the pump most efliciently 
it should be joined to the apparatus by tubes which are as short 
and wide as possible. It is more important that the tube should 
be wide than short. 

137. Flow of Gas at Very Low Pressures through a Hole 
in a Thin Plate.—It is sometimes important to calculate the amount 
of gas flowing through a hole in a thin plate when the diameter of 
the hole is small compared with the mean free path of the molecules. 
If and are the numbers of molecules per c.c. on the two sides 
of the plate, p^, and p^, the corresponding pressures and 
densities, the resultant mass of gas which passes through 1 sq. cm. 
per sec. is equal to the difference between the masses which cross 
both ways, and is given from equation (216) by 

N^cm NnCrn c. __— -pa)> 

and from equations (218), (200), (197) this is equal to 

Nmm 

27lRmT 
(242) 
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The vapour pressure of highly refractory metals may be deter¬ 
mined by means of this formula. Egerton ^ has measured the 
vapour pressures of zinc, cadmium, and lead, the metals being con¬ 
tained in a small pot provided with a hole of known area. After 
weighing the pot, it was placed in a silica tube within which a high 
vacuum was maintained flic tube was inserted in a hole 
in a large block of copper maintained at a constant temperature. 
The pot was again weighed at the completion of the experiment, 
and the loss in weight gave the amount of vapour that had escaped 
from the orifice. Thus, from equation (242), could be calculated, 

being the molecular weight of the element used. A correction 
must be applied for the number of molecules that return from the 
far side, through the hole, to the space occupied by the vapour in 
equilibrium with the metal. 

This formula has also been used by Langmuir ^ to measure the 
rates at which highly refractory metals evaporate. If the vapour 
pressure of any substance does not exceed 1 rnrru of mercury, the 
actual evaporation rate is independent of the pressure around it, or, 
in other words, the evaporation in a high vacuum takes place at the 
same rate as it does in the presence of the saturated vapour, so that 
equilibrium is a balance between the evaporation and condensation 
rates. Now the rate at which the vapour condenses on the metal 
cannot exceed the rate at which it comes into contact with the metal, 
and the latter rate is given by equation (242), remembering that pg 
is zero. If it is assumed that every atom of vapour condenses on 
striking the metal, then this equation represents the relation between 
the vapour pressure and the rate of evaporation in a vacuum. If, 
however, a certain proportion, a, of the atoms of vapour is reflected 
from the surface, then the vapour pressure will be greater than that 
calculated in the ratio 1 ; 1—a. There are good reasons for believing 
that this reflection from the surface is negligible. 

At the equilibrium stage as many atoms evaporate per second 
per sq. cm. of surface as condense, and, consequently, equation (242) 
gives a measure of the evaporation rate at a temperature 2\ By 
observing the loss in weight per second of a tungsten filament, it is 
possible to calculate the vapour pressure of tungsten at this tempera¬ 
ture. The filaments are weighed before and after evaporation, and 
the temperature is determined by means of an optical pyrometer. 

138. Radiometer Phenomena.—^At very low gas pressures 
forces known as radiometric forces are exerted between two surfaces 
which are situated close together, the surfaces being maintained at 
different temperatures. One of the first instruments used for detect¬ 
ing these forces was the radiometer devised by Sir William Crookes. 
It consists of a glass bulb in which a vane is mounted on a vertical 
axis. The vane has four arms of aluminium wire to which are 
attached four small thin mica plates, coated on one side with lamp- 

^ Egerton, Proc. Roy. Soc., A, 103, 469 (1923). 
* Langmuir, Phys. Zeits., 14, 273 (1913). 
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black. These* plates are set so that their planes are parallel to the 
axis. If a source of heat is brought near the bulb, and the degree 
of rarefaction inside is correct, the vane rotates. At extremely low 
pressures the rotation practically ceases. There is a mechanical 
force exerted between two surfaces maintained at different tempera¬ 
tures, the molecules striking the hotter surface rebounding with a 
higher average kinetic energy than those which strike the surface at 
the lower temperature. In the radiometer the blackened surfaces 
absorb heat from the heat source, and the molecules rebounding 
from these surfaces are at a higher temperature, or, more strictly, 
possess greater kinetic energy than those impinging against the 
other faces, or the walls of the containing vessel. Consequently, 
momentum is imparted to the vanes and they rotate. 

139. The Virial Theorem.—A real gas will differ from the ideal 
or perfect, gas which was considered in Article 129 in at least two 
respects. The molecules which were treated as points must have 
size and shape, and the forces of cohesion are not negligible in the 
real gas. Thus the various equations deduced in that section, which 
give the pressure accurately in the case of an ideal gas, only hold 
approximately for a real gas. Clausius attempted to calculate the 
relation between pressure, volume, and temperature in an imperfect 
gas by means of the Virial Theorem, 

Let X, ?/, z be the co-ordinates of the position of a molecule, m its 
mass, r the distance it is away from the origin, and c its resultant 
velocity. Let A, F, Z be the components of the external forces 
acting on the molecule. Since 

(cr2)=2ir 
Jv 

+ 2 

d^x ^ 

md'^ in/dxV^ 

2\dt) ' 

If we add to this equation the two analogous relations relative to 
the other axes of co-ordinates, then 

^[Xx+Yy+ZzW^'^^ir^)--'^;- . (243) 

Illy d ^ 
Taking the mean value of the integral of - ^ period of 

time ty 
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The co-ordinates and velocities of the molecules are finite, so that (dr'^\ /dr^\ 
and both finite, and if t increases indefinitely, 

m d^ 

so that integrating equation (243) and dividing the result by /, 
- - — 

l[Xx+Yy+Zz\ + ^-^0, . . . (244) 

(r2)d^=:0, 

where the bars represent the average values, and, summing up for 
all molecules, 

\E[X^, + Yy+Zz\+E--=^i), . . (245) 

E being the steady average value of the kinetic energy. 

The expression kE[XiX-\- Yy \-Ziz\ has been called by Clausius the 
Virial of the forces acting upon the gas, and equation (245) is known 
as the Virial Theorem, 

140. The Equation of State.—If a uniform pressure, p, acts 
on the boundary surface enclosing a volume, F, of gas, and we con¬ 
sider an area dS whose normal is inclined at an angle 0 with the 
X axis, then 

X=-pdS,cose, 
and 

EXx = —EpdS. X cos 0~ — pEdV==^~pV, 

where dV is an elementary volume of length x along the x axis and 
of cross-section dS.cosO. Hence from (244) 

or. 
*SpV===7nNVC\ . . . (246) 

where N is the number of molecules per c.c. This is the law for 
perfect gases. 

If the gas is not a perfect one, we must take into account the 
intermolecular forces. We suppose that the force between two 
molecules distant r apart is one of repulsion represented by /(r). 
Let the centres of the two molecules be at y, z, and Xi, y^, Zi, 
and if X, Y, Z, and Xi, F^, Z^ are the components of the forces 
acting on them. 

Xi 

The contribution to EXx made by these two forces is 

Xx+X^Xi=——Xi] K 
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Hence the contribution they make to Z[Xx+Yy-\-Zz] is 

where the summation extends over all pairs of molecules. Thus 
equation (244) together with (246) gives us 

In the summation the force between two particles is to be reckoned 
once only, and the forces accounted for in the second term are, of 
course, to be excluded in the third term. In the present application 
we will suppose all the mutual forces accounted for in the second 
term. For one particle in the interior, the total of the mutual forces 
acting upon it is 

i. 4jz: f rf{r)r\ 
Jo 

‘dry 

and integrating by parts we have, writing '~~(i|<^(r)J for /(r)t/r, 

271 ^<^(r)l — (j>{r)rMr “67rf r^(f>(r)dry 
Jo Jo J Jo 

since the first term is zero at both limits. If now we write 

this becomes 
r(j>{r)dr— ~-d[y){r)], 

~-'67rj rdfy)(r)|, 
Jo 

and, integrating by parts, 

—671 j^|rY;(r)j^ ~1 y>(r)drJ=3A, 

from equation (169), since again the first term is zero at both limits. 
The summation extended over the whole volume gives SKV, but 

this must be halved, otherwise each force will be reckoned twice. 
Hence 

SpV SKV 
2 ^ 2 

or, 
\p+K]V=iZmC\ 

where K is the intrinsic pressure. The latter is proportional to p^, 

p being the density of the gas, and so, since p is proportional to 

+ . . . (247) 

where a is a constant and we have supposed the particles to be 
infinitely small. 
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It is now necessary to consider the effect on the virial of the 
finite, though small, size of the molecules. Van der Waals ^ showed 
that in this case the virial of the repulsive forces at impact gives 

p{V~b)^i£mC^ . . . (248) 

where for hard s})herieal masses the value of b is four times the total 
volumes of the spheres. If the cohesive force be of the character 
supposed, it exercises no influence upon any particle in the interior 

and is completely accounted for by the addition to p of so that 

as equation (248) is correct when there is no cohesive force, the 
eifect of such is properly represented by 

t.e. 

(p + f^{y-b)=nl{T, . . (249) 

n being the total number of molecules in the volume V, This is 
Van der WaaW equation connecting p, V, and T. 

This equation may be deduced, without using the virial theorem, 
in the following manner : As the centres of the molecules cannot 
approach closer than the molecular diameter a, we may imagine each 
molecule to be surrounded by the sphere of influence of radius a, 
such that the centre of no other molecule may penetrate it. Hence 
if V is the total volume of the gas, and we consider n to be the total 
number of molecules in this volume, (n —l)f7ra^ is excluded for the 
centres of the other molecules, i.e, the actual volume free from the 
spheres of influence is Vsince n is large compared with 
unity. Thus the real molecular density is n^, where 

n 
4 -4 • 

^ V 
(250) 

When we consider a gas enclosed within a vessel, the centres of the 

molecules may approach to within a distance ~ from the walls, but 

if a molecule is at a distance a from the wall, its sphere of influence 
extends to the wall, and the centre of no molecule can lie within the 
hemisphere fjrcr®. Thus, if dV is a volume taken in the vicinity of 
the walls of the containing vessel, is the fraction of this 
volume per c.c. which is not available for the centres of any other 

1 Van der Waals, Physical Memoirs (1890). 
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molecules. So that if dV^ is the actual amount of dV existing as 
free space, 

dV-dV^_7^l7w^ 

dV ~ 1 ’ 

or, 
dl\:=dV(l-l7zahi^). 

Hence from equation (250) dVj^===dV(l approximately. 

The actual number of molecules contained in the volume dV is 
iiidVi, where 

V—^Tiohi 

dV 
7ldV , approximately. 

If the molecules were considered as points, this number would be 

ndV 

so that the effect of the finite size of the molecules is to diminish 
the volume by ^Tta^n, Hence the gas equation becomes 

p{V-b)=nRT, 

where and represents a volume/owr times as large as the 
total volume of the molecules present in the volume, F, of gas 
considered. 

When we consider the intermolecular forces between the mole¬ 
cules, the mean effect within the interior of the gas is obviously 
zero, but for those molecules near the boundary walls of the con¬ 
taining vessel, the resultant internal force is directed towards the 
interior, and this internal pressure supplements the ordinary pres¬ 
sure. The former is proportional to the number of molecules per c.c. 
near the boundary surface and to the number per c.c. within the 

gas, so that the force is proportional to or it is ^ where a is 

a constant. Van der Waals’ equation of state thus reduces to 

. . . (251) 

It was proposed to represent by means of it the behaviour of 
carbon dioxide, but the experimental results for other gases do not 
agree with the equation. It does, however, represent the isotherms 
of fluids, and so is a eonfirmation of the kinetic theory of fluids. 

The internal pressure term, corresponds to molecular attrac¬ 

tion, which varies inversely as the fourth power of the distance 
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between the molecules. Thus, suppose that they are arranged in 
rows at intervals of /. The attraction which the molecules in one- 

k 
half of a row exert on those in the other half is where is a 

constant. If we consider a cube of 1 cm. edge, each half of the 

cube contains i rows, and the total force exerted between the 

molecules in the two halves will be 

1 k_ k 
yid~idT2^ 

and ilic internal pressure is, therefore. 

where k^ is a consiant. 
Thus 

a __ ki 
~dT2’ 

dA-2 
2™ -- > or d—4, 

and the molecular force of attraction varies inversely as the fourth 
power of the distance between the molecules. 

141. Size of the Molecules.—Although it is incorrect to assume 
that an atom is an impenetrable elastic volume of constant magni¬ 
tude, there is a certain volume associated with each molecule through 
which the centre of another molecule cannot pass. The magnitude 
of the volume depends upon external conditions, i,e. the forces 
exerted when the molecules approach. Two molecules approach 
each other until their translational kinetic energy is completely trans¬ 
formed into potential energy of repulsion, so that a nearer approach 
must take place with a rise in temperature, which corresponds to an 
increase in kinetic energy. Hence the molecular volume decreases 
at higher temperatures. 

The apparent volume, therefore, is caused by repulsive forces 
between molecules, but the real volume will be less than this. At 
the absolute zero of temperature there is no translational energy, 
and the molecule will take up positions where the forces of attrac¬ 
tion and repulsion, acting on it, balance. In this case the real and 
apparent volumes are equal, and the apparent volume is likely to 
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be greater at the zero than at any other temperature, because the 
velocity of approach is likely to make the molecules approach closer 
in opposition to their repulsion than otherwise, so that this volume 
is a superior limit of the apparent molecular volume for temperatures 
above the absolute zero. 

The diameter, o', of a molecule may be determined from h, the 
constant in Van der Waals’ equation (251) : - 

{l^+~)j(V-~b)=nRT, 

from which we have, at constant volume. 

(252) 

which is the pressure coefficient of the gas at constant volume, and 
may be determined by experiment. Thus if p, and V are known, 
a may be calculated. 

At constant pressure we have, neglecting small terms, 

1 

V ^(i+ 2a 
(253) 

and this is the coefficient of expansion at constant volume, and may 
be measured experimentally. Hence, if a is known from above, b 
may be determined, and o found from the relation h—\nrvo^. 

The value of o may also be calculated from the known mean free 
paths with the help of equation (226), taking iV~2*705 x 10^^, but, 
in general, the results for a obtained by this method are larger than 
those given from Van der Waals’ constants. It should be noted that 
the latter method gives the true volume, whereas in the free path 
measurements we obtain the cross-section, so that the two sets of 
values found for a may be interpreted as indicating that the mole¬ 
cules are not really spherical in shape. For hydrogen and helium 
the results are concordant, and we assume that the molecules in 
these gases are spherical. It must be remembered that the apparent, 
or effective size, is being measured by these methods. 

Since the value of r], the coefficient of viscosity, can be deter¬ 
mined experimentally, o may be found with the aid of equation (230). 
The size of the molecules decreases as the mean molecular velocity 
increases and, therefore, as the temperature rises, but from Suther¬ 
land’s formula (281) the value of the diameter of the hard kernel, 
may be determined. 

There appears now to be no doubt that, in the case of monatomic 
gases, the atoms, when in thermal agitation, behave like hard spheres 
which exert mutual attraction on one another. When we come to 
consider the case of diatomic molecules—as, for example, in chlorine 
gas—we are met by the difficulty that we are no longer entitled to 
regard the molecule as a sphere. The viscosity formula, however. 
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gives a means of calculating which is the area presented as a 
target by the molecule to other molecules approaching it from all 
directions. Thus Rankine ^ obtained the mean target areas for 
carbon dioxide and nitrous oxide, 0*870 x 10”^^ cm. and 0*867 X10"^^ 
cm., respectively, so that within the limits of experimental error, the 
molecules of these two gases behave, in the gaseous state, as though 
they were of identical size and shape. This identity is attributed 
by Langmuir ^ to the arrangement of the external electrons being 
the same in the molecules of the two gases. 

The molecular radius may also he estimated for a gas from its 
density in the liquid state. Thus if 1 c.c. of gas is condensed to the 
liquid condition and the molecules, supposed to be hard spheres, are 
packed as closely as possible, they would occupy a volume 

Ng^ 

V2 
since, with closest packing, the molecules are associated in triangular 
pyramidal piles and, if the base of such a pyramid is an equilateral 
triangle having 7n molecules in each side, the total number in the 
pile is 

— . +(2+l) + l, 

or, 
{Um 2 ) /2=m(7n+1)(wi -f 2 )/6 ~ in^/d, 

when rn is large. 
The volume of the pyramid is 

V=m®aY6\/2. 

But ni^/Q—N, the number of molecules in 1 c.c. of the gas, and hence 

F=iV(yVV2. 

If the density of the gas is d, and that of the resulting liquid zl, 

the volume of the liquid is and 

S Na^ 

A~V2’ 
so that a may be found, if N is known. The general agreement 
between the values of a calculated in this way, and those obtained 
by the previous methods is fairly satisfactory. 

Values for the diameters of molecules together with the mean free 
path values are given in Table XV. These have been taken from 
Jeans’ Dynamical Theory of Gases and Kaye and Laby’s Tables. 
These experimenters take iV=2*75 xlO^®, whereas in Table XV the 
results are calculated for V=2'705 x 10^®. ^ 

1 Rankine, Proc, Hoy, Soc., A, 98, 873 (1920). 
2 Langmuir, Journ. Amer, Ckem, Soc., 41, 868’(1919). 
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Tablk XV.—Size and Free Paths of Molecules 

The molecular diameters are calculated by means of the following formulae 

1. Viscosity: 
-» b-499 pc 

7^ —0-499-—-, or (T-~---xr ■ 
V27ra'^ -^V2 

2. Van dcr Waals’ constant : 

ii. Density of liquids : 
8_Na^ 

^ V2 

Gas. 
Mean Free 
Path, L, 
at N.T.P. 

! 
Molecular Diameter o deduced from 

»?• b, ! “(Upper Limit). 

Hydrogen 11(> Xl0-«cm. 2’70 X 10~® cm. 2-53 X 10-® cm. 3-94 Xl0-»cm. 
Helium . 171 218 3-97 „ 4-0 
Water vapour . 
Carbon mon- 

40 4-58 3-76 

oxide , 5*8 3-81 4-24 
Ethylene 27 5*57 5-37 
Nitrogen. 57 3-79 3-50 3-98 
Air 5-9 lH-751 j3-32 
Nitric oxide 5-9 „ i 3-75 
Oxygen . . 1 6-3 „ 1 3 65 12-91 3-72 
Argon . . j 0-3 3 07 2-87 4-04 
Carbon dioxide 40 4-58 13-42 4-OC 
Nitrous oxide . 3-9 „ ! 4-64 I 4-65 ,, 
Methyl chloride i 20 5-67 1 4-93 
Ethyl chloride. 2-2 617 j 5-31 
Chlorine . . ; 2-9 5-41 4-63 
Benzene . 1-5 7-50 5-87 
Krypton. . l 4 9 413 ' 3-16 „ j 4-46 ,, 
Xenon 3-5 4-88 3 45 „ : 4-50 

If e be the charge of electricity carried by the hydrogen atom 
in electrolysis, and Nm the number of atoms in 1 gram-molecule 
of hydrogen, it is known from experiments on the electrolysis of 
solutions that 

iVm<'=9647 electro-magnetic units. 

The value of is 4-802 x 10~ electrostatic unit so that A^m^-6 023 x 10^3, 

The absolute mass of a hydrogen atom is equal to hence it is 

1-673 Xl0“2^ gm. As the density of hydrogen is 8*987 xl0~^ grn. 
per C.C., iV=2-687 X10^® per c.c. 

Chapman ^ obtained a general expression for the velocity distri¬ 
bution function of a gas in which the mean velocity and temperature 
vary from point to point, the molecules possessing spherical sym¬ 
metry, and the state being such that the molecular paths are sensibly 

1 Chapman, Phil, Trans., 216, 879 (1916). 

O.F.M. T 
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rectilinear for the greater part of the time between successive col¬ 
lisions. In addition, the duration of a collision is assumed to be 
small, compared with the time between successive collisions, and the 
mean free path is small compared with the space variation of pres^ 
sure, density, and temperature. The formukc obtained have been 
worked out in detail for three special types of molecules : (a) point 
centres of force varying as the inverse nth power of the distance, 
(/>) rigid elastic spheres, (c) rigid elastic attracting spheres. The 
diameters of the molecules calculated on the hypothesis that they 
attract one another (Table XVI) are less than those calculated on 
the hypothesis that no such forces exist (Table XY), the apparent 
size in the latter case including part of the extension of the field 
of force of the molecule. The results differ to a slight extent from 
those calculated by Chapman himself, owing to the adoption in the 
present calculation of Millikan’s value 2*705x10^® for the number 
of molecules per c.c. at S.T.P. The values of the diameters calcu¬ 
lated from the constant b of Van der Waals’ Law are also given 
for comparison. The agreement between the two sets of values is 
in most cases remarkable, and the table as a whole is a testimony 
to the close numerical accuracy now attained by the kinetic theory; 
where there is disagreement in the table, there is, in most cases, 
uncertainty as to the data. 

While exact agreement may be expected only for monatomic 
gases, the values for diatomic gases show that the theory gives a 
mean diameter in the case of other gases which agrees with that 
found from values of b (see Table XVI). 

Bragg ^ has estimated the dimensions of certain atoms from X-ray 
measurements. He regards his values as measures of the diameters 
of the outer electron shells of the respective atoms, and comparing 
his results with the values obtained from the kinetic theory, it is 

Table XVI.—Molecular Diameters for Attracting Spheres 

Gas. 

V- 

a measured from 

h. 

Argon 2-87x10- ® cm. 2-87x10-8 cm. 
Krypton 3-15 316 
Xenon . n-50 3-45 
Helium , . . i 1-91 1*97 
Oxygen . 2-96 2-91 
Hydrogen 2-38 2-58 

Nitrogen 3*13 
/3-56 
1310 

Air 811 3-32 

Carbon dioxide 

i 
r3*23 
18-30 

i 

3-22 
3-42 

1 Bragg, Phil. Mag., 40, 169 (1920); 2, 258 (1926). 
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seen that, from the latter theory, the moving atoms of a gas do 
not approach so closely during an encounter that even the outer 
electrons intermingle. The atom, in so far as collision is concerned, 

is to be regarded as a hard elastic sphere of radius which is quite 

definitely greater than the distance d between the centre of the atom 
and its outer electrons. The ratios in column 4, Table XVII, show 
that the relation between these two radii is not one of strict pro- 
})ortionality, but depends on the particular type of atom. For 
further details the reader is advised to consult Bragg’s papers. 

Table XVIf.—Molecular Diameters (Bragg) 

Molecular Diameter. 

(ias. From Crystal 
Measurements. 

2d. 

i From Viscosity 
1 Measurements. 
1 a. 

HaOo . 
a 

Neon . 1-30x10 eni. 
\ ; 
j 2-35X10-* cm. : 0-553 

Argon . 205 1 2-87 0-714 
Krypton , . 2-35 315 0-740 
Xenon 2-70 ! 3-50 0-771 

EXAMPLES 

1. Show tliat th(‘ average kinetic energy of translation of the gas 
molecules in a given volume is three-quarters that of the molecules which 
collide during some period of the time with the wall of the containing 
vessel. 

2. Assuming the Maxwellian distribution of velocities among the 
molecules of a gas, find the relation between the mean velocity, c, the 
mean square velocity, C, and the most probable velocity, Cq. 

[c/C -- ; Co/C = Vi/sT] 

3. If the molecules of a gas are considered to be hard elastic spheres, 
of mass m and diameter <t, show that the total number of collisions per 
unit volume per unit time between the molecules which are moving with 
relative velocity between v and u-fdu is 

where T is the temperature, p the molecular densit}^ and R is the 
universal gas constant. 

4. The ratio of the principal specific heats of helium is 1*66, the 
value for air is 1*40, that for sulphur dioxide is 1*29,,and that for ethyl 
ether is 1 024. How do you account for these values ? 

5. Assuming the density of hydrogen to be 0 089 gm. per litre, find 
the mean square velocity of hydrogen molecules at standard temperature 
and pressure, [1*7x10® cm. per sec.] 
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6. Assuming the ordinary values of such physical constants as you 
require, calculate the intrinsic energy of air at 15^^ C. and 75 cm. pressure. 

[2 02 X 10» ergs per gm.] 

7. Determine the mean free path and collision frequency for air 
molecules at standard temperature and pressure, given that the viscosity 
is l-7xl0~* C.G.S. units and the density 1-29 gm. per litre. 

[8-2xl0-« cm. ; 5-9xl0».] 

8. Calculate the molecular diameter, the total number of molecules 
per c.c. and the mass of a molecule of oxygen. Density of oxygen gas 
is 1*43 gm. per litre ; density of liquid oxygen 1*24 gm. per c.c. ; mean 
free path of the molecules 6*3x10“® cm. 

[4*6x10-8 cm. ; 4*9xl0i»; 2*9 x lO-^s gni.] 

9. Show that the constant h in Van der Waal’s equation represents 
approximately four times the proper volume of the molecules of the fluid. 



CHAPTER IX 

FOURIER’S THEOREM AND FOURIER SERIES 

142. Fourier’s Theorem. - The composition of simple harmonic 
vibrations of commensurate periods may result in periodic motions 
of various characters, and they may be studied by means of an im¬ 
portant theorem, introduced by Fourier in his renowned Analytical 
Theory of Heat. It may be formally enunciated as follows :— 

Any finite periodic motion may be produced by a suitable combina¬ 
tion of commensurate simple harmonic motions of suitable amplitudes 
and phases. 

The theorem also shows how to determine the amplitudes and 
phases of the components required to produce any given resultant. 
In other words, it shows how to analyse any given periodic motion, 
however complicated, into the simple harmonic components of which 
it may be conceived to be compounded. 

Analytically, the theorem may be expressed thus : If y=f{x) is 
any continuous function of the independent variable, a:, between the 
limits and x=27z, then, also between these limits, 

f{x)^~AQ-fAi cos x-\-A2 cos 2x~\~ , . . -j-AnCosnx-i- . . . 
sin aj+^2 2x-i~ ,,, Bn sin nx-\- . . . (254) 

A rigid proof of this is beyond the scope of this book, but the possi¬ 
bility of the expansion—which at first acquaintance seems to be very 
limited—is illustrated by the following argument. 

Let {x^yi), (^22/2)? (^3.^3) be any three pairs of conjugate values in 
the equation y~f(x), then, substituting these values in 

7^—,4 0+^1 cos x+Bi sin X, 
we have 

y^~AQ~{-Ai cos Xi~\-Bi sin x^y 

7/3--//o-t-.Ii cos x^+Hi sin x^y 

and these equations may be solved for Aq, A^y and By, We thus 
compel coincidence of these two equations in the three selected 
places. Similarly, the two equations 

and 

ij^^Aq+^iCOS x-\- . . . +AnCos nx+Bi sin x+ . . . -{-Bnsin nXy 

may be made to coincide in (2n-f 1) selected places. If n be made 
infinitely great, the two equations agree at an infinity of values and 
this suggests the possibility of a point-by-point agreement. 

The series resulting from such an analysis of a given function all 
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come within the scope of the full expansion given in equation (254) 
and are called Fourier series. 

143. Evaluation of the Coefficients.—If each term of the 
right-hand side of equation (254) is multiplied by dx and integrated, 
we have 

‘OS X. (hr f ros }LV.dx \- . . . 

sinx,dx \- ... 4-7^.; j sin 7ix,dx-\- . , . 

and every term, except the first, disappears for the limits 0 and 27r, 
giving 

(255) 

Now multiply each side of equation (254) by cosnx.dx and 
integrate. Thus 

^/(tr) cos mr aIx^aJ^ cos nx,dx-\-A^^ cos x cos nx.dx-\- . . . 

\ aJ^ cos'^ nx .dx \ . . . \ Am^ cos vix cos nx ,dx \' . . . 

-}-Rij sin X cos nx.dx \- . . . fRnJ |- . . . 

d-RmJ cos nx,dx-\' . . . 

On integrating from 0 to 27iy eacli of the integrals on the right-hand 
side is zero except 

r2ji 

and thus 

rZn r27r 

in I COS2 nx.dx=lAn\ (1't cos 2nx)dx —jiAn 
Jo Jo 

1 
An~-\ f{x) COS 7ix .dx . . . (256) 

^J 0 

Similarly, by multiplying both sides of equation (254) by sin nx.dx 
and integrating from 0 to 27i, we have 

Bn~-\ f{x)sinnx,dx . . . (257) 
^Jo 

Thus the theorem may be written in the form : — 

/(*)=2~| /(«) cos nx.dx 

n^<x> , „ 
\-isinnxr^j,, . . , 
\ -1 nx.dx , (258) 
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Before developing the theorem to make it applicable outside the 
narrow limitations of the range 0 to 2;r, it will be useful to point out 
three special features of the coincidence which has been assumed 
between the arbitrary function f{x) and the corresponding Fourier 
expansion. 

(i) At a discontinuity in f(x) between 0 and 27i, the series gives 
the mean value of f{x) on the two sides of the discontinuity. 

(ii) At 0 and 27i, the value of the series is again the mean of 
the values of f(x) at each of these points. 

(iii) It is not necessary that/(a;) should have the same mathe¬ 
matical form throughout the range 0 and 27z, If it has different 
values, then, in the integration, each must be integrated between 
its own limits. Thus if t/—f^{x) from 0 to I and y=f2i^) from I to 
271, we have 

and similarly for An and Rn. 

144. Example of a Fourier Expansion.—Let y~x from .t==0 
to x=^27ty ix, f{x)—x and 

1 

1 1 
An—-\ X cos nx ,dx= — \ x. d{sin tix). 

71J Q UTIJ Q 

Integrating by parts. 

An=- 
7171 

■( \2.n r^n 

I X sm fix ] — j A' sill nx. dx 

and both these terms disappear when the limits arc applied. Thus 
there are no cosine terms in the expansion. Also 

1 
Bn"-\ X sin nx,dx= — 

^Jo 

and thus we have 

7171 

■/ \2;r 
f X COS nx j — I COS nx. dx ■ 

2 

n’ 

y~x~7z—2[sin a;+| sin sin 3tr+ . . .]. 

It is interesting and instructive to see how a few of the terms 
of this series combine graphically to approximate to the straight 
line y—x. Fig. 84 shows the result of graphing, 

(a) y~7i—2 sin x, 
(b) y=7c—2 sin x—sifi 2Xy 
(c) y—71-^2 sin x—sin 2x—\ sin 3x, 

It will be seen that a gradual approach to the line y~x is obtained 
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as the number of terms increases. This example, however, is not 
very rapidly convergent, and in many cases terms beyond the first 
three, or four, produce only a small effect. 

Fig. 84.—Fourier Expansion of y=x. 

145. Extension of the Range.—In practical cases the function 
to be analysed rarely recurs at intervals of 2n, so it is necessary, 
in order to give the analysis a desirable flexibility, to develop the 
expansion to cover the more generalised range from 0 to, say, 2Z. 

xl 
Let a quantity s be defined by 2——> so that dx 'dz, and at 

x—0, z=0 ; at x=2n, z=^2l. Also f{x)—<f>(z). 
Substituting for/(a:), x and dx in the generalised expansion (258) 

we have 

\ I f imzC^ n nnz, 

n-l 
W —00 

. 1 . nnz .71 . riTtz, 

n=] 

-i fV)*+ 'Z\T^> “ 
^ 1 ^ 

1 . njiz s . lui 
+ 2^1 " f -y 

imz, 
,~~dz. 
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If, now, is identified with the independ(Mit variable and 
(f}{z) with the arbitrary function f{x), then, over the range x^^O to 

1 

njtx , 
cos —ax 

n^rj J 

-f- 2^ Y /(^') -j-dx . (259) 

146. Displacement Curves. -Let x^-t. Then y-~=f{t) is the 
displacement curve of any vibrating system, and the range is from 

2jr 
0 to the periodic time If we [)ut --oj, the expansion (259) is 

'o 
*271 , 2jt 7T, 

changed by the substitution of /q for 2/, and e>--- , for or and 
U 21 I 

becomes 

(0 
1 r^o 2 
-I f(i)dt+ y y cos iW)i\ f(i) cos iut)f ,di 

Jo’ 

f /(/) sin, luot.dt 
- . 

-4- > -- sin nojt 
Iq 

n--l 

(260) 

Rut wt‘ may write 

Ai cos ojt+Bi sin o)t-..C\ cos {ojt—di), 

where (\—VAi^Y-Bi^ and ian — and the analysis of the dis¬ 

placement curve may be written in the following form :— 

f{i)^CQ+(\ cos {o)t--d^)Y . . . +Cn cos {n(ot—dn)+ . . etc,, (261) 

where 

; t\ =.■ ; Cn== VaJ+BJ, 
and 

ian (5j — — ; tan dn— 
' 4 ’ ... 4 

In equation (261) Cg, etc,, give the amplitudes of the harmonic over¬ 
tones present, and ^2’ <^3, etc,, the phases. 

147. Partial Fourier Series.—In analysing the function y~x 
it was noted that the expansion contains no cosine terms. Similarly, 
an expansion may have no sine terms. Such expansions are called 
partial Fourier series, and their occurrence may be foreseen by an 
examination of the type of symmetry shown by the graph of the 
function to be analysed. For example, 

cos nwt^cos {2n7t~n(ot)~cos no){tQ—t), 

and the curve 

Aq-\-Ai cos (ot-Y . * . +^» cos ncotA- . . . (262) 
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must be symmetrical about the middle ordinate of the range, ix, 

ordinates equidistant from are equal and of the same sigfi. Con- 

versely, if this type of symmetry exists in the displacement curve, it 
may be assumed that expression (262) is its Fourier expansion. This 
is illustrated in Fig. 85 (a), which would yield such an expansion. 

Also, since 

sin nojt=~ sin {2n7t- ‘}i(x)f)^—sin 

the curve 
BiSin(jot \- . . . \ Bh sin no)t~\~ ... . (263) 

is symmetrical about the middle point of the range, ix. ordinates 

equidistant from arc of equal magnitude but arc opposite in 

sign. For a curve yielding the series (263) as its expansion, sec 
Fig. 85 (b). 

Fig. 85,—Symmetry oe Partial Fourier Series. 

148. Analysis into Partial Fourier Series.—If the function 
f{x) to be analysed is given between the limits x=0 and x=l, then 
its expansion into a Fourier series may be made in different ways, 
according to the type of symmetry it is assumed to have beyond 
this range. In the first place it may be assumed to have the same 
form from I to 2/, from 2l to 3Z, etc., i.e. the given value/(a?) occurs 
periodically at intervals of 1. This makes 0 to Z the whole range, 
and the full series occurs in the expansion, while the coefficients 
have the values. 

Secondly, it may be assumed that Z is half the range, and that the 
graph is symmetrical about the ordinate x—l, ix, it may resemble 
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the curve in Fig. 85 {a), where OA represents graphically the given 
function. In this case the expansion is given by a half-range cosine 
series of the form expressed by (262), i.e. 

where 

cos y-b . . . -j~An COS (265) 

(266) 

The second formulae follow because the integrals have the same values 
in the two halves of the range. 

Finally, we may suppose that I is half the range and the curve 
is symmetrical about the middle point x—l; thus it is of the 
type Fig. 85 (b), where OB is the given function. The expansion 
then becojnes a half range sine series^ similar to (263), 

where 

y^f{x)^B^stn ~ + . . . -\~BnStn • 

f{x) sin f{x) sin ^~dx 

(267) 

(268) 

It is, of course, the second formula in each of the equations (266) 
and (268) which is used in the calculations of the coefficients, since, 
over this range of values of x, f{x) has the value given. 

