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PREFACE TO THE SECOND EDITION 

The major change in this new edition, will be found in Chap, 
XVH on the slide rule, which adds several new rule operations 
made possible by the development of new and improved rules 
recently put on the market. Numerous changes of a minor 
nature have also been made throughout the text. 

The author wishes to take this opportunity to thank many 
users of the book for their letters of appreciation and suggestions 
for the betterment of the book and particularly Professors Lyman 
M. Kells, Willis F. Kern, and James R. Bland, all of the United 
States Naval Academy, for helpful suggestions in the treatment 
of the slide rule. 

Raymond W. Dull. 
Chicago, III., 

January, 1941. 





PREFACE TO THE FIRST EDITION 

This treatise on mathematics has been prepared primarily 
for engineers. In this we would include (1) engineers who want 
a quick and convenient reference, (2) engineers who have grown 
somewhat rusty in their mathematics, and (3) engineers who feel 
the need of a text for the study of mathematics. 

The two sources to which the engineer turns for mathe¬ 
matical aid are the engineer's handbook and the mathematical 
textbook. The former is too concise and incomplete because of 
the limited space available for this one subject. The latter 
is written to give mental training to students as well as mathe¬ 
matical knowledge. Intermediate steps are purposely omitted, 
knowledge of previous chapters is assumed, the time element 
of finding a solution is disregarded, and even important principles 
are left to the student to develop. 

The author has, therefore, found it desirable in the course of 
his engineering practice to prepare his own notes on mathematics 
in order that he might have certain material available for quick 
reference. It was not his original intention to publish these 
notes but other engineers who examined them suggested that 
they should be made available in book form. Accordingly, the 
author undertook a thorough revision of his notes and made 
numerous additions which have resulted in the present work. 

Considerable space is given to the treatment of absolute 
and relative errors, a subject not generally included in text¬ 
books. Graphical solutions parallel the analytical solutions 
wherever possible, and illustrative problems are given for all 

important cases. 
The slide rule is the engineer's assistant, and the fundamentals 

are discussed as if a rule were to be made. Instead of listing 
settings to,be memorized, a set of simple rules is given to cover 
practically all cases. The start is made with the scale of equal 

parts, and the other scales are taken from it. This method is 
the opposite procedure from that given in textbooks, 

vii 



PREFACE TO THE FIRST EDITION viii 

Since this is a review, the viewpoint is taken that the different 

mathematical subjects are interlocked and should not be sepa¬ 

rated as in textbooks. As an illustration, the principles of the 
analytical geometry are applied in the algebraic sections, which 

makes the algebra .clearer and the geometry more practical. 

An appeal is made for the use of the proporlional divid(ir, which 
the engineer uses to some extent, but which the textbook writer 

neglects altogether. The time element is fully discussed in 

the trigonometric section, because each year develops new phases 

of the periodic laws with which the engineer should be more 

familiar. 

It is sincerely hoped that the calculus section will be helpful 

to many, and graphical methods are given considerable space 

to that end. The principle of the function of a function is 

applied much more fully than in textbooks, and the principle 

of the limit of the rate of change for the differential calculus and 

the setting up of the integral as the product of two variables, 

which can be represented by an area, should never be forgotten. 

The author is indebted to Mr. Irving Metcalf for his assist¬ 

ance in the preparation of the manuscript, and to Professor 

Walter B. Carver of Cornell University, for kindly reading and 

making many helpful suggestions throughout the manuscript. 

Chicago, III., 
June, 1926. 

Raymond W. Dull. 
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MATHEMATICS FOR 
ENGINEERS 

CHAPTER I 

NUMERICAL COMPUTATIONS WITH ALGEBRAIC 
FORMULA AIDS 

1. Column Addition.—In adding a 
column, as the unit column in the 
example, do not require your brain 
to say mentally, 2 plus 9 is 11, plus 
7 is 18, etc., but mentally state the 
answer only of each addition, as 

2 - 11 - 18 - 23 - 28 - 32. 

Preferably place the sum of each 
column as shown rather than carry 
from one column to another, as errors 
are more easily corrected. In check¬ 
ing, start from the left column. 

Place your answers on a separate 
piece of paper and transfer them to 
their proper places after checking. 

8 7 4 2 
5 2 7 9 
8 2 6 7 
3 4 2 5 
8 7 6 5 
9 8 7 4 Check 

Ti 4 1 
3 2 3 0 

3 0 3 2 
4 1 3 2 

4 4,3 5 2 4 4,3 5 2 

5 2 8 0 
9 7 6 0.5 0 

3 4 9 
4 0 0 6.7 5 
6 5 2 2.8 9 

2. Banker’s Method of Adding.—In add- 1 3 2.1 2 
ing the colunm, the number is added in to ^ 
each partial sum. This method does not 2 2 

require a second addition. 2 j 

2 6 
2 0 

2 6 

1 

2 6,0 5 1.2 6 
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3. Period Addition.—Add 
the numbers until their sum 
is just less than 20. Then 
make a period for 10 and add 
the excess over 10 to the next 
number, continuing as be¬ 

fore. 

(17) = 10 -f- 7 make . carry 7 

(14) = 10-1-4 make . carry 4 

(19) = 10 -f 9 make . carry 9 

(17) = 10 -f 7 make . carry 7 

(17) = 10 4- 7 make . carry 7 
(14) = last sum 
50 = 5 dots or 5 X 10 

64 = Ans. 

8 
3 
4 
2. 
6 
1. 
7 
8. 
5 
3. 
6 
4. 
7 

4. Mental Double-column Simultaneous Addition. 
Start with the first number (25) and alternately add, 2 5 
mentally, the units (as 6) and the tens (as 40) of each 4 6 
following number, rather than add both simultaneously; 8 1 

thus, 9 2 
25 -f- 6, 31 -1- 40, 71 + 1, 72, etc. 6 6 

Mentally state the answers only. 3 10 

25 - 31 - 71 - 72 - 152 - 154 - 244 - 250 - 310. 

6. Mental three-column simultaneous addition is 
done similarly to two-column addition (Art. 4) by follow- 2 3 7 
ing the tens’ place addition by the hundreds’ place 7 6 4 
figures. Thus, adding in the example: 5 4 1 

237 - 241 - 301 - 1001 - 1002 - 1042 - 1542. 

6. Subtraction by Addition.—Known as the Austrian or 
“making-change method.” Put down as answer the number 
which must be added to the subtrahend to equal the correspond¬ 
ing number in the minuend, as in the example: 

6 -f 7 is 13 carry 1 1 7 9 5 3 

3-1-2 is 5 8726 

7 -f 2 is 9 *9 2 2 7 
8 -f 9 is 17 

The numbers in heavy-faced type are the only ones put down. 
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7. Subtraction by Complements. 
From 27 take 8. 

The complement of 8 is 2. 

If both numbers are increased by this number, the subtraction 
is easier. 

27 + 2 = 29 
8 + 2 = 10 

19 
From 173 take 94. 

173 - 94 = (173 + 6) - (94 + 6) = 179 - 100 = 79. 
8. Combined Addition and Subtraction. 7 4 8 3 

If a column of numbers consists of some 4 8 2 9 
numbers to be added, and others to be sub- — 3 1 8 2 
tracted, one method is to find the sum of the — 6 3 3 4 
positive numbers, and then the sum of the 8 3 7 1 
negative numbers. Then find their difference. — 1 2 1 7 

The other method is to add and subtract, -f- 2 0 6 8 3 
as you proceed down each column. _ i n 7 3 3 

9. Rapid Multiplication.—To learn the mul¬ 
tiplication table through the teens is helpful. 

MULTIPLICATION TABLES EXTENDED 

13 X 1 = 13 14 X 1 = 14 16 X 1 = 15 16X 1 = 16 

2 = 26 2 = 28 2 30 2 = 32 

3 = 39 3 = 42 3 = 45 3 = 48 

4 = 52 4 56 4 = 60 4 = 64 

5 == 65 5 = 70 5 = 75 5 80 

6 = 78 6 = 84 6 = 90 6 = 96 

7 = 91 7 = 98 7 = 105 7 r= 112 

8 = 104 8 == 112 8 = 120 8 = 128 

9 =s 117 9 = 126 9 = 135 9 144 

10 SE 130 10 = 140 10 =5 150 10 = 160 

11 = 143 11 = 154 . 11 = 165 11 176 

12 ss 166 12 = 168 12 180 12 = 192 

13 169 13 = 182 13 = 195 13 s=s 208 

14 ss 196 14 = 210 14 SK 224 
15 225 15 = 240 

16 256 
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MULTIPLICATION TABLES EXTENDED.—(Conttnued) 

17 X 1 17 18 X 1 18 19 X 1 = 19 
2 = 34 2 = 36 2 = 38 
3 51 3 = 54 3 = 57 
4 = 68 4 72 4 = 76 
5 = 85 5 = 90 5 = 95 
6 102 6 = 108 6 = 114 
7 =r 119 7 = 126 7 = 133 
8 = 136 8 = 144 8 = 152 
9 = 153 9 = 162 9 = 171 

10 = 170 10 == 180 10 = 190 
11 =3 187 11 = 198 11 = 209 
12 204 12 = 216 12 = 228 
13 = 221 13 = 234 13 = 247 
14 = 238 14 = 252 14 = 266 
15 = 255 15 = 270 15 = 285 
16 = 272 16 = 288 16 = 304 
17 = 289 17 306 17 = 323 

18 = 324 18 = 342 
19 = 361 

10. How to Make Change. 
First. Name the cost of goods. 
Second. Add enough to make even money. 
Third. Add the large coins. 

Example.—The cost of the article is 33 cents. The customer gives 
50 cents. 

First. Think of 33. 
Second. Add 2 making 35. 
Third. Add 5 making 40. 
Fourth. Add 10 making 50. 

11. Other Short Cuts. 
To multiply by .02^, point off one place and divide by 4. 
To multiply by .03|, point off one place and divide by 3. 
To multiply by .06, point off one place and divide by 2. 
To multiply by .07|, point off one place and deduct ^ of that 

result. 
To mult4»ly by .11^, point off one place and add i of that result. 
To multiply by .131, point off one place and add i of that 

result. 
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To multiply by .13f, point off one place and add i of result, 
plus i of i, or J of that result. 

To multiply by .18. 

.18 = .20 — .02 = i — iV of i. Hence, divide by 5 and 
then subtract of that result. 

To multiply by .23|. 

.23i = .20 + .03^ = i + h of result. Therefore, divide 
by 5 and add J of that result. 

To multiply by .24. 

.24 == .25 — .01 = J — .01. Therefore, divide by 4 and 
subtract .01 of number. 

To multiply by .27|. 

.27^ = .25 + .025 = i + iV of ?. Therefore, divide by 4 
and add to that result. 

To multiply by .46. 

.45 = .50 — .05 = ^ — 1*5 of Divide by 2 and subtract 
of that result. 

To multiply any number by 26, add two ciphers and divide 
by 4. 

To multiply any number by 76, add two ciphers, divide by 4, 
and then multiply result by 3. 

To multiply any number by 126, add three ciphers and divide 

by 8. 
To multiply any number by 260, add three ciphers and divide 

by 4. 
Conversely: 

To divide any number by 26, point off two places and multiply 

by 4. 
To divide any number by 76, point off two places, multiply 

by 4, and then divide result by 3. 
To divide any number by 126, point off three places and 

multiply by 8. 
To divide any number by 260, point off three places and 

multiply by 4. 
12. Aritiunetical processes can often be simplified by using 

algebraic relations of the numbers, rather than by a long rule. 
Rules are hard to remember and the process is not always clear. 

The application of a few algebraic equations will be shown in 

the following articles. 
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13. To Square Numbers Ending In 6.—Consider a number 
consisting of units and tens only, or a number of the second order. 

Let a — the number in tens’ column. 
5 ■» the number in units’ column. 

Then (lOo + 5) = the number. 
(10a + 5)* = 100a* + 100a + 25. 

= 100a(o + 1) + 25. 

Therefore, if we multiply the figure in the tens’ place by itself 
increased by 1 and then place 25 following this product, a number 
will be obtained which is the square of the original number. 

Example.—Square 35 mentally. 

100 X 3 X 4 = 1200 

Adding 25 25 

1225 

In actual practice do not multiply by 100, but let the 25 occupy 
the two cipher places and simply put down 1225 in your mind. 

The advantage of knowing the multiplication table through 
the teens will be evident in the following example: 

Example.—Square 145 mentally. 

14 X (14 + 1) = 14 X 15 = 210 

Adding 25 25 

21025 

In this case we have assumed that there are 14 units in the tens’ 
column 

14. To square any niunber ending in f, say (n + ^), simply 
multiply the integer n by the next higher integer and add 

Thus, (7§)* = (7 X 8) + i = 56i 
(lOi)* = llOi (see Art. 13). 

16. To square a number near 60, find its excess over 50, add 
this to 25 to get the hundreds; and then add the square of the 
excess, as 

(56)» = (25 + 6) + 6* = 3136. 
(63)- = (25 + 3) + 3* * 2809. 

For 

(50 + o)* = 2500 + 100a + a* = (25 + o) X 100 + o». 
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If the number is less than 60, find the difference between it 
and 50. Subtract this difference from 25 to determine the 
hundreds, and add the square of this difference to the result. 

Thus, (47)* = (25 - 3) + 3* = 2209. 
(41)* = (25 - 9) + 9* = 1681. 

16. To Find the Product of Two Numbers, if Both End in 5, 
and the Tens’ Figures are Both Even or Both Odd. 

Let a = the figure in tens’ column in first number. 
b = the figure in tens’ column in second number. 

Then (10a + 5) = the first number. 
(106 + 5) = the second number. 

(10a + 5) (106 + 5) = 100a6 + 506 + 50a + 25. 

That is, 
100a6 •= a X 6 X 100. 

50a + 506 X 100. 

Therefore, the product equals a half of the sum of the tens' 
figures added to their product with 25 appended in place of two 
ciphers. Note, however, that a and b must be both even or 
both odd, or their sum is not exactly divisible by 2, and this rule 

will not apply unless this is the case. 

Example.—Find mentally the product of 65 X 45. 

6 + 4 . 
5 

6 X 4 = 24 

Sum 29 
Appending 25 

2925 = Ans, 

Example.—Find mentally the product of 175 X 195. 

17 X 19 = 323 

Sum 341 
Appending 25 

34125 = Am, 
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In the next article we will consider the case where one tens’ 
figure is even and the other odd. 

17. To Find the Product of Two Numbers, if Both End in 6, 
and the Tens* Figme Is Even in One and Odd in the Other. 

Letting a = even number in tens’ column, of first number, and 
h = odd number in tens’ column, of second number, 

we have from Art. 16 

(10a + 6) (106 + 5) = 100a6 + 50o + 506 + 25 

in which a is, from the conditions, even, and 6 odd. If we 
reduce 6 by 1 in order to make it even, we may proceed as in 
Art. 16 provided we add 50 to the result, since 50 is the coeffi¬ 
cient of 6. 
Then 

100o6 = a X 6 X 100 

50(6 - 1) + 50a = X 100 

Adding 25 25 
And 50 more 50 

Am, 
Therefore, add the product of the tens^ figures to half the sum 
of the even tens^ figures and the odd tens’ figure reduced by 1. 
To this result append 75. 

What amounts to the same thing is to add the tens’ figures, 

divide by 2, and disregard the remainder. 

Example.—Multiply mentally 45 X 55. 
4 X 5 = 20. 

4 + (5 - 1) ^ 8 ^ 
2 2 

Sum 24 
Appending 75 

Example.—Multiply mentally 165 X 135. 
16 X 13 * 208. 

Ii±i2= 14 
2 

Sum 222 
Appending 75 

22,275 
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ALGEBRAIC FORMS APPLICABLE TO MULTIPLICATION 

18. Form a(b — c).—Expanded, this is equivalent to ah — 
ac. 

Examplh.—Multiply 945 X 998. 

945 X 998 = 945 X (1000 - 2). 
= 945,000 - (945 X 2). 
= 945,000 - 1890 = 943,110. 

19. Form a(cb + c) = acb + ac. 

Example.—Multiply 384 X 246. 
246 = (6 X 40) + 6. 

Therefore, 384 X 246 = 384[(6 X 40) + 6] 
384 X 6 = 2304 and 2304 X 40 = 92,160. 
92,160 4- 2304 = 94,464. Ans. 

A more convenient form is to multiply first by 6 and then 
multiply that product by 40, as 

384 

246 

2304 
40 X 2304 = 9216 

94,464 

20. Form ab = ba.—Thus, 89 per cent of $25 is the same as 
25 per cent of $89, which is the same as one-fourth of $89. 

21. Form (a -f b)(a — b) = a* — b*. 

Example.—Calculate mentally 52 X 48. 
Comparing with formula, 

(50 + 2)(50 - 2) = 50* - 2* = 2500 - 4 = 2496. 

Note that we square the arithmetic mean for o* and the 

common difference for 6*. 

Example.—Multiply 75 X 65. 
(70 + 5) (70 - 5) = 4900 - 25 = 4875. 

Example. 
97 X 103 = (100 -1- 3)(100 - 3) = 9991. 

Example. 
31 X 29 = (30 -H 1)(30 - 1) = 900 - 1 = 899. 

The reverse order can also be used when the difference between 
two squares is given, and we wish to know the numbers. 
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Exampus.—Find 81* — 62*. 
Here, a = 81, and h = 62. 

(o - 6)(o + 6) = 19 X 143 = 2717. 

This formula is convenient if the hypothenuse and one side of 
a right triangle are given and it is desired to find the other side. 
Thus, letting 

a = the length of the hypothenuse, 
h == the length of the known side, and 
X = the length of the unknown side, 

it is evident that, 

X — v^a* — &* = •\/(a + 6)(o — h). 

Example.—A triangle (right) has a hypothenuse whose length is 6 
and another side whose length is 3. Find the length of the remaining 
side. 

X = Vs* - 3* = \/(5 + 3)(5 - 3) = \/8~>r2 = 4. 

22. Forms (a +b)* = a* + 2ab + b*. 
(a - b)* = a* - 2ab + b*. 

Example.—Square 54 mentally. 
64* = (50 + 4)* = 50* + (2 X 50 X 4) + 4*. 

= 2500 + 400 + 16 = 2916. 

Example.—Square 49 mentally. 
49* = (60 - 1)* = 50* - (2 X 50 X 1) + 1*. 

= 2500 - 100 + 1 = 2401. 

23. Form (a + b)(a + c) = a* + (b + c)a + be. 

Example.—Multiply 121 X 126 mentally. 
(120 + 1) (120 + 6) = 14,400 + (7 X 120) + 6 = 14,400 + 840 + 6 - 15,246. 

If problems like this cannot be solved mentally, a saving of 

time will be made by using this method. 

Example.—Multiply 76 X 81. 
(80 + 1)(80 - 4) = 6400 - 240 - 4 = 6166. 

Or, in this manner, (70 + 6)(70 + 11) = 4900 + 1190 + 66 = 6156. 

Note that in this case the tens’ figures must be the same in 
both numbers. The product of the two numbers, if the tens 
are alike, is the sum of the square of the tens, the product of the 
tens by the sum of the units, and the product of the units. 

84. Form (a + b)(c -I- b) =* ac + (a + c)b + b*.—Note that 

the units’ figures are alike. 
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Example.—Multiply 42 X 72 mentally. 
ac = 40 X 70 = 2800 
(o + c)h = (40 + 70) X 2 = 220 

=2X2 =4 

i024 

The product of two numbers, if the units’ figures are alike, 
is the sum of the square of the units, the product of the units 
by the sum of the tens, and the product of the tens. Compare 
this rule to Art. 23 and note the difference. 

25. Form (a + b)(c + d) = ac + be + ad + bd.—The product 
of two numbers is the sum of the product of the units, the 
product of the tens, and the cross-products of the units by the 
tens. 

Put down the product of the units (12) and, just beyond, 8 3 
the product of the tens (72); 27 and 32 are the cross- 9 4 

products of the units by the tens and should be placed in 7212 
tens’ and hundreds’ columns. Note that it is unnecessary 27 
to carry any figures. 32 

Bear in mind that two places must be reserved for the 
product of the units, and in case their product is less than 
10, a cipher should be added to fill the second place, as 

8 4 
6 2 

4808 
24 
16 

5208 

Use the multiplication tables of the teens thus; 

1 4 3 
18 6 

25218 3 X 6 = 18 14 X 18 = 252 
84 6 X 14 = 84 
54 3 X 18 = 54 

26,598 

In case you do not know these multiplication tableS) this same 

form can be used to advantage. 
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1 4 1 5 1 6 1 8 1 9 

1 2 1 5 1 7 1 9 1 9 

108 125 142 m Isi 
6 10 13 17 18 

Ws W2 342 361 

This operation can be resolved into a very simple rule: Add 
100 to the product of the imits, and then add the sum of the units 

moved one place to the left. 
26* To Multiply by 21^ 31, 41, Etc., or by 401, 601, Etc. 

Multiply 287 by 41. 
= 1148. Add 287 to this, just as it stands, without mul¬ 

tiplying by 1. After a little practice, the 
minuend can be added while the multiplication 
by the tens progresses. The 7 would be 
written first and the 8 would be added to the 
product of 4 X 7, etc. 

Example 

4 6 8 
6 0 1 

275,258 

27. The Supplement and Complement Method of Multiplica¬ 
tion. 

Example.—Multiply 107 X 104. 
The supplements are 7 and 4, respectively. 
FirsL Take the product of the supplements 7 X 4 — 28 for the 

last two figures of the result. 
Second. Add either supplement to the other number and write the 

sum as the other part of the answer. 
107 + 4 = 111. 

Therefore, 11,128 = Ana, 

Example.—Multiply 97 X 96. 
The complements are 3 and 4. 
FiraU Take the product of the complements for the last figures of 

the answer, 3 X 4 » 12. 
Second. Deduct either complement from the other number to get 

thO remaining part of the answer, 96 — 3 » 93. Therefore, the 
answer is 9312. 

.—Multiply 458 X 601. 
Put down 58 at once. 
Multiply through by 6, adding in the 4 as you 
go. 

Example.— 

287 X 4 = 
2 8 7 

4 1 

1148 

I 11,767 



NUMERICAL COMPUTATIONS 13 

28* Aliquot Parts.—An aliquot part of a number is a number 
that is contained in the larger number an integral number oi 
times. 

Thus, 25 = i of 100, 10 = i of .50. 
A convenient use of aliquot parts in computing is as follows: 

16 hours^ labor at 25 cents. 
25 cents is J of $1. 16 X i = $4. 
60 hours’ wages at 75 cents. 
75 cents is f of $1. 60 X f = $45. 

If very much work is done similar to that shown above, it is 

convenient to know the aliquot parts as shown in the following 
table: 

48 hours at 18| cents is of 48 or $9. 
Payrolls, trade discounts, etc., can be worked this way. Engi¬ 
neers also should know without hesitation the relations of the 
sixteenths and eighths because of measurements taken in these 
units. The table of twelfths is also very convenient and is given 
below. 

A Ci A ■ 8} 

i m } 16} 

A i8i } 25 

i 25 } 33} 

A 31 i 41} 

i 50 

A 43} A 58i 

i 50 1 66} 

A 56J } 75 

f 62} 1 83} 

tt 68} {I 91} 

i 75 

H 81} 

i 87} 

a 93} 

50 cents — 8^ cents = J — iV = ~ cents. 
$1 — 41f cents = 1 — A = = 58^ cents. 
16f cents + 58^ cents - J+ ^==| = 75 cents. 
60 yards of tile at 91f cents = of $60 = $55. 
$120 at 16| per cent discount = 120 —i of 120 = 120 — 20 = 

$100. 
Interest on $240 at Si per cent for 1 year, of $240 = $20. 
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29* Locating the Decimal Point.—The decimal point should 
be located by inspection. If the old method is used, consider¬ 
able difficulty will result, if short-cut methods are adopted, or 
the slide rule used. 

Example.—Multiply 4652 X 3.1416. 
Note that the answer will be a little over three times the multiplicand, 

and in this case will contain five figures to the left of the decimal point. 
If the multiplier is 3141.6, think of it as 3 with the point moved three 

places to the right; 3 X 4652 would have five figures plus three ciphers, 
giving eight places to the left of the decimal point. 

If the multiplier is 0.0000031416, think of it as 3 with the decimal 
point moved six places to the left; 3 X 4652 would have five figures, 
but shifting the point back six places gives one cipher before the first 
significant figure. 

30. Position of Decimal Point in Division.—In fractional 
division, shift the decimal point (mentally) in the denominator 
to the location directly following the first significant figure. 
Then move the decimal point in the numerator or the dividend 
the same number of places and in the same direction as it has 
been moved in the denominator or divisor. Locate the decimal 

point by inspection. 

Examples. 

2.717 
31416 

.0002717 
3.1416 

= about .00009 

.0000865 = Ans. 
3L4^ 

0.002717 2.718 
about 10,000 

11,558 == Ans, 

31. If an expression involves multipl3ring and dividing several 
numbers, the decimal point is hard to locate, without a special 
device for that purpose. It is advisable to examine the problem 
to determine the decimal point before proceeding with the 
indicated operations, for approximations can often be made of 
the numbers, and the work simplified. 

In order to determine the decimal point, as well as the approxi¬ 
mate value, break up each number into two factors; one factor, 
the first left-hand figure, set &s a whole number occupying units^ 
place, and a second factor of 10, raised to a power which makes 

the product of the two factors equal to the number. 
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Thus, 4000 = 4.000 X 10 X 10 X 10 = 4 X 10*. Or again, 
523 = 5.23 X 10*. 

The exponent of 10 is equal to the number of decimal places 
through which the point has been shifted. If- the point is shifted 
three places to the left, as in the example, and the 4 made the 
only whole number, the exponent is positive, and if shifted two 

places to the right (.04 = 4 X 10~*), the exponent is negative, 
or minus 2. 

In the same manner, if a 10 with an exponent is in the denom¬ 
inator, it can be shifted to the numerator by changing the sign 
of the exponent. 

10 = 1 X IQi 

200 = 2 X lO’ 

3000 = 3 X 10* 

. 1 = 1 X 10-1 

.01 = 1 X 10-* 
.001 = 1 X 10-* 

10 
1_ 

100 
1 
.1 

J_ 

.02 

1 X vt: 

1 X 

1 X 

s X 

10 
]_ 

10* 

1 
10-1 
_1 
10-* 

= 1 X 10-1 

= 1 X 10-* 

= 1 X 101 

= ^ X 10* 

32. Applying the devices of Art. 31 to the following example: 

Example. 

22684 X .0713 _ (2 X 10^) (7 X lO'*) 
.00189 X 83 X 6 (2 X 10-37(8 X 10) (6) ‘ 

Separating the 10 factors from the others, which, of course, we would 
do in practice, without the above explanatory intermediate step, we 
have 

X 10^”2+3-i^ qj. canceling the 2s. 
2 X o X D 

1 X 10* = ^ X 10* = 1.459 X 10’ = 1459. 

This locates the decimal point. We now know very nearly 
what the answer should be and can readily arrange our approxi¬ 
mations of each number, in case we wish a more accurate result. 

Example. 

4.89 X 986 _ 5X1 y. iq3—2+2—2 

373 X .07 X 472 “4X7X5 2.8 
0.36. 
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33. Division.—We were taught in our childhood days to 
6issume a trial quotient by inspecting the first left-side figure of 
the divisor and the left side of the dividend to find the number of 
times the former is contained in the latter. The multiplication 
is often completed only to find that the quotient assumed was 

too large. 
If the precaution is taken to see what remainder is carried, 

when the trial quotient is multiplied by the second figure of the 
divisor and added to the product of the quotient by the first 
divisor figure, the amount gives a better comparison to the 
figures of the dividend. 

Compare the old method to the new, as 

24561113,344|5 

By the old method we are likely to try 5, as 2 seems to go into 
11, but if we multiply 4 (second number of divisor) by 5, we 
have 2 to carry, which added to 5 X 2 equals 12. This shows 
at once that 5 is too large and we take 4 instead. 

34. Division by Factors.—Separate the divisor into factors 
and perform by short division, mentally if possible, putting 
down the answers only. 

Example.—Divide 504 by 42. 
Factors of 42 are 2, 3, and 7, or 6 and 7. 

21504 
3)252 

71 84 or 
12 = Ans. 

Or reduce both dividend and divisor to factors and suppress 

the common factors. 

Example. 

2X2X3X3X7 

4^ The remaining factors in the divi- 
^ dend are 
7 2 X 2 X 3 = 12. Am. 

This last process is not always a saving of time but usually 

contributes to greater accuracy. 

2 X 

6|504 
7 I 84 

12 = Ans. 



NUMERICAL COMPUTATIONS 17 

CHECK OF NINES 

35. Addition.—Add the figures forming the numbers, divide 
by 9, and compare the sum of the remainders with the remainder 
of the answer. 

Example. 3 4 4 8 
7 12 8 
8 8 7 3 
4 1 2 3 

22 
1 5 

1 4 
2 2 

2 3 5 7 2 
2 + 3 + 5 

9 

3 + 4 + 4 + 8 19 . ., -— == = ] remainder. 

7 + 1 + 2 + 8 18 ^ .j 
---~ ^ ~ ^ remainder. 

8 remainder. 

^ 10 ^ 1 remainder. 

= 1 remainder. 

1±2 = = 1 remainder, 
y 

36. Subtraction.—Consider the minuend as the sum of the 
subtrahend and the remainder, and proceed as in addition. 

Example. 4829 4 + 8 + 2 + 9 = 5 remainder. 
3347 3 + 3 + 4 + 7 = 8 remainder. 

1482 l + 4 + 8 + 2 = 6 remainder. 

^ ir - = 5 remainder. 

37. Multiplication.—Find the remainders in multiplicand and 
multiplier, and then find the remainder of the product of their 
remainders, which should equal the remainder of the product 
of the two numbers. 

Example. 3 6 5 5 

^ ^ 2 —- VTir remainder = 1. 
2190 10 

18 2 5 

20440 2 + 0 + 4 + 4 + 0 = 10, or remainder = 1. 

38. Division.—Consider the dividend as being the product of 
the quotient and the divisor, and proceed as in multiplication. 

39. A short cut can be made in using the 9 check as follows: 
Take 2,689,143, the sum of the numbers, which, when divided 
by 9, equals 33 9, which gives a remainder of 6. 
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Add the numbers, then add the figures of the result, or 3 + 3 
= 6, and obtain the remainder direct instead of dividing 33 by 
9 and finding the remainder. 

40. Another short cut is to cancel all figures which total 9. 
Take the number 2,689,143, and combine 6 + 3, 8 + 1, 9; 

and the remaining figures are 2 and 4, whose sum 6 is the 
remainder. 

FACTORING 

41. All even numbers are divisible by 2. 
A number is divisible by 3 if the sum of its digits is divisible 

by 3. 

Example.—4782. 4 + 7 + 8 + 2 = 21, which is divisible by 3. 
Therefore, 4782 is divisible by 3. 

A number is divisible by 4 if it ends in two ciphers or in two 
digits forming a number divisible by 4. 

A number ending in 0 or 5 is divisible by 5. 
An even number is divisible by 6 if the sum of the digits is 

divisible by 3. 
7, 11, 13 will divide 1001, or any of its multiples, as 5005, 

8008, 12,012, etc. 
A number is divisible by 8 if it ends in three ciphers, or in 

three digits forming a number divisible by 8, as 125,000 or 
164,896. 

A number is divisible by 9 if the sum of its digits is divisible 
by 9. 

A number ending in 0 is divisible by 10. 
A number is divisible by 25 if it ends in two ciphers or in two 

digits forming a multiple of 25. 
A number is divisible by 125 if it ends in three ciphers or in 

three digits forming a multiple of 125. 
A factor of a number is also a factor of all multiples of that 

number. 

A common factor of two numbers is a factor also of the sum, 
or of the difference, of the two numbers. 

Example.—4 is a common factor of 20 and 36. It is also a factor of 
56 or 16. 
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42. Extraction of Square Root by Means of Algebraic Formula. 
The formula used is 

(a + by = + 2ab + b^ = + (2a + b)b. 

Conversely, 
+ 2ab + h‘^\a + b 

2a + 6| 2ab + b^ 
2ab + b^ 

Example.—Find the square root of 1156. 
I a + b 

11'56 {30 + 4 

a2 = ^00 

Trial divisor 2a = 60 2 56 
b = 

Complete divisor 

(2a + 5) = 64 2 56 

43. Short-cut Method for Square Root. 
If b is small, the term b^ can be omitted without a great error. 

Then we assume 

(a ± by^ = ± 2ab approximately. 

An example will be used to show the process. 

Example.—Find the square root of 327.12. 

Select a number whose square is nearest the given number. This can 

be done by inspection or by using a table of square or square roots when 

a logarithmic table is not available. Let us try a = 18; then = 324, 
which is slightly smaller than the given number 327.12. 

The difference between the numbers then equals +2a5, or 

327.12 - 324 = 2 X 18 X 5. 

Therefore, b ^ ^ ~ = .087. 

But a + b is the square root of (a + 6) 2; then 

a + b — 18 + .087 = 18.087, which is the approximate square root 

of 327.12. 

In case the square of the nearest number is greater than the 
given number, then 

(a — 6)2 = — 2ab approximately. 

When 6 is found as before, it is subtracted from a to find the 

square root. 
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44. Eztractloii of Cube Root by Means of Algebraic Formula. 
The formula used is 

(o + i>)» = a* + 3a*6 + da¥ + 6» 

= o» + (3a* + 3ob + «>*)6 

a* + 3o*6 + 3a6* + 5* |a + & 

a* 

3o* + 3a6 + fei 3a*6 + 3o6* -Ti* 
3a*6 + 3o6* + 6* 

Example.—Find the cube root of 405,224. 

a> 

3o* = 14,700 
3a6 = 840 
fe* =  Id 

3a* + 3ab + b^ = 15,556 
(3a* 4- 3a5 + 6*)5 = 

(15,556 X 4 = 62,224) 

405'224 

343 000 

62 224 

62 224 

a “h 6 
70 + 4 

46. Short-cut Method for Cube Root.—The method is similar 

to the square-root method with the same provision that b is 

small. We assume 

(o + by = a* + 3a*6 approximately. 

Example.—Find the approximate cube root of 2050.16. By trial, 
the nearest number cubed is (13)’ = 2197, a number larger than the 
given number. Therefore, take a = 13. 
The difference between the numbers, or 

2197 - 2050.16 = 146.84 = -3a’6. 
-3a»6 = -3 X (13)* X 6 = 146.84. 

-3 X 169 X 6 = 146.84. 
b = -.29. 

Then 
(a — 6), which is the cube root of (a — 5)’, becomes 

13 - .29 = 12.71. 
Therefore, 

-^205^ = 12.71. 

A more accurate figure is 12.703. 



CHAPTER II 

APPROXIMATIONS. ABSOLUTE RELATIVE ERRORS 

46. Approximations.—Engineers will sometimes thoughtlessly 
make a computation of quantities which have been found by 
measurements, instrument readings, and handbook data, and 
carry the operations to several unnecessary decimal places. 
These operations take considerable time, and the results give 
a false impression of accuracy. Every measurement taken is 
an approximation, and the degree of accuracy should depend 
upon the purpose for which the measurement is to be used. 
For instance, an engineer wishes to compare the size of a drum 
shaft on a French hoist with one of his own make. The French 
blueprints show the diameter to be 24 centimeters. The engineer 
will probably glance at a conversion table and see that 1 centi¬ 
meter = .3937 inch, and mentally multiply 24 by. 4. In case 
he expects to shrink-fit a gear on that shaft, he will undoubtedly 
use the full constant .3937 to compute the bore of the gear. 

47. Rounded Numbers.—A number is rounded off by dropping 
one or more digits at the right, and if the last digit dropped is 
5, 6, 7, 8, or 9, increase the preceding digit by 1. Thus, the 
successive approximations to w obtained by rounding off 3.14159 
... are 3.1416, 3.142, 3.14, 3.1, 3. 

48. Significant Figures.—The degree of precision of a measure¬ 
ment is determined by the number of significant figures contained 
in the number expressing the measurement. The significant 
figures of a number are the digits 1, 2, 3, 4, 5, 6, 7, 8, 9, together 
with such zeros as occur between them or have been retained in 
properly rounding them off. Thus, the number 3,496,000.0 
has eight significant figures, since the 0 in the decimal place, 
according to the convention adopted, means that the number 
is exact to the nearest tenth. Thus, 0 is then essentially a digit 
and should be counted. Also, if a number such as 3999.7 is 
rounded by dropping the 7, the number becomes 4000, which 
should be considered as having four significant figures. 

21 
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If a measurement of a length is expressed as 14.1 inches, this 
means that the measurement is exact to the nearest tenth of an 
inch. If the measurement of this length were exact to the nearest 
hundredth of an inch, it would be expressed by the number 
14.10. In other words, x = 14.1 means that the exact value of 
X lies between 14.05 and 14.15, and x = 14.10 means that the 
exact value of x lies between 14.095 and 14.105. 

49. Retained Digits.—The digits which are not replaced by 
ciphers, when a number is rounded or approximated, will be 
called the retained digits. If 248,000 is taken instead of 247,895, 
then three digits are retained. 

60. The numerical value of a number is the positive value of 
the number irrespective of sign. It will be indicated by vertical 
lines on each side of the number, as | a |. If a is positive, | a | 
means the same as a; but if a is negative, \a \ means the cor¬ 
responding positive number —a. 

In what follows, we shall speak of 1, 10, 100, etc., respectively, 
as a unit of the first, second, or third order; and similarly .1, 
.01, .001, etc. will be called units of the first, second, or third 
decimal order. 

61. The absolute error, as taken here, is the approximate 
value minus the exact value of a number. If 2.46 is as an 
approximation used in a computation where 2.457 is the exact 
value, then 2.46 — 2.457 = .003, the absolute error. The 
absolute error is positive if the approximate number is greater 
than the exact value, and negative if the approximate number 
is less than the exact value. If 37.142 is taken instead of 
37.14247, then 37.142 — 37.14247 == —.00047, a negative abso¬ 
lute error. 

62. The relative error is the ratio of the absolute error to the 
exact value. Since the relative error is a ratio, it is an abstract 
number and is often expressed in percentage. 

63. The Limiting Error.—When the greatest permissible 
numerical value of the absolute or relative error of the result of 
a computation is arbitrarily fixed or predetermined at the 
beginning of a solution, it will be called the limiting error of the 

result. 
If .01 is the limiting absolute error of a number whose exact 

value is 81.666, then either 81.67 or 81.66 is within the limit of 
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.01. The absolute errors are .004 and —.006, respectively. 
The limiting absolute error .01 means that the numerical value 
of the absolute error in the result must not be greater than .01. 
Any number between 81.657 and 81.67-5 is within the limit of 
an absolute error of .01 for the exact value 81.666. 

In the same manner, a limiting relative error of 1 per cent 
means that the numerical value of the relative error in a result 
is to be less than 1 per cent. 

64. Errors in Numbers.—If 212,700 is used instead of 212,667, 

the absolute error is 33 and the relative error is ; 
33 

212,667 
If 212.7 is used instead of 212.667, the absolute error is .033, 

.033 
and the relative error is 

212.667 
If .2127 is used instead of .212667, the absolute error is 

.000033, and the relative error is 
.000033 
1212667’ 

33 _ .033 ^ .0000^ 
212,607 “ 212.667 .212667' 

The relative error is not affected by the location of the decimal 
point but by the number of digits rounded off. In all three 
cases, the relative error is .00015 approximately. 

Now, if 212,600 is used instead of 212,667, the relative error is 

-67 
212,667' 

f< .J .<-.‘...,001. 
212,6671 212,667 2126.67 1000 

Hence, the relative error is within the limit of .001, or the 
unit of the third decimal order, which is one order less than the 

number (4) of digits retained (Art. 49). 
Again, if 213,000 is used in the computation instead of the 

above number 212,667, the absolute error is 333 and the relative 

. 333 
error is 212,667’ 

Then 

333 .333 1 . 1 _ 01 

212,667 212.667 212.667 100 
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The relative error is within the limit of .01, or the unit of the 
second decimal order (Art. 50), which is one order less than the 
number (3) of digits retained (Art. 49). 

If 212,600 is used instead of 212,637, then the absolute error is 

— 37 and the relative error is — 
37 

212,667’ 

37 .37 
212,637 

-.37 
2126.37 

< 
1 

2126T37 

2126.37 
1 

^ 1000 

The numerical value of the relative error is within the limit of 
.001 

66. To approximate a number when the specified limiting 
relative error is a unit of a given decimal order, retain one more 
digit in the number than the order of the unit. Conversely, if 
a given number be approximated by rounding it off, the numeri¬ 
cal value of the relative error will be less than the unit of decimal 
order one less than the number of digits retained. 

Then, to approximate a given number so that the relative 
error will be within the limiting error of 1 per cent, or .01, retain 
throe digits; and to be within the limiting error of .001, retain 
four digits. Thus, to approximate 314,159, 31,415.9, 3.14159, 
.0314159, with a limiting error of .001, take 314,200, 31,420, 
3.142, and .03142, respectively. Conversely, if we use 3.21 
instead of 3.2142, the relative error is within the limiting relative 

error .01, or 1 per cent. 
In considering errors in sums, differences, products, and quo¬ 

tients in the following paragraphs, the given numbers to be 
added, subtracted, multiplied, or divided are understood to be 

positive. 
66. Absolute Error in Additions.—The' absolute error of the 

sum of several rounded numbers equals the algebraic sum of the 
absolute errors of the numbers. This discussion will be confined 
to the rounding of decimals, because whole numbers are seldom 
rounded in addition. 

If not more than twenty nuqxbers are added, and the limiting 
absolute error is the unit of a certain given decimal order, the 
number of decimal places retained in each number should be 



APPROXIMATIONS. ABSOLUTE RELATIVE ERRORS 25 

one more than the given decimal order of the unit. For an 
answer correct to the nearest hundredth, when adding not more 
than twenty numbers, retain three decimal places. The absolute 
error of each of the numbers will be less than .0005, and for 
twenty numbers (20 X .0005 = .01), the absolute error cannot 
exceed a hundredth in the rounded sum. For less than ten 
rounded numbers to be added, the maximum error of the sum 
cannot exceed .005 and, when rounded, will not add another 
unit to the rounded sum, since it will be dropped in rounding. 

By approximating the numbers nearly to equalize the positive 
and negative absolute errors, the absolute error of the sum will 
be reduced in size. 

Example.—Add 4.3416, 9.81643, .7295, 21.6844, .0037, 762.123, and 

1.2845. The sum is to be approximately correct to two decimal places. 

4.342 

9.816 

.7.30 
21.684 

.004 

762.123 
1.284 

799.98^ 

If there are more than 20 but less than 200 numbers to be 
added, take two more decimal places than the decimal order of 

the limiting unit. 
67. The Relative Error in Addition.—The relative error of 

the sum of several numbers is equal to the absolute error of the 

sum divided by the sum, or 
Absolute error of the sum 

Relative error of the sum ==-- 

Then 
Absolute error of the sum = Relative error of the sum X 

sum, and 
Limiting absolute error of each number must not be greater 

than 
Limiting relative error of the sum X sum 

Number of numbers 
Unfortunately, the sum is not yet known, but by roughly 

approximating it mentally, an approximation of the limiting 
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absolute error which each number should not exceed is found. 
It is usually sufficiently accurate to round off all but the first 
significant figures of the numbers for the trial sum, but small 
numbers in combination with large numbers may be neglected. 
A little practice will determine the best results. 

Example.—Approximate the sum of the following numbers to within 

1 per cent of the correct value: 

A glance will show that the sum is not far 

from 7000. 

Then 

= 1400 (mentally). 
5 

Multiplying by .01 gives 14, the limiting 

absolute error for each number. If the units' 

column is rounded into the tens' column, the 

sum will be correct to within 1 per cent, 

because in none of the numbers will the 

numerical value of the absolute error exceed 

14. The solution is as shown, but in actual 

practice the numbers should not be rewritten 

and the rounding off should be done mentally 

as the tens' column is added. 

68. Absolute Errors in Multiplication.—When a correct factor 
is multiplied by an approximate factor, and a limiting absolute 
error of accuracy is desired in the product, let 

a = the correct first factor. 
b = the approximate second factor. 
A = the absolute error of the second factor (positive 

or negative). 
A = the absolute error of the product. 

Then 6 — A = the exact factor. 
ab = the approximate product. 

a(b — A) = the exact product. 

The difference between the approximate and the exact product 
is the absolute error of the product. 
Then 

2868.146 

,3380.433 
845.314 

27.841 

343.50 

Solution. 

2870. 

3380. 

850. 

30. 

340. 

7470. 

A » a6 — a{b — A) — a6 — a6 + nA — oA, 
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If a limiting absolute error of .01 is desired in the product, 
then |oAi must be within the limit of .01, or |A| must be taken 

within the limit of — in the second factor. The error of the 
Qt 

product will be positive or negative according to whether A is 
positive or negative. If A is taken positive, the approximate 
product will be greater than the exact product and less than the 
exact product if A is taken negative. 

If a limiting error of .001 is permissible in the product, then 

the limiting absolute error in the approximate or rounded number 

must be within the limit of 
a 

Example.—The exact number 391.8 to be multiplied by 3.1415926 

rounded off to give a product with absolute error within the limit .01. 

If A is taken within the limit of or (by shifting the 
oU 1.0 

decimal points) within the limit taking a limit 

of ::—~—j or .00001, which is still more within the limit, the 

product will then be within the limit of .01. 
If five decimal places are retained, or 3.14159 taken, the 

absolute error is —.0000026, which is within the limit of .00001. 
Rule.—Retain as many decimal places in the approximate factor 

as there are whole numbers in the other factor^ plus the number of 
decimal places in the limiting error of the product.^ 

Since ^ = aA, or A = —, then A will either have as many 
a 

decimal places as indicated by the rule, or one less than that 
given by the rule. Therefore, if the rule is followed, the absolute 
error of the product will be less than the limiting error. 

As 391.8 has three whole numbers and .01 has two decimal 
places, the approximate factor should be taken with five decimal 

places. Therefore, take 

391.8 X 3.14159. 

1 The numerical value of the absolute error of the product under this rule 
will not only be less than the specified limiting error but it will be less than 
five units in the next decimal place. 
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If the limiting error of the product is to be within .001, then 
six decimal places should be taken, or 3.141593. 

69. If both factors are approximate and the product is to be 
correct to within a certain limiting absolute error, let 

a = the correct first factor. 
c = the correct second factor. 

Ai = the absolute error of the first factor (positive 
or negative). 

A2 = the absolute error of the second factor (posi¬ 
tive or negative). 

A = the absolute error of the product. 

Then 
a + Ai = the approximate first factor, 
c + A2 = the approximate second factor. 

ac == the correct product. 
(a + Ai) (c + A2) — ac + cAi + aA2 + A1A2 the approximate 

product. 

The approximate product less the correct product equals the 
absolute error of the product, or 

= ac -f* cAi “h <zA2 AiA2 — ac = cAi "-t- (1A2 “f* A1A2. 

Now in practice, Ai and A2 are small, and A1A2 is very small 
compared to cAi + aA2 and may be neglected. Therefore, 
approximately, 

A = cAi -h UA2, 

and hence 

|A| < IcAil + |aA2|. 

If each factor is approximated according to the rule given in 
the preceding article, the absolute error of the product will be 
less than the limiting error. The absolute error in the preceding 
article was aA, and the absolute error in the present case is 
made up of two parts cAi and aA2, each less than half the limiting 

error. 
Rule.—Take as many decimals in the multiplicand as there are 

whole numbers in the multiplier, plus the number of decimals in 
the limiting error. Also, take as many decimals in the multiplier 
as there are whole numbers in the multiplicand, plus the number of 

decimals in the limiting error. 
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EXAMPLB.—Round off the numbers 30.87641 and 6.21832 so that the 

absolute error of the product will be less than .01. According to the 

rule, take three decimal places in the first factor and four in the second 

factor. 

30.875 X 6.2183 = 191.99. 

If we go a step further and approximate the numbers so that the 
errors have opposite signs, the absolute error of the product will 
often be less than when the signs are taken alike. 

60, The Relative Error in Multiplication.—^If a product of an 
exact number and an approximated number is limited to a certain 
relative error or is to be correct to within a certain per cent, then 
let 

a = the correct factor. 
c = the correct second factor. 

A = the absolute error of the second factor. 

r = the relative error of the second factor. 

R = the relative error of the product. 

Then 

c + A = the approximate second factor. 

r = ~ :=z the relative error of the second factor. 
c 

ac = the correct product. 

a(c + A) = the approximate product. 

a(c + A) — ac = aA = the absolute error of the product. 

^ = r = the relative error of of the product (positive or 
ac c 

negative). 

The relative error of the product will be the same as the relative 

error taken in the approximated factor. 
If we wish a product correct to within a certain per cent, one 

factor can be approximated to that same per cent, and be within 

the limit of the limiting relative error. 

Example.—Multiply the exact number 527.8 by 3.1415926 

the product correct to within 1 per cent. 
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For a number to have a relative error of not more than 1 per cent, or 
01, retain three digits (Art. 55). Therefore, take 

527.8 X 3.14. 

If the relative error is taken positive in the approximate number, 
the relative error of the product will also be positive, and the 
product will be greater than the exact product. 

An examination of the relative error of a factor may show that 

the product is sufficiently accurate for a small number of retained 
digits (Art. 49). 

For the example just given, if 3.1 is taken instead of 3.1415920, 
the relative error is —.013 approximately (Art. 54), which is a 
little greater numerically than — 1 per cent. 

In many cases, especially when a slide rule is used, the number 
must be approximated because it is beyond the range of the rule. 
In this case, the relative error can be used as a correction factor 
and the corrected result will be nearer the exact result. 

Example.—Multiply the correct factor 3.55 by 21.245: 
Three digits of 21.245 will be retained, as that is about the limit of 

the slide-rule setting. The relative error is approximately —.002 if 
21.2 is taken (Art. 54). 

The minus sign indicates that the approximate product is less 
than the exact product and equals approximately iVA 
exact product. An additional operation of dividing the approx¬ 
imate product by .998, a corrective factor, will make the approx¬ 
imate product more nearly correct. When not using the slide 
rule, simply take .002 of the approximate product and add the re¬ 
sult to the approximate product. This should be done mentally. 

61. If both factors are approximated, and their product is to 
be correct to within a certain per cent^ or a certain relative error, 

then let 

a = the correct first factor. 
c = the correct second factor. 

Ai = the absolute error of the first factor. 
A2 = the absolute error of the second factor. 
ri = the relative error of the first factor (positive or negative). 
r2 * the relative error of the second factor (positive or negative). 
R — the relative error of the product. 
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Then a + Ai = the approximate first factor. 
c + A2 == the approximate second factor. 

7*1 = -i = the relative error of the first factor. 
a 

rg = — = the relative error of the second factor, 
c 

ac = the correct product. 
(a + Ai)(c + A2) = ac + cAi + aA2 + A1A2. 

= ac + cA] + aA2 with A1A2 discarded 
(Art. 59). 

= the approximate product. 

R ^ (qg + cAi + a^2) 
ac 

= the relative error of the product. 

_ cAi -f- aA2 
”” ac 

Ai A2 
~ a c 

Or 

cAi oA 2 

ac ac 

= ri + r2. 

Or 
|/?! = |r, +r2|. 

\R \ < 1 n 1 + I rj I. 

By taking ri and r2 with opposite signs, the value R is less 
than when ri and ri are taken with both signs alike. 

If a limiting relative error of 1 per cent is permissible in an 
approximate product, then each factor rounded to three retained 
digits, the relative error of the product will not exceed .01, even 
if the relative errors of the factors have the same sign. 

Retain one more digit in each factor than there are decimal 'places 

in the limiting error. 

Example.—Find the product of 314.15928 and 27.18281828 to within 
a limit of 1 per cent. 

Retain three digits in each factor. 
314. X 27.2 = 8540.8. 

A more exact product for comparison is 8539.735. 

For the limiting error of .001 or one-tenth of 1 per cent, retain 
four digits in each factor if the relative errors of the factors are nop 

mentally computed. p"' 
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If ri is nearly equal to r2 and opposite in sign, then two signifi¬ 
cant figures may often be taken in each factor for the limiting 
error of 1 %. 

Example.—Approximate the numbers 31,885 and 113.84 and have 
their product correct to within 1 per cent. 

11 r: 
If 32,000 is taken for 31,885, the relative error is ^^r .0036. 

31,885 

If 110 is taken for 113.84, the relative error is 
3.84 

113.84 

IJ? I = .0036 - .0033 = .0003. 

= - .0033. 

62. When several factors are multiplied together, the relative 
error of the product is approximately equal to the algebraic 
sum of the relative errors of the factors. 

If one more digit is retained (Art. 49) than there are decimal 
places in the limiting error (Art. 53) and the factors rounded 
(Art. 47), the algebraic sum of the relative error may be greater 
than the limiting error unless some of the factors are approxi¬ 
mated with the relative errors of the opposite sign to that for 
rounding. Naturally to select a factor to make a large difference 
in the algebraic sum of the relative errors, we would choose 
one of the given factors whose left-side digits are numerically 
small, as 112,875. 

If 112,875 is approximated negatively to 112,000, or 111,125 
is approximated positively to 112,000, the error is greater than 
if factors like 893,875 or 892,125 (left-side digits numerically 
large) are approximated to 893,000. 

Example,—If three digits for each factor are retained in 928.41 X 
27.621 X 33.462 X 813.16, what is the approximate error? 

The approximate relative error of each factor will be written above 
each factor. 

-.0005 -.0009 +.001 -.0002 

928. X 27.6 X 33.5 X 813 - 697,577,414.4+. 
The approximate error of the product equals 

-.0005 - ,0009 + .001 - .0002 = -.0006. 

The third factor 33.462 was approximated with a positive 
error instead of rounded to a negative error which equalized the 
algebraic sum to a greater extent, 

A correcting operation can be made, especially if a slide rule 
is used for the computation, by dividing the approximate product 
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by .9994 or by mentally multiplying the approximate product 
by .0006 and adding the result, to the approximate product. 

If two digits are retained in each factor, then we have 
+ .002 -.025 +.02 -.004 -.007 

930 X 27 X 34 X 810 = 691',529,400. 

The (relative errors should be computed mentally as the factors 
are approximated, and the work proceeds. If the algebraic sum 
of the relative errors is excessive, the correction factor can be 
used. 

63. The effect of dropping the right-hand numbers in both 
the multiplicand and multiplier is clearly shown in the following 
example: 

2456;f^>5 
3134^^^ 

I 4913/ 572 
A \ 12283/ 930 

I 14740 / 716 

9827 / 144 
7370 /358 

2456 /786 
7370 /358 

7701 169148472 

If the 2, 5, and 6 of the multiplier are dropped in succession, the 
first, second, and third rows indicated at A will disappear, and 
if the 6, 8, and 7 of the multiplicand are dropped, the diagonal 
rows indicated at B will disappear. It is quite evident that the 
parallelogram areas of figures A and B beyond the order of signifi¬ 
cant figures we have retained in the multiplier and multiplicand 
modify the product. If we retain or equalize the numbers to 
four places, for example, in the multiplicand and multiplier, we 
cannot expect our answer to be correct to more than four places. 

64. A modification of the last method, involving a short cut. 
After having determined the number of 27.170 X 3.142 

significant figures, annex a zero to the multi- 81510 
plicEind. Multiply by the first figure on the 2717 
left of the multiplier. Drop the last figure 108547 

of the multiplicand and multiply by the 85,365 = 85.37 
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second figure of the multiplier. Drop the next figure of the 
multiplicand and multiply by the third figure of the multiplier 
but carry the amount from the figure dropped. Thus, in the 
example, having dropped the 7 and multiplied by 4, we say 4x7 
= 28, carry 3., 4Xl=4 + 3 = 7 and so on. 

In tl^e usual manner, if we multiply 14.3268 X 2.68446 and 
desire an answer correct to three decimal places, we will observe 
that we have a total of five significant figures in the answer. We, 
therefore (Art. 59), should retain four decimals in the multipli¬ 
cand and five decimals in the multiplier, thus, 

14.3256 X 2.68446 = 38.456. 

If the short-cut method is used instead of the regular method, 
add another significant figure to the multiplicand. 

If we wish to multiply two numbers like 14.32 X 2.68443, 
the first one approximate due to measurement, it is sufficient 
to use four decimal figures in the second number, as 

14.32 X 2.6844. 

66. The Absolute Error in Division.—If the divisor is exact 
and the dividend is approximate, to find a quotient which is 
accurate to within a certain absolute error, then let 

a 
c 

A 
A 

Then 
a 
c 

a + A 

c 

the correct dividend. 
the correct divisor. 
the absolute error of the dividend. 
the absolute error of the quotient. 

the correct quotient. 

the approximate quotient. 

- > the absolute error of the quotient. 
c c 

Therefore, 
A = Ac, 

The absolute error of the dividend must not he greater than the 
product of the divisor by the limiting absolute error of the quotient. 

Example.—Calculate correctly to within a unit of the third decimal 
place (.001) when the divisor is correct: 

216.68373 435. 
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A should not be greater than .001 X 435 = .435. Therefore, 
we will use 217 which has a positive error of .42 which is within 
the limit of .435. 

217 -i- 435 = .499.* 

A more exact quotient is .49789, which gives an absolute error 
of .0011, which is slightly in excess of the limiting error .001. 
because the quotient .4989 was rounded to .499. 

A positive error taken in the dividend gives a positive error 
in the quotient. 

66. Relative Error in Division.—If the divisor is exact and the 
dividend is approximate, to find a quotient which is accurate to 
within a certain relative error, let 

a = the correct dividend, 
c = the correct divisor. 

A = the absolute error of the dividend. 
r = the relative error of the dividend. 

Q = the relative error of the quotient. 

Then 

a + A = 

r = 

a -f- A __ 

c 
g + A _ 

c 

the approximate dividend. 

the relative error of the dividend. 
a 

the approximate quotient 

- = — = the absolute error of the quotient. 
c c 

A 
c A 

Q = - = - = r, the relative error of the quotient. 
a a 
c 

The relative error of the quotient, when the divisor is exact 
and the dividend is approximate, is the same as the relative 
error of the dividend. 

If, then, a relative error of the dividend is taken not greater 
than the limiting relative error of the quotient, the relative 
error of the quotient will be within the limit desired. If a limit 
of 1 per cent is a condition in the quotient, use three significant 
figures in the dividend. If the limiting relative error is to be 
less than ,001 in the quotient, use four significant figures (Art. 55). 
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Example.—Divide 483.51 by the exact number 84 and leave the 
quotient correct to within a limit of 1 per cent. 

Retain three digits (Art. 55) for the dividend, or 484. 
484 84 = 5.74. 

67. If both the dividend and divisor are approximated, and 
since the dividend is equal to the product of the divisor and the 
quotient, the relative error of the quotient is approximately the 
algebraic difference between the relative error of the dividend 

and the divisor. If Q, ri and r2 are, respectively, the relative 
errors of the quotient, dividend, and divisor, then, approximately 

Q = ri ~ r2, 
and hence, 

\Q\ < ki| + k2l. 
The relative errors | ri | and | r21 of the dividend and divisor, 

respectively, should be taken both positive or both negative if 
possible, which reduces the relative error of the quotient, since 
Q is the algebraic difference of the relative errors of the dividend 
and divisor. The sign of the relative error of the quotient will 
be the same as that taken in the dividend. If possible, round 
both dividend and divisor by increasing both or by decreasing 
both. 

The relative error of the quotient will not exceed the relative 
error of both the dividend and divisor, provided their signs are 
the same. Consequently, if each is taken with a relative error 
less than the limiting error and with like signs, the relative error 
of the quotient will be less than the limiting error. 

If ri and r2 are taken with opposite signs, then the relative 
error of the quotient becomes the numerical sum of the relative 
errors of the dividend and divisor. 

The relative error of the dividend and divisor should be 
mentally examined to determine which sign makes the smaller 
numerical difference in their values, and the dividend and divisor 
approximated accordingly. One trial calculation of the differ¬ 
ence of the relative errors should be sufficient to determine how 
many digits to retain. 

Example.—Divide 214.68 by 32.477 and be within a limiting error of 
one-tenth of 1 per cent. 

For a trial retain three digits of both numbers and round with pos^ 
tive signs. 
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The error of the quotient equals (.0015) - (+.0007) = .0008 approxi¬ 
mately, which is within the limit .001. 

68. Short-cut Division.—Consider the following example: 

I 3134652 

2466T?^|7701169;^^7)Z 

73703^58 B 

If some of the right-hand numbers of the divisor are rounded, 
as 786 (Art. 47), the figures in the parallelogram A BCD disappear. 

If some of the right-hand numbers of the dividend are rounded 
off, as 148,472, the figures in the triangle BED are affected. 

If some of the right-hand members of the quotient are not 
carried out, the numbers in the area FGED disappear. 

If we drop a right-hand number of the divisor with each 
succeeding operation, none of the figures to the right of the 
vertical line BE will appear, and this is a change which affects 

the quotient the least. 
The accuracy of the quotient depends on the number of 

figures retained in the divisor and the dividend. 
We determine, first, the whole number of the quotient by 

inspection (Art. 30), and then decide how many decimal places 
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we should have, or the absolute error. We then have the 
number of significant figures in the quotient. 

From Art. 33 we learned that in order to determine the correct 
figure in a quotient, at least two left-hand figures of the divisor 
must be used. Then, to have the last figure of the quotient 
correct, or nearly so, we should have two figures remaining for 
the last operation, after dropping a figure in each previous opera¬ 
tion, or altogether one more figure will be retained in the divisor 
than figures in the quotient. 

69, Short-cut division is similar to the regular method except 
that a right-hand figure is dropped from the divisor for each 
succeeding operation of multiplication. One more significant 
figure is taken than the regular method. 

Example.—Divide 77.01169148472 by 24.56786 and have an answer 
correct to three decimal places. By inspection (Art. 67), both dividend 
and divisor for regular division should have two decimal places or four 
significant figures, but for this method five will be taken. In case the 
first significant figure of the divisor is greater than the first significant 
figure of the dividend, add an extra figure to the dividend. 

Before dropping a number in the divisor, ascertain what should be 
carried and add this to the product. 

Retain 77.012 for the dividend and 24.567 for the divisor. 

24567 I 77012 

73703 

3309 

3134 

Yxs 
3X7 

Drop 7 ill divisor- 2457 1 X 7 
1 X 6 

Drop 6 in divisor- - 

ns 

3X6 
3X5 

Drop 6 in divisor- 

24 remains of divisor 

m - 

17 

4X5 
4X4 

24 carry 2 
21 + 2 = 23 

7 carry 1 
6 + 1 = 7 

18 carry 2 
15 + 2 = 17 

20 carry 2 
16 + 2 == 18 

Another method is to retain one more figure in the divisor 
and the dividend and to disregard the carrying of the abandoned 

figures. 
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70. Relative Error in Combined Multiplication and Division. 
The relative error of the result of expressions like 

a X b X c a X b X c . a X b 

dXeX f’ dXe ’ dXeXf 

is approximately the difference between the algebraic sum of the 
relative errors of the factors in the numerator and the algebraic 
sum of the relative errors in the factors in the denominator. 
Digits may be retained in such a manner that the relative 
error of the result will be small. 

Example.—Compute 
24.44 X 3.1416 X 8 

54.682 xToT94 X 5.22* 

Either select the trial relative errors of the factors of the 
numerator and likewise the denominator to reduce the algebraic 
sums as much as possible, or compare a relative error of a factor 
in the numerator with the relative error of a factor in the denom¬ 
inator having a like sign. This last method amounts to a 
cancellation of errors. 

- .02 + .02 

24 X 3.2 X 8 
55 X 10.9 X 5.2 

4- .006 - .004 - .004 

The difference between the algebraic sums is 
.02 + .02) ~ (+.006 - .004 - .004) = .002 approximately. 

The resulting relative error should show whether a sufficient 
number of digits has been retained, or whether a correction 

factor should be used, or whether more digits should be taken in 
the number. This question should be settled before the compu¬ 
tation called for is started. 

71. The Relative Errors of Powers and Roots.—The relative 
error of a power of an approximated number is approximately 
equal to the relative error of the number multiplied by the degree 
of the power. This is quite evident, for wc have shown (Art. 61) 
that the relative error of a product is approximately equal to 
the algebraic sum of the relative errors of the factors. If then 
these several factors are all the same and there are u factors, the 
product of these factors would have a relative error of approxi¬ 

mately u times the relative error of the factor. 
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Similarly, the relative error of a root is approximately equal 
to the relative error of the nu^nber divided by the degree of 
the root. 

Fractional powers would also have relative error of approxi¬ 
mately the relative error of the number multiplied by the frac¬ 
tional power. 

72. A New System of Multiplication.—The author introduces 
the following system of multiplication for the first time: 

It has the advantage that the numbers of highest order, or 
the left-hand figures, are put down first, followed by the ones of 
lesser and lesser importance which may be omitted when the 
proper limit of importance is reached. Take an example to 
illustrate. Suppose that we desire to multiply 345 by 234. 
First, place one number beneath the other as is done in the 
regular method. Then imagine a line rotating about a center 
located midway between the vertical numbers to begin with, 
then move one-half a space for each succeeding operation, and 
find the products of the numbers that the line crosses in making 
the complete rotation each time. 

The first center is halfway between 3 and 2. Draw 
the line vertically. The first product is 6. In com- 3 4 5 
pleting the rotation, the line does not fall on any other center 
two numbers. This is the total product for the first 2 3 4 
position of the center. Now move the center to the 
right midway between the first, or hundreds’, column and the 
second, or tens’, column. 

Each time the center is moved, drop the product ^ 

back one place. With the center in this second Y center 
position, the rotation of the line gives the two ^ ^ 4 

products, 6 
2 X 4 and 3 X 3. 8 

9 
Moves the center another half space, which locates the center 
between the 4 above and the 3 below, and rotate. This gives 
the three products, 

4X3, 5 X 2, and 4X3. 
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It is unnecessary to draw the ling but 
advisable simply to make a dot for the 

center and rotate mentally, bearing in 
mind that a line striking a number two 
units to the left in the multiplicand will 
strike a number two units to the right 
in the multiplier. Begin over now and 
complete the process. The multiplica¬ 
tion will appear as indicated at the 
right. 

6 
8 
9 ) 
12 
10 
12 

16 
15 
20 

1 Add 

Add 

Add 

mentally 

mentally 

mentally 

80,730 Ans, 
In the following example, do not overlook the fact 

that in the second position of the center, the line 4 3 2 1 
strikes not only the 3 and 7 but also the 3 and 4. . 
The dot assists in following the operation. 7 3 

2 8 
This method was devised in order to get the most 3 3 

important part first. The continuation of the 2 3 
process simply adds a correcting or error-reducing 1 3 
refinement to the result, which can be carried out 3 

to any desired degree. 3 1 5 4 3 3 
The method is also well adapted for multiplication with a 

standard adding machine. By taking each cross-product and 
dropping back a space on the machine each time a new center 
is taken, the machine will give the final product without any 
additional operations. 

Example.—Solve 
246.4182 X 211.6432 

with an answer correct to within 

2 4 6.4 ; ^ ? 
2 1 1.7 

one-tenth of 1 per cent, or .001. 4 
Each number should have four 10 

retained digits with one of them 18 
approximated positive. 32 

38 

46 
28 

6,216,288 
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APPROXIMATION FORMS 

73. Forms. 

(1 + a;)(l + y) = l + x + y + xy. 
(1 + x)(l -- y) ^ 1 + X - y - xy. 

When X and y are very small fractions or decimals, xy is so 
small that it can be neglected. Therefore, the product can be 
approximated to 

1 + ^ ± 2/. 

Example.—1.0015 X 1.0024. 
(1 + .0015)(1 + .0024) = 1 + .0015 + .0024 = 1.0039 approximately. 

Example.—1.032 X .996. 
(1 + .032)(1 - .004) = 1 + .032 ~ .004 = 1.028 approximately. 

74. Form. 
(1 + x)(l + y){l + z) ^ 1 + X + y + z + xy + yz + xz + xyz. 
If X, y, and z are sufficiently small, the last four terms can be 
neglected, and the approximation made equal to 

I X + y + z. 

Example.—1.011 X 1.008 X .998. 

(1 + .011)(1 + .008)(1 - .002) = 1 + .011 + .008 - .002. 
= 1.017 approximately. 

76. Forms. 

76. Form. 

1 
1 — x 
1 + X 

1 + y 

= 1 + X approximately. 

= I + X — y approximately. 

(1 ± x)*' = (1 ± x)(l ± x) . . . to n factors. 
= ^ ± X ± X ± . . .ton number of xs. 

— I ± nx. 

Now n may be negative, fractional, integral, or irrational. 
Then 

(14* :r)2 = 14* 2a; approximately. y/\ — x - \ — \x approximately. 

(1 — x)* = 1 — 2x approximately. x ^ \ \x approximately. 

- • as 1 — Jx approximately. ■-j==:====:^ - 1 4- approximately. 
Vl 4* a; Vl - a; 2 
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Example. 

(1.093)4 = (1 + .093)4. 
= 1 + (.093 X 4) = 1.373 approximately. 

Example.—Find the square root of 145. 

145 = [144(1 + ih)li = 12(1 + il4)^. 

= 12(1 + ^ X tW) = 12(1 + iris). 
= 12 + * = 12.0416. 

77, Form. 

(a ± by = a" ± na^~^b approximately, 

provided b is small. 

Example.—Find the square root of 105. 

Vi^ = VlOO + 5 = (100 + 5)1 = 1001 + i X 100-1 X 5. 
= 10 + ^ X A- X i 
= 10 + J == 10.25 approximately. 

Example.—Find the square root of 620. 

VO^O = (625 - 5)1 = 6251 - | X 625-1 X 5. 
= 25 — 5 X TiV X 5 = 24.0 approximately. 

Example.—Find the cube root of 7.<S5. 

•^^5 = (8-.15)' = 8l-|XiX.15 = 2-.0125 = 1.087 approximately. 

78, Form. 

, ^— = o + ax, when x is small. 
1 ± X 

Example. 

^ = 8 -1- 8(.0004) = 8.0032. 

79, Reciprocal Approximations.—Reciprocals of 1 ± i, when 

X is small. 

_L_ 
i + a: 

1 
1 — X 

1 
a ± b 

= 1 — a: -h (error < x* if x is between 0 and 1). 

= 1 — X -t- — (error < x^ if x is between 0 and 1). 

= 1 -b X -f (error < x* -f 2x® if 1 > x > 0). 

= 1 -b X -f X* — (error < x* + 2x* if | > x > 0). 

11, b 
= - X —;—, where x = — 

o 1 + X a 



CHAPTER III 

ALGEBRAIC NOTATION. RATIO AND PROPORTION. 
BINOMIALS, TRINOMIALS, POLYNOMIALS. FACTORS 

AND MULTIPLES. RADICALS 

ALGEBRAIC NOTATION 

80. Algebraic Signs.—When only + and — , or only X and 
-i- , occur in a sequence, the operations are performed in order 
from left to right. 

If X or , or both, occur in connection with +, —, or both, 
the indicated multiplications and divisions are performed first, 
unless otherwise indicated. 

A minus sign preceding a parenthesis operates to reverse the 
sign of every term within, when the parenthesis is removed. 

RATIO AND PROPORTION 

81. The quotient of two numbers obtained by dividing the 
first by the second is called the ratio of the two numbers. 

The ratio of a and 6 is or a 6. 

Since ratio is in the form of a fraction, all principles applying 
to fractions can also be applied to ratios. 

The statement that two ratios are equal is called a proportion, 
i = or a :b = c : d, or a : b :: c : d. 

The first and fourth terms of a proportion are the extremes, 
and the second and third terms are the means. 

If the second and third terms are equal, either one of them 
is the mean proportional between the first and fourth terms. 

a :b = b :c and b = y/^. 

a :b ■= c :d. 
b :a ^ d :c. 
a : c = b : d. 
c : a = d : b. 

44 

It ad be, then 
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Since in each case the product of the extremes equals the 
product of the means, or ad = 6c, either pair can be made the 
extremes and the other pair the means. 

82, To prove that - — ^ ^ when f = ^ : 
^ a~bc — d bd 

Since ad = 6c, or 6c = ad^ 
multiplying by 2, 

26c = 2ad, which can be put in the form, 
be + be = ad + ad. 

Transposing terms, 

be — ad = ad — be. 
Adding ae — bd to both sides, 

ac + 6c — od — 6d = ac — 6c + od — 6d. 
Combining, 

c(a+6) — d(a + h) — c(a — 6) + d{a —6),or {a -\-b){c — d) — (a — b){c-\-d} 

Dividing both sides by (a — 6)(c — d), then 
(a "h 6)(c — d)   {a — 6)(c d) (a -j- 6) _ (c d) 

ir^W-'d) ~ (a -b)(c- dy (a - b) ~ 

In like manner the following proportions can be proved, when 

ad = 6c: 
a + 6:6 = c + d:d. a — b : a ^ c -- d : c. 

a + b : a = e + d : c, a + c:a-^c = 6 + d:6 — d. 
a — b \ b — c — d :d, a + 6:a — 6 = c + d:c — d. 

The products of the corresponding terms of two or more pro¬ 
portions are in proportion. 

a e j fa 
If T = j and 

0 a 
p ,, am ep 
■ then V— = 

n q bn dq 
Multiplying or dividing both terms of a ratio does not change 
the value of the ratio. 

a _ cm 
6 bm 

If a : 6 = c : d, then ma :mb = nc : nd, or — : — = ~ 
' ^ m m n n 

7 j a b e d 
or ma :nb ^ me : nd. or — : — = — : — 

mm mm 
If four numbers are in proportion, their like powers and also 

their like roots will be in proportion. 

In a : 6 = c : d, then :b^ — : d^f and : 6^ = : dn. 
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If any continued proportion, as a :h ^ c \ d e \f ^ g :h, 
the sum of the first terms, antecedents, is to the sum of the second 
terms, consequents, as any antecedent is to its consequent, or 

?L±_? ± ? = ® = -%tc • 
h + d+f-\-h b d ’ 

or if 

~ ~ (a fixed ratio), 
xyz 

then 

/a + b + c + • • ^ \ _ 

\X + J/ + 2+ . . . 

If a problem requires the finding of two numbers which are 
to each other as m : n, it is advisable to represent these unknown 
numbers by mx and nx. 

If a :b = b : c = c : d, then b = a'Q and c = ^ ad^, which 

are two geometric means between a and d. 
83. The proportional divider is an instrument used principally 

for transferring dimensions from a given figure to make either an 
enlarged or a reduced similar figure. It is also very convenient 
as an aid in solving graphical problems (Arts. 200, 202, 203, 208). 

The pivot of the divider can be shifted along the greater 

portion of its length, thus giving different ratios of the dis¬ 
tances between the points at one end to the distance between 
the points at the other end. For a fixed setting of the pivot, the 
distances between the points maintain a fixed ratio within the 

range of the instrument. 
For linear dimensions, the ratios are marked on the face called 

lines. If the pivot is moved to match 2 on the scale, the distance 

between the points at one end will be twice as great as the dis¬ 
tance between the points at the other end. 

The master proportional divider, from which the commercial 

dividers are made, is divided into 2000 equal divisions from end 
to end, although only about 1000 divisions appear on the instru¬ 
ment. For a lO-inch divider, then, the divisions are 200 per 
inch which may be read by a vernier. It is to be regretted that 

this scale is not on the commercial divider. 
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The settings for the master divider on the fundamental scale 
of 2000 units are found as follows (see Fig. 1): 

I yet y — the lesser term of the ratio. 
X = the greater term of the ratio. 
(S = the setting on the scale of 2000 units. 

'rhen 
y ^ S 
X 2000 - s’ 

or 
20002/ — yS = xS. 
20002/ = xS + 2/yS = (x + y)S. 

s = 
X + y 

For a 1 to 2 ratio, y = 1, x = 2, and S = = 667 units. 

A convenient way of setting the proportional divider to some 
ratio not given on the instrument is to take one of the scales on 
an engineer's triangular scale and set off distances equal to the 
ratio. The engineer's scale is marked 10, 20, 30, 40, 50, and 60 
divisions per inch, and one of the six scales will be found suitable 
for the purpose. For instance, to find a ratio of 23 to 31, take 
th^ scale of 60 per inch and measure on a line the two distances, 23 
and 31. 

^"rT TT I I r [ r 
01Z345CiT89 

23 
f- 

31 

Fio. 2. 

Move the location of the pivot until the short legs measure 23 
when the long legs measure 31 units. 
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Two or three trials will accomplish the setting. 
For a setting of 8 to 15,^ use the divisions on the 30-per-inch 

scale. 
If the ratio is given as a decimal like .72 to 1, simply multiply 

by 10 and take the divisions marked 7.2 and 10 for the measure¬ 
ments on the 20-per-inch scale. 

