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PREFACE TO THE HRST EDITION 

This book is intended to serve as a companion volume 
to my Text'Book on Differential Calculus and has been 
written to meet the requirements of the B.A. and B.Sc. 
students of Indian universities. Ihe treatment of the 
subject is in keeping with the modern theory of functions, 
but is at the same time simple. The integration of the 
ordinary functions has been systematically and fully dealt 
with. The book has been divided into sections according 
to the functions to be integrated and not according to the 
methods to be employed, as the beginner is not able to say 
which method will be applicable in a given case. 

All the elementary methods of integration have been 
dealt with in the first chapter, so that after studying it the 
student may have no difficulty in following discussions 
in physics or applied mathematics where integration is 
involved. The chapter on applications deals with the 
problems of finding centres of gravity, centres of pressure 
and moments of inertia, and will be found fairly complete. 
In differential equations only equations of the Erst order 
and linear equations with constant coefficients have been 
fully dealt with. A few other types have been briefly dis¬ 
cussed, but equations with non-constant coefficients of an 
order higher than the Erst and partial equations have been 
entirely omitted. The historical and biographical notes in 
the book will, it is hoped, prove interesting. The informa¬ 
tion they supply should be supplemented by the historical 
sketch given in the Text-Eiook on Differential Calculus. 

As in the case of the companion volume, the present 
work also contains just a little more than is necessary for 
the usual course. No hesitation need be felt, therefore, 
in omitting some of the articles. The number e^ceccises 
also will be found to be ample. Of these some are cnj|inal« 
many have been taken from the examination papert m the 
various tmivetsities, and others are sucU/ks lire'common 
to inractfically all text-books on the ndiject. Often, where 
a particular univexafty is mentioned, the c^ject is to indicate 
whai 'fnpca cf questions are generally set in the examln- 
atiiO)a% lather thim to indicate the ordinal authorsh^ of 
the pedlleiii. 
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matics, Christ Church College, Cawnpore, who has read 
with great care the proofs of the whole of the book, veri¬ 
fied most of the examples, and made many valuable suggef^ 
tions. My thanks are also due to my colleagues, Dr* B. N* 
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INTEGRAL CALCULUS 

CHAPTIiR I 

ELEMENTARY INTEGRATION 

1*10. Integration. Integral Calculus deals 
with integration, a process which is the inverse of 
differentiation, and with its applications. It was 
invented in an attempt to solve the problem of 
finding areas of curves and volumes of solids of 
revolution. 

1*11. Definitions. If F(x) =f(x), we 'say 

that F(x) is an integral of f(x). We write 

j/(x) dx = F(x). 

Thus I cos x dx = sin x, 

because d sin x/dx = cos x. 

Similarly j x“ dx = ?jX®, 

[e* dx = etc. 

Now, if dF(x)/dx = /(x), 

and C is an arbitrary constant, we also have 

dlF(x) + C}/dx = /(x). 
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It follows that, if dF(x)/dx=f(x), 

then j f(x) dx = F(x) + C. 

Just as there are two square-roots, - i/x and — i x, of 
a given number x, whereas there is only one square ol x, 
and again there are an infinite number of values of sin*^ x, 
although sin x has only one value, similarly the integral of 
f(x) has an infinite number ot values, obtained by giving to 
C in F(x) -f' C different values. We cannot find a more 
general value for the integral than F(x) 4- C. Hence we 
call it ihe integral of/(x). 

The process of finding the integral is called integration. 
We are said to integrate /(x) when we find the integral of 
/(x). If there is any likelihood of doubt as to which symbol 
is the variable, w’e make it clear by saying some such thing 
as “integrate /(x) udik regard to (or with respect to) x.** 

The function which is integrated is called the integiand. 

We notice that 

i.e, 

showing that differentiation and integration are inverse 
processes. 

J/(x) dx is read as “integral of /(x) dx.** The symbols 
/ and dx may be regarded as something like a pair of 
brackets between which the function to be integrated is 
inserted. / and dx, taken separately, must be regarded as 
having no meaning. When the variable is something 
other than x, we write that variable in place of x in the dx 
also. Thus 

and [ X cos \ dX ^ ^X'^ cos x + C, 

whereas [ X cosx dx = X sin x C. 



THE CONSTANT OF INTEGRATION 

In the second example the variable is A and x is regard^ 
ed as a constant; in the third x is the variable and A is re¬ 
garded as a constant. In the second example we are able 
to assert that 

j*A cos X dA == iA"^ cos x C, 

because we know that cos x)/dA - A cos v. 

We have said above tliat J and dx may be regarded as 
something like a pair of brackets between which the tunc- 
tion to be integrated is inserted. But very often, when the 
function to be integrated is a fraction, the dx is written m 
the numerator, and the factor 1, if it occurs, is dropped. 
Thus we often write 

j sin X dx . 

and 

J log X 

It 
fr" ^ dx, Jlos \ 

instead of 

instead of | ^ dx. 

1*12. The constant of integration. The 
general practice is to omit the constant of integ¬ 
ration C. 

Thus, almost invariably, we write 

jcos X dx = sin x, 

instead of jcos x dx = sin x f C. 

When this practice is adopted, it must bo 
borne in mind that two integrals of a function may 
differ by a constant. Thus x- + 1 and x'' + 2 are 
both integrals of 2x, because 

d(x* + l)/dx = 2\', 

and also d(x‘'‘ + 2)jdx = 2x, 

But X- -H 1 and x- + 2 are not equal. They 
differ by a constant. 
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Sometimes this fact is not quite apparent# Thus 
because 

d(sin*^ x)ldx - l/i/(l ~ \*), 

and also cl( x)fdx =■ 1/^^{1 - x®), 

it follows, when we omit the constant of integration, that 

IS equal to sin'* x and also to cos"* x. We must not 
infer from this that sin“* x and - cos“^ x are equal* The 
correct inference is that, when the arbitrary constants Ci 
and Cj are properly adjusted, 

sin"* ^ Cl - co8*i X -f Ci* 

It is easy to see that this, in fact, is the case* If we 
take C2 - Cl to be equal to i'r, we see at once that the 
above is true: for, by trigonometry, 

gin-1 _ COS"* X* 

The arbitrary constant of integration may be imaginary, 
i*e,, may involve V" ( ~ D- Very often such a constant is 
added to make the result real. 

Thus „ dx is taken to be 
a* 

li X ~ a 1* a-x 
iog— or — 

2a x + a 2a a + x 

whichever is real. The student will easily see that these 
two values of the integral differ by mlla 

From now onwards, we also shall omit the 
constant of integration, unless there are special 
reasons for not doing so. 

1*13. Standard forms* The integrals; of 
several simple functions follow at once from the 
standard results in diflFerential calculus. Thus we 
have 
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x" dx = x”*V(n +1) J sec \ tan x dx. - sec x 

y (l/x) dx = log X / cosec x cot xdx=~ cosec x 

e» dx = S\ 1/^(1 - ,Y^)} dx = sin-‘ x 

Jj" a^'dx = a^jlo^a J |1/(J+x‘)ldx =tair‘x 

, / sinxdx = — cos x / j l/xx/(x'- — l)( d^ = scc"‘ x 

/ cosxdx = sin x / U/V'(2x —x"'Hdx = vers'^x 

sec-’ X' dx = tan x / cosh x dx = siuh x 

•• .f cosec-'xdx~ — cotx ,C sinh -v dx = coshx 

etc. 

A more complete list will be given later. It 
should be noticed that in the first formula n should 
not be equal to — 1. This formula can be ex¬ 
pressed more conveniently in words as follows: 

To find the integral of x”, increase the index of x 
by unity and divide by the new index. 

1'21, Integral of the product of a constant 
and a function. 

Let I f(x) dx = F(x). 

Then, by definition, dF(x)/dx = f(x). 
Now, by diff. calculus, d{aF(x)l/dx = a/(x). 

Hence by the definition of the integral, 

I la/(x)l dx = aF(x) = a |/(x)dx, 

i.e., the integral of the product of a constant and a 
function is equal to the product of the constant anJ the 
integral of the function. 
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Ex. 1. j 3 cos X ih - 31cosx dx = 3 sin x. 

Ex. 2. ac* d\ -- a j e* dx ^ ac^. 

1 *22. Integral of a sum. 

Let f/iW = Fi W and j fsix) dx — F*(x). 

Then d{Fi(x) + Fa{x)]/dx = dFj(x)/dx + dFa(x)fdx 

= Ux)+f,(x). 

It follows, from the definition of the integral, 
that 

I ffi(x) + f2(x)idx = Fi(x) + Fa(x) 

= [fiW dx+ j/sCx) dx. 

It is evident that this method is applicable 
also to any expression consisting of a finite num¬ 
ber of functions connected by the signs + or — . 
Thus 

jIfi(x) ± fa(x) + ... + f„(x)ldx 

= Ifi(x) dx ± jfaCx) dx ± ... ± I f„(x)dx. 

Ex. 1. I (cos X + x**) dx = I cos x dx + | x** dx 

= sin X + + 1). 

Ex. 2. j (2 sin X + 1/x) dx = - 2 cos x + log x. 
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Examples 

Write down the integrals of the following : 

1. X’, 3x», 2x'=. 2. 5x + 4x», (5x + 7)/x. 

3. e* + 2 sin X - 3 cos x. 4. 3 cos x + 2 sec* x - 10. 

10* + 3e* + X®. <^6. 2/( 1 + X*) + 3a*. 

7./6/v/(l - X*) + 3 sec*x. 8. sec x tan x — 5 cosec* x. 

9^2 cos x/(3 sin* x) + 1. I i- x + x*/2! + x®/3! + .... 

11. ax® + f>x* + cx + d. 12. ci/x* + h/x + c. 

-13. (4x* + 3x + 2)/x>. 14. (2x® + 3x - 7)x-*'®. 

15. (x* + 8)*/x\ 16. (x + a)®/v/x. 

1’3. Methods of integration. Correspond¬ 
ing to the various rules in the differential calculus 
for differentiating sums, products and functions of 
functions, we have more or less similar rules in the 
integral calculus. These give rise to the following 
methods of integration: 

(i) Substitution, corresponding to the rule for 
differentiating a function of a function. 

(ii) Inte^ation by parts, corresponding to the 
rule for differentiating a product of two functions. 

(iii) Decomposition into a sum. 

(iv) Successive reduction. 

The various rules in the differential calculus enable us 
to differentiate almost any combination of the various 
ordinary functions. But it is not so with integration. In 
fact the integrals of some even fairly simple functions can¬ 
not be found, i.e., cannot be expressed in terms of the 
functions which are known to the student at this stage. 
For example, / y'fox* + bx* + cx + k) dx is not expressible 
in terms of the algebraic, exponential, logarithmic, or 
circular functions, except when the coefficients a, b, c. It 
have very special values. 
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1*31. Substitution. 

Since F|f|)(x)} = f{^{x)}. <})'(x), 

where the functions F and / are related by the 
equation 

dF(t)/dt=m, 
it follows that 

f/l<l>(x)}4>-'(^)dx = Fl4>(x)l, 
^ • (1) 

where j f(t) dt = F(t). I 

In applying this formula it is more convenient 
to adopt the following working rule: 

To evaluate | fkt>(v)l dx, 

put <t)(x) = t, I 

and 4*'(x) dx = dt, > * 

where ^'(x) is the differential coefficient of ^{x). 

These substitutions will evidently give us 

in place of / ^'(x) dx, and this when evalu¬ 
ated will give us F(t), i.e., F {4>(x)}, showing that the 
substitution (2) is equivalent to the formula (1). 

In the exanmles which the student gets for integration, 
the functions wfx)! and ^'(x) are generally so mixed up 
that the substitution ^(x) - t has often to be obtained by 
guess, rather than in accordance with some plan. 



SUBSTITUTION ) 

Ex. Evaluate J \ cos x® dx. 

Putting f and consequently Zxdv -du 

i e., X dx ^df, we get 

I X cos x^ dx == -Jf j COS c dt ^ i sin t - ^ sin x\ 

Note. 1. It is not necessary to attach any meaning 
to the dx or the dt in the equation which occurs in the 
working rule, viz, in the equation W = du The 
working rule may be regarded as a convenient method of 
passing from / /}^(x)} ^'(x) dx to f f(t) dt. 

2, Another form of the theorem is the following: 

I f(x) dx - I f(x) dt . • (3) 

To obtain this, write c for ^(x) and dtidx for ^'(x) in the 
formula (1). 

We get 

' r(t) dx = f(£) - f/{f) dt. 

Interchanging \ and f, we obtain the required result 
at once. 

With the help of this form of the theorem we can 
avoid using the symbols dx and df, to which no meaning 
has been assigned. Thus if we want to evaluate 

J X cos x^ dx, 

we put X® == t, so that 2x dx/dc ^ L Hence 

J X cos x» dx |*x cos X® ^ dt, by formula (3), 

= J I cos t dt, on writing x® = t 

i sin t« i sin x®. 
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1*32. Typical examples of the method of 
substitution. 

(i) Functions of a linear function of x To 
integrate a function of ax + b, put ax + = .t and 
therefore 

dx = (1/a) dt. 

Then | sin (ax + b)dx = j (sin t) (1/a) dt 

= (1/a) j^sin t dt = — (1/a) cos t, 

i-e., I sin (ax + b) dx = — ^ cos (ax + b). 

Similarly [ (ax + b)” dx = ^ , 

I—^dx =i|og(ax+b), 

je“* dx e"*, 

J cos (ax + b) dx =-i sin (ax + b), 

f sec* (ax + b)dx =— tan (ax + b); etc. 
SL 

In general, if [/(x) dx = F(x), then 

|/(ax + b) dx=^ F(ax + b). 

For, putting ax + h = t, and a dx = dt, 

dx = (1/a) dt, we have 

\f{ax + h) dx = J fit) F(t) = h(ax + b). 



TYPICAL EXAMPLES 11 

(ii) Functions involving a* ± x'^. When the 
corresponding integral involving 1 ± xMs known> 
the proper substitution is to put x = at. Thus 

f .,dx= f „ ^ a dt 
Ja^ + x^ Ja^ + 

If 1 j 1 1 = , „ at = tan"‘ t, 
aJ I+t- a 

i.e. 

Similarly 

Ja-^ a* + x* 

1 

dx = !.tan-(:). 
a \a/ 

.1 - X-) =“"’(!)• 

.fxV(x»^-a-)‘^’‘ =r“"(S' ' 
I dx = vers- 

The formulae in heavy type are standard results and 
can be freely used to write down the result of integration 
without making any substitution. 

Examples 

Integrate with respect to x: 

1. x'\ (x + 2)’, (2x + 3)», (3x - 2)\ (2 - 5x)\ {ax + b)-'. 

j 1 _L. 1 _i _i_ 1_• 
X® ’ (x + 3)® ’ (3x+4)® ’ (8 - 3x)® ’ (a + bx)® ’ (a - bx)® 

3. |/x, t/(x + 4), t/(2x+3), |/(3 -2x), i/fa + bx). 

4. i/x®, \/(.x + 5)®, V (5 - x)®, i/(2x - 7)®, i/(ax - b)®. 

5. 1/x, l/('x + 1), 1/(2x + 1), 1/(1 - x), ll(ax + b), l/(b - ax). 

6. c**, e**+® e»-»* a®*, 

7. sin 2x, sin ix, sin mx, sin (xlm), sin (2x + \n). 
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si 1 1 
• - W ’ i''U - 4x®} ’ Hi - (2x !)»} * 

1 1 _ 
_(3x- 2)1 ’ \'\l -(ax +W1 ‘ 

.111 1 
* / + 4x--* ’ 1 + !x* ’ I + ’ 1 + (ax + b)^ ' 

1 1 1 1 I _ 
1 + x^la” ’ a* + x» ’ 7 + x’* ’ 7 -i- 4x» ’ a» + b»x® ' 

10. cos 3x, cosec* 5x, sec* 2x, cos (3x + 4), sec® (7x + 2). 

11. l/(9x + I), cos ix, sec® 3x, tan 3x sec 3x, 
sin 2x/cos* 2x, 

12. sinh 2x, cosh (ax i b), sech- (3x - 7), 
cosech® (a — bx). 

13. 4 sin 2x + 8 sin 3x. 14. 3a* + 6a cos (5ii 2). 

15. 2(x - i)*® - 3(x - i)*®. 
16. cos i{a ~ x) + sin Via + x). 

1*33. Typical examples of the method ot 
substitution (continued). 

(ii) Functions of x**. Functions of x" multi¬ 
plied by x”‘‘ can be simplified for purposes of in¬ 
tegration by putting x” = t. 

Thus fX® sin dx~ \ f sin t dt, putting x® ^t and 
3x® dx — dt, i.e., x® dx = + dt, 

- V cos t =■ - V cos X®. 

l/f “ T [ 2^+ > putting X* = t, and 4x® dx = dt, 

i.e., X® dx = i dt, 

- i. i tan-‘ it, by § * 32 (ii), 
= i tan"* ix*. ^ / 

(iv) Fowers of functions. Any power of a func¬ 
tion multiplied by the differential coefficient of the 
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function can be immediately integrated by substitU' 
ting t for the function. 

Thus / sin* x cos xdx ^ f t* du by putting sin x = t and 
cos X dx = dt, 

= it*'" « \ sivv' X 

Examples 

Integrate with respect to x: 

L xe^*, xa^\ x sin x*. 

2. x''/( 1 + x^), X v/( 1 + x»), X (2 + x^y‘i. 
3. \(a* + X*)”, xl\/(a^ ~ x^), x/(a* + x^)* 

4. x^(x" - x^li^ia^ + x»), x*/i/(a3 - x^). 

5. x*^-^l(a f- bx^l x^-V(4 + x«), xP-^Iv\2 - xP). 

6. sin* X cos x, (log x)*/x, cos* x sin x. 

7* tan* X sec* Xj'cos* x/sin^ x, (sin*"^ x)*/t/(1 ~ x*). 

8. (sin x)** cos x, sec* x sin x, cosec^ x cos x. 
0 

9. tan^^ X sec* x, (cor‘ x)/(l + x*), sec“^ x/xi/(x* ~ 1). 

10. (1 + log x)®/x, e*(a'+ be®)^, (1 + sin x)* cos x, 

IL (a+ b sin x)*^ cos x, (a - b tan x)« sec* x, 
(a + b sin“^^x)’**/T/(l - x*)* 

4y“ 4x* 

^(T-'x«) ’ 1 + x« ’ Vo- X») ’ 2 +lx« • 

n -i- -1 --1—. 
Xl/(x* - 1) ’ Xl/(x* - 1) ’ x\/{x* - 4) 

1. X 3x 1 _ 
^(l - 2x*) ’ 1 + 2x* ’ 7xv'(2x^ -1) * 

^ - (8in“* x)* (tan"‘ x)* (secr^ x)® Cverf*jt)* 
■ i/d - X*) ' 1 + x» ' xi/(x* -1) ’ V'(2x - X*) ‘ 
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1 ’34. Typical examples of the method of 
substitution (continued). 

(v) Fraction in which the numerator is the diffe¬ 
rential coefficient of the denominator. Putting the 
denominator equal to t, we see that 

/W “ J f 
i.e., the integral of a fraction in which the numerator 
IS the differential coefficient of the denominator is equal 
to the logarithm of the denominator. 

fsin X j l'— s nx , , 
Thus I ax = — I -dx = — log cos x, 

Jcosx j cos V 

i.e. tan X dx = — log cos x = log sec x. 

Similarly | cot x dx = log sin x, 

1x4 ^Ix^+T^" ilog(x»+l);etc. 

(vi) Other cases. The method of substitution 
is the most powerful method of integration, and a 
great variety of substitutions is used. Experience 
alone will enable the student to think out a suit¬ 
able substitution, but some more standard substitu¬ 
tions will be dealt with in the succeeding chapters. 
Sometimes two or more substitutions in succession 
are used. 

Ex. Integrate x* (tan"‘ x®)/(l -i- x**) 

1^ 1*+J *> 3x® dx ■=■ dt, 

=.^1^4 du, putting tan"' t u and 11/(1 -i-1®)} dt = dw, 

= H . 4 M® = i (tan"‘ t)» = ^ (tan*' x®)®. 
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Examples 

Integrate with respect to x : 

1 3x^ 2x + 3 ax+b 

x-* + 1 ’ x'' + 3x f 2 ’ ax^ + 2bx + c ’ x" + b ’ 

2 -il e*-e** 10x*+10^. lo^lO 
• e*+ 1> c* i-e-*’ lO^ + x'® 

^ ^sec® X 1 _ _ J 
1 + cotx’ (1 + x**) tan"* X’ i (1 — x®) cos'* x' 

^ 1 sin X sin j^cqs^sc_ 
X log X ’ a + b cos X ’ a cos® v + b sin® x * 

. sin X sin x sin (a + b log x) 
1 (- cos® X ’ a- + b® cos® x ’ \ 

, sin X 1 _ 1_ 
1^(a* - cos® x) ’ X cos® (1 + logx) ’ x(l + log x)” * 

gar^n* gin|/x a=**~c”®**^ sin (tan’* x) 
7. j ICal., 39J: 

• 8. X cos® X® sin x®, x* tan® x® sec® x®. 

1*35. Integral of the product of two fiinC' 
tions. Integration by parts. If f(x) and <j)(x) be 
two functions of x, we know that 

d\f{x) . ^{x)\ldx = fix) . (|)'(x) + /'(x) . 4)(x). 

Hence, by definition and § 1*22, 

f (jc) -Hx)- |/(x). <})'(x) dx + |f (x). (l)(x) dx, 

or |/(x). <l>'(x) dx = f(x). <|)(x) - I f'(x). (t)(x) dx. 

To write the result in a more symmetrical 
form, replace f(x) by fx(x) an^. write fa(x) for 
Then for <Kx) we shall haVe to write / /2(x)dx. 
The above equation then becomes 
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ffiW/2Wtix = fi(x) J fa(x)dx—J {fi'(x) Sh{x) dx\dx, 

i.e., the integral of the product of two functions 

— first function x Integra- of second 
— integral of ^diff. coeff. of first x integral 

of secondK 

Integrating with the help of this rule is called integration 
by parts. The success of the method depends upon choos¬ 
ing the first function in such a way that the second term 
on the right-hand side may be easy to evaluate. 

It is important to note that: 

(i) Unity may be taken in certain cases as 
one of the factors. 

(ii) The formula of integration by parts can 
be applied more than once if necessary. 

(iii) If the integral on the right-hand side 
reverts to the original form, the value of the integral 
can be immediately inferred by transposing the 
former to the left hand side. 

Ex* 1. ! X cos X dx -- X , sin X sin X dx 

= X sin X 4- cos X* 

Ex* J jJog X dx == (Gog x) , 1 dx 

= = (log : dx ^ X log X - X ^ X log (x/e). 

Ex* 3. X® cos X dx = X* sin X ~ lx sin X dx 

= X® sin X - 2 M - cos x) —11 . ( - cos x) dx) 

=» X* sin X +• 2x cos x - 2 sin x. 
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Ex. 4. Integrate c* sin r. 

J sin xdx — -e* cos \ + J e* cos x dx 

- - e* cos X + e® sin X - | e* sin x dx. 

Transposing and dividing by 2, 

I e* sin X dx -- (sin x - cos x). 

Examples 

Integrate: 

1. X log X [Annum., ’40]; (log x)/x*, x" log x. 

2. xe", xe“*, x sinh x. 

3. X cos X, X cos nx, x cosec® ax. 

' 4. tan~‘ X [I. C. S., 1933]; cor’ x, sin"’ x. 

5. X® sin X, X* cos 2x, x®e”‘“'. 

6. (log x)», x"(log x)®, x’e"®. 

7. e® cos X, e®* sin x, e®* cos 2x. 

1*36. Breaking up the integrand into a 
sum. We have proved before (§ 1*22) that the 
integral of the sum of a number of functions is 
equal to the sum of the integrals of the functions. 
An important method of integration consists in 
breaking up a given function into the sum of a 
number of suitable functions and then applying 
this theorem. This method is particularly useful 
in the case of rational algebraic fractions and certain 
trigonometrical products. (See Chaps. II and IV.) 

Thus, we known that 

‘ = ’f ’ 
X® — a- 2a\x — a 

_ 1 
X + a )■ 

2 
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= {x-a)-log (x+ a)}, 

i.e. [-7-^—jdx 
j X** — Jx “ a 

Ex* Integrate cos mx cos nx. 

2a ^°^x + a’ 
X >a. 

Jcos mx cos nx dx - ^ j {cos (m + n)x + cos (m - n)x{ dx 

_ 1 ( sin (m + n)x sin (m - n)x } 
m + n m — n J* 

Note: The method of breaking up a given rational 
algebraic fraction into partial fractions is considered in 
detail in the next chapter. As regards the simple fractions 
which occur in the examples of the present chapter, they 
can.be broken up into partial fractions by supposing them 
to be equal to 

A _B_ 
X - a X - /S’ (1) 

where (x — a)(x — P) is the denominator of the given frac¬ 
tion, and comparing the numerator of the given fraction 
with the numerator in the value of (1), i.e., with A(x - fi) 
+ B(x - a). We get two equations which determine A 
and B. 

1*37. Reduction formulae. A formula 
which connects an integral with another in which 
the integrand is of the same type, but is of lower 
degree or order or is otherwise easier to integrate, 
is called a reduction formula. Usually the reduction 
formula has to be used repeatedly to arrive at the 
integral of the given function. This method of 
integration is called integration by successive reduction. 
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Reduction formulae are obtained by one or 
the other of the preceding methods—^very often by 
the method of integration by parts, and are useftil 
when the integral cannot be otherwise immediately 
obtained. Various reduction formulae will be 
obtained in the chapters which follow: 

Ex. Evaluate J sin® X cix. 

sin" X Jx “ I sin"*' x sin x dx 

^ sin***^ X ( - cos x) + (n 1) sin"“* X cos* X dx. 

on integration by parts, 

- sin”"*^ X cos X -f (n 1) jsin^*® X (1 - sin* x) dx 

-sin^*^ X cos X f (n -1) j*3in»»-3 ^ 

* (n sin^ X dx. 

Transposing and dividing by n, 

jsin^ X dx == - (1/n) sin^*-‘ x cos x + Kn - l)ln} jsin^^ x dx, 

which is a reduction formula. Applying this successively, 
we get 

|sin* xdx = - i sin® x cos x + j- [ sin’* x dx 

= - i sin® X cos x + i sin® x cos x 

+ f [ sin® X dx) 
J 

= - i sin* X cos x - iV sin^ x cos x 

+ M ~ i sin®x cos ^ 

« - -J-sin^x co8x-~*y\ sin® x cos x-iV sinxcosx 
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Examples 

Integrate 

(x~l)(x-2)’ (x-l)(x+3)’ x(x + 2)- 

7 1 ^ L 
x*-2x-3* x" + x"-6* x»--4* 

3. sin X sin 3x, sin^ x, sin^ x. 

4. sin 2x cos 4x, cos* x, cos^ x. 

1*4. Additional standard forms. 

(1) (cosec xdx= L - r 1^^* - -X = i f—■ 
^ ^ J J2 Sin cos ix ^ J tan'2'X 

= putting tan |* = t and there¬ 

fore I sec® dx — dt, 

= log t, 
i.e., I cosec x dx = log tan ^x. 

(2) I sec X dx = j sec {t—^Tt)dt, putting x = t — 

and dx = dt, 

= j cosec t dt=log tan ^t, by the above, 

i.e., j sec x dx = log tan (|x ■+• ^tt). 

J = J dt = t, putting X = a sinh t 

and' dx — a cosh t dt, and remembering* that 

• See Text-Book on Diff. Cal., § 3‘3. 



ADDITIONAL STANDARD FORMS 

1 + sinh® X = cosh® x, 

sinh"‘ (x/a). 

21 

(4) =1 *. « = 0 qpsh t 

and dx = a sinh t dt, 

= t, 

= cosh-(x/a). 

(5) I V(a* - X*) dx = a* j cos* t dt, putting x = 

a sin t and dx = a cos tdi. 

= |a* j (1 + cos 2t) dt 

= }ah + ia* sin 2t 

= la sin t. a cos t + ^a*t, 

(V(a* - X*) dx = ixV(a* - x*) + la* sin-* (x/a). 

(6) f V(x* + a*) dx = o* jcosh* t dt, putting x = 

a sinh t and dx = a cosh t dt, 

= Ja* j (cosh 2t + l)dt 

= |a* sinh 2t + |a*t 

= |a sinh t. a cosh t + |fl*t, 

,, I ‘\/(x*+a*)dx==|xV(a*+x*) + |a* sinh“‘(x/a). 
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(7) I V'(x* — a®)cix = a- jsinh’ tdt, putting x = 

a cosh t and dx = a sinh t dt, 

= ia* I (cosh 2t — 1) dt 

= \a^ sinh 2t — \a^t 
— \a sinh t. a cosh t — lah, 

i.e., j^V(x*—a*)dx = ix\/(x*—a*)—^a®cosh"*(x/a). 

1*41. Alternative forms and alternative 
proofs. 

As sinh-* (x/a) = log j + ^) } > 

i.e., sinh"* (x/a) = log lx + ^(x* + ct*)l — loga, 

and cosh"* (x/a) = log lx + V{x^ — a*)l — loga, 

and we can omit the constant — log a in stating 
the result of integration, the results (3), (4)> (6) and 
(7)Sof the previous article can also be stated as 
follows: 

=logfx + V(x> + aO(, 

lv'(x^l a«) ='o8;tx+V(x‘-a‘)(, 

|V(x* + a*)dx = IxV (x® + a®) 

+ ia® log lx + + a»)l, 

and "" == ixV(x® — a*)l 

— ia* log lx + V(x* — a*)l. 
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sense in which we use it when we say that “the limit of 
f(.x) as X tends to c is A.” 

Ex. 1. 
J> 

ci.'-[[x*]'-i(ln - l) = 15/4. 

lV/9 
Ex. 2. 

J. 
stn*-* X i j (1 - c?V8 2x) d\ 

i i sin 2\ irr. 

fv > d\ r . 1'® , 1 1 

Ex. J. 
J. 1 

, ^2 “[tan-^ \j^ == \n yh;r. 

Note. In the last example, tan*^v"3 and tan“^ 1 both 
have an infinite number of values, and so tan“‘v/3 - tan"* 1 
also has an infinite number of values. In all cases like 
this, where F{x) is a many-valud function, a better definition 
of the definite integral is required than the one given 
before. This will be given in Chapter V. Till then, the 
student should, in determining F(a) and F(b), always take 
the principal values of the inverse circular functions, viz, 
those values of sin"* x, tan"* x, cot"* x, and co8ec"*x which 
He between - in and ij* (both values inclusive), and those 
values of cos"* x, sec"*x, and vers"* x which lie between 0 
and n (both values inclusive). 

1*61. Substitution in the case of definite 
integrals. When the variable in a definite integral 
is changed, it is usual to change the limits also, in 
order to avoid the necessity of transforming the 
result back into the original variable, which is 
often troublesome. 

Hence 

Now, if we put <|)(x)=t, the integral 

|fl<K^)l transforms into|/(t) dt. 

fb 
fl<|)(x)l <l>'(x) dx must transform into /(t) dt; 
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for, if j/(t) dt=F{t), the latter integral 

M'’''’ = Fl(l)(b)l-Fl<t)(a)l 
PUT) 

and the former integral 

= [Fl<t)(x) ]J = F{(j)(h){ - F{<l>(a)}. 

which is the same as before. 
* 

We see that when the variable is changed from x 
to t, the new limits are the values of t which correspond 
to the values a and b of x. 

r f® 2x dx r‘®dt 1 . a 1 
1 = , • where t = x» + 1, 

J 2 >> M- 1 J 5 t 

= [ log t J = log 10 - log 5 = loge 2. 

Here the new lower limit is 5, because when x = 2, 
then t = 2* + 1, i.e., 5. Similarly, the new upper limit is 10, 
because t = 10 when x = 3. 

1*62. Integration by parts in the case of 
definite integrals. Integration by parts does not 
present any new difficulties in the case of definite 
integrals. The following example illustrates the 
procedure, the validity of which is apparent from 
the definition. 

rr/j 

Ex. Evaluate x cos x dx. 
J 0 

X cos X cix= ^x.sin xj -1 sin x clx 
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1’63. Integrals with infinite limits. We 
define an integral with one of its limits infinite as 
follows: 

I /(x) dx=lim f f(x) dx, 
Ja b-^ccja 

provided the limit is a definite number. 

provided the limit is a definite number. 

f, $ - " J, J“ i) " 
f'' dx dx 

Ex. 2. , - Hin*_*oc — = 2(i^b -1). 
Ji V X Jj V 

Since limt-*... v b is not finite, and so is not a definite 
number, the integral under consideration is meaningless. 

Examples 

Evaluate 
fi 

1. 

5.‘ 

-7. 

x>“ dx. 
Jo 
|‘ 5dx 
j(, 1 + X® 
r® dx 
j .1 2x + 3 
ft dx 

Jo 0 V'(4 - X®) ’ 

9. 1 X® sin X* dx. 
JO 

„ f‘ 5x®dx 
J„ya-x«)* 

cos xjbc 
3 + 4 sin X' 

13, 

J'tT 2 
(sin \ d- cos \-) dx* 

4 I" .1 2(1 + »>) ' 
rn-A 

6. COS (x f I.t) dx, 

Lt- 

10. 1’“+ '»«*>•&. 
J 1 X 

-- j^(tan“^x)^ dx 

cos (log x) dx 
X 
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15. f X* e** dx. 16. f *sin® x dx. 
Jo Jo 
rir/2 

17. cos^xdx* 18. I cos^ X d\. 

1‘7.* The integral a» a sum. Integrals 
enable us to find the values of the limits of certain 
sums, The theorem is as follows: 

If \f{x)dx = F{x) + C, 

then lim„_^0, h[f(a) + f(a + h) + f(a + 2h) + ... 
+ f{a + (n— l)hl] = F(b) — F(a), 

where h = (b — a)/n, 
f{x) is a continuous function of x in the domain (a, h), 
and a and b are fixed finite numbers, h will, of 
course, tend to zero as n tends to infinity. 

We can prove the theorm as follows : 

Since lim^-*. o 

if follows that |F(x4-fi) — F(x)\/h = /(x)+8, 
where e->0 as K-^0. 

Giving to x the values a, a+h, a+2h,... in 
succession, we get. 

F(a+H) - F(a) = hf(a) + 
F(a+2fi)- F(a+h) = hf(a+h) + hsg, 

F(a+3K) - ■ F(a+2h) = hf(a-i~2h) + hSg, 

etc. etc. 
F(a + nh) — Fla + (n - l)hl 

= hf{a+(n — l)bH-he„. 

•May be omitted at first reading. 
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By addition, since a+nK=b, we get 
F(b) - F(a)=h[f(a)-hf(a-hh) 

..+/{a+(n— 1)M] 
+ h(Ei + ej+...H-E„). (1) 

Let By be the term in Ej + e* +.., + e„ which has 
the largest numerical value. Then 

h I ei+Sa+...+e„ ! <hn 1 e,. | ^{b-a) j | . 
As h-»0, £r~>0. Hence (b — a) | Er I ->0. 

Therefore 
h(6i + fig E„) ~*0 as fi —> 0. 

The truth of the theorem to be proved is now 
obvious from the equation (1) on taking limits as 
nr-> oo* 

Note. The sum h\J{a) + f{a + /i> + ... + f{a + (n - 1)K{| 
is really a function of n, for K = (b - a)/n. We have deter¬ 
mined above the limit of this as n tends to infinity. But it 
should be carefully noted that n is not a variable of the 
type which can take up every numerical value, because n 
can have only positive integral values. However, the 
student should not find any difficulty in following the 
above proof, as he must be familiar with functions of the 
integral variable n in Algebra, specially in the theory of 
infinite series. 

We have used above the proposition that e-^Oas 
h->0. But in the present case, fi can take up only such 
values as are obtained by giving integral values to n in the 
expression (b - a)/n, whereas we know from Differential 
Calculus the truth of the above proposition for that case 
only in which h can take every numerical value between C 
and some positive number. However, it is almost obvious 
that 8 will tend to zero also when h takes only the values 
(b - a)/n. 

Some other points also require examination, but the 
discussion will be too subtle for the beginner. 
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Areas. The proposition of § 17 en¬ 
ables us to find 
certain areas. 

Let CD be 
the curve y = f(x), 
CA and DB the 
ordinates at x = a 
and X = b respec¬ 
tively. 

It is required 
to find the area 
ABDC, viz., the L 
area bounded by ° 
the curve, the axis of x, and the ordinates at x = a 
and X = b. 

Divide AB irxto n parts, each equal to h, so 
that b — a = nK 

Let M, N be the points on OX whose abscis¬ 
sae are a+rh and a + (r-t- l)/i respectively, and let P 
and Q be the corresponding points on the curve. 

We assume, for the sake of convenience,! that 
f(x) goes on increasing as we go from A to B. We 
assume also, as an axiom, that the area MNQP lies 
in magnitude between the areas of the rectangles 
MNRP and MNQS, i.e., 

hfia+rh] <area MNQP< H/{aH-(r + l)Kl. 

By writing similar inequalities for all the 
strips into which the area ABDC is divided by the 
ordinates at x=a+h^ a+Zh,, a+(n — 1)H, and 
adding, we see that 

•May be omitted at first reading, 
t This restriction can be easily removed. See below. 
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+ Ko,+^) + • • • + f \o.+{n — 1)K}] < area ABDC 
+ h)-j- ... + /(a + nh)]# . . (1) 

Now the limit, as n-> oo, of the right hand side 
= lim„_^, h[f(a) + /(a + K) + /(a + 2h) + ... 

+m + (n— l)hi] 
+ lim„ « h[ — f(a) + f(a + nh)], 

by adding and subtracting hf(a), 

=F(b)—F(a)+0, by § 17, where \f(x)dx = F(x) + C. 

The limit, as n-*°o, of the left hand side also 
is by § 17, equal to F(b)~F(a). 

It follows, therefore, upon taking limits in the 
inequality (1), that 

area ABDC= j /(x) dx = | y dx. 
Ja 'a 

If f(x) goes on 
decreasing as we go 
from A to B, we can 
show similarly that 
the proposition is 
still true. 

If, however, f(x) 
increases in certain 
parts of the interval 
AB and decreases in 
other parts, as in the 
marginal figure, then 
the area ABDC «= the area AEiFiC 

4- the area E1E2F2F1 + ... -f the area EnBDFn, 

where EiFi, E2F2,..., E«Fn are the maximum or minimum 
ordinates on the curve (n being finite). If the abscissae of 
El, Ea, ... En are Ci, Ca, ... c^, it follows from the above 
that the area ABDC 

- {F(ci) - F(a)} + {F(ca) - F(ci)} + ... + {F(b) ~ FCcJl 
« F(b) - F(a). 

3 
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Hence the proposition is still true, provided that the 
curve has a finite number of turning points. 

The area bounded by the curve CD, the ordinates at 
C and D, and the x-axis is often called the area under the 
curve CD. 

Ex. Find the area of the quadrant of the circle 
= 1. 

The quadrant of the circle may be 
regarded as bounded by the curve 
y = t/(l ~ X*), the x-axis and the ordinates 
at X = 0 and x = 1. 

Hence the required area i (1 “ 

sin*^ X + ixV'^d - x®)J^ 

^ 4(sin~* 1 - 0) = rr/4* 

Note. Very often, in the application of the integral 
calculus to physics and to other subjects, an argument 
similar to the following is used :1 

To find the area ABDC (see figure on page 32), divide 
it into n strips each of breadth cix. Then the area of any 
one strip MNQP is approximately PM. dx, i.e., f(x) dx. 

Hence the total area, viz., the area ABDC f{x) dx. 

This procedure must be regarded as merely a rough 
abbreviation of the procedure we have adopted ; otherwise 
it has no meaning. 

Examples on Chapter I 

Integrate with respect to x : 

^ 1, (tan*^ x)/(l 4- x^). 2. 1/(1 4. X*) tan** x. 

cos (log x) ^ gmsin*! X 

X • 1/(1--«»)• 

*5* (x» + 3)»‘ 
*6, cot X 

log sin xl 
[Aiigarfi, 1934] 



EXAMPLES 35 

•7. 1*^. -8. j2^.(Annam.,'36| 

b+ce^’ e*-l* 1945] 

* 11. sec4x. *12. r sin X. [Trav., 1943] 

-13. xtan-»x. [Del., 1939|. ' 14. 'xsec».x. [Bom., 1937} 

•Ir sin X sinh x. - lo. X 8in“* X. [Mad,, 1941J 

17. 
X tan"* X 

(1 + x2)‘^/- • .18. va -x^)- ic«i ‘’4o] 

•19. 'x® log X. [Mad , 1^41]. 20. x*^ log X. 

21. (?•. '22. x‘^ 

23. (log x)^ 24. x^^ sin ax. 

25. x^e-*. ' 26. X® (tan*"* x)/(l -f x»). 

•27. 
x+sinx f , 
r+cosx- 411 28. - ' X® - .X - 2 ‘ 

> 29. 
X- 1 

{x-3)(x-2)* 
30. 

X 

(x» - a»)(x» -“fc») • 

Evaluate 

31. 
J ol + ^ 

32. 
Jix(I + X*) * 

33. 
i cos 2x , 
J cosx 

34. f *1* 
1 sinh X * 

35. sin 2\ cos 3x dx. -3^. 
[tt/s 
j e** (sin X + cos x) dx 

[Calcutta, 1943] 

37. j" e®* sin 4x dx. [Math. Tripos, 1934] 

38 \v'(l + sin x) dx. [Agra, 1945] 

(Hint: Notice that i/(l + sin x) = cos ix + sin ix 
-> y/l sin (ix + i«).] 
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39< Integrate and evaluate 

(i) * cos* X dx, (ii) tan* x dx, 

•40, Show that 

(lii) j^xc^dx, 

[Calcutta, 1936) 

[Patna, 1935] 

4L Evaluate the following : 

xe* 

+ 1)2 
dx* [Punjab, 1942] 

[Hint: Integrate by parts, taking xc* as the first 
function.] 

42, Integrate x^Hx^ +1)®, (a) by the substitution 
X « tan $, (b) by the substitution u == x® + 1, and shew that 
the results you obtain by the two methods are in accor¬ 
dance. [Math. Tripos, 1933] 

' 43. Prove ‘hx j » * Jr - « I - V ^ + IV 

[Lwcfenow, 1944] 

^ 44. Prove that if the integral of a function is known, 
the integral of the inverse function can be deduced. Illus¬ 
trate graphically. Find 

I tan*^ X dx. [Andhra, 1936] 

» 45. Find a reduction formula for I x** sin ax dx. ' 

46. Find the area, between the curve, the x>axis and 
the ordinates at x = 1 and x = 2, of 

(0 y-x*. (ii) y=e* 

47» Find the area between the x-axis aitd the curve 
y — sin X from x «* 0 to x = «. 

48. Show that the area between the curve y = ce*, the 
x-axis and any two ordinates is proportional to the diflFe- 
rence between the ordinates. 



CHAPTER II 

INTEGRATION OF RATIONAL FRACTIONS 

2*1. Partial fractions. The fraction 

aox”' + x”*-* + 

+... + b“ ’ 

in which ao,ai,...,bo,bi,... are constants and m 
and n p)ositive integers, is called a rational algebraic 
fraction. Such fractions can always be integrated 
by breaking them up into the sum of an integral 
part and a number of partial fractions, i.e., fractions 
in which the denominators are linear or quadratic 
functions of x and the numerators are of a lower 
degree than the denominators. 

Let the numerator of the given fraction be 
written as F(x) and the denominator as ‘I’W* 
Fix) is not of a lower degree than <|){x), divide 
F(x) by <t)(x) till the remainder, say ^x), is of a 
lower degree than <|)(x). If the quotient be Q(x), 
then the given fraction is equal to 

Q(x), being the sum of a number of terms like 
CfX’’, can be integrated at once. We proceed to 
consider how /(x)/4>(x) can be broken up into partial 
fractions. Henceforward it will be assumed that 
the numerator of the fraction under consideration 
is of a lower degree than the denominator. 

First resolve the denominator into its real 
prime factors. These frctors will be either linear, 
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or quadratic, and some of the factors may occur 
more than once. We know from algebra that 
y(x)/<|)(x) can be resolved in one and only one way 
into a sum of partial fractions, which are of the 
following types: 

(i) To every non-repeated linear factor (x — a) 
in the denominator corresponds a partial fractioti 
of the form A/(x — a). 

(ii) To every linear factor repeated r times, 
i.e., to every factor of the type (x — hY, correspond 
r partial fractions of the form 

^1 I I I j. 

X — b ^ (x—by (x — by (x — by' 

(iii) To every non-repeated quadratic factor 
x* + px + q corresponds a partial fraction of the 
form 

(Cx -1- D)/(x* + px + q). 

(iv) To every quadratic factor repeated s times, 
i.e., to every factor of the type (x* + kx + ly, corres¬ 
pond s partial fractions of the form 

Ej X 4- Fj E,x -f Fa E^x + Fs 
X*-k fex4-1"" (x*-f-kx4-0® ’’’ (x* 4-kx0* ’ 

The next step is to determine the coefficients 
A, B,C. Methods for doing this will be given 
in the articles which folfow. 

2*2. Non-repeated linear factors only in 
the denominator. Suppose there is a non- 
repeated linear factor (x—a) in the denominator 
^x), and let «Kx) = (x — a)i//(x). Then /(x)/<^(x). 
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i.e., + partial fractions not 

I.e. 

= A 
(x — a)i/>(x) x — a 

containing x — a in the denominator. 

Multiplying both sides by (x — a), we have 

f(x)/i}i{x) = A + (x — a) X partial fractions not 

containing x — a in the denominator. 

Putting x = a in this identity, we get 

f{a)ltP(a) = A, 

A ^ f(a) 
x — a (x — a)4>{a) ' 

Since the right hand side can be obtained 
from the given fraction by putting in it x = a every¬ 
where except in the factor x — a, we get the rule; 
to obtain the partial fraction corresponding to the factor 
X — a in the denominator, put x = a everywhere in the 
given fraction except in the factor x — a itself. 

All the partial fractions can be written down with the 
help of the above rule when the denominator of the given 
rational fraction contains only non-repeated linear factors. 

We note that ^(x) = (x - a)ip{x). 

Hence ^'(x) = (x - a) /(*) + v(x). 

Therefore ^'(a) = v<a). 

Hence the value of A can also be written as 

Kama). 

Ex. Integrate (x® + x + 2)/(x - 2)(x - 1). 

Since the numerator is not of a lower degree than the 
denominator, we first divide out. We thus find that the 
given fraction is equal to 

1+ 
(x - 2)(x - 1)' 
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Now, by the above rule, 

i.e., 

Hence 

4x 4x2 4^1 
ix - 2)(x 1) ‘ (x - 2)(2 - 1) + (1 - 2)(x - 1) ’ 

- X + 4|2 log (x - 2) - Iog(x - 1)1 

- \ + 4 log i(x - 2)V(x - D). 

Examples 

Integrate 

1. 
3. 

4. 

•5. 

6. 
7. 

8. 

+ l)/(x» - 1). 2. 

x*/(x I l)(x - 2)(x 4 3). 

x*/(x + l)(x + 2)(x + I), 

x»/(x - l)(3x - l)(3x - 2). 

x*/{x=> - 2x» - 5x h 6). 

x/(x - a)(x - b)(x - c). 

(x — a)(x — b)(x — c)l(x — a] 

'•/(x - l)(x + 2)(2x + 3). 

[Punjab, 1937] 

[Madras, 1936] 

[Patna, 1937] 

[Allahabad, 1929] 

X - ^)(x - y). 

2‘3. Repeated factors. Next we consider 
the case in which the denominator of the given 
fraction has linear factors, some of which occur 
more than once. Suppose the given fraction is 
f{x)l^(x), where <|)(x) = {x — of ^{x). To find the 
partial fractions corresponding to (x — a)*" put 
X — a = in the given fraction. Then ^xV^pCx), i e., 

fix) ^ Ka + y) 
‘(x-fl)*‘^(x)' /t^(a + y) 

1 Ao + Ajy + A|3t® -f... 
» / Bo + Bjy + Bgy*4*... ’ 
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when the numerator and denominator are arranged 
in ascending powers of y. Now divide Aq -f A^y 
+ ... by Bo + B,y +... and continue the process till 
/ becomes a common factor of the remainder. 
Suppose the quotient is Co + Cj y +... + Cr.t ' 
and the remainder is / (Do + y +.,so that 

Ao + Aj y + Aj y® +... 
B„ + Bj y + Bay® +.,. 

— Co + Cjy + ... + C^_i y**”* 

1 !y’’(Do + Djy +...) 
Bo + Bfy +... 

Then fM — I ^o+D^y +... 
<t>(x)~y’-'^y'"^'^'"'^ y ■^Bo + B,y + ... 

_ Co Ci 11. 

(x—aY (x —a)®""* “’"^x —a 
Do + Da (x — fl) +.., 

Thus the partial fractions which have (x - aY, (x - 
etc. in their denominators have been determined. The 
fraction 

{Do + Di (x - a) + ... }Mx) 

can now be further broken up into partial fractions by the 
method of the present article or of the last article as 
necessary. 

Ex. Integrate x®/(x + l)*(x + 2)(x - 1). 

Put X +1 = y. Then the given fraction is equal to 

1 (-l + y)» 
3l*(l + yK-2+y)* 

CKvidethe numerator of the fraction which is the 
factor of Ify* by its denominator, as shown below. 
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- 2 - y r- y^) - I i- iy - 3 (.i - }y + %' ~ Hy^' 
- I ~ iy t iy^ 

J ^ y’ + y'^ 

b + -J y” -iy^ 

yy^ + ^y- 
. l^yS . ^ ^ ^ j4 

^j,.* -^.y* 
■^T' + Hy*-Ht 

- -H y'* + 

We see that the given fraction 

_ 1 _ 7 21 _ 43 _ -f^ - ■ 
ly* ~ 4j* ^ 8y’‘ ~ 16y - 1 - y + y* 
17 21 43 _ 

■'2(x+l)‘ 4(xf 1)» ^8(x+l)» 16(x+l) 
- 85_+ 43 (x + 1) 

^ 16 (x + 2){x - 1) 

Now the last term 

43x-42 _ -128 _ 1 
I6(x + 2)(x - 1) 16(x + 2)( - 2 1) 16(1 + 2)(x - 1) 

8 1 
3(x + 2) ■*■ 48(x -IV 

Hence the integral of the given fraction 
1 7 21 43, , 

~ 6(x + 1)» 8(x + 1)» 8(x + 1) 16 ' 
+ S log (x + 2) + tV log (x - 1). 

Examples 

Integrate 

1. x/(x - l)*(x + 2). 2. (x* + l)/(x + l)®(x - 2). 

3. (x + l)lx*(x - 1). 4. l/x(x + 1)®. CAncilHa, ’36] 
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(\ ‘l)U 2)-'’ 1931]. 6.^^ l)»(x^2i*’ 

[Dacca, 1936] 

2'4. General case. If there are quadratic 
factors in the denominator which cannot be resolved 
info real linear factors a good plan is as follows: 

Equate the fraction to a sum of partial fractions 
of the correct form in accordance with § 2‘1. Find 
first the constants which can be determined by the 
methods of the previous articles. To find the 
remaining constants multiply both sides by the 
denominator of the given fraction and equate the 
coefficients of like powers of x in the resulting 
identity. Choose the simplest of the equations thus 
obtained which will give the values of the un¬ 
known constants, and solve them. 

Ex. Break up l/(x' H 1) into its partial fractions. 

- 1 = 1 _ 1 , Ax + B 
x»+l (x + l)(x* ~ X + 1) (x+l)(l + l + l) X® x+1 

^ Mx" - X + 1) + (Ax + B)(x + 1) 
(x + 1) X® - X ( 1) 

Therefore + A 0, - -i- A + B ^ 0, and + B 1. 

The first and the last equations give 

A = - l.B = 

Hence ^ I 1)" 3(x*^ x^+ 1) • 

2*41. Labour-saving devices. After equating the 
fraction to the sum of partial fractions of the correct form, 
and finding the constants which can be determined by 
the methods of articles 2*2 and 2*3, we can get a sufficient 
number of simple equations for determining the remaining 
coefficients by giving to x a number of convenient special 
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values, or by allowing x to tend to infinity jfter multiplying 
the equation throughout by a suitable power of x. 

Ex. Break up l/(x* ^ 1) into partial fractions* As in 
the Example of § 2*4, 

1 1 Ax + B Qx 

x'* + 1 3(x + 1) ^ X® - X -f 1 ‘ 

Multiplying throughout by x and letting x-^ oo, we get 

0-i+A.(2) 

Again, putting x -= 0 in (1) we get 1 :^ + B* (3) 

Equations (2) and (3) determine A and B. 

Note. Had there been more constants on the right 
hand side of (1), we would have required more equations 
like (2) and (3). These could have been written down by 
giving other convenient values to x. 

Ex. Resolve x*/(x^ + x^ f 1) into partial fractions. 
Assume that 

x-^ _ Ax -h B Cx + D 

x^ + x^ + 1 ~ x^ X + 1 X® X + 1 * 

Multiplying by x and letting x -> oo, we get 0 == A 4- C. 

Again, giving to x successively the values 0, 1, - 1, 
we get 

0 B 4- D, - d(A + B) 4^ C 4- D, 

_ A-f- B + 3(-C+D)* 

These four equations give A « - B ~ 0, C « i, D 0, 
and thus the partial fractions are completely determined* 

To compare the present method with that of §2*4, 
compare this solution with the one given in Ex. 2 of § 2*6. 

2*5* Integration of l/(ax^ + bx + c). To 
integrate l/(ax^ + bx + c), we must put the denomi¬ 
nator in the form a\{x 4- a)*-* ± Thus 

f dx _ 1 r _ 
Jax^ 4- bx 4- c aJ X® + (b/a)x 4- 4- cja — (bjldy 
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which we may arrange as 

1 r dx 
a Mx + b/2al'-‘ + kja — (b/2a)-} ’ 

If dx 
a J {x + hl2a\- — {(bl2ay — cja} * 

If (c/a) — (h/2a)* is positive, i.e., ifh-<4ac, 
we take the first form and obtain, from the formula 

/ dxl{x^ + a^) = (1/a) tan-‘ (x/a), 

[ dx _ 2c^ + b 
J ax* + bx + c V(4ac — b’) V(4ac — b*)' 

If, however, (c/a) — {bj2ay is negative, i.e., if 
b* > 4ac, we take the second form and obtain, from 
the formula 

/ dx/(x* -a“) = (l/2a) log \{x-a)f{x + a)\, 

f_dx _ 1 , 2ax + b — V'(b* — 4ac) 
Jax® + bx + c V(h- — 4ac) 2ax + b + V'(b’' — 4acy 

These two values of the integral differ only by a cons¬ 
tant, but in numerical examples the real form should be 
chosen. Moreover, in the case when b* > 4ac, the deno¬ 
minator can be resolved into real linear factors, and we 
can integrate l/(flx® + bxfc) by breaking it up into its 
partial fractions if we so desire. 

