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PREFACE 

In this book I have endeavoured to present the fundamental 

principles and applications of the Differential and Integral 
Calculus in as simple a form as possible consistent with an 

adequate comprehension of the ideas upon which they are based. 

Although the work is intended primarily for students who wish 

to obtain a sound working knowledge of the subject and its 

application, whether to Mechanics, Physics, Chemistry, Engineer¬ 

ing, or any other science, I hope that it will also prove useful to 

those who are studying for pass degrees in Mathematics and 

to those who are working for Mathematical Scholarships. 

In most of the old text-books on the Calculus, and in some 

modern ones, all the different standard forms and methods of 

differentiation are discussed before any applications of them are 

considered, and similarly with integration. It takes the ordinary 

student a long time to master all these methods, especially in the 

Integral Calculus, and if he sets out to learn them all before he 

knows the object of them, and what use he is to make of diffe¬ 

rential coefficients and integrals when he has obtained them, he 

is apt to get discouraged and take no interest in the subject; if he 

succeeds in learning them, he is apt to look upon the processes of 

differentiation and integration as a kind of mathematical juggling 

with symbols without any real comprehension of their meanings. 

In order to avoid these dangers, and in the hope of arousing 

the interest of the student at the outset, I have introduced 

easy applications at an early stage. After treating of the 

differentiation of quite simple algebraical and trigonometrical 

functions, I have considered their applications to properties of 

curves, to maxima and minima, and to mechanics. Similarly, 

after obtaining the integrals of a few simple types of functions, 

I have considered their applications to areas and volumes and 

to mechanics. All this is done before dealing at all with the 

inverse circular functions, or with exponential, logarithmic, and 
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hyperbolic functions. Afterwards I have treated of these latter 
functions and of more difficult methods and applications. 

There is really no reason why the first part, just described, 
and which is comprised in the first nine chapters, should not 
(with the omission, perhaps, of parts of Chapter II) form part 
of the mathematical course of the best form of a good school. 
The amount of mathematical knowledge required before begin¬ 
ning the calculus is, I think, less than is often supposed. A 
sound knowledge of Elementary Geometry and of comparatively 
elementary algebraical and trigonometrical processes is the one 
essential and absolutely necessary requisite. 

No attempt has been made to treat the bookwork with the 
precision and rigour required in the light of modern mathematical 
investigations. This would be quite out of place in a book 
intended for those who wish to acquire a knowledge of the 
calculus as a tool to work with, rather than for those who 

are training to be mathematicians, and in any case it is not 
suitable for a first course on the subject. At the same time, 
I have attempted not to ignore or conceal points of difficulty, 
and in several places where I have considered it advisable to 
assume theorems, of which the proof seemed to me beyond the 
scope of the book, I have not hesitated to do so, at the same 
time expressly stating that they are assumptions. Considerable 
space has been devoted to explanations and illustrations of the 
meanings of 'limits' and 'continuous functions', for I am 
convinced that, unless the student has clear ideas on these 
points, it is impossible for him to grasp the true meaning of 
a differential coefficient, although he may be able to acquire 
a certain amount of facility in the use of it. In connexion 
with limits, I think that the recent introduction of the symbol 
flj —> a, in place of a? = a, is a most valuable improvement. This 
is used throughout the book. There is no doubt that the older 

symbol is calculated to cause confusion and lead to erroneous 
ideas, since in most cases x can not be taken equal to a, bub 
only as near to it as we please without actual coincidence. 

In order to bring home the meaning of a formula or a theorem 
to the beginner, I have frequently introduced numerical examples 

and appeals to the geometrical intuitions of the student. These 
geometrical ‘proofs' are generally much more interesting and 
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indeed much more convincing to the ordinary student than an 

analytical proof which, however rigorous, probably conveys no 

very definite moaning to him, and they are quite sufficient for 

many purposes. 

1 have assumed that the student is familiar with the theory 

of graphs as treated in text-books on Elementary Algebra, and in 
the first chapter I have given a short discussion on the method 

of sketching a graph from its equation (a most valuable exercise 

for mathematical students) in some rather more difficult cases, 

including the conic sections. For the benefit of students who 

have not done Analytical Conics, I have appended to this chapter 

a short discussion of the simplest forms of the equations of these 

curves, to which frequent references are made in the sequel. 

Before proceeding to the differentiation and integration of 

exponential and logarithmic functions, &c., I have briefly re¬ 
capitulated the chief properties of these functions, together with 

as much of the theory of convergency of series as seemed 

necessary. Many students of the calculus have but an imperfect 

knowledge of these important functions, and in any case it is 

hoped that this chapter may serve as a useful revision. Many 

examples, which illustrate the application of the exponential 

function e* and show how it continually occurs in all branches 

of science, will be found in the last part of Chapter XVIII, 

which deals with the Compound Interest Law. 

In the chapter on Methods of Integration, some of the well- 

known general processes, including the general discussion of 

resolution into Partial Fractions, are omitted; but I think that 

the methods given are sufficient to enable the student to inte¬ 

grate most of the expressions he is likely to meet with in 

practical applications of the subject, and at the end of the 

chapter [as also at the end of Chapter IV after the chief 

methods of diflFerentiation have been considered] a long collection 

of miscellaneous exercises is given in which the student does 

not know beforehand which particular method he has to employ, 

as he does with the exercises in the body of the chapter. It is 

not, of course, expected that the student will work straight 

through all the examples or even all the articles in this chapter 

on a first reading, but a selection should be made, and he can 

return to them again and again as occasion arises for revision. 
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The same remark applies to the contents of Chapters XVIII 

and XIX. The applications to Centres of Gravity, Centres of 
Pressure, Moments of Inertia, Electricity, Potential and Attrac¬ 

tions, Dynamics, &c., given in these chapters, are included in 

the hope of making the book useful to students in different 

branches of science and of varying interests; but the student of 

the calculus who is not also a student of Hydrostatics will 

naturally omit the section that deals with Centres of Pressure, 

and so on. In Chapter XIX a considerable amount of Particle 

Dynamics is included, for while this subject depends for the 

most part upon quite elementary principles of mechanics, it 

affords excellent illustrations of the application of the principles 
of the calculus. 

It is obviously impossible in a book of this typo to give 

any adequate discussion of the subject of Differential Equations, 

but the simplest and most useful types of equations of the first and 

second order are collected in Chapter XXI (although differential 

equations have been solved in the earlier chapters which deal 

with Physics and Mechanics). These are sufficient to enable the 

student to solve most of the equations he is likely to meet in 
elementary applications. 

The chapters on Taylor’s Theorem and Partial Differentiation 

are placed last, because they are not needed in the development 

of the subject along the lines I have adopted, but the treatment 

is such that the student who requires these particular subjects 

(for instance, the student of Thermodynamics and Chemistry 

who has to deal chiefly with functions of more than one 
variable and will therefore need Chapter XXIII) can take them 

at a much earlier stage. Chapter XXII on Taylor’s Theorem 

can be taken, if desired, immediately after Chapter XIII on the 

Mean-Value Theorem, and the greater part of Chapter XXIII 

can be taken as soon as the student has finished the ordinary 
differentiation. 

It is essential that students of the calculus should have 

a liberal supply of examples for practice, and sets of exercises 

are inserted at short intervals. The examples are plentiful in 

number and carefully graded, and I have endeavoured to 

include problems and applications from different sources of as 

varied, instructive, and interesting a nature as possible. With 
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such a large number of examples it cannot be hoped that the 

answers will be free from mistakes, but I hope that there are 

not many errors, and I shall be glad to receive corrections or 

hear of cases where answers are found to be wrong. 

A collection of numerical tables is added at the end of the 

book, and it is hoped that this will prove very useful. It is 

important that, where possible, students should be able to work 

examples fully out and obtain definite numerical answers. This 

part of the work is often neglected. Some of the tables 

required for this purpose are not usually given in text-books 

on the Calculus and are not always easily accessible to the 

ordinary student. 

In preparing this book I have frequently consulted many of 

the existing text-books on the subject, including those of 

Williamson, Lamb, Gibson, Osgood, and others, and I wish to 

make acknowledgement of my indebtedness to these works. 

I wish also to express my obligations to Professor Jessop of 

Armstrong College for his encouragement and for much valuable 

advice in connexion with the work. My sincere thanks are also 

due to Mr. J. W. Bullerwell of Armstrong College for his 

kindness in reading through the proofs and for the time and 

care that he gave to them, which led to the detection of many 

errors. 
G. W. GAUNT. 
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CHAPTER I 

FUNCTIONS AND THEIR GRAPHS 

1. Constants and variables. 

In any equation or any investigation the quantities which occur 
are of two kinds: (i) those which retain the same value throughout 
the particular equation or investigation which is under consideration ; 
these are called constants^ and are generally denoted by the earlier 
letters of the alphabet, a, 6, c, Z, w, n, &c.; and (ii) those which take 
different values ; these are called variableSy and are generally denoted 
by the later letters of the alphabet, u, t;, y, s. For instance, one 
of the commonest forms of the equation of a straight line is 
1/ = wiic -f c. Here x and y are variables ; they are the coordinates 
of any point whatever on the straight line, and can take values 
from — 00 to 4- oo ; tn and c are constants, and have fixed values for 
any particular straight line, m being the tangent of the angle which 
the straight line makes with the positive direction of the axis of 
and c the intercept on the axis of y; but they have different values 
for different straight lines. 

Again, the equation of a circle of radius a, taking its centre as 
the origin, is = a^. Here x and y are variables and a is 
a constant; x and y are the coordinates of any point on the circle, 
and therefore each may take any value from — a to -f a; a is the 
same for all points on any particular circle, but will of course have 
different values for circles of different sizes. 

In mechanics, the distance $ travelled in time f by a point moving 
in a straight line with constant acceleration a is given by the 
formula s = In this case s and t are variables and u and 
a are constants, u being the initial velocity of the moving point, 
and a its constant acceleration ; $ changes as t changes, but u and a 
remain the same during the particular motion which is under 
consideration. 

As an example of an equation which contains three variables, we 
have in pneumatics the equation 4-a^); in this case p, 

B tBIl 
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and t are variables, being respectively the pressure, density, and 
temperature of a given mass of gas; k and ol are constants. 

2. Functions. 

If two variables x and y are so related that one or more values of y 
can he determined when the value of x is assigned^ then y is said to be 
a fmction of x. 

In the first two of the cases just mentioned, the value of y can 
be calculated when the value of x is assigned (the values of the 
constants being supposed known); in the first case we obtain one 
value of Pj in the second case two values, from a given value of x; 
y is said to be a function of x. In the third case, s can be calculated 
when the value of t is assigned (u and a being known); s is said to 
be a function of t In the last case, the value of p can be found 
when the values of p and t are given (k and a being known); p is 
said to be a function of p and t. 

Similarly, in the first two cases, we can, if values of y be assigned, 
calculate the corresponding values of a?; in the third case, given the 
value of s, we can calculate values for t (two values of t for each 
value of s, since the equation is a quadratic for t in terms of s); and 
in the last case, given the values of p and tj we can calculate the 
value of p; i, e. we may regard a; as a function of y, t as u function 
of s, and p as a function of p and t. 

A magnitude may he a function of any number of variables. 

Further examples are the following: the volume and superficial area of 

a sphere are functions of one variable, the radius of the sphere ; the volume 

and superficial area of a cone or a cylinder are functions of two variables, 

the height and the radius of the base; the volume and superficial area of 

a rectangular block are functions of three variables, the length, breadth, and 

thickness. 

In this book we deal chiefly with functions of a single variable. 
The expressions a?®; ^/x; >/(10 +o?^); Binx; i&nx; logrc; 2*; 

sin~^ip are all functions of Xj their values can be calculated when 
the value of a? is given. In these, and in the cases mentioned 
above, the relation between the variables can be expressed by a 
formula, but this is not always the case. For example, the height 
of the barometer at any given place is a function of the time; at 
any particular instant the barometer has a definite height, but there 
is no mathematical formula connecting the height with the time, 
although the relation between them can be represented graphically. 
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and instruments are used which draw the graph, and thereby exhibit 
to the eye the height as a function of the time. 

The symbol f{x) is used to denote a function of x in general; 
sometimes the symbols F[x), (l>{x), &c. are used, so that yi=zf(x) 
or y (f) (x) is merely a symbolic way of expressing the fact that 
y is a function of x, x and y are often referred to as the independent 
variable and the dependent variable respectively, implying that any 
value may be assigned at will to a?, and the corresponding value of 
y then calculated from it Sometimes y is said to be a function 
of the argument x. 

If ^ = f[x\ then f{a) denotes the value of y when a is sub¬ 
stituted for X] e.g. if f{x) — x^-\-^x-k'^y then /(a) = a2-|-4a-f6; 
/(3) = 9+12-f6=:26;/(0)=:6; /(~2) = 4-8 + 5= 1; andsoon. 

In some cases, real values of y are obtained for every real value of 
X; this is so in the example just mentioned, but it is not always 
the case; e.g. if ^ = V(l—x% only values of x from —1 to +1 
inclusive give real values for y; if a? is numerically > 1, ^ is 
imaginary. Again, if ^ = x/{x--l)f we get a definite real value of 
y for every real value of x except a; = 1. If a; = 1, the function 
takes the form 1/0, which has no definite value. In this case, y 
is said to be defined for all values of x except ic = 1. In the 
preceding example, y is defined only for values of x from — 1 to +1 
inclusive. 

3. Single-valued and many-valued functions. 

If to each value of x there corresponds one and only one value 
of y, then y is said to be a one-valued or single-valued function of x; 
e. g. y z=. [ax 4- b)/[cx + d); y = sin X] y = (1 -f- are one-valued 
functions of x» 

If to each value of x there correspond more than one value of y^ 
then y is said to be a many- or multiple-valued function of a;; e. g. in 
the second example of Art. 1, y^ = a;^ and y = ± (a^—a;^). To 
each value of x correspond two values of y equal in magnitude and 
opposite in sign ; therefore y is a two-valued function of a?. In this 
case, if only real values of y are to be considered, x must not be 
numerically > a. If x^ > y will be imaginary. 

If y® —llj/ = X, to each value of x correspond three values 
of y obtained by solving this equation of the third degree ; therefore 
2/ is a three-valued function of x. 

For example, if a; = 6, we have 

= 0, whence ^ = 1 or 2 or 3. 
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If y = tan“’^rr, i.e. an angle whose tangent is a?, then to each 

value of X corresponds an infinite number of values of y; e. g. if 

a; = 1, y may be 45° or may differ from 45° by some multiple of 

180°, i.e. y = 45° + w.l80°, where n may have any integral value, 

positive or negative. 

4. Implicit functions. 

If X and y satisfy the equation 

it is clear that, if a value be assigned to a?, the equation becomes 

a quadratic from which two values for y can be calculated ; therefore 

y is a function of x. Similarly, any equation connecting x and y 

determines ^ as a function of x^ although it may not be possible 

to actually effect the algebraical solution of the equation. In this 

case, y is said to be an implicit function of x. 

The following equations give y as an implicit function of x: 

cosa:+a^ = h^\ny\ y = axlogiyfx). 

If the equation be solved for y in terms of x, or if the equation 

be given in the form y =f[x)y an expression involving x only, then 

y is said to be an explicit function of x, or to be expressed explicitly 

in terms of x. 

In some cases, the change from one method of expression to the 

other is quite easy. For example, the equation x^-^-y^ = gives 

y as an implicit function of x; the equation can be at once solved, 

and gives y = ± V(a^—x^) as the explicit expression of y in terms 

of x. 

Again, the equation 3^—4 = 0 expresses either 2/ as a 

function of x, or a? as a function of y implicitly. But, solving for y^ it 

gives y = (3 a;—4)/(2x-f-3), an explicit function of X] and solving 

for X, it gives a; = (3^ + 4)/(3 —2^), an explicit function of y. In 

other cases the change is difficult or impossible (as in the three 

examples given above), 

5. Odd and even functions. 

An even function of x is one which is unaltered when x changes 

sign; e.g. cos a;, x^-^x^-\-2, and any algebraical expression which 

contains only even powers of x. 

Generally, if f(x) is an even function of a?, then /(—a?) = f(x). 

An odd function of x is one which merely changes sign when 

X changes sign; e.g. sinrr, tana;, x^-^^Xy and any algebraical 

expression which consists entirely of odd powers of x. 
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Generally, if f(x) is an odd function of x, then f(—x) = 

An odd function of x must vanish when x = 0 ; for if 

f{^x) = 

then, when a; = 0, we have /(O) = —/(O), whence /(O) = 0. 

[Functions such as 3 sin a;+2 cos a:, ar^ + 3a;+10, in which some 

of the terms change sign and some are unchanged when x is replaced 

by —a:, are neither even nor odd.] 

6. Inverse functions. 

If y is given as a function of x by an equation y z=z f[x)^ then 

it is often possible to solve the equation for x in terms of y^ and so 

obtain x expressed as a function of y in the form x = (p (y). These 

functions are said to be inverse functions. 

E.g. (i) if y (3j;4-2)/(2 a: —3), we have 2a^~3f/== 3a;4 2, 
(2?/— 3) t= 3y+ 2, and a: =* (3y+ 2)/(2y — 3); 

(ii) if y = x = ± -v/(4 + y); 
(hi) if y =. 10*, rc^logjoy; 
(iv) if y = tan a;, a; = tan~* y; 
(v) if y — y^ « and x = y*'^. 

As will be seen from these examples, both functions may be one¬ 

valued, or both many-valued, or one of them many-valued and the 

other one-valued. 

7. Algebraical and transcendental functions* 

If y = + ... where a, &, ...A; are constants (some 

of which may be zero), and n a positive integer, then y is said to 

be a rational integral function o/x, or a polynomial in a?. 

If y is equal to a fraction whose numerator and denominator 

are both of this form, it is said to be a rational function of x, or 

a rational algebraical fraction. 

If y can be expressed in an equation of the form 

Pyn4.Q^n-l+... =0, 

where P, Q,... ai'e rational integral functions of a;, then y is said to 

be an algebraical function ofz. 

Functions of x which are not algebraical, e.g. sin a?, logo;, a", 

tan”^a;, are said to be transcendental functions ofx. 

Examples I, 

1. If/(a:) «* 4, find the values of/(I), /(2), /(O), /(-I), 

a. lff{x) « (a?-l)(5-ir)/(a; + l}®, find the values of/(2),/(l),/(0),/(iJ), 
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8. If /(x) = (a:'-l)(:r‘-4), prove that /(I), /(-I), /(2). /(-2) are 
all zero. 

4. If /(x) = aa;- +?<a; + c, find /(x+V), f{x—V), f(x-^h)—f {x). 

6. If f(x) = a!^, prove that /(»») x/(»i) =/(tn + n), 

0, If /(x) = log a:, prove that 

(it f(ahc) “/(a) +/il') +/(c) i 
(ii) /(a/6) •=/(«)-/(('): 

(iii) /{a”) =»/(«). 

7. If/W - tana:, prove that /(x + tj) -= 

8. Classify the following functions as ^even ’ or ‘ odd ’ functions of x: 

cot Xj sec X, cosec x, (x-l? + (x+lf, — — \ )^, x/{ 1 + a?®), 
sin 2 a;, sin^a;, cos 2 a;, a;(a?~2)(a; + 2), + a; sin a;, a; cos a;. 

9. Express y explicitly in terms of x in the following cases : 

(i) a;^ + y* a*, (ii) a7®y® «= 
(iii) logy 4-log a; == log a, fiv) y'^* + 2ay - a;® = 0, 

(v) a sin y 4- 6 = ca;, (vi) axy + hx + cy'\-d=^0. 

10. Transform the following into implicit relations between x and y, free 
from fractions and radical signs: 

(i) y « (3a;~2)/(2a;-l), (ii) y =« (a”-a;«)V", 
(iii) y = (a-{x)l^x, (iv) y == log., |a;/(l 4 xy/*}, 
(v) y = a?± v^il -a;®), (vi) y = sin"^ (a;/a). 

11. Given the following functions, find in each case the corresponding 
inverse function; 

(i) y = a;^ (ii) y - 14- v'^, (iii) y «= 008^^2 a;, 
(iv) y a* (v) y « a tan^^a:, (vi) y = ^(a”-a?"), 
(vii) y =. y(5~a;®), (viii) y = V'(2a?~a;®), (ix) y *= 4a;/(a;-~ 1), 
(x) y«^loga (a;4-l). 

12. In each of the first nine examples of Question 11, state how many values 
of y correspond to each value of a?, and for what values of x y is defined ; 
also, in the inverse functions, how many values of x correspond to each 
value of y; and for what values of y a; is defined. 

8. Graphs. 

A general survey of the relation between the variable x and the 

function y can be obtained by drawing the graph of the function. 

If we suppose that x increases through a given range of values, and 

calculate the values of y corresponding to different values of x within 

this range, we shall, by plotting on squared paper the points which 

have these corresponding values of x and y as coordinates, obtain 

a series of points; the locus of these points is called the graph 

of the function. For an account of the theory of continuous 

number and a discussion of the question as to whether and under 

what circumstances a function can be represented by a continuous 

curve, the student is referred to more advanced treatises. The 

fmictions which occur in such applications of the calculus as it is 
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proposed to deal with in this book, usually have graphs which can 

be easily drawn and which give a general view of the variation of 

the function. 

It will be taken for granted that the student is already fanailiar 

with as much of the theory and construction of graphs as is now 

generally included in text-books on elementary algebra, including 

the plotting of graphs of the functions y = aa; + &, y = + + 

together with their simpler properties; and also with 

the graphs of the circular functions sinaJ, cosrr, tana:, &c. 

In many examples in the Differential and Integral Calculus it 

is necessary, or at least advisable, to draw roughly the graph of 

a function, and some more examples of a rather less elementary 

type will now be considered. 

9. Examples of graphs. 

The graph of any function can be obtained by simply plotting 

a sufficient number of points, taking a: = 0, jhl, +2, ... in turn, 

with intermediate values when necessary, until enough points are 

obtained to show all the various branches of the graph, and then 

drawing a curve freely through them; but in most cases a great 

deal of information as to the shape and limitations of the curve 

can be obtained by examining the equation. This should always 

be done first, and the following examples are chosen so as to 

illustrate this. 

(i) ~ iGa:. 

Here the first fact we may notice is that, 

corresponding to any positive value of x, there 

are two values of y which are equal in magni¬ 

tude and opposite in sign (e. g. if a? = 4, ^ 

may be either -f 8 or —8), i.e. taking any 

point on the axis of x to the + side of the 

origin, we get two points of the graph by 

measuring equal distances upwards and down¬ 

wards perpendicular to the axis of x; this 

shows that the curve is symmetrical about the 
axis of X. 

The next fact to notice is that if a: be —, 

is —, and therefore y is imaginary, i.e. no 

points are obtained for negative values of a?, 

and therefore the curve lies entirely on the positive side of the axis of y* 
It clearly goes through the origin, since y = 0 when a? = 0, and 
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since values of Xy however large, always give real values for y, it 

extends to an infinite distance. Now by taking a few numerical 

values, e.g. x = 1, 2, 3, the graph can be drawn fairly accurately 

(Fig. 1). 

(ii) ^ 

Here = 1—and, as in the preceding case, the curve is 

symmetrical about the axis of x, since to any value of x correspond 

two values of y equal in magnitude and opposite in sign. Similarly, 

to any value of y correspond two values of x equal in magnitudo 

and opposite in sign, therefore the curve is symmetrical about the 

axis of y also. 

The next fact to notice is that if x is nitmerically >4, 

is — and therefore y is imaginary; similarly, if y is numerically 

> ^ imaginary ; therefore the curve lies entirely 

within the rectangle formed by the straight lines x ±4, ^ = ±3. 

[The symbol | a? | is used to denote the numerical value of a?, 

so that I a?! < 8 means that x is between —3 and 4-3, and thereforo 

x^ < 9 ; \x\ > 4: means that x is either >4 or < — 4, and therefore 

x^ > 16.] 

Taking a? = 0, 1, 2, 3, 4, and remembering that the curve is 

symmetrical about both axes, the graph can easily be drawn (Fig. 2), 

Y(a3) 

(0,-3) 

Fig. 2. 

(ili) y = 1/x or xy = 1. 

The graph of this equation is not symmetrical about either axis 

of coordinates. In this case, for all values of a; a change in the sign 

of X produces a change in the sign of y without altering the 

numerical value of ^; if aj is +, y must be +, and if a; is —, y 
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must be —. The graph therefore lies entirely in the 1st and 3rd 

quadrants; it cannot extend into the 2nd and 4th quadrants because 

there x and y have opposite signs. [Similarly the graph of 

y = — l/o; lies entirely in the 2nd and 4th quadrants.] 

The graph is said to be symmetrical about the origin; for if any 

point {x, y) on it be joined to the origin and the joining line be 

produced to an equal distance on the other side of the origin, i.e. to 

the point (—a:, — this point is also on the curve ; in other words, 

any chord of the curve through the origin is bisected at the origin. 

[This property is evidently true of the graph of any odd function 

of X.] 

As X gets greater and greater, y gets less and less [when a? = 1, 

10, 100, 1,000,000, ^ = 1, *1, *01, *000001 respectively, and so on], 

and can be made as small as we please by taking x sufficiently large; 

but, however large x be taken, y never becomes quite equal to zero. 

Therefore the curve is constantly approaching the axis of x, but 

never quite reaches it, i.e. the axis of x is an asymptote to the curve. 

An asymptote to a curve is a tangent whose point of contact is 

at an infinite distance, i. e. a line which is continually approaching 

a curve, but yet which never quite meets it. 

The equation may also be written 1/^, and therefore, by 

a similar argument, the axis of y is also an asymptote (Fig. 8). 
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(iv) y = r*; y ^ x^\ and generally y = x^. 

These curves evidently go through the origin, and also through 

the point (1, 1), since (0, 0) and (1, 1) satisfy the equation y ^ 

whatever be the value of w. 

In the first equation, if x changes sign, y changes sign also; 

therefore as in the preceding example (iii), the graph is symmetrical 

about the origin and lies in the 1st and 3rd quadrants only. 

If a; is between 0 and 1, y (i. e. x^) is less than and therefore the 

graph is nearer to the axis of x than to the axis of y. But if a; > 1, 

y is greater than a;, and the graph is nearer the axis of y; moreover, 

as soon as x passes the value 1, y increases rapidly, and the curve 

rises steeply. 

In the second equation, the values of x corresponding to given 

values of y always occur in pairs, equal in magnitude and opposite 

in sign; therefore the curve is symmetrical about the axis of 

and y, being equal to an even power of x, cannot be —. Therefore 

the curve is confined to the first two quadrants In the first 

quadrant, between ic = 0 and x^l, the second graph is below the 

first, since for such values of a?, x/^ < x^ ] if x > I, the second graph 

is above the first, since is then greater than The two graphs 

cross each other at (1, 1) (Fig. 4). 
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In the general case, y — if n be an odd integer, the graph 

is similar to that oi y ^ ] if w be an even integer, the graph is 

similar to that of 2/ = All the curves go through the origin 

and through the point (1, 1). The greater the value of n, the flatter 

the curve is near the origin, and the sleeper after passing (1, 1); 

Fig. 5.* 

i. e. the graph for any value of n is below that for any smaller 

value of n between the origin and (1, 1), and above it after passing 

through (1, 1). 

If y = where n is a positive integer, then -= y, and the graphs bear 
the same relation to the axis of x as those described above bear to the axis 
of y; i. e. the graphs of y = a?” and y” = a? are symmetrical about the bisector 
of the angles XOY, XOIT between the axes, or, as it is often expressed, one 

* The figure shows the relative positions of the graphs, but their distances 
from the lines y « ±x are rather exaggerated, in order that they may be 
distinguished one from another more readily. 
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graph is the reflexion of the other in the bisector of the angle XOY. [This 

property is true of the graphs of all inverse functions, e. g. y =« and y = a-V**, 

the two functions just mentioned; y^sino? and y = sin”*a*; y ^ and 

y^\og^x\ &C.J 

If y *= where p and q are positive integers, the graphs are obtained 

in a similar manner. They all go through the origin and the point (1, 1). 

If p and q be both odd, the graph lies in the 1st and 3rd quadrants; if jp 

be odd and y even (as in y = i. e. y* t®), the graph, being symmetrical 

about the axis of x, is in the 1st and 4th quadrants ; and if p be even and q 

odd (as in y « rcV®, i. e. </* = the graph, being symmetrical about the 

axis of y, is in the 1st and 2nd quadrants (Fig. 5). If p'q> 1, the graph 

between the origin and (1,1) is below the straight hue y ^ x \ if pjq < 1, it 

is above the straight lino y <= a:. 

(v) «/ = 
X- 

1 + 
In this case it is evident, since is always + for real values 

of x^ that y is always +, and the curve is confined to the first two 

quadrants; next, that since x’^ is always +, must be > x'^y 

and therefore y is always < I. Hence the graph lies entirely in the 

strip between the axis of x and the parallel straight line y = 1. 

Fig. 6. 

Again, the values of x corresponding to assigned values of y always 

occur in pairs equal in magnitude and opposite in sign, since the 

equation only contains even powers of x; therefore the graph is 

symmetrical about the axis of y. The curve goes through the 

origin, and in the neighbourhood of the origin y is much less than x; 

e.g. if OJ = *1, y = •01/1*01 = 1/101; therefore near the origin the 

graph keeps close to the axis of x. As x gets larger and larger, 

y gets nearer and nearer to 1, as is evident when the equation is 

written in the form y = l/(l + l/a?“); the term 1/x^ in the denomi¬ 

nator becomes less and less as x increases, and can be made as small 

as we please. Therefore y can be made as near to 1 as we please 
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by increasing x sufliciently; hence the line y = 1 is an asymptote 

to the curve (Fig. 6), 

(vi) y = 

As in the preceding example, the curve goes through the origin, 

and is symmetrical about the axis of y. In this case we have 

another point to consider: are there any finite values of x which 

make y infinite? It is plain that y becomes infinitely large if 

= 1, i.e. if a? = +1 or — 1; these lines are obviously asymptotes. 

If r is slightly less than 1, y is very large and + ; if a; is slightly 

greater than 1, y is numerically very large and —. Hence the 

curve rises from the origin to the asymptote a; = 1, and then on 

the other side of the asymptote reappears from the other end of it. 

When a? > 1, y is —and since it can be put into the form 

l/(l/r^ —1) it approaches the value l/(—1) as x increases, and can 

be made as nearly equal to —1 as we please, since 1/x^ can be 

made as small as we please by taking x large enough. Hence the 

line y = — 1 is also an asymptote (Fig. 7). 

.... 5 9 S + x 
(vii) = 

This curve is symmetrical about the axis of but not about the 

axis of y. If a; > 2, is — and y imaginary; therefore the curve 
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does not extend to the right-hand or positive side of a? = 2. If 

3 (i. e. between —3 and — oo), is — and y imaginary; 

therefore the curve does not extend to the left-hand or negative side 

of a; = — 3. Hence it lies entirely between rc = — 3 and rc = 2. 

Again, y becomes infinitely large as x approaches the value 2 ; 

therefore a; = 2 is an asymptote, and evidently no other value of x 

except 2 can make y infinite. Also ^ = 0 when a? = 0 and when 

X = —3. 

Hence the curve, being symmetrical about the axis of x, consists 

of a loop between a; = — 3 and the origin, and approaches the 

asymptote a; = 2 both upwards and downwards. 

The width of the loop can be obtained roughly by plotting the 

points for which a; = —-1, —2. When a;=^ —1, ±*8 nearly; 

when a; = --2, ^=±1; also when a? = 1, 2^ = + 2 (Fig. 8). 

(viii) y — \ x^l/x. 

This curve is not symmetrical about either axis, but y changes 

sign without changing its numerical value when x changes sign, and 

both are + or both —. Therefore the curve is symmetrical about 

the origin, and lies in the 1st and 3rd quadrants only. 

Next, y becomes infinitely large as x approaches 0; therefore 

the axis of y is an asymptote as in Example (iii). 

There is also another asymptote obtained as follows: as x 

increases, 1/x decreases and can be made as small as we please by 

taking x large enough ; hence the equation of the curve becomes, 

very nearly, y ^\x when x is very large, i. e. the curve approaches 

more and more nearly to coincidence with the straight line y z=i \x 

as X increases indefinitely; hence y'=\x is an asymptote. Since 
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y is always a little more than \x (when a; is +), the curve lies 

(in the first quadrant) above the asymptote. Therefore, being 

symmetrical about the origin, it consists of two branches in the 

two acute angles between the axis of y and the straight line ^ = Ja? 

(Fig. 9). The curve is a hyperbola whose asymptotes are not at 

right angles. 

It will be seen later (Chapter VI) how the exact width of the loop 

in the preceding example, and the exact position of the points nearest 

to OX in the present example, can be determined. 

Fig. 9. 

10. Questions connected with curve-drawing. 

From these examples it will be seen that the following are the 

chief questions the student should ask himself when starting to 

draw the graph of a function: 

(i) Is the graph symmetrical about either or both axes ? 

(It is symmetrical about the axis of x if its equation contains 

only even powers of y; and about the axis of y if its equation con¬ 

tains only even powers of x. Note that the graph of any even 

function of x (Art. 5) is symmetrical about the axis of y ) 

(ii) Is the graph symmetrical about the origin ? 

(It is symmetrical about the origin if a change in the sign of x 

causes a change in the sign of y without altering its numerical value. 

If X and y are both + or both —, it lies in the 1st and 3rd quadrants; 

if one is -h and the other —, it lies in the 2nd and 4th quadrants. 

Note that the graph of any odd function of x is symmetrical about 

the origin.) 
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(iii) Are there any values of x wliich make negative and there¬ 

fore y imaginary (or any values of y which make x imaginary) ? 

(This often limits to a great extent the range of values of x 

which have to be considered in the actual plotting.) 

(iv) Where does the curve cut the axes? 

(It cuts the axis of x where = 0, and the axis of y where 

a; ~ 0. It goes through the origin if y = 0 when x = 0.) 

(v) What values of x make y infinite, and what values of y make 

X infinite ? 

(This gives the asymptotes parallel to the axes. If y is given 

as an explicit function of x, it is often useful to solve the equation 

for X (or x^) in terms of y. E. g. in Example (v) solving for we 

get ic® = y/(l—y); whence x is imaginary if ^ > 1 and infinite wlien 

y = 1, and therefore y = 1 is an asymptote.) 

(vi) What is the value of y when x becomes infinitely large (or of 

X when y becomes infinitely large) ? 

(If y tends to a constant finite value as in Exam])les (v) and (vi), 

this gives an asymptote parallel to the axis of .r; if ^ tends to an 

expression of the form oJC + b, as in Example (viii), this gives an 

oblique asymptote.) 

(vii) If the curve goes through the origin, then, in the neighbour¬ 

hood of the origin, is y very small or very large compared W’ith x^ 

or is the ratio y/x finite ? 

(In the first case, the curve keeps close to the axis of x on 

leaving the origin, as in Example (v); in the second case, it keeps 

close to the axis of y, as in y"^ = wliere = 1/Xy therefore 

y/x is very large when x is very small. 

Again, in y^ = x^/{li-x^} we have y^/x’^ = 1/(1+ ic^); therefore 

near the origin y/x is nearly 1, and the direction of the curve at the 

origin bisects the angle betw^een the axes.) 

As will be seen later, a determination of the maximum and 

minimum values of the ordinate, and of the points of inflexion of 

a curve, by an elementary application of the principles of the calculus, 

is often of very great assistance in drawing the graph of a function. 

[For examples see p. 23.j 
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APPENDIX TO CHAPTER T 

Conic Sections* 

We have discussed in Art. 9, Ex. (i)~(iii) particular cases of the equations 

of the parabola, ellipse, and hyperbola. As we shall frequently have 

occasion to refer to these curves and their equations, a short discussion 

of the equations is here appended, for the benefit of the student who has 

done but little Analytical Geometry. 

A conic section or conic may be defined as the locus of a point which 

moves in a plane in such a way that its distance from a fixed point in 

the plane (called the/ocus) bears 

a constant ratio e (calhjd the 

eccefitncity) to its peri)endicular 

distance from a fixed straight line 

in the plane (called the diirctrix). 

It « =« 1, the conic is a parabola; 

if € < 1, an ellipse ; if e > 1, a 
hyperbola. 

(a) The parabola. 

The equation of Ex. (i) is a 

particular case of the simplest 

ibrm of the equation of a para¬ 
bola. 

Let 2 a be the distance SX 

(Fig. 10) of the focus 5 of a 

parabola from the directrix XK; 

the middle point A of SX is 

equidistant from S and the directrix, and is therefore a point on llio 
locus. 

Let (a?, y) be the coordinates of any point P on the curve, referred to A5 

and the perpendicular to AS through A as axes, and let PK, PX be perpen¬ 

dicular to the directrix and axis of x respectively. 

Then 

- PN^« SP* ^SN^« PIO ~ SN^ * XN^ -- (a + x)^ -{a~xy== A ax; 

i. e. y* ■« 4aar is the equation of the curve. 

Geometrically, this takes the form PA* ^ A AS, AX, 

If the axis of the parabola be the axis of y, the relation PA* = 4 AS. AX 

* A useful collection of formulae, geometrical and analytical, is given in 

A\ orkman, Memoramia Mathematica (Clarendon Press, 5s. not), 

U)i« 0 
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becomes = 4ay, A being taken as the origin. If in Fig. 11 A be the 

point whose coordinates are (/i, and the axis of the parabola be parallel 

to the axis of y, PNx-h, AN^y—k^ and the equation becomes 

(x^hr^4a(y-k), 

1. e. 
1 , h , 

4a 2a 4a 

which is of the form y = 4-J5j?-f C. 

Conversely, any equation of the form y = ax^ + hx + c may be written 

( ^ 'l® , 4ac-h'‘ 

/ 4a ’ 

2a) ^ a{ 4a'. 

and therefore represents a parabola of latus rectum 1/a, whose axis is 

parallel to the axis of y, and whose vertex is the point —h/2a, (4ac-6*j/4a. 

Also, y is numerically very large when x is numerically very large, and 

is 4- or ~ according as a is 4- or — ; therefore the vertex of the parabola 

is the lowest or highest point of the curve according as a is 4- or —, 

(b) The ellipse. 

The equation of Ex. (ii) is a particular case of the equation of an ellipse 

in its simplest form. 

Let SX (Fig. 12j be the perpendicular from the focus S of an ellipse to 

the directrix; if SX be divided internally at A and externally at A' in the 

ratio e : 1, 80 that SA e. AX SA' e, A X^ then A and A' will be points 
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OH the ellipse. Take C, the middle point of AA\ as origin and CX as 

axis of X. 

Since SA' =* g. A'X and SA =* g.AX, we obtain, by adding, 

SA^-hSA = e(A'X+AX); 

and, by subtracting, SA'-SA = e(A'X-AX); 

i. e. 2 CA - 2aX and 2CS =^e.2CA, 

or denoting CA by a, 
CS = ae and CX = aje. 

Let (x, y) be the coordinates of any point F on the curve; and let PX, P/l 

be drawn perpendicular to CX and the directrix respectively. 

Then + XP* = SP^ = . FK^ (from the definition of an ellipse) 

(ae—x)'^-\-y'^—e^(ale — xf, 

d* — 2 acx -f + y’’ = a* — 2 aex + 

Fig. 12. 

Denoting a*(l -e*) by we have the equation 

as the equation of the ellipse. 

Putting a; = 0 in this equation, we have = 1 and y » 

/. h is the length of the intercept which the curve makes on the axis of y. 

Since the curve is symmetrical about the axis of y, there will clearly be 

another focus ^ and another directrix XX'y symmetrical about CB with S 

and KX. 

(c) The hyperbola. 
The equation of Ex. (iii) is a particular case of the equation of a rect¬ 

angular hyperbola in its simplest form. 

c2 
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If we proceed in the case of the hyperbola exactly as in the case of the 

ellipse, we get two points A, A' on the curve on opposite sides of X, since e is 

now >1; the relations CS *■ ae and CX ■« aje will still be true, and just 

as before we shall arrive (remembering that e > 1) at the equation 

** _ y’ _ 1 

a'^ aV-I) 
Denoting — 1) by we have 

as the equation of the hyperbola. 

Putting X 0 in this equation, ■=» — 1; therefore the curve does not 

cut the axis of y in real points. 

It is symmetrical about both axes as in the case of the ellipse ; the equa¬ 

tion may be written 

- 1 
¥ ^ a* ’ 

whence, if [ .x | < a, y is imaginary. All values of | x | > a give real values 

of y; therefore the curve consists of two branches extending from (±flf, 0) to 

infinity as in Fig. 13. Since the curve is symmetrical about the axis of y, 

the hyperbola also has another focus S' and another directrix X'K' sym¬ 

metrical about this axis with S and XK, 

If 6®— a’, i.e. if —1 «»1 and « =» -v/2, the hyperbola is said to be 

equilateral or rectangular. The preceding equation then becomes x* ~y® = a\ 

If the axes are turned through an angle of 45'*, this equation takes 

another veiy simple and convenient form. 
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Change of Axes. The effect of rotating the axes about the origin 

through any angle 6 is obtained as follows: 

Let OX, OY(Fig. 14) be the original axes, OX\ OT' the new axes, and let 

the angle XOX •^YOY — S. If (a?, y) be the coordinates of P referred to 

the original axes, and {x\ y') the coordinates of P referred to the new axes, 

then 

X = OM =» OK~-HM' ■* OWco&d^M'PBinB x' cos^ —y' sin^; 

y aaa MP = KW-f iiP = 0M'sind4- J/'Pcos^ *= aj'sind + y'cos^. 

Taking the case of the rectangular hyperbola, in order to bring the curve 

from the position of Fig. 13 into the position of Fig. 3 relative to the axes, 

it is necessary to turn the axes through an angle of 45® in the clockwise 

direction. Therefore, putting 6 « -45® in the preceding results, we have 

cosd— l/v/2, sin (9 « x = {x'y) jy/2^ { — x'-\-y')/^/2, 

and the equation becomes J (a7' + y')*-|{-x' + yV »= a’, which reduces to 

2 a: y « o*. 

Thus the equation of a rectangular hyperbola takes the form 

xy = Jo* 

when referred to its asymptotes as axes. 

When the equation of the hyperbola is obtained in this form, the existence 

of its asymptotes follows at once as in the particular case on p. 9. 

[Every hyperbola has a pair of asymptotes, and its equation can be obtained 

in a form similar to the preceding by taking the asymptotes as axes, but it 

is only in the case of the ‘rectangular* hyperbola that the asymptotes are 

at right angles, and it is to this property that the name is due.] 

(d) General equation of the second degree. 

It is proved in text-books on Analytical Geometry (e.g. A. C. Jones’s 

Algehmical Geometry^ Ch. VI) that the general equation of the second degree 

aa:® + 2Aty + 5y* + 2ya:+2/y+ c0 (i) 

always represents a conic,* and that the equation 2Ary + 5y* — 0 repre- 

* This fact ofi«n furnishes guidance in drawing the graph of a function. 
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sents two straight lines through the origin parallel to the asymptotes of the 

conic. A conic is a parabola (including the case of two coincident straight 

lines), an ellipse (including the case of a circle), or a hyperbola (including 

the cose of two intersecting sti-aight lines) according as the asymptotes are 

coincident, imaginary, or real. Hence an equation of the second degree 

represents a parabola, ellipse, or hyperbola according as the factors of the 

terms of the second degree are coincident, imaginary, or real. Therefore 

equation (i) represents a parabola, ellipse, or hyperbola according as - ah 

is zero, negative, or positive. 

For example, the equation 
ax-\-h 

^ cx + d 

when cleared of fractions, becomes 

cxy - ax \ dy — h ^ 0, 

and it follows immediately from the preceding condition that the graph is 

a hyperbola. 

Similarly, 
ax^ + hx + c 

y « — - - > 

mx + n 

being of the second degree, represents a conic. Therefore since it obviously 

has a real asymptote x «« —njinj it must represent a hyperbola. 

Again, if the term xy be absent from an equation of the second degree, the 

equation represents an ellipse or a hyperbola according as the coeflBcients of 

ar* and y* have the same sign or different signs. 

(e) Polar coordinates. 

Any quantities which determine the position of a point in a plane are 

called coordinates of the point. The position of a point in a plane is fixed 

relative to two fixed straight lines at right angles in the plane, if the 

distances of the point from these two lines are given. These are the coor¬ 

dinates which we have used in the preceding chapter, and which are known 

as rectangular, or sometimes as Cartesian coordinates (from the fact that 

they were first introduced by Descartes). We will now consider briefly 

the system of coordinates which comes next in order of simplicity and 

importance. 

Fig. 16. 

If (Fig. 15) 0 be a fixed point in a fixed straight line OX, the position of 

a point P is determined relative to 0 and OX if the length of OF and the 

magnitude of the angle XOF be given. These quantities are denoted by r 
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and 6 respectively, and are called the polar coordinates of the point P. OF is 

called the radius vector of P, and XOP the vectorial angle. 

If the coordinates (r, 6} of a point P satisfy a given equation, different 

positions of the point P can be plotted, by assigning values to 6 and 

calculating the corresponding values of r; and their locus will be a curve. 

The given equation is called the polar equation of the curve. If a straight 

line OY be drawn perpendicular 

to OX^ there are very simple 

relations between the polar co¬ 

ordinates of the point P and its 

rectangular coordinates referred 

to the axes OX, OY. It is evident 

that X ^ r cos d, y *■ r sin 6 ; 

these equations give the rect¬ 

angular coordinates in terms of 

the polar coordinates. Conversely 

the equations r— + 

6 tan""' (y/^) I?iv0 the polar co¬ 

ordinates in terms of the rect¬ 

angular coordinates. 

Polar equation of a circle. Fig. IC. 

The equation of a circle in 

polar coordinates admits of a veiy simple form if a point on the circum¬ 

ference be taken as origin, and the diameter through the point as 

initial line. 

For, if a be the radius, it follows immediately from Fig. 16 that 

r -e OP -« OA coaS *= 2a cos 0, 

which is the polar equation of the circle. 

Examples of the plotting of curves from their polar equations will be 

found in Chapter XVII. 
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x*+l , ^’+1 
12. ^ = = 

1 
S' *‘-4* 

13 y* 4 -x^; 
y =ra* 

4 - X 
14. 3 ^ 

S' =4-“^' 

x-4 
15.,= —, 

, x-4 
,0. g. 

- x*(^4 3) 
S'’- 3-* • 

17, y* «= x^(5“x] 
X* 

I: 
5-x 

18. x*-4y’* = 9; 4,’-a:’-9. 

19. y® ~ ic*(8~a')(n?~3); 1/^ x (x-^) (x-S); i/^x{x-i^y, 

20. Prove that in the parabola i/ *= 4ax, the length of the chord through 
the focus perpendicular to the axis (in any conic, this chord is called 
the latus rectum) is 4a. 

21. Prove that the length of the latus rectum of an ellipse or hyperbola 
is 

22 Prove that in an ellipse, -^P+iST=2a, and that in a hyperbola, 
SP^S'P=2a. 

23. Draw the graphs of xy = 12 ; x^/y* = 12 ; x’y^ = a®; x^t/ — u\ 

24. Draw the graphs of 
y^^sinx; y«=2sinx; y “ sin (|7r4 x) ; y — sin (x-Jtt). 

25. Draw the graphs of y = 2 sin^x; y = 1 4 cos 2x. 

20. Draw the graph of y = sinx4cosx. [Draw the graphs of sinx and 
cosx on (he same diagram, and then a third graph whose ordinate 
at any point is the sum of the ordinates of the first two graphs at the 
same point.] Also of y = sinx-cosx. 

27. Draw the graphs of y - sin .r 4 sin 2x; y = sin x 4 cos 2x; 
y *« C08x-t co8 2x; y = cosx4 sin 2x. 



CHAPTER II 

LIMITS AND CONTINUOUS FUNCTIONS 

11. Mean rate of increase of a function, 

A change in the value of the argument (z) of a function will 

generally produce a change in the value of the function (y). If the 

change in y bears a constant ratio to the change in x, i. e. if a given 

change in z always produces the same change in y, the function y 
is said to change at a constant rate ; if not, the function changes at 

a variable rate. The ratio of the increment in the function to the 

increment in the argument is called the average or mean rate of 
increase of the function with respect to its argument for that 

particular increment. Geometrically, if P and Q be two points on 

the graph of the function, and if Pill be drawn perpendicular to the 

ordinate of Q (Fig. 17), MQ/FM represents the mean rate of increase 

of the function for the increment Pilf of the argument. 

From an inspection of the graph of a function, we can obtain 

a rough idea as to how the function is changing in the neighbourhood 

of any given value ; where it increases rapidly, where slowly, where 

the mean rate of increase is changing rapidly, and so on. 

For instance, from the graph of y = x* (Fig. 4), it is evident that, 

in the neighbourhood of the origin, a small increase in x produces a 

much smaller increase in y; that the same increase in x in the neigh¬ 

bourhood of the point (1, 1) produces a larger increase than before 

in y; and that the same increase in x sometime after passing (1, 1) 

produces a very much larger increase in y; moreover, when z is 

negative, the same (algebraical) increase in x will produce a decrease 

in y. Hence the function increases slowly compared with x in 

the neighbourhood of the origin, rapidly compared with x after 

passing the value 1; decreases as x increases when x is negative; 

and the mean rate of increase in the neighbourhood of a point is 

continually changing as the point moves along the curve. 

Again, from the graph of y = shown in Fig. 17, it is obvious 

at once that logarithms increase very rapidly as x increases from 

0 to 1, slowly after x passes the value 1, and more and more slowly 
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as X goes on increasing. For instance, an increase of '09 in the 

value of X from *01 to *1 produces an increase of 1 in the value of y 
(from —2 to — 1), whereas an increase of 9000 in the value of x from 

1000 to 10000 also produces only the same increase in the value 

Fig. 17. 

of y (from 3 to 4). The smaller the value of the more rapidly 

is y increasing with respect to x; the greater the value of ar, the 

more slowly is y increasing with respect to x* 
The important fact to notice is that the mean rate of increase of 

a function for a given interval varies from value to value. It is 

never constant save in one case, viz. ^Yhen the graph is a straight 

line. This may be seen as follows: 

Fig, 18. 

If the mean rate of increase of y with respect to x is constant, 

then in Fig. 18, 

since these represent the average rates of increase of y for the 

increments ^1^3 of x; whence, from the properties of 

similar triangles, it follows that Pj, P^, P^ are collinear. Since 

any three points on the graph are collinear, the graph must be 

a straight line. 
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Hence y = axis the only function of x whose mean rate of 

increase is constant. [The rate of increase of y with respect to x 
in this case is equal to a, since any increase in the value of x pro¬ 

duces an increase of a times as much in the value of y; if x is 

increased by h, y becomes a(.r4-/0 + ^> V Increases by a/i.] 

We shall in Art. 19 explain what is meant by the ^rate of increase 

of a function for a particular value of its argument’. 

In all other functions except the linear function ax-^'b, this rate 

of increase is constantly changing. For each value of Xy there is 

usually a definite rate of increase of y per unit increase of x; but 

as soon as the value of x is altered, this rate of increase is also 

thereby altered. It is the object of the Differential Calculus to find 

an exact measure of this rate of change of a function with respect 

to its argument for any value of the argument, and this measure is 

given by what is called the differential coefficient of the function. 

Before proceeding to the formal definition and the methods of 

evaluation of the differential coefficient of a function, it is necessary 

first to get clear ideas of a limit and a continuous function. These 

will now be considered in turn. 

12. Limits. 

Let ^ be a function of x; then to every value of x corresponds 

a value (real or imaginary) of y. If x takes in succession a series 

of values which gradually approach a fixed number a, then it may 

happen that the corresponding values of y gradually approach a fixed 

number &, and we may be able to make y as near h as we please by 

taking x near enough to a. This number h is then said to be the 

limiting value, or more briefly, the limit of y x approaches a. 
The values of y may behave in the same manner if x takes a suc¬ 

cession of values which increase indefinitely; in this case, h is said 

to be the limit of y when x becomes infinite. 

More precisely, if, as x ap]>roaches a value a, y approaches a value 

b in such a way that |^—6 | can be made less than any assignable 

quantity by taking x sufficiently near a (and remains less for all 

values of x which are still nearer to a), then b is said to be the 

limiting value of y as x approaches the value a ; this may be written * 

Lt 2^ = 
*-♦ a 

* The symbol Lt y « 5 is used in many books, but that given above is 
x^a 

preferable because in many cases x cannot be taken tquaX to a; it can only be 
taken as near to a as we please without actual coincidence with it. 
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Similarly, if as x increases indefinitely, y approaches a value i in 

such a way that [y—&| can be made less than any assignable 

quantity by taking x sufficiently large (and remains less for all 

values of x which are still larger), then 6 is said to be the limiting 

value of ^ as a; becomes infinite; this is written 

Lt 2^ = Z). 
00 

As a rule, in the case of simple functions, the limiting value, when it 
exists, is the same whether x approaches a from above or below, but it is 
possible that the limit may be difiorent in these two cases. E g. the limit of 
the principal value (Art. 102) of tan‘“'(l/ar) as a?-*- 0 is +|rr if a; approaches 
0 from the positive side, and — ^tt if x approaches 0 from the negative 
side (see Fig. 29), since the angle in the first quadrant whose tangent is 1/x 
can be made as nearly equal to + Jtt as we please by taking x sufiiciently 
small and positive; and the angle in the fourth quadrant whose tangent 
is 1/x can be made as nearly equal to — Jtt as we please by taking x 
sufiiciently small and negative. 

These results might be written 

Lt tan*”^ (1 /x) «= — J TT; Lt tan~' (1 /x) = -f J 
*-►0 O^or 

For another (geometrical) example, see Art. 14 (1), Fig. 22. 
Therefore, strictly speaking, the side from which x approaches a should 

be specified. If not, it may be taken that the limit is the same in both 
cases. 

13. Examples of limits. 

m LtS- 
8 

The value of this fraction is obtained at once by direct substitution 

for any value of x except x == -hS. Denoting the fraction by y, we 

have when a? = 0, y = 8; when a; = 1, y = 4; when a; = 2, y = 5, 

but when a; = 3, numerator and denominator both become zero, and 

we get y = 0/0, which is quite indeterminate [since any finite 

number multiplied by 0 gives 0]. Instead of taking x equal to 8, 

take a series of values for x which get nearer and nearer to 8 and 

ultimately differ from 8 by as small a quantity as we please (i. e. in 

the words of the definition, let x approach the value 8). 

E.g. if*-2-9. = 2-9 + 8-5-9; 

if * = 2-99, y = « 2-99 + 3 = 5-99; 

if * - 2-999, y = - 2-999 + 3 - 5-999 ; 

and so on. 
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Similarly, taking values of x which approach 3 from the other 

side, we get 

if X-3-1, y=. = + 

if X = 3-01, y = “ 3-01 + 3 - 6'01; 

if X = 3-001, y = = 3-001 + 3 = 6-001 ; 

and so on. 

Both sets of values of y are approaching the number 6, and can 

evidently be made to differ from 6 by as small a quantity as 

we please by taking x sufficiently near to 3.* Hence the limit of 

(x^^d)/{x—3), as x—►S from either above or below, is 6. 

The result is obtained at once by dividing the numerator of the 

given fraction by the denominator; this gives x + B, which evidently 

approaches the value 6 as a; approaches 3. But the student will 

know from algebra that the division by x — B is not permissible 

unless x-^B is different from zero; it is not permissible when 

rr = 3, and therefore we still have no value for the fraction when 

X = B, [ See further wAjrt. 17 (5).] 

The above discussion furnishes a good illustration of the way in 

which a fraction may tend to a finite value when its numerator 

and denominator both tend to zero and, although in this case the 

value (of the limit when ic —> 3, not the value when x = B) might 

have been obtained more simply by cancelling out the non-vanishing 

factor x-B, yet there are many cases in which there is no such 

common factor. It will be seen that differential coefficients are 

limits of fractions whose numerator and denominator both —► 0. 

(2) Recurring decimals furnish good illustrations of the meaning 

and nature of limits. We find, by arithmetic, the ‘value’ of *1 

to be J. 

Now •’! = •1111... = ]fQ + + ••• infinity, and what 

is really meant is that the sum of n terms of this series, as oo, 

approaches the limit 

(3 + €')*—3 
* Generally, taking ® + we got y « ~ » (3±€) + 3 - 

j ~ O 

the difference between y and 6 is equal to the difference between x and 8, and 
therefore, in order to make y differ from 6 by less than any assigned quantity, 
it is only necessary to make x differ from 8 by less than the same assigned 
quantity. 
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The difference 

between ^ and the first term *1 is 1 90 ; 

„ ,, sum of the first 2 terms '11 is 1/900 ; 

„ „ ,, „ 3 terms'111 is 1/9000; 

„ „ ,, „ 10 terms is 1/(9 X 10^0); 

„ „ „ ,, 100 terms is 1/(9 x 10^'*^^); 

and so on. 

The difference between I and the sum of n terms of the series can 

be made less than any quantity that may be specified, however 

small it may be, by taking a sufficient number of terms. 

The series in the brackets is a geometrical progression; its sum 

to n terms is, by the ordinary formula a (1 — r’^)/(l~-r), equal to 

1 — 1/2’^. As n becomes very large, 1/2^ approaches the value zero, 

and can be made as small as we pk^ase by taking n sufficiently large ; 

hence the sum of n terms of the series can be made as near 1 as 

we please. 

Therefore ] g + 1 + ^ + ... + = 1. 

Geometrically, if AB (Pig. 19) be a straight line of unit length, and if AB 

be bisected in Pj, P^B in F^^P^B in P,, P^B in P^ and so on, 

Pi P;^ P3 PaPs 
Xi-.-4-^-1-L-J-U. Q 

Fig. 19. 

the sum of n terms of the given series is represented by 

AP, + Pj P3 + PaPa 4 Ps + ... + P„_iP„, k e. ^P„, 

and it is obvious that, as n increases, P„ tends to coincide with B. P„ may 

be made as near to B as we please by performing a sufficient number of 

bisections, but since there is always a distance between P,^ and B equal to 

half the last segment bisected, no finite number of bisections, however great, 

can make P„ coincide with P. B is the ‘limiting position’ of P^, and AB 
is the limit of AP„ as n -> cx), i.e. 1 is fhe limit of 

i-fi + S + ’-+ In «>• 

It follows, from the definition of a limit, that the sum of n terms of the 

scries can bo made to differ from 1 by less than any assignable quantity. 

In this case, it is quite easy to determine how many terms must be taken 
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in order to make the sum difler from 1 by a given imall amount. If the 
difl’erence is to be less than ir, 

then 1/2" is to be less than o-. 

2” must be >l/rT, i. e. >or~h 

.% taking logarithms, n log 2 > — log cr, and n> — log a/log 2. 

If <r - this gives n > 3321*9.... 
Therefore the sum of 3322 terms of the series will diifer from 1 by a quan¬ 

tity less than and evidently any larger number of terms will have 
a sum still nearer to 1. 

If 2 be Bubstituted for x in this expression, the numerator and 

denominator both become zero, and we again get the meaningless 

expression 0/0. If the numerator of the given fraction be rationalized 

by multiplying numerator and denominator by — 1], 

the result is 

_(3~rr)~(;r~l) ^ 2(2-:r) 

(6-8x) {8 (2-x) (V (3-x)-h V (x - 1)} 

__2_ 
"" 3 I V'(3—a:)+ V (^—1)} ’ 

provided x is not exactly equal to 2 [see Example (l)j. 

2 
As X approaches the value 2, this approaches the value ——» 

3 (1-1-1) 

i.e. g. Therefore the limit of the given ex])rG8sion, as x—^2, is 

but the expression has no value when x is equal to 2 exactly, or it 

is undefined for the value a; = 2. 

(5) Limits of x/a and ajx when a: —► 0 and when x—^co. 

It is evident that the value of the fraction x/a diminishes with Xy 

and can be made as small as we please by taking x sufficiently 

email; this is expressed by the statement Lt x/a — 0,* 
* 0 

Similarly, the value of the fraction x/a can be made as large as 

we please by taking x sufficiently large; this may be expressed 
as Lt x/a = oo. 

CO J 

Infinity, not being a definite value, is not a limit in the sense of 

the definition at the beginning of this article: strictly, x/a has 

no ‘limit* as x—>00, but Lt x/a=^(x> is a convenient symbolic 
X * 00 

In this case the limit coincides with the value when x is actually eg'uaZ to 0. 
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statement of the fact that a:/a can be made as large as we please 

by taking x sufficiently great. 

Similarly, we may say that Lt x/ix’-^a) = oo. 
X-* a 

Again, the value of the fraction a/x can be made less than any 

assignable quantity by taking x sufficiently great, and greater than 

any assignable quantity by taking x sufficiently small. These facts 

are expressed symbolically as follows: 

Lt a/x = 0; Lt a/x = oo. 
a: --* oo jc ♦ 0 

(6) Find Lt x'^/nl [x a fixed number]. 
n oo 

This may be written 

XXX X 
r X X « X ... X “ • 
12 3 n 

Now, however large x may be, since it is fixed, and n undergoes 

unZimzYc’ci increase, these factors continually diminish, and after a time 

will be very small. As soon as w > 2x, x/n will be < and all 

the succeeding factors, since they continually diminish, will be < J. 

If A be the product of all the factors up to this stage, then after m 

more factors (each < ^), the total product will be < A/2^^ Now 

since A, although it may be a large number, is yet finitCy and 1/2"* 

can be made as small as we please by increasing m sufficiently, it 

follows that the value of this product may be made as small as we 

please by taking wi, and therefore w, sufficiently large, 

i. e. Lt x^/n I = 0. 
n-* ao 

(7) JAmiting values of rational dlgehraical fractiom when a:—>0 

and when x—^co. 

First consider a fraction whose numerator and denominator are 

each of the second degree. 

« ax^'{-bx’\-c 

It is evident that the terms which contain x can be made as small 

as we please by taking x sufficiently small; therefore the numerator 

and denominator approach the values c and c' respectively as 0. 

In fact in this case we can put a; = 0 exactly, and obtain the limit 

when x—^^Oy agreeing with the actual value of the fraction when 

aj =: 0, as c/c\ 
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To find the limit when x —► oo, we have, on dividing numerator 

and denominator by 
_ a 4- h/x 4^ c/x^ 

^ a'-f c7^ 

The terms with x or x^ in the denominator can be made as small 

as we please by taking x sufficiently large ; therefore the numerator 

and denominator approach the values a and a' respectively as x—><x>. 

Hence Lt y = a/a'. 
X oa 

Any such fraction can be treated in this manner. The limiting 

value when x—^0 is obtained by substituting a? = 0 in numerator 

and denominator.The limit when a;—►co is found by dividing 

numerator and denominator by the highest power of x which occurs 

in the fraction. If the numerator is of lower degree than the 

denominator, the value of the fraction will tend to zero as ic —*• oo ; 

if the numerator is of higher degree than the denominator, the value 

of the fraction will increase indefinitely as a? —> oo; if numerator 

and denominator are of the same degree n, the limiting value will 

be a/a', where a and a' are the coefficients of x^^ in numerator and 

denominator respectively. 

(8) Lt ic—a 

The investigation of this limit is divided into three cases according 

as M is a positive integer, a positive fraction, or negative. 

(i) Let n be a positive integer. 

Then, by ordinary division, 

^... +a"”^ 
x—a 

As X a, each of these terms, and there are n of them, approaches 

the value a^~^; t 
.-. the limit = wa” ^ 

(ii) Let n be a positive fraction p/q^ where p and q are positive 

integers. 

Put x^y^ and a = and similarly 

aM = 

* Provided c and c' (the constant terms) are not both zero, in which case it 
would be necessary first to divide out numerator and denominator by some 
power of ac. 

t Here, and in the succeeding cases, the results of Art. 15 are assumed. 

ItM X) 
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Also when 

xV/n^a^/Q. 
•Lt i_wt Z'lq .Lit yq_ ijq 

if-IP 

y—b 
- = (by case i 

y-+ h y-*b 

phP-'^ 

^qb'i '■ 

y—b 

s=.^l)P-q s=:^(h9)P/<l 

2 2 2 

(iii) Let n be — and equal to —m, where m is +. 

J a’»-a-’” 

Then L ,t 
a -♦ a 

x—a 

La;"* a^'* j 

^ a;—fl a;—tt 

•wia m-i 

- ma ml 

LI ^ _ Qm \ 
t = (by preceding cases) ~ ^ 

a a 

Therefore, for all rational values of «, 

T x"-a» , 
I -t-= '• ■i—ip x—a 

*-> a 

The importance of this limit lies in the fact that the difPf rential 

coefficient of any power of x can be at once deduced from it (Art. 27). 

This is a limit of extreme importance, and a full discussion of it 

is reserved until later (Chapter X). In the meantime, we may take 

the particular case when m is supposed to become indefinitely great 

through a succession of positive integral values. 

Since m is a positive integer, we get, on expanding by the Binomial 

Theorem, a series of m-f 1 terms for (1 + viz. 

(l+ = 1 + 
1 in(m—1) 1 m(m--l)(m —2) 1 

m. —h 
m 

.+ 
1.2.8 

+ ••• 

to m + 1 terms. (i) 

As m increases, every term of this series after the first two 

increases, and moreover, additional terms, all of which are positive, 

are added on ; hence (1 + 1/m)’^ increases as m increases. 

* Notice that Example (1) i.s a particular case of this limit, viz. a « S, w »= 2. 

This may be deferred until Chapter X is reached. 
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Again, the sum of this series is evidently less than the sum of the 

series 

1 + 1 + 
1 1 

1.273 
+ (ii) 

since every term of the series (i) after the second is less than the 

corresponding term of the series (ii); and the sum of the series (ii) 

again is less than the sum of the series 

^.11 1 
1 + 1 + 2 2.2 ••• "i" om-i* 

since every term of (ii) after the third is less than the corre¬ 

sponding term of (iii). The last series, after the first term, is a 

geometrical progression whose common ratio is i ; hence its sum is 

equal to 

i.e. 1 + 2(1-1> i.e.3- 2m 

lienee 3- 
_1_ 
2m"-1* 

and therefore, a fortiorij < 3, however great m may be. 

We have now shown that (1+ !/?»)”' continually increases with 

♦» and yet is always less than 8 ; hence apparently we may conclude 

(and it can be formally proved) that (1 + 1/wi)*” approaches a definite 

limit which is not greater than 3. 

If we evaluate (1 + 1/m)^ for increasing numerical values of 

w, we obtain a better idea of the magnitude of this limit. For 

example, 

ifm«10, (l + l/mr« 1*1'® «2*5937 
if m = 50, (1 + l/m)^ == 1*02^® 2*6916 
if m « 100, (1 + l/mr « 1*0P®® » 2*7048 
if m « 1000, (1 + 1/m)”* « (1*001)1®®® « 2*7169 
if m - 10000, (1 + 1/m)”* « (1*0001)’®®®® = 2*7181 
if m - 100000, (1 + 1/m)”* « (1*00001)’®®'®® = 2*7183, and so on ; 

from which it appears that, as m increases indefinitely, (1 + 1/fw)^ 

approaches a limit which is a little greater than 2*718. 

This limit is a perfectly definite but incommensurable number 

(i. e. its value cannot be expressed in the form a/5, where a and h are 

integral) which is denoted by the letter c. It is one of the most 

important numbers in mathematics, and is continually occurring 

in all its branches, both pure and applied. Its value to ten places 

of decimals is 2*7182818285..., and it has actually been computed 

to more than 500 places of decimals. 

d2 
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(10) Examples from Trigonometry, 

Lain X 

0 

This is a very important limit, since the differential coefficients 

of all the circular functions can be deduced from it. 

Let AOP (Fig. 20) be an angle of x (< y^) radians at the centre 

of a circle of radius r; and let the tangent at A cut OF produced 

in T. Draw PN perpendicular to OA, 

It is obvious that 

area of A AOP < area of sector AOP < area of A AOT^ 

i.e. ^ r.r sin a: < ^ < ^r.r tan a:; 

whence, dividing by J sin x < x < tan Xy 

and, dividing by sin x. 1 < ~ • 
® ’ sin X cos x 

Hence, inverting and therefore reversing the inequality signs, 

^ sin a: 
1 >-> cosa;. 

X 

Now, as X approaches the value 0, cos a; approaches the value 1 

and can be made to differ from 1 by as small a quantity as we please 

by taking x sufficiently small. 

Therefore (sinar)/a:, which is between 1 and cosar, also approaches 

the value 1, and can be made to differ from it by as small a quantity 

as we please by taking x sufficiently small; hence 

Lsina: , 
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It is interesting to notice how the ratio (sina?)/^? approaches 1 as a?->0. 
For an angle of 5°, sina; ■■ ‘0871557, x ■■ '0872665, (8ina?)/a? = '99873 ; 

„ „ 2°, sin X ■■ ‘0348995, x =■ *0349066, (sinx)/ar ««‘99980; 
„ „ r, sin X = '0174524, x - *0174533, (sin x)/x «r *99995 ; 
„ „ 30', sin X « '0087265, x **'0087266, (sin x)/x - ‘99999 + ... 
„ „ 10', sin X *= '0029089, x *= ‘0029089, in this case at least 

the first seven figures coincide. 

It must be carefully noticed that it is the ratio of the sine of an 

angle to the circular measure of the same angle which approaches 

unity as the angle is indefinitely diminished. Thus Lt(8in2x)/x 
*-►0 

is not 1, but it is evidently the same as 2 x Lt (sin 2x)/2x as x—^ 0, 

and the second factor of this tends to the limit 1. 

Therefore I 
sin 2x ^ 

it —T" - 

Similarly, t 
0 

Lsin ax - 
t —— xo = lxa = a, 

ax 

L 
sinx 

Ui 
sin X 

x/im ^ 180 “ ^ ^ 

TT 

1^' 

77 

L Sin ax _ y 

^ sin hx ~~ -L'j' 

(sin ax)/ax a _V 

(sin hx)/bx ^ b 1 

a a 

and so on. 

Geometrically, it follows from this limit that, when an arc of a 

circle is indefinitely diminished, the ratio of the chord to the arc 

approaches the limit 1. 

For the length of the arc PAP' (Fig. 20) which subtends an angle 

2x radians at the centre 0 is 2rx; and the length of the chord of the 

arc = 2FN = 2r sinx, 

chord _ 2r sin x _ sinx 

arc 2rx x 

As the arc is indefinitely diminished, 0, and this ratio —1. 

This ratio rapidly approaches its limiting value, so that for a small 

angle, the length of the chord is a good approximation to the length 

of the arc. 

Two important limits involving the cosine can be deduced from 

the preceding limit. 

We have (1 — cos x) (1 + cos x) = sin^x, 

1 —COSX: 
1 -f cos X 

^ This assumes tli« results of Art. 15, q.y. 
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1 — cos a; 
• • ~~ * 

x 

which 

l—cosrc 

^ sin a; 

”” a;(l + coBir) x l^i-cosx 

0 * 
1 X ^ x—>0; 

and ' 7“'' = )*X - which -»Px i i. e. \ as x-^0. 
Vaj/l + cosa; 2 2 

1 — cos ar I 
=0; JL,t 

K » 0 
Ileuce Lt Lt 

*-* 0 x^ 

Also 
Ltan re __ T sin.i 

t a; ~ -L't X 

X 1 
X 

«“► 0 
COSiC 

1x1-1. 

14. Geometrical examples of limits. 

(1) Tangent to a curve. Let TPT (Fig. 21) be a tangent to a circle at 

a point t\ and let Q, ^ be points on the circle, one on either side of P; join 

P$, FQ' and produce them. 

If the points Q and Q' be sup¬ 

posed to move along the circle 

towards P, the angles TFQy 

T'FQ' will diminish, and will 

be very small when Q and Q' 

are very near to P; they can 

be made as small as we please 

by taking Q and Q sufficiently 

near to P. Hence the tangent 

T' FT is the limiting position 

of the chords FQ, Q'F as Q 

and Q' approach the limiting 

position P. This is the defi¬ 

nition of a tangent at a point 

of a curve in general, viz. The 

tangent to a curve at a point 

F is the limiting position of 

a chord FQ of a curve, when Q approaches indefinitely near to P. 

It will be noticed that with this definition it is possible for the tangent 

to a curve at a point to cross the curve at the point (see Art. 59). 

If PM, QN be perpendiculars from P and Q to the axis of a?, and FK 

perpendicular to QN, then KQjFK » tan QFK the tangent of the angle 

FLX which FQ makes with the axis of x; this is called the slope of the 
secant FQ, 

As Q approaches P, QF approaches TF and the angle FLX approaches 

the limiting value FTX. KQ and FK both become indefinitely small, but 

* This assumes the results of Art. 15, q. 
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tbelr ratio KQIPK, being tan PLX, tends to tbe limiting value tan FT 

i. e. the slope of the tangent. 

In the case of the circle, and usually in the case of any curye, the limit 

is the same from whichever side the point Q approaches the point P. It is 

possible, however, for the limit to be different in the two cases. This 

is the case at a point such as P shown in Fig. 22, where a curve is drawn 

consisting of two branches intersecting at an angle. 

If Q approaohoB P from above, the chord QP approaches the limiting 

position PP, and its slope the limiting value tanPI'X; if Q' approaches P 

from below, the chord FQ' approaches the limiting position PI’', and its 

slope the limiting value tanPP'-Y. In such a case the slope is said to be 

discontinuous at the point P (Art. 17 (1)). 

(2) Ferimefer and area of a circle. Let a regular polygon with n sides be 

inscribed in a circle of radius r, and let tangents be drawn at its angular 

points, forming a regular circumscribed polygon with n sides. Then it is 

evident that the perimeter of the inscribed polygon increases, and that of 

the circumscribed polygon decreases as n increases. 

A side of either polygon subtends an angle 2;r/n radians at the centre of 

the circle, so that the length of a side of the inscribed polygon (Fig. 23) 

- 2 PjH « 2 OP sin MOF « 2r sin (tt/w), 

and the length of a side of the circumscribed polygon 

■= 2 FQ =» 2 0$ tan QOR — 2 r tan (rr/n). 
Hence 

perimeter of inscribed polygon 7^ __ 2rsin (tt/w) . 

perimeter of circumscribed polygon RS 2rtan (rr/n) * 

Now, as n->oo, cos{n/n) ->l, therefore the limit of the ratio of the 

perimeters is 1. Hence the limit of the inscribed perimeter is the same 

as the limit of the circumscribed perimeter. This common limit of the 

two perimeters is defined as the perimeter or circumference of the circle. 

This gives an excellent illustration of the meaning of a ‘ limit ’. We have 

the two series of perimeters each gradually approaching the same definite 

value as n increases, so that either of them may be made to differ from 

it by as small a quantity as we please by taking n large enough; but no 
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matter how great n may be, the inscribed and circumscribed perimeter! 

never coincide. The limit, the perimeter of the circle, separates the 

inscribed and circumscribed perimeters; it is greater than the perimeter 

of any inscribed polygon and less than the perimeter of any circumscribed 

S Q R 

polygon, however great the number of sides may be.* The value of the 

limit is 2Trn 

In the same way, the area of the inscribed polygon increases and the area 

of the circumscribed polygon decreases as n increases. 

The inner area 

e* n . APOQ «= nPM, MO «* nr® sin (n/n) cos (rr/n), 

and the outer area 

■= n . ^ROS ' 

area of inner polygon 

area of outer polygon 

nRQ. QO « nr® tan (rr/n) 

nr® sin (yr/n) cos (7r/n) 

nr® tan (tt/m) 
C08*(7r/n). 

This approaches the limit 1 as n-->oo ; and therefore the limit of the 

area of the inscribed polygon is the same as the limit of the area of the cir- 

• This is the principle of tlie method which was used by mathematicians for 
many hundreds of years up to the early part of the seventeenth century in 
their attempts to solve the problem of * squaring the circle', which is equivalent 
to finding the value of ir. They calculated the perimeters of inscribed and 
oiroumscribed polygons with large numbers of sides, and assumed the length 
of the circumference to be intermediate between them. In this way. Van 
Ceulen obtained the value of ir to 82 places of decimals by calculating the peri¬ 

meter of a polygon with the enormous number of 2®*, i.e, 4,611686,018427,887904 
sides I The perimeter of the circle is greater than the perimeter of this 
inscribed polygon and less than the perimeter of the corresponding oircuzn- 

scribed polygon. 



LIMITS AND CONTINUOUS FUNCTIONS 41 

cumBcribed polygon. This common limit is defined to be the area of 
the circle. Both areas get nearer and nearer, and can be made as near 
as we please, to the * area of the circle ’ by taking n sufficiently large; 
but the area of the circle is greater th* the area of any inscribed polygon 
and less than the area of any circumscribed polygon, however great be 

the number of sides. It is equal to 

nr* tan (n/n) 

n-¥ on 

L tan (n/n) w 
t” TT/n n 

ao 

■» r* X 1 X IT 

«* irr*. 

It is interesting and instructive to see how the perimeters and areas 
approach their limits, and a few of their values are appended. The polygons 
are inscribed in a circle of radius r. 

Polygon with 4 sides 

inscribed 
perimeter 
5*6569r 

circumscribed 
perimeter 

8r 

inscribed 
area 
2r* 

circumscribed 
area 
4r» 

»» >» 8 6T229r 6*6274 r 2*8284 r* 3*3137r* 

V »> 16 6*2430r 6*3652r 3-0615r* 3*1826r* 

»> 32 6-2731 r 6-3035 r 3*1215 3*1517r* 

ft 64 ft 6*2806 r 6-2883 r 3*1365;^ 3*1441 

l» 128 tt 6*2825 r 6*2844 r 3-1403r* 3*1422 

256 tr 6*2830r 6*2835 r 3*1412r* 3*1418r* 

We see that the first and second columns are closing in on 27r r, i. e. 6’2832r, 
and the last two columns on ttt*, i.e. 3’1416r*, 

(3) Area and length of any curve. Let (Fig. 24) PQ be an arc of a curve, 
and PMj QN perpendiculars from Pand Q to the axis of x; let MN be divided 
into n equal parts, each of length h, and let the ordinates at the points of 
division meet the curve in P,, P,, .... Through each of these 
points draw parallels to the axis of x to meet the adjacent ordinates on 
either side. 

Then the sum of the inner rectangles PM^^ Pi^,, PgM^, ... increases, and 

the sum of the outer rectangles Pi-Sf, P\M^, P#dfa* ••• decreases, as n in¬ 
creases. Moreover, the difference between the two sets of rectangles is equal 
to the sum of the small rectangles P/^j, PjPj, ...» and this sum is equal to 
the area of a rectangle pq whose base is h, and height NQ—MP, as is obvious 
by moving them all parallel to the axis of x until they are between QN and 
the next ordinate; L e. the difference between the two sets of rectangles 

h[NQ-‘MP). Now this can be made as small as we please by taking h 
sufficiently small, i. e. by making n sufficiently large. Hence both sets of 
rectangles tend to a common limit, as n increases indefinitely. This limit 
is defined as the area between the curve PQ^ the axis of x and the ordinates 
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MP and NQ, It is greater than the sum of the inner rectangles and less 

than the sum of the outer rectangles, however great n be taken. 

Fig. 24. 

In proving the limits of the two sums identical, we have supposed the 

ordinates to increase continually or to decrease continually throughout the 

arc FQ. If this is not the ca«e, the arc can be divided up into a finite 

number of parts, throughout each of which the ordinate either continually 

increases or continually decreases. 

It is not essential that the parts into which MN is divided should be 

equal. It can be shown that the 

limit is the same however MN 

be divided up, piwided each of 

the parts tends to zero, when the 

number of them is indefinitely 

increased. 

Similarly, if the chords PPj, 

PjPj, PjPs,... be drawn (Fig.25), 

and if tangents be drawn to the 

curve at P, 1\, P,,... C, intersect ing 

at Pj, Pj, Pj, ..., the sum of the 

chords PPj, P1P2, P'iPi and 

the sum of Pd\, PiPai P^Ps* ••• 
both tend, as n-> 00, to a common limit, which is defined as the ‘ length of 

the curve ’ from P to Q. 

(4) Volume of a solid of revolution. First consider the case of a right 

circular cylinder. By inscribing regular polygons in the circular ends and 

circumscribing regular polygons about them, and joining their angular 

points by lines parallel to the axis, two right prisms can be obtained of 

which the volume of the inner increases and the volume of the outer 

decreases as the number n of sides of the polygons is increased. Also the 

difference between their volumes can be made as small as we please by 

taking n large enough. Hence they tend to the same limit as n->oo, and 

this limit is defined to be the ‘volume ’ of the cylinder. 

Next let the area MPQN of Fig. 24, together with the sets of rectangles, 

UN 
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rotate about the axis of x. The figure produced by the rotation of MPQN, 

which is such that the section of it by any plane perpendicular to the axis 

of a; is a circle, is called a solid of revolution. Each rectangle traces out 

a thin flat cylinder of thickness h. The difference between the sum of the 

cylinders generated by the inner rectangles and the sum of the cylinders 

generated by the outer rectangles is equal to the volume generated by the 

rotation oijjjq about the axis of x. This volume is 

nNQ^.h-rrMPKh, i.e. 7Th{NQ^-MP^), 

and this can be made as small as we please by taking h suflicieutly small, 

i.e. by making n sufficiently great. Hence both sets of cylinders tend to 

a common limit as n->oo. This limit is defined as the ‘volume’ of the 

solid of revolution. 

As an example, let ua find in this way the volume of a right circular cone, 

the solid of revolution formed 

by the rotation of a right- 

angled triangle about one of 

the sides containing the right 

angle. 

Taking this side as axis of x, 

and dividing it into n parts 

each of length A, consider the 

volume of the cylinder formed 

by the rotation of the inner 

rectangle which stands upon 

the segment of the 

base. 

Its height (Fig. 26) 

MP «* OM tan (X ** rh tan Ot; 

therefore its volume * nMP'^. h =* tan*a, 

and the sum of all such volumes is obtained by adding together these terms 

for all values of r from 1 to n — 1; 

i. e. sum of volumes formed by inner rectangles 

«7r;iHan*0C{l* + 2* + 3*4-...4 

nh^tan*a.J(n--l)n(2n~l) 

** ?rtan*0( (nil)* J(1 ~ l/n)(2 ~ l//t) 

- u tan*a. i (1 ~ 1/n) (2 ~ l/«), 

if h be the length nh of the axis of the cone. 

As n -■> 00, 1/n 0, and this expression tends (in increasing value) to the 

limit 
7rtan*a. fe*. J.2, i.e. 

which may be written J7ra*&, if a be the radius of the base. 

Hence the volume of the cone is equal to J of the area of the base x the 

height. 
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If the sum of the outer cylinder! be taken, the volume, in exactly similar 
manner, 

■= Trh® tan*a(l“-f + + + 

7r7i*tan*a.^n(»+ l)(2n4 1) 

7rtan*Of. J (l + l/») {2 4l/»), 

which also tends (this time in decreasing value), as n->oo, to the limit 

J 
(5) At'ta of surface of solid of r( volution. 

First consider a frustum of a right circular cone. Let similar and 
similarly situated polygons with n sides be inscribed in the circular ends of 
the frustum; then, by joining corresponding vertices (Fig. 27) PQ, P'Q\ ♦..* 
we get a number of trapeziums such as PP' Q*Q. As n -►oo, the sum of the 
areas of these trapeziums tends to a limit which is defined as the area of the 
curved surface of the frustum. 

The area of PP' Q'Q 

=* I (sum of parallel sides) x (perpendicular distance between them) 
r=.\{PP'^QQ')MN. 

Therefore the sum of the areas of the trapeziums is 

ln(PF + QQ') MN » J (sum of perimeters of polygons) x AT^. 

When n-^oo, the perimeters tend to the circumferences of the circles, 
and MN tends to the limit PQ; therefore the area of the curved surface of 
the frustum is 

I PQ (sum of circumferences of ends) *» PQ x mean circumference. 

By drawing circumscribed polygons to touch the ends of the frustum at 
P, P', Q, Q\ ..., another set of trapeziums is obtained, the sum of whose 
areas tends to the same limit as n oo. 

We can now define the area of the curved surface of any solid of revolu¬ 
tion. In Fig. 25, when PQ rotates about the axis of x, the chords PPj, PjPj, 
P,P„ and also the lines PP^, P, Pi, PjPj, ... describe frusta of conea 
The sums of the areas of the curved surfaces of these two series of frusta 
tend, as 00, to a common limit; this limit is defined as the 'area’ of the 
curved surface of the solid of revolution* 
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Af an example, let us find the area of the surface of a sphere, the solid of 
revolution formed by the rotation of a semicircle about its bounding 
diameter. 

Let PQ (Fig. 28) be a side of a regular polygon inscribed in the semicircle 
(of radius r), and let R be the middle point of PQ; draw the ordinates 
PN, RL, QMy and join OR, Draw PK perpendicular to MQ. 

The area of the frustum generated by the rotation of PQ is, as jusrt proved, 
PQ \2yvRL, Now the right-angled triangles QPK and ROL are similar, 
since the sides of one are perpendicular to the sides of the other. Therefore 
PQjPK ■» ORjRLy i.e. PQ .RL « PK, OR. Hence the area traced out by 
PQ is 

2nPQ.RL ^2nPK. OR - 2nl^M. OR, 

and the sum of the areas of the frusta is 

2 (2nKM. OR) «= 2itOR.^{NM\ 

since OR is the same for every side of the polygon. Taking all the sides of 
the polygon from A to 2 {NM) «* AB *= 2r, and therefore the sum of the 
areas of the frusta 2r:OR x 2r. 

Now as n-»-oo, OR-^ the limit r, and therefore the area of the surface of 
the sphere is 

Lt 2nOR x2;a*27rrx2r*=4Trr*. 

16. General theorems on limits* 

These have been tacitly assumed in the preceding examples. 

(i) The limit of the algebraical sum of a finite number of quantities 

is equal to the algebraical sum of their limits. 

For if Lt y = 6 and Lt ^er = c, then y = t-f a and c + 

where a and > 0 ; 

and since a4:/3-^0, y±e approaches the limit h±C- 

Similarly for any finite number of quantities. 

This theorem is not necessarily true for an infinite number of quantities, 
as is shown by the following example: 

In the series 

the limit of each term as n oo is 0. Therefore the sum of the limits is 0. 
But the sum of the series 

,(1 + 2 + 34- ... +w) ' 
n (m + 1) 

and the limit of this, as n oo , is 
Hence the limit of the sum of an infinite series is not always equal to the 

sum of the limits of the separate terms. 
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(ii) The limit of the product of a finite number of quantities is equal 

to the product of their limits. 

In this case ye = (Z/ + a) (c + /?), 

ye-^hc = + 

When (X and /3 —>0, the right-hand side of the equation -->0, 

therefore yz approaches the limit he, and similarly for any finite 

number of factors. 

(iii) The limit of the quotient of two quantities is equal to the quotient 

of their limits, provided the limit of the denominator is not zero. 

_ y b h + a h cev — 
For - — =-, — = —-7^» 

Z C C-^id C c(c-\-^) 

and here, again, the expression on the right-hand side -->0 when 

OL and ^ » 0, provided c 'Is not zero. 

yjz tends to the limit bjc. 

Examples III. 

Find the limiting values of the following: 

iT* "“4 . oc? — 1 
1. —-^ when x->^ [as in Art. 13 (1)]; 2. - ~^ when x -> 1; 

3. -7— when ; 
11 1 , 

4. , -t- n + ...+ Of, when n->co; 00 o 

6. *3 + "03 + *003 + ... to n terms when n -> 00. 

Find the limits of the following, when x->0 and when x->co : 

ox-hb ^ 3:r^--5a; + 2^ x^-ax-hb ^ 

bx^-h7xi6* px-hq 
(2x-l)^ 

6. 

10. 

cx-\ d* 

x^nx-2) 

7. 6. 0. 

{x--i)^4-xy 
Find the limits of 

11. 
x{x-^dj* 

12. 
{ax + 

(n positive). 

13,* ^-{—^ when x->l; 14. 
a:— 1 

^-jrz-- when x-^Q; 

\/(Sa-x)-^/(x’^a) , ^x-l 
16. -^when x->a; 16.-and-when 

4x-4a x-1 x-1 

17. 

18. 

x — a 

\/x- Ja 

X*” - , 
—- when x->a; 

X-a x^ — ae 
, and 

when x-> a; 

20. y(x'^ + ax + Z)j~x when x->oo; 

19. V^(l+x)—^/x when x->oo ; 

1 + 2 + 3 + ... + « 

{n-\f 
21. when 7i->oo; 

♦ In this and the following exnmple^i, the positive value of the root is to 
be taken. 
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1-cos 2a? , 
22.-when a?- 

24. 

26. 

X 

sin^^ , . 
—i_ when $ 

6 
tan m 6 

e 

0; 

when ^“>0; 

^ 1-008 2-1? , 
► 0; 23.-2- when x 

XT 

sin p& . ^ 
26. . when d- 

unqd 

tan mx . ^ 
27. when a? -> 0 ; 

^0; 

0; 

28. when 

tan nx 

C09 ad — coubB 

6^ 
when ^ 0 • 

29. Taking a circle as tlie limit of (i) an inscribed, (ii) a circumscribed 
regular polygon of n sides, when oo , prove that its area is rrr*. 

SO. Find, by Art. 14, the area of the curved surface of a right circular cone. 

81, Find the area of the curved surface and the volume of a right circular 
cylinder. 

32. Find the volume of a sphere by the method of Art. 14 (4). LI — cos m B 

tT^ 
83. Find as ^ 0. 

- cos n S 

84. Find Lt (sec ^ —tan d) as 6 \lT. 
T sinmd . • 0. 

. tan n 6 

86. Find, by the method of Art. 14 (4), the volume formed by rotation 
about the axis of x of the area between the parabola y® = 4a^, the axis 
of x and the latus-rectuin. 

Lt-- 
n -► 00 

[See Art. 14 (4) for the sum of the series in the numerator.] 

38. Find Lt [1+ -f... n terms] when | x j < 1. 

10. Continuous functions. 

Let y be a function of x; then a change in the value of x will 

produce a change in the value of y. The change in y due to a given 

increase in x may be positive, i. e. it may be an increase, as in the 

functions ^ ^/ = 2^; it may be negative, i. e. a decrease, as in 

the functions y z=z ^=10“^; it may be large, as in the 

function y = when x is large ; it may be small, as in the function 

y = logx when x is large. But in all such cases it usually happens 

that, when the change in x —> 0 as a limit, the change in y also 

—►O as a limit, and when this is the case, the function y is said 

to be continuous, 

A more precise definition is as follows :—Let y = f[x) be a function 

of X ; when x is changed to x + Zi, y becomes f(x-^h)j i. e. an increase 

of h in the value of x produces an increase of /(^ + A)-“/(^) in the 

value of y. Now let cr be any arbitrarily selected positive small 

quantity; if, for a particular value of x, it is possible, however 

small (T bo taken, to find a positive quantity e such that the increase 
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in is numerically < a for all values of | | which are < €, then 

the function f(x) is said to be continuous for that value of x. If 

this property holds for all values of x between a and 6, the function 

f{x) is said to be continuous from a? = a to x = 6. 

It is not easy to grasp at once what is involved in this definition ; 
we will illustrate it by some examples. 

(i) P = 
If X becomes x~\-h^ y becomes (x + i. e. + 2hx-j-; therefore 

the increase in y = 2Jix-hh\ 
Now 2hx-^h^ < (T if (adding to both) {h + xy" < a + 

i. e. if h-hxK + V{(T-i-x^)^ 

i.e. if h <V{(T-^x^)-x, 
This is +, since a is + and therefore V{(t-^x^) > o', and is the ^ e ’ 

of the definition. Any value of h smaller than this number makes 
the increase in y < o-, however small a be taken and whatever be 
the value of x. 

Hence the function 3/ = is continuous for all values of x. 
(ii) y = {x-tij/x. 

In this case, if x becomes x + h^ y becomes 
37+ ^—3 

/. the increase in y = 

This will be < 0- if 

i. e. if 

ie. if 

iP+7^ — 3 a?—3 
x + h 

3^ 

xy^^-xh 

Zli<(TX^-^(yxhf 

. ox^ 
h< 

X x(x + h) 

< 0-, in numerical value, 

S — (TX 

Now, however small o- is, h can always be taken smaller than this 
expression, except in the one case x = 0; the number on the right-hand 
side is then equal to zero, and no positive value for h can be found. 
Therefore the given function is continuous for all values of ic, except 
a; = 0 ; it is discontinuous when a? = 0. 

Similarly, any function of a; is discontinuous for a value of x which 
makes it infinite. 

(iii) y = tan x. 
If x becomes the increase in tana? 

= tan (a?-h^)~tana? 

tana?'ftani^ 
= :-7—7 — tana? 

1 — tan X tan h 

tan h (1 -f-tan^a?) 

1 — tan X tan h 

tan h sec* x 

1 — tan X tan h 

tan h 

cos* a?—sin a? cos a? tan h 
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This will be < it if tan ft < ir (cos^a;—sinx cosx tan/i), 
• fT COS^ tX/ 

i.G. if tan/i < --^- in numerical value, 
1 + a sm X cos x 

and h can always be chosen so as to satisfy this condition except when 
cos X = 0, i.e. except when x is an odd multiple of {it, 

Therefore tan a; is a continuous function of a;, except when 

x=^±Itt, ifTT, ...* 

This gives us an example of a function which is discontinuous at 
an infinite number of isolated points ; it is continuous throughout 
the ranges —to ^ to |7r, and so on, but not throughout 
the range 0 to tt, or any range which includes one or more of the 
points mentioned above. 

17. Properties of a continuous function. 

(1) If ^ be a continuous function of a:, an indefinitely small change 

in the value of x produces only an indefinitely small change in the 

value of y. 

This is involved in the definition above, since a is to be arbitrarily 

small, and this statement is sometimes given as a definition of 

a continuous function. 

Examples of discontinuities, (i) y *= \/x [see Fig. 8]. 

In this case, if x ^ — Ot, y — —1/0(, and if a; ** -I-CX, y — + l/Of; 

Therefore an increase of 2o in the value of x (from —a to -f O) produces 

an increase of 2/cx in the value of y. If (X be indefinitely small, l/OL is 

indefinitely large ; therefore an indefinitely small change in the value of x 

as it passes through the origin produces an indefinitely large change in the 

value of y. Hence the function 1/a? is discontinuous when a? = 0. It is 

continuous throughout any range which does not include the origin, for if a? 

increases to a? + /i, y changes from 1/a? to lj(x + h), i.e. y increases by 

1 1 . -h 
---, i.e. “I-- > 
x^-h X x{x-^h) 

and this -► 0 as provided a? is not zero [cf. Art. 16 (ii)]. 

(ii) y = tan x. 

If a? is very slightly tana? is very large and positive; if x is very 

slightly >^7r, tana: is very large and negative. Therefore a very small 

increase in a? from one side of j rr to the other produces a very large increase 

in tana:; the function tana: is discontinuous when a? =» Jtt; and similarly 

when a? is equal to any odd multiple of \it, Tana? has an infinite number 

of discontinuities, isolated values occurring at intervals of n [cf. Art. 

16 (iii)]. 

(iii) y mm the principal value of tan^^l/a?), i.e. the angle between — Jtt 

and + J TT whose tangent is 1/a:. 

As X increases from — oo to 0, 1/a? decreases from 0 to - oo , and tan”*^ (1/a:) 

decreases from 0 to - Jtt ; and as x increases from 0 to + Qo, 1/a: decreases 

from +00 to 0 and tan“‘*(l/a?) decreases from + Jtt to 0. 
isa« K 
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When X passes through the value 0, y takes a sudden jump from to 

+ J7r without passing through the intermediate values: an indefinitely 

small increase in the value of x on passing through the origin produces 

a finite increase n in the value of y. The function is discontinuous when 

X = 0 (Fig. 29). 

A similar kind of discontinuity has already been mentioned in Art. 14, 

Ex. 1, where, at the point /*, the gradient undergoes an abrupt change 

from tan PT'AT to tan PTX in passing through the point P (Fig. 22). 

(iv) An example from MechanicsConsider the motion of two unequal 

masses connected by an inextensible string passing over a smooth pulley 

and hanging vertically. The larger mass M will descend with constant 

acceleration. Now suppose that at a certain instant the ascending mass 

suddenly picks up another mass, equal to the descending mass, say. At this 

instant its velocity will suddenly be diminished, and afterwards M will 

continue to descend for some time with constant retardation, come to rest, 

and then begin to ascend again. 

If we draw the velocity-time graph of the motion of M (Fig. 30), the 

straight line OP corresponds to the first stage of the motion when the velocity 

is increasing; there will be a discontinuity at A corresponding to the instant 

when the additional mass is picked up (and the velocity suddenly reduced 
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from AP to AQ)^ and the straight line QRS correspond.^ to the second stage 

of the motion when the velocity is decreasing; QR belonging to the interval 

during which M continues to descend, R to the instant when it is momen¬ 

tarily at re.st, and RS to the time when it is ascending again (and therefore 

the sign of its velocity is reversed). 

(v) Again, if we represent graphically the relation between the weight x 

in lbs. of a parcel and the cost y in pence of sending it by Parcel Post 

[Sd. for any w(?ight up to 1 lb., 4d. for any weight between 1 and 2 lb., 5d. 

for 2^ lb., 6d. for 3-5 lb., 7d. for 5-7 lb., and Id. for every additional lb. or 

fraction of a lb. up to 11 lb.], as x increases from 0 to 1, y remains constant 

and equal to 3; as a: increases through the value 1, y takes a sudden jump 

from 3 to 4 and remains equal to 4 until x reaches 2; y then takes another 

sudden jump from 4 to 5 and remains equal to 5 until x reaches 3, and so on. 

The graph consists of 9 straight portions parallel to the axis of x, of which 

the 4^^ and 5^^^ are of length 2 units and all the others of length 1 unit, and 

it is discontinuous when a? =* 1, 2, 3, 5, 7, 8, 9, 10 (Fig. 31). 

pence 

II - 
10- 

4- lO II lbs. 

Fig. 81. 

(2) The graph of a continuous function is a continuous curve 

without any breaks in it. 

Compare the graphs in the preceding examples with those of 

functions which are everywhere continuous, e. g. sin a;, 

(Figs. 4, 6). 

(3) In passing from any one value to any other value within 

a range throughout which it is continuous, a function must pass 

at least once through every intermediate value. 

Let c (Fig. 32) be a value intermediate between two values a and 

b represented by the ordinates AM, BN. Draw the graph of the 

function, and the line y c; then graphically it is obvious that 

a continuous curve cannot be drawn from A to B without crossing 

s 2 
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the line y^c at least once. It may of course cross it any odd 

number of times. 

(4) A very important particular case of the preceding is that 

a continuous function cannot change sign without passing through the 

value zero; i.e. graphically, a continuous cui’ve, in passing from one 

side of the ixxis of x to the other side, must cut that axis at some 

intermediate point. 

This is obviously not necessarily true for a discontinuous function ; 

e. g. sec Xf in changing from +1 (when x = 0) to — 1 (when a; = tt) 

does not pass through the value 0; it has a discontinuity (when 

X := I tt) between these points. Similarly, 1/x, in changing sign, 

does not vanish ; it is discontinuous at the origin [(1) (i)]. 

This theorem is very useful in dealing with algebraical equations. 

It will be seen [(6) beluw] that the expression 

+ ... +A; [where w is a positive integer] 

is continuous; therefore, if such an expression be positive when 

X = (X and negative when a; = /3, it must be equal to zero for some 

intermediate value of x. Hence the equation 

will have at least one root (it must have an odd number) between 

two values of x which make the left-hand side take opposite signs. 

For instance, in the equation 

—4ir—10 = 0, 

a; = 2 makes the left-hand side equal to —6, and a? = 8 makes it 

equal to -f 2; therefore the equation has at least one root between 

2 and 8. 

(5) If f (x) be continuous when x = a, then its value when x = a 

equal to the value of Lt f (x) as x —► a from either side^ 
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Lt/(x}=/(a). 
a?“» a 

Tills may be, and often is, taken as the definition of con¬ 

tinuity, i.e. a function /(x) is said to be continuous when a; = a, 

if Lt /(.r) = the definite number/(a). It is not true if /(a) = oo 
y ► a 
a •* X 

and Lt /(x) — cOy for infinity is not a definite value. This latter 
X * a 

statement simply means that the value of f{x) can be made larger 

than any assignable value by taking x eufiiciently near a, not that it 

gets nearer and nearer to a certain definite value. 

It is not true in such cases as (1) (iii) and (iv); here the function 

tends to a different limit as x aj>proaches a from the one side or the 

other, and whatever value be assigned to the function when a; = a, 

it cannot be equal to both these limits. 

Returning to the example of Art. 13 (1), it was found that the limit of 
(a;“~9)/(a’ —3), as 3, is 6 whether x approach the value 3 from above or 
below; when a: = 3, the value of the function is at present undefined (since 
the zero factor a;-3 cannot then be cancelled out), and can be assigned at 
will. If the value 6 be assigned to the function when a;« 3, then the 
function will be continuous when a?« 3, since the value will then coincide 
with the limits on either side. If anj other value than 6 were assigned, the 
function would be discontinuous. 

If we draw the graph of y =» (x* —9)/(a;-“3), we see that it consists of two 
straight lines, since either x is equal to 3 and then y is indeterminate, or x 
is not equal to 3 and then y = x + 3. 
In the first case, x = 3 is the equa¬ 
tion of a straight line parallel to 
the axis of y; in the second case, 
y = x + Z is the equation of a 
straight line equally inclined to 
the axes. The graph therefore 
consists of these two straight lines 
(Fig. 33). For any value of x other 
than 3, we get a single point on 
the graph, giving one definite value 
of the function for that particular 
value of x; but when x= 3, we 
have an unlimited number of points 
since the whole of the line x « 3 
constitutes part of the graph, and 
therefore y is quite indeterminate. 

If the value 6 be assigned to the function when x *= 3, we are selecting 
the point on the line x *= 3 where it is cut by the other line y » x + 8, but 

this it quite an arbitrary selection. 
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Similarly, *“ ‘whetlicr x approach zero from the positive or 

j; -♦ 0 

the negative side. The function is undefined for the value a? *=« 0. If the 
value 1 be assigned to the function when x - 0, (sina-)/a: will be continuous 
when X — Q, since the value then coincides with the limits on either side, 

(6) It can be proved, by a method similar to that of Art. 15, that 

(i) The algebraical sum and the product of any finite number uf 

continuous functions are themselves continuous. 

(ii) The quotient of two continuous functions is continuous except 

for values of the variable which make the denominator zero. 

The functions which are met with in elementary ai>plications of 

the calculus are usually either continuous for all values of x, or have 

discontinuities only at a number of isolated points, e. g. tan r, 

x/{x^ — 4); and such functions are of course continuous throughout 

any range which does not include a point of discontinuity. For 

instance, the function 4) is continuous between re = -~oo and 

a; = — 2, between a; = —2 and a; = +2, and between x = + 2 and 

a; = -f- 00 ; it is discontinuous for two values of x only, when a: = —2 

and when a;= -f 2, both of which values make the function infinite. 

Examples IV* 

1, Prove, from the definition, that the following functions are everywhere 
continuous : 

a + hx’t 2 + 0:-a;*; cos a?; 1/(1+a:*); sin^o:. 
2. Deduce, from Art. 17 (6) that the following functions are continuous: 

; X*; aic" ++ ... + ^" [n a positive integer]; a:/(;r’^+l); sin*’a:; 

3. 
sin a;/(4 + cos x); sin"* cos’'a; [m and n positive integers]. 
Where are the following functions discontinuous? 

2a:-3* 

tan 3x; 

(ar+l)»’ 

2 + sin a? 

cot a?; sec a;; cosec 2a;; 
1 ^ l+sin*a? 

a?^~13a;'* + 3b * cosa; ’ 

the principal value of cof^a;. 
1 + cos X ’ 

4. What value must be assigned to the function (j;® + 27)/(a; + 3) when 
X = —3 in order that it may be everywhere continuous ? 

6. Prove that the equation a::* + 8a:®--5a; —3 = 0 has a root between 0 
and 1. 

e. Show that the equation a;® — 7a;^ +9a;*-1 = 0 has one root between 
0 and 1, and another between —1 and 0. 

7. Prove that the equation 24a;^-f)8a;®-26a;*+153a;—63 = 0 has roots 
between —2 and —1, 0 and 1, 1 and 2, 2 and 3. 

8. Prove that (x-a)l{Va;—-/a)* is discontinuous when x ^ a. 
0. Prove that 2V® is discontinuous when a; = 0; draw its graph. 

10. Show that the principal value of tan'"^ {l/(a; + l)} is discontinuous when 
« «a — 1; draw its graph. 



CHAPTER III 

DIFFEKENTIATION OF SIMPLE ALGEBRAICAL 

FUNCTIONS 

18. Rate of Increase of a Function. 

We now proceed to consider how to find the rate of increase, with 
respect to jt, of a given function of x. As already pointed out 
(Art. 11), this rate of increase is constant only for the linear function 
ax-^h] for all other functions, it varies from value to value of the 

function. 
In the first place, instead of considering a number of disconnected 

values of y corresponding to disconnected values of as we do in 
actually idotting a graph from its equation, we imagine x to be 

growing or increasing continuously just as, measuring from a 

particular instant, time goes on, or as, starling from a particular 
position, a train travels onward, so that, in changing from one value 

to another, x passes through all the intermediate values, just as the 

train in passing from one point to another passes all intermediate 
points. As X changes thus, the function y will generally change in 

a similar manner, sometimes increasing, sometimes decreasing, 

sometimes changing rapidly, sometimes slowly, sometimes for an 
instant stationary (Art. 64), but occasionally, at a point of discon¬ 

tinuity, taking a sudden jump from one value to another (Art. 17). 

A given increase in the value of x from a to 6 produces an increase 

in the value of the function y; and it is obvious that the resulting 
increase in the value of y depends not solely upon the increase in 

but also upon the actual value of x before the increase (Art. 11). 

The ratio of the increase in the function to the increase in x gives 
the average rate of increase of the function per unit increase of x 

throughout this particular interval a to 6; but the average rate 

of increase throughout a finite interval will probably be quite 
different from the rate of increase at, say, the commencement 

of the interval, just as the average velocity of a train during any 

interval of time may be quite different from its actual velocity at the 

commencement of the interval. 
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Consider further the analogy with the motion of a train. The 

value of the function for any particular value of x corresponds to 

the distance of the train from some fixed point of the line (which 

distance is a function of the time) at any particular instant; the rate 

of increase of the function with respect to x corresponds to the rate 

of increase of this distance with respect to the time, i. e. to the 

velocity of the train. This velocity may be constant for a time, but 

probably it will not be constant for a very long time; it may be 

large or small, increasing or decreasing rapidly or slowly; and so 

with the function (except that its rate of change is never constant for 

a finite range of values of x, unless it is linear, and then it is always 

constant). 

In the case of the train, if we take any interval of time and divide 

the distance therein travelled by the length of the interval, we get 

the ‘average velocity’ during that interval. This average velocity 

may be quite different from the velocity at the commencement of 

the interval, but the distance of the train from the fixed point will 

be a continuous function of the time, so that a very small increase in 

the time will produce only a very small alteration in the distance, 

and if the length of the interval —»0, this average velocity will 

approach some fixed limiting value. This limit is defined as the 

velocity at the commencement of the interval. 

This is what is meant when it is stated that the velocity of a train 

is, at a particular instant, 30 miles per hour (which is 44 feet per 

second); it does not mean that in the next minute it will go half 

a mile, because even in a minute there is time for the velocity to 

change appreciably; but in a second the distance that the train 

goes will be nearly 44 feet, and in of a second the distance will 

be still more nearly 4*4 feet, and so on, because in a second the 

velocity will change very little, and in of a second still less. 

Again, if the train travels 30 miles between 6 o’clock and 6 

o’clock, the average velocity during that hour is 30 miles per hour, 

but this gives us no information as to the velocity at 5 o’clock. If the 

distance travelled between 5 o’clock and 5.10 be divided by | hour, 

we get the average velocity between 5 and 5.10; if the distance 

travelled between 5 o’clock and 1 minute past be divided by hour, 

we get a result nearer to the velocity at 5 o’clock, and if we could 

measure the distance travelled between 5 o’clock and 1 second past 5, 

this, divided by tour, would be nearer still. This series of 

average velocities through diminishing intervals of time, all com¬ 

mencing at 6 o’clock, tends to a limiting value, and this limiting 

value is ^ the velocity at 5 o’clock 



ALGEBRAICAL FUNCTIONS 67 

We proceed in exactly the same manner with any function of x. 

We find the average rate of increase of the function with respect 

to X for a given increase in x; and then we find the limit to which 

this average rate of increase tends when the increase in x —> 0, 

i. e. the actual rate of increase for any value of x is the limit of the 

average rate of increase throughout a range commencing at that valuCj 

when the range is indefinitely diminished* As the range decreases, we 

get values for the average rate of increase which approach nearer 

and nearer to the actual rate of increase at the ]>eginning of the 

range, and (from the definition of a limit) we can get as near as 

we please to this actual rate of increase by taking the range 

sufiiciently small. This limit is called the differential coefficient of 

the function with respect to x* In the illustration above, the 

velocity of the train is the differential coefficient, with respect to 

the time, of its distance from some fixed point of the railway line. 

19. The function y = x*. 

Let us consider in detail the very simple function y = 

If a; = 10, y = 100 ; if ic becomes 11, y becomes 121. li x becomes 

lO’l, y becomes 102’01 ; if x becomes 10*01, y becomes 100*2001. 

In the first case, the average rate of increase of y per unit increase 

of a; = 21/1 = 21; in the second case, it is 2*01/*1, i. e. 20*1; in 

the third case, it is *2001/’Ol = 20*01. These numbers 21, 20*1, 

20*01, ... tend to the limit 20. 

Generally, if x becomes 10 -f hy y becomes 100 + 20/4 + h^. Therefore 

increase in ^ 2Qh-^}i^ ^ 

mcrease m a; h 

Clearly, as the increase h in x gets less and less, this ratio gets 

nearer and nearer to 20, and we can make it as near to 20 as we 

please by taking h sufficiently small; therefore when x = 10, the 

limit of the average rate of increase of the function x'^ is 20. 

This means that, when x has the value 10, is increasing at the 

rate of 20 units per unit increase of Xy just as the statement, that 

at a given instant a train is travelling at 20 miles per hour, means 

that its distance from some fixed point on the line is at that instant 

increasing at the rate of 20 miles per unit increase of the time 

(measured in hours). 

Similarly, in the general case, if x is increased to x + A, y becomes 

(x-\-hfy L e. x^i-2hx-hh\ Therefore the ratio 

increase in y 2hx-}-h^ . 

mcrease m x h 
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which, when li ^ 0, tends to the limit 2x. That is, the rate of 

increase of the function with respect to x is 2Xf or the differential 

coefficient of = 2x. 

It should be noticed that if x is increased by a va^y small amount, 

y is increased by approximately 2x times as much; approximately, 

not exactly, because x is here stated to increase by a very small 

amount but not an indefinitely small amount. The smaller the 

increase in Xj the more nearly is the statement true (because the 

actual amount of the increase in y is {2x-hh) times the increase 

in Xj and the smaller the increase in r, the nearer is this to 2x), 

20, Geometrical Illustrations. 

The preceding results can be illustrated geometrically : 

(i) If the length of the straight line OX represents ir, y will be 

represented by the area of the square 

OilT which has OX as side; if OX is 

increased to OX', the resulting increase 

in y is represented by the shaded area 

in Fig. 84. This is equal to twice the 

rectangle ilfX'-f the square 

If XX' is very small, the square 

MM' is very small compared with the 

rectangle ilfX' (the ratio of their areas 

= XX'/MXf which can be made as 

small as we please by taking XX' 

small enough). 

Therefore the increase in y is represented approximately by twice 

the area of the rectangle MX\ which 

= 2MX. XX' = X the increase in x. 

i 
M 

I 

i 

Fig. S4. 

(ii) Again, referring to the graph of y ^ x^ (Fig. 85), let P be 

any point (x, y) on the graph, and let Q be the point on the graph 

whose abscissa is x+K Draw PAT, QX' perpendicular to the axis 

of X, and TM perpendicular to QN. Then MQ represents the 

increase in y due to the increase NN' in x, and the average rate of 

increase of the function in the interval Niff 

r=^f = tan QPM = tan TEX; 
increase in x FM 

so that the average rate of increase of the function between any two 

values is represented geometrically by the tangent of the angle which 

the chord joining corresponding points on the graph makes with the 

positive direction of the axis of x. 
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As iVjVthe increase in ic, is taken smaller and smaller, the point 

Q moves nearer and nearer to P, and when the increase in x is 

indefinitely small, Q is indefinitely near to P. The limiting posi- 

of the chord VQ when Q approaches indefinitely near to P is 

(Art. 14 (1)) the tangent to tlie curve at P, and therefore the limiting 

value of tanPJTX is tanPPX, if the tangent at P meets the axis 

of X in T, This is called the slope [or sometimes the gradient] of the 

curve at the j)omt P, Hence,/or anp value o/x, the rate of increase 

of the function per unit increase of x is represented geometrically hy the 

slope of the graph of the function at the corresponding point 

This result is true in general. In the case of the function at 

present under consideration, y = x^, the slope of the graph at any 

point {x^ y) is 2x, 

Taking numerical cases, when a; = 3, ^ = 9 and the slope = 6; 

therefore the tangent at the point (3, 9) is inclined to the axis of x 

Hi an angle whose tangent is 6, i. e. a little more than 80^°. 

When a; = —2, y = 4, and the slope = —4; hence the tangent 

at the point ( — 2, 4) is inclined to the axis of x at an angle whose 

tangent is —4, i.e. 104° 2\ 

21. Another illustration. 

As a further illustration of the meaning and use of the differential 
coeflScient of the function y = ic*, let us consider the following example : 

The radius of a circle is increasing at the rate of 1 inch per second; find 
the rate of increase of the area of the circle at the instant when the radius 
is 20 inches. (The circle is supposed to be continuously increasing in the 
same way as the circular ripples caused by dropping a stone into water.) 
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At any particular instant, the radius and the area of the circle will 
have definite values; both are functions of the time. The differential 
coefficient of the area A with respect to the radius r gives the rate of 
increase of the area per unit increase of the radius. The differential 
coefficient of r* with respect to r is 2r, and the increase in Trr* is obviously 
TT times the increase in 7^; therefore the differential coefficient of the area 
irr^ with respect to r is 2rrr. Hence the rate of increase of the area « 27rr 
per unit increase of r. From this it follows* that 
the rate ot increase of the area j)er sec. = 27rr x rate of increase of rper sec. 

27rrx 1 
= 407r sq. in. per see. 

at the instant when r *= 20 in. 

It should be noticed that this does not mean that in the next second the 
area will increase by 40tt sq. in., because as soon as r is a little greater, 
the rate of increase, 27rr, will also be a little greater. The fact that the 
rate of increase of the area of a circle is equal to 2rr times the rate of 
increase of the ladiiis is verifiable geometrically, because if the radius is 
increiased from r to r-\-h where h is small, a very narrow strip is add(id on 
to the circle all round it. If h is very small, this is practically the same as 
a rectangle whose width is h, and whose length is the circumference of the 
circle, 27rr (it is really rather more); therefore, approximately, the increase 
in the area ^2irrh « 2Trrx increase in the radius, and hence the ratio 

increase in ar^a o i.i. • • a 
,-;--— tends to the limit 27rr as the increase in r-»0. 
increase in radius 

The differential coefficient of and illustrations of it, have been 

discussed at some length, because it is of the utmost importance that 

the student should grasp at the outset the meaning of a differential 

coefficient, and should clearly understand what is involved in such 

a statement as * the differential coefficient of is 2x \ 

We next proceed to the definition of the differential coefficient of 

a function in general. The following examples should first be 

worked through. 

Examples V, 

1. The side of a square is increasing at the rate of 1 foot per minute; filnd 
the rate of increase of (i) the area, (ii) the perimeter, (iii) the diagonal 
of the square, at the instant when the side is (a) 1 yard, (h) 2 yards, 
(c) 10 yards. 

2. Find the inclinations to the axis of x of the tangents to the curve y = x* 
at the points (1^, 2J), (4, 16j, (-3, 9). 

S. At what point of the curve y = x* is the tangent inclined to the axis 
ofxat (1) 20°, (ii) 60°, (iii) 135°? 

4. Find the slope of the curve 4y«3x® (i) at (2, 3), (ii) at (-4, 12). 
Where is the tangent inclined to the axis of x at 45°, 70°, 120° ? 

• See also Art. 84. 
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6. Find the average rat-e of increase of the function y »ic* as x increases 
(i) from 10 to 11, (ii) from 10 to lO’l, (iii) from 10 to 10*01, (iv) from 
10 to 10 + /j. To what limit do these increases tend ? Show that the 
limit is the same when x increases from 10 —to 10. 

0. Find the differential coefficient of ar*. and verify geometrically as in 
Art 20 (i). 

7. Find the inclinations to the axis of x of the tangents to the curve 
at the points (|, J), (1, 1), (-2, -8). 

8. Where is the tangent to y ^ inclined to the axis of x at 45° ? Find 
the slope of Sy == x^ at (2, 1). 

9. At what angle do the curves y and y intersect ? 

10. The side of a cube is increasing at the rate of 1 inch per second; find 
the rate of increase of (i) the volutne, (ii) the superficial area, (iii) a 
diagonal of the cube, at the instant when the side is 1 foot. 

11. The radius of a sphere is increasing at the rate of 1 foot per minute; 
find the rate of increase of (i) the volume, (ii) the superficial area of the 
sphere, at the instant when the radius is 1 yard. 

12. The height of a cone is 15 inches and remains constant, while the radius 
of the base is increasing at the rate of 6 inches per minute; at what 
rate is the volume of the cone increasing, at the instant when the 
diameter of the base is 1 yard V 

13. At what point of the parabola y^x^ is the curve twice as steep as 
at the end of the latus-rcctum ? 

14. The area of the surface of a sphere is increasing at the rate of 1 square 
inch per second; at what rate is the volume increasing, at the instant 
when the radius is 3 inches ? (Find the rate of increase of the radius 
first.) 

16. A point moves along the curve y = x* in such a way that its velocity 
parallel to the axis of x is constant and equal to 2 foot-seconds; find its 
velocity parallel to the axis of y (i) when a; = 3, (ii) when y = 16, 
(iii) when -2. 

10. A point moves along the curve y ^ bo that its velocity parallel to the 
axis of y is constant and equal to 12 foot-seconds; find its velocity 
parallel to the axis of x (i) when a: = 1, (ii) when a?«» -2. 

17. Each face of a cube is increasing in area at the rate of 2 square inches 
per second. At what rate per second is (i) the side, (ii) the volume 
increasing, at the instant when the side is 10 inches in length ? 

18. The volume of a sphere is increasing at the rate of 5 cubic inches per 
second; at what rate is (i) the radius, (ii) the superficial area increas¬ 
ing, at the instant when the radius is 6 inches ? 

19. The area of a circle is increasing at the rate of 4 square inches per 
second; at what rate is the circumference increasing, at the instant 
when the radius is 8 inches? 

20. The side of a cube is equal to the radius of a sphere, and both are 
increasing at the same rate. Show that the volume of the sphere 
is increasing more than four times as fast as the volume of the cube, 
and the area of the surface of the sphere more than twice as fast as the 
area of the surface of the cube. 

22. Definition of a diflferential coefficient. 

Let y be a continuous function of x; then an increase in the value 

of X will produce an iucrease, positive or negative [Le. an increase or 
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decrease], in the value of y. These increments are generally denoted 

by the symbols hx and hy respectively; hy is + or — according as y 

increases or decreases, and similarly for hx. [Notice carefully that 

the 6 in bx and by is not a quantity, but a symbol; bx has nothing 

to do with b XX, but merely stands for ‘the increment of 

If bXy the increase in Xy is indefinitely small, by, the resulting 

increase in will also be indefinitely small, since ^ is a continuous 

function of x [Art. 17 (1)]; but usually the ratio by/bXy i. e. the 

average rate of increase of y with resj^ect to Xy tends to a definite 

finite limit * as 0. This limit is called the differential coefficient 

(sometimes the derivative) of y with respect to Xy and is denoted by 

the symbol — or ily/dx. 

It must be carefully borne in mind that dyidx is not a fraction 

whose numerator and denominator are dy and dx respectively, but it 

is the ‘limiting value’ of the fraction by/bx) the d/dx is a symbol 

which, placed in front of y denotes the result of performing a certain 

operation (described above) upon the function in the same way 

that the symbol V, placed in front of a number y, denotes the 

result of performing a certain operation upon the number y, viz. 

the extraction of its square root. 

This particular symbol is used in order that it may be possible to 

indicate both the function y whose differential coefficient or rate of 

change is to be evaluated, and also the variable x with respect to 

which it is differentiated, i, e. the variable whose variation causes the 

change in y. For instance, the velocity t; of a moving point may be 

regarded both as a function of the time t it has been in motion, and 

also as a function of the distance s it has travelled. Hence dvjdi 

represents the rate of increase of the velocity per unit increase of 

time, i.e. the acceleration, and dvjds stands for the rate of increase 

of the velocity per unit increase of distance, which is quite different 

Similarly, if F cubic inches be the volume of a sphere of radius 

r inches and surface S square inches, dYjdr is the rate of increase of 

the volume per unit (inch) increase of radius, dSjdr is the rate of 

increase of the superficial area per unit increase of radius, dYIdS is 

the rate of increase of the volume per unit (square inch) increase of 

surface. Again, dr/dV and dS/dV represent the rates of increase 

♦ For all the functions considered in this book, this limit exists, and is the 
same whether dx be positive or negative. Continuous functions, which do not 
possess a definite differential coefficient, can be constructed, but such functions 
are veiy seldom met with. 
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of the radius and surface respectively per unit (cubic inch) increase of 

volume. 

Sometimes the differential coefficient is denoted by the symbol 

or simply i>y, if there can be no doubt as to what is the 

independent variable. Sometimes the actual function, in terms of 

is written after the symbol dfdx; e. g. the differential coefficients * 

of and sin x may be written 

_ „ dix"^) d ^ 1 ^ . dfsin.r) d . 
Dj? or - ^ or — x^\ and D sin x or -^- or — sin x, 

dxdx dx dx 

If a function of x be denoted by the symbol f{x\ its differential 

coefficient is usually denoted by the symbol(a;), and is often called 

the derived function. 

The differential coefficient of a function gives an exact measure of 

the rate of change of the function with respect to the variable for 

any particular value of the variable. In exactly the same sense 

that the velocity of a moving point is said to be so many miles 

per hour or so many feet per second at a particular instant, so the 

rate of increase of a function of Xy for any particular value Xi of Xy 

is equal to the value of its differential coefficient when x=^Xiy 

per unit increase of x, 

23. Geometrical meaning of the differential coefficient. 

This has been found in the case of the function in Ari. 20 (ii). 

The reasoning given there is quite general, and applies to all 

functions whose graphs are con¬ 

tinuous curves; the form of the 

curve is immaterial. Hence, if the 

graph of a function be drawn, 

the differential coefficient of the 

function is represented geometri¬ 

cally by the tangent of the angle 

which the tangent to the curve 

makes with the axis of x\ ie. 

if the tangent to the graph at a 

point (x, y) makes an angle xj/ with the jmitive direction of the axis of x, 

the corresponding value of dy/dx is equal to tan \//. 

This result can also be stated in the alternative form : the value 

of dy/dx, for any value of x, is equal to the slope of the graph at the 

corresponding point 

• The letters d. c. will olten be used as an abbreviation for the term 

^ differential coefficient \ 

Fig. 
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The expression on the right-hand side of (i) is called the differential 

of y, [The name ^differential coefficient' for the function dy/dx 

is due to the fact that it occurs as the coefficient of hx in the 

differential of y.] 

It must be carefully noticed that equation (i) does not mean that 

the two expressions become approximately equal because they are 

both very small, but that their ratio tends to the limit 1 ; their 

difference becomes very small compared with either of them. For the 

amount of error involved in the use of equation (i) see Chap. XIII. 

Orders of small quantities. 

The ratio of two quantities which are both indefinitely small may be 

finite, or it may be indefinitely email, or it may be indefinitely great. This 

leads to the notion of ‘orders of small quantities 

Two variables OL and /:!, each of which tends to the limit zero, are said to 

be indefinitely small quantities or ‘ infinitesimals ’ of the same order if 

the ratio ^/OL be finite. If this ratio 0, ^ is said to be an infinitesimal 

of higher order than OL; if it oo, 3 is said to be an infinitesimal of 

lower order than OL. If the limit of the ratio ^/OL^ be finite, then ^ is called 

an infinitesimal of the second order if OL be taken as an infinitesimal of the 

first order. Similarly, if the limit of ^/OL^ be finite, is an infinitesimal of 

the third order; and generally, if Lt ^/a" be finite, ^ is an infinitesimal 

of the order. For instance, if the radius r of a very small sphere be an 

infinitesimal of the first order, the superficial area A of the sphere will be 

an infinitesimal of the second order since A/?^ => 47r, a finite number; and 

the volume V of the sphere will be an infinitesimal of the third order, since 

V/)^ = 4 77, a finite number. 

Examples ffvm geomehy. 

If TB be the tangent to a circle at B, and TQQ' the chord perpendicular 

to TB meeting the circle in Q and Q\ we know from elementary geometry 

that TB^ - TQ. TQ\ Therefore, if T 
move along the tangent towards B so 

that TB -> 0, I'Q will be an infinitesimal 

of the second order, if TB be taken as 

an infinitesimal of the first order, since 

TQITB^ l/TQ'f of which the limit is 

1/d, if d be the diameter of the circle. 

Again, if AB be a diameter of the 

circle, and PAi perpendicular to AB 
from the point F where TA cuts the 

circle again, it is obvious that P3f, PP, 

MB all tend to 0 as P approaches in¬ 

definitely near to P, but they do not on 

that account all become nearly equal. In fact, by similar triangles, 

MBjBF « BFfAB^ which 0 as P approaches B ; therefore MB becomes 

F 1»MI 
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indefinitely small compared with RP, i.e. it is an infinitesimal of higher 

order. Since «= 1/AP, which is finite, it follows that, if BF be 

regarded as of the 1st order of small quantities, MB will be of the 

2nd order. Also MPjBP = ATjAB^ which tends to 1 as P approaches B; 

therefore MB and BB are small quantities of the same order, and moreover 

become ultimately equal. Since BB and MB are of the same order and MB 
is of the 2nd order compared with BB, it follows that MB is also of the 

2nd order compared with MB, as is easily seen independently by taking 

the relation AfP* = AM, MB. 
Again, if PJV' be perpendicular to TB, TNfBN«« BM/AM, which -> 0 

as P approaches P; therefore TN is an infinitesimal of higher order 

than BN. 
Also TN.NB=- BN^ « BM* « MB*/AM' -= BN*/AM'. 
Therefore TN/BN' = 1/AM', which tends to the finite limit I/d'. 
Hence, since BN is of the 1st order, TN is an infinitesimal of the 8rd 

order. 

Examples from Trigonometry are furnished by the results of Art. 13 (10), 

where it was shown that the limits, as of {^mx)/x and (1 — coB:r)/:r^ 

are respectively 1 and h It follows that, if x be taken as an infinitesimal of 

the 1st order, sin a: will also be an infinitesimal of the 1st order, and 

1 — cos X an infinitesimal of the 2nd order, or, as it is sometimes expressed, 

‘ of the second order of small quantities.* 

The geometrical meaning of the differential of y should be noticed. 

Fig. 89. 

If NN' represents lx, the resulting is represented by MQ. 

Now, if the tangent at P makes an angle yjr with OX and meets MQ 

in T, the differential of y 

. 8* = tan t. PJIf = JIfr. 
dx 

Equation (i) therefore is equivalent to the statement that, if Q be 

taken very near to P, MQ and MT become approximately equal, 

their difference TQ (this will be the e . dx above) becoming very small 

compared with either of them, L e. TQ will be an infinitesimal of 

order higher than the first. 
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25. Sign of the differential ooeffioient. 

We have, from the preceding article, 

^ 4- €, where € —► 0 as 5a; —► 0. 
vSC ClX 

Suppose that dy/dx is not zero. Then it follows that, if bx be 

taken sufficiently small, the sign of dyjdx + € will be the same as the 

sign of dy/dx, since e can be made as small as we please (and there¬ 

fore certainly numerically smaller than dyjdx) by taking hx small 

enough. Hence, for such values of hx^ the sign of by fix is the same 

as the sign of dyjdx. Therefore, if hx be -f, by will be + or — 

according as dyjdx is + or —. Now y increases or decreases 

according as 5^ is + or — ; therefore y increases as x increases if 

dyjdx is +, and y decreases as x increases if* dyjdx is —. 

Geometrically, if dyjdx is +, tan\|/ is +, and the angle is an 

acute angle as at the point B in Fig. 87; in this case the ordinate y 

increases as the abscissa x increases. If dyjdx is —, tan \// is —, and 

yj/ is an obtuse angle as at the point S in Fig. 37; in this case, the 

ordinate y decreases as the abscissa x increases. 

The case when dyjdx = 0 will be discussed later (Art. 53). 

Hence, a Junction of x increases or decreases when x increases accord¬ 

ing as its d, c. is + or — ; and, conversely, the d. c. of a function is -f 

or — according as the function increases or decreases when x increases. 

20- General method of finding differential coefficients from 

first principles. 

Theoretically, the method followed in finding the differential 

coefficient of x^ may be employed for any function of Xy as follows: 

Let y be any function of a;, denoted by f(x). If x is increased to 

x + hj then y becomes f(x -f h); 

. the increase in ^ = f(x + h) —f{x\ 

and the ratio 
hx h 

The d. c. of f{x) is the limit to which this tends as and 

the method to be adopted in evaluating this limit depends upon 

the nature of the function f{x). This process of calculating the 

d. c. directly from the definition is generally referred to as differen¬ 

tiation from first principles. It consists of four stages: we first 

take an arbitrary increment for x, next calculate the corresponding 

increment of y, then find their ratio, and lastly the limit to which 

this ratio tends as the increments —► 0. 

f2 



G8 DIFFERENTIATION OF SIMPLE 

As a matter of fact this method is employed only in a few simple 

cases; it would generally be long and tedious in other than the 

simplest functions. 

These few simple cases are known as standard forms, and general 

rules are obtained which enable the d. c.’s of more complicated 

functions to be deduced from these standard forms. At the same 

time it is advisable, and the student is strongly recommended, to 

work out a number of differential coefficients from first principles; 

the process serves to fix in mind the meaning of the diffi rontial 

coefficient which is otherwise rather apt to be forgotten. A few 

examples are appended. 

(i) y = l/x\ 
If X is increased to x + h, y becomes l/(x+ h)^ ; 

. . 11 x^-^(x + hf 
the increase in w = r—rrF.-= —o-;—-ttt 

^ ar(x + hy 

Dividing this by 7i, the increase in x, 

ly _ —S —Sr/i — 

Ix^ x^{x^hf 

'* {x + Jif 

we have 

which, as 0, approaches the limit i. e.- 

Therefore the differential coefficient of 1/x^ is —Z/x^, 
It could have been foreseen that a negative result would be obtained 

in this case, since it is obvious that XJx^ decreases as x increases; 
hence its d. c. is — (Art. 25). 

Consider a numerical illustration. It follows from this result and Art. 24, 

that if X is increased by a very small amount, 1/x^ will decrease by approxi¬ 

mately Zjx^ times as much, and the smaller the increase in x, the more 

accurately will this statement be true. 

Now, if a? = 2, y *= J = T25, and dyjdx^ —3/2^; therefore, if x be in¬ 

creased by *001, y will decrease by (approximately) 3/2^ x *001, i.e. *0001875. 

Therefore, when x *= 2‘001, y = *125 —*0001875 

« -1248125, 

which can be verified by working out the value of 1/(2*001)®; the exact 

result to 7 figures thereby obtained is *1248127 — , giving a difference from the 

previous result of less than *0000002. This slight discrepancy is due to the 

fact that the increase in the value of x, although small, is not indefinitely 

small; if a smaller increase in x were taken, the results would agree even 

more closely. 

4a:4-5 

In this case, when x is increased to a: 4- A, y becomes 
4 (a;+h) 4 5 

^ (x 4 /*) 4“ 4 
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the increase in y = 
4a: + 4h + 6 4a: + 6 
8*+8A-f-4 

h 

3a: + 4 

"(3* +8ft+ 4) {3a:+ 4) 

h_1 
bx 

(after slinplification). 

which, when h- 

’(3x-tSh-hi)(Sx-i^4) 

► 0, tends to the limit ^ 
(3 a;+ 4)2 

Since this, being a perfect square, is always +, it follows that the 
giveu function always increases when x increases. If its graph be 
drawn, it will be seen that as x increases from ~oo to — j, y increases 
from ^ to 00 ; wlien a; = — ^ is infinite and the function is discon¬ 
tinuous; as X increases from —to oo, y increases from — oo to 
[Tlie graph is a rectangular hyperbola whose asymptotes are the 
straight lines ic = — and ^ = J.j 

As a numerical illustration, find, approximately, the value of y when 

- 2’0135. 

When x<^2, yn=r3 and dyjdx^ 

The increase in y dy/dxx increase in ar, approximately 

« *01 X *0135 = -000135. 

y = 1*300135 nearly, when x «» 2 0135. 

(iii) rj= Vx. 
When X is increased to x-^h^ y becomes v (x-]-li); 

, •. the increase in y + /*) — v a:, 

by _ V{x-k-h)-~Vx 
hx~^ h 

and 

Before making h tend to zero, it is necessary to transform this 
expression into such a form that the numerator and denominator 
do not both —♦ 0 with h ; in the case of algebraical expressions, this 
generally means that the expression must be transformed until the 
h (which is not exactly 0) divides out. 

In this case, the desired result is obtained by rationalizing the 
numerator; multiply numerator and denominator by + Vx. 

rp, ^ _ x + h-x_^_ 
bx h {V(x~t-h)+Vx} V(x-^h)+Vx' 

which, as 0, approaches the limit l/(Vx-i- Vx), 

the d.c. of Va; = • 

As a numerical illustration, find v^257. 

Since 256 «- 16*, this can be written i.e. 16 + 

To find >/(! we take y ^/x. If a: ««= 1, y *= 1, and dy/dx = 

Hence, if x be increased by y will increase by, approximately, | x ^ 

+ xW “ 1 + xh approximately, 
and v^257 « 16(1+ ^^2) « 16 + ^ *= 16*03125 approximately. 

The true value is 16*031219.... 
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Examples VI. 

Find from first principles, the differential coefficients of: 

1. x\ 2. (1 —a;)*. 3. 1/x, 4. 1/x^, 5. l/(p-qx}. 

e, (4a?-5)/(3a;-2). 7. {a-{^bx)/{c-¥dx). 8. 

0. ax^ + hx + c, 10. ir/(x* + l). 11. l/\/x. 12. 1/^^ia-hx), 

13. V(a^-x^). 14. 15. 1/^il-x^}. 

16. Use the d. c. of l/\/x to find the approximate value of l/v^401. 

17. Use the d. c. of 1/x^ to find the approximate value of 1/(10'07/. 

18. Find the slope of the graph of y = l/'s/x at the point (4, 1). 

19. „ „ „ „ „ (10, *01). 

20. fj ff ,, q'=x/(x"-hl) „ (2, 4). 

21. Find the d. c. of Sx^ — 7xi 8, and deduce the approximate numerical 
value of this expression when x ~ 2‘015. 

22. Find the d. c. of (7a: —4)/(10+5ar), and deduce the approximate 
numerical value of this expression when x = 18'03. 

23. Find the d.c. of l/(a:^—1), and deduce the approximate numerical value 
of this expression when x = 8‘96. 

24. Prove that the function (3 —5a*)/(7a: —2) decreases as x increases [save 
in passing through the value x — ^J. 

26. Prove that the function (a-hhx)/(c + dx) increases or decreases as x 
increases according as 6c —od is + or — [save in passing through the 
value X *= —c/d], 

20. Find the slope of the graph of y = aa:*-f 6a: + c at any point. At what 
point is the tangent to the graph parallel to the axis of a:? 

27. Where is the slope of y = x/(x^ + 1) zero ? Draw the graph. What are 
the greatest and least values of the function ? 

28. Where does the function y ■= — 3a: increase, and where does it decrease, 
as X increases from — oo to -foo ? 

20. PJxpress in symbols the following statements : 

(i) The rate of change of x per second is equal to n times the rate of 
change of z per second. 

(ii) The rate of change of y per unit increase of a? is n times the rate 
of increase of y per unit increase of z, 

(iii) The mte of increase of y is equal to the sum of the rates of increase 
of u and v with respect to x. 

80. Express in symbols : 

(i) The velocity of the point {x, y) parallel to the axis of a: is equal to 
n times the velocity parallel to the axis of y. 

(ii) The acceleration of a point moving in a straight line with velocity 
V is proportional to its velocity. 

(iii) The retardation of such a point is proportional to the time. 

81. Express in symbols: 

(i) The rate of increase of the area of a circle per unit increase of the 
radius is proportional to the radius. 

(ii) The rate of increase of the volume of a cone of constant height, 
per unit increase of the radius of the base, is proportional to the 
radius. 

(iii) The rate of increase of the volume of a cube is proportional to 
the square of the rate of increase of the area of the surface, with 
respect to the length x of the edge. 
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(iv) The rate of increase of the volume per second is proportional to 
the rate of increase of the area per second. 

32. Express in symbols: 

(i) The slope of a curve at any point '» proportional to the abscissa. 

(ii) The ordinate of a curve at any point varies as the square of the 
slope. 

(iii) At any point P of a curve, the slope of the curve is equal to half 
the slope of the line joining P to the origin. 

27. Differential coefficient of 

We have found the d. o. of for several particular values of n 

[for M = 2 in Art. 19 ; for n = — 3 and n = in Art. 2Gj ; we now 

proceed to the general case.* 

If is increased io x-\- li^ y becomes {x-\-hY; 

. •. the increase in ^ = (x + ^; 

dy 
dx L<-’- L 

(x + h)^ — 
= L {x+h}—x 

Lt = naP -1 

A-+0 " h-*0 

It has been shown in Art. 13 (8) that the limit of (x^—d^)/{x ~ a), 

when x—>a, is for all rational values of w; applying this 

to the expression just obtained, since when h —► 0, we have 

_ (x+ 'h)-x 

Therefore, whether w be + or —, integral or fractional, 

the d. c. q/* = nx^^h 

E. g. the d. c. of x® «= 6x®; d. c. of ■= 20x’*; 
d. c. of 4^x, i.e. of x^/*= V(^ I 
d. c. of 1/x®, i.e. of x“® •» —4x~® — -4/x®; 
d. c. of l/-v/x, i.e. of x“V>« ■=» — l/(2v'x*). 

Two particular cases t are of special importance: 

[Cf. Art. 26 (3).] (i) if y = -/a; = a:V», then % = = 2^' 

(ii) if y = 1/a: = x'^ then ^ ~ ^' 

28. An important approximation follows from the preceding 
result. 

h 
We have L. = nx^ .n~l . 

♦ For another method of differentiating x", which does not require the use of 

the limit of Art. 13 (8), see Art. 82. 
t These two oases occur so frequently that it is advisable to commit them to 

memory as separate standard forms. 
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ix-A-hY'^_ 
as in Art. 24, --=r + where e—>0 as h^O. 

i.e. (x + h)^ = + + 

.*. when li is very small we have, neglecting terms of the 2n(l 

order (Art. 24), 

{x H- h)^ = x'^-Y nx'^^ ^ Jiy approximately. 

If ir = 1, tlion (1 + //)” = 1 -I nil approximately, when h is very small, 

e.g. ^1002 7= (1000 + 2)1/3 ^ lo (1 + 

=: 10(1+ 1300) rising the approxima¬ 
tion just obtained 

= 10(1 +-00067) 
= 10*0067 nenrly. 

The illustrations given in Art. 26, Ex. (i) and (iii) aro also particular 
cases of this approximation. 

Examples VII. 

Write down the differential coefficients of: 

1. 2. :;/x\ 
8. l/x\ l/x\ l/x’®, 1/x^^, l/x\ 
4. 1/^/x^, 1/^x, l/y^ l/:yx, l/^Va:^ 

6. Find approximately the values of ^^1*27, ^"^623, ly^lOoO. 
0. Also of l/v^QO, 1/V^^95, l/>v‘/245. 7. Also of J+, 1•00P^ (iVa)*’- 

29. General Theorems on Differential Coefficients, 

Theorem (i). TJie d. c. of a constant is zero. 

By the term ‘constant’ here we mean a quantity which has the same 

value for all values of x. An increase in the value of x produces no 

change in the value of a constant, therefore lyfox is in this case 

a fraction whose numerator is zero and whose denominator (although 

ultimately very small) is not zero. Its limit is therefore zero. 

Grajihically, if y is a constant, the graph is a straight line parallel 

to the axis of x; its slope is always zero, i.e. dyidx is zero (Art. 23). 

Theorem (ii). The d, c. of the algebraical sum of a finite number of 

functions is equal to the algebraical sum of their d. c.’s. 

If ^ = u-\-v^w where u, v, w are functions of Xy the total increase 

in y, due to an increase hx in x, is equal to the algebraical sum of 

the increases in w, r, and Wy 

i.e, hy :=hu-\-hV’-lWy 



ALGEBRAICAL FUNCTIONS 78 

when hx~-^0f we have, by Art. 15 (i), 

dy ^du ^ dv dtv ^ 

dx dx dx dx ^ 

and similarly for the algebraical sum of any finite number of 

functions of x. 

For the conditions under which the d. c. of the sum of an infinite 

number of functions can be obtained by differentiating each term 

and taking the sum of the infinite series formed by the d. c.’s, the 

student is referred to more advanced works. 

Theorem (iii). The d, c. of ay, ivhere & is a constantj is equal to 

a X the d, c. of y. 

The increase in ay is evidently a times the increase in y, i. e* 

^ [ay) — a, by ; 

lx dx’ 

and therefore, in the limit. — (av) = a ^ • 
’ ' dx^ dx 

Geometrically, this theorem shows that, if all the ordinates of 

a curve are increased in the constant ratio a: 1, the slope of the 

curve at any point is increased in the same ratio. 

These three theorems, together with the result of Art. 27, enable 

us to write down at once the d. c. of any rational integral function of x, 

E.g. the d. c. of + c «= 2aar + ?>; 

the d. c. of X* - + 5x* — 7x + 6 =» ix^-9x^ + 10a;- 7; 

and generally, the d. c. of 

++ 4 ,.. + hx-\ I ■= (n — l)5x”“*4* (71 — 2Ira;"’*4 ...4 A?. 

Again, the d. c. of (2-x“)*, i.e. of 4-4x*4x^»' -8ar4 4x*; 

the d. c. of i.e. of ar’/’4-3x'/*4' 

«I 4 i x-l^ -1 - 5 

It must be carefully noticed that, although the d. c. of with 

respect to x is the d. c. of such a function as + with re¬ 

spect to X is not 3(:r*4-l)^ ; this is the d. c. with respect to 

i. e. it is the limit of the ratio of the increase in (x2 4-l)® to the 

increase in a;^4-l, not the limit of the ratio of the increase in 

(0:24.1)8 to the increase in x. In order to find the d. c. of (a;2 4-l)® 

with respect to x, it can either bo expanded as in the last two 

examples given or, as is better, it can be dealt with by Theorem 

(vii) on p. 79, which gives a general method of dealing with such 

cases. 
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Examples VIII, 

Differentiate the following functions with respect to 
1. 
4. 2ap*--9ar+6. 

7- X* — 2a^x^ -i a*, 

10. (a/x-\- ^/af. 
3 4 

13. ~ 4-1. 
X 

10. 
a?4- 3a 

X 

19. 

2. 8ir*~8x —4. 
6. cx + d. 
a a^*" + 2aV + a»^ 

11. (l-a:)>. 
a?*+ 1 

X 

- (¥)■• 
20. (l~y^x)V«. 

14. 

x: 
3. px^ + (/iT + f. 

0. —6ic®4-aj. 
9. (ar~5)*. 

12. (ax-b)\ 

21. (a-b/x)\ 

SO. Theorem (iv). To find the differential coeflcient of a 
product of two functions of x. 

It is obvious, by taking two simple numerical factors such as 5 x 8, 

that the total increase in the product of two factors is not obtained 

by multiplying together the increases of the separate factors; and 

therefore the d. c. of a product is not equal to the product of the 
d. c. s of its factors. 

Let p = uv, where u and v are both functions of x. When x 

becomes xi-bx^ u and r, being functions of x, will chango ; let tliem 

become u-j-Su and v-f respectively ; 

• *. their product, y, will become 

(u-f — ur + tt. f?. Stt-f . 6i;. 

the increase in = u. + Sw-f 6u. dr, 

and 
^y dv du bu . 

CX OX bx OX 
(i) 

In the limit, when bx and therefore cm, by all —> 0 (u, t?, 

and therefore y being supposed continuous functions of x), by/hx^ 

bu/bx, bv/bx tend to limits denoted by dyldx^ du/dx^ dv/dx respec¬ 

tively, so that the foregoing relation (i) becomes 

dy _ fiv du 

dx ~ ^ dx^ 

since, in the last term of (i), the first factor bu/bx tends to the finite 

limit duldXy and the second factor bv tends to the limit 0.* Therefore 

this term tends to the limit zero. 

This result must be remembered, and it is most convenient to 

remember it in the verbal form : 

the d. c. of a product = 1st factor x d. c. of 2nd + 2nd factor xd.c. of IsL 

* Sx, SUf each separaUlj -►0, but the ratio of any two of them tends to 
a finite limit. 
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ExatyipUs: 

d. c. of (a:* + l) {x^-^2) •» (x® + l)2a? + (a?* + 2)3a:® = 6x^4 2x\ 

d. c. of 

j^x{aa^ -f- hx^c) — ^x{2ax-{^h) + (ax’^-¥'bx-\^ c) . ^ *=* * 

d. c. of (axM fcic + c)’, i.e. {ax^ + hx^c) {ax‘^-^hx +c) 
■= {ax* -I- bx + c) (2 ax + b) 4- (ax* + bx -f c) (2 ax + b) 
«= 2(ax* + bx + c)(2ax-f b). 

The preceding working can be illustrated graphically as follows: 

If the values of u and v are represented by lengths OX and OY 

measured along two straight lines at right angles, y is represented 

by the area of the completed rectangle OXZT; if XX'j XT' denote 

du and dv respectively, then dy is represented by the increase in 

the area of the rectangle, i.e. by the shaded area in Fig. 40. 

Le. dy = ZY'-hZX'-i-ZZ' u.dv-j-v.du-^cu. dv as before. 

1 

> 

2 

1 

o X x' 
Fig. 40. 

When du and Iv are very small, the last term is of the second 

order of small quantities and can be neglected in comparison with 

the first two terms; i. e. the area ZZ^ is very small compared 

with the areas ZF' and ZX', 
Therefore approximately (i.e. to the first order of small quantities) 

dy = u, dv-j-v, hu 

whence, dividing by hx, and taking the limit, 

dy dv du 
•r^ = w — + t; j - • 
dx dx dx 

81. Theorem (v). Diflerential coefficient of a product of any 

number of functions of x. 

The rule for finding the d. c. of a product of two functions of x 

can be extended so as to apply to the product of any (finite) number 

of functions of z. 
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If y =r uvw, where w, t?, w are all functions of x, then, regarding 

this as the product of the two factors uv and te, we have 

dy dio d (uv) 
= to ^ 

dx dx dx 

dw / 
= uf; — + le {M 

dx V 

dv du\ 

dx ^ ^dx^ 

dw dv du 
^ uv ~ +UW -r- vw > 

dx dx dx 

and similarly for any finite number of factors. 

Hence the d. c, of a product is obtained by multiplying the d. c. of each 

factor in turn by all the other factors^ and adding the results. 

This result, in the case of three factors, can be illustrated geometri¬ 

cally. See Examples IX. 25. 

A very important result follows from these rules. The d. c. of 

with respect to x may be found by regarding it as the product of two 

factors, each y, whence the d. c. of y^ 

Similarly, if n be any integer, by taking the product of n factors 

each y, we get the d, c. of y^ with respect to x=: ny*^"^ dy/dx. (See 

also Art. 84.) 

The d. c. with respect to a? of a function of the form x^y'^j where y 

is a function of Xj can now be written down, as follows; 

dv 
d. c. of o^y with respect to a; = a;®. ; 

CiX 

d. c. of y’^ with respect to x = . 2j/ +y^2x; 

.dy 
d. c. of x^with respect to x = x^. 8y^ . 4x^ , and so on. 

ax 

32. Alternative method of differentiating x\ 

It should be noticed that, from these rules for differentiating a product, 

the d. c. of x" may be deduced for positive or negative, integral or fractional 

values of n, without having recourse to the limit of Art. 13(8). 

For (i) if w be a + integer, 

^ XXX X ... « factors. 