84. Binomial Theorem for Positive Integral Exponents.— 
This theorem is used to express (a + b)" in expanded form. 

By actual multiplication, for instance, 

(<z b)^ — o* 2ob b^. 
(o + by = o’ -I- 3o’6 -f- 3a6’ 4- b\ 
(a -f by = o^ + 4o’6 + 60*6* + 4o6’ -f- b*. 
(o -f by = o’ -I- 5a*b + lOo’b’ + lOa’6’ + 5ab* + b\ 

If n represents the exponent of the binomial in any of the above 
cases, the form becomes 

[1] (o -I- by = o» -I- na^-% + o”-’6’ -i- 
1 X ^ ' 

njn - l)(n - 2) , 
1X2X3 «'' + ••• 

I n(n - l)(n - 2) . , . (n - r -|- 2) 

The expansions follow certain definite laws which will now be 
given: 

First. The exponent of o in the first term of the expansion 
is the same as the exponent of the binomial and decreases by 1 
in each succeeding term, being 0 in the last term. 

Second. The exponent of b increases by 1 from term to term, 
being 0 in the first term and the same as the exponent of the 
binomial in the last term. 

Third. To find the coefficient of any term, multiply the coeflB- 
cient preceding it by the exponent of o, and divide the product 
by the number of the preceding term. 

Fourth. The sign of each term of the expansion is plus, if 
a and h are positive; and the signs of the even-numbered terms 
are minus, if h only is negative. 

The proof that the ^pansion is true for all positive integral 
values of the exponent can be shown by mathematical induction. 

For n fractional or negative, see (Art. 458). 
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86. A very good way is to expand the letters first, then place 
below the coefficient of each term, and then the signs, and combine. 

Example.—Find the fifth power of {h — y) by binomial theorem. 
(6 - «= 
letters exponents by* y^ 

coefficients 15 10 10 5 1 

signs + - +_- + - 

combining b^ — 5b*y + lOb^y^ — lOb^y^ + 5by* — y®. 

Note: The coefficient of the fourth term is found by multiplying the 
coefficient of the third term by the exponent of 5, or 10 X 3 = 30, and divid¬ 
ing by 3 or the number of that term. 

86. To find the rth term of binomial expansion (a + x)": 
Substitute the values of n and r in the expression, 

n(n - l)(n - 2) ■ . . {n - r + 2) 

[r — 1 

Example.—Find the sixteenth term of (a + x) 2°. 

r = 16, and n = 20. 
(n - r + 2) = (20 - 16 + 2) = 6. 

. 20 • 19 • 18 • 17 • 16 • 15 ‘ 14 • 13 • 12 • 11 • 10 • 9 • 8 • 7 • 6 , 
• * 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 ♦ 11 • 12 • 13 • 14 • 15 ® ^ ' 

Cancelling numbers that appear in both numerator and denominator, 

20 • 19 • 18 • 17 • 16 • ^ • r • ^ 
1 • 2 • 3 • 4 • 5 • ^ • 7 • ? • ^ • w • ;i: • ' 

the expression becomes 

20 • 19 * 18 • 17 • 16 
1 • 2 • 3 * 4 • 5 

= 15,504a®xi®. 

87. If we denote the coefficients of the terms of the expansion 
by a series of cs, then 

(o -f- 6)** -f- 

where 

a” 4* Cia”“'6 4- C2a’*“*6* + C3a"~*6® . . . 

Cl = n. 

in - 1) 

1 X 
n(n — l)(n — 2) 

1X2X3 
n(» — l)(n — 2)(n — 3) 

1 X 2 X 3 X 4 
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88. By representing the coefficients in this manner, a relation 
of the subscripts of c and the coefficients is established. 

Taking as an example, Ca, note that the numerator has three 
factors and that the denominator is factorial 3. 

Also note that 

Cl = n. 

C2 
n(n 

1 
-1) _ 
•2 

(n - 
2 

1). 

Ca 
_ n(n - l)(n • - 2) _ cJjL -2) 

1-2-3 
C2 

3 

C4 
_ n(n - l)(n - 2)(n -J) 

1-2 -3-4 
-c - 4 

Each coefficient is equal to the preceding coefficient, multi¬ 
plied by a fraction having a numerator one less, and a denomina¬ 
tor one more, than those of the fraction for the preceding 
coefficient. 

Example.—Expand (2y — • 

Cl = 

Cj = c, X 1 = 7 X 3 = 21, or^ X 

Cs “ C2 X — 21 X ^ — 35. 
C4 = cs X 1 = 35 X 1 = 35. 
Cs = C4 X i = 35 X 1 = 21. 

C = Cj X I = 21 X i = 7. 

C7 = ce X i = 7 X I = 1. 

(2» - i)’ - (2,r + 7(2,)‘(- i) + 21(2!,)>(- i)’ 

+ 35(2»)-(- 1)‘ + 35(2»)-(- i)‘ + 21(2«)'(- 

+ 7(22)(-iy+(-iy- 

= 128y^ - 2242/0 • ^ + 168y0 • i _ 70y* ■ + 3.52/» • 

~ ‘ ^ ^ ~ 1^‘ 

89. Pascal’s Triangle.—If the coefficients of (o + 6)®, (a + by, 
(o + by, etc., are arranged as shown, each coefficient is equal 
to the sum of the two coefficients which are nearest to the right 
and left of it in the line above. 
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1 
1 1 

I 2 1 
13 3 1 

1 4 6 4 1 
1 5 10 10 5 1 

1 6 15 20 15 6 1 
1 7 21 35 35 21 7 1 

1 8 28 56 70 56 28 8 1 
1 9 36 84 126 126 84 36 9 1 

1 10 45 120 210 252 210 120 45 10 1 
1 11 55 165 330 462 462 330 165 55 11 1 

1 12 66 220 495 792 924 792 495 220 66 12 1 

The second hgures in each line show the value of n in each case. 
This triangle can often be used to determine the coefficients 

without computing. 
90. Expressions as (a — b — c)® can be expanded directly 

by the binomial theorem. 

{a — b — cy = [(a — b) — c]’ = 
(a - by - 3(a - bye + 3(a - 5)c* - = 
o8-3a»6 + 3a6*-6®-3c(a2-2a5+5*) + 300^ - Sbe^ - c» = 
a® — 3o*5 -f- 3a6® — 5® — 3a*c + 6abc — Sb^c + 3ac* — 3fec* — c®. 

Example.—Expand (a + 6 + c)’. v 

(a + 5 + c)’ = [(a + b) + c]* = 
(o + by + 3(a + bye + 3(o + b)c‘^ + c® = 

a’ + 3a*6 + 306* + 6’ + Sac’* + 6a6c + 36*c + 3oc’* + 360* + c’. 

In the same manner, (a + b — c — dy can be expanded 
[(o + fe) — (c + d)]’. This method is quite a saving in time 
and effort. 

91. Multiplication by Detached Coefficients.—Ordinary method 
of multiplication: 

4a:2 4- 6a: + 2 
2a:’* - 5a: - 1 

Sx'* + 12x® + 4x* 
— 20x® — 30x* — lOx 

— 4x* — 6x — 2 

8x4 - 8x5 _ 30aa _ i6» - 2 
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Detached method: 
4+ 6+ 2 
2-5-1 

8 + 12 + 4 
- 20 - 30 - 10 

4-6-2 

8- 8-30-16-2 

Using the numbers obtained above as coefficients for the 
terms of a power series in x, there results as the product, 

8a;4 _ - 30x* - 16a: - 2. 

Care must be taken that powers are in regular ascending or 
descending order. Arrange the terms of the multiplicand and 
multiplier in the same order, and supply 0 wherever any power 
is missing, as 

3x* + 0 + 4a: + 25. 

92. Division by Detached Coefficients. 

Example.—Divide 12x^ + 7a:’ — 7a;’ + 15a; — 3 by 4a:* — 3a; + 3. 
4 - 3 + 3112 + 7 - 7 + 15 - 3|3 + 4 - 1 

|l2 - 9 + 9 

+ 16-16 + 15 
+ 16-12+12 

- 4 + 3-3 

- 4+ 3-3 

The quotient then is 3ar* + 4x — 1. 

MULTIPLICATION AND FACTORS 

93. The product of two binomials having a common term, as 
(x + o)(x + 5) = a:* + (a + b)x + ab: 

The product in this case is equal to the sum of the square of 
the common term, the product of the sum of the unlike terms by 
the common term, and the product of the unlike terms. 

Example. 

(® + 2)(x + 6) - x’ + (2 + 5)a: + 2 • 5 = X* + 7x + 10. 

94. The product of two binomials having similar terms, as 

(2x - 5)(3x + 4): 
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The product must have a term in a term in x, and a numeri¬ 
cal or absolute term. 

The term is the product of 2x and 3x. 
The term in a; is the sum of the partial products, —5 X 3a;, 

and 2x X 4, called the cross-products. 
The absolute term is the product of —5 and 4. 

2a; — 5 
3a; + 4 

6a;^ — 7a; — 20 

96. Squaring Pol3momials. 

Example. 

{a + b + c + d+ . . . )2 = a2 +62 + 02+ . . . + 2a(6 + 
c + d + . . . ) + 26(c + d + . . . ) + 2c(d + . . . ) + 

2d( ... )+. 

This expression is formed by adding the squares of all the 
terms taken separately, and twice the product of each term by 
the sum of the terms that follow. 

96. Monomial Factors.—A monomial is a factor of a polyno¬ 
mial if it is present in every term of the polynomial. Thus x is 
a monomial of ax + 6a; + co;. Then (a + 6 + c)x is the factored 
expression. 

The terms of an expression can be rearranged to take out 
monomial factors by grouping those terms having a common 
factor, as 

ax + ay hx by = a{x + y) + b{x + t/) = (a + 6)(x + y). 

The factor x + ?/ in the center expression is multiplied by a 
and added to the same factor multiplied by 6, which is equivalent 
to the sum of them or a + 6 times the factor (x + ^) as shown. 

Frequently, the rearrangement is not so evident for taking 
out the monomial factors as the following example will indicate: 

Example.—Factor a* + 2a26 + 2a62 + 6*. 
Change 2a*6 to a'^b + a*6, and 2ab^ to a6* + ab^. Then 

a* + + a^b + 06* + a6* + 6^ can be written 
a*(a + 6) + a6(a + 6) + 62(a + 6), or 

(a + 6)(a2 + a6 + 6*), the factored form. 
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97. Trinomials Which are Perfect Squares. 
a? + 2ab + 6^ = (a + b)\ 

- 2a6 + 6^ = (a -- h)\ 
a2 + 4a6 + 46^ = (a + 2h)\ 

9a2 + 12a6 + 46^ = (3a + 26)2. 
4a^ + 4a2 + 1 = (2a2 + 1)2. 

If twice the product of the square roots of two of the terms 
of a trinomial is equal to the other term, the trinomial is a 
perfect square, as in 

9a2 + 12a6 + 462 = (3a + 26)2, where 
the square root of the first term is 3a, the square root of the last 
term is 26, and twice the product of 3a and 26 is 12a6, which is 
the second term of the trinomial. 

98. The Difference of Two Powers. 
oji ^ = (^a — 6)(a + 6). 
a3 — 62 = (a — 6)(a2 + ab + b^), 
a^ — 6^ ~ (a — 6)(a2 + d?b + aV + 6®). 
afi — 6® = (a — 6)(a^ + d^b + db^ + ah^ + 6^). 

-- (^ _ 6)(a"~^ + a’*”2j> -I- a^”’®62 + . . . 6"“^. 
a" — = (a + 6)(a"*'^ — . 6"”^) if n is even. 
Qin _ 52n (^n _ J!)»*)(a” + b^) [as 2n is even], 

99. The Sum of Two Powers. 

a2 + 62 = (a + b^/ — l)(a — b\/ —1). 
a3 -j- ^3 =. (^ _|. 5)(a2 — a6 + 62). 

a* + b* =- (a* + abV2 + - abV2 + b^). 
a^ + 6^ = (a + 6)(a^ — a% + db'^ — ^6^ + 6^). 
a" + = (a “h 6)(a"“^ — . 6”“^ if n is odd. 

100. Trinomid Form (x^ + bx + c). 
a;2 + 6a; + c = {x + 'p){x + q) 

where p and q are two numbers whose sum is 6 and whose product 
is c, or in symbols, 

p + g = 6, and pg = c. 

Example,—Factor a;^ + a; — 30. 

The sum p + g = 1. 

The product pg = —30. 
The only factors of —30 whose sum equals 1 is (6)(—5). 

Therefore, 
x* + a; — 30 = {x'+ 6)(x — 5). 

101. Factoring special trinomials of the forn^ (ax2 -f- bx + c)^ 
^ 3;^;^ + ll;p - 4; 
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Since 3x^ is the product of the first terms of the binomial 
factors, the first-term factors, each containing Xj are 3x and x. 

Since —4 is the product of the last terms of the binomial 
factors, these must have unlike signs, and the only possible last 
terms are 4 and —1, —4 and 1, or 2 and —2. 

Hence, associating these pairs of factors of —4 with 3x and x 
in all possible ways, we have 

/3x + 4\ /3x — 1\ /3x - 4\ /3x + 1\ /3x + 2\ /3x - 2\ 
\x~l/ \ x + 4/ \ x + l/ \ X — 4:) \ x — 2/ \ x + 2/ 

Of these, we select by trial the pair that will give llx (the 
middle term), for the algebraic sum of the cross-products. It 
is evident that these will be the second pair, or 

(3a: — 1) and (x -f 4). 
Observe that when the sign of the last term of the trinomial 

is +, the signs of the last terms of the factors must be both +, 
or both —, and like the sign of the middle term of the trinomial. 

Also, when the sign of the last term is the sign of the last 
term of one factor must be + and of the other, 

102. Binomials and Trinomials Reducible to the Form (a^—b^). 
Some expressions are reducible to the difference of two squares 
(Art. 98) by the addition and subtraction of certain terms, aif 

+ 46^. Adding and subtracting 4:aW leaves the value 
unchanged. Thus, 

+ 46^ — 4a^b^ = + 46^ But 
+ 4a^b^ + 4¥ - 4a^¥ = (a^ + 4a^b^ + 4b^) - 4a^b\ 

which can be factored as the difference of two squares, thus, 
a4 + 4a^¥ -f 464 - 4a26‘-' = (a- + 2ab + 26") (a^ + 2ab - 26"). 

Example.—Factor a* + 0,%"^ + 6^. 

Add and subtract a^b'^. 

+ o^b^^ 4- b^ — + 2a^b^ + 6^ — a"6" = 
(a4 + 2(i262 1)4) _ ^ (^2 ab + b^)(a^ - a6 + 6^). 

Trinomials of the type, 
pV + qx^y^ + r"2/4,* 

can be factored by this method, if ± 2pr — 5 is a perfect square. 
103. Quadrinomials Reducible to Form (a" — 6") (Art. 98). 

a* + 2a6 + 6* ~ c* = (a* -f2a6 + ¥) - c* = (a+ 6 + c)(a + 6 - c). 
a* •— 6^ + 26c ^ ^ — (6^ — 26c 4- c") = (o*~ 6 4“C)(a + 6 — c). 

4^2 ^ 52 ^ Qj.2 ^y2 i2ax 4- ^by = (rearranging) 4a* — i2ax + Ox* — 6* 
•f 4hy - 42/* = (4a* - 12aa; + 9x*) - (6* - 4by + 4y^) = (2a - 3x)* - (6 - 
2^)* =» (2a — 3x -f 6 — 2y)(2a — 3aj — 6 + 2y). 
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104. Rearranging Terms.—By rearranging the terms of a 
polynomial, factors may often be found when they would other¬ 
wise escape notice. 

Example.—^Factor z* — 7x*j/ + 14x2/* — By’. 
Rearranging, 

= (x* — 8y*) — {7x*y — 14x2/*). 
= (x — 22/)(x* + 2x2/ + 42/*) — 7xy(x — 2y). 
= (x — 22/)(x* — 5xy + 4y^) = (x - 2y)(x - y)(x — 42/). 

106. Polynomials Reducible to the Form (ax* + bx + c).— 
Rearranging the terms so as to conform to the type (ox? + bx+c) 
will often bring results. 

Example.—Factor 3x* — 6xy + 32/* — lOx + lOy + 3. 
3x* - 6xy + 32/* - lOx + IO2/ + 3 = 
3(x* — 2x2/ + y^) — 10(x — y) + Z = 
3(x - 2/)* - 10(x - 2/) + 3 = 
[3(x -y) - l][(x - 2/) - 3] = 
(3x — 32/ — l)(x — 2/ — 3). 

106. General Method of Finding Binomial Factors.—If a 
polynomial in x, having positive integral exponents, reduces to 
0, when an integer r is substituted for x, the polynomial is exactly 

divisible by x — r. For, if the product of two factors is 0, at 
least one of the factors must be 0, or a number equal to 0. It may 
be shown, however, that r must be a factor of the absolute term. 

Example.—Factor x’ — x* — 4x + 4. 
When X = 1 = r, 

xi-x^-4x + 4 = l- l- 4 + 4=‘0. 
.'. (x — r) or (x — 1) is a factor. 

X* — X* — 4x + 4 , . , ox/’ 1 o^ -----= X* - 4 = (x - 2)(x + 2). 
X —• I 

... ^3 _ 3.2 4. 4 = « 1)(^ _ 2)(x + 2). 

Example.—Find the factors of 17a;* — 14a;* — 37a; — 6. 
Since the sum of the coefficients is not 0; 

(x ~ 1) is not a factor. 
When a; = — 1 = r, then 

17x» - 14a;* - 37x - 6 = ~17 - 14 + 37 - 6 « 0. 
X — ( — 1) or X + 1 is a factor. 

Note.—Only factors of the absolute term (6 in the above) need be substi¬ 
tuted for X, and it is well to begin with the smallest factor of the absolute term. 

For more complete information regarding the factoring of 
pplynomialsy see Chap* X. 
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107. Miscellaneous Forms of Division. 

= + xy + y^. 

— j/* 
-— = X + y. 
X - y 

x~J = ** + + J/*- 

5-^ = x^ + x^y + xy^ + y*. 
X — y 

+ x^y + xV + ^ 

X® - i/2 
-r-^ = X — i/. 

y 

x4 + 

X - y. 

®+y a: + j/ 

g* - y* 
a: + 2/ 

= x’ — x*2/ + xj/* — y*. 

^- q: y = + a:y - x2/» + j/« + ^-^• 

*1+1^-* = X* + X2, + 2/* + x~2/ X - y 

5-ilX = X* + x*2/ + X2/* + 2/* + 
X — y X — y 

" - ^ = x^ + x*y + x2y2 _j. 3.^3 + y* H——• 
X — y X — y 

. X - !, + ^•* 
® + y X + 2/ 

X* + y^ 
X + y = X* - X2/ + 2/*- 

+ = x» - x*t/ + xt/» - j/» +. z +y x*y + xy y 

5i±JL‘ « a.4 _ jpSy + 3?y* -xy^ + y*. 
X + y 

* None.—In these cases, if 1/ is suflSciently small, the fractional part of the 

quotient may be disregarded. 
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Example.—If x + = 1 — ax, where a = .01, find x. 
X + = 1 — a®. 

(i + a)x = 1 — a\ 

X = 
1 

From formula, 
1 - 

1 + a 
= 1 - a + a"" + 

= 1 - .01 + .0001 + 

1 + a 

-2(.01)3 
1 + a 

(-2) (.000001) 
1.01 

The fraction on the right side may be discarded. Then 
X = 1 - .01 + .0001 = .9901. 

_ yn jg always divisible by x — y. 

is divisible by x y only when n is even. 
_|_ yn 2g never divisible by x — y, 

x^ + y'^ is divisible by x + y only when n is odd. 

When X — 2/ is the divisor, the signs in the quotient are all 
plus. 

When X + 2/ is the divisor, the signs in the quotient are alter¬ 
nately plus and minus. 

108. General Numerical Check of Addition, Subtraction, 
Mtxltiplication, and Division.—The check consists of the sub¬ 
stitution of X = 1 in the given expressions and the answer, which 
then becomes a numerical operation. If the algebraic operation 
is correctly done, the numerical operation will also be correct. 
Only multiplication and division will be shown, 

x^ — 2x + 5 X = 1 substituted gives 4 
x^ + 3x — 1 X = 1 substituted gives 3 

^4 _ 2x® + 5x^ 12 

-f 3x^ — 6x^ + 15x 
— x^ + 2x — 5 

x^ + x^ — 2x2 + 17x — 5 X = 1 substituted gives 12. 
X + 5j3x2 + 22x + 35|3x + 7 Ans. 

Substituting x = 1 in the dividend, 

3 + 22 + 35 = 60. 

Substituting x = 1 in the divisor (provided the divisor does 

not become zero), 
1 + 5 = 6 
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Substituting a; ~ 1 in the quotient, 
3 + 7 = 10. 

Checking, 

109. The highest common factor of two or more polynomials 
is the factor of the highest degree common to these expressions. 

Example.—Find H.C.F. of \2a^h‘^c and ^2aVc^. 

The greatest arithmetical common divisor or highest common factor 

of 12 and 32 is 4. 

The highest common factor of aH)^c and aVc^ is aV)^c. 
Hence, H.C.F. of 12a^b‘^c and S2a^¥c^ is 

Rule.—Multiply the highest common factor of the numerical 
factors by each common literal factor with the least exponent it has 
in any of the expressions. 

Example.—Find H.C.F. of — Zxy"^ and — Vlx’^y + ^xy'^, 
— Zxy"^ = Zx{x y){x — y). 

6a:^ — V2xhj + = 2 * Zx{x — y){x -- y). 

H.C.F. = Zx(x — y). 

110. Highest Common Factor (Euclidean Method).—The 
H.C.F. of two polynomials in one variable may be found as 
follows: First, divide the expression of the higher degree by the 
one of lower degree. Second, divide the latter expression by 
the remainder of the first operation. ’Continue in this manner 
until an exact divisor is found, which will be the H.C.F. 

Example.—Find the H.C.F. of x* — 5x^ + + lOx — 12 and 
x^ — — 3x + 9. 

- 3x2 - 3x + 9|.r^ - + 4x2 _|_ _ i2|j ~ 2 

x^ ~ 3x3 _ 3^2 + 9^ 

-2x2 + 7a;2 + X ^12 
-2x3 + 0^2 4. 6a; - 18 

x2 - 5x -f 6|x2 - 3x2 - sx 9|x -f 2 

X* — 5x2 ^ Qx 

2x2 _ 9^. ^ 9 

2x2 -- lox 4- 12 

x2 - 5x + 6 = (x - 3)(x - 2). 

X — 3 
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Since ® — 3 (the last remainder) will exactly divide 
— 5a! + 6 (the last divisor), a; — 3 is the H.C.F. of 

X* — 5x* + 4x* + 10a: — 12 and x’ — 3x* — 3x + 9. 

111. The lowest common multiple of two or more polynomials 
is the expression of lowest degree which can be divided by each 
of them without a remainder, and is the product of all their 
different prime factors, each factor being used the greatest 
number of times it occurs in any one of the expressions. 

Example.—Find the L.C.M. of x* — 2xy + y^, {/* — x*, and x* — y*. 
X* - 2xy + j/* = (x - y){x - y). 
y* — x* = -(x + y)(x - y). 
X* + y* = (x + 2/)(x* — xy + y^). 

L.C.M. = (x — y)*(x + j/)(x* — xy + y^j, by factoring the expres¬ 

sions into their prime factors and proceeding as outlined above. 

112. Another method of finding L.C.M. of two expressions is 
to divide one of the expressions by their H.C.F. and multiply 
the quotient so obtained by the other expression. 

Example.—Find the L.C.M. of x® — 2x* -f x -|- 4 and 

x’ - 3x» -t- 2x -f 6. 
The H.C.F. of the two expressions is x 1. 

x -r 1 

L.C.M. = (x* - 3x -I- 4)(x» - 3x* -|- 2x -H 6). 

113. Operations with Zero.—^All numerical operations, with 
one exception, can be made with zero, i.e.; 

Adding zero, a -b 0 = o. 
Subtracting zero, o — 0 = o. 
Multiplying by zero, o X 0 = 0. 
Raising to zero power, o® =1. 

Dividing zero by any number, - = 0. 
CL 

But we cannot divide by zero. 

114. Fractions Which Reduce to ^ When x Approaches a. 

o* — x* 2(a — x)® 2(o* — X®) 
^ “ o* - X*’ ^ ~ 3(o® -.X®)’ ^ “ 3(0 - x)*‘ 

These fractions have no meaning when x = o; but we may ask 
how their values behave when x approaches a. 
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The factor a — a;, which approaches zero when x approaches 
a, being common to both numerator and denominator, may be 
cancelled, provided x 9^ a, which gives 

+ ax + x^ 2(a — x) * 2(a + x) 
^ a + X ^ ^ 3(a + xf ^ 3(a — x) 

If X approaches a as a limit, we have in the three cases, 
respectively, 

y approaches 
3a 

y approaches 
0^ 

6a 
y becomes infinite. 

In addition to this indeterminate form 
0 
o' 

there are other 

indeterminate forms, such as 

OX oc , A 0®, oc 0, a - oc . 
oc 

RADICALS 

116. A radical is the root of a number and is indicated by the 
radical sign (\/) written before the number. 

If the root can be extracted exactly, the radical is rational, and 
if the root cannot be exactly extracted, the radical is irrational 
and is called a surd. 

An indicated even root of a negative number is an imaginary 

number, as \/~ 4, but all other numbers are real. 
All even roots of a positive number may be positive or nega¬ 

tive, but it is usual to use only the roots having the prefixed sign. 
Always reduce a radical to its simplest form, as 

\/25a46 = \/2^ • Vh = baWb, 
'>^480^'’ = ^16^ • \/Zab^ = 2ab^^3aJ^. 

Separate the radical into two factors, one of which is its highest 
rational factor. Extract the indicated root of the rational factor, 
multiply the result by the coefficient, if any, of the given radical, 
and place the product as the coefficient of the irrational factor. 

■^9^ = = (3a)* = (3a)* = 

U6. To reduce a quantity under the radical which is fractional, 

remove the denominator by making its exponent divisible by 
the exponent of the radical. This may be done by multiplying 
both numerator and denominator by the same factor, which does 
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not change the value of the fraction, and then the denominator 
can be taken from under the radical. 

Example.—Reduce 

Multiplying both numerator and denominator by 2x, 

4 X 2x 

2x^ X 2x 

117. To change the order of a surd, remember that the expo¬ 
nent and index bear the same relation as the numerator and 
denominator of a fraction, and both may be multiplied or 
divided by the same number without changing the value of the 

radical. 

2a\/56, if reduced to an entire surd, is equal to \/4a^ • \/5b 

= V^c^~5h = \/W6. 

To reduce radicals, as ^3, \/2, -^4, to the same degree, 

aJ/S = (3)* = (3)*^ = V P = 

V2 = (2)^ = (2)^ = -i^2« = 

a^4 = (4)^ = (4)*^ = ^4* = -^56. 

118. Addition and Subtraction of Radicals.—Several radical 
terms can be united into one term by addition or subtraction, 
only when they contain the same radical. 

Example. 

VEb + 2^8 + aVh 
Vm = 5\/2 

2<^ = 2V2, 

6\/| = 3 V2 

10V2- 

119. Multiplication of Radicals.—First, reduce the radicals 

to the same degree, that is, to the same exponent. Then multi¬ 
ply the coefficients together for the coefficient of the product, and 
the factors under the radical signs for the radical factor of the 
product, and simplify the result. 
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Examples.—Va X a = X 

V7 X \/5 = \/35. 

SVs X 2\/T5 = 10\/45 = lOV^ 5 = SOVS. 

2V2 + 3\/3 
5\/2 - 2\/3 

20 + 15\/6 

~ 4\/6 - 18 

20 + llVo - 18 = 2 + iiVe. 

\/2 X 3^ = X 3^2 = ^3 X 3^^ = 3^ = 6^. 
120. Division of Radicals.—If a single radical is to be divided 

by a single radical, reduce the radicals to the same degree, 
that is, to the same exponent, and to the quotient of the coef¬ 
ficients, annex the quotient of the radical factors, and simplify. 

Example. 

a\^h -T- x\/y. 

a\/b _ ^ IS 

xVy x\y 
It greatly simplifies a radical to be put in fractional exponent 

form, and all radicals, other than square root or cube root, should 
be handled in this manner. 

121. Fractional Radicals.—If the denominator of a fraction 
is of the form \/a ± multiply both the numerator and the 
denominator by Va + \/b to rationalize the denominator. 

\/a + \/b ___ (\/a + \/b)(\/a + \/b) __ a + 6 + 2\/ab 

\/a — \^b (\/a — \^b){\/a + \/b) a -- b 

Bear in mind, also, that 

(a + \^b)(a — \/b) = — b. 

This relation will often simplify or rationalize the denominator 
of a fraction. Also, 

1 + V2 +Vs ^ 1 + V2 + a/3 ^ 1 + V2 + Vs ^ 
1 + V2 - Vs ^ {1 + V2) - V3 ’ 1 + V2 + V3 

6 + 2V2 + 2VS + 2V6 ^ ^+__\/2 + Vs + V6 ^ V2 

(1 + 2V2 + 2) - 3 ' V2 ’ 

_ SV2 + 2 + VQ + 2\/3 
2 
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122. Powers and Roots of Radicals.—Reduce to fractional 
exponents first. 

EXAUPI.SS. 

Cube 2\/^ = 2’(ox*)l = 8a>a;* = Sv^o’a:* = 8oa:‘'\/oi‘ 
Square 3-^^ = = 9xi = 
Cube V^2 + 1. TJse the binomial expansion in such cases. 

{V2 + 1)» = (\/2)» + 3(V2)’ • 1 + 3V2 • 1* + P. 
= 2V2 + 6 + 3 + 1 = 7 + 5y/'2. 

Cube root of -27 Vox = '^[-27Vax] = (-27)J(ox)l = -3V^. 
Square root of 8 + 2 V12. 

The terms of the square root of a binomial surd that is a 
perfect square may be obtained by dividing the irrational term 
by 2, and then separating the quotient into two factors, the sum 
of whose squares is the rational term. Generally, 

(Vx + \/yy = X + 2 V xy + y = x + y + 2 V xy, 

where * and y may be any numbers. 
Therefore, if we may divide the radical by 2, and separate the 

resulting quotient into two factors which when squared separately 
and added give the rational term of the surd, then the surd is 
the perfect square of the sum of the two factors. Thus, 8 + 
2V12 may be written 6 + 2\/i2 + 2, whence, by comparison 
with the general equation above, 

* = 6, y = 2, 2V^ = 2Vl2 = 2V^ = 2V6 • y/2. 
(Ve + V2)® = 6 + 2V 12 +2 = 8 + 2V12. 

or V8 + 2\/12 = Ve + V2 

Example.—Find the square root of 14 + 8 Vs. 

= 4V3 = V48 = Ve X Vs. 

8 + 6 = 14, BO that 

14 + sVs = (Ve + VS)® or Ve + Vs, is the square root of 
14 + 8 Vi. 
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123. Powers and Roots. 

a" = a - a • a • a . . . to n factors. 

a- = 4- 

— = a”*”". 

(a*")** == 

(a5)» = a»6». 

\b) ~ ¥' 

(■s/a)” = -^ a” — a. 
1 

a” — a. 
m _ __ 

(jn = = (v^a)’^. 

\/ab ^ ^a ” -^6. 

nh _ S/q 
V6_^‘ 

'SZ-y/a = ^a. 
fl** ^n—n — -- J 
a'* 

= 1. 

a~”* _ g”* _ 1 
g”* 1 g*” 

I'Y __ _ w 

= «'"• 

ylil^r = = Vo” = o' 

= ;y^, 

a • ^Zq = SZq • q = \Zo*. 

(o + 6)» » a»(l + • 

mr 
n« 



CHAPTER IV 

FUNCTIONS AND GRAPHS, AND THE STATEMENT OF 
PROBLEMS IN THE FORM OF EQUATIONS 

FUNCTIONS AND VARIABLES 

124. Functions.—A variable y is said to be a function of 
another variable x if when a value of x is given, the value of y 

is determined. 

Example. 

y = mx + 5. 

Here, 7/ is a function of x, or mx + 5 being equal to y is^a function of 

X, » 

A variable is a quantity which, throughout a given discussion, 
assumes a number of different values. 

Functions are also represented by symbols, as F{x), /(x), where 
F(x) and/(a;) are expressions containing x^ as bx + c. 

Example.—A cistern that already contains 300 gallons of water is 

filled at the rate of 50 gallons per hour. 

In X hours the cistern will receive 50x gallons of water. Since it 

already contains 300 gallons and we denote the total amount of water 

by 2/, we will have 

y = 50x + 300. 

The quantity of water is a function of the time, or ?/ is a function of 

x; that is, y = /(a:), where 

f(x) means 50a: -f- 300. 

If we have a body projected upward with an initial velocity 
Vo consider s the distance above the starting point, and t the 
time in seconds, we have 

s = Pot — 16^^ 

or the distance s is*a function of the time t, 
A vessel of water is being heated. The temperature is a 

function of. the time. 

The speed of a starting train is taken for every second by a 
speedometer. The speed is a function of the time. 

66 
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The area of a square is a function of the side. A = 
The volume of a sphere is a function of its radius. 
The volume of a given weight of water is a function of its 

temperature. 
126. Graphs of Equations.—Restating the definition of a 

function as a quantity y which varies in a definite relation to x 
as X varies, y is, then, a function of x. 

X is the independent variable and y is the dependent variable. 
Points along the base line, or X-axis, represent values of the 

independent variable x, while the varying height of the curve 
above the X-axis represents the values of the dependent variable 
2/ for every corresponding value of x. In most cases, this height 
is a varying quantity and shows how the second or dependent 
variable varies with relation to the first or independent variable. 

This is the usual procedure: Plot the independent variable as 
abscissa and the dependent variable as ordinates. Figure 3 
shows graphically the manner in which the function varies for 
different values of the independent variable. The height of the 
ordinate is the measure of the value of the dependent variable 
or function for a particular value of x. 

In order to get the height of the ordinates and to dispense with 
the necessity of drawing them in each case, a curved line is 
drawn connecting the upper ends of the ordinates, as shown in 

Fig. 4. 
Do not, therefore, think of a curve or locus as a mysterious 

representation of an equation but as a means of getting the 
height of the ordinates for a particular value of the independent 
variable. Bear in mind that it is the varying heights with which 

we are concerned. 
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If we have an expression, as 

CB* ■}■ 3® + 3, 

the value of the expression is dependent upon the value we give 
X. The expression is said to be a 
function of x. What we really do 

/ when we make a graph of the expres- 
^ sion is to plot the values of the ex- 
! pression as ordinates for different 

—values of *. Actually both are in 
; terms of x. If the reader gets this 

__{_point of view, graphical relations 
become more clear (see Fig. 5). 

^.»■ Now the expression may be repre- 
g sented by y or by any other variable, 

and we then make the equality, 

w = x’ + 3a: + 3, 

|8 = X* + 3* + 3. 

This, however, does not change the original relation as stated 
in the beginning and as shown by the figure. 

126. First-degree Functions.—^First-degree functions are often 
called linear functions because the graph of such a function is a 
straight line. 

If the function varies just as fast as the variable, we will 
have y = X. If the function varies 
twice as fast as the variable, we will 
have y — 2x, and if one half as fast, 

y = Ja:. 
If y varies just as fast as x, or 

y = X, our graph will be as shown in 
Fig. 6. When we give various values 
to X, as 1, 2,3, etc., it is obvious that 
the graph of ^ = x is the diagonal of 
the squares in common and that it is 
a straight line whose slope is constant 
and equal to 1. 

Likewise, for y •= 2x, we have a series of rectangles for differ¬ 
ent values of x with coinciding dia^nals as before. We etill 
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have a straight line but with a different slope. The slope in 
this case will be 2 units of 2/ to 1 of x, or f = 2. 

In the same manner, we can have a function, y = mx, which 

shows that the ratio of y with respect to a; is ^ = m. 

Now m can be any quantity other than zero, as 6, 4, — 3. 
If m is greater than 1, y increases faster than x. 
If m is negative, y decreases as x increases, and the graph 

slopes downward with respect to general positive direction of 
the X-axis, while for positive ms the graph slopes upward. 

Since all these graphs have constant slopes, they are all 
straight lines. If the variation was not uniform, the slope 
would not be uniform and the function would not be of the first 
degree of x. Therefore, all functions of the first degree are 
straight lines. 

127. Another way of considering this change in the relation 
of the function to the variable is, if h is the change in y for an 

increase in x equal to fc, then the slope m is the ratio When y 

is increased by h and x is increased by fc, we have, assuming that 
the given equation is 2/ = mXy (1) 

y + A = m{x + A) = mx + mfc. (2) 

Subtracting (1) from (2), y 

y + A = mx + mk I . 

h = mk 

whence 

m = slope = ^ 

128. The Function mx + -X 
b.—The graph ol y — mx + 
6 is as shown in Fig. 7. 

When X « 0, y — by that ^ 
is, y has an intercept equal to 
6, a constant. This amounts to saying that all values of the func¬ 
tion y « mx + b are equal to the corresponding values of the 
function y =* mx plus a constant, 6. The slope of the graph is 
not changed, but the graph is raised in a vertical direction 
(assuming 6 to be positive) a distance equal to 6. 
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The function has an initial value 6 or a constant quantity, 
regardless of the value of x. 

Equations and graphs are useful in solving problems. Some 
illustrative examples will be given in this chapter, and more 
systematic treatment will be given in later chapters. 

Example.—A railroad train starts 10 miles west of Chicago and 

travels west at the rate of 30 miles per hour. How far is the train 
from Chicago at the end of x hours? 

In X hours, the train travels 30x miles. If the distance from Chicago 

is denoted by y, we have y = 30x + 10. 

y has the initial value of 10. 

30 is the ratio of the distance to the time, the rate of change of space, 
or the slope of the graph. 

Another illustration is afforded by Hooke’s law which states that a 
bar of steel under tension has a length equal to its original length b, 

plus the stretch which is proportional to the force x causing it, or y = 
mx + h. 

The change ratio or slope of mx + & functions is constant for 
assuming two pairs of values, as (xi, yi) and (xa, 2/2). Then 

yi == mxi + h and 2/2 = rnx2 + fc, 

whence 

2/2 — 2/1 = m{x2 — Xi) and -^ == m. 
X2 X\ 

Conversely, if the rate of change ratio of the function y of x 
is constant and equal to m, the function has the form, y = mx 

+ b- 

If we let Ax = Xi — Xi and Ay = yi — yi, the changes we 
make in x and y, we have 

yi — yi _ ^ _ Corresponding change in y 
Xi — Xi Ax P'or any change in x 

129. Equations.—An equation which is true for particular 
values of the variable appearing in it will remain true for those 
values after any one of the following operations has been per¬ 

formed: 
Adding any quantity to both sides. 
Subtracting any quantity from both sides. 
Transposing any term from one side to the other (providing 

its sign is changed). 
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Multiplying or dividing both sides by any quantity which is 
not zero. 

Changing the signs of all the terms. 
Taking the logarithms of both sides (both sides being positive). 
Taking the sin, cos, tan, etc., of both sides. 
Bear in mind that when raising both sides to a power we 

introduce new roots not present in the original expression. Thus, 
X = —2 has one root, but = 4 has both +2 and —2 for 

roots. 
An equation which does not contain a fraction with an 

unknown in the denominator is called an integral equation. 
Then 

3x - s - 15, X + 1 

are both integral equations because neither of them contains 
denominators with unknowns. 

If both members of an integral equation are multiplied by the 
same integral expression containing an unknown, the resulting 
equation has all the roots of the given equation and also the roots 
of the equation formed by placing the multiplier equal to zero. 
The roots introduced are called extraneous roots. 

If both members of an integral equation are divided by an 
integral factor common to both and containing an unknown, 
the resulting equation has all the roots of the given equation 
except those found from the equation formed by placing the 
factor removed equal to zero. The roots of the equation of the 
factor should be included with those of the resulting equation 
to determine all the roots of the given equation. 

130. Setting Up Problems in the Form of Equations.—Denote 
the unknown quantity by x, and from the conditions given in 
the problem, find the expressions which are equalj or form an 
equality^ or equation. One expression may equal another if 
an amount is added or subtracted, or the expression multiplied 
or divided by a number. By arranging these conditions to make 
the expressions equaly we form an equation. 

Numerous laws of mathematics, mechanics, and physics 
often establish the foundation on which to build the equality, as 

Length X Width = Area of rectangle. 

Rjite of speed X Time = Pistance tr£^veledt 
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Number of articles X Price each « Total cost. 
Number of persons X Number of dollars received from each 

= Number of dollars received. 
Principal X Rate of per cent == Interest. 
Square of the hypothenuse = Sum of the squares of the other 

two sides of a right-angled triangle. 
A problem may state the equality direct. We then arrange 

the conditions of the problem to conform to this equality. 
As an illustration, take the following problem: 

In 15 years, A will be three times as old as he was 5 years ago. What 
is his present age? 

We first look for an equ^ility. If we multiply his age 5 years ago by 
3, the product equals his age 15 years hence. This, then, is our equality • 
or equation: 

Age 15 years hence = 3 (age 5 years ago). 
Let X = present age (which we are to determine). 
Then a: + 15 == his age 15 years from now. 
And X — 5 = his age 5 years ago. 
Forming the equation, 

a; + 15 = 3(x - 5) = 3x - 15. 
2x = 30. 

X = 15. 

131. To solve problems containing two unknowns, two 
statements or conditions are necessary. 

One unknown is usually denoted by x and the other by y, 
but it is not always necessary to use two symbols for the 
unknowns, for the second unknown can often be expressed in 
terms of the first. 

Problems using two letters will be treated in the next chapter. 
The following problems illustrate cases where it is simpler to 
use only one letter. 

Example.—One number exceeds another by 8 and the sum of the 
two numbers is 14. Find the numbers. 

The condition of equality is stated direct in the problem, 

Sum of numbers = 14. (1) 

This is also a statement of a condition. The other statement is that 
one number exceeds the other by 8. . 

Let X » the smaUer munber. 
Then a? + 8 the larger number. 
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Forming the equality from (1), 

+ (x + 8) == 14 (Art. 130). 
2a; + 8 = 14. 

2a; = 6. 
a; = 3 = the smaller number, 

a; + 8 = 11 = the other number, 

132. If a problem contains three unknowns, three statements 
of conditions must be given in order to solve it. 

Example.—A contractor spent $1185 in buying additional dump cars, 
switches, and portable track sections, which cost $90, $35, and $15, each, 
respectively. The number of switches exceeded the number of cars by 
4 and the number of track sections was twice as many as the number 
of cars and switches together. How many did he buy of each? 

We establish the equality from the statement. 
Cost of cars + Cost of switches + Cost of track = $1185, which is 

also one of the conditions. (1) 
Let X = the number of cars. 
Then a; + 4 = the number of switches (second condition). 
And 2[a; + (a; + 4)] = number of track sections (third condition). 
Cost of cars = 90a;, 
Cost of switches = 35(a; + 4). 
Cost of track sections == 15(4a; + 8). 
Forming an equation from (1), 

90a; + 35(a; + 4) + 15(4a; + 8) = 1185, from which (Art. 130) 
a; = 5 = the number of cars, 

a; + 4 = 9 = the number of switches. 
4a; + 8 = 28 = the number of track sections. 

133. The tabular method is a systematic arrangement of 
problems to assist in establishing the equality. Problems will 

best illustrate the scheme. 

Example.—The length of a rectangular field is twice its width. If 
the length is increased by 30 yards and the width decreased by 10 yards, 
the area would be 100 square yards less. Find the dimensions of the 
field. 

Length X Width = Area. 
First field 2a; x 2a;*. 
Second field 2x + 30 a; — 10 (2a; + 30)(x — 10). 
Condition of Equality.—If the area of the first field is decreased by 

100 square yards, it eqmk the area of the second field. 
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Then 2x^ - 100 = (2x + 30) (a; -- 10) (Art. 130). 
Solving, X « 20. 

2a; = 40. 

Example.—A certain sum invested at 5 per cent yields the same 
amount as a sum $200 larger at 4 per cent. What is the capital? 

Principal X Rate Interest. 
X .05 .05.r dollars. 

a;+ 200 .04 .04(a; + 200). 
Condition of Equality.—The interest in both cases is the same, 

whence 
.05a; = .04(a; + 200) (Art. 130). 

Solving, X = $800. 

134. Motion or Time and Distance Problems.—In problems 
of this kind when velocity is constant, bear in mind that 

Time X Velocity (rate of speed) = Distance. 
Distance 

,, , Distance 
Velocity - 

Problem.—The speed of an express train is I of the speed of an accom¬ 
modation train. If the accommodation train needs 4 hours more time 
than the expres^train to travel 180 miles, what is the rate of the express 
train? 

Accommodation train 

Express train 

Time X Velocity = Distance. 
180 
— X 180. 

X 

180 9x 
180. 

9x 5 
5 

Condition of Equality.—If 4 hours is deducted from the time of the 
accommodation train, the remainder is equal to the time of the express 
train. 
Then 

_ 4 = 19? (Art. 130.) 
X X 

X = 20 — the velocity of the accommodation train, 
fx = 36 = the velocity of the express train. 

Problem.—A man starts from a certain place and rides his bicycle 
at the rate of 16 miles per hour; 45 minutes (f hour) later, an automobile 
starts from the same place and travels at the rate of 24 miles per hour. 
How long will it take the automobile to overtake him? 
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Time Velocity Distance. 
X 

16 
16 X. 

X 
24 

24 
X, 

Bicycle 

Automobile 

Condition of Equality.—If } hour is deducted from the bicyclist’s 

time, it equals the time of the motorist. 
Therefore, 

* ^ * (Art. 130.) 
16 

Motorist’s time = hours. 

4 24* 

a: = 36. 

^ 36 ^ 
24 

136. Uniform Motion Graphs.—If a 
man walks 3 miles each hour, we can 
illustrate the relation of time and dis¬ 
tance graphically. 

Lay off the scale for hours on the X- 
axis and miles on the F-axis. In the 
first hour he travels 3 miles; therefore, 
locate a point x = 1, y == 3. A straight 
line through this point and the origin 
will determine the relation of time and 
distance. 

The algebraic relation would be 

s = di. 

If this man was traveling to a town 
12 miles from where he started, the graph 
shows that he would arrive at the town 
in 4 hours if he maintained the same rate 
of speed. Now if he had traveled at the 
rate of 4 miles per hour, he would have 
arrived at the town in 3 hours as repre¬ 
sented by the graph OC. You will note 
that the second graph is much steeper 
than the first. Note also that the ratio 
of the distance to the time is the slope of the graph, and that 
graphs for uniform rates are straight lines. 

Problem.—Jones drives a Ford car at the rate of 16 miles per hour 
for hours^ stops IJ hours for lunch, and then continues at his former 

I Z 
T=iimc in hours 

Fig. 8. 
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rate. Five hours after Jones departed, Smith starts in pursuit on a 
motorcycle, at the rate of 32 miles per hour. How far will they haye 
traveled before Smith overtakes Jones? 

Alqebkaic Solution. 

Let X « the distance in miles they travel. In 2| hours at the rate 
of 16 miles per hour Jones rides 40 miles. Then 

a; — 40 = the distance Jones travels after lunch. 

—7^— *=s the time Jones traveled after lunch before he was overtaken. 
Id 

1 1 X — 40 
2^ + Iq H-7^— = the total driving time of Jones. 

iv A lo 
X 

5 + ^ = Smith's driving time, plus 5 hours. 

These times are equal; therefore, 

2^ + ^ ^ which X = 112 miles. 

Graphical Method (Fig. 9). 
0 is the starting point, since 

t = 0 and s = 0. 
Draw OB with slope V until it 

intersects the vertical line repre¬ 
senting 2J hours on the time axis. 
Now, for the next IJ hours, s 
does not increase. This is de¬ 
noted by BC, parallel to the time 
axis. The first man then con¬ 
tinues at his former rate and 
this is indicated by CF, which 
has the same slope as OB, 

The second man starts 5 hours 
later, that is, t = 5, but |)ecause 

lb he starts from the same place as 
Ttmt Axis-t the first man, s = 0. Through 
Fia. 9. D draw DE with a slope of 32. 

This is the graph which represents 
the motion of the second man. The two graphs intersect at the point 
E, for which 8 » 112. Hence, the second man overtakes the first man 
after riding 112 miles. 

Most solutions may be obtained accurately enough, graph¬ 
ically, because in nearly all cases such as the one just cited, 
spee^ are approximations and are not absolutely accurate to 
measurement. 
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136. More Uniform Motion Graphs (see Fig. 10). 

Let X start from a certain point 0 and ^ C A 

travel 12 miles in 4 hours. OA is his graph. i . 

Now, y started an hour later, traveling the g ^ 
same distance, but arrived an hour earlier - C, 
thanx. J5C is his graph. | 3 

How fast did y go and when and where ^ 

n m m 
n 

m m 
did he pass x? ^ 

The point of intersection of the two graphs ■ 
1 Z 3 4 
me in Hours 

answers this. EF shows the distance as 6 
miles, and they passed 2 hours after x started (t = 2). 

Now consider z as having started at the same time as x but from the 
opposite end of the course and at the same speed as y, DE is his graph, 
which we make with negative slope of BC, since he traveled in the 
opposite direction. 

The graph shows that z passed x after x had traveled 4 miles and after 
they had been traveling for hours, z passed y after y had gone 3 
miles and after y had been traveling for i hour (t = IJ). 

137. Problems Relating to Per Cent. 

Problem 1.—How much water must be added to 12 quarts of a 26 per 
cent solution of alcohol to reduce it to a 10 per cent solution? 

Let X = the number of quarts to be added. 
Then 12 + x = the total number of quarts, and 

10 per cent of (12 + x) = the number of quarts of alcohol, but 
25 per cent of 12 or 3 = the number of quarts of alcohol. 

.’. 10 per cent of (12 + x) = 3, or 1.2 + 10 per cent of x = 3. 
10 per cent of x = 1.8. 

X = 18. 

Problem 2.—A manufacturer desires to fill a 30-gallon vat with a 25 
per cent solution of alcohol and water. He has on hand a 40 per cent 
solution which he wishes to mix with a 5 per cent solution. 

How many gallons of each should be taken? 
Let X = the number of gallons of 40 per cent solution. 
Then 30 — a; « the number of gallons of 5 per cent solution. 
From the condition of the problem, 

0.40x + 0.05(30 — x) = 25 per cent of 30. 
0.40x + 0.16 - 0.05X - 7.5. 

0.35x = 6. 

X = 17f and 30 — x « 12^. 

Therefore, it requires 17| gallons of the 40 per cent solution and 12f 
gallons of the 5 per cent solution. 
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Problem 3.—A man receives 6 per cent on some money invested and 
adds $60 to the amount received, making $300. How much did he 
invest? 

Let X = the number of dollars invested. 
Then 0.06a; = the number of dollars received. 

And 0.06a; + 60 = 300. 
0.06a; = 240. 

a; = 4000. 

Note.—Do not let x equal the money invested, hut let it equal the number 

of dollars invested. 

Problem 4.—What per cent above cost must a man mark his goods 
so as to allow a discount of 20 per cent and still make a profit of 20 per 
cent? 

The question is to find what per cent the marked price is to the cost 
of the goods, and then to find how much this is above cost. 

Let c = the number of dollars of cost. 
Then 1.20c == the number of dollars of selling price. 
Also, let m = the number of dollars of marked price. 
Then .80m = the number of dollars of selling price. 

. •. .80m = 1.20c. 
m = 1.50c, which means that the goods must be marked 50 

per cent above cost. 
Problem 5.—If 15 per cent of a number is 9165, what is the number? 
Let X = the number. 
Then 0.15a; = 9165. 
And X = 61,100. 
Problem 6.—What number increased by 66§ per cent, of itself equals 

275? 
Let X = the number. 
Then x + 66| per cent of a; = 275, or 1.66fa; = 275. 

X = 165. 
Problem 7.—After deducting 10 per cent from the marked price of a 

table, the dealer sold it for $13.50. What was the marked price? 
Let x = the number of dollars of the marked price. 
Then x — .lOx = 13.50, or 

.90a; = 13.50. 
X « 15. 

138. Formulae in Interest. 

Let p = the principal. 
r = the rate of interest per year. 
t = the time in years. 
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Interest = Principal X Rate X Time, i = pri. 

n ■ • ^ Interest 
Principal = or p = 

Rate X Time' ^ ~ rt 

. Interest i 
Rate = —;—r-vT —> or r = 

Principal X Time pt 
rn- Interest ^ i 
Time = or ^ = — 

Principal X Rate pr 

Since the interest on $200 for 3 years at 6 per cent is $36, 

i = 200 X 6 per cent X 3 = 36. 

P = = 200. 

r = 

t = 

3 X .06 
36 

3 X 200 
36 

.06 X 200 

= .06, or 6 per cent. 

= 3. 

The sum of the interest and the principal is called the amount, 
or in symbols, 

o = p + t. 
a = p + prt. 
a = p(l + 1’t). 

The principal, less the interest (if the interest is paid 
in advance), is called the proceeds. 

Proceeds = P = p — i. 
= p — prt. 
= p(l — rt). 

Interest paid in advance as above is called discount. 
139. Six Per Cent Method of Finding Interest.—Interest at 

6 per cent for 60 days (2 months) is .01 and for 6 days is .001 
of the principal. To find the interest for 600 days at 6 per cent, 
move the decimal point in the principal one place to the left; 
for 60 days, two places; and for 6 days, three places. After we 
find the interest at 6 per cent, we easily find the interest at other 
rates. Thus, for 5 per cent interest, take |, and for 7 per cent 
interest, take | of that at 6 per cent. 

Interest is usually computed on the basis of a 360-day year. 
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140. One-day Method In Interest.—In large city banks, the 
discount rate varies from day to day. A short rule for finding 
the interest for 1 day at announced rate is given thus: 

Example.—Derive a 1-day rule for finding discount at 4^ per cent. 

i = prt, r = ih, t = jJo. 
i = p ■ jJiF • liir = p ' rsVtr. 

Hence, to find the interest for 1 day at per cent, point off three 
places and divide by 8. 

141. Exact interest is based on a 365-day year, and has the 
ratio of ^ of the common interest based on 360 days. Exact 
interest can be found by adding of the common interest to 
itself. 

Formulae for Discounts on Prices.—If the list price is L, the 
net price N, and there is a single rate of discount r, then 

N = L- rL = 1(1 - r). 

If there are two discounts, ri and the second discount is 
taken as a percentage of the remainder after the first discount 
has been deducted, and then subtracted from that remainder. 
We then have 

N = L(1 — ri)(l — rj) and so on. 

Since L{1 — ri)(l — rj) = L{1 — r2)(l — n), it makes no 
difference which discount is taken first. 

142. Formulae in Commission.—Brokerage or commission is 

charged on the basis of the entire volume of business transacted. 
It is usually a certain per cent of the cost when a purchase is 
made and of the gross proceeds when a sale is made. 

The formulae based on sales, if P represents gross receipts, 
c, the commission, and r, the rate of commission, are 

c = Pr, r = p, P = -• 
P r 

If a broker or commission merchant does the buying and if C 
is the prime cost, c, the commission, and r, the rate of commis¬ 
sion, then 

■ c = Cr, r = ^, C = ^- 

143. Selling Prices.—Salesmen’s and agents’ commissions 
are usually based on the selling price. This expense enters into 
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overhead or cost of doing business. It is more logical to estab¬ 
lish the cost of the goods, the overhead charges, and the profit, 
each as a per cent of the selling price rather than of the cost. 

By keeping careful records of a business, including all kinds 
of overhead charges, a business concern is able to standardize 
its expenses and determine what per cent of the selling price 
should be allowed to overhead charges to realize the expected 
profit and base it on the selling price and not on the gross costs. 

Example 1.—A dealer paid C dollars for an article, plus F dollars for 
freight and cartage. The cost of doing business has been found to be r 
per cent of the selling price, and the profit is to be p per cent of the 
selling price. We have 

Cost = C + F dollars. 
Let X = selling price. 

Then x + ^ = Overhead -H Profit. 

(Selling price) — (Overhead -{- Profit) = Cost. 
Hence, 

X 

X 

X 

“ Too * “ iw 
C + F 

a + F. 

+ F. 

1 - .01(r + p) 

Example 2.—A dealer has charged 10 cents per peck more for first- 
grade than for second-grade apples, and 15 cents per peck more for 
second grade than for third grade. After sorting a consignment of 10 
bushels that cost him $15, he finds that he has 5 bushels, 3 bushels, and 
2 bushels, respectively, of the three grades. To maintain the above 
differentials and to make a profit of $5 on the consignment, how much 
must he charge for a peck of each grade? 

Statement L Price per peck of second grade = Price per peck of 
third grade + 15 cents. 

Statement 2. Price per peck of first grade = Price per peck of second 
grade + 10 cents. 

Statement 3. Total receipts =* $20. 
Let X = the number of cents per peck of third grade. 

Then a? + 16 « the number of cents per peck of second grade. 
And a? + 25 » the number of cents per peck of first grade. 
Hence, 20(« + 26) + 12(a; -H6) + 8x « 2000. 
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Solving, 

• aj = 33 cents =» price per peck of third grade, 
x + 16 *= 48 cents = price per peck of second grade, 
a; + 25 = 68 cents = price per peck of first grade. 

144, Graphical Illustration of Supply and Demand.—The 
supply curve shows how the supply increases as the price 
increases. 

The demand curve shows the quantity that could be sold at 
each price. 

There is a place where the supply is equal to the demand. 
This is the natural selling price. 



CHAPTER V 

LINEAR OR FIRST-DEGREE EQUATIONS. ANALYTICAL 
AND GRAPHICAL SOLUTIONS 

146. The General Equation, Ax + By + C = 0.—Any linear 
relation between two variables, x and y, can be written in the 
form, 

[2] Ax + By + C == 0. 

The equation, y = mx + 6, can be derived from the general 
form provided B is different from zero. Thus, 

By = - Ax - C, 
A C 

^ B^ ^ B’ 

in which 

A C 
— ^ represents the slope and — ^ gives the F-intercept. 

Every equation of the form, Ax + By + C = 0, when graphed 
in rectangular coordinates, represents a, straight line. 

If B = 0, the line is parallel to the F-axis. 
If 4 = 0, the line is parallel to the X-axis. 
If C = 0, the line passes through the origin. 
If the equation is multiplied by a constant k as 

k(Ax + By + C) = Oy 

the graph is identical with the graph of 

Ax + By A- C = 0, 

146. Problems of First Degree in ^ (Work Problems). 

As an example consider the following: 

Example.—A can dig a ditch in 8 days. If B can do it in 10 days, 
how many days will it take them both, working together, to do it? 

Let X = the number of days required. 
83 
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Then 

- =“ the part of the work that both can do in 1 day. 
X 

And 

5 = the part of the work that A can do in 1 day. 
O 

i = the part of the work that B can do in 1 day. 

1 ^ 1 , J. 

Inverting, x = V = 44 » the required number of daj^s. 

147. Graphical Solution of Problem (Art. 146).—^Lay off the 
time in days on coordinate paper of, say, 20 divisions per inch, 
using a half-inch division to represent each day as abscissae and 
take any convenient ordinate on the F-axis, as OH, to equal the 
total work. 

Fig. 12. 

Since A can complete the work in 8 days, locate the point C, 
which has for its ordinate the completed work, and for its abscissa 
8, the number of days required by him to complete it. The slope 
of the line OC, then, will be the rate at which A works. The 
ordinates for each day will represent the amount of work that 
he can do in the corresponding number of da3r8. 

Likewise, B can complete the work in 10 days, and OJ is the 
graph of his rate. 



LINEAR OR FIRST-DEGREE EQUATIONS 85 

Now, the amount of work that they do, working together, in 
any given number of days may be obtained by a simple addition 
of ordinates. Thus, the amount that A does in 8 days is repre¬ 
sented by CEj and the amount that B does in the same length 
of time is represented by DE. With dividers, lay off CF which 
is equal to DE so that EF = EC + ED. This means that EF 
is the measure of the work that they both will do in 8 days. 
Therefore, OF shows how the work is accomplished when both 
are working together. 

Since our problem is to find how long will be required for 
both A and B working together to complete the work, we find 
that the abscissa which corresponds to the complete work OH 
is 4| days. 

In problems of this kind, it is only necessary to bear in mind 
that the rate is the slope of the line, which, is the ratio of the 
ordinate to the abscissa. Usually this slope is given directly in 
the problem. 

148. Problem.—A and B can dig a ditch in 10 days; B and C can dig 
it in 6 days; and A and C can dig it in days. In what time can 
each man do the work? 

Since A and B can dig -h of the ditch in 1 day, B and C, i of it in 1 
day, and A and C, yV of it in 1 day, then 

iV + i + yV is twice the part that they can dig in 1 day, for each man 

would be working twice. 

If X is the time it takes all of them to dig it, - is the part they will do 
X 

in 1 day working together. 
Then 

112^ 12 ^2 . 1^1 
iO 6 15 30 X " X 6 

That is, A + B + C will do i of the work in 1 day. 
A + B will do tV of it in 1 day. That is, 
A + B + C«i 
A + B ^1^0 

C =s= = part C does in 1 day, or it will take him 10 days 

to complete the work. Similarly, 

A + B + C=»i A + B-|-C = i 
E + A + C ===. A 
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Thus, it will take A 30 days, and B 15 days to complete the work. 
Add the ordinates of B + C, A + C, and A + B, at any point as 8 

days, and take one-half the sum for the ordinate of A + B + C, Draw 
ABC line through the point, then lay off AJ5, CD, and EF equal to ON, 
and the points of abscissa equal 10, 15, and 30 davs for C, B, and A, 
respectively. 

149. Graphical Solution of Additional Problems. 

Example.—A faucet which flows at the rate of 2 gallons per minute 
is discharging into an empty tank. After it has been running 10 min¬ 
utes, a second faucet, which flows at the rate of 3 gallons per minute, 
is opened. When the second faucet has been running 5 minutes, a 
third faucet, which flows at the rate of 6 gallons per minute, is opened. 
Five minutes after the third faucet is started, an outlet is opened and 
empties the tank in 15 minutes, although the three faucets continue 
to run. 

Draw a graph representing the amount of water in the tank at any 
instant. Find the average rate the tank is being emptied, as well as 
the rate of discharge per minute of the outlet. 

The increase of the amount of water due to the faucets, as well as 
the decrease of the amount due to the* outlet, is a constant rate, and 
their graphs are, therefore, linear. 

The first faucet begins when t — 0, and the amount of water w is 
also 0. To supply water at the rate of 40 gallons in 20 minutes, OA is 
the graph of the first faucet running alone. 
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The second faucet begins when ^ = 10 to supply water at the rate of 
30 gallons in 10 minutes. If the second faucet operates alone, then BC 
is its graph. 

After 10 minutes both faucets are open, 

and the sum of the two functions is then 
represented by the graph DE which is ob¬ 

tained by adding the ordinates of BC to the 

corresponding ordinate of OA, when the same 
abscissa is taken for both. When ^ = 15, 

the third faucet is opened at the rate of 50 
gallons in 10 minutes. If it operates alone, 

then FG is its graph. When the ordinate of 

this graph is added to the sum of the other 

ordinates as done before, then the graph HJ 
is the sum graph. 

When t = 20, the outlet is opened and at 

t = 35, the tank is empty. The straight line 
KL represents the rate the tank is being 

emptied, which has a negative slope of 6^ 

gallons per minute. The flow of the outlet 

is indicated by the slope of JM or 81J gallons in 5 minutes, or 16J 
gallon per minute. The complete graph is the broken line ODHKLy 
and the ordinates under the graph indicate the number of gallons in 

the tank for any time U 

160. Simultaneous Equations of the First Degree (Two 
Unknowns).—One of the unknown numbers can be eliminated 
by addition or subtraction. If necessary, multiply the equation 

by some number that will make the coefficients of the quantity 
to be eliminated numerically equal. 

161. Elimination by Comparison.—Reduce to the form. 
X = a -- y, 
X = b + y. 

Then 

a — 2/ = 6 + ?/, or 2?/ = a — 6. 
Since both a — ?/ ^od b + y are equal to the same quantity, 

Xf they are equal to each other. 
162. Elimination by Substitution. 

aix + biy = Cl. 

a2X + 622/ = C2. 

From (2), a; = • 
(I2 

Fig. 14. 

(1) 
(2) 
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Substituting in (1), 
ai(c, - bty) 

+ biy = Cl. 

Clearing of fractions, 

OiC* — aibty + o*i>i2/ = o»ci, or 
y(o2&i — dibs) = diCi — OiCj. 

_ OjCi — OiCj , . . j_. y = ^which does not involve x. 
CL^Oi — (I1U2 

Example. 

3x + 2i/ = 27. (1) 
X — y - 4, (2) 

From (2), x = y + 4 and 3x — Sy + 12. 
Substituting in (1), 3y + 2y + 12 — 27, or 

by = 15. 
y == 3. 

Substituting in (2), x 3 « 4, or a; * 7. 

The three methods of elimination just given, i.c., addition or 
subtraction, comparison, and substitution, all produce the same 
resulting equation. 

a b 
163. Equations of the form ^ + y ~ ^ readily solved 

by regarding - and - as the unknown numbers. 
X y 

Example. 

Subtracting (1) from (2), 

. 1 

3 _ 
y 

14 
5* (1) 

10 _ 50 
(2) 

y 3‘ 
13 _ 208 . 

V 15* 

y = Is’ inverting, y = 

Substituting (3) in (1), 
48 _ U 
16 6‘ 

1 3 
x~ 2 

2 
“3 ' Inverting X 
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154. Example. 

' +^-5. 
x-1'y+l 

2 +-^ = 12. 

Consider 
X — 1 

and 

x-1 y -i 1 

1 

+ 1 
as the unknowns. Then 

Subtracting (1) from (2), 

J/ -f- 1 

4,1 1 = 10. (1) 
y + r 

1 = 12. (2) 
y + 1-^ F 

= 2. (3) 

Inverting, 
2/ + 1 = i, y = - \- 

Substituting (3) in (1), 

1 
X — 1 

+ 2 = 5. 

1 
X — 1 

= 3. 

Inverting, 
X - 1 = i or X = li 

156. Solve the equations, 

ax + by = m. 
cx + dy - 71. 

(1) X d = adx + bdy = dm. 
(2) X t = box + bdy = bn. 

(3^ - (4) =: {ad - bc)x = dm - bn. 
dm — bn 

:.x 
ad — be 

an — cm 

(1) 
(2) 
(3) 
(4) 

Likewise, 

^ ~ ad — be 

For a further discussion of this solution, see Art. 167. 



Fio. 15. 

intersections determine the value of x and which satisfy both 
equations. Another method used is given under Determinants, 

Chap. XVIII (Art. 467). 
167. Graphic representation of 

simultaneous linear equations like 
2/ = 6 — x and 2/ == 4 — a;. 

For every value of x, the values 
Of y in the two equations differ by 
0| Wd the graphs are 2 units apart 
vertically. Algebraically, we wish 
to find a set of values of x and y 
which satisfies hoih equations, but 
since the graphs do not intersect, the 
two equations have no common 
solution. 

168. Problems Leading to Equations in » and - (Work 

Problems). 

Example.—A and B together can do a piece of work in 12 days. 
After A has worked alone for 5 days, B finishes the work in 26 days. 
In what time can each, working alone, do the work? 
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Let X « the number of days A requires to do the work. 
y a* the number of days B requires. 

Then 

- + - = that part of the work that they will be able to do in 1 
^ ^ day, working together. 

Or 

^ A of the whole time. 
X y 12 
5 
“ = the part of work that A does in the 5 days. 

26 
— = the part B does in 26 days. 

*5 26 
- H-- 1, or the whole amount of work. 
X y 

1. 1 ^ 2 
y 12’ 

from which a: = 18 and y = 36 days. 

169. General Case.—A and B can do a piece of work in a days, 
or if A works m days alone, B can finish the work by working 
n days. In how many days can each do the work? 

Let X = the number of days A requires. 
y = the number of days B requires. 

Also, as before, 

Multiplying (1) by n 

Subtracting (3) from (2), 

^ + 1 = 1. 
X y a 

m 

X y 

n , n _ n 
X y a 

m — n _ j ^ _ a — n 
X a a 

a(m — n) 

^ 4- ^ 

X y ^ a 

Multiplying (1) by m, 

(4) 
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Subtracting (2) from (4), 

m — n _ ^ _ j _ tn — a 
y ~ a ~ a 

aim — n) 
y = m — a 

These values of x and y reduce the problem to formulae and the 
substitution of the proper values in these formulae gives quick 
results. 

160. Another Form. 

Example. 

xy ^ 1 
x + y 5 

yz ^ I 
y + z 6 

zz _ 1 
z + x~ 7 

In other words, separate the x and y, and proceed. 
161. Problem (Graphical Solution).—A warship going at the 

rate of 10 miles per hour sights a ship 18 miles ahead of it going 
at the rate of 8 miles per hour in the same direction. How far 
can the ship go before it is overtaken? 

TtVn« in Hour$ 

Fio. 17. 

Draw AC with a slope representing a rate of 100 miles in 10 
hours and BC with a slope representing a rate of 80 miles in 

10 hours. 
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Make AB equal to 18 miles. 
The point of intersection of the two graphs, C, gives the dis¬ 

tance the warship goes as 90 miles and the time as 9 hours. 
162. Problem (Solution by Graph).—Suppose that we have 

two towns that are 50 miles apart. A is to leave one of these 
towns at 6 o’clock and to arrive at the other at noon (12) after 
making four stops of a half hour each at 10, 20, 30, and 40 miles 
from the starting point. 

B leaves the other town at 7 o’clock, travels 20 miles an hour 
for 1 hour, then turns back, and retraces his path for an hour at 
the rate of 10 miles per hour. He then turns and advances again 

Time by Clock 

Fio. 18. 

at such a rate as to meet A as he is starting from his third halt. 
Continuing at the same rate, B meets at half past ten (10:30) 
a third man, C, who left the first town 2 hours later than A and 
who has been going at a uniform rate. At what rate has C 
been traveling and where did B meet him? 

Algebraically, this problem appears to be somewhat difficult of 
solution, and in fact the graphical solution is much the simpler 
and more direct method. 

Solution.—If A had traveled without stopping, he would 
have arrived at the town at 10 o’clock, since his halts aggregated, 
in all, 2 hours and he arrived at 12 o’clock. Therefore, 

60 Distance traveled j,. ^ 
4 rune consumeci 
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The complete graph of A’s motion including the half-hour stops 
is as shown in Fig. 18. The graphs of the motions of B and C are 
easily made and it will be noted that B and C meet about 23 
miles from where C started. The slope of C’s graph is about 
9J, which indicates that C traveled at the rate of 9| miles per hour. 
It will be understood, of course, that a much larger diagram 
than that shown is necessary in order to obtain accurate results. 

Note.—Time of day may be plotted as abscissae instead of the number of 

hours, since the two methods are in effect the same. 

163. Problem (Graphical Solution).—Two men start at the 
same time to walk around an island. The first man goes at the 
rate of 5 miles per hour; the speed of the second man is such as 
will carry him around the island in 3| hours, the distance being 
10 miles. How long after starting will the first man pa.ss the 
second and how long will it be before he will pass him the second 
time? 

OA, BC, etc. (Fig. 19) are the graphs representing the first man’s 
trips around the island. When he starts on the second lap, 
represented by BC, the distance from the starting point is 0, 
and the graph starts with the same abscissa for B as for A since 
time goes on uniformly without any stop. 

OD, EP, etc. are the graphs representing the second man’s 
progress. 

The points of intersection, R and P, give the times and dis¬ 
tances at which the two men pass. It will be seen that they first 
pass 5 hours after starting, at a distance of 5 miles from the 
starting point, and that they pass the second time at the starting 
point 10 hours after they started. This amounts to saying that 
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the first man traveled five times around the island while the 
second man was making three trips. 

Note also that the first man had made tw9 and one-half trips 
when he first passed the second man and that the second man had 
made one and one-half trips before he was overtaken. 

It is evident from the foregoing examples that the graphical 
method is much more descriptive, shows much more to the eye 
than the analytical method, and is usually sufficiently accurate 
if a large scale is used. 

164. Clock Problems.—Two bodies are traveling at different 
speeds under certain conditions. A common example is the 
motion of the hands of a clock. 

Example.—At what time between 5 and 6 o’clock are the hands of a 
clock together? 

Beginning at 5 o’clock, let x represent the number of minute spaces 
passed over by the minute hand before the hands are together. 

In the same time, the hour hand (which travels one-twelfth as fast) 

passes over one-twelfth as many minute spaces. 

Since there are 25 minute spaces between them at 5 o’clock, 

X = 25 + or X - Y2 = 25, 

from which 

X = 27A = the number of minutes after 5 o’clock when the hands 

are together. 

166. Graphical Solution of Clock Problems.—By representing 
graphically the motion of the hands of a clock, solutions for 
problems such as Art. 164 are easily obtained. 

Fig, 20. 

In Fig. 20 are shown the graphs representing the motions ot 

the two bands of a clock during 12 hours. Minute spaces 
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traversed, or distance, is plotted as ordinates and time is plotted 
as abscissae. During the 12 hours, the hour hand has made 1 
revolution which is represented in the graph by the long diagonal. 
In the same time, the minute hand has made 12 revolutions as 
shown by the 12 short diagonal lines. This graph and its 
explanation are analogous to those given in Art. 163 illustrative 
of the motion of two men around the island at different rates, 
and in this case also the intersections show the time and place 
where the two pass. Thus, it will be seen from the figure that 
if the two are together at noon, they will again be together a 
little after 1 and a little bit more after 2 o’clock, etc. 

Let us take one hour from the diagram and enlarge it (Fig. 21). 
The hands are at right angles at 3 o’clock. If we desire to 

know when they are again at right angles, we have only to 
observe in the figure the times at which there 
is a difference in vertical distance between the 
two graphs which will correspond to 15-minute 
divisions, since the hands are at right angles 
whenever they are 15-minute divisions apart. 
Thus, in the figure, A 5 is the graph of the 
minute hand for one hour, and CD is the graph 

of the hour hand. When there is a difference 
between their ordinates equal to the vertical 
distance representing 15 minutes, as at M, 
the hands are at right angles and the time is 

given by M. Similarly, if we desire to know when they are directly 
opposite to each other, we find the places in the graph for which 

the difference of ordinates is equal to the vertical distance repre¬ 
senting 30 minutes or § hour. Such a place is shown at N and, 
as before, N indicates the time at which the hands assume such 
a position. 

166. Net Profit Problem.—^The net, profit may be solved by 
using the graph of two simultaneous equations. One equation 
represents the total cost and the other, the total sales. 

Example.—^The cost of the necessary machinery and its installation, 
before a certain toy could be manufactured, was $300. Each toy pro¬ 
duced cost 60 cents for material and labor and sold for $1.25. 

The cost equation is 

C 1= 300 -f- 0.60n, where n = the number rhade. 
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The sales equation is 
S = nX 1.25 = 1.25n. 

When n » 800, C = 780 as shown at A, and S = 1000, as shown at 
B. 

AB = net profit = 1000 - 780 = 220. 
When n = 1000, C = 900 as shown at D, and S = 1250, as shown at 

E. 
At F the sales just equal the cost when n = 461. 

Number o-f Toys 

Fig. 22. 

167. Simultaneous Equations. General Form. 
Let aix + biy = Ci and 

aiX + 622/ = C2 

be two simultaneous equations where none of the constants 
are 0. 
Eliminating y, we have 

((1^62 — dibi^x = €162 — C2hi. 

Eliminating x, we have 

{dibi — d^i)y = Cid2 — C2U1. 

If (0162 djbi) is any quantity other than 0, we have 

C162 — C261 

djb% U261 
and 

(Z1C2 — U2C1 

U162 — d^i 
X 
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dihz •“ <i2^i ~ Of 
^2 
6V 

we cannot use the above solution. 

If we let A = — = we have 02 = tei and dg — kbi. 
Oi 0i 

The original equations, then, become 
aix + biy =* Cl 1 which represent the same line, or parallel lines. 

kaix+kbiy = Ct j 

If Ct = kci, the equations have an infinite number of solutions. 
If Cz 9^ kci, the equations are not consistent and are not satis¬ 

fied by any values of x and y. 
168. Equations in More than Two Unknowns.—The methods 

used for two simultaneous equations each containing two 
unknowns may also be used for solving a system of three or 
more equations involving as many unknowns as there are 
independent equations. The following method of procedure is 
recommended: Continue to eliminate the same unknown in the 
given equations until there is pbtained a group of one less than 
the original number of equations with one less unknown. Next 
eliminate a second unknown from the new group in the same 
manner. Continue these operations until only two simultaneous 
equations remain, which can readily be solved. The other 
unknowns can be found by substituting those found in some of 
the equations or by proceeding as at first but eliminating a 
different unknown this time. 