Ex. 1. 
[ dx 

JZx* + X + 1 
dx 

X* 4- ix + tV 4* i - TV 

dx 

(x + iy -f tV 

i ^ ^ 4- J 
(i/7)/4 

4x+J 
I'7 • 
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Ex, .2. I 
dx 

2x* +• X - 1 
dx 

+ Jx 4- rV - i ~ A 

^ 1 
" j(x ^ D* - T*il 

- 4 i. 4 log 
X I- 

X + 

I 

J > 

or 
, , 2x 1 

log ^ ^ j > omttting a constant. 

2*6. Integration of (px + q)/(ax- + bx + c). 
The integration of (px + (i)/(ax~ + bx + c) is eflFected 
by breaking it up into two fractions such that in 
one the numerator is the differential coefficient of 
the denominator, and in the other the numerator 
is merely a constant (the denominator in both cases 
being ax!' + bx + c). Thus 

+ to + i. 
Jax* + bx + c 2a Jax' + hx + c J ax' + bx + c 

The integral on the tight can easily be evalu¬ 
ated by § 2’5. 

Note. It will be futile to break up the given integrand 
into two others both of which contain x in the numerator. 
The stvident will have no difficulty in breaking up the 
given integrand in the correct way if he remembers that in 
the first part (vfe., in the part in which the numerator is 
the differential coefficient of the denominator) the coeffici¬ 
ent of X in the numerator is made equal to the coefficient 
of X in the numerator of the original integrand by multi- 
plying and dividing by suitably chosen numbers, and the 
numerator of the second part is the constant in the 
numerator of the given integrand increased or diminished by 
a number so chosen that the sum of the two parts may be 
equal to the original firaction. 
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Ex, L Integrate (3x -h Dlilx^ + x 1). 

i 3x -f 1 j ^ f 4x 4-1 , r 1 - f 
J 2x® -fxfl 2x“ + X 4 1 ' J 2x* X t 

dx 

-- i log (2x* 4- X 4- 1) 4- 2^'j ^ by % 2*5, Ex. L 

Ex. 2* Integrate x^fix"^ + x* 4 1). 

Since x^ 4- x* + 1 = (x® + 1)® - x® 

- (x® -f- X 4- l)(x* X 1), 

, X® Ax + B Cx 4 D 
assume that 4 1 =* — 1 f « 

X I- X-'4-1 X^4-X4'l X®~X4-1 

Then x® = (Ax 4- B)(x® ~ x 4- 1) (Cx D)(x® 4- x 4- 1). 

Hence A-f-O — O, -~A4*B-i-C4 0 = 1, 

A~B4*C4-D=0, B4-D-O. 
Therefore A = - i, C = i, B * 0, 0 = 0. 

xdx T-i. r x®clx , f xdx , f 
Thus 

-X4- 1 

dx 

,p+lldx^. 
X* + X + 1 I 

i log (x»-x+1) + i ^ + x+1) 

!x» + x + I 

dx 

X® + X + 1 

^*1 
,, x®-x+l, 1 *„„■! *~i , 1 * 

^^^x^+x+i'^zv^a vmivi v"3/2 

dx 

(x+4)®+i 

, , x*-x+1 1 * l/3x 
*>>*«.+«+l + 2v/3”" 1-.- 

Examples 

Integrate 

1. l/(2x* + X + 3).\ 2. l/(x» + 2x + 5). 

3. (3x+l)/(2x®-2x+3). 4. (5x - 2)/(l + 2x+3x®). 
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Evaluate 

'5- ''""‘'••'wsi 
j ‘ X* dx 
J„(x»+l)(x» + 7x+12)' 

6. 
8. 

j‘ (x - 5)dx 
Jox> + 2\ -4' 

[“ dx 
J_® X** 2x + 2' 

Integrate 

*9. l/Cx’-l). pat.,’411 ^10. l/(x+l)»(x»+1). 

‘11. (x^ + DKxJ + l). 12. x*/(x^ + a*). 

13. l/(x« f 8x» + 9). 14. (l-3x)/(l vald + x). 

'^''2'7. Integration of l/(x* + k)”. We can 
integrate l/(x® + k)” by the method of successive 
reduction. To obtain a reduction formula, we 
integrate l/(x® + k)”"* by parts, taking unity as one 
of the factors. Thus 

f dx _ X 12(n — l)x® j 
J(x’ + k)"-* ~ (x* + k)”-‘ + (x* + k)« 

- (x^ + + 2{n - 1) J ^ dx 

(x^ + k)’*-*.'^ ^^f(x* + k)"-‘ 

Dividing by 2(n — l)k and transposing, we get 

j dx _ X 
'{x- + k)’‘~(2n - 2)k(x» + k)“-‘ 

2n —3 f dx 
(2n-2)kJ(x*+k)“'‘’ 

which is the required reduction formula. 
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Ex. Integrate l/(x- + 3)-. 

By the reduction formula 

r dx X 3 r dx 
J(x» + 3y “ 12(x» + 3)» 12j(x» + 3)* 

12(x*f 3)» + ‘ I 6(x=* f 3)+ jx^ 3 [ 

X X 1 X 

^ 12(x^ + sy 24{x® + 3) 24 V 3 , 3 • 

2*8. Integration of (px + q)/(ax® + bx + c)”. 
The integration of (px-t- (j)f(ax'-‘ + hx + c)“ is effected 
by breaking it up into t^vo parts in one of which 
the numerator is the differential coefficient of 
ax” + bx + c and in the other there is no x in the 
numeraror. Thus 

r (px+^)dx_p f (2ax4-b)dx C(cj — bp/2a)dx 
J(ax” + bx + c)“~2aj(ax” + bx + c)" ^ J(ax' + bx+c)” 

= 
2a(n — l)(ax“ + bx + c)'‘*‘ 

/ bp\If dx 
^ W 2a/a"Mx- + (b/a)x + cfa}" ' 

But 

f dx_ _ f dx _ 
Jlx- 1- (l'>'a)x + c/ap‘ ~ J{(x + b/2a)” + c/a — b'^/4aH" ' 

Putting X + bjla — t and writing k for eju — b-'''4a”, 
the integral takes the form / dt/(t” 4- k)” and so 
can be evaluated, as in the last article, by succes¬ 
sive reduction. Thus / {(px + q)/(ax” + bx + c)"!dx 
can be completely evaluated. 

4 • 
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Ex. Integrate (x + 2)/(2x® + 4x + 3)’'. 

f (x + 2)dx _ ] f +4)dx I (2 - l)iix 
J(2x“ -r 4x 3)'-' “ ' j(2x--- + 4.x + 3)=> J4(x--' f 2.x + ir 

1 ( l' 

4(2x« +-4x + 3)"*' ' IKx+ + 

- _ - 1 4- ’ f- " ^ 

+ t/2 tan-^ {(i'2)(x4 l)!],hy§27. 

2*9. Special cases, (i) In certain cases a 
substitution! materially shortens the work. This is' 
specially so if some power of x, say is a factor 
of the numerator and the rest of the fraction is a 
rational function of x^. 

(ii) In fractions in which there is no odd 
power of X and in which the denominator can be 
broken up into factors of the form x® ± a®, it is not 
necessary to resolve the denominator into linear 
factors. The partial fraction corresponding to each 
factor X® + a® or x® — a® should be obtained by 
regarding x® as the variable. 

(iii) Sometimes it is more convenient to 
break up the denominator completely into linear 
factors, although this may introduce imaginary 
numbers. After resolution into partial fractions, 
or after integration, the pairs of terms correspond- 
ing to conjugate roots can be combined and re¬ 
duced to real; form by the help of De Moivre’s 
theorem.* 

(iv) Very often expressions involving x* + a® 
can be integrated more conveniently by the 
substitution x = a tan 0. Examples of this method 
will be given in Chapter IV. • 
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Ex. L Integrate l/x(x* - 1). 

dx [ dx f x^ dx I dt , , 
Ji(x‘ - 1) = - 1) = i Jt(t - !)• ‘ = " > 

- i log ‘ ~ ^ - 1 log ^ 

dt / 

x‘ - 1 

1 
2. Integrate 

x^ dx 
(x^ -- l)(x^ + 2) 

x^/(x^ - l)(x« + 2). 

“ 11 3(v* - 1) j(x» + 2) [ 

, , X - 1 v^2 ^ , X 
= ,log^^ 1+ 3'*"^ yz* 

Ex. 3. Integrate liCx"'" f 1). 

The root3 of x®" = ~ 1, i.e., ^ cos 7t + i sin tt, are 

(2/? 4- 1):^ . (Zp + l)7t 
cos ^ ^ 2n ’ 

where p takes the values 0,1, 2, ...»(2n - !)♦ Hence writing 
r for 2^+1 and 6 for njln, the roots are 

cos rd ± i sin r0, 

where r takes the values 1, 3, 5, (2n - 1). Let a denote 
the root cos rd + i sin rd and P the root cos rd - i sin rd^ 
Then if we denote x*** + 1 by 0(x), the partial fraction 
corresponding to x - a is, by § 27, 

_^1 1 _ a _a 
(x - a) #'(«) 2n (x - a) ~ 2n a®^(x - a) ~ — 2n(x - a) * 

Hence the sum of the partial fractions corresponding 
to a, p is 

1 (a + P) X — 2a/> 1 2fx cos rd — 1) 
~ 2n X® - (a + i5) X + ci/i ~ 2n X® - 2x cos f 1 

L a 2x - 2 cos T0 1_2 :7_2 cos* rd_ 
2n X* - 2x cos r0 4- i 2n (x - cos r0)® 4- sin® rd" 
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Therefore “l = - (1 /2n) v cos rfl log (x* - lx cos rfl + 1) 

+ (1/n) £ sin rfl tan"* |(x - cos T9)/sin rB\, 

where t takes up the values 1, 3, 2n - 1, and o = »/2n. 

Examples 

Integrate 

1. l/{x»+l)s. 2. 1/(2x2 + 1K 

3, l/(x» + X + D*. 4. (2x + 3)/(x* + 2x + 3)“. 

5. 2x1(1 + x)(l + x»)*. *b. x*/(x^ -t- 1)». [Agra. ’33] 

7. (x* + 4)/(x* + l)(x* + 3). 

8. l/(x* + a^Xx’* + b»). [Calcutta, 1937] 

* 9. (x* + l)l(x* + 1). [Punjab, 1942] 

[Hint. Although the integrand can be broken up 
into partial fractions and the usual method of integration 
is applicable after that, it is mote convenient to divide the 
numerator and denominator of the integrand by x“ and 
then put X - 1/x = t. This method can be applied in the 
next two questions also, but the substitution in Q. 10 
would be X + 1/x = f.] 

•" 10. 

• .12. 
" 13. 

*15. 

(x* - l)/(x* + X* + 1). 

2x/(x* + l)(x® + 3)r| 

l/x(x» l)^ 

Evaluate 

dx i: x(l + X’) ■ 
[PatJ 

11. (x» + l)/(x* - X* + 1). 

[Madras, 1937] 

l/x(x' + 1). [Alld.. 1932] 14. 

’37] 16. 
X* dx 

- i)(x“ 
[Allahabad, 1945] 

12 (x® - l)(x“ f 2) ■ 

Examples on Chapter II 

Integrate 

' 1. l/(x* - X - 6). [NaglJur, 1936] 

2. (x* + X - l)/(x® + X* - 6x). 

, ' 3. (x* + l)/(x* - D®. [Mysore, 1936] 
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4. l/(x - l)*(x - 2)(x» + 4). [Punjab, 1935] 

5. l/(x - l)»(x» + D*. [Dacca, 1936] 

6. 1/(2 + x>)(l - X*). [And/iro, 1936] 

7. l/(x* - 1). [Nagjjur, ’39]. *8. l/(x^ + 1). [Alig., 1943] 

9. (x + a)/x®(x - a)(x® + a*).**10. l/x(x** + 1). [Mad., ’42] 

11 x/(x* + x® + l). [Delhi, mi] 

12. (1 - xs)/x(l + x» + x‘). [Agra, 1935] 

13. .x»/(x»-l).^ 

14. l/(x - D^Cx® + 1). [LucJcnou), 1937] 

15. (5x + 3)/(2x® + X + 2)®. 16. (\ - a)/(x® + a*)®. 

17. (x®-2)/(x® + 2)». 18. f* n?7v^.* lCal.,’38] . [Cal.,’38] 

[Agra, 1944] 

[Aligarh, 1943] 

17. (x®-2)/(x® + 2)». 18. 

Evaluate 

I t/(tanfl)d0. [Agra, 194 

fir/4 

20 I i/lcot 0) de. 

23* Show that 

f*" _x^dx _ _ ^ 
J 0 + h*)(x* + c®) “ 2(a + b)(b + c)(c + a) * 

24. Prove that 

1*"“ __dx__ as — 2yt(a + b) _ 
J (x» + ax + a*) ^x* 4^bx + l>») (1/3) ah (a® -h ab + b^) 



CHAPTPR III 

INTEGRATION OF IRRATIONAL 

ALGEBRAIC FRACTIONS 

3*1. Integration of a rational function of 
X and (ax + Rational functions of (ax + 
and X can be easily evaluated by the substitution 
t” = ax + 6. Thus 

j/lx, (ax + ~ j a ^ 
Since by supposition f is a rational function 

of X and (ax + it follows that on the right 
hand the integrand is a rational function of t, and 
so the methods of the last chapter are applicable. 

Rational functions of x, {ax + b)*-^** and (ax + b)*^"* can 
be similarly evaluated by the substitution tr = ax + b, where 
p is the lowest common multiple of m and n. 

Ex. 1. Integrate x/(x - 3)i/(x + 1). 

Put X + 1 t®. We get 

r xdx r(t»-I)2tdt 
J(x - 3)>/(x + I) J (t* - 4)t “ ^ Jc® - 4 

-2t + 41og|;^ 

dt 

2t/(x + 1) +1 log 
i/(x + 1) - 2 

t/(x + 1) + 2 ’ 
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Ex. 2. Integrate (1 + + x*''®). 

Putting X = t®, we have 

1 + x*;^ 
. + x»''® 

dx -11 + t» 

+ 
1“ dt-6 

Jt* + 1 
dt 

= 6 j j t« - + t® +- r - 1 + ^ j [ at. 

Therefore 
n 4- vi/» 

Jl + x*'’’ ~ ^ ~ ~ 
^ 3 log (t* + 1) + 6 tan'* t, where t =- x*''®. 

Examples 
Integrate 

1. x®/v^(x4-5). ■ 2. r'x (1 + x). [Delhi, 1937] 
3. x®/t^(x-l). *4. (x + 3)/(x - 3)*''®. 

* 5. \“/(x - l)v/(x + 2). [Allahabad, 1930] 

6. |/(x® - a*)/x. ' * 7. l/xt/(x® t- 1). [Agra, 19371 

a (I + v/x)/(l 4- X*'*). * * 9. x/|( 1 + x)*/® - (1 + x)*^>]. 

^0. Evaluate | ILucknow, 1944] 

3 2. Integration of 1/V(ax'‘ + bx + c). We 
can integrate 1/V(ax® + bx + c) by throwing ax® + 
bx +c into the form a{(x + a)® ± as in § 2'5. 
The result will assume different forms according to 
the signs of a and (5®. In the following discussion 
it is supposed that the positive square root is taken 
everywhere. 

Case I. a positive. 

f ^ i 4.^ 
J V(ax® + bx + c) “ Va J v'](x + b/2a)® + (c/a — b®/4a*)} 

If dx 
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Ifc/a—b*/4a^ is positive, i.e., b*<4ac, we take 
the first form, and get 

1 dx _ 1 .1-1 X + hfla 
J (ax'* + fix + c) Va V{cla — b^/4ci^) 

I . , _i 2ax + fi 
- V(4ac-fi=)- 

If c a — fi^/4a^ IS negative, i.e., fi® > 4ac, we take 
the second form and get 

I dx _ 1 , 2ax + fi 
J v'(ax’ + fix + c) ~ -^(fi* — 4ac) ’ 

Case II. a negative. Here V( — a) is retji. So 

f dx _ 1 _i' _dx_ 
J V(ax* + fix + c) ~ V( — a).' Vl — c/a — (x* + bx/a)} 

_ 1 f _dx_ 
V{— a)j v'I(fi*/4a* — cja) — {x + fi/2a)®I 

- ^ sin*‘ * + ^/2^L 
v'Cfi'Ha* - c/a) 

_ 1 . J — lax — fi 
-V(-a)®“^ >/(fi*-4ac)’ 

since the positive square root of (fi*/4a* — c/a) is 
V(fi* — 4ac)/( — a) when a is negative. Cf. Ex. 2 
below. 

Ex. 1. Integrate l/i/{2x’ - x + 2). 

f dx If _ dx 
J i/ (2x® — X + 2) 1/21 |/(x* — ix + rV + 44) 

_ 1 f dx 
1/2' I'{(x -4)® + (v'15/4)*}' 

= 1^2 VlSfy = ^^2 • 
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Ex. 2. Integrate l/t/(2 + x - 3x*). 

4^- _ 1 I 
J i'(2 <- X - 3x*) " t/3j - (x* - ix)} 

dx _ 1 f dx 
+ s'« - (x* - ^x + “ I 3'1 - (x - J)®} 

, X - I 1 . 6x - I 
, sm*‘ c 

1 
1 3 

sm" 
1 

^ 3' 

3‘21. Integration of VCax® + bx + c). The 
integration of ^/{ax^ + bx + c) can be accomplished 
by reducing ax’ + hx + c to the form a{(x+a)’ ± 
as in the last article. 

Ex. Integrate i + \ - 2x“). 

I^l (1 + X - 2x’) Jx * 1 2 |i li - (x* - ix)} dx 

^ } 2|i li 4- rV - (x - })»} dx - I 2 [ V {/t - (x - 1)*! dx 

= \''l .lix -\)\, IrV - (x - 1)^} 4- I 2. /if 8in-M(x-})/(i)l 

= i(x - Hl"(l 4- X - 2x*) 4- A (t '2) sin-‘ J(4x - 1). 

3*3. Integration of (px + q)/V(ax’‘ + bx 
+ c). We can integrate (px + q)jw{ax‘ + bx + c) 
by breaking it up into two parts in one of which 
the numerator is the differential coefficient of 
ax® + bx + c and in the other the numerator does 
not involve x. Thus 

f (b3c 4- (l)_dx _ _ _P f (2ax + b)dx 
J V(ax^ 4- bx + c) 2a J V(ax“ + bx + c) 

[(q-bpl2a)dx 
~ J ^(ax® 4- bx + c) ‘ 

The first integral on the right is evidently 
equal to 2(pj2a)V(ax^ 4- bx 4- c). The second can 
be evaluated by the method of § 3*2. 
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Evidently, {px i- q)v (ax^ + bx c) also can be integ¬ 
rated by a similar method. 

Ex. 1. Integrate (x + l)/i (x^ x f 1). 

j (x 4- l)dx ^ i (lx - 1) dx f (1 + i)(ix 
' ^ '(x^ ~ X + 1) “ ^ j 1 (x* - X 4- 1) J \ (x^ - X + 1) 

-- 1 (x^ - X + 1) + 4 sinh“i ^ 

~ 1 (x^ — X 4- 1) 4- 4 sinh“^ a ^ • 

Ex. 2. Integrate (x + l)i (x® - x 4* 1). 

f(x + l)i (x® ~ X 4 1) dx 

^ I J(2x ~ l)i (x® - X 4 1) dx + |(1 + ?i)v/(x® - X 4 1) dx 

= 4 . ^ (x® - X 4 ^ ((x ~ i)® H ijdx 

Mx^ - X 4 1)'*''® 4 4 • 4(x - 4)V {(x ~ 4)® 4 'll 

+ I . ?■ . i sinh-i * ^2/2 

<= •jVSx-' + lOx - l)i (x* - X + 1) + tV 8inh‘M(2x- l)/i '3}. 

Examples 

Integrate 

1. 1/4(x* + 2x + 3). *2. l/|/(l-x-x»). [Doc.,’36] 

• 3. 1/1 ''(2x® + 3x + 4). * 4. v"{25c* + 3x + 4). 

• 5. i/(4 - 3x - 2x®). • 6. x/i/(x* + X + 1). 

*7. (2x + 5)1 vix^ + 3x + 1). '8. (x + 1) I '(2xs + 3). 

• 9. (3x - 2) i/(x* + X + 1). 

Evaluate |^v'{(x - a)(p - x))dx. [Calcutta, 19371 
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3 4. Integration of 

(CflX” + + ... + c„)/V’(ax“ + bx + c). 

To integrate (coX” + Cjx” •!-... + c„)/V(ax'* + bx + c) 
\vc assume a suitable form for the result, diffe¬ 
rentiate both sides, and by comparing coefficients of 
various powers of x obtain the value of the un¬ 
known coefficients occurring in the assumed form. 
Thus, suppose 

fcpx** -|- c^x***^ -f-... + C,j j 

J V'(ax'* + bx + c) * 

= (Cox"'* -I- Cix’''“ + ... + C„.i)V{ax'“ + bx + c) 

j V(flx‘*’ -b bx + c) ’ 

where the C’s are constants. 

Differentiating both sides, and multiplying* by 
V(ax^ + bx + c), we have 

CpX” -f" Cl x”“^ + . • • -b I'll = j(n — 1) CoX”"' 

+ (n — 2) Cl x”"’ -b ... + C„_2l (ax^ +bx + c) 

-b {CoX”“* + ... + C„_i) (flX -b ^b) -j- C,,. 

Both sides are now rational integral functions 
of X.' Equating the coefficients of like powers of x 
we have n -f 1 equations which give us the values 
of the n + 1 constants Co, Ci, ... C„. 

Also we know how to evaluate 

dx 
-b bx -b c)' 

Hence the integral will be completely determined. 
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bx. 1. Integrate (6x'’ + 15x* - 7x + 6)/i X2x® - 2x + 1). 

Let 
f6x’ + 
J \ (2: 

15x* - 7\ + 6 
d\ 

(CoX® + Cix + Call '(2x'^ - 2x + 1) + C} 

(2x* - 2x , 1) 

', '(2x» - 2x f ir 

Differentiating both sides with respect to x and multi¬ 
plying by 1 (2x® - 2x + 1), we have 

6x» + I5x* - 7x + 6 - (2Co X Ci )(2x« - 2x + 1) 

+ (C„x-’ + Cix + Ca) . i(4x - 2) + Cs. 

Tlierefore 6Co =-6, - 4C„ + 2Ci )- 2 Ci C„ = 15, 

2Co 2C1 4* 2C2 — C) =“ — 7, Cj ~ Ca + C'i — 6. 
Hence Co =- 1, Ci = 5, C» = 3, C3 = 4. 

Also 
I dx__ 

' I (2x* - 2x + 1) 
_dx 
{(x*-x + i) + 4} 

1 

So 
f ""r(2I*’'* 2'x + 1)^ 

+ 2 \/2 sinh*"^ {lx - 1). 

Ex. 2. Integrate (x- f Dlv^Cx^ -f- 3)* 

We can proceed as above, or more simply as follows ; 

[(x- + Ddx fx® + 3 - 2 , [ // o , 2\^ J3) - J /(X- + 3) - J>'<’• + 5''*’-,X«-T3) 

- ixy/lx® + 3) + I sinh"* (xl v^3) - 2 8inh*‘ (x/y/S) 

=ix v'(x* + 3) - i sinh*‘ (x/1/3). 

Note. This method can always be applied when the 
numerator is of the second degree. 

Examples 

Integrate 

1. (x» - X + l)/i/(2x« - X + 2). 

• 2. (x® + 1)1 v/(x* + 4). [Madras, 19361 
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3. C'* - 2)/i/(3 - x»). 

4. (x* + 2x + 3)1 v/(x'^ + X + 1). [Lucknou>, 1935] 

5. (x» + 3)/v(x» +1), " 

6. Evaluate { ^ to (Bombaji, 1935] 
Jo 1 (2x - X-*) 

3*5. Integration of l/(x —k)*'V(ax*’+bx+c). 
The substitution x — k= Ijt reduces the integration 
of l/(x — k)’'V(ax^ + hx + c) to the problem of in¬ 
tegrating an expression of the form £''‘VV(At® + Bt 
+ C). It is supposed that x>k, so that t is positive. 
If x<ic, it is best to put k — x= 1/t, so that t is 
positive again. 

Supposing now that x>k, and x — k = 1/t, we 
have 

r 1 dx _ f ~ (llt^) dt 
J (x — /c)''v'(ax“ + bx + c) ~ J (l/t)''v'(ax* + hx + c) 

_ _ j £'■■* dr 

~ J V(ax-£- + bxt^ + cf) 

J ^{0(1 + kt)^ + bt(l + kt) 4- ct®l 

_ _ f t’-‘ dt 
J V\(ak^ + bk + c) t- + (2ak + b) £ + a} ’ 

_ I' 

J V{At^ + Bt C] ’ 

where A = ak" + bk + c, B = 2ak + b, C = u. 

• If t is negative this expression will not be equal to the 
previous one; we must, in tact, change its sign. The 
reason is that we have multiplied the denominator by 

and so the numerator must be multiplied by t or -1 

whichever is positive. The student will have no difficulty 
about signs in numerical examples. 
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This can be integrated by the method of § 3‘2 
if r = 1, or by the method of §3*4 if r > 1. 

tx. Integrate ll(x - 1) i + x + 1), x> 1. 

f dx I (l/t®) dt 

J(v - l)l (x'-‘ ( X + 1) ” J(l/t)t (x"'* + X I 1) ’ 
putting X — 1 = 1/f and dx - (l/t®) dt, 

_ r dt __ f dt 

j 1 (ti'x'' + tH + t4 J I |(t + 1)^ + t(f -f 1) + t^f} 

-I _ 
Jl (3t*+ 3t+ 1) V 3jiT(f - ^ - 1) 

- ^^3 8inh-i , ^ - 1 3 \ l) f * 

Note. If /(x) is a rational fraction and its de¬ 
nominator can be resolved into real linear ^factors, 
it is obvious that /(x)/\/(ax® + hx + c) can 1^ integ¬ 
rated by first resolving /(x) into partial fractions. 

Examples 

Integrate the following, supposing the integrand to be 
positive. 

1. l/(x - Dt Xx» + 1). - [Andhra, 1941] 

• 2. 1/(1 + x) i/(l + X - X®). [Bombay, 1937] 

3. l/(x + l)i/(l + 2x - X®). [Patna, 1941] 

4. l/(x - a)t/(x® - a®). [Nagjjur, 1930] 

» 5. l/(x® - l)i/(l + X®). [Allahabad, 1940] 

' 6. l/(x - l)®i/(l - X®). 

7. l/x(x + l)l/(x® + X - !)• 

Show that^ -^3. [Benares, ‘40] 
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3'6. General case. Expressions which are 
not already in one of the forms previously consi¬ 
dered can often be easily changed into an integrable 
form by rationalising the numerator or the deno¬ 
minator. Some expressions can be broken into 
two or more, each of which is integrable or 
can easily be reduced to an integrable form. 
The following discussion shows how this can be 
effected in the case of a rational function of x and 
V(ax® + bx + c). Article 3’71 will show that any 
such function can always be integrated in terms of 
the elementary functions alone. 

Let {(x, 1 X) be a rational function of x and j X, 
where X = ax® + bx ^ c. Then, since every even power of 
r X is a rational integral function of x, and every odd 
power of j X is equal to ) X multiplied by a rational 
integral function of x, the most general form for f(x, vX) 13 

P + Ql'X 
K + Si/X . (1) 

where P, Q, R and S are rational integral functions of x. 
Rationalising the denominator by R - St^X, we find that 
(1) reduces to 

PR - QSX + (RQ - PS)i/X 
R» - S»X 

. PR - QSX ^ (RQ - PS)X 
i.e., to ^ . 

We can integrate the first function (which does not 
involve r'X) by methods applicable to rational functions. 
To integrate the second part, we can break up (RQ - PS)X 
(R* - S*X) into partial fractions. Then we shall have to 
integrate terms of the type 

(doX** + "b.**" "i" 1 1 
’ {x ~ a)y% ’ {x - a)’'v X ’ 

Ax + B _Ax + B 
(x* + ax + P)yX ’ (x* + ax + /*)*■ I' X' 
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The integration of the first three of these forms has 
been considered before. The last two forms occur only 
rarely, and can be dealt with by the method of § 3’71 when 
they occur, but an easy special case can be dealt with in a 
different way, as shown in § 3’7. 

Ex. Integrate i/(x -i- l)/(x + 2)i (x + 3). 
f I (x + 1) dx _ I’c + 1 dx 

J(x + 2)1 (X + 3) ■ jx + 2 • 1 {(x + l)(x + 3)} 

~ J (^ “ X + 2) 1 (x® + 4x + 3) 

^ r 1' 
' 1 (^•' + 4x + 3) J(x + 2) I (x“ f 4x -f 3) ■ 

These integrals can now be evaluated by the methods 
of §§ 3*2 and 3‘3, 

3*7. Integration of l/(Ax^ + B)V'(Cx'' + D). 
To integrate l/(Ax‘-* + B)v'(Cx“ + D) we first 

put X = 1/t. Thus 

f _ _ 1 — (l/t®)cit 
j(Ax-- + B)V(Cx- + D) + D) 

= _ j ^ 
J(A + Bt‘)v v'J r / ' 

Now the substitution C + Dt^ = u® reduces it 
to the form / duj{u^ ± a*). 
^ Ex. Integrate 1/(1 + x-)y (1 - \*). 

Putting lit and dx = - (l/t»ldt we have 

f dx _|' ~(l/t*) dt _ j- tdt 

'(1 f X')l/{1 x») ~J(1 f l/t»)i/(l - l/t=) “ l)i/(t» -'D 

= - \'(^f'2)u • putting t» - 1 = and t dt - u dii, 

1 « 1 1 (t» - 1) — r tan*^ TT =3 - tan ‘ ^ 
I 2 \ 2 v/2 1 2 

\/2 xyl 
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Examples 

Integrate 
•1. i/j(l + x)/(l - x)i. *2. j/Kx + l)/(x - 1)}. 

U4-X+l/(l + X»)}/{l+X- 1 (l + X^)}. 

* 4. xvM(l - x)/(l + x)}. [Madras, 1936] 

' 5.V l/{x 4- i/(x^ - 1)K • 6. l/(2x^ + 3) 1 (x- - 4). 

^ 7. (x + l)/(x2 + + 9). [Bojnhayf 1936] 

8# l/(x- + 1) vV- “ !)• 

3*71. Integral of a rational function of x and 
1 (ax- + bx + c). By taking out \^a or v ( - a), whichever 
is real, as a factor, we can write the other factor of 
1 (ax® + bx + c) in one of the forms 

] (x' + fix + k), 

or 1'( X- + px + q). 

Hence we need consider the integration of rational 
functions of x and one of the above two expressions only. 
We shall show that in each case, by a suitable substitution, 
the problem can be reduced to that of integrating a rational 
function of the new variable. 

I, The substitution 

X + v'U” + /ix 4- k) == t 

will transform a rational function of x and r(x® + fix + k) 
into a rational function of c. 

For, transposing x to the right, squaring, and solving 
for X, we get 

_ t® ~ k dx _ 2(t® + Kt + k) 
’'~h + 2t’ dt^ (h + ltf ’ 

and vTx® + fix + k) - t - ^ ^ 2^ • 

It is obvious, therefore, that the new integral will 
involve only a rational function of t. 

II. If X® - f»x - ij s (x - a)(x - ^), the substitution 

l/(.-x^+px + q) = (x - o)t 

5 
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will transform a rational function of x and i/( ~ + px + q) 
into a rational function of t. 

For on squaring, replacing - x* + px q by - (x - a)(\- - 
cancelling out (x~u), and solving for x, we get 

at'^ + /> tlx _ 2(a - p}C 

^ t*-* + 1 * “ (f^ + i * 

and 1 ( “• X- + px -i- ^ I • 

It is obvious that the new integral in this case also 
will involve only a rational function of t. 

Note L The above investigation proves that any 
rational function of x and i/(ax^ -hbx -t c) can be integrated 
in terms of the elementary functions, and only one or the 
other of the two substitutions given above need be used. 
All the forms involving j/(ax^ + bx -f c) which have been 
considered before are rational functions of x and i/(ax* + 
bx + c), and therefore can be integrated by the method of 
of the present article also. But in actual practice the 
methods given earlier, if they are applicable, are far more 
expeditious. 

2. The roots of - x** + |)x -f q « 0, viz., a and i?, must 
be real; for otherwise - x^ -h px 4* q will, for all values of x, 
have the ^same sign as the coefficient of x®, i.e., will be 
negative, and so i/( - x^ + px + q) will be imaginary for all 
values of x. 

3*8. Integration of x'"(a + bx**)^. The 
evaluation of 

I x*"(a + dx, 

where m, n, and p are not necessarily integers, can 
be easily effected in three cases. The method of 
successive reduction is applicable in some of the 
other cases, as well as in these, as shown in the 
next article. 
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I. pa positive integer. 

In this case we can expand (a + bx”)^ by the 
Binomial Theorem into a finite series. Thus the 
integrand is resolved into the sum of a finite 
number of terms, each of which is easily integrable. 

II. (m + l)/n an integer. 

Let (m + l)/n = j + 1, where j is zero or an 
integer. Then tn. = jn + (n — 1), and the integral 
under consideration can be written as 

j^x“*‘ . (x”)' (a + hx^y dx. 

It is evident that by putting x” equal to t we 
can reduce this to the case where only a linear 
function of the variable is raised to a fractional 
power (§ 3’1). Therefore, if p = r/s, the proper 
substitution after this will be to put a + bt = u®. 
We can combine the two substitutions into one by 
putting directly 

a + fix” = M®, 

which gives finx”*‘ dx = su®“‘ du. The integral will 
then be equal to 

s 
bn 

du. 
which can be easily evaluated by expanding (u®—a)^ 
by the Binomial Theorem if j is positive, or by the 
method of partial fractions if j is negative. 

III. + (m + l)/n an integer, p not an integer. 

In this case put x = 1/t. Then the integral 
becomes 

i.e., - (b + at"/ dt. 
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Hence this will come under Case II if 
•— (m+np + l)/n is an integer, i.e., if p + (m + l)/n 
is an integer. 

Ex. Integrate (1 + 

Comparing with x*” (a + ?7x“)p, we find that here p + 
(m + l)/ti is an integer. Putting x = l/(, we have 

|x-»''»(l + x‘''*)*'^*dx = - j + !)-«''» dt 

= _ j dt. 

Putting 1 + 1“^’ = u®, and if*''* dt ~ 3m* du, we find 
that the integral 

= - 6 |u'» M*du = 3m-* = 3(1 + ti/»)-s/3 

= 3(1 + x-‘^*)-*'*. 

3*81. Reduction formulae for J x’” 
(a+bx“)^ dx. The integral / x”* (a + bx")^ dx can 
be connected ith any one of the following six 
integrals : 

(i) jx”*'” {a + hx")^ dx, (ii) Jx”* (a + bx“)^"‘ dx, 

(iii) jx*”*” (a + bx^y dx, (iv) |x*” (a + bx”y*^ dx, 

(v) jx*”"” (a + bx**y'*^dx, (vi) |x”^” (a + bx”)^"^ dx. 

We get thus six reduction formulae, the first 
two of which can be obtained, as shown below, by 
integrating by parts, breaking the new integral into 
two, transposing one and dividing by a constant. 
The third can be obtained from the first by writing 
m + n for m and the fourth from the second by 
writing p + 1 for p. The last two formulae can be 
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obtained at once by integrating by parts. (See 
equations (1) and (2) below.) 

(i) Integrating by parts, we have 

|x"* (a + hx>*}Pdx - . nhx»-i(a + bx”)P dx 

x»»-n+i(a + fcx")P** tn — n + 1 

nb(p +1) nb(/J + 1) 
j x”’-"(a + bx")(a + bx")Pdx 

^ (a + bx-)P*‘ _ n + 1 f 
nb(/) + 1) nb(/) + 1) • “J 

-V+'ir 
Transposing the last term to the left and dividing by 

1 + (m - n + l)/n(/? + 1), 
we get the required reduction formula : 

I (a + bx^)P dx = 

^fw-n+i ^ aim - n + 1) j' „ y. l m\o j 
- - -r. - T / r iV ^ (a + dx, b(np + m + 1) b(n|? + m + 1)^ 

(ii) Again, 

[x"*(a + bx»)P dx = *”**-* ^ ! x»»*”(a + 1>x»)p-i dx 
J m+l m+1 

' . . . (2) 
^ (a_±bx«)Px«« _ Lmj _ ^ ^ bx**Ma + bx”)P-^ dx. 

TU 4- 1 m -I- IJ 

It is easy now to break up the integral on the right into 
two, transpose one to the left and obtain another reduction 
formula for/x*“(a + bx”)P dx by division by a constant. We get 

I x”*(d + bx")P dx-= - , / 
J nf> + m + 1 

+ „ [ X’”{d + bx«)P-‘ dx. 
n/? + m + IJ ' 

(iii) The remaining reduction formulae can be easily 
obtain^ by the methods indicated above. 
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Examples 

Integrate 

1. "2. xXl -I- [Bo7n., 1935] 

3. {a + bx^)P. X4. x(l 4- 

5. x®/(l-f 2x^)3''^ 

6. 4-n and r being integers, 

7* Prove that 

((a* + dx ^ ^ f [ («* + a.. 
J 71 f- I 71 I- 1 J 

8« Apply the method of reduction formulae to find 

I (x'-^ 4- a*)dx. ‘-iHuhahad, 1942] 

9. If I ~ x)^^^dx, prove that 

(27a 4- 3) 1,1 ~ 2an l,,^! - 2x”(a ~ x)^^®. 

Evaluate J x'^\ (ax - x^) dx, [Allahabad^ 1941] 

* 10. If m be a positive integer, find a reduction formula 
for 

I x”*v'(2ax - x’) dx. 

Hence obtain the value of 
J20 

x^t'^(2ax ~ x^)dx, [Punjrtf>, 1941] 

[Hint. Notice that x’” i/(2ax - x^) -= x!^'^^^^\/(2a - x).] * 

11. If Vn == I x^i/{a^ - x'Odx, prove that 

,, x»»-Ha2 ~ n - 1 ^ ^, 
- « I 1 Urt-a* 

Evaluate 

n 4“ 2 

x^l/(a^ - x^)dx. [Delhi, 1937] 
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12. Investigate a formula of reduction applicable to 

jxKl + x®K=ax, 

when m and n are positive integers, and complete the 
integration if m = 5, n = 7. 

3*9. Substitutions. Functions involving 
V(a^ — x^), V(a^ + x"), or V{x^ — a-\ and no other 
radical, can often be most conveniently integrated 
by a trigonometerical substitution. We can put 
X = a sin 0, or a tan 6, or a sec 0 respectively in the 
above cases and we shall get rid of the square root. 
Many examples to which this method is applicable 
will be given in the next chapter. Some simple 
ones are given below. 

Since V(ax® + hx + c) can be easily reduced to 
one of the above forms, trigonometrical substitu¬ 
tions are applicable also in the case of functions 
involving V{ax‘‘+ hx + c). In cases where some 
power of X, say x”~^ is a factor of the integrand, and 
the remaining part is a function of x” alone, the 
substitution of a new variable for x** will often 
simplify the integration a great deal. The student 
should be on the lookout for such cases. 

Ex. 1. Integrate l/x*j (1 + x=). 

Putting X .= tan 0, we get 

f _ f sec® 0 do fcos 0 dO 
Jx® r (1 + \'’) ~ Jtan-' e . sec 0 "" .1 sin® 0 “ “ ® 

= - V(1 + x®)/x. 
Ex. 2. Integrate x'i v'(l + x-' + x®). 
Putting x'’ 1, we get 

f X® dx_ _ _t_dt 
J i/(l + x® + X®) “ ^ J V (1 + t + £») 

= fri/(l + x» + X®) - i sinh-i {(2x® + l)/v/3}. 
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Examples 

Integrate 
1. l/(a» - b-x®)'''-. 2. l/(a® + b®x®)''-X , 
3. l/(a»x® - b®)V.!. 4. l/x|Xa«+x«). " 

5. (\® + l)/xt/(l + x"*). l' t>. l/x®v'"(x® - 1).^ 

Evaluate f** ^ J dx. [Bombay, 1935] 
Jo t^(a® f X-) 

Examples on Chapter III 

1. Integrate l/(x + b)v/(x + a). [Madras, 1937] 

Evaluate ( \'C' [M.T., 1929] 
Jo ^ (y + cl-'c 

Integrate 

3. (2-3x)/xi'(l + x). 
4. (2x® + 3)/i (3 - 2x - X®). 

5. (x + a)/ i/'(x® + b®). 

6. l/(x-a)v''{(x - a)(b - x)}. 

7. l/(l + x)t/(l - X®). 

8. l/x’v'(l + x»). 

9. i/](a-x)/xj. 

10. l/{i/(l + x)+vx}. 

[London, 1936] 

[I. C. S., 1935] 

[Bombay, 1936] 

[Mysore, 1938] 

[Dacca, 1940] 

11. Evaluate . [Punjab, 1938] 

l?({x - t(x-/?)}' 

[Hint. One method is to proceed as in § 3'2. An 
easier method, however, is to put x — a =» t®. Then the 
integral reduces to / 2dt/ v'(t® + a - jJ).] 

dx_ 
(x +'c) • 

• 13. Evaluate [Alld., 1937] 
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14. Prove that 

15 Integrate i (1 + x + x*)/(x -f- 1). 

Show that 

' * [ /I n 31 ^ 7 * [Benares, 1938] 
Jo (1+x-0i (1-x^) 4i/2 

!?♦ Evaluate i: dx 

'"18. Connect jx”*“^ (a + bx^Y dx with j x*^*"*^ (a+bx^Y dx 

and evaluate [q ^ .^3)1/5 * [Agra, 1935] 

< 19. If In denotes x^'fl - dx, where p, q and n 
Jo 

are positive, prove that 

iqn + p + 1) I« — qn I«-i. 
^ Evaluate I« when n is a positive integer. [Punjab, *44] 

20. Prove that 

Px-‘/* (1 - dx = tV [* (1 - x*/**)'/* dx. 

[Allahabad, 19341 

CHAPTER IV 

INTEGRATION OF TRANSCENDENTAL 
FUNCTIONS 

4*1. Integration of sin"* x cos“ x. In every 
case in which m and n are positive integers, 

f sin"* X cos” X dx 
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may be evaluated by the method of successive 
reduction, or by expressing sin'"xcos”x as the sum 
of sines or cosines of multiples of x. But if m or 
n is an odd positive integer, or if m + n is an even 
negative integer, the integral can be evaluated more 
easily by a substitution, as shown below. 

I. m or n an odd positive integer. 

Let m be equal to 2r + 1, where r is zero or a 
positive integer; then we can integrate sin”* x cos“x 
by putting cos x~t, whatever n may be. Thus 

[sin”* X cos'* X dx = j sin'-” x cos” x sin x dx 

= [(1 — cos® x)*" cos” X sin x dx 

= — [(1 — t®)*' t” dt, where t = cosx, 

which is easy to evaluate by expanding (1 —t’)'’ by 
the Binomial Theorem. 

Similarly, if n is an odd positive integer, we 
can put sin x = t. 

Ex. 1. Integrate sin® x. 

j^sin’ X dx = J (1 - cos® x)® sin x dx = - J (1 — t®)® dt, 

where t = cos x, 

- I (1 - 3£® + 3t‘ - t«) dt = - t + - 5t» + It® 

= - cos X + cos^x - I cos® X +1 cos® X. 

Ex. 2. Integrate sin®/* x cos® x. 

j 8in»/« X cos® 5c dx = j sin®/® x (1 - sin* x) cos x dx 
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= 1(1 -- t'O dt, where t = sin x, 

= J (t®/® - t*’/®) dt -= TT-t**'" - Ti%t^ 

= Tf sin''/® X — -/j sin®'/® x. 

II. m + n an even negative integer. (It is 
not necessary that m and n be integers.) 

Let m + n = — 2r, where r is a positive integer; 
then we can integrate sin'" x cos” x by putting tan x 
= t. Thus 

X cos” xdx = tan"' X cos'”*” X dx 

= [ tan”' X stx’’''x dx = j tan”* x sec*'’-'’ x sec" xdx 

= [t”' (1 + t*)”"' dt, where t = tanx, 

which is easy to evaluate by expanding (1 + t*)’*' 
by the Binomial Theorem. 

Ex. 1. Integrate l/sin® x cos® x. 

f Jx _ rsec®x _ f (I + tan®x)^ sec® X 

J sin" X cos® X ~ J tan® x J tan * x 

= ^, , where t — tan x, 

= f 4- 3t +t®^ dt = - ir® + 3 log t + ft® -4 h* 

= - i cot® X + 3 log tan x + | tan® x + } tan' x. 

Ex. 2. Integrate sec®/® x cosec’/® x. 

j" sec®/’ X cosec'*/® x dx — f 4/3“ 
J J sm®/® X 

fsec® X dx 
J tan^/^x = - 3 tan”'/® X. 
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4*11. Reduction formulae for / sin^x dx 
and / cos” x dx. The reduction formula for 
/ sin”xcix has been given before (§T37)- The 
reduction formula for / cos” x dx may be obtained 
similarly, or from the one for f sin” x dx by writing 
x + ^n for X. The formulae arc 

f • « j sin”'* X cos X n — 1 r . „ , , 
sin” xdx = — + sin”'®* x ax; 

J n n J 

”■* X sin X n — 11' „ » , 
- - + - cos”"® X dx. 

n n J 1 cos” xdx = 
cos 

\ 4*12. Reduction formula for / sin*” x cos” xdx. 

I sin’” X cos” X dx = j sin’" x cos x . cos”"* xdx 

.. X cos”"* X , n — 1 f . „ „ . , 
1 sin’"** X cos”"® X sin x dx, 

a + 1 nn- IJ ’ 
sin” 

on integration by parts, 

sin 

DS ^ [sin”’x cos”"®x(l—cos*x)dx 
m + 1 m + IJ ' ' 

’"** X cos”"* X n — If . , J 
—1 1 sin’" X cos”"® X dx 
i + l m+lJ 

_n — 1 
m + 

Transposing the last term to the left and 

dividing by 1 + (n— l)/(Tn + 1), i.e., by (m + n) -r- 
(m + 1), we get the reduction formula 

J I sin’" X cos” X dx. 

1 sin’” X cos” xdx = 
sin” X cos" 

m + n 

+ 
n — 1 f . 
-Isin*”x 
m + nJ 

cos X dx. 
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If n is even, by repeatedly using this formula we shall 
reduce J sin*** x cos^ x dx to f sin^'^ x dx, which can be 
evaluated by § 4TL 

Note. By writing 

/ sin’” X cos” X dx as X x cos” x sin x dx 

and integrating by parts we can obtain the reduction 
formula / sin’” x cos” x dx 

sin’”*’ X cos”*’ X m — 1 f . _ „ « , 

m -h n m + nj 
which diminishes the power of sin x instead of that of cos x. 

By writing n + 2 for n in the first formula, and divid-- 
ing by (n + l)/(m + n + 2) we get the reduction formula 

f sin’” X cos’* X dx 

X m 
+ 

-f- Ti -j- 2 r 
n+ 1 J 

sin”* X cos”“*“^ X dx. 

Similarly we can connect 
f sin’” X cos” X dx with / sin”’** x cos” x dx 

by writing m + 2 for m in the second formula. The last 
two formulae may prove useful when m or n is negative. 

Notice that in the above, on integration by parts, we 
get an equation connecting f sin’” x cos” x dx with either 
/ sin’”*® X cos”‘® X dx or / sin”* x cos”*® x dx. These are 
also reduction formulae. 

rT/2 

413. The integral sin'" x cos'* x dx. 
Jo 

It is convenient to quote the value of this 
integral in terms of the Gamma Function. We 
shall not require the value of r(x)—read as Gamma 
X—for values of x other than a positive integer or 
half an odd positive integer. So the Gamma 
Function is sufficiently defined for us by the three 
equations 

r{p +1) = p r(p), . . (1) 
1(1) = 1, m) = V^r. . . (2) and 
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Repeated applications of (1) will enable us to express 
the value of any Gamma Function in terms of 1(0), where 0 
lies between 0 and 1; and because 1(1) and 1(4) are given 
numerically by (2), we shall be able to dctetmine the 
numerical value of every r(x) we shall come across. 

In terms of the Gamma Function the value of 
the integral is given by 

We shall verify the truth of this important result by 
applying the formula of the last article, viz., 

sin^+^ X cos^”^ X 

m + n 

"I 

1 sin”^ X cos^*^ X c/x = 

+ sin”^ X cos^^~2 X dx, which gjves 

m n J X cos^-i 
sm^ X cos^ X ax * I - I 

0 L m + n Jo r 
n - 1 

m + 
1 
njo 

sin^" X cos^*** X dx 

sin^^ X cos^* X dx, (3) 
m +nJo 

and the formula of § 4T1, which gives 

I sin^ X dx ~- sin"*** x dx* . * (4) 
Jo J 0 

We shall have to consider separately the four cases 
which arise by m and n being odd and even. 

Case I. Let m and n be even positive integers* Then, 
applying formula (3) repeatedly till the power of cos x 
becomes zero, and after that applying formula (4) repeat^- 
ly, we have 
fir/2 
1 sin"* X cos" X dx 

1 n - 3 n - 5 1 r 
V/ji 

m + n *m4-n-2*m + n- 4’”*m-f2j< 
sin*'* X dx 



A DEFINITE INTEGRAL 79 

_ (n - l)(n - 3)(n -J)... J m - 1 m - 3 I 
(m + n)(m + n - 2) ... (m + 2)' m ‘ m - 2' ■" 2 'o 

... (5) 

Tie relation (1) gives, if n is a positive even integer, 

^ n-1 n~-3 n-5 l-r/ix 
= etc.= 2-2-2 

n-1 n-3 n — 5 1 

f" 

“■2*2 

Hence, by (5), 

sin^ X cos^ X dx = 

2 ••••2 • 1 ^ 

^ r(™ . n «) 

Case IL Let n be an even positive integer and m an 
odd positive integer. Proceeding au in Case I, we find 
p/2 

Jo 
sin^* X cos^ X dx = 

_(n_- l)(n - 3)(n - 5)^.. 1_ 
(m + n)(m -i- n - 2) ••• (m + 2) 

2r^/2 ^ m - 1 m - 3 
sin X dx 

m " m - 2 * 3J0 

/ . ‘-t (m i- n\/m + n — 2\ 
2 A ' 2 / 

2 r(2if-t-^) 
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Case Ill. n odd, m even. The integral can be trans^ 
formed into the one considered in Case II by writing 
X + i-T for X. Hence the formula (6) is valid in the present 
case also. 

Case IV. n and m both odd positive integers. 

Proceeding as in Case I, we have 

-m n ^ n-1 n-3 2 
Jo m-Hnm + n~2m + 3 

Cir/‘2 

X I sin^^ X cos X dx. 

(n - l)(n - 3)(n - 5) ... 2 m - 1 m - 3 2 
’“(m + n)(m + n - 2) ... (m + 3) * m + 1 * m - 1 * *** 4 

rr/2 . 
X sin X cos X dx 

(m + n\/m + n — ZN - 
'z A 2 / - ^ 

It is easy to see that the formula (6) is true also when m or 
n is zero. Hence in every case 

fir/2 

sin^'^ X COS' X dx 
, + n + 2^ 

2 r 

Alternative Formula. The value of the integral under 
consideration can also be written down from the formula 

v/a 

i: 
an”* X cos” x dx 

(m - l)(m - 3)(m - 5)... x (n - IXn - 3)... 
(m 4- a)(m + n - 2Koa + n - 4) ... 

X k> 
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where the last factor in a product like m(m ~ 2) is 1 if 
the other factors are odd, but is 2 if the other factors are 
even; and k is unity except if m and n are both even, 
when k = If m or n is zero, then also this formula 
holds, provided we omit all negative factors in the nume-- 
rator, and regard 0 as an even number in determining the 
value of k. 

4*14* Trigonometrical transformation* 
It is possible to break up products of powers of 
sines and cosines into a sum by trigonometry, and 
thus integrate such powers easily. 

Ex* 1. Integrate sin^ x cos'* x. 

Let cos X + i sin X ^ :r; then cos x - i sin’x = 

Tlierefore 2 cosx = + r'S 2i sinx = z - 

Also by De Moivre’s Theorem, 2 cos px « 

2i sin px^z^ - z"^* 

Therefore 2* 2^ sin® x cos'* x = (z - ^0^ iz + 

= fe® 4- r®) + 2{z^ + r*) - fe® + r®) - 4 
« 2 cos 6x 4- 2® cos 4x - 2 cos 2x - 4. 

Hence 

sin® X cos^ X dx ~ 2*® (i sin 6x 4- J sin4x ~ i sin 2x - 2x). 

Ex. 2. Integrate sin mx cos nx. 

Since sin mx cos nx = ^ {sin (m 4- n)x + sin (m ~ n)x}, we 
have 

I sin mx cos nx dx 
i ^1? cos (m - n)x 

2(m 4“ n) 2(m - n) 

4^15^ Substitutioft* Various integrals can 
be reduced to the forms considered in this chapter 
by a suitable substitution. Some substitutions of 
this naturejiave already been given (§ 3*9). 

6 
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Ex* Evaluate [ x® (a^ ~ x^)^^ ® d\. 
Jo 

Put 

Then 

Hence 

X = a sin 0, dx - a cos 0 de, 

0 = 0 when x = 0, and 0 = when x = a. 

J x’^ (a* — dx = a® J sin* 0 cos”*^ 0 (i0 

ra)r(i) 
21(4) 

= a’ 
2*3*2. 1 

Examples 

Integrate 
1. sin^ X. 

3. cos* X sin^ x* 

' 5* cosec*''® X cos® x* ^ 

7. sec X tan® x. 

9* sin* X. 

*11. sin* X cos® X. 

Evaluate 
<» 

' ,13. sin® 0 cos* 0 <l0. 

[Patna, 1932] 
fTT/a 

“ 15. sin® X dx. 

[Andhra, 1943] 

* 17. j sin'^ X cos* x dx. 

[Benares, 1938] 

2* cos^ X. 

4. cos®/^ X sin® x. 

* 6. 1/sin 0 cos® 0. 
" 8. l/i/{cos®x8in® x). 

10. sin® X. [Madras, 1934] 

12. sin^xco3*x. 

IrZ-ir 
14. sin-* 0 d0. 

[Lucknow, 1935] 

16. I cos^ X dx. 

[Travan., 1941] 
fir/S 

18. sin® X cos® x dx. 

[DeJfii, 1936] 

19. Show that 

20. Evaluate 

' 21. Show that 

J X* (1 - X*)®''* dx = 7s/32. 

x^l/(a* - X*) dx. 

f« x^ , 3^;r 

Jo 16~* 

[Aligarfi, 1938] 

[Punjab, 1940] 
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22. Evaluate 

23. Prove that 

24. Evaluate 

TAN« X AND COT» X 83 

(2a - dx. [Nagf?ur, 1928] 

£ x3/a(i _ x)v* dx =. 331/128. 

[Lucknow, 1930] 
fir/8 

C03® 4x dx. 