149. Fourier Series as the Solution of an Important Type 
of Differential Equation.—The discussion of an important type 
of differential equation, which is of special importance in problems of 
heat and diffusion, has been introduced at this stage because its 
solution involves series of the Fourier type. The equation is 

dt~~^dx^ 
(269) 

A solution of the form c — Be^^ sin mx may be tried. If this is sub- 
stituted in equation (269) it gives ' and a similar result 
is obtained by putting c~-Ae^^ cos mx. Thus the solution may be 
written 

cos m^x cos . . . 
-\-Ane~^^*^^ cos mwa;+ . . . sin niiX 

sin m^x -Y- , . . sin mnX-\- . . . (270) 

where Aq, A^^ . . ., Rj, . . ., m^, etc., have values which will be 
determined by the initial conditions. 

If when f==0, c is given for some range of x from 0 to I, say, by 
c—f{x), then equation (270) reduces to 

f{x)==AQ-\-B^-Y-AiCosmiX-{- . . . +AnC0smf^+ . . . +Bisinm^x 
“b ... “b-Rn sin //i>|tC-b . . • (271) 
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But it has already been shown that/(a,’) may be expanded into dif¬ 
ferent Fourier scries over the range aj--0 to The choice of the 
appropriate form will depend on boundary and final conditions, but 
equation (271) will, in all cases, reduce to one of the expansions 
described in the previous article, and the coeflicients of equation (271), 
and thus of (270), will be given by the appropriate coenicient given 
in equations (264), (266), and (268). In addition, the 7/i’s now take 
the values of (259) without loss of generality. It will be seen that, 
beyond the present simplification, each problem must be considered 
individually, since the final form of the solution depends so much 
on the special conditions. A complete example is discussed in 
Article 160, while applications are also made in Article 209. 

EXAMPLES 

1. Show that if a periodic function is displaced by half the range 
and the new function is added to the tirst, the result gives twice the sum 
of the independent term and even harmonics ; when the second is sub¬ 
tracted from the first, the result is twice the sum of the odd harmonics. 

2. Prove that the root mean square value of a periodic function is 
equal to [A^^ 1-where A, and B are the usual Fourier 
coefficients. 

3. An alternating electromotive force of sine form is applied to a 
full-wave rectifier. Obtain an expression for the rectified current in 
harmonic series. 

[(4^/n) — (cos 2o)t)/3 — (cos 4e>/)/l5 —(cos 6a>i)/35 

4. Find a harmonic series which will represent the (airrent in a cir¬ 
cuit consisting of a diode valve of impedance R to which an alternating 
E.M.F. E sin cot is applied. 

[C==(E/2nR){2 ^■n sin cnt-A{(cos 2coi)/^-\ (cos . . .]).] 

5. A quantity y has the value a from x~0 to x==n and —n from 
x---n to x = 2jt. Express y as a Fourier expression in x, 

[(4>a/7i){sin x+(sin Qx)/^-\-(sin 5x)/r)^ . . .}.] 

6. If y~x^ over the range aj—0 to lind a full Fourier expansion 
for y for points inside these limits. 

\V^/ii-\^(P/7i^){cos jSx^-(cos 2fix)/4^-\ • • •} 
-(l^/n){sin px\ (sin 2px)/2 \- . . .}]. (p—jr/l). 

7. Express from to x^l as a cosine series. 
—(4<l^/n^) [cos (ix—(cos 2px)/4~\-(cos 3px)/9 — . . .}|. (fi=7T,/l), 

8. A displacement curve has the following shape: y^^4at/T from 
to 774, y — 2a —4at/T from t^T/4i to 3T/4, y—Aat/T — ^a from 

t^ST/4 to T. Find the amplitude of the fundamental and of the first 
two harmonics. [Sa/jr* ; 8a/97i^; Sa/25ji^,] 

9. A condenser is charged rapidly and then discharged through a 
high resistance at equal intervals of T sec., so that the current, y^ 
it supplies is given from 0 to T by log y ^\og B—kt. Show, by a 
Fourier analysis, that the amplitude of the harmonic of period T/n is 
2B(1'\/(k^ where coT = 2n. 
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10. A metal bar at temperature 0° C., and of length Z, thermal con¬ 
ductivity k, density d and specific heat s has one end suddenly raised 
to, and maintained at, T° C., while the other is maintained at 0° C. If 
no heat can flow through the sides of the bar, find an expression for the 
temperature at any point distant x from the cold end at any lime /. 

[Tx/l~ (2T/7tl){e^^ sin sin 2px)/2-^(e^^^ sin 3px)/3+ 
— 0L= -~kp^/ds») 



CHAPTER X 

OSMOSIS AND DIFFUSION 

150. Osmosis.-' A bladder full of alcohol becomes distended 
when immersed in water, but if the bladder contains water and is 
immersed in alcohol, it shrinks. This is explained by the fact that 
the membrane is permeable by water but not by alcohol, so that the 
passage ol’ the former through its walls is not compensated by a 
reciprocal movement of the latter. The bladder thus has a property 
of selective transmission, and its action may be compared to that 
of a sieve whose meshes are sufficiently coarse to allow small particles 
to pass through while rejecting others of greater size. Such a mem¬ 
brane is said to be seyni-perrneable, and this process of preferential 
transmission, which is called osmosis, has an important j)art in many 
organic functions both animal and vegetable. 

Different semi-permeable membranes vary in their characteristic 
demarcation between transmitted and rejected substances. Thus, a 
colloidal film such as a piece of bladder is traversed by crystalloids as 
well as by w^atcr, but colloids are not transmitted. This peculiar 
property was utilised by Graham for the separation of crystalloids 
from colloids and is termed dialysis. Other membranes differentiate 
between classes of crystalloids, while others are permeable practically 
only by w^ater. Thus the type of separation desired, or the special 
kind of osmotic action to be studied, needs a particular selection of 
the semi-permeable membrane to be used. One, which was of great 
service in the early study of osmotic laws, is caused by the interaction 
ol* copper sulphate and potassium fcrrocyanidc. The precipitated 
cupric fcrrocyanidc is permeable by water but not by sugar. The 
film is mechanically weak, but if a porous pot containing copper sul¬ 
phate stands in a solution of potassium ferrocyanide, the chemical 
action and precipitation occur in the pores of the vessel and thus 
the film receives the necessary support. 

151. Osmotic Pressure.—If a porous pot impregnated by the 
membrane described above contains a sugar solution and is immersed 
in water, the selective transmission causes an accumulation of water 
inside the vessel, with a consequent rise in the level of its liquid. 
The process ceases when a definite excess pressure is thereby pro¬ 
duced. This pressure, which is called the osmotic pressure, clearly 
equals the difference of pressure which must initially be present on 
the solution side of the membrane if no osmotic action is to result. 
The experiment may be explained in terms of molecular motion. 
The walls of the membrane are continually receiving impacts from 
the water molecules on one side and from a mixture of water and 
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sugar molecules on the other. Since the sugar is refused transmis- 
sion there will be an initial excess inflow of water. The accumulat¬ 
ing excess pressure inside the vessel assists the escape of water from 
the inside and tends to lessen the inflow. When a state of dynamic 
e(piilibrium is reached, the exchange of molecules is balanced and 
tlu* rise of pressure ceases. It is to be expected that the osmotic 
pressure will increase with an increasing strength of original sugar 
solution, or, in a more general case, with greater difl'erence in the 
concentrations on the two sides of the membrane, since the pres¬ 
sure results from the presence of the sugar particles among the 
bombarding molecules. If the conecaitration is the same on both 
sides of the membrane, there is obviously no osmotic pressure. 

The mechanism of the passage of a li(piid through a membrane 
is not fully understood. It may be, as the previous analogy suggests, 
a purely physical process dependent on the relative sizes of the 
molecules in the solution and the pores of the membrane. On the 
other hand, it is possible that loose chemical compounds are formed 
between the membrane and the solvent, and that these compounds, 
gradually saturating the membrane, decompose on its other side 
where the concentration of the solvent is less. Another possible 
explanation depends upon the difference in surface tension which 
may exist between the membrane and the solution, or solvent. The 
surface tension of salt solutions is different from that of pure water, 
and the surface energy of a solid in contact with a solution is less 
than with pure water, so that the layer of liquid in contact with 
the solid will become richer in salt than the bulk of the solution,^ 
As the solution flows through the capillary tubes, the salt will col¬ 
lect along the walls and the faster-moving central regions will have 
a diminished concentration. The effect is that the liquid finally 
comes through as pure water. Similar considerations may explain 
the behaviour of semi-permeable membranes in which the pores act 
as capillaries. 

The expression “ osmotic pressure of a solution ” is, speaking 
strictly, incorrect, inasmuch as a solution does not of itself possess 
any osmotic pressure, and the term is used somewhat loosely to 
denote the hydrostatic or mechanical pressure which would be pro¬ 
duced if the solution were separated from the pure solvent by a 
membrane permeable only by the latter. A realisation that osmotic 
pressure is produced by osmosis and not vice versa will prevent the 
common confusion which gives rise to the idea that osmotic pres¬ 
sure acts in an unusual manner, by causing a movement from a 
lower to a higher pressui’e level. 

152. The Laws of Osmosis.—The main quantitative features 
of osmosis were discovered by Pfeffer. Investigating the connection 
between osmotic pressure and solution strength, he found that the 
relation for non-electrolytic solutions was one of direct proportion- 

^ See Gibbs' Theorem, Article 101, Chapter VI. 
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ality, so that, if P is the osmotic pressure of a solution of concen¬ 
tration c gram-molecules per c.c., the law may be written 

P cc c. 

He also found that, at least approximately, the osmotic pressun^ P 
is })roportional, for a given solution of constant strcnigth, to tlie 
absolute temperature, or 

P ocT. 

If these laws are combined and if, instead of considering c the con¬ 
centration, we use the volume V of solution, which contains 1 gram 

molecule of solute, then, since 

PV=IU\ .... (272) 
where R is a constant. 

With electrolytic solutions the results, as would be expected, are 
more complicated, owing to the dissociation which accompanies 
solution in such cases. With very dilute solutions, in which dis¬ 
sociation is practically complete, the osmotic pressures are nearly 
double those given by equation (272), while very strong solutions 
approximate in effect more closely to the formula. This difference 
between electrolytic and non-conducting liquids is quite general and 
applies in all the other results of osmosis. 

Van ’t Hoff propounded the kinetic theory of solutions and 
deduced, on thermodynamical grounds, that P oc 2' if the solution 
is so dilute that the heat effect of further dilution is negligible. The 
formula PV~RT was put forward by Van’t Hoff* only for solutions 
of infinite dilution, and consideration of the factors influencing the 
departure of gases from Charles’ and Boyle’s Laws will lead to the 
anticipation that, for any except dilute solutions, the simple van ’t 
Hoff relation will err to a degree which becomes more marked with 
increasing concentrations. 

Ajn outline of Van’t Hoff*’s method is given below. Consider an 
involatile liquid solvent whose volume, at constant temperature, is 
unaltered by a dissolved gas. Commencing'with a volume v of gas 
under pressure and with a volume V of liquid just sufficient to 
dissolve the gas under the same pressure, allow the gas to expand 
until its rarity is such that no sensible dissipation of energy occurs 
when contact with the liquid is established. The gas is then com¬ 
pressed until, just as it disappears through solution under rising 
pressure, the pressure rises to po* The operation must be con¬ 
ducted at constant temperature and so slowly that the condition 
never deviates sensibly from that of equilibrium. The process is 
accordingly reversible. 

Imagine that the liquid and gas are confined under a piston in 
a cylinder of unit cross-section. During the first stage—that of 
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expansion—contact is prevented by a partition inserted at the 
liquid surface. Let the distance of the piston from this partition 
be ac, so that initially, x~ik At any further stage the pressure p 

is given by so that the work done during expansion is 

wj • • • (“7a) 

where x is large compared with v. During condensation the par¬ 
tition is removed and the pressure upon the piston is less than before, 
because the gas which was previously confined to the space x is now 
partly in solution. If a denotes the solubility, the available volume 

is practically increased in the ratio the pressure on 

the piston in the position x is 

‘ x+olV 

and the work required to be done during the compression is 

1 .r+aF . . (274) 

By supposition the quantity of liquid is such as to be just capable of 
dissolving the gas, and so olV=v. Hence the total work lost during 
both operations is the difference between (274) and (273), i.e. 

olV 

aF 
log 

aF ~\-x -, 
X 

and, as x is indefinitely great, this is equal to zero, so that, on the 
whole, no gain or loss of work results from passing reversibly from 
the initial to the final state of things. 

Now introduce a semi-permeable membrane, permeable to gas 
but not to liquid, just under the piston which rests at the liquid 
surface. A second membrane, permeable to liquid but not to gas, 
is substituted, as a piston, for the bottom of the cylinder and may 
be “ backed ” upon its lower side by pure solvent. Arrange the 
motions of the two pistons so that, as the upper one is raised through 
the volume v and the lower one through F, the gas is expelled, the 
pressure of the gas remaining at po* The liquid which has not yet 
been expelled retains a constant strength and, therefore, a constant 
osmotic pressure P. When the expulsion is complete, the work 
done on the lower piston is PF and that recovered from the gas 
is PqU, so that PV—p^v is the net work done. Since the whole 
experiment is reversible, and since the whole cycle has been con¬ 
ducted at constant temperature, it follows from the second law of 

O.P.M. u 
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thermodynamics that no energy is lost, or gained, during the cycle, 
and so 

PV=PqV. 

The osmotic pressure is thus determined, and it is evident that its 
value is that of the j)ressure which tlie gas, as a gas, would exert 
in the space V, 

From this follows the formal extension of Avogadro’s Law to 
the osmotic pressure of dissolved gases, and thence, by a natural 
hypothesis, to the osmotic pressures of other dissolved substances, 
even although they may not be capable of existing in the gaseous 
condition. Thus the constant R of equation (272) is the same as 
the universal gas constant. 

To deduce the relation between osmotic pressure and temperature 
consider the first law of thermodynamics, 

dE=dH+dW, 

where E is the internal energy of a system, H the heat given to, 
du 

and W the work done on, the system. Also —> where dxf) is 

the change of entropy and T is the absolute temperatures so that 

dE^Td4>+dW, . . . (275) 

and, writing for E — T<l>, 

d'ip^dE~~Td<f>-(f>dl\ 

or, from equation (275), 
d'ip=^-~<f>dT-\~dn\ 

i.e. 

if no work is done. Hence 

This is termed the equation of free energy. 
In the case of osmotic pressure the free energy is the work obtain¬ 

able by a reversible and isothermal process, and is equal to —Pv, 
P being the osmotic pressure and v the increase in volume of a 
solution when the solvent is added, isothermally and reversibly, 
through a serni-permcable membrane, so that, assuming no change 
in E—i.e no heat of dilution—during the process, 

Pv^T^I^Pv). 

Neglecting any change of volume with temperature, 

which gives a relation between the osmotic pressure and the tern- 
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perature. This is only true if there is no heat of solution, ix. for 
very weak solutions. Hence 

dP dT 

or log P—log T-{-constanty 

ix. P=R2\ 

where U is the integration constant. This sliows tliat the osmotic 
pressure is proportional to the thermodynamic; temperature. 

153. Vapour Pressure—The vapour pressure of a solution is 
less tliaii that of the solvent alone, and the (iifference may be investi¬ 
gated by the following simple, though approximate, method. In 

Fig. 86, ^ is a vessel divided into two parts, B and C, by a semi- 
permeable membrane M. The former contains pure solvent and 
the vapour pressure over it is p, while C contains the solution whose 
vapour pressure is p^. The whole is enclosed by an outer vessel 1) 
containing, in addition to the liquids, only the vapour whose density 
is a. Owing to osmosis the level in C will be higher by an amount 
h than that in B, the difference in pressure on the two sides of 31 
being P, the osmotic pressure of the solution. By equating this to 
the hydrostatic pressure difference we have 

P==Pi+8ph—p, ■ ■ ■ (276) 
where p is the density of the solution. But p and p^ are pressures 
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at a difference of level h in the vapour whose density a is supposed 
constant. Then 

P^Pi+goh .... (27T) 

Eliminating gh between (276) and (277), we have 

p~Pi p+p-Pi 
a p 

or, 
Pa 

Here a is the vapour density under its own pressure. If is the 
density under the standard atmospheric pressure 

and 
p-Pi_Pao 

P tip 
(278) 

The equation (277) was obtained on an assumption of uniform 
vapour density. This is justified only if the column of vapour of 
height h is short, ix. if the concentration of the solution is small. 
If this is not the case we must write 

so that 

Integrating, 

dp~—gadh, 

B dp 

V 

h 
B 

or, substituting for h in the relation P^gpli, 

• (279) 

This gives a necessary relation between the osmotic pressure and 
the lowering of the vapour pressure of any solution, and is indepen¬ 
dent of any assumption as to the physical nature of osmotic pressure. 
Let us transform this equation into a form which gives the concen¬ 
tration of the solution in terms of the ratio of the number of mole¬ 
cules of dissolved substance to the number of molecules of solvent. 
If one gram-molecule of the solute occupies a volume in the solu¬ 
tion or in gaseous form at a pressure By then the osmotic pressure 
for a concentration gram-molecule in a volume v is 

„ BVono 

V 
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The mass of solvent is nM where n is the number of gram-molecules 
of solvent and M its molecular weight. Hence 

nM 

P 
so that 

fj_ 

iiM ’ 

and (jo=—> assuming tJiat the molecular weight is the same in tlie 
^0 

liquid and vapour states. Substituting in equation (279) 

log P BVf,nop M^n„ 

^ Pi nMBp Vq 11 ’ 

This is independent of the temperature, so that tlic relative lowering 
of the vapour pressure should be independent of the temperature, 
if no molecular change takes place in the nature of the vapour. 

154. Boiling-point.—The boiling-point of a liquid is that tem¬ 
perature at which its vapour pressure equals the external pressure. 
Thus, if we have a pure solvent and a solution both at the tem¬ 
perature of the boiling-point of the former, the vapour pressures will 
be respectively equal to, and less 
than, the external pressure, since 
the vapour pressure of the solution 
is less than that of the solvent. 
It will be necessary to raise the 
temperature of the solution still 
more before it boils, i.e. before 
equality between its vapour 
pressure and the external pres¬ 
sure is reached. This elevation 
of the boiling-point may be 
evaluated as follows: Fig, 87 
represents a closed vessel divided 
into compartments A and B 
by a semi-permeable membrane. 
The upper half of each chamber 
contains only the vapour of the 
solvent, while A has also a 
quantity of solution at a tem¬ 
perature T~\-d2\ and B a quantity 
of solvent at a temperature 1\ 
If these are temperatures at 87.~Boiling - point and 

which the vapour pressures are Freezing-point of a Solution. 

equal, they represent correspond¬ 
ing boiling-points for an equal external pressure. Now suppose 
the following cycle of operations to be performed :— 

(i) Force v c.c. of solvent from Bto A against the osmotic pressure 
P, The work done will be Pv ergs. 
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(ii) Evaporate this amount of liquid in ^1. The heat absorbed 
in this process is pvL^ ergs, where p is the liquid density and its 
latent heat—expressed in work units—at the temperature 

(iii) Transfer the vapour formed from A to B. Since there is 
equality of pressure on both sides of the membrane above the liquids, 
this involves no expenditure of work. 

(iv) Condense the vapour in B. The heat given out will be 
pvL ergs, where L is the latent heat at the temperature 7\ 

This cycle is reversible and, applying the two fundamental laws 
of thermodynamics, we have 

p’i^L__ pvLi 

or. 
PT 

dT~ 
pL 

KT 

. (280) 

volume of 1 gm. of vapour at a But since P=^—> w^ierc 

pressure P and R is the constant per gm. of vapour, 

1 

'RT^'~pv^'~p 

Po 
G being the vapour density at a pressure P, so that and 

LdT _Pgq_ p—pi 

RT^~ Bp ~" ~ p~ 

from equation (278). 
For a given concentration, measured in gram^molecules per c.c., 

the osmotic pressure will, from equation (272), be the same for all 
non-dissociating substances, and thus the elevation of the boiling- 
point will be the same; or all solutions with the same molecular 
concentration in a given solvent have the same boiling-point. For 
a concentration of 3 gram-molecule per 100 grams of solvent the 
corresponding elevation is called the molecular elevation of the boiling- 
point. Its value for water may be calculated as follows : At 100° C. 
the osmotic pressure of such a solution is, from equation (280), 

8*31x107x373 

100 
=3*10x10® dynes per sq. cm., 

and 

dT 
3*10 X10® X 373 

0*96X537X4*2X10’ 
=5*34° C. 

The boiling-points deduced in this way agree extremely well with 
experiment, and this fact may be regarded as strong evidence in 
favour of the theory of osmotic pressure. 
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155. Freezing-point.—In a somewhat similar manner the 
depression of the freezing-point of a solution below that of the pure 
solvent may be deduced. In Fig. 87 let T and T —dT represent corre¬ 
sponding freezing-points, and suppose that a cycle is performed as 
follows :— 

(i) Force v c.c. of solvent from B to A, The work done is again 
Fv, 

(ii) Freeze this quantity of liquid in A ; the heat liberated is 
pvL^^ where is the latent heat of solidification at the temperature 
T-dl\ 

(iii) Transfer the solid from A to B, 
(iv) Allow if to melt and absorb heat equal to pvL, where L is 

tlie latent heat of fusion at the temperature 1\ 
Then w^e have 

pvlj^ pvlj Pv 

T-df^ T~^df' 
or, 

FT 
dT=~ .... (281) 

pL 

The molecular depression of the freezing-point of water is given by 

F~ ihA ' =2*27x10® dynes per sq. cm. 

dT= 
2*27 X 10® X 273 

80 X 4*2 X 10’ 
C. 

Tliis expression, also, has been verified. 

156. Osmotic Pressure of Electrolytes.—In solutions of 
electrolytes the osmotic pressure and its eorrelated effects are abnor¬ 
mally great. Organic solutes dissolved in water give osmotic effects 
which agree with van’t Hoff’s theory, these effects depending on the 
number and not on the nature of the dissolved molecules. When 
experiments yield abnormally low values, it follows that the num¬ 
ber of solute particles is less than that indicated by the chemical 
formula, and it is natural to suppose that aggregation has occurred. 
When, on the other hand, unusually large values are obtained for 
solutions of electrolytes, it is necessary to infer that some of the 
molecules have dissociated, and the degree of dissociation may be 
determined by the measurement of the osmotic pressure effects. 
The depression of the freezing-point has been more thoroughly 
investigated than the other properties. If, for example, in a certain 
solution rn^ inactive and m active molecules exist, each of the latter 
giving a ions, the total osmotic pressure produced will be propor¬ 
tional to whereas the normal osmotic pressure would be 
proportional to By measuring the electrical conductivity 
we can find the fraction of the molecules which, at any moment. 
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is active. Lei us call this p. 

p= 

Then, as shown by Arrhenius, 

in 

mQ-^m 

so that, if the 
value is called 

ratio of the actual osmotic pressure to the normal 

h 

i 
niQ+m 

-l+(a-l)/5. 

The same, ratio could also be found by direct experiment on the 
depression of the freezing-point, for we know the normal value from 
van’t Hoff’s theory, and if dT be the observed «^lepression for a 
solution with 1 gram equivalent per litre, 

dT 

1*84' 

since 1*84 is the calculated depression for such a solution in water. 
We can thus compare the value of as directly determined by 
observations on the freezing-point, with its value calculated from 
conductivity experiments. 

Thus there are two relations involved in the dissociation theory. 
Firstly, the number of ions into which a molecule must dissociate in 
order to explain its electrical behaviour, when completely dissociated 
in a very dilute solution, should be the same as the number required to 
give its observed osmotic pressure. Secondly, in dilute solutions of 
simple salts the abnormally great osmotic pressure should diminish 
with the coefficient of electric ionisation. The experimental evidence 
on the whole supports Arrhenius’ theory. The observed depressions 
never appreciably exceed the theoretical values, and the discrepancies 
in the’other direction are readily explained by incomplete ionisation. 

When we consider the second relation indicated by Arrhenius, 
that the coefficient of ionisation, measured electrically, should agree 
with its value calculated from osmotic pressure effects, this relation 
cannot hold for concentrated solutions, since the thermodynamic 
theory of osmotic pressure is valid only when the solute particles are 
beyond each other’s sphere o\ influence. Nevertheless, experiments 
on these lines are of great interest, for confirmation of the relation 
for dilute aqueous solutions of simple salts would be reliable evidence 
that the Arrhenius theory gives, in such simple cases, a complete 
explanation of the phenomena. The amount of divergence in other 
cases would supply useful indications of the nature and amount of the 
disturbing influences. In general, the experimental results indicate 
that the relation holds only at great dilution even with such simple 
salts as potassium chloride. 

157. Measurement of Osmotic Pressure.—The measurements 
made by Pfeffer were too few in number and insufficient in accuracy 
to give a satisfactory test of the theory of osmosis. Determinations 
may be made using indirect means such as by measurements on 
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vapour pressures, freeziug-points, and boiling-points, but the best 
results are obtained by a modification of Pfeffer’s method in which 
special care is taken in the manufacture of the porous pot and in 
the deposition of the chemical membrane. For concentrated solu¬ 
tions, again, the high pressures involved necessitate extreme accuracy 
in mechanical detail, particularly in the method of attaching the 
manometer which measures the pressure. By reason of the extent 
and thoroughness which H. N. Morse ^ and his co-workers applied 
to their measurements, these may be taken as typical of later experi¬ 
ments with concentrated solutions. This 
work occupied Morse for many years. One 
of the early difficulties was tlie method of 
manufacturing vessels which possessed the 
essential qualities of uniform strength and 
porosity, combined with a texture so fine 
that the membrane was deposited on th(‘ 
inner wall. Finally, a mixture of clays 
was discovered such that, on sifting, knead¬ 
ing, pressing, and baking in an electric 
furnace, practical uniformity in these 
qualities was obtained. The membrane 
was of copper fcrrocyanide, but Pfeffer’s 
method of preparation yielded films of 
insufficient strength to sustain the high 
pressures used. Ultimately it was found 
that, by electric endosmose, membranes 
of much greater mechanical strength could 
be obtained. The manometers used were 
closed U-tubes containing nitrogen and 
carefully calibrated. Many different types 
of attachment between cell and manometer 
were tried. An example of one of the 
later developments is shown in Fig. 88. 
The pot A receives the conical glass bulb 
B attached to the tube C, and good contact 
is maintained by means of the nuts //, J 
which act on the collar G and the packing ring K, The collar is sealed 
on to B by cement, and the side tube I) is cemented to a threaded 
brass tube E which is closed by the nut F, The latter permits the 
pressure on the solution to be raised to prevent osmosis. Thus 
the pressure given by a manometer attached to C is the osmotic 
pressure. Readings were taken to 80'’ C. under thermostatic control, 
and pressures as high as 30 atmospheres were employed. 

Most osmometers—instruments for measuring osmotic pressure 
—utilise the manometer, or gauge method, for the measurement of 
the pressure difference, but osmotic balances are more sensitive.^ 

^ Morse, Arner. Chem. Journ, (1901-12). 
* See Svedberg, Nature^ 153, 523 (1944). 

Fig. 88.—Morse’s Appar¬ 
atus FOR THE Measure¬ 
ment OF Osmotic Pres¬ 
sures. 
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In such a balance one of the scale pans is removed and on the floor 
of the balance case is fixed a stand with an adjustable platform 
carrying a glass cylinder filled with solvent. The lower part of the 
osmotic cell is conical in shape and the semi-permeable membrane 
is attached to its base—the membrane itself acting as a packing 
material against leakage. The upper half of the cell is a glass tube 
and the whole is suspended from the balance arm. The osmotic 
cell and part of the glass tube is filled with solution and suspended 
from the balance in such a way that it dips into the solvent con¬ 
tained in the glass cylinder. By means of the adjustable ]:)latform 
the difference in level between the solution in the cell and the sol¬ 
vent in the glass cylinder can be varied. The balance is adjusted 
to equilibrium. When the weight of the cell increases, due to inflow 
of solvent, the cell sinks until the buoyancy compensates the in¬ 
creased weight. The position, when the meniscus in the cell is in 
line with the meniscus in the cylinder, is taken as reference point 
for the measurement of the difference in levels between solution and 
solvent. From this starting position all level differences, ix. osmotic 
pressures, are calculated by means of the corresponding weight 
differences. 

158. General Theory of Solutions.—It has been stated 
previously that the simple PV=KT relation cannot be expected to 
apply to any except very dilute solutions, and experiments verify 
this. Indeed, the agreement is close only for a very limited range of 
concentrations and, although this range may be extended by Morse’s 
method of calculation, on the assumption that the osmotic pressure 
is equal to the pressure which would be exerted by the solute in 
gaseous form in the volume occupied by the solvent at 4° C., a more 
general theory becomes essential. Attempts in this direction 
naturally developed along the lines of Van der Waals’ equation for 
gases, and the following have betm suggested :— 

. . . (282) 

{^ + P-^~)j{V-b):=RT, . . . (283) 

(I A 
where and ~p are the correcting factors for the attraction between 

solute molecules, and between solute and solvent, respectively. In 
equation (282) V is the volume of solvent containing 1 gram-molecule 
of solute, while in equation (283) it is the corresponding solution 
volume. An objection to these equations and the many possible 
similar empirical forms is, as was pointed out by ('allendar,^ that 
the constants involved cannot be connected with the other properties 
of the solutions. 

^ Callendar, Proc. Hoy, Soc.', A, 80, 466 (1008); Proc, Hoy, Inst.f 19, 485 
(1911). 
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It is iiatiiral to expect that a general osmotic equation will be 
much more complicated than that of a gas, but Sackur ^ and Porter ^ 
have shown that a simple formula of the type 

P{V ~b)^RT 

represents the facts over a large range of concentrations. Iji tliis 
equation V is tlie volume of solution containing 1 gram-molecule, 
while the cpiantity h varies with temperature. Owing to hydration 
it is a value larger than tlie volume of the 1 gram-molecule of solute, 
its variation with temperature being attributed to a corresponding 
change in the degree of hydration. 

Thermodynamical principles may also be applied to a solution 
if certain simplifying assumptions arc made. The results of this 
process will, of course, be valuable and applicable to experimental 
facts only to the degree to which actual solutions fulfil the assumed 
conditions. For instance, if the solutions arc such that the com¬ 
ponents are neither associated nor dissociated, intermix without 
change of volume or heat elfeet, and do not interact, then the 
resultant equation ^ is 

RT 

where V is the molecular volume of the solvent under standard 
pressure conditions, x is the ratio of the number of molecules of 
the solute to the total number present, and* /? is the compressibility. 
If, further, is negligibly small—as it will be except at very 
high pressures—then, by expending the right-hand side. 

^ , x^ , , 

.f+2+3 + (284) 

Unfortunately, the experimental verification of this result is not 
easy, but considerable information can be obtained from vapour 
pressure, freezing-point, and boiling-point determinations. It is 
therefore necessary to obtain more exact relations between these 
quantities and the osmotic pressure. 

Equations connecting osmotic pressure and vapour pressure differ 
in their complexity according to the number of factors which are 
taken into account. One, due to Spens,^ has the simple form, 

log p __p^l 

Pi ^oPi 
(285) 

where is the increase in the volume of a large amount of solution 
when unit mass of the solvent is added, and Sq is the specific volume 
of the vapour, p and p^ being the vapour pressures of the solvent 

^ Sackur, Zeits, Phys. Chem., 70, 447 (1909); Zeits. Elektroch., 18, 641 (1912). 
* Porter, Trans. Far. Soc., 13, 119 (1917). 
® See Findlay, Osmotic Pressure, p. 55 (1919). 
* Spens, Proc. Roy. Soc., A, 77, 234 (1906). 
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and solution respectively. A more general and more complicated 
equation was obtained by Porter.^ 

In considering the connection between osmotic pressure and 
freezing-point it is necessary to remember that, since the freezing- 
point varies with the concentration, in order to associate the osmotic 
pressure witli the concentration alone, its variation with temperature 
must be known, and this implies a knowledge of the heat of dilution. 
Callendar ^ states that the vapour pressure and the temj>erature oi' 
water are related according to the equation. 

, p 2 6^A1\^^JAT^2\, T 

where p and Pq are the vapour pressures in the liquid and solid phases, 
T and 2\ are the absolute temperatures (2\~273) and A2^^Tq~-2\ 
This equation may be reduced without great loss of accuracy to 

and if the vapour pressure Pq of ice at the freezing-point 2" is sub¬ 
stituted in equation (285), the required connection between P and 2' 
is obtained. 

The relations between boiling-point and osmotic pressure may be 
obtained in a similar manner,^ but they are difhcult to verif}^ owing 
to the lack of sufficient data. 

These indirect methods of testing the general equation (284) have 
shown that it represents the temperature law of osmotic pressure 
variation over a large range of concentrations and temperatures with 
considerable accuracy, and, in spite of much criticism, the kinetic 
theory of osmotic pressure still remains the only one which gives 
values agreeing with experience. As was emphasised by Porter ® 
in an admirable review of the question, any alternative theory, in 
addition to giving a more exact representation of facts, must over¬ 
come the difficulty of explaining away the results which it is reason¬ 
able to expect from the known molecular agitations of solutions. 

159. Dijffusion.—Closely connected with osmosis is the phenom¬ 
enon of diffusion. If two fluids in contact are able to mix in any 
proportions they will do so spontaneously until a uniform mixture 
is produced. The process by which the intermixture is brought 
about is called diffusion and is due to the migratory movements 
which characterise fluids. Diffusion is rapid in gases, comparatively 
slow in liquids, but in both cases the rapidity of movement depends 
on the rate of change of density at the place considered. It con¬ 
tinues in opposition to gravity, and thus is not a buoyancy effect. 
This may be shown by superposing a layer of water on, say, a copper 
sulphate solution. If this is done with sufficient care to avoid cur- 

^ Porter, Proc, Roy. Soc.^ A, 79, 519 (1907) ; A, 80, 427 (1908). 
2 Callendar, ibid.y A, 80, 466 (1908). 
® Porter, Trans. Far. Soc,, 13, 119 (1917). 
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rents in the liquids, the line of demarcation is sharp between the blue 
solution and the colourless water. After a time the blue coloration 
will be found to have spread upwards, and a gradual change in the 
depth of tint will be seen to extend throughout the whole liquid. 
After a considerable time the mixture will become very nearly 
uniform. 