By the preceding article, since the d. c. of each factor is 1, and this, 

when multiplied by all the other factors, gives we have repeated 

n times, hence 
d 
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(ii) If n be a positive fractionwe have y ^ 

differentiating with respect to a?, 

Q.r <-i<k 
dx 

... ^p-i ^ ajP-i-r I*’/’ 
dx q 9. ' ^ 2 

(iii) If n be — and equal to — w, 

y = A = 1; 

differentiating with respect to Xy 

'"s 

I 

dy myx”'~^ 

^ it”* “ 
— myx"^ 

lienee we have proved that the d. c. of x'*—nx''~\ for all rational values 

of 91. 

Examples IX. 

Differentiate with respect to x the following products : 

2. x» (1 + A). 
6. (ax + b) (x^ 4 cx + c*). 

8. (3x + 2)*. 
11. V^x (x-1) (x-2). 

14. (a — bxicx^}”, 

17. x’‘y*; x^y”. 
20. X* -f x^y ’ 4 y\ 

23. (ay-hb)^. 

25. Illustrate the result of Art. 31 for three factors, by taking a rect¬ 

angular block with edges u, v, tv respectively, and proceeding as in 

Art. 30. 

1. (x»-4)(x^4 3). 
4. V'x(x*4-3x^). 

7. x(x^~l) (xHd). 

10. (3x4-2)”. 

13. (a ~ &x 4-rx*)’. 

16. x”y; 
19. x‘^4xy4-y*. 

22. (ay-\-h)^. 

3. (x”4a”)(x”*4-a”*). 

6. A/x(ajx^-blx^). 
0. (3x + 2)’. 

12. (a —l>x4cx^)^ 

15. xy*; x^y^\ x^y*. 

18. x”y”. 

21. ax? 4 bx'^y 4 cxy* 4 ^fy^ 

24. (ay4t)". 

S3. Theorem (vi). To find the difiorential coefficient of a 

quotient of two functions of x. 

Let y = w/v, where u and v are both functions of x. Proceeding 

as in the case of a product, when x becomes x-\-bXj let u and v 

become u-h^u and v + bv respectively. 

Therefore y becomes 

and 

Therefore 

u 

t; V 

Vhu--Ubv 

hu cv 
. V--u — 
oy ox cx, 

55? v(v-hbv) 
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and in the limit, when bx, and therefore also bv, 0, 
this becomes 

du dp 

dy _ ^dx 

dr 

This result must be remembered, and it can be put in the following 
convenient verbal form; 

d. c. of a guotient = den^.^J-C-.^f”»rn<--numrxd. c. of dcnr ^ 
(denominator)'^ 

It should be noticed that this result can bo deduced from the preceding 
result as follows: 

If 

whence 

y =» w/f>, then u 

du dy do 

dx dx ^ dx 

du dy dv 
^ ^ *1 t/-- ; 

dx dx dx 

= ry. 

dy , u dn 
+ ~ 7 ; 

dx V dx 

dx 

du dv 
« —' — u — 

dx dx , - 
— . -- as before. 

Examples: 

Thed. c.of 
3a: + 2 

The d. c. of 
x^ + 3x-i-l 

which reduces to 

The d. c. of 
^/x 

ax i b 

The d. c. of 

(3x4 2)2x-x^. 3 ^ 3x’ 4 4x 

(3x4 2)* (3x4 2)** 

(x* 4 8x +1) (Sx"'- 3) - (x> ~ 3X 41) (3x’ 4 3) 

(x^ 4 3x4 1)’ 

12x®-6 
(x^-f3x-hl)** 

(ax-f-b)/(2^x)~ ^X. a _ I-ax 

{ax-i-h}^ 2\^x{ax-\-hy 

^».2y|-y».2.r ^ 2y(^g-y) ^ 

X* X* * 

Examples X. 

Differentiate the following functions with respect to x: 

3x44 « l~2x 
5x-3* 2-x ' 

8. 

x*-|-4 x’~2x44 
X*—4 X*4-2x4 4* 

6. 

8x 
8. rj-- 

1—X 
e. 

ftx4-6 
tx4 a 
xVl 

X 

1 4 
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10. 
1 4- ^ ax^-^hx-^c 

1-v^* 
11. 2 L . * — ox ■¥€ 

,0 
x>+l ■ 

18. ) 
! 

I (x4 2)(x-3) 

xix-1) 

x{x-l) 

(®-2)(x-3) 

10. ^ly- 17. y/x. 18. x’/y’. 

10. ^lx\ 20. x7y". 21. y7x". 

84. Theorem (vii). To find the diflTerential coefilcient of a 

function of a function. 

Consider the function y = (:r^ —3)^®. This is an expression of the 

kind known as a function of a function; x'^ — S is a function of x, 
and y is a function of x’^ — 3. Other examples are log sin Xj cos ^Xj 

&c. 

The d. c. of such an expression as 8)^® cannot be conveniently 

worked out at once from first principles, but may be obtained in 

two stages by denoting x^~~S temporarily by u, and writing y = 

Generally, let 3/ bo a continuous function of w, where u is a con¬ 

tinuous function of x. When x is increased io x-\'hxy u will become 

wH-Su, and this change in tlie value of u will make y become y-{-hy\ 
then it is an obvious identity that 

ly lu 
(jU^ hx 

When hx —►0, hu will —► 0, since « is a continuous function 

of Xy and lu/hx will tend to the limit dujdx; and when hu —► 0, 

hy will —► 0, since y is & continuous function of «, and hy/hu will 

tend to the limit dy/du; also hy/hx will tend to the limit dy/dx. 
Therefore, by Art. 15 (ii), the preceding relation becomes 

X “ • 
dx du dx 

For instance, in the example mentioned above where 

y — and u = 3, 

^ ? X = lOu'J X 2a: = 20x (x*- 
dx du dx 

■3)\ 

The d. c. is the limit of (increase in ^)/(increase in x), and by 
this method it is found in two stages: 

It is equal to - 
increase in y 
increase in 

i' V T - 
u ^ -L^^i 

increase m u 

increase in u 10 

increase in x 
L increase in (a:-— 3) 

^ increase in x 
he. to I ;- 

-Ljt increase in u 
i.e. to d. c. of with respect to w x d. c. of 3) with respect to x, 
i.e« to 10u^x2x. 
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This theorem can be illustrated geometrically as follows: 

Let y be a continuous function of «, /(m), where m is a continuous 

function of F(x). 

Let AB (Fig. 41) be part of the graph of w -■ F(x), drawn with reference 

to the axes OX, OU, and let AC be 

the corresponding part of the graph 

of y «/(«), drawn with reference to 

the axes OU and OY (the continuation 

of XO). Let F be any point on ABf 
and Q the corresponding point on AC, 

If OM, the abscissa x of P, be in¬ 

creased by MN^ the ordinate is thereby 

increased from Oil to OK^ and this 

increase in one of the coordinates of 

Q produces an increase in the other 

coordinate of Q from OE to OF. Now 

hy EF LQ' _ LQ' ^ 
dx “ Jin ° PI) ~ LQ ^ PD 

■* slope of QQ' X slope of PP'. 

When P' approaches indefinitely near P, Q' approaches indefinitely near Q, 

and PP', QQ' become the tangents at P and Q respectively. Therefore, 

taking the limits, 

^ » slope of AC at ^ X slope of AB at P = ~ x 
dx VI du dx 

This is a rule which has constantly to be applied, and the student 

must, by doing many examples, make himself so thoroughly familiar 

with it that he will always avoid such mistakes as giving the d. c. 

of (2a;--1)^ as 3(2a;~l)^ instead of 3(2a;—1)2x2. 

Examples: 

if ^ «=* (ar^-tt®)", i.e. w” where w = 

nu’‘-K2x - 2,tx(x>~a’‘)<*-'; 
dx du dx V / # 

if y v^(5-4a?), i.e. \/u where w=«5-4a;; 

dy dy du 1 _ 

dx du dx 

if y «■ h®* w’* where u «• l-a?®; 

X ~ 4 =« ~ 
>/ (^5~4a;) 

dy dy du . . « « 12a?* 
? =* . « ~4w’“®x =* “— — 

dx du dx (l-a;’)® 

After a little practice, it will be unnecessary to insert the u 

explicitly, and the results can be written down at onco as below. 
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The d. c. of (4x + 2)* = 3 (4a? + 2)*xd. c. of 4a?+2 «« 3(4a: + 2)’x4. 

ff 

»» 

» 

»» 

(l-ar)* -■3(l~a?)* xd-c. ofl-a? 

(x^ + = 3.(x® + a*f x d. c. of a;® + a* 

» (x-l}2x-x^ 

3(l~ar®)x - 1. 

3(a7Ha*)*x2a;. 

3^(a:j-2J 

and generally, 

the d. c. of u* = 3u® X dujdxy where u is any function of ar. 

Similarly, 

the d. c. of u" = x dujdx^ whatever the value of n. 

This last result has already been obtained (Art. 31) from the rule for 
differentiating a product, in the case when n is a positive integer; we here 
obtain it in the more general case when n is positive or negative, integral 
or fractional. 

Taking, as another example, different powers of the same expression, 

the d. c. of (l~2a:*)^«4(l~2arVxd. c. of 1-2ar“ = 4(1-2.r7x -4a:; 

n .. ■/(l-2ie’)= X d.o. of l-2x’= X-4*: 

” ” ^2T'y. = -5(l-2xVxd.c. ofl-2u:’=-5(l-2x’j-«x-4*! 

and generally, the d. c. of any power 

a-2a:T = 2ar»)»-ix -4;r. 

Again, the d. c. of 

y' (a** + x^) __ n _^ 
2v'(a*+^') "" 

^rhe d. c. of x\/(a^ + x^) (a product in which the second factor is a func¬ 
tion of a function) is, using the result just obtained, 

a^ + 2a;» 
»ajx '-/r i ;—5\ + + ^’') X 1 *= -T—^-rr: - 

V(a^ + a:*) ^ ^ V(a^ + a;“) 

The d. c. of the quotient V(aHa;")/aJ 

a?* 
which reduces to 

— a} 
a:® + a:®) 

85* Theorem (viii). The relation between differential co¬ 

efficients of inverse functions. 

If ^ is a continuous function of then x is generally a continuous 

function of y. 

im 0 
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Let hx and dy he corresponding increments of x and y, then 

evidently 

^ y 1 

and therefore, when hx and by —♦ 0, 

^ V - T 
dy^ dx'^ 

i. e. the differential coefScients of two inverse functions are reciprocals. 

This result may be regarded as a particular case of the preceding 

result, from which it may be obtained by putting y = x; the rule 

for a function of a function then gives 

^ __dx du . ^ 

du^ dx' du / dx 

This theorem is also obvious geometrically. It has been seen 

(Art. 23) that dy/dx is the tangent of the angle xj/ which the tangent 

to the graph of the function makes with the positive direction of 

the axis of x; similarly, dx/dy is the tangent of the angle which 

the tangent to the graph makes with the positive direction of the 

axis of y» 

Fig. 42. 

The sum of these angles is either or f tt (Fig. 42), and in either 

case the tangent of one of them is equal to the cotangent of the 

other, i.e. tanyj/ = l/tan 

• ^ — 1 
•• dx^ V du 

Examples. If y = ^x, then x^y^ \ 

^ In this case the d. c, of 

of the corresponding power* 

y = then x = y^; dx/dy = 6j/^ = ; 

In this case the d. c, of a root is deduced from that 
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Again, if jyH = x, dx/dy = 2y + 3 ; . •. dy/dx = 1/(2^ + 3), 
which gives dy/dx in terms of y. To find y in terms of x, and then 
differentiate, is a more troublesome operation and involves a much 
more complicated differentiation. 

Examples XI. 

Differentiate the following with respect to x: 

Th- 7(4^^' 

(3-7a:)': v'{3-73:); ^(3-7a;)’ ^(S-lx)' 

(a-a;)«, ^{a-x); (a-x)"; • 

6. (ax' + lx f c)'; -/(ax’ 4 ix + e); i 

1 1 1 1 

ax^ + bx-\'C' \/ {ax* -f bx -} c] l’ ^iax’^-k-hx-k-c) 
7. 

(a’-xT' 

8. 
1 

0. 
1 

10. 
1 

i/{a'-xr' V(a>-x’)- i/{a'-x‘) 

11. ^(a'-x>). 12. V(a'-x')\ 13. 
m'- 

14. </{¥)■ 15. (M- 16. 

17. 18. 19. Xa/ (2.r 4 1). 

20. x^/Cl-x). 21. 
X 

^[2x-\ 1} 
22. 

V'(2x+]) 

X 

23. 
x’ 

-/(I-a;)’ 
24. 25. x'^ia'-x'). 

20. 
x' 

27. 28. 
V(a'-x')' x' • 

X\(l ~ X) . 

29. 
X 

30. 
X 

(a — xY 
31. 1 f 

82. 
(a ~ .r)* 

(i-xK 
83. {a — xY[h~x)^. 34. 

(o-x)"_ 

(h-xy 

Find in the four examples following. 

S5. + ^x-hl. 86. (3y+ 2)/(34-2y) 

87, x(y i a) «= y\ 88. a;y + ax + by+ y^ ~ 0. 

g2 
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so. Prove that the d. c. of an even function of x is an odd function of x, and 
conversely that the d. c. of an odd function is even. 

40. Illustrate Theorem vi, Art. 33, geometrically, by taking u as the area of 
a rectangle of which t? is one side. 

41. Find the slope of the curve + *= 5 at the point (1, 1). 
42. Find the slope of the curve —= a’ at the point (u, 3a). 

36. Differentiation of Implicit Functions. 

In the case of implicit functions (Art. 4), it is often difficult or 

impossible to find i/ explicitly in terms of Xy and then by differentiat¬ 

ing obtain the value of dy/dx in terms of x alone ; but the value of 

dy/dx in terms of x and y can be obtained by differentiating, with 

respect to rr, each term of the equation between x and y as it stands. 

It has been proved (Arts. 31 and 34) that the d, c. of yi^ with 

respect to x is ny^~^ dy/dx. The terms which occur most frequently 

in practice, when y is given implicitly as a function of Xy are terms 

of the type ax^y^ ; and the d. c. of this term is equal to 

a (x^^. ny^^'^ X. 0 ^ 

by using the ordinary rule for the d. c. of a product. 

One or two examples will now suffice to show how to find the 

value of dy/dx in such cases. 

Examples: 

(i) Since + is constant, its d. c. is zero. 

2x4-2y dy/do? = 0, whence dy/dx ^ 

[In this simple case, y can be at once expressed explicitly in terms of a?, 

for we have y — ; 

•’* = o-TT-ij—X -2a;  -—r., which == - ~ as before.] 
dx 2>/(a^-ar*j V(a^-£P") y 

(ii) a;® + 3aa;y*f y* »= a*. 

Differentiating each term with respect to x, 

dy 
3^» + 3<.(rrg+y)+3i/^^^-0, 

whence 
dy ^.dy 

and 

dx 

dy 
—i 

dx 

(iii) a;* y* -f y* a?* + a® = 0. 

Here 

-ay-x\ 

ay + X* 

ax 4 y* 

»». 3y’^. 2»+y'. 3**4 **. 2y . 0, 
^_8x^y^-4 2xy* 3xy+ 2y’^ ^ 

whence 
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(iv) If y is given in the form we may write then, 

ditferentiating with respect to a?, we have 

ny’ 
dx dx 

11-1 
?H~1 * 

Examples XII. 

Find dy/dx when x and y are connected by the following relations; 

1. rc* + y* == a*. 

8. a;” + y" = 
5. a::^ + x'^y + xy"^ + y” = o”. 

7. x^y^ « a"*+”. 
0. (a; + yf = ax® 4 fey’. 

11. (a?* 4 y’)’ = a’ (a;“ - y"). 

13. ax^ 4 fe.r’y + cxtf + f/y'^ — 1. 

15. y 

17. a:^y*+ a;y * 
10. r4'a; + y4 a:y = a. 

21. Find the value of dvjdj^ (i) when j^v 
(p-\-av~^) (f?—6) XX Ic, 

2. v^a? + \/y — \/«- 

4. a?’ 4- ary 4 y’ “= 0. 

C. 1 4 ar’y 4 ary’ = 0. 

8. a^ar" - 
10. [x 4 y)® = 3 aa-y. 

12. rtar’ 4 2 hxy 4 ry’ = 1. 

14. y = {«’/»-ar’/'^jV^ 

16. ar’"4a:V4y’"-«’ 

18. fia:’4 2hxy 4 fey’ 4 2ya; 1 2/y 4 r = 0. 

20. (a 4 a?) (a 4 y) = a:’ 4 y’. 

Zr, (ii) when = Ar, (iii) when 

87. Calculation of small corrections. 

We have, in several numerical examples in Art. 26, shown how 

the result of Art. 24 can be used to find the approximate change in 

the value of a function due to a given small change in the value of 

its argument. Numerical results are frequently calculated from 

given data by aid of a mathematical formula. These data are often 

obtained by measurement or observation, and therefore cannot be 

found with absolute accuracy. An error in one or more of the data 

will produce an error in the value of any quantity calculated from 

them, and an important practical application of the differential 

coefficient is to determine the influence, upon the result of a 

calculation, of given small errors in tlie measurement of the 

quantities upon which it depends. At present, we shall confine 

ourselves to finding the effect of an error in one variable only. The 

general question of finding the aggregate effect of errors in several 

observations will be considered later (Chapter XXIII). 

It is generally the relative or proportional error (i. e. the ratio of 

the error to the calculated value), or the percentage error, which is 

of importance, rather than the actual error. 

Example 1. A given quantity of metal is to he cast into the form of a right 
circular cylinder of radius 5 inches and height 10 inches; if the radius is made 
^ inch too large^ what will he the difference m the height 9 
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Let r and h denote the radius and height respectively. Then 

iTT^h *■ the volume ■* 7r25 x 10, and therefore h = 250/r’. 

We want to find the change in h due to a given change in r, therefore we 

need the d. c. of h with respect to r. 

We have dh/dr ^2^0 x — 2r"*«» — 500/r*. Therefore if r be increased 

^ will decrease by (approximately) x 500/5*, i.e. J inch; hence 

the height will be 9*8 inches approximately. 

Example 2. The pressure p and volume v o f a given mass of gas at constant 

temperature are co7inecied by the relation pv «= k {a constant). If the pressure 

of 10 cubic feet of the gas be 14 lb. per square inch, find the pressure when the 

volume is reduced to 9*92 cubic feet. 

Here we need the change in p due to a given small change in v\ therefore 

we find the d. c. of p with respect to v. 

i.e. if the volume be increased by a small amount, the pressure will decrease 

by nearly p/v as much. 

In this case, the volume is decreased by *08 cubic foot. Therefore the 

pressure will increase by i^x*08, i. e. *11210. per square inch, i.e. the 

pressure will be 14*112 lb. per square inch. 

Example 3. The time of oscillation i of a simple pendulum of length 1 is 

given by the formula t = 27rv^{l/g). Find (i) the percentage change in the 

value of t if the length be increased 1 per cent. 

Vg 

by Art. 24, 5^ — 

X ^l; 
dt 

dl' 

27T 

vw 

Vg '^Vi 

X dl approximately, and dl 

Vigi) 

100’ 

/. dt 

and the percentage error X 100 

jr ./l_ 

100 “ 100 ^ 

IT jl 100 

“ Too ^ ~r 
1 
2’ 

Find (ii) the percentage change in the value of t, if the pendulum he removed 

to a place where the value of g is diminished by *2 per cent.^ the length being 

unaltered. 

In this case we need the d.c. of t with respect to g, 

approximately, 

the percentage change in ^ — x 100 = 

and the time of oscillation is increased by *1 per cent. 
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Example 4. If the preceding formula he used to calculate the value of g 

from obsert^ations of t and 1, find (i) the possible error in the value of g, if 

the error in 1 may be *5 per cent, either way, t remaining constant. 

We now need dg/dl. 

We have 
. dg 47r* 

' *'• 

approximately, the error in g 
47r« 

X the error in I 9 
I 

x5Z; 

. ^9 • • — « -~ 
9 I 

+ -005. 

The proportional error in the value of g is equal to the proportional 

error in the value of I, as is obvious at once from the fact that g varies 

directly as 1. 

Find (ii) the relative envr in the value of g owing to the obseived value of the 

time of oscillation being *1 per cent, too much. 

Here we need dg/dt. 

9 s= 4rr*/ X 
1 
t^* 

. dg 
“ dt 

4tn*l X —2r* 
SttH 

A hg ^ X dt approximately; 

” g“ t* 1000 / <“ “ 500’ 

i.e. the value of g is too small by about of its calculated value* 

38. Coefficients of expansion. 

It is a well-known fact that most substances expand when heated, and 

that the amount of the expansion depends upon the rise in temperature; 

hence the dimensions of such a body are functions of its temperature. 

Consider a uniform bar which is of length I when its temperature is 9. Let 

the length be l + dl when the temperature is raised to 6-^dd, so that 6/ is 

the increase of length due to the increase 86 in temperature. As 86-^0, 

8l->0, but the ratio 81/86 tends to a limiting value dl/d6. dl/ld6 is called 

the coefficient of linear expansion. This is frequently a small constant. Denot¬ 

ing it by (X, we have dl/d6 ^ (Xl. If 5d be small, we have approximately 

8l^l(X.8B and l-^dh^ I {l-\-(X86); 81^01 if I and 86 are each unity, 

therefore (X is approximately the increase per unit length of the bar for one 

degree rise in temperature. 

Similarly, if A be the area of a lamina of the same material at tempera¬ 

ture 6, and if 8A be the increase of area when the temperature is raised by 

an amount 86, dA/Ad6 is the coefficient of superficial expansion. It is 

approximately the increase per unit area for one degree rise of temperature. 

If the lamina be a square of side I, A and we have 

I dA I ^,dl 2 dl 
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Therefore the coefficient of superficial expansion is twice the coefficient of 

linear expansion. 

Again, if Fbe the volume of a quantity of the material at temperature 6, 

and if be the increase of volume due to a rise h6 in temperature, 

dV/VdS is the coefficient of cubical expansion. It is approximately the 

increase per unit volume for one degree rise of temperature. If the volume 

be a cube of side Z, F and 

1 dV 1 dl 8 dl 

V dd F dB I dB* 

Therefore the coefficient of cubical expansion is three times the coefficient 

of linear expansion. 

Example, A gramme of water (of which the volume at 4''C. is 1 c.c.) 

occupies at temperature d®C. a volume c.c. where A; is a small 

numerical constant; find the coefficient of expansion at 0°C. and at 30‘'C. 

Since F = 1 + Zr fd — 4)®, we have 

dV 

dB 
1 dV 

2hiB-^) and 
2h{B-4) 

When ^ 0, this is equal to — 8Z.y(l + 16Z;). When B *= 10, this is equal 

to 12Z;/(1-1-36Z:). Neglecting squares and higher powers of k, these results 

become ~8Z; and 12Z; respectively. 

Coefficient of elasticity of volume of a fluid. 

Again, suppose that a quantity of a fluid of unit mass changes so that the 

volume f? is a definite function of the intensity of pressure p. An increase 

of pressure dp will produce a decrease of volume 5f>; —is called the 

mean compression. The ratio of the increase of pressure to the mean com¬ 

pression, i.e. tends, as to a limiting value —vdp/dVy and 

this is defined as the elasticity of volume of the fluid. 

If a gas expands at constant temperature, then, by Boyle's Law, pv = k, 

Difierentiating this equation with respect to r, we obtain 

p4-r = 0, whence ~ 
^ dv ' dv 

i.e. the elasticity is equal to the intensity of pressure p. 

If a gas expands adiabatically, then pv"^ ■= a constant k. Differentiating 

with respect to v, wo have 

dp 
whence, dividing by we obtain - v -f- = yp, 

(iv 

i. e. the elasticity is equal to yp. 
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Examples XIII. 

1. /If the Bide of a square can be measured accurateljr to inch, find 
the possible error in the area of a square whose side is measured to 
be 15 inches. 

2. 'If the diameter of a sphere can be measured to inch, find the possible 
error in (ij the volume, (ii) the superficial area, when the diameter is 
found to be 20 inches. 

S. Find the possible error in the area of a circle whose circumference is 
measured and found to be 56 inches with a possible error of inch. 

4. A given quantity of metal is to be cast into the form of a cylinder of 
radius 4 inches and height 15 inches; if the radius is made inch 
too small, what will be the difference in the height ? 

5. Twenty-seven cubic feet of material are to be put in the form of a cube; 
if there is ’1 cubic foot short, what will the length of the edge of the 
cube be ? 

6. A square plot of ground is to be measured out with an area of 900 square 
yards. What error in the length of the side will make the area 
1 square yard too much ? 

7. The diameter of a sphere can be measured to i^^ch; find the per* 
centage error in (i) the volume, (ii) the area of the surface of the 
sphere. 

8. Two sides and the included angle of a triangle are measured as 80 inches, 
40 inches, and 60° respectively; if an error of ^ inch is made in 
measuring the first side, what will be the resulting error in (i) the area 
of the triangle, (ii) the length of the third side, when calculated from 
those values ? 

0. The side c of a triangle is calculated from the formula 

c* = -f 5* ~ 2 a5 cos C; 

find the percentage error in the value of c due to an error of 1 per cent, 
in the value of a. 

10. Four rods, each 15 inches long, are joined together to form a square. 
If two opposite corners are pressed towards each other until their 
distance apart is just 21 inches, how far apart will the other two 
corners then be? 

11. A ladder 50 feet long rests with its upper end against a vertical wall 
and its lower end on the ground 14 feet from the wall; if the lower 
end is pulled a distance of 3 inches further from the wall, how far will 
the upper end descend ? 

12. The pressure p and volume v of a given mass of gas at constant 
temperature are connected by the relation pv=^k; if the pressure 
of 10 cubic feet of the gas be 14 lb. weight per square inch, find 
(i) the pressure when the volume is reduced to 9’9 cubic feet; (ii) what 
change of volume will increase the pressure to 14*2 lb. per square inch. 

13. The distances x and x\ from a lens of focal length /, of a point on the 
axis of the lens and of its image are connected by the relation 
l/x+ Xjx* *» 1//; find the magnification of a small object in the direc¬ 
tion of the axis if a?' = 1 foot when a? = 4 inches. 

14. The value of g is calculated to be 32*2 from the formula t =«27rV^(Z/g) 
where t is the time of oscillation of a pendulum of length I; if an error 
of 1 per cent, is made in measuring find (i) the actual error, (ii) the 
percentage error in the value of p. 
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16. Find the change in the time of oscillation of a pendulum if its length 
be increased 1 per cent. Find also how much it will lose per day, if it 
originally kept correct time. 

16. Find the change in the time of oscillation, and the number of seconds 
gained or lost per week, if a pendulum, which keeps correct time in 
a jdace where g «= 32’2, is removed to a place where g = 32‘1. 

17. A formula for the variation of electrical resistance 72 of a platinum 
wire with the temperature S is 72= 74 (1 -f + hO^) where 72^, a and h are 
constants; find the increase of resistance due to a given small rise of 
temperature. 

18. With the data of the example in Art. 38, find the coefficient of 
expansion of water at 9 ’C. 

19. The coefficient of expansion of a bar of metal is '00003; find the 
increase in the length of a bar originally 10 yards long, when its 
temperature is raised TC, 

20. Twenty cubic feet of air at atmospheric pressure are compressed to 
a volume of 5 cubic feet; find the greatest cubical elasticity when 
the expansion follows (i) the law pv = k, (iij the law =» k» 



CHAPTEK IV 

DIFFERENTIATION OF SIMPLE TRIGONOMETRICAL 

FUNCTIONS 

39. Differential coefficient of sin x. 

This can be obtained either analytically, by the method of Art. 26, 

which involves the use of either the ^addition formulae* or the 

^product formulae* of trigonometry, or geometrically. The latter 

method involves merely the simplest ideas and properties of the 

trigonometrical ratios, and we will therefore consider it first. 

(i) Geometrically. Let AOP (Fig. 43) be an angle of radian 

measure x at the centre 0 of a circle of radius r; and let AOQ be 

an angle so that POQ is the increase h in x. Let PJf, QN 

be drawn perpendicular to OA, PL perpendicular to QN^ and PB 
parallel to the positive direction of the axis of x. 

Then sin a? = HfP/r, sin (a; + ^) = NQ/r; 

the increase in sinx = (A^Q—ilfP)/r = LQ/r, 

the increase in sin ^ LQ 
the increase in a; ^ r.h^ arc PQ 

chord PQ arc PQ ^ arc PQ 
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As 0, Q moves indefinitely near to P; the limiting position 

of QP is the tangent at P, and the limit of the angle HPQ is the 

angle X2T which the tangent at P makes with the positive direc¬ 

tion of the axis of x, i.e. + 

Therefore sin IIPQ tends to the limit sin (i tt + a:), and [Art. 13 (10)] 

the ratio chord PQ/mc PQ tends to the limit 1. 

,, , . T increa 
the d. c. of Bin 5? = I l - 

increase in sin x 
increase in x 

= sin(|7r + a;) x 1 == cos a;. 

In figure (a) the angle x is taken less than but by drawing 

figures for the other cases (b), it is easily seen that, with the usual 

conventions of sign and supposing the angle between PH and PQ 
to be always measured in the positive direction from P//, this angle 

always tends to the limit as ^—>0, and the above reasoning 

always holds. 

(ii) Analytically. Let y = sin x^ and let x be measured in radians. 

If X is increased to ic + A, y becomes sin (x -f h). 

, 6 ?/ = sin (x + Ji)—sin re = 2 cos (a; -f ^ h) sin | h (Product formula). 

by 2cos(a;+i/i)sin , ,,, sini/i 

as /i —» 0, the first factor —► cos x and the second factor —► 1. 

. T ^ 
dx 

h-*0 

= COS ax. 

Or we may proceed as follows : 

5 sin (a: -f k) ~ sin x ^ sin x cos + cos x sin k— sin x (Addition formula). 

■»= cos a? sin ^ — sin a; (1 — cos h); 

* by Binh . l—cos/j 
•• ^ = —-.in*—; 

.% “ «= the limit of this when h-^0 
dx 

■= cosa7x 1-siniTx 0 [Art, 13 (10)] 

«= cos X, 

The student must notice carefully that the d. c. of sin mx (where 

m is a constant) is not cosma:, but, by the rule of Art. 34, cos mxxm, 

L e. the d. c. of sin mx i$ m cos mx, 

e.g. the d. c. of sin 2a; = 2cos2a;, 

the d.o. of du|a; = i cobx. 
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40. DifTerential ooe£3oient of cos x 

This may be found by exactly the same methods as the d. c. of 

sin a;. Since cos a? decreases from +1 to -—I as a? increases from 

0 to TT, it is evident that for such values of x, its d. c. will be negative 

(Art. 25). 

(i) Geometricalhj, Fj om Figure 43 we have 

cos X = OMfr^ cos {x + h) = ON/r; 

the increase in cos a; = 

^-NMIr=^-LFIr; 

the increase in cos x LP . PL 
the incj ease in x 

+_ 
rh arc FQ’ 

PL 

Since .XP= +PZ, 

As before, when h - 

factor —> 1. 

chord PQ 

^ chord PQ arc PQ 

chord PQ 
- cosEPQ X-— . 

arc PQ 

► 0, the angle HPQ —> + and the second 

the d. c. of cos x — cos (\tt-]-x}x1 = — sin a;. 

(ii) Analytically. 

Proceeding exactly as in the case of sin Xy we get 

|^ = sin(a!+i70x - 
sin I h 

As Ji —» 0, the first factor tends to the limit sin x and the second 

to the limit — 1; therefore dy/dx = — sin and by the general 

rule of Art. 84, it follows that 

the d. c, of cos mx = — m 5m mx. 

If the angle x be measured in degrees instead of in circular measure, 

these differential coefficients take a less simple form, an inconvenient 

numerical factor being introduced. 

For, in that case, the radian measure of 

•*. since Lt sin 6/B as d measured in radians 0, 

we have 
L 

sin 

t :foLt 

sin h° 

l«u Tvh 180 "" 
1, 

and hence the differential coefficients of sin x° and cos a;® are cos x* 

and — jJ^TTsinx®, respectively. 

41. Differential coeflcient of tan x. 

(i) Geometrically. In Fig. 43, let OQ produced meet ilfP produced 

in jS. 
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Then tan x = MPIOM, and tan = MBIOM; 

.the increase in tan x = (MR—MP)/OM = TBfOM = Fll/r cos x. 

the increase in tan x ^ PB _ 1 PB 
the increase in a; ^ rh cos x ~~ cos x arc PQ 

PB PQ 
= seca; x — x —^ ; 

PQ arc PQ 

Now the angle PQB-^^^tt as 7j —> 0 ; therefore the triangles PQB 
&nd LQPsltq ultimately similar, SLudPB/PQ-^PQ/LQy i.e. cosec UPQ, 
which —> cosec (i 77 + ic); 

the d. c, of tan x = sec x x cosec (| t: -|- a:) x 1 

= sec a; X sec x = sec^ x. 

(ii) Analytically. 

Let y = tanar. If x is increased to a:-f 7^, y becomes tan {x^- li) ; 

hy tan (a; + 7i) — tan x = 
sin {x 4- h) 
cos {x + h) 

sin x 
cosx 

sin (a;4-7t)cosa;—sina; cos (a;"f7i) 

cos (x + 7j) cos X 

sin (a;-f-71—a?) sinh 

cos (x + A) cos X ^ cos (x -f h) cos x ’ 

dy __ sin A 1 

* ' bx h COB (x + h) cosx 

As A —> 0, the first factor —> 1, and the second —► 1/cosa;. cos as. 

• *. the d. c. of tanx = 1/cos^ x = sec^x. 

This is always +, whatever be the value of x ; therefore tan x 
always increases as x increases (except as it passes through its points 

of discontinuity, and then by/bx does not tend to a finite limit) as 

is obvious from its graph. Geometrically, the tangent to the graph 

always makes an acute angle with the axis of x. 
From Art. 34, the d. c. of tan mx = m sec^ mx. 

42. Differential coefficients of other circular functions. 

The differential coefficients of cot a?, sec a;, and cosec a; can be 

obtained in a similar manner to those of sin a:, cos a?, and tan x, by 

either of the preceding methods. 

It should be noticed that, from the d. c. of sin a?, the d. c.’s of all 

the other circular functions can easily be deduced by the aid of the 

general rules of the last chapter: 
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We have 

d. c. of sill X = cos X. 

d. c. of co&x, i.e. of sin (JTT + a:), = cos(J 7r + a^) X 1 [Art. 34] 

= —sin a?. 

d. c. of tan:r, i.e. of 
sin X 
cos a;’ 

cos a; X cos rr—sin a; X (—sin O’) 

cos^x 
[Art. 33] 

cos-a^ + sin^a; 1 „ 
c=--—_ = sec'^o:. 

COS^ X COS"' X 

d. c. of cotic, i. e. of 
cos a; __ sinxx — sinx—cosa:x cosa; 

sin X ’ sin*^ x 

—sin^a:—cos^a; 

[Art. 33] 

sin-^a: 
=-= — cosec"^ic. 

siir X 

- f* • I sm X 
d. c. of seeX. 1.e. of -j =-:— X — smx [Art. 34) = —^ 

cos a; cos* a? cos"'a; 

= sec X tan x, 

•L c. of cosec X. i.e. of xcosx [Art. 34] 
sin a: Silica? 

cos a; . 
=-rr- = — cosec X COt X. 

Bin^x 

48. Application to numerical examples. 

We have now found the rates at which all the circular functions 

are changing for any value of Xf and will apply them to numerical 

examples. 

Ex. (i). To find the value of sec GO'’ 1'. 

From elementary geometry, sec 60° = 2, and it has just been 
shown that the d. c. of sec a; is sec a; tana;. Therefore (Art. 24) if x 
is increased by a very small amount, sec x will increase by approxi¬ 
mately sec X tan x times as much ; hence, if x be 60° and if it 
increase by 1', i. e. in radian measure tt/IOSOO, which is small, 
the secant will increase by sec 60° tan 60°x'1^/10800, i.e. by 
2 X V'S X 7r/10800, which works out to ’001008 nearly ; 

sec 60° 1' = 2’001008 approximately. 

(ii) To find the value of cos 185° 1'. 

From geometry, cos 135° = —1/^2. The d. c. of cos a; = — sin x, 
and therefore if x increases by a very small amount, cosic will 
decrease by approximately sin a? times as much. Hence if x be 
increased from 135° to 185° 1', cos a; will decrease by sin 185° X the 
radian measure of 1', i.e. by 1/V^2xtt/IOSOO nearly; this works 
out to *0002057. 

.% cos 135° 1' = - l/i/2--0002067 = --7073125. 
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(iii) The height of a tower is calculated from its observed elevation at 
a point which is a measured distance from its base in the horizontal plane 
upon which it stands. If this distance is 450 feet^ and the elevation is 
observed as 35° 80', find the approximate emr in the height due to 
error of h' in the angle of elevation. 

Taking general values 0 and h for the elevation and height, 
which are being varied, we have 

h = 450 tan d, and therefore dhfdO = 450sec^ d; 

hence a small increase in the value of 0 produces an increase of 
approximately 450 sec^ $ times as much in the value of h. 

In the example given, 6 = 35° 30', and the error in d = 5' = 7r/2160 
in radian measure. 

• the resulting error in the height of the tower 

= TT X 450 sec^ 35° 30' approximately. 

Evaluating this by logarithms, we get *9875, i.e. the error in the 
height of the tower is nearly *9875 of a foot. 

44. Application of general rules to trigonometrical functions. 

By the aid of the differential coefficients of sin z, cos Xj and tan Zf 
together with the general rules for differentiating products, quotients, 

and functions of a function, many other differential coefficients can 

be at once written down. The following are typical examples: 

The d. c. of x^sina; = cos z + nz^~^ sin a; (Art. 30) 
„ cos(a —2;r) =--sin(a—20?) xd. c. of a —2a; (Art. 34) 

= 2 sin (a —2a;). 

,, „ sin^ a; = 4 sin* a; X d. c. of sin z (Art. 34) = 4 siir^o; cos x. 
„ „ tan” X = n tan”~^ a? x d. c. of tan x = n tan”“^ x sec^ z. 

f9 

t9 

99 

JT 

If 

99 

sin^ z 

coax 

cos X. 2 sin a;co8 x — sin^o* (— 

cos- X 

sinx), ^ 
-^(Arts. 33,34) 

sin a; (cos^ a? 4-1) BS- - ---- 
COS-^ X 

cosec^ X, i. e. of (sin x)~*, = — 4 (sin a;)”^ x cos x (Art. 34) 
= — 4 COS a;/sin® x. 

sin” mx = n sin”'^ ma; x d. c. of sin mx (Art. 34) 
= n 8m^~‘^mx x m cos mx. 

Examples XIV. 

Differentiate with respect to x: 

1. sin 5a?, sinja?, sin (na?~a:), cosaa:, cos(a?/p), cos(j7r —2a?). 

2. tan 3a?, tan (a: + a). 8. cotma?, cot (a —2a?). 

4. sec ma?, 8ec(j7r + a;). 6. cosec ma?, cosec (/S-^ a?), 

e. 8in*a?, sin^a?. 7. cos®a?, cos’^a?. 8. Vasina?. 

0. cosec®a?. 10. -v^coseca?. 11. 

12. aec^x. 18. 14. sin® 2a?« 
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15. co%^ax, 10. tan^3ar. 17. cof^lx, 

18. Bin 3 a?. 10. a;" cos a:. 20. v^ar.tana?. 

21. (sin2a:)/a;*. 22. sin3a?co84ar. 23. sinwa?coswa?. 

24. sin a? tan a?. 26. sin^a? tan a?. 26. (a + b sin a?)^ 

27. \/(3-f 4cos a?). 28. sin a? —J sin*a?. 20. tan a? *f J tan* a:. 

3 + 4 sin a? a — h cos a? 1 + tan x 
80. Z—0-:- 31. -, * S2. .  - 

4 + 3 sin a: a + n cos a? 1 — tan x 

83, sin®a?/(l ^ sin a?). 34. sin 2 a: co.'>‘a:. 35. sin**a: cos*a?. 

86. sin a?/cos*a?. 37. 8in”*a? cos^a?. 88. sin”*aa? cos” ia?. 

30. a?”tan”*aa?. 

Find dijldx in the following cases: 

40. sin ma? —cos ny = c. 41. sin*a:+ C08*y = o*. 

42. sin a? cos y ^ c. 43. y tan y = a?. 

Obtain, by the aid of the d. c.^s of the circular functions, the approximate 
values of: 

44. cos60°r. 45. sin 120°2'. 46. tan 45°!'. 

47. cot 135° 3'. 48. \/Hin60°5'. 49. ^tanl35°25 

60. cosec* 30° 2'. 61. sin* 29° 57'. 

62. The width of a river is calculated from the elevation, at a point on one 
bank, of a tree 50 ft. high on the opposite bank; find the approximate 
error in the width due to an error of 5' in the angle, which is observed 
as 18°. 

63. Two sides of a triangle are 20 ft. and 40 ft. and the included angle is 30°; 
if the angle be increased by 2', find the resulting increase in the length 
of the third side. 

64. In the preceding question, find the resulting increase in the area of the 
triangle. 

65. The side a of a triangle is calculated from the values h == 30, i?==70°, 
A = 42°; find the error in a due to an error of 15' in A. 

66. The angle ^ of a triangle is calculated from the values a «= 70, 5 = 90, 
B = 65°; find (i) the actual error, (ii) the percentage error due to an 
error of *2° in B. 

67. The area of a triangle is calculated from the observed values of 5, c, ^ ; 
find the relative error due to a known error 5,4 in the value of A. 

58. If x° be the reading of a tangent galvanometer when a current y passes 
through it, y = C tan x, where C is a constant; find (i) the error, (ii) the 
percentage error in the value of the current due to an error of ^° in the 
reading when x = 45”. 

69. The distance of a boat at sea is calculated from its angle of depression 
15°, observed at the top of a cliff 120 ft. high; find the error in the 
distance if the angle be too small. 

CO. The height of a tower is calculated from its angles of elevation 35° and 
28°, observed at two points 150 ft. apart in a horizontal straight lino 
through its base. If the former measurement is found to be out, 
what will be the resulting error in the calculated height ? 

Miscellaneous examples for practice in differentiation. XV. 

Find the differential coefficients of the following functions of x: 

1. ix-S)\ 2. (7-0?)*. 8. v^(l-x*). 

4. a?* (I -«)»• 6. I/V'iar*~3a:-2). ©. 1/(5^lx)\ 

IMS H 
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7. l/^ix' + l). 

X 

13. ^{{i:-x‘)/x]. 

10. a? —tana;. 

10. (tana;)/a;. 

22. A/x/^inx, 
25. sin a/x, 

28. v^(8in a?/a;). 

SI. sinv^a;. /x, 
84. a;/v^Binx. 

87. (%inA/x)/a/x. 

40. sec (a;/a). 

43. a;”*/(a-“a;)”. 

40. ./(a"-a:"). 

49. sin 3(a-a;). 

62. (a? COB 2 a;)^ 

65. (cos*2a;)/a;^ 

68. arVcos*2a;. 

01. (l~co8 2a;)^ 

64. ' 

6. a?V'(4~x*). 

67. 

1 4- 8in”a; 

, 1 +sin*a? 

70, 

1 — sin’a? 

1 4- sin a; 
• Vf^ ^ 1 — 6 

70. sin^a; cos 3a;. 

70. sin*a; cos®a;. 

sin 3 a; 
82. -5— • 

COB® a; 

cos 3 a: 
86. 

sm 3a; 

88. sin 3 a: cos® 3 a?. 

sin 3 a; 
01. 

04. 

cos® 3 a: 

sin® 3 a? 

COS 3 a: 

07. sin®a: cos® 3a;. 

100. cos®a;Bin®3a:. 

108. sin® a; sin 3 a:. 

11. 

14. sin® (a?—a). 
17. a; tan a?. 
20. sin a: COS®a:. 

23. (8ina;)/V'a?. 
20. v^(a:sina;). 

20. x/^xha/x* 

82. a:Vasina?. 
35. Va:. sin v^a:. 
88. 2a?V^(l—a:). 

41. sec (a/a;). 
44. {a-xY/x^. 
47. Ay{a~x)\ 

60. sin (a —a;)®. 
63. a;*/c08 2a:. 
60. a: COS* 2a:. 

69. a:/co8*2a:. 
62. (a 4-& sin*a;)"*. 

/ a: 
05. f a 4 5 sin ^ j • 

1 4-sin* 2a? 
08. 

1 — gin* 2a: 

- 

(a:-3)(a: + 2) 

(x4-3) (x-2) 

77. sin 3a: cos®a:. 

Bin®a? 
80. 

74. 

COB 3 a: 

83. 
sin 3a: 

80. -5-- 
C08®a: 

89. cos 3 a: sin® 3 a;. 

cos® 3a: 
02. ; Q A 

Sin 3a: 

05. 

08. 

101. 

104. 

sin® 3 a: 

COS® 3 a? 

sin® a: 

cos* 3 a? 

cos®:^ 

sin® 3 a? 

sin® a; 

sinSa? 

0. 

15. COS "Jar. 

18. a:/tana?. 

21. a/X , sin a?. 

24. y^sina;. 

27. X sin 4/X. 

80. j/{xl^mx), 

S3. 'V^(8in a:)/a:. 

SO. y^aj/sin V'a:. 

SO. (sec a:)/a. 

42. a?^(a-a;)”. 

46. .C/(a-a:). 

48. sin*(a —a;). 

61. a:* cos 2 a:. 

64. (cos* 2 a;)/a:. 

67. (cos 2 ar)/a:*. 

00. y'(l-f 8in*2x). 

03. ^(1 + cosw.r). 

1 4- sin 2a: 
1 — sin 2 a? 

1 ^ 

x+Vi^T^)' 

a:* —3a: 4-5 

60. 

60. 

72. 

76 

a:* + 5a: —3 

X 

A/{2ax-x'^) 

78. sin 3 a? cos 3a?. 

cos 3 a? 
81. 

64. 

87. 

Bin®a: 

sin 8 a? 

cos 3a? 

COB® a? 

sin“a? 

00. Bin®3a?cos®3as, 

cos 3 a; 
03. 

96. 

00. 

102. 

105. 

sin® 3a? 

cos® 3 a? 

sin® 3 a?’ 

cos® 3 a? 
---- • 

8m®a? 

sin* 3 a: 

cos® a? 

sin 3 a? 
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100. co8*arco8 3aj. 

109. sin a? sin* 3a?. 

112. cos a? cos* 3 ar. 

115. sin a? cos* 3 a;. 

118. cosajsin* 3a;. 

121. a;* V^(a* —a;*). 

124. a;*v^(a^ —a;*). 

127. a;"(a*-a'y*. 

130. 

133. 

136. 

(1+^^ 

(1 + 2a;)* 

l-2a; 

(l + 3a;/ 

(l-fa;^)\ 

i —x^ 

/a —a;\" 

■ 
142. a;^/(3-4a;4-2x*). 

146. (l + a;)/v'(2a; + a;*). 

148. a;” sin” a?. 

107. 

no. 

118. 

no. 

119. 

122. 
125. 

128. 

181. 

134 

187. 

cos 3a; 

sin a; 

sin* 3 a; 

cos a; 

108. 

111. 

cos 3 a; 
—-— • 
cos a; 

sin* 3 a; 

sin a; 

cos* 3 X 

cos* 3 a; 
114.-• 

cos X 

sin a; cos* 3a; 
117 

cos* 3 a; 
JLX i « . " • 

sin a; 

cos a; sin* 3 a; 
120 - £ w 

sin* 3 a; cos X 

V' (a* - a;*)/a;*. 123. x’/v/(o’- a:*)- 

120. x’(a’-x’)". 

(l+x)’ 
129. y. 

l-f-2a; \ 1 f-2a;/ 

(l_-a;)\ 
133. 

(1 -fa;)* (2-x)’ 

{a-xf l+x* 
135. Ti;-• 

(a + x)* (l-a;^ 

a*-a;* /fl* —a;^ 1 

(a^ + a^f’ [aU-x^J ' 

{a-xfib-xf. 141. (a*-a;*)" (5*--a;*)". 

x{B-ix+2x>f>\ 144. y(3-4a; + 2ar^)/a;. 

X* V^(3 — 4a: + 2x’). 147. a;Y-v^(3~4x +2a;*). 

x" sin’ nx. 160. x^Bm^nx, 



CHAPTER V 

GEOMETRICAL APPLICATIONS OF THE DIFFERENTIAL 

COEFFICIENT 

45. Direction of tangent. 

It has been shown (Art. 23) that if the tangent at any point (5?, y) 

of a curve, whose equation is ^ = /(x), makes an angle xj/ with the 

positive direction of the axis of ar, then the value of dy/dx at that 

point is equal to tan xj/. This is the starting-point of many applica¬ 

tions of the calculus to geometry. 

Examples ; 

(i) Find the inclination to the axis of x of the tangent at the point (2, 4) to 

the curve y -= x/(l + x^). 

dy ^ (1+x^)’-x >2x ^ l-iT® 

dx~^ 

at the point (2, 4), this -» -3/5® ■= -*12; 

.•. tan\/^=*—T2, and 173*^9'. 

The tangent makes an angle of 173° 9' with the positive direction of the 

axis of X. 

(ii) Find the direction of the tangent at (3, 2) to the curve x^-f y" = 35. 

In this case, differentiating the equation as it stands with respect to x 

(Art. 36), we have + Sy’dy/dx = 0; 

dyjdx « which at the point (3, 2) becomes -J. 

tan - J - 2-25, and xj^ = 113° 58'. 

The tangent makes an angle of 113° 58' with the positive direction of the 

axis of X. 

If a curve passes through the origin, the value of dy/dx there 

gives the form of the curve at the origin. 

For instance, in example (i), when a:== 0, dy/dx ^ 1; tan>/^ «= 1 

and «= 45°; the tangent to the curve at the origin bisects the angle 

between the axes. 

In the curve y = a:®/(l +x% 

dy {l-\-x’^)2x—x^ *2x 2x 

di “ 

at the origin, dy/dx » 0 and ^ es 0; the curve touches the axis of x 

at the origin. 
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In the curve y -f a;®), 

dy (1 4 x^) pj 0?“^/® - a;®/’. 2 x 
dx ^ (i 4^®)® 

“ ‘iV3(l+:c*)2 

_ 2-4x® 
^^xy^{l-¥c(^f' 

As a?->0, this -> oo and hence 90"*; the curve touches the axis of y 

at the origin. 

46. Equation of tangent to a curve at any point. 

The fact that dy/dx=i2ia enables us to find at once the equation 

of the tangent to a given curve at a given point. 

Let the tangent at tlie point P(a:, y) of a curve cut the axis of x 

in T (Fig. 44), and let (X, 1^) be the coordinates of any other point 

Q on the tangent. Draw the ordinates PM and QN, and draw PK 

perpendicular to QN, 

Then KQJPK = tan KPQ = tan NTP = tan = dy/dx 

and KQ = T-y, PK^ X-x; 

T-y dy , /xr 
/. 1*®* Y'-y = (X-‘X)y 

Z—a? dx I 

This equation is quite general, and gives the equation of the 

tangent at any point to any curve whose equation is known ; (x^ y) 

are the coordinates of the point of contact, and the value of dy/dx 

is obtained by differentiating the equation of the curve and sub¬ 

stituting in the result the values of x and y. 



103 GEOMETRICAL APPLICATIONS OF 

Examples: 

(i) Find the equation of the tangent to y* ■= x** at the point (8, 4). 

Differentiating, we have ^y^dy/dx == 2x\ 

. .. dy 2x 16 1 
• ‘It the point (8, 4) = _ = 

. the equation of the tangent is 

r-4 = (A-8)^, 

i.e. X-3r+4 = 0: 
or, using the ordinary notation, since x and y are no longer required for 

the point of contact, a; — 3y-4 4 == 0. 

(ii) Find the equation of the tangent to the ellipse xVa®4 y^/b‘‘^ 

point (x, y) on the cu7re. 

Differentiating, _ a 

dyjdx^ —Fx/a^y, 

and the equation of the tangent is 

(X- 
yx 
) -o- • ay 

1. e. a^yY~ aV •« — h^xX+ 

h^xX + o^yY ■* + a^y'^; 

Yy x^ 

** a* 

This is the required equation in its simplest form, 

dividing by 
Xx 
—i" . 

r.9 ^ d* 
1. 

Xx Yy 
1. 

1 at any 

(iii) Fmd the equation of the tangent to the circle 

x> + y*~3x + 4y-31«0 

at the point (- 2, 3). 

Differentiating the equation as it stands with respect to x, 

2x + 2y^^ -3 + 4^? -0. 
^ dx dx 

at the point ( — 2, 3), 

-4 + 6 — - 3 + 4 0, whence 10 * 7. 
dx dx dx 

Hence the equation of the tangent ia 

y-3 ■= (x + 2)^%, 

i.e. 7x-10y+44 = 0. 

The next two examples show how geometrical properties of a curve 
may be deduced. 
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(iv) Find the equation of the tangent to the parabola y* = 4ax (p. 17) at 

any point on the curve^ and prove that if the tangent at P (Fig. 45) meets the 

axis in T, and PN he the ordinate of P, then T N are eqveidistant from 

the vertex A of the parabola^ u e, AT = AN. 

Differentiating the equation y'^ = iax with respect to x, we have 

2y dy/dx — 4a, i. e. dy/dx = 2a/y; 

hence the equation of the tangent is 

Y-y = {X~x)2a/y, 

i. e. 5* 2aX—2aa?; 

Yy ■» 2aX-‘2ax->rif « 2aX-2ax-i^iax *» 2a(X'+a;). 

This is the equation of the tangent FT. 

Where this cuts the axis of ar, F — 0; 0 « 2 a (Z + x); 

X, i.e. Air- -X- -AN. 

Hence A is the middle point of TN always. 

(v) Find the equation of the tangent to the hyperbola xy = c* (p. 21) at any 

point on the curve, and shoic 

(a) that the portion of the tangent between the asymptotes is bisected at the 

point of contact; 

(h) that the tangent cuts off from the asymptotes a triangle of constant area. 

Differentiating the equation xy =* c’ with respect to x, we have 

xdyldx-\ y = 0, i.e. dy/dx « -y/^» 

*•. the equation of the tangent is 

r-y--(X-x)y/x. 
Xy+rx — 2xy. 

dividing by xy, X/x+ Y/y — 2. 

Let the tangent at P (Fig. 46) cut the axes in L and K, and let PN be the 

ordinate of P. 

Where the tangent cuts the axis of x, F — 0; .*• X/x ■« 2, 

i.e. X (which is OL) ■* 2x (which is ON), so that OL — 2ON, 

,% KL * 2 AT, and P is the middle point of KL, 
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Again, where the tangent cuts the axis of y, X ■« 0; 

Y/y = 2, i.e. Y (which is OK) = 2y. 

Now area of triangle KOL *= ^ OK, Oh * \ ,2y ,2x ^ 2xy == 2c*, which 
is constant for all positions of the point P. 

47. Equation of normal to a curve at any point. 

The normal at a point is the perpendicular to tho tangent through 

the point of contact; its equation can ])e found in tho same way as 

the equation of the tangent. 

Let the normal at P{x^ y) meet the axis of a; in (7 (Fig. 47), and 

let (X, Y) be the coordinates of any point § on the normal. Draw 

PK perpendicular to the ordinate of Q. 

Then = tan MPQ = tan XGP 
JL’—x PK 

= tan (-J7r+ ^) = ~cot \// = — 1 

Hence the equation of the normal at (r, y) is 

Examples: 

(i) Find the equation of the normal to the curve 9i* —4y*= 108 at the 

point (4, 3), 

Differentiating with respect to x, ISx’-Sy dyfdx = 0 ; 

dy/dx ■« 18ar/8y «= (at the given point) 72/24 = 3; 

the equation of the normal is X-44 (F-Sj 3 « 0; 
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or, using the ordinary letters, now that x and y are no longer required 
to denote the coordinates of the point of contact, 

x-¥^y ^ 13. 

There is of course no need to use the general formulae for the equations 
of the tangent and normal; in any particular example, the numerical value 
of dy/dx at the given point can be obtained as in Art. 45, and then by 
drawing a figure as in this or the preceding article, the required equation 
can be written down at once. 

(ii) Findfhe equation of (lie normal at any point of the ellipse xYa^ + y^/b’ 1, 
and prove that if the normal at P (Fig. 48) meets the axis CA in G, and PN he 

the ordinate of P, then CG =* e^CN, where e is the eccentricity of the ellipse 

(p. 19). 

From Art. 46, Ex. (ii) dy/dx =* — 

equation of normal is 

i. e# Xa’^y — a^xy — Yh’^x + h'^xy — 0; 

dividing hj xrjy -= - 5*. 
X y 

This is the equation of the normal at any point (x, y). 

Where this cuts the axis of x, i.e. at (7, F *= 0 and X « CQ \ 

and X - a; = ; 

i.e. CG = e’‘CN. 

Examples XVI. 

Find the inclinations to the axis of x of the tangents to the following 
curves: 

1. 2y + 7 at (3, 10). 2. y - 6.r/(x®-l) at (2, 4). 

8. >» 17 at (-2, 1). 4. y = sin^a; at (Jtt, }). 
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Find the equations of the tangents and normals to the following curves: 
6. y = —4^? +5 at (3, 11). 0. y at (2,4). 
7. —20 at (—4, —2). 8. + y'y «= 5 at (9,4). 
9. + By** = 18 at (3,1). 10. ar^-f y’~4a?~2y + 1 = 0 at (2,-1). 

11. Find the equation of the tangent to the hyperbola x^/a^-y'^jh’^ 1 at 
any point {x, y) on the curve. 

12. Find the equation of the tangent to a:* + y“ + 2ya: + 2/y+ c «s 0 at any 
point {x, y) on the curve. 

18. Find the points where the tangent to y = a?* - 12a?+ 4 is parallel to the 
axis of X, 

14. Find the points where the tangent to y o*j?/(fl^ + a?®) is parallel to the 
axis of X, 

15. At what point of y*-fa‘ = a.T will the tangent be inclined at 45” to 
the axis of rr? 

16. At what points of the circle a?^4-y^ = 25 is the tangent parallel to the 
straight line 4a: = 3y ? 

17. Prove that the curves y = a?** and 6y = V — a?® intersect at right angles 
at the point (1, 1). 

18. Find the angle of intersection of the curves xij == 6, xhj = 12. 
19. At what angle do the parabolas — 8a;, a?* = 4y— 12 intersect? 
20. Find the angle at which the circles a?* + y* = 16 and a'* + y’‘ = 6:» 

intersect. 
21. Show that the ellipse + and the hyperbola a;*~y® = 8 

intersect at right angles, 
22. Find the equation of the tangent at any point of the curve x’^^^ -f yV^ = a®/*, 

and show that the portion of the tangent intercepted between the axes 
is of constant length. 

23. Prove that the tangent at any point of the curve Vx-\-Vy — Va makes 
on the axes two intercepts whose sum is constant. 

24. Show that at not more than n — 1 points can tangents to 
y « ax'* + ta?"-* + + A; 

be parallel to a given direction. 
26. The tangent at any point P of the curve y — o^ cuts the axis of x in P, 

and PA is the ordinate of P, prove that OT — 2TN. 

Find the corresponding result for the curve y = x'*, 

20. Find the equation of the tangent at any point to a?’"y" «= and 
prove that the portion of it intercepted between the axes is divided in 
the ratio m : n at the point of contact. 

27. Prove that the length of the tangent to the hyperbola xy = c® inter¬ 
cepted between the axes is twice the distance of the point of contact 
from the origin. 

28. Find the equation of the tangent to the conic 
aa;® + 2/ia?y + 6y®-f 2ya;+2/y-f c = 0 

at any point. 
29. Find the equation of the tangent at any point to the curve 

y(a;® + y®) = aa;®. 
80. Find the forms of the following curves near the origin : y = a;®/(l —a;*), 

y = a:/(l ~a?®), y* «= x'^/{l - a?®)®. 
81. Prove that, at the origin, the curve y® = a;® touches the axis of a?, 

y® = a? (a?-l){a?-2) touches the axis of y, and y® = a?® (1 - a?®) bisects 
the angle between the axes. 
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82. Prove that the curve y”* + touches the axis of x or the axis of 
y at the origin according as m < or > n. What happens if w « w ? 

88. If the tangent at a point P of an ellipse meet the axes CA and CB in T 
and and if PN, PM be perpendiculars to these axes respectively, 
show that CN, CT = ; CM. Ct = 

84. Find, in terms of x, y, and dy/dx, the inclination of the tangent at any 
point P of a curve to the straight line joining P to the origin. 

86. The tangent at any point P of a curve meets the axes of ic and y in T 
and T\ and the normal at P meets them in N and BT respectively; 
prove that TN/TN' « dy/dx. 

48. Lengths of tangent, normal, subtangont, and subnormal 

If the tangent and normal at a point P (Fig. 49) of a curve meet 

the axis of a? in P and 6r respectively, and if FN be the ordinate 

of P, then NT and NG are called the suhtangcnt and suhnonnal 

Fig. 49. 

respectively, and the lengths of FT and FG are called the lengths 

of the tangent and normal respectively. 

All these lengths can, on drawing a figure, be at once written 

down in terms of y and dy/dx. For Z GFN = Z FTG = x/', and 
NP=^y; 

hence the subnormal NG = y tan ^ y dy/dx ; 

the subtangent NT = y cot x// = 

the normal FQ 

the tangent FT 

The student should not attempt to remember these results, but 

should draw a figure, and obtain from it as above the particular 
results he requires. 
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Examples: 

(i) Prove thatj in the parabola^ the subnormal is constant. 

The simplest form of the equation of a parabola is 1/ ^ iax\ differen¬ 
tiating with respect to x, 2ydy/dx = 4 a ; 

the subnoimal *3 2 a, 

i.e. if in Fig. 10 the normal at Pbe drawn to meet the axis in 

NG <= 2a = 2^.5 » \ the latus rectum (see Ex. II, 20). 

(ii) The tangent at any point P of the cui've y = x“ cuts the axis of x in T, 
and PN is the ordinate of P (Fig. 50) ; prove that OT *= (n “ 1) TN. 

Here the subtangent 

TN a= y cot ^ ^ y j 
dy 1 
dx n n 

ON, 

whence Or= ”-~^.ON = {n-l)TN. 
n * 

49. Further properties of curves. 

The lengths of many other lines connected with a curve can be 

obtained in a similar manner. First the length of the line is 

obtained from the figure in terms of ic, y, and \/r as in the preceding 

article, and then from the fact that tan \jf = dyidx, the value of any 

other ratio of y// can be obtained in terms of y and dy/dx by 

elementary trigonometry. 

For instance, suppose the lengths of the perpendiculars from the 

origin to the tangent and normal are required. Let OF, OZ 
(Fig. 51) be perpendiculars from the origin 0 to the tangent FT and 

normal PG, 

Then OF = OTsin\/^ = (ON'—TN) sin y}/ = (x—ycotypjsinyj/ 
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And OZ = OG cos \l/ = (ON + NG) cos yf/ 

s=: (x-h^ tan \//) cos xj/ = 
x^-y 

dy 
dx 

la particular cases, it is best not to use these general formulae, 
but to draw the curve roughly and work out each case from the 
figure. 

Two examples of a rather more difficult nature than those already given 
are here worked out: 

Ex. (i) In the curve xV^ y^/s _ lenf/ilis of the perpendiculars 

from the origin to the tangent and normal, and if V he the foot of the 

pe)pendicular from the origin 0 to the tangent at P, prove that the locus of 

the middle point Q o/ PV is a circle. 

This curve is a very well known one, and on account of its shape, is named 
the ‘ astroid \ 

B 

Differentiating its equation with respect to x, 

2 2 dy dy 

This is tan \lr, tan iTiY = -tan 

sin PTJV * and cos PIN * 

Draw NIC perpendicular to OF, cutting FG in //. 
Then OF « OA> J3P = ON sin ONE-i- FN cos HFN 

1/^/5 

■~a^ 
. aV® n (axy)y^ 
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Similarly OZ - KN^ HN « ON cos ONK-PN%m NPH 

yV» 

- yB/B) (ar^/B -f y».^) 

“ aVB “ aVB 

=:a’/B (:r^/B~y2/5)^ 

These are the lengths of the i)erpendicular8 from 0 to the tangent and 
normal at P in terms of the coordinates of P. 

Next, if tlie locus of ^ is a circle, it is evident from symmetry that 0 

must be its centre. Therefore, finding tbe length of OQ^ 

OQ'^ = Ojri+rQ^ = OT^ +J OZ^ 

=» {axyY/^-\ —2a:‘/ByVB) 

— J a^/'B [4x‘^/Bf/’/B -+ x'‘/B — 2a:^/By*/B] 

«= J a"/B -I- yB/3J2 ^ J ^2/5 X flp4/5 « J a®. 

Hence OQ =* which is constant, so that the locus of ^ is a circle, 
centre 0 and radius j a. 

Ex. (ii) Find the condition that the curves 

xVa^ + y^/b* a* 1 a)i(l xVa'^ + yB/b'^ — 1 

may cut at Hght angles* 

The value of dyjdx for the first curve is given by the equation 

^ _ . dy ^. 
b'^ dx » * • * 

similarly for the second curve 

dy h'^x 

dx a'^y 

The curves cut orthogonally, i. e. the tangents at their points of inter¬ 
section are at right angles, therefore the angles which these tangents 
make with the axis of x differ by 90°, and the tangent of one ■■ ~ the 
cotangent of the other; 

b^x 

a^y 

a!^y ar* 
~ rrs- > i.e. 

b ^x a^a * 

jL 
b^b'^ (i) 

At the points of intersection, both equations are satisfied; 

j^y -1 1 + 7,'J 

“p) 

xVa'^-a^) 

d^a"^' “ 

•*. substituting the result of equation (i), — = b'^ — b’^. 

Hence the required condition is ■■ a'* - 
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60. Expression of coordinates x and p in terms of a third 

variable. The Cycloid. 

In many cases, instead of finding the equation of a curve as an 

algebraical relation between x and y, it is more convenient to express 

both X and y as functions of some third variable; the equation 

connecting ic and ^ can then be obtained, if required, by eliminating 

this third variable from the two equations given. 

For instance x — acoaO, y = bamO are the coordinates of any 

point of an ellipse whose semi-axes are of lengths a and b. What¬ 

ever value be assigned to d, the point (a cos d, b sin d) is always on 

the eDipse, and the ordinaiy equation of the ellipse is found by 

eliminating d; for x/a = cos d, y/b = sin d, and therefore squaring 

and adding, x^la^-\-y'^lb'^ = 1. 

As a particular case, a; = acosd, y = asind, are general expres¬ 

sions for the coordinates of any point on a circle, radius a and centre 

the origin. 

Similarly, x = am^, y = 2 am, where m is variable, denote the 

coordinates of any point on the parabola y^ = 4 aa;; for, eliminating 

m, we have 

x/a = fw* = tfjia^; .•. = ^.ax \ 

so that, whatever the value of m, the point is on the parabola. 

It is often of advantage to use these forms of the coordinates in 

investigating properties of conics.* 

Again, in the ‘ astroid ’ mentioned in the preceding article, 

if 0? = a cos^ <#>, we obtain, on substituting this in the equation 
a;2/3-j-y2/8 ^ ^2/3^ y ^ asiu^cj)- Ileuce the coordinates of any point 

on this curve are given by the equations 

a; = a cos^ d, y = a sin® d. 

In these examples, the equation between x and y is quite simple, 

but in some cases, although the equations which give x and y in 

terms of the third variable are simple, the equation between x and y 
obtained by elimination is very complicated and most inconvenient 

to work with. 

A good example of this is furnished by the well-known curve 

called the ‘ cycloid \ 

The cycloid. A cycloid is the locus of a point on the circum¬ 

ference of a circle which rolls (without sliding) along a fixed straight 

line ; its equations are obtained at once from a figure. 

* For tho hyporboU, seo £z. XVIL 18. 
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Let a circle, centre 0 (Fig. 53) and radius a, roll along a straight 

line OX ; let P be the position of the tracing point when the radius 

CP has turned through an angle d, starting from the position in 

which P coincides with 0. Therefore the arc jVP ~ the straight 

line NO. 

If (x, y) denote the coordinates of P, referred to 0 as origin and 

OX as axis of Xj then 

X = ON—PM = arc PN—PC sin 0 

= ad—a sin 0 = a(d —sin d) j 

y = NC--MC = a—a cos d = a (l — cosd). 

These two equations constitute the most convenient form of the 

equation of a cycloid.* 

In cases such as this, since x and y are both continuous functions 

of d, a small increase hO in d will produce small increases hx and hy 

in x and y. 

It is evident that 
hy_hy /ox 

hx hd/ Id 

Hence, by Art. 15 (iii), when hQ and therefore also lx and hy—^0^ 

we have 

dy __ dy j dx 

dx^ dd / dd 

In the case of the cycloid, this gives 

dy ^ asind __ 2sin |d cos Jd 

Jx ^ aTl - ccs d) 

* The student should eliminate 9 and obtain the Cartesian equation in order 
to see bow complicated and iuconrenient an equation it is. 
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Referring to Fig. 53, 16 = I Z. FCN = Z TTN) 

d7j/dx = cot FTN= tangent of angle which FT makes with 

the axis of a?, from which it follows that FT is the tangent to the 

cycloid at P, and PiV, being perpendicular to it, is the normal at P. 

This follows at once from the definition of the curve, for, as P 

traces out the curve, its motion is for an instant one of rotation 

about iV", i. e. in direction perpendicular to NP, i. e. along FT, since 

the angle NFT in a somicircle is a right angle. Hence FT is the 

tangent at F, and FN the normal at P. 

Examples XVII. 

Find the lengths of the tangent, normal, subtangent, and subnormal in 
tlie following cases ; 

1. y’* •= 4 (a? + 5) at (4,6). 2. y == a sin at (Inh, ^a). 

8. a;* 4- J y* = 8 at (8, 6). 4. a:* + y” ~ G ar — 2y + 5 = 0 at (2,-1). 

5. Prove that the subnormal at any jK)int of the curve x^ — y* = a* is equal 
to the abscissa. 

e. In the curve xy == prove that the subnormal varies as the cube of 
the ordinate. 

7. Show that, in the parabola y*x=4nx, the subtangent varies as the 
square of the ordinate. 

8. Prove that, in the curve y""’’' «= a^^x, the sublangent varies as the 
abscissa, and find the subnormal. 

G. Show that, in the curve ay* *= (x +the subnormal varies as the 
square of the sublangent. 

10. Prove that, in the curve ax*-f &y* = c, the subnormal bears a constant 
ratio to the abscissa. 

11. Find the sublangent, at the i»oint where x~ a, in the curve 

ay* «= (a + x)* (3 a — x), 

12. Find the sublangent and subnormal at any point of the ellipse 

xVa*-fyV>*=l, 

and prove that the subtangent is the same (at the point with the same 
abscissa) as in the circle on the major axis of the ellipse as diameter. 

13. In a certain well-known curve (called the tractrix), the slope at any 
point {x, y) on the curve is equal to — prove that the 
length of the tangent is constant. 

14. Prove that x=- acos^^, y ==aRin*^ are the coordinates of a point on 
the astroid a;*/*-f y*/* *= a*/*, and find, in terms of d, the equation of 
the tangent at any point. 

15. Find, in terms of 6, the lengths of the tangent, normal, subtangent, 
and subnormal at any point of the astroid. 

16. Find the equation of the tangent to the cycloid (i) when 6 «= Jtt, 

(ii) for any value of 6* 

17. Find the lengths of the sublangent and subnormal at the point on 
a cycloid where ^ ~ ^tt. 

IS. Prove that a? = a sec y = t ta.n 6 are the coordinates of a point on the 
hyperbola icYa*-y*/^^ «=» 1, and find the value of dyjdx in terms of 6, 

1 1B2I 
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19. Find the equation of the tangent to the ellipse + » 1 at the 
point (acoB^, ^sin^). 

20. If the coordinates of a point on the parabola y*« 4ax be taken as 
{am^y 2 am), what is the geometrical meaning of m ? 

21. Find the lengths of the siibtangent and subnormal at any point of the 
cardioid, given by a? ■■ a (2 cos ^ + cos 2 f?), y =» a (2 sin ^ + sin 2 B), 

22. Find, in terms of y and dyjdXy the lengths of the perpendiculars from 
the foot of the ordinate to the tangent and normal at any point of 
a curve. 

23. Find the length of the perpendicular OY from the origin to the tangent 
at a point F of the hyperbola xy = c®, and show that the rectangle 
OY. OP is constant. 

24. Prove that, if a gas obeys Boyle's law pv «Jc, the cubical elasticity 
(Art. 38) is represented by TMy where T is the point in which the 
tangent to the curve pv — k at the point F cuts the aiis of p, and 
FM is perpendicular to that axis. 



CHAPTER VI 

MAXIMA AND MINIMA 

61. Definition of maxima and minima. 

We shall now show how to find the maximum and minimum 

values of a function of one variable, confining ourselves to cases 

where the function and its differential coefficient are continuous. 

If a continuous function increases up to a certain value and then 

begins to decrease, that value is called a maximum value of the 

function; similarly, if the function decreases to a certain value 

and then begins to increase, that value is called a minimum value 

of the function; in other words, a maximum value is one which 

is greater and a minimum value is one which is less than all 

other values in the immediate neighbourhood on either side. 

According to this definition, a function may have any number 

of maxima and minima; and a maximum value is not necessarily 

the greatest nor a minimum value the least of all the values of the 

function; in fact it is quite possible for some or even all of 

the maxima to be less than some or all of the minima. 

This is illustrated by the function sec x. As x increases from — J it 

to 0, sec X decreases from oo to 1; as rt increases from 0 to J tt, sec x 
increases from 1 to oo • Therefore sec x has the minimum value 1 
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when a? = 0. When a? = J tt, sec x is discontinuous. As x increases 

from i TT to 77, sec x increases from — oo to — 1; as a? increases from 

77 to f 77, seen? decreases from —1 to — oo. Therefore sec a? has the 

ma3dmum value —1 when a; = 77. When a;=.|77, sec a; is dis¬ 

continuous. 

These variations are repeated an indefinite number of times, and 

the variations begin to recur after x has increased by 277 or any 

multiple of 277, (Tliis is expressed by the statement that sec a? is 

a periodic function of x, and its period is 277.) Therefore sec a; has 

an infinite number of minima, each +1, and an infinite number of 

maxima, each —1, and the minima are greater than the maxima 

(Fig. 64). 

62. Alternate maxima and minima. 

It is evident that, in a function which is always continuous, 

maxima and minima must occur alternately; because after any 

maximum the function is decreasing, and before the next maximum 

it is increasing, therefore, if it is continuous, there must be some 

intermediate point where the function ceases to decrease and begins 

to increase ; such a point is a minimum. Hence between any two 

consecutive maxima there is a minimum, and similarly between any 

two consecutive minima there is a maximum. 

The circular functions furnish good illustrations of these definitions 

and ideas. Sec x has been considered in the preceding article, and 

cosGc x may be used to illustrate the same points. 

Sin a; and cos a; are always continuous; both have an infiuite 

number of maxima, each 4-1, and an infinite number of minima, 

each —1, occurring alternately at intervals of 77 in the value of x. 
(Sin a? and cos a; are periodic functions whose period is 277.) 

Tana? and cot a? have no maxima or minima. As x increases 

from — J 77 to + J 77, tan x increases from — 00 to + co ; when 

a; = ^ 77, tan x is discontinuous; and as x increases from ^77 to f 77, 

tana? again increases from —00 to 4-00, and so on. There is 

therefore no value of x at which tana? ceases to increase and begins 

to decrease. Similai ly for cot a?. (The variations in the values of 

tan X and cot x begin to recur after intervals of 77; therefore tan a? 

and cot a; are periodic functions whose period is tt, not 2:7, as in 

the case of the other circular functions.) 

63. Conditions for a maximum or minimum. 

It has been pointed out (Art. 25) that the differential coefficient 

of a function f{x) is 4- or — according as the function increases or 

decreases as x increases. 
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Just before a max., f[x) is increasing as x increases, 
»» after ,, ,, ,, ,, decreasing ,, „ „ 

„ before a min., „ „ decreasing „ „ „ 
„ after „ „ „ „ increasing „ „ 

IIcncG, in passing through a maximum or a minimum value, the 

d. c. of the function must change sign, and therefore, at the maximum 

or minimum, the d. c., if continuous, must equal zero (Art. 17 (4)). 

Hence a value of y is a maximum or a minimum value when dy/dx 

is equal to zero a^id changes sign as y passes through that value. 

If dy/dx changes from + , the value is a maximum. 

If dy/dx changes from — fa +, the value is a minimum. 

Notice that the condition dy/dx = 0 alone is not a sufficient 

condition for a maximum or minimum; y may increase up to a 

certain value {dij/dx + \ remain constant for an instant (dy/dx = 0), 

and then begin to increase again [dy/dx again +); dy/dx in this 

case does not change sign, and the value for which dy/dx = 0 is not 

a maximum. 

/. its d. c. is +. 

• ») ?» >» 

j) )» 
• • ti *» »» 

64, Geometrical treatment of maxima and minima. 

All these results follow at once from geometrical considerations. 

In the curve shown in Fig, 55, the ordinates at A and C represent 

maximum values of tlie function, and the ordinates at B and D 

represent minimum values. If the tangent at a point (x, y) of the 

curve make an angle xj/ with the positive direction of the axis of x, 

dy/dx = tan \/r. At A, B, (7, B the tangents are clearly parallel to 

the axis of x; therefore xj/ = 0 and tan xj/ = 0, i. e. dy/dx = 0. 

Just before A or C, 
II after ,, I, ,, 

II before B or D, 
II after 

y/r is acute, 
I, „ obtuse, 

„ „ obtuse, 
acutei 

.*. tan 4^ is +, 

ft ft rt tt 

ff ft rt tt t 

i.e. 

tt 

tt 

ff 

dy/dx is +.) 

ft ft 

rt »""•(, 

M ft ft ft ft ff ff ff ft tt 
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Hence in passing through a maximum, dyjdi^ changes from + to 

—, and in passing through a minimum, from — to +. 

But A, J5, C, D are not the only points where the tangent is 

parallel to the axis of :r; at such points as JEJ and P, the tangent 

is parallel to OX and therefore dyidx — 0, but in passing through 

these points dyjdx does not change sign. 

Just before and after P, y^r is acute, dy/dx is + in both caies. 

Just before and after Fj >//■ is obtuse, dy/dx is — in both cases. 

The points E and F are called of inflexion, and such points 

will be considered more fully later on (Art. 69). 

All points where dy/dx = 0 are included in the term stationary 

points, because the rate of change of the function at such points is 

zero. They include, as we have just seen, maxima, minima, and 

those points of inflexion at which the tangent is parallel to the axis 

of X, A curve may have points of inflexion where the tangent is 

not parallel to the axis of a:; at such points, of course dy/dx is not 

zero. 

It is possible for a function to have maxima and minima of a different 
nature from those indicated above, e. g. at points such as A, B, C, in Fig. 56. 

The ordinates at A and C are 
maxima, and the ordinate at B 

is a minimum according to the 
definition of Art. 51. At such 
points as these, y is continuous, 
but dy/dx is discontinuous; at A, 
it is infinite, the tangent being 
perpendicular to the axis of x, 

and therefore tan >//■■» oo ; at B 
and C, dy/dx suddenly changes 
by a finite amount as the tangent 
passes from one side of the point 

to the other. [In these cases, the condition that dy/dx changes sign 
in passing through the point is fulfilled; in passing through A and C, 

dy/dx change from + to —, and in passing through B, from — to +.] 
Such points do not occur in the functions which are encountered in 
elementary examples. 

It is evident that the determination of the maximum and 

minimum values of a function, the ‘turning-values* as they 

are often called, is of great assistance in drawing the graph of the 

function* 
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66. Examples. 

We will now apply these principles to a few algebraical and 

trigonometrical examples. 

(i) Find the maximum and minimum values 0/x® —Ox^^ 16x, and 
draw roughly the graph of the function. 

Here dyjdx ~ 18a:+15 = 3 (^—1) (;r —5); 

dyjdx = 0 when a; = 1 and when rr = 6. 

To find whether and how dyjdx changes sign as x passes through 
these values, it is best to start below the smallest value and trace 
the changes in the sign of dyjdx as x increases through each value 
in turn. 
If X is slightly < 1, the first factor is —, and the second —, dyjdx is + 1 

If X is slightly > 1, ,, „ +, „ ,, dyjd^xi^—) 

If X is slightly < 5, „ „ +, „ „ dyjdx is 

If X is slightly > 5, „ „ dy/dx is + J 

Therefore dyjdx changes from + to — as a? increases through 
the value 1, and from — to -f- as a; increases through the value 5; 
hence y is a maximum when a; = 1, and is then equal to 7, and 
a minimum when x = 6, and is then equal to — 25. 

Moreover, the graph goes through the origin since y = 0 when 
a? = 0, and it cuts the axis of x where y = 0, .•. — + 15a; = 0, 
Le. a;(a:2 —9a;-h 15) = 0, whence a; = 0, 2*2, 6’8 nearly. 

Therefore the graph is roughly as shown in Fig. 57. Clearly no 
finite value of x can make y infinite, and after passing the point 
(6, —25), y must continually increase and the graph rise; for if 
it ever descended again, there would be another maximum, since 
the function is always continuous. Similarly, it must continually 
ascend from — 00 to the point (1, 7). 
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(ii) y 10. 

dxfldx^ 4a:3-12j?4-8 == 4(;j;-l)2(a; + 2), 
dyldx = 0 when x = 1 and when a? = — 2. 

To find the change of sign, starting below the smaller value, 

if X is slightly < ~2, the signs of the factors are -f, dy/dx is — ) 
if X is slightly > — 2, »» »> ft dyjdx is 4- 

if X is slightly < 1, ft »» ft 
dyldx\^ -1- 

if X is slightly > 1, »» >f 19 
dy/dx ia + 

Therefore dyfdx changes from — 
to + as a; increases through —2, 
and does not change sign as x in¬ 
creases through +1 ; hence y is 
a minimum when a;=—2, and is 
then equal to —14; and there is a 
point of inflexion when a; = 1, and y 
is then equal to 13. 

The curve cuts the axis of y 
where ic = 0, and therefore ^ = 10 ; 
it is shown roughly in Fig. 58. It 
must continually descend from oo to 
(—2, —14), and continually ascend 
from (1, 13) to co. There is no 
maximum. 

which reduces to 

4a: 4-9 

4-4a:-1-9 

dy ^ (x‘^~\~ix-^ 9)(2a:—4) —(a:- —4a:-f9)(2a:-f-4) 

dx h 4x4-9p . S{x^-9) 
ices to ^^; 

dy/dx — 0 when rc=+3. 

If X is slightly < — S, the 11 urn. is +, and the denom. is +, dy/dx is 4 

If X is slightly > “■^1 11 11 “r 91 11 ■f > dy/dx is — 

If X is slightly < 3, n 11 —» 99 99 » dy/dx is —• 

If X is slightly > 11 91 + > 99 + > dy/dx ia + 

Therefore y is a maximum when a: = — 3, and a minimum when 
+3. 

When ic = — 3, y — — b, and when a: = -f 3, y = 

When iT = 0, iy = 1; and by writing the equation in the form 

1 —12/;r*f9/a:^ 1 i. io inw 4.1, a 
^"^1 + 12/^+"^ (see Art. 13 (7)), we see that, as a;00, 

y approaches the limit 1. Therefore y = 1 is an asymptote. 

The general trend of the graph is therefore as shown in Fig. 59. 
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(iv) y = a sin ^ -f- ^ cos 9, 

dyIdO = acosO—lsln 6 ; 

•*. dyfdO = 0 when h sin 9 = a cos 9y i. e. when tan 9 = a/by 
and then sin d = ±a/V(a^ + cos9 =■ ± bjV(a^ + 6^), 

both signs being + or both —, since tan^ is +, 

Therefore the maximum and minimum values of y are 

a X 
-l" a 

+ bx 
+ b 

i.e. ± 

Since y is always continuous the greater value is the maximum; 
therefore y lias an infinite number of maxima, each + -/(a^ + h% 

Pig. 60. 

and an infinite number of minima, each —+ occurring 
alternately at points where tan 9 == a/b. Since 

tan (wTT + d) = tan 9 ~ a/by 

the turning-points occur at intervals of tt in the value of 9 (Fig, 60). 
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Examples XVIII, 

Find the stationary points of the following functions l~S6, and dig* 
criminate between them. Also, draw roughly the graphs of the 
functions 1-20. 

1. a7''-6ar + 8. 
3. a;:*--12a; +5. 

6. + 
7. a:*~3a^ + 3:r-l. 

0. a;*-8ar*4 22a:“~24:r4 12. 
11. 3. 
13. (a:-l)»(a:~2)*. 

x^~2a: + 4 
15. 

17. 

-f 2 a: + 4 

(4 —a?)* 

2-:r 

19. (x — 2)(6-x}/x\ 

21, (x-3y/^(x-6y/\ 

^ a* 

25. (:r-3)y(l+:r^). 

27. asin^aj + fecos^x. 

29. 4a; 4 tan 3 a;. 

81. tan’a;—2 tana?. 

88. sin’ajcosa;. 

85. sina;/(l-f tana?). 

2. 16 —6a; —3a?*. 

4. 2a;»~15a;*4-36a;. 
0. a;*-9a:*+ 15^4 11. 

8. a;^-8a;^-4l0a;*4 40. 

10. a;® —5a?*4 5a;® —1. 
12. (a;-l)*(a;-2). 
14. (3a;-3)V(a;4 l)\ 

9-a;* 
IG. 

18, 

9 4-a;* 

(a;+ 8) (a; 4 2) 

20. (a;4-fl) (a?-I l))/x, 

22. a; v^(aa: — a;®). 

24. v^(a;/a4a/a;). 

20. sin x +COS a;. 

28. sin2a;-a;. 

80. cos 2 a? + sin a;. 

82. a cot a? 4 5 tan a?. 

84. sin (x —a) COB (a; —^). 

80, tan X-8 sin X. 

87. Prove that (x“a,)* + (x-a2)’+... + (x—aj* is a minimum when x is the 
arithmetic mean of «n* 

38. The bending moment of a beam of length I, at a distance x from one 
end, is equal to I wJx — \t('x^^ where %c is the (uniform) load per unit 
length; prove that the maximum bending moment is at the centre. 

89. The force exerted by a circular electric current of radius a on a small 
magnet whose axis coincides with the axis of the circle varies as 
x/(a®4a;®)V*, where x is the distance from the plane of the circuit 
Find when the force is a maximum. 

40. The total waste per mile in an electric conductor is equal to C^r + A/r^ 
where C is the current in amperes, r the resistance in ohms per mile, 
and A a constant; for what value of r will the waste be a minimum ? 

41. Prove that ^/{(^®-n*)*4-4/*n*} (where g and/are constants) is least 
when 2/*. 

42. Find the minimum value of C®JS+289/i? [C constant]. 
48. The velocity of certain chemical reactions follows the law 

v A; (5 + x) (a-x); 

when is the velocity a maximum ? 

44. Find where the width of the loop of the curve in Art. 9, Ex. vii is greatest. 
[Find when y* (not y) is a maximum.] 

45. The curve y* == x® (a*—x®) consists of two loops; find where their width 
perpendicular to the axis of x is greatest. 

46. Find the maximum ordinate of the curve y ■■ (x -1 j* (5 - 2x). 
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47. When is the ratio of an integer to the square of the integer next above 
it a maximum or minimum ? 

48. Find when rcW —is a maximum. What is the maximum value 
if y- 1-4? 

49. The current sent through a resistance i? by a battery consisting of 
a fixed number n of cells, each of voltage E and internal resistance r, 
arranged with x cells in series and n/x rows in parallel, is 

nxE/(x'^r-^nR) amperes. 

How many cells must be in series in order to give the maximum 
current ? 

50. If y/R = (I —x)/x, find the percentage error in y due to a given small 
error OL in the value of x. For what value of x will the percentage 
error be least ? 

60. Problems on maxima and minima. 

A large number of very interesting problems on maxima and 

minima can be solved by the aid of the foregoing principles. A few 

typical examples will be worked out. 

In the first place, it frequently happens that the quantity whose 

maximum or minimum is required appears, when first expressed in 

symbols, as a function of more than one variable. It must be care¬ 

fully borne in mind that the next step is to express it as a function 

of one of these variables only. By means of geometrical or other 

given relations between the variables, all but one of these variables 

must be eliminated. Having thus expressed the quantity as a 

function of a single variable, we proceed exactly as in the algebraical 

examples just considered. We differentiate with respect to the 

variable; and the values which make the differential coefficient 

vanish include the values which make the quantity a maximum 

or minimum. In many cases it is not necessary to examine the 

change of sign as was done in the preceding examples; it is often 

easy to see at once whether the solution be a maximum or minimum, 

as will be indicated in some of the examples which follow. 

^Examples: 

J (i) Find the rectangle of given area which has the shortest diagonal 

If X and y be the lengths of the sides, the length of the diagonal is 

V'(a^+y’). 

It will evidently serve to find when the square on the diagonal is a 

minimum ; the differentiation is then simpler. 

X and y are connected by the relation xy == Ay the given area; and there¬ 

fore, eliminating y, the square on the diagonal + AVx*. 

The d. c. of this is 2x — 2A^fx^y which is equal to zero when 24? = 2A}j3?^ 

Le. when x^ «= A*. 

4?* A (iince 4?* is neoewarily +) — iry. 
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X ^ y (since a? == 0 is not admissible) and the figure is a square. 
If x^<A, then x<A^/a^ and the d. c. is — ; 
if x^ > At then x > A^/x^ and the d. c. is +. 
Therefore the solution is a minimum, as is evident geometrically, because 

a rectangle of area A with x either very small {y would then have to be very 
large) or very large (y would then be very small) would evidently have 
a very long diagonal. 

(ii) A figure consists of a semicircle with a rectangle constructed on its 

diameter; given that the perimeter of the figure is 20 feet, find its dimensions 

in order that its area may he a maximum. 

Let r be the radius of the semicircle, and 2r and x the lengths of the sides 
of the rectangle. 

Then the perimeter rrr + 2x4-2r — 20. (i) 

The area A r® + 2rx. 

We begin by eliminating one of the variables; x is the more convenient 
to eliminate. 

From (i) 2a; « 20 —ttj—2r; 

•V substituting in the expression for A, 

A *= |7rr^4-r(20 —yrr —2r) 

«= 20r—^7rr* —2r®; 

and dA/dr *= 20 -frr-*4n 

This vanishes when 7rr + 4r««» 20 

«7rr+2a? + 2r from (i), 

i. e. when r^x. 

The side of the rectangle is therefore equal to the radius of the semicircle; 

this gives the shape Fig. 61. The actual dimensions are given by the 
equation above, rrr-f 4r = 20, 
i. e. r = 20/(4 + tt) = 20/7T416 = 2*8 feet approximately. 

If 7rr + 4r<20, dA/dr is + ; if 7rr*f4r>20, dA/dr is —. 

Therefore the solution is a maximum. 

(iii) A straight line drawn through the point (8, 2) cuts the axes of 

coordinates on the positive side of the origin in P and Q (Fig. 62); find when 

OP + OQ ie a minimum* 
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In questions of this type, an angle is generally the most convenient 
variable to use. 

Denoting the angle OPQ by 6, and OP+OQ by w, we have 

u OM+ON+NQ *=8 + 2 cot d + 2 + 8 tan 

du/dd ^ — 2 cosec^d + 8sec®d. 

This is equal to 0 when 2 cosec* d =» 8 sec* d, i. e. when tan B ^ ^. 
From the conditions of the question, tan B must be acute; therefore 

taking tan d we have 

u = 8 + 2x2 + 2 + 8xJ = 18. 

This is obviously a minimum, for it is clear that tc will increase inde¬ 
finitely as B approaches either of the values 0 or Jtt. In the first case OP, 
in the second case 0$, becomes very large. 

(iv) The increase in consumption of an article is proportional to the decrease 

in the tax upon it; if the consumption he a lb, when there is no tax, and 

b lb. when the tax is n pence per lb., find the amount of tax most prqfitotble 

to the exchequer. 

Let z lb. be the amount consumed when the tax is x pence per lb.; then 
y, the yield to the exchequer, is equal to xz pence, and this is to be 
a maximum. One of the two quantities x and z must now be eliminated. 

The consumption increases from zio a when the tax decreases from x to 0, 
and from b io a when the tax decreases from n to 0. 

Since the increase in the consumption is propoidional to the decrease in 
the tax, it follows that 

a — z 

a-b 
■■ - and 

n (a — z) 

a — b 

Eliminating x, 
n (az — 

y — xz ^- 

Differentiating 

a — b 

dy n(a — 2z)^ 
dz a — b * 

which is equal to 0, when ^ J a. 

This makes y a maximum, since dy/dz is + if 

and then 
n (a —z) n . la na 

^ a — b ^ a — b 2 (a —h) 

This is the tax which yields the maximum revenue. 

< J a, and - if z>\a\ 

pence per lb. 

(v) Jfv^ and v^ he the velocities of light in tico different mediae find thtL^h 

b^ wlixch light can 'travel^ irTihe shortest tnm^ ^ ^ 

(a) between two fixefTpoihtsj^jinfi B in the s^me medium, by reflexion at 

the surface sepctrating the two media; 

(h) between two fixed points A and C, one in each medium, 

(a) Let ilfiy (Fig f>3}J)e the boundary betweenj^be two^edia, 4-5? 

path of the ray of light when reflected“^rHifjV. Since it is confined to the 
one medium, the distance AP+PB is to be a minimum. 

Lot AM = a, BN «= 6, MN = c, MP = x; therefore PN ^ c-x, 
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Then y=^P+P£- 

dy 2x —2{e—x) 
^ “ 2 /(a»+a!*) 2^{b'‘ + {e-x)^^ 

X c_X 
This is equal to 0 when ■ ;; » . — -/t-v. . ,-^, 

i. e. geometrically, when MF/PA «■ J^N/PBy and therefore the angles APM 

and BPN are equal. r 

It is obvious that this solution is a minimum. ^ ' 
Hence the minimum path is that in whicJT^F and PB are equally inclined 

to MPN, ^' 

This is the ordinary law of reflexion of light. 

(&) Let A PC be the path when the light is refracted into the second 
medium. 

Let d, and let (^j, angles which APsiud P(7 respectively 
make with the normal at P. 

Then the time t along AFC •= AP/r^d-PC/v^ 

- -/(a> + a:’)/«’.+ + (c-a:)>}/*,. 
dt 1 X 1 ~(c —ar) 

* ’ dx^ t\* ^ (c-a:)-}’ 

and this is equal to 0 when ~ • -f-—jr — - • —rTi * 
t?i V(a* + a?*) fa +(c-a?)*} 

which may be written in the form (sin <j>i)/vy =» (Ein(/)a)/P|. 
This again obviously gives a minimum solution. 
Hence the path of the ray which leads from -4 to C in the shortest time is 

such that 
Bin<^i/sin 

where <^i, (/'a are the inclinations of the incident and refracted rays to the 
normal to the surface separating the two media, and Vi/v^ is a constant^ 
(called the refractive index from the one medium to the other) depending 
upon the nature of the two media and the kind of light. 

This is the ordinary law of refraction of light. 
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(ri) straight roads intersect at right angles; a motor-car^ travelling 

at 20 tniles<;^cr hour along one df ihe roads^ passes the crossing at the instant 

when another motor-car^ travelling at 15 miles per hour along the other road* 

towards the crossing ^ is 10 miles distant from it; find when the two cars are 

at the least distance apart. 

Fig 64. 

After time t (measured in hours) the first car is 20 t miles from the cross¬ 
ing, and the second, having travelled 15 ^ miles, is 10-15^ miles from it. 
Therefore, if u be the distance between them at that instant, 

=1 (20 tf + (10 -15 tf = 625 - 300 ^ + 100. 
It is most convenient to find when m® is least. 
Its d. 0. with re8j)ect to t is 1250^ — 300, which is equal to 0 when 

*24 hours, i. e. 14*4 minutes, and w* is then equal to 
625 X - 300 X +100 « 36 - 72 +100 » 64. 

Therefore w *=* 8 miles. 
, The solution is a minimum, since the d. c. is — if / < *24, and -f if 

f>*24. Therefore the cars are at the least distance, 8 miles apart, 14 
minutes 24 seconds after the first car has passed the crossing. 

This problem can easily be solved algebraically (see below), or by 
elementary mechanics. 

It should be noticed that any quadratic expression, such as the one which 
occurs in the preceding example, has one, and only one, maximum or 
minimum, which can easily be found algebraically by completing the 
square, thus: 

, r r a ^ 4ac-6® 
ax* -f5:r + c-»ahr®+ ^ “"4^ ~ ’ 

The last term is constant, and the minimum value of (a?+ 5/2 a)® is zero, 
since, being a perfect square, it cannot be —. Hence, if a be +, the 
expression is least (since the least value of the variable term is then added) 
when a? =« -5/2a; and, if a be —, the expression is greatest (since the 
least value of the variable term is then subtracted) when x = — 5/2«. 

Therefore aa;® + 6x + c is a maximum or a minimum when a;« -6/2 a, 
according as a is — or +. [Cf. with p. 18, where it w’as shown that the 
graph of y —ajp® + 6a; + c is a parabola with axis vertical, and vertex at 
the highest or lowest point of the curve according as a is — or +.] 

In the example of the preceding article, we have 
w* « 625 - 800 ^ +100 - 625 {t* -M 0 +100 « 625 {t - r^)* - 625 x +100 

«625 + 64, 
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which is obviously least, and then equal to 64, i. e. « = 8, when t = 6/25. 
By the method of the calculus, in the general case, 

dy/dx 2 + fc *= 2 a (a: -+1/2 a), 

and this vanishes when a: = — 5/2 a. 
If ar< ~5/2a, i.e. if x-^h/2a is —, dy/dx is 4 or —, according 

as a is — or 4- ; 
aud, if x> —5/2a, i.e. if a;4 5/2 a is 4-, dy/dx is — or 4-, according 
as a is — or 4-. 

Therefore, as x increases through the value — 5/2a, dy/dx changes from 

4 to — if a bo —, and from — to 4 if a be 4. 
Hence x « —5/2 a gives a maximum or minimum value of y according 

as a is — or 4, which agrees with the algebraical result. 
The maximum or minimum value of y is (4ac —5*j/4a. 

Examples XIX. 

1. The sum of two numbers is 40; find when the sum of their squares 
is a minimum. 

2. The diflerence of two numbers is 100; when does the square of the 
larger exceed five times the square of the smaller by the maximum 
amount ? 

8. The sum of two numbers is a; when will three times the square of one 
together with twice the square of the other be least ? 

4. When will the sum of a number and its reciprocal be a minimum, and 
when a maximum ? Illustrate this graphically. 

5. The denominator of a fraction exceeds the square of its numerator by 16; 
find the maximum and minimum values of the fraction. Illustrate 
graphically, 

6. Find when the sum of the squares of the reciprocals of two numbers 
which difier by 1 is least. 

7. A rectangle has an area of 25 square feet; find when (i) its perimeter, 
(ii) the length of its diagonal is least. 

D. Prove that the rectangle of a given perimeter which has the shortest 
diagonal is a square. 

0. A rectangle is inscribed in a given circle of radius a; find when its 
perimeter is a maximum or minimum. 

10. Find the rectangle of maximum area whose sides pass through the 
angular points of a given rectangle with sides of lengths a and 5. 

11. Find the dimensions of the cylinder of maximum volume which can bo 
inscribed in a given sphere. Prove that its volume is ’5773... of that 
of the sphere. 

12. The total area of the surface (i. e. curved surface and both ends) of 
a cylinder is 150 tt square feet; find when the volume is a maximum. 

13. An open cylindrical vessel is to be made of thin material to hold 
100 gallons; find the dimensions in order that the amount of material 
used may be a minimum. [Take 1 gallon » *1605 cubic feet.] 

14. Find when the curved surface of a cylinder inscribed in a given sphere 
is a maximum. 
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16. A rectangle U mscribecl in a giv<‘n right-angled triangle with one angle 
coincident with the right angle; find when its area is a maximum. 
Show that its perimeter has no maximum or minimum. How do you 
explain this latter fact ? 

16. A cylinder is inscribed in a given right circular cone, (i) When is its 
volume a maximum ? (ii) When is iU curved surface a maximum ? 
(iii) When is its total surface a maximum ? Show that in the last case 
there is no solution if the semi-vertical angle of the cone exceeds 
a certain value, and find this value. 

17. A cone is circumscribed about a given sphere; find when its volume 
is a minimum. 

18. A rectangle is inscribed in a given triangle ; find its maximum area. 

10. When is the area of an isosceles triangle inscribed in a given circle 
a maximum ? 

20. Find the dimensions of the cone of maximum volume which can he 
inscribed in a given sphere. Prove th«it the cone has also a greater 
curved surface than any other cone inscribed in the sphere. 

21. Prove that a conical tent which is to have a given volume will require 
the least amount of canvas when the height is v^2 times the radius 
of the base. 

22. A sector is cut out of a circular sheet of paper, and the two straight 
edges of the remainder are put together so that a cone is formed ; prove 
that the volume of this cone is a maximum when the angle of tlie sector 
removed is about 66®. Draw a graph to show how the volume of the 
cone depends on the angle of the sector. 

23. The regulations of the Parcel Post state that a parcel must not exceed 
6 feet in length and girth combined ; find the dimensions of the cylinder 
of maximum volume which can be sent. 

24. A cylinder is inscribed in a sphere of radius r; find its height when the 
area of its entire surface is a maximum. 

25. A right circular cone is inscribed in a given right circular cone so that 
the vertex of the inside cone is at the centre of the base of the other; 
find when its volume is a maximum. 

20. Through a point whose coordinates referred to rectangular axes are 
(a, h), a straight line is drawn making positive intercepts OP, OQ on 
the axes ; find the minimum area of the triangle OPQ. 

27. In the preceding case, find also the minimum value of OP4- OQ, 

28. Find also the minimum length of PQ. 

29. Find also the minimum value of the rectangle OP. OQ. 

SO. Given the perimeter of a circular sector, find when its area is a 
maximum. 

81. Given the area of a right-angled triangle, find when its perimeter is 
a minimum. 

82. If the stiffness of a rectangular beam varies directon the breadth and 
as the cube of the depth, find the breadth of the stiffest beam that can 
be cut from a cylindrical log of diameter 2 feet. 

33. A rectangular sheet of tin is 5 feet long and 28 inches wide; four equal 
squares are removed from the corners and the sides are then turned u]) 
BO as to form an open rectangular box ; find the size of the pieces that 
must be cut out in order that the box may have the greatest volume. 

34. A rectangular sheep-pen is to be made alongside of a hedge which 
serves as one of the sides of the pen, and is to enclose an area of 
200 square yards ; find the least number of hurdles, each 6 feet long, 
required for the other three sides. 

» K 
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S6. A statue 10 feet high stands on the top of a colimin 85 feet high; 
at "what distance from the column in the horizontal plane tnrough ita 
foot should a man stand in order to get the best view of the statue, 
i.e. in order that the statue may subtend the greatest angle at his eye, 
which is supposed to be 5 feet above the ground ? 

3G. The sides of a wooden trough are each 1 foot wide, and are equally 
inclined to the bottom of the trough which is 9 inches wide ; what 
must be the width across the top in older that the volume may be 
a maximum. 

87. If the power required to propel a steamer through the water varies 
directly as the cube of the velocity, find the most economical rata 
of steaming against a current which runs at a miles per hour. 

88. Two straight roads across a moor intersect at right angles ; a man on 
one road, three-quarters of a mile from the crossing, wishes to strike 
across the moor in order to get to a place 2 miles from the crossing 
along the other road ; if he can walk 5 miles per hour along the roads, 
but only 4 miles per hour across the moor, where should he strike the 
second road in order to reach his destination in the shoHest possible 
time ? How much time will he save by going this way instead of by the 
shortest way? Provo that the point at which he should strike the road 
is the same whatever be the distance of his destination from the crossing, 
provided it is moie than a mile. 

SO. An electric light is to be placed vertically over the centre of a circular 
enclosure 30 yards in diameter; at what height should it be placed in 
order that a path round the enclosure may be illuminated as brightly 
as i^ossible ? (The brightness of a surface varies inversely as the square 
of tlie distance from the light and directly as the cosine of the angle 
which the rays make with the normal to the surface.) 

40. At what point on the line joining two sources of light will the 
brightness be least, if the intensity of one is 8 times that of the 
other ? 

41. Find the greatest rectangle which can be inscribed in the segment of 
a parabola cut off by the iatas-rectuin. 

42. Prove that the least intercept made by the axes on a tangent to an 
ellipse is equal to the sum of the semi-axes of the ellipse. 

43. One corner of a rectangular sheet of paper of width 1 foot is folded 
over 80 as to reach the opposite edge of the sheet; find the minimum 
length of the crease. 

41. In the preceding question, find the minimum area of the part folded 
over. 

45. A rectangular sheet of metal is bent into the form of part of the curved 
surface of a right circular cylinder; if it is then closed at the ends, 
prove that the volume of the trough thereby formed is greatest when 
the trough is exactly half a cylinder. 

49. The segment of a parabola, bounded by the latuB*rectum, rotates about 
the axis, thereby forming a solid known as a paraboloid of revolution; 
find the maximum cylinder which can be inscribed in this solid. 

47. Find the maximum area of the triangle formed by joining the ends of 
a chord of a given circle to one extremity of tlie diameter which 
bisects the chord. 

48. A straight line is drawn through the angular point C of a triangle ABC 
inclined at an angle d to BC; find when the sum of the projections of 
the sides AC and i^C upon it is a maximum. 
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49. The section of a dormer window consists of a rectan;:^le surmounted by an 
equilateral triangle; if the perimeter be given as 16 feet, find the 
width of the window in order that the maximum amount of light may 
be admitted. 

60- Find the area of tlie greatest rectangle which can be inscribed in the 
ellipse + 

61. Find the area of the greatest isosceles triangle which can be inscribed in 
the same ellipse, with its vertex at one end of (i) the major axis, (ii) the 
minor axis. 

62. Find the minimum distance between the straight line a;--2y-fl0 = 0 
and the parabola y* 8a;. 

63. Show that the sum of the squares of the distances of a point from the 
angular points of a triangle is least when the point is the centroid of 
the triangle. 

64. Two straight roads intersect at an angle of 60^. A motor-car, travelling 
at 80 miles an hour along one road, passes the crossing at the instant when 
another motor-car, travcdling at 20 miles an hour along the other road 
towards the crossing, is 2 miles away; find when the distance between 
the cars is least and what this least distance is. 

65. Find a point on a given straiglit line such that the sum of the squares 
of its distances from two given points (not on the line) is a minimum. 

60. The perimeter of an iso:^celes triangle is given ; what vertical angle 
will give the maximum area ? 

57. The strength of a rectangular beam of given length varies as the 
breadth into the square of the depth; hud the dimensions of the 
strongest rectanguhir beam which can be cut from a cylindrical log 
1 foot in diameter. 

68. A given mass m raisos another mass m' by moans of a string passing 
vertically over a pulley ; find m' in order that the momentum acquired 
by it in a given time may be a maximum. 

50. A mass M is drawn up a smooth incline of given height by a mass m 
all ached to it by a string paB.sing over a pulley at the top of the incline 
and hanging vertically. Find the angle of the incline in order that the 
time of ascent may be a minimum. 

00. How much water should be put into a closed right circular cylinder, 
standing on a horizontal plane, in order to bring the centre of gravity 
as low as possible, the weight of the cylinder being of the weight of 
all the water it can contain ? 

01. A wall 9 feet high is 21 feet 4 inches from a house ; find the length of 
the shortest ladder which will reach the bouse when the lower end is 
on the (hoi izontal) ground on the other side of the wall. 

02. A piece of wire of length I is to be cut into two pieces, one of which is 
to be bent inio the form of a square, and the other into the form of 
a circle; find when the sum of the areas of the circle and square 
is least. 

03. A heavy lever (weight tc per unit length) with the fulcrum at one end, 
is used to raise a weight W at a given distance a from that end ; find 
the length of the lever in order that the weight may be lifted with the 
least effort. 

04. Two ships are sailing with velocities u and v along courses which are 
inclined at an angle 6 \ if at a certain instant they are at distances a 
and h from the intersection of their courses, find their minimum 
distance apart. 

K 8 
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65. A man is to get as inucli land as he can compass in a given time; he ia 
to move in a circle, and if he does not get back by the end of the given 
time, be gets tli(3 segment whose arc he has traced. Prove that his best 
plan is to describe a semicircle. 

66. Find the rectangle of maximum area which can be inscribed in 
the curve «= L 

67. Find the volume of the greatest cone which can be constructed with its 
vertex at the centre of a given sphere and the circumference of its 
base on the surface of the sphere. 

68. A circular cylinder has a hemisphere hollowed out from each end* 
Given the total surface, find when the volume is a maximum. 

69. The normal at a point (am®, 2am) of the parabola cuts the 
parabola again in Q. Find the minimum length of FQ, 

70. 0 is a fixed point outbide a circle, A one end of the diameter through 
0, and OFF a chord of the circle; prove that the area of the triangle 
FAF' is greatest when FF' subtends a right angle at the centre. 

71. A steamer travelling due west at 20 knots is sighted by another steamer 
going at 16 knots. What course must the latter steer in order to cross 
the track of the former at the least possible distance from her ? 

72. Find the area of the ground plan of the greatest rectangular building 
which can be erected on a plot of ground in the form of a segment of 

a circle with a base of 120 yaids and height 20 yards. 



CHAPTER VII 

SUCCESSIVE DIFFERENTIATION AND POINTS OP 

INFLEXION 

67. DifTerontial cooflacients of higher order. 

We have seen how various kinds of functions of x can be 

differentiated with respect to x; the resulting differential coefficient 

is also a function of x (except when the original function is a linear 

function of x^ + in which case the differential coefficient is the 

constant a), and therefore it can be differentiated again with respect 

to X. 

The result of this second differentiation is called the second 

differential coefficient of y with respect to and is denoted by the 

symbol 

dx^ 

This again can usually be differentiated with respect to x; the 

result is called the third differential coefficient of y with respect 

to X, and is denoted by the symbol 

dj^ ^ 

and 80 on. 

Generally, the result of differentiating y n times in succession 

with respect to x is called the differential coefficient of y with 

respect to x, and is denoted by 

dx^' 

If the original function is represented by the symbol /{x)^ then 

the results of differentiating it 1, 2, 3, ... n times with respect to x 
are called the first, second, third, ... derived functions, and are 

denoted by 
/(4 /'"(4 respectively. 

The second differential coefficient is of very great importance in 

mechanics. The higher differential coefficients are of less frequent 

occurrence. 

In the case of some of the simplest functions, if the first few 



134 SUCCESSIVE DIFFERENTIATION 

differential coeflicients be written down, the law of formation of the 

successive differential coefficients can be seen by inspection, and the 

d. c. written down at once. 

Examples: 

(i) y = 

dy 

dx 
nx^ -1 d^y 

n(n — 
fp 
dx'^ 

If 
clearly, if n be a + integer, z=^ n\y b, constant, and all the higher 

d. c/s are zero. 

(ii) y =r l/x — x'~\ 

r = -!.* ■, -f:’ dx ^ dx- 

dx^ 

Each dilTerentiation merely increases the argument by i7r. 
dPy 

Hence —y = sin (inir + a:). 

Examples 2CX« 

Write down the Ist, 2nd, 3rd, and n'*' differential coefficients of 

1. 2. a-hb/x. 8. 1/x^. 4. l/\/x. 

5. e. (ax4 6)^®. 7. l/(2x+l). 8, 1/(1 ~j). 

0, sin (2x4 Of). 10. cosx. 11. ein^x. 12. cob'^2x. 

Write down the first 3 differential coefficients of 

IS. xsinx. 14. ir’cosx. 15. tanx. 10. x* sin 3 a;. 
17. a:;^/(l+a;). 18. x^cosnx. 19. seex. 20. v^(a*4x^), 

68, Application of the second dilforential coefficient to 
maxima and minima. 

We have seen that ^ is a maximum when dy/dx vanishes and 

changes sign from + to —, and a minimum when dy/dx vanishes 
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and changes sign from —■ to -f. Since, aa y passes through a 

maximum, dyjdx changes from + to —, therefore it is decreasing 

as X increases, and its d. c. is — (Art. 25), L e. d^yldx^ is — at 

a maxinuim. Similarly, as y passes through a minimum, dy/dx 

changes from — to -f, therefore it is increasing as x increases, and 

its d. 0. is -f, i.e. d?\jldx^ is -f at a minimum. 
d V d ^ V 

Hence the conditions for a maximum are — 0, — » 
dx dx^ 
d V d^ V 

and for a minimum 0, + • 
dx dx^ 

Sometimes it is more convenient to find the sign of the second 

u. 0. than to find how the sign of the first d. c. changes. 

E. g. in Ex. (i) worked out in Art. 55, dyflx == 0 when rc = 1 or 5. 
d^y/dx^ = 6a;—18, which is — when x — 1, and + when a; = 6. 
Iherefore x ~1 makes y a maximum, and x 5 makes y a minimum. 

In Ex. (ii) of the same article, dytdx — 0 when a; = 1 or —2, and 
d^yjdx^ = 12a;‘'* —12, which is 0 wlien x ~ and -f when a; = — 2. 
Therefore x — — 2 makes y a minimum, and x^l gives neither 
a maximum nor a minimum. 

In Ex. (iii) a troublesome differentiation is required to find the 
value of d'^yjdx^^ and it is much easier to find the change of sign 
of dyidx. 

In Ex. (iv) on the contrary, it is easier to use the second d. c., 
= — asin d —]!> cos 0, which is — when the positive values 

of sin 0 and cos 0 are taken, and + when their negative values are 
taken ; hence the former give maxima and the latter minima. 

69. Geometrical meaning of the second difl’erontial coefficient. 

If, in the neighbourhood of a point P on a curve, the curve is 

above the tangent at [as is tlio case at a point between A and B 

or between E and F in Fig. 65], it is said to be concave upwards; 

if the curve is below the tangent [as is the case at a point between 
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^ and C or between D and E\ it is said to be concave downwards, 

A point such as B or where the concavity changes from upwards 

to downwards or vice versa, is called a point of inflexion. The tangent 

to the curve at such a point crosses the curve; on opposite sides of 

the point of contact the curve is on opposite sides of the tangent. 

If, at all points in the neighbourhood of a point P on the cuiwe, 

the curve is concave upwards, then as x increases, the slope of the 

cuiwe, i.e. dyjdxt increases. Therefore (Art. 25) its d. c. is positive, 

i.e. d^y'dx^ is +. Similarly, if at all points in the neighbourhood 

of P the curve is concave downwards, then the slope, dyjdx^ decreases 

as X increases. Therefore its d. c., d^yjdx’^f is —. 

Taking the case of a circle, we have: — 

in 1st quadrant, dyUlx—^ S^yldx^ — ^ 
in 2nd „ dy 'dx-\~^ dry fdx“-~, 
in 3rd „ dy/dx--, d^y/dx^-\^ 
in 4th „ dy/dx-^-^ d^y/dx'^-\-. 

Also, at a minimum the graph is concave upwards, and d’^y/dx^ is + ; 
at a maximum the graph is concave downwards, and d^yjdx^ is —, 
as in the preceding article. 

Hence a curve is concave upwards or downwards at a point P 

according as the value of d^yjdx^ at the point is + or —. It 

follows that in passing through a point of inflexion, where the 

concavity changes, d'^y ldx’^ changes sign, and therefore, if continuous 

at the point of inflexion, it is zero. 

This may also be seen as follows: In Fig. 65, as the point P 

moves along the curve from A through B to C, the slope of the 

curve increases until the point B is reached, after passing which 

point the slope begins to decrease ; therefore at the point of inflexion 

P, the slope dyjdx is a maximum ; hence its d. c. d^yjdx^ ^ 0, and 

changes sign from -f to — ; therefore also dryjdo^ is decreasing as 

X increases, and its d. c. d^y 'dx^ is —. 

Similarly, as the point P moves along the curve from D to P 

through PJ, the slope decreases until the point E is reached, after 

which it increases again; therefore at the point of inflexion the 

slope dy/dx is a minimum ; hence its d. c. d^yjdx- = 0, and changes 

sign from — to + ; therefore also d^yjdx^ is increasing as x in¬ 

creases, and its d. c. d^y/dx^ is -f. 

Hence the conditions for a point of inflexion arc that d^y/dx* must 

vanish at ihepomt, and change sign in passing through it, or d 'y/dx^ = 0, 

d^y/dx® 9^ 0. 

The value of dyjdx at the point of inflexion of course gives the 

direction of the tangent at the point It will be zero if the tangent 
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at the point of inflexion is parallel to the axis of x as we have already 

seen in Art. 64, but this will not be the case in general. 

It is obvious that in the case of a continuous function, a point of 

inflexion must occur between a maximum and a minimum. 

60. Tangent at a point of inflexion, 

It has been seen (Art. 14 (1)) that the tangent at a point P is 

the limiting position of a chord PQ when Q moves indefinitely near 

to P, Le. the tangent passes through two ‘consecutive points' on 

the curve. It should be noticed that the tangent at a point of 

inflexion passes through three ^con¬ 

secutive points ’ on the curve. This 

is seen from Fig. C6. 

A straight line through a point of 

inflexion P will cut the curve again 

in two points Q and II Wlien Q is 

made to approach indefinitely near 

to P, R will approach and become 

indefinitely near to P on the other side, and the tangent at P is the 

limiting position of QPR when Q and R are both indefinitely near 

toP. 

61. Kecapitulation. 

Let us now sum up the information as to the nature of a curve 

at a point, which can be gathered from the signs of the values of the 

first two differential coefficients at the point. This information is 

clearly of great assistance in drawing the curve. The results can 

be conveniently expressed in a tabular form as follows: 

Y dLcc^ ^ doc? cLc« 4 - 

doc 
Cm'oe rising and 
conjc»oe upweoxlft 

Curoe nsuig and 
concaua 

Point of inflexion, / 
oixnsirg cui'ua / 

dx 
Oinx’ ffsU ing and ^ A 
corLCiiuc upwards 

Curoe 
cx^icaiueciownv/ards 

Point, of irifleriDa,*"^ H 
OfvJ&lUng curp« rv 

Mij^unujTx, ^ J Meocvmujn. Point of ni flexion. } 
wiih slope zero 

In each of the first figures in the last column, the curve passes 

from below the tangent to above it, i.e. (Py/dx^ changes from — 

to + ; therefore it is increasing and its d. c. Py/dx^ is -h. Similarly, 

in the second figures, d' y/dx^ is —. 
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Fxamples: 
(i) y — 4 8. 

In this case dy/dx — mm ^x{x — ^) 

and d^yjdx^ *= 6^r~ 12 — 6 (;p-“2). 

Hence dyjdx »= 0 when a? -» 0 or 4, 

When a? ■* 0, d'^y/dx'^ ~ 12 and t/ •» 8 : 

and when x •« 4, d'y/dx"^ « 24, and 

-24. 

Also d\fdx* 0 when x == 2 ; and 

cPyfdx^ *= 6. 

Therefore y is a maximum (8) when 

X « 0, a minimum ( — 24) when x ■=» 4, 

and the graph has a point of inflexion 

when X -« 2. The value of dy/dx when 

X =» 2 is -12, and the value of y —8; 

therefore the tangent at the point of in¬ 

flexion (2, —8) is inclined to the axis 

of X at an angle tan“^ ( — 12). If x< 2, 

d^yjdx"^ is —, and the curve is concave 

downwards; if x > 2, d'^y/dx^ is + and 

the curve is concave upwards. 

Fig. 67 shows rouglilj' the graph of the 

function.. 

-- u . t 

(Py , (a’-l x®)^ ( —2x) — («’ —x*)2fa* + x’). 2x 
an ci j' 2 d • , 5 ' “ 

dx^ (a^-fx*j* 

* x^) 2x—4x(a^-x*) 2a^x (x^-3a*)^ 

“ “ ■ (<»’ + *’)> “ (a“ -t x^f 

dy/dx « 0 when x« when x*^ -fa, cPyidxP is —; x«« 4 a 

makes y a maximum and equal to Jo. 

When X « - a, cPyjdx^ is 4 ; .*. x — a makes y a minimum and equal 

to -\a, 
dPy/doP mm 0, when x «= 0 and when x^3a*; i. e. x-* ±av^3, and 

d'^yjd^x^ changes sign when x j^asses through each of these values. Hence 

there are 3 points of inflexion. 

When X ■= 0, y 0, and dyjdx «=» 1; therefore the origin is a point of 

inflexion, and the tangent there is inclined at 45'' to the axis of x. 

When X *« ± a-v/3, y **= ±}av^3, and dy/dx-« a*(-2a*)/(4 a*)*« — 
therefore the tangents at the two points of inflexion (a^y/S, Ja^y/S) and 
( —av^3, — Jay^S) are inclined to the axis of x at an angle tau”*' (~i)» 
I e. at about 173^ 
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Noticiiirj that ns it follows that the form of the curve U 

aa shown in 6S. 

Fig. 68. 

Examples XXI. 

Find whether the concavity ia upwards or downwards in the following 
casea 1-4: 

1. At the point (2, —4) of the curve y » 10 —3:r~a:*, 

2. At the point (3, 25) of the curve y •= A lx~h. 

3. At the points (0, 0) and ( — 2, 22) of the curve y ~^x. 

i. At the point* (-1, —\) and (3, 2'7) of the curve y = -+x’). 

5. Prove that the cur\’e y =* ax® 1 ftx' + c is everywhere concave upwards or 
downwards according as a is -f or —. (Cf. p. IS.) 

e. Show that the curve y =» a-f 6a? —a:* —x* is everywhere concave down¬ 
wards. 

7. Prove that the curve y — a sin a?6 cos x is concave downwards at all 
points above the axis of x, and concave upwards at all points below. 

For what values of x are the following curves concave upwards, and when 
are they concave downwards ? 

a y-=» 2a?* —5a:. 0. y — 4x*-ar*. 

10. y 8x^4 lOx-6, 11. y»«x/(l—X*). 

12. Find the points of inflexion of the graph of y «=» cosx. 

18. Also of y tan x. 

14. Prove that the curve y ax* 4 6x^4“cx4d can have but one point of 
inflexion. 

Find the point* of inflexion (also the maxima and minima, and sketch 
the curve roughly) in the following cases 16-23: 

16. y~x* —4x. 10.^ y —xV(l4x*). 17. y sinx —cosx. 

18. y x*/(x* 4 12). 19. y - X* (4 -x*). 20. y =•- 9 x/[x- 1 f, 

21. y « 4/(xM 3). 22. y* •= X* (4 — x*j. 23. y^a\{b~cxf, 

24. Have the curves y *=* x\ y = x* any points of inflexion ? 

25. What is the greatest possible number of points of inflexion for the curve 
y ~ ax” 4 6x”' ' 4... + A? [n a positive integer] ? 

28. Draw curves at every point of w^hich 

(i) X is -, y 4, dyjdx 4, d^yjdx'^ 4 ; 

(ii) xis —, y —, dyjdx 4, d^yjdx"^ — ; 

(iii) xis 4, y dy/dx d^yjdx^ 4 ; 

(iv) xis 4, y 4, dyjdx d^yjdx^ —. 

♦ See Art. 9, £x. T. 
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27. Find the points of inflexion of the curve xy'^« (a-ar). 

28. Prove that the curve ■= a* cuts the axis of y at right angles at 
a point of inflexion. 

29. Find the points of inflexion of the curve y « a sin* x\h cob^ x. 

In the following curves, find their intersections with the axes, their 
maxima and minima, where they are concave upwards and where 
downwards, their points of inflexion, and the equations of the tangents 
at those points. Draw the curves. 

SO y ^ —10-f 9. 81. y *= (1 —82, i-y ^ [2 



CHAPTER VIII 

APPLICATIONS TO MECHANICS 

62. Velocity and acceleration. 

We have seen that is a measure of the rate of increase 

of y with respect to x. Now the distance of a moving point from 

a fixed point in its path is a function of the time ; its velocity is the 

rate of increase of this distance, and its acceleration the rate of 

increase of its velocity with respect to the time. In other words, 

the velocity is the d. c. of the distance with respect to the time, and 

the acceleration is the d. c. of the velocity with respect to the time. 

More precisely, let s be the distance, measured along the path, of 

a moving point P from a fixed point A of the path at the end 

of time L After a little longer time let the moving point 

be at Q, a distance from A. Fig. 69 is drawn so that $ 

increases with t 

Fig. 69. 

Then, in the interval of time the point has travelled the distance 

hSy therefore the average velocity during the interval ^Ms hs/^i\ 
if 6^ is diminished indefinite!}’’, this average velocity hs/ht tends to 

a definite limit. This limit of hs/ht as ►O, i.e. ds/dt^ is called 

Hie velocity at time t. It will be + if 5 increases with t as in Fig. 69, 

and — if 5 decreases as t increases, i. e. if P is moving towards A, 
Similaidy, if v be the velocity of Pat the end of time f, and if ATQ 

be a straight lino, so that the velocity is in a constant direction, 

Iv/lt is the average acceleration during the interval and its limit 

dv/dt is called the acceleration at time t. 
Since v = ds/dt^ it follows that the acceleration dv/dt may bo 

expressed in the form A^$/dt\ 
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The acceleration may also be written in a third form, which is 

in«lependent of the time; for the velocity v is evidently a function 

of the distance 5, therefore 

dv 
Jt 

dv ds .. . dv 
~ (Art. 34) = 

d$ dt ds 
X 0 ~ V 

dv 
ds 

Hence the acceleration may bo expressed in one of the throe 

forms 
dv <Ps dv 
Tt' d^’ *’*■ 

It is usual in mechanics to denote differential coefficients with 

respect to the time by dots placed above the dependent variables, 

thus dv/dty ds/dty d^s/dt^y d^xjdi^ are denoted by i\ s, s, and ^ 

respectively. 

C3. Particular eases. 

As examples on the use of these expressions, consider the following 

cases: 

(i) Let s be given by the equation 5 = where u and a 
are constants. 

Then the velocity 

V = ds/di = u^\a, 2 t u -haty 

which gives the velocity at time iy and from which it follows that u 

is the value obtained for v by putting t = 0, i e. u is the initial 

velocity. 

Also the acceleration = dv/dt = a, hence the point moves with 

constant acceleration a. 

Again, if t; be given by the equation t?* = M® + 2as, we have, on 

differentiating with respect to s, 2vdv/ds 2 a, i.e. the acceleration 

V dv/ds = a as before. 

This is the well-known case of uniformly accelerated motion. 

(ii) Let s be given by the equation s a cos nt, where a and n 
are constants (a is the value obtained for s by putting / = 0, L 0. it 

is the initial distance from the origin). 

Then the velocity v = ds/dt = —ansin nty 
and the acceleration = dv/di = — an^ cos nt = — n'^5. 

Again, eliminating t between the values of v and s, we have 

= a^n^Qin^nt = n^(a^—a^cos^n/) = 

which gives v in terms of s. 
Differentiating this with respect to s, 2vdv/ds = ( —25), i.e. the 

acceleration !?dt;/d5 = — as before; so that the acceleration is 

towards the origin and varies as the distance from the origin* 
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This is the welhknown case of simple harmonic motion. 

In these two cases the order of procedure adopted in elementary 

mechanics is reversed ; there we begin by assuming an acceleration 

of a certain type, and then proceed to find the velocity in terms 

of the time and the position, and the distance travelled in terms of 

the time. This, as will be seen later (Art. 78), is also the method 

followed in the Integral Calculus. 

64. Additional examples. 

Given any relation between s and or between v and 5, we can 

at once find the velocity and acceleration at any instant, as we have 

dune in the two well-known cases just considered. Two more 

examples are appended, 

(i) Sup2yose n point to move in a straight line so that its distance s in feet 

from a fixed point 0 in the line at the end of t seconds is given hy the equation 

H «=» 10 -f- 271 -t*; to find the various circumstances of the motion. 

The velocity at the end of t seconds is given by 

V ^ ds/dt ^ 21 

whence the initial velocity 27 ft. secs., the velocity after 2 secs. 

«= 27 — 12 15 ft. secs., and the velocity is zero when 27 »«- 3/*, i. e. when 

^ 3 ; greater values of i make v — , and when f 3, 

10 + 81-27 - 64feet. 

Hence the particle starts with a velocity 27 ft. secs, at a point 10 feet 

from 0 (obtained by putting < 0 in the value of s), moves to a distance 

of 64 feet from 0, and then turns back towards 0, 

The acceleration at the end of t seconds »= dv/dt — —6/. 

Therefore the particle is subject to a retardation which is proportional to 

the time it has been in motion. 

After 3 seconds the velocity is —, and the acceleration is — and con¬ 

stantly increasing in absolute value ; hence the particle continues to move 

in the negative direction with numerically increasing velocity. It will pass 

through 0 on the return journey, when 5 «= 0, i. e. when f* —27^ — 10 «0, 

an equation which has a root a little less than 5'4. 

(ii) If V* is a quadratic function of s, i. e. if v* — a8*+ bs + c, where a, b, c 

are constants, prove that the acceleration varies as the distance from a fixed 

point in the line of motion. 

Differentiating with respect to s, 

2 V dv/ds « 2 as + 6, 

i. e., the acceleration v dvjds -* a5 + ^ 5 — «[s + 5/2 a), 

s is the distance of the moving point T from the origin; therefore, if 

a point A be taken in the line of motion at distance 5/2 a from the origin 

and on the negative side of it, ^P»s + 5/2a. Hence the acceleration 

«« a . .4P, i. e. it varies as the distance of P from the fixed point A. 
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Examples XXII. 

Find the velocity and acceleration (i) at the end of i seconds, (ii) at tho 

end of 2 seconds, (iii) initially, in each of the cases 1-4. 

1. 5-.12 + 20/-2/*. 2. « /^-2/^ + 4. 

5. 5 *= 10 cos 4. 5 *=» 6/ -f 8/(^ -f 1). 

6. Find the initial velocity and acceleration when 5 *= + + 4. 

6. „ „ „ „ = 8cos2^-f 4 8in 2^. 

7. If « 2/*-f 3^®-f 4^ —20, make a table giving the position, velocity, and 
acceleration initially, and after 1, 2, 5, 10 seconds. 

8. Similarly if « =« 10 cos J 4-20 sin } tt^. 

0. If the distance travelled varies as the square root of the time, prove that 
the acceleration varies as the cube of the velocity. 

10. If the velocity varies as the square of the distance travelled, prove that 
the acceleration varies as the cube of that distance. 

11. A point moves so that 164-48^; when and where will it stop 
and reverse its direction of motion ? 

12. When and where if 5 «■ a sin rrt ? 

13. If the velocity varies inversely as the square root of the distance, prove 
that the acceleration varies as the fourth power of the velocity. 

14. If be a quadratic functiou of t, prove that tho acceleration varies 
inversely as s^. 

15. A point moves in a stmight line so that its distance s from the origin 
at time t is given by the equation s •=» IO4-8 sin2^4 6 co82 ^; prove 
that its accede ration varies as its distance from a fixed point in the line 
of motion, that its motion is oscillatory, and that the origin is at one 
extremity of its path. 

65. Force expressed as a dilTerGiitial coeffleient. 

(i) Force and acceleration, Newton’s second law of motion states 

that the force in any direction is proportional to the rate of change 

of momentum in that direction. By suitably choosing the units, 

we have the force equal to the rate of change of momentum, i. e. (if 

the mass acted upon by the force remain constant) 

_ d . . dv d^s 

the product of the mass into the acceleration. 

Ex. Find the maximum force upon a particle of mass 2 oz. which 
moves so that its distance from the origin at time t is given by the 
equation 5= 10 cos 2/, 

In this case m = lb., ds/dt = — 20 sin 21, d^s/dt^ = — 40 cos 21 
Therefore the force on the particle at time t = md^sldi^ = — 5co3 2^ 
(in absolute units or poundals). 

The negative sign indicates that the force acts towards the origin. 
The greatest value of cos2^ is 1, therefore the maximum force is 
5 poundals or lb. wL 
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(ii) Force^ worJc, and energy. If a constant force F (Fig. 70) act 

at a point A, and if A be displaced to F and BM be drawn perpen¬ 

dicular to the line of action of JF, F.AM is called the worTc done 

by the force during the displacement; it is positive if AM is in 

the direction of the force as in (i), and negative if in the opposite 

direction as in (ii). No work is done if the displacement be perpen¬ 

dicular to F. 

B B 

Let a variable force F act on a particle at P, and let x be the 

distance (measured parallel to F) of P from a fixed point A ; let P 

be displaced to Q, a distance hx in the same direction, and let F-^hF 

be the magnitude of the force at Q. Then, if W be the work done 

by the force in moving the particle from some standard position to 

P, and IW the work done in the displacement we have* 

h W > Fix and < (P+ IF) hx. 

Therefore a; is between PandP+^P. In the limit, when 

(and therefore also STF and 6P) —► 0, P+^P—>P, so that 

IW/lx, which is between them, also —► P, i.e. dWjdx r=z F; 
therefore the force is equal to the space-rate of change of the work. 

Since P = mass x acceleration, we have, taking the acceleration 

in the form v dv/dx^ 

i.e. the force is the space-rate of change of the kinetic energy. 

Also the power of a working agent = its rate of doing work 

per second 
^dW 

df 
dW dx 
dx ^ dt 

= Fv, 

i e. the force x the velocity. 

Examples XXIII. 

1. Given that the work done in stretching an elastic string varies as the 
square of the extension, prove that the tension of the string is pro¬ 
portional to the extension. 

* If is —, th« inequality signs will be reversed. 

IBM L 
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2. The distance of a moving point from a fixed point in its line of motion 
is given by the equation + + prove that the force causing 
the motion is constant. 

3. The kinetic energy of a moving particle varies inversely as its distance 
from the origin ; find the force acting on the particle. 

4. A particle moves in a straight line so that its distance s from a fixed 
point of the line at the end of i secs, is given by the equation 

Find the maximum force upon it during the motion. 

5. A curve is plotted to show the velocity of a moving point as a function 
of the distance travelled. Show that the subnormal represents the 
acceleration. 

6. A particle of mass J lb. moves in a straight line so that its distance a 
from the origin at the end of time t is given by the equation 

i 5 + 4 sin 31. 

Find the maximum force upon it during the motion. 

60. Relation between velocities in different directions. 

If a point be moving in a plane, its coordinates {Xy y) are fiinctiona 

of the time if (x-k-hXy be its coordinates at time ^ + then 

hy hp /lx 

Tx “ hi/ Tt * 

Hence when hiy and therefore hx and ►O, we have 

dy dy /dx y 

dx dt/ dt ^ 

i. e, the d. c. of y with respect to a? is equal to the ratio of the rate 

of increase of y to the rate of increase of Xy both taken with respect 

to the time. 

The relation between the time-rates of increase of two variables 

ft and y can also be obtained directly by differentiating, with respect 

to the time, the equation which connects x and y. The method is 

illustrated in the following examples: 

(i) Two straight roads OA, OB intersect at right anglesy and a house at B 

4 miles distant from O ; « man walks towards 0 along the other road AO at 

the rate of 4 miles an hour / find the rate at which he is approaching the housSy 

at the instant when he is 3 miles from 0. 

If X and u denote his distances from 0 and B respectively, we have 
16. 

Differentiating with respect to ty 

^ du ^ dx du X dx 
2u -~ 2x or 37 • 

dt dt dt u dt 

At the given instant, x — 3, u«5, and dx/dty his velocity along 

the road, « — 4 [ —, since a? is decreasing]. Therefore 

du/dt - f X ~4 — ~2*4 miles per hour, 

i. e. u is diminishing, and he is approaching the house at the rate of 2*4 

miles per hour at that particular instaut. 
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(ii) Suppose that the roads in the preceding example are inclined at 60*. 

In this case, by elementary trigonometry (a* mm b*-i 0^ — 2 LcoobA), we 

have 
w* 0:* +16—2.4 xcos 60® « x*-l-16 —4x. 

Differentiating with respect to t, 

, du * dx 
> u ; - 2 X ^ 

di dt 
= 2(x-2)' 

du X —2 dx 

** dt u di 

When X **= 3, u* « 13 and u ** ^/l2. Therefore 

du/dtmm l/yi3x<ix/ii/— l/v^l3x -4 « -IJ nearly. 

The man is approaching the house 

at the rate of 1J miles per hour. 

When he is 2 miles from 0, i. e. 

when X ■- 2, we have du/dt ■■ 0. In 

this case, it is evident geometrically 

that the man is at the foot of the 

perpendicular from B to OA^ and 

hence at this particular instant he it 

not approaching B, Notice that in 

this case, u, his distance from is 

a minimum, and hence (Art. 53) it 

follows that du/dt 0 at this point, 

and changea from — to +. Before 

reaching du/dt it —, and he is approaching the house; after passing JV, 

du/dt is +, and he is receding from the house. 

[The student of mechanics will observe that in both cases the velocity of 

approach is simply the component of the man’s actual velocity resolved 

along ABi\ 

67. Velocity along the arc of a curve. 

It will be shown in Art. 82 that if s be the length of the arc 

of a curve, measured from a fixed point on the curve to a point P 

whose coordinates are (x, y), then, ultimately, when Ix^ ^y, and 65 

are very small, 

(5s)* = (5x)* + (5y)* 

If the point P be supposed to move along the curve, s, a?, and y 

are all functions of t Dividing by It being the time taken 

to traverse the arc ISj 

h 2 
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Therefore in the limit when H and therefore also 65, hy —►O, 

WG havo 

dsfdt is the rate at which the point is moving along the curve; 

dx/dt and dy/dt are the time-rates of increase of the abscissa and 

ordinate of the point, i.e. the velocities parallel to the axes of 

coordinates. This is the well-known result that the square of the 

resultant velocity of a point is equal to the sum of the squares of its 

component velocities in two directions at right angles. 

Examples: 

(i) The cool'd'mates of a moving point at the end of time t are given by the 

equations x = aroint, y ^ slsin nt; ptvve that the point describes a circle 

with velocity of constant magnitude. 

The path of the moving point is obtained by merely eliminating t from 

the given equations. Squaring and adding, we have at once + = a*, 

which is the equation of a circle. 

To find the velocity, we have, on differentiating with respect to 

X ^ —an sin nt, y «« an cos nt. 

Therefore, again squaring and adding, 

+ i. e. i*«a*n* and ^■«+an, 

which gives the resultant velocity s of constant magnitude. 

The iign will depend upon the position of the point from which s is 

measured. 

(ii) A point moves in a parabola so that its velocity parallel to the axis af the 

cui've is constant; find its x^elocity along the cujre. 

Differentiating the equation of the parabola, y’^ ■= 4 ax, with respect to t, 

we have 2y dy/dt « 4a dx/dt. 

dx/dt is given to be constant; if it be equal to w, then y dy/dt <^2au, 

/. jp® -f y® « + 4a”t<Yy* 

** u*(1 + 4aVyY = M* (1 + » 

the velocity along the curve 

ds/dt *= ±u^{l + a/x). 

(iii) A point is moving in an ellipse of eecentncify } with a velocity of 

40/if. secs.; find its component velocities parallel to the axes of the ellipse when 

it is at an extremity of a latus rectum. 

Here i ■« 40, and the values of 3c and y are required. 

Taking the equation + y“= L aJid differentiating with respect 

to t, we have 

2x dx 2y dy ^ dy b^x dx 
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At the end of a latus rectum, x ^ ±ae, y [PP* 1^> 241; 

dy ± ae) dx dx 3 dx 

~dt a\ ± V^/a) dt ^^dt “ 4 57 
Hence i:® + y** ** ir* +ir* ■= i;*, 

•*. « ■* jh ^ X s *=» + i X 40 — + 32 ft. sees., 

and y ■« ± 2 ir =- + 24 ft. secs. 

There are four possible arrangements of signs which will be associated 

with the four extremities of the latera recta. 

Examples XXIV. 

1. The rectangular coordinates of a moving point at the end of time t are 
given by the equations x —30^, y —40^ — 16 find the resultant 
velocity at the end of 2J secs. 

2. The coordinates of a moving point at the end of time t are given by the 
equations x ^ a-^ccos t, y « + csin ^; prove that the resultant 
velocity and acceleration are of constant magnitude. 

8. A man walks at 4 miles an hour on a horizontal plane towards a column 
100 ft. in height; at what rate is he approaching the top of the 
column, at the instant when he is 75 ft. from it ? 

4. Two straight lines of railway are inclined at an angle of 120®, and 
a train on one line is travelling towards the junction A at 40 miles per 
hour. At what rate is it approaching a station on the other line 2 miles 
from Ay at the instant when it is also 2 miles from A. 

5. A man 6 ft. high walks at the rate of 6 ft. per sec. along a horizontal 
pavement lighted by a lamp 10 ft. vertically above it; find the rate at 
which the length of his shadow on the pavement changes. 

6. Find the rate, in the preceding question, if the pavement is an incline 
of 1 in 10, and the man is walking up it towards the lamp. 

7. A ladder, 34 ft. long, rests in a vertical plane with one end on a horizontal 
road and the other against a vertical wall. If the lower end is pulled 
away from the wall with a velocity of 10 ft. per min., find the rate 
at which the upper end is descending at the instant when the foot 
of the ladder is 16 ft. from the wall. 
When will the ends be moving with equal velocities ? 
When will the upper end be descending at the rate of 20 ft. per min. ? 

8. A truck is drawn along a straight horizontal road by a rope which passes 
round a windlass 14 ft. vertically above a point A of the road. If the 
rope is wound in at the rate of 20 ft. per min,, find the velocity of the 
truck when it is 48 ft. from A, 

0. A man standing on a quay draws a boat towards him by means of a rope 
which he is pulling in at the rate of 1J ft. per sec. At what rate is the 
boat moving when there are still 25 ft. of rope out, the man’s hands 
being 7 ft. above the level of the water ? 

10. Two rings P and Qy connected by a rod 20 ft. long, slide along two fixed 
wires OA, OB at right angles. If P be made to move along OA at the 
rate of 5 ft. per min., when is Q moving along BO at the rate of 2 ft 
per min. ? 

11. If in the preceding question OA and OB are inclined at an angle cos”* J, 
find the velocity of Q along BO when it is 15 ft from 0* 
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12. Two trains start from the same station at the same time. One goes due 
north at 80 miles per hour, and the other due north-east at 20 miles per 
hour. At what rate is the distance between them increasing after i hour ? 

15. If the slower train starts at 1.50 p.m., and the other at 2 p.m., at what 
rate is the distance between them increasing at 2.10 p.m. ? 

14. Two straight roads intersect at right angles. A man walking along one 
of the roads at 3 miles per hour passes the crossing at 2 o’clock, and 
another man walking along the other road at 4 miles per hour passes it 
at half-past two. Find the rate at which the distance between the men 
is changing (i) at a quarter to 2, (ii) at 3 o’clock. 

16. A straight road passes over a river which runs at right angles to it by 
means of a bridge 50 ft. high. A boat travelling at the rate of 4 ft. per 
sec. passes under the middle of the bridge one minute before a man 
walking at 6 ft. per sec. along the road reaches the middle of the 
bridge. Find the rate at which the distance between the boat and 
the man is changing (i) 1 minute before the boat reaches the bridge, 
(ii) ^ minute after the man has passed the middle of the bridge. 

10. A, B, C are three villages. The distance from A to i? is 5 miles, from B 
to C 4 miles, and from C to A 3 miles. A man walks from A to B, then 
on to C, and back directly from C to A at 4 miles per hour ; find, when 
half-way between each pair of villages, the rate at which he is 
approaching or receding from the third village. 

17. A man walks round a circular track with constant velocity, and his 
shadow, cast by the sun, always intersects the diameter of the track 
perpendicular to it. Prove that the rate at which his shadow moves 
along this diameter varies as his distance from it. 

18. A lighthouse is one mile from the nearest point A of a straight line of 
shore, and the light revolves twice per minute; how fast is the light 
travelling along the shore (i) at A, (ii) i mile from A, (iii) 1 mile 
from A ? 

10. A man walks round a circle of radius 20 yds. at the rate of 4 ft. per sec., 
and a light at the centre of the circle throws his shadow on a straight 
wall built along a tangent line to the circle. Find the velocity with 
which his shadow moves along the wall (i) when he is 5 yda from it, 
(ii) when he is 8 yds. from it. 

20. A right circular cone is filled with water and placed with its axis vertical 
and vertex downwards. If the water flows out at a constant rate of 
5 c. in. per sec, through a hole at the vertex, at what rate is the surface 
of the water descending at the instant when the radius of the surface 
is 6 inches ? 

21. The ends of the water reservoir of a town are vertical, the sides slope at 
an angle of 45°, and the bottom is a horizontal rectangle 200 yds. by 
80 yds. If the water-level is sinking at the rate of 5 ft. per day (and no 
more water is running in), at what rate per day is water being supplied 
to the town at the instant when the water is 20 ft. deep ? 

22. A piston slides freely in a circular cylinder of radius 9 inches; at what 
rate is the piston moving when steam is being admitted into the 
cylinder at the rate of 22 o. ft, per sec. ? 

28. The diameter of a sphere increases from 4 in. to 12 in. in 10 minutes, 
equal volumes being added in equal intervals of time. Find the radius 
alter 5 minutes. At what rate is the radius then increasing ? 

24. The area of a circle increases from 16 sq. in. to 100 sq. in. in 20 secs., 
equal areas being added in equal intervals of time. Find the radios 
after 15 seconds. At what rate is the radios then increasing ? 
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36. A trough, whose cross-section is an isosceles triangle, is a ft. long 
and h ft. broad at the top. Water is poured into it at the rate of 
k c. ft. per sec. At what rate is the water rising in the trough when it 
is one quarter full ? 

20. A point moves in the parabola y* -■ 12flf. so that its velocity parallel to 
the axis of the curve is everywhere 10 ft. per sec. Find its velocity 
perpendicular to this axis and the resultant velocity, when at the 
point (3, 6). 

27. The path of a moving point is the curve y — 10 sin 2x, If the velocity 
parallel to the axis of x is constant and equal to 5 ft. per sec., find the 
resultant velocity at the point whose abscissa is ^ tt. 

28. In the preceding question, prove that the acceleration at any point is 
proportional to the ordinate of the point. 

29. A point moves in the ellipse 16y“ — 288; if, at the point (4, 8), 
the velocity parallel to the minor axis be 10 ft. per sec., find the 
velocity parallel to the major axis, and the resultant velocity. 

30. If, in the cycloid (Art. 50), the angle 0 is increasing at the rate of 
1 radian in 10 seconds, find the velocity of the point P along the arc at 
the instants (i) when ^ J tt, (ii) when ^ £ rr, the radius of the 
generating circle being 20 inches. 

81. A point is moving in the parabola y* — 12 a; at the rate of 10 ft. per 
sec. ; find its component velocities parallel lo the axes when it is at the 
point (3, 6). 

82. A point is moving in the ellipse xr*/a*-f y*/5* — 1 with constant velocity 
u ft. secs.; find its velocities parallel to the axes at any point. 

88. A man walks at 4 miles per hour along a road in the form of a parabola 
whose equation is « 25 y, and whose axis is due north and south. 
Find his velocities due N. and due K, when he is 1 mile N. of tho 
vertex. 

68. Angular velooity and acceleration about a point. Motion 

in a circle. 

If 0 be the inclination to a fixed straight line OA of the lino 

joining a moving point P to a fixed point 0, the time-rate of increase 

of the angle d, i.e. dd/dt or 6^ is called the angular velocity of the 

point P about the point 0, or the angular velocity of the straight 

line OP. 

Similarly, if to denote the angular velocity of P about 0, the time- 

rate of increase of cn, i.e. doa/dt or a>, is called the angular acceleration 

of P about 0. Since co = the angular acceleration of P about 0 

may be written d^Ojdfl or h. 

Let a particle describe a circle of radius r about a point 0 (Fig. 72). 

Let P be the position of the particle at any instant when the radius 

OP makes an angle 6 with a fixed radius OA, and Q its position 

after time It, during which the radius turns through an angle 

If 8 be the length of the arc AP, the velocity v of P in the 

direction of the tangent PP is k or rtf, since $ = r^, and r is 

constant. 
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The velocity of P in the direction of the normal PO is zero, for the 

particle is moving in the direction perpendicular to PO. 

If be the velocity at Qy this may be resolved into 

(v-h cos bd and (v + bv) sin bd, parallel to FT and FO respectively. 

The acceleration in any direction is the time-rate of change of 

velocity in that direction. Therefore acceleration at P along the 

tangent FT 

L(v+bv)c03bd’--v T rSt? (1 —cos^>0)l 

Now 
1 —cos bO 

TT 

- cos bO b$ 

'Jo~~ ^ Ft 

which, as >0, tends to the limit Oxd, i.e. zero [Art 13 (10).] 

. •. the acceleration along FT = T vt ^ ’ 

This may also be written (Ps/dt^ or rcPO/dt^, i. e. s or r§. 

Since dv/di dv/dsxds/dt, it may also be put in the form 

V dv/dSy just as in the case when the particle is moving in a straight 
line. 

The acceleration at P in the direction PO 

-Lt (r-f ^t?) sin b$ 

L. . . sin5^ ^ 
^(r + ot;)* —*^5 as bt and therefore od—>0, 

= t?xl xdOldt 

rd* or v^/r. 
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Hence, if 6 denote the angle which the radius through the particle 
makes with a fixed radius, the components of the velocity and 
acceleration of the particle along the tangent and normal are r^, 0 
and rOj rO^ respectively, and, if m be the mass of the particle, the 
forces acting on it are equivalent to mrO, mrO^ along the tangent 
and normal respectively. 