Examplk. 

Tx ‘iy ~ 2z = 10. 
- y + 5z = 31. 

, j ,. 2j; + 5y + 3? = 39. 
Adding three times (2) to (1), 

, ... ^ 22x + l,3^ = 109. 
Adding five times (2) to (3), 

. . 27* 4- 282 = 194. 
Solving (4) and (5) by previous article, we have 

a u ■ ■ * = 2, 2 = 5. 
bubstituting these values in (1), we have 

flW2> ^ = 2! y = 4, and 2 - 
(1), (2), and (3). 

(1) 
(2) 
(3) 

(4) 

(5) 

5 satisfy equations 



CHAPTER VI 

QUADRATICS OR SECOND-DEGREE EQUATIONS. 
EXPLICIT FUNCTIONS, ANALYTICAL AND 

GRAPHICAL SOLUTIONS 

169. The Quadratic Function x*.—The simplest quadratic 
equation is y — x*. Its giaph is a continuous curve, lying 
wholly above the Z-axis, symmetrical with respect to the F- 
axis, and passing through the origin and the points (1, 1) and 
( —1, 1), and is known as the parabola (Fig. 23). 

Fig. 23. 

At any point j/O on the curve, the straight line with 
slope 2xi passing through this point is tangent to the curve. 
The rate of change of the function with respect to the variable 
at any point (®i, yi) of the curve is equal to 2xi. Thus, when xi 

= 2, the slope of the tangent is 4. 
These facts are here given without proof. They may be 

accepted and used as an aid in plotting. Their proof will be 

reserved for a later section (Art. 896). 
99 
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For the plotting of graphs, it is advisable to use i inch for 
each unit, when the coordinate paper is ruled with M spacra per 
inch, or 1 centimeter per unit when the paper is metrically 

ruled. 
170. The Graph of x* with a Coefficient or ax*.—For purposes 

of comparison, the graphs of 

II (1) 
y = X*, and (2) 

II (3) 

are all given in Fig. 24. 
It will be noticed that for a 

given value of x, the ordinates of 
(1) are twice the corresponding 
ordinates of (2) and that the 
values of the corresponding ordi¬ 
nates of (3) are only half as 

great as the values of these ordi¬ 
nates of (2). 

Likewise, for the two curves, 

y — 3?, and 
1/ = ox*, 

-X the ordinates would have the 
ratio l;a, o being any positive 
number. 

We can take the curve of x* and, by using different scales of 
ordinates, obtain the graphs of 2x* and Jx* as in Fig. 23, where 
the same curve represents the locus of x*, 2x*, or jx*, depending 
on which scale of ordinates is used. 

Assuming that the graph of x* is drawn using scale of ordinates 

(1), we can transform the curve to 2x* by renumbering the 
ordinates according to scale (2) or transform the graidi to 
represent Jx* by using scale (3). We can also reverse the opera¬ 

tion and change y =* 2x* to y = x* by changing the ordinate 
scale. 

171. The General Quadratic Function y «■ an* hx -b- C!.— 
I^t us start with the graph y « ox* with origin at 0| and 
what changes will occur in the equation if the ori^ il (^to4 
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to BOine other location as Oi, and a new equation of the curve 
written in terms of a:i and yi referred to the new axes. From 
Fig. 25, x = Zi + h, and y = yi + k. 
If these values of x and y are sub¬ 
stituted iay = ax^, then 

yi-\-k = a(xi -f- hy. 

= oxi* ■+- 2ahxi -f ah^. 
yi = aixi)* -f- 2ahxi -f afe* — k. 

This is in the form j/i = o(a;i)* -t- bxi 
-f- c, or by dropping the subscripts, 

[3] y — 03^ + bx + c, 
•y 

which is known as the general ^ 
form of the quadratic in one un- X 

known. It is important to remem¬ 
ber that this general form is the 
same locus as 2/ = with the origin 
translated, and that the graph is 

always a parabola. It is also a form which every quadratic in 
one unknown can take. 

172. Transformation Coordinates.—From the previous article 
(171), the graph of y = ax^ was transformed to the form 
2/1 == aixiY + 2ahxi + ah^ — k by substituting Xi + h for x, 
and yi + k for y, which compared to the general form, 

2/ = + c, 

Y 
Fio. 26. 

gives 

From (2), 

[4] 
and from (3), 

a — a. 
b = 2aL 
c = ah^ — k. 

(1) 
(2) 
(3) 

or 

[6] k 
V — 4flc 

4a 



102 MATHEMATICS FOR ENGINEERS 

To change y = ox* to the general form y = ax^ + 6x + c, we 
simply shift the origin to the point (A, k), where 

, b jt 1 — 4ac 
— TT k =-T- 

2a 4a 

In case we have the origin located and wish to find the vertex 
of the parabola, our directions will be reversed, and the formulae 
become 

-Ta 
k 

— 4ac 
4a 

173. We now come to the discussion of a very important 
method of graphically solving equations of the form, + bz + c 
= 0 and ox^ + 6x + c = 0. Assume that we desire first the 
roots of x^ + fcx + c = 0. The graph of y = x^ + 6x + c will 
represent all of the corresponding real values of x and x^ + bx + 
c; and among them will be the values of x that make x^ + 6x + c 
equal to 0; that is, the roots of the equation x^ + 6x + c = 0. 

We take our standard x^ graph, which we advise to keep in 
stock, and determine the origin by the values of h and k 

< 2a 
b^ — 4ac\ 

-I, 

4a / 
and then draw the X- and F-axes. The intersections of the 
curve with the X-axis determine the roots. 

EIxample.—Find the roots of x^ + 12x + 32 = 0, graphically, 

a = 1, 6 = 12, c = 32. 

12 ^ , (12)2 - 4 X 32 
h = 

1 X 2 
= 6, A; = 

1 X 4 
= 4. 

Therefore, locate 0 at (6, 4) and draw the X- and F-axes. The X-axis 
intersects the graph at —4 and —8, which are roots. 
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If our equation has the form, ax^ + bx + c ^ 0, that is, if x 
has a coefficient a, we can use a graph obtained from the y ^ x^ 
graph by multiplying all the ordi¬ 
nates by a. A simpler method, 
however, is to use the y = 

graph and change the scale of 
the ordinates. 

The origin is located by find¬ 
ing h and k on the new scale, or 

k 
h and on the old scale. 

a 

Example.—Draw tlie graph of 

y = 2.r2 — 16x 4- 24. 
a = 2yh == —16, c = 24. 

^ 2a 2X2 

4a 8 

= ~4,/b = 

8. 
Take the y = graph, and multiply the numbers in the vertical 

scale by 2, which gives the new vertical scale. Then take 6 = — 4 

and k — S on the new scale to locate the origin. The y — x‘^ graph is 
now converted into y - 2x‘^ — 16ar -f 24 graph. 

174. To aid in determining easily the location of a graph and 
its coordinate axes, when its equation is given, the following 
examples are given as exercises: 

p]xAMPLE 1.—— 8a: + 14 = 0. Let y == a:^ — 8a: -f 14. 
a = 1, /> = —8, r = 14. 

, , , (-8)2 - 4 X 14 64 - 56 ^ 

^ 4 4 

Starting at the vertex, the origin is at the point (—4, 2), four units 

in the negative direction (to the left) and two units upward. The 

roots of 0:2 — 8a: + 14 = 0 ^re x = 2.6 and x = 5.4 approximately 

Example 2.—a:^ — 8a: + 16 = 0. 

}i __ -s ^4^ — 

Let 7/ = 0:2 — 8a: + 

(-8)2 ~ 4 X 16 _ ^ 

The origin is at (—4, 0). 

The roots are a: = 4 and a: == 4. 

Example 3.—-0:2 - 8a: + 18 *= 0. 

h = —4, k « —2. 
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The origin is at (—4, —2) from vertex. This graph does not inter¬ 
sect the X-axis and the roots are, therefore, imaginary. The roots 

found by the anal)rtical method (see Art. 183) are 

x * 4 + 1.41 and a; = 4 — 1.41\/^i. 

Example 4.—+ 8x + 14 = 0. 
= 4, A; = 2. 

The roots are ac = —2.6 and x = —5.4. 

Example 5.—o;* + 8a: + 16 = 0. 
/i = 4, A: = 0. 

The roots are a: = — 4 and x = —4. 

Example 6.—a:* + 8a: + 18 = 0. 
A = 4, jb = -2. 

The roots are imaginary but are equal to 

X = —4 -h 1.41 V^l and x = —4 — 1.41\/ —L 

176. In case the coefficient of the term is negative, as 

y — — 3x^ + 4x + 4, 
a = — 3, 5 = 4, c = 4. 

h = --1™ = -2 , 16 :;:_4j-3)(4) 
2(-3) 3'^ “4(-3) 

-5i. 

Since the term is negative, the graph is inverted, but the h 
and k values are measured in the same manner as before from 

the vertex of the parabola, regardless of the in¬ 
version but using the new scale (see Fig. 28). 

By using the graph of x^ as before and invert¬ 
ing it, we have the same method of solution as 
has already been discussed. 

If h is negative, the origin will be to the left of 
the axis of the parabola. 

If h is positive, the origin will be to the right 
of the axis of the parabola. 

If a is positive, the parabola will have its 
vertex pointing downward. 

The most important consideration of all is whether k is posi- 

tive or negative. Now k is ^qual to so that if o is 

positive, 6^— 4ac determines the sign of k. From the discuMon 
ripsady given, it will be seen that if a is positive and k negativOi 

Fio. 28. 
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the X-axis will Jie entirely below the curve and there will be no 
real roots since there will be no intersections of the curve and 

the X-axis. If o is negative and k positive, the X-axis will 

lie entirely above the curve and again there will be no real roots. 
Therefore, if a and k have like signs, the roots will be real and 
unequal; if A; = 0, the roots will be real and equal; if a and k 
have unlike signs, there are no real roots. 

Hence, it will be readily seen that: 

If 6* — 4ac is positive, the roots are real and unequal. 

If 6* — 4ac is equal to zero, the roots are real and equal. 
If 6* — 4ac is negative, the roots are imaginary. 

If 6* — 4ac is a perfect square, the roots will be rational; 

otherwise they will be irrational. The expression i>* — 4oc is 

called the discriminant of the quadratic. 

x* - 8x + 14 = 0. (1) 

X* ~ 8x + 16 = 0. (2) 
X* - 8x + 18 = 0. ' (3) 

Roots of {!) are approximately 2.6 and 5.4. 
Roots of (2) are 4 and 4. 
Roots of (3) are imaginary. 

Since graph (2) has only one point in common with the 

X-axis, equation (2) appears to have only 
one root, x = 4. It will be observed, 

however, that if graph (1) which repre¬ 

sented two real roots were moved upward 
two units, it would coincide with graph 

(2). During this process, the unequal 

roots of (1) would approach the value <rf 
X = 4 in (2). Consequently, the real 

roots are regarded as two in number. 
The movement of the graph of (1) up¬ 

wards two units corresponds to complet¬ 
ing the square in (1) by adding 2 to each 
member. Since the roots of the resulting equation, x* — 8x + 16 = 

2, differ from those of (2) or from the mean value x = 4 by ± 

or ±'\/jK, it is evident that the roots of (1) are represented by 

OK + y/lK - 4 + v^2 - 6.414 + andOK - y/IR - 4 - - 2.686 -. 
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Since graph (3) has no point on the X-axis, there are no real 
values of x for which — 8x + 18 is equal to zero; that is, (3) 
has no real roots. Consequently, they are imaginary. 

If graph (3) were moved downward two units, it would coin¬ 
cide with graph (2). If the square in (3) were completed by 
subtracting 2 from each member, the roots of the resulting equa¬ 
tion, - 8x + 16 = ~2, would differ from the mean value 
by +a/—2 or ± \/LK. Hence, it is evident that the roots of (3) 
are 

OK + VLK = 4 + and OK - VLK = 4 - V ~ 2. 

The points, J, K, and L, whose ordinates are the least alge¬ 
braically that any points in the above graphs can have, are 
called minimum points. 

When the coefficient of is +1, it is evident from the preced¬ 
ing discussion that: 

1. The roots of a quadratic in x are equal to the abscissa of 
the minimum point plus or minus the sfjuare root of the ordinate 
with its sign changed. 

2. If the minimum point lies on the A'-axis, the roots are real 
and equal. 

3. If the minimum point lies below the A-axis, the roots are 
real and unequal. 

4. If the minimum point lies above the X-axis, the roots are 
imaginary. 

176. Aids in Construction of Graphs of General Quadratic 
Function y = ax^ + bx + c. 

Every function of the above fonn is continuous. 
The slope of the tangent will be proved later to be 2axi + ^ 

at the point Pi(xi, 2/i)(Art. 913). 
If a is positive, the curve has its vertex pointing downward, 

but if it is negative, the curve is inverted, thus: ^ 
The point on the curve where the slope is 0, or the vertex of the 

curve, is the point where 

(a 5-0).^ 

When X = — the function y = ox* + 6x + c haa a mini- 

mum value if a >0 and a maximum value if o <0. 
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The curve represented by the function is symmetrical with 
respect to the line, 

It is possible to determine by observation according to the 
above whether the curve is or . 

If the former is the case, there is a maximum value at the 
vertex, and in the latter case the vertex represents a minimum 
since it is the lowest point on the curve. 

To draw the graph of a parabola representing the locus of the 
equation, y = ax^ + + c, we locate first the axis and the ver¬ 
tex and then a few points on the curve. 

Example.—Make a graph of 

y = ^ 6x + 5. 

The slope of the tangent m equals 2axi + 5 = 2xi — 6. Since the 
slope of the tangent at the vertex is equal to 0, 2xi — 6 = 0 and xi = 

3. The value of y corresponding to this 

value of X is — 4. These values of x and y 
locate the vertex, and since is positive, 

the point is a minimum. Draw the axis 

which is the vertical line through the 

vertex. Draw the horizontal tangent at 
the vertex. Locate a few more points and 

draw the tangents to the curve at these 

points. Draw in the curve. 

In substituting values of x, where 
the coefficient of is +1, as is the 
case in this instance, it is convenient 
to take for the first value of x ^ num¬ 
ber that is equal to half the coefficient 
of X with its sign changed. Next, val- Fig. 30. 

ues of X differing from this value of x 
by equal amounts may be taken. Thus, substituting x = 3, 
it is found that — 4, Next, assign values to x differing 
from 3 by equal amounts, as 2\ and 3J, 2 and 4, 1 and 5, 0 and 6. 
It will be found that y has the same value for x == 3i as for x = 
2J, for X = 4 the same value as for x =2, etc. 

It will be observed that when x==3, a? — 6x + 5= —4 and 
when X « 2 and x = 4, x* — 6x + 5« —3. When x 0, 
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a:® — 6® + 5 « 5. Thus, it is seen that the ordinates change 
sign as the curve crosses the X-axis. When the ordinates are 
equal to zero, the values of — 6rc + 5 are equal to zero, and 
the abscissae denote the values of x which make y = 0. Hence, 
05 = 1 and a? « 5 make y = 0, or the roots of x® — 6a; + 6 =* 0 
are 1 and 5. 

Note that half the coefficient of x with its sign changed, the 
number first substituted for x, is half the sum of the roots, or 

their mean value when the coefficient of x* 
is +1. 

Example.—Make a graph of 

y = 4- 4a; -j- 5, 

The slope of the tangent is — 2xi + 4. Set¬ 
ting this equal to 0 and solving for Xi gives 
the abscissa of the vertex. The corresponding 
value of y is found by substituting the deter¬ 
mined value of X in the equation of the locus. 
Here, xi *= 2 and y\ = 9. Hence, the vertex, 
which is a maximum since d is less than 0, is at 
the point (2, 9). 

The vertex must lie on the axis of the curve, and since the 

axis is readily found by means of the formula, x = — we may 
/td 

use this formula directly to find the abscissa of the vertex. 
Since now the vertex is on the curve, its coordinates must satisfy 
the equation of the locus. Hence, by substituting the value of 
xi for X in the equation and solving for yi, we obtain the ordinate 
of the vertex. 

177. Maxima and Minima of puadratic Functions.—In Art. 
176, it was stated that the function ax? + 6x + c was a parabola 
with its vertex pointed downward, thus v^, when the coefficient 
of X? was positive. The point at the vertex, then, represents 
the minimum value of the function. 

When the coefficient of x® is negative, the curve is inverted and 
the vertex is pointed upward. It, therefore, denotes a maximum* 

If we locate the axis of the parabola the abscissa of which is 

we will determine the maximum or minimum values of the 

function, for the vertex lies on the axis. 
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Example.—y * a;* — 24c + 108. 

The vertex will represent a minimum, since the coefficient of x* is 

+ 1- 
b —24 

The abscissa of the vertex is —or-^ , or +12, 

.*. the function — 24x + 108 will have a minimum value when z = 
12. 

Example.—A rectangular piece of land is to be fenced in and a 

straight wall already built is available for one side of the rectangle. 

What should be the dimensions of the rectangle in order that 4 miles of 
fence will enclose the greatest area? 

It is possible to construct an infinite number of rectangles 
having the same amount of fence, but of these there is only one 
which will contain the maximum area. The function with which 
we are here concerned is the area of the rectangle, a function 
of its two sides. Since we desire to have the function in terms of 
one variable, we must write one variable in terms of the other. 

Let the sides of the rectangle be x and z. Since the given length 

of the fence is 4 mUes, then -........... 

2a; + 25 = 4 ! \ 
! ^ * 

The area enclosed is ?/ = zZj which, when 
4 — 2x is substituted for 2, gives y = - 

x(4 — 2x) = — 2x* + 4x. The sign of the 

coefficient of z^ is negative and the function 

y will have a maximum value when x = ~2a’ “ ~ 

—2 and 6 = 4. 

2x + 2; = 4. 2 + z = 4, or ^ = 2. 

Dimensions of rectangle are 1 mile by 2 miles. 

Area of rectangle is 2 square miles. 

178, Graphical Solution of Art-177- 
1/ => — 2x* + 4x (see Fig. 33). 

The graph has its vertex pointed upward, since a = — 2, 

Locate the vertex by means of the equations, 

—= 1, since a = 
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Locate the origin from the vertex of the y = graph, 1 unit in the 
negative x direction (to the left) and 2 units in the negative y (down¬ 

ward) direction. The unit for y is different from those for x since 
a « — 2 and the numbers in the ordinate scale are multiplied by 2. 

Any point on the graph represents an area enclosed by 4 miles of fence 
and the wall. Pi(xij iji) and P2(ir2, yt) represent two such areas. It is 
readily seen, however, that the maximum area is represented by the 

ordinate at the vertex whose coordinates are (/i, k). 

Bear in mind that the value of the function is shown by the 
ordinates and has no relation to the area under the curve. This 
area will be discussed later. We give the variable some value Xo 
and the length of the ordinate at this point represents the value 
of y (yo) for that particular value of x. From the graph we can 
readily see how the value of the function changes when we take 
different values for x. 

179. Problem.—Three streets intersect so as to enclose a triangular 
lot ABC, The frontage of the lot on BC is 180 feet and the point A 
is 90 feet back of BC. A rectangular building is to be constructed on 

this lot so as to face BC, What are the dimensions 
of the ground plan which will give the maximum size 

of floor area? 
The area varies with the sides of the rectangle. 

It is, therefore, a function of the sides. 
Let X and z be the length of the sides. 

The area y = xz. 
In order to express y in terms of one variable, we must express the 

second variable in terms of the first. The triangles ABC and AMN are 

similar. Hence, 
MN 
BC 

LA 
= 51’" 
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Substituting this value oi z in y = xz, we obtain 

y=-~ + 90x + 0. 

The function y — “ ix^ + 90x will have a ma5:imuin at 

X = — or X = — 
2a -^- = 90 

-2(i) 

When X = 90, 2 = 90 — ^90) = 45. 

The maximum size of the building is, therefore, 90 by 45 and the 
area is 4050 square feet. 

A solution of this problem may be obtained graphically in the 
same manner as in the previous problem. 

180. The following method is a convenient one to use in 
constructing the graph of a parabola. 

Fia. H5. 

Assume some convenient value of a:, say xi, and solve for 
the corresponding value of y. Construct a rectangle as shown, 
using yi as one side and 2xi as the other in Case 1. In Case 2 
use Xi as one side and 2yi as the other side of the rectangle. 

Divide Xi and yi into equal divisions. The intersections of 
the parallel lines and the diagonals as shown are points on the 
graph. Draw the curve through these points (see Art. 755). 

181. Quadratic Equations. Analytic^ Methods.—To solve 
quadratics, that is, to find the values of the unknown which 
satisfy the equation: 

First Reduce the equation to the general form [3], 
ax^ + 6x + c == 0. 

Second. If the factors are readily seen, solve by factoring. 
Third. If the factors are difficult to find, solve by completing 

the square or by formula. 
Fourth. Verify all results, rejecting roots that have been 

introduced in the process of reducing the equation to the general 
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form, and accounting for all roots that have been removed. 
The methods will be illustrated by examples. 

Example 1.—Find the roots of = lOx — 3. 
Reducing the equation to the form, ax^ + 6x + c = 0, gives 

3x* - lOx + 3 = 0. 

Factoring, 

(x - 3)(3x - 1) = 0. 
Therefore, 

X — 3 = 0, or 3x — 1 = 0. 
And 

X == 3 or 

Example 2.—Solve x* + 6x = ~5 by completing the square. 

Complete the square of the left member by adding 9 to both sides 

of the equation. 

x2 + 6x + 9 = -5 + 9. 
(x + 3)2 = 4. 

Extracting the square root of both sides, 
x + 3 = ±2. 

X ^ —3 — 2 or —3 + 2 = —5 or —1. 

Example 3.—Find the roots of 3x2 ^ — 3. 

Multiplying by 3, 
9x2 4. 30a; = -9. 

Completing the square, 
9x2 + 30a; + 25 = -9 + 25 = 16. 

To determine the amount to be added to complete the square, 
make the coefficient of a perfect square. Then the number to 
be added to complete the trinomial square is obtained by dividing 
half the coeflScient of x by the square root of the coeflScient of 

/ 5 \2 fc2 

7? and squaring the quotient. == — = 7- after a 

is made a perfect square. 
182. Quadratic Equations. Hindu Method of Solving. 

To solve the general quadratic equation [3], 
ox* + 6x + c = 0. 

Transposing c, 
ox* + hx - — c 

Multiplying (2) by 4a, 
4a*x® + 4ahx « — 4ao. 

(2) 
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Completing the square by adding 6^ to both members, 

+ 4a6a; -f- 6* = — 4ac. 
Extracting the square root of both sides, 

2ax + 6 = + \/62 — 4ac. 
Therefore, 

± \/b^ — 4ac 
X =--- 

2a 
Hence, when a quadratic has the general form of (1), if the 

absolute term is transposed to the second member, as in (2), 
the square may be completed and fractions avoided, by multiply¬ 
ing by four times the coefficient of and adding to each member 
the square of the coefficient of x in the given equation. 

This is called the Hindu method of completing the square. 
183. Quadratic Equations. Solution by Formula.—Every 

explicit quadratic equation in one unknown may be reduced to 
the form, ax^ + bx c = 0 [3], in which a is positive, and b 
and c may be either positive or negative. The roots are 

[6] = 
•— 6 + \/6^ — 4ac 

and X2 = 
— 6 — \/6^ — 4ac 

2a " 2a 
An examination of the above values of x will show that the 

nature of the roots, that is, whether they are real or imaginary, 
rational or irrational, may be determined by observing whether 

\/ (6^ — 4ac) is real or imaginary, rational or irrational (see 

Art’. 175). 
Any quadratic, as ax^ + bx + c — 0, may be reduced, by 

dividing through by the coefficient of to the form, 
[7] x^ + px + q = 0, 
whose roots are found by actual solution to be 

18] _ -p + Vp;,--i2 ^ 

—2v 
[9] Adding the roots, Xi + Xz = = —p. 

■— — 4a) 
[10] Multiplying the roots, XiXz ^ 

Hence, the following rule: 
The sum of the roots of a quadratic equation of the form, 

»* + px + 5 = 0, is equal to the coefficient of x with its sign 
changed, and the product of the roots is equal to the constant 

term. 
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184. Since we know that if two curves do not intersect, the 
values of x and y which satisfy both of them are imaginary, and 
6* — 4ac is negative when the roots are imaginary; therefore, to 
determine whether a first- and a second-degree curve intersect, 
solve simultaneously and eliminate y, then note whether the 

discriminate fc* — 4ac of the resulting equation is negative. 

Example.—Find whether the line, y = 2x + 12, and the circle, 
js -|- = 25, intersect. 

Eliminating y, 
+ (2® + 12)>“ = 25. 

bx’^ + 48* -I- 119 = 0. 

5** - 4oc = (48)* - 4(5) (119) = -76. 

The value of 6* — 4ac is negative, and the curves do not, therefore, 

intersect. 

185. Formation of Quadratic Equations. 
If we let r\ and be the roots given, we learned that the sum 

of the roots, ri -f ra = — p [9] in the general form, ** -}- p* + g = 
0 [7], and that their product, riPa = q [10]. Therefore, substitut¬ 
ing — (ri + ra) for p and rjra for q in the general equation, we 

have 

— (ri -t- ra)* + rira = 0. 

Expanding, 

X* — rix — raX + riPa = 0. 

Factoring, 

(x - ri)(x - ra) = 0. 

Hence, to form a quadratic equation, whose roots are given, 
subtract each root from x, and place the product of the terms so 
obtained equal to zero. Perform the multiplication. 

186. Factoring of Quadratic Expressions.—Take the general 

}) c 
expression of a quadratic, ax^ bx + c [3]. Then x^ + -x + - 

CL d 

vanishes when x — ri is a factor and x = ri. 
Also, X = ra, makes the expression equal to zero. 
Consequently, a(x — ri)(x — ra) will be the factors, when ri 

and ra are the roots of the quadratic equation 

Q I h I 0 A 

X* -f -X + - = 0. 
a a 
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Example.—Find the factors of 5a:* — 7x — 22. 

5a;* - 7a; - 22 = 5(a:* - 1.4a; - 4.4). 
Solving, X* - 1.4x - 4.4 = 0. 

X* - 1.4x + (0.7)* = 4.89. 
X - 0.7 = ±2.211. 

X = 2.911 or -1.511. 

Therefore, the factors are 

5(x - 2.911)(x ± 1.511) 

Taking the most general form of an expression of the second 
degree, 

+ 6a: + c = o (x* + -X + -) = o (x* + ^x + + ^ - ^), 
V a a/ \ a a 4o*/ 

and the expression can be written as 

in terms of the difference of two 
Hence, the factors will be 

/y/b^ — 4ac\^ \ 
\ 2^ / ) 

squares. 

nil ( 1 ^ L (llla(x + 25+--^ 
— 4ac\ 

2a / 

The nature of the factors depends upon the form taken by the 
expression, 6^ — 4ac, thus: 

If — 4ac is a perfect square, the factors will be rational. 
If 6^ — 4ac is positive and not a perfect square, the expression 

cai^be split up into factors, but the numerical part of the factors 
can only be given correct to as many significant figures ^s 

desired. 
If — 4ac is negative, the factors can only be given in terms 

of complex numbers. 
If y — 4ac equals zero, the actual expression itself is a perfect 

square. 

Example.—Find the factors of + 13x — 22. 

8(^2 + 1.625X - 2.75) - S{x^ + 1.625a; + (.8125)2 - 2.75 - (.8125)2 
= 8{(a; + 0.8125)2 « 3.410I. 
= 8{(a; + 0.8125)2 - (1.847)21. 
= 8(x + 2.659)(a; - 1.035). 

The factors are 8, a? + 2.659, and x — 1.035. 
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187. Problem Involying a Quadratic Equation. 

Problem 1.—A party hired a bobsled for $12 and since three of the 

party failed to pay, each of the others had to pay 20 cents more. How 

many persons were in the party? 
Let X = the number of persons. 

Then a: — 3 = the number that paid. 

12 
— = the number of dollars that each should have paid. 
X 

12 
-5 = the number of dollars that each paid. 
X — o 

Therefore, 
12 1 12 

-o ” K “ —• (Note that one-fifth of a dollar = 20 cents.) 
X — o O X 

Solving, X = 15 or —12. 

The second value of x is evidently inadmissible, for there could not 
have been a negative number of persons in the party. 

Problem 2.—A cistern can be filled by two pipes in 24 minutes. If it 

takes the smaller pipe 20 minutes longer to fill the cistern than it does 

the larger pipe, in what time can the cistern be filled by each pipe? 
Let X = the number of minutes required by the larger pipe. 

Then x + 20 = the number required by the smaller pipe. 

Since 

- = the part that the larger pipe fills in 1 minute, 
X 

and 

“ ’ == the part that both pipes fill in 1 minute, 

also, 

^ I'be part filled in 1 minute by the smaller pipe, 
X "T" "0 

then, 

X ^ a; + 20 24 

Solving, X = 40, or —12. 

188. Equations in the Quadratic Form.—An equation that con¬ 
tains but two powers of an unknown number or expression, the 
exponent of one power being twice that of the other, as 

[12] a**“ -f fex" + c = 0. 

in which n represents any number, is in the quadratic form. 
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Example.—Find value of xinx^ - + 36 = 0. 

Factoring, 

(x^ - 4)(a;2 - 9) = 0. 

Therefore, 

a;2 — 4 == 0, or — 0 = 0. 
X == ±2, or ±3. 

Example.—Find the value of x in xi — xi — 12. 
Let xi = p. Then = p^ and 

- p — 12. 

Factoring, 

(P + 3)(7^ - 4) = 0. 

Therefore, 

p = —3, or 4. 

Substituting, 

x^ = —3, or 4, 

whence a: = 81 (extraneous), or 256. 

Example.—Find the value of x in — 4x — 5x^ = 0. 

Let x^ = p. 
Then x^ = p^ and x = p^. 

Then we have 
«« 4p2 — 5p = 0. 

Factoring, 
p(p2 — 4p — 5) =0, whence p = 0, 

and — 4p — 5 = 0, or (/) — 5)(p -f- 1) = 0, 

whence p = 5. 

That is, 

xi = 0, 5. 

Therefore, x = 0, or 25. 

Example.—Find the value of x in 

x2 - 4x + - 4x -21 = 63. 

Subtracting 21 from both sides, 

x2 — 4x — 21 + \/— 4x — 21 = 42. 

Put p2 = x* — 4x — 21 and the equation becomes 

p* + P 42 = 0. 

Solving, 
p = ^/x^ - 4x - 21 = 6, or -7. 

Solving, 
X *= 9.81, or -6.81 (for p « 6). 
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189. Example.—Find the roots of x* + 4x^ — 8a; -j- 3 « 0. 

Extract the square root as far as possible: 

x^ + 4x^ — 8a; + 3|a;^ + 2x — 2 
X* 

2x^ + 2x 4x^ 
4X^ + 4:X^_ 

2x^ + 4a; — 2 — 4x^ — 8x + 3 
— 4x2 _ ^ 4 

Since the first member lacks 1 of being a perfect square, the square 
may be completed by adding 1 to each member, which gives the follow¬ 

ing equation: 
x4 ^ 4^3 — 8x + 4 = 1. 

1 \tracting the square root, 
x2 + 2x — 2 = ±1. 

Therefore, x^ + 2x — 3 = 0, and x^ + 2x — 1 = 0. 
Solving, 

a: = 1, -3, -1 ± V2. 
Note.—^This problem can also be solved by adding 4x2, 

xi -j- -f. 4a;2 _ 4^2 — 8x -f- 3 = 0, 

or (x2 + 2x)2 - 4(x2 -b 2x) H- 3 = 0. 
Then factor. 
The factor theorem (Art. 186) can also be used to advantage. 

190. Example 1.—Find the roots of —r—r H-r— = 4. 
X + 1 a;2 

Since the first term is the reciprocal of the second, put p for the 

first term and - for the second term, thus, -f ^ - 4, or 7>2 — 4p = — 1. 

Adding 4 to both sides, 
— 42j -f- 4 = 3, or {p — 2)^ = 3. 

p _ 2 = ± Vs. 
p = 2 ± Vs = 3.73, or 0.27. 

^•2 
“T = 3.73. 

= 0.27. 
X + 1 

Solve these two quadratics for x. 

Example 2.—Solve x^ = 9 + '\/a;2 — 3. 
Take the radical as the unknown. By adding —3 to both sides and 

transposing the radical to the l^ft side, we have 

X* — 3 + \/X* — 3 = 6, which may be easily reduced. 

The radical can also be replaced by « = - 3, which gives 2* + ij? 

0, 
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Example 3.—Solve — 4^2 + x + 1 = 0. 
Dividing by x*, 

x^ + x-i+~+- = 0. 
X 

Putting into the quadratic form by adding 2 to both sides, 

(x> + 2+i) + (» + 5)-6 

Put W = X + 
X 

+ u = (S. 

w = 2 or —3, or X + - = 2 or —3. 
X 

191. Euclidean Graphical Method of Determining the Roots 
of Quadratic Equations.—If, from aii}' point without a circle, 

there be drawn two straight lines cutting it, the rectangles 

contained by the whole lines and the parts of them without the 

circle, equal each other (Euclid, III, 36). 

Fig. 36. 

In Fig. 36, OAXOE ^ ODX OQ. 
In applying the above theorem to obtain the roots of the 

quadratic equation, ax^ + ?)X + c = 0, first put the equation in 

the form, 
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On intersecting axes, not necessarily at right angles, OX and 

OY (Fig. 37), lay off OA equal to unity and OE equal to both 
CL 

positive. Then, according to the theorem, OD equals x and 

y 

OQ equals ~J ~ These distances cannot be determined 

directly, but by finding the coordinates of the center of the 
circle, D and Q can be located as the points of intersection of the 
circle and the X-axis. Let DK = KQ, 

Then 
OQ - OD 

2 
-t- OD 

OQ + OD 
2 

= OK, 

or 

2 

Then ^ is the x coordinate of the center of the circle. 

The y coordinate of the center of the circle is easily shown to be 

- If the coordinate axes are perpendicular, the radius 

of the circle can be found from the right triangle KCR to be 
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Vh* + (c 
^ 2a 
KCQ, 

It is readily seen that the circle so drawn with the above 
relation to the coordinate axes fulfils all the conditions of the 
theorem. It must be understood that the circle is not a graph 
of the quadratic function but is used as a geometrical solution. 

From Fig. 37, xi and can be determined. 

_ —b — \/fc2 — 4ac 

2a 

_ —b + "s/b* — 4ac 

o)‘ 
, and from the right triangles DCK and 

DK = KQ = 
■y/b^ — 4ac 

2a 

192. Five different cases will be discussed as follows; 

Case 1.—If and —are both positive and the radius 

greater than the y coordinate of the center, the circle 

must cut the X-axis, and the x values will be real and positive 

as in Fig. 38o. Or 

-f (c — aY c + g 
2a 2a 

Vh* + (c “ a)* > c -b a. 

Squaring, 
6* -f- (c — ay > (c -b a)*. 
6* + c® - 2ac + a* > c* -b 2ac + a*. 

Or fc* — 4ac > 0. 

It is not necessary to compute the radius. The circle must 
pass through the point (0, 1) which is on the F-axis in all cases, 
and after the center is located, simply set the divider with radius 

CA to draw the circle. 
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To solve — 6x + 5 = 0: 

a = 1, h — —6, c = 5. 

= 3 
V 2o/ 2X1 

c+a_5+l_p 
2a ““2X1"" 

In Fig. 38a locate the center of circle at (3, 3) and with CA 
as radius describe an arc cutting the X-axis at 1 and 5, which are 
the roots of — 6a; + 5 = 0. 

Cc) (d) 
Fig. 38. 

2a 

in the negative and —- in the positive direction. 

To solve 3x* + 28x + 9 = 0: 

Case 2.—If ^ is negative and ^ ^ positive, draw (■ 



QUADRATICS OR SECOND-DEGREE EQUATIONS 123 

/'-An _ +28 ,2 
\ 2a) 6 S’ 

c + a^9 + 3 
2a" 2 X 3 ■ 

With center at (-4f, 2) and CA as radius (Fig. 386) draw the arc 
cutting the Z-axis at - | and -9, which are the roots of 3a:^ + 
28aj + 9 = 0. 

Case 3. i-D and 
c -\- a 

2a 
are both negative, draw both 

coordinates of center in negative direction as in Fig. 38c, which 
is a solution of 2x^ + 9a: — 5 = 0. The roots are \ and — 5. 

Case 4.—If ( is positive and negative, lay off ^ 

in positive and 
c + g 

2a 
in negative direction. One root will be 

positive and the other negative. 
Case 5.—If the circle does not intersect the Z-axis as shown 

in Fig. 38d, the roots are imaginary. The real part of root is 
given by OK and the imaginary part by KT, where T is the point 
of tangency of ZT to the circle. The imaginary KT = 

±i\/ 4ac — 
2a 

193. Another Graphical Solution of Quadratic Equations (Short 
Cut).—^Let us assume two simultaneous equations of the forms, 

y — and (1) 
hx c 

We know that the coordinates that satisfy both equations are 
at the points of intersection of the two curves represented by the 

equations (1) and (2). 
Therefore, the abscissae of these points are values of x which 

satisfy both equations, and since both equations have the same 
value for y at these points, the right members of the equations 

are equal to each other, or 

ax^ + bx + c == 0. 

(3) 

or 
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The latter expression i? the general form of the quadratic 
equation [3]. 

We can, therefore, substitute the simultaneous equations (1) 
and (2) for equation (3) and we have an easy graphical solution 
for the general quadratic equation. 

It is only necessary to keep on hand a few blueprints of an 
accurately plotted graph oi y = x^, and since the graph of (2) 
is a straight line, the intersections of the line and the curve give 
the roots of the equation. 

The rule is to transfer all members of the equation but x^ to 
the right side of the equality and use the right member as the 
equation of the straight line. 

If the line and the curve are tangent, the roots are equal. 
If the line and the curve do not intersect, the roots are imagi¬ 

nary, since this indicates that there are no values of x which 
satisfy both equations. 

Example.—Solve graphically the equation, x’ 

- 2x - 8 = 0. 
The values of x that satisfy the system, 

y = 2x +8 
V = a:*, 

are the same as those that satisfy the given 
equation. 

Constructing the graph of y = x* and the 
graph of y = 2x + 8, we have for the abscissae 
of the points of intersection x = — 2 and x = 4 
(Fig. 39). 

Fio. 39. Hence, the roots of the equation x* — 2x — 8 
are —2 and 4. 

194. Another way of expressing the last method used for solv¬ 
ing the quadratic is to break the equation into two simultaneous 
equations; thus, in the equation, 3x® -f 4x = 20, let y - x*. 
If this value of aj*is substituted in the original equation, it becomes 
3y + 4x == 20, and the two simultaneous equations are Zy -f- 
4* =• 20 and y = 3?, which reduce to the same form as in Art. 193. 

196. Quadratic Equations with Irrational Roots.—The roots 
of quadratics in engineering practice are usually irrational. The 
following method affords a means of finding the roots to a greater 
degree of accuracy than a graph will show, by combining an 
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algebraic with a graphical process: The graph of the quadratic 
expression is made from the graph of y = as explained in 

previous articles, and the roots given a value as determined by 
the graph. A small correction hi and is then given to these 
roots which are substituted in the given quadratic expression, and 
the correction constants hi and h^ found. The new equations 
give quadratics in hi and /12, but since the second-degree terms 
are very small, they can be disregarded, and simple linear func¬ 
tions of hi and /12 make an easy means of finding these corrections. 
An example will illustrate the method. 

Example.—Find the roots of 2^^ — + 6 = 0. 

a = 2, 6 = -9, c = 6. 

= A = -TlA = 
2a 2X2 4 

, K-4ac 81-4X2X6 .1 * = =-__ = 4g. 

The graph of y = 2x* — 9x + 6 is 
shown in Fig. 40 taken from y = 
with origin at ( —2J, 4|). An inspec¬ 
tion of the graph shows the roots to 
be approximately x = .8 and x = 3.7. 

Assume a correction hi to the first 

given root; then 

X = .8 -b 

Substitute .8 -b hi for x in the given 
equation, 2x* — 9x -f- 6 = 0, but dis¬ 
regard the second degree terra A f., since 

it is very small. 
Then 

V 

1.28 -t- 3.2Ai - 7.2 - 9Ai 4- 6 = 0. 

5.8^1 = .08. 
hi = .014. 

Then x = .8 ■+- .014 = .814, the corrected root to three decimal 

places. 
The second root, x = 3.7, is corrected in the same manner by 

making x = 3.7 -f A*. 
The substitution of 3.7 + ht for x in the given equation as 

before gives 
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27.38 + 14.8*2 - 33.3 - 9* + 6 = 0. 

5.8*2 = —.08. 

*2 = -.013. 

Then 

X — 3.7 — .013 = 3.687, the corrected value of the root. 

The negative sign indicates that the assumed value 3.7 of the 

root taken from the graph was too large and must be reduced by 

.013. 

This method is sufficiently accurate for most engineering 

purposes, but of course a second correction can be taken by using 

the corrected values, x = .814 and x - 3.687, and repeating 

the method as before, which will correct the roots to five or six 

decimal places. This method can also be used for simultaneous 

quadratic equations or cubic equations or any problem using a 

graphical solution. 



CHAPTER VII 

IMPLICIT QUADRATIC FUNCTIONS WITH GRAPHS. 
SIMULTANEOUS QUADRATIC EQUATIONS . 

196. The Implicit Functions.—The general form of the quad¬ 
ratic equation in x and y is 

[13] Ax^ + Bxy + Cy + Dx + By + F = 0. 
Such an equation implies that y is equal to some function of 

x^ although we may not know what function. We say, in such 
a case, that y is an implicit (or implied) function of x. 

The present object is to obtain a general idea of curves of this 
form and to find the relations existing between the different 
members of the equation and their coefficients. 

The reasons for the relations, as well as their proofs, will be 
discussed later in the section devoted to analytical geometry. 
The reason for their introduction at this time is to assist in 
establishing the connections between the algebraic and the 
graphical methods of solution. 

In general, the presence of the first-degree terms indicates 
that the coordinate axes of the curve which represents the second 
degree and constant terms have been translated. Dx indicates 
that the curve has been translated in the x direction and By 
indicates that the curve has been translated in the y direction. 
If both members, Dx and Ey^ of the general equation [13] are 
present, the curve has been translated in both the x and the y 
directions. There are exceptions to this rule as in Arts. 169 

and 197. 
The Bxy term indicates that the axis of the curve has been 

rotated through an angle with the coordinate axes. 
The remaining terms of the equation determine, by their 

different combinations, the shape or nature of the curve or graph. 
The peculiar property of the implicit function given by the 

equation, Ax^ Bxy + Cy^^ + Dx + Ei/ + F = 0, is that y is 
usually a two-valued function of x. For a particular value of x 

there are two values of y unless C = 0. 
127 
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Let us consider some of the simpler cases of the general equa¬ 
tion, such as 

[14] Ax^ + Ey = 0. 
[16] Cy^ + Dx=‘0. 
116] Ax^ + Ey + F = 0. 
[17] Cy^ + Dx + F = 0. 
[18] Asi^ + Cf + F^O. 

In equation [14], by transposing Ey and dividing through by 
E, we have 

which is of the form, y = ax^, with 

A 
“ e' 

This case has already been discussed in Art. 170. It will be 
remembered that this represents a parabola having the T-axis 
for its axis of symmetry, and having its vertex pointing down¬ 
ward if a is positive, or upward if a is negative. It follows from 
the above that if A and E have like signs, the parabola will have 
its vertex pointing upward since o will be negative, and if A 
and E have unlike signs, the vertex of the parabola will be 
pointing downward since o will then be positive. 

Fio. 41. 

In equation [16], we have a condition analogous to the one 
just discussed excepting that the x and y coordinates have been 
interchanged, so that the X-axis is the axis of S3mimetry of the 
parabola. This equation is of the form, x = ay^, for by trans¬ 
posing Cy* and dividing by D we have 
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R6di80iiing similar to that used in the case of y = ox* shows 
that when C and D have like signs, the vertex of the parabola 
will be pointed toward the positive end of the X-axis, and when 
C and D have unlike signs, the vertex will be pointed toward the 
negative end of the X-axis. 

[16] Act? + Ey + F == 0 is the form taken by the general 
equation when B, C, and D are zero, and 
[17] Cy* + Dx + F = 0 is the form taken by the general 
equation when A, J5, and E are each zero. 

The equations [16] and [17] can be readily changed to the explicit 
forms, y = ax^ and x = ay^, and solved according to the method 

of Art. 170. 
197. Form Ax^ + Cy^ + F = 0.—If Z>, and E are each zero, 

the general form reduces to 

[18] Ax^ + Cy2 + F = 0. 

F 
If A = C 5*^ 0, and ^ is negative, we can reduce [18] to 

[19] + y2 = 

Since we know the relation of the sides of a right-angled 

triangle to be x^ + y^ = (Fig- ^2), + y^ 
is the square of the distance of P from the 
origin, or + y^ = states that P(x, y) is at 
a distance of a units from the origin at all 
times, and the graph is, therefore, a circle of 
radius a, whose center is at the origin. 

198. If A = 0, the equation, Ax^ + 
Cy^ + F = p, may be written in the form, 

[20] X* + j/* = -j- 

If — -J is positive, the graph is a circle; if negative, there i^ 
A 

no graph. If F = 0, the circle reduces to a point at the origin. 
The graph of the circle may be used in the graphical solution 

of simultaneous equations, thus: 

Example.—Find the values of x which satisfy the equations, 

a;* -f y* = 25 
a; - 7y + 25 = 0. 

Fio. 42. 

and 
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The solutions are obtained by drawing the graphs of the circle repre¬ 

sented by = 25 and the straight line 

Y represented by a; — 7?/ + 25 = 0. The in- 
tersections of the graphs are the only points 

\ which satisfy both equations, and the ab- 

f Q \ V scissae of these points denote the values of 
I ■ I ^ £qj. both equations are true. 

199* The term must be positive 

Fig. 43. 
when the graph is a circle, and 

the radius of the circle. Any value of x greater numerically 

F 
makes the value of y imaginary, for, by transposing, ^ 

— x^. Since for all real values of x and y, x^ and will be posi- 

F 
tive, so then if x^ is greater numerically than y^ will be nega¬ 

tive, which cannot be if y is a real number. This may be seen 

from the graph, since any value of x which makes x^ greater than 

F 
~-^will be outside the range of the circle. Hence, all values of x 

should be taken which are numerically less than 

200. If A and C are not ecjual, then Ax^ + f = 0 takes 

the form, 

[21] 
* +12' = -I' 

where 
F . 

— ^ IS positive, or 

[22] 

where 

3? + nV = a*, 

[23] 

II 

and 

[24] 

1 
1 tl e
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Then, equation + ny = representing the ellipse, can be 
put in the form, 

y = ±^\/ — x^. 

Likewise, the equation, which represents a circle, 
can take the form, 

2/ = ± ~ 

A comparison of the y values, or ordinates, shows that: The 
ordinates of the ellipse: The ordinates of the circle 

Fia. 44. Fia. 45. 

The ratio of the ordinates of the ellipse, 4^^ + Qy^ = 25, to the 
ordinates of the circle, + 2/^ = in Fig. 44 is 

^|:l = V|:l = |:1 

The ordinates of the ellipse are two-thirds as long as the ordi¬ 
nates of the circle with radius of 

A proportional divider set to a ratio of two-thirds can be used to 
reduce the ordinates of the circle to two-thirds of their length, 
and the graph of the required ellipse drawn through the terminals 
of the ordinates as shown. Another method is shown in Fig. 45 
which uses the circle of radius | horizontal units but the unit 
length of the vertical scale is one and one-half times the length of 
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the horizontal unit. The graph then represents the implicit 
function, 4a:* + 9y* = 25. 

201. In case A > 0, C< 0, and F<0, that is, if .4 is positive with 
both C and F negative in [18], the equation, Aa* + Cy^ + F «= 0, 

represents a different sort of a curve. The simplest example of 
this form of curve is that represented by the equation, 

[26] a* - j/* = a*. 

In Fig. 46 the graph of ** — y* = 16 crosses the X-axis at the 
points (4, 0) and (—4, 0), and there are no points on the graph 

ff 
Fia. 47. 

for values of x between 4 and —4. The graph is symmetrical 
with respect to both axes and consists of two branches. It is 
called an equilateral hyperbola. 

The sides of the right triangle (Fig. 47) illustrate the relation 
of X, y, and o in as* — y* * o*. By taking different values of x, 
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as 1, 2, 3, etc. (Fig. 48), with a drafting compass and striking 
arcs across the base line AB the ordinates y of the equilateral 
hyperbola can be measured and transferred as the ordinates of 
the graph in Fig. 46. 

202. If the equation of the locus is ^ the points of 
intersection of the graph and the X-axis are (a, 0) and ( — a, 0). 
That is, the vertices of the curve are at distances a and —a 
from the origin. The diagonal lines are the asymptotes, drawn at 
an angle of 45® to the axes. 

The equations of the asymptotes are, therefore, 

y = X and 

y = -X, 

If, in the general equation, A is positive and C and F are both 
negative, the equation takes the form, 

[26] x^ — n^y^ = a*, 
from which 

[27] y = ±- 
ft 

which shows by comparing with y ^ ^x^ — from x^ ^ y^ 

I . lA 
[26], that the ordinates are to each other as “ is to 1, or ^^:1. 

Referring to the graph of Fig. 49, we note that the ordinates of 
(1) are twice the length of the ordinates of (2), and we can, 
therefore, draw‘the graph of (2) from (1) by using proportional 

dividers, or we can use a graph of x^ — y^ - and make the 
vertical scale of j/, one-half as long as the scale of ordinates of the 

standard graph, as in Fig. 50. 



134 MATHEMATICS FOR ENGINEERS 

The equation^ — nV = a^, represents an hyperbola. The x 
intercepts are x == a and x = ~ a. 

If F = 0, we have x® — = 0, or (x — ny){x + ny) = 0, 
which represents two straight lines, whose equations are x ^ ny 
and X = or the asymptotes of the hyperbola. 

203. When >0, C< 0, and F >0, that is, A and F are positive 
and C is negative in [18], the equation, 

Ax^ + C?/2 + F = 0, 

represents an hyperbola whose transverse axis is the F-axis. The 
simplest form is the equilateral hyperbola, 

^2 __ 2/2 = — 

which may be written, 
X = ±\/y^ — a^. 

The points of intersection of the graph and the F-axis are (0, a) 
and (0, —a). The asymptotes are the 
diagonal lines drawn at an angle of 45® 
to the axes and have the same equations 
as the asymptotes of the equilateral 
hyperbola of the previous case (see 
Fig. 49). 

The general equation [18] takes the 
form, 

Ax2 + C7f + F == 0, 

which may be written, 
[28] 71^x2 - 2/2 = -a2, 

or 

[29] a: = 
n 

which shows, when compared with x = ±'\/y^ — oi the equi¬ 
lateral hyperbola of this form, that the abscissae are in the ratio of 

- to 1, or ^ ~ to 1. 
n \A 

The following example illustrates the method: 

Example.—Draw the graph of Qx* — 25y^ + 100 = 0. 
Rearranging, 

Ax* - 2/* = -4, 
or 

X = ±f Vy* — 4, 
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which compared with x = ± the equilateral hyperbola having 

its transverse axis on the F-axis, the ratio of the abscissae are i to 1 

or 5 to 3. The right triangle is used as before except that the y values, 
as y - 6 y - 4, y = 5 etc., are taken on the hypothenuse and the 

corre^ondmg x values for the equilateral hyperbola found as in Fig. 
53. The proportional divider set to the ratio of 5 to 3 is used to transfCT 
the measurements of the required x values and change the graph from 

' = iVy* — 4tox = + \y/yi' — 4, 

5 

4 

1 

i s i i i i 

, 100^2—— 

6 i ^ 3 4 5 ( 

1 

1-^ 

. _ . 

Fia 

5 

f. 62. 

The short legs of the divider 
are set to the x values on the 

triangle and the long leg meas¬ 
urements used for measuring 
tlie abscissae of the required 
graph. These measurements 
are made horizontally from 
the F-axis as in Fig. 52. 

204. Since the terms Dx and Ey are translation terms of the 
general equation, their addition to the equations of the circle, 
ellipse, etc., changes the size but not the general shape of the graph 
in any respect but simply translates the center to a point dif¬ 
ferent from the origin. Therefore Ax^ + Cy^ + F A- Dx + Ey 
== 0 is still a circle if A = C, and Ax^ + Cy^ + f + Dx + Ey 
= 0 is still the equation of an hyperbola if C and F are negative. 
The axis, however, will have a different location from the axis 
of Ax^ + Cy^ + F == 0, If in the general form the unknowns 
are increased or decreased by some fixed amount, and these 
amounts substituted for the given variables, the coordinate 
axes of the graph are translated. 

206. If we take the general form of the quadratic with B = 0, 
we have 

Air* + Cy^ + Dx + Ey + F==0. (1) 



136 MATHEMATICS FOR ENGINEERS 

Completing the squares gives 

7)2 

u+rc-^> (2) 

or 

Let 

Af , V I A./ , E V D'C + EU - 4ACF 
H’’+2a) +C(,» + 2c)-He- 

and y =yi X — Xi 
D 
2A 

A 
2C‘ 

Substitute these values in (2), which becomes 

D*C + E^A - 4ACF 
[30] Aixry + C(y^y = 

4AC 

. ,. , D^C + E*A - 4ACF . * * p/ ^ e- 
m which--IS a constant, F 7^ F. 

We can, therefore, transform the given equation to an equation 
which represents the same locus referred to a different system of 
axes, and we can so choose the second system of axes as to make 
the first-degree terms in x and y disappear. This translation of 
axes does not change the coefficients of the and the y^ terms. 
The constant term of the transformed equation will be, from 

[30] above, 

[31] 
4ACF - D^C - EFA 

4AC 

It will be seen that the transformed equation, i.e., A(a:i)^ -|- 
CiViY + F' = 0, is of the form, Aa^ + Cy^ + F = 0, which, as 
we have already shown, represents either an ellipse (considering 
the circle to be a particular case of the ellipse in which A = C) 
or an hyperbola having its center at the origin. If we draw the 
graph of the transformed equation and then locate a new set of 
axes for which x — X\ — h and y ~ yi — k, the graph referred 
to the new axes will represent the locus of A»* + Cy^ A-DxA- 
Ey + F =» 0. But from the above discussion it is evident that 

1S2I * - a 

[881 k - ^ 

where h and h are the coordinates of the new origin. 
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Example.—Draw the graph of 9x* + I62/® — 18x + 64j/ — 8 

Arranging the terms, 

A C D E F 
9** + 16j/® - 18a: + 64i/ - 8 =. 0. 

’ ® = -lfrom[32]. 

0. 

k = 

2A 

2C'' 

2-9 
64 

2- 16 
= 2 from [33]. 

Y Y' 

Fia. 54. 

We see by inspection that the graph is an ellipse and that 
the origin is 1 unit to the left and 2 
units above the center of the ellipse. 
We can draw the graph of the trans¬ 
formed equation, Axi^ + Cyi^ + E' 
= 0 [30], much more easily than we 
can draw the graph of the original 
equation. Therefore, we draw the 
graph of 9(xi)^ + = 81, (Art. 
200) which is an ellipse with its 
center at the origin of the coordinate 
system OiXi, Oi Yi, as shown in Fig. 54. The equation of the same 
ellipse, referred to the system of coordinates whose origin is at 
(-1, 2), is the given equation above, namely, 9x^ + 16y^ — 
18x + &4y — 8 = 0. 

Now if we have the above equation taken simultaneously 
with another equation whose graph 
is a straight line, we solve for value 
of X ahd y very readily by locating 
the intersections of the ellipse and 
the straight line. 

If the graph has any intersections 
with the X-axis, the abscissae of these 
points denote those values of x which 
make the function equal to zero; that 
is, the roots of the equation and sim¬ 

ilarly the intersections of the ellipse and the F-axis denote the 
values of y which make the function equal to zero. 

206. Case where Bxy + F = 0.—This is the equation of an 
hyperbola having the X- and the F-axes as asymptotes, as 

shown in Fig. 55. 
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By transposing F and dividing by B, we get 

F 
[34] xy — ~ some constant = C. 

When two variables change in such a manner that their product 
is always equal to a constant, the graph of the equation is an 
equilateral hyperbola having the coordinate axes as asymptotes. 
Thus, the graph of pv = C, the equation from physics connect¬ 

ing the pressure p and the volume v of a gas confined under 
pressure. For a rapid method of computing the ordinates, see 
Arts. 397 and 406 of the Slide Rule section. 

207. If A == C = 0 and JS 0, the general equation takes the 
form, 

[36] Bxy -f Dx + Ey + F = 0, 

which can be written, 
,D^E,F . 

or 

Adding 
ED 
R2 

Then 

, D K F 
xy 

to both members of the equation, 

xy + ^x + ^y + 
ED F 

B 

or 

[36] 

ED - BF 
+ g) + g(* + g) ■ S' 

If we make the transformation Xi = x + h, and yi = y + k, 
E D 

where A == ^ ^ ~ f^hen [36] takes the simple form, 
£> n 

xiyi = C, 

where the constant term C = - 

Therefore, the graph of Bxy + Dx + Ey + F = 0 can be 
constructed by drawing the graph of 

ED - BF 
-m— 
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and translating the origin to {h, k), where 

[37] h = i and = §• 

Example.—Draw the graph of 2xy + x + = 9. 

5 = 2, D = 1, = 2, E = -9. 

Draw the graph of xy = 5; then move the origin to (1, i){Fig. 56). 

Fig. 56. 

208. Shearing in the general equation, 

Ax^ + Bxy + + Dx + Ey + F = 0 [13] 

When the Bxy term is present, the equation can be reduced 
to a simple form for graphing by what is known as the shearing 
method. The following example will illustrate the method: 
Consider the equation, 

y^ -2xy + x^ -2x-d = 0. (1) 
Solving for y, _ 

1/ = X ± \/2x + 3. (2) 

If equation (2) is divided into two parts, as 

y' == X and (3) 

y” = ± V2r+1, (4) 
then 

2/ = + 2/". 
The ordinates of (2) equal the ordinates of (4) added to or sub¬ 
tracted from the ordinates of (3). The graphs of (3) and (4) 
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are constructed as in Fig. 57 on the same coordinate axes; then 
a third graph is made by transferring the ordinates of (4) or 
measuring from the linear graph instead of from the X-axis. 
The prdinates AC and AF are transferred to BD and BE for 
X « 1; also A'C' and A'F' to B'D^ and B'E^ for x = 2 and so on. 

This procedure is called shearing the equation, y — ± \/2x + 3, 
with respect to the line y — x 
or line of shear. The line of 
shear, however, is not the axis 
of the conic. 

With a few exceptions, all 
conics of the general form, 
Ax^ + Bxy + + Dx-{-Ey 
+ F = 0 where 5 5^ 0, can be 
arranged to use the shearing 
method. If C = 0, the process 
will not work, but the equation 
may then be solved for x, 
provided A 9^ 0. If A and 
C are both zero, this shearing 

Fio. 67. process will not go, as in the 
simple case, xy = C, 

Consider the general equation, when C 0. 

Ax^ + Bxy + Cy'^ + Dx Ey + F = 0, 
Rearranging and completing the square, 

, , Bx+E , (Bx^ EY -Ax^ - Dx -F , BV + 2BEx -f E* 
y* + —c—y + -~w^-c-+-ici- 

/ , Bx+ BY (B> - iAC)x^ + {2BE - iCD)x + - 4Cf) 
-^ 

-B E , UB*-4AC)x^ + (2BE-WD)x + {E^-iCF) 
[38] v = -2c -Wi- 

The general equation is now arranged to shear the conic, 

.. , /(fis - + {2BE - iCD)x + (£* - ACF) 
[39J y — i-W > 

or 
[401 (B* - 4AC)a:» - 4C*j/* + {2BE - 4CD)* + (B» - iCF) = 0 

with respect to the line, 

[41] 



IMPLICIT QUADRATIC FUNCTIONS WITH GRAPHS 141 

Conics of the form [40] have been treated in Arts. 196 to 206. 
A few examples of shearing follow: 

Example 1.—Construct the graph of 
— ^xy + — 12x +11=0. 

A = 5, B = -4, C = 1, D = -12, E = 0, F = 11. 
The line of shear from [41] is 

-4 
y = - a;, or 2/ = 2x. 

Substituting coefficients in [40], 
(16 - 20)^2 - 42/2 + (0 + 48)x + (0 - 44) = 0, 

which reduces to the conic, 
a:2 + 2/2 — 12a; + 11 = 0. 

The conic represented by this last equation is a circle, and in order 
to locate its origin and find its radius, equations [30], [32], [33] will be 
used. 

Equation [30] with new coefficients 
becomes 

a;2 + 2/2 = 144 + 0 - 4 X 11 
= 25. 

Equation [32] becomes 

Equation [33] becomes 

The equation, + y^ = 25, of the circle 
has a radius of five units, and the origin, 
to transform the graph to x^ + — I2x 
+ 11 = 0, is located at (—6, 0) from the 
center of the circle. The circle and the 
line of shear are next drawn, and the 
ordinates transferred from the circle by a 
divider, using the shear line as the base 
line as shown in Fig. 58. 

Example 2.—Construct the graph of 

2x2 + 4x2/ + — 4x — 12 = 0. 
A - 2, B = 4, C = 4, D = -4, F = 0, F 

Substituting in [40], 

-12. 

(16 - 32)x2 ^ 64y2 + (0 + 64)x + (0 + 192) = 0. 

Simplifying, 
^ x2 + 42/2 - 4x - 12 = 0. 
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This equation represents an ellipse and is the conic which is to be 
sheared. 

Substituting the coefficients in [41], the line of shear is 

y = —ix — 0, or y == —ix. 

The negative sign indicates that the slope of this line of shear is 
negative. 

To get more particulars of the conic, x^ + 4?/2 — 4x — 12 = 0, the 
equation [30] will be used with new coefficients. 

A = 1, C = 4, Z) = -4, ^ = 0, F = -12. 

Substituting in [30], [32], [33], 

.. 4- = a6)(4)-(4)(l)(4)(-12) 
+ (4)(4) 

or 
+ 4y^ = 16. 

h = -1, ^ = 0. 

Either the ellipse, x^ + 4y^ = 16, with the origin translated to ( — 2, 
0) (which will then represent x^ + 4ij^ — 4a: — 12 = 0), can be used, or 

a circle with the proper radius substituted for the ellipse and the ordi¬ 
nates taken with the proportional 
divider as in Art. 200. The last 
method will be shown. 

The equation, x^ + 4y^ = 16, can be 

put into the form, y = ±i\/l6 — x^, 
which compared to the equation, 

y = ± \/l6 — x'^, of the circle, indi¬ 
cates that the ordinates of the ellipse 
are half as long as the corresponding 

ordinates of the circle. The circle is 

drawn with center located at (2, 0) 
and radius equal to four units. The 

proportional divider set to 4:1 is used to transfer the ordinates to the 

sheared line OA as shown by Fig. 59 in the ratio of i: 1. 

Example 3.—Construct the graph of 

x^ — 4xy + 2/* + 4\/2x — 2\/2y + 11 = 0. 

A = 1, J3 = -4, C = 1, D = 4\/2, E = -2V% F = 11. 

Substituting in [40], 

[16 - (4)(l)(l)]x» - + {(2)(-4)(-2V2) - (4)(l)(4V2)tx + 
(8 - (4)(1)(11)] = 0. 

Reducing, 
— If/* * 3. 
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Substituting coefficients in [41J, the line of shear is 

-4 -2\/2 
y = ----x - 

The equation, - Iz/’ 

y = 2x + V2. 

— 3, when compared to the equilateral 

hyperbola equation, ~ 3, shows that n == "x/j and that the 

ratio of the ordinates is -:1, or—^ :1, or 1.735:1. In this case the 

ordinates of the required graph measured from the line 
of shear are longer than the ordinates of the equilateral b 
hyperbola. 

Draw a vertical line AC as in Fig. 60 equal to v 3 or 
1.735, and with a compass set to a; = 2, 3, 4, etc., with 
C as a center, strike arcs on the horizontal line AB as was done in Art. 
201. These arcs measured from A give the ordinates of the equilateral 
hyperbola which correspond to x = 2, x = 3, x = 4, etc. With a pro¬ 

portional divider set to the ratio of 1.735:1, measure these 7/values 

or 1.735:1. In this case the 

Fiq. 61. 

which correspond to each x value with the short legs of the divider and 
transfer the long-leg measurement of the divider for the points on the 

required graph, measuring from the line of shear, as in Fig. 61. 
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209. The conics to be sheared in all cases reduce to the simple 
graphs of the parabola, ellipse, and hyperbola, with the exception 
of a few cases which reduce to points or to straight lines. 

There are cases, however, such as parabolas and hyperbolas 
having the line of shear nearly perpendicular to the X-axis, or a 

slope much greater than ±45°, where it is advisible to construct 
the graphs from the F-axis as previously given (Art. 203). 
This must be done if (7 = 0, A 0. 

The general equation, Ax^ + Bxy -f- Cy^ Dx Ey F = 
0, when arranged for the modified method, becomes 

[42] (5* - 4AC)j/* - 4A»*« + (2BZ) - ^AE)y + (I>» - 4^^) = 0. 

The line of shear is 

[43] ® A. -A 
2A ^ 2A’ 

These equations are found by solving for x instead of for y 
as was done in [40] and [41], 

Exampls 4.—Construct the graph of 
4a:* — 4®y — 3j/* -j- 64 * 0. 

=. 4, B = -4, <7 =» -3, D = 0, B = 0, F - 64. 
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Substituting in [42], 

[16 - (4)(4)(-3)]2/* - (4)(16)a:^ + (0 - 0)x + [0 - (4)(4)(64)] « 0, 

Reducing, 
2/® — x® = 16. 

This represents a curve whose transverse axis is the F-axis (Art. 203). 
It is the conjugate hyperbola of x® - 2/® = 16. The line of shear is 

-4 0 1 
® (2) (4)^ 

Different values of a; for 2/ = 1,2/ = 2, 
2/ = 3, etc. (Fig. 62) are plotted hori¬ 
zontally, measuring from the line of 
shear using the right-triangle method 
as before. The line of shear should 
first be found in order to know whether 
equations [40] and [41] or [42] and [43] 
should be used. The shear line from 
equation [41] and some of the ordinates 
of equation [40] are also indicated on 
the graph for comparing the two 
methods. 

Example 5.—Construct the graph of 
4^2 ^ y2 ^ 103. -|- 62/ + 22 = 0. 

The shear line from [41] is 2/ = 2x 
— 3 and from [43] is x = + 2. 
Both of these lines have steep slopes, 
and the natural formulae to use would 
be [42] and [43], but for illustrative purposes, both methods will be used 

4x® — ixy + 2/^ — 10a; + 62/ + 22 = 0. 
A « 4, R = -4, C = 1, D = -16, ^ = 6, F = 22. 

Substituting in [42], 
2^2 = 2/ 6, or X = ±.707y/y — 3. 

If the vertex of the standard graph, y = x®, or x = ± W, of the 

parabola is placed at (0, 3), it will then represent x = ± \^y — 3, 
and its axis of symmetry will coincide with the F-axis. The ratio of 

the abscissae of x = ±.707\/y — 3 to x = ±y/y — 3 is .707 to 1. 
With the proportional divider set to .7 to 1, the abscissae are trans¬ 
ferred to the shear line x « + 2 as in the previous examples. 

If formulae [40] and [41] are used, the conic to be sheared is 

4x » y* + 13, or y « ±2'\/x — -Sf. 
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By using the standard graph, x = y®, or y = ± Vx, with the vertex 

at (V-, 0), it will represent the equation, y = 's/x — The ratio of 

the ordinates of the conic, y = ±2\/x — as now placed is 2:1. 
The proportional divider set to 2:1 is used to transfer the ordinates to the 
shear Hne, ?/ = 2a; — 3. These graphs all represent parabolas (see 
Fig. 63). 

210. Homogeneous Quadratic Equations.—A homogeneous 
equation is an equation all of whose terms are of the same degree 
in the unknowns. A homogeneous quadratic equation is of the 
form, 

[44] Ax^ + Bxy + Cy^ = 0. 

An equation of this form can always be factored. 
Dividing by Ay"^ and completing the square, 

\yy A\y) 4A2 4A^ A 

Extracting the square root, 

5 4. = + IB^ - 4AC 
y^2A - 

a; -B ±VB^-4AC 
[46] - =-23- 

It is interesting to note that the ratio of the unknowns as 
given by [46] has the same value as the unknown in the explicit 
form, ax^ + bx + c = 0 (Arts. 182 and 183). 

Equation [46] can also be put into the form. 

_ (-B 4Acy . „ 

The linear equations can now be found by the direct substitu¬ 
tion of the coefficients of [44] in equations [46] and solved simul¬ 
taneously with the other given quadratic equations as indicated 
in the previous articles (196) to (210). 

The equation [44] in the factored form is 

1.71 ..(• - 
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y = X and 

The factors can also be found by solving for y in terms of x, 
and the linear equations become 

_ -B + - 4AC 

[48] _ 

y 2c 

If one of two simultaneous quadratic equations is homogeneous, 
the equations may be solved by factoring the homogeneous 
equation. 

Example,—Solve 
xi — 32/2 ^ 2y == 3, (a) 

2x^ - 7xy + = 0. (b) 
Equation (h) has the form [44] and therefore can be factored 

A = 2, B = -7, C = 6. 
Substituting in [46], _ 

(7 + V49 - (4)(2)(6) _ 
^ (2K2) ^ 
a; — 2?/ = 0, or x = 2y. 

Also, _ 
. _ 7 - V49 - (4)(2)(0),. ^ 

(2)(2) 
3 n 3 X = 0, or X = 

y = 0. 

Substitute x = 2y and x = ^y in (a), which gives 

2/ = 1, -3, 

2, 4 6, 2 + 2 - VT 

4 + 2V'^ 4 - 2\/-5 
3 ' ^ 3 

211. Simultaneous Quadratic Equations of the Form, 
[49] Ax^ + Bxy + Cy^ + F = 0 and 
[60] Aix^ + Bixy + Ciy^ + Fi = 0. 

By multiplying [49] by Fi and [60] by F and subtracting [60] 
from [49], the constant terms F and Fi will be eliminated and the 
resulting equation will be homogeneous and can be factored. 
[61] (AFi - AiF)x^ + {BFx - BiF)xy + (CFi - CiF)f = 0. 

Dividing through by {AFi — AiF)y^ and completing the 

square as in Art. 181 and reducing, 

X ^ BFi - BiF ± VW 

y 

AAC)Fl + {B\ - 4AiCi)F» - 

2(AxF - AFQ 
2FFi[BBi - 2(AiC + ACi)]. 
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The linear equatioiui which replace [61] after factoring are 

Bif + V(B» - 4AC)F! + - 4i4iCi)F« - [62] » 
BFi 

2{AJF - AP{) 

and 

[63] X 

2-FFiBBx - 2{A^C -J- ylCi)] 

BFi - BiF - \/{B - 4:AC)F\ + (Bf - 4AiCi)F^ ~ 
2(4 iF - AFi) 

2FF^lBBl - 2(4,0 +4Ci)] 
-2/. 

The linear equations can be formed by the direct substitution 
of the coefficients, A, B, C, etc., taken from the given equations. 
To complete the solutions, combine each of the linear equations 
[62] and [63] with either equation [49] or [60], and solve simul¬ 
taneously either analytically or graphically. 

Example.—Solve 

2x^ - 3xy+ 4 = 0. (1) 
4xy - 52/2 - 3 = 0. (2) 

4 - 2, j5 = -3, C = 0, F = 4. 
4i = 0, = 4, Cl = -5, Fi = -3. 

Substituting in formula [52], 

^ _ (-3)(-3) - (4)(4) ± V(9 - 0)9 + (16 - 0)16 - 
2[0 - (2)(-3)] 

(2)(4)(-3)|(-3)(4) - 2[0 + (2)(-5)]|. 

9-16 + 23 

or 

Likewise from [63], 

X = 

12 

X =l2/- 

9-16-23 

y = 3I/. 

12 -y 

The two linear equations are 
3x — iy = 0 and 
2x + 5y = 0. 

Solving with the given equations (1) and (2) gives 

4, -4, V-5 

3, -3, - 
V^5 

2 

V~5 

and 

6 ' 5 
There are two real and two imaginary roots. 
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This form includes all forms of quadratic equations having 
the quadratic terms of the unknown (including the xy term 
which is a quadratic term), the constant terms, but not the 
first-degree terms. Any of the terms may be absent as noted 
in the last example; the Cy^ term is absent in (1) and the Ax^ 
term is absent in (2). Then <7 = 0 and = 0 in the formula. 

Formulae [62] and [63] can be modified and reduced to a simpler 
form depending on which term is absent. As an example, con¬ 
sider the constant term Fi absent or Fi = 0. Then 

X = 
■BiF ± ViBl - 4AiCi)F'* 

[64] 

2AiF 

_ -B ± V5f 4AiCi 
2Ai 

These linear equations can be taken with either of the given 
equations [49] or [60] and solved simultaneously as in Art. 210. 

212. Quadratic equations of the form, 
Ax^ -f Cy^ + F = 0 and 

A^3^ + Ciy^ + Fi = 0 [18] 
Consider x* and y* as the unknowns and let m = x* and v = y^; 

then substitute in both of the above equations. Then 
Au -h Cv -f F = 0. 

[66] Aiu -f- Civ -[- Fi = 0. 
The last equations are straight-line or linear equations in w 
and V and from them u and v can be determined; then x and y 

can be found from 

X = ±Vm and y = ±^^1 

Example.—Solve 
l(te» + 27y* = 576. (1) 

X* -I- y* = 25. (2) 
A = 16, C = 27, F = -576. 
A\ = 1, Cl — l,Fi = 25. 

Substituting in [66], 
16u -I- 27t; = 576. (3) 

«-+-» = 25. (4) 
Multiply equation (4) by 27 and subtract from (3) to eliminate v. 

16u + 27v = 576. 
27w + 27t; = 675. 

11« = 99. 
9. 
±3. 

u 
X 
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Substituting u » 9 in (4), 
y = ±4. 

Each value of x can be taken with each value of y, giving four 
combinations, or 

(3, 4), (-3, 4), (3, -4), (-3, -4). 

Another solution is to consider equations (1) a special form of 
the equations discussed in the previous article (211) with B — 0 
and B\ = 0. The linear equations then reduce to 

[66] 

[67] 

X = 

X = 

y/FiFiAiC + ACi) - ACPI - AiCiF^ 
AiF - AFi 

y/FiF{AiC + AC,) - ACF\ - AiCxF^ 
AxF - AFi ~ 

Solving the same problem by means of the formula, 

\/25-576(27 + 16) 
X = ±- 

16-27-25-25 

-576 - 16(-25) 
1-1-576576 

■y- 

= + 
V619,200 - 270,000 - 

-576 + 400 

331,776 ^132 ^3 
-y - ± m*' - * # 

The linear equations are 

4x + 3j/ = 0 and 
4x — 3j/ = 0 

These equations can be combined with (1) and (2) of the 
example either by substitution, or since (2) is the equation of a 
circle, a graphical solution of the problem is very simple. 

213. Equations of the form, 

Ax* + Bxy + Cy* + Dx = 0, 
[68] Aix* + Bixy + Ciy* + Dix = 0, 

or 
Ax* + Bxy + Cy* + Ey = 0, 
AiX* + Bixy + Ciy* + Eiy = 0. 

In both sets of equations, all the terms are of the same degree 
with respect to the unknowns, with the exception of the first- 
degree terms which, however, are similar in both equations. 
First, eliminate the first-degree term, obtaining a homogeneous 
equation, and then use formula [46] (Art. 210) for factoring, 
and solve the resulting linear equations simultaneously with 
one of the given equations, either analytically or graphically. 
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Example.—Solve x* + 2xy = Qy. (1) 

2x2 - xy yt = iy. (2) 

Multiplying (1) by 2 and (2) by 3, 

2x^ + 4xy = 12y and (3) 

ex'® - 3x1/ + y* - 12y. (4) 

Subtracting (3) from (4), 

4x2 _ ^x:y + 3y2 = 0, (5) 

which is a homogeneous equation and can be factored. 

A = 4, B = -7, C = 3. 

Using [46] (Art. 210), _ 

7 + \/49 - 4“ 4 • 3 
a;--y = 0. 

Also, 
X = y = one of the linear equations. 

X 
7 - 

8 
1 
y = 0. 