160. Pick’s Law.—The interdiffusion of liquids was studied by 
Graham, who used a wide-necked bottle nearly filled with a salt 
solution. The bottle was placed in another vessel containing water, 
which was made to extend into the bottle by carefully squeezing 
out a sponge, saturated with water, on to a cork floating in the 
solution. In this way a column of water was superposed on the 
liquid, and after the lapse of some days the amount of salt which 
had diffused into the water was measured. Graham’s experiments 
showed that the rate of diffusion of aqueous solutions depended on 
the type of salt used, increased with greater strength and also with 
the temperature. These results were given in a sim})le mathematical 
form by Pick, known as Fick^s Law, which may be stated as follows : 
Imagine a plane drawn in the liquid along the direction of constant 
density. Then, if the concentration gradient—or change of con¬ 
centration with distance—measured at right angles to this plane is 
0c 

the mass of dissolved substance crossing unit area of the plane 

0c 
per second is equal to k^ where A is a constant called the coefficient 

of diffusion of the dissolved substance. 
If two such planes A, B are separated by a distance dx and 

each has unit area, then, if the concentration at A at any time i is c, 
0c 

that at B will be c—^dx. The inflow of dissolved substance at A 
ox 

0c 
in time dt will be while the outflow from B will be 

0^ 0 
k^t-k~8xdt. 

ox ax^ 

0 ^C 
Thus the space between A aiid B has a net gain of gni. per 

sec. Since the volume enclosed is bx, the change of concentration 
02^ 

is the rate of change of concentration is given by 

dc d^c 
(286) 

This is the general equation governing the process of diffusion, 
and suffices to solve any problem when the initial conditions are 
given. As is shown in Chapter IX, the solution to equation (286) is 
a Pourier expansion whose form depends on these initial conditions. 
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As an example consider the following problem. A solution of 
strength Cq occupies a length I of a cylindrical vessel and has a length 
Zj of solvent superposed on it. The concentration c at any point in 
the vessel at any subsequent time may be found as follows :— 

A solution of equation (286) which satisfies the initial conditions is 

cos m^-\- . . . (287) 

in which, when c^Cq from to and, when Z~oo, 
c I 

c~= -~y- for the same range of x. When equation (287) 
l"r 

reduces to c^-^Iq. lienee 

.... C-iHH) 

But f(x) may be expanded into a lialf-rangc cosine series Viy the 
usual formula :— 

where 
. 2 r+'v. ^ nnu: . 2Co f' nnx . 

. 2Co . njil 
An^— sm ytt* 

nn Z+^i 

where n — 1, 2, 3, etc. Thus 

Z- 

in which « = 

161. Coefficient of Diffusion.—We have seen that by apply¬ 
ing Fourier’s theorem it is possible to deduce, in a form containing A;, 
the concentration at a given point at any time subsequent to a given 
distribution of strengths. Thus, if the variation at some point is 
measured from time to time, it will be possible to evaluate the co- 
eflicient of difiusion. It must, however, be possible to determine 
the concentration without causing a disturbance of the liquid. In 
Kelvin’s method this was done very simply by noting the position 
of a series of glass beads of varying densities placed in the liquid, 
so that the density distribution could be noted throughout the 
experiment. Other methods which have been used with differing 
degrees of success are measurements of refractive indices, rotations 
of polarised light for sugar solutions, and contact potential differ¬ 
ences. More recently the optical methods have been extended so 
as to be available in a greater variety of cases and to give much 
greater accuracy in working. For example, Littlewood ^ describes 
a method of determining concentrations to within about 0*05 gm. per 

^ Littlewood, Ptoc, Phys. 5oc., 34, 71 (1922). 

OqI 2^0 V^fl . nnl 

-f-Zj n Z+Zj 
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litre at any point and time during diffusion. His method depends 
on the bending of rays of light incident at nearly grazing angles on 
the top surface. Owing to the changing density with depth, the ray 
is l)ent into an arc and the total deviation depends only on the refrac*- 
tiv(‘ indices at the ])oints of entrance into, and exit from, the solution. 
If F is the velocity of light in the medium at the point of entry, the 
distance travelled by the ray in a time dt is y^Vdt, while the distance 
trav(‘lled by a ray wliicli enters at a distance 61 below the first is 

Vi- 

Thus the wave front, and hence; the ray direction, is turned through 
an angle y) given by 

tail ip- 
dV 

dl 
y P dl' 

When y the width of the vessel, 

a dV 

y’-' ~ f/ (if' 

and tp is the angle of incidence on the far side of the vessel. Thus a, 
the angle of deviation on emergence, is given by sin ol~~h sin ip and, 
since /iV is constant, 

da 
sin 

dl 

Thus the change in deviation for a given angle of incidence depends 
on the difference in concentration at the various points of emergence 
at the side of the vessel when the incident ray is displaced laterally. 
This difference was measured, in Littlcwood’s experiments, by a tilt¬ 
ing mirror device, which indicated changes of the order of one minute 
of arc. From these measurements of the change in concentration 
with depth, obtained from time to time, all the necessary data for 
a calculation of the coefficient of diffusion are known. 

Later, Clack, ^ by a somewhat similar method which was capable 
of measuring concentrations at points fairly close together, was 
enabled to make a much more detailed investigation of the change 
in diffusion coefficient with concentration. He produced a definite 
concentration gradient from practically zero strength to saturation 
in a vertical diffusion cell. When steady conditions were reached, 
the change of refractive index with depth was measured, as in 
Littlewood’s experiments, from the deviation of a ray, in this case 
initially horizontal, as it penetrated layers of increasing density. 
The method of measurement was different, however, and depended 
on the vertical displacement of the central fringe in the interference 
pattern produced by two narrow and near horizontal slits illuminated 
by mercury green light. To connect the change of refractive index 
with concentration, a Rayleigh refractometer was used, and a com- 

1 Clack, Proc. Phys. Soc., 36, 813 (1924). 
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bination of these results determined the distribution of concentration 
with depth. In addition, the quantity of solute diffusing through 
the cell when steady conditions were established was measured by 
chemical analysis or by drying and weighing. 

If the diffusion coefficient is assumed to be independent of the 
C!()neeiitration gradient then, on steady conditions being reached, 
and the diffusion cell having a constant cross-sectional area, the 
gradient of concentration would be constant, and no detailed examin¬ 
ation would be required. Clack’s experiments showed a varying 
gradient, even under steady conditions, from top to bottom of the 
cell and this enabled the variation of k with c to be found. The 
theory of this more general form of dynamic equilibrium was given 
by Clack in an earlier i)aper ^ in the form :— 

i dl d—c —cd 

^ d-c^’ 

in which i is the net change in the mass of the cell contents per 
second, A is the cross-sectional area of the diffusion cell, c is the 
concentration* in gm. per c.c. at a distance I from the top, d is the 
density at the same j)oint, and 6 is the ratio of the mass of water 
entering the top of the cell per second to the mass of salt leaving 

per second. The gradient was given, as already explained, by 

the product which ^ was obtained by the fringe measure¬ 

ments and ^ by the refractometer readings. 

The greatest difficulty in such experiments is the great time 
needed to set up, and subsequently to measure changes in concen¬ 
tration of solutions in the usual large-size vessels, during which time 
it is necessary to avoid mechanical and thermal disturbances. It is 
pointed out by Furth ^ that if the linear dimensions are reduced by 
a factor n, the time needed will be reduced by the factor The 
consequent small-scale instrument which incorporates collimator, 
diffusion cell, and observing microscope he calls a microdiffusiometer. 
Two different methods of following the level of some selected con¬ 
centration are utilised. The first applies when considerable colora¬ 
tion effects accompany changes in solution strength, and in essence 
the level of a fixed colour shade is observed against the time in 
terms of eyepiece micrometer divisions. In the second method, 
applicable to transparent colourless solutions, the image is the 
shadow region produced by total internal reflection, and thus cor¬ 
relates the diffusion current with the time by means of the refractive 
index. 

These investigations, which were made with sodium chloride, 

1 Clack, Proc. Phys, Soc.y 29, 51 (1916). 
a Furth, R., Physik. Z., 26, 719 (1925); Zeits.f. Phys,, 91, 609 (1984); Jour, 

Sci. Instr.y 22, 61 (1945). 
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potassium chloride, and potassium nitrate solutions, showed that 
ill each case, with gradually increasing strength, the coefficient of 
diffusion reached a minimum value—in the first two cases with com¬ 
paratively dilute solutions—and then increased in a practically linear 
form. This agr(‘es with the conclusions arrived at by Arrhenius 
from his theory of ionic dissociation. lie concluded that the coeili- 
cient should, with increasing concentration, at first fall to a mini¬ 
mum on account of decreasing dissociation, and later, with more 
concentrated solutions, it should increase because of intermolecular 
attractions, 

162. Diffusion and Osmotic Pressure.—If the concentration 
of different parts of a solution is non-uniform, the osmotic pressure 
also varies, and by imagining the parts of the solution to be separated 
by ideal semi-permeablc membranes, we sec that the osmotic pressure 
is the iorce per unit area which must be applied by the diaphragm to 
the dissolved molecules in bulk to prevent their diffusion. Consider 
a vertical cylinder with a solution of a non-electrolyte in the lower 
portion and water above ; the dissolved substance gradually makes 
its way upwards and finally a uniform solution results. Let the 
osmotic pressure at a height x in the cylinder be P, so that, if A is 
the cross-section, the substance in the layer whose volume is A6x 
is under the action of a force AdP. If c is the concentration in 
gram-molecules per c.c., the force acting in the x direction on each 
gram-molecule in the layer due to this force is 

AdP 1 dP 

cAdx c dx 

Let F be the force required to drive 1 gram-molecule through the 
solution with a velocity of 1 cm. per sec,, so that, if the drift velocity 
is constant, F must be equal to the viscous drag on the gram-molecule. 
Hence the velocity acquired is 

cF dx ^ 

and if dN is the number of gram-molecules wdiieh pass across each 
layer in a time dt, 

dN-~ 
1 dP 

cFdx^ 
lcdt= 

A dP 

For dilute solutions, P==cR2' and 

RT dc. 
dN=—:f^A~-dt. 

F dx 

But, by Pick’s Law, 

6N=-kA^t, . . (289) 

RT 
so that kf the diffusion coefficient, corresponds to the factor 

G.P.M. X 
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Owing to the slow rate of diffusion, the day instead of the second 
has been adopted as the unit of time for practical work. The force 
required to drive 1 gram-molecule through the solution with a 
velocity of 1 cm. per sec. is 

F- - 
RT dc 8ti4()0«7' 

k 

and if k is known, we can calculate the force required to produce 
unit velocity. For example, k for formic acid at 0° C. is 0*472, and 
the force required to drive 1 gram-molecule through water with a 
velocity of 1 cm. per sec. is equal to 4*34x10^^ gm. weight. 

163. Diffusion of Electrolytes.—Consider the solution of a 
single electrolyte containing two monovalent ions. Let u and v be 
the velocities of the cations and anions, respectively, when subjected 

to unit force. The velocities in the present case will be —and 
c dx 

and the amounts of each passing any cross-section of the 

cylinder in time dt are 

—uA^di and 
dx 

-vA-y-dt, 
dx 

If u is different from v, a potential difference is set up and the force 
dE 

on a gram-equivalent of an ion carrying a charge e is so that 

the numbers of the two ions which would cross a section in time 6t 
under the action of this force alone are 

—uAce^di and -{-vAce-.—df, 
dx dx 

and the total number of gram-equivalents which diffuse in a given 
time under the influence of both the osmotic and electric forces must 
be equal. Hence 

= —vAdt 
\dx ^^dx J 

dN-~ 
2uv 
---A-y-Ot, 
u~{-v dx 

but since P^cET and, from equation (289), dN~—kA-^f, 

u+v 

Thus, if u and v are known—and they may be calculated from the 
migration of the ions—k can be determined. For example, with 
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hydrochloric acid the velocity of the hydrogen ion under a gradient 
of 1 volt per cm. is 0*0082 cm. per sec., and 

0*0032x10-8 
=3*32x10-^8 cm. per sec., 

the charge being 9647 absolute units, and 1 volt is 10® absolute units. 
For the chlorine ion 

and thus 

X 10-^8 cm. per sec.. 

ll-\-V 

This agrees well with the experimental value 2*30 obtained by 
Scheffer. 

164. Diffusion in Gases.—It has already been mentioned that 
the interdiffusion of gases is much more rapid than that of liquids, and 
that in both cases the rapidity of movement depends on the density 
gradient. A law of the same form as Fick’s Law for liquids applies 
to gaseous diffusion. Consider two gases A and R, and suppose that 

the density gradient of one, say A, at a given point is 
dx 

then the 

mass of gas A passing per second through each square centimetre 

of the plane is where k is a constant which depends on the 

nature of the two gases and is called their coefficient of interdiffusion. 
It has generally been supposed in experiments on gaseous diffusion 
that k is independent of the proportions of the gases, but this is 
probably only approximately true. The measurement of k is not 
easy owing to the difficulty of setting up an initial known distribution 
of the two gases, Loschmidt and Obermayer used a long cylinder 
divided, by a disc, into two parts, in the lower of which the denser gas 
was placed, and then the diaphragm was carefully removed to avoid 
setting up currents. The disc was subsequently replaced, and an 
analysis of the proportions of the gases in the two parts gave a 
measure of their interdiffusivity. These observers agreed fairly well 
in their results, and measurements made by Waitz, on the diffusion 
of carbon dioxide into air, verified their values for these gases. 
Waitz used a Jamin interferometer to estimate the proportions of gas 
at any place from time to time by a measurement of the refractive 
index. His method was superior to that of the previous experi¬ 
menters and enabled him to decide that k varied, to some extent. 
with the proportions of the gases present. 

The theoretical calculation of the total quantity of either of the 
components, which has crossed over into the other compartment 
in a given time, can be illustrated by taking the case where the 
diaphragm divides the cylinder into two equal portions. Then, if 
the total length of the cylinder is 2l, its cross-section is A, and the 
initial density of the denser component in the lower compartment 
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is po» the subsequent distribution of density p with distance x from 
the bottom at time t is given by 

Thus 

^ 2^ n 

dpjlp„ 

dx 71 

cm . . . 

At x~^l 

Sp Pn 

dx I 

71 . 71X 71 3m 

21 21 
- c 

^ ■ 21 

3 
In time dt the mass diffusing past fkis j)lane is h^^ Adt, ur 

- kA + . . . di, 

and in time t the total mass which has entered th(^ upf)cr half is 

kn^ 

or, 

M= 
4:lAp„ ■ __4,lA 

71 

¥App 

since after any appreciable time only the first exponential term will 
be significant. Thus 

71^ 8 7Z^ 

Mq being the original mass of that component. 
Finally 

As an example k for carbon dioxide is about 0'14, and thus the time 
M . . 

for M=-~ and 1=50 is t=5S minutes, or for hydrogen to air A:=0*63 

and /=18 minutes. It will thus be seen that, if at the commence¬ 
ment there had been a mixture of hydrogen and carbon dioxide in 
the lower chamber, there would be a rapid separation of the con¬ 
stituents as a result of their different rates of diffusion. This pro¬ 
cess of differential diffusion has been used to separate radioactive 
substances. 
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As witli liquids, the interdiffusion of ^ases increases with tempera¬ 
ture, but to a much greater degree. The experiments of Loschmidt 
and Obermayer showed that, if the law of temperature is expressed 
in the form ki—kT^^ where T is the absolute temperature, then n 
has a value intermediate between 1-75 and 2. Witli gases the pres¬ 
sure also affects the process of diffusion, k being inversely proportional 
to the combined pressure of the mixed gases. 

165. Diffusion and the Kinetic Theory of Fluids.—The 
tendency towards uniformity shown by a mixture of substances 
which are non-uniformly distributed is a conscqucaice of the trans¬ 
lational motion of the molecules, and it should therefore be possible 
to connect diffusion phenomena with other deductions from the 
kinetic theory of fluids. Consider a mixture whose components may 
be represented by (1) and (2). Migration of the (1) molecules will 

« 

Fig. 89.—Diffusion and the Kinetic Theory. 

occur in the direction of decreasing concentration, and, on the whole, 
the molecules (2) will migrate in the op230site direction, Le. in their 
own direction of decreasing concentration, so that if denotes the 
number of molecules (1) which, on the average, travel across 1 sq. cm. 

per sec., and ^i^i) concentration gradient, 

where fcj, the coefficient of diffusion of the molecules (1), depends on 
the density of the mixture, the ratio of the masses of the constituents, 
and the concentration gradient at the point considered. 

The path of a given molecule is zigzag in character on account 
of the interaction between the molecules and may be termed the 
diffusion free path, while the average distance traversed between 
successive collisions is the mean free path. Suppose the motion of 
the (1) molecules is towards the plane CD (Fig. 89), and the mole- 
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cules (2) move towards AB» The Oz axis is at right angles to AB^ 
and if, with centre 0 and any radius z, a semicircle is described to 
cut GH in */, then OJ^ON =z. Let MJ and the angle JOM—d. 
The proportion of the molecules moving between angles Q and 
0~\-d() with the normal is 

27ixzd0 . . ,. 
sin Odd, 

Inz^^ 

since x~z sin 0, and the number of these whose paths lie between 
:: and z + dz is, from (228), 

z 

n—n^ sin ddOj^^e . . . (290) 

where is the mean free path of the molecules (1). A correspond¬ 
ing number n' will proceed in the opposite direction starting from 
GH^ and these two numbers will be respectively proportional to the 
concentrations in EF and GH. The concentration in EF is 
molecules per e.c., and thus the concentration in GH is 

Ni-OM'^(Ni)=Ni-z cos 

Hence the total loss of molecules in EF is 

, 11—n 
n—n~.-//, 

n 
and since 

or, 

11 

n' 
Nx 

N,~zcosd^^(N,) 

cos OjSN,) 

.-vf ’ 

the loss is, from equation (290), 

— 111 ^^dz. 
1 

The total loss is obtained by integrating this expression from 
7t 

0 to 00 for z, and from 0 to - for 0, and gives 

niLi d 
{N^) (291) 

In the same way the gain of molecules (2) in the plane EF is given by 

N. dz ̂̂ 2), (292) 

where Lg is the mean free path of the molecules (2), the gradient 



THE KINETIC THEORY OF FLUIDS 311 

being measured along the direction of decrease in concentration of 
molecules (2). Thus the total loss of molecules, irrespective of 
kind, is 

nJn 
Nr 

d 

dz iN^). (298) 

and this represents the gain immediately below EF. The space 
which these molecules previously occupied in EF must be filled by 
a transportation in the opposite direction of a volume F of the 
mixture, and thus EF regains a number N^V of molecules (1) and 
N2V of molecules (2). The net loss of the former kind from the 
])lane EF is consequently equal to 

. . . (294) 

If each molecule (1) oecujues a volume F^ and each molecule (2) 
a volume Tg, then the total volume evacuated by the escaping 
molecules of both sorts is 

and this is equal to F, Thus, from expression (29i), the net loss 
of molecules (1) from EF is given by 

Hut I 
N, N, 

of molecules (1) from EF per second is where 

thus and the total loss 

dr--V2 
'N. Nr. d. 

N"^d. 
(295) 

This expression represents the net rate of dilTusion. A similar 
expression for the net rate of diffusion, dg, of the (2) molecules is 
obtained by an interchange of sufiixes, and it is readily seen that 

1=^* or d,V,=d,V, . . . (296) 

In the case of gases Fi = F2, and thus d^^dg* 
j^ressure is everywhere the same, N1+N2 is constant. 

putting ^(JV.)=|(iV.) and 

Since, also, the 
Thus we have, 

d,- 
Ni+N^ 

' T T + »!!/- 
Nr (297) 
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If the concentration of the first set of molecules in the mixture is 
very small, then (295) or (297) becomes 

and so the coefficient of diffusion is 
/f'f 

.... (298) 

Now consider a semi-permeable membrane impervious to the 
molecules (1) placed across the direction of diffusion. The particles 
(1) will exert a pressure upon the membrane in their direction of 
diffusion, and this pressure will be equal to the difference between 
the osmotic pressures on the two sides of the membrane. Thus we 
may regard each c.c. of the molecules (1) as being under a force 
equal to the osmotic pressure difference acting on opposite sides of 
the unit cube. This force is exerted in giving motion to the particles 
to overcome the viscous drag of the medium. If, as before, is 
the number of molecules (1) diffusing across 1 sq. cm. per sec., 

di~N 

where is the average velocity of the (1) molecules as they move 
against the concentration gradient. If is the coefficient of mobility 

of the particles (1), and -r(Fi) is the osmotic pressure gradient, 

d 
iP^), 

since the velocity is inversely proportional to the con(‘cntration of 
the molecules. Hence 

.... (299) 

and, similarly, for the other set of particles, 

•dz^ 
(300) 

But, from equation (296), and thus 

Let the concentration of the (1) molecules be small, so that their 
RTN 

osmotic pressure obeys the ordinary gas law, i.e, Pi=—Thus 

r/.p. RT d.... 

and lienee 
,KT d 
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The (Jiffusion coefficient is ^hven by 

, v'RT , , .... (301) 

If this is equated to the value given in equation (298), we have 

,RT n, ^ 

But the number of rnolceules crossing 1 sq. cm. per sec. is given by 

and —Lj wheTe is the time taken for the molecule to travel 
a distance Jleiiee 

• • • (302) 

so that, il* Lj and can be measured, tq' the mobility may be deter¬ 
mined. This is of special importance in the case of particles ol‘ 
siilhcient size to undergo Brownian motion. 

166. Brownian Motion in Liquids.—If the molecules of a 
liquid were of sufficient size to be visible to the eye it would be 
possible to detect the zigzag motion which results from molecular 
collisions. The foregoing results are true, however, for atomic or 
molecular aggregates such as are obtained in colloidal suspensions, 
since, although the mass would be struck by a large number of 
molecules on all sides at a given instant, the impacts would not 
necessarily be uniformly distributed, and the motion of the col¬ 
loidal particle would have the characteristics already discussed. 
The corresponding movements would be relatively slow, and thus 
it should be possible to observe them under suitable conditions and 
to verify the most important deductions from the kinetic theory. 
This observation was first made by Brown, who used a suspension 
of plant pollen in water. Although no special type of microscope is 
necessary, the method of illumination is important and, in the ultra¬ 
microscope now generally used in studying the Brownian motion^ 
the beam is sent through the liquid in a direction perpendicular to 
the microscope axis, and the particles are seen by means of the light 
which they scatter into the instrument. The beam must be very 
intense and the thickness of licpiid traversed must be small, other¬ 
wise its absorption effect will interfere seriously with observations. 
By this means the movements of a particle of diameter 6x10"“'^ cm. 
may be followed. 

The absolute motion of the particles is diflicult to observe in 
detail, but this difficulty has been overcome by the application of 
the cinematograph to the microscope. Direct observation through a 
microscope gives an impression of a trembling motion rather than 
a vibration or simple progression, and the particles pursue an irregular 
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zigzag course in all directions in space as if they were subjected to 
accidental collisions. 

167. Einstein’s Equation.—If it can be assumed that the mean 
kinetic energy of a suspended particle is the same as that of a gas 
molecule at the same temperature it is possible to connect the 
observed mean free path with the constants of the gas equation. 
This was done by Einstein,^ but a simpler means of deriving Einstein’s 
result has been given by Langevin ^ as follows :— 

From the kinetic theory of gases PV =^in\ Represent¬ 
ing the average kinetic energy of each molecule by K, 

... . (.303) 

From the principle of the ecpiipartition of energy - is the kinetic 
3 

energy due to motion along one, say the r, direc'tion. This energy is 
due to molecular impacts, and the equation of motion of a particle is 

d^x Ax ,, 

where X is the force produced by molecular bombardment and 6 is 
the damping coeflicient due to viscosity. Multiplying throughout 
by .r and remembering that 

we have 
m d^ 

2'dt^ 

/d.vy, (5 

'(ff) '2- fit 
'dx^) HXr--=(). 

If this equation is applied to a large number of particles of the 
same size and the mean result is taken, them the average value of Xx 
is zero, since X will, on the average, have equal numbers of positive 

and negative values. In addition, the average valuer of m 

from equation (303). Hence 

(It) “ “a 

rn doL RT , __ 
(304) 

where a is the mean value of integrating this we obtain 

2RT 
+ w, . . . (305) 

where A is the integration constant. 
From Stokes’ Law the value of d is QTzrrj, where r is the radius of 

^ Einstein, Ann, der Physik., 17,4, 549 (1905); 7mts. f. Elektroch., 14, 235 
(1908). 

•Langevin, Comptes Rendus, 146, 530 (1908). 
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the particle, and its value for the type of particle considered here is 
less than 10“^ cm. If the density of the particles is taken as unity, 

_=^10-5 
d 67rX000018xl(»~* 

Kven for air Ac approaches zero for any appreeiabh^ value t)f /. 
I fence equation (805) becomes 

.... 
and, by integration, 

where (a’^)o denotes the mean value of the squared displacements 
corresponding to the period /q. This result gives the average of the 
s(piares of the displacements for a large number of similar particles 
in the time /q, or for the same particle observed through several 
intervals of time. We should not expect very exact correspondence 
between this theoretical formula and observation, because it is difli- 
cult to gauge the importance attaching to the assumptions, {a) that 
the particles may be regarded as rigid spheres, and (b) that surface 
tension forces may be neglected. Nevertheless, the tests which 
have been made justify the formula as regards its dependence on 
temperature, time, viscosity, and particle radius. 

168. Bro\vnian Motion of Rotation.—From kinetic theory 
considerations the rotational energy of suspended particles will, on 
the average, be the same as the mean translational energy, and Ein¬ 
stein ^ deduced an expression for the mean square of the rotational 
angle 0 in a time in the form:— 

(308) 

169. Determination of Avogadro’s Number A.—Some of the 
earlier experimental results did not agree well with equation (307), 
probably because the times during which observations were made 
were not long enough, and also because the colloidal particles em¬ 
ployed were not all spherical. Experiments by Nordlund,^ who 
obtained the particles by sparking between mercury electrodes in 
water, confirm Einstein’s equation, and Millikan ® has verified the 
equation for Brownian motion in gases. Westgren,^ by means of 
a large number of measurements on colloidal gold, silver, and 
selenium particles of diameters from 6*5 to 18xl0~® cm., obtained 
a result—which he considered to be correct to J per cent.—for N, 
given by 

iV=(605±003)xl023. 

^ Einstein, loc. cit, 
* Nordlund, Zeits. Phys. Chem,, 87, 40 (1914;. 
® MiUikan, Phys, Rev,, 32, 349 (1911). 
* Westgren, Zeits, Phys. Chem., 92, 750 (1918). 
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Perrin ^ tested Einstein's equation by measuring the displace- 
inents of a large number of granules in an emulsion. These dis¬ 
placements may be plotted and, if r represents any one displacement 
whose co-ordinates along two perpendicular axes are ir and //, 

L (r^)q2-(.r‘'^)o f-2 (?/‘^)o, 

but since the displacements will be in all directions, 2’(.r“)o 
and thus 

Substituting this result in (807) and knowing the other quantities 
occurring in it, Avogadro’s number, N, may be calculated. Perrin 
obtained the value 

iV=-6-82x]0‘^^ 

while Nordlund's result was 

iV=5-91 xl()2^ 

Perrin ^ also tested Einstein’s equation for the rotation angle by 
observing the time of rotation of comparatively large grains of mastic 
which could be seen in the microscope. The period was determined 
by noting the intervals between the successive appearances of certain 
defects in the particle surface. Ilis results confirmed the theoretical 
equation. 

In another series of experiments PcTrin - determined the value of 
N directly, by counting the number of particles in a dilute colloidal 
solution. The action of gravity causes a decrease in concentration 
with increasing height, and, in a state of kinetic equilibrium, the 
distribution of the particles with depth is similar to the variation 
of gas density with height, since the osmotic pressure which the 
particles exert obeys tlie gas laws. Hence 

dP^Fdh, 

where dP is the osmotic pressure difference in a vertical distance dh, 
and F is the force of gravity acting on the particles in 1 c.c. But 

F=Vi{p—po)gn, 

where Vc is the volume of one particle, n is the number of particles 
per C.C., p and are the densities of the particles and liquid respec- 

RT 
tively. Hence, since the osmotic pressure P is given by P=---^n, 

RP 
—-dn-=V,{p-po)gndh, . . . (309) 

and log -/'(»). • • (810) 

where and denote the concentrations at distances /q and Hq 
from the surface. 

To test this relation a cylindrical column, 0-1 mm. in height, was 

1 Perrin, Comptes Rendm, 146 , 967 (1908); 147, 475, 580 (1908). 
“ Perrin, loc. cit. 
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viewed under a microscope whi(^h could be focused at different levels. 
When the liquid was first placed in the vessel, the particle distribu¬ 
tion was apparently uniform, but after a few minutes it was evident 
that the concentration increased with depth, and soon a final state 
was reached which was tlie same at the end of fifteen days as after 
only about three hours. In a typical experiment with gamboge 
partieles of 2*12 XlO”^ em. diameter, Perrin found at four depths 
differing successively by 3 x 10“^ em. the numbers were proportional 
to 12, 22-6, 47, and 100. Altogether in a single experiment some 
13,000 partieles were observed, and in this way the values of and 

were determined. 
The density of the partieles was measured by t wo methods. In 

the first it was taken tt) be* the same as that of the substance in the 
undivided state, and in the second a known voluni(.‘ V of solution 
was evaporated and the residue weighed. Then, if and 
are the masses of a volume V of water and emulsion respectively, 
and d is the density of water at the temperature of the experiment 

F—and is the volume of the water present in a volume V 

of emulsion, lienee the actual volume Fj occupied by the particles 
is 

//q 

^ ^ d d 

and their d(;nsity p is given by 

vi^d 

^ Fj 

The volume Fr of one of the particles may be found in three 
ways : (a) if the number of particles in the volume F of the emul¬ 
sion is counted, then Vc is the ratio of F^ to this number ; {b) the 
steady rate of fall v under gravity may be observed by means of 
the microscope, and r may be found from Stokes’ equation, 

67ir]rv~^7tr^{p~PQ)g, 

Thus Vc may be calculated ; and (c), if the emulsion is slightly acidi¬ 
fied with hydrochloric acid, the particles gather on the walls of the 
vessel in strings, and a measurement of the length of one of these, 
together with the number of particles constituting the string, is 
sufficient to determine r. These three methods yielded eoncordant 
results, such as 0*46//, 0*455//, 0*45//, and from them Perrin obtained 
the value 

^==7*05X1023. 

V ^RT 
The coefficient of diffusion is, from equation (301), given by 

where x)^, the mobility, is the actual average velocity of the particles 
under unit force, so that 
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where is the velocity under a force F, According to Stokes’ Law 
F^^^nrjrVi, and thus the coefficient of diffusion is 

1 RT 
QTtrrj N 

(311) 

In Perrin’s experiments A; was determined by suspending the particles 
in pure glycerine in wdiich they possess the property of sticking to 
the glass walls of the containing vessel when they strike during their 
kinetic motion. By counting the number of granules which adhere 
to a given area in a measured timednterval after the steady distri¬ 
bution stage lias been reached, the coefficient of diffusion perpen¬ 
dicular to that area is determined, and from equation (311) N may 
be calculated. This method yielded results in accord with other 
determinations. 

In his experiments Perrin used emulsions of gamboge and gum 
mastic. The gamboge is made by desiccating the milk secreted by 
a gutteriferous plant; a part of the dry residue is rubbed under 
distilled water, and the gamboge dissolves, giving a yellow solution 
containing spherical particles of various microscopic and ultra- 
microscopic sizes. Those which were used in the above experiments 
were large compared with the particles of ordinary colloidal solutions, 
and observations were confined to very small depths. The difficulty 
of applying a concentration gradient similar to that of the atmo¬ 
sphere to these particles is that, with the rate of increase observed by 
Perrin over a depth of 0-1 mm., the concentration at a depth of, say, 
1 cm. would be enormous. Burton ^ ascribes this discrepancy to the 
fact that the particles are charged, and, consequently, exert a mutual 
repulsion. He suggests that the charge on the particles will exert a 
force on unit charge equal to Ane, where A is a constant and e is 
the charge on each particle. Consequently the total force on a layer 
of particles in the thickness dh will be Ane .ne .dh=An^e^dh, and 
Perrin’s equation (309) is modified to 

-dn-\-An^eHh=Vc {p—po)^'^^ • 

Porter and Hedges ^ point out that the colloidal solution does not, 
in fact, contain charges all of one sign, but is electrically neutral as a 
whole. They state that the extension of Perrin’s treatment to great 
depths is possible only if we replace the simple Van’t Hoff formula 
PV=R1\ obtained for dilute solutions, by the osmotic law for con¬ 
centrated solutions, such as the Sackur-Porter relation (Article 158), 

P{V-h)=RT, or 
RTn 

iV(i-vo’ 
We thus see that the application of kinetic theory principles to 

these colloidal suspensions yields results which arc in agreement 
with one another and with determinations of Avogadro’s number 

1 Burton, Proc. Roy. Soc., A, 100, 705 (1922). 
* Porter and Hedges, Tram. Far. Soc., 18, 1 (1922). 
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by entirely different means. In particular, the velocity distribution 
and the partition of energy among the particles agree with the Max¬ 
wellian laws, while the study of the Brownian motion has given 
much reliable information concerning the fundamental quantities 
of molecular theory, and thus has confirmed the hypotheses upon 
which it is based. 

170. Brownian Motion in Gases.—The Rrownian movements 
of particles suspended in gases were studied much later than those 
in liquids. Ehrenhaft ^ was the first to carry out direct measure¬ 
ments, and he found that, as })rcdicted by theory, there is a much 
greater activity in gases than in liquids. At the same time the 
action of gravity is much more apparent, and true Brownian move¬ 
ments are masked to some extent by convection currents. For 
heavier particles the velocity due to gravity completely hides that 
due to molecular collisions, while for very small particles which are 
near the limit of the ultra-microscope (10“’^ cm.) the reverse is true. 
De Broglie,2 one of the earliest experimenters to make a quantita¬ 
tive study with gases, drew the metallic dust arising from the con¬ 
densation of the vapours, produced by an electric arc struck between 
metal electrodes, into a glass box, and examined the particles, which 
were rendered visible by a beam of light passing horizontally through 
the box. He found that, when a potential difference was established 
between two plates in the box, some of the particles approached 
one plate and some the other. Later he used minute water drops 
condensed on tobacco smoke, and determined the rate at which 
these droplets moved in a horizontal electric field. The Brownian 
movement in air is about eight times more vigorous than in water, 
and b}^ reducing the gas pressure, this movement may be increased 
to two hundred times that of the liquid. If the particles were 
uncharged, Einstein’s equation was verified, and the value of N 
obtained was in good agreement with that deduced from other ex¬ 
periments. De Broglie used the equation Fe—vd, where F is the 
electric field, e the charge on the particle, v the velocity, and d the 
damping factor. He then measured and since, from (307), 

lo— h 

6 may be eliminated from the two equations. Assuming Perrin’s 
value for N, he calculated e, the charge on the particle. These 
experiments are important, because no assumption is made that the 
particles are alike in size, that they have the same charge, or that 
Stokes’ Law is obeyed. 

The most important experiments on the Brownian motion in gases 
have been made by Millikan,^ who used minute oil drops formed by 
blowing, with a simple atomiser, an oil spray into the chamber. 

1 Ehrenhaft, Phys. Zeits.^ 10, 308 (1909). 
2 De Broglie, Comptes Rendus, 148, 1163 (1909). 
‘MiUikan, Phys, Rev,, 32, 349 (1911). 
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These drops, having a radius of 10“^ cm., moved between horizontal 
plates across which an electric field was maintained. The illumin¬ 
ated drops were observed through a microscope while, under the 
action of gravity, they moved slowly downwards. During their 
motion they collec't ions present in the chamber and, with the aid 
of the electric field, a particular ])artiele could be suspended under 
observation for a long period, and as many displacements as desired 
could be measured for this particle, instead of assun\ing exact 
similarity among the various particles. The gravitational drift 
velocity w^as then observed, and also the velocity Cg when an 
electric force X acted against gravity. Then, if m is the mass of 
the drop, 

mg 

or, 

and since 

c~L 

Xvi 

Combining this equation with the Einstein relation (307), we have 

2RT 
N ’ 

so that the j)roduct Ne could be obtained without reference to the 
size of the particle or the resistance of the medium. 