In the particular case when the particle is moving uniformlf/ in 
the circle, d is constant. Therefore 0 is zero, and the resultant 
acceleration is rO^ along the radius; in this case the force on the 
particle necessar3’’ to keep it moving uniformly in its circular path 
is or mv^/r towards the centre of the path. 

69. Crank and connecting-rod. 

The relations between the motions of connected parts of a machine can 
often be obtained by the use of these principles as illustrated in the follow¬ 
ing example, which ie of rather greater difficulty than those hitherto 
considered. 

A crank OQ fFig. 73) rotates about O with constant ancjular velocity q>, and 

a coymecting-rod QP is hinged to it at Ofte end Q, tchile the other end P moves 

along a fixed straight line OX; determine the motion of P. If a perpendicular 

f)'om 0 to OX meet PQ produced in R, prove that OR and QR represent in 

magnitude the velocity of P and the angular velocity of PQ respectively, Fiyid 

also the acceleration of P. 

Fig. 73. 

Let a and I be the lengths of OQ and Pft and 3 and the angles QOX^ 

QPO respectively. Draw ©If perpendicular to OX, 

As Q moves round the circle, P moves backwards and forwards along the 
line OX, If x denote the distance OP, we have 

X *= OM -f MP «= a cos ^ -f Z cos (/>. 

Also I sin (/>« QM « a sin $, 
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Differentiating both equations with respect to 

^wm —tfsin^.^ — Zsin<fi, 

/ cos 0. — o cos 6. S, 

Now Sf the angular velocitj of OQ^ is q> ; 

a cos 6 OM FQ 

' gp" ’lcoa(p ~’MP ~'QP I 

Also, substituting in (i) the yalue of obtained from (ii) 

A A T ' j cos B 
mm — a gin d. o)—/Bin 9 . 

FQ, 

— —do) ^1 sin<^-f 

I cos 9 ‘ 

sin 9 • cos^ \ 

cos 9 

- a CD sin (d +9)/cos 9 

— - a CD sin OQR/%m OFQ 

— -du) OF/a 

n — (I) OR^ 

Hence and i are represented by FQ and OF respectiTcly. 

To find the accelemtion of P, take the equation just obtained, 

stmm —dw sin (d + 9)/cos 9, 

and differentiate with respect to t; 

cos9 . cos (^ + 9) + +d)). (-sin 9)9 

cos* 9 

(0 
(ii) 

cos* 9 
[i^C08 9 cos (d + 9)d“<^ {co8 9 coa(d-f 9)-^ 4^^^^ (^ + ^)}] 

<*« r j /A , j \ ^ cos B 1 
-r— U> cos 9 cob (d + 9) + J-T « • cos 0 

cos* 9 L ' ' / cos 9 J 

dCD* 

cos 9 
j cos {$ 4- 9) 

tf co8*^n 

/ 008*9-1 

This equation gives the acceleration in any position in terms of ^ and 9» 

which can both be found when either of them or when x is given. 

When ^ is at-d, ^ —9“^» — do)* (1+ a/?). 

When Q is at A\ ^ tt, 9 ^ ■“ —«*»>* ( — 14- o/Z) — d«* (1 ’-a/T), 

If I be large compared with a, bo that ajl may be neglected, the 

accelerations of P when Q is at ^ and A' become nearly — do)* and 0 4i>* 

reBX)ectively, i. e. approximately the same as if the motion of P were simple 

harmonic. In this case, the angle 9 always small, and the general 

expression for ^ becomes approximately — da)*co8^, i. e. — a)*01f. Since 

FQ makes a small angle with OX, the distance of P from the centre of its 

path is very nearly equal to 0M\ hence the motion of P approximates to 

simple harmonic motion. 
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Examples XXV. 

L A point F moves with uniform velocity u along a straight line OX; find 
the angular velocity of P about a point -4 at a perpendicular distance 
a from OX, 

2. A point Pdescribes a circle, centre Oand radius r, with uniform angular 
velocity w, and a point B is taken on a radius OA produced, at distance 
a from 0; find the angular velocity of P about B (i) when P is at A, 
(ii) when P is at an extremity of the diameter perpendicular to OA. 

8. The lengths of a crank and connecting-rod (as in Art. 69) are 6 inches 
and 2 feet respectively; find the accelerations of P when ^ is at A and 
at A\ the crank making 100 revolutions per minute. 

4. A crank OQ is made to rotate uniformly about 0, and the end P of 
a connecting-rod PQ moves in a straight line at a perpendicular distance 
h from 0; find the velocity and acceleration of P in any position. 

5. A rod AB turns about one end A with uniform angular velocity o); it is 
freely jointed at B to another rod BD which is constrained to pass 
through a fixed ring C; if AE be drawn perpendicular to BC, prove 
that at any instant the velocity of the point of the rod which is passing 
through the ring is AP.o), and that the angular velocity of BD is 
equal to « BE/BC, 

6. In Art, 69, prove that the velocity of P is equal to the velocity of 
Q X FN/PM where PN is the perpendicular from P to OQ. 



CHAPTER IX 

SIMPLE INTEGKATION WITH APPLICATIONS 

70. Introductory. 

In the preceding chapters we have shown how to find the 

differential coefficient or rate of change of a given continuous 

function of x. In many branches of mathematics, both pure and 

applied, we are frequently confronted with the inverse problem, 

viz. given the rate of change of a function, to find the function. 

This process of finding a function which has a given rate of change 

is known as integration. 

An integral may be defined in two quite distinct ways; either 

as the inverse of a differential coefficient or as the limit of the sum 

of a certain series. The former of these two definitions is tlie one 

which leads to the methods of evaluating integrals; the latter is 

the one upon which many of the simpler applications depend, but 

it does not yield convenient methods of evaluation. We shall, 

therefore, begin by considering the first definition, and later, when 

we have learned how to calculate the simpler forms of integrals, we 

shall consider the second definition and show the relation between 

the two kinds of integrals. 

71. Definitions. 

The integral of a function f (x) witli respect to x is ths function whose 

differential coefficient with respect to x is f (x), and is written f f (x) dx. 

The symbol f is really an elongated 5, the first letter of the word 

* sum \ and the necessity for the insertion of the factor dx will be 

seen when we come to consider integrals from the second point 

of view mentioned above. At present it may be regarded as part 

of the symbol of integration, indicating the variable with respect to 

which the required function must be differentiated in order to give 

f[x)y so that f... dx stands for ‘the integral of ...with respect to x\ 
Generally, 

~ F (x) be denoted by F' (x), then /F (x) dx = F (x). 
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Briefly, in the differential calculus, the first problem to consider 

is: Given y, find dyjdx; in the integral calculus, the first problem 

to consider is the converse of this, viz. given dyjdx, find y. 

E. g. the d. c. of with respect to a? = hence fZx^dx = ; 

the d. c. of tan x with respect to a? = sec^a;, hence f sec^a^da; = tan x. 
Unfortunately, there ia no general method of retracing the steps in the 

process of differentiation. In the calculation of differential coefficients, 

terms are frequently added and subtracted, and factors multiplied together 

or cancelled out, and when the final result only is given, there are no means 

of recovering these terms and factors. A few of the commonest and sim¬ 

plest integrals are collected from knowledge of differential coefficients ; 

these are usually referred to as ' Standard Forms 

The first part of the Integral Calculus then consists, in the eyes of the 

beginner, of a collection of various haphazard methods and devices by means 

of which other expressions can be reduced to one or other of these standard 

forms or to some combination of them; t and the degree of difficulty 

experienced by the student in dealing with these will depend to a great 

extent upon the thoroughness of his knowledge of the substitutions and 

formulas of elementary algebra and trigonometry. 

For the discussion as to whether a function always possesses an integral or 

in what cases a function possesses an integral, the student is referred to more 

advanced works. It can be shown that every continuous function has an 

integral. The functions which are encountered in elementary applications 

generally possess integrals which can be expressed in terms of the functions 

we have already considered, together with those which will be dealt with in 

the next chapter; but there are many comparatively simple functions whose 

integrals cannot be expressed in terms of such functions, e. g. (1 — 2 sin*ar)~^/*, 

-Vasina?, (cosxj/a;, cannot be integrated in terms of such 

functions. 

72. Arbitrary constant. Indefinite integral. 

The first point to notice is that the above definition does not give 

a perfectly definite value for the integral; since the d. c. of a 

constant is zero, it follows that the integral of (a:) with respect 

to a: is not necessarily F{x) only, but is F(x)’\-Cj where 0 is an 

arbitrary constant, i. e. any quantity whatever which does not 

involve x. On this account these integrals are often referred to 

as ^indefinite integrals*. 

* These Standard Forms must be committed to memory. It is not really necessary 
to remember more than a dozen or so, but these must be thoroughly known, and 
the student must bo able to recognize them at once whenever and in whatever 
form they occur. 

t These methods and devices are not really as disconnected as they appear 
at first sight to the student. See Q. II. Hardy^s Integration qf Functions qf a Single 

VariabUt Cambridge Tracts in Mathematics, No. 2. 
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Taking the cases mentioned above, the d. c. of is 3 a;*, but so 

also is the d. c. of a:®+ 4, —10, ic® + a^ or ai'^ + any expression 

which does not involve x. Therefore 

where C is arbitrary, except only that it is independent of x. Similarly, 

/^ec^xdx = tan a;+ G. 

This arbitrary constant G is usually omitted, but the student must 

not become oblivious of its existence. In practical examples, as will 

be seen later on, it often plays a very important part. 

It should be noticed at this stage that if a pair of simultaneous 

values of the function and its integral be given, then the constant 

ceases to be arbitrary and can be determined. 

E. g. given that dyfdx^^x-^ and that y 3 when a: — 2, find y 

in terma of x. 
We have y"^/(^x — 2)dx 

— a:*-2ar+(7, (i) 

fiince this ia the expression which gives 2 a? —2 when differentiated. 
It is given that y ■■ 3 when a? — 2, hence, substituting these values, wo 

have 8 ■■ 4 —4-f 

whence C *« 3, and therefore, substituting in (i), 
y wm a?*--2a?-f-3. 

73. Geometrical interpretation. 

The geometrical meaning of this process 

should be noticed. We have to find y in 

terms of Xj given the value of dyfdx^ i.e, of 

the slope of the curve, in terms of x. Hence 

we have to find a curve, given the slope at 

any point in terms of the abscissa. 

In the example just considered, equation (i) 

represents the curves which have the given 

slope. It obviously represents a system or 

^family' of parabolas (Fig. 74), If two different 

values for G be taken, the ordinates of the two 

corresponding curves will at each point differ 

by a constant amount (the difference between 

the two values of C), i. e. the curves are at 

a constant distance apart measured along the 

ordinate. All such curves possess the given 

slope, i.e. the tangents at the points where 

they are cut by a straight line parallel to 

the axis of y are all parallel; hence the arbitrary term G, 
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The fact that y = 3 when x = 2 enables us to select one parti¬ 

cular curve of the family, viz. the one which passes through the 

point (2, 3). There is no arbitrary element now; there is but one 
curve which passes through this particular point and has the given 

slope. 

74. Integral of af*. 

The first and most important standard form to be considered is 

Jx^dx. What function gives when differentiated ? The d. c. of 

is (n+ l)x^j and therefore the d. c. of x'^'^^/{n + l) is x'^; 

hence J^xf^dx = 

This is true for all rational values of n, -f- or —, integral or 

fractional (Art. 27), with the single exception of n = — 1 ; in this 

case the integral becomes f x~^dx. We have not yet obtained Ijx 
as the d. c. of any function, but in the next chapter we shall find 

that it is the d. c. of log^ x. 

E.g. fx^dx 

/l/x'. dx «. fx~^ dx « -r - 3 - - 1 /(3 x»). 

/ a/xdx dx -r 5 *= I 

/If^x.dx ^/x~'^/'^dx x’^/^-T \ •• 5 

Since the d. c. of the sura of a finite number of functions is the 

sum of their d. c.’s, it follows conversely that the integral of the 

sum of a finite number of functions is the sum of their integrals 

separately. 

Moreover, since where a is a constant, is af'(x\ 
CLX 

it follows that 

/a/' (x) dx = a/{x) = a //' (x) dx ; 

hence a constant factor can be brought outside the integration sign. 

These facts enable us to write down at once the integral of any 

polynomial in x with constant coefficients. 

ExampJen: 

/(10x*-9x^-^b)dx 

/{ax^ + hx-¥c) dx 

/{2x‘-iydx 

+ x -}> 1 / y/x 
dx 

- 10.?x''-9.ia:*4-r>a;+C 

•4- a?’/* + dx 

In future, the constant C will be omitted. 

^ 2+ b X + C, 

^/* ^/i ^i/i 
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Examples XXVI. 

Write down the integrals of the expressions in the following examples 

1-14. 

1. a;®, 21 a?®, l/a*®, 10/a:®, v^ar, l/i/x, 
5. 1/ar', l/x?\ 1/^a:. 
6. a^ + 6 a;^ *f 10 .r - 5 ; Ta’® — 10 4 0a:^ — 1. 

1.6 . 7 10 . 9 

2. 3a;*-2a;4 1. 

4. Jl/x, l/a?", 1/^a?. 

6. 4-^ -5; 
or a4 .4- + -1. 

7. a;® —4a:^ + 2a:* —a; + 3 ; x®~4ar^ 4 6a:* —8. 

8. (u:^ + ?>a:® 4 cx“ -hdx + e ; ajx^ 4 hlx^ 4 -4 d, 

6 4 2ar + a;* 1 4- 8a: 4 5a:* _ 1 4 a:* + 2 x* 
“ ^4 J 9. 

11. (^1 — 3a-)*; (l4x*/. 

aa:*a hx + c 

10. 

12. 
~2x** 

(ora:4 5)* 
-4-'- : 

13. 
^^4 a:’* 

- 

1 4 a:* 4 2a:* 

(^-7- 
fita:* 4 h 

14.--7-. 

15. Find y in terms of a?, given dy/da? « 8a:* — 2 .r, and that 1/^ S when 
a: = 2. 

16. Find y in terms of a:, given dyjdx ■» sin x, and that j/ »= 2 when 
x-=ln. 

17. Obtain the equations of the curves in which the slope at any point (x, y) 
is 3 —4 a:. lllustmte graphically. 

18. In what curves is the slope at a point (x, y) equal to 2 — 3/a:* ? 

19. Find the equation of the curve which passes through the point (3, 1), 
and has at any point (a:, y) the slope x^ — x, 

20. Find the equation of the curve whose slope at any point (a;, y) is l/^/a?, 
and which passes through the point (4, 5j. 

21. The slope at any point (a:, y) of a curve is equal to cos a:, and the curve 
passes through the point (0, 1); find its equation. 

22. What curve through the origin has its slope given by the equation 
dy/dx = (1 4 x)* ? 

23. From any point P on a curve a perpendicular PN is drawn to the axis 
of y, and the tangent at F meets the axis of y in T. Find the equation 
of the curves in which the rectangle PN. iV^Thas a constant value c*. 

24. If in the preceding question the normal at P cuts OY in G, in what 
curves is NG constant ? 

25. Find the function whose rate of change per unit increase of x is equal to 
6X* —4x4 3, and which is equal to 10 when x is equal to 1. 

26. Find the function whose rate of change with respect to x is inversely 
proportional to x*, and which has the values 6 and 10 when x is equal to 
1 and 2 respectively. 

75. Two important rules. 

We next proceed to consider two rules of the utmost importance, 

which are constantly being used in integration. 

If the d. c. of /(x) be denoted by f' (x), we have 

//'{x)ds=/(x)-, 
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the d. c. of /(x+ h) is (Art. 84) 

/r(x + l)dx==f(x + h); 

the d. c. of f{ax-\-h) is (Art. 34) f' (ax + h) xa 

f f'((ix-\-'b)dx = - f{ax-\-h), 
0/ 

On examining and comparing these three results, we see that they 

enable us, when the integral of any function of x is known, to write 

down the integral of the same function of ax + 6, where a and h are 

constants. 

They can be put into the following convenient verbal forms: 

If the integral of a function ofxis known, then 

(i) the addition of a constant to x makes no difference in the form of 

the integral; 

(ii) if X is multiplied hy a constant, the integral is of the same form, 

hut is divided hy the constant. 

Hence, in any function of x, the replacement of rc by a linear 

function of x does not alter the form of the integral of the function. 

These two rules, in conjunction with the standard forms of the 

preceding article, enable us to write down at once the integral of 

any power or root of ax -f h, 

E. g. fa^dx = I X*; 

+ i +5)*; the addition of the constant 5 makes no 
difference to the form of the integral. 

f{2X’i' dx — ^ ^{2 Xi- by ; a: has the constant coefficient 2, there¬ 
fore the integral is of the same 
form and is divided by 2. 

/(l-a:)*da-« -l{l-xy; 

and generally 

f{ax + hydx^ 

From the reference to Art. 34 given above, it is clear that this 

is merely a simple case of the converse of the rule for differentiating 

a function of a function, and the reason for the insertion of the 

factor a in the denominator is obvious at once when the result is 

differentiated so as to give the original function. 

E. g. the d. c. of “ (ax + 6»=* }- x 4 {ax 4 6)* x a {ax 4 hy, 
4a ^ 4a 

It must be carefully noticed that the rules only apply when x 

is replaced by ax + h, i. e. by an expression of the first degree in x; 

they give no information about the values of such integrals as 

M 1621 
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f(x^-\-lYdXy where x is replaced by an expression of different 

degree, or f sin^ x dx. These integrals are not \ [x^ + 1)^ and 

I sin^ X, as is obvious at once if we differentiate these latter functions. 

The integral J* If dx can be obtained by expanding and 

integrating each term separately, thus 

/{x^ +1)" dx = /{x^ 4- 3a:" -f- S + 1) Jj; 

= + | + G. 

The student should not make mere mechanical applications of these rules. 

It is important that he should grasp the principle which underlies them, 

and for this purpose the argument may be presented in a different form 

as follows: 

Suppose the value of f(ax\hfdx is required. 

Then if y denote /{ax dx, we have dy/dx [ax-^ 

Let ax + h"^z; adxfdz^l. 

Then 
dy _ dy dx 

dz dx dz 
(ax 4 hf X 

1 
a 

ri 1 z* (ax-^iy 
A y « / -zUz^ X” 

J a a 4 4a 

Any particular case can be treated in a similar manner, but such forms 

occur so frequently that the student should accustom himself to writing the 

results down at once. 

Some further examples of the rules are appended: 

Jd~ dx =Jx-y^dx= ~ = 2 /*. 

••• =2/(.+s>. 

/V (SVro) * = = +3) ^ 5 = J *'(5*+8). 

fv{^) ^ -] = -2 Aa-x) 

/7(i+'6J 2 + 
Again, /cos xdx== sin x; 

• /cos (a:4* a) da; = sin (a; + 
y’cos ((x—x)dx = — sin (ol^x), 

/cos Sxdx = ^ sin 3a;, 
ycos \xdx=^2siii\Xf 

/cos(pX’\-(i)dx^ {sm(px + q)]/p. 

The student should pay particular attention to these mles, and 

must be very careful not to omit the dividing factor a. This factor 

is frequently overlooked when the practice of integration is first 

begun, and for this reason considerable stress has been laid upon 

it abova 
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It is important to notice also that the correctness of an integration 

can always be tested at once, by differentiating the expression 

obtained ; this should of course give back the function which was 

to be integrated. 

We have so far, from our knowledge of differential coefllcients, the 

following standard forms: 

f 3^ dx^ I{n + 1) (except when n = — 1); 

y*sin xdx = cos x ; 

/cos xdx = sin x ; 

J' sec^ xdx = tan x. 

70. An apparent discrepancy. 

One other point may be noticed at this stage. In Art. 74, the 

integral of {2x—lf was found by expanding and integrating each 

term separately, the result being 2+ 8 — a;. The integral, 

as given by the rule of the preceding article, is —1)**. i)o 

these two results agree ? 

The latter = |(1G+ 24~8x + 1) 

= 2x'‘ —4x^ + 3x^-~x + i, 

whence we see that the two results differ by But we have 

already pointed out that in the integral of any expression, an 

arbitrary constant is to be understood; hence the presence of the 

term makes no difference io the integral. If, as in Art. 72, we 

substitute a pair of simultaneous values of x and y in order to 

obtain y definitely in terms of x, the expressions obtained for y 

will coincide exactly ; the value obtained for the arbitrary constant 

in the second case will be less by J than the value obtained for the 

arbitrary constant in the first case, and the final results will be 

identical. 

Many expressions can be integrated by two or more different 

methods, and the results given by these different methods sometimes 

take different forms, but, on examination, it will be found that the 

parts involving the variable x are the same in both ; the results are 

either in exact agreement or differ by a constant only. 

The formal proof of this statement is as follows: 
Let f(x) and F{x) be two functions which have the same d. c. 
Then /'(x) = F' (x), i. e. /'(x) and F'{x) are equal/or all values of x. 

i.e. ^J/(^)-Fi.-)] = 0. 

whence we infer that fix)-F(x) is constant, 

u 2 
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Examples ZEVII. 

Integrate the following expressions: 

l. xK (7 + x)', (5-x)», (3a:-41», + 
a. x", (x-a)" (9x + 4)”, (3-2xr, (ax + b)”, {p-qx)\ 
8. sinx, Bin4x, sinmx, sinjx, ein(px + a), iin(a-2x), Bin(ijr-*). 

4. -/x, v^(l4x), v^(3-4x), V^(j)x + 5), ^(1 + x/(r), v^(3a:j, 

1 ^ 1 _^ _1 
c* {2 — bx)^ {7x-i2)^ (a —x)’ (mx~7i)^ 

e. eec^x, sec®(X-fa), Bec®>/ix, Bec®(a + 2x), Bec®(x/t»), sec®(«x-fm). 

7. - - ^ ^ 1 1 

5. 

1 
8. .7-,-’ 

(4x-5j" (l~2x)" (c-x)” (6x-aj" 

11111 

e. '. 

^x v/(x + 3) v/(‘2x —5) -v/(a —x) J^{nx-¥c) v^(2x) ^(imx) 

1 , 1 _1_ _1 
X* (x-Sy (3-x;*’ (3--7x)*’ 

Evaluate 

10. A7y-i)^dy, ll./{a^Uf/^dL 12. qz) dz. 

13. 
dz* 

^ 45/(5-3; 3.) 
14. 

17 

r_ 
J V(l -wj» 

r rfM 
J (7-4m)”’ 

15. 

18. 

d$_ 

__. 

19./cos 3^ /coslddS, /cos (OC-B) dS, /cos (nd i (X)dd, 

~ f tft/ f riu r dv 

4/^’ J v^(r~t/)®’ J v^(3m-5)®’ 
20. 

v^(ap-f5)» 

21. Given that dyjdx « (3x —4)®, find y in terms of x in two ways, and 
compare the results. Find from each expression the value oft/ in terms 
of X, given that y — 10 when x *» 2. 

We now discuss a few simple applications which involve only 

such integrals as have just been considered. 

77. Applications to geometry. 

The integral calculus can be used to find what curves possess 

a given property. Two simple examples will be given at this stage. 
Others will occur later. 

Examples: 

(1) In what curves does the slope at any point vary invet'sely as the square 

of the abscissa of the point f 

Here we have dy/dx = k/x"^. 

integrating y == /^/x®. dx « -k/x + C, 

which may be written x(y-C)^ -k. 

* It is customary to write 

as 

cix in the form 
’ dx 

. /w' 
and similarly J 
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Henco the curves which possess the given property are rectangular 

hyperbolas (p. 21). 

If C « 0, we get a rectangular hyperbola with the axes as asymptotes 

(the quadrants in which the curve lies depending upon the sign of A:); as 

the value oi C is varied (and any value can be assigned to it at will) one of 

the asymptotes moves parallel to the axis of y. 

(ii) Find the curves in which the suhtangent at any point P is proportional 

to the tangent of the angle which OP makes with the axis of x. 

The subtangent is (Art. 48) 

Therefore ^ 

and y =t fxlh. dx x’^/^lc + C, 

Therefore the cuiwes required are parabolas (p. 18) whose axes lie along 

the axis of y. 

78. Application to mechanics. 

It has been shown (Art 62) that if 5 be the distance, measured 

from a fixed point of its path, of a moving point at time t (measured 

from some fixed instant), then the velocity v is equal to ds/diy and 

the acceleration is equal to dv/dty d^sjdt'^y or vdv/ds; and several 

examples were worked in which the velocity and acceleration at any 

instant were deduced from a given expression for s in terms of t 

By the use of the integral calculus we can reverse this process; 

Le. given the acceleration, we can determine, first, the velocity and 

thence the distance travelled. These examples illustrate the part 

played by the constant of integration. 

Examples: 

(i) A point moves in a straight line with constant acceleration a; 

if V he its velocity and s its distance from some fixed point in the line 

at the end of time t, find v and s in terms ofi. 

Taking the first of the three expressions for the acceleration (since 

we want v in terms of t) we have dv/dt = a, 

V = / adi = at+ (7. 

If f = 0, V = C; therefore G is the velocity when t ^ 0, i. e. the 

initial velocity; denoting this by u, we have 

t; rz w -I a^, 

i. e. ds/dt = w -f aY ; 

$:=/{ui'at)dt=^ut-j~lat^-^C. (i) 

Here C is the value of s when < = 0, and therefore depends upon 

the position of the point from which s is measured. If the starting- 

point be taken as the origin, then 5 = 0 when ^ = 0; therefore, 

substituting in (i), we get £7 = 0, and « = wf + J at*. 
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If we take for the acceleration the expression vdv/dSy we shall gjet 

the relation between t; and s. We have vdvjds = a. Now the d. c. 

of t;2 with respect to 5 = 2 v dv/ds (Art. 31). Therefore integrating 

the preceding equation with respect to 5, we have 

= a5-f 0. (ii) 

C is the value of \v^ when s = 0; therefore, taking the starting* 

point as origin, so that v = u when s = 0, we have I = C, 

and — as-{- \ i. e. = «-+ 2as. 

Thus we obtain the three well-known equations of uniformly 

accelerated rectilinear motion. 

If the point starts with velocity u at distance s© from the origin, then in 

finding 8 in terms of s ■= when ^ 0; therefore, substituting these 

values in (i), = C, so that 

s ^ ftQ + l ai"^. 

In finding v in terms of s, r ■=» a when s *=" Sq; therefore, substituting 

these values in (ii), 
I *=-- asQ f C; 

substituting this value of C in (ii), 

-» as-f J - gsq, i. e. r’ *=* w* 4 2a (s -Sf^). 

(ii) A point moves in a straight line under the influence of an accelera- 
Hon which varies as the square of the time the point has Icen in motion ; 
find the velocity at any instant and the distance travelled. 

Here dv/dt = where ifc is a constant, 

11= fu^dt^iw^a 

If u be the initial velocity, v ^ u wdien ^ = 0, w = 0+C; 

i. e. v~u-t-\ht^* 

This gives the velocity at the end of time f. 

Next ds/dt = t? = u + i ; 

• S ut -f- “t" G* 

If s be measured from the starting-point, 5 = 0 when f = 0 ; 

C = 0, and 5 = m/-f- 

This gives the distance travelled in t seconds. 

(iii) A particle is projected vertically upwards with velocity 40 ft. secs.^ andy 

in addition to being acted upon by gravityy is sul^ect to a retardation which 

varies as the time from the commencement of the motiony and which at the end 

of the first second is equal to 16/if. secs, per second. To what height will the 

particle ascend ? 

The variable retardation is ht and this is equal to 16 when < ■» 1; therefore 

h ■= 16. Hence the total retardation mm 32 + IG^. 

/• dvjdt mm — 82 -16<, 

-82<-8<* + C. and, integrating, 
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r 40 when ^ 0. Substituting these values in the equation just 

obtained, 40 — C, 

and therefore r *» 40 — 32/ — 8 

Again dsidt «tJ 40 - 32 ^ ~ 8 

Therefore, integrating, « 40^~ f^-4 C. 

s « 0 when f ■» 0, whence 0 ■* C, and s *= 40/ -16 - g /I 

This gives the height after t seconds. 

At the highest point, o ■- 0, 

40~32/-8/*-0, i.e. 8 (5+ f) (1 - f) - 0. 

Taking the positive root of this equation, /=*=!, it follows that the particle 

roaches its greatest height at the end of 1 second, and the distance travelled 

in that second is found by putting / *=» 1 in the expression for s. This gives 

B = 40-16-|«=»21J. Therefore the particle attains the height of 21J feet. 

Examples XXVIII. 

1. In what curves is the sloi^e proportional to the abscissa ? 

2. Find the curves in which the subnormal is proportional to the abscissa. 

8. Find the equation of the cui-ves in which the slope varies as the 
power of the abscissa. 

4. In what curves is the subnormal constant ? 

6. In what curves is the sum of the abscissa and subnormal constant ? 
FiXplain your answer geometrically. 

0. In what curves does the rectangle contained by the abscissa and the 
Bubtangent vary as the square of the ordinate ? 

7. Find the equation of the curves in which the cube of the ordinate 
varies as the product of the subtangent and the square of the abscissa. 

8. Find the equation of the curves in which the rectangle contained by 
the ordinate and the subnormal varies as the abscissa. 

9. In what curves does the slope vary as the cube of the ordinate ? 

10. In what curves does the subtangent vary as the square of the ordinate ? 

11. The acceleration of a moving point, at the end of i seconds from the 
commencement of its motion, is 18 — 2/ ft. secs, per sec.; find the 
velocity at the end of 3 seconds, and the distance travelled in that 
time, if the initial velocity be 20 ft. sees. 

12. A particle starts with velocity u and moves with an acceleration 
/cosJtt/; find the velocity and the distance travelled at the end of 
3 seconds. 

13. A particle starts from rest at a distance a from a fixed point 0, and is 
subject to an acceleration towards 0 which varies as the distance 
from 0; find the velocity in any position. [Use vdv/ds for the 
acceleration.] 

14. A particle starting with velocity 21 ft. secs, has an acceleration 5 — 4/* 
ft. secs, per second; when does it first come to rest, and how far has it 
then travelled ? 

15. The acceleration of a moving point which starts from rest is + 
after t seconds; find the velocity at the end of 8 seconds, and the 
distance from the starting-point at the end of 3 seconds. 
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16. The acceleration of a moving point is 7 — 2.% where 8 is the distance 
from the starting-point, which it leaves with velocity 40ft. secs.; how 
far does it go before first coming to rest ? 

17. A particle falls vertically from rest, and, in addition to being acted upon 
by gravity, is subject to a retardation which varies as the time and 
which at the end of 2 seconds is 20 ft. secs, per second; find the 
velocity at the end of 6 seconds and the distance fallen through in 
that time. 

18. If, in the preceding example, the retardation varies as the distance 
fallen through and is 20 ft. secs, per second after falling 5 feet, find the 
velocity after falling 15 feet. 

10. A particle moves in a straight line towards a fixed point 0 in the line, 
starting from rest at a distance of 40 feet from 0; it is under the 
influence of a force which gives it an acceleration towards 0 of 
100/s^ ft. secs, per second, where s is its distance from 0; find its 
velocity (i) when it is half-way to 0, (ii) when it has moved 80 feet. 

20. The velocities of a moving point pamllel to the axes of a? and y 
respectively are, after t secs., S — 2t and 8>/^; find the coordinates of 
the point at the end of 4 seconds, taking the origin as the starting-point. 

21. In the preceding question, find the velocity along the arc and the 
distance travelled along the arc. (See Art. 67.) 

22. The velocities of a moving point parallel to the axes are, after t secs., 
{^ — 2 and 6^, and the point starts from the origin; find the equation 
of its path. 

79. Areas of curves. 

We have, in Art. 14, defined what is meant by the area bounded 

by a curved line. 

Let AF (Fig. 75) be an arc of a curve measured from some fixed 

point A to a variable point P whose coordinates are {Xy y). Let the 

area AHNP between the curve, the axis of x and the ordinates AH 

and PN be denoted by e. This area may be regarded as generated 

by the motion of the ordinate NP starting from HA and moving to 
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the right; to each value of x corresponds a value of so that a is 

a function of x. 
Let X increase to x-\-bx, and let Q be the corresponding point on 

the curve and MQ its ordinate; then the area PNMQ is the 

increase in z due to the increase hx in x^ and MQ is y-\-hy. 
Complete the rectangles PNMQ^ and QMNF\ 
Then, if the slope from P to Q be positive, 

dz > the rect. PiYMQ' and < the rect. P'NMQ, 
i. e. >NP. NM and < MQ. NM, 
i.e. > y^x and <{y-\-hy)hx. 

he/hx>y and <y-\'hy, 
[If the slope from P to Q be negative, the inequality signs will be 

reversed, as is obvious by drawing a figure. We have assumed 

that the slope has the same sign from P to Q. The range can be 

taken sufficiently small for this to be the case.] 

When 6x-->0, dy also —>0; therefore bz/hXy which we have 

just proved to differ from y by a smaller quantity than by^ tends to 

the limiting value y. 
But dz/dx is, by definition, the limit of bz/bx when 

dz/dx = y. 
If the equation of the curve AP is given, we can find y in terms 

oi X, We have therefore dz/dx = a function of Xy and z is found by 

integration. 

Examples: 

(i) Fifid the area between the parabola ay ■= x*, the axis of x and the 

ordinate x h. 
If z be the area from the origin to the ordinate of a point (a?, y), 

dz/dx ■» y K= ar*/a; 

Clearly the area OPN (Fig, 76) is zero 
when P coincides with 0, i. e. z ^ 0, when 
a? «= 0. Therefore C «= 0, and substituting 
in the preceding equation, 

z «= ar’/S a. 

This gives the area from the origin to the 
ordinate PN. 

The area OBH is the value of z when 
X ^ h, and therefore is equal to a. 

Since the point B is on the curve, 
a.HB^h*; 

the area OHB 
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(ii) Find the area between the curve —24~x* and the axis of x* 

We have y « (8 — x) (a; — 3); and the curve cuts the axis of x where y ~ 0, 

i. e. where x =■ 3 and x — 8. Let these two points bo A and B (Fig. 77). 

If z denote the area from A to we have 

dz/dx «« y — 11 X - 24~x*; 

»»«y*jllx — 24“'x’)dx, 

«=s» X® — 24 X — i x’ -f C. 

In this case, 2 = 0 when P is at J, i. e, when x = 3. Therefore, sub¬ 

stituting in preceding equation, 

0-whence C-4/, 

and 2, a:*-24x-5ar*-f V'- 

The area from A to B is obtained by putting x •» 8 in this result, giving 

the required area A I'D 

«- X 04 -102 - J X 512 f — 205 unhs of area. 

If the area to be determined is on the negative side of the axis of x, y will 

be negative, and the value obtained for the area will be negative if it 

be measured in the direction in which x increases. For instance, if, in the 

preceding example, the equation of the curve had been y««» x* —llx + 24, 

the area would have been on the other side of the axis of x, and the answer 

would have appeared as — 20f. 

Further c^xainples of the determination of areas will be given in 
Chapter XVL 

The geometrical meaning of the existence of the arbitrary constant 

of integration is now easily seen. It will be noticed that the 

investigation of this article does not involve the position of the 

initial ordinate AH from which the area z is measured, and the result 

will be the same wherever AH may be. The arbitrary position of 

this ordinate corresponds to the arbitrary value of the constant 

of integration. When the position of AH is assigned, the constant 

of integration can be determined, as is shown in the working of the 

two examples just considered. In Ex. (i), when AH was taken at 

the origin, C was found to be 0, and in Ex. (ii) when AH was taken 

at = 3, C was found to be . If the areas had been measured from 

some other ordinates, different values for C would have been obtained. 
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80. Substitution of limits of integration. Definite integrals. 

It will be noticed, from the last example, that the final value 

of is obtained in the following manner. Taking the expression 

obtained on integration, (7 is the result of substitut¬ 

ing 0? = 3 in this expression with the sign changed. 

Then the final value of e is the result of substituting a; = 8 in the 

integral +(7 

= result of substituting 8 —result of substituting 3 in the integral 

= the difference of the results of substituting in the integral the 

extreme values of x. 

That the area is always obtained by iliis procedure can be shown 

as follows: 

Let y = /{x) be the equation of a curve, and let /(x) be the 

derived function of F{x), Suppose that the area between the curve, 

the axis of X, and the ordinates x = a and x = 6 is required. 

Then d£:/dx = y ~ /{t\ 

/r=//{x)d'x + C = r(x) + C. 

Now the area z, being measured from the ordinate x = a, is equal 

to 0 when x = a. Therefore 0 = jP(a)4-(7 and C = — J^(a). 

Hence /r = F(x)—jP(fl). 

The area from x = a to x = 6 is found by putting x = 6 in this 

expression, 

i. e. the required area = F (2#) — F (a) 

= the difference of the results of substituting in 

the integral of f(x) the extreme values of x. 

This operation is generally indicated in the following way : 

* /(a:) dx, 

which is read is the integral, from a to t, of f(x) with respect 

to X This is called a definite intcgralj and a and 1) are often referred 

to as the limits of integration. This name is not a fortunate one, and 

the meaning of the word limit used in this sense has no connection 

whatever with a limit as defined in Art. 12, 

81. IgialnmoB uf sullilB uf I’UVOrattbn. 

If (I^. Ih^rea ASiKB be rotatedxtbout the axis of a solid 

is generated such that its section by any plane perpendicular to the 

axis of X is a--circle. Such a solid is called a solid of revolution. 
See Art 14(4). 
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The volume F between the~4i^ctions through All and FN will be 

a ai, of p\— > ^ 

Tf X be increased to x+hx^ then, as in Art. 79 in the c^e of an 

area, the increase 6F in volume thereby produced is intermediate 

Fig. 78. 

between the volumes formed by the rotation of the rectangles TM 

and QNj and these volumes are cylinders of height lx and radii y and 

y Iy respectively. 

Therefore 6 F is between lx and -ti (y + lyY IXy \ 

ly/lx is between ijy'^ and Ti(y-\-lyY. 

As lx—>0y ly-^0 and + 

IV/lx, which is between these two, also —► as its limit. 

i.e. d V/dx = 

From the equation of the rotating curve, y and therefore Try^ can 

be found in terms of x, and F is found by integration. ^ 

Exactly as in the case of areas, as explained in Art. 80, the 

volume F, between the two circular sections through the ordinates 

a? = a and a; = 6, is.i)btained by subtracting the result of substituting 

flc = a from the result of substituting a; = Z) in the integral of Tiy^ 

with respect to Xy and may be written in the form 

Examples: 

(i) Find the volume of a right circular cone of height h and radius r. 

Let OL (Fig. 79) be the semi-vertical angle of the cone. The equation 
of OA is y « a; tan OL, 

Hence dV/dx ■■ Try* — fr«® tan*a; 
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F—/rra:* tan* (Xdx ^ ir tan* a . J + C. 

r ■» 0 when a? -■ 0; /• C ■= 0, and F■■ J nx^ tan* (X, 

This is the volume generated by the revolution of ONP, 

At -B, X ^h; •*. volume of cone •= }nh^ tan* OC 

since r«> Titan 

(ii) Find the volume of a spho^y c^nd of the paH of a sphetx cut off by two 

parallel^aTui^-- ” 

A sphere is formed by the revolution of a semicircle about its diadieter. 

Let the equation of the circle bo a:* + y* «= r*. 

Here dVfdx = tti/* = tt (r* —x*) ; 

/. F «=*/7r (r* — ar*) dx ^ n (r*x- \ x^) 4- C. 

For the hemisphere, let Fbe measured from OB; then F — 0 when a: —0, 

C =« 0 and F—tt (r-x —J x^). 

B C 

This is the volume generated by OBPN, . 

At -4, a? a= r. Hence the volume of the hemisphere j 

«,r(r*-ir*)-§;rr*, / 

and the volume of the sphere ■» f Trr*. 

If the volume between x = a and x — & be required, then, returning to 

the equation F^ (r»x - J *») + C, 

we have, measuring F from x » a, F= 0 when x « a, 

therefore C « —tt (r*a--J a*), 

and F«» TT (f*x—J X*) —7r(r*a — Ja*j. 

This is the volume generated by ECPN, 

Therefore the volume required, obtained by putting x = T), 

« TT (r'b-l J>*) -TT (r^a-l a*j 

«= 7T r* (6 — a) — J TT (T>* -- a*) 

«7r(6~a) {;’*-J(^* + »^ + a*)}. 

If 6 «= r, the figure is referred to as a spherical cap. 
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Using the notation explained in Art. 80, the working is generally set 

down as follows: 

Volume of hemisphere 

/ 7r(r^ — x^)dx 
J 0 

•= « 7r(f**-Jr’j-TT (Oj 

Volume of slice of sphere 

■» J* IT (r* — djf 

•=■- = n (r*5-J 6’) - r, (/V* - J a"). 

Examples XXIX. 

Find the areas whose boundaries are given in Examples 1-10. Find 
also the volumes generated when these areas rotate about the axis of x, 

1. The axis of jr, the curve y «=» x®, and the ordinate x *=* ?>. 

2. The axis of jp, the curve y — i {x+ Ij’, and the ordinates .r 2, x -* 4. 

5. The axis of x, the parabola y® — 12 x^ and the ordinate x = 3. 

4. The parabola y* «* 12 x, and the double ordinate x 12, 

6. The axis of x, and the curve y « 9x~a:“14. 

0. The axis of x, and the curve y ■» (x- 1)^ —25. 

7. One semi-undulation of y — sinx, and tlie axis of x. 

[In finding the volume, use the formula siii’x »» |(1 — cos2 x).] 

8. The curve 4ny^ *=» 3 x®, and the double ordinate x *=» a. 

9. The curve x^y « 35, the axis of x, and the ordinates x *= 2, x » 6. 

10. The curve 9y = x* (x -} 3), and the axis of x. 

11. If P be a point on the curve y”‘ ■=» Z:x", and PJf, PN be drawn perpen¬ 
dicular to the axes ; prove that the curve divides the rectangle OMPN 
into two parts whose areas are as m : n. 

12. Find the area between the curve y^x + y^ys® >/a and the axes of 
coordinates. 

13. An ellipse whose semi-axes are 8 and 4 inches in length rotates about its 
major axis ; find the volume of the solid formed (which is called 
a prolate spheroid), 

14. The parabola y® «= 4ax rotates about the axis of x; prove that the 
volume of a segment, measured from the vertex, of the solid formed 
(called a paraboloid of revolution) is half the volume of the circum¬ 
scribing cylinder. 

15. The rectangular hyperbola x*—y*«=»a* [p. 20] revolves about the axis 
of x; prove that the volume of a segment of the hyperboloid of 
height a measured from the vertex is equal to the volume of a sphere 
of radius a. 

10. Find the volume of the solid formed f cal led an oUate spheroid) by the 
rotation of the ellipse mentioned in Ex. 13 about the minor axis. 

17. The curve ay®** x® rotates about the axis of x; prove that the volume 
of the resulting solid, cut off by a plane perpendicular to the axis, is 
a quarter of the volume of the circumscribing cylinder. 
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18. Find the area between the curve y and the straight line y *= 4a:. 

19. Find the area between the curves y ■» a?* and x = yl 

20. Find the area between the curves y“ a? and y’« 

21. Find the volume formed by the rotation of the astroid a?*/^ + y*'^ = 
about the axis of x, 

22. The radii of the ends of a frustum of a right circular cone are 2 and 5 
inches respectively, and its length is 1 foot; find its volume. 

23. Prove that the volume of a spherical cap of height h is tt/i’(r-J/i), 
where r is the radius of the sphere. 

24. Find the volume formed by the rotation of the loop of the curve 
ay* =* a:(a:-a)* about the axis of a;. 

26. Find the area of the maximum circular section of this solid. 

28. The axis of x intorceptfi two portions of the curve 

a*y •» (x — a) (a? —2a)(a: —3a) ; 

prove that they are equal in area. 

27. The segment of the parabola y* -* 9x, cut off by the straight line x — y, 

rotates about the axis of x; find the volume generated. 

28. The coordinates of two points A and B on the curve a^*y a:^* are 
(Xj, yj) and (xj, yj; prove that the area between the curve, the axis of 
x and the ordinates of A and B is ~a:jyj)/n. 

29. The curve y**» a* cos J (x/a) rotates about the axis of x; find the 
volume between x ■■ —na and x *=* -f?ra. 

30. The curve y (3a —2x)* «=» a* rotates about tbe axis of x; find the 
volume between x « 0 and x ■- a. 

81. Find the area between the curves y ==> (3x —5)* an<l y^ = 3x —5. 

82. Find the area between the graph of k, tbe axis of r, and the 
ordinates v -«= v Vj. 

83. Length of arc of a curve. 

The length of an arc of a curve has been 

defined in Art. 14 (3). 

Let 5 be the length of the arc, measured 

from some fixed point A (Fig. 81) on the 

curve, to a point P whose coordinates are 

(x^ y), and let 5 4-^^5 be the length of the 

arc from A to a neighbouring point Q 
whose coonlinates are (x+Sa:, 

Draw PK perpendicular to the ordinate 

of Q, and let QP meet OX in T, 

Then PK = KQ^hij, arc PQ = os. 

Now eiB XTP = sin ^ « g X . 

PK hz bs 

'^PQ’“ds^PQ’ 
cos XTP = cos KPQ 
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It was proved in Art. 13 (10) that, in the case of a circle, 

Lt (arc PQ/chord PQ), when ^ approaches indefinitely near to P, is 1. 

We shall assume this property to he true for all curves, and therefore, 

since the limiting position of FQ is the tangent at P, and 

hy/hSy ►the limits dy/ds, dx/ds respectively, the preceding 

relations become 

sin ^ = dy/ds, cos v// = dx/ds, 

where y\f is the inclination to OX of the tangent at P. 

Since sin^-f-cos^= 1, we have + 

<dy^ 

<dx^ 

dx 

Also (I)’ = ^ 1 + (2)': ^dx 

and (I )■ = cosec* ^ = 1 + cot*,/, = 1 + ( "p ‘; 
<(Jiy 

fix \ ” 

dij' 

The + signs must be taken if the variables increase together. 

From the equation of the curve, dy/dx can be found in terms of x, 

or dx/dy in terms of y, and then s will be obtained by integration. 

If the coordinates x and y of the point P are expressed in terms of 

a variable d, then since hx^^hy’^ z=z FQ^ h^x(FQ/hsY, we have, 

<he) \ ls 
fds \* 

<de^ 

dividing by 

therefore, when oO - 

U0/ Us>' ’ 

(l)’+(l)'=(S)' 
Examples: 

(i) Find the value of de/dx in the curve 4y* «= i’, and deduce the length 

of the curve from the origin to the point (4, 4). 

We have 

y x^l^; dyjdx = J and dsjdx « ± -v/fl -f x). 

Since s, measured from the origin, increases as x increases, the + sign 

must be taken ; 

»=/{i+A “ (1+A *)’'^/(! X A) + (^ = 5? (1 + A + c. 
« 0 when a; — 0, /. 0 + C, i. e. C — ~|f. 

This is the length of the arc from the origin to the point whose abscissa 

is x; therefore the length of the arc to the point whose abscissa is 4 

-SH(¥i'^*-l]-&‘76 nearly. 
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(ii) Find the Jenr/th of the arc of the curve Gxy 3 + y\ between the points 

whose ordinates are 1 and 4. 

In this case, we must find ds/dy and integrate wiili respect to y. 

dx 1 y" --4- — 3 

2y» ^ 2 

and /JL4.yM’. 

^dy 2^ ^ since a is being measured from 

y « 1 to y == 4, and therefore is increasing as y increases. 

Uence ^ = J(^ + 2 ' 2^ + l’+ 

s « 0 when y=*l; 0**-| + J + C, and C ==» J . 

Therefore 

and the length of the arc from y =- 1 to y « 4 is — 1 + +i.e. 10 J. 

(iii) Find da/dd in the cycloid (Art. 50), and deduce the length of one arch 

of the curve. 

(£)’"('£)’+(£)’ 
c=» <7* (1 — cos a* sin* d ** a* (1 —2 cos d + cos* ^ +sin* 0) 
-a*(2-2coBd) « 4a*sin»J^; 

ds/dd ^ ±2a sin I 

Measuring a from 0 (Fig. 53), s increases with d ; 

ds/dd mm 2aBiiii d. 

Hence s *«/2a8in Jddd «• —4a cos i d-f-C. 

s =* 0 when d *= 0; /. O——4a + C, and C«=4a, 

and s «« 4a(l — cos ^d). 

When the tracing-point has completed one arch, d -= 2n- and cos| d ** — 1; 

a ms 8a, 

i.e. the length of one arch is four times the diameter of the rolling circle. 

83. Area of surface of a solid of revolution. 

This has been defined in Art. 14 (5). Eeferring to the figure 

of Art 81, let S be the area traced out by the rotation of the arc 

AF, and dS the area traced out by the rotation of the arc PQ. 

The area of the frustum of a cone generated by the rotation of 

the chord PQ 

==PQx27T(y+idy) [Art. 14] = x2Tr(y-f i Sy)«s. 

As 55-~>0, the ratio of the area traced out by ds to that traced 

out by PQ—♦!, also PQ/6s—^1 and 

M list 
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Z Try, and in the bnut; dS/c 

■ writo 

hS—*2T:yhs\ i.e. IS/hs^ 

If the equation of the curve be given, we may 

dS dS ds „ ds ^ /( /du\^) 

-.1, - * 7t‘ (i) 1 
from the precctiing article, and tlien S is found by integrating with 
respect to x. 

If more convenient, wo may tahe 

and then S is found by integrating with respect to y. 

dS 

dij 

dS 

ds dy 

Example: 

Find the area of the surface formed hy the roiaflon nfihr parabola )’ === 4ax 
about the axis of from the origin to the section x 3 a. 

We have y «» 2^[ax), dg/Jx — \/{a/x^ and [ds/dxf *=» 1 ^ n/r. 

dSjdx ^ 2r[y dsflx ■=» 9.n .2^^^ (axi v/(l + a/x) irrV'a. V (a + x) ; 

/. 5*= 47r-v/« ./v^(a-f x)(ijr « 4rr v^a . j( (a 4 2 C. 

S ^ 0 when x •= 0, since S is moasureU from the oritrin, 

0 •* |77v/a.a*^ + C, and 

Hence Jtt [-v/a(a 

Therefore the area as far as the section x Sit 

« f TT [Va . (4a)*’~o»] - V 

On account of the radical sign which occurs in the expressions 

for ds/dx, ds dy, dS/dx, and dS/dy, the integration is often compli¬ 

cated, and few examples can be worked out until further methods 

of integration have been considered. 

Examples XXX. 

1. In the curve y «= find approximately the length of the arc between 
the pointfi on the curve where a; *• 2 and x »= 2 01 11. e. jriven 
ax«'01, find bs]. 

2. In the circle x*4-y^«» 100, find approximately the length of the arc 
from the point (8, 6) to the point on the circle where x *» 8*03. 

5. In the cycloid x « 10 (^-sin ^), y « 10 (1-cos ^), find the approxi¬ 
mate length of the arc between the points where Jtt and ficn, 

4. In the astroid x a cos’d, y ■« asin’d, find approximately the length 
of the arc between the points where d «» 44® and d «* 45®. 

Find the lengths of the arcs of the following curves: 
6. 27 y* ■« from the origin to the point where x « 15. 
6. 16 ar* — jr\ from the origin to y «» 1. 
7. a:^-f3«6xy, from a?«« 2 to x ■* 8. 
8. 4y’ «« from x >m 2 to ar — 7. 
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0. The curve whose slope at the point (a;, y) is 2v/{j- + a'*), from a? « 1 
to a; »=» 10. 

10. The curve whose slope at the point (jr, y) is l/v^ [3 y (2-f 3y)j, from 
y « 0 to y « 6. 

Find the areas of the following surfaces: 

11. The paraboloid formed by rotation of y*-»8a? about the axis of a?, 
(i) from the origin to a? *= 16, (ii) from a? = 6 to a: 16. 

12. The surface formed by rotation of y — Jar* about the axis of y, from 
the origin to y «• 8. 

18. The surface formed by rotation of x* + 3 *= Gxy about the axis of x, from 
X s=a 1 to X ~ 4. 

14. The surface formed by the rotation of 8x*y«*2-l-x* about the axis 
of X, from X ■* 1 to x »= 2. 

15. The surface formed by the rotation of 9y* *= x(x-3)* about the axis of 
X, from X » 0 to x 3. 

10. Find also the perimeter of the loop of this curve. 

17. Prove that in the astroid x -= a cos* d, y a sin* d, ds/dO *= 5 ^ sin 2 d, 
and deduce the total length of the curve. 

18. A circle of radius 4 inches rolls along a fixed straight line OX\ find the 
distance ti*avelled by a point P on the circumference in one-quarter of 
a revolution, starting from 0. 



CHAPTER X 

EXPONENTIAL, HYPERBOLIC, AND INVERSE FUNCTIONS 

84. Convergent and Divergent Series. 

If each term of a series be finite, the sum of any finite number n 

of terms is also finite. If n —^ oo, the sum of n terms may increase 

without bounds or may approach a limiting value. 

If, as w —» 00, the sum of n terms of a series tends to a definite 

(and therefore finite) limit 5, the series is said to be convergent and 

S is called its sum. If the sum of n terms of a series —^ oo as 

n —^ 00, the series is divergent. 

An example of a convergent series was fully discussed in 

Art. 13 (3). That series was a particular case of a Geometrical 

Progression. The sum of n terms of the series 

is proved in text-books on elementary algebra to be 

If I r I < 1, can be made as small as we please by taking n 

sufficiently large, and therefore the sum of n terms of the series 

approaches the limit a/(l--r); i.e. an infinite G. P. is convergent 

if its common ratio r is numerically <1, If r is equal to or greater 

than 1, it is obvious that the sum of the series may be made as 

large as we please by taking n sufficiently large, and the series is 

divergent. 

The question of convergency or divergency only arises of course in 

connection with infinite series. If a series consists of only a finite 

number of terms (each finite) the sum of the series is necessarily finite. 

In dealing with infinite series, it is of essential importance to know 

whether, or under what circumstances, the series are convergent, 

because infinite series obey the ordinary laws of elementary algebra 

and can be added, subtracted, multiplied, rearranged, &c. only when 

they are absolutely convergent [i.e. convergent when all their terms 

are taken with the same sign]. 
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85. Conditions for convergenoy. 

In the first place, it is obviously necessary, if a series is to be 

convergent, that the term should —#^0 as w-->oo, for if the 

terms remained finite, the sum of n of them would clearly oo 

as w —♦ 00 ; but this alone is not sufficient. 

If denote the sum of the first n terms, the definition of 

a convergent series states that 8^^ —►iS, a finite limit, as w—oo. 

8'n+2> •••^n+m (being equal to + additional terms),also—►S 

ns w—> 00 [m being any positive integer]. 

they differ from one another by quantities which 0 as w —> oo; 

••• as 

Now sum of first w + w terms — sum of first m terms 

= the sum of m terms after the 

and m may have any integral value; therefore not only must 

(i) ihe n^^ term —>0 as n—^^oo, but also 

(ii) tJie sum of any number of terms after the n^^ --►0 a5 n—► go. 

For instance, in the series 

1 1 
+ 5 + 4 + + - -f ... 

n 

(which is called the harmonic series), the term, 1/w, —>0 as n—>QO, 

but tlie series is not convergent, because the second of the conditions 

mentioned above is not satisfied. 

The sum of n terms following the term 

1 1 1 
cs-4* - 4" ... 4- — • 

This is greater than n x 1/2 w [the number of terms X the smallest 

of them], i. e. > .J, w liich is not indefinitely small. In fact by taking, 

after the first and second terms, the next 2 [which are >2xJ], 

then the next 4 [which are >4 X J], the next 8 [which are >8 x tV]» 
the next 16 and so on, we get an infinite number of groups of terms, 

such that the terms in each group add up to more than J ; and 

therefore, by taking a sufficient number of groups, we can obtain 

a sum as large as we please. 

86. Tests for convergenoy. 

It is often possible to find whether or not a series is convergent, 

i. e. whether or not tends to a finite limit S, even if the exact 

values of 8^ and S cannot be found. 

The three tests which are the simplest and the most frequently 

used in elementary cases are the following: 
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I. The obvious test, that {f each term of a given series numerically 
less than the corre^onding term qf another series u'hkh is known to be 
convergent^ then the given series will he convergent* 

This is evidently true, because the sum of n terms of the given 

series is numerically less than the sum of the corresponding terms 

of the other series, and since the latter tends to a finite limit, so 

must the former. 

It is obviously immaterial whether the inequality holds at the 

commencement of the series; it is sufilcient if it be true for all after 

a finite number of terms. 

For instance, after the first two terms, each term of the series 

1 4- 
21 + 

8! 

is less than the corresponding term of the series 

1 1 1 
^ ^ 2 2. 2 2.2.2 

which is convergent [it is a G. P. whose sum to infinity is 2j; 

hence the given series is convergent 

II. If the terms of a series diminish continually to the limit ccro and 
are alternately + and —, the scries is convergent* 

For the series 

= («l-«li) + (M3-tt.) + {Uj-«J+ ... 

and therefore >w, — m*, since all the nunihera in the brackets are + 

if the given conditions be satisfied# 

Also the series may be written 

••• 

which <«i, since again all the numbers in the brackets ai’e 4-, 

Hence the sum of n terms of the series must tend to a limit 

which is between and Uj—and is therefore finite# Therefore 

the series is convergent 

E.g. the series 1 — — l4*i — ^4- ••• is convergent 

This last series is of the kind knowm as semi-convergent or 

conditionally convergent. This term is applied to series which are 

convergent, but which lose their convergency and become divergent 

when their terms are all taken with the same sign. 

A series which is convergent, and which remains convergent when 

its terms are all taken with the same sign, is said to be absolutely or 

unconditionally convergent 
Such a series is 1—^4-1 —ff4*iV — 
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III. A series is convergent if, after a finite nnmler of terms, the ratio 

of each term to the preceding term is always less than some fixed quantity 

tvJiich is itself less than unity. 

In both cases^ ^ less ’ means ‘ numerically less 

Suppose that, from the n^'^ term onwards, the ratio of each term to 

the preceding term < /:, where |Z:| < 1. 

i. 0. <k, . •. ; 

< A. ••• «»f2 <^'“714.1 < 

«n-4s'w»i42 < ^ 
and so on. 

adding together, 

«n+l + «n+2 + ««t3+ •••• < + + .... 

(a G. P. whose common ratio Jc is numerically < 1) 

< 
Since the sum after the first n terms is finite, and the sum of the 

first n terms is finite, it follows that the series is convergent. 

In apj)lying this test, we see that it is only the value of the ratio 

when n is large that is of importance; it do^-s not matter about 

a finite number of terms at the commencement of the series. Hence 

W’e write down the ratio of the («+l)^ti term to tlie term, or of 

tliG term to tlie (w—1)^^ term if more convenient, and examine 

the value of this ratio when n is very large. 

If as n-->>oo, the ratio u„^|/u„ approaches a limit which is numeri¬ 

cally less than 1, the series is convergent; if ►! as n—♦cao, 

the test fails; if a limit greater than 1, the serks is 

divergent 

7'^ X'^ 

l-{ „ + ry , + •••• (The Exponential Series.) 
Z I o I 

(n+ 1)^^ term x"/n! ^ ^. 

n’^’ term ’ 

which, whatever be the (finite) value of a*, ->>0 as n -»oo, and therefore 

obviously satisfies the first condition. 

If X be equal to 100, then (putting n «* 100 in the ratio x/n) the 101*' 

term is equal to the 100'^ term, and for all .subsequent terms, the ratio 

is < 1, and, moreover, continually diminishes. 

• • X^ Xr^ 
(ii) ^“^ 2 ^ ^(The Logarithmic Series.) 

TT (n4-l)'**term a;”+V(ti+]) n x 

term x /n n-f 1 l + l/;» 

which, as n co, tends to the limit x. 

(i) 

Here 
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Therefore the convergeucy or divergency of the series depends upon the 

numerical value of x. 

If I a? I < 1, the test-ratio approaches a limit less than 1; the series 

is convergent. 

If |a;|>l, the test-ratio approaches a limit greater than 1; /. the 

series is divergent. 

If |x|«l, the test fails; the ratio is then numerically 1/(1+ l/n), 

which,although less than 1, has 1 as its limit, and can be made as nearly equal 

to 1 as we please. Therefore we cannot say that the ratio is less than 

a fixed number which is less than 1. In fact, if we select any fixed number 

h as little below 1 as we please, we can always get a little nearer to 1 

than k is, by taking n large enough, as follows from the definition of 

a limit. 

In this case, if -f 1, the series is 1 | J i t...» which, as i)ointed 

out above, is semi-convergent; and if j; = — 1, the series is 

which we have shown to be divergent. 

For further tests of convergency, and an account of the properties 

of convergent series, the student is referred to works on Algebra, 

such as those by Chrystal and C. Smith. 

Examples XXXI. 

Test the following series for convergency : 

1. i + i + i +J+ .... 
8. i + 4 + + 

. X x^ or 
6. 1 + 2 4 6 ^ 

2. + 
1 1 1 

2.4'^2.4.6'^2.4.6.8 

X X* 
0, ^ ^ ^ ^ 4- g ^ -f - ^ -f- ..., 

X X* 

1 4 ^ 0 "t* (j? y "t" ' 

■f ... . 

9. [,^,.1 
21 

, 2 2’ 2» 10. 1 + ^ + - + -+.... 

2* 3> 4> 
12. l + ^ + ^ + jj + .... 

14 i_j_ _i_L 
‘x aj-f-l a?-f 2 x + S"*" 

2 2* 2® 

- 2x ix^ 
IS. + 25 125 

[x positive.] 

We now proceed to discuss a very important limit, a particular case 

of which has been already considered in Art. 13 (9). 



INVEESE FUNCTIONS 185 

87. Limiting value of [l+x/m)^ as w~->qo. 

First, let m be a positive integer. 

Expanding by the Binomial Theorem, we have 

m 
(1 + -) =1+ 
^ my 

X m(m—1) w{w—l)(m—2) x^ 

21 31 

m (m—1)... (m —r +1) x'^ 

• . I * . V ' * " r 1 m' 

^ ??2 2 I 9)1 y ^ m y 6 I 

V my ^ my ^ m y ri 

As w—>QO, 1/m, 2/m, ... (r—l)/m (when r is finite) all —>0, and 

therefore the sum of the first r-f 1 terms of the series tends to the 

limit 
v2 ^.3 j^T 

1 +X+ ,^7 4- + ••• + -“tJ provided r be finite. 
^' o ! r I 

But it must not be taken for granted that the (r + term tends 

to the limit x'^/rl wlieii r is indefinitely gieat; for, in this case, 

the number of factors 

V my ^ my ^ my 

in the coefiiciont of x^/rl increases indefinitely, and it cannot be 

assumed without further investigation that the product of an 

indefinitely great number of factors, each differing from 1 by an 

indefinitely small amount (which amount moreover gradually 

increases as v^e get farther on in the series of factors) tends to the 

limit 1. 

Hence, when m is indefinitely increased, we write the above 

expansion in the form 

yy>2 yy.3 -yf 

It can be proved (see next article) that the quantity E tends to the 

limit 0 as m —> oo ; therefore, assuming this for the moment, we see 

that, for all values of x, 

T r -i ^ ^ A ^ 

a series which was shown in the last article to be convergent for all 

finite values of 
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In particular, if a; s= 1, 

L/, 1 n"* , , 1 1 1 
t(l + „,) =^ + ^+^ + 3!+ - +r! + -' 

tn * M 

and, since the terms of this convergent series rapidly diminish, an 

approximate value of the limit can bo obtained by taking the first 

few terms ; e. g., to 5 places of decimals, 

tlie first 8 terms together =r. 2*5, 

the 4th term 1/81 = ^ = *10667 

the 5th term 1/4 1 = J of the 4th terra *04167 

the 6th term 1 /5 ! = of the 6th term ~ *00838 

the 7th terra 1/6! — of the 6th term — *00189 

the 8th term 1/7 ! = i of the 7th term = *00020 

the 9th term 1/8 I = I of the 8th term = *00002. 

Therefore, adding up, we find the value of the limit to bo 

approximately 2*7183, agreeing with the rough value obtained in 

Al t. 13 (9) for Lt (1 + 1/W” 

Ilcnce (he lunit of (1 -pl/ni)"^ 

vergent scries 1 f 1 4- i^ -f 

as in—>00, and the sum of the con- 

arc each eq%ud to the 7uonbcr e. 

88. Completion of proof. 

We will now complete the proof of the preceding article by showing 

that the quantity It ->0 as -> 00. 

If a, b, cbe positive quantities less than 1, we have 

(l-ft) (1-[>)== l-(a +6)4a6, which is >1 —(a-f6), 

and therefore «= 1 — (a 4 6), where dj is a positive proper fraction. 

{1-a) (l-6)(l-c)> (l — (fl -f h)] (1 — c) > 1 — (a + ?>-f- c), by the preceding, 

and therefore *= 1 — dj (a t t c), where dj is a positive proper fraction, 

and so on for any nuniber of factors. 

Hence, applying this fact, 

(1- - 
\ m/ \ ra / \ m / \ m m m J 

[0 a positive proper fraction.] 

_Hr, summing the A. P. in 
2 m the brackets. 

m/ 3! 
4- .• 

\ m/\ m/ \ m / rl 
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t . X' ^af . ac^ X* A , 

1+3:+ — fj- + “^lo— T7 -^ •*• 21 2 m 31 2m 4! 4m 

. ^_ , 
r! 2m.(/-"2jl 

X* x"* X 

* 21 '*' 3 ! ■' 4! ■'■•••■'' rl 

rr* r x^ 1 

2 m L 21 (^‘“2;! J 

Hence the quantity It of the preceding article is equal to 

which, since all the ^’s are + and < 1, is numerically 

^ " im 21 + - + {^\ + •••] ’ 

X* 
i. e. < - X [a finite quantity], since it was shown in Art. 86 

that the series in the hriickets is convergent 

for all finite values of x. 

Hence, as m 00, /? -► 0, since, if x be finite, JR «« (a finite number)/m 

and therefore, for all finite values of 

69. Extension to fractional and negatiye yalues of m. 

In Art. 87, m was supposed to increase indefinitely through a series of 

positive integral values. This restriction will now be removed, and we will 

show that the limit is still the same if m increases continuously until it 

becomes indefinitely great, whether it be positive or negative, 

(i) Let m be between n and n + 1, where n is a positive integer. 

Then, taking x positive, we have 

(1+a;/m)”* < (1since the latter is a larger number (> 1) 

raised to a higher power, 

and > {1 +a;/(n + 1)}", since the latter is a smaller number (> 1) 

raised to a lower power; 

Le. 

(l4 between (l+^)”(l+y and (l+- J|)' 
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When m cx), oo also, and the first factor in each of the two latter 

expressions tends to the limit 

l + a;++...+^+... (Art. 87), 

while the second factor in each case tends to the limit 1. 

Hence each of these expressions, and therefore also (1 ^ x/m)^ which lies 

between them, tends to the limit 

1-f" iT ~f d" " j "f •••• 
2 1 r I 

If a: be the necessary changes in the inequality signs are easily seen. 

(ii) Let m be negative and equal to —(n-hx), Avhere n is positive and 

->00 a,s m -> 00. 

Then 

L.(‘- S;'- Lt('- 
m~* M n->oo 

ti-*oo n~* Qo n^cc 

and of these two factors, the first, by the preceding case, since n is H-, tends 

to the limit 
- x^ 
i+x+^j+...+ -j+..., 

and the second tends to the limit 1. 

Therefore L/. X - x'^ , 

ni 00 
for all finite values of x, whether m be + or —, integral or fractional. 

90. The exponential theorem. 

From the foregoing results we can now deduce this extremely 

important theorem. In the expression + put m ^ nx; 

since x is finite, n —> oo when m oo ; therefore we have 

f/* 00 n~^ ao n -► 00 

Lt[0+i)"r=[L.C-i)'’J- 
•1 ’■* oo — 

since it follows from Art. 15 that Lt (a^) = [Lt (a)]^. 

Also it has just been proved that 
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therefore, for all finite values of Xj 

^ 0^ a?’* 

This is known as the Exponential Theorem, and the series on the 

right-hand side is called the Exponential Series. 

The function e® is of very frequent occurrence, and the form of its 

graph should be noticed. 

We have l + a;+ —+ H-: + 
r! 

If a; = 0, y — 1; as x increases, each 

term after the first increases and —> oo when 

X QO. Therefore y increases from 1 to 

GO as a; increases from 0 to oo. 

If a; be —, then since e”^=l/e‘% it 

follows that y decreases from 1 to 0 as a? 

goes from 0 to — co ; hence the axis of x 

is an asyin2)tote. e* is a one-valued con¬ 

tinuous function * of x, which increases 

from 0 to CO as ic increases from — oo to 

H- cx), as shown in Fig. 82. 

01. The logarithmic function log, a?. 

This is the inverse of the exponential function e® just considered. 

If a? = eVf then y is called the logarithm of x to the base e, which 

fact is written: y = log,x. e is called the natural base of logarithms, 

and logarithms to base e are called Napierian or hyperMic logarithms. 

In numerical work, such as is involved in arithmetic and the solution 

of triangles, 10 is the most convenient base for logarithms, and the 

common logaritlims are calculated to base 10, but the logarithms 

used in the Calculus are always referred to the base c, and these 

logarithms occur very frequently, especially in the integral calculus. 

The symbol log x, with no base indicated, will always be used for 

such logarithms, and common logarithms will then be denoted by 

the symbol log^o^* 

The process of transforming logarithms from base 10 to base e, or 

vice versa, is quite simple, for 

if logioX y, we have x — 10^. 

Therefore, taking logarithms to base c, we have 

log,a:= ylog.lO, or y= log,a:/log, 10; 

i e. login X - log,® X 1/log, 10. 

* A table of values of and is given at the t?nd of the book. 
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Hence the logarithm of any number is changed from base e to 

base 10 by multiplying it by the constant factor 1/1 og^ 10, which is 

equal numerically to *43429 and is often denoted by the letter fu 

In treatises on Algebra, series are obtained from which logarithms 

to base e can be calculated, and thence, multiplying by fx, logarithms 

to base 10 are obtained.* Since the logarithmic function is the 

inverse of the exponential function, 

their graphs will be of the same form 

with the axes interchanged, i.e. they 

will be symmetrical about the bisector 

of the angle XOF, cf. Art. 9 (iv). 

In the case of the exponential func¬ 

tion, it was seen that as x increased 

from —CO to H-co, y increased from 

0 to 00 ; therefore in the case of 

y = log Xy as X increases from 0 

Fig, ga, to 00, y increases from — oo to +00. 

If a; is —, y is imaginary (Fig. 83). 

92. The hyperbolic functions. 

We have ^+ ’ 

/pS ^4 

changing the sign of x, e~^ - “ 

adding, e®+ ~ ^ "*■ ”■ ’ 

and subtracting, c*—e** = 2 

The function is denoted by the symbol cosh and 

\ (e® — e~^) by the symbol sinh Xy 

i.e. cosha; = 1-f ^-4- 71 + and Binh.T = x-l-^ + 77 + —, 
214! 0 I oI 

so that cosh x is an even function of x, and sinh x an odd function 

of X [Art. 6]. 

These symbols are used because these functions possoss properties 

analogous to those possessed by the circular functions cos a; and 

sin X, 

The quotient sinh rc/cosh a; is written tanha;, and the reciprocals 

of cosh Xy sinh x and tanh x are written sech Xy cosech Xy and coth x 

* Tables of logarithms to base 10 and also to base e are given at the end 

of the book. 

jr+g-|+g-j+ ... • 
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respectively. These six functions are called the hyperbolic fund ions y* 

and are often referred to as the ‘hyperbolic sine, cosine^, &c. This 

name is due to the fact that they bear certain relations to the rect¬ 

angular hyperbola, similar to those that the ‘ circular functions ’ sin Xy 

cosXy &c., bear to the circle. E. g. just as the point (a cos a sin 

is always on the circle x'-^-hy^ = whatever the value of so the 

point (a cosh u, a sinh u) is alway^s on the rectangular hyperbola 

^2^ whatever the value of w. 

It will be sufficient for our purpose if we prove the fundamental 

relation 
cosh^^r —sinh^a; = 1. [cf. cos® x + sin'*^ x — 1.] 

This follows at once from the definitions above; for 

cosh® X—sinh®a; = } + — l 

=r 1. 

There are relations between these functions analogous to all the 

well-known formulae of Trigonometry, most of which can be proved 

as above. Some of them are given in the examples at the end of the 

chapter. 

03. Graphs of the hyperbolic functions. 

The graphs of these functions are best deduced from that of in 

the follomng manner: 

(i) Draw the graph of ; (ii) in the same figure draw the graph 

of c"”®, which is obtained by changing the sign of x, and therefore 

is the reflexion of the first graph in the axis of y ; (iii) for each 

value of X plot a point P (Fig. 84) whose ordinate is half the sum of 

the ordinates of the first two graphs; the locus of these points is 

the graph of cosh x ; (iv) plot the points, such as P', whose ordinates 

are half the dilTerences of the ordinates of the first two curves. 

The locus of these points is the graph of sinh x, 

Coshx, being an even function of x, has a graph which is sym¬ 

metrical al)out the axis of y; as x increases from 0 to oo, cosh x 

increases from 1 to oc. 

The graph of y ■■ cosh x is a particular cas6 of a curve which is well 
known in mechanics and is called a catenatyy because it is the form 
assumed by a uniform chain suspended between two points and hanging 
in a vertical plane under the action of its own weight (see Art. 107). 

• For full Information as to the properties of these functions, and as to their 
relations to a rectangular hyperbola, the student is referred to such treatises as 
Chryatal's A.lgthrti and HobsoA’s TW^onotiM^ry. 
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Siah Xj being an odd function of a?, has a graph which is symmetrical 

about the origin. As x increases from 0 to oo, sinli x increases from 

0 to 00. It is evident from the 

definitions that sinha; is always 

less than cosh x^ but becomes very 

nearly equal to it as x becomes 

large, since e~^ then—>0. 

The graph of tanh x can easily 

be deduced from the facts that 

tanh x (i) is an odd function of Xy 

(ii) is equal to 0 when a? = 0, 

(iii) increases as x increases, and 

(iv) approaches the limit 1 as 

X —► CO, and is never > 1. 

These functions are of compara¬ 

tively recent introduction, and the 

calculations in many investigations 

are expedited by their use. Tables of 

their numerical values* for different 

values of the argument x have been 

compiled, as in the case of the 

circular functions. A table of values 

Fig. 84, of sinh x and cosh x is given at the 

end of the book. 

94. Inverse hyperbolio funotions. 

These functions hear to sinh x, cosho?, &c., the same relation that 

cos'^ a:, &c., bear to sin a:, cos a;, .... 

If x=^coshyf WG may write y = cos/t"^ x, and if x = sinhYy 

y =: sinlr^ X. 

Since cosh a; and sinh a; were defined in terms of it might be 

expected that the inverse hyperbolic functions can be expressed in 

terms of log Xj the inverse of e^y and this is the case. 

If y = sinh~ ^ Xy then sinh y = Xy and 

. •. cosh y = ± -/(I + siiih^y) = \/(l + 

The -f sign is taken since it follows fi’om the definitions in Art. 92 

that cosh y is always -f. 

From the definitions, = sinh y -f cosh y 

= x^ ; 

•*. log {xJf V(a;^+1)} = y = sinh~^a;. 

* See 3,\7. L. Olaisher, ‘Tables, Mathematical,’ in Encyclopaedia Britannica 

(11th ed,). 
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Similarly, if y — cosha;, then x = cosh?/, and 

sinh y = + -/(cosh^ y—1) = -f >/(a;2 — 1), 

e*'= sinh y +cosh y = v^(a?^--1), 

and log {x±\^(x-^— 1)} = ^ = cosh"^ x. 

In this case, either sign may be taken; cosh" ^ a? is not a single¬ 

valued function of x [Art. 3 ]. 

The two values of cosh"^ x given by this equation, viz.: 

log {x+ (x^—1)] and log {x— V(a;-— 1)}, differ in sign only, since 

their sum 
= log {xi- 1)} (re— y(x"— 1)} 

= log (a;2 —1)} 

= iogl 

-0, 
so that, for any value of Xy there are two real values of cosh”^ x equal 

in magnitude and opposite in sign, as is obvious from the graph in 

Fig, 84. This is the graph of y = coshx, i.e. x = coa>h~^y, and 

from the figure, it is evident that, taking any point on the axis of y, 

there are two points on the graph corresponding to it, which have 

equal and opposite abscissae, i.e. to any value of y correspond two 

values of cosh"^^, equal in magnitude and opposite in sign. 

In the case of sinh'^ic, to each value of x corresponds one and 

only one value of sinh a;. 

Again, if y = tanli"^ Xy x ^ tanh y = — 1 )/(c- ^ +1), 

whence > and y ^ log . 

This gives tanh^^a; in terms of logarithms. 

Examples XXXII. 

1. Find Lt (1 +m)V^ as m 0. 2. Find Lt (e® — l)/a; as 0. 

8. Evaluate Lt xe~*, Lt xJogx, Lt ar"Mog(l+a?). 
X-* oo X-* 0 x-»‘ 0 

4. Calculate, from the series of Ait. 90, the values, to 4 places of decimals, of 
l/e*y and 

6. Provethat^-|j + l + ^?j+.... 

e. Expand (e** +in a series of ascending powers of u,. 

7. Prove that the series 
o 4 8 16 

is convergent, and find its sum. 

o 
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8. Sum the senes 

3 9 27 

^ 2+o 2:'O+- 
0. Draw the graphs of e*^ and «"**. 10. Draw the graph of tanh x. 

11. Draw the graphs of +«“*, e~*sina? and e''®/^co8a:. 

12. Prove that 

sinh 2 a? « 2 sinh x cosh x 

cosh 2 a: = cosh* x + sinh* a? =* 2 cosh* a? — 1 = 1+2 sinh* a?. 

18. Find, from the definitions, the values to 4 decimal places of 

(i) cosh 1, sinh 1, tanh 1; (ii) cosh J, sinh J, tanhj. 

14. Given logio2 « '3010, find, by the aid of Art. 91, the values of log^20, 

log^ie, logji!. 

16. Prove that (1 + tanh x)/i\ — tanh x) ■■ e**. 

16. Show that cosh (a: + y) ■« cosh x cosh y + sinh x sinh y. 

sinh (a: + y) *= sinh x cosh y + cosh x sinh y. 

17. Draw graphs of sinh""* x, cosh~' a:, tanh"' x. 

18. Draw the graph of y ■» log tan (Jrr + | ap). 

19. Prove that the functions tanh (1/a?) and c'/* are discontinuous when 
a? =* 0. Draw their graphs. 

20. Show that, if | a: | < a, 

tanh"' - =» 5 log , 
a 2 ^a-x 

and if | a: | > a, coth ^ log . 
a ^ X —a 

21. Find 
Lsinh X -|- 

i~ir ' JL4I 
tanh: 

and 

0 

cosh X 

22. Find from Art, 94 and Table IX, the values of tauh“' J, sinh"' 1. cosh~' 2. 

23. If w =« log tan (Jn- +^^), prove that 

sinh u « tan d, cosh u =» sec d, tanh u ■■ sin 6, tanh | w ■» tan ^ $, 

24. Prove that the coordinates of any point on the hyperbola *= 1 
can be expressed in the form a; a cosh w, y ~ & sinh w. 

25. Calculate, by the aid of Art. 91 and a table of ordinary logarithms, the 
values of log^2, log^ 10, log, 15. 

26. Calculate also the values of ; and compare with the results 
obtained by expanding by the exponential theorem, and retaining 
only terms of value greater than ‘001. 

27. Obtain, by aid of Table X, the values of sinh f, cosh 2, tanh 1*5, 
sinh"' 1*4, cosh"' 3, coth 

■n XI. i. • 1.-1^ 1 ir+V^(ic* + a®) ,^.x x+V'(a?*-a*) 
28. Prove that sinh ' - - log-^-, cosh ■= log ~=—- 

a ® a a ° a 



CHAPTER XI 

DIFFERENTIATION OP EXPONENTIAL AND 

INVERSE FUNCTIONS 

96. Introductory. 

We will now show how to find the differential coefficients of the 

functions considered in the last chapter. 

The differential coefficients of c* and log x may be obtained in two 

ways, (i) We may find the d. c. of log x by the aid of the limit of 

Art. 87, and then deduce from the result the d. c. of e®. [One 

advantage of this method is that it does not require the use of 

the exponential theorem. This may then be taken later on as a 

particular case of Taylor’s Theorem (Chapter XXII).] (ii) We may 

find the d. c. of first by the aid of the exponential theorem, and 

deduce from it the d. c. of log x. 

96. Differentiation of logo; and e*. First Method. 

Taking the first of the two methods mentioned above, we have, 

A-^-0 

A 0 A-f- 0 

Let hlx^l/m] then, as h 

\/h = m/x, 

dy 

dx 

0, and therefore, since 

= i Lt I»g + ^) = i^‘’g «[^rt- 87]. 
00 

If e be the base of the logarithms, log e= 1, and dy/dx = 1/x, 

Hence (lie d, c. of log« x == 1/x = 

If the base be any other number a, then dy/dx = x~'^ log^ e. 

The d. c. of e® can now be at once deduced from this by the 

theorem of Art. 35. 

For if y = x^log^y, 

. •. dx/dy = 1/y, and dy/dx = y = e®; 

i.e. the d, c. of e® = e®. 

o 2 
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07. Differentiation of c®. Second method. 

Taking now the other method mentioned in Art. 95, we have, 

using the general method of Art. 26, 

if T 
’ dx h ” i-it /♦ A-.-0 

- Lt 7; +1 j+ 
*-►0 • -• 

L^r, I 
r+2-! + 3-! + il+ -J 

The series within the inner brackets is convergent (Test 3, Art. 86), 

and therefore has a finite sum S. 

|=Li«Ti + '‘S] = .-. 

The same result maj be otherwise obtained as follows. The seiies 

satisfies the conditions referred to in Art. 29 (ii). Assuming thiSj we have, 
on differentiating each term, 

. r X A t 2a? , 3x* , 4a?* , 
d-c-of « =0+1+ 2! +11+ 4T+- 

Hence is a function whose rate of change is, for any parti¬ 

cular value of X, always equal to its own 

value, e. g. when e® is equal to 4, it is in¬ 

creasing 4 times as fast as x; when = 100, 

it is increasing 100 times as fast as X] and 

so on. 

Geometrically, this means that, if P (Fig. 85) 

be any point on the graph of c®, and if the 

tangent and ordinate of P meet the axis of x 

in T and N respectively, then 

tan FTN = dy/dx = = ^ = AP. 

Hence, since tan FTN = NF/TN, it follows that TN is of unit 

length, wherever the point P be on the graph. 
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From the theorem of Art. 34, it follows that 

the d. c. of = 3^:^% 

the d. c. of 

the d. c. of = c*>“*xcos:r, 

and generally, the d. c. of with respect to = e’* X du/dx^ where u 

is any function of x. 

Hence the rate of increase of the function is which 

is always proportional to the value of the function, and it will be 

seen later (Art. 99) that is the only function for which this is 

true. This is the reason that this function occurs so frequently in 

the investigation of natural phenomena. See Art. 181. 

08. Differentiation of log x. Second method. 

The d. c. of logic can at once be deduced from that of by 

Art. 35. 

If y = log X, then x — 

dx/dy^c^^x^ and dyldx:=-llx^ 

Hence the d, c, oflogt,x = 1/x — x~^. 

To find the d, c. of logjoic, the result of Art. 91 may be used, 

logio x=log, a:/log, 10 = ^ log, X; 

the d. c. of logiol/x==: *434 .../a?, 

and generally, the d. c. of log^ x = . - . 
log^a X 

From Art. 34, it follows that 
the d. c, of log (a;-h5) = l/(x +5), 

the d. c. of log (Sx —2j ■= 3/(3 a: —2), 

the d. c. of log (a:^ + 1) ** 2 a?/(ar* + 1), 

the d. c. of log sin a? = cos x/sin x =» cot x, 

and generally, the d. c. of log u « dujdx, where u is any function of x 
A rather more complicated case is 

the d. c. of log (ic® + a®)] 
1 

1 
a?+ +a®) ^ 

0"^ 2V(ir*±a*)) 

(x^ + a*)'i~x 
~~P{x^±af 

« _JL_. 
** 

This is an important result, to which we shall have occasion to refer later 
[See Art. 128.] 

In differentiating expressions which involve logarithms, it is 

advisable to begin by making use of the properties of logarithms as 
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shown in the following examples. In many cases, the work of 

differentiation is thereby rendered much less complicated. 

Examples: 

(i) The d. c. of log 
4-.r 

' the d. c. of [log a? + log (a?~3) — log (4-x)] 

X X —3 4 —a? 

(ii) The d.c. of log ~ = the d. c. of [log ar -1 log (a;* ~ 1)] 

2x -1 
-1 xix^-l) 

09. Integrals of e* and 1/x or aj'b 

Corresponding to the two differential coefficients of the preceding 

articles, we have the two very important integrals, 

/c® dx = c* 

dx = log X, 
/‘ 

The latter supplies the one case which was missing in the result of 

Art. 74. It was there shown that J'x'’^ dx 1) except 
when n = — 1. When « = ~ 1, the integral becomes /x~'^ dx, which 

we now see to be log x. 
Using the theorems of Art. 75, we have 

dx = dx-\ ; 

/e*/" dx == dx = e”^/m, 

and generally, / dx = 

Similarly, Jdx = log (x + 3), Jdx — \ log (5x-> 2), 

fa~^ dx = —log (a —x), and generally, j a (ax + h). 

We have /dx/(x-a) — log {x—a); but, if a;<a, x-a is and 
log(x~a) imaginary. In this case, we may write 

In particular, if a? is -, f-do; is not log a? (which is imaginary), but 

log (-a:). 

We can now prove the statement made in Art. 97 that a function 

whose rate of change is proportional to its own value is of the form 

gax+b [which may be written e^xe^, i. e. on writing Jc for the 

constant factor c^]. For if y be such a function, we have, since dy/dx 

is the rate of change of y with respect to x, 

dy/dx = ay, which may be written dx/dy = 1/ay, 
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/j 1 
— Oy = - logy+ C, where C is an arbitrary constant 
uy ck 

Therefore log y = ax^^aC, ie. y = ^x-ac — 

writing k for the arbitrary constant 

Examples XXXIII. 

Differentiate: 

2. giin® ^aooB*^ ^tanx 

3. e“*8ina:r, e~**cos3a;, e“*cOB&a:, e®®8in*ir. 

4. c^/tanrc, (ax* +6a: +c)/e®. 

6. log (2rc-l), log(2-a?), log(a:®-l), log(a + &x*). 

6. log(5 + 7a7). ^og{p-qx), log(a:*~31), log(l-a:*). 

7. log cos a?, log tan a?, log (a + 6 sin or), log (3—4 cos a:), log (1 + cos* a:), 

e. x”\ogXf re* log (2 —ic), a;log (1 —X*). 

logic logic log(aic + 6) logic 

iC * iC** * 0?* ' 

10. log {a:"(x +2)}, log^(l + x»), 

11. log/sin a;, log/[x(l-x)]. log‘|^. log 2 “““- 

12. log[ir+^og[A/(x-l)-\~ ^{x+l)], ]og[>v/(ta:-a)+^(a + Z^ir)]. 

Find the 2“^^, 3'*^, and differential coefficients of: 

18. 6°^, 14. logic. 16. «■*. 

16. 17. log(l-ic). 18. log (a + 6a?). 

19. Prove that the equation d^y/dx’^^a^y is satisfied by y«-.4c"* + 
where A and B denote any constants. 

Write down the integrals of; 

20. e®*, c*“ -X x/a /«*, /«*, e •, 

21. 
1 1 1 1 ^ 1 ^ 1 

5ic + 3 7-2x’ x—a p — qx 6ic + c 8 + 3ic 

22. 
1 1 4 ^ j 

2 

oc
 1 1 -x* 4ic-5' a — hx hx + c 3(5-2*)* 

100. Differential coefficient of sin"*^ x. 

The differential coefficients of the inverse circular functions are 

easily obtained by the rule of Art. 35, 

If y = sin~^ Xy x=: sin ?/, 

dxjdy cosy = + ^(l — sin^^) = + -/(I— 

. ^=+_L_. 

The double sign ± needs some consideration. 
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The function sin"^ x is a, many-valued function of a?; it is undefined 

for values of x which are greater than unity (notice that for such 

values the d. c. is imaginary), but if x has any value between — 1 and 

4-1, both inclusive, there is an infinite number of values of sin ' ^a? 

corresponding thereto [e.g. if a; = sin”^a; maybe or or 

either of these + any multiple of 2'7t], but among all these values 

there will be one and only one between — and -f Itt. 

The angle between — Jtt and +^*77, whose sine is equal to a?, is 

called the principal value of sin”^ a?. 

If we take therefore the principal value of sin' ^ x, then, as x 

increases from —1 to -fl, sina; increases from — Jtt to 4-^77, and 

hence its d. c. will be + (Art. 25). In this case 

dy/dx= +l/V{l-x-). 

There will be one angle between and whose sine is equal to x; if 

we were to take this value of sin"^ ar, then sin"^ x increases from \ n to 

ITT as a? decreases from +1 

to — 1; hence in this case its 

d. c. would be —, 

i.e. ~ 1/7(1 

The working of course gives 

both signs, because the selec¬ 

tion of one angle as principal 

value is a mere arbitrary con¬ 

vention of which the analysis 

takes no account. In the 

general case, the sign of dyjdx 
is the same as the sign of cos y. 

The meaning of the double 

sign is perhaps best seen 

geometrically. The graph 

of y = sin~^ x is shown in 

Fig. 86. It bears the same 

relation to the axes of y 

and X as the graph of 

^ = sin X bears to the axes 

of X and y. An ordinate 

corresponding to a value of 

Fig. 86. I a? I > 1 does not meet the 

graph at all. For such 

values of x^ the function is undefined. An ordinate corresponding 

to a value of \x\< 1 cuts the graph at an infinite number of points 

^1} ^2i “^8 •••• 
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The value of the d. c. at any point is the slope of the curve at that 

point, and it is evident from the figure that at the points Pi, P3, ... 

the tangents to the curve make acute angles with the axis of a?, and the 

slope is 4- ; whereas at the points P4, ... the angles are obtuse, 

and the slope —. The principal value is represented by the ordinate 

between OB and OAy and between these two the slope is every¬ 

where + . 

101. Differential coeflBLcient of cos" ^ x. 

If ^ = cos“^ Xy x = cos 

dx/d^ = —siny = ± v^(l~cos“^) = + -/(I — 

d^/dx = ±l/^{l^x% 

The double sign is accounted for in the same way as in the 

preceding case. There is one and only one angle between 0 and tt, 

whose cosine is equal to a; (if | a; | < 1). This is taken as the principal 

value of cos”"^ x. [The range — J tt to + ^ tt would not serve in this 

case, since throughout this range the cosine is always -f.] 

Taking the principal value, cos~^aJ increases from 0 to tt, as a; 

decreases from -f 1 to ~ 1, therefore its d. c. is —, 

i.e. the d. c. of cos^^a: = — —a;®). 

In the general case, the sign of dyjdx is opposite to the sign 

of sin^. This can be illustrated geometrically as in the case 

of sin“^a;. 

This result can also be deduced from the preceding result, for, 

taking the principal values, cos“^ x = \ tt —sin"“^ x. 

d. c. of cos“^a; = — d. c. of sin“^a?, 

since the d. c. of the constant i?? is zero. 

102. Differential coefficient of tan~^a;. 

If y = tan~^ Xf a; = tan y ; 

. •. dx/dy = sec^ ^ = 1 -f tan^ ^ = 1 -f- 

dy/dx = 1/(1 i-x% 

There is no ambiguity of sign in this case, since, as was pointed 

out in Ai*t. 52, y and x always increase together, and therefore dy/dx 

is always +. Tan""^ir is a many-valued function of Xy which is 

defined for all real values of x; there is one and only one angle between 

•— i and + i tt, which has a tangent equal to Xy and this is taken as 

the principal value of tan'^a?. [Either of the ranges — J-tt to +^7r 

and 0 to w would serve in the case of tan X) —j7rto-i-|7ris the 

one adopted.] 



202 DIFFEKENTIATION OP EXPONENTIAL AND 

Geometrically, any ordinate cuts the graph of tan”"^ x in an infinite 

number of points , Pi, P,,hut at all these points the tangents 

make acute angles with the axis of x, and the slope is +. (Fig. 87.) 

Fig. 87. 

The differential coefficients of cot“^ Xy sec“^ a?, and cosec“^ x, which 

occur much less frequently, can be obtained in a similar manner. 

The differential coefficients of all the inverse circular functions can 

also be obtained geometrically from the figure of Art. 89. 

By Alt. 34, the d. c. of Bin”^- ^ 
^ ’ a v'(l-xVa) 

the d. c. of tan"^ - 
a \+x^la^ 

the d. c. of sin ' (2 sin x) «=* —7-;—^ ^ cosa;, 
' ' y(l-4 8in^a:; 

Expressions involving inverse circular functions can sometimes be 

simplified before differentiation. 

The d. c. of tan-1 =. x - 1 - - 

or, as is obvious geometrically, tan“' (1/x) ■=» J tt — tan“* x; 

the d. c. “ -1/(1 +x^). 

Again, the d. c. of cos”^ V(1 “= d. c. of sin”' a? = 1/V(1 — i*?*). 

The relations between the functions can often be seen geometrically, 

by drawing a right-angled triangle. 

Reversing the first two of these examples, we get the important 

integrals:— 

f jr-l—dx = sin”^ ~ ; /-y—-o dx:=:~ tan"^ 

which we shall have occasion to use frequently later. 

Vja'^-xy 

X 2 cos X, 

The d. c. of tan" 

= - tan ^ 
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108. Differential coefOLoients and integrals of hyperbolic 

fimotions. 

The d. c. of sinh i.e. of \ (e*—\ = cosh x. 

The d. c. of cosh x, i.e. of \ + \ = sinh a;. 

The differential coefficients of the other hyperbolic functions may, 

if required, be deduced from these two in exactly the same way as in 

the case of the circular functions (Art. 42), 

By Art. 34, the d. c. of sinh 2 x 

the d. c. of einh mx 

X 
the d. c. of cosh 

a 

Conversely 

J cosh r dr = sinh r, 

/cosh mx dx «= (sinh mx)/my 

2 cosh 2 Xy 

m cosh mxy 

hiBh? 
a a 

J sinh xdx =■ cosh r. 

y'sinh mx dx «= (cosh mx)/m. 

104. Differential coefficients of the inverse hyperbolic 

functions and corresponding Integrals. 

(i) If y = 8inh“^ r, r = sinh y, 

• *. dx/dy = cosh y = + \/(l + sinh^ y) (Art. 92) = + v^(l + 

The + sign is taken since cosh y cannot be negative, 

. ,_1_ 
* * dx V(l+r2) 

(ii) If = cosh ~^Xy X — cosh y, 

dx/dy = sinli^ = ± (cosh^^— 1) = + \/(r^— 1)^ 

. . __^ 
*• dx - V(x^-iy 

Either sign may be taken here, because y is a two-valued function 

of X [which is defined for values of x such that |r|>l; if|r|<l, 

the d. c. is imaginary]. To each value of x (> 1) correspond two 

values of cosh~^ r, equal in magnitude and opposite in sign (Art. 94). 

Taking the positive value, cosh”"^ x increases from 0 to oo as r in¬ 

creases from 1 to 00; therefore dy/dx is +. Taking the negative 

value, cosh“^ x decreases from 0 to — oo as r increases from 1 to oo ; 

therefore dy/dx is —, Hence the d. a of cosh“”ir = +l/>/(r2—1), 

according as the positive or negative value of cosh“"^ x is taken. 

By Art. 34, the d. c. of sinh ^ 
a V(l-hx^/a^) 

1 ^ 1 
a ^ V(a^ + a:-) 



204 DIFFERENTIATION OF EXPONENTIAL AND 

Conversely, we get the two important integrals: 

f—T,dx = sinh“^ ^ I —t;,dx = cosh”^ - • 
J V(a- + x-} a* Ja 

These two integrals can also be expressed as logarithms. See 

Ex. XXXIL 28. 

Examples XXXIV. 

Differentiate 

1. sin"* J Xy sin“’ («A), sin"* >/Xy sin"* (1 - l/^r). 

2. co8"*(a?^), cos *wa;, cos"* (l/-v/a?), cos"* (sin a?). 

3. tan"*(a--ar), tan"* (cot a;), tan"* tan"*V^j:. 

4. cot"*a;, cot"* (x/a), cot"*(l/a;). 

5. sec"*ic, cosec"* a;, sec"* (a/a:), cosec"* (1 
6. sinhja:, sinh (a:*), Binh(l/a?), sinh’^x. 

7. cosh (oa: +1), cosh’ x, sinh x + J sinh’ x. 

8. tanhx, cothx, tanh (x/a), coth(a/x). 

0. sinh"*Jx, cosh"* (x®/a*). 

11. (1+x®) tan"* X, xco8"*x. 

13. sin"* v'(l ~x’). 

10. tanh"* X, coth * x. 

12. v^{l-X*) Mrr*x. 

18. 

10. 
20. 

1+x^’ 
Integrate 

_1_ 

1 

15., cos 

17. 

14. cosec' 

16. tan"* 

I 

■*(l/x). 

2x 

l-x“‘ 

I 

V'(5~x0 
1 1 

V[l~(x+1)‘*'] V(^J-4x^) 

1 ^ 1_^ _ 
x^ + t’ 9x* + 4’ 2xH5’ a'^xUb'^ 

1 

1 ^ 
Z>x^4 a 

1 1 1 
1+x^ 100+ x* 
11^ 

v^(x^-9) v^(5 4x")^ V^(4x‘-1) ^(25x* + 9)^ ^(l?x^ — ar) 

sinh 3 X, cosh 2 x, sinh (x/a), cosh (x/a). 

105. Applications. 

We will now work out a few more examples in illustration of the 

principles of Chapters V-VIII, introducing some of the differential 

coefficients just obtained. 

Examples: 

(i) Prove that in the catenary y « acosh (x/a) (Art. 93), the length of the 

perpendicular NK (Fig. 88) from the foot of the ordinate PN to the tangent at 

P is constant. Show also that the length of the are, measured from the vertex A 

of the curve to the point P, is equal to PK. 

When X = 0, cosh (x/a) =* 1, and y = a. 

EK « y cos and tan yJr ~ ^ — a sinh ~ x - ■« sinh -: 
^ ^ dx a a a’ 
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cos>//—» (dy/dxf\ (•*^/^)} cosh (x/a) ’ 

/, JS!K « y C08 « a cosh ix/a) x —, ^, = a, which is constant. 
^ V / / (ip/a) 

It follows from this that OA = a, for if P be taken at A, the tangent at 

A is parallel to OX, and ^0 is the ordinate; hence NK in this case becomes 

OA, which is therefore equal to a. 

Pig. 88. 

To prove the second part of the question, we have (Art. 82) 

ds/dx ** sec « cosh {x/a); 

s =/cosh (x/a) dx ^ a sinh {x/a) -f C» 

Since s is measured from A, 0 when a?= 0. 0 = C, 

and s = a sinh (a:/o) == a tan 

- iiiV^tan f « FK. 

(ii) Find the maxima, minima and points of inflexion of the curve y = x®e' 

and draw it roughly. 

The d.c. of ■= x d.c. of -2a?. 

dy/dx =» x^. (— 2 a*) -f . 2a? 

« 2a?e'** {l-x^), (1) 

Writing this as 2e“** (a?-a?^), for convenience in differentiating again, 

we have 
d^y/dx^ = (1 ^Sx^) + (a?-a7>) (-2a?) 

= 26*'‘^'(l-3x*-2a?^ + 2:r^) 

-2e'*’(l-5a?* + 2a?*). (2) 
From (1), dy/dx == 0, when a? = 0 or +1. 

If X « 0, d^y/dx’^ = + 2 ; x = 0 makes y a minimum, and equal to 0 

If X == + 1, dV/dx* «= 2 (-2) =*-4/e; x =+1 makes y a maxi¬ 

mum, and equal to 1 x e’"\ i.e, *37 nearly. 

Hence (0, 0) is a minimum, and (1, *37), (-1, *37) are maxima. 

From (2), d®y/dx* «= 0, when 2x* —5x* + l =0, 

i.e. when x® «= } (5 + V^17) — 2*28 or *22 nearly, 

and X a* +1*51 or jh;*47 nearly. 
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changes sign in passing through each of these values, since none 

of them are repeated; hence there are 4 points of inflexion. 

When =* 2*28, y => 2*28 *=■ *23; and dy/dx =■ ± 3*02 e“**^ x -1*28 

«= + *39 nearly; 

when rr®=*22, y — *22e”*”«i*18 ; and + *94e~’^*x *78=» +’59near]y. 

These give the coordinates and the slopes of the tangents at the four points 

of inflexion. 

The graph is symmetrical about the axis of y, y can never be —, and 

y 0 as X -> + 00 ; hence the graph is roughly as shown in Fig. 89. 

The minimum is at 0, the maxima at A and A\ and B, B\ C, C are the 

points of inflexion. 

(iii) Find the difference for 1 minute in the neighbourhood o/60®, in a table 

of logarithmic tangen ts. 

The function whose change we have to find is logj^ tan x. 

The d.c. of logj^^tano? =- the d.c. of filog^tana? (Art. 91) 

1 , , 
« U .;-8ec*x « -; 

tan X Bin x cos x 

i. e. if X increases by a very small amount (in radian measure), the logarithmic 

tangent will increase by approximately g/siu x cos x times as much. 

Now the given increase in a; is the circular measure of 1\ i. e. tt/IOSOO, and 

the value of a; is J tt. 

Hence the increase in logio tan x = ^ x ,-^^7,7: 
sinjTTCOsfTT 10800 

•434... 3*1416 

" -866... X -5 10800 

*00029 approximately; 

therefore logjo tan 60'" 1' exceeds logjotan 60° by *00029, as can be verified by 

reference to a book of mathematical tables, 

(iv) A point moves in a straight line, so that its distance s from a fixed point 

0 in the line at the end of time t is given by the equation s =■ ae"*^^ sin bt. 

Determine the nature of the motion. 

The velocity is given by 

f = ds/dt = a b cos ht + sin bt. (- it^)] 
■» aer^^\b cosU'-ksmht\. 
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dsfdt^ 0, i.e. the velocity is zero, and « is a maximum or minimum, 

when bconht = ksiubt (since cannot be 0), i.e. when tan&^ =» b/kf or 

bt — a + nTT, where cx is any one angle whose tangent is equal to b/k. 

Hence maximum and minimum values of 8 occur, and the particle is (for 

an instant) at rest, when ht increases by a multiple of tt (from the value a), 

i.e. they occur at intervals of time ir/b. 

1£ bt ^ OCy « *= sin OC. 

The next maximum or minimum is given by = a + tt, 

and then s = ae*"* ein (a + n) 

«* X —sin® 

*= ~ ae~^ sin (X x er^ 

The — sign indicates that this is on the opposite side of the origin, and 

this distance is equal to the preceding one multiplied by ; also this is 

true for any two consecutive stationary points, since (X is any value which 

makes ds/dt vanish. Hence the point oscillates to and fro through the origin, 

over distances which decrease in geometrical progression with a common 

ratio e”*"/**, and the turning-points occur at equal intervals of time, the time 

from any one to the next one being n/h; s decreases as t increases, on 

account of the factor and the oscillations gradually die away. 

This is the case of a particle performing ‘ damped oscillations it should 

be compared with ordinary simple harmonic motion, given by the equation 

8 = a sin bty without the exponential factor e""^. In the series of maximum 

and minimum values of s, the ratio of any term to the next term is ; 

the logarithm of this ratio^ kn/b, is called the logarithmic dea'emenU 
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The student should pay attention to the graphical representation of the 

motion. It has been noticed that the maximum and minimum values of 

ein ht occur at constant intervals n/b, so that there is the same interval 

between consecutive maxima and minima as in the case of a sin ht; but the 

actual values of t which give maxima and minima do not coincide for the 

two functions unless a ** Jtt, in which case A: «= 0, and the two functions 

coincide. 

Again, the graphs of s ^ ae‘~^^ dn bt and meet where sin 6^ = 1, 

and therefore cos ht 0; at these points on the first graph, ds/dt becomes 

atr^x -hy which is also the d.c. of Ilence the graphs of the two 

functions have the same slope where they meet, and therefore they touch 

each other at their common points. Similarly the graphs of the given 

function and of s = meet and touch one another when sin ht^ —1. 

Fig. 90 shows the form of the graph; its actual dimensions depend upon 

the numerical values of a, &, k. 

Examples XXXV. 

1. Prove that, in the curve y = the subtangent is constant, and the 
subnormal varies as the scpiare on the ordinate. 

2. Find the lengths of the subtangent and subnormal in the catenary 
y ^ c cosh (ic/c). 

3. Show that, at the point of intersection of t/ = ce^/^ and t/ «= c cosh (ar/c), 
the subnormal in the former curve is equal to the normal in the latter. 

4. Prove that the curves y «= aer^^ and y = cos hx touch at the points 
where x «= 2mr/h. 

6. In the curve y felog {x/a)y the tangent at any point F meets the axis 
of y in Tj and FM is drawn perpendicular to the axis of y; prove that 
MT is of constant length. 

0. Find the equation of the tangent and normal to the curve y = log a?, at 
the point where it cuts the axis of x. 

7. Prove that, in the catenary y *= a cosh (a?/a), ds/dx s* y/a. Hence find 
the length of the arc 8 from the vertex to any point (x, y) on the curve, 
and prove that = s’ + a'K 

8. Find the angle between the tangents at two consecutive points of inter¬ 
section of the ordinate x^ \ with the curve y sin'^’ x, 

9. When is the ratio of the logarithm of a number to the number itself a 
maximum ? 

10. Examine a cosh x-\-b sinh x for maxima and minima. 

11. Find the minimum value of ae** -f 

12. lind the minimum value of a;/loga:, and the points of inflexion on its 
graph. Sketch the graph. 

13. Find the maximum value of xe~'^ and the points of inflexion of y « 
Sketch the graph. 

14. If X be the ratio of the radius of the core of a submarine cable to the 
thickness of the covering, the speed of signalling varies as x^l(yg{l/x). 
For what value of x will the speed be greatest ? 
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15. The graphs of y « sinh x and y — 8 tanh x are drawn with the same axes ; 
find where the distance between them, measured parallel to the axis 
of y, is greatest 

10. Find the maximum and minimum values of sin ax, 

17. Find the maxima and minima of cos (lOar —35°) [tan 35° *= *7]. 

18. Find the points of inflexion of y and draw the graph. 

10. Find the maxima, minima and points of inflexion of y = xe~‘^^. Trace 
the curve. 

20. Show that the origin is a point of inflexion on tlie graphs of sinh x and 
tanh Xj and that the graphs of cosh :r and lo^x have no points of 
inflexion. 

21. Prove that, in the curve y *- a log sec {x/a), ds/dx = sec [xja), 

22. Find the difl*erence for 1 minute in a table of logarithmic cosines in 
the neighbourhood of 45°. 

28. Find the difference for 1 minute in a table of logarithmic sines in the 
neighbourhood of 120°. 

24. Find the area between the axes of coordinates, the graph of e®, and the 
ordinate a? = 3. 

25. If this area rotates about the axis of j?, find the volume of the solid 
generated. 

26. Find the area between the rectangular hyperbola xy = 20, the axis of 
ap, and the ordinates x =» 2, x =* 5. 

27. Find the area between the catenary y =* a cosh {xja)^ the axes and the 
ordinate x 5. 

28. Find the area between the axis of x, y == sinh ar, and a: »= 4. 

29. Find the area between y = cosha;, y*=8inha;, and the ordinates 
a: « 1, a? 5. 

80. Find the area between the axis of y, y « cosh a?, y = sinh x^ and x — a. 
If the ordinate x = a recedes to a very great distance, to what limit 
does this area tend ? 

81. Find the area between the axis of y, the curve (a*-fx*)y® *= a* and 
(i) x^ a, (ii) X ^ b, 

82. The two areas in the preceding question rotate about the axis of x\ 
find the volumes generated. To what limit does the latter volume tend 
as 5 00 ? 

S3. Find the area between the axis of y, the curve y* aY(a* —a:^), and the 
ordinate X"^\a, 

84. If the distance travelled by a moving point bo given by the equation 
5 + prove that the acceleration is proportional to the distance 
travelled. 

85. The acceleration of a point moving in a straight line varies inversely as 
its distance from a point in the line 2 feet behind the starting-point; 
if it starts from rest with initial acceleration 1 ft. sec. per sec., find its 
velocity after travelling 20 feet. 

86. A particle starts from rest and moves under the influence of an 
acceleration, which at the end of t seconds is 12/(< +1)**; find the distance 
travelled in 9 seconds. 

87. If s cos make a table giving the position, velocity, and 
acceleration of the particle, initially and after 1, 2, 4, 10 seconds. 

P 1831 
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88. Draw the graphs of # ■» s «■ Where do they touch 
one another ? Where and at what angle does the latter graph cut the 
axis of t ? 

39. Draw the graphs of s cos (3^ —Jtt) and s *» sin (2^ + Jtt). 

40. The distance of a moving point from the origin at the end of time t is 
given by the equation s «= cos J ; find the velocity and accelera¬ 
tion at the end of 4 seconds. 

41. A point moves in a straight line so that its acceleration towards a fixed 
point 0 in the line varies as its distance from 0 ; if it starts from rest at 
distance a from 0, find its velocity in any position, and its position at 
any time. 

42. Given that s + prove that 



CHAPTER XII 

HARDER DIFFERENTIATION 

100. Extension of theorem of Art. 84. 

It is proposed in this chapter to consider the differentiation of 

expressions of a more complicated nature than those we have hitherto 

considered. 

We have seen (Art. 34) how to differentiate a function of a function, 

e.g. log sin a;. This method can be extended. 

For example, let y = log (1 + sin^ a:). 
Here y = log w, where m — 1 + where v = sin x. 
Exactly as in ^li t. 84 we shall have 

dy __ dy du dv 

dx du dv dx 

^ (l/«)x2t;xcos:c 

^ 2 sin X cos x 

~~ 1 + sin^ X 

It is hardly necessary in practice to introduce the u, v , explicitly. 
The results may be written down thus: 

(i) the d. c. of 

V(1 + sin” x) = 
1 

2V(1-^-Bin^xj 

1 
2V (1 + sin” a;) 

1 
2V(1+Bin”u:) 

X d. c. cf (1 + sin” x) 

X n sin”~^ x x d. c. of sin x 

xwsin”~^a:x cos a;. 

(ii) the d. c. of 

(log tan 4 (log tan Ja;)® x d. c. of log tan Ja; 

= 4 (log tan X ^ 

= 4 (log tan x 
1 

tan lx 
xsec^^xxd. c. of 

= 4 (log tan X r-^~ X sec® Jx x 
tan 2 X 

107. Taking logarithms before differentiation. 

(1) In the case of some expressions of a complicated type, e.g. if 

the expression consists of a root or power of a product or quotient of 

several factors, it is advisable to take logarithms before differentiating, 

and use the result of Art. 9S. 
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Examples: 

(i) If y= !y[x[x-a){x-h)(x-c)]. 

log y “ [log a; + log (« - o) + log (x - ?>) + log (x - £•)]/»; 

differentiating with respect to x, 

n [_x x — a x — b x-cj y dx 

dx 
and yru-i-+-iy+ 

x—a x—b X n 

[[ 
X {x-a) {x~h) (x-c)] pi 1 ^ 

x — a x — b a 
(11) If y^t Bin* 37 cos* 37, 

log y == 037 + 3 log sin 37 + 2 log cos 37; 

1 iiy 
y * "dx 

. dij 

o 1 2 , . , 
0 + 3 — . COB 37 +-(- Bin x); 

sin 37 cos 3; 

.. Bin*x cos’ 37 [o + 3 cot 37 — 2 tan x]. 
dx 

(2) If the expression to be differentiated contains an index 

involving rr, it is advisable to begin by taking logarithms, except in 

the case of where u is a function of x; the d. c. of this was seen 

in Art. 97 to be e'^^dufdx. 

Examples: 

(i) If then logy — (<w: +&) log 2, 

y dx 

ay log 2 = 0.2'’*+Mog 2. 

log y *= 37 log a + log tan 37; 

differentiating, o. log 2, 

and 

(ii) If y ^ tan 37, 

1 dy 

y dx 
■ 

dx 

■ log a + . sec’ 37 
° tan 37 

log a + sec 37 cosec 37; 

o® tan 37 [log a + sec 37 cosec 37]. 

108. Inverse circular functions. 

Some simple examples of these have been given in Art. 102. Here 

are two of a more complicated nature. 

(i) the d. c. of sin~^ [2x\^(l — x^)"\ 

X d. C. of 237^/(1—37®) 
1 

1 
V(l—43;^ +43;*) 

l-2x« 

2_ 

-2x>“ + 2(l-x"-) 
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The result can also be obtained by Trigonometry, for if a: == sin 9 
[and this is a legitimate substitution, since |a;| must be < 1 if the 

given expression be real], will be cos^, and 

= 2 sin^ cosO = 8in2^?; 
sin""^ 2a: \/(l —aj-) = 6in~^ (sin 2^) = 20 = 2 sin~^ a:, 

whence its d. c. = -, as before. 
V(i-x^y 

(ii) the d. c. of 

V(ra) “ iWd ^ 
l~-x 1 . ^ X 

~ - X -t't X d. c. of -- 
1 —x-fic 2 V[a:/(l--a:)J 1 — a; 

_l-a; 1 

~ 1 2\J\ X ) (l-xf 

1 IA-X\ 1 

2‘\/( X 1-x 

27(x-x^) ' 

The result may also be obtained as follows, 

geometrically * that tan~^-/[a:/{l —x)] = sin”^ Vx. 

Hence its d. c. = 
1 1 _ 1 

^/(l —x) 2 Vx'^ 2 v'(x— 

It is easily seen 

Examples XXXVI. 

Differentiate the following function!: 

1. log sin (a— So;). 2. log(1 — cos® x). 

4. log [-v/(x+l)+v^(x-lj]. 

e. (1+cos® ax)”, “ ^ 7. 
1 — tan* 3 X 

10. log (1 + cos* ax). 

13. log (! + -/«*). 

, ,/ sin’x \ 
10. tan-’( ,- • 

V1 - cos X/ 

10. 3*. 

22. 2V*. 

0. (14-8ec5x)^/». 

12. Bin’''(V^inx). 

16. sin • 

18. log C08(l +-y/x). 

21. a*a-c, 

24. 51+**^“*. 

87 _L__ 

• Draw a right-angled triangle with aides ‘J% and v^(,l - x), and therefore 
hypoienuM !• 

25. 

2a 

5. log tan(l7r + |x), 
6. -v/(2 - sin* 2 x). 

6. [log (1 +-/*)]’• 

11. 
14. cos~*v'(3x—2). 

i 1 <x 
17. tan-’-—3—J-- 

20. 10’*'’. 
23. a’/*’. 

ae, 
(a — x)* 

sin”' X cos" X 

—— 
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29. 
(1 +x) {2-x) 

81. e"* sin”*a? cos” X 

33. V^[a®Bin (a?4-0()cos(a?-/3)]. 

SO. 
(a-xy(b-xy 

(c-2ar)* 

82. (a-f a:)* sin a? cos’2 a;. 

84. log (log a;). 

85. ar* 

88. COS 

86. (log a?)*". 

2 X 
39. tan“' 

1- 

37. 

40. cosec' 
1 4 a?* 

■ 2x~ 

41. (1-a-’jV'^Bin'^a?. 

^/(l-a^)4-y(l 4 x) 

, arcosOf . //^—M 
42. tan ' --- 43. sin ' \/ (-j 

l+a?8inO \ \ X / 

45. 

47. log sinh (a/a?), 

a:’ 

(aHa:*)’/*' 

V(l-a^)-'/(!+a;) 
48. log cosh (a?/a). 

62. (l4-a:^}”tan ^ (a-^). 

54. tan“^ (cot I a?). 

^ t/(x + a)+^/(x — a) 

- /rl4-8ina?1 

V [rrs^J • 
eo. a:\/(a?* + a*)4-a*log[a?4->/(a:* + a*)]. 

62. (asinfca: —6 cos Z?a?). 

64. sec*^[l/V^(l-ir^)]. 

. , A/1 —cosa:\ 
60. tan- V(nn^>)' 

68. log sec tan~^ x. 

70. tan-^ (x/a) 4- tanh~^ 

, 1 4- tanh x 
’2- 

^(xU n-v/(a:*-l) 

4 1) 4- \/ (a?^ — 1) 

48. log(l 4“C0sh*aa’). 

53. (a* 4-sin* a? COS® a?)”. 

55. log sin”(?).a?4'c). 

67. tan-(^(^^)tanix). 

69. sin”' 
a 4- ft cos X 

ft4 a cos a; 

61. a? v^(a* —a?®) 4 a* sin"’(a?/a). 

63. tan”’[-v/(a?®4-l)~a?]. 

66. tanh”’(tan ^ a?). 

07. cot->|+iogy'(j^;)- 

09. log^O. 

71. log tanh J a?. 

, ^ / tan a: — 1 \ 
V -*• 

74. Find dp/d^ (i) if (ii) if logp - o + fea^-c/S*- 

75. Prove that the d. c. of cos— -—.= —D. jf (»•< j* this 
a 4-ft COS a? a 4-ft cos a? 

is imaginary. Explain this. 

109. Successive differential coefficients of implicit functions. 

The method of finding dyfdx, when y is given as an implicit 

function of a:, is contained in Art. 86. If differential coefficients of 

higher orders are required, the method of procedure is indicated in 

the following example. 

Given + a^ + 2/^ = find ^yjdx^ 

Differentiating with respect to a?, 2 a; -f ^ ^ -f 2™ = 0, (i) 

whence 
dx '2y + z' 

dx dx 
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dijBferentiating again with respect to x, 

(2,«)(2 + |)-(2,+S)(2| + l) 

dx‘ 

Sy- 
dj) 

' dx 

2x + y 

'iy+x 
on substituting the value of “ from (i) 

+Gary 4-6?^* 

(2y4-ar)3 

*= — — , from the given equation between ar and y. 

Or, the same result may be obtained by differentiating equation (i) 
again as it stands ; this gives 

2+0 
d^y . dy^ , dy , nf^_^y , dy dy 

dx^ ^ dx dx 

1 

i) = o< 
2x+y 

^y + x ' ^2y + x ^2y + x’ J 
Ga* 3x^4-Gary 4-3y^_ 

‘ " (2y'4-ir)^ (2y4-ir)2' 
as before. 

110. Successive difTerontial coefidcionts of e~^^sin(7)f4-c). 

The graph of ,v= sin + c) is one of great importance in certain 

physical and engineering problems. It shares the characteristics of the 

graphs of y = and y ■=» sin (bt-^c\ and consists of a number of undula¬ 

tions, whose alternate maxima and minima occur at equal intervals and 

decrease in geometrical progression. Cf. Art. 105, Ex. (iii). 

Differentiating with respect to 

dy/dt *» x h cos (ht + c) + sin + c) x — 

[a sin (6^+ c) — & cos (6^-fc) ]. 

This can be put into a more convenient form by the artifice (which is a 

common one) of putting a = r cos 6, b *= rsin ^ [whence tan 6 = 5/a, and 

r* sc= a* 4 h‘‘f so that 6 and r can always be found]. 

dy/dt ^ — ^“<^[rcoB ^sin (5<4c) —rsin ^cos(5f + c)]. 

e* — ^-<^y'(a^45®). sin (5^-f c —^). 

The higher differential coeflicients can now at once be found. 

The d.c. of e-^sin(5f-fc) is found by multiplying by ~v'(a®45*) and 

subtracting d (i.e. tan~^5/a) from ht-^c; this d.c. is an expression ot the 

same form as the original one, and therefore its d.c. is found in the same 

way, by multiplying it by “•\/(a* + 6®) and subtracting 6 from 6< + c —d, 

i. e. d^yjdt^ = ~ V(a* 4 5^) sin (6^ + c - d - d) x — -y/(a^ 4 5*) 

«= + (a®4 5®) e““^sin (5f 4-c—2^), 

and BO on for any number of differentiations. 
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After n differentiations, 
dTylde^ (~ 1)"(«• + fe*)"/*iin (5^ + c~n^). 

111. Leibnitz’a theorem. 

This is a theorem which expresses the successive differential 

coefficients of a product in terms of the differential coefficients of its 

factors. The theorem is due to Leibnitz, who shares with Newton 

the distinction of having discovered the principles of the infinitesimal 

calculus. 

It was seen (Art. 30) that 

d , . dv du 

Using the notation Diiy ... for 
du d^u d^u 

dx^ ’ 

B{uv) = uI>v-\'vBu, 

Differentiating again, 

2)2 ^uv) = {uB^V’^- Bv. Bu) *f {v B-u + Bu. Bv) 

= uB‘^v-h2BuBv-hvB’^u; 

differentiating again, 

2)^ (ur) = (u B^v + Bu. B^v) -h 2 {Bu B^v + B'^u Bv) 

+ (t7D^w + Dt?. B^u) 

= uB^V’^SBu.B^v + SB’^u. Bv-^vB^u. 

It will be noticed that the coefficients in these results are the 

same as the coefficients in the expansions of + and {x-\~y)^ ; and 

if the method of formation of these successive differential coefficients 

is compared with the method of expanding by multiplication the 

successive powers of the binomial it is evident that this must 

always be the case. The coefficients in the expansion of B^ (tw) are 

the same as in the expansion of (x + y)’^ by the Binomial theorem. 

Hence B^{uv) = uB^v + nBuB^~^ v + ^B^uBl^~^v 

+ ” ~ 2)8m . 2)”-» P + ... +vD”u. 

A complete formal proof by induction may be given as follows: 
Suppose the theorem to be true for some one value of n, i. e. suppose 

D” (iw) = uD'^v + "Cl DuD^^ V + "C, v -f- 
+ + ... -f 

Differentiating again, we get 

=* + "Cj(Z)wD"f?4 
+ + ]y‘uD”^'^H) + "C,. 

+ ... -f 
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Now 1 + "Cj »■ 1 + n Cl, and it is shown in text-books on Algebra that 

/. 2)’*+' (uv) - ... +»‘^'CrZ)^w2>«+'-^f + ... +r2)«+’«. 

Hence, if the theorem be true for any Talue of n, it must be true for 
the next value n + l. It has been seen that it is true when n *= 3, and 
therefore it is true when n 4, and therefore again when n »• 5, and so on 
for all values of n. 

This theorem is particularly useful when one of the two factors is 

a small integral power of a?; if this be taken as u in the preceding 

formula, its differential coefficients soon vanish, and the series 

consists of a few terms only. 

E.g. (i) Find the n^h d. c. of (rc* + l)e-^. 
The successive d. c.’s of are ... 

hence, taking x^+1 as m and as v, Du = 2:r, D'u = 2, and higher 
d. c.’s of w are 0. 

D^l{x^^ 1) l)2«c2^ + n . 2.r . 2« 

-r 2 j * ^ ^ 

= [4 (a;* + l) + 4wa;-f —1)J. 
(ii) Find the d. c. of a; log a;. 

If = ic, Du = 1, and higher d. c.'s are 0. 

If u = logir, Dv=^l/Xf = —l/a;2,... 

jyn, ^ [Art. 57]; [Art. 57]; 

•. Z)” (a’logr) = a:. + «. 1. 
(-!)«-2 (M-2) I 

^n~l 

= {-l)«(n-2)!/x’‘-*. 

112. Formation of differential equations. 

The following example illuetrates how in many cases a relation between 
successive differential coefficients of a function can be found. 

If y ».«<•"“"**, prove that (1 -x'^f = a’y- 
CLJC (IJC 

We have -/ «= x ^ which may be written 
dx y (1 —a: ) 

v/(l-x>). = a«''= oy; 

differentiating again, 

/n j _ “’y _ 
'' dx« dx ' dx “ /(!-*’) 

/. multiplying by v^(l-x’), (1-x’) ^ — a’y. 

, from (i): 
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A relation such as this, between ar, y and d.c.’B of y with respect to x, is 
called a differential equation. 

If this be differentiated n times by Leibnitz’s Theorem, we get a relation 
between any 3 consecutive differential coefficients of y, viz.: 

^ 2 ' dx“J 

1 2^1^. 
” ’ * da?”J ^ da?" ’ 

which becomes, on collecting like terms, 

0-«•) - (2"+»'-(»’+••) g-«• 

Examples XXXVII, 

1. Given a?* — aa-y + y*-= a*, find d}y/dx^ 
2. If a?®+ 3 aa-y + y* ■■ find dH^yjdoi?- 
8. Find d^yjdx^ if a?" + y”**a". 

4. If a:* + y***a®, find d^yjda^, 
5. Given a (a? + y) »■ a?* 4 y®, find d*y/(?a?*. 

e. Find the 4^^ d. c. of €“**sin (2a?4-a). 

7. Find the d. c, with respect to t of e~°^ cosaL 

8. Prove that the 2®^ d. c. of sin 2 a? «*= 5 e“*Bin (2 a? -126° 52'). 
0. Find the 10^^^ d. c. of a?*«®. 10. Find the d. c. of (a^4 a^) 

11. Find the 6^ d. c. of a** log a?. 12. Find the d. c. of a?® log a?. 

13. Obtain the 5^^ d. c. of a:^ein 2aJ. 14. Obtain the d. c. of ar^e *. 

15. If y — (sin-' a?)*, prove that (1 — a:®) —a?^ ■» 2. 
dx ixx 

16. Differentiate the result of the preceding example n times by Leibnitz’s 
Theorem, 

17. If y — log [x 4- V^(a?* - o*)], prove that (x* - a^) ^ ^ 

18. Find the relation between any consecutive 3 differential coefficients of 
y in the preceding example. 

19. Determine the d. c. of ar* (1 + x)". 

20. If y » Acos(logx)4-R8in (logx), prove that 

21. Given y »= sin (m Bin“' x), prove that (1 -x®) ~ ^ 

22. Find by Leibnitz’s Theorem a relation between any consecutive 3 
differential coefficients of 8in~‘ x. 

23. Find the d. c. of x®y with respect to x. 

24. If X and y are given as functions of a third variable t by equations 
y = ; filial d}y/do^ in terms of differential coefficients 

of X and y with respect to t, 

25. If w «= x®f> and v « logx, prove that 
iXx dx 



CHAPTER XIII 

APPLICATION TO THEORY OF EQUATIONS. 

MEAN-VALUE THEOREM 

113. The difTerential coefficient of a function vanishes in the 
interval between two equal values of the function, provided 

both the function and its differential coefficient are continuous 
throughout the intervaL 

Let p = h when = a, and let a' (>a) be the next value of x for 

which y = After passing through the value b when a, y must 

either remain constant or increase or decrease. If it remains constant, 

its d. c. is zero; if it increases, then before reaching the value b again 

(when X = a'), it must decrease and therefore, if continuous, must 

pass through a maximum; similarly, if it decreases, then before 

reaching the value b again, it must increase and therefore, if con¬ 

tinuous, must pass through a minimum, and in either case, at the 

maximum or minimum, its d. c. is zero. [Art. 63.] 

Geometrically, it is obvious that, between two consecutive points 

with equal ordinates, there must, on a continuous curve of continuous 

slope (Fig. 91), be a point where the tangent is parallel to the axis 

of X, i.e. a point where dy/dx = 0. There is not necessarily one 

point only; there may be any odd number of such points. The fact 

proved in the theorem is that there is at least one such point The 
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result may also be staled in the form that between two equal values 

the function must have at least one maximum or minimum. The 

theorem is clearly not true if either^ or dy/dx be discontinuous between 

ic = a and x = a\ Cf. (i) the graph of tan x, (ii) Fig. 56 [Art. 54], 

In particular, between two values of x for which ^ = 0, there is 

at least one value for which dy/dx = 0. The graphical solution of 

the quadratic ax^-\-hx-\-c = 0 furnishes an illustration of this. The 

graph of y — is a parabola whose axis is vertical, and 

the roots of the equation are the abscissae of the points where the 

parabola cuts the axis of a;; at the vertex of the parabola, which is 

between these two points, the tangent is parallel to the axis of x, 
L e. dy/dx = 0. 

114. Application to equations. Bolle’s Theorem. 

If y be a rational integral function of x (Art. 7), denoted by f {x)^ 
y and dy/dx or f'(x) are both continuous so long as x is finite. The 

above theorem therefore states that between two real roots of f (x)==:0 

there must he at least one real root of f'(x) = 0. This is known as 

Eolle’s Theorem. It evidently follows that not more than one real 

root of /(x) = 0 can lie between two consecutive roots a and 13 of 

f'(x) = 0, for if there were two, then between these two roots 

of f(x) = 0 would lie a root of f'{x) = 0, and therefore a and /3 

would not be consecutive roots of /'{x) = 0. There is or is not a root 

of /(x) = 0 between a and according as/(oc) and /( i) have opposite 

signs or the same sign [Art. 17 (4)j. Geometrically, between two 

consecutive points A and E on a continuous curve, where the tangent 

is parallel to the axis of x, the curve cannot cut the axis of x more 

than once. It will or will not cut it according as A and B are on 

opposite sides of the axis of x or on the same side. 

Ab an example, take the function considered in Art 55, £z. (i). 

/(a;) - ac»-9ic* + 15a:. 

/' (x) - 3a:* - 18a: +15 « 3 (a? -1) {x - 5), 

The roots of the equation Z' (a?) 0 are 1 and 5, hence the roots of the 
equation f{x) 0, if real, will lie between — oo and 1, 1 and 5, 5 and + oo. 

If a: - -00, yis -,] 

If a; 1, y is +, 

If a:-5, y is -, . 

Ifa:—-foo,yis+,| 

/. y 8« 0 at some point between — oo and 1. 
[Art 17 (4).] 

y»0 at some point between 1 and 5. 

y 0 at some point between 5 and + oo • 

the equation/(x) -■ 0 has three real rootSj as shown in the figure, vi*.: 
0, 2*2, and 6*8 approximately. 
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115. Equal roots. 

If two of the roots of f{x) = 0 approach one another and 

ultimately coincide, the root of f(x) = 0 which is intermediate 

between them must also coincide with them. In the figure of 

Art. 55, Ex. (i), imagine that the graph gradually ascends vertically, 

the axes remaining fixed. The points of intersection of the graph 

with the axis of x gradually approach one another until ultimately, 

when the curve touches the axis of they coincide, and clearly the 

minimum point coincides with them. [The graph then represents 

the function tliere given with each ordinate increased by 25, i.e. it is 

the graph of ^ 15a;4-25, and the abscissae of the points 

of intersection with the axis of x are the roots of the equation 

a;^ —9a;2 + 15a;4-25 = 0. Since the vertical ascent of the graph does 

not alter the abscissa of any point on the curve, it follows that this 

latter equation has two roots each equal to 5. It is equivalent to 

(a;—5)2 (a;4“ 1) = 0, so that the third root is — 1.] Hence, if a root of 
f (x) = 0 is repeated^ it is also a root of f' (x) 0. 

This can also be seen analytically as follows:—If a be a root of 

the equation / (a;) = 0, where f(x) is a rational integral function of x, 
the function contains x—oc as a factor; if a be a double root, the 

function contains (a;--a)2 as a factor; 

f[x) = (a;—a)2 cf) (a?), where </> (a;) = 0 gives the remaining roots, 

/'(a-) = (x—a)-(//(x)-j-(p(x). 2(x-a) 
= (x—a) [(a;—a) (f)'{x)-h2(l)(x)], 

fix) = 0 when x = a, so that a is a root of f^{x) = 0. 

It follows in a similar manner that, if a be a root of f{x) = 0 

repeated r times, it is a root of f\x) = 0 repeated r— 1 times; then 

by the same argument, it is a root of f"{x) = 0 repeated r—2 times, 

and so on. For instance, a triple root of f(x) = 0 is a double root of 

f'{x) = 0, a single root of f''(x) = 0, and is not a root of f'"(x) = 0. 

Hence, to multiple roots of f{x) = 0 correspond common factors of 

f{x) and f^ix); and therefore such multiple roots can be obtained 

by finding the H. C. F. of f(x) and f'(x) (by the ordinary algebraical 

method). 

Examples: 

(i) A simple illustration is furnished by the quadratic ax*-{-bx + c == 0, 

If it has equal roots, then the root is also a root of 2ax + b>i^ 0, i.e. the 
root is — 6/2 a, and the condition for equal roots is obtained by substituting 
this in the given equation, 

6* 6* . 
i.e. 

which reduces to 6* ■= 4ac, the well-known condition. 
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(ii) Solve the equation a;^--6a;® + 8a: + 24 — 0 [cf. Art. 55, Ex. (ii)], having 

given that it has a multiple root. 

/(.r) ==4ar«~12a?4-8 = 4 (a:*-3a;+ 2). 

The H.C.F. of —3a; + 2 and a;^-6a;® + 8a? + 24 is a;4-2; therelore —2 

is a double root of the given equation. 

Hence f(x) contains the factor (a?+ 2)*; dividing out by this, the other 
factor is found to be a?® —4a?+ 6, and solving the equation a:’ —4a; + 6 = 0, 
the other two roots (which are imaginary) are obtained. 

Examples XXXVIII. 

Between what values do the real roots of the equations 1-6 lie ? 

I, + 2. ISorH 12 « 0. 
8. —T2ir® +36a; —10 =» 0. 4. + —20x’* + 10 »= 0. 
5. 2j:* —3x‘® —36a; —5 0. 6. o;^ —8a;*-+ 22a;’“ — 24.r-f 12 = 0. 

Solve the equations 7-12, given that each has a multiple root: 

7. a;* + 2a;’-7a;+ 4. 8. 40;^^-16a;’ —19a;-5. 
9. o;^ —4a;® + 16a; —16. 10. a;® —7a;^—2a^ +14.r’4 a; —7. 
II. 12a;® + 28a;’+ 3a; —18. 12. a;^ —6a;® + 10a;’ —6a;4 9. 

13. Find the condition that the conic 00;® +6i/’ + 2p'a; + 2/y-f c «= 0 may 
touch (i) the axis of x; (ii) the axis of y. 

14. Prove that the curve x®-l-y® —3x + 4y+ 2 = 0 touches the axis of x, 
15. Show that the curve y =« 2a;®-f 3a;"-1 touches the axis of x. 

Verify the theorem of Art. 113 in the following cases 16-20, and find the 

coordinates of the point where the d.c. is zero. 

16. y = 3a;’-7a; + 4. 17. y « (a;-1)^(a;-3). 18. y = |a;f a;“* + 2. 
10. y « log[(a;’4-8)/6a;]. 20. y =» sin a; — cos a;. 

Discuss the application of Rolle’s Theorem to the functions 

21. a;(a; —4)/(a;-l). 22. tana;. 23. 4 —(8-0;)’/®. 

24. Find the condition that the equation a;® +7)0; + g ■* 0 may have two 

equal roots. 

116. Mean-value theorem. 

IJ f (x) and f'(x) le continuous throughout the range x = a fo x = b, 

then 

b — a 

for somfi value of x between a and b. 

The expression is the ratio of the total increase in the 

function to the total increase in the variable x, and therefore is the 

average rate of increase over the range a; = a to a; = 6. Hence 
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the theorem states that the average rate of increase throughout the 

interval is equal to the actual rate of increase at some point in 

the interval (e. g. the average velocity of a train between two stations 

is equal to the actual velocity at some intermediate point). This 

follows from general reasoning, for the average rate of increase in 

the interval is evidently intermediate in value between the greatest 

and least rates of increase; and in passing between its greatest and 

least values, the rate of increase, being continuous, must pass through 

every intermediate value, and therefore at some point must equal the 

average rate of increase. 

Geometrically, this can also be seen at once, for let A and B 
(Fig. 92) be the points on the graph of /(x) for which x = a and 

X = b respectively ; then the ordinates AM and BN are /(a) and /(b) 
respectively. Let AK, parallel to MN, meet NB in if. 

b — a MN AK 

If y and dy/dx are both continuous, there is obviously some point 

on the curve between A and B at which the tangent is parallel to 

the chord AB, i.e. there is some point, T say, at which tan</^, 

L e. dy/dx or f(x), = tan BAK, 

i. e. there is a value of x for which fix) = • 

h — a 

It is easily seen by drawing figures that there is not necessarily 

such a point, if either y or dy/dx be discontinuous anywhere between 

A and R. 

117. Analytical proof. 

The theorem can also be deduced analytically from Art. 113 as 

follows, and this method is important because it can be used to 
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extend the given theorem, and ultimately obtain one of the most 

important theorems in Mathematics. (Chap. XXII.) 

Denote the expression [/(2^)—/(a)]/(Z>—a) by JR, and consider the 

function 
fix) -f(a)-ix-a) JR. (1) 

If ic = a, this function =/(a)—/(a) —0 x JR = 0. 

If x = h, the function = /(^)--/(a) —(fc — a) JR, which is seen to 

be 0 on substituting the value of jR. 

Therefore, since the function vanishes when a; = a and also when 

a; = Z), its d, c. must vanish for some intermediate value of x [the 

function and its d. c. both being continuous between a? = a and 

= &] (Art. 113). The d. c. is and therefore 

f'(x)—B = 0 for some value of x between a and h. 

f\^i) = where a < x^^ < h. 
0 — a 

Geometrically, it should be noticed that if, in Fig. 92, Q be the 

point whose abscissa is x and ordinate f{x)j and if the ordinate of Q 

meet the axis of x in II, AK in L, and the chord ^1Z> in Q', the 

expression (i) considered above is equal to 

IIQ-MA-AL tan BAR = QL-Q'L = - QQ\ 

Now QQ' is obviously zero at A and at JR, and it is a maximum^ 

and its d. c. vanishes, at some intermediate point, viz, at the point T 

where the tangent is parallel to the chord. 

The preceding result may be written 

/(^) ”“/(<*) = (6-~a) f where Xi is between a and 6. 

Let h = a + ^, then Xi, being > a and < b, i.e. < a + h, may be 

written as a-\-0h, where ^ is a positive proper fraction; and the 

theorem takes the form 

/(a + 70~/(a) = 7^(fl + 6?/0, 

ie. /(a+7/)=/(a) + 7if(a + ^/0. 

It should be noticed that this involves the definition of a d. c., fcr 

the last result may be written 

and wdien a-h a, since 0 <\\ 

Lt= /'(a), as in Art. 26. 

It also indicates the amount of error involved in the use ot 

differentials (Art. 24). It was there pointed out that 

02/ = ^ 6a; = f\x) hx approximately. 
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From the preceding result we have, if h = 
/(ir) = hf'iX’^Oh) = hx.f(x-^6hx), where 0 < d < 1. 

If G and L be the greatest and least values of f\x) in the interval 

from xio x-k-hx, then the greatest possible value of hy is GhXj and 

the least possible value of hy is Lhx\ hence the error involved in 

% 
dx 

the statement hy : hx is not greater than \G--Ij\hx. 

All that is known about B in the general case is the fact that it is 
intermediate in value between 0 and 1. Usually its value depends upon 
the values of a and h. In some particular cases, its value can be found, 
e. g. if f{x) =* 4- c, then 

f(x + />) ■= a (a; + -f & (a? 4- ^) + c, f'(x) = 2 aj: -f 
and f'{x-{-Bh) ^2a{x-^01i)’Vh; 

hence the theorem gives 
a {x -k-hY ■¥}) {x -{-h) c ^ ax^ + 5a; + c + [2 a{x 4* d/i) + 5]; 

whence, after multiplying out and cancelling, 
ah'^^2aBh^t and d = 

This is obvious geometrically, for the graph is a parabola with its axis 
parallel to the axis of y (p. 18), and if any chord of the x>arabola be drawn, the 
tangent at the end of the diameter which bisects the chord (and which is 
parallel to the axis of y) is parallel to the chord ; hence the abscissa of the 
point of contact of the tangent is half the sum of the abscissae of the ends 
of the chord. 

In the receding case, B is constant, but if we take f{x) s= and 
therefore f'{x) «* we get from the mean-value theorem 

Whence, on multiplying out and dividing by we have 
Sh6^ + 6xB txz Sx + hf 

from which B can be found in terms of x and h. 

If h be very small, the terms in this equation which contain h may 
be neglected in comparison with the others, and it follows then that 
B is approximately equal to 

118. Indeterminate forms. 

The following is a useful application of the mean-value theorem. 

Let/(a;), F(x) be two functions of x which both become zero when 

a; then, if f{x)/F'{x) approaches a limiting value as x —► a, 

/(x)/F{x) will tend to the same limit. This is often called the ‘ true 

value’ of f{x)/F{x). 
f{a^h) _ f(a)^hf'{a+eh) _ f{a + 0?i) 
F {a -f h) F~(a) 4- hF^ (a -f B'h) F\a + Bli) ’ 

since /(a) and F{a) are both zero; 

• T _ T f{a-¥6h) _ f(a) 

’■ ib'* 
%m Q 
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If f{x)y F\x) also both become zero when a; = a, the same 

argument shows that the ‘ true value ’ is /''(a)/i^"(a), and so on. 

The ‘true value’ is found in the same way if f[x) and F{x) both 

become infinite when a; = a. 

For then m 
F{a)' 

1 
^F{a), 

1 
and 

f{ay F{ay J\a) 

therefore, by the preceding case, the true value 

are both zero; 

A r/(a)T 
Lj’(a)J 

r(a) 

' f (a)' /(a)’ 

whence A ^ f(d)fF\a) as before, provided A be neither zero nor 

infinity, and it can be shown that the rule holds for these cases also. 

Examples: 

The true value 

. 1 JC 1 
(i) of ,-, when is the value of he* — 1» 
' loga; 1/x 

- xcobx + tt , X i.v 1 r -a?Binx-f cosar , (ii) of -:- (a? m tt) the value of -—I; 
sina? ^ cos a? 

iT* 2 X / 0 \ 
(iii) of :=- (x ■■ 0) ■“ the value of — ( which is still of the form r ) 

1-cosx smx V 0/ 

■■ the value of 
cosx 

2; 

(iv) of 
5x—2 
3^^ 

(x 00) « the value of ^ 
5 
8* 

110. Extended mean-value theorem. 

We have proved (Art. 117) that, provided /(x) and f'{x) are 

continuous in the interval from x = a to x = ^, 

/(h) = /(a) + (h—a) /\xi% where Xi is between a and b. 

This result can be extended to show that, provided f"(x) is also 

continuous in the given interval, 

/(h) =/(a) + (h~a)/V) + ^^yp where x^ is between a and &. 

Using a method of proof similar to that of the preceding case, 

denote 
/(h)~/(a)-(h^a)/'(a) by (i) 

and consider the function of x 

fm-f(x)-(h--x)r{x)^l{h^xfE, 

which, with its d. c., is continuous within the given range, since 

/(x), /'(x) and /" (x) am continuous. 
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This function obviously vanishes when a; = If a: = a, it becomes 

/(&)—/(a)—(Z>—a)/'(a)—i (6 —which = 0 from (i). 

Since the function vanishes when x = a and when a; = 5, its d. c. 

must vanish for some intermediate value. 

Its d. c. = 

This therefore must vanish for some value of x between a and 6, 

i.e. after dividing out by the factor 6 —a?, 

+ R = 0, or II — /"(^2)» where is between a and b. 
Substituting this value of B in (i) and re-arranging, we get 

m=f(a)^(h--a)f{a)^\{b-^afr\x^\ where a<x,,<h. 

If & = a-H/j, then being between a and a + ^, may be denoted 

by a^O'hj where 0 < 6' < 1, and the theorem takes the form 

f{a + h) = f(a) + lif{a) -f \ }i^r[a + Q'h). 

The geometrical interpretation of this result should be noticed. 

If in Fig. 92 the tangent at A meets BH in F, then 

/(&)"/W~(&-^»)/'(a) = VAK== KB^KV 
= VB. 

Hence the preceding theorem gives the result 

VB=^iMW.f\a+e'h\ 

i.e. when b — aia very small, and therefore f''{a + $^h) 

Hence, since /''(a) is finite, if B is indefinitely near to A, VB is 

very small compared with MNy i e. the distance between the curve 

and the tangent (measured along the ordinate) is very small, or is of 

(at least) the second order of small quantities, compared with the 

difference in the abscissae (Art. 24). 

This also includes the results of Art. 69, for VB is + or — 

according as /^\a) is + or —, and the curve in the neighbourhood 

of A is above or below the tangent at A according as VB is -f or —, 

i.e. according as/^^(a), the value of the second d. c. at A, is + or 

As in the case of the first mean-value theorem, the value of depends in 
general upon the values of a and h; a fixed numerical value can be found 
for it in the case when /(a) « a®, for then /'(a) 3 a*, /"'(a) -* 6 a, and 
the theorem gives 

(a + « a* + . 3 a* -f J ;** 6 (a + d' h), 
whence 

' q2 
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120. Principle of proportional parts. 

The extended mean value theorem can be used to prove the 
principle of proportional parts, a principle which the student has 
probably used in elementary work in connection with tables of 
logarithms, trigonometrical ratios, &c. This principle states that 
‘if the increase in the variable be small, then the increase in the 
function is proportional to the increase in the variable 

We have /(a + Ji) —/(a) = hf {a) + | h^f\a -f Oh) 

and f[a^lc)^f(a) = hna) + \lc^; 

f(a-\-h)^f(a) _h f(a) + \hr(a^eii) 

When h and Tc are small, the last term in both numerator and 
denominator generally becomes very small compared with the firet 
term, and both numerator and denominator approach the value /' (a). 
The right-hand side of the equation then becomes approximately /^/7c, 
and we have 

/(a-h70~/(a) h 
/(a-f^)~/(a)”F 

i. e. the increase in the function is proportional to the increase in the 
variable. 

The last terms in the numerator and denominator mentioned 
above do not become small compared with the first term if f'\a) is 
large compared with f{a)) hence the principle will usually fail 
when the second differential coefficient of the function is large 
compared with the first. E. g. in the case of common logarithms, 
the 2nd d. c. of logioo; = — which is large compared with the 
first d. c. when x is small; therefore the principle is not true 
for the logarithms of small numbers. Again the 2nd d. c. of 
tana? = 2sec2a;tanir, which is large comimred with the fiz'st d. c. 
sec^ a?, when a? is nearly | tt ; therefore the principle does not hold for 
natural tangents in the neighbourhood of 90° [or of any odd multiple 
of 90°]. 

For a more complete discussion, and investigation as to the amount 
of error involved in using the principle, the student is referred to 
more advanced works. 

Examples XXXIX. 

Find the value of 6 in the application of the mean value theorem to the 
functions 1-4: 

1. 1/a?. 2. e®. 3. sin a:. 4. log a?. 
5. Prove that, with the usual conditions, /(a?) »«/(0) 
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e. Discuss the application of the mean-value theorem to the function 

in the neighbourhood of a; ■■ 1. 
7. Also to the function tana:, in the neighbourhood of 
8 Also to the function 4-~(8—a:)V», in the neighbourhood of a; = 8. 

Find the value of S in the application of the extended mean-value theorem 
to the functions 9-12. 

0. aar* + 6a:*-f ca;-I-c?. 10. 11. 1/a?. 12. A 
18. Prove that, with the usual conditions, f(x) *=/(0) + xf(0)-¥\ a?V(da:). 

14. Deduce from the theorem of question 13 that cos a? > 1 - J a:*. 

16. Also that log(l-f a:)>a:-^a:*. 
10. Also that log (1 -I- cos a:) < log 2 - } a?*. 
17. Prove, by the method of Arts. 117 and 119, that 

/(a + ft) -/(a)+ ;»/'(«)+ |^,/'(a)+ + 

where 0</9< 1, provided f{x) and its first 3 differential coefficients 
are continuous in the interval a to a + /i. 

18. Deduce from the preceding result that 

m -/(o)+x/' (o)+ ^r(O) 4 ~ f"'(0x). 

19. Deduce from the result of Question 18 that sin a: > a: - J a:®. 

20. Also that tan a? > a? -f J ar*. 
21. Deduce from the mean-value theorem that, if two functions have the 

same derivative, their difference is constant. 
22. Discuss the application of the extended mean-value theorem to the 

function log (a?— 4), in the neighbourhood of a: *= 4. 
23. Also to the function l-(l~a:)V», in the neighbourhood of a:= 1. 
24. Also to the function log cosx, in the neighbourhood of x ~ 

25. Find the true values of (i) — ^——, when x = In-, 
^ ^ cosa; ’ 

(ii) 
sina?—sm a 

when a? = a. 
x-oc 

(iii) sin aa? cosec 6a?, when x - 

20. Find the true values, when a? =■ 0, of 

(i) 
Sin a?-a? 

tan x-x 

27. Find the true values, when x 

.... a:—sina? 
(») — 

00, of 

(i) 
loga?^ 

(ii) 
3a;*—2*+ 1 _ 
5a:’ + 3a; —2’ 

(iii) 

(iii) 



CHAPTER XIV 

METHODS OF INTEGEATION 

121, Introductory. 