(6) 

X = iy = the other linear equation. (7) 

Solving each of these linear equations simultaneously with (1), 

x^ + 2xy = 62/, (1) 4- 2xy = 62/. (1) 
X y. (6) X = iy, (7) 

Substituting (6) in (1), 
y^ + 22/2 _ 02/ = 0. 

32/2 — 0^ = 0. 
2/2 - 22/ = 0. 

Completing the square, 

2/ - 22/ + 1 = 1. 
2/ - 1 = ±1. 

2/ = 2 or 0. 
Therefore, 

x = 2 or 0. 

Substituting (7) in (1), 

i%y^ + i2/2 - 62/ = 0. 
332/2 _ 96^^ = 0. 
112^2 « 32y = 0. 

1212/2 _ S52y + 256 = 256. 

lly - 16 = ±16. 
2/ = H or 0. 

Therefore, 
X = or 0. 

214. S3nnmetrical Simultaneous Equations.—An equation that 
is not affected by interchanging the unknowns is called a symmet¬ 

rical equation, as 

2x^ + xi/ + 2j/2 == 4, or + x + y = 8, 

The typical form is 

A(x^ + y^) + + 2/) + ^ 
Ai(x^ + y^) + Bixy + Di(x + y) + Fi — 0. 

(1) 
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Let X >= u + V and y = u — v and substitute in (1) A(u^ 4- 
2«» + t;® + u* ~ 2tti; + t**) + B(u* — r*) + D(2u) + F = 0, or 
by collecting and assuming both of the equations symmetrical, 

(2A + B)u^ + (2A - By+ 2DU+F ^ 0 and (2) 
(2Ai + 5i)m* + (2ili — Biy + 2Diu + Fi = 0. (3) 

Equations (1) can be changed to quadratics in w and v by the 

direct substitution of coefficients, A, B,D, and Ai, Bi, Di, in (2) 

and (3). Then can be eliminated from (2) and (3) and the 
values of u and v found. Then by substitution in a; = « + 

and y = u — V, the unknowns x and y are found. 

Example.—Solve 
X® + {/* + * + y = 8. 

xy + X + y = 5. 
In the first equation (a), 

A = 1, B = 0, D = 1,F = -8 
which substituted in formula (2) gives 

2u* + 2t;® + 2« - 8 = 0, 
or 

u® + tJ* + w — 4 = 0. 
In the second equation (6), 

Ai = 0,Bi = l,Di = l,Fi = -6 
which substituted in formula (3) gives 

M® — V® + 2m = 5. 

Solving the two equations, 
M® + V® + u = 4 and 

M* — t)® + 2m = 6 

Eliminating v® by adding (c) and (d), 
2m® + 3m = 9, 

from which 
M = i or —3. 

The four solutions of (c) and (d) give 
M = L L -3, —3. 
V = i, —i, 1^/2, —iy/2. 

From * V + M and y = u — v, 

* = 1, —3 + “3 — t’V^. 

y = 2, —3 — iV^, ~3 + iV*^. 
Example.—Solve 

X* + y* 4- X + y * 8. 
xy “ 2. 

From (2) (Art. 214), A - 1, B - 0, B - 1. 

(а) 
(б) 

(c) 

(d) 

(c) 
(d) 

(«) 

(o) 
(b) 
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From (3) (Art. 214), Ai » 0, Bi * 1, Di = 0. 
2u^ + 2v^ + 22/ = 8, 

or 
2i* + = 4. . (c) 

2/2 - t;2 = 2. (d) 
Eliminating v* by addition, 

2u^ + u = 6. 
Completing the square, 

42/2 + 22/ + i = 12i. 
2u + i ^ ± l and 2/ = |, —2. 

The substitution of 2/ = i in (c) gives v - ±i and the substitution of 

2/ = —2 in (c) gives v = ± \/2. 
The values of u and v are then 

u^hl ~2, ~2. 

» = i, -i, +V2, -V2. 
x = i + i,i-i,~‘^ + V2,-2-V2. 

i - i, } + i, -2 - V2, -2 + V2. 

216. Symmetrical Except as to Sign.—If one of the equations 
is symmetrical and the other symmetrical except the signs, solve 
the problem by first finding the values of a: + y and x — y. 

Example.—Find the roots of 
x* + = 68. 

X — y = &. 
Squaring (2), 

X* — 2xy + y* = 36. 
Subtracting (3) from (1), 

2xy = 32. 
Adding (4) and (1), 

X* + 2xy + y* = 100. 
Extracting the square root, 

X + y = ±10. 
From (5) and (2), 

X = 8, or —2. 
y = 2, or -8. 

(1) 
(2) 

(3) 

(4) 

(5) 

216. Equations of higher degree, when symmetrical or ssrm- 
metrical except as to sign, can often be solved by substituting 

» “ M + t> and y — u — V. 

Example.—Find the roots of 
x* + y‘ 

* - y 
272. 
2. 

(1) 
(2) 
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Assume x ^ u + v and y == u v. Then 
+ v^ + u^-‘ 4:U^v + — 4wi;® + = 272. (3) 

From (2), 
2v = 2 or V == 1. (4) 

Dividing (3) by 2, 

+ v*= 136. (5) 

Substituting 1 for v in (5) and solving, 

w = ±3 or ±\/--15. ^ 

Substituting these values for u and v in x = u + v and y - u — v 
gives 

a; = 4, -2, 1 + V^, 1 - \/-15. 

2/ = 2, -4, -1 + -1 - V^iS. 

217. Solving by x and y Functions.—Many simultaneous 
equations may be readily solved by finding values for any two 

of the expressions, a; + y, ^ — J/, as well as other functions 
of X and y from which the values of x and y may be obtained. 

Example.—Find the roots of 
a;2 4- 42/2 - 15(a: - 2y) + 80 = 0. (1) 

xy = 6. (2) 
Multiplying (2) by 4 and subtracting from (1), 

a;2 — 4xy + 41/2 _ 15(3. _ 2y) + 56 = 0. 
Solve for the function, x — 2y, and then for x and y. 

Example,—Solve 
x^ + xy — 12. (1) 
xy + y^ = 4. (2) 

Adding (1) and (2), 
x2 + 2xy + 2/* = 16. (3) 

Subtracting (2) from (1), 
a;2 - 2/* = 8. (4) 

Extracting the square root of (3), 
X + 2/ = ±4. (5) 

Dividing (4) by (5), 
X - 2/ = ±2. (6) 

Combining (5) and (6), 
X = 3 or —3 and y = 1 or — 1. 

The first value of x — 2/ corresponds only to the second value of 
X + y. Consequently, there are only two pairs of values of x and y. 

Special methods of reduction are often used by first solving 

in terms of 

V^, Vx + y, 1,7, xy, (x + y), (x + yf, x*y, etc., 
X y 
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and then finding x and y. It is sometimes more convenient to 

introduce new variables, as \/xy = u, etc. The most common 
are 

X = u + Vf y ^ u — V, y = vx. 

The equations can often be combined into simple forms by 
inspection with slight modifications of the forms as given. 

218 Division of One Equation by the Other.—A pair of 
higher degree equations can often be solved by dividing one by 

the other. 
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Example.— « 336. (1) 
x* — + y* « 12. (2) 

Divide (1) by (2), which gives 
a:» + x2/ + y» = 28. (3) 

Subtracting (2) from (3), 
2xy = 16. 
xy = 8. (4) 

Adding (3) and (4), and extracting the square root, 
X + y — ±6. (5) 

Subtracting (4) from (2), 
— 2xy + = 4. 

Extracting the square root, 
X — 2/ ~ ±2. (6) 

From (5) and (6), 
X = 4,2, --2, -4. 
y = 2,4, -4, -2. 

Since (5) and (6) have been derived independently, with the first 
value of X + y, we associate each value of x — y in succession, and with 
the second value of x + y, each value of a: — 2/ in succession in the 
same order. Consequently, there are four pairs of values of x and y. 

219. Equations Containing Three Unknowns.—In this case, 
combine two of the equations, according to preceding sections, 
and then combine the resulting equation with the third equation 
which should be the equation having the unknowns in the 
simplest form. 

Example.— x* + 2/* + = 30. (1) 
xy + yz + zx ^ 17. (2) 

X - y - z = 2. (3) 
Add two times (2) to (1) and extract the square root of the result, 

getting (4) and then combine (4) with (3). 

Example.—Find the roots of 
x^ + y^ + z^ = 81. (1) 

a? + y + « = 14. (2) 
xy =» 8. (3) 

Add 2xy = 16 to (1) and substitute « 14 — (x + 2/) in the result¬ 
ing equation. Solve first for x + 2/ then for x and y. 

220. Graphic Solution of Simultaneous Equations Involving 
Quadratics.—Solve graphically the system, 

05* + y* 26. 
X - y ^ -1. 
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Constructing the graphs, we find the first to be a circle, and the 
second to be a straight line. 

The straight line intersects the circle in two points, (—4, —3) 
and (3, 4). Hence, there are two solutions, 

X = +3, 2/ = +4 and x == -4, y = —3. 
The coordinates of the intersections satisfy both equations. 

The graph is shown in Fig. 64. 
Solve graphically the system, 

9x2 + 25i/2 = 225. 

y = 2, 
The first equation represents an ellipse and the second is the 

equation of a straight line parallel to the X-axis. The points of 
intersection are 

X = 3.7, y = 2 and x = —3.7, y = 2, 

These roots are real and unequal. 

Y 

If the equation of the line was 

y 
the equation would have two real roots, x = 0, y = 3 and x = 0, 

2/ == 3. 
If the equation of the line was y = 4, the graphs would not 

intersect and the roots would be imaginary. 
A system of two independent simultaneous equations in x and 
one linear and the other quadratic, has two roots. 
The roots are real and equal if the graphs are tangent to each 

other, real and unequal if the graphs intersect, and imaginary if the 
graphs do not intersect; that is, if they have no points in common. 

^Ive graphically 
4x* — 9t/* == 36. 

X* + 2/2 = 25. 
X « 4.5, 4.5, —4.5,—4.5. 
I/* 2.2, -2.2, -2.2, 2.2. 
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For the equation, 
+ y^ = 9, 

x = 3, 3, -3, ~3. 
2/ *= 0, 0, 0, 0. 

independent simultaneous equations of 
second degree in x and y has four 
roots. 

An intersection of the graphs rep¬ 
resents a real root, and a point of 
tangency represents a pair of equal 
real roots. 

If there are less than four real 
roots, the remaining roots are 
imaginary. 

221. In many cases, the graphical 
method of solving two simultaneous quadratic equations is the 
only practical method to use. The graph of each quadratic 
equation is drawn according to the methods given in the previous 
articles (196 to 210) and their intersections determined. Some 
of the graphs previously made are used in the illustrative examples 
which follow. 

Fig. 66. 

Example 2.—Solve the simultaneous equations, 

y^ = X and (1) 
5(x - 4)2 = 9 - 2/. (2) 

Beginning with (2) which is a parabola of the form, 

yi + k = a{x + hY, 
where 

a = —5, k = —9, A = —4 (Art. 172). 

The y — x^ graph can be used but must be inverted since a is negative. 
The origin is located at (h, k) or (—4, —9) and the proportional dividers 
set to a 5 to 1 ratio to transfer the ordinates from the y = x^ graph. 

The standard graph x = ^2 jg ^ext used with the vertex at the origin 
and the curve extending to the right. The axis of symmetry will be the 
X-axis. The intersections of the graphs give the x and y values which 
satisfy the two equations. See Fig. 67. 

Example 2.—Solve the simultaneous equations, 

x2 — 4x2/ + 2/* + — 2'\/2y + 11=0 (Fig. 61) and 
5x2 - 4xy + 2/2 - 12x + 11 = 0 (Fig. 58). 
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Fio. 68. 
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The graphs are constructed as shown in Art. 208. The values of the 
unknowns which satisfy both equations are determined by the points 
of intersections of the graphs. See Fig. 68. 

Example 3.—Solve the simultaneous equations, 
— 2xy + aJ® — 2a; — 3 = 0 (Fig. 57) and 

2a;» + 4a;2/ + - 4a; - 12 = 0 (Fig. 59). 
The graphs are constructed as shown in Art. 208. The intersections 

of the graphs determine the values of the unknowns which satisfy the 
equations. 

222. Simultaneous Quadratic Equations with Irrational Roots. 
In Art. 195, a method was given for correcting the roots found 
by graphs of quadratic equations in one unknown. The same 
method may be used for simultaneous quadratic equations in 
two unknowns. 

Example.—Find a close approximation of the x and y values which 
satisfy 

x* + t/* - 5\/2x - 5V2y = 0. (1) 
xy - 2x + y S. (2) 

The graphs of each equation are made according to methods pre- 
viously described in Arts. 205 and 207 and are shown in Fig. 70. The 
correction method will be applied to point of intersection P{x, y) only. 
The other point may be taken by the reader as an exercise. From an 
inspection of the graph for P(a;, y), 

X = 8.5 approximately. 
y « 2.6 approximately. 

Let a; « 8.5 + A 
and y « 2.6 + k. 

(3) 
(4) 
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Substitute (3) and (4) in (1); then 

72.26 + 17A + h* + 6.76 + 5.2A: + A* — 60.1 —7.07h - 18.38-7.07ifc = 0. 
Discard the second-degree terms in h and k because they are small 

enough to neglect. Collecting similar terms, 
9.93^ - 1.871; + .53 = 0. (5) 

In the same manner, substitute (3) and (4) in (2), which gives 
22.10 + 2.61 -I- 8.51 -I-11 - 17 - 21 -I- 2.6 -I-1 = 8. 

Discard the 11 term and collect similar terms. Then 
.61 -b 9.61 — .3 = 0. (6) 

Solving (6) and (6) as simultaneous linear equations in 1 and 1, 
9.931 - 1.871 -b .53 = 0. (5) 

.61 + 9.51 -.3 = 0. (6) 
Multiplying (6) by .6 and (6) by 9.93, 

5.9581 - 1.1221 -b .318 = 0. (7) 
5.9581 -b 94.3351 - 2.979 = 0. (8) 

Subtracting (7) from (8), 
96.4571 - 3.297 = 0. 

1 = .0346. 
Substitute 1 = .0346 in (6). Then 

1 = -.047. 
Substituting in (3) and (4), 

X = 8.5 -b 1 = 8.5 — .047 = 8.453 approximately, 
y = 2.6 -b 1 = 2.6 +, .0346 = 2.6346 approximately 

In case greater accuracy of the roots is required, this process may be 
repeated by putting 

X = 8.453 + 1, and y = 2.6346 -b 1, 
and continuing as before. 



CHAPTER VIII 

FRACTIONS. FRACTIONAL EQUATIONS. IRRATIONAL 

EQUATIONS 

FRACTIONS 

223. Operations with Fractions.—In addition or subtraction 
of fractions, first reduce them all to a common denominator and 
place the sum (or difference) of the numerators over the common 

denominator. 
In subtraction of a fraction, when it is preceded by a minus 

sign, change all the signs in the numerator when combining with 
the other terms. The sign belongs to the fraction as a whole 

and not to either the numerator or denominator. Thus, in 
X 

— ^ the sign of the fraction is minus while the signs of x and 2a 

are both positive. 
To change signs of either numerator or denominator of a 

fraction, the signs of all the terms must be changed. 
Never cancel single terms in numerator or denominator of a 

fraction where either is a polynomial. In 

a+ b + b^ 
b 

the 6s in the numerator and denominator cannot be cancelled. 
Only factors common to all the terms in both the numerator and 
denominator can be cancelled, which does not change the value 
of the fraction. In the expression, 

ab + 6® 
o6 ' 

the 6 is common to all the terms and may be cancelled, giving 

ffl 6 
a 

Fractions should always be reduced to the simplest form in 
which the numerator and denominator have no common factors. 
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To reduce a fraction to its lowest terms, resolve the numerator 
and denominator into their factors and cancel those factors 
common to both. 

The numerator and denominator of a fraction may be multi¬ 
plied by the same number or divided by the same number (not 
zero), without changing the value of the fraction. 

224. Elementary Forms. 

a I c _ a + c 
b’~ 6 ‘ 

a c _ a — c 
h “ 5 ~b~~' 

, b a , b ac + b 
a + -- c 1 c c 

b^d'^ M 

a 

b ' d c b c be 

CL TtCL / 1 \ 
- = (n not zero) 
b nb 

f = T (n not zero). 
0 0 

n 
a c _ ad be 

6 d bd 
d _ —a __ a 
6 - T“ ■" 

CL ”f" b —a b 
e c 

a — b —{a — b) __ —a ~l~ b 
c ~ c e 

FRACTIONAL EQUATIONS 

226. Fractional Equations.—An equation containing a frac¬ 

tion with an unknown in a denominator of any of the terms is 

called a fractional equation. The usual method of procedure is 



164 MATHEMATICS FOB ENGINEERS 

to simplify first, and then to multiply each term by the lowest 
common multiple (Art. Ill) of the denominators to eliminate 
the denominators. The lowest common multiple, or any multi¬ 
plier containing an unknown, as x, may introduce new roots not 
possessed by the given equation. These roots are called extrane¬ 
ous roots and may be found by equating the multiplier to zero 
and solving for x. In order to make sure that extraneous roots 
are not introduced, the roots should be substituted in the given 
equation for verification. Those roots which do not satisfy 
the given equation should be discarded. A few illustrative 
examples of fractional equations will be given. 

Example 1.—Find the value of x in 
4 
5z 
^ - 16 1 + 6 

24 60 
Simplifying, 

1 - 20x _ 1 + 15a; ^ 5 
30x 150a; 6 

Multiplying each term by 150a;, the lowest common multiple of the 
denominators, 

5 - 100a; - 1 - 15a; = 125a;. 
240x = 4. 

X = -gV* 

Vir satisfies the original equation. 

Example 2,—Find the value of x in 
3,1^2 

x*-25"^x + 5 5~x 
2 2 

The term ^- can be changed to-= without changing its 
5 — X X — o 

value. Multiplying all terms by the lowest common multiple (x* — 
25) of the denominators, 

3(x» - 25) X* - 25 _ 2(x* - 25) 
x*~25“^x + 6 x-5 

Reducing, 
3 + X — 5 = —2(x + 5) = —2x — 10. 

3x = -8. 
X « 

—f satisfies the original equation. 

Example 3.—Find the value of x in 
.9 
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Multiplying by 6 + a:, the L.C.M. of the denominatore, 

12 “f* 2x 4* 9 == 6a; -|- 
x* + 4x — 21 = 0. 

X = 3 or -7. 

Both X = 3 and a; = — 7, when substituted in 2 H-— = x, 

satisfy the equation. ^ 

Example 4.~-Find the value of x in 

1 + 
1 

X — 1 
-6. X — 1 

Multiplying all terms by x — 1, 

X - 1 + 1 = x2 - 6x + 6. 
x^ — 7x 4- 6 = 0. 

X = 6 or 1. 
The substitution of x = 6 satisfies the given equation, but the sub¬ 

stitution of X = 1 does not. It is, therefore, an extraneous root and 
should be discarded. It was introduced by the multiplier, x — 1, 
If the multiplier is equated to zero, then x-l=0orx = l. 

226. Extraneous Roots Avoided.—By combining terms in 
some fractional equations, a reduction can be made to an integral 

(Art. 129) equation without the use of a multiplier. Example 4 
in the previous article can be solved in this manner. 

1 + 
Uniting terms, 

1_ ^ 
X ~ 1 

x2 - 1 

1 
- 6. 

X + 1 = 7. 
X = 6 

Example 2.—Find the value of x in 
2x2 

Uniting terms, 

Reducing, 

3x 4" 2 , 5x 4" 9 
X — 2 X — 2 3 

2x2 - 3x - 2 fix 4- 9 
X - 2 

2x4-1 = 

3 

fix+ 9 

6x + 3 = fix 4" 9. 
X = 6. 

If this equation is multiplied by 3(x — 2), the L.C.M. of the denomina¬ 
tors, the root x « 2 will be introduced which will not satisfy the equation. 
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227. Fractional equations with two or more monomial denom¬ 
inators can be advantageously solved by removing the mono¬ 
mial denominators first, then simplifying, and then removing 
the remaining denominators as shown in the previous article 
(225). 

Example.—Find the value of x in 
9a; + 5 8x - 7 ^ 36* + 15 lOi 

14 6a: + 2 56 14 ' 
Eliminate the monomial denominators by multiplying through by 

56, the L.C.M. of the monomial denominators. 

36a; + 20 + Pj- = 36a: + 15 + 41. 
OX + 2 

Simplifying, 
7{Sx ^ 7) _ 

3x + 1 
Multiplying through by 3a; + 1| 

56a; - 49 - 27a; + 9. 
* 29a; = 58. 

a; = 2. 

228. Reducing fractions in equations containing terms like 

a; + 3 1 - 1 
-5 and-^ 
X — 2 X — 7 

in pairs connected by minus signs can be readily solved by 
uniting the terms of each member of the equation. The frac¬ 
tions can be arranged to meet this condition by transposing, if 
necessary, one fraction in each member. 

Example. 
a; — 1 a; — 6 __ a; — 5 , a; — 2 
X — 2 X — 7 X — 6 X — 3 

Transposing, 
X — 1 X — 2 _ X ~ 5 __ X — 6 
X — 2 X — 3 x — 6 X — 7 

Uniting terms, 
-1_^ 

x^ — 5x + 6 X* — 13x + 42 
Since the fractions are equal and their numerators identical, then the 

denominators must be equal. 
X* — 5x + 6 = X* — 13x + 42. 

X = 4|. 

This example illustrates why it is sometimes advisable to 
defer the clearing of fractions. 
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IRRATIONAL EQUATIONS 

229. IrTAtiotial e(}u&tions are transformed into rational equa¬ 
tions by raising both members to equal powers. The index 
used is indicated by the greatest index aitiong the radicals. 
If only one radical is present in the equation, it is advisable to 
transpose all the rational terms to one side of the equation and 
leave the radical term on the other before raising the members 
to a power. 

Example. 

1 -h Vx = 5. 

"s/x = 4. 
X = 16. 

If the square root is taken of each member of the equation, 
a: — 2 = 4, 

then ±\/x — 2 — 2, 

or Vx — 2 = 2 and Vx — 2 = ~2. 

When one is taking a square root, both signs must always be 
considered. If one has a: — 2 = 4, it is wrong to deduce 

= 2 
and neglect the case, _ 

-Vx -2 = 2. 

Both cases, — 2 = 2, must be considered. Notice that 

to indicate both cases, ±\/x — 2 = 2 is written. If Vx - 2 
= 2 is written, this represents onl^ one of the two cases. Now 
when a radical equation is given us to solve, we are not taking the 
square root. It has been taken and we are given only one case, 

as V'x — 2 = X -f 17, or we are given both cases, ± y/x — 2 = 

X -f 17. 
If given an equation like 

y/a + X + y/a — X = y/^, 
the positive values only of the radicals are considered unless 

given _ ^_ 
±y/a + x ±y/a — X = + v2x. 

If a term is given like - y/a — x, the radical is still considered 

as being positive, or — (+'V^® ~ x). Solving the example 

just given, 
+ X + V« ~ X = 
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Squaring, 

a + a: + 2\/a* — a:* + a — a; = 2a:. 

\/o* — a:® * a: — a. 
Squaring again, 

a* — a:* = a:® — 2ax + a*. 
2a:* - 2aa; = 0. 
2x{x — a) = 0. 

a: = 0 or a. 

The substitution otx — a satisfies the given equation but a: = 0 does 
not; for 

Va + 0 + Va - 0 5^ \/2 X 6. 

If, however, we should take v^a — 6 as meaning — \/a, the equation 

would be satisfied. The understanding is that Va — a: means 

+ Va — a;, and hence, the root a: = 0 must be thrown out. 

When members of a radical equation are squared, it is equiv¬ 
alent to multiplying by an expression containing an unknown 
which may introduce extraneous roots (Arts. 225 and 129). 

Example.—Find the roots of 

y/x 2 = a? — 4. 
Squaring, 

a: 2 = a:* — 8x -f- 16. 
Rearran^ng, 

a;* — 9a: —18. 

Completing the square and solving for a:, 

a: = 6, or 3. 

The root a: = 6 when substituted in the given equation, satisfies it 
but a: = 3 does not. If, however, the negative value of the radical, or 

— Va? — 2, is considered, then a: = 3 does satisfy the equation. Since 
only the positive value of the radical is stated in the problem, x « 3 is 
an extraneous root introduced when the radical was squared and it 
should be discarded. 

If an irrational equation has a denominator in either or both 
members, simplify or rationalize the denominator first before 

raising to a power. 

Example.—Solve 

V2 + \/x 2Vx (x + 2)* 
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Rationalizing the denominators, 

_ (V2 + Vxy ^_2-v/x(V2 - Vx) _ (x + 2)« 
(\/2 - Vx)(.V2 + Vx) {V2 + Vx)(.V2 - Vx) 2(x - 2) 

2 + 2V2X + X _ 2V2X — 2x , a* -f- 4x + 4 
2 — X 2 — X 2(2 — x) 

Multiplying this by 2(2 - x), 
4 + 4\/2a: + 2x = 4 V2i — 4a; + x* + 4x -f 4. 

x* ~ 2x = 0. 
x(x — 2) = 0. 

X = 0, or X = 2. 
Verifying x = 0, 

V2 + 0 ^ 0 _ (0 - 2)« 
V2-b + 0 2(0 - 2)' 

1 = 0 + 1. 
X = 0 is a root. 

Verifying for x = 2, 
V2+V2_2V2 _ (2 + 2)» 
V2 — V2 V2 + V2 2(2 — 2) 

X = 2 is not a root. 
Example.—Solve _ 

y/2x + 2 _ Vx + 1 + 3 

V2x — 2 Vir + 1— 3 ^ _ 

Multiply both members of the equation by (V2x -- 2)(y/x + 1 — 
3), which is the lowest common multiple of the denominators. 

(V2S + 2)(V^n - 3) = (V^TT + 3)(\/2i - 2). _ 

V2x^ + 2x + 2VX + 1 — — 6 = "v/ 2x* +2x — 2V x + 1 +3 V2x. — 6 

Simplifying, __ 
6V2x = 4va: + 1. 

3\/2x = 2Vx + 1. 
Squaring, 

18x = 4x + 4. 
X = ?. 

230. Some Special Devices. 
EXAMPLB.—Solve _ 

2y'j;» _ 9a; + 18 - Vi* - 4x - 12 = X - 6. 

Factoring the radical expressions,____ 
2V(« - 3)(x - 6) -V{x-V 2)(x - 6) = a: - 6, 

- VVV2Vi^^ = Vx^VT^. 
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Then 

y/x ^ 6(2\/x — 3 — Va; + 2 — Va; — 6) =0. 

Equating the factor Va; — 6 to zero gives one of the roots which is 
ic = 6 (see Art, 129). 

Also, _ _ _ 
2\/a; — 3 — \/x + 2 = \/x — 6. 

Squaring, 

4a; - 12 - 4\/(x - 3)(a;'+2) + a; + 2 = a;-6. 

—4\/a;^ — a; — 6 = 4 — 4x, 

\/a;2 — a; — 6 = a; — 1. 
Squaring, 

3^2 — ^ — 6 = a;2 _ 2a; + 1. 

X = 7. 
Verifying, both x = 6 and x = 7 satisfy the given equation. 

Example.—Solve 
X - 7 

= 4\/ X — 3. 
a/x — 3 — 2 \/x — 4 — 1 

Change numerator, x — 7, to (x — 3) — 4, and x ~ 5 to (x — 4) —1. 
Then 

\/a;-3-2 Va;-4-l 

Simplifying, 

Va: - 3 + 2 + Vx^ + 1 = 4\/x^3; 

Collecting common terms, 

= 3Vx'- 3 - 3 = 3(V’x^- 3 - 1). 
Squaring, 

Squaring, 

X - 4 = 9x - 27 - IsVx - 3 + «• 

IsVx ^3 = 8x - 14. 

Q'n/X — 3 = 4x — 7. 

81 (x - 3) = 16x« - 56x + 49. 
81x - 243 = 16x* - 56x + 49. 

16x* - 137x + 292 = 0. 
X = H, and 4. 

Both roots satisfy the given equation. 
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CUBIC FUNCTIONS 

231. Graphical Cubic Functions.—When the function t/ = x® 
is plotted, the resulting graph is a curve of the type called the 
cubic parabola. If x is positive, y is positive, and if x is negative, 
y is negative, and the graph takes a form similar to that shown in 
Fig. 71. In the case of the function ?/ = — x^, however, positive 
values of x give positive values to x^, and the corresponding 

values of y are consequently negative. Also negative values of 
X make x^ negative and y positive. The graph of ?/ = — x^ is 
shown in Fig. 72 and comparison with Fig. 71 will at once disclose 

Fiq. 71. Fiq. 72. 

the effect of the minus sign before the x®. Note that for a given 
value of X the functions have the same absolute value but differ 
in sign. 

It is advisable to retain an accurately plotted graph of both 
2/ = x^ and 2/ = — x^ so that they may be readily available for 

rapid graphical work. 
232. The Function y = ax®. 
This graph can be readily made from a graph of j/ = x® by 

stretching or contracting the ordinate scale in the ratio of a to 1, 
according as a is greater or less than 1. The method has already 
been explained and its application observed in Art. 170 where 
the graph of y « ox® was obtained from the graph of y «= x®. 

171 
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The curve represented hy y — o*’ can readily be drawn from 
the graph of y = a:* as their ordinates have the ratio of o to 
1 in all cases, and the proportional divider is very useful in 
making the transformation as explained in Art. 232, providing 
that a is not too large. 

236. The transposing constants h and k which change the 
location of the origin to the point (A, h) when introducted into 
the equation, y — ox* + mx, by the substitution of x + A for 
X, and y + A for y, cause the equation to take the form, 

y + k = a(x + A)* + m(x + A), (1) 
which becomes 

y = ox* + 3aAx* + (3oA* + wt)x + oA* + mh — k (2) 

when expanded. This is in the form of the general cubic equa¬ 
tion, 
[61] y = ax^ + bx^ + cx + dy 

in which, by comparison with (1), 

b = Sahy c = Sah^ + and d = ah^ + mh k» (3) 

The values of a and b in any equation of the general form 
determine the value of hy for 

[821 h . A, 

and the value of h being found, m is easily found, for 

[63] m = c — = c — 

When the values of h and m are substituted in the last equation 
of (3), k may be found to be 
foAi .be 2b^ j 

* ■ 5 - 27V - 
If we have the equation, y = ox“ + mx [60], we can put 

it into the general form, y = ox* -f- Ax* -f- cx H- d, by moving the 
origin to the point (A, k) or in terms of o, A, c, d, 

/ A Ac 
\3o^ 3a 

237. To draw the graph of a cubic function, we first put 
the equation in the standard form, 

y — ax^ + + cx + d. [61] 
We next take the standard graph oi y = and put it into the 
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form, y = ax^j and find the value of m which is given by [63] as 

m = c — 
3a 

This enables us to shear the graph of j/ = ax^ and get the graph 
of y = ax^ + mx [60]. Shifting the origin to the point (h, k) 
completes the transformation of the graph and it is now the graph 
of the equation, 

y = ax^ + bx^ + cx + d. 

Let AB in Fig. 85 be the graph of y == x^ and ADEB the graph 
after it has been changed to represent y = ax^ + mx according 
to Arts. 234 and 235. Next shift the origin to the point (/i, k) 
where h and k are determined from 

A 
Fig. 85. 

The curve, as drawn and referred to the origin just located, 
represents the function, 

y — ax^ + bx^ + cx A- d [61] 

which is the general form of a cubic function. A solution of any 
cubic equation in one unknown can now be found graphically. 
After approximate values of x have been found for which ^ = 0, 
substitution of these values in the general equation should be 
made and the method of Arts. 195 and 222 used to find more 
exact values if necessary. 

In drawing the graph of a cubic, it is advisable to use for the 
F-scale a unit which is about one-tenth of the length of the X- 

unit, so that greater values of y may be drawn on the sheet. 

Example 1.—Draw the graph of y 

tn - c — ^ —14 
oa 

X* + 5x^ - Ux + 3. 
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Starting with the y ^ graph, draw the shear line through the 
origin with a slope of —22^ to 1 as shown at AB (Fig. 86). 

Next shear the graph with respect to the line AB by transferring the 
ordinates of y « x* and measuring from AB. 

I 

3 = -35.6. [64] 

The origin is next translated to (h, k), 

_ 5(-14) 2 X 125 
3 27 

With the origin located at (5, —35.6), the graph represents 
y — X* + 5a:* — 14x + 3. 

Example 2.—Draw the graph of 

y = 2x*- 15x» + 11. 

-37.5. 
5* . 225 

^ = c-3^ = 0--^ 

h = 
-15 

= -2.5. 

* ^ 27 X 4 “ 
51.5. 
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Starting with the graph of y = x*, first multiply the ordinate scale 
by 2 to change the graph to represent y = 2x’. Draw the shear line 
AB with a slope of —37.5 to 1 measured on the new scale. Then 
shear y = 2x’ on the line AB. Translate the origin to (A, k) or to 
(—2.5, 51.5), and the graph (Fig. 87) represents the equation, 

y = 2x» - 15x* + 11. 

238. Graphical solution of equations of the form, 
ax* + 5x* + cx + d = 0. 

The graph of y = ox* + bx* + cx + d is useful in solving 
equations in one unknown, as ax* + 5x* + cx + d = 0, and we 
now come to the discussion of this very important method of 
graphical solution of equations of the forms, x* + 6x* + cx + d 

= 0 and ox* + hx* + cx + d = 0. 
Assume that we desire first the roots of 

X* + 6x* + cx + d = 0. 

The graph of y = x* + 6x* + cx + d will represent all of the 

corresponding real values of x and of x* + 6x* + cx + d; and 

among them will be the values of x that make x* + &»* + c* + 

d equal to 0, that is, the roots of the equation, 

X* + 6x* + cx + d = 0. 
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Example.—Find the roots of 

— 4^2 —4x + 10 = 0. 

Draw the graph of y = — 4x^ — 4a; + 10, using the graph of y = 

m = ~-9f, A = —ll, and k = —5.87. 

The intersections of the graph and the X-axis (Fig. 88) give the 
values of x which make x^ — 4x + 16 equal to 0, or the roots of 
the equation, x® — 4x® — 4x + 16 = 0. They are 

X = 2, X = 4, and x = —2. 

239. Pairs of simultaneous equations in x and y, one of which 
is of the form, y = ax^ + Ax^ + cx + d, may be solved by draw¬ 

ing the graphs of each and 
locating the intersections of 
the graphs. 

Example.—Find the x and y 
values which satisfy 
9x2 + 16^2 _ 18^ 4. ^2y - 56 = 0. 

= 2x2-llx2 + 17x-6. 

The graphs are made by the 
methods given in Arts. 205 and 
237. Care must be taken to 
make sure that the ordinates are 
to the same scale in both cases. 
The graphs may also be made 
separately on transparent paper; 
then by placing one sheet upon 
the other with axes coinciding, 

the intersections can be located. The x and y values which satisfy 
the given equations from Fig. 89 are (.2, —3.2), (.7, 1.3), (1.6,1.3), and 
(3.2, .6). 

240. Simultaneous equations with irrational roots similar to 
those of the previous article on graphical solutions may be solved 
with greater precision by the methods given in Art. 222. The 
values for P(x, y) in the previous article will be solved. 

9x2 + ^ i8x + 322/ - 56 = 0. (1) 
2/ « 2x« - 11x2 + 17^ e. (2) 

From Fig. 89 of the graphs, P(x, y) is (3.2, .6). 
Let X = 3.2 + A and y >» .6 + (3) 
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Substituting in (1) and disregarding second-degree terms in h and A:, 
92,16 + 57.6^ + 5.76 + 19.2A; - 57.6 - ISh + 19.2 + 32A; - 56 « 0. 

Simplifying, 
39.6A + 51.2A; + 3.52 = 0. (4) 

In the same manner, substitute (3) in (2) and discard second- and 
third-degree terms in h and k; then 

.6 + A; = 65.54 + 61.44/1 - 112.64 - 70Ah + 54.4 + I7h - 6. 

Simplifying, 
k = 8.04A + .7. (5) 

Substituting (5) in (4), 

39.6A + 411.654 + 35.84 + 3.52 = 0. 

451.254 = -39.36. 

4 = -.087. 
Substituting in (5), 

k = .6995 - .7 = -.0005. 

Substituting 4 and k values in (3), 

x = 3.113. y = .5995. 

This method may be repeated in the same manner with the 
corrected x and y values if still greater precision is desired. 

241. Another method of graphically solving the cubic x® + 
hx^ + cx + d = 0 is to assume the two simultaneous equations, 

y = x^ and 
y = — cx— d (if the x^ term is absent). 

We know that the ordinates for the points of intersection of 

the two curves are the same, or, stating the same thing in a 
different way, the abscissae of the points of intersection denote 
those values of x which make both functions have the same value. 

Therefore, 
x^ = —cx — d, or x^ + cx + d = 0. 

We can, therefore, take the standard graph of y = x^ and draw 
the straight line, y = — cx — dj and from the points of inter¬ 
section, quickly determine the different values of x which satisfy 

the equation, x® + cx + d = 0. 
In the event of the x^ term being present, we have 

2/ = X® and 
2/ = — 6x^ — cx — d 

for our simultaneous equations, and we can easily graph the 
quadratic with respect to the same axes as the cubic and note 

the intersections of the two curves. 
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Very difficult problems may be readily solved by the use of 
these methods, and if there is no solution, the graphs will disclose 
the fact at once. 

242. Still another convenient method to use is to eliminate 
the X* term by shifting the origin. 

This is done by substituting 

X — 5 for X, or making h — 
O o 

Since we have started with the graph of y = x^y we shift the 

origin to the point (—A, 0), or (““I’ 0^ 

We, therefore, take the standard graph, y = x^, shift the origin, 
and draw the straight line to represents!/ = —cx — dy noting 
the intersections of the two graphs. 

243. It is also convenient to know the slope of the curve, or 
the rate of change of the function with respect to the variable in 
the general equation, 

y = ax* + hx^ + cx + d. 
This slope is, from methods of the calculus, found to be for 

any point Pi(xi, t/i), 
m = 3xi* + 26xi + c. 

When the graph of any function is drawn, it is very easy to 
determine the maximum and minimum values. These occur at 
points where the slope of the curve is zero, or where the tangent 
to the curve is parallel to the X-axis. To find the points at 
which a maximum or a minimum occurs, it is only necessary to 
place the expression for m, given above, equal to zero and solve 
for the values of Xi. The values found for xi denote those values 
of X for which y has a maximum or a minimum. 

Problem.—A cylindrical vat is to be placed on end beneath the^ 
rafters in an attic. The clearance space between the rafters is shown 
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in Fig. 91. What dimensions will give the maximum capacity of the 
vat? 

Let X == the height of vat. 

z ~ the radius of base. 
y = the volume of vat. 

Then y = ttxz^. 

From similar triangles, 

10 ~ a;: 2 = 10: 5. 
10 - a; . .2 2 • 

Then 

y = = ^(a:^ 20a;* + lOOx), 

or 
p = .7854a;3 - ir).7a;2 -f 78.54a;. 

From the above equation, 

a = .7854, b = -15.7, and c = 78.54, 

which substituted in 

7n = 3a(a;i)* + 2/;(.Tx) + 78.54 
gives 

m - 3 X .7854a;? + 2(-15.7)a;i + 78.54. 

= 2.356(a;i)2 - 31.4(a;i) + 78.54. 

In order to find a maximum, m is equated to zero, or 

2.356(a;i)2 - 31.4(a;i) + 78.54 = 0. 

Using formula [6], 

—5 ± — 4ac 
=-2a- 

_ +31.4 ± V(31.4)* - 4 X 2.30 X 78.54 

2 X 2.36 
= 3.32 or 10. 

X cannot be 10 feet high but it can be 3.32 feet. From the above 

equation, 
10 - * 10 - 3.32 . 

, = -2- = —^ = 3.34. 

The dimensions of the vat, then, are 3.32 feet high and 3.34 feet radius 

of base. The maximum capacity, then, from 

y «irxz"^ 
y « 3.1416 X 3.32 X (3.34)* = 114.7 cubic feet. 

Fia. 91. 

T 

fOfi 

is 
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The graph of 
y = .7854x5 - 15.7x* + 78.54x 

which is drawn from y — and sheared as in Art. 236 plainly shows how 

the value of y increases to a maximum when x = 3.32 and decreases to 

zero when x = 10. 
The slope of the graph is zero when y reaches the maximum value. 



CHAPTER X 

POLYNOMIAL FUNCTIONS 

244. The general form of the polynomial is i 

aox^ + aix^-^ + a2X^^- + . . . an-ix + an. 
In the addition, subtraction, multiplication, and division of 

polynomials, since the arrangement of terms is made with the 
exponent of x decreased by unity in each succeeding term, the 

coefficients only need be considered. Where any term is missing, 
that is, when there is a power of x which does not appear in the 

arrangement of terms, the condition should be considered as 
meaning simply that the coefficient of the term is zero. 

Example.—Add + 2x^ Ax^^ + 3a: + 5, and 
2a:^ — 5a:^ + a: + 1. 

1 0 ~ 1 
1 2 4 3 5 

2-5 1 1 

1 
Multiply 

2 3-1 
1 1 4 

2 3 - 1 - 2 
2 3-1-2 

8 12-4-8 

2 5 10 9 - 6 - 8 - 2x‘ + 5^^ + lOx^ + - 6a: - 8. 

4 0 4 5 = a:^ + 4a:« + 4a: + 5. 

2a:^ + 3a:2 — a: — 2 by a^2 ^ a: + 4. 
2 

245. The Remainder Theorem. 

Theorem.—If f{x)j a polynomial, is divided by ic — c, the 
remainder is f(c), the value of f{x) when x is put equal to c. 

Proof.—If f (x) is divided by x — c, let the quotient be the 
polynomial Q(x), and the remainder, the constant B, so that 

f(^) 
X — c 

= QM + 

183 
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We desire to prove that 
R = /(c). 

From 
fix) = + . . . a«_iX + On and 
/(c) = a<,c" + aic*~* + • • • On-iC + o«, 

we get 

/(*) - /(c) = + . . . o„_ia: + o„ 
- (a.c’* + Oic"-* + . . . o»-ic + o„) = 

Oo(®“ — c") + Oi(x’*“^ — c““‘) + • • . an-i(a: — c). 

Since x — c occurs as a factor in all terms,4t can be placed 
outside of a parenthesis and we can denote what is left in the 
parenthesis by Q(x). We then have 

fix)-f(c) = ix-c)[Qix)]. 

Transposing, we get 

fix) = (X - c)(Q(x)] +/(c). 
And dividing by (x — c) gives 

= Qix) + or R= fic), 

which was to be proved. 

Example.—^Let fix) = 2x’ + 3x* — 4x — 6, and let c = 2. 

2x» + 3x’ - 4x - 6|x - 2 

2x» - 4x* 2x» + 7x + 10 

7x^ - 4x 
7s* — 14s 

ito- 6 
10s - 20 

14 

/(c) = 2 -2*+ 3-2’ — 4-2 — 6 = 14-= the remainder. 

246. The Factor Theorem. 
Theobem.—If c is a root of fix) == 0 (/[x] being a 'polynomial), 

then X — c is a factor of fix). 
Pboof.—^If cis a root of/(x) = 0, /(c) == 0. By the remainder 

theorem, we know that when/(x) is divided by x — c, the remain¬ 
der is /(c), orO; and if the remainder is 0, fix) must be exactly 
divisible by x — c. 
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Conversely: 
If a polynomial f(x) is divisible hyx — c, then c is a root of the 

equation/(x) = 0. 

247. Short-cut Division. Synthetic Method.—When the 
divisor is x — c and the dividend of the form, 

/(x) = aox” + aiX"-‘ + . . . a„_,x + a„, 

where the os are all integers, the ordinary process of division 
may be greatly shortened. 

Let us assume a problem with the division made in the usual 
manner. 

Divide /(x) = 2x^ — 9x* — 4x* — 25 by x — 5. 
2x^ — 9x* — 4x^ — Ox — 25x — 5 

2x^ — lOx* 2x® + x^ + a: + 5 

X* — 4x® 
X* — 5x® 

X* - Ox 
X* — 5x 

5x - 25 
5x - 25 

Since the function has had its terms arranged in a descending 

series with the missing terms supplied by Os, we may disregard 
the xs for they are simply carriers, and consider only the as which 
are the coeflRcients of the xs. We, therefore, write down only 

the coefficients as follows: 

2 - 9 - 4 0 - 25|1 - 5 
-10 12+1 + 1 + 5 

+ 1 
- 5 

+ 1 
- 5 

+T 
- 25 

Since the minus sign of 5 in the divisor changes every sign in 
forming the partial product, if we replace — 5 by 5, we may add 
the partial products to the numbers in the dividend instead of 

subtracting them. 
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Bringing all of the numbers in line, we have 

2-9- 4 0 - 25|5 

+ 10 + 5 + 5 + 25f 

2 + 1 + 1 + 5 + 0 

The last number (in this case, 0) is the remainder and is, 
therefore, the value of f{x) when x is replaced by 5, or simply/(5), 
since, from the remainder theorem, the value of /(5) is equal to 
the remainder when f{x) is divided by a; — 5. 

Also observe that the numbers in the last line are the coeffi¬ 
cients of the x series in the quotient. In this case, the quotient is 

2x^ + + X + 5. 

Rule.—Write the coefficients of the terms of the 'polynomial in 
order, supplying 0 'wherever a term is missing. Multiply the 
number to be substituted for x by the first coefficient and add (alge¬ 
braically) the product to the second coefficient. Multiply this sum 
by the number to be substituted for x, add to the third coefficient, and 
proceed until all of the coefficients have been used. The last sum 
obtained is the remainder, which is also the value of the polynomial 
when the number is substituted for x, the variable. 

Example.—Divide f(x) == — 3x^ + ~ 9 by a: — 2. 
2 - 3 + 1 - 1 - 9|2 

+ 4 + 2 + 6 + 10 

2+1+3+5+ 1 

The last number, +1, is the remainder, the value of /(2), and the 

quotient is 2x^ + + 3x + 5. 

248. Finding Roots of Polynomials.—The method of the 
preceding paragraph is also useful in providing an easy way of 
finding the integral roots of an equation of any degree whatever. 
In using this device, we test a few numbers as roots and at the 
same time factor the polynomial. 

Example.—Find the roots of 4:x^ — — 19x + 10 = 0. 

Test 2 for a root. 
4 - 1 - 19 + 10 

8 + 14 + 10 

4 + 7-6 0 

This process shows that the remainder is zero and 2 is, therefore, a 

root, a: — 2 is a factor. 
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The quotient is 4x’‘ -\-7x - 5. Then 

(x - 2)(4x^ + 7a; _ 5) = 0. 

Solving 4x* -|- 7a; 5 = 0 for the remaining roots of the polypomial 
gives 

a: = -7 ± Vl29 
8 

In choosing the numbers to test as roots, it should be noted 
that they must be factors of the absolute term, or 10 in the case 
of the example given, provided that the equation has been cleared 
of fractions. For instance in the equation, 

X* - 17a:* - 34a: - 30 = 0, 
the only possible integral roots are 

+ 1, ±2,+3, ±5, ±6,+ 10, ±15,+30, 
which are all factors of 30. 

In testing, begin with the smaller numbers, and it will be 
found that there are no roots larger than 5. 

The roots of the above equation are 

5, —3,-1 + V^l, and —1 — -%/ — 1. 

249. Fractional Roots.—A fraction, as can be a root of an 
3 

equation, provided that the numerator p is a factor of the con¬ 
stant term and that the denominator g is a factor of the coefficient 
of the highest power of x. 

Example.—Find the fractional roots of 
24x^ + 2x^ - 3x’ - 21a:* + a; + 0 = 0. 

The constant term is 6, and the factors of G are 1, 2, 3, 6. 
The coefficient of the higlicst term in x is 24, and the factors of 24 ere 

1, 2, 3, 4, 6, 8, 12, and 24. 

Thus all the possible combinations of these numbers into fractions are 

±5, ±1, ±1, ±J, ±2, ±4, ±6, ±i, ±f, ±A, +2V. 
If we test +^, we find that it Ls not a root. Testing — 

24+ 2-3-21+ 1 + 61-1 

-12 + 5- 1 + 11-6 
24 - 10 + 2 - 22+ 12 0 

Since the remainder is zero, — § is a root. 

Next try the quotient for +| as a root. , 
24 - 10 + 2 - 22 + 12 

+ 16 + 4+4-12 
24 +6+6- 18 0 +fisa root. 

+ 18+18 + 18 
24 + 24 + 24 0 

Test +1 
+ I is a root. 
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Dividing the last quotient by 24 gives 

a;* + a; + 1. 

The factors of the polynomial are 

24(x + i)(x - i)(x - i)(x* + X + 1). , 

260. Translation of a Graph by Synthetic Method.—Consider 
that the graph of y = /(x).has been translated h units to the left 
so that every value of x has been replaced by x + ft. Now let 
the equation of the new curve be 

[66] y = o^” + OiX"~i + osx"-* + . . . + o„_iX + o„. 

If this curve is moved back to its original position, the equation 
becomes 

y = f(x) = a«(x — ft)" + oi(x — ft)"~‘ + a2(x — ft)““* + . . . 
+ On_l(x — ft) + a„. 

If f(x) is divided by x — ft, we would have a remainder of a„ 
while the quotient would be 

ao(x - ft)"-‘ + Oi(x - ft)"-* + . . . + a„_2(x - ft) + a„_i. 

Dividing this again by x — ft, o»_i is the remainder and the new 
quotient is 

o,(x - ft)"-* + ai(x - ft)"-* + . . . + a„_2. 

Dividing again by x — ft gives o»_3 as a remainder. This 
division is continued until all the coefficients have been once a 
remainder. The remainders so obtained are the coefficients of 

the transformed equation. 

Example.—Translate the graph of y = x’ + 7x* — 22x — 4, to the 
left, 2 units and write the equation of the new graph.. 

1 + 7 - 22 - 4|2 

+ 2 + 18 - 8 

1+9-4 -12- 

+ 2 + 22 

1 + 11 +^8 

+ 2 

1 + 13 

The underlined numbers are the coefficients, and the transformed 
equation is 

X* + 13x* + 18x - 12 = fi(x). 
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261. Approximate Solutions for Irrational Roots.—The method 
of,Art. 250 is useful in obtaining approximate values for the 
irrational roots of an equation to several decimal places. 

If the root is found to be between 2 and 3 and appears to the 
eye, when the graph has been made, to lie between 2.4 and 2.5, a 
translation is made which diminishes the roots by 2.4 or to less 

than .1. This means that the graph has been translated 2.4 
units to the left (Fig. 93). If we translate again, say to the left 
.07 unit, and find that we have a close approximation to the 
value of X when we substitute, the approximation to the value 
of the root is obtained by adding the amounts of the several 
translations, thus, 

a: = 2 + .4 + .07 = 2.47. 

262. The Graphing of Polynomial Functions.—We can make 
use of the fact that the remainder, 
found by synthetic division, gives the 
value of the function y for the values 
of * substituted, when we desire to 

draw the graph of the function. 

Consider 

j/ = X* + 3x* — 2x —18. 

The value of y when x = 0 is found by 
direct substitution to be —18. 

Let X = 1. 1 + 3 - 2 - 1^ 
+ 1+ 4+ 2 

1 + 4 + 2 — 16 remainder —16. 
I^t X = 2 1 + 3 - 2 - 18 |2 

+ 2+10+16 

1 + 5 + 8 — 2 remainder —2. 
Let X = 3 1 + 3 - 2 - 18 |3 

+ 3 + 18 + 48 

1 + 6 + 16 + 30 remainder +30. 

We can see that when x is still greater, the remainder will be a positive 
quantity. We will not plpt further in the direction of the positive values 
of X but will find the values of y for some negative values of x. 

I^tx = -1. 1 + 3-2-18 )-l 
- 1 - 2 + 4 

1 + 2 — 4 — 14 remainder —14. 
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Let X == —2. 1 + 3 — 2 18 [ —2 
- 2 - 2 + 8 

1 + 1—4 — 10 remainder —10. 

1 + 3 - 2 - 18 1-3 

- 3 0+6 

1 0 — 2 — 12 remainder —12. 

1 + 3 - 2 - 18 |-4 

— 4 + 4 — 8 

1 — 1+2 — 26 remainder —26. 

Fio. 94. 

All negative values of x numerically greater than 4 result in negative 

remainders. We next put the results in tabular form for convenience 

in plotting. 
X y 
-4 -26 

-3 -12 
-2 -10 
-1 -14 

0 -IS 
1 -16 - 

2 - 2 
3 +30 

Where the curve intersects the X-axis are found the roots of the 

equation. In this case there is only one real root and two imaginary. 

See Arts. 254 and 260 following. 

263. Application of Synthetic Translation (Horner’s Method). 

To find an approximation to the irrational root of 
X* + 3x* — 2x — 18 = 0 

Let X = —3. 

Let X =5' —4. 
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which was plotted in the previous article, we see that there is a 
root between 2 and 3, and hence, we translate 2 units to the left. 

1 + 3 - 2 - 18 |2 

+ 2 + 10 + 16 

1 + 5 + 8 - 2 
+ 2+14 

1 + 7 + 22 

+ 2 

1 +9 

The equation of the translated curve is 

+ 9^2 + 22x -2 = 0. 

With h = 2y we have a remainder of —2 and estimate that h for the 

next translation should be about .08 to make the remainder close to 
zero. 

1 + 9.00 + 22.0000 - 2.0000 

+ .08 + .7264 + 1.8181 

1 + 9.08 + 22.7264 - 0.1819 

.08 .7328 

1 + 9.16 + 23.4592 

.08 

1 + 9.24 

The new equation is 

a:3 + 9.24x2 + 23.4592x - 0.1819 = 0, 

which shows a constant term. —0.1819. For the next translation, try 

h = .007. 

1 + 9.240 + 23.4592 - 0.1819 
+ .007 + .0647 + 0.1647 

1 + 9.247 + 23.5239 - 0.0172 

+ .007 + .0648 

1 + 9.254 + 23.58^ 

+ .007 

1 + 9.261 

The new equation is 

x2 + 9.261x2 + 23.5887X - 0.0172 = 0. 

The last translation results in a very small constant term, and instead 
of continuing, we resort to another method of approximation. 
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X is now very small and x* and z* are so small that they may be dis¬ 
regarded and we have 

23.5887X = 0.0172. 
X = 0.00072. 

Adding the translations we have made, we have the root equal to 

2 + .08 + .007 + .00072 = 2.08772. 

This whole method of approximation is known as the Horner method. 

264. Multiple Roots.—Some equations like 

X* - 8x* + 21x - 18 = 0 

are satisfied by only two numbers, 2 and 3; but we say that 3 is 

a double root because (x — 3)* is a factor of 

x» - 8x* + 21x - 18. 

A polynoTnial equation of the nth degree has exactly n roots if 
we count both real and imaginary roots and count the multiple 

roots as many times as the degree of their multiplicity. 
If a rational integral equation with real coefficients has the 

complex number, c -f id, as one of its roots, it must also have the 
complex number, c — id, for a root, and hence, the complex 

roots occur in pairs. It follows that every equation of odd 
degree with real coefficients has at least one real root. The 
graphs of polynomials of higher degree-than the second usually 
take the form of a number of loops as shown in Fig. 95. 

If the X-axis is tangent to the curve, there is a pair of real and 
equal roots represented by the abscissa of the point of tangency. 
In the case where the loops have been translated above or below 
the X-axis by the translating members, the equation will have 
complex roots. The nature of the graph when this condition 
exists is shown in Figs. 96 and'97. There may also be complex 
roots without any such loop occurring in the graph. 
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Complex roots occur in pairs, and for each vertex of the curve, 
there is a pair of complex roots, unless as before stated, the curve 
is tangent to the X-axis at one of these vertices, in which case 
the point represents two roots, real and equal. 

The greater the difference between the values of the roots, the 
more pronounced the divergence of the parts of the curve on 
either side of the loops will be, and the nearer the values of the 
roots are to each other, the nearer the sections of the curve come 
to each other. 

If the binomial surd, a + \/6, is a root of an equation with 

rational coefficients, then its conjugate, a — a/6, is also a root 
of the same equation, and conversely. 

265. Relations between the Roots and the Coefficients of the 
General Equation of nth Degree.—In the general form, 

+ . . . + Pn = 0, 

which is obtained from [66] by dividing by aoi 
The sum of the roots is equal to the coefficient of the second 

term with its sign changed, or if n = 4, 

Xi X2 + Xz + Xi = -pi. 

The sum of the products of the roots, taken two at a time, is 
equal to the coefficient of the third term, thus, 

0:1X2 + XiXz + XiXi + X2X3 + X2X4 + XzXa = P2. 

The sum of the products of the roots, taken three at a time, 

equals the coefficient of the fourth term with its sign changed, 

X1X2X? + XiXzXa + XiXzXi + X2X3X4 = —pz 

The product of the roots is equal to the constant term, with 

its sign changed if n is odd, 

X1X2X3X4 = Pi- 

266. To Form an Equation When the Roots Are Given.—If 

the given roots are Xi, X2, Xz, - - - Xn, by multiplying together 
the factors, x — Xi, x — X2, x — X3, . . . x — Xn, and setting the 
product equal to zero, we obtain the equation. 

Example.—Assume the roots, 4, —3, ± f. 

. •. (x - 4)(x + 3)(x - |)(x + }) = 0. 

Multiplying, we have x^ — x* — Vx* + ix + 27 = 0, or 

4x^ ^4x^ - 67x* + 9x + 108 = 0. 
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The graph of this equation is shown in Fig. 98. 
We can also find the equation by use of the relations of Art. 255, thus, 

p, = -.(4-3 + J -i) = -1. 
p, « 4(~3) + m + 4(-§) + (^3)(i) + (-3)(-3) + m-i) 

= -12 - I = -V. 
p, - -|4(-3)(|) + 4(-3) (-i) + 4a)(-|) + (-3)(i)(-5)l = 

~|-¥ + ^4^1 - I 
P4 = 4(-3)(3)(-5) 

Hence the equation, 
^4 _ ^3 _ h7j^2 ^ _j_ XJ& — Qj. 

4^4 _ 4^3 _ 57a;2 + 9x + 108 = 0. 

Yi 

267. Aids to Graphical Solutions.—After plotting the graph 
of a polynomial (using the synthetic method of Art. 252 to obtain 
the values of y for different values of x), first determine whether 
any rational values of x can be solutions. Bear in mind that 
the constant term pn when the equation has been put into the 
form, 

X~ + piX«-l + + . . . Pn-lX + Pn = 0, 

is the product of the roots. If, for instance, the constant Pn 
is 3, then ±3, or ±1 are the roots, if the roots are rational. 

268. Roots Multiplied by a Constant.—If in 
/(x) == aox" + + a2X"'”^ + . . . Un-iX + an = 0 

we represent the roots by Xi, X2, X3, . . . Xn, and we wish to 
form an equation having roots k times those of the original 

X 
equation, we replace ^ by ^ giving 

and clearing of fractions, the desired equation is 

OoX" + aikx’^-^ + 02***’*“* + . . . o„_i*"“‘a; + k”an = 0. 

269. Equations Having Roots Numerically Equal but Opposite 
in Sign to the Roots of a Given Equation.—If we desire to form 
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an equation whose roots are the negatives of the roots of a given 

equation, we may do this by changing the signs of the alternate 
terms of the given equation. 

It is evident that this is merely the process of the preceding 
paragraph with A: = — 1. 

260. Descartes’ Rule of Signs.—An equation in the general 

form, f{x) = 0, has no more real positive roots than f{x) has 
changes of sign. 

The general equation, f{x) = 0, has no more real negative 

roots than/( —*) has changes of sign. 

If a = the number of positive roots, and 

b — the number of negative roots, then 

n — (a + 5) = the number of complex roots, where n is 

the degree of the equation. 

The graphical method of solving polynomial equations is to be 

recommended for engineering purposes. In the event of very 

exact values of the function being desired, that part of the curve 
which lies in the vicinity of the intersections of the graph and the 

X-axis can be drawn to a very large scale and the results obtained 

with a corresponding degree of accuracy. 



CHAPTER XI 

POWER FUNCTIONS 

261. Power Functions.—The algebraic functions consisting 
of a single power of the variable, such as 

X*, x^, X*, ax~*, etc., 

are examples of the power function. 
In importance it lies next to the linear functions, and in fact; 

the power function, y = ox", is one of the three basic laws of 

natural phenomena. 
In Art. 170 we have analyzed the function obtained by squar¬ 

ing the variable and it is unnecessary to add an3rthing to that 
discussion, excepting perhaps to call the attention to some 
natural laws which depend upon it. Thus, the area of a circle 

varies as the square of its radius, and the distance traversed 
by a falling body varies as the square of the elapsed time. Many 
other examples like the ones mentioned could be cited to indicate 
the importance of the power function, y = ox*. 

So, too, we have many other relations of variables of the form, 
y — ox*, such as the relation between the volume of a sphere 
and its radius, or the volume of a cube and its side. We have 
also treated the function, y = ox*, in Art. .232 with sufficient 
detail for our purpose.. We will, therefore, take up the discus¬ 
sion of some of the additional power functions which have not 
been mentioned in our treatment of these two special cases. 

The value of o is different for every problem, although it 
retains a constant value throughout a given discussion. It was 
observed in Art. 232 what the effect was of o upon the graph 

oty = X". 

262. Case 1. y » x" [66] with n Positive.—All equatiqns of 
this type, as j/ =» x, = x*, etc., are represented by curves 
which have the common property of passing through the points 
(0, 0) and (1,1), and which are called parabolic curves. 

196 
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2/ =» ®* is called a parabola, 
y = X* is called a cubic parabola, 
y = X* is called a semicubical parabola. 

The forms of these curves for some integral values of n are 
shown in Fig. 99. 

The graphs of these curves can be made straight lines by using 
logarithmic coordinate paper as shown in Figs. 127 and 128. 

Fio. 103. Fig. 104. 

263. Parabolas with n Fractional.—The relation of the graphs 
of y = x“ for different fractional values of n are shown in Figs. 100, 
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101,102, and 103. In Fig. 104 are shown the graphs of the function 
for various fractional values of n as they appear in the 
first quadrant. 

264. Case 2. y = x” [66] with n Negative.—These curves are 
called hyperbolic curves. 

These functions take the general form, y — x-", or y = 
X 

which can be put into the form, yx" = 1, with n > 0. 

The special case, xy = 1, we have noted (Art. 206), is a rec¬ 
tangular hyperbola. 

Figure 105 shows the graphs of some of the hyperbolic func¬ 
tions for various negative integral values of n. 

Figure 106 shows the graphs of y *= x" when n has various 
negative fractional values. 
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Figure 107 represents the function, y = or-", for different 
values of n showing the appearance of the curve in the first 
quadrant. 

The hyperbolic curves of the forms just given approach the 
asymptotes, the asymptotes being the Z- and F-axes. The 
rate at which they approach the axes depends upon the relative 
magnitudes of the exponents of x and y. The quadrants in 
which the curves lie are determined by the oddness or evenness 
of these exponents. 

266. Change of Variable.—If x be replaced by { — x) in any 
equation containing x and y, the graph of the function so formed 
is the reflection of the original function with respect to the axis 
OF. 

266. If y be replaced by ( —y) in any function containing 
X and y, the graph of the transformed function is the reflection 
of the original function with respect to the OX-axis. 

267. If X and y be interchanged in any function involving 
them, the function will be represented by a curve, which is the 
reflection of the graph of the original function 
with respect to the line y = x, 

268. If a function remains unchanged, 
when X is replaced by (—x), its graph is ^ 
symmetrical with respect to the F-axis. 

269. If a function remains unchanged, when 
y is replaced by { — y), its graph is symmetrical yiq. io8. 

with respect to the X-axis. 
270. If a function remains unchanged, when x and y are 

interchanged, its graph is symmetrical with respect to the line 

2/ = X. 
271. If a function remains unchanged, when x is replaced 

by (-x) and y is replaced by (-y), its graph is symmetrical 

with respect to the origin. 
272. If a function is unchanged by the substitution of (-?/) 

for X and (~x) for y, its graph is symmetrical with respect to the 

line y = — X. 

273. Substituting for x in the equation of any locus 

multiplies all of the abscissae of the curve by a. 
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274. Substituting for y in the equation of any locus 

multiplies all of the ordinates of the curve by o. 
276. The Functions^ y = az^andy = (Arts. 261 and 232).— 

The constant a increases or decreases the value of the function, 
or py in the function, y = x^y in the ratio of a to 1. 

If a is greater than 1, ?/ is increased, and if a is less than ly y is 
decreased, when compared to its value 
in y = X”. 

Thus, in Fig. 109 are shown the graphs 
of ^ and yi =2x^. 

It will be readily seen that any ordi¬ 
nate yi is twice the length of the cor¬ 
responding ordinate y, 

276. Iny == ax^y where n is any positive 
number, the relation between the vari¬ 
ables is often expressed by the statement, 

y varies as the nth power of x, or 
y is proportional to x”. 

Likewise, in the case of the function, the relation is 
X 

expressed by the statement, 

y varies inversely as the nth power of x, or 
y is inversely proportional to a;". 

277. In any power function of x, if a: changes by a fixed 
multiple, y will change by a fixed multiple also. 

Assume y = ax", and take different values of x and the cor¬ 
responding values of y, as x\, Xt, and yi, yt. 

yi - a(xi)». (1) 
y2 = aimxi)" = am^ixi)". (2) 

Dividing (2) by (1), 
yt _ am"(xi)" _ 
Vi o(xi)» ™ • 

This means that if x in any power function changes by the 
fixed multiple m, then the value of the function y will change by 
the fixed multiple m". 

This law is used to determine whether experimental data are 
related according to some power function relation. 
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278. Case of the Function [67], y = .—The graph of y * 

can be made from the graph of y — by multiplying all of 

the abscissae of the latter graph by a. The ratio of the abscissae 

of the two curves is a to 1. 

The two curves are shown plotted in Fig. 110 where the two 

may be compared and the method of obtaining one from the 

other may be readily seen. This fol¬ 

lows from Art. 273 which stated that 

the substitution of 

for X in any equation of locus 

multiplies all of the abscissae of the 
curve by a. 

279. Translation of Power Function 
Graphs.—If (x + h) is substituted for x in the power function, 
we have 

[68] 2/ = (a: + h)^. 

This results in a translation of the origin a distance h in the 
X-direction in the same manner as in the case of the quadratic 
(Art. 172). 

If we first draw the graph of the function, y = x”, and wish to 
transform it into a graph of the function, y = {x + ft)”, we shift 

the origin to the point (ft, 0) and the 
equation of the curve referred to the 
new origin is i/ = (x + ft)”. 

Example.—Translate the graph of y = 

x3 so that it represents the function, y = 
(x - 

Draw the graph of y = xi represented 
in Fig. Ill by AO By using the temporary 
axes, YYi&nd XXi. Then, since ft = —J, 

shift the origin ? units in the negative X direction, or to the left as 
shown. 

Note that y = x^ can also be written, y* = x^ and it will often be 
found in this form. 

280. Case Where the mx Term Appears in the Power Ftmc- 
tion.—The addition of a term in x, such as mx, to the power 
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function, y = ax’', puts a shear in the graph in the same manner 
as in the cubic or quadratic equations and is handled in the same 

manner (see Art. 234). 

If w = 1, we have y = ax" + x. 

This indicates that the value of y in y = ax” is increased or 

decreased by an amount equal to x. 

If X is positive, we have an increase in the value of y, and if x 
is negative, we have a decrease in the value of y. 

We can accomplish this addition or subtraction of the x term 

by drawing a line through the origin having a slope of m and 

measuring the values of y from this line. 

Example.—By shearing the graph of y = xi, change it to represent 
X 

the function, y == 
JU 

Draw the graph of y = as shown in Fig. 112. 
X 1 

Draw y - 2 ^ 2 

Take any distance x and with a compass transfer y = SP to RPi^ 
locating the point P in its new position Pi. 

Continue in this manner until several points are located and then 
draw the graph through these points. 

The new graph is the graph of the function, 2/ + 2* 



CHAPTER XII 

INEQUALITIES AND VARIATION 

281. Inequalities.—One number is said to be greater than 

another if, when the second is subtracted from the first, the 
remainder is positive. 

If a is greater than 6, the fact is denoted by writing, a>h. 

If a is less than fe, it is written, a <h. The signs > and < 

are read ‘‘is not greater than’’ and “is not less than,”^respectively. 
When the first two numbers of two inequalities are each greater 

than, or less than, the corresponding second members of the 

inequalities, the inequalities are said to subsist in the same sense. 
X > a and y > h subsist in the same sense. 

When the first member is greater in one inequality and less 

in another, the inequalities are said to subsist in a contrary sense. 
X > h and y < a subsist in a contrary sense. 

282. If the same number be added to, or subtracted from, both 

members of an inequality, the resulting inequality will subsist 

in the same sense. 
Let a > b and let c be any positive or negative number. 

Then a — b' - p, b. positive number. 

Adding c — c = 0, we have 

a + c — (b + c) = p. 
Therefore, 

a + € > b + c. 

Examples. 

Given 8 > 5 Given 8 > 5 
Add 2 2 Subtract 2 2 

10 >7 6 > 3 

283. If both members of an inequality are multiplied or 
divided by a positive number, the resulting inequality will 

subsist in the same sense, but if both members of an inequality 

are multiplied or divided by a negative number, the resulting 

inequality will subsist in a contrary sense. 
203 



204 MATHEMATICS FOR ENGINEERS 

Let a > 6 and let c be any positive number. 
Then a — b — p, a, positive number. 
Multiplying, ca — cb = cp, which is positive. 
Therefore, ca > cb. 
284. Multiplying by —1 changes the signs of both members 

of the equation, co — c5 = cp, so that cb — ca = — cp, which 
is a negative number. Writing this last equation in the form, 

—ca — {—cb) = a negative number, we see that 

—CO < —cb. 

Given 8> 5 16> 10 Given 16>10 16 >10 
Multiply 2 2 — 2 —2 Divide 2 2—2 —2 

16>10 -32<-20 8 > 5 -8<-5 

286. A term may be transposed from one side of an inequality 
to the other providing that its sign is changed. 

Let a — b > c — d. 
Adding b to each side (Art. 282 ),o>c — d + 6. 
Adding — c to each side, a — c > b — d. 

286. If the signs of all the terms of an inequality are changed, 
the resulting inequality will subsist in the contrary sense. This 
follows from Art. 283, since changing the signs is equivalent to 
multiplying by — 1, or it can be seen that if o — 6 > c — d and we 
transpose all of the terms Art. 285, d — c > b —a, or —a + b < 

— c + d. 
287. If the corresponding members of any number of inequali¬ 

ties subsisting in the same sense are added, the resulting in¬ 

equality will subsist in the same sense. 
Let a > b, c > d, e > f, etc. 
Then a — b, c — d, e — f, etc., are all positive and their sum, 

(o-|-c-i-e+ . . . ) — {b + d+ f+ . . . ),i8positive. 

That is, 

(0 + C + 6+ • • • )>(& + d+/-t- . . . ). 
288. If each member of an inequality is subtracted from the 

corresponding member of an equation, the resulting inequality 

will subsist in the contrary sense. 
Let o >. 6 and let c be any number. 
Then a — b = a positive number and since a number is dimin¬ 

ished by subtracting a positive number from it, 
c — (a — b) < c. 
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Transposing, 
c -- a < c -- b. 

That is, if each member of the inequality, a > fe, is subtracted 
from the corresponding member of the equation, c = c, the 
resulting inequality subsists in the contrary sense. 

289. If a > 6 and 6 > c, then a > c, for 

a — fc = a positive number, and 
6 — c = a positive number. 

Therefore, 

(a ~ 6) + (6 — c) = a positive number. 

Simplifying, 

a — c = a positive number, and hence, 
a > c. 

Note.—In a similar manner it may be shown that if a < 6 and 6 < c, 

then a < c. 

291. If the corresponding members of two inequalities are 
multiplied together, the resulting inequality will subsist in the 
same sense if all of the members are positive. Let a > b and c > d, 
where a, 6, c, and d are all positive. Multiplying the first ine¬ 
quality by c and the second by b, 

ac > be and be > bd. 

Hence, by Art. 289, ae > bd. 

Note.—When some of the members are negative, the result may be an 

inequality subsisting in the same sense or in a contrary sense, or it may be 

an equation. 

Thus take the inequality, 12 > 6. 
Multiplying by the inequality, — 2 > —5, member by member, 

-24 > -30. 

Multiplying by the inequality, ~2 > —4, member by member, 

-24 = -24. 

Multiplying by the inequality, — 2 > —3, member by member, 

-24 < -18. 

292. The quotient of two inequalities, member by member, 
may have its first member greater than, less than, or equal to its 

second member. 
Take the inequality, 12 > 6. 
Dividing by the inequality, 3 > 2, member by member, 4 > 3. 
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Dividing by the inequality, 4 > 2, member by member, 3 « 3. 
Dividing by the inequality, 6 > 2, member by member, 2 < 3. 
293. Problems. 

Example 1.—Find the values of x which satisfy the inequality, 
3x ~ 10 > 11. 

Transposing by Art. 285 or adding 10, by Art. 282, 
3x > 21. 

Dividing by 3, according to Art. 283, 
X > 7. 

Therefore, for all values of x greater than 7, the inequality is true, 
or we say that the inferior limit of x is 7. 

Example 2.—Find the values of x which satisfy the simultaneous 
inequalities, 

3x + 5 < 38 and (1) 
4x < 7x - 18. (2) 

Transposing in (1), by Art. 285, 
3x < 33. 

Dividing by 3, according to Art. 283, 
X < 11. 

Transposing in (2), by Art. 285, 
-3x<-18. 

Dividing by —3, according to Art. 283, 
X > 6. 

The results show that the given inequalities are satisfied simul¬ 

taneously by any value of x between 6 and 11. That is, the 
inferior limit of x is 6, and the superior limit is 11. 

Example 3.—Find what values of x and y satisfy the conditions: 
3x — y > — 14 and (1) 

X + 2y = 0. (2) 
Multiplying (1) by 2, 6x - 2y > - 28. (3) 
Adding (2) and (3), 7x > -28. (4) 
Dividing (4) by 7, X > —4. 

(5) Multiplying (2) by 3, 3x + 6j/ = 0. 
Subtracting (5) from (1), —7y> —14. 
Dividing by —7 y < 2, 
That is, the inferior limit of x is —4, and the superior limit of y is 2. 

Example —Find what values of x satisfy the inequality, x* -f 3x > 

28. 
Transposing, a:’ + 3a: — 28 > 0. 
Factoring, (x — 4)(x + 7) > 0. 
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That is, {x — 4) (a; + 7) is positive, and, therefore, either both factors 
are positive, or both are negative. Both factors are positive when 
a: > 4, and both factors are negative when x < — 7. 

Hence, x may have all values except 4 and —7 and the values between 
these numbers. 

Example 5.—If a and h are positive and unequal, prove that 
+ 62 > 2a6. 

Whether (a — 6) is positive or negative, {a — hy will be positive, and 
since a and 6 are unequal, 

(a — 6)2 > 0. 
That is, 

- 2a6 + 6^ > 0. 

Transposing, according to Art. 285, 

a2 + 62 > 2a6. 

Note.—If a = 6, it is evident that o2 + 62 = 2a6. 

294. Vaxiation.—Many problems have to do with quantities 
that are constantly changing. These quantities are called 

variables- 
One quantity is said to vary directly as another, or to ^^vary 

as another^^ when the two depend upon each other in such a 
manner that if one is changed, the other is changed in the same 

ratio. 
The sign of variation is and is read ‘Varies as.’^ Thus, 

X a 2/ is a brief way of writing the proportion, 

x:x' = y:y' 

in which x' is the value to which x is changed when y is changed 

to y\ 
The expression x y means that if x is doubled, y is doubled. 

That is, the ratio of x to 1/ is always the same or is equal to a 

constant. 
If the constant ratio is represented by fc, then when x « 2/, 

- = fc, or X = ky- 
y 

If X varies as y (x oc a; is equal to y multiplied by a constant fc. 
296. One quantity or number varies inversely as another when 

it varies as the reciprocal of the other. Thus, the time required 
to do a certain piece of work varies inversely as the number of 

men employed in doing it. 
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1 1 
In a: oc -> if the constant ratio of * to - is fc, 

y V 
X , , k 
V — K, or xy ^ k, or x = — 
1 ’ y 
y . 

296. One quantity or number varies jointly as two others 
when it varies as their product. 

In a: oc yz, if the constant ratio of x to yz is k, 

— = k, or ® = kyz. 
yz 

297. One quantity or number varies directly as a second, and 
inversely as a third, when it varies jointly as the second and the 

reciprocal of the third. 