The value of Ne obtained was 2*88x10^^ electrostatic units as 
compared with 2*896x10^^ obtained from electrolysis. This con¬ 
firms Einstein’s assumption that a particle in a gas, whatever its size, 
moves with a mean translational energy which is a universal constant 
dependent only on temperature. Similar tests made by Weiss ^ 
with silver particles and by Eyring ^ with oil drops in hydrogen 
gave similar results for Ne, and these agreements furnish additional 
confirmation of the kinetic and atomic hypotheses of matter. 

Recent experimental values of Avogadro’s number rest on the 
fact that X-ray wave lengths may be determined directly by means 
of ruled diffraction gratings. Bragg’s law relates the wave length 
with the lattice constant of a crystal, e.g. rock-salt, so that the 
latter can be accurately determined in terms of the molecular 
weight of rock-salt, its density and Avogadro’s number. The result 
is iV=(6 023±0 03)xl02^ 

Bond ^ devised a method of calculating the charge e on an elec- 

^ Weiss, Phys. Zeits., 12, 630 (1911). 
* Eyring, Phys. Rev.y 5, 412 (1915). 
3 Bond, Phil. Mag., 10, 994 (1930); 12, 632 (1931). 
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iron and hence N from the various methods of determining Planck’s 
constant. The value he obtains is N=(6*054d:0*08) x 10^^ which 
Birge ^ corrected to N“(6-0622hO-03) x 

It is instructive to compare the values of A, the number of mole¬ 
cules in a gram-molecule of a substance, and /a, the number of 
molecules in 1 c.c. of a gas at S.T.P., obtained by tht,*se and other 
methods. 

Tablf. XVhi.—Values obtained for N and ii 

Experimenter. 
! 

Method. 

L_. . 

Nx 10-”. n X 10 - 

Maxwell . ! Mean free path and density of 
mercury .... 4-5 20 

Van der Waals . 
Kinetic tlicory of gases 4-27 1-9 

: Value of “ 5 ” for oxygen and 
, nitrogen .... 4-5 2 0 

Meyer Kinetic theory of gases 13-8 6-1 
Kinslein Diffusion eoellieient . 4-0-9 0 1 -8-40 
Millikan . Fall of an ion in an electric held 6-2.3 2-8 

i Recalculated . 6-18 2-77 
Perrin i Brownian rotational movement . 6-5 j 2-9 

i Brownian motion in liquids 715 ; 3 2 
i Distribution of colloidal particles 6-82 3 2 

Chaudesaignes . Brownian motion in liquids 6-4 2-9 
Ehreiihaft „ „ in gases 6-3 2-8 
de Broglie In n n • i 6-48 2-9 
Hopper and Laby 1 Oil drop . 6-023 2-687 
Birge, 1941 X-ray data .... 6-028 i 2-687 

1 

EXAMPLES 

1. 10 grn. of sugar of molecular weight 360 is dissolved in 1 litre of 
water, the temperature being 15° C. If the gas constant per gram- 
molecule is 8-26x10^, calculate the osmotic pressure of the solution. 

[6-61 X 10'^ dynes per sq. cm.] 

2. The sugar solution in the previous question has a density of 
1 006 gm, per c.c., and the density of hydrogen at standard pressure 
and temperature is 8-98 xl0~® gm. per c.c., while the saturation pres¬ 
sure of water vapour at 15° C. is 1-200 cm. of mercury. Calculate the 
amount by which the vapour pressure over the sugar solution falls 
below that over a pure water surface. [6x10“'^ cm. of mercury.] 

3. Calculate (a) the boiling-point under normal pressure, (b) the 
freezing-point of the solution in the previous question if the density of 
water is 1-00 gm. per c.c. at 0° C. and 0-958 at 100° C., the latent heat 
of steam at 100° C. is 540 cals, and the latent heat of ice is 80 0 cals. 
Take J as 4-18x10’ erg per cal. [(a) 100-015° C. ; (b) —0-051° C.] 

4. A vertical diffusion cell of height I, containing a uniform solution 
of concentration C, has a slow stream of pure solvent passing horizontally 

G.P.M. 

1 Birge, Phys. Rev,, 40, 228, 319 (1932). 

Y 
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over it. Find an expression for the variation of concentration c, with 
distance a?, above the bottom at any subsequent time i; the coefficient 
of diffusion being k. 
[{4C/7i){€^^ cos oiX~e^^f{cos 3aa;)/3-f ..•}.] (/?— —kn^/W ; ol=7i/21.) 

5. In a diffusion cell of length I the solution at the bottom is main¬ 
tained at saturation concentration C, while at the top the solution is 
maintained at practically zero strength. If, initially, the vessel con¬ 
tained a saturated solution, find the concentration at any point distant x 
from the bottom after a time i, 

[C — Cx/l H-{SC/71^) sin ax — e^^*{sin Sax)/9 
-i-5oux)/25 — . . .}.] (a and fi as above.) 

6. In a measurement of the osmotic pressure of a solution of sucrose, 
molecular weight 342*2, at 10° C., the pressure P in atmospheres and 
the volume V containing 1 gram-molecule of dissolved sugar were as 
follows :— 

P. 2*52 4*93 9*87 14*98 20 24 25*92 
F. 10,000 5000 2500 1C67 1250 1000 c.c. 

Show that the relation P{V —h)~const, applies to the readings, and 
deduce values for h and It, the gas constant per gram-molecule. 

[5=89 c.c.; P = 8*45xl0.J 

7. If the values of P and V at 00° C. for the above sugar were: 

P. 2*74 5*48 10*96 16*67 22*52 28*63 
V. 10,000 5000 2500 1667 1250 1000 

find the value of b at this temperature, and show that P(F—5)ocT. 
[75 C.C.] 

8. Observations on the Brownian movement in water showed that 
the horizontal displacement of a given particle in eleven successive 
intervals of 30 sec. were 0, 5*6, -4*7, -10*8, 6*6, -9*8, -11*2, -4*0, 
15*0, 19*1, 16*0 X10-* cm. The temperature was 20° C., at which 
the viscosity of water is 0*0100 C.G.S., and the radius of the particle 
was 1*05x10“® cm. If P =8*32x10’, obtain a value for the number 
of molecules in 1 gram-molecule. [5*7x1023.] 

9. In a colloidal suspension of gamboge particles the average num¬ 
bers of particles n in the field of view of a microscope at various depths h 
below the surface were :— 

n = 120 215 324 460 615 924 
5= 0 10 17 23 28 35 

Show that these observations agree with the theoretical distribution of 
non-ionised particles. 

10. A small oil drop is observed to drift vertically downwards with 
velocity v. When a vertical electrical field of intensity 6*54 E.S.U. is 
applied the drop is found to move upwards with the same velocity. 
If e is the charge carried by the drop and m is its mass, find the ratio 
of e/m for the drop. [300.] 

11. The actual drift velocity in the previous question was 9*80 x 10“ ® 
cm. per sec. If the oil density was 0*80 gm. per c.c. and the viscosity 
of air 0*000181, find the value of the charge e. Is this the minimum 
value the charge could have ? 

[9*53x10-1® E.S.U. ; No, it is double.] 
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12. When 1*065 gm. of iodine is dissolved in 30*14 gm. of ethyl 
ether the boiling-point is raised by 0*296° C. The atomic weight of 
iodine is 127, the boiling-point of ethyl ether is 34*6° C., its latent heat 
81*49 cals, per gm., its density at the boiling-point is 0*6944 gm. per 
c.c. Show that the molecule of iodine is diatomic. 



CHAPTER XI 

THK PRODUCTION AND MEASURKMENI^ OF 
LOW PRESSURES 

171. The Speed of a Vacuum Pump. High-vacuiiin Uch- 
nique is a dominant factor in the modern laboratory, cs])ccially in 
the realms of modern radio and X-ray equipment, and it is destined 
to play an important part in certain branches of chemical industry. 

In the high-vacuum puniping systems now generally adopted 
the pressure is first reduced from atmospheric to a small fraction 
of it, c,g, to about O-l mm. of mercury,^ by means of a “ backing 
pump ” which is usually of the piston or rotary-vane oil type. 
Further reduction from this “ fore-vacuum ” or “ backing-pressure,” 
produced by the backing pnmp, down to,some value ranging from 
10*“^ mm. to mm. is achieved by means of some type of 
diffusion-condensation pump, or by means of a inolcculaT pump. 
The backing and high-vacuum pumps are arranged in tandem, so 
that gas or vapour from the vessel to be exhausted is taken in at 
the “ inlet ” of the high-vacuum pump and ejected at its “ outlet ” 
into the fore-vacuum of the backing pump. From there the latter 
ejects it into the atmosphere. 

An important property of a pump is its speed. This is measured 
by the relative rate at which the pressure is reduced in a given 
volume, and is defined thus :— 

where S is the pumping speed at a pressure V the volume, and 
Pq the limiting pressure. From this it follows that 

where and Pg are the pressures at the instants and /g. This 
equation is useful in predicting the time required for a vacuum 
system to recover from a surge of gas which raises the pressure to Pj, 
Pg representing the working pressure required in the apparatus. If 
the limiting pressure is very low, we have 

known as Gaede’s equation. 

^ The mm. of mercury is generally used as the unit of pressure in high-vacuum 
technique. Throughout this chapter the unit mm. refers to mm. of mercury. 

324 
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In equation (812) put then 

P dt 

Let (IF' be the volume of gas, measured at pressure P, extracted 
from tlu' volume V during the time interval dt, then 

FP-(P-t-dF)(P-| r/P), 

and 
dV__V ^ 
dC P* d/ 

Thus the speed of a pump is the rate of change of volume of the gas 
in an enclosure at any instant, the volume being measured at the 
pressure attained by the pump at that instant. From this equation 
it is evident that a pump has no pumping speed at the lowest attain¬ 
able pressure. It is important that all pumps should be designed 
so that they can produce not only low pressures, but that they have 
as high a speed as possible at all pressures. 

172. Rotary Oil Pumps.—An oil pump, e,g. the piston or the 
rotary type, is generally used as the backing pump. The piston 
type is convenient and durable, but it has been considerably replaced 
during the last few years by the rotary type which was evolved 
from the oil-circulating pump. Taking up very little space, silent, 
and having a high speed, these pumps are the most useful yet made 
if the backing pressure required is less than 10mm. 

There are two main types of rotary oil pumps ; both embody 
a rotating part which, by means of vanes and an eccentric motion, 
compresses and ejects the gas through an oil-immersed non-return 
outlet valve. In the rotary-vane pump, first proposed by Gaede and 
illustrated in Fig. 90 («), the cylindrical solid rotor revolves eccen¬ 
trically inside the hollow stator. A slot is cut across the rotor 
diametrically and two vanes slide in this slot. They are separated 
by a spring which also presses them against the walls of the stator. 
The space between the latter and the rotor is limited by two end- 
plates. As the rotor revolves, gas taken in at the intake is trapped 
by the rotating vanes, compressed, and finally expelled through the 
exhaust valve. The pump is fitted with a self-sealing oil valve in 
order to ensure that when the pump is stationary, air is not sucked 
back from the pump into any exhausted vessel connected to it. 
The whole of the working parts are placed in an outer rectangular 
case, filled with oil, which gives perfect lubrication, prevents leakage 
of gas into the high vacuum, and assists in efficient cooling of the 
pump. 

In the “ Cenco ” eccentric rotor pump, illustrated in Fig. 90 (5), 
the steel rotor rotates eccentrically about a shaft inside the steel 
stator, the walls of both being worked to a high degree of precision. 
A single vane is spring-operated by the arm and presses against 
the rotor. As the latter rotates, the gas entering via the intake 
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port is trapped, and forced by the movement of the rotor into a 
smaller volume, being finally expelled through the exhaust valve. 
The whole mechanism is immersed in oil, and a special valve on 
the intake tube prevents oil from passing into the exhausted vessel 
when the pump is stopped. Two “ Cenco ” units can be mounted 
in series, side by side, on a common motor-driven shaft and by this 
arrangement a lower final pressure can be attained. Other com¬ 
mercial elaborations of this “ llyvac ” are known as “ Megavac 
and “ Hypervac,” and pressures as low as 10“^^ mm. are produced 
by them. 

These low pressures can only be attained if the pump and oil 
are clean and uncontaminated by vapours—especially water vapour. 
Vapours are condensed to liquid on the exhaust side of the pump, 
contaminate the sealing oil and corrode the internal parts. To trap 
these vapours a bulb of phosphorus pentoxide should be placed 
between the pump and the vessel which is being exhausted. 

173. Molecular Pumps.—^All oil pumps operate between 
atmospheric and a comparatively low pressure, ^.g. mm.~ 
10-3 nun., but molecular and diffusion pumps will only work from 
a reduced pressure, and accordingly they must always be used in 
series with a backing pump. 

The action of molecular pumps depends upon the fact that a 
dragging force, due to viscosity, is exerted on gas molecules by 
a rapidly rotating surface adjacent to a stationary one. The clear- 
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ance between these surfaces must be very small—of the order of 
0 08 mm.—so that the gas molecules make many more collisions 
with the walls of the annular gap than with each other. The rota¬ 
tion direction is such that gas is dragged from the vessel to be 
exhausted, by the high-speed rotor and delivered into the backing 
pump, the pressure difference at the inlet and outlet ports being 
proportional to the rotor’s angular velocity. The rotor speed should 
be not less than 5000 revolutions per minute. 

In Gaede’s type ^ a set of projections from the outer stator fit 
into grooves in the rotor and the gas is swept along the clearance 
between projections and grooves. The llolweek pump ^ works on 
the same principle but the grooves are on the stator and there are 
no projections on the rotor. In this arrangement the clearance 
between the moving and fixed cylinders can be reduced below 
0 03 mm. 

Molecular pumps remove vapours as well as the more permanent 
gases, but traces of slowly vaporising substances, such as grease or 
mercury, arc troublesome. In addition, the pumps arc subject to 
considerable mechanical trouble owing to the small clearance be¬ 
tween the stator and rotor surfaces. The final pressures attainable 
with these pumps depend upon the fore-vacuum pressure and the 
angular velocity of the rotor, e.ff, a final pressure of 10"® mm, can 
be produced with 10,000 revolutions per minute and a forc-vacuum 
of 2 mm. 

174. Diffusion —Condensation Pumps.—The diffusion pump 
is the most widely used type for the production of very low pres¬ 
sures, and as condensation as well as diffusion plays an important 
part in its operation, it is often referred to as a condensation pump. 
It must be used in tandem with a backing pump. The pump was 
originated by Gaede ® and the principle of its action is as follows ;— 

Consider a stream of vapour flowing along a tube in the direc¬ 
tion from A to B (Fig. 91) (a), D representing some porous material 
placed near the end of a side tube C which leads to the vessel being 
exhausted. The vapour stream carries along with it any gas in the 
space AB, and as the gas pressure therein is thus reduced, gas 
diffuses from C into AB where it is swept along by the vapour stream. 
Vapour will obviously diffuse from AB into C, but if it is arranged 
that the small capillaries in the porous material D are of smaller 
dimensions than the mean free path of the vapour and gas mole¬ 
cules, then there will be relatively few vapour-gas molecular col¬ 
lisions, and this back-diffusion of vapour into C will not interfere 
with the gas diffusion from C to AB, Additionally, if vapour reach¬ 
ing C is condensed by some means, then diffusion of the gas from C 
into AB continues until the partial gas pressures in both spaces— 
C and AB—are equal. It is evident that with a gas-free vapour 

1 Gaede, Phys, Zeits., 13, 864 (1912). 
®Holweck, Revue d'Optique^ 1, 274 (1922). 
* Gaede, Ann, d. Phys., 46 357 (1915). 
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stream, the diffusion process continues, theoretically, until the gas 
pressure at C is zero. This limit is never attained in practice, owing 
to gas liberated from the walls of the vessel, and there is a tendency 
for the gas to leak back from B to (\ In addition, vapour diffuses 
towards C and the final pressure in the vessel being exhausted 
depends upon the vapour pressure, ix. the temperature at U. It is 
obvious that no porous material is really required at D for this 
diffusion action, but the pump constriction must be such that vapour 
entering C does not prevent gas diffusion from C\ The gas is swept 
forward to B and passes into the fore-vacuum of the backing pump. 

(a) (b) (c) 

Fig. 91.—Principle of the Diffusion-Condensation Pump. 

the vapour stream along AB preventing back diffusion of the gas 
from B to C, provided that the gas pressure at B is sufficiently low. 

Gaede originally designed a pump in which diffusion occurred 
across an annular slit (Fig. 91) (^), of width approximately equal 
to the mean free path of the molecules at the slit. Thus the gas 
molecules passing through S will not collide with the vapour mole¬ 
cules passing in the opposite direction and the gas therefore diffuses 
through S. The tube surrounding the annular slit was water-cooled, 
which prevented the vapour from passing to the vessel being ex¬ 
hausted. With low vapour pressures, i,e, a slowly moving vapour 
stream, there is some back-diffusion of the gas from R, and the 
pump speed is very low, being limited by the width of the slit R. 
The pump is interesting since it was the first one constructed, but 
it was never generally used, as Langmuir ^ showed that a much 
simpler arrangement gave better results. * 

^ Langmuir, Phys, Rev., 8, 48 (1916). 
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Langmuir prevented the vapour from passing through to C by 
directing the stream away, as far as possible, from the inlet to U, 
as shown in Fig. 91 (c). When the stream emerges from A the 
vapour is condensed on the walls of B by the cooling arrangement, 
and there is little tendency for it to dilTuse through the annular gap 
and thence to (\ If, however, the vapour pressure at the gap is 
high, the vapour molceules emerging from the end of A will move 
in all directions and some will move downwards through B to oppose 
the gas diffusion from C. But if the gas pressure in the fore-vacuum 
at B is low, the vapour pre‘ssurc at E in the stream need not be 
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Water 
Jacket 

Water 
Inlet 
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(h) 

Fiq. 92, 
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high to prevent the gas from diffusing back from B, Provided that 
this condition holds, and that the mean free path of the vapour 
molecules at E is greater than the width of the annular gap, the 
vapour molecules emerging from E will strike the cooled walls and 
condense without colliding witli gas molecules leaving D, 

From these considerations it is evident that the width of the 
annular gap, the pressure in the fore-vacuum of the backing pump, 
the vapour pressure at the gap, and the vapour condensation thereat 
are important factors in the successful working of any type of dif¬ 
fusion pump. Early models were of glass, but they have been 
replaced by all-metal types. In one of the first of these, made by 
Langmuir, the vapour stream was deflected downwards by a cowl 
to form an annular stream into which the gas could diffuse. Many 
modern diffusion pumps incorporate this cowl device. For example, 
Fig. 92 (a) illustrates the Kaye all-metal mercury pump. It produces 
a pressure of mm. with a backing pressure as high as 1*5 mm. 
The most rapid types employ several gaps, or jets, in parallel. 

Although there are many differently designed diffusion pumps, 
they all use either mercury, or a very low vapour-pressure organic 
liquid, as the working liquid. Generally the organic liquid is one 
of the oils known commercially as Apiezon, although butyl phthalatc 
is also suitable. The vapour pressure of these organic compounds 
at room temperatures is less than 10mm. 

175. Oil Diffusion Pumps.—A single-stage all-metal oil 
diffusion pump made by Edwards ^ is illustrated in Fig. 93 (a), the 
stream of oil vapour being produced by means of an electric heater. 
There are two sets of baflles ; the upper one prevents the oil vapour 
from entering the vacuum chamber, and at the lower one the liquid 
oil seals the baffle to the pump wall to prevent oil vapour from 
ascending outside the vapour tube. 

In the Mctrovac Type 03 pump (Fig. 03) (b) there are two sets 
of baffles and a deflector plate. 

Henderson ^ has described a two-stage oil-diffusion pump, shown 
in Fig. 93 (c). The first stage is the jet stage located near the top 
of the pump, and the second is the annular stage placed directly 
beneath the first one. The heavy-walled aluminium tube serves not 
only as a passage for oil vapour from the boiler to the first stage, 
but also as a conductor of heat throughout the length traversed by 
the oil, and so prevents condensation. The openings IJ serve as the 
entrance for the oil vapour into this tube, the oil vapour dividing 
at this point, part going to the jet stage and part to. the annular 
stage. B is a small U-tube which permits the return of the oil, 
condensing in the first stage, to the boiler. The second stage is the 
conventional type found in many mercury pumps. The spacer C, 
which is of glass and which is sealed as an integral part of the pump, 
serves the double purpose of controlling the flow of oil vapour as 

^ Edwards, Rev. Set. Jmt., 6, 145 (1935). 
* Henderson, ibid., 6, 66 (1985). 
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well as serving as a guide to the aluminium tube. With “ Apiezon 
B ” oil, pressures as low as 2xl0~® mm. have been obtained, the 
fore-vacuum pressure being of the order of 0*2 mm. 

A simple form of glass pump designed for use with oils is shown 
in Fig. 92 {b). 

In general, dilTusion pumps designed lor use with mercury are 

Pump 

Fig. 93.—On. Diffusion Pumps. 

unsuitable with oil as the operating liquid for the following reasons : 
(a) the gap between the cowl and the condensing surface may be 
too small, and the gap may be closed by a film of oil; (b) the cross- 
sectional area of the pipe supplying the vapour may be too small, so 
that an adequate supply of vapour to the jet may not be produced 
without overheating the oil; (c) the cowl and the vapour supply 
pipe may become too cool, causing excessive vapour condensation. 
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Mercury is convenient because of its chemical stability, and 
reasonable temperatures are required at the jet; consequently the 
fore-vacuum need not be very low. The vapour pressure of mercury, 
however, at room temperatures is of the order 10 mm. and this 
represents the ultimate pressure attainable with a mercury pump. 
If lower pressures are required, a liquid-air trap must be j)laeed 
Ijetween the inlet and the vessel to be exhausted ; the final pressure 
in this case is then in the neighbourhood of mm. The liquid- 
air trap reduces'the pump speed but also acts as a bafile, preventing 
vapour diffusion, against the gas, into the exhausted vessel. 

The great advantage of oil as a working liquid is that low pres¬ 
sures can be attained without the use of a liquid-air trap, and pump¬ 
ing speed is unrestricted. Greater speeds are obtainable than with 
mercury pumps of corresponding size since the molecular weight of 
the oil is about three hundred times as great as that of mercury. 
On the other hand, there is the great disadvantage of oils that they 
are not as stable as mercury, and tend to decompose when sub¬ 
jected to high temperatures, if there is insufficient cooling water, 
too great a heater input, or too high a backing pressure. Another 
disadvantage is that oil cannot be heated as much as mercury, so 
that the pressure in the oil vapour stream is less and, accordingly, 
the backing pressure must be less than with mercury pumps. Thus 
a larger rotary backing pump is required. It is preferable to heat 
oil diffusion pumps electrically, as the maximum heat input is then 
fixed automatically by the wattage-rating of the heater. Baffles 
must be used to prevent oil molecules from streaming back from 
the mouth of the pump in the opposite direction to the general 
flow of the gas and into the vessel undergoing evacuation. Most 
oil pumps incorporate such a baffle system within themselves. 

176. Gauges.—Many gauges for the measurement of low pres¬ 
sures have been designed, but only a few are of practical value. 
Practically all of them are either based directly on Boyle’s Law, or 
must be calibrated by means of such a compression gauge. This 
law is only valid for ideal gases, and the pressure of vapours, when 
present, entails certain precautions, or corrections. There are only 
two gauges which are absolute, ix, which indicate the absolute 
pressure of a gas, viz, the McLeod gauge and the Knudsen gauge. 
In the following we shall confine our attention to gauges used for 
the measurement of pressures below 10mm. 

177. The McLeod Gauge.—^The principle of the McLeod gauge 
consists in isolating a known volume of the gas at the unknown 
pressure and compressing it into a small known volume at which 
the pressure is measured. The gauge, illustrated in Fig. 94, con¬ 
sists of a closed, graduated capillary tube B sealed to a bulb A— 
the volume of which depends upon the pressure range to be measured. 
Placed very close to this capillary tube is a side capillary tube C 
of similar bore to eliminate surface tension errors. A scale is fixed 
behind these tubes and a mercury reservoir, connected by rubber 
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tubing to the gauge, enables rising mercury when it reaches D to 
trap the volume of gas V contained in A and at a pressure P, 
and compress it to a known volume t) in P at a pressure p. Then 

V 
The gauge can be operated by raising the reservoir until the 

mercury in C is at the same horizontal level as 
the closed end of 7i. If is the diflerencc in 
the mercury levels in tubes B and C\ and 
is the length of the volume of gas trapj)efl 
in P, and — mm. of mercury. Let 
k be the volume of 1 mm. length of the 
(‘fipillary P. Then v=kJi2 and 

P is thus determined in mrn. of mercury pro¬ 
vided that K the gauge constant is known, or 
can be found in the usual manner. It will be 
noted that P is read on a quadratic scale with ^ 
the zero at the upper end of P. 

Many minor modifications in the McLeod 
gauge have been proposed from time to time. 
The flexible rubber tubing, which contamin¬ 
ates the mercury in the course of time, has been 
replaced by a stainless steel tube dipping into 
a reservoir of stainless steel, and bench types 
are available w^hich reduce the overall length. 

The gauge is simple, cheap, but rather 
unwieldly. Its range depends upon the volume 
of the bulb A and the bore of the capillary. 
In general, the latter should not be less 
than 1 mm. diameter, and the final volume 
not less than 2 cu. mm. As the principle of 
the instrument is based on the validity of 
Boyle’s Law, it should only be used with the 
more permanent gases ; erratic and unreliable 
readings are obtained if condensible vapours— 
especially water vapour—are present. It is 
necessary, therefore, to eliminate all traces of 
such vapours before the gauge is used. The 94.—The McLeod 
presence of mercury vapour is an undesirable Gauge. 

feature, especially in systems incorporating 
oil diffusion pumps. In addition, the gauge will not register cor¬ 
rectly pressures below that of mercury vapour pressure at room 
temperatures. The mercury vapour may be trapped with a liquid- 
air trap placed between the gauge and the rest of the system. The 
gauge does not give a continuous record of pressure, but must be 
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read, an interval of a minute or so being required for the reading. 
If all precautions are taken, the instrument is capable of measuring 
pressures as low as IQ-® mm., but many workers consider that it 
is unreliable below 10“^ mm. 

178. The Knudsen Gauge.—Although not generally accepted 
as a practical instrument, the Knudsen gauge possesses the out¬ 
standing advantage that, if suitably designed, it indicates very 
closely the absolute pressures of both gases and condensible vapours, 
irrespective of their nature or condensibility. The gauges can be 
constructed to cover a pressure range from 10^® mm. to 10mm. 
The principle of the instrument depends upon radiometric forces at 
Jow pressures ; Knudsen ^ calculated the repulsion produced by the 
molecular bombardment which is exerted between hot and cold 

plates mounted in an exhausted vessel. If 
two such plates are arranged parallel, and 
at a distance apart small in comparison 
with the mean free path, there is repulsion 
between these plates which, over a range 
of pressures, is proportional to the gas 
pressure down to 10 mm. 

To measure this effect, Knudsen set up 
an apparatus represented diagrammatically 
in Fig. 95 where A2 fixed plates 
electrically heated, and B is the cold plate 
suspended by means of a quartz fibre C to 
which is attached a mirror D, The molecular 
repulsion deflects the plate B, the deflection 
being measured by means of a beam of light 
reflected from the mirror D, The calculation 

Fio. 95.—The Knudsen repulsion is an interesting 
Gauge. example of radiometer phenomena. 

Let 7\, T2 be the temperatures of 
and B, respectively, the number of 

molecules per c.c. moving with a root mean square velocity C\ from 
AI to B, and N 2, the number per c.c. moving with velocity Cg from 
B to In the equilibrium state 

AiQ-iVgCg, 

since the nun^ber of molecular collisions per sq. cm. per second must 
be the same. If we consider 2\ to be the temperature of the 
containing vessel, and N the number of molecules per c.c. in the 
space outside that between and R, then 

NCa-AiCi-fN2Cg==2NiCi=2iVgC2 . . (313) 

since the number of molecules flowing out from the space between 
A2^ and B to the rest of the enclosure must be equal to the number 

1 Knudsen, Ann, d, Phys,, 31, 205 (1910). 
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flowing into this space. Hence the total pressure between the plates, 
if m is the mass of each molecule, is 

while the pressure acting on that face of remf)ve(l from .1^ is 
niNCJ . 
—. I hus tile (‘xeess pressure acting on Is urging it away irom 

is 
viNi\^ 

3 I ^ 3“ ’ 

and from equation (313) this is 

6 ~[C^ 

Assuming that the molecules when they strike and 1i take up 
the temperature of these surfaces, 

Hence 

where P— 
mNC^^ 

3 

cy \l 'i\ 

and is the pressure within the enclosure, fi being 

the repulsive force per sq. cm. acting on one plate. This formula 
is valid only if the distance between the plates is small compared 
with the mean free path, and if the dimensions of the plates are 
such that the edge effects may be neglected. 

For temperature differences not exceeding 250° C. the formula 
may be written in the form 

PrTx-T{\ 
'‘L _■ 

(314) 

We see, therefore, that the force is independent of the nature of the 
gas, and if /x can be measured, the pressure within the enclosure 
can be determined. 

Now if rj and are the distances of the vertical sides of B from 
the axis of suspension, L the length of the vertical side, 0 the angle 
of deflection, and r the constant of the fibre. 

r0~2[ fiLrdr:=lJiL(r2^—r^^)^2anr, . . (315) 
Jfx 

where a is the area of one vertical strip and r is its average distance 
from the axis of suspension. Thus from equations (314) and (315) 

^ 2t0 T, 
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If 1 is the moment of inertia of the suspended vanes, and the 
periodic time of oscillation, 

Hum 
t^ar'T, T; 

In practice the elements are placed in a cha^iiber communicating 
with the vacuum to be measured. The formula is seen to be inde¬ 
pendent of the molecular weight of the gas, but the gauge will 
obviously cease to function correctly when the gas pressure has 
become so high, and the mean free path so small, that convection 
currents are set up, causing erratic behaviour of the vane. 

The advantages of this gauge are that it involves no objection¬ 
able medium such as mercury ; it gives a continuous indication of 
pressure ; there is no filament sufficiently liot to burn out, or change 
the chemical constitution of vapours, or gases, whose pressures are 
being measured ; it is very stable and insensitive to external in¬ 
fluences, yet it is very sensitive at low pressures. Its zero point 
can be checked by simply turning off the current to the heater; 
it measures the pressure of all vapours and gases alike, quite inde¬ 
pendent of the mass of their molecules or their condensibility, and 
finally it is simple, easy, and cheap to construct. 

179. The Quartz Fibre Gauge.—The principle of the quartz 
fibre gauge depends upon the fact that a vibrating system suffers 
decrement, due to the viscosity of the gas in which the vibrations 
occur, as shown in Article 119. The gauge consists of a quartz 
fibre about 5 cm. long and OT mm.~0-4 mm, diameter, suspended 
from one end of a glass container, the latter being connected to the 
apparatus in which the gas pressure is to be measured. Oscillations 
may be started by a magnet acting on a small piece of iron con¬ 
tained in a glass pivot movable in sockets inside the container. The 
damping produced by the gas is nearly independent of the pressure 
from atmospheric pressure down to a few millimetres. At lower pres¬ 
sures, however, where the mean free path of the molecules becomes 
comparable with the dimensions of the apparatus, the gas viscosity 
depends upon the pressure, and so the damping of the fibre—due 
partly to the gas viscosity—varies with the pressure, the logarithmic 
decrement X being given by 

A=o+fcP\/M, 
where M is the molecular weight of the gas in the container, P the 
gas pressure, a and b constants. The time for the vibration ampli¬ 
tude to decrease to half of its initial value is given by 

T 
f=^.log 2, 



THE PIRANI GAUGE 337 

where T is the period of the system, so 

pVm^j-b, 

A and B being gauge constants. If is the damping time in an 
essentially perfect vacuum below 10"*^ mm. P 0 and the ratio 
A/B can lx* dtitermined. The values of A and B can be found 
from a second measurement of the time at a definite pressure. The 
amplitude is observed by means of a microscope, or by optical pro¬ 
jection on a scale. The constant B depends on the fibre thickness, 
and A upon the elasticity of the fibre and on the temperature. In 
some models a bifilar arrangement is used. This causes the system 
to vibrate in one plane, whereas this is diflicult to obtain with a 
single fibre, and so the observation is uncertain. A feature of the 
instrument is its small volume, and since it contains no metal parts, 
it is suitable for the measurement of the pressure of active vapours 
or gases. The upper limit of pressures, whicli can be measured 
with the gauge, is determined by the fact that the viscosity only 
depends on the gas pressure if the mean free molecular path is 
comparable with tlic dimensions of the vessel. The lower limit 
pressure is reached when the gas density of the molecules is so 
small that no frictional effects can be discerned. In general, the 
pressure range is 10~2_.lo-4 mm. 

180. The Pirani Gauge.—The gauge was introduced by Pirani ^ 
and depends on the cooling of a heated wire by surrounding gases. 
As generally used, it consists of a fine wire with a high tempera¬ 
ture-resistance coefficient, connected in a Wheatstone bridge with 
three resistances of negligible temperature coefficient. A constant 
potential difference, suflicient to heat the nianornetric wire some 
degrees above its surroundings, is applied to the bridge and the 
change in resistance of the wdre, due to its change of temperature 
with pressure of the surrounding gas, is measured. At pressures 
below 10 mm. the resistance change is very nearly proportional 
to the pressure, and a straight line is obtained for the calibration 
curve. At higher pressures the curve ceases to be straight, and 
cannot be represented by any simple formula, as it varies in a 
complicated manner with the gas and the temperature of its sur¬ 
roundings. Campbell ^ followed a suggestion by Pirani that these 
difficulties can be greatly lessened if, in place of measuring the 
resistance change of the wire when the applied potential difference 
is constant, the resistance—and so the temperature—of the wire is 
maintained constant, the applied potential difference, necessary to 
do this, being measured. It varies with the gas pressure. 

A suitable method of using the gauge is to introduce tliree 
manganin resistances into the bridge. The gauge wire can be that 
in a 40-watt tungsten filament lamp, and it should be at a tempera- 

^ Pirani, Deutsch. Phys, GeselL Verh., 8, 24, 684 (1906). 
* Campbell, Proc. Phys. Soc., 33, 287 (1921). 

G.P.M, z 
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ture of about 100° C. A voltmeter is connected to the bridge ter¬ 
minals, and the potential difference across the bridge is varied by 
means of a rheostat in the battery circuit until a balance is obtained. 
Then 

^ 0 

where V is the potential applied to the bridge, Vq is its value when 
the pressure jP=0, and is a term whi(;h is constant for consider¬ 
able variations in the instrument and for a considerable pressure 

j/2__y 2 

range. Thus —independent of everything except the 

nature and pressure of the gas, and f(P) is approximately propor¬ 
tional to P, For several gases the calibration curves lie very close 
together, although for accurate work the calibration must be deter¬ 
mined for any particular gas. 

The gauge is convenient for pressures in the range mm.- 
10“^ mm., and its sensitivity is proportional to the specific heat, 
and inversely proportional to the square root of the molecular weight 
of the gas, or vapour, in the gauge. Therefore, since the gauge is 
usually calibrated with air, or nitrogen, it will not give correct 
readings of the total absolute pressure if organic vapours are present. 
In addition, the latter “ poison ” the filament. With time the gauge 
readings bear no relation to the original calibrations with air. It is 
a useful gauge when readings of pressure fluctuations are required. 