The integration of very simple functions and some easy applications 

thereof have already been considered in Chapter IX, and several 

other integrals have been given in Chapter XL We now proceed to 

discuss various methods by means of which more complicated 

functions may be reduced to some combination of these simpler 

functions. 

The first process that will be considered is the integration of 

rational algebraical fractions, i. e. fractions whose numerator and 

denominator contain only positive integral powers of x with constant 

coefficients. 

122. Integration of rational algebraical fractions. 

In the first place, i/ the degree of the numerator is equal to or higher 
than the degree of the denominatory the numerator must he divided hy 
the denominator until the remainder is of lower degree than the 
denominator. This gives one or more terms whose integrals can be 

written down at once together with a fraction whose numerator is of 

lower degree than its denominator, and it remains to consider the 

integration of such fractions. 

1. Let the denominator he of the first degree. 

After division, the remainder will be independent of x ; therefore 

the process just described gives the integral as the sum of a number 

of powers of Xy together with a logarithm. 

dx = + + log(x—2). 

Sir—5 
Again, after arranging in powers of x and using ordinary 

division, becomes ?_L_. 
2 8-245’ 
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rsx-s , 3 iri^ 3 1, ,«o. 

It must not be forgotten that in every case an arbitrary constant 

is understood. 

Examples XL, 

Integrate the following expressions: 

8. 1. 
X 

X + 3 ‘ 
2. ICO 

6. 
x> 

0. X 

2x —3 l-2x 

9. 
2 x + 3 

X—4 
10. 

3-2x 

2x-l 

13. 
X 

14. 
X* 

ax + b px~q 

7. 

11. 

15. 

ir* 
x-f 3 

1—2 X 
X* 

a~x 
.r» 

c — lx 

12. 

16. 

2x-3 

1 —X 

2x-r 
ax->rh 

cx-\d 

123. 2. Denominator of the second degree. 

(i) If the denominator hreaJes up into rational factors^ use the method 

of partial fractions, as illustrated in the following examples ;— 

Examples: 

The denominator is equal to (x-6) (x—2). 

5x-4 A B 
we assume , o-i o =--s* x’~8x-t-12 x-6 x-2 

We have to find A and B. Clearing of fractions, 

5x-4=^(x-2) + J!?(x-6). (i) 

This, being an identity, is true for all values of x; 

putting X ■■ 6 (which makes the denominator of A, i.e. the coefficient 
of B in (i), vanish), 26 = 4^4, and A ^ 

putting X 2 (which makes the denominator of B, i.e. the coefficient 
of A in (i), vanish), 6 -4 i>, and B -■ — 

5x-4 ^ ^ 
Hence 

and 

(ii) 

X* —8x +12 

5 X —4 
ax * 

x^ —8 x +12 

dx. 

X —6 x-2^ 

log(x-6)-51og(x-2). 

J 2 x“ + X - 3 

Here the numerator is of the same degree as the denominator, and there¬ 
fore must be divided by it. 

1 i x-f 1 x-3 
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To resolve the latter into partial fractions, assume 

x-S — ^ , S 
(a:-l)(2x+3)-ar-l 2x + 3’ 

X-3 — A {2x + 3) + B(x-l). 

To find put a-“ 1, —2 = 5^4, and ^ — J. 

To find 2?, put —§■«—|7J, and JS = §. 

X* _ 1 _ 1 r -f I -] _ 1 1 9 
2fx‘ + x-3 2 2 U-l‘^2» + 3j 2 5(a;-l) 10(2a; + 3)’ 

(iii) The case in which the two factors of the denominator are coincident 

should be noticed. E. g. find dx. 

In this case, let 
+ 8 ^ A B 

(x-3)'"ar-3 (a—3)’* 

[These are the only two fractions whose denominators could have the 
LC.M. 

Clearing of fractions, 4 a; + 3 = (a? ~ 3) f B. 

To find B, put jj 5=a 3; B « 15. 

To find Af compare the coefficients of x in the preceding identity ; those 
are, on the left-hand side 4, and on the right-hand side A ; ^ 4. 

and 
Ax + 3 
x~‘Sf 

4a? + 3 15 
(:c-3)2‘"x~3 (a;~3)*’ 

dx 

07 — 3 
415 

’ dx 
41og(x-3)--’^3- 

The values of A and B can be found in all the preceding examples 
by comparing coefficients, although the method given above is 
shorter, e. g. in Ex. (ii), 

comparing coefficients of x on both sides, 1 = 2-4 + B, 
and comparing constant terms, — 3 = 3J.—B. 

These are two simultaneous equations of the first degree for A 
and B which, when solved, give k = —B = | as before. 

Two integrals which can be obtained in this way are of special 

importance, and will be included among the standard forms. These 

are 

Taking the former, 

and 
dx 

A B 

x—a 
1 . 

xA-a 

1 = u4 (a?-i- a) -f B (x— a). 
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Put a; = a, l = A.2a, and A = 1/2a. 

Puta; = —a, 1=2?(—2a), and B=--ll2a. 

1 1111 
2a x ~a 2a’x-^a 

and f 2 = -- log (x- a) — ^ log (a; + a) = ^ log . 
j x^ — a^ 2a '2a ' 2a ^x + a 

Similarly, it will be found that f ,, = -- log-• 
J a^—x^ 2a ^a — x 

It must be remembered that the logarithm of a negative quantity 

is imaginary. In the former of these two expressions, is supposed 

> a^, and in the latter, ; the logarithms which occur in the 

results are tlien real. 

Examples XLI. 

Integrate the following expressions: 

7, 

10. 

13. 

10. 

a: 2x-5 2x + Z 
2* 

X* — 5 X -f 6 a:Hx-30* 

5. « ^+1 
— 4 —5 x + 4 ’ ‘dx^-x—2 

X-hl 
8. 

b X 2 5-fx» 

• (^-1)’ X-+ 4 ®' y-a^' 
1 

11. 
4arH-3 

I-* 
3a:®-10x^ 3 liny 

14. 
X IK __ 

(2x~-l)^' x*-fa7~20 
1 

17. 
x^ 

18 + ^ . 
‘ —(a ■\'h) ab bx~2x^ 

124. 2 (ii). Denominator which does not resolve into rational 

factors. 

It has been shown, in Art. 102, that 

J dx 1 , , X 
— - tan^^ -» 

ar + a- a a 
(0 

and, in the preceding article, that 

if > a\ 

if x^ < a*, 

dx 1 , x—a 
^= ;i— Jog-f 
a;"—2a ^x-ha 

dx _ 1 j a-hx 

(ii) 

(iii) 

* Divide out before squaring. 
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The two latter integrals may also (from Art. 94 and Ex. XXXII. 20) 

be expressed in the alternative forms 

— ~ coth““^ - and - tanh~^ ^ 
a a a a 

respectively, which are analogous to the form (i). 

Taking the case 2 (ii) mentioned above, 

(a) Let the numerator he 1. 

Then, dividing the denominator by the coefficient of and 

completing the square of the terms which contain a;, the integral 

reduces to one of the three forms just mentioned. 

Examples: 

dx 

a?* + 8a:+ 25 

dx 

3a:**~4a? + 7 

dx 

X* + 6 or — 4 

dx 

dx 

11 —' 

J 
r dx r 

J 

(a: + 4)“ + 9 

dx 

1 1 
“ 3 ■ i yi7 

dx 

(x+3)^-13 

dx 

2-(x-37 

dx 

dx 

tan" 
1 

jVi 7“7n^^“ ‘ W 

, 3ic-2 
by (i). 

2v'l3^°^a: + 3 +vl3’ 
x+S-^lR 

by (ii). 

J , V2 + x-n , 

\^-2x-x' 
dx 

i^-(x+iy 
r 1 , v^i^+x+i , 
2 ■ (“1). 

1 ■ v^264 2x + 2 
2726 726-2^2' 

Examples XLII. 

Integrate 
1 1 

«’ + 2a:+10‘ ^•2aJ + 2x45' ®- ^>-4x + 12* 

1 
x^-2x-r 

1 
10-4x-3x’' 

10. 
fl:* + 2x 

i?T2x + 2' 

X* + X + 
X® + X — 1 

1 
ax* + &x + c 

5. 
1 

6. 
1 

3x* + 8x--4 4--2x~x** 

8. 
1 

0. 
1 

4 X® — 4 X — 7 5x^-7* 

11. 
x* + 4x 

12. 
X* 

x® + 4x—1' xH7" 

14. 
1 

15. 
1 

8 + 3x —2x* 10a* + 4ax-x* 

(i) when l»*>4ac, (ii) when 6®<4ac, 
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125. A ueftil rule. 

Before proceeding to discuBa the next case in the integration of 

rational fractions, it is necessary to call attention to the following 
fact:— 

The integral of a fraction whose numerator is the d, c. of its 

denominator is the logarithm of the denominator^ i.e. the integral of 

f\x)/f(x) with respect to ic is log/(x). 

This is obvious from the method of differentiating the logarithm 

of any function of x (Art. 98). 

a fraction The d. c. of logu with respect to x = - X ^ * 
^ ^ u dx dx/ 

whose numerator is the d. c. of its denominator. Therefore, 

conversely, the integral of the fraction ^ with respect to x 

is logw. 

This is a rule which is often useful in dealing with all kinds of 

functions, algebraical, trigonometrical, exponential, &c. It is really 

a particular case of the method of integration by cham>ge of variable 

considered later, but the student should try to accustom himself to 

recognizing at a glance fractions of the above type. A good deal of 

labour is often thereby saved, e. g. in the first two of the examples 

immediately following, the integral can be written down at once, 

whereas if the method of partial fractions be used, the working is 

long. In some cases, the insertion of a numerical factor is required 

to make the numerator equal to the d. c. of the denominator. 

Examples: 

3a:» + l 

+ —2 
dx * log(a:’ + ar~2). 

dx 
x* — a* 

^n—1 

a?’* + a** 

cot xdx 

dx 

dx 
e +1 

,<te-ilog(a;"+a"). 
X -t a n 

cos a; 
dx ■= log sin X, 

- log(e* + l). 

r sin a: COB a?, 1 f—26co8a;8iTia; , 1 , t t % ^ 7 \ — dxmm ^ ^ -—--- da? « ~ -pr log (a + 5 cos^* x), J a-h&C0B*fl? 2h J a + 2>cos^» 2t> 
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1. 
Integrate: 

2x43 

4. 

10. 

«* +3x-4 

X4 1 
xH2x47‘ 

sin X cos X 

1 + 3 sin* X 

IS. tanhx. 

smx—cosx 
16. -r;-- 

Sin X + cos X 

Examples XliIIl. 

iE’-T 

5. tanx. 

8. 

11. 

14. 

X* + a* 

ax 4 & 

ax^ + 2 /vx 4 c 

1 
xlogx 

17 
1+x^** 

3. 
a^ — x^ 

6. cotax. 

sin X 
0. 

12. 

a + l)cosx 

8ec*x 

3 4 4 tan x 

15. 

18. 

1-x" 

8in2x 

a4i)ein*x 

126. 2 (ii) &. Ifu^erator of the first degree. 

Returning to the integration of rational fractions, the case in 

which the denominator is of the second degree and the numerator of 

the first degree has next to be considered. 

The following method will effect the integration:—Put the 

numerator equal to fc X (the d. c. of the denominator) +1^ where fc and I 

are constants which can be determined by inspection (or by com¬ 

paring coefficients); the integral can then be divided into two parts, 

of which the first is a fraction whose numerator is the d. c. of its 

denominator, and whose integral is therefore the logarithm of the 

denominator (Art. 126), and the second is a fraction of the kind 

considered in the previous case (Art. 124). The process is illustrated 

in the following examples. 

If the numerator is of the second or higher degree, it can be 

divided by the denominator until the remainder is of the first 

degree, and therefore it has now been shown how to integrate any 

rational algebraical fraction whose denominator is of the first or 

second degree. 

Examples: 

r 4x45 

J X* + 2 X 4 S 
(lx « 

'2 (2x42)41 

x*42x + 2 
dfx » 2 J 2x4 2 

X® 4 2 X 4 2 

1 
+ 2x42 

dx 

I 21og(xM 2x + 2) + 
r dx 

J(X4 1)«4 1 

**2log(x*42x42)4tan”* x4l). 
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J2i^'f6rfl ^"*J 2X*+ 6x4-1 

4x + 6 19 

2x“ + 6 x +1 ^ 2 

19 

dx 

jlog(2x* + 6x+l)- ^ 

Q 10 
^log (2x® + 6x + l)- •- 

Q IQ 
. |log(2x^ + 6x+l)-:J 

- log (2 X* + 6 X + 1)- 
19 

2 x^ + 6 X + 1 

dx 
+ 3 X + J 

dx 

r^+r-i 
1 , *+3-W7 

24v'7^°"x + i + JV7 
, 2x+3-v'7 

rx''+1, f r 4x-ii X dx~ 

4^7 *=2 x +3+^7 

4x-l 

x“ + 4 
dx 

■\x^- 
2 (2 x) — 1 

' ^ x*^ - 2 log (x^ 4- 4) + J tan“^ \ x. 

2 X 1 
x^ + 4 

dx 

Examples XLIV, 

Integrate the following: 

1. 
x+ 1 
x* + 9* 

2. 
4x-3 

3. 
x» 

x’* —5 x'^ + a* 

4. 
1 ~x K 6x + 3 

6. 
4x —5 

7^>* x* + 4x +13 X* — 2 X — 1 

7. 
8 x-~3 

8. 
3-2x 

0. 
5x~l 

2 X* + 2 X +1 3'a!» + 6x-l x^ — 3 X + 5 

10. 
x*~l 

11. 12. 
X 

x2-2x + 5’ x’ — 6 X +10 

C
O

 

1 o
 1 

13. 
X* — X + 1 

14. 
X® — 3 X + 2 

16. 
x* — 1 

X* + X + 1 x^ — 2 X + 3 x“ + 5 X + 6 

16. 
X 

17. 
x» + l 

18. 
x — a 

X* + ox + a* x»+r x'^ + 'i ax—QL^ 

127. 3. Denominator of higher degree than the second. 

If the denominator breaks up into rational factors of the first and 

second degree, use the method of partial fractions. 

To illustrate the various cases which may arise, three examples 

will be worked out, in the first of which the denominator resolves 

into three factors of the first degree; in the second, into one factor 

of the first degree and one of the second degree; and in the third, 

into a factor of the first degree repeated and one of the second degree. 

In each of the constituent firactions, we take a numerator of lower 
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degree than the denominator, since the given fraction is of this type, 

i. e, for the numerator of a partial fraction with denominator of the 

first degree, we take a numerical quantity A (as in Art. 123); for the 

numerator of a fraction whose denominator is of the second degree, 

we assume an expression of the first degree; if the given 

fraction contains a repeated factor (a;—in its denominator, 

a fraction with denominator (x—a)^ and numerator Bx-\-C might 

be assumed, but this would resolve into two simpler fractions 

E F 
-and .-^, and these are therefore taken as the partial fractions 
x—a (x-ay' ^ 
corresponding to a repeated factor (ic—a)^ Similarly, to a repeated 

factor (x—ay, in the given denominator, would correspond three 

fractions > r-—7— 
a;—a (x — ay (x—ay 

For a complete account of the general theory of partial fractions 

and the integration of rational fractions in general, the student is 

referred to treatises on Algebra and more advanced works on the 

Integral Calculus. The examples here considered are sufficient to 

enable the student to deal with most of the cases he is likely to meet 

with in elementary work. 

Examples: / 

f + l / 

T X xUl , B ^ C 
^ x-^2 

Clearing of fractions, a;*+ 1 ^ A (x^ — + Bx {x -\-2) + Ca?(a;—2). 

To find il, put a? as 0 ; .*. l^A(-i)^ and ^ — -J. 

To find B, put x^ 2; 5 =■ i? .2.4, and B 

To find Cf put 2; /. 5osO.~2.~4, and 0 

x^ + 1 1 5 5 
X {x"^ ~ 4) ' 4x'*' 8 {x-2) 

X (a:®-4) 
- Tloga:+ glog(a:~2) +glog(a: + 2). 

^ (2 ~ 0?) (a;* + 4 a? + 5) 

j. _X_^ A Bx+C 
^ (2~a:) (a;“ + 4a: +5) 2-07 a7“-f4a; + 5 

Clearing of fractions, x^A (a?* + 4a? + 5) + (2 - a;) (J5a? + 0). 

To find A, put a? ■* 2 ; 2 = A (4 + 8 + 5), and A 

To find B and 0, we must compare coefficients. The expressions being 
identical, the coefficient of any power of x on one side is equal to the 
coefficient of the same power of x on the other side. 
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Comparing coefficients of a:®, — whence 

comparing constant terms, 0 ** 5A-f 2C, whence C= ^ 

Hence the given fraction = iy|z^ + 17(^4!+ 5)’ 

i^2,-x)[x^->r4iX + h) 

- j^lOg(2-x) + y^ 

1 rf2x + 4)-9 
17 J 2-x ^ 17 J x’ + 4x + 5 

2a: + 4 Of dx 

xH4a: + 5 “ 17 J -fT 

log (2 — 0?) + iV {x® + 4a? + 6) — ^7^ tan“^ (a? + 2). 

..... r dx 
J(x^l)^(x^-hl)* 

j 1 _ A B Cx-^I) 

(x-lf(x« + l)-x-l + (x-l)» + xHl • 

Clearing of fractions, \^A (a:— 1) (a?* +1) + i? (a?® +1) + (Ca? + D) (a; — 1)*. 

To find i?, put a? — 1 ; 1 = B.2, and B"*^. 

Comparing coefficients of a.’*, 0 «» A + C; 

comparing coefficients of ar^ 0 —A + B + D — 2C; 

comparing constant terms, 1 — —A + B + D. 

Subtracting the last equation from the preceding one, —1«“ — 2C> 

and C — J; 

. wd — C *= "“'ll and D=*A — ^ + 1 =0. 

Hence the given fraction 
1 1 X 

‘2(x~i) 2(x-l)* 2(a?* + r)’ 

r 1 f da? 1 f dx 1 f 2a? 

(x" +1) “ ~ 2 J 2 J (x-l)» 4 1 x’ +1 

« - I log (x-1) - ^ j + ^ log (x' +1). 

Examples XLV, 

Integrate the following: 

*’"(x-l)‘ 

x’ 
4. 

1 

a? (a?*+ 1)* 

X* 
K 

3. 

A 

1 

x’-3x’ + 2x' 

x* 

(x-l)(x» + 4) (x®~l)(2x+l) 
O. 

(x-l)^(x+l) 

- 1 1 X 

x»(x» + l)' ®‘x^-l’ 
9. 

(x>^^' 

1 1 

(x»-l)*- (x+1) (x* + 2x4 2) 
12. 

a?*~l‘ 

X* 1 
“■ x*+a^-2’ 

16. 
x®(l-x)' 
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_1_ 
X* + -f 2* 

4a; + 3 

X^{1 -^x^x^)* 

1 +X^ + X!^ ‘ X^ (x—i) {x^+ 1) 

(x»-l)(2x* + 9)‘ x^^l 

128. Integration of irrational fractions of the form 

px + q 

Viax^^ + hx + c) 
Many irrational expressions can be rationalized by a suitable 

change of variable, as will be explained later on. We will here 

consider a fraction whose numerator is constant or of the first degree, 

and whose denominator is the square root of an expression of the 

second degree, i.e. of the form (ax^ + hx-hc). It should be noticed 

that the form V[{ax-hh)/{cx-hd)] is reduced to the form just 

mentioned, by multiplying numerator and denominator by \/{ax + 6). 

We must begin by adding to our list of standard forms. It has 

already been shown (Art. 102) that 

J o’ 

and (Art. 104) that f = sinh-i ^; (ii) 
V(a^+x^) a’ 

dx , 

V(x^—a-) a 

It should be noticed that the last two integrals can be expressed 

in the alternative form 

J + 
as follows from an example worked in Art. 98. 

It was shown in Art. 94 that 8inh~^ a? = log [a? + + 1)], and 

that one of the two values of cosh“"^ a? = log [x -f 1)]. 

In exactly the same way, the more general results 

1 x-^V{x^+a^) , u-i ^ 1 x-\- 
sinh 1 -- = log-^-- and cosh ^ - = log -=—-- 

a a a a 

can be obtained. Since 

log {[a;+ v'(x*±a2)]/a} = log [x+ V'{a;®4:a2)] —loga, 

dx 
it follows that the two alternative forms given above for -77-7,- 

J V{x^±a^) 
differ only by the constant term log a. See Art 76. 
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Taking now the fraction mentioned above, 

(1) Let the numerator he 1. 
Divide the expression under the root by the numerical value of 

the coefficient of x% and complete the square of the terms which 

contain x ; the integral reduces to one of the three forms above. 

Examples: 

dx 

or log [x +2-f + 13)], by (iv). 

dx _ ± r 
— /o 

dx L r 
73^ . 

dx 

'~\r’ (’^’ = 73' 

. 6x + 5 

11 

dx 

V[x(3 + 2x] 

r dx 

I ^/(2x" + 

J 

V2 

1 
V2 

1 

dx 

dx 

7(x“Tf7) 

1 

cosh“^ or log [x + 2 + § x)]. 

Integrate 

v(xH2^-ricr) ■ 
1 

\/[x (4-x)] * 

v^[(5-fx)(x~2)]* 

1 
v^(2x*-7x + 5)‘ 

Examples XLVI. 

2. 
1 

3. 
1 

Vi^HlOx-11) [T — 6x--x*) 

S. 
1 

G. 
1 

^/[x(l + x)] ' 

8. 
1 n 

1 

v^(18x*-42a:+37) 
u • 

7[a:(3-2x)] ■ 

11. 
1 12. 1 

v' (8 + 3x —x^) V (9x'‘‘-~4ax) 

129. (2) Numerator of the first degree. 

Since the d. c. of it follows that the d. c. of with 

respect to x ^ \u~^ xdu/dx, which may be written - a 

fraction whose denominator is Vu and whose numerator is half 

the d. c. of w. 

Conversely the integral of such a fraction is Vu. (This again is 

really a particular case of the method of integration by change of 

R ini 
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variable, to be considered in Art 131). Hence, proceeding on the 

same lines as in Art 126, to integrate -. . put the 
^ V{ax^+hx&cy ^ 

numerator equal to x (| the d. c. of the expression under the radical 

sign) -h I, where, as before, k and I are constants whose values in 

a numerical case are evident on inspection. The integral breaks up 

into two parts, of which the former is a fraction of the form just 

described, whose integral is therefore equal to the denominator, and 

the latter is of the type considered in the preceding article. 

Examples: 

r._ 
J V(4-a.»)“- 

|(2x-2) + 2 
•v/(x’—2x) 

i(2x-2) 

dr =» - y^(4—x’). 

■v/(x’—2x) + 2 

J V(^*-2x)‘*-^ + ^J V(x>-2x) 

V'(x*-2x) + 2j 

V" (x* — 2x) + 2 cosh~* (£c — 1). 

X— 1 
\/^[2x^ + x-d) 

r |(4a;-fl) 

I ^(2a:* + a?~3) ‘ 

rixj_(4^+i)^{ 
Vi2x^^x-3) 

5 r rfa; 
4J v^(2a:* + ar~3) 

' 2 ^(2**+x 3) ^^2 J 

■ 2 >^(2*Hx-3) v'LC^+T)’-fj] 

I /(2x* + x-3) - 

Integrate 

Examples XLVII. 

-/(ar‘-’ + 5) 

*• 4rfi)- 

8a:~4 
V'(3ar» + 4« + 7)* 

5 ^ 
>/(4 —3 a?—a?*) 

0?+ 1 
V^(2a?^ + a? —3) 

■■ ^(m- 

V{4-x’) 

2 a; 4- 3 
V + 5 a; 4-6) 

'■ s/m¬ 

v'CSx'-ix) 



METHODS OP INTEGRATION 243 

ISO. Standard forms. 

All the standard forms which it is absolutely necessary to 

remember have now been mentioned, and it will be convenient at 

this stage to make a list of them. They are:— 
/. ^n+l 

dx = for all values of n except n = — 1, 

and in that case, f ^ da; = log x. 

J da; = ( 

sin a; da; = — cos x. 

cos a; da: = sin x. 

; dx = tan a;. Jsec^ a; da: = tana;. 

f,A.. dx^~ tan“^ - • 
J a a 

11 f o dx= ~ log or - tanh“^ - • 
^ J a-—a;2 2a ^a—a; a a 

I -mr—7T= log [a;+ (a:^—a^)] or cosh~^ J v(a;^-a^) o l v /j ^ 
Also the rules of Art. 75 enable us to write down at once the integral 

when X is replaced by ax + h. 

131. Integration by substitution or change of variable. 

This is the most frequently used of all the devices for converting 

expressions into standard forms. Particular cases of it have already 

been considered in Arts. 75, 125, and 129. It will be seen from the 

proof below that this method of integration is the converse of the 

method of differentiating a function of a function (Art. 84). 

b2 
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The theory of the method is as follows: 

Let f[x)dx] it is required to change the variable from x 

to u, where u is a given function of x* 

Since y ~ J/W dx, dy/dx = f(x), 

dx dy ^dy dx ^ 

du dx du /W X 
dii 

i. e. jf{x)dx- (x) du. 

Conversely, if (interchanging x and u in the result just obtained) 

du 
an integral is recognized to be of the form f{u) --- dXj it may be 

CIX 

replaced by f(i() du. 

The latter is a form of the theorem which is very convenient for 

use, i.e. the integral of the product of f(u) and dujdx with respect 

to X is the same as the integral of /(w) with respect to u. The 

difficulty in practice at first is to determine what function of x should 

be adoi)ted as u in any particular case, and it is only experience 

which enables this question to be answered readily. If the theorem 

is used in the form last mentioned, it must be borne in mind that 

the substitution adopted must be such that 

(а) one factor of the given expression supplies the du/dx which 

has to be introduced, and 

(б) the rest of the expression is easily expressible in terms of u. 

The following examples will illustrate the method. 

Examples: 

(i) /sin^ aj cos ar da;. Let sinar=^^u. d«/t/x «= cos a;, 

and the integral becomes 

tr** 1 . . 4 7 u* - dx 
dx 

u* du ’■ 

(ii) 
Binx 

~ dx. Let cos X ~ u, .*. du/dx == — sin x, 
cos X 

and the integral becomes 

1 du fdu _ 1 

f ~ * di ■ “ J i? “ ““ (w-1) 

1 1 
(n—1) cob'*~^a: n~l 

sec”-^ X, 
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(iii) 

Here, since a?* is (save for a constant factor) 

occurs under the radical sign, let a’’4-a:® ^ u ; 

The integral becomes 

1 
3 

du = 
1 
3 

•«V* 
H % 

the d. c. of which 

dx^^du/dx. 

- ^ (a® ^xY/\ 

(iv) /x{a — hx^Ydx, 

Lot a — hx} u. -~2lx ^ dujdx^ 

and the integral becomes 

1 dn 

2h dx 
dx 

\ 
~2h 

u^du 
1 1^+' 

2b n-{ I 

1 

r r® 
(v) -g dx. 

a^'-^ a?® 

In this case, since the numerator is J of the d. o. of the denominator, 

let Ox^ = du/dXf 

and the integral becomes 

1 1 du 

u ' Q dx 
dx • 

I'dii 1 , 
; = /. log “' I u 0 

1, 
glos (o®-fa;^) (see Art. 125). 

In this case, since the numerator is only a?®, let 

«« du/dx. The integral becomes 

^ du 1 1 n 

a® + w* 3 a® a® 
1 1 dif _ 1 

a?® = tiy and 

1 . 
rr-^, tan ^ • 
oa^ a® 

then 

Generally, if the function to be integrated is the product of ^ 

and some function of or of (i-\‘l)x^j which is recognized to be of 

a type whose integral is known, the substitution x'^, or a+2^^? = ^ 

will effect the integration. 

Examples XLVIII. 

Integrate; 

1. sin^arcosx. 

^ sin a; 

cos^'o? 
a:® 

{x*--iy 

10. X (a® 4 a^)”. 

jp® 
13. 

a®-or* 

2. cosLrsmaj. 

cos X 
■■=-4-* oin’ <*• 

8, 

Bin’a? 

X 

{a^-x'^y 

11. ar*(a®-ar®)»*. 

X 
14. 

a* 

3. a: v^((a^ 4 a;®). 

6. 
X 

-/ (a?® - a*) 
x^ 

12. 
X* 

16. 
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16. 
V(a‘— 

IB. a!»(x’-2)‘. 

e« 
2a. 

25. 
X 

28. tan" x sec* a;. 

81. {\+\oQxf/x. 

sin”' X 
84. 

87. 

40. 

sin X 

(a—t C08 a;}* 

17. 

20. 

23. 

26. 

29. ^ 
14- tan X 

82. 

X 
85. 

4/{a*-jc*) 
cosx 

1 + sin* X 

sin X 

1—4 cos* X 

(logx)» 

sec" a? 

88. 1 
ap(l + logar)* 

18. 

21. 
1+e- 

24. cos a; (1 — sin a:)", 

27. tana?sec*a;, 

sec* X 

T^n^x 

83. (cos 4Jx)Ia/x. 

cos a; 

-v/(2-sin* a?) 

X 

86. 

80. 
V(6-5a:*—a:^) 

132. Further examples. 

In some cases it is more convenient to proceed as below. 

Any algebraical expression involving only the one irrational 

quantity {ax-^h) can be rationalized by the substitution 

as in the following examples, and then its integral can be found by 

the methods of Arts. 122-127. 

Examples: 

(i) 
r dx. J V(^ + 2) 

Denoting the integral by y, we have 

Let a; + 2 — w*; 

dy 

dx V (^ + 2) 

dx/du = 2uf and a7 = M* —2; 

dy ^dy dx a:* 

du dx du’^ ^{x + 2) 
x2u = ^--—-^ X 2tt-=2(«‘-4««+4). 

y = 2 /(m*—4tt’ + 4) (it* — 2 Q u'—^ + 4tt) «• 2«(Ju* —Jtt’+4) 

= 2 + 2) [1 (X+2)» -1 (x+2) + 4]. 

Here 

y^X 

dy 1 

dx 3 4- V^a? 

and 

Let a; tt’ 

dy dy dx 

du dx du Uu 

dx „ 

X 2tt. 

[l-—] i«-2[«-81og(8+«)]. 

» 2-/a?-6 log (3 4 v^a?). 
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J»+V'(2a;-1)’ 

Here ;—t\-^v. Let 2 a?—l—w*. 
dx (2 x-l) 

dx 
/. 2™«.2w, and + 

1 2u 2m 

c?M da? dw ^(l+tt^)-f-M u“ + 2m+1 (m +1)* 

■■• ’ ~ " f “ (S'' 1)'] 

- 2 [l., (. +1) + i] . 2 log 1^,2.-1) * IK 

Sometimes two substitutions in succession are needed: 

f dx 
] (a*-a7*)V 

da; (a»-x»//‘‘ *“«' 
_ JL 

du 

. dy _dy dx 1 1 
*' du^ dx ' du“ (a'‘~ l/u’//> ^ «» “ (o> m* -!)»/*' 

. _ r_«dM 
•• J(a*u’-i7v*' 

Now let o®m’ — *; .•. 2 a’« ™ dz/du. 

1 ^ 
-i - — • dtt 

f2«’'(/«•“•* 1 r If, 
J (2-l)V« “ 2a*J(z-l)V»" 2o®J^^ 

1 («-l)-*/«_ 11 11 1 a; 
2o* ■ -I “ a“ (a- 1)V»“y/{a^u’-1) “ o> Vi"’-®*,'’ 

r dx 

J x^{x^-a^) 

(^-!)-»/» d;r 

^ « —--- ; making the same substitution as in the preceding 
CLX X ^ {X Ch J 

example. a;*:l/u, and dx/du^—Xju^^ we have 

dy dy dx 

du^ dx dw *" 1/m . V(V****”®*) V'(l~a’‘M*)' 

r dM 1 . 1 . a 1 -1 •*? 
^ J v'(l-«*«*) o a X a a 

Any expression of the form ^bx + c) integrated 

by the substitution used in the preceding example, viz. x—k^ 1/u ; 

the expression is thereby reduced to the form Bx^^ G)* 

has been already considered in Art. 128. 
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(lx 

X + V) 

This may be written 

by substituting x" — 

The integral becomes 

{ax^ + h) 

nx^~^ » duldx. 

and therefore can be integrated 

/ 
1 du ^ 
- dx 
n dx 

u (au-^-h) 

1 
n 

1 du 
au + bj 

1 
nh 

[logw-log(cfw4 h)] 
1 :r" 

7ih ax^‘-i b 

The integral can also be found by substituting x^ — 1/uy and the method 

of finding dx/du should be noticed. Since x^ = it follows that 

n logo; = —log u ; differentiating with respect to u, 

1 dx 1 ^ dx X 
fi — --and - - -- 

X du u du iiu 

df/ dy ^ dx ^ \ X 1 
du dx du x{a/u-\ b) 7iu n{a~rlu} 

Whence y = - 1 log (a + bu)-^- log j 

ca _ loa — —- as before. 
7ih "^ax^ + h 

4. 

10. 

13. 

10. 

Integrate 

X 

a/(x + 2) 

a:4 6 

_1_ 
x+ ^{1 -u-') * 

X 

10. 

22. 

1 ‘h \/x 

1 

_1_ 
x^{ai^-hxi 1)' 

1 
X (70X *— dx“'j 

a/x 

3 + 2a? 

Eramples XLIX. 

o _ £1... . 
A/{a-x) 

1 
V-c—1 

8. 2). 

’ (a:* + 4a; + 5)V' 

1 
a?-/(a*-a*) * 

8. 
a/(1 4 3-) 

a/x 

iTVx' 

0. 3^ ^\ax-\‘})), 

1 
12. 

15. 

18. 

21. 

24. 

X a/{(I \ x) 

_1_ 
Xa/[1+X^) * 

1 

_1_ 
x'^a/{\ 4x) 

Za/x ' 
1^* 
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1_ 1 Q7 ^ • 
X (2^* + 3) 

1 
ao ^ . 

1 QA 
ar(3-2x') ‘ 

133. Integration of the cironlar functions. 

We have already, in the list of standard forms, 

f sin xdx-=^ — coBx, f cos x dx = sin x, 

r r sin. X 
Also ianxdx — -dx = —log cosrr, 

J J cosx 

rcot xdx^ dx — log sin x (Art. 125). 
J J sinx 

r , r 1 , f cos:c - r cos a? 
secx dx^ -dx = —dx= - -. o 

J J cos a; J cos"'a; J 1—sim 

= (if sina; = w, and c>osx = du/dx) 2“^^ 

c= K log ^ log ~, which reduces to log tan ( 7 -f ? ) • 
2 ”1—-M 2 1 —sma; '^4 2/ 

du 
Similarly, y'cosec x dXf if cos x — u and . *. sin a; = -~ —, becomes 

1 log 5 which reduces to log tan ^. 
2 ^1 + cosa; ® 2 

The two latter integrals can also be obtained as follows: 

r r 1 r 1 r i 
cosec a; dfx = — dx = ^r-:—dx = ;-- dx 

J J sma; J 2sin Ja; cos ^a; J 2 tan 4a? cus^ ia; 

ri~ ~ 

Then /sec xdx^ /cosec tt + a;) dx = log tan (1 + J x). 

134. Integration of the squares of the circular functions. 

The first two of these occur very frequently, and the results, 

together with the method of obtaining them, should be carefully 

noticed. 

/sin^ X dx = (1 — cos 2x) dx = |(x--1 sin 2x) = |x--1 sin 2x. 

y'cos^xdx = /J (1-f cos2x) dx = J (x + i sin 2x) = ix+J sin2x. 

[Since sin^x + cos^x = 1, it follows that the sum of their integrals 

= y’l dx = X, as is obtained by adding the two preceding results.] 
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J tan^ xdx^ — 1) ^2a: = tan x-~x. 

y’cot® xdx^ f (cosec^ x--l)dx^ —coix^x, 

f sec^ xdz^ tan x. 

J'cosec’^x dx = — cotrc. 

The integral of any function of cos a;, cot a;, or cosec a? can be 

deduced from the integral of the corresponding function of sin a;, 

tana;, or sec a; respectively. 

&• y*cosec^ xdx ^ /sec^ (J-jt + a;) da; = tan (i 'tt + a;) = — cot x. 

135. Further examples of trigonometrical integrals. 

A few more examples of trigonometrical integrals, which illustrate 

some of the various devices which may be adopted, will now be 

given. 

Examples: 

(i) /cos* a; sin* a? da;. 

Let cosX ^ u; — sin a; du/dx. 

From the sin* a:, one factor sin a? is taken in order to supply the necessary 

dujdxy and that leaves sin*a;, which can be expressed in terms of u (it is 

equal to 1 — w*) without introducing irrational expressions. 

Hence the integral becomes 

J«* (1 -u>) . - da: - - Jdu - - I«'+ ? «’ 

•• } cos’a? ~ J co8*a?. 

(ii) 
.. r cos* a; 
i) j - 

Bin* X 
J 

dx. 

In this case, let sin a; ■» m, then cos x *■ dufdx. 

As in the preceding example, the integral now takes the form 

r~j dx J U’ ) 
du 

1 
u 

cosec a;— sin a;. 

The integral /sin’"a:cos”a? da; can always be obtained as in the last 

two examples if either m or n (or both) be an odd number. If the index of 

sin X be odd, put cos a? «= w ; if the index of cos x be odd, put sin a? *= w. 

The integral can also be found when m + n is an even negative integer, 

by the method indicated in the following examples. (See also Art. 141.) 

(iii) 
r COB* a; 

dx «- cot* X cosec* X dx. 
sin® a; 

Since cosec* a; — the d. c. of cot a;, let cot x • 

the integral becomes 
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(iv) /aec^a? dj? «=/8ec®a:. fiec*a? (fx. 

Let tan a? ** w, sec* x =* du/dx, the other sec*« 1 + tan* a; *» 1 + m’, 

and the integral becomes 

J (1 + M*) da? =• J (1 + ti*) dw = M 4- ^ w* « tan + g tan* x, 

(r) f—j— 
j Bin'* a: COB* a; J tan* a; cos* a? J tan*a? 

f sec*a:. sec*a? , , . . ./’(!+w*) dw _ 
J —t^*;^— preceding example)! • ~ da?. 

■»/(l/w*4-1) dw = - 1/w + M = tana?—cota?. 

The product of a sine and a cosine, or of two sines or two cosines, 

can be integrated at once by expressing it as a sum or difference. 

(vi) y‘sin2a?cosa?da? [sin 3a? + sin a?] da? = | ( — J cos 3a? —cos a:). 

(vii) /sin 3a? sin4a?da? = /I [cosa? —cos lx] da? = | (sina?-J sin 7a?). 

It should be noticed that any rational function of sin x and cos x 

can be transformed into a rational algebraical fraction (such as is 

dealt with in Arts. 122 -127) by the substitution tan \x=^ u* 

Then — = ^sec^a: = ^ (1 +«’), and 
da? 

du 

2_ 
i Vtt* ‘ 

, n 2tan4a? 2m 
.28m^a:cos|a: = j^-^= j--,. 

COS a? =i cos* \ a?—sin* J a?: 
1 — tan* \ X 

1 -I- tan* J a? 

1-M* 
1+M*’ 

The integrals of Arts. 133 and 134 are all included in this case, although 

there some of them were obtained by simpler methods. Two other examples 

are here given. 

(viii) r r—^- 
' J 5 + 4coax 

Denoting it by y, we have ~ *= r—^-• 
° dx 5 + 4cobx 

dy dy ^ _1_ 2 
du'~‘ dx^ du"^ 5+4(1—M*)/(l +M*) ^ 1 + m*' 

(making the substitutions just mentioned), 

2 2 
5 + 5m* + 4—4m* 9 + u* 

TO**" ” 1 =i Q ) 

Ji2T^- 

Denoting it by y, 
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dij __ dy dx _1_ 2 2 
du dx^ du 12-f-18.2w/(l-f w*) ^ 1 + M* "* 12 + + 26 w' 

I' du du 1 ^ •/ 3 
* 'i 

1 6 4-134 6 (3 w 4- 2) (2 w 4' 3) “6 \ 3 w 4" 2 2m4-3/ 

(by partial fractions) 

1 
5 

13 tan J ar 4 2 

5 2 tan J a? 4 3 

Integrate 

1. tan 2 X, 

4. cosec 3.r. 

7. cosec* 

10. sin®a:co^‘*.r. 

sin® a: 
13. 

COS^ 

16. cos‘a:. 

19. tan" a;. 

22. scc®a: coscc^r. 

25. sin* iF cos* a?. 

cos* a? 
28. —• 

sin" 07 

SI. 
1 

1 4 sin X 

S4, sin 4 07 cos 07. 

37. sin pa: sin (JO?, 

cos* a? 
40. 

43. 

cos 2 a: 

1 
13 4-85 sill 07 

_\_ 
* 4 cos* a; 4- 9 sin* x 

2 4 sin X 

Examples L, 

2. cotma;. 

6. cosec (x/a)> 

8. sin® a:. 

11. sin” .07 cos® a:. 

cos'' 07 
14. 2 • 

siir X 

17. tan* a:. 

20. sec a: cosec .r. 

23. sec* a: cosec*07. 

26. 8in®07/cos^®:r. 

1 
20. ,- 

1 4 cos 07 

1 
02. -r-• 

1 —sin X 

35. cos 2a: cos 3.r. 

38. sin* a; cos 3a:, 

^ sin* X 

sm 2x 

1 ^ 

14-8 cos* 07 

1 
47. T- 

1 4- tan 07 

60. r—7^- 
5 — 3c08a7 

5. sec J 07. 

6. tan*Jar. 

0. cos'07. 

12. sec" ar. 

sin* X 
15. -• 

cos* X 

18. cosec* 07. 

21. tan® ar. 

24. cot® 07. 

27. sin* 07. 

1 
SO. -- 

1 ~ cos 07 

1 
S3. -r-^* 

COS 07 sm''07 

86. sin mo7 cos wo?. 

30. cos* 07 sin mar, 

42. .—-- 
4 4 5 cos 37 

25~24 8in*o; 

48. 
Bin' 07 cos'* 07 

136. Trigonometrical substitutions. 

Many algebraical functions which involve the square root of a 

quadratic expression can be rationalized by a trigonometrical sub¬ 

stitution, and their integration is often thereby simplified. E. g. if an 

expression involves the irrational quantity V(a^—a;®), the substitution 

of a sin 0 for a; changes V(a^—a?*) into V [a® (1 — sin^ 0)]^ i a a cos 0* 
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The substitution a; = a cos (9 would of course serve equally well. 
These are legitimate substitutions, because a sin 0 and a cos 0 can 
have all values from —a to +a inclusive, and these constitute all 
the values of x for w^hich \/(a^—is real. 

Examples: 

(i) /^{a^ — x^)dx. Let x — afiinO; •*. dx/dd = a c.o^d. 

Denoting the integral by y, 

^ ts ^ ^ cos B. a cos 6 — a* cos® 0, 
dx ' (IB dx dB 

•*. y «= /cos® & dB ^ I a^f (1 + cos2d^ ^ a® J sin 2 B) 

< ^a^B + i a® ein B cos ^ ^ a® sin~* (x/a) + J -x'). 

(ii) J 
cZa:. Let X a cos ^; 

c?.r 

dB ' 
— rt sin B. 

dy dy dx ^(a^-x^) . a^mB 
- -X -a8m0=-^-^ - X—a sin 6=^ -tan® a. 

dB dx dB X* fl’cos*^) 

.% y ^ f tan® 0 ,dB = — fi sec^ 6 — l)dQ= — tan Ob B 

■= cos”^ {x/a) — V (a} —x-)/x. 

Similarly, an expression which involves V(or -f .r-) is rationalized 
by the substitution x — atsmO^ ivhich makes V[a^’^x^) into 
V[a- (1 + tan^^l)], i.e. a sec 0, The hyperbolic substitution x = a sinh u 
will do equally well in this case: it changes V{a^ + x'“) into 
V[a^ (1 + sinh^ w)], i.e. a cosh u [Art. 02J, and may be used if the 
student is well acquainted with the simpler relations between these 
functions. Some of these relations are required in the integration, 
and in restoring the x after integration. 

Again, an expression which involves V(.r^—a^) may be rationalized 
by putting x = a seed, which makes Vix^—a^) into \/[a^(sec‘^ d — 1)], 
i. e. a tan 0, The hyperbolic substitution x a cosh u will also serve 
equally well, for it changes —a^) into V [a '(cosh'^ u—1)], 
i.e. a sinh w. 

Examples: 

I' dx 
(i) a?® V (4 + a?®) 

Let a? «= 2 tan B; 
dx 
dTd 

= 2 sec® B, 

Denoting the integral by y, 

dy ^ ^ 1 
d 'S dx ^ dB a^^{4i + x^) 

y = i 

and becomes 

X 2 sec® B == 
2 see® B 

4 tan® d. 2 sec d ' 
cosd 

4 sin® 6 

du 
dB, which is found by putting w sin d, — = cos d, sin®d X o ^dB 

1-1 
4 sin d ' ix 
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(ii) / + a*j dx. Let a? «= a sinh m ; cosh u. 
du 

^ X ^ + a^) X a cosh u a cosh u x a cosh u 
(iw dx du 

■= a* cosh* w == ^ a* (1 + cosh 21/). 

•*. y ^ \ G? f (1 + cosh 2 \C) du *• J a® (m + ^ sinh 2 m) 

= -J a®w + ^a® sinh w cosh u (using the results of Ex. XXXII. 12) 

= ^ a* sinh”^ (^/«) + i ^ 

It should be noticed that the values of the standard integrals 

dx 
and 

dx 

-f V(a^—x^) 

can be worked out by this method, by substituting a; = a sin 6 and 

a? = a tan 6 respectively. 

The substitution x (or x—h) =:atand is often useful in dealing 

with certain types of rational expressions. 

dx 
E. g. to find Yj , we may write a?® —2x + 5 in the form 

(a;®~2ar + 5)® 

(a? —1)® + 4 which, if =2tan^, becomes 4 tan® ^ + 4, i. e. 48ec®^. 

Denoting the integral by y, we have 

dy dy dx 1 o -i/i 2Bec®^ _ 
d$ dx d6 (a?®-2 a?+ 5)® (4 8ec®(9j® ^ 

y >= ^/(l + cos 2 d ^ i sill 2 6) ^ {$ + sin 6 cob 6) 

x-1 2 i Ttan-*^ + V 2 1 
16 1 2 ^^[(^-1^ + 4] v'[(a:-l)’ + 4]J 

137. A useful substitution. 

It should be noticed that the expressions 0()(/3—a:)], 

l/\^[(x—oc)(/3-^x)], and V[(x--‘a)/(j3^x)]y where /3 > a, are all 

rationalized by the substitution x = a cos^ sin® Q. 

This expression admits of all values from ol to jS inclusive, and it 

is just for these values and these values only that the preceding 

expressions are real. 

If this substitution be made, 

x—oc becomes ex (cos® ^ — 1) + ^ sin® <9, i. e. (^—a) sin® 6. 

/3—a; becomes ^(1 —sin®^)—acos® i.e. (;3—a)cos®^. 

dx/dO = a2cos0(—sin0) + /32sin0cos0, i.e. 2(/3—a)sin^ cos^?. 

Two examples are here given. 
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Examples: 

Let a? — a cos* ^ + 2 a sin® /. « — o — a sin* 2 a—a? ■» acoa*^, 

and dx/d ^ = — 2 a sin d cos d + 4 a sin d cos d ■= 2 a sin d cos d. 

Hence, denoting the integral by y as usual, 

dt/ ! x~a /asin*^ ^ 

dx V 2 a - 07 V a cos* ^ > 

^ ~ ™ tm^ tan d . 2 a sin d cos d « 2 a sin* ^ a (1 - cos 2d); 
dO dx dd \ y» 

y =■ Ofy^(l — cos 2 d)i?d •« a (d —J sin 2d) •- ad —a sin d cos d. 

VQQ - ^ /•J' *** 

and d -= sin"^ • 

Also 2 a —07 s* a cos'd, cosd* 

. ^ jx — a lx —a l2a—x 
/. y-asin >Ay-~-a. V~a”~ 

— a sin"* \J(2 a-a?)]. 

(ii) /^(Taj-lO-x*) do7, i.e. /V[[^-oc){x-2)]dx. 

Let 07 = 2 C08*d + 5sin*d; a? —2 — 3sin*d, 5-a? = 3cos'd, 

dx/d d *= 6 sin d cos 0. 

dyfdx =* v^[(5 —x) (a?—2)] -■ ->/(3 cos*d. 3 sin* d) ■■ 3 sin d cos d. 

A ^ =*= ^ X ^ 3 sin d cos d X 6 sin d cos d — 18 sin* d cos* d; 
d6 dx d6 

and y =y 18sin*dcos'd dd ■■ sin*2d dd -«= jy(l —coB4d) dd 

*= J (d — J sin 4 d)« J d — . 2 sin 2 d cos 2 d 

•« J d —Jsindcosd (2co8*d—1) 

- i-‘-- -! V¥ ■ Vfr') (* ■ ¥ -0 

- J sm-V{J (^-2)}-i(7-2a;) v'[(5-x)(®-2)]. 

Integrate: 

1. ^(9-**). 

4. V{x^-^y 

^ yq^oT*) 

10. 
y(a?*-a*) 

Examples LI, 

2. -v/(a:* —a*). 

^ ^(25-07*) 
O* -“5-- 

11. 

-y(a* —07*) 

a*+ 07* 

^(a*-07*)’ 

3. V(a7* + 1). 

1 
0. 

0. 

12. 

a:* yd-a;*) 

07* 

y(a;* + 9)* 

1 
a;* y(a* + a:*) 
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T A 15 * . 
^{x^-¥a^) 

“• V(S) 
19. v'[(x-3)(7-a:)]. 20. ^/[(x + 1) (4-x)]. 

_1 

V[^2)(7-x)]‘ 

23. V[{^-OL){^~x)-\. 

26. 

22__• 

24. \/[{x — 2a){^a — x)]. 

(xHi?’ (x“ + 4x + 5)»‘ *“• (2x«-6x + 45/ 

^ T 
(^T2x~'27" (x» + l)'‘ ' 

138. Integration by parts. 

There remains one more important elementary method of integra¬ 

tion, known as ‘ integration by parts This is the converse of the 

rule for finding the differential coefficient of a product of two 

functions of x. 

We have 
d , , dv du 

dx ~~ ^dx dx^ 

therefore, integrating each term, we have (save for an arbitrary 

constant to be added) 

[ dv - ? du - 

, dv j du j 
whence u~, ~dx=^ «?;— v - dz. 

J dx dx 

The integral on the right-hand side is frequently much easier to 

evaluate than the one on the left. The method is particularly 

valuable in many cases when the expression to be integrated contains 

such functions as logir, or an inverse trigonometrical or hyperbolic 

function. If such a function be taken as the ‘* in the integral on 

the left-hand side, the dufdx on the right-hand side becomes a simple 

algebraical function. 

Examples: 

(i) fx^ log X dx. 

Take u == logx, dv/dx *= a?’; dujdx — 1/x, v «= /a?® da? = J a:®. 

We have / a?® log a? dx = loga?x \ a?®. a?"' dx 

«= Ix^logx-^/x^dx 

«= J x’’ log X - J a?*. 
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(ii) f X tan""' x dx. 

Take u tan”^a;, dv/dx *=» ar; du/dx »« 1/(1 fa:®); t? *= J a;*. 

/x tan”' X dxm^\ a?* tan”' ar— J J a:®. y”“3 

^ x» tan-’®- 51 [l - 1-^] dx 

-■ J a:* tan"' x — \[x — tan”' x\ 

*« J {a^ +1) tan"' x-\x, 

(iii) ytan""'a? eZar. 

In this case, take u =* tan"' x, dv/dx *= 1; 

du/dx ^\/(\-¥x^\ V ^ X. 

f- -fa; . f 2x 
tan ^x dx ~ Xtan 'a? — ^ —. dx ^ x tan ' a; — i ^^ dx 

J J 1+a?® 1-fa:^ 

■» a:tan“'a?—Jlog(l+ap*). [Art. 125.] 

(It) y a: sin a? dx. 

In’this case, if ainaj be taken as u and a? as dv/dx^ it will be seen 

that du/dx and d are respectively cos a? and Ja:*, and therefore the integral 

on the right-hand side, y | ar* cos a? dar, is more complicated than the one 

we started with. Hence take u «■ a?, dv/dx ■- sin a;; 

du/dx I?— -cos a?. 

We have therefore 

/xninx dx — a* cos a? — y(-*cos x) dx —a: cos x -f sin x, 

(t) yX* e** dx. 

In this case (since x® becomes simpler when differentiated, and does 

not become more complicated when integrated) 

let u — x®, dv/dx -■ «*•; du/dx — 2 x, r ^ e**; 

/. ya::®«*® dx — —yj«®*x2x dx -■ 5ar*e**—yxe®** dx. 

The integral on the right-hand side cannot yet be written down at once, 

but it is simpler than the one we started with. Integrate it by parts again, 

taking 
if — X, dv/dx — du/dx — 1, r « J ; 

fxe^* dx^ Jx^*—yjs®* dx — Jx«®*~i^®*. 

substituting in the preceding result, the given integral 

yx® e®* dx - J X® «** - [i X <f»*-} r®*] « 1 e®* (2 X® - 2 X +1). 

This is a very simple case of a general method known as integration by 

* successive reduction Many eix^ressions can only be integrated by stages 

in this manner, the integral obtained at the end of each stage being simpler 

than the integral at the beginning of the stage, until finally an integral is 

arrived at whose value is known. Further examples of this method are 

considered in Art. 140* 

n 
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Examples LII. 

Integrate : 
1. x*logx. 

6. XCOBX, 

0. 
13. X sec* X, 

17. xcosh{x/a). 

21. a?* COB 4^. 

2. ^/xlogx, 

Q. xsmmx. 

10. 
14. a; cosec* »<a?. 

18. sinh-^a;. 

22. x^e\ 

8. a?”* log a?. 

7. ice*. 

11. sin'^a?. 
15. a?Bin~'a?. 

19. cosh"’ X. 

23. a?*e"*. 

4. (loga?)/a?l 

8. are"®*. 
12. log a?. 

10. X sinh X, 

20. a;* sin x, 

24. a?* sin 2ar. 

139. Two important types. 

There are two important types of integrals which can be evaluated 

by this method. 

I. /V{ax^-^hx-^c)dx. 

Beginning with the simpler form f V{x'^^a^)dx^ and integrating 

by parts, take w = V{x'^ + a^), dv/dx = 1; 

then du/dx = a;/ v=^ x. 

’(a:2 + a^)~-a2 
: X V (x^ + a^) — dx 

V (x^ + a^j 

: X V{x^-^a^) —y V(x'^-^a^)dx+ 
V (x^ + a^j 

dx. 

The second term on the right is the integral we started with ; 

therefore, transferring it to the left-hand side, we have 

2/v^(x^ + a^) dx = X V'(x^ + 
dx 

V(x^-ha-) 

= X V' (x^ + «*) + siiih" ^ (x/a); 

. •. y* V' (x^ -h a^) cZx = J X V (x^ + a^) + i sinh”"^ (x/a). (i) 

Similarly J V (a^—x^) dx = | x >/(a^—x^) +1 sin"^ (x/a). 

y* V (x^—a^) dx = i X -/(x^—a®) — | cosh~^ (x/a). 

Notice that, in the second line of the working as above, the 

numerator x^ is always written as the sum or difference of and 

the expression under the radical sign in the denominator. 

In the general case (ox^-f 5x-f c) dx, if we divide the expression 

under the root sign by ja] and complete the square of the terms 

which contain x, the integral reduces to one or other of the three 

forms mentioned above, and therefore can be evaluated. 
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E. g.//(2a!* + 6* + 5) (te= ^2/^(x^+3x+^) dx=^ ^2/^[{x4 §)’4-1] dx, 
■which is the case worked out in full above with x and a replaced by a: 4- § 
and J respectively ; therefore from (i) the required integral 

- i v^2 (a: 4- i) /[(X 4-4-1] +172. -1 sinh’* ^ 
If 

*= J (2a? + 3)v^(2a;® + 6a: + 5) + g\/2 . sinh*^ (2 a;+ 3). 

It is of course not desirable to attempt to remember results such 

as (i), but in practice it is most convenient to go through the working 

for the simpler case as given by (i), and make the substitutions in the 

result as we have done in the example immediately preceding. 

II. y'e®* cos bx dx and f sin bx dx. 
These integrals are of importance in the theory of electric currents. 

If each integral is evaluated by parts, the other one is obtained, 

and therefore %ve obtain two equations to solve for the two integrals. 

Starting with the first integral, and taking 

u = dv/dx = cos bx ; and du/dx = ae®*, v = (1/b) sin 

we have f cos bxdx = {\/b) sin bx—{a/b)f sin bx dx, (i) 

Similarly, taking the second integral and again substituting 

u = dv/dx = sin bXy du/dx = v = -"(1/&) cos bXy 

we get sin bxdx^ ~ (1/b) c®* cos bx + (a/b)cos bx dx, (ii) 

If the value of the former integral be required, we substitute the 

result (ii) in the last term of (i); if the latter integral be the one whose 

value is required, we substitute the result (i) in the last term of (ii). 

In the former case, we get 

cos bx dx ■ 
sin bx r ef^^cosbx , a 

b 7; 
cos bx dx 

J 

sin bx a 
'-;-H To cos bx 

b ¥ --f cos bx dxy 

v r o'T r. j be^ Binbx + ae^ cosbx 
whence (^1 + p H ^ cos bx dx =-p- 

J a^-hb^ 

Q. , r • T 1 e^^iasinbx—bcosbx) 
Similarly, J sin bx dx = —^+7^-- 

Integrate: 
1. v^(a?*-a*). 
4. v^(12~3a;*). 
7. '/(3a^ + 4a:-7). 

Examples LIII. 

2. yfa^-a^). 8. v^(32 + 2a;»). 

5. >^(a;* + 2a?+5). 0. ^{% — hx — x^). 
8. -/(S'5a?-3a;*). 0. -/[ar (8 ar-2)]. 

82 



260 METHODS OP INTEGRATION 

10. \/[ip(5-4a^)]. 

13. e~*cos^x. 

16. 

10. sinhxsino?. 

11, f®* cos 2 a?. 

14. e“**Binaa?. 

17. cosh ar sin a;. 

20. 

12. sin 5 a;. 

15. e* cos® X. 

18. sinharcosa?. 

21. coB{pt + €), 

140. Integration by successive reduction. 

A large number of expressions can be integrated only by the 

method of successive reduction^ which consists in making the integral 

depend upon a simpler integral, then again reducing this to one 

simpler still, and so on until a known form is obtained, as shown in 

the following examples. 

Examples : 

(i) fx^e^^dx. 

Integrate by parts, taking u « x**, dvjdx ■* f®* ; 

du/dx ^ and 

/x^^e^^dx •« —(«/a) dx^ (i) 

an integral of the same form as the given integral, but in which the index 

of x is reduced by unity. By repeating the process, changing n into n —1, 

the integral is made to depend upon and so on until finally 

fe'^^dx^ which is is reached. Of course the actual process of in¬ 

tegration by parts has only to be carried out once for the general case, and 

then all the successive steps follow by substituting numerical values for n. 

Equation (i) gives the ‘ reduction formula ’ for the given integral. 

Taking the particular case, n * 4, a *= 2, we have 

f dx — \x^ — dx^ putting w *= 4 in (i), 

*= c®®--2 x’e®* —putting w «= 3 in (i),^ 

«= Jx^e®*~x®^®*-f3[Jx®c®*-|yxe®*dx], putting n « 2 in (i), 

= 1 xV » - x^ f X® e®* - 3 xe®* - jy^® * dx], putting n 1 in (i), 

« J [2 X* - 4 X* + 6 X® - 6 X -f 3], 

(ii) y x” cos ax dx. 

Integrate by parts, taking u « x", dv/dx ■= cos ax; 

.'. du/dx = nx’*~\ V ■» (1/a) sin ax. 

Similarly 

x” cos ax dx • 

^.n-i gijj ax dx --COB ax + — 
a a 

x”"^ sin ax dx, 

1 
x”“® cos ax dx. 

Each step reduces the index of x by unity, and the trigonometrical factors 

are sin ax and cos ax alternately; the process is continued until finaBy the 

integral reduces to either ycos ax dx (if n be even) or /sin ax dx (if n 

be odd). 

In the same way f x” sin ax dx, x” sinh ax dx, and /x"c08h ox dx 
may be found. 
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141. Evaluation of cos^0 dd. 

This is an integral of frequent occurrence. It has already been 

mentioned (Art. 136) that if m be odd, the integration is at once 

effected by taking cos 0 = and if n be odd, by taking sin 6 = Uy 

and also that the integral can be found when m + n is an even 

negative integer. Several examples of the latter case were given in 

that article. The integration can always be effected in this case by 

substituting tan 0 =-u; 

.*. 0 = tan ^ iiy 
1 

du 1 + ’ 
sin 0 = cos 0 = 

_^_ 
V (1 -+ u^) 

E.g. if y 
dO ^ dy 1 _ (1 ^ 

Bin* 6 cos* B ’ d6 sin* 6 cos^ B w* ' 

dtj ^dy d6 ^ 1 ^ 1+td 

** du dS du M* i-fw* w* w* ^ ^ 

Again, if 

dy 
da 

y = /{1/u^ 4 1) du *=» — 1/m + u 

dO dy ^ 

cos® 6' dd 

dij dO 

cos® 0 

de ■ ^4 ~ ^ rT«* 

y = + tan ^ J tan* B-i I tan® B. 

cot f5 + tan^. 

(14m7; 

(1 4 uY == 1 + 2 M* 4 M®. 

Generally, 
sin»«^ 

cosm+2^P B 
[in which the sum of the indices is — 2j)] 

= y’tan”^ 0 sec^P 6 d$ 

= f tan"* ^ (1 + tan^ sec® 0 dO, 

which, on substituting tan 0 ■=^Uy becomes 

y'w"* (1 +u^)P~'^ du. 

This can be expanded by the Binomial Theorem and integrated 

at once if be a positive integer. 

If, in the given integral, n = —m [m positive], so that the 

integral becomes /tan^BdOj we may proceed as follows: 

y’tan"*^dd= ytan"*-® d. tan®dd^ = ytan"*'® ^(sec®^ —l)d0 

= y’tan”*”® $ sec® 0 dO— ^tan"*"® ^ dO 

=; (tan"*’*^ 0)/(m—1)— y'tan"*"® 0 dO 

tan^" 0 

m—1 

tan"* ^0 

m—3 
tan"* -*0d0]. 

Proceeding thus, the integral is eventually reduced either to 

J*dO (if m be even) or to ytan 0 dO (if m be odd). 

If m=—n \n positive] the integral becomes /aoi^OdOy which 

can be found in exactly similar manner. 
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If the integral does not belong to any of these cases, i. e. if m and n 

are both even and m*f w is positive, then its value can be found by 

successive reduction as follows; 

In the first place, since the d.c. of sin"^'''^d = (?w+1) sin’^d cos 

it follows that f sin"*^? cos 6 dO = d)/{m +1). 

Now y'sin^^ cos^^ dO may be written in the form 

sin’”^ cosO dO, 

Integrate by parts, taking u — cos””^ 6y dv/dO = sin^0 cos 6; 

du/dO z=zcos^~^Osin 0^ v = (sin*^*^^ t?)/(m + l); 

y'sin'^O cos^ 0 dO 

cos^ ^0sin”^'^^^ 

m + i 

gi^m+l 0 
-cos"“^ 6 sin 6 dO 

cos” n~ l 
+ 

1 w +1J 

cos” ^ d sin’”'*''^ 0 w — 1 
4- 

1 m +1 j 

sin”* d (1 — cos^ 0) cos”^^ 0 d0 

1 
sm*”l9cos”"-2^dd- 

m-h 1 
sin*”dcos”^?cIw?. 

Bringing the last term on to the left-hand side, we have 

/i n-l\ 
sin*” d cos” OdO 

cos’^ -^dsin*”-^^d n-1 

m-tl 9n-hlJ 
sin*”d 0 dO; 

.*. dividing by the coefficient on the left, i.e. (m-f w)/(w+1), 

we have 

sin*”^ cos” 0 dO — 
cos” ^ 0 sin”*'*'^0 n~l 

m + n 
- + sin*” 0 cos” ^ 6 dOf 

in which the integral on the right-hand side is of the same form as 

the given integral, but the index of cos 0 is reduced by 2. 

In a similar manner, by taking u = sin*”“^ dv/dd = cos” d sin 0, 

the integral may be made to depend on a similar integral in which 

the index of sin 6 is reduced by 2. The process may be repeated, 

reducing the index of either sind or cosd by 2 at each step until 

finally the integral is reduced to J'dO, i.e. 6, 

This method is quite general, and can be used for all values of 

m and n. 

If m be odd and n even, the integral ultimately depends upon 

ysin ^ i.e. ~cos d. 

If m be even and n odd, the integral ultimately depends upon 

/cos ie, sin 
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If both m and n be odd, the integral ultimately depends upon 

J'sin 6 CO& 6 dOy i. e. Jsin^0. 

The cases when either m or w is zero, i. e. f sin^d dd and f cos’^d d d, 

are included in the general case. 

These facts are of importance when the definite integral of 

sin’^ 0 cos’* 0 is considered (Art. 149). 

These integrals are particularly important when m and n are both positive 

integers, but the preceding investigation holds for all values of m and n 

except when m + n = 0. The method then fails, for w + w occurs in the 

denominators of the terms on the right-hand side. In this case, however, 

the integral becomes either /ism^OdB or /coV^^Oddy for which reduction 

formulae have been obtained in the earlier part of this article. 

If n be negative, n~2 is numerically greater than «, and the integral on 

the right-hand side is more complicated than the one on the left; in this 

case the formula can be reversed. Similarly if m be negative. 

142. Another method of obtaining reduction formulae. 

The various reduction formulae of the type considered in the 
previous article can be obtained by differentiation. 

If we denote f 0 0 dO by 1^^^ then ^ can be con¬ 
nected by a reduction formula with aiiy one of the six integrals 

n-2> ‘^m-2, n> n+2f ■^wt+2, w? ^m—2, w+2> ■^m-t2, n-2* 
The required formula is obtained by differentiating sin^dcos^^, 

where p exceeds by one the smaller of the two indices of sin d, and q 
exceeds by one the smaller of the two indices of cosd in the two 
integrals which are to be connected. For instance, the formula 
worked out above connects Iyy^^ „ and yj_2. The index of sind 
is m in both cases, and the smaller of the indices of cosd is w —2; 
therefore we differentiate sin”^*^^ d cos^~^ d. 

We have 

^ (sin”*'*'^ 6 cos’*"^ 0) 
du 

= sin’’^'^^ 6 .(n—1) cos’^~^ d(—sin d)-f cos’^'"^ d .(m-f 1) sin’^dcosd 

= — (n — 1) cos” d sin”* d (1 —cos^ d) + (m +1) sin”* d cos” d 

= — (n — 1) cos”“^ d sin”* d 4- (w—1) sin”* 6 cos” d + (m -f 1) sin”* d cos” d 

= — (n — 1) cos”"^ d sin”* d + {m + n) sin”* 6 cos” d. 

Integrating, we get sin”*'*'^ d cos”^^ d 

= —{7i~ 1)y'cos”~2 d sin”* d dd -f (w-f n)y'sin”* 9 cos” d dd, 

' Qi Ti W'T 1 a ~ ^ d 'W — 1 ' 
i.e. sin”* d cos” OdO = ---1-sin”* 0 cos”~^ d dOy 

m-hn 

as before. 
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Similarly, the relation between „ and any other of the six 
integrals mentioned above can be obtained. 

If m and n are both +, the relations between ^ and either 
n-2 or n simplify the integral; the former reduces the 

index of cos 0 by 2, and the latter reduces the index of sin 6 by 2. 
If m is 4- and n —, the relation between „ and n+2 

reduces both indices by 2. 
If m is — and n +» the relation between „ and J^+2, n -2 

reduces both indices by 2. 
If m and n are both —, the relation between ^ and ^^2 

reduces the index of cos $ by 2, and the relation between n and 
n reduces the index of sin 0 by 2. 

Examples LIV. 

Integrate with respect to x: 

1. c®®. 2. X* e~*. 

4. cos X. 6. x^ sin x. 

7. (log xy, 8. x^ cosh x. 

Integrate with respect to 3: 
10. tan^^. 11. cot*d. 

13. 
sin*^ 

14 

8. sin 2 a?. 

6. x^ (loga:)^ 

9. a:®sinlia;. 

12. tan*^l. 

1 
sin 6 cos‘‘ 6 

17. sin®^. 

20. 1/C08*^. 

15. 
coa®^ 

16. -/(cosec 6 sec*^). 

19. cos^^. 

22. cosec® ^ sec 

23. Obtain the formula connecting Im, n and Im-i, n. 

24. Find /sin* 6 cos® 6 d6 in terms of f sin^ 3 cos® 3 d 

25. Obtain the formula connecting Jm, n and Im-2,n-(-2. 

sin* 0 cos* 6 

18. sin® 3 cos* 3. 

21. 1/sin* 

20. Find 
sin*^ 
cos* 3 

d3 in terms of 
“‘sin*^ 

de. 

27. Obtain the formula connecting /m, w and Im+2,n-2, 

28. Find 
cos® 3 
8in*d 

d3 in terms of 
cos* 3 
sin 3 

de. 

29. Obtain the formula connecting I,n, n and Jm, w + 2. 

SO. Find 
d3 

in terms of 
' d3 
sin 3 cos 3 ! Ein 6 cos^ 3 

81. Obtain the formula connecting Jm, n and Jm+2,». 

82. Find 
d3 

sin* 6 cos® 3 
in terms of J d6 

sin* 6 cos* 6 
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Miscellaneotis Examples for Practice in Integration. LV, 

Integrate; 

1. 1 
1 —4 ar 

4. (1-4 a:-)” 

X 
7. 

V(l~4 arM 

10. xil-4xY. 

13. 

le. 

V(l-4a'^) 
a^ 

Vil —4x^) 
X lo _ 

{l-4x}^ 
22. \/(1 — 4 ar‘). 

25. ' 

28. 

(l-4a;V^^^ 
1 

V(l -4af ’ 

i(l~4^)‘ 

84. 
1 

ar^ (1 — 4 a*) 

37. 
l-4a^ 

x{}~ 4a?) 

40. X a/{1—4 x). 

43. sin 2 ar cos 2 a?. 

46. sin* a: cos® ar. 

40. COS X cos 2 X, 

62. tan®2x. 

66. tan^ar. 

68. cot a: cosec ar. 

61. X sin «a?. 

64. a? tan® a?. 

67. a?®<?*. 

70. a:® log a?. 

73. a?'"loga*. 

76. «"* sin 5 X, 

70. tf“®Bin®a-. 

82. sec-^a?. 

sin a: —cos a: 
86. ; • 

Bin X 4- cos X 

X 

««• 

2 ^ 
l-4a^ 

6, a:V(l-4x*). 

1 

11. y(l-4x). 

14. 

17. 

V'{l-4xj 
X 

20. 
23. x»(l-4a;)®. 

X 
26. 

29. 

32. 

85. 

38. 

(l-4a?®jVa 

a-® 

V'(l-4a:)’ 

1 
a? (1 —4 a:®) 

1 
a:® (1-4 a:®) 

a?* 

41. sin* aa:. 

44. sinarcos^a:. 

47. sin® X cos® a?. 

60. sinx8in2j'- 

63. cot®|x. 

66. tan X sec® X. 

69. cosec 2 X. 

62. xcosjx. 

65. x®Binx. 

68. x«®*. 
71. xlog(l+x). 

74. log(a-~x). 

77. cos 3x. 

80. a^i&n~^x, 

83. xcosec“‘x. 

1 
86. 

69. 

x(x®+ 1) 

X 

1 
V(l-4x) 

6. ^'(l—4x®). 

1 

12. X® v^(l — 4 .r*). 

X® 

18. x(l—4x)". 

a:* 
r=TS'®' 

24. X* v^(l — 4 x). 

X 
27. 

30. 

33. 

86. 

(l-4x®)” 

a^ 
(l~4x®)®' 

1 
x(l —4x)® 

l-4x 

x(l-4x®j' 

X 

(l-4ii:')’ 

42. C0B®^X. 

45. sin* X COS X. 

48. sin X cos 2 X. 

61. sin® X cos* X. 

64. Bec*x. 

67. tan X sec* X. 

60. Bec2x. 

68. xBec®mx. 

66. x«“®®. 

69. (a4-hx)e^, 

72. (logx)/x. 

75. xlog(l+x*). 

78. ^*Binxco8X. 

81. xcos~*x. 

84. tanhox. 

_ 1 
X (x* 4- 2) 

1 

87. 

90. 
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ar^{x'^ + l) 
94. \^(x^ l)/x^, 

97 -i—. 
(xH 1)* 

100. jr(a:’ + l)V*. 

X 
103. —--r- 

V{l-x) 
100. ^[x{x—l)]. 

“7i—i—-r 

112. 

116. 

118. 

121. 

1 
1 -f cos X 

C0Q*X 

i + cos X 

cos X 

(1 H-cosJCj^ 

124. seohar. 

127. X sink J x, 

130. 8mh“'a:. 

188. cos* a: sink a:. 

1 
a:* + 6x + 109 

a;* 
?T6iTib9’ 

142. x/v'(a:* + 6a:+109). 

x{x’ + 6x + 109/ 

“®- ih?' 

02. -5—T- 

05. ajV'lx^ + l). 
1 

®®‘ (x»+ !)»/»■ 
101. x^{l-x). 

x+1 

V(^)‘ 
107. ^[x{\^x)\ 

no. -/[a?(l+ar)]. 

cos a; 
113. 

lie. 

119. 

122. 

1 + cos X 

sin X 

(1 + cos a;)* 

cos* a; 

(1 -fcos xf 

1 

125. cosecka;. 

128. cosk*a:. 

131. a:cosk“'a5. 

134. sin 2 a? cosk 3 07. 

a? 3 
a7* + 6a7+ 109 

1 

146. 

149. 

06. (x‘ + l)*/', 

X 
99. (a7‘^+ 

102. X ^(x-1), 

108. \/[{x-l)/x], 

111. sin X 

i + cos X 

sin*a7 

1+ cosa7 
1 

117. 7*.- 
(1 + cos 07}* 

114. 

120. 

123. 

(1 + cosa7j* 

137. 

v'(a^* + 6x+109) 
143. 6x+109). 

_1 
a? V(^ + 0a7+ 109j 

X 

IT?' 

e^ + l 
126. a7coska?. 

129. sink* 37. 

132. sin ax sink ax. 

136. cos 771X cosk nx. 

ar — 3 
xHCx + 109‘ 

T(? + 0a7 +109) 
144. a7v^(a:*4 6a7 4 109). 

1 

141. 

147. 

160. 

07 (1 + a;®) 

x^_ 
(iT?>’‘ 



CHAPTER XV 

DEFINITE INTEGRALS 

143. Integration as a summation. 

Let f(x) bo a function of x which is finite and continuous from 

X — a to X = 6, both inclusive. Let b > a, and lei the interval b~a 

be divided into n intervals 

Xi Cly X^ X^ ^n~2y ^ l* 

Then the value of the sum 

2X = b 
tends, when the intervals 

are all indefinitely diminished, to a limit, which is called the definite 

integral oif{x) with respect to x from 0? = a to a;= &. This is written 

f(x)dz. 

The value of the given expression is evidently finite whatever the 

value of w, for if M be the maximum value of f[x) in the given 

interval, the sum 

< [(^•i-a) + («a-a’i)+ 
i.e. < M (b — a)f which is finite, since M, 6, a are all finite. 

The definite mtegral is here defined as the limiting value of the 

sum of a series. The calculation of the limiting value from this 

definition is complicated even in the case of quite simple functions, 

and in most cases would be quite impossible. 

For instance, take the very simple function a?*, and let each of the intervals 

... be equal to so that 

iCj = a + /i, aTj *= ^ = a + 2 iTg = a + 3 /i,... * a -f (n ~ 1) A, 

2) - a » nh. and 
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Then, from the above definition, 

\x^dx= Lt {ho* + h(o + h)' + 7»(o + 2h)*+ ...+h[a+(n-l);i?} 
J , n-* <0 

= Lt h[a» + o’ + 2oh+h» + a» + 4ah + 2*h*+ 
... 4a’ + 2(n-l)aft + (»-l)'h’] 

«= Lt h[fKi* + 2ah(l + 2+...+n-l) + h’{l + 2’+... 4(«-l)’}] 
n-p ‘x> 

«= Lt a^ + 2 J (« —1) w +/i* X J (n —1) n (2 n—1)] 
n -♦> 00 

«= (Z) - a) a* + a (6—a)* + J (& - af . 2 

«= a’ 6 — a* 4- ai>* — 2 a* fc -f a® + J a + 2)a* — J a* 

The values of the definite integrals of a few very simple functions 

may be calculated in this way, but it will be seen that the method 

of the next article saves an enormous amount of labour. 

We now proceed to show how the value of the definite integral can 

be deduced at once from that of the corresponding indefinite integral. 

144. Relation between definite and indefinite integrals. 

This can be obtained either geometrically or analytically. 

1. Geometrically. 

Let Ay Xif Xg, ... X„_i, B (Fig. 98) be the points on the axis of x 

whose abscissae are a, ... 6 respectively, and let the 

ordinates of A, Xj, Xg, ... X^_i, B cut the graph of y=/(x) in 

Bf Bit B^f... B^_ij Q. 

Then APy XiPj, XgPg, — X,^_iP„_i represent the values of 

/(4 respectively. 
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Therefore 

(^i-a)/(a) + (*2-*i)/(^i)+... +(Z'-3!„_i)/(a:„_i) (i) 

= AXi. AF+ Zi . Xi 1\ + ... + Z„_i E. Z„_, P„_i 

= the sum of the rectangles PX^, Pj X^j P^-i 

The difference between this sum and the area APQB < the sum of 

the small rectangles PPj, Pj P2, ... P^^^j Q, and if OL be the greatest 

of the bases, this sum is less than a x the sum of their heights, 

i.e. < cx [BQ—‘AP\ and this —► 0 when a 0, since BQ and AP are 

finite. Hence the area APQB is the limiting value of the sum of the 

rectangles, and therefore represents the limit of (i). But it was shown 

in Art. 80 that the area APQB = P(l!>)—P(a), where P' (a:) =zf{x), 

(Xi - a) f(a) + {x.^ - *1) f(xi) f ... + (6 - x„_i) /(x„_i) 

tends to the limit F{h) — F{a); 

i.e. = J’(6)-P(a), 

where F(x) is the indefinite integral of /(a:). 

2. Analyticalhj, 

Let F' (x) ^f{x\ i.e. let F{x) be the function whose d. c. is f[x). 

Then from the definition of a d. c. (Art. 26), 

hx-i-Q ('X 

' * ~~^x—where e —► 0 as 6a; —► 0 [Art. 24], 

i.e. F{x + bx)—F(x) = 6a;./{x) + c6a;. 

Take x = a, 6a; = Xi^a, 

then F(a;i)—P(a) = (Xj—a)/(a) + fi(a;i—a). 

Take x bx 

then F (x^)—F (a/j) = (^2 •^(^1) “1" ^2 (^2 ^i)* 

Take x = x^f bx = x^--X2f 

then F(x^J-Fix^) = (x3-x^)/(x,J f ^3 (x^-x.J. 

Take ir = a;„_i, 6a; = 6— 

then P(6)-J’{at„_i) = (h-x„_i)/(x„_J + („(!>-x„_i). 

Adding together all these results, 

f’(6)-J’(a) = (a-i-a)/{a) + (x,-a;i)/(a:i)+ ... + (b-a;^i)/(x„.i) 

+ fi(itj-a) + eg(xj-xi)+ ... +e„(6-ar„_j). 
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Let r) be the (numerically) greatest of the quantities 62, ... 

then the expression in the last line 

i.e. < + ... 

i.e. < 7?(&—a). 

All the numbers €3 ... and therefore rj, which is one of 

them, tend to zero as the intervals Xi’-a, •••> 

indefinitely diminished; hence, since a and 6 are finite, r}{h — a) 

tends to the limit zero, and therefore 

F(b)^F{a) = U[{x,^a)f{a) + (x2^x,)f(x,)+ ... 

= f fix) dx. 

This gives the same rule for evaluating a definite integral in 

general as was obtained in Arts. 80 and 81 for the particular cases of 

areas and volumes, viz.: 

The value of f(x) dx is obtained by substituting (i) t, (ii) a in 

the indefinite integral of fix)j and subtracting the latter result from the 

former. 

For instance, in the example just worked out in full from the 

definition of a definite integral, we have at once, by this rule, 

'6 

Ja 
x^dx = 

I , » 1 1 
a O O 

We have now connected the two different points of view from 

which an integral may be regarded (as given in Arts. 71 and 143), so 

that the value of a definite integral can be deduced at once from tliat 

of the corresponding indefinite integral obtained by the methods 

of Ghax>ters IX and XIV. 

I. 
Further examples are: 

^ dx 
. 4 + 5x“ [§log(4 + 5^)]‘=-|(log9-log4) = Jlog|. 

ra = [I ^]rl (tan-^l-tan-’O) = ^ (| -o) = 
^/- x^) dx ^\\x (a^ ~sin~^ -1 (Art. 139) 

Jo ^ «Jo 

= (0 + J a® sin"^ 1) ~ 0 «= J tt a®. 

r "1^”’ 1 y 1 
cot a? da: = log sin a: = log 1 -log — ^ = log y'2 »= -- log 2. 

i»r L J iir V ^ 45 I. 
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r e®* 1 
J cos hx dx = (a cos + & sin 6a:) J (Art. 139) 

“ (- “ + 0) -1 (a + 0)] - - (ea>r/k + 1) . 

In the i^receding investigation, the values of the functions at the com¬ 

mencements of the successive intervals have been taken, but this is not 

essential; it is sufficient to take the values of the function at any points 

within the intervals. It can be shown that the limiting value to which the 

corresponding sum tends is the same in this case as when the values at 

the beginnings of the intervals are taken. 

In the geometrical proof above, the successive terms of the corresponding 

series (i) will then be represented by rectangles which are intermediate 

between the inner rectangles ... P„_i B and the outer rectangles 

Pi A, P.^Xi, ... ^X'n-j respectively, and both sets of rectangles, and therefore 

also any intermediate set, tend to the same limiting value, the area APQB. 

146. Exceptions. 

The condition has been laid down above that the function f(x) is 

to be continuous for all values of x from a to h inclusive, and it has 

been supposed that a and 6 are finite. We are therefore not yet at 

liberty to apply the preceding result if these conditions are not 

satisfied, e. g. we cannot, as yet, evaluate such expressions as 

'•+1 1 
-T,dx, 

J-i 
dx r 

Jo a^ + x^* 

because, in the first case, the function 1/x'^ is discontinuous for the 

value Oj which is within the range of integration ; in the second 

case, the function becomes infinite at one end of the range, when 

rr = 1; and in the last case, one end of the range of integration is at 

infinity. 

Such cases will be considered later (Art. 148), and it will then be 

seen that the first of these three integrals has no value, whereas the 

other two have finite values. 

It should be noticed that an indefinite integral may be regarded as 

a definite integral taken between some arbitrarily fixed value a and 

a variable value the arbitrary constant of integration being the 

value of the integral function when x = a, with the sign changed, 

i‘ e* (^) dxy which has hitherto been written in the form f[x) + 0, 

may be regarded as 

r f{x)dx, i.e. [/(a:)] =f(x)-f{a), 
Ja L J a 

which is the same result as before with C replaced by —/(a). 

The following set of examples will serve as exercises for a revision 

of the various methods of integration which have been considered- 
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ExamploB LVI. 

Find the values of the following: 

'4 fs f9 flQ fl 

X* dXf x~^ dx, x~^ dXf — x + 1) dx, (1 - x*)* dx, 
1 Ja J4 Jo J-i 

2. (Zx + 2)^ 

3. 

4. 

5 

6. 

7. 

8. 

9 

10 

d,r 

x-^a 

dx 

J 
* dx 

dx 

dx r 

r jtt I it r• 

u sin X dx, cos x dx, sin J x dx, 
J0 jo j 

JoV(l + a^) J v'^(4 a 4 5 x) dx. 

• P 
Jo 

sin* X dx, 
iff 

iff 
cos* X dx, 

Jo 
sec* X dx. 

"d dx f* , 
[■’ 

J. ^(1 J. V(i+*^) J 
1 r® . r* y 

y^(l - X*) dx, V^(x* + a*) dx, >,/(x^ -1 j dx. 
0 .0 

J. 
”■ sin ^ 

1 + cos* 6 ' 

dx '1 

0 • 

dx 

I x(2 4-x) Io X* 4-2x4-2 

I i"" 
d d, sin* $ dB, cot^ dd. 

X log X dx, 
1 

dx 
--—» 

, l + cosx 

18. I e* ® sin X dx, 

'4 ffe 
X* log X dx, log X dx. 

1 Ja 

11. 
d» dx fl 

12. sin"’ X dx, 
_,r 1 — cos X Jo 
^iff 

e“* cos X dx. 14. X* e* dx, 
Jo jo 

cosh X dx. 

15. xv'(a*—X®) dx, 
(a* 4- X*) 

dx. 

10. r X sin X dx, f x® sin x dx. 17. cos* B dO, f cos* d sin d d d. 
Jo jo j* J® 

r 0 
18. 

19. 

21. 

V'(x*4-4x4-3) Jo 
4- 4 X 4- 3) dx. 

a X* - a* , 

, X* 4- a* 

i’T dx 

0 5 + 4 COB X 

* X* 

. x + 2 
dx. 

i’T dx 

4-f5coBX 

20. 

22. 

sec X dx. cosec X dx. 

tan* X dx, sin* x dx, 
. 0 

23. J* sin* X cos’X dx, 1: Bin’ X cos’ X dx. 

r* ** r* 2e “•J, iH^TT)’ J. (ir+lf(a; + 2y 

24. 

fiff 

^ 
6in*:3 

) 
[In 

tan X dx. 
yin 

X sin* X dx, xcos’xdx. 
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27. 

29. 

Bin 4 a: COB 2 dXy 
r*”- 

Bin 2 mx cos 2 nx dx. 

J xtan~^xdx, j' cos^'xdx, 

n dx 

30, 

82. 

'‘tr 

0 CL' 

28. 

dx 

■*i fl¬ 
ee X dx, 

Jo 

* cos'^ X 4 W sin* X 

dx 
14- 2 a; cos a + a?* 

83 

86 

■r. 4- ^ x 

p dx_ 

Jo ^"+i‘ 

39 P _ , f" 
Jo V(.c' + 2x + 2) J_<. 

I^dx X da 

^^*Jo a:* 4-2 a: 4 5 J© a;*4-5x 

dx 
lj(a:*4-4j 

dx 

dx 
+ 6* 

Evaluate from the definition of Art. 143 : 

44. 1 {^x^-4tx) dx. 43. J' x dx. 

46. J* dx. 47. 

* 

Jo 
COS 2 X dx. 

85. 

88 

40. 

42. 

45. 

48. 

■ir 

dx. 

dx 
y^(2 ax-hx'^) 

X tan* X dx. 
0 

dx_ 

Q V'(3 4-2x'-a;") 

gin X dx. 
D 

’'6 
a*” dx. 

146. General properties of definite integrals. 

Let ^*(0;) be the indefinite integral of f(x). 

1. It is at once evident, since J f(x) dx = F{h) — F{a), 

and JV(^) = F{a)-F(h)y 

that an interchange of tJce ^ limits' a and b changes the sign of the definite 

integral. 

n. Jy(x) dx = Jy(x) dx+Jy(x) dx, 

since the latter expression = F(c) —F(a) + F(6)—F"(c) 

^F(}>)~F[a). 

In a similar manner an integral may be divided up into the sum 

of any number of parta 

HI. J“ /(x) dx==o or 2 J f(x) dx, according as f(x) is an odd 

or an evenfmetion of x. 

f(x) dx = F(a)-F(-a). For 

IMI 
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If l^(x) be an even function of x, i.e. if /(x) be an odd function of x* 

F{-a) = F{o), and f* /(x) dx = 0. 
J-o 

If F (x) be an odd function of x, i. e. if /(x) be an even function of x,* 

F{—a) = —F{a), and /(x)dx = 2F(a) = 2 f(x)dx, 
J —» JO 

ra 
for in this case, ^ /(x) dx = ^(a) —JP(0) = F(a), since, F(x) being an 

odd function of x^ it follows that F(0) is zero [Art. 5j. 

E. g. dx = 0 
J-i 

X* dx- X* dx. 

TT-„ dx 
0 a' + a; 

dx; 3T--2 _a a'-'-f x' 

This result also follows directly from the definition in Art. 140, if 
the two halves of the range from —a to 0 and 0 to a be divided 
into equal intervals. For, if f(x) be an odd function, the terms of 
the series obtained from negative values of x are equal in magnitude 
and opposite in sign to the terms obtained from the corresponding 
positive values of x; hence the terms of the series cancel out in 
pairs and the sum is zero. If /{x) be an even function, the terms 
obtained from negative values of x have the same magnitude and 
sign as the terms obtained from the corresponding positive values 
of x; hence the terms occur in equal pairs, and their sum is twice 
the sum obtained from the positive values of x alone. This theorem 
is especially useful in dealing with the integrals of certain trigono¬ 
metrical functions. 

rjir 
. g. sin x dx s= 0 ; 

J-Jtt 

sin* X t 

f 

cos X dx ■ 
■i jr 

cos X dx. 

:dx 0; 

sin* x cos* X dx 0 ; 

sin* X dx ^2 

oil 

sin* X dx. 

sin* X cos* X dx^ 2 
fitr 

-Jir 

sin* X cos* X dx. 

since, in each line, the first function given is odd and the second even. 

* If F{z) be an even function of ®, F{x) - f{—z). 

Bifforentiating, F'(x) f’'(-x)x ~1, i.e. /(x) * 
hence f(z) is an odd function of x. 

Similarly, if F {z) be an odd function ofx, J’(~x) « — F(x) ; 

~r(-x) = -^(x), i.e, /(-»)-/(*); 

hence /(x) is an even function of x. 
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IV. ^^f(x)dx^^ f(a’-x)dx. 

For, on putting x = a —z, f f{x)dx becomes 

f(a-z)'T-dz, be. -\f{a-s)dz, since --- = -1. 

Also when a; = 0, z and when x — a, z — 0 ; 

f(x) dx — —\ f(a—z) dz = f[a--z) dz — f(a x) dx, 

since the value of the definite integral depends only upon the values 

of the limits, so that it does not matter whether the variable be 

denoted by x or z, 

r^n , r^TT rjTT 

In particular, /(sino:) dx = /[sin (In-x)] dx = \ f (cos x) dx. 

*1 f 1 r- 1 ^n+2 -I 1 

Also x{\~xYdx= {l—x)x^dx^ ----~ 
Jo jo Ln + 1 n-+2Jo 

(except when n «= ~1 or —2) 
n+1 M-+2 (« + 1){72+2) 

V. f{x) dx = 0 or 2 /(x) dx^ according as f(2a—x) = —f(x) 

or +/(j:). 
'*2a ra r2a 

f(x) dx = f(x) dx 4- f(x) dx. 
Jo jo Ja 

In the last integral, let ic = 2a—then when a; = a, e — 

and when a; = 2 a, z = 0. 

r2a ro ra 

/(x)dx becomes — /(2a — z)dz, i.e. /(2a--x) dx. 

Hence 

/(x) dx = f(x) dx - 
Jo Jo 

+ f(2a—x)dx—\ [/(x) 4/(2 a-a;)] da;, 

which is equal to 0 if /(2 a—a;) =—/(a;), and to 2j f{x)dx if 

/(2 a —a;) = f{x). This is especially useful in dealing with trigono¬ 

metrical integrals, since sin(7r—a;) = sin a;, and cos(7r—a;) = — cos a;. 

sin” X cos^ X dx ^ 2\ sin” x cos® x dx, 

but J sin” X cos’ x dx = 0. 

This result also follows, like Theorem III, directly from the definition of 

a definite integral, if the two halves of the range be divided into equal 

T 2 
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intervals. For, in the first of the two examples just given, the expression to 

be integrated takes the same scries of values (in the reverse order) between 

^ TT and TT as between 0 and Jtt ; hence the integral from 0 to tt is twice the 

integral from 0 to Jtt. In the second example, the values of the expression 

to be integrated between ^ rr and tt are equal in magnitude and opposite in 

sign to the values between 0 and | rr; hence the terms cancel out in pairs, 

and the integral is zero. 

VI. If G bo the greatest value and L the least value of f{x) within 

the range of integration a t o I (h > a), then the value of J /(ic) dx 

lies between L{b — a) and 6r(&—a). 

This follows at once from the definition of Art. 143, for, since G is 

the maximum value of f{x\ the sum there given is less than the sum 

obtained by replacing every value of f{x) by Gy 

i.e. ^ G “h "h ••• “b ^i. e. <^G{h’^ci)» 

Similarly, it is greater than L (6 —a). 

If f(x) be a continuous function of Xy then as x increases from a 

to hy f{x) must pass through every value intermediate between L 

and 6r; hence the value of the definite integral is equal to I —a 

multiplied by the value of f{x) for some value of x between a and 1), 

This value may, as in Art. 117, be denoted by a + —a) where 
0 < d < 1 ; hence 

-i 

Ja 
/(x)dx = (I> — a)/[a + 0(Iy — a)} 

E. g., since the maximum and minimum values of -v/(5 + sin'’ .v) are 

and ^6, it follows that v^(5 + 6in^x) dx is between ^5 . ^TT 

VG.Jtt, i.e. between I'IIStt and r2257r. 

75 

and 

147. Geometrical proofs. 

If the definite integral be represented by an area, the preceding 

results are all easily seen to be true from geometrical considerations. 

Theorem I simply states that the area from AF to BQ is the same 

as the area from BQ to AFy the change of sign is due to the fact 

that the intervals AB and BA are measured in opposite directions. 

Theorem II states that the area from AF to BQ is equal to the sum 

of the areas from AF to CR and from CR to BQ (Fig. 94 (i)). 

In Theorem III, if f(x) is an even function of Xy the graph of 

f[x) is symmetrical about the axis of y; if f(x) is an odd function 

of Xy the graph is symmetrical about the origin (Art. 10). The 

theorem follows from the facts that in the first case the area AFQB 
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is double the area OBQB (Fig. 94 (ii)), and in the second case, the 

areas AOP and BOQ are equal, and, since they are on opposite sides 

of the axis of a:, opX30site in sign (Fig. 94 (iii)). 

Theorem IV is equivalent to the statement that, if in figure (ii) the 

origin 0 be moved to the point jp, where x = a, and the direction of 

the axis of x be reversed, the same area OBQB is obtained, provided 

the range 0 to a is the same. 

Theorem V follows from figures (ii) and (iii) in tlie same way as 

Theorem III, by taking A as the origin and 0, B as the points 

a; = a, a? = 2a respectively. The curve is symmetrical about OB if 

/(2a —ic) =/(a:), and then the area ABQB is double the area ABBO ; 
the curve is symmetrical about the point 0 if /(2a —a;) = —/(:c), 

and then the area AOB = —the area OBQ, 
Theorem VI follows from the fact that the area BABQ in fig. (i) 

is greater than the rectangle AK contained by AB and the minimum 

ordinate of the curve, and less than the rectangle BL contained by 

AB and the maximum ordinate. The final form in which the 

theorem is given is equivalent to the statement iliat there is some 

intermediate point 72, such that the area BABQ is equal to the 
rectangle contained by AB and the ordinate CZ2. 

Examples LVIL 

Express as integrals from 0 to | jt the following: 
Piir 

r 
1. 8in*iF C08*j? dx. 2. sin* X cos* X dx. 8. sin^x dx. 

Jo J-- 
fSir ^ riv 

4. cos a; dx. 6. sin^ X COB^ X dx. 6. sin^ X dx. 
Jo J -2ir Jo 

P sin* X 
7. - 7-o~ djf. 

fo 
8. cos^o? dx. 0. sin* X cos* X dx. 

Jtr 1+C08^r J-2’r Jin- 

f2»r r2ir 
10. Bin* X dx* 11. C08*^arda;. 12. tin^xdx* 

J» Jlir 
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Find tbe value of : 

18 

16. 

19 

fl na 
. 14. x{a-xYdx. 

Jo Jo 

, dx. 17. dx. 

15. 

18 

x^4/(2—x) dx. 

x)^^ dx. £0. 

22. I sin^ X cob* x dx. 

• a 1 +C08^x 
I 

ai^A/{a — x)dx. 21. 

riff 
tan*^ X dx. 

J-i- 

x^^[a"- x^) dx. 

fi- . 
25. sina:: sec^a: <?a:. 

J-i"- 

riv 
'. 23. ein a: COS® ir <^jr. 

J —i JT 
24. 

—a 

irr 

i w 
soc^a: dx. 

COST-Rina: , 
26. -— dx, 

0 cosa:'j sma: J ^ 

27. From the fact that, within the range of integration, 0 < .r” < a:* if w > 2, 

r 
deduce two values between which must lie. 

Between what two values must the following three integrals lie? 

28. (4 — COS'a:') V® dx. 

81, Prove that /(x) dx 
In 

rb 

fi”- (le 
Jo V(l-isHPd) 

rh-a 
■■ f{x-\-a) dx. 

4 
30. 

2h j;” 
dx. 

32. Prove that J f{x) dx /(a+ 5-a:) dx. 

rb 1 rnib 

J " Ja 
83. Prove that /(mx) dx = /(x) dx. 

34. Prove that 

which it must lie. 

85. Provo that 

e dx < xe dXf and hence find a number below 

(1 - dx (l-;r)”da7. 

148. Extension of Theorem of Art. 144. 

It lias been assumed in Art. 144 in evaluating f(x) dx that the 

extreme values of the range of integration are both finite, and that 

the function /{x) is continuous, and therefore finite, throughout that 

range. Cases frequently occur in which these conditions are not 

satisfied, and it remains to consider how far the results of that 

article may be extended to such cases. 

It has been shown that 

f(x)dx = F{b)-F{a), where F'(x) = f(x). 
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If, as F{h) tends to a finite limit i, then L—F{a) is 

defined as the value of f f(x) dx. 

Similarly, if as a—> — qo, F(a) tends to a finite limit Z', then 
6 

dz. F(Z/)—Z'is defined as the value of J f{x) 

Examples: 

(i) x~^ dx (where a and h are positive, so that the value 0 for which 
Ja « 

the function 1/x^ is discontinuous is not within the range of integration) 

==[-l/xj'’ = l/a-l/6. 

f'oo 
As ?)->oo, l/b->0; hence x '^dx^lja, 

(ii) J log6-loga. 

r*’ 1 
As 6->00, log& also -►oo, hence ~dx has no value. 

Ja X 

This example shows that the condition that /(ur)“»0 as is not 

a sufficient condicion that f{x) dx may have a value. 

... r*" dx 
(ill) 

ar->tx^ \ji ojg a a 

. , . ^b TT ^ dx IT 
As h-^co, tan"'--^^; ~— 

a 2 0 2 a 

(iv) cos bx dx bx-a cosbx)~^ (Art. 139) 

g—aw d 
.^J6Bin65-acos60) + ^,. 

When ^->00, sin&d and cosJd are finite since they cannot bo greater 
than 1, and i. e. ->0. 

^ cos bx dx ■■ 
a 

a '^ -f 0 

Next, suppose that f(x) becomes infinite at one of the extremities 

of the range of integration. Let /(a?) = oo when a; = h. 
r6-e 

Taking the integral f{x) dx, f{x) is finite throughout this 

range of integration. If, as e—>0, 
b—e 

f(x) dx tends to a finite 

limit L, this value L is defined as the value of /{x) dx. 
Ja 
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Similarly, if f{x) — oo when a? = a and if, as f > 0, f{x) dx 

tends to a finite limit I/, tlicn L' is defined as the value of f{x) dx. 

In practice it is usually ai an end of the range of integration that 

f(x) becomes infinite. If f{x) becomes infinite for a single value 

x = c within the range of integration, then 

rb re rb 
/(x) dx — f(x) dx-\- f[x) dXy 

a a c 

and each of the latter integrals may be treated in the manner just 

described. 

Similarly, if /(x) becomes infinite at any (finite) number of points 

within the range of integration, the integral may be split up into 

a number of integrals in which the infinite values occur at ex¬ 

tremities of the ranges of integration. 

d'xamjdes: 

(i) x~ i dx; a: i is infinite when ^ = 0, 
0 

|' x'l dx~^2x^~^ — As €->0, 

ra 

x~\ dx = 2 
Jo 

(ii) 
dx 

, is infinite when r = 1. 
1 

r_ 1 1 

r* 
(iii) V 

Jo V 

l/e->oo as €-»0, therefore this integral has no value. 

dx 1 
becomes infinite when a: «= 3, which is 

within the range of integration. 

„ dx r* dx 
lienee we write ~77-rr = ox + 

Jo ^(x-3) Jo -i/(x-3) 

Now ’ 
^ [x — d) 

which tends to the limit --^(-3)V» as e->-0. 

1’--'’"'- 
which tends to the limit | as e 0. 

dx 
Hence 
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G(ometncal illustration. 
1 

To illustrate the matter g-eometrically, consider d.v. 
Ja 

If P and Q (Fig. 95j be the two points on the graph of ij ~ whose 

Fig. 95. 

rb 1 
abscissae arc « and b, ^.2^^ represents the area !?(;). 

1 1 1 . .1 
Now -1. dx , which, as h-*^co, tends to the limit - ; 

I. a b' a 

1 1 
When a =* 0, - 3 is infinite; and as -->00; I r7.r has 

X a Jq X 

no value. 

Hence the area APQB tends to a definite limit as the ordinate PQ recedes 

to an infinite distance (.IPremaining fixed), but has no limit as the ordinate 

AP approaches the axis of y; as great an area as we please can bo obtained 

bjr taking AP su/ficiently near to the axis of y. 

Examples LVIII. 

Find, when they exist, the values of the following : 

13. e ^ sin X dx. 

f* xdx 

Jo 

' dx _ , V{l ~x) 

__ * , 
11. =-dx, 

0 f-x 

Jo V[x{f-x)] 

17. logger dx. 

16. e dx. 

r dx 

Ji 
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p dx on dx f 

_o x(2 + x)' 
J , *(!+*)■ ^^-J, 

r® dx > dx . » f 

1 8 l
i

 23. 

25. Prove that, if n be positive, 
poo poo 

x^t^^dx ^ n dx. 

Tlcnce evaluate the former integral if n be an integer. 

r^TT 
149. An important definite integral: ein”^ 0 cos” 0 dB, 

Jo 
r^rr 

One of the most important definite integrals is J sin’” 0 cos” 6 dO, 

when m and 72 are positive integers. 

It has been shown (Art. 141) that 

sin’” 0 cos” 0 (Id =-1-sin’” 0 cos”' ^B dO* 
J m + n w + n J 

The evaluation of the above definite integral is rendered very 

simple by the fact that the first terra on the right-hand side vanishes 

for both the values 0 and Jtt, cos^ being 0 when ^ = ^tt, and sin^ 

when d = 0. 

sin’” B cos”' ^B dB» 

sin’” B cos” B dB : 
n—l 

sin’” d cos” '^OdBy 
Jo 7W-f72jo 

in which the index of cosB is reduced by 2. 

By Art. 14C) IV, the integral is unchanged wdien Jtt —d is sub¬ 

stituted for B ; 

sin’” B cos” 0 (10 ^ sin” B cos’” B dO 

m —1 

m + n lo 
sin” B cos’” ^B dO = 

m—1 

m-tn Jo 
sin”* 2 0 cos” 0 dB 

(again replacing 0 by |7r —d), in which the index of sin d is reduced 

hy 2. This result may also be obtained from the reduction formula 

connecting ^ and I^^2, n 1^^). 

The integrals on the right-hand side can be reduced a stage further 

by using these results with « —2 for n, and m —2 for respectively, 

fi’" . . _ w—1 w—3 __ 
sin’” B cos” 0 dO 

w —1 w-3 

m-^n ’m + n-2jo 

W2—1 m-3 p” 

m-f w—2 Jo 

sin’” d cos”'** B dB, 

ginW-4 0 (jQgn 0^0^ 
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By repeated use of these results, the numerical factors in the 

numerator will be w—5, ... down to either 2 or 1 

(according as n is odd or even) as the index of cosd is gradually 

reduced, and m —1, m—3, m —5, ... down to either 2 or 1 (according 

as m is odd or even) as the index of sin 0 is gradually reduced ; at any 

stage the last factor in the denominator exceeds by 2 the sum of the 

remaining indices of sin 6 and cos 0, 

If one index is odd and the other even, m-fw is odd and the 

integral reduces to either 
iir 

JO 
sin 0 dO or cos 0 dO, either of which 

is equal to 1; the last factor in the denominator is 3. 

If both indices are odd, m-\-n is even, and the integral reduces to 

Jo 

in- 

sin 0 cos 0 i. e. J Bin2^cZd, which is equal to The 

rin 
last factor in the denominator of the coefficient of sindcos^cZ^? 

JO 
IS 4; hence, in the final result, the last factor is 2. 

If both indices are even, m + n is even, and the integral reduces to 
r 

dO, which is and the last factor in the preceding denomi¬ 

nator is 2. 

Hence we have the following simple rule for writing down the 

value of the integral: 

• mA nA^A (W2 —l)(w? —3)... (w—l)(w—3)... - , , 
sin^d cos”ddd= ------> followed by 

Jo (m + n}(m-^n—2) ,,, 

the factor Jtt only when 7n and n are both even.* All the three sets 

of factors descend 2 at a time to either 1 or 2 according as the first 
factor of the set is odd or even. 

The value of the integral when the limits are multiples of 

can be obtained from the preceding case by the aid of the theorems 
of Art. 146. 

Examples'. 

sin'^6 cos® B d6 ^ 
4.2.2 

8.6.4.2 

1 
24’ 

sin®B cos®B dB 

sin^ B cos® B dB 

5.3.1.2 2 

9.’7.5.3.1 “63’ 

^1 .^5.3^1 7r_3^ 
10.8.6.4.2’2"" 512* 

* 0 cuvmU as au aveu number. 
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fiir 

sin’^ COS® ^ d 0 

"•2n- „ 
sin®0 dd ~ 4 

Jo jo 

sin’ ^ COB* ^ ^ * 

sin* 0 dd ^^4 
7.5.3 . 1 
8:6.4.2 

O 1-2^4 
“'o.a.i 15' 

o r 
TT OrJ rr 

' 2 "" '64 ’ 

160. Change of limits of integration. 

It has been seen that many algebraical expressions which contain 

irrational functions can be integrated by trigonometrical substitu¬ 

tions ; in these cases, the transformation back from the angle 0 to 

the original variable x is often troublesome, but in the corresponding 

definite integrals this may be avoided, since the value of the detinito 

integral depends only upon the limits, and the limits for x may be 

replaced by the corresponding limits for 0. 

Examples: 

(i) 

'a 
V(a’- 

Jo 
x^) dx may be found by substituting a? « a sin 3, 

As X increases from 0 to a, sin^ increases from 0 to 1, and therefore 6 
from 0 to hence 

j: (a’ — a;’) dx »*= a’ cos’ 0 dO "a a’. I. ^ IT = J 77 a’, 

by the rule of the preceding article. 
''p 

(ii) \/[(x — 0() (/S-a?)] dx may be obtained by the substitution 
Jot 

X mm (X cos’ 04-^ sin* 0, [Art. 137.] 

/\^[{x — (X) {(3—x)] dx becomes y{/3 —(X)cos^sind. 2 (,8~a) sin^cos 0 

When X ^ ex, sin 0 0 [since x—OL — CX) sin’^]; 0 «= 0. 

When X ^ 13, coBd»*0 [since jS —x »■ (/3 —ex) cos’^]; 

•*. the given definite integral — 2 (3 —a)M sin’ 0 cos® 0 dO 

A 1*1 »*■ 

-iTrO-a)*. 

161. Reduction of algebraical expressions to preceding form. 

The integrals of many other algebraical expressions, rational as 

well as irrational, can, by trigonometrical substitutions, be reduced 

to the form ysin^d cos”d dd with multiples of Jtt as limits, in 

which case their values can be written down by the preceding rule. 

The following examples show types of expressions which can be 

80 reduced and the methods of reducing themu 
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Examples: 

(i) dx. 

If X — a sin wo get 

pir 

iff 
a} sin^ 0 . (a\'Os’ Oy/”^. a co^O dO 

-i 
:a“ 

Jo 
sin^ 0 cos^ 6 d 0 . 

1.3.1 IT TT a* 

6.4.2 * 2 "" 82 

(ii) J x^{a-xy/’^ dx. 

Here the substitTition x^a^mQ will not rationalize the expression, 

but X = asin®^ will, and the limits for 0 will be 0 and J tt. 

TT 
The integral «= sin^ 6 (a cos® d)*/®. 2 a sin cos <9 <9 

Jo 

4 2 3 1 Ifi 
« 2 aV^ Bin'’ 6 cos^ 6 d6 ^2 a®/®. ‘A == -i'' a®/®. 

0 t/ . I . O . O • 1 OlD 

f'® 
(iii) r-n-r'-vj doc. 

In this case, if x a tan <9, a® + « a® sec® 9 == a sec® 9. 

When x=+oo, ^«+?^7r; when a?=-oo, 6 ^ ~^}^7r; 

, . . , , a*tan^9 
the given integral ^ 

1 

aj-iff 

2 ^1 
^ ' 4.2 

a sec® odd 

2 fi 

tanM 

. sec^ 9 
d9 

sin^ddd**-) sin*d dd 
«Jo 

3 TT 

8 a 

Examples LIX. 

Find the values of the following: 

'•J 
sin^ 9 cos^ 9 d 9. 2. 1 sin^d cos®d dd. 3. 

fiff 
1 Bin®d cos®d dd. 

4. 
r’iff 

co&^^9d9. 5. 
ff 

sin^dcos'^d dd. 6. P sin^ddd. 
w 0 -iff J 0 

7. 
^2ff 

Bin®d co8*d dd. 8. 1 
r ff 

cos^dsinddd. 0. 
r2ff 

cos^d dd. 

10. 
J 

0 

TT 
sin*d cost’d d d. 

0 

J 
11. 

0 

>v/(a® —a?®) da:. 
— a 

J 

12. 
J 

'-2ff 

1 (16-a;®)®/® da:, 
lo 

“•J 
\ a^{a^-x^y/^ dx. 
'o 

14. j 
0 

[ a:^ (2—O')'/® dr. 
'o 

16. f" 
0 (a^-frx’^y 

17. 
rw» 

(3-4a:®jV2 do:. 
0 

X8.J 
^00 ^ 
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CHAPTER XVI 

GEOLfETKICAL APPLICATIONS 

AEEAS 

162. Areas of Curvee. 

Some simple cases of tlie determination of areas (which is some¬ 

times referred to as quadrature) have already been considered in 

Chapter IX. The following method, in which an ai‘ea is regarded 

as the limit of a sum, yields the same result as the method of 

Art. 79. 

Let ALT, BK (Fig. 96) be the ordinates of two points A and B on 

a curve; and let HK be divided into very small equal parts, each hx. 

Let IfP, NQ be the ordinates at two successive points of division, 

M and N. Complete the rectangles BN, QM; draw all the ordinates, 

and complete the rectangles in the same way. 

The difference between the sum of the inner rectangles, 2 (BN), 

and the sum of the outer rectangles, 2 ((^^J), is equal to the sum of 

the small rectangles, 2 (BQ), and this is equal to the length of their 

common base, bx, multiplied by the sum of their heights, i.e. to 

bx (BK—AH), which can be made as small as we please by taking 

bx sufficiently small. Hence the two sums of rectangles have a 

common limit, and this is the area of the figure IIABK, 
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Therefore the area IIABK 

{ylx\ if Oi/=a and 

= ydx (by the definition of Art. 143) 

r f[jc) dx, if y =/ix) be the equation of the curve JB, 

This gives the same rule as was obtained in Art. 80. 

Since y is + or — according as the point (Xy y) is above or below 

the axis of Xy it follows that, if be taken positive, the value obtained 

for the area is + or — according as the area is above or below the 
axis of X, 

This accounts for results such as the following: If, to find the area 

between the graph of y =» sinx and the axis of x from x ^ 0 to a? 2 tt, 

we take 
’'27r 

sin X dXy we get — cosa? 
Jo L J, 

which is equal to 0. 

It is obvious from the graph that the area from a: =» 0 to x ^ n is above 

the axis of x, and the area from a? ■= 7r to x 2ir below the axis of x. 

The preceding integral gives the sum of these areas with oi)posite signs, and 

therefore merely indicates that the areas above and below the axis are equal 

in magnitude. The ai ea of each part is numerically 

• r 1” 
sin a; da; •» — cos x 

Jo k do 

In such cases the points where the curve cuts the axis should be found, 

and the areas on opposite sides of the axis determined separately. 

In some cases the area required has to be divided into several 

parts, as shown in the following example: 

Example, Fi)id the area hetu^en the circle x*-fy®"»4a* and the ellipse 

X* 4 5 y® = 16 
Let P (Fig. 97) be a point of intersection of the circle and the ellijiso. 

The required area ^4 — 4 x area OBPC — 4 x area OBPM 4- 4 x area MPC. 
The coordinates of P are obtained by solving the equations of the curves. 

This gives a; -■ + a, y a, C is the point (2 a, 0). 

The ordinate of the circle is V^(4a*—a?*), 

and the ordinate of the ellipse is V(16 a*—a;*)/V6. 
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r® / y fSa y 
Hence -4 = 4 . \/(16a*~ a?^) 4ar + 4 {A: — x^) dx 

Jo Ja 

= W\ [i a:v/(lG a’ - ®») + 8 a» sin"’ ^]“ 

T n2a 
^ a;-v/(4 — + 2 sin"’■— (Art. 139) 

U Ja 

= 4V'H2»V154 8a=Ein-4] + 4[2o^i^^-i^^V3-2o’4'T] 
= a’ (32 . Bin-11 + f tt) 

= 12 approximately. 

153. Area of cycloid. 

As an example of the determination of an area when the coordinates 

are each expressed in terms of a third variable, we will take the case 

of the cycloid (Art. 50), and find the area between one arch of the 
curve and the axis of x. 

The coordinates of a point on the cycloid are 3?=a (^ — sin d), y*=a(l — cos d), 
where 0 is the angle turned through by a fixed radius, 

r ^ dx 
\ydx^ describing one arch, the angle 

turned through is 2 tt. 
Hence the required area 

a(l —cosd).a(l-"C08d)dd=a* (1—2 cosd +cos’d) dd. 

Now, by Theorem V, Art. 146, 

C08’ddd = 4 cos’d dd = 4. J . ^TT = TT. coBddd = 0, and 

Therefore the required area = a’[2 tt+ 7r] = 3 tto’, i. e. three times the 
area of the rolling circle. 

154. Area of a closed oval curve. 

Let AII and BK (Fig. 98) be tangents to the curve parallel to the 

Fig. 98. 

m% u 
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y-axis. Any intermediate ordinate will cut the curve in two points 

Vi) and ; let yi be > y^. 

Then, if 0II=a, OK=h, the area HAP^BK^ 

and the area HAP^ BK = 

therefore, by subtraction, the area AP-y BP^ = 

yydx, 
t 

j: 
{yi-y-i)dx. 

I a 

y^dx; 

Or, parallel ordinates may be drawn dividing the area into strips 

perpendicular to the a^-axis, and the area is the limit of the sum 

of the rectangles i.e. the limit of ^(yi—taken 

between a; = a and x = h, i.e. 
'6 

(2^1-2/2) dx. 
a 

It is easily seen that this expression gives the whole area, whether 

the curve cuts the a^-axis or not. 

In Fig. 98 it does not; if, however, the axis of x, as shown by 

the dotted line JECDF^ cuts the curve (below A and P) in C and D, 

and the ordinates AH and BK in E and P, then 

rb 

'6 
dx gives the 

a 

area EAI\BKf and ^2 dx gives the areas KCA and I)FB (which 

are above the a:-axis) with + sign, and the area CP2P (which is 

below the a^-axis) with — sign; therefore, on subtracting, the 

common areas ECA and JDEB disappear, and there remains 

CAJPi BB—(— C-DP2), i.e. the area AF^ BF^ of the closed curve. 

The same result follows more readily from the facts that the area 

is the limit of ^(PiPjX^a;), and that no upward or downward 

movement of the ic-axis affects the length P1P2, which is ^2* 

It should be carefully noticed that the limits are the values of x 

for which and are equal. 

The following example illustrates the api^lication of the method : 

Example. Find the area of the curve 3i*--10xy + 10y^=:2. 

The two values of y which correspond to any particular value of x are 
found by solving the equation as a quadratic for y in terms of a;. 

Thus lOy*-lOxy + 3a;*--2 «= 0, 

whence y “ {10^± v^[20(4~a;’^)]}. 

These two values are y^ and hence 
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The limits are the values of x for which 0, and therefore are 
given by = 4, i. e. a: *= + 2. 

Hence the area of the curve 

J ~2 

J -v^S . 2 cos ^. 2 cos 0(1$ 
in 

-in 

= ^>v/5x2j^ C08*d^;^ 

" 2^“^ 2 n/y^5. 

'in 

(if ar = 2 sin 0) 

The curve is an ellipse whose centre is the origin, and is shown in Fig. 99. 

t/ ~ ±1 when X = ±2, and y =* ± 1/^/5 « i‘45 when ar == 0. 

Also when y == 0, Sx^ ^ 2 and x »= ±*82. 

Examples LX. 

1. Find the area of the curve y* *« a:* (4 —a-’). 

2. Find the area of y* x^ (9 - x^), 

3. Obtain the area between the curve = x^j{2a — x) and its asymptote. 
This curve is called the cissoid. 

4. Find the area of the curve x — a cos^d, y — h 

6. Find the area of the ellipse y® = {x — 2) (9 —2 a). 

6. Show that the area between the curve xi/ = {a-x) and its asymptote 
is equal to the area of a circle of radius a. 
This curve is called the witch of Agnesi, 

7. Find the area of each loop of the curve x = a sin 2 d, y = & cos S, 

8. Find the area of the loop of ay'’- ■* 4 a?* (a — a:). 

9. Find the area cut off from the parabola y^ == 16ar by the straight line 
y Bs= 3 £C. 

10. Also the area between the two parabolas y“*=20x and a:* = 16y. 

11. Draw the curve (a — ar) y’«« a;* (a + a?); and find (i) the area of the 
loop, (ii) the area between the curve and its asymptote. 
This curve is called the strophoid. 

12. The rectangular hyperbola x* —y* = 3a* divides the circle a;* + y*=5a^ 
into 3 parts; find the area of each part. 

U 2 
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13. Find the area of the oval of the curve ai/ — (cc~a) (a?~5 a)^, and find 
its ratio to the area of the circumscribing rectangle with sides parallel 
to the axes. 

14. Prove that the area between the catenary y «= acosh (:r/a), the axes, 
and any ordinate FN is double the area of the triangle I'NL, where NL 
is the perpendicular from N to the tangent at F. 

16. Find the area cut off from the hyperbola = 1 by the double 
ordinate x = 2a. Find also the area between the curve and the lines 
which join the ends of the double ordinate to the origin. 

10. Find the area of the ellipse + 4 — G ir + 8;/ + 9 0. 

17. Also of 9a:^ + 16i/* — 90.r —64^ — 119 — 0. 

18. Find the area of the curve 5 + C 4 2 + 7 a: 4 6;/ 4 G = 0. 

19. Find the area common to the ellii^ses x’^/a^ 4 xfjV^ — X and x^j])^ 4 1. 

20. Obtain the area of the ellipse whose equation is — — {x—l]{^~x), 

21. Find the area of the curve ;rV®-f 

[Put x=acos“d, y — as\n^0]. 

22. Draw the curve * (:r* + 4 a^j ^ = 8 a*, and find the area betw'een the curve 
and its asymptote. 

23. Find the area of the curve x ^ 2a cos 0 + a cos 2d, y — 2a sin d 4- a sin 2d. 

24. Find the area of the astroid + 

26. If y =^f{x) be a closed curve, show that y = hf{xja) is also a closed 
curve, whose area is ab times the area of the former cui ve. 

166. Approximate integration. 

The preceding method of finding an area requires (i) that wo 

know the equation of the curve, and (ii) that the equation may give 

y as an integrable function of x. In practical work, a curve is often 

plotted from a number of isolated observations or drawn by some 

mechanical device, so that the equation of the curve is not known. 

Various methods have been devised for finding an approximate value 

for the area of such a curve. Moreover, since the integral of any 

function may be represented graphically by an area bounded by the 

graph of the function and the axis of x, these methods may be used 

to find an approximate value for the integral of a function whose 

graph can be drawn, but which does not yield to any of the ordinary 

methods of integration. 

For instance, if the value of 

the indefinite integral of l/v/(l4-a^) in terms of elementary functions, 

and therefore cannot find the exact value of the definite integral by the 

method of Art. 144, but by plotting the curve y* = 1/(1 4 a:®) carefully, and 

using one of the following methods to find approximately the area between 

the curve, the axes, and the ordinate a? = 1, we obtain an approximate 
fi ^ 

value for y dx, i. e. for the given definite integral (1 4-a.'®j'i dx, 
Jo Jo 

♦ This is the curve in Question 6, with x and y interchanged, and a replaced 
by 2tt. 

'1 

(l4-a:®)"i dx be required, we cannot find 
Jo 
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The simplest and most obvious way of approximating to the area 

between a curve and the axis of x is to draw a number of equidistant 

ordinates, and then, by joining their extremities, obtain a series of 

trapeziums whose areas can be found by elementary geometry; the 

sum of these areas will be less or greater than the actual area 

according as the curve is concave downwards or upwards. By 

drawing tangents at the ends of alternate ordinates and producing 

these tangents to meet the consecutive ordinates on either side, wo 

obtain a number of trapeziums, the sum of whose areas is greater or 

less than the actual area according as the curve is concave downwards 

or upwards. Hence the actual area is intermediate in value between 

the sums of the areas of these two sets of trapeziums. The more 

ordinates are drawn, the more accurate is the approximation obtained, 

and the error involved in the approximation is obviously less than 

the difference between the two sums. 

A more accurate approximation than is possible by tliis method is 

obtained by the rule known as ^ Simpson’s Rule \ 

166. Simpson’s Rule. 

? ^2? ^3 ordinates of three points A, and C (Fig. 100), 

whose abscissae are a — a, and a + and let h be small. 

Suppose y = f{x) to be the equation 

of the curve (the form of the function 

f(x) may not be known); let P be any 

point on the cuiwe between A and C, 

whose coordinates are (a:, p). 

The area IIA CL = f ydx 
Ja-A 

fa+A 
= f[x)dx. 

Ja-* 

Let a? = a + 0 ; then as x increases 

from a — h to a + /», s increases from Fig. 100. 

— ^ to 1i; 

the area = I f{a'\-z)ds. 

By the extended Mean-Value Theorem (Art. 119), 

/(a + ^f) = f{a) + zf (a) 4-1 {a + Oz). (i) 

If z is very small, the last term will only differ by a very small 

quantity * from I z'^f^ (a), 

* If /(x) is a quadratic function of x, say px*-f gx + r, /"(x) has the constant 
value 2p for all values of x, and hence in this case the following expression for 
the area is exact, and not merely an approximation. 
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Hence the area = [f{a)Ver(a) + \z'^r(a)]dz, 

^f{a)He'^f{a) + Wr(a) I* 

approximately, 

= 27t/(a) + 

= y»[6/(a) + Fr (a)]. 

This can be expressed in terms of the ordinates y-^, y^, y^; for 

!/i = /(«—^ = /(a) — hf (a) + ^ h'^f" (a), approximately; 

2^2 =/(«): 

^3 = /(“ + ^0 = /(a) + (a) +1 (a), approximately. 

Hence + ^3 = 2/(a) + 7i^ f" (a), an d «/i + 4 + 2/3 = 6/ (a) + li^f'ia). 

. •. the area i/A CL — i h {y^ + 4y^ + y.^). 

If there be any odd number (2w+l) of ordinates, then, applying 

this result to tbo areas between y, and y^, y^ and y^, y^ and y-,, 

y^n-i and y^„+i, we have, as an approximate value for the whole area, 

3 7* [(yi + 4y2 Ay^) + (y, + -iy^ Ays) + (2/5 + ^y^ + y,) + ... 

+ (2/271-1 + n + 272n-i r)l 

= 3*[2/i+y2n+i+2(y3+y5+ ••• +2/2n-i)+4(2/2+2/4+ - +y2n)]- 

This is Simpson’s Eule, viz.: To obtain an approximate value for 

the area, divide it into an even number of strips by eqxiidistunt ordinafcs, 

and multiply one-third of the distance between consecutive ordinates by the 

stem of the first, the last, twice all the other odd ordinates, and four times 

all the even ordinates* Since we found the area of two strips at a time, 

the number of strips must be even and therefore the number of 

ordinates odd. If the curve cuts the axis of x at one or both 

extremities of the area, then one or both of the extreme ordinates 

must be taken as zero. 

Equation (i), when f" (a + Oz) is replaced by (a), is of the form 

y—f(a-\-z) = a-irbz^cz\ 

which is the equation of a parabola whose axis is parallel to the 

axis of y. Hence just as the method described at the end of the 

preceding article consists of taking the arc joining two consecutive 

points on the curve as a straight line, so the present method consists 

of regarding the arc through three consecutive points on the curve 

as an arc of a parabola. 

As explained in the same article, the method may be used to 

obtain an approximate value for any definite integral, if Vi, y^, ... 

are the values of the function to be integrated at equidistant intervals. 
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The second of the following examples will show how close an 

approximation may be obtained by the use of it, and also shows 

a convenient way of arranging the calculation. 

Examples: 

(i) A curve is drawn through the points (1, 2), (1*5, 2*4), (2, 2*7), (2*5, 2*8), 

(3, 3), (3*5, 2*6), (4, 2*1); estimate the area beiweeen the curve, the axis ofx, and 

the ordinates x => 1, i = 4, 

The distance between consecutive ordinates is *5; hence the area is 

approximately 
« [2 -f- 2*1 + 2 (2*7 + 3) + 4 (2*4 + 2*8 + 2*6)] 

= 1 [46*7] « 7*8 nearly. 

(ii) Find sin x dx. 

Divide the range of integration into 10 parts, each equal to the radian 

measure of 9°. 

Then 

=«sin 0 

f/ij=:8in 90 

2 (other odd ] 

ordinates) J 

4 (even or-] 

dinates) J 

0, ya“sm 9°- -1564345, 

<’= 1, y, = sin27'’= -4539905, 

1= 5-3137516, y„=8in45°= -7071068, 

1= 12-7849064, y8=sin63°= -8910065, 

y,o=Bin8r= -9876883, 

Sum ) 1 
19*098658. of even = 3*1962266, 

ordinates] 1 

y3*8inl8°« *3090170, 

i/« = sin36°- *5877853, 

^7*= sin 54”= ‘8090170, 

yj,=sin72°= *9510565, 

Sum of ) 
other odd =2*6508758, 
ordinates j 

Hence the approximate value of the integral 

- J X TT X 19*098658 - 1*000003. [“jin- 

— cosiP , which is 1. 

(iii) Find approximately the value of J" e“*^ di. 

(The function e cannot be integrated in finite terms.) 

Divide the range of integration into 10 equal intervals, each *1, 

Then, from Table X, 

y. = 1. -9900, -9608, 

= *3679, = -9139, *8521, 

2 (other odd y’s)= 6*0758, -7788, *6977, 

4 (even ys) = 14*9608, y,=e-«= -6126, 

y,„=e-»= -4449, 

•5273, 

22*4045. 
Sum of even| ^3.^ Sum of othert 

ordinates ) odd ordinates) 

Hence the value of the integral is J x *1 x 22*4045 « *7468,... 
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An approximation can also be made to the value of this integral by 

expanding and retaining a few terms only ; since x is not greater than 
1, the terms will diminish fairly rapidly. E. g. if we neglect terms after 
the 6th, 

Jo * Jo ^ ^ ‘i '. 3 ! 4 ! 6! J 

-= *7467.... 

Since the terms decrease and are alternately + and the error in 
this result is certainly 

‘ 13 J »i-e- < ir^5nr» which is *0001. 

The above method may also be used to obtain approximate values 
for such numbers as tt and c. For instance, since 

I'l 
dx 

: Jtt, and r Jo 

dx 

we can, by dividing the ranges of integration into equal intervals, 
and treating the corresponding values of the functions as above, 
obtain approximate values for ^ tt and 

Also since ince 
Ji 

^dx 
■ 2, we can in a similar manner obtain an 

approximate value for log^ 2, whence e can be found, since 

log,2= logio2/logioC (Art. 91). 

This gives logio«, and e is then found from a table of common 
logarithms. 

167. Moan values. 

If the range b — a be divided into n equal intervals, the values of 

a function f(x) when x^a, a + A, a + 2/j, ... a + (»—1)/^, are 

/(a), /(d + h), /(a + 2/i), ... /{a + (n—1)^} respectively, 

and the arithmetic mean of these values is 

[/(a)+/(a + 70+ ... +/{a+(n~l)M]/n. 

Since = b — a, this may be written 

^[/(a)+/(« + ^)+ ... +/{a + (w—l)7i)]/(b~a). 

The limit to which this arithmetic mean tends, as » is indefinitely 

increased, is called the mem value of the function over the range 

rc = a to a; = b. By Art. 143, this limit is 
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Geometrically, dx is the area 

EABK (Fig. 101), and l-^a is HR; 

therefore the mean value is represented 

by the height of the rectangle on the 

base IIK^ which has the same area as 

IIABK, It will evidently be equal to 

the value of the function at some point 

M within the range. (See Theorem VI, 

Art. 146.) 

MM K 
Fig. 101. 

Examples: 

(i) The mean value of sin 1. between x = 0 and x ^ tt 

fiin X dx • > *6366. 

(ii) The mean value of sin^ x between x = 0 and x = tt 

1 
sin® X dx * 

, , 2 1 TT 
sin*X dx^ - • x' X : 

TT z ^ 

The latter integral is important in the theory of alternating currents in 
Electricity. 

If the quantity whose mean value is required can be expressed as 

a function of one or other of several variables, it is important to 

notice which is the variable to which equal increments are given. 

(iii) A particle is projected vertically upwards with velocity of 80 feet per 
second ; find the mean value of the velocity up to the highest point. 

The velocity may be considered as a function of the time, or of the distance 
from the starting point. 

(a) For equal increments of time. The time to the highest point is 2\ 
seconds, and r = 80 —32^ gives the velocity at any instant. 

I f2-6 r -,2.6 
/. the mean velocity 2*5 J — 32 ** f j^80 f — 1G J 

-= f [200-100] = 40 ft. secs.; 

which is obvious, a priori, since the velocity decreases uniformly as the time 
increases. 

(b) For equal increments of distance. The total distance is 100 feet^ and 
r® «= G400~64s gives the velocity at the height s above the point of 
projection. 

the moan velocity 
T juu I iwu 

lisl /(6400-64s)rf» = xg5 ( 
/: 

^ • lOOO **= 53^ ft. secs. 
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(iv) A quantity of steam expands so that it follows the law pv’* == 1000, 
p being measured in pounds weight per square inch; find the mean pressure 

as V increases from 2 to 5 cubic inches. 

Here p 

the 

* 1000and the increase in volume 3 cubic inches; 

mean pressure J lOOOt?^^ dv* 

: [5^ — 2^] *» 385 lb. wt. per sq. inch, nearly. 

Examples LXI. 

Find approximate values for the following definite integrals 1-4: 

'' r* , 
1. (1oc^) dx, 2. e^^ dx. 

Jf* Ji 

8*^ log(l 4'Binrr)da:, 4.J^ dx, 

5. Find an approximate value for tt by applying Simpson’s Rule to the 

r* dx 
integral ^-“3 (see end of Art. 156). 

Jo 

6. Find an approximate value for n from 
i dx 

7. Find an approximate value for log^2, and thence for e, from 

8. Find the mean value of \/(4-hSx) from x ** 1 to a; 5. 

0. Also of 1/x from a; = 1 to a? = 10. 

x~^ dx. 

10. In simple harmonic motion, s — a cos nt. Find the mean value of the 
velocity during one quarter of a complete oscillation (i) for equal 
intervals of time, (ii) for equal intervals of distance. 
Find also the mean values of the acceleration. 

11. Show that, in siinjjle harmonic motion, the mean kinetic energy, with 
respect to the time, is half the maximum kinetic energy. 

12. Find the mean value of the ordinate of a semicircle of radius r when 
taken at equal intervals, measured (i) along the diameter, (ii) along 
the arc. 

18. A quantity of steam expands and follows the law pr’** = 500; find the 
m(‘an value of the pressure as v increases from 3 to 8. 

14. Find the mean value of 10 sin 250 f as f increases from 0 to Yjjy’r. 

16. Find the mean value of C* where C = 10 sin 4 when 41 increases 
by 2n, 

16. Also where C ^ a cos {pt 4 (X) when pt-\-oc increases by 2 tt. 
17. Find the mean distance of points on the circumference of a circle from 

a fixed point on the circumference. 

18. A number a is divided into two parts; find the mean value of their 
product. 

19. Find the mean value of the ordinates of the parabola y* — 4 ax from 
X « 0 to X 4 a. 
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20. Find the mean value of the positive ordinates of the ellipse + L 

21. The radius of a circle rotates uniformly about the centre ; find the mean 
value of the ordinate of its eitremity. 

22. Find the area of a curve in which successive ordinates at intervals of 
‘2 inch are 3*5, 3*2, 2*8, 2*9, 3*3, 3*6, 4 inches. 

23. Equidistant ordinates of a curve are 4*2, 4*55, 4*9, 5*17, 4*8 inches; 
estimate the area between the extreme ordinates, which are 3 inches 
apart 

24. Use Simpson’s Rule to find the area between xy = 12, the axis of x, 
a?1, a?«4; and compare the result with the area found by 
integration. 

26. Find, if « *2, the value of !/(i^ figures. 

VOLUMES 

168. Volumes of solids of revolution. 

volume of a solid of revgluj^n was defined in Art. 14 (4), and 

some simple cases have alreacTyTIeen considered in Art. BT7 

As, in Fig. 96, the area AHKB is the limit of the sum of all 

the rectangles such as so^^lh4.je^rve APB rotates about the 

axis of X and thereby forms a solid of revolution, the volume of this 

solid is the limit of the sum of the cylinders generated by the 

rotation of these rectangles, i.e. the volume 

^Lt'E(T7F]iP.MN) Lt2::: 8x TT 7/2 Jx. 
a 

Examples: 

(i) Find the volume foimed hy the rotation of one arch of a cycloid about 

its base. 

The volume 
fatr dx fZir 

Tvy’^dx^l Try^ —rra-(1 — cos cr (1 - cos d) dd 

r2ir 

«=7ra®j (1 —3 cos d + 3 cos’d — cos*d) dd. 

Now 
^2n 1*2 n 

co8ddd=*0; coB*ddd = 4 cos*ddd = n-; cos*ddd=:0; 
Jo jo jo jo 

(Theorem V, Art. 146.) 
.'. the required volume » tt a’ [2 n- - 0 + 3 tt ~ 0] 5 n-*a*. 

The volume of a solid of revolution may be found in a similar 

manner, if the curve rotates about a straight line parallel to one of 

the axes of coordinates. 
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169. Volume of any solid. 

If the solid be divided up by planes perpendicular to the axis of x 

at distance hx apart, and if A be the area of the section by the plane 

which is at distance x from the origin, is the volume of the 

cylinder of base A and thickness and the volume of the solid will bo 

the limiting value of 2^4.i. e. f Adx taken between proper limits. 

In Art. 158, A — ; in some cases, A can be found in terms 

of X by an integration, and then a second integration will give the 

required volume. As examples of this method, we will take the 

following: 

Examples: 

(i) ^id the volume of acone of height h standing aiijUiptical base whose 

semi-as^ are a and UT ^ ~ 

The equation of this ellipse, referred to its axes as axes of coordinates, 

is + f [P- Its area ~ 4 y dx. Taking the coordinates 
JO 

of a point on the ellipse in the form x ~ a cosd, y — tsin d [Art. 50], the 
limits for 6 are ^ tt and 0, hence the area 

fO fiTT 

c: 4 5 sin d X - a sin d dJ = 4 sin* 6 dd ^ ah . \ , \ Tr = n ah, 
JiTT Jo 

Next, taking the perpendicular from the vertex of the cone to its base as 

axis of the area 4 of a section perpendicular to OX (Fig. 103) at distance 
X from 0 is to the area of the base as a:*: ; i. e. A = tt ab x^jh^, 

.% the volume of the cone 

A dx — - 
Jo 

ab 

i?" 
<dx = -^flk’‘=^i7rabh. 

(ii) Find the volume of an ellipsoidy i. e. a solid figure such that the section 
by any plane parallel to the plane XOY^ or perpendicular to either OX ox OF, 
is an ellipse. 
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Fig. 104. 

LetjOL»J^-be41ie flgTni-axe»-Qii» OB (Fig. 104) of the aection by the plane 
XOY; g, e the semi-axes OA, OC of the section by the plane through OX 

perpendicular to OF; therefore ft, c'^are the semi-axes of the section by the 
plane through OY perpendicular to OX. a, b, c are called the axes of the 
ellipsoid. ^ ---" ‘ ^ “— 

Consider fhe^'section FQ by a plane perpendicular to OX at distance a? 
from p. The area oT this section is, by the preceding example,^rriW. QM. 

Since P is a point on the ellipse AB, it follows that -h MF^/b^ «= 1; 

Since $ is a point on the ellipse ACy it follows that A MQ'^/ 

/. MQ ^ c^{a^ — x^)/a\ 

hence the area of the section FQ *= 7rtc(a*-a?’)/a’. 

Therefore the volume of the ellipsoid 

IT he j 
' (« -a 
J-a 

In some cases an approximation may be made to a volume by the 

use of Simpson’s Kule. If, in Art. 156, ••• denote the areas 

of the sections Aj, Ag, ... of a solid at equidistant intervals, the 

application of the rule will give an approximate value for f A dx, 

the volume of the solid between the extreme sections. 

If three sections only are taken, viz. the extreme sections Aj, A^ 

and the section A2 midway between them, Simpson’s Eule gives the 

volume as ^/2(Ai-f 4A2 +Ag), a rule which is sometimes used in 

Mensuration. 
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(iii) Five equidistant sections of a solid are circles of circumferences 86, 42, 
46, 50, and 52 inches, their common distance apart being 6 inches; find the 
volume between the extreme sections^ 

If r be the radius of the first section, 27rr -=» 36; r = IS/xr, and the 
area tt r® 324/7r sq. inches. Similarly, the areas of the other sections are 
441/7r, 529/7r, 625/7r, 676/7r sq. inches. 

/. the volume - J. 6 [324 + 676 -f 2.529 4-4 (441 + 625)]/7r 
= 2 X 6322/77 *= 4025 cubic inches, nearly. 

Examples LXII. 

1. The loop of the curve ay^ ** (a — x) rotates about the axis of x; find 
the volume of the solid formed. 

2. Find the total volume g(‘nerated by the rotation of the curve 
a^y^ s= about the axis of x. 

3. A segment of a parabola cut off by a double ordinate perpendicular to its 
axis rotates about the tangent at the vertex ; find the volume generated. 

4. The same segment rotates about the double ordinate; find the volume 
generated, and its ratio to the volume of the circumscribing cylinder. 

5. Find the volume formed when one semi-undulation of the curve 
y = 5 sin (x/a) rotates about the axis of x, 

6. From an extremity B of the latus rectum of the parabola y* <= A ax, BK 
is drawn perpendicular to the axis of y; find the volume formed by 
the rotation of OBK about Blu 

7. Find the volume of the solid generated by the rotation of the curve 
xy"^ = a* (a —a:) about its asymptote. 

8. The arc of a quadrant of a circle rotatei about its chord ; find the volume 
formed. 

0. Find the volume formed by the rotation of (a — a;) y* « ar® about its 
asymptote. 

10. The curve a:« a cos’d, y*«aBin®d rotates about the axis of x; find 
the volume formed. 

11. One-half of one arch of a cycloid rotates about the tangent at the 
highest point; find the volume generated. 

12. Find the volume formed when one arch of a cycloid rotates about its 
maximum ordinate. 

13. Find the volume formed when the figure bounded by the axis of x, the 
catenary y =■ c cosh (a;/c), and the ordinates x=^ ±c rotates about the 
axis of X, 

14. The common part of the two parabolas y* «« 4 aa? and a?® *= 4 ay rotates 
about the axis of x; find the volume of the solid formed. 

15. The curve * x^ a (log cot J d — cos d), y « a sin d rotates about the axis 
of X, which is an asymptote ; find the volume generated. 

* This curve is called the tractrix. It is the path of a heavy particle A drawn 
along a rough horizontal plane by a string AB, when the end B of the string is 
made to move in a straight line which does not pass through A» (See 
Ex. XVII. 18.) 
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16. A circle of radius r rotates about a tangent; find tbe volume of the 
resulting solid. 

17. Find the volume formed when the figure bounded by the curve 
y =~ a sin (xjh)^ the axis of y and the line y = a rotates about the 
axis of y. 

18. Show that the volume formed by rotating y — e”® (from a? « 0 to 
a; = 00) about the axis of y is four times the volume formed by rotating 
it about the axis of x, 

10. Find the volume obtained by rotating the figure bounded by x^-\-y^ — ai 
and the axes about one of the axes. 

20. Find the volume obtained by rotating the oval part of the curve 
x^y’^ ^ a {x —a) (x — b)^ about the axis oi' x. 

21. The circle {x-af + (y — hf = (r<h), rotates about the axis of x; 
find the volume of the solid ring thereby foinu^d. 

22. Prove that the volume of a cone or pyramid of height Ji, which stands on 
a base of area A, is J Ah, 

23. Five equidistant sections of a barrel are circles of circumferences 80, 90, 
96, 90, and 80 inches respectively, their common distance apart being 
1 foot; find the volume of the barrel. 

24. The bounding sections of a solid are ellipses (perpendicular to its axis) 
with semi-axes 4, 6 inches and 10, 12 inches respectively, the middle 
section is an ellipse with semi-axes 8, 10 inches, and its length is 
9 inches. Find its volume. 

25. A square with a semicircle described upon one of its sides rotates about 
the opposite side ; find the volume generated. 

20. The smaller of the two portions into which an clli})se is divided by its 
latus rectum rotates about that latus rectum ; find the volume generated. 

27. Find the volume generated by the rotation about the line a? = 4 of the 
figure bounded by this line and the curve = x^, 

28. A sector of a circle, radius r, of angle 60'^ rotates about its middle radius; 
find the volume formed. 

29. An isosceles triangle rotates about an axis through its vertex parallel to 
its base; find the volume generated. 

30. A quadrant of a circle rotates about a line through the centre of the 
circle, parallel to the chord which joins the extremities of its arc; find 
the volume generated. 

LENGTHS OF CUKVES 

160. Lengths of curves. 

The length of an arc of a curve has already been defined in Art. 14 

as the limit of the perimeter of an inscribed polygon, when the sides 

are all indefinitely diminished. The process of finding the length of 

a curve is often referred to as the rectification of the curve. Some 

simple examples were worked out in Art. 82 from the fact that 

ds/dx = •/[! + {dy/dxf\ 
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If P and Q be two consecutive angular points of the inscribed 

polygon, whose coordinates are {Xj p) and (x + hxj y+^y)j 

PQ = + (6^)^] = hxV[l-{-{hy/hxY\ 

Hence the length s of the arc between two points whose abscissae 

are a and h 

hx — dXy 

since it follows from the mean-value theorem (Art. 116) that hy/hx 

is equal to the value of dy/dx at some point between P and Q, and 

it was mentioned in Art. 144 that, in the definition of the definite 

integral of a function, it was sufficient to take the values of the 

function at any points within the successive intervals. 

Similarly, the length of the arc may be expressed as 

where a' and V are the ordinates of the extreme points of the arc. 

If the values of the coordinates x and y are expressed in terms of 

a third variable d, it follows in the same way that 

oO 

and therefore the length of the arc is equal to 

dO 

taken between suitable limits for d. 

In only comparatively few cases can the integration be effected 

in finite terms of such functions as have hitherto been considered. 

Even in the case of the ellipse, the resulting integral can only be com¬ 

pletely evaluated by introducing and investigating the properties of 

a new class of functions known as elliptic functions. The integral 

obtained for the length of an arc of an ellipse is called an elliptic 

integral (the name being due to the fact that the rectification of the 

ellipse was the first problem in which such integrals presented 

themselves). 

In some cases an approximation to the length of an arc may be 

made by the use of Simpson’s Rule by taking equidistant values of 

ds/dx or dsjdy. 
un X 
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Examples: 

(i) Find the length of the arc of the parabola y* 4ax from the vertex to 

any point (xi,yi) on the curve. 

In this case it is best to take y as the independent variable. 

Since y® = 4aar, we have 2y = 4a dxjdy\ dxjdy « y/2 a, 

(Art. 139) 

«= |^t/iV^(4a* + yj®) + 4a’Binh”* , since 8inh~'0 =» 0. 

For instance, the length of the arc from the vertex to an extremity of the 

latus rectum, where y^ is equal to 2 a, 

«: 2~ [2 a v^(8 a*) -f 4 a’ sinh"^ 1] «= a {a/2-I- sinh"' 1) 

: a(l*414. . + -881.. 2-295.... a. 

(ii) Fhid the length of the arc of a quadrant of an ellipse. 

The coordinates of any point on the ellipse can be ex})res6cd in the form 

X ~ a cos </), y «= 6 sin </> (Art. 50). Therefore 

(ds/d(l>y^{dx/d(l)y + {dy/d(j)y *= a“ sin* </> + 5* cos* 0 

«=a* — (a* — 5*) cos* c/) « a'’ ~ a* cos* (/j (p. 19); 

s fa {I —e'^ cos* (/j)i dcj) between suitable limits. 

Measuring s from the end A of the major axis where <^) »= 0, s increases 

with (f); therefore d8/d(l> is +. At the end F of the minor axis, ^ tt ; 

hence the values of 0 at the extremities of a quadrant are 0 and J tt, and the 

fiTT 

length of the arc * a (1 — «*C08* </))V* d(}>. 
Jo 

This integral cannot be found in terms of functions hitherto considered, 

but an approximate value can be obtained by expanding (1 —c* cos* ^)V2 by 

the binomial theorem and retaining a few terms only. If the series converges 

rapidly, a good approximation is easily obtained. 

(I~e*c08*^)l ■= l~J«*co8*(^+ e*COB*<p — ——^^e* cob*(j> + 

1 -1 e* cos* </> — J cos* 0“• cos* 0 —. 

This series satisfies the conditions under which an infinite series can bo 

integrated term by term. Assuming this fact^ we obtain, by integrating 

each term between 0 and I tt, the length of the arc 

-= a ^ _ ...J 
In the ellipse, e is always < 1, and the terms diminish rapidly. E. g. if 

the semi-axes are 6 and 10 inches, e* = 1 - 6*/a* »= ’64, and the length of the 

arc « J TT. 10 [1 - *16 - *0192 - *0051] « 5 tt x *8157 

= 12-8 inches approximately. 
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Examples LXIII. 

1. Find by integration the length of the circumference of a circle. 

2. Find the length of the arc of the parabola y’ «= 4 from the vertex to 
the point (9, 6). 

3. Find the length of the arc of the curve ay* -= from the origin to 
the point whose abscissa is J a. 

4. If s be the length of the arc of the catenary y = c cosh (x/c) from 
the vertex to the point (a;, y), show that — 

5. Find the length of the curve y from y = J to y = 

6. Find the total length of the astroid x = a cos* y =- a Bin*d. 

7. Prove that the area between the catenary y = ccosh (a:/c), the axis of x 
and the ordinates of two points on the curve is equal to C5, where 8 is 
the length of the arc intercepted between the two points. 

8. Express the length of one semi*undulation of the curve y *= & sin {x[a) 
as a definite integral. 

0. Find the length of the loop of the curve 3ay“ = x (r —a)*. 

10. Calculate the perimeter of an ellipse whose major axis is 15 inches in 
length and whose eccentricity is 

11. The axes of an ellipse are 10 and 20 inches ; find its perimeter. 

12. Show that in the curve a?V*-|-yV* = aV®, if $ be the length of the arc 
measured from the axis of y, oc x^, 

13. Find the length of the curve y =» log cosx from a? = 0 to x = Jtt. 

14. Find the total length of the curve (x/a)*/* + (y/5)Vs 1. 

16. The eccentricity e of an ellipse is small; prove that the perimeter is 
2 7ra(l-Jc*j, nearly. 

16. Find the length of the curve x*= 2acosd-aco82^, y=2asin^~asin2d 
from d « TT to d a. 

17. Find the length of the curve y “ log [(f*+l)/(e*~ 1)] from x a to 
X n= 2 a. 

18. A curve is given by the equations x*=a(co8 d +dsin d), y=a(sind~dcosd); 
find the length of the arc from d “ 0 to d = a. 