* 25. If Ift denotes ~ ^^d n > 0, prove that 

‘ 26. Evaluate 

Evaluate 

/28. Evaluate 

"^9. Evaluate 

1 25?® T 

r x^dx 

J(4 + x«y>/^- 
fir/2 sin* d do 

[Agra, 1945] 

[London, 1933] 

cos mx cos nx dx. 

cos X cos 2x cos 3x dx. 

'30. If m and n are integers, show that 

® 1: sin mx sin nxdx « 0 if m 9^= n, and 

/ = in if m ■» n, ^ 

"31. If m and n are integers, prove that ^ 

/ fir 2n 
^ cos mx sin nx dx =» ;-«- or 0 

Jo n* — m* 

accotding as n - m is odd or even. [Mysore, 1937] 

4*2. Integration of tan” x and cot” x. 
tan” X and cot”x are also integrated by successive 
reduction. Thus 

j tan” X dx = j tan”*® x tan® x dx 
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= jtan”"® X (sec'-* x — l)dx 

=jtan”’* X sec® x dx — | tan”*® x dx. 

Since / tan"*® x sec® xdx = (tan"** x)/(n — 1), as 
is easy to see by putting tan x = t, we get the re- 
duction formula 

^ |tan" xdx= ~ j ^ 

Similary, or by putting x+^jt forx in the above, 

jcot” xdx = — ~ Jcot”*® X dx. 

4'21. Integration of sec” x and cosec” x. 
We can derive a reduction formula as follows: 

j sec” X dx = I sec”"* x. sec® x dx 

= sec”*® X tan x 

— (n — 2) j sec”"‘*x. sec x tan x. tan x dx 

ss sec”"* X tan x — (n — 2)| sec”"* x (sec* x --1) dx 

= sec”"® X tan x + (n — 2)| sec”"* x dx 

— (n — 2)|sec” x dx. 

Transposing the last term to the left and dividing 
by n — 1 we get 

f « j sec”"* X tan X , rv — 2 f „ . , 
J sec”xdx — sec”-®xdx, 

which is the required reduction formula. 
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Similarly, or by putting x+ I?: for x in the above, 
we get 

f « j cosec”"® X cot X , n~-2 
cosec” X ax = — — . + 

J n— 1 T 
j jcosec”**xdx. 

If n is a positive integer, f sec” x dx and / cosec” x dx 
can be completely evaluated by repeatedly using the above 
formulae. 

Examples 

Integrate 

* 1. tan®x. [Calcutta, 1943] 2. tan^x. [I.C.S., 1931] 

3. cot^ X. * 4. cot^ X. [Luclcnoiy, 1934] 

Evaluate 

^5. [ ^ tan^OdO. [Mysore, *43] 6. f [Madras, *37] 
Jo J8in''w 

'7. tNagf>Mr, 75] *8. j'"‘8ec®xdx. [Cal.,’40] 

' 9. f(l + x“)='/» dx. [Andh., ’36]. 10. f“ (a» + x»)»/» dx. 

4*3. Integration of l/(a+b cos x). 

k dx dx 
ix+sin® ix) + b (cos® ^x—sin® ^x) 

dx 

+ bcosx la(cos’' 

+ b) cos® ix + (a — 6) sin® ^x 

_ ff _ sec® l^x dx_ 
~ J^+ b) + (a — b) tan® ^x 

2 f dt 
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Case I. (a + b)l{a — b) positive. In this case 

f ^ = 2 Via-b) , j V(a- b) I 
Ja + bcosx a--b’V{a + b) lv'(a + b) j 

- _ h^) 1 (a + b) 1 

Case II. (a + b)/(a — b) negative. In this case 
the integral 

_2 V(b — a) . t — V{(b + a)l(b — a)} 
~~a — b' 2V{b + a) t + ^{(b + a)/{b — a)} 

__1_ , VCb® —a®)tan aX + b + a 
~ V(b® — a®) ^(b® — a®) tan ^x — (b + a) * 

The value of the integral of l/(a + b sinx + c cos x) can 
be easily deduced from the above, for if we put b = ^ sin 9, 
and c - jS cos 9, then a + b sin x + c cos x assumes the form 

a + /? cos (x - 9), 

where and 9 are constants. 

Putting now x - 9 equal to, say, f, the integral assumes 
the form already considered. 

Ex. Evaluate 

f _ = ( 
J4 + 5cosx J 

dx_ 
jo 4 + 5 cos X ' 

_ dx _ 
(4 + 5) cos® ix + (4 - 5) sin® ix 

I i sec® ^x dx 
tan® ix 

3 

dt 
9~t»’ 

tan ix + 3 

where t «• tan Jx* 

SI c - 3 11 tan tx + J 
-Hog , 

Therefone 
‘"Z®_dx _ 
0 4 + 5 cos X 
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4‘31. Integration of l/(a + b sin x). The 
value of 

f dx 
Ja + b sin x 

may be easily deduced from that of / dxl{a+b cos x) 
by writing x — \it for x in the latter. 

We may also obtain it independently. Thus 
f dx _ f dx 
Ja + b sin X ~ JaCcos* + sin* ix) + Zb sin ix cos ix 

_ r sec® ix dx 
~ Ja + 2b tan ix + a tan* ix 

= ^ I , \ 1 » where t = tan ix, ajt® + 2(b/a) t + 1 ’ 

_2f dt 
“aJ(t +b/a)® + l-b*/a» 

there being two cases, according as h < a or > a. 

4*32. Integration of any rational function 
of sin X and cos x. If t = tan ix, then 

2 sin lx cos ?«x 2 tan ix 2t 2 sin |x cos }jX 2 tan ^ 
sinx = 

" cos® ix + ■ sin’ 1 + tan® ix 

_ cos® ix — sin® 2^ _ 1 — tan* 
cosx = 

' cos® ix + sin* 2^ 1 + tan® ix 

dx 
^ dt^ t) = 

2 
1 +1 i • 

It is evident, therefore, that if the given integ¬ 
rand be a rational function of sin x and cos x, the 
new integrand, after substituting tan ix = t will be 
a rational function of t, and so can be evaluated by 
breaking it up into partial fractions. 
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This method is not very convenient in practice, 
because the function of t thus obtained is a fraction whose 
denominator is generally of a high degree in t. Very 
often it is possible to devise some other method. Thus, 
by dividing by a suitable power of sin x or cos x it may 
be possible to convert the given integrand into the 
product of sec® x and a rational function of tan x, or of 
cosec® X and a rational function of cot x. It is easy after 
this to evaluate the integral by putting tan x or cot x 
equal to a new variable. 

Or, it may be possible to put sin x or cos x equal to 
a new variable and simplify the integral. Also two 
terms may often be combined into one by changing 
the constants. Thus a sin x + b cos x may often be pro¬ 
fitably combined into one term r cos (x - a) by writing 
r sin a for a and r cos a for b. On the other hand, in 
some cases the integral may be broken up into two or 
more parts each of which is easily integrable. 

Ex. Integrate l/(a sin® 0 + b cos® 0)®. 

Let b/a == c. Then 
de 

{a sin® 0 + b cos® 0)® 
_ f_sec^ 0 d0 
~ J(b + a tan® 0)® 

f(l 4* t®) dt , ^ ^ _ 1 fb + at®+ a - b . 
“ J{b + atV^ * ‘ = a r (b 

1 f ^ a_- b f dt 
a»Jc + t*' a» J(c + t“)« 
(1 a - b) f dt (fl - b)t L I TT 
( a® ^ 2a®c I Jc + t®^ 2a®c (c + c®)’ ^ ' 

= etc. 

Integrate 

^ 1. 1/(5 + 4 cos x). 

2. 1/(5 + 4 sin x). 

Examples 

V/9 

0 i + 2 cos 0 

[Nagpur, 1939] 

[Calcutta, 1938] 

y-^log(2+ ^3). 

[Travancore. 1940] 

3. Show that 



EXAMPLES 89 

4. Prove that r. -- , „ = ,1 • 
I„ 5 + 3 cos d 4 

r Jo C03 a + COS 6 

A r« 
5.\^Prove that j ^ 

[Annamalaiy 19361 

« cosec a log sec a. 

[Andhra, 19**61 

N " 
Prove that I'r- 

dx 
la cos X -f 1 - a'^ - 1 ’ 

according as a < or > 1. 

Evaluate 

fTT/a 

•^0 

dx 
4 + 5 sin X ‘ 

[Pun/ab, 1945] 

8. +‘^cos^1c ■ ’ 

Integrate ^ 

’ l/(a® - b® cos® x), a > b, 

wl 1. cos xf(a + b cos xL. V - v ' 

^li. sin x/ i/(l + sin x), 

' 13. 1/(2 sin X + cos x)^. 

“1l4. l/(a» cos® X + b® sin® x). 

15t ll(a sin X + b cos x). 
Vy 
16. (2 sin X + 3 cos x)/(3 sin x -f- 4 cos x). 

[Benares, 1940} 

[Punjab, 1937] 

[Mysore, 19371 

[Patna, 1941] 

17. Show that [ — 
3 + 2 sm x + cos X 4 ^ 

Integrate 

18. l/(a 4- b tan [Lucknow, 1939J 

19. l/(8in X + sin 2x). [Agra, 19411 

20. l/sin X (3 + 2 cos x). 

21. (1 + sin x)/sin x (1 + cos x). [Allahabad, 1940] 
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' 22. sin x/sin (x ~ a). [Hint* Put x ~ a = t,] 

23. Evaluate [ 77“ "y 
J v(a + b tan* x) 

24. Integrate sin 2x/(a + h cos x)®. 

25. Evaluate J'. [Apu. 1943) 

4*4. Integration of x” sin mx or x” cos mx. 
Integrals of the form 

|x“ sin mx dx or jx” cos mx dx 

can be evaluated by the method of successive 
reduction. The reduction formula is easily found 
by integrating by parts twice. 

T'L f .. . 1 COS mx n f i Thus |x” sm mx ax ~ - - + - .x^ ^ cos mx dx 
J m mj 

x" cos mx n ( sin mx n - 1 f . , } 
= - - i - x^*8inmxaxf; 

m m c m m J 5 

f , 1 x^ cos mx nx^*^ sin mx 
i.e., |x^ sin mx ax= *- - + — * — 

J m m* 

- ^ [x”“® sin mx dx, 
Tn“ J 

which is the required reduction formula. 

In the end we shall have to evaluate either 
/ X sin mx dx or / sin mx dx. The latter is immediately in- 
tegrable and the former can be evaluated by integrating by 
parts once. The case of /x** cos mx dx is similar. 

4"41. Integration of x“e®*sinbx or 
x” e®* cos bx. Integrals of the form 

jx” e®* sinbxdx and jx” e®* cos bx dx 

can be easily evaluated by repeatedly integratir^ by 
parts. 
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Ex. Integrate e”* sin 4x. 

Since Je®* sin 4x dx ~ (3’* + 4®)**^® e®* sin (4x - tan** |), 
we get, if a = tan‘‘ 

j X* e®* sin 4x dx = *- ^ ^ 11 x e®* sin (4x - a) dx 

_ X® e®* sin (4x - a) ^ j xjc®* sin (4x - 2a) 

“ 5 1 ' 5 

- i |e®* sin (4x - 2a) dx 

= rir |25 a® sin (4x - a) - 10 x sin (4x - 2a) 

+ 2 sin (4x - 3a)}. 

4'42. Integration of e"* sin“bx or cos”bx. 
The integrals 

sin” bx dx and cos” bx dx 

can be evaluated by transforming sin” bx or cos” bx 
into a sum of sines or cosines of multiples of 
X (§4T4) or by successive reduction. The reduc¬ 
tion formula can be obtained by integrating by 
parts twice. 

Thus 

fe®* sin* bx dx = ^ [sin”“‘ bx cos bx e®* dx 
J a a J 

sin* bx e®* nb r 3in”~^ bx cos bx c®® _ 
* a ~ a L a ~ 

^ |{(n - 1) sin***i?xco3® bx - sin *bx} e®® dxj' 

Now the integral on the right can be written as 

j{(n - 1) sin""® bx (1 - sin* bx) - sin" bx} e“* dx, 

i.e., (n - l)|sin”"® bx e®* sin" bx e®* dx. 
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Transposing the second of these two integrals, multi¬ 
plied by its proper coefficient, to the left and dividing by 
1 + we get 

qux dx ^ a sin bx - nb cos bx 
Sin bx 

n(n 1) b^ Je®* sin^"* bx dx, 

which IS the required reduction formula. 

The case of bx dx is similar. 

4*43. Reduction formula for integrals of the type 

cos^K sin nx dx. 

Integrating by parts, we have 

cos nx 

, cos^*^ X cos nx sin x dx. 
n J 

Replacing cos nx sin x by sin nx cos x - sin (n - l)x, 
and thus breaking up the integral on the right into two, 
transposing one of them to the left and dividing by a 
constant, we get the reduction formula 

f « . j cos**^ X cos nx 
cos^x smnxax= - - - - 

J m + n 

+ ^ fcos^"‘ X sin (n - l)x dx. 
m + n j 

Integrals involving cos^ x cos nx, sin*” x cos nx and 
sin"* X sin nx can be treated in the same way. 

Icos^" X sin nx dx 
cos^ X 

n 

m 

Examples 

Integrate 

♦ 1. X® sin 2x. 2. x sin® x. 

3. Prove that [ d sin® 6 cos 0 dO = - [Andhra, 1937] 



EXAMPLES 93 

■* 4. Evaluate |“ i/(as - x*)! cos-» Wa) | ’ cix. ■ 

[Nagpur, 1928] 
* fir/J , 

5. If w„ - sm X dx, 

and n > 1, prove that 
lift n(n — 1) liflmj TlC’^/2)*^**h 

Tt"/3 

Hence evaluate 1 sin x dx, {Madiab, 1936] 

Integrate ^ 
6* cos^ X. [Mysore, *37] 7. sin'’ x, [Alld,, ’33] 

* r 8* e^(x cos X + sin x). (Bombay, 1940] 

♦ 9. Evaluate j cos x dx, [Dacca, 1940] 

^Oy Integrating by parts twice, or otherwise, obtain a 
requption formula for 

hn ^ I sin^ X dx, 

where m > 2, in the form 
• (1 + m2) m(m - 1) ; 

and hence evaluate h* [Punjab, 1936] 

• 11, If I(m, = I co3^* X. cos nx dx, prove that 

I(m, n) « {m(m ~ l)/(m2 - n*)} I(m - 2, n). [Luck., 32] 

^ * 12. Prove that 
nr/a I 
I cos^" X sin nx dx ~ — - 
Jo m + n 

+ —,— 1 cos"*"* X sin (n - l)x dx, [Punjaf), *40] 
m + n Jo 

13. Prove that 
[r/a 1 

1 co8**’®x sin nx dx = -—r (n > 1 and integral). [AiW., ’38] 

♦ 14* Prove that, if n is a positive integer, 

. , cos’* X cos nx «• [Allahabad, 19441 
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4*5. Other transcendental functions. There 
are no general propositions which will enable us to 
integrate every function of sin x, cos x, etc., or of 
e*, log X, etc. The methods of Chapter I should 
be tried. Very often some suitable substitution will 
reduce a given function to some easily integrable 
form. In particular, an integral of a rational 
function of e* is transformed into an integral of a 
rational function of t by the substitution e* = t. 

In some cases a function of x may be expanded 
in powers x and the result integrated term by 
term. The student must, however, remember that 
this process is not always justifiable; but the consi¬ 
deration of the conditions under which this can be 
done is beyond the scope of the present volume. 

SCt-not/A** M ^1*00 

Ex. 1. Evaluate c** dx, n being a positive integer. 

Integrating by parts, ^ 

I er* X** dx = ^ jj + n j dx. 

Now limjt-^oo = lim- = lim- 

= etc. = limv 
n(n ~ 1)... 1 

e* 

nx 
..AT 

n*l 

0. 

Hence 

Therefore X** dx ’ 

]*-0. 
Jo 

n I c"* x”*^ dx. 

Applying this reduction formula repeatedly, and re¬ 

membering that 

f e*® dx » n! 
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= etc. 

Ex. 2. Integrate 1/(1 + c® - 2e®*). 

Putting c* = t, we liave 

f dx _ r 
Jl + e* - 2e»* - Jt (1 + f - 2» 

Ex. 3. Find a reduction formula for /x" (log x)'“ dx. 

Integrating by parts, 

|x'*(logx)”*dx = ^ ^ I x” (log x)"**‘dx, 

which is the required reduction formula. 

Ex. 4. Evaluate f ^ log J ^ dx. 
Jo ^ 1 — X 

The integrand 

= (1/x). 2(x + x®/3 + x“/5 + ...) 

= 2 (1 + x*/3 + x*l5 + ...). 

Hence the integral 

- r X* x» ni 
-2Lx + 3-, + 5i+...J^ 

... j- = ^ I ^ + 3> 5» 

[Andhra, 1937J 
glH C08”^ * 

Examples 

Integrate 
1. l/(e*-l)(e*+'3). 

•2, 1/(1 + e*)(l + e-®). 

» 3. l/(e®-l)». [Agra, 1944] 4. \5. c« */(l + x*)». 
e*j(l + x)/(2 + x)*. 

'7. e»'(x» + 1)/(1 + x)». 
8. e* (x* + 3x + 3)((x + 2)». 

,9. If In denotes / show that 
(n + 1)! In - L + e‘'® (1! + 2U» +... + n! t««). 

iLucknow, 1931] 

[Punjab, 1930] 

[Allahabad, 1939] 

[Bombay, 1937] 
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Integrate 

10. log (1 + x'*). [I.C.S., 1935] 11. -log X 3in”‘ x. 

12. log {x + - a*)}. 

13. {log (x + l)}/x*. [Annamalai, 1936] 

14. e* (x log X + l)/x. [Lucknow, 1945] 

15. sec X log (sec x + tan x). [Allahabad, 1934] 

Evaluate 

16. 1 X Jx. 
Jo 

[Pat., ’40] 17. 

18. 
1*“ xdx 
Jo 1 

[Agra, ’43] 19. 

20. Evaluate | X® log (1 - X®) dx. 

and deduce that 

1! 5 2S 3!"9 + ••• “ f ^ 2. [Agra, 1938] 

Integrate by expanding the integrand 

21. e"®*. 22. sin mx/x. 

23. sin (1/x). •■''24. t/(cos x). 

Integrate 

25. 8in“‘v^{x/(a + x)} [Patna, 1941] 

26. T/(e®* + ae*). [Bombay, 1940] 

J27. 1/cosh® X. (Put cosh x =» sec y.) [I. C. S., 1935] 

28. cos X cosh X. 

29. (cosh X + sinh x sin x)/(l + cos x). [Lucknow, 1934] 

30. Find a reduction formula for 

J tanh" X dx. tanh" X dx. 
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31. Prove that 

[ dx 2 . j i/(b-a) 111 

ja + b cosh X ~ - a®) ' l' (b + a) 5 ’ 

K (a® - b®) I vt I b) f ’ 
according as b > a or < a, 

[Hint. Remember that cosh^ ® ~ sinh* 0 = 1, cosh® $ + 
sinh® 0 = cosh 20, so the method of § 4*3 can be followed.] 

33e sin log x/x^. 

35a s4n~^ x/(l - X®)’*'*, 

r37., r (s4:v - 1). V 

Integrate 

32. (tan“*x)/(l + x)®. 33a sin log x/x^ 

34. cos""^ x/x"^. \ ‘35a s4n~^ x/(l - X®)’*'*, 

36. (sin*^ x)®. r (st^t v - 1). ^ ^ f. tan*‘i/x. cos 2xlog (1 + tan x). 

sec X cosec x/log tan % \ 

l/l/ { sin® X sin (x 4- a)} I Allahabad, 1944] 

VlsinCx + rj}- [Bombay, 1^6] 

43. l/co80 1 '(a®cos® 0 + b®sin®0 + c®). [Allahabad, 192||y 

j A 'T' 1 r®l4*2 cos X 1 r\ .1 •T’ . -< r\-n t 

cos 2xlog (1 4- tan x)\ 

\ 
[Allahabad, 1944] 

[Bombixy, 1936] 

Evaluate 

45. Prove that [ 
Jn 

(2 4- cos x)® 

X® sin"^ X dx 
(1 - x®)»^® " 

dx. [Math* Tnl?o>, 1931] 

Examples on chapter IV 

Integrate 

1. sin® X cos* X. 2. sin® x cos® x. 

»3. sin®'^® X cos® x. ’ "^4. l/sin* x cos®x, [Nag., 1942] 

Evaluate 

5. I *sin® X cos® x dx. 6. f cos^ 36 sin® 6^ #. 
JO .10 

7. jVci - x»)»'» dx. 8."' £ x®'* i/(l - x) dx. 

7 
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' Q f" x*dx 
Jo(a» + xa)«* 

10 r_^ — 
Jo (a» + 

»»1L j"x3(2ax-x*)*'»dx. 

' 12. If 

[Lucknow, 1944] 

[Aligarh, 1935] 

tan^xdx. 

show that ^(n) + ^(n - 2) = l/(n - 1), 

and deduce the value of ^(5). 

13. Show that 1. 

Evaluate 
jix_ 
2 cos x)® 

[Lucknow^ 1945] 

[Punjab, 1937] 15. Jx* tan X dx. [Punjab, 1937] 

[Hint. Expand tanxj , 

>«■ ko.-^taUZl,y- 19441 

17. Show that the fraction - ^ ^ 
a + D sin X + c cos x 

can be thrown in the form 

__A_^ B (b cos X -c sinjc) ^ 
a + b sin X + c cos x"*” a+bsinx + c cos x ^ ' 

Hence, or otherwise evaluate 

+ b' sin x + c' cos x 
J a H- b sin x + c cos x 

* * 18* Evaluate [London, *33] 

19. Evaluate f -J-"" dx. 
J a sin X + b cos X 
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Find the value of T 
Jo sm*0 + co8* 

21. Use the substitution 

tan io — i/{(l + e)/(l - e)} tan iu 

to evaluate l(T^"e"cV8 e)» * to evaluate Jcr-Tecose)^ * [Andhra, 19371 

|[ll^ 22. If Un = 6 8in“ e dd and n > 1, prove that 

U„={(n-l)/n}l/„.a + l/n». 

Deduce that Ug = 44S. [Madrag, 1934J 

' ' 23. If In “ X." sin (2p + l)x dx, 

prove that 
n(n^lj. , . n 
(ip+D*(2p+dA i; • 

n and p being positive integers. [Madrag, 1942] 

Evaluate 
[v/q 

sin 3x dx. [Lucknow, 1944] 

[Write numerator as x cos x • x sec x and integrate by 
parts, taking x sec x as first function*] 

f^26. J cos Px cos yx dx, where a > 0. [M. T*s ^7] 

n. Prove that [ dx ^ 7—^ 1 • 
Jo 1 - X* sln^ a 4 CO8-* ia 

•28. Evaluate f e* f dx. [Aligaih, 194 i] 
J 1+cosx 

*28* Evaluate 
+ sin X 
+ COSX 

dx* [A/fgai fi, 194 

» 29* Find the reduction formula for Imn where 
z' iV/o 

Imn == J (cos x)”‘ sin nx dx. 
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1 ( 2® 2® 2*'*) 
Deduce that Imm = 2m*i 1 ^ '*"2 3 'm 1 * 

[Bombay, 1937] 

' 'ort rr c r^®8in(2n - l)t , ,, [^'"/sinnxy, 

sinx- '"““Jo Vsinxj 

(n an integer), show that 
S„+i - S„ - 0, V„+i - V„ = S„*,. [Allahabad, 1934] 

31. If m and n are positive integers and 

f(m, n) = f x**"® (log x)*” dx, 
Jo 

prove that /(m, n) = - (m/n) /(m - 1, n). 
Deduce that /(m, n) -= ( - 1)^ m’ [Benares, 1939] 

32. Integrate 1/x I(x) l2(x) P(x)... Wx), 

where [♦'(x) means log log log ... x, the log being repeated r 
times. 

• 334 Show that [ dx ^ - f - dx = - n^jll^ 
Jo 1+x Jo X 

34# If n is an integer greater than 1, prove that 

CHAPTER V 

DEFINITE INTEGRALS 

5*1. Definitions. As already defined, 

£/wax 

means F(l>) — F(a), where F(x) = / f(x) dx, i.e., where 
dF{x)ldx = f{x). 
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rb 
f{x) dx is called the definite integral of f(x) 

-'a 

from a to b or between the limits a and b. 

a and b are called its loiver and upper limits. 
The interval (a, b) is called the range of integration. 

To distinguish it from a definite integral, the function 
F(x), i.e., S /(*) dx, is sometimes called the indefinite integral 
of /(x). 

It should be noticed that an indefinite integral can be 
written, if necessary, as a definite integral. For 

/(x) dx 

is equal to F(x) - F(a), and, therefore, is identical with the 
indefinite integral of/(x), viz., F(x) + C, if C = - F(a). 

5*2. General properties of the definite 
integral. Let 

|f(x) dx = F(x), so that [ f(x) dx = F(b) — F(a). 

Then 

(i) [ f(x) dx = f f(t) dt. 
Ja Ja 

For both sides are equal to F(b) — F(a). 

(ii) j* f(x) dx = — f(x) dx. 

For F(b)-F(a) = -lF(a)-F(b)}. 

(iii) f f(x) dx = f f(x) dx + [ f(x) dx. 
J a J a J c 

For the right hand side is equal to ' 
F(c)-F(ti)+F(b)-F(c), 

which is equal to F(b) — F(a). 
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We can generalise this theorem into the 
following: 

! f(x) dx = I VW dx + l’^ f(x) dx + f ” f(x) dx 
•a ^ a Jc2 

+ ...+ ['^ f(x)dx + f /(x)dx. 
* *' Cf 

For the right-hand side is equal to F(ci)—F(a) 
+ F(c.) - F(c,) + F{c3) - F(c*) + ... + F(cr) - F(c.^,) 
+ F{b) — F(cr), which is equal to F(h)—F(a). 

(iv) f f(x) dx = f f(a — x) dx. 
Jo Jo 

For, putting a — x = t, the right-hand side becomes 
equal to 

- r m dz = r m dt = f/w dx. 
ja Jo *^0 

(v) f f(x) dx = 0 or 2 r f(x) dx, 
J-a Jo 

according as /(x) is an odd or an even function of x. 

For r f(x) dx = f /(x) dx + f f(x) dx. (1) 
J-a J-a •'0 

Now [ f(x) dx = — I /(—t) dt, where t = — x, 

=£/(-£) dt, by (ii), = £f( - x) dx, by (i), 

= — dx if f(x) is an odd function of x, 

^ f ^ 
or + /(x)dx if /(x) is an even function of x, 

Jo 

Substituting in (1) we get the result at once. 
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(if 

(vi) j f(x) dx = 2 I f(x) dx if /(2a — x) = f(x), 

and =0 if /(2a — x) = — /(x). 

For f f(x) dx = f /(x) dx + [ /(x) dx 
Jo Jo Ja 

« I /(x) dx - 1 /{2a - y) dy, where x- 2a - y, 
Jo Ja 

=*|**/(x) dx + p/(2a - x) dx = 2 dx orO, 

according as /(2a — x) is equal to /(x) or to - /(x)* 
/*7r ® 

In particular, f(sin x) dx = ^ \ fCsin x) dx. 

Ctt Ttr/s 
Also] ^(cos x) dx = 0 or 2 4> (cos x) dx, 

Jo 'o 

according as is an odd or an even function of z. 

5*3. Evaluation of definite integrals. In 
many cases it is .possible to evaluate a definite 
integral by special methods, although it may not 
be easy or even possible to find the corresponding 
indefinite integral. 

■Ex. 1. Evaluate T dx. 
Jo 1 + C08’X 

Let 

Then 

I 

I 

i: 

i: 

X sm X j -- ^3^, 
1 + COS* X 

(n - x) sir^x 
1 + COS* X 

dx, by (iv), § 5*2. 

Adding the two values of I, we get 

21- ['(?- 
Jo 1 + COS* X 

sin x^ 
1 + cos® X 
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Hence I = 

Ex. 2. Evaluate | sin^ x dx. 

C'lr Ctt/Q 

I sin^ X dx 2 I sin'* x dx by (vi), § 1*2, 
Jo Jo 

^ 21(3) “ 2.1 
fr/a 

Ex* 3. Evaluate J log sin x dx. 

Let ^ ~ I ^ 

Cir/a 
Then I I log cos x dx, by (iv), § 5*2. 

Jo 

Adding the two values of I, we get 

21 - I * (log sin X + log cos x) dx 

» {log (2 sin X cos x) - log 1] dx 

= I log sin 2x dx — in log 2 

= i J log sin u ^ - in log 2, where x = iu. 

Now log sin u du log sin u du, by (vi), § 5*2, = 

Substituting this in the value of 21 obtained above, we get 

2I-L--in log 2. 

Hence 

V a** { 

1"^ * log sin X dx “ -"Iw log. 2. » - ^ ^' 

Examples 

Evaluate 

sin^ X dx. 2. cos* X dx. [Modfos, 1936] 

* 3. (1 + 2 cos e)(l + cos O)* de. iNagpur, 1929] 
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4. 

Show that 

'6, 

P X dx 
Joa® co3*x + b® sin^x £ 

0 sin’ 0 do. 

1 ^ (sin x) dx 
0 V (sinx) + i/ (cos x) 

sin® X j 1 

= Itt, [Allahabad. 1943] 
’T*Si se,crti»NW^ 

Sin X + cosx^^ “ V2 ^ i 

X tan X dx _ 
= 7i{hn -1), 

0 sec X + tan x ^ ' 

^ r- J 0 SI 

«• r J 0 

9. Show that log tan x dx = 0 

' 10. Apply the substitution x = -t — y to the integral 

X sin® X cos® X dx, 

and hence obtain its value, [Math. Tripos, 1927] 

11. Find the value of [ ^dx. [Aligarh, 1930] 

jfi^^Show that log (1 + tan o) do •= log 2. [Agra, ’41]^' 

^ fir 
*13. Show that log (1 + cos x)dx^7i log h 

Evaluate log s [Alld., 1941] 

[Hint. Put X » tan 0.] 

15. Show that | dx « \n log^ 2. [Delhi, 1944] 
“ft A T X 

5*4> The inte^al as the limit of a sum. 
We have so far looked upon integration as the 
operation which is the inverse of differentiation, 
and we defined the integral of a function f(x) as the 
function which when differentiated will give us f(x). 
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But it is also possible to regard the definite 
integral, and hence also the indefinite integral (see 
§ 5T), as the limit of the sum of a finite series of 
numbers, when the number of terms of the series 
tends to infinity whilst each term of the series 
tends to zero. Thus we can define 

ffixjdx 
•J a 

by the equation 

[ f(x) dx = lim^_>ao h [f(a) + f(a + h) + f(a + 2h) 

^-.••4-f{a + (n — l)h } 

where b — a = nh, 

and establish the equivalence of the two definitions 
in what is known as the Fundamental Theorem of 
the Integral Calculus, which asserts that the opera¬ 
tions of differentiation and of integration (as now 
defined) are inverse operations.*^' The truth of this 
theorem is obvious from § 17. 

The problem of integration in various problems of 
geometry and other branches of knowledge generally 
presents itself in the form of a summation. (See for ex¬ 
ample § rs, in which the determination of areas was consi¬ 
dered.) Historically also this method of regarding integ¬ 
ration is of prior origin. 

For the purposes of modern rigorous mathematics too 
the view-point which regards the integral as the limit of a 
certain sum is of the greatest importance. We say that a 
function is integrable if this limit exists, even though we 
may not be able to express it in terms of the known func¬ 
tions. The object of modern theories of integration is so 
to modify the above definition as to include more and more 
complicated functions in the class of integrable functions. 

^It is supposed that the function which is integrated is 
continuous. 
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The new definition of the Integral provides an answer 
to the question raised in § V6, but it will be more con¬ 
venient to investigate this point later. See § 6*11 (iii). 

5*41 Integration from definition as the 
limit of a sum. In some elementary cases it is 
possible to find the value of an integral direct from 
the sum-definition. The process is naturally tedious, 
but is instructive. Before the invention of the 
calculus, a similar procedure had to be applied in 
every case when an area or a volume was wanted. 

Ex. Evaluate f x’ dx directly from the definition of 
Ja 

the integral as the limit of a sum. 

I* x’ dx =• lira«_+* fila* + (a -h h)’ + (a + 2K)® + ... 

-t- {a + (n - where b - a = nh, 

»= lim„_*,«, h[na® + {1 -i- 2 -i- 3 + ... -t- (n - l)}2ah 
-l-U»-t-2* + ... + {n- IHM] 

= Um„_^® fi[na® + in(n - l)2afi + iin - l)(2n - l)nfv®] 

= limn->« (nil. a® + nh. (n - l)/i. a 
+ :V . (n - l)fv. (n - i)/i. nh] 

= {b - a)a^ + (b - a)*a + i(b - a)” 

= k(b - a){3a® 3(f> - a)a + b® - 2ab + a®} 

= Hb - a)(a® + ab + b*) = ib® - 

5*42. Summation of series. The. definition 
of the integral as the limit of a sum enables us to 
express the limits of sums of series of a certain 
type as definite integrals and thus to evaluate them. 

The value of the requited limit can be written 
down by the formula of § 5"4, viz., 
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w-l (h 

lim^^oo 2 {/(^t + r?i)}h = | /(x)(ix, where nri=D—a, 

or, what comes to the same thing, but is generally 
more convenient, by the formula derived from the 
above by putting a = 0, and b = 1, viz., 

Um„_*oo 2 [ ff-) 1 - = I f(x) dx. 
»=o 1 W In •'o 

In order that a series may be capable of being 
summed by this formula, it must possess the 
following properties: 

(i) It must be possible to write the terms in 

the form ^ f (-), so that 1/n, which tends to zero, 
n W 

is a factor of. every term, and, apart from this 
factor, all the terms are the same function of r/n, 
which varies in value from term to term in arith¬ 
metical progression with the common difference 1/n. 

(ii) The number of terms should be n; but 
since each term tends to zero, the addition or omis¬ 
sion of one or two terms (or any finite number of 
terms) will not alter the required limit; that is even 

lim„ _ « 2 f(^) ^ = (‘ f(x) dx, 
rmk \ni n Jo 

provided k and I are independent of n. 

An easy way to write down the definite integral corres¬ 
ponding to a given series is to write the latter asSuIr/nlKl/n), 
and therefore the required limit as 

lim„_^«2|/0U. 
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To ivrite down the corresponding definite integral, replace 
rjn by x, its common difference, viz*i l/^» by dx, and limn^cc£ 
by S ; and insert the values of r/n for the first and the last 
terms (or the limits of such values) as the lower and upper 
limits respectively in the integral 

This procedure will evidently give us ff(x)dx taken 
between the proper limits. 

Note. It can be shown (by putting cn equal to a new 
variable n') that the rule given above in italics is applicable 
even when the number of terms in the given series is cn i- 
a constant instead of n + a constant. |ln this case the 
upper limit of the integral will come out as c instead of L 

Ex. 1. Determine by integration the limit to which 
the sum 

^ (n + 3)^^^ (n + + ••• + {n + 3 (n - 1) 

tends as n is indefinitely increased# 

1/n 
The (r + Dth term is ^ 3^^,,, . i.e., ^ . 

We, therefore, require the value of 

w-i l/n 

rZd-h 3r/n)^^^ linifi^To 

dx 
By the rule given above this is equal to j ;^)3/s 

Ex. 2. Find the limit, when n tends to infinity, of the 

product (1 + l/n)(l + 2/n)*^* (1 + 3/n)‘''® ... (I + n/n)’/**. 

Let the required limit be A. Then 

log A * lim«_..«, {log (1 + 1/n) + i log (1 + 2/n) + ... 

+ (1/n) log (1 + n/n) } 

lim»_..« £ (1/r) log (1+ r/n) 
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“ -J; j rfn (* + n ) f • n “L 
fVi *. ’f* ** . ^ j 1 1 1 J “JoV 2'^ 3 4 + -j‘^-^-^ + 3-*-4; + - 

= nVl2. I 

Therefore A - 

Examples 

From the definition of a definite integral as the limit of 
a sum, evaluate 

1. X dx# 2, dx. [Dacca, ’351 

J! cos X dx. [Andhra,’39] 4. sinOd^. [Cah,’40] 

JIfx'*'- 6. 1C«!.,19431 

Find the limit, when n -♦ <», of the series 

* 7. (l/n*)(l + 4 + 9 + 16 + ... + n®). [Lucknow, 1945] 

■*• nh"-n“l2 + ;*3 + -'"2n^‘' I’M 

5* ' " 

n _n n 
4- ••• + 

n* + (n - 1)* * 
[Punjab, 1945] 

3n 
11. ^ I sin®* ^ + sin®* 2^+ ^ ^ ^ ^ • 

' [Madras, 1937] 

[Dacca, 1942] 
#»-l J " 

» 12. Evaluate limn->« S—.y-. - -j,. 
r-ov 

Find the limit, when n tends to infinity, of the series 
r» . 1_ 

2n * 
[Agra, 1944] 

_J_. .- 4 . 9 
1 + n® 8 + n» ■*■ 27 + n« r* + n® 
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14. Show that the limit of the sum 

i_+_L . _i +_L +...+ 1. 
n n-fl^n + Z n + 3 * 3n* 

when n is indefinitely increased, is logg 3* 

15, Evaluate 

limn-^op i sec* - + sec* sec* - + ... 
i n* fi'* n* n* n* 

4* ^sec* 1 I. 
n J 

r 16. Find the limit, as n tends to infinity, of the product 

Prove that 

lim»-» {(^ ■" n^)(^ n»)(l + + nO } 

t/n 

is equal to 

18. Apply the definition of a definite integral as the 
limit of a sum to evaluate 

limn->«(n!/n«)</'*. 

5*5. Geometrical meaning, 
seen that 

(i) We have already 

£ /(x) dx 

can be interpreted as 
ABQRP, where PRQ is 
y = /(x), and PA, QB are the ordi 
nates at x » a and x = b. 

the area 
the curve 

If the abscissa of R is c, the formula 

f(x) dx = I*/(x) dx + /(x) dx 

of § 5*2 merely expresses the fact that 

the area ABQP = the area ACRP + the area CBQR. 
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(ii) To interpret the 
formula 

j“/(x) dx = j“/(a - x) dx, 

consider the curves 
y=f(x), . . (1) 

and y -f(a- x). . . (2) 

Let these curves be 
PQ and QT\ Let P and 
Q' be on the axis of y, and 
P' and Q on X = a* Let A 
be the foot of the ordi¬ 
nate of P' or Q. 

The ordinate R'C' at x = xi in the second curve is, by 
(2), equal to /{a ~ xi), and so is the same as the ordinate 
RC at X = a - xi in the the first curve. Hence the area 
OAQP can be made to coincide with the area AOQ'P' by 
applying the former to the latter in such a way that the 
corner O of the former falls on the corner A of the latter 
and the corner A of the former falls on the corner O of the 
latter. So these areas must be equal. The formula in 
question merely expresses this fact. 

(iii) The formula of integration by parts also becomes 
obvious when we look into its geometrical significance. 

Let PQ be the curve whose parametrical equation is 

X = ^(t), y = w(t). 
Let PA, QB be the ordinates 

of P and Q, and PC, QD the per¬ 
pendiculars drawn from P and Q 
to the ^-axis* 

Let P and Q correspond to 
the values a and b of t. 

Then the area ABQP 
roB 
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CDO rt-6 d'V 
Again, the area CDQP = I x dy = I xi'ldt 

Joe Jtma at 

= ^(t) v>'(t) dt. 

The area of the rectangle OBQD = ^(b) y(b), 
and the area of the rectangle OAPC = i>id)y^a). 

Hence the formula for integration by parts, viz., 

^(0 ^'(t) dt= |[ y>it) </)(t) -J^ v'(t) ^(0 dc, 

simply expresses the fact that 

area ABQP = [rect. OBQD - rect. OAPC] - area CDQP, 

5*6. Improper integrals. Let f(x) be conti¬ 
nuous for all values of x from a to b (b> a), except 
that f(x)->oo as x-*b; then we define 

to mean lims _» o 

provided that the limit is a definite number. 

Similarly, iff(x)-*oo as x-* a and f{x) is other¬ 
wise continuous, we define 

rb rb 

f(x) dx to mean lim^.^) f(x) dx, 

provided that the limit is a definite number. 

Again, if f(x) is continuous for all values of x 
from a to b, except that f(x) -* oo as x->c, where 
c lies between a and b, we define 

dx to mean 

lime 0 f(^) ^ -♦ » r , dx, 
Ja Jo+e 

provided that each limit is a definite number. 

8 
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In some cases each limit may not separately be 
a definite number, but 

lime_,.o I j f{x) dx + f{x) dx | 

may exist and be a definite number, say A. Then 
A is called the principal value of 

f fix) dx. 

The above definitions hold also when the limits of f{x) 
at X = a, h, or c is - <», or when the limits on the right and 
on the left at x = c are infinite, but of difiFerent signs. 

Cl dx _ f‘‘® 
Jo v\i-x) Jo 7(1 - x) 

= lime-*.o [ - 2 i/(l - x) ]* * = lime_^o 1 - 2\/e + 2] = 2. 

ri-'« 

»= lime-0.0 [ log (1 - x) J = lime-oo [log e - 0]. 
■*0 

Since lime-oolog® is - oo, [ is meaningless. 
Jo A — X 

1! ?x “ fe 7x “ 

- lime-00 (2 - ZVe) = 2. 

Ex. 4. 

- lim,-. [ - 2^J' - Hm.-,. [-1^ • 

Since Itoe-oo (1/e*) » «, j ^ is meaningless. 
Jo X* 
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L “ ““^-0 j" % + j^, ^^3 

= lim4_>o + lime'_^(, [3x‘''»]‘, 

= lim [ - 3**''® + 3] + Iim£'_>„ [3 - 30')*'^] 

-6. 

Ex. 6. + lime'-.o t^, 

= limr^o [ - + lime'-o [- 

= limf_i.o [^. - l] + liini'->.u [ “ 1 + /^] • 

dx 
The integral 2 has, therefore, no meaning. The 

J-lX 

principal value also does not exist, for 

lime-^o (1/e - 1 - 1 + 1/e) 
does not exist 

Hi" = [ - zil'i + [ - 2xJc'• 
and so the integral has no meaning. But the principal value 

=. lime^o I _ i - ^ + } = i, 

and thus the principal value exists* 

5*7* Some theorems about definite integrals. In what 
follows f(x) is supposed to be a continuous function of x. 

(i) If /(x) ^^0 for all values of x such that a ^ x < b, then 

£y(x)dx>o. 

For, under the given conditions, the sum whose limit is 
equal to the definite integral cannot be negative. 

This theorem often enables us to say whether the result 
of integration should be positive or negative, and so serves 
as a check. 
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(li) If U be the greatest value (upper bound) and L 
the least value (lower bound) of f(x) in the interval (a, b), 
then 

(b - a)L ^ j /(x) dx ^ (b - a)U* 

This follows at once if we apply the previous theorem 

to the integrals { f(x) - L}dx and ~ } dx, 

(iii) dx = (i) - a) fQ), 

where ^ is some number such that a ^S^b» 

This follows jfirom (ii), because | f{x)dx which lies 

between (b - a) L and (b ~ a) U must be equal to (b ~ a)A, 
where A lies between L and JU. Now, since f(x) is conti¬ 
nuous, there must be a value J of x between a and b such 
that fis)« A* 

(iv) If g(x) is positive and L and L/ are defined as 
before, then 

L P g(x) dx < [ f(x) g(x) dx < U [ g(x) dx. 
Ja Ja Ja 

This follows at once by applying theorem (i) to the 
integrals 

Ax) - L) g(x) dx and £{U - f(x)}g(x) dx. 

(v) If/(x) is a continuous function of x in the interval 
(a, b) and g(x) is a continuous function of x which is ^ 0, 
then 

£y(x) g(x) dx = Af) j^«(x) dx, 

where i ^b. 

This follows from (iv), because |^Ax) g(x) dx which lies 

between L g(x) dx and U g(x) dx must be equal to 
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B ( g(x) dx, where B lies between L and U. Now, since /(x) 

is continuous, there must be a value £ of x between a and h 
such that /(£) => B, 

This theorem is known as the first Mean Value Theorem 
of the Integral Calculus. Theorem (iii) is a particular case 
of it obtained by putting g(x) « 1. 

For £ we can also write a + 0(b - a), where 0 ^ 0 ^ 1* 

Examples on Chapter V 

^ 1. Prove that {^(x) + <j>(la - x)) dx, 

and illustrate the theorem geometrically* [Agra, 1934] 

* 2* If ^(x) = ^(2a ~ x), show that 

I** ^(x) dx « 2 ^(x) dx, 

and evaluate cos*^ x dx. [Nagfmr, 1931] 

3* If/(x + mp) « /(x) for all integral values of m, prove 

that *y(x) dx - n|^ f(x) dx, 

where n is a positive or negative integer. 

Give a geometrical interpretation. 

4. Prove that 

» |/2 

V/a 

0 

V/* 

fir/a 
^(8in2x)8inx(ix = 1^ ^(sin2x)cosx<lx 

^(co8 2x) C08 X dx. 

5, If m and n aie positive and m is an integer, prove that 

x»»-* (1 - x)*-* dx = j‘ x”*-^ (1 - x)«-i dx 
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Show that 
f"" X dx _ _ 1 

Jo - cos‘^ X "" 2ai/(a-’ - 1) ’ 

[Aligarh, 1945] 

Evaluate 

Show that 
f’*'x* sin 2x sin cos x) 8 ^ 

[Agra, 1935] 

J X cot X dx. Evaluate 

Prove that f ^ X* cosec* xdx^n log 2. [I.C.S., ’38] 

11. Prove that, if 0 < a < 1 and the positive value of 
the square root is taken, 

f ^ '_^ 
J.i i/{*l ~2ax + a9}~~^* 

What is the value of the integral if a> 1? [Math* Tripos, ’33] 

12. Prove that dd is equal to 0 or according 
Jo sin a 

as n is an even or odd positive integer. 

By means of a reduction formula or otherwise, prove that 

f** sin* nO , _ 
J 0 sin 9 

where n is a positive integer. [Math. Tripos, 1933] 

13. Find x^dx 

immediately from its definition as the limit of a sum. 

[Lucknow, 1937] 
14. Show that 

lim»-».» [ { /(n + 1) + i/(n + 2) +... + i/(2n)]/n v'nj 

= 1(2t/2 - 1). [Travancore, 1941] 
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15. Find the limit, when n tends to infinity, of the series 

_l/n . , _ l/« , Vn 
(3 + 4i/n)“ i'^2(3i/2 f 4v"n)‘'' 1 3(3|/3 + 4i/n)^ 

+ 49jj- [Agra, 19331 

Sffi. Evaluate lim«_*.® 2 — \lf^ ^ ^ ^ • [Lucknow, ’301 
n \\n-r/ 

17. Prove that I = e**®dx <cj' xe“** dx, 

and hence that I < l/2e. (Math. Tripos, 19341 

18. Evaluate! ^ dx, wheren is a positive 
j 0 i — la cos X + a* 

integer and a < 1. 

[Hint. Use the expansion (1- a®)/(l - 2a cos x + a®) 

= 1 + 2a cos X + 2a» cos 2x + ... + 2a'' cos rx + .} 

MISCELLANEOUS EXAMPLES 

Integrate 

1. (l-x*)i/x. *'2. l/{x+|/(x-l)}.[Del.,’451 

'' 3. .co8-‘ (1/x). [AH., ’40].* *4. e»*/(e* - 1). 

• 5. X e® 8in» x. [Pun/., *44] * 6. x tan* x. [Ben., ’38] 

t »7. [{tan(l/x)}/x]*. , 8. sec® x/(tan* x - 1). 

"9. l/i/{(l-x®)sin“‘x}. 10. e®* cos (3x + n/3). 

11. cos 4x/t/(sin® ix + 4). 12. (x + 1)/ t/(4x - x*). * .. 

..13. X*tan-* X. [Nag.,’42]'14. (l+x*)-»/»e®«"c‘i‘”». 

' ' [Andhra, ’43] 
.*15. cot x/i/(8in x). ‘16. sec*x/v'(tanx). ' 

17. 1/(4 + x*)/x*. 18. (ax® + c)-»*'*. [Putx>»l/tl 
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19. (1 - x»)/(l + x») V {1 + X*). [Put X + 1/x = t] 

20. c*(l-sinx)/(l-cosx). 21. (l + cosxVsinxcosx. 

22. cos x/(l + sin x)(2 - sin x). 

23. Show that, when /(x) is of the form a + bx + cx*, 

j^/(x) dx = i{y(0) + 4/(i)+/(!)} [Madras, ’37] 

24. Prove that 

juv dx - uvi -u'Vi + u"vs - u"'vi + ... + (- !)«“» 

+ (- Vn dx, 

where dashes denote diflFerentiation with respect to x and 

=» J dx* 

Hence evaluate J sin x dx, 

C dx 
25. Transform the integral L —r-xi 

® J(a+ b cos x)* 

by the substitution cos 0 ^ (a cos x + b)/(a + b cos x). 

Evaluate T — (a > b), 
Jo a-focosx 

and deduce, or otherwise find, the value of 

[Lwcfcnow. 1937] 

26. Obtain a reduction formula for 

^'‘“l(0 + b«>S35« 

in the ^tm U« » + BU„^ + CU.^,. 

Find Us. [Punjah. 1934] 

27. Prove that 

f dx 
}(x - |>)v'{(x - p)(x - 4)} 
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28* Evaluate j 
_ stc-noM*/ 

[Hint Put X = a cos® 0 + P sin® 0*] 

29. By using the substitution x = 1/t, or otherwise, prove 

th.t f 
Jl/3 X* 

30. Integrate cosec* x log {cos x + y (cos 2x)). 

’ "SI. Show that, if n is a positive integer, then 

, „ (**■ cos (n - l)x - cos nx j - 
i‘>' J. ~ r-co,x - 

and deduce that j da = Imt. [Math. Tripos, ’38!, 

* 32* Evaluate the integral 

■•33. [Math. Tripot, 1937] 

34* Show that if p be an integer, 

£ «■>« lop (1 + a) da - I [i + jL,, ]. 

■» • 35. Prove that 

^ r xV?^ = *(58 - 15«). [Bombay, ’35] 

36. Rnd the condition that h^2^+ C)* 

rational. [Bombay, 1936] 

[Find the condition that the terms involving a logarithm 
or an inverse tangent be absent] 
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37. Prove that 
ft/x 

L 1- 
dx 1 1/2 

4 cot - f ' * 
. + x" 1/2 1/x - X 

[Bombay, 1936] 

38. By using the substitution x = 2a - t, show that 
fsa ^ X 

(2ax — ver3“^ dx ^ I (2at — t®)”- ^ dt» 
Jo ^ Jo 

Hence evaluate the integral. 

39. Evaluate '^/^dx. 
Jo 1 + x» 

40. Show that the sum of the infinite series 

J. 
a 

1 
a + b ^ a + 2b 

1 ^-i^+...(a>0,b>0) 

can be expressed in the form 
f‘ 

Joi-i- 
dt; and hence prove that 

1 — i + ^ — tV + tV — tV + ••• =* i + logs 2). 

41. Investigate a formula of reduction for 
X2H4I 

Ic J(1 - * 
and by means of this integral show that 

1 .1 1 1.3 1 1.3.5 
2n + 2^2*2n + 4^2.4*2n + 6 + ;r“ 

1 
2.4.6’ 2n + 8 

2.4.6 ... 2n 

+ ••• 

3.5.7... (2n+1) ‘ 

Sum also the series 

1 1 1 1.3 1 1.3^ 1 
2n + i'^ r2n + 3‘^2.‘4‘2n + 5'^'2'.4.6'2n+'7'*‘ *"* 

[Agra, 1938] 

42. If 1„ - x” cos Px dx and Jn =• jx’* sin Px dx, prove 

that ^ 
P In sin px-n Jn-t; 
/S Jn =“ - X** cos jJx + n In-i. and 
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43* If m and n are integers, m is greater than n and 
m + n is even, prove that 

, 71 .ml 
cos’" X cos nx clx = n)}I {i{m -n)}!* 

44. Prove that 

I sin nO sec 6 dd — ^ - [ sin (n - 2)d sec 0 d0» 

Hence or otherwise evaluate 
rir/2 cQg 50 g|j^ 30 

Jo COS0 ^ 

45. Prove that 

[London, 1938] 

(i) /(a + b - x) dx - /(x) dx, 

(ii) fix + c) dx fix) dx. 

r» xcosxsinxdx w 
46. Prove that . -n , 

Jo (a* cos* X + b* sin* x)* 4ab*(a + b) 
where a and b are positive* 

• 47. Prove that 
^*_cos* (?_ 

cos* 0 + 4 sin* 0 
d0 = ^16. 

48. Evaluate f - d4>, a > b > 0. 
Jo u — o cos 9 

[Allahabad, 1939] 

49. Show that [ —r— = >7“o~Lo~~vi 
Jo a + ocosx + csinX |/(o“-b®-c®) 

when a > ^/(b* + c*) > 0. 

50. Prove that J log (1 - 2a cos x + a®) dx = Jt log a® 

ifa*>l, or 0 if a® < 1. 
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51. If m and n are positive integers, prove that 

£ b - a)" (b - x)” dx-{b- . 

[Hint* Put X « a + (b - a)^.] 

52* If n is a positive integer, prove that 
fir/s C^/9 
J sin** X dx > I sin'^^ x dx. 

Deduce that in lies between 

_2.2. 4. 4. 6. ^... 2n . 2n_ _ 
I. 3. 3. 5. 5. 7 .... (2n - 1) (2n + 1)' 

and 2.2.4.4.6.6 . ... (2n - 2). (2n - 2) . 2n 
1.3.3.5.5 . ... (2n - l){2n - 1) 

[This is known as WalUs’s value of n.] 

53. Prove that, if e < 1, 

2f’^/* _dx_ 
n J* i/(l — e* cos* x) 

1*.3* . 
2*. 4* ^ 

^ 1*^ 3*. 5* 
2* . 4*. 6* e* "i".... 

'* 54. Find the limit, when n oo, of 
_n_ _ _n_ _ * n _ 

(n + Dv^CZn + 1) ^ (n + 2)V'{2(2n + 2)} ^ (n + 3)i/l3(2n+ 3)} 

- + W(".3n)- 

• 55* Show that the limit, when n is increased in¬ 
definitely of 

(n - (2» n - m)*/® . (3® n ~ m)»/® (n® ~ 

18 3/2. 



CHAPTER VI 

AREAS OF CURVES 

6*1. Areas of curves given by Cartesian 
equations. We have proved before (§ T8) that 
the area bounded by the curve y =f{x), the axis of 
X, and the ordinates at x = a and x = b is given by 

rb 

ydx. 
Ja 

The following is an alternative proof. 

Let CD be the curve 
y — fix), where /(x) is a y 
continuous function of x in 
the domain (a, b), and 
suppose®, for the sake of 
convenience, that y goes 
on increasing as x increases 
from a to b. Let CA, DB 
be the ordinates at x = a , 
and x = b.' 