In a modern arrangement a pair of gauges is used, each member 
of which contains two filaments. One of the two gauges is pumped 
out and sealed off. It acts as a reference gauge. The other is 
connected to the vacuum to be measured. The four filaments of 
equal resistance arc connected to the four arms of the bridge—the 
resistances in one and the same gauge being in opposite bridge arms. 
With this arrangement pressures in the range 10”^ mm.-lO*'® mm. 
can be read, but it is very sensitive to any accidental thermal or 
mechanical effect. 

181. The Ionisation Gauge.—If gas is present in a three- 
electrode valve in quantity not sufficient seriously to affect the 
filament activity, and if the plate voltage exceeds a value necessary 
to produce ionisation of the gas in the valve, it has been found that 
the number of ions produced is proportional both to the gas pres¬ 
sure and to the electron current. If a small negative potential is 
applied to the grid, a certain fraction of the positive ions will be 
drawn to it, and their number will be proportional to the current 
flowing in the grid circuit. The electron current is measured in the 
anode circuit. The equation for such a gauge may be written in 
the form :— 

where P is the gas pressure, I the positive ionisation current, i the 
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electron current and k the gauge constant. This equation holds 
for pressures below about 10“"^ mm. if glow discharge and saturation 
of the ionisation current arc prevented. The gauge must be cali¬ 
brated with a McLeod gauge witli the kind of gas for which it is 
used. 

A more sensitive arrangement is shown in Fig. 96 (a;. Here the 
positive ions are collected at the anode, while the electron current 
is measured in the grid circuit. 

In the type described by Penning,^ and known as the “ Philips 
gauge,” the cathode is formed by two parallel plates within the 
tube (Fig. 96) (b). The anode is a wire frame placed between these 
plates, the planes of the plates and frame being parallel. A magnet 
is arranged so that a strong magnetic field is applied perpendicu¬ 
larly to the plane of the anode. The electrons thus move in a 

- Magnet 

Fig. 96.—Ionisation Gauges. 

helical path from cathode to anode, their paths are greatly increased, 
and so the probability of ionisation by collision is considerably 
increased. Thus an appreciable current will flow even at the lowest 
pressures. 

A great advantage of the ionisation gauge is that the valve is 
small, and it may therefore be placed in the immediate vicinity of 
the place where the pressure is to be measured. On the other hand, 
the manipulation of the gauge is troublesome and takes time. The 
sensitivity depends upon the physical dimensions and lay-out of the 
electrodes, together with the particular arrangement of the electrical 
circuit adopted. 

The ionisation gauge may be used in the pressure range 10 mm.- 
mm. It is not an absolute gauge but is easy to calibrate. 

Organic vapours poison the filament. Generally a cold trap of 
carbon dioxide snow and acetone is placed between the gauge and 
the apparatus being tested, or a baffling arrangement is employed, 

^ Penning, Physical 4, 71 (1987). 
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so as to prevent back streaming of oil molecules from any oil 
diffusion pump being used. 

In the measurement of low pressures it must be remembered that 
neither the pressure, nor the quality of the gases present, is the same 
in all parts of an exhaust system, especially if the connecting tube 
is narrow. A considerable time is required for equilibrium, and 
therefore the gauge should be as near as possible to the apparatus 
to be exhausted. Glasses and metals contain gases even when fused, 
and even if their gas content is reduced as far as possible by melt¬ 
ing in vacuo^ they still liberate gases after being sealed off. No 
vacuum measurement can claim to have an absolute value in itself. 
It must have a certain objective, e.g. the control of the pumping 
method, and exact values are only obtainable where permanent 
gases are concerned.^ 

EXAMPLES 

1. The volume of the bulb in a McLeod gauge is 250 c.c. ; the 
capillary tube is 5 cm. long and 1-5 mm. in diameter. Calculate the 
approximate range of the gauge. [1-77 x 10“^ mm.-7x10-® mm.] 

2. Calculate the diameter of the capillary tube in a McLeod gauge 
necessary for a pressure range 10“^ mm.-O SxlO”^ mrn. The volume 
of the bulb is 50 c.c., and the length of the capillary tube 4 cm. 

[2 mm.] 

3. With a quartz fibre manometer it was found that the amplitude 
of vibration decreased to half its initial value in 45 see. when the pres¬ 
sure, as measured by a McLeod gauge, was 8*6x10-® mm., and in 
320 sec. for a pressure of 10~'^ mm. Calculate the time for half-amplitude 
decrement when the pressure is 10“® mm., and show that this is not 
materially affected by a 50 per cent, inaccuracy in estimating the lower 
pressure, [187 sec.] 

4. The amplitude of a quartz fibre gauge decreases to half value in 
a vacuum in 300 sec. When oxygen is admitted at a pressure 10~® mm., 
the time for half-amplitude decrement is 100 sec. Calculate the half¬ 
amplitude decrement if hydrogen, at a pressure of 10”® njm., is admitted. 

[286 sec.] 

5. Gas is pumped continuously from a “ leaky ” reservoir of 20 litres 
capacity. The lowest pressure reached is 1 mm. If the pump is dis¬ 
connected from the reservoir, the pressure immediately rises at an 
initial rate of 2 mm. in 20 sec. Calculate the pump’s speed. 

[2 litres per sec.] 

6. In a Pirani gauge bridge the resistances are 1,1, 120 and 120 ohms, 
respectively, the gauge having a resistance of 120 ohms. The bridge is 
balanced when the gauge is exhausted and the main current is 40 milli- 

^ For further details of pumps and gauges reference may be made to the 
following books and papers : Newman, The Production and Measurement of Low 
Pressures; Dunoyer, Vacuum Practice ; Kaye, High Vacua ; Strong, Modern 
Physical Laboratory Practice, Hickman, Rev, Sci, Inst.^ 11,803 (1940); Burrows, 
Journ. Sci. Inst., 20, 21 (1943); Witty, Journ, Sci. Inst.^ 22, 201 (1945); 
Alexander, Journ. Sci. Inst.y 23, 11, (1946). 
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amps. When hydrogen, at a pressure of 1-5 xlO-^ mm., is admitted 
to the gauge, the main current has to be increased to 60 milliamps to 
balance the circuit. Calculate the gauge constant. [83.] 

7. The fixed metallic strips in a Knudsen gauge are maintained at 
200'' C. If the room temperature rises from 1.5° C. to 20° C., does the 
spot of light remain constant in position ? If not, what is the change 
in deflection? [Ratio change 185 : 180.J 



CHAPTER XII 

DYNAMICAL BASIS INCLUDING VIBRATIONS 

182. Introduction. -In the solution ot problems in Physics, in 
such varied branches as Sound, Mechanics, Electricity, Heat, and 
Light, differential equations of special types continually recur, and 
it is proposed to deal here with these equations without special 
references to specific examples—such references being deferred to 
the appropriate places in the other chapters. Thus, with the excep¬ 
tion of the symbol t to represent time, no particular interpretation 
is intended here of the other quantities involved in the equations, 
although experience may tend, probably with advantage, to sug¬ 
gest to readers a special case when the discussion is being studied. 
By the term velocity we shall mean a rate of change of magnitude 
with time, while acceleration denotes rate of change of velocity with 
time. 

183. Uniformly Accelerated Motion in One Direction—No 
Resistance.—If a quantity x is changing so that its second 
differential with respect to the time t is constant, then the equation 
of motion is 

d^x 

dt^ 
(316) 

and integrating we have 

dx 

If when /=(), then and 

Hence 

dx , . 

x:r=zv^f + 

(317) 

and if x—A when ^=0, Thus 

x=A+''oJt+\at^, . . . (318) 

and this is the direct solution to equation (316). But since 

d^x d /dx\ dx 

) t dt^ dx\ dt 

equation (316) may be written, putting v-- 
dx 

~dt 

x)^=ay or vdv—adx, 
dx 

842 
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and, on integrating, 

X) ^ 
~=ax+C3 and -(-(.’3, 

or 
v^=VQ^+2a(x~A) . . . (319) 

From equations (317) and (319), 

and thus 

2(x--A) 

7’—7’o at ~ t 

X A (320) 

liquations (317), (318), (319), and (320) arc the standard equations 
for uniformly accelerated motion. 

184. Uniformly Accelerated Motion in One Direction— 
Resistance proportional to Velocity.—The equation of motion 
in this case is 

d\r. , .dx 
(321) 

where Ic is the resistance retardation for unit velocity and is often 
called the damping factor. Equation (321) may be rewritten 

dv 

dt 
~a~kv, or 

dv 

a—kv 
:=^dL 

Integrating, 

-i log (rt-fa;)=< + ri . (322) 

If when t~0, ——-loga, and equation (322) becomes 
fC 

a—kv 
log 

k , 

a, 

a 
-kt, or v=Y(l—e~^) 

K 
(323) 

Thus {l—e~^^)dt—-dx which, being integrated, gives 

1 
and if, when /~0, .r=0, that 

(824) 
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This is the value of x after any time t. From equation (323), as 
t becomes very large, is vanishingly small and v approaches its 

maximum possible value under the given conditions. This value 

is called the terminal velocity. 

185. Uniformly Accelerated Motion in One Direction— 
Resistance proportional to Square of Velocity.—The equation 
of motion in this case is 

dt^ 
• • • (325) 

IS the niaximiiin value of 

i.e. the terminal velocity. Putting and separating the 

a d^v 
When ^^^d thus 

k dt^ 

differentials we have 

at 
J72 = ■I 

dv _ 1 V-j-zj 

If ?;==() at ^—0, Gj—0 and 

V+v 3^ 

V~v 

at at 

at ^V\,: -- -„t^V tank 

e'-f-e 
(P) 

This gives the velocity at any time, and from it 

(326) 

tan/i ^^dt. 

yi at 
log cosh y+C^. 

If when /“O, Cg—O, and the solution to equation (325) becomes 

y2 nf 

^=— log cosh -y . . . (327) 

186. Simple Harmonic Motion—No Resistance.—Definition: 
If a quantity x changes so that its acceleration is always propor¬ 
tional, and opposite in sign, to its instantaneous value it is said to 
vary in a simple harmonic manner. 

a
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The equation of a simple harmonic motion may therefore be 
written 

.... (328) 

On multiplying both sides by 2^ and integrating, 

(^Y^-coV+C,, 

while, if and =0 at /=(>, C\~A^a)‘^ and 

This gives the velocity for any given value of x. 
From equation (329) 

c dx r ^ X 
or "i" ^ 2 

or with the given initial conditions, sm~'^ l=r:C2=“» and thus 

x—A cos (otf , . . . (330) 
while, from equation (329), v=~Aco sin cot. 

The equation (330) shows that a given value of x occurs 
2j^ 

periodically, since if t is increased by —^ x becomes 

cos co^<+—V 
\ 

=A cos (ot^ 

the same value as at time t. Thus the period or time for one 
complete cycle of changes in the value of x, is 

where o)^ is the constant ratio of the acceleration to the instantaneous 
value of X, 

187. Simple Harmonic Motion—Resistance proportional to 
Velocity.—This type of motion, which is of frequent occurrence 
and is generally called damped simple harmonic motion, may be 
represented by 

If we put x~Ae'P\ then, from equation (331), 
p24-/cp+ca^==0, 

or _ 
fk^ , 

and thus 

. (332) 
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Three cases now arise in the solution :— 
(a) If the indices of e arc real and equation (332) may 

be written 
ht r /T^- "1 

x—e cosh [V? -co^-.t+N . (833) 

This represents a continuous return of x from its maximum value 
to zero when <=oo without alternation in sign, i,e. without oscilla¬ 
tion. This type of motion is called dead-heat motion, 

(b) If 4ro®>A:^, the indices of ^ are imaginary and equation (332) 
may be written 

kt 

x--=c \Ac^^+Berj% . . . (334) 
where 

x~c ‘^M cos \d—y\. . . . (335) 

In this case x alternates in sign and we have periodic motion, but 
the amplitude continually diminishes by reason of the decrement 

Jd 
term e 

To express M and y, the integration constants, in terms of the 

initial conditions, suppose that when <—0, x=Xq, ——Vq and 0=0. 

Equation (334) may be written 

-T x=e 2 ( (^ + B) 

-e '^[C cos Q \-D sin 0j. 

Hence C=Xq and 

k 
»0+5*0 

7--r- 

C06' sin ej. 
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Let 

Put 

and 

Then 

f- „ 

7 " ^ * —sin ti. 

D, 
— COS /?. 

+ sin {d \~(S), (886) 

where tan /5=y~* This gives the value ot‘ x at any time t in terms 

of the constants of the motion and of the initial conditions. 

Periodic Time,—By comparison with an unresisted S.H.M. we 
see that the period is 

(887) 

This indicates that the resistance exercises, on tlie period, an effect 
which is small if, as is frequently the case, is large compared 

with 
4 

Logarithmic Decrement,—The values of x are maxima alternat¬ 
ing in sign at times separated by half the period, and if these values 
for t are substituted in equation (836) we have, calling the successive 
maxima, A^, etc., 

A ^ 4 
3=etc. 

kt 
The exponential index is usually called the logariihwic decrement 

and is denoted by X, Then 

Hq k ^_>2 2n 

7“’ '4 

Tik 
's/4cu2-_/j2 
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and from a knowledge of A and /q, the eonstants of the original 
motion arc given by 

and 
/n 

, 471^ 4 
«“=r t-, I-TI-I- 

'0 '0 

Correction for Damping.—Suppose that a system is set into 
motion iroin a position of rest, and it is required to calculate from 
the first observed amplitude what the value of this would be in the 
absence of damping forces. In these circumstances ccq—0^ v~Vq at 
t—0, so that in equation (336) D^=Vq and C\=0. Hence sm /?~0 
and 

2jt 

/n 
The first maximum, A-,, is obtained when or 

4 
. _ A 

A —2. 
^ 271 

If tliere were no friction, then the amplitude Aq would be 

_^o, 
‘ 2n ’ 

2n 

Ao- 

where ta- since A;=0. Thus we have 

Ai to V 4^2 

If A is small—and thus is small compared with 4cu^- 

--A, (338) 

To measure X.—It is frequently convenient to observe values of x 
on one side of the zero only, and this is done for as many successive 
maxima as is possible. The observations are tabulated as follows, 
supposing that twelve readings are taken :— 

A, A, A> Aj ^9 An 

All 
1 

A„ 
1 

Aig 

i 

A 21 A 29 

A, 
' 

Ay 
i 

djLi 
A^, A,, i ^17 Ai9 ^21 ^as 
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Since 

while 
^12 -^13 

*3 
■‘"11 R ■'''L *16 ""*17 

^liicli slioultl he eonstanl—A, and A is mven hy 

A-Alog.A. 

(e) If 4co“-^/(;2 the above solution (t332) ec'ases (o lK)]d but becomes 
^by the rule of differential equations, 

^Id 
x—[A-\-Bt\e 2, 

whicli again represents a continuous return of x from its maximum 
value to zero, it resembles dead-beat motion. Su(4i a case is 
called critical damping. 

Many cases of damped simple harmonic motion arise in ordinary 
physical measurements, and the above treatment is of importance 
in such eases as the oscillations of material bodies in viscous media, 
the discharge of a condenser through a circuit containing resistance 
and inductance, the swing of a ballistic galvanometer, and the 
experiments of Angstrom on thermal conductivities. 

188. Forced Simple Harmonic Vibrations—No Resistance. 

—Definition: If a quantity x has a natural period — and is acted 

on by an additional acceleration L cos pf, the resultant motion is 
called a forced simple harmonic vibration. 

We may conveniently link with this case that in which the body 
has, alternatively, a natural acceleration (o^x in the direction of x 
increasing, i.e. for which the equation of motion is 

d^x 

dt^ 
—co^x—L cos pt (339) 

Using the inverse operator notation, a solution to this equation (339) is 

But 

(jr") ‘7^^="“"!' cos pt=e*^^^ e~'^^ cos pt. dt 

poit r 

and similarly 
o)^+p^ 

[p sin pt—o) cos pt]^Aie'‘'^, 

1 
jfp sin pt+o) cos 



350 DYNAMICAL BASIS-INCLUDING VIBRATIONS 

Hence 

-f 2a) 

L 

2a> 

2co 
cos pt ] 

\ cosh sink cot- —2";—^ 
co^A-p^ 

dx 
when f—0, and 

]■ 
, ^k[p _ 2ft) -| 

2coXq 

and 

Hence 

_ 
co^A-p^ 

a;—-^ sink of 4 
CO 

, ^ L cos pt 
cosh cot-„-- - 7: 

co^+P^ 

Thus 

(840) 
^2_j_p2 , 

If the acceleration is directed towards the equilibrium position 
the equation of motion is 

d^x 
—-^co^x=L cos pt, 

and its solution may be obtained from equation (840) by putting 
jco for o). Thus 

a7r=-5 
(JO ("'o + p-2^) COS (jot- 

p 

L COS pt 

2__ CO^ 
(341) 

Hence there are two periodic motions—free and forced vibrations— 
where the term cos pt refers to the forced motion. If p=Q}, the last 
two terms become infinite and the value of x is indeterminate. In 
this case the solution is 

Vn . Lt 
x~~ sin cot+Xn COS (ot+^-- sin aot 

CO 2(0 

where 

tan p ^0 . 

(342) 

The amplitude and phase are no longer constant and, as i in¬ 
creases, the amplitude increases indefinitely. In a practical case this 
is not true, and the solution is inapplicable, firstly, because for large 
amplitudes friction is no longer negligible, and secondly, because 
material vibration systems are, in general, constrained and have 
simple harmonic motion only for comparatively small amplitudes. 
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A complete cycle of the motion represented by equation (342) 
is given by 

((oti+^i)=0 and (a><2+/^2)=27r. 
Thus 

so that /q is not constant. Also, when t is large, p is small, and 
the resultant motion remains in phase with the forcing acceleration. 
If a:’o==0, and the period is constant. Thus we may say that 
a constant period is attained : {a) if at the origin of time or 
(b) after the applied acceleration has been acting for some time. 
In both cases the period is that of the forcing acceleration. 

189. Forced Simple Harmonic Vibrations with Resistance 
proportional to Velocity.—In this case the equation of motion is 

= L CO. pt. 

and its solution is given by 

L r 1 
^ pt)+Ap;'^>‘. 

-^(p sin pt—oL^ cos pi)-\- 

where 

Hence 
^ rkp si\ 

x~L 
L p 

<5Ci+o^2—aia2=o2, 

sin pt+{(o^-p^) cos pt _1 I 
+p^{k^-2(o^)+a>* ^ ' ’ '■ ']■ 

Take ^ such that 

• p kp p co^—p^ 

V(a)^—p^)^+k^p^ V(co^—p^)^~\~k^p'^ 
or 

tan p~ 
kp 

a> 
Then 

x~ 

2_p2 

•\/{co*-pa)*+fcV* 
cos ipt—p) 

This equation is of great importance in the case of a periodic E.M.F. 
applied to a circuit containing resistance, capacity, and self-induct¬ 
ance, and we see that it contains two terms, the second of which 
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refers to the free vibrations of the system. As time increases, this 
second term rapidly decreases while the first persists. We may thus 
concentrate attention on the first term, which refers to the steady 
state. Thus 

Ij S ttt ti . , /.-....v 
x=- cos . . . (343) 

where ^ represents the la^ of the resultant motion behind the applied 
acceleration. Tliis equation is important in the many cases of forced 
vibrations which are encountered in light, electricity, and sound. 

From equation (343), 

dx__ L sin p 
sin {pt—p). 

dt k 

Thus, when the displacement is zero, all the energy is kinetic and is 
a maximum when sm (p/—^) = 1, and since the maximum amount 

71 
of energy is i^roportional to sin^ p, it will be obtained when P~ ~ 

i.e. when co=^p. 
If E is the energ}^ under any eonditiojis and its value for 

maximum resonance, 
E^Eq sm^ p, 

and 

(o^—p^ jl—sin^p^ /Lq—F 

kp \j sin^ P E * 

Now (Eq'—E) represents the amount by which the energy falls short 
of the maximum. If we require this to be small for given values 
of p and CO, k must be large. Thus we see that the sharpness of 
response or critical tuning will be most marked when the damping 
is small. If k is large it is possible for p to vary widely from co 
without producing a great decrease in resonance. 

When we are dealing with free vibrations the energy remains con¬ 
stant throughout the motion, provided that friction is absent. This 
is not so for forced periodic vibrations, as in this case the energy 
supply also is periodic. The forcing agency supplies excess energy 
during part of the vibration and itself receives energy from the 
system acted on during the remainder. Thus if we write 

^ (pt~-P)^A cos {pt—P)y 

^=~-Ap sin (pi-P), 

and L cos —the rate at which work is being done on unit mass 

—is equal to 

—ApL sin (pt--P) cos pt 
ApL 

[sin {2pt—‘p)—sin p], 
2 
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so that the rate at which energy is supplied to the system consists of 
two parts. The second, \ApL sin is constant and represents the 
average rate of supply of energy, while the first, — ^ApL sin 
fluctuates in magnitude and alternates in sign, having a zero average 
over a whole period. 

The above condition for resonance co^p is the condition for maxi¬ 
mum energy in the forced vibration, but this is not the condition for 
maximum amplitude. If equation (343) is dilferentiated with respect 
to p, then it will be seen that the condition for maximum amplitude 
is p^—(o^-~k^/2, which indicates an applied frequency less than the 
natural frequency without damping, but greater than that when 
damping is present. 

190. Symmetric and Asymmetric Vibrations. In some 
cases of irrq^ortance the quantity under review has a iiK^tion which, 
while very approximately simple harmonic for small amplitudes, 
diverges from this simple form for larger amplitudes. Two cases 
may be considered, one in which an additional acceleration 
becomes appreciable and the other in which the extra acceleration 
may be represented by These are called asymmetric and syta^ 
metric vibrations respectively, and in both cases it will be assumed 
that b is very small compared with o). 

Consider the equation 

d^x 
~j^-\‘a)^x-\-bx^—0 . . . (344) 

The solution to this is most conveniently obtained by Lord Ray¬ 
leigh’s method of successive approximations, which consists in 
obtaining a first approximation to the motion by ignoring the 
extra term, then substituting this value in the bx'^ term and solv¬ 
ing afresh. By continuing this method, a solution to any desired 
degree of approximation may be obtained. 

Putting 5=0 in equation (344) and making a convenient choice 
of initial conditions, the first approximation is given by equation 
(330), Le, 

x~A cos cot, 

and this value substituted in the bx^ term gives 

dt^ + co^x= - -bA^ coscot = —~(1 + (^os 2(ot). . (345) 

The solution to this will be of the form 

x—A cos cot+B-\-C cos 2ojt, 

and 

d^x 
cos cot--'4tCco^ cos 2cot-\-A(o^ cos (ot-\-Bco^ 

at^ 

cos 2cot. 
A A G.P.M, 
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Comparing this with equation (345) we have 

(846) 

If these values are substituted in the hx- term of equation (344) the 
first term cos mi would necessitate, in the new solution, a term of 
the form t cos co/, indicating a steadily increasing amplitude. As 
this is clearly inadmissible, it is obvious that the extra term 
affects also the period, and thus the second approximation should 
be written 

x=A cos pt+B ~\-C cos 2p/, 

where the new period — is slightly different from the simple har- 

monic period --, Substituting this value in the hx’^ term as before, 

we have 

~{-a)^x=— h[A cos +^+C cos 2pt\^ 

= -b^(2AB+AC) cos 

/ A^\ "I 
j C06‘ 3pf-f-"~ cos 4ipt |, (347) 

and the solution to this is of the form 

x—A[cos pZ + ri+e cos 2pt~\-f cos 3p/+g cos 4<pt], 

d^x 
Obtaining from this the value of ^ ^^nd equating to the right- 

hand side of equation (347), 

-~Ab{2B+C)=:A((o^~p^), 

or, from equations (846), 

2 2 ,/ hA\hA^\ 5bK4^ 

and thus 
n2 Pih2J2 

. (348) 
p2 5b^A^ 

6ca^ 

This gives the effect on the period, and by equating the other co¬ 
efficients and independent terms, the corresponding values may be 
expressed in terms of ^4, b, and co. 
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Thus the analysis yields the following results:— 
(i) The vibration is displaced from the previous zero by an amount 

Ad. 
(ii) The frequency is lowered according to equation (348). 
(iii) A full range of harmonic overtones is present with amplitudes 

decreasing rapidly with ascending frequency. 
For the symmetrical vibrations the equation of motion is 

. . . (349) 

and the solution proceeds as before, 

x=^A cos ojt, approximately. 

Substituting this in equation (349) we have 

d^x hA^ 
-^[3 cos u)t-\-cos 3a;/j. 

Changing o) into p to allow for an altered period, we obtain as the 
next approximation, 

where 
-A cos pt-\~N cos Spt, 

0)^ 
^=1 

SbA^ 
4co^ 

and N= 

bA^ 

4 

■. 27 
8(0^+—bA^ 

4 

Thus in this case the frequency is raised, there is no displacement of 
the zero (hence the designation symmetric), and the first overtone 
which appears is the cos 3pt term. Further analysis proceeds in the 
same way, and again the higher overtones have amplitudes which 
are small compared with that of the prime. 

191. Asymmetric System under Double Forcing.—If an 
asymmetric system is under the combined action of two external 
forcing accelerations, the motion presents peculiarities which are of 
some importance particularly in the theory of Sound. The equation 
of motion in this case is 

d^x 

dt^ 
-}-co^x+bx^—f cos pt-{-g cos (qt—oi). 

Ignoring the free vibrations, 

x=A cos pt-\-B cos (qt~(x)y approximately, 

f g 
where A=—~—^ and ~—x and, on substituting in the bx^ 

term a solution of the form, 

x=A cos pt+B cos (y/—a)+C+D cos 2pt-^E cos 2(y/-*a) 

+F cos {p+q,t—(x)+G cos (p—y./+a) 
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d^cc 
is suggested. If we find the value of from this and equate 

to the bx^ term we have the following results :— 

Term Amplitude. 

COS pt ! A = 
/ . 

tx}^—p^ 

COS {qt — a.) ^ . 

Displaced zero C=: 

D- 
bA^ 

cos 2 pt 
2(ct>*—4/?*) 

E==r. 
bB^ 

cos 2{qt — 0L) 
2(a)2~4ga)‘ 

F- 
ABb 

cos (p^q.t — a:) 
~ [ca^-(p^q)i\‘ 

G = 
ABb 

cos (p — q.t+oL) 

The system will thus have the primary and a full range of liar- 
rnonic overtone vibrations for each applied forcing acceleration and, 
in addition, extra motions of periods equal to the surn and difference 
of the forcing periods. Further analysis shows the existence of a 
large number of these cornbinational vibrations. It will be noticed 
that the amplitude F of the summation vibration is less than that, 
G, of the difference vibration, so that, in the combination tones 
produced by sounding two notes simultaneously, the summation 
tone is weak and not easily heard while the difference tone is often 
obtrusively evident. 

192. Two-dimensional Motion.—We have previously assumed 
that X varied with the time in one direction only. If, however, it 
is a vectorial quantity and account has to be taken of a possible 
variety of directions, as well as of magnitudes, then an extension 
of the methods already outlined is necessary. An important case 
is that of the uniplanar motion of a point, and this will now be 
considered with particular reference to the inverse square law of 
attraction. The use of polar co-ordinates simplifies the equations 
involved and, in general, the point will have both radial and trans¬ 
verse velocities and accelerations. By the term radial velocity is 
meant the rate of increase of the radius vector, while the transverse 
velocity refers to the velocity of the point in a direction at right 
angles to the radius vector. 
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Let P (Fig. 97) {a) be the position of a point at time and 
Q its position at time t+dL Let XOP—B, ZOQ=0+50, OP^r, 

Fig. 97.—Radial and Transversk Velocities and Accelerations. 

Draw QM perpendicular to OP. If n and v are the 
radial and transverse velocities, 

MP (r -f dr) cos 66 — r 

'Tt 6t 

r-lj. 

Ji 

dr 

(It 
(850) 

rb6 (10 
(.151) 

The radial and transverse velocities at P, being u and v, become 
u-\-du and u+(5i^ respectively, at Q (Fig. 97) (^), so that the accelera¬ 
tion along OP is 

T4 (u+du) cos dd — {v-}-dv) sin dO—n ^ , u-\-du-~vdO~~u 

Ji--^ ■ 

du dO d^r /d0\^ 

dt ^dt~~dt^ 
(852) 

Also the acceleration perpendicular to OP in the direction of 6 
increasing is 

Li 
(v+6v) cos dd + (u~\-du) sin ( 

dt 

dv dd 

d^d dr dd 1 

d / (m 
dt\^dt J 

dr dO 

dt 
i(r^\ 

r dt\ dt J (853) 

If r=:ro, where rQ is a constant, the point describes a circle and, if 
the speed is constant and equal to then the radial acceleration 
is —in a direction away from the centre, while the transverse 
acceleration is zero. 

These accelerations are of importance in connection with central 
orbits. 
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193. Central Orbits.—If a point is moving under the action of 
an acceleration which is always directed towards a fixed point, its 
path is called a central orbit. To consider this motion it is con¬ 
venient to take the fixed point as the origin of co-ordinates, and 
frequently a simplification in the equation to the path may be 
made by an appropriate choice of the initial direction of the radius 
vector, i,e, by suitably choosing the instant from which the time is 
measured. 

From the definition it will be seen that all central orbits will have 
the common property of zero transverse acceleration. Expressing 
this fact in the equation (858) we have 

or 

r^^=constant ~li^ say, . . . (854) 

and if the acceleration at a point (r, 6) is equal to a and directed 
towards the centre, then the equation of radial accelerations (852) 
becomes 

d^r /dOy 
d^ 

Putting 

dt~~dt y/ j ~~ dd\ii) * dt y * dO ’ dt 

But, from equation (854), 

/ 2^^__ jL 
^ ^ dt dt 

so that 
,du 

Jt~~^de‘ 
Also 

d^T_^df idu\_ , d/du\ ^ ,2 ^d^u 
dT^~Jt\^dd)~~ W\m)'di~ ^ dP* 

If these values are substituted in equation (852), 

dd^ u 
or 

a fdht 1 
(865) 

which is the general differential equation to any central orbit. 



INVERSE SQUARE LAW MOTION 359 

Areal Velocity*—At any point in the orbit the areal velocity is 
defined as the 

Area described by the radius vector 

The time of description 

In Fig. 97 (a) the area POQ is swept out in the time dt and thus 
the areal velocity is 

Area POQ hir+dr)sindd dO ,, 
IJ. ■ <m 

Hence h represents twice the constant areal velocity in the orbit. 

194. Motion under an Inverse Square Law of Attraction.— 
If the law which governs the relation between the central accelera¬ 
tion and the distance of the moving point from the centre is known, 
then, on substituting for a, in equation (355), the approj^riate func¬ 
tion of r (or u), the equation may be integrated to give the family 
of curves to which the orbit belongs. The selection of the appro¬ 
priate member of the family is determined by the initial conditions. 
A specially important case arises if the law of acceleration is the 
inverse square law of distance, i,e. if a is given by 

r2 

where co is a (junstant. In this case the equation of motion is 

or 
dhi , 

0)^ 
This is similar in form to equation (328) except for the constant 

and the solution is 

-=m=M cos (6-y)+j^g-> 

or ^ 

y=l + -^ cos (e—y), . . . (357) 

where M and y are the integration constants. Comparing this with 
the polar equation of a conic, 

~=ri4.e(co5 6—y), 

we see that the central orbit of a point moving under the inverse 
square law is a conic with one focus at the centre of acceleration. 
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The eccentricity, e, of the conic is given by 

Mh^ 
B=—Y'’ 

and the semi-latus rectum, I, by 

U 

(358) 

(359) 

To identify any special case it is necessary to know whether the 

eccentricity -is greater than, ecjnal to, or less than unity, and 

this, in turn, dcpcrids on the initial conditions which determine M 
and y. 

For example, if a body is projected with velocity V from a point 
distant a from the centre of force in a direction making an angle a 
with the radius vector, then h—aV sin a and the following initial 
conditions hold :— 

1^0 ir dd V . when 6/=0, cos on, -^^^—smoL. 
dt dt (I 

If these are substituted in equation (357), wc have, after a little 
reduction, 

co^ 

aW^ 

€0^ 
sin^ OL- 

2aV^ 

‘ a>2 
sin^ a, 

and thus the orbit is an ellipse, parabola or hyperbola, according as 
2ct)^ 

is less than, equal to, or greater than • This condition is 

independent of the direction of projection. 
This result is of importance in connection with the movements 

of heavenly bodies, the motion of an electron around the positive 
nucleus of an atom, and the deflection of a particles shot into atoms. 

The velocity v at any point distant r from the centre can be found 
by evaluating the radial and transverse velocities. Thus the radial 
velocity is 

dv 
sin ol,M sin (6—y), 

dt 

and the transverse velocity 

dd aV . 
r, — sin a, 

dt r 

from which, by obtaining M sin {B~y) from (857), we have 

(H) 
Periodic Time in Elliptic Orbits.—For an ellipse the semi-latus 

5 2 
rectum equals —, where 5^ and are the minor and major semi- 
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axes respectively, and if we equate this value to 

equation (359), we have 

obtained from 

Since the area of the ellipse is the period —or time for one 
circuit of the orbit—is given by 

or 

/2 - ' 

2jr 
(360) 

Hence the square of the period is [)roportional to the cube of the 
major axis. If the (*onditions of |)rojcction arc as described above, 
then h==aV sin OL and the period is given by 

^ 2na^b^ 

® aV sin cl 

But, from the properties of the ellipse, 

-i- =^1(1 -e^)~-r- Sl7l^ CL. 
^ (o^ 

If a, and hi are eliminated from these equations, and the value of 
found above is substituted, we have 

4>n^a^a)^ 
^‘‘""(2ro2~-aF2)3’ 

which gives the periodic time in terms of the initial conditions and 
shows that it depends on the velocity of projection, but not on the 
initial direction. 

195. Plane Motion in Cartesian Co-ordinates.—Some types 
of plane motion, such as projectile motions under gravity and Thom¬ 
son’s positive ray measurements, are more conveniently referred to 
cartesian co-ordinates, and in this case velocities and accelerations 
along the x and y axes are considered separately. This is permissible, 
because a force cannot affect motion in a direction at right angles to 
its own line of action. The results give the actual velocity and path 
in a parameter form—the parameter being the time—and it is not 
always easy to eliminate t to obtain the explicit connection between 
X and y. This disadvantage is merely the practical one of presenting 
equations in a less familiar form. 

The Motion of a Projectile assuming No Friction.—The first 
case we shall consider is that of a particle projected from the origin 
with a velocity u at an angle a to the horizontal axis Ox. The 
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motion along OiV is not accelerated, and the equation of motion in 
this direction is 

doc 
-u cos CL . . . . (361) 

dt 

Hence, since a’—O when 0, 

x—ut cos a 

In the vertical—or Oy—direction 

dt^ 

dtj 
and, since ~-~u sin a when t=0, 

dt 

(362) 

dy 

dt 
= 11 sin CL~ (363) 

At ^—0, 0, so 
y=ut sin . . . (364) 

Eliminating t between equations (362) and (364) we liave, as the 
equation to the trajectory. 

y~u sin X 
HOC 

U cos CL cos'^ CL 

Hoc^ 
=xtanoc—^. 2^ 2 ' 

COS^ CL 
(365) 

which represents a parabola, and the particle describes a parabolic 
orbit. 