19. Find, by Simpson’s Rule, the perimeter of the ellipse in Ex. (ii), Art. 160. 

20. Find approximately the length of the arc of the hyperbola xy == 12 
from X =* 1 to X « 4. 

AREAS OF SURFACES 

101. Aroas of surfaces of solids of revolution. 

If in Fig. 96 (p. 287) the curve AB rotates about the axis of Xy the 

straight line BQ generates a frustum of a cone ; the sum of the areas 

of all these frusta tends, when ^0, to a limiting value which is 

x2 
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defined as the area of the curved surface of the solid (Art. 14). It 

has been shown (p. 44) that the area described by PQ 

PQx circumference of circle described by middle point of PQ 

= PQ.27T{y-\-lcy). 

the area of the surface formed by the rotation of AB 

^ Lt 2 PQ. 27r {y \ 

^U^(Pq/hs)2ir(y^\hy)bs 

o 
• 2 

27rydSj since PQ/bs-^1 and y + 

where and are the lengths of the arc meavSured from some fixed 

point on the curve to A and B respectively. 

/r 
i. e. area of surface = 1 + j dx (Art. 82). 

If it is more convenient, this may be expressed as 

between suitable limits. 

As with volumes, the area of the surface can be found in a similar 

manner, if the curve rotates about a line parallel to one of the axes. 

In some cases, too, Simpson’s Rule may be used, circumferences 

being taken of sections at equal distances measured along the arc of 

the generating curve. 

Sometimes it is more convenient to express both y and s in terms 

of some other variable d. 

Examples: 

(i) Find the area of the curved surface formed by the rotation of a quadrant 

of a circle about the tangent at one extremity of it. 

Referring to Fig. 102, we have, since PQ — the area of the surface 

= Lt 2 (2 TT MP, PQ) = Lt 2 2 77 (a — a;) abQ 

— ^ 2 77a(l--cos^?)ad^ = 27ra’^ ^ {\ — CQs6)dd 
I, 0 Jo 

«= 2 77 a* (J- 77 ~ 1) s* 77 (tt — 2) 
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B H 

(ii) Find the area of fJir whole surface of a sphere, and the area intercepttd 

between two parallel planes. 

Let the sphere be formed by the rotation of the circle ?/* = about the 

axis of X. If 6 be the inclination of the 

radius OP (Fig. 105) to the axis of x, 

the coordinates of F are (rcos^, rsind), 

and the length of the arc s from A to 

Pis rB, 
The whole surface is twice the surface 

generated by the rotation of AB 

ds Hn- 
2 27r 
Jo 

iff 
rsind. rdd=47rrM sinSdS 47r 

JO 
47rH. 

If the area intercepted between two 

parallel planes HH' and KK' be required, 

and if OL and be the inclinations of OK and Oil to the axis of x, this area 
ds p/s 

•== 2TT f/---c/^ 2Tir I sind (id = 2Trr*(co8a~cos/i^) 
Ja Ja 

«= 27rr(rc03 0l^~rco8;^i) = 2 7rr(OL—OF) = 2;rr. FL. 

This is equal to the area interce})ted by the same two planes on the 

cylinder with axis OA circumscribing the sphere. (See also Art. 14.) 

(hi) Find the area of the surface of the solid foimed by the rotation of one 

arch of a cycloid about its base. 

In the cycloid, y «= a (1 - cos d), ds/dB «= 2 o sin ^ d (Art. 82); 

r2ff 

'dO 

[*2 ff 
2 8in^^d. sin^d (id — Stto® 

the area required = 
'2 ds 

27ry™ dd: 27ra(l — cosd). 2asin Jd dB 

: 4 77 a* sin’Jdcid. 

Let ^d «*»(/); the limits for </> are then 0 and ir, and d BJd 0 — 2. 

the area = 8 tt o’*. 2 sin® 0 (i 0 = 32 77 a* j sin® 0 d 0 

> 32 77 a®. ^ ^ 77 a’. 

Examples LXIV. 

L Find the area of the surface of the solid formed by the rotation about 
the axis of x of the parabola y® — 16 a: from a: — 5 to a: — 12. 

2. Find the area of the curved surface of the belt of a sphere of radius 
1 foot between two parallel planes at distances 3 and 9 inches from the 
centre. 

3. Find the area of the surface generated by rotating one arch of a cycloid 
about the tangent at its vertex (i.e. the middle point of the arch). 
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4. Find the area of the surface generated by the rotation of the cycloid 
about its axis. 

6. Obtain the superficial area of the solid formed by rotating about the 
axis of y the curve ay^ «= from a; = 0 to a; «= 4 a. 

6. Find the area of the surface obtained by rotating a circle of radius r 
about a straight line in its plane at a distance a (> r) from its centre. 

7. Find the area of the surface generated by rotating a quadrant of a circle 
about the tangent at its middle point. 

8. The arc of a quadrant of a circle rotates about its chord; find the area 
of the surface thereby formed. 

0. Find the area of the surface formed by the rotation of the astroid 
-i-yV® ■= aV* about one of the axes. 

10. The arc of the catenary y = c cosh (x/c) from x ^ 0 to x ^ e rotates 
about the axis of y; find the area of the surface formed. 

11. Find the area of the surface of the prolate spheroid obtained by rotating 
the ellipse x’^/a'^-i « 1 about its major axis. 
First prove that {da/d ^ sin* d), where (a sin d, h cos B) are 
the coordinates of a point on the ellipse, and integrate by putting 
e sin d «« sin 

12. Find the area of the surface of the oblate spheroid formed by rotating 
the ellipse a^Ya’ + y*/^^ *= 1 about its minor axis. 

13. The arc of the parabola y* =» 4aaT cut off by the latus rectum rotates 
about the tangent at the vertex ; find the area of the surface described. 

14. Find the area of the surface produced by rotating about the axis of x the 
arc of the rectangular hyperbola y* = a?* 4 2 a* from a? « 0 to x ^ a* 

16. The arc of the catenary y = ccosh (.xj/c*) between x^-c and x^c 
revolves about the axis of x; find the area of the surface generated. 

10. Find the area of the surface formed by the rotation about the axis of x 
of the loop of the curve 3 ay* x {x — a)\ 

17. The part of the curve y =■ e* from x ^ 0 to oo rotates about 
the axis of x; find the surface described. 

18. The curve a; « a (log cot d — cos 2 d), y«* a sin 2d rotates about the 
axis of Xy which is an asymptote of the curve; find the area of the surface 
generated. 

19. Find, by Simpson’s Rule, the area of the surface of the solid described in 
Ex. LXll. 23, the common distance of 1 foot being measured along 
the arc. 

20. Find, with a similar modification, the surface of the solid in Art. 159| 
Ex. (iii). 



CHAPTER XVII 

POLAR EQUATIONS 

162. Plotting of curves from polar equations. 

If the equation of a curve be given in rectangular coordinates, it 

can be transformed into polar coordinates by making the substitutions 

x = rcosOy y = r sin6, (p. 23). 

In the case of several important curves, the polar equation is 

much simpler than the Cartesian equation. 

Examples: 

(i) The Lemniscate, 

The Cartesian equation of a well-known curve called the Leniniscato of 

Bernouilli is + It would not be very easy to plot the 
curve or develop its properties from this equation, but, transforming to 

polars by aid of the above substitutions, we get 

(r")* » a® (r* cos’ d —r* sin’ 6) 

i.e, r’a’(coi‘^d~iin’d) a’co8 2d. 

By the aid of this equation the cuive is easily drawn, and the lemniscate 

afi'ords a good illustration of the way in which the form of a curve is deduced 
from its polar equation. 
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In the first place, a change in the sign of 0 does not alter the equation, 

since cos ( —a) = cos ; this shows that the curve is symmetrical about 

the initial line OX. Again, if 0 is increased by tt, cos 2 6 becomes cos (2^ + 2tt), 

which is the same as cos 2 <9; since the equation is unchanged when the 

radius vector makes half a complete revolution, it follows that the curve is 

symmetrical about the origin. Hence it only remains to plot it from d = 0 

to d = ^ TT. When d — 0, r is numerically equal to a, and as d increases 

from 0 to 1 TT, r decreases from a to 0 ; as d increases from J tt to i tt, cos 2 $ 

is — ; therefore is —, and r is imaginaiy. 

Hence, if the angles between the rectangular axes be bisected by the 

straight lines AO A' and BOB\ the curve consists of two equal ovals in the 

angles AOB and A'OB' which are bisected by XX' (Fig. 106). 

(ii) The Cardioid. 

This curve has the equation r = a(l + cosd), and is of importance in 

Optics. As in the preceding example, it is symmetrical about the initial line 

OX. As d increases from 0 to Jtt, 

r decreases from 2 a to a; as d in¬ 

creases from ^77 to TT, r continues to 

decrease from a to 0. Hence its shape 

is as indicated in Fig. 107. 

From the equation of the curve, 

and the equation of a circle obtained 

on p. 23, it is easy to see a simple 

geometrical construction for the curve. 

rs=a + acosd, and acosd is the 

radius vector of a point on a circle 

of diameter a; therefore, if from 

a point 0 on a circle chords OB' are 

drawn and points F are taken on these 

chords produced at a distance a from 

the circumference, the locus of the 

points P is a cardioid. 

If the equation be given in the form r = a (1 — cos d), the graph is the 

refiexion in the axis of y of the curve shown in the figure. 

Examples LXV, 

Draw roughly the curves in Examples 1-12: 

1. r = 2-1-cos d. 2. r = ad. 8. r—a cos 2d. 4. r = 1-f 2 cosd, 

5. r — asinSd. 6. r=e^^, 7. r6~(i. 8. r = acoB3d, 

9, r a= a sin 2 d. 10. r == 2 a sin 6 tan d. 11. 'F- — <F cos d, 

12. r*=a8ecd + 6: (i) when a>&, (ii) when a = &, (iii) when a<fe. 

13. Transform y’* (2 a — a;) = ir® to polars. 

14. Find the polar equation of a rectangular hyperbola. 

16. Find the polar equation of a parabola. 
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163. Angle between tangent and radius vector. 

Let (r, 0) be the polar coordinates of a point P (Fig. 108) on the 

curve, and (r+6r, d + 60) the coordinates of a neighbouring point Q ; 

therefore the angle FOQ = dO, 

Draw FM perpendicular to OQ. 

rri • nnn rsindO Then sin OQF = 
sin dO bd d8 

so ^ i^' I’Q I'Q 

When Q moves along the curve and approaches indefinitely near 

to P, the limiting position of FQ is the tangent at P, and the angle 

OQF becomes the angle between the tangent at P and the radius 

vector OF, This angle is usually denoted by <f). 

Now Lt (sin bd)/dO = 1, Lt bs/FQ = 1, Lt bO/os dO/ds; 

. , dO 
Sin (p = r ultimately 

Similarly, cos OQr = ^ 

ds 

OQ-OM 
FQ FQ 

r-hbr—r cos bO 

r (1 —cos bO) br 

b$ ^ bs 
bs 

i^Ql 

ultimately cos (/) — 0 + 
ds 

X 1 
dr 

Js' 

since it follows from Art. 13 (10) that 

L 
•■(1 —‘COS b6)_Y ^ 1 —cosSd bO ^ 

6^ - JLt^* id 

Similarly it may be shown that tan 0 = r 
dO 
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The last result can also be deduced as follows: 

ds d6 
tan <#) — r = ^ J"* cos (p ds dr dr 

Again, since sec^ (/> = 1 + tan^ </>, and cosec® (/> = ! + cot® </>, 

it follows that 

and 

i.a 

Examples: 

(i) Prove that in the cardioid r ■= a (1 — coa' 0) the angle between the tangent 

and the y'ndhis vector is half the vectorial angle. 

We have drjd ^ = a sin ^; 

/. tan (j) 
dS a(l —cos^) 

dr ~ asiii^ 

2 sin* \ 6 

2 sin J (? cos J 
tan ^ 

whence <^ = J 

(ii) Find the polar equation of the curve in which the inclination of the tangent 

to the radius vector is constant. 

Let the tangent be inclined at an angle (X to the radius vector; 

then tan a «= rrf(9/(7r, /. ** (tan a)/r, 

whence 6 « log r. tan a -f C. 

Let the curve cut the initial line from which Q is measured at distance a 

from the origin, i. e. let r « a when ^ 0. 

Then 0 « log a. tan CX + (7, and C ~ log a. tan tx; 

/. ^tan a (logr—loga) 

i. e. ^ cot a *« log {rja), whence r « a^ecota^ 

This curve is called an equiangular spiral (Fig. 109). 
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104. Perpendicular from origin to tangent. 

If p be the perpendicular from the origin to the tangent and u 

the reciprocal of the radius vector, to prove that 

Since (Fig. 110) p = r sin f/), we have 

If a perpendicular to OP through 0 meet the tangent and normal 

at P in P and G respectively, OT and OG are sometimes called the 

polar subtangent and polar subnormal. 

Evidently the polar subtangent = r tan (f) = dOldr, 

and the polar subnormal = r cot </) == drjdO. 

105. Tangential-polar or^ and r equation. 

If r be the radius vector of a point P on a curve, and p the perpen¬ 

dicular from the origin to the tangent at P, the equation which gives 

the relation between p and r is called the tangential-polar or p-r 

equation of the curve. In many curves this relation takes a very 

simple form. 
The tangential-polar equation can easily be deduced from the 

ordinary polar equation. It was shown, in the preceding article, 

that 
1 1 
pi- + r* ' 

By eliminating <9 between this equation and the polar equation of 

the curve, the tangential-polar equation is obtained. 

In a few cases it can be obtained quite easily geometrically. 

It is obvious at once that the equation of a circle is p —r, if the centre be 
taken as origin; the equation of a straight line is p » constant; that of an 
equiangular spiral (Art. 168, £z. (ii)) is p rsinX 
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Again, if P (Fig. Ill) be any point on a circle, ONtbe perpendicular from 

Fiij. 111. 

a fixed point 0 on tbe circumference to tbe tangent at P, and OA the 

diameter through 0, the triangles OAP, OPA are similar. 

ON/OP = OPj OA, i. e. 2 a or c= 2 oj). 

In the parabola, it is easily proved that the perpendicular from the focus 

to a tangent meets it on the tangent at the vertex. 

The triangles AST, YSP (Pig. 112) are similar; 

AS/SY ^ ST/SP; i. e. a/p ^ p/r or p* ■■ an 
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In the case of the ellipse, it is a well-known theorem that the rectangle 

contained by the perpendiculars SY, S'Y' (Fig. 113) from the foci to any 

tangent is equal to 

The triangles SPY, SPY' are similar; hence, taking the focus S as origin, 

~2 - —gy2 " ^,p - ' ^ “ > 

7^2 O ^ 
Similarly, the corresponding equation for the hyperbola is = ± +1. 

As examples of the way in which the tangential-polar equation 

can be deduced from the polar equation, we will take the lemniscate 

and the cardioid. 

In the lemniscate, r" ~ a’ cos2 ^ (Art. 162). Differentiating with respect 

to d, 2rdr/de = -2a®sin2d; 

/dry a^sin^2d a^(l—cos®2d) a^~r* 

[dOj r* r* /- 
1 1 1 /drV 1 1 a*~r^ a* 

••• p, = p + r‘ (J = r» = ° P' 

In the cardioid, r = a (1 -f cos d), dr/d6 = —asin 0, 

/• (dr/d d)® — a* sin* d = a* - a* cos* d = a* - (r - o)* = 2 ar - r*; 

• 1 ^ I/O 2 a 
• • p = + r* (2ar-r’) = ‘ 2 ajA 

Examples LXVI. 

1, Prove that <^ *= J — in the parabola r (1 4 cosd) == 2 a. 

2. Prove that, in the curve r = ae^^, the tangent is inclined at a constant 
angle to the radius vector. 

8, Find the angle between the tangent and the radius vector at the point 
(8 I on the cardioid r *= a (1 + cos d). 



818 POLAE EQUATIONS 

4. Find in terms of r tlie value of ds/d6 in the cardioid r «= a (1 + cos 0), 

6. Prove that in the curve r* « a* sin 2d the angle between the tangent 
and the radius vector is double the vectorial angle. 

6. Prove that in the curve rd = a (Ihe reciprocal or hyperl)olic spiral) the 
polar Bubtangent is constant. 

7. Show that in the curve r ■=* a sin* Jd the inclination of the tangent at 
any point to the initial line is four times the angle between the tangent 
and the radius vector. 

8. Find the angle between the radius vector and the tangent at the point 
on the curve rd = a where 0 = tt. 

9. Prove that in the curve r" = a’* sin n d, n d. 

10. vShow that in the curve r *= ae^ the polar subtangent and Bubnormal 
are equal. 

11. Prove that, in the curve r(l -cusd) «=2a, ^ ir» 

12. If ON l)(3 the perpendicular from the origin to the tangent at P, prove 
that FN == r dr/ds. 

13. Provo that, in the curve r” *= a" cos n d, ds/dS = nsec (”“^)/"Md. 

14. Show that r*cos2 d = represents a rectangular hyperbola. 

15. Show that, in the curve cos 2 d •= a*, pr = a*. 

10. Prove that, in the curve r = a d, l(a} 

This curve is called the spiral of Archimedes. It is the path of a point 
which moves along a straight line with constant velocity, while at the 
same time the line rotates about a fixed point in itself with constant 
angular velocity. 

17. Prove that, in the curve r =n a/d, p’ = a* f*Y(a® + r*). 

18. Show that, if r’* *= a” cos nd, *= a”p. 

19. Show that in any curve ds/dr = r/-v/(r^~p*), 

20. Prove also that dr/dd »= r^{r^^—p’'-)lp. 

21. Deduce from the preceding result the equation of the curve in which 
r* *= 2 ap'-*. 

22. Prove that all chords of the cardioid r = a(l+coBd) through the 
origin are equal in length. 

23. Find the maximum double ordinate of the cardioid. 

24. Find the distance from the origin of the tangent (perpendicular to the 
axis) which touches the cardioid at two points. 

26. Find the maximum ordinate of the lemniscate r® = a* cos 2 d. 

26. If u and X) be the components of the velocity of a moving point P along 
and perpendicular to the radius vector OP, prove that w = r 

27. Show that, in the rectangular hyperbola r® cos 2 d = a*, p^ ~ cos 2 d. 

28. The curve r = 2 + 4cosd consists of two loops through the origin, one 
within the other; find the directions of the tangents to the curve at the 
origin. 

29. Find the maximum double ordinate of the curve r = a-f Jeos d (which 
is called a lima<;o7i), 

80. Find the ‘p and r’ equation of a hyperbola, taking a focus as origin. 

81. „ „ „ „ „ an ellipse, taking the centre as origin. 

82. Find the distance from the origin of the tangent which touches the curve 
r = a + & cos d at two points. Compare this result with that of Ex. 24. 

88. Prove that in the equiangular spiral the polar subtangent varies as the 
radius vector. 
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84. Prove that in the curve a 6 the polar subnormal is constant. 

85. Prove that in the curve r = a sin^ the tangent and the initial line are 
equally inclined to the radius vector. 

86. In the curve r* cos 2d = find the inclination of the tangent to the 
radius vector when d « J tt. Explain the result geometrically. 

166. Areas in polar coordinates. 

Let OA, OB (Fig. 114) be two fixed radii of a curve making angles 

CK and p respectively with the initial line. Let (r, 6) be the polar 

coordinates of any point P on the arc AP, and let n be the area 

between the curve and the radii OA, OP; let Q be the point 

(r-f6r, d-f6d). The increase 6d in the angle d produces the increase 

rOQ in the area g. 

Fi;» 114. 

If circles with 0 as centre and OP, OQ as radii cut OQ and OP 

respectively in 31 and then the area OJ'Q is intermediate in value 

between the sectors 0P3I and OQN^ 

i. e. bjs > \r^ hd and < ^ 

bz/lO is between J and ^(r+5r)^ 

In the limit, when Sd—♦-O, r-for—>r and bzJlOdz/dO; 

As in the case of rectangular coordinates, the same result is obtained 

by taking the area AOB as the limiting value of 2) (A OPJf), 

Lfi pz 
as 5d-~>0, i.e. ^r^dO, 

a Ja 

Example. Find the area of one loop of the lemniscate r* = cos2d. 

Since r ~ 0 when d *= ±i7r, and the curve is symmetrical about d «= 0, 

the area 
"irr f^Tr T “] 1 n- 

2 cos 2 dt^d^a^K sin 2d 
Jo Jo Jo 

Hence the total area of both loops « i. e. the area of a square of side a. 
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167. Lengths of arcs in polar coordinates. 

It was shown in Art. IGJ) that = ^ + (^) > 

therefore, measuring s so that it increases with 

where (X, /3 are the values of 6 at the extremities of the arc. 

As in the case of rectangular coordinates, the same expression is 

obtained by taking the length of the arc as the limit of the perimeter 

of an inscribed polygon. 

Example, Find the total length of the cardioid. 

In the cardioid r == a (1 + cos d), 

{dsjddY = r’4'(dr/dd)® == a^(l+ cosd)^ + a‘'‘sin^d = a’* (2+ 2 cos 

*= 4 cos'^ \ 6; 

total length of arc « 2j 2 a cos | d d d = 4 a j^2 sin J == 8 a. 

168. Volumes and areas in polar coordinates. 

There are no simjde general formulae for the volumes and superficial 

areas of solids of revolution in polar coordinates. The following 

example will show the method of dealing with such cases. 

Example, Find the volume and the area of the surface of the solid fomed 

hy the rotation of the cat'dioid r = a (1 + cos S) about its line of symmeUy. 

Starting with the Cartesian formula, we have 

.ds 
the area ^nyds^ 27rrsm6-~d6 

Jo 

(the limits are 0 and tt since the rotation of the upper half gives the solid), 
T 

2 TT a (14- COS sin ^. 2 a COB J d ^ 

(it was shown in Art. 167 that ds/d ^ = 2 a cos ^ 

r ^ 
«= 4rr 2cos* Jd . 2sin J 6) cos J B. cos\B dB 

Jo 
'^rr 

■alCTra* C08^ Jdsin J d dd 
Jo 

Let <t>; then the limits for (p are 0 and Jtt, and the integral 

f Jtt 
= 32 TT a* cos* (p Bin (j) d (p 

I 32 7ra* • 

. ^/rra*. 

3.1 

5.3.1 



Similarly, the volume 
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r2a pfl dx 
tiy^ dx — J jrr® sin® 6 6, 

821 

since when X"«2a, and d « tt when a; ** 0. 

Now a; = rcos^ =» a(co8^ + cos®^), 

/. da?/d^ ** a (-sin^ —2co8i9sin^) ** -a sin ^ (1 4-2 cob ^); 

the volume > 

a TT a* 

Jo 

TT a* (1+C08 sin* d x — a sin ^ (1 -f 2 cos 

(1 + cos d)* (1 -f 2 cos 0) sin** S dO 

[1 + 4 cos d + 5 cos* 6 + 2 cos* 6\ siii^ B dB. 

Of the four integrals contained in this expression, the second and fourth 

are, from Theorem V, Art. 146, equal 

to 0, and in the other two, the in¬ 

tegrals from 0 to TT are double the 

integrals from 0 to ^ tt. 

the volume 

. 
(sin*B + b cos*B sin* 6) dB 

.2;Ta’[^+5.g—J (Art. 149) 

It will be noticed that, if BMB' 

(Fig. 115) be the double tangent, 

dx/dB is — from A to and + from 

B to 0\ therefore the integral from 

0 to TT gives the volumes formed by 

the rotation of ABM and MBO with 

whose section is ABOB'M 

Examples LXVII. 

1. Find the area of the cardioid r *= a (1 + cos B), 

2. Find the area between the curve r —and the two radii whose 
lengths are 2 and 4. 

8. Show that, in the curve the area described by the radius 
starting from some fixed position is proportional to the increase in the 
length of the radius. 

4. Find the area of the curve r * 2 + cos d, 

6. The curve r « 2 + 4 cos d consists of two loops through the origin, one 
within the other; find the area of each loop. (See Ex. LXVI. 28.) 

C. Find the area of the circle r ■= 2 a cos B, 

7. Trace the curve r* =* a* cos d, and find its area. 

8. Find the area of one loop of the curve r =» a cos 3 d. 

0. Find the area of one loop of the curve r — a sin 4 d. 

UfB ▼ 
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10. Find the area of the eegment of the circle r*® 2acosd cutoff by the 
straight line d = J tt. 

11. Find the areas of the several portions into which the cardioid 
r ■» a (1 + COB d) is divided by the axis of y. 

12. 7’he polar equation of a parabola referred to its focus as origin is 
r (1 -f cos d) — 2 a; find the area cut off by the latus rectum. 

13. Find the length of the curve r «■ between two radii of lengths rj 

and r,. 
14. Find the length of the spiral r— ad from d — 0 to d -■2'4. 

16. Find the length of the curve r «« a cos* J d. 

10. Find the length of the arc of a parabola (see Question 12) cut off by the 
latus rectum. 

17. Express the length of one loop of the lemniscata r* —a’cos 2d as 
a definite integral. 

18. If A be the area of a curve whose tangential-polar equation is given, Srove that dA/dr ^ 
educe from this result the area of the cardioid. 

19. Deduce from the result of Ex. LXVI. 19, the length of the cardioid. 

20. Prove that 2 dA/d d p ds/d d r*; and verify geometrically. 

21. Find the volume of the solid formed by rotating the curve a* cos 6 
about its line of symmetry. 
This solid is called the solid of greatest attraction, 

23. The curve r —4 + 2cosd rotates about its axis; find the area of the 
surface described. 

23. Find the volume of the solid described in the previous example. 

24. The curve r ■- o cos d rotates about the line which bisects it; find the 
superficial area of the solid thereby formed. 

25. Find the volume of the solid in the preceding example. 

20. The area mentioned in Question 12 rotates about its axis; find the 
area of the surface of the solid formed. 

27. Find also the volume of the solid in the preceding question. 

28. The curve r — ^ between d 0 and d — tt rotates about the line from 
which d is measured; find the superficial area of the solid formed. 

169. Epicycloids and hypocycloids. 

If a circle rolls (without sliding) on the outside of the circumference 

of another circle, the locus of a fixed point on its circumference is 

called an epicycloid; if it rolls on the inside, the locus is called a 

hypocycloid. 

The equations of these curves are easily obtained in terms of 

a third variable, as in the case of the cycloid (Art. 60). 

Let P (Fig. 116) be the position of the tracing point when the 

point of contact of the circles has moved from A to H; P was 

originally at A, Let a and b be the radii of the fixed and rolling 

circles, and d, <f> the angles turned through by Oil and CU respectively; 

then the arc AH = ad, and the arc PH be/). 

Since these arcs are equal, ad = b(/>, ie. aO/b, 
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Let {x, y) be the coordinates of P referred to 0 as origin and OA as 
axis of X. Then 

X = OiT—PiU = OG COB 0—PC cos CPM 

= (a 4-cos 0—b cos (0 + </>), [since CPlf = CLK =04-0] 

= (a4-&) cos 0 —5 cos^^^0, (^since 0 = ~ 0). 

y~EO-MG= OC sine-PC sia cm = (a-H 6) sin ^-6 sin 

If the rolling circle be inside the fixed circle^ it will he seen at once, 

by drawing a figure, that the coordinates of the tracing point are 

obtained by changing the sign of b. 

Hence, in this case, 

X = (a—b) co8 04“2> cos^5y^ 0, 

y = (a — b) sin 0—b sin 0. 

If the rolling circle surround the fixed circle, b > a; but the latter 

equations still give the coordinates of the tracing point. The locus in 

this case is sometimos called a pericycloid. 

All these curves are special cases of a class of curves known as roulettes. 

It can be shown exactly as in the case of the cycloid (Art. 60) that, if P be 

joined to H and also to //', the other extremity of the diameter iiC, then 

PH' and PU are respectively the tangent and the normal to the curve at P. 

Particular cases, (i) In the case of the epicycloid, if 6 « a, the equations 

become ar—« 2aco8 0 —aco8 20, y ==> 2 a sin 0-~a sin 2 0. 

In this case the curve is a cardioid; for, if r be the distance of P from A, 

we have r* — + which reduces to 4 (1 - cos 0)*. 

y2 
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Hence r *2o(l~cos^); 

and it is obvious geometrically that in this case /4Pis parallel to OC, and 

the angle PAK is equal to d, so that the locus of P is a cardioid with A 

as pole. 

(ii) In the case of the hypocycloid, if a =» 2 6, the equations become 

07 t cos d + & cos ^ 2 h cos d, y = 2; sin 5 sin d «■ 0. 

Hence the tracing point moves along the axis of 07 and describes a diameter 

of the fixed circle. 

(iii) If a 4 h, the equations become 

X = 3 5 cos ^ -f 6 cos 36 [3 cos d + 4 cos’ B-o cos B] ^ 4^1) cos’ d, 

y = 31 sin 3d = t [3sind-3sin d +4sin’dj = 4 6 sin’d; 

07^/’ + ■« (4 hy/^ (cos’ d -}- sin’d) *= a’/’. 

In this case, the curve is the astroid [Art. 49, Ex. (i)]. 

Examples LXVIII. 

1. Give the coordinates of any point on an epicycloid and a hypocycloid 
when a = 3 fe. Sketch the curves. 

2. Find the value of dtjjdx in an c}ucycloid; deduce that, if IlCir be a 
diameter of the rolling circle (Fig. 116), HP is the tangent at P. 

8. Find ds/dB in an epicycloid, and deduce the length of the curve tiaced 
out in one revolution of the rolling circle. 

4. Find ds/dB and the length of the curve in the case of the hypocycloid. 

5. Find the equation of the tangent to the ei>icycloid in which a = 2 6, at 
the point where d Jtt. 

0. Find the equation of the tangent to the hypocycloid in which a ■* 3&, 
at the point where d « ^ tt. 

7. Find the area between the epicycloid and the fix^'d circle when a = 26. 

8. Prove (geometrically) that the tangeutiabpolar equation of the epi- 
. . o 3 ,4 (a+ 6) 6 

cycloid IS 

9. Find the tangential-polar equation of the hypocycloid when a = 8 6. 

10. Obtain the coordinates of a point on an epicycloid when h becomes 
infinite, so that the rolling circle becomes a straight line. 
The epicycloid in this case is called an involute of the fixed circle. 



CHAPTER XVIII 

PHYSICAL APPLICATIONS 

CENTKES OP GEAVTTY 

170. Centre of gravity. Centre of mass or inertia. 

It is proved in text-books on Mechanics that the resultant of any 
number of parallel forces ..., acting at fixed points 
is their algebraical sum and that it acts at a point whose 
position relative to Ag, ... is fixed. This point is called the 
centre of the system of parallel forces. 

If (Xij i/i)j {X2f ^2^ coordinates of A,, Ag, ..., referred to 
rectangular axes OX, OY, it follows, by supposing the forces to be 
parallel to each axis in turn and taking moments about 0, that the 
coordinates (;c, y) of the centre are given by the equations 

y.N(P)=P,2/i + i^22/2+- = 
Each particle of a body is acted upon by a force, viz. its weight, 

along the line joining it to the centre of the earth (regarded as 
a sphere). In the case of all ordinary bodies, the distance of the 
centre of the earth is so great compared with the dimensions of 
the body that the weights of the different particles of the body may 
be regarded as a system of parallel forces. This system possesses 
a ‘centre’ which is fixed relative to the positions of the particles, 
i.e. fixed with respect to the body. The resultant of this system of 
parallel forces is the weight of the body, and its centre is called the 
centre of gravity (frequently denoted by the letters C. G.) of the body. 

If mi, m2, ... denote the masses of a system of particles whose 
coordinates are (x^y yj), (x^, y^^y the equations above, which 
determine the position of the centre of gravity of the system, become 

X N [mg) = N [mgx); § N {mg) = 2 (mgy); 

i.e. dividing by g, 
Mx = 2 (m:r); My ~ 2 {my)y 

if Jlf be the total mass of the system. 

2{mx) and 2 (my) are sometimes referred to as the first moments of the 

system about the axes of y and x respectively. 

We here confine ourselves to the case in which the body is 

symmetrical about a plane; the centre of gravity lies in this plane, 

and the preceding equations determine its position relative to fixed 

axes in this plane. 
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In the case of a continuous distribution of mass, the summations 

above become definite integrals. The centre of gravity, as given 

by the preceding equations, coincides with the point (defined in 

various ways independently of the weight of the body) known as the 

centroid or centre of mass or centre of inertia of the body. 

If the preceding equations be differentiated with respect to the 

time, we have, using the notation of Art. 62, 

Mx = 2 (mx); My = 2 (my); 

and, differentiating a second time, 

Mx=E (mx); iffy = 2 (mg). 

Hence the velocities and accelerations of the C. G. of a system of 

particles are obtained from the velocities and accelerations of the 

several particles by the same rule which gives the coordinates of 

the C. G. in terms of the coordinates of the particles. 

171. Centre of mass of a lamina and of a solid of revolution. 

(1) To find the centre of mass of a uniform thin lamina bounded by 

a curve y ^f(x\ the axis of ic, and two ordinates x =,a, x 1), let 

the area be divided into elements by ordinates as in Fig. 117; let the 

coordinates of P and Q be (x^ y) and (x-^t^x^ y+ly). 

Consider the rectangle PN. Its area is ylXy and its mass myhXy if m 

be the mass per unit area of the lamina. The coordinates of the 

centre of mass of PN are (x-i- \y)) therefore, if (5, y) denote the 

coordinates of the centre of mass of AIIKBy and iff the total mass, 

Mx 

since flJ-f-jSir-- >x as Sx—*-0; and 

myxdXy 

Mg = Lt2:; ^ myhx.\y■ 
ri 

m.\y^dx. 
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If the area be symmetrical about one of the axes, the centre of 

mass will be on the axis of symmetry, and only one coordinate has 

to be determined. 

(2) If the area AIIKB makes a complete revolution about the axis 

of Xj the centre of mass of the solid of revolution so formed will 

be on this axis. If m be the mass per unit volume, i. e. the density, 

then we have, taking moments about the origin, 

in7:y^xdx, 

which gives the position of the centre of mass of the solid. 

Examples: 

(i) Find the centrt cfmaee^of the area between the parabola y® *» 4 ax, the 

axis of X, and the ordinate x — b. 

We have 

my dx^m X . 2 a*/* xV* ix - 2 maV* x»/* dx ^2may^. ^ f: 
and *■ m X area ■■ tn . | 6.2 aV* &'/* [Art. 79, Ex. (i)] J ma}/^ &*/*. 

by division, x «« J &. 

Similarly My «= J \y •niy dy ^ 2ax dx «** ma6*; 

•*, y mab^fM =« mab^j^ ma*/*&*/* ■» J *■ i • 2 ^/{aV) ^ ^ BK. 

(ii) Find the centre of mass of the volume formed by the rotation of the same 

figure about the axis of x. 

In this case 

Mx **r mny^dxxx ^ mnl 4 ax* dx «= J m tt al^, 
Jo Jo 

Also 
f’b r& 

M— miry^dx^miT 
Jo Jo 

4ax dx «=• 2 mnab^. 

Therefore x »= | &. 

(iii) Find the C, O, of a quadrilateral with two parallel sides* 

Let a and b be the lengths of the parallel sides AB and CD (Fig. HR), 
and c the distance betvreen them; the C. G. obviously lies on the line 
which joins the middle points of AB A M B 
and CD. 

Let PQ be a strip of length x at dis- 
tan^y Trom AB. If m be the mass per 
unit area, the whole mass 

-■ m X area ■» J (a + 6) cm. 

taking moments, 

-r 4 (a + 6) cm y -» mxdyx^y. 
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Let ALK, parallel to BC, meet PQ dXL; then, by similar trianglij^s, 

y AP ^ PL x — a. 
c AD 

and \ [a 4 h) cm y 

DK ■ h-a 
whence x • 

h — a 

b — a 

"J. + sj 
— mc^ i ~^)1 J f 

tf 4- 2 ft 
3(a + 6) 

It follows that the C. G. divides MN in the ratio a42&:2a4-b. 

From this result, the following simple geometrical construction for the 
C. G. easily follows : 

Produce A B to E and CD to F so that BE « CD and DF - AB. Let EF 
meet MN in G. 

Then MG/GN- ME/NF- (J a &)/{« +\h) ^ {a^2b)/(2a4 b); 

hence G is the C.G. of the figure. ' 

We will now find the C. G. of a solid of revolution when the axis 

of rotation is not one of the axes of coordinates. 

(iv) Tlie part of the parabola y” = 4ax between the axis of x and the Jafus 
rectum rotates about the latus rectum; find the C. G. of the solid formed. 

The centre of gravity is obviously on the latus rectum SL (Fig. 119). 
Let AS^a, therefore SL^2a (Ex. II. 20). 
Imagine the solid divided by planes per* 
pendicular to SL into thin circular plates. 

The mass of an element 

«» mirPN^ by = mTr{a — xY 

and its C.G. is at the height y4 | by^ which 
y as by -> 0. 
.’. the whole mass 
f 2a 

«= mn{a~xYdy^mn 

•= »»TT(o’ - J y’ +yVo’) dy 

^ mn [a®.2a — i(2 a)® 4 f?o(2 «)V^*] =* i S ^ ^ 

dy 

Fig. 119. 

Therefore, taking moments, 
[9.a 

JJm7ra®.y=J fmr{a — 

whence 

2a 
[«’y-^y’+A//o*] xfy dy ^ mTrJ 

m 77 [a* . ^ (2 a)® - ^(2 a)* 4- {2 a)Va*] ■« j m tt a^, 

!/ £ « *= A 

172. Centres of gravity connected with the circle and sphere. 

We will now solve some examples connected with the circle and 
the sphere. 
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To find the C. G, or centre of mass of : 

(i) A uniform TaVft the line which bisects the arc, upon 

whicST5E^Tr<?ri5"Ev^ lies, as axis of a?, and let the arc subtend an angle 

2 a at the centre* 

Let m be the mass per unit length. Let s be the length of the arc 

measured from X tu P, and let the angle XOF ^ B (Fig. 120). 

Then the mafes of an element of arc FQ 

of length Ss ■« m mrd^, and the whole 

mass «*=m.2ra. 

Therefore, taking moments about 0, 

' (X 

n\ rlrOi. x* 

whence 

mnlB. 
'a 

2 
^ 0 

m rdO. r cos 6 

2 mr^ sin (X, 

(r sin (X^/Cn, 

(ii) A sector of a circlj. To find the C. 0. 

of the R*’h'*iori in ay regard it as 

the limit of 2 (zii FOQ). The area of this 

triangle ^ r’ sin ^<"1 ■» J r“ SB x (sin ^d)/SB, 

and in the limit, the last factor is 1. Its C. G. 

is on the median from 0 to FQ, and there¬ 

fore is ultimately at djUkta»^-.4-^..J’rom 0. 

The area^’drilie whole sector »= Jr*x2a; 

hence, if m be the mass per unit area, and 

therefore r^OLm the whole mass, we have 

’ a 

Fig. 120. 

(Xmx X ' 

whence 

m ,\r^ dB ,\rcos ^ = 5 wr’ sin Df, 
\ ^ . 

-'f-frXsihapa.* 

(iii) \'^e area of the surface of a sphere intercepted hy itvo parallel planes, 

Consider the surface formed by the rotation of the arc AB (Fi^. 120) about 

the axis of a;, and take, as in Art. 161, an element of surface/2 7ryJ)^.%Its 
r\ _ J.* 1._r.__1 •-I. j ± T •* C. G. i* at a distance from 0 which tends to the limii a? as 

Mx ■= fm 2 Try ds, x (between suitable limits) 

ror 

r ■ n-ir rsi 
> 

rsinB, rcos d. rdB (if iS be the values of at ^ and JB) 

sin B cos B dd mirr^ m: 
■ mnr^ (cos'* ^ — cos® (X). 

ra 
Also, 2Try ds «* w 2 nr sin B ,rdB = 2 m rr r* (cos/3 —cos O:). 

J 
/. by division, « J r (cos /S -f cos a) ■= J (OM4 ON), 

Hence the C. G. is half-way between the bounding planes. 
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(iv) The volume of the portion of a sphere cut offhy a plane, 

Consilflff^irVoHme^ AMX (Fig. 120) about tbe 

axis of a?, and take an element of volume jr y’^x. Its C. G. is at a distance 

from 0 which tends to the limit x as 5 x -VO. Therefore, denoting OU by 

M£' 

•r 

s \ m Try* dxxx, / 
X/' 

In this case, it is more convenient to integrate with respect to 

Mx = 

Also, M= 

m TT a? (r® — x’) dx •«. m TT J r* x'* - J 

m IT [\ \ r* — h* — \ V)] 

J rr (H — 2 r* A* ^h*) ^ jmTi (r* — 

I m n {r^ — dx m tt\ X ~ \ \ i«=:Jm7r(2;'*—8r®^ + h^)- 
h h JA 

by division, x « 
3 (H-fe*)* 

4 2^^-3r=*A4;i^ 

after removing the common factor (r—h)^. 

Particular Cases, 

3 (r 4 

4 2r->ch 

If in (i) we take a — |^tr, we have the C. G. of a semicircular arc at 

a distance 2 rjir from the centre along the middle radius. 

If in (ii) we take a we have the C. G. of a semicircular area at 

a distance 4 r/Zrc from the centre along the middle radius. 

If in (iii) we take a « | rr, ^ 0, we have the C. G. of the surface of 

a hemisphere or of an indefinitely thin hemispherical shell at a distance J r 

from the centre along the middle radius. 

If in (iv) we take -■ 0, we have the C. G. of a solid hemisphere at 

a distance | r from the centre along the middle radius 

173. Application of Simpson’s Rule to centres of gravity. 

If the equation of the bounding curve (in the case of an area) or 

the generating curve (in the case of a solid of revolution) be not 

known, or if the expressions obtained by the method of Art. 171 

cannot be integrated, the position of the C. G, can be found 

approximately by Simpson^s Rule (Art. 156), as shown in the following 

example: 

A curve is drawn through the points (1, 2), (1*5, 2*4), (2, 2*7), (2*5, 2*8), 

(3, 3), (3‘5, 2*6), (4, 2*1); find the C. G, of the area between this cunCy the axis 

of X, and the ordinates i » 1 and i = 4. 

We have x 

The value 

”4 r4 

» xy dx -r 
Ji Ji 

ydx; y’ i y* dx -rj ydx. 

y dx has been found in Art. 156, Ex. (i), to be 7*8 nearly. 
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To find xy dXf we first write down the iuccesBive values of xy at each 

point; they are 2, 3*6, 5*4, 7, 9, 9*1, and 8*4. 

The sum of the first and last values — 10*4, twice the other odd values 

2 (5*4 + 9) « 28*8, four times the even values « 4 (3*6 4 7 + 9*1) « 78*8. 

/. the approximate value of the integral x *5 (10*4+ 28*8 4 78*8) = 19*67. 

Similarly, the successive values of y* are 4, 5*76, 7*29, 7*84, 9, 6*76, 

and 4*41, Hence the approximate value of 

2 J V = I X 3 [4 + 4-41 + 2 (7-29 + 9) + 4 (5-76 + 7-84 + 6-76)] 

- t'j (122-43) - 10-2. 

Therefore the coordinates of the 0. G. of the given area are approximately 

19*67/7*8 and 10*2/7*8, i.e. (2*52,1*31). 

174. Pappus^ theorems. 

These are two useful theorems first given by Pappus of Alexandria 
about 300 A. D. 

(1) If an arc of a plane cui*ve rotate about an axis in its own plane 

which does not divide it into two parts, the area of the surface 

thereby formed is equal to the length of the arc multiplied by the 

length of the path of the centre of gravity of the arc. 

Let the axis about which the curve rotates be taken as the axis of x. 

If I be the total length of the ai-c, and y the ordinate of its centre of 
gravity, 

between suitable limita 

Hence the area of the surface generated 

==/27ryds = 2Trly = Zxlength of path of C.G. of arc> 

which gives the theorem stated. 
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(2) If a plane area rotate about an axis in its own plane whicli does 

not divide it into two parts, the volume of the solid thereby formed 

is equal to the area multiplied by the length of the path of the centre 

of gravity of the area. 

If 6A be an element of area, y' the ordinate of its centre of 

gravity, and y' the ordinate of the centre of gravity of the area, 

Hence the volume generated = J'2Tri/dA = 27ry'A 

= A X length of path of C. G. of A. 

These results are evidently true if the arc or the area does not 

make a complete revolution; in this case, the factor 27r in the 

preceding proofs is replaced by the factor a, where a is the circular 

measure of the angle turned through. 

Examples: 

(i) A circle of radius r rotates about an axis in its own plane at distance 

c(>r) from its centre; find the volume and superficial area of the solid 

formed (which is called a tore or anchor-ring). 

The centre of the circle is the centre of gravity of both arc and area. 

Hence the superficial area ** 2 tt r x 2 tt c = 4 tt* rc, 

and the volume « ;rr*x27rc 27r’r‘^c. 

(ii) These theorems can also be used to find the centre of gravity of a 

semicircular arc or area, for the rotation of semicircular area gives a sphere. 

The volume of the sphere J tt r* ■* area of semicircle x length of path of 

its C. G. ■■ J TT r* X 2 TT y, whence y ■■ 4 r/3 n for a semicircular area. 

Similarly, the area of the surface of the sphere, i.e. 4?! r’* ■» tt r x 2 Try, 

whence y ^ 2rjTr for a semicircular arc. 

Examples LX1X« 

Find the C. G. of the following, 1-25: 

1. (i) A quadrant of a circle. (ii) A quadrant of an ellipse. 

2. A solid cone. 

3. The area between the curve xy » o*, the axis of and the ordinates 

X c. 

4. The figure bounded by one semi-undulation of the sine curve y^ls\xi{x/a) 
and the axis oi x, 

5. The part of a solid sphere of radius 10 inches intercepted between two 
parallel planes at distances 3 and 8 inches from the centre. 

e. The area between ay ■» a?*, the axis of a?, and a? =» a. 

7. The area between y « a:*, the axis of y, and y = 1. 

8. The solid formed when the portion of a parabola cut off by the latu3 
rectum rotates about the axis. 

0. Half a prolate spheroid bounded by a plane perpendicular to the 
major axis. 
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10. Half an oblate spheroid bounded by a plane perpendicular to the 
minor axis. 

11. A segment of a circle cut off by a chord which subtends 60° at the 
centre. 

12. A cardioid. [Proceed as in Art. 172 (ii).] 

13. One of the four areas between the axes and the curve y*/* ss 

14. The surface generated by the rotation of a quadrant of a circle about the 
tangent at one extremity. 

16. The smaller of the two portions into which a solid sphere is divided by 
a plane which bisects a radius at right angles. 

10. A frustum of a solid right circular cone, the radii of its ends being 
8 inches and 6 inches, and its length 12 inches. 

17. The solid formed by the rotation of the figure hounded by a quadrant of 
a circle and the tangents at its extremities about one of the tangents. 

18. The area between the curve y =* (a;~2) (5 — a;) and the axis of x, 

19. The portion of an elliptical lamina between the minor axis and the 
latua rectum. 

20. The area between the parabola y = —7a:+12 and the axes of x and y. 

21. The portion of the solid obtained by rotation of y = a:* —4a? + 6 about 
the axis of x^ between the sections a: = 1 and j? «= 4. 

22. The solid formed when the portion of the parabola y ^ x^-Zx cut off 
by the axis of x rotates about the axis of a?. 

23. The arc of one arch of a cycloid. 

24. The area between one arch of a cycloid and the axis of x. 

26. The area between the catenary y = c cosh (a:/c), the axis of x^ and a? = ± a. 

26. Find (by Pappus’ Theorems) the surface and volume of the solid formed 
by the rotation of an equilateral triangle about its base. 

27. Also of the solid formed by the rotation of a square about an axis in its 
plane through one corner perpendicular to the diagonal which passes 
through the corner. 

28. A circle rotates about a tangent; find the superficial area and volume 
generated. 

29. An ellipse rotates about its directrix; find the volume of the solid ring 
thereby formed. 

30. A semicircular bend of iron pipe has a mean radius of 10 inches; the 
internal diameter of the pipe is 5 inches, and the thickness of the iron 
J inch. Find the weight, supposing 1 cubic inch of iron weighs *28 lb. 

81. A square of side 6 inches with an isosceles triangle of height 6 inches 
standing on one side rotates about the opposite side ; find the area of 
the surface and the volume of the solid which is formed. 

82. Deduce from Pappus’ Theorems the volume and area of surface of a cone 
and a cylinder. 

83. An iron ring is in the form of the solid generated by the rotation of an 
ellipse whose semi-axes are 3 and 2 inches about an axis in its plane 
parallel to its major axis and distant 8 inches from it; find the weight 
of the ring if a cubic inch of iron weighs ‘28 lb. 

84. A curve is drawn through the points (2, 1*4), (8, 2), (4, 2*3), (5, 1*8), 
(6, 1*2); find the C. G. of the area between this curve, the extreme 
ordinates, and the axis of x, 

86. Find the C. G. of the solid formed by rotating the curve in the preceding 
question about the axis of x. 
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CENTKES OP PRESSUEE 

176. Centre of pressure. 

It is proved in text-books on Hydrostatics that the intensity of 

pressure at any point of an area immersed in a liquid varies as the 

depth of the point below the surface of the liquid and is equal to w\ 

where w is the ‘specific weight’, ie. the weight per unit volume, 

of the liquid. The point of an immersed area at which the resultant 

pressure on the area acts is called the centre of pressure of the area. 

Its position can easily be determined by the Integral Calculus, as 

follows: 

If bA be an element of the area at depth p below the surface, the 

pressure on bA =wpbAy and the total pressure on the area= fwydA^ 

taken all over the area. 

If y be the depth of the centre of gravity of the area, Ay = /ydA; 

.•. the total pressure = ioAy = the area x the pressure at its C.G. 

If e be the depth of the centre of pressure below the surface, we 

have, by taking moments, 

the total pressure xe — fyx wydA 

i. e. wAy z^wf y^dA^ 
f tfd A 

and t ~ ^ - --y the integral being taken over 

the whole of the immersed area. 

In evaluating the definite integral, the area is usually divided into 

strips parallel to the surface of the liquid. 

Examples: 

(i) Find the centre of pressure of a trianyle immersed unih its base in the 

surface. 

Let b be the length of the base and h the height of the triangle. The 

A 

resultant pressure on the triangle 

mm^lhx pressure at C. G. ■* j x . J 

- J uW. 

Dividing the triangle up by lines 

parallel to the surface, the pressure on 

a strip PQ (Fig. 122), whose upper 

edge is at depth y, 

PQ .byxu>{y + lby) wmtr.PQ.ij by, 

neglecting small quantities of the 

second order. 

.•. taking moments about the surface, 

ir X J tobh* uf.PQ^ydyxy. 

Fig. 122. 
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By similar triangles, ^ mm •» - 
o AJJ h 

•*. « X J tchh"^ 
r ^ ivh 

(hy^-y^)dy 
teb 

h 

i.. PQ-l(h-,). 

- ,\whh\ 

tlie depth of the centre of pressure — ^ 

Since the centre of pressure is obviously on the median through its 

position is determined. 

(ii) Fifid the centre of pressure of a rectangle^ aides a and b, immersed 

vertically in a liquid with the sides a parallel to the surface^ and its centre 

of gravity at a depth h helotc the surface. _ 

Dividing the rectangle into strips by lines parallel 

to the surface (Fig. 123), the pressure on a strip at 

depth yisaSyxwy. 

The resultant pressure on the rectangle = at x wh. 

taking moments about the surface, 

-iawlih + ihf-ih-Uy] 
-io«i.2[3A*.46+J6’] - Jo«)6[3V+it"], 

ah.whzmm 

whence g h -j- ^ 2 b'^^h. 

b 

■y 

AL 

a 

Fii' 123. 

(iii) Find the centre of pressure of a circle of radius r immersed with its 

plane veriical and its centre at depth h (> r) below the surface. 

The resultant pressure on the circle ■» x wh. 

The pressure on a strip FQ (Fig. 124) parallel to the surface and at depth 

y below it is FQ by x wy. 

li FQ subtends an angle 2d at the centre of the circle, — 2r8ind, 

depth of centre of pressure ■- h + J r*/A. 
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Examples LXX 

Find the C. P. of the following, 1-7. 

1. A triangle immersed with its vertex in the surface and its base parallel 
to the surface. 

2. A triangle immersed with its vertex upwards and at depth h below the 
surface and its base jjarallel to the surface. 

8. A rectangle 8 ft. by 4 ft. immersed vertically with its shorter sides 
horizontal and the upper one 2 ft. below the surface. 

4. A semicircle immersed with its bounding diameter in the surface. 

6. An ellipse immersed with its major axis vertical and one vertex in the 
surface. 

6. A trapezium immersed with one of its parallel sides in the surface. 

7. The area cut olf from a parabola by its latus rectum, immersed with the 
latus rectum in the surface. 

8. A triangle is immersed in water with its base in the surface ; show that 
the pressures on the two parts into which it is divided by a horizontal 
line through its centre of pressure are equal. 

9. Find the displacement of the centre of pressure caused by increasing the 
depth of an immersed area by a given amount K 

10. Prove that the limiting position of the C. P., as h is increased inde¬ 
finitely, coincides with the C. G, 

MOMENTS OF INEKTIA 

176. Moments of inertia. 

If particles of masses Wi, Wg, ... be situated at points whose 

perpendicular distances from a given straight line are r^, rg, ..., 

then i.e. -f wig + ... is called the moment of inertia 

of the system about the given line. 

It is sometimes called the second moment of the system about the given 

line, 2 (mr) being called the first moment [cf. Art. 170]. 

In the case of a continuous distribution of mass, the summation 

becomes a definite integral. If 6m be an element of mass of a body 

at distance r from a fixed line, LtEr26m, i.e. fr^dm taken 

throughout the body, is the moment of inertia of the body about the 

given line. 

The moment of inertia of a body is of very great importance in Dynamics 

in dealing with rotation (see Art. 196); it plays a part in the rotation of 

a body similar to that played by the mass in a motion of translation. For 

example, if the given system of masses have a common velocity f>, parallel to 

a given straight line, the kinetic energy of the system=5 (mass of system) r*. 

If the system of particles above mentioned be rigidly connected by a frame¬ 

work of negligible mass, and rotate about the fixed straight line with angular 
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velocity a, the linear velocities of the particles »i,, m,,... will be i\<a, ... 

respectively, and the kinetic energy of the system will be 

4 +i. e. 

i. e. \ (moment of inertia of tlie system) x 

If the moment of inertia of a body of mass M about a line be 

written in the form Ic is c/illed the radius of gyration of the body 

about the line. In the case of a uniform wire of negligible thickness 

bent into a circle of radius r, every point of the wire is at distance t 

from an axis through its centre perpendicular to its plane ; hence its 

moment of inertia about this axis is and the radius of gyration 

is equal to the radius of the circle. 

The moment of inertia and the kinetic energy of a body rotating 

about a fixed axis are the same as if the whole mass were collected 

at a distance Iz from the axis. 

The letters M. I. are generally used as an abbreviation for the term 

‘moment of inertia’. Methods of evaluating moments of inertia 

are shown in the following examples: 

Examples: 

(i) Find the M. L of a uniform straight tvd about an axis perpendicular to 

its length through a point at a distance b from its centre* 

Let 2 a be the length of the rod and m the mass per unit length; therefore 

the whole mass M is 2 am. Taking the axis of x along the rod and the axis 

about which the M. I. is required as axis of y, the mass of an element 

PQ (Fig. 125) is m3 x, and its M. I. about OY is (to the first order of small 

quantities) mdxxx^, if OP == x. 

:b><- - 

k - - -jc- 

Fig. 126. 

> 
X 

Hence the M. 1. of the rod 

'rt4-6 r 
mx’^ dx ^ m\ \ x^ \ «= Jm [(a + 5)* —( — 0 + 5)*] 

*= Jm(2a* + 6a5*) = il/(Jo* + 5^). 

If the axis pass through the centre of the rod, 5 = 0, and the M. I. 

«= J3fo*. Therefore the radius of gyration = o/y^o. 

If the axis pass through one end of the rod, 5 = o, and the M. 1. = ^ Ma\ 

Therefore the radius of gyration = 2 aJ^B. 

X lUS 
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(ii) Find the M. L of a rectangle about an axis parallel to a side. 

If 2 6 (Fig. 126) be the length of the sides parallel to the axis, and 2 a the 

length of the other aides, the M. I. of a strip parallel to the axis 

mm tn .2hhxx 

and the whole mass Af is 4 mah; the 

working is the same as in the preceding 

X example with the addition of the factor 

2b until the M is introduced, and the 

results are exactly the same. In fact 

the rectangle may be regarded as made 

up of rods perpendicular to the axis, and the preceding result, being true for 

each one, is true for the sum of them. 

T 1 

! 

o p Q 

Fig. 12G. 

(iii) Find the M. I. of a circular disc about an axis through its centre 

perpendicular to its plane. 

Let a be the radius of the disc and m its mass per unit area; therefore its 

total mass is tt a® m. Livid e the disc into elements 

by means of concentric circles (Fig. 127); the mass 

of the element between two circles of radii r and 

r-f5r is ultimately m.27rrdr, and its radius of 

gyration is r. 

M. 1. of disc 
'a 

X 

Jo 
m .2 ft r dr xr^ 

' 2 m = m n*. 5 a* ~ \Ma\ 

Hence the radius of gyration ■■ aj2, 

This result may now be used to obtain the M. 1. of a solid of revolution 

about the axis of revolution, as shown in the following example. 

(iv) Find the M.I, of a sphei'e about a diameter. 

Let r be the radius and m the mass per unit volume; therefore the whole 

mass M is Jwtt;*’. Divide the sphere into 

thin slices by planes perpendicular to the 

diameter about which the M.I. is required 

(Fig. 128). 

The mass of an element ^ mnand, 

by the preceding result, its M. I. 

« (its mass) x\if mx mn bx y*. 

M. I, of whole sphere 

\mTry*dx^ \ mn 

Fig. 128. rr 
»|in7rx2j (r*-2r^x^-i^x*) dx 

mrr « wtt [r®--§ i r®] -■ ^mTrr* 

■*Jm7rr*xfr*«=f Mr*, 

Therefore the radius of gyration — rVf • 
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(v) Find the M. J. of an elliptic lamina about its major axis. 

Divide the ellipse into indefinitely 

thin strips by lines perpendicular to the 

major axis (Fig. 129). The mass of an 

element is m . 2 y 5a:, and its M. I, about 

the major axis is, by Ex. (i), 

m2ybxxly’"\ 

M.I. of ellipse 

2 my* dx ^ .2 y^dx 

[let a: = a cos y = 5 sin d, (Art. 50)] 

fo 
■ 5*sin*6x —asinB d6 

in 

' a Bin^ 
Jo 

6 dd ^ ^ mli^a x 
SA 

4.2 
J TT = J TT mnZ>* 

«= J Mb^t since iJ/ •» m x area « m tt ah. 

The radius of gyration ■■ J 5. 

This is given as an example of the way in which an area may be divided 

Tip into strips perpendicular to the axis about which the M. I. is required. 

The result might have been obtained by dividing the area into strips parallel 

to the major axis. The mass of such a strip is m. 2 a: 5 y, and its radius of 

gyration is y; hence the M. I. m .2xy'^ dijy which maybe evaluated 
Jo 

in a similar manner, and gives the same result. 

As in the case of areas, volumes, and C. G., if the equation of the 

bounding curve is not known, or if the general formula gives an 

expression which cannot be integrated, an approximate value of the 

M. I. can be found by the use of Simpson’s Rule. For instance, 

(vi) To find the radius of gyration about the axis of revolution of the solid 

described in Ex, (iii), p, 303. 

If A be the area of a section of radius y, perpendicular to the axis of a:, 

we have 
Mk'^»=^/mA.\y^dx^m.\TT/y*dXy since A^ny'^, 

The values of y are IS/tt, 21/7r, 23/7r, 25/7r, 26/7r, whence, by logarithms, the 

values of y^ are found to be 1077, 1995, 2870, 4006, 4690, approximately, 

and M^mx volume «= 4025 w, using the result obtained in Art. 159. 

by Simpson’s Rule, 

4025 A:* « X S [1077 + 4690 + 2 (2870) + 4 (1995 + 4006)] - tt. 35511, 

whence h is found to be 5*265 approximately. 

% 2 
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Examples LXXI. 

Find the M. 1. of 

1. A square about a side. 

2. A rectangle, sides a and &, about a line parallel to the sides a and distant 
^ J 6 from them respectively. 

8, A flat circular ring, whoso outer and inner radii are r and 2 r, about an 
axis through its centre perpendicular to its plane. 

4. A circle about a diameter. 

6. An isosceles triangle about an axis through its vertex parallel to its base. 

0. The same triangle about its base. 

7. The same triangle about its axis. 

8. The same triangle about a line through its C. G. parallel to its base. 

0. A right circular cylinder about its axis. 

10. A right circular cone about its axis. 

11. A spheroid about its axis of revolution. 

12. An elliptic lamina about a latus rectum. 

15. The portion of a paraboloid of revolution bounded by the section a? — &, 
about its axis. 

14. A thin uniform circular wire about a diameter. 

16. An indefinitely thin spherical shell about a diameter. 

10. The area hidween the parabola y* « 4ajp and the double ordinate 
a? s= 6, about the tangent at the vertex. 

17. The same area about its axis. 

18. The same area about the ordinate x h. 

19. The area described in Ex. LXIX. 34, about the axis of x, 

20. The volume described in Ex. LXIX, 35, about the axis of x, 

21. A uniform arc of a circle about its chord. 

22. The area between one arch of a cycloid and its base, about the base. 

23. The solid formed by the rotation of a cycloid about its base, about the 
axis of revolution. 

24. The area enclosed by the curve + «« a/^, about one of the axes. 

177. General theorems on moments of inertia. 

The evaluation of moments of inertia is facilitated by several 
simple general theorems which establish relations between moments 
of inertia about different axes. 

I. The M, J. of a lamina about an axis perpendicular to its plane 
through a point 0 in its plane is equal to the sum of the M. I, about any 
two rectangular axes through 0 in the plane. 

If r (Fig. 130) be the distance of an element Im from the origin 0, 
and (x, y) its coordinates referred to two rectangular axes through 0, 
the M. I. about a line through 0 perpendicular to the plane XOY 

dm (x^ dm 
= fx^ dm-^/y^ dm, taken all over the area, 

= M. I. about Or+M. 1. about OX. 
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Examples, This result may be used to deduce the M.I. of a circular disc 

about a diameter from the M. L about an axis through its centre perpen¬ 

dicular to its plane. For we have 

IMa^ « M. I. about a perpendicular axis through the centre [4rt 176 (iii)] 

■= sum of M. I. about two rectangular axes in its plane 

= 2 X M. I. about a diameter, from symmetry. 

M. 1. about a diameter «= 

Again, the M. I. of a rectangle, sides 2 a, 2 6, about an axis through one 

corner perpendicular to its plane = sum of M. I. about the two sides through 

that corner Jlf. J a* + Af. j 6* ■= i/. j (a* -f P). 

Hence also the M. I. of a square lamina of side a about an axis through 

one corner perpendicular to its plane -« sum of M. 1. about two sides 

•» J Ma*; and since a cube may be regarded as made up of square laminae, 

for each one of which the preceding result is true, it follows that the M.I, 

of a cube of side a about an edge | Ma*, 

II. TJie M, J. of a lody about any axis exceeds the M. I. about a 
parallel axis through the centre of gramty by the product of the mass into 
the square of the distance between the parallel axes (i. e. by the M, I. of 
the whole mass collected at the centre of gravity about the original 
axis). 

From this theorem it follows 
that the M. I. about an axis 
through the C. G. is less than the 
M. I. about any parallel axis. 

Let G (Fig. 131) be the centre 
of gravity of the body. Let the 
given axis meet the plane through 
G perpendicular to it in A, at 
distance a from G, and let a linear 
element 6 m, parallel to the given 
axis, cut this plane at P; let AG 
be taken as the a;-axis, G as origin 
and (Xj y) as coordinates of P. 
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The M. I. about the line through A perpendicular to the 
plane XOY 

= fAF^dm— + + = J dm 

^ /dm-\~2a/xdm-\- J'GF'^ dm 

= 0 +M. L about the line through G perpendicular to 
the plane XGY, 

since f xdm = Mx^ where x is the abscissa of the C.G. [Art. 170] 

= 0, since the C. G. is the origin. 

Hence the M. I. about the axis through A exceeds the M. I. about 
the parallel axis through the centre of gravity by 

Examples. The M.I. of a rod or rectangle of length 2a about an axis 

through ita centre perpendicular to its length is J Ma^; hence the M. I, 

about a parallel axis through one extremity = J Md^ + Ma^ — ^ Md^. 

The M. L of a circular disc of radius r about a line through a point on its 

edge perpendicular to its plane 

*■ M. I. about axis through centre perpendicular to its plane -f Jl/r* 

The M. 1. of the disc about a tangent line *= \ | .Vr®, 

It must be carefully noticed that the theorem does not connect 
the M. I. about any two parallel axes; one of them must go through 
the centre of gravity. 

E. g. the M.I. of an isosceles triangle (Fig. 132), of height h and vertical 

angle 2 a, about a line through its vertex parallel to its base 

m . 2 y da:. X® » 2 w tan a dx ■» 2 m tan OL. J = J iUTi*, 

since M Ynhx\ base® mhr tan a. 

To deduce the M. I. about the base, vsre must first find the M, I. about 

a parallel axis through the C. G. of the triangle. The distance between the 

C. G. and the vertex is ^ /i; 

.*. I Mh^ ■* M. L about a parallel axis through C. G. + J 3i7i*, 

.*. M. I. about axis through C. G. parallel to base — Mk*, 

The distance from the C. G. to the base *=* J A; 

M. I. about base - m® + J W - J Mh\ 



MOMENTS OP INERTIA 843 

III. To find the M. L of a lamina about a line through the origin 

inclined to the axes» 

Let the straight line OA (Fig. 133) be inclined to OX at an 
angle a. Let bm be an element of mass situated at the point P whose 
coordinates are (Xy g). Draw PAf, PN perpendicular to OAy OX and 
NLf Nil perpendicular to PMj OA respectively. 

The M. I. of the lamina about OA 

= / iLfP2 dm = /{LP-^NUf dm = /{y cos oi^x sin a)* dm 

= cos^ (X f dm—2 sin a cos (X fxy dm + sin^ Oi f dm, 

the integrals being taken all over the lamina. 
f xydm is called the ^product of inertia* about the axes OX, 0T» 

If the body be symmetrical about either of the coordinate axes, it is 
evident that this integral /xydm is zero ; for, if symmetrical about 
the axis of x, then, to any value of xyhm for a positive value of y, 
there is a value for the corresponding negative value of y which will 
be equal in magnitude and opposite in sign ; hence, as in Art. 146, 
the terms of the sum whose limit is the definite integral cancel in 
pairs, and the integral is zero. Similaidy if the lamina is symmetrical 
about the axis of y. 

In this case, the M. I. of the lamina about OA 

= cos^ OL / y^ dm+sin® (X f x^ dm, 

i.e. if the lamina is symmetrical about one (or both) of the axes OX, OT, 
the M, 7. about a line inclined at angle (x to OX is equal to 

(M.I. about OX) cos® cx + (Jf. 7. about OY) sin® a. 

In this case the M. I. about OX, OY are called the ‘ principal moments of 

inertia relative to 0\ and the axes are called the ‘principal axes at 0\ For 

further information as to principal axes and moments of inertia, the student 

is referred to works on rigid dynamics, it is there shown that at every point 

of a lamina there is a pair of axes for which the product of inertia is zero. 
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It is easily seen that this theorem is also true for a solid body which is 

symmetrical about the plane XOY, For in this case, if 2be the length of 

the element through P perpendicular to the plane XOYj of which P is the 

middle point, the M. I, of the element about OJ. 5 m (J il/P*); and 

its M.L about OX and OF are respectively + and d m (I -i x^), 

/. the M.I. of the body about OA^ as before, 

/J dm 4 cos* 0(/y^dm + sin* CC/x'^ dm 

e= cos*a/(j^ 2*4 i/*)dm + sin®ay(J^* + x*)dm, [since sin*Cif4cos*a =*» 1] 

cos*a X M. I. about 0X4- sm*CX x M. L about OF. 

Examples: 

(i) Find the M.I. of a rectangle, sides 2 a and 2 b, about a diagonal. 

The M. I. about lines through the centre parallel to the edges are J il/a* 
and \ MF, and the rectangle is symmetrical about these lines. 

If a (Fig. 134) bo the angle between the diagonnl and a side whose 

length is 2 a 
cos* a *= a*/(a* 4 5*), and sin* OC »* Z>*/(a* 4 Z^*). 

M. I. about diagonal ■= ^ Mh^ cos* CX + J Ma^ sin* OC 

-= IMF . aV(a* 4 Z?*) 4- J ilia*. &»/(«* + F') 

-= §i/a*6*/(a*4 6»). 

(ii) Find tbe M. I. of a solid right cvxular cone about an axis through its 

vertex parallel to its base. 

Divide the cone (Fig. 135) into thin circular slices by planes pei-pendicular 

to its axis. 
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The mass of an element is mny^dx^ and its M.I. about one of its 

diameters is m7ry* ; /. its M. 1. about the given axis, which is at 

distance x from a parallel axis through the C.G., is tniry^ dx(I y^ + a^), 

rh 
M. I. of cone m TV J y^ + a:®) dx 

^ /I r* ^ r® ^ \ 

^ ^ ( 7 n ^ + ra ^ si: 
0 \4/i^ J 

since 
x'^h' 

^ rtiTT f — + r’ 
\4.h* ) 

m IT 

“4T^“ 

*= M4 4 7^®), since the whole mass Jlf = J m tt r® 7». 

From this result the M. T. about a parallel axis through the C. G., and then 

the M. I. about a diameter of the base can be deduced. 

The M. I. about a generating line can also be deduced by Theorem III of 

this article ; for the M. 1. about the axis is easily found by direct integration 

to be /o ^ cone is symmetrical both about the axis, and about 

any plane through the axis. 

lienee, if (X be the semi-vertical angle of the cone, the M. L about a 

generating line 

Mr'^ cos® a 4- -a’(j ilf (r* 4 7i®) sin® a 

- -TO+ 

r*® ir® 4 6 h‘) 
■=■ (2 V+^ + 4A*) - 7. 

Examples LXXII. 
Find the M. I. of 

1. A flat circular ring, radii r and r', about a diameter, 

2. A square about an axis through one comer perpendicular to its plane. 

3. An ellipse about an axis through its centre perpendicular to its plane. 

4. A square lamina of side a about an axis through its centre perpendicular 
to its plane. 

6. An equilateral triangular lamina about an axis through the middle point 
of its base perpendicular to its plane. 

6. An ellipse about (i) the tangent at one end of the major axis, (ii) a latua 
rectum, (iii) a directrix. 

7. An equilateral triangle about an axis through its C. G. perpendicular to 
its plane. 

8. A cylinder about a generating line. 

9. A sphere about a tangent line. 
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10. A straiglifc rod of length 2 a about an axis perpendicular to its length 
at distance h from one end. 

11. A square of side a about any line through its centre in its plane. 
(Deuuce both from Example 4 above, and from Theorem 111). 

12. A square about any line in its plane at distance b from its centre. 

13. An ellipse about the line joining the extremities of the axes. 

14. An isosceles triangle, of h^dght h and base 2&, about a line joining the 
middle point of the base to the middle point of one of the equal sides. 

15. A solid cone about (i) an axis through the C. G. parallel to the base, 
(ii) a diameter of the base. 

10. A solid cylinder about a diameter of one end. 

17. A solid cylinder about (i) a line through the C. G. perpendicular to the 
axis, (ii) a tangent to one of the circular ends. 

18. The solid formed by the rotation of a rectangle, sides a and h, about a line 
in its plane distant c ( > b) from its centre and parallel to the sides a. 
about the axis of rotation. 

19. A solid anchor ring about the axis of rotation. 

20. An arc of a circle about an axis through its middle point perpendicular 
to its plane. 

21. A rod in which the line-density varies as the distance from one end, 
about an axis through that end perpendicular to the rod. 

22. A circular disc in which the surface-density vanes as the distance 
from the centre, about an axis through the centre perpendicular to 
the disc. 

23. A right-angled triangle about a line through the right angle perpen¬ 
dicular to its plane. 

24. A paraboloid of revolution bounded by the section x^h, about a tangent 
line at the vertex. 

26. A spheroid about a tangent at an extremity of the axis of rotation. 

POTENTIAL 

178. Potential. 

If iWj, m2, ... be the masses of a system of particles situated at 

distances rg, ... respectively from a point P, then 

m _ mi mg 
— ~ + ■ -r 
r ri Ta 

is called the potential of the system at the point P. This function is 

of great importance in the theory of attractions and in electricity. 

In the case of a continuous distribution of mass, the summation 

becomes a definite integral. 

Examples of the calculation of the function in several important 

cases are here given. 
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Examples: 

(i) Find the potential of a circular disc at a point on its axis. 

If the disc be divided into elements by concentric circles, the potential of 

Fig. 1S6. 

an element at a point P (Fig. 13G) on the axis is m. 2nr ^ f/FQ (to the first 

order of small quantities), m being the mass per unit area. 

Let p be the distance of P from the disc and a the radius of the disc. 

2 r 
dr 

.0 V 

” ^”‘"1 V(^) 2^. [/(;-+ p»)]“ 
«= 2m7r[v^(p^4 a^)—p] «* 2mn(R-p\ 

if B be the distance of P from a point on the edge of the disc. 

(ii) Find the potential of a thin spherical shell at any jyoint. 

Let c be the distance of P (Fig. 137) from the centre of the spherical shell 

Divide the shell into elements by planes perpendicular to OF. 

rrn. x x- i r i x x n ni.2nybs m.2nr sin S. rd$ 
The potential of an element at P ■■ —— ■>--; 

Fig. 137. 
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Tliis can Le integrated by putting c’ + r* ~ 2 cr cos Q ^ 

2 cr sin ^ 2 a? dzjd i. e. cr sin Qfz = d0^ 

and the limits for z (which is PQ) are e — r and c + r, if P be outside the 

shell. 
, .. 2mTri^[dz 2wjrrrc+»‘ 

the potential «-—ad —-dz 
<=’■ « J.-r 

2tnrrr M 
-—^[c + r-(e-r)]^~--- 

If the point P be inside the shell, the expression to bo integrated is the 

same, but the limits for e or PQ are r~c and r-f c. 

in this case, the potential — [r + c - ('*- c)] — 4 m tt r — M/r, 

If the point P be on the shell, the limits for z are 0 and 2r, and c «= r; 

hence in this case also the potential ~ ilf/r. 

Hence the potential of a thin spherical shell at an external point «= 2lf/c, 

i. e. it is the same as if the whole mass were concentrated at the centre; at 

an internal point, the potential — Jlf/r, i. e. it is constant, and therefore is 

the same as if the point were the centre. 

(iii) Find the potential of a solid sphere at any point 

Let the sphere be divided by concentric spheres into thin spherical shells. 

If the point P be outside the sphere, the potential of each shell and hence, 

by addition, of the whole sphere is the same as if the whole mass were 

collected at the centre, and therefore is equal to M/c^ whore c is the distance 

of the point P from the centre. 

If P be inside the sphere, the potentials of the spherical shells which do 

not contain P are the same as if their whole mass were collected at the 

centre, and hence their sum — J tt c®m/c — J tt me*; the potentials of the 

shells which do contain P are the same as if Pwere at the centre, and there¬ 

fore their sum 

dr f' /i j i o / j 
«=-*=4 7rm rar *=r 4Trm (J— = 2 TTiw (r*—c ). 

Hence the total potential of the sphere at P 

•== 4 + 2 t; m (r* ~ c*) « 2 TT m (r* — J c*). 

Examples LXXIII* 

Find the potential of the following, 1-11: 

1. A circular arc at its centre. 

2. A thin cylindrical shell (with open ends) at the centre of one end. 

8. A solid cylinder at the centre of one end. 

4. A hollow cone at its vertex. 

5. A solid cone at its vertex. 

e. A thick shell bounded by two concentric spheres of radii r and 
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7. A thin hemispherical shell at its centre. 

8. A shell bounded by two non-intersecting and non-concentric spheres. 
(Take it as the difference of potentials of two solid spheres.) 

9. A flat circular ring at a point on its axis. 

10. A sector of a circle at the centre of the circle. 

11. Prove that the potential of a thin uniform rod AB of length 2 Z at a point 
P on its perpendicular bisector is wlog[(r-{ Z)/(r~Z)], where PA = r. 
Show that this may be put in the form 2m log cot I a, where oc is the 
angle PAB. 

12. If Fbe the potential of a solid sphere of radius rat a point distant x 
from the centre, prove that V and dV/dx are continuous functions of x, 
but that W'Vjdx^ is discontinuous when a; = r. 

ATTKACTIONS 

179. Attraction. 

The law of gravitation, as enunciated by Newton, states that two 

particles of masses w, m\ at distance r apart, attract each other with 

a force which varies directly as the product of the masses and 

inversely as the square of the distance between them, i, e. the 

attraction is equal to hmwf/r‘^. It is usual to choose the units so that 

the constant Tc may be unity; they are then called astronomical units. 

In terms of these units, the attraction of a particle of mass m on 

unit mass at distance r from it is equal to m/r^. ‘ The attraction at 

P* is the phrase used to denote the attraction on a particle of unit 

mass situated at P. 

The force between two electrified particles obeys the same law, 

being attractive if the product of the charges be negative, and 

repulsive if the product be positive. 

Let Y be the potential of mass m situated at A at a point P 

distant r from it, so that Y = m/r. Let s be the distance of P 

(Fig. 138) measured along its path from some fixed point in the path ; 

then F is a function of 5. Let <!> be the angle between the radius 

vector AP and the tangent at P, 
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w dV dV dr m dr w , ... 
We have — = — . ^ • -r- = —s cos ^ (Art. 168) 

ds dr ds ds f-a ^ v f 

= ^ cos APT = attraction of m at P x cos APT 

= resolved part of attraction of m in direction PT 

(in which $ increases). 

This result will be true for each particle of an attracting system, 

and therefore will be true for the whole system. Hence, if F be the 

potential of an attracting system at an external point P, the 

attraction of the system at P, in the direction in which $ is measured, 

is equal to dV/ds. 

Examples: 

(i) Find the attraction of a uniform circular disc at a point on its axis. 

From Ex. (i) of the preceding article, if r be the radius of the disc, 

F*= 2 wm (E-p) =» 27rm[V'(r*4-p*)-p], 

where p is the distance of the point P (Fig. 139) from the disc. The 

attraction of the disc at P is obviously along the axis, from symmetry, and 

. _ -l) » 2.m (l-5) 
if (X be the angle subtended at P by the radius of the disc. 

The same result may be obtained directly, by resolving the attraction of 

an element of the disc along OP and integrating the result. 

Taking a «= J tt, we see that the attraction of an infinite disc at a point 

at finite distance from it, or of a finite disc at a point whose distance from it 

is indefinitely small, has the constant value 2 m tt. 

♦ -^dV/dp is the attraction in the direction in which p increases, i. e. 
upwards. 



ATTEACTIONS 861 

(ii) Find the attraction of a Hraight uniform rod at a point on its perpen> 
dicular bisector. 

Up be the distance of the point PfFig. 140) from the rod, and 6 tho 
inclination of PQ to the perpendicular PN from 

P to the rod, the attraction of an element tnbx p 

situated at Q is mbx/Ptf. From symmetry, the j 

resultant attraction of the rod is along PN, f- 

hence, resolving along PN and integrating, the / 
total attraction / 

dx r° mp 8ec*d d6. cos B / 

J 1Q Jo / 
since x p tim 0, PQ ^ p sec B, 2 (X being the / 

angle subtended by the rod at P, "N “ 

2'«r“ .JZ, 2w . Fig. 140. 
•» — cos d dd — Bin a, 

P }o P 

(iii) Find the attraction of a spherical shrU at a given point. 

If the point be inside the sliell, the potential M/r is constant, and there* 

fore its differential coefficient is zero; hence the attraction of a spherical 
shell at an internal point is zero. 

If the point P be outside the sliell at distance c from the centre, the 

attraction of the shell at Pis, from symmetry, along the line joining P to 

the centre. The potential at P is M/c (from Ex. (ii) of Art. 178); there¬ 

fore the attraction of the shell, which is towards the centre, i. e. in the 

direction in which c decreases, =» - dV/dc Mjc^ \ hence the attraction of 

a spherical shell at an external point is the same as if the whole mass were 
concentrated at the centre. 

(iv) Find the attraction of a solid sphere at a given pomt. 

If the point P be outside the sphere at distance c from the centre, the 

potential and the attraction towards the centre = —dV/dc — M/c^y 

i. e. the same as if the whole mass were concentrated at the centre. 

If P be inside the sphere, the potential — \ c®) (from Ex. (iii) 

of the last article), and therefore the attraction towards the centre 

■■ —dyjdc — —2E^m(-“8c)«j7r me. 

Hence the important results that, in the case of a solid sphere attracting 

according to the law of gravitation, the resultant attraction at an external 

point varies inversely as the square of the distance from the centre, and at 

an internal point, varies directly as the distance from the centre. It follows 

that the value of p, the acceleration of a particle due to the earth’s attraction, 

varies in the same manner, if the earth be regarded as a sphere of uniform 
density. 

It should be noticed that, although the expressions for the potential and 

the attraction of a solid sphere at a point distant c from its centre take 
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different forms according as the point is inside or outside the sphere, yet both 

are continuous functions of c; in both cases the two expressions tend to the 

same value when Both expressions for the potential become 3f/V, 

and both expressions for the attraction become H/r*, i.e. |m7rr®/r* or 

j WTT r. Hence V and dVjdc are both continuous when c r. 

The second differential coeflScient d'^V/dc^ is however discontinuous 

when c r; for at an internal point 

dWjdc^ =■ d. c. of “ J TT me — J tt m, 

and at an external point, 

cP V/dc^ o- d.c. of ’■‘Mli? = 2 if/c^ =■ g tt 

which, as c-^r, approaches the value firm. 

Hence there is an abrupt change from — J 77 wi to 5 rr m, i. e. an abrupt 

increase of 47rm in the value of as c increases through the value r. 

Esamples LXXIV. 

Find the attraction of the following, l-ll: 

1. A thin uniform rod at a point on its perpendicular bisector, by dif¬ 
ferentiating the expression for the potential obtained in Ex. LXXIII. 11. 

2. A circular disc at a point on its axis, by direct integration. 

8. A thin uniform rod at a point on the perpendicular to the rod from one 
end of it. 

4. A thin uniform rod at any point. [See Ex. 14, below.] 

6. A thin cylindrical shell (open at the ends) at an external point on its 
axis. 

6. A solid cylinder at an external point on its axis. 

7. A solid right circular cone at its vertex. 

8. A thick spherical shell, radii r and r (r>r'), at a point distance x from 
its centre (i) when x<r\ (ii) when r<a?<r, (iiij when x > r, 

9. A shell bounded by two non-intersecting and non-concentric spheres 
(i) at an internal point, (ii) at an external point. 

10. A rod AB at a point in AB produced. 

11. A flat circular ring at a point on its axis. 

12. Taking the value of g as 32T8 at the earth's surface, and the radius of 
the earth as 4000 miles, find the value of g (i) at a point 100 miles 
within the surface, (ii) at a point 100 miles outside the surface. 

13. Find the work done in raising 100 lb. from the surface of the earth to 
a height of 100 miles. (Take the radius of the earth as 3960 miles.) 

14. A circle is drawn with any point P as centre to touch a straight line AB ; 
if CD be the arc of this circle intercepted by PA, FB, prove that the 
attraction of the straight rod AB is the same in magnitude and direction 
as that of the circular rod CD. 

16. If V be the potential of a solid sphere at a point distant x from its centra* 
draw the graphs of (i) F, (ii) dVjdx, (iii) d^FJd^. 
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COMPOUND INTEREST LAW 

180. The compound interest law. 

In many cases in nature, the rate of change of a quantity which 
is a function of some variable is, for any value of the variable, pro- 
l)ortional to its actual magnitude for that value; i. e. if i denote the 
variable * of which ^ is a function, 

= ley. which can he written - = Jc. 
at y at 

The left-hand side is the d. c. of log^ witii respect to t Therefore, 
integrating with respect to t, log y = kt+ C, 

i. G. y ~ ^ 

writing a instead of the constant factor 
This law of change, viz. : that the rate of increase of a variable is 

proportional to the value of the variable, is called the compound 
interest law for the following reason : 

Let a sum of money £P be invested at coinj)ound interest at the 
rate of r per cent, per annum, and let the interest be payable n 
times per annum at equal intervals of time. 

After the lirst payment of interest, the amount 

= -"+l55'i = -^(' + fok)’ 
and, similarly, the amount at the end of each interval is equal to tho 
amount at the beginning of the interval multiplied by the factor 
1 4-r/lOOw. Therefore after t years, i.e. after nt payments of int(;rest, 
the amount will be 

P(l + r/100w)^^ 

This is the manner in which money increases in actual practice, not con¬ 
tinuously as a mathematical function increases, but by a succession of 
disconnected finite increments (as in the graph of Fig. 31); n may be 1 
(C. 1. paid yearly), 4 (C. 1. i>aid quaiterly), 12 (C. I. paid monthly), and 
so on. 

If r/lOOn be denoted by 1/m, and therefore n = rm/100, this 
amount may be written 

P(1 + 

Now let n (and therefore also m) increase and ultimately becomo 
indefinitely great, so that the interest is added more and more 

* The independent variable is frequently the time. 

Aa 
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frequently, and ultimately continuously; the amount at the end of 
t years will then bo 

Px Lt (1 + = Px [Lt (1 + 1/m)”*] pgW/ioo g?). 
m 00 m -► 30 

Hence, when compound interest is added continuously to the 
principal P, the amount A at the end of t years = loo^ 
therefore obeys the above law. 

The rate of increase of A *J*4^p JL 
dt ■ 100 

^rt/100 r 

100 
A. 

The preceding result can also be obtained directly by integration, 
for the amount A at any instant is increasing at the rate of r per cent, 
per annum, i. e. 

dA/dt = Ar/100. 

1 dA _ r 

2^7 “'loo 
When ^ = 0, -4 is equal to the sum P originally invested, 

whence log A = --- t + C. 

log P= 0. 

i. e. log A = ri/100 + log P, 

A = as before. 

Extension of compound interest law. 

Cases in which the rate of increase of the function is partly constant and 
partly varies directly as the value of the function may be included in the 
above law, for if dyjdt »= 6 4 ky, 
we may write dy/dt — ^ (y + hjh)y 
from which it follows that the rate of increase of the function is proportional 
to the excess of the value of the function over the constant 

The equation may be written —-« k. 
y-\bik dt 

Therefore, integrating, and taking the constant of integration in the form 
logd, which is more convenient than C, we have 

log (y 4 hjk) « + log C, 

whence y -f h/k *r 

and y —* ~ b/k + Ce^, 

(It should be noticed that the preceding equation takes exactly the same 
form as in the case of the compound interest law if we replace y^b/k by 
and therefore dy/dt by dz/dt.) 

181. Particular cases of the compound interest law. 

Among the natural processes which follow the compound interest law are 
the following; 

1. The cooling of a body which is at a higher temperature than its surround’ 
ings, according to Newton's Law of Cooling. 

This states that the rate of cooling is proportional to the excess of the 
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temperature of the body over the temperature of its surroundings; i. e. if 6 
denote this excess of temperature, 

d0/dt» —kO, 

the — sign being taken because the temperature decreases as time goes on. 

Hence, from the result at the beginning of the last article, 0 ~ 
If do be the original excess of temperature, i. e, the value of 6 when < «= 0, 

we have « C; d *= doe“*^ 

Taking a numerical case, suppose that a body cools from 80° C. to 70° C. in 

5 minutes ; what will its temperature be after a quarter of an hour, and how 

long will it take to cool to 40° C., the surrounding temperature remaining at 

20° C. all the time ? 

Here d^ «= 80 — 20 == 60 ; therefore d«60<5^''=*. 

It is given that 0 (the excess of temperature) 50 when / =» 5; therefore 

50 =« 60whence —5/k- — log and k *= J log 1*2. 

After a quarter of an hour, d *= 60 = 60 — 60 x = 347°C. 

nearly. Therefore the temperature will be 547° C. 

The time to cool to 40° C. is given by 20 = 60 e~^^; whence 

^Ict «=« log J — —log 3, and t » (iog3)//c =» 5 log 3/log 1*2 ==* 30*1 minutes. 

The temperature of 40° C. is reached after a little more than half an 

hour. 

2. The change in the atmospheric pressure due to an alteration in height above 

sea-level. 

Let p be the pressure at height h above sea-level (or any other fixed level), 

and p + dp the pressure at height h + 

Taking a vertical cylindrical column of air of height Hh and section A, 
the pressure on the lower end exceeds the pressure on the upper end by the 

weight of the column, i. e. by gpA^h. 

Hence pA — ^p-^bj^^A^gpAdhf i.e. Abp’^ —gpAhh, 
Therefore, when bh~^0, dpfdh ^ —gp ^ —gpiky 

since, as is proved in text-books on Hydrostatics, p^hp, provided the 

temperature be supposed to remain constant. 

Therefore p =» if p^ be the pressure at the given 

level. 

Hence, if pi, pj be the atmospheric pressures at heights h^, we have 

P1/P2 ^ «=» 

3. The motion of a patiicle against a force which is propoHional to the 

velocity. 

(For small velocities, the resistance of the air is roughly proportional to 

the velocity). Such a force will produce a retardation which varies as the 

velocity; hence the equation of motion of the particle is dvjdt^ -^kv, 

whence v « where u is the initial velocity, 

A a 2 
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4. TJie tension of a rope or belt round a rough pulley or eylindet* 

Let rbe the tension at a point T (Fig. 141) whose angular distance from 
the point -4, where the rope leaves the pulley on the slack side, is 0; and let 

T^bT be the tension at distant d + from X. 

O O 
Fig. UL 

Let Zi‘betho normal react ion at the middle point of P<?. and n the coetBcient 

of friction ; therefore ^ jK is the friction at that point wlieii the rope is on the 

point of 8lip])ing. 

Resolving along the normal and tangent at the middle point of PQ for the 

equilibrium of the indefinitely small element FQy we have 

R * Fein J + (T+ b T) sin I bt), 

and (T-hb T) cos ] bO = ft R + Tcos I hO, 

whence h Tcos IbO ^ pR ^ p{2 Ti-b T) sin I bO, 

from the preceding equation. 

When bO-^Oj 

bT/b 6. cos i fid - ^ (2 6 r) (sin I b0)/b9. 

cosJ85->l, 2T+!iT-*2T, 
sin \ bO 1 

¥• 

ultimately, dT/dS ^ p ,2 Tx I ^ pT, 

whence, as before, T *= ^ where Tq is the tension at A, 

From this it is easily seen how it is that a small force at one end of a rope 
which takes a turn or two round a rough post can support a very considerable 
tension at the other end, for if the coefficient of friction be \ and the rope 

makes IJ complete turns, i.e. if d *= 3it, we have T — ^ T^x 111*2, 
80 that a given tension at the slack end will support a tension 111 times as 
great at the other end. 

5. The discharge of a condenser through a large resistance. 

It is shown in works on Electricity that, if C be the capacity of the 
condenser, and R the resistance through which it is discharging, then 
dg/di -q/CRf where q is the amount of the charge at lime t. 
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Henco q *= Aer^where A is constant, 

!Zo original charge when t - 0. 

Therefore log ^ , and ^ « W log -- -f /log^-^ 

if f?o, fj be the potentials originally and at time t. This gives U in terms 

of V and t. 

6. The true expumion of a length, area, or volume when the coefficient of 

expansion is constant. 

1 dV 
Taking the case of a volume (Art. oS i, ^ = OL, if Vbe the volume at 

V d u 

temperature 0. Therefore, as in the preceding cas^s, V ~ if be the 

volume at temperature 0°, or F =■ if V' be the volume at tem¬ 

perature d'. Taking the former case, we have, on expanding and 

neglecting squares of a, F== F(,(l +at9) approximately. 

7. The current fiowing in an electric circuit. 

It is shown in works on Electricity that if an electric current of strength i 
be flowing in a circuit of self-induction L and resistance R, and if E be the 

external E. M. F. on the circuit, then L di/dt-^Ri ■» E. 

(i) If the circuit be left to itself, so that there is no external E. M. F., E=»0, 

/. di/dt - -Ri/L. 

Hence, as before, i = where t© is the original current. 

(ii) If a constant E. M. F. be supplied to the circuit, we have a case of the 

extension of the compound interest law mentioned above, for then 

di/dt = E/L — Ri/L, whore is constant. 

Therefore, using the result at the end of Art. 80, 

E I/ R\ E 
t •» -^Ae~titJL = -^-Ae'^dlL^ where A is a constant. 

If the time be measured from the instant the circuit is completed, / == 0 

when ^ 0. 
0 E/R -f A, and A^ - E/R; 

so that 

Since the last term in the brackets tends to zero as t increases, the current 

approaches the constant value E/R, 

(For another case of this problem, when the circuit is under the influence 

of a variable E.M. F., see the next article.) 

8. The velocity of certain chemical reactions. 

(a) Many chemical reactions follow the law (known as Wilhelmy’a Law) 

which states that the velocity of the reaction is proportional to the concen¬ 

tration of the reacting substance, i. e. if a be the initial concentration of the 

reagent and x the amount transformed at time ^ dx/dt » A; (a — vf 
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This is the extension of the compound interest law, and integrating as in 

the preceding article, we get 

I dx , , , ^ ^ 
- ^ "“log(a- j;) «= 0. 
a — xdt ® ^ 

To find C, we have a? « 0 when <0 ; — log a ^ C. 

•*, changing signs, 

log(a~x) *» —Arf+ loga, i.e. a-~x^ae^\ or a? *= a (1 

The equation may also be written in the form 

1 M !_/ \ ® T ll ^ let ** log a — log (a-x)^ log - 
1 , a 
log- 

t a — x 

This gives the value of the constant k when a and a pair of simultaneous 

values of t and x are known. 

(h) There are other chemical reactions which follow the more complicated 

law dx/dt •=‘ic(a-x){b-x). 

m • 1 dX 
This may be written 7-ryf-: Tr*= ^; 

(a-x){b--x) dt 

integrating with respect to kt =« _ x) lh~^x) * 

By the method of partial fractions (Art. 123) we find (if a > b) 

JLI. 
(a — x){b--x) a — bLb — x a — xj 

{a^x) {b — x) a — b 3. [ - log log (“ - ^)] = “1, log l~ • 

(<»-6)Arf = log^^ + C. 

a? » 0 when t^O; /. 0 * log(a/b)4 C; 

- 6) “ log ~ - log I = log ; 

or 
a b—x 

Solving this equation for a?, we obtain 

^ — b 

which gives the value of x at time 

If a pair of simultaneous values of x and t are known, the value of h 

is obtained from the equation above, 

i- —i—w?!" 
(a — b)t ^a{b — x) 

182. Another example from Electricity. 

We have, in the preceding article, solved the equation 

for the particular cases E «> 0 and E — constant. 
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Let us now take the case when the external E. M. F, is a periodic function 

of the time ; let E sinjoi, where Eq is constant. 

di R . 

dt'^ L" 

In integrating the equation -f ^ . 0 in the preceding article, we 

obtained i. e. a constant. 

If we verify this result by differentiation, we get 

R 
t. - 

E ‘-••■“-'‘(I 
This shows that the left-hand side of our equation above is made an exar^t 

differential coefficient (of and therefore the equation can be in¬ 

tegrated, by multiplying it by the factor ; it then becomes 

at E 

E, 0 f.Rt/L gin pt. 

The left-hand side being the d. c. with respect to t of we have by 

integration ^ i 
g.WXgin pi C, 

An integral of the same type as that on the right-hand side has already 

been evaluated in Art. 139; substituting R/Lj p, and t for a, b, and x 

respectively in the result of that article, we get 

{^Ki/L , 
A’o (RjL . sin pt —p cos nf) 

E 11^ ;L^ -f f 
4 Cy 

whence 
. (;?8inj.<-p/vCospf) 
, = --+C,. WX. 

Measuring the time from the instant when the circuit is completed, we 

have i == 0 when t = 0, 

The first term can be put in a more convenient form by the following 

artifice, which is one of frequent use. 

Let R^k cos (X, pL *= k sin (X; therefore tan a « pR/R, and, squaring 

and adding, R^-^p^L'^ «= 

Then R sin 2)t —pL cos pt « k (cos a sinpf - sin Of cos pt) 

» k sin (pt-Oi) ^ y'(R"^ -f sin ^pt — a). 

Hence • = ^ +p'D) ~ 

The last term becomes very small as i increases, since, RjL being -f, 

^-Rt/L decreases rapidly as t increases, and therefore the current soon 

approaches the steady oscillation given by 

_^o__ sin (pt — a), where Of > 
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Examples LXXV, 

In doing these e^amjdes, the difTercniial equation should be formed and 
actually solved in each case. Do not substitute numerical values in the results 
of Art. 181. 

1. Find the compound interest on jC200 invested for 3 years at h per cent, 
per annum, wnen interest is payable (i) monthly, (ii) daily, (lii) con¬ 
tinuously. 

2. The temperature of a body is 30® above that of the surrounding atmo¬ 
sphere ; and its rate of cooling per minute is *01 0, where 0 is the excess 
of its temperature above that of the atmosphere (which is supposed to 
remain constant); find (i) its temperature alter 3 minutes, (ii) when its 
excess of temperature will have fallen to 20°. 

8. The temperature of a liquid in a room of constant temperature 20° is 
observed to be 70° ; after 5 minutes, it is observed to be G0° ; wha-t will 
its temperature be after another half-hour, and when will it be 40° ? 

4. A rope which is in contact with a circular post is on the point of 
slipping; if the portion of rope in contact with the post subtends an 
angle of 120° at the centre, and the coclliciont of liiction is 4, compare 
the tensions at opposite ends. 

5. A rope is wound just twice round a j.ost and held by a force of 20 lb. wt. 
at one end ; if tlie coelticiciit of friction be '4, what force must be applied 
at the other end to make it slip ? 

0. The height of the barometer is 30 inches at sca-h*vel; what would it be 
at the top of a mountain 10,000 feet high, if the temperature were 
constant? [Take the pp(^cific gravity of air at sea-lcvei as *0013, that of 
mercury as 13*6, and determine k from this.] 

7. The height of the barometer is 30 inches at the bottom of a mountain 
and 24 inches at the top; find the height of the mountain. [Take & 
«= 842000.) 

8. A light string hangs over a fixed rough horizontal cylinder, and is on the 
point of clipping when masses of 8 lb. and 2 lb. are suspended from its 
extremities; find the coefficient of friction. 

0. A fly-wheel of mass 1 ton and radius of gyration 2 feet is running against 
a frici ional resistance which is proportional to the velocity ; its angular 
velocity was initially 80 radians per second, and after 2() seconds it is 
50 radians per second ; what will it be after a minute ? | If / be the M.l. 
of the wheel, and « its angular velocity at time t, Idiajdt = — A;o).] 

10. A point moves so that its acceleration is always numerically J of its 
velocity; if it starts with velocity of 5 ft.-secs., find its velocity after 
10 seconds, and when its velocity will be 100 ft.-secs. 

11. A particle falls vertically under the action of its weight, and against 
a resistance which produces a retardation proportional to the velocity; 
find its velocity after 10 seconds, supposing that it starts from rest, and 
that its velocity tends to the value 80 ft.-secs. as t increases indefinitely. 

12. A chemical reaction takes place according to the law mentioned in 
Art. 181. 8 (a). If a ■= 9*5, and x = 3*2 alter two minutes, find (i) the 
value of kf (ii) the value of x after 5 minutes. 

13. A chemical reaction takes place according to the law mentioned in 
Art. 181. 8 (5). If a «= 35*4, b *= 12*5, and x =* 2‘3 after one minute, 
find (i) the value of kj (ii) the value of x after 3 minutes. 
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14. An electric condenser of capacity 18x10"^* is dischargin^r through 
a resistance 3 x 10^^; if the initial charge be *001, find (i| the charge 
after ’01 second, (ii) when the charge is reduced to 10 per cent, of its 
original value. 

15. A condenser of capacity 5 x is discharging through a resistance, 
and in 2 seconds the voltage falls to one-t(‘ntli of its original value; 
find the resistance. 

IC. A current is flowing in a circuit of resistance 10 ohms and self-induction 
*02 henry ; if its value was originally 40 amps., find (i) its value after 
*01 second, (ii) when it is 10 amps., the circuit being left to itself. 

17. Find the current after '01 second if the same circuit is under the 
influence of a constant E. M. E. of 50 volts, and « = 0 when ^ = 0. 

18. Find the current after ‘01 second if there is an E. M. F. of 50 sin 5001, 
and f «= 0 when ^ == 0. 

10. Find the current after half a second in a circuit of resistance 10 and 
self induction 5 under an E. M. F. of 40 sin 200/. 

20. The rate at which liquid is flowing out of a vessel at any instant is 
proportional to the amount left in at that instant; if the vessel is half 
emptied in 1 minute, how much will flow out in 2 minutes, and when 
will it be four-fifths empty? 

21. A pane of glass absorbs 4 ])er cent, of the light passing through it; how 
much of the light will get through 20 such panes of the same kind of 
glass? How many panes will absorb 40 per cent, of the light ? 
[If 1 be the intensity after passing through a thickness dl/dl^ —hL] 

22. An electric current, left to itsedf, drops to 2 of its original value in 
■5^17 second ; how long will it take to drop to one-millionth of its original 
value V 

23. An electric current left to itself drops 20 per cent, in 2 minutes; when 
will it be imperceptible to a galvanometer which can just detect one 
thousand-millionth part of its original value ? 

24. The population of a country is at any instant increasing at a rate which 
is proportional to iis value at I hat instant; if it be doubled in 20 years, 
when will it have increased 5-fold? 



CHAPTER XIX 

APPLICATIONS TO MECHANICS 

WOEK 

183. Work and energy. 

It was shown in Art. 65, that, if W be the work done in moving 

a particle from some standard position to a point P, and E the 

kinetic energy at P, then F^ dW/dx and also ^dE/dx^ x being 

the distance of P from some fixed point in the line of motion. 

Therefore dWjdx^ dEjdx^ and lienee (Art. 76) W and E differ 

by SL constant only, i. e. W = E-i-C\ 
If Eq be the kinetic energy of the particle in the standard position, 

we have E = Eq when IF = 0; hence 0 = jEq-f C, and C = -“2?o, 

W=E~Eq. 

Therefore the work done in moving the particle from one point to 

tlie other is equal to the change in the kinetic energy of the particle. 

Also, since dW/dx = P, it follows that W = /Fdx, Therefore, 

if F be known in terms of Xf the work done in moving the particle 

from one point to another can be calculated. 

As an example of this, we will cjilculate the work done in stretching an 

elastic string. Let a be the natural length of the string, and suppose we 

want to find the amount of work done in stretching it from length a + fe to 

length a-f c. The tension of such a string is given by Hooke’s Law, which 

states that the tension is proportional to the extension. When the stretched 

length is a + a:, the extension is x, and the most convenient way of expressing 

this law is: T— Xx/a^ where X is a constant. [If xm^a^ this gives X, 

so that the constant X is the weight which, suspended at the end, would 

cause the string to hang in equilibrium stretched to twice its natuiul length, 

supposing this law continues to hold good.] 

Hence we have d Wjdx ■* T^^Xxfa. 

Therefore the work done in increasing x from & to c 
^\x ^ 

— dx > 

h » iM. :JX 



WORK 8C3 

If Tby denote the tensions at lengths a-Vc respectively, 
Tb \b/a and Tc — \c/a; therefore the work required 

« iX (c + b) ie--b)/a - i (To -f T,) {c-h} 

» the extension x the mean of the initial and final tensions. 

184. Graphical method. 

If X is the distance of a moving body from a fixed point 0 in 
its line of motion, and if the values of the force acting on the body 
for different values of X are known, either by (alcuhition from 
a formula or as the result of observations, then, by plotting these 
values, we may obtain a curve whose ordinate at any point {Xy y) 

represents the force acting upon the body when at distance x from 0. 

The work done in moving the body from Xi to = Fdx, and 

since Fis represented by the ordinate of the curve, this is represented 
by the area between the curve, the axis of x and the ordinates x ~ 

and x^ x^. This area may be calculated by Simpson’s Rule or 
measured by a planimeter, and thus the amount of work done is 
approximately obtained. 

This is the principle of tlie indicator diagram' of an engine, 
which registers mechanically the pressure in the cylinder at different 
parts of the stroke; the area of the diagram which is drawn gives 
the amount of work done during the stroke. 

A similar method can be used to estimate the distance travelled in 
a given interval of time, if the velocities at different instants be 
known, and to estimate the change of velocity in a given interval, if 
the accelerations at different instants be known, for 

8="' ■■■ 

185. Work done by an expanding gas. 

Imagine the gas contained within a right circular cylinder of 

cross-section A sq. ft. and length h feet, in which a piston just fits 

and slides freely, and suppose that a slight expansion of the gas from 

volume V to volume r-f moves the piston a distance dh. The 

pressure on the end of the piston is pA, if p be the intensity of 

pressure of the gas. Hence, if 5 IT be the work done by the gas in 

the expansion, dW = pAdh=pdVf and dW/lv—p. Therefore 

if ^0, dWjdv^p, and the work done in a finite expansion is 

obtained by integration. It can be shown that this relation is 

true whatever be the shape of the vessel which contains the gas. 

If Vi be the original volume and the final volume, the total work 

done by the gas in the expansion = J pdv. If the gas is compressed, 
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this is the amount of work which must be done to reduce the volume 

from ^2 to Vi. If the expansion be supposed to take place isothermally, 

i.e. without alteration of temperature, the relation between p and ^ 

is given by Boyle's Law, pv = constant; if the expansion is adiabatic, 

i.e. if no heat is taken from or supplied to the gas, the relation 

betweenp and v is given by the law = constant. [See Art. 236.] 

The pressurep, volume d, and absolute temperature T of a ^perfect 

gas * are connected by the relation pv = TzT, 

We will take an example of each case. 

Examples: 

(i) In an air-compnssor, air is drawn in at atmospheric p^'essure 14‘7 Ih. wt. 

per sq. inch^ and is compressed until the pressure is 50 Ih. wt. per sq. inch. Find 

the work done per minute and the horse-power^ if the machine mdees 100 strokes 

per minute and draws in 2 cubic feet at each stroke^ sujyposing the compression 

isothermal. 

The total work done against the gas in reducing the volume from to 

pdo ■■ 
k 

dv cat k K.T 
U Jt?,. 

: k (log Pi - log Pj) - p, log (p,/Pj) = Pi Pi log (Ps/Pi). 

Vi ■=* the initial volume of the air compressed =«= 100 x 2 = 200 cu. ft.; 

Pi« the initial pressure «*= 14*7 x 144 lb. wt. per sq. ft.; 

Pa/Pi =3 50/14-7 - 3-401. 

the work done 14-7 x 144 x 200 x log 3-401 

«*= 331,500 ft.-lb. per minute, 

and the necessary H. P. is a little more than 10. 

(ii) A quantity of drxf air at temperature is compressed adiahafically 

until its volume is one-ihii’d of its original volume ; find the amount of work done 

and the change of tenperature. 

Taking the general case, the work which must be done 

V, Jp, p’' L-7 + lJp, -(y-ljLpjV-i 

y-Up,V-l y-1 ■P**’*)- 

This result may be expressed in the form 

£i.!i 1 ), and 
7-1 / ih 

the work required =» 1 
7~1 L *’»/ 

In the given example, vfv^ = 3; the work = 
/-I 
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If there were originally 60 cubic feet of air at atmospheric pressure, 

Pj =» 11*7 X 144, t’l =» 60, and y is, for air, 1*404. 

Therefore the amount of work required 

14*7x 144x60, 
I) ,4 175700 

To find the change of temperature, we have *= /r7\, p^v^ — kT^. 

... == /'’i Y" X ?» = . 
Ti \v^J f?! \v,J 

Taking the absolute zero of temperature as 4G1° F., = 461" + 40'’= 50T ; 

/. = 50r X 3^-» - 50r X 3*^^^ - 7sr. 

Hence the temperature rises on compression to 320° F, 

VIRTUAL WORK 

180. Virtual work. 

It is proved in text-books on Statics that, if a body or system of 

bodies be in equilibrium, the work done by the external forces in 

any small displacement (consistent with the geometrical conditions) 

which the system may be imagined to take (i.e. in any virtual 

displacement) is zero. More strictly speaking, if the displacement be 

an infinitesimal of the first order, the work done in any such 

displacement from a position of equilibrium will be an infinitesimal 

of the second order. In many cases we can, by the principles of the 

differential calculus, write down at once the work done by the forces 

in a small displacement, and then, by equating it to zero, find the 

position of equilibiium, or obtain relations between the forces in 

the position of equilibrium. The following examples illustrate the 

method. 

Examples; 

(i) A uniform i‘x>d of weight W (Fig. 142) r'ests between the ground AC and 

a vertical wall BC, both smooth, and is kept from slipping by a horizontal stHng 

attached to the lower end of the rod and sup¬ 

porting a weight P hanging freely; find the 

position of equilibrium. 

Let 2Z be the length of the rod, 6 its 

inclination to the ground when in equi¬ 

librium, and h the length of the string. 

Imagine the weight Pto descend a little, so 

that & is increased by a small amount 6^. 

The reactions at A, B, and C do no work, 

since the displacements at A^ B, and C are Fig. 142. 
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perpendicular to them. If z be the height of the middle point of the rod 

above AC, and x the depth of P below C, the work done by W is —JFdz, and 

the work done by the weight P is FSx. 

Ilence, by the principle of virtual work, 

— WSz + PSx «= 0. 

Now z=^l Bin ^=6 —2/cos d; (Art. 24) cos ^ 5iF=2?8in d 

Hence, substituting and dividing by dd, IT7cos d * P2Z sin d, 

or tand-TF/2P. 

This gives the position of equilibrium. 

(ii) A frame ABC (Big. 143) consists of^ light rods, of which AB, AC are of 

length a and BC of length | a, freely jointed together; it 7-ests with BC hoHzontal, 

A below BC, and the rods AB, AC over two smooth fixed pegs E and F in the 

same horizontal line, distance 2 b apart. A weight W is suspended from A ; 

find the thrust on the rod BC. 

Denote the angle P.4//by d. Imagine A to descend a little, and that the 

rod PC is slightly shortened. The only forces which do work are the 

weight IF and the thrust T. The work done by W is JVd(IiA), and the work 

done by Pis Td(BC). 

Hence Wd(KA)-i-Td(BC) = 0. 

Since we are supposing PC to alter its length a little, we must find its 

length in terms of the variable d. 

^TA-i&cotd, and PC * 2a sin d; i (JP/4) cosec*d fid, and 

fi(PC)*=2acosdfid.* 

Hence ~ TIT? cosec’d fid + P. 2 a cos d fid « 0, 

2a cosd 

♦ If i4 descends, $ diminishes, fid is negative; this makes S(JSlA) positive, 
and 5 (BC) negative. 
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Since BC»\a^ sin ^ — BEjBA « 

h 64 
W- 

2a 9^7 

5, and COB0 

S2 

*9>/7 

' 4 v'^7; 

IK 
a 

If the weights of the various bodies of the system be the only 

forces which do work in the displacement, and if y be the height of 

the centre of gravity of the system above a fixed horizontal line, the 

principle of virtual work tells us that and therefore hy (since 

the weight W of the s^^stem is finite), is of the second order of small 

quantities. If y be expressed in terms of some variable 0, then, to 

the first order of small quantities, 

h = (Art. 24). 

Hence, since ly is of the second order, we have dy/dO =: 0, i.e. y is a 

maximum or minimum (provided cfy/dO^ is not zero). Hence the 

system is in a position of equilibrium when the height of its centre 

of gravity is a maximum or a minimum. The ef|uilibriura will be 

stable (i. e. if slightly displaced, the system will lend to return to its 

original position) if the height of the centre of gravity be a minimum, 

i. e. if d'^yldO^ is positive ; and unstable (i.e. if slightly displaced, the 

system will tend to move still further away from the position of 

equilibrium) if the height of the centre of gravity be a maximum, 

i. e. if d^yjdO'^ is negative. 

Examples: 

(i) A rod rests with one end against a smooth vertical plane AB (Fig. 144), 

and the other on a smooth inclined plane AC of angle a; find the position 

of equilibrium. 

Let d be the inclination of the rod to the horizontal, and I the length of 

the rod. The height y of the C, G. above A 

« AN + I NB — NC tan a + J Z sin d 

« I cos 6 tan CX + ^ / sin 

To find the maximum and minimum values 

of this, we have 

dy/d d ■» - Z sin d tan a -f ^ Z cos d, 

which is equal to 0 when sin d tan a “ J cos d, 

i.e. when cotd««2tana. This gives the 

position of equilibrium. 

Since d’y/dd* — Zcosdtana-^Zsin d, 

which is negative, d being acute, y is a 

maximum, and the equilibrium is un> 

stable. Fig. 144. 
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(ii) A unifoi'm rod AB (Fig. 145) of length 2a is hinged at k; a string 

attacked to the middle point G of the rod passes over a smooth jmlley at C 

at height a vertivallg above A, and supports a weight P hanging freely; find the 

positions of equllihrium. 

Let 6 be the inclination of the rod to the vertical, therefore J ^ is the 

inclination of the string CG to the vertical, since AC AG, Let I be 

the length of the string. 

C 

If sin J ^ = 0, ^ = 

The depth of G below C = a + a cos d, and the 

depth of P-^l-CG ^l-2aco^\e. 

Hence, if 2/be the depth of the C. G. of the system, 

(P+ TP) y « P (Z ~ 2 a cos J d) + TPa (1 + cos B). 

This is to be a maximum or minimum. Differen- 

tiating with respect to d, 

(P+ TK) dy/d 0 = P{a sin J d) + Wa (- sin d). 

Hence dy/d 6 ^ Q when Pshi ^ d =* TFsin d 

- 2Trsin J-dcos|d, 

i. e. when sin ^ d «*= 0, or when cos J d = P/2 IF, 

Diflerentiating a second time, we have 

(I'+ Pa. IcoslO-Wacos6 

Wa ^-yp-COS J 6 — cos 

Wa 1^2^ cos J e - 2 cos’ J <> +1J 

iw-’} 
d!^ 11 

0 and cos ^ d «= 1 ; (P+ IF) — IFa 

which is + or — according as P > or < 2 IF. 

Hence, 

if P > 2IF, the depth y is a minimum, and the position d =* 0 is unstable ; 

if P< 2IF, the depth f/ is a maximum, and the position d «» 0 is stable. 

The second solution, cos J d = P/2 IF, is only possible when P< 2IF, and 

then 

(P+Tr)2' = TKa|; r -2 :^+l [liy2 ]^a. 
4W^-F> 

4ir 

which is -f, since P< 2TF. The depth y is then a minimum, and the 

position given by cos I d *= P/2W is unstable. 

Examples LXXVl. 

1. Find the work done in stretching an elastic string of natural length 
6 tt. from length 7 ft. to length 8 ft., X being 4 lb. weight. 

2. Find the work done in stretching a string to three times its natural 
length, X being J lb. weight. 
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8. The resultant pressures on the piston of a steam-engine at distances 
0, 2, 4, 6, 8, 10, 12, 14, 16 inches from the beginning of the stroke are 
respectively 18,000, 18,500, 18,400, 18,000, 16,500, 14,200, 11,100, 7200, 
1800; find the work done during the stroke of 16 inches. 

4. The pressures of a gas at volumes 1,2, 3,4,5, 6, 7 cubic feet are 400,240, 
170, 120, 85, 70, 651b. weight per square inch. Find the work done 
during the expansion from 1 to 7 cubic feet. 

6. A gas expands according to the law — constant. When its volume 
is 2 cubic feet, the pressure is 350 lb. weight per square inch. Find the 
work done as the gas expands to a volume of 5 cubic feet. 
Find the work done as the gas expands until its pressure is 55 lb. weight 
per square inch. 

e. A quantity of air expands according to the law pv^’* «= constant. The 
pressure is 250 lb. weight per square inch when the volume is 3 cubic 
feet. Find the work done when it expands to a volume of 7 cubic feet. 
Find how much work is required to compress it to a volume of 2 
cubic feet. 

7. A body of mass 100 lb. is drawn along a rough horizontal plane (/i *» *3) 
by means of a rope which passes over a smooth pulley 6 feet above the 
plane. If it be originally 10 feet distant from the pulley, find the work 
done in pulling it very slowly a distance of 5 feet along- the ground. 

8. A chain 500 feet long hangs vertically, and its mass varies uniformly 
from 10 lb. per foot at its upper end to 7 lb. per foot at its lower end. 
Find the work done in winding it up. 

9. A circular well, 6 feet in diameter and 200 feet deep, is full of water. 
Find the amount of work done in pumping all the water to the top. 
At what rate is the level of the water sinking when it is (i) 100 feet, 
(ii) 150 feet below the ground, supposing the engine works at uniform 
rate and empties the well in 80 minutes ? 

10. A quantity of dry air at temperature 50^ F. and atmospheric pressure 
is compressed adiabatically from volume 20 cubic feet to volume 
5 cubic feet; find the amount of woik done and the change of 
temperature. 

11. Three cubic feet of saturated steam, pressure 150 lb. weight per square 
inch, expand to volume 8 cubic feet. Find the work done, the law of 
expansion being *= constant. 

12. A uniform rod, weight TT, rests with the lower end on a smooth hori¬ 
zontal plane AB^ and the upper end against a vertical plane BC) it is 
kept from slipping by a horizontal string attached to a point on the rod 
distant one-third of its length from the lower end, which passes over 
a smooth pulley and supports a weight J W hanging freely. Find the 
position of equilibrium. 

13. If the lower end of the rod in Question 12 be supported by a string 
attaolied to B (and the other string be removed), find the tension of the 
string when the rod is inclined at 80° to the vertical. 

14. Four equal uniform rods, each of weight W, are smoothly jointed 
together; B and Z>are kept apart by a rod of negligible weight of such 
length that ABCD is a square, and the whole is suspended from A. 
Find the thrust in the rod BD, 

15. If, in the preceding question, the rod BD is taken away, and the figure 
kept in shape by an inextensible string AC^ find the tension in the string. 

isit B b 
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10. If in Question 14 the string be elastic, of natural length equal to the 
length of the rods, and such that the weight of all the rods would just 
stretch it to double its natural length, find the inclination of the rods 
to the vertical when in equilibrium. 

17. A string passes over two smooth pegs A, B, 2 feet apart in a horizontal 
line, and has masses 5 lb. suspended at each end, and 6 lb. at its middle 
point. Find the position of equilibrium of the 6 lb. mass. 

18. A uniform heavy rod, 6 feet long, rests over a smooth peg and against 
a smooth wall, from which the peg is 1 foot distant. Find the position 
of equilibrium, and whether it is stable or unstable. 

19. A uniform rod rests with its ends on two smooth inclined planes of 
angles 35® and 50' which have a common foot. Find the position of 
equilibrium, and whether it is stable or unstable. 

20. A parallelogram ABCD of four uniform rods freely jointed has the side 
AB fixed horizontally and hangs in a vertical jdane. A is attached to 
C by a light string of length equal to AB, and oc is the acute angle of 
the parallelogram. Find the tension of the string. 

21. Four rods of length a and negligible weight are freely jointed; the 
system rests with AC vertical, and BC, CD against two smooth pegs in 
the same horizontal line, distant c apart, B and D being kept apart by 
a light rod of length a. Find the thrust in BD when a weight W is 
placed on A, 

22. A ladder of mass 100 lb. rests with one end on tlio ground and the 
other against a smooth vertical wall. It is kept from slipping by 
a horizontal string attached to its lower end. Find the tension of the 
string when the ladder is inclined to the horizontal at an angle (X. 

28. In the preceding question, find the work done in pulling the ladder 
from inclination 60® to inclination 70®, its length being 40 feet. 

24. A cube of wood of side 2 feet and specific gravity ’6 floats in water with 
its base horizontal. Find the work done in pushing it down until its 
top is level with the surface of the water. 

EECTILINEAR MOTION OF A PARTICLE 

187. Motion of a particle in a straight line. 

We will next consider some applications of the integral calculus 

to the motion of a particle in a straight line. 

Expressions for the velocity and acceleration of a moving point 

have already been given (Art. 62), together with a few simple 

examples in which the acceleration is a given function of the time 

(Arts. 63 and 78). 

We will now discuss some cases in which the force acting on the 

particle is given as a function of the position of the particle. 

In the first place, since the force acting on a particle in any 

direction is equal to the product of its mass and its acceleration in that 

direction, it follows that the acceleration of the particle will follow 

the same law as the force which produces it. 
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(1) Simple Harmonic Motion. We commence with the well-known 
case of simple harmonic motion. 

A particle moves in a straight line under the influence of a force which 

is directed towards a fixed point in the line, and varies as the distance 

from that point To find the motion. 

Let the particle start from rest at distance a from the fixed point 0 
(Fig. 146). When at P, at distance x from 0, its acceleration in the 

_ <-cn-. 

0-<-X-—->p A 

Fig. 146. 

direction OP(i. e. atvay from 0) is x or v dv/dx. [Since v dv/dx = ^ the 
d.c. of with respect to x, it is -f when increases as x increases.] 
Taking the latter form, since the force and therefore the acceleration 
varies as x, and is towards 0, we have 

vdvldx= 

where p is a constant whose value can be found if the mass of the 
particle and the magnitude of the force acting upon it in any position 
are given. 

Integrating with respect to x, J t?® = — p, ’ 

Since the particle starts from rest at A, we have v = 0 when x = a, 

0=—+ and 

Substituting this value of 0, = p{a'^ — x^), 

.*. v = + v^{p (rp— 

This gives the velocity in any position ; the doul>le sign indicates 
that, at distance x from 0, the particle is moving sometimes towards 
0 and sometimes away from 0; the magnitude of the velocity is the 
same in either case. This equation may be written 

dx/dt — V — p V(a^ — x% 

, 1 _ 
V(a^—x^) dt ~ ~ 

Integrating with respect to t, sin~^— ±t\^p-\-C. 

If t be measured from the instant when the particle starts, we 
have a when = 0. 

Bin~^ 1 = (7, and sin“^ (ic/a) tt + 
or x/a = sinHtt±t'f p), and x — a cos tVp. 

This gives the distance of the particle from 0 (not the distance 
travelled from A) after time t 

The velocity at any instant is obtained by differentiating this with 
respect to t This gives 

V = dx/dt = —aV^p sin ^\/p. 

litVp is increased by 277, both x and v are unchanged in magni¬ 
tude and sign, i, e. all the circumstances of the motion are repeated 

B b 2 
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without any alteration when t is increased by 27r/-v/jut; hence the 
motion is oscillatory, and the time of a complete oscillation, or the 
period, = 2'7t/-v//x, This is independent of a, the amplitude. 

(2) Law of Gravitation, Next, let us take an example of the law of 
gravitation. 

A particle moves in a straight line under the action of a force towards 

a fixed point in the line varymg inversely as the square of the distance 

from that point; find the motion, and, as particular cases, find (i) with 

tvhat velocity a meteorite would reach the earth after moving from a very 

great distance under the influence of the earth*s attraction, and (ii) how 

long it would take the moon, if suddenly stopped in Us orhil, to reach the 

earth. 

As in the preceding case, the acceleration at distance x from 0 is 

vdvjdx in the direction OP, vdv/dx = 

Integrating with respect to x, iv^= p/^+ C, 

If the particle starts from rest at distance a, v — 0 when x = a. 

0 — p/a-h 0, and C^^—pja] 

hence v® = 2// (1/x— 1/a). 

This gives the velocity of the particle in any position. 

In the case of the meteorite starting at a very great distance, we may 

take V «■ 0 when x «* oo; .*. C »= 0, and r* *= 2 p/x. At the earth’s surface, 

the distance x of the particle from the centre of the earth * is equal to r, 

the radius of the earth; hence, neglecting the retarding effect of the earth’s 

atmosphere, the velocity on reaching the earth’s surface is given by — 2p/r, 

We can find p in this case, because we know the acceleration of a particle 

at the earth’s surface due to the attraction of the earth ; it is approximately 

32 ft.-secs. per sec., therefore p/r^ *= 32. 

Hence 2 p/r *= 64 r *= 64 x 4000 x 5280, taking r as 4000 miles. This 

gives the value of v as approximately 7 miles per second. 

Conversely, if we suppose the direction of motion reversed, a stone pro¬ 

jected vertically upwards from the earth’s surface with this (or any greater) 

velocity would (neglecting the effect of the atmosphere) never return, but 

would recede to an infinite distance. 

The retardation due to the resistance of the earth’s atmosphere has here 

been neglected. As a matter of fact, tliis is so enormous that few meteorites 

ever reach the earth’s surface. They are usually dissipated by the heat 

generated by their passage through the air. If in the j)receding formula we 

take r ■= 4050 miles, the result will not be very different, and this would 

give the velocity at a point 50 miles distant from the earth’s surface ; at this 

distance the atmosphere of the earth will be extremely rare, and its retarding 

force very slight. 

♦ It was shown in Art. 179, Ex. (iv) that the attraction of the earth, regarded 

as a sphere, at an external point is the same as if its whole mass wore concen¬ 

trated at its centre. 
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Returning to tlie general case, we have 

dx/(U= V = — [2i.i(l/x—l/a)\ = —•-/{2/ji(a —a:)/a.r}, 

taking the — sign since x decreases as t increases. 

integrating with respect to t, dx:=^ — (2}x)t+C. 

The expression on the left-hand side is rationalized by putting 

X = a CQs^O ; 

then (7— V(2/;.) i ~ X —2a cos 0 sin 0 dJ 

= - a" y'2cos^ OdO 

^ - a\/'(l-hco3 20) dO 

= — a* (d-f I sin 20)» 

Wlion f 0, X — a, and therefore cos0=1 and 0=0; hence C == 0. 

V'(2/x)/ = a5(d+.l sill2^), 

and t = a* (d sin 0 cos 0)/ V[2 ^j) 

V(2m) 
C03“ 

Tills gives the time to reach a point distant x from 0, after starting 

from rest at distance a from 0. The time to reach the origin is 

0^ 77 
found by putting x = 0^ which gives t = * ,5 • 

V (2//) J 

Taking the particular case mentioned above, if the moon be supposed to 

describe a circle of radius a about the earth with angular velocity o), its 

acceleration towards the earth’s centre is (Art. 68); hut at distance a, 

the acceleration due to the earth’s attraction is /ji/a^ towards the earth's 

centre; and w« 

Hence the time of a complete revolution of the moon «= 27r/a) = 2 rra*/y^/i. 

Therefore 

time to reach the earth 1 

time of a revolution about the earth i^2 8 
*1708... nearly. 

The time of a revolution of the moon about the earth is 27 days 1\ hours 

nearly ; hence the time it would take the moon to reach the earth is *1768 

of 27 days 7 J hours, i. e. a little less than 4 days 20 hours. 

This supposes the moon to reach the centre of the earth, i. e. it neglects 

their radii in comparison with their initial distance apart. 
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188. Motion of a particle suspended by an elastic string. 

XK, 

•mg 

Fig. 147. 

Let OA {= a) (Fig. 147) be the natural length of the 

string (whose mass is neglected), and suppose a mass m to 

be gently attached to A, and then let go ; it will begin to 

descend. Let x be the length of the string after time t. 

The forces on the particle are its weight mg vertically 

downwards, and the tension of the string vertically 

upwards. The tension of the string is given by Hooke s 

Law (Art. 183); in this case the tension is k{x — a)/a, 

X being the total length. 

Let V be the velocity when the length of the string is x; 

therefore the acceleration is vdv/dx downwards. 

The equation of motion is 

miJ ^ = the force downwards — mg— mg — ^ ; 

dv X 
V ~ -i- 

dx ma 

If x—a—magl\ be denoted by then 

dv _dv de ^dv ^ 

dx d2 dx dz * 

and the equation may be written 

dv k 
V — + — 0 = 0. 

dz ma 

This is the same equation as was obtained and solved in 

Art. 187, (1), with k/ma instead of p. The initial conditions in this 

case are that when ^ = 0, v = 0 and x-= a, therefore 0 = — mag/k. 

Hence, substituting these values in the result there obtained, we 

have f = — [mag/k) cos {^ v^(A/ma)}, 

i.e. ic = a[mag/k) [1—cos [tV(X/wa)}]. 

The maximum value of x (when t\/(k/ma) = tx) is a + 2mag/kp 

and the minimum value (when ^ = 0) is a ; hence the particle descends 

a distance 2mag/\ then rises to its original position again, and 

continues to oscillate between these two positions with simple 

harmonic motion. The centre of the oscillation is the position of 

equilibrium of the particle, which is at a depth a-^mag/k below 0. 

The time of a complete oscillation is 2-n*/ (ma/X). 

♦ It will be seen from the result below that « is the depth of the particle 

below its position of equilibrium. 
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Examples LXXVII. 

1. A particle starts from rest and moves towards a fixed point 0 under the 
influence of a force directed towards 0, and varying as the distance 
from 0; if the particle was initially 4 feet from 0, and the force on it 
was then equal to twice its weight, find (i) the velocity when 2 feet 
from 0, (ii) the velocity at 0, (iii) the distance from 0 after half a second, 
(iv) the time of a complete oscillation. 

2. If in the preceding question all the circumstances are the same except 
that, instead of starting from rest, the particle is projected towards 0 
with a velocity of 8 loot-seconds, find the corresponding velocities, 
distance, and time. 

3. Supposing the earth suddenly stopped in its orbit round the sun, how 
long would it then take to fall into the sun ? 

4. A particle moves in a straight line under the influence of a force towards 
a fixed point 0 in the line, which varies inversely as the square of the 
distance from that point; it starts from rest at distance 4 feet from O, 
and the force at starting is four times its weight; find (i) the velocity 
when 1 foot from 0, (ii) the time to reach 0, (iii) the time to reach 
a point 1 foot from 0. 

6. If a particle could move in a straight line from the surface of the earth 
to its centre, how long would it take, starting from rest, to reach the 
centre, and what velocity would it have on arriving there ? [See 
Art. 179, Ex. (iv).J After what time would it return to the startings 
point ? 

6. Find the velocity of a particle which has moved from rest at a distance 
of 1000 miles under the influence of the earth’s attraction, when it 
arrives at a distance of 100 miles from the earth's surface. 

7. If a particle were projected vertically upwards with a velocity of 1 milo 
per second from a point on the earth’s surface, find how far it would go 
under the influence of the earth’s attraction (neglecting the efl'ect of the 
atmosphere). 

8. With what velocity would a stone have to be projected from the surface 
of the moon in order not to return ? The radius of the moon is about 
1100 miles, and the value of g at its surface about 5g ft.-secs. per sec. 

9. A particle starts from rest and move^ towards a fixed point 0 with an 
acceleration which varies as the square of the distance from 0, and 
which is 16 ft.-secs. per sec. when the particle is 4 It. from 0 ; find the 
velocity with which it arrives at 0, if it was originally 10 feet from 0. 

10. Suppose that in the preceding question all the circumstances are the 
same except that the acceleration varies inversely as the distance; find 
the velocity of the particle when it is 1 foot from 0, 

11. Find the velocity in any position when a particle moves from an in¬ 
finitely great distance under the action of a force which varies inversely 
as the cube of the distance. 

12. A particle of mass J oz. is attached to the end of an elastic string 2 feet 
long which hangs vertically from a fixed point, and is then let go; find 
(i) the greatest depth it reaches, (ii) the time of oscillation, (iii) the 
velocity at depth of 2‘5 feet, (iv) the time to reach depth 2*8 feet, 
(v) the depth after half a second, supposing that a mass 1 oz. hangs 
in equilibrium with the string 4 feet long. 
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13. A particle is repelled from a point 0 with a force which varies as the 
distance from 0; if it starts with velocity u from 0, find its velocity 
at any distance from 0, and the time it takes to reach a given distance 
from 0. 

14. Answer the same questions if the particle starts from rest at distance a, 

15. Answer the same questions if the repulsive force varies inversely as the 
square of the distance. 

16. A particle moves towards a fixed point 0 with an acceleration which 
varies as its distance from 0; its velocity wlum 4 feet from 0 is 20 foot- 
seconds, and its acceleration is then 65 foot-seconds per second ; at what 
distance from 0 did it start from rest ? 

17. A particle moves towards a point 0 with an acceleration which varies 
inversely as the cube of the distance from O; find the time to reach 0, 
supposing it starts from rest at distance a. 

18. A particle attached to the end of an elastic string of natural length 
3 feet hangs in equilibnum with the string stretched to a length of 
4 feet; if the particle is held with the string at its natural length and 
then let go, find (i) the time to reach the greatest depth, (ii) the maxi¬ 
mum velocity, (iii) the velocity after 1 second, (iv; the depth after 
3 seconds. 

19. If in the preceding question the particle is held with the string stretched 
to a length of 4.J feet, and let go, find the values of (ii)-(iv). 

20. A particle on a smooth horizontal plane is attached to two horizontal 
elastic strings, each of natural length 2 feet, which are in the same 
straight line, and have their other ends attached to fixed points 6 feet 
apart; the particle is in equilibrium with each string stretched to 
a length of 3 feet, and the modulus of elasticity A is twice the weight of 
the particle for each string. If the particle is displaced a distance of 
1 foot, BO that the strings are 2 and 4 feet long, and then let go, find 
the time of a complete oscilhition, and the position of the particle 
at any time. 

21. Answer the same question when the strings are stretched vertically 
between two points 8 feet apart, and the particle is displaced 1 foot 
upwards from the position of equilibrium. 

MOTION IN A RESISTING MEDIUM 

189. Resistance proportional to velocity. 

We now proceed to discuss several cases of the motion of a particle 

in a medium whose resistance is a function of the velocity of the 

particle. 

A particle falls from rest in a medium tcliose resistance varies as the 
velocity) find the velocity at any subsequent instant and the distance 
fallen. 

Let m be the mass of the particle. It is convenient to take the 

resistance as Imv) this varies as v, since m is supposed constant 

during the motion of the particle. 

Taking the acceleration in the form dv/dt (since we want to find 

V in terms of t)f the equation of motion is 
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mdv/dt = force vertically downwards = mg—mkv, 

i.e. ^ = g — liv, which may be written —^ • ^ = 1. 
dt ^ ^ g-lcv dt 

Integrating, {log 7c®)}/(—ft) = t+C. 

Since the particle starts from rest, » = 0 when < = 0, 

••• -0ogg)/ft=C; 

hence, substituting this value of C, and multiplying by —ft, 

lo^ig-hv) = -ft7 + logy, 

log ^ = —Jct, or 1 — - » = e'*', 
9 9 

whence v = ^ (1—e 

As t increasos, v—> the limiting value g/7c^ since > 0. 

This is called the terminal velocity; its value can be obtained 

at once from the equation of motion, for it is clear that so long as 

the M^eight of the particle is greater than the resistance, the velocity 

continues to increase, and therefore the resistance continues to 

increase, and the resultant force on the particle tends to become zero ; 

the acceleration then tends to zero, and the velocity tends to a 

constant value. The acceleration v is zero when = 0, i.e. when 

V — g/h. This then is the terminal velocity, the limit to which the 

velocity of the particle tends. 

The velocity rapidly approaches the terminal velocity (unless h be very 

small) since the term diminishes rapidly. For suppose the terminal 

velocity is 96 foot-seconds, i.e. g/lc — 96, and therefore A; — J. The velocity 

after 9 seconds (yA) (1—96(1—» 96x *95 nearly; i.e. after 

9 seconds, the velocity is only about 5 per cent, short of the terminal 

velocity. 

The distance fallen in time t is now obtained by writing 

9 /-I 

• *. integrating, s = 

5 = 0 when < = 0, 

i. e. 

Hence s = f (^+ \ e 
i6 ^ fC 

C=-glJ^. 

J ^ k 
g_ 
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190. Resistance proportional to square of velocity. 

In this case, if we take a particle falling from rest, the equation of 

motion becomes 

dvjdt = g—Wj which may be written 'k(gfTc-~v^)j 

or, putting instead of gfk for convenience, dv/dt = Ic 

• ‘ dt 

Integrating with respect to ^ + C. 

When < = 0, V = 0, since the particle starts from rest; 

0 = C, and log^-”^ 2cM ; 

c + v 1 
-— =: whence v ~ c. -irn—7 = c tanhckL 

As t increases indefinitely, tanhcA;^—(Art. 93) and v—^c, 

i. e. \/ig/Jc). This is the ‘ terminal velocity \ as is likewise evident 

from the equation of motion. 

Tlie distance fallen through in any time t is at once obtained 

from the preceding result, for 

dx/dt = V = c tanh cJctj 

ic = c /tanh cJct ,dt = c ®dt-=^^ log cosh chi + C. 
J cosh ckt ch 

When < = 0, x = 0, and cosh ckt = 1; log coshc/c^ = 0. 

Hence C = 0, and a: = - log cosh ckt = ^ log cosh {gk) L 

To find the height attained by a particle projected vertically 

upwards with velocity w, we take the acceleration as v dvjdx. The 

equation of motion is then 

V dv/dx = ’-g--kv\ 

V _ 1 

g + kv’^ dx ” 

Integrating, (l/2it) log[g+kv^) = —(7. 

Initially, v = u and a; = 0, (1/2A;) log(^ + ^'w^) = C. 

••• * = 4 log(^+A«^)- ^ log (a+hv^) = 1 log|^. 

1 / k \ 
At the highest point, t? = 0, and x = gv log (^1 + - u^j • 

This gives the greatest height attained. 
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191. Numerical examples. 

(i) A particle is projected vertically upwards with a velocity of foot-seconds 
in a medium whose resistance varies as the square of the velocity; with what 
velocity will the particle return to the starting-point, given that the tejyninal 
velocity of the paHicle falling in the same medium is SO foot-seconds ? Find also 
the time which elapses before it returns to the starting-point. 

The acceleration of the particle when fallings is g — kv’^, and this is zero 
when V is the terminal velocity, i.e. . 6400 « 0 ; hence k == 

When the particle is ascending, the equation of motion is 

■> -g-kv^ _ -32- (6400 +A 

21) rfu ^ 
’■®' 6T00+i)*^“ 

Integrating, log (6400 + 1)2)-C. 

f> = 80 when x — O', log 12800 = C, 

and xoD ^ + =* log {12800/(6400 + 1’*)}. 

At the highest point, t? ** 0; a: ==■ 100 log 2. 

We now have to find the velocity of the particle after falling this distance 
from rest. 

When descending, v dv/dx = ^ (6400 - i;*), 

whence, as above, log(6400>« — 

r *■ 0 when a? *=■ 0; log 6400 = C. 

log (6400 —V*) ■■ —yJo a? + log 6400. 

Hence, when x =- 100 log 2, we have 

log (6400 — r*) — — log 2 + log 6400 = log 3200; 

.*. 6400-v*« 3200, 

and V =* V^3200 40\/2 -» 56’56 foot-seconds. 

To find the time, we take the acceleration in the form dv/dt. 

When ascending, g « (6400 + »>), g = 

Integrating, ^ tan*"' t? « -^Jo ^ + <7. 

When ^ — 0, f =* 80; .*. C ^ ^ tan“^ 1 = s 

and ^ tan~' “■ yJxy 

At the highest point, v ■■ 0; ^ » f tt »■ T96 seconds. 

When descending, g = (6400 - .»), 

Integrating, rh log “ 210 + 

When ^ — 0, C* 0, and < « Jlog • 
Ov — f> 
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If we now use the result obtained above, that v *= 40\/2 on reaching 

the starting-point again, we have 

< “ ! log ^ vK - I ’os (3+2 /S) = S log 5-83 = 2 2. 

Hence the total time which elapses is 4*16 seconds approximately. 

(ii) A toboggan descends a uniform slope of 1 in 5 which is a hundred 

yards in length. The coefficient of friction is and the resistance of the air 

varies as the square of the velocity^ and is 2 Ih. weight per square foot of surface 

exposed to it when the velocity is 20 foot-seconds. If the toboggan when loaded 

weighs 200 /6., and presents a surface of 4 square feet to the air-resistance^ find 

its velocity when it reaches the foot of the incline and the time it takes to descend. 

Show that, however long the incline may he, the velocity can never exceed about 

26^ miles per hour. 

The resolved part of the weight down the incline 

« 200 sin a «= 200 x J ■» 40 lb. weight (Fig. 148). 

The friction x 200 cos a « 10 x ^ ^ 9*8 lb. weight. 
o 

The air-resistance per square foot kv^, and is equal to 2 lb. weight 

when f> 20; 

2 « A;. 400, and k = 

Hence, since the surface exposed to it 

is 4 square feet, the total air-resistance 

*" /n weight. 

Therefore the equation of motion of the 

toboggan is 

200 V dv/ds «= (40 - 9*8 - r®) g. 

V dvjds ■■ 2% (30’2--^^r*) *= (1510 

^ -2f» dt; 

^ 1510- e’ 1510-»* ds ” 

Integrating, log (1510 - v*) «• — *0064 s+O. 

Now t7«*0 at starting, i.e. when s —0; /. logl510*=C; 

Iog(1510-t)*)-logl510-*0064s. 

Hence 1510 -1;’* = 1510 *«>«*•, 

and r«-=1510[l-r-*o«M']. 

At the foot of the incline, s «* 300, and ^ » *1466, 

.*. *= 1510 X *8534 and v *=* 35*9 foot-seconds. 

Hence the toboggan reaches the bottom with a velocity of 35*9 foot-seconds, 

or 24i miles an hour very nearly. 

As s increases indefinitely, f?*->15l0 and v->38*9. Therefore, however 

long the incline may be, the velocity will never exceed 38*9 feet per second, 

or roughly 26| miles per hour. 

Fig. 148. 
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To find the time of descent, we may, in the equation of motion, take the 

acceleration as dvjdt instead of v dvjds^ and proceed as in the last example ; 

it will be found that, when r 35*9, <*-13 nearly, so that the time of 

descent is approximately 13 seconds. 

(iii) Find the horizontal distance travelled in 1 second hy a body projected 

horizontally with velocity 1000 foot-seconds^ assuming the resistance of the air 

varies as the cube of the velocity {which is found hy experiment to he approximately 

the case for large velocities). 

The equation of motion is t? ™ =* i. e. ~ —k\ 
dx dx 

integrating, lJv^kx-\-C. 

Initially, r =• 1000, and a; = 0; 

and 1/c = + dt/dx =» + 

Integrating agai n, t^\ kx^ 4- xxiW x+ C. 

Initially both t and x are 0; C -= 0, 

and kx^ ~f X — t =* 0. 

Taking < ■= 1, 500 -fa:— 1000 == 0 ; 

X - [ -1 ± V(1 + 4.500 A:. 1000)1/1000 k. 

The positive root of this equation gives the distance required; it is found 

by experiment that k *» 4*45 x 10~* nearly. Substituting this value, we find 

X =» 976 feet approximately. 

MOTION IN A CURVE 

192. Motion in an ellipse. 

We have discussed (Art. 187) the motion of a particle in a straight 

line when attracted to a fixed point in the line by a force which 

varies as the distance from the point. Let us now determine the 

motion of a particle under a similar force, when projected in 

a different direction. Suppose it is projected from a point A, at 

a distance a from the fixed point 0 towards which the force acts, 

with velocity u in the direction 

perpendicular to OA (Fig. 149). 

Let {Xj y) be the coordinates of 

the position P of the particle at 

the end of time <, referred to 

rectangular axes 0-4, OR, and let 

(r, 6) be the polar coordinates of P. 

The force on the particle at P 

may be written in the form /amr, 

and the accelerations of P parallel to the axes are v dv/dx and v' diZ/dy^ 

where v and </ are the components of the velocity of P parallel to 

the axes respectively. 
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Eesolving parallel to the axes, we have the equations 

mv dvjdx = —fimr cos 0 = — /xwu?, 

mv' dv'I = —/Amrsin^ = 

i. e. V dvjdx —fix^ and v dv'/dy = — ju ; 

together with the initial conditions a; = a, ^ = 0, i? = 0, v' = w. 

These are the equations of simple harmonic motion obtained in 

Art 187, and the equations can be solved as in that article. Hence 

the motion of the particle is compounded of two simple harmonic 

motions in directions at right angles and having the same period, 

since /x is the same in both. 

The equation of simple harmonic motion can also be solved in 

another way as follows: Taking the above equations, they may be 

written in the forms ic = — ^.x, and y = —fty. 

If we ask ourselves what kind of function satisfies an equation of 

this type, we remember that the second differential coefficients of 

sin and cosm^ with respect to t are —m^ sin and — cosmt; 

hence, if ir = sin<v^/x or cosf\//x, it follows that i = —jua;, and 

therefore the same result is true if a; = A sin + cos 

where A and B are constants. This therefore is a solution of the 

equation, and it will be seen later that it is the most general 

solution. 

Hence x — A sin t /x B costV fx; y ^ C sin fx +D cost'/ fx, 

and it remains to determine the constants A, E, (7, D. 

Differentiating, 

dx/dt, Le, V, = A/fx cos t/fx-~B/fx sin t/fx ; 

dyjdt, i. e, v\ = C/fx cos t/fx—B/ix sin t/fx. 

Substituting in these four equations for re, y, dx/dtj dy/dt the 

initial values a; = a, t; = 0, y = 0, t/ = u when t = 0, we get 

a = B; 0 = a/fx, and 0 = D, m = C//x. 

a; = a cos t/fx [as in Art. 187], and y = {u///x) sin t//x. 

Eliminating t, we have as the equation of the path of P 

which is the equation of an ellipse whose centre is the origin, and 

whose axes lie along the axes of coordinates (p. 19), and are of 

lengths 2 a and 2ul/ix, 

Hence the path of the attracted particle is an ellipse described 

about the ‘ centre of force ^ as centre. 
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If tt’ /lo’, the axes are equal and the path of the particle is a circle. 

In this case i sin and p ^ a\/tiCoatf/ii. A’ + y’»= «V. 
and the resultant velocity of the moving point is constant and equal to a-yZ/i, 

i. e. the moving point describes a circle of radius a with uniform angular 

velocity -y//x. Uniform circular motion may therefore be regarded as the 

resultant of two simple harmonic motions at right angles of equal periods and 

amplitudes, one of which is a quarter oscillation ahead of the other. This 

follows at once geometrically, if we draw perpendiculars PN, PM from 

a point P on the circle to two diameters at right angles, and consider the 

motion of N and M. 

193. Motion of a particle along a smooth curve in a vertical 
plane. 

Let u and v be the velocities of the particle at A and P respectively, 

and 3 the length of the arc AP (Fig. 150). 

The acceleration of the particle along the tangent at P is v dv/ds; 

therefore, resolving along the tangent, 

mv dv/ds = — sin dy/ds (Art. 82). 

Integrating with respect to 5, i v* = — 4- (7. 

If be the ordinate of A, then t? = m when y 

••• = 

Hence, by subtraction, ^ (i) 

i.e, = 

if h be the vertical distance between A and P. 

Therefore, if a particle moves along a smooth curve under the 
action of gravity, the change in its velocity depends only upon the 
vertical distance it travels. 
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Multiplying equation (i) by m, it may be written 

i.e. the decrease in the kinetic energy of the particle is equal to the 

increase in its potential energy; hence the sum of the hinetic and 

potential energies is constant 

Examples LXXVIII. 

1. A particle is projected with velocity w, and moves horizontally in 
a medium whose resistance varies as the velocity. Find (i) the velocity 
after travelling a given distance, (ii) the velocity after a given time, 
(iii) the distance travelled in a given time, (iv) when it comes to rest, 
(v) where it comes to rest. 

2. A particle is projected with velocity 1000 foot-seconds, and moves 
horizontally in a medium whose resistance to mass m moving with 
velocity t? is mv^. Find (i) the velocity after ti-avclling a distance a?, 
(ii) the velocity after t seconds. 

8. A particle is projected vertically upwards with velocity 80 foot-seconds 
in a medium whose resistance varies as the square of the velocity, and 
is equal to poundals in the case of mass m lb. moving with 
velocity v foot-seconds. Find (i) the time to the highest point, (ii) the 
greatest height, (iii) the velocity after 2 seconds, (iv) the velocity at 
height 20 feet. 

4. Answer the first three questions of Ex. 3, if all the conditions are the same 
except that the resistance is equal to ^'0 mr poundals. 

6. A particle fiills from rest in a medium whose resistance varies as the 
velocity. The resistance is ^^0 of the weight when the velocity is 10 foot- 
seconds. Find (i) the terminal velocity, (ii) the velocity after 5 seconds, 
(iii) the distance fallen in 4 seconds. 

6. Answer the same questions if all the conditions are the same except that 
the resistance varies as the square of the velocity. Find also the velocity 
after falling 40 feet. 

7. A particle falls from rest in a medium whose resistance varies as the cube 
of the velocity. If the terminal velocity be 16 foot-seconds, find the 
resistance to a mass of 2 lb. moving with velocity 10 foot-seconds. 