Let P be any point (x, y) on the curve and let 
PM be its ordinate. 

Then the area AMPC is some function of x, 
say <t)(x). 

Let Q be any other point ix + h,y+k) on tlJ^. 
curve, and let QN be its ordinate. Let PR and QS 
be the perpendiculars from P and Q to NQ adn 
MP produced respectively. 

Then the area ANQC = <|)(x + H). 

•This restriction can be easily removed as in § 1*8. 
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Hence 

(Kx + h) -^<t>(x) _ area AlsIQC— area AMPC 
h ~ h 

area MNQP 
h . . (1) 

Now the area of the rectangle MNRP = yh, 
and that of the rectangle MNQS = (:y + k)K As- 
sumiog as an axiom that the area MNQP lies in 
magnitude between the areas of the rectangles 
MNRP and MNQS, it follows from (1) that 

h 
lies between y + k and y. Taking limits, we see that 

<t)(x + h) - ^(x) _ 
'0 h ,lim» 

i.e., • . (2) 

Consequently, if F(x) is any known integral of 

f(x), 4>(x) = F(x) + C, . . , . (3) 

where C is some constant. To determine C, put 
X = a in (3). Now 4>(a) = 0, since 4>(d) is equal to 
the area AMPC when M coincides with A. 

Hence F(a) + C = 0, 

or C =■ — F(a). 

Consequently <|)(x) = F(x) — F(a). 

Therefore 

the area ABDC = <|)(b) = F(b) - F(a) = f f(x) dx. 
Ja 
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Ex. L Find the area included between the curve 

x;y“ - x) 

and its asymptote. 

The curve is symmetrical about the x-axis 
and is as shown. It cuts the x-axis at x = 2a. 
The asymptote is the y-axis. 

Hence the required area = A, say, 

/O 

-4a 
Jo yx 

Putting X = 2a sin® 6 and dx ~ 4a sin 0 cos 6 dO, we get 

A = cos»0de - 16a= 

Ex. 2. Find the area included between the cycloid 
X = a(0 - sin 0), 

y = a(l ~ cos 0), 
and its base. 

Since the cycloid is symmetrical with respect to the 
line X =* an, and the base is the x-axis, the required area 

fw Cir/2 
» 8a* J sin^ iddd = 16a* 1 sin* where iO ^ 

= 16fl* 3«a». 
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Ex. 3. Find the area common to the circle x* + y* = 4 
and the ellipse x® + 4^® = 9. 

Let P be the point of 
intersection of the circle 
and the ellipse, and cons¬ 
truct as in the figure. 

The required area, say 
a, = 4 X area OAPB 

= 4(area OMPB 
+ area MAP). 

Solving X® + y* = 4, 

i.e., 4x® + 4di® = 16, 

and X® + 4?® = 9, 
we see that, for P, x = v/(7/3). 

Also, for the ellipse, y = i i/(9 - x®), 

and for the circle, y= i ''(4 - x®). 

r2 
Hence a ^ 4 Jv (9 -x^)dx-h 4 l/(4 - x®) dx 

Jo Jv^C7/j) 

= 2 [ixi/(9 - x^) +1 sin*^ 

+ 4 fixv'(4 - x‘0 +2 sin-1 
i- Jv/(7/») 

« etc. 

6*11* Remarks* 

(i) The smaller of the two values of x between the 
ordinates at which the area lies should be chosen as the 
lower limit* 

(ii) If y is negative for all values of x from a to c 
(c > a), then, as is evident from the definition of the 
integral as the limit of a sum, 

11’*' 
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will be negative. Therefore, if y is negative from x a to 
X = c, and positive from x « c to x = i? (b > c), then 

will be the difference of the numerical values of the last 
two integrals, and will thus give us the value of the 
algebraic sum of the areas above and below the x*-axis, 
when areas above the x-axis are regarded as positive and 
those below as negative. If, therefore, the numerical sum 
of the areas is required, these integrals must be evaluated 
separately. For example, it is easy to see that the curve 

^ x2) 

is symmetrical about both the axes and consists of two loops. 

One might be tempted to say that the whole area 
= 2 X the area above the x-axis 

= 2l 

=0. 

But the area above the x-axis is certainly not zero, The 
reason why we get zero as the value of the integral is that 
xt/(a* - X*), and so also (a» - ^^s two values ; and 
if we take the positive square root, xi/fa* - x®) is negative 
from X = - a to X = 0. So we have really found above the 
algebraic sum of the areas in the first and third quadrants. 

The easiest plan in such cases is to find the area of the 
smallest part which by considerations of symmetry will 
give the area of th^ whole curve. Thus, in the present 
example, we can find the area which lies in the first 
quadrant and multiply it by 4- 

(iii) When F(x), the integral of/(\), involves an inverse 
function, some care is required in finding its values 
at a and b, because such a function is many-valued. The 
easiest method is to put down for the value of the 
function at the lower limit the principal value of the 
function, ie., the value between - in and in (both values 
inclusive) for sin*^ x, tan“^ x, cor^xa nd cosec**^ x, and the 

9 
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value between 0 and n (both values inclusive) for co8~^ x, 
sec"^ X and vers"^ x. To select the value at the upper limit, 
remember that 

[«'>]: 
is a continuous function of x, which is zero when x = a. 
Consider, therefore, how F(x) changes from F(a) as x 
increases from a to F, and choose for F(b) that value at 
which F(x) will arrive by varying continuosly as x varies 
from a to b. 

These considerations are applicable also in the evalu¬ 
ation of definite integrals not connected primarily with 
areas. 

Ex. 20 on 

any point 

For an example Illustrating this point see 
page 145. 

(iv) If the ordinate becomes infinite at 
between x « a and x =* b, the method 
of § 5*6 should be applied ; other¬ 
wise some absurd result may be 
arrived at. Thus for the curve 

y = 1/xS 
which lies entirely above the 
x-axis one may be tempted to say 
that the area included between 
the curve, the x-axis and the ordi¬ 
nates at X = — 1 and x = 1 

This is certainly wrong, because 1/x* is positive for all 
values of x; hence 

j-i f- 
should be positive. Even numerically the area under 
consideration cannot be equal to 2, because the area of 
the rectangular part marked in the figure by a dotted line, 
is equal to 2; and certainly the area required is greater. 
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The error lies in ignoring the fact that the ordinate 
QO as X 0. The above procedure is just as wrong as, say, 

summing up 1 -f 2 + 2® + 2^ + ... by the following inethod: 

Let s~l + 24"2® + 2^-h 

Then, multiplying by 2, 2s 2 + 2* + 2® + .... 

Therefore, subtracting the first from the second, we have 

s = -> L 

We must consider such integrals by the method of 
limits. If we apply this method to the present case, we 
find that 

has no meaning. (5>ee § 5*6, Ex. 6.) 

(v) It is sometimes convenient, in finding the area of 
a curve, to utilise the fact that the area included between 
a curve, the y-axis and the lines y = a and y « h (b > a) is 
equal to 

(vi) The process of finding an area is often called 
quadrature* 

Examples 

Find the area bounded by the axis of x, and the 
following curve and ordinates: 

1. y « {X « a, X =* b. 

2. y = c cosh (x/c) ,* x =* 0, x =» a. 

3. y ==* log x; X « a, X = b (b > a > 1). 

4. y « sin* X; X « 0, X 

^ 5. Trace the curve a*y « x*(x + a) and show that the 
curve includes with the axis of x an area a*/l2. [Patna^ *37] 

6. Show that the area cut off a parabola by any 
double ordinate is two-thirds of the corresponding rec¬ 
tangle contained by that double ordinate and its distance 
from the vertex. [Agra, 1940] 
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7. Show how the area of a semicircle can be expressed 
as a definite integral. iCakutta, 1938] 

* 8. Calculate the area of ellipse « + ?« = 1* 

[Dacca, 1943] 

9. Trace the curve ay^ — x^(a - x) and show that the 
area of its loop is [Abf^arh, 1934] 

10. Find the area of the loop of the curve 

a3y2 (b -h x). [Patna, 193) i 

IL Find the whole area of the curve a^y^ = (2a- x). 

[Allahabad, 1941] 

^ 12. Trace the curve a^y^-a^x^-x* and find the 
whole area within it. [Patna, 1935] 

13. Trace the curve a'^y^ - x®(2a - x) and prove that 
its area is to that of the circle whose radius is a, as 5 to 4. 

[Allahabad, 1928] 

* 14. Trace the curve x»y*« a^(y^ - x®), and find the 
whole area included between the curve and its asymptotes. 

[Nagpur, 1932] 

15. Find the whole area of the curve a*x* = y®(2a - :y). 

16. Find the area of the segment cut off from the 
parabola y* 2x by the straight line y = 4x -1. 

^ 17. Find the area common to the two curves 

y^ = ax, X* + y* = 4ax. [Andfira, 19371 

'' 18* Show that the larger of the two areas into which 
the circle x® + 31* « 64a* is divided by the parabola 12ax 

is (8n - i/3). 

19. Find the whole area of the curve given by the 
equations x« a cos® t, y^b sin® t. [Cal., 1942] 

^ 20. Show that the area bounded by the cissoid 

X « a sin* t, y « a (sin® O/cos t 

and its asymptotes is 3?ta*/4. [Benares, 1938] 
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6*2. Areas of curves given by polar equa* 
tions. Let /(0) be continuous for every value of 
6 in the domain («, fj). Then the area bounded by 
the curve r = f(9) and the radii vectores 6 = a, 
6 = P (u < P), is equal to 

i|‘%« d0. 

We can prove this proposition 
cither by dividing the area into a 
number of sectors and finding the 
limit of the sum of their areas, or 
by finding the differential coeffi¬ 
cient of the area between the 
curve, the radius vector 0 a and 
a general radius vector. We adopt 
here the former procedure. 

Let AB be the curve, OA and OB the radii 
vectores 0 = a and 0 = P. 

Divide P — <x into n parts each equal to h and 
draw the corresponding radii vectores. (In the 
figure all the radii vectores are not drawn for the 
sake of clearness.) Let P and Q be the points on 
the curve corresponding to 0 = a + mh and 0 = a + 
(m + l)h, and suppose that r goes on increasing as 0 
increases from a to p. (This restriction is removed 
below.) 

With centre O and radii OP, OQ respectively, 
draw arcs PR, QS as in the figure. Then the area 
OPQ lies in magnitude between 

^ OP®. h and ^ OQ’‘. h, 
i.e., between J[/{a + and 4[f{a + (m+ l)h}]*h. 

Hence the area AOB lies between 

2 a [/!“ + and i 2 [fia + (m + 
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Take limits as n->oo. Then as the limit of 
each of the two sums last written is 

it follows that the area AOB is also equal to this 
definite integral. 

If r decreases all the way from 0 = a to 0 = then also 
the above proof is evidently applicable. But if there are a 
finite number of points of maxima and minima between 
a and IK say at 0 == 0i, Oj* then by drawing the corres¬ 
ponding radii vectores we can divide the area AOB into 
p + 1 sectors, to each of which the above formula is 
certainly applicable. Hence the total area AOB is 

i r^de+h de + ... + 4 d0 -f i r»d0 
Jo I Jo JOfi 

ie., i r» de. 

Note 1. If the radius vector tends to oo as 0 y, 
where a < y < ft then the method of § 5*6 should be 
applied. 

2. In some cases it is more convenient to transform 
a given Cartesian equation into polars than to solve for y. 
In such cases the formula of the present article should be 
applied after transformation to polars. 

Ex. 1. Find the area of a loop of the curve r = a sin 30. 

One loop is obtained by the 
values of 0 from 0 = 0 to 0 == 

Hence the area of a loop 
fir/8 

= sin*30d0 

where 30 = 

= l-a*sin* ^ by § 5*2, 
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= ^21X2)^^ = ^ = tW*. 

Ex. 2. Find the area of the loop of the folium 

- 3axy = 0. 

Changing to polars, 

3a sin 0 cos 0 
7* :=■ - 

COS® 0 + sin® 0 ‘ 
The loop extends from 0 -= 0 

to 0 ^ jTt. Hence the required 
area 

^ 9a^ sin^ 0 cos® 0 dO 
2 Jo (cos® 0 + sin® 0)® 

^ 9a® r^/® tan® 0 sec®0 dO 
2 }o (1 + tan® 0)® 

dt 1 
, where t tan® 0,« 

3a® 
2 . (1 + c)® 

Examples 

Find the area between the following curve and radii 
vectores: 

1. The spiral r0^/® = a; 0 = a, 0 = 

2. The parabola 1/r = 1 -f cos 0; 0 = 0, 0 = a. 

3* The equiangular spiral r = ae^^; d^a, 0 == 

4. Find the area of one loop of r a cos 40. 

5. Calculate the ratio of the area of the larger to the 
area of the smaller loop of the curve 

r ^ i + cos 20. 

6. Find the area of the curve r® = a® cos® 0 + b® sin® 0. 

V 7. Find the area of the loop of the curve r = a0 cos $ 
between 0 »= 0 and 0 = [Agra, 19371 
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8# Find the area bounded by the curve r = a(l + cos O). 

[Andhra, 1943] 

9. Trace the curve r = 3 + 2 cos 0 and find the area 
enclosed. 

* 10. Draw the curve r i/3 cos 30 -h sin 30, and find the 
area of a loop. [Lucknow, 1932] 

11. Prove that the sum of the areas of the two loops 
of the limacon, r == a + b cos 0, h V a, is equal to 

i7z(2a'^ + b^). 

12. Show that the area of a loop of r=acosn0i3 
na^l4n, n being integral. Also prove that the whole area 
is or i.Ta^ according as n is odd or even. 

/ V 13. Show that the area of a loop of the curve 

x(x2 + ^ a(x® - y^) 
isla^l-iTz), [Agra, 1945] 

' 14. Find the area of a loop of the curve 

’ x^ + = 4a^xy. [I. C. S., 1940] 

15. Prove that the area between the cissoid 

r = a sin^ Ojcos 6 

and its asymptote is 

^ 16. Find the area common to the circles 

T = ai/2, and r =* 2a cos 0. [Travancore, 1940] 

6’3. Areas of closed curves. 

We have found the areas of many closed curves by an 
application of § 6T or § 6*2. When, however, a closed 
curve is given by equations of the form 

where/i(t) and /a(f) are single-valued functions of t, another 
procedure is generally simpler. 
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Let CPiDPa be a closed curve given by x = 
y — /a(t)> and let it be cut 

by a line parallel to the ;y-axis 
in two (and only two) points 
Pj, Pj. LetMPa>MPi. 

Let AC and BD be the 
tangents parallel to the y-axis, 
and let OA=a, OB = b(b> a). 

Then the area of the 
figure CP,DP3 = the area of 
the figure ABDPaC — the area of the figure ABDPiC 

= fW,dx-rMPidx ... (1) 
Ja 

= — f MPadx— { MPidx. 
Jb Ja 

Suppose that as t increases from tx to tg, the 
point (x, y) travels from a point E on the curve 
back to the point E, via Pi, D, Pa, C taken in order. 
Let the values of t corresponding to D, C be tc. 
respectively. 

Then = 

and — £ MPa dx = — y dt. 

Hence, by addition, area CP1DP3 

We can show similarly, by drawing the tan¬ 
gents parallel to the x-axis, and applying the for¬ 
mula S xdy for the area bounded by a curve, the 
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^'-axis and two straight lines parallel to the x-axis, 
that the area CPjDPj 

Adding the two expressions thus obtained for 
the area and dividing by 2, we get 

areaCP.DP. = i0.*_yfjd.. 

This is often abbreviated into the formula : 

area CPiDPj, = dy - y dx) , taken round the curte. 

In the above we have supposed that the curve is 
described in the direction CPiDP,? as t increases, and taken 
for the area the value (1) which is positive, Le., we have 
considered the area to be positive when it lies to the left of g,n 
observer moving along the curve in the direction corresponding 
to increasing t This is the usual convention. 

The formula will give a negative value for an area 
described in the opposite direction. 

If a curve crosses itself so as to form a figure of eight* 
the two loops of which are des¬ 
cribed, as t increases, in such a way 
that one loop lies to the left and 
the other to the right, of the 
observer moving along the curve 
in the direction of increasing t, the 
above formula will give us the 
difference of ^ the areas of the two 
loops. 

The formula is true even when the curve cuts one or 
both the axes. 

Ex. Find the area of the ellipse x « a cos t, y ^b sin t. 

T T dy m dx « 

hiere ^ cos t ♦ b cos t, - a sin t. b sin t. 
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27r 

0 

f Stt 

= hab\ (cos* t + sin* t) dt = nab. 

[Notice that as t increases, the corresponding point on 
the curve moves in such a way that the area lies to the 
left of an observer moving with the point; also that the 
formula has given us a positive value for the area. This 
confirms the above remarks regarding signs,] 

Hence the area of the ellipse i 
*1, 

Examples 

1. Show that the area of the loop of the curve 

X =■ a(l - t*), y = af(l - t*), - 1 < t < 1, is 

2. A closed curve is defined by the equations 

y == wit); 

prove that its area is given by ^ certain 

conventions being adopted. 

Find the area of the loop of the curve 

_ a sin 3d a sin 30 
^ sin 0 * ^ * cos 0 

[Agra, 1933] 

3. Prove that the area of the curve 

X « a cos 0 + b sin 0 c, y a cos 0 -f b' sin 0 + c' 

is equal to :i(ab' - a'b). [Math. Tripos, 1927] 

6*4. Simpson^s rule* There are many for- 
mulaeo which enable us to evaluate approximately 
an area, or a definite integral, even when the 
analytical relation between y and x is not known. 
All that is required is that the values of y should 

•See Whittaker and Robinson; The Calculus of 
Observations (Blackie and Son). 
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be known for values of x sufficiently close to one 
another. 

One such formula is Simpson’s rule** which 
states that an approximate value of 

rh 
ydx 

Ja 

IS + 2(3^^ -f 3^5 + • • • + y2n-l) 

“H 4(^2 + [Vi ■+'••• y2n)\f 
where n is any positive number, h = (b — a)/2n and y^ 
is the value of y corresponding to the value a + (r — l)/i 
of X. 

To prove this, assume that the functional relation 
between y and x is y = f(x). Let P^, P^, P.4,... be the points 
on the curve y = /(x) whose abscissae are a, a 4* h, a + 2h, 
etc. Let us suppose that the curve (parabola) whose 
equation referred to (a + K 0) as origin is of the form 

:y = A 4- Bx + Cx^, 

and which passes through Pi, P^ and Pa, is a sufficiently 
close approximationt to the curve y-f(x) between Pi 
and Pa. 

To determine A, B, C, we have the equations: 

^1-A~Bh4-CM, 

y2 ==* A, 
ys ^A + Bh + Ch\ 

"•Named after Thomas Simpson (1710-1761), an able 
and self-taught English mathematician, for many years 
professor at the Royal Military Academy at Woolwich and 
author of several text-books (Cajori: A History of Mathe¬ 
matics), The formula, however, had been discovered much 
earlier in a geometrical form by B. Cavalieri (1598-1647). 

fEvidently, the smaller h is, the closer will be the 
approximation. It is assumed, of course, that y = /(x) is 
some smooth curve passing through Pi, Pa,..., Paw+i. 
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which express the condition that Pi, P^, P;>, are on the 
assumed parabola* 

Now the area between the curve PiPgP^, the axis of 
X and the ordinates of Pi, P3 is 

j*^(A + Bx + Cx") dx. i.e, 2h\A + JCh»{. 

Substituting in this the values of A and C obtained 
from the above equations, we find that the area under 
consideration is 

ih(yi •h4y2 

Similarly the area between the parabolic arc P’^PiPs, 
the axis of x and the ordinates of P3, P5 is 

ih(y^ +45^4 + >5), 
and so on. 

By acdition,|we find that an approximate value of the 
area required is 

ihi(yi + 4y2 + y^) + (y3 ^4y4 + y^) + ... + (y^n-t + 4y2n 
+ yan+i)K 

ie., ihbi + y2n*i + 2O3 +3^5 + — + + 4(^2 + 3^4 + ... 
+ ^2/7)}. 

Ex. 1. Given that c° ^ 1, 2-72, c* = 7*39, - 20*09, 
= 54*60, verify Simpson’s rule by finding an approximate 

value of 

and comparing it with the exact value. [Punjabf 1944] 

By Simpson’s formula, an approximate value is 

i { r+ 54*60 + 2(7*39) + 4(272+ 20-09)} = 53’87. 

The correct value *= J = 54*60 - 1 - 53*60. 

We see that the approximation is pretty close, although 
h is by no means small 
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Examples 

1. Taking 10 equal parts, show by Simpson’s rule, that 

(* = 0T728. [Bombay, 19371 
Jo i + X 

'2. If y = /(x) a + bx + cx®, yi --= f(p), y.j =f(p + h) and 
y-i =f(P'+ 2fi), prove that 

1^ /(x) dx - Ith{yi + y.,^ + 4y2X 

Hence obtain an approximate value of 

I (1 - dx, [Annamalai, 1936] 

3. A curve is drawn to pass through the points given 
by the following table:— 

X 1 r5 2 2*5 3 3*5 4 

y 2 2*4 2*7 2*8 3 2*6 21 

Estimate the area bounded by the curve, the x^axis, 
and the lines x = 1, x = 4. iLucknow, 1941] 

4. Explain Simpson’s rule for approximate integration* 

Use the rule, taking five ordinates, to find an appro¬ 
ximation to two decimal places to the value of the integral 

l/(x - 1/x) dx. [MatK Tripos, 1934] 

5. A river is 80 feet wide. The depth d in feet at a 
distance x feet from one bank is given by the following 
table: 

X 0 10 20 30 40 50 60 70 80 

d 0 4 7 9 12 15 14 8 3 

Find approximately the area of the cross-section. 
A MM/iy ffC7 [MatK Tripos, 1935] 

6. By taking on a curve points Pi, Pa, Ps, ... whose 
abscissae are a, a + h, a-f 2h, ... (fi-a«nfi), and joining 
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PiP2t PfiPy, ••• by straight lines, show that an approximate 
value of 

is ih{yt + yn*i + 2 (ya + D' j + — + }. 
[This is known as the Trapezoidal Rule.] 

7. Prove that the area between the axis of x and the 

curve y ==: a + bx 4* cx^ + dx^ 

from X =« 0 to X *= 3/i is 

|fi(yo + 3yi + 3ya + yj, 
where is the value of y when x = rh. 

Hence find an approximation to the value of the integral 

[ ^ (1 + 6 sin do. [Bombay, 1937] 

Examples on Chapter VI 

1. If a, b’are positive and a> b, prove that the area 
between the hyperbola xy =« c*, the x^axis and the ordinates 
at a and b is c* log (alb). 

If, instead of a hyperbola, the curve is that given by 
y = prove that the area is 

- b^i+i 

(n + i) * 
[Punjaby 1933} 

2. Trace the curve x^^* + = a^^^ and find the area 
enclosed by it^ [L C. S*, 1933] 

3. Trace the curve 

y* x^Kla ~ x) 

and show Jthat the entire area between the curve and its 
asymptote is 3na\ [Patna, 1937]] 

4. Trace the curve y*(a - = x®(a + x) and find the 
area of the loop. [Delhi, 1937] 

" 5. Show that the area included between the parabolas 

y® « 4a(x + a), y® «= 4b(b - x) 
is Ka+b)>/'(ab). [Bombay, 1935 
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6. Show that the area common to the ellipses 

-- 1, + a‘^ == 1, where 0 < a < b, 

is 4(ab)'^ tan*"^ (alb). [Bombay, 1936] 

7. Find the area included between the curves 3^“ — Aax 
and x*-* = 4ay, 

^8. If A is the vertex, O the centre, and P any point 
on the hyperbola x-^la^ -y^jb- = 1, prove that 

X- a cosh (IS/ab), 

and y =^b sinh (ISjab), 

where S is the sectorial area OPA. [AgTa, 1934] 

- 9. In the case of the cycloid 

X = a(0 -f sin 0), y ^ all - cos 0), 

find the area included between the curve and its base, 

[Ailafiabad, 1937] 

^ " 10, Prove that the whole area between the four infinite 
branches of the tractrix. 

X = a cos t -f ia log tan* it, 

y == a sin t 
isTra*. [Calcutta, 1941] 

' 1L Prove that the area of the loop of the curve 
x3 + 3f3 = 3axy 

is three times the area of one of the loops of the curve 

T* == a* cos ZO. [Agra, 1944] 

12, Find the area of a loop of the curve 

r « a cos 30 -f b sin 30, 

13, Prove that the area of the loop of the curve 

X® + y® == 5ax*y* is fa*, 

1* 14. Prove that the area of the loop of the curve 

x« + y® =a*x*y* is ?ia*/12, [AHd., 1945] 

15* Prove that the area of the curve 

x*--.3ax3 4-a*(2x»-f y»)«0 is 
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’ 16/ Trace the curve 

r = a{sec 6 + cos 0), 
and find the area between the curve and its asymptote. 

[Benares, 1941J 

17. Find the area lying between the cardioid ) 
a (1 - cos 6) and its double tangent. [Lucknow, 1936] 

- 18. Find the ratio of the two parts into which the 
parabola 2a = r (1 + cos d) divides the area of the cardioid 

2a(l 4- cos O), I Nagpur, 1931] 

19. Prove that the area of the curve 

t2(2c'^ cos^ 0 - 2ac sin 0 cos d 4 a® sin* O) = a*c* 

is equal to nac. 

20. Show that the sectorial area of the ellipse x^la- 
4* y^lb^ 1> included between the semi-diameters 0^0 and 
d -= a, is 

iab tan"^ ^ tan if 0 ^ a ^ 4nr, 

^ab I + tan*"^ tan , if a ^ .-r, 

where in each case that value of tan"*^ ] (a/b) tan a} is im¬ 
plied which lies between - iirt and + Hence prove that 
the area included between a pair of conjugate semi- 
diameters is jrtab. [Math, Tripos, 1924] 

21. O is the pole of the lemniscate r* -=a* cos 20 and 
PQ is a common tangent to its two loops. Find the area 
bounded by the line PQ and the arcs OP and OQ of the 
curve. [Lwefenou', 19371 

22. Prove that the area included between the folium 

x'"* -f :y^ «= 3uxy 

and its asymptote is equal the area of its loop. 

23. P is any point of the circle r = 2c sin 0, PT the 
tangent at P, OT the perpendicular from the origin on PT. 
Determine the area swept out by OT when P describes the 
circumference of the circle. [Luefcnou;, 1928j 

10 
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24» Prove that the area of a sector of the ellipse of 
semi-axes a and b between the major axis and a radius 
vector from the focus is 

iab(6 - e sin 0), 

where 6 is the eccentric angle of the point to which the 
radius vector is drawn. 

Area of the sector « area of a triangle + area of a 
Find only the area of the segment by integration.] 

[Hint, 
segment. 

^ 25. If the pedal equation of a curve be f> = /(r), prove 
that the area bounded by the curve and two radii vectores is 

pr dr 

taken between suitable limits. 
*1, 

CHAPTER VU 

LENGTHS OF CURVES 

7*1. Lengths of curves. If 5 denotes the 
length of the arc of the curve y = f{x), measured 
from a fixed point A on it, up to any point (x,y) 
on it, then we knoW by Differential Calculus that 

It follows at once, as in § 6*1, that 

where a is the abscissa of the point A from which 
s is measured. 
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Hence, if the abscissae of A and B are a and b, 
the length of the arc AB is equal to 

Similarly, if x and y are expressed in tejrms of a 
parameter t, and to the points A and B correspond 
the values and of t, then evidently the length 
of the arc AB is equal to 

Again, since for a curve given by its polar 
equation, 

the length of the arc AB is equal to 

where a and ft are the vectorial angles of A and B,. 
and rj and ta their radii vectores. 

Ex. 1. Find the length of the arc of the semicubic®! 
parabola ay® =» x® from the vertex to the 
point (a, a). 

By differentiation. 

2ayy' = 3x®. 

Therefore 

y'a == 9x«/4a®y® = 9x</4ax® = 9x/4a. 

Hence the requited length 

=1^ l/{l + 9x/4o} dx 
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- f” t.ltdt^ where t® = 4a + 9x, 
lyaJiVa 9 

- -*»V(I3)-8>a. 
27ya»- ^2\/a 

Ex. 2, Show that 8a is the length of an arch of the 
cycloid whose equations are 

X = a(t - sin t), y = a(l - cos t). 

Here dxjdt = a(l — cos t) = 2a sin* it, 

dy/dt = a sin t = 2a sin it cos it. 

Also, two consecutive values of t for which y = 0 are 
t ~ 0 andt ==2?r. 

Hence the length of an arch J3ir 

|/ {(2a)* sin"* it + (2a)* sin* it cos* it} dt 

CsT r "lair 
= 2aJ sin it dt = 4a - cos it J = 8a. 

Ex. 3. Find the length of the arc of the equiangular 
spiral r = ae^ ^ between the points for which the radii 
vectores are ri and ra. 

Here = a cot a 
do 

= r cot a. 

Hence the required length 

=1**^ v'' {tan* a + 1} dr = sec a ■=(ts - rjseca. 

7’11. Remarks, (i) It must be remembered that 

has two values, ±: ^(x), where {^(x) }* = 1 + (dyldx)*. For 
finding lengths, the positive value must be chosen. If 
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the negative value is chosen, the length will obviously 
come out negative* 

If ^(x) is a function which changes sign at some value 
c within the range of integration (a, b), then the definite 
integral from a to c must be broken into the sum of two 
definite integrals, one from a to c and the other from c 
to b, and the positive value of the integrand taken in each* 
Otherwise the result will be the difference of the lengths 
of the two arcs. 

Thus, if the length of the arc of the cycloid 

X = a(t - sin t), y = a(l - cos t), 

is wanted from t ^ 0 to t ~ 4^ (two complete arches), one 
might be tempted to work thus: 

Requited length - 1 (J)’ + ©’ ( * 

= 4aJ^ - cos it , as in Ex. 2, § 7’ 1, 

The reason why we get zero is that cos it is negative from 
t = to c «= 4^# 

The easiest procedure is to find the length of the 
smallest part which by symmetry will give the whole length 
wanted, and see that the integrand is not negative within 
the range of integration. 

(ii) Finding the length of a curve is also called 
rectification. 

(iii) If it is more convenient in any particular case to 
take y as the independent variable, we can use the formula 

Examples 

Find the length of 

* 1. The arc of the parabola x* = 4ay from the vertex 
to an extremity of the latus-rectum. [Dacca, 1939} 



150 LENGTHS OF CURVES 

2. The arc of the curve y == ae^ from the point (0, a) 
to the point (xi,yi). 

3. The arc of the curve y^a ~ x) = x® from (xu ^i) to 
(x2, y2)* 

4. Find the length of an arc of the parabola y = x^, 
measured from the vertex. 

Calculate the length of the arc to the point (1,1), given 
log (2 + V5) - 1*45. [Calcutta, 1938] 

^ 5. Prove that the length and area of the loop of the 
curve 3ay* = x(x~a)® are 4a/i/3 and 8a*/15i/3 respectively. 

[Punjab, 1936] 

^ 6. Find the length of the curve , 1 
5-log^.^j 

from X = 1 to X = 2. [Patna, 1937] 

7* Show that the length of an arc of the curve 

x» = a^d ~ ev/«) 

a “f" X 
measured from (0, 0) to (x, y) is a log ^ ^ - x. 

8. Show that in the epicycloid for which 

x = {a+ b) cos 6 - b cos {(a + bjd/bl, 

y = (a + b) sin 0 - b sin {(a + b)0lb}, 

s = {4b(a + b)/a} cos(a6/2b), 

s being measured from the point at which 0 = Tibia, 

9# Rectify the curve 

X = a(0 + sin 0), y = a(l - cos 0). 

[Delhi, 1945] 

10. If the coordinates^of a point on the curve 3ay* » 
x{a - x)* are expressed in terms of a parameter in the form 

X « 3at2, y ^ _ 3(3)^ 

show how the curve is trac^ out as t increases from - oo 
tO+ 00, 
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Show that the length of the arc of this curve from the 
origin to the point of the loop where the tangent to the 
curve makes an angle v with the y-axis, is 

•g-aO tan iv + tan® iv)* [London, 19371 

Find the length of 

11. The arc of the cardioid r «= a(l - cos 0) between the 
points whose vectorial angles are a and 

i 12. The perimeter of the cardioid, r = a(l - cos 0). 
[Agra, 1945] 

13. The arc of the spiral r - aO between the points 
whose radii vectores are tj and ts. 

14. The perirs.-ier of the curve r = a cos 0. [Alig., ’45] 

15. Find the length of the curve 

r*'® = 8 cos ^0. 

'•/ *16. Find the entire length of the cardioid r = 
a(l + cos 0), and shew that the arc of the upper half is 
bisected by 0 = i?r. [Punjab, 1939] 

17. Find the length of an arc of the cissoid 

r = a sin® 0/cos 0. 

7’2. Intrinsic equations. By the intrinsic 
equation of a curve is meant a relation between s 
and ijj where s is the length of the arc AP of a 
curve measured from a fixed point A up to the 
point P, and ^ is the angle which 
the tangent to the curve at P makes y 
with a fixed straight line (generally 
the tangent at A). 

(i) To find the intrinsic equation 
from the Cartesian equation. Take 
the axis of x as the fixed straight 
line with reference to which ^ is , 
measured. Let the abscissa of the 
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point from which s is measured be a. Then, if 
the equation to the curve is y = f(x), we have 

tan ^ = df{x)jdx, . . (1) 

and s— I + 
Ja 

= F(x), say. . . (2) 

Eliminating x between (1) and (2), we get a 
relation between s and tj/, which is the intrinsic 
equation of the curve. 

Ex. Find the intrinsic equation of the catenary 

y — a cosh (x/a). 

Suppose s is measured from the point whose abscissa 

is 0. Then s = | \^{l + sinh® (x/a)} dx 
vjo 

“ J cosh (x/a) dx = a sinh (x/a). 

Also tan y = dy/dx = sinh (x/a). 

Hence the required intrinsic equation is 

s = a tan y. 

(ii) To find the intrinsic equation from the Polar 
equation. Take the initial line as the fixed straight 
line with reference to which ^ is measured. Let 
a be the vectorial angle of the fixed point from 
which s is measured. Then, if the curve be r = /(0), 

tan <j) 

»/' = 0 + <|>, 
d0 _ /(0) 
dr“f(0) 

and s = j V[l/(0)}* 

F(0), say. (3) 
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Eliminating 0 and <{) between (1), (2) and (3), 
we get a relation between s and which is the 
intrinsic equation of the curve. 

Ex. Find the intrinsic equation of the cardioid 

r -- a(l — cos 0), 

Suppose s is measi’ red from the pole. 

Then 

s - a| v'iil - cos 0)® + sin® $}d0 

- 2a| sin^e d(J .= 4a f - cos iO 

- 4a (1 - cos ie) = 8a sin® f0. 

Also ta.n 4>-'r do I dr 

^ (1 — cos 0)/sinO — tan is. 

Therefore^ = so that v = iO- 
It follows that s - 8a sin’ iy>, which is the required 

intrinsic equation. 

7*3. Length of arc of an evolute. If a 
curve is given and the length of an arc of its 
evolute is required, it is not necessary to find the 
evolute first. We can use the following proposition 
(see Tcxt'Book on Diff. Cal., § 12'42): 

The difference between the radii of curvature at 
any two points of a curve is equal to the length of the 
arc of the evolute between the two corresponding points. 

\oJ> 
*1. 

Examples 

Show that the intrinsic equation of the parabola 
= 4ax is 

s = a cot y> cosec y> +a log (cot y> + cosec y), 

y being the angle between the x^axis and the tangent at the 
point whose distance from the vertex is s. 
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* 2* Show that the intrinsic equation of the equiangular 
spiral r = when the arc is measured from (a, 0), is 

s = ai^d + m^). - l)/m, 

where P tan*' (l/m). 

^3. 

y 

Show that in the parabola lair = 1 + cos df 

ds _ la 

dtp sin^ tp * 
[Agra^ 19331 

^ 4. Show that the whole length of the evolute of the 
ellipse x^la^ + y^lb^ = 1 is 4(a*/b - b^la), 

• 5. Find the evolute of a parabola, and show that the 
length of the arc of the evolute from the cusp to the point 
at which the evolute meets the parabola is 2a(3y 3 - 1), 
where 4fl is the latus rectum of the parabola. 

[Allahabad, 1927] 

6. Find the intrinsic equation of the cardioid 

r “ a( 1 + cos 0), 

and hence, or otherwise, prove that 
59 4. 9^3 ^ 15^9^ 

where q is the radius of curvature at any point, and s is the 
length of the arc intercepted between the vertex and the 
point. \u i 

Examples on Chapter VII 

^ 1. Show that the length of the arc of the parabola 
= 4ax cut off by the line 3y =• 8x is a(loge 2 + rs')* 

[Andhray 1937 J 

*‘2. If s be the length of the arc of the catenary y - 
c cosh (x/c) from the vertex (0, c) to the point (x, 51), show 
that - cK [Pama, 1940] 

^ 3. In the catenary y a cosh (x/a), prove that the area 
between the curve, the axis of x and the ordinates of two 
points on the curve varies as the length of the intervening 
arc. IPunjaby 1940] 
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4* In the ellipse x a cos y « b sin show that 

ds == a]/(l ~ e* cos* d^, 

and hence show that the whole length of the ellipse is 

where e is the eccentricity of the ellipse. 

5* Find the length of the arc of the curve 

X ~ sin 0, y - cos 6 

from 0 = 0 to 0 ^ [CaZcutta, 1943] 

* 6. Show that the length of an arc of the curve 

X sin 0 + y cos 0 - /'(0), 

X cos 0 - ^ sin 0 -=f'(0), 

is given by s =- /(0) + f"{0) + C. K-r E 

* 7« In the four-cusped hypocycloid x*^^ + y*^^ -- 
show that 

(i) s ^ fa cos 2v, s being measured from the vertex; 

(h) whole length ot the curve is 6a. [Nag|?ur, 1933] 

* 8. Prove that the cardioid r - a(l4-cos0) is divided 
by the line 4r cos 0 -= 3a into two parts such that the lengths 
of the arcs on either side of this line are equal. 

[Mysore, 1936] 
I 9. If s be the length of the curve 

T = a tanh i0 
between the origin and 0 =- Iti, and A be the area under the 
curve between the same two points, prove that 

J ==a(s - an)^ [Patna, 1941] 

10. Prove that the perimeter of the limacon r ^ 
b cos 0, if bja be small, is approximately ’ 

2naa +Ib^la^l . 

11, Show that the whole length of the limac'on 

r = a f b cos 6 (a ^b) 

is equal to that of an ellipse whose semi-axes are equal in 
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length to the maximum and minimum radii vectores of the 
limacon. [Allahabad, 1940] 

> 

[Hint. Take the ellipse to be 

X - (a + b) cos y (a ~ b) sin t. 

12. An ellipse of small eccentricity has its perimeter 
equal to that of a circle of radius a. Show that its area is 

nearly. 

13. Show that the length of a loop of the curve 
3x^y - y^. - (x^ + 

is 

[Hint. 
coordinates. 

d: 
vd - 

Change the equation of the curve into polar 
C is merely r.j 

14. Trace roughly the curve - 2x®) and 
show that its whole length of arc is 

Show that the area enclosed by the curve is f of that 
of the circumscribing rectangle whose sides are parallel to 
the axes of coordinates. [London, 1938] 

15. Find the intrinsic equation of the spiral r the 
arc being measured from the pole. 

» 16. Find the intrinsic equation to a parabola in its 
simplest form. 

Deduce that the length of the arc intercepted between 
the vertex and an extremity of the latus rectum is 

a]l/2 + log(l+ v/2)}, 
4a being the latus rectum, [Agra, 1936] 

* 17. Show that the intrinsic equation of the cycloid 

X <= a(t + sin t), y = a(l - cos t) 

is s = 4a sin y>. 

* 18. Show that the intrinsic equation of the semi-cubical 
parabola 3ay* = 2x® is 

9r=» 4a(sec» y - 1). 
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19. Prove the formula 

_ f ^ 

^ J |/ (r* - f>®) ■ 
Show that the arc of the curve 

pHa* + r*) = a'*r® 

between the limits r — b, r ^ c is equal in length to the arc 
of the hyperbola xy ^ a® between the limits x = b,x = c. 

[LMcfenow, 1935] 

CHAPTER VIII 

VOLUMES AND SURFACES OF 
SOLIDS OF REVOLUTION 

8’1. Volumes of solids of revolution. Let 
CD be the curve 
y = /(x), and let v 
a and b be the 
abscissae of C and 
D; and suppose 
that the volume 
of the solid gene¬ 
rated by the re¬ 
volution, about 
the x-axis, of the 
area bounded by 
the arc CD, the L 
x-axis, and the ° 
ordinates of C and D is required. 

Divide AB into n parts, each equal to h, and 
erect ordinates at the points of division. Let the 
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ordinates at x = a+ rh and x = a + (r + 1)K be PM 
and QN. Construct as in the figure, and suppose® 
y goes on increasing as x increases from a to b. 

We shall assume as an axiom that the volume 
of the solid generated by the revolution of the area 
MNQP lies in magnitude between the volumes 
generated by the rectangles MNRP and MNQS, 
i.e., between 

7r[/la + and Tt[f{a + (r + l)hl]*/i. 

Adding up for each strip into which the area 
ABDC has been divided, we see that the volume 
of the solid generated by the area ABDC lies in 
magnitude between 

n 21 [f{a + and tt 2 [f\a + (r + l)h]“h. 

Now let h tend to 0. Then the two sums last 
written both tend to 

[/Wl'dJC, i.e., Tr[ y* dx. 
Ja 

Hence the volume of the solid generated by 
the revolution, about the x-axis, of the area bound¬ 
ed by the curve y = /(x), the ordinates at x = a, 
x = b, and the x-axis, is equal to 

This theorem can be easily modified to give the volume 
when the axis of revolution is not the x-axis, or when the 
equation is given in polar coordinates, or in a parametric 
form. 

•This restriction can be easily removed as in the case 
of areas. See § I'S.' 
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Thus, interchanging x and :y in the above formula, we 
see that the volume of the solid generated by revolving 
(about the :y-axis) the area bounded by the curve, the lines 
y gi y ~ K and the 31-axis, is equal to 

in which the value of x in terms of y must be substituted 
from the equation of the curve* 

If, however, the a!fcis of revolution is not the y-axis, 
but a line (say x = c) parallel to it, the volume will be 

for the perpendicular upon the axis of revolution from a 
point on the curve will now be x - c. 

A similar formula can be written down when the axis 
of revolution is a line parallel to the x-axis. 

If the curve is given by an equation in polar coordi¬ 
nates, say T =a f(e\ and the curve revolves about the initial 
line, the volume generated 

where a and P are the values of d corresponding to the 
extremities C and D of the curve (for which x = a and x^b 
respectively). 

Now X = r CO3 0 ; y = r sin 0. Hence the volume 

^ sin*0 (r cos 0) dd, 

in which the value of r in terms of 6 must be substituted 
from the equation to the curve. 

Similarly, if the curve is given by the equations 

X = ^(c), y - v(t), 

and if the extremities C and D of the curve correspond to 
the values k and I oft, the volume generated by the revolu' 
tion of the area ABDC about the x-axis 

=j* d* ^ '(t) dt. 
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Finally, if the curve CD revolves about some straight 
line AB which is not the x- or the ;y-axis, and if CA, DB are 
the perpendiculars on AB from C and D respectively, we 
can choose temporarily AB and AC as new axes of reference, 
say as the axes of c and y. Then the volume generated by 
the revolution of the area ABDC about AB 

i* dx. 
ax 

The integral can be evaluated by the usual methods 
after expressing and d^fclx in terms of x, as in the worked' 
out example below* 

Ex* L The curve y^a + x) = 
x^(5a - x) revolves about the axis of x. 
Find the volume generated by the loop* 

raa 
Volume required = ti j dx 

^ x^(3a - x) j 
^ . dx 

Jo dt + X 

130 i * , ) 
-^7i\ -j X® + 4ax - 4a^ + ~ } dx 

Jo ( x-f a ) 

- ^ + 2ax* - 4a*x 

+ 4u^ log (x -f a)J 

JT { - 3a^ + 4a3 logo 4} = ^(8 log^ 2 - 3)a®* 

Ex* 2* The part of the parabola y^ = 4ax cut off by 
the latus rectum revolves about the tangent at the vertex* 
Find the volume of the reel thus generated. 

Here the axis of revolution is the y-^xis, and so we use 
the formula nfx^ dy instead of the formula dx* Also, 
on account of symmetry, we can find the volume of the 
solid generated by the parabola from the vertex to the end 
of the latus'rectum (a, 2a) and double it to obtain the total 
volume. Thus the required volume 

« y^ra®. 
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Ex. 3, Find the volume of the solid generated by the 
revolution of the cissoid 

X «2a sin^t, y -=-2a sin^c/cost 

about its asymptote. 

The asymptote is x la. The per¬ 
pendicular on it from any point (x, y) on 
the curve is, therefore, la -* x. Also, there 
is syhimetry about the x-axis. 

Hence the volume required 

In {la — x)* dy ~ In 
' ymO 

rv 
o o A o 3sin®tcos®t-f-sm^t j 
ln\ 4a*cos*t*2a. „ - dt 

•f 0 

^ cos’ t sin’t (1 + 2 cos’ t) dt 
Jo 

cos’ t 

16^a^J 

,8 j r{4)r(i)i . . 3 
\ 2T0) r(4)' 

Ex. 4. The cardioid r « a(l + cos O) revolves about the 
initial line* Find the volume of the solid generated* 

The volume required 
t9a r^«o Av 

Cv ^ 
a. - «J a*(l -f CO8 0)* sin’© {a(l + cosO) cos^} ds 

» (1 + cos 0)® sin® $ (2 cos 6 A- l)d6 

fx/a 
•=2na^\ (1 + 5 C05* o) sin* by § 5'2, 

. i n2)r(i) r(i)r(2)) , 
^ 1 21(4) ^ ’2r(i) J * 

Ex. 5. The arc cut off from the parabola y® = 4ax by 
the chord joining the vertex to an end of the latus rectum 
Is rotated through four right angles about the chord. Find 
the volume of the solid so formed. 

11 
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Let A be the vertex, S the focus, SL the latus rectum. 
Let P be any point (x, y) on the 
arc AL, and PM the perpendicular 
on AL. 

Let AM = $, PM = y. 

Then, since the equation to 

AL is y = 2x, 
t] = PM = (y-2x)l\/5 

- 2(v/uv/x - x)/t/5. 

Also AM* = AP» - PM* 

„ X* + y* - (y - 2x)*/5 * ® 

= (5x* + Sy* - y* - 4x* + 4xy)/5 = (x + 2y)®/5. 

Therefore ^ = (x + 4v'ai/x)/t/5. 

Hence the required volume 

= ■\f! 5^5 I ^ 
Multiplying out and integrating, we easily find that the 

volume 
= (2v'5)wt3/75. 

Examples 

1. Show that the volume of a sphere of radius r is 
^r®. [Aligarh, 1935] 

2. Find the volume of a spherical cap of height h cut 
off from a sphere of radius a. 

» 3. A segment Is cut off from a sphere of radius a by a 
plane at a distance ia from the centre. Show that the 
volume of the segment is 5/32 of the volume of the sphere. 

[Andhra, 1936] 

4. Find the volume of the paraboloid generated by 
the revolution about the x-axls of the parabola y* = 4ax 
from X - 0 to X - h. 
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5, Find the volume of the solid generated by revolv¬ 
ing the ellipse ^ 

x^la^ + y^lb^ = 1 
about the x^^axis. [Calcutta, 1942} 

*** 6* The part of the ellipse 

x^la^ + y^lb^ - 1 
cut off by a latus rectum revolves about the tangent at the 
nearer vertex. Find the volume of the reel thus generated. 

[Madras, 1936} 

• 7. Prove that the volume of the solid generated by 
the revolution of an ellipse round its minor axis is a mean 
proportional between those generated by the revolution of 
the ellipse and of the auxiliary circle about the major axis, 

[Punjab, 1939} 

8. If the hyperbola 

x^la^ - y^lh^ = 1 
revolves about the x^axis, show that the volume included 
between the surface thus generated, the cone generated by 
the asymptotes and two planes perpendicular to the axis 
of X, at a distance h apart, is equal to that of a circular 
cylinder of height h and radius b. [Nagpur, 1935] 

9. A s^lid of height h is bounded by two parallel 
faces of areas Ai and A2, and the area of a parallel section 
at a distance x from one face is given by the formula 
ax^ + i?x* + cx + d; A is the area of the section which is 
exactly midway between the two faces. Show that the 
volume of the solid is 

ih(Ai + 4A + A3')* [Lucknow, 1937] 

* 10. Prove that the volume of the solid generated by 
the revolution of the curve 

^ “ a“ -f x^ 

about its asymptote is [Pa(na, 1933} 

^ 11. Trace roughly the curve x>» « 4(2 - x). 
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Rnd the area enclosed by the curve and y-axls, and 
also the volume of the solid formed by the revolution of 
the curve through four right angles about the y-axis. 

II.C.S., 1938] 

12. Find the volume of the spindle'shaped solid 
generated by revolving the astroid x®''® + about 
the x-axis. ^, o- [Benares, 1938] 

8’2. Surfaces of solids of revolutiooL. Let 
CD be the curve y—f{x) (see the figure on p. 157) 
and let the abscissae of C and D be a and b. 
Further, let the length of the arc from C up to any 
point P (x, y) be s, and suppose that the curved 
surface of the solid generated by the revolution of 
CD about the X'axis is required. 

Divide AB into n parts, each equal to h, and 
erect ordinates at the points of division. Let the 
ordinates at x=a-hrh and x=fl + (»'+l)h be PM 
and QN, and construct as in the figure. Let the 
arc PQ be equal to o, and suppose® y goes on in¬ 
creasing as X increases from a to b. 

We shall assume as an axiom that the curved 
surface, of the solid generated by the devolution 
of MNQP about the x-axis lies in magnitude bet¬ 
ween the curved surfaces of the two right circular 
cylinders, each of thickness o, one of which has the 
radius PM and the other the radius QN, i,e., 
between 

2ff/la + rh}<r and Zirfia +(r + l)h}a. 

Adding up for each strip into which the area 
ABDC has been divided, we see that the surface of 
the solid generated by the revolution of ABCD 
lies in magnitude between 

•This restriction is easily removed as in | 1*8. 
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2Jr il ^ f{a + rh\ h and 27t 2 ^ f{a + (r + l)h}h, 
1^0 il fsstO 

Now let h tend to zero. Then ofh tends to 
dsfdx, and so the two sums last written both tend to 

2^r [ f(x) dx, i.e., 2jr [ ~ y ds. 
Ja dx 

Hence the curved surface of the solid gene¬ 
rated by the revolution, about the x-axis, of the 
area bounded by the curve y = f(x), the ordinates 
at X = a, X = b, and the x-axis, is equal to 

When the axis of revolution is not the x-axis, or when 
the equation is given in polar 
coordinates, the same devices 
may be used as for finding 
volumes. 

Ex. Find the surface of 
tne solid generated by the 
revolution of the astrold 

X = a cos^ t, y = ct sin^ t 

about the axis of x. 

Here dxfdt «= - 3a cos® f sin t, 

dyidt « 3a sin* t cos t. 

Therefore dsfdt « ± 3a sin c cos t. 

Also, ks X varies from 0 to a, t varies from njZ to 0; 
and there is symmetry about the y-axis. 

Hence the required surface 
f««a [0 Jc 

« 2 X I y ds« I yir: dt 
J XmO J ir/a 

Cr/s 
•=12»wi»| sin^tcostdt, giving that sign to 

Jo 

dsfdt which will give us a positive result. 
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Urt 
a“ fsin® t "I = -i-na!*, 

Examples 

' " 1. Show that the surface of the spherical zone con¬ 
tained between two parallel planes « Inah^ where a is the 
radius of the sphere and h the distance between the planes. 

[Patna, 1940] 

2. A circular arc revolves about its chord. Prove 
that the area of the surface generated is 4:^a®(sin a- a cos a), 
where a is the radius and 2a the angle subtended by the 
arc at the centre. [Travancore, 1941] 

' 3. Find the area of the solid formed by the revolution, 
about the axis of y, of the part of the curve ay^ « from 
X «* 0 to X « 4a which is above the x axis# 

4. The arc AL of a parabola, where A and L are 
respectively the vertex and an extremity of the latus rectum, 
is revolved about its axis. Find the area of the surface 
generated. [Nagpur, 1929] 

" 5. Find the area of the surface formed by the revolu¬ 
tion of x’ -f 4y® = 16 about its major axis. [Lucknow;, 1931] 

6. Prove that the surface of the prolate spheroid 
formed by the revolution of an ellipse of eccentricity e 
about its major axis is equal to 

2 • area of ellipse. {V{1 - e*) + (sin“‘ e)/e). 

^ 7. The coordinates of a point on a cycloid are 

X = a(0 + sin y == a(l + cos 0), 
Show thtft the ratio of the area of the surface formed 

by the rotation of the arc of the cycloid between two 
consecutive cusps about the axis of x, to the area enclosed 
by the cycloid and the axis of x is [Allahabad, 1932] 

* 8. Prove that the surface of any zone of a paraboloid 
of revolution is proportional to the difference of the radii 
of curvature of the generating curve at the points where 
it is cut by the bounding planes of the zones. [The solid 
formed by the revolution of a parabola about its axis is 
called a parabdoid of revolution.] 
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8*3. Theorems of Pappus**, (i) If a closed 
curve revolves about a straight line in its plane, which 
does not intersect it, the volume of the ring thus 
formed is equal to the area of the curve multiplied by 
the length of the path of its centroid. 

Take the axis of rotation as the x-axis, and let 
CPjDPa be the closed area. 

Let CA and DB be the 
tangents parallel to the ji-axis, 
their equations being x — a, 
X = b respectively {a<b). 

Let the values of y correS' 
ponding to any x be y^ and y^. 

Then the volume generated by the closed area 

= volume generated by ABDPjC 
— volume generated by ABDPjC. 

fb b [b 
= TT dx — 7T • yjS dx = TT (y,® — dx. 

Ja a •'a 

Now it is well known (or see next chapter) 
that the ordinate t] of the centroid of the area of 
the closed curve CPjDPa is given by 

n = 

•Pappus, a geometrician of great power, lived and 
taught at Alexandria about the end of the third century* 
The theorems about surfaces and volumes of solids of 
revolution now named after him were first given by him in 
his Mathematical Collectims^ the only work of his still, 
extant* These theorems were re-discovered by P. Guldin 
over 1,000 years later, and so they are sometimes called 
Guldin*s theoremSb 
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where A is the area of the closed curve. 

Hence the volume generated = ZjttiA, which 
proves the theorem. 

(ii) If an arc of a curve revolves about a straight 
line in4ts plane, which does not intersect it, the surface 
generated is equal to the length of the arc multiplied 
by the length of the path of the centroid of the arc. 

Take the axis of rotation as the x-axis, and 
let the abscissae of the extremities of the arc be 
a and b. Then the surface generated by the 
revolution of the arc is equal to 

rx’=b 

2ir y ds. 