To obtain the range on a plane inclined at an angle 0 to the hori¬ 
zontal, it is necessary to find the point of intersection of the trajectory 
and the plane, i,€, to solve the equations 

Thus we have 

y=x tan a~„ 2 2 ’ 
2U^ COS^ CL 

y—x tan 0. 

2u^ COS^ CL.. . - Qf^^tan 0), 

2u^ cos^ CL tan 6,, , 
y= - (tan cl—tan 0), 

(366) 

(367) 

and the range R is given by 

i22=aj2+t/*. 

On a horizontal plane 0=0, and the horizontal range is, from equa¬ 
tion (366), 

„ 2u^ sin CL cos cl sin 2cl 
R=zx=- =-• 

s g 
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The particle will reach the highest point in its path when 

U StfYt OL 
from equation (863) when i=—-— and then, from equation (364), 

OL sin^ a siti^ a 

and the x co-ordinate of the summit is 

R sin 2a 

dtj dx 
At the end of a time t the particle has velocity components 

and the resultant velocity is given by 

/di/V /dir\ 

\di) 

while its direction makes an angle with the x axis, such that 

^ . dy dy dt 
an 

From equations (361) and (363), 

sin^ OL+gH^—2u^t sin cos^ ol 

=u^~2ugt sin 

, , n sin OL—gt gi 
and tan =tan ol-—* 

U cos OL U cos OL 

196. The Motion of a Projectile subjected to a Resistance 
proportional to its Velocity.—If the particle is projected under 
the same conditions as those above and is subjected to a frictional 
resistance proportional to its velocity, the equations of motion along 
the X and y axes become 

Putting 

dt ® 

-kvy or \ogv~—kt + C^, 

When <=0, v=^u cos ol^ so that Cj—log {u cos a), and thus 

cos a. . . . (370) 
dt 

Hence 

-.-«]. (871) 



864 DYNAMICAL BASIS—INCLUDING VIBRATIONS 

Denoting the velocity along the y axis by w we have, from equa¬ 
tion (369), 

dw , _g, 
or 

Thus 

so that 

lug (kiv J-g) kt fUa -A'/ flog (ku sin a+g). 

k7v j g— (ku sin cf. |'-g)r 

(372 

remembering that, when /—(), y=0 and w='U sin a. The equation 
to the trajectory is given by equating the values of in equations 
(371) and (372) and is 

y n cos a 

EXAMPLES 

1. A V^irticl^! of mass m is projected upwards with velocity v in a 
medium which imposes a resistance given by mkv (k const.). Find the 
time taken to reach the highest point and an equation to give the time 
for the subsequent downward motion. 

[fc<=log (1+kv/g); -ft<=log{{l+to/g)-log (l+kv/g)-kt}.] 

2. If, in the previous question, the resistance factor k is small, show 
that its effect on the maximum height reached is appreciable before 
its effect on the time to reach this point is observable, supposing that 
measurements of heights and times to be equally sensitive. 

3. The particle in question 1 above falls from rest in a medium which 
offers a resistance equal to mkv^. Show that the acceleration / varies 
with the distance x according to the relation log f—log g — 2kx, 

4. A galvanometer coil oscillates with a periodic time of 5-00 sec. and 
successive maximum displacements are observed to be 76, 34*2, 15*5 and 
6'9 scale divisions. The moment of inertia of the suspended system is 
4*86 gm.-cm.2. Are these readings consistent with damping forces pro¬ 
portional to the velocity ? If so, calculate the couple required to rotate 
the coil through one radian and the damping couple at unit angular 
velocity. [Yes ; 8 17 dyne-cm. ; 3-10 dyne-cm.] 

5. What would have been the deflection of the galvanometer in the 
previous question in the absence of damping force? [110.] 

6. A body of effective mass M has a natural simple harmonic motion 
of period T given by coT — 2n, and is acted upon by a persistent har¬ 
monic force P sin pt and a frictional force 2kMv* Find (a) the condi¬ 
tion for maximum amplitude in the final forced motion, and (b) the 
ratio of the amplitudes under the conditions p — co and p*=co®~4A;*. 

1.] 
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7. A simple pendulum is released from a position in which it makes 
a small angle a with the vertical and it moves in a medium which pro¬ 
duces a resistance mkv^y where k is very small. *Show that the time to 
swing across to the other side is unaffected if the square of k may be 
neglected, and find the angle made with the vertical when the pendulum 
reaches its extreme position on the other side. [a~4aW/3.] 

8. A particle, attracted towards a fixed small spherical mass M by an 
inverse square law force, is projected with velocity u from a point distant 
a from the centre of force. Show that if u is less than the 
path of the particle is an ellipse, whatever the direction of projection. 

9. Show that when the orbit is an ellipse the velocity v of the particle 
in the previous question at any distance r from the mass M is given by 
i)'^ ~GM{2/r — 1 /A)y A being the semi-major axis of the ellipse. Hence 
prove that the periodic time is independent of the direction of initial 
projection. 

10. Find the law of force towards a centre for a particle for which 
the polar equation to the orbit is (a) log r-f= 0, (b) r—a sin 6. 

{(a) fr^ = co7ist. ; (b) fr^ —const.] 

11. A particle is projected with velocity v at right angles to the line 
joining it to the centre of force which is at a distance x from the point 
of projection. The acceleration / to the centre at a distance r is given 
by/r® = a), a constant. Find the equation to the orbit in the following 
eases: (a) co>v^x^; (b) a)=v^x^; (c) axv^x^. 
[(a) x—r cosh 6 \/{co/v^x^ — 1) ; (6) x—r ; (c) x~r cos 6 \/(l —oj/v^x^).] 

12. An anti-aircraft gun is fired at an aeroplane directly overhead. 
If the resistance of the air can be neglected, show that, for a hit, the 
elevation of the gun is independent of the height of the aeroplane, and 
that if the resistance is k times the velocity, the elevation is still the 
same, provided terms in k^ can be neglected. 

13. A shell of mass m is projected with velocity F in a medium in 
which the resistance is mk times the velocity. vShow that for maximum 
range ii on a horizontal plane, the elevation of the gun, a, is given by 

^(1 -hA sin a) ~(A -hsm a) log (1 -j-A cosec oc) 

where A is kV/g. Find also the value of R. 
[/j = cos ct./g{A a).] 

14. Two particles are dropped from rest into a medium in which the 
resistance is proportional to the velocity, the second one a short time 
after the first. Show that the distance between them increases and 
approaches a final limiting value which is proportional to the time 
interval between their instants of release. 

15. A point describes an ellipse with centre as the origin of co¬ 
ordinates and the radius vector has constant areal velocity. Show that 

the eccentricity of the orbit is where V and are the 

maximum and minimum velocities in the orbit. 

16. A smooth horizontal tube OA of length a is movable about a 
vertical axis OB, A particle placed at A is projected towards O with 
velocity aco while at the same time the tube revolves about OB with 
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angular velocity w. Show that the particle will have travelled half-way 
log 2 

down the tube in time - and will not reach 0 in any finite time. 
CO 

17. Two similar spheres of mass M and radius a are placed on a 
smooth horizontal table with their centres 4a apart. Find the time for 
them to come into contact under their mutual attraction starting from 
rest. 



CHAPTER XIII 

EQUATIONS OF MOTION 

197. Equation of Continuity.—Although we are concerned 
primarily with the properties of fluids, it is instructive to consider 
the motion of any entity, and by entity we mean any physical 
quantity such as matter, momentum, heat, electricity, etc. The par¬ 
ticular properties associated with the entity considered may be intro¬ 
duced in the general result. We assume that the entity is continuous, 
so that the properties of the smallest portions into which we can 
conceive it to be divided are the same as those of the entity in bulk. 

Let Uy i;, w be the components, parallel to the co-ordinate axes, 
of the velocity at the point {x, i/, z) at the time t. As the motions 
which wc shall have to consider are, in general, continuous, we shall 
assume that w, t;, and w are finite and continuous functions of a?, 

2, and that their space derivatives, etc,, are also finite. 
ox ox Ox 

Suppose that motion in space is opposed by obstacles, so that, if we 
consider an area perpendicular to the direction of motion, the space 
available for the passage of the entity is less than if the obstacles 
were absent. Let Ky which may be termed permeabilityy be the 
ratio of the areas available in the two cases. 

The increase in the mass of the entity within any closed boundary 
surface must be equal to the excess that flows in over that flowing 
out, plus any entity created within the volume. Let m be the mass 
created in unit volume in unit time, Kx, Ky, Kz the permeabilities, 
Qx, Qvf Qz the entity densities parallel to the co-ordinate axes, Q 

being the average density at the point {x, y, z). With this point as 
centre construct a small parallelepiped of edges dx, dy^ dz (Fig. 98). 
The entity flowing in across the face B in time dt is 

dKx dx dQx Sx\/ 
Jx"J )\ u— 

du dx 

dx* 2 

and the amount flowing out across the face A is 

dKx dx\/^ dQx dx\/ du 6x\. . . 

so that the gain within the volume in time dt, due to flow along 
the X axis, is, to a first approximation. 

—KaQxu)dxdydzdt, 

867 
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and the total gain in entity is 

But the original mass within the elenientar>' volunie is Qd.vdi/dz, 
dO 

and tlie gain in time df is —id.rdydzdf, so tiiat 

f. (373) 

This is the Equation of Conimnitf/, 

Fig. 98.—Equation of Continuity in Cartesian Co-ordinates. 

To express the equation in spherical polar co-ordinates, consider 
an elementary volume (Fig. 99) of mutually perpendicular edges dr, 
r.dO, r sin d,dp, the components of the velocity, density, and perme¬ 
ability along these three edges being u,v,w; Q^, Q^, ; K^, K^, 
respectively. Then the excess inflow at the faces A BCD over the 
outflow across EF'GH is 

sitidMdfi)dr.dt, 

across the faces AEFB, DHGC 

sin d .dfidryr66 .dt, 

and across BFGC, AEHD 

-- ^ ^ (K^Q^wrdOdr)r sin d.dB,dt. 
r Sind.dp ^ ^ 

The entity created within the volume in time dt is 

mr^ sin d.drdddfdt, 
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and the total increase within the volume may be expressed as 

sin 6 ,drS0d^)dt, 

Hence 

To transform the equation into cylindrical co-ordinates, consider 

Fig. 99.—Equation of Continuity 

IN Sphkrical Co-okdinatks. 

Fig. 100.—Equation of Con¬ 

tinuity in Cyi.indiucal 

Co-ordinates. 

a small volume of which the three mutually perpendicular edges are 
dr, rdO, and dz (Fig. 100), so that <5^ is substituted for rsinO.d^ 
above. The equation of continuity thus becomes 

Expressed in any form of co-ordinates, the equation of continuity 
takes a simplified form if the density and permeability are constant 
and independent of direction. 

198. The Equation of Continuity applied to Matter.—As 
matter cannot be created or destroyed, m~0 and, in addition, 
Kx=Ky=Kz=l, Qx=Qy==Qz=Pt the density of matter, and, from 
equation (873), 

This is the hydrodynamical equation of continuity. 
G.P.M. B B 
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If the density varies with time but not with distance, 

Suppose we have a fixed quantity M of matter occupying a 
volume V, Then and 

dM aF ap 

or 
1 dp i dv 
'pdi'V'df 

so that, from equation (375), 

1 dV 

1 dV du dv dw 

y, the rate of increase of volume per unit volume, is often called 

the expansion at a point. 
1 d 

If the matter is incompressible, -.~=0 and 
p ot 

dx:^dy~^^ * 

(376) 

199. Euler’s Equations of Motion.—If the momentum of 
incompressible matter is the entity and we consider only those forces 
which, acting along the x axis, impress a velocity u on matter in 
this direction, then Q=pu and the equation of continuity is 

(877) 

But for matter, p is independent of direction, hence, from equations 
(874) and (377), 

du , du , du , du rn ^ 

sT+“Si+''5J+“’S-?"" ■ ■ 
The momentum may be created by (a) an impressed force at a 

distance acting on the mass, or (b) pressure acting on the boundary 
surface. 

Let X, F, Z be the components of the impressed force per unit 
mass at the point {x, y, 2;), and p the pressure at this point. Then 
the total force acting on the elementary volume (Fig. 98) in the 
X direction is 

—^dxdydz+Xp. dxdydz, 

and the momentum created per unit volume per second is 

V 
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Substituting this value of m in equation (378), 

du , du , du , du 
-X+-.^=0 . 

p dx 
. (379) 

Similarly, dv , dv , dv ^ dv 

P oy 
. (380) 

and dzv , dw , dw , dw 
-z+i.?£-o . 

p dz 
. (381) 

These results are known as Euler's equations of motion. 

200. The Boundary Surface of a Fluid .—Fluid motion 
depends to a large extent upon viscosity, and results obtained from 
considerations which ignore internal friction must be regarded as an 
approximation, only, to the true motion. To avoid complications we 
shall regard the fluid medium as a perfect fluid incapable of exerting 
shearing stress, and, whether at rest or in motion, we shall assume 
that the pressure it exerts on any surface in contact with it is always 
normal to the surface. Consequently the pressure at any point in 
such a fluid is the same in every direction. 

If the boundary surface is fixed, the velocity of the fluid normal 
to the surface is zero, or 

at every point on the boundary, /, m, n being the direction cosines of 
the boundary normal. The co-ordinates of a point P on the surface 
being {x^ 2;), the equation of the surface may be written 

F{x, y, z, 0=0, . . . (382) 

and if we consider an element of length 5s perpendicular to the sur¬ 
face, the co-ordinates of the point P' to which the point P has moved 
in a time dt are x+Lds, y+m.ds, z-^n.ds, so that the point P' lies 
on the boundary surface after a time dt, and 

P(iC-f-/,d?, y+m.ds, z+n.5s, t-i~dt)—0 . (383) 

Hence, from equations (382) and (383), 

dty dx 

^ dF^ dF>^ 

I, W, ?l=| 

dF^ ^ 
dx dy dz 

idx ) 1) V 92; ) 
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But at every point on the boundary surface 

ds 

at 

and thus, from equations (384), (385), and (386), 

aF , aF , aF , aF 
=0 

(386) 

(387) 

U, \\ W- (388) 

This is the equation to the boundary surface. 

201. Velocity Potential.—In many cases the component 
velocities may be expressed in terms of a single function (f> such that 

d<^ def) d(f) 

dx dy dz 

This function is called a velocity potential and we have the relations, 

dv__dw dw du du dv /oQCk\ 

‘ ' ‘ 

Hence Euler’s equations of motion may be written 

du . dv , div dQ d^d) , du , dv , dzv dQ 1 dp 

^ ~ dx “p • a? 
(390) 

etc., where X = 
dQ 

dx 
, and Q denotes the potential energy per unit 

mass at a point (x, y, z), in respect of the forces acting at a distance. 
Integrating equation (390), 

■ ■ ■ <»«) 

where q~(u^+v^~\-w^)^ and F{t) is an arbitrary function of the time. 
In the case of an incompressible fluid this becomes 

V_d(}> 

~P~W 

If p is given at some point in the fluid for all values of t, the pressure 
is determinate. The term F{t) is without influence on the resultant 
pressures and is frequently omitted. 

The equation of continuity (376) in terms of is 

-Q-\q^+F{t). (392) 

dx^'^dy^'^dz^ 
(893) 

The motion of a fluid is said to be steady if at every point the 
velocity is the same in direction and magnitude at all times, or 

^*=0 ^=0 ^=0 
dt ’ dt ’ m 

so that equation (891) becomes 

-Q— \q^-{-canstant (394) 
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202. Bernoulli’s Theorem.—This law of variation of pressure 
along a stream line is known as Bernoulli's Theorem, a stream line 
being the actual path of a particle in a moving fluid. Strictly speak¬ 
ing, it is a curve such that, at any instant, the tangent to it at a point 
is the direction of the fluid motion at that point. The constant of 
integration may vary from one stream line to another. 

Bernoulli’s theorem may be deduced also from the conservation 
of energy principle as follows. Imagine a tube of flow in the liquid, 
the boundary surface of which is, of course, formed by stream lines. 
Let pi be the pressure, the velocity, and the potential due to 
the external forces at a point A where the cross-section is a^. The 
values of the same quantities at another point B are represented by 
the suffix 2. Then, since the mass of fluid contained between the 
normal sections of a tube is constant, the same mass crosses every 
normal section in unit time, or The work done on the 
mass entering A per unit time is mass leaving at 
B, The former mass brings in energy iiqi^+Oi)pqxiXi, and 
that leaving B carries off energy (iq2^-i-i^2)p^2^2* motion is 
steady, by the conservation of energy, the energy within the tube 
remains constant, so 

+P9l'Xl( kl * + A) +PS's«2( k£^ + ^2h 
or 

^ +1 ^+*f^2 = C*!, 
P P 

where C\ is a constant. 
If motion occurs under the action of gravity alone, Q==gz, where 

2 is the vertical displacement and 

c\ 
p 

(395) 

Hence the energy consists of three parts. 
(i) gz, the potential energy in a gravitational field ; 

(ii) pressure energy, i.e, energy required to move the liquid 
. P 

against the pressure without imparting any velocity ; 
(iii) ^q"^, kinetic energy. 
The theorem may be written in a slightly modified form, 

=+?+l;-T=«. 
hP b 

II being a height or vertical distance. The latter is, therefore, con¬ 
stant for all points in any one stream line, and its components are 

z the gravitational head, ^ the pressure head, and ™ the velocity head. 
^P b 

If we neglect external forces, the velocity increases as the pressure 
is lowered and vice versa. For example, if a liquid flows through 
a pipe having a constriction, the velocity at the constricted part is 
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increased, and the pressure is accordingly diminished. There are 
several practical applications of this principle in the various jet 
exhaust pumps which range from the simple type of water aspirator 
to the more elaborate mercury vapour high-vacuum pumps. 

203. Efflux of Liquids.—^In the case of a liquid flowing from 
a reservoir, the velocity at the free surface may be neglected and, if 

the pressure is /)q, then, from equation (*395), C\~^, Neglecting 

But the minimum possible value for p is zero, so that 

which represents the maximum velocity with which the liquid can 
flow from the reservoir, ix. about 45 ft. per sec. for water at 
atmospheric pressure. 

When a liquid flows out through a small orifice in the thin base 
of a containing vessel, it is found that, after leaving the orifice, the 
cross-section of the jet contracts to a minimum value, after which 
it increases. This minimum cross-section is called the contracted 
veiut and the ratio of its area to that of the orifice is termed the 
coefficient of contraction. If A is the area of the orifice at which 

pQ^ 
the pressure is and Pq is the atmospheric pressure, ^=Pi"~Po* 

The pressure at the edge of the orifice just outside the vessel is po» 
but the pressure within the jet at this section is higher, so that if 
q is the actual velocity of the liquid at the edge of the orifice, the 
velocity within the jet is less and, accordingly, the rate of efflux 
is less than pq. Let a be the area of the jet section where the 
velocity at every point in the section is parallel and uniform and 
the discharge rate is ag. This is less than Aq ; hence a is less than 
A, or the coefficient of contraction is less than unity. 

Momentum equal to pouq^ is carried away by the jet per second, 
and the resultant force is that necessary to maintain the vessel at 
rest. If the pressure over the whole of the base were p^, then 
(Pi~Po)^ would be the force acting at the orifice which produces 
this change of momentum. Actually the force is {pj,—pQ){A+dA) 
where dA is a small positive quantity due to the pressure over the 
orifice varying from Pq to pj. Hence 

/»ag*=(pi—po)(^ +dA). 
But 

iP9’‘=Pi—Po> 
and 

(X==^{A’i-dA), 

Hence the coefficient of contraction is greater than 0*5. For circular 
orifices the e^iperimental value is 0*624 approximately. 
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204. Torricelli’s Theorem.—If Aq be the area of the free 
surface of the liquid and qQ its velocity, and it' 2; is the depth of the 
orifice below the free surface—the head of liquid being maintained 
constant, 

and 

p 

or 

Hut for the continuity of liquid, A^q^—Aq, and thus 

2gz^o^ _ 

If the orifice is small, may be neglected and 

q^=^2gz (396) 

This relation is known as TorricelWs theorem, and it indicates 
that, when the liquid particles reach the contracted vein, they have 
the same velocity as if they fell directly from the free surface. The 
theorem holds with considerable exactness if the orifice is small, 
and experiment shows that, for water, the efflux velocity is 

q=0-97V^. 

As the cross-sectional area of the contracted vein is cA, c being 
the coefficient of contraction, the volume of water issuing from the 

vessel in unit time is 0’97cAV2gz, 0-97c being equal to 0-62. 
To find the time in which a vessel of any form, filled with water, 

will be emptied through a small orifice, let be the area of the 
free surface at any instant. Then 

or 
AQdz=0’62A V2gz, di, 

1 

0-62^ V2g, 

where Zq is the depth of the orifice below the original free surface of 
the liquid. 

205. EfHux of Gases.—For the steady motion of a gas 

Let Pi and pi be the pressure and density respectively, of a gas in a 
containing vessel, and suppose that it flows through an orifice into 
a gaseous atmosphere, the pressure and density of the gas when 
it issues being p^ and pQ, respectively. Assuming that adiabatic 
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conditions prevail, ~~—constant, where y is the ratio of the specific 

heats of the gas. If there are no external forces, 

J Pi P 
and 

Thus an increase in velocity is accompanied by a decrease in pressure. 
The ordinary vacuum cleaner utilises this principle. 

206. Steady Flow of a Liquid past a Cylinder. As an 
application of Bernoulli’s theorem, consider the steady flow of an in¬ 
compressible liquid parallel to the base of an infinitely long cylinder 
of radius R with its axis parallel to the 2; axis, the cylinder forming an 
obstacle in the path of the liquid. Suppose that the latter has a 
velocity U along the x axis at points far removed from the cylinder. 
Then, since zv=0, from equation (393), we have 

dx^^dy^ ’ 

or, transforming to polar co-ordinates, 

dr^ r'dr 

Solutions of equation (397) have the form r” cos nO, r” sin nO, and 
the sum of any number of such terms is itself a solution. 

The flow of liquid in the x, negative, direction is given by 

(f)=zUx—Ur cos 0, 

and to this must be added a term or terms to represent Uie disturb¬ 
ance produced by the cylinder. As this disturbance vanishes when 
r—CO, it can involve only negative values of n, so that a solution is 

B cos 0 
6—Ur cos 0+--’ 

deb 
But fi when r—R is a boundary condition, and thus B—UR^, 

Hence 

Therefore 

CO. 

UR^xy 



GREEN’S THEOREM 377 

The resultant velocity at the surface of the cylinder is given by 

417V. 

Substituting this value of in equation (395), the normal pressure 
on the cylinder becomes 

p=:p 
lj^\ 

and is the same on that curved surface of the cylinder at which the 
liquid impinges as on that from which it flows away. Hence it 
follows that, neglecting viscosity, the cylinder is not acted upon by 
any resultant force due to the liquid flowing past it. 

207. Green’s Theorem.—Many important properties of 
potential not only in liquids but also in electrostatics, etc,, may be 
proved by means of Green’s theorem. 

Let (j)' be two functions of x, z which, with their first and 
second derivatives, are everywhere finite and single valued in the 
region considered. Consider a parallelepiped (Fig. 101), parallel to 
the X axis, of cross-section dy^ dz, and let dS^ be the areas of the 

2 

Fig. 101.—Grekn’s Theorem. 

intercepts which it makes with the boundary surface enclosing the 
volume throughout which the integration is to be performed. Let 
dn be an element of the normal, drawn into the region considered, 
from a point on the boundary surface, and niiX, the angles which 
the normals to dS^ make with the x axis. Then 

dydz^—dSi cos m^=dS2 cos m^x 
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and, integrating by parts, 

= —(’OS rn^xiS^ 

d<f>' 

Similarly, 

cos ma^dS -M 
av' 
dx^ 

»»> 

d'iXdydz, 

and 

jlJ(SS-')"^=‘—IP 
Hence 

jdxdydz= 

d<f> d4>',d<t> 8<f,'\ 

d<f>’ 
1—L- /»/ 

dz 
cos rnzdS ^ 

This result is known as Green's theorem. 
If (f) and (f>' are interchanged, the left-hand side of equation (398) 

is the same and the right-hand side becomes 

= -\\i>'%dS-^^^<j>'V^^dxdydz. 

If <f>' is constant, 

r in 

II 

and since, in addition, for incompressible matter, from 
equation (898), 

(899) 

If <f> denotes a velocity potential, this result shows that the total 
flow of liquid into any closed region is zero, while if <f) =^' and both 
are velocity potentials, 



STREAM FUNCTION 379 

Multiplying both sides of this equation by Jp, the left-hand side is 
then the kinetic energy of the liquid due to impulsive pressures 
exerted at the boundary surface. Denoting the kinetic energy by JB, 
we have 

(400) 

208. Stream Function.—If we consider two fixed points A and 
B in the xy plane, and suppose that the motion of a liquid takes place 
only in this plane, the^wrr, or quantity of liquid passing in unit time 
across any line joining A and R, must be the same, otherwise there 
would be an accumulation of fluid within the region enclosed by any 
two lines AB. If the point B is movable, the flux across is a 
function of the position of B and is usually denoted by y). If the 
point B moves so that the value of rp remains constant, it will trace 
a curve such that no fluid crosses this curve. The latter is, there¬ 
fore, a stream line. Thus the curves represented by y)=constant are 
stream lines, and y) is called the stream function. 

Let B receive a small displacement, dy, parallel to the y axis, 
so that the increment of y) is dy)=—u6yf i,e. 

Similarly being positive if it is from right to left as 

seen by an observer at A looking along AB. But in irrotational 

motion, i.e. motion without rotation, and v==--~' Thus 
dx oy 

the velocity potential and the stream function are connected by the 
relations, 

d(f>_dy) ^ 

dx~dy" dy" dx 
(401) 

and these conditions are fulfilled if 

Any assumption of the form given by equation (402) represents a 
possible case of irrotational motion. 

209. The Equation of Continuity applied to Heat.—The 
amount of heat per unit volume is 

where s is the specific heat of the substance and T is the excess 
temperature above that for which Q=Qq, Hence the heat passing 
per second across the face B (Fig. 98) is 

QxK-eitdydz=—kx^&ydz. 

where ft* is the thermal conductivity in the x direction. Thus 
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QxKxU—-~kx^* together with similar expressions for the flow along 

the y and 2: axes. But 
dQ dT 

37 a/’ 

and thus the equation of continuity (373) becomes 

which is the equation for the propagation of heat in an anisotropic 
body. For an isotropic body kx~lcy~kz=k^ and 

dt sp sp dx^ dy^ q=o. . 

where - is termed the thermal diffusivitv. 
. . . . 

In spherical co-ordinates this equation of heat flow is 

dT m 

dt sp 

k Vd^T 
'sp\^dr^ 

2dT \d^T_1 

r dr ^dQ^ sin^ 0 dfi'^ 

^cote dr 

and in cylindrical polar co-ordinates 

di sp r dr dO^ 

If the flow of heat is radial, 

reduces to 

n^_dT 
de ~'d^' 

=0, and equation (404) 

4-- —1-0 
dt Sp sp dr^ r dr 

To illustrate the application of thermal flow, consider a sphere 
having an initial arbitrary symmetrical distribution of temperature, 
the surface radiating into surroundings at zero temperature. If e is 
the emissivity, the heat flux outwards from the surface per second is 
AiTiR^eT, R being the radius of the sphere. The boundary condition 
to be satisfied is 

But ?n==0 and, as the flow is radial, we have, from equation (405), 

d^_ 1 ?i?!1 
dt dr^ r dr \ 
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where o is the diffusivity. This equation may be written 

a solution of which is 
rT=F^, 

where F is a function of r such that 

hF-- 
dW 

^dr^' 

Negative values of b, only, are permissible, and since a is positive, 
we conclude that F is a circular function. Let 

F^A cos nr^B sin nr, 

so that h=—an^, and we can express a particular value of T by 

Tcos nr~{-B sin nr). 

The value of 2' which expresses the temperature at the centre, r=0, 
cannot be infinite, and therefore A~0, and substituting the value 
of 2' in the boundary condition equation (406), 

nR eR^ 

tan nR~ k 
(407) 

of which there is an infinite number of roots which may be obtained 
by graphical construction. Hence the temperature at any point dis¬ 
tant r from the centre of the sphere, after an interval of t seconds, is 

2^ =:^Be~^^^^sin nr, 
r 

where n satisfies the relation (407). 

210. The Equation of Continuity applied to Electricity.— 
Considering the flow of electricity along the x axis and remembering 
Ohm’s law, 

BE 
QxKxudySz— 

BE 
where fix is the electrical conductivity along the x direction, and ^ 

is the potential gradient. Thus the equation of continuity becomes 

and if the electrical conductivity is the same in all directions this 
reduces to 

Bt 
m—fi 

Bx^ 
==0. 
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In free space, where there is no electricity, m—0 and ^=0, so 

that 

^ 

dx^ 0z2 “ 

This is often written '^^E—0 and is called Laplace's equation. 
The flow of electricity in spherical polar co-ordinates is 

dQ Vd^E 2 0E 1 dm 1 dm cot QdEn 

dt ^\_dr^'^rdrr^de^'^r^sin^edp^r'^ dOj~ ’ 

and in cylindrical polar co-ordinates 

dQ fdm ,idE,i dm , dmi 
dt f^\_dr^'^r dr'^r^ dd^'^ dz^\ 

=0. 

211. The Equation of Continuity applied to Wave Motion. 
—Suppose that the particle velocity constituting the wave motion 
is parallel to the x axis and that there is no impressed force. The 
equation of continuity (374) is then 

l+£<p“)=».<«*) 

and the equation of motion (379) 

du 

Jt 
. du .1 dp 

^dx p dx~ 
(409) 

Let P=^c\p—pq) where pQ is the density at a certain standard 
pressure, then, from equations (409) and (408), 

and 

du . du 1 ^ 

p dx 
dp 

p dx 

dp dp 

dt ^dx~ 

Differentiating the first of these equations with respect to the 
second with respect to x, and equating 

9% j3^u 

neglecting quantities of the second order of smallness. A solution 
of this equation is 

W =/l(c< +0?) +f2{ct-x)y 

the physical interpretation of which is that fi{ct-{-x) represents a wave 
travelling with velocity c in the negative direction of the x axis, and 
ftict^-x) is a wave travelling with the same velocity in the positive 
direction, 
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1. A mass of liquid rotates with angular velocity co about a vertical 
axis. Find the equation of the free surface neglecting the restraining 
action of the supporting surfaces. 

~\-y^)—2gz ; where z is vertical.] 

2. Water is maintained at a height of 15 cm. in a vessel which has 
a small circular hole in its thin horizontal base. The radius of the hole 
is 1 rnm., and the area of the free surface is 30 sq. cm. Find the rate at 
which the liquid leaves the vessel if the coefficient of contraction is 0-624. 
Would you expect the viscosity to affect the result materially ? 

[3-36 c.c. per sec. ; No.] 

3. If the vessel in the previous question is cylindrical and the supply 
of water to it is stopped, find the time in which it will be emptied. 
Show, also, that when the depth of liquid is h the rate of fall of the 
upper surface is given by :— 

d/i/d/=0 0289 Vh cm./sec. [4 min. 28 sec.] 

4. A vessel is symmetrical about a vertical axis through a small hole 
in its base. Show that the radius r of cross-section of the vessel at a 
height h above the bottom can be expressed in the form h=A:(r*—P), 
k and B being constants, if the surface of a liquid in the vessel descends 
with uniform velocity as the liquid empties itself through the hole. 

5. Air at a pressure P issues through a small orifice under adiabatic 
conditions into a region where the pressure is p. Show that, if P exceeds 
2p, the velocity V of the air at the orifice is given by ;— 

F2=2yP/p(y+1) 

where p is the air density at pressure P and y is the ratio of the specific 
heats of air at constant pressure and constant volume. 

6. If the temperature of the air in the vessel in the previous question 
is 10® C., y—1-41, the air density at N.T.P. is 1-29 gm. per litre, its 
specific heat at constant volume is 0172 cals, and J=418x10’', find 
the temperature of the air at the orifice when the pressure inside the 
vessel is one atmosphere and the pressure outside is zero. The energy 
gain in a tube of flow is obtained at the expense of thermal energy of 
the gas. [ —3-7®C.] 

7. Liquid flows in streamline motion through a horizontal tapering 
tube of circular section, the section at the exit end having half the inlet 
area. If the tube length is L, inlet area input velocity V, pressure 
at entrance P, and density of liquid p, find (a) the velocity n at a dis¬ 
tance X from the entrance, (b) the pressure at the same point, (c) the 
pressure at the exit end. 

2LV pV^x {4>L-x) 

2L-x^ ^ 2 (2L-x)^' 

8. A liquid of density p flows along a uniform straight tube and 
loses energy due to viscosity at the rate of e units per unit volume 
per unit length of the tube. What must be the inclination of the tube 
to the horizontal if the pressure is uniform throughout the liquid ? 



CHAPTER XTV 

WAVE MOTION 

212. Controlling Factors.—A wave is the continuous transfer 
of a particular state from one part of a medium to another. The 
medium itself is not transported from place to place, but the condi¬ 
tion is propagated through it. F'or example, in water waves small 
bodies floating on the surface are not moved onwards by the waves. 
They appear to be carried forwards a small distance on the crest 
of a wave and backwards when in the trough. Thus the elevated 
masses are not moving bodily forwards, and, on the whole, the waves 
leave the floating bodies in very nearly the same positions. 

When a wave moves through a liquid the characteristics of the 
medium which may influence its motion are :— 

(a) The depth and other boundary conditions which impose limita¬ 
tions at the walls and base of the containing vessel. 

(b) Gravitation, since the changed profile or contour of the surface 
involves work against gravity. 

(c) Surface Tension, because the pressure under a curved surface 
is different from that beneath a flat surface. 

(d) Viscosity, which is the dissipative energy agent. 
In some circumstances one, or more, of these factors becomes 

negligible compared with the others. For example, with waves of 
long wave-length, or, as they are termed, lo7ig waves, the curvature at 
any point is small, and the surface tension effect may be neglected 
compared with the gravity control; while in the opposite case of very 
short waves, or ripples, surface tension is the main controlling factor. 

Although in practice no fluid is capable of perfectly frictionless 
motion, it is convenient in considering wave motion to ignore the 
effect of viscosity and to deal with an imaginary perfectly mobile 
liquid. Such a medium is termed a perfect fluid, and it is to be 
expected therefore that the results deduced for this hypothetical sub¬ 
stance will, in special circumstances, be inapplicable to a practical 
case. In general, however, the effect of viscosity on wave motion 
is sufficiently small for the theoretical conclusions to be true within 
reasonable limits, 

p 213. Long Waves in Canals.—If the wave-length is great com¬ 
pared with the wave amplitude, surface tension may be ignored, 
gravity and the boundary conditions being the controlling factors. 
Further, it will be assumed that the surface is sufficiently exten¬ 
sive for the wall effects to be neglected, and thus the only relevant 
boundary conditions will be due to the limited depth. 