8. A particle is projected vertically upwards with velocity 40 foot seconds 
in a medium whose resistance varies as the square of the velocity, and 
is equal to J of the weight of the particle at starting. Find (i) the time 
to the highest point, (ii) the greatest height, (iii) the velocity on reaching 
the ground again, (iv) the time taken to fall to the ground again. 

9. A particle is projected vertically upwards with velocity 80 foot-seconds; 
find its velocity after rising 10 feet, if the resistance produces a retarda¬ 
tion *00005 V* ft.-secs, per sec., where v is the velocity of the particle. 

10. Find the terminal velocity if a particle falls in a medium whose resis¬ 
tance varies as the power of the velocity. 

11. A particle is projected vertically upwards with velocity w in a medium 
whose resistance varies as the velocity. Find the time to the highest 
point and the greatest height. 
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12. In the preceding question, find the time to the highest point if the 
resistance varies as the square of the velocitj. 

13. A particle of mass 4 lb. starts with velocity 100 foot-seconds, and moves 
horizontally against a resistance lb. weight. Find (i) its velocity after 
travelling 20 feet, (ii) the distance travelled in 1 second, (iii) how far 
it travels before its velocity is reduced to one-half of its original value. 

14. A particle of mass m lb. moves horizontally in a medium whose resistance 
*= m^v/k lb. weight. Find the time before the particle comes to rest 
and the distance travelled, if it starts with velocity u. 

15. A man descends from a balloon by means of a parachute. How large 
should the parachute be in order that, whatever be the height from 
which he starts, his velocity on reaching the ground may not exceed 
20 foot-seconds? The total mass of the man and parachute is 160 lb. 
and the resistance of the air varies as the square of the velocity, and is 
equal to lib. weight per square foot of surface exposed to it when the 
velocity is 20 foot-seconds. 

10. Steam is shut off, and the brakes are applied to a train running at 
60 miles per hour. If the brakes exert a constant retarding force equal 
to of the weight of the train, and if the other resistances are 
proportional to the velocity and equal to of the weight of the train 
when the velocity is 60 miles per hour, find the time and the distance 
travelled before the train comes to rest. 

17. Two particles move in the same vertical straight line in a medium whose 
resistance varies as the velocity. One is projected vertically upwards 
with velocity w, and starting at the same time the other falls from rest at 
a height h. After what time will they meet ? 

18. An inclined plane is half a mile long and has a vertical fall of 300 feet. 
A toboggan of mass 200 lb. slides down it. If the coefficient of friction 
is *05, and the air-resistance varies as the square of the velocity and 
is equal to 5 lb. weight when the velocity is 40 foot-seconds, find the 
velocity at the bottom of the incline and the time of descent. Show 
that the velocity will never exceed 64 foot-seconds, however long the 
incline be. 

19. In Ex. 15, find how long and how far the man falls before his velocity 
is 19*5 foot-seconds. 

20. OA, OB are two equal straight lines at right angles; a particle is pro¬ 
jected from A in the direction AB with v^ocity 20 foot-seconds, and is 
attracted to 0 by a force which varies as the distance from 0, If OA be 
5 feet, and if the initial acceleration of the particle be 20 foot-seconds 
per second, find its path. 

21. Determine the path, if, in the preceding question, the direction of pro¬ 
jection is inclined to OA at an angle sin'll, the other circumstances of 
the motion being unaltered, 

22. Find the coordinates of the particle at the end of time t, and deduce 
the equation of the path, if in the theorem of Art. 192, the force is 
repulsive instead of attractive. 

23. A particle moves in a parabola under the action of a force parallel to its 
axis; prove that the force must be constant. 

24. A particle moves under the action of an attractive force which is perpen¬ 
dicular to a given straight line and varies as the distance &om it; show 
that it describes a sine-curve. 

IISS CO 



386 APPLICATIONS TO MECHANICS 

MOTION OF A PENDULUM 

194. The simple pendulum. 

A particle of mass m is attached hy a string of length \ to a fixed point 

and makes oscillations in a vertical plane. To find the time of a small 

oscillation. 

If 6 be the angle which the string 

OP makes with the vertical at time 

the acceleration of m along the tangent 

at P in the direction in which 6 in¬ 

creases is I d’^OIdt^ or I diii/dt (Art. 68), 

if 0) be the angular velocity. Hence, 

resolving along the tangent, 

.d’^e . 

1. e. sin 0, 
dt^ I 

This equation cannot be integrated 

in finite terms so as to give $ in 

terms of t A first integral which 

gives the relation between the 

angular velocity co and the angle 6 can however be found. For 

d^d^do)^dco dd _ du) 

~de^dt~‘^dO' 

Hence the equation may be written to dto/dO = -‘{g/l) sin 6, 

Integrating with respect to 6, i = {g/l) cos d + 0. 

If the particle be held with the string inclined at an angle (X to 

the vertical and then let go, we have a> = 0 when d = oc, 

0= — (^/Z) cosa ; and cd^ = 2(^/Z) (cosd—cosa), 

which gives the angular velocity in any position. 

This result may also be written down at once from Art. 193, (In 

this case the tension of the string replaces the normal reaction of the 

curve.) For the kinetic energy of the particle is ^m{lco)\ and the 

vertical distance it descends while the inclination of the string 

changes from a to d is Z cos d—Z cos a. 

I mP = mg {I cosO—I coscx), 

i e. iiP 2 (g/I} (cos 6—cos cx), as before. 
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Returning now to the original equation, it may be written 

(0 
d(A g 

dO ~ ~ I 
Bina = -f 

V 

X 
sin 0 

If 0 be small, (sin0)/^ is nearly 1, and therefore the motion is 

represented approximately by the equation 

0) doildO = — [g/l) 9, 

This is the same equation as was obtained and solved in Art. 187, 

with 0), 9y and g/l instead of v, Xy and fx respectively. Using the 

result obtained there, we have 6 a cos (g/l). The particle 

moves along the arc with simple harmonic motion, and the time 

of a complete oscillation is 27r\^{l/g). 

If we try to find the time taken to swing through any angle 0, 
not very small, we get 

dO/dt = (jd = ±V {(^g/T) (cos 0—cos a)}. 

Since (in the first swing) 9 decreases as t increases, the — sign must 
be taken. Using the formula cos2A = 1 ~2 siii^ A, we get 

d9/dtz=z — a/{(2^/Q(2sin^|^a—2sin2 J 0)}. 

To simplify this, since 0 > a, we may put sin ^ 0 = sin \ a sin (p; 

\C0S\6--: ■ Sin ioc co3(p — ; 

2 sin }0L cos (p d4> 

cos 19 dt ~ 'n/[t 1 ~ 

—2^~smlacoa(i>; 

1 d<p __ h. • ^ 
cos^9 dt V(i —sin^-Ja sin^ 0) dt \ / 

When 0 = a, sin <p = 1 and (p = ; therefore the time from the 
initial position to any position (p is given by the equation 

t =: 
_^_ 
V (1 — sin^ 7j-a sin^ <p) * 

This cannot be integrated in finite terms of functions hitherto 
considered, but it can be expanded by the Binomial Theorem, and 
an approximate value of the integral can be found, as in Art. 160, in 
obtaining the length of an arc of an ellipse. Since ^ = 0 when 
0 = 0, and (p = ^TT when 0 = cx, the time of a complete oscillation 
will be four times the value of the integral from (/) = 0 to (p =: I-tt. 
If we neglect sin^ we get the approximation above, viz.: 

oc 2 
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If we expand by the Binomial Theorem, we get a closer approxi¬ 
mation to the time of oscillation. This gives 

< = * (1—sin^ sin^<^)"^ 
> 9} 0 

= ^ J Ja sin* (|>4“ sin* I a siii^ 0+ ...^dcf) 

~ 1 sin’* Ja . i ir+ sin^ I a. | -’. 97+ ...) 

h X 12 r>2 . 

= (*+2-” 2=/4-■ 

If a = 30°, the first two terms give the period &s 2tt\/(l/g) X 1016. 

195. Tho cycloidal pendulum. 

The foregoing result 2TT'/(l!g) ^or the time of a complete 

oscillation is not exact, because it has been obtained only by. taking 

(sin 0)/0 equal to unity ; since this is only approximately true for 

small values of d, the time of oscillation is only approximately 

constant. If, however, the particle be made to move along an arc 

of an inverted cycloid, instead of an arc of a circle as it does when 

suspended by an inextensible string, it can be shown that the time 

of oscillation is quite constant, whether 0 be small or large. 

For it has been shown (Art. 82) that, if s be the length of an arc 

of a cycloid measured from the vertex 0, 

ds/dO = — 2a sin I d, 

s = —2a/sin\$ dd 4 a cos-Id-}- C; 

5 = 0 at the vertex where d = tt, 0 = (7, and 5 = 4a cos J d. (i) 

G 

Fig. 152. 

If the particle moves along the arc towards 0, then resolving along 

the tangent at F (Fig. 162), 

tnd^s!dfi:sz —7n^sinPIW= —mgcoBFTG^ —mgco&lO; 

dhjdf = — ^ cos i d = — (g/ia) s, from (i). 
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This is the equation of simple harmonic motion again. Hence the 

particle moves along the arc with simple harmonic motion, and the 

time of a complete oscillation is 27r\/(4a/^). 

Here no approximation has been made, and the result is true 

whatever be the length of the arc in which the particle oscillates. 

100. Tho compound pendulum. 

The following investigation shows how the moment of inertia of 
a rigid body enters in dynamical problems: 

A rigid body smngs freely about a fixed horizontal axis; to find the 
elation of motion, and the time of a small oscillation. 

Let Fig. 153 represent a section of the body by a plane through 
the centre of gravity G perpendicular to the axis of rotation which 
meets this plane in 0. Consider the position in which the plane 
through G and the axis is inclined at an angle 0 to the vertical. 
Let 6m be an element of mass of the body situated at P, and let the 
perpendicular from P to the axis be of length r and make an angle 
with the vertical. Let OG = h. 

The accelerations of 6 m at P are r4> 
perpendicular to OP in the direction in 

which (/) increases, and along PO. 
(Art. 68.) 

Hence the resultant forces on 6m are 

(i) bm,r^ perpendicular to PO, 

(ii) dm,r<i>^ along PO; 
therefore the sum of the moments 
about the axis of the forces on 6 m 

= 6m. r(^> X r (since the moment of (ii) 
is zero) = 6m. 

Therefore, for the whole body, the 
sum of the moments about the axis of 
the forces on all the elements of mass 

= 2(6mr*<jS^). 

Now, if a be the angle between the 
planes through OP and OG perpen¬ 
dicular to the plane of the paper, 
<f> = 6^OL, and if the body be rigid, the 
angle (X will be constant; therefore, differentiating twice with respect 
to the time, <ji = 5, and is the same for every element 6 m. 

Hence the sum of the moments about the axis of the forces on all 
the different elements of mass 

= §2 (r2 = d X M.I. of the body about the axis = 9. 

where k is the radius of gyration about the axis. 
The aggregate of the forces on aU the elements 6 m of the body 

consists of the external forces acting on the body and the mutual 
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actions and reactions of the elements among themselves. It may be 
taken as a consequence of the laws of motion that the latter are in 
equilibrium among themselves.* Assuming this, it follows that the 
quantity obtained above as the sum of the moments of all the forces 
about the axis is equal to the sum of the moments about the axis of 
the external forces on the body. 

This gives 6 = --Mgli sin d, . = — {gli/Ti^) sin 0, 

This is the same equation as was obtained in the case of the 
simple pendulum in Art. 194, with I replaced by h^/Ju Therefore, 
using the results of that article, a first integral gives 

^2 = 2 gh (cos B—cos /3) /F, 

if the body starts from rest with OG inclined at an angle ^ to the 
vertical; and if the oscillation be through a small angle only, the 
time of oscillation is approximately constant and equal to 27r\/{Ji^Jgli). 

A nearer approximation can be obtained exactly as in the case of 
the simple pendulum. 

These results are the same as if the whole mass were concentrated 
at a point distant Tc^/h from the axis, i.e. they are the same as in the 
case of a simple pendulum of length Hence Ic^/h is called 
the length of the simple equivalent pendulum^ Ic being the radius of 
gyration of the body about the axis round which the body rotates, 
and h the distance of the C. G. of the body from that axis. 

We have, above, deduced the equation for 6 from the equation for B 
by integration. This process can be reversed, if we assume the 
principle of energy for a rigid body. For the element bmia moving 

with velocity r^, i.e. rB, perpendicular to OP; therefore its kinetic 

energy is ^ and the kinetic energy of the whole body 

= 2 (’ bm. B^) = 2 (r2 bm) = B\ 

The only force which does work during the motion is the weight of 
the body, and the work done in turning from inclination /3 to 
inclination B to the vertical 

= Mg X vertical displacement of C. G. = Mg (h cos B-~-h cos ^). 
Hence, since the increase in the kinetic energy is equal to the work 
done by the weight, 

i JfF B^ = Mgh (cos d-cos^), 

and 0^ = 2gh (cos d—cos y9)/F, as above. 

The equation of motion can now be obtained by differentiating 
this result, which gives 

i.e. d = — {gh/Tf) sin d, as before. 

* From D'Alombert^B Principle, which is fully explained in works on Bigid 

Dynamics* 



MOTION OP A PENDULUM 891 

Examples: 

(i) A circular disc swings through a small angle about a tangent; find 

the time of oscillation. 

In this case, h ^ and P «= +(Art. 177. II); 

the period = ^ 

(ii) If the disc swings about a line through a point on its edge perpen 

dicular to its plane, h =^r, and P = r® +1 r® «= | r\ 

in this case, the period = 2 tt = J7r-v/(3r). 

(iii) A cube makes small oscillations about one edge which is fixed 

horizontally. 

If a be the length of an edge, h = alA/2, and P (Art. 177). 

.’. the period \^2a^/ga) ^ \'jt V'(jA/2a). 

(iv) An elliptic lamina of eccentricity \ makes small oscillations about 

a latus rectum which is fixed horizontally. 

If C be the centre and S the focus through which the fixed latus rectum 

passes, CS ^ ae \ a (p. 19), and the M.I. about the latus rectum 

«= M. 1. about the minor axis + M. 

the period = 2 77 \/( J a^j\ ga) = 2 TT^{a/g)» 

Examples LXXIX. 

1. A heavy particle is attached to a fixed point by a string a yard long; it 
is held with the string tight and horizontal, and then let go. Find its 
angular velocity in any subsequent position, and express as a definite 
integral the time it takes to fall into its lowest position. 

2. A particle attached to a fixed point by a string 8 feet long is held with 
the string at 5® to the vertical and let go. Find the inclination of the 
string to the vertical (i) after Jtt seconds, (ii) after 2 seconds. 

8. A bead slides on a smooth wire in the form of an inverted cycloid with 
its base horizontal; the radius of the generating circle is 2 feet, and the 
bead starts from rest at the top. Find 

(i) the time of oscillation, 
(ii) the velocity at the lowest point, 
(iii) the velocity when half-way down (measured along the arc), 
(iv) the distance from the vertex after 1 second, 
(v) the time to reach a point distant 2 feet from the vertex, 

(vi) where it is when its velocity is 8 foot-seconds, 
(vii) the velocity after 1 second, 

(viii) when its velocity is first 12 foot-seconds downwards. 

4. A rod of mass 2 lb. and length 4 feet swings freely about one end which 
is fixed; it is held in a horizontal position and let go. Determine its 
angular velocity in any position, and express as a definite integral the 
time it takes to reach the vertical position. 

6. Answer the same questions in the case of an isosceles triangle of height 
2 feet swinging about its base fixed horizontally. 

e. Also in the case of the same triangle swinging about a line through the 
vertex parallel to the base, and starting with its plane horizontal 
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7. Also in the case of a semicircular lamina swinging about its bounding 
diameter which is horizontal. 

8. Also in the case of a cube swinging about one edge which is horizontal, 
and starting with the lower face through that edge vertical, 

9. Find the time of a small oscillation of a rectangular lamina about 
(i) a side, 

(ii) an axis in its plane through an angular point, 
(iii) an axis through an angular point perpendicular to its plane, 
(iv) a horizontal line through the middle points of two adjacent sides, 

10. A uniform solid sphere of radius 6 inches swings about a point 3 feet 
above its centre. Find the time of a small oscillation. 

11. A circular disc of radius 1 inch swings about a horizontal axis perpen¬ 
dicular to its plane 9 inches from its centre. Find the time of a small 
oscillation. 

12. Retaining the second term in the expansion at the end of Art. 194, find 
the time of oscillation of a uniform rod 4 feet long swinging about one end 
in a vertical plane through an angle 10° on either side of the vertical. 

13. Using the same approximation, find the time of oscillation of an equi¬ 
lateral triangle swinging through 20° on either side of the vertical about 
one side which is horizontal. 

14. For what value of h will the time of oscillation of a compound pendulum 
be a minimum ? 

15. A uniform rod of length 10 feet is bent into tbe form of the arc of one 
arch of a cycloid, and oscillates about a horizontal line joining its 
extremities. Find the length of the simple equivalent pendulum. 

10. The motion of a magnetic needle is given by the equation tA/) = — ^7 sin (f>. 
Find tbe motion, and the time of oscillation when the magnet makes 
small oscillations. 

THE CATENAKY 

107. The catenary. 

A heavy uniform siring or chain hangs in equilibrium in a vertical 

plane with its ends attached to tico fixed points A and B; to find the 

equation of the curve in which it hangs. 

Let the axis of x be parallel to the tangent at the lowest point C 

(Fig. 154), and let the vertical through C be the axis of y; let 5 be 

the length of the arc measured from C to any point P, and let w be 

the weight of the string per unit length. 

Consider the equilibrium of the portion CP. The forces on it are 

the tension T at P along the tangent at P, the horizontal tension Tq 

at Cf and the weight ws. Therefore, resolving horizontally and 

vertically, 
Tcosyf/ = To, and T sin yj/ = ws, 

whence, by division, ws/Tq = tan = dy/dx. 
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If To be written in the form tra, i, e. if the tension at the lowest 

point be equal to the weight of a length a of the string, we have 

dy/dx = s/a, 

ds 
Now 

dx 

ds 
V (a^ + 6^-) dx 

1 
a’ 

Integrating, flinh {s/a) = x/a + A. 

Since 5 = 0 when ic = 0, we have A = 0 ; 

sinh“^ (s/a) = a;/a, i.e. s/a = sinh (x/a); 

. •. d^/dx = s/a = sinh (x/a). 

Integrating, y = a cosh (x/a) + A. 

The depth of the axis of x below C has not yet been chosen ; it is 

convenient to take it so that A may be zero. 

When x = 0, cosh (x/a) = 1, and y = a4-A, Therefore A will 

be 0 if y = a, i. e. if the axis of x be taken at a depth a below C, 

The equation of the curve is then y = a cosh (x/a). 

If a string of length 21 feet is suspended between 2 points A and B distant 
2 h apart in the same horizontal line, then, putting x = b and s Z in the 
preceding expressions for y and s, we have, if denote the ordinate of A, 

a cosh {b/a)f and I «= a sinh (b/a). 

These are two equations for y^ and a, whose difference is the depth 
below AB of the middle point of the string; they cannot be solved in finite 
terms however. 

If the string is stretched tightly between A and By the depth of C below 
AB is small, so that y^ and a are nearly equal; hence cosh (b/a) is nearly 
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equal to 1, and therefore hja is small. In this case, an approximate solution 

of the equation I» asinh(&/a) may be obtained, either graphically or by 

the use of Tables. [See also Art. 198.] 

Example: 

A chain 52 feet long is suspended between two points 50 feet apart; find the 
depth of its middle point. 

In this case the equation for a is 26 =* o sinh (25/a). 

Let 25/a z, and the equation becomes sinh 2; = 26/a «= *=3 1*042^. 

The abscissa of the point of intersection of the graphs of sinh 2' and 1*042? 

can be found by plotting these graphs carefully, and this will give an 

approximate solution. 

If a table of hyperbolic functions be used, it is found, on tabulating values 

of l’042r and sinh 2?, that when 2: s=a *5, 1‘04«*»’520, and sinh^^ ■■ *521; 

hence 2; = *5 is an approximate solution. 

Hence, since 25/a «= 2? *5, a «= 50; 

.*. =* a cosh (b/a) 50 cosh | — 50 x 1*128 = 56*4. 

Hence the depth of the middle point of the chain below AB = - a ==» 6*4 
feet nearly. 

198. Suspension bridge. 

Suppose that a uniform horizontal load is suspended from a chain 

by numerous vertical chains or rods, and that the weights of the 

chains and rods are small compared with the load. 

Then, considering the equilibrium of a portion CP of the chain 

(Fig. 165), the only difference between this case and that of the 

preceding article is that the weight supported is wx instead of m, 

where to is the weight of the horizontal load per unit length. 

Hence, in this case, we get dp/dx = x/a, where wa is the tension 

at the lowest point. 

. *. integrating, y = ^ x^/a + A. 

If C be taken as origin, y = 0 when x = 0; 

.*. A = 0, and y = i x^/a. 

The form of the chain is in this case a parabola. 
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If a uniform heavy chain is suspended tightly between two fixed points 

(as in the case of a telegraph wire), then, in the preceding article, s and x are 

very nearly equal, and the equation dt//dx *= s/a there obtained may be 

replaced by dy/dx ■= x/a^ so that in this case the form of the curve will 

differ but very little from the parabola y «=* \x^/a. In this case the dip of 

the chain at any point is easily found, and thence the tension at the lowest 

or any other point. 

The same result may be deduced from the equation of the catenary; for, 

using the expansion of Art. 92, we have 

. X -1 1 y-«cosh-=a[l + i-,- + —+ ...J. 

Therefore, neglecting 4*^ and higher powers of x/a^ y = a 4 | x7a, which, 

when the origin is moved to the point C (0, a), becomes y — ^ x^/a. 

Exam pie: 

iy 200 feet 6 inches of wire are strpfched heitceen two points 200 feet aparty 

find the maximum dip and the tension at any point. 

The equation of the curve assumed by the wire may be taken as y 

Since the wire is nearly horizontal, dy/dx is very small; /. x/a is 

small, and hence we may expand + Binomial Theorem, 

and neglect all terms after the first two (i. e. neglect the 4^^ and higher 

powers of x/a). 

This gives ds/dx 1 4- i x^/a^y whence « = a: 4* J x^/c^ + A, 

Measuring from the vertex C, « =« 0, when a; ~ 0; .4=0, and 

S = 0:4-J x^/c^. 

At an end of the wire, s = lOOJ, a: *= 100; 100} = 1004- J. lOOV^s^** 

which gives | x 100^ and therefore a «■ 816’3. 

The maximum dip of the wire is evidently the value of y at one end, i.e. 

when x = 100, and is therefore equal to 

100V2 a « 100' 1632-6 = O’! feet. 

The tension at the lowest point = = 816‘3 == the weight of 816*3 feet 

of the wire. 

The tension at any other point, say at P, 40 feet from one of the posts 

[.*, a; = 60], is found from the equation Tcos ^ = T^, 

Examples LXXX. 

1. A chain 102 feet long is suspended from two points A and By 100 feet 
apart; find the depth of the middle point of the chain below AB, 

2. Three hundred and one feet of wire, weighing 1 lb. per yard, are 
suspended between two posts 300 feet apart. Find the tension (i) at 
the middle point, (ii) at one end, (iii) at a point 50 feet from a post. 
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8. Prove that the resultant tension at any point of a chain is equal to wy, 

4. Prove that the C.G. of an arc of a catenary is vertically above the point 
of intersection of the tangents at the extremities of the arc. 

6. Find the distance between the points where the ordinate a? >= 4 cuts the 
catenary y ■= 8 cosh J x and the parabola y = 8 -I- 

6. A wire hangs in the catenary y»200 cosh '005 x (a; and y being 
measured in feet); find the length of the wire and the sag at the middle 
point, if the points of suspension be 100 feet apart. 

7. Calculate the length and the sag if the form of the wire in the preceding 
question be taken as the parabola y = + 

8. If I be the length of an arc of a catenary, show that the difference of the 
slopes at the extremities of the arc is equal to //a, a being the para¬ 
meter of the catenary. 

9. A uniform string of length I is suspended from two points A and B in the 
same horizontal line at distance h apart; if h and I be nearly equal, 
prove that 

10. A uniform chain of length 100 yards is stretched across a river so that 
the middle point just touches the surface of the water, and each end is 
2 feet above the edge of the water. Find the difference between the 
length of the chain and the width of the river. 



CHAPTER XX 

CURVATURE 

109. Radius and circle of curvature. 

Let FT, QT be the tangents at two points P and Q on a continuous 

curve, and let them make angles and xj/i-dxl/ respectively with 

a given line, so that dxj/ is the angle between the tangents (Fig. 156). 

If be the length of the arc PQ, then is called the * average 

curvature' of the arc FQ, The curvature at P is defined as the limit 

to which this quantity tends when bs is indefinitely diminished, 

i,e. the curvature at P is equal to d\ff/d$. 
If FQ be an arc of a circle of radius r, the angle b\l/ between the 

tangents at P and Q is equal to the angle subtended at the centre of 

the circle by the arc PQ, and therefore 8$ = rbylf; hence bylr/bs, and 

ultimately d^jf/ds, = 1/r. The curvature is constant at all points of 

a circle, and the radius r = ds/d\lfy the reciprocal of the curvature. 

In any curve, the value of ds/dyjf at any point is called the length of 

the radius of curvature at that point; it is the reciprocal of the 

curvature, and is usually denoted by the letter p. It follows from 

the result immediately preceding that it is the radius of the circle 

which has the same curvature as the given curve at the point. 
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The circle with this radius, which has the same tangent at P and 

lies on the same side of that tangent as the given curve, is called the 

circle of curvature at P, its centre is called the centre of curvaturey and 

its radius the radius of curvature. 

The length of the radius of curvature at any point in terms of the 

rectangular coordinates of the point is obtained as follows ; 

If the angle y^r be measured from the axis of Xy we have 

ds ds dx , dx 
P = ^ IT * d\l/ ax dxj/ dxj/ 

Also tail xj/ = di//dx ; 

differentiating with respect to x, sec^xjr ~ 

dx 
p = sec xl/ —7 = sec xl/ 

d\l/ 

sec2\|/'__ (1+tan^\|/)*'^^ 

dx^ dx^ 

If the positive value of the root in the numerator be taken, the 

sign of p will be the same as the sign of d^yjdx^y i. e. positive if 

the curve is above the tangent and negative if below it (Art. 59). 

At a point of inflexion, d^y/dx^ is zero, and therefore p becomes 

infinite ; i. e. the curvature at a point of inflexion is zero. 

The coordinates of the centre of curvature can be obtained at once 

by drawing a figure. In Fig. 157, dy/dx and p are both positive. 

Let xj/ be measured from the axis of x, and let (f, 17) be the 

coordinates of C, the centre of curvature, then 

. . , ds dy 
i=x-psmyif = x-j;^j^ = x 

dy 

dxj^* 

dx 

T' 
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In terms of x, y, and dy/dx, we have, 

. . , dx 
Since sm \j/ = and cos xj/ — 

1 + 

f = ir- 
dx [‘-(1)1 

dx'^ 

i\ = y + 

dx^ 

Examples: 

(i) Find the radius of curvature and the coordinates of the centre of cui^vaiare 

at the point (3, 4) of the rectangular hyperbola xy » 12. 

X dx X* dx"^ X* ’ 

dy_4 8 

Here y i 

/. at the given point (3, 5), 
dx 3 dx^ ^ 9 

A p-(l + V)V’^f»W- 

f = 3 + j (1 + V)/f - ; , = 4 + (1 + Vi)/S = . 

The centre of curvature is the point {^, and the radius of curvature 

is Hence the equation of the circle of curvature is 

(ii) Find the radius of cwDature at any point of the ellipse x^a* + y*/b* = 1. 

Here y ~ x®), 
dy ^ 

dx 

d^y 
dx* 

a ^ (a* ~ X*) 

h ^ X*) 4 X X xj^ia^-x^) ^ ^ g} ^ 

a a* —X* a {a* —x*;V“* 

«=» — a’(a* —e*x*)*/* [since a* —&* » (p. 19)]= —tf*x*)V*. 

The result is negative, since we have taken the positive value of y, and for 

such values the curve at any point is below the tangent at the point. 

(iii) Find the radius of curvature at the point (2, 1) of the curve 

x(x4-y) = X® —2y* 

The evaluation of dy/dx and d^ylda^ should be specially noticed in this 

example. 

The given equation is x* + xy *= x® - 2 y®. 

Differentiating with respect to x, 2 x + x ^ + y = 8 x® - 6 y* ; (i) 
CLX dJC 

at the point (2,1), 4 + 2 3^ + 1 = 12-6 , whence 3- « 5* 
ax ax ax 
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. ^y.. 
^ dx 

..t^J 4. 
dj^ dx 

Differentiating equation (i) again with respect to a?, 

i 6a’ —6 (^y' 

Substituting the values of a;, y, and dy/dx^ we have 

!g+!ti-12-63-12.«,wh.»c.'>. 

P - (l + il)’^/(-iVs) “ -20 nearly. 

2 + 2 ~ xVff* 

(iv) Find the radius of curvature at any point of a cycloid. 

It has been shown (Art. 50) that, in the cycloid, » = 4acos^d, and 

J ^ = IFTG ^ 90 —yj/, if yj/ be the inclination of the tangent to ON; there¬ 

fore * s ** 4 a sin 

From this equation the radius of curvature is obtained at once, for 

p « ds/d ^ 4 a cos = 4 a sin FTO 2 FO (see Fig. 152), 

i. e. the radius of curvature at a.ny point of a cycloid is double the length of 

the normal at that point. 

If the equation of a curve is given by expressing x and y in 

terms of a third variable d, we may proceed as in the following 

example: 

(v) The equation of an ellipse is given in the form x 

find the radius of curvature at any point in terns of 6, 

We have 
ds ds dB 

^ dylr dd dyir 

slcosB, j^hsinB; 

(?«)■- (?.)■+ («)■ 

Also 
dy dy / dx h cos B 

^ dx^ dB / dd'^ —aBinB 

a* —(a*~Z>*) cos*d 

cos*^). 

- cot ^; 
a 

r. differentiating with respect to yfr, sec*^ 
h dB 
- cosec^ B —, 
a dyjr 

whence ^ ~ ^ ^ ^ ^ oot*^^ 

ma (a®sin*d + 5*C08*d)/a& 

«. (a/b) (l-«“coB*^), as before; 

p « + a>/(! - e* cos*^) x (a/b) (1 -e* cos*B) ^ ± (a^b) (1 -e* co8*d)V*, 

which agrees with the result of Example (ii). 

The sign depends upon the sign of ds/dB, i.e. upon the direction in 

which 8 is measured. 

* The equation which connects s and in any curve is called the intrinsic 

equation of the curve. 
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Examples LXXXI. 

Find the radius of curvature in the following cases, l~2l: 

1. At (1, 1) on the curve y = a;*. Find also the equation of the circle of 
curvature. 

2. At (2, 4) on the curve y* = 2 a:*. Find also the equation of the circle 
of curvature. 

3. At (Jtt, J) on the curve y « sin a:. 

4. At (3,4) on the curve a:* + y* 25. 

6. At any point (a;, y) on the rectangular hyperbola xy « c*. 

6. At an end of a latus rectum of the ellipse a:* + 4 y* = 4 a*. 

7. At an end of the latus rectum of the parabola y* — 4 ax. Find also the 
equation of the circle of curvature. Find where this circle cuts the 
curve again. 

8. At the vertex of the catenary y ccosh (x/c). 

0. At any point (a?, y) on the rectangular hyperbola a:*~y* = a®, 

10. At the point on the curve a*y = a? whose abscissa is \ a. 

11. At any point (a:, y) of the astroid a:^/* + y*/s = aV*. 

12. At the point ( — 4, 0) on the curve a-y® ** 16 (a:+ 4). 

13. At the origin on the curve y* = a: (a; —3)*. Fiud also the equation of 
the circle of curvature. 

14. At the point (2, 2) on the curve a::* + y* = 4 a-y. 

15. At any point of the cycloid, in terms of B. 

16. At the point (0, a) on the curve y (a?*-l-y*) a (y’ — a:^). 

17. At the origin on the curve a:*-l-y* + 2a:*-“4y + 3a: = 0. 

18. At any point of the curve y = a log sin {x/a), 

19. At any point of the curve x « aco8*d, y «■ asin*^. 

20. At any point of the catenary s = ctan in terms of yfr. 
Prove that the radius of curvature is equal to the length of the normal 
between the curve and the axis of x. 

21. At any point of the catenary y ^ acosh (x/a). Where is it a mini¬ 
mum ? 

22. Show that in the curve in which s » a log sin (this curve is called 
the tractrix) the radius of curvature varies inversely as the normal. 

23. If X and y are given as functions of a variable prove that 

p = (x'' + yy/*/(xY-xY), 

where the accents denote differential coefficients with respect to t. 

24. Prove that the radius of curvature at an end of the major axis of an 
ellipse is equal to the semi-latus rectum. 

25. Find the condition that the centre of curvature at one end of the minor 
axis of an ellipse may coincide with the other end. 

26. Prove that the radius of curvature of a conic varies as the cube of the 
normal. 

27. Find the radius of curvature of the curve given by the equations 
a? a sin 2 d (1 + cos 2 ^), y «= a cos 2 d (1 -- cos 2 B). 

28. Prove that the curvature 

/dv \ d ^dx\ _ ^^^\'\ * 
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28. Where is the curvature a maximum or minimum in the following 
curves ? (i) y =« a?*, (ii) y a?*, (iii) y®— 

SO. Prove that the radius of curvature at any point (a cos h sin 0) of an 
ellipse is equal to CL^/ab, where CD is the semi-diameter conjugate 
to CP. 

[N.B. D is the point (a sin 6, —1) cos ^).] 

81. Prove that in the equiangular spiral (Art. 163), the radius 
of curvature is equal to r cosec a, and hence show that it subtends a right 
angle at the origin. 

32. Find the radius of curvature at any point of the curve 

X ^ a (log cot J d—cos 6), y — a sin 

BENDING OP BEAMS 

200. Approximate value for the radius of curvature. Appli¬ 

cation to beams. 

If at a point P on a curve the tangent is nearly parallel to the axis 

of Xy dy/dx is small, and if dy/dx be regarded as a small quantity of 

the first order, {dy/dx)^ will be of the second order (Art. 24); hence, 

neglecting it in the expression for p, we have approximately 

The same result may also be obtained directly from the definition 

of the radius of curvature as follows: 

1 dif/ 

P ““ ds 

dib dx dll/ 

When xf/ is very small, tsmij/ is approximately equal to xj/y and 

cos xj/ to unity. 

approximately, J = 2= ^ (tan f) = ^ (|) = g. aa before. 

This approximation is important in questions dealing with the 

deflection of beams. It is shown in the theory of bending of beams 

that, if p be the radius of curvature at any point of a deflected beam, 

the bending moment at that point is equal to EI/p, where E is 

Young’s modulus, and I the moment of inertia of the section through 

the point about a line through its 0. G. perpendicular to the plane of 

bending. Generally the deflection is so small that the approxima¬ 

tion just mentioned for p is sufficient, and in this case we have 

El d^yjdx^ = the bending moment at the point (Xy y), 

where y is the vertical deflection of the point, and the axis of a; is 

the horizontal straight line through a fixed point of the beam. 
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Examples: 

(i) A uniform beam of length 1 rests with its ends on two supports in the 
same horizontal line and has a weight W suspended from its middle points 
Find the maximum deflection. 

Suppose the weight of the beam negligible compared with W. Then 
the upward pressure at each end will be (Fig. 158), and therefore the 
bending moment at a i)oint distant x (<\l) from one end is \ Wx. 

Eld'^y/dx^- ^ -IWx. 

The negative sign is taken, since at the point P the curve is above the 
tangent, and the positive direction of y is downwards; therefore f^y/dx^ is — 
[cf. Art. 59]. 

Integrating, El dy/dx =* — J Wx'^ 4 C. 

Fig. 158. 

The tangent to the beam is, from symmetry, horizontal at the middle 
point, i. e. dy/dx = 0 when x ^\l. 

0=+ and C = 

i.e. El dy/dx ^ ~\Wx^ + ^WTK 

Integrating again, El y ^ ^ WTx + D. 

Since y = 0 when x = 0, it follows that i> = 0, and 

The maximum deflection is at the centre where a? == J i?, and is therefore 
equal to l^Wl^/EL 

(ii) Let the beam be fixed at one end and uniformly loaded. 

Let the load be w per unit length. (This includes the case of a heavy 
beam bonding under its own weight.) 

If P (Fig. 159) be a point distant x from the fixed end, the weight of the 
portion between P and the free end is wij — x)^ and therefore the bending 
moment is w{l — x)x\{l — x). 

Hence in this case, El d^y/dx^ « + J (Z~a;)* *= J (P- 2 + a?*). 

Integrating, El dy/dx = | ir (Pa? — Tar* + J a?*) + C. 

At the fixed end, where a? =« 0, the beam has no slope, i. e. dy/dx = 0; 

/, C *« 0, and FZdy/da? = Jtt?(Pa? —7a?* +Ja?*). 

D d 2 
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Integrating again, j^I y = J w>(J —J Zic* ^ + D, 

and y «=» 0 when a? *» 0 ; D « 0, and 

The greatest deflection is at the free end where a? *» Z, and is equal to 

= cTxrr, if 1^" be the total weight wl. 
Z^Jhl Oxii 

If a beam be either supported at both ends or clamped at one end 
or both ends, and subject only to a load and the reactions at the ends, 
the result of differentiating the fundamental equation (El d^yjdj^ 
= the bonding moment) twice with respect to x is always 

El d^ylda^ = tOf 
where w is the load per unit length. 

For the only term in the bending moment which contains is 
(as in the preceding example) I wx^ ; this, when differentiated twice, 
gives Wj and the other terms of the bending moment disappear after 
two differentiations. 

From this equation, the form assumed by the beam and the 
deflection at any point of the beam under given conditions can be 
found. This is a very good illustration of the part played by the 
constants of integration. In all the various cases the equation we 
start with is the same, but the different initial conditions in the 
several cases give us different constants and, of course, quite different 
final results. 

We here work out two cases. 

(iii) A uniformly loaded learn rests upon suppoiis at its extremities; to find 

the equation of the curve assumed hy the beam and the maximum deflection. 

Let the line joining the ends of the beam and its perpendicular bisector 

be taken as axes of x and y respectively, and let I be the length of the beam. 

The initial conditions are 

(i) y = 0 at each end, i. e. when a? = ± i ?; 

(ii) since the ends are free, there is no curvature there, i.e. d®y/dx*«=0 
when a? » +1Z, 
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Integrating the equation El d*yjdx^ « lOj 

we have El «= wx A; 

and integrating again, El d^yjdx^ =» I + Ax+ 

Substituting initial values (ii), 0 = + 

0*= iw.lP-UA + B; 

whence, subtracting, ^ 0, and adding, B =» 

El dPy/dx^ =.lwaP-l tvP = ’ t/; [oP - J P), 

Integrating twice again, El dy/dx - \tD {\ oP - \P x) -k- 

El y — \w (3^ x*^-1 Px^) + Cx-f /). 

Substituting initial values (i), 0 = J (5^2 . A ~ i ^ + A 

whence, subtracting, (7*0, and adding, D =» (1J5 ^ ; 

El y^lw x^ -1 Px^) + ^ *= 5 (16 - 24 r + 5 

This gives the deflection at any point, and is the equation of the curve 

taken by the beam. The maximum deflection is at the centre where a; = 0; 

therefore El y *= the maximum deflection is ^^u’P/EL 

(iv) Let the beam he clamped at both ends; tojind the form it takes and the 

maximum deflection^ 

The initial conditions are in this case 

(i) y »» 0 at both ends, i.e. when a? =* ±\l\ 

(ii) since the beam is now horizontal at both ends, dyjdx =» 0 when 

±\ I, 
Integrating the general equation three times, we have 

El d^y/dsP ^wx-k-A, 

El dPy/dx^ — i wx^ + Ax + By 

El dy/dx »= J wxP + J Ax^ + Bx + C. 

Substituting dy/dx when x"» ±\l, we have 

(i^-l^wP-^\AP^\Bl + Cy 

0= + C; 

whence, on subtracting, 0 *= wP + Bly and i? * - wPy 

and adding, 0 = iu4Z^ + 2(7; /. C^-^AP. 

Integrating again (after substituting the values of B and (7), 

EIy^^iVixl^-^\A;^-iiWp,\xP-‘\APx-^D. 

Substituting y «» 0 when x^ ±\ly 

^^^u,,^P^\A.lP-^wP.\P-^^,PA^-By 
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Subtracting, 0 = Al^ - J wbence -4 = 0; 

and therefore 0 = 3xvV --1+ i); i. c. D — 3wl*. 

Substituting in the integrated equation, we have 

Ely^ iV - in + 3 Ji td* = jJj to (16 - 8 + V) = si^ «> (4 a;* - P)*. 

This gives the deflection at any point, and is the equation of the curve 

assumed by the beam. The maximum deflection is at the centre, where a?=0; 

therefore Ely — i*e* the maximum deflection = ^\^wP/EL 

Comparing this result with that of the preceding example, it follows that 

the maximum deflection when the beam is free at the ends is five times as 

great as when it is fixed at the ends. 

Examples LXXXIL 

1. A uniform beam of length I and negligible weight is fixed at one end 
and has a weight W suspended from the other end. Find the equation 
of the curve assumed by the beam and its maximum deflection. 

2. Obtain the result for a beam uniformly loaded and supported at both 
ends from the equation El d’^yjdx^ ~ the bending moment. 

8. Obtain the result for a beam uniformly loaded, fixed at one end and free 
at the other, from the equation El d^yjdx^ = w, 

4. A uniform heavy beam is fixed at one end and free at the other; a weight 
equal to the total weight of the beam is suspended from the free end. 
Find the deflection at any point, and the maximum deflection. 

5. Compare the deflections of two beams of the same material and length 
and similarly loaded, one with a square section of side a, the other with 
a circular section of diameter a. 

6. In the case of a light beam with a weight at the end or at the middle 
point, prove that if the length of the beam be doubled, the maximum 
deflection is increased eightfold. 

7. In the case of a heavy beam under the action of its own weight, prove 
that if the length be doubled, the maximum deflection is increased 
sixteen fold. 

8. Find the deflection at a point distant one quarter of the length from one 
end in the case of a heavy beam supported at the ends. 

9. Find the deflection at the same point if the beam is clamped horizontally 
at the ends. 

10. Find the deflection at any point in the case of a heavy beam clamped 
horizontally at one end and supported at the other. Where is the 
deflection greatest ? 

11. Find the deflection at the centre of a light beam with a weight W 
suspended at the middle point, the beam being supported at one end and 
at a point distant one quarter of the length from the other end. 

[Find expressions for y on both sides of the centre, and notice that both 
must give the same values of y and dyjdx at the centre.] 

12. A bar 1 yard long and cross-section 1 inch square is fixed at one end and 
loaded at the other with 2 cwt.; find the deflection of the free end, 
neglecting the weight of the bar, and taking Young's modulus as 
8 X 10'^ Ib. weight per square inch. 
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201. Intersection of oonsecutive normals. 

The centre of curvature is the limiting position of the point of 

intersection of the normals at two points when one point approaches 

indefinitely near to the other. 

Let the normals at P and Q meet at C. The angle PCQ is equal to 

the angle dt/f between the tangents at P and Q (Fig. 160). Join PQ. 

CP _ sin CQP . 

PQ ~ sin PCQ ’ 

6s .. 61/^ 

Then 

CP=PQx = :^ X ^ X . 
sinoij/ 6S h\f/ smOil/ 

= 1 X ds/dxj/X 1x1, when Ssand 

= p, the radius of curvature. 

C is the centre of curvature at P. 

X sin CQP 

0 [since CQP - 

Also the circle of curvature at P is the limiting position of the 

circle which passes through three points Q, P, Q' on the curve when 

Q and Q' approach indefinitely near to P, or, as it is often expressed, 

the circle of curvature is the circle which passes through three 

consecutive points on the curve. 

Let Q and Q' be two points on the curve near P (Fig. 161), one on 

either side of it, and let the perpendicular bisectors of PQ, PQf meet 

in G, so that G is the centre of the circle through QPQ\ Let Q 
and Q' move indefinitely near to P; then PQ and PQ' become 

ultimately two consecutive tangents to the curve, and their perpen¬ 

dicular bisectors become two consecutive normals ; hence their point 

of intersection C is ultimately the centre of curvature, and the circle 

becomes the circle of curvature. 
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The circle which passes through three consecutive points on 

a curve is called the osculating circle; since it cuts the curve in three 
points, it follows that in general it will cross the curve at the point 

of contact. 

202. Radius of curvature in tangential-polar coordinates. 

If the equation of a curve be given in tangential-polar coordinates 

(Art. 165), a very simple expression can be found for the radius of 

curvature, viz.: 

For, let two consecutive normals P(7, P C meet in C (Fig. 162). 

Ultimately, as P' approaches P, C is the centre of curvature at P, 

and PC, P'G are each of length />. 

From the triangle OOP we have 

OC^ = ^ ^ 2/) r cos OPC 
= + 2pr sin<^) 

= f? + r^—2pp. 

Similarly, if r-f be the radius vector of P', and the 

perpendicular from 0 to the tangent at P\ we have 

OC^ = p2 + (r+6r)2 —2/3(p-f 6p). 

Subtracting, we get 0 = 2 r 5 r + (S r)*—2 pbp; 

br . ... 

Hence, in the limit when P' is indefinitely near P, 

p = r dr/df. 
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Examples: 

In the cardioid, r* 2ajp* (Art. 165); 

differentiating with respect to p, 3 r* d7’/dp= 4 ap, 

dr 

dp 

In the lemniscate, r* = 

differentiating, 

■ ct^P I 

3 7^ dr/dp = o®. 

p ■« r dr/dp ** a'^jo r. 

A formula can be found also for the radius of curvature in polar 

coordinates (see Ex. LXXXIII. 10), but it is not very often used. 

If the equation of a curve is given in polar coordinates, it is often 

advisable to obtain the tangential-polar equation as in Art. 165, and 

then use the simple expression obtained above. 

203. Application to mechanics. 

If a point is moving in a plane curve, it is often convenient to 

resolve its velocity and acceleration along the tangent and normal to 

the curve. 

Let V be the velocity when the moving point is at P, where the 

tangent makes an angle xj/ with a given line, and let s be the 

length of the arc measured from a fixed point of the curve to P; 

let be the velocity at Q, where the inclination of the tangent 

and the length of the arc are + and (Fig. 168). 
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The velocity v is the rate at which the point is describing the arc s, 

and therefore is equal to ds/dt or s. The components of the velocity 

at Q in the directions of the tangent and normal at Pare cos 8^ 

and (f+ ^t?)8in 

Ih nce the acceleration in the direction of the tangent at P 

= rate of change of velocity along the tangent at P 

L(v + hv)cos^il/~-v , 
t-hi- 

t since coa hijr differs from 1 by a small quantity of 

ht 

8?; 

'St 
the second order, &s bip 

dv/dt, i.e. V or s or vdvids. 

The acceleration in the direction of the normal at P 

= T (1+14^ st-.o 
ct 

L, ^ . sin hxl/ hij/ h$ 

— vxlx (l/p) X V 

- v^/pj where p is the radius of curvature at R. 

Of course, in the case of the circle, p is equal to the radius r, and 

we have the well-known result that the acceleration towards the 

centre in circular motion is v’^/r (Art. G8)« 

204. Motion in an orbit. 

An important application of this result is to the motion of 

a particle which describes an orbit about a fixed point under the 

action of a force to that point which is a function of the distance. 

Let m be the mass of the particle, and mf the force towards 0 

under the influence of which the particle is moving (Fig. 164). 
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Then, resolving along the tangent and normal, 

mv dv/ds r=. ^mf cos (p = —m/dr/ds. 

= m/sin <!> mf.pir. 

Tlie first equation gives /= 

p p 
The second gives = /. ■ p =f, - , 

ds ^ dr 

r-j-, from Art. 202, 
dp 

eliminating /, i;^ = —= 
® d r dp 

The left-hand side is the d.c. of pv with respect top. Therefore, 

integrating, pv = 7i, a constant. 

Substituting this value for v in equation (ii), we have 

dp ___ dp 
p dr p^ dr 

From this equation, we can, if the tangential-polar equation of 

a curve be given, find the value of i. e. the equation gives the 

Maw of force’ under the influence of which the particle would 

describe the given curve. 

If the law of force be given, i. e. the expression for / in terms of r, 

then by integration we obtain the tangential-polar equation of the 

path in which the particle travels under the influence of the force. 

It should be noticed that, by integrating equation (i), we get an 

expression for the velocity of the particle in any position when under 

the action of a given force, viz.: 

ffdr = + \ a, = G-2/fdr. 

When / is given in terms of r, this can be integrated, and the 

constant C will be determined from the initial conditions. 

If A be the area swept out in time t by the radius vector starting 

from some fixed position, and if <2 be a point on the path very 

near P, 

S A = A OFQ = IPQ xp, ultimately = 

. Ss , , 
-^ = ii? ^; and when ot- 

^ dA . ds . 

Hence A = iht, since h is constant, and A = 0 when ^ 0. 
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Hence the constant h is twice the area described by the radius 

vector in unit time, and we have the important law: the radius vector 
describes equal areas in equal times. 

Examples: 

(i) Let the force vary invenely as the square of the distance. 

In this case, /» /u/r’, and the above equation gives ^ ^ 

Integrating, — y/r «= — J h’^/p'^ + C, 

This is the tangential-polar equation of a conic referred to its focus as 

pole, and represents an ellipse, parabola, or hyperbola according as C is 

negative, zero, or positive. [Cf. this equation, ^ h’^/p’^ with the 

tangential-polar equations of the conics obtained in Art. 165.] 

Since this is the law of gravitation obeyed by the heavenly bodies, it follows 

that the orbit of the earth relative to the sun is a conic (it is an ellipse) with 

the sun at a focus. 

The velocity at any point of the orbit is obtained from the equation 

2m C-2 0+ 

If the particle have velocity Vq when at distance r,’ = 

«*-V = 2/x (1/r- I/r„). 

(ii) Find the law of force to the pole under which a particle will describe an 

equiangular spiral. 

In the equiangular spiral (Art. 163, Ex. ii), p «= rsin (X, 

p* dr sin* a r® sin^CX 
> Bin CX • 

Hence the force varies inversely as the cube of the distance from the polo. 

205. Differential equation of the orbit in polar coordinates. 

This equation can be deduced from the tangential-polar equation 

by aid of the Theorem of Art. 165, viz.: 

l/p2 = u^i-(du/dO)^y where u = 1/r, 

For, differentiating this equation with respect to r, we get 

dr dr L J duV 
du du 

^dd^ J dr 

=r2«+2^.^x—IX- 
‘dd'W du J' 

Le. 
/ , which is the equation required 
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Substituting the value of / in terms of u and integrating, the polar 

equation of the orbit is obtained. 

Examples LXXXIII. 

[See Art. 165 for Tangential-Polar Equations]. 

1. Find the radius of curvature at any point of the parabola p® or ar. 

2. Find the radius of curvature in the lemniscate (i) at the vertex, (ii) at 
a point where B — 30®. 

8. Find the radius of curvature in the cardioid (i) at the vertex, (ii) at the 
point furthest from the axis, (iii) at a point of contact of the double 
tangent perpendicular to the axis. 

4. Find the radius of curvature at any point of an ellipse in terms of the 
distance of the point from a focus. 

6. Prove that the radius of curvature at any point of the rectangular 
hyperbola r* cos 2 d a* varies as the cube of the radius vector. What 
is its value at the end of the latus rectum ? 

Find the radius of curvature at any point of the four curves : 

e. r « ad, 7. r « a/d. 

8. r” a»» cos n d. 9. r =* o sin® J d. 

10. Deduce the formula for radius of curvature in polar coordinates from 

ds ds ^ ds ds \ ^ dBj* 

together with (g)’ = ,- + (g)’, and tan 

11. Prove that p 

12. In Art. 204, prove that r^d « fe. 

13. Taking the tangential-polar equation of an ellipse, prove that the force 
to a focus under the influence of which a particle describes the curve 
varies inversely as the square of the distance. 

14. Find the law of force to a point on the circumference of a circle under 
which the particle describes that circle. 

16. Find the velocity at any point of a particle which is describing an 
equiangular spiral under the action of a force to the pole. 

10. Find the law of force to the pole under which a particle describes 
a cardioid. 

17. Find the law of force to the pole under which a particle describes 
a lemniscate. 

18. A particle is moving in a curve under the action of a force to a fixed 
point which produces an acceleration p/(distance)'^; initially, p «= r = a 
and p «= 8 Find the curve which the particle is describing. 

19. In the case of an ellipse described under the action of a force to the 
focus, prove that « p (semi-latus rectum), and that the velocity at any 
point is given by the equation t?* *= p (2/r- 1/a). 

20. Find the corresponding results in the case of a hyperbola described 
under the action of a repulsive force varying inversely as the square 
of the distance from a focus. 
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206. Envelopes. 

Let /(a?, t/, a) = 0 be the equation of a curve, where x and y are 

rectangular coordinates of a point and a a constant, depending it 

may be on the size or position of the curve. If we tal^e different 

values for a, we shall get different curves of the same kind ; the 

equation /(x, y, a) = 0, when different values are assigned to the 

constant a, is said to represent a system or family of curves. 

For instance, the equation = 4aa?, for different values of a, represents 

a family of parabolas with a common vertex and axis: a variation in the 

value of a alters the length of the latus rectum. 

The equation = r®, for different values of h, r remaining 

constant, represents a family of equal circles (radius r) with their centres at 

points on the axis of a;; if is fixed and r varied, the equation represents 

a family of concentric circles, centre (h, 0), with different radii. If only 

one of the two constants h and r be varied, we get a singly-infinite system 

of curves; if both h and r be varied, we get a doubly-infinite s^^stem, 

consisting of all circles which have their centres on the axis of x. 

If, in f(Xj py a) = 0, we take the curves corresponding to two 

values of a which only differ by a small amount, these curves will 

in general intersect,* If one of these two values of a be made to 

approach indefinitely near the other, the points of intersection will 

generally tend to limiting positions ; and the locus of these Limiting 

positions of the points of intersection is called the envelope of the 

family of curves. 

For instance, in the case of the circles mentioned above, when r is constant 

and h varies, the points of intersection of consecutive circles tend to coincide 

with the ends of diameters perpendicular to the axis of a:, and the envelope 

consists of two straight lines parallel to the axis of x and distant r from it 

(Fig. 165). 

Again, if the equation of a straight line be written in the form 

x cos d 4-y sin d «= a, 

it is easily seen geometrically that, whatever the value of the perpen¬ 

dicular distance of the straight line from the origin is a, therefore all the 

♦ It does not always happen that such curves intersect, e. g. in the system of 

concentric circles obtained above, by keeping h constant and varying r, two 

consecutive curves do not intersect. 
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etraiglit lines of the family are tangents to a circle whose centre is the 

origin and radius a; hence, any two consecutive lines being consecutive 

tangents to this circle, their point of intersection tends to coincide with 

a point on the circle, and the circle is therefore the envelope of the lines 

Fig. 106. 

(Fig. 166). If the lines are drawn for values of 0 which differ by only small 

amounts, it will be seen that the points of intersection and the parts of 

the tangents between them are almost indistinguishable to the eye from 

a circle of radius a. 

The property which is seen to he true in these cases is true 

generally, viz. the envelope of a system of curves touches at each of its 

points the correspmdlng curve of the system. 

For, of three consecutive curves of the family, let the first and 

second meet in Pj and the second and third in Pg (Fig. 167). Then 

ultimately P^ and Pg are consecutive points on the envelope, and 

(3) 

they are also on the second curve; therefore, when they move up 

indefinitely near together, P^ Pg becomes a tangent both to tlie 

envelope and to the second curve. Hence, since they have a common 
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tangent at a common point, the envelope touches the second curve, 

and similarly it touches each other curve of the system, 

207. Analytical method of finding envelopes. 

Let f(x, y, a) and f{x, y, (X-\-h) be two curves of the system for 

which the values of ol differ by a small amount /i. 

The second equation may, from the mean-value theorem of 

Art. 117, bo written in the form 

f{x, y, a)+hf (x, y, a+ eh)=^ 0, 

where [ <? ] < 1, and f denotes the differential coefficient with respect 

to a, X and y being regarded as constants. 

At a point of intersection both equations are satisfied, therefore 

by subtraction 
Oi-\-0h) — 0. 

Therefore, since h is not 0 (it is very small, but not zero, otherwise 

the two cuiTos would coincide altogether), it follows that 

f {x, y, (X-\‘61i) = 0. 

Therefore in the limit, at the points of ultimate intersection, 

when ^—>0, 
f'{x, y, a) = 0. 

Hence, to find the locus of these points for different values of a, 

we have to eliminate (X from the two equations 

/{x, y, a) = 0, f(x. y,a)-Q. 

Examples: 

(i) Find tJie envelope of the straight lines y *» mx -f a/m, for different values 
of m. 

Differentiate with respect to m (regarding x and y as constants). 

0 « whence ± v^(a/a?). 
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Substituting tbis value of w in the given equation, 

ysBi ±^x^{alx)±^a^{xla) ^ ±2^{ax), 

4 ax, a parabola. 

Hence the given family of straight lines consists of the tangents to the 

parabola *» 4 aa: (Fig, 168). 

(ii) Find the envelope of the concentric ellipses which have their axes coin¬ 

cident in direction, and the sum of the axes constant. 

Taking the axes of the ellipses as axes of coordinates, and the sum of the 

semi-axes as c, the lengths of the semi-axes may be written a and c — a, a 

being the variable parameter. 

Fig. 169. 

The equation of the ellipses is ?/* 
(c-a)' 

= 1 [p. 19]. 

ij X“ 2 7/^ 
Differentiating with respect to a, --f = 0 ; 

^ or [c-af 

whence 

(c^)’ 

- a 
■ O y And ■ = J 

y* c —a 

a A 
x^!"^ -f yV* 

Substituting these values of a and c—a in the equation of the ellipse, it 

becomes ja,V» + j,v»)» ^ ,(xV» + y»/»)> ^ 

x»/> (x>/* + + yV»(x»/» + yV»/ x= c*, 

ie. (x>/>+yVV = c*, 

*V» + yV«-.c*/*, 

Hence the envelope is the curve called the astroid (Fig. 168). 
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208. Evolute of a curve. 

The locus of the centres of curvature of a curve is called the evolute 

of the curve. The coordinates (f, tj) of the centre of curvature have 

been obtained in Art. 199. If f and rj can be expressed in terms of 

a single variable, then, by eliminating this variable, the equation 

of the evolute will be obtained, as in the example below. 

The normals to a curve are tangents to its evolutCy for, if E, P, Q 

(Fig. 170) be three points very near together on a curve, and if the 

normals at E, P meet in C' and 

the normals at P, Q in C, then 

in the limit when E and Q move 

indefinitely near P, C and C' 

become two consecutive centres 

Fig. 170. of curvature, i.e.two consecutive 

points on the evolute, and both 

are on the normal at P; hence the normal at P goes through two 

consecutive points on the evolute, and therefore touches the evolute. 

Therefore the evolute of a curve is the envelope of the normals to the 

curve. It is generally easier to deduce the equation of the evolute 

as the envelope of the normals rather than as the locus of the 

centres of curvature. The following example illustrates both 

methods in the case of the parabola. 

Example : 

Find the equations of the circle of curvature and the evolute of a parabola. 

The coordinates of any point on the parabola 4ax may be written 
in the form (am*, 2 am) (Art. 50). 

dx dm / dm 2 am m 

d‘y d / \ \ 1 dm 1 1 

dx* dx \ m) m^ dx m* 2 am 

..of curvature P ~ + (t)’ The radius of curvature 
/ dx* 

Since, if s be measured from the vertex, ds/dx and ds/dy are both +, we 

dsjdx — + m*)/m; ds/dy * ^(1 + m*). 

2a(l + m*)V> 

* Since dy/dz » tan where if/ is the inclination of the tangent to the axis 
of X, it follows from this result that m » cot if/, i. e. m is the tangent of the angle 
which the tangent to the curve makes with the axis of y* 
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The coordinates of the centre of curvature are (Art. 199) 

(a? - p dyIdSy y + p dxjds^ 

i.e. + + 2aw-2«(l+m’)V’. 

i. e. {aw* + 2a (1 4-w*) ; 2 am--2 am(l+ m*)}, 

i.e. {a(3 4-2); —2am*}. 

Hence the equation of the circle of curvature at any point is 

(a: —3am*--2a)® + (y + 2am^)* — 4a*(l + m^)*. 

To find the evolute as the locus of the centres of curvature, we have to 

eliminate m from a:«a3am* + 2a; y——2 am*, 

which gives (x — 2 af = 27 a* m® = 27 a*. yY4 a® = ^ ay*. 

To find the evolute as the envelope of the normals, the equation of the 

normal at (am*, 2 am) is (Art. 47), since dyjdx >« 1/m, 

X — am^ (y — 2 am)/m = 0, 

i. e. y + mx — 2 am — am* = 0. 

Differentiating this with respect to m, or —2 a — 3 aw** « 0. 

Eliminating m, we have from the last equation, m 

y » am* — m (x -- 2 a) « am^ — m. 3 am* *= — 2 am* 

=( 
x-~2a\y^ 

3a ; ’ 

x—2 a 
-2a 

\ 0 a 
whence, squaring, y* = liV (^ “ 2 a)*/^, 

which is the same equation as before. 

The parabola and its evolute are shown in Fig. 171 ; PA is the parabola, 

DEC the evolute, PQ the circle of curvature at P, PC the normal at P 

X e 2 
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touching the evolute at which is the centre of curvature for the point P; 
the length of FC is the radius of curvature. 

Examples LXXXIV. 

Find and draw the envelope of the following, 1-26: 

1. Chords of a circle of constant length. 

2. A system of equal circles with their centres on the circumference of 
a given circle. 

3. A straight line which moves so that the sum of its perpendicular distances 
from two fixed points is constant. 

4. A straight line which moves so that the product of its intercepts on the 
coordinate axes is constant. 

6. A straight line which moves so that the sum of the intercepts on the 
axes is constant. 

6. A straight line which moves so that the part intercepted between the 
axes is of constant length. 

7. A system of concentric ellipses, with their axes along the coordinate 
axes, and of constant area. 

8. The circles on double ordinates of a fixed parabola as diameters. 

9. The parabolas = 4 m (a; - m), 

10. The parabolas y’ — 

11. The straight lines — for different values of m. 

12. The straight lines y « ma7 + aV'(l+ m*). 

13. The straight lines a; H-y sin ^ a cos B, for different values of B, 

14. The straight lines y *■ fn*x + am, for different values of m, 

15. The straight lines £c sin d + y cos d = J c sin 2 d, for different values of d. 

16. The parabolas + 2 wy +1 « 0. 

17. The conics x* sin a+y* cos (X *=* a*, for different values of Ot 

38. The circles whose diameters are chords of a fixed circle through a fixed 
point on its circumference. 

19. The circles on central radii of a rectangular hyperbola as diameters. 

20. The circles described with double ordinates of an ellipse as diameters. 

21. A straight line which rotates with uniform angular velocity about one 
of its points which moves uniformly along a fixed straight line, 

22. The paths, for different angles of elevation, of particles projected from 
a fixed point with given velocity. 
[If d («tan“' w) be the elevation and the velocity, the equation 
of the path, referred to horizontal and vertical axes through the fixed 
point, is y = mx-\x* (1 + w*)/A] 

28. Ellipses with their axes along two fixed straight lines and the sum of 
squares of the axes constant. 

24. Circles which have their centres on a fixed circle and which pass through 
a fixed point. 
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25. Circles which touch the axis of x and have their centres on the parabola 
y^x\ 

20. Circles through the origin which have their centres on xy 

27. Parallel rays of li^ht fall on the inner surface of a cylindrical mirror 
in a plane perpendicular to its axis ; find the envelope of the reflected 
rays (which make the same angle with the normal as the incident raysj. 
This envelope is called the caustic by reflexion at a circle. 

28. Rays of light proce(*d from a point on the inner surface of a bright 
circular ring, and are reflected from the surface; find the envelope of 
the reflected rays. 

Find the evolute of the following curves, 29-34: 

29. The cycloid. 

SO. The ellipse. 

31. The astroid a?« a cos® <9, y sin®^. 

82. The rectangular hyperbola xy = c®. 

33. The hyperbola x ^ a cosh w, y sinh w. 

84. The curve a?* a(co8d4-d8in d), y =» a(gind-dcosd). 

35. 5^ is a fixed point and P any point on a fixed straight line; find the 
envelope of lines drawn from P perpendicular to SF. 

80. Find the envelope of a straight line which moves so that the product of 
its perpendicular distances ^om two fixed points is constant. 



CHAPTER XXI 

ELEMENTARY DIFFERENTIAL EQUATIONS 

209. Definitione. 

A relation between two variables Xy y, and differential coefficients 

of y with respect to x is called an ordinary differential equation. 

The order of the differential equation is that of the highest differential 

coefficient which occurs in the equation. 

The degree of the differential equation is the degree of the highest 

power of the highest differential coefficient in the equation when 

rationalized and cleared of fractions. 

dy 
E.g. 

d'^y , 

* dx^ 

\dx/ 

a is of the first order and of the first degree, 

is of the second order and of the first degree, 

+ y «= a is of the first order and of the second degree, 

dx) 

\dxy 
dy 

^ dx 
4-y 7^ « 0 is of the second order and of the second degree, 

and, generally, +any function of Xy y, and lower d. c.’s than the is 

of the order and of the degree. 

210. Formation of differential equations. 

Let us consider one of the ways in which differential equations can 

be formed. 

Examples: 

(i) If y «= + we have, by differentiating, dy/dx — m, 
and, by differentiating again, d^yjdx' *= 0. 

The first differentiation eliminates c, and therefore gives a result which is 
true for all values of c. The second differentiation eliminates m, and gives 
a result true for all values of m and c. 

The geometiical interpretation of this should be carefully noticed* 
y an mx + e is the equation of any straight line. The first equation 

dy/dx ^ m expresses a property common to all the straight lines obtained 
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by taking different values of c, viz. that their inclination to the axis of x 

istan~^w. The second equation d}yldx^^(i expresses a property true for 
all values of m and c, i.e. a property common to all straight lines, viz, (Art. 
199) that the curvature is zero. 

The equation d^yldx^ — 0 is said to bo the differential equation of all 
straight lines. 

(ii) If y* * 4 aa? + c, we have, by differentiating, 

2 y dy/dx — 4 a, 

and, by differentiating again, 

^ dx^ dx ' dx 

The given equation represents a system of parabolas with their axes along 
the axis of a?. The first equation y dy/dx — 2 o states that all these para¬ 
bolas have their subnormal equal to 2 a, whatever be the value of c. The 
second equation states that the differential coefficient of this subnormal is 
zero, i.e. that, for any individual parabola of the family y* — 4aa:-l-c, the 
portion of the axis of x intercepted between the normal and the ordinate 
at any point is constant. 

The second equation is called the differential equation of all parabolas 
which have their axes along the axis of x. 

(iii) If (y-&)* — y**, then, differentiating and dividing by 2, we 

x-a-^(y-h) dy/dx — 0. (1) 

This eliminates r. Differentiating again. 

0. 
This eliminates a, and give. 

If this be now differentiated again, wo get a differential equation of the 
third order, from which all the three constants a, 6, r which occurred in 
the original equation have disappeared. 

If the result of (ii) be substituted in (i), we have 

a?—a 
dx 

1 + 
\dx) J/ 

If these results be now substituted in the original equation, it becomes 

If this be differentiated again, we shall again get the differential equation 
of the third order which contains none of the three constants a, r. 

Geometrically, the original equation represents any circle. 
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Equation (i), which does not contain r, expresses a property common to all 
circles with centre (a, 2>), whaterer the radius, viz. that 

dy/dx - -{x-a)l{y-l); 

i. e. if P be any point (a?, y) on a circle, centre A (a, h), the inclination of 
the tangent at P to the axis of x exceeds by 90° the inclination of AP to the 
axis of X, This is obvious geometrically, since (Fig. 172) 

dy/dx =* tan ~ cot MPT « — cot MAP ~ AM/MP == — (a? ~ a)/(y - 6). 

Equation (ii), which does not contain a or r, expresses a property common 
to all circles, whatever the radius and the abscissa of the centre. Comparing 
it with the expression for rj in Art. 199, it gives i; «= fc, which is obviously 
true for all such circles since the centre of curvature is the centre of the 
circle. 

Equation (iii), which does not contain a or &, expresses a property common 
to all circles of radius r, viz. that the radius of curvature [the left-hand side 
of (iii) is the square of the value obtained for p in Art. 199] is at all points 
on such circles equal to r, which again is obvious geometrically. 

The result of differentiating (iii), which reduces to 

1 1-^ 
\dx/ 

(Py 
dx v dx'J 

and which contains neither <», ft, nor r, expresses a property common to all 
circles, viz. that the d. c. of the radius of curvature is zero, and hence is 
equivalent to the statement that for any individual circle the radius of 
curvature, and therefore also the curvature, is constant. 

These examples show that differential equations may be formed 

by eliminating the constants from a given equation. The given 

equation, by taking different values for the constants, represents 

a family of curves. The successive differential equations express 

geometrical properties common to certain sets of these curves, and 

the final differential equation from which all the constants are 

eliminated expresses some property common to all curves of the 

family. 

It will be noticed that, in these examples, the order of the 

differential equation when all the constants are eliminated is equal 
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to the original number of constants. This is always the case, for if 

the original equation contains n constants, then by differentiating it 

n times a differential equation of the order is finally obtained; 

the results of these n successive differentiations together with the 

given equation form a system of w 4-1 equations, and it is proved in 

works on Algebra that, in general, from n+1 equations, n of the 

quantities they contain can be eliminated. Hence the n constants 

can be eliminated, and the result is a differential equation of the 

order. 

211. Solution of a differential equation. 

Conversely, in finding the integral of a differential equation of the 

order, we should expect the most general solution to be a relation 

between the variables containing n arbitrary constants, and it can be 

proved that, in general, this is the case. Reversing the above process, 

and finding the most general relation between the variables x and t/, 

which leads to a given differential equation, is called * integrating * 

or * solving the equation \ Tlie result, which must contain a number 

of arbitrary constants equal to the order of the differential equation, 

is called the complete or the general integral or the complete primitive. 

Any simpler solution which satisfies the equation is called a particular 

solution^ e.g. the general integral of the equation 0 is 

y = Ax^Bj containing the arbitrary constants A and R; = 2a:, 

f/ = ~3, y = 4a;~5, &c., are particular solutions (obtained by giving 

definite numerical values to A and B). 

Geometrically, the process of solving a differential equation 

consists in finding a system of curves which possess a specified 

property. Since the general solution contains n arbitrary constants, 

a curve of the system can be made to satisfy n conditions. 

If the differential equation be of the first order, the solution will 

contain one arbitrary constant c, and will be of the form f{x, y, c) = 0, 

which for different values of c represents a family of curves. If in 

this equation we substitute for x and y the coordinates of some definite 

point, we have an equation to find c, which determines the curves of 

the family that pass through the given point. If the differential 

equation be F[Xj y, dyfdx) = 0, then, on substituting in this equation 

the coordinates of the same point as before, we have an equation for 

dyidx, which gives the directions at the point of those curves of the 

family that pass through the given point. Hence the differential 

equation specifies the curves of the system which pass through 

a given point by means of their slope; the integral equation specifies 

the same curves by means of the parameter c. 
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Examples: 

(i) Find the equation of the straight line which goes through (S, 2) and mahes 

an angle tan~^ { with the axis of x. 

The differential equation of all straight lines is <Pgfdx^ * 0 (since this 
expresses that the curvature is zero). 

The first integration gives dyjdx^ A. Since dgjdx is given to be f, wo 
have ^ f; 

5 dyjdx »* 3. 

Integrating again, 5y «=* Bx+C, 

Since the line is to go through (3,2), it follows that 10 « 9 4- C, and C = 1. 

the equation is 5 y « 3 a; f 1. 
This is a ‘particular solution ’ of the equation d’^yjdx^ »= 0. 

(ii) Find the equation of the parabola which has its axis along the axis of x, 
passes through the point (4, 2), and has the slope J at that point 

The subnormal of such a parabola is constant, y dyjdx a. 
Integrating, y* «■ 2 ao: + 6. 
Substituting the given values of y and dyjdx in the first equation, we 

have 2 X J = a; substituting the coordinates of the given point in the second 
equation, we have 4 — 8a-f& — whence & — ~ 

the required equation is y* — i-e* Sy* 4a?~4. 

Before proceeding to the various methods of solving differential 

equations, the student should work some examples in the formation 

of differential equations by eliminating constants. 

Examples LXXXV. 

1. Eliminate e from the equation xy — c*. 
Give the geometrical meaning of the result (see p. 103, Ex. v), 

2. Eliminate m from the equation y ■* tnx + ajtru 
Explain the result geometrically, [y — x dyjdx is the intercept on the 
axis of y.] 

8. Eliminate (i) p alone, (ii) OC alone, (iii) both p and (X from the equation 
X COB CX -}- y sin a p. [This equation represents a straight line such that 
the perpendicular to it from the origin is of length p and inclined to the 
axis of X at an angle 0(.] 
Explain each result geometrically. 

4. Eliminate (i) (ii) both A and h from the equation y « Ae^^, 
What is the geometrical meaning of the first result ? 

6. If y = c cosh (a:/c) +-4, prove that dyjdx ^ A/{y^ — <^)lc, 
What is the geometrical meaning of this result ? [See Art. 197.] 

0. Eliminate m from the equation y — mx±a^{\^in^)» 
Explain the result geometrically. 

7. Eliminate the constants from y = Ax^ + Bx+ C. 

8. Prove that if y A cob mx + B Bin mx^ or if y-s .4 sin (mo? + a), then 
d®y jda^ + m® y « 0. [See Art. 192.] 

0. Eliminate A and B from + and from y««J^C0Bh(mir+ 0K). 
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10. Eliminate the constants from the equation Ax^-^By^ ■» 1. 

11. Prove that, if y *» (A count-hBainnt), then 

^ + Ary + (n* + J Jc*) y »* 0. 

12. Eliminate A and B from the equation y «* {Ae'^^Be~^*). 

13. Eliminate A and B from the equation AxAB ^ xy. 

14. Verify that y ■■ Aloga? + -B is the solution of the differential equation 
X, d^y/dx^ -{-dyldx «* 0. 

15. Verify that y -» {A + Bt)e^ is the solution of y~2 ny^^-n^y = 0. 

10. Show that the differential equal ion of all parabolas which have their 
axes parallel to the axis of y is d^yjdo^ ** 0. 

17. If y ■=* A Bin'‘'iF + B^ prove that (1 — x®) “^ ^ ** ^* 

18. If y (8in“'ar)* +Asin^^ar + jB, prove that 

19. If y ^ {A-k-Bx) sin mx + (C4- Bx) cos mar, prove that 

20. Find the differential equation of all conics which have their axes along 
the axes of coordinates. 

21. Find the differential equation of all circles which touch both coordinate 
axes. 

22. Find the differential equation of all circles which have their centres on 
the axis of y. 

23. If y => (Ac”** + prove that ^ V ** 
CLX* X (XX 

24. Eliminate A and B from the equation y -* A cos (log x)-\-B sin (log x). 

212. Differential equations of the first order. 

We have several times in the preceding chapters, especially in 

Chapter XIX, met with differential equations, and have solved them. 

We now proceed to collect together and consider the more common 

methods of solving such equations, and commence with equations of 

the first order and of the first degree. Such equations involve dy/dx 
and one or both of the quantities x and y, and the solution will 

involve one arbitrary constant. There is no method which will solve 

the equation in its most general form, but various particular cases 

will be considered. 

I. Let y be absent. 

We have then dy/dx = /(:r), . y = /f(x) dx -h A. 

This is merely the evaluation of an ordinary indefinite integral, 

which, as already pointed out (Art 72), involves an arbitrary 

constant. 

Example, . dy/dx 1 + a?. 

Here ■■ l/^r* + 1/a:; /. y-■-l/»-f !oga:+A. 
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which may be written = 1. 

II. Let a: be absent. In this case dy/dx=:f{^), 

J_^. 
f(y) dx ■ 

Integrating with respect to x, and remembering that 

dx =/F(y)dy [Art. 131], we have dy = x + A. 

Example, Find a function of x which has the values 10 and 20 when 
X = 0 and 1 resjjectivehj^ and such that its rate of change is proportional 
to the square of its value. 

Be,. g-V. > 
y'^ dx • 

Integrating, - \/y lx + C, 

Substituting the given values, 

i\r ~ ^ “ T(3 > ^ “t > 

and the equation is — 1/^^ **= A ^ *== liV ~ ^ 

whence y = 20/(2 —ic), which is the required function. 

III. Let the variables be separable. This is the case if dy/dx 
is equal to an expression which can be resolved into factors containing 
X only or y only. It includes the two preceding forms as particular 
cases. 

The factors which involve y only can be put on one side of the 
equation with the dyjdx^ and those that contain x only on the other 
side, so that the equation takes the form 

Integrating with respect to /f{y) dy = /F(x) cZx+A 

Examples: 

(i) + 1, 

^ ^ ^ 1 ..2 _<nrw;ffA*i _L dy 1 
dx 

Integrating, 

1. e. 1 —f/*, which may be written 
I - dx X 

+ (0 
It should be noticed that, if all or most of the terms of the integral are 

logarithms, it is best to take the constant in the form log A instead of A 
(since the logarithm admits of all values from — oo to +00, this is just 
as general as A). A simpler result is then obtained if we pass to the 
equation which yields the preceding equation on taking logarithms, viz. in 
this case, 

[If logarithms of both sides be taken, equation (i) is obtained.] 
Therefore (1 +y)/(l-y) ■" ^V, which is the required solution. 
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(ii) In what curves does the subtangent hear a constant ratio to the abscissa f 

The Bubtangent « y cot 

/ du , n dy 
••• yf 

Integrating, n log y « log x + log 0, 

whence y" *» Cx. 

1 
X * 

These are the curves which possess the property mentioned. 

If n = 2, we have the parabolas y* «• Cx, showing that such parabolas are 

the only curves which possess the property proved in Art. 46, Ex. iv. 

Many equations which are not of this type can be reduced to it by 

making a simple substitution. 

For example, in the equation dy/dx *= a; + y, the variables are not separ¬ 

able, but, if we put aj + y = the variables in the resulting equation for z 

are separable; for since we have dyjdx ^ dzldx — \ and the 

equation becomes -f- — 1 ; i. e. ~ = 1. 
dx \+z dx 

Therefore log (1 + r) a? + log^, 

whence 1 + 5 -- or, returning to y, 1 -f x4 y « Ae*. 

Most of the equations we have hitherto met with have belonged to one or 

other of these three types. 

Examples LXXXVI. 

1. Find the curves in which the subnormal is constant, and equal to a. 

2. Find the curves in which the subtangent is constant, and equal to a. 

8. Find the function of x whose rate of change with respect to x is always 
proportional to its own value. 

4. In what curves is the subtangent double the abscissa ? 

6. In what curves is the subnormal three times the abscissa ? 

6. In what curves is the portion of the tangent between the axes bisected 
at the point of contact ? 

7. In what curves is the portion of the tangent between the axes divided 
in a given ratio fn : n at the point of contact ? 

8. In what curves are the lengths of the normal and of the radius vector 
aJ ways numerically equal ? 

0. Find the curves in which (i) the polar subtangent, (ii) the polar 
subnormal, is constant. 

10. Find the general equation of all curves in which the tangent makes 
a constant angle OL with the radius vector. 

Solve the equations; 

11. (a? + a) ” == y + b. 12. = 2x4-3. 

X3. l+y’. 14. -f oy + 6 = 0. 
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15. 4ax+& - 0, 
dx 

16. g-2x(y+J). 

17. ^| = ax + 6y. 18. 07(y + 2) + y [x + 2) ^ 0. 

10. xy(l + x»)^^-y*-l. 1 1 6
 

22. «= tan y cot x. 

£3. = cos(o7 + y). 
dx ^ 

dy 
24. -• +!=» ary + 07-y. 

ax 

26. Find a function which is equal to 1 when a? => 0, and to 2 when a? >=■ 1, 
and whoso rate of change is iiroportional to the cube of its value. 

26. Find a function which is equal to 0 when x = \, and to 1 when x = 4, 
and whoso rate of change is inversely proportional to its value. 

213. IV. Homogeneous equations. 

di! 
The equation P ^ Q is said to be homogeneous if P and Q are 

homogeneous functions of x and y of the same degree. 

The equation may be reduced to the preceding form by substituting 

y = eXj and therefore ■j- — 0’±X ^ • 

ax ax 

It will be found that, after dividing out by where n is the 

degree of P and Q, the variables are separable. 

Example. - xy) dy/dx ^xy + y*. 

Making the substitution just mentioned, the equation becomci 

(x* — zx^) (z-\-x. dzjdx) ■= + z‘‘ x^. 

Therefore, after removing the factor x? from both sides, 

dz 
0 + 07 — ' 

dx 

0 + 0* 

1-0^ 

1. e. 
dz 

'dx 

20* 
--2r= -, 
1—0 1—0 

which may be written 

Integrating, 

i.e. 

1 — 0 c?0 _ 2 
0^ dx~^ X 

—1/0-log 0 = 21ogo7-f log .4. 

e”*/*' «= Ax^ X y/x «= Axy. 

dy 
The equation (ax-^ly-^c) ^ = a^X’\-h'yi-c' is not homogeneous, 

but it can be reduced to one or other of the preceding forma in the 
following manner: 
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(i) Let a'/a = V(}> = \ bo that a! = A;a, 6' = 
Then the equation can be written 

(aX’\-l)y-\‘€)dyld,x = ’k[ax-¥ly)-\-(/. 

Let ax-\-'by =■ 8 ] therefore a + 6dy/dx = dzjdx^ 
1 dz 

and the equation becomes (^ + c) ^ ^ ^ — a) = + c', 

i.e. 
dz 
dx 

-a = &. 
hz-\-c' 
7+c ’ which is of the form II. 

dy a^x -^Vy-\-c' 
(ii) Let a'/a ^ h'/h. 

The equation may be written !—-- 
^ dx ax + hyi-c 

Let = X and ax+hy-^-c^T, so that the equation 
becomes dy/dx = X/Y. 

dY dY / dX ^ a+ h dy/dx ^ a-{-hX/Y _ aY+hX 
men ^ "^a' + b' dy/dxa'+ b' X/T~~ 7 r+ b'X' 

and this equation is homogeneous in X and Y and therefore can be 
solved as above. 

Example, Solve (2 a? 4 y ~ 1) dy/dx *»2a;--2y+L 

Let 2ir-fy —1 *«-X and 2a:—2y-}-l •- Y, Then the given equation takes 
the form dy/dx «» Y/X, 

dY dY /dX 2-2dy/dx 2^2Y/X , 
dX-l^/d^- 2Tdyidx “ 2TI7X - “ homogeneou*. 

Let r-Xz, 

The preceding equation now becomes 
dz 2 — 2z^ 

2 + 7’ 
^ dz 2-2z _ 2-42-z* 

*'■ ^ dX"" 2 + z *“ 2 + z ’ 

J ^ 2+2 dor 1 
2-iz-z^ dX~ ~X' 

Since 2 + 2 — — J (d.c. of 2—42—2’), this equation gives on integration 

log (2-42—2’) « —2 log X+log C\ 

2-42-2’-C/X» 

or 2X’-42X’-2’X’-C, 

i.e. 2X’-4Xr-r’« C, 

i.e. 2(2a; + y—l)’-4(2a? + y—l)(2a:-2y+l) —(207 —2y+l)’— C, 

This reduces to 2a:’ —4a:y—y’-f 2aF + 2y — 

[after multiplying out, dividing by -6, and writing A instead of J (5-C)]. 

It should be noticed that in this particular case the solution can be 
obtained more readily as follows: 
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If all the terms are collected on the left-hand side, the given equation 

becomes 

dx dx dx 
0. 

The first two terms together are the d.c. of 2xy, and all the other terms 

can be integrated at once. Hence, on integration, we get 

2xy-{\y‘^-y-x’^-x = C, 

i.e., changingthe signs, 

2a;* —y^ + 2a:4-2y » -2(7, 
as before. 

The integral can be obtained in this simple manner whenever b' = — a in 

the general equation. [See also Art. 216.] 

214. V. Linear equation of the first order. 

A differential equation is said to be linear when it is of the first 

degree in y and the differential coefficients of y with respect to x. 
Hence the general linear equation of the first order can be written 

in the form 

where P and Q are functions of x only, since the coefficient of dy/dx 
can always be made unity by division. 

First take the particular case when (2 = 0. The variables are 
then separable, and the equation may be put in the form 

ydx 

Integrating, logy -^/Fdx == log (7, i.e. = C, 

If we test this by differentiation, we get the original differential 
equation with the addition of the factor for we have, on 
differentiating with respect to a;,* 

i.e. e f (dyidx+Fy) = 0. 

This gives the clue to the solution in the general case when Q^O, 
The left-hand side, when multiplied by the integrating factor’ 

becomes the differential coefficient of yc^^^y and the right-hand side 

becomes 

Hence, on integration, we have 

yeSP^:=z/Qe^^^dX’VGy 

• Tlie d.c. with respeot to x of #1^*^ « the d. c. of e**, whore u ■•/fYt*. 

«• fM X du/<to — X P. 
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which is the required solution. The equation is now to be regarded 

as solved, whether we are able to perform the actual integrations 

or not 

In particular cases, the results should not be written down by 

substituting in this general solution, but by finding in each case the 

integrating factor ; this often turns out to be a simple algebraical 

or trigonometrical function, which in many cases can be seen by 

inspection. The following examples illustrate the process. 

Examples: 

(i) Bin X. dy/dx + y cos ar — re*. 

In this case it is evident that the left-hand side is, as it stands, the d. c. 
of ysina?; 

we have y sina?+C. 

(ii) 3c^. dy/dx + ^xy 1. 

Since 3a?* is the d.c. of a?*, it is evident that the left-hand side, if multiplied 

by a?, will become the d. c. of a?*y. 

Then x^. dy/dx 3a?*y «=» a;, 

ai?y ^ fxdx 

(Hi) (l+x‘)g+^-*, i.e. g + 

Here P-»a?/(l-f a?*j; therefore 

X 

r-fP' 

JFdx - i - i log (1 + x>) - log ^(1 + **) 5 

Hence, multiplying (i) by the equation becomes 

Integrating, y >/(! + x^) 

i. 0. (y~ 1)-/(!+«*)— 

X X 

C, or (y-l)*(l+a?*)-CV 

(i) 

(iv) A particle moves horizontally in a medium whose resistance varies as the 

velocityy and is also subject to another retarding force which is proportional 

to the time ; find the vdocity at the end of time t. 

If V be the velocity at time t, the equation of motion is dv/dt «* ‘-kv — ht^ 

where k and h are constants [i.e. dv/dt-k^kv — —6/]. 

To integrate, multiply by i.e. e^. Then 

. dv/dt -f- V. ke^ » — ; 

/. f>ektm.^b/td^di^a 

• The variables are separable in the given differential equation, and this 

result can be obtained more readily by the method of Art 212. 

ISIS 
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r git t 1 
Integrating by parts, /^ - 1 • ; 

/. _ 1 4. 

Initially, when if = 0, t) «» m, the velocity of projection ; 

w« ~h(~l/P) + (7, and C^u — hllc^, 

dividing by and inserting the value of (7, 

The example from Electricity given in Art. 182 is also an example of this 

type of equation. 

The more general equation 

%+Py = Qy^, 

where P and Q are functions of a?, can be reduced to the preceding 

form by dividing by and putting 1/^" ^ = £r; the resulting equation 
is linear in jet. 

Example. Solve the equation x. dyjdx + « xy^. 

Dividing by y*a?, i ^ + A «. i. 
dx 3cy^ 

T ^ . . 2 dy dz 
y y^ dx dx 

and the equation becomes - ^ ^ - a? « 1, i. e. ? « « -2. 
2 dx X dx X 

This is linear in z. In this case P— - 2/^7, 

/Fdx -21oga:-■ log — j> 

1 dz 

1 

Multiplying by the integrating factor — i x « - -»• 
Xr X dx or X* 

1 2 
Integrating, i.e. af«»2a; + Cor*, 

which, since z «■ l/y\ gives 1 — 2ajy’ + Ca?*y*. 

215. Another method of solntiom 

In both of the cases considered in the preceding article, the solution 

can also be obtained by substituting = wu, and choosing u so that 

the ooeflEcient of v in the resulting equation may be zero; we shall 

then have for v an equation in which the variables are separable. 

As an illustration, let us solve the last equation of the preceding 

article by this method: 
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Example, Solve x. dy/dx + y ■■ ary*. 

Let y wmuv\ therefore, since “ + 
dx dx dx 

the equation becomes 
dv 

: XU^ 1^, (i) 

The function u may be any function, and is quite at our disposal; hence 

we are at liberty to choose u so that the coefficient of r may be zero, 

i. e. so that a? 3- + u *» 0, /. 1 ~ 0. 
dx u dx X 

Integrating, log m + log ar 0, wa? =* 1, and u — XJx. 

[We are not finding the general solution of the equation at this stage, but 

we want the simplest form of m which will satisfy our object of making the 

coefficient of v zero, hence we take the constant of integration as 0 instead 

of in the arbitrary form C.] 

1 dv 1 
Now substituting w »= - in (i), we get — = —_ t?*, 

X ax x^ 

. 1 _ 2. 
** v^dx^x^* ^ 2v*^ X 

Since v =» y/u « yx, we have 

This is the same solution as before, except that the arbitrary constant 

occurs as — 2 C instead of + C, which is immaterial. 

Examples LXXXVII. 

Solve the following equations; 

1. 0. 2. 
da 

; + ary = y’. 

dy ^ 
4. 

dy 2.r4 y_ 
8. 

dx 2 y X 

5. *2 + -/(*’+y’) = y. 6. (x>- y»)g=2xy. 

7. 
rfy y(y-2a:) 
dx^ X (x — 2y) 

3. (y*- 8ary*)g = y>4:^. 

0. (x + y + l)g«x. >y + l. 10. (3ir+y-5)g-2x + 2y-2. 

11. (*+y)2“*+y -2. 12. (3a:- -5y)g = a:-3y + 2. 

13. *_+y = a;-. 14. Jy. 
dx 

+ 4y =.a:. 

15. + y cot a? -= cosec x. 16. 
dx 

y tana?« cosa^ 

vf2 
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17. +y- «*. 
dx dx 

18. x '~ -y ^ xy’. 

19. 
dx 

y tan 0? sec ds. ao.^^+y. 

ai. * ^ +y - ir*y*. 22. + fly — COS hx, 
dx 

28. In what curves is the subnormal at any point equal to half the sum of 
the coordinates of the point ? 

24. The current ♦ in an electric circuit of resistance J2, self-induction If, and 
E. M. F. E satisfies the equation L difdt + Ri — E, Find i in terms of 
t when L ■■ '05, i? ■■ 10, «* 100 sin 5001. 

25. A particle of mass 1 lb. moving horiiontally in a medium whose resis¬ 
tance is *1 €>lb. weight is subject to an accelerating force which at time t 
is equal to 41 lb. weight. Find its velocity after 1 second, if it starts 
from rest. 

216. VI. Exact equations. 

The equation 

is said to be an exact equation if the left-hand side is the differential 

coefficient of some function /(x, y) with respect to x. When this is 

the case, the integral is obviously f(x^ y) = (7. 

The condition which must be satisfied by P and Q in order that 

the equation may be exact will be investigated in Chapter XXIII, 

where we deal with partial differentiation. In the meantime, it can 

often be seen by inspection whether the equation is exact or not. 

In some cases, too, an integrating factor which will render the 

equation exact can be seen by inspection. Such a factor always 

exists, and there are various rules for finding it, but it is frequently 

very difficult to find. 

Examples: 

(i) aa?-fhy+y + (hflj-»-5y-|-/)^^ -= 0. 

This equation may be written ax + h (y + x-^\ +hi/^ -fo -f 
\ ^ dx/ dx ^ dr 

Integrating, ^ ax^ hxy -1- J by* + ya: +/y == C, 

i. e. 03^’¥2 hxy -f 2ya?-f 2/y « 2 (7. 

-a 

(ii) 2 y -f a: dy/dx » a?*. 

This becomes exact if multiplied by ar, for then 2 iry+ a;®dy/da? ■» 

The left-hand side is now the d. c. of yx^; .*. integrating, ya?* « J a;* -f C. 

(iii) 1 -f flj*y -f dy/dx ** 0. 

This becomes exact if multiplied by l/ar®, for then l/a?M y + a; dy/dx « 0, 

whence, on integration, - 1/a? + ary C. 
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(iv) ix*y 
dy 

dx 

This becomes exact if multiplied by for then ^ 

The left-hand side is the d. c. of yjx with respect to x; 

integrating, yjx *. y* + C, i. e. y -* xy^ -f Cx. 

217. VII. Equations of the first order, but not of the first 
degree. 

If the equation is of the second degree in dy/dx, it can be solved 
as a quadratic for dyjdx^ and the resulting simpler equations may 
be integrable by one of the preceding methods. 

Examples: 

(i) Solve the equation x(dyfdxy «= y + a. 

Taking the square root, a/x . dy/dx ■= ± VCy + «)» 

V'(y + «) dx “• a/x ’ 

Integrating, 2>/(y-f-a)** + 2v^x + 2C, 

y+ a-■ (C+ 

Since C is arbitrary, and may bo 4- or —, there is no need to retain the 

double sign in this case. This also follows from the fact that (C+>/a?)* 

is the same as Wx±C)^^ from which it is obvious that the double sign is 
unnecessary. 

Hence the solution is y 4 a — (C4- y^ar)*. 

(ii) S«lv> (,+,), 

(l)’-'--'(s-O- 
On factorizing, either ^~y«0 or ^4-y“—a?. 

dx dx 

The first of these equations when solved gives y ■■ Cs®; the second gives 

14 a? 4 y -■ Ae^ [see the last example of Art. 212], 

These two equations constitute the complete solution; whatever value be 

assigned to C or A in either of these two equations, the resulting function 

satisfies the differential equation. 

Geometrically, if we assign values to x and y, the differential 
equation, being a quadratic in dy/dx, gives two values of dy/dx, Le. at 
any point (x, y) there are two directions for the tangent; in other 
words, two curves or two branches of one curve out of the system of 
curves given by the complete solution pass through any specified 
point in the plane (provided the values of dy/dx are real at that 

pointy 
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In the example just worked out, one curve of the system y *■ and one 

curve of the system 1 + y =* Ae* will pass through any given point (a?, y); 

the values of dyjdx are always real in this case. For example, if we take 

the point (0, 1), we find, on substituting these values in the solutions, 1 »= (7 

and 2 ^ A; hence the curves ye® and l+a? + y**2«*’ pass through the 

point (0, 1). The values of dy/dx at this point are (i) dy/dx =« 1, 

(ii) dy/dx-hi *=» 0; hence the tangents to the two curves are inclined to the 

axis of X at angles 45° and 135° respectively. The two curves therefore cut 

at right angles at the point (0, 1). 

(iii) Find the equation of the curve which goes through the point (a, 0) and 

has a normal of constant length c. 

The normal *=yBec>//*=yv^[l + {dy/dx)^] [Art. 48], 

Hence m 
y* [1 + [dy/dx f] « c*. 

, y dy ^ 
' j—1, and "“t; 2—y •=* + 1. 

Integrating, - - y*) =* ± (^ + ^); 

c* — y® *= (a;4-.4)*, Le. (a?*f A)®-f y* «= c®, 

which represents a family of circles with their centres on the axis of a?, and 

of radius c. 

The fact that the curve is to go through (a, 0) enables the value of A to 

be found, for substituting a? ■■ a, y « 0, we have a -f A *» ±c and j4 « ± c - a. 

Hence there are two circles satisfying the given conditions, viz.: 

(a? + c —a)’ + y* «c®, agreeing with what was stated in the preceding 

example, since the dififerential equation is of the second degree in dy/dx. 

In this case, the result is obvious geometrically. 

218. YIIL Clairaut’s form. 

This is the name given to the equation which takes the form 

where f {dy/dx) denotes any function of dy/dx only, i. e. a function 

not containing x or y explicitly. 

It is usual, in differential equations, to denote dy/dx byjp, so that 

the equation may be written y = rri? + /(i?). 
If the equation be differentiated with respect to a;, we have 

Le. 2[«+/'(j»)] = 0. 

Therefore either dp/dx = 0 or x-k-f (p) = 0. (ii) 

In the first case, p = a constant c, and therefore, substituting in 

the given equation, we get p = ca;+/(c). 
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In the second case, another solution is obtained by eliminating p 

between equations (i) and (ii). Since the is to be eliminated, it is 

immaterial what value it has, and therefore the result of the 

elimination is the same as the result of eliminating c between the 

equations y = ca?+/(c) and a;H-/'(c) = 0. But this result gives 

the envelope of the system y = cX’{-f{c) [Ari 207] (since the second 

of the two equations is obtained by differentiating the first with 

respect to c). 

Hence, the first solution represents a family of straight lines 

y = cx+/(c), obtained by varying the arbitrary parameter c; the 

second solution represents their envelope. The latter is called a 

singular solution ; it contains no arbitrary constant, neither can it be 

obtained from the general solution by assigning a particular value 

to the arbitrary constant c. 

Geometrically, it is easily seen from Fig. 173 that y--xdyldx is 

the intercept made by the tangent on the axis of y. For 

0T'= K9- KP^y- T'K tan PTK 
= tan ij/ = y—xdyjdx. 

Hence the given differential 

equation may be interpreted geo¬ 

metrically as expressing the lengtli 

of this intercept in terms of the 

slope. It is obvious that the given 

property is, at any point P, equally 

true for the curve itself and for 

the tangent to it at P (since the 

tangent and the curve have the 

same slope at P), i.e. it is true for 

the family of straight linos formed 

by the tangents and for the curve, their envelope^ 

Example. Solve the equation ^ 

y-*g+a/g-ay + a/p. 

Differentiating with reapect to p, we have p 

whence « 0 or -j, 
dx\ pV dx p* 

p - c or p - ^ Le. 
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Eliminating py in the first case we have y ■* cx-Va/Cy and in the second 

case y «* + x^iajx) ± 0'/(a?/a) ■» + 2 ^/{ax)y i. e. y* *» 4 ax. 

This is the singular solution ; it is a parabola which is touched by all the 

straight lines of the family y «= car-f a/c, which constitutes the general 

solution (Art. 211). The equation being of the second degree, two curves of 

the family pass through a given point, viz. the two tangents to the parabola 

from that point. 

Examples LXXXVIII. 

Solve the equations: 

dy n 
1. *^+y-**. 

dy dy 

8. + + 'ixy = 0. 
A dy 
4. X -y 4 ny =» x. 

dx 

8. y’ + 2a:y^ = x. 6. = 

7. -y = 3?. 
dx 

dy . 

^ dy ody 

^Tx^^Ix-^^- 
10. 3ar* —2iry+ y4(a?~ar®-2y*)^" «= 0. 

djc 

11. (x + 2y’)^^ = y. 

13. In Ex. (i) of Art. 217, find the equations of the two curves of the system 
which go through the point (4 a, 8 a), and find their slopes. 

Solve the equations: 

... (I)'. ,y. 

■’•dy-d- 
... (2x+3)(g)’ 

20. Solve the equation xy (a?* + y®) ™ + ary « 0. [Factorize.] 

Give the geometrical meaning of the answer. Find the equations of the 
curves which go through (3, 5), and find their slopes at that point 
Prove that the tangent to the curve and the straight line of the system 
which go through any point make complementary angles with the axis. 

21. Solve the equation Id 
Find the equations of the two curves of the system which pass through the 
origin, and their slopes at the origin. 

22. Solve the equation ary ^ —ary ** 0. 

Give the geometrical meaning of the answer, and find the curves which 
go through the point (3, 2). Prove that the two curves which go through 
any point cut at right angles. 



23. 

24. 

26. 

26. 

27. 

28. 

29. 

81. 

82. 

83. 

84. 

85. 

86. 
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Solve X and explain the geometrical meaning of 

the result; at what angle do the two curves of the system intersect 
which pass through the point (2, 5) ? 

Find the curve in which the tangent cuts off from the coordinate axes 
a triangle of constant area A. 

Find the curves in which the perpendicular from the foot of the ordinate 
to the tangent is constant and equal to a. 

Find the curve in which the perpendicular from the origin to a tangent 
is constant and equal to a. 

Find the curve, which goes through the origin, in which the square of 
the subnormal is equal to the rectangle contained by the abscissa and 
a line of given length a. 

Solve the equation ^ ^ ^ ' 

Explain the result geometrically. 

Solr« 80. Solve 

Solve y ^ + a « 
ax 

A ^ 

dx 

\ dx/ 

Find the curve in which the rectangle contained by the intercepts made 
on the axes by a tangent is constant (a’*). 

Find the curve in which the sum of the squares of these intercepts is 
constant (a*). 

Find the curve in which the sum of these intercepts is constant (a). 

Find the curve in which the intercept made by the tangent on the axis 
of y varies inversely as the slope. 

Find the curve in which the intercept made by the tangent on the axis 
of X varies as the slope. 

219. Equations of the second order. 

We will now consider some of simpler types of equations of the 

second order. 

I. = f{x)y a function of x only. 
(X5/ 

In this case two direct integrations give the solution. 

The first gives dy/dx = /f{x) da?+A = jP(a;) + A, say. 

The second gives y = y*JP (a?) da? + Aa?+R. 

This is the general solution containing two arbitrary constants 

A and B. 

Example, If d^yjdx^ ■* sin 

then dy/da? ~ cos x +A, and y -8inx +Ax+J8. 
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11. 
dx^ 

— /(y)i ® function of y only. 

Simple equations of this type have already been solved in 

Chapter XIX. 

Denoting dp/dx hyp, ^p/dn? will be dp/dx, which may be written 

dp dp 
dp dx’ 

dp 
i.e. p-y - 

dp 
Hence the equation may be written p dp/dp —f{p), which, on being 

integrated with respect to p, gives \p‘^ = /f(p)dp + A, 

/. dp/dx =p = [2//(p) dp + 2A]^ - F{p), say, 

1 dp 
i.e. = 1. 

A’(y) dx 

Integrating again with respect to x, this gives 

dp 

This is the complete solution, containing two arbitrary constants, 

the A involved in the jP(y), and B. 
The first stage of the solution may be put in the following form: 

Sin« Ih, d. c. of (f)’ = 2 X d. c. of * = 
dx dx dx ax- 

multiply the given equation by 2dy!dx ; this gives 

Therefore, integrating with respect to x, 

(dy/dxY = 2/f(y)dy-Y Ay as before. 

Example, 0. [See Arts. 187, 192.] 

Multiply by 2 g : then 2 g • gj + a>. 2y g = 0. 

Integrating, {dy/dxf x:>m C ^ ad c*, say. 

This is a more convenient form, c being now the arbitrary constant; 

(fy/rfx — HhaV(c*—y*), 

. 1 dy 
-TTl- 
v(c^~y ) dx - 

Integrating again. sin"^ (y/c) « + ox + a, 

/. y ■» cBm( +ox + Ot). 

This is the general solution containing the two arbitrary constants e and OL, 

The solution may be written in the form 

y ■■ + c sin ax cos a + c cos ax sin a, 

i.e. y ■■ .4 sinax + .0 coBox, 

replacing the two arbitrary constants ^ccosat and csind by A and D. 



ELEMENTARY DIFFERENTIAL EQUATIONS 443 

III. A differential equation containing dyfdx^ and one 
only of the variables x and y can be reduced to one of the first order 

(which may then admit of being integrated by one of the methods of 

Arts. 212-218) by making use of the substitution mentioned above, 

j? for dyfdx, as shown in the following examples: 

Examples : 

(i) Let y be absent 

Solve 

dy 

xf^ + ^ + l-O. 
dx^ dx 

Putting — p, 

juation between p 

It may be written 

^ , the equation becomes a?^+p + l==0, an 

equation between p and x of the first order with the variables separable. 

1 dp ^1 
p+1 dx X* 

log(p-f 1) «=-logo; + logC, or p + l>=^C/x. 

dy 

dx ■1, 

and integrating again, 

(ii) Let X be absent. 

Solve 

y = Clogx-xi'J., 

<Py /dy\* 3 ^ 

Putting Pi ^^4 equation becomes 

yp^ +p® + a* s* 0, in which the variables are separable. 

It may be written 
2p dp 

p* dy y 

*-• log (p® + a*) « log C - 2 log y, or p* + a* « C/y*. 

dy ... = 

1. e. 
dy + 1. 

^(C-a^y^)dx ~ 

Integrating again, a^y’^)la^ ■» + a: + -4; 

.*. C—*=a (x-^Af, the + sign being unnecessary; 

or, if the first constant be written as Ca^ instead of C, 

(iii) Find the cun'es in which the radius of curvature is double the normal 

and on the same side o/ the cujts. 

The length of the normal ^ J ^ 48]; the radius of 

curvature, p, « “ positive when the curve is 



444 ELEMENTARY DIFFERENTIAL EQUATIONS 

above the tangent. Since the radius of curvature and the normal are on 

the same side of the curve, the curve must be concave towards the axis of x. 

If the curve is on the positive side of the axis of a?, y and the length of the 

normal will be positive (taking the positive root), and being below the 

tangent, will be negative; if the curve be on the negative side of the axis 

of X, y and the length of the normal will be negative, and the radius of 

curvature will be above the tangent and positive. Hence in both cases the 

signs of the lengths of the normal and the radius of curvature are different, 

and we have 

['^(2)T7S— 
Dividing by j J ^ , and putting ^ 

1-fp’ — 
dp. 

dx^ 

2p dp _ 1 

* V 

get 

dy’ “ l^p^dy 

Integrating, log (1 +jp*) — log y-f log a, whence 1= a/y, 

and 
d// 

-=jp. 

To rationalize this, put y ■ 

and the equation becomes 

2a Bind cos B 

/(;->)-7(77 

]/a oos®d\ 

\ \ a 8in*d/ ~ 

\ 

a sin* B; 2 a sin d cos 

COR d 

sin d * 

i.e. 2asin*d 3-« 1, or o(1 ~co82d) - = +1. 

Integrating again, a(d-j8in2d)** ±x^A\ 

therefore ±x-\-A — (2d-iin2d); 

also y ** « Bin*d Ja (1 ~coB2d). 

These two equations give the coordinates of any point on a cycloid 

[Art. 50]. Hence the curves which possess the given property are cycloids. 

[See Art. 199, Ex. (iv).] 

The d in these equations is half the angle turned through by the radius 

through the tracing-point on the rolling circle. A change in the value of 

a, the first arbitrary constant, alters the radius of this circle and therefore 

the size of the cycloid and, with it, the actual lengths of the normal and 

radius of curvature. A change in the value of the other arbitrary constant A 

slides the cycloid along the axis of a?, an operation which obviously would 

not affect the lengths of the normal and the radius of curvature. 

Examples LXXXIX. 

Solve the following equations: 

d*y 

dic* 

fy 
:4y. 

2. X 

6. < 

d*y 
8. d*y 

a*8in*x. 

a 
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7. 
da: ' "" dx 

8. '(ir- 
0. 

dPV 
10. n 

r dr 
2 X. 

dx 

11. yfl 
^ dx^ 

(dy \* , 
+ ( — ) « a*. \ dx/ 

12. 
d^y 

^5? + (l)’-v. 

13. 
\ dx) dx dx^ 

14. 
\ dx'^) dx 

16. 
d^y dy 
da? ““ dx 

16. 
d?y 

(£)■-»• 
17. 

^ dx^ 
- -1. 18. x^ + 

dx^ ^ 
“ 4-1 «* OJ. 
dx 

Py o 
20. 

d^u Jc 
10. o 

^dx' 
-rl ase 9. 
dx^ 

21. Find the curves in which the radius of curvature is constant. 

22. Find the curves in which the radius of curvature is equal to the normal, 
but on the opposite side of the curve. 

23. Find the curves in which the radius of curvature varies as the cube of 
the normaL 

24. Find the curves in which the radius of curvature is double the normal, 
and on the opposite side of the curve. 

220. Linear equation of the second order, with constant 
ooeffioients. 

This equation is 

,<py , .dy 
dx^ 

where a, b, c are constants, and P is a function of a?. 

We shall commence by proving one or two general theorems about 

the solutions of such equations. These theorems express properties 

which are true for linear equations of any order, and which are also 

true when the coefficients are functions of x. It will be obvious 

that the following proofs will hold when a, b, c are functions of x 
just as when they are constants; no assumption is made as to their 

nature in the working except that they do not contain y. The 

method of proof is also exactly the same for equations of higher 

order, but in that case the equations will contain more terms. 

L If w -f V be substituted for y in the equation, it becomes 

iPu ^ du cPv ^dv _ 
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If t; be my solution of the given equation (not the general solution, 

but any particular solution, the simpler the better), so that 

then we have, by subtraction, 

d^u , du 

i. e. u satisfies the original equation with the right-hand side P 
replaced by zero. The general solution of this equation will contain 

two arbitrary constants. If then this general solution u can be 

found, and also the particular solution v of the original equation 

just mentioned, y = u + v will give the general solution of the 

original equation. 

Of these two functions, v is called the particular integral^ and u the 

complementary function. 
The problem is now reduced to finding any solution whatever of 

the given equation, and the general solution of this equation with its 

right-hand side replaced by zero. 

11. Next, if Ui and be any two independent particular solutions 

of the equation y = where 

A and B are arbitrary constants, will also be a solution. For, 

substituting + V left-hand side of the equation, 

it becomes 

/ . d^u-i .^d'‘Un\ , / j du-\ •rtd>Uo\ . . \ 

M f d'^U't _ du-x \ / d^Un 1 dUo \ 

i.e. + 

Since and are both particular solutions, the contents of each 

bracket are equal to zero, and therefore the equation is satisfied; 

y = Aui’^Bu^ 

is a solution. This will be the complementary function. 

Hence, summing up the results of these two theorems, it follows 

that, if t? be a particular solution of the given equation, and u,, Mg 

particular independent solutions of the equation when the right-hand 

side P is replaced by zero, the complete solution is y = + + 

where A and B are arbitrary constants. 

Similarly, in the linear equation of the order, if i; be a particular 

solution of the given equation, and if Wg ^ independent 
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particular solutions of the equation with the right-hand side zero, 

the complete solution will be 

y = + ... 4'Jru^ + i^. 
The methods of finding the complementary function and the 

particular integral will now be considered. 

221. Method of finding the complementary function [C. P.]. 

The equation to be solved is 

Two particular solutions are needed. Try y = 

[This substitution is suggested by noticing that each term of the equation 

will then become a multiple of «”**, and by suitably choosing m, the sum of 

the coefficients of e"** after the substitution may be made to vanish, and the 

equation will then be satisfied. 

Moreover, in the corresponding equation of the first degree, 

a ^ =a 0, we have ~ ^ ^ = 0. 
dx y dx a 

logy4-&a?/a log C, whence = C, and y =» 

a solution of the above type.] 

The equation becomes (am^ + bm 4* c) = 0, which is satisfied if 

am^-f-bm+c = 0. 

This equation for m is often referred to as the auxiliary equation. 
In this, and in the general case of an equation of the order, it 

can be written down at once by substituting 1, tn, mr, ... for 

dy d^y d^y 
d^* "* respectively in the given differential equation. 

In this case we have a quadratic which gives two values of tn for 

which 6^ is a solution. There are three cases which may arise. 

(i) Let the roots be real and different^ and tn,, say. 

Then * and * are particular solutions of the equation ; hence 

the C. F. is y = 

(ii) Let the roots be real and equals each Wj. 

The preceding result becomes y = = (A-f *, 

which is no longer the general solution, because A -f J5 is equivalent 

merely to a single arbitrary constant 0; but it suggests that 

may be a factor of the solution. Therefore try the substitution 

y = where g of course is a function of x. 
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The quadratic whose roots are both is = 0; 

hence the corresponding differential equation is 

Substitute y = ; (mix 
cljc 

d^y djs de 
and ^ ® ^ x _j„ x^ 

The differential equation becomes 

^ + + = 0, 

1. e. ^ = 0, whence ^ = 0. 

Therefore, integrating twice, z = Ax^B ; 

and the C. F. is y = ^ ^ {Ax + J5). 

Similarly, if, in solving a differential equation of higher order, 

the auxiliary equation has three equal roots, three of the particular 

solutions will coalesce, and it follows, by exactly similar reasoning, 

that the corresponding part of the C.F. is 

ernix(Ax^^Bx^C). 

Similarly for any number of equal roots. 

(iii) Let the roots be imaginary^ rwj ± Wj i (where i = ^/ — 1), say. 

Then the C. F. takes the form 

y = A d'^^ * ®+Bd^'^ x—ma i x^ 

This expression, involving imaginaries, is an inconvenient form, 

especially in practical applications, and the result can be expressed 

otherwise as follows: 

It is clear that * is a factor of this solution, therefore, as in the 

preceding case, put y = ; z will be a function of a; 

The quadratic whose roots are Wi + Wgt is 

tn^ —2wim + »ni^4-m22 = 0 ; 

hence the corresponding differential equation is 

Substituting y = and the values of dy/dx and dC^yfdx^^ as 

in the preceding case, we get [d!^z dz dz n 
^^*”1 Si “ ^+”*1* 
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• • ^ = a 

The general solution of this equation is (Art. 219 II) 

s = (7sin (waa:+ ot), or 0 = A + B cosm^x ; 

and therefore the C.F. is 

y = = Ce’”i®8in(waa; + a). 

Hence, summing up these results: 

(i) If the roots of the auxiliary equation are real and different, 

mj and m2, the C.F. is ^ ; 

(ii) If the roots of the auxiliary equation are equal, each , the 

C.F. is y ^ (Aa: + B); 

(iii) If the roots of the auxiliary equation are imaginary, ^1 + ^2^ 

the C. F. is ^ == ^ (A sin W2 x +1? cos x) 

= Cc'" * sin (iMjO; + a) or cos (^n^x—ay 

Examples: 

The auxiliary equation is — 7 m +12 ** 0, whence m « 3 or 4, and the 
■olution is y «« x ^ 

The auxiliary equation is m* + 4 m 4 4 «= 0, which has two roots, each — 2. 

Hence the solution is y ■* «■** (A + Bx), 

(iii) 
The auxiliary equation is m* 4- 2 wt 4- 5 « 0, whence m *» — 1 + 2 i. 

Hence the solution is y « e"" (.4 sin 2 a? 4- ^ cos 2 a?)** Ce~* cos (2 a? — a). 

(i') 

The auxiliary equation is 2 m* ~ 3 m + 4 = 0, which has the roots 

5 + J-/-23, i.e. 2±lV23; 

hence the solution is y « Cel * cos (i -/23 a? - a) 

M 
The auxiliary equation is m* 4~ 2 w* 4- m ■» 0, which has roots 0, — 1, -1; 

hence the solution is y *=» Ae^* (B + Cx) — .4 4- (i^ + Cx). 
tiss O g 
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(vi) 
dx* 

0. 
The auxiliary equation is tn^4-4m* 0, which has roots 0, 0, ±2i. 
lienee, combining the results of (ii) and (iii), the solution is 

y e®* (A -f Bx) 4- (C sin 2x + D cos 2 x) 

■* A'^'Bx + E cos (2 a; —a). 

Examples XC. 

Solve, by aid of the summary given above, the equations: 

1. -0. 
dx^ 

16y-0. 

8. 4 _4- 

• dx^ 
6g + 9,.0. 

5. 0. 
d}y 

^-dh 

7. 0. -9y = 0. 

0. 
. Pv r 0. 

- ‘S 4l2g+9y = 

11. 
Py ^ dtj 
dx^ dx dx 

13. 14 
dx^ dx 

16. J. ^ _ 0 
dj^ dsP 

16 4 
d^ ^ 

222. Method of finding the particular integral [P. !•]. 

We have to find any particular solution of the equation 

„ d^y ,r,dy 

dx^ 

Frequently a solution can be found by trial, as shown in the 

following examples, which include some of the simplest and most 

useful cases. 

(i) Let P be a constant, (7. 
Then a particular solution is obviously y = C/c, since all the d.c.'s 

of this are zero. 

(ii) Let P be a rational integral function of Xj i. e. let P be of the 
form p-hqx-j-rx^where p, q, r ... are constants. 

The only functions of x whose differential coefficients are positive 
integral powers of x are themselves positive integral powers of x* 
Hence assume 
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Clearly, the degree of the expression assumed for y must (if c ^ 0) 
be equal to the degree of P, since dy/dx^ d^y/dx^, ... are of lower degree 
than y, and hence the highest power of a; in y cannot be cancelled 
out, and therefore must occur in P. Substituting this value of y in the 
differential equation and comparing the coefficients of the different 
powers of a;, equations are obtained from which the values of the 
coefficients A, P, ... can be found. If c = 0, dy/dx must be of the 
same degree as P, and so on. 

Example, Solve the equation +2y-=3 -2a;^ 
CLJC (tx 

Since the right-hand aide is of the second degree in a;, take 

y ^ -f Bx -f Cx\ 

Substituting in the differential equation, we get 

2C-3(P + 2Cx) + 2(^ + Pa;+Cx*) 

Comparing (i) coefficients of : 2 6'-*—2, .*. Ca«—1; 

(ii) coefficients of a:: — 6C+2P —0, .*. P—-3; 

(iii) constant terms: 2C—3P-f2^ = 3, —2. 

lienee y *=—2--3a?-~a;* 

satisfies the equation, and this is the particular integral. The C, F. is, by 
Art. 221, + and therefore the complete solution of the given 
equation is 

(iii) Let P be of the form Ce^, 
Since all the d. c.’s of are multiples of e"**, we assume y = 
Substituting in the differential equation, it becomes 

{am^ -^hm + c) ke^ = Ce*^y 
whence k = C/(am^ -f- 6m + c). 

This fails if e"** be a term of the C.F., for then the coefficient of k 

in the preceding equation becomes zero. In this case, substitute 
y = Icxe^; this fails in a similar manner if xe"^ be a term of the 
C.F. If this be so, substitute y = hx^Q^, and so on. 

Examples: 

(i) solve g-32+2y-2e-. 

The C.F. ifl y Ae^ + Be^*^ and the right-hand side of the given equation 
is not a term of this expression ; therefore put y 

This gives, on substitution in the differential equation, 

- 3 (-2A:) ^-2* + 2« 2; 

12A: ■» 2, and A; ■»» J. 

Hence the P. I. is and the complete solution is 

a g 2 
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(ii) Let the right-hand side of the preceding equation be 2e*®, 

Since this is a term of the C. F., we put y *== Icxe^^; 

= A:(2xe»* + s®*); d}y/dx^ 

Substituting these in the differential equation, it becomes 

[4a7 + 4~6j7 —3 + 2x] =« 2e^^f 

whence ■» 2, and the P. I. is 2xe^^, 

The complete solution of the equation is 

y = Ae^ -f + 2 xe'^ 

(iii) Solve the equation ^ ^ ^ 

The C. F. is y « (-4 4 Bx). 

Since e* and rce* are both terms of the C.F., to find the P.I. we must 
substitute y «= kx'^e^; therefore 

dyjdx = h (x^e^ + 2xe^)^ and d^y/dx^ «= 7c A2xe^+ 2+ 2e^). 
The equation becomes 

Jce^ [a;’-f4a;-f-2~2a:* —4x-i-ar*] «« e®, whence Jc 

The P.I. is and the complete solution is 

y {A 4 Bx) 4-1 x^e"" « e® {A + L'x 4 i x*). 

(iv) Let P be of the form C sin nx-hD cos nx [either C or D may 
be zero]. 

Since all the differential coefficients of sinwx and cosna; are 
multiples of either sin nx or cosm:, we assume y = k sin w;r-|-Z cos nx. 

Substituting in the differential equation and comparing coefficients 
of sin nx and cos nx on both sides, we get two equations to determine 
k and 1. As in the preceding case, if the C.F. contains terms of the 
form A sin nx + B cos nx^ the substitution fails and, as before, we 
then put y = kx&innx-\-lx cos7ix. 

Examples: 

(i) Solve ^-3^+2y-5sm2a;. 

The C. F. is Ae"" 4- 

To find the P. I., put y = A: sin 2x 4 Z cos 2 x. The equation becomes 

— 4A;sin2x~4/cos2x-3 [2i; cos2x—2Zsin 2x]4 2 [Zp sin2x4/cos 2x] 

«» 5 sin 2x, 

i.e. sin2x [“4A;4 6Z4 2Ar]4cos2x [-4^“-6A;4 2I] «« 5 sin 2x. 

Comparing coefficients of sin 2x and cos 2x, 

— 2A:4 6Z»«5, —2Z —6A; = 0; whence A: « — J and I-« J. 

The P. 1. is — J sin2x4 J co8 2x, and the complete solution is 

«» As*4Pe**~jBm2x4 2 C08 2ir. 
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(ii) Solve + » cos 2a:. 

The C. F. is -4 cos 2a: + ^ sin 2a:. 

Since cos 2a: is a term of the C. F., put y ■= ^a: sin 2 a? + Za: cos 2a:. 

/. dyjdx ■» 2hx cos 2x-\-k ^in2x — 2lx sin2a:-f Z cos2a:, 

and d^yjdx^ « ~-4A:a:8in2a:-f 4A:co8 2a:“-4Za:coB2a:-"4/ sin 2a:. 

Substituting in the differential equation, it becomes 

— 4A:a:8in2a: + 4/c cos2a; — 4Za: cos2a: —4Z sin2a: + 4A:xsin2a: + 47a: cos2a? 
« cos 2 a?. 

Comparing coefficients of sin 2a? and cos 2a:, 4Z—0, 4A? = 1 ; Z«=0 and A?*=i. 

Hence the P. 1. is J a? sin 2a?, and the complete solution is 

y ^ A C08 2a: +J?Bin2a:-f J a? sin 2a:, 

(v) Let P be the sum of several terms of the preceding types. 
To find the P. I. in this case, find the part of it corresponding to 

each term separately, and add the results together. 

223. Applications of the preceding results. Damped harmonic 

motion. 

The equation 
iPx , dx , 

a cos {nt 4- (X) 

is of considerable importance in dynamics and electricity. It is a linear 
equation of the second order with constant coefficients. 

If the right-hand side is zero, it is the equation of motion of a simple 
pendulum making small oscillations under gravity in a medium of which 
the resistance varies as the velocity. For if, in Art. 194, the motion be 
supposed to take place in such a medium, and if the resistance to a particle 
of mass m be written in the form Jcmv, i.e. kmldd/dt^ the equation there 
given becomes 

ml tt ■■ --kml -r: — mg BinO. 
dr at 

i.e. 
(PS dS n . * 

= 0: 

which, when S is so small that (sin sys may be taken as unity, becomes 

It is convenient to write n® for y/Z, so that the equation may be written 

^S 
dP dt 

0. 
The same equation also represents the motion of the needle of a 

galvanometer, the resistance of the air being supposed proportional to the 

velocity, which is approximately true when the velocity is not very large. 



454 ELEMENTARY DIFFERENTIAL EQUATIONS 

Since the right-hand side is zero, there is no P. 1. To find the C. F., the 

auxiliary equation is 

m* + hm + n* * 0, of which the roots are m ± “■ «*)• 

The nature of the motion depends upon the value of JP —n®. 

(i) If JP>n®, the roots are real and different; denoting them by 

and Wj, the solution of the equation is 

Since Z; is + and JZ;“ —ti*< JP, and therefore it follows 

that mj and m, are both —. 

and both-^0 as t increases, and therefore ^-►0 as t 

increases. The particle does not oscillate but gradually approaches the 

position of equilibrium.* 

Suppose the particle starts from rest with 6 initially equal to a. 

Then, since d -= a when ^ « 0, Ot « A 4 

Now d6/dt « Ami ; 

and dB/dt -* 0 when t ■« 0. 0 «=* 

From these two equations, A »* and B «* — 
— mj m j - mj 

--ty 
mg ifii 

If we denote +V'(ik’-n') by p, m,~ -li+p, and 
■= 2p. 

Since p and Z: are +, it follows that \lc-^p>\lc-p and 

therefore the first term in the bracket is greater than the second, so that B is 

always -f, and 0. In this case the particle never passes through the 

position of equilibrium given by d « 0. It gradually approaches it but never 
quite reaches it. 

* It may first pass through it once, sinoe, under some initial conditions, there 
may be one value of t for which d ■■ 0, 
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If we draw the displacement-time graph of the motion, the curve starts at 

the point (0, (X) and constantly descends towards the axis of which is an 

asymptote (Fig. 174). 

The motion is of this nature if /b* > 4n*, i. e. if h>2n; i. e., in the case 

of the pendulum mentioned above, if A: > 2 \/{glT). This is also the character 

of the motion in the case of a dead-beat galvanometer. 

(ii) If JP n*, the roots are real and equal; each is 

If the particle starts from rest with 6 OL, then substituting OL for B and 

0 for t in this equation, we have a « 

Also ^ - 5 he-\(A -h Bt) - [B-^/cA-^ kBt]. 

Since B^O when ««0, Q ^ B-~\hA\ .•. B^^lhOL. 

Therefore B — e~^^^{OL-\~\k(Xt) « OLe~^^^ {!->(-\kt). 

Hence, in this case too, B tends to the value 0, but never reaches it, sinco 

and 1-f are always -f. 

The graph of tlie motion is similar to that in the preceding case. 

(iii) If the roots are imaginary. Denoting n*—JA;’* by jt)’, 

they may be written in the form —^Ar+y'-^*, i.e. —\k±pij where 

In this case the solution of the equation is (Art. 221) 

B « C«'“i*''^cos (pt — i), (i) 

The particle passes through the position of equilibrium, d«»0, when 

cos [pt — €) «t 0, i. e. when pt — ( is equal to any odd multiple of Jtt. 

When —J TT, the position of equilibrium is reached for the first time; 

when —^ TT, for the second time, moving in the opposite direction ; 

when pt —tf ^TT, for the third time, moving in the original direction, 

and so on. Hence, after passing through the position of equilibrium, 

the particle reaches the position of equilibrium again, moving in the 

same direction, when pf ~ e increases by 2 tt, i. e. when t increases by 2 7r/p. 

Therefore it makes oscillations about the position of equilibrium in the 

periodic time 2 7r/p, and, owing to the presence of the continually decreasing 

factor the amplitudes of the successive oscillations continually 

diminish. In order to find their values, we have 6 a maximum or minimum 

when B is zero, i. e. when the velocity is zero. 

Now ^ { — p sin (p^ —e)}-“i COB (pf — e) 

■= - [p sin {pt—c) +1 cos {pt -<)]. 

This is zero when p sin {pt - e) = — -| A; cos {pt — f), 

i. e. when tan (p^ - c) = — J k/p «• tan say, 

i.e. when pf-c « njr-fft where n is any integer, 

— + —~ * — +y, if y denote-- 
PPP p 

L e. when 
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Taking first n » 0, i. e. t ^ y, we have ^ cos ^ OL, say. (iii) 

Next, when n«l, i.e. <«»rr/p4-y, 

B «« Ce~^ *(y+ri/p). cos (tt -f /9) «x — Cc'i *y. cos /9 ■» — ft «?** j 

when n *» 2, i.e. ^*=27r/p-f7, 

(9 «* Ce‘'i*(Y+27r/;)), cos (27r + /3)«* Ce“i*y. co8/3 «= ; 

when n « 3, i. e. ^ == ^n/p +y, 6 becomes «* — and so on. 

Hence the successive amplitudes form a descending geometrical progression 

W'hose common ratio is — 

If the particle starts from rest * with ^ ft, then substituting in (i) we get 

ft =s Ceos (— c), whence C *» ft sec €. 

Also since ^ *= 0 when f « 0, we have, on substituting in (ii), 

0*1= —C[—psinc + JIrcosf], whence tan f = -Jk/p. 

/. d ■=« sec e cos (p/~e), where « «= tair' (| A:/p), 

In this case, the displacement-time graph consists of an undulating curve 

like a sine-curve with constantly decreasing maximum and minimum 

ordinates (Fig. 175). It meets the curve y *= at points where 

cos(p^~e) *» 1, i.e. pf—€*w2n7r; and it meets y^~-Ce^i^ where 

€ ■« (2n4-l)7r. It can easily be proved that at their common points, 

which do not coincide with the maxima and minima, the curves have the 

same slope, and therefore touch each other. (Cf. Art. 105, Ex. iii.) 

If there be no damping, i.e. if k be zero, the equation of motion is 

S+n^$ Bs 0, and the period is 27r/n. It has just been proved that in the 

• In this case, the *7’ of the preceding investigation, since it denotes the time 
when the particle is first at rest, is zero, so that jS - — and equation (iii) become# 
C COB (—€) » a. 
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present case the period is 27r/p. Since p< n [p* *■ it follows that 

the eifect of the damping is to increase the time of oscillation. 

If h be small, 

2jr 2ir 8ir /, ft* V* 2;r /, , ft* \ , 

""'J “J= 
hence the time of oscillation is increased by a small quantity of the second 

order. 

If the oscillations be forced, i.e. if the pendulum be subject to a force 

which prevents the oscillations from dying away, there will be an additional 

term on the right-hand side of the equation. For instance, the general 

equation at the beginning of this article is the equation of motion of 

a pendulum in a medium whose resistance varies as the velocity, and acted 

upon by a force which is a periodic function of the time. In this case, the 

C. F. is as before, and it remains to find the P.L This is obtained by the 

method of Art. 222 (iv), as in the example which follows. 

224. An example from Electricity. 

If an electromotive force E is applied to a circuit of resistance R and 

coefficient of self-induction X, containing a condenser of capacity A, then 

it is proved in books on Electricity that the charge q in the condenser at 

time t satisfies the equation 

This is a linear equation of the second order with constant coefficients. 

First, taking a numerical example, let the condenser be initially uncharged, 

and let R « 100 ohms, L *» '005 henry, IT — 1 microfarad 10"^ farad, and 

E=:^m0 volts. 

The equation becomes '005 ^ + 100 ^ -f 10* g = 1000. 
(it* dt 

By Art. 222 (i), the P.L - lOOO/lO* - '001. 

To find the C.F., we have the auxiliary equation 

'005w^ + 100m + 10««0, 

, -100+v'(10^-4x'005xl0») -lOO+y-lO' 
whence - 

Therefore the C. F. is j *= ‘ cos(10*/ - 0» the complete solution is 

2 « *001-f cos (10*/-€). 

To find the constants A and c, we have g 0 and g *= 0 when / ■■ 0, 

since the charge and the current are both initially zero. 

q » <[-10* sin(10*/ -c)] - A. 10*«“i®'< cos (10*/-f). 

Substituting the initial conditions, 0 ■= '001 + A cos <; 

0 =* A . 10* sin c - A . 10* cos r, 

whence tan t ■■ 1; .*. c ■» J tt, and A — -•001 sec ( « -'001414. 

Hence q - -001 - -001414 ‘ coi (10‘ t - i>r). 
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This gives the charge in coulombs at the end of time t. 

Next, returning to the general equation, let E — 0, and let us find the 

condition that the discharge may be oscillatory. 

The auxiliary equation is Xm* + iJm + l/JK” -• 0, the roots of which are 

As in the preceding article, the discharge will be oscillatory if the roots 

are imaginary, i.e. if 4X/ii>X®, i.e. if 4X>A"i?^ In this case, if we 

denote {i?^-“4X/A’)/4X* by —the roots take the form “4X/L + ^>/-l, 

and the C. F. is 

g ^ cos (/a ^ ~ r), 

as in Case (iii) of the last article. The time of a complete oscillation is 

2;r ^ . V(4X//i~X^) 47rX 

h ~ ' 2L “ 

If the initial charge in the condenser be the constants A and * are 

found from the conditions that when ^ 0, g ■■ go the current g ■* 0. 

If the right-hand side of the general equation be Xsinjof, i.e. if the 

E. M. F. be a periodic function of the time, then we have in addition to find 
the P.L 

Assuming g ^ sinp^ + X cosjjf [Art. 222 (iv)], and substituting in the 
differential equation, we get 

X [ - sin pt - Bp^ cos pt] +li[p A cob pi --pB sin pt] 

+ [A sin pt + B cos pi]/K =■ E sin pt; 

whence, comparing coefficients of sin and cospf, we have 

-A(xp*-i/iq-x.i?p-x:| 

Multiplying by Lp^-l/Kand Bp respectively and subtracting, we get 

-A [(Xp^ - 1/Ky + p^] - E (Lp^ - 1/K); 

Rp -E,Bp 
■ • ^ (V-1W+ Lf-lIK • “ - (V- 

Hence the particular integral is 

— E 
(Lp^ — 1 /A j® + p^ + Bp cosp^]. 

Putting Lp^-l/K^rsm(p and Bp cob <l> [as in Art. 182], this 
becomes 

Ef* 
W-\IKf + IPp^ ^ 

which, since r® (Xp*~l//r)* + X®p*, may be written 



ELEMENTARY DIFFERENTIAL EQUATIONS 459 

Hence, adding the C. F. and the P. I., the charge q in the condenser at 

the end of time t is given by the equation 

> _,=,or r // 1 -K’N. 1 Ecosipt-4,) 
q~Ae / 4LV ^ 'J + ’ 

where (f> «• tan"' and the constants A and t are fonnd from the 
Lp 

initial conditions. 

The first term rapidly decreasefl as t increases on account of the factor 

unless L be very great compared with i2, and therefore j approaches 

the value given by the P. I. Hence the current t, which is equal to g, 

approaches the value ’ which may be written 

Examples XCI. 
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20. A particle moves in a straight line so that its distance x from the origin 
at the end of time t satisfies the equation ic-f ir + a; = 0 ; if it starts from 
the origin with velocity 60 foot-seconds, what will its distance from the 
origin be after tt/VS seconds, and what will its velocity and acceleration 
then be ? When will it first come to rest ? 

80. A particle moves in a straight line under the action of a force to a fixed 
point 0 in the line, which varies as the distance from 0 and is equal to 
\ of the weight of the particle at distance 10 feet from 0; it starts from 
rest at distance of 20 feet from 0, and moves against a resistance, which 
varies as the velocity, and is equal to J of the weight when the velocity 
is 50 foot-seconds. Find the distance from 0 at the end of time t 
Find the time taken to reach 0 for the first time, and the velocity at 
that instant. Find also the distance to which the particle first goes on 
the other side of 0. 

81. In the case of a pendulum making damped oscillations as in Art. 223, 
and starting from rest at an inclination OL to the vertical, prove that 

d =* “i [cosp^ -f (I Jc/p) sinp/]. 

82. In the preceding example, find the successive angular velocities when 
the particle is passing through its equilibrium position. 

83. A pendulum starts from rest at an inclination 20° to the vertical, and 
first comes to rest at an inclination 15° on the other side of the vertical 
after the lapse of one second. Assuming that its displacement follows 
the law d «= ^^cos —€), find the values of the constants p, f, 
and C, Find the ratio of the successive maximum displacements and of 
successive angular velocities when passing through the position d ■« 0. 

Find its inclination to the vertical after 10 seconds, and its angular 
velocity when passing through the equilibrium position for the tenth 
time. Draw the displacement-time graph of the motion. 

84. A point moves in a straight line according to the law 

X =« Cie“i**C08 —e). 

It starts at a point 6 inches to the right of a certain point A, moves to 
a point 5 inches to the left of A and then back to a point 4 inches to the 
right of A. Find the distance from .4 of the position of equilibrium 
(the point from which x is measured). If an interval of 3 seconds was 
observed to elapse between the first and third of the positions mentioned 
above, find the values of the constants p, k, and C. Find the 
distance of the point from its equilibrium position and also from A at 
the end of 15 seconds. 

Draw the displacement-time graph of the motion. 

85. A particle rests on a rough horizontal table (p =* and is attached to 
a fixed point on the table by an elastic string of natural length 20 inches, 
and modulus equal to the weight of the particle. If the particle is drawn 
out to a distance of 30 inches from the fixed point and then let go, where 
will it finally come to rest ? 

80. The motion of a ballistic galvanometer needle is given by the equation 

Id + KO’^hS^Q, 

where I is the moment of inertia of the needle, h the twisting moment 
per unit angular displacement to the torsion of the fibre and the 
magnetic field, and K the retarding moment (per unit angular velocity) 
of the bath used to damp the motion. 

If initially d ^ tt and ^ « 0, find the value of d in terms of t when 
^ *2, I'5, K"" *6. Draw a graph of the motion. 
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87. Answer the preceding question, if ^ « ’4, I »= *5, K = ‘9. Draw a graph 
of the motion. 

88. A constant E. M.F. of 2000 volts is applied to a circuit of resistance 
500 ohms and self-induction *01 henry, containing a condenser of 
capacity 2 x 10“* farads; find the value of the current q in terms of the 
time. 

Represent the result graphically. 

S9. Answer the preceding question when the resistance is 200 ohms, the 
self-induction ‘02 henry, and the capacity 10~® farad. 

40. A mass m is supported by a vertical spring which stretches a distance 
h when supporting 1 lb. ; if the resistance of the air be proportional to 
the velocity, the equation of motion is 

mjH gx/li « 0. 

Find X in terms of if m «= J lb., h = \ foot, and k =* *05 lb. wt. 

41. If in the preceding question m ^ oz., A = 3 inches, and k *=> *25 lb. wt., 
find X in terms of t, 

42. A simple unresisted pendulum is acted upon by a force which is a simple 
harmonic function of the time represented by k cospt Find an 
expression for S in terms of if the length of the pendulum is 8 feet 
and its mass unity, (i) when y) 3, (ii) when i? = 2. 

226. Solution of linear equation of the second order when 
a particular solution of the equation with the right-hand side 
replaced by zero is known. 

Taking the equation in the form 

where P, Q, B are functions of Xy let u be any solution of the 
equation 

+ = (i) 

In some cases such a solution can be found by inspection. 
Substitute y = uz in the given equation ; 

dy _ dz du 
* ' dx ^ dx^^ dx* 

d^y ___ d'^z ^ dz d^u 
dx^ ^ ~dx^dx dx^^dx^ 

The equation becomes, on substitution, 

d^z . ^du dz <Pu dz d^z , ^du dz d^u dz du\ ^ _ 

1. e. 
(Pz . dz du 

^ djp 
dz/^du,^\ /d^u ^du ^ \ 

dx (ii) 
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Since u is a solution of the equation (i), the coefficient of jer is 0; 

hence we have 
dz /^du \ ^ 

“5F.+s(-S + ^'») = ®- - 

If de/dx be replaced by q, this becomes, on dividing by u, 

dj , „/2 dM _N R 
^+2(-5^+p)=-- 
dx dx ^ u 

This is a linear equation of the first order for q, and can be solved 

by the method of Art. 214. 

Having found a further integration with respect to x gives e, 

and then y ^ uz will be the solution of the given equation. 

Example, + jc — — y — as. 
dx^ dx 

A particular Bolution of —y 0 is obviously y =* a:, 
dx dx 

Therefore substitute y ^ xz in the given equation. 

dy dz d} y d}z dz 

dx ^ dx^ ^ * dx^ * dx^ ^ dx 

d}z dz dz 
Hence, on substitution, „ 4- 2;t*® ~ + x* -- ^-xz-xz ^ x. 

dx^ dx dx 

. .d^z o ^dz 
i.e. 4 3x*y^ »= a?. 

dxr dx 

The left-hand side is the d. c. of x^dz/dx^ 

.. ,dz , . ^ . dz 1 , A 
integrating, x’ - - J + A, i- ^ “ 2 x x>' 

Integrating again, ^ « i log a;- J A/j^ 4 B, 

and therefore the solution of the given equation is 

y mm xz ^^x log a: — J A/a? 4 Bx. 

If u is not a particular solution of (i), the substitution y ^uz will 

still in some cases solve the given equation. For u may be chosen 

BO that the coefficient of dz/dx in equation (ii) shall be zero fi.e. 

so that ^dujdx-^^Bu = 0, an equation for u which is at once soluble], 

and the resulting equation may then admit of solution. 

Example: As an illustration of this method, let us take an equation which 

occurs in various branches of Physics: 

df^ r dr 

Substitute (f)^uz; the values of df\>ldr and d^<^ldr^ are given above 

(with y and x replacing <p and r respectively). 

The equation becomes 

d^z ^du dz d^u ^ dz 2 du .. * 
w Ta 4-2 3- . — + 4- --w— + -.2:3- 4 *s0. 

dr* dr dr dr r dr r dr 
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The coefficient of ^ is 2~ + —, 
dr dr r 

which will be zero 

if — 1, i.e. if loff u — —log r, i.o. if « »« 1/r, 
u dr r 

The equation then becomes 

which reduces to ^-5 4-fc*2r ■« 0. 

Therefore 

and the solution is 

r — -4 cos A:r4- B sin hr^ 

(f) uz (A cos i:r + J5 sin kr)/r. 

463 

Examples XCIL 

Solve the equations: 

l.a+»-)g-2«g+2!--0. 2. 

4. 

G. 

8. 



CHAPTER XXII 

TAYLOE’S TIIEOEEM 

220. Form of the series. 

It is impossible in a work like the present to give a full account 

and a rigorous investigation of this famous and important theorem. 

It will, however, not be out of place to indicate one way in which 

the theorem may be arrived at, especially as this method is but an 

extension of the mean value theorems of Arts. 117 and 119. It 

was there shown that, provided f{x) and its first and second 

differential coefficients are continuous throughout the range of the 

independent variable from x = a to a; = &, then for any value of x 
within that range, 

(i) f(x)=f(a) + (x-a)f'(x^), 

(ii) f{x) =f(a) + (x-a)f'{a)-ir\ix-af/"(x^ 

where and are between a and x. 
By adopting a method of proof similar to that used in obtaining 

these results, the expression on the right-hand side may be developed 

to any number of terms. 

In the first place, assuming that f (x) can he expanded in an mfinite 
series of ascending powers of x — a, and that the successive differential 
coefficients of f(x) are obtained by differentiating this series term by 
term,* it is easy to find the form which the series must take. For 

suppose 

f(x) = AQ-{-A^(x-a)^A^(x-af^A^(x-af^A^(x-aY'¥ .... 

Differentiating, 

/' (x) = + 2^2 (a:~a) + 3 A3 {x-a)H 4 A4 ; 

differentiating again, 

/"(^) = 2A2 + 3.2.A3(a?-fl) + 4.8.A4(a?-a)*-|-...; 

differentiating again, 

/'"(x) = 8.2.A3 + 4.3.2. A4(:r^a)+.... 

* We have proved that this is the case for a series with a finite number of 

terms, but it must not be assumed from this that it is also the case for an 
infinite series. For a proof in the case of infinite aeries, the student should 

consult Lamb’s IvfiniUsirml Cakultts, Chapter XIIL 
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Substituting a; = a in these results, we have 

/(a) = Ao; (a) = ; f" (a) = 2 J,; f" (a) = 3.2. A 3, &c., 

he. Ao=/(a); =/'(«); {a)‘, A^ ={a)]... 

and generally A„ = /‘’‘Ha), 
fl I 

where stands for the number obtained by differentiating 

/(a:) fz times, and substituting a for x in the result. 

Hence 

/(X) = /(a) + (x-a)/' (a) + /" (a) + /'"(a) + .... 

This of course is no proof that the expansion is possible, and takes 

no account of the conditions under which the series is convergent; 

it is only of value in showing what form the expansion takes if and 

when it does exist, and it gives the clue to the construction of the 

series (i) and the function JF(jCf) which occur in the next article. 

2fi7. Proof of Taylor’s Theorem. 

Let /(x) and all its differential coefficients up to the be 

continuous throughout the range extending from x = a to x = I?, 

and consider any value of x within the range. 

Let the expression 

/(a;)-/(a)-(x-a)/'(a)-^-J^V"(a)- ... " Jf 

be denoted by ——2i. (i) 
n! 

This expression is the difference between the function /(x) and the 

sum of the first n terms of the series obtained in the preceding 

article. We want to find the form of 

Consider the function 

f W =/(x)-/W-(a:-^)/' W- /"(^)- ... 

(n-l)I nl 

where 0 is between a and x, x, and therefore B, as defined above, are 

independent of 0, 
When iP = a, F[z) = 0, since the first w4-1 terms on the right- 

hand side then cancel out the last term, from equation (i). 

When f = ic, F[z) — 0, since the first two terms on the right 

cancel out, and all the others vanish owing to the factor x—z. 
Also, F(z) and F' (z) are continuous within the given range, since 

every term in the value of F (z) is continuous. 

Hence, since F{z) vanishes when x? = a and when z = x, it follows 

nil H h 
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(Art. 118) that its differential coefficient F' (z) must vanish for some 

value of z between a and x. 
Now, by differentiation with respect to z (and remembering that 

X and JR are independent of z), we have 

r(e) = 0-/'(^)-[(-l)/'(^) + (x-^)/"(5)] 

- W + f " «]-[- 
In this expression, successive terms cancel in pairs with the 

exception of the last two ; 

••• 

for some value of z between a and x. 
Any value of z between a and x may be written a-\-6(x^a\ 

W’here 0 < d < 1. 

Therefore, since x—z^O^ we have 

—/(«) (-) + 22 = 0 when 0 = a + (a? — a), 

i.e. E =/(^) [a-k-O {x~^a)\ 

Hence, substituting in (i), and transferring all the terms except 

f{x) to the right-hand side, we have 

fix) -fia) + ix-a)f (a)+ /"(a) + ... 

(«)+^ /<”’ [«+0 (* - «)]• 

This result is known as Taylor’s Theorem. 

The last term on the right-hand side is known as Lagrange’s form 

of the remainder after n terms. This ‘remainder after n terms’ can 

be put into various other forms. One of the most useful of them is 

obtained by taking the remainder in (i) in the form {x^a)R, 
F' (z) will then be equal to 

for some value of z between a and x. Taking this value in the form 

a*f0(x—a) as before, a;—«? = ic—a—(z—a) = (a;--a)(l —d), and 

fin) 1^4.^ (a;-a)}, 
■“ (w—1)! ^ ^ * 

so that the remainder after n terms takes the form 

{a+0ix-a)]. 

This is known as Cauchy’s form of the remainder. 
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228. Other forms of the theorem. 

A very important particular case is obtained by putting a = 0. 

The theorem then becomes 

f(x) =/(0)+ir/'(0)+ r (0)+ ... + /(»-i)(0)+ ~ /(»)((?4 

where/(O), /'(O), /"(O), ... are obtained by substituting 0 for x in 

the successive differential coefficients of f(x). 
This form of the theorem is known as Maclaurin’s Theorem. 

If, in Taylor’s Theorem, we substitute x + li and x for x and a 
respectively, the theorem takes the following form, which is often 

convenient, 
7,2 7.n-l 

f{x + Zi) = f{x) + Ilf' (x) + f" (X) + ... + 

+ ~^f(^){,x + dh). 

These theorems have been obtained on the supposition that f(x) 
and all its differential coefficients up to the are continuous 

throughout the range from a to ?> within which x lies. If in Taylor’s 

Theorem we put w = 1 and w = 2, we get the mean-value theorem 

and its extension [Arts. 117 and 119 ]. 

If n be increased indefinitely, the series becomes an infinite series 

and the theorem remains true in general, provided this series be 

(x ~ 
convergent. If the remainder after n terms ^{a-\-6{x—a)} 

tends to the limit zero as w—►oo, the series converges to the 

value f(x). 
There are cases in which Taylor’s series converges to a value other 

than f(x). It may happen that the series converges and that the 

remainder does not tend to zero; in this case the value to which 

the series converges will not be /(x)/ Such cases do not occur in 

♦ This is a fact which the elementary student usually finds difiScult to under¬ 
stand. The following example, due to Pringsheim, is a case in point; 

If Taylor’s Theorem be used for the function 

it gives the series 

and both series are convergent for real values of x if a>l. Nevertheless, they 
are not equal (except when x — 0), e.g. if we take ac =- a »= 2, it is easy to see, 
by taking a few terms of each series (the terms of each decrease and are 
alternately + and —), that the sum of the first series < *1086, whereas the sum 

of the second series > *1819. 

H h 2 
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ordinary work, and it is beyond the scope of this book to consider 
them. 

By Taylor’s Theorem as first given, i.e. as an expansion oif{x) in 
ascending powers of ic—a, if we know the value of the function and 
its derivatives for any value a oi x, we can calculate the value of the 
function for any other value of x within the range throughout which 
the function and its derivatives are continuous. If this value of x is 
near a so that x—a is small, a few terms will generally suffice to 
give an approximate value of the function. For instance, if y —f[x), 
and if x be increased to x+liy ly will be f(x-\-h)--f{x)\ expanding 
the first term by Taylor’s Theorem, we have 

h = k)+ Y\ •— 

If we neglect squares and higher powers of h, this gives 

hy = },f (x) = 5a;. • [Cf- Art. 24.] 
CLX 

In calculating numerical values of a function, Mnclaurin’s Theorem 
is often extremely useful. If a function of x admits of expansion by 
Maclaurin’s Theorem, it is obtained as a series of positive integral 
powers of x with constant coefficients, and, by taking a sufficient 
number of terms, the value of the function for any given value of the 
variable can be obtained to any required degree of accuracy. It must 
be remembered, however, that the general form of the differential 
coefficient of a function cannot be obtained as a rule, and therefore, 
in order that this method of calculating a function may be of value, 
it is necessary that the series should converge rapidly, and that 
a sufficient number of the successive differential coefficients of the 
function should admit of being worked out without excessive 
labour. 