1 y 
In X oc ^- or x a if A; is the constant ratio, 

z z 

X A;, or x = A;-» 
z ' z 

Thus the time required to dig a ditch varies directly as the 
length of the ditch and inversely as the number of men employed 
in digging it. For, if the ditch were ten times as long and five 
times as many men were employed in digging it, the time would 

be twice as great. 
If X varies as y when z is constant, and x varies as z when y is 

constant, then x varies as yz when both y and z are variables. 
Similarly, if x varies as each of three or more quantities when 

the others are constant, when all vary, x varies as their product. 
X oc yzv, 

298. Problems. 

Example 1.—If x varies inversely as y, and x * 6 when y = 8, what 

is the value of x when y = 12? 

Since x cc let A: be the constant ratio of x to 
y V 

Then xy = A. 
Hence, when x « 6 and y =* 8, 

A; = 6 X 8 = 48. 

Since k is constant, it equals 48 when y => 12. 
Substituting in xy ^ 

X • 12 - 48. 
X * 4. 



INEQUALITIES AND VARIATION 209 

Example 2—If x y and 2/ « 2, prove that x cc z. 
Let m represent the constant ratio of x to 2/, and n the constant ratio 

of y to z. 

Then x = my. (1) 

And y = m. * (2) 

Substituting nz for y in (1), x = mnz. 
Hence, since mn is constant, 

X cc z. 

Example 3.—The volume of a cone varies jointly as the altitude and 
the square of the diameter of the base. When the altitude is 15 and 
the diameter of the base is 10, the volume is 392.7. 

What is the volume when the altitude is 5 and the diameter of the 
base is 20? 

Let 7, and D denote the volume, the altitude, and the diameter 
of the base, respectively, of any cone, and 7' the volume of a cone whose 
altitude is 5 and the diameter of whose base is 20. 

Since 7 oc HD\ or 7 = kHD\ 
and 7 = 392.7, when H - 15 and D = 10, 

392.7 = fc • 15 • 100. (1) 

Also, since 7 becomes 7', when H — 5 and D = 20, 

7' = A • 5 • 400. (2) 
Dividing (2) by (1), 

7' _ 5 • 400 ^ 4 
392.7 15 * 100 3’ 

F' = 4(392.7) == 523.6. 



CHAPTER XIII 

PROGRESSIONS 

299. Series.—A series is a succession of terms so related that 

each may be derived from one or more of the preceding terms in 

accordance with some fixed law. 
300. Arithmetic Progression (A.P.).—An arithmetic pro- 

gession is a series, each term of which, except the first, is derived 

from the preceding term by the addition of a constant number. 

The common difference is the number which, added to each term, 
produces the next term. 

[69] (fl), (a ”1“ d), (a, -f- 2d), (a 3d), . . . 

This is an arithmetic progression in which a is the first term 

and d is the common difference. 
If o = 3 and d = 4, the series, 

3, 7, 11, 15, 19, . . . 

would be ascending. 

If o = 17 and d = — 7, the series, 

17, 10, 3, -4, -11, . . . 

would be descending. 

Since d is added to each term to obtain the next term, 

2d is added to a to form the third term. 
3d is added to a to form the fourth term. 

(n — l)d is added to o to form the nth term. 
Hence, 

[70] the last, or nth ^ term is o + (n — l)d, or 1. 

301. To find the sum, S, of the first n terms of an A.P., take 

S = a + (o'l'd) + (o4- 2d) • • • ■[■ (1 ~ d) + Z. 

Reversing the order, 

iS = Z + (Z — d) + . . . + (o 4- 2d) + (o + d) + a. 

Adding, 

2/S = (a + Z) + (a + Z) + .(o + 1) 4" • • . 4' (o 4" 0 
or 

2/S = n(o 4- 0- 
210 ' 
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302. From the foregoing, 

[71] «=|(a + 0, 

where n is the number of the last term 1. 
Since I — a + (n — l)d, substituting gives 

5 = ^[o + (a + \n - l)<i)], or 

[72] S = ^[2a + (n - l)d]. 

303. In most A.P. problems, live quantities, a, d, n, I, and S, 
are involved. If any three are given, the remaining two may be 
found by use of the simultaneous equations, 

I = a + (n — l)d, and [70] 

S = ^ia + l) [71] 

For convenience, we will put the series in the following form, 
[73] a -(- (ct -4- d) -f- (fl 2d) . . . ~|- [a (w — l)d] = 

^ [2o 4- (n - Id]. 

When three numbers are in A.P., the second or middle number 
is called the arithmetic mean. 

Let the series be a, b. 
Since their common difference must be the same, 

X — a — b — X. 
Solving, 

[74] X = —4“ = the arithmetic mean. 

304. Graph of Arithmetic Progression.—Since the series is 
made by adding the common difference each time, and a is the 

magnitude of the first term, the series, 
a + (a + d) + (a + 2d) + . . . + [a + (n - l)d] [73] 

can be represented graphically if we let the ordinates represent 
the magnitude of the terms and the abscissae represent the num¬ 
ber of the terms. The arithmetic progression will be represented 
by points whose abscissae are integers and which lie on a straight 
line whose slope is d, when the ordinate through the point 1 on 

the X-axis represents the magnitude of the first term. 
Any term, such as the sixth, which is represented by the ordi¬ 

nate AB, can be found from the graph. 
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The sum of the series can be considered as the sum of n ordi¬ 
nates a units long each, plus the sum of the short ordinates in 
the triangular area at the top (Fig. 113). 

Now we can consider all of these ordinates as forming another 
rectangle that is formed by n ordinates whose length is one-half of 
the length (n — l)d. This will be apparent from the figure. 
It will be readily seen that the sum of the ordinates included in 

the triangle wiU be equal to 
one-half of the sum of n ordi¬ 
nates whose length is the 

p r of the longest ordinate 
> ' I ' • in the triangle, or 

n(n — l)d 

Fig. 113. 
Then the sum of all of the 

terms is 
Sum = Sum of the ordinates of the lower rectangle + 

Sum of the ordinates of the triangle == na + 

. »|2„ + („ _ 
2i L 

n{n — l)d 

which agrees with the expression obtained by the anal3rtical 

method. 
From the graph, the value of any term or the sum of any 

number of terms can be quickly found by scaling the ordinates 
and adding them together. 

306. Some Arithmetical Series.—Starting with the general 

form [73], 
o + (o + d) + (o + 2(i) + . . . + [a + (» - l)<il =‘-^l2a + (n-l)d], 

we develop the series according to the above expression by adding 
d to each term to obtain the succeeding term; that is, the fourth 
term is formed by adding the common difference to the third 
term, which in turn has been formed by adding the common 
difference to the second term. The second term is formed from 
the initial term by adding the common difference d to the initial 
term. The fifth term is, of course, formed by the addition of the 
fourth term and d, the sixth by the addition of the fifth and d and 
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so on until the n terms have been formed. The sum of the series 
is obtained from a substitution in the formula, 

S = I [2a + (n - l)d] [72]. 

The manner of forming these series and making the substitu¬ 
tion will be shown in the following examples. 

Example,—Develop a series for a = 1, d = 1. 

a = 1 = first term. 
a-l-d=l + l= 2 = second term. 
2 + d = 2+ l= 3 = third term. 
3 + d = 3 + l= 4 = fourth term. 
4 + d = 4+ l = 5 = fifth term. 

Last term = 1 + (n — 1) • 1 = n. 
Writing the series, 

14“2 + 3 + 4-l-5 + . . . 
The sum of the n terms is 

SO that 

1+2 + 3 + 4 + 5+ . . . +(n-l)+n = 

306. Example.—Develop an arithmetical series for a = 2, d = 3. 

a = 2 = first term. 
a + d = 2 + 3 = 5 = second term. 
5-|-d = 5 + 3 = 8 = third term. 
8 + d = 8 + 3 = ll== fourth term. 

Last term = 2 + (w — 1) • 3 = 3n — 1. 
The sum of the n terms is 

^[2-2+ (n - 1)3] = ^ (3n + 1) = 

Writing the series, 
4- j, 

2 + 5 + 8 + 11 +14 +17 “b . . . + 3n 1 = -g ' 

Example.—Form the series for which a = p and d = 1. 

The series becomes 

P + (p + 1) + (P + 2) + (p + 3) + . . . + (g — 1) + 9 = 

(q + p)(g - p + 1) 
2 

because g = p + (n — 1) • 1. 
n = 9 - p + 1. 
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Substituting value of n in S = ” [2rt + (n — 1 )(fl, 

[76] S = « [2p + (5 - p + 1) - 1] = 

307. Given the series, 

2 + 4 + 6 + 8 + 10 + 12+ . . . 

we desire to find a formula that wdll give a value for the nth term 
and one that will give a value for the sum of n terms. 

Assuming that the progression is an arithmetic one, since the 
terms have a common difference, we may find any term, as the 
fifth, by letting n = 5, in a + (n — l)d, where a = 2, and d ~ 2, 
thus, 

2 + (5 - 1)2 = 10. 

The value of the last term = 2 + (n — 1) • 2 = 2ai. 
The sum S of all of these terms is 

-S = I [4 + (n - 1) • 2] = n(n + 1). 

The series can then be written, 

2 + 4+6 + 8 + 10+12+ . . . +{2n-2) + 2n = 7i(n + \), 

308, The series of odd numbers would be 

1+3 + 5 + 7 + 9 + 11+ . . . + i2n - 3) + {2n ~ 1) =n“. 

We can, therefore, build a table of s(|uares from this law, using a 
registering adding machine to make it. 

First term = 1 = (1)’ n = 1 
Second term = 3 

Sum = 4 = (2)' n =» 2 
Third term 5 

Sum = 9 (3)^ 71 = 3 
Fourth term = 7 

Sum = 16 =: (4)^ n = 4 
Fifth term = 9 

Sum = 25 - (5)» n = 6 

Sixth term = 11 

Sum = 36 = (6)’ n = 6 
Seventh term 13 

Sum = 49 s= (7)» n = 7 
Eighth term = 15 

Sum ss 64 ss n = 8 



PROGREHHIONH 215 

Ninth term = 17 

Sum = 81 - (9)2 n = 9 

Tenth term = 19 

Sum = 100 = (10)2 n = 10 

309. Geometric Progression.—A geometric progression is a 
series of terms, each of which, except the first, is derived from 
the term preceding, by multiplying it by a constant called the 
ratio. Thus, 

4, 12, 30, 108 (ratio = 3). 

-l. -2, +1, - \ ^atio = -J). 
a, ar, ar-, ar^ (ratio = r). 

To find the nth term of (I.P., with the first term a and ratio r, 

we start with 

[76] a, (ir, ar’, ar’\ ar\ etc., 

and note that a is multiplied by r”"' for each term where n is the 
number of the term. Therefore, the last term, which we will 

call /, is ar'*~h 

[77] I = ar”-h 

310. To find the sum N of the first 7i terms of a G.P., we start 
with 

N = a + or + ur- + or^ -f . . . + ar”~h (1 

iMultiplying by r, 

rS — ar + a/ - -|- ar^ + ar* + . . . + ar^. (2,: 

Subtracting (1) from (2), 

aS(/- — 1) = ar* — a, or 

311. In most problems relating to geometrical progressions, 
the five (luantities, a, r, n, /, and N, are involvetl. Hence, if aii}' 
three of the five are given, the other two may be found by the 
solution of the simultaneous eipiations, 

I = ar"“* and [77] 

312. Geometric Mean.—The geometric mean between two 

numbers is ecpial to the square root of their product, or to \/ah, 
if a and b arc the numbers. 
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Let G equal their geometric mean. Then from our definition 
of a geometrical progression, we have the ratios, 

G_b 
a~G’ 

G* = ab, and 

[79] G = V^. 

To insert, say five terms between 9 and 576, so that the terms 
form a G.P., 

5 + 2 = 7 = total number of terms. 
Substituting in [77], 

576 = 9r». 
r* = 64. 
r = ±2. 

Therefore, the series is 
9, 18, 36, 72, 144, 288, 576, or 

9, -18, 36, -72, 144, -288, 576. 

313. Infinite Geometrical Progression.—If the ratio r of a 
G.P. is less than unity, the value of r" decreases as n increases. 

The formula for the sum [78] may be written. 

[80] -S = 
a — ar” 

1 — r 
or” 

1 — r 1 — r 

By taking n sufficiently large, r“ and, hence. 
or" 

may be 
1 — r 

made less than any assignable number. Consequently, by 
taking a sufficiently large number of terms, S can be made to 

a 
differ from 

1 — r 
This is usually expressed, 

[81] = 

by less than any given number, however small. 

It is the limit of the sum of a G.P., with r less than 1, for an 

infinite number of terms. 
314. Some Geometric Series.—The general expression for 

series of this type is 
CL CLT^ 

a + ar + ar^ + ar^ + . . . + ~ --z- 
1 — r 1— r 

Next in importance is 

0 + £+®.4.iL4.fL 4. ' +-^ 
^2^2*^2*~2*~ ■ ' ■ ~ 2»-‘ 
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The limit of the sum of this series is 
Sec = 2a. 

316. Combined Arithmetical and Geometrical Progression.— 
A series partly arithmetical and partly geometrical is represented 
by 
[82] a, (a + d)r, (a + 2d)r*, (o + 3d)r*, etc. 

The sum of the first n terms in this series is 
^ _ g — [o + (n 

[83], 
l)<i]r" rd(l — r""*) 

1 - r ' (1 - r)^ 
316. Graphical Representation of G.P.—We can consider the 

first term of G.P^ as unity, since a occurs as a constant multiplier 
in each term. 

Assume, then, the series, 
l + r + r* + r*+ . . . + r”-*. 

Take OM — 1, r > 1. 
OSi = 1. 

SiPi = r. 
Draw MPi prolonged. 
With as a center and SPi 

as a radius, draw the arc P1S2, 
locating the point St, and at 
this point erect the perpendicular SjPj, thus locating the point 
Pj. With Si as a center and SiPi as a radius, draw the arc P*Ss. 
Continue in this manner to Pn<S„. 

The slope of MPi = — (1 — r). 
OM = OSi = 1. 
PiSi = SiSt = r. ,'.OSi = 1 + r = sum of two terms. 
PiSi = SiSi = r®. .‘.OSs = 1 + r + r® = sum of three terms. 
Pj/Ss = SsSi = r®. .-.OSi = l+ r + r* + r» = sum of four 

terms. In general, 
P,_i)S„_i = Sn-iS„ - r"-‘. 

.•. OSn = 1 + r 4- r* + r* + r® + . . . + = sum of n terms. 
317. In the Case Where r < 1.—In this case, proceed as 

before. 
The slope of MP\Pi etc., is (r — 1). 
The equation of MPiPt etc., in both cases is 

y = (r - l)x + 1, or 
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In this last, or converging series, if we let the number of terms 
increase without limit, the sum OSn approaches OL as a limit. 
This gives us a graphical method of finding the limit. Simply 
get the slope of MPi and note the intersection on OL. OL is the 

1 

0 1 Si Si $4. Ss 
r<1 
Fia. 115. 

value of X when ?/ = 0. Hence, the limit of the sum of the series 
is OL, or 

I — r 

318. Since we developed the series with the first term equal to 
unity, we can find the sum of the series which has its first term 

equal to a, by multiplying the length of 
^ becomes 

—j—^d 

^■Uhtii of Sprits 1 ~ r 
Fiq. 116, jjj fQj. series, 

a + ar + ar* + ar^ + ar^ + . . . + ar”^^, 
we multiply the value of Xj or OL by a. 

319. Harmonical Progression.—The terms, a, &, c, etc., form 
a harmonic series if their reciprocals, 

111, 
—f Tf etc., 
a 0 c 

form an arithmetical series. Thus, 
3) I, 1, f, I, • • • is a harmonic progression, 

because 
i> l» 1> ♦> I) 2, . . . , the reciprocals, form an arithmetical series. 

Harmonical series are usually solved by taking the reciprocals 
and solving the arithmetical series. There is no general method 
of getting the sum of the terms. 

320. Harmonical Mean.—The harmonical mean between two 
numbers is equal to twice their product divided by their sum, or 

[84] 
2ab 

a + 6 
II 
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Let a and b be the two numbers and H, the hannonical mean. 
By definition, we have 

1 Jl^ 1 
a H' b 

Hence, 
1111 
b H H a 

aH — ab = ab — bH. 
dH -j- bH = 2(ib. 

, jj 2ab 

321. The geometrical mean between two numbers is also the 
geometrical mean between their arithmetical and harmonical 
means. 

A = 
a “b 

(1) 

G = \/ ah. (2) 

H = 
2ab 

a A" b 
(3) 

Multiplying (1) by (3), 
AH = ab. 

Taking the square root, 

VAii = \/a6. 
But G = -y/ab, from (2). 

•‘•G = AH = geometrical mean between the arithmetical 

And harmonical means of a and b. 
If a and b are the first and second terms of a harmonic series, 

the nth term of a harmonical series is 

ab 
[86] I = 

(n — l)a (n — 2)b 

Any series whose terms are formed according to this law is a 

harmonical series. 
322. The relation between the harmonical and the arithmetical 

progressions can be shown, graphically, as follows: 
Draw a unit square A BOB, 
Lay off the terms of the harmonical series, which in this case 

we have taken to be 
3, li 1, I, I, h etc., 

on OE measuring from 0, each time. 
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Draw lines from A through the points, 

3, 1,!}, etc., 

of the harmonical series, intersecting the vertical line BIL 
The distances BC^ BEj BF, etc. represent the terms of the 

reciprocal arithmetical progression with the common difference 

a constant. This means that JSC, CD, DE^ etc., are all equal. 
If the points D, C, D, D, etc. are not ecjually spaced, the series 

is not harmonical. 

Fi(i 117. Fio. IIS. 

323. To build up graphically a harmonical series, when two 

terms are given, say a and 6, and there are to be c numbers of 

intermediate terms, it is only neces.sary to lay off th(? space 
between the a and h reciprocal values on the vertical scale DII 

into c + 1 equal parts, and draw the lines from the.se points to .4, 

and locate their intersections on OEa. 
The harmonical mean between two numlxirs can Ixi found in 

the same manner by taking the midpoint of DII (Fig. 118), 

drawing a line from that point to A, and locating its intersection 
with OE. 



CHAPTER XIV 

VARIABLES, LIMITS, AND INDETERMINATE FORMS 

324. Limit of a Variable.—Where a variable takes a series of 
values that approach nearer and nearer to a given constant so 

that by taking a sufficient number of steps, the difference between 
the variable and the constant can be made numerically less than 
any preassigned number, however small, the constant is called 
the Iwiit of the variable, and the variable is said to approach this 
constant as a limit. 

The variable, .3, .33, .333, . . . , whose increase is of its 

previous increase, approaches ^ as a limit. 
.3 differs from J by less than /q. 
.33 differs from J by less than ,Jo. 

.333 differs from J by h*ss than 
Ry continuing in this manner, taking a sufficient number of 

terms, the difference between the variable and I can be made 

smaller than any numbeu-, however small, whose value has been 
prea.ssigned. That is, the difference approaches zero as a limit 
or the difference is an infinitesimal. 

325. A variable, such as the one that takes the successive 
values, 6.6, 6.66, 6.666, . , . may come nearer in value to some 
numl)er which is not its limit. Thus, the limit in this case is 6§; 

yet the value of the variable comes closer and closer to 7, which, 

however, cannot be its limit since it is not possible to make the 

difference between the variable and 7 iK'come and remain less 

than any preiussigned number. This difference will always 
remain greater than I regardless of the number of terms taken. 

326. The variable may approach its limit and always remain 

greater than its limit, it may approach its limit and always 
remain less than its limit, or it may approach the limit, being 

sornetimea greater and sometimes less than it^ limit. The impor¬ 

tant thing is that the difference between the variable and its 
limit nltimaU'ly becomes and remains less than any pix'assigned 

number, however small. 
221 
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327. A variable may change in such a way as to become 
greater than or less than any preassigned positive number. If 
greater, the variable is said to become infinite or to increase 
without bound. This fact of the variable x, increasing beyond 
bound or becoming infinite is denoted by the symbol x —> a. If the 

variable x ultimately becomes and remains less than any pre¬ 
assigned positive number, however small, it is said to approach 
zero as a limit and is called an infinitestimal. This is denoted 
by the symbol x —♦ 0. 

328. 

a: 

X 

If a constant finite number is divided by an infinitesimal, th(‘ 
quotient will become infinite. That is, if the numerator of a 

fraction ^ is constant, while the denominator decreases so that 
X 

ultimately it may be made to become and remain less than any 
preassigned number (that is, numerically less), the (piotient will 
increase and may be made to become and remain greater than 
any preassigned number, however great. 

329. 

If a constant finite number is divided by a variable which 
increases beyond bound, the (juotient will be an infinitesimal. 

That is, if the numerator of a fraction ^ is constant, while the 

denominator is becoming infinite, the (juotient will decrease and 

approach zero. 
330. A variable cannot approach two unecjual limits at the 

wsame time. 
331. If two variables are always equal and each approaches a 

limit, their limits are equal. 
332. The limit of the algebraic sum of a constant and a variable 

is the algebraic sum of the constant and the limit of the variable. 

333. The limit of the product of a variable and a finite constant 

is equal to the product of the constant and the limit of the 

variable. 
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334. The limit of the variable sum of any finite number of 

variables is equal to the sum of their limits. 

336. The limit of the variable product of two or more variables 

is eijual to the product of their limits. 

336. The limit of the (luotient of two variables is equal to the 

(luotient of their limits, proviflcd that the limit of the divisor is 

not zero. 

337. The expression, 

Limit [function of x] x—^a, 

is read, ^‘limit of function of x, as x approaches n as a limit.” 

In function, 
4.r — 3//, 

if Limit x = 5 and Limit // = 2, 

Limit of function of x and y - 4 • o ~ 3 -2 = 14. 

Limit I ^ 1. 
I j — 1 I 

We note that direct substitution in the function above ji^ives 

1 - I 
1 - 1 

0 

o’ wlii(*h an ind(*tcn!iinate form. 

but if w(» first factor the expression, 

X- - 1 ^ (X -f l)(x - 1) 

X — 1 X — 1 

Since x—>1, we have 

Limit = 1 + 1=2, 

or the expression atiproaches 2 as a limit as x approaches 1. 

Find the limit of 
r 4x^ - 2x + 1 T 

I 2x‘’ - 3x-'^ + 4 4 

Direct substitution jjjives ^ Init by dividing numerator and 

denominator by x**, we get 

Limit 

4 - -f 
X- X* 

2 - 

X X 3 

As X- 
2 13 4 

. , - j 

X* X* X x’ 
. all approach zero as a limit. The 

expression, therefore, approaches 2 as a limit. 
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Find the limit of 
3x - 4-1 
X - 2 J 

X—>■2. 

Direct substitution gives « — 
Simplifying gives 

X* — 6x + 8 

OC . 

Limit [^2”] 
2 
2 

1. 

338. Other Methods. 

[-4x» - 2x» + 3x + 1-1 
L 3x* — x“ + X + 2 J 

As X approaches 0, the first three terms of the numerator and 
the first three terms of the denominator approach zero. Hence, 
by Art. 326 the numerator —>1 and the denominator —*2; and 
then by Art. 328 the fraction approaches the limiting value }. 

339. If the numerator of the fraction ^ is constant, while the 
•C 

denominator increases in such a . way as to become numerically 
greater than any preassigned number, the quotient will decrease 
regularly and become numerically smaller than any assignable 
number. 

340. The Indeterminate Form.—If the results of operations 
with limits and variables reduce to 

0 ^ 

oc — a, 0 X X 0, -Q-, 0®, ocO, 1“, they are indeterminate. 

A limit will often take one of these forms by direct substitution. 
If the quantity is in the form of a fraction, the first operation 

should be to reduce it to its lowest terms. 
The sign —> or == means approaches as a limit. 

When, by causing a variable z to approach sufficiently near 
to its limit a, it is possible to make the value of a given function 
of X approach as near as we please to a finite constant Z, i is called 
the limit of the function, when x a, or when z approaches a. 

As X —> oc, that is, as X becomes infinitely great, the last three 
terms of the numerator and the last three terms of the denomina¬ 
tor (Art. 338) become infinitely small as compared with the first 
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and can consequently be neglected. Hence, when a: a, the 
fraction approaches the limiting value, 

4x* _ 4 

3x’ “ 3 
Example.—Find the limiting value of 

Hencei 



CHAPTER XV 

LOGARITHMS 

341. John Napier (1550-1617) found, by comparing arith¬ 
metical and geometrical progressions, that a relation existed 
between the two series that has since developed into an exceed¬ 
ingly useful aid to calculation. 

Take, for example, the geometrical progression (G.P.) and the 
arithmetical progression (A.P.) shown in the table below, where 
the first term of the arithmetical progression is 0 and the first 
term of the geometrical progression is 1. 

G.P. 1 1 1 1 2 1 4 1 8 1 16 32 1 64 128 1 256 512 1024 

A.P. 1 0 1 1 2 3 LU 6 1 6 1 7 1 ® 6 1 10 

The product of any two terms of the G.P. may be found by 
adding the terms of the A.P. directly below these terms, and 
opposite the term of the A.P., which is indicated by the sum, 
is found the term of the G.P. which gives the answer. Thus, 
the product of 8 and 32 is found by adding 3 and 5, the numbers 
immediately under 8 and 32, and opposite their sum 8 in the 
arithmetical series is the number 256 in the geometrical series 
which is the product. 

It will be noted that in this particular G.P., the ratio of the 
terms is 2 and that the series is 

2S 2\ 2\ 2\ 2^ 2\ 2\ 2®, 2», 2^\ . . . 

The expbnents correspond to the A.P. terms. The number 2 
forms the base of the system, and the exponents or the A.P. 
terms are called the logarithms of the numbers opposite them in 
the table above. Thus, the log of 16 to the base 2 is 4, or as it is 
written, log2 16 = 4. 

This particular illustrative series is not, however, adequate 
for the purpose of computing, since the products of numbers 
which do not appear in the series cannot be found, as the product 
of 68 and 250, for neither of these numbers is a term of the G.P* 

220 
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Any number of series might be used, but all of them would 
have the gaps between the terms. 

Napier established a particular base for his system and pro¬ 
ceeded to divide the difference between 1 and 2 into 100 equal 
ratios by which he meant the insertion of 100 geometrical means 
between 1 and 2. Hence the word, “logarithm,” from the Greek 
meaning “the number of the ratio.” 

342. These same series can also be extended to the left indefi¬ 
nitely, thus. 

Gf.P. T is 1 ■Af 1 i i 1 i 1 1 i 1 2 
A.P. 1 -5 1 -4 1 -3 j -2 1 -1 1 0 1 1 

The G.P. corresponding is 

1 1 1 1 1 
2»' 2*’ 2*’ 2^’ 2'' 2"’ 

or 2-^ 2-*, 2-\ 20. 

To build up a set of logs to correspond to numbers over a 
considerable range, and also the decimal quantities between two 
consecutive numbers, as 1 and 2, etc., requires finding the geomet¬ 
rical means between these quantities. Tf we insert one geomet¬ 
rical mean between the members of the last series, 

mean = Voh, where a and b are the two numbers. 

then, the series would be 

G.P. i 1 
4 iV2 iV2 1 V2 2 

1 
2\/2 

A.P. 
1 

-2 -! ~1 -i 0 n i 

By repeating this process of inserting means, we can build up 

a log table. 
Now, if we interpolate n arithmetical means, for example, 

between 0 and 1 in the A.P., and n geometrical means between 

1 and 2 in the G.P., the series become 

G.P. 2» 

1 2 3 

2^ ■ ■ ■ n 

2^ 

n + 1 

2 » 

A.P. 0 
1 j 
n < 

2 
n 

3 
n H HH B n+l 

n 1 MW MBBJ 
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Continuing, 

343. The logarithm of a number, to a given base, then, is the 
exponent by which the base must be affected in order that the 

result may equal the number. 
Thus, if 

a* = N, 

X is the logarithm to the base a of the number N. We indicate 

this by writing 
X = loga N 

The base a may be any positive number except 1 or 0. 
The two systems of logarithms in common use are the Naper- 

ian, or natural, where the base e — 2.71828 . . . , and the 
common, or Briggs, where the base is 10. 

The Naperian systenris used in higher mathematics, because 
the slope of the exponential curve at any point is equal to the 
ordinate at that point. 

The basis of the differential calculus is the slope of the tangent 
to a curve at any point, and if this slope is equal to y or the func¬ 
tion itself, the work of differentiating is very simple. 

For numerical calculation, the Briggs, or common, system, 
with base = 10, is better for, by inserting a sufficient number of 
geometrical means between 1 and 10, the complete numerical 
field is covered. 

The following relations of numbers hold regardless of the 
base used: 

log (o6) = log o -b log h. log (g) = log o - log h. 

—log n. log o" » n log o. log = - log o. 
n 

log base » 1. log 1 = 0. 

We will now build a limited table of the two systems so that 
we can establish relations between them. 
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Naperian System 

= e-3 = 00.04979 
e* 

i- = e-2 = 00.13534 
e* 

L = e-» = 00.3678 

e® = 01.00000 
el * 02.71828 
e* = 07.389 
e» = 20.085 
e* = 54.589 

Briggs System 

344. Considering the common system with base 10, by refer¬ 
ring to the table just given, note that the logs are one less than 
the number of integers to the left of the decimal point for whole 
numbers, and one more than the number of ciphers to the left 
of the first significant figure for decimal numbers. 

In this system, the mantissa, or decimal part of the log, does 
not change, when the decimal point is moved, thus, 

102.1038 = 1271, or log 127 = 2.1038. 
101.1038 = 12.7, or log 12.7 = 1.1038. 
10.1088 = 1 27, or log 1.27 - .1038. 

The mantissa always remains positive and the negative sign 
of the log applies only to the whole number or the characteristic. 

Since the log table is based on geometric ratios between 1 and 
10, the logs are decimal numbers; that is, they consist of mantissa 
only and are usually so given in tables of logs. 

Any number, as 2834, is the product of two factors, as 

2.834 X 103, 

and according to fundamental principles, 

log 2.834 = .4524, log 10* = 3.0000. 

Therefore, ^ 
log 2834 = .4524 + 3.0000 == 3.4524. 

Divide the number into two factors. Make the first factor 
the number with the decimal point directly after the first left- 

^ Found from log tables. 
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hand digit, 2834 is the number, make the first factor 2.834 
as shown. Make the second factor 10^, because the decimal 
point must be shifted three places to the right, or in a positive 
direction, to make 2.834 equal to 2834. 
Then 

2.834 X 10» = 2834. 

The logarithm of the first factor is found direct from any 
log table as it stands, since it is between 1 and 10, and the log 
tables are given for numbers between 1 and 10. 

The logarithm of the second factor 10® is 3 or the characteristic 
of the logarithm of the product. 

All that is necessary, then, is to write the first factor with the 
decimal point after the first digit on the left side and find the 
mantissa to correspond. Then write the second factor as 10 
raised to a power equal to the number of decimal places that the 
decimal point must be moved to make the first factor equal to 
the number. The number of places shifted is the characteristic 
of the log. 

To find the log .0002834: 
As before, 

log .0002834 (.0002834 = 2.834 X 10"®) equals 
log 2.834 + log 10-*. 
log 2.834 = .4524. _ 
log 10“^ = — 4, or 4.0000. 

Therefore, 
log .0002834 = 3.4524, or .4524 - 4. 

This method of using logs should greatly simplify their use 
and no difficulty should be experienced in using them facilely 
if it is followed. 

346. Interpolation.—It frequently happens that the usual 
four-place table does not give a log that is sufficiently accurate 
for the purpose, and a revision of the log given in the table is 
necessary. 

For the number 283.4, the fourth significant figure 4 is of 
the difference between 283.0 and 284.0, plus 283.0. The log 
tables have these differences tabulated with the tables, and 
referring to a log table, we find . 

log 283.0 is 2.4518 with a difference of 15. 
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W6, therefore, add ^ of 15 to 2.4518 to obtain a close approxi¬ 
mation to the log of 283.4, thus, 

log 283.00 = 2.4518 

6 
log 283.40 = 2.4524 

Bear in mind that the log increases as the number increases, 
and that if the number whose log is to be found is larger than the 
number whose log is given, the difference is to be added. 

346. To Find a Number Whose Logarithm Is Given.—This 
process is just the reverse of the previous one. We find the 
mantissa in the log table which is next smaller than the given 
mantissa. 

Assume, for example, that we have given the mantissa .4371. 
The mantissa in the table which is the next lower than this 

is .4362 and the difference shown in the table is 16. Now the 
difference between .4362 and .4371 is 9. The number whose 
log is .4362 is 2.73, but the number whose log is .4371 is of the 

next tenths’ place larger. If this is expressed as a decimal, it is 
equal to .56 which appended to 2.73 gives 2.7356 as the number 

sought. 
Since we had 0 for a characteristic in the given log, we point 

off one place, for we found in the previous article that the 
characteristic was always one less than the number of places to 

the left of the decimal point in the number itself and, conversely, 
we must have one more figure to the left of the decimal point in 
the number than the number which is the characteristic. Keep 

in mind that the mantissa alone is for those numbers between 

1 and 10, and we, therefore, point off one place. 
347. To Avoid Negative Mantissae.—It would be very incon¬ 

venient, at the end of a calculation, to come out with such a 

result as 

for the table gives only positive mantissae. If we used the 

definition of a negative power, writing 

N = -; 
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we should have to look up this latter power and then perform a 
long division to get N. 

To avoid such difficulties, be careful to keep the mantissa 
positive at every step of the calculation. This can be done by 
increasing the smaller logarithm by some integer, making it the 
larger, and at the same time indicating the subtraction of a like 
integer so as to keep the actual value unchanged as in the follow¬ 
ing example: 

1.58 
* 4326’ 

log X = log 1.58 — log 4326. 
log 1.58 = .19866. 
log 4326 = 3.63609. 
Increase the first log by 4 with —4 affixed, making 
log 1.58 = 4.19866 - 4 
log 4326 = 3.63609 
log X = .56257 - 4. 

Look up the resulting positive mantissa and point off —4. 
The number whose log is .56257 is 3.652, and moving the 

decimal point four places to the left gives 

X = .0003652. 

348. If the log' N = 3.4524, we know that the mantissa part 
of the log corresponds to some number between 1 and 10 and 
that the characteristic represents some power of 10, as 10® in 
the above instance. Then by finding the number corresponding 
to the mantissa, which here is 2.834, and shifting the decimal 
point three places to the right, we get the number sought, or 
2834. 

If the log N — .4524 — 4, our characteristic is —4 which 
represents 10~®, and we would shift the decimal point four places 
to the left from where it stands in 2.834, and the result gives 
N = .0002834, for the number. 

349. Multiplication by Logarithms. 
Find the log of each factor from the tables. 
Add the logs of the factors and the result will be the log of the 

product. 
Find from the tables the number that corresponds to this log. 

This number is the product. 
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Example. 
* = (4.056)(92.1)(.0001832). 

log 4.056 = .6081. 
log 92.1 = 1.9643. 

log .0001832 = .2629 - 4 
log X = 2.8353 - 4 or .8353 - 2. 

X = 6.84 X 10-* = .0684. 

360. Division by Logarithms. 
Subtract the log of the denominator from the log of the 

numerator and the result will be the log of the quotient. 
Find the number which has this remainder for its log and this 

number will be the quotient. 
Since, for illustration, 

„ 2314 2814 ,, 141-1 
w--i4r- —X—' 

log N = log 2314 — log 141. 

log N = 3.3643 - 2.1492 = 1.2151. 
N = 16.41 (from table). 

Example. 
V 3.128 , 

.000168 
log 3.128 = .4953 
log .000168 = .2253 - 4 

log N = .2700 + 4 = 4.2700. 
N = 18620. 

If a larger mantissa is to be subtracted from a smaller one, we 
avoid negative mantissae by adding 1 to the characteristic and 

subtracting 1, thus in the case, 

N log 0333 = .5224 - 2 = 1.5224 - 3. 
49.1 

log 49.1 = .6911 + 1 = .6911 + 1. 

After the logs have been thus transformed, we can easily 

subtract, 
log .0333 = 1.5224 - 3 

log 49.1 = .6911 + 1 
log N = .8213 - 4 

N = 6.62 X 10-" = .000662. 

The number N, corresponding to a given logarithm, is called 

its antilogarithm. 
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351. Cologarithms.—The remainder obtained by subti acting 
a logarithm from 1.0000 — 1 is called the cologarithm, or simply 
the colog of a number. 

By means of cologarithms, combined multiplication and 
division can be changed into multiplication. 

colog N = — log N = log 

1.0000 - 1 

Again, 

log .0734 = .8657 - 2 
.1343 + 1 = colog .0734. 
_ .0216 X .831 

^ 61.3 4.12 ■ 
log .0216 = .3345 - 2 
log .831 = .9196 - 1 

colog 61.3 = .2125 - 2 (log 61.3 = .7875 + 1) 
colog 4.12 =.3851 - 1 (log 4.12 = .6149) 

log N = 1.8517 - 6 = .8517 - 5. 
N = 7.167 X 10-* = .00007167. 

362. To Find the Powers of Numbers by Logs.—If a number a 
is raised to the nth power, we have 

a" = a-a-a-a a. . . etc., to n factors. 
log a” = log a + log a + log o + . . . to n terms. 
.•. log a’' = n- log a. 

Therefore, we find from the table, the log of the number which 
it is desired to raise to the nth power, and multiply this log by 
n. The result will be the logarithm of the nth power of the 
given number. Then find the antilog of this product from the 
table and the result will be the nth power itself. 

Example. 
N = (.033)’. 

log .033 = .5185 - 2. 
log N = (.5185 - 2) X 3 = 1.5555 - 6 = .5555 - 5. 

N = 3.59 X 10-® = .0000359. 
363. To Find Fractional Powers by Logs. 

m ^ 

a’*=0’0*a*o*o*a. . . etc.,to — factors. 
n 

~ tn 
log o" = log o + log o + log c + . . . to — terms. 

* Tl 
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Example. 

= (125)* 

log (125)* = I - log 125 = J(2.0969) = 1.3979. 
antilog 1.3979 == 25 (from table). 

364. Evolution. 

If the nth root of a number is desired, consider the number as 

being raised to the ^th power as in the following illustrative 

example. 

•v/lT^ = (1728)*. 

log (1728)* = K3.2375) = 1.0792. 
antilog L0792 = 12 (from table). 

366. To Find Reciprocals Using Logs.—Subtract the mantissa 
of the log of the number from 1, add 1 to the characteristic, and 
change the sign. 

Example.—Find the reciprocal of 426. 
log 426 = 2.629410. 

Subtracting, 1.000000 
.629410 

.370590 
Add 1 to the characteristic, which is 2, and change the sign. 
Then 

3.370590 is the log of .002347. 

366. To Find the Fourth Term of a Proportion by Logs.—Add 

the logs of the second and third terms, and from their sum, 
subtract the log of the first term. Then the number whose log 
is this result is the fourth term of the proportion. 

367. Natural or Naperian Logarithms.—These are found from 
tables in the same manner as the common logs. The principal 
difference is that 2.3026 is added or subtracted from the log for 

each point that the decimal point is shifted to the right or left. 
By reference to the table Art. 343, the log of 10 in this system is 

seen to be 2.3026. 
The tables usually given are of numbers from 1 to 10. The 

natural log of 245, or 2.45 X 10^, is 
.8961 + 2(2.3026), or 

.8961 + 4.6052 = 5.5013. 
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The fundamental principles of logs apply equally as well to 
this as to the common system. Multiplication and division can 
be performed, and powers and roots computed. 

It is apparent from the foregoing that all that has been said 
about common logarithms does not apply to the Naperian 

logarithms, since in the latter system the mantissa is not inde¬ 
pendent of the location of the decimal point, and the same 
sequence of significant figures does not have the same mantissa. 

368. Change of Logarithmic Bases.—Let y be the log to the 
base o of a certain number N and let * be the log to the base c 
of the same number. Then 

loga N = y and N == a'>. 
logc N = X and N = c*. 

Hence, 
a" = c®. 

Taking the log of both sides to the base a, 

y = a: (loga c), or log„ N = log., N ■ logo c. 

Taking the log of both sides (Art. 343) to the base c, 

X - y (logo a), or logc N = logo N • logc a. 

From which we obtain 

logo N = logo c • logc N = 

Note that changing from one base to another simply multiplies 
the logarithm of the number to the old base by the log of the 
old base taken to the new base. Changing from one base to 
another, then, simply involves the multiplication of the log by 

a constant. 
Thus, the common log is given by 

Common log = Naperian log X logio e = —-P— 
lOg« lU 

and the natural log is given by 

Naperian log = Common log X log* 10 = 
Common log 

logio e 
Since logio e = .4343 and log< 10 = 2.3026, we have 

Common log *= Naperian log X .4343 = 

Naperian log » Common log X 2.3026 
Common log 

.4343 



CHAPTER XVI 

EXPONENTIAL FUNCTIONS AND THEIR RELATION TO 
LOGARITHMIC FUNCTIONS 

369. Comparison of curves, 

y = and y = e^. 

Take y ^ and resolve it into y = e""*. This may be done 
because the base of a log may be changed from one number to 
another by multiplying the log by a constant. Since the log is 
really an exponent, this amounts to multiplying the exponent 
of the new base' by a constant, as m, or 

f =r 

Now the curve 
y = e”** 

is made from the curve of 

y ^ 

by substituting mx for x or by multiplying all of the abscissae of 

y = by - • 

For y = OB, the abscissae, BPi and 5P2, are log, y and logr y, 
respectively. 

Then 
1 

That is, 

BP2 = -BPi, 
m 

logr 2/ = ^ log. V- 

m 

When m is determined, we have a means of changing from a 

log system with base e to one with base r. The number — is 

called the modulus of the log system whose base is r. 

Note that — is the logr e, or r-— according to Art. 358 preced- 
m log« r 

ing. 
237 
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360. If we have given the curve y — and desire to draw the 
graph of y — we simply translate the given curve y Si 
distance of h units to the left. 

What amounts to the same thing is to shift the coordinate 
axes h units to the right or in the positive direction, and use the 
new origin O', which changes the equation of the curve to y = 

Since y = = r*r*, the ordinates of y = will be r* 
times the ordinates of y = r*. The figures showing the trans¬ 
formation of the curve by both methods are Figs. 120 and 121. 

Fig. 120. Pig. 121. 

361. Logarithmic and Exponential Relations.—Consider the 
equations, 

y = r*, which is the exponential form, and 
X = logr 2/, which is the logarithmic form. 

These two forms are equivalent but one is in the inverse form 
from the other. If plotted, they represent exactly the same 
curve. This is analogous to the case where y^ = x and y = 

Fig. 122. Fig. 123. Fio. i24. Fig. 125. 

±\/x represent exactly the same curve. The curve is shown in 

Fig. 122. ^ 
The curve y — Fig. 124 is the curve y = e*, reflected with 

respect to the 7-axis. The effect of interchanging x and y and 
of substituting —x fot x and --y for y in the equation can be 

seen from the Figures 123, 124 and 125 and from comparison 

between them and Fig. 122. 
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362. The Subtangent of the Exponential Curve.—A curious 
property of the exponential curve is that the subtangent K of 
the curve is constant. If the tangent is drawn to the curve at 
the point P and intercepts the X-axis at T, the distance K or 
TD between this intercept and Z>, the foot of 
the perpendicular from P, is constant (see Fig. 
126). 

This distance is known as the subtangent 
for any curve. 

K > 1 if r - 2. 
K < I if r = 3. 
If X = 1, r = 6 = 2.71828. 

k- X 

Fia. 126. 

363. Slope of Exponential Curves.—The slope of y = is 

from the figure y 
K 

But X is a constant for all positions of P, or 

slope of curve at P = cijy (1) 

where c = 
1 
K 

From (1), we conclude that the slope of any exponential 
curve at a given point is proportional to the ordinate at that 

point. 

At the point (0, 1), the slope is c = 

The value of K depends on the value of r, as shown in Art. 

362. 
When r = c, X = 1, c = 1, and (1) becomes 

slope of curve at P = ?/. 

This important relation is the reason for adopting the natural 
system of logs in higher mathematics, as the derivative is the 

function itself. 
364. Exponential Equations, r® = b. 
It is sometimes necessary to find the value of x in such equa¬ 

tions as 
20* = 75. 

Such equations are solved by means of logarithms. 

I^et r* = b. 
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Then log r* >= log b, since the logs of equals are equal, 
or X • log r = log b, 
whence 

a: = 
log r 

We may solve a particular example, as 20* = 76 by substitu¬ 
tion, thus, 

r = 20 and b = 75. 

* . !5t75 _ _ 
log 20 1.301030 l 

From the fundamental principle upon which logarithms are 
formed, the ordinates form a geometrical progression when the 
abscissae of the exponential curve form an arithmetical progres¬ 
sion (Art. 341). 

366. Compound Interest Law. 

Let P = the amount invested. 
r = the rate of interest. 

Then the interest at the end of the first year is Pr, and the accu¬ 
mulation at the end of the first year is P + Pr, or P(1 + r). 

The interest at the end of the second year is P(1 + r) • r, and 
the acciunulation is (P + rP) -f (1 + r) • Pr, or P(1 + r) -f- 
Pr(l + r), or (P + Pr)(l + r), or P(1 -|- r)(l -1- r) = P(14-r)*. 

The accumulation A or total sum after n years is 
A = P(1 + r)". 

If the rate of interest is 5 per cent compound interest, then 
Amount = A — P(1 + r)" = P(1.05)". 

If years are plotted as abscissa and the amounts as ordinates, 
the curve will be an exponential curve. 

logio 1.05 = .021. 
log. 1.05 = 2.302 X .021 = .048. 

Hence, 
e-oii = i_05. 

The equation then becomes 
A = Pe««». 

This is of the form, 
y = oe**. 

366. Logarithmic Increment.—The compound interest law is 

one of the important laws of nature. As previously noted, the 
slope or rate of increase of the exponential function, 

y = oe^*. 
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at any point is always proportional to the ordinate or to the 
value of the function at that point. Thus, in nature, when we 
find any function or magnitude that increases at a rate propor¬ 
tional to itself, we have a case of the exponential or compound 
interest law. 

The law is often expressed by saying that the first of two magni¬ 
tudes varies in geometrical progression while the second 
magnitude varies in arithmetical progression. A familiar 
example of this is the increase in friction as a rope is coiled 

about a post. The number of turns increases in arithmetical 
progression, while the friction increases in a geometrical progres¬ 
sion (Slichter). 

y == is the general form of exponential equations. 

367. Computations with Logarithms.—Numerical computa¬ 
tions by means of logarithms are not correct to more significant 

figures than the number of decimal places taken in the logarithm. 
Conversely, if a number in a computation is accurate to four signi¬ 
ficant figures, a four-place table will suffice for the computation. 

If one of the numbers in a computation is accurate to only 
three figures, a slide rule, which is really a three-place mechanical 

log table, is sufficiently accurate to use. 
If all the numbers are accurate to six significant figures, then 

a six-place log table should be used, if the accuracy is to be 

maintained. 
368. Modulus of Decay. Logarithmic Decrement.—In a 

very large number of cases in nature, the exponential function 
occurs as a decreasing function rather than as an increasing one, 

^ so that the equation which represents the relation is of the form, 

y = 

where (—&) is essentially negative. 
(— 6) is the modulus of decay or the log decrement, correspond¬ 

ing to an increase of x by unity. 
A log decrement is shown by the series of natural and common 

logs, as they progress to the left of unity in Art. 342. 
369. Logarithmic Approximations. 

If a? is very small, then 

log, (1 ± x) = 
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Example. 

log. (1.0025) = .0025 - 
.00000625 

2 

See Art. 464 of infinite series where the series that represents 
the logarithm is given. 

370. Some Additional Log Formulae, 

log {abc) = log a + log 6 + log c. 

log = log o + log 6 - log c - log d. 

log {a^b^c^) = m • log a + n • log 6 + p • log c, (ah^\ 
= log a + m • log 6 — n • log c. 

log (a* - V) = log [(a + 6)(o - b)] = log (a + b) + log (a - 6). 

log Va* — b^ = I log (a + 5) + J log (a — />). 

log (a* • = log a® + log = 3 • log a + | log a. 

= log a. 

log (a® — 6*)” = — • log [(a — b){a‘ + a6 + 5'“)] = 
n 

— • log (a — i>) + — • log (a^ + ah + 6*“). 
n n 

= I log (a + h) + § log {a -b) - 2 log (a + b) 

= i log (a - 5) - I log (a + b). 

371. Logarithmic Paper.—Paper with the coordinate axes 

ruled in both directions to a logarithmic scale is called logarith¬ 
mic paper. It is exceedingly useful in the plotting of power 

functions. 
To plot y = ax" [66] (Art. 258) on logarithmic paper, we take 

the log of both sides, 

log y = log o -f n • log ® (1) 

If we put Y = log y, 
K - log a, 
X = log X, 

equation (1) becomes 

[86] Y = nX + K. 

Now the equation [86] represents a straight line if X and Y be 
taken as the variables. This is exactly the form of the curve, 
if we plot the values of x and y from equation [65] on logarithmic 
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p&per, for, when we plot a. value of x on logarithmic paper, the 
distance from the origin to the point on the Z-axis whose abscissa 
is the same as the abscissa of x is nothing but the log x, i.e., X, 
and Y is similarly found. ’ ^ 

Moreover, the slope of the straight line which represents 
equation [86] is n, the exponent of x in equation [66]. Also the 
intercept on the F-axis is K, which is equal to log a. 

Hence, if values of x and y are plotted from [66] on log paper, 
the value of n in [66] appears as the slope of the straight-line 
graph, and the value of a can be read off directly on the vertical 
scale. 

372. Examples of the power function graph are shown in 
tigs. 127 and 128. In Fig. 129 is shown the relation of space 

to time of falling bodies. In the plotting of power functions 
the point (1, 1) is first located, and through this point, a line is 
drawn having the slope n. The values of x and y are read 
directly from the graph. 

Log charts are often made in small squares with the units 
from 1 to 10 in each square. Each square is a repetition of the 
preceding square, as shown in Figs. 127, 128, and 129. 
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Fro. 129. 
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Each succeeding square, then, represents an increase of 1 in 
the log of the variable and its function, which is equivalent to 
moving the decimal point one place to the right. In the case 

of y — (Fig. 130), it will be seen that if we move the decimal 
point two places in x, we move it three places in y, since the slope 
of the graph is f. The starting point of the graph is at the 
point (1). 

It is convenient, in order to save space, to group the squares 
all in one square and thus cover the required range of the function 

in one square as was done in Fig. 129. 

Fig. 130. Fig. 131. Fio. 132. 

In all cases it is desirable to determine the location of the 

decimal point by inspection. 
After reducing the function to the log form, 

log y = log a + n • log x, 

if a is present, we proceed in the same manner as in linear func¬ 

tions (Arts. 128 and 145). 

log a is the F-intercept. 
n is the slope of the graph. 

In the case of y = 3(x + 3)^, the F-intercept is 3, and instead 
of finding the log of 3 and laying it out on the F-scale, we simply 

locate the F-intercept on the F-axis at 3, since the scales are 
prepared so that this point represents the log of 3. 

When (x + 3) is substituted for .x, we have a different case 

from that where rectangular coordinates were used. We simply 
subtract 3 units, in this case, from the numbers on the X-scale 
and use this secondary scale for representing values of x. This 

secondary scale is shown in Fig. 133. 
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If a constant appears, modifying y values, as in 

y = 3(x + 3)* - 3 
or 

y + Z = 3(x + Zy, 
make a supplementary scale on the F-axis in the same manner. 

373. A log scale is easily understood when we consider that 
we compute the values of the logs of the numbers from 1 to 10 

and lay off these values to some scale, as in the figure below. 

6 0.3010 OATri 0.6O?l 
I 2 3 4 

Fio. 1.34. 

In place of the value of the log in the scale, we place the 
number whose log is represented there, and in this way we elimi¬ 
nate the necessity for substituting the values of the numbers for 

the logs and conversely. Thus, instead of placing 0 at the origin, 
we place 1 there, since 0 is the log of 1, and instead of placing the 
decimal .3010 at the point which represents the log of 2, we 

place the number 2, itself, there. 
374. The log paper is a meahs of establishing a formula to 

relate the data secured from experiments, if the relation of the 
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variables is supposed to be expressed in the form of a power 
function. 

Plot the data and if the points lie in a straight line, the line 
represents a power function and the equation connecting the 
variables can readily be found by locating* the F-intercept and 
determining the slope of the line which are the coefficient and the 
exponent, respectively, of x in the power function, 

y = ax”. 

376. Logarithms in Geometrical 
connecting the ends of the ordinates 
of the arithmetical progression is a 

straight line. Likewise, if we plot the 
logarithms of the terms of a geometri¬ 
cal progression, the line joining the 
ends of the ordinates is a straight 

line. 
For from 

a, ar, ar^, ar^, . . 

taking the logs, 

log a, log a + log r, log a + 2 • log r, log a + 3 • log r, 
log a + 4 • log r, . . . log a + (n — 1) log r. 

Plotting the graph with the numbers of the terms as abscissae 
and the logs of the terms as ordinates gives a graph of the form 
shown in Fig. 135. Since the length of each ordinate is the 
length of .the previous ordinate plus the length which represents 
log r, the graph will be a straight line. 

376. By means of a log scale, such as a slide rule, any term 
can be scaled immediately, or by use of a standard decimal scale, 
the ordinate can be measured as a logarithm and the term found 
from a log table. Any number of geometric means can be found 
in this manner. 

Example.—Find four geometric means between 2 and 90. 
Since there will be six terms, we will start by laying off six points on a 

horizontal scale at equal distances from each other. 
log 2 - .301. 

log 90 = 1.954. 
At the first of the six points, erect an ordinate representing the log 

2 « .301 and at the sixth point erect an ordinate representing the log 

[66] 

Progressions.—The line 

Isl 2nd.^(i.4+h.term nfh-ferm 

Fig. 135. 

. [76] 
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90 * 1.954. Connect the ends of these ordinates with a straight line. 
The ordinates at the other four points which are cut off by this straight 
line represent the four geometric means, and by scaling these ordinates 
their values are seen to be .631, .962, 1.292, 1.623. From the log 
tables, find the antilogs of these logs and the results will give the series, 

2, 4.28, 9.16, 19.6, 41.95, 90. 

|<.-S equal divishns -. 
2 4.28 9.16 19.6 41.95 90 
L ..I I-1_\-1 

Fio. 136. Fia. 136a. 

377. The ratio r can also be easily found, for the log of r is 
the increase in the ordinates for each term. Consider the first 

and second terms, 
.631 ~ .301 = .33. 

Therefore, r is the number whose log is .33 which is 2.14 and 
this is the geometric ratio. 

378. Still another Inethod for getting geometrical means 
between two numbers is by means of a log scale such as is found 
on a slide rule. If four intermediate means are desired between 
two terms, divide the distance between the numbers on the scale 
into 4 + 1 equal spaces and read the numbers at the division 
points direct from the scale. The method is illustrated in Fig. 

137 below and 136a for previous example. 
L09. Scale 

|lZ34Sbl89^ } ^ 
« * * *^1 * 1 « 1 J I 1-1 I. fc ^ i .4,, l I ..I L, t .Ll I i.i l.l.t.l 

liTJS 1.15 Z,5 3.05 
&«ome+ric Means 

Fia. 137. 

379. The Power Function Compared with the Exponential 
Function.—The three fundamental laws of natural science are: 

The parabolic law, expressed by the power function, 

y = ax”, [66] 

where n may be either positive or negative. 

The harmonic or periodic law, 

y a a sin nx, 

which is fundamental to all periodically recurring phenomena. 
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The compound interest law, which was discussed in Arts. 365 
and 366. 

In the power function [66], y = ox“, as x changes by a constant 
factor (as m), y changes by a constant factor. 

Putting the expression of the relation differently, if x increases 
according to a geometrical progression, y increases according to 
a geometrical progression also. 

Example.—^Let m be nearly 1 or 1 + r, where r is the per cent change 
in X. 

Then the ratio of change is 
y’ f{x 4- rx) a[(x + rx)"] _ ,, , 

y • 

(1 + r)" = 1 + nr, approx. 
y' — y ox“(l + r)" — OX’' i-s. —----_ 

y ax" 

This indicates that the per cent of change in y is nr, while the 

per cent of change in x is simply r. Therefore, the per cent of 
change in the function is n times the per cent of change in the 
variable. Therefore, to determine whether experimental data 

follow the power function law, see if the constant per cent change 
in the variable produces a per cent change in the function equal 

to n times this constant factor. 
380. Changes in the Exponential Ftmction.—^Let y = ae**. 

Since, in the power function, the function was increased by a 
constant multiple, a similar increase will be assumed in the 

exponential function. But from the previous article (379), 
increasing x by a constant, as x + /i, increased y, or the function 

by a constant factor, or 

y[^ Fix + h) ^ ae*» + * ^ ^ 
y F(x) ac** 

The factor c** is independent of x or is a constant for a constant 

h and is the factor by which y is increased when x is increased 

to (x h). 
In other words, instead of the variable and the function both 

varying according to geometrical progressions, as in the power 

functions, the variable x in the exponential function varies 
according to an arithmetical progression, when the function y, 

or oe**, varies according to a geometrical progression. 
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381. To Determine Exponential Relation.—If it is found that 
a change in x by a constant increment, as x + 2, causes a change 
in the function by a constant factor, as 16y, then the relation 
between the variable and the function can be expressed by an 

equation of the exponential type. 
By plotting the values of x and y on semilog paper, the graph 

is a straight line, and the constants of y = ae*® + c are determined. 
Comparison of Exponential Formulae.—Consider the different 

types of exponential formulae, as 

[87] 2/ = e*, 
[88] y — oe®, and 
[89] y = oe**. 

Consider first the curve represented by [87]. This curve is 
shown in Fig. 138. 

The curve approaches the X-axis as it extends to the left but 

it never intersects the axis. 
As the point P is taken higher on the curve, that is, as the 

abscissa of P increases, the slope of the curve 

at this point increases. 
The graph of [88] is similar in form to the 

graph of [87] except that every ordinate of the 

latter curve is multiplied by a. The ordinate 
scale can also be changed so that a given 

distance represents an ordinate a times as 

Fm. 138. long, and the curve of [87] used to represent 
the graph of [88]. 

In [89] the values of y for different values of x, as 1,2,3,4, . . 

are the same as in [88] &i x — k, 2k, 3fc etc., and if A: is positive, 
the graph is the same as the graph of [88] with its horizontal 

scale changed. By taking a standard y = curve and changing 
both the vertical and the horizontal scales," we can change it to 

represent [89]. 
If k is negative, the graph is reversed as regards positive and 

negative values of x (see Art. 361). 



CHAPTER XVII 

THE SLIDE RULE 

382. Although engineers use the slide rule more, perhaps, than 
any other class of men, we believe that the majority of engineers 

confine its use to the simplest kind of operations. If the con¬ 

struction of the different scales is understood, their use becomes 
less mysterious, and consequently they are used with confidence 

in more involved problems. 

We assume that the reader has a fair knowledge of the rule and 
understands the subject of logarithms as given in Arts. 341 to 359. 

The slide rule is really a mechanical equivalent of a log table, 

with the advantage that the anti-logs replace the mantissas on the 
log scales and are read directly. Since logarithms are added or 

subtracted for the simple operations of multiplication or division, 

the rule is a mechanical means for adding or subtracting the scales 
for these same operations. The supplement ary scales such as the 
power or trigonometric scales are also arranged for their addition 

or subtraction to the fundamental scales. 

Recent developments of the slide rule have materially increased 

its usefulness, and, although we do not wish to commercialize a 
certain make of rules, we find it necessary to mention the copy¬ 
righted trade names in order to explain certain operations on these 

rules. They are the Polyphase Duplex Trig,* Polyphase Duplex 
Decitrig,* Log Log Duplex Trig* and the Log Log Duplex 

Decitrig. * 
The Polyphase Duplex Trig and the Polyphase Duplex Deci¬ 

trig, which will be used in our description of operation, differ 

only in that the former trigonometric scales are in degrees and 

minutes, and the latter is in degrees and decimals. These rules 

have additional folded scales that will be described later. Their 
numerical equivalents of the angles are read on the longer C-, 

D-, Cl- and jD/-scales instead of the shorter A- and J5-scales 

previously made. These scales are also double numbered, which 

* Trade-mark registered U.S. Patent Office by Keuffel and Ksaer Co. 
251 
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makes available all six of the trigonometric functions as factors 
\n any operation of the rule. 

The Log Log Duplex Trig and Log Log Duplex Decitrig have 
the same scales as the loiles previously mentioned with the addi¬ 
tional Log Log scales. These rules are especially useful where 
powers and roots form a considerable amount of the computations. 

383. The Log L-scale.—Contrary to all teachings familiar 
to us, we will take up first the log scale marked L on the 10-inch 
rule. This is called the scale of equal parts. Logarithms form 
an arithmetical progression and can, therefore, form a scale of 

equal parts. 
The mantissas from 1 to 10 are spaced equally for the interval 

of 10 inches. They, of course, are all decimal numbers as shown 
below. 

pliljl WHIIII|IM liiiiiiinn 111111111111 ri|'<ii|niT»wi'|iiiiiiiii[ilinnil|illl|ilinillt1WH 

0 .100 200 .300 .400 .500 .600 .100 .800 .900 I.OOO. 

Fjo. 139. 

Ten intermediate divisions are made between each number 

and these divisions are again divided, thus making it equivalent 
to a three-place logarithmic table. By means of a divider, we 
can measure two distances, as 2 inches which corresponds to the 

mantissa .2 and 3 inches which corresponds to the mantissa .3, 
and add them. The result, since the dividing numbers are 
equally spaced, is 5 inches, which corresponds to the mantissa 
.5. Now refer either to the D-scale or to a table of logarithms 
and find the numbers whose antilog are .2, .3, and .5, thus, 

log 1.58 -f log 2.01 = log 3.18, or ‘ 
1.58 X 2.01 = 3.18. 

This is the fundamental scale of the rule and the unit of the 
scale is 10 inches. Each of the divisions .100, .200, .300, etc., 
is 1 inch apart, or .100 X 10 = 1.00, .200 X 10 = 2.00, .300 X 

10 = 3.00, etc. 
384. The C- and D-scales.—The graduations of the C- and 

Z)-8cales are taken from the logarithmic I/-scale except that 
the numbers which correspond to the logarithms are marked 

on the rule instead of the numbers which equal the logarithms. 
The numbers found on the rule and the corresponding logs are 

as follows: 
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Numbers 123456 7 89 10 
Logs 0 . 301 .477 . 602 . 699 . 778 . 845 . 903 . 954 1 

Compare them to each other on the L- and D-scales. 

Can<AD ! 7 ^ 4 5 G 1 8 9 t 
I-1-1-\-r—H-f-!»>«—V—A-H 

L .100 .200 .1.00 .400 .900 .000 .100 .800 .900 \.000 

Fia. 140. 

The advantage of putting the number instead of its log on the 
scale is that it is then unnecessary to look up the number in a 
table, as it is read direct. We can take the divider and add the 
distance given for 2 and the distance given for 3 (on the D-scale), 
and the added distances meas¬ 
ure to 6. 

The slide of the rule permits 
us to add or to subtract these Fio. 141. 

distances which multiply or divide the numbers corresponding 
to the logarithms. 

386, The Regular Setting for Multiplication.—The addition 
of two logarithmic scales, as the log scale which corresponds to 
2 plus the log scale which corresponds to 3, is equal to the log 
scale which corresponds to 6, or to the product of the two num¬ 
bers 2 and 3, which is 6. 

While multiplications can also be made by the inverted scales, 
which will be explained later, the above setting can also be used 
to multiply reciprocals of numbers, which, of course, gives a 
quotient. In order to distinguish this setting, we will call it the 
regular setting for multiplication and describe it as follows: 

If either index (figure 1 on the rule) is set to measurements on 
any fixed scale, the runner moved to any number on the slide, and 

the result read on the fixed scale used, 
we will term this operation the regular 
setting for multiplication, 

386. The Regular Setting for Di¬ 
vision.—The subtraction of one log¬ 

arithmic scale from another, as the logarithmic scale which 
corresponds to 2 fronl the logarithmic scale which corresponds 
to 4, is equal to the logarithmic scale which corresponds to 2, or 
the quotient of 4 divided by 2, or 2, 

Divisions can also be made with the inverted scales which will 
be explained later (Art. 394) but in order to distinguish this set- 

4-Ioq.dis^.of4- —••—'>\ 
-!-1-;- 
< -log. Jiif of 2' ->« - log. disf. of?^- 

-log.disf of2-‘ --/og.disfofJ • 

log.duf.ofS 
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ting, we will call it the regular setting for division and describe it 
as follows: 

If any number on a slide scale is set to a number on the fixed scale 
and the answer read on the fixed scale opposite the index of the slide^ 
we will term this operation the regular setting for division. 

If an expression contains three numbers^ use the regular setting 
for division for the first setting in all cases. 

Example.—Solve = x. 
c 

Proceed as in the regular setting (Art. 386) by subtracting the log 

scale of c from the log scale of a; then add the log scale of b to that result 
on the (7-scale. 

D C D 
a 
7X6 = 0: 
c 
C 

Set runner to a on D, 
Set c on C or on CF to runner. 

Set runner to 6 on C or on CF. . 

Read answer at runner on D or on DF. 

387. If it is found necessary to shift the slide and one index is 
replaced by the other, the quantity is either multiplied or divided 

by 10, which does not affect the 

order of the significant figurps 
and is taken care of by the loca¬ 
tion of the decimal point. 

388. The decimal point should 
be located by inspection or by 

method given in Art. 30. 

389. The Folded Scales.—The CF-, C/F- and DF-scales are 
based on the same unit length as the (7-, CZ- and D-scales, but the 
scales are shifted log of t, which makes the index 1 near the center 

of the rule. 
If half of the slide is in the rule, the complete CZ)-scale can be 

found, either on the folded CF- and DF-, or on the C- and D-scales, 
which makes it unnecessary to shift the slide. If the measure 
is taken on the folded slide scale CF, the transfer must be measured 

on the folded fixed scale DF, unless t enters into the calculation. 

4 5 G 

Fia. 143. 
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If, in the setting shown, a measurement, as log 5, is to be added, 
it cannot be found on the C-scale but is given on the CF^ or folded 
scale without shifting the slide. 

390. Since the DF-scale is shifted log of t distance to the left 
of the D-scale, then the DF-scale reading will in all cases be 
greater than the readings on the D-scale, by an amount equal to 
the distance shifted, or log of tt distance. 

■<-.-ha. distoflt+lo^.dMofOf - 
distofji.HpF 

Fig. 144. 

12_^-L 
^ U - -h^. Mi of a - - ->1^ 

The same relation exists between the CF- and the C-scales. 
Setting which gives the answer on the 7)-scale can be multi¬ 

plied by X, when the answer is read on the DF-scale instead of 
on the D-scale. 

Converselyj setting which gives the answer on the DF-scale 
can be divided by x, when the answer is read on the D-scale 
instead of on the DF-scale. 

The C- and CF-scale furnish the corresponding circumferences 
for diameters of circles. A diameter on C has its circumference 
directly on CF. 

391. In order to multiply an expression by x, use the C- and 
D-scales, but instead of reading the answer on the D-scale, read 
it on the DF-scale, which will automatically multiply the expres¬ 

sion by X. * 

Let X = a6x = x X 5 X 6. 

Set index of slide to 5 on D. 

Set runner to 6 on C, 
Read answer 94.3 on DF. 
Remember that a shift from the lesser scale to the greater scale (the 

folded scale has a value of x where the C- and D-scales begin) must mean 

that the answer is being multiplied by x. 

392. In order to divide an expression by x, use the DF-, CF-, 
and C/F-scales, but instead of reading the answer on the DF- 

scale, read it on the D-scale, and the expression is then divided 

by X. 

oft 12 X 21 

X 
Let X 

X 
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Set index of slide to 12 on DF. 
Set runner to 21 on CF. 
Read answer 80.2 under runner on 2). 

393. The Inverted Scales.—^The Cl, DI, and the CIF are the 
inverted scales. Instead of increasing when measured from left 
to right, the direction of the measurements is from right to left. 
The scales are taken from the L-scale in the same manner as the 
C- and D-^cales were taken, but from the opposite direction. 

The measurements are inverted when measured with the C- 
and D-scales, and the reason is easily seen from the figure which 
follows. The reciprocal scales are in red. 

C.I. Z I 
f- V -« —I-1-—I -1-4 

L t.000 .900 .900 .700 .900 .500 .iOO .500 .^00 .100 0 
Fig. 146. 

The log measurements are added when the numbers are set 
together on the C7- and D-scale, and the product is found on D 
opposite the index on CL 

394. For division, the index on the C2-scale is set to the divi¬ 
dend on the Z)-scale, and opposite the divisor on Cl the quotient 
is found on D, A similar relation exists between D and DI. 

Divide 4 by 2 = 2. 
Log 4 — log 2 = log 2. 

c iB Tf h 

l^--leg.dlsi. of6- •—J 
hcf.ilisf.of2 

Fio. 146. 

(Io0.elisf.of2 
»'v.> 
\s 

D 7 3 \ 

... .^ 

tpg.df'stotc 
Fio. 147. 

We will call these the inverse settings for multiplication and 

division. 
These settings are given although thcir use is not advocated, 

since they oppose the regular settings and confuse and conflict 

with simple rules. We prefer to reduce all operations to the 
regvlar settings (Arts. 385 and 386). 

895. The CIF or Inverted and Folded Scale.—This C/F-scale 

is the same as the C/nscale except that it is folded or shifted to the 
right log of T distance from the C/-scale in the same manner as the 
CF- and Z)F-scales are folded with regard to the C- and D-scales. 
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The C/F-scale should be used in connection with the other 
folded scales unless x is in the expression. If over half of the 
slide is in the rule, the full scale can be found on either the Cl- 
or the CIF-^ca\e and shifting is unnecessary. 

396. The Reciprocal Scales.—Comparing the C- and the CI- 
scales, we see that one is the reciprocal of the other. 

If, then, we make a setting of the rule by adding log of 6 a 
measurement on the C-scale to log of a, a measurement on the 
D-scale, by the regular setting (Art. 385), then 

a X b = X. 

If the C/-scale, which is the reciprocal scale of the C-scale, is 
used, the operation gives 

a X 
1 a 
^ = X, or ^ = X. 

CL 
C ■^•hg.d/sf ofb - — 

D |<-log.dhiofa 1 

Fia. 148. 

If, then, a number occurs in the denominator, we can multiply 
its reciprocal by the regular setting (Art. 385) by using the CI- 
scale. This rule, of course, also applies to the D- and D/-scales. 

Example.—Solve Hi = 
Consider as a regular setting for multiplication (Art. 385) which would 

471 X. 

Set runner to 471 on Z>. 
Set index of slide to runner. 
Set runner to 322 on CL 
Read answer 1.46 on D. 

After considerable practice, the index may be set to the first 

number without using the nmner. 

897. Form xy ~ C. 
C 

III plotting a graph of xy = C, the ordinate y = ;r* By setting 

the index of the CZ-scale to C on the D-scale, the readings of y 
for corresponding values of x can be found without changing the 

setting. 
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398. Form ~ X Variable Quantity = x.—Since the quotient of 

^ is opposite the index of the slide, an additional factor can bo 

included in the operation without changing the setting. 
The expression then becomes 

-r X c = X. 
0 

Set runner to a on Z). 
Set 6 on C to runner. 
Set runner to c on C. 
Read answer under runner on D. 

24 c 
Example.—Solve —gg—» where c has the values 1, 2, 3, 4, 5, 6, 7, 8. 

Set runner to 24 on D, 
Set 33 on C to runner. 
Set runner to 1, 2, 3, 4, 5, 6, 7, 8, on C, consecutively. 
Read .727, 1.45, 2.18, 2.9, 3.64, 4.36, 5.09, 5.81 under runner on DF 

and D, 
a 1 

399. Form ^ X ^ 
b Vanable Quantity 

= X.—The regular setting 

(X .- 
(Arts. 385 and 386) can also be used with ^ if c is inverted. We 

then have 
a ^ 1 a 
r X - == Xy or j- = X, 
b c ^ be 

We proceed as in the previous case for regular setting (Art. 

386). 
Move the runner to c as before, but find it on the Cl- or CIF- 

scale, since ^ is the reciprocal of c. 

Set 6 on C to a on Z>. 
Set runner to c on Cl or CIF, 
Under runner on D find answer. 

25 
Example.—Solve where c = 1, 2, 3, 4, 5, 6, 7, 8. 

Set runner to 25 on D. 
Set 8 on slide C to runner. 
Set runner to 1, 2, 3, 4, 5, 6, 7, 8, consecutively, on Cl or CIF and 

read 3.12, 1.56, 1.04, .78, .625, .521, .440, and .391 on D and DF. 
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400. Form" a X b X Variable Quantity = x.—This form 
includes 

a X b X c = Xy or aXbX- = x 
c 

where c has different values. 
For all expressions containing more than two numbers, the num¬ 

bers should be arranged to perform the regular setting for division 
(Art. 386) first 

The a Xb part of the expression can be thought of as being ^ 

b 
which is a division form provided b is read on the Cl or CIF, 
the inverted scales. We ]>roceed then as a regular setting for 
division (Art. 386) but measure b on the inverted scales. 

The expression a X b X c = x then bec'omes 

jX C ^ Xy 

b 

which reduces to the same case as Art. 398 if b is taken on an 

inverted scale. 

Example.—Solve 41 X 81 X c = x 

where c = 1, 2, 3, 4. 5, 6. 

Set runner to 41 on D. 
Set 81 on slide Cl to runner. 
Set runner on C to 1, 2, 3, 4, 5, G. 
Read answers 3320, 6640, 9960, 13,300, 16,600, 19,900, on D and DF, 
Example.—Solve 36 X 51 X 72 = x. 
Set runner to 36 on D. 
Set 51 on Cl to runner. 
Set runner to 72 on CF. 
Read answer 132,200 under runner on DF. 

For a X b X ~ = X, or — = x, proceed as before, with the 
c c 

regular settings (Arts. 386 and 385), but use the inverted scale 

for c. 
Arrange mentally in the form, 

o .. 1 
jX- = x. 

b 
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Example.—Solve — ^ — « x. 

Set runner to 26 on D. 
Set 14 on slide Cl to runner. 
Set runner to 9 on CIF. 
The answer, 40, is found under runner on DF, 
The operation for 9 was shifted to the folded inverted scale because 

it could not be found on the CZ-scale; yet half of the slide was in the 
rule. 

Compare this with Art. 398 and poto the difference in method. 

Example.—Solve — ^ — = x, where c == 1, 2, 3, 4, 5, etc. 

Set runner to 42 on D. 
Set 63 on Cl to runner. 
Set runner to 1, 2, 3, 4, 5, etc., on CIF and CL 
Read answers 2650, 1320, 882, 661, 529, etc., on D and DF, 
Caution,—In setting to a number on an inverted scale, as 63, be sure 

that the reading is made on the proper side of the 6. 

401. Form a X b X c == x Folded Scale.—Another method of 
finding the product of three factors is by using the folded scales 
DF and CF in connection with the CZ-F-scale, which is practically 
the same thing as the previous operation except that it is with 
the folded scale. 

a Xh Xc - X, 

Set runner to a on DF. 
Set b on slide to runner (Art. 386). 
At c on CF read x on DF (Art. 385). 
If c cannot be found on CF without shifting the slide, read it on the 

C-scale and x on D, 

This process is necessary when an expression is divided by r 
(Art. 392). 

402. Form = x.—^This form can be taken as in 
a X b X c 

Art. 400, a X b X Cj which gives the reciprocal of the answer. 
To invert this answer, transfer from the D-scale where the answer 

is regularly found to the inverted C/-scale. 
The indices of the C7- and D-scales must be made to coincide 

before the transfer is made. 



THE SLIDE RULE 261 

Example.—Solve 2 x x 6 “ 

Proceed as for 2X3X6 (Art. 400), using 
386 and 385). 

regular settings (Arts. 

Set runner to 2 on D. 
Set 3 on Cl to runner. 
Set runner' to 6 on C. 
Set index of slide to index of D. 
Read answer .0278 under runner on Cl instead of on D. 

403, Expressions Multiplied by t.—Let the expression be 

TT X a Xb 7rX42X6 
^ c 11 ‘ 

Put in form mentally for regular settiug for division (Art. 386), 

a 1 42 1 
1 c 1 11 

h 6 

Since the expression has tt as a multiplier, the operation Ls 
done on the C- and Z)-scales and when transferred to the folded 
scales is multiplied by tt (Art. 391). 