Let the axis of x (Fig, 102) be parallel to the length of the canal, 
that of y vertical and upwards, and suppose that the motion takes 

384 
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place in these two directions y. The base of the canal is Ox, 
and EF is the undisturbed level of the surface. The depth of the 
liquid is h, and the ordinate of the free surface corresponding to 
abscissa x at time t is denoted by where h is the ordinate in 
the undisturbed state. Neglecting the vertical acceleration of the 

Fig. 102.—Canal Waves. 

fluid particles, i,e, assuniing that the pressure at any point (a;, y) is 
practically equal to the hydrostatic pressure due to its depth below 
the free surface, 

p-Po=sp{h+n~y)' 
where po l^^e pressure at the surface. Hence 

dp drj 

dx~~^^dx 

Thus the horizontal acceleration is the same for all particles in a plane 
normal to x, and all particles which once lie in such a plane do so 
always. In other words, the horizontal velocity w is a function of x 
and t only, and so the equation of horizontal motion is 

du 1 

dt ^dx^ p dx 

dtt 
If we ignore which is a product of small quantities, 

du I dp 

p dx dx 
(410) 

Consider the motion of the elementary volume BG, of width dx^ 
height k-\-T}f and depth, perpendicular to the plane of the figure, 
unity. Its original volume is hdx, but after a time t, the volume, 
originally bounded by x and x-}-dx, is bounded by the planes &t 

x+S and iC+daj+f+Pda?, where | is the horizontal displacement 
ox 

c c G.P.M. 
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of the particles in plane .r, while the surface rises to If the 
liquid is incompressible, the volume is unchanged and 

hdx==\h-\-t]] 

or, 

Tjdx -f//lyAr—O, approximately. 

Thus 

r]=- 

and 

i II jdn 

Since this is independent of y, the whole strip moves together. 
The force on the elementary volume acting along the x direction 

is ph^dx. But the force on the element at P, due to the pressure 

dv dtj 
acting along Ox, is —^dxdy, i.e, from equation (410) —pg^dxdy, 

df] 
and the total force acting on the whole strip is —pg^dxh. So that 

dt^ 
and from equation (411) 

dH 
(412) 

This result may also be deduced from equations (410) and (411) by 

substituting 

The equation (412) is of a well-known type which occurs in several 
problems. The complete solution of it is 

|==F(a:—c<)+/{a;+c<) . . . , (413) 

The first term represents a wave travelling along the positive direc¬ 
tion of X with a constant velocity c, and the second term indicates 
a similar progressive wave moving along the negative direction of x 
with an equal velocity. Thus it appears that any motion whatever 
of the fluid, subject to the conditions stated in this article, may be 
regarded as composed of waves of these two kinds. From equations 
(412) and (413) we see that the velocity, c, of these canal rmve^t is 
given by 

c=^\/gh .... (414) 

The motion of long waves may also be investigated ^ by making 
the co-ordinates refer to the individual particles of the fluid. As 

^ Airy, Encyc. Metrop,, Art. 192 (1845). 
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before, consider the liquid contained between two planes perpendicu¬ 
lar to the X axis, and situated at x and x~\-dx. After a time t let the 

dS 
abscissae of these planes be and x-{-^+dx-\-~dx» The mass of 

ox 
liquid contained between the boundary planes is pAdx, where A is 
the area of cross-section of the canal. Then 

pA^^ldx=-fj,A+Br])da^, 

fj as before being the elevation of the free surface above the equi¬ 
librium level, and B the width of the surface, so that 

dx ^^dx 

(415) 

and the equation of motion is 

dP ^ A^) 

But in the position of equilibrium the volume of liquid between the 
planes is Adx, and at a time t the distance between the boundary 

d£ 
planes is dx-i-^^dx. As the cross-section of the liquid is A-\-Br], 

or, 

(A +Br))(sx+%x'j = Adx, 

A ~^dx j 
(416) 

Eliminating ri between equations (415) and (416), 

B dx\'^dx) 

Airy has discussed the solution of this equation, and he shows 
that such waves cannot be propagated to infinity without change of 
form. If we neglect the product of small quantities, 

dH_gA^d^^ .... (417) 
dt^ B dx^ 

the solution of which represents txvo progressive waves travelling in 
opposite directions with velocity 

and if the canal is of rectangular cross-section, 

c==V^. 
214. Steady Motion.—The laws of wave propagation may also 

be investigated by means of the following artifice.^ Consider a wave 

1 Rayleigh, Phil Mag,, ser. 5, 1, 257 (1S76). 
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travelling unchanged in shape with a constant velocity c. Impress 
on the whole system a negative velocity c, so that it is brought to 
rest. The motion then becomes steady, and assuming A~Bh we 
have, from equation (416), 

But 

so 

i=F(x—ct)y 

dt h 

and the new horizontal velocity is Since the wave form has 

been reduced to rest, the horizontal vibration is independent of the 
time and the motion is steady to a first approximation, i.e. the 
velocity over any vertical section is the same. 

The equation of continuity in the steady state is 

ch=q(h+rj), 

where q is the horizontal velocity at the point where the elevation 
is Tj, Along the wave surface, which is now a stream Iwe, we can 
apply Bernoulli’s theorem, 

- + ^ +gy—constant y 
P 

or, 
7) c ^ 

-g{h+r))+consiant . . (418) 

The pressure at the wave surface must be constant, and c must be 
chosen to satisfy this condition. Expanding the relation (418) 

. . . -{-constant. 

But I is supposed to be small, and therefore the pressure will be 

constant to a first approximation if we take c^—gh, which agrees 
with our former result. 

To obtain a more correct solution put c^—gh+dy then 

Thus p is constant if d—^giq, rj being positive, and it is also constant 
if d~~^gi]y f] being negative. Hence a wave of elevation moves 
slightly faster than one of depression. 

Canals of Finite Length.—Considering the solution of equation 
(412) 

^^F{ct+x)+f{ct—(c), 
where c^—gh, 



STEADY MOTION 889 

If the canal has a finite length, I, then |tc=o at x«=0 and <r=i, 
so that 

f(ct)= —F{ct), 
and 

S=^f{ct—x)~f{ct+x), 
Also 

Now if 

f{z) must be a periodic function of 21, i.e. 

f{z)~C sin mz, 
and 

so that 

or, 

and 

Hence 

f{z-\-2l) = C sin 7n{z {-2l), 

2mZ=2n7r, 

Tin^ 

J(Z) = C 

Tin, Tin, 
f=C’| sin —{ct~x)~~sin *1 «/-. • \ =2(, sm —r- cos 

J I I 

To find the profile of the surface we have r] — —h^ thus 

2TiCnh nnx nnct 
rj=-y- cos ~-y— cos —y- * 

If we take n—1 and n=2, we see that the time-interval between 
successive maximum values of rj at the points of greatest disturb¬ 

ance is This is sometimes quoted as the time-interval between 

successive “ high tides'' 
Certain assumptions were made in deducing the expression for 

the velocity of canal waves. In the first place it was shown that 
the horizontal amplitude was constant throughout a vertical section, 
but it is probable that the ignored viscosity effect would seriously 
modify this result, since in the case of steady flow the layer of liquid 
in contact with the containing vessel is at rest. It has been shown, 
however, that this boundary layer is really moving over a series of 
vortex filaments which fulfil the function of roller bearings. The 
existence of these rotatory elements is shown by the rippled appear¬ 
ance of a nearly level beach when the sea recedes. 

Secondly, it was assumed that the usual expression for the increase 
of static pressure with depth was applicable. This assumption is not 
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strictly true, since the liquid has vertical acceleration which must be 
generated by the pressure, and so conditions are different from those 
of a liquid at rest. Thus, if we consider the vertical motion of an 
element at P (Fig. 102), 

dv dp 

where v is the vertical velocity along Oy. Integrating from P to 
the surface, 

dv 

rh^ 
sly, if 1 

J y 

and the true pressure at P is equal to the static pressure approxi- 
rA -f »7 

mately, if I small compared with grj, i.e. if (h-\-rj)a can 

be neglected, where a is the maximum vertical acceleration. But 

j Tj where is the periodic time of particle vibration, so that 

(27z\^ 
— j must be negligible compared with g, or must be very small 

^2 
compared with where X is the wave-length of the canal waves. 

215. Particle Motion.—Each particle in the liquid executes 
both horizontal and vertical oscillations about its mean position, the 

d^S d^£ 
displacement along the cc axis being But 

vibration is simple harmonic, as it is in the simplest case. 

^=A cos 

where A is the horizontal amplitude. Hence 

1.91 „_r I 

;-j] ■ 
nplitude. Hence 

and if we now restrict 7] to mean the vertical displacement at P, 

. . (420) 

Thus, from equations (419) and (420), 

C-?)’ 
27cAl 

which represents an ellipse of vertical serni-ascis -ir~y and horizontal 
A 

se7ni-axis A, The vertical amplitude at the bottom of the canal is 
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zero, and the particles execute elliptic orbits of equal horizontal dis¬ 
placement, the vertical displacements continually decreasing with 
increasing depth. This is illustrated in Fig. 103 (a). 

Fig. 103.-- Particlk Motion in Canal anj> Dkep-waticr Waves. 

Additional Features of Canal Waves,—When a vessel travels 
over the surfaee of a canal it creates waves, and their associated 
energy must be obtained from the motive power driving the vessel. 
If the vessel’s speed is greater than c, the velocity of the waves, 
new waves are being continually formed as the vessel advances into 
still water and there is a corresponding continuous output of energy. 
Again, if the speed is less than c, the waves formed travel away from 
the vessel, taking their associated energy with them and, as before, 
the energy drainage is maintained. The speed most economical in 
motive energy is the natural velocity of the canal waves, since in this 
case only one ‘‘ group of waves ” is formed, and this group travels 
along with the vessel. 

As sea waves advance to the shore their depth is continually 
decreasing, and thus they tend to overtake those in front. The 
inertia effect of the crests causes them to continue at a speed greater 
than that of the troughs, and so the waves break"" In a similar 
manner a line of waves advancing to the shore in an inclined direc¬ 
tion tend to veer round into a line parallel with the shore. Those 
parts of the wave nearest to the land are retarded owing to the 
decreased depth, and thus the wave-front is refracted in a direction 
parallel to the shore. 

216, Surface Waves.—Waves formed on relatively deep water 
are characterised by the agitation rapidly diminishing in amplitude 
as we pass downwards from the surface, and we can no longer neglect 
the vertical acceleration. 

Consider oscillations of a horizontal sheet of water under no force 
but gravity, and suppose that the motion is two-dimensional, i,€. 
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the crests and troughs of the waves are all parallel to one another, 
one of the motions (a?) being horizontal and the other {y) vertical. 
As the motion is generated from rest by the action of ordinary forces 
we have, from equation (393), 

(421) 

and the boundary condition for the water, i.e. no vertical motion at 
the boundary, gives 

^ — 0 at y=z—h . . . (422) 
dy 

At the free surface of the water p—constant, and if the origin, O, 
be taken at the undisturbed level of the water, as the motion is 
assumed to be very small we have from equation (392), 

(423) 

where Q—gy» So that if rj denotes the surface elevation at time t 
above the point {x, 0), 

-Kt.; ■ ■ ■ / 
assuming that F{i) and - are merged into the value p vi 

The boundary surface equation may be written y—r]~0 and is 
equivalent to the expression (387) for the boundary surface. Hence, 
since constant represents the free surface, we have, from equation 
(887), 

■ ■ ■ <-) 

Differentiating equation (423) with respect to t and substituting in 
equation (425) 

^ dy“ dy d^ 

'dt ^dxdt 

dy-l d<i>r dyl ^ 

dy\^dydt 

or, 
d<i> ay d4,/d^ 

dt^ dx dxdt dy\dxdt 

remembering that w=—^ and 

second order of smallness, 

which must be satisfied at f/==0. 

^dydt 

Neglecting terms of the 

. (426) 
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Assuming that we are dealing with simple harmonic waves, <j4 is 
a simple harmonic function of x and i, or 

which may be written 

cos {kx~a)t), 

where f is a function of y. Substituting in equation (421) 

' 

a general solution of which is 

f^Pe^'y \~qe 
so that 

cl)~.-=.{Pe^y + qe-^y) cos {kx ~-(jot). . . (427) 

If the water is of depth h and is unlimited in extent, or is contained in 
a canal with parallel sides at right angles to the crests and troughs, 

at y=:~-h. 
dy 

Thus, from equation (427), 
C - > 
2 

say, 

and 
(b=rzC cosh k{y-\-h) cos {kx~(jot), , . (428) 

Substituting this value of in equation (426) and putting 2/—0, 

0)^z=:gk tank kh . . . (429) 

But the period of the waves is ^ and their wave-length so that 

0) 
their velocity is given by Hence 

c 2 
0 

=1 tank kh. 

From equations (428) and (424) 

where 

Tj—^C cosh kh sin {kx~-cot)=A sin {kx—coi), 

coC cosh kh 
A- 

g 

(430) 

(431) 

and is the amplitude of the waves. 
When the wave-length is very small compared with the dej)th, 

i,e, for deep water waves^ kh is large and tanh kh = l, so that 
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and the velocity of deep water waves is given by 

k 271 
h . 

In the case of long waves in shallow water is small, ianh kh—kh 

and 

which is the expression for the velocity of canal waves obtained 
previously. 

From equations (428), (429), and (431) 

, A CO cosh k(y-{-h) , 

sinhkh 
and 

But 

t.e. 

Ag cosh k(y-\-h) 

da^ 

dt 

dy^ 

dt 

CO cosh kh 

50_ kAg cosh k{y-{ h) 

dx CO cosh kh 

50 _ kAg sinh k{y-\-h) 

dy CO cosh kh 

cos (kx—wt), 

sin {kx—cof)t 

cos (kx~~cot)y 

(432) 

(433) 

X" 
kAg cosh k{y-\-h) 

co^ cosh kh 
cos (kx- cot), 

A, {he. ,0,). 
co ^ cosh kh 

Squaring, adding, and remembering that co^==^gk tanh kh, 

cosh^ k{y-^h) sinh^ k{yA^h) sinh^ kh 

and each particle describes an ellipse about its mean position, the 
semi-axes, horizontal and vertical, of the elliptic orbits being 

A cosh k{y-\-k) A sinh k{y-{~k) 

sinh kh sinh kh 

respectively. Both these values diminish from the surface to the 
bottom {y——h) where the second one vanishes. Passing from the 
surface to the bottom, the horizontal amplitude decreases in the ratio 
cosh kh: 1, and the vertical amplitude diminishes from A to zero. 
Comparing these expressions for x and y with equation (480), a sur¬ 
face particle on a crest moves in the direction of wave propagation, 
but a particle at a trough moves in the opposite direction* 

When h becomes large, is very small and may be neglected 
so that under these conditions 

x==Ae^^ cos {kx—cot), y=Ae^ sin (kx--cot), 

kg cosh kh"sinh kh 

since 
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Each particle therefore describes a circle of radius and the radii 
of the circles diminish rapidly as h increases. These circular orbits 
occur, practically, for values of h greater than half a wave-length 
(Fig. 103) (b), 

217. Energy of Progressive Waves.—The potential energy 
of a system of waves due to the elevation and depression of the 
fluid above and below the level of the undisturbed surface is, per unit 
width, given by 

where the integration limits are for y, o and rj, and for cc, over the 
whole length of the waves, so that the potcmtial energy is 

JgpJryHr. 

Consider a train of progressive waves at th(‘ surface of water of 
depth h. Representing the wave profile by 

and remembering that 

rj~A sin (kx—fot). 

, Aa cosh My Ah) 
7 /7 {kx-~(.oi), 

^ o) cosh kh 

the potential energy of the liquid, per wave-length, between two 
vertical planes unit distance apart, the planes being parallel to the 
propagation direction, is 

Jo ^ 
But from equation (400) the kinetic energy of this mass of liquid is 

and by Green’s theorem this is equal to 

where the integral is taken along the profile and dn is measured 
normal to the surface of the liquid. For very small values of n 
this may be written 

ip{ dx = igpA^{ cos^ {kx—ad) dx=^lgpA% 
Jo \^2//?/=o Jo 

so that the total energy per wave-length is ^gpA^^, and half of it 
is kinetic and half potential. 

218. Stationary Waves.—If two simple harmonic progressive 
waves of the same amplitude, wave-length, and period travel in 
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opposite directions, the resultant disturbance in a medium through 
which the waves travel may be represented by 

i,€, by 
sin {kx—(iyt)~\-A sin {kx+oA), 

sin kx cos cot. 

This represents a system of stationary ” or “ standing ” waves of 
^2d7l, 

wave-length vertical amplitude A^. At any instant the 

profile is a sine curve, but the amplitude—A^ cos cot—varies con¬ 
tinuously. The velocity potential for such a system can be deduced, 
therefore, by regarding the system as the result of superposing two 
such trains of waves, and as ^ must satisfy the conditions in equa¬ 
tions (421), (422), 

, Aj^ cosh kiy+h) . , 
^ ' svn kx sin cot. 

CO cosh kh 

To find the paths of the particles of liquid, 

dy d<l> Aigk sinh k(y+h) . _ 
--^ sm kx svn cot, 

dt dy CO cosh kh 

and 

so that 

dx 

dt CO dx CO cosh kh 

Aigk cosh k{y-j-h) 

cosh kh 

cos kx sin cot, 

cos kx cos cot, 

Aigk smh k(y-\~h) . , 
77=—^- /'y ' ' .sm kx cos cot, 

co^ cosh kh 

'^~~1anh k{y-\-h) tan kx. 
X 

This motion is independent of f, and each particle therefore executes 
a simple harmonic linear movement varying from a vertical move¬ 
ment beneath the crests and troughs—kx~(n+\)7i—to a horizontal 
one beneath the nodes—kx^nn. Since co^—gk tanh kh we have 

and 

. cosh k{y-\-h) , 
x^Ax . 7 ,, cos kx cos ad, 

sink kh 

. sinh k(y+h) . , 
y—A, . 7 7 7 sin kx cos cot. 
‘ smh kh 

As we pass downwards from the surface of the liquid to the bottom, 
the amplitude of the vertical motion varies from Aito zero, and the 
horizontal motion diminishes in the ratio cosh kh : 1. 



ENERGY OF STATIONARY WAVES 397 

If the wave-length is small compared with h, then kh is large 
and tank so that the displacements may be written 

cos kx cos cot, 
y—A^e^y sin kx cos cot, 

y being given negative values in the indices as it is measured below 
the surface, ix, in the negative direction. Thus for a decrease in 
vertical distance of A, the amplitude diminishes in the ratio 1 : 
ix, 1 : 

If we superpose two systems of stationary waves such that the 
crests and troughs of one component system coincide with the nodes 
of the other, the amplitudes are equal in magnitude but differ in 
phase by a quarter-period. Thus 

where 
rj^~A sin kx cos cot, 'W? cot. 

and 
rj=A sin (kx^cot), 

which represents an infinite train of progressive waves, travelling in 
the positive or negative direction of x, with a velocity c given by 

tmih kh. 

219. Energy of Stationary Waves.—For a system of stationary 
waves 

yi^A sin kx cos cot, 
and 

, Ag cosh k(y+h) . , • . 
(b-~— ' , _ svri kx sin cot, 

CO cosh kh 

Hence the potential energy of the liquid, for a length A, contained 
between two planes parallel to the x axis and situated unit distance 
apart is 

cos^ cot, 
Jo ^ 

and the kinetic energy of the same mass is as shown in the expression 
(400), 

i.c. 
-- ^— sin^ cot, 

4 

Thus the two energies change with time, the total remaining constant 
and, equal to 

4 

per unit width per wave-length. 
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220. Capillary Waves.—Surface tension modifies the surface 
conditions. The pressure is no longer constant, the difference of 
pressure, dp, on opposite sides of the surface being 

dp==S 

where S is the surface tension and and are the principal radii 
of curvature of the surface. 

Consider a strip of surface of length dl and unit width. The 
force acting on it along the direction y due to the pressure differ¬ 
ence is approximately, and that due to surface tension is 

6x along the same direction, so that 

which must be satisfied at i/=0. 
It has been shown in Article 214 that if in any case of waves 

travelling in one direction only, without change of form, we impress 
on the whole mass of liquid a velocity equal and opposite to that of 
propagation, c, the motion becomes steady, while the forces acting 
on any particle remain the same as before. 

As in Article 208, assume that 

so that 
i = sin kXy . (434) 

and cos kx . (435) 

These expressions satisfy Laplace’s equation (Article 210), and repre¬ 
sent a motion which is periodic in respect to x, superimposed on a 
uniform velocity c. 

The surface must be a stream line, ix. ^;~0, and from equation 
(435) the form of the surface is given by 

?^=(P-{-Q) cos kx, 

if k is small, and since the bottom, 7/=—A, is a stream liney ix, 
'kp—constanty from equation (435), 

-f =0, 
so that equations (434) and (435) become 

C cosh k{y-\-h) sin kxy 

sink k(y-i~h) cos kx, , . (436) 

where 
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But Bernoulli’s theorem may be written 

dp 

399 

-+gy+i 

t.e. 

, ,1 

r/^y /aA*‘ _ 

r/a^Y /a^y 
Lyatr J ya^ j 

constant^ 

-constant,, (437) 

and since at the free surface y)^0, from equation (436), 

Ty — q C sink kh cos kx. 

Substituting this value in equation (437) and neglecting k^, 

— —— sinh kh cos kx~~^C sink kh cos kx——{1 —2kC cosh kh cos kx} 
P 2 

—constant* 
Equating to zero, the coefficient of cos kx, 

-\-g=zc% coth kh. 

or, 

t.e. 

tank kh, 

\pA 271J 

If h is large compared with A, 

pX ~^ 271 
(488) 

For sufficiently large values of A the second term in this expression 
is large compared with the first, the force governing the motion of the 
waves being mainly that of gravity. Thus the velocity of ‘‘ gravity ” 
imves is given by 

6*2=— • 

2n 

In the case of ocean rollers, for example, at no part of the wave is 
the curvature sufficiently rapid to produce an appreciable surface 
tension effect, and gravity is the only considerable controlling factor. 

If, on the other hand, A is very small, the first term preponderates, 
and the motion is mainly governed by capillarity. In this case 

pX- 

It will be noted that as the wave-length diminishes from oo to 0, 
the wave velocity, as given in the expression (488), after falling to 
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a certain minimum begins to increase again. This minimum value 
occurs at the wave-length Aw, where 

or wlien 

27iS 

A 2 
4^71^8 

PS 

and Kelvin has suggested that those waves of wave-length less than 

_should be called ripples, 
PS 

They may be seen in front of any 

solid moving horizontally through the surface of a liquid. As Kelvin ^ 
has stated, ripples may be produced by “ a sailing vessel, a fishing line 
kept approximately vertical by a lead weight hanging down below the 
water and carried along at about half a mile per hour by a becalmed 
vessel, or a pole held vertically and carried horizontally.” 

221. Group Velocity.—Although the examples of wave motion 
quoted above relate to a special type, i.e. those waves in which the 
profile is simple harmonic and the train extends to infinity, with the 
help of Fourier’s theorem we may, by superposition, build up a solu¬ 
tion which represents the effect of any arbitrary initial conditions. 
The motion is, in general, composed of systems of waves of all wave¬ 
lengths travelling in both directions, each with its own velocity 
corresponding to its own wave-length. As a result of this motion 
the form of the free surface continually alters. When, however, the 
wave-lengths are large compared with the depth of liquid, the velocity 
of propagation is independent of the wave-length, and in this case 
if the waves travel in one direction only, the wave profile remains 
unchanged as the system advances. 

In general, if waves are started by a local disturbance such as, 
for example, the dropping of a stone into a pond, or the motion of a 
boat through water, the successive waves have different lengths and 
are propagated with different velocities. In studying wave motion 
practically, the observed velocity, wave-length, and period are those 
of the resultant disturbance caused by the interaction of the con¬ 
stituent waves. The velocity of the group as a whole is less than that 
of the individual waves composing it, and if attention be fixed on a 
particular wave, it is seen to advance through the group, gradually 
dying out as it approaches the front, while its former place in the 
group is occupied in succession by other waves which have come 
forward from the rear. 

From these considerations we may introduce the important con¬ 
ception of group velocity,^ which has application, notably to water 

^ Kelvin, Math, and Phys. Papers^ 4, 76. 
‘Lamb, Proc, Land, Math, Soc,, (2), 1, 478 (1904); Green, Proc, Roy, Soc, 

Edin,, 29, 445 (1009). 



GROUP VELOCITY 401 

waves, but also to every case of wave motion, where the velocity of 
propagation of a simple harmonic train varies with the wave-length. 

Consider a group obtained by the superposition of two systems of 
waves of the same amplitude and of nearly the same wave-length. 
The equation of the surface is 

rj~A[cos 

where k^—kz is small, and oj^f{k), so that 

If we consider any particular instant, then for a considerable 
range of values of x the last factor is approximately constant, and 
the wave surface for a large range of x given by 

rj=B cos —kx-{-^-~~^’ 

The surface presents the aj)pearance of a series of groups of waves 
separated at equal intervals by bands of nearly smooth water, and 
the motion of each group is sensibly independent of the presence of 
others. The group velocity, U, is 

/Cj k^ 

But the wave velocity is 
dic^ 

Hence 

and since 

‘-k 

V=l^ck)=c^k% 

2n 

U- 
.dc 

(439) 

This result is true for any waves travelling through a uniform medium. 
The velocity of surface waves is given by 

tank khy 

and in the case of deep water tank kh^\y so that from equation (439) 

2 '‘"2* 

O.P.M. D D 
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Hence 

WAVE MOTION 

U ~2 ^2k 

' “ ks+l 
For gravity waves 

Z7=Jc. 

For capillary waves or ripples 

so that a group of ripples travels faster than one of the individual 
waves. 

If we consider gravity waves at any depth, 

^ tank kh, 

and 

cU=rc^ + lk 

Thus 1 

~gh 
—- <<!Pri sech^ kh-~§- tank kh 

k^ 
i-g gh sech'^ kh\. 

U- _—1 
2L 'sink 2kh\ 

(440) 

2kh 
As kh approaches zero value, increases to the value unity, 

so that the group velocity continually increases from its value 
2i 

when h is very large, to c, when the depth is small. 

222. Transmission of Energy in Simple Harmonic Surface 
Waves.—In a progressive wave the wave form advances with a 
definite velocity. The particles of the liquid possess energy which 
they transfer, but there is no reason to suppose that the rate at 
which this energy is handed on is equal to the velocity of the waves. 
In fact, energy is transmitted at a smaller rate. 

Consider a vertical section of the liquid taken at right angles to 
the direction of propagation. The rate of energy transmission is the 
rate at which the pressiu*e on one side of this section is doing work 
on the liquid at the other side. If the liquid depth is /t, we have, 
equation (438), 

, Ag cosh kiy+h) ,, 
— y' (kx—cot), 

^ CO cosh kh ' 

and from equation (482) the variable part of the pressure is given by 

d<l> 

1 Stokes, Papersf 5, 862; Rayleigh, Papers^ 1, 540. 
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approximately, so that as the horizontal velocity is — the work 
ox 

done in unit time, or the energy carried across unit width of the 
section, is 

Le. 
phA^g"^ cosh^ k(y-\-h) . „ 

pkg^A^ 
(o cosh^ kh 

sin^ (kx~ (ot) 
sink 2kh K 

4A: ^'2 

But, from equation (429), (o^—gk tank kh, so that the energy trans¬ 
mitted per unit time is 

sin^ {kx-u}t)[l +2M amch 2M]. 

The average value of this expression taken over an interval of time, 
long compared with the periodic time, is ^ 

^^^[l+2kh cosech 2kh], 
4/c 

and as the energy is transmitted at an average rate ccpial to 

pgA 2 , 
'-^—X group velocity, 

since the group velocity is 

^[1+2M cosech 2kh], 
At 

pgA ^ 
But it has been shown in Article 217 that is the total energy 

at any instant, per unit length of waves, so that the average rate of 
energy transmission is the same as the group velocity. 

223. Echelon Waves.—Let a pressure point move with velocity 
V along a line QO, and suppose at the moment considered it has 
reached the position 0. The disturbance at any point P at that 
instant may be considered as produced by the residtant of a series 
of impulses, applied at uniformly spaced short intervals, at points 
along QO. Of the wave systems thus generated only those will 
combine to have an additive effect which have their origin in the 
neighbourhood of a point Q, such that the phase at P is stationary 
for variations in the position of Q. If the angle OQP is 6, and we 

^ Rayleigh, Proc, Lond, Math, Soc., 9, 21 (1877). 
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regard Q as fixed, the velocity of the disturbance along QP is v cos d 
and, for deep-water waves, 

cos^ 0= 
271 

so that if the point P is at a crest, PQ must be a multiple of A, 
and therefore 

QP^Py say, =/c cos^ 0, . . . (441) 
where 

27inv^ 
k— ^—, 71 being an integer. 

Points in the immediate neighbourhood of P for w})ieh the resultant 
phase is the same as at P will lie on a line perpendicular to QP, and 
a locus of uniform phase will be the envelope of such lines. The 
equation to a line perpendicular to QP is 

p=x cos 0-\-y sin Of . . . (442) 

and the adjacent line is given by 

p-{~dp=^x cos {0+d0)+7j sin (0+60). 

By subtraetion 
dp_^dp 
60~~ J0~”^ AW 0 + ?/ cos 0 (448) 

A point on the envelope must satisfy equations (442) and (448), i,e» 

dp . _04 n 

dd 

and from equation (441) 

x~p cos 0—^^ sin 0, 2/=p sin 0+^ cos 0, 

x^k cos^ 0-\~2k cos 0 sin^ 0—cos 80), . (444) 

k 
y—k cos^ 0 sin 0-~2k cos^ 0 sin 6——~{sin 0-\~sin 80) (445) 

4 

From these equations the curves defined by equation (441) may be 
traced. 

dx dn 
If ^=j"=0 we obtain singular points. Both of these differentials 

du do 

are zero if 
cos^d—^ .... (446) 

Two curves defined by equations (444) and (445) pass through any 
assigned point P, and as the singular points are given by equations 
(444), (445), and (446), 

x~^k cos 0, t/= “ IA; sin 0, 

tan 0=±-+» 
X 2V2 

and a series of cusps is situated on these lines.^ Waves of this type 

1 Havelock, Proc, Roy, Soc,, A, 81, 898 (1908). 
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are produced by the action of the bows of a ship, two systems of 
transverse and lateral waves being observed. The two systems 
coalesce at the cusps, producing the well-defined echelon waves. They 
are generated also at the stern of a ship and are exhibited when a 
duck swims across a pond. 

224. Compression Waves in a Liquid.—When a portion of 
a liquid is locally compressed, the state of strain is communicated 
to other parts of the liquid at a rate which gives the velocity of 
compressional waves, e.g. sound waves, in the medium. Suppose 
the wave motion to be along the Ox direction. Each particle of 
the medium vibrates parallel to Ox about its mean position, and, 
if the amplitude is small, this motion will be simple harmonic. Let 
A and B be two planes, at the equilibrium positions x and 
each of area a. 

At a time t let the displacement at along Ox, be e, then that fit 
de 

B is Thus the distance dx between the planes is increased 

to or the linear strain along Ox is As there is no 

displacement at right angles to Ox, this is also the dilational strain. 
de 

Thus the pressure at A, due to the disturbance, is 
ax 

where K is the adiabatic value of the bulk modulus, while that at 
dP dP d^e 

B is ~P—~~ .dx. There is thus a resultant force a-,-fo==A^a--,-~ .(5a; 
dx dx dx^ 

acting on the medium between A and B along the Ox direction. If 
the density of the medium in the equilibrium position is p, then 
the constant mass of liquid between the planes is poidx, and the 
acceleration is 

K ^_d^^ 

p dx^ dt^ 

The velocity of propagation, c, is given by 

K 

P 
225. Compression Waves in an Extended Solid.—The fore¬ 

going principles apply also to this case, but the pressure over the 
edges of the slab AB will not be —P, but, owing to the absence of 

displacement at right angles to Ox, will be where 

being the axial modulus. Thus in this case, 

-»_;>:_3g+4re 

P 3p 
Seismic Prospecting for minerals under the earth’s surface is 

based on the capacity of the material of the earth to transmit longi¬ 
tudinal low-frequency vibrations, set up by explosions, with this 
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velocity, the time of transmission from the origin of the disturbance 
to a measuring site depending upon the material traversed by the 
wave. 

In addition to the air-borne and transverse waves two distinct 
longitudinal waves exist, the first of which is assumed to travel just 
under the earth’s sui'face with a speed characteristic of the surface 
medium, while the second wave travels downwards from the explo¬ 
sion point, and is reflected from an underlying stratum. From 
records of the times of arrival of these waves at a series of observa¬ 
tion stations, deductions as to the nature and position of the 
intervening media can be made. The seismometers employed are 
distinguished according to the dynamical function of the tremor to 
which they react, e.g. displacement, velocity, and acceleration types. 
The first are usually mechanical in nature, the second are electro¬ 
magnetic induction seismometers in which the original displacement 
of the ground is transformed by means of electromagnetic induction 
into a variation of current proportional to the velocity of the motion. 
The third type depends upon the principle that a variable force is 
proportional to the acceleration of the motion related to it, and the 
displacement of the ground is made to vary a pressure exerted on 
an electrical device such as a microphone, the current in which then 
varies in a manner proportional to the acceleration of the original 
groimd movement. 

226. Compressional Waves in a Rod.—If longitudinal elastic 
displacements are propagated along a rod, the conditions of strain 
are different from those of the previous article, because of the re¬ 
moval of the side constraints imposed by the surrounding medium. 
If the length of the rod is great compared with its lateral dimensions, 
the strain is a simple Young’s modulus extension or contraction, and 

dc 
tlie tensile force at A, acting along Ox is where Y is the 

adiabatic value of Young’s Modulus for the material of the rod. 
Thus we have 

P 
227. Transverse Waves in a Stretched String.—Let the un¬ 

displaced length of the string lie along Ox and let the displacement 
du 

at A be y, while that at B is these being assumed 

small. Thus the element dx of the string is inclined at a small 

angle to Ox and, if F is the tension, the resolved part of this, 

acting at along Oy is approximately The force at B 
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if the tension is the same throughout the string. Thus the resultant 

force along Oy is and the mass of the element is itidx, where 

m is the mass per unit length of the string. 

tion along Oy is and thus 
^ ^ m dx^ 

m 

Therefore the accelera- 

This result, which has been deduced on the assumptions {a) that the 
amplitude is small compared with the wave-length, {h) that the ten¬ 
sion, in the displaced position, is unaltered, and (c) that the string, 
is perfectly flexible will apply with considerable accuracy to long, 
thin metal or gut strings vibrating with small intensity, but will not 
be accurate for shorter, thicker specimens or more intense vibrations. 

228. Compressional Waves in a Gas. -Let the pressure of 
the gas be p and its density p when undisturbed. Then if at time 

dc 
the displacement at J is e, that at B is and the new volume 

of gas between A and B is Since the change of volume 

occurs under adiabatic conditions, 

where P is the pressure at A at time t. If the particle displacement 
is small compared with the wave-length, we have 

Hence the force at acting along Ox is Pa, while that at B is 
dP 

—Pa—a^ ndx, and thus the excess force along Ox is 

—o^^dx—oidxyi) 
d^e 

and 

p 

It should be noticed, however, that if the amplitude is not very small 
yp 

will exceed - This has been verified experimentally. 

EXAMPLES 

1. Show that the formula for long, deep liquid waves of length A is 
correct within 1 per cent, if the depth of the liquid exceeds 0*43A and 
viscosity effects are negligible. 
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2. If the depth of the liquid in the previous question is A/4, find 
the equation to the orbit of a surface particle, the vertical amplitude 
being A, [0'887x^ 

3. What would be the equation of particle motion at the bottom 
of a liquid of depth A/4, surface amplitude A, and negligible viscosity ? 