Now it is well known (or see next chapter) 
that the ordinate t)s of the centroid of the arc from 
X = a to X = b, of length I, is given by 

Hence the surface generated = 2nr\ si, which 
proves the theorem. 

Note 1. The closed curve or arc In the above theo¬ 
rems must not cross the axis of revolution, but may be 
terminate . by it; for even then the above proofs apply. 

2, When the volume or surface generated is other¬ 
wise known, the above theorems may be applied to 
determine the position of the centroid of the generating 
area or curve. ■ 

Ex. 1. Find the surface-area and volume of the 
anchor-ring generated by the revolution of a circle of 
radius a about an axis in its own plane distant b from its 
centre (b> a). 
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The centroid of the area of a circle and 
also of its circumference is the centre. ^ 

Hence the volume of the anchor^ring 

=: * 2nb = 

Again, the surface area of the anchor-ring 
= Ztzu . 2nb ~ ^n^ab* 

Ex* 2. Find the position of the cen¬ 
troid of a semi-circular area. 

X 

By symmetry it is evident that the centroid must be 
somewhere on the radius Yl 
which is perpendicular to the 
bounding diameter. Let the 
distance of the centroid from 
the centre O be 

Then Ztitj x area of the 
semicircle == volume of a sphere 
of radius a* 

Hence _ \ _ 4a 
^ 2n * 3^1 * 

Examples 

L Find the volume of the ring generated by' the 
revolution of an ellipse of eccentricity l/i/2 about a 
straight line parallel to the minor axis and situated at a 
distance from the centre equal to three times the major 
axis, 

** 2, The loop of the curve 2ay* - x(x - a)® revolves 
about the straight line :y = a; find the volume of the solid 
generated. [Allahabad, 1928] 

3* A groove of semi-circular section of radius b is cut 
round a circular cylinder of radius a; prove that the 
volume removed is n^ab^ - Show also that the area 
of the surface of the groove is Zn^ab - 4t^b\ 
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* 4. Evaluate the area of the surface generated by the 
revolution of the cycloid 

X ==: a(t - sin t), y -= a(l - cos t), 
about the line y = 0. [Punjab, 1944J 

* 5, Establish Pappus theorems on surfaces and vo-* 
lumes of solids of revolution. 

Apply the results to determine the position of the 
centre of gravity of (i) a quadrant of a uniform circular 
lamina, (ii) a quadrant of a circular arc. [Bombay, 1937] 

• 6. The lemniscate = a® cos 29 revolves about a 
tangent at the pole. Show that the volume generated is 

Examples on Chapter VIII 

1. The hyperbola x®/a® - y®/b® « 1 revolves about the 
axis of X. Show that the volume cut ofiF from one of the 
two solids thus obtained by a plane perpendicular to the 
x-axis and distant h from the vertex, is 

(3a + h)/3aK 

2. *1 he part of the curve y® = x®(l - x®) between x = 0 
and X — 1 rotates about the x^axis. Obtain the volume 
of the solid thus generated. [Andfira, 1936] 

3# Find the volume of the solid formed by the revolu^ 
tion of the loop of the curve y® ==- x®(a - x)/(a + x) about the 
x-axis. [Aligarh, 1945] 

^ 4. Show that the volume of the solid generated by the 
revolution of the curve 
> (a- x)y® == a®x 

about its asymptote is 
5, Find the volume generated by the revolution of 

the loop of the curve y® = x^(x+ 2) about the axis of x. 
6. A basin is formed by the revolution of the curve 

X® « 64y, (y !> 0) about the axis of y. If the depth of the 
basin is 8 inches, how many cubic inches of water will it 
hold ? [Punjab^ 19451 
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* 7. A quadrant of a circle of radius a revolves about 
its chord. Show that the volume of the spindle generated is 

(:^I6] ''2)(10 — 3n)a^^ 

8. Find the volume of the solid generated by rotating 
completely about the x-axis the area enclosed between 
y® = + 5x and the lines x = 2 and x = 4. [Madras, 1934] 

9. The volume of a hemisphere is divided into two 
equal parts by a plane parallel to its base. Show that the 
distance of the plane from the base lies between three- 
tenths and four-tenths of the radius of the hemisphere. 

[Lucknow^ 1937] 

10. The figure bounded by a quadrant of a circle of 
radius a and the tangents at its extremities revolves about 
one of the tangents. Prove that the volume of the solid 
generated is (i- ~ [Madras, 1937] 

11. The area between a parabola and its latus rectum 
revolves about the directrix. Find the ratio of the volume 
of the ring thus obtained to the volume of the sphere 
whose diameter is the latus rectum. [Allahabad, 1931] 

12. If b be the radius of the middle section of a cask, 
and a the radius of either end, prove that the volume of 
the cask, is « 

rV^Oa® + 4ab + 8b®)fi, 

where h is the length of the cask, it being assumed that the 
generating curve is an arc of a parabola. [Uicknow, 1932] 

13. Find the volumes of the oblate and prolate spher¬ 
oids generated by an ellipse whose major and minor axes 
are (24^)^^^ and (3^)*^®. [Dacca, 1937] 

14. The ellipse b*x®+a®3^^ « a^M is divided into two 
parts by the line x=4a, and the smaller part Js rotated 
through four right angles about this line. Prove that the 
volume generated is 

na^h{i\/3-in), [Punjab, 1934] 

15. A solid spheroid formed by the revolution of 
the ellipse 4* a»y*« a*b® about the major axis has a 
cylindrical hole of circular section having the major axis 
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as axis drilled through it. Prove that the volume of the solid 
which remains is where 21 is the length of the 
hole, [Punjab, 1935] 

16, Find the area included between the curves y* =* x® 
and X* = :y^, and find the volume of the solid of revolution 
obtained by rotating this area about the x-axis. 

• 17. Show that if the area lying within the cardioid 

r = 2a(l + cos e) 

and without the parabola t(1 + cos 0) = 2a revolves about 
the initial line, the volume generated is IS/ra®. 

[Benares, 1941] 

18. Show that the volume of the solid generated by 
the revolution of the cycloid 

X = a(d + sin 0), y « a(l ~ cos 0) 

about the y-axis is - |). [Dacca, 1935] 

* 19, Prove that the volume of the reel formed by the 
revolution of the cycloid 

X = a(0 + sin 0), y = a(l - cos 0) 

about the tangent at the vertex is [Allahabad, 1933] 

20, Find the area A between the curve 

y == a(sin x + i sin 3x + y sin 5x) 

and the axis of x between the termini (limits) 0 and n; and 
the volume V obtained by rotating this area about the 
axis of X. Prove that 4V = n^aA. [Bombay, 1935] 

21. Sketch the curves 

xy* « a®(a - x), (a ~ x)y®« a*x. 

Prove that the volume obtained by revolution about x « ia 
of the area enclosed between these curves is !n:a^(A - ^r)/4. 

[I, C. S., 1940] 

• 22, Find the volume of the solid formed by revolving 
one loop of the curve 

r®« a* cos 20, 

(i) about the initial line, and (ii) about the line 6 « njZ, 
[Agra, 1934] 
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23. Show that the curve r 1 + 2 cos d consists of an 
outer and an inner loop. 

If the area of the inner loop is rotated through two 
right angles about the initial line, show that the volume 
of the solid so formed is [London, 1936] 

24. Prove that the volume generated by the revolu¬ 
tion of the limacon r a ~hb cos 0, a '> b, is 

+ {?“)♦ 

25. Prove that the volume of the solid generated by the 
revolution of the conchoid r«a + bsec0(-^;r<0<in) 
about its asymptote is 

26. The part of the parabola ~ 4ax cut off by the 
latus rectum revolves about the tangent at the vertex. 
Find the curved surface of the reel thus generated. 

27. Find the area of the surface swept out by the arc 
of the rectangular hyperbola x® ~ ^ a®, extending from 
the vertex to the end of the latus rectum, when rotated 
through four right angles about the axis of x. 

[London, 1933] 

28.. The arc of the cardioid r = a(l + cos d) included 
between — ^ is rotated about the line 0 » in. 
Find the area of the surface generated. [Bombay, 1936] 

^29. The curve 
r == a{l + cos e) ' 

revolves about the initial line. Find the volume and the 
surface of the figure formed. [Allahabad, 19451 

30. The lemniscate « a* cos 2& revolves about a 
tangent at the pole. Show that the surface of the solid 
generated is 4^a®. [Nagpur, 1926] 

Prove that the surface and volume of the solid 
generated by the revolution, about the x-axis, of the loop 
of the curve 

X « t*, y « t - it® 

ate respectively 3^ and f [Allahabad, 19411 
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' 32. Prove that the surface and volume generated by 
the revolution of the tractrix 

X « a cos t + ia log tan® it, 

:y = a sin t, 

about its asymptote are respectively equal to the surface 
and half the volume of a sphere of radius a. 

[LucknoWy 1938] 

33. Find the volume, and also the surface, generated 
by the revolution of the catenary 

y ^ c cosh (x/c) 

about the axis of x. [Agra, 1940] 

^34. A (0, a) and P (x, y) are two points on the curve 
whose equation is :y - a cosh (x/a), and s is the length of 
the arc AP, If the curve makes a complete revolution 
about the x-axis, prove that the area S of the curved 
surface, bounded by planes through A and P perpendicular 
to the x-axis, and the corresponding volume V are con¬ 
nected by 

aS = 2V == 7ia{ax + sy)* [Agra, 1936] 

35. An area lies altogether on one side of an axis in 
its plane. Prove that the volume of the solid formed by 
the rotation of the area about the axis is equal to the area 
multiplied by the distance traversed by Us centre of gravity. 

Hence prove that the volume of the solid formed by 
the rotation about the line ^ = 0 of the area bounded by 
the curve r«/(0) and the lines 0 =* 0 = 02> is 

P*r* sin 6 dd, 
Jh 

Find the volume of the solid formed by the revolution 
of the cardioid r « a(l -f cos 0) about the line 0 *= 0. 

[Math. Triposy 1924] 



CHAPTER IX 

APPLICATIONS 

9*1. Centre of gravity. It is proved in 
books on Statics that if the centre of gravity of 
masses mj, mj,..m„, which have their centres of 
gravity at (xj, y^), (x,, y*),.(x„, y„), is (|, n), then 

. _ 2mx _ 2my 
^ “ 2Tn ’ “ Sm ’ 

where 2mx means TnjXi + maXa +... + m„x„, and 
2m and 2my have similar meanings. 

In the case of continuous distribution of 
matter, the above summations become definite 
integrals. 

(i) Centre of gravity of an arc. 

Let CD be an arc of 
the curve y = /(x) from 
x = atox = b, and let CA 
and DB be the ordinates of 
C and D. Divide AB into 
n parts, each of length h, 
and erect ordinates at the 
points of division Let 
the points the abscissae 
of which are a + rh and 
a + (r + l)li be P and Q, and let a be the length of 
the arc PQ and s that of CP. 

Then if X be the mass of unit length of the 
arc, it’ is obvious that 2mx for the arc PQ lies in 
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magnitude between "Ka . OM and “Ka. i.e., 
between 

A,oia + rhi and Xa{a + (r + l)Kl. 

Adding up for all the parts into which CD 
has been divided, we find that 2mx for the arc CD 
lies between 

"s U<^lh){a + rhlh and s\(cf/h)ia + (r + l)h}L (1) 

Now let h tend to zero. Then the two sums 
last written both tend to 

supposing that A. is a constant. 

Also 2m = mass of the arc CD = XL if the 
length of the arc CD is L. 

X ds 
Hence 

Similarly tj 

rx^ 

yds 

the only modification required in the above proof 
being that in the sums (1) there will be 

f{a + rh] and f\a + (r + 1)H} 

instead of a + rh and a -f (r + l)/i, so that we shall 
get in the final result instead of x. 

(ii) C^tre of ^avity of an area. Suppose the 
centre of gravity (|, tj) of the area bounded by the 
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curve CD, the x-axis, and the ordinates at C and D 
is required. Let tj be the mass per unit area. 

We shall find t] first. 

With the same construction as before, the 
area under consideration is divided into strips. 
The contribution to 2my by any one strip of 
breadth h is equal to 

H X area of the strip MNQP x distance of its 
centre of gravity from the x-axis. 

Now for the rectangle MNRP the mass is evi¬ 
dently less and its centre of gravity is nearer to the 
x-axis than for the strip MNQP. The reverse is 
the case for the rectangle MNQS. 

Also, the distance of the centre of gravity of 
the rectangle MNRP or MNQS is equal to half its 
height. 

Hence Smy for the strip MNQP lies in magni¬ 
tude between 

[i. hf(a + rh]. ^f{a + rhl 

and H . hfia -f (r + l)h(. |/{a -f (r + l)hK 

Summing up for all the strips, and assuming 
that I*, is a constant, we see that 2my for the area 
ABDC lies in magnitude between 

n-1 
|[i 2 [fla + rfilph and l it + (r-f l)/il]“K. 

r=a »’=o 

Now let n tend to infinity. Then both these 
sums tend to 

12 
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Also 2m = lia, jwhere « is the area of the 
figure ABDC. 

rh 

2 yMx 
Hence il = —^-. 

xydx 
Similarly $ = ^- 

cutting (iii) Centre of gravity of a closed area not 
the axes. Suppose that the 
centre of gravity (i. tj) of 
the closed area CP, DP* is re¬ 
quired. 

Let CA, DB be the tan¬ 
gents parallel to the y-axis, A 
and B being on the x-axis. 
Let OA = a, OB = b. Let the 
values of y corresponding to any x be yi and y,. 

Then the figure CP,DPa, of area a, may be 
regarded as the diflFerence of the figures ABDP*C 
and ABDPiC, of areas, say, a, and and with 
centres of gravity at distances tij and tj, from the 
x-axis. Then, if (a be the mass per unit area, the 
fundamental formula for the position of the centre 
of gravity gives 

pa»->ai 

Os - a. 
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I [ {yi - yi’)dx 

a 

(iv) Centre of gravity of a surface of revolution. 
By methods similar to those used above, it is easy 
to show that the centre of gravity of the surface, 
of area S, generated by the revolution of the curve 
y — fM from X = a to X = b is (i, 0), where 

rx^b 
Itt xy ds 

i _ 
^ S 

(v) Centre of gravity of a solid of revolution. We 
can also show similarly that the centre of gravity 
of the solid, of volume V, generated by the revolu¬ 
tion of the area bounded by the curve y = /(x), the 
ordinates at x = a, and x = h, and the x-axis, is 
(1,0), where 

TT xy^dx 
i _. 
^ V 

Note 1. The centroid, centre of mass, centre of 
inertia, centre of position all coincide with the centre 
of gravity. 

2. If A, ft, or Q (volume-density) is variable, the above 
formulae all become modified. It is easy to see that the 
new denominators in the expressions for fc and /y will be the 
mass of the arc, area, surface or solid whose centre of 
gravity is to be determined, and the integrands in the new 
numerators will be the old integrands multiplied by the 
factor A, or q, as the case may be, it being assumed in the 
last case that e is a function of x alone. 
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Ex* 1. Find the position of the centre of gravity of 
an arc of a circle of radius a, which 
subtends an angle 2a at the centre.' 

Take the centre of the circle as 
the origin and the radius which bi¬ 
sects the arc as the x-axis. 

If (l, v) be the centre of gravity, 
it is evident by symmetry that i? - 0. 
Also, if the vectorial angle of any 
point (x, y) on the arc is 6, we have 
by section (1) above, since the length of the arc is equal 
to 2aa, 

2aa^ =*1 X ds = 1 a cos 0 .add ^ 2a® I ^ cos 6 dd 

= 2a® sin a. 

Hence 
a sin a 

Ex. 2* Find the centroid of the area enclosed by the 
parabola - 4ax and the double ordinate x ~ fi. 

By symmetry, if (|, n) be the centre of gravity, )i 0. 
Also the abscissa of the centre of gravity will be the same 
whether we consider the area on both sides of the x-axis, 
or the area on one side only. But if we consider the area 
on one side only, the formula of section (ii) above will 
apply. Hence 

Ex. 3. Find the centre of gravity of the segment of a 
sphere of radius a, cut off by a plane at a distance h from 
the centre. Hence deduce the position of the centre of 
gravity of a hemisphere. 

Take the centre of the sphere as the origin and the 
radius perpendicular to the plane base of the segment 
as the axis of x. Then, by section (v) above, 
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rr xy'^ dx x(a® - x^)dx 
^ ^ Jh 

n dx I (a* - X®) dx 
J . h 

^ ia^ - ia^h^ + W ^ Xa^ - h^)^ 
id'* ~ a^h + ih^ *“ 4(2a^ - 3a^h+h^) 

_ 3(a - fi)* (a + /i)^ _ 3(a + fi)" 
4(a - /i) ‘^(2a + h) 4(2a + hy 

Putting /i = 0, we see that the C. G. of a hemisphere is 
at a distance fa from the plane base. 

Examples^ 

Find the centre of gravity of 

1. The arc of the parabola y^ = 4ax included between 
the vertex and the point whose abscissa is at^. 

2. The arc of the catenary y = a cosh (x/a) from the 
origin to the point (x, y). 

3. The arc of the curve x*^^ + y®"'^ == a^/^ included 
between two successive cusps. 

4. A sector of a circle. 

5. A segment of a circle; in particular, a semicircle* 

6. The area between the curve y = sip x from x = 0 
to X and the x-axis. 

7. The area between ay^ = x®, the x-axis and the ordi* 
n^te at X « b. 

8. The area between the curve y*(2a ~ x) x® and its 
asymptote. 

•From Loney’s Elementary Treatise on Statics. 
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9. The area of the loop of the curve 

y^(a + x) == x^(a - x). 

10. The area within the cardioid r = a(l + cos 0). 

11. The area of one loop of the lemniscate 

r* = cos 2o. 

12. The area enclosed by the curves y* ~ ax and 
X* = by. 

The area cut off from the parabola = 4ax by 
the straight line y = mx. 

14. The surface formed by the revolution of the 
cardioid r = a(l + cos d) about its axis. 

J5. The solid formed by the revolution, about 
the x^axis, of the parabola y^ = 4ax cut off by the ordinate 
x = fi. 

16. The solid formed by the revolution of the cardioid 

r = a(l + cos 0) 

about the initial line. 

9*2* Centre of pressure* If a plane area 
be in contact with a liquid, the point in the plane 
area at which the resultant pressure acts is called 
the centre of pressure of the area. We shall suppose 
throughout that the plane area is vertical. 

It is shown in books on Hydrostatics that if 
the plane area be divided into a number of parts, 
and if u be the area and x the depth (below the 
surface of the liquid) of the centre of pressure of 
any such part, then the depth of the centre of 
pressure of the complete area is where 

|=(2ax^)/2ax. 
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Let CPjDPj be the plane area, CA and DB tb 
horizontal tangents, A and B q y 
being on the x-axis. LetOA=a, I ^ 
OB=b. Divide AB into n parts, ^ 
each of length h, and draw ^ 
horizontal lines tluough the „ / 
points of division. Taking axes **’ pi 1** 
as in the figure, let yi and 312 he V y 
the values of the ordinates 
corrresponding to any value x of ® o 
the abscissa. x 

Then we can show, exactly as in the case of 
the centre of gravity, that 

I = ( - yi)x‘‘ )/j^ > 
also, that the ordinate ti of the centre of pressure 
is given by 

Tl = (ya® - :yi“)x dx | j£( ya-ya)x dx. 

Ex. A circle of radius a is immersed o m v 
vertically in a liquid, the depth of the -* 
centre of the circle below the surface of 
the liquid being h; find the depth of the p 
centre of pressure. 

Take axes as in the figure and let 0 | ^ \ 
be the angle which the radius to any point y y 
P> on it makes with the negative di- / 
rection of the x-axis. Then ^ 0 by sy mmet- 
ry. Also, if the values of y corresponding U 
to X are yi and ya, then ya -- Ji 2a sin 0, 
X - h - a cos 0, dxjdd = a sin 0. Hence 

2a (sin 0)x^**dx | j2a (sin 0) x dx 
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- I sin^O (h - rt cos(?)= |•y'^|%in’0(/^-acos0)de, 

since x == h-a cos 0, 

] 2 I sin® + a“cos'e)dO i '2 i'"'' h sin^e dff, 
' J > . 0 

by § 5 ’ 2 
m) r(i)/2 r(2) + r(|)r(f )/2 ro) 

fim)r(4)/2r(2) 
h + a*/4fv. 

Examples 

Find the centre of pressure of the following area when 
immersed vertically in a liquid : 

L A rectangle with one side in the surface of the 
liquid, 

2. A triangle with its base in the surface, 

3* A triangle with its vertex in the surface of the 
liquid and base horizontal. 

4. A rectangle with two sides horizontal and at 
depths hi and below the surface, 

5. A triangle with one side horizontal and the verti¬ 
ces at depths fii, fi2 and (/ii</i2)- 

6. A semicircular area, when the radius is a, and the 
depth of the bounding diameter (which is horizontal and 
nearest the surface ) is b. 

7. An ellipse, completely immersed, with the minor 
axis horizontal and at depth h, 

8. A completely immersed segment of a parabola 

bounded by the latus rectum with the axis vertical and 

the vertex downwards and at a depth h* 

9. An area* bounded by the curve ay^«x^ an 
abscissa of length h and the ordinate at Its extremity, is 
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placed in water with this ordinate in the surface. Prove 
that the depth of the centre of pressure is uh. 

10. A square is immersed with its diagonal vertical 
and its lowest point as deep again as its highest point. 
Find the depth of its centre of pressure. 

9*3. Moment of inertia. If particles of 
masses m„ rris,..., m,t be situated at points whose 
perpendicular distances from a given straight line 
are r^, rj, ..., r„, then 

2mr*, 

i.e., miri“ + TTijra’ + •. • + is called the moment 
of inertia of the system about the given line. 

The moment of inertia is of great importance in the 
dynamics of rigid bodies. Thus the kinetic energy of a 
body rotating with angular velocity u> about an axis AB is 
equal to 

^(moment of inertia of the body about AB) x to”. 

If the moment of inertia of a body of mass M about 
any axis AB be Mk”, then k is called the radius of gyration 
of the body about AB. 

The moment of inertia of a single particle of 
mass m and at a distance r from the given line is 
thus mr* about the given line. If, instead of a 
single particle, we have a straight or a circular line, 
or a cylindrical surface, whose mass is tn and every 
point of which is at the same distance r from 
the given line, then the moment of inertia 
about the given line of the mass m will evidently 
be mr®. 

These considerations and the following two 
theorems enable us to find the moments of inertia 
of several bodies. 
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1. Let GX be any straight line through the centre 
of inertia G of a body of mass M, and let OX' be any 
parallel straight line. Then the moment of inertia of 
the body about OX' is equal to the moment of inertia 
of the body about GX together u/ith the moment of 
inertia of a particle of mass M, placed at G, about 
OX'. 

2. The moment of inertia of a plane lamina about 
any straight line OZ perpendiadar to it is equal to the 
sum of the moments of inertia about any two perpen¬ 
dicular straight lines OX, OY in the lamina which pass 
through the point of intersection O of the lamina 
and OZ. 

The proofs of these theorems do not depend upon 
integration and will be found in any text-book on Rigid 
Dynamics. 

Ex. 1. Find the moment of inertia of a rectangle 
about one side and deduce the y 
moment of inertia of a thin rod 
of length la about an axis through q 
the middle-point perpendicular 
to the rod. 

Take two adjacent sides of 
the rectangle as the axes of refer¬ 
ence as in the figure. 

Let the sides OA, OC be of lengths a and b respec¬ 
tively, and let n be the surface-denstity. 

Divide OA into n parts each equal to h. 

Let OM = rh, MN = h. 

The mass of MNQ? = ft. MN. MP = fihh. 

Then the moment of inertia of MNQP about OC lies 
between 

ftbh(rh)^ and /ibh{(r + l)h}®. 
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Summing up and taking limits, we see that the mO' 
ment of inertia of the rectangle OABC about OC is 
equal to 

b I dx. 

If /I is a constant, we see that the moment of inertia of a 
rectangle, one of whose sides is of length a, about the other side 
is equal to i^a^b, i.e,, 

Ma®/3, 

where M is the mass of the rectangle. 

Corollary. It follows from the above that the moment 
of inertia of a rectangle of length 2a about a straight line through 
its centre bisecting the sides of length la is Ma^l3, For, the 
the rectangle of length 2a can be regarded as composed of 
two rectangles each of length a. 

Consequently the moment of inertia of a thin rod of 
length 2a about an axis through its centre perpendicular to the 
rod is Ma3/3* For, we can regard the thin rod as a thin 
rectangle. 

These results can also be easily established independ' 
ently. 

Note By applying Theorem 2, we see that the mo^ 
ment of inertia of a rectangle, having sides of lengths 2a, 2b, 
about an axis through its centre perpendicular to its plane 
isiM(a‘^+b^y 

It follows from this that the moment of inertia of a rec¬ 
tangular parallelepiped having sides of lengths 2a, 2b, 2c about 
an axis through the centre parallel to the side 2c is iM(a'^ + 
For, we can regard the parallelepiped as made up of an 
infinite number of thin rec-* 
tangles. 

Ex. 2. Find the mo¬ 
ment of inertia of an elliptic 
disc having axes of lengths 
2a, 2b, about the major axis. 

Take the major axis as 
the axis of x, and the minor 
axis as the axis of y. 
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Divide OA into n parts, each equal to /i, and erect 
ordinates at the points of division. Let PM and QN 
be the ordinates at distances rh and (r + l)/i from O. Let 
/f be the surface^density. 

Then, by Ex. 1, the moment of inertia of MNQP 
about OX lies between ix. PM. h. JPM^ and //. QN. h. iQN^* 
^Summing up and taking limits, and noting that the ellipse 
jS symmetrical about both axes, we see that the moment of 
nertia of the complete ellipse about OX is equal to 

Suppose /n is constant. Also let x = a cos Then 
y ==b sin and the moment of inertia required 

4 2,3 ’JL 4 rnni)r(%) 
= - yah- 21(3) 

= ^ . I. i . 71, ifxab^, 

i.e., the moment of inertia of an ellipse about the major axis is 
Mb^/4, where M ( ^ jzabju) is the mass of the ellipse. 

Similarly, the moment of inertia about the minor axis 
is Ma‘74. 

Corollaries. It follows that the moment of inertia of a 
circle of radius a about any diameter is Ma*/4, and about an 
axis through the centre perpendicular to its plane is Ma»/2* 
Evidently this must also be the moment of inertia of a 
right circular cylinder of mass M and radius a about 
its axis. 

These results can be easily established independently 
also. 

Ex. 3. Find the moment of inertia of a solid sphere 
about a diameter. 

Take the diameter as the axis of x and the centre as 
the origin. Divide the radius (of length a, say) into n parts 
each equal to fi, and draw through the points of division 
planes perpendicular to the radius. 

If the plane PP' is at the distance rh from the origin 
and QQ' at the distance (r + l)h, the moment of inertia 
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of the disc P'Q'QP evidently lies 
between the moments of inertia of 
the two right circular cylinders each 
of height h, but of radii PM and QN 
respectively, i.e., lies (by the coroh 
lary to Ex. 2) between 

. PM^ .h.i PM* 

and e . .-r. QN*. h . i QN*, 
where 'j is the density of the sphere. 

Summing up and taking limits, 
we see that the moment of inertia of the sphere 

= j e y^dx = I (a* - x*)*dx, if Q is constant, 

= 7iQ^ — 2a*x* 4- X*) dx = TzQU^il - §■ + i) 

= . ’I . y’ga*, 

i.e., the moment of inertia of a sphere about a diameter 

-M.2a*/5. 

Corollary. By differentiation of the value |. l^na^Q of 
the moment of Inertia of a solid sphere, we see that the 
moment of inertia of a thin hollow sphere (spherical shell) of 
radius a is 

^na^Q. (thickness of shell), 

i.e., M • 2a*/3. 

Examples 

Find the moment of inertia of: 

1. A spheroid about its axis of revolution. 

2. The paraboloid generated by the revolution oi 
the parabola y* = 4ax about the x-axis from x ^ 0 to x ^ h. 

3. A thin uniform circular ring about a diameter. 

4. A portion of a uniform thin circular ring about 
the straight line joining its extremities. 

5. The area bounded by one arch of a cycloid and 
the base about the base. 
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6, A thin rod of which the line density varies as the 
distance from one end about an axis passing through that 
end and at right angles to the rod. 

9*4. Other applications. The definite integral can 
represent many important magnitudes in physics. In 
particular, if/(x) is a force acting along the x-axis, whose 
magnitude is a function /(x) of the distance x of its point 
of app/ication (x, 0) from the origin, the work done as the 
partfc/e moves from a to h is 

Similarly 

represents the work done as a gas expands from the 
volume a to the volume b, the pressure for any volume v 
being p. 

Examples on Chapter IX 

1. Find the centre of gravity of a semi-circular arc. 

2. Find the position of the centre of inertia of an 
arch of the cycloid x = a(0 + sin 0), y = a(l - cos S), 

[Madras, 1939] 

3. Find the centroid of the area enclosed between 
y = x**, the x-axis, and the lines x « a and x « b, where 
a and b are positive. 

4. Show that the area included between the curve 
whose equation is x^y ~ x® + a^, the axis of x, and the 
ordinates at x «= a and x « 2a is 2a®. 

Find the coordinates of the centre of mass of this area. 

5* Show that the centre of gravity of the quadrant 
between OX and OY of the ellipse x*/a® + y®/b® = 1 is 

4b/3^). 

6. Find the centroid of a hemispherical surface. 
[Patna, 1941] 

7. Find the total mass and the coordinates of the 
centroid of a quadrant of a circular disc of radius a, the 
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surface density being proportional to the distance from 
one of the bounding radii, and having unity for its greatest 
value. [Lucknoufy 1928] 

8. A quadrant of the ellipse 

revolves about the major axis. Find the centre of gravity 
of the solid thus generated. [Tramncore, 1941] 

9. Find the depth of the centre of pressure on a 
submerged rectangular vertical door, of breadth b and 
height h, the upper edge of the door being parallel to the 
free surface and at a depth d, 

10. Find the moment of inertia of an equilateral 
triangle about its base. 

11. ABC is a uniform equilateral triangular plate of 
mass M and side a. Find its moments of inertia about 
each of the bisectors of the angle A. [Lticknou;, 1940] 

12. For the area included between the curves y*« 4ax, 
X® =* 4ay, find (i) the coordinates of the centroid, (ii) the 
moment of inertia about the x-axis, assuming in each case 
a uniform density. [Madras, 1934] 

13. Show that the moment of inertia about the 
the x-axis of the portion of the parabola = 4ax bound^ 
by the axis and the latus rectum, supposing the surface 
density at each point to vary as the cube of the abscissa, is 
T? Ma-*, where M is the mass of the portion. 

[Andhra, 1942] 

14. Find the moment of inertia of a hollow circular 
cylinder about its axis, the external and internal radii 
being R and r respectively. 

15. Find the moment of inertia of a uniform solid 
sphere of radius a feet, mass m lbs., about any tangent line. 

16. Prove that the moment of inertia about an axis 
through the centre, perpendicular to the plane, of a circular 
ring whose outer and inner radii are a and b is im(a* + b®), 
where m denotes the mass of the riitg. [Patna, 1931] 
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17. Find the moment of inertia of a circular disc 
about an axis throus^h its centre perpendicular to its plane, 
assuming that the density at any point varies as the square 
of its distance from the centre. 

18. Show that the moment of inertia of a right cone 
with respect to an axis drawn through its vertex perpendi¬ 
cular to its axis is -+• where h denotes the 
altitude of the cone, and b the radius of its base. 

[Patna, 1932J 

19. Assuming that the gravitational attraction of the 
Earth on a particle of mass m at a distance t from its centre 
varies as m/r^ show that the work done when the particle 
falls to the surface from a height h is mghal(a + fi), where 
a is the radius of the Earth and g the acceleration due to 
gravity at the surface. [Andfira, 1936] 

20. A recoil buffer is so adjusted that when the gun 
has recoiled a distance of x inches, the force resisting the 
recoil is W(1 - x*/a*) tons, where W and a are constants. 
Find the work done when the gun recoils through a dis¬ 
tance of h inches. [Andhra, 1936J 

21. Two cubic feet of gas at a pressure of 100 lb. per 
square inch expand to a volume of 3 cubic feet. Find the 
work done if the law of expansion is pv^ == c. If n = 1*5, 
calculate the work done. [Madras, 1935] 



DIFFERENTIAL EQUATIONS 

CHAPTER X 

EQUATIONS OF THE FIRST ORDER AND 
THE FIRST DEGREE 

lOT. Introduction. Any relation between 
known functions and an unknown function is 
called a differential equation if it involves the diffe¬ 
rential coefficient (or coefficients) of the unknown 
function. 

It is usual to denote the unknown function 
by y. 

Finding the unknown function is called solving 
or integrating the differential equation. The solution 
or integral of the differential equation is also called 
Its primitive, because the differential equation can 
be regarded as a relation derived from it. 

It is not necessary that th* solution be an explicit 
function of the independent variable x. Any relation bet¬ 
ween X and y, not containing the differential coefficient of y, 
is called a solution provided y and the differential coefficients 
of y derived from it satisfy tlup differential equation. The 
solution always contains one or more arbitrary constants. 

The integral of a function /(x) may be regarded as the 
solution of the differential equation 

We have seen that the most general solution is y - 
ff(x)dx + C, and contains one arbitrary constant. 

The unknown function may also be a function of two 
or more independent variables. In this case the differential 
equation will involve partial differential coefficients 

13 
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of the unknown function. Such a differential equation is 
called a partial differential equation. On the other hand, 
the diflerential equation which does not involve partial 
differential coefficients is called an ordinary differential 
equation. Only ordinary differential equations will be con¬ 
sidered in this book. 

Differential equations are of great importance in 
applied mathematics, physics and other branches of know- 
l^ge, and arise because often we know from physical 
considerations some relation which involves one or more 
differential coefficients of the unknown function. 

For example, suppose a particle of mass m is falling 
under gravity, from a great distance, towards the earth. 
Let its distance from the centre of the earth at time t be x. 
The attraction there, as we know from the law of gravita¬ 
tion, is proportional to 1/x^ Let it be equal to kfx\ Also 
the acceleration is represented by d^xjdtK Therefore, by 
the laws of dynamics 

d*x k 
• (1) 

Now we want to express x in terms of t in order to 
know how the particle moves. The only relation which 
we know is (1), which is a differential equation. To deter¬ 
mine X as a known function of f, we must solve this diffe¬ 
rential equation. 

The order of a differential equation is the 
order of the highest differential coefficient which 
occurs in it. 

The degree of a differential equation is the 
degree of the highest differential coefficient which 
occurs in it, after the ciifferential equation has been 
cleared of radicals and fractions. 

Thus the differential equation 

is of order m and degree p* 

... -0 
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lO'll. Arbitrary constants. In order to 
find how many arbitrary constants will occur in the 
solution of a differential equation, let us study how 
the differential equation can be formed if the primi¬ 
tive (i.e., the solution) is -known. 

Let the primitive be f(x, y, a)=0, where a is an 
arbitrary constant, 

Differentiation gives us a relation between x,y,a 
and dy/dx, say 

■!>(*. J.^,a)=0. 

Elimination of a between this and the 
primitive will give us a relation between x, y and 
dy/dx, say 

which is a differential equation of the first order 
Hence, looking back, we may expect the solution 
of a differential equation of the first order to con¬ 
tain one arbitrary constant. 

Again, suppose the primitive is 

f{x,y,a,h)=0, 

so that there are now two arbitrary constants. We 
must now have two more relations in order to be 
able to eliminate a and b. Differentiating succes¬ 
sively, we get, say, 

and 
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Elimination of a and b between these three 
equations will give a relation between x, y, dyjdx, 
d'-'yldx^f say 

which is a differential equation of the second order. 
Thus we may expect the solution of a differential 
equation of the second order to contain two arbit¬ 
rary constants; and so on. 

10‘12. General and particular solutions. 
The solution of a differential equation which con¬ 
tains a number of arbitrary constants equal to the 
order of the differential equation is called the 
general solution (or complete integral or complete 
primitive). A solution obtainable from the general 
solution by giving particular values to the constants 
is called a particular solution. 

In counting the arbitrary constants in the general 
solution, care must be taken to see that they are indepen¬ 
dent, and not equivalent to a lesser number of arbitrary 
constants. Thus, although the solution 

A sin X + B cos (x + C) 

appears to contain three arbitrary constants, they are really 
equivalent to two only. 

For, 

Asinx + Bcos(x + C) - (A - B sin C)8inx +B cos Ceos x 

= a sin X + cos x, say, 
and by giving to a and ^ suitable values we can evidently 
reproduce any particular solution which can be obtained 
by giving particular values to A, B and C. Hence the three 
constants A, B, C are really equivalent to two only. 
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Moreover, the general solution can have more than 
one form, but the arbitrary constants in one form will be 
related to the arbitrary constants in the other. Thus 

y = A cos (x + B) 

and :y = a sin X + /i cos x 

are both solutions of the differential equation 

d^y 
dx^ 

+ y -0, 

as can be easily verified. Each is a general solution con¬ 
taining two arbitrary constants. Expanding the first and 
comparing with the second, we see that 

a = - A sin B, /? = A cos B, 

and conversely A^y(a^ + /i^), B = - tan"^ 

showing that the constants in one form are related to the 
constants in the other. 

Sometimes that solution of a differential equation is 
wanted which satisfies some given relation or relations* 
In such a case some or all of the arbitrary constants will 
have definite values, depending upon the number of con¬ 
ditions to be satisfied. 

Occasionally the solution of a differential equation 
involves expressions of the form ff(x) dx,oT ff(y) dy, which 
cannot be evaluated in terms of the known functions. In 
such cases the differential equation is regarded as solved 
when the solution has been expressed in terms of integrals 
of the above-mentioned forms. 

Although it is usual to omit the constant of integra¬ 
tion in ordinary integration, such constants should never 
be omitted when solving differential equations. The reason 
is that the arbitrary constant in the solution of a differen¬ 
tial equation is not always merely additive. 

10*13. Meaning of dx and dy, 
avoid fractions, it is usual to write 

dy _ fi(x, y) 
dx /a(x,Di)’ 

In order to 
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where is the differential coefficient of y with res- 
ax 

pect to X, in the form 

fiix, y) dx - fg(x, y) dy = 0, 

which can he obtained from the previous form by 
regarding the differential coefficient as the quotient 
of dy by dx. It is not necessary, however, to attach 
any meaning to the dx and the dy taken separately, 
as every equation we shall have to deal with can 
be converted at once to the form in which dyjdx, 
the differential coefficient of y with respect to x, 
alone occurs. 

10*2. Equations of the first order and 
first degree. Not all differential equations can be 
solved. Even equations of the first order and the 
first degree cannot be solved in every case; they can 
be solved, however, if they belong to one or the 
other of the standard forms discussed in the fol¬ 
lowing articles. 

10'3. Equations in which the variables 
are separable. If it is possible to write a differen¬ 
tial equation, by the transposition of its terms, in 
the form 

/i(x) dx = fa(y) dy, 

we say that the variables are separable. Such equa¬ 
tions can be solved immediately by integration 
For, the above equation is equivalent to 

fi(x) = Uy)^l. • 
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Integrating both sides with respect to x, we get 

I /i(x) dx = [ faiy) dx + c =|/2(:y) dy + c. 

\\ here c is an arbitrary constant. 

or 

or 

Ex. Solve 

Here 

Integrating, 

(x^ - yx'^) dy h ( y^ -i- xy^) dx 0. 
\-(l - :y) £i:y + y^( 1 + x) d\ - 0, 

yi 
0. 

1 
loR y - ^ + loK X - c, 

log (x/y) - (y + x)/xy = c. 

Examples 

1. (1 + x)y cix + (1 - y)x dy - 0.'^ [Calcutta, 1938] 
2. (1 -x*)(l - y) Jx = xy(l f y) dy,^'' [Bombay, 1935] 

‘3. = } ^ ^3 . V [Aligarfi, 1937] 
ax 1 +x“ 

4. ^ ~ [Annama/a!, 1396] 

5. sec® X tan y dx + sec® y tan \ dy = 0.'^ 

6. y (a + x) dyjdx + x ^ 0. 

. dy ^ x(2 log X + lly^' [Dacca, 1936] 
dx sin y + y cos y 

8. dy/dx -- e^-'J + x®c-». {Agta, 1945] 

10’4. Homogeneous equations. A diffe¬ 
rential equation of the form 

dy_fi(x,y) 

dx hixjy)' 

where fi and /» are homogeneous functions of x and 
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y of the same degree, is called a homogeneous differen¬ 
tial equation. 

Such equations can be solved by taking a new 
dependent variable v connected with the old one 
y by the equation 

y=vx. ... (2) 

For, on dividing the numerator and the deno¬ 
minator of the expression on the right-hand side 
of (1) by x”, where n is the degree of /, and /j, the 
diiferential equation (1) takes the from 

dyldx=f(ylx). 

The substitution (2) will, therefore, transform 
it into an equation of the form 

The variables are now separable, and the 
solution is 

fdx [ dv 
J X ~ Jf(v) — V 

Replacing v by yjx after integration, we have 
the final solution. 

Note. Before solving a homogeneous equation by 
putting y i’x, it is advisable to try if the variables are 
separable (§ 10*3), or the equation is exact (§ 10*6). For in 
these cases the differential equation can be solved directly 
without any substitution. 

Ex. Solve 

Putting 

we have 

x(x - y)dy -f- y^ dx = 0. 

dif y® 

dv 1’® 
^ dx V — 1 

~ 1 * 

V 

V^l* 
Therefore — V S=! 
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i.e., 

Separating the variables and integrating, 
, r(v -- 1) dv 
log X = + Cl ^ V - log V + Ci, 

Hence X 

y 

where Ci is an arbitrary constant, 

= log e’’ - logi’ + logc, where c is an 
arbitrary constant* 

cd' __ 
V y 

=- cev X 

Note. In the above we took a new arbitrary constant 
j instead of retaining the old one Cj in order to write the 
result in an elegant form. Such changes are freely resort- 
ed to in the solution of differential equations. 

Examples 

Solve the following differential equations : 

X 
dy 
dx 

dy 

2y. 

dy 2, ^y - X j ^ X -h y 
dx UA 

3. xdy - y dx == V{x^ + dx, 

4 vS ^ + 5') 
dx" 2 • 

[Calcutta, 1936) 

[Delhi, 1945} 

[Benares, 1936] 

:/ 
6. 

7. 

9. 

10. 
11. 

dy x* 
dx X* 

(x® - ji®) dx + 2\y dy < 

+ xy 

+ 3'*’ 
0. 

dy + 3y’> 
0. 

dx 3x® + y^ 

x(x - y) dyjdx = y(x + y). 

(x® + 2xy) dyjdx + 2xy + y® + 3x® 

(x'* 3xy®) clx = (y® - 3x®y) dy. 

x®y dx - (x® + y®) dy «= 0. 

[Andhra, 1936] 

[Dacca, 1941] 

[Math. Tiipos, 19^8] 

[Lttchnou', 1941] 

= 0. 

lAgra, 1945] 
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10*41. Equations reducible to a homo¬ 
geneous form. Equations of the form 

dy_ ax + by + c 
dx Ax + B31 + C 

can be reduced to a homogeneous form by taking 
new variables $ and t), related to x and y by the 
equations 

x = $ + h, 3/ = t] + fe, 

where h and k are constants which are yet to be 
chosen. With these substitutions, 

^ rr, ^ 
dx dx ^ ' dx d$ ' dx d| * 

Hence the differential equation assumes the form 

dr] _ a| -1- hri + (ah + bk + c) 

d| A| -b Bt] -f- (Ah -f' Bk -b C) 

Now choose h and k so that 

ah + bk -f-c — 0, ). /|\ 
Ah + Bk + C = 0j ' • 

Then the differential equation becomes homoge¬ 
neous and can be solved by the substitution tl=v|. 
Replacing | and 11 in the solution thus obtained 
by X — h and y—k respectively, we shall get the 
solution in terms of the original variables. 

A special case. 

The solution of equations (1) gives 

h __ k _ 1 

be ~ Be cA — Ca oB — Ab’ 

and so fails if oB — Ab = 0, i.e., ^ = g • 
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In this case the differential equation is of the 
form 

dy _ ax + by + c 
dx max + mby + C 

and can be recognised by a preliminary examina¬ 
tion. Such a differential equation can be solved 
by putting v for ax + by and getting rid of y. The 
transformed differential equation is 

dv 
j — a + 

dx 
h ^ + ^ 
mv + C’ 

in which the variables are separable. 

Ex. I, Solve (x — y - 2) d\ + (x - ly — 3) dy — 0. 

Putting X = i + fi, y = f k, we get 

_ I + h - k ~ 2 
^ - 2/; -}- /i — 2k - 3 ’ 

Choose h and k so that 

h ~ k - 2 ^ 0, 

and h - 2k - 3 0. 

Solving these, we get /i 1, k = - 1. 

With these values of h and k, (1) becomes 

dn ^ V 
di ^ 2// 

Putting ij we have 

dv 1 - V 

2v - r 

dv 1 

Therefore 

2v - 1 * 

log f + Cl = - 
C 2v ~ 1 J 1 1 4v dv , r dv 
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= - i log(2v® 
yZ, V-1/1/2 

»+ 4 + 
On writing x ~ 1 for and (y + l)/(x - 1) for t', we shall 

2et the solution in terms of x and y. 

Ex. 2. Solve (x - y - 2) dx - (2x - 2y - 3) dy = 0. 

We notice that the coefficients of x and y in the nume¬ 
rator and denominator of the expression for dy/dx are 
proportional. We, therefore, proceed as follows : 

Put X - y = 

Then t = ax 
1 dy 1 x-y -2 . V - 2 v-1 

dx~^ 2x-2y-3~^ 2v-3~2v-3' 

Therefore 

^2v- log (v - 1) = 2(x-y)-logCx-y-1), 
or log (x-y - 1)--x-2y - e. 

Examples 

Integrate the following differential equations: 

1. 
2. 

5. 

■ 6. 

7. 

8. 

(x - y) dy == (x-i-y + 1) dx. [MatK Tripos, 1930] 

dy _x + 2y - 3 
dx 2x + y - 3’ 

[Allahabad, 1942] 

dy _ y - x + 1 
dx ~ y + X + 5’ [Benares, 1938] 

dy _ x + y + 1 
dx 2x + 2y + 3 * [M:ysore, 1936] 

(2x + 4y + 3)y' = 2^ + x + 1. [Lucknow, 1937] 

4x + 6y + 5 dy ^ 
3y+ 2x + 4 • dx ' [Bomba}/, 1935] 

(6x + 2y- lOXdyfdx) - 2x - 9y + 20 = 0, [Dacca, ’38] 

(2x + 3y - SXdyJdx) + 3x + 2y - 5-0. [Nflg/jur, ’43] 
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10*5. Linear equations. A differential 
equation is said to he linear when the dependent 
variable y and its differential coefficients occur only 
in the first degree. The coefficients of y and of its 
differential coefficients may be any functions of x. 

The linear differential equation of the first 
order is, therefore, of the form 

dy 
dx + Py = Q, 

where P and Q are any functions of x. 

To solve such an equation, multiply both 
sides by 

fPJx 

The left-hand side now is evidently the differen¬ 
tial coefficient of 

so that the solution of the differential equation is 

t "»*lHplying by which 
the lert-hand side of the differential equation (written as 
above) becomes a differential coefficient of some function 
of X and y, is called an integratmK factor of the differential 
equation. 

2. Sometimes a given differential equation becomes 
linear if we take y as the indeperulent variable and x as the 
dependent variable. Thus, by this device 

(x+,+ a)*-,. + b 

can be written as 

(y® + h) - X = y + a, 

which is a linear differential equation . 
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Ex. Solve x(l - x*-*) dy + (2x'^y ~ y - ax ') dx = 0. 

The given equation is equivalent to 

dy 2x^-1 _ ax^ 
dx ''' x( I - x”) ^ ~ l-x^’ 

which is linear. 

Now j' “ hix = f , ^ dx 
.!x(x-lKx+l) 

^ “ 11 X 2(x - 1) 2(x + 1) [ 

- log {l/xv/(x‘^ - 1)}. 

Hence the integrating factor is Ijxyix^ - 1), and the 
solution is 

y f ^ 1 , 
XI (x* 1) ^ ^ ^ I 1 - X® * XV (x*^ 1) ^ 

= c - ia , where t = x» - 1, 

= c + a{x® - I)"*’''*, 

i.e., y = cxi/(x® - 1) + ax. 

Solve 
Examples 

1. 

2. 
4. 

6. 

7. 

8. 

.dy X .' + i' = X* + 3x + 2. 
IIX 

[Aligaih, 19381 

(\ + a) - 3y =• (x + a)*. 3. + ay = e”**. 

' . c dy y -by ^ X 5. = mx + ny + cj. 

dy X 1 

dx ^ 1 -I- x^ ^ 2x(l + X-) * 

(1 - x“) + 2xy = x(l - [Punjab, 1944] 

(x® + 1) 2xy = 4x®. [Calcutia, 1943] 
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9. x(x - 1) - (x-2)y = x3(2x -1). [Andhra, 1937] 

10. (1 + y+x'^y)dx+(x’h x^) dy = 0. 

11. 
2 
^ y = 3in X. [Agra, 1945] 

12. sec 
dy ■ . 

c + sin X. 

13. 
dy 
dx 

= :y tan x - 2 sin x. [Dacca, 1942] 

14. (1 + 
dy 

X®) + 2x:y = cos X. 

•15. sin : X -f 3^1 = cos X. 16. 
. dy 

ainlx^^ = y + tan x. 

17. 
dy 
d x 

- y tan x - sec x = 0. 

18. 
dy 

\lx 
- :y 2x2 cosec 2x, 

• 19. (1 + y^) dx = (tan*^ y - x) dy. [Agra, 1938] 

20. (y- f 2y3) 
dx = ^’' 

22. (2x- - lOy®) + y = 0. [Dacca, 1935] 

y - ^ X Dy = b(l + X- Dy). 

'24. 
dy 

Integrate (1 + x’) + 2yx - 4x-‘'* - -0. 

and obtain the cubic curve satisfying this equation and 
passing through the origin. ' [Patna, 1935] 

25. Solve ^ given y = 1 when x = 1. 

[Madras, 19^6] 
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10’5l. Equations reducible to the linear 
form. Equations of the form 

ere P and Q are functions of x alone, can be 
reduced to the linear form by dividing by >■" and put¬ 
ting equal to v. For, on division by y”, we get 

r‘^J + pr‘'' = Q, 
and on substituting v for we have 

1 dv ^ 
(— n -f 1) dx ^ ^ — Q> 

which is a linear differential equation in v. 

This equation is often called Bernoulli’s 
equation®. 

Ex. Solve xDy + y ^ xy'\ 

Dividing by we have Dy -f y^^ — x. 

Putting y“^ = \\ and therefore - ly""^ Dy == Dv, 
differential equation becomes 

or 

~ ix Dv -h V = X, 

dv 2 
- V = - 2. 

ax X 

The integrating factor is i.e., ]/x‘-*. So 
solution is 

V ^ dx 2 

i e., (2 + cx)xy® = 1. 

the 

the 

•Named after James Bernoulli (1654 - 1705), Pro¬ 
fessor of Mathematics in the University of Basel (Switzer¬ 
land), who first studied it. He was a staunch friend of 
Leibnitz, and was one of the first to apply the differential 
calculus successfully to a great variety of problems. 
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Examples 

Solve 

1. 
dx X 

[Delhi, 19441 

2. 
Jy y y3 

^ dx ~ X x» • 
[Bombay, 1940] 

■ 3. (1 “ [Matfi. Tripos, 1938] 

- . 4. dy «1 + y = log X. [Luefenoto, 1945] 

5. -f. xy = sin x. 6. 
dx 

dy y . . 
j + = y* sin X. 
dx X 

• 7. (1 + x*)y' == xy - y^. [I. C. S., 19311 

’ 8* 
^dy 2 x» 
^dx + i'+l^“:y»' 

[Dacca, 1939] 

, . 9. ^^=x353_xy. [Allahabad, 19371 

10. 

'll. 
dy 

2 - 31 sec X- tan x. 12. 
dy 

xSy _ x3 = y"^ cos X, 

13. ‘^y 1 r x^ + y = x^y\ [Benares, 1939] 

• 14. y{.2xy + e*) dx - e" dy = 0. [Allahabad, 1930] 

• 15. cos xdy =y (sin x~y) dx. [Agra, 19441 

10*6. Exact differential equations. A diffe¬ 
rential equation is said to be exact if it can be 
derived from its primitive directly by differentia¬ 
tion, without any subsequent multiplication, elimi¬ 
nation, etc. Thus the differential equation 

M + N* = 0, . . (1) 

14 
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where M and N are functions of x and y, is exact 
if it can be obtained directly by differentiating an 
equation of the type 

u = c, 

where u is some function of x and y, and c is an 
arbitrary constant. 

Now 
du _ 3u 9u dy 
dx ~ dx ^ Zy ' dx' 

Hence the equation (1) must be the same as 

3it 3u dy n 
^ + .^ . j = 0. Zx Zy dx 

Therefore, a necessary condition that the equation 
Mdx+Ndy = 0be exact is that 

M = 
3u 
Zx ’ 

N = 
3u 
3y ’ 

or, eliminating w, that 

= 
3y 3x * 

This condition is also sufficient; i.e., if ZM/Zy = 3N/3x, 
then Mdx + Ndy = 0 must be an exact differential equation. 
For, if we put fMdx — U, then 

3x = 3y3x = 3y = 3x • hypothesis, 

ZN Z /ZIA 
3x“9xV3)i/’ 

dU 
It follows that N ^ +/(y), where/(:y) is a function 

of y alone. 
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showing that M + N{dy/dx) = 0 is an exact equation. 

If we find that an equation M dx + 'Ndy=0 
satisfies the condition 

3M _ 3N 
3:y ~ 3x’ 

and so is exact, we can integrate it as follows: 

First integrate M with respect to x as if y were 
a constant. Then integrate with respect to y those 
terms in N which do not contain x. The sum of the 
expressions thus obtained equated to an arbitrary 
constant will be the solution. 

The reason of this procedure becomes obvious when 
we examine equation (2). 

Ex. Solve the equation 

(1 + + 2y’‘) dx r (1 + 4ixy + 2x®) dy = 0. 

Here = 4x + 4Df, -- ^y + 4x. 

These being equal, it follows that the equation is 
exact. Integrating 1 + ^xy + 2y-' with respect to x, whilst 
regarding y as a constant, we get x t 2x=y + 2xy®. 

Again, the only term in 1 + 4xy + 2x® which does not 
contain x is 1. Integrating this with respect to y wfe get y. 

Hence the solution of the given differential equa¬ 
tion is 

X + 2x®y + 2xy» + y =■ c. 

Examples 

Show that the following equations are exact, and 
solve them : 

1. (2ax + by)y dx + (ax + 2by)xdy = 0. 
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2. 

4. 
5. 