Set runner to 42 on D, 
Set 6 on C/ to runner (6 is inverted). 
Set runner to 11 on C/ (11 is inverted). 
Read answer 72 under runner on folded scale DF, 

Transferring answer from C- and D-scales to folded scale 

multiplies by 

404. Expressions Divided by it. 
Let 

aXh 37 X 5 
X = -= —5- 

TTC 27r 

Put in form mentally for regular setting for division (Art. SSb'), 

b 

Since the expression has tt as a divisor, the operation is done 

on the folded scales and when transferred to the D-scale is 

divided by ir (Art. 392). Another condition evident is that the 
b and c are both inverted and we, therefore, use the inverted 
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folded scales for these numbers and with the regular settings 
(Arts. 386 and 385). 

Set runner to 37 on DF-scale. 
Set 5 on CIF to runner. 
Set runner to 2 on CIF, 
Read answer 29.5 under runner on D. 

406. Proportion.—A proportion may be put in the form of two 
equal ratios as 

^ — ^ ^ — X — A 
82 “ X ' 48 32* 

Since the ratios are in the form of a division, their quotients 
are equal. Therefore, the setting of the rule for one ratio remains 
set for any other equal ratio. If 2 on the C-scale is set to 4 on the 
D-scale, then 3 on the C-scale is opposite 6 on the Z)-scalo, and 7 
on the CF folded scale is opposite 14 on the DF folded scale, and 
so on. 

It is important to note that all numerators are on the C- or 
CF~scales and all the denominators are on the Z>- or DF-scales. 
The numerators may also all be taken on the D-scale and all 
denominators on the C-scale, but all numerators must appear on 
one scale and the denominators on the other. 

In the first numerical example above, the rule is set to 90 on 
C to 82 on D, Opposite 25 on the C-scale, read 22.8 on D for the 
X value. For the other numerical example, set 6 on C to 32 on Z>. 
Opposite 48 on D, read y = 9, 

406. Inverse Proportion.—If 12 men can perform a piece of 
work in 8 days, how long will it take 16 men to do it? Evidently 
it will take a lesser number of days for a greater number of men to 
do the same amount of work; this relation of a greater requiring 
less is called an inverse proportion. The proportion in the form 
of two ratios for the foregoing problem is 

12 _x 
16 8* 

To solve, we set 12 on C to 16 on D and at 8 on D read x equals 
6 on C. Again, since the C/-scale is an inverted or reciprocal 
scale, the inverse proportion may be set up as a direct proportion, 
provided that the scale is used. Then 12 on the C/-scale is set 
to 8 on the Drscale and opposite 16 on the C/-scale and read 6 on 
the D-scale. 
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The inverse proportion can be considered as being measured 
in the same way as direct proportion except that the C/-scale 
or inverted scale should be used instead of the (7-scale. 

This gives the inverse proportion, 

or 
gi ^ (Cl), 
D * 

407, The A- and B-scales.—We will now construct another 
scale by multiplying all of the logs of the log L-scale by 2. This 
we know, squares the numbers which correspond to the logs. 

No. l 2 ^ 4 S <b189l 2 4 5 fc189\ 
J_I_I_l. 

•9 0 LogA&B f ■! ■> -f -j. -I •? p r ; 

LogL 0 .\00 .200 .400 .500 .fcOO .100 .800 .900 I.OOOj 

Fig. 149. 

This results in two scales, each 5 inches long. In multiplying 
beyond .500, we really get 1.2, 1.4, etc., which gives us a charac- 
ti'ristic as well as the mantissa, but since we are considering 
only the mantissa, we drop the characteristic on the slide rule. 
The numbers are substituted for the logs and this is the manner in 
which the A- and i^-scales are made. 

A distance measured on the (7- or Z>-scale and taken on the 
A- and J5-scale gives the square of the number. 

//, then, one of the factors is squared, it should be measured on the 
C- or D-scale, and this distance taken or read on the A- or B-scale, 
which automatically squares the number. 

All other numbers must be read on the A- and J5-scales, else 
they will be squared also. 

408. The numbers on the (7- and Z>-scales will be the square 
roots of those on the A- and jB-scales, because the scale is twice as 
long and the logs corresponding will be one-half as large. 

Any operation which has a square root as a factor should be 
measured on the A- and B-scales and referred to the C- and D-scales 
to extract the square root automatically. 

All other numbers must, therefore, be measured on the C- 
and D-scales. Numbers can be squared directly by placing the 
glass indicator to the number on the Z)-scale and reading the 
square of the number on the A-scale directly above. 

Likewise, the square root of a number is found by placing the 
indicator to the number on the A-scale and reading the square 
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root of the number on the D-scalo. Care must be taken to use 

the right scale, for the \/6 is not the same as the VbO. Use 
the left scale for an odd and the right scale for an even number 
of digits. Apply the same reason for this that you do for mark¬ 
ing a number into sets of two digits before extracting the square 
root. 

Example.—Find the square of 23.2. 
Set the runner to 232 on D. 
Under runner find answer 538 on A, 

Example.—Find 
Set runner to 313 on right A-scale. 
Under runner find answer 56 on D. 

409. The E-scale.—If we multiply the logs by 3 on the log 
L-scale, construct the scale, and then replace the logs by ihtur 
corresponding numbers, these numbers will bo the cubes of thc^ 
numbers having the same measurements on the D-scalc. 

The E-scale consists of three scales, one-third the unit leiigtli 
or each inches long. 

If the runner is set to a number on the Z)-seal(^, the reading od 
the E-scale will give the cube of that number. In the samc^ 
manner, if the runner is set to a number on the E-scale, the 
reading on the D-scale will be the cube root of that number. 
Care must be taken to select the proper scale. If a number is 

No. I ? 3 4 1 ^4 5(o189; 2 ^ 4- 

L09K 0 .') .2 .i .4.'5 .'<C .1 .V.9'0 } .1 .i 4 .'5 .(,.1 .8 '.9 0 A •> .4.'5 X n .V.? I'o 

UgL 0* .m .zoo .300* .400* .500 .too .100* .BOO .900* Vooo 

Fio. 150. 

separated into groups of three digits beginning at the decimal 
point, as for extracting the cube root in arithme^tie, thus, 

3'428.21, 

then for one digit on the left, use the left scale. For two digits, 
use the center scale and for three digits, use the right scale. 

Example.—Solve (34.1)'^ = x. 
Set runner to 341 on D. 
Under runner read answer 39,600 on E. 

Example.—Solve '^433. 

Set runner to 433 on right E-scale. 
Under runner read answer 7.56 on D, 

410. The Tangent Scale.—The tangent scale is made from 
the log L-scale in the same manner as the C- and />-scales. The 
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angle is substituted for the log of the tangent. This amounts 
to saying that the tangent scale measures the log of tangent 
which corresponds to the angle. 

Angle 
log.tan. .021& 

log.L 6 

8° lO*’ 12° 14° 1G° 20° 25° 
.147 .24& .327 .397.4S7 .561 .069 

iM|rMiiiiM|vm^iini|ri»iTiiM{.Vi. r, n ,t| »n , .nm^nyrr 

.100 .200 .300 .400 .500 .<^00 .100 

^O'^ 35° 40° 45° 
.761 .845 . 924 1.0 
»ti7TtT7inn*.-t ftrp 1 

.800 .900 1.000 
Fig. 151. 

Accordingly, the tangent of the black angle on T is on scale C 
at the' hairline or on D when the indexes of T and D coincide. 
The left index of C represents a tangent etjual to 0.1 and the right 
ind(‘x, which corresponds to 45° and equals 1.0 naturally. For 
tangents of angles greater than 45° the relation cot d = tan 
(90° — 6) can be used. It will be noticed on the rule that rod 
figures of the double scale on 7’ gives the equivalent cotangent, 
provided it is read on the inverted C/-scale. It also automatically 
performs the subtraction. 

I]xAMPLE.—Solve 4 X tan 10° = x. 
Set runner to 4 on D. 
Set index of slide to runner. 
Set runner to 10 on T. 
Read answer .704 under runner on 7). 
lOx.iMPLE.—Find X in the given triangle. 
Since 72° is greater than 45°, we shall use the cotangent, set up the 

problem as a proportion, and read the answer on the Cl inverted scale. 
Then 

cot 7^ _ X 

The hairline is set to the red number 72 on T; the right-end index is 
moved to hairline and opposite 2 on D read 6.16 on C/. 

411. The tangent of an angle less than 5° 43' is not given on 
the T-scale of the rule, but since the tangent and the sine for 
angles less than this have the first three significant figures the 
same, the iS^'-scalc is used instead. 

tan 2° 20' = sin 2° 20' = .0407. 

412. The Sine Scales S and ST,—The sine scale is 
made from the log L-scale with numerical values read on 
the C- and D-scales. The angle readings start at 5® 43' 
at the left index and extend to 90® at the right index, Fio. 152. 

which makes it a very useful scale. It is double-numbered in 
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black and red figures similar to the tangent scale, thus giving 
anglaa that are complements of each other and useful for cosine 

factors, which will be explained later. 
The ST-scale is for angles less than 6“ 43' and is used for both 

tangents and sines, as explained in Art. 420. 
For the rules graduated to degrees and minutes, the primary 

divisions up to 4® is in minutes, the primary divisions from 4® to 
the end of the scale represent 10', and the secondary divisions 
represent 2'. For the rule graduated in degrees and decimals of a 
degree, the readings are similar to the graduations of all the other 
scales. The choice of the rule depends upon the nature of the 
computations required. Electrical engineers may prefer this 

latter rule. 
In reading sines of angles on 8, the left index of C is taken as 

0.1, the right index as 1. In using the ST-acale, the left index is 
taken as 0.01 and the right index as 0.1. 

^ , 81 
£xAMPL£« SolVG 10^* 

Set runner to 81 on D. 
Set 10 on S to runner. 
At index on slide read answer 466. on Z>. 

413. Cosines.—The cosine of an angle is equal to the sine of tin? 
complement of the angle, and, since each number on the scale is 
a complement of the otlnu’, the sine ^’-scale can be used provided 

scales with opposite colors are r(‘ad. To illustrate, cos 14° (red) 
equals .97 on C (black), cos 65° 30' (red) equals .415 on C (black). 
Since opposite colors must be used and the numerical values are 
on the black scales C and Z), the red numbers must be used for the 
angles. 

ExAMPLE.~Find the length of the base of the right triangle shown in 

Fig. 153. 
X - 26 X cos 63°. 

Solution.—Set right index to 26 on /). 
At 63 (red) on *S, read 11.8 on D. 
Example.—Solve for x in the following: 

4.3 X 6.1 
Fio. 153. Solution. - x. 

Set hairline to 43 on Z). 
Move 63° 35' (red) on 6' to hairline. 
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Move hairline to 61 on C, 
Opposite 61 on X), read x « 689. 

414. Logarithms.—By comparing the two scales, D and L 
(Art. 384), we have a means of Bnding the logs which correspond 
to numbers or a number which corresponds to a given log. 

To find the log of a number, set the runner to the number on 
the D-scale, read the mantissa of the log on the L-scale, and add 
the characteristic of the log. 

Converselyf to find the number corresponding to a given log, 
set the runner to the mantissa of the log on the L-scale and read 
the number on the D-scale. Use the characteristic of the log to 
locate the decimal point in the number. 

416. General Form.—The previous articles complete the dis¬ 
cussion of the different scales and how they are made, and it 
has been shown how the slide mechanically adds or subtracts 
measurements on these various scales which multiply, divide, 
extract square or cube roots, raise to powers, etc., depending 
upon which scale measurement is taken. 

There are a few simple rules which ,can bo applied to all 
operations, and a general form will be chosen to illustrate these. 

aXhXcXd 

eXfXg 

If the problem is not in this form, modify it by putting in 1 as 
additional factors. There should be one more factor in the 
numerator than in the denominator. 

aXbXcaXhXcXl 
dXeXf dXeXf 
aXhXcaXbXc 

d dXl 

The rules are as follows: 
1. Arrange the numerator with one more factor than the 

denominator. 
2. The first numerator and the answer are found on the fixed 

scales of the rule. 
3. All other numbers are taken on the slide, whether they are 

numerators or denominators. 
4. The filide is moved for each successive divisor. 
5. The runner is moved for each successive numerator. 

Make 

Make 



268 MATHEMATICS FOR ENGINEERS 

PJXAMPLE. D C C CCD 
24.3 X 612 X 25.5 X 9.63 X 13 

1.65 X 7280 X 4.25 X 2.34~“^ ~ 
C C C C 

Set runner to first numerator 24.3. (2) and (5) 
Set denominator 165 on slide to runner. (3) and (4) 
Set runner to second numerator 612. (3) and (5) 
Set denominator 728 on slide to runner. (3) and (4) 

Set runner to third numerator 255. (3) and (5) 
Set denominator 425 on slide to runner. (3) and (4) 
Set runner to fourth numerator 963. (3) and (5) 

Set denominator 234 on slide to runner. (3) and (4) 
Set runner to fifth numerator 13. 
Read answer under runner on D scale. (2). 

This becomes a very simph' 
operation since the runin^r is 
moved to each munerator and 
the slid(‘ is moved to each 
denominator. 

A graphical illustration of 
the foregoing problem whi(*h 
shows the additions of th(' 
num(‘rators and the subtrac¬ 
tions of the denominators 
follows. 

The answer is the remaining measurenuuit after all the oUkt 
measurements have boon added or subtracted. 

416. Reciprocal Forms. 
AMPLE. 

Fio. 154. 

1 

2.24 X .53“y7.81 “ 

To put this in the general form, supply the numerator with 
one more factor than the d(*nominator by introducing unity a.s 
factors. 

D C C C D 
J X 1 XI X 1 _ 

2.24 X .53“x 7.81 “ 
C C 

Set runner to numerator 1 on D. 
Set denominator 224 on to runner. 
Set runner to numerator 1 on C. 
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Set (lenoiriinator 53 on C to runner. 

Sot runner to numerator 1 on C. 
Set denominator 7S1 on U to runner. 
Set runner to numerator 1 on (\ 
Head answer .1075 under runner on D. 

417. Expressions with Squared Numbers. 

Example. 

2.53 X (54.3)'^ X 3^ 
" 0.7 X (200)2 

In ordc'i* to s(iuare tin* nuinhms \\hi(‘h are shown squared, 

tli(‘y should l)(‘ tak(‘n on tin* T- and /4-srales and transfern'd to 

th(‘ .1- and /^-s(*al(‘s, hut the other nunil)ers must be measured 

on the A- and B- scales; oth(‘rwis(‘ tliey would be squared also. 

A C B A 
2.53 X (54.3)2 X 3_4_l _ 

'r>.7 x ■' 
li (' 

Proc('(*dinf!^ as in pn‘vious case: 

Set runner to numerator 253 on .1 (iiiove runner). 
Set <ienominator f).7 (»n H to runner (move slide). 
Set runner to nunu rator 543 on (' (move runner). 
Set denominator 2tit) to to runner (move slide). 

Set runner to numerator 341 on B (move runner). 

Itead answer 5.43 on ji.\<‘d >( ale .4 under runner. 

Note tliat, as l)efor(', th(‘ runner is moved to the numerator 

('ach tim(‘ and tin' slid(‘ is mov(‘d to the denominator each time. 

All numb(‘rs are taken on the slide except the first numerator 

and the answ(‘r. 

418. Square Root of Expressions. 

h'x A MPLE.-Solve 
f33.l X .42 X 198 ^ 

\ .7() X<)2 X .69 

Bj' iiDikiiiK du' operation on the .1- and B-scalcs and then 
1 ransferring to the Z)-se:ile, (lu> scpiare root of the expression is 

found. 
.1 n li B D 

331 X 42 X l!)H ^ 
71) X 02 X t» ' 
B B B 
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Set runner to 331 on A, 
Set 70 on B to runner. 
Set runner to 42 on B. 
Set (32 on B to runner. 
Set runner to 19<S on B, 

Set 9 on B to runner. 
Set runner to 1 on B. 
Read answer 20.0 on D. 

419. Expressions with Square Roots. 

Example.—Solve _ 

135 X X 5(33 _ 

21 X 332 X 

Since W(‘ tran.=;for from (he .1- and R-scides to the C- and /)- 
scales to get the sciuare roots of factor, \v(‘ arranges to measure' 
them on the A- and /i-scal(*s and transha* them to th(^ C- and 
/^-scales, but take all other factors on C and Z>. Then 

D B C C I). 

_X X 5(33 X 1 _ 

21 X 332 X \/(33S ~ 
C C B 

Set runner to numerator 135 on D (move runner). 
Set denominator 21 on C to runner (riiove slide). 

Set runner to numerator 384 on B (move runner). 
Set flenoniinator 332 on C to runner (nu)ve slide). 
Set runner to numerator 5(33 on C (move runner). 
Set denominator 038 on B to runner (move slide). 
Set runner to numerator 1 on C (move runner). 
Read answer 8.4(3 on I) under runner. 

420. Expressions with Tangents.—I'ho tangent scale T is 
built to the .same unit measurement as the C- and 7>)-scales, 
and tangents of angles are found on tlu‘se scah's. The tangcuit 
scale (‘xtends from left to right in black numbers and from right to 
left in red numbers, making each number a comphunent of the 
other. If the hairline on T is set to black 25, its tang(*nt e(iuals 
the cotangent of the n‘d nurnbc'r 65. The r(‘vers(^ is also true. 
The tangents are read on like colons, and the cotangents are nwl 
on opposite colors. For instance, tan 25° — 10' (black) equals 0.47 
on C (black), tan 62° —15 (red) ecpials 0.19 on Cl (red), cot 15° 
(black) ef|uals 3.73 on Cl (red), and cot 76° 30' (red) (Hiuals .240 
on C (black). 
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Example.—Solve 

1) T c a 
25 X tail 15° X 42 X 1 * 

l.f)5 X tan 20° X \'l‘S ” 
C T B 

The scales to be iis(‘(l an‘ indicatiHl aliove each term, and tlu? 

same procedure'- should Ix' followeal as in lh(‘ j^re^vious (;xamj)lf*, 

that is, alt(‘rnal(‘ the* ino\'(‘in(‘ijis of the runiifa* and the slide. In 

the above' example, x — 130. 

For anp:l('s sinalle'r than 5° 43', the' *S7Vse ale' is usexl as explaine'el 

in Art. 411. 

Sepiare'-root fae'ieirs can re*aelily be* coinpute'ei with the' tangent 

fae'lors since* the* feinne'i* are* ni<*asure‘el eai the* .4- and /i-se*ales 

anel transfe'rre'el to the* f- and y>-se*ales, whieh are* the seaih's 

use'ei whe'ii the*re‘ is a tangi'iit inveilve'el. Sepiare'd numbers, sine'e* 

the*y are' transfe‘rre*el tei the* .4- and i:?~scales, cannot be us(*d 

unle'ss the* number multiplie'el by itself is considered as being twice 

a factor. 

421. Expressions with Sines. 

lA AMPLE.—Solve 

\/2.t)t) X sin 10° _ 

11/2 x‘.()232“ ~ 

44ie're' are twe) re'ase)ns feir using the* C- and D-scales for the* 

se)l\ ing e)f this e*xam|)l(': the* sejuare'-re)e>t number is me'asure*el 

eai the* .t - anel /y-se*alcs anel is transfe'n’e*el to the* C- and Z>-se‘ale's: 

.sYfvnn/, the* sine se-ale* is maele* from the* same* unit as the C- anel 

J)-sv[iU\ The) S’-se*ale‘ may l)e' ceinside're'el the same as a C- 

nu*asurement. 
d N (’ D 

\/2J)(> X sin 10° >0 ^ 

14.2 X .0232 

(' C 

Set runner to 206 on .4. 

S{'t elcnonhnator 142 on U to runner. 

Set runne?r te) sin 10° on S. 
Set elenorninator 232 ein U te> runner. 

S(*t runner to I on U. 
Heael answer .S59 at runner em D. 

A seiiiare of one of the* factors which r(*e|uir(\s the' use of tin* ' 

anel /?-scale.s for the* other factors coiiflie'ts with a -i:i 
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which requires the use of the C- and D-scales.‘ It is, therefore, 
advisable to find either the value of the sine or the value of the 
square of the number before proceeding with the work. This, 
of course, can be done on the rule. 

422. Power Factors.—Numbers raised to powers other than 
squares or cubes can be solved by the log L-scale, as indicated 
by the following examples: 

Example.—Find® = (3.65) 

log X = 1.61 X log 3.65 = 1.61 X .5623 = .9053. 

Opposite 905 on L-scale, read 8.04 on D. 

Example.—Find x = -^261. 

log X = i X log 261 = = .4833. 

Opposite 4833 on Z/-sc4le, read 3.04 on D, 

423. The Exponential Rule.—Consider the A- and R-scales as 
square scales with exponent 2; the X-scale, the cube scale with 
exponent 3; the C- and Z)-scales with exponent 1; the CI~ scale 
with exponent —1. 

If given 
n 

X s= a*”, 

first put the exponent in fraction form. , 
Set a on a scale having the same exponent as indicated by the 

denominator m. 
Read answer under the runner on a scale having the same 

exponent as indicated by the numerator. 
Briefly, set number on denominator scale and read answer on 

numerator scale. 
Given 

X z=z a'^^. 

The number a is set on the D-scale, which has an exponent 1 as 
indicated by the denominator of the exponent. 

The answer is read on the A-scale, which has an exponent 2 
as indicated by the numerator. 
Given 

X = \/a = a^. 

Set nmner to a on the i4-scale, the exponeiit 2 scale. 
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Read answer under the runner on the D-scale, the exponent 1 
scale. 
Given 

Set runner at o on the jK-scale, the exponent 3 scale. 

Read answer (-^o) on D-scale, or exponent 1 scale. 
Given 

X = = a^. 

Set runner at a on the if-scale, or exponent 3 scale. 
Read answer on A-scale, or exponent 2 scale. 

Given 

X = = a^. 
Set runner to a on ^4. 

Read answer (\/o*) on K under the runner. 
Given 

* = —^ = a~^ — 
Va 

Set runner to a on A. 

Read answer under the runner on the C/-scale, or expo¬ 

nent — 1 scale. 
Index of slide must be in alignment with the index 

A-scale. 
Given 

X = vs/a = T X 

of the 

To get X = y/a. 
Set runner to a on j4. 
Read answer on D. 
To multiply by x, transfer reading from D to DF. 

Given 

a-* 

Set runner to a on Cl. 
Read answer on K. 

Given 
1 

-1 1 
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Set runner to a on i4-scale. 
Read answer under the runner on CIF, 
The — 1 indicates an inverted scale, and by reading on the folded 

scale the result is divided by tt. 
424. Solution of Right Triangles.—The sine law [90] which has 

Fig. 166. Fig. 166. 

the form, 

[90] = -Xs = 
Sin A sm B sin C 

is very convenient for solving 
right, as well as oblique, tri¬ 

angles. For right triangles the formula takes the form 

a ___ b _ £ 
sin A sin R 1 

since C = 90® and sin C = 1. 

One of the three ratios always permits a setting of the rule. 
Other angles or sides can be read by moving the hairline to any 
known quantity in the other ratios. 

Example.—^Let A == 35° 30' and 6 = 15 in Fig. 155 to find a, c, and R. 
Then 

Scale D 6 = 15 a c 
Scale S “ sin (90® - 35® 30') sin 35® 31)' "" T 

Solution.—Set hairline to 15 on Z>. Move 54® 30' on S to hairline. 
Opposite 35° 30' on S, read a — 10.7, and, opposite index on S, read 
c = 18.4. 

Example.—Given A == 21®, c = 20, as shown in Fig. 15G. Find 
a, 6, and B. 

D 20 a h 
S" T “ sin 21® - sin (90® -Tl®)* 

Solution.—Set hairline to 20 on D. Set index on S to hairline. At 
21 on R, read a = 7.17 on R, and, at 69 on R, read 
6 = 18.7 on D. 

425. Oblique Triangles.—There are two ^ 
convenient trigonometric formulae that may 
be used in the solution of oblique triangles. 

If given two angles and a side or two sides and the angle oppo/ 
site to one of them, use the law of sines [90]. 

^ ^ ^ c_c 
S ~ sin A ~ sin R sin C "" sin (A + B) 

Fig. 167. 
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Example.-—Let a == 25, A = 42®, B = 27°. 
Find by c, and C. 

C = 180° - (42° -h 27°) = 111°. 

D _ 25 _ b _ c 
S “ sin 42° ~ sin 27° Sn 111° = sin 69°’ 
D ^ 25 ^ h = 17.0 _ c = 35 
S sin 42° “ sin 27° “ sin 69° * 

426. If given two sides and the included angle which is greater 
than 90°, use the formula, 

rq-i T _ tan J(A + B) __ tan ^(A ~ B) 
D (a + b) ~ ~(a-h) 

and the law of sines. 

Example.—Given C = 116°, b — 
Find Ay B, and c. 

tan ^(A B) 
Use + “ = 

m +B) = 

21, a = 51. 

tan \{A — B) 
—{^-b)~ 

180° - 116° 
2 

Substituting, 

-j- 5 = 72. 

a — 6 = 30. 

tan 32° tan ^{A - 

72 “ 30 
i{A + J5) = 32° 
|(A - B) = 14° 3' 

A = 46° 3' 
5 = 64° 46° 3' = 17° 57'. 

From 

[91.] 

32°. 

C 

Fig. 158. 

a _ 
sin A ‘ sin C 7 [90] > 

D _ 51 _ c = 63.8_ 
S ~~ sin 46° 3' sin 116° = sin 64° 

427. If given two sides and the included angle which is less 
than 90°: 

In this case, \{A + B) is greater than 45° and a modified form 
of the law of tangents is used. By using the formula, 

1 
tail (90® - AY 

tan A = 
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formula [91] becomes 

(a + b)(tan [90° - 

which should be used with ’ 

tan ^(4 — B) 
(a-b) ' 

a 
sin A 

b 
sin B 

[90.] 

Example.—Given C = 80°, a = 130, b = 100. 
To find A, B, and c. 

a+ b = 230. 
o — 6 = 30. 

HA + B) = 50°, 

From [92], 

1 1 tan ha — B) 
230 X tan 40° “ 193 ~ 30 

HA - B) = 8° 50'. 
i(A + B) = 50° 
HA - B) = 8° 50' 

A = 58° 50' 
B = 100° - 58° 60' = 41° 10'. 

From [90], 

C 

Fio. 169. 

a _ ‘ _c_ 
sin A ~ sin C‘ 

130 _ c = 151 
sin 68° 60' sin 80° 

c = 161. 

428. Slide-rule Correction Method.—If one of two numbers 
is too large for the slide rule, it can be separated into two parts, 
and each part multiplied by the other number with one setting 
on the slide. The addition of the two products increases the 
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accuracy of the result beyond the usual range of the slide lule 
without requiring much time or effort. 

Expressed algebraically, 

{a + b)c ac + be. 

Example.—Multiply 527.85 X 3.14. 
The number 527.85 is beyond the range of the slide rule and we, 

therefore, arrange it as 

(527 + .85)3.14 = 527 X 3.14 + .85 X 3.14. 

Take the smaller number 3.14 on the fixed D-scale and set the index 
to 3.14, The products 527 X 3.14 and .85 X 3.14 are found by simply 
moving the runner, and the main part of the answer corrected by the 
addition of the second product or 

1655 + 2.00 - 1657.00. 

The correct value is 1657.449, while the regular slide-rule product 
would be 1655. 

Rule.—Take three significant figures of each number. The fourth 
significant figure is uncertain. Disregard all figures beyond the fourth 
figure. 

429. If both numbers are beyond the range of the slide rule, 
then algebraically. 

{a b)(c d) = (u b)c -f- (u “f- b)d. 

This requires two settings each similar to the preceding case. 

Example.—Multiply 45,681 by 38,266 using 20" slide rule. 

. 11,742,000,000 
I 3,000,000 

(45,600 + 81)38,200 + (45,600 + 81)66. 

Index at 382 on D \ 

Index at 66 on D 3,000,000 
1,748,000,000 

Actual product is 1,748,029,146. 
Regular slide-rule reading is 1,760,000,000. 



CHAPTER XVIII 

INFINITE SERIES 

430. Infinite Series.—In Art. 298 et seq., we saw that a series 
was a succession of terms formed according to some law of 
succession and continuing to any finite number of terms. We 

developed formulae for finding the sum of any finite number of 
these terms. We now desire to investigate series which have no 
such limitation placed upon the number of terms considered. 
Such a series, in which the number of terms n is allowed to 

increase without limit is called an infinite series, 
431. In Art. 313, it was shown that the sum of n terms of a 

geometric series Sn approaches a limiting value when r is numeri¬ 
cally less than unity and the number of terms n is allowed to 
increase without bound. That is, by taking a sufficient number 
of terms, we may obtain a value for Sn which differs from this 
limiting value by as little as we please. It was also seen that 
in the case of the arithmetical series, no such limiting value for 
Sn exists, and that as the number of terms is increased, the sum 
of these terms either increases or decreases without bound. 

432. If Uij U2j Uz . , . represents a set of values, positive 
or negative, or both, arranged in a series, 

Ui + W2 + ^8 + • • • + + Wn+1 + . . . 

according to some law of succession, we denote the sum of the 
first n terms by Sn- 

iSn = “Wi + W2 + Ws + . . . + Wn. 

Now if n is allowed to increase without limit, either 
Case 1 Sn approaches some finite number as a limit, or 
Case 2 Sn does not approach a limit. 
In Case 1 we represent the limit of Sn by 5, or symbolically. 

Limit 0^0 
n —► « 

and the series is said to be convergent upon S, or to converge 
to S, or to have the sum S, or to be convergent and have the 
value S, Such series are convergent series and these are the 
infinite series which are most useful in practice. 

278 
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433. Non-convergent Series.—In Case 2 the series is said to 
be non-convergent. Here must be considered two classes: 

1. Divergent seriesy in which Sn increases in absolute value 
without limit as n increases without bound. 

2. Oscillating seriesj in which Sn does not become infinite in 
absolute value as n increases without bound, and which do not 
converge to a limit but oscillaiCy as in 

/Sn - 1 + 1 - 1 + . . . + (- 1)"-^ 
In this case, Sn is either zero or unity, according as n is even 

or odd. 

Example of Convergent Series. —Consider the geometric series. 
Sum = /S„ = a + ar + ar^ + ar^ + . . . +ar»‘“i + . . . 

, a(l — r«) 
‘ 

Let a = 1, r == 5. 
The series becomes 

Sn = l + i + i-\-i + 

Sn = 

As n increases without limit, approaches 0 as a limit, and 

Limit o __ 9 n <x 
51 = 1. 
52 — 1 + i = L 

aS4 = 1 + J + i + i = V* 
It is evident that as n increases, Sn can be made to come close at will 

to 2, that is, to differ from 2 by less than any assigned number, however 

small. 
Example of Divergent Series.—Consider the arithmetic series, 

Sum = = 1 + 2 + 3 + 4 + . . . +n = |(1 + n). 

Si = 1. 
’ Sn = 1 + 2 = 3. 

53 = 1 + 2 + 3 = 6. 
54 = 1 + 2 + 3 + 4 = 10. 

It is evident that as n increases without bound, S„ increases without 
limit and the series is divergent. 
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434. Infinite series are sometimes represented by the nth or 

general term, Un = ^ ^ indicating the series, as 
n 

I +1 + i + • • • ^4^- 

The limit of a convergent series is represented by 
Limit Q _ cr 

436. The nature of an infinite series is not changed by pre- 

fil^WS or removing a finite number of terms; that is, a series will 
4i^(&aiixi convergent or divergent or oscillating if terms are added 
or ;i!ei|i.ov9d, although the limit to which a convergent series will 

converge will, in general, be changed by the process. 
A series may be given for which the sum Sn cannot be found 

as it was fpo^ in the case of the geometric series, and we may not 
be able to.find the numerical value of the limit, but it is necessary 
in any operation with series to know that a limit exists. In 
determining whether a series is convergent, it must be examined 
according to the following theorems: 

436. If Sn always increases as n increases but always remains 

less than some fixed number K, then as n increases beyond bound, 
Sn approaches a limit which is not greater than K. 

437. If Sn (always decreases as n increases but always remains 
greater than 1^010 fixed number M, then as n increases beyond 
.bound, Sn approaches a limit which is not less than M. 

438. Series Whose Terms are All Positive.—A series whose 
terms are all positive caimot oscillate. Sn will always increase 
in such a series, and if it can be shown that this sum always 
remains less than some finite number, the series must be con¬ 
vergent (Art. 436). On this principle is based the following test: 

439. The Comparison Test for Convergence.—If 

Ui + Uj -b Mj -H • . • (1) 

is a series of positive terms which we desire to test for converg¬ 

ence, and 
+ t's + t's 4* • • • (2) 

is a series which is known to be convergent, then, if each term of 
(1) is less than the corresponding term of (2), the series (2) is 
^nvergent and its limiting value cannot be greater than the 
limiting value of (1). 
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Exampm.—Prove that the series, 

2+l + ^, + i + j,+ . . . • • • . (1) 

is convergent. 

We will compare with the geometrical series, 

2 + 1 + ^j + ^, + |-4+ . ■ . +^1.+ • • • (2) 

Comparing, we find that after the third terms, each term of the u 

series (1) is less than the corresponding term of the v series (2). After 
we have examined several terms, we must not fail to examine the nth 
terms. 

If n > 3, 

_1_<j-. 
(n - l)»-i ^ 2”-‘ 

Sn in (2) after the third term can never exceed i since the series con¬ 

verges towards 3^. S« in (1) after the third term is less than Sn in (2) 

and (1), therefore, converges to some number K < 

440. A Few Useful Series for Testing Convergence.—It can 
be proved that the following series are convergent: 

a + ar + ar^ + ar^ + ar* + 

where — 1 < r < 1. 

J_ + A_ + JL + _L + 
1^2 ' 2*3^ 3‘4' 4-5' 

i + + ^ + ^ + + 

+ 

+ + 

1 
n(n + 1) 

+ ^.+ - 

+ 

where p>l. 

441. Comparison Test for Divergence.—If 

Ui + M2 + Ms + M4 + • • . + M„ + . . . . (1) 
is a series to be tested for divergence, and we can find a series of 

positive terms already known to be divergent, 

Pi + f* 4* fs + f♦ + • • . + Pn 4" • • • (2) 
whose terms are never greater than the corresponding terms of 

(1), then (1) is a divergent series. 
One of the most important series for testing divergence is the 

harmonic series, 

>4-i + i + i + i4-. . •4-^4-. . . 

This series can be shown to be divergent in the following 

manner: 
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Group the terms so that the sum of the terms in each group 
is greater than thus, 

1 + ^ + (i + i) + a + i i + i) + ■ • • 
In the first group will be two terms, in the second, four, in the 
third, eight, and so on. 

In the first group, and their sum is greater than two 
times J, or In the second group, the sum of the terms is 
greater than four times i, or We can thus arrange an 
unlimited number of groups each greater than and the sum of 
these group, that is, the sum of the series, can be made great at 
will, and the series is divergent since by taking n large enough, the 
sum can be made to exceed any assignable number, however large. 

Example.—Examine for divergence the series, 

Compare with the divergent harmonic series, 

^ + i + i + + • • • (2) 

Since the denominator of each term in (1) is less than the corre¬ 

sponding denominator in (2), each term of (1) is greater than the 

corresponding term of (2), and (1) diverges also. 

442. The following series are important in testing for divergence: 
The geometric series, 

a + ar + ar^ + ar^ + ar^ + . . . + . . . 

where 1. 
And the harmonic series, 

*+5+l+i+S+8+■■■+5+ 
It is a very good plan to keep for future reference a list of all 

of the series that are found to be convergent or divergent, so 
that they will be available for purposes of comparison when 
needed. The blank space reserved here is for this purpose. 
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443. The Ratio Test for Convergence.—The ratio of the 
(n + l)st term of a series to the nth term is called the ratio of 
convergence. The nature of a series can generally be determined 
from an inspection of this ratio, 

Un+l 

Un ' 

and its behavior as n is allowed to increase without limit. The 
geometric series has a constant value for this ratio, regardless 
of the value of n, as was seen in Art. 313 where the limit of the 
sum was obtained from the straight-line graph. 

Consider the series. 

Wi + + ^^3 + ^4 + • • . + Un + Wn+l + . . . 

in which the terms may be all positive, or all negative, or both 

positive and negative. Form the ratio, and allow n to 
Un 

increase without limit. 

The absolute value of this ratio. nn+i 
Un 

, as n increases without 

bound will, in general, approach a definite limiting value or it 
will increase without limit. Call the limit, if it exists, p. If 
p<l, the series is convergent. 
p>l, the series is divergent. 
p = 1, the test fails to give us any information and the series 
may be either convergent or divergent. 

Examples.—Test the series by means of the ratio test. 

1 ^ _|_ A 
2 “22 23 ^2^ + - + ^ 2« ^ 

Un + l ~ 
n -f 1 n 
2^’ ~ 2»' 

M.+1 

Mn 
W "f 1 2” 

2n+l n 

Limit 
n—* cc 

Un + l 

Un 

W + 1 ^ , JL = 1 . J_. 
' 2n 2n’^2n 2''’2n’ 

Limit 
n—► « 

J < 1. Therefore, the series is convergent. 
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Example.—Test for convergence, 

2 2* 

2* “^3* 

2« 2^ 

^ 4* ^ 5* ^ 
. . + 

tin-fi ^ 2"^^ (n + 1)* 

Un (n + 2)* 2» 

Limit = 2. 
n—♦ oe 1411 

2 > 1. Therefore, the series is divergent. 

444. Proof of Cauchy’s Ratio Test for Convergence.—Con¬ 

sider the series of positive terms, 

Ui + W2 + U3 + 1/4 + . * • 

which we desire to test for convergence. 
Form the test ratio, 

Un+l 

Un ' 

by dividing any general term by the term that precedes it. 
This ratio will, in general, approach a limit as n is allowed to 

increase without limit. If the ratio fails to approach a definite 
fixed number as a limit, the test of the series cannot be made in 
this manner. If the ratio does approach a definite limiting value 
as n increases without bound, let this limit be represented by p. 
Symbolically, 

Limit Un’^-l _ 

"-■ST 
This limit will be less than, greater than, or equal to 1. That is, 

p < 1, p > 1, or p = 1. 

446. Case 1. p < 1.—If the limit of the ratio = p is less than 
Mn 

1 as n increases, the values of the ratio cluster about the value p 
and it will be possible to choose some number r which lies between 

p and 1, which will be greater than all values of the ratio, 
Un 

for any n subsequent to a certain n, as n = m, or for all values 
of n>m, 
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Or 

n = m, < r, 
Um 

u„+i < u„r, 

n = m + 1, 
^m+2 . 

< r, 
Um+l 

u„+i < u„+i r < u„r *, 

n « m + 2, - < r, 
Wm+2 

u„+3 < Mm+2 r < u„ r*, 

n = m + 3, < r, 
Um+H 

m„+4 < u„+3 r < u„ r*. 

Adding p of these inequalities, 

Wm+l "f* Wm+2 “1" Um+3 + t^m-f-4 + ‘ • ■ + Um+P 

< u„,(r + r* + H + ^4 + . . . + rP). 

It will, be seen that the terms in the parenthesis form a geo¬ 
metric series in which r< 1, and this series we have already shown 
to be convergent. The sum is always less than 

r 

Consequently, the sum of the series, 

Wm+l “f" Wm-fS “1“ "f“ • • • “f" 

can never exceed in value 
r 

which is a definite fixed number, and the u series, therefore, 

converges. 
446. Case 2. p > 1.—This case is treated in the same manner 

as the case where p < 1, except that r in this case will be greater 
than 1, which causes the geometric series to diverge. 

447. Case 3.—In order to prove that the ratio test fails when 
p = 1, it is necessary to consider the series, 

^ 2** ~ 3** ~ 4^ ~ 5^ ” ^ ~ 

Consider p to be greater than 1. 

(1) 
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Group the terms, 

2p Sp 

1 4. 1 = 2 ^ _1_, 

2p ' 2^ 2^ 2^“^ 

4p ' 5p ' 0p ‘ 7p ^ 4p ' 4p ‘ 4p 4p ^ 4p \2p~v 

+ 1 + 1 
+ gp ^ 8P 

8P 

1+ + J_<l+l + i + i + l + i 
gp T . . ^ 15P ^ gp gp gp ^ gp gp gp 

= (^,)’ 
If the grouping of terms is continued in the manner indicated, 

and if we form a series from the right-hand members of the 
inequalities, we have the series, 

1 + + (^i) + (^,) + . . . + (^,) + . . . (2) 

When p > 1, the series (2) is a geometric series having the 
common ratio less than unity and we have already seen that 
such a series is convergent. The sum of the series (1) is less 
than the sum of the series (2) as was shown by the inequalities 
above, and series (1) is, therefore, convergent. 

When p = 1, the series (1) becomes the harmonic series which 
we have already shown to be divergent. 

When p < 1, each term of the series (1) will be greater than 
the corresponding term of the harmonic series, and in this case 
the series wjll be divergent. 

448. Returning now to a consideration of the ratio test and 
its failure to indicate the nature of the series to which it is 
applied when the limit of the ratio p is equal to 1, we form the 
test ratio for the series (1), 

1 i + p + tp + |p + • • • +;?^ + (nVT)p+ • • • 

The test ratio is 

Un+l ^ / n 
Un \ n + 1 

Hence, we see that p = 1 for this series, regardless of the 
value of p. But we have already shown that when p > 1, this 
series converges, and when p < 1, this series diverges. There- 
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fore, the ratio test fails in the case where p = 1, since the limit 
of the ratio may be equal to 1 for both convergent and divergent 
series. 

449. It is not a sufficient condition for convergence of series of 

positive terms that the value of the ratio, becomes and 
P'n 

remains less than 1 for all values of n, for in the case of the 
harmonic series this condition is fulfilled and yet the series is 
divergent. 

The limit of the ratio must be less than 1, whereas the limit 
of the ratio in the case of the harmonic series equals 1 and we 
have seen that the test fails in this case. 

460. Series Whose Terms Are All Negative.—The theorems 
which we have developed for the treatment of series whose 
terms are all positive may be developed, with modifications, So 

as to apply to series all of whose terms are negative, by the use 
of the fundamental theorem of Art. 437 as a basis instead of 
Art. 436 which we have used. 

461. Series Which Have Both Positive and Negative Terms.— 
If the number of negative terms is finite, they may be neglected 
and the resulting series tested for convergence according to the 
foregoing articles. If the number of positive terms is finite, 
these may be neglected and the resulting series of negative terms 
may be tested. It is evident that the neglecting of terms in 
this manner affects the value, but not the existence of the limit 
of the sum, and, if such a limit exists, the series is convergent 

although it converges to a different value. 
If a series consists of an infinite number of both positive and 

negative terms, we may investigate to determine its nature using 

the theorem: 
An infinite series which is composed of an infinite number of 

positive and an infinite number of negative terms is convergent 
if the series formed by taking the absolute values of all the terms is 

convergent. 
Suppose that the given series is 

-h W2 H” ^3 "f” ^4 4" • • • (I) 
and that the series deduced from the given series by making all 

of its terms positive is 
I I + I W2 j + I ^3 1 + I ^4 I + • • • (2) 
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The series (2) is convergent and its sum <Sn approaches some 
definite fixed number as a limit. Let this number be S. Then 

Limit 
n-* cc Sn = S. 

Sn of the original series is, then, always less in absolute value 
than S, since the sum obtained by taking n terms all positive is 
less than S, 

Suppose that the n terms of (1) are composed of p positive 
and q negative terms; then 

5n(in 2) = Pp + Ng, 
where Pp is the sum of the p positive terms and —Nq is the sum 
of the q negative terms. Also, 

Sniin 1) = Pp - Nq. 

Now, since series (2) is convergent and its sum can never 
exceed S, and because Pp and Nq are both positive while their 
sum never exceeds S (which means that Pp approaches a limiting 
value P, and Nq approaches a limiting value A), it is apparent 
that 

Sn(in 1) = P — i\r = a definite fixed number. 

Therefore, the series (1) is convergent according to the defini¬ 
tion of convergence. 

Series of this sort, which are not only convergent but are also 
convergent if the absolute value of the terms is considered, are 
said to be absolutely convergent 

Series which consist of positive and negative terms may be 
convergent although the series deduced from them by consider¬ 
ing the absolute value of each term is not convergent. Series 
of this type are said to be conditionally convergent. 

462. The ratio test (Art. 443 et seq.) can be applied to series 
of positive and negative terms as follows: 

The series. 

Ul + W2 + Ws + W4 + 
is convergent if 

{un either positive or negative), 

Limit 

Un 
< 1. 

This follows directly from (Art. 451). 
The series is divergent if 

Limit 
n « 

Wn+l > 1. 
u, 
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For if the limit of the ratio is greater than unity, Un cannot 
approach the limit zero, and consequently the series cannot be 
convergent since the condition that iCn approach zero as a limit 
is a necessary one for convergence. 

The test fails if 

Limit 
n —♦ oc 

Un 
= 1. 

The proof for this assertion is the same as has already been 
given (Art. 448). 

463. Alternating Series.—An alternating series is one whose 
terms are alternately positive and negative. The theorems 
developed for the investigation of series whose terms are both 
positive and negative are, of course, valid in the case of an 
alternating series. In addition we have the following theorem 
that applies to alternating series: 

If Uij U2j Us, . . . are 'positive terms and they are arranged in 
an alternating series^ as 

Ui - U2 + Us — U4 + Ub - Ue + . . . + (- + . . . 

SO that each term is less than the term that precedes it, in numerical 

value, and if 
Limit „ ^ 0 n oc Mrn — \j, 

then the series is convergent. 
The sum of 2n (an even number) terms of the series is 

S2n = (ui — U2) + (us — U4) + (ub — Ue) + . . . 

+ (U2n-1 ““ U2n), (1) 

or 

S2n = Ui — (U2 — Us) — (U4 — Ub) — . . . — U2n. (2) 

The quantities in the parentheses are all positive, since each 
term is less than the one that precedes it, in absolute value. 

Therefore, we see from (1) that S2n is positive and always 

increases as n increases. 
Moreover, we see from (2) that is always less than Ui. 

Sum of an odd number of terms is 

S2n-fl == ^2n + U2n-hl- HeUCe, 

Limit iS2n+i == Limit S2n + Limit U2n.f1- But Limit U2n+i is zero 
by hypothesis; hence, S2n+i has the same limit as S2n* There¬ 
fore, Sn, the sum of any number of terms, odd or even, approaches 

this same limit. 
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EIxamplb.—The series, 

2^3 4^5 6^ 
+ (_l)w.± + 

is convergent since each term is less in absolute value than the terra 
that precedes it, and 

Limit \ _ Limit f ^ 1 _ n 
n—*ai \Mn) 0. 

If the positive values only of the terms are considered, this series is 
divergent, for it is then the harmonic series which we have already 
shown to be divergent. This series is an example of conditionally con¬ 
vergent series. 

The series, 

^ ~ + + • • • +(-1)^; + 

is absolutely convergent because the series, 

1+ |j + ^, + f4 + ^; + ^6+ • • • +^„+ • • • 

is convergent. 

464. Directions for Testing Series.—Suppose that we have 

the series, 

^1 + ^2 + ^3 + ^4 + ^6 + . . . + Un + . . . 
which we desire to test for convergence. 

If it is an alternating series in which each term is less in absolute 
value than the term that precedes it, and 

(Un) = 0, 

then the series is convergent. 
If it is not an alternating series satisfying these conditions, 

determine the law of formation of the terms and form the ratio of 

Wn-Hi to Un and find the 
Limit 
n —>« 

^n+l 
Un 

== P- 

If p < 1 in absolute value,, the series converges. 
If P>1 in absolute value, the series diverges. 
If p = 1 in absolute value, the ratio test fails and the series 

must be compared to some series known to be convergent, as 

a + ar + ar^ + ar^ + ar^ + , . . + + . . . r<l. 

i+^+^+F+i+- • ■+S+- ■ •f>‘- 
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If there is reason to suppose that the series is divergent, com¬ 
pare it with some series known to be divergent, as 

••'+1+ 

a + ar + ar^ + ar^ + . . . + + . 

^ ^ ^ 4p ^ ^ ^ ^ * 

r>l. 

. p<l. 

466. Series Whose Terms Are Functions of x.—Series very 
often occur in which the terms are functions of some variable 
X, and in fact, such series are of great value and importance, as 
we shall see. 

466. The Power Series.—The simplest and most important 
series of this type is the power series represented generally by the 
expression, 

ao + aix + + . . . anX^ + . . . 

in which the coefficients, ao, ai, a2, etc., are independent of the 
value which x may have. It will be seen later on that these 
series are of tremendous importance in the calculus. The 
power series may converge for all values of x but more often 
it will converge for some values of x and diverge for others, 
and the determination of the values of x which make the series 
converge will be the only investigation of the series with which 

we will be concerned. 
If from the above series we form the ratio, 

^n+l^ * 

dn 

and observe the behavior of this ratio as n increases without limit, 
we are able to determine the interval of convergence, that is, 
the values of x for which the series is convergent. If the ratio 
approaches some definite fixed number as a limit, or in other 
words, if the relation between the coefficients is such that 

then for 

Limit —. „ 

^ an) ~ ’ 

\x\< 
1 
r 

'y the series converges, and for 

x\> 
1 
r 

; the series diverges. 
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If r = 0, the series converges for all values of x, and if \x \ - ^ 

the test fails. If such a power series is convergent for x = b, it is 
convergent for every value of x, numerically less than br that is, 
for —6<a:<6. 

Example. 

X 

2 + 2* 2^ 2^ T- 

dll — dn+l — 
(n + 1)» 

2- 
dn+1 
dn 

2»+i 

(n + 1)^ 
2ra2 

Limit /^n4-l\ _ Limit /(^ “f* 1)^\ _ Limit /]}^ i i I \ ^ 1 

"■^“Van/ 2n* J V2n2"^2n*“^2n2/ 2 

The series is, therefore, convergent for all values of x, numerically less 
than 2. 

I«l< (;)' ora; < 2. 

467. Binomial Series.—In Art. 84 et seq,j we developed the 
expansion of the general binomial. If we expand (1 + x)^ 
according to this method, we get 

(1 + x)» = 1 + nx + 
n(n — l)(n 

1-2 1-2-3 
2),, x» + 

n(n — 1)(» — 2){n — 3) 
1-2-3-4 ^ 

in which n may be integral, fractional, or negative. 
If we have (o + a;)", the expansion becomes 

(o + x)" = a” + na““*x + + 

njn - 1K« - 2) ^ n(n - l)(ra - 2Xn - ^ 

Any series developed from (a + x)" is infinite for fractional or 
negative values of n and convergent when x is numerically less 
than a. Values can, therefore, be found to any desired degree 

of accuracy. 
The series is divergent when x is numerically greater than a, 

but in this case the value of (a + x)" can be found to any degree of 
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accuracy by expanding {x + a)», for the latter expansion gives a 
convergent series. 
Consider 

|£ 
w(m — l)(m — 2) . . . {m — n) 

o„+i - - • 

an == 
m{m — l)(m -- 2) . . . (m — n + 1) 

n 
ttn-fi _ m — n 
an n + 1 

m 

Limit ^^4-1 _ Limit ^ ^ _ Limit ^ 

an n + 1 

~ ~ 1 

1+^ 

r = -1 

The series converges for 
-l<x< 1. 

468. In expanding (a + x)", we may write the expression in 
the form, 

a"(l + Art. 123. 

Expanding, 

This series converges when 

- < 1, or 
a 

the interval of convergence is the interval from —a to a. 

Example.—Expand (1 — x)’^ (see Art. 87). 
1 

~9 

..-..xf,-.IX (4) --.046. 

-19 

c, = c, X = -.045 X = .0285. 

Expanding, 
(1 - = 1 - ,lx + .045x» - .0285x’ + . . . etc. 
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Example.—^Expand (1 — 3a:) “®. 
Solving coefBcients, 

c, = = -3. 

C2 = Cl X ^ = -3 X -2 = 6. 

C3 = C2 X ^ = 6 X ^- = -10. 

C4 = ca X ^ = -10 X ^ = 15. 

Expanding, 

(1 - Sx)-^ = 11 + (-3x)!-^ = 1 + (-3)(-3a;) + 6(-3.c)2 
+ (-10)(~3a;)3 + 15(-3a:)^ + . . . 

^ 1 + 9x - 54x^ + 270^3 _ 1215^:4 + 

Example.—Expand (1 +a;) ^ to five terms. 
-3 

Ci = -^. 

V 4 _ -3 ^ -7 21 
Ci Cl X 2 4^8 32 

-11 
_ ^ 4 21 -n -77 

^^^ 3 32 ^ 12 128 ■ 
-15 

C4 = C3 X 
-77 ^ -E5 ^ 

128 ^ 16" 2048’ 

Expanding (1 + x) -i - 

1 - |x + 

Note that the odd powers of x have negative coefficients. 

469. Some Binomial Series. 

1 -2 [93] (1 ± x)» = 1 ± nx + ± 

Convergent if x'-* > 1. 

[94] (1 ± x)“” = 1 T nx + q; 

n(n — 1)_2 n(yt — l)(n — 2) 
1 • 2 • 3 

n{n — l)(n — 2) 
1-2 " 1 • 2'3 

Convergent if < 1. 

r^Ki / I. ^ 1 I . \ [96] (o-6x)->--(H-.-+-^+-^^+^+ . . . ) 

Convergent if 6® < a^. 

[93] (1 ± x)“i = 1 T X + T x8 4- x^ ^ x5 -f x« + x’-h . 

~'x^ + . . 

x^ 4- . 
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Convergent if x* < 1. 

[97] (1 ± x)-« = 1 q: 2x + 3x« + 4x» + 5x< + 6x^ + . . . 
Convergent if x* < 1. 

[98] (1 ± = 1 ± ia: - i . Ja;2 + 4 . j . |x3 - J • i ■ f • ± . , . 
Convergent if x* < 1. 

[99] (1 + x)-i = 1 + ix + J • |a:2 + J • f • J a:’ + J • I • S • Jx* T . . . 
Convergent if x^ < 1. 

[100] (1 ± x)* = 1 ± Jx - J • ix* + J • I • Ja-’ - § • J • 5 • jS,x< ± . . . 
Convergent if x* < 1. 

[101] (1 ± x)-l = 1 + ix + i • 3x2 T J • J • Jx2 + i • 3 • ■ • , 03,4 T , , . 
Convergent if x* < 1. 

460. it we put ^ equal to x in (Art. 123) or (1 + x)", 

and consider the absolute value of x less than 1, we have 
(1 + x)" = 1 + CiX + cix^ + C3X* + r4X‘' + . . . 

Several useful expansions can be made from this form as; 

—— = (1 + x)~‘ = 1 — X + x“ — x’ . . . [102] 

[103] 

[104] 

[106] 

[106] 

[107] 

1 4- a: 
1 

1 — X 
= (1 — x)“‘ = 1 + X + X* + a:^ 

VoT x)» = (1 + x)i = 1 + ^ - 5^ 

X, , 3x 3x* x’ 
'’)'-*-2+y + i6 V(1 - X)* - C 

1 , 3x , 15x* ^X_’ 

16 

\/(l — x)* 

/, ^ . 3x , 15x* , 35x» 
-(1-*)-’“1+T + ^ + T6' 

Note that for \/(l — x) the odd powers of x have the reverse 

signs from those of \/(l + a:). 

BINOMIAL APPROXIMATIONS 

461. If a is small compared with 1 and n is reasonably small, 
say between the limits of +2 and —2, the terms of the expansion 

of (1 + a)" rapidly become smaller and smaller. 

The first approximations arc 
[108] (1 + a)" = 1 + na. 
[109] (1 — a)" = 1 — no. 

[110] (1 + a)-" = 1 - no. 

[111] (1 - a)-” = 1 + ««• 
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If a closer approximation is required, 

[112] (1 + o)" = 1 + wfl + ^(n — l)a*. 

[118] (1 - o)» = 1 - na + 5(n - l)a^ 
A 

[114] (1 + a)~" = 1 — na + ^(n + l)o*. 

[116] (1 — o)“" = 1 + no + ^(n + 1)^2 

The first approximations simply take the first two terms of 

the binomial expansion, while the second approximations include 
the third term as well as the first two. 

Example.—Find the first approximation of 220. 
_ 216 is nearest perfect cube. 

\/220 = (216 + 4)1 - 6(1 + Yh)l = 6(1 + *)1 = 
6(1 + na)i =: 6(1 + tU) ^ 6(1 + .00617) = 6.037 Ans. 

462. Exponential Series.—The exponential series is the 
development, in ascending powers of a;, of the xth power of a 
certain constant base. The series is derived from the binomial 
expansion in the following manner, if nx is commensurable and 
n is numerically greater than 1. 

/. , . . nx , nx{nx — \) , nx{nx — l){nx — 2) . 

+ + +-n'^jl--+•(!) 
When x = Ij (1) becomes 

(^1 + -J - 1 + 1 + +-^,-|3-+ . . (2) 

1 II I “ 1) I “ 2) 
^ n*|2 ' n^~\3 "t- • ■ • 

, , , nx(nx — 1) , nx{nx — l)(na: — 2) 

^ nM2 nM3 + . . . (3) 

In (3), we may let x have any finite value while n increases 
without limit, numerically. Whatever value * may have, n 
may be so chosen as n —» « as to make nx commensurable. Thus, 
nx may be made always commensurable. 
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Accordingly, let n increase numerically without limit. Then, 
in (3), 

Limit 

Limit 
[n{n — l)(n — 2) 

And 

Limit I 
n « L 

rnx{nx — 1) 
I f or Limit ■“ ) — X^, 

J n \ nJ 

Limit I - 
n -♦ oc L 

nx(nx — l)(nx — 2) 
I ^ or Limit f 

J n —» a N 

3nx^ — 2x )= 

and so on. 
Hence, for all finite values of x, (3) becomes 

( ̂ ^ + 12 + I + jl + 
/J»2 /y»3 /J*4 

1 + a: + ^ + |3 + j4 + . 

• )- 
(4) 

[116] e* = l + x + | + | + |+ . . . 

In [116], the base e is a constant equal to (Art. 343) (681) 

‘ + ‘+1^ + 15 + 11+ ■ ■ • 

whose value is 2.7182818+, and the exponent x is a variable and 
so may have any finite value. Since in e* the variable is an 
exponent, e* is called the exponential function of x, and the 
series derived from it is called the exponential series. 

463. To derive a formula applicable to any positive constant 

base o, let 
log«a = k. 

Then a = e*. 

And a* = e** = 
Therefore, by [116], 

a* = 1 + (log a)x + 

where log a = log^. 

(log a)*x* I (log o)®x* , 

12 13 
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This is the exponential formula or the exponential series when 

the exponent of e is (log. a)x, which is convergent for all values of 

z not infinite. 

Forming the test ratio, according to Art. 443, we have 
dn 

(log g)"'*'* 
n + 1 (log a) n+ll, log a 

(log a)“ (log a)”|« + 1 n + 1 

and the limit of this expression as n increases without bound is 
zero. Therefore, according to Art. 454, the series is convergent 

for all finite values of x. 
The exponential series is, then. 

i + ^ + i2 + ^+r4+ • • • + n — 1 
+ 

which is convergent for all finite values of x. 

The symyol e is the base of the natural system of logs. 
464. The Logarithmic Series.—The logarithmic series is the 

expansion of log« (1 + a:) in ascending powers of x. 
/v»2 /y»3 /y»4 

[117] log. (i+x)=x-| + |--| + . . . 

This series is called the logarithmic series (Art. 980). 
In the logarithmic series, 

ttn-fl = ± 
1 

n + r 
dn ± 1 

n 

Limit 
n —> a 

dn-\-l 

-1. 

The series is convergent if | a: | < 1. 



CHAPTER XIX 

DETERMINANTS 

466, Expressions of the form, aifcg - a2bi, where ai, ag, bi, 
and 62 are any numbers, are found so frequently in mathematics 
that the relation is expressed as a determinant. 

The relation, aib2 — a2?)i, expressed in the determinant form 

is 
jai b, 

1 (I2 ^2 

and is called a determinant of the second order. 

A determinant of the nth order is made up of n^ elements 

arranged in n rows and n columns. The determinant given 
above is composed of four elements arranged in two rows and 

two columns. 
To evaluate a determinant of the second order, subtract the 

product of the elements which lie on the principal diagonal 

from the product of the elements which lie on the secondary 

diagonal, thus, 

= 0162 - 0261. 
02 O2 

= (4)(-6) - (3)(7) = -24 - 21 = -45. 

Each term of the expansion contains only one element from 

each row and only one element from each column; 
466. Simultaneous Equations in Two Unknowns. 

OiX + 612/ = Cl. 

OiX + f>2l/ = C2. 

Solving by the usual analytical method of elimination, 

C162 — Cibi, _ fliC2 UjCf 

^ ~~ Oibz — a$i>i ^ aibt — atbi 
299 

4 7 

3 -6 
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Writing both numerators and denominators in determinant 
form, 

Cl hi ai Cl 

Ci h. di Ci 

dl hi /I dl hi 
di hi di b. 

The determinants which form the denominators are identical 
and are formed from the coefficients of x and y in the original 
equations. 

467. Each determinant in the numerator is formed from the 
determinant in the denominator by replacing the coefficient of 
the unknown sought by the constant term. To find the numera¬ 
tor of Xy replace ai and as, the coefficients of x, by Ci and Cs, the 
constant terms. Likewise, replace 6i and 62 by Ci and Cs to find 
the value of y. 

Example.—Solye, by determinants, 

2x — ^ == 1 and 
3 a; + 2^/ == 3. 

The determinant for the denominator is 

2 -1 
3 2 

for both X and y. 
For the numerator of x, we replace the x coefficients by the constants 

1 and 3, and we have 
1 -11 
3 21 

for the numerator of x. 
Therefore, In like manner, 

468. Determinants of the Third Order.—The determinant 
composed of nine elements arranged in three rows and three 
columns is a determinant of the third order. Thus, 

di bi Cl 

di h% C2 

dz hz Cz 
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This is merely a convenient symbol for the expression, 

dibiCz + a2bzCi + azbiC2 — aibzCz — a2biCz — ajb^Ci. 

Note that in this development, each term consists of the 
product of three elements, one and only one from each row, 
and one and only one from each column. 

The developed expression also may be arranged thus, 

(ii{b2Cz — 63C2) ““ a2(biCz — bzCi) + az(biC2 — 62C1). 

The expression in the parentheses are developed determinants 
of the second order. Therefore, we have 

di bi Cl 

(I2 ^2 C2 

dz bz Cz 

= di 
^2 C2 

bz Cz 
— a2 

bi Cl 

bz Cz 
+ dz 

bi Cl 
bz C2 

469, now come to a very important method of forming 
these second-order determinants from the third-order determinant. 

Form the product of each element of the first column by the 
second-order determinants formed by suppressing both the row 
and the column in which the element is located. 

Taking ai, suppress the first row and the first column. 

&2 C2 

bz Cz 

Taking dz, suppress the second row and the first column. 
di hi Cl 61 Cl 

-dz bzr-Cr — 
bi Ci 

ia bz Cz 
Taking asi suppress the third row and the first column. 

61 Cl 

bz Cz 

1 bi Cl 

I -2 bz Cz 

In the development of the third-order determinant, the sign 
of the second member was changed in order to bring about a 
development of a second-order determinant. Therefore, the 
sign of the product which contains the element in the first 

column and the second row changes. 
The determinant of the next lower order which remains when 

the row and column in which an element stands are suppressed in 
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a given determinant is called the minor of that element, 
in the determinant, 

ai bi Cl 

02 ^2 C2 

03 63 C3 

the minor of Oi is 
62 C2 

bs Cz 

Thus 

When the minor is given the proper sign, it is called the cofactor, 
470. The elements of the second or third columns can also be 

used or the elements of any row, as 

ilso 

Oi bi Cl 

02 b2 C2 

Oz bz C3 

-bi 
02 C2 

Oz Cz 
+ bz 

Oi Cl 

az Cz 

ai Cij 

O2 C2 1 

Oi bi Cl 

O2 bz C2 

Oz bz C3 

= ai 
bz C2 

bz Cz 
, 02 C2 
bi 

Oz Cz 
+ Cl 

02 bz 
Oz bz 

Example 1.—Evaluate 
2 3 5 
7 1 4 
6 2 3 

3 5 
2 3 

+ 6 
3 5 
1 4 

235 
7 14 =2 ; ’ ^7 

6 2 3 ^ ^ 

= 2(3 ~ 8) ~ 7(9 - 10) + 6(12 - 5). 
= -10 + 7 + 42 = 39. 

Example 2.—Evaluate 
3 2 1 

4-6 2 
1 0 1 

3 2 1 
-6 2 2 11. 21| 

4 -6 2 
1 0 1 

= 3 
0 1 

- 4 4- 
0 ir -6 21 

= 3(-6 - 0) -4(2 - 0) + (4 -f 6). 

= -18 - 8 + 10 = -16. 

471. Solution of Three Simultaneous Equations 

aix + biy + CiZ = di, 
02X -f- bzy “I" czZ = dz. 

’azX^+ bzy + Ca^ = da. 

Provided that the determinant formed from the coefficients 
of the unknowns is not equal to zero, the unknowns may be 
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expressed as the quotient of two determinants as was done in 
the case of two equations in two unknowns (Art. 466). 

472. Any system of three simultaneous equations of the first 
degree involving three unknowns may be reduced to the general 
form, 

aix + biy + ciz = di, (1) 
ciiX + b^y + c^z = di. and (2) 

o-iX + biy + c-iZ = di. (3) 
Eliminating one of the unknowns, as z‘. 

First, between (1) and (2), 

(aiC2 — Ciai)x + {biCi — Cibi)y = diCi — Cidi. (4) 
Second, between (2) and (3), 

(aiCi — Ciai)x + {biCi — Cib^Jy = chcz — Cidz. (5) 
Eliminating y between (4) and (5), 

^ _d\biCi diCibi 4“ Cidibz — bidiCi 4“ biCid^ — cibid^ 

o.ibiCi — ciiCibi 4” C\<iibi — biCiiCi 4" biCiCii — Cibid) 

_ (i\diCi — (i\Cidi 4" Cittodg — difinCi 4™ d\Ci(ii — Cididi 

^ aib2C3 — aic^bs + Cia^^b^ — 61^2^3 + biC2a3 — ^16203 

_ Q-162^3 — 0,1(12^3 di(l2^3 — b\(l2dz “h bid^dn — d\b2(l3 

Oj]b2C’Z — Q'lC2b3 "I" Cifl2^3 — biCL2C3 4“ ^1^20^3 — Ci62Ct3 

Note that for three simultaneous equations in three unknowns, 
the number of terms in the numerators and denominators is 
6 or |3 or 1 X 2 X 3. x, jy, and z may be obtained by reducing 

equations to the general form and substituting. 

di hi Cl ai di Cl di bi dl 

di 62 C2 (I2 d2 C2 d2 bi d2 

di bi Cz dz dz Cz 
9 — 

dz bz dz 

ai 61 Cl 
y — 

tti 61 Cl 

(if — 

dl 61 Cl 

(X2 C2 a2 bi C2 d2 62 C2 

az bi Cz dz bi Cz dz bi Cz 

473. The denominator in each case is the same determinant 
which is called the determinant of the system. It is composed of 

elements which are the coefficients of the unknowns, x, y, and z. 
Each determinant in the numerators is formed by replacing 

the coefficients of the unknown sought by the constant terms, 

in the same manner as in the case of the solution of two simultane¬ 

ous equations. 
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Examplb.—Solve, by determinants, 

X — 2y + = 2y 
2x — 32 = 3, and 

X + y + 2 = 6. 

The determinant of the system is 

1 -2 31 

Hence, 

0 -3 
1 1 

= 19. 

2 -2 3 1 2 3 1 -2 2 
3 0 -3 2 3 -3 2 0 3 
6 1 1 

y = 

1 6 2 
- 2 = 

1 1 

19 
whence a: = 3, i/ = 2, 2 = 1. 

19 19 

474. Cofactor Signs.—If an element occurs in the pth row 
and in the mth column, its minor multiplied by 

is the cofactor with the proper sign. 
Take the determinant, 

di 61 ( dx 
d2 62 < * di 

1 
rfn 

04 64 i 

The cofactor of Cz, for instance, is 

di bi di di hi di 

d2 62 ^2 X = + d2 ^2 ^2 
(I4 64 di hi di 

m = 3 because Cz is in the third column. 
p = 3 because Cz is in the third row. 
If m + p is odd, the sign is negative. 
The cofactors of ui, 02, az are usually denoted by Ai, A2, Azt 

and the determinant by D, 

Therefore, 
D = diAi H" a2A2 4“ dzAz* 

476. Determinants of the nth Order.—We have so far con¬ 
sidered determinants of the second and third order only. In 
order to solve a system of n linear equations involving n un¬ 
knowns, it is necessary to form the determinant from the n* 
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C06f{iGi6iits of the n unknowns 
have a determinant of the nth 
by A. 

ai bi 

CI2 

in the n equations. We then 
order that is usually denoted 

. . . 9i 

This determinant will be understood to stand for the algebraic 
sum of all the different products of n factors each that can be 
formed by taking one and only one element from each row and 
one and only one element from each column, and giving to each 
a positive or negative sign determined according to the principle 
of cofactors. 

476. Properties of Determinants.—The expansion of a deter¬ 
minant of order n contains terms. 

477. If all elements in a row or column are zero, the determi¬ 
nant equals zero, for expanding in terms of that row or column, 
each term becomes zero. 

478. If all elements but one in a row or column are zero, the 
determinant is equal to the product of that element and its 
cofactor. 

Gi bi Cl 0 Gi bi Cl 

a2 62 C2 0 = -d. G2 b^ C2 
a^ 63 C3 ds a4 b^ C4 

a^ 64 ^4 0 
1 

479. The value of a determinant is not altered when the rows 
are changed to columns and the columns to rows. 

The proof of this may be made by developing the determinant. 
480. Any theorem which is true for the columns of a determi¬ 

nant is true for its rows, and vice versa, 

481. The interchange of any two columns (or rows) of a 
determinant changes the sign of the determinant. 

482. If two columns (or rows) of a determinant are identical, 

the determinant is equal to zero. 
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483. If the elements of any column (or row) be multiplied 
by the cofactors of the corresponding elements of any other 
column (or row), the sum of the products equals zero, as 

hiAi + 62-4.2 + 63A3 + . . . hkAk = 0. 
d^Ai “f" h^Bi -f- C2C1 “h . . . h^Ki = 0. 

484. If all the elements in any column are multiplied by any 
“actor, the determinant is multiplied by that factor, for 

mai hi Cl . . , ki 

ma2 b2 C2 ... k2 

maz h2 cz ... kz 

= maiAi -f ma2A2 + mazAz -f • • . makAk = 
+ ^2^2 + 03^3 4- . . . (ikAk) = 

man hn Cn ... kn 

ai 61 Cl . . . K. 
0,2 hi C2 . . . K2 

as hi Cs . . . K, 

dn bn Cn . . . Kn 

486. This principle also is true in the case of division, for a 

division by m is equivalent to a multiplication by 

486. If each element in any column (or row) of a determinant 
is expressed as the sum of two quantities, the determinant can 
be expressed as the sum of two determinants of the same order. 

di di hi C\ . . . ki 

as 4” ^2 C2 . • • kz 

di di hz Cz . . , kz 

di hi Cl . . 

d2 hz C2 . . 

dz hz Cz . . 

. fc. 
kz 

. kz 

+ 

di hi Cl 

dz hz Cz . . 

dz hz Cz . . , 

fc. 
kz 

kz 

. . 

dn 4" dn hn Cn . • . kn dn hn Cn • . kn dn hn Cn . kn 

487. If each element of a column (or ro.w) is multiplied by the 
same number, and the products added to (or subtracted from) 
the corresponding elements of another column (or row), the 
determinant is not altered in value. 

488. Evaluation of Determinants.—By means of the principle 
of Art. 487, all elements but one in a column (or row) can be 
made equal to zero, and hence (Art. 478), the determinant can 
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be reduced to one of the next lower order, and this process can be 
continued until the result is a determinant of the second order. 

In many cases, however, the determinant, before reduction, 
should be simplified by removing factors common to all elements 
in a row or column and diminishing the absolute values of the 
elements by subtracting the corresponding, elements of other 
columns (or rows) or multiples of these elements. 

Examples. 

Find the value of 
5 1 
6 3 
7 4 
2 5 

We will transform this determinant by means of the principle 
of Art. 487 in such a manner as to make all the elements but one 
in some row or column equal to zero. The second column offers 
the best possibilities. We, therefore, add four times the first 
row to the second row. This replaces the 4 in the second row 
by 0. We then add two times the first row to the third row, and 
then add the first row to the fourth row. These operations may 
be performed without changing the value of the determinant 
from the rules given in the preceding articles. 

The determinant is, then. 

2-161 9 26 7 
9 0 26 7 = 8 17 6 
8 0 17 6 5 7 6 
5 0 7 6 

Subtracting the elements of the last column from those of the 

first column, 

A = 

2 26 7 
2 17 6 

-17 6 

Add two times the third row to the first row. 
Add two times the third row to the second row. 

0 40 19 
0 31 18 

-1 7 6 

40 19 
31 18 

A = 
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Subtract the second row from the first row. 

-1^? Ill = -Li ,cl = "(162 - 31) = -131. 

Problem.—There are three numbers such that the sum of one-half of 
the first, one-third of'the second, and one-fourth of the third is 12; of 
one-third of the first, one-fourth of the second, and one-fifth of the third 
is 9, and the sum of the numbers is 38. What are the numbers ? 

Then 
5 y 4. ? = 12 2 + 3 + 4 12. 

112 J i\ 

3 + 4 + 5 
* + 2/ + 2 = 38. 

9 i i 
38 1 1 

12 i 1 
11 

~ 9 
1 1 

+ 38 i i 
i i 

h i i 1 i i 1 i i + i i 
i i i 

2 1 1 3 1 1 1 i 
I 1 1 1| 
12a - i) 

ITi ~i) 
i 12 i 
i 9 i 
1 38 1 

9(i - i) + 38( A 

; ^ , 12 J 
^ 38 1 ^ 

Same as for x 

- "" I + f ^ 
vV — A + ^ i 0 

From X + y + z = S8j z - 20, 
Therefore, the numbers are 6, 12, and 20. 

489. Factoring of a Determinant.—If a determinant vanishes 
when any number b is substituted for another number a, then a 

— 6 is a factor of the determinant. 

Example. 
1 a a* 

D = 1 6 6* 

1 c c* 

1 h 6® 
D = 16 6* 

1 c c* 

If a == 6, then 
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Since two rows are identical, /) = 0, and a - 6 is a factor. 
For a similar reason, (b - c) and (c - a) are factors. 
Since the product of these three factors is of the same degree as D and 

can differ from D only in a numerical factor which we will call K, 

therefore, 
D = K{a- b)ib - c)(c - a). 

The term obtained from the secondary diagonal of the original 
determinant is 6c®, which must be equal to the similar term in 

K{a — b){b — c)(c — a), 
or Kbc\ 

Hence, 
6c® = A'6c® and K = 1. 

Therefore, 
D = (a- 6)(6 - c){c - n). 



CHAPTER XX 

PERMUTATIONS AND COMBINATIONS 

490. If there is one way of doing a first thing and r ways of 

doing a second thing, the one way of doing the first thing can be 
associated with each of the r ways of doing the second thing. 

If there are two ways of doing a first thing and r ways of doing 

a second thing, then each of the two ways of doing the first 

thing can be associated with the r ways of doing the second thing, 
or there are 2r ways of doing both. 

If there are n ways of doing one thing, and if, after the first is 

done, a second thing can be done in r different ways, then both 
can be done in succession in n X r different ways. 

Four men may be eligible for the presidency of a company, 
and six for the vice-presidency. The number of possible tickets 
is 6 X 4 = 24, 

If a first thing can be done in n different ways, and after the 
first is done, a second can be done in r different ways, and after 
the second is done, a third can be done in s different ways, the 
three things can be done in n X r X s different ways. 

n different articles can be given to x men and a women in 
{x + aY ways. The first article can be given away in a; + a 
ways. The second article also can be given away inx + a ways, 

and likewise, the third, fourth, and fifth articles can each be 
given in a: + a ways. Therefore, the number of possible ways in 

which the n articles can be given to a: + a men and women is 

(x + a)ix + a){x + a) . . . to n factors, or (a; + a)^, 

491. Every distinct order in which objects may be placed in 
a line or row is called a permutation^ or an arrangement, 

492. Every distinct selection 6f objects that can be made, 

irrespective of the order in which they are placed, is called a 

combination or group. 
310' 
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Thus the pcrmutcitiofis of the three letters, a, 6, c, taken two at 
a time are 

aby aCy hay 6c, ca, cb. 

ab and ba are different arrangements although they are the 
same group or combination. 

If we consider a, 6, and c, taken all together, we have six' 
arrangements, namely, 

abcy achy bca, 6ac, cab, ebay 

but only one combination, abc. 