[^v = 0‘435A sin (75 31/ 

4. Find the velocity of long waves for a liquid whose depth is A/4 and 
compare it with (a) the velocity for a similar wave-length A in a deep 
liquid and (b) that for canal waves. [12\/A; 12*5 VA; 15-7 V^*] 

5. Find the maximum depth of liquid for which the formula —gh 
represents the velocity of waves of length A to within 1 per cent. 

[0-028A.] 

6. Compare the minimum velocities of surface waves at 10° C. for 
mercury and water if the surface tensions are 544 and 74 respectively, 
and the specific gravity of mercury is 13*56. [0*858 : 1.] 

7. In an experiment to measure the surface tension of water by the 
ripple method, the waves were created by a tuning fork of frequency 100, 
and the mean wave-length was 3*66 mm. Calculate the surface tension 
of water. [74*7 dynes per cm.] 

8. For what wave-length will the group velocity of surface waves 
in a liquid of surface tension S and density d be a minimum ? 

[U^/(S/gd).] 

9. Taking the surface tension of water as 75 dynes per cm., its density 
as 1 gm. per c.c., find the wave-lengths of surface waves on water with 
a velocity of 30 cm. per sec. Which of these would it be preferable to 
use in determining the surface tension by means of ripples ? 

[5*18 and 0*583 cm. ; the latter.] 

10. Taking for the material of the earth the following elastic con¬ 
stants K = 2xW^ and n =^1*2x10^^ dynes per sq. cm., compare the 
velocities of transverse and longitudinal waves. [0*573.] 



CHAPTER XV 

UNITS AND DIMENSIONS 

229. Units.—The quantitative measure of anything is a number 
which expresses the ratio of the magnitude of the entity to the mag¬ 
nitude of some other amount of the same kind. In order that the 
number expressing the measure may be intelligible, the magnitude 
of the thing used for comparison must be known. This leads to the 
conventional choice of certain magnitudes as units of measurement, 
and any other magnitude is then simply expressed by a number 
which tells how many magnitudes, equal to the unit of the same 
kind of magnitude, it contains. For example, if we say that a rod 
is 12 ft. long, we imply that the rod is measured in terms of the 
foot, which is the unit in this particular case, and that the ratio of 
the rod’s length to the unit of length is 12. Every different type 
of physical quantity requires a separate unit, but these units are 
not necessarily independent of one another, and it is desirable that 
as few different kinds of unit quantities as possible should be intro¬ 
duced into our measurements. They must be definite, not subject 
to secular change, and easily comparable experimentally with the 
quantities in which they are expressed. In addition, they must be 
such that they are easily copied. 

There are certain relations which exist between different types 
of physical magnitudes, and by utilising these relations it is possible 
to select the units in a limited number of cases, and thus to fix the 
magnitude of the remainder. The units chosen as the basis for this 
system are cdXled fundaynental units, and the others, which are deter¬ 
mined by the relation existing between them and the fundamental 
units, are called derived units. Such a system is described as absolute 
—a term first introduced by Gauss in 1832 in connection with his 
measurements on the strength of the earth’s magnetic field at 
Gottingen. 

There are several absolute systems of units possible according to 
the fundamental units chosen, and the physical relation employed in 
obtaining the derived units, etc,, but by far the most widely used one, 
is that referred to as the C,G,S. {centimetre, gram, second) system. 
Another, often called the English system, employs the foot, pound, 
and second as the fundamental units. 

A third system, closely allied to the C.G.S. system, is that called 
the M,K,S,, which makes the metre, the kilogram, and the second 
the fundamental units. This selection is most useful in electrical 
theory as it makes the so-called practical units absolute values. 
In mechanical engineering practice the unit of force becomes more 
basically valuable, and is defined gravitationally as the weight of 

409 
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a pound. This necessitates a re-definition of the unit mass which, 
under the name slug^ becomes the mass to which the unit force, 
1 pound weight, gives unit acceleration. Thus one slug contains 
g pounds and is therefore strictly a local unit. 

230. Fundamental Units.—The fundamental units which have 
been chosen are those of mass^ lengthy and time, and most physical 
units may be explicitly defined in terms of these three. 

In the metric system the standard of length is defined as the dis¬ 
tance between the ends of a certain platinum bar when the whole 
bar is at the temperature 0^ C. A line standard metre has been 
constructed by the International Bureau of Weights and Measures 
and is known as the International Prototype Metre. A number 
of standard-metre bars which have been carefully compared with 
the International Prototype have been made by the International 
Bureau of Weights and Measures and furnished to the various 
governments. The British yard is defined as the straight line or 
distance (at 62° F.) between the transverse lines in the two gold 
plugs in the bronze bar deposited in the office of the Exchequer. 

The unit of time in both the systems here referred to is the mean 
solar second, or the 86,400th part of the mean solar day. The unit 
of time is thus founded on the average time required for the earth to 
make one revolution on its axis relatively to the sun as a fixed point 
of r(*ference. The siderial day is the interval between two succes¬ 
sive transits of the first point of Aries across any selected meridian. 
This point is that one of the two nodes of intersection of the ecliptic 
and the celestial equator where the sun, moving in the ecliptic, 
crosses the equator from south to north at about 21st March, the 
ecliptic being the apparent yearly track of the sun in the great circle 
on the celestial sphere. One mean solar day is 1*002738 siderial days. 

The French, or metric, standard of mass, the kilogram, is the 
mass of a piece of platinum made by Borda in accordance with a 
decree from the French Republic. It was connected with the stand¬ 
ard of length by being made as nearly as possible of the same mass 
as that of a cubic decimetre of distilled water at the temperature of 
4° C., or nearly the temperature of maximum density. The British 
standard of mass is the pound avoirdupois, and is the mass of a piece 
of platinum marked “ P.S. 1844, 1 lb.,” preserved in the Exchequer 
office. 

*^"231. Derived Units.—Units of quantities depending on powers 
greater than unity of the fundamental length, mass, and time units, 
or on combinations of different powers of these units, are called 
derived units. Thus the unit of area and of volume are, respectively, 
the area of a square whose side is the unit of length and the volume 
of a cube whose edge is the unit of length. A velocity is expressed 
by the ratio of the number representing a length to that represent¬ 

ing an interval of time, or — ,* an acceleration by a velocity number 
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divided by an interval of time number, or ^ etc. Equations of 

this form given for velocity and acceleration, which show the dimen¬ 
sions of the quantity in terms of the fundamental units, are called 
dimensional equations. Thus 

is the dimensional ejfuaiion for energy and ML'^T ' “ is the dimensional 
formula for energy. 

The dimensional equation for any physical quantity may be de¬ 
duced or formed from the definition of that quantity. P'or example, 
inomentum is quantity of motion in the Newtonian sense and is, at 
any instant, measured by the product of the mass number and the 
velocity number for the body. Thus the dimensional formula is 
MV or MLT~^, so that the dimensions of momentum are 1 in mass, 
1 in length, and ~1 in time. 

The dimensional formulne for various physical quantities are given 
in Table XIX. 

Tablk XIX.—Dimensionai. Fokmul.i«: eor Vakiocs Physical 

Quantities 

Quantity. i Dimensional 
fonnulie. 

A 
Quantity. 

;i 

Dimensional 
formula*. 

1 

Length L i; Moment of inertia 

■ 

ML^ 
Time T ! Force MLT-» 
Mass M j; Energy. Work . 
Linear speed . . LT ^ i! Torque MLn^- 2 
Angular speed . 1 Surface tension . 1 MT~^ 
Linear acceleration LT-- ii Strain i 0 
Angular acceleration . ! 'f— 2 ji Stress 
Density . . . | ML-^ lj Modulus of elasticity . 
Moment of momentum jl Viscosity . 

1 

It must be remembered that imits other than mass, length, and 
time may be chosen as the fundamental units, and the physical 
quantities expressed in terms of the new fundamental units. For 
example, suppose we take length, time, and force, F, as fundame ntal 
units. Then, since F^MLT~\ 

M=^FL-^T^ 

and the dimensional formula for viscosity is FL~^T. 

'^32. Homogeneity of Dimensions in a Physical Equation. 
—Dimensional equations may be used to convert the magnitude of 
any physical quantity expressed in terms of the units belonging to 
one system into those of another system. They also form a check 
on the accuracy of the reasoning whereby an equation between 
various physical quantities has been obtained. Thus, suppose we 
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consider the expression for the velocity, v, generated by a uniform 
acceleration, a, acting over a specified distance, s, 

v^=2as. 

The dimensional formula for the left-hand side of the equation is 
[LT~^]^, and for the right-hand side, LT~^Lf so that the dimen¬ 
sional formulae are identical, and the original equation is possible* 
All terms in any such equation having a physical significance must 
necessarily have identical dimensional formulae. This principle is 
known as homogeneity of dimensional formulae 

Suppose that it is required to convert a surface tension, ex¬ 
pressed in terms of dynes per centimetre, into pounds weight per foot. 
Representing the fundamental units in the C.G.S. and British systems 
by Lq and L^, and the derived units of force by and in the two 
systems, and remembering that the actual value of the surface tension 
remains the same whatever the units employed, 

where is the number which expresses the surface tension in pounds 
M 

weight per foot. The ratio, i,e, the gram to the pound, is termed 

the conversion factor, 

"'IZSS. Homogeneity in Preliminary Analysis of Problems. 
—The principle of homogeneity of dimensions provides information 
regarding the form which relations between physical quantities should 
take, and in many problems a preliminary analysis may be made in 
this way. In using this method practically, there are two important 
points to be considered. First, a numerical coefficient cannot be 
determined from this principle alone. It must be found by calcu¬ 
lation or experiment. Secondly, it is necessary to specify all the 
quantities on which the desired result may reasonably be supposed 
to depend, and afterwards it may be shown that one or more of 
these may be omitted. For example, the velocity with which a dis¬ 
turbance travels along a stretched string might be a function of the 
stretching force F, the mass of the string m, and its length /, i.e. 

v=:<l>{F, m, 1), 

where <f> is the function to be determined. Hence 

v=^CF^mH\ 

C being a constant, or transforming to the dimensional equation 

[LT -1]=[MLT- ^f[M]y[LY, 
Hence 

a?4-2/=0, 2^=1, 
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and 

where mo is the mass per unit length, and one experiment suffices 
to determine the value of C. 

The time taken by a simple pendulum to swing through an angle 
6 might depend upon the ’mass, m, of the bob, the length, I, of the 
suspension, and g, the acceleration due to gravity, or 

so 

aiid 
»/+= = 0, 2s--], x=0. 

Thus i-Q is independent , of the bob’s mass. 

•Vf has no dimensions. 

It will be noted that 

If two pendulums arc situated at different places on the earth's 
surface, where the values of the acceleration clue to gravity are 
and g2, the lengths of the pendulums being li and I2 respectively, 
and if tx and the times taken by the bobs to swing over equal 
arcs, then 

and the pendulums pass through identical phases for equal values 

of the non-dimensional expression t Such moving systems arc 

said to possess dynamical similarity, 

234. Non-dimensional Variables.—From the examples quoted 
above it is evident that not more than three equations can be obtained 
by equating the dimensions of mass, length, and time. Sometimes 
one of the fundamental units is missing as in the pendulum formula, 
but there may be more than three quantities upon which the physical 
relation depends. Thus, if there are n quantities, the indices of three 
of them may be expressed in terms of the remainder, and there will 
remain a relation between n—3 non-dimensional groups of terms. 
For example, the velocity, c, of capillary waves depends upon the 
wave-length, A, the acceleration due to gravity, g, the surface tension, 
iS, and the density, p, so that 

and 
[LT-1] = [LflLT- 
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or 
z=---p, y=p+h x=2p+\. 

three of the variables being expressed in terms of the fourth. This 
result may also be written 

where represents an undetermined function. 
In a similar manner it may be shown that the mass, m, of a drop 

of liquid, density p, delivered from a tube of external radius r is 

S being the surface tension and ^ an arbitrary function which varies 
little from 3-8. 

235. Application to Particle Dynamics.—If a particle is pro¬ 
jected with an initial velocity u into a gravitational field so that it 
is subjected to an acceleration a, the distance, .9, travelled during an 
interval of time, t, after the particle has been projected is given by 

or 

and 
?/, z^l+y, 

s—Cti^~yayt^^y=ut(j) (~\ 

Thus wc have the two non-dimensional groups of terms, 

s , at 
and —• 

ut u 

But for linear accelerated motion 

s=ut-\-\ai^=ut 

which is of the same form as that deduced above. 
Another interesting example in mechanics is the motion of a small 

mass m about a massive nucleus of mass W, We have shown that 
the resultant path taken by the small mass is a conic, which, under 
special conditions, is an ellipse. Since the force of attraction between 

GWm 
the two masses is given by F" > where r is the distance be¬ 

tween the masses and G the Newtonian constant, we see that the 
dimensional formula for G is L®T"" Now the periodic time for 
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the small mass to revolve round about the nucleus depends upon 
IV, R, and G, where R is the major axis of the elliptical orbit, and 

t^^Cm^WyR GP, 
or 

[T] - [M]^[M]//[L]^[L3r- m- ^p, 
so 

s=+|, a;=-2/-i. 

the square of the periodic time being proportional to the cube of 
the major axis of the orbit. 

236. Application to Surface Tension. Owing to capillary 
forces, a drop or bubble that is deformed from a spherical shape, and 
then left to itself, will execute periodic vibrations about its figure of 
equilibrium. This phenomenon, which is seen when a liquid issues 
from a circular orifice, has been studied by Rayleigh,^ and may be 
used to measure the value of the surface tension of the liquid. The 
frequency, v, of vibration is* a function of S the surface tension, p the 
density, and d the diameter of the drop, so that 

v=CSYd% 
[T-^]=[MT- 

and 

237. Application to Viscosity.—The motion of a fluid changes 
at a certain critical velocity from orderly to turbulent motion, and 
a simple formula for this critical velocity, Vc, may be deduced from 
dimensional formulae. The factors which determine its value are the 
coefficient of viscosity, rj, of the liquid, the density p, and the radius, 
r, of the tube along which the liquid flows. Thus 

Vc—CrfplPr^, 

and 
pr 

A body moving through a viscous medium is subjected to a re¬ 
tarding force, F, which depends upon the velocity, v, with which it 
moves, relative to a point in the fluid far removed from the body, 
the size of the body, say its length I, and the coefficient of viscosity, 
Tj, of the medium, so that 

F^C^v^riVV, 

and using the dimensional formulae, 

F^^Cfpril, 

1 Rayleigh, Proc, Roy. Soc., A, 29,71 (1879); 34.180 (1882); 47,281 (1890h 
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This formula is true, provided that the resultant liquid motion is not 
turbulent, i.e. the velocity of the body must be less than the critical 
velocity associated with the liquid through which the body moves. 
Stokes ^ has shown that a sphere moving through a viscous medium 
is subjected to a viscous drag equal to 67irr]V, where r is the radius 
of the sphere. 

The liquid itself will be disturbed, and assuming that the slope 
of the stream line at a point is given by 

0 = <I>(1, T], V, p), 
it can be shown that 

T) 
so that the group-— is non-dimensional, its value depending upon 

the geometrical conditions. If these conditions are fixed, then 6 is 
constant, and the stream lines in liquids through which bodies of 
the same shape, i,e, geometrical conditions fixed but of different 

sizes, move are similar if is constant. This is a very important 

deduction and is widely utilised in naval and aerodynamic prob¬ 
lems, since it provides a method of analysing and studying problems 
connected with machines by means of tests on miniature models 
constructed to scale. 

When the relative motion of a body through a liquid becomes 
great, eddies are formed and turbulent motion results. If F is the 
retarding force acting on a body of dimension I as it moves with 
a velocity v through a liquid of density p, viscosity r], 

F = TJ, ly p)y 

and by means of dimensional formulae 

=pvH^( 

the non-dimensional number —- being known as Reynolds^ number. 

It is obvious that the resistance of a body of given shape, moving in 
a fluid of density and viscosity pi, rji at a speed v^, may be predicted 
from the measured resistance of a scale model moving in a fluid of 
density and viscosity p2, rj2, at a speed V2, provided that 

for then 

V2 Vi 

and Ej can be determined, since all the terms on the right-hand side 
are known, or can be measured. This suggests that the resistance 

1 Stokes, Collected Papers, 3, 1. 
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which any body experiences in moving through a medium may be 
estimated by measuring the resistance acting on a small scale model 
of it. In practice the use of this method is limited by the fact that 

the necessary conditions, ^ to be fulfilled in the test on 
Vi 

the model are nearly always impossible to realise. For example, if 
a model to a scale -pif,- is available, it would be necessary to move it 
ten times faster than the object in the same medium to fulfil the 
necessary conditions, a speed which is not easily realised in the 
laboratory. Thus, if it is required to predict the resistance acting 
on a boat 500 ft. long moving at 20 ft. per sec., and a model of 
the boat to a scale -gV used, the test being made in water, it would 
be necessary to move the model at 400 ft. per sec. By studying 

the manner in which —r varies at different velocities, useful informa- 
pv^ 

tion is afforded, however, concerning the probable variation of this 
quantity outside the velocity range available for the model. 

This retarding force is of the greatest importance in the case of 
ships moving through the water. It may be regarded as consisting 
of that due to (a) the friction of the liquid against the immersed 
surface, (b) eddy-making and the formation of waves. The com¬ 
ponent arising from wave formation cannot be estimated by the 

application of the law =^constant, but a law of comparison for 

both friction and wave-making may be derived by noting that in 
addition to velocity, density, and viscosity of the fluid, and the 
linear dimensions of the body, the acceleration due to gravity must 
also be taken into account. Then it may be shown that 

F=pvH^<l>\ 

and in order to predict the total resistance of a ship, from experi¬ 
ments with a small scale model, the following relations must hold : 

ih, 
I. 2 

(b) 
Vo ^ Vi 

where the suffix 0 refers to the ship and the suffix 1 to the model. 
Hence 

Vi  Mpi. 
TJq Vpo 

In practice it is usual to separate the wave-making resistance 
from the frictional resistance. If we denote the former by F^y then 

G.P.M. E E 
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and if/m, is the xvave-makwg resistance of the model under the condi¬ 

tions 

fw 
VoV 1 * 

I 8 
*^1 

Experiments are made with the model in a tank, and/is measured 

at a velocity given by 3:^1^= 
Vj,Hi 

h 
where / is the total resistance for 

the model. The frictional resistance, fj, is then calculated, and /<, 
deduced from 

I ® 
For a full-sized ship the wave-making resistance is given by Fu)=fwj\> 

Summarising these results we may say that the resistances ex¬ 
perienced by similarly shaped ships are in the ratio of the cubes of 
their dimensions, when their speeds are in the ratio of the square 
root of their dimensions. This is known as Froude^s Law. 

EXAMPLES 

1. Express (a) the surface tension of water, 75 dynes per cm. ; 
(b) the standard atmospheric pressure, 1013x10® dynes per sq. cm. ; 
(c) the viscosity of air, 0 000170 C.G.S. units, in terms of corresponding 
F.P.S. units if 1 lb. =453*6 gm. and 1 foot = 30*48 cm. 

[(a) 0*165 pdl. per ft. ; (h) 6*806x10* pdl. per sq. ft.; 
(c) 1*142x10-*®.] 

2. Experiment suggests that the velocity of a sphere allowed to fall 
from rest in a viscous medium varies with the time according to the 
law :— 

log [1 -kv/g]-=-kt 
where /c is a constant for the given sphere and medium. Examine this 
suggested law for dimensional homogeneity and express k in terms of the 
radius r and mass M of the sphere, and r) the viscosity of the medium. 

[k—Ar}r/M ; A being a numeric.] 

3. If the velocity of light c, the Newtonian constant of gravitation G 
and Planck’s constant of action h are chosen as the fundamental units, 
find the dimensions of the ordinary units of mass, length, and time in 
the new system. {M^=hcG-^\ L^=^c-'^hG; T^^hGc~K] 

4. In the new unitary system suggested in the previous question, 
c, h, and G are all of unit value. Find the value of the gram, centi¬ 
metre, and second in terms of the new units of mass, length, and time 
respectively, given that, in C.G.S. units, c = 3xl0^®, G = 6*7x10“®, 
^=6*6x10-’^ [1*84x10*; 2*47x10®®; 7*41x10*®.] 

5. The frequency n of transverse vibration of a stretched string 
depends upon its length I, its tensional stress F, and its density p. 
Find the form of relationship existing between them and show that 
it reduces to the familiar form. [ln=/c-v/(F/p).] 
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6. In a rotating cylinder method of measuring the viscosity of a 
liquid there is a critical angular velocity co above which turbulence 
occurs. Find how co is related to the viscosity r], the separation dis¬ 
tance X between the cylinders, and the density p of the liquid. 

[ft) :=krj/px^.] 

7. Tlie range jK of a body projected in vacuo at a given angle to the 
horizontal depends only on the velocity of projection V and on the 
acceleration of gravity g. Find the form of the necessary relationship. 

8. It has been suggested that for liquids a constant, S being 
the surface tension and p the compressibility. Show that the quantity 
k cannot be a mere numeric. 

9. If the resistance experienced by a body when moving through 
a liquid with velocity v is proportional to the square of the velocity, 
show that it is independent of the viscosity. 

10. The viscosity tj of a gas is determined by its density p, its average 
molecular velocity c, and its mean free path L, Show that tj^kpcL, 

11. Investigate dimensionally the connection between the reverbera¬ 
tion period of a room its volume F, its surface area A, and the 

velocity of sound c. 
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Maintained precession, 87 
Matlock, 122, 124, 125 
Manometers, see Gauges 
Martienssen, 90 
Maskelyne, 55, 56, 62 
Mass and weight, 1 
-energy, 67 
— of earth, 55 et seq, 
— unit of, 3, 409, 410 
Massive particle, motion of, 6 
Matthews, 186 
Maxwell, 215, 224, 233, 244, 246, 

255, 261, 319, 321 
MaxwelVs law of energy distribu¬ 

tion, 244 
-velocities, 244 
McLeod gauge, 332 
Mean free path, 234, 250, 273, 310 
— square velocity, 240 
Meinesz, 44, 45 

Membrane, pressure on curved, 154 
Membranes, semi-permeable, 286, 

289, 297, 305 
Mercury diffusion pumps, 329 
— motion of perihelion, 67 
Metal crystals, single, 126 
Method of coincidences, 25 
Metre, 410 
Metric units, 409 
Meyer, 321 
Meyefs method for viscosity of 

liquids, 224 
Michelson, 66 
Microdiffusiometer, 304 
Milligal, 37 
Millikan, 232, 274, 315, 319, 321 
Milner, 187 
Mine experiment, 56, 62 
Mitchell, 56, 186 
M.K.S. system of units, 409 
Mobility coefficient, 312 
Moduli of elasticity, 94, 125 
Molar energy, 180, 201 
— surface, 180 
Molecular asymmetry, 181, 197, 

200, 201 
— collisions, 241 
— concentrations, 294 
— cross-sections, 255, 273 
— depression of freezing-point, 295 
— diameters, 273 
— elevation of boiling-point, 293 
— energy, 201, 242 
— flow, 261 
—- forces, 150 
— pumps, 326 
— size, 270 
— sphere of action, 150, 191 
— theory, 239, 244 
— velocities, 243, 244 
Moment due to bending, 105 
— of inertia, 7 
-calculations, 7 
Momenta, angular, 76 
Morley, 66 
Morse, 297 
Motion down inclined plane, 17 
— gyroscopic, 70 et seq, 
— laws of, 5 
— of massive particle, 6 
-planets, 64 
— on concave surface, 18 
— precessional, 76 
Mountain experiment, 55, 62 
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Needle floating on water, 170 
Neumann^s triangle, 203 
Neutral surface, 104 
Nexvman, 340 
Nexvton, 2, 5, 28, 33, 48 
— law of gravitation, 48, 04 

- laws of motion, 5 
Non-dimensional variables, 413 
Nordlundf 315 
du Nouy, 176 
Nuclei for drop formation, 199 
Nutation, 72, 82, 85 

Ohermayer, 307, 309 
Oertling gradiometer, 43 
Oil diffusion pumps, 330 
— films, 200 
— rotary pumps, 325 
Orbits, 64, 358 
— central, 64, 358 
-— differential equation of, 65 
— elliptic, 64, 360 
Orientation of surface molecules, 

181, 196, 206, 210 
Osborne Reynolds, 214, 222, 235, 

258 
Oscillation centre, 24, 25 
Oscillations, damped, 225, 345 el 

seq, 
— forced, 63, 349 
— of springs, 112 

— - torsional, 13, 117, 133, 224 
Osmometers, 297 
Osmosis, 286 
— laws of, 287 
Osmotic balance, 297 
— pressure, 280 
-and boiling-point, 293 
-diffusion, 305 
-temperature, 288 
-vapour pressure, 291 
-laws, 287 
-measurements, 296 
— — of electrolytes, 295 
-theory of, 298 
Ostwald, 220 

Pagliani, 133 
Parabolic orbits, 360 
Parachors, 186 
Parsons, 130, 132 
Partial Fourier series, 281 
Particle dynamics, 64 
— motion in waves, 390 
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Partition of energy, 248, 814, 319 
Path, mean free, 250 
Pendulum, bar, 24 
— compound, 22 
-corrections, 26 
— conical, 19 
— corrections, 26 
— equiv^alent, simple, 24 et seq. 
— experiment of Bessel, 63 
— gyro-compass, 86 
— gyrostatic, 73 
— invariable, 34 
— Kater\s, 24 
— reversible, 24 
— simple, 19 
Penning, 339 
Permeability, 367 
— gravitational, 62 
Permeable membranes, 286, 289, 

297, 305 
Perpendicular axes theorem, 9 
Perrin, 316, 317, 318, 321 
Per rot, 183 
Pfeffer, 287, 296, 297 
Philip's gauge, 339 
Phillips, 64 
Piotrozvski, 225 
Pirani gauge, 337 
Plane motion, 361 
— vectors, 14 
Planetary motion, 64 
Plasticity, 92, 127 
Plateau, 161 
l^Iates, force between wetted, 173 
Plumb-line deflection, 55 
Poise, 217 
Poiseuille, 216, 260, 261 
— equation, 216, 228 
— — corrections to, 216 
Poisson, 95, 96, 190 
— ratio, 95, 96, 123, 125, 143 
-and pressure, 135 
— — measurement of, 96 
-values of, 96, 118, 123 
— theory of capillarity, 190 
Pollock, 35 
Porter, 219, 299, 300, 318 
Potential, gravitational, 48 
Pound, 3 
Poundal, 6 
Poynting, 25, 59, 61, 62, 63, 64 
— balance experiment, 59 
Prandtl, 102 
Precession, 15, 70, 76, 78 
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Precession of a top, 80 
Precessional motion, 15, 76 
— torque, 70 
Pressure and elasticity, 134 
-viscosity, 223, 228, 233 
— gauges, 832 
— in fluids, 128 
— on curved surface, 154 
Preston^ 62 
Price Jones, 227 
Primary spreading, 205 
Principal strains, 143 
Principle of energy conservation, 

49 
— — superposition, 143 
-virtual work, 154, 165, 202 
Projectiles, 361 
Propagation of elastic waves, 405 

et seq. 
Prospecting, geophysical, 43 
— seismic, 405 
Pull on plate in liquid surface, 174 
Pumps, 324 et seq. 
— speed of, 324 

Quartz fibre gauge, 336 
— gravity balance, 35 

Radial displacements, 119 
Radiometer, phenomena, 264 
Radius of gyration, 11 
Ramsay, 180 
Range of molecular action, 150,191 
-projectile, 362 
Rankine, 231, 272 
Rate of diffusion, 308, 311 
Rayleigh, 163, 177, 179, 185, 193, 

387, 402, 403, 415 
Redwood, 226 
RegnauU, 122, 130, 136 
Reinold, 158 
Relations between clastic con¬ 

stants, 115, 144 
Relativity, 65 
Relaxation time, 215 
Repsold, 30 
Resisted motion, 343, 344 
Resonance, 353 
Reynolds, 182 
Reynold's number, 214, 416 
Richards, 186 
Richarz, 62 
Richer, 33 
Rigidity and pressure, 135 

Rigidity and temperature, 133 
-viscosity, 215 
— flexural, 105 
— measurement of, 98 
~ modulus, 94 

of bars, 98, 99 
-rectangular strip, 100 
Ripples, 400 
— method for surface tension, 179 
Roberts, 200 
Rolling disc, 75 
— of hoops, 76 
Rotary oil pumps, 325 
Rotating cylinder in fluid, 219 
— disc in fluid, 224 
Rotation of the earth, 86 
Rotational Brownian motion, 315 

movements of massive bodies, 6 
Rucker, 158 

Sackur, 299, 318 
Scalars, 14 
Schaefer, 131, 133 
Scheffer, 307 
Schlick, 90 
Searle, 95, 116, 119, 159, 172, 221, 

230 
Secondary spreading, 205 
Seismic prospecting, 405 
Seismometers, 406 
Semi-permeable membranes, 286, 

289, 297, 305 
Shape of drops, 161, 171 
-earth, 33 
-films, 102, 155, 159 
-jet, 164 
Shave, 133 
Shaw, 38, 42, 64 
Shear in bent beams, 104, 106 
— strain, 93 
Shields, 180 
Similarity, dynamical, 413 
Simple harmonic motion, 344 
— pendulum, 19 
Single metal crystals, 126 
Size of molecules, 270 
Slip at boundary, gases, 234, 262 
-liquids, 216 
Slotte, 219 
Slug, the, 410 
Solar day, 410 
— nutation, 85 
Solid friction, 234 
— liquid in contact with, 153 
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Solids, bulk modulus of, 128 
Solubility, 289 
Solutions, colloidal, 226, 313 
— general theory of, 298 
— osmotic pressure of, 287 
— surfaee tension of, 187 
— vapour pressure of, 291 
Specific heat of gases, 249 
Speed of pumps, 324 
Spens, 299 
Sphere, attraction of, 51 
— of molecular action, 150, 191 

potential due to, 53 
Spherical shell, attraction of, 49 
-potential due to, 52 
Spheroid of equilibrium, 33 
Spinning top, 80, 84 
Spiral springs, 111 
Spreading of liquids, 203, 205, 210 
Springs, 111 
Stability of films, 158 
Stars, apparent displacement of, 

55, 67 
State, equation of, 266 ' 
Static friction, 234 
Stationary waves, 397 
-energy of, 397 
Stokes, 33, 217, 222, 225, 314, 317, 

319, 402, 416 
— law, 217, 314, 317, 319 
Strain, 93, 142 
— components, 142 
— ellipsoid, 145 
— homogeneous, 115, 142, 145 
— in twisted bar, 96, 99 
— shear, 93 
Stream function, 379 
— line, 373 
-motion, 214 
Stress, 93, 141 
— components, 142 
Stretching of wire, 95, 138 
Strong, 340 
SL Venant, 99, 100, 102 
Sugden, 163, 177, 186 
Sundberg, 36 
Superposition of strains, 143 
Supports and columns, 110 
Surface contamination, 189, 203 
— energy, 152, 180, 183, 200 
— molecular orientation, 181, 197, 

200, 201 
— phase, 197 
— tension, 150 et seq. 
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Surface tension and compressi¬ 
bility, 186 

-curvature, 154 
-evaporation, 198 
-latent heat, 195 
-osmosis, 287 
-other constants, 185 
-temperature, 179 
-vapour density, 198 
-floating needle, 170 
-forces, 173 
-liquid-liquid interface, 182 
-measurement of, 161, 174, 

179 
— — of interface, 182 
--liquid metals, 163 

-solutions, 187 
-shape of drop, 171 
-trough, 208 
Surveys, gravity, 34 
Suspension, bifilar, 20 
— centre, 25 
Sutherland, 229, 234, 252, 256, 271 
— constant, 233, 234 
— formula for viscosity, 229, 234, 

256, 271 
Svedburg, 297 
Symmetric vibrations, 353 
Szyszkowski, 189 

Tabor, 234 
Tail, 130, 132 
Taylor, 222 
Temperature and diffusion, gases, 

309 
-liquids, 301 
-elasticity, 131 
-gravitation, 64 
-osmotic pressure, 288 
-surface tension, 179 
-viscosity of gases, 229, 234, 

256 
-liquids, 218 
Tensile strength, 63 
— stress, 94 
Terminal velocity, 222 
Theorem of parallel axes, 8 
-perpendicular axes, 9 
Theory of capillarity, 189 
-lubrication, 234 
-relativity, 65 
-solutions, 298 
-viscosity, 227, 253 
Thermal conductivity, 256 
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Thermal diffusion, 880 
— equilibrium, 244 
— transpiration, 258 
Thermodynamical properties of 

fluids, 129 
Thixotropy, 227 
Threlfall, 35, 187 
Thwing, 63 
Time of relaxation, 215 
Top, precession of, 80, 84 
Torque, 12 
— for precession, 70 
— gravitational and centrifugal, 71 
— on cylinder in rotating fluid, 219 
--disc in fluid, 224 
Torricelli's theorem, 375 
Torsion balance, 2, 37,56,58, 62,175 
— of bars, 96 et seq, 
-cylinders, 96 
-springs. 111 
— theory of, 99 
Torsional oscillations, 13, 117, 133, 

224 
— rigidity, 98, 100 
Total surface energy, 152,180,183, 

200 
Trajectories, 362 
Transmission of wave energy, 395, 

402 
Transpiration, thermal, 258 
Transverse strains, 121 
—■ waves, 406 
Tuning, critical, 352 
Turbulence, 214, 222 
Tycho Brahe, 64 
Tyler, 179 

Uniform angular motion, 12 
— strain, 145 
— stress system, 142 
Uniformly accelerated motion, 342 
Unimolecular layers, 196, 197, 206, 

211, 286 
Units, 3, 6 
— derived, 410 
— fundamental, 409 

Vacuum pumps, 824 
Van der WaaU, 137, 180, 193, 195, 

200, 268, 271, 298, 321 
VanH Hoff, 288, 295, 818 
Vapour density and surface ten¬ 

sion, 198 
— equilibrium, 198 

Vapour pressure and osmosis, 291, 
298, 297, 299 

— pumps, 327 
Variations in gravity, 32 
Vectors, 14 
Velocities, Maxwell's law of distri¬ 

bution of, 244 
Velocity and mass, 66 
— angular, 7 
— critical, 214 
— head, 373 
— of drift, 305, 319 
-— potential, 372 
— terminal, 222 
Verschaffelt, 162 
Vibrations, 342 et seq. 
Vicentini, 133 
Virial theorem, 265 
Virtual work, 154, 165, 202 
Viscometers, 221 
— commercial, 225 
Viscosity, 214 seq. 
— and kinetic theory, 233, 234, 253 
-logarithmic decrement, 224, 

236 
-lubrication, 235 
-pressure, gases, 233, 336 
-liquids, 223 
-rigidity, 215 
-temperature, gases, 229, 234 
-liquids, 218 
— coefficients, 214, 225, 233, 253 
— damping, due to, 224 
— dynamic, 217 
— kinematic, 217 
— of colloidal solutions, 226 
-gases, 228, 233 
-liquids, 215 
-viscous liquids, 222 
-water, measurement of, 217 
— rotating cylinder experiment, 

219 
-disc experiment, 224 
— Sutherland's formula, 229, 234, 

256, 271 
— theory of, 227, 253 
Volume strain, 93 
Vortices, 222 

Waitz, 807 
Warburg, 234, 262 
Wassmuth, 183 
Waves, canal, 384 
— capillary, 179, 898 