229. Particular cases and examples of Taylor’s and Maolaurin’s 
Theorems. 

We now proceed to consider a number of important particular 

cases of these theorems. 

It will be seen that many of the expansions with which the 

student is already familiar are included among them. 

To expand a function of a? + ^ in a series of powers of x or of h, 
and to expand a function of x in powers of ar—a, Taylor’s Theorem is 

used; to expand a function of x in powers of x, the form known as 

Maclaurin’s Theorem is used. In each case, the remainder after n 
terms, and the conditions under which it tends to zero as w—►oo, 

should be examined. 

Examples: 

(i) Expand e* in powers of x or o/x—a. 

All the differential coefficients of f{x) in this case are equal to e®; 
therefore /(O),/'(O) are all equal to unity. 
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Hence, by Maclaurin’s Theorem, = l+X'h o r ^3!+ •••• 

The remainder after n terms, equal to 

Whatever be the (finite) value of x, this —>() as w—> co, since the 
first factor then —> 0 (Art. 13 (6)) and the second is finite. Hence 
the series is convergent, the remainder tends to zero, and the 

expansion holds for all values of x* 

Again, to expand e* in a series of powers of x — a, we have /(«), /'(«), 

all equal to 6®; therefore, substituting in Taylor’s Theorem, 

we get 

+ ... + 
{x-C() 

a result which can also be obtained by writing 

as before. 

(ii) Expand log(l + x) in a series of ascending powers of x. 

If / (x) = log (1 + x), /' (x) = , f" (a:) = ^ 
(l+xf’ 

+ -+ .. 
n 

.. a;", (n-1)! (-1)"-^ 

Vl + 0x> 

UI 

(l+ar)-' 

whence/(0) = log 1 = 0, /'(0)=1, /"(0) = -l, 

/"'(0)= 1.2, .../(«U0) = (-1)'‘-Um- 
^2 ^3 /y>7l 

Hence log (1 + a;) = re— -f - 

The remainder after n terms, 

1)!. 

(l^Oxf n + t 

If X be positive and < or = 1, x/(l -{-Ox) < 1, and 1/n—^O as 

n—^ CO; hence the remainder tends to zero, and therefore the 
expansion holds for values of x from a; =:: 0 to a? = 1, both inclusive. 

If a? be negative, x/{l + 0x) is not necessarily <1 (numerically), and 

the preceding argument does not hold good. 

In this case, taking Cauchy’s form of the remainder, we get it in the form 

^ (l+Oa:)"’ ^ ■' l + 6x \\ + 6x) 

If |a:l<l, 1 — d<l4- 6x^ therefore the last factor -> 0, as also does 

when n CO; the other factor, 1 + 6x, is finite, hence the remainder 0, 

♦ It should be noticed that this is not a proof of the exponential theorem, if 
we have used this theorem in obtaining the differential coefficient of as in 
Art 97, 
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and the expansion holds if |a?|<l. If ap* — 1, the series is divergent 
and the expansion does not hold. 

The function ]ogx cannot be expanded in a series of powers of a?, since all 
its differential coefficients become infinite for a? « 0, but, by using Taylor’s 
Theorem in the form first obtained, it can be expanded in a series of powers 
of a: —o. For instance, to expand it in powers of a: — 1, we have 

/(x) - logx, /'(x) = f"{x) ■= - /(«)(x)=- (- Ij*-*: 

A putting /"(I)-1.2,..., 
/(n)(l) « (n-l)I 

Hence loga?—(;r —+( —-f.... 

This result can also be deduced from the preceding expansion for 
log(l+a:); for 

log:r - log[l + (ir~l)] — •••» 

by substituting x—1 for x in the former expansion, and since that result is 
true when x is between —1 and 4 1 or equal to 41, the latter will be true 
when 1 is between -1 and 41 or equal to 41, i.e. when x is between 
0 and 2 or equal to 2. 

(iii) Expand sin Tina series of powers of x. 

f(x) = sin a;, f'{x) = cos a;, f'^(x) = —sin a:, f"(x) = —cos a?, 
(x) = sin Xy &c. 

/(O) = 0, /'(O) = 1, /"(O) = 0, /"'(O) = -1, /''"(O) = 0, &c. 

All the coefficients of even powers of x are zero [as follows from 
the fact that sin x is an odd function of x (Art. 5)], and the 
coefficients of the odd powers of x are alternately +1 and — 1. 

Hence, by Maclaurin’s Theorem, 
^3 ^5 ^7 

Binx = «- g-j + ^I + .... 

a^ 
The remainder after w terms, —.f^^HOx) = H—r X a factor which 

^ nr “■ wl 

is either sin Bx or cos Ox, This factor cannot be numerically greater 
than 1, and the first factor —► 0 as w —> oo [Art. 13 (G)]. Therefore the 
series is convergent, the remainder —*> 0, and the expansion holds 
for all values of x. 

siu X x^ m 
This result may be written-=. 1~ -- 4 — - from which it is 

X o 1 51 

obvious that as a?“^0, (sina?)/a?-^ 1, since the right-hand side is equal to 
[a convergent series]. This is the limit obtained geometrically in 

Art, 13 (10), and in a number of cases in the preceding chapters we have 
taken sin x as approximately equal to a?. We can now form some idea as 
to the amount of error involved in this approximation. 
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In the first place wo notice that, since the terms of the series 
^6 /p8 

X - are continually diminishing (provided ^ i.e. ic* < 6) 
o 1 51 o I 

and are alternately + and —, the error involved in terminating the series 
at any term is numerically less than the next term, for if ——... 
represent the rest of the series, this may be written 

(*^i»fl ■“ *^1*4-2) “ 8 ~ ^n4 4) ** ••• > 

and this is less than w„, since the contents of the brackets are all 4-. 
Hence the error involved in taking sin a? equal to x is numerically < Jar*. 
Suppose that the angle is 5®; then x *» 7r/36, and the amount of error 

< 7r*/(6 X 36^), i. e. < *00011. The proportional error is 

■00011 

sin 5® 
•ooon 
*0872 

*00126, or about | per cent. 

If we want to find for what values of x the substitution of x for sin x will 
be correct to 3 places of decimals [i. e. so that the error may be <*001], we 
put Ja:*<‘001 numerically. 

This gives | a; | < >5^‘006, i.e. < *1817, which is the circular measure of 10*4°. 
Hence, if this degree of approximation is required, it is sufiicient to sub¬ 

stitute a: for sinx, provided the angle is between —10° and +10°. If the 
angle is larger than this, or if a higher degree of accuracy be required, we 
can take x^^x^ instead of sinjp. The error involved in this case is 
numerically less than x^/b !, i.e. Therefore this will give the result 
correct to 3 decimal places if 1 Jo ^ numerically <*001, i. e. if | x |< -^‘12, 
i.e. if |x|<*6543, which is true for angles between — 37J° and + 37J°. 
It will give the result correct to 4 decimal places if 
1X 1 < *4129, which is true for angles between -23J° and + 23J°. 

(iv) Expand cosx in a scries of powers o/x. 

f(x) = cos Xj f' (x) = — sin x, /" (x) = — cos x, (x) = sin x, 

(x) = cos x, &c. 

/(o) = 1, no) = 0, /"(o) = -1, mo) = 0, /""(o) = 1,.... 

All the coefficients of odd powers of x are 0 [as is evident from 
the fact that cos x is an even function of xJ, and the coefficients of 
the even powers of x are alternately +1 and —1, 

Hence cosa:= 1 — 
X* X* X® 

Exactly as in the last case the series is convergent, and the 
expansion holds for all values of x. 

From this also it follows that as x->0, cos x-> 1, and if a more accurate 
approximation be required, 1 - Jx® may be substituted for cos x [Art. 13 (10)]. 
The range of values for which these substitutions agree with the value of 
cos X to any given degree of accuracy may be found as in the similar cases 
for sinx. 
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(v) Expand (1 + x)™ in ascending powers ofx. 
/(a:) = (l+a;)™, /'(x) = m{l+x)”>-\ f"(x) = ... 

.../W(a:) = »n{»n—1)... (w—« + l){l + x)"* 
lienee /(O) = 1, /'(O) = m, /"(O) = m(m—1), ... 

.../(") (0) = n»(»n — l)... (»>—«+1). 

(l+x)”* = l + mx+... 

, »i(m—1)... (»t—+ , 
,,, +•--T ic: -f ...» 

the well-known binomial series. This series is convergent if 
I I < 1 [Ex. XXXI. 9J. 

The remainder after n terms is, using Cauchy’s form, 

m (m— 1)... (m - 

... (m-n-hl) 
1) I ^ 

,n-l 
(n-l)I 

(w—1)I ^ + 
Of these factors the first and third are finite, the second —> 0, 

being the term of a series, viz. (1known to be convergent 
if I a: I < 1, and the fourth cannot be more than 1 since 1 - d cannot 
be ^ 1 "i" dx. 

Hence, if | a; | < 1, the remainder tends to 0, and the expansion 
holds. 

By the use of Taylor’s Theorem we can obtain the expansion of (x-f-y)”* 
when w is a positive integer. 

This being /(x-f-y), /(x) « x’", /'(x) «» tnx^"*, /"(x) *= m (w-1) x*»-’, 
/("») (x) «= w!, and all higher differential coefficients are zero, so that the 
series terminates at this stage. Hence, using the form of the theorem given 
in Art 228, and replacing h by y, 

(x4y)'"«« x’^ + y . mx^-*-f m(m~l)x"*-*+ ... 4 
^ I nt I 

- x"’4 fnx-'y+ ... +y™. 

(vi) Expand cos(x + h) in a series of ascending powers o/h. 

Here f(x-\-h) = cos(x-f /(^) = ^^sx, f (x) = -sinx, 
f" (x) = - cos X, /'" (x) = sin x. 

Therefore, by Taylor’s Theorem, 

cos(x4-//) = cosx—nsinx— cosx-f sinx-f .... 

If we transfer the cos x to the left-hand side and divide by A, we get 

cos (x -I- 7i) — cos X . h /i® . 
---,« -gin X— 2]C0Sx 4- g-jSinx4-.... 

Hence, if 1% is veiy small, — —is approximately equal to 

*-pin X and tends to the limit «-6in x as A 0, as in the differentiation of 
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COB X from first principles. Hence taking the (Bmall) increase in cos a? equal 
to —sin a? x the increase in a;, as in Art. 43, Ex. (ii), is equivalent to ex¬ 
panding by Taylor’s Theorem and retaining only the first two terms. We 
have, in Art. 43, evaluated cos 135®!' in this way. 

We can now find approximately the increase in the function due to a 
larger increase in the variable. E. g. to find cos 136®. If in the preceding 
result we put x *• 135®, h — the radian measure of 1® ■« retain 
the first three terms, we get 

cos 136® cos 135®- 135®— 2 ^400^^^ 

« -*707107--012341+ *000108 

— —*719340, which is correct to 6 decimal places. 

(vii) To expand tan“^ x in a series of powers of x. 

This example is rather more difficult than those hitherto considered. 

1 — 2x 
Wo have f(x) = tan-i /' (x) = f" (x) = ^ whence 

/(O) = 0, /' (0) = 1, /" (0) rr 0. The successive differential coefficients 
calculated in this manner soon become very complicated; but their 
values for x = 0 can be obtained by making use of Leibnitz’s 
Theorem (Art. 111). 

We first obtain a differential equation connecting any throo 
consecutive diffej ential coefficients. 

We have (1 + iC") /' (a?) = 1; 
differentiating this n times, the result, by Art. Ill, is 

(1 + x2)/(»+i) (X) + n. 2x. /(») (x) + . 2. /("-i) (x) = 0, 

which is the differential equation. 
Putting ic = 0 in this, we get /(”**'^)(0) +w(n—l)/^'*~b (0) = 0, 

i.a (0) = -«(n-1) (0). 

Putting n = 2, 3, 4, 5,*.,. in turn, this gives 

(0)= -2. If (0) = -2!; /W (0)= -3.2/" (0)=^0 ; 

/(5) (0)= -4.8/(») (0) =4 I ; /(») (0)= -5.4/(^)(0)=:0 ; 

/ (7) (0) = ~ 6. 6 /(«) (0) = - 6! ; and so on. 

All the even coefficients are zero; hence tan^^ic consists only of 
odd powers of a?, as is evident also from the fact that it is an odd 
function of x. Therefore, substituting in Maclaurin's Theorem, we get 

tan“7a*=:ic—2I~ + 4l|^— ... — ^ 

The expansion holds if x is between — 1 and +1, and for tan~^ x 
we must take that value which lies between —^71 and +i7r, since 
we have taken a; as 0 when x:=0. 
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[This important series can be otherwise obtained as follows: 
fx J rx 

tan“^a? «* ^-dfar ■* (1 + a^)~^ dx 
1 -f a? Jq 

assuming that the conditions under which an infinite series can be 
integrated term by term are here satisfied.] 

We omit the investigation of the remainder after n terms. 
As a numerical example, let us find, to 4 places of decimals, the value of 

tan~^ (*8). Substituting in the series just obtained, we have 

tan“' (*3) « *3 - J X *027 + J x *00243 x *0002187 

- *3 - *009 + *000486 - *00003 

■* *2915 radians. 

This is about 16* 42'. 

A few further examples of less important kind, illustrating uses of Taylor's 
Theorem, will now be given. 

(viii) Find the first four tetyns in the expansion of log (1 +e^) in ascending 

powers of I. 

In this case 

f{x) -ioff(i + 0; /(0) = log2. 

. , 1 
f'{x) -» > which may be written 1 — ••• /'(0)-=i. 

/"(0)==i. 

, (1+ 2(1+ «»’)«* 

^ (1+0^ “(1+0’’ 

(1 + O’ (e*-2 3(14 O’ e’ 
^ (l+O* 

A /'"(O) - 0. 

(!+«') («*-«’*). 

(1 + 0" 

1 11 

Hence, using Maclaurin’s Theorem, 

log(1+0 *■ log2 +Jx++ 

(ix) Expand sin (m sin’”' x) in a series of powers of x. 

In this case, f{x) -■ sin (msin-'a?); .*. /(O) « Ol 

ftt 
f {x) ■■ cos (m sin"' x) x f (0) = cos 0 x m =* m. 

Again, f{x) is an odd function of Xj and therefore consists of odd powers 
of X only. The differential coefficient cannot be obtained, but, as in 
Ex. (vii), a relation between successive differential coefficients can be 
obtained by Leibnitz’s Theorem, from which their values when ar 0 can 
easily be calculated. 

We have ^(1 (a?) ■* mcos (m Bin~'a?). 
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Differentiating again, 

-r W+/'W- ° «x -8in(msin->x). 

(1 -a-’)r{x)-xf'{x) - -m^fix). 

If this be diflerentiated n times by Leibnitz’s Theorem, we get 

[(1 -*')/(’•+») (x) + n ( - 2 *)/(”+» (x) + . ( -2)/<“) (x)] 

— [^/C»+1) {x)-<t-n . /(*) (a;)] «« - w (^)* 

Putting a; *a 0, this becomes 

(0) - n (n -1)/(«) (0) - n/(»0 (0) - - (0), 

i. e. /(«+2) (0) « - ~ n*)/(«) (0). 

If n *= 1, then,r''(0) *- —(m* —1*)/"(0) ^ —m{rn^-V). 

If n - 3, then /(«)(0) «{0) « 

If n =* 5, then (0) - - (m^ - 5*)/(«) (0)« - m (m* ~ P) (m'' - S^) (m* - 5"). 

Hence we have 
. . • 1 \ 7n(ni*—P) , —P) (m*~-3’') . 

sm (m SID"’a?) « mx-—-x® + —- --- ... 
O I 0 I 

Taylor’s Theorem is often very useful in tabulating the values of a func¬ 
tion for a series of values of the variable which are close together. For 
instance, 

(x) Calculate the vahtes of the function y *■ x®(16 —x*) from x = 1*7 to 
X =*= 2‘3 at intervals of ’1. 

Here f{x) «= 16x*-x^, /' (x) = 32x-4x*, /"(x) -*32-12x*, 

f"{x) =» —24x, f""{x) =* —24, and all higher d. c.’8 are zero. 

Now, by Taylor’s Theorem, 

/(2 + 7») =/(2) + 7i/'(2)+ |^i/"(2)+ ^r'(2)+ ~r"(2) 

= 48 + A.32+ |’( -16) + (-48)+ ^(-24) 

-=48 + 327t-8/i’-8A>-A*. 

If = -*3, /(1-7) -= 48-9-6--72 + -216--0081 - 87-8879. 

If A = - -2, /(1-8) = 48 - 6-4 - -32 + -064 - -0016 - 41-3424 

If A =. --1, 7(1-9) = 48 - 3-2--08 +-008--0001 - 44-7279. 

If A = 0, 7(2) = 48. 

If h = +-1, 7(2-1) = 48+ 3-2--08--008--0001 = 51-1119. 

If A - +% 7(2-2) = 48+ 6-4--32--064--0016 - 54-0144. 

If A - +'3, 7(2-3) - 48 + 9-6--72--216--0081 - 56-6559. 
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230. Failure of Taylor’s Theorem. 

The theorem was proved on the supposition that f{x) and all its 

differential coefficients up to the are continuous throughout the 

range of the variable considered, and the expansion cannot be effected if 

any one of the differential coefficients becomes discontinuous for a value 

within this range. If the differential coefficient becomes infinite 

for a value of x within the range, the function cannot be expanded 

in an infinite series, but the theorems of Arts. 227 and 228 still hold 

provided the series be terminated at the (^1 + 1)^^ term. 

For instance, neither logj? nor cosec a; can he expanded in a series of 
positive integral powers of x, for both are discontinuous when a; *=» 0; 
/(O) 00, and the series fails at the first term. But, as in Ex. (ii) of the 
preceding article, logo? can be expanded in a series of powers of x — a. 

Also it can easily be proved that the function cosocar— 1/ar and its differential 
coefficients are continuous when x ** 0, and therefore cosecar-l/a? can be 
expanded in a series of positive integral powers of x. 

Again, if we expand + by Taylor’s Theorem, wc have 

f{x) f(^)- 

,2 

(*+ y)^ - a:* 4 5 • 2 + 

. 15 1 

^ “ « ■ xi ’ 
15 
s' x i 3! 

But this ceases to hold if a; *= 0, because then the third differential 
coefficient f" (a?), and therefore the fourth term of the expansion, become 
infinite. 

In this case the function expanded becomes and this, being a frac¬ 
tional power of y, cannot be expressed as a series of positive integral powers 

of y. But the result of Article 228 still holds if we terminate the series at 
the fourth term, for then 

(x + y)*-x« + |x«y + \Sx*y>+ g • 

If we put a? *= 0 in this, we get 

16 (6y)\ 

i. e. y^ “= A • which is true when 5 = ICd^, i.e. when 6 “ -^fg. 

Examples XCIll. 

Expand the following functions in series of ascending powers of x, giving 
the first 4 terms, and state for what values of x they are convergent: 

1. 2. sin ma?. 8. cosma;. 4. log(a + ar), 6. log (a-a?). 
6. 2*. 7. 8. sin’*a?. 0. sinha?. 

Verify the following expansions: 

10. Bin(a; + a) sin a -f a? cos a — sin Of ~ ^ cos OC -h •„* 
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11. 

12. 
fan(ip+flif) »=■ tana + a?sec^a+iF*0ec’atana + .. 

13. 6in~’a? = ic + 

14. 

15. 

1.3 a;» 1.3.5 

3 ■'■2.4 5 ■^2.4.6 
log (1 H-sin a?) « ri:-la?*+Jit:’ - .... 

«*' sin a? ■» a: 4- 

10. e® cos a? = 1 + aJ~ 

2x^ 2^x^ 2®a:« 

■ 31 “ 5! “6! 

2 a;® 2^a:* 2^a:® 

3! 4l 5T 

7 

2’.r’ - +.... 
2’x’ 

■I* I •••• 

17. tana; — a; + |a?* + ^a:® + iiV5^^+•••• 
18. sec a; »= 1 +1 a;* + a?^ + iP.}^ a:® + .... 

10. arcota? =» 1 - J a:® —— .... 

20. XQOsQcx = l+ta;* + 5Jo^+ —• 
21. xj(c* — l}»a 1 — ^ay + ^^^a;^ — tIca;^ + .... 

22. a?/(«j®+1) =« ^a;-Jar^ + ^iga;^—.... 

00 1 1 a(a^+P) , a’(a’4-2’) . 23. « 1 4. _1_ -—>'^34. _Jl_^-/j;4 4_ 

24. C03(msin~^x) 

2! 

1 2 . 
.1-27*’ + 

(m^ — 2’) ^ fw'^ (m* — 2^) (m* ~ 4*) 

4! GI 
r*+ .. 

25. 

20. 
27. 

28. 

29. 

80. 

81. 

82. 

83. 

log (1 4- a; + a;*) =» a; + J a?’ — 5 ar* + 1 a;^ + .... 

sin x cosh a; »= a: 4- J a;* — ^^0 — .... 

cosiTsinha; *= a? — Ja;^ — ar®4- .... 

log sec a; *= ^‘ a?^ 4- 4- x^ 4- .... 

tan (J tt 4- a;) = 1 4- 2 a; 4- 2a;* 4- f a:^ 4- a;^ + .... 

log (1 4-008 0;) *» log2~ Ja;*--j^’ya;*-~ .... 

1 „ 1 _ ^ 4_ 
x-¥h X 

tan“^ (1 i-x) *= j^7r-t-ix — ^x^-hj\x^~-**»» 

sinh"^a? =* log {0:4' v^(l 4-a:*)} •^x— ^ ^ ^ 

84. 

85. tan~^^ (a: 4- 

1 2^ 
i(Bin-'a:)»«2^a:«4- j-ja:^4- 

61“ 

2 3 2.4 

2«. 42.6* 
-a:* + 

tan-i X 4- T-.—« - 
xh^ 

8! 

4-.. 

a:® 

5 ■ 

a:* 4-... 

^lAiI 
2.4.6' 7 

14-a;^ (1 + xy 

30. sin 3a: ■* 3x4-6a:*4-5i^*®-“5a:'‘4-.... 

87. «“* cos 5a: »= 1 4- aa: 4- J (a® - 5®) a;* 4- J a* a:® 4-.... 

8& Show that e®* cos bx may be expanded in the form 

x^r^coa2i> 
l-hxrcoB(pi- -2I-^ 4-. 

cos n (/) ^ 
• 4- —j 4“..., 

where <l> *» tan“' (h/a) = cos~* (o/r). 

89. For what values of x (in degrees) will the substitution of 1 for cos a? be 
correct to 2 decimal places ? 

40. For what values will the substitution of l—Ja:* for cos a: be correct to 
3 decimal places ? 

41. For what values will the substitution of a? for tan~^a: be correct to 
2 decimal places ? 
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42. For what values will the Bubstitution of for tan~*a? be correct 
to (i) 2 decimal places, (ii) 3 decimal places ? 

43. Given cos 60®*5, sin 60® =»‘86603, 6nd to 5 places of decimals the 
values of cos 61®, sin 61®, cos 62®, sin 62®. 

44. Calculate from Maclaurin’s Theorem the value to 4 places of decimals of 
sin 30®, sin 60®, cos 30®, cos 60®. 

45. Find to 4 places of decimals the values of tan 15° and tan 55® (see 
Ex. 17 and 29J. 

40. Calculate, bj aid of Art. 229 (ix) and Ex, 24 above, the value of 
sin (3 sin"^ ) and cos (2sin“^^). 

47. Prove that the d. c. of a) = e^<^o»®cos(a:Bina + a). 
Hence find the diftcrential coefficient. 
Deduce the expansion of e^‘^‘^*Q^cos (rsin Of) in a series of ascending 
powers of x. 

x^ x^ 
48. Draw on the same diagram the gmphs ofx^x— -- . x- + r- , and 

o! o ! D I 

compare with the graph of sin x. 
40. Draw on the same diagram the graphs of x^ x — ^^x, a? — J a:* + J a:®, from 

a? =» — 1 to +1, and compare with the graph of tanx. 
60. Deduce, by expanding f{a + h) and f{a — h) in powers of h, the con¬ 

ditions obtained for a maximum and minimum in Art. 58, that f{x) is 
a maximum if/' (a) = 0 and f" [a) is —, and a minimum if /' (a) *= 0 
and f" (a) is +. 

61. Prove, generally, that if the fii-st of the quantities/'(«),/" (a),/"'(a),..., 
which does not vanish is of odd order,/(a) is neither a maximum nor 
a minimum value ot'/(x}; and that if the first that does not vanish is of 
even order, /(ai is a maximum or minimum according as the first non- 
vanishing function is ~ or +. 

62. By putting n = ^(l/a; —1) [whence iP = l/(2w +1)], and using Art. 
229 (ii), deduce an expansion for log(l + l/w) in a series of negative 
powers of 2 w 4* 1. 
Hence calculate to 4 places of decimals the logarithms to base e of all 
integers from 1 to 20. 

63. An arc of a circle subtends an angle of 2 a; radians at the centre. If a 
and b be the lengths of the chords of the whole arc and half the arc 
respectively, a == 2 r sin x and & 2 r sin ^ a;. By expanding the sines 
by Maclaurin’s Theorem, find the difference between |{8 6 —a) and the 
length of the arc. 
This is known as Huyghen’s approximation to the length of a circular arc. 
Show that, if this approximation be used to find the length of the arc 
which subtends an angle of 30° at the centre of a circle of radius 
100,000 feet, the error is only about 2 inches. 

64. Show, by taking the remainder in (i), Art. 227, in the form (x—a)^Ii, 
that the remainder after n terms may be expressed in the form 

p(n-i)! 
-/(«) {a + 6(x-a)}. 

This is known as the ‘SchlCmilch-Roche form of the remainder'. 
Lagrange’s and Cauchy’s forms are obtained by taking p = n and jp = 1 
respectively. 



CHAPTER XXIII 

PARTIAL DIFFERENTIATION 

231. Functions of more than one variable. Partial differential 

coefficients. 

Hitherto we have dealt exclusively with functions of only a single 

variable such as x or t, but functions of more than one variable 

frequently occur. For example, the area of a rectangle is a 

function of two variables, the length and the breadth ; the volume 

of a rectangular parallelepiped is a function of three variables, the 

length, breadth, and thickness; the pressure of a given mass of gas 

depends upon its density and its temperature, and so on. 

If e be a function of two variables x and a fact which is indicated 

by the notation e =f{Xy ^), either x alone or y alone or both x and y 

simultaneously may be varied, and in each case a change in the value 

of z will result. Generally the change in the value of z will be 

different in each of these three cases, e. g. the area of a rectangle 

whose sides are 6 and 10 inches is 60 square inches; an increase of 

1 inch in the length alone will increase the area by 6 square inches, 

an increase of 1 inch in the breadth alone will increase the area by 

10 square inches, and an increase of 1 inch in both simultaneously 

will increase the area by 17 square inches. 

If X and y be changed to x+hxy y^-hy respectively, the new value 

of B will be denoted by f{x-\-hx, y-\‘hy\ 

The function z may be defined as continuous for any particular 

values of x and y if, when x and y have these values, 

Lt lf{x+lx, y+hy)-f(x, y)] = 0, 

when hx and ♦ 0 in any manner whatever. 

Briefly, is a continuous function of x and y if indefinitely small 

changes in either x or y separately, or in both together, produce only 

an indefinitely small change in z. 

Suppose that, when x is changed to x^hx and y remains constant, 

z becomes Z’\‘hz. The ratio hz/hx will tend to a finite limit as 

if jr is continuous for these values of x and y. 

This limit is called the partial differential coefficient of z with 

respect to Xy and is denoted by the symbol ^zpx [or sometimes D^^z, 

or ^//^x or /a, if rr be written &8/(x, y)]. 
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Similarly, when y is changed to and x remains constantj let 

0 change to The limit of 1/z/hy as 6^—is called the 

partial differential coefficient of z with respect to y, and is denoted by 

the symbol 'hz/'hy [or sometimes ByZ^ or 'bf/Tiy or fy, if z be written 

in the form f(x^ j/)]- A similar notation is used if -er be a function 

of more than two variables. 

If z be written in the form f{Xy y), we may define 'bz/'hx as the 

limit, when hx-^Q^ of and Iz/ly as the limit, 

when hy 0, of 
f(x. y-¥hy)^f(x, y) 

dy 

Hence, to find ’bz/'dx, differentiate z with respect to Xy regarding y 

as constant. 

To find 'hz/^y, differentiate z with respect to «/, regarding x 

as constant. 

Examples: 

(i) If « ic* + 2 axy + y’, 'bz/'6x ■« 3+ 2^z/'by *« 2 aa? -f 3 

'hz \ I y 

'ix “ 1+iVy’ ^ y y’+*’’ 
^ z X X X 

'dy^TTx^Jp^ i/~ + 

(iii) The volume F of a cylinder of radius r and height h i% nt^h, 

\ ^F/<)r «= 2 ;rr^, 

i. e. the rate of increase of the volume per unit increase of the height, the 
radius remaining constant, is ttj** ; the rate of increase of the volume per unit 
increase of the radius, the height remaining constant, is 27rrJ^. These results 
can be verified geometrically, for, when the radius remains constant and the 
height is increased by a small amount dhy the volume is increased by a thin 
circular slice added to one end, of volume irr^dhy 

l.e. tr~nf^.th and 

Similarly, if the radius is increased by a small amount 5r, while the height 
remains constant, the volume is increased by a thin coating all over the 
curved surface, whose inner superficial area is 2'nrh and outer superficial 
area 27r(r+5r)^, and hence its volume 

bV>27rrhbr and <2n[r+br)hbn 

Therefore bV/br>27r7'h and <2n{r+br)h, 

and when ^V/^r^2nrh, 

* The change in z in this case will generally be different from the change in « in 

the preceding case. 

(ii) If «-»tan”^^, 
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232. Goometrioal representation of partial diHerential co- 
eMoients. 

If values of x and y be taken as coordinates of a point in a plane 

XOY, to each pair of simultaneous values of x and y corresponds 

a point Q in the plane (Fig. 176). At Q erect a perpendicular QF to 

the plane Y.OY to represent the corresponding value of z; then, if x 

and y vary continuously, and is a continuous function of x and 

P traces out a surface. 

For instance, if « « z QP, and 

QP = -/(«»- 0Q% i. e. a* = 0(?' 4 (?P* = OP*. 

Hence OP = a, and the locus of P is a sphere with centre 0 and radius a. 

Again, if az =* + the coordinates of all the points Q, at which the 
height of the perpendicular ^Pis h, satisfy the equation ah *= a;*4-y*, and 
this is the equation of a circle, centre 0 and radius ^/(ah). Hence the locus 
of P is a circle of radius \/(ah) whose centre is on OZ at height h above O; 
therefore the section of the surface by a plane parallel to the plane XOY is a 
circle. Moreover, since QP =« * = (x* + y*)/a = OQ'^/a, i.e. 3/P* =*= aOM [cf. 
y* = ax\ it follows that if the plane QOM (Fig. 176) be fixed, all positions 
of P in that plane are on a parabola, vertex 0 and axis OM; hence the 
section by the plane MOQ, and similarly by any other plane through OM, is 
a parabola. Therefore the equation a2r = x* + y* rei^resents the para¬ 
boloid of revolution formed by the rotation of this parabola about its 
axis OZ. 

In the general case (Fig. 177), by taking y constant and varying x 

and therefore we get a section of the surface by a plane parallel to 

im I i 
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the plane XOZ, the curve JEJPF in the figure. Then, exactly as 

in Art. 23, is the slope of this curve at P, i.e. the tangent 

of the angle yj/f which the tangent to the curve EPF at P makes 

with the line MN in which the plane of the section cuts the 
plane XOY, 

Similarly, hy taking x constant and varying y and therefore we 

get a section of the surface by a plane parallel to the plane POZ, the 

curve HPK in the figure; and ^z/^y is the slope of this curve at P, 

i.e. the tangent of the angle which the tangent to the curve 

HPK at P makes with the line 1)G in which the plane of the section 
cuts the jdane XOY. 

For example, in the first case mentioned above, where -= 
and P moves on the surface of a sphere, centre 0 and radius a, the partial 
differential coefficient of z with respect to x is given by 

2z . 'bz/'bx « i.e. 'bz/'hx «= —x/z. 

This is easily verified geometrically, for the section EPF will in this case 
be a circle, centre if, and the angle yjr which the tangent at Pmakes with MX 
is 90® + PMQ, since the tangent is now perpendicular to ifP. 

Hence tan — - cot QMP « - MQ/QP = - x/z. 

Similarly 'bz/'by ■« -y/z^ which can be verified geometrically in exactly 
gimilar manner. 
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Examples XCIV, 

Find and in the following cases: 

X, z = tan(aar + 6y). 

8. 2? ** eP^ ^ ?y. 

5. z ^ {ax^ 4 hy^f, 

1, z^ xyj{x + y). 

0. 2" == + 

11. ao;* + 4- = 1. 

2. z~={x-y)/{x + tj). 

4. 2? = ax"^ 42/ixy 4 42/y 4- c. 

6. sin"' (^/y)» 

8. x=: 57* — y*. 

10. 0* =a (^*~y®)/(^*+y®). 

12. xy^yz^ zx. 

Find hV/^Xj ^V/^y, <^V/^z in the following cases: 

18. F= a:*4y*4«'. 14. tan-» {(ar4y)A}. 

15. r— l/y^(x* 4 y* 4 2*). 10. F=* nx* 4 &y* 4 c^* 4 2hxy 4 2/y2 4 2gzx. 

17. Prove that, if z « x** —3x*y —2y% +y“ — 32;. 
dx dy 

18. Prove that, if z ^ , / --—v» 4y — ==^2^- 
>/(x4y)’ ^x ^^y 

10. Prove that, if' « *=* sin~^^-—, x^- 4y-- == 0. 
X 4y Oa: Oy 

20. Prove that, if z. 

21. The last four examples are particular cases of ‘Euler’s Theorem of 
Homogeneous Functions’, viz.: If z be a homogeneous function of x and 

y of degree », then 
^ z 

4 y = n^r. 
cy 

By writing such a function in 

the form x"/(y/x), prove this theorem. 

22. Find the rate of increase of the volume of a right circular cone (i) when 
the radius of the base is constant and the height increases at the rate of 
1 inch per second, (ii) when the height is constant and the radius of the 
base increases at the rate of 1 inch per second. 

28. Find 'bz/'dx and 'bz/'by if z =x*4y*. Verify the result geometrically. 

24. The radius of a cylinder of volume Fand height h is equal to ^/{V/nli), 
Find the rate of increase of the radius at the instant when ris 4 inches 
and is 1 foot (i) if the height is constant and the volume increases 
at the rate of 10 cubic inches per second, (ii) if the volume is constant 
and the height decreases at the rate of 1 inch per second. 

26. The area of the curved surface of a right circular cone, height h and 
radius of base r, is 7rrv'(7-*4/i*); find the rate of increase of the area 
at the instant when r is 6 inches and 7i is 8 inches (i) if the radius is 
constant and the height is increasing at the rate of 1 inch per second, 
(ii) if the height is constant and the radius is increasing at the rate 
of J inch per second. 

20. Find 'hz/'bx and 'bzfby when a?V«*+yV&* + **/c* •» 1. Explain the 
result geometrically. 

xi2 
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27. If « be tbe yolume, Ttbe absolute temperature, and jp tbe intensity of 
pressure of a given mass of a perfect gas, i>, T are connected by the 
relation pv^kT, where ifc is a constant. Find (i) the rate of increase 
of the intensity of pressure per unit increase of temperature, supposing 
the volume to remain constant; (ii) the rate of increase of the intensity 
of pressure per unit increase of volume, the temperature being sui>po8ed 
to remain constant; (iii) the rate of increase of the volume per unit 
increase of temperature, the pressure being supposed to remain constant. 

233. Total differential of a function of two variables. 

If jt be a continuous function of x and and if x and y receive 

small increments hx and hy (which are usually quite independent 

of one another), e will receive a small increment ln] to find the 

relation between 6jr, hXy and hy. 

If X alone varies and y remains constant, we know (Art. 24) that 

the resulting increment of z is . lx approximately, to the first 

order of small quantities; and if y alone varies and x remains 

constant, the resulting increment of r is approximately. 

We shall now show that, when x and y vary simultaneously, the 

total resulting increment hz is, to the first order of small quantities, 

equal to the sum of these two partial increments, i.e. the ratio of the 

total increment to the sum of these two partial increments > 1, 

when hx and hy each —►0. 

li z ^ f{Xy y), we have the total increment 

hz^f[x-\-hx, y^-htj)~/(iP, y) 

= [/(a:+8x, y + hy)-f{x, y + ly)] + [f{x, y+h)-f(x,y)']. 

By the Mean-Value Theorem (Art. 117) the expression in the first 

square brackets 

^h>x,f^(X’\-OhXjy-{‘hy\ where 0 < ^ < 1, 

and denotes the partial d. c. with respect to x. 

Similarly, the expression in the second square brackets 

= y + where 0 < d' < 1, 
and fy denotes the partial d. c. with respect to y, 

.-. hz=^hx.f^{x^-Olx, y-k-hy)-\^hy,fy[x, y-^ffhy). 

Since z and its differential coefficients are supposed continuous, 

fxix-^'Ohx, y + Sy) tends to the limit fx(x, y\ i.e. 'bf/'hx, as 8a; and 

and therefore may he written ^//^a;-fe. Similarly, 

y + ^'5y)-->the limit and may be written V/c^y-fc', 

where € and €'—>0 when 8a; and 8y —0; 

(i) 
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Hence, since the terms and are of the second order of 

small quantities, and the other three terms of the first order, Be tends 

to equality with as Bx and 

1. e. Ba: So? + Sy approximately. (ii) 

This is called the total differential of e. 

If X and y, and therefore also jP, are continuous functions of some 

other variable then, if Bx, By, and Bz be the increments of x, y, and 

z due to an increment Bt oil, we have, by dividing (i) by Bt, 

/^f . \ . 

Bt 

/ c) / \ So; 

(si+<)iT 
hence, taking the limits, when Bt and therefore also Bx, By, Bz and 

therefore also e and e'—>■ 0, 

dz _^'hf dx dy 

dt lx dt ^ ly dt 

234. Geometrical illustrations. 

The relation (ii) of the preceding article may be obtained geo¬ 

metrically by the method of Art. 232. 

Let M, N (Fig. 178) be the points {x, y) and (a:+Sir, y + Sy) in the 

plane XOY, and let MF, NQ be the corresponding perpendiculars 

$ and z+Bz 
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The curve PP' represents the path of P as a: increases to ar + Sa?, 

y remaining constant; P'$ represents the path of P as y increases 

to y + the abscissa remaining constant and equal to its increased 

value x-^Sx; then EQ represents S-er, the total increase in e. 

Bz:=EQ=: PP' + IlQ=^x. tan P'PP + 5^. tan QP^IL 

Taking the limits, when Sx and ►O, tanP'PP becomes the 

slope of the section P'P, i.e. and tan QP'H becomes the slope 

of the section QP^ which ultimately approaches coincidence with the 

section through P parallel to YOZ, whose slope is 

Therefore we have, approximately, 

Examples: 

(i) Let A be the area of a rectangle whose sides are x and y (Fig. 179); 
then A = xy, 

c)-4 x increase in area , ,,, . . . . 
- = I , ;-;—r--r—•, the brcadth y remaining constant, 

L 
it increase in length x^ 

area FK 
EK~ ' Lt 

EF, EK 
EK 

EF^y, 

^y L 
L 

increase in area 
t increase in breadth y 

area IIF 
~GH~~ * 

, the length x remaining constant, 

L 
OF, OH 

t GH 
OF- 

If X and y are simultaneously increased to EK and EK respectively, 
dA, the resulting increase in area, ■■ HP+PA+PL ■« a:5y+ + dy. 

The last of these terms is ultimately indefinitely small compared with the 
others, being of the second order of small quantities; hence to the first 
order of small quantities, 

tA ■«ybx + xby « ^ 
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(ii) Let [x, y) be the rectangular coordinates of a point in a plane, and 
(r, S) its polar coordinates; then x and y may each be regarded as functions 
of r and d. 

In Fig. 180, P is the point whose polar coordinates are {r, 6). An increase 
(5d in d, r remaining constant, would move P to Q'; an increase dr in r, 
0 remaining constant, would move P to P'; the combined effect of both 
increases is to move 1* to Q. 

j MP -p PQ'sin MQ’P 
c)d’“jL^t d6 JL»t 60 L chord PQ' 

t arc PQ' 
arc PQ' 

bO 
j— . sin MQT; 

as (chord PQ')/{Q.rc P(3')->1, the arcPQ' = rdOj ]\IQ'P —^iho angle 
which the tangent at P makes with the ordinate of P, i.e. d. 

'bx/'bO —rsind. 
Similarly, 

— T 
c)d J_it 60 J_it 60 

■a, as in the preceding case, r cos 6, 

Again, 'bx/'br ^ Li (PN/PP ) »= cos P'PN = cos 6; 

= Lt {XP'/PP')« sin P'PN - sin 0. 

[All these results follow immediately by differentiation from the relations 
ar = r cos Of y ^ r sin d.] 

6x, the total increment of Xf due to increments dr and 5d in r and Of 
«a the projection of PQ on the axis of x 
c= PP' cos 0 — QP' sin (0 + 160) « cos d — (r+8r) 60 sin {d + J8d) 

i^rcosd —rsin d 5d, to the first order (the other terms are infini¬ 
tesimals of higher order) 

^ fir 4- ^ the results just obtained. 

Similarly for fiy. 
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The student must be cautious when applying the theorems of 

Arts, 29-35 to partial differential coefficients, e,g. 'bx/'br and Ir/'dx 

are reciprocals provided the same coordinate is constant in both caseSf but 

not otherwise. 

In fact, it is easily seen that 'bx/'br {B constant) and 'br/'boc (y constant), 
instead of being reciprocals, are equal to one another, for, from the 
preceding, we have <>x/^r {6 constant) = cosB, To find {y constant), 
we take Fig. 181. 

An increase in x, y remaining constant, will move P to Q, through 
a distance tx parallel to the axis of x; the new radius vector is OQ. 

br OQ-OPy and 
y OQ^OP_j RQ 
l_jt PQ 

if a circle, centre 0 and radius OP, cuts OQ in R. In the limit, PRQ-^W 

and therefore RQ/PQ-> cob RQP, i.e. cos^. 

'hr/'bx ^ cobB. 

Hence 'hx/'br {B constant) and ^r/^x (y constant) are equal. 

This also follows analytically, for, since x^ rcosB, 

(B constant) *= coa^; 

and since r* 2 Xy i.e. (y constant) 
ax 

^ A - •* cos 6, 
r 

235. Total difiTorential ooefficiont. 

It has been proved that, if s be a function of x and y when both 

are functions of f, then 

de ^0 dx , 'bB dy 
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If we take t to be i. e. if g be a function of x and y where y is 

also a function of £C, then, since dx/dt is now unity, this relation 

becomes 
dz 'bz bs dy 
- -j-^ m I Ij 
dx bx by dx 

dz/dx is called the total differential coefficient of z with respect to x. 

Similarly dz/dy, the total differential coefficient of e with respect 

, bz bz dx 
to y, ^ • 

by bx dy 

The quantities dz/dx and bz/bx which occur in equation (i) are 

quite distinct. 

bz/bx is the limit of hz/^x^ where Iz is the increase in z due to 

a variation in x only where it occurs explicitly in the equation, 

i. e. on the supposition that y is independent of x\ dz/dx is the 

limiting value of hz/Zx^ where hz is the total increment of 0, due 

partly to the increment of x and partly to the increment of y which 

is itself due to that of ic, since y is a function of x. 

Geometrically, in Fig. 178, bz/bx is the limiting value of BF^/FD ; 

dz/dx is the limiting value of EQ/TD^ i.e. of EQ/FE, and these 

two are usually quite different. 

For instance, let z « — —y*, and let y be a function of a?; 

then bz/bx ^— and ^2/c)y «»-x —2y, 

dz 
/Lx 

bz ^ bz dy 
bx by dx 

~2x-y-(x-|-2y) 
dx' 

and the value of dy/dx will depend upon the relation between y and x. 
Suppose, for instance, that x'-^ + y* ■» (r constant); then 

2x + 2y^-»=0, and ^ 
dx dx 

X 

y 

Hence in this case, dz/dx «* —2x—y + (x + 2y) x/y = (x* — y*)/y. 

[This might have been obtained by first eliminating y from the given 
equations and thereby obtaining as a function of x alone; but generally 
by this process, when it is feasible, the differentiation is rendered more 
complicated; and in many cases the actual elimination cannot be carried out. 
In the example under consideration, we should get 

dx 

« a^~x^ — y* —xy ■= a® —r*~xV(r* —x*); 

—2x 

*’2v'(r'-a^) 
X* —(r* —X*) 

, as before.] 

The preceding results can easily be extended to a function of any 
number of variables. 
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236. Adiabatic expansion of a gas. 

To illustrate the foregoing principles, let us consider the adiabatic expan¬ 
sion of a gas. We will prove the well-known theorem that if a given mass of 
gas expands adiabatically (i.e. so that heat neither enters nor leaves it), 

f>v^ *» constant, 

where p is the intensity of pressure, v the volume, and y a numerical 
constant. If Tbe the absolute temperature, i.e. the temperature measured 
from —273° C. or —469° F., then, in the case of a * perfect gas’, p, u, T are 
connected by the relation «« kT, where A; is a constant. 

If, when the volume is kept constant, a small quantity of heat supplied 
to the gas raises the temperature by an amount 5T, then as hQ and therefore 
also bQ/hT-^ a limiting value, which is called the ‘specific heat 
at constant volume ’ and is denoted by AV 

If, when the pressiu'e is kept constant, a small quantity of heat raises 
the temperature by an amount hT, then bQ/bT-*^ a limiting value, which is 
called the * specific heat at constant pressure ’ and is denoted by Kp, 

It can be shown that, for a perfect gas, the ratio K,/Kv is a constant y. 
The value of y in the case of air (regarded as a perfect gas) is 1*404. 

Since pv = kT, only tw'o of the three variables p, v, T are independent. 
The third can be calculated when two of them are known. 

Taking p and v as the independent variables, we have, if a small quantity 
of heat be supplied, 

t) is the d. c. of Q with respect to v, p being regarded as constant. 

Now ^ — ~ • ^ [p constant]; also (p constant) = lip, and 
cv cTdv v 1 

“ [p constant] « since pv *=* kT, *= Kp. v-* 
oi; k vv k 

Ti0 'b0 T^T 
Similarly, ~ {v constant) = ^ {v constant) ■= 

7} V 
Hence, substituting in (i), bQ = Kpbv-^Kv -^bp. 

If the gas expands adiabatically, the amount of heat it contains is constant, 

i.e. = 0. 

Therefore Kp^bv Kv~ bp »= 0. 

Dividing by Kv/k and putting Kp/Kv y, we have 

ypbv-\^vbp « 0, 

whence, in the limit, 

Integrating, 

i.e. 

V ap p 

y log t? + log^ *= log C, 

pvy^c, 
which is the relation required. 
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237. Application to implicit functions. 

If the relation between x and y be given in the form 

f(x^ y) = constant, 

then dfldx, the total d. c. with respect to x, = 0, since the d. c. of 

a constant is zero ; hence, by Art. 235, 

'hx dx ’ 
and therefore 

dx '^x / 'by 

This gives an alternative method to that of Art. 36 of finding 

the d. c. of ^ with respect to Xj when y is given as an implicit 

function of x. 

E.g. if a;® + 3aary+ 3/” = a*, So?’ -i 3fly, — 3 fl-i 3 y*; 
by 

•“ 'dx 

Bar®-!- 3fly 

3aj? + 3y^ 
+ ay 

ax-{y'^^ 
as in Art. 36, Ex. (ii). 

238. Applications to analytical geometry. 

(i) Equation of tangent to a cMwe. This result can be used to obtain 
a convenient form of equation of the tangent to a curve f{x^ y) = 0 
at a given point. 

The equation of the tangent at (x, y) was obtained in Art. 46 in 
the form 

Substituting ^ ^ ^ rearranging, the equation 

becomes 

(ii) Centre of a curve. At any point on the curve whose equation 
is f{x, y) = 0, the direction of the tangent is found from the equation 

dx bx/ by 

If f(x, y) = 0 be of the second degree, the cuiwe will be a conic. 
bf/bx = 0 will then be an equation of the first degree, and therefore 
will represent a straight line ; moreover, when bf/bx = 0, dy/dx = 0, 
i.e. the tangent to the curve is parallel to the axis of x. Hence 
bf/bx^O is the equation of the straight line joining the points on 
the curve where the tangent is parallel to the axis of x (Fig. 182). 
Similarly, ^//c)y = 0 is the equation of a straight line, and when 
bf/by = 0, dy/dx is infinite, and the tangent is parallel to the axis 
of y. Hence bf/by = 0 is the equation of the straight line joining 
the points on the curve where the tangent is parallel to the axis of y. 
These two straight lines are diameters of the conic and intersect at 
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its centre. Hence the coordinates of the centre of the conic whose 
equation is /(Xj f/) 0 are obtained by solving the equations 

y/^)a; = 0, lf/'by=.0. 

Example: 
Find the centre of the ellipse 36x*—24xy+ 29j* — 168x +lOGy+ 21 ■= 0, 

and the equation of the tangent to it at the point (1, 1). 

Here *« 72ic--24y — 168 « 0 ; ^//^y ==«—24 a? + 5Sy 4 1060, 

and we have to solve these equations. 
Dividing the first by 3 and adding to the second, we have 50 y 4 50 0, 

i. e. y « ~1, and thence a? »= 2. Hence the centre is the point (2, — 1). 
Also, at the point (1, 1), 

Tif/'bx - -120, V/^y - 140. 

Therefore the equation of the tangent is 

-120(ir-l) + 140(y-l)«0, 

i. e. 6 X — 7 y 41 0. 

239. Applications to errors of measurement. 

The result of Art. 233 is of importance in that it enables us, when 

calculating the value of a quantity from the values of several 

variables upon which it depends, to find the total effect of small 

errors in the observed values of the several variables. The theorem 

is equivalent to the statement that, to the first order of small quan¬ 

tities, the total error due to errors in the measurements of several 

variables is equal to the sum of the errors due to each separately. 

Examples: 

(i) The length of the hypotenuse of a right-angled triangle is calculated from 
the lengths of its sides. If these are measured as 8*5 and 11*5 feet respectivelyy 
with a possible error of J of an inch in each, find the possible error in the 
calculated length qfthe hypotenuse^ 
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In this case, c® ** a*-f 

\ dc 

2c 
he 
ha 

^.^a+ ~Jb=-.Sa+-.!ib’ 
ha ho c c 

he 
= 2a and 2c--~ *= 2 &; 

ho 

— X i inch = X i 

*28 inch approximately. 

(ii ) The height and the radius of the base of a cylinder are at a given instant 
10 and 4 inches respectively] if they are increasing at the rate of 2 inches and 
1 inch jper second respectively^ at what rate is the volume of the cylinder increasing 
at that instant ? 

V=«7n^hj and by Ai’t. 233, 
dV 
dt 

hV^ dr hV dh 
hr dt ^ hh dt 

2 
T dr 

- 4-7rr* 
dt 

dh 
dt 

= SOtt X 14- IGtt X 2 

*=11277 cubic inches per second. 

This is the rate of increase of the volume at the given instant. 

C 

(iii) The area of a U’iangle is calculated from the length of one of its sides 
and the magnitudes of the adjacent angles; if the measurements made are 
c = ^0 feetf A *= 35°, B *= 71®, find the en'or in the area due to an envr ofY 
in each angle. 

The area (Fig. 183) 

S-^\AB, CZ)«^c.bsinA 
Bin R . c® sin A sin B 

C -r—r Sin A = ~ -;-. 
Bin C 2 sin (A 4 B) 

Thia gives S in terms of the quantities whose measurements are taken 

c remains constant, therefore 
hS 
hB 

dB. 

hS 
hA 

?! * 7i sin (^4-R) cob a ~ sin ^ coa (^4-R) 
2 * sin* (A + R) ^ 

c' . ^ 
sin R. 

sin R 

6in*(ui fR) 
800 

sin* 71* 

sin* 106°’ 
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1$ 

Also 

Similarly 
c* . . sin A 
2 

:800 
sin* 35^ 

dS- 

* jln'rr* 

= 4*623 square feet. 

: the circular measure of 1° 

800(sin*7r-fsin*35°) , 
-^5^7745 Tb-r 

The proportional error^ i. e. the ratio of the possible error to the estimated 
value, and this is what is usually wanted in such cases, is obtained more 
easily by taking logarithms and differentiating, thus: 

log5=» 2 logc —log 2 +log sin A + log sin J?-log sin (A + i?). 

Now e(log5) 

d (log sin^) 

d(log5) 
dS 

cos A 
sin A * 

5; 

SA « cotA . SAf &c. 

Hence, e being constant, we have 

dS/S = cot A . (^ A + cot Z?. 5 - cot (A + 2?). (6 A 4- 5R) 

*= (cotA + cot C) 5A+ (cot-B + cot C) 8B [since cot(A + J?) =* —cot (7] 

(cot 35° + cot 7r + 2 cot 74°) 

- *0102. 

Hence the proportional error is about 1 per cent. 

(iv) (riven that the volume of a quantity of a gas whose temperature is 47° G. 
and pressure 15 Ih. weight per square inch is 6 cuhic feet^ find its volume when 
the pressure is increased to 15*1 Ih. weight per square inch, and the temperature 
raised to 48' C. 

In books on Hydrostatics it is proved that, if ^ be the intensity of pressure 
of a gas whose volume is v and absolute temperature T, then pv » kT^ where 
k is constant. 

Regarding T as a function of p and v, we have 

vp 
fit). 

1 1 273 + 47 4 1 n II 1 \r^ T5x144 “^27’ 

_ 273 + 47 _ 100 
t)v V 6 3 

Also bT^V ; bp<^'l X 144. Therefore, substituting in the first equation, 

1 «^x-lxl44 + JLpxai;, whence 160Sc--3*4, and fit) *--*021. 

Hence the volume is diminished by about *021 cubic foot. 

Examplos XCV. 

1. If (a?, y)y (r, d) be rectangular and polar coordinates of a point, find 

(i) the total increment in y, due to small increments fir, fid; 
(ii) the total increment in r, due to small increments fia:, by; 
(lii) the total increment in d, due to small increments fia?, by. 
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2. Prove, both geometrically and analytically, that 'df/f'br (6 constant) and 
c)r/^y {x constant) are equal. 

Find dz/dt in the following cases: 

8. z = where x =» cos aty y = sin hL 

4. 2: == log(x^4-y*), where a: = a (1— cos/), y — a^mt 

5. 2: *= [ax — hy)f{cx + rfy), where ^ ^ jin /, y — cos t 

Find du/dt in the following cases: 

C. w 07* + y* + where x ^ e^, y ~ sin /, z ^ cos U 

7. M =» log (o?-f y+ 2;), where 07 = sin*/, y —cos*/, 2 = sin 2/, 

8. w »o xyzy where x ■« e~* cos ty y ^ sin* /, z ~ e ^ sin /. 

Find dz/dx in the following cases: 

0. 2 » 07* -fy*, where y ** (1 —x)/x. 

10. 2! *a 07* 4-y* + a^, whore 07*4-y* *= «*. 

11. z ■= .07* ?/*, where or* — o"y 4 y* =« a*. 

12. z *■ sin^* {x/y)y where y* = a* f 07*. 

18. z «» tan”^ (yA)) where y =« sin* x. 

14. 2 = 07* 4 3 axy 4 y*, where x- 4 y* = xy. 

Find, by the method of Art. 237, the value of dy/dx in the following cases: 

15. O7*4 5o7*y —4.r*y*-“2y* == 0. 16. 8in*07 4 sin*y-2 cos or cosy «=» 0. 

17. (or* 4- y*)* - a* {x^ -y*). 18. x” 4 or^'* y^* == 

10. sin (or4y) 4 cos (.r —y) ** 1. 20. (/->07 —(7y)* = 1 4 (rtor4 %)*. 

Find the relation between the differentials of the variables in the 
following cases: 

21. V^lirr^h. 22. jptr = ArF [Ar constant]. 

23. xyz = a* [a constant]. 24. or* 4 y* =*= 2*. 

25. /*= mi7*/r [m constant]. 20. Fs — J nn?* [w constant]. 

27. If 07 ■= r cos (9, y -» r sin find and ~ in terms of and 
cr d6 ^or c)y 

M being a function of or and y. 

28. Find the equation of the normal to the curve / (or, y) « 0 at any point 
on the curve. 

20. Find the coordinates of the centre of the conic 

y*- 5.ry 4 607* — Hor 4 5y «= 0, 

and the equations of the tangent and normal at the origin. 

80. Find the centre of the conic 3o7*4 2o7y+ 3y* = 4aor4-4ay, and the 
equations of the tangents at the points where it meets the axes. 

81. If K/K^ *5= (T/Tq)^* X find the change in K due to small variations 
hp and bT in p and 2\ 

82. If /x-1 ■» find the change in p due to small variations 
1 4 eXa /oU 

bpy bB in p and 6, 

83. The hypotenuse and one side of a right-angled triangle are measured as 
143 and 93 feet; find the error in the third side due to an error of 
1 inch in each measurement. 



496 PARTIAL DIFFERENTIATION 

84. The length of a side of a right-angled triangle is calculated from the 
length of the hypotenuse and the angle between them, which are found 
to be 140 inches and 43* * find the error in the length of the side due to 
the measurement of the hypotenuse being ^ inch too small and the size 
of the angle (i) a quarter of a degree too small, (ii) a quarter of 
a degree too largo. 

35. The area of a triangle is calculated from the formula S^^hc sin A, and 
the measurements taken are & =» 72 feet, c = 55 feet, A — 56°. Find the 
possible error in the area due to (i) errors of 2 inches in each side; 
(ii) errors of 2 inches in each side and half a degree in the angle. 
Find the proportional error in each case. 

80. If jt) be the intensity of pressure of a gas of volume v and absolute 
temperature T, pv »= fc2Vhere k is constant. Given thatp is 20 lb. weight 
per square inch when d « 10 cubic feet, and the tenq^erature 40° C., 
find approximately 

(i) the change in the pressure when v is increased to 10’2 cubic feet and 
the temperature to 40*5" C.; 
(ii) the change of volume vrhen p is increased to 20*1 lb. weight per 
sq. inch and the temperature reduced to 39*7° C.; 
(iii) the change of volume when p is reduced to 19*7 lb. weight per 
sq. inch and the temperature raised to 40*3° C.; 
(iv) the change of temperature required to raise p to 20*2 lb. weight 
per sq. inch when the volume is increased to 10*2 cubic feet; 
(v) the change of temperature required to lower the pressure to 19*6 lb. 
weight per sq. inch when the volume is increased to 10*1 cubic feet. 

87. The side 5 of a triangle is calculated from the formula 5*=a siniJ/sinA, 
and the observed values are a 125, B 73°, A •= 42°. Find the error 
in the calculated value if the true values of A and B are 41*8° and 72*7°. 

88. The side c of a triangle is calculated from the following observations: 
a =» 175 feet, A — GO®, C «=* 88*5® Find the erroi in the calculated value 
of c (i) if the true values are 175*5, GO®, and 38’8°; (ii) if the true values 
are 175*5, 59*6®, and 38*8® respectively. 

89. The side c of a triangle is calculated from the formula 

r* = a* -h 5* — 2 a5 cos C; 

find the relation between the differentials fir, ha, 56, 5C. 
Find the error in c if the observed values of a, 6, C are 120, 180, and 32®, 
and the real values 121, 179, and 32J®. 
Find also the proportional error in this case. 

40. The area of an ellipse whose semi-axes are a and 6 is irob; find the 
possible error in the area due to possible errors of ^ inch in each 
measurement, the observed values being 3 feet ana 2 feet. 

41. Find the proportional error in the area of an ellipse due to small errors 
5a, 56 in the lengths of the semi-axes. 

42. Find the proportional error in the area of a triangle calculated from the 
lengths of its sides, due to small errors 5a, 56, be in the measurements 
of the lengths of the sides. 

43. The angle A of a triangle is calculated from the formula 

cos A *= (6* + c* ~ a*)/2 he; 

find the error in the angle due to small errors ba, 56^ be in the sides. 
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44. The height of a building is calculated from the observed elevation (a) 
at a measured distance (a) from it; base ; find the error in the height 
due to small errors 5a, 5 a in the observations. 

If the observed values of oc and a bo 24* and 120 feet, and the true 
values 24*2® and 119*8 feet, find the error in the height. 

46. Find the proportional error in the volume of a cone due to small errors 
dhf Sr in the height and radius of the base. 

40. The time of oscillation T of a simple pendulum is find the 
error in the time due to small errors in measuring I and g. 
Find also the proportional error. 

47. If the value of g be calculated from the preceding formula, find the 
percentage error in the value of g due to positive errors of *5 per cent, 
in the measurement of both I and T, 

48. If (Xf y) and (r, 6) be the rectangular and polar coordinates of a point 
in a plane, prove that the diflerentials of or, y, 6 are connected by the 
relation x.Sy — y.Sxvm r^5d. 
Prove also that (5a:)* -f (5y)^ « (5 r)* -f r* (5d)*. 

40. Supposing a:, y, r, S functions of the time deduce from the last relation 
that + What is the significance of this result in 
Mechanics ? 

60. The rectangular coordinates of a moving point in a plane are at 
a given instant (10, 6), and the velocities of the point at that instant, 
parallel to the axes of x and y, are respectively 3 and 2 foot-seconds 
respectively ; find the angular velocity of the point about the origin at 
that instant. 

61. The specific gravity of a solid heavier than water is W/(W'— W')^ where 
W and W" are its weights in air and water respectively; if W and 

are observed to be 20*7 and 11*2, find the maximum error in the calcu¬ 
lated value of the specific gravity due to errors of ‘05 in each obser¬ 
vation. 
Find also the percentage error. 

62. If the H, P. required to propel a steamer vary as the cube of the velocity 
and the square of the length, prove that a 2 per cent, increase in 
velocity and a 3 per cent, increase in length will require approximately 
a 12 per cent, increase in H. P. 

63. The specific gravity of a liquid is {W — W2)/(W — TFj), where TT, TF, 
are the weights of a solid in air, water, and the liquid respectively; 
find the proportional error due to small errors SW, 51F„ 5IFj in the 
weighings. 

64. Find the rate of increase of (i) the volume, (ii) the area of the curved 
surface of a right circular cone, at the instant when the height and the 
radius of the base are 12 inches and 4 inches respectively, and each is 
increasing at the rate of ^ inch per second. 

66. Find the rate of increase of (i) the volume, (ii) the superficial area of 
a rectangular parallelepiped, at the instant when its sides are 20, 15, 
10 inches, and are increasing at the rate of '8, *6, '4 inch i^^r second 
respectively. 

ttlS K k 
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240. Partial derivatives of higher orders. 

If ;e? is a function of two variables x and y, denoted by /(x, y\ then 

'be/'bx and 'bz/'dy will generally be functions of x and y, and therefore 

they can be differentiated again partially with respect to x and y, 
z 'h /"hz \ , 

The partial d. c. of ^ or with respect to x, i. e. ^ ^ 

denoted by or /^x. 

The partial d. c. of or fx with respect to I ^ 

<iy ^x 

'^x 

or fyxr denoted by 
V y V tA/ 

The partial d. c. of ^ or with respect to a;, i. e. is 

y-e 

'bxhy 
or f^y. denoted by 

The partial d. c. of \^Qt fy with respect to y, i. e. -- (^) r is 

denoted by ^ or ; 

and so on for derivatives of higher order. 

Similarly for functions of more than two variables. 

Examples: 

(i) If 2! ~/(a:, y) «> ipsiny 4-y sin a?j 

4 ^ or /j. «■ siny+ y cosa;; or 
7)y 

ftiv or - -ysma:; 

yz 
u 3yd* /»*-co»y + co8*; ^Xt>y 

(ii) As an example of a function of three variables x, y, *, if 

_1__ 
V {{x - a)’ + (y - 6)’ + (s - c)“} 

(where a:-a, y — b, z^c are supposed not to be simultaneously zero), 

F- 

prove that 
2)*F ^)*F . 

a?* ^ cy y* ^ ^ 

Denoting the expression under the radical sign by «, for convenience, 

we have F= w“i. 

■ !i - >■ i 

^*F^ ^ X 1 f uV^.2 (jr—g) _ w~3(a?~ay 3 
Ii* *" tt*/* ** Ii*/* 
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Similarly 
3(y-6)*-M J 

u»/> ' hz’” «»/» 

t>*r yv : 

Addmg, + + ; 
8 (iP-a)* + 3 (y - ?>)*-f-3 c)* - 3 w 

since m =* (aT — a)* ++ 

This equation is a very important one in the theory of electricity and 
attractions, and is known as Laplace's Equation. 

If r be the distance between two points whose coordinates in space are 
(a, h, c) and (a?, y, z), then r* *=» {x—af-^(y-b)^+ (2'—<?)^ and the potential 
at F {Xf y, z) of mass or charge tn at (n, 6, c) 

m/r (Art. 178)®= in/^{(x—ay+(y — hy-¥{z — cy} 

« m X the function Fof the preceding example, 
lienee the potential satisdes Laplace’s Equation, and this result will 

be true for any number of masses or charges at points not coincident 
with F. 

Pig. 184. 

241. Order of differentiation indifferent. 

In the example at the beginning of the previous article, it will be 

noticed that and are equal, i.e. if the function be differ¬ 

entiated partially with respect to the variables x and y in succession, 

the order of differentiation is immaterial. This is always the case if 

the function and the differential coefficients involved are continuous. 

A geometrical proof of this property readily follows from Fig. 184. 

Kk2 
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Let V be the volume enclosed by the surface ESIIFf the coordinate 

planes, and the planes PIT, PD. 

Then, as in Arts. 81, 159, 

F/c)x = the area HDQP^ 

and ^ = the d. c. of the area HDQP with respect to y 

= the ordinate QP (Art. 79). 

Similarly 'dV/'^y = the area EMQP, 

and ^ ~ EMQP with respect to x 

= the ordinate QP (Art. 79). 

Hen CO 
^^2f __ ^^F 

^ydx ^x^y 

Analytical proof. 

An analytical proof of the foregoing important theorem can be obtained 
by the use of the Mean-Value Theorem (Art. 116). 

We have 

^L t ^ 
k-*- 0 

■°Ltl ILt + + -/(»^.y+*-•)} - {f{x + y)-f{x,y)}] 
* -♦ 0 I /»-♦ 0 

Similarly, 

It must not be assumed that these two expressions are identical although 
they consist of the same terms, for the assumption that the limits are the 
same, whether before h or whether ^ 0 before 7i, is equivalent to 
assuming the theorem which is being proved.* 

By the Mean-Value Theorem, 

F{x^h)-F{x)^hF„{z’^6h\ where 0<^<1. 

In this equation, take F(x) to be f{pOty'Vlc)‘-f{x^ y). 

* That this assumption is unjustifiable is easily seen from the following 

example: Consider 
a sin x+b sin y 

, and find its limit when first x, and after* 

wards y, ->0. The limit when x-^0 is i.e. ~ x and the limit 
uy ay 

of this as y->0 is h/d. But, if y-^0 first, the limit is — — i. e. - x 
cx c % 

and the limit of tliis as 0 is a/c. 
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Then [f{x + h, y+i)-/(a:+A y)]-[/(a;, y+k)-f{x, y)] 

•‘•'k[ky^Mx+6,h,v+e,lc)-\ 

*** ^^fyx (« 4- y + k). 
Similarly F{y+ k)—F{y) hFy(y-{-6'k)y where 0<^'<1. 

In this equation, take F{y) to be /(x + h, y)—f{x, y). 

Then [/(x 4 h, y + k) -/{x, y 4 k)] ~ [/(ar + h, y) -/(x, y)] 

« k [fy [x \h,y + 0^ k) -/{x, y + t\ Ar)] 

« fk[h^~fy{x-¥^0^h, y-^B^k)] 

^khf^y {x-kB.h^y+e^k), 

Hence, since the expressions on the left-hand sides in these two equations 

are identical, we have, after dividing out the factor hk (which is not zero), 

fvz{^-kB^h, ykB^k) + ykB^h), 
where all the ^’s are between 0 and 1. 

Hence, in the limit when h and k both 0, since the functions are con- 

242. Exact dififerentlal equations. 

To find the condition that Fhx^-Qhyy where P and Q are functions 

of X and y, may be a perfect differential. 

If the given expression is the total differential of a function u of 

X and y, 

Pbx + Qhy = : 
<>u . , '^u 

hence P=:^)w/c)j; and Q=:'^u/'bij; 

_ 0 /^U\   0 ^<>U\   0 

i}y <)x y) i 

c\u> 

<iy t)y ()x 

This is a necessary condition. Conversely, if this condition is 

satisfied, it follows that P and Q are partial differential coefficients 

with respect to x and y respectively of some function m of ic and y. 

For let P = 'be/'bx; 

<)P ^ ^ \ 
^x ^y ^^x^ ^x 

Integrating with respect to z, 

Q = ^ + a function of y = ^ -h a function of y). 

then 

♦ Using th« Mean-Valuo Theorem for the expression in the brackets regarded 

as a function of y. 

t Using the Mean-Value Theorem for the expression in the brackets regarded 
as a function of x. 
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If the expression in the brackets be denoted by u, 

(2 = and P = 'hz/'bx = 'huf'bXy 

since the partial d. c. of the function of y with respect to x is zero. 

Therefore P and Q are equal to 'hu/'bx and 'bu/'^y respectively, 

bu bti 
and P6ir+ Qby = :^dx + ^~Sy = Su, a perfect differential. 

From this result it follows that, if the condition bP/by = bQ/bx 

dy 
be satisfied, the differential equation P-f Q ^ b= 0 may be put into 

0, i.e. §^ = 0 [Art. 236], 

the form 
dy 

dx 

the integral of which is w = (7. 

The differential equation is then said to be exact [Art. 216]. 

bu bu 

bx by 

Example. ay {y^ + ax) ^ 0. 

The condition is satisfied, and the equation is exact, since 

bP/by =* bQ/bx « a. 

In this case the integral can be written down at once, since the equation 
may be put in the form 

which give* on integration J + axy + J •= C. 

In the general case, since, in finding bu/bXy y is regarded as 

constant, and in finding bu/byy x is regarded as constant, it follows 

that the terms of u which contain x only are represented only in 

bu/bXj i.e. P, and those which contain y only are represented only 

in bu/byy i.e. Qy whereas those which contain both x and y are 

represented in both P and Q. Hence we have the following working 

rule for integrating an exact equation : Integrate P with respect to x 

and Q with respect to y; add the integrals together, but only insert 

once the terms common to both the integrals, and equate the sum to 

a constant. 

Example: a?* + 2ay+ y* —2a:y4 (2aa? —+ ^ 

bP/by ■= 2a + 2y-2a:; bQ/bx ■« 2a“2a: + 2y » bP/by; 

hence the equation is exact. 

/Pdx -«y'(ar* + 2ay + y* —2;ry) da? ■■ + 2aay+ a?y®*~ir^y, 

/Qdy ■*/(2(MF~a?* + 2aFy-y*) dy «■ 2aicy-a::*y+ a:y*-Jy*. 
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The terms ^aocy\xy^—x^y are common to both, hence the integral is 

J iT* + 2 axy + xy^—a?*y — J y® ■« C. 

Or we may proceed as follows: 

'bufbx — P « a::* + 2oy + y*-2 jjy. 

Therefore, integrating, and remembering that the ‘constant of integration* 
wilJ involve y, 

M *- Ja?* + 2airy + ary®-a:®y+/('f/); 

'bu/'by ^2ax-\-2xy — x^-\-f'{y). 

But 2aa; —+ — 

f iy) — -y*, and f{y) *= ~ J y®. 

lienee u »= J a:* + 2 aocy + a-y® — x'^y — J y^, 

and the integral is J a;* + 2 axy + a?y* — x'^y ~ J y® «= C, as before. 

Examples XCVI. 

1. If « « ojc® + 3ha:*y + 8ra:y’ + dy*, find ^ , ^ —r—, <— 
dx^ cxdy dydx 

2. If 2 ^ x^ siny+ y® sin a:, find the values of the same functions. 

3. If z ^ 'x'"'lli'\ find the values of the same functions; find also 
J)^;5r eVar . 

'bx^ <)y®^ c^y^a;®* 'bxiy'^' <>x<^ybx' 'byix'dy 

4. If 2 ^ logr, where «= (a; - a)* + (y - h)®, prove that ^ « 0, 
V XT 0 y® 

provided x — a and y —h are not simultaneously zero. 

6. Prove that the equation '^^z/'bt'^ ■* a^c^^z/'dx^ is satisfied by each of the 
functions 2; =* u;! sin (a: + a0» 2^ *=*-4 sin (j? +aO + P cos (ar — afj. 

e. If « -*/{x-\-ay), prove that <^^z/}^y^ *= a'^^^z/^x^, 

7. Prove that the same differential equation is satisfied by 
z «* f {x + ay)F{x - ay). 

8. If w «» «**'■, find the value of ^ ^ 

9. If M tan*^ (y/^)» verify that 

<^x^y}>z 
<)®tf c>*M 

<)y®^x c)a?c)y® ^y ^a7^y 
<jJ _ |/S ^ 

10. If « «= -=—, verify that cr--^ — ^ n 
ar + y®’ dxdy dydx 

11. If M *=r x’^/iyjx), prove that x^ ^ + 2 xy + y* “ w (n-1) u. 

re CC^ + y* , ,c)®M ^ C^® 4 «c)®M ^ 
,2. If «=—, renfythat**^ +2ay^ + y’^-0. 

13. If -Zf-. 
c)ic dy 

' 0, prove that z = /(a?) + P(y). 

2 
I — • 

r 
14. If r® « (;r-a)® + (y-h)® + (2j-c)*, prove that 4 |“a + * 

o c y V z 

15. Find ^zjdi'^ in terms of partial d. c.’s, when z y), where x and y 
are both functions of U 
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10. Find in terms of partial d, c.\ when y is an implicit function 
of X given by the equation /(«, y) — 0. 

17. If y), and x»rcosd, y — rsin^, find 

in terms of partial d. c.’s of u with respect to r and B, 

■n xt, i 1 1 c)®M 
Prove that ::r-u + ^ ^ + " — + 

and 
a? 

r Tsr 

18. If Xy y^ fy B arc functions of f, prove that 

X cos ^ + y sin B «« r—rS^; y cos d —5? sin ^ ■* r^-f 2 1 ^ (r*d). 
t* dt 

What is the meaning of these equations in Mechanics? 
10. If M is a function of x and y, and if 

a? «• A cos a — y sin Of, y « Xsin 0( + Fcos a, 
, . c)*t( , 

.how that _ + 

20. By expanding /(x-^h, y + k) in powers of hy then expanding each of 
the resulting terms in powers of Jc (by Taylor’s Theorem), and neglect¬ 
ing small quantities of the third order, h and k being taken as of the 
first order, obtain the value of /{x-^hy y-f A-) -f(Xy y). 

21. Prove that the radius of curvature at any point of the curve /(x, y) •» 0 is 

_ 
V “■ zy "^fy/xx 

22. Prove that the equation (flfx + hy) -f oy+ rx =» 0 is exact, and solve it. 
dx j.. 

0 is exact, 
dx 

23. Prove that the equation 2xy —y’ + ny 4 (x^-~2xy + ox^ 

and solve it 

24. Show that the equation x4 Ary4 (y ~A:x) is not exact, but that it is 

made exact by dividing both sides by x* 4 y*. Hence integrate it. 
26. Prove the same fact in the case of the equation 

and integrate it. 

20. If y ~ a sin {pxjh) sin (p^4«), where a, p, 7>, < are constants, prove that 

27. If u =/(x4af, y 4i3f), where x and y are independent of ty prove that 

Find cPu/dt’, and state a general rule for finding d^ti/dt^ 
[Put x + ai^X, y + ^ft= r.] 
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1. Miscellaneous Formulae, Equivalents, &c. 
II. Squares, Cubes, Square Roots, Cube Roots, and Reciprocals of 

Integers from x to loo, and of e and ir. 
III. Square Roots and Cube Roots of Numbers from o-i to lo at 

intervals of o*i. 

IV. Trigonometrical Ratios and Radian Measure of Angles from o® 
to 90° at intervals of i®. 

V. Common Logarithms. 

VI. Common Antilogarithms. 
VII. Natural Sines. 

VIII. Natural Tangents. 

IX. Napierian or Hyperbolic Logarithms, 

X. Exponential and Hyperbolic Functions. 
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TABLE I 

MISCELLANEOUS FORMULAE, EQUIVALENTS, EXa 

ir — 3-1416, log n — *4971. [See Table II for powers of tt.] 

e— 2-7183, log^o®" *4343» log^io— 2-3026. [See Tables II and X for powers 
of c.] 

logioX- logez X *4343 ; log<! 2;- logi^a: X 2-3026. 
I radian — 57*30 degrees; i minute — •otX)2909 radian. 

I metre — 39*37 inches - 1-094 yards — *0006214 miles. 
I inch — 2-540 cm. 

I gallon — -1604 c. ft. — volume of 10 lb. of water - *4545 litre. 

I c. ft. of water contains 62-28 Ib. 

I lb. wt. — ^ ( = 32-18} poundals «■ 453-6 gm. wt. — 445,300 dynes. 

I kilogram — 2-2046 lb. 

Value of ff (in London) — 32-18 ft. eocs. per sec. — 980-8 cm. secs, per see. 

60 miles per hour — 88 ft. secs. 

Circle of radius r. Equation referred to centre, rr®-f-Area—ur®; 
circumference — 2 nr. Length of arc which subtends 0 radians at the centre - rO; 

distance of C. G. of arc from centre—(r sin area of sector on this 

arc — ; distance of C. G. of sector from centre — § (rein 

Parabola, y’^ ^ ^ax. Latus rectum — 4a ; focus (a, o); equation of directrix, 
2 + a — o. 

Ellipse, semi-axes a and h. Equation referred to principal axes, z*/a!^-\-— i. 

Eccentricity c —— 6^^/ a^); semi-latus rectum — h^ja ; foci (±ae, o); equations 
of directrices, x — + ale ; area ^ vab. 

Hyperbola, semi-axes a and 6. Equation referred to principal axes, 

x^/d^ — y^b^ - I. 

Eccentricity c — 6Ya®) ; semi-latus rectum — h'^/a ; foci {±ae, o); equations 

of directrices, x—+a/e; equations of asymptotes, x/a — ±}//b- 

Rectangular Hyperbola, eccentricity — V2; equation referred to principal axes, 

a;- — a*; equation referred to asymptotes, xy — Ja*. 
Sphere of radius r. Volume — . surface — 4 nr^. 

Distance of C. G. of hemisphere from centre — | r, if solid ; J f, if a thin shell. 

Cylinder of height h and radius r. Volume — ; curved surface — 2-nrh. 
Cone of height h and radius of base r. Volume — J ; curved surface 

— 7rr>v/(r2+ 4^). Height of C. G. above base — JZt, if solid ; J/i, if a thin shell (open 

at base). 

Moment of Inertia of rod or rectangle, length 21, about perpendicular axis through 

centre — ^Ml'^; of circular disc about a diameter, JJIfr®; of circular disc about 

a perpendicular to its plane through the centre, of sphere about a 
diameter, 



TABLE II 
SQUARES, CUBES, SQUARE ROOTS. CUBE ROOTS, AND RECIPROCALS 

OF INTEGERS FROM I TO icx), AND OF e AND tr 

tl n* rfl i/n n n* n® >/n y/n I /n 

1 1 I I I I 51 2601 132651 7*141 3*708 •01961 
2 4 8 1-414 1*260 •50000 52 2704 140(08 7*211 3-733 *01923 
3 9 27 1-732 1-443 •33333 53 2809 148877 7*280 3-756 •01887 
4 16 64 2-OCX> 1-587 *25000 54 2916 157464 7*34‘8 3*780 *01852 
5 25 125 2-236 1-710 *20000 55 3025 166375 7*416 3-803 •01818 

6 36 216 2-449 T-817 •16667 50 3136 175616 7-483 3-826 •01786 
7 49 343 2-646 1-013 *14286 57 3249 185193 7-550 3-849 *01754 
8 64 t; 12 2-828 2-000 •12500 58 3364 195112 7-616 3-871 •01724 
9 81 729 3-000 2-o8o •11111 59 3481 205379 7-681 3-893 •01695 

10 100 1000 3-162 2-154 *10000 60 3600 2I6cXX) 7746 3-915 •01667 

11 121 1331 3-317 2-224 *09091 61 3721 226081 7*8io 3-936 •01639 
144 1728 3-464 2-2vS9 •08333 62 3844 238328 7-874 3-958 •01613 

13 169 2197 3-606 2*351 *07692 63 3969 250047 7-937 3-979 •01587 
14 196 274.1 3-742 2-410 •07143 64 4096 262144 8-(X)0 4-000 •01563 
15 225 3375 3-873 2-466 •06667 65 4225 274625 8-062 4-021 •01538 

16 256 4096 4-000 2-520 •06250 66 4356 287496 8-124 4-041 •01515 
17 289 4913 4-123 2-571 •05882 67 4489 300763 8-185 4-062 *01493 
18 324 5832 4-243 2-621 •05556 68 4624 314432 8-246 4-082 •01471 
19 361 6859 4-359 2-668 •05263 69 4761 328509 8-307 4-102 •01449 
20 400 8000 4-472 2-714 •05000 70 4900 343000 8-367 4-I2I •01429 

21 4.41 9261 4-583 2-759 •04762 71 5041 35791I 8-426 4-141 •01408 
22 484 10648 4-690 2-802 •04545 72 5184 373248 8-485 4-160 *01389 
23 529 12167 4-796 2-844 •04348 73 5329 389017 8-544 4-179 •01370 
24 576 13824 4-899 2-884 •04167 74 5476 405224 8-602 4-198 •01351 
25 625 15625 5-cxjo 2-924 •04000 75 5625 421875 8-66o 4-217 *01333 
26 676 17576 5-099 2-962 •03846 76 5776 438976 8-718 4-236 •01316 
27 729 19683 5-196 3-cxx> •03704 77 5929 456533 8-775 4*254 •01299 
28 784 21952 5-291 3-037 •03571 78 6084 474552 8-832 4-273 •01282 
29 841 24389 5*385 3-072 •03448 79 6241 493039 8-888 4-291 •01266 
30 900 27000 5-477 3-107 •03333 80 6400 512000 8-944 4-309 •01250 

31 961 2979T 5*568 3*141 •03226 81 6561 531441 Q-ooo 4-327 *01235 
33 1024 32768 5*657 3*^75 •03125 82 6724 551368 9-055 4-344 •01220 
33 1089 35937 5*745 3*208 •03030 83 6889 571787 9*110 4-362 *01205 
34 1156 39304 5*831 3*240 •02941 84 7056 592704 9-165 4-380 •01191 
35 1225 42875 5*916 3*271 •02S57 85 7225 614125 9-220 4*397 •01177 

36 1296 46656 6*000 3*302 •02778 86 7396 636056 9*274 4*414 •01163 
87 1369 50653 6-083 3*332 •02703 87 7569 658503 9*327 4*431 *01149 
38 1444 54872 6*164 3*362 *02632 88 7744 681472 9-381 4-448 •01136 
39 1521 59319 6*245 3*391 •02564 89 7921 704969 9-434 4-465 •01124 
40 i6oo 64CK30 6*325 3-420 •02500 90 8100 729000 9-487 4-481 •OIIII 

41 1681 68021 6-403 3*448 •02439 91 8281 753571 9*539 4-498 •01099 
42 1764 74088 6*481 3-476 •02381 92 8464 778688 9-592 4*514 •01087 
43 1849 79507 6-557 3-503 •02326 93 8649 804357 9-644 4*531 •01075 
44 1936 85184 6-633 3-530 *02273 94 8836 830584 9*695 4*547 •01064 
45 2025 91125 6-708 3-557 •02222 95 9025 857375 9*747 4*563 *01053 

46 2116 97336 6-782 3*583 •02174 96 9216 884736 9*798 4*579 *01042 
47 2209 103823 6-856 3-609 *02128 97 9409 912673 9*849 4*595 •01031 
48 2304 110592 6-928 3-634 •02083 98 9604 941192 9*899 4*6io •01020 
49 2401 117649 7*000 3*659 *02041 99 9801 970299 9*950 4-626 •OIOIO 
50 2500 125000 7*071 3*684 •02000 100 10000 1000000 10*000 4*642 •OIOOO 

i 7*389 20*086 1*649 1*396 1 *36788 n 9*8696 31*006 17725 1-465 •31831 

The squares, cubes, and reciprocals of numbers from o to lo at intervals of 
•I may be written down at once from the above table by inserting the decimal 
point in its proper position, e.g. 37* 13-69, 37* - 50-653, ^ - '2703. 
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TABLE III 

SQUARE ROOTS AND CUBE ROOTS OF NUMBERS FROM o-i TO lo 

AT INTERVALS OF o l 

n ^/n n a/h ^71 71 Vn Vn n Vn n Vn 

1 •316 •464 2-1 1-449 1-281 41 2-025 I-601 61 2-470 1-827 8-1 2-846 2-008 
•2 •447 •58s 2-2 i*4«3 I-3OI 4-C 2-049 1-613 6-2 2-490 1-837 8-2 

c
 

cp
 

-3 •548 •66q 2-3 1-517 1-320 4-3 2-074 1-626 6-3 2-510 1-847 8-3 2-88i 2-025 
-4 •632 •737 2-4 1-549 1-339 4-4 2-098 1-639 6-4 2-530 1-857 8-4 2-898 2-033 
-5 •707 •794 2-5 1-581 1-357 4-5 2-121 1-651 65 2-550 1-866 8-5 2-915 2-041 

-6 •77 S •843 2-6 1-612 1-375 4-6 2-145 1*663 66 2-569 I -876 86 2-933 2-049 
-7 *837 -888 27 1-643 1-392 4-7 2-t68 1-675 6-7 2-588 1-885 8-7 2-950 2-057 
•8 •894 •928 28 1-673 1-409 4-8 2-191 1-687 6-8 2-608 1-895 8-8 2-966 2-065 
-9 •949 •965 2-9 1-703 1-426 49 2-214 1-698 6-9 2-627 1-904 89 2-983 2-072 

1-0 I-000 I-000 3-0 1-732 1-442 5-0 2-236 1-710 7-0 2-646 1-913 9 0 3-cxx) 2-080 

11 1-049 1-032 31 1-761 1-458 6-1 '2-258 I-721 71 2-665 1-922 91 3-017 2*088 
12 1-095 1-063 3-2 1-789 1*474 5-2 2-280 1-732 7-2 2-683 I-Q31 9 2 3*033 2-05^5 
1-3 1-140 I-091 3-3 1-817 1-489 5-3 2-302 1*744 7-3 2-702 I '940 9-3! 3-050 2-103 
14 1*183 I-II9 34 1-844 1-504 5-4 2*324 1-754 74 2-720 1-940 9-4 3-066 2-110 
1-5 1-225 i-HS 3-5 1-871 1-518 5-5 2-345 1-765 75 2739 1-957 95 3-082 2-118 

1-6 1-265 1-170 8-6 1-897 1-533 5-6 2-366 1-776 7-6 2757 I -966 9 6* 

0
0

 

9 

1-7 1-304 1*193 3-7 1-924 1-547 5-7 2*387 1-786 77 2-775 1-975 9 7 3-114 2-133 

1-8 1-342 I-2I6 3-8 1-949 1-560 5-8 2-408 1797 7-8 2-793 1-983 9 8 3-130 2-140 
19 I'378 1-239 39 1-975 1-574 5-9 2-429 1-807 79 2-8ii 1-992 9 9 3-146 2-147 
2-0 1-414 1-2^ 4-0 2-000 1-587 6-0 2-449 1-817 8-0 2-828 2-000 10-0 3-162 2-154 

To find the square root of an integer between loo and looo, e.g. 347, we have 
from the above table 

\/340-iov^3-4-i8-44, 

V350-iov'3*5-i87I. 

Using the principle of proportional parts, the difference for 10 -•27 ; hence the 

difference for 7 -•27X iV “‘ip* 

Therefore 347 -18-44+ ’IP -18-63. 
The root may be found more readily by looking out from Table VI the antilog. 

of i log 347 obtained from Table V. 

Similarly, the cube root of any number x is the antilog. of I logz. 
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TABLE IV 
TRIGONOMETRICAL RATIOS AND RADIAN MEASURE OP ANGLES 

FROM 0*^ TO 90® AT INTERVALS OF 

Radians. Degrees. Sines. Tangents. Secants. Cosecants. Cotangents Cosines. 

0 0 0 0 I 00 00 I 90 BSi 
•0175 1 •0175 •0175 1-0002 57-2987 57-2900 •9998 89 1*5533 
'03^19 2 •0349 •0349 1-0006 28-6537 28-6363 *9994 88 1*5359 
•0524 8 •0523 •0524 I-0014 19-1073 19-0811 •9986 87 1.5184 

•0698 4 •0698 •0699 1-0024 '4-3356 I4-30C7 •9976 86 1-5010 

•0873 5 •0872 •0875 1-0038 11*4737 11-4301 •9962 85 1-4835 
•1047 6 -1045 •1051 I'0055 9-5668 9-5144 •9945 84 1-4661 

•1222 7 •1219 •1228 1-0075 8-2055 8-1443 •9925 83 I -4486 

•1396 8 •1392 •1405 1-0098 7-1853 7-1154 •9903 82 1-4312 

*1571 9 ■1564 •1584 I-0125 6-3925 6*3I3« •9877 81 1*4137 

•1745 10 •1736 •1763 I-0154 5-7588 5*6713 -9848 80 1-3963 
•1920 11 •1908 •1944 1-0187 5*2408 5-1446 -9816 79 1-3788 

•2094 12 •2079 •2126 1-0223 4-8097 47046 -9781 78 1-3614 

*2269 18 •2250 •2309 I -0263 4*4454 4*3315 •9744 77 1*3439 
•2443 14 •2419 •2493 I -0306 4-1336 4-0108 *9703 76 1-3265 

•2618 15 •2588 •2679 1*0353 3-8637 3*7321 •9659 75 1*3090 

•2793 16 •2756 •2867 1-0403 3-6280 3-4874 •9613 74 1*2915 

•2967 17 •2924 •3057 I-0457 3*4203 3-2709 •9563 73 1-2741 
•3142 18 •3090 •3249 1-0515 3-2361 3-0777 •9511 72 1-2566 

•3316 19 •3256 •3443 1-0576 3-0716 2-9042 •9455 71 1-2392 

•3491 20 •3420 ‘3640 I -0642 2-9238 2*7475 *9397 70 1*2217 

•3«’5 21 ■3584 •3839 1-0711 2-7904 2-6051 •9336 69 1*2043 

•3840 22 •3746 •4040 1-0785 2-6695 2*4751 -9272 68 1-1868 

•4014 23 *3907 •4245 I -0864 2*5593 2*3559 -9205 67 1*1694 
•4189 24 •4067 .4452 1-0946 2-4586 2-2460 •9135 66 1*1519 

■4363 25 •4226 •4663 I-1034 2*3662 2*1445 •9063 65 1*1345 
■4538 26 •4384 •4877 1-1126 2*2812 2*0503 •8988 64 i-iiyo 

•4712 27 •4540 •5095 1-1223 2-2027 I -9626 -8910 63 1-0996 
•4887 28 •4^>95 •5317 1-1326 2-1301 I -8807 -8829 62 1-0821 

•5061 29 •4848 •5543 1*1434 2-0627 I -8040 •8746 61 1-0647 

•5236 80 •5000 •5774 1*1547 2-0000 1-7321 -8660 60 1*0472 

■5411 81 •5150 •6009 I-1666 1*9416 1-6643 *8572 59 1 *0297 

•5585 82 •5299 •6249 1-1792 1-8871 1-6003 -8480 58 1*0123 
•5760 38 •5446 •6494 1-1924 1-8361 1*5399 -8387 57 .9948 

•5934 84 ■5592 •6745 I -2062 1*7883 I -4826 •8290 56 •9774 

•6109 85 •5736 •7002 I-2208 1*7434 1-4281 *8192 55 •9599 
•6283 86 •5878 •7265 1-2361 17013 1-3764 •8090 54 *9425 
•645S 87 •6018 •7536 1-2521 i*66i6 1-3270 •7986 53 •9250 
•6632 88 •6157 •7813 I -2690 1-6243 1-2799 •7880 52 •9076 
•6807 89 •6293 *8098 1-2868 1-5890 1*2349 •7771 51 •8901 

•6981 40 •6428 •8391 1*3054 1*5557 1*1918 ■7660 50 •8727 

•7156 41 •6561 •8693 1-3250 1*5243 1*1504 *7547 49 •8552 

7330 42 •C/)9i •9004 1*3456 j 1*4945 I *1106 •7431 43 ■8378 
7505 43 •6820 •9325 1-3673 1*4663 1-0724 •7314 47 •8203 
7679 44 •6947 •9657 1-3902 1*4396 1*0355 •7193 46 •8029 

7854 45 •7071 1*0000 I-4142 1-4142 I-0000 *7071 45 •7834 

Cosines. Cotangents. Cosecants. Secants. Tangents. Sines. Degrees. Radians. 

Tile Badian Measure of any other angle can be obtained by Proportional Parts 
[10' - *0029 radian]. 
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TABLE V 

COMMON LOGARITHMS 



COMMON LOGARITHMS, 511 



612 

•87 2344 
■88 2399 
•89 2455 

‘40 2512 
•41 2570 
•42 2630 
•43 2692 
•44 2754 

•45 28i8 
•46 2884 
•47 2951 
•48 3020 
•49 3090 

BiCfereiice-Columns. 

123456780 

0 0 I I I 12 2 2 

0 0 11 I 12 2 2 

0 0 11 I 12 2 2 

O O I I I 12 2 2 

O 1 I I I 2 2 2 2 

0 1 II 1 2 2 2 2 

0 1 II 1 2 2 2 2 

O I I I I 2 2 2 2 

O I I I I 2 2 2 3 

011112223! 



COMMON ANTILOGAPJTHMS 513 

0 12 3 ■B 7 8 9 
’oliimiis. 

1 2 3 -3 5 G 1 7 8 9 

•60 3162 317^ 3^77 3184 3192 3199 3206 3214 3221 3228 I I 2 3 4 4 i 5 6 7 
•61 323'' 3243 3251 3258 3266 3273 3281 3289 320 3304 I 2 2 3 4 5 5 6 7 
•52 3311 33 IQ 3327 3334 3342 3350 3357 3365 3373 3381 I 2 - 3 4 5 5 6 7 
•63 3396 3404 3412 3420 3428 3436 3443 3451 3459 I 2 2 3 4 5 9 6 7 
•54 34^>7 3475 3483 349' 3499 3508 3516 35M 3532 3540 I 2 2 3 4 5 6 6 7 

•55 3548 3556 3565 3573 3581 3589 3597 3606 3614 3622 I 2 2 3 4 5 6 7 7 
•56 3631 3639 3648 3656 3('M 3673 3<'>8i 3^)90 3698 3707 I 2 3 3 4 5 6 7 8 

•67 3715 5724 3733 3741 3750 3758 3767 3776 3784 3793 I 2 3 3 4 5 6 7 8 

•68 3802 3811 381Q 3828 3S37 3846 3855 3864 3873 3882 T 2 3 4 4 5 6 7 8 

•59 3890 3899 3908 3917 3926 3936 3945 3954 3963 3972 I 2 3 4 5 5 6 7 8 

•60 3981 3090 39Q9 4009 4018 4027 4036 4046 4055 4064 I 2 3 4 5 6 6 7 8 

•61 4074 4083 4003 4102 4111 4121 4130 4140 4150 4159 I 2 3 4 5 6 7 8 0 
•62 4t6o 4178 4188 4198 4207 4217 4227 4236 4246 4256 I 2 3 4 5 7 8 9 

•63 4;;('/) 4276 42S5 4295 4305 4315 4325 4335 4345 4355 I 2 3 4 5 6 7 8 9 

•64 4375 4385 4395 4406 4416 4426 4436 4446 4457 I 2 3 4 5 6 7 8 9 

•65 44'''? 4477 4487 4498 4508 4<;i9 4^29 4539 455<^ 45^<^ I 2 3 4 5 6 7 8 9 
•66 4^71 4^81 4j;92 4C03 4613 4(.24 4634 4645 4656 4667 I 2 3 4 5 6 7 9 10 

•67 4(>77 4688 4699 4710 4721 4732 4742 4753 47^4 4775 I 2 3 4 5 7 8 9 10 

•68 47^0 4/97 4808 4819 4831 4842 4853 4864 4875 4887 1 2 3 4 6 7 8 9 10 

•69 4S98 4()tK9 4920 4932 4943 4955 4977 4989 5000 I 2 3 5 6 7 8 9 10 

•70 5012 5035 5047 5058 5070 5082 5093 5^05 5117 I 2 4 5 6 7 8 9 II 

•71 5I2Q t;i40 5152 5164 5176 5188 5200 5212 5224 5236 I 2 4 5 6 7 8 10 11 

•72 5248 ^260 5272 5284 5297 5309 5321 5333 53413 5358 I 2 4 5 6 7 9 10 11 

•73 5370 5383 5395 5408 5420 5433 5445 5458 5470 5483 I 3 4 5 6 8 9 10 11 

•74 15495 5508 5521 5534 5546 5559 5S7i 5385 5598 5610 I 3 4 5 6 8 9 10 12 

•75 5^>23 5636 5649 5662 5675 5689 5702 5715 5728 5741 1 3 4 5 7 8 9 10 12 

•76 5734 ti76S 5781 5794 5808 5821 5H34 5848 5861 5875 1 3 4 5 7 8 g II 12 

•77 5S88 5902 5916 5929 5943 5957 5970 5984 5998 6012 I 3 4 5 7 8 10 I I 12 

•78 (>026 6039 6053 (:o67 ^x:'8i 6095 OJ(:>9 6124 6138 6152 I 3 4 6 7 8 10 II 13 

■79 616C 6180 6194 6209 6223 6237 6252 6266 6281 6295 I 3 4 6 7 9 10 II 13 

•80 6310 6324 6339 6353 6368 6383 6397 6412 6427 6442 I 3 4 6 7 9 10 12 13 
•81 6457 6471 64S6 6501 6516 6531 6546 6561 6577 6592 2 3 5 6 8 9 II 12 14 
•32 6607 6622 6637 9668 6^)83 6699 6714 6730 6745 2 3 5 6 8 9 II 12 14 

•83 6761 6776 6792 6808 6823 6839 6855 6871 6887 6902 2 3 5 6 8 9 II 13 14 
•84 6918 6934 6950 6966 69S2 6998 7015 7031 7047 7063 2 3 5 6 8 10 II 13 15 

•85 7079 7096 7112 7129 7145 7161 7178 7194 7211 7228 2 3 5 7 8 10 12 13 15 
•86 7244 7261 7278 7295 7311 7328 7345 7362 7379 7396 2 3 5 7 8 10 12 13 15 
•87 7413 7430 7447 7464 7482 7409 7516 7534 755' 75f'8 2 3 5 7 9 10 12 14 16 

•88 7580 7f)03 7621 7638 7656 7674 7691 7709 7727 7745 2 4 5 7 9 II 12 14 16 

•89 7762 7780 7798 7816 7834 7852 7870 7889 707 7925 2 4 5 / 9 II 13 M 16 

•90 7943 7962 7080 7998 8017 S035 ^54 8072 8091 8110 2 4 6 7 9 II 13 15 17 

91 8128 8147 8166 8185 8204 8222 8241 8260 8279 8299 2 4 6 8 9 II 13 15 17 
92 8318 8337 8356 8375 8395 8414 8433 8453 8472 8492 2 4 6 8 10 12 14 15 17 

93 8511 85 3' 8551 8570 8590 8610 8630 8650 8670 8690 2 4 6 8 10 12 14 16 18 

94 8710 8730 8750 8770 8790 8810 8831 8851 8872 8892 2 4 6 8 10 12 14 16 i8 

95 89^3 8933 8934 8974 8995 9016 9036 9057 9078 9099 2 4 6 8 10 12 15 17 19 
96 9120 QI4I 9162 9183 9204 9226 9247 9268 9290 9311 2 4 6 8 II 13 15 17 19 

97 9333 9354 9376 9397 941Q 9441 9462 9484 9506 9528 2 4 7 9 II 13 r5 17 20 

98 955^ '9572 9>Q4 9638 9661 9683 9705 9727 9750 2 4 7 0 II 13 10 10 201 

•99 9772 9795 9817 9840 9863 q886 9fX)8 0931 9954 9977 2 5 7 0 II 14 ID IS 

X. I IMI 
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TABLE VII 

NATURAL SINES OF ANGLES FROM o* TO 90” AT INTERVALS OF i' 

Natural Cosines may be obtained from this table, by using the fact that 
cos A — sin (90“—A). 

O' 6' 12' 18' 24' 30' 36' 42' 48' 54^ 
D a El 4' 6' 

0° •OCXX) 0017 0035 0052 0070 0087 0105 0122 0140 0157 3 6 9 12 15 
1 •0175 0192 0209 0227 0244 0262 0279 0297 0314 0332 3 6 9 12 IS 
2 '0349 0366 0384 0401 0419 0436 0454 0471 0488 0506 3 6 9 12 15 
3 *0523 0541 055« 0576 0593 0610 0628 0641; 0663 0680 3 6 9 12 15 
4 •0698 0715 0732 0750 0767 0785 0802 0819 0837 

CO 0
 3 6 9 12 15 

5 •0872 0889 0906 0924 0941 0958 0976 0993 lOI I 1028 3 6 9 12 14 
6 •1041; 1063 1080 logy II15 1132 1149 1167 1184 1201 3 6 9 12 14 
7 •1219 1236 1253 1271 1288 1305 1323 i34^> 1357 1374 3 6 9 12 14 
8 •1392 1409 1426 1444 1461 1478 1495 IU3 i53<^ 1547 3 6 9 12 14 
9 •1564 1582 1599 1616 1633 1650 1668 16S5 1702 1719 3 6 9 12 14 

10 •173^) 1754 1771 1788 1805 1822 1840 1857 1874 1891 3 6 9 12 14 
11 •1908 1925 1942 1959 1977 1994 2011 2028 2045 2062 3 6 9 II 14 
12 •2079 2CX}6 2113 2130 2147 2164 2181 219S 2215 2233 3 6 9 II 14 
13 •2250 2267 2284 2300 2317 2334 2351 2368 2385 2402 3 6 8 II 14 
14 •2419 2436 2453 2470 2487 2504 2521 2^8 2554 2571 3 6 8 II 14 

15 •2588 2605 2622 2639 2656 2672 2689 2706 2723 2740 3 6 8 II 14 
16 •2756 2773 2790 2S07 2823 2840 2857 2874 2890 2907 3 6 8 II 14 
17 •2924 2940 2957 2974 2990 3007 3024 3040 3057 3074 3 6 8 II 14 
18 •3090 3107 31^ 3140 3>S6 3173 3190 3206 3223 3239 3 6 8 II 14 
19 •3256 3272 3289 3305 3322 333» 3355 3371 3387 3404 3 5 8 II 14 

20 •3420 3437 3453 3469 3486 3502 3518 3535 3551 3567 3 5 8 II 14 
21 *3584 3600 3616 3633 3649 3665 3681 3714 3730 3 5 8 II 14 
22 •3746 3762 3778 3795 3811 3827 3843 3859 3875 3891 3 5 8 II 14 
23 *3907 3923 3939 3955 3971 3987 4003 4019 4035 4051 3 5 8 11 14 
24 •4067 4083 4099 4115 4131 4147 4163 4179 4195 4210 3 5 8 I I 13 

25 •4226 4242 4258 4274 4289 4305 4321 4337 4352 4368 3 5 8 II 13 
26 •4384 4399 4415 4431 4446 4462 4478 4493; 4509 4524 3 5 8 10 13 
27 •4540 4555 4571 4586 4602 4617 4633 4648 4664 4679 3 5 8 10 13 
28 •4695 4710 4726 4741 4756 4772 4787 4802 4818 4833 3 5 8 10 13 
29 •4848 4863 4879 4894 4909 4924 4939 4955 i 4970 4985 3 5 8 10 13 

30 •5000 5015 5030 5045 5060 5075 5090 5*05 5120 5135 3 5 8 10 13 
31 •5150 5165 5180 5195 5210 5225 5240 5255 5270 5284 2 5 7 10 12 
32 •5299 5314 5329 5344 5358 5373 5388 5402 5417 5432 2 5 7 10 12 
33 •5446 5461 5476 5490 5505 5519 5534 5548 5563 5577 2 5 7 10 12 
34 •5592 5606 5621 5635 5650 5664 5678 5693 5707 5721 2 5 7 10 12 

35 •5736 5750 5764 5779 5793 5807 5821 5835 5850 5864 2 5 7 9 12 
36 •5878 5892 5906 5920 5934 5948 5962 5976 5990 6004 2 5 7 9 12 
37 •6018 6032 6046 6060 6074 6088 6101 6115 6129 6143 2 5 7 9 12 
38 •6157 6170 6184 6198 6211 6225 6239 6252 6266 6280 2 5 7 9 II 

39 •6293 6307 6320 6334 6347 6361 6374 6388 6401 6414 2 4 7 9 II 

40 •6428 6441 6455 6468 6481 6494 6508 6521 6534 6547 2 4 7 9 II 

41 •6561 6574 6587 6600 6613 6626 6639 6652 6665 6678 2 4 71 9 II 

42 •6691 6704 6717 6730 6743 6756 6769 6782 6794 6807 2 4 6 9 11 
43 '6820 6833 6845 6858 6871 6884 6896 Ogog 6921 6934 2 4 6 8 II 

44 •6947 6959 6972 6984 6997 700Qj 7022 7034 7046 7059 2 4 6 8 10 



NATURAL SINES 615 

O' 6' 12' 18' 24' 30' 3C' 42' 48' 54' 

45° 7071 7083 7096 7108 7120 7133 7145 7157 7169 7181 

46 7193 7206 7218 7230 7242 7254 7266 7278 7290 7302 

47 7314 7325 7337 7349 7361 7373 7385 7396 7408 7420 

48 7431 7443 7455 7496 7478 7490 7501 7513 7524 7536 
49 7547 7559 7570 7581 7593 76fH 7615 7627 7638 7649 

50 7660 7672 7^>83 7694 7705 7716 7727 7738 7749 7760 

51 7771 7782 7793 7804 7815 7826 7837 7848 7859 7869 

52 7880 7891 7902 7912 7923 7934 7944 7955 7965 7976 

53 7986 7997 8cx)7 8018 8028 8039 8049 8059 8070 S080 

54 •8090 81CX) 8111 8121 8131 8141 8151 8161 8171 8181 

55 •8192 8202 S211 8221 8231 8241 8251 8261 8271 8281 

56 •8290 8300 8310 8320 83^9 «339 8348 8358 8368 8377 
57 8396 8406 8415 8425 8434 8443 8453 8462 8471 

58 •8480 84CPO 8499 8508 8517 S326 8536 8e;45 8554 8563 
59 •8572 8581 8590 8599 8607 8616 8625 8634 8643 8652 

60 •8660 8669 8678 8686 8695 8704 8712 8721 8729 8738 
61 •8746 8755 87f>3 8771 8780 8788 8796 8805 8813 8821 

62 •8829 8838 8846 8854 88(32 8870 8878 8886 8894 8902 

63 •8910 8918 8926 8934 8942 8q4q 8957 8965 8973 8980 

64 •8988 8996 9003 9011 9018 9026 9033 9041 9048 9056 

65 •9063 9070 9078 9085 9092 9100 9107 9114 9121 9128 

66 •9^35 9143 9150 9157 9164 9171 9178 9184 9191 9198 

67 •9205 92 j 2 9219 9225 9232 9239 9245 9252 9259 9205 

68 •9272 9278 9285 9291 9298 19304 9311 9317 9323 9330 
69 •9336 9342 9348 9354 9361 9367 9373 9379 9385 9391 

70 •9397 9403 9409 9415 9421 9426 9432 9438 9444 9449 
71 •9455 9461 9466 9472 9478 9483 9489 9494 9500 9505 
72 •9511 9516 9521 9527 9532 9537 9542 9548 9553 9558 
73 •9563 9568 9573 9578 9583 9588 9593 9598 9^xJ3 9(xj8 
74 •9613 9617 9O22 9627 9632 9636 9641 9646 9650 9655 

75 •9<559 9664 9668 9673 9677 9681 9686 9690 9694 9699 

76 •9703 9707 9711 9715 9720 9724 9728 9732 9736 9740 

77 •9744 9748 9751 9755 9759 9763 9767 9770 9774 977S 

78 •9781 9785 9789 9792 9796 9799 9803 98(j6 9810 9813 
79 •9816 9820 9823 9826 9829 9833 9836 9839 9842 9845 

80 •9848 9S51 9854 9S57 9860 9863 9866 9869 9871 9874 

81 •9877 9880 9882 9885 9SSS 9890 9893 9S95 9898 9900 

182 *99<^3 9905 9907 9910 9912 9914 9917 9919 9921 9923 
83 •9925 9928 9930 9932 9934 9936 9938 19940 9942 9943 
84 •9945 9947 9949 9951 9952 9954 9956 9957 9959 99(30 

85 •9962 9963 9965 9966 9968 99<^ 9971 9972 9973 9974 
86 •9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 

87 •9986 9987 9988 9989 9990 9990 9991 9992 9993 9993 
88 •9994 9995 9995 9996 9996 9997 9997 9997 9998 9998 

89 •9998 9999 9999 9999 9999 i-ooo I-OOO I-ooo I-ooo I-ooo 

Minu tf'S. 

1' 2' 3' 4' 5' 

2 4 6 8 10 
2 4 6 8 10 
2 4 6 8 10 
2 4 6 8 10 

2 4 6 8 9 

2 4 6 7 9 
2 4 5 7 9 
2 4 5 7 9 
2 3 5 7 9| 
2 3 5 7 8 

2 3 5 7 s' 

2 3 5 6 8 
2 3 5 6 8 
2 3 5 6 8 
I 3 4 6 7 

I 3 4 6 7 
I 3 4 6 7 
I 3 4 5 7 
I 3 4 5 6 

I 3 4 5 6 

|l 2 4 5 6 
I 2 3 5 () 

I 2 3 4 6 
! I 2 3 ! ^ 

5 

i I 2 3 4 5 

|i 2 3 4 5 
I 2 3 4 5 
I 2 3 4 4 
I 2 2 3 4 
I 2 2 3 4 

I I 2 3 4 
I I 2 3 3 
I I 2 3 3 
I I 2 2 3 
I 1 2 2 3 

0 I I 2 2 
0 I I 2 2 
0 I 1 2 2 
0 I I I 2 
0 I I I 2 

0 0 I I 1 

0 0 1 I I 

0 0 0 I I 

0 0 0 0 0 

0 0 0 0 0 

l12 
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TABLE Vm 

NATURAL TANGENTS OF ANGLES PROM o' TO 90' AT INTERVALS OF i' 

Natural GutangenU muy be obtained from this table, by using the fact that 
cot A - tan(90°—A). 



NATURAL TANGENTS 617 

45 I oax) 
48 1-0355 
47 1*0724 
48 i*iro6 
49 1*1504 

50 1*1918 
51 1-2349 
52 1*2799 
53 1*3270 
54 1-3764 

55 1-4281 
50 1-4826 
57 1-5399 
58 I -6003 
59 1-6643 

60 1-7321 
61 I -8040 
62 1-8807 
63 1-9626 
84 2-0503 

65 2-1445 
60 2-2460 
67 2-3559 
68 2-4751 
69 2-6051 

70 2-7475 
71 2-9042 
72 3-0777 
73 3-2709 
74 3-4874 

75 3-7321 
76 4-0108 
77 4'31'5 
78 4-7046 
79 5-1446 

80 5-6713 
81 6-3138 
82 7-1154 
83 8-1443 
84 9-5144 

85 11*430 
86 14*301 
87 19*081 
88 28*636 
89 57*290 

84' 30' 30' 

0141 0176 0212 
0501 0538 0575 
0875 0913 0951 
1263 1303 1343 
1667 1708 1750 

2088 2131 2174 
2527 2572 2617 ^ 
2985 3(>32 3079: 
3465 3514 35f'>4 
3968 4019 4071 

4496 4550 ' 4605 
5051 5108 5166 
5637 5697 5757 
6255 6319 63S3 
6909 6977 7045 
7603 7675 7747 
8341 8418 8495 
9128 9210 9292 
9970 6057 0145 
0872 0965 1060 

1842 1943 2045 
2889 2998 3109 
4023 4142 4262 
5^57 53S6 55J7 
6605 6746 6889 

8083 8239 8397 
97H 9887 0061 
1524 1716 1910 
3544 3759 3977 
5816 6059 6305 

S391 8667 8947 
U35 1653 1976 
4737 5107 5483 
8716 9152 9594 
3435 3955 4486 

9124 9758 6405 
6122 6912 7920 

4947 5958 6996 
6427 7769 9152 
10*20 10-39 10*58 

12-43 12-71 13-00 
15*89 J6-35 16*83 
22*02 22-90 23*86 
35*80 38-19 40*92 
95-49 114*6 143-2 

1 Minutes. | 

1' 2' 3' 4' 5' 

6 12 18 24 30 
6 12 18 25 31 
6 13 19 25 32 
7 13 20 26 33 
7 14 21 28 34 

7 14 22 29 36 
8 15 23 30 38 
8 16 23 31 39 
8 16 25 33 41 
9 17 26 34 43 

9 18 27 36 45 
10 19 29 38 48 
10 20 30 40 50 
11 21 32 43 53 
11 23 34 45 56 
12 24 3^> 48 60 

13 26 38 51 64 
27 41 55 68 

15 29 44 58 73 
16 47 63 78 

17 34 51 68 85 
18 37 55 74 92 
20 40 60 79 99 
22 43 65 87 108 

24 47 71 95 118 

26 52 78 104 
29 58 87 115 144 
32 64 96 129 161 
36 72 io8 144 180 
41 81 122 162 203 

^9721 Use Proportional 
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TABLE IX 

NAPIEKIAN OR nYPERBOLIC LOGARITHMS OF NUMBERS 

FROM I TO 10 AT INTERVALS OP -ooi 

From tliis table, tho hyperbolic logarithm of any four-digit number up to loooo may be 

obtained, 

e. g, log 27-9 « lop 279 +log 10 « 1*0260-1-2*3026 « 3*3286. 

R»g 5137 “ 5-137+ = 1*6365 + 6.9078 - 8*5443. 

log *0279 « log 2*79-log 100 1*0260-4*6052 « “■ 3-5792* 

DilTorence-ColunmM. 
0 123466789-t- 

123456789 

1*0 *0000 oia) 0198 0296 0392 0488 0583 0677 0770 0862 10 19 28 38 48 57 67 76 86 

1*1 *0^)53 1044 1133 1222 1310 1398 1484 1570 1655 1740 Q 17 26 35 44 52 61 70 78 

1-2 *1823 1906 1989 2070 2151 2231 2311 2390 2469 2546 8 16 24 32 40 48 56 64 72 

1*3 *2624 2700 2776 2852 2027 3001 3075 3148 3221 3293 7 15 22 30 37 45 52 59 67 

1-4 *3365 3436 3507 3577 3646 3716 3784 3853 3920 3988 7 14 20 27 34 41 48 55 62 

1*5 *4055 4121 4187 4253 4318 4383 4447 4511 4574 4637 6 13 19 25 32 38 45 51 58 

1*6 *47^ 4762 4824 4S86 4947 5008 5068 5128 5188 5247 6 12 18 24 30 36 42 48 54 

1*7 *5^06 5365 5423 5481 5539 5596 5653 5710 5766 5822 6 II 17 23 28 34 40 45 51 

1- 8 *5878 5933 5988 6043 6098 6152 6206 6259 6313 6366 5 II 16 21 27 32 37 43 48 

1*9 *6419 6471 6523 6575 6627 6678 6729 6780 6831 6881 5 10 15 20 26 31 36 41 46 

2*0 *6931 6981 7031 7080 7129 7178 7227 7275 7324 7372 5 10 15 19 24 29 34 39 43 

2*1 *7419 7467 7514 75^^^ 7^^5 7701 7747 7793 7^3^ 5 14 19 23 28 33 37 42 
2- 2 *7885 7930 7975 8020 8065 8109 8154 8198 8242 82S6 4 9 13 18 22 27 31 36 40 

2*3 *8329 8372 8416 8459 8502 8544 8587 8629 8671 8713 4 9 13 17 21 26 30 34 38 

2*4 *8755 8796 8838 8879 8920 8961 9002 9042 9083 9123 4 8 12 16 20 24 29 33 37 

2*5 -9163 9203 9243 9282 9322 9361 9400 9439 9478 9517 4 8 12 i6 20 24 27 31 35 

2-6 ‘9555 9594 9632 9670 9708 9746 9783 9vS2i 9858 9895 4 8 ii 15 19 23 26 30 34 

2*7 *9933 9969 e>oo6 rx)43 ^*5^ ‘-^^88 0225 0260 4 7 ii 15 18 22 25 29 33 

2-8 1*0296 0332 0367 0403 0438 0473 0508 0543 0578 0613 4 7 II 14 18 21 25 28 32 

2*9 1*0647 0716 0750 0784 0815 0852 0886 0919 0953 3 7 10 14 17 20 24 27 31 

3*0 1-0986 1019 1053 1086 1119 1151 1184 1217 1249 1282 3 7 10 13 16 20 23 26 29 

3*1 1*1314 1346 1378 1410 1442 1474 1506 1537 1569 1600 3 6 10 13 16 19 22 25 28 

3*2 1*1632 1663 1694 1725 1756 1787 1817 1848 1878 1909 3 6 9 12 15 18 22 25 28 

3*3 1*1939 ^9^9 2000 2030 2060 2090 2119 2149 2179 2208 3 6 9 12 15 18 21 24 27 

3*4 1*2238 2267 2296 2326 2355 2384 2413 2442 2470 2499 3 6 9 12 15 17 20 23 26 

3*5 1*2528 2556 2585 2613 2641 2669 2698 2726 2754 2782 3 6 9 II 14 17 20 23 25 

13*6 1*2809 2^37 2865 2892 2920 2947 2975 3002 3029 3056 3 5 8 II 14 16 19 22 25 

3*7 1*3083 3110 3137 3164 3191 3218 3244 3271 3297 3324 3 5 8 II 13 16 19 21 24 

8-8 1*3350 3376 3403 3429 3455 3481 3507 3533 355® 35^4 3 5 8 10 13 16 i8 21 23 
3*9 1*3610 3635 3661 3686 3712 3737 3762 3788 3813 3838 3 5 8 10 13 15 18 20 23 

4*0 1*3863 3888 3913 3938 3962 3987 4012 4036 4061 4085 2 5 7 10 12 15 17 20 22 

4*1 1*4110 4134 4^59 4183 4207 4231 4255 4279 4303 4327 2 5 7 10 12 14 17 19 22 

4*2 1*435^ 4375 4398 4422 4446 44^19 4493 45^6 4540 4563 2 5 7 9 12 14 17 19 21 

4*3 1*4586 4609 4633 4656 4679 4702 4725 4748 4770 4793 2 5 7 9 12 14 16 18 21 

4*4 1*4816 4839 4861 4884 4907 4929 4951 4974 4996 5019 2 5 7 9 II 13 16 18 20 

4*5 1*5041 5063 5085 5107 5129 5151 5173 5195 5217 5239 247 9 II 13 15 18 20 
4*6 1*5261 5282 5304 5326 5347 5369 5390 5412 5433 5454 2 4 6 9 n 13 15 17 19 

4*7 1*5476 5497 5518 5539 5560 5581 5602 5623 5644 5665 246 8 II 13 15 17 19 

4*8 1*5686 5707 5728 5748 5769 5790 5810 5831 5851 5872 2 4 6 8 10 12 14 16 19 

4*9 1*5892 5913 5933 5953 5974 5994 6014 6034 6054 6074 2 4 6 8 10 12 14 16 18 



NAPIERIAN OR HYPERBOLIC LOGARITHMS 619 

6-0 1*6094 

5-1 1*6292 

5*2 1*6487 

5- 3 1*6677 

6- 4 1*6804 

5'5 1*7047 

6*6 1*7228 

5'7 1*7405 

5- 8 1*7579 
6*9 1*7750 

60 17918 

6- 1 1*8083 
6*2 1*8245 
6- 3 1*8405 

6*4 1*8563 

6*5 1*8718 

6*6 1*8871 

6*7 1*9021 

6*8 1*9169 

6*9 1*9315 

7*0 1*9459 
7*1 1*9601 

7*2 1*9741 

7*3 1*9879 

7*4 2*0015 

7- 5 2*0149 
7*6 2*0281 

7*7 2*0412 

7*8 2*0541 

j 7*9 2*0669 

8*0 2*0794 

! 8*1 2*0919 

I 8*2 2*1041 

I 8*3 2*1163 

j 8*4 2*1282 

j 8*5 2*1401 

8*6 2*1518 

i 8*7 2*1633 

8- 8 2*1748 

! 8*9 2*i86i 

I 9*0 2*1972 

9*1 2*2083 

' 9*2 2*2192 

9*3 2*2300 

I 9*4 2*2407 

9*5 2*2513 

9*6 2*2618 

j 9*7 2*2721 

I 9*8 2*2824 

9*9 2*2925 

10*0 2*3026 

6174 61 

6371 63 
6563 65 

6752 67 

6938 69 

7120 71 

7299 73 
7475 74 

6233 6253 6273 

6429 6448 6467 

6620 6639 6658 

6808 6827 6845 

6993 7011 7029 

7174 7192 7210 

7352 7370 73^7 
7527 7544 7561 
7099 7716 7733 

7S67 7884 7901 

8034 8050 8066 

8197 8213 8229 

8358 8374 83CX) 

8516 8532 8547 

8672 8687 8703 

8825 8840 8856 

8976 8991 9006 

9125 9140 9155 

9272 9286 9301 

9416 9430 9445 

9559 9573 95^7 

1939 1950 1961 

2586 2597 2607 
2690 2701 2711 

log 10000-9*2103 

Difference- Columns. 

1 2 3 4 5 6 7 8 9 

2 4 6 8 10 12 14 16 18 

2 4 6 8 TO 12 H 16 18 

2 4 6 8 10 11 13 ^5 17 
2 4 6 7 9 I I 13 IS 17 
2 4 6 7 9 II 13 15 16 

2 4 5 7 9 II 13 14 16 

2 4 5 7 9 II 12 14 16 

2 3 5 7 9 10 12 H 16 

2 3 5 7 9 10 12 14 15 
2 3 5 7 8 10 12 13 15 

2 3 5 7 8 10 12 13 15 
2 3 5 6 8 10 11 13 15 
2 3 5 6 8 10 II 13 14 
2 3 5 8 9 II 13 14 
2 3 6 8 9 11 12 14 

2 3 6 8 9 II 12 14 
2 3 5 6 8 9 II 12 13 
I 3 4! 6 7 9 10 12 13 
I 3 4, 6 7 9 10 11 13 
I 3 4; 1 6 7 9 10 11 13 

I 3 4 6 7 9 10 II 13 
I 3 4 6 7 8 10 11 12 

I 3 4i 6 7 8 10 11 12 

I 3 4| 5 7 8 9 11 12 

I 3 4 5 7 8 9 11 12 

I 3 4 5 7 8 9 ii 12 

I 3 4 5 7 8 9 10 12 

I 3 4 5 6 8 9 10 12 

I 3 4 5 6 8 9 10 11 

I 3 4 S 6 8 9 10 II 

I 2 4 5 6 7 9 10 II 

I 2 4 5 6 7 9 10 II] 

1 2 4 5 6 7* 8 10 ii! 
I 2 4 5 6 7i 8 10 II 

I 2 4 S 6 7 8 9 11 

I 2 4 5 6 7 8 9 II 

I 2 3 S 6 7 8 9 10 

I 2 3 5 6 7 8 9 10 

I 2 3 5 6 7 8 9 10 
I 2 3 4 6 7 8 9 10 

I 2 3 4 6 7 8 9 10 

I 2 3 4 5 7 8 9 10 

1 2 3 4 5 6 8 9 10 
I 2 3 4 5 6 7 9 10 

I 2 3 4 5 6 7 8 10 

I 2 3 4 5 6 7 8 9 
I 2 3 4 5 6 7 8 9 
I 2 3 4 S 6 7 8 9 
I 2 3 4 5 6 7 8 9 
I 2 3 4 5 6 7 8 9 

log 100,000 -1 1*5129 
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TABLE X 

EXPONENTI AL AND HTPERBOLIC FUNCTIONS 

(a) Values of e* [Hyperbolic Antilofjaritbms], *“*, einhx end coshx from x - o to x » 2 99 

at intervals of -oi. 

r' X Hi nil X comIi X X siiilix coall X r* X sinh X cosh X 

I 1 •00 0 1 1-5683 -6376 •46 •4653 1*1030 2*4596 *4066 •90 1-0265 1*4331 
I *0101 99CX) •01 *0100 I-0001 1-5841 -6313 •46 *4764 1*1077 2-4843 *4025 *91 1-0409 1-4434 
I *0202 9802 •02 *0200 1*0002 1*6000 •6250 •47 -4875 1-1125 2‘S093 -3985 *92 1-0554 1-4539 
1-0305 9704 •03 *0300 1*0005 i-6i6i *6188 •4« •4986 1*1174 2-5345 -3946 *93 1 *0700 1-4645 
1*0408 9608 •04 •0400 1*0008 1*6323 •6126 •49 -5098 1*1225 2-5600 •3906 •94 I -0847 1*4753 
1*0513 9512 •05 *0500 1*0013 I -6487 •6065 •50 *5211 1*1276 2-5857 -3867 •95 1*0995 1*4862 

I *0618 9418 •06 •0600 1*0018 1-6653 •6005 •51 •5324 M329 2-6117 -3829 •96 1*1144 1**1973 
1*0725 9324 •07 *0701 1*0025 1*6820 •5945 •52 -5438 1-1383 2-6379 *3791 •97 1*1294 1-5085 

1-0833 9231 •08 •0801 1*0032 1-6989 •5886 •53 •5552 1-1438 2-6645 •3753 •98 1-1446 1*5199 
1*0942 9*39 •09 *0901 1*0041 i-7i6o -5827 -54 •5666 I *1494 2-6912 -3716 •99 1-1598 1*5314 

1*1052 9048 •10 •1002 1*0050 17333 -5769 •55 -5782 1*1551 2-7183 •3679 1-00 1*1752 1*5431 
1*1163 •11 •1102 1*0061 1-7507 *5712 •56 -5897 1*1609 2-7456 -3042 1-01 1-1907 1*5549 
1*1275 8869 •12 •1203 I*CK')72 1-76S3 -5655 •57 •6014 1*1669 2-7732 •3006 1-02 1-2003 1*5669 
1-1388 8781 •13 •1304 1*0085 1-7860 *5599 •58 *6131 1*1730 2-8oii *3570 1-03 1*2220 1*5790 

1*1503 8694 •14 •1405 1*0098 1-8040 *5543 •59 •6248 1*1792 2*8292 ‘3535 104 1-2379 1*5913 

I*i6i8 8607 •15 •1506 I*0II3 1-8221 -5488 •60 •6367 1-1855 2-8577 *3499 105 1*2539 1*6038 

I-I735 8521 •16 •1607 1-0128 1*8404 •5434 •61 -6485 1*1919 2*8864 ■3465 106 1*2700 1*6104 
1-1853 8437 •17 •1708 I-0145 1-8589 *5379 •62 •6605 i*iq84 2-9154 *3430 1-07 1*2862 1*6292 

1*1972 «353 •18 •1810 I'0162 1-8776 -5326 •63 -6725 I*20U 2-9447 ■3396 1-08 1*3025 1*6421 

1*2092 8270 •19 •1911 i-oi8i 1-8965 •5273 •84 •6846 1*2119 2*9743 -3364 109 1*3190 1-6552 

1*2214 8187 •20 •2013 1*0201 1*9155 •5220 •65 •6967 1-2188 3-0042 *3320 MO 1-3356 1*6685 

1*2337 8106 •21 •2*115 1*0221 1-9348 •5169 •66 •7090 1*2258 3'03-l4 *3296 111 1-3524 1*6820 

1*2461 8025 •22 •2218 *•0243 1*9542 *5117 •67 7213 1-2330 3*0649 *3203 112 1-3693 I *6<>56 
1*2586 7945 •23 •2320 1*0266 1*9739 •5066 •68 -7336 1*2402 3*0957 •3230 M3 1-3863 1*7^3 
1*2712 7806 •24 *2423 I *0289 1*9937 •5016 •69 -7461 1*2476 3*1268 •3198 M4 1-4035 1*7233 

1*2840 7788 •25 •2526 1*0314 2-0138 •4966 •70 -7586 1*2552 3-1582 •3166 M5 1*4208 1*7374 
1*2969 77*1 •26 •2629 1*0340 2*0340 *4916 •71 •77:2 1 *2628 3-1899 *3135 M6 1-4382 1*7517 
1*3100 7634 •27 ■2733 1-0367 2*0544 *4868 •72 •7838 1*2706 3-2220 •3104 M7 1-4558 1*7662 

1-3231 7558 •28 •2837 1*0395 2-0751 •4819 •73 •7966 1-2785 3*2544 •3073 M8 1-4735 1*7808 

1-3364 7483 •29 -2941 1*0423 2-0959 *4771 •74 •8094 I *2865 3*2871 •3042 M9 1-4914 1*7957 

1*3499 7408 •30 •3045 **0453 2*1170 •4724 •75 *8223 1*2947 3-3201 •3012 1-20 1-5095 1*8107 

1*3634 7334 •31 -3150 I *0484 2-1383 *4677 •76 -8353 1-3030 3*3535 •2982 1-21 1-5276 1*8258 

1*377* 7261 •32 •325s 1*0516 2*1598 •4630 •77 -84S4 1*3114 3*3^72 •2952 1-22 1-5460 1*8412 

1-39*0 7189 •33 ■3360 **0549 2*1815 •4584 •78 •8615 1*3199 3-4212 •2923 1-23 1-5645 1*8568 

1*4049 7118 -84 -3466 1*0584 2*2034 *4538 -79 •8748 1-3286 3*455^ -2S94 1*24 I.5S3I 1-8725 

1*419* 7047 •85 •357* 1*0619 2*2255 *4493* •80 •8881 1*3374 3*4903 -2865 1-25 1*6019 

0
0

 
0

0
 

0
0

 

1*4333 6977 •36 -3678 1-0655 2*2479 •4449; •81 •9015 1-3464 3*5254 -2837 1'26 1*6209 1*9045 

1*4477 6907 •37 ■3785 1*0692 2*2705 •4404 •82 •9150 1-3555 3-5609 -2808 1-27 1*6400 I *9208 
1-4623 6839 •38 -3892 *•073* 2-2933 *4360 •83 •9286 1-3646 3-5966 •2780 1-28 1-6593 1*9373 
1-4770 6771 •39 •4000 1*0770 2-3164 *4317 •84 *9423 1-3740 3*6328 *2753 1*29 1-6788 1*9540 

1*4918 6703 •40 •4108 I *0811 2-3396 •4274 •85 -9561 1-3835 3.6693 •2725 1-30 1-6984 1.9709 
1*5068 6637 •41 *4216 1*0852 2-3632 •4232 •88 -9700 1-3932 3*7062 •2698 1-31 1-7182 1*9880 
1*5220 6570 *42 •4325 1*0895 2-38^ •4190 •87 -9840 I *4029 3*7434 •2671 1-32 1-7381 2-0053 

1*5373 6505 •43 *4434 1-0939 2*4109 •4148 •88 -9981 1*4128 3-7810 -2645 1'33 1-7583 2-0228 
1*5527 6440 •44 •4543 1*0984 2-4351 *4107 •89 1*0122 1*4229 3*8190 •2618 1-84 1-7786 2-0404 
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X siah % cosh x 

•2592 1-35 17991 2-0583 6*6859 -14961-90 3-2682 3-4177 
•25671-361-8198 2-0764 67531 •14811-913-3025 3-4506 
•25411-871-8406 2-0947 6-8210 *14661-92 3-3372 3-4838 
•25161-38 1-8617 2-1132 6*8895 •14511-933-3722 3-5173 
•24911-391-8829 2-1320 6-9588 -1437 l'94f 3-4075 3-5512 

•24661-40 1-9043 2-1509 7*0287 -14231-953*4432 3-5855 
•24411-411-9259 2-1700 7*0993 •14091*963-4792 3-6201 
•24171-421.9477 2-1894 7*1707 *13951*973-5156 3-6551 
•23931-431*9697 2-2090 7-2427 •13811*983-5523 3-6904 
•23691-441-9919 2-2288 7*3155 *13671*993*5894 37261 

•23461-452-0143 2-2488 7*3891 *13532-003-6269 3-7622 
•23221-462-0369 2-2691 7*4633 •13402-013-6647 3*7987 
•22991-472-0597 2-2896 7*5383 *13272-023-7028 3-8355 
•22761-48 2-0827 2-3103 7*6141 •13132-033-7413 3-8727 
•2254 1-49 2-1059 2-3312 7-6906 -13002-0437803 3-9103 

•22311-502-1293 2-3524 7-7679 •12872-053-8196 3-9483 
•22091-512-1529 2-3738 7-8460 •12752-063-8593 3-9867 
•2187 1-522-1768 2-3955 7-9^8 -12022-073-8993 4-0255 
•21651-532-2008 2-4174 8-0045 *12492-083-9398 4-0647 
•21441-54 2-2251 2-4395 8-0849 -12372-093-9^)6 4-1043 

•2122 1-55 2-2496 2-4619 8-1662 -1225 2-104-0219 4-1443 
•2101 1-56 2-2743 2*4845 8-2482 -12122*114-0635 4-1847 
•20801-57 2-2993 2-5073 8-3311 -12002-124-1056 4-2256 
•20601-582-3245 2-5305 8-4149 -11882-134-1480 4-2669 
•2039 1-59 2-3499 2-5538 8-4994 -11772-144-1909 4-3085 

•20191-602-3756 2-5775 8-5849 -1165 2-154-2342 4-3507 
•1999 1*61 2-4015 2-6014 8-6711 •11532-164*2779 4-3932 
•19791-622-4276 2-6255 8-7583 •1142 2-174-3221 4-4362 
•19591*632-4540 2-6499 8-8463 •1130 2-18 4-3666 4*4797 
•19401-642-4806 2*6746 8-9352 -11192-194-4116 4’5236 

•19201-652*5075 2-6995 9*0250 •11082*204-4571 4-5679 
•1901 1-662-5346 2-7247 9*1157 •10972-214-5030 4-6127 
•1882 1-67 2-5620 2-7502 9-2073 •10862-224-54944-6580 
•18641-682-5896 2*7760 9*2999 •10752-234-5962 4-7037 
•18451-692*6175 2-8020 9*3933 *10652-244-6434 4-7499 

•1827 1-70 2-6456 2*8283 9*4877 •10542-254-6913 4-7966 
•18091-712*6740 2-8549 9-5831 •10442-264-7394 4-8437 
•1791 1-72 2-7027 2-8818 9-6794 *1033 2-27 4-7881 4-8914 
•17731*732-7317 2-9090 9-7768 •10232-284-8372 4-9395 
•17551*742-7609 2-9364 9*8749 *1013 2-29 4-8868 4-9881 

•17381*752-7904 2-9642 9-9742 •10032-304-9370 5-0372 
•17201-76 2-8202 2-9922 10-074 -0993 2-314-9876 5-0868 
•17031*772-8503 3-0206 10-176 -0983 2-325-0387 5-1370 
•16861-782-8806 3*0492 10-278 •09732-335-0903 5-1876 
*16701-792-9112 3-0782 10-381 *09(53 2-34 5*1425 5*2388 

•16531-802-9422 3*1075 10-486 -0954 2-35 5-1951 5-2905 
•16371-812-9734 3-1371 10-591 -0944 2-36 5-2483 5-3427 
•16201-82 3*0049 3-1669 10-697 *0935 2*37 5-3020 5*3954 
•16041-833*0367 3*1971 10*805 •09262-385-3562 5-4487 
•15881-843-0689 3-2277 10*913 •09162-395-4109 5-5026 

•1572 1-85 3'ioi3 3*2585 11*023 -0907 2*40 5-4662 5-5569 
•1557 1-863-1340 3-2897 11-134 *0898 2-415-5221 5-6119 
•1541 1-873-i6;i 3*3212 ii‘246 *08892-425-5785 5-6674 
•1526 1-88 3-2005 3-3530 11*359 •08802-435-6354 57235 
•15111-89 3-2341 3-3852 11*473 *0872 2-44 5*6929 5*7801 

X silihx eusbx 

11-588 *0863 2-45 5-7510 5-8373 
11*705 •08542-465*8097 5*8951 
11-822 -08462-475-8689 5-9535 
11- 941 -08372-485-9288 6-0125 
12- o6i *0829 2-49 5-9892 6-0721 

12-182 -0821 2-50 6-0502 6-1323 
12-305 -08132-516-1118 6-1931 
12-429 -08052-526-1741 6-2546 
12-554 -0797 2-53 6-2369 6-3166 
12-680 -07892-546-3004 6-3793 

12-807 -0781 2-556-3645 6-4426 
12- 936 -0773 2-56 6-4293 6-5066 
13- 066 -07652-576-4946 6-5712 
13-197 -0758 2-586-5607 6-6365 
13*330 -07502-596-6274 6-70241 

13-464 -0743 2-60 6-6947 6-7690! 
13*599 *0735 2-61 6-7628 6-8363 
13*736 -0728 2-62 6-8315 6-9043 
13- 874 -0721 2-63 6-9008 6-9729 
14- 013 -07142-646-9709 7-0423 

14-154 -0707 2-65 7*0417 7-1123 
14-296 •06992-667-1132 7-1831 
14-440 -0693 2-67 7-1854 7-2546 
14-585 -06862-687-2583 7-3268 

14-732 -0679 2-697*3319 7*3998 

14- 880 •06722-707-4063 7*4735 
15- 029 -0665 2-71 7-4814 7*5479 
15-180 -0659 2-72 7-5572 7-6231 

15*333 -06522-737-6338 7-6991 
15-487 •06462-747-7112 7-7758 

15-643 -0639 2-75 7-7894 7-8533 
15-800 -0633 2-767-8683 7-9316 
15- 959 -0627 2-77 7-9480 8-0106 
16- 119 -0620 2-78 8-0285 8-0905 
16-281 -06142-798-1098 8-1712 

16-445 -0608 2-80 8-1919 8-2527 
i6-6io -0602 2-81 8-2749 8-3351 
16-777 -05962-828-3586 8-4182 
16- 945 -0590 2-83 8-4432 8-5022 
17- 116 -05842-848-5287 8-5871 

17-288 -0578 2-85 8-6150 8-6728 
17-462 -0573 2-86 8-7021 8*7594 
17-637 *0567 2-87 8-7902 8-8469 
17- 814 •05612-888-8791 8-9352 
17*993 *0556 2-89 8-9689 9-0244 

18- 174 *0550 2-909-0596 9-1146 
18*357 *0545 2-91 9-1512 9-2056 
18-541 •05392-929-2437 9-2976 
18-728 •05342-939-3371 9-3905 
18- 916 -0529 2-949-4315 9-4844 

19- 106 -0523 2-95 9-5268 9-5791 
19-298 •05182-969-6231 9-6749 
19-492 •05132-979-7203 9-7716 
19-688 •05082-989-8185 9-8693 
19-886 •05032-999-9177 9-9680 
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(6) Values of sinh x and cosh x from » • 3 to ac = 6 at intervals of *05, 

e* X filiihx cosh X r* X sinhx cosh X e* r* X sinhx cosh X 

20-086 -0498 30 10-018 10-068 54-598 -0183 4-0 27-290 27-308 148-41 -0067 6-0 74-203 74*210 

21*115 -0474 305 10-534 10-581 57*397 -0174 4-05 28-690 28-707 156-02 •0064 5-05 78-008 78-014 
22-198 •0450 3-1 11 -076 II-I22 60-340 •oi6() 41 30-162 30-178 164-02 •0061 5-1 82-008 82-014 

23’336 •0429 315 11-647 11-689 63*434 •0158 4-15 31-709 31*725 172*43 •0058 5-15 86-213 86*219 

24*533 -0408 3-2 12-246 12-287 66-686 -0150 4-2 33-336 33*351 181-27 •0055 5-2 90-633 90-639 

25-790 •0388 3-25 12-876 12-915 70-105 •0143 4-25 35*046 35*060 190-57 *0052 5-25 95-280 95-286 

27*113 ■0369 3-8 I3-53-8 13*575 73-700 •0136 4-3 36*843 36*857 2cx)-34 •0050 5-3 100-17 100-17 
28-503 *035' 3-35 14*234 14-269 77-478 •0129 4-35 3»-733 38-746 210-61 -0047 5-35 105*30 105-31 

29-964 *0334 3-4 14-905 14-999 cSi-451 •0123 4-4 40-719 40-732 221-41 *0045 5-4 110-70 110-71 

31*500 •0317 3-45 15734 15-706 85-627 •0117 445 42-808 42-819 232*76 •0043! 5-45 116-38 116-38 

33*"5 -0302 3-5 16*543 '(■>•573 90-017 -0111 4-5 !45-oo3 45*014 244-69 -0041 5-5 122-34 122-35 

34*813 •0287 3-55 17-302 17-421 94'<'>32 •0106 4-55 47*311 47*322 257*24 *0039 5-55 128-02 128-62 
36-59S -0273 3-6 18-285 18-315 99-484 •0101 4-6 49*737 49*747 270-43 '0037 5-6 135-21 135-22 

38*475 -0260 3-65 19-224 19-250 104-59 -OOf/) 4-65 52-288 52-297 284-29 *0035 5-85 142-14 142-15 

40-447 -0247 3-7 20-211 20-236 109-95 •0091 14-7 54*969 54-978 298-87 '0033 5-7 149*43 149-44 

42-521 •0235 3-75 21-249 21-272 115-58 -0087 4-75 57*788 57*796 314*19 •0032 5-75 157-09 157-10 

44*701 •0224' 3-8 22-339 22-362 121-51 -0082 4-8 60-751 60-759 330*30 •0030 5-8 165-15 165-15 
46-993 •0213 3-85 23-486 23*507 127-74 -0078 4-85 63-866 63*874 347*23 •0029 5-85 173-62 173-62 
49-402 -0202 3-9 24-691 24-711 134*29 -0074 4-9 67-141 67*149 365*04 -002; 5-9 182-52 182-52 

5'*935 -0193 3-95 25-958 25-977 141-17 •0071 4-95 70-584 70*591 383*75 •0026 5-95 191-88 191-88 

403*43 -0025 60 201-71 201-72 

For intcnnodiato values of z. the values of the functions may be found by using 

the first three terms of their expansions by Taylor’s Theorem, viz.: 

sinh (x + A) - sinh x + A cosh i + J A* sinh x, 
cosh (x + A) - cosh x + A sinh x + j A* cosh x. 

O.g, c*'*** “ gs.es-.oa eS‘W__.Q2 c***®•(xx)2 c* ®* 

-= 38-475 --7695 + -0077 - 37-7I3- 
sinh 3*31« sinh (3*3 + •01)« sinh 3-3 + -oi cosh 3*3 + -oofws sinh 3*3 

«“ 13-533+ 'i358-f*cxx); - I3-675- 

For higher values of x, the values of the functions and c"* may be worked out 

by the aid of a table of common logarithms [logjoC-’4342945], and the values of 

both sinh x and cosh z may be taken equal to J e^. 

e.g. logifl - 3*9086505, whence e* - 8103-1, 

and sinh x - cosh x - 4051 *5. 

logiclogic4-09i3495» whence g“*--0001234. 

For negative values of x, since sinh x is an odd function of x and cosh x an even 

fonction, it follows that 

sinh(~ 2)- — sinh 2 - ->3-6269, cosh(—2) - cosh 2 - 3-7622, &o. 

The values of the other hyperbolic functions may, if required, be obtained from 

their definitions in Art. 92 ; 

tanh X « sinh x/cosh x; coth x - cosh x/sinh x; 
sech X - I /cosh x; cosech x - i /sinh x; 

by using the present table and a table of logarithms, 
e.g. tanh 1-5 - sinh 1-5/cosh 1-5 « 2-1293/2-3524 - -905 nearly. 

The values of the inverse hyperbolic functions can be obtained from Table IX 
by the aid of the formulae of Art. 94 : 

<‘g. 

cosh-' X - log {x± -v/(x*-> I)}, 
sinh"' X - log {x+ i)}, 
tanh-' X-i log((1+ x)/(i-x)}. 
coth ' X - i log {(x-f I )/{x- I)}. 

c<»h-'4- log 4±v'i5)- ±log 7-873 “ ±2*0635. 
tanh-' *35 - ^ log V/ - i log - J log 2-077 - *3654- 



ANSWERS TO THE EXAMPLES 

Examples 1, p. 5. 

1. -2; ~2; 4; 4; -206. 

2. 0; -5; 13/147; (x-2) (6-x)/x^; -21. 

4. ax'^ -i- (h 2 a) X -h a + h + c ; ax^ -f (6 — 2 a) .r -f a - & + c; aP ■^(2ax-\- h) h. 

8. odd, even, odd, even, odd, odd, odd, even, even, odd, even, even, odd. 

0. (i) y ~ ^{P — x^), (ii) y == ± -\-h*)/x. 
(iii) y = a/x. (iv) y ^—a ±-h P). 

(v) y ~ Bin"' [{cx - V)/a], (vi) y = —(?>.?•■+ d)/[ax-^c). 

10. (i) 2 xy - Zx-y 4 2 = 0. (ii) x^ 4- 

(iii) xy’^ =-- {a + x)^. (iv) (1 4-x*) a’*' = x’^, 
(v) y"* —2.ry4-2a:‘»= 1. (vi) a; = a sin y. 

11. (i) X ~ i/y. (ii) x = (;/- 1)^ (iii) x == -i cop;/. 

(iv) x = log„t/. (v) X — tan”' ^/{ylci\ (vi) x — —t/”). 

(vii) .r^^/(5-/), (viii) x ^ 1 + \/{l-y^). (ix) x = y/(y-4j. 

(X) x = a^i'-l. 

Number of values 
of y. 

Values of x for 
which y is de¬ 

fined. 

Number of 
values of x. 

Values of y for 
which X is de¬ 

fined. 

12. (i) 1. All. 4 (2 real). y positive. 

(ii) 2. X positive. 1. All. 

(iii) 00 . i*i<^ 1. All. 

(i'') Q: if X = p/q where 
and q are integral. 

p X rational. 1 (real). y positive. 

(V) 1. All. 00 . y/a positive. 

(vi) n*. 1 X1 < flf, if n be n*. 1 y 1 < a, if w be 
evt'n. even. 

All, if n be odd. All, if n be odd. 

(vii) 2. 1 X 1 < ^/b. 2. 1 y! < -/S- 
(viii) 2. From 0 to 2. 2. |y|<i- 

(ix) 1. All except x~ 1. 1. Allexcepty = 4. 

Examples III, p. 40. 

1. 4. 2. 3. 8. 3. 4. V 
5. i. 6. h/d; a/c, 7. J; f. 8. h/q; no It. 

0. ayP- 0. 10. 0; -3. 11. Kolt; 8. 12. 0; 0. 

13. 2. 14. 1. 15. -l/4v'(2a). 16. 7; 1/n. 

* Two only are real if m be even, and one only if n be odd. 
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17. 10a*; 1/2^^a; 18. faV*. IQ. 0. 

20. la. 21. J. 22. 0, 23. 2. 

24. p/q. 26. i;/g. 26. m. 27. >»/». 

28. Ip^; J(6*-a*). 

50. TTf^, if r be the radius of the base, and I the slant height. 

51, 2nth; if r he the radius, and h the height. 

82. ^Trr*. 33. mVn*. 84. 0. 86. m/n. 

80. 27ra*. 87. J. 88. 

Examples IV, p. 64. 

8. When -1; nn] |(2n + l)7r; JnTr; +2, +3; J(2n + 1)^; 

^(2;i + l)7r; (2n + l)7r; 0, respectively. 4. 27. 

Examples V, p. 60. 

1. (i) (a) 6, (Z)) 12, (c) 60 sq. ft. per min. (ii) (a) (b) (c) 4 ft. per min. 

(iii) (a) (b) {c)V^ ft. per min. 2. 7r34', 82*52', 99*28'. 

8. (i) X = *18. (ii) X = ‘87. (iii) or «» — J. 