493. The number of permutations of n different things, taken 
all at a time is the product, 

n(n - l)(n - 2)(n - 3) . . . 3-2-l,or|n. 

Suppose that we have n different things and we desire to know 
in how many different ways we may place these n things in n 
different positions. We can put any of the n things in the first 
position, and after this is done, any one of the (n— 1) remaining 
things may be placed in the second position. The first two 
positions may be occupied in n(n — 1) different ways. Continu¬ 
ing in this manner, there are but two positions left in which to 
place the next to the last thing, and for the last thing there is but 
one position available. 

494. The number of permutations of n things, taken r at a 

time is 

|/i — r 

Suppose that we have r chairs in a row and we desire to know 
in how many different ways we may seat r of n men in these 

chairs. 
We can place any one of the n men in the first chair. After 

the first chair is occupied, we can place any one of the (n — 1) 
men remaining in the second chair. We, therefore, have 
n{n — 1) possible arrangements which we can make with the two 

chairs, r ^ n. 
The last, or rth, chair can be occupied in as many ways as 

there are men left. Hence, if we are selecting for the rth chair, 
we have already seated (r — 1) men, and since we started with n 

men, we will have n - (r - 1) or (n - r + 1) men remaining 
from which to select for the last chair. 
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Hence, our total number of ways of seating r of n men in r 

chairs is 

n(n — l)(n — 2)(n — 3) . . . (n — r + 1) = 

n(n - l)(n - 2)(n - 3) . . . 3-2-1 _ |» 
(n — r)(n — r — 1) 3*2‘1 n — r 

We call this the number of permutations of n things taken r at 
a time and denote it by the symbol, 

n — r 

496. The number of combinations, or groups, of n different 
things, taken r at a time is 

r - l!? 
kl(w - r) 

In the previous case, there were r men and there were [r per¬ 
mutations of these men, but only one combination. There were, 
then, jr times as many permutations as there were combinations. 

If X is the number of combinations, then x X \r equals the 
number of permutations, or 

In In 
X X \r = 

\{n - ry 

or X = 
|r|(n — r) 



CHAPTER XXI 

UNDETERMINED COEFFICIENTS 

PARTUL FRACTIONS 

496. Undetermined Coefficients.—Coefficients assumed in 
demonstrating a principle or solution of a problem whose values, 
not known at the outset, are to be determined by subsequent 
processes, are called undetermined coefficients. 

To expand (a: — IXa: + l)(a; — 2) without actual multiplica¬ 
tion, put 

(x - l)(x + l)(x - 2) = x» + Ax* + Bx + C. (1) 

To determine the values of A, 5, and C from the identity 
which must be true for all values of x, let x = 0 in (1). 

Then if x = 0, C = 2. 
If X = 1, equation (1) becomes 

0 = 1-|-A + B-|-C. 

If X = 1, equation (1) becomes 

0 = -1 + A - B + C. 

By solving these three conditional equations, 

A = -2, B = -1, C = 2. 

Therefore, 

(x - l)(x + l)(x - 2) = X* - 2x* - X + 2. 

497. Development of Fractions. 

Example.—Develop 
_J_±2x _ 

1 + X + X* 

The first term of the development by ordinary division is 
evidently 1 -r- 1, or 1, and since the denominator is not exactly 
contained in the numerator, the development is an infinite series 
beginning with 1 and proceeding according to ascending powers 

of X. 
313 
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To determine the coefficients of the various powers, assume 

=l+Ax + Bx^ + Cx^ + Dx*+. . . (1) 
1 "f' X “7” 

true for all values of x that make the second member a convergent 
series. 

Multiply the series by the denominator and simplify; then, 

l + 2x = l + A\ x + B\x^ + C\x^ + D\x^+. . . 

+ 1| +A\ +B\ +C| • + (2) 
+ 11 + A\ + B\ + 

Using the principle of undetermined coefficients (Art. 496), 

we can equate the coefficients in the two series and expand. The 
left-hand member can be regarded as an infinite series, 

1 + 2x + Ox^ + Ox^ + Ox^ + . . . 

This series has a definite sum for every value of x, while the 
second member is an infinite series having a definite sum for 
such values of x as make the series assumed in (1) convergent. 

Therefore, since (2) is true for all values of x that make the 
assumed series convergent, by the principle of undetermined 
coefficients (Art. 496), the coefficients of like powers of x in (2) 
may be equated. 

Hence, 
A + 1 = 2. A = 1. 

jB + A + 1 =0. -2. 
C B A =0. = 
D C B =0. = 

• * • 1 ^ 2 = 1 + + . . . 1 + x + 

The fraction may be developed also by division. 

Example.—Develop 
2 - x + 2x^ 

— 2x^ 
2 

Since the first term of the quotient is evidently or 2x~^y assume 
X 

- = Ax-^ + 5x-‘ + C + Dx + Ex^+ . . . 

Clearing of fractions and multiplying both sides by x’‘, there results 

2 — x + 2x* = A+ B\x A- Clx*+Dlx®+ E\x* + • 
-2A\ -2B\ -2C\ -2D I 
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Equating the coefficients of like powers of x and solving, 

^ = 2, J? = 3, C = 8, D = 16, = 32. 
2 — X 4- 2x* 

•’ • a;» -2x^" ^ + 8 + lOx + 32x’' + 

498. Development of Surds.—To develop the expression, 

■Va + X, 

by the use of undetermined coefficients, assume 

Va + X = A + Bx + Cx^ + Dx^ + Ex^ + . . . 

Squaring, 

o + X = A*® + 2ABx + B^\x^ + 2AD | x’ + C^\x* 
+ 2AC\ + 2BC\ +2AE\ 

+ 2BD 1 
Equating the coefficients of like powers. 

A^ = a. 

2AB. 1. 

I ■ 
52 /hen the dem. ■ 

, some of whic 

2Af •'== 0. . • 

A = \/a. 

1 _ -n/a 
2A “ ■2T' 

y/ a 
w 

B - 

C = - 

D = ya. 
16a’ 

C* + 2AA + 2BD = 0. . •. E = 
IW’ 

. *. "v/a + X = \/a 
x’ . x’ 
8a’ 16a“’ 

.5x'‘ 

128a’ 
+ . . > 

The given surd may also be developed by the extraction of the 
roots indicated or by the binomial formula. But whatever 
method is used for the development, the series obtained is 
equal to the surd only for such values of x as make the series 

convergent. 
499. Partial Fractions.—The addition of fractions results 

in a single fraction whose denominator is the lowest common 

multiple of the denominators. Thus, 

5 , 7 _ 6 __X 4:_ 
2(5~^T) ¥{x"^^ X -2 “■ 4{x^ - 6x2 + _ 0) 

It is often desirable to perform the reverse operation, that is, 
break up a given fraction into the sum or difference of fractions 
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having denominators lower in degree and more convenient to 
handle. 

Proper fractions, or fractions having the numerator of lower 
, degree than the denominator, are the only fractions that will be 
considered since, if the numerator is of higher degree than the 
denominator, it may be divided by the denominator, giving a 
polynomial and a proper fraction. 

The number of partial fractions that may represent a given 
fraction depends upon the number of prime factors into which 
the denominator may be separated. 

The important thing to remember is that the numerator of 
any partial fraction taken should always be of degree one less 
than the degree of the denominator. 

There are four classes of partial fractions. 
600. Case 1.—When the denominator can be resolved into 

first-degree or linear factors, all of which are real and different. 
Consider the fraction, 

X + 

fficientsof lik 
and develop the partial fractions t 

Let , \ 
X + 4 A 7 C 

X — l~x — 2~x — 3 (x - l)(x - 2)(x - 3) 

Simplify by multiplying by (x — l)(x — 2)(x — 3). 

X + 4 = ^(x - 2)(x - 3) + B{x - l)(x - 3) + C(x - l)(x - 2) =» 
(A+B + C)x* - (5A + 45 + 3C)x + 6A + 35 + 2C. 

Equating the coefficients of like powers after making two series, 

Ox* + X + 4 = (A + 5 + C)x* - (6A + 45 + 3(7)x + 6A +35+2C. 

Then 
0 = ^ + 5 + C. 

-1 = 6A + 45 + 3C. 

4 = 6A + 35 + 2(7. 

Solving simultaneously, 

A - 4, B = 

Forming equation, 

X + 4 

-6, (7 = 1. 

5 6 7 
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Another method is to consider the separate factors of the denom¬ 
inator, as X — If X — 2f X — 3, by Art. 499, and substitute 
the roots, as 1, 2, 3, for x, since the remainder is zero in each case. 

After simplifying, 

X + 4 = A(a: - 2)(x ~ 3) + B{x - l)(x ~ 3) + C{x - l)(x ~ 2). 

Substituting x = 1, 
5 = 2A “I" 0 -f- 0. 
A = f, as before. 

Substituting x =2, 
6 = 0 - B + 0. 
B = —6, as before. 

Substituting x = 3, 
7 = 0 + 0 + 2C. 
C = I, as before. 

The rule, th^.n, for factor x ~ a is to assume the partial 
fraction, 

A 
X — a 

601. Case 2.—When the denominator can be resolved into 
real linear factors, some of which are repeated, as 

5x^ — — 5 

In this case, we use the factor (x — 1)^, but we use also the 
factors (x — 1)^ and (x - 1), for they may enter into the frac¬ 
tion. In the event that they do not form a part of the fraction, 

the numerator will be zero. Then 

5x" - 6x - 5 __ A B C D , 
(x - + 2) X - 1 (x - 1)2 (x - 1)* x + 2 

Simplifying by multiplying by (x - l)®(x + 2), 

5x2 - 6x - 5 = A(x - l)2(x + 2) + B{x - l)(x + 2) + 
C(x + 2) + D(x ^ 1)*. 

Ijstx == —2; we find D = —1. Lctx « 1; we find C = —2. 

From these, A = 1, B == 2. 

Hence, 
5x2 - 6x - 5 ^ 1 ^ _2_2_ 

(x - l)2(x + 2) X - 1 (x - 1)2 (x - 1)2 X + 2 

The first method of Art. 500 may also be used. 
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Rule.—When the factor {x — a)" appears in the denominator, 
assume the sum of the partial factors, 

A ^ B 
a {x — ay 

+ . . . + N 
{x — ay 

602. Case 3.—When the denominator contains quadratic 
factors which are not repeated and which cannot be separated 
into linear factors, thus, 

_Sx^ - 2_ 
{x^ + X + l)(x + 1) 

Assume 
- 2 ^ _Ax + B C 

(x^ + X + 1)(^ +1) + X + I a; + l 

Simplifying, 

3x2 - 2 = 4. B)(x + 1) + C(x2 + X + 
{A + C)x2 + (A + B + C)x + B + C. 

Using the method of Art. 500, or equating the coefficients of 
like powers, 

A + C = 3, A = 2. 
A + 5 + C = 0, whence B = —3. 

S + C = -2, C = 1. 
And 

3x2 - 2_^ 2x - 3 1 

(x2 + X + 1)(X +1) X2 + X+1 X+1 

The numerator of the quadratic factor is taken as Ax + B 
because a quadratic has two roots. 

Rule.—When one of the factors of the denominator is a prime 
quadratic^ assume the partial fractioUy 

Ax + B 
ax^ + bx + c 

603. Case 4.—When the denominator contains quadratic 
factors that are repeated, as 

x^ + x^ — 2x2 — 5x — 4 

(x - \){x^ + x + W’ 

equate the fraction to 

A Bx + C Dx A- E 

x2 + X +1 ^2-+-^+T)2* 
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From this equality, the solution is obtained in the same manner 
as in the previous cases. 

Rule.—When the factor^ {ax^ hx + c)'", appears in the 

denominatory assume the sum of the partial f actors, • 

Ax + B , Cx_+_D _Mx + N 
ax^ + bx + c (ax^ + bx + cY • • • 'r ^^^2 + + c)” 

In all cases, the numerator of any partial fraction must be of 
degree one less than the degree of the factor which occurs in 
that denominator. 



CHAPTER XXII 

GEOMETRY AND MENSURATION 

ANGLES 

604, Two angles are complementary, or complements, when 
their sum is equal to a right angle. 

606. Two angles are supplementary, or supplements, when their 
sum is equal to two right angles (180®), or a straight angle. 

606. Two angles, which have the sides of one perpendicular 
to the sides of the other, are either equal or supplementary. 

607. Two angles whose sides are parallel, each to each, are 
either equal or supplementary. 

608. Right Triangles.—If a and b are the lengths of the legs 
and c the length of the hypothenuse, 

[118] a^ + b^ ^ (?. 

[119] a - V(c + 6)(c - fc), or 
[120] a = c sin A == 6 tan A, or 

[121] a = Vmc. 

[122] 6 = V(c + a){c — a), or 

[123] 6 = c cos A = - —r; or 
^ tan A 

[124] h — -y/nc. 

[125] c = -v/a* + 5*, or 

[126] 
_ a _ b 

sin A cos A 
[127] c = m + n. 
[128] Area = iab 
[129] — cot A = f 6^ tan A 

[130] = Jc* sin 2A 

[131] ~ J6c sin A 
[132] =» iac sin B 

[133] 
a* 

2 tan A 
[134] p* = mn. 

820 
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609. In a right triangle whose acute angles are 30® and 60®, 
the hypothenuse is twice as long as the short side, and the long 

side is \/3 times the short side. 
610. If a triangle is inscribed in a semicircle, it 

is a right triangle. 
611. Theorem of Pythagoras.—^The square oh Fia. lei. 

the hypothenuse of a right triangle is equal 
to the sum of the squares on the other two 
sides. 

+ b^. 

The square on the side a is also equal to 
the rectangle of dimensions m and c, and the 
square on the side h is equal to the rectangle 
of dimensions n and c. 

612. In a right triangle, the perpendicular Fio. i62. 
from the vertex to the hypothenuse is the 
mean proportional between the segments of the 
hypothenuse, or 

[135] - = or p = y/mn. Fio. i63. 

613. In a right triangle, either side is a mean proportional 
between its projection on the hypothenuse and the entire hypoth¬ 
enuse, as 

~ or £ = “ or a = \/mc [121], aiid b == \Aic [124]. 
ache 

These are geometric statements corresponding to [118], [121], 
[124], and [134]. 

614. Equilateral Triangle. 

[136] A = B = C = 60®. 

[137] Area = \ah 

[138] = = 0.43301a*. 

[139] h = =« 0.866a. 

616. Any Plane Triangle. 

[140] A + B + C = 180® = TT radians, or 180® - A = B + C. 

That is, an exterior angle is equal to the sum of the two opposite 

interior angles. 

a 
Fiq. 164. 
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Considering s as equal to one-half the sura of the sides, or 

[141] s - + b + c), 

the radius r of the inscribed circle is given by 

[142] = V (s — a){s — b){s — c). 

The radius R of the circumscribed circle is 
equal to 

a b c 
[143] R = 

Fig. 165. 

2 sin A 2 sin B 2 sin C 

Fig. 166. 

[144] Area of triangle = ^bh = \/s{s — a){s — b){s — c). 
616. The medians are lines joining the vertices with 

the centers of the opposite sides and intersect at the 
center of gravity G. The point G is one-third the 
altitude above the base. 

617. Lines drawn from the vertices perpendicular 
to the opposite sides intersect at a point 0 called 
the orthocenter. 

618. Lines drawn perpendicular to the sides at 
their centers intersect at a point C, which is the 
center of the circumscribed circle. 

G, Oj and C lie on a straight line with G two-thirds 
the distance from 0 to C. 

619. Lines bisecting the angles meet at a point 
//, which is the center of the inscribed circle. 

620. Ratios.—A line, as AfAT, parallel to one side 
(AC) of a triangle, divides the other two sides into 
segments having equal ratios, thus, 

Fig. 167. 

Fig. 168. 

Fig. 169. 

AM 
MB 

CN 
nb' M/ 

A line, as AMj bisecting an angle of a 
triangle, divides the side opposite that angle 
into segments whose ratio is equal to the 
ratio of the other two sides, 

BM _ AB 
MC AC* 

Fig. 170. 

Fio. 171. 
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/A' C 

Fig. 172. 

621. Congruent Triangles—Two tri- 
angles are congruent if two sides and the 
included angle of one are equal, respec¬ 
tively, to the corresponding two sides and 
the included angle of the other. 

622. Two triangles are congruent if two angles and the side 
included between their vertices of one triangle are equal, respec¬ 
tively, to the corresponding two angles and the included side of 
the other. 

623. If three sides of one triangle are equal, respectively, to 
the three sides of another triangle, the triangles are congruent. 

624. Similar Triangles.—Two triangles are similar if the angles 
of one are equal to the angles of the other, and their corre- 
jsponding sides are proportional. 

626. A line parallel to one side of a tri¬ 
angle forms with the other two sides a 
triangle similar to the given triangle. 

ADCE is similar to AACB when DE is 
parallel to AB, 

626. Two triangles are similar if two 
angles of one are equal, respectively, to the 
corresponding angles of the other; thus, if 
A and A' are equal and C and C' are equal, 
the triangles, ABC and A'B'C, are similar. 

627. Graphical Multiplication and Division 
Triangles. 

Multiply, graphically, 
a Xb. 

Rule.—Draw, preferablyy a right triangle whose base is equal 
to one of the numbers and whose altitude equals 1. From this 

Fig. 173. 

r' 

A 
Fig. 174. 

by Similar 

triangle, draw a second similar triangle by extending the 
Make the other number the altitude of this second triangle^ 
base of the second triangle is the required product 

The 
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Pboof.—Since the triangles fonned are similar, then 

x:a ::6:1, 
or 

X = ab. 

In the case where a < 1, our triangles would take a form similar 
to that shown in Fig. 176. 

In the case where a < 1 and 6 < 1, our triangles would be as 

shown in Fig. 177. 

Divide, graphically, 

-qvQ-hft 
a-efiviaend '>1 

’chvfsor- 

Fio. 179. 

"T 
i 

Rule.—Draw a right triangle with base equal to the divisor and 
altitude equal to 1. Draw a similar triangle by extending the sides 
and make the base of the second triangle equal to the dividend. The 
altitude of this triangle is the quotient. 

Caution,—Be sure to form the first triangle with the divisor and 1 
as the sides. 

Proof.—x:a::l\b. 
Therefore, 

In the case where the dividend is smaller than the divisor, our 
triangles would resemble those shown in Fig. 179. 

628. Rectangle. 
[145] Area = ab , 
[146] =^(PsmU. 

[147] d = diagonal = Vo*+6*. jgo. 

[148] U = acute angle between diagonals = 2 tan~^ -• 
a 

629. Parallelogram. 
[149] Area = hh 
[150] =a6sinC. 

The opposite sides are parallel. 
l<-6 -J 

Fio. 181. 
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A diagonal divides it inta congraent triangles. 
The opposite sides are equal. 
The consecutive angles are supplementary. 
The diagonals bisect each other. 

d d 
[161] Area = ^ sin C7, where di and d^ are the diagonals 

and U is the angle between them (less than 90®). 

The center of gravity is at the intersection of the diagonals. 
530. Rhombus. 
A quadrilateral having oblique angles but equal 

sides is a rhombus. 
[162] Area == sin C, 
where C is the angle between adjacent sides. 

[163] Area also equals - ^ ^where d\ and d^ are diagonals. 

631. Trapezoid. 

A quadrilateral with one pair of opposite sides parallel is a 
trapezoid. 

[164] Are.. 

[166] 
di X di . 

= —^— sin [/. 
• " 

[166] {diY + (diY ==r^ + S^ + 2ab. 

a 

6 
Fia. 183. Pig. 184. 

A line drawn through the midpoints of the non-parallel sides 
is the median of the trapezoid. 

The length of the median is equal to one-half the sum of the 
bases. 

The area is equal to the product of the median and the altitude 
h. 

To find the center of gravity of the trapezoid, divide the trape¬ 
zoid into triangles and find the centers of gravity of these triangles. 
The line joining the centers of the parallel sides and the line 
joining the centers of gravity of the triangles intersect at the 
center of gravity of the trapezoid. 
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632. Quadrilateral. 

Any figure of four sides is a quadrilateral. 

[167] Area = ~ - sin U. 

[168] a* + fc* + c* + = (di)* + (d^y + 
where m is the distance between the midpoints of di and dj. 

The most common method of finding the area is to divide 
the quadrilateral into two triangles and find the sum of the areas 
of these triangles. 

Fia. 180. 

The sum of the interior angles is 360°. 
Ih 

[169] Area == ^5-, where I = length of diagonal and h = the 

altitude perpendicular to the diagonal (Fig. 186). 
633. Regular Polygons.—In a regular polygon, all sides are 

equal and all angles are equal. 
If n = the number of sides, 

[160] ZA = ” ^ • 180 
o _n — 2 

n 
if A is expressed in radians, 

[161] IB - - 
’’ n 

n a 

n 

— radians. 
n 

r R 

Pig. 187. 

Abba 

3 1.732 R .2887 a .5773 a .433 a2 
4 1.414 R .5 a .7071 a 1.0000 a* 
5 1.1766ft .6882 a .8506 a 1.7205 a2 
6 1.0000ft , 866 a 1.0000 a 2.5981 a2 
7 .8677ft 1.0383 a 1.1524 a 3.6339 a2 
8 .7663ft 1.2071 a 1.3066 a 4.8284 a* 

n 2ft sin ^ 
a ^ R 

2 
a R 
2 2 

na* 
cot 2 

634. Construction of Regular Polygons.—Any regular poly¬ 
gon may be constructed as follows: 

Consider a polygon of seven sides or a heptagon. Draw a semi¬ 
circle HGB with radius AB equal to the side of the heptagon. 
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Divide the semicircumference into seven 
parts and draw radii through the points 
of division extending them beyond the 
circumference. Set the divider on G and 
with radius equal to side, locate points 
Fy E, D, and C. Join these points and the 
heptagon is completed. 

636. Similar Polygons.—Two poly¬ 

gons are similar if the ratios 
of the corresponding sides are 
equal and the corresponding 
angles are equal. 

636. To construct similar ^ 
polygons with sides having 

ratios 77T-‘ 

Fig. 188. 

Fig. 189. 

From the point A draw diagonals extended , 
as shown. From B' draw jB'C' parallel to / 
BC. Continue around the polygon in the 
same manner, drawing all corresponding I ' 
sides parallel. ^ 

A 'B^C'D'E'F' is then similar to ABCDEF. B\\ 
Similar polygons may be divided by 

diagonals into triangles similar to each other 
and similarly placed. 

637. Circle. 

[162] Circumference = Diameter X 3.1416 = Radius X 6.2832 

, /-r. T NO Circumference X Radius 
[163] Area = tt X (Radius)^ =-^-= 

Circumference X Diameter ^ ^ (Diameter)^ = 

.7854(Diamcter)*. 

A == angle in radians. 

5 = rA = 2r cos~^ - 
r 

2y/r^ - 

2r tan' 

2r sin ^ = 2d tan - 
3 ^ 

2d tan; 
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Fio. 191. 

[167] A (m radians) = - = 2 cos~‘- = 2 tan“‘j^ = 2sin~>-£. 
r r Za JJ 

638. An inscribed angle, as A, is measured 
by one-half the arc intercepted by its sides, or 
angle A is one-half of B, 

539. All inscribed angles subtended by the 
same arc are equal. 

AC. 

Fiq. 193. 

640. If an inscribed angle is subtended by one- 
half the circumference, the angle is 90®, or 

I radians. 

Fig. 194. 

641. If the subtended arc is less than one-half 
the circumference, the angle is acute. 

Fia. 195. 
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542. If the subtended arc is greater than 
half the circumference, the angle is obtuse. 

one- 

1^0.196. 

543. The angle B between the chord cd and 
the tangent cb is measured by one-half the 
arc doc, or it is equal to one-half the 
angle A. 

Fio. 197. 

644. The angle between a tangent cb and 
a chord cd drawn from the point of tangency 
is equal to any inscribed angle, as B or C, 
subtending the same chord cd. 

646. If two chords intersect within a circle, 
either angle formed is measured by one-half the 
sum of the intercepted arcs. 

ZA = ^(arc ac + arc db). 
ZB = ^(arc ad + arc cb). 

Fio. 199. 

646. If two secants, as ab and c6, meet 
outside a circle, the angle formed is 
measured by one-half the difference of 
the intercepted arcs. Also, 

ZA = (ZB ~ ZC). Fia. 200. 

647. The angle formed by a tangent and 
a secant meeting outside of a circle is 
measured by one-half the difference of the 
intercepted arcs. Also, 
[168] ZA is measured by one-half arc 

8 — one-half arc n, or 
ZA^ {ZD - ZC), Fig. 201. 
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648. The angle formed by two tangents to a 
circle is equal to one-half the difference of the 
intercepted arcs. 

649, If two chords of a circle intersect, the 
product of the segments of one is equal to the 
product of the segments of the other. 

[169] AD X DC ED X DB. 

Fig. 202. 

Fig. 203. 

660. If a variable line through A cuts a circle 
at P and Q, then 

[170] AP X AQ is constant. 

Fig. 204. 

661. If a variable line through A, located 
outside the circle, cuts the circle at P and 
Q, then 

[171] APXAQ = AT\ 

where AT is the tangent from A, 

662. If from a point A without a circle a 
tangent and a secant be drawn, the tangent 
AD is a mean proportional between the 
entire secant AC and its external segment. 

[172] 
^ ^ AD 
AD AB' 

663. If from a point as C without a 
circle two secants are drawn to the con¬ 
cave arc, the product of one secant and 
its external segnqient is equal to the 
product of the other secant and its 
external segment. 
[173] AC X BC ^ CD X CE. 

Fig. 207. 
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684. Annulus.—[1741 Area = - r*) = 2irB'6. 

[176] R' = ^4^- 
2 A ■CS2lOv 

[176] 
666. Sector. 

C = chord. 

6 = fl 

[177] C = 2r sin —(A expressed in radians). Fio. 208 

= 2r sin 
/90^S\° 
\ irr / 

S = length of arc. ^ C j .5 

S = {A expressed in degrees). 

= rA (A expressed in radians). Fio. 209. 

Area = -^ = {A expressed in degrees). 
Aj ouU 

(A expressed in radians). 

566. Area of Sector of Annulus. 

QAl A A(i?2 - r2) , 
.80 Area = tt ---7,--—-i where 

oou 

A = angle in degrees. 

667. Segment. 

.811 C = chord = 2r sin ~ 

jf-A 

Fig. 210. 

{A expressed in radians or degrees), or -jL 

C = 2r sin = 2V2h 

[182] S = length of arc = 

r - h\ 0 
Fig. 211. 

{A expressed in degrees). 

= 2r~y or rA {A exprensed in radians). 
2 
(A- \ 

1 — cos 2 j (A measured in radians or degrees). 

[184] d = r COS 4 (A measured in radians or degrees). 

-2 — 
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688. Area of Segment of a Circle. 
Area of segment * Area of sector MONS — Area of A MON, 
in Fig. 211. 

[186] Area = (A — sin A), A in radians. 

“ — r sin - in radians. 
2\ r/, r 

Area == r® cos”^-dy/— (P, cos“^ - in radians. 
r r 

= r*cos~^ (r — h)y/2rh — ^ in radians. 

[186] 
2 

= r® sin"-' “ — ^ \/4r2 — C^, sin“^ in radians. 
2r 4 2r 

The last formula given applies only to segments less than half a 
circle. It is also possible in cases where the segment is greater 
than half a circle to obtain its area by subtracting the 
area of the smaller segment from the area of the circle. 

Area of segment == Area of circle — Area of segment 
MNS. 

Fillet. 
[187] Area = .2^1 Sr^ = (approximately). 

569. Ellipse.—The ellipse is the locus of a point that moves in 
such a way that the sum of its distances from two fixed points, 
called the foci, is constant. 
[188] Perimeter (approximately) = a(4 + l.lm + 1.2m^), 

where w = -• 

Fig. 212. 

rA 
<- a -> 

p 
> 

Fig 214. 

[189] Area « irab. 

[190] Area of shaded segment ^ xy + ab sin“‘ -• 
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660. Parabola.—A parabola is the locus of a point which 
moves in such a way as to keep its distance from a fixed line 
called the directrix equal to its distance from a fixed point, 
called the focus. 

[191] Length of arc AOB = y/n^ ^ ^ + 1 + n) j • 

= + i + ^sin/i“^nj? 

u 4/i 
where n = —• 

c 

Fig. 215. Fio. 216. 

Area of segment cut off by any chord C or C' is fCA, or f C'/i'. 
The area is equivalent to two-thirds the area of a rectangle 

having sides equal to C and h. 

Fig. 217. 

661. Hyperbola.—The hyperbola is the locus of a point which 
moves in such a way that the difference of its distances from two 
fixed points, called the foci, is constant. ^ 

[192] Shaded area = ab loge (^ + |)’ ^ 
i/ 

In an equilateral hyperbola, 

a == b. F,o. 218. 
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[193] Shaded area = log log 

^ V X 
= a® sinh""^-; or cosh-^^ ”• 

a a 

662. Cycloid.—A curve described by a point on a circle 
which rolls along a fixed straight line is 
called a cycloid. 

[194] Length of arc = >S = 8r. 
[196] Area = 

663. Irregular Areas.—Simpson^s rule, which is the most 
accurate of the strip methods, is applied as follows: 

Divide the figure into an even number of strips of equal width. 
The smaller the width of the strips, the more accurate will be 
the result. 

The formula is 

[196] Area = |[(2/o + y^) + 4(j/i + 2/3 + J/t + . . . ) + 

2(2/2 + 2/4 + 2/6 + • • • )]• 
Stating the rule in words and referring to the above figure, 

the area is equal to the product of a 
third of the width of the strips into 
the sum of the first and last ordinate, 
plus four times the sum of the ordi¬ 
nates with odd subscripts, plus two 
times the sum of the ordinates with 
even subscripts, omitting the first and last ordinates. 

SURFACES AND SOLIDS 

664. Cubes. 
[197] Volume = al 
[198] Total surface area = 60*. 

[199] Diagonal d = aV3. 
666. Rectangular Prism. 

[200] ^ Volume = Area of base X 
Height = hlh. 

[201] Total surface area = 2Qh + 
Ih + bh). 

Diagonal d = P + h^. 

Fig. 220. 

Fig. 219. 

[202] Fig. 222. 
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666. Regular Hexagonal Prism. 
[203] 

335 

[204] 

[206] 

[206] 

Volume = = W'^Ph = 

.866ph. 
Lateral surface area = &ah = 2y/8fh = 

3.46//1. Pjq 223. 

Area of base = f v Sa^ = 2.60^. 

Total surface area = &a{h 4 W'^a) = Qa{h + .866a). 
667. Regular Octagonal Prism. 

[207] Volume = 2(\/2 4- l)a^h = 4.88<i‘^h = 

2(1 + V2) 

1 4- 2-s/2 4- 2 

[208] Lateral surface area = 8ah = 

ph = .mph. 

8 n Jh = 
1 4-V2 

3.32//1. 
[209] Area of base = 2(1 + \/2)o* = 4.8280^. 

[210] Total surface area = Sa{h 4- ^a 4- i\/2«) == 
Sa{h 4- 1.207a). 

668. Cylinder (Right Circular). 
[211] Volume = ri^h = .7S54cPh. 
[212] Lateral surface area = 2Trh. 
[213] Area of base = Trr^. 
[214] Total surface area = 2Tr{h + r). 

669. Hollow Cylinder. 
[216] Volume == Trh{R^ — r^). 
[216] Outer lateral surface area = 27rRh. 
[217] Inner lateral surface area = 2Trh. 

670. Any Prism or Cylinder. 
[218] Volume = h X Area of base. 
[219] Lateral surface area = I X Perim¬ 
eter of normal section. 

671. Truncated Right Circular Cyl¬ 

inder. 

Fig. 224. 

[220] h = mean height ~ 
fh + 

2 

[221] Volume = 2Trrh = h X Area of base. 
[222] Lateral surface area = 2rrh. 

Fio. 228. 
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672. Any Truncated Prism or Cylinder. 
[223] Volume = Distance between centers • of gravity of the 
two bases X Area of normal section. 
[224] Lateral area = Perimeter of normal section X Distance 
between centers of gravity of the two perimeters. 

673. Regular Pyramid or Cone. 
[226] Volume = | (Area of base X Altitude h). 
[226] Lateral area of regular figure = J (Per¬ 
imeter of base X Slant height S). 

Fio. 229. 

674. Any Pyramid or Cone. 
[227] Volume = J(Area of base X 
Distance from vertex to plane of ^ 

Fio. 230. 
676. Frustum of Any Pyramid or Cone. 

[228] Volume = |(Ai + A2 + y/Ai X Aj), where Ai and A» 

are areas of bases made by parallel planes. 

Fra. 231. 

676. Sphere. 

[229] Volume = W = 4'.1888r’ = ~D^ = .5236D’. 
b 

[230] Area = 4irr* = 12.5664r» = vDK 
The area of a sphere iathe same as the lateral area of 

a circumscribed cylinder. Fio. 232. 

677. Hollow Sphere. 
[231] Volume = MR* - r») = 4.1§88(fl* - r*). 

■= ?(D» - d») = .5236(D> - d*) 

= ^rRlt + ^t*, 

where Ri = mean radius = - and 

t » thickness of shell. Fio. 233. 
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678. Spherical Segment. t 

[232] Volume of segment of one base = i 

j (3r* + h*) = .5236A(3r* + 

[233] Volume of segment of two bases = ^[3(r^ + r ) + h^. 

Fio. 234. 

679. Spherical Zone. 

[234] Area = 2rR{R - y/R^ - r*). 
= 2TRhf 

where R is the radius of the sphere. 

680. Spherical Sector. 
[236] Volume = 
[236] Total area = 2Trrh + rra = 7rr(2A + a). 

Fiq. 236. 

681. Ellipsoid. 
[237] Volume = JttoAc = 4.1888 abc. 

Fig. 237. 

682. Paraboloid of Revolution. 

[238] Volume = ^ Volume of circumscribed 

cylinder. 

683. Paraboloidal Segment. 
[239] ' Volume = + rl). 

Fia. 239. 

Fio. 238. 

684. Torus. 
[240] 
[2411 

Volume = WRr^- 
Surface = 
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PRISMOIDAL FORMULA 
686. To find the volume of any pris- 

moidal solid, 

1242] Volume = |(A + B + 

where L = distance between parallel 
sides. 

A and B are the areas of end sections 
and M is the average middle section. 

Fiq. 241. 

This formula is very useful in figuring excavations. 
Referring to Fig. 241. 
Area A = 60, 5 = 108, M = 84, L = 18. 
Volume = V(60 + 108 + 4-84) = 1512. 
686. Wedge-shaped Volume.—The pris- 

moidal formula can be applied to wedge- 
shaped excavations (Fig. 242). 

Fig. 242. 

[243] Volume = ^(240 + 500 + 4 • 360) = 
In a railroad cut with the slope S horizontal 

to 1 vertical, for both sides, the area of A BCD 
= A(2a + hS)j where 

2a = base of cut and 
h = height of surface from base of cut. 

Apply these areas to prismoidal formula. 

Volume = ^{A+B + 4JW) [242], 

to get volume. 
Another Case. 

21,800. 

Fig. 243. 

[244] Area of section = - ^ 
O 

Slope is S horizontal to 1 vertical, as 
above. 

Use prismoidal formula as before. 
Railroad fills can be figured in the 

same manner. Fiq. 244. 
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B87. Simpson’s Rule Applied to Volumes.—To find the volume, 
compute the areas Ao, Ai, etc., and substitute in 

[245] Volume = |[(Ao + An) + 4{Ai + A3 + Ab + . . . ) + 

2(^2 + Ai + Aq + . . . )], 

Fig. 245. 

There must be an even number of strips, spaced equally. 
Aq is the first area and An is the last area. 
A1, A 3, A 5 are the areas with odd subscripts, and 
A2} A 4j A e are the areas with even subscripts. 
688. The volume of water can be computed by getting areas of 

contours and using Simpson^s rule to get the volume, using areas 
as in the previous article. 

Fig. 246. 



CHAPTER XXIII 

TMGONOMETRIC FUNCTIONS 

689. Angular magnitude is measured by the amount of rotation 
of a line about a fixed point. 

If the rotation is measured in a counterclockwise direction, the 
angle is positive. 

If the rotation is measured in a clockwise direction, the angle is 
negative. 

Angular magnitude is unlimited in respect to size. 
The most common units of measurement of angular magnitude 

are the degree and the radian. 

In the degree system, the unit is the angle corresponding to 
of a complete rotation. 

690. The radian, the unit of circular measure, is an angle at 
the center of a circle, subtended by an arc that is equal in length 
to the radius. 

2irr = circumference of a circle. 

Since a radian is an angle subtended by an arc equal to r, there 
are as many radians at the center of the circle as r is contained in 
2Tr, or the angular magnitude about the center is 

« 27r « 6.2832 radians, 
r 

340 
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The angular magnitude about the center is also 360°. Hence, 

2ir radians = 360°. 
TT radians = 180°. 

ICAO 

1 radian = —~ = 57.29578°- 
T 

1° = = .0174533 radian. 

691. In the study of trigonometry, we will consider angles in 
two senses: 

First As generated by a line rotating to a certain point and 
the relations of the various functions at that point. 

Second. A continuous rotation as indicated by the graphs of 
more than 360®, or one revolution, and also when the velocity 
is a consideration. 

692. Given several concentric circles and an angle AOB at the 
center. Then 

arcPiQi _ arcP2Q2 _ arcPsQs 
OPi ~ OP2 ~ OP3 

That is, the ratio of the intercepted arc 
to the radius of that arc is a constant for 
all circles when the angle is the same. 

The angle at the center that makes this 
ratio unity is, then, a convenient unit for 
measuring angles. 

This unit, as we have seen, is called a 
radian. 

In the same or in equal circles two angles at the center are in 
the same ratio as their intercepted arcs. 

jLAOB _ arcAP 
AAOC ~ arc AC 

Then, if AAOC is unity when arc AC is equal to r, 

/.AOB « 
arc AB 

r ^ 
or, in general, 

6 = - (see [164] et seq.), 
r 

C 

Fia. 249. 

where 6 is the angle at the center measured in radians, S is the 
length of its subtended arc, and r is the radius of the circle. 
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From this, we have S =» rB, which states that the length of the 
subtended arc equals the product of the radius and the angle at 
the center measured in radians. 

693, Coordinates.—The point P can be located by means of 
the X and yj or rectangular coordinates 
which need no explanation, or by means of 
polar coordinates. 

In the polar system of coordinates, the 
point is located by the distance r, called the 
radivs vector, and the angle A called the 
vectorial angle. 

The radius vector is usually designated 
by p and the vectorial angle by 6. 

A, 

V 
Fici. 250. 

694. Functions of Angles. 

Fio. 261. 

/■'Mp 

W) 

If we place the angle A with its vertex at the origin and its 
initial side on the positive end of the X-axis, and if we allow the 
terminal side of the angle to fall where it will, and if P with 
coordinates {x, y) is any point on the terminal side and r its 
distance from the origin, the ratios between r, x, and y are the 
trigonometric functions of the angle A. 

The sign of r is always taken as positive. 
The sign of the function is determined from the signs of the 

coordinates of P; that is, the sign of the function is determined 
by the quadrant in which the point P is located. 

These ratios are named as follows: 

[246] Sine A =-• 
r 

[247] 
^ . A X 
Cosine A — — 

r 

[248] Tangent A 
X 

[249] Cotangent ^ ~ “ 

[260] 
r 

Secant A = -• 
V 

[261] 
T 

Cosecant A — 
V 
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If r is taken as unity, then 

[262] sin A = = 2/- [263] cos A = X. 

[264] 
. 1 

sec A *= — 
X 

[266] , 1 
CSC A = — 

y 

From i geometry , we have = = + y^. Then 

[266] r = Va;* + = 
sin A 

X 

cos A 
= X sec A = y esc A, 

[267] a; = “ yi = r cos A 
tan A 

T 
= ^ cot A = -r* 

sec A 

[268] y = — = r sin A = X tan . 4 - . 
cot A CSC A 

696. Reciprocal 1 relations of functions are evident, as: 

[269] sin A = 
1 

CSC A 
[260] 

. 1 
CSC A = 

sin A 

[261] cos A = 
1 

sec A 
[262] 

. 1 
sec A =-7 • 

cos A 

[263] tan A = 
1 

cot A 
[264] cot A = , ^ • 

tan A 

696. Functions of Some Special Angles.—From geometry, we 
know that the side opposite the 30° angle is one-half the hypothe- 
nuse in a right triangle with one acute angle equal to 30°. 

Taking y = 1, then 

sin 30° = 5. 

cos 30° = J's/S 

tan 30° = f \/3. 

cot 30° = Vs. 

sec 30° = fVs. 

CSC 30° = 2. 

In the same manner, the functions of 46° and 60° can be 

computed. 
697. If the angle is 90°, choose a point on the terminal side of 

the angle at a distance of a units from the origin. The 

coordinates of the point are (0, o) and r = o. 

W 
Fia. 262. 
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Via. 258. 

sin 90® =s - = - » 1. 
r o 

cos 90° = ? = - = 0. 
r o 

tan 90° = - = ^ = «. 
X 0 

cot 90° = - = - = 0. 
y a 

sec 90° = - = s = “ • 
X 0 

CSC 90° = - = - = 1. 
y a 

The notations, tan 90° = « and sec 90° = «, mean simply that 

these functions are not defined. 
698. For the angle 120° we can get the relation of the sides from 

the case of the 30° angle, but since x in the case of 120° is negative, 

it will be equal to — 1. 

sin 120° = ^ = |\/3. 

cos 120° = 5 = = -i. 

tan 120° = ^ ^ - Vs. 
X —1 

cot 120° = - = ^ = -iVs- 
y y/z 

sec 120° = - = = —2. 

CSC 120° = - = ^ = fVS. 
y Vs 
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Continuiog in this manner, a convenient table may be built for 
a number of common angles. 

$ in tf'in 
d6- radi- sin e cos ^ tan ^ cot e sec e ^ CSC e Chords 

grees ans 

0 0 0 1 0 oc 1 a 0 

30 
T 
6 

1 
2 

a/3 

2 
V3 

3 V3 
2v'3 

3 2 ^2 - Vs 

45 
TT 

4 
V2 

2 
a/S 

2 
1 1 V2 V2 ■ v/2 - V2 

60 
T 
3 

V3 
2 

1 
2 a/3 

V3 
3 2 2\/3 

3 
1 

00 
IT 
2 1 0 oc 0 oc 1 a/2 

120 
2t 

3 
V3 

2 
1 
2 -a/3 

-V3 
3 -2 

2>/3 
3 a/3 

135 
3ir 
T 

\/2 
2 

-V2 
2 

-1 -1 -a/2 V2 a/2 +V2 

150 
5t 1 -V3 -V3 -2a/3 2 •X/ 9 4- 
6 2 2 3 — Vu 3 V -6 ^ V 0 

180 ir 0 -1 0 oc -1 oc 2 

210 
7t 
¥ 

1 
2 

-V3 
2 

V3 
3 V3 

-2\/3 
3 -2 \/2 +a/3 

225 
5ir 
T 

-V2 
2 

-V2 
2 

1 1 -V2 Vs + V2 

240 
4ir 
3 

-V3 
2 

1 
2 V3 

a/3 
3 -2 -2V3 

3 
Vz 

270 
3ir 
2 -1 0 oc 0 oc -1 

300 
5t 
¥ 

-V3 
2 

1 
2 

-V3 
-V3 

3 2 
-2-\/3 

3 
1 

315 
7t 
4 

1 V2 
2 

-1 -1 V2 \/2 - a/2 

330 
llir 
“er 

1 
2 

V3 
2 

-a/3 
3 

2\/3 
3^ 

-2 \/2 - V3 

360 2t 0 1 0 oc 1 a 0 
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699. Graphical representation of trigonometric functions 
in the four quadrants with unit radius. 

•H..* k- ^ 

Fia. 266. 

Aay unit may be used, as 10 inches. In this case, the value 
cf the function would be its length in inches divided by 10. 
Use a decimal scale and move the decimal point one place to the 
left. 

600. Complementary Angles.—In all right triangles, the sum 
of ZA and ZB is equal to 90°, or each of the angles is the comple¬ 

ment of the other. Any trigonometric ratio of 
one angle is equal to the coratio of the other. 
Hence, the ^^co’’ in cosine, cotangent, and cosecant 
indicates the sine, tangent, and secant, respectively, 
of the complementary angle, or 

sin A = cos (90° — A) = cos B. 

601. Signs of Trigonometric Functions.—To determine the 
sign of a function, consider the coordinates of a point P on the 
terminal line of the angle, thus (Fig. 260a), 

A _ y ('_I \ 

90\ 
X 

Fig. 269. 
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and (Fig. 2606) 

tan A 
— (sign -)• 

Y 

sin' AH 
CSC posiiive 

ion 0 cos 
eoi. sec 

Fig. 260. Fio. 261. 

Figure 261 shows the location of the positive functions. 
If the terminal line of the angle is in the first or fourth quad¬ 

rants, the cosine function, for example, is positive. In the 
second and third quadrants, the cosine is negative. 

vers and covers are always positive. 
602. Functions of Negative Angles.—Draw angles A and —A 

where OP is the terminal line of Aj and OP' is the terminal line 
of —A in the four quadrants. 

If, now, we let the coordinates of P and P' be (x, y) and (x', y'), 
respectively, then 

X = x', 2/ = -y', r = r', 

sin (—A) =« —~ — — sin A. 
TV 

cos (—A) = p = ^ = cos A. 

tan (-A) = = -tan A. 

and 
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cot (—A) * ^ “ —cot A. 
y —y 

T 
sec (—A) = —, = - = sec A. 

X X 

T 
CSC (—A) = —, = — * —CSC A. 

y -y 

603. Functions of angles (^ (^° + 6), cos 

(180® — 6), sin (0 — 90®), etc. 
To reduce these angles to equivalent acute angles (less than 

90®), express the angle as a multiple of 90® or as 

n| ± orn X 90® ± 0. 

If n is even, take the same function of 9 as of the original angle; 
if n is odd, take the cofunction of 6 (Art. 600). In either case, 
prefix the algebraic sign of the original function to the function 
of the acute angle 0. 

That is, if n 2 + ^ is in the third quadrant, the coordinates of a 

point in the third quadrant would determine the sign of the 
function (see Art. 601). 

Exakplb.—Sin 680® = sin (7 X 90 + 50). n is odd. Sin in the 
fourth quadrant is negative. Then sin 680® * — cos 50®. 

460. Relations of Functions of an Angle. 

sin A = ^ [246]. 

cos A = * [247]. 

tan A - ^ [248]. 

cot A = - [249]. 
y 

sec A ^ [250]. 

CSC A = - [261]. 
y . 
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r - y/WV? * ^ = * sec A = j/ CSC A [266]. 

® - Vr*-j/* = rcosA = ^ cot A = ^ [267]. 

y - Vr* - a? = r sin A = * tan A = —^ ^ [2681. 
cot A CSC A ^ ^ 

[266] sin’ A + cos’ A = 1. 
[266] sec* A — tan’ A = 1. 
[267] CSC* A — cot’ A = 1. 
[268] sin A CSC A = 1 [269, 260]. 
[269] cos A sec A = 1 [261, 262]. 
[270] tan A cot A = 1 [263, 264]. 
[271] sin A < A < tan A (if 0 < A < 90°). 

1^' Rad.^l—>1 
Fio. 264. 

[272] sin A => ^ = cos A tan A = Vl — cos’ A = 
cot A CSC A 

tan A__1__ \/sec’ A — I _ 

•y/l + tan’ A V^l + cot’ A s®c 

n . A A , /l — cos 2A 
2sm 2 COS2 = ±-y/-^ • 

[273] cos A = = sin A cot A « Vl — sin* A = 
bfitH ifl. S6C A 

1 __ cot A _ Vcsc’ A - 1 _ 

Vi +^tan’ A Vl + cot’ A esc A 

, A . , A /l + cos 2A 
oos*2 -8»“*2 “ V-2- 
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tan A — 
cos A cot A 

sin A _ 

V^l — sin* A 

2 tan^ 

1 — tan*~ 

cosi4 _ 1 
” sin A tan A 

*= sin A sec A — sec* A 

Vl — cos* 
cos A ^csc*A — 1 

= cos A CSC A = a/CSC* A — 1 = 

CSC A 

's/I — sin* A __ cos A 
sin A \/l — cos* A 

CSC A 
sec A 

tan A _ 1 1 
sin A cos A a/ 1 — sin* A 

y/l + cot* A CSC A 
cot A -s/csc^A — 1 

_ cot A _ 1 1 
cos A sin A V1 — cos* A 

\/l + tan* A _ sec A 

= \/l + tan^ A 

^1 - cot* A 

sin (A ± B) = sin A cos B ± cos A sin B. 
cos (A ± B) = cos A cos B + sin A sin B. 

^ tan A ± tan B 
tan (A ± B) = t- —-t-t-5’ 

1 + tan A tan B 

4. / >1 . DN cot A cot B + 1 
cot (A ± B) »= —i-p'-r—r-T— 

cot B ± cot A 
sin A + sin B = 2 sin ^(A + B) cos |(A — B). 
sin A — sin B = 2 cos |(A + B) sin |(A ~ B). 
cos A + cos B = 2 cos i(A + B) cos ^(A — B). 
cos A — cos B = —2 sin J(A + B) sin ^(A — B). 

X >4 I X D sin (A + B) 
tan A + tan B ~ ^-5- 

cos A cos B 

X >4 X D sin (A — B) 
tan A — tan B = —- 

cos A cos B 
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[288] i. A , i r. Sin (A + B) 
sm A sm B 

[289] 
, . , D sin (B — A) 

sm A sm B 

[290] sin 2A = 2 sin A cos A. 
[291] cos2A = cos® A — sin® A = 1 — 2 sin® A = 2 cos® A — 1 

[292] 
. c, A 2 tan A 

[293] 
2 cot A 

[294] 
■ 1 A ^ /l - cos A 

smjA = ±^ 2- • 

[295] 
. . ^ /l + cos A 

cos^A = ± yl-2- 

[296] tan 
1 . /I ~ cos A _ 1 — COS A _ sin A 
^ \ i + cos A sin A 1 + cos A 

[297] 
... 1 — cos 2A 

sm 2 A = 2 

[298] 
, 1 + cos 2A 

cos^ A = 2 

[299] gin2 A — sin^ B = sin (A + B) sin (A — B). 

[300] cos^ A — sin^ B = cos (A + B) cos (A — B). 

[301] 
^ ^ 1 - cos 2A 
tan^ A — ^ . .vnr* 

1 + cos 2A 

[302] 

[303] 

[304] 

cot^* A 
1 + cos 2A 
1 — cos 2A 

tan ^(A ± B) = 
sin A + sin B 
cos A -f cos B 

cot ^{A ± B) 
sin A + sin B 
COB B — cos A 

[306] sin A cos B = Msin (A + B) + sin(A - B)]. 
[306] cos A sin B = l[sin(A + B) — 8in(A — B)]. 
[307] cos A cos B - ^[cos(A + B) + cos(A — B)]. 
[308] sin A sin B'= — i[cos(A + B) + cos(A — B)]. 

605. When ft is small, sin 6, tan e, and angle 6 measured in 

radians are approximately equal. 
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’Example. 

sin 2® »* .0349 from tables, 
tan 2“ = .0349 from tables. 

2® in radians == .0349 from tables. 
If a slightly larger angle is used, a small difference appears in 

the tables, but even this difference can be disregarded if within 
the limits of the approximation. 

The usefulness of this is apparent, for the angle in radians 
can be substituted if either the sine or tangent is given and a 
tedious operation with decimals avoided. 

606. Another Approximation.—When x is small and given in 
radians, 

cos a: = 1 — ia:*. 
Example. 

cos .006 = 1 - .000018 = .999982. 



CHAPTER XXIV 

GRAPHS OF TRIGONOMETRIC FUNCTIONS 

607. Graph of Sine Function.—Consider the function, 
y = sin Xy 

where x is the radian measure of the angle. 

Plot the graph of the function, using rectangular coordinates, 
with X the abscissa of any point being the number of radians in 
the angle, and y the ordinate being the sine of the corresponding 
angle. 

The graph cuts the X-axis where 
X = Oy Ty 2iry Stt, 47r, . . . kiTy 

and where 
X = —-r, — 27r, — — 47r, . . . —/;7r, 

k being any positive or negative integer, or zero. 

As the angle x increases from 0 to y increases from 0 to 1. 

As the angle x increases from ^ to tt, y decreases from 1 to 0. 

Stt 
As the angle x increases from Trto—,y decreases from 0 to — 1. 

3‘W’ 

As the angle x increases from to 2t, y increases from — 1 to 0. 

It will be readily seen from the graph that for real values of x, 
y cannot be greater than 1 nor less than — 1. Values of x that 
make y greater in absolute value than 1 are imaginary. 

The sine function is a periodic function having a period of 
2t or 360°. This means that the graph of the function is repeated 
during each revolution and that y has the same value for all 
values of * that differ from one another by multiples of 2»-. 

353 
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608. Construction of Sine Graph.—^Lay off convenient angles 
as abscissa and take the sines of these angles as ordinates, as 
shovra in Fig. 266. Referring to Art. 599 showing graphical 
representation of sin A, we note PB = sin A for each location 
ofP. 

Fw. 266. 

609. Graph of Sin (x + B).—Assume the graph of y = sin Xi. 

We have the graph of y = sin Xi with origin at Oi and we 
desire to shift the origin to 0 and write an equation in x and y 
referred to the new axis. 

From the figure, Xi = x B. 
Substituting in y = sin xi gives 

y — sin (x + B). 

Fia. 267. 

This change from sin Xi to sin (a: + B) simply means a transla¬ 
tion of the origin of y = sin Xi, a distance representing angle B 
in the X-direction to make the graph become the graph of y 
= sin (x + B). 

In making a graph of y = sin (x + B), start with a standard 
y = sin X graph. If S is positive, shift the origin in the positive 
direction of x and if B is negative, shift the origin in the negative 
direction of x to locate the origin of the graph for y = sin (x -f 
B). The distance shifted is the distance which represents the 
value of B. 
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We recommend that a standard graph of j/ = sin a: be kept 
on hand, and by shifting the origin, any graph of the form y = 
sin (a: + B) can easily be made by locating a new origin. 

If ZB = we have 

sin + I) = sin (x + 90°), • 

and since the cosine of an angle equals the sine of its comple¬ 
ment, we may write 

sin (x -h 90°) = cos x, 

which shows that the sine graph and the cosine graph are similar 
except for a translation of the ordinates through a distance which 

represents an angle of 90° or ^ radians (see Arts. 622, 624). 
jQ 

610. Graph of y = sin nx, Where n Is Positive. 
Assume the graph of y = sin Xi. 
Let Xi == nx. 
Then y — sin nx. 

Y 

The coefficient of x, n, shortens the abscissae of all points 
without changing the length of the ordinates. If n = 2, then 
Xi = 2x, or X is one-half as long as Xi. Thus the abscissae are 
shortened in the ratio of 1: n. 

In Fig. 269 are shown the graphs of ^ = sin x and y == sin 3x. 
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If n < 1, the curve would be a stretching of ^ » sin x instead 
of a contraction. A similar result may be obtained by changing 
the scale of the abscissa of the standard graph of y = sin « by 

a multiple of i- 

611. In the equation, y = sin 2x, consider the vsdues of y 

as X increases from 0 to or from 0 to 90®. 

X.... 0° 9* 18' 27* 36“ 45“ 54“ 63“ 72“ 81“ 90“ 
2x... 0“ 18* 36“ 54“ 72“ 90“ 108“ 126“ 144“ 162“ 180" 
y.... 0 . 309 . 588 . 809 . 951 1.00 -.951 -.809 -.688 -.309 0.00 

Note that the two angles x which have the same sine or y 
values are complementary angles, as 9® and 81°; that is, their 
sum always equals 90®. With the 2x series, angles which have 
the same sine value are supplementary, as 18® and 162®. 

From the above table it will be seen that the values of y form 
two waves, one positive and the other negative, while x varies 
from 0° to 90®. 

612. Graph of y = sin (nx + B). 
Assume the graph of y = sin nxi, which can be constructed as 

shown in Art. 610. 

Let Xi = X + —• 
n 

We have the graph of y = sin nxi, with origin at Oi, and we 
desire to shift to 0 and write an equation in x and y referred to the 
new axis. 

jB 
From the figure, xi = x H- 

n 
Substituting in y >= sin nxi, 

y * sin n^x + —y “ sin (nx + B). 
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This change from y = sin na;i to y = sin (nx + B) simply 
means a translation of origin of y sin nxi, a distance represent- 

ing the angle — to make the graph become y = sin (nx -1- B). 
TV 

By taking a standard graph of y = sin x, changing the hori¬ 
zontal scale in the ratio of 1 to n, and then shifting the origin (B \ 

—> Oj on the original scale or to (fi, 0) on the changed scale, 

the graph is y = sin (nx + B) to the new origin. 
If B is positive, shift the origin in the positive X-direction, 

and if jB is negative, shift the origin in the negative Z-direction. 
613. General Equation Graph, y = a sin (nx + B). Since the 

ordinates, or y, are increased a times over the ordinates of y = 
sin (rix + jB), which we discussed in the previous article, we can 
readily draw the graph of 

2/ = a sin (nx + B). • 

The constant a changes the height of the wave in the ratio of 
a to 1. 

By taking a standard graph, y = sin x, and changing the 

horizontal scale by the ratio of 1; n, shifting the origin to 

measured on the original scale, or to (5, 0) measured 
on the changed scale, and multiplying each ordinate by a, or 
what amounts to the same thing, changing the y-scale so that 
each unit of the original scale represents a units on the new scale, 
we have the graph of y = a sin (nx + B) to the new origin. 

614. Time Element in oine Functions.—If x and y are both 
measurements of distance or lengths, the sine graph may be 
used to represent the/orm or of waves generated by vibrat¬ 
ing strings, etc. 
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If y denotes a linear distance and x the time in seconds, the 
sine graph may be used to represent periodic oscillations, such 
as the motion of springs, sound waves, or the projection of a 
rotating crank on a coordinate axis through the center of rotation. 

Consider the angle w in radians as the unit angle which the 
generating line OP generates in 1 second, after starting from OA 
with a uniform motion. 

After t seconds, the generating line OP has moved to OP' 
through the angle B. 

Plot the time in seconds as abscissae and the sine function as 
ordinates. 

Since OP rotates through w radians per second, the angle B is 
equal to oit radians after t seconds have elapsed. (The angle B 
increases at the rate of w radians per second.) 

That is, since co represents angular velocity in radians per 
second, then the angle of rotation B after t seconds equals 

Our equation, 1/ = r sin then becomes y = OP sin o)t. 

Example.—A point P (Fig. 272) moves counterclockwise around a 
circular path of 4-inch radius. It starts at A and moves with a uniform 
angular velocity of 1 revolution in 10 seconds. 

Plot a curve showing the distance of the projection of P on the vertical 
diameter from the center O at any time and write the equation of the 
motion. 

Solution.—If 1 revolution is made in 10 seconds, we will first divide 
the circumference into 10 equal parts so that each division will represent 
the distance traveled by P in a second. These divisions represent 

27r 
the angle w which is equal to radians, or .6283 radian, since the cir¬ 

cumference equals 27r or 6.283 radians, and each division is then .6283 
radian. 

JSffc.or 

Take any convenient abscissa scale and plot 10 equal divisions 
as shown, and from the circular graph project the corresponding 
positions of the point P which.give the required sine curve. 
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The angular velocity w equals .6283 radian per second, OP 
equals 4 inches, and PB equals OP sin .6283^. 

Therefore, 

2/ = 4 sin (.62830- 

The distance OP would represent the length of a crank or the 
position of maximum displacement of a spring vibrating above 
and below its normal position or the maximum vibration of a 
pendulum. It is the amplitude of the graph. 

In case we are given the number n revolutions per second 
instead of angular velocity, the crank, or link motion, rotates 
through 2x71 radians per second, or 

0) = 2xn, 
and our sine function is 

y = OP sin 2xn<. 

616. To change a standard sine graph to a time sine graph, 
a short mathematical analysis will be given 

Let y — r sin c>it. 
Then 

y 
~ == sin o)t. 
r 

Let X U, 
r 

Then 

Let 
Then 

y = Xr. 
X = (at. 

(a 

Figure 273 shows a standard sine 
graph with additional horizontal time 
scale and the amplitude vertical scale 
added which corresponds to the time 
scale. 

Example.—Convert a standard sine 
graph into one to represent 

8 

^r 
— 

Shnetarel S/n^ Graph 

zL f. \Radian AcaleX 
0 ' 1 f 

1 i sy i 8 9 y 

"U 
< Ttme Scatct 

Fio. 273. 

2/ = .5 sin 4^ 

Then 
y 
.6 

X, or 2/ = .5X. 



360 MATHEMATICS FOR ENGINEERS 

Let 
Then 

it. 

X 

i 

Shif^r€l Sine Srerph 

' .Z550.T5lOl.t5\50inS?.W2.25 
New4 Scale 

Fio. 274 

By plotting a y-scale with units one- 
half as large as the X-scale of the stand¬ 
ard graph and a ^-scale one-fourth of 
the radian scale as shown by Fig. 274, 
the graph of = .5 sin it is represented 
graphically. l 

If 0) is the angular velocity in 
radians per second, set the number 

of seconds for one complete revolution to 2t on the standard 
scale. The subdivisions can then be made. 

616. If n represents the number of revolutions of the crank in 
1 minute, co becomes 

2yn 

60’ 

and the equation becomes 

. 27rn. 
y ^ OP sin 

03 

The angular velocity « determines the period of the graph. 
The period for uniform circular motion is the time required jjer 
revolution. Note that in Fig. 272 the curve has a period of 10 
seconds, since 1 revolution is completed every 10 seconds and 

the graph is repeated every 10 seconds. 
If « equals 1 radian per second, the period is 2t seconds and 

y = sin <. 

For any value of <o, the period is 

The wave length is the distance between similar points on the 

graph. 
In cases of rapid rotation, it is often necessary to plot the time 

in tenths or even hundredths of a second. 
617. Consider a point which makes 180 revolutions per minute. 

This is 3 rotations per second, or a frequency of 3. That is, 
the time required for a revolution, or period, is J second. That 
means that the angular velocity.« is equal to 
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-j- = 18.85 tadians per second. 

The equation for a crank of 6-inch radius is then 

y = 6 sin (18.85<). 

A third See.ptr rev. 

Fw. 275. 

618. The frequency of uniform circular motion is the number 
of revolutions per second, or 

Frequency — ^ — Number of periods per second 

The frequency is the reciprocal of the period, or 

Frequency - 

The frequency in Fig, 275 is 3, since 3 waves occur in a 1 second 
time interval, the point making 3 revolutions per second. 

619. In case the angular measurement does not start from the 
horizontal Z-axis but from some position different from the 
horizontal, either above or below it, then 

j/ = r sin {(at + c), 
where c is the angle above or below the horizontal, measured from 
the positive end of the X-axis to the starting position; c is positive 
or negative according as it is measured in a counterclockwise or 
clockwise direction. 

y = r sin {o)t + c). 

^ =« sin (wi + c). 

Let y r 

Then II 

Let X == -|- C. 

Then 
0) 
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The new scales are shown in the standard sine graph (Fig. 276). 

Fio. 276. 

If c is given in angular measurement, locate the origin by 
measuring c direct on the radian scale. If c is given in time 

units or m terms of co, use time scale equal to time - • 
CO 

Example.—Plot y = r sin (wt — 1.1) when the maximum amplitude 
equals .5 and co == 4 radians per second. 

Then y = .5 sin (4i — 1.1). 

y ^ 
.5 

sin (At — 

Let 7 = 
y 
.5 

Then y = .57. 
Let X = U - 1.1. 

Then t = 
h 

1.1 
4 * 

= .275 second per radian, 

4 
or = 3.63 radians per second. 

Lay off to scale 1 second equal to 3.63 radians from the new origin 
and then subdivide into fractions of a second as shown by Fig. 
277 and 278. 

Tihre 6cal9 
Fio. 277. 
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The constant angle c merely shifts the curve along the X-axis, 

or ^-axis in this case, and does not change the form of the graph. 

In the case of a crank motion, a represents the length of the 

crank. 

Example.—A crank OP (Fig. 279) of 24-inch length starts from a 

27r 
position making an angle of 30®, or ~ -5236 radian, with the 

horizontal line. Then t equals zero at this starting point. It rotates at 

the rate of 2 revolutions per second. 
Since the time of each revolution is § second, and the circumference 

has 12 divisions, each division is .0417 second apart. 

The crank makes 2 revolutions per second, or 2 X 27r radians per 

second; therefore, CO = 47r. 

30® = ^ radians, and from Art. 013, the shifting of the origin is —> 
o ^ 

which in this case is ^ = .0417 second, which checks with the 
_ 

1 
division of iseconds. 
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The equation of the above motion is 

y = 24 sm^4?r^ 

620. An Alternating Current.—An alternating current rises 
to a positive maximum intensity, then decreases to zero and 
reverses, then decreases to a minimum negative intensity, and 
then increases to zero, completing a cycle. This varying inten¬ 
sity is represented by a sine function, as 

i = 10 sin (2000, 

where t is the elapsed time in seconds and 200t is the number of 
radians in the phase angle. 

Since the graph is a sine curve and the greatest value of the 
sine is unity, the maximum i is 10 units in this case and occurs at 
the point where the ordinates of the curve begin to decrease. 
There are several oscillations per second. There is a complete 
oscillation of i when the angle 200< reaches the value 27r, or 

200t = 27r, < = .Olir = .03144*. 

That is, a complete oscillation takes 

Fia. 280. 

314 1 
or 35 ««»„d 

(approximately) and the current alter¬ 
nates approximately sixty times per 
second. 

The distance between the points 
where the horizontal axis is intersected 

by the curve gives the time required for each alternation. This 
is evidently one-half the time required to complete a cycle. In 
this case the time required for each alternation is .0157 second. 

621. Functions of the Form, x = a sin (ny + B).^—These 
functions are similar to ^ = a sin (nx + B), except that, since 
the variables are interchanged, the graphs have their axes inter¬ 
changed. The equations, x * sin y, a; = sin {y + B), and 
X sin ny, follow the same principles as 

y — Bin X, 

y = sin (x 4 B), and 
y « sin tMP. 
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Since x and y are interchanged, the 
graphs are constructed on the F-axis 
instead of on the X-axis, as shown in 
Fig. 281, where the graph of the function, 

a: = a sin {ny +.B), 

is shown. 
622. Graphs of Cosine Functions.— 

Consider the function, 

y = cos X, 

and let x equal the angle in radians. 
Using rectangular coordinates with x, the abscissa of any 

point, being the number of radians in the angle represented 
by the point, and y, the ordinate at that point, representing the 
cosine of the angle, plot the curve. 

The graph cuts the X-axis when 
IT 3ir 5x 

* = 2’T’T’ 
Stt 

X = ~ 
Stt 

2' 2' ~~2' ' 

k is any positive or negative integer or zero. 
1/ = 1 when X = 0. 

y 

{k — and 

. . . — (fc — i) TT, where 

623. Construction of Cosine Graphs.—Since 
cos X = sin (90® + x), 

the cosine graph is the sine graph translated along the X-axis a 

distance representing 90® or ^ radians. 

Fiq. 283. 

In Fig. 283, 0 is the origin for the sine 
graph and O' is the origin for the cosine 

curve. 
Since the starting points of the two curves 

are 90® apart but the curves are otherwise 
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the same, we can construct the cosine graph in the same manner 
as the sine graph, except that for the cosine we start 90° ahead 
of the sine angles, thus: 

Fig. 284. 

624. Graphs of 2/ = cos {x + B), 

y = cos 2x, 
y = cos nXj 
y = cos {nx + J5), and 
^ = a cos {nx + B) 

all follow the same laws as the sine function for these angles 
and may be developed from y = cos x in the same manner as 
was done in the case of the sine function. 

The graph is a sine function or a cosine function depending 
simply upon where the starting point is made, or in other words, 
upon the location of the origin. 

In the case of the cosine function, too, the interchange of x and 
y transfers the graph from the X-axis to the F-axis. 

626. Compound Periodic Oscillation or Wave Graphs.—The 
general equations, y = a sin {nx + B) and ?/ = a cos {nx + 5), 
represent the simplest form of periodic motion. More complex 
periodic motions are represented by the more general expression, 

2/ = ai sin {nx + Bi) + ag sin {2nx + Bg) + . . . 
+ hi cos {nx + Bi) + 62 cos {2nx + Bg) + . . . 

The note of a musical instrument, as a flute or violin, consists 
of the fundamental tone represented by 

y = ai sin {nx + Bi), 

and the overtones or harmonics represented by 

y ^ sin {2nx + Bg), 
y » as sin (3nx + Bg), etc. 
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In plotting an equation of 
this kind, it is more conveni¬ 
ent to plot each sine function 
separately and add the cor¬ 
responding ordinates or y val¬ 
ues to get the new graph, thus, 

y = 2 sin a: + ^ sin Sx. 

626. Damped Oscillations.—Many laws of nature follow a 
sine or cosine oscillation with a decreasing amplitude. That is, 
the value a is a decreasing value and follows an exponential law. 
It is usually represented by ae~^^. The sine equation then takes 
the form, 

y = sin {nx + B). 

The most convenient way to make this graph is to plot 
and a sin (nx + B) separately, 
and multiply the respective 
ordinates, or y values, together 
for the new y value. 

The term b in the equation 
may be considered as a meas¬ 
ure of the resistance, or re¬ 
tarding effect, and is called 

the logarithmic decrement of the oscillation. 
627. Boundary Curves.—In plotting the locus of an equation, 

such as 

y = sin Xy or B = P- cos 

where one of the factors of the product is a sine or a cosine, a 
quick way to plot the locus is to consider the curve represented 
by the other factor as a boundary curve (see Fig. 287a). 

Consider the equation, 

y = sin ^ • (I) 

Since the numerical value of the sine never exceeds 1, the 
values of y in (1) will not exceed the numerical value of the first 

factor, 
The extreme vahies of sin fira; are +1 and -1. Therefore, y 

has the extreme values, and —c”*®, and the curves, y = e’d* 
and y « can be used as the boundary curves of y in (1). 
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Another helpful comparison is that when sin « 0, = 0. 
Hence, the locus of (1) meets the X-axis at the same points as 
the sine curve, = sin ^tx. 

Another aid to construction is that the required curve touches 
the exponential curves when the sine curve reaches its maximum 
or minimiim values, or when sin ivx is 1 or —1. 
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The locus of (1) crosses the X-axis at a: = 0, ±2, ±4, ±6, 
etc., and touches the boundary curve at x = ±1, ±3, ±5, etc. 

Another example of the boundary curve ior S = P cos ^ is 

given in Fig. 2876. 

The curve crosses the X-axis when cos ^ = 0, and is tangent 

to the boundary curves when cos^ = 1, or cos ^ = — 1. 

628. Addition of Ordinates.—When the equation consists of 
two or more members, as in 

y = 2 sm -f ^x, 

it is convenient to plot auxiliary curves to the same scale, one 
below the other, as 

2. VI Ay 

sm • 

Vi = |a;. 

Add the corresponding ordinates to make the sum curve for 

y = yi + 2/2- 

629. The Inverse Trigonometric Graphs.—The equation, 
y — sin X, can also be written in the form, x — sin“' y, or x 

= arc sin y, meaning the angle x whose sine is y. 
It is, therefore, endent that the graphs of y = sin ® and x - 

pin-i y are identical. In the first case, y is a function of x, and 

in the latter case, x is a function of y. 
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If, however, we have y « sm“^ x, which reduces to x ^ sin y, 
we have an interchange of x and y from y »= sin and our graph 
would be traced on the F-axis instead of on the X-axis. 

This rule also applies to the 
cosine, tangent, secant, etc. 

Another method is to consider 
the graphs as being drawn on 
transparent paper and rotated 
about an axis which passes 
through the origin and which 
has an angle of 45° with the X- 
axis (see Art. 250). 

630. Comparison of Sine and 
Cosine Graphs.—Note that y = 

cos (—x) = cos X, and, therefore, the graphs of i/ = cos x 
and 2/ == cos (—x) are identical. 
This follows since changing the 
sign of X reflects across the F- 
axis (Art. 602), and since the 
cosine curve is symmetrical with 
respect to the F-axis, changing 
the sign of x does nothing. 

631. Graph of y == tan x.—The tangent function varies from 

0 to ct when the angle varies from 0° to 90° or and from — oc 

to 0 when the angle varies from 90° to 180°. When the angle 
increases from 180° to 270°, the tangent varies from 0 to oc, and 
when the angle increases from 270° to 360°, the tangent varies 
from —oc to 0. 

632. Construction of y = tan X Graph.—Referring to Art. 
599, where the relation of the trigonometric functions was shown 
graphically, the tangent was shown asjn (a), (6), (c) and (d) 
Fig. 292. 

Fig. 291. 
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By plotting the angle x as abscissae and y or tan x as ordinates, 
the graph is readily constructed. 

Fia. 292. 

Since tan x is positive in the first and third quadrants and 

negative in the second and fourth 
quadrants, the positive tangents 
PS can be plotted for angles in 
the first and third, and SPi and 
SP2 for tangents in the second 
and fourth quadrants. 

An example of an angle in the second (juadrant is shown in Fig. 293. 
633. Graphs of ?/ = tan (x + B), 

y = tan nx, 
y = tan {nx + B), and 
y = a tan (nx + B) 

all follow the same laws as the sine functions (Art. 607 et seq,). 
The general form of t/ == a tan (nx + B) is shown in Fig. 294 

below. y 

Fig. 293. 

Fia. 294. 
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In this case, the ordinates are increased a times over the 
ordinates oly = tan {nx + B), which was discussed in the pre¬ 
vious article. By taking the standard graph, y — tan x, and 
changing the horizontal scale in the ratio of n:l, shifting the 

origin to 0^ and multiplying the ordinates by o, we obtain 

the graph oi y — a tan (nx -b B), referred to the new origin. 

Example.—Construct the graph of tan (29 + 45°). 

The period of the function y = tan nx is -• 

634. Comparison of Tangent Graphs.—The following figure 
shows several tangent graphs for comparison; 

636. Graph of the Function, a cot (nx 
-1- B).—^Th^ function is seldom used and 
we will confine the discussion to the y = 
cot X function and to the general form, 

y « a cot (nx -b B). 
The nrdinates are increased a times 

over the ordinates of y =» cot (nx -f- B), Fw. 297. 
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which can be made from the graph of y = cot a? in a man¬ 
ner similar to that used for 
the construction of the graph i ^ ri i 
of y - tan (nx + B) in Art. > \ V \l 
633. By constructing a stand-_\_^_^_\ I ^ 
ard graph of y = cot x, chang- S \ S 
ing the horizontal scale in the ^ K K \ N 
ratio of n:l, then shifting the ' ~ 

origin to 0^ and multi- 

plying the ordinates by a, we obtain the graph of y = a cot 
(nx + B), referred to the new origin. 

636. Construction of y = cot x Graph.—Since cot x = tan 

Y (i draw the cotangent 

p_graph similar to the tangent graph by 
j\ ^ starting 90° from the tangent starting 

^ ^ point and rotate in a negative direction, 
py-! TI since X is negative. 

Pjq 299,^ Graphs of y = sec x and y = 

CSC X.—Since the radius of the circle 
is unity, the radius vector OS or OSi is the measure of the secant. 
By rotating into the vertical and y 

then projecting across hori- y*secx ^ 
zontally, the value of y is found ' V 
for each value of x. “—7 “ L <i 

The graph of the cosecant is 
similar to that of the secant 
except that the starting point for Y ' \ 
X on the circle is advanced 90°. 
It is readily seen that by translating the origin of the cosecant 
graph 90° we have the secant curve. In other words, 

sec X = CSC (90° + x). 

Fig. 299, 

4/' 

kil’ 
Fig. 300. 



CHAPTER XXV 

TRIGONOMETRIC SOLUTION OF TRIANGLES 

638. Solution of Right Triangles.—In the solution of right 
triangles, the trigonometric functions and the relations, 

ZA + AB = 90° and & — 

are the means used to find the unknown parts. 
Two parts in addition to the right angle must be 
known, with one of these parts a side. The trigo- 

^ nometric function selected should involve two of the 
Fig. 302. given parts and one unknown part. 

Example.—Given A = 32° 16', a == 200. To find 6, c, and B. 
j5 = 90° - A = 90° - 32°16' = 57°44'. 

. . a 
sin A = — 

Then 

c = 

sin 32°16' = 

200 

— __ 3—^ 

‘ ^ sin A 

.53386. 