4- y® 

(x® - ay) dx « (ax - y®) dy, 

iev + 1) cos xdx + ev sin x dy = C 

cos X (cos X - sin a sin y) dx 

+ cos y (cos y - sin a sin x) dy 

{y(l + IW + cos y}dx -f {x + log: 

[Patna, 1941] 

[Bombay, 1935] 

[Annam., 1936] 

^ 0. [Andfira, 1937] 

(x - X8iny}dy «0, 

[Allahabad, 1944] 
(1 4- dx 4- (1 ~ x/y) dy = 0. 

(Calcutta, 1937] 

10’7. Integrating factors. Equations which 
are not exact can often be made exact by multiply¬ 
ing them by some function of x and y. Such a 
function is called an integrating factor. 

The number of integrating factors for an equation 

Mdx + N dy = 0 

is infinite. For, if t* is an integrating factor, then by defini¬ 
tion, 

must be the differential coefficient of some function u of 
X and y. 

It follows that /(u) • iU, where /(u) is any function of m, is 
also an integrating factor; for, multiplication by it trans^ 
forms 

M + Ndy/dx 

into y(u)./«(M + Nj^), i,e.,/(u)^“. 

which is the differential coefficient, with respect to x, of 
F{u), where //(u) du = F(u). 

This proposition, however, does not help us in finding 
integrating factors. 
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(i) Integrating factor found by inspection. Some^ 
times an integrating factor can be found by ins¬ 
pection. 

Ex. Integrate (x^e^ - my^) dx 4* mxy dy = 0. 

We know that when differentiated gives two terms, 
each containing as a factor. Now the given differential 
equation has only one term which involves e*. Hence it 
must have come from the differentiation of alone. To 
make the equation exact, we shall, therefore, try division 
by X®. We get thus 

The last term resembles the expression obtained by 
differentiating a quotient, but requires a little re-arrange- 
ment to make it exactly a differential coefficient. We 
write the equation as 

+ im 
- Ixy^ + Ix^yy' 

x^ 
0, 

and see that the solution is 

+ imy^lx^ = c. 

(ii) If the equation M dx -f N dy = 0 has the 
form 

fi(xy) ydx + f^ixy) xdy = 0, 

and Mx — Ny =5^ 0, an integrating factor is 

l/(Mx — Ny). 

For M + N dyidx can be written as 

i.e., as i I (Mx + Ny) ^ log (xy) + (Mx - Ny) ^ log- ^ . 

Multiplication by l/(Mx - Ny) gives 

,/Mx + Ny\ d , / \ d , x 
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„ Mx + Ny _ft(xy)xy+ fjxy)xy 
Mx - Nj “ fi(xy) xy - fAxy) xy 

= F(x3») =- ^{Ioe; (vy)}. 

So the multiplication by l/(Mx Ny) reduces the given 
differential equation to the form 

i^dog xy) j^^dog xy) + log * = 0, 

which is evidently an exact differential equation. 

Ex. Solve (x^y^ + xy -f l)y dx + (x^y^ xy + l)xdy = 0. 

The integrating factor is 

l/{(x*y* + xy + l)xy - (x^y* - xy + l)xy}, Le., l/2x^*. 

Multiplication by this transforms the given differential 
equation into 

i(l + ^ + i }y dx + i A - ^ + '} )x dy = 0. 
\ xy x^yv \ xy x^yV 

As the equation is now exact, we can apply to it the 
method of § 10*6. We get as the solution 

+ logx - - i log y = c,. 

or, if 2ci = - log c, 

x’y* + xy log (cx/y) = 1. 

Note* It has been assumed that Mx - Ny is not equal 
to zero. If, however, this expression is zero, it follows that 
M/y = N/x, so that the differential equation M <Jx + N dy 0 
reduces in this case by algebraic simplification to 

y dx + X dy « 0, 

the solution of which is xy = c. 

(iii) V is a function of x alone, 

sayf(x)t then 
JJ^xidx 

is an integrating factor of the equation Mdx+Ndy = 0, 
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For, upon multiplication by this factor the 
new differential equation satisfies the condition of 
being exact, as is easily verified. 

Ex. Solve the equation 

(20x* + 8xy + 43/® + 331% dx + 4(x^ + xy + 31* + y^)x dy = 0. 

Here - 20x® + 16x31 + 12y» + 12y®, 

9N 
= 12x* + 8xy + 4>* + 431®. 

'T'L r 1 + 8xy + 85® + 8:y® 2 
Therefore - 4(x« + ^ • 

Hence the integrating factor is e*i.e,, x*. Mul¬ 
tiplying the differential equation by it, we get 

(20x‘‘ + 8x®3» + 4x*3i® + 3x®3i®) ydx + etc. = 0. 

Since the differential equation is now exact, the 
solution is 

(4x® + 2x*y + ^x®3f» + x*3i®) 31 = c. 

(iv) If ~ ^ function of y alone, say 

f{y), then 

is an integrating factor of the equation Mdx+'Ndy = 0. 

This can be proved to be true exactly in the 
same way as in rule (iii). 

(v) An integrating factor for an equation of the 
form 

xfy^(my dx 4- nx d:y) + x^ipy dx + qx dy) — 0, 

a, b, m, n, r, s, p, q bang constants, is 

x^y*, 

where h, k can be obtained by applying the condition 
that after multiplication by x^, the equation must 
become exact. 
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Multiplying by the proposed integrating factor, 
the equation becomes 

+ + qx''+’‘'*'Y+*) dy = 0. 

Since this equation must be an exact one, 
dM/dy must be equal to dNjdx, i.e., 

m(b + fe + 1) + p(s + fe + 1) 

= n(a + K + 1) x®++ q(r + h+ l)x»^V+*. 

This will be satisfied if 

tn(b + k + 1) = n(a + h + 1), 

and p(s + k +1) = q(r + h+ 1). 

These two equations determine h and fe. 

Ex. Solve (3x + 2y^) ydx + 2x(2x + 3y*) dy = 0. 

Upon trial it is found that the equation is not exact. 
But it can be put in the form 

x(3y dx + 4x dy) + y’‘(2y dx + 6xdy) = 0. 

Hence there must be an integrating factor of the form 
x'b*. Multiplying the original equation by it, we get 

(3jcfc*ij)k+i + 2xY*®) dx + (4x^*y + 6x^*y^**) dy = 0. 

If this is exact, we must have 

3(k + +'2(Jc + 3)x*y*’*® 

= 4(h + 2)x’^*‘3i* + 6(fi + Dx^y****. 

This is satisfied if 3(fc + 1) = 4(fi + 2), 

and 2(k + 3) = 6(h + 1). 

Solving these, we find h = 1, k = 3. 

So the integrating factor is xy*. Upon multiplication 
by it the original equation becomes* 

(3xY + 2xy«) dx + etc. = 0. 

Hence the solution is 

xV + x®y* = c, or xY(x + J*) *■ c. 
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Examples 

Find the integrating factors of the following differen¬ 
tial equations; also solve them. 

1* ydx - xdy + (I + X®) dx + x® sin ydy = 0. [Alld., *40] 

2* y(axy + dx - e" dy = 0. a-^7- ' 

3. {x*y* + x®y® + xy)y dx + (.x^y* - x*y* + xy)x dy = 0. 

'' 4/' (xy* + 2x»5») dx + (x®y - x®y®) dy = 0. [Aligarh, 1945} 

5. (xy sin xy + cos xy)y dx + (xy sin xy - cos xy)x dy = 0. 

6. ' (y + iy^ + ix®) dx + 1(1 f y®)x dy = 0. 

7. (7x®y + 2xy^-x®)dx + (x® + xy)xdy = 0. 
Sy' (xy* — X®) dx + (3x®y® + x®y - 2x® + y ") dy = 0. 

9.* (xy® + y) dx + 2(x®y® + x + y*) dy = 0. 

10. (2y dx + 3x dy) + 2xy(3y dx + 4x dy) = 0. 

11. x(3y dx + 2xdy) + 8y®(y dx + 3xdy) - 0. 

12. * (y®+ 2x®y) dx + (2x® - xy) dy = 0. 

10’8. Change of variables. A suitable 
substitution often reduces a given differential equa¬ 
tion which does not directly come under any of 
the forms discussed so far to one of these forms. 
This device, known as the change of the dependent 
or the independent variable (as the case may be), 
will be used in the succeeding chapters also. 

Ex. Solve sec® y (dy/dx) + 2x tan y = x*. 

Put tan y = V. Then (sec* y) y' = So the differential 
equation becomes 

which is linear. The solution is 

= c +/x*c*^ dx =a c 4- 4(x®- 1) 

ie*, tan y « cc*»* + Kx* -1). 
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Examples 

Solve 

*^1. (x - y'^) dx -i- 2\y dy ~ 0. [Andhra, 1943] 
2. {x'"* + y*^ + 2) dx^ 2y dy ^ 0. 

3, ^ ^ 3^ == 

^ dx " X ■ [Allahabad, 1941] 

5. [A^a.im 

- 6, CO8 (x + y) dy - dx. [Hint. Put x + y = v.] 

I 4 7. (x + y)» = a*. [Patna, 1940] 

§, dy/dx = (4x + y + 1)“. 

9. -= e’^Ke* - ev). [Agra, 1943] 

xdx + ydy_ //a®-x»-y“\ 
xdy-ydx~\\ x* + y* / 

[Hint. Change to polars.] 

Examples on Chapter X 

1. C + y cos X + y® cos X sin* x = 0. 

2. (x + y)(dx - dy) = dx + dy. 

3. (x® + y*) dx - 2xy dy = 0. 

[Benares, 1941] 

^ 6. X Dy - ? = xi/(x* + y*). 

•These examples are purposely not arranged in any 
special order. 
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7. (x^ + + x)dx - (2x0 + 2y^ y)dy = 0. 

8. ^ Di = X-. 9. cos® X f tan x. [Pat, ’41] 
clx X ax 

dx + 1 ?x=- ^ ^ (1 thaty ^ 0whenx = 1. 
[Madras, 1936] 

(1 + xy) 3; Jx -j- (1 - xy)x dy -- 0. [Lucknow, 1938] 
12. (a*’ 2xy - >-) dx- (x + y)‘^ dy -= 0* [Allahabadf ’30] 
!13 

13. (x® + y‘‘^ + a‘0y + x(x® + - a®) 0. 

14- 
dy 3x®y 
dx 1 4- x« 

dx 

sin® X 
l4-x»‘ 

15. 
dx 

+ y «1. 

16. 3x®3i® + cos (xy) - xy sin (xy) 

dy 

dx 
I 2x^y ~ X® sin (x^f) | ~ 0. [Allahabad, 1934] 

47. dy 
^ 2y tan x + y® tan® x. 

18. (2x®y - 3y®) dx 4- (2x® - 12xy + log y) dy « 0. 

19. yHy dx 4- 2x dy) - xH2y dx + x dy) =- 0. 

dy 
20. (1-x®) 

dx 
xy ^ x^y\ 

21. (x4y-a\dy j x + y + a \ 

x + y ~ bjdx 'x + y + b *' 
dy 

^2. X cos ^ sin X 4- cos x) = 1. 

23. l + Di’ + (x-e-‘»n'‘v)j^ = 0. 

24. = ‘i** ' 

dy 

[Allahabad, 1940] 

[I. C. S., 1935] 

26. (x® + 2xy - y*) dx + (y® + 2xy - x*) dy = 0. 
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27. - e-^'< lAgra, 19371 

28. = e’*-»v + x»e-»y. 

2Q cly _ x» + jr* + 1 
dx~ 2xy ■ 

30. xyHy dx + 2x dy) +■ {3:y dx + 5x dy) = 0, 

31. y + ^ = sin X. [AUgarh, 1933] 
dx x 

32. f . [London, 1938] 
dx x + 2y - 3 

33. dyldx 4- y cos x-^y*^ sin 2x. [Lucknow;, 1939] 

34. (1 + x) - x^i = 1 - X* 

3^. jx ^ ^ ~ [AlZafiabad, 1945] 

36. y{2x^y + e®) dx - (e* + dy = 0. 

37* 3e* tan y 4* (1 - e*) sec^y = 0. [Bombay, 1940] 

38. (x + y + 1) = 1. [Nag/jur, 1930] 

39. (2x+3:y-5)^^ + 2x + 3y-1 =0. 

* 40. x(x - 1) - y - x^(x - 1)®. [Math. Tripos, 1935] 

' 41. X + 2y - X® log X = 0. [Dacca, 1936] 

42. (Zx^y - 3y'‘) dx 4- (3x^ -h Zxy"*) dy ~ 0* [Pama, 1937] 

43. The distance x descended by a person falling by 
means of a parachute satisfies the diflFerential equation 

(ty = '^“<1 - 

where k and g are constants, and x « 0 when i « 0# 



EXAMPLES 221 

Show that ^ 

X = ^ log cosh ^ ^ [Madras, 1934] 

44. If the equation Pdx + Q dy = 0 can be made 
exact by means of an integrating factor n which is a func¬ 
tion of X alone, show that 

1 /dP dQ\ 

Q\dy 3x/ 

should be independent of y. [Lucknow, 1937] 

45. If 2/v dx =« V - log (1 + v) + A, where A is some 
constant and r is a function of x which is zero when x - 0, 
prove that 

V - 2e* sinh x. [Nag/wr, 1930] 

dy 
+ 2y tan x sm x. 

gi/en that y = 0 when x \n. [Travancore, 1941] 

. 47. Show that the equation 

xfx*' 4- 3y*) dx+ y(y® + 3x®) dy =• 0 

is exact, and solve it. [Madras, 1937] 

48. Prove that l/(x + y -(- !)■* is an integrating factor of 

(2xy - y* - y) dx + (2xy - x® - x) dy - 0. 

and find the solution of this equation. [Mysore, 1936] 

49. Show that the equation 

(4x + 3y +1) dx + (3x + 2y +1^ dy - 0 

represents a family of hyperbolas having as asymptotes the 
lines x-(-y«0, 2x + y + l = 0. [Andhra, 1937] 

50. Find the integrating factor of 

y sec* X dx + (y -t- 7) tan x dy = 0, 

and solve it. Verify the result by solving the equation by 
separation of variables. (Bombay, 1937] 



CHAPTER XI 

EQUATIONS OF THE FIRST ORDER, BUT 
NOT OF THE FIRST DEGREE 

11*1. Equations solvable for p. In diffe¬ 
rential equations which involve dyjdx in a degree 
higher than one, it is usual to use p to denote dyjdx. 
Now suppose a differential equation can be solved 
for p and is of the form 

1P - fi(x, y)Hp- fa(x,y)i --AP- f»(x, y)l = 0. 

Then each factor can be equated to zero and 
the resulting equations of the first degree and first 
order solved. If the solutions are 

Fx(x,y,cj) =0,Fa(x,y,Ca)=0,. . (1) 

the solution of the given equation can evidently be 
put in the form 

Fa (x, y, c) Fa(x, y,c)... F„(x, y,c)= 0. . . (2) 

There is no loss of generality in replacing the arbitrary 
constants Cj,C2,... ,c,i by a single arbitrary constant c, 
because every particular solution obtainable from the 
equations (1) can also be obtained from (2) by giving a 
suitable value to c. 

Ex. 1 Solve - 5p -h 6 ^ 0. 

Here p 2 or 3. 

The corresponding solutions are y 2x + y -- 3x + c. 

So the solution of the given dilferential equation is 

(y - 2x - c)( y ~ 3x - c) 0. 

Ex. 2. Solve (x ~ - 3y(x - y)p + 2y^ + xy - x^^O. 
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Solving for p, we get 

_ 33?(x - y) ±:(x - y)i/(9y° - 

2(x~y)*~ 

_ 331 dr (2x - y) X 4- y 2y - X 

2(x - y) X - y ’ X - y * 

Put now y = I’x. Taking the first of the two roots for p, 
we get 

dv 1 -f 1 
V f X I -- , 

tlx 1 ~ t' 

or log c cran“^ i' 

The second root gives 

tit' 2t' - 

[dx f(l - <1;) , 
or cj + - L /da\ 

J X j 1 + t/“ 

Uogd + i*^). . . (1) 

V + X 
dx 

Iv - 1 [dx |{1 - i>) dv 

1 _M X ^ Jv!< + „ -1 ’ 
or logcx== - ilog(i^» + v- I) ( log 2v+1+ l/^ 

... (2) 
(1) and (2) with v replaced by y/x constitute the re¬ 

quired solution. 

Note. Even if an equation is resolvable into factors 
which are linear in p, it may not be possible to solve the 
equation by the method of the present article, for the com¬ 
ponent differential equations may not be solvable. In such 
cases the methods of the succeeding articles may he tried. 

However, in every case in which the various terras in 
the differential equation are of the same degree in x,y,as in 
the last example, the differential equations obtained by 
solving for P are homogeneous, and so a solution is alway& 
possible by this method. 

Examples 

Solve the following differential equations : 

1. |?a~2i?~3-0. 

2. (f) + y + xXxp -f y + x)lp 4 2x) =- 0* 

3. (f> ~ xy)(p - x»)(/> - y®) = 0. 
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4. X®/)’ + y{l + = 0. 
' 5. p* + Ipy cot X = y*. [LucknoiVy 1938] 

6. pip -y) = x{x + y). 

* 7. 
'(S’""'’''**"’'"' 

[Allahabad, 1944J 

* 8. [Dacca, 1935] 

• 9. [MatK. Tripos, 1932] 

11*2. Equations solvable for y. If the 
differential equation can be solved for y and thus 
put in the form 

y = f(x,p), . . (1) 
differentiation with respect to x gives an equation 
of the form 

P = P, dp/dx). 
Now this equation is a differential equation in 

the two variables p and x. It may be possible to 
obtain its solution, say, 

F(x, p,c) = 0. ... (2) 
The elimination of p between (1) and (2) gives 

us the required solution. 
In case the elimination is not feasible, equations 

{1) and (2) may be regarded as giving x and y in 
terms of a parameter p; or, if possible, these equa^ 
tions may be solved and the result expressed in 
the form 

x = Fi(p,c), 

y = Fi(t». c). 
The method of the present article is specially 

useful for equations in which x is entirely absent. 
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Ex, Solve X® + p®x = yp. 

Solving for y, we get y = x^lp + px. 

Differentiating with respect to x. 

2xp - x®p' 
+ p + xp’, 

or dp. (p* - x) + 2p = 0, 

te., ip. 

dx^ 

dx 
dp 2p 

which is a linear differential equation. The solution is 

X = c|/p - ipK ... (1) 
Substituting this in the original differential equation, we get 

y = (ci/p - ip®)®/p + p{ci/p - JP®). (2) 
Equations (1) and (2), which express x and y in terms of p, 
constitute the solution. 

11*3. Equations solvable for x. If the 
' equation can be solved for x and thus can be put 

in the form 
= fb, P), . » . (1) 

differentiation with respect to y gives an equation 
of the form 

1/P = P, dp/dy). 
If it is possible to solve this differential equation, 
let the solution be 

Fb,P,c) = 0. . . (2) 

The elimination of p between (1) and (2) gives 
us the required solution; or x and y may be ex¬ 
pressed in terms of p, and p may be regarded as a 
parameter. 

The present method is specially useful for 
equations in which y is entirely absent. 

15 
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Ex. Solve the differential equation 
p3 _ ^xyp + 8y® = 0. 

Solving for x, we get 

i)’ + 8y® f)® 2y 
4yp 4y ^ p " 

Differentiating with respect to y. 

1 ^ PP' _ P* . 2 _ 2yp' 
p 2y 4y* ^ P p® ’ 

or p' 
/P _2y\_^® _1 
\2y p»/ 4y* p’ . . (1) 

ie,, 
dp p 
dy 2y* 

in which the variables are separable. The solution is 

p® = cy. 

Eliminating p between this and the original differential 
equation, we get 

c3/» y3/a _ 4ci/axy3/a + gy* = 0, 

or - x) - - yi''*. 

Hence, writing c for ic, the required solution is 

y ^ c(x - c)®. 

Note. The significance of the factor (p’~ 4y®)/yp®, by 
which equation (1) has been divided above, will be dis¬ 
cussed later. See § 12*22. 

Examples 

Solve the following differential equations ; 

1. y - 3x + a log p, 2. 2y = a® + x® + p®. 

• 3. y - sin p.~ p cos p, [Allahabad, 1938] 

4. y = a + bp + cpK 5. y = at/(l + p®). 

6. y + xp=‘ x*p®. * 7. xp® - a + bp. 

' 8. (2x - Wp = y - ayp*. '9. y* log y = xyp + p®. 
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11*4. Clairaut’s equation, (i) The equation 

51 = f)X + f^) 

IS known as Clairaut’s equation.** 

To solve it, differentiate it with respect to x. 
We get 

p = p + {x + f'(p)i p'. 

Hence p'=0, or x+f(p) = 0. 

The first equation gives 

p = c. 

Elimination of p between this and the original 
differential equation gives the required solution 

y = cx + f(c). 

If we eliminate p between 

X + f(p) = 0 
and the original equation, we get a solution which 
does not contain any arbitrary constant, and is not 
a particular case of the solution y = cx + f(c). Such 
a solution is called a singular solution, and is con¬ 
sidered in greater detail in the next chapter. 

Sometimes an equation can be reduced to 
Clairaut’s form by a suitable substitution. 

(ii) The more general equation 

y = xf(p) + F{p) . . (1) 

•A. C. Clairaut (1713-1765) was a youthful prodigy. 
He read G. F. de 1’ Hospital’s works on the infinitesimal 
calculus and on conic sections at the age of ten. Some of his 
researches were ready frr publication at the age of sixteen. 
In researches on the figure of the earth no other person 
has accomplished as much as Clairaut. His work on the 
motion of the moon is equally important. He applied the 
process of differentiation to solve the differential equation 
now known by his name. (Cajori, A History of Mathematics.) 
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can be dealt with in a similar way. In fact this 
equation and also Clairaut’s equation are particular 
cases of the equation considered in § 1T2. 

Differentiating (1) with respect to x we get 

p=^f{p) + {xfXp) + F(p))dpldx, 

or iP-f(p)}fp -xf'(p) = F(p). 

which is linear, and so can be solved by the method of § 10 5. 

Ex. Solve y - px + alp. 

This is of Clairaut’s form, and so the solution is 

y = cx + a/c, 

where c is an arbitrary constant. 

The singular solution is the result of eliminating p 

between y - px + ajp and x - a/p“ -- 0, 

i.e., the singular solution is 

y - XI (a/x)+ ay(xla) - 2i/(ax), 

or y* = 4ax. 

Examples 

Solve the following differential equations : 

y = px + ap(l - p). [Aligarh, 1934] 

y = px + (1 + p®)'^-'. [Nagpur, 1936] 

[Allahabad, 1940] 

■ 1. 
2. 
3. 

4. 

5. 

p --- log (px - y). 

(y - px)(p - 1) = p. 

xp* - yp + a = 0. 
[Delhi, 193?; 

» 6. Use the transformation x* =- u, y® =- v to solve 

(px - y)(py + x) =- h®p. [Mysore, 1936] 

1 7. Solve y = 2px + y®p®. [Allahabad, 1929] 

[Hint. Multiply by y and put y® = v.] 

8. Solve x®( y - px) = yp®. [LucJcnow, 1939] 

[Hint.- Put X* = M, y» == v.] 
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Examples on Chapter XI 

Solve : 
•1. y - x(dyldx) + idyldxy. [Andhra, 1936] 

2. Y == xp* + p. 

♦ 3. y = 2px +^p”.- [Nagpur, 1943] 

■4. [Allahabad, 1941] 

5. y = (p + P")* + i/f’”"*- [Benares, 1939] 

•6. y - p*y + 2px. [Delhi, 1945] 

7. Y - x{-p + Vd + P®)). [Aligarh, 1937] 

8. axyp* + (x® - UY® - b)p - xy = 0. [I.C.S., 1935] 

9. p®(x® - a®) - 2pxy + ji* + a® = 0. [Patna, 1933] 

10. Y = apx + bp'*. 

11. xyp“ + p(3x* - 2y®) - 6xy - 0. [Madras, 1937] 

12. x®p® - 2xyp + Y® =- x®Y» + x*. [Allahabad, 1938] 

13. 4(xp® + yp) ■= y*. [I. C. S., 1 31] 

14. y - 2px - /(xp®). 

15. 9(y + xp log p) (2 + 3 log p)p®. 

16. 
dy /dy\^ 

y- X - X ,+( ,1. 
ax \ax/ 

17. X + PI vdl + P’) - a. 1 Patna, 1941] 

18. p3 _ p(y + 3) + X = 0. 

19. (x - a)p® + (x - y)p - Y = 0. 

20. p - tan {x-p/(l + p®)}. 

21. c3®(p - 1) + P’e®!' = 0. 

22. (y - xp)®/(l + p®) - a®. 

23. Find the general and singular solutions of the diffe- 
rential equation (xp - y)^ = p* -1. 

■ 24. By differentiating with respect to x the equation 
p^ + xp» - y, 

obtain its general solution in the form x = f(p), y =• ^(p). 
[London, 1936] 
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GEOMETRICAL INTERPRETATION. 
APPLICATIONS 

12*1. Geometrical meaning of a differen¬ 
tial equation. Consider first the differential 
equation of the first order and the first degree, 

f{x, y, dy/dx) = 0. . . (1) 

Let X, y denote the coordinates of a point. 
Then the differential equation (1) can be regarded 
as an equation giving the value of dy/dx when 
the values of x and y arc known. 

Let Ao be any point (a„, bo). Let the value of 
p ( = dy/dx) at (ao, bo) derived y 
from the equation (1) be po- 
Take a point A, at a short 
distance from Ao and in such 
a direction that the gradient 
of AqAj (i.e., the tangent of 
the angle which AqAj makes 
with the x-axis) is po. Let 
the coordinates of Aj be 
(a,,ba) and let the corresponding value of p be p*. 
Take A* at a short distance from A^ in such a 
direction that the gradient of AjAj is pj, and so on. 

Let now AoAj, AjA,,...tend to zero (and let 
their number tend to infinity); and suppose that 
the broken curve AoAiAj... tends to a curve C. 
Then the curve C evidently possesses the property 
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that the gradient of the tangent to it at any point 
and the coordinates of that point satisfy the diffe¬ 
rential equation (1). 

If we start with any other point, different 
from Au, and not lying on the curve C, we shall 
obtain another curve which also possesses the 
above property. Evidently we can obtain a family 
of curves each member of which possesses the 
above property. 

Moreover, we have seen that the solution of 
the differential equation (1) is of the form 

F(x,y,c) = 0, 

where c is an arbitrary constant. This also shows 
that the differential equation represents a family 
of curves. 

Hence the differential equation f{x, y, dyldx)=0 
represents a family of curves each member of 
which possesses the property that at any point 
(x, y) on it the value of dyjdx and the coordinates 
X, y satisfy the differential equation.® 

The differential equation of the first order, 
but of the second degree is a quadratic in dyjdx, 
and so gives us two values of dyjdx at every point. 

•The broken curve AoAiAs ... obtained above will be 
a very close approximation to the curve given by the 
differential equation if AoAi, AiAg,... are sufficiently small. 
A numerical solution, corresponding exactly to the above 
geometrical process, was used to solve the differential 
equations of motion of Halley’s comet and thus predict 
its return in 1759, because the analytical solution would 
have taken too much time. Many other equations, which 
cannot be solved by analytical methods, but whose solu¬ 
tion is important for certain researches, have been solved 
by similar approximate methods. 
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Hence two members of the family of curves repre¬ 
sented by it pass through every point. We may 
expect, therefore, that its solution will involve the 
arbitrary constant c in the second degree, so that 
there may be two values of c for every point. We 
have already seen in the previous chapter that this 
in fact is the case. 

The method of finding the differential equation when 
the primitive is given has jbeen explained in § lOTl, 

Ex. Obtain the differential equation of all circles 
which have their centre at (a, h). What is the geometrical 
interpretation of the differential equation 1 

The Cartesian equation of all circles which have their 
centre at (a, b) is 

(x a)* + ty -■ = c, • . . . (1) 

where c is arbitrary. 

To obtain the differential equation, we differen¬ 
tiate (1). We get 

(x ~ a) 4* (y ~ b) dyidx = 0. 

As this equation does not contain c, this is the required 
differential equation. 

It can be written as 

dy __ X- a 
dx y -b* 

Now the (i.e., the gradient) of the straight line 
joining (a, b) to (x, y) is {y - h)/(x ~ a). 

So the above differential equation means that at every 
point the curves represented by it are perpendicular to the 
line joining that point to (a, b). In other words, the diffe¬ 
rential equation states that the curves represented by it 
are the curves which cut the radii vectores from (a, b) at 
right angles. 
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Examples 

1. Find the differential equation satisfied by x, y inde¬ 
pendently of the values of a, b in the equation 

y ^ ax cos ^ + bj. [Dacca, 1939] 

* 2. Form the differential equation of the system of 
circles touching the y-axis at the origin. [Andhra, 1942] 

3. Find the differential equation of all coaxal 
parabolas. 

4. Show that the differential equation of a general 
parabola is 

dx^ 

* 5. Form the differential equation of all conics whose 
axes coincide with the axes of coordinates* [Lucknou^, 1938] 

* 6. Discuss the graph of the differential equation 

dy X 

dx ^ y ’ 
[Aligarh, 1936] 

‘ ?• Find the equation of the curve through the origin 
which satisfies the differential equation 

dyidx - (x - y)®. ^[Mat/i. Tripos, 1934) 

12*2* Singular solutions. Geometrical 
meaning. Consider the differential equation 

y = px+a/p, ... (1) 

which was solved in § ir4. 

The solution is 

y = mx + alm, ... (2) 
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where m is an arbitrary constant, and represents a 
family of straight lines. 
It is well known that the 
envelope of this family 
is the parabola 

Now take any point 
(a#, he) on this parabola 
and consider first the 
straight line Lo of the 
family (2) which passes 
through(flo,ho). By§12‘l 
it is evident that the 
values of x, y, dyjdx at 
(oo, ho) for the straight 
line Lo must satisfy the differential equation (1). 

Next consider the value, at (a©, ho), of dyldx 
for the parabola y^ = Aax. This value must be the 
same as the value of dy\dx for the tangent to it at 
(flo, ^’o)* i e., the same as the value of dy\dx at 
(^*o» ^’o) for the straight line Lg. ■ 

The question to be considered now is whether 
the values, at (ao, ho), of x, y, dyjdx for the parabola 
will satisfy the differential equation (1). The an¬ 
swer evidently must be in the affirmative, because 
the values of x, y, dyjdx for the parabola belong also 
to that member of the family of straight lines re¬ 
presented by the differential equation (1) which 
passes through (ao, ho). 

We see, therefore, that at (ao, ho), and so at 
every point on the parabola y® = 4ax, the values of 
x, y and dy/dx satisfy the differential equation (1), 
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Hence / = 4o.x must also be a solution of tbe 
differential equation (1). 

This solution, which is not a particular case 
of the general solution (2), is the singular solution, 
and represents the envelope of the family of curves 
given by the differential equation. 

The above proposition is a general one. 
Whenever an envelope of the family of curves repre¬ 
sented by the general solution of a differential equation 
exists, the equation of the envelope is also a solution of 
the differential equation. For, if the general solution 
of the diflferential equation 

fix, y, dy/dx) = 0, ... (3) 

is F(x, y,c) = 0, ... (4) 

and the envelope of (4) is 

4>(x,y) = 0, ... (5) 

the values of x, y, dyjdx at any point (a©, bo) on (5) 
must be the same as the values of these quantities 
at that point for the member of the family (4) which 
passes through (Oo, hf), and so must satisfy (3). 

The equation of the envelope of the family of 
curves represented by the general solution of a diffe¬ 
rential equation is called the singular solution. Such 
a solution does not involve any arbitrary constant. 
Usually it is not included in the general solution. 
It may, however, in exceptional cases be only a 
particular case of the general solution; then it is 
regarded as being both a singular solution and a 
particular case of the general solution. 

Note. We can easily verify directly that y* = 4ax is a 
solution of the differential equation (1). For y® = 4ax gives 

dy/dx = 2a/y. 
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With this value of p the right-hand side of the diffe¬ 
rential equation 

= + +iy -^y = the left-hand side. 
y 2a y 

Thus the differential equation is satisfied. 

12*21. The singular solution of Clairaut’s 
equation. We have seen that the general solution 
of Clairaut’s equation 

y = px + f(p) ...{!) 

is y = cx + f(c). ... (2) 

Hence the singular solution, which is the 
envelope of (2), will be obtained by eliminating c 
between (2) and the equation 

0 = x + f(c), ... (3) 

obtained by differentiating (2) partially with respect 
to c. 

Now the equation obtained by differentiating 
(1) partially with respect to p is 

0 = x + f(p). ... (4) 

The equations (1) and (4) differ from the 
equations (2) and (3) only in having p instead of c. 
Hence the result of eliminating p between (1) and 
(4) will be the same as that of eliminating c bet¬ 
ween (2) and (3), i.e., the equation obtained by 
eliminating p between (1) and (4) will be the enve- 
looe of the curves (2), and thus will be the singular 
solution of (1). 

By comparison with § 11*4 it will be seen that equation 
(4) was one of the equations obtained on differentiating 
(1) with respect to x. The above shows why the elimina¬ 
tion of p between that equation and the differential 
equation gave the singular solution. 
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12*22. Determination of singular solu¬ 
tions. General case. An equation which possess¬ 
es a singular solution is not considered completely 
solved until the singular solution also has been 
found. Hence it is necessary to know how to find 
such a solution. 

There are two methods. We may find the 
singular solution either from the diflferential equa¬ 
tion or from its general solution. Since the sin¬ 
gular solution is the envelope of the family of curves 
represented by the general solution, it can be found 
from the general solution by the usual method of 
finding envelopes. Thus if the general solution is 

P(x, y, c) = 0, . . (1) 

the singular solution is obtained by eliminating c bet¬ 
ween it and the equation 

dF(x, y, c}/dc = 0. . . (2) 

Again, if the result of this elimination be 

<t)(x,:y) = 0, . . (3) 
it is well known that this equation represents the 
condition that two roots of (1), considered as an 
equation in c, should be equal. Geometrically 
interpreted, this means that the condition that the 
point P(x, y) should lie on the envelope (3) is the 
condition that two of the curves, of the family (1), 
which pass through (x, y) should coincide. 

Regarded from this point of view, it is obvious 
that the equation of the envelope should also be 
obtainable from the condition that the values of p 
for two of the curves which pass through (x, y) 
should be equal; i.e., if the differential equation is 

f(x, y, P) = 0, 
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the envelope, and hence the singular solution, will 
be obtained by eliminating p between it and 

^f(x. y, p)ldp = 0. 

The above makes it evident that if p occurs only in the 
first degree in the differential equation, there will be no singular 
solution. Similarly, if the differential equation can be 
resolved into a number of factors, each linear in p, there 
will be no singular solution. 

The process of finding envelopes in some cases gives 
us curves which are not envelopes 
(see Text-Book on Diff. Cal, § 12*21). 
The same is true about the process of 
finding the singular solution. The 
process will give, for exjimple, the 
locus of cusps if each member of the 
family possesses a cusp. But the 
dyidx for this locus will in general be 
quite different from the dyfdx for each 
member, as in the accompanying 
figure; i.e., its equation will not satisfy 
the differential equation. Therefore, in any particular 
case, unless the equation obtained for the singular solu^ 
tion obviously represents the envelope and nothing but 
the envelope, it is necessary to try whether the result 
satisfies the differential equation. Should it not do so, it 
may happen that the equation can be resolved into others 
that are simpler, and one or more than one of them may 
satisfy the equation; these will then constitute the singular 
solution.* 

Note 1. In solving differential equations by the 
methods of §§ ir2 or 11*3, the equation obtained after the 
differentiation with respect to x or y often contains a 
factor which, equated to zero, gives what we would obtain 
by differentiating the given differential equation with 

*A. R. Forsyth, A Treatise on Differential Equations, 
where a more detailed treatment of singular solutions will 
be found than is possible to give here. 
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respect to p. Therefore the elimination of p between this 
and the original equation will, in general, give us the 
singular solution, 

2. If F(c) 0 is an algebraic equation in c, the simpl¬ 
est function of the coefficients the vanishing of which 
represents the condition that the equation should have 
two equal roots is called the discriminant Thus the dis¬ 
criminant of the equation 

Ac® + Be •+* C = 0 • • • (4) 

is B® - 4Aa 

The equation B® - 4AC == 0 may be called the discrimi¬ 
nant relation* 

In confirmation of what has been said above about 
the envelope of a family of curves being the locus of points 
where two members of the family coincide, it may be noted 
that if A, B, C are functions of x, :y, the envelope of the 
family of curves (4) is B® - 4AC = 0, and this equation is 
also the condition that the quadratic (4) should have two 
equal roots. 

Ex. 

Here 

Solve completely the differential equation 

9f7®(2 - y)^ - 4(3 - y)* / 

dx 2- y 

The variables are separable. Integration gives 
_^.,((2-y)dy _, [(t^--1) 2t dt 

-r + c-| f 

where t = \''(3 - y), 
= tft* - 3), 

or ix + c)'‘= y^(3 - y). S ) 

This is the general solution. The singular soluti.n 
can be found by any of the two methods given below. 

First method. The general solution is 
(x + c)® =y®(3 - y). 

This is a quadratic in the parameter c. Hence the 
envelope is 

X* - {x* - y*{3 - y)) = 0, 
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i.e., y^{3 - y) » 0. 

Now :y = 0 gives p ^0. Substitution in the differential 
equation shows that these values of y and p do not satisfy 
it. Hence y ^ 0 is not a solution. 

Again 3 - 3/ = 0 gives p ==- 0, Substitution shows that 
these values of y and p satisfy the differential equation. 
Hence the singular solution is :y = 3. 

Second method. The given differential equation is a 
quadratic in p. So the p discriminant relation can be 
written down at once. It is 

144(2 - yH3 ~ y) « 0. 

Now 2 - y = 0 gives « 0. Substitution in the differen¬ 
tial equation shows that these values of y and p do not 
satisfy it. Hence 2 - y ^ 0 is not a solution.* 

Again, 3 - 3^ = 0 gives p = 0. Substitution shows that 
these values of y and p do satisfy the differential equation. 
Hence the singular solution is :y = 3. 

Examples 

Find the general and singular solutions of 

L (y - + a^p = 0. 2. 3xy = 2f>x® ~ 2p^, 

3. p^ - 4xyp + 8y^ = 0. 4. (y - px)H 1 + = a*/?®. 
5, y - px + x - y/p==a. 

^ 6. Find the complete primitive and singular solu¬ 
tion of 

y = + |/(b® + a®p®). 

Interpret your results geometrically. [Agra, 1933] 

7. Investigate for singular solutions 

4x(x - l)(x ^ 2)p® - (3x® ~ 6x + 2)* = 0. [AH. 77] 

^ 8p* Find the general and singular solutions of 

3^® - 2pxy 4- f>®(x® ~ 1) = m®. [L«cfe. ’38] 

•For the geometrical meaning of the various loci see 
Miller : A First Course in Differential Equations, p. 31. 
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12*3. Geometrical problems. Many geo¬ 
metrical problems give rise to differential equations. 
An example will make the procedure to be adopted 
in solving such problems clear. 

Ex. Find the curves in which the polar subnormal is 
of constant length. 

Let the length of the polar subnormal be a. Then, 
since the polar subnormal is given by the expression drjdd, 
we must have 

dr I do - a, 

which is the differential equation of the required curves. 

Solving it, we get 
r a(0 + c), 

where c is an arbitrary constant. This is the polar equa¬ 
tion of the required curves. 

Examples 

1. Find the Cartesian equation of the curve whose 
subtangent is constant. 

2. Find the curve in which the polar subtangent is 
constant. 

3. Find the curve in which the subnormal is equal 
to the abscissa. 

% 4« Show that the parabola is the only curve in which 
the subnormal is constant. [Agra, 1941] 

5. Find the differential equation of the family of 
curves which cut a family of coaxal circles at a constant 
angle. 

» 6. Find the Cartesian equation of the curve in which 
the perpendicular from the foot of the ordinate on the 
tangent is of constant length. [Patna, 1941] 

* 7. Find the curves for which the sum of the recipro¬ 
cals of the radius vector and the polar subtangent is 
constant. ICalcum, 1941] 

16 
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* 8. Show that the curve in which the angle between 
the tangent and the radius vector at every point is one-half 
of the vectorial angle is a cardioid. [Dacca, 1942] 

9. Find the curve which is such that the'portion of the 
x-axis cut off between the origin and the tangent at any 
point, is proportional to the ordinate of the point. 

[Bombay, 1935] 

f 10. The slope of a curve at any point is the recipro¬ 
cal of twice the ordinate at that point. The curve also 
passes through the point (4, 3). Find the equation to the 
curve. [Andhra, 1940] 

11. The tangent at a point P of a curve meets the axis 
of y at M and the parallel through P to the axis of y meets 
the axis of x at N. O is the origin. If the area of the tri¬ 
angle MON is constant, show that the curve is a hyperbola. 

[London, 1938] 

12. Show that the curves for which the radius of 
curvature varies as the square of the perpendicular upon 
the normal belong to the class whose pedal equation is 

- pa - pik 4- l/2fea + Ae^^P, 

k being a given constant and A arbitrary. [Patna, 1935] 

* 13. By integrating twice, or otherwise, find the primi¬ 
tive of 

/I ^ du ^ 
(1+ «•)*,■*■ 2-a, -0- 

Hence, or otherwise, obtain the nth derivative of 
tan”* X, at X = 0. [Andhra, 1936] 

12’4. Trajectories. A curve which cuts 
every member of a given family of curves in accord¬ 
ance with some given law is called a trajectory of 
the given family of curves. We shall consider only 
the case when the given law is that the angle at 
which the curve cuts every member is constant. 

If a curve cuts every member of a given family 
of curves at right angles, it is called an orthogonal 
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trajectory. The orthogonal trajectories of a given 
family of curves themselves form a family of curves. 
Their differential equation is easy to find if the 
differential equation of the original family of curves 
is known. For let the given family of curves have 
the equation 

f(x,y,dyldx) = 0, . . (1) 

and suppose that X, Y are the current coordinates 
of any point on an orthogonal trajectory of (1). 

At the point where a member of (1) cuts the 
orthogonal trajectory, we must have 

X = x, 

Y = y, 
dY _ _ 1 
dX - dyidx • 

Substituting in (1), we get 

/(X, Y,-dX/dY) = 0, 
which is the required differential equation o fthe 
orthogonal trajectories. 

Thus to obtain the differential equation of the ortho- 
gonal trajectories, we have simply to write — dx/dy for dyfdx 
in the differential equation of the original family of curves. 

Similarly, since the tangent to a curve makes 
with the radius vector an angle <(), where 

tan <|) = rdQjdr, 
the tangent to the orthogonal trajectory must make 
with the radius vector an angle where 

tan = R de/dR, 

(R, &) being any point on the trajectory. But 

a> = + 

Hence (r d0/dr)(R de/dR) = - 1. 
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It follows that the differential equation of the 
orthogonal trajectories is obtained from the differential 
equation (in polar coordinates) of a given family of 
curves by writing 

1 dr 
r dQ 

for r 
dQ 
dr ’ 

i.e., for 
dr 

de' 

If the trajectories cut the given family of curves, whose 
differential equation is 

f(x, y, dy/dx) = 0, 

at the constant angle a, instead of at right angles, the 
difference between 

un- (*) and tan- 

must be a, i.e., 

dy _ dYidX - tan a dY/dX + tan a 
dx 1 + (d Y/dX) tan a ’ 1 - (dY/dX) tan a ’ 

according as the trajectories make the angle a on one 
side or the other of the curve. 

Hence the two differential equations of the trajecto¬ 
ries are obtained by substituting for dyjdx in the differential 
equation of the given fapiily of curves the expressions 

dy/dx-tan a , dy/dx + tan a 
1 + (dy/dx) tan' a 1 - (dy/dx) tan a 

respectively. 

To obtain the trajectories themselves, their 
differential equation, obtained by any of the above 
methods, must be integrated. When only the 
ordinary equation of the original family of curves is 
known, its differential equation must first be found 
by differentiation and elimination of the parameter. 
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Ex. 1. Find the orthogonal trajectories of the car 
dioids r = a(l - cos d), a being the parameter. 

Differentiating r a (1 - cos 0), 

we get drldd = a sin 0. 

Eliminating a, we have rdoldr -= (1 - cos 0)/sin 0. 

Hence the orthogonal trajectories are given by the 
equation 

I dr __ 1 - COSJ0 

r J0 sin 0 

Separating the variables and integrating, we have 

fdr ^ f(l - cos 0) dd 
Jr j sin 0 ’ 

or log r = - log tan i0 + log sin 0 + log c, 

ie., r = c sin 0/tan i0 === 2c cos^ 40. 

Hence r === c(l + cos 0) 

is the required family of orthogonal trajectories. 

Examples 

Find the equation of the family of curves that is 
orthogonal to 

1. y =* ax\ * 2. y = - a»)/3x. [AHJ., *38] 

3. ax* + :y* - 1. 4. xy = k*. 

^ 5. Show that the orthogonal trajectories of the family 
of conics ^ L " . 

y* - X* + 4xy - 2cx ==0 t ' ' jf ^ 
is a family of cubics with the common asymptote x + ^ = 0. 

[Madras, 1934] 

6. Find the differential equation satisfied by the 
system of parabolas y* = 4a(x + a), and show that the 
orthogonal trajectories of the system belong to the system 
itself. 

• ?• Find the orthogonal trajectories of the system of 
curves 

[Bombay, 1936] 
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^ 8* Prove that the families of curves given by the 
equations 

y* + 3x* == lax, 
yB ^ b(y^ ~ X*), 

where a and b are arbitrary parameters, intersect at right 
angles. [Lucknow, 1931] 

Find the orthogonal trajectories of 
9. •

 

II ^10. 11 [Benares, *41] 
11. r = 12. r = a{l + cos nd)» 
13. = a** sin nS. ^14. t” sin nO = = a^ 

Find the equation of the family of oblique trajectories 
which cut 

15. A family of concentric circles at 30°. 

16. The straight lines y « mx at 45°. 

17. The circles touching the x^axis at the origin at 60°. 

12*5. Other applications. Differential 
equations are of great utility in many problems of 
mechanics and physics. Such problems, however 
are not considered here, as the student is sure to 
study them in connection with their respective 
subjects. 

Examples on Chapter XII 

' 1. Find the differential equation of all circles in the 
(x, :y) plane. [Dacca, 1937] 

2. Find the differential equation of a system of con- 
focal and coaxal parabolas. 

3. Show that the differential equation of all hyper¬ 
bolas passing through the origin and having their asymp¬ 
totes parallel to the coordinate axes is 

0. 
4. Prove that, through any point (x,y) for which 

x^O, there passes exactly one curve satisfying the diffe¬ 
rential equation dyidx = kyjx, 
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where Jc is a given constant. Prove that, if k > 0, all these 
curves pass through the origin. Prove that, if k < 0, the 
only one of the curves which passes through the origin is 
the x-axis. [Matk. Tripos, 1934] 

' 5. Find the curves in which the subtangent varies as 
the abscissa. [Aligarfi, 1938] 

6. Find the equation of the curve for which the polar 
subnormal varies as the radius vector. 

^ 7. Find the curves for which the Cartesian subnormal 
varies as the square of the radius vector. [Patna, 1941] 

8. Find the polar equation of the curves in which the 
length of arc is proportional to the vectorial angle. 

♦ 9, Find the equation to the family of curves in which 
the length of the tangent between the point of contact and 
the x-axis is a constant length equal to a. [Andfira, 1943] 

10. Obtain the Cartesian equation of the curve which 
possesses the property that the rectangle contained by the 
radius vector and the perpendicular drawn from the origin 
to the tangent is a constant ( = k*); given that the curve 
cuts the x-axis at a distance k from the origin. [Luck., *28] 

11. Find the curves in which the projection of the 
radius of curvature on the axis of y has a constant value a. 

12. The tangent at any point P of a curve meets the 
x^axis at Q. If Q is on the positive side of the origin O 
and OP = OQ, show that the family of curves having this 
property are parabolas whose common axis is the x-axis* 

Find the equation of the family of orthogonal trajec¬ 
tories. [London, 1937] 

13. The normal at any point P of a curve cuts the 
x-axis in Q, and N is the foot of the ordinate of P. If NQ 
varies as the square of the radius vector from the origin, 
find the differential equation to the curve, and solve it. 

[Andhra, 1936] 

^ 14. Solve and examine for singular solution 

+ x^yp + == 0. [Patna, 1937] 
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15. Solve 
+ yp(2x + 31) -f - 0, 

and obtain the singular solution. 

16. Find the general and singular solutions of 

27y - 8p'^ == 0. 
17* Find the orthogonal trajectories of a family of 

circles which touch a given line at a given point. [All. ’41] 
18. A system of rectangular hyperbolas pass through 

the fixed points (±: a, 0) and have the origin as centre; show 
that the orthogonal trajectories are given by 

(x® -H y2)2 == 2a^(x‘^ - >*2) + C. [Madras, 1939] 

^ 19. Show that the system of confocal conics 
x‘^ 

^ I 

is self-orthogonal. [Delhi, 1941] 
20. Find the orthogonal trajectories of the family of 

semicubical parabolas ay^ ^ x^ where a is a variable para¬ 
meter. 

21. Find the differential equation of the family of 
curves given by the equation x* - 31* + 22xy = 1, where A is 
a parameter. Obtain the differential equation of its 
orthogonal trajectories and solve it. [Lucfenou;, 1944] 

22. Prove that the orthogonal trajectories of the curves 

A=sr*cos(9 
are the curves B = r sin^ 0. 

23. Show that the orthogonal trajectories of 

x"/a^ + y^lb^ = c 
are x^"^ - b** 31*"^ == c', 
where c and c' are variable parameters. 

Examine the cases n = 1, and n == 2. [Bombay, 1937] 

24. Find the trajectories orthogonal to y = tan x + c, 
and illustrate the families of curves in a sketch. [Bom. ^351 

. 25. Find the equation of the system of orthogonal 
trajectories of a system of confocal and coaxal parabolas 

r = 2a/(l + cos 0). [Delhi, 1942J 



CHAPTER XIII 

LINEAR EQUATIONS WITH CONSTANT 
COEFFICIENTS 

13'1. Definitions. We have already defined a 
linear differential equation as an equation in which 
the dependent variable y and its differential co¬ 
efficients occur only in the first degree. If, further, 
the coefficient of y and those of its differential 
coefficients are constants, the equation is said to be 
a linear differential equation with constant co¬ 
efficients. The form of such an equation, therefore, is 

dx” ’’’ + • • • + = Q, (1) 

where Q is any function of x. 

Consider first the equation 
second member, viz. Q, is zero: 

+ + ‘‘- + ci„y 

in which the 

dx” *dx" 
0. (2) 

Substitution will show at once that the fol¬ 
lowing properties ate true for this equation ; 

(i) If y = fiix) is a solution, then y = cfi(x), 
where c is an arbitrary constant, is also a solution. 

(ii) If y = fi(x), y = /a(jc), ..., y = fn(x) are 
solutions, then 

y-cji (x) + Cifuix) + ... + cJ„(x), 
where Cj, Cs,..., c„ are arbitrary constants, is also a 
solution. 
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Now if the n functions .., f„{x) are 
linearly independent,* the solution 

Cl fi{x) + c, f»ix) +... + c„ f„(x), 

which contains n arbitrary constants, must be the 
general solution of the equation under considera¬ 
tion, which is of the nth order. (If/ii(x), /*(x),... 
are not linearly independent, some of the terms 
can be combined and the number of arbitrary 
constants left will be less than n.) 

Next consider equation (1), in which the left- 
hand member is the same as in equation (2), but 
the right-hand member is different from zero. 
Substitution shows at once that if Cxfj(x) + 
c»/a(x) -f... + Cnf„{x) is a solution of (2), and ^(x) is 
any particular solution of (1), then 

•If we can find constants hu bn,..., hn such that 

bi /i(x) + bn fnix) + ... + bn fn(x) = 0, 

then the functions /i(x), fn{x), ...Jare not linearly independ¬ 
ent, for we can express any one of them linearly in terms 
of the others. Thus 

/i(x) = - (bn/bt)fn(x) - ibnlbt)fi{x) - -.. 

If, on the other hand, no set of constants bi, bn,..., bn 
exists such that 

bi fiix) + bn Jn(x) + ... + b„ fjx) = 0, 

we say that the functions fi(x), fn(x),... are linearly indepen¬ 
dent. We add the adverb ‘linearly,’ because two functions 
of X are never independent of each other in the general 
sense. Take for example sin x and x'*. Given x® we can 
find X and therefore sin x. Hence sin x can be expressed 
as a function of x®; in fact, sin x = sin {(x®)‘^®}, the real 
cube root being taken. But sin x and x* are linearly inde¬ 
pendent. On the other hand, x® - x®, x* + x® and x* -i- 2x* 
are not linearly independent, because x* + 2x® = -i(x® - x®) 
-t- |(x» + X®), 
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Cj ft(x) + C,/j(x) + ... + Cnfn(x) + <|>(x) 

is also a solution of (1). 

If fi(x),fa(x),... are linearly indepeiident, this 
must be the most general solution, as it contains 
the full number of arbitrary constants. 

Thus the general solution of (1) consists of 
two parts, one of which contains n arbitrary coiv 
stants and is a solution of the equation obtained 
from (1) by putting the second member equal to 
zero, and the other contains no arbitrary constaiits. 
The former is called the complementary function 
and the latter the particular integral. 

13*2. Second member zero. Roots of 
the auxiliary equation all different. Assume, 
tentatively, that e*”* is a solution of equation (2) 
of the previous article. Substitution shows that 
we must have 

+ flirn""* + ajm**"* +... + a„) = 0. 

Hence e’”* will be a solution of (2) if m is a 
root of the algebraic equation 

m** + ajTn^'^ + aam”~'^ +...+ a„ = 0, 

which is called the auxiliary equation. 

If the roots of this are nii, ttij, ..., and 
they are all different, e-**,... are all different 
and linearly independent. So the general solution 

of (2) in the case is 

c^e^i* + ... + 
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Ex* Solve the differential equation 

dx^ ~^dx 

The auxiliary equation is rn^ - 3m - 4 0, 
i*e., (771 - 4)(m 4- 1) 0, 

The roots are - 1 and 4* Hence the required solu¬ 
tion is 

y »= 

-7 = 0, 

Examples 

1. Show by actual substitution that 

(i) is a solution of the differential equation 

dx*-* 

(ii) + c is not a solution, 

(iii) e“^ is a solution, 

(iv) ae^ + is also a solution, 

(v) ae^ 4- be*® is not a solution of the equation 
d^y 

but (vi) e® - i sin x is a solution, 

(vii) e**® - i sin X is also a solution, 

(viii) ae® + be~® - i sin x is also a solution, 

(ix) ae® + be’^ + c - i sin x is not a solution* 

What is the general solution of d^yjdx^ - 7 = sin x ? 
Which part of it is the complementary function and which 
the particular integral ? 