4. (i) 3. (ii) ~6. At the points (|, j), (1*83,2*51), (— J y^S, 1) respectively. 

6. 331, 303‘01, 300*3001, 300 + 30/* 4-li*; 300. 6. 3x». 

7. 86'’52', irZi', 85°14'. 8. ( + J-/3, ±;v'3); 

0. They touch at (0, 0) and intersect at 8*8' at (1, 1). 

10. (i) Jc. ft., (ii) 1 sq. ft., (iii) 1*73 in. per sec. 

IL (i) SSttc. ft, (ii) 247r8q. ft. per min. 

12. 1080 TT c. in. per min. 13. At (1, 1). 14. IJ c. in. per sec. 

16. (i) 12, (ii) +16, (iii) — 8 ft.-secs., i.e. 8 ft.-secs. downwards. 

16. (i) 4, (ii) 1 ft.-sec, per sec. 17. (i) xV (“) 

10. (i) 5/(144tt) in., (ii) | sq. in. per sec. 10. Jin. per sec. 

1. 4t3^. 2. —2(1—a:). 
4. -2/j?*. 6. g/ij>-qx)\ 

7. (Z»c —ad)/(c + da:)*. 8. 4 a? —7. 

10. (l-a:*)/(a?*-f 1)*. 11. -1/(2 a?*/*). 

13. -a;/>v/(a*-a;*). 14. 3 a?-v/(a:* + a*). 

16. *0499375. 17. *00986. 

19. -ifk- 20. -A. 
22. 90/(10-4 5 a:)*; 1*22027. 23. 

26. 2 ao? + Z>; a: — — b/2 a, 27. 

28. y increases or decreases according as | s 

Examples VI, p. 70. 

8. -l/o:*. 

6. 7/(3 a?-2)». 

9. 2ax + h, 

12. 6/{2(a-5a:)»/*}. 

15. a:/(l-a:*;V*. 

la 
ai. 6*-7; 6'075. 

*“±1. +J. 
I > or < 1. 

ao. (i) dx/dt •• ndz/dt. (ii) dy/dx -m ndy/dz. (iii) dyfdx du/dx-^-dvjdx. 
80. (i) dxjdX^ ndyjdX. (ii) dvldt^kv. (iii) dv/dt,m—1ct. 

81. (i) dA/dr « hr. (ii) dVjdr -■ hr, 
(iii) d Vjdx - h {dA/dx)*. (ir) d V/dt - k dA/dt. 

sa. (i) dy/dat — hs. (ii) y w,h {dyl4*)\ (iii) dy/4x — | ,/*. 



ANSWERS TO THE E3LA.MPLES 625 

Bxamploa VII, p. 72. 

l. 5a:^ 90^, 80 x” 75 x« 

a- I 4/yx*, l/fn^x"-’). 
8. -3/x*, -7/x*, -10/x“, -50/x'’, -n/x"+>. 

4. -i/yx*, -j/yx’, -i/(»yx*+’), -p/(9yx»’+«). 
5. 5-0267; 4-996; 2-00117. e. -1005; -100167; -33278. 

7. 1-2; 102; -88. 

Ezampiss VIII, p. 74. 

1. 2x-7. 

4. 6ar*~9. 

7. 4x^ — 4a^a:. 

10. l + v^{a/ir). 

18. 4/ar’ —B/a-*. 

16. {l-3a/x)/2ya;. 

18. — 6 (2a* + 5a^a?* ++ 

20. {^/x—l)/a^. 

2. 6x — 8. 

5. 3 ax* -i 2hx-^c. 

8. 2nar«-'{x’*4a”j. 

11. ~3(l-a:)l 

14. 1-1/x*. 

S. 2px-^q, 

0. SOar^-SOx^-f 1. 

9. 2(x-5). 

12. 3a(ax —?')*. 

15. 2x-2/x». 

17. 2/x*~2/x*. 

19. f>/x~6 + 6/-v/x. 

21. 3 6(ax —fc)Vx\ 

Examples IX, p. 77. 

1. 2x(3x^~8xM 3). 

3. (m + n) + tna” x”*”’ 4 «a"* x’*~*. 

6. 3 ax* + 2 (rtc 4 6) X 4 dc 4 ac*. 

7. 5x^4 9x^-4. 

G. 9(3x42)*. 

11. (5x*-~9x42)/2v'^. 

13. 3 (a ~ &x 4 cx*)* (2 cx — 6). 

la. x-> (x + ny); y«-’ g -f y) • 

2. ^ X®~i 4 fl 4 -y/x) fix«-'. 

4. Jx»/*(7x4l5). 

6. ~(ox4 3 5)/2x*/*. 

8. 6(3x42). 

10. 3n(3x4 2)’*-^ 

12. 2 (a — fcx 4 cx*) (2 <rx — h), 

14. n (2 cx — t) (a — tx 4 cx*/*“*. 

2-? + ax 

17. ^3x^1 4wyj; x*y”-'^nx 4 3y j • 

18. + 19. 2X + 

20. 4x*42xy*4(2x*y44y*)~• 

21.3 ax* 4 2 Z»xy 4 cy* 4 (6x® 4 2 cxy 4 3 dy*) ^ • 22. 2 a (ay 4 t) • 
djc (tx 

as. 8a(ay + 5)’^- 24. na (ay 4 5)""^ 

Examples X, p. 78. 

1. - 29/(5 X-3)*. 2. ~3/(2-x)*. 

8. (a*~6*)/(6x4a)*. 4. - 16x/(x»-4)*. 

5. 4(x*~4)/(x*4 2x44)*. 0. -2nx**-"V^x"-l)*. 
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7. 8'l-a:>)/(a:* + l)». 
e. \ (2 + ^x)/(\ + ^x)\ 

11. 2i(c —ox’)/(ax’ —6x4 c)’. 

13. (3x“ —2x + 2)/(3x-lJ*. 

15. -2(2x’-6x43)/(x’-5x+6)*. 

21. ny”-* 

8. (14-x)/{2a/x(1-x)’}. 
10. l/(y/x(l-^x)>}. 
12. 2(x'-l)/(x*4l)-. 
14. 6(2x-l)/(x’-x)>. 

la 2x(y-x^)/ 

20. nx”-' (y-*£)/ y"+'. 

Examples ZI, p. 83. 

1. 24(4x-5)'>; 2/v'(4x-5); -8/(4x-5)>; 4n(4x-5)»-'; -4/(4x-5)’': 

-2/y(4x-5;»; -4/{ny(4x-5)”+'}. 

2. -42(3-7x)'; -iV(3-7x); 14/(3-7x)*; -7n{3-7x)»->; 

7/(3-7x)»: t/V(3-7xj’; 7/{«^(3-7x)»+>}. 

8. 12x(x“-l)“; x/y(x’-l); -4x/(x‘-l)»; 2nx(x»-l)"-'; -2x/{x»-l)’; 

-i/V'(x’-l)»; -2x/|»y(x*-l)»+‘}. 

4. -6(a-x)“: -i/^/[a-x); 2/(o-x)’; -n((i-x)"'’: I/(a-x)’'; 

i/v/(a-x)»; l/{»y(a-xr+’). 

6. 6»x"-‘(a:”-<i")‘; jMX»-V'/(a;"-o’‘): -2»x’*-V(x"-a’‘)’; 
„Ja;n-i(a.«_a«)»-i. -nx»-V(x"-o")“; -Jnx»-V-/(x’*-o7; 

-x"-V.?/(x"-a’‘)"+’. 

e. 6 (ax’ + 6x 4- c)' (2 ax 4 6); ^ (2 ax 4 6)/V”(“x* 4 6x 4 c); 

— 2(2ax46)/(ax’46x4c)’; n(ox’4 6x4c)"”’(2ax46); 

— (2 ax 4 h)/(a3^‘ 4 6x 4 c)’; — J (2 ax 4 6)/y^Cax* 4 6x4 c)’; 

— (2 ax 4 h)/{n^(ax‘‘ + bx + c)""'''j. 

7. 2 «x/(o’ —x’)“+*. 8. jx/.^(a’-x’)'‘. 9. x/v^(a’-x’)’. 

10. I x/.{/(a’-x’)*. 11. — xV(a’-x^)V!i. 12. — Jxy.y(a’-x’). 

1., 6 15. 
wa:”-' (1 — 

16. i(l-a^)/v/{x{Uar7}. 

18. wttx”~V(a — 

20. \x{A:-hx)/^{l-x). 

22. -(a?+l)/(a;*\/(2a7+1)}. 

24. J(3a?-4)/{;rV(l-^)}- 
20. a;(2a* —a:®)/v^{a* —a;*)\ 

28. (a~a?)»»~^ {a-(n +l)a:}. 

80. {a4-(»-l)a7}/(a~a:)»*^-^ 

82. (a-a?) (3a-~2 t-a?)/(5~a^)^ 

88. ~ (a -* (5 - {ma 4 n6 - (m + w) a:}. 

84. (a — ar )"■'' {ma ~ nfc — (m — «) a;] /(5—a:)"*'^*. 

85. 1/(3 3^*4 6 y). 80. i(3 + 2y)*. 

88. ~^+a)V(y**^2ay4a5). 41. -A. 

(ar^ 4 If-*-' 

17. ^a/v/lafta-.r)*}. 

19. (3x4l)/v^(2a;4 1). 

21. (a;4 l)/v'(2a:4l;\ 

28. ix{4-^x)/y/{l-xy. 

25. a?(2a*--3a7*j/v^(a*-a?^). 

27. (2a*-a:*)/{ar*^(a?*~a*)}. 

29. — (a-a?)’*"^ {a4(n~ 1} a;}/a?^ 

81. -~{a — x) (h — xf {Za'h2b — l>x), 

87. (y + a)V(y*-l*2ay), 
42. y. 



ANSWEES TO THE EXAMPLES 627 

Examples XII, p. 85. 

1. -xVy*. 2. 

8. -(x/y)"-'. 4. -(2x + i/)/(2y + x). 
5. -(3x* + 2xy+ y*)/(3!/*+2xy + x*). 6. -(2xy + y*)/(2xy4x*). 
7. — my/nx. s. ny/mx* 

9. (ax - X - y)/(x + y - ly). 10. {ay-(a;+y)*}/{(a: + y)>- 

11. {a*x-2x(x* + y'0}/{a*y + 2?y(x* + y‘)}.12. — (aa!+by)/(fca:4 cy). 

13. — (3 fxx* + 2 hxy + cy*)/ (6x* + 2 cxy ' + 3dy’). 14. -Viy/x). 

16. - 

16. — X"'* (2x" + y”)/{y"“'(2y" + a:")}. 17. — (3y’ + 4xy)/(3x’ + 4xy). 

18. —{ax + hy + g)/(h.x + hy+f). 18. —(1+y)/(l+ x). 
20. (a+y — 2x)/(2y — X —a). 
21. (i) —v/p, (ii) —vlyp. (iii) t? {h — v)f{pv^ — av + 2 ah). 

Examples XIII, p. 89. 

1. '3 in. 

3. '446 sq. in. 

6. 2m ft. 

7. (i) yd. (ii) 2/d. 

0. o(a —ficosCj/c’. 

11. J in. 

18. 9. 
16. + \ per cent.; 432 secs. 

17. R,(a + 2bd)hd. 

19. '0003 yd. 

2. (i) 4 JT c. in. (ii) '8 n sq. in. 

4. in. too large. 

6. ixi yd. 

8. (i) Bq. in. (ii) -483 in. 

10. 21*42 in. 

12. (i) 14*14. (ii) -*143. 

14. (i) *644. (ii) 2. 

16. +*155 f)er cent.; 939 secs. gain. 

18. 10^y(l+25A-). 

20. (i) 56. (ii) 136*5. 

Examples XIV, p. 96. 

1. ScosSo;; ^cosjx; n cos (nx —OC); —asinaar; — (1/p) sin (a:/p) ; 

2 sin (\tt-2x). 

2. Ssec^Sar; Bec^(ar + a). 3. — m cosec* mx; 2 cosec* (ot — 2 x). 

4. m sec mx tan mx; sec (J tt + x) tan (i tt + x). 

6. — m cosoc mx cot mx; J cosec 

e. 8sin*xcosx; nsin"“'xcoax. 

8. J cos x/Vsin X. 

10. — J cot X v^cosec X. 

12. 48ec^xtanx. 

14. 2 sin 4x. 

10. 3 n tan’*”* 3 X sec* 3 X. 

18. x* (3 X cos 3 X + 4 sin 3 x). 

20. (2x8ec*x + tanx)/2v/x, 

22. 3co8 8xcos4x —48in3x6in4x. 

24. 8inx(l+ Bec*x). 

26. 26 coax (a+ 5 sinx). 

28. C08*«. 

-Jx) cot (i3 —^ x). 

7. —5co8^X8inx; -mcos”*"*X8inx. 
9. — 2 cosec'^x cdtx. 

11. — J si n x/ -^coB* X. 

13. — n cot"~’ X cosec* x. 

16. —3a cos*ax sin ax. 

17. — cot i X cosec* ^ X. 

19. (n cosx—X sin x). 

21. (2x C08 2x —3 sin 2x)/x^ 

23. m cos mx cos nx — n sin mx sin nx. 

25. 8in*x(2 + 8ec*x). 

27. -2 8inx/v^(3 + 4co3x). 

29. seo^x* 
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so. 7 cos a:/(4-f 3 sin a?)*. 31. 2 aZ> sin ar/(a +& C08a?)l 

82. 2/(1—sin S3, sin ap cos a; (2 + 8ina?)/(l 4 sin a?)*. 
84. 2 co8*ar cos 2 .r — si u* 2 x. 35. J sin 4 x. 
80. (1 4 silica?) sec'a: 37. sin*»”'ar co8**~'a; (m cos*a?~n sin’ac). 

88 sin^”^ ax cos**“' bx (ma cos ax cos bx — nb sin ax sin hx), 
89. tan"»"* ax [amx sec*ax 4 n tan ax). 

40. — (m cos mx)J{n sin ny). 41. sin 2 x/sin 2 y. 
42. cot X cot y. 
45. *8657. 
48. *9310. 
51. *24924. 
64. *2 sq. ft. 
57. cot>( 

60. 19*42. 

43. y/(x*4yH.^’). 
46. 1*0006. 
40. -*9996. 
62. *76 ft. 
65. *1. 
68. (i) *017 C. (ii) 1*7. 

44. *49975. 
47. -1*0017. 
60. 3*9919, 
53. *0094. 
66. (i) *09". (ii) *207. 
60. 7*82. 

Examples XV, p. 97. 

1. 5(x-3)\ 

8. -IxVVC^-a?). 
6. -J{2r-3)/y(x’-3ar-2/. 

7. -sx/y(x'+i)‘. 

0. ^ (4 —3x’)/v^(4x-x’). 

11. 4/y(4-x*)’. 

13. -H4 + x‘)/v'{x’,4-x’}}. 

15. — ^ n C0B**“^ J X sin J X. 

17. xsec*x4tanx. 

19. (xsec^x —tanx)/x*. 

21. 1 (2xcosx4sinx)/-v/x. 

23. J (2x cos X —sinx)/iy/x^ 

26. (cos v^x)/2yx. 

27. I v^x cos 4 sin -v/x. 

29. (sin-v/x —v^xcos >/x)/8in*v^x. 

31. (J-y/xcos Vx —sin v^x)/x*. 

33. ^(xcoax —2 8inx)/(x*v^sinx). 

85. ^(v^xcOB v^x4Bin v^x)/>/x. 

38. (sin-y/x—v^xcos y/x)/(2y/xsiu* 

37. J (y/xco8\/x —sin v'xj/V'x’. 

30. (sec X tan x)/a. 

41. — {a sec (a/x) tan (a/x)}/x^. 

48. x”*"*' (ma — mx 4 nx)/{a — x) 

45. — l/{n^(a —x)”"'*}. 

47. -i»v'{a-x)»-*. 

40. - 3 COS 3 (a-x). 

61. 2x(cos 2x—xsin 2 x). 

53. 2 X (cos 2 X4 X sin 2 xj/cos* 2 x. 

65. — 2 cos 2x(co8 2x4 2x8in2x)/x’' 

67. — 2(c08 2x4xBin2x)/x*. 

60. (cob 2 X 4 4 X Bin 2 x)/co8* 2 x, 

2. -8(7-x)*. 

4. 2 .r (1 — x) (1 — 2x). 

e. 28/(5-7 x)«. 

8. (4-2.rVv''(4-x*). 

10. — 4/{x*y/(4-x'^)}. 

12. i(44x*)/7{x(4-x»)»}. 

14. sin 2 (x-a). 

16. — tan-^x. 

18. cotx—xcosec'x, 

20. C08x(l — Ssin'x). 

22. (sin X —2x cos x)/(2v^X8in*x). 

24. J coBx/V^sin X. 

26. ^ (xco8x4Binx)/v^(x8inx). 

28. ^ (xcOBX —sin x)/y/(x*Bin x). 

SO. J(einx —xco8x)/-y/(x8in®a:). 

32. J (xc08 x 4 2Binx)/-y/sinx. 

34. J (2 sin X - X coa x)/^/sin'x. 

/x). 

38. (2-3x)/y(l-x). 

40. {see (x/a) tan (x/a)}/a. 

42. x”'"* (a —x)”"^ (ma —mx —wx). 

44. (a —x)**~'(mx—nx-ma)/a:r*»'*‘^ 

40. —lnx'*~^/4/{a^ — x^), 
48. — 3 sin* (a — x) cos (a — x), 

60. -3(a-x)*cog(a-x)*. 

52. 2x cos 2x(co8 2x-2x8in 2x). 

64. — cos 2 X (4 X sin 2 X 4 cos 2 x)/a;r*. 

. 60. cos 2 X (cos 2 X—4 X sin 2 x). 

68. 2x (co8 2x42xBin 2xJ/co«* 2x, 

00. iin4x/v^(l 4iin*2x). 
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2 n sin 2 j; (1 — cos 2 

— sin nx/^il + cos t7.r ^ 

inco^(x/h) + sin \ 
4sec*a7 ta n x. 

62. twfc sin 2a? (a +sin®.r)”‘~’. 

64. — n8in”~'a;cosa?/(l+siD/'ar)*. 

66. 4 cos 2 .r/( 1 — sin 2 x^. 

68. 8 sec^ 2 .r tan 2 a?. 

— {a?4-V(a*-a7*))/{a“v^(<7*-a:^)). 70. 1/(1-sino?). 

2a*x/V'^(a" + ,r^' («2-;:cV}. 72. 8 (x’-2a?-2)/(a.-* 4 5 a'~ri)\ 

74. 2 (a?*4-6)/(a?^4-a:-G)*. 
a.'r/(2 rto? —70. 3 sin®a?co8 4 a?. 

3 cos^ X cos 4 a;. 78. 3 cos G x, 

2 sin* 2 X cos 2 x. 80. 3 sin^a; cos 2 a;/cos* 3 x, 

— 3 cos 2 a;/sin^ x. 82. 3 cos 2 a;/cob^ax 

— 3 cos*a; cos 2 a/sin* 3 x, 84. 3 sec* 3 x. 

— 3 cosec* 3 x, 80. 3 tan* x sec* x. 

— 3 cot* a? cosec* a:. 88. 3 cos* 3 a; (1-4 sin* 3 a;). 

3 sin* 3 a? (4 cos* 3 a; - 1). 90. J sin* 6a? cos 6 a;. 

3 (1-f 2 sin* 3a?)/cos'‘3 a-. 92. — 3 cot* 3 a? (1 4-2 sin* 3 a?). 

— 3 (1 4-2 coH*3a;j/.siu^ 3 a?. 94. 3 tan* 3 a? (1 4-2 cos* 3 a-j. 

9 tan* 3 x sec* 3 x. 06. — 9 cot* 3 a? cosec* 3 x, 

3 sin* a? cos* 3 a? (cos 3 x cos a; — 3 sin 3 a? sin a?), 

3 sin* X (cos a? cos 3 .r 4- 3 sin x sin 3 a?)/cos^ 3 x. 

— 3 cos* 3 a? (cos a; cos 3 a? 4-3 sin x sin 3a?)/sin^a?. 

►. 3 cos* X sin* 3 x (3 cos a? cos 3 a? — sin a? sin 3 x). 

.. —3 cos* a? (sin a? sin 3 a? 4 3 cos a? cos 3a?)/sin^ 3 x. 

1. 3 sin* 3 a? (sin a? sin 3 a? 4 3 cos x cos 3 a;)/coH^ x. 

. 3sin*a?sin4a?. 104. 3 Kin*a?sin 2a?/sin* 3 a?. 

. —6 cot a? cosec “a?. 100. —3 cos* a? sin 4 a?. 

. 3 cos* a? sin 2 a?/cos* 3 x. 108. — 6 tan a? sec* x. 

I. sin* 3 a? (9 sin a? cos 3 a? -f sin 3 a? cos x). 

I. (sin 3 X cos a? — 9 cos 3 x sin a?)/8in^ 3 x. 

. sin* 3 a? (9 sin a? cos 3 a? — sin 3 a? cosa"i/sin*a?. 

. — cos* 3 X (0 cos a? sin 3 a? 4 sin a? cos 3 a-). 

. (9 cos a? sin 3 a? — cos 3 a? sin ar)/cos‘‘ 3 .r. 

. cos* 3 X (cos 3 X sin a; — 9 cos x sin 3 a?)/cos* x. 

, cos* 3 a? (cos 3 a? cos a? — 9 sin 3 x sin a?). 

. (cos 3 X cos a? -f 9 sin 3 a? sin a?)/cos* 3 x. 

. — cos* 3 X (cos 3 X cos a? 4- 9 sin 3 a? sin x /sin* x. 

. sin* 3 a? (9 COSO?cos 3 a? —sin a? siti 3a?). 

. — (sin a? sin 3 a? 4- 9 cos x cos 3 a?)/sin^ 3 a?. 

. sin* 3 a? (sin x sin 3 .r 4- 9 cos a? cos 3 a?)/cos* x. 

a? (2 a* — 3 a?*)/v^(«* — a?*). 

a;(2a* — a;*)/(a* — a?*;*/*. 

a?*(3rt*~2ar*)/(a*-.r*f *. 

na?”~^ (a* — a?*)”~^ (n* — 3 x"), 

-2(l + a?)/(l4-2a?)*. 

— (l-a?)*(7 4-a?)/(l 4 a?)\ 

(6a;-8)/(l4-3a;)». 

2a?(34-irV(l*“a77- 

122. (a-*-2a*)/fa?®^((/*-a-*)[. 

124. a?*(3a* —4a?*)/-v/(a* —a:*). 

126. a?* (a* - a?*)«-i (3 a* - 3 a?* - 2 na?*). 

128. 2a:(l+a?)/(l4-2a;)*. 

ISO. -2(l4a?)(2 4-.a;)/(l4-2a?)^ 

182. (1 — a?)* (a? —4)/(2 —a?)*. 

184. (x* —7 a) (a —a?)*/fa 4-0?)\ 

136. 2x;(l4 x*){3-a;*)/(l-a;*j*. 
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187. 2 a? (x* - 3 a*)/(a®+ 07^)’. 188. “8 + 
139. n (a— ?;)(« —— 140. fi [2 x — a--b) {a — xy^~^ {h ^xy^~\ 

141. 2 nx (2 — a* — (ft* ~ x*)“~’‘. 
142. (3-6x + 4x*)/y{3-“4xH-2x*). 143. (3-10x + 8x*)^/(3-4 x + 2x*). 
144. (2x“3)/{x*v^(3--4x4-2 X*)}. 145. ~l/v^(2x4-x*)*. 

140. 2x(3 —5x + 3x*)/v^(3—4x + 2x*). 
147. 2x (3~3x + x*)/(3~4x + 2x*)V*. 148. n (xsin x)”“'(xcosx + sin x). 
149. wx"“’ sin nx (2 x cos nx 4- sin nx), 160. n (x sin wx)”~' (nx cos nx + sin nx). 

Examples XVI, p. 106. 

1. 85^46'. 2. 106^42'. 8. 82° 53'. 4. 40° 54'. 
5. 8x—2/»*13; x4-8y = 91* 6. 4x —5y-f-12*=0; 5x + 4y — 26. 
7. 2x + y +10 = 0; X —2y «= 0. 8. 2x-f 3y = 30 ; 3x —2y «= 19. 
9. Ilx4-3y==36; 3x-Hy + 2 = 0. 10. y + 1 = 0 ; x = 2. 

11. Xx/a»-Fy/ft*c= 1. 12. Xx+ly+ y (X+x)+/(r+y) + c = 0. 
13. (2, -12), (-2, 20). 14. (±a, tla). 
16. da, ia). 10. ( + 4, T3). 
18. 15J®. 19. They touch at (2, 4). 

20. 48° 12'. 22. X/XV84 r/yV» «= aV*; intercept == a, 

26. OT = (n — 1) 7'X. 20. mX/x -f n Y/y -■ tn + n. 
28. aXx + h (Xy 4- Fx) 4 ftFy (X4- x) 4"/(F4 y) 4 c « 0, 
29. 2Xy*-Fx(x* + 3y*)4 ax* = 0. 
SO. Touches OX, Bisects IXOY, Touches OF. 

32. Curve bisects ZXOY, 84.tan-{(xg-y)/(. + y|).. 

Examples XVII, p, 118. 

1. 6^/10; 2v^l0; 18; 2. 

2. h y(a* 4- J ft*); i a v'i 3 a* + 4 ft*)/ft; ft/^3; -/3 «74 ft. 

8. iO; -7|; -8; -4^. 4. -v/5; 2; 8. yVfn-M)x. 

11. 4a. 12. a*y7ft*x; ft*x/a*. 14. xsec ^4 y cosec ^ = a. 

15. asin*^; a sin* ^ sec a sin* cos a sin* ^ sec 

10. (i) x-y »■ a (J TT —2). (ii) xcot J ^ —y *= a cot ^ ^-2). 

17. a; a. 18. (ft cosec<9)/a. 19. (xcos^)/a4-(ysin^)/ft ** 1. 
20. m =» cot >//•, where is inclination of tangent to OX. 

21. y tan J ^; y cot J 

22. 
23. 2 cV + y“) : or. OP-=,2 cK 

1. Min. (3, -1). 
8. Max. (-2, 21); min. (2, -11), 
6. Nome. 

Examples XVIII, p. 122. 

2. Max. (-1, 19). 
4. Max. (2, 28); min. (3, 27). 
e. Max. (1,18); min. (5, -14). 
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7. Pt. of inflexion (1, 0). 8. Max. (1,43); min. (0,40), (5, ~ 85). 

0. Max. (2, 4); min. (1, 3) and (3, 3). 

10. Max. (1, 0); min. (3, —28); pt. of inflexion (0, — 1). 

11. Min. (I, —fJJ. 12. Max. (1, 0); min. (5, 

13. Max. (f, ; min. (2, 0); pt. of inflexion (1, 0). 

14. Max. (5, §); min. (1, 0). 15. !Max. ( — 2, 3); min. (2, J). 

10. Max. (0, 1). 17. Min. (1,27); pt. of inflexion (4, 0). 

18. Min. ( — 4, 1); max. (4, 19. Max. (3, J). 

20. Max. [ — <v/(a6), (Va—\/^'']; min. [\/(tt5), (Vfl +-s/t)*]. 

21. Max. (4, 22. Tnfl. (0, 0); max. (Ja, J>v/3a^). 

23. Min. (J «, £ a); max. (2 a, J a). 24. Min. (a, v^2). 

25. Max. (J, —1^/5); min. (1, —2^/2). 

20. Max. \/2, when a; =» (2 n + £) tt ; min. — v^2, when a: == (2 n 4 J) tt. 

(If a>h, max. a when x => (^ + 5)73^; min. h when a; *= ?/rr. 

[If a<h^ max. and min. interchange. 

28. Max. when a? *= (n + ^)7r; min. when x= (n —J)7r. 29. None. 

SO. Max. I when x = sin"' J ; min. 0 and —2 when x =»= (;z + J) tt. 

31. Mill. — 1 when :r = (2 n + J) tt. 

32. If a and h are -f-, min. 2\/(ab) when tana: = 4- max. —2^/{ah) 

when tan x — >\/{«/5). If a and b are both —, interchange results. 

S3. Max. when a:*=(n + J)7r; min. when x ^ [n — \) t; \ pts. 
of inflexion (n/r, 0). 

84. Max. when a:=* 5 (a + /3) + (n-f J)7r; min. when a: = ^ (0( + /3)+(1/4 J) tt. 

86. Max. J\/2 when a: = (2 n4-J) tt ; min. — ■i>/2 when x^{2n + l)rT. 

SO. Min. —3>/3 when a:~(2H + J)n-; max. 3v^3 when x ^ (2n — \)u. 

39. X = I a. 40. s/A/C, 42. 34 (7. 43. .r = J (« - b). 

44. a:= --2'. 45. ±«/>/2. 40. 1. 

47. Max. when x ^ 1, 48. (r 4-*067. 

40. %/{iill/r). 50. -1001Oijijx -x^); a? =* L 

Examples XIX, p. 128. 

1. 20, 20. 2. 125, 25. 

3. fa, fa. 4. Max. sum « — 2; min. 4-2. 

6. Max., 3^2; min. 6. i and 

7. When it is a square, (i) Min. perimeter, 20 ft., (ii) min. diagonal, ^^2 ft. 

9. Max. perimeter == 4\/2a. 10. Square of area J(a + i')\ 

11. Height — -v^2 x radius = f->/3 x radius of sphere. 

12. r = i /i = 5 ft. 13. r /j =5 1-72 ft. 

14. h >=^ 2r ^ v^2X radius of 8]>here. 

16. Max. area — J area of triangle. Perimeter continually increases from 
2 a to 2 6 as corner moves along hypotenuse. 

10. (i) Max. vol. = ^ vul. of cone, (ii) When ^height of cone, (iii) 
When V^*=cota —2, where (X is semi-vertical angle of cone. No 
max. if a > 26° 34'. 

17. Height K= 4 X radius of sphere. 18. Max. area =» J area of triangle. 

10. When equilateral. 

Mm2 
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20. Height v'S x radius of base «» J radius of sphere. 

23. 2 ft. long, 4 ft. girth. 24, When h *= 1*05...n 

26. Max. vol. ■» 5V of given cone. 26. 2 ah. 

27. (^a+^b)\ 28. (aVs + jVs)V*. 29. 4^6. 

SO. Max. area z-®, when angle of sector — 2 radians. 

31. When isosceles. 32. 1 ft. 33. 6 in. 84. 20. 

85. 34*64 ft. 30. 22*06 in. 87. j a. 

88. 1 mile from nearest point of road; about 1*3 minutes. 

89. 10*6 yds, 40. f way from brighter light. 

41. (latus rectum)®/6 v/'3. 43. 9-y/3 in. 44. 32v^3 8q. in, 

46. 7ra*, if 4a be latus rectum of pambola. 

47. Equilateral triangle of area f v^3r®. 

48. When the line is parallel to AB. 49. 3*749 ft. 60. 24. 

61. (i) Gy'S, (ii) O-v/S. 62. 27/5. 

64. A.fter 2^ minutes; min. distance, 1*192 iniles. 

65. The point half-way between the feet of the perpendiculars from the given 
points to the line. 

66. 60°. 67. Breadth, 6*928 in. 68. *414 m. 

59. sin”^ (w/2 M). 60. | h. 01. 41 ft. 8 in. 

62. When side of square *» *14 Z. 63. v^(2aTTY/r). 

64. {av hu) sin 6/4/(u^ -f u* ~ 2 uv cos 6). 

60. ^ab. 67. 5V X vol. of sphere. 

68. When height »• 4 diameter, 69. 

71. 53“ 8' W. of N. or S. 72. 955*2 sq. yds. 

Examples XX, p. 134. 

10! 
1. 10 X®; 90 X®; 720 x’; n < 10, 10 1 if n « 10, 0 if n > 10. 

X® ’ X®' x'* ' x'‘^^ X*' X®' x° ’ 2x'‘^* 

. / ..»1.3.5...(2n~l) 

2x^/®’ 4x»/®’ 8.TVa’ ^ 2'V»+i 

5 J_. -_I_. / .w.xl-3.5...(2n~3) 
2xV«' 4x®/®’ 8V/«' ^ 2«x«~i 

6. 10a(ax-f5)®; 90a® fax+?/)*: 720 (a.r-f 5)’^; 10! (ax + 5y*“V(10-«)! 
if w < 10, 10! a’® if n *= 10, 0 if n > 10. 

7 _-_2__8__. . 2Vn! 
(2x + l)»’ (2x+l)»’ (2x41)*’' M2x4l)“*-‘ 
1 2 6 n! 

®’(1-X/''' (1-x)’’ (1-x)*’ (l-x;"*-*' 
0 cosfx + a); -sinfx + a); ~cos(x4-Of); sin (x + a-f J na). 

10. — sinx; —coex; siux; coB(x-f |n7r). 
11. sin2x; 2co82x; ~4sin2x; --2»’~* cos (2 x4 w ;t). 
12. -28in4x; -~8cos4x; 328in4x; 2*”-®cos(4x4J/itt), 
13. XcosX-f sinX; —xsinx42cosx; —xcosx —3sinx, 
14. —x®sinx42xcosx; ~x®cosx~4xsinx42cosx; 

X® sin X ~ 6 X cos x — 6 sin x. 



ANSWERS TO THE EXAMPLES 533 

16. RPC®a:; 2 see®X tan a?; 2 see®x (1 4 3 tan®x). 

10. 3 (x cos 3 X 4 sin 3 x); 3 x (2 — 3 x®/ sin 3 x + 18 x® cos 3 x; 
3 (2 —27X®)sin 3X-27 x(x®-2) cos3x. 

17. x(2 4x)/(14-x)®; 2/(l4x)»; -6Al-fx/. 

18. wx'* (coB wx — xsin nx); (w— 1 — nx®) nx""® (.‘osnx —2 sin 72x; 
li^x""® jnx® —3(n —1)1 ainnx —wx*»~* {3n®x® —(n —1) (n—2J] cos?ix. 

19. sec X tan x; secx (1-f 2 tan®x); secx tanx(5 + 6tan®x). 

20. xj^(a® + X®); a®/(a® -f x®)*/®; — 3 a® x/(a® 4 x®)V*. 

Examples XXI, p. 139, 

1. Down. 2. Up, 3. Up; down. 4. Down; down. 

8. Up when x is 4 ; down when —. 9. Up when x< J ; down when > J. 

10. Down when 0 < x < 4; up elsew])ere. 

11. Up when ~ qo < x< — 1, and when 0 < x < 1; down elsewhere. 

12. X «= (n4 J)rr. 13. x nTT. 14. x =—6/3(7. 

15. Infl. (0, 0); min. (,?\/3, — V’{ — 

16. Infl. ( +^^^3, 1); min. (0, 0). 

17. Infl. {(n4 1)77,0}; max. {(2n4 5)^, v^2j ; min. {(2n-l)7r, --v/2}. 

18. Infl. (0, 0), ( + 6, +f); no max. or min. 

19. Infl. (4 .y/j, ^); min. (0, 0); max. (4 \/2, 4). 

20. Infl. (-2, —2); min. ( — 1, —|). 21. Infl. (4I, 1); max. (0, 

22. Infl. (0, 0); max. (4 ^2, 2); min. (4-v/2, —2). 

23. Infl. (6/c, a); no max. or min. 

21. y =» X*, none; y = x®, infl. at origin. 
26. n-2. 27. (Ja, ±a/->/3). 29. {(In4l)xr, -|(a4 6)}. 

80. Intersects OX at ( + 1, 0) ( + 3, 0) ; OF at (0, 9). Max. (0, 9); min. 
(± — Id); Concave up if |x(> -v/ij: down if < Points of inflexion 
(±V|,—^4-). Tangents at points of inflexion, 4 40^/15 x 49y «■ 156. 

81. Touches OX at (+ 1,0); cuts OF at (0,1). Max. (0, 1); min. (+ 1, 0); 
Concave up if | x | > a/J ; down if < Points of inflexion (4 , i). 
Tangents at points of inflexion, +8V3x4 9y «■ 12. 

82. Touches OX at (0, 0), cuts at (±2, 0); cuts OF at (0, 0). Max. 
(± V'2» 4); min. (0, 0). Concave up if |x|<-y^|; down if >\/ij. 
Points of inflexion (±V§, Tangents at points of inflexion, 
4 16v^6x-9y *= 12. 

EsAmples XXII, p. 144. 

!• (i) 8 0
 

1 *F»
. 

11 1 a. (i)e=»3r’ - 4 A « ' 

1 
0

 

(1 

(ii) t> « 12 ; a * —4. (ii) v~= 4; a - 8. 
(iii) r *» 20; 0 ** — 4. (iii) e - 0 ; a ~ 4. 

3. (i) l,o»-.J^7rsinJrr^; a • — —COS J7r<. 

(ii) fjKB—-Stt/v/S; a "" jn (iii) V = 0; a «* 

4. (i) f>«6-8/(<4l)®; a« 16/(< + l)*. (ii)i.- 5i;a^ 4?. 
(m) f> *=» -2; a ■» 16. 6. 0; 6. 0. 8; -32. 

7. -20; -11; 16; 325; 2320. 0-4; 16; 40; 184; 664. 

a 6; 18; 80; 06; 226. 
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8. 5= 10; 21*21; 20; -21*21; 20. 

f)* 15*71; 5*56; -7*85; -5*56; -7*85. 

-6*17; -13*08; -12*34; 13*08; -12*34. 

11. After 4 secs, when s = 144. 

12. After n + i secs, [n any integer], when ±a. 

Examples XXIII, p. 146. 

8. The force varies inversely as the square of the distance from the origin. 

4. Mass X /iff. e. 9 i)oundal8. 

Examples XXIV, p. 140. 

1. 50 at 53® 8' below the horizontal. 2. Each »= c. 

3. 2*4 miles per hour. 4. 34*64 m. p. h. 

6. 9 ft. per sec. 6. 9 ft. per sec. 

7. (i) 5J ft.-secs. (li) When the foot is 24*04 ft. from wall, (iii) When 
the foot is 30*4 ft. from wall. 

8. 20*83 ft. per min. 9. ft. per sec. 

10. When P is 7*43 ft. from 0. 11. 5 ft. per min. 

12. 21*25 m.p.h. 13. 15*08 m.p.h. 

14. (i) Decreasing at 4*61 m. p. h. (ii) Increasing at 4*715 m. p. h. 

15. (i) Decreasing at 6-94 f. p. s. (ii) Increasing at 6 215 f. p. s. 

16. Receding from C at 1*12 m. p. h.; approaching A at 2*22 m. p. h.; reced¬ 
ing from B at 1*405 m. p. h, 

18. (i) 12*57. (ii) 15*71. (iii) 25*13 miles per min. 

10. (i) 7J, (ii) 11J ft. per sec. 20. *0442 in. per sec. 

21. 840,000 c. ft, 22. 12*46 ft. per sec. 

23. 4*82 in.; '298 in, per mim 24. 5*014 in.; *1,33 in. per sec. 

25. 2k/ab ft. per sec. 26. 10 ft.-secs.; 14*14 ft.-secs. 

27. 86*74 ft.-secs. at an angle 86®42' with and below the horizontal. 

29. — 13J ft.-secs.; 16J ft.-secs. at an angle 36° 52' with the major axis. 

80. (i) 2*828, (ii) 2 in. per sec. 31. Each 7*07 ft.-secs. 

32. ±ua^yls/{b^x^-Va^'if)\ + w5®a;/y^(5^a?*-fa^y*), 

S3. 1*486 and 3*714 m. p, h. 

Examples XXV, p. 156, 

1. where r = AP. 2. fi) a)r/(a —r). (ii) — a)rV(a®-f r®). 

8. —68*52 ; 41*11. 4. The same (in terms of B and (p) as in Art. 69. 

Examples XXVI, p. 100. 

1. -l/bx\ -2/a;*, 

2. x^-x’^ + x, 3. —1/a;, 2y/xy ^x^^ 

^•n + 1^ » (n-l)^'*^'’ n-r ‘ 
5. Ja;* + 2a;*-f 5a;®-5a;; a;^-2a;*-f 3a;* —a?. 

6. -l/2a;=-6/a;-5a;; -7/5a;* +10/3a;*-9/a?-aP. 
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7. \x*— X* — }x'' 2a^ — Sx, 

8. \axf'-\ \hx^-¥\cx'^-i-\dx + ex\ -~hl2x'^ — c/x dx. 

9. - (2-f X-f a;'^7x*; 2v/a:(l 4-a? + ar*). 

10. (2it’^-f 3.r^ —3)/6rc ; 3a:^ (.4 + Jar* + 
11. ar —3a’* + 3a®; ar + a’+f a® + 

12. -~{3a*a*4-3a&a + Z^V3a-^ (16a^ + 72a*-27)/3x. 

13. - 

^n»-p+l ^n- p+i 

Jin+\ ^n+1^,) 

2n+l'*' n4l 
4 

tn—/>4-l n~^4-l 
14. -s/a (aa* 4- 5 fe). 
16. y =■ J — cos a. 
18. y = 2a 4-3/a ^ C. 

20. ?/ —4.a —2y 4“ 1 = 0. 

22. 3 // *= 4- 3 a* 4 3 a. 

24. y = .] aVa 4 C, where a is the length of J\"Cr. 

15. y « 2x^--a* —20. 

17. y «= 3a —2a'^+ C. 

19. 6y »= 2a* —3a* —21. 

21. y = 1 -h sin a. 

23. ay-4 c* == Ca. 

26. 2a*-2a*4 3a4-7 26. (34a* — 16)/3 a*. 

Examples XXVII, p. 164. 

1- s^’. sCr + x)*, J(3x-4/, J(pa:4 q Vjo- 
a’‘^^ (a —(Ua4 4/”'''^ (3 —2a)"'*'^ (fla4 ^{p — qxY'^'^ 

*n4-l’ w4-i ’ 9(n4-i) ’ — 2(?i + lj* a (/Ml)* /j'(n4l) 
S. — cos a, — J cos 4 a, — [\/m) cos ?//a, — 3 cos J a, — (l/y) cos ipx 4- o), 

-J cos (a-2a), C03(j7r —a). 

4. sv'*’, jv'(l + a;j’, -^^(3-40.)’, f-/(l)* + ff)’/p, i <J•/(!+a;/a/, 

gv'{3a:’), ifv'(«)a:’). 

1 1 _ __i_ _1_ 1 
x' 5(2 —5x)’ 7(7x + 2)’ a — x' m(mx — n) 

e. tan a, tan (a + a), 
(1/n) tan {nx-\^ m). 

1 
(»- l)a'*^** 

1 
(n- l)(c —a)«“* * -■ 

(l/»i) tan ma, ^ tan (oc 4 2 a), m tan (a/m), 

1 1 
4 (n -1) (4 a - 5)«-' * 2 (w -1) (1 - 2 * 
_1_ 

— l)(/;a — 

>■ 25?T,W2-5rA-,-.^,y(=-x)-, 

y(w4e)"-'. 
n «/a*» ^ 

n-lV 2 

« n/a"'* 

1 1 11 1 
3a*’ 3(a-3)** 3(3~a)** 21(3-7a)»' + 

30. ^.T(7y-4)«. 

14. 2/v'(l-»). 

11. -{2/hh){a-bif/K 

13. -i^(5-3c)». 

15. \/{a-Z6)\ 
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10. ^(a-t}P-^^/(p+l), 17. l/[4(w~l)(7-4w)»-'}, 
18. -^(b-rii/)»~^/(n-l), 

19. Jain 3^, 3sinJ^, — sin(a —^), (1/?^) sin (n^-l a). 

20. ~2/v^2r, 2/y(l-f/), ~|/-/(3w~5), -2/{ay^{av + b)}. 

21. * (3x-4f-f 82. 

Examples XXVIII, p. 187’". 

1. Tlie parabolas i/ -= I hx^ + C. 2. The conics y’^ = /t-.r^+ C. 

8. f/ == l) + C. 4. The parabolas y’^ ^ 2kx+ C. 

5, The circles y^ 2Jcx + C. Tn any one of these circles, the anm 
of the abscissa and the subnormal is equal to the distance from the 
origin to the centre of the circle. 

6. 7cy^-x^ = C. 7. y* *=* kx^-h C. 

8. 2y = 3 kx^ H C. 0- if {kx -f C) =n - 

10. Inf «= 2 a’ i C. 11. C5 ft.-secs.; 132 ft. 

12. u + 6//7r; 3ti13. if the acceleration be -Vs. 

14. After 3 secs.; 58| ft. 15. 17^^ ft.-secs.; 6^^. ft. 

16. 32 ft. 

18. 7*74G ft.-secs. 

20. (16, 42:f). 

22. 243 a''81)1 

17. 12 It.-secs. ; 216 ft. 

10. 2*236 ft.-secs. ; 3*873 ft.-secs. 

21. 8 4 2 f; 4b ft. 

Examples XXIX, p. 174-. 

1. 201; 312^7r. 
4. 192 ; 8G47r. 

7. 2; ly. 

•to* i; 
18. lOJ. 

22. IhG/r, 

20. 47Ia^ 

2. 34 ; 678^ TT, 

5. 20J ; 104J n-. 

8. I'/Sa’; 

12. Ja’. 13. Aja»r. 

19. J. 20. *• 

24. 77 tl*. 25. XT fl^. 
30. 31. j. 

s. 12: 54jr. 
6. 166j ; 33.3.3Jn-, 
9. 12; 52 

16. 

21. 
27. 

82. 

1. *031G. 

4. *0262 a. 

7. 84^3.. 

10. 42|. 

13. llSSJrr, 

16. 6*928. 

Examples XXX, p. 178. 

2. *05. 

6. 19. 
8. 10*75. 

11. (i) 277j7r. (ii) 2025n-. 

14. 4Jif7r. 

17. Go, 

3. *2408. 

6. 1*034. 
0. 108. 

12. 69Jn-. 

15. Stt. 

18. 4*69 inches. 

Examples XXXI, p. 184. 

1. Divergent. 2. Semi-convergent. 

8. Convergent. 4. Convergent. 

5. Convergent if | a* | < 1 ; semi-convergent if x *» — 1; divergent otherwise. 

* It is immaterial whether the constant occurs in the form C simply, or 

2 C, 4 C, C*, &0. 
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e. Convergent if | | < or ■» 1. 

8. Convergent if |j?|< or «*■ 1. 

10. Divergent. 

12. Convergent, 

14. Semi-convergont. 

7. Divergent. 

0. Convergent if | x | < 1. 

11. Convergent. 

13. Convergent if [ ap 1 < 5, 

Examples XXXII, p. 193. 

1. e. 

4. ‘0188; 1*395C; *6065. 

7. 6*389. 

13. (i) 1*5431, 1*1750, *7616. 

14. 2*9957, 2*7726, 1*4427. 

22. *8466, *8813, +1*3169. 

26. 1*649; *513 ; *135. 

27. *6367; 3*7622; *9051; 1*138; 1*763; 2*164. 

2. 1. S. 0; 0; 
0. 2(1 + x^/2! + xy 1 ! 4-...). 
8. 4*482. 

(ii) 1*0314, *2526, *2449. 

21. 1; 1; 
25. *6931 ; 2*3026; 2*7081. 

Examples XXXIII, p. 100. 

2. COS a?; —e*^®** fiin a:; cos ax ; sec*ar. 
3. 1); (aa; +n); ae'^® (sin aa; 4-cos a./); 

— 3«^’®(cos3a; + 8in3a:); (a cos 5ar -hsmhx)', sin a? (2 cos a: + asin.r). 
4. 2e®® (a;-l)/ar^; {2ax — l)/x^/^; f® (cot x-cosec®xj; 

(2 ox 4- 6 — ox® — hx—c) /e". 
5. 2/(2x-l); -l/(2~x); 2x/(x»-l); 2hx/{a \ Ix^), 

6. 7/(54-7x); -q/ip-qx) I (2x-3)/(x® —3x—1); — 3xV(l~x®). 
7. -tiinx; 2coaec2x; 6cosx/(a + 66inx); 4ainx/(3--4co3x); 

— sin2x/(l + coB®x). 
8. x" ^ (1 4-t? logx); 2xlog(2 —x)~xV(2 —x); log (1 — .r®) — 2x®/(l — x®). 

0. (1 - log x)/^; (I - n loga:)/x»+>; log (ax + h); —. 

n _1_. 2x _o>_. 1_^ ^ 
'x X4 2’ n(l*fx®j* x(x®4-a®)^ x l-x'^3 —x 

, , l~2x 2x~4 2cosx--l 
11. 4cotx; ^—-----—--. 

2x{l—x) (x—lj(2x —o) Einx(^2 - coax) 

12 —}—■ 1 ■ & 

^ V'C*'-!)’ 2v'(x'*-l)’ 2V(b'x‘-a'‘) 

13. a” e-". 14. (-1 )*-’(»-1) !/x". 
16. (-!)“«'*. 10. 
17. -(»-l)!/(l-x)“. 18. (-l)"-*t'‘(»-l)!/(o + bx)". 
20. J*!**; -«*-*; aW“; e'^+’/p! -e'*; 

21. iIog(5x+3); -ilog{7-2x}: log(x-a); - {\og{p-qx)]/q; 
{log(bx + e)\/b; Jlog(8 + 3x). 

£2. —Jlog(8-5x); -log(l-x); log(4x-5); —log(o-ix); 
(a/6) log (6* + c); - J log (5 - 2 x). 
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Examples XXXIV, p. 204. 

1 _-a_. 1 1 

o _1_. 
^{l~x*)* 2xy/{x — \)' 

3 _zi_. _i. _1_ 
* 1-4-(a-a?)** ' a^ + x^' 2Vx(l+ar)* 

4 JiL. .j:^. ^ 
* 1 + ^ a* 4- ^ 1 4- a7^ 

6. ~1 ->1 -1 
a*— 1)’ a?v^(a;"—1)* ^/{a^ — x'^y V(l— 

6. 5 cosh \ x; 2a: cosh (a:^); — (cosh (1/a?)} /a?*; sinh 2a:. 
7. a sinh (aa:4-i>); 3 cosh*a: sinh a:; cosh*a:. 
8. Bech*a:; — cosech*a:; (1/a) sech*(a?/a); (a/a:*) cosech*(a/a’). 

1 
Vi3 4 a-*)’ ^{x^-a^y 

10. 
1 -1 

11. 1-f-2a: la,n" ^a:; C03~^ x —x/^/{l—x*). 

12. 1 - (.r siii"^a:)/V(l 13. —1/V(1“^*)‘ 
14. l/Vd-a:*). 15. 2/(14-x*). 16. 2/(14-x=). 
17. sin'^^a:; sin"'(x/V^); (a?4-1) ; ^sin"'Jx; (1/&) sin"'(/>.r/a). 
18. tanX; tan"' x; Vt tan"' (x V^); J tan"' J x; Vi\j tan"' (x V&) J 

{tan"'(ax//;)j/at; (1/V(at)} tan"' jxV(t/a)}. 
10. sinh"'Jx; cosh~'Jx; sinh"*(x/V^); Jco8h”'2x; Jeinh 'lx; 

(1/t) cosh"' (tx/a). 
20. J cosh 3x; J sinh 2x; a cosh (x/a); a sinh (x/a). 

Examples XXXV, p. 208. 

2. c coth (x/c); J c sinh (2x/c). 6. y*«x--l; x4t/3-l, 
7, 8 a sinh (x/a). 8. 81® 47'. 
9. When the number is e, 

10. Min. ■» V^(a* -1*), if a > t; no max. or min. if a < t. 
11. 2V(<»&)» 12. Min. («, s); point of inlieiion (e*, Je*). 
13. Max. —*368; point of inflexion (2, *27), 14. *607. 
15. When X— 4 1*317. 
10. (~l)»x*7071(?-(>»-«-i)». 17. (-lrx*8192tf-*7«^ 
18. (±*707, *607). 
19. Max. (-707, *429); min. (~*707, -*429); points of inflexion (0, 0), 

(4 1*225, 4*278). 
22. *0001263. 23. *0000729. 24. 19*09. 25. 632. 
26. 18*326. 27. a*8inh(b/a). 28. 26*31. 20. *361. 
30. 1. 81. (i) 1*7624 (ii) 2 a* sinh-' (t/a). 
82. J7r*a*; 7raHan"''(t/a). J7r*a’. 88. irra\ 

85* 3*097 fta'secs. 80. 80*37 ft* 
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87. Initially, 5**= 1, —*25, a= —2*405. After 1 sec., /? = 0, r=x —1223, 
a~ *611, After 2 secs., —*607, i? = ’152, a —1*46. After 4 secs., 
5 = *308, - *092, a = - *885. After 10 secs., » = - *082, r = *021, 
a-*197. 

88. The third curve touches .•?=*= where («-fJ)rr, and torches 
8 = —g-i/io where f — (h + JItt. It cuts the axis of t where t — — Jn;r, 
at an angle tan"^ 

40. *0675; *0495. 

41. If acceleration then a — nv^(a* —i®), and s~a co%nt. 

— 3 cot (fX — 3.r). 

sec a:. 

— sin ^x/ — 

C tan 3ar8ec“3.r/(l -'tan^3a’)^ 

sectan lx 
2n\T-hBi-c]x}-^^ 

£>n-Bin=*xgin2a;. 

2ii-te-^Ay 
2xa^ 

Examples XXXVI, p. 213. 

2. 3 sin X cos^ j:/(l — cos^o*). 

4. 

®2a^). 0. — 3wasinaa;cos^ar(l 4 coH^aip)”" 

-tan^3a')^ 8. [log (1 + V^ic)]/(-v/x4 a:*). 

— rt si n 2 nr.'r 
10. -0- 

1 4- cos^aa? 

12. J co8a:/\/(8ina--sin’*ar). 

-VS 

2^(^^x^~2~3x^) 

2-h2co8x-h cos^x 

18 
x^{x~ — a'^) ’ 2^x 

3^ log 3. 20. 10^*-'X 2 log 10. 
a^‘x-c I iQg 22. — (2V* log 2]lx\ 

— loga i/x^^h 24. 2 log 5 X cosa:. 

{6 — Qx-~x’)y^x y{a — 3x)r 3 3_1 

2 {{x—1) {x — 2)'^} {a — x)^ Lo —^ n{a — 3x)j 

(2x-a^-l)/[x (1 “ir) (2~x ]*/’. 

sin’"a;cos"a: (m cota:~n tan a? —4/x)/ir*. 

x^^{3-2x) r3 __ _J_1 1 “I _ 

(l4-a?)(2 —x) Lr 3 —2j: l+a;~^2 —xJ 

{a^xf{b-xy r 8_2_ 
{C’-2x)* Lc“-2a; a — x h-~x\ 

e~x sin”^a7cos”a: (rn cota; —n tanx—1). 

{a 4- xy sin x cos^2x [cot a; — 6 tan 2a; 4- 3/(a 4- i?’)]* 

I V^[a*sin(a;4-a)co8 (a? -/3)] [log a + cot (x 4-Ot)-tan (x-fS)], 

l/(x]ogx). 86. 
(log xf [log (log x) 4- 1/log a;]. 87. 

l/[x^(3x^-l^2x^)]. 30 

2/(1+a;*). 41. 

cos 07(1 +2ir sin a + a;®). 43 

l/a:*+l/[a;“v''(l~^‘')]* 45, 
(1/a) tanh (;*;/»). 47. 

a sinh 2 axf{l-h cosh^aa;). 

J (a* + 4 ox - 3 J?*)/[(a® + ;*?*)(«- 

86. jr*(l +loga;). 

87. [log a; cos x +(sin a:)/a;]. 

30. 2/(1+a;^). 

41. 1 — ar® —3 a; \/(l — a;*) 8in“^a;. 

43. 1/[2xa/{x-1)1 

46. 2a;-2ar7v^(a;* —1). 

47. — (a/x'^) coth (a/a?). 
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60. 3a’xV(a> + a:’)V'. 

63. 2a:(I+a:*)’‘~'(l+2na;’tan”’a:’), 
54. -H. 

60. - l/v/(a'’-a'). 

68. sec X. 

60. 2v^(a* + .r^). 

03. -i/(x’ + l). 

00. 1. 
69. — logx a/(j;log^x). 

72. 2. 

61. — w (I 

63. J n8in4a?(a* + 8in*a?cos^a?)*‘ ^ 

65. cot (&a: + c). 

67. N/(a*~&*)/(a + & cosx). 

60. --/(&“- a“)/(fe + a cos x). 

62. (aM t’*) fi®* sin 
65. ^ secic. 

68. x!{\+x’^), 

71. coseclia:. 

61. 2^/{a^-x^). 

64. l/v/(l~ar’). 

67. 2ax^l{3^-a>), 

70. 2a7(a^-x^). 

73. 2/(taD*a*—1). 

74. (i) + X y log6/(y4 (ii; log a log jS). 

75. If < ^>*, I & + a cos ar I > I a + & cos x |, and therefore the inverse cosine 
is imaginary. 

Examples XXXVII, p. 218. 

1, 2a7tt*~4)/(2y-ax)*. 2. 0. 

3. -(w~l)a«ar'-Vy**-^ 4. 

6. 4aV(^'--2y;^ 6. -64 sin (2-r.‘+ a). 

7. (-aj«2”/2.<f «^cos(a/-J«7r). 9. (x^H-20x-f 90). 

10. [(a?’ -f a’')a^ + 3w(w — l)aa?-f n(n — 1) (w —2)]. 

11. - 12/a:^ 12. (-1)«-' 2 (n - 3) 
13. 32 (j?* —5) cos 2^?4-IGOa* tsin 2ir. 

14. ( — !)♦*«■*[x^-Snx^4-3n(?t- l)x-w(n-1)(n-2)]. 

16. + r= 0, 

18. {a:*~a*)Z)”+*2/4-(2n+l)a;Z)«'^'y + n2i)*»i/ *«0. 

19. [a:?*4-2na?(l 4-it;) 4-in(n- 1) (1 +ar)*] x w! 

22. n^+^y--(2n-^l)x D^y ^ 0. 
28. a?®Z>"y + 2na;D*“V 4-w(w —1) 24. {iy—yx)lj^. 

Examples XXXVIII, p. 222, 

1. Between — oo and 0, 0 and 4, 4 and oo. 
2. Between - co and — 3, - 3 and 0, 0 and 3, 3 and cao. 
8. Between — oo and 2, 2 and 6, 6 and cx>. 
4. Between — oo and — 5, — 5 and 0, 0 and 2, 2 and oo, 
6. Between -oo and —2, —2 and 3, 3 and oo, 0. No real roots. 
7. a: «■ 1, 1, and —4. 8. a; =* — J, — J, and 5. 
0. a; »= 2, 2, 2, and -2. 10. a; = + i, +1, and 7. 

11. -f, and §. 12. ap « 3, 3, and ±-v/(~l). 
13. (i) — ac. (ii) /* «* 6c. 
10. y «. 0 when a? ■■ 1 or J ; dy/dx «=» 0 when a? ««* J. 
17. y •« 0 when a? — 1 or 3 ; dyjdx *» 0 when a: «= J. 
18. y ** I when a: — 1 or 2; dy/da? «* 0 when a? *= 1*414. 
10. y «a» 0 when a? ■» 2 or 4; dy/da?«= 0 when a? 2*828. 
20. y « 0 when a? ■«* (» 4-i) tt ; dyjdx — 0 when a? » (n -I J) tt. 
21. /(a?)«« 0 when * 0 or 4, but is discontinuous when a: 1. Theorem 

does not apply. 
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22. fix) « 0 when x ■■ nn, but f(x) and f'(x) are both discontinuous wn**n 
X ^ (w-f J)7r. 

23. f{x) « 0 when a? -»0 or 16, but f\x) is discontinuous when x ^ S. 

24. ip^ + 27q^ — 0. 

Examples XXXIX, p. 223. 

1. 
V^fx* 4 xh)-~-X 

h 
2. 

h 

X . 1 sin ra? + /i)-sin X 1 x 

h h h log (1 t li/x) h 

0. f(x) discontinuous when a? — 1. 

7. f[x) and f'(x) discontinuous when a? *» J tt. 

8. f {x) discontinuous when x «* 8. 9* J- 

10. + 11. ^{x^ i-x’^h),'h-x/'h. 

12. (\/h)\og[2ie^-\--h)/h:^]. 
22. / (x) and f" (x) discontinuous when a? =* 4. 

23. f (x) discontinuous when a? = 1. 

24. f'{x) and /"(x) discontinuous when x — \tt. 

25. (i) -1. (ii) cos a. (iii) a/h, 26. (i) (ii) J. (ia; 1. 

27. (i) 0. (iij j. (iii) 0. 

Examples XL, p. 231. 

1. a?-31og(.T -f 3). 

3. J a:^ + 9a?-*27 log (a;4 3). 

6. J a?’4-Ja; + S log (2a7~3). 

7. log(l--2a:). 

0. 2x + 11 log (a: —4). 
11. —ax-\x^ — a?\og{a-x). 

X h 
13.-2 log + ^)- a a* ® " ' 

2. ^a?* —3a?+91og(a* 4 o). 

4. ■Ja? +J log (2ap~3). 

0. -|ar~ilog(l-2x). 

8. Jo:—i log fl — 2x). 

10. — a? 4-log (2 a?-1). 

12. Ja:’ + ia:’+Ja: + j’^Blog(2a:-l). 

3^ S* 1 , X 
2], + P + 

15. — 1 ar* — J ex® - J c* log (c-2x). 

ax he —ad. , 
16. — 4- —-j—log(ca:4-d). 

c c 

Examples XLI, p. 23a 

1. |l0g(iP*~l). 

8. log (a? 4-6) 4-if log (a:-5). 

6. a;4-^5.1og (a:~4)~Jlog(a:-l). 

7. log(ar-l)-2/(a?-l). 

0. i log[(3 + a?)/(3“a7)]~a:. 

11. log (a: - 3) log (8a;-1). 

13. Ja;® + 'ilog(a;®~l). 

15. Ja^~a;4-^8^1og (a?4-5)4--^g^log(: 

2. log (x^~5ar4 6). 

4. a;4-log [(a;-2)/(a;4“2)]. 

6. f log(a;~l)~i^glog(3a;-f2). 

8. 5 log (a? —2) — 12/(a?~ 2i. 

10. a? 4-f log (a? —2) ~ 5 log (a; 4 1). 

12. a7-61og (a;4-1)-“9/(a;4-1). 

14. ilog(2a;~l)~J/(2a?~l). 

-4). 

16. 
, a? —a 

18. -l»+Jlogx-5glog(5-2x), 

17. J x’ + 5 » + —- lo " . 
® ^ 2 °x+y'h 
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L 5 tan“’ 3 (a;+ 1). 

1 —2 

VS • 

1 3x + 4-2v/7 

4V7 °”3a! + 4 + 2V7‘ 
1 ^34 + 2 + 33; 

2 V34 V34 - 2 - 3i' 

1 x^h-^/1 

®’ 2 V35 + 

1 - 37 -f- 2 — \/5 

2^75 
r> . 2.r + l-v^5 

^5^^^ 237^-1 + V 5* 

Examples XLII, p. 234. 

2. 

1 . Js/lAa + x- 

2-7lTa’°"- - 

■2 a 

y'Hrt — 374-2 a 

J tan~'J (237 4-1). 

1 , X-1-V2 

272’°°- 

1 , 
6. TP log 

8. 

2^5 

1 
lof 

37 — 1 4- >v/2 

\/^5 4" 1 4 37 

7r)“T - i ’ 

2.r-1-2/2 

8v/2 *=^ 237-1 4-2/2 

10. x — 2 tan~' (.r 4-1). 

12. —737 4-7/7 tan 

1 , /73 + 437-3 14 ]orr ^ _ -. 
/7a *=’ /73-43r4-a 

/7 

... 1 , 2a3:4-Z)-/(Z>*—4ac) .. 2 

7(i’-47c) ‘^^27 + 6 + V(4rtc-t0 tan”^ - 
2 a.i7 4- 

/(4 ac — h') 

Examples XLIII, p. 230. 

1. log(37^ + 837-4). 

3, -j;log (a*-3-^). 

6. —l0gC0S37. 

7. ^log (l4-3sin’37). 

0. — (1/fe) log (a 4-cos 37). 

11. \log (ax^ + 2hx-\- c), 

13. log cosh X. 

15. - [log(l-x")]//!.. 

17. log (1 4x0- 

2. I log(x'»-l). 

4. I log (x^ 4-2x4-7). 

6. (log sin ax)ja. 

8. ^log fx*4-a“). 

10. -|log(l-6J*^). 

12. J log (34-4 tan x). 

14. log (logx). 

16. — log (sin X 4-cos x). 

18. [log {a + lj sin"x)]/6. 

Examples XLIV, p. 237. 

1. ■Jlog(x’ + 9)4-Jtan-4x. 
2. 2 log (x^-5) -^/'5 log [(x- /5)/(x4- /5)]. 

3. J x'* — i a® log (x* 4-a^). 

4. */7 log [(/7 -f x)/( /7-x)] + \ log (7 -x»). 

6. 3 log (x*4-4x4-13) — o tau“^ J (x4-2). 

6. 2 log (x»-2x-1) - log jEl-T-72' 

7. 2 log (2x*4-2x4-1) — 7 tan”"^ (2x4-1). 

. -J%(S..4 e.-i) + 

e. |log(a;»-3a; + 5)+ ^tan-‘ 
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10. *-4 log(a;’-2a!4 5)-2tan-*^(*-I). 

11. J a-* + 6* +13 log (»’-6a: +10) +18 tan-' (ir-3). 
12. ilog(4a>-10x-3)+ 

8^37 *4x-5 + .v/37 

18. x-log (x’ + x-!-l)+ ~ tan-' ~,t- • 
V« yo 

14. *-^log(a'-2a + 3)-V'2tan-' {(a-l)/v'2}. 
16. *-81og(a+3) + 3]og(a + 2). 
18. ^ log (a^ + oa + a‘) - tan-' [(2 a + o)/y'S «]. 
17. ^4^-ilog(a« + l) + tan-'a. 

18. i log (a* + 2 oa-o')-Jy^2 log [(x4 a- ^2a)/(x-h a-^ ■</2a)]. 

Examples XLV, p. 230. 

1. log(.r-I)-loga + l/a. 
8. llog{a(a-2)/(a-l)‘}. 
4. J log (a—1) +J log (a*+ 4) 4 f tan-' Ja. 

6. J!og(a-l)441og(a4l)-Jlog(2a‘4l). 
8. 4;+ I logra-I)-Jlog(a4-l)-^/(a-l). 
8. i log (a -1) - J log (a 4 1) - J tan-' a. 

10. ^ log {(a -1 )/(x 4-1)} - J a/(a» -1). 

11. ]og(a4l)-^log(a' + 2a4 2). 

2. loga-'log(a’4l). 

7. — 1/a —tan-'a. 

0. -^/(a'-l). 

12. J log (a -1) -J log (a' + a +1)- v'i tan*'(2 a +1). 

13. ilog{(a«-l)/(a>4-2)}. 

14. 4;-i log (1 4- a) 4- J log (1 - a 4 a') - v'J tan-' ./i (2x-1). 
15. log {a/(l-a)}-l/a-|/a‘. 

18. log (a - 2) - f log (a -1) - J log (a 4 2) 4 i/(a -1). 
17. ilog {(l4a)/(l-a)}-J tan-'a. 

18. - J log (a 4 2) 4-1', log (a' - 2a 4- 4) 4 J /3 tan*' (a-1). 

19. tan 'a-V'jtan-'ay/j. 20. log {{14a4a')/a'} - 1/a. 

21. iVlog {(4:’ + 2a42)/(a' —2a42)}4 Jtan-'(a41)4 J tiin"'(a-1). 

22- UIog(''-2)-ilog(a-l) + ^log{a4 2)-Jlog(a4l). 
23. ilog{(l-a4a')/(l4a4a')}4iv^3tan-' (av'3/(l-a')}. 

24. ■^Iog(a-l)-loga4ilog(a>4 1)4 1/a4^tan-'a. 

26. 4 a' 4 i a'log (a - a) - J a* log (a* 4 aa 4 a") 4 i v^SaHan-' {(2a 4 a)/a} 

28. J;y^2lan-' 4-v/2a 4 s'jlog {(a—l)/(a4 1)}. 

27. ilog{(a>-l)/(a’4l)}. 

Examples XLVI, p. a4L 

1. iinli-'4(a4l) or log[a414V'{a’42a410)]. 
2. cogh-'i(a45) or log(a454■v/(a'410a-11)]. 
8. sin-'J (a 4 3). 4. sin-'4 (a-2). 
6. C08h-'(2a4l). 6. cosh-'(2a-7). 

7. cosh '4(2a43). 8. Jv'2sinb-'i i6a-7). 

9. Vi sin-'4 (4a-3). 10. y/jcosh"'J (4a-7). 
U. tin-* {(2a-8)/V'41}. 12. icosh"'{(9a-2o)/2a}. 
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Examples XLVII, p. 242. 

1. 2. —1)+ C08li“';p. 

3. -2-v/(4~j7*t-sin'Ua:. 4. -v/(a;4-J cosk“^ (2a: +1). 

6. — v^(4 —Sx-.x^) —^ (2a; + 3). 

6. 2-v/(x^ + 5x-f 6) — 2cosh.~^ (‘2x + 5). 7. Bin'’x| \/(l—x®). 

8. 4'v/(2-^^ + ^”‘3) +J\/2 cosh~^ J(4x4 1). 

9. -v/(x* + 2x) +cosh"^ (x+1). 

10. ^(3x^-f 4x + 7)—2^/3 sinh~* [(3x42)/v^l7}. 

11. v^(G4X —x®)4-^ Bin~‘J (2x—1). 

12. \ \/13 x^ — 4x) cosh^^ I ; r*.r — 2). 

Examples XLVIII, p. 245. 

I. ’ain’a!. 2. — j cos^x. 

3. 'i{a^ + x‘)y‘. 4. soex. 

6. — jeoaec’a:. 0. 

7. 8. l/{2(M-l)(a»~x*)"-n. 

0. -l^(a=-:r). 10. 4 x^)'**'V(n 4 1). 

11. — J (o’'/('* +!)• 12. -{a-hxy/rShn). 

13. -Jlog (o’-a:’). 
1 x2 

2^, tan-' 

1 , 
16. .r--, log-..--.* 16. -.jy(o‘-.r<). 

17. (x^/'a-). 18. J sin*"’ U^/u^). 

30. *(.r'’~2A 20. tan"’(sin xj. 

21. log (1 4 t'-"). 22. -ii0^?{(l4^^-''')/(l-O}- 
23. J log {(1-2 cosx)/(l 4 2 cosx)}. 24. — (1 —sin x)'‘'^Y(n 4 1). 

25. ^(loga;)’. 20. (logx)«'^7(7i4 1). 

27. Jtan^x. 28. tan"''*’x/(7i4 1). 

29. log(l 4 tanx). 80. i log {(1 4 tan x)/i 1 - tanx)} 

31. i (1 4 log x)^ 32. -(l*-eY»*'’'Y(w4 IJ. 

33, 2 sin .y/x. 34. J(sin"’x)*. 

36. \ cosli'^ ] x^ 30. sin"’ v^2 sin .x). 

37. — 1/ {5 (a — 3 cos x >}, 88. —1/(1 4 log x). 

30. i sin"'^ (2xN- 5j. 40. 1 tan"’ (x^ 4 2), 

Examples XLIX, p. 248. 

1. — J (x42)v^(l —x), 2. —^{8a®44Gx48x^)V^(rt —x). 
8. 2\/(l 4x) — logX4log {24x-2\/(l4x)}. 
4. 2-^(x4 2)—4tan"^ J V'(x4 2). 6, 2 log (1 — v/x) 42v^x, 

6. x-2yx421og{l4 

7. log {x4>v/(l-“x)}- 
V5 y5-2-v/'(l~x)4l* 

8. ^ (3x~4) (x f 2jV2, 0. (ax4 (15 12 a2?x4 
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10. 2^/x — x hlx^x — 2log(l + A/x). 11. 1^3tan"* 

1 ^{a^x)-A/a 
12. “ loi? ~rr-r- • 

a ^ V^a + a:)-f -/a o«7[a» + a:»)’ 

14. ~ Ja?/V(^“4). 15. — co8ech“*a?. 

16. —einh"* {(2 + aT)/-v/3a:}. 17. sec"'x. 

18. — J-^2 sinh"'[(1 —a;)/(l+ ar)}. 19. — coeli"^ {(14--5x)/9a?}. 

20. (a?4-2)/>v/(a?*4-4a? +5). 

21. 'I log a;-log fv/(l 4-a?) - Ij - + x)/a7. 

22. v^a?—tan*'V^(Ja;). 23. - (1/a) cosh”'(a/a:). 

24. Slog {(1 4->/a:)/(l --Gv^a:. 25. J log {a:Y(2a:*4 3)}. 

26. (l/3a^) log {a:V(it^4 a^)}. 27. (l/«) log {a:**/(l ~ip")}« 

28. log {arV(3-2a:^)}. 29. Jlog {0:7(14 0:'-*)} 4^/(14 a:*) 

80. I log {v/(l4a:) —1} logo:—y'S tan*'{2-^(14a:)4 1). 

- Jlog cos2x. 

2 log tan i (tt 4 x), 

a log t an (^x/a). 

— (cot 7tx)fn. 

sin O' —J sin® x. 

Examples L, p. 252. 

2. (log sin mo:)/m. 

4. J log tan I X. 

e. 3 tan Jo: —a:. 

8. J cos® a: — cos a:. 

10. 4 cos''a: —J 008*^0:. 

'o')/(:i4 1) —(sin**''®o:)/(»4 3). 12. tan a?4 J tan®a: 4 J tan*a;. 

J sec® 07 —sec x. 

J tan® O'. 

I tan® X — tan a: 4 a:. 

I tan® a: — J tan® a: 4 tan a: - a;. 

Jtan^ip flog cos a?. 

— 2 cot 2a:. 

Ja:-^\8in4a;. 

J a: —Jsin2a;4^'a sin 4a:. 

tan \ X. 

tan X - sec x, 

log tan (1TT 4 J a?) — cosec x. 

A sin 5 a: 41 sin x. 

14. J sin® ap - 2 sin .r - cosec a?. 

10. 2 a: 4 i sin 2 X 4 sin 4x. 

18. — cot X - J cot® X. 

20. log tan X. 

22. log tan X 4 J tan^ x. 

24. cosec^x —J co8ec^x4log sin X. 

20. Jtan*x. 

28. — J cot® X — J cot* X. 

80. — cotrix. 

32. tan X 4 sec X. 

84. — JcosSx —^^0 C08 5x. 

C03(m4^^)x cOB(m —w)x 

2(m4n) 2(m —n) 

s,mlp-q)x 6in(p + g)x 

2(p-q) 2(j, + 2) • 

COS mx cos (m 4 2) X cos (m — 2) x 

38. J sin3x —^'ijsinSx —Jsinx. 

2m 4(m42) 

Jlog tan (in-4 x) 4jx. 

1, 3 4 tan IX 

8 3 — tan J x 

J tan~' (J tan x). 

J tan”' (I tan x). 

4(m —2) 

41. — Jlogcosx. 

1 , 13 tan 1x41 

84 tan|x+13“' 

45. J tan”'(J tan x). 

47. Jx4jlog(co8x4 8inx). 

J tan*x 4 4 log tan x—J cot* x — cot*x—3 cot^x. 

^ V^S tan”' {(2 tan ix4 l)/v^3j. 50. \ tan”' (2 tan Jx) 
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Examples LI, p. 255. 

1. 5^v^(9 —Bin“'Ja?. 2. C0Bh~'^{x/a), 

4. —4) — 2 cosh”' 

6. - v^(l-ir^)/a?. 

8. la* 8in~'(a?/a) — ^a? (a* ~ a?*). 

10. lx •/(a:® - a®) + ^a® cosh '(a;/a). 

12. -y(a® + a?®)/a®a:. 

14. J(a:®-2tt*)v^(a®4 a:®). 

16. a:/^(l~a;®j~Bin''a:. 

8. }a:V^(l4a:®)-f Jsiiih”'a:. 
5. — ^/(25-~a?®)/a; —sin"'^a:. 
7. sinh”'a:--v^(l4a:®)/a;. 

0. ^a;v^(9+ iP®)-I sinh”'Ja;. 
11. Ja® sin*'(a?/a) — J a; v^(a®-a?®). 

13. ~J(a;®-f-2)A/(l-ar®J. 

16. a:/{a®.v^(a®-a;®)}. 

17. sin~'.v^(a:-l)--y(3a;-2~a:’). 

18. 38in*“'^/{J (a:~2j( 4 V^(7a:~10-a;*). 
19. 4 sin-' ^ -/(a; - 3) - i (5 - a:) V'(l0a; -> 21 - a;®). 

20. V- 8in-'-s/{J (a: 4 1)} -i(8 - 2ar) v'(44 3ar-ar®). 

21. sin*'J (2a:-5). 22. 8in“'{(2x-CX —/3)/(/8-a)}. 

23. i(^~0()®8in-'v'{(a:-a)/(/9-a)} - J(a4/3-2a:)-/{(a:-0) (ji-x)}, 

24. 4a* Bin-'-v/{J (a:-2a)/a} (4a —a:)v'(8aa: —12 a* —a:®). 
25. (3 - (X) sin-' y {(a: - a)/(3 - a)} - V {(a: - a) (3 - x)}. 

26. 8sin-'v^{J (a;4 4)} 4 \/(16-a:®). 
27. (a - 3) sin-' y {(.r - 3)/(a - 3)} + y f(^ 3) (a - ar)}. 

28. 4tan”'a:4^a:/(l 4 a?®). 20. | tan”'(a:4 2) 4l(a:42)/(a;®4 4a:45). 

80. yiTtan”'J(2a:-3)4YJ,r(2a:-3)/(2a:®-6a:445). ^ 

81. J(a:®-2)/(a?®4 2a:4 2)-^tan-'(x4 1). 32. J tan”'a?-lx/(a?® 41), 

Examples LII, p. 258. 

1. ia:*{loga?-J). 2. sa:®/®(loga;-^). 

3. (a?”»+'logx)/(m 4 1)—a?”*'*''/(m4l)*. 4. — J (loga: 4 J)/a:®. 

6. X sin X 4 cos x. 

7. e*(x-l). 

0, J (^* ■” ^) tan“'X 4 J X - X®. 

11. XBin”'x4 ^(1 — a?®). 

13. X tan X 4 log cos X. 

15. J (2a?®^ 1) sin-'x4ixy'(l — X®). 

17. ax sinh (x/a) — a® cosh (x/a), 

10. xco8h“'x—v^(x®-l). 

21. 2x®8in4x4 8xcos Jx-16flin J 

23. -(x®4 2x4 2)b"*. 

6. — (x cos mx)/m -+ (sin mx)/m\ 

8. — (ax4 l)/a®. 

10. Ja?* tan~'x —Jx®4i log(a:®4 I). 

12. xlogx —X. 

14, (log sin mx)/»i® — (x cot mx)/m, 

16. X ooshx —sinh X. 

18. X8inh”'x—v^(l 4a:*). 

20. — X® cos x4 2xsin x42 cos X. 

22. (a:*-3x®4 6x-6) 

24. — Jx®cos2x4ix8in2x4ico«2x. 

Examples LIII, p. 258. 

1. Jx-v/(a?®-a®)-5a*coBh-'(x/a). 2. Ixy(a®-x®) 4|a* 8in''(x/a). 

8. ^xy(32 + 2x») + 8v'28inh-4*. 4. ia:v'(12-Sa:*) + 2-/3iin-4a!. 
6. |(x41)4 2x45)42sinh-' -|(x4 1). 

6. |(2x4 5)v'(6-5x-x®)4'V sin-'I (2x4 5). 

7. J (3x42ji/(3x®44x-7)-f|^3 cosh-' ^ (3x42). 

8. (6x 4 5; v^(8 — 5x — 3a:®) 4 \/3 tin”' ^ (6x 4 5). 
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0. i {Bx-l)^{3x‘-2x)-^y/3 cosh-’ (3*-l). 

10. (8*—5)'\/(5a!—4x’) + §Jsin-’ J (8x—5). 

11. ^ <!** (2 sin 2x43 cos 2x). 12. f** (2 sin 5x —5 cos 5x). 

13. f «-* (1 sin^x — cos Jx). 14. — J (sin ax 4 cos ax) e~°-^/a. 
16. (5 4 2 sin 2x4 cos 2x). 10. Je*^(2~Bin2x —cos2x). 

17. ^ (sinhxsin x — cosh X cos x). 18. j (cosh X cos X 4 sinh x sin x). 

19. ^ (cosh X sin X -siuh xcos x). 

20. {R Binpt+pL COBpt)/(E!^+p^L^). 

21. {pL sin (pt + r) - i? cos {pt + e)}/{W^ ^*2/*). 

Examples LIV, p. 204. 

1. e*** — 3 4-6a?a-~6)/a*. 2. — 4:c* +12a?*4-244? + 24) 

3. Ja:(3~2j;®)co8 2x + i(2a;*-l)sin2ar. 

4. (jr* —6a?) sin a?+(3^7^ —6) cos :p. 

6. ~{x* ~\2x^-¥ 24) cos a? + (4 a::* — 24 x) sin x. 

0. 3? {9 (log xY - 6 log X 4 2}. 7. (8 (log xf — 4 log x 4-1}. 

8. (x® 4 2) sinh x~2x cosh X. 0. (x*-f 6x) coshx —(3x®4'6) sinhx. 

10. J ta-n^ — tan ^ 4'11. — } cot*(94-J cot*^ —cot^~^. 
12. ^ tan^^~-i^tan“^4'Jtan*^ —tan 5-4 

13. i tan*5. 14. I tan*5 4-log tan 5. 
15. J tan®54-3 tan 5 — 3 cot 5-J cot*5. 16. 2v^tan5. 

17. A - A 5 sin 5 - ^ cos 5 sin* 5 ~ i cos 5 sin* 5. 

18. Jsin*5co8*54-i Bin*5 cos 5 -sin 5 cos 5 + 5. 
19. j sin 5 cos* 5 +1 sin 5 cos 5 4 2 20. | tan 5 sec 5 4 log (tan 5 4 sec 5). 

21. —cot 5 —J cot*5. 22. log (sec 54 tan5) —cosec 5. 

8in”*“M co8"'*'*5 , w —1 
+ -— /m-2, 1 23. Im, n 

4 n m 4 n 

24. /sin*5 cos*6 dO ^ - J sin*5 cos*54 J/sin*5 cos*5 d5, 

ginTft-i^ cos"''^5 m —1 
26. Im, n “ 

rBin*5 
26. 

27. 

n4 1 

1 sin® 5 5 

cos* 5 3 cu8*5 3 

ginw-fi^ cob’*~^5 

4- ^ ^ j 7»n—2, n + 2. 

ddr 
\ f sin* 5 , - 

f CO 
28. ^ 

J 

Im, n ■■ 

cos® 5 

8in*5 

m 4 1 

n-1 

+ ;;rri 

dB 
2 sin* 5 

29. 
Kin’^^'5 co8**'*'^5 

Im, n --ITT't- n4l 

s..| dB 

81. Im, n ■■ 

dB 

sin 5 cos* 5 2 cos* 

gin»»+i 0 cos»»+* 5 

008*5 J 

J sin 5 

m 4 n 4 2 

n 4 1 

dB 

/ffi, n42. 

sin 5 cos 5 

m4n42 

m 4 1 w41 
/m42,n. 

82. 
sin* 5 cos* 5 8 sin* 5 cos 5^3 

dB 

sin* 5 cos* 5 

N ll2 
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lEiscellancous Examples, LV, p. 266. 

1. — Jlog(l—4a;). 2. ylog {(l4 2a;)/(l—2ar)}. 
8. -l^{l-4x). 4. -i^(l-4a;)»+V(n+l). 
5. — (1 — 4a;’^)’/*. 6. J a; ^(1—4a:’)+1 sin"’2a;. 
7. -jV(l-4a;’). 8. |Bin->2a:. 
». 1/14(1-4a:)}. 10. -i (l-4a:’)"+V{n + l). 

U. -}n(l-4a:)(»+’)/"/(« + l). 12. -^^(1-4^:’)’''“. 
18. — Ja;v^(l—4a:’) + ,’jgin"’2.r. 14. —.,’5 (2a: + l)v^{l —4a;). 
16. -Jx’-,V®-Alogil-4a:). 16. -J-/(l-4x’). 
17. i-8in-’2a:’. 18. .jlj {(1 _4a-)»+V(« + 2)-(l-4a:)»+V(n +1)} 
10. i’,{lAl-4a:)+log(l-4a:)}. 

SI- iVlog I(l+2a:)/(l-2x)| -fa:, 

82. ^ {6in"’2a: —2a;(l —8a;’)y^(l- 

23. -‘2x* 

25. x/^/il-^x^). 
27. l/{8(n-l)(l-4a:*)”-i}. 

29. —4 2^ + 6a?^jV^(l-~4x). 

81. log {iP/(l —44?)}. 

83. log{a:/(l-4a:)} + l/(l~4x). 

85. log {(1+ 2x)/(l ~2a:)J-l/a:. 

87. a?4-loga: —J log(l — 40?). 

80. l/{8{l~4x*)). 

41. \x-\(%m2ax)/cL, 
43. -J cos 4a;. 

46. I sin^a;. 

47. j a;gin 4a?. 

49. 18mar+J sin 3aL 

61. J gin® a;— ^ sin®a;. 

63. — 2cotJa? —a;. 

65. J tan*a? —tan a? + a^ 

67. Jsec^a;. 

69. ^ log tan X, 

61. (sin nx)ln* — (a? cob wa?) /n. 

63. {x tan mx)fin + (log cos 

05. (2 — COB a? 4- 2 a; sin a?. 

67. (ar*-2a?4-2)e». 

09. (a —&4-l>x)e*. 

71. |(a?*-l)log(l + a?)-^a?*+Ja?, 

73. — {(n — 1) loga;4-l}/{(n —Ij^a?**' 

76. ^(l+a;*)log(l+a?^)~Ja;*, 

77. J (sin 3a: 4-008 3ar) 

20. + 4 log(l-4a:)+y(l-4a;)] 

4a?»)}. 

24. -^^(l4"6a:4C0a?*)(l-4ar)®/*. 

28. J(l-4a;®)-i. 

28. ?,(l~4a;)-V-. 

SO. {log(l -4.P®) + 1/(1 -4a?*)}. 

32. ]og{a?/v^(l-4a’*)}. 

84. 41og {ar/(l “4a;); — 1/a?. 

36. J-log {a?* (1 — 2 a:j/(l 4 2x)®}. 
88. —(1 4-2a;*)v^(l-4a?*). 

40. “^^o(l4 6a?)(l“4a-)V». 

42. 2 sin I a?-1 sin* Jar. 

44. — tcoB®a?. 

46. J sin^ar —^sin^a?. 

48. J COB a? —J COB 3 a;. 

60. I sin a? sin 3 a?. 

62. I tan 2a?— a?. 

64. ^ tan a? sec a; 4- ^ log tan (Jtt + a?). 

56. J tan®a?. 

68. —coseca?. 

60. Hogtan (Y7r4-a?). 

62. 2 a? sin ^ a? 4-4 COS ^ a?. 

64. a? tan a; 4-log cos a? a?* 

60. ~J(2a?4-l)tf”**. 

68. 
70. ^a;*(loga:“Jf). 

72. i(loga?)*. 

74. “(a —a;) log (a— a?)—a?. 

70. •-^(sin5a?4'5cos5a;)«~*. 

78. (sin 2a; —2 cos 2 a?) ff*. 

70. - ^ (2 sin 2a; —cos 2 a? 4-5)^“®. 80. x(a;*~l)tan ^a;-/ja?®-!-j[*4S, 

81. J(2a?* —1)COB"*a; —Jar\/(l—a;*). 82. a;sec"*a; —cosh"*a?. 

83. ^ a;*co8ec~*a;4-|\/fa:*-l), 84. (log cosh aa;)/a. 

85. -log (sin a; 4-cos a;). 86. log {a?/-/(a;* +1)}. 
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87. 

60. 

01. 
03. 

95. 

07. 

09. 

101. 
103. 

105. 

100. 
107. 

108. 

no. 
111. 
123. 

115. 

117. 

119. 

121. 
123. 

125. 

127. 

129. 

131. 

132. 

183. 

134. 

136. 

130. 

188. 

139. 

140. 

142. 

143. 

144. 

145. 

146. 

148. 

140. 

150. 

Vo^ {^/(^ + 2j}. 

— \ sinh"* X, 

i + 1) +1 tan“* x. 
-iMl+«:’). 

-^,(2 + 3a;)(l-x)V». 

-l{x + 2)^{\-x). 

8in"’V^a: — [x (1—x)}. 

(2x-1)Jir(.r—1)} - J cosh"'(2x—l), 

i (2 X - 1 j V'-I X (1 - a;) j + J sin-^ {2x -1). 

109. Bin*’(2a: —1), 

J (2:r4 1 )v^{a:(a:-f 1)] — Jcoah"' (2a:+ 1). 

88. Jlog(a?*+l). 

90. log[{v^(a:*-h 1) —Ij/o:] or — cosech”^*. 

92. Of—tan"'a?. 

04. 8inli~'a:—-v/(l+0:^0:. 

90. 5Binh"'a:+Ja7(5 4 2ar*)v^(l + a:*). 

98. a:/-v/(a:® + l). 

100. + 
102. i2f(2-f3ar)(a:-l)V*. 

104. 8 (x +5)-/(or-IX 

— log (1 +C08a:). 

X - tan J X, 

112. tan I X, 

n4. a? —sin.r. 

no. 1/(1+008 0:). 

ns. \ tan o: — ^ tan* J x, 

120. 2 tan ^ 0* — O’. 

122. o: —log (^''+ 1). 

124. 2 tan "'(9*. 

120. a: sinh o: — cosli or. 

128. Ja:+i sinli2o:. 

130. a:sinli"'a:—V^(l+0:*). 

tan ' X + sin o: — x. 

I ta n J o:+ J tan* | x. 

^ tan* I O' ~ 5 tan | o; + o:. 

log(f’"+ 1). 

<»^-]og(>*-f 1). 

log tauli I X. 

2x cosb i .r - 4 sinh J x. 

j sink 2o: — x. 

(2 x^ — 1) cosh"' o: — J Xy/{x^ — 1). 

(sin aa: coeh ax — cos ax siub ax)/a. 

l\y (5 + 008 2a:) cosh a:+ J sin 2a: sinh a:. 

(3 sin 2 a: sinh 3x —2 cos 2 a: cosh 3 a:). 

(n cos mx sinh nx + m sin mx cosh nx)/{m^ + n*). 

tan"'^ (o'+ 3). 137. I log (0:^60:+ 109), 
I log (,0:* + C a: +109) — J tan"' {x + 3). 

a:-3 log(a:® + 6a:4 109j —tan"'(a? 4 3) 

sinh"' ^'0 (^ + 3). 141, ^{x^^ijx+109). 

^"(^’* + 60: + 109'i — 3 Biiih"' (o'+ 3). 

\ {x + 3; \/{x^ + 6a:+ 109) + 50 sinh"' ^ {x + 3). 

J (2a:’' 4 3.r +191) ^(a:’' + 6a: + 109) -150 sinh"' (a: + 3). 

1J9 nog {a:/V(^ + 6^ + 109)} tan”' i'fj(o: + 3)]. 

— ^'^7. logo: —J log (1 4-o:*X 
Jlog {(l+a:)V(l-a? + a:*)} + V'Jtan"' {(2a:-1)/V'3|. 

i log {(1 -a: + a?*)/(l +^)*) + Vi tan"' {(2a:- Ij/yS}. 
i x\'{l 4 x‘^)\ 

Examples LVI, p. 272. 

1. 204-6; J; 2; 293J: {£. 

2. 13; -W; + *828; }faV». 
8. log4; log2; log4. 4, 1; 0; 0. b. in; In; t 
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e. iIT ;}n; *8812; *446. 7. 

8. v^2-l; Jlog^; tan~'2—Jtt. 

10. 21og2~J; log4-7; fclogb 

11. 1; 1. 
13. + 

16. Ja»; 0(72-1). 
17. 0; §. 
19. o(l—Jtt); Slogl. 

'21. ftan-’i; Jlog2. 

23. tV; 0. 
25. HlogJ: i+logj. 
27. 0; 0. 
29. 1. 

81. |jr-l. 
83. 6—4 log 2. 

35. ^(e-'+l). 
87. .^(Tr + log?). 
40. n/^/3 — ’^1T^ — \og2. 

42. Jtt. 
44. 1. 

46. 

«■; I a» {log (1 + 72) + 72} ; I 074. 
9. }jr; f: log2. 

■ 0 log 0 + 0 — 6. 

12. JjT-l; Jn--! log2. 

14. e —2 ; einh 1. 

16. TT ; tt’-4. 

18. -446: 2-287. 

20. ^ log 3 ; I log .8, 

22. -JtJ- — § ; ^TT. 

24. 0. 

26. + i’V’'* + r* 
28. i. 

80. n/(ah). 

32. |a/sina. 

34. tan~*e —j»r. 

36. J (log 2+ 773). 

88. -446. 39. -562; 1-7624. 
41. j(7r--Jtan->J; log^Jg. 

43. ^ o*. 

45. 1. 
47. 0. 48. J (b*-a'). 

Examples LVII, p. 277. 

In each of Ex. 1-12, I denotes the integral of the given function from 
0 to I rr. 

1. 2J. 2. 21. 8. 4/. 

4. 4/. 6. 8/. 6. 8/. 

7. -21. 8. 4J. 9. -3J. 

10. 31. 11. 27. 12. 37. 

13. A. 

10. 0. 
19. 

22. 0. 
25. 0. 

28. 1-132 and 1.192. 

84. 1163. 

14. o»-^V{(«+ !)(» +2)}. 

17. 0. 

20. -rt^7(2o’). 

23. 0. 
26. 0. 

29. 1-571 and 1-679. 

15. M72. 

18. 0. 

21. 0. 
24. 2. 

27. *5 and *5236. 

80. 1*785 and 2. 

Examples LVIII, p. 281. 

In caseB where no answer is given, the integral does not exist. 

1. 2. 3/72. 4. 3. 0. 0. 8. 4|. 0. ^ tr. 

10. 7r/(at). 13. J. 14. TT. 15. 1. 10. a. 18. ^TT. 

SO. log 2. SI. 1—JjT. 28. JT. 24. 77. 25. nl. 



ANSWERS TO THE EXAMPLES 651 

Examples LIX, p. 285. 

1. !?Tr "• 2. -A. TOY* 4. {^^n. 

5. 6. Sf. 7. /in-. 8. 

e. in. 10. 11. ^77 a*. 12. 4877. 

13. 14. 16. 10. l/(12a') 

17. 18. 0. 10. yioa’. 20. -iVtt. 
21. 3 7r. 22. S?- 23. ^”^77’. 24. ^ 77 0®. 
25. 158^* 20. Ih 27. 1/(24«' ’)• 28. l/(6a-). 
20. TT. 80. 31. |,r. 82. 
S3. an. 84. an. 86. 77. 86. fi-v. 

Examples LX, p. 201. 

1. lOj. 2. 3. 377(7*. 

4. ^ TTflb. 5. ifi!-/27r. 7. Jcl7. 8. }ga’. 

0. ]0. lOCij. 11. (i) 15(4-77) (iij ^(4 + 7r; 
12. *67a^ 14*37a’, *67a® 13. ; i V'S. 
16. (2^3- log (2 4 ^/3)} ab; aft log (2 + v^B). 
16. 2 TT. 17. 34 n-. 18. iTT. 
10, 4 ah tan' 20. 77. 21. t®. 

22. 4 77 a*. 23. 6 77 a*. 24. 177 

Examples LXI, p. 298. 

1. 1*111. 2. 14*902. 8. *6. 

4. 1*37. 8. 3*57. 9. •256. 

10. (i) 2nal ’T, (ii) i «0 7r; (i) 2n^alny (ii) \'n}a. 

12. (i) in a. (ii) 2(7/ 77. CO
 

14. 1*274. 

16. 50. 16. ia*. 17. 

CO 
!>. 
03 

18. Ja*. 19. ^a. 20. Jrrfc. 

21. 0 for a complete rcTolution, 2r/7r for half a revolution. 

22. 3*9 sq. in. 23. 14*42 sq. in. 

24. 16*72; 16*64. 25. 1*5869. 

Examples LXII, p. 308. 

1. n a®. 2. ^ TT a*. 

8. 1 of circumscribing cylinder. 4. of circumscribing cylinder. 

6. iTT^ab®. 6. f 7ra®. 7. |7r®a®. 

8. ^\\/2(10~37r)?rt**. 0. 10. ^(?grra^. 

11. 12. (9it^ —16} 7ra®. 18. 2*813 ttc®. 

14. ^Tra*. 15. jTra®. 16. 27r®/^. 

17. J TT (tt* ~ 8) ab*. 19. ^Tra*. 

20. ?ra (b(2fi + b) log (h/a) -f 2ab +Ja‘~4 b*}. 

81. 2n*hr\ 88. 17*69 c. ft. 84. 2186 c. in. 
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86. IT(14 + 3w)a’. 26. w[2a6’ —IBin“*(ft/a)]. 

27. 183-8. as. i(2-V'8)jrr‘. 

29. fTTftft*. 80. ly/27Tf*. 

Examples LXIII, p. 807. 

2. 11-804. 8. ^a. 6. -82. e. Ga. 

a. 2 r’'y^(a’ + b’cOB^&)dS. 9. 4a/V'3. 10.46-66. 11.48-87. 
.J n 

13. 1*317. 

17. log (2 cosh a). 
14. 4 (a* 4- b^)/(a + 6). 10. 8 a cos J a. 

18. ^aa*. 20. 9*76. 

1. 620. 

4. f (3 7r--4) 7ra\ 

7. TT (7r — 2v^2) a*. 

10. 2 TTC* (1 —l/e). 

12. 7r(fcVis)log {(l + «)/(l-<»)}+27ra^ 

14. 77 {2 +v^2 log (\/2 + 1)) a\ 

17. IT {v^2 4 log (<y/2-f 1)J, 

19. 4288 sq. in. 

Examples LXIV, p. 809. 

2. 4r>2‘5 sq. in. 

6. 262-2a*. 

8. 7J a* (4 — 7r)/‘v/2. 

8. 
e. 4 Tj^ar. 
9. \^7ra*. 

11. 277 {fffe (Rin“’e)/ff-f ?>’[. 

18. 77tt* |3\/2— log (y^2 4 1)}. 

15, 77C* (2 4 biiih 2). 16. J77a*. 

18. 4 77 

20. 1096 sq. in. 

Examples LXV, p. 312. 

13. r « 2asin ^ tan^. 14. r* cos 2^--a*. 16. r(l 4 cos^^) •»= 2 a. 

Examples LXVI, p. 317. 

3. 120*. 4, v^(2ar). 8. 107*39'. 
21. r/a •= 1 4 sin {^4 C). 23, 5v^3a. 24. | a. 

25. a/\/2. 28. 60® and 120* with initial line. 

20. When cos(9-« {- a 4; >/(a* 4 8 5*)}/4 6. 30. +2a/r4l. 

81. a* 4 a’ - >•«. 82. aV4 6. 86. 0*. 

Examples LXVII, p. 821. 

1. |T7a*. 2. 1. 4. 1414. 
6. 35-525; 2*174. 6. 77 a®. 7. a*. 
8. ^77a®. 9. 10. ./!r(47r-3v'8)a*. 

11. (}77 + 2)a*. 12. fa*. 13. V^2 (f*| ?*j). 

14. 3*925 a. 16. f fra. le. 4-59 a. 

17. 2«J^ 18. |77a*. 19. 8 a. 

21. ^77 a*. 22. 233*7. 23. 885'1. 
24. 77 0*. 25. Jfra*. 20. t>r(v'8-l)a*. 

27. 28. 
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Examples LXVIII, p. 324. 

1. a? a: 5 (4 cos cos 4 ^), y — & (4 sin ^ —sin 4 ^); ar «= 6 (2 cos ^ + cos 2 ^), 
y-=h (sin - sin 2 0). 2. tan {6 + \ 0). 

8. ds/d^ as 2 (a + 6) sin (J a 6/h); 8 (a + 2>) h/a, 
4. ds/dO :>^2(a-h)^m[\a0/h) \ ^{a-h)hja. 
5. r~2>y/2&. 0. ar + -v/3y —2&. 

7. ^r.h\ 0. 
10. X ^ a (cos ^ 4- ^ sin ^), y ■« a (sin 6 — B cos 6). 

Examples LXIX, p. 302. 

(0 Jv^2r/7r from centre, on middle radius, (ii) J a/7r, ^ 

. / a^ih-c) \ 
\log{/>/c)' 2^c log (/>/c)/ 

6. = 

2. 2 /> from vertex. 

*^■,12* 4. Inh. 

7. (I, 4). 
10. ^ ax I b. 

13. =.|{Ja/7r. 
15. i^«a5r. 
17. *87 r from vertex. 

10. X (a*-•6*)/(aZj^ +arsin' 
21. a* «= 3^*;^. 
23. y = Ja. 

25. 1/ « I- [a cosech (a/c) + c cosh (a/c)). 

6- (!«, Aa). 
0. a: = » a. 

27. 4^/27ra»; A/2na^. 

20. 2rr^f*/;^- 
31. 984’7 sq. in.; 1583 o. in. 
84. (3*95, *96). 

8. X = ^ a. 

11. ‘92a from centre. 12. x =* ^a. 
14. *87G r from vertex. 
10. in. from larger end. 
18. (3|, .J*;,). 
20. («, m. 
22. X = f. 
24. y —fo. 

26. wV^So*; jTTo’. 

28. 47iV; 27r*r\ 

30. 76 lb. wt. 

83. 265'4 lb. wt. 

86. X =■ 3’9. 

Examples LXX, p. 836. 

1. 2 A. 2. 5 (6 + 8 aft + 3 a>)/(3 ^ + 2 a), if a be height of triangle. 
8. 4J ft. 4. '^nr. 5. Jot. 
6. h(o + 85)/(2a + 46), where a ia the side in the surface and 6 the parallel 

»ide. 7. 4 a. 
0. Depth below surface increased by h[h + 2a — h)^{h + a), where a and b 

denote original depths of C. G. and C. P. respectively. 

1. J3fa*. 
6. imK 
8. *m*. 

12. Ma'{e' + l). 
16. ?Af6*. 
80. 1-95 Af. 
88. 

Examples LXZI, p. S40. 

а. J1U7A 8. IJf,-*. 4. 

б. jm*. 7. im>[l«“|ba8e]. 
9. IMr^. 10. ^Mt^. 11. 

13. |Af«7). 14. \Mr*. 16. jA/r*. 
17. iMuh. 18. ^Mb*. 10. 1-25 Af. 
81. |A/r* f2 + cos2a-f (nin2 0()/a}. 
as. i^Afa'. 84. ^Afa*. 
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Examples LXXII, p. 346. 

1. r'*). 2. lMa\ 3. + 4. \Ma\ 

6. Jil/a®. 6. (i) 2 (ii) (iii) ilfo* (lA*+ !)• 
7. 8. fil/a*. 9. 10. M {J a* + (a — ?>)*}. 

11. ^^Ma\ 12. 13. 
14. 16. (i) (ii) + 
10. + 17. (i) 3/^). (ii) + 
18. M (c* + } Z;2). 19. 3/ (r + 2 r*). 20. 2 ilf/•» {1 - (ein «)/«}. 
21. 22. \Mt^. 
28. i3/c®, if c be tbe length of the hypotenuse. 
24. \Mh{Aa^U). 26. J 3/(6*+ 6 a*). 

Examples LXXIII, p. 848. 

1. 3f/r. 2. (3f/6) sinh~'(/i/r). 
3. (37r*/i) {h,/(7^ 4- A*) 4- sinh-’ (h/r) - . 

4. 2Mjly where Z is the slant height. 6. 3 3/(Z--6)/r*. 
6. 2rrfn (r® — r'*), where w is the density, at an internal point; 3//c at an 

external point. 7. 3//r. 
8. 27rfw(r*“r"‘ —Jc*4-Jc'*), where and c'are the distances of the point 

from the centres, at an internal point; 3f/c —3/yc', at an external 
point; I TTfM (3 r* — 6'* —2 r 7c'), at a point between the spheres. 

9. 2 TT tw (jR — J?'), where/? and i?'are the distances of the point from the 
edges of the ring. 10. 23//r. 

Examples LXXIV, p. 352. 

1. (2mcosa)/p. 2. 2 TT tn (1 — cos a). 8 and 4. (2 m sin ^ ^PP)/p. 
6. {M/h) (l/P, - l/Pj), wliere J?, and are the distances of the point from 

the circumferences of the ends. 
e. 2nm{h + R^-R^. 7. 27rwj^(1-cosOf). 
8. (i) 0. (ii) f 7rfn(a;’'-r'*)/ic*. (iii) M/x^, 
0. (i) ^TTmdy where d is the distance between the centres A and B, 

(ii) Resultant of M'jBP^ along BP and MjAP'^ along PA, 
10. MjPA. PB. 
11. 2Trfn (cos ^ —cos Of), where Of and jS are the angles subtended at the point 

by the radii of the ring. 
12. (i) 31*376. (ii) 30*63. 13. 515x 10® ft.*lb. 

Examples IiXXV, p. 300. 

1. (i) £32 55. lid. (ii) £32 65. 3d. (iii) £32 ?«. 4d. 
2. (i) 29*1°. (ii) 40*55 min. 8. 30*5°; 20| min. 
4. 7yro-=2*85. 6. 3048 lb. wt. 6. 20*5. 
7. 5870. 8. *44. 9. 19*5. 

10. 36*95; 14*98. U. 78*5. 12. (i) *2054. 
13. (i) *0059. (ii) 5*44. 14. (i) *00098. (ii) 1*24 seca 

(ii) 6*1. 
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16. 1*74 X 10'*. 
17. 4*97. 
19. -*02. 
21. 44*26 per cent.; 12*5. 
23. 185*8 min. 

le. (i) -268. (ii) -0028. 
18. ~3'09. 
20. fF; 2*32 min. 
22. 1*99 secs. 
24. 46*45 years. 

Examples IiXXVI, p. 808. 

1. 1 ft.-lb. 2. a ft.-lb. 8. 19080. 4. 129360. 
6. 92363; 186540. e. 77625; 47520. 7. Iir45. 8. 1,000,000. 
9. 3522 X 10*. (i) 2J ft. per min. (ii) l|ft. per min. 

10. 78680; 433*8®. li. 61790. 12. At 56° 19'to horizontal. 
13. 2*836ir. 14, 2W, 16. 2W. 

16. 41® 24'. 17. 9 in. below ^21. 18. 43°54'to wall; unstable. 
19. 16® 25' to horizontal; unstable. 
20. cot Of, if W be total weight of rods. 

21. TF(2c — a)/av^3. 
23. 294*8. 

22. 50 cot Of. 

24. 79*72 ft.-lb. 

Examples LXXVII, p. 876, 

1. (i) 873. (ii) 16. (iii) -1*67. (iv) 
2. (i) 16. (ii) 875. (iii) ~8*48. (iv) ^tt. 
3. 64} days. 4. (i) 3278* (ii) (iii) *185. 
6. 21^ min.; 4'946 miles per sec.; 85 min. 
6. 2’92 miles per sec. 7. 84 miles. 
8. 1*49 miles per sec. 9. 25*82 ft.-secs, 

10. 17’17. 11. 
12. (ij 4 ft. (ii) ril secs, (iii) 4*9 ft.-secs. (iv) *24 secs, (v) 3*95 ft. 
13. + u^); ^{I/fji) B\nh-^ (x^/fi/u). 

14. 7{/i(it^~a*)}; 7(l//x)cosh~'(ir/a). 

16. 712 (a; ~ a)/ax] ; 7(«V2m) {cosh"'7W®) + 7(j?’ - • 
16. 16 ft. 17. oV7/^- 
18. (i) *556 secs, (ii) 5*656. (iii) -3*32. (iv) 4*306. 
19. (ii) 2*828. (iii) -1*66. (iv) 3*847. 
20. *7854; X mm cos 8tj if x be distance from centre at time t 

21. *7854 ; a:*«co8 8/, if a? be distance above position of equilibrium at time f. 

Examples LXXVIII, p. 884. 

1. (i) <?■««“(ii) (iii) w(l —«~**)/A:. (iv) ^=oo. (v) s mm u/h, 

2. (i) 1000/(100a?-fl). (ii) 1000/7(2^ x 10®-f 1). 
8. (i) 1*96 secs, (ii) 69*3 ft. (iii) 1*3 ft-secs. downwards, (iv) 63*9 ft.-secs. 
4. (i) 2*36 secs, (ii) 92*16 ft. (iii) 11*46 ft.-secs. 
e. (i) 100. (ii) 79*8. (iii) 174*4. 
6. (i) 31*623. (ii) 81*62. (iii) 104*9 ft. (iv) 30*37 ft.-secs. 
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7. ‘488 lb. wt. 

8. (i) 1‘16 secs, (ii) 22*3 ft. (iii) 35*78 ft.-secs, (iv) 1*203 seoo. 

0. 22*74 ft.-secs. 10. if mkv'^ be the resistance. 

11. (l/A;)log(l+ifc«/5'); u/lc-{g/lc^)\og{\->rkulg). 

12. {iwr^(u^h/Vg)]/V(gk). 

18. (i) *89 ft.-sec. (ii) 3*3 ft. (iii) ‘0048 ft. 

14. 2k^/u/g\ Ikxi^lg, 

10. 40*8 secs.; 1755 ft. 

18. 61*66 ft.-secs.; 62*3 secs. 

20. (a? + y)» + ^y*« 25. 

22. a?-■ acoshf-v^/i, y ^ {uj fx) 

16. 14*3 ft. diameter. 

17. (1 A') log {u/(w - kh)}. 

19. 1*37 secs.; 18*8 ft. 

21. 4(4a: + 3i/)^ + 25y* == 1600. 

f ; x^/a^ - fjL y^jvL^ = 1. 

Examples LXXIX, p. G9I. 

1. 8V^(J cosd) ; 
\tr d(f) 

2. (5) -2J°. (ii) -3*27°. 
8 Jo V(l-|8in^^>) 

3. (i) 3*14 secs, (ii) 16 ft.-secs. (iii) 13*86 ft.-secs. (iv) —3*33 ft. 
(v) *66 sec. (vi) s « 6*93. (vii) 14*57 ft.-secs. upwards, (viii) *425 sec. 

r*"_d<p 
4. v'(24cos5): Y 

6. S^couB; 
^2 i 

6. I ^{6 cos ^); ^ 

d4)_ iir 

ri' dcj> 
0 

itr 

<t>) 

„„ Ifcosd\ d<p 

^ y\3^rj’ 16 J, va-^sin’ 

9. (i) (iii) 2;r v'(a’ +J’)| • 

«») ^’^'sUsgy'ia’ + b^j}' 
10. 1*93 secs. 11. *065 sec. 12. 1*82 sec*. 

13. *736-/®. 14. h *= radius of gyration about C. G. 

15. 2 ft. 16. <^*-2(?(co8i^--cosa)/J; 2wV{J/G). 

Examples IiXXX, p. S95. 

2. (i) 353*3. (ii) 356*8. (iii) 354*9 lb. wt. 

6. 101 ft.; 6*28 ft 7. 101 ft; 6^ ft 

1. 8*9 ft 

6. *021 inch 10. *04 ft 
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Examples LXXXI, p. 401. 

I, 5*59. + «3. 2. 42*16. {a; + 38)*4-(y~V)* ““ 

8. ~4‘63. 4. —5. 5. (rr* + y*)^2 c*. 0. — 
7. ~4v^2a. + —10</a?4-4ay-= 3 a*. (9 a, ~6a). 

8. c. 9. 10. iS'^a. 
II. -~3^(aa?y). 12. —2. 13.4^. a;*4y’' = 9x. 
14. ““^-\/2. 15. 4 a COS ^ 10. ““-ja. 

17. V/* 10* “■ ® cosec (a?/a). 19. 3 a sin 6 cos 6, 
20. cBec*\//“. 21. f/Va. At the vertex. 25. 
27. 4 a cos 3 B, 
29. (i) Max. at origin, (ii) Max. when x — *386. (iii) No max. or min. 
82. —acot 

Examples LXXXII, p. 400. 

I. Ely « \Wa^ Wl^/EL 2. See result of Art. 200, Ex. (iii). 
8. See result of Art. 200, Ex. (ii). 
4. Ely = IIV (181* - 8 Zx + x»)/Z ; ’ J117 Vi^J. 
5. As 377:16. 8. ^ll^wiyEl 0. ^^^^wV/EL 

10. If ic be measured from clamped end, Ely ^ (l — x){Zl‘-2x), 
"Where a* «= *58 Z. 

II. 12. 1*39 in. 

Examples LXXXIII, p. 413. 

1. 2/(r»/a). 2. (i) Ja. (ii) |a-/2. 
8. (i) I a. (ii) 2 a/>v/3. (iii) Ja. 4. (2 ar—7'*)V*/a5. 
6. BV'Sa. 0. (a*4-r*)VY(2a* + r*). 

7. r(a* + r*)*/V«*- 8. fl”/{(^+0- J 
( « . /dr\^\^ ^ d’^r „ /dr 

10. ^r*4- 
df* r , 

14./oc !//•“. 16. (Z» coseca)/n 10./oc !/>"*. 

17. /oc 1/r*. 18. The lemniscate r^ « a*p. 
20. =* (semi-latus rectum); r* ■* y (l/a-~2/r). 

Examples LXXXIV, p. 420. 

1. A concentric circle. 2. Two concentric circles. S. A circle. 

4. 4a:y ■» c*. 6. \/a?-f v^y *= v^a. 0. a:V» + y2 3«c*/* 
7. 2xy tBM Hk if TTC* be the constant area. 8. y* « 4a (:r+ «) 
0. y = + x. 10. y* = a:** 11. 

12. a:*4-y* = a*. 13. a:*—y* = a*. 14. 4txy ^ — a*. 
16. a?V*-fy2/»«: c*/*. 10. y = +0?. 17. a^-f y^ = a*. 
18. The cardioid r ■■ a (1 + cos ^), if a be the radius of the fixed circle. 
10. The lemniscate {a^ -f «= a* (ar* -y*), if a be a semi-axis of the hyperbola. 

20. ap*/(a*-f 5*)+yV^* “= L 21. A cycloid. 
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22. The parabola 23. x±y ± a = 0, if be the const, sum. 
24. + *= 4r* {(a?-a)*'l-(y —6)*}, if (a, 6) be the fixed point, 

and + »= r® the fixed circle. 25. ^ \ y, 
20. + s= Ifiicy. 27. An epicycloid (Art. 169) in which a ^2b, 
28. A cardioid. 29. An equal cycloid. 
SO. (aa?)V* -f (hyf/^ «»(a* - 6*)V*. 31. (x -f-y)*/* -f (iP — y)*/* 2 a*/*. 
82. (a? + y)V8~(a:-y)V3 « (4c)V*. 88. (ax)V*-(6y)2/s « + 

34. a?® + y* ** a*. 86. A parabola, focus 5, touching the given line. 
30. An ellipse with the two fixed points as focL 

Examples LXXXV, p. 426. 

A l..-+y»0. 

«£’-«• 

4. (i)^.= ty. 
^ da: ^ ^ ^ dx^ \ dxj 

7. ^-0 
’ da;® " 

d*t/ o 

d’y /dy \a dy 

i8.xfr+2"^=o. 
da:* dx 

20. Same as 10. 

ao. . 
dx^ dj; ^ \ dx) 

Examples LXXXVI, p. 429. 

1. y® « 2 a+ C. 
4. y* = Cx, 
7. ar”»y" = C. 
9. (i) r = al(S-C). 

2. y « 

6. y* =» 3aF* + C, 

(ii) r «= a (^ — C). 

8. y « Ce^». 
6. xy «= C. 
8. y® «= ± iP* 4 C. 

10. r»» 

11. y + = C (a; + a). 
13. 1 + y* «* Co;*. 

16. y + 6 - C«^’. 

18. (» +2)* (y +2)*- £!'«*+''. 

20. y « C'xe*. 
22. siny «**= Csinx. 

m 15. lax'4^lx^yt 

17. a + ahx-\~h^y ^ 
19. (l-fa:>)(l + y®)« 

21. a:* + y* - Ce*®. 
23. a; + C tan | (a? -f y). 

86. VIKa:-!)}. 84. y+ 1 - C«4*(*-2). 86. 2j-/{4.-Zx). 

12. 2 x* (y — C) + 4 a? + 3 «■ 0. 
14. ay^h C. 

Examples LXXXVII, p. 435. 

2. y--2a? *= C;r’y. 3. 2:ry4J:*«C. 

6. a;® + 2 Cy « C*. 0. ar* -f y* == Cy. 
8. »H4ary®-y* - C. 

1. a;* + 2a:»y*« C. 

4. +jjy-y* — C. 

7. xy{x-y) — C. 
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0. f/^+ + — C. 

11* \o^ (x-^p-l) ^ x-y i C, 

13. 4ariy 

16. y sin a: *- a? + C. 

17. ye^ *= 

19. y (sina;—Ceos j?) « 1. 

21. x'^y^{C—Z\ogx)~\. 

23. (^ - y)* (a? + 2 y) «• C. 

25. 28 ft.-secs. 

10. (y-ic + 3)^ «* C(y+ 2 JF-S). 

12. a?* ~ 6 a;y + 5 y* + 4 a; C. 

14. 5aF^y « a;*+ C. 

10. 2y cosa? *■ a: + 8inarcosa?+C. 

18. I a?*y 4-a?-f Cy *» 0. 

20. y»»-' (1 + - 1. 
22. y {a cos hx + h sin 6x)/(a* + 5*) -I- 

24. t - J8(2 8in500f-5co3 500<)4e<j-*oo<. 

1. 
4. 

7. 

10. 
12. 
13. 

14. 

16. 

18. 

20. 
21, 
22. 
23. 

25. 

27. 

29. 

31. 

33. 

85. 

Examples LXXXVIII, p. 440. 

3 a-y « a:r’ 4- C. 2. 2 xy « y* + (7. 3.3 x'^y +;/ ~ C. 

(n-\~\)y — x + C/x'*^. 5. 2 airy* *■ a?’-f C?. 0. ar*y-f 1 =» (Tr. 

y^\a^^Cx. 8. y •« aj* + Ca:. 9. y »= ar (y-f C). 

a:* “ a?*y -f ary - J y* *= (7. 11. a: » 2 y* -f Cy. 

log (ar/y) =- (a:* + y^) 4 C. 

(y~a?)* = 4aa-; (y~a;~24a)* *- lOOaa?; 4f. 

y « 4ar4- C, y » 3a:4- C. 15. y = 

y «- C± 1 ar*. 17. y =» C, y =* I a;* + C. 

aJ*«»2C'y4 C*. 19. (y4Cj**2x + 3. 

y - Ca:, y*-a:* C\ Zy-^ 5a;, y*~a:* - 16; f. 

y a. 1 a:* 4- C, y =■ Ctf - a* 4 1; y =* i a;*, y ■ 
xy ^ y* —a:* »» (7; ary ** 6, a;*--y* = 5. 

a:4-yC, a:*~2a;y « C; 1P19'. 24. ary — 

' l-ar-<»-^ 0, 0. 

y =« a cosh (ar/a4 C). 

9y*- 16aar*. 

y «=« Car 4- C*, a?* 4- 4 y — 0. 

Cy + a — C*x, y*4-4aa; — 0. 

xV3 4-yV*«aV*. 

y* *» 4aa:. 

20. ar* 4- y* =" a*. 

28. y — (7a: + a'v/(l + (7*), a:*-f y* — »*. 

80. y — Car = ± 2 >/C, ary + 1 = 0. 

82. 4 ary — «*. 

84. a, 

80. ar* — 4 ay. 

Examples LXXXIX, p. 444. 

2. y =» ar log a: + Car + i). 

y ^ C sinh (2a: +1>). 

7. y « Car» + D. 

9. K— Clog r4* P. 

11. y* — a* a:* 4- Ca: 4- D. 

1. y =* a:»*+V(n* 4- 3 » + 2) 4 Car 4- Z>. 

8. y — i a® (2 ar* 4- cos 2 ar) 4- Car 4- D. 

5. Ce'^ =1 a cosh (Car 4 D). 

6. (Car4l>)*«Cy*-a. 

8. y (ar 4 D) — C. 

10. y — |a:*4Clogar4X). 

12. y^ sinh (2 ar 4 D). 

13. y =» I x^(C*ar*~ Ij — (1/2 C) cosh’’ Cx-k-D, 

14. 3 y « (ar4 C)* 4 D. 16. y - C4 D<s». 

16. ar — 7)4 Cf*'^®. 17. (Car4l>j* ■■14 Cy*. 

18. y — Clogx4ia:*~ar42). 19. (y-~D)* (x~C^*. 

20. - C 4 v'CC?* - sin (2 ^ + «)• 
21. (ar - C)* 4 (y ~ 2>)* — a\ 22. y » C cosh (ar/C 4 D), 

23. Cy* -1 - Ar (Car 4 D)\ 24. (x-- C)* « 4i> (y-Xl). 
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Examples XC, p. 460. 

1. + 

8. y^e^^A + Bx). 

6. y *. cosx + iisina:). 

7. y == Ae~^^ + B€'^\ 

2. Ae*^+Be‘^\ 

4. y »- e~®* (A + Bx). 

6. y “ e'i^'(A cos ^ ySx + i? sin Jv^3a?). 

8. y *= » + jK6>~a*. 

0. y = -f Be~l^, 10. y — * (ul + 5.r). 

11. y =*= ^ + Rtf'*' + Ctf~®. 12. y = .4 -f R cos a: + C sin ap. 

18. y « Atf**+Rtf"*®+Csin 2a;+I)cos2a7. 

14. y *= 4l + Rtf* + e“i®'(Ccos ^v/3a;+Z)sIn^v^3a:). 

15. y « ^ + Ra: + Ctf■*. 16. y « tf*(Acos V'5a? + R sin y^Sa?), 

Examples XCI, p. 459. 

1. y ■■ .4tf*^ + Rtf’* + 2. 2. y «* .4tf^* + Rtf®*4-yJrt (18a?^ + 30 x-f 19). 

8. y « yttf’* + Rtf’* —^%(8in ar + cosa:). 4. y = tf~*. 

6. y =:4[tf-**4-Rtf'*"'. 6. y «= ^tf-2"' + Rtf~*® +J. 

7. y «= ^tf*® + Rtf'‘**~|. 8. y = .4tf“®-f Rtf“**-^ sina:. 

9. y 5= Atf** + Rtf“^* —J tf*. 10. y == jtf“*(a? + .4) + Rtf“*®. 
11. y *= 4Ltf“** cos (a: + c) + J a. 12. y = Ae~^* cos (a: + c) + v/- (15a? - 22). 

13. y «= cos (a; + c) + (cos 2 a; + 8 sin 2 a:). 

14. y = .4tf'"*®cos(ar + €) + ^ (sin a:*~cosa:) +J. 16. y *=*-4+ Rtf''®+Ctf"®*. 

10. y - ^ + Rtf*® + Ctf-*® - a; (3a:* -15X -10). 

17. y « .4 + Rcob (x4-€) + 2x. 18. y =» J+R cos (x + c) - J x cosx. 

Il9. y «=* tf**(.4 + Rx). 20. y «■ tf®* (A + Ra7 + |x*). 

21. y a* (R + if x) —f. 

22. y « ^tfV'a» + J5e"'V'**+Ceos (v^2x + €). 

23. y =» Ae"^® cos (I v^3x + «). 24. y « tf® (^1 + Rx + Cx*) “ J tf *. 

25. X s* (A + R^). 26. X = Atf”^^ cos + e). 

27. X cos (nt 4- <) 4- 
{Jc^ 4 w* —p*) cospt + 2kp sin pt 

(k^ 4- n* — * 4- 4 

28. X « A cos (af + e) + {A; sin (pt 4- Of)} /(a* —^*). 
29. 28 ft. nearly, -14 ft.-secs., —14 ft-secs. per sec. After 1*21 secs. 
80. X « cos (‘88 ^ — c), where tan e «= . 2 secs, and —13 ft.*seca 

nearly. 11*3 ft. 
82. CXp\/(l-^k'^/Ap^)e''l^T^ if r be the corresponding time. 

83. JP -» tt, A: « ‘575, e « *091, C * *351. ‘75, *75. 1*13°; *071. 
84. ifty inch to left of A. p k ^ *267, € ■■ *0637, C *« 6*06. *82 inches 

from 0, *77 from A. 
85. 23J inches from the fixed point. 86. 6 *= Jy^lO 7rtf“**^ cos (*21 - tan”' 3), 
87. *5236 (5 «-*»<-4 0-0. 
38. g = 4-167tf-'o*®'-4*167«-*«wo*. 39. q = sin 5000^. 
40. X « Atf”'*«'cos (7*837 t-e). 41. x - 6-'«<(Atf"®*®«*4* Rr"®‘"«). 
42. (i) ^ A cos (2t-c)-^^;kco8 3^. (ii) d *« Acos (2t-€)4-s\A:t8in2^. 
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ExamploB XCII, p. 463. 

1. y « Dx, 

8. y ^ x{C‘¥D\o^x), 

6. y = 

7. y — tF{x log x-i-Cx + D), 

2. {y-Cx}^ ^ 

4. y = :r((7+/) .T + a?), 

C. y — x^ (C -h D.r). 

8. y X (C + D.r'^ — x). 

Examples XOIII, p. 476. 

Expansions 1-3, 6-9 hold for ail tinite values of x. 

1. 1 4- ax + a^x'^12 ! 4 ! 4_ 

2. mx — m®;rV3 ! 4m''x^lh ! — in'x?jl! 4 .... 

8. 1 - m2.rV2 ! 4 ! 4 .... 

4. loga4a?/a — a:V2a*4a:^/3a^—if | a? | < | a | or x ^ a 

6. log a — x/a~x^/2 ~x^/Sa^ —if | a: i < j a | or x^ —a. 

e. 1 4 a? log 2 4 (a; log 2) Y2 ! 4 (.r log 2)73 ! 4_ 

7. 1 4 mx log a 4 (mx log ay/2 ! 4 (mx log a )73 ! 4 .... 

8. a?^ - 8 ;rV4 ! 4 32 a:76 ! ~ 128 x^/S! 4 .... 

0. a;4a:*/3 ! 4ar75 ! 43^77 ! 4 .... 39. From —8^’ to 48°. 

40. From —22|® to 422^°. 41. l^'rom —171° to 4 17|®. 

42. (i) Prom —31° to 4 31°. (ii) From -19|-° to 419|°. 

43, *48481, *87462, *46947, *88295. 45. *2679, 1*4281. 

46. *2960, *9200. 

47. cos (x sin a 4n0(); 1 4 a? cos oc 4 (.-r* cos 2 OC »/21 4 (ar' cos 3 0()/3 ! 4 ... 

52. 2 + o ” /7r~"~n + ^ * o " "iTfi ■+ •••! • See Table IX. 
i2n4l 3 (2n4l)^ 5 (2»4l)® ) 

Examples XCIV, p. 4S3. 

1, a sec* (aa?4 5//); 5 sec* (aa; 45y). 2. 2y/(.r4y)*; —2x/(x-^-yy, 

8. 4, 2 ^ax~^hyg) ; 2 {hx+ by-hf). 

6. 2 nax (ax^ 4 ; 2 nhy (ax^ 4 

6. l/v/(t/*-a;*); -a7/{t/y(y*-a;*)}. 7. y7(^ + y)*; x^/{x’^y)\ 

8. xlz\ -y/z. 9. aT«-72r«-7 

10. 2 a;y7{i? (.x* 4 y*)*} ; ~2 x*y/(x* 4 y*)*}. 

11. — ax/c2r; —hy/cz, 12. —z^;x^\ z^/y'*. 13. 2.x; 2y; 22. 

2 z X4y 

(x4y)*4 2*' (x4y)‘^4 2*' (x4y)*42* 

16. -xT^; -yP*; -zV^, 

16. 2 (ax 4 /ly 4 y2); 2 (?ix 4 2>y 4/2); 2 (y-x 4/y 4 cz), 

22. (i) (ii) ^nrh cubic inches per second. 

23. 2x; 2y. 24. (i) *033, (ii) ^ inch per see. 

25. (i) 15*1, (ii) 21*36 sq. in. per sec. 26. —<:^xja^z\ —c^yjb^z. 

27. (i) h/v. (ii) (iii) k/p. 

o o 
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Examples XCV, p. 494. 

1. (i) dy sa sin ^ 5r+r cos ^ (ii) 5r **■ COB^ da: + sin ^ 5y. 

(iii) bB {x hy — y 

8. n.r**"* y""’ {hx cos ht ~ ay sin at), 4. cot ^ t. 

5. [ad ■\~'bc) e^^/icx + dy)^, 6. 

7. 2 cos 2^/(1 + sin 2f). 8. <?~*^8in*f (3co8*f—sin*<—sin2/)* 

9. 2 {x^ + x — l)/x^. 10. Zxj^ — Zxy, 

11. xy"^ (4 y* + a?y - 6 a?®)/(2y—a:). 12. a/y*. 

18. (ajflin 2j!: —y)/(x* + y®). 

14. 3 (a: — y) (x’* — xy ^ y® + 2ax + 2ay)/(x — 2y). 

16. (8x* +lOxy —4y*)/(6y® + 8xy —5jt®). 16. — ain a?cosecy. 

17. -{2x (x* + y^)-a*x}/{2y(x* + y*) + a*y}. 

18. - ]y (n,r«-»» + wy’»-’»))/{x + ny**'”»)}. 

10. — tan (J TT+ y) cot (Jtt + x). 

20- {y^x — a’^x~2 ahy)/{h'^y—a^yA'2ahx), 

21. 5r= J TT#-® 5^ + 1 rrrA 5r. 22. pbv + vbp = kbT. 

23. yz bx + zx by-\-xy bz ts: 0. 24. x bxA-y by z bz, 

26. r bf'i'fdr ^ 2mv bv, 20. Fbs + sbF ^ mv bv. 

.c)u . 
27. V «* cos^ -f sin B ~ -* —Bin B < - -f cos B c— • 

dr dx dy rdS dx d y 

28. (X-x)/y = (F-y)/,. 

29. (-3, -10); 14x-5y« 0; 5x + 14y«0. 

80. {\a, \a)\ x + y«=0; 3x —y*-4a; 3y—x*»4a. 

81. K(npbT-¥Tbp)/pT, 32, (^-1) 

88. *46 inch. 84. (i) +’05. (ii) — *78 inch. 

86. (i) 8*77 sq. ft., *54 per cent, (ii) 18*44 sq. ft., 1*12 per cent. 

86. (i)5p«=-*37. (ii)6r--*06. (iii)dr«*16. (iv)aT-9*39. (v)5r«~3*13 

87. ‘407. 38. (i) 1*19. (ii) 1*69. 

89. c = (a —5 cos (7) 5a + (5—a cos C) dt + aftsin C5<7. *604; *6 per cent. 

40. *65 sq. ft. 41- ba/a + bh/h, 

42. J [a ^ a {2 .s- (s - a) — 5c} /5’ + 2 similar terms]. 

43. {2 ahc ba — c (5® + a® —c*) 65 —5 (c* + a* —6*) 5c}/(2 5*c*sin .4). 

44. o sec* a. 5a + tan a . a a. *413. 46. 5 V* + 2 5 r/r. 

AQ, irVmm-bglg), \ bl/l-^^bg/g, 

47. — *5 per cent. 60. 61. *0177. *8 per cent. 

63. - ro 51^4- (IT, - IT) air, + (IT- IF,) 5ITj[/{(IT- TTi) (IT- TT^)}. 

64. (i) 58*64 c. in. per sec. (ii) 27*82 sq. in. per sec. 

65. (i) 360 c. in. per sec. (ii) 104 sq. in. per sec. 
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Examples XCVI, p. 603. 

1. 6(aa;+Z»y); 6(c£c-f(fy) ; 6(6j? + cy); 6(6a; + cy). 

2. 2 sin y~y*Bin X ; 2 sin x —x^einy; 2x cosy-f 2y coex. 

8. w (?w -1)x«*-7y*»; (n +1) x"Vy»»+3; ; 

/«®x -= m (m -1) (m - 2) ; f^^y «= - n (n + 1) (n + 2) x"Vy”'^®; 

/vxx «/xi/x'- ~mn:(m -1) .= = mn (n + 1) x^«~\/y»*+». 

8. (1-f 3xy2r + x’*y*2;7e®*'*. 16. ^ »==/a:i+/vy+/xx^^ + 2/^j,xy+ 

16. -{f^fy^-^f.yfjy^fyyf.^)lfy\ 
17. A:, »= COB^^/rr + sin 2 <9 

/yj, «» 8in*<?4^-8in 2<9 (/i/f*-/r^/r) + cob*/r/r -f cos*^ W?'*. 

20. Vx + A;/y + ^ + 2 /i^/, ^ 4 ^^fyyX 

22. cx* 4 2 axy 4 Z>y* » C, 28. xy(x —y4 a) — C. 

24. log (x*4y*; *= 2A- tan"’ (y/.x)4 C. 25. = C (x*4 y*). 

27. aVxTx + 3 the general ca.se, 
the coefficients are the same as in the Binomial Theorem. 
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Absolut© conrerperce, 182. 
Acceleration, 141, 165. 

and force, 14 4. 
angular, 161. 
in a circle, 152. 
tangential and normal, 409 

Adiabatic expansion, 88, 864, 490. 
Algebraic function, 6. 
Anchor-ring, 382. 
Angle between tangent and axis of x, 

59, 68, 100. 
between tangent and radius vector. 

813. 
Angular velocity and acceleration, 161. 
Approximation, 71, 86, 292, 471. 
Arbitrary constant, 167, 170, 425. 
Arc, length of, 42, 176, 804. 

in polar coordinates, 820. 
Archimedes, spiral of, 818. 
Area of curve, 89, 41, 168, 287. 

in polar coordinates, 819. 
of surface, 44, 177, 307. 

in polar coordinate.^, 820. 
Argument, 8. 
Astroid, 109, 111, 824, 417. 
Astronomical units, 849. 
Asymptotes, 9, 21. 
Atmospheric pressure, 865. 
Attractions, 849. 
Auxiliary equation, 447. 

Bending of beams, 402. 
Binomial theorem, 472. 
Boyle’s law, 88, 864. 

Cardioid, 114, 812, 814, 817, 820, 82:, 
409. 

Catenary, 191, 204, 892. 
Cauchy’s form of remainder, 466, 
Caustic, 421. 
Central force and orbit, 410. 
Centre of gravity, mass, or inertia, 825. 

of pressure, 884. 
of curvature, 898, 407. 
of a conic, 19. 491. 

Centroid, 826. 
Change of axes, 21. 

of variable, integration bv, 248. 
of limits of integration, 284. 

Chemical reactions. 857. 
Circle, equation of, 23, 316. 

perimeter and area of, 89. 
motion in, 162, 883. 
C.G. of arc and sector of, 829, 
of curvature, 898. 
osculating, 408. 
C.P. of, 885. 

Circular disc, M. I. of. 838, 841. 
potential of, 847. 
attraction of, 850. 

Circular functions, difTtu-entiation of, 
91. 

periodicity of, 116. 
integration of, 249. 

Cissoid, 291. 
Clairaut’s equation. 488. 
Coefficients of expansion, 87, 857. 
Complementary function, 446, 447. 
Compound interest law, 853. 

pendulum, 889. 
Concavity and convexiiv, 135, 
Cone, 48, 172,801, 344. 
Conic sections, 17, 412, 491. 
Constant, 1, 72. 

of integration, 167, 170, 425. 
elimination of, 423 

ContinuoUKS functions, 47, 479, 
Convergency of scries, 180. 
Cooling, Newton’s law of, 864. 
Coordinates, 22, 111. 

polar, 22, 311. 
tangential polar, 816, 408. 

Correction of snuill errors, 86, 96, 492, 
Cosec X, 96, 116, 249. 
Cosechx, 190. 
Cosh X, 190, 192, 203. 
Co8h-»x, 192, 208. 
Cosx, 98, 116. 

expansion of, 471. 
Cos-ix, 201. 
Cotx, 96, 116, 249. 
Coth X, 190. 
Crank and connecting-rod, 168. 
Current, electric, 357, 868, 467. 
Curvature, 897. 

centre, circle, and radius of, 898,407, 
408. 
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Curves, drawing of, 8, 15, 311. 
area of, 41. 1G8, 287, 319. 
length of, 42, 175, 304, 320. 
properties of, 108, 164. 
family of, 414. 

Cycloid, 111, 177, 289, 299. 309, 388. 
400, 444. 

Cycloidal pendulum, 888. 

Damped oscillations, 207, 458. 
Dctinite integral, 171, 267, 273. 
Dependent variable, 3. 
Derivative or derived functi^m, 02, 63 
Differential, 64. 

equations, 217, 422, 601. 
total, 484. 

Differencial coefficient. 57, 61, 67. 
geometrical meaning ef, 63. 
sign of, 67. 
of sum, product, quotient, (^c.. 72-81. 
of circular functions, 91, 
of implicit fnneUoiis, 84, 214, 491. 
of second and higher orders, 133, 216. 
of area, 168. 
of volume, 172. 
of arc, 176. 
of area of surface, 177. 
of inverse and hvporbolic functions, 

195, 203. 
partial, 479, 498. 
total, 488. 

Directrix, 17. 
Discontinuous functions, 49. 
Divergent series, 180. 

35 186. 
expansion of, 189, 468. 

d.c. and integral of, 195, 196. 
Eccentricity of conic, 17. 
Elastic string, oscillations of, 874. 
Elasticity, coefficient of, 88. 
Electric current, 867, 868, 467. 
Elimination of constants, 423. 
Ellipse, 18, 105, 111, 817. 

tangent and normal to, 102, 105. 
length of ai’c of, 306. 
radius of curvature of, 899, 400. 
motion in, 881, 

Ellipsoid, 802. 
Energy, kinetic, 145, 862, 884. 
Envelopes, 414, 489. 
Epicycloid, 822. 
Equation of a conic, 17. 

polar, 28, 811. 
differential, 217, 422, 601. 
tangential-polar, 816. 
intrinsic, 400. 

Equations, roots of, 62, 220. 
Equiangular spiral, 814, 816, 412. 
Equilibrium, stable and unstable, 867. 
Errors, calculation of, 85, 96, 492. 

Even function, 4, 274. 
Evolutes. 418. 
Exact differential equations, 436, 601. 
ExpariHion, coetlicients of, 87, 857. 

of a gas, 863, 190. 
of functions, 468. 

Explicit function, 4. 
Exponential series and tboorem, 183, 

189, 468. 

Focus, 17. 
Force and acceleration, 144. 

central, 381, 410. 
Forms, indeterminate, 225. 
E’ractioris, rational algebraical, 5. 

partial, 231, 237. 
Function, definition of, 2. 

different kinds of, 3-5. 
implicit, 4, 84, 214, 491. 
odd and even, 4, 274. 
continuous, 47, 479. 
rate of increase of, 66. 
derived, 68, 133. 
of function, 79. 
periodic, 116, 
exponent la i, inverse, and hyperbolic, 

189. 195. 

Gas, ex}>nn9ion of, 363. 490. 
Gradient, 69. 
Graphs, 6, 189, 191, 200, 202. 
Gravitation, law of. 349, 372, 412. 
Gravit3^ centre of, 325. 
Gyration, radius of, 837. 

Hemisphere. C. G of. 330. 
Homogeneous diffiooiitial equal i'‘us, 

430. 
functions, Euler’s theorem of, 1S8, 

Hooke’s law, 362. 
Huyghen’s rule for circular arc, 478. 
Hyperbola, equation ot, 19, 21, 817. 

rectangular, 20, 103, 899. 
Hyperbolic logarithms, 189. 

functions, definition of, 190, 191. 
,, d.c. and iiitegtals of, r03. 
,, inverse, 192, 203. 

spiral, 81'8. 
Hypocycloid, 822. 

Implicit functions, 4, 84, 214, 491. 
Indefinite integral. 157. 
Independent variable, 8. 
Indeterminate forms, 225. 
Inertia, centre of, 325. 

moment of, 836. 
Infinite limits, 278, 

scries, 180. 
Infinitesimals, 66. 
Inflexion, points of, 118, 136, 39S, 



666 INDEX 

Integral, definition of, 166. 
indefinite, 157. 
definite, 171, 267, 278. 
particular, 446, 460. 

Integrating factor, 436. 
Integration, as reverse of differentia¬ 

tion, 166. 
constant of, 157. 
of rational algebraical fractions, 230. 
by change of variable, 248. 
by rationalization, 246, 262. 
by parts, 256. 
by successive reduction, 260, 
approximate, 292. 

Intrinsic equation, 400. 
Inverse functions, 5, 81. 

hyperbolic functions, 192, 208. 
circular functions, 199, 212. 

Kinetic energy, 146, 362, 884. 

Lagrange*8 form of remainder, 466. 
Laplace's equation, 499. 
Latus rectum, 24 (Ex. 20). 
Law, Boyle's, 88, 864. 

of gravitation, 849, 872, 412. 
compound interest, 853. 
of cooling, Newton’s, 354. 
Wilhelmy's, 857. 
Hooke’s, 862. 

Leibnitz’s theorem, 216. 
Lemniscute of Bornouilli, 811,317,819, 

409. 
Length of curve, 42, 175, 804, 820. 
Lima9on, 818. 
Limits, definition of, 27. 

algebraical, 28. 
exponential, 84, 185. 
trigonometrical, 86. 
geometrical, 88. 
of integration, 171, 278. 
change of, 284. 
double, 600. 

Linear function, 27. 
diffei'ential equation of 1st order, 482. 

,, ,, „ 2nd order, 446, 
Logarithm, Hyperbolic or Napierian, 

189. 
change of base of, 189. 
d. c. and integral of, 195, 197. 
expansion of, 469, 

Logarithmic series, 188, 469. 
function, 189. 
decrement, 207. 
differentiation, 211. 

Maclaurin’s theorem, 467, 
Many- or multipie-valued function, 8. 
Mass, centre of, 825. 
Maxima and minima, 116, 184, 

478 (Ex. ul). 

Mean rate of increase, 25. 
value theorem, 222. 

,, ,, extended, 226, 
values, 296. 

Mechanics, 141, 165, 206, 862-96, 409. 
Moment of inertia, 886. 

bending, 402. 
Motion in a straight line, 142, 165, 

simple harmonic, 142, 371. 
in a circle, 162, 388. 
in a resisting medium, 876. 
in an ellipse, 881. 
under gravity, 883. 
in an orbit, 411. 

Multiple roots of equation, 221. 

Napierian or natural logarithms, 189. 
Newton’s law of cooling, 854. 
Normal, equation of, 104. 

length of, 107. 
acceleration along, 152, 410. 

Ol)hite spheroid, 174. 
Odd function, 4, 274. 
Orbit, motion in, 881, 410. 

differential equation of, 412. 
Order of infinitesimals, 65. 

of a differential equation, 422. 
Oscillations, dampc'd, 207, 458. 

of a pendulum, 886, 889. 
Osculating circle, 408. 

Pappus' theorems, 831. 
Parabola, equation of, 17, 111, 816. 

properties of, 108, 108. 
area of, 169; C.G. of, 827. 
length of arc of, 806. 
circle of curvature and evolute of, 

418. 
Paraboloid of revolution, 174, 178. 
Partial fractions, 281, 287. 

differential coefficients. 479, 498. 
Particular integral, 446, 460. 
Parts, integration by, 256. 
Pendulum, simple, 85, 886. 

cycloidal, 888. 
compound, 389, 
simple equivalent, 890. 

Pericycloid, 828. 
Perimeter of circle, 89, 
Period, 872, 388, 457. 
Periodic functions, 116. 
Points, stationary, 118. 

of inflexion, 118, 136, 398. 
Polar coordinates, 22. 

equations, 28, 811. 
Potential, 846, 499. 

energy, 884. 
Pressure, centre of, 884, 

ot atmosphere, 855. 
of a gas, 490. 
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Primitive, 425. 
Principal values, 200, 
Product, limit of, 40. 

d.c. of, 74, 76. 
successive d.c.’s of, 216. 

Prolate spheroid, 174. 
Proportional error, 85. 

parts, principle of, 228. 

Quadrature, 287. 
Quotient, limit of, 46. 

d.c. of, 77. 

Radius vector, 23. 
of gyration, 337. 
of curvature, 898, 408. 

Rafe of increase, 25, 55. 
Rational function, 5. 

algebraical fraction, 5. 
algebraical fraction, limit of, 82. 
algebraical fraction, integration of, 

230. 
Rectangle, C. P. of, 886. 

M.I. of, 838, 344. 
Rectangular hyperbola, 20, 103, 899. 
Rectification, 175, 801, 320. 
Recurring decimals, 29. 
Reduction formulae, 200. 
Reflexion and refraction, 126. 
Relative error, 85. 
Remainder in Taylor’s theorem, 466, 

478 (Ex. 54). 
Resisting medium, 376. 
Revolution, Solid of, volume of, 42,171, 

299, 320. 
surface of, 44, 177, 807, 820. 
C. G. of, 826. 
M.I. of, 338. 

Red, M.I. of, 337. 
attraction of, 351. 

Reliefs theorem, 220. 
Roots of equations, 52, 220. 
Roulettes, 323. 

Sohlfimilch-Roche form of remainder, 
478. 

Sec Xf 95, ] 16, 249. 
Sech X, 190. 
Second order of small quantities, 66. 

d.c., 183, 498. 
moment, 336. 

Sector of circle, C. G. of, 329, 
Semicircle, C. G. of, 830. 
Semi-convergent series, 182. 
Series, convergency and divergency of, 

180. 

semi' and absolutely convergent, 182. 
exponential, 1S8, 1*89, 4G8. 
logarithmic, 183,469, 
Taylor's, 464. 
Maclaurin’s, 467, 
Binomial, 472. 

I Simple harmonic motion, 142, 87B 
pendulum, 386. 
equivalent pendulum, 890. 

Simpson's rule, 298, 802, 830, 839. 
Sin X, 91, 116. 

expansion of, 470. 
Sin-1 X, 199. 
Single-valued function, 3. 
Singular solution, 439. 
Sinhx, 190, 192, 203. 
Sinh-i X, 192, 203. _ 
Slope of curve, 69, 63. 
Small quantities, orders of, 65. 
Solid of revolution. See Revolution, 

of greatest attraction, 822. 
Solution of differential equation, 425. 
Specific heat. 490. 
Sphere, surface of, 45, 309. 

volume of, 178. 
moment of inertia of, 838. 
potential of, 348. 
attraction of, 861. 

Spheroids, 174. 
Spiral equiangular, 814, 815, 412. 

reciprocal or hyperbolic, 818. 
of Archimedes, 818. 

Spring, motion of, 374. 
Squaring the circle, 40. 
Stable and unsta))le equilibrium, 867, 
Standard forms, 68, 157. 

list of, 243. 
Stationary points, 118. 
Strophoid, 291. 
Subnormal, 107. 

polar, 315. 
.Substitution, integration by, 248. 
Subtangent, 107. 

polar, 815. 
Successive difforeutiation, 138, 498. 

reduction, 260. 
Sum, limit of, 46. 

d.c. of, 72. 
integration of, 169. 
definite integral aa limit of, 267. 

Surface of revolution, 44,177, 807, 820. 
of sphere, 45, 809. 

Suspension bridge, 394. 
Symmetry of graph, 7, 9, 16, 812. 

Tan X, 93, 116, 249. 
Tan-^ X, 201. 

expansion of, 478. 
Tangent, definition of, 88. 

direction of, 63, 100. 
equation of. 101, 491. 
length of, 107. 
at point of inflexion, 137. 

Tangential-polar equation, 315, 408, 
Tanh x, 190. 
Tanh-i x, 193. 
Taylor’s theorem, 464. 
Terminal velocity, 377. 
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Testa for convergency, 181 
Theorem, binomial, 472, 

Euler’s, 483. 
exponential, 189, 468. 
Leibnitz’s. 216. 
Maclaurin's, 467. 
mean-value. 222, 226. 
Pappus’, 831. 
Kolle’s, 220. 
Taylor’s, 464. 

Tore or anchor-ring. 882. 
Total differential, 4S4. 

differential coefficient, 488. 
Tractrix, 113, 808. 
Transcendental function, 6. 
Trapezium, C.Q. of. 327. 
Triangle, C. P. of, 384. 

M.L of, 842, 
Trigonometrical integrals, 260. 

substitutions, 262, 
True value, 226. 

Variation, uniform, 27. 
continuous, 65. 
of atmospheric pressure, 855. 

Vectorial angle, 23. 
Velocity, 141. 

along arc of curve, 147. 
angular, 151. 
of chemical reactions, 867. 
terminal, 877. 

Vibrations, damped, 207, 463. 
Virtual work, 865. 
Volume, definition of, 42. 

of cone, 43, 172, SOI. 
of solid of revolution, 42, 174, 299 

820. 
of sphere, 173. 
of ellipsoid, 801. 

Witch of Agnoni, 291. 
Work, 145, 362. 

of exftanding gas, 363. 
virtual, 865. Variables, 1. 

change of, 213, 
separation of, 428. Zone of sphere 173. 
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