Solve 

d®7 
2* 

3* [Calcutta, 19381 
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4. [Nagpur, 1936] 

• 5. [Aligarfi, 1934] 

6. [Dacca, 1935] 

7. dx^ ^dx' dx ^ 
[Luckriow, 19351 

8. J X 2^^^ n A 
jf“• 

i'iven that when t = 0, x 0 and clx/dt 0. [M}>8ore, 1936] 

13*3. The symbol D. There is a special 
convenience m using the symbols D and D” for 

d” 

dx" 

respectively in the treatment of linear differential 
equations with constant coefficients. In the first 
place, y may be written only once, when there are 
a number of terms involving y, Dy, D^y,, by 
making use of brackets. Thus the equation (2) of 
§ 13*1 may be written as 

(D” + UiD” * + +... + + u„) y = 0. 

Again, as will be proved below, D can be 
treated as on algebraical symbol in several respects. 
This greatly facilitates the solution of the rem 
tial equation. 

The meaning of an expression like 

(D-aXD-P)y 
is that it represents (D — a)(Dy — j3y), 

i.e., D(Dy — py) — a(Dy — |5y). 



254 LINEAR. WITH CONSTANT COEFHCIENTS 

Thus (D - 1)(D _ 2)e** = (D - iXDe**- Ze**) 

= (D-l)(3e=>*-2e='*) 

= D(3e**-2e®*)-(3e®*-2e“^). 

Similarly in 

(D - ai)(D - UjjXD - Us)... (D - a„) y, 

we must begin with the factor which is next to y, 
find the result of performing the operation indica¬ 
ted by it, then take the next factor, perform the 
operation indicated by it, and so on. 

We shall prove now that the factors D —a^, 
D — Uj,... can be written in any order, and the 
final result will be the same,provided Cj, a*,... are 
constants; moreover, if D”-I-aiD“'‘ +...+a„ when 
factorised is equal to (D — cti)(D — Oj)... (D — a„), 
the final value of 

(D - ai)(D - a,).. .(D - a„) y, 

when the operations indicated by the factors have 
been performed, will be the same as that of 

(D” + + ... + a„)y. 

To prove this, we notice that the symbol D 
obviously obeys all the fundamental laws of 
algebra; for 

(D^ + D®) y — y + D®y, 

as well as 

^(y + z) = Dy + Dz, the Distributive Law ; 

= D*D^y, the Commutative Law ; 

and D^D®y = the Index Law ; 

except that the Commutative Law is not true with 
r espect to variables. 
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Thus 
Dy ^ yD, D(yz) # y D?. 

In fact, yD has no meaning; and although D( yz) and 
y Dz both have meanings, they are not equal if y and z are 
functions of x. For D( yz) =y Dz + z Dy. 

It follows that u>e are justified in breaking up 

D" + + .,. + a„ 

in the expression 

(D” + a,D”'^ + +... + a»)y 

into factors and in taking the factors in any order, 
provided a^, a,,..., a„ are constants; for each step can 
be justified by one or more of the above laws, 
exactly as in algebra. 

Let now D“+aiD’‘“‘+aaD"'“+...+a„ be deno¬ 
ted by /(D) and let /i(D) be a factor of /(D), s» 
that /(D) = /i(D) /a(D). We notice that if y^ is a 
solution of the differential equation 

l/a(D)}y = 0, 

then it is also a solution of the differential equation 

f{D)y = 0; 

for, by what we have established above, 

f(D)y^W)Wh, 
which shows that if /^(D) y is zero, then f(D)y also 
must be zero. So to solve f{D)y — 0 we can con¬ 
sider each factor separately and if we can thus get n 
independent solutions, we can infer the general 
solution by what has been shown in § 13*1. 

For example, the solution of (D - m) y = 0 is evidently 
ce*”*. Hence the solution of 

(D - mi)(D - ma)...(D - m„) y = 0, 



256 LINEAR, WITH CONSTANT COEFFICIENTS 

where the factors are all different, is 

+ + ... + 

as before. 

13’4. Auxiliary equation having equal 
roots. If the auxiliary equation has two equal 
roots, say mj = rria, the solution of the differential 
equation f{D)y = 0 obtained in § 13'2 reduces to 

(ci + + ... + 
which has only n — 1 arbitrary constants, because 
C1+C2 is equivalent to* one arbitrary constant only. 

• -.\l)To obtain the general solution, we notice 
tlr^ in thisKASRse the algebraical equation /(D) = 0 
has two roots equal to mj; so that if we can get 
the general solution of the differential equation 

(D - m,)"5» = 0, • . . (1) 

"V^ean obtain the general solution of f{D)'y = 0. 

Put (D — mi)3r = V in (1). Then it reduces to 

(D — TUijv = 0, 

dv 
or ,, 

Separating the variables, and integrating, 

log V = Co + mj.Y, or v = ce”’<*, 

i.e., (D —mi)3f = ce”**"^. 

Tkj|>is a linear differential equation (§10’5). 
The solution is 

- Q + c dx =C+cx. 

Hence the general solution of (1) is 

y = (ci+C2x)e’”i*. 
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Consequently the general solution of f(D)y 
= 0 in this case is 

(cji+C3x)e’"‘* + +... + 
If in any case r roots are equal to ttii, the 

general solution of f(D)y = 0 will be 

(c, + CjX + C;iX“ + ... + Cr+ie’"’'+>* 

4- ... + Cne”*”^, 

;s is easy to see by putting first (D — equal 
to V,, and solving for Vi, then putting (D —mi)''‘^3i 
= Va and solving for Va, and so on 

Ex. Solve 

_d^y_dy 

dx-* dx-‘ dx 

Here (D-' - D= - D + 1) y = 0, 

or (D-1)=(D f l)y = 0. 

Hence the solution is j = (ci + c^xle* + C:ie"“'. 

13*5. Auxiliary equation having imaginary 
roots. We suppose the coefficients a,, aa, ...in 
f(D)y = 0 to be all real. Hence if some roots of 

the algebraic equation f(m) = 0 are imaginary, they 
will occur in pairs. Let a + i|3 be a pair of imagin¬ 
ary roots. Then the corresponding solution is 

We can transform this expression into a more 
convenient form. We have 

+ C3e'^*(cos px — i sin Px) 

17 
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= + Cj) cos + (ici — ic*) sinJ3x} 

= e’‘*(Ci cos |3x + Cs sin |3x). » c,e. cni 

Hence the general solution of /i(D) 3/ = 0 when 
/(m) = 0 has a pair of imaginary roots a ± is 

e’'*(ci cos I3x + Cj sin ^x) + Cje*”** + ... + Cne’“»*. 

If there are two pairs of imaginary roots, a ± i|3 
Y ± ie, the general solution of /(D) y = 0 is 

e^^(c 1 cos |3x + Cj sin ^x) + e'^-^(c3 cos ex + c* sin ox) 

and so on. 

If, however, f(m) = 0 has two equal pairs of 
imaginary roots, say a + ij3 and a — ij3 occur twice, 
the general solution is 

+Cax) cos ^x + (cg + c,x) sin Pxl 

+ Cs e’”"^ + ... + 
as can be easily seen by simplifying 

(ci + (cg + ; 

and so on. 

Note, cos ffx + sin Bx can also be written as 

CiCosOJx + Cg) or Cisin(^x+Ca) 

bf an obvious change in the arbitrary constants. 

Ex. 1. Solve (D* + 1)(D - l)y = 0. 

The solution is V-ci cos x + Cg sin x + Cje*. 

Ex. 2. Solve (D» + D+l)*(D-2)y = 0. 

Since m® + m + 1 - 0 has the roots 

^_-l±iv'3 
m- 2 ' > 

the solution of the given differential equation is 

y “ e'*^*{(ci + cgx) cos (ix>/3) + (cg + Cix) sin (ixv/3)l + C5C**. 
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Examples 

Solve 

T. [Calcutta, 1936] 

'2. [Aitgarh, 1933] 

3. 

4. 
d'y _ 2 4 dy _ g Q 

[Dacca, 1936] 

5. 
d»y doy dy J » 
ax'* dx» dx ^ “ 

6. 

7. (D* + 8D» + 16b = 0. [Delhi, 1935] 

r 8# [Agro, 1936] 

9. [Nagpur, 1930] 

10. 
d^y 

+ given y = 2 for x =» 0, y = - 2 for X = in. 

[Madras, 19361 

13*6. The particular integral. Let 

f{D)^ •••(!) 

denote some function of x which when operated 
upon by /(D) gives Q. Then this function of x is 
evidently a particular solution of the differential 
equation 

/(Db=Q, ... (2) 
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for the substitution in (2) of (1) for y will satisfy 
the equation. We shall generally write 1/(D)}‘' Q 

for for the sake of convenience. 

Now the above definition of 1/(D)}*‘ Q shows 
that 

/(D)[1/(D)|-'Q]=Q, 

i.e.,/(D) and 1/(D)}‘‘are inverse operations. In 
particular 

DjD-‘Ql = Q, i.e., j^^{D-‘Ql = Q, 

so that D ‘ Q = jQ dx. 

However, in finding /Q dx, we need not add 
any arbitrary constant, for we want only a parti¬ 
cular integral. In fact we shall find in every case 
that the part in 1/(D)}"^Q which involves an 
arbitrary constant is already included in the com¬ 
plementary function and its inclusion in the 
particular integral also will not make the solution 
different or more general. We may take for 
{/(D)!"^ Q the simplest function of x which when 
operated upon by /(D) will give Q. 

The definition of {/(D)}“‘ Q shows that if 

/(D) v = Q, ... (1) 

then v-{/(D)}-‘Q. ... (2) 

To the student it may appear that we infer this by 
dividing by /(D). But this is wrong, because /(D) is not a 
number; it is an operator, i.e., it indicates that certain 
operations like differentiation, addition, etc., are to be 
performed in a certain order on the quantity which fol¬ 
lows it. We know that (2) is true, because we see that if 
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we opeiate on both sides with /(D), the left-hand side gives 
f(D) V and the tight-hand side gives, by definition, Q, and 
these are equal by (1). 

We have seen above that if the coefficients in 
/(D) are constants, as we suppose to be the case, 
we can subject /(D) in f(D)y to any of the process¬ 
es of algebra, and, in particular, factorise f(D) and 
take the factors in any order. It follows from the 
definition of 1/(D)}~‘ Q that we can subject the 
/(D) in 

/(D) ^ 
also to any of the algebraic processes, and, in 
particular, factorise /(D) and arrange the factors in 
any order, without affecting the value of the 
expression. 

We shall now find the value of (D — a)‘‘ Q. 

Put (D - a)-‘ Q = V. 

Then, by definition, 

(D-a)t; = Q, 

dv ^ 
i.e., 

which is a linear differential equation (§ 10‘5). The 
solution is 

V = Qdx. 

Now c can be taken to be zero, for we want 
only a particular solution. Hence we may take that 

(D — a)-^ Q = e”'* iQe""'^ dx. 
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We are now in a position to evaluate 
Let, on factorisation, 

f(D) = {D - aJ(D - aj. 

Then, since 

(D - a J(D - a3)(D - a*)...(D - aj y = 0, 

it follows from the definition, that 

(D - aJ(D - a,)...(D - a„)y = (D - 

— Qdx. 

Therefore (D — ttj)... (D — a„)y 

= (D — Og)'* I Q.^ I 

Qdx dx\ 

and so on. 

Hence we shall get finally 

y = j j... Qdx dx.,.dx. 

This is the required particular integral. 

This method is applicable even when the factors of 
/(D) are not all different. 

The alternative method of finding the particular in¬ 
tegral given immediately below is generally easier. There 
are, moreover, special methods for finding the particular 
integral for special forms of Q which are easier still. These 
also are considered below. 

13*7. The particular integral. Alternative 
method. Let 1/(D){-', reprded as an algebraical 
function of D be resolved into partial fractions; say 

1 — ^1_ L _. I - 

/(D) D-tti ^D-a, (1) 
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It is assumed that Ui, aj,.., are all different, so 
that there is no quadratic denominator. It will be 
shown now that 

lD-o,+D 
+ • • • + /(D)' u-as 

where the right-hand side means 

1 . 1 

D }q.(2) 

Ax. D —a, 
Q+Aa.|^ 

a. Q, + .*.. 

To prove (2), we must show that the result of 
operating on the right-hand side by f(D) gives us Q,. 

Consider first the first term. We have 

/(D){A,.pA^Q}=A./(D)(o_l„^Q), 

since A i is merely a constant, 

~ Ai(D ctx)(D ctj),..(D ct„) I ^ ^ 1 ’ 

by § 13’3, 

= A.(D - aj...(D - aJ<D - a,) ( ^ Q] , 

by § 13-3. 

=Ai(D-a2)(D-a3)...(D-a„)Q,by § 13*6. 

Next consider the second term. We have, as 
in the case of the first term. 

/(D) ( A.. p Q } = A,(D - «.)(D - o.).,. 

(D - Q; 
and so on. 
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Adding up these results, we see that 

= 12A,{D-a,)(D-a,)...(D-a„)}Q. (3) 

Now, by§13’3, wecan simplify 2Ai(D —Ug)... 
(p — a„) by treating D as an algebraic symbol, 
since ai,a2,...andAi,A2,... arc constants. After 
simplification we shall find that 

2Ai(D - cXg)(D - a8)...(D-u„) 

is equal to 1, because this is the numerator when 
the partial fractions on the right-hand side in (1) 
are brought to a common denominator. 

Hence (3) becomes 

showing that (2) is valid. 

This is the method which has to be employed when 
none of the special methods which follow is applicable. 
If/(D) has imaginary factors, the terms in the particular 
integral corresponding to these should be combined into a 
real result. If /(D) has repeated factors, some of the partial 
fractions will have non-linear denominators. The cor¬ 
responding parts of the particular integral should then be 
found by applying § 13'6. 

d^y 
Ex. Solve + a*y = sec ax. 

The auxiliary equation is m* + a* = 0, or m = ± ia. 

Hence the C. F, is Cj cos ax + C2 sin ax. 

= secnx = secax 
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f dx = e*- dx 
Ij.. Jcosax J cosax 

== e*®*{x + i(l/a) log cos ax) 

cos ax -1 sin ax 

Similarly ^ ^ sec ax e"*'®* {x - i{l/a) log cos ax}. 

Subtracting and dividing by 2ia, we find that the P. I. 

= sin ax + cos ax^ cos ax |. 

Hence the general solution is 

y = Ct cos ax + c 2 sin uo: + (x sin ax)/a + (cos ax log cos ax)/a*. 

13*8. Special methods. We 
notice that 

D”e“* = a"e®*, , 

De®* = ae“*, = 

Multiplying these equations by 1, fli, a2,...,a„ 
respectively and adding, 

/(D)^* = /(a)e«^ ... (1) 

This suggests that probably 

^ pXJ* - ^ 

f(D) ® “ f(a) ® ’ 

provided/(a) ^0. That the proposition is really 
true we can easily verify. For this it is only neces¬ 
sary to show that the result of operating on the 
right-hand side with f(D) will give us 

Now f(D) j J = f{D) e®*, because 

l//(a) is a constant. 
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= by (1), = e®*, 

which proves the proposition. 

If f{a) = 0, we can apply § 13'84. 

Ex. Solve £* + 5^^+6y = e»». 

The auxiliary equation is 

+ Sm + 6 = 0 or (m + 2)(m + 3) »0‘ 

Hence the solution is 

y = c»e-** + ce-** + 2V+y;2T6 

or y = CiC"** + cje"®* + 

Examples 

Solve 

d»y dy 
dx» dx 1- + 

M. j3; + 31^ + 240,-272r-. 

[Benares, 1936] 

[Travancore, 1943] 

(Madras, 1936] 

[Calcutta, 1938] 

‘ 6. Obtain the complete solution of the differential 
equation 

_ 7 + 6v = 
dx» ‘dx^^^ ^ ’ 

and determine the constants so that y = 0 when x = 0. 
[Andhra, 1936] 
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13*81. {f(D)}‘^ sin ax and {f(D)}'* cos ax. 

We notice that D’ sin ax = — a* sin ax, 

D* sin ax = ( — a*)* sin ax, 

D®** sin ax = (— a®)** sin ax. 

Hence f(D^) sin ax =f(— a*) sin ax. (1) 

This suggests that probably 

sin ax = 7JZ^ (2) 

provided /(—a®)^0. ^ 

To see if this is true, we operate on the right- 
hand side with /(D®). We get 

/(D®) \ sin ax \ = {/(D®) sin ax}, 

since l//( — a®) is a constant, 

= sin ax. 

l/(—sin ax}, by (1), 

Hence (2) is true. 

If f{D) contains odd powers of D also, it can 
be put in the form fi(D’)+D/2(D®). 

Then ^^-^ysin ax = ^ 0/70®) 

hC-aT+m-aV 
sin ax, by § 13'6 and eqn. 

(2) above, 

'p+qD 
sm ax, say, 
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since p — qD and Ijip — qD} are inverse operations, 

= (p- qD) I sin ax J 

= (P-<lD sin-wc 

the value of which can be found easily by differen¬ 
tiation. 

The case of cos ax can be treated similarly. 

Ex. Solve (D® — 3D + 2)y = sin 3x. 

Since D* - 3D + 2 = (D - 1)(D - 2), 

the C. F. = CiC* + Cje**. 

The P. 1. = - 9 - 3D + 2 

= - 3 3x = - (3D - 7) 7* sin 3x 

--(3D-7)3,^_ 3>)_7..sin3x 

= (3D - 7) sin 3.it = ts^t (9 cos 3x - 7 sin 3x). 

Hence the general solution is 

y = CiC* + cge’* + riff (9 cos 3x - 7 sin 3x). 

13*82. lf(D)}'* sin ax, exceptional case. 
If D^ + a^ is a factor of /(D), the substitution of — a® 
for D* as required by the above method will make 
the denominator of the particular integral zero. 
Hence the above method fails in such cases. We 
have to apply § 13*7. 
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Thus, if f(D) = (D® + a^)<f>(D), to evaluate {/(D)}”^ sin ax 
we can determine (D®+ a^)~‘sin ax first and then apply 
the operator to the result. 

Now 

But 

1 1 
4* a- (D 4- ia)(D — la) 

sin ax 

2ia( 
1 

ia (D ~ia D + ia 
sin ax. 

1 . f . . p-iax (piax _ p-iatf) 
. . sin ax « g|rk axdx =- 5 ' dx 
u ~ la \ t 2i 

zita/F r piax ( p-iiax i 

- 2, 2i 1-* 2i<. (■ 
^..11 L . £-taAt j g-iaA: ^ 
bimilarly ,,, sin ax*1 x - ^ 

D 4- la ' 

Hence ^ , sin ax 
U* 4- a* 

^ 1 j cos ax ^ sin ax ) 
2ia \ i a ) 

X cos ax sin ax 
la 4a*'* 

Also, if the differential equation is (D® 4- a“0 y = sin ax, 
the complementary function is Ci sin ax 4- cos ax, shoW' 
ing that the term (l/4a2) sin ax in the P. L found above 
can be absorbed in the term Ci sin ax of the C. F, Hence 
we may write simply 

sinax=^-^eosax. 

We can show similarly that 

I X 
cos ax^—smax. 

[A little consideration will show that the terms omitted 
above can be omitted even when the differential equation 
is ^(D) (D* + a^)y ^ sin ax, for {1/^(D) { sin ax will give 
rise only to terms of the type c cos ax or c sin ax, where c 
is some constant, and both these are absorbable in the C. F.] 
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Ex* Solve 4 ^ + Cl* = 
ax-* dx 

sin ax. 

The P. L is . Dr+ ^inax 

The C. F. is Ci + C2 sin ax + C3 cos ax. 

1 1 . 
DV 2 a / 

by the above, 
_ ? ?iP ??? cix 

2a^ Za^ 

Hence the complete solution is 

:y = Cl 4- C2 sin ax + cos ax - (x sin ax)/2a2, 

the last term in the P. L being omitted as it can be 
absorbed in the C. F. 

Examples 

Solve 

d^y 

dy 
dx* ^ dx 

1. 
2. 
3. 

4. 

5. 

6. 

cos 2x. 

^ + V + y = sin 2x. 

^-8 j^- + 9y = 40sin5x. 
d: - dx 

^ - 2 + 531 = sin 3x. 
dx2 dx 

^ -3^ + 2y ^ cos 3x. 
dx* dx 

4-3 - 4 4- + D' = a sin 2x. 
dx* dx 

[CaJcutca, 1937] 

[Agra, 1945] 

[Bomba^^, 1937] 

[Annamalai, 1936] 

7. Find that integral of the equation 

d-'x ^ dx ^ 
4- 2n cos ® Cl cos nt, 

which is such that when t =* 0, x « 0 and dx/dt ^ 0. 

[Andhra, 1937] 
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Solve 

. 8. + 9y = cos 2x + sin 2x. 

1 v^, 9. jjja + ^ “ e* + sin 2x. [Agra, 1945] 

10. = e* + sin 2x. 

13*83. {f(D)}"‘x*”, where m is a positive 
integer. Consider first (D — a)‘‘ x”*. By § 13*6, 

D i a ~ ^ 

~ 1 fl a’* a“ 

_ _m(m—1).^.2 . l.e;"* ] ... 
••• ^m+i ' * ■ J » \1] 

by repeatedly integrating by parts. 

But if we expand 1/(D — a) in powers of 
we get 

_ ^ __ _ ^ _ 
~ fl(l-D/a) 

a v a a a } 

=-Mx. 
a i 

+ mx^'^ m(m — llx”*"® 

a ^ a* 

Tn(tn— 1)...2.1 
+ 

+ . . 

1- 

which is the same as (1). 
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Now we have shown in § 13 ’ 7 that we can 
break up 

1 . Ip, 
/(D) 

into its partial fractions and consider each partial 
fraction separately, and we have shown above that 
we can expand each partial fraction in powers of 
D. We knc^li^'^also that the expansion of {/(D)}"’ 
in powers of® will be the same whether we first 
break it into its partial fractions and then expand 
each term, or we expand it otherwise- Hence to 
evaluate {/(D) k* we can expand {/(D)l*^ in powers 
of D by any method we like and operate upon x”' 
with the expansion obtained. As all the differen¬ 
tial coefficients of x”* of an order higher than m are 
zero, the particular integral will consist of a finite 
number of terms only. 

Ex. Solve , 
dx'^ 

Since D-* 

the C. F. 

dx^ 

D^-6D = D(D + 2){D - 3), 

= Cl + CaC”** + 

The P. I. - 2)(D - 3) ( ^ 

- JD-‘(l + iD)-' (1 - ^D)-‘(l + x*) 

- - ^D-‘(l - iD + iD^+ ...)(1 + ilD + + ... )(1 + xO 
^ (1 - iO + + W~W^ + W'^ + + xb 

■ -KD-‘ -i + 3VD + ...)(l + x=)- 
- 6 (x + - ix® + xV^) + a constant, which can be 

omitted since the C. F. contains an arbitrary constant. 

Hence the complete solution is 

:y - Cl + C2e-»^ 4* cge®* - tVx® + yVx» - 
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Examples 

Solve 

* » 1! f>_4f3' + 5^?-2 = 0. 
dx^ ^ dx'^ dx 

[Dacca, 1936] 

' 2. 
d'^y ^ dy , [Aligarh, 1937] 

^ 3. 31'" „ y" +y ^ x. [Lucknow, 1930] 

4. [Math. Tripos , 

5. 
. d'^y A dy . „ 

' ' 7. fi+sfJ + Z'J’-x.. 
ax-^ ax*' ax 

d*y_ dy 
“• dx» dx ^ 

* 9. + 2 . 4 , 8v - X [Allahabad, 1932] 

•*■10. 
d^y dy ^ 
j . + j - 23^ == X + sm X. ax'*' dx 

[Benares, 1939] 

' ' 11. 
d^y 

+ 4d> = sin* X. 

•* 12. + 2 - e»* + x*+ 
dx^’^^dx* + d ^ + 

X. [Agra, 1938] 

13*84. V, where V is any funC' 
tion of X. By successive differentiation we see that 

Dgfcx Y _ go* £)Y ^ ^giix Y = e"*(D 4- a) V, 

Qi^xy _ gaxp ^ Y, ... 

Y = e"*(D+a)”V. 

Therefore /(D)e®*V = e“^/(D+a)V. . . (1) 

This suggests that probably 

_JL. eflx\r — r-g/K f Y 
f(D)® ® f(D+a)'^' 

18 
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To test whether this is true, operate on the 
right-hand side with /(D). We have 

( ‘ m [ }] 
= e»/(D + a){j(p5^^)Vl.by(l). 

_ since f(D + a) and j/(D + a)}'* are inverse 
operations, showing that the above proposition 
is true. 

This proposition enables us to find 
when f(a) is zero, as in Ex. 2 worked out below. 

Occasionally it is more convenient to find the 
P. 1. corresponding to cosax or sin ax, or to 
expressions involving these functions, by regard¬ 
ing cos ax or i sin ax as the real or the imaginary 
part of e'*'-'' as in Ex. 4 worked out below. 

Ex. 1. Solve (D* - 2D + 5) y = e** sin x. 

The roots of the auxiliary equation are 1 ±i/(l-5), 
i,e., l±2i. Hence the C. F. e*(c, sin 2x + c-j cos 2x). 

The P. I. 

““ D* + 2D + 5 X = _ j- |D + ^ 

= p 12 ^ ^ D^^- 4 ^ 

ie’'* ( - D (D - 2) sin X = - jVe'-* (cos x - 2 sin x). 

Hence the general solution is 

y = (c, sin 2x + c>j cos 2x) - (cos x - 2 sin x). 

Ex. 2. Solve (D“ + D - 2) y = e*. 

Since D^ + D - 2 = (D + 2)(D - 1), the C. F. is 

CiC* + cje*®*. 
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g X qX 

By the method of § 13*8, the P. L = 0 * 

which is meaningless. But if we regard as the product of 
and 1 and apply the method of the present article, we get 

- ^ px ^ ^ j -px } ^ 1 _ (:ipx) 
(D~l)(D+2)" ^(D~l)<(D + 2) 

= i . D 1 D + 1 - 1 ^ 1 == 

Hence the general solution is y = CtC^ + C2e"®^ + ixe^. 

This method will succeed even if the factor which be^ 
comes zero occurs more than once in the denominator, as 
in the following example 

Ex. 3. Solve (D + 2)(D - e*. 

The C. F. is (cj + Cax + 

Tiie p. 1- = p _ 1)3 j d:;:'2 j- = * (d d* i 

Hence the general solution is 

y = (ci + Cox + C‘iX^)e^ + rjx^e^. 

Note. If in the last example we take the general value 
of D”‘’l, which is Jx® + ax® -f bx + c, where a, b, c are arbit¬ 
rary constants, or it we take any particular value of this 
other than Jx^, we would not get a more general solution 
of the differential equation, because the terms involving 
a, b, c are included in the complementary function. 

Ex. 4. Solve y" + a®y = sin ax . 

We have already solved this example in § 13*82. The 
following is a shorter method. 

r . sin ax = coeff. of i in the value of 
D'^ + a® 

D» + a- ‘ '■ D» + a" 
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1 /I 
D 

(zD fv 513-84, 

_ X X ( . , \ 

*2ia^ ~ ax + ism axj . 

Hence, equating the imaginary parts, 

1 X 
sin ax = - 2^ cos ax, I '■ 

D® + 

so that the solution of the differential equation is 

y = Cl sin ax 4- C2 cos ax - (x/2a) cos ax. 

[Note that the above shows at once, on equating the 
I - 2^ 

real parts, that <^03 ax = sin ax.] 

Examples 

Solve 

1. (Da-3D+2)y = xe^. 

*2- S-4| + 3r = e**sin2x. 

j5-2|- + 4D- = e«cosx. 

d*y 
• ' 4. - y = e* cos X. 

[Allahabad, 1943] 

[Allahabad, 1944] 

[Agra, 1939] 

d^y dy 
[Calcutta, 1938] 

7. (D* — 3D -f 2) y = e*, if 31 = 3 and Dy = 3 whenx = 0. 
[Delhi, 1937] 

d^y 

dx» 
, ^ 
'dx 
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8. (D^ 1' ■ osh X cos X. [Nagfmr, 19391 

9.- , 2 - 3 + 4 - - 2y - e* + cos X. 
dx-‘ dx* ux 

• 10. 4 12 £ + 9y = H4e-“'». [Andfira, 19371 

‘11. + = [Aligarh, 19341 

-.3. £-7|-6,.e-a.,). 

*' ‘ 14. ^11 + 3' “ 

[Lucknow, 1939} 

■5- [Benares, 1940 

13*85. {f(D)}*‘xV, where V is any function 
of X. By Leibnitz’s theorem 

D”(xV) = xD» V + nD«-‘ V 

= xD” V + (fpD^}v, 

showingthat/(D)xV = x/(D)V + f(D)V. . . (1) 

This suggests that probably 

_JL_xV = X—^v+ I — 1 V 
f(D)^ f(D) ^ 1 dD f(D) J 

where ^ V is a symbolic method of writing 
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We can easily see that this is true, for operating 
on the right-hand side by f(D) we get 

1 do W)) '^] 

V_/(D) ( ) V, 

by (1), 

= >:V+f(D) ^ V-«D) [/(D). { )] 

= xV. 

We can show similarly that 

1 
/(Dj 

x’«V = x”* - V + mx*"'* 
/(D) 

Tn(m - 1) 
2! 

».2 I 

ldD/(D)[ 
ji " 1 ) ,, 
dD‘^/(D)r ■"•••* 

The above formula is not very convenient in practice. 
So in finding the particular integral corresponding tox*"e®*, 
§ 13*84 should be applied. In evaluating the particular 
integral corresponding to sin ax or x^ cos ax, it is fre¬ 
quently more convenient to replace sin ax or cos ax by the 
exponential value and apply § 13*84, rather than apply the 
present formula. 

Ex. 1. Solve (D* 4- 2D + 1) :y = X cos x. 

The C. F. is evidently (ci + C2x)e*®. 

The P. 1. 

“ D^2D +l 1) (DsTi 2DT1)» 
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- ixsinx + KD +1) cosx 

= ix sin X - i sin X + i cos x. 

Hence the general solution is 

y •=(ci+C2x)e** + i(x- l)sinx+ ^cosx. 

Ex. 2. Solve ^ ^ 

The auxiliary equation is (m* +1)* = 0. 

Hence the C. F. is (ci + C2x) sin x + (cj + C4X) cos x. 

The P. I. 
1 

{D> +1)« 
ixKe‘* + e-’*). 

Now ^ _ - Y* 

(D» + l)'“’ ^ {(D + 0“ + 

= - ie**(D-» + jD-‘ - I + .„)x» 

= - ie^*(T2X'* + Jix» - fx») + terms in x^, x®. 

Similarly ^ - iix» - |x®) 

+ terms in x‘, x®. 
By addition, the P. I. required 

= - cosx - Jx® sin x - fx® cos x) + terms included 
in the C. F. 

Hence the general solution is 

y = (ci + C2x) sin x + (cs +C4X) cos x + t*tex® sin x 
+ jt(9x“ - x’) cos X. 

Alternative Method. Another method of finding 
the P. L is to find the P. I. corresponding to x»e<* as above 
and take the real part. (Compare with the method used 
in § 13-84, Ex. 4.) 
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Examples 

Solve 

1- ~ ^ ^ ^ [Lucknow, 1931] 

' lx " *' [Aiigarh, 1938] 

3. ^ + y = sin 2x. [Aligarh, 1945] 

4. (D® + l)®y = 24x cos x, 

given the initial conditions x = 0, y ^ 0, Dy =0, D^y = 0, 
D^y = 12. [Math. Tripos, 1937] 

5. - y = X sin X + (1 + x®)e^* [Agra, 1943] 

Examples on Chapter XIII 

Solve 

' 1. 4!y 
dx* 

- aby = = 0. [Calcutta, 1937] 

"2. 
d*Di 
dx* 

-2a-2 + a*y = 0. [Calcutta, 1937] 

' 3. (D* + 2D* + 3D* + 2D + l)y = 0. [Delhi, 1937] 

4. 
d^3i 
dx* 

+ 13g+36. = 0. [Dacco, 1937] 

5. 
dfy 
dx® 

= e** 

<rt 
4ly 
dx* 

+ 523.6,., 2*. [Madras, 1936] 

7. 
, d®3i dy ,, 

13e»* . 8. (2D + l)»y = 4e-*^». 

9. 
d®y 
dx* ‘ 

~ 31 = cosh X. 10. 
d»y 
dt»“ 

3^+ 2y = 10 sin t. 
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*11. 
d»y 

* 12. 
d*7 
dx» 

.*13. 
d»y 
dx» 

'14. 
d^ 
dx* 

of y when x 
x = 0. 

15. 
d^y 
dx* 

16. 
d*y 
dx* 

17. 
d*3 
dx- 

00
 

(D- 

19. 
d*y 
dx*' 

20. (D‘ 
21, (D*- 

'll. 
d®y 
dx*'^ 

23. D»3) 
you obtain. 

^4. I'H 
25. 

d‘‘y 
dx* ■ 

26. 
d*3i 
dx* ■ 

27. 
d*3» 
dx* 

— ^ = sm LX. 

dy 
4- 2k + k^y — A cos px» 

+ a^y = cos ax. 

+ 2 + lOy + 37 sin 3x = 

[London, 1937] 

[Andhra, 1936] 

[Delhi, 1943] 

[Math. Tripos, 1927] 

[Aligarh, 1936] 

dx ■■ cos X + x®. 

- 2}^ « x® + e». 

+ 3 + £-* 

S' ^ X sin X. 

'dx' 

[Agra, 19341 

[Benares, 1941] 
[Bombay?, 1937] 

[Punjab, 1944] 

y the solution 
[Bomba^f, 1935] 

[Ahahabad, 1938] 

[Agra, 1937] 
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’ 28. Solve the equation 
d^y , 

^ U “h OX + CX^f 

given that dyjdx = 0 when x = 0 and y = d when x = 0. 

[Nagpur, 1926] 

(a, b and g being positive numbers) and x =« a' and clx/dt 
^ 0 when t = 0, show that 

X - a -f (a' - a) cos {V(glb)t}. [Nagpur, 1927] 

^ 30* Find the solution of the equation 

d^y 

dx^ 
= 1, 

which vanishes when x = 0 and tends to a finite limit as 
~ 00. [Mat/u Tripos, 1934] 

CHAPTER XIV 

MISCELLANEOUS DIFFERENTIAL 
EQUATIONS 

14*1* Homogeneous linear equations* 
differential equation of the form 

n 

^ dx" 
dy 

where a,, fla,.. , a„ are constants and Q is a funC' 
tion of X, is called a homogeneous linear differential 
equation. 

1. By taking a new independent variable z, 
where z = log x, 
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the homogeneous linear equation becomes a linear 
equation with constant coefficients. For 

dy_dy d?;_l<l;y 

dx~dz 'dx xdz' 

and d^y. 
dx’ 

1 d / 1 dy 
X dz\x dz Hi d’‘y 

d? 
dy] 
dzr 

Similarly 
d-'y 1 (d'y , d’y -> dy \ 

dx' ~ x:' \ dt ^ Jz^ ^dz)’ 

Writing D for d/dz, the above equations 
become 

X (dy/dx) = Dy, 

x’(d=y/dx’) = D(D- 1) y, 

x^idHdx^') = D(D- l){D-2) y ; etc. 

We can, in fact, prove by mathematical induction 
that 

x” (d”y/dx”)=D(D — 1)(D—2)... (D — n +1) y. (2) 

The substitution of these values of x(dy/dx), 
x’(d®y/dx’), etc., will evidently give us a linear diff¬ 
erential equation with constant coefficients, which 
can be solved by the methods of the last chapter. 

2. There is, however, another method which 
is easier. Let 0 denote the operator 

d 
^dx’ 

dy 
so that 0y means x , 

d / dy \ 
0’y means j, etc. 
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Now the symbol D used above stands for 

d d 
dz’ ""ax’ 

so that the operator 0 is equivalent to the operator 
D, the only difference being that 0 can be applied 
to functions of x directly, but D can be applied 
only after transforming them into functions of z- 
Hence equation (2) can be written as 

= 0(0- 1)(0 - 2) ... (0- n+ l)y. 

Let now the differential equation (1) be trans¬ 
formed by this relation, so that we get, say, the 
equation 

my = Q. ... (3) 

It is easy to show, as in the case of the linear 
equation with constant coefficients, that the- 
general solution of (3) is the sum of any particular 
solution of (3) and the general solution of 

/(0) y = 0. . . . (4) 

To solve this last equation, assume tentatively 
that y = x”*. Substitution gives at once the result 
that x”* is a solution of (4) if m is a root of the 
auxiliary equation 

f{m) = 0. ... (5) 

If rui, mj,..., m„ are the roots of (5), and no 
two of them are equal, the general solution of (4) 
is easily seen to be 

y = CiX”'! +C*X'”® + CaX”** + .. . + CmX’"". 

This is the complementary function in the solu¬ 
tion of equation (3). 
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3. The particular integral of (3), written as 

/(0) a (6) 

is some function of x which when operated upon 
by /{0) gives x. 

It can be shown, just as in the case of linear 
equations, that the operator 0 satisfies the laws of 
algebra, and may be treated like an algebraical 
quantity in /(6) provided the coefficients are con¬ 
stants. Further, we can prove with the help of this 
property that if /(0)can be broken into factors 0 — 
0 — «2> • • -1 0 ~ ‘*n. say, then (6) will be equal to 

«.»)))]•(« 

4. As an alternative, |/{01‘‘ may be broken up 
into partial fractions, say 

Ai/(0 - CtJ, Aa/CO - tta), ... , A„/(0 - a„) ; 
then it can be shown, exactly as in the last chapter, 
that {f(0)l'‘ Q is equal to 

A^ 
0-a4 0 - “2 ‘ 0 - a,j )|Q- (8) 

5. 

i.e., 

Nowifj4„Q = 

= or 

V, then (0— a)v~Q, 

dv _ a _ Q 

dx X X ’ 

which is a linear differential equation of the first 
order (§ 10’5). 

The integrating factor ise"’‘.'°s* i,e,, x~"^, and 
the solution is 

V = x”*! dx. (9) 
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This enables us to write down the values of 
(7) and (8) in terms of integrals. 

|6. In case Q. is some power of x, say x*", we 
may guess that 

(10) ^ ^>11 — f 
f(0) ’ 

since /(0)x”' = f(m)x”'. By operating on the right- 
hand side with /(0) we can see at once that formula 
(10) is correct. This furnishes us with a short 
method of finding the particular integral in such 
cases. 

7. In case the auxiliary equation (5) has r 
roots each equal to m, the corresponding part of 
the solution of (4) can be inferred from what we 
know about the solution of the linear equation with 
constant coefficients which results on using the 
substitution (2), and is equal to 

x’''i {Cj + Ca log X + .,. -I- Cr (log x)''-* 1. 

8. Similarly, if two roots of (5) are imaginary 
and equal to a ± i^, the corresponding part of the 
solution is 

x^ Ici cos (ft log x) -f Ca sin (ft log x)K 

Ex. Solve (x*D® - 3xD + 4) y = 2x®, where D = d/dx. 

Since* xD = 0, and x*D'^ = d(d - 1), the differential 
equation can be written as 

{e(0 - 1) - 30 + 4} y = 2x», 

or (6‘-* - 40 + 4) y - 2x*. 

*The student should carefully note that the equation 
xD = 0 means merely that the operator xD is equivalent to the 
operator 0; or in other words, if y is any function of x, that 
xDy = 0y. 
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The auxiliary equation is m* -4Tn + 4 = 0, which has 
two roots each equal to 2. Hence the complementary 
function is 

X*(Ci + C2 log x). 

The P. I. -, 
(0 -2)»^'''“‘^^(0- 2)-^'''’‘ 

The short method given above (formula (10)) fails, for 
6-2 becomes zero when 6 is put equal to 2. The method 
of breaking up {/(0)!”' into partial fractions also fails, because 
there is a repeated root. But formula (9) gives 

Q 
dx == log X. 

Therefore, applying formula (9) once more, 

1 „ 1 
{0 - 2)‘^ 0 

(x^ log x) 

=* x*-* x~'’ X® log X dx 

^ ix^ (log x)^ 

Hence the general solution of the given differentia? 
equation is 

y - x2(ci + C2 log x) + (x log x)^ 

Examples 
Solve 

1. x*D^y + 5xDy + 4y = 0. 
2. x^y.j + xyt = a. 

3. (x*D^ + Ix-^D'^ — x^D + x) y = 1. 

4. *’£■ - 

5. [Madras, 19371 

6. 
„ ci'-'y dy . „ 

[London, 1937] 

7. 2v. +3x‘^>-h-x’*x. 
^ dx=> ^ dx» + ^^dx ^ ^ 

[Madras, 1936] 
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8. (x»D» + xD- l)Jr=x^ [Bombay, 1936] 

9. 
,d^y ^ dy ^ , 

[Math. TripoSt 1932] 

10. (x®D* + 2xD) y = log x. 

11. 

12. 
d^y , ,d^y dy 

log X. [Madras, 1935} 

13. - xD -f 2) >’ = X log X. 

14. [Londonf 1938] 

14‘2. Simultaneous linear differential equa¬ 
tions with constant coefficients. If x and y are 
functions of t, we can determine x and y when two 
differential equations ii y and t are given. We 
shall consider here only equations which are linear 
and have constant coefficients. If D denotes d/dt, 
such equations can be written in the form 

/i(D)x + /,(D)y = (|)(t), . . (1) 

F.(Djx + F,(Db=a>(t). . . (2) 

Similarly, if there are three dependent variables, 
y* Z, which are all functions of t, there should be 

three differential equations; and so on. The 
method of solution for three or more dependent 
variables will be evident from that used below for 
the case of two variables. 

To solve equations (1) and (2), we shall obtain 
first an equation which contains only x. For this, 
operate on (1) with Fa(D), on (2) with /a(D) and 
subtract. W get 

lF»(D)/i(D) - W) F,(D)ix = F,(Dm) - /.(DMt). 
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This is a linear differential equation with con¬ 
stant coefficients which can be solved by the methods 
of the last chapter. Let the solution be 

x = ^ (t). 

The substitution of this value of x in (1) or 
(2) will give an equation from which y can be deter¬ 
mined. If, however, y is determined by an in¬ 
dependent elimination, as in the case of x, the values 
of X and y will have to be substituted in equation 
(1) or (2) and the arbitrary constants in, say, y ad¬ 
justed (i.e., expressed in terms of the arbitrary con¬ 
stants in the value of x), so that the equation may 
be satisfied. 

Ex. Solve = + 

These equations can be written as 

=t, . . (1) 

X + - 1. . . (2) 

Equation (1) gives D^x - Dy = L • . (3) 

Adding (2) and (3), D^x + x == 2. 
Hence x = Ci cos t + C2 sin t + (1 + D*)-^ 2. 

or X = Cl cos t + C2 sin i + 2. 

Substitution in (1) gives = - Ci sin t + C2 cos t - t. 

Examples 

Solve the simultaneous equations 

-1. 

+ 2x + 5y = 0. Madras, 1942] 

dx dy ^ ^ . 
ar+dt -2D' = 2cost-78mt, 2. 
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3. 

4. 

+ 2x = 4 cos t - 3 sin t. 

dx dy , dz , = ny - mj, Iz - nx. = mx - ly. 

[Aligarh, 1936] 

Dx = 2y, Dy = 2z, Dz = 2x, where D = dfdt. 

14*3. Equations of the form d*y/dx*=f(y). 
Such equations can be solved by multiplying both 
sides by Idyjdx and integrating with repect to x. 
The multiplication gives 

^ dy d®y 
dx’dx^ =m 

dy 
dx ‘ 

Integration with respect to x gives 

By extracting the square root of both sides, separa¬ 
ting the variables and integrating, we shall get the 
value of y in terms of x. 

Ex. A particle moves in a straight line OA, starting 
from rest at A. with an acceleration towards O equal to // 
times the distance of the particle from O. Find the time 
it will take to arrive at O* 

Let P be the position of the particle at any time t after 
its start. Let OP = x. Then the equation of motion is 

there being a negative sign before x because the accelera¬ 
tion is towards O, i.e., in the negative direction. 

Multiplying by Idxidt and integrating, we have 

(dx/dc)* ^ - fix^ + c. ... (2) 
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Now the particle starts at A. iSo, if OA=a, the velo¬ 
city dx/dt - 0 when x ■= a. Substitution of these values in 
(2) gives 

0 = - /Mfl* + C, 

which determines c. With this value of c, (2) becomes 

(dx/dt)* - - //X* + /tft*, ... (3) 

or dx/dt = ± y'/i v'(a* - x*). 

Evidently we must choose the negative sign before the 
radical, because the velocity is towards O, and therefore 
negative. 

Separating the variables and integrating, 

ti/^i = Cl -1 = Cl - 8in"‘ ix/a), (4) 

We know that x = a when t = 0. Hence 0 = Ci - |n. 

With this value of Ci, (4) becomes 

ty/ii = in - sin"* (x/a). 

Hence the value of t when x = 0 is given by = 
i.e., the particle will arrive at O in time 

hi i//'- 

Examples 
% 

1. A point moves in a straight line towards a centre 
of force /u/(distance)*, starting from rest at a distance a from 
the centre of force; show that the time of reaching a point 
distant b from the centre of force is (a/i//i)i/(a® - b*), and 
that its velocity then is 

(l//i/ab)i/(a* - b*). 

• 2. A particle, whose mass is m, is acted upon by a 
force mj»(x + a*x*^) towards the origin; if it starts from rest 
at a distance a, show that it will arrive at the origin in time 

II. 



ANSWERS TO THE EXAMPLES 

Page 7 

1. •J-x®, ix«, - 2x-‘. 2. |x* + lx®, 5x + 7 log X. 

3. e* - 2 cos X - 3 sin x. 4. 5 sin X + 2 tan x - lOx. 

5. 10*/logel0 + 3e* + 6. 2 tan"® X + 3a*/log a. 

7. 6 sin"® X + 3 tan x. 8. sec X + 5 cot X. 

9. - I cosec X + X. 10. X + x*/2! + x®/31 + .... 

11. iox* + ibx® + icx* + dx. 12. - a/x + b log X + cx. 

13. 4 logx- 3/x - l/x». 14. »xio/® ^ »x*/a _ 21x»/s 

15. X - 16x*® - -^^x"®. 16, fx®^» + fax»'» + 2a»x»'* + 2a»x®'’» 

Pages 11-12 

1. ix*, i(x + 2)*, + 3)'*, t?(3x - 2)*, — xV(2 — 3x)*, 

(ox + b)*ha. 2. - lj2x^, _ l/2(x + 3)» 

- l/6(3x + 42». 1/6(8 - 3x)». - ll2b{a + bx)*, l/2b(a - bx)\ 
3. lx*/*, I(x + i(2x + 3)>'*, - K3 - 2x)»'*, 

2/3b)(a + bx)®'*. 
4. |x*'*, Kx + SK®, -|(5-x)»'». i(2x-7K», 

(2/5a)(ax - b)*^®. 
5. log X, log (x + 1), i log (2x + 1), - log (1 - x), 

a-» log (ax + b), - a*» log (b - ax). 

6. ie**, |e***®, - ie®-**, a»»/3 log a, a**^l4 log a, 

10«*/6 loge 10. 
7. - i cos 2x, - 2 cos ix, - m"® cos tnx, - m cos (x/m), 

- icos(2x+iji).' 

8. sin’^ X, i sin*® 2x, i sin*® (2x - 1), i sin*® (3x - 2), 

a"® sin"® (ax + b). 
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9. i tan"‘ 2x, 2 tan"* Jx, a"* tan"* ax, a** tan"* (ax + b), 
a tan** (x/a), a** tan"* (x/a), (If V7) tan** (x/VT), 

(1/21/7) tan"* (2x1 Vl), (1/ab) tan"* (bx/a). 

10. ^ sin 3x, -1 cot 5x, i tan 2x, i sin (3x + 4), t tan (7x + 2). 

11. iIog(9x+l), 2sinix, llrtan3x, isec3x, 48ec2x. 

12. ^ cosh 2x, a** sinh (ax + b), i tanh (3x - 7), 

b"* coth (a - bx). 

13. - 2 cos 2x - f cos 3x. 14. 5a®/log a + ^a sin (5x + 2). 

15. - (x - i)"* + 3(x - i)"*. 

16. — 3 sin J(a — x) — 3 cos 4 (a + x). 

Page 13 

1. ia**/loga, -Jcosx®. 

2. J tan"* x®, id + x*)*^*, i(2 + x*)®''®. 

3. (a» + x»)'»**/2(n+1), i sin"* (x®/a), (l/2a) tan"* (x»|a). 

4. - 1)®'®, iv^(a* + X®), - lv^(a* - x®). 

5. (1/nb) log (a + bx”), n*‘ log (4 + x”), - (2/f>) y (2 - xP), 

6. i sin® X, i(log x)*, - i cos® x. 

7. itan®x, -icot®x, i(sln**x)*. 

8. - cosec X, sec x, - cosec**"* x/(n - 1). 

9. tanP** xl(p + 1), - Kcor* x)®, Ksec"* x)». 

10. i(l + logx)^ (a + be*)”®*/b(n + l), lid + sinx)®. 

11. (a + b sin x)P*^lb(p +1), - (a - b tan x)^*^lb(<l + 1), 

(a + b sin** x)”'®*/b(m + 1). 

12. |sin'*x®, |tan"*x®, ysin** (x®/i/3), ii/itan-*(x®i/f). 

13. sec"*x, i sec"* X®, Jsec**ix*. 

14. (l/2v/2)8in*»(t/2x*), (3/2t/2) tan** (i/2x*), 

xV 8e(y:*(i/2x*). 
15. i(8in**x)*, Ktan-*x)», Ksec"*x)«, |(verr*x)*. 
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Page 15 

1. log (x* +1), log (x® + 3x + 2), J log (ax* + 2hx + c), 

an*‘ log (x“ + b). 

2. log (e* + 1), log (e* + e"*), log (10* + x*®). 

3. - log (1 + cot x), log tan”‘ x, - log co3“‘ x. 

4. log log X, - b"‘ log (a + b cos x), 

log (a cos* X + b sin* x)/2(b - a). 

5. - tan-^ cos x, (1/ab) tan"' {(b/a) cos x}, 

- b*' cos (a + b log x). 

6. - sin*' (a*' cos x), tan (1 + log x), 

- l/Cm - 1)(1 + logx)*”-’. 

7. garctan* -2cosv'x, - aa"=<=°»*/loga, -(l + x*)"''*. 

8. - I cos* X®, tan* x*. 

Pace 17 

1. Jx* log (x*/e), - log (xe)/x, x”*' log (x'*'"/c)/(n + 1)*. 

2. e®(x — 1), a^^xe** — x cosh x — sinh x. 

3. X sin X + cos x, n"'x sin nx + n"* cos nx, 

a"* Gog sin ax - ax cot ax). 

4. X tan*"' X - i log (1 + x*), x cot“‘ x + i log (1 + x»), 

X sin**' X + i/ (1 - x"). 

5. (2 - X*) cos X + 2x sin x, 4(x® - J) sin 2x + ix cos 2x, 

m"* c”** (m*x* — 2mx + 2). 

6. x(log x)* - 2x log X + 2x, x"*' [{log x)*/(n + 1) 

- 2 log x/(n + 1)* + 2/(n + 1)®J, - e**® (x® + 3x* + 6x + 6). 

7. ie* (sin x + cos x), ^ e** (2 sin x — cos x), 

li^e** (2 sin 2x + 3 cos 2x). 

Page 20. 

1. log {(x - 2)/(x - 1)}, ilog {(x-l)(x+3)»[, 

Jlog [x/(x + 2)}. 
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2. ilog{(x-3)/(x+l)}, ilog{(x-2Hx + 3H, 
i log {(x ~ 2)/(x + 2)K 

3* I sin 2x - i sin 4x, ix - I sin 2x, tV cos 3x - ^ cos x, 

4. - tV cos 6x + i cos 2x, ix + i sin 2x, f sin x + tV sin 3x, 

Page 26 

1. 2 log tan ix + 3 log tan (in + ix), 

2, ^ log tan (Jji + ix^) + 7x. 3* i log tan {in + 4 + x). 

4, log tan j i(ax 4- b) K 5. ^ sinh*^ 

6* 4 cosh**^ (ix^). 7. i sin x 1^(4 ~ sin® x) + 

2 sin"^ (4 sin x)* 

8* Jx® |/(x^ + 9) + 1 sinh*“K4x®), 

9. |x^V^(x<^ - 1) - i cosh-^ x^ 

10, 4 sec X v^Csec® x + 1) + 4 sinK'^ sec x. 

Pages 29-30 

i. tV. 2. 2. 3. 4. 5. log 3. 

6. 1-1/1/2. 7. K 8. 9. id - cos a®). 

10. } (1 + log 2)® - i. 11. i?!. 12. 

13. i log (1 + 2/1/3). 14. sin log^. 3. 15. i(e“-l). 

16. 17. 18. 0. 

Pages 34-36 

1. 4(tan’^ x)®. 2. log tan**^ x. 3, sin log x. 

4, sin-ix^ 5^ _ |^(x® + 3), 6. log log sin x. 

7, 4 tan“^ X®. 8. 4 log tan x. 

9, (ajh) log {e^l(b + ce*)}, 10. log (1 - e*^). 

11* i log tan (2x + i^i), 12. - x cos x + sin x, 

13. 4(x® + 1) tan*^ X - 4*« 14. x tan x 4-log cos x. 
15. 4(8inL X cosh x ~ cos x sinh x). 

16. ixi/d - X®) - i sin*^ x 4- 4x® sin*^ x. 
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17. (x - tan-* x)/i/(l + x“). 18. x - (sin-^ x) v'Cl - x»). 

19. ix®logx-Jx®. 

20. { - n + I)”*- x'**'^^ {log X“ l/( — n + 1){. 

21. (x® - 2x + De". 

22. (x* - tx + I). 23. Jx®{(log x)** - f log x + 

24. (6x/a3 - x^ja) cos ax + (3x*/a® - 6/a*) sin ax. 

25. ie*’ (x“ - 1). 

26. — i(tan'^ x)* + x tan*^ x — i log (1 + x*). 27. xtan |x. 

28. log {(x - 2)»(x + 1) 1. 29. log {(x - 3)*/{x - 2)}. 

30. i(a» - b®)-i log {(x" - a»)/(x» - b»)}. 31. - 1 + 2 loge 2. 

32. i logf |f. 33. 2 sin X - log tan (ira + 4x). 

34. log {(e® - l)/(e®+1)}. 35". i cos x - A cos 5x. 

36. £*■•'*. 37. 4^6®* sin (4x - tan'^ I). 

38. - 2 V 2 cos (|x + 39. (i) K (ii) 1 - in, (iii) 1. 

41. e*/(l + x). 42. Jx*/(1 + x»)». 

44, X tan’i x - i log (1 + x*). 45. If Un = the given 

integral, a*u,t = — ax” cos ax + nx”'^ sin ax — n(n - l)u»-2. 

46. (i) i, (ii) c(c - 1). 47. 2. 

Page 40 

1. X + log {(x - l)/(x + 1){. 

2. ix + log (x - 1) -1 log (x + 2) + U log (2x + 3). 

3. log (x + 3) + log (x - 2) — i log (x + 1). 

4. i log (x + 1) - 4 log (x + 2) +1 log (x + 3), 

5. i log (x - 1) + tV log (3x - 1) - t log (3x - 2). 

6. Jx® + X* + 9x - i log (x - 1) - f| log (x + 2) 

+ W log (x - 3)' 

7. sa log (x - a)/(fl - b)(a - c). 

8. X + i; (a - a)(a - b)(a - c) log (x - a)/(a - ^)(« - y). 
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Pages 42-43 

1. |log{(x-l)/(x + 2)}-Kx-l)*‘. 
2. iV log {(x - 2)/(x + 1)} + i(x + 1)** - y(x + 1)-’. 

3. ix~'* + X"* + 2x"‘ + 2 log (1 - 1/x). 

4. log {x/(x + 1)} + l/(x + 1). 

5. 4 log (x - 2) - 3 log (x - 1) - 2(x - 2)*^ - 5(x - 2)~®. 

6. |(x + 2)*‘ - f(x - 1)-^ - log Kx - l)/(x + 2)}, 

Pages 47-48 

1. (2/i/23)tan-i {l4x + l)/i/231. 

2. i tan“i ji(x 1)}. 

3. 4- log (2x* - 2x + 3) + tan"* {(2x - 

4. ^ log (3x** -I- 2x + 1) - -V’-y’2 tan**{(3x + l)/v"2}. 

5. |i/3:t. 6. 4 v'5 loge {(3 + V5)l2} - loge 2. 

7. log -f — log 5- — jW log 2 — 8- 

9. 4 log (x - 1) - i log (x-* -f- X + 1) 

- (1/1/3) tan"* {(2x + l)/i/3}. 

10. i log Kx -H l)»/(x» + 1)1 - i(x + 1)-*. 

11. I log(x+ 1) -t-4 log (x** -x-i- l)4-ii/3tan"*{(2x- l)/i/3l. 

12. (i/2/8a) log {(x® - i/2ax -1- a®)/(x* -t- i/2ax + a®)l 

+ (i/'2/4a)tan"‘ {i/2ax/(a* - x®)}. 

13. (1/61/14)[(1/7 + 1) tan"* {xi/2/(i/7 - 1)1 

- (1/7 - 1) tan"* {xi/2/(i/7 -i- 1)}]. 

14. log 1(1 + x)*/(l -t- x*)l - tan** x. 

Page 52 

1. ix(x* + 1)-® + l-xCx® + 1)-^ + I tan** x. 

2. x(4x® -I- 2)“* + ii/2 tan"* (xi/2). 

3. (2x + l)/3(x® -h X -H 1) -(- lv/3 tan-* K2x h- l)/i/3}. 

4. (x - 4)/4(x» -H 2x -t- 3) -H W2 tan-* {(x + l)/v 21. 

5. i log Kx* + l)/(x + 1)*} + i(x - l)/(x* + 1). 
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6. X - I tan"^ X + ix(x^ + I)"’. 

7. i tan*^ x — ^1/3 tan"* (x/t/3). 

8. (b® - a®)'* {a*‘ tan"* (x/a) - b"* tan"' (x/b)). 

9. ii/2 tan"’ |xv'2/(l - x®)j. 

10. i log |(x® - X + l)/(x* + X + 1)}. 

11. tan”*x/(l — X®). 12. i log {(** + + 3)}* 

13. Kx* + 1)"» + i(x® + 1)** + i log {x»/(x» + 1)}. 

14. I log |x®/(l + x")}. 
15. iloa.2. 16. ^ log ^ + ^1/2 tan"* (|i/2). 

Pages 52-53 

1- Hog {(x - 3)/(x + 2)}. 2. J log {x(x - 2)®(x + 3)®1. 

3. x/(l - X*). 4. - D- * + J log (x - 2) - log (x - 1) 

- tJtt log (x® 4) -f- ? J(r tan"* (ix). 

5. J(1 - x)-‘ - J log (x - 1) - Kx* + 1)"* -1- i log (x» -I- 1) 

+ i tan"* X. 

6. iy''2 tan** (x/i/2) - J log Kx - l)/(x + 1)1. 

7. - 1 tan"* X + 4 log l(x - l)/(x 1)}. 

8. Jv"2 log Kx® -f- v^2x + l)/(x» - i/2x -t- 1)1 

Wl tan** {xi/^/d - X®)}. 

9. l/a®x + ia"® log Kx - a)® (x® + a^)lx*). 
10. (1/n) log {x"/(x“ -f 1)}. 

11. ( - l/t/3) tan** }i/3/(l -i- 2x®)l. 

12. - J log (1 + X"* X"*) - ii/3 tan"* {(1 + 2x®)/i/3}. 

13. log {(x® - l)*/(x« -t- X® +1)} iT/3tan"* {(2x® + l)/v'3}. 

14. {3x - 4)/4(x - 1)® I log (x - 1) - ^ log (x -t- 1) 

- S log (x® - X -t- 1) + ii/3 tan** {{2x - l)/i/3}. 

15. - ■f(2x* -f X -f 2)*‘ + 3!Vti/15 tan"* {{4x -t- l)/i/l5) 

+ 7(4x + l)/60(2x» -h X -I- 2). 

16. - Kx* 4- fl*)"* (1 -t- x/a) - 3x/8a®(x* + a®) 

- (3/8a*) tan"* (x/a). 
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17. - * ]/I tan'‘ (xl i/2) - + 2)-» - ix(x» + 2)-^ 

18, log s - rV 19. i|/2 log (>^2 - 1) + ii/2.’i. 

20. ii/2 log (v’'"2 + 1) + }y'2^. 21. loge |. 

22. J log 2 - log i - log 3. 

Page 55 

1. tVvCx + 5)(3x» - 20x + 200). 2. 2(i/x - tan-H/x)- 

3. /jV'(x - l)(5x® + 6x* + 8x + 16). 

4. Kx + 12)(x - 3)a/». 

5. It® - 2t* + 6t + Jv^3 log {(t - i/3)/(t + i/3)K where t 
= \/(x + 2). 

6. ^/(x® — a®) - a tan"* v (x®/a®- 1). 

7. log [{i/(l + X®) - Dliva + X®) + 1}]. 
8. - t* + |t® - 4t* + 8t - 8 log (1 + t), where t = x*^®. 

9. - 6Qt* + + ^t® + + Jt® + it®), where t« = 1 + x. 

10. i log |. 

Page 58 

1. sinh“' {(x + l)/v''2}. 2. sin"* {(2x + l)/i/5!. 

3. ii/2 sinh"* {(4x + 3)/ j/231. 

4. i(4x + 3) |/(2x® + 3x + 4) + II i/2 log {x + | 
+ i/(x® + |x + 2)K 

5. -J{4x + 3)i/(4 - 3x - 2x®) + Hi/2 sin"* {(4x + 3)/v''41}. 

6. i/(x® + X + 1) - i sinh"* {(2x + l)/i/3}. 

7. 2i/(x® + 3x + 1) + 2 cosh"* {(2x + 3)/v/5}. 

8. |•(2x® + 3)®/* + 4xv/(2x® + 3) + iy'2 sinh"* (xi/|). 

9. K8x® - 6x + l)>/(x* + x + 1) - sinh"* K2x +'l)/i/3K 

10. K/3-a)*. 

Pages 60-61 

1. tV(4x - 5) t/(2x* - X + 2) 

+ JJi/2 log {x - i + i/(x* - |x + 1) K 
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2. ixi/(x® + 4) - sinh"* (^x). 

3. - ixi/(3 - X®) - i sin~® (x/y'3). 
4. K2x + 5)i/(x» + X + 1) + sinh"i {(2x+ l)/i/3}. 

5. i(x® + 1)®^® - + 1) + 3 sinh'* x. 6. 0. 

Page 62 

1. ii/2 sinh-^ {{1 + x)/(l - x)}. 

2. sin'^ {(3x + l)/i/5(x + 1)}. 3. 'ivZ sin"* {xi/2/(x+ 1)K 

4. - v"(x + a){ay'(x - a). 

5. iv"2 [sinh"* {{1 + x)/(l - x)| + slnh** {(1 - x)/(l + x)}]. 

6. i(l + x)*-'® (2-x)(l - x)-»'®. 

7. sin"* {(x + 3)/i/5 (x + 1){ + cos'* {(2 - x)/xi/5}. 

Page 65 

1. sin"* X - y'(l - x®). 2. cosh'* x + i/(x* - 1). 

3. X + 4x* + log X + + 2)V'(1 + X*) + i slnh"* x 

- sinh-* (1/xi. 
4. (ix - l)v/(l-x®) - i sin"* X. 

5. i[x® - xi/(x* - 1) + cosh'* x]. 6. (l/2i/53) log 

[{xi/11 + |/(3x* - miWn - V(3x* - 12)}]. 
7. -hsV^ log ni/(x» + 9) - t/5)/{v'(x» h- 9) + i/5}] 

+tVv"5 tan"* {x|/5/2i/(x* + 9)}. 

8. l|/2 log [{xi/2 +i/(x» - Dl^xi/Z - v/(x® - 1)}]. 

Pages 70-71 

1. |x»‘'» + 4|x*»'‘* + 44x«*/»» + Hx’*'*®. 

2. ^1 + x»)*'»(4x» - 3). 
3. (a + bx'*)*’** ((p + l)bx“ - a}/tib*(p + l)(p + 2). 

4. u/3(u» - 1) + J log li/(u® + u + 1)/(m - 1)} 

+ Ji/3 tan"* {(2u + l)/i/3}, where u = X"* (1 + x®)*^®. 

5. 2"®^* tan-* <2'* '* u) + 2"**'* log l(fc + 2*'*)/(u - 2*'*)}, 

^ where «* = 2 + x"*. 
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6. b-"-‘ £ "Cp (a + bx*)?**""^* ( - a)"-»’/(2p + 2 - t). 
p»o 

8 xy^ixo + a--‘K8x*+ 26a*x> + 33a*) + fVfl® sinh-‘ (x/a). 
9, 10« (m + 2)Im ” (2ni + 

- x”‘-*(2ax - x®)*'"', whereIm =/x“v(2ax- x*) dx; ^na-\ 
11. 12, If h„,„ = the given integral, the red¬ 

uction formulae are 
(m + n + = x’”-* (1 + - (m - 

(m + n + 1)1,= x*”** (1 + + n ; 

(tsx* - r«'*“ + TtPfff) (1 + 

Page 72 

1. x/aV(a* - b-x-). 2. x/aV(a® + b’x*). 

3. - x/b® »/(a»x» - b»). 

4. d/na’*''^) log [{v/(a” + *“) “ >/(«" + Jc”) + a”''®!). 
5. log [{x* - 1 + l/(x* + l)}/x]. 
6. i sec-> X + t/(x® - l)/2x». 7. (i« - i)a>. 

Pages 72-73 

1. (a-b)-' log [{i/'(x + a) - /(a - W}/{ Vix + a)+ \/(a-h)\], 
ifa>b;{2/v''(b-a)} tan-‘ iv/(x + o)/i/(b-a)}, if b>a. 

2. (f - |l/2) c®"». 
3. 4 log [{l/(l + x) - DIVx] - 6i/(l + x). 
4. (3 - x)v'(3 - 2x - x») + 9 8in-‘ {i(l + x)}. 

5. i/(x® + b*) + a sinh“‘ (x/b). 
6. 2(a - b)-VKl» - x)l(x - at 7. - i/{(l - x)/(l + x)}. 
8 - l/(l + l/x>). 9. a sin“^ l/(x/a) + i/(ax - x®). 

10, fid + x)®^® - 11. 

12. 2 log {l/(x - a) + i/(x - ^)}. 
13. cosh-* {(2x + a + b)l(a - b)l + i/{(c - a)/(c - b)} cosh”* 

[|2(c - b)(c - a)’+ (a + b - 2c)(x + c)}/(a - b)(x + c)]. 
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15. v/{x» + X + 1) - i 8inh-‘ 5(2* + l)/v/3} 

- 3inh‘‘ id - x)/i/3(l + x){. 
17, 2»«--->.i(n - l)!}»/(2n-1)! 

18, b(np + m)/x’""i(a + bx”)P dx = x*"-“(a + bx*)*^* 

- a(m - n) /x*"*“’‘(a+ bx”)Pdx; 
- A{1 - (5x« + 6x» + 9). 

19, q”(n!)/(p + !)({> + 1 + eiXp + I + 2q) ... (f> + 1 + nq). 

Pages 82-83 

1. - cos X + I cos* X ~ J cos* X. 

2. sin X - sin® x -f | sin"': c-^ sin^ X. 
3. J cos'* X cos® X. 

4. - 4 X {} - cos *x + i\ cos® x). 
5. 3 sin*''® x(l - 1 sin® x)* 6. log tan 0 + i tan® 0. 
7. i sec® X — sec x. 8. 2 tan'"®''® X (tan® x -i). 
9. ix - i sin 2x. 

10. fVx -• sin X cos X (3 + 2 sin® X + 5 sin** x). 
11. ii- sin X ( - cos’ x + ^ tos^x + cos® x + fV cos x) 

J cos X (sin^ X ~ i sin® x 
+ JX, 

12. - if sin x) + tVx. 
13. (128 - 71v^2)/1680. 14. (3:i - 8)/32. 15. 3^571. 
16. f X + i sin 2x + sin 4x. 17. 5^71. 18 
20. 22. -•yW*. 24. 1 0* 
26. x®/12(x» + 4)®^®. 27. 2 — 
28. ilsin (m + n)x\l(m + n) - i- Hsin (m - n)x}/(m - n). 
29. iV(2 sin 6x + 3 sin 4x -i- 6 sin 2x + 12x), 

Page 85 

1, i tan* X + log cos x. 2. i tan® x — tan x + x. 

3. -i cot® X +tcot X + X. 4. - Jcot*x + icot* x + log sinx. 

5. i loge 2 - i. 6, -i cosec 9 cot 0 + i log tan id. 

7. -1 cot ie (cosec* id + 2). 8. 1/ >/2 -t- ^ log tan K 
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9. ix(l + + fx(l + + I log tan (in + i tan*‘ x). 

10. {67t/2 + 15 log tan 

Pages 88‘*90 

1. t tan"-* (i tan ix). 2* f tan*^ tan (Jx - in)}, 

7. k logc 2. 8, (l/i/2)tan** {(tan x)/v"2K 
9. ^ tan** (2 tan x). 

10. {l/a|/(a* - b®)} tan“*{a tanx/]/(a* - 

11. xlb ~(alb)Sdxl(a + b cosx). Now apply § 4'3. 

12. - 2i/(l - sin x) - i/2 log tan (}x + 

13. - 1/2(1 + 2 tan x). 14. (1/ab) tan** {(.bja) tan xj. 

15. (a® + log tan H* + tm"‘ {bja)}. 

16. ifx + log (3 sin X + 4 cos x). 

18. {aO + b log (a cos 6 + b sin 0)!/(a® + b-). 

19. it log {(I +• cos x) sin x/(l + 2 cos x)®}. 

20. J log 1(3 + 2 cos x)® sin ix sec® ix}. 

21. 4 log tan ix + tan 4x + i tan® ix. 
22. X cos a + sin a log sin (x — a). 

23. - (a - b)-*''® 3inh-‘{ /(a/fc - 1) cos x} if a> i?; or 

- (b- a)-*'- sin-i h/(l - a/b) cos x} if a < b. 

24. - 2b-®{log (a + b cos x) + a/(a + fe cos x)}. 25. 

Pages 92'93 

1. (4 - ix®) cos 2x + ix sin 2x. 2. 4x» - ix sin 2x - f cos 2x. 

4. i3ra®(l + Jji®). 5. fW - 15;i® - 120. 

6. ie®* {(1 / V" 13) cos (3x - tan"* |) + (3/ i/S) cos (x - tan“‘ i){. 

7. Je«* {3(1 + a®)“‘'» sin (x - cof‘ a) 

- (a® + 9)'''» sin (3x - cor‘ ia)\. 

8. ie*{x(cosx +sinx)-cosx}. 9. 10. |4. 
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Pages 95-97 

1. - i^x + i log (e* — 1) + iV log (c* + 3). 
2. - 1/(1 + e*). 3.x- log (e* - 1) - l/(e* - 1). 

4. e"» cos-«* _ mVd - **)}/(! + m*)- 

5 ^e»» tan-»* [ 1/m + {1/v' + 4)1 COS {2 tan"* x 

- tan"* (2/m)}]. 

6. e*/(x + 2). 7. e*(x-l)/(x + l). 

8 e*(x + l)/(x + 2). 10. x jog (1 + x*) - 2x + 2 tan"' x, 

11. }x sin"* X + i/(l - x^ll'tlog X -1) - 1/(1 - *') 
- log [{1 - 1/(1 - X'*)|/X]. 

12. X log {x + v'(x* - a*)} - i/(x* - a*). 
13. logx - (1 + 1/x) log (1 + x). 14. e*logx. 

15. J {log (sec X + tan x)}’. 16. - f. 
17. 0. 18. ;i*/12. 19. ix“Klogx)»-I logx + ^s}. 

20. Jx® log (1 - x») - fx® - tx - A log 1(1 - »)/(! + x)}. 

21. X - *x®/l! + ix'/2! - ^x»/3! + ... . 

22. mx - im*x»/3! + im*x»/5! - ... . 

23. log X + 1/2(3!) X* - 1/4(5!) x’ + ... . 

24. X — .... 

25. (a + x) tan*‘i/(x/a) - i/(ax). 

26. y (e®* + <»e*) + ia log {c* + ia + /(e** + ae®)}. 

27. i sec"* cosh x + i sech x tanh x. 

28. i sin X cosh x + i cos x sinh x. 29. cosh x tan ix. 

30. / tanh** x dx = tanh**"* x/(l - n) + / tanh**"* x dx. 

32. {J - 1/(1 + x)| tan** x + i log 1(1 + x)*/(l + x*)}. 

33. - i(cos log X + 2 sin log x)/x*. 

34. - (cos"* x)/2x* + ii/(l/x* - 1). 

35. X sin** x/i/(l - x*) + i log (1 - x’). 

36. x(sin** x)* + 2i/(l - x*) sin*^ x - 2x. 

37. - 2 sinh"* i/(cos x). 38. (x + 1) tan"^ l/x - i/x. 
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39, Hi ^ sin 2x) log (1 + tan x) + i log cos x - ix. 

40. log log tan x. 41. - 2 cosec a'v'{«in (x ^ a)/8in x\, 

42. cos a , cos*^ (cos X sec a) - sin a cosh*^ (sin x cosec a). 

43. (b- sinh^‘ lv^(fc* c®) tan Bj y'(a*^ + c*)t. 
44. i 

Pages 97 *• 100 

1. - i co3'*x 4* § cos^x - 4 cos’x. 2. 4'^ - g^2' sin 4x. 

3. 2(2 - J sin® x) sin®'® x. 
4. tan X - 2 cot x - 4 cot^ x. 

6. 7. 8. tV®* 

9. 10, 4«“M{n l)!}®/(2n - 1)1 a®**. 

11. 12. - i + ilog^2. 
14. - ?f sin X cos x/(l + 2 cos x)® ii/3 log {cos 

(ix f i^)/cos (ix - 
15. lx® -f- + il-x® -f . 

16. cosec (a - b) log {sin (x -- a)/sin (x - t)i. 

17. x(cc ^hb')lib^ + c®) 

-f {be - cb ) log (a -f b sin x r c cos x)((b'^" y c^) 

f l{bia'b ~ ah') + c(ca' - ac')}(b* -f c®)*‘ (a® - b® -- 

X tan** {{{? .f (a - c) tan ix{/v'(a* -- b® ^ c®)J 

if a > c and a® - b® - c® is positive; similarly for 

other cases. 

18. cB "h b log (1 + sin a) - 2(a ~ c)/(l 4- tan 4®). 

19. x(ap b<j)/(a® + b®) 

4 {(aq - bp)/(a® 4 b®){ log (a sin X + b cxw x). 

20. ia. 21. (u - e sin «)/(! - e*K*, wherci/(l -e) tani« 

= l/(l + e) tan 4m. 

24. Ir - t'x’*'*- ^5. (sin X - X cos x)/(x sin X + cos x). 
26. ^<i(a* + + y*)/K«» + ^» + /•)* - 4i»*y*}. 28. tan 4x. 

29. lm»H (1 + + n). 32, (x), 
20 
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Payes 104-105 

1. ;t. 2. itn. 3. 4. .V--/2a6. 

5. ih. JO. 11. A-J log-. 2. 14. .t lo&; 2. 

Pages llO'lll 

1. |. 2. £«. 3. sin - sin a, 4. cos a cos 6.. 

5, 2(v b - I a). 6. 1/a - ijb. 7. -i. 

8. log, 2. 9. 10. -i.i. 11. (2k)!/(2*fc!)». 

12. ^7. 13. ioy, 2. 14. log,. 3. 15. ^ tan 1. 

16. 4/c. 18. r*. 

Pages 117-n9 

2. . (2n)!/(2-. n!)». ' 7. i.'«. 

9. i-T log,; 2. 11. 2/a. 13. KE"* - a^). 

15. T^i. 16. i-i+l. 18. ;»a»(l-a»). 

Pages 119-124 

1. ~ 3x»). 

2. log jx + Vix - D) - #v 3 tan-' [t2v'(x - 1) + Wlv'^h 

3. X cos'* (1/x) - cosh*' X. 4. c* + log (e* — 1). 

5. ie* (x - 1) + {cos (2x - 2 tan*' 2) - y'Sx cos 

(2x - tan“‘ 2)E 
6. X tan X t log cos .x - ix*. 7. 1/x - tan (l/x). 

8. - i log tan O + x). 9. 2/(8in-< x). 

10. (l/v^l3)e»* cos (3x + J-.-x - tan*' |). 

11. 2 sinh*' ii sin ix). 

12. - v (4x ~ X®) + 3 sin'* (lx - 1). 

13. Jx® tan**' X - ix“ + i log (1 + x®). 

14. .c"* + x)/(I + in»)v'(l + x*)- 15. - 2/i/(9inxE 
16. Iv'(tan x)(5 f tan* x). 17. titrCl + 4/x*)»'»(l-€/x»). 
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18. xjcy'iax.* + c). 19. iv2 sin"’ tjcv'2/(l + x®){. 
20. - e* cot ix. 21. log (tan x . tan ^-x). 

22, f, log Hi + sin x)/(2 - sin x)i. 

24. ( - X* + 12x'- — 24) cos x + (4x ‘ - 24x) sin x. 

25. (a* - - b cos 0) d9: 

• 2(a® - tan"’ y {(a - b)l(a + b)) ; 

ilfb(a* - b*)'‘^’'}(2(a* - b*) tan*'v'l{ii -- h)/(a + b)l 

— by'Ca'' - b*) - a- cos"‘(b/a)). 

26. A - bf(n - l)(b* a'): B = - (2n >)al(n - l)(b»-a»); 

C ^ (n - 2)Kn - l)(b» - a*). 

2a(a" - b'‘)‘'^‘‘ tan*’ (t {(a - b)'(a + b)} tan ix] 

- b sin x/(a* - b0(a + b cos x) if a. -b ; or 

- 2a(b- tanh~‘ (v'{(b a)/ib i- a)| tan ix] 

■f b sin xlib* ~ a")(a -f b cos x) if b>a. 

28. .’T, K). - cot X log (cos X t- i cos 2t) - cot x-x 

+ cosec XV (cos 2x). 

32. 
33. 
36. 
38. 
41. 

48. 

■i - in. 
icosechologKl + cosh a + sinha) (1 + cosh« - sinha)]. 

cA + aC -^’2bB, or B* = AC. 

ny^n. Kin +• l)/2r(Vn + i|). 39. n logc 2. 

If the given integral be denoted by 1«, then 

l„ = - il/(2n + 1)} x««(l - x’)’'" + ]2nK2n 1)] 

J . J .#.... lan - l)K2n)j in. 44. - Hi• 

2n\a - v/(a» - b»)|/b». 54. in. 

Pages 131-132 

1. e* - e*. 2. c» sink (a/c). 3. b log (b/e) -a log (a/e). 

4. t.x. 8. ncA). 10. /o*sb’'*/a*^*. ^ 

11. na\ 12. 5a», 14. 4a*. 15. s«i». 

16. if. 17. i(9i/'3 + 4«)a*. 19. Vab. 
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Pages 135-136 

1. ia* logifih). 2. }I*vtan i tan® 4«). 

3. aMe*"** - e»”»“)/4m, 4. tV^». 

5.. (4« + 3y'3)l(2n - 3v 3). 6. Wa’ + b»). 
7. - 6). 8. isw®. 

9. lU. 10. U. 14. 16. {» - l)a*. 

Page 139 
2. 3i/3o''/2. 

Pages 142-143 
2. 0-1982. 3. 7*78. 4 . 0’84. 5. 710 sq. ft. 7. 0-82 

Pages 143-146 
2. 4. ia»(4 ~n\ 7. 9, 3^*. 

12. l»|«(a» + b»),16. 17. {15 v" 3/16 - 
18. (9?ii + 16)1(9” - 16), 21 M3v' 3 - 4). 23. i”C*. 

a\ yl + log (1 + 
Pages 149-151 

1. l/2)). 2. . fijt) -M where 

fh) ‘ “ log M{I + v^'l + y')}] + » (1 + >»). 
3. fix.j) - /(*,), where /(x) =• a( 1/3 log WiAa ~ 3x) 

- l/3 (.^(a - x)) + t/’{(4a - 3x)/(a - x)}]. 

4. x> '(x® + i) + 1 log jx + i^(x’* + i)} + i loR, 2; r48. 

6. log (c+ «•'), 9. 8a. 11. 4a(cos i« - cos 

12. 8(3. 13. f(r,fa) - /(r,/a), where f{^) = ia[fli/(l + 0») 

+ log je + j/(l + 0*)|}. 

"o- 15. 768». 16. 8a. 
17. /(0t) - /l0,), where /($) » a( v'(3>+ sec" 0) 

- y'3 log li/(l + 3 co8*0) + v3 cos 0)}. 

Pages 153-154 
5. The evolute of y*’=4ax is 27ay» »=.4(x ~ 20)*. 
6. 5 4a sin 
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Pag« 154-157 
5. I '2(c'^» - 1). 

15. s = 4a{9|/(l + 9*) + ainh** 9}, v •= 9 + tan"* 0. 

16. s ajtan v sec <p +• loR (tan » + sec v)}. 

Pages 162-164 

2. 34i(*(a - ife). 4. 2«aK». 5. Jrob*. 

6. (2»{>/3a){6a*b ~ k” - 3abv'|a* - f>*) - 3a® sin*' (b(a)}. 

IJ. 4?*; 4'*®. 12. -/j?j«a®. 

Page 166 
3. ■M\^®(125» 10 ^1). 4. S«a*(2i/2 • 1). 

5. 8^(1 + 4^/31-'3). 

Pages 169-170 

1. 6|/2«®d'. where a semi-major axis. 2. 8v/2«a®/l5. 

4. 64nd®/3. 5. (0 (4d/3j«, 4a/3»); (ii) (2a/«, lal'},. 

where a radius of the circle. 

Pages 170-171 

2. tt'*- 3. 2.Ta®(IogB 2 -1). 5. 

6. !536i*/5cu.in. 8. 90«. 11. j. 

13. j**, 2sf*. 16. iiT/V*** A •= liTti,■! 

22. •fV»a“K3/v'2) log (1 -f VD - 1}. n*a®/4v^2. 

26. «i®|3i/2 - log (1+V2)}. 

27. . 7.a«[v/6 - 1 - (l/i/2) log {{2 -i- >/3)/(l -t- VDU- 

28. 48i/2«t*/5. 29. fata®, 33. Volume and 

surface between x = a attd x - b are cjF(b)—F(a)} and 

2{F(I>) - F(a)l, where F(x) =» iacjc sinh (Ixjc) + lx\, 

35. 
Pages 181-182 

1. I - HKl + 2t»)|/(l + t*> 

- log {(t-f v^(l t*)}I/[ti/(l t*) + log It + |/(1 + t")}L 

n “ -»• t*)®'* - lIKtv^CJ -n*) + log It + v^(l t»)U. 
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2* ^ - X - c(y - c) 5, 1? -= 4- icx/s, where s is the len^h 

of the arc 3. ^ y; |a. 

4, I « ta (sin a)/a, »jf 0; where the angie subtended at 
the centre by the arc is 2a and the axis of x Is the 
middle radius. 

5, ^ = fa(sin® a)/(a sin a cos a), »/ 0, where the symbols 
have the same meaning as in the previous emmple ; 
f = 4^/3^. 

6, £ = ff = '^7, ^ 8. =» 

9. ^ U(37r 8)1(4 ~ ^). 10, I - 4a* 11. V 2. 
12. == ^ 13. |a/m*, i? « 2a/m. 

14. ^‘- 500/63. 15. 16. 

Pages 184-185 

1. i * Klength of vertical side). 

2. At middle point of median which bisects the horizon¬ 

tal base. 

3. ^ = Kdepth of base). 

4. { MKi* -f* hthg 4* ha*)/(fi| 4- /ij). 

5. ^-K3h2*-f 2fia/i,-f Ji,^)/(2b2+Kx). 

6. t 3,t(a* 4b*) + 32ab |/(4a 4 3:d>). 

7. |--h4'a*/4h. 

8. ^ « KlOfi® ~ 15ah 4 6a*)/(4K ~ 3a), where a 

=» J latus rectum. 

10. Its depth Is I J times that of centre. 

Pages 189-190 

1. §Mc’, where 2c is the equatorial diameter. 
2. UhM. 3. iMa®. 

4. Ma* {1 + i cos 2a — (3/4o) sin 2«). where 2a is the angle 
subtended by the arc tt the^centre. 

5. SftMa*, 6. where a * length of rod. 
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Pages 190-192 t 

1. At laj^i from centie. 

2. (0, fa). 3. (n + l)(fc«** a"*‘')/(n + 2)(b«*» - a"*')- 

4. Ja(7 + 3 logo 2), + 16 loge 2). 

5. Mid. pt. of radius perp. to base. 

7. If ? * yia, mass “ ia^, j •= :Ja. // = 8, ^ = j^a. 

9. Depth of C. P. = (d» + dh + ih»)/(d + ih). 

10. iMa®, if length of each side = 2a. 11. ^Ma*. 

12. (i) ;r/= Ua. (ii) V/Ma». 14. iM(R> + r*). 

15. } Ma- footMbs. 17. fMa-. 

20. W(b - ib"/u*) inch-tons. 

21. 12* . 2”. l00(3»-» 2-")/(l - n) foot-lbs.; 

12*.400(1 - V'2/V''3) foot-lbs. 

Page 199 

1, ^:y ^ - ceV-\ 2 . logxd- - y)® - c - - iy* - 2y + ix*. 
3. :y - X = c(l + xy)^ 4. y “ c{l - ay)(x + fl). 
5, tan X tan y c. 6. y + §(x - 2a) |/(a + x) =c. 

7. 3? sin ~ X* log X -i c. 8. ew = e* + ix* -1- c. 

Page 201 

1. log (y~x)--c + x/(y - x)- 
2. j,arc tall (s/*; j/(x* + y’') = c. 

3. ex'" = y + v(y* + X®). 4. (y - x)® = cxy*. 

5. c(x - y)®^®(x* + xy + y®)‘/« = 

exp [{1/v 3) tan''{(x + 2)f)/xi 3)1, where eJcp x s e*’- 

6. X® + y* - cx. 

7. 2xy(x + y)"* + log (x + y) = c. 8, x/y -f- log (xy) = c. 

9. x(y* -t- xy + x'O ^ c. 10. y® -- x® -- c(y* -t- x®)*.. 

11. y* « 12. . xy cos (y/x) •= c. 

Page 204 

1. tan*‘ K2y ■¥ l)/(2x + 1)| ■= log {ci/(x® + y* + x -t- y i)}. 
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2. x + y- 2«»cO - x)*. 

3. tan”* {(y + 3)/(x + 2)} + log [ci {(> + 3)* 

+ (x + 2)*)] = 0. 
4. X + y + J 5. 4x + 8y + 5 = ce***"*v’. 

■6. f{2x + 3y) - log (14x + 21y + 22) x + c. 

7. X + 2y - 5 « c(2x - y)*. 

8. i(x* + y*) + 2xy - 5(x + y) «= c. 

Pages 206-207 

1. xy >= ix* + ix* + 2x + c. 

2. y =. c(x + a)® +■ t(x + a)*. 

3. y = e”’*/(m + a) + ce'®'. 

4. ye* =- c - e'/x + /c*x*‘ dx. 

5. y = cc*** - m(nx + l)/n* - (jjn. 

yV(l + X*) « c + 4 log tan (i tan*‘ x). Another form 

is yy'U + X’) “C + i log [{v^(l + 3t0 
7. y « c(l - X*) + v/(l ~ X*). 

8. yfx'-* + 1) « |x* + c. 9. y{x - 1) x’'(x‘ - x + c). 

10. xy — c - tan** x. 

11. yx* =• c + fjL'~ X*) cos X + 2x sin x. 

12. y -= cesi*** - (1 + sin x). 13. y - cos x + c sec x. 

14. y(l + X*) c + sin x. 

15. (4 + y) tan® 4x == c + 2 tan 4x - x. 

16. y =* tan X + cv^tan X. 17. y ?=■ c cos x + sin x, 

18. y ■<= cx*+ X log tan x. 

19. X - ce*»«‘a“ » + tan'* y - 1. 

J)0. X ■= y - a* + ce"**^**. 21. x =» y® + cy, 

22. (x - 2y*)y* « c. 23. y(l + bx) => b + cx. 

.24. 3y(l +• X*) « 4x*. 25. 4xy »= x* + 3. 

Pa®e 209 

2. X =“ y(l + c|k'x); 1. xy log (c/x) - 1. 
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3, cy = (1 - ^>1/(1 - X*). 
4. y(log ex + cx) = 1. 5. = y(c + cos x). 

6. lixy = c - / x"* sin X dx. 

7. i/(l + x») = y(c + 8inh-‘ x). 

8. D»»(x + 1)» = ix« + ix» + ix^ + c. 

9. y-^ = ce*® + 1 + X®. 10.' y-* e*® » 2x + c. 

11, 3^*® = — 1 + (c + x) cot (ix + iji). 

12. x®)/"* = 3 sin X + c. 13. cx^ji® + fx®y® «= 1. 

14. 3i*‘e® = c - X®. 15. = c cos x + sin x. 

Pages 211-212 

1. xy{ax + by) ^ c. 2. x-' + 31® - 2a® tan*‘ (y/x) = c. 

3. X'^ - 3axy + y'* = c. 4. (cS' + 1) sin X = c. 

5. 2(x +)/) + sin 2-x + sin 2y - - 4 sin a sin x sin y — c. 

6. >’(x + log x) + X cos y = c. 7* X + ye^^y = c. 

8. ax- -H Ihxy + by’' -i- 2gx -t- 2fy -t- c = 0. 

Page 217 

1. ^ COS y = cx. 2. ax2>’ - cy + 2e* = 0, 

3, 4x2>’2 4- log (xjy) - l/\7 - < c. 

4. log (x^ly) - lIxy - c. 5. C7 cos xy = X. 

6. x‘3’(3 -I- y^) + X® ^ c. 7. 6x^>’ + 3xN* - x®==c* 

8. - :TX'* + iy'^ - >’ + ins} C. 

9. 3x-y^ + 6yH + 2>”^ c. 10. x^y^il + 2x3^) = c. 

11. X^y‘2 + 4x^3?® s= c. 12. _ Q 

Page 218 

1, ;;® i-x log ax --- 0. 2. y® = 3x® — 6x — x'* + ce"* + 4. 

3. xlogy = e*(x- l) + c. 4. sin >■ = (e* -r c)(l + x). 

5. ex'- + Ixtry = 1. 6. y = tan ^(x H- y) + c. 

7. y “ a tan”^ |(x -t- yj/ai + c. 

8. 4x + y + 1 = 2 tan (2x -f c). 

21 
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9. ev=c exp( - e*) + e* - 1. 

10. i/(x* + y*) = a sin {c + tan"^ (y/x)K 

Pages 218-221 

1. ;y*** + sin’ x + sin x + ^ = = ce* 8in 

2. X + 31 = ce**y. 3* y»^ = x(x + c). 

4. :y’(x + ce*) = 1. 5. cx 

6. y - X sinh (x c). 7. X - - 2y + 1 log (x» + >'*) = c. 

8. x’3f = Jrx* 'h c. 9. y = = ce'**® * + tan x ~ 1. 
10. 3^(1 + x’) * tan**^ X - 11. log (x/y) - 1/xy = c. 

12. (x + :y)® =» 3a’x + + c. 13. (x* + y»)* + 2a»fo*-x»)=c 

14. y(l + x») = ix - i sin 2x + c. 15. y = 1 + ce‘^®. 

16. x(x*y* + cos xy) =c. 17. y"i sec* X = c -- -'i tan* x. 

18. 6x*y® - llxy* + 3y* log y - y' * = c. 

19. xyi/(x* - y») = c. 
© 

20. l/y*(l - X*) = c - 1/(1 - x*) - log (1 - X*). 

21. (b - a) log Kx + y)*-ab} -= 2(x - y) + c. 

22. xy “C cos X + sin x. 23. xe“'‘‘= = arc tan y -f c. 

24. a log Kx - y - a)/(x - y + a)f = 2y + c. 
25. y(l + i/x)/(l - i/x) = X + + c. 

26. X* + y* = c(x + y). 27. iy® = - 2x»e*‘''*® + cx*. 

28. ic**' - ie** + ix* + c. 29. y» = x* + cx - 1. 

30. x*y* + 4x*y* = c. 31. xy = sin x - x cos x + c. 
32. xy + y* - 3y - X* + X + c. 

33. y*^ - ce<«-‘* «“ * + 2 sin x + 2/(n - 1). 

34. y(l + x)e“* •» xe-* + c. 35. 2 tan y - ce~*%+ x® - 1. 

36. lx® - iy» + e*/y - c. 37. tany = c(l - e»)®. 

38. x>-Cfi'-y-2. 39. x + y - 41og(2x + 3y + 7) ^c. 

40. xy/(x - 1) - lx* + c. 41. 16x®y = 4x* log x - x* + c. 
42. .. c. 

46. y -«os X - 2 cos* x. 47. x* + y* + 6x»y* ■= 4c. 
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48. Ct + 31 + D® + cxj) = 0, 49. (2x + y + l)(x + y) - c. 

50. tan x = eery. 

Pages 223-224 

1. (y ~ 3x + c)0 4- X 4- c) ~ 0. 

2. (3^ + X -*• 1 + cer^)(lxy + x^ + c)(y 4- x* + c) =* 0. 

3. (x^ - 3y 4- c)(e®*/® 4- cy)(xy 4- cy 4-1) == 0. 
4. (3^ - c)(xy 4- cy - l)(y ~ « 0. 5. ^(1 dzcosx)=*c. 

6. (3; 4-X 4- 1 - ce*)(2y + X® “ c) = 0* 

7. (y - X 4- c){xy + c) = 0. • 

8. (3/ - X + c)(x® + y® - c®) » 0. 9. (3^ - cx^Xyx® - c) » 0. 

Page 226 

1. y = 3x - a log (i - ce**^*). 

2. i log (p®/x» - p/x + 1) + (I/1/3) tan”* {Op - x)/xi/3i 
y = log (c/x), with the given relation. 

3. cos l{i/(l - c» + 2cx - X*) - y}/(c - x)] «=■ c - x. 

4. X = b log p + 2cp + A, with the given relation. 

5. X « a log {y + v^(y® - a*)} + c. 
6. xy = c + c»x. 7. y = |flt» + 2l>t + c, x - cttjji-btV 

8. (2x - l»)c = y* - oc*. 9. log y >• cx + c*. 

Page 228 

1. y = cx - ac(c - 1). 2. y =» cx + (1 + c*K*. 

3. c =■ log (cx - y). 4. (y - cx)(c - 1) - c. 

5. xc» - yc + a = 0. 6. (c + l)(y» - cx*)+ch* - 0. 

7. ys = cx + ic®. 8. y* = cx* + c®. 

Page 229 
1. y =» cx + c®. 
2. X « Gog P-P + cKP - 1)'*, with the given relatton. 

3. X - efr® - {n/(n-<- l)}p*'*, y - 2cp-® - Kn - iWn + 

4. sin”® (yfx) «= ± log cx. 
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5. f>*x » n -1 + c exp {p”^‘/(n - Dl. with the given relation. 

6. cV + 4cx =■ 4. 7. X* + y* - cx 

8. y* •. cx* - hcKac + 1). 

9. c*(x* - a*) - 2cxy + ji* + a* » 0. 

10. = c - - 2)f with the given 

relation. 11. (y - cx*Xy* + 3x* - c) = 0. 

12. {y - X sinh (c + x)}{y - x sinh (c - x)} >= 0. 

13. y - 4c(cxy + 1). 14. y - 2c\/x + /(c*)- 

15. xf) = ip® + c, with the given relation. 

16. X + 2p - 2 = ce'P, with the given relation. 

17. (y + c)* + (x - a)* = 1. 

18. y(l - + (1 - p®)®''* = c, with the given relation. 

19. Sing. sol.: (x + y)* = 4ay. Gen. sol.: 

y =« cx - ac*/(c + 1). 

20. (c - y)(l + p*) = 1, with the given relation. 

21. e* = ce* + c®, 22. (y - cx)*/(l + c®) = a®. 

23. (cx - y)* = c* - 1; X® - y® = 1. 

24. x-(2c+3p*-2p®)/2(p- l)*;y = (2cp® + 2p®-p*)/2(p-l)» 

Page 233 

1. x®y" + n®y = 0. 2. y* = x® + 2xy dyfdx, 

3. yy" + y'* = 0. 5. xyy" + xy'» =• yy'. 

6. The graph consists of the system of circles x® + y® == a®, 

where a is arbitrary. 7. x - y =. tanh x 

Page 240 

1. (y — cx)® + a®c — 0; 4xy -x a®. 

2. (3y + c)» - 2cx®; 6y = x». 3. y = c(x - c)»; 27y - 4x». 
4. y - cx » ac/i/d + c®); x®''® + y®^» =■ a®'*. 

5. y =. cx + ac/(c - 1); T/*+l/y=l/a. 

6. y - cx + i/fb* + a®c®); x®/a* + y»/l>» - I. The com- 
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plete primitive is a system of straight lines, each 
member touching the ellipse x^/a • + y*lb^ = 1. 

7. (y + c)* = x(x - l)(x-2): x-0. X <= 1, X = 2. 

8. (y - cx)* - m* + c*, y* + m»x® ■» m®. 

Pages 241-242 

1. y ■■ = ke“*. 2. l/r = be + c. 3. X® - y» - c®. 

5. y* - X® - Ixyidyidx - tan a)/(l + tan a dyidx) -f c = 0. 

6. yla «= cosh (xja -t • c). 7. l/r = k - ae®. 

9. y = = ce-*^y. 10. y® = X -t- 5. 

13. u * Cl tan*^ X + Cg; 0 when n is even, and 
(_ (n - 1)! when n is odd. 

Pages 245-246 
1. + 2y* = c®. 2. 2x» = 2:y - 1 4 

3. = 4. y* - - X® = c*. 
6. y = “ 71’* + 2xf). 7. (x»'® + = lay*. 

9. = c*e®®* 10. r = ce-»*/®. 

11. (log r)» + 0* = c’ '. 12. r"* = c(l - cos nd). 

13. rn =* c” cos n0. 14. r" cos n0 = c^. 

IS. r = 16. (x®- f.y9)t/t^ce^n-Uv^M> 

17. + 3?^ + C|/3x 4- cy - 0. 

Pages 246-248 

1. D*y + D®y(Dy)® = = 3Dy(D^y)<>. 2. y(Dy)* + 2x Dy = y. 
5. cx 6. r = cc**®. 
7. + x» = Ae**"* - - x/k - l/2k®. 8. r =» k sin (0 -h c). 
9. c ±: X - a log tan {i sin"' (yla)] + (a® - y*)i^*. 

10. X* - ■= k*. 11. y = a log sec (x/a + c) + b. 
12. 7* = 4l>(x + h). 

13. 77' = k(x» + 7*), 7* + X* = ae®** - x/k - l/2k». 
14. c®x - cxy 4* a® « 0, xy* = 4a®.j > 
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15. j- - 2cy^ ~ 4cx:y + 4x*3?® =0, y « 0 and y + 4x « 0. 
16. \2 ^ (x* + c)®, y = 0, 17. Circles with centres on 

the given line and passing through the given point. 

20. 4- 2x2 « c*. 21. x:y'(:y* + x* - 1) = y(x® + + 1); 
L\2 + y^)(x f ^ X - yy'; (x* + y®)* - 2(x®~y®)*c. 

24. 4> - 2x + sin 2x ~ c. 25. r = 2b/(l ~ cos 0). 

Pages 252-253 
1. -r fee** ~ i sin x; ae^ + fee*^; - i sin x. 
2. y = CiC*-* + C2e~2a*. 3^ y ~ .j. coe^*. 

4. y = cie*^ + Cye*^^. 5. y * Cie* + + Cse®*. 

6. y-Cie* + C2e®* + Cye"**. 7. y « Cie* + C2e*® + 
8. X - 0. 

Page 259 

1* == (ci + C8x)e*. 2. y « (ci + Cgxle®*. 

3. y Cie*^** cos ((?x + C2). 
4. y == cje®* + C2 cos 2x + C;? sin 2x. 

5. y « Cie®* + e'^''*(c2 cos i\/3x + C3 8iniT/3x). 

6. y == c sin (x + a) + (ci 4- C2x)e*. 

7. y = (ax + fe) sin 2x + (cx + d) cos 2x.» 

8. y = cos (mxl\/z. +• C2) 
+ cos (mx/i/2 + Ci% 

9. y Cl exp Qtx) f cj exp ( - mx); y • c cos (mx + a). 
10. y ^ ly'l cos (x + J^). 

Page 266 

1. y ^ ce*^^® cos (4x^/3 + a) + 

2. y = CiC*^* cos {qx + C2) + e®*/{(fe + a)* + 

3. y * de^* 4- C2e*® 4- Ae®^. 
4. y - cic-i®* + C2e-i«* + 

5. y « (ci + C2x)e*^* % c*/(k - 1)®- 

6. y « Ci(e^ - e®*) 4- Je*(l - e*). 
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Pages 270-271 

1. 5 =“ Cl sin (x + Ca) — cos 2x. 

2. y = cos (i i/3x -f- ca) - cos 2x - sin lx. 

3. y <= e** (ci cosh xi/7 Co sinh xi/7) -t- fx} cos 5.\- 

4. y = e* (ci cos 2x + Ca sin 2x) + -^V cos 3x ■ - 7^ sin 3x. 

5. y == Cifi* + Cae®* - jhsO cos 3x + 9 sin 3x). 
6. «= e»*(ci coshi/3x + Ca sinhi/3x) 

-f- Aa(8 cos 2x -- 3 sin 2x). 

7. X = - ae"***®®* < {sin (n£ sin a)}/(n® sin 2«) 

+ a sin nt/(2n® cos u). 
8. y = a sin (3x -t- b) -1- Kcos 2x + sin 2x). 

9. y = Cj cos 2x + Ca sin 2x - j-x cos 2x + |e*. 

10. y = CtC®* -I- Cac"®* - Je* - sin 2x. 

Page 273 

1. jf = Cl + CaC** cos (x + C;t) + Sx. 

2. y = CtC** -H Cac** -f ^x -f 3%. 

3. - (ci H- C8x)e* -1- Cjje"* x + 1. 

4. y - Cie"* cos (x -I- Ca) -f- Mx - 1). 
5. y = CiC®* CaC*®* - ix* - i. 
6. y = (ci + cax)e»*-i-i(x* 4- 2x + |). 

7. y = Cl CaC"® 4- CaC'** 4- i^xCTx* — 9x 4- 21). 
8. y = cie** 4- (ca 4- C8x)e”* - J(2x* - 6x 4- 9). 
9. y = cic'** 4- Ca cos (2x 4- Ca) 4- ^2x - 1). 

10. y = Cie* 4- Cae-»* - -^cos x 4- 3 sin x) - K2x -f 1). 

11. y •= Cl cos (2x 4- Ca) - K* sin 2x - 1). 
12. y = Cl 4- (ca 4- Caxle** 4- I’s-e®® 4- ix(2x* - 9x 4- 24). 

Pages 276-277. 

1. y •» Cie* + Cac®* - ixe*(x 4- 2). 
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2. y - e**(cie'^*' + CaC*''®*) - sin 2x. 

3. y = e*(ct cos i/3x + Ca sin i/3x) + ie* cos x. 

4. 3( = Cie* + Cae^ + c» cos x + C4 sin x - Je* cos x. 

5. y - (ci + C2x)e“ + i‘e*®(2x* - 4x + 3). 

6. j = (cj + c*x)e® + ix»e*. 7. y = e®^(2 - x) + e** 

8. y « Cie*+CaC* + i(2 sinh x sin x - cosh x cos x). 

9. y = e*(ci H- x) + e*(c2 cos x+Cs sin x)+tV( 3 sin x + cos x). 

10. y = e'®®''®(ct + CaX + 18x»). 
11. y = e*®*(ci + Cox - ^x®) + 

12. y = e*(ct + CaX + CgX® + i^fX* + Jx®). 

13. y = cjc** + Cae*®* + Cge®* - y\e®*(x + -fi). 

14. ^ y = Cie-*^» cos (iv'3x + Cg) + Cae*'* cos (iv'3x + cJ 

+ — 2a - xijber*(9 sin 2x + 20 cos 2x). 
15. y ^ e®*(ci +tVx® - »®yx) + Cae"®®. 

Page 280 

(ci + C2x)e* + ^(x cos X + cos x - sin x). 

Cl + CaC"® + ixCsin x - cos x) + cos x + i sin x. 

Cl sin (x + Ca) — §x cos 2x + (26 - 9x®) sin 2x. 
- 8x cos X + 8 sin x - x® cos x + ix® sin x. 

CiC® + Cac*® — iix sin x + cos x) 

+ TVe®(2x® - 3x + 9). 

Pages 280-282 

Cif®® + Cae"**®. 2. y = {ci + Cax)e“®. 

(a + bx)e-®''® cos (|xi/3) + (c + dx)e-'='^ sin (ixv/3). 
a sin (3x + b) + c cos (2x + d), 

CiC*® + cac”*® + 

Cie'®* + Cae"®*'" + yVe** 

cie-®®^® + c»®(c2 + x). 

(ci + C3X + ix®)e**^». 

1. y - 

2. y = 

3. y = 

4. y = 
5. y - 

1. y = 
3. y = 
4. >; — 

5. y 

6. y « 

7. 
8. 
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9. 
10. 
11. 
12. 

13. 
14. 

15. 
16. 

17. 

f. 

20. 

y «. cie* + Cae^ 4-^ ix sinh x. 
y ■> Cte* + cac** + tin t + 3 cos t. 
y = ci«r* + CfC** +jA(co8 2x - 3 sin 2x). 
y » (ci + cax)<r** + A{(k* - p*) cos px + 2lef» sin 

4-(k* + 
> » Cl cos ax -f (ca 4- x/2a) sin ox. 
y - (ct cos 3x 4- Ca sin 3x) 4- 6 cos 3x - sia 3x. 

y = 1. 
y = Ci<* 4- cac‘** 4- Tt*(12x 4- 13). 
y •» CiC^V't*/* cos (|x 4- C*) 4- cos (fx 4- Cl) 

4- X» 4- 

y = ciC* cos (v'2x + Ca) 
4- i(cos X - sin x) + ^(9x* 4- 12x 4- 2); 

y = (ci 4- cax + ^)e* + (cj 4- c«x) sin x 
4- (cj 4- c»x) cos X - ^x* sin X 4- 

y “ (ci 4- ix)e* 4- Ca«^ 4- cos (i v^Tx 4- Ci) 
- HZx* - 2x 4- 3). 

y - Cl 4- (ca 4- 3x)e* 4- c»e”* 4- Ci sin (x 4- c*) 4- x* 
4- 2xsla X. 

21. y = ({co8(xv'3/2))(ix 4- cJ 4- {sin ixi/m) 
(ca 4--Av'3x)1 4* e'^'tcs co8(xv'3f2) 4- Ci $in*(xv^3/2)l. 

22. y *. tr*ici 4- cax 4- c»x* 4- ix*). 

23. y = e*(fii- ix) 4- Ca«** + 

24. y » a sin (x 4- b) 4- 4> ix sin x 4' x* - 6x 
-4e*(2 cos X - sin x). 

25. y •>>cir*4-cae* 4-c» cosx ' 
4- Cl sin X 4- K** cos X - 3x sin x). 

26. y->(ci 4-cax)e*'-c^2cosx4'X8inx). 
27. y - (ci 4- Cax 4" 3 sin 2x - 2x* sin 2x - 4x cos 2x)eK 

2®. y-'t^6«x* 4-2iwc* 4-^ 4-I2dl). 30. y-<?-l. 

• .22 
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Pages 287'288 

1- y - (ci + ca log x)/x*. 
2. 5 cj + Cf log X + ia(Iog x)*, 
3. y^ci/x + )c(ca+ C8 log*)+}x"‘logx. 
4. y-m cix» + Cax* + ix. 5. y .= n + Ca/x + x». 
6. j «. cjx* + CaX“* + ix* log X. 7. 31 - CjX + 

Ca cos ti/3 log x) + ca sin (>^3 log x) + ^x* + ix log x. 
8. y Cix + Ca/x +. ix*. 9. y = cix + cjX* + l/6x. 

10. y “ Cl + Ca/x + i Oog x)* - log x, 
11. y - (ci cos log X* + Ca sin log x*)/x'' + log x - tH* 
12. y-Ci/x+ i/x{cacos(ii/'Slogx) + Ca sin(i 1/^3log 
• , . + ix + log X. 
13. y •• x(ci cos log X 4- Ca sin log x) + x log x. 
14. y «»Ci/x +Cgx* - ix* logx ~ |x», 

Pages 289-290 

1. X«» c^Kci cos t + Ca sin t). 
y •• e^*{(ci + Ca) cos t - (ci - Ca) sin tj. 

2. X - 3 cos t + Cie^'** + Cae'v's*. 
y -»2 sin t + ci( 1 + i/2)c*'*‘ - ca(y'Z - l)er^**. 

3. • x-oisinit+aacosfct + Os. y^’ii sinkt + iacoskt-f-bs. 
z ■= Cl sin kt + Ca cos kt + ca, where k* •= 1* + m* + n*; 
arnl the arbitrary constants are connected by the 
following relations: 

(tnci — nbi)/<Xa ■* (ndi — lci)/l>a <=» (Ibi — mai)/ci «* k, 
Ifli + mii + nci - 0, a*/!-= ba/m «»c»/n. 

4. X » CiC** + CaC"* cos (ca + 
• y-cie**-ct«**co8{c8 -i»+ i/3|t), 

z -> cie“ - Cftr* fcos (ca + i« + 1^31). 
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