= 374.6, 
.53386 

Example 2.—Given a = 52.6, b = 

tan ^ ^ = .8043. 
0 00,4 

From table, A = 38°49'. 
Then R = 90° - 38°49' = 51°11'. 
Example 3.—Given A = 59°58', b 

tan A = 7' a ^ b tan A. 
0 

tan 59°58' = 1.7297. 

a = 412 X 1.7297 = 712.64. 

cot A = — : ,b a cot A. 
a 

cot 32°16' = 1.5839. 

Then 

5 = 200 X 1.5839 = 316.78. 

= 65.4. 

c = \/ a* + b^. 

= \/2767 T"4^7' 

= 83.92. 
412. To find a, c, and B, 

A ^ 
COS A = — 

c 

412 

. c = 
cos A 

= 823.11. 
• .50050 

R = 90° - A = 90° - 59°58' = 30°2'. 

Example 4.—Given B = 70°10', c = 35.2. 

sin B = -• :.h — c sin J5. cos R = :,a — c cos B, 
c c 

sin 70°10' * .94068. cos 70°10' « .33929. 
b « 35.2 X .94068 = 33.112. a « 35.2 X .33929 = 11.94. 

A * 90° - B = 90° - 70°10' = 19°50', 
374 
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639. The solution of right triangles by logarithms usually 
results in accuracy and speed. 

Example 1.—Given a = 23.47, B = 26®15.2'. To find A, 6, and c. 

- = tan B, 
a 

,b = a tan B, - = cos B. 
c 

.. c = 

log tan B = 9.64576 — 10 
loga= 1.37051 

cos B 
log cos B = 9.95272 — 10 

log a = 1.37051 

log 6- 1.01627 logc= 1.41779 
b = 10.38. c = 26.17. 
A = 90® - 5 = 90^ - 26®15.2' = 33®44.8'. 

Example 2.—Given B = 58°39', c = 35.73. To find A, a, and b. 

- = sin B 
c 
log sin B = 9.93146 

logc= 1.55303 

.*. 5 = c sin B, 

10 

0/ 

- = cos />. .*. a = c cos B, 

log cos B = 9.71622 - 10 

logc= 1.55303 

log b = 1.48449 log a = 1.26925 

6 = 30.51. a = 18.59. 

A = 90® - 5 = 90® - 58®39' = 31®21'. 

Example 3.—Given a = 50, h = 60. To find A, B, and c. 

~ = tan A. .*. tan ^4=1* 
b o 

log a - 11.6990 - 10 
log b = 1.7782 

log tan A = 9.9208 — 10 
A = 39®48'. 

- = sm A. 
c 

.. c = 
sin A 

log a = 11.6990 - 10 
log sin A = 9.8063 — 10 

logc= 1.8927 
c = 78.1. 

640. Another Scheme for the Use of Logs in 
Solving Right Triangles.—Suppose that we wish 
to find one leg a, of a right triangle when we 
have given the hypothenuse and the other leg c 

(Fig. 303). 
Since 

a 

Fig. 303. 

a = V(712.2)» - (554.5)«; 

a may be computed, but in this form it is not very convenient to 

use logs. But from algebra, we have 

= (5 + c)(6 — c). 
6 + c = 1266.7. 
b - c = 157.7. 
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Hierefore, 

o = \/(1266.7)(167J); 

from which the value of a may be very easily computed by logs. 

OBLIQUE TRIANGLES 

641. The Sine Law.—In any triangle, the sides are propor¬ 
tional to the sines of the opposite angles. 

a 
b 

sin .A a 
sin B’ c 

sin A 
sin C’ 

etc., or 

a 

sin A 
b 

sin B 
c 

sin C 
[90]. 

642. The Cosine Law.—In every triangle, the square of a side 
equals the sum of the squares of the other sides minus twice the 
product of these sides by the cosine of their included angle. 

II + c* - 26c cos A, 
[309] 62 = + — 2ac cos B, 

<? = a2 + 6* — 2o6 cos C, 
or 

+ c* ■ - 0* 
cos A 

26c ’ 

[310] cos B = -l-a*- 
2ac 

- 6*^ 

a* -I-6*- - c^ 
cos 0 

2ab 

643. Solution of Oblique Triangles.—In solving oblique 
triangles, the two most important laws to know are the law of 
sines (Art. 641) and the law of cosines (Art. 642). 

It is advisable first to make a drawing of the triangle to scale 
and measure the sides and angles. For many engineering pur¬ 
poses this will be sufficiently accurate. For more accurate 
results, use a six-place log table. 

In many cases, the oblique triangle can be conveniently divided 
into two right triangles and solved by the use of the right triangle 
formula, c* = o* -1- !>*, and the standard trigonometric functions. 

Example.—Given three sides of an oblique triangle, to find the 
angles. 

h* = 16* - X*. 

h* - 10* - (20 - x)*. 
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Then 

225 - a;* 
40a; 

X 

cos A 

:.A 

cos C 

,\C 
B 

*= 100 — 400 + 40a; — a;*. 
* 525. 

= 13.125. 

^ X ^ 13.125 

15 15 
= 28°57'. 

= .875. 

20 - a; _ 6.875 

10 
= .6875. 

15^ 

'Kc 

10 
= 46®34'. 

= 180® - (A 4- C) = 180® - 75®31' 

Fio. 304. 

- 104®29'. 

Oblique triangles have six elements, three sides and three 
angles. If any three elements are given, at least one being a side, 
the remaining three may be determined. The possible arrange¬ 
ments of these elements and their solutions are divided into the 
four cases which follow. 

644. Case 1. Given Two Angles and One Side. 
Condition,—The sum of the angles must be less than 180®. 
First draw the triangle. 
Use the law of sines. 

GrvBN 

A, Bj a 

Sought Formula 

, , a sin B 
0 0 = —;—T- 

sin A 
C C = 180® - (A + B) 

a sin C a sin (A + B) 
C C = —;-7“ =  -r 7-- 

Sin A sin A 

A 
To check use, c cos B h cos C = 

Area = ^ab sin C = 
a® sin 5 sin C 

Fio. 306. 
2 sin A 

Alternative.—Drop a perpendicular from the vertex 
to the base and solve as two right triangles. The perpendicular 
should not be dropped to the given side a as a base. 

EIxamplb. Case 1.—Given 6 = 6.362, A =■ TONIS', C =» 35°17', 
To find o, c, and B. 

B - 180“ - (A + C) = 180“ - 111“30' = 68“30'. 

« ft ^ c = 
® " sin B sin B 
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log h - .80359 

log sin 4 = 9.98731 - 10 

10.79090 - 10 

log sin B = 9.96868 - 10 

log a = .82222 

a = 6.641. 

log h s=5 .80369 

log sin G « 9.76164 - 10 

10.56623 - 10 

log sin B = 9.96868 — 10 

log c - .59655 
c = 3.95. 

646. Case 2. Given Two Sides and the Included Angle. 
Condition.—Suppose a > b. 
Use the law of sines and the law of cosines. 

s 
Fig. 306. 

Given Sought Formula 

CLj bj C c c — b^ — 2ah cos C 

Find smaller B ain B - - -- ^ 
c 

ZB first A A =- 180° - (B + C) 
To check use, a cos B + 6 cos A = c. 

Alternative.—Drop a perpendicular from the vertex to the 
base and solve as two right triangles. The perpendicular must 
not be dropped from the given angle C. 

Example. Case 2.—Given a = 20.63, b = 12.55, C = 27°24'. 

c = \/a2 + 6* — 2ab cos C. 

= V^.63)2 + (12.55)2 - 2 X 20.63 >0^5 

= '\/425.6 + 157.5 - 459.7 = 11.09. 
. n sin C 

sm B =- 
c 

log b = 1.09864 
log sin C = 9.66296 - 10 

10.76159 - 10 
log c = 1.04493 

log sin B = 9.71588 - 10 
B = 31°20'. 

A = 180° - (31°20' + 27°24') = 121°16'. 

646. Case 3. Given the Three Sides. 
Condition.—The longest side must be less than the sum of the 

other two sides. 
First draw the triangle. 
Use the law of sines and the law of cosines. 
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OlVSN SOUOHT 

a,b,c A cos A = 

37d 

Formula 

a® 

B 

C 

sin B ~ 

sin C == 

2bc 
b sin A 

a 
c sin .A 

a 
To check use, A A- B + C = 180®. 

If greater accuracy is required, 

a + 6 “}" c 
6 

Fia. 307. 

Givbn 

a, hf c 

Sought 

A 

B 

If Half the Angle is Near 

0®, Use Formula 

If Half the Angle is 

Near 90°, Use Formula 

• 1^ [(s'-biis-c) 

or 

tan 
s(s — a) 

(s - a){8 - c) 
ac 

or 

sin iB = 

{s — o)(s — h) 
ah 

cos \A 

cos \B 

'g(8 — a) 
be 

^4 
8(8 — b) 

sin iC = iC-yj- 's(8 — C) 

ab 

To check use, A + B + C = 180°. 

Area = Vs(s — a){s — b){s — c). 

Example. Case 3.—Given a = 10,6 = 12, c = 14. 

To find A, By and C. 
b2 + c2 -^2 _ 144 + 196 - 100 ^ 

cos A = 
26c 

A = 44°26'. 

336 

6 sin A ^ 12 X .70008 
sin B — a io 

B ss 57°8'. 

C S!il A __ 14 X .70008 
sin C ass 

a 10 

C as: 78°33'. 

k use, A + JB + C « 180°3'. 

.84010. 

= .98010. 
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647. Case 4. Given Two Sides and the Axigle Opposite One 
of Them.—This is known as the ambiguous case because, if 
certain relations exist between the given elements, it may be 
impossible to construct the triangle, or else one or two triangles 
may be made from the given elements. 

Draw the triangle as the first test. If the triangle seems pos¬ 
sible, apply the following test, using the law of sines. 

Given A, a, and b. 

sin B 
6 sin .A 

a 

If sin > 1, there is no solution. 
If sin S = 1, then B = 90° and the triangle is a right triangle. 
If sin B < 1, there may be two solutions, one with Bi, an 

acute angle and the other with Bt, an obtuse angle. 
Bi + A will always be less than 180°. 
Bi + A may or may not be less than 180° and 

will yield a solution only when less than 180°. 
i 

Pio. 308 

Given 

o, 6, .4 

Sought 

B 

C 

c 

sin B 

C 

Formula 

b sin A 

- (A +B) 
asm C 6 sin C 
sin A sin B 

\/a* H- 6* — 2ab cos C 

To check use, a cob B + b cos A = c. 

Area *= ^ab sin C. 

Example 1. Case 4.—Given A = 43®26', a - 4.75, b « 18.6. 
To find c, B, C. 

. o 6 sin A 
sm jB =-- 

a 

log b = 1.26961 

log sin A = 9.83728 ~ 10 

1.10679 

log a =* .67669 

log sin B = .43010 

This shows that sin B > 1. Therefore, there is no solution. 
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ExAUFiiB 2. Case 4.—Given A = 43*26', o = 14.75, b = 18.6. 
To find c, B, and C. 

8in B = 
a 

log b = 1.26951 

log sin A = 9.83728 - 10 

11.10679 - 10 

log a = 1.16879 
log sin B = 9.93800 — 10. 

This shows that sin B < 1 and there may be two solutions of the 
triangle; we will solve for B = 60°6' and 119*54' which is the supplement 
of 60*6'. 

B = 60*6'. 
C = 180* - (A + fi) = 

180* - (43*26' + 60*6') = 
76*28'. 

_ g sin C 
^ ~ sin A 

log a = 1.16879 

log sin C = 9.98777 - 10 

11.15656 - 10 

log sin A = 9.83728 - 10 

log c = 1.31928 
c = 20.86. 

B’ = 119*54'. 

C =180* - (43*26' + 119*54'). 
= 16*40'. 

, _ a sin C' 

^ sin A 
log a = 1.16879 

log sin C = 9.45758 - 10 

10.62637 - 10 
log sin A — 9.83728 — 10 

log c = .78909 
c = 6.153. 

648. A simple rule to memorize which tells which law to use 
in solving any given triangle is: Use the law of cosines if given 
the three sides or two sides and their included angle and the law 
of sines in all other cases. Both of these laws apply to obtuse 

angles. 
649. Solving Triangles.—In solving triangles, it is the best 

practice to find each element from the given elements rather than 
to determine an element and use the result to find another 

element. 
For instance, if we find one side and use the result to find 

another side, any error which is in the first result will appear in 
the next result. Choose a function (sine or tangent) that will 
bring in the unknown element together with other parts which 
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are given. When possible, get the unknown in the numerator 
and thus avoid division. 

660. Obtuse Angles.—If we find in solving a triangle that the 
cosine is negative, then the angle is obtuse. 

If cos A = —.7660, then A is obtuse and its supplement A' 
has its cosine equal to +.7660. 

From the table. A' = 40°. 

A = 180° - 40° = 140°. 



CHAPTER XXVI 

POLAR COORDINATES 

661. Polar Coordinates.—Another method of locating a point 
in a plane, besides the rectangular coordinates x and is by 
means of the vectorial angle 6 and the distance OP, measured 
along the generating line of the angle d. OP 
is called the radius vector and is usually denoted 

by p. 
The radius vector p and the vectorial angle 

0 are together called the polar coordinates of 
the point P and are indicated as (p, 6) with 
the radius vector written first (see Art. 704). 

If the vectorial angle is generated by a 
counterclockwise rotation, 6 is positive, and if it is generated by 
a clockwise rotation, $ is negative. 

The radius vector is measured from the pole 0 outwardly 
along the terminal line of the vectorial angle if positive, and 
along the terminal line of the angle produced beyond the pole if 
p is negative. 

Thus, point P' is located by rotating the terminal line through 
the angle 6 and then measuring backward, on OP prolonged, a 
distance p. The coordinates of P' are then (—p, 6); P' also has 
the coordinates (p, ^2) as noted in the figure in which P2 = ^ + 
180^ 

Polar coordinate paper, with angles and radians marked, can 
be purchased at technical supply stores and is very convenient 
in case the variable or argument is an angle measured in degrees 

or radians. 
662. Polar Graph of p = a cos 0 [311].--If the fixed length a 

be projected upon the generating line of the angle the length of 
the projection is p. The locus of the point P, as the angle $ 
varies, is a circle, since a series of right triangles is formed, and 
according to geometry, the locus of P is at the vertex of a right 

383 
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triangle whose hypothenuse is o. Therefore, 
P is on the semicircle APiO. 

■ In like manner for dt, the angle being in 
^J the second quadrant and the cosine negative, 

the length pj is measured on the generating 
Fia. 310. line prolonged through the pole as shown. The 

angle at Pa is also a right angle, and the semi¬ 

circle OPaA is described as 6 varies through the second quadrant. 
As the angle 6 rotates through a complete revolution (360® or 

25r), the circle APiOPa is traced twice. 
The polar coordinates have an added advantage over the 

rectangular coordinates because OP possesses direction as well 
as length. Such a line is called a vector. 

663. Polar Graph of p = a sin 0 [312].—Since p = a sin 0, 
the radius vector must equal the side lying opposite the angle 

in a right triangle of hypothenuse o. Therefore, the line OB 
perpendicular to OA is used instead of OA, as in the cosine graph. 

The projection of a on the generating line of the angle 6 forms 
right triangles as was shown in the graph of p = a cos in the 

previous article. 
The rotation of 0a in the second quadrant 

with Pa, the vertex of the right triangles, .p 
describes the semicircle BP40. a X \ 

In the third and fourth quadrants, the 
sine is negative so that p must be laid off on V ^ ^ 

the generating line prolonged. V.. 
664. Rotation of Polar Graphs.—Since it ^ 

is convenient to have on hand polar graphs p,,,. 3n. 
of sines and cosines, it is also convenient to 
know what transformation is necessary in order to change a 
graph from p = cos ® to p = cos {0 ± 15®). 

For example, draw the circle that is the graph of p = cos 0 and 
then rotate the axis through the second angle in the direction 
indicated by the sign. 

N « 

1/V-; 

Fio. 311. 

Fio. 312. 
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If, however, the graph is shifted rather than the axis, the 
direction of the rotation would be the reverse from that indicated 
by the sign. 

So far, throughout this work, we have endeavored to avoid 
confusion by translating the origins and axes by moving in the 
direction indicated by the sign of the constant and always 
beginning with the simple graph which can be kept on hand. 

656. Relation between Polar and Rectangular Coordinates. 
From Fig. 313, the polar coordinates of P are 
(p, e), and the rectangular coordinates are 

(x, y). 
Then 

[313] X = p cos $ and 
[314] y = p sin 6 Fm. 3i3. 

From this relation, any equation in rectangular coordinates 
can be transformed into an equation in polar coordinates which 
represents the same locus. 

Thus the straight line, 
a: = 5, 

becomes p cos ^ = 5, and 
2a; + y = 4 

becomes 2p cos ^ + p sin ^ = 4. 
The circle, a:® + = a^, when transformed, becomes 

p2 cos* ^ + P^ sin* 6 = a*, or 
p*(cos* 6 + sin* 6) = a*. 

p* = a*. 
p = a. 

The equations of transformation from polar equations to 

rectangular equations are 

[316] d = tan-*-and 
a; 

[316] p = Vx* + !/’• 

From 6 = tan“* - we get the following equations which are 
X 

found to be useful at times: 

0 = cos“* —0 = sin"' ^ 
y 

sin 0 

Vaf* + y* Vx® + y 

_y • - ® 

-> tan 0 — 
,2 X 

V X* + y* 
r, and cos 0 — 

Vx* + y* 
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Fia. 314. 

686. The Graph of p ■= a cos + b sin [817].—Assume a 
rectangle whose sides are a and b as shown (Fig. 314). 

__ Draw a circumscribed circle about the 

7 y\ /wt\ rectangle. 
^ \p The diagonal of the rectangle, as well as the 

i diameter of the circle, will be 

K-fa-.J and the radius will be 

Fia. 314. + 52. 

The equation of this circle in rectangular coordinates, with the 
lower left-hand corner of the rectangle as origin 0 is 

(* - I) + (j/ - I) = -f 6^)2. 
This is the equation of the circle, — r^, with the origin 

translated to ( 

Expanding the above equation, 

+ + ^ = I + T 

Canceling and collecting, 

+ 1/ = ax + by. 

Now transform this into polar coordinates, remembering that 

x^ + y^ — x = p cos 6j y = p sin d. 

Then 
p^ = ap cos ^ + 6p sin 0, 

Dividing through by p, 

p = a cos d + 6 sin 6, 

p== Va" .2 (——COS 6 + - sin 
VVa' + 6* Vo* + 6* ' Vo* -|- ft* 

Now let 

1 o - • ft 
a = cos * —y== = sm * —7— 

Vo* -f- ft* Vo* + ft* 
and we have 

p = Vo* -f 6* (cos a cos ® -I- sin a sin 0) = Vo* ft* cos (0 — a), 
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which is the circle, p \/a^ cos 0, rotated through an angle 
a according to Art. 654. 

The graph, then, of p = a cos 0+6 sin 0 is a circle with radius 
equal to i\/a2 + 6^ and circumscribed about a rectangle whose 

sides are a and 6. 

If p' = the radius vector of a cos 0 and p" = the radius vector 
of 6 sin 0, then p = p' + p". 

The graph shown in. c above is made by combining the corre¬ 
sponding radius vectors in a and 6. By means of a divider, two 
or more radius vectors may be added to determine the points of 
a graph. 

667, Time Element in Sine and Cosine Functions Using Polar 
Coordinates.—The polar coordinates are very important in 
considering sine and cosine graphs as discussed in Art. 614 et seq.y 
especially in rotary motion. The discussion will be confined to 
the sine graph. 

Consider the angle w in radians as the unit angle which the 
generating line (which may be a crank or a motor armature, as 
examples) generates in 1 second with uniform motion. 

After t seconds, the generating line has moved through the 

angle 0 = radians. 
Then p = a sin cot. 
668. If our angular velocity is .6981 radian 

per second, then 

p = a sin (.69810* 

The distance a would represent the length 
of the crank. 

The period of the graph is the number of seconds required for 

each revolution. 
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la Fig. 317 is shomi the graph of a rotary motion having a 
period of 10 seconds; that is, 1 revolution requires 10 seconds. 

It will be necessary for cases of very rapid rotation to construct 
the graph to divisions of time which are comparatively small, as 
tenths, or even hundredths, of a second. See in this connection 
Art. 614 where rectangular coordinates are used. 

In case the angular measurement does not start from the 
horizontal position of the generating line but from a position 
below the horizontal, then 

p = a sin (w< — c). 

Our graph would, then, take the form shown in Fig. 318. 

It must be borne in mind that the polar coordinates are not 
(p, t) but (p, B) where B = Thus, p = o sin (.69810 is not 
a polar equation at all, but 

p = a sin (.69810 and 
B = .6981< 

are a pair of parametric polar equations. It is possible to plot 
p m sin a>f, using t as the B coordinate, just as we use time as the 
X coordinate in rectangular coordinates, but this would give a 
very complicated curve, not a circle. 
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6S9. Polar Graphs of Sine and Cosine Functions. 



CHAPTER XXVII 

VECTORS AND IMAGINARY AND COMPLEX NUMBERS 

VECTORS 

660. Vectors are directed line segments, and their use as a 
means of representing quantities which have a direction as well 

as a magnitude is a convenience. In addition, they afford the 
most convenient and simplest means of graphically representing 
complex numbers. 

A quantity represented by a vector must possess direction 
as well as magnitude, and the direction and the magnitude are 
represented by the direction and length of the vector. 

A force of a given magnitude acting in a certain direction, a 

velocity (magnitude and direction of speed), and many other 
quantities can be represented by directed line segments. 

Two vectors are equal if they have the same magnitude and 
direction; hence, from any point in a plane as the initial point, a 
vector can be drawn equal to another coplanar vector. 

661. Addition of Vectors.—If we have given two vectors, AB 
and BC (Fig. 327a), we may consider the first to represent a 
motion from A to B and the second a motion from B to C. The 
sum of the vectors, then, represents by definition the sum of the 
movements from A to 5 and from B to C which is the movement 
from A to C. 

The sum of the vectors AB and BC is the vector sum AC, or 
AB + BC = AC. 

Fig. 327a. Fio. 3276. 

The sum of two vectors is the vector joining the initial point 
of the first to the terminal point of the second, providing that 
the initial point of the second vector is the terminal point of the 

first vector. 
390 
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If two vectors start from the same origin, we can represent 
their sum by the diagonal of the parallelogram of which the 
vectors are adjacent sides (see Fig. 3276). 

The projection of a vector on the coordinate axes gives the 
components of the vector, the projection on the horizontal axis 
being the horizontal component and the projection on the vertical 
axis being the vertical component, as is shown in Fig. 328, where 
the horizontal component of the vector AJS is ^ 
M1M2 and the vertical component is N1N2. Also, ^ 

Vector AB = Vector M1M2 + Vector N1N2. Nj 

If all the vectors are parallel, the resultant 
vector is equal to the algebraic sum of the vec¬ 
tors in magnitude, and its direction is the same 
as that of all the vectors. 

M, 
Fig. 328. 

M2 

Vectors which are not parallel, as OA and AB in Fig. 329, are 
added by making the initial point of one coincide with the ter¬ 
minal point of the other. It is immaterial as to which vector 
is taken first. The vector which connects the initial point of the 

first with the terminal point of the second is a 
vector which represents the sum of the two vectors. 

The first vector takes us from 0 to A and the 
second from A to B, which is equivalent to passing 

Fig. 329. from 0 to B represented by the one vector OB. 

.,B Smlp^rhr, 

Example.—Consider a boat crossing a river in which the water is 

flowing at the rate of 3 miles per hour. The boat can cross at the rate of 

4 miles per hour in still water. 
Let AB = direction and speed of boat. 

BC = direction and speed of stream. 

Fifteen minutes after starting, the boat would be at 
D in still water, but since in this length of time the 
current has carried the boat downstream a distance 

DB, the position of the boat at the end of this time is 

represented by the point B. DE — J mile. 
Thirty minutes after starting, the boat would have 

traveled 2 miles in still water, but since the current 

has carried it IJ miles downstream in this length of 

time, the point (? represents its position. 
By following the path of the boat for the entire distance, we see that it 

lies in the direction A (7, Since the vectors are velocity vectors, the 
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vecU^ AC gives the magnitude and direction of the velocity of the boat 
with respect to an observer on the bank. Solving anal3rtically, 

AC «* \/4* + 3* “ « 6 miles per hour? 

ExABn»LB.~A cyclist travels due north at the rate of 15 miles per hour 
and the wind blows from the northwest at the rate of 10 miles 
per hour. What is the apparent velocity of the wind to the 

I / cyclist? 
/ While traveling at the rate of 15 miles per hour with no 

1 w blowing, his motion gives the eifect of a 15-mile wind 
Y blowing from the north. Adding this to the 10-mile per 

Fio. 331. hour wind from the northwest as shown gives a resultant 
vector which represents a wind velocity of 23.2 miles per hour. 

Example.—If the crank pin on a steam engine travels 10 ffeet per 
second, what velocity has the cross-head when the crank is at an angle of 
45® with the horizontal ? Length of the crank 
« 12 inches. Length of the connecting rod = 
48 inches. „ 

Draw a diagram of the crank as shown in ^ 
Fig. 332 and draw a tangent BC to the circle T ^—j— 
at B, 10 units long. Draw BE normal to 
AB. This represents a velocity of the point 332 

.8 as it rotates about A and does not affect the 
velocity of the cross-head. Draw CD parallel to BE and BD horizontal, 
intersecting at D. BD represents the velocity of the cross-head. 

Example.—Consider a rolling wheel of radius r, angular velocity w, 
and velocity of the center Vi, 

The velocity of any point on the rim with respect to the center is 
ro) » Vi, The absolute velocity of any point is the vector sum of its 

velocity with respect to the center and the abso- 
X lute velocity of the center, as shown at 8. 

^ ^ 1 velocity of B when located as shown, 
re \ J draw BA = vi in the direction of Vi, i.e., hori- 
\w \ zontally. Draw rw as shown, tangent to the circle 

Complete the triangle which gives V as 
Fio 333 velocity of B at that instant. 

It will also be seen that V is perpendicular to 
BCf since points B and C are both on the wheel which is a rigid body. 
The point C has zero vdbcity. 
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062« If m equation such as^r^ + l^Oisto hav6 a solution 
at ail^ there must be some number whose square is —1. Call 

Fig. 332. 

Fio. 333. 
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this nunibsr i And we have i* ■= —1 by definition. Assume 
that this number i can be combined with real numbers by the 
operations of addition, subtraction, multiplication, and division, 
obeying the ordinary algebraic laws for these operations. 

663. Graphs of Imaginary Units.—If we graphically repre¬ 
sent a on OA (Fig. 334), we start at the point 0 and measure to 
the right, or in the positive direction, a distance equal to a units. 

If we multiply a by — 1, we represent the ^ 
result — o by measuring to the left, or in 
the negative direction, a distance equal to a 
units. 

Multiplying a real number by — 1 is equivalent, geometrically^ 
to rotating the line segment, which represents the number, about 
0 through the two right angles so that the point which repre¬ 
sents —a lies at the same distance from 0 as the point which 
represents a but in a direction opposite with relation to 0. 

Now i is such a number that — —1. Therefore, what we 

really have done is to multiply a by i* or i X i. If we now 
multiply a by i, which we may consider to be an operation which 
when performed twice is equivalent to a rotation about 0 through 
two right angles, this multiplication of a by i is equivalent, geo¬ 

metrically, to a rotation through one right 
angle. The number ai will then be repre¬ 
sented by a segment OB equal in length 
to OA, whose direction makes an angle 

of 90° with OA (Fig. 335). 
In the same manner, if we multiply 

the real number a by i X i X i, the 
rotation is through three right angles, 

i.e., iXiXi = i^= —i- 

S 

cti 
--5 

cusa]/^ 

a^arnmrm 

Fio. 335. 

Multiplying by i X t X i X i = X = 1 is inter¬ 
preted as a rotation through four right angles, or back to the 

starting point. 
From the above, we also see that all even powers of i are 

either -|-1 or — 1, ahd all odd powers are either i or -i. 

Since —i means --1 • i, (—0* = (~1)* • = 1 ■ (~1)- 
Hence, we find a second number —i whose square is —1. If we 

designate that is to mean the particular square root of 
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— 1 which we call i, then — \/^, or — t, is the other square root 
of -1. 

Now i is called the imaginary unit and ai an imaginary number, 
where a is any real number different from zero. The expression 
a + is called a complex number, a and b being any real 
numbers. 

664. Addition and Subtraction of Imaginary Numbers. 
From the previous article, 

Oi = 0. 
li = i. 
z “f- t ~ 2z. 
i + i + i + i+ . . . 4* i to n terms = ni, (1) 

or a\/ — 1 = ai. 

±\/—a^ = ±\/a^ X 1) = ±\/a^' V"—1 = 

±a\/^l = ±ai. (2) 

ai -|~ = (u 4 b)i. (3) 

666. Multiplication and Division of Imaginaries.—Formula 
(1) of the previous article [664] defines the multiplication of 

imaginaries by real numbers. 

V “ 1 X \/^ = i = — 1. 
Then 

\/ — a X • \/6 • i • i = \/a6 • ( —1) = --\/ab. 

Rule.—The product of two imaginaries with like signs before 
the radicals is a negative real number. The product of two imagi¬ 
naries with unlike signs is a positive real number. 

In operating with imaginaries, a number in the form \/—a 

should always be written in the form y/a ' i, for obvious reasons. 
Thus in the division of imaginaries, 

\/ — a __ y/a^i _ la^ 

\/ — 6 y/b -i ylb 

666. Meaning of Complex Numbers.—Any real number, or 
any expression containing only real num¬ 

bers, may be considered as locating a point 
on a line. 

Consider the expression 5 + 3, and l^t 
0 be the point represented by jsero on the line OB. OA con- 

0_A I 
l<. -... 5-... J4. j 

Fio. 330. 
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tains 5 units, AB contains 3 units, and OA + AJ3 = OB *= 5 + 3; 
that is, OB is the graphical representation of 5 + 3. 

In an analogous manner, an expression as a + bi, which is 
called a complex number, may be taken as the representation of 
a point in a plane. 

The real portion of the complex number is measured along 
the horizontal axis, and the imaginary portion is laid off along 
the vertical axis. The axes are called, respectively, the axis of 
reals and the axis of imaginaries. Thus, the point 
P which represents the complex number a + bi 
is the point whose abscissa is a and whose ordinate 
is 5. 

The distance OP is called the modulus of the 
number a + and is readily seen to be equal to 

+ 6^. 
667. Complex numbers are quite common, often occurring as 

roots of equations of higher degree than the first, and their intro¬ 
duction makes possible the solution of equations not possible 
without them. 

Assume a quadratic equation, as 

^2 _ 8x + 18 = 0 
whose roots are 

X — A + 1.41\/-'l and 

a; = 4 - 1.41\/^. 

Fia. 337. 

y 

Fig. 338. 

Constructing the graph, it is evident that the 
graph does not intersect the X-axis, and the equa¬ 
tion has no real roots. 

In the solution of quadratic equations with 
negative discriminants, resolve them into expres¬ 
sions which consist of a real number associated 
with an imaginary number by plus or minus 

signs. 
668, Vector Representation.—If wc represent a by a hori¬ 

zontal line segment, measured to the right if a is positive and to 
the left if a is negative, and the imaginary number ai as a vertical 
segment, measured upward if a is positive and downward if a is 
negative, this then suggests the possibility of representing complex 
numbers by segments having other directions in the plane. 
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The Complex Ntunbeti x + jrl.—If a? be a real number 
and yi an imaginary number, then the vector OP will be the sum 
of the two components or OP = a? + yi- 

Conversely, every number of the form x + yi represents a 
definite vector in the plane. 

jfiP If its initial point is at the origin, its terminal 
point is at the point (x, y). 

If we consider the vector as starting at 0, 
the point {x, y) determines the vector. We can, 

... X y| represent a point in a plane by a com- 

Fig. 339. plex number, viz,, the number x + yi will repre¬ 
sent the point whose rectangular coordinates are (x, y). 

This representation of a; + iy is the same as the representation 
already described in Art. 666. 

Example op Addition.—^Represent by vectors the 
complex numbers 2 + 2i and 1 + and find their sum. 

Vector OA represents the complex number 2 + 2i, 
Vector OB represents the complex number 1 + 6i. 
The sum of the two vectors is the vector OC. 
Example op Subtraction.—Find the vector that 

represents (1 + i) — (2 — Zi), 
Since the subtrahend plus the remainder equals the 

minuend, we can apply the above principle of 
addition by making the vector 2 — Zi and the 
vector sought, the adjacent sides of the par¬ 
allelogram, and the vector 1 -H i the diagonal. 

Since we represent a complex number 
by the terminus of a vector, two complex 
numbers are, therefore, equal only if they 
represent the same point, that is, if they 

have their real and imaginary parts respectively equal. The two 
abscissae must be equal and the two ordinates must be equal. 
Also, if a? + = 0, then a; = 0 and yi == 6. 

670. Conjugate Complex Numbers.—Two complex numbers 
are said to be conjugate if they differ only in the sign of the term 
containing t. 

Conjugate imaginaries have a real sum and a real product, 

Fig. 340. 

as 
(s + iy) 4- (« — tV) ^ X + iy ^ X -- iy ^ X + X '\riy — iy m 2s, 

(x + iy)(x - iy) « a? — « s* + 2/®. 
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The product of two conjugate complex numbers is always 
positive and the sum of two squares. The sum, product, or 
quotient of two complex numbers is always a complex number 
of the typical form a + bi. 

Example. 

(x + yi) + (u + vi) = X + u + (y 4- v)i. 
Also, 

(x + yi)(u + vi) = {xu — yv) + (xv + yu)i. 

671. If a complex number is equal to zero, the real part and 
the imaginary part are separately equal to zero. 

If two complex numbers are equal, then the real parts and the 
imaginary parts are, respectively, equal. 

Example. 

li X + yi — u + viy 

then X ^ u and iy = tv. 

Complex numbers obey the laws of algebra through the funda¬ 
mental operations. 

672. Mixltiplication of Complex Numbers.—The multiplication 
is performed in accord with the algebraic laws as in the case of 
real numbers, 

(xi + iy i)(x2 + iy%) = XiX^ + iyiX^ + iy2X\ + i^yiy^, = 
(xiX2 - 2/12/2) + (Xi2/2 + X22/l)f. 

673. Division of Complex Numbers. 

can be simplified by multiplying both the numerator 
X2 + ^2/2 

and the denominator by X2 — iy^, the conjugate of the denomina¬ 
tor. This makes the denominator a real number. 

xi -f iyi XiXj -f iyiXj - ixiyi - i^yiyi ^ XiX2 + ViVt _ • Xjyt - xjyi 
Xi + iyi * + (2/2)* (Xi)^ 4- (Xi)^ + (2/1)* 

674. Polar Form of Complex Numbers.— y 
The point P (x, y) in rectangular coordinates 
represents the complex number x + yi to the 
origin 0. 

If we let (p, $) be tho polar coordinates of 
P (p > 0), with 0 tho origin and OX axis as 
the initial lin^, then 

X - p cos S and 

j/ = p sin 6, 

Fia. 342. 
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[318] X + yi - p(cos $ + i sin 

where p 6. 
The right-hand member of the equation is called the polar 

form. The angle 6 is known as the argument or amplitude, and 
p is called the modulus or absolute valuf(3 the complex number. 

Example.—Find the argument, the absolute value, and the polar form 
of the complex number 2 + f2\/3. 

Comparing 2 + i2y/3 to the general complex form x + iy, x — 2 and 

y = 2Vl. 

Pf24‘i2VS) 
Since 

P = Vx* + 2/® = \/4 + 12 = 4, [316] 

the absolute value p is 4. 
^ Moreover, 

X ^ 

Fig. 343. ^ 

.’. the argument B equals 60®. 
The polar form is 4(cos 60® + i sin 60®). 

tan ^ ^ = V3. [316] 
2 

676, The polar form, p(cos B + i sin B), is the expression of 
the complex number x + iy in terms of its modulus and 
amplitude. 

The operator (cos 0 + t sin B) which depends on B alone turns 
the unit lying along OX through an angle B and may, therefore, 
be looked upon as a versor of rotative power B, This versor is 
often abbreviated to cis B. 

The operator p is a tensor, which stretches the turned unit in 
the ratio of 1 : p. 

The result of the application of these two operators to the 
unit vector is to locate the point P at a distance of p units from 
the origin in a direction making an angle B with OX. 

It will be seen that the operator (cos ^ + i sin is simply a 
more general operator than i but of the same kind. The operator 
i turns a unit through a right angle and the operator (cos B + 
i sin B) turns a unit through an angle 6. 

If B be put equal to 90®, (cos B + i sin B) reduces to i. 
Since 3 — 4f = 5(f — |i), the point represented by 3 — 4i 

may be located by turning the unit vector through an angle 
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^ sin ^ = cos ^ (f) and stretching the result in the ratio 
of 1:5. 

676. Multiplication of Complex Numbers in the Polar Form.— 
If two complex numbers are written in the polar form, 

+ iyi = pi(cos + i sin di) and 
= p2(cos 62 + i sin 62). 

If we multiply the right members of the equations together, 
we have 
PiP2[cos 61 cos 02 + ^‘(sin 61 cos 62 + cos 61 sin 62) — sin Bi sin 62] 
= pip2[cos (^1 + 62) + i sin + ^2)]. 

See [306] to [308] for reduction. 
Thereforej the absolute value of the 'product of two complex 

numbers is equal to the product of their absolute values, and the 
angle of the product is equal to the sum of their angles. 

Example.—Find the product of (1 + i)(3 + fVs). 
Reducing to polar form as in Art. 674, 

\/2(cos 45° + i sin 45°) and 

2v^3(cos 30° + i sin 30°) are the two equations. 
Therefore, 

01 = 45°, 02 = 30°. __ 

Pi = “n/2, P2 = 2\/3. 
g, +02 = 75°. 

P1P2 = 2\/ 6. 

Therefore, the product is 2\/6(cos 75° + i sin 75°) by polar coordinates- 

The multiplication is shown graphically in 
Fig. 345, by rectangular coordinates, where 
Pi represents 1 + i. 

P2 represents 3 + i\/d. 

Pz represents (1 + i)(3 + i\/3) = 
(3 - V3) + i{3 + V3) « 
(3 1.73) + i(3 + 1.73) - 

1.27 + 4.73i. 
X + yi 1.27 + 4.73i by rectangular coordinates, and 

p(cos 0 + i iSin 0) = 2\/6(cos 75° + i sin 75°) 

= 4.898 X .2588 + i 4.898 X .9659 = 1.27 + 4.73i by polar 
coordinates. From [318] x + yi = p(cos 0 + i sin 0). A com¬ 
parison shows that the two methods check. 
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677. Division ot Complex Numbers in the Polar Form.—If 
we write the two complex numbers in the polar form, we have 

Pi (cos t sin Bi) _ 

ps (cos 6% + i sin e») ~ 
Pi (cos 6i + i sin gi)(coa gj — sin 6») _ 
pj (cos ^2 + i sin OtXcoa 6t — i sin ^2) ~ 
Pi [cos (01 — ^2) + i sin {$i — ^2)] _ 

P2(cos* 0i + sin* ^2) 

—[cos ($1 — $2) + i sin — 82) ■ 
Pi 

Therefore, Ike absolute value of the quotient of two complex 
numbers is the quotient of their absolute values, and the angle of the 
quotient is the difference of their angles. 

Example.—Find, anal3iiically and graphically, the quotient, 

3 + iVs -3-1 + 1. 

3 + i's/s_3 + t\/3 1 — t_ 
1 + i r+T ‘ 1 - i ~ 

(3 + V3) - t(3 - \/3) _ 
2 

3 + V3 3 - VI, 
2 2 

3 + 1.732 3 - 1.732. 
2 2 ^ 

= 2.366 - .634t. 

Using polar equations _ 

Pi = Vs* + (\/3)» = 2\/3. 

Pi = Vl* +1* - \/2. 

tan 8i = 

Si 
Pi 

tan 62 = 1. 
2V3 
V2 

2.45. 

- ffi «= 30* - 46* 

02 - 46*. 

-15* 

-= 2.46 [cos (-16*) + isin (-16*)]. 
1 *1“ i 

2.46 [cos (-16*) + i sin (-15*)] - 
2.46 X .9669 - 2.45 X .2688t - 2.366 - .634i, 

which checks with the above resolt. 
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V 

Fio. 346. 

The graphical solution is shown in Fig. 346, where 

Pi represents 3 4- i\/i. 2j- 
Pt represents 1 + i. „ 

„ ^ 3 + iVS ' 
Ps represents—j—j—r-« } 

678. De Moivre’s theorem states that 

[319] (cos 0 + i sin d)" = cos n6 + i sin nff, 346. 

whether n is positive or negative, fractional or integral. 
The theorem of Art. 676 also holds for the product of any 

number of complex numbers; that is, 
1. The absolute value of the product of any number of complex 

numbers is equal to the product of their absolute values. 
2. The angle of the product of any number of complex numbers 

is equal to the sum of their angles. 
Then 

[p (cos 0 + t sin e)]“ = p"(co8 nff + i sin n0). 

If p = 1, this becomes 
(cos 0 -{■ i sin 0)" = cos n0 + i sin n0, 

which expresses De Moivre’s theorem. 
(cos 0 + i sin 0)“' = cos ( —^) + t sin ( — 0). 
(cos 0 + i sin 0)~’’ = cos (—p0) + i sin (—p0). 

(cos 0 + i sin 0)t = cos f sin 

(cos i sin tf) « = cos + i sin^^)’ 

The general formulation of the problem of finding the nth roots 
of a number, z = p(cos 0 + i sin 0), is 
[320] 2 = p [cos {0 + k- 360°) + i sin {0 + k- 360°)] 

where k is an integer. Or 

- - r l9 + k- 360°\ ... /0 + fc •360°\-j 
o" j^cos 

The n values of A:, 0,1, 2, 3,4, . . . n - 1', give n values for 2», 
and no more values are possible. 

Example.—Find the Sith roots of (2 + 2i). 

(2 + 2») - 2V2 (cos [45° + k • 360°] + i sin [46° + k • 360°]), 

(2 + a0» - (2V2)» [cos (9° + fc • 72°) + i sin (9° + A • 72°)]. 
and 
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For values of ft * 0, 1, 2, 3, 4, we get the five roots, 

* (2\/2)J (cos 9® + i sin 9®), 
(2\/2)* (cos 81® + i sin 81®), 
(2V2)i (cos 153® + i sin 153®), 
(2\/2)l (cos 225® + i sin 225®), and 
(2V^)i (cos 297® + i sin 297®). 

All the above roots are different and may be evaluated by 
using a table of natural functions. 

679. Application of De Moivre’s Theorem to Trigonometry. 
Case 1.—To express cos nS and sin nd in terms of cos d and sin By 

where n is a positive integer. 
From De Moivre’s theorem, 
cos nO 4* i sin nS == (cos 6 + i sin B)^ = 

cos’* 6 + n-i- cos’*"^ ^ • sin ^ ^'P • cos’*"* B • sin* B +. 

Now equate the real and the imaginary parts of the equation, 

which gives the desired expression. 

Example.—Express cos (6B) and sin (QB) in terms of cos B and sin B. 
cos 6^ + i sin 6B = (cos B + i sin B)^ == cos® B + 

6i cos® B- sin B + (—15) cos^ B • sin^ B + (— 20)i cos® B • sin® B 
+ 15 cos® B • sin^ B + cos B • sin® B ~ sin® B, 

Equating the real parts, 
cos 6B = cos® ^ — 15 cos^ B • sin® ^ + 15 cos® B • sin^ B —sin® B, 

Equating the imaginary parts after dividing by i, 
sin 6^ = 6 cos® ^ • sin ^ — 20 cos® B • sin® ^ + 6 cos ^ • sin® B, 

Case 2.—To express cos’* B and sin’* B in terms of sines and 
cosines of multiples of we place u = cos B + i sin By and we 
have 

u* =* cos kB + i sin kB and 
U-'k -- CQQ ^ ^ (jQg ^ gJjj 

Adding and subtracting these equations, 
+ w"* — 2 cos kB and 

yk _ — 2i sin kB^ 

for any integral value of ft. 

If ft = 1, 

2 cos ^ = M + 
2£ sin =* u — 

,*.2^008’* 0= (u4u”’*)’‘“w**+n7i*‘~®+^ 
4» 
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The coefficients of the binomial expansion are equal in pairs 
and can, therefore, be grouped as follows: 

2^ cos’* 0 = (u’* + U-’*) + -|- i4-(n-2)) ^ _ 

But the terms in parentheses are equal, respectively, to 
2 cos nS, 2 cos (n — 2)6^ . ... 

Example.—Express cos^ $ in terms of cosines of multiples of 6, 
We set 

2^ cos^ 6 = (u + + 4u2 + 6 + 4^“^ + 

+ 4(i/2 + + 6. 

= 2 cos 4^ + 4 • 2 cos 26 + 6. 
Dividing both sides by 2^ 

cos^ 6 = J(cos 4^ + 4 cos 26 + 3). 

Example.—Express sin^ 6 in terms of sines of multiples of 6. 
We set 

2H^ sin^ 6 = (u — or 

32^ sin® 6 = — 5u^ + lOtfc — — u~^ = 
(u^ — w”®) — 5(w^ — u~^) + i0(u — w"^) = 

2i sin 50 ~ 5 • 2i sin 30 + 10 • 2i sin 0, whence 
sin® 0 = tV (sin 60 — 5 sin 30 + 10 sin 0). 

680. Expansion of sin n6 and cos n6 by De Moivre’s Theorem 

and the Binomial Theorem. 
cos n6 + i sin n6 = (cos 6 + i sin 0)” = 

Tli'tv — 1) 
COS’* 0 + ni cos’*”^ 0- sin 0-2—~ cos’*'"'-^ 0- sin^ 0 + 

— in in — l)(n — 2) i n i 
--^ cos" ^ 0 • sin^ 0 + 

- 1).(» COS'-* e. sin‘ 0 + 

r 
in{n - l)(n - .2Kn - 3) (n^. sin «(/ + . 

15 
Equating the real parts, 

COS n6 = cos’* 0 — cos"'^ 0 • sin* 0 + 

cos"-‘ 0. sin* 0 + . 
4 

Let a ^ n0. Then 0 = - and n 
n 

% where a is to remain 
0 

constant while n and 0 vary. 
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Substituting these values, 

cos a = cos’* 6 — — cos”"^ 6 • sin^ 6 + 

m - oc- - ^)(5 - 

a(a — 
= COS" 6 — 

a{a — 6) (a — 26) {a — SB) 

“ ^4 

cos"" ^ 6- sin'* 6 . 

e) 

cos" ~^ 6 

, ^ /sin ^\“ , 
cos" -^ 6 • j + 

Now as n becomes infinite, - approaches zero, cos 0 —> 1, 

^ 1 A n -->1, and a — 6—^a. 
u 

Therefore, 
roon 1 a- . a® , 
[321] cos « = l”|2+|4""j0 + * • • 

a is measured in radians. 
Ecjuating the coefficients of the imaginary parts, 

sin nS = n • cos"“* ^ • sin ^ — 
n{n — l)(7i — 2) 

13 
cos"~^ 6 • sin^ 6 + 

n(n — l)(n — 2){n — 3)(n — 4) • , 
- ^- -- - cos" 0 • sin" 6 + 

Making the substitutions for 6 and n as above, 
^sin 6\ a{a — 0)(a — 26) 

sin a = a • cos -»rr) 
, /sin 6\* 

COS" ^ ) 
13 

+ «(« - 0){a - 20j(a - 3g)(a - ^sin oy ^ 

Then, taking the limits as n becomes infinite, 
QfZ ^6 ^7 

[322] sin a = a - - I + . . . 

a is in radians as before. 

The above series for sine and cosine are used in computing 
the tables of sines and cosines (see calculus section, Art. 980). 

681. Exponential Values of sin 0, cos 0, and tan 0. 
From algebra (Art. 462), 
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If e'* is substituted for x, where i = v^— i, then 

,i» = 1 + + '4 ++ . . . 

"V '2 ■'■14 |6 

hut from the previous article, the expressions in the paren¬ 

theses are, respectively, ecjual to cos $ and sin 0, or 

e*® = cos ^ + i sin d. (2) 

yubstituting x = —id above, then 

= cos 6 — i sin 6, ()■}) 

Subtracting (3) from (2), 
ptO _ p~iB 

sin 6 = 

Adding (2) and (3), 

Dividing (4) by (5), 

e'^ + e~'* 
cos 6 = 

tan e = -7-nri— i8^■ 

682. Exponential Forms of Complex Numbers.—From the 

previous article, 

cos 0 -{■ i sin 6 = e’*. 

Then 

X iy = p(cos 9 + i sin 9) = pe**, 

9 expressed in radians. 

Thus, if 

Xi + iyi = pi(cos 9i i- i sin 9i) = piC’*' and 

Xt + iyi = P2(cos 02 + i sin fij) = pjc**’, 

then 

(xi + iyi){x2 -I- H/j) = p,P2p''®'+«''. 



CHAPTER XXVIII 

HYPERBOLIC FUNCTIONS 

683. H3rperbolic Functions.—Certain combinations of the sum 
and difference of two exponential functions as and 
eu _ occur so often in mathematical work that they have 
been given the special name of hyperbolic functions. They are 
defined as follows: 

gM   g—U 

2 ■ called the hyperbolic sine of u and designated by 

sinh Uj or 
— €~^ 

sinh w = — 2- 

+ 6“^ . 
is called the hyperbolic cosine of u and designated 

by cosh w, or 

Likewise, 

cosh u = 
gli 4. g-u 

^ , sinh u 
tanh u = — 

— €~ 

coth u == 

sech u = 

cosh u 6“ + 
_1 _ e^ + 

tanh u — e~^ 

__J „ = 2 
cosh u + e~'^ 

1 2 
cosech u = ~ , — 

smh u 

684. The following formulae analogous to the circular func¬ 
tions can easily be obtained from the definitions above: 

cosh^ u — sinh^ u = 1, 

for 

V 2" ) \ 2 ' 7 4 4 
In a similar manner it can be proved that 

406 
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sech^ u + tanh^ u = 1, 
ctnh^ u ~ csch^ u = 1. 

sinh u — \/ cosh^ u — 1 

1 _ 

\/ctnh^ u — 1 

cosh u = \/sinh^ u + 1 

_ ctnh u 

Vctnh^ — 1 

, sinh u 
tanh u = - -7-z__— 

Vsinh^ a + I 

= \/l — sech^ u 

tanh w 

\/i — tanh^ u 

\/1 — sech^ u 1 

sech u csch u 

_1 

\/l — tanh^ u 

\/csch^ ?/ + 1 _ 1 
csch u sech w 

\/cosh^ u — i 
cosh u 

1_^ J_ 

+1 ctnh u 

^u±v __ ^-(u + ») 

sinh {u ± v) -^-— sinh u cosh v ± cosh u sinh v. 

qU±v , ^-{u±v) 
cosh {u ±v) —-—^-= cosh u cosh v ± sinh u sinh v. 

_ _ tanh u ± tanh v 
tan {u ± V) — ^ 1 + tanh u tanh v 

sinh 2u = 2 sinh u cosh u, 
cosh 2ii = cosh^ u + sinh^ u, 

2 tanh u 
1 + tanh^ u 

686. If a: = a cosh u and y = a sinh the difference between 

their squares is 

tanh 2u = 

^2 __ ^2 _ g2 (cosh**^ u — sinh^ u). 

Since cosh^ u — sinh^ w = 1. 
Then 

^2 _ y2 « ^2 

This shows that the hyperbolic functions in the parametric 

equations, 

X — a cosh u and y — a sinh 

have an analogous relation to the rectangular hyperbola 
= a* that the parametric equations x = cos d and y = sin $ 
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(Art. 805) have to the circle = a*. This accounts for 
the name hyperbolic functions. 

686. If cosh u = ^ ^ ^ is added to siiih u = -— 

, ... 4- 
cosh u + sinh u =---1---, or 

A A 

6“ = cosh u + sinh u. 
gU _ ^ gU _|_ g-tt 

If sinh u =-- is subtracted from cosh u =-jr- 

then 

6““ = cosh u — sinh u. 

687. Relations between the Trigonometric and Hyperbolic 

Functions.—If in (4) of Art. 681 we substitute i 0 for 6, then 

i sin i 6 = — ^ (e^ — e~^) = —sinh 6. 

sin i 6 — i sinh 0. 

Likewise, if in (5) of Art. 681 we substitute id for then 

cos id = = \{e^ — e~^) = cosh d, 

.*. cos id — cosh d. 

Dividing sin i d by cos i d, then 

tan id — i tanh d. 

688. Expressions of sinh x and cosh x in a Series.—From 
sinh X = — e~^) [323] and 

e- = 1 + X + ^2“ + + |4 + • • • “^63) 

sinhx 1 + x + ^2 + :3 + 
"U( )-(■- 

, X* X* 

)- ' + l3+i + 

sinh X = X + ;r, + ir + 
!3 5 

In a similar manner it may be shown that 
X^ X^ X® 

cosh 2: = 1+ j2 + j4 + jg + • • • • 

The above series for sinh x and cosh x are convergent for all 

real values of x and may be used for computing the hyperbolic 

functions of x. 
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689. Graphs of Hyperbolic Functions. ‘ 

• u Sinn X ~ - -- 
2 



CHAPTER XXIX 

SOLUTION OF TRIGONOMETRIC EQUATIONS 

690. The solution of Trigonometric Equations may 1)(‘ 

divided into three parts: 
1. Express all the trigonometric ratios occurring in the equation 

in terms of a single ratio of a single angle. 
2. Solve the equation resulting from (1) as an algel)raic 

equation. 
3. Determine all the angles corresponding to the values of thci 

function found in (2). 

Example.—Given tan 26 = V- 
2 tan 6 ^ 24 

1 - tan^ 0 7 ‘ 

12 tan^ 0 + 1 tan 6 — 12 0. 

Solving as a quadratic, 

tan B ^ or I = -1.33, or .75. 6 - I2().(E, or 30.9°. 

Example.—Given cos 0 + sin 6 = 1.25. To find 0. 

Expre.ss cos 6 in terms of sin 0 by formula, 

cos ^ = \/l — sin^ 0 (273). 
Substituting, 

.sin ^ -f \/l — sin^ 6 — 1.25, or 

\/1 — sin“ 6 ~ 1.25 — sin 0. 

Squaring both sides, 

1 — siri^ 6 = 1.502 — 2.5 sin 6 -}- sin^ $, 

2 sin2 6 - 2.5 .sin 6 = -.562. 

sin^ 0 — 1.25 sin 6 = —.281. 

Solving the quadratic, 

sin 6 = .95 or .294. 

6 = 72° 53' or 17° 7'. 

Example.—Given tan 6 • tan 26 + cot ^ + 2 = 0. 
Use 

I”®'- 
410 
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Substituting in the above equation, clearing of fractions and collecting 
terms, we ha\’e 

tan^ 6 — 2 tan ^ — 1=0, 
from which 

tan » = 1 ± \/2 = 2.4142, or - .4142. 
e = 07'= 30', or -22° 30'. 

Exami'LE.—Given tan“^ (.c + 1) + tan“^ (x — 1) ==tan"^2. 

To find X. 

Using 

then 

l^t 6 = tail"* (x -h 1); then tan 0 = x -f 1. 
= tan“^ (x — 1); then tan /3 = x — 1. 

j- + J + j - 1_ 2x 

~ 1 - (x + IKx - 1) “ 2 - X*' 

+ /3 = tan”* j = tail"' 2, or 

2x 
o" ~ 2 whence 

Solving (juadratic, 
x2 -f- X - 2 = 0. 

X = —2, or L 

691. Equations of the form, 
sin {X + B) = c sin x, 

w'luM*e ZB and the constant c are known, can be reduced to 

2) "c - 1'“" 2' 
from which tan x and then x can be found. 

692. Equations of the form, 
tan (x + B) == c tan x, 

where ZB and the constant c are known, can be reduced to 

sin (2x + B) = ^ ^ I sin B, 
c — 1 

from which sin (2x + B) and then x can be found. 
693. Equations of the form, 

a cos n6 + b sin nO = r. 
can be reduced to 

6 == ^Ttan"** y + sin~* —7 ^ - 1^ 
7i[ b Vci^ + 

provided \c\ ^\/a* + h'L 
The sign of the radical is to be taken the same iis the sign of b. 
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694. Graphical Solutions of Tiigonometric Equatims. 

orST’* 

Example.—2 cos a: = *. To find x (in radians) 
for which this relation holds. 

Draw the curves, 

^ 2 cos X and y => x. 
The abscissae of each point of intersection is a root 

of the equation. 

Fio. 349. 996. The equation 1? sin (x + c) = o cos x 
4- 6 sin X is true for certain values of C and R. 

Draw any angle, x = XON, in the first quadrant and the 
constant angle, c = NOP, with OP — R and NP perpendicular to 
ON. Let PN = a and NO = b. Draw PS and NQ parallel to 
the F-axis and MN parallel to the X-axis. 
Then 
PM = a cos X and MS = NQ » & sin x. 
PM -f- MS == PS = iZ sin (x H- c) = a 
cos X 4- b sin X. 

In the same manner it may be shown 
that the above holds true when x lies in 
the other quadrants or has any value 
whatever. From the figure. 

tan c = ^, or c = tan“‘ and i? = \/a* -b h*. 

696. Graphs of the form, y = o cos x 4- b sin x, can be con¬ 
structed by finding the c and R from the above formulae and 
constructing the graph of y = sin (x -|- c), as in Art. 619, 
which is much easier to make than y = o cos x 4 6 sin x. 

Example.—Construct the graph of y = cos x — sin x 4 1. 

o = 1, h = —"N/i, tan c — c = —30® = —%• 
Vs 6 

R = VT~+S = 2. 

Fio. 361. 
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We, therefore, draw the graph of y 2 sin + 1 or make the 

graph of y «* 2 sin and raise the origin 1 unit. 

097. Example 1,—Draw the graph oiy - sin 2x + sin x + i. 
Draw the graph of y = sin 2x and y = sin x on the same axes, with x 

expressed in radians, and then add i to the sum of the ordinates of these 
graphs. The new graph will be that of 

y = sin 2x + sin x + 2> 
as shown in Fig. 352. 

Example 2.—Draw the graph of 2/ = sin 5x — sin 3x + sin x. 
Draw the graphs of yi = sin 5x, = sin 3x, and yz = sin x on the 

same axes, with x expressed in radians, and then take the algebraic sum 
of the ordinates of these graphs for the ordinates of the new graph, which 
is constructed as shown in Fig. 353. 

698. Simultaneous Trigrnometric Equations.—A few examples 

with graphical solutions will be given. 

Example 1.—Solve ^phically the simultaneous equations, 

y m 1 — cos X and 
y «* 1 + siu 35. 
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The graphs are constructed and their intersections determine the 
values of the unknown which satisfy both equations. The values of x 
are 

X — nw + Jtt, 
where n is any integer. 

Example 2.—Solve graphically the simultaneous equations, 
y — S sin 6 + 2 cos 6 and (1) 
2/ = 3 cos ^ + 2 sin 6, (2) 

From Arts. 695, 696 these equations can be changed to the form, 
2/ = 72 sin (^ + c). 

In equation (1), a = 2 and 6 = 3, tanc = f, c = 33.7®. 

R = Va* + 6* = Vi3 == 3.6. 
Equation (1) becomes2/ = 3.6 sin ($ + 33.7®). 

In the same manner in equation (2), a =: 3,5 == 2, tanc « J. 

c = 56.3® and R = VTs = 3.6. 
Equation (2) becomes y = 3.6 sin {6 + 56.3®). 

From the graphs (Fig. 355), 

0 = nir + 

n being any integer. 

699. In many cases the graphical method of solving simultane¬ 
ous trigonometric equations is the only practical method of 
solution, as the following example "will indicate: 
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Example 3.—Solve graphically the simultaneous equations, 

y = sin 2a; + sin x + I and 
y = sin hx — sin 3a; + sin x. 

The graphs of these equations are constructed as shown in Art. 697. 
The intersections show the values of the unknown which satisfy both 
equations. 

Fig. 356. 



CHAPTER XXX 

SIMPLE APPLICATIONS OF COORDINATES 

700. The application of algebraic methods to the solution of 
geometric and trigonometric problems is called analytical 
geometry. 

701. Values of Line Segments.—The length of a line is deter¬ 
mined by the number of units traversed by the point that 
generates it. 

A line segment read in one direction is the negative of the same 
line segment read in the opposite direction. Thus, PiPt = 
-PiPi. Then PiP* -I-P2P1 = 0. 

Fia. 367. 
t 

The laws for the addition and subtraction of line segments 
are the same as those which govern the addition and subtraction 
of algebraic quantities. 

For convenience, we designate the direction to the right on a 
horizontal line as positive and to the left as negative. 

The line segment between the initial point and the terminal 
point determines the sum of the positive and negative line seg¬ 
ments. In the following figure, the tracing has been done over 
parallel segments instead of over the same line to avoid confusion. 
Thus, 

AC + CB + BD + DE + EC -- AC. 

A 

I 
I 
f 

—rrr—»r 

-hr 

I I 

—ji> I 
Oh-*rr~\^ 
-Aff 

Fro. 368. 

416 
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The sum is either —CA or +AC. 

Example. 

AB --CB + CD ^ AD. 

B i ft \P 

J ̂-CB’+BC c 
c D 

Fig. 359. 

The value of the sum of the line segments is AD, for AD is a 
segment from the initial point to the terminal point. 

702. Geometry of one dimension is restricted to a line. The 
point is the elementary conception. Position is given by one 
variable, which indicates the position of a point in that line. 
Any algebraic equation in that variable represents one or more 
points. 

703. Geometry of Two Dimensions.—The point may be taken 
as the fundamental element. Position is given by two variables 
referred to two fixed lines, called axes, in a plane. Any algebraic 
equation in two variables represents a curve, or locus, whose 
generating point moves so as to satisfy some condition or law. 

704. Coordinates.—Rectangular coordinates, principally, are 
used in analytical geometry although it is often convenient to 
use oblique or polar coordinates. 

The relation of rectangular coordinates {x, y) to polar 
coordinates (p, B) has been shown to be (see Art. 655), 

X » p cos B [313]. V = y/x^ + [316]. 

y p sin ^ [314]. B = tan~^ | [316]. 
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The polar form locates a point in a plane just as definitely as 
the rectangular coordinates by the distance from the origin or 
pole (p, called the radius vector)^ and the direction which the 
radius vector makes with the Z-axis (S, called the vectorial 
angle). 

We have seen that we can change from rectangular coordinates 
to polar coordinates by substituting p cos d for x and p sin ^ for y 
in the rectangular equation of the locus, or from polar coordinates 
to rectangular coordinates by substituting x for p cos 6 and y 
for p sin $ in the polar equation of the locus. 

Substituting 

\^x^ + y^ for p, and ^ for tan 6 
X 

in the polar equation sometimes conveniently effects the trans¬ 
formation from polar to rectangular coordinates. 

706, In the case where the origins are located 
at different points, 

[323] X ^ a + p cos 0. 
[324] 2/ = 6 -b p sin 

Fig. 361. 

706. If the polar axis makes an angle <p with 
the X-axis, but the origins are at the same point, 
then 

[326] X = p cos (d + ip). 

[326] 2/ = p sin (ff + <p). 
Fia. 362. 

707. If the origin is translated to the point (a, 
b) in the above case, 

[327] * = o + p cos (fl + <p). 
[328] 2/ = 6 + p sin (ff + 

Fio. 363. 

708. Distance between two points, as A (xj, 
yt) and B (xi, yi) (Fig. 364). 

From the triangle ABC 

JB* = 
Putting this geometrical relation in terms of 

the coordinates, Fio. 364. 
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[329] d = Vixi - xj)* + (j/i - ViY, 

where d is the distance between the points A and B. 
709. Using Oblique Axes.—From the law of cosines (Art. 642), 

[330] + 62— 2ab cos C, 

we have 

AB2 = AC2 + 5C2 - 2 (AC)(BC) cos (180^^ - <p). 

But 
cos (180° — (p) = —cos 

Therefore, putting the trigonometric relation into terms of the 

coordinates, 
= {xi - XiY + (?yi - yiY + 2(xi - X2){vi - 2/2) cos ip 

and ___ 

[331] d = V(xi - XiY + (lyi - 2/2)^ + 2(a:, - X2)(2/i - 2/2) cos<^. 

710. Using polar coordinates, the points are A (pi, di) and 

B(p2, ^2)- ____ 
[332] d = Vpi" + P2" - 2piP2 cos (62 - di). 

Example 1.—Find the distance between the points (4, -6) and 

(—3, 6) rectangular coordinates. 

Substituting in ^ 

d = \/(xi — iCa)’ ^ (^1 y2)S 

d • V\A~ (-^W+ (+6)1" = 

\/^y* + (11)^ = v 170. 

Example 2.—Find the length of the side I of the given triangle by 
means of analytical geometry, using oblique axes. 
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Given two sides and the included angle, 

OA - 3. 
OB = 5. 

e = 53.2*. 

Assume two sides of the triangle as axes of coordinates, using 

d = V— a:j)* + (yi — j/i)® + 2(xi — — Vt) cos B. 
Then 

d = \/(5 - 0)‘ + (0 - 3)* + 2(5 - 0)(0 - 3).6 = 

^25 + 9-18 = Vie = 4. 

,4- V. 
Fig. 367. Fio. 368. Fia. 369. 

711, Angular Measurements between Lines.—Positive 
angular measure is taken counterclockwise between two lines 
and is less than 180®. In Fig. 368, the angle which A makes 
with B is the angle starting at B and measured counterclockwise. 

The angle that B makes with A is measured by starting at A 
and measuring the angle to J5 as in Fig. 369. 

The angle measured in the second case is the supplement of 
the first angle, or the angle that A makes with B is the supple¬ 
ment of the angle that B makes with A, 

712. Slope or Inclination of Lines.—In rectangular coordi¬ 
nates, the slope or gradient of a line is the ratio of the change in 
the ordinate to the corresponding change in the abscissa of a 
point moving along the locus. 

The slope is positive if the ordinate increases as the abscissa 
increases and negative if the ordinate decreases as the abscissa 

increases. 
The slope, since it is the ratio of the change in the ordinate 

to the corresponding change in the abscissa, is tan By where B is 
the angle which the line makes with the X-axis. 

P P 

Fig. 370. Pig. 371. 

Let m =« slope = tan B, 
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713. The Slope of a Line through Two Points Pi(xi, yi) and 
P2(3C2, 72) in Terms of the Coordinates.—If m is the slope, then 

[333] m 

Fig. 372. 

The notation 

Vi - 2/2 

Xi — Xj 

Note that the slope is given in terms 
of the coordinates of the two points. 

In the case where a line is parallel to 
the F-axis, we cannot speak of its slope 
since the change in ordinate correspond¬ 
ing to a change in abscissa means nothing. 

m = oc 

means simply that the line is parallel to the F-axis and its slope 
is not defined. 

714. Parallel Lines.—If two lines are parallel, 
then 61 and 62 are equal, whence the slopes are 
equal, or 

mi = m2. 

716. Perpendicular Lines.—Assuming the lines 
perpendicular, then 

02 = ^1 + 2’ 

whence 

[334] tan dt = — cot 0i = — 

or 

[336] ms = —: 

Fio. 373. 

tan 61 

1 
mi 

Two lines are perpendicular if their slopes are negative recipro¬ 

cals. 
716. The Angle One Line Makes with Another.—^Let jS be 

the angle h makes with h. 
Then 

0a = 01 + ^> or “ 0i» 
whence, by trigonometry, 
^ - tan 02 - tan 0i ,00^1 _ 1^2 - mi 
tan /S “ j . tan 02 1 + 

and 

1^0. d75« 
[836] P « tan" 

m2 mi 
1 + m2mi 
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If, however, jS' is the angle which h makes with Z2, 
jS, tan /S' = — tan ^ (Art. 603), and hence, 

tan jS' = 
mi — m2 

1 + m2mi 

180® - 

Example.—Find the angle between the lines joining (5, 0) to (6, \/3) 
and (0, 0) to ( — \/3, —5). 

Let mi = slope of the first line = " = \/3. [333] 

m2 = slope of the second line = - ^ 
o + Vs 

Substituting in above, m2 has the greater slope; then 

, V3 
= tan ’- 

-Vs 

1 + Vs 
Vs 

1 

2 

Vs 

r 
= 10“ 50'. 

717. Dividing a Line Segment in a Given Ratio.—^Let Pi 
and Pi be two fixed points on a line. 

¥,-A—%- 

Fig. 376. 

A point, as A, divides the segment internally if it lies on the 
line between Pi and Pi, and externally if it lies outside of Pi 

and P*. 
The position of the point of division depends upon the ratio 

of its distances from Pi and Pi. If the line has a positive direc¬ 
tion, the conventional way is to consider the point A as dividing 
the line into segments PiA and APi, and the ratio of division is 

PiA 
APi 

For internal division, both segments are read in the same 

direction as P1P2, thus. 

Pi-»-^P* 
Pi—»—A-^—Pi 

For external division, the ratio is 

PiA' 

A'P-2 
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in all cases. Either PiA' is positive and A'P^ is negative, or 
PxA' is negative and A'P^, is positive, and, therefore, the ratio 
is negative in both cases. 

Pv 
Pv -P^ 
-A' 

Pt—^A' 

Pi->-P, 
A'-t-Pi 
A'-.-Pi 

1{ PiA' is positive and A'P^ is negative, then 

PiA' 
A 'P.. 

If PiA' is negative and A'P2 is positive, then 

PiA' 
A'P2 

< 1. 

718. To Divide the Line Joining Two Points (xi, yO and 
(X2, 72) in a Given Ratio r.—A (xi, yi) and /^(x2,2/2) are the given 
points and C (x, y) is the required point of division. 

By similar triangles 

CD CB 
Then 

Likewise, 

X — Xi 

X2 — X 
r and x 

Xi + rx2 
1 + r 

EC ^ y_ 

DB yt - y 1 + r 

If C (x, y) is between A and B, then r may have any positive 

value. 
If C is on the line .produced through A, then r is negative and 

numerically less than 1. 
If C is on the line produced through B, then r is negative and 

numerically greater than 1. 
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Whether the ratio is such to divide the line externally or 
internally^ the coordinates of the |)oint of division for that 
particular ratio are 

X 
Xi + rx2 
1+r 

and y = Vi + m 
1 + r 

To find the midpoint of a line segment, the ratio r is equal to 1, 
and the above formulae become 

719. Area of a Triangle.—Area AABC = AABD + ABCD + 
AADC. Since the area of a triangle equals one-half the product 
of its base by its altitude, then 

Area AABD = = 1 (x* - XiXyt — yi). 

Area ABCD - ^ ^ (a:* - Xt)iy» — yt). 

Area AADC = = 1 (x, - Xi)(y» - j/2). 

Area AABC = ^[(0:2 - xt){yt - yi) + (x, - Xt)(,yi — yt) + 
(xs — Xi)(yt — ^2)], which reduces to 

[337] AABC - ^[xiyt -b Xtyt + X3J/1 - yiXt - ytXz - j/sXi]. 

720. A very good rule to follow is to write down in a column 
the abscissae of the vertices taken in a counterclockwise order. 

Start a second column of the ordinates but +X1J/2 —yiXt 
begin the column with the ordinate of the +Xtyt —ytXt 
second vertex and follow the third ordinate +xsj/i —yiXi 
with the ordinate of the first vertex. 

Place a plus sign before each product, as shown. 
Start a third column using the ordinates and writing them in 

the same order as the abscissae of the first column. Then 
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plftcc n6xt to this a fourth column composed of the abscissae 
beginning with the second and following the third by the first 
as was done in the second column. Place a minus sign before 
each of these products. 

Then 

XiVt + Xtyz + Xzyi — yiXz — y^ycz — yzXi 

is the result of adding the products. 
721. Determinant Form for the Area of Any Triangle.— 

Assuming that the vertices are at the points (xi, yO, {xz, yz), and 
(,xz, yz), the determinant is written thus, 

2/1 1 
A - ^ Xz yz i 

xz yz 1 

Expanding this according to the rule for 
determinants, by adding the three products 
formed from the elements lying on the lines 

pointing to the left and subtracting the three 
products formed from the elements pointing to 
the right there results the expression, 

Xiyz + xzyz + xzyi - yiXz — y^xz — j/jXi. 

722. If the origin is at one of the vertices, as {xz, yz), then the 
point (xz, yz) becomes (0, 0), and substituting in 

[338] A = + Xzyz + xzyi — yiXz - yzXz - yzXi] 

Fia. 379. 

gives 

A = \[xiyz + 0 + 0 — yiXz - 0 — 0] = 

\[xiyz - yiXz]. 

Fio. 380. 

The determinant form is very convenient 
to remember, for xiyz — y\Xz in the deter¬ 
minant form is 

and then A ■= i 
X% pi Xj 2/2 

Example.—Find the Piea of the triangle formed by the origin and 
the pair of points (4,3) and (2,5). 

. A - J 2 6 “ K4 X6 - 2 X 3) * 7. 
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723. Area of a Polygon.—A polygon which + xij/j — yi** 
has its vertices given in rectangular coordi- + Xtyz — y^xt 
nates can be divided into triangles by drawing + x^y^ — yaXt 
the diagonals. Its area can then be found by + — y^x^ 
the same general scheme used in finding the + x^yi — yi^i 
area of the triangle. 

The vertices must be taken in order and counterclockwise, as 
Piixi, j/i), Pi(Xi, yt), Pi(x3, j/a) etc., and then the same scheme 
can be used as in the case of the triangle. 

For a five-sided polygon, as shown, the area would be 

■4 = M*i2/2 + x^yi + X32/4 + Xiyi -t- Xsj/i - yix^ - y^Xz - 
2/3X4 - ViXz - yzXi]. 

Example.—Find the area of the polygon shown in Fig. 381. 
-t- 2-4 = 8 
-f- 7 • 1 = 7 
-HU-4 = 44 
-1-17 • 11 = 187 
-t-14 -8 = 112 
H- 9 • 10 = 90 
-b 4 -2 =_8 

-1-456 
-2-7 = 14 
- 4 • 11 = 44 
- 1 • 17 = 17 
- 4 • 14 = 56 
-11-9 = 99 
-8-4 = 32 
-10-2 = 20 

-282 
Area =i[456 - 282] = 87. 

Example.—Find the area of polygon shown Fig. 382 as an exercise. 

724. Formation of Equations.—Problems are often given in the 
form of a geometric or trigonometric relation and in order to 
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determine the solution or to examine critically and apply the 
relation as a general case, we put the relation in the form of an 
equation. A few problems will illustrate. 

Problem.—A point moves in a plane so that its distances from the 
points (4, —3) Pi and (—3,6) P2 are equal. 

Find the equation of the locus of the point. 
Let P {Xy y) be the point. 

Our problem is to express the given relation in terms of x and ?/, or the 
coordinates of the point. 

From the relations given, 

PiP = P.2P. 

From Art. 708, the distance between two 

points, as PiP, is 

and also 

P2P = \/(^+ 3)2+'(?/ -W- 383- 

Moreover, 

Squaring both sides and collecting, 

x2 - Hx + 10 + j/2 + 0?/ + 9 = x^ + Rx + 9 + 1/^ - 12j/ + 36. 

7x - 9y = 0.^^ 

Problem.—The distance between two points 
is 8 inches. A point moves so that the sum of 
its distances from the given points is always 

equal to 10 inches. 
Draw the X-axis through the two points and 

the F-axis midway between, as shown in Fig. 384. 
From the conditions of the problem, 

P2P + P»P “ 10 inches. 

Writing this relation in terms of the coordinates, using the distance 

formula, [329] then 

V(« — 4)* + {yV + + 4)* -f {yY^ = 10, 

from which 
9x* + 252/* = 225. 

This locus will be recognized as the ellipse (Art. 200). 
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Ad 
Problem.—point P (x, y) moves so that the difference of its 

distances from Pj (5, 0) and Pi (—6, 0) is 
8. Find the equation of the locus of the 
point. 

From the statement of the problem, 

PiP - P2P = 8. 

Fig. 386. * Then 

V(X + 5)» + y* - y/{x - 5)‘ + = 8. 
Or 

9x* - 16j/* » 144. 

Problem.—Find the equation of the locus of a point whose distance 
from Pi (—2,2) is always equal to 4. 

Assume that P (x, y) is any point on the locus. 
From the statement of the problem, 

PiP = 4. 

jPvP = \/(x + 2)* +{y- 2)* = 4. 
Squaring both sides, 

X* + 4x + 4 + - 42/ + 4 = 16. 
Or 

X* + 2/* + 4x — 42/ = 8. 
This is the equation of the locus. It represents a circle, since the 

statement of the problem amounts to the definition of a circle. 



CHAPTER XXXI 

LINEAR EQUATIONS. THE STRAIGHT LINE 

THE STRAIGHT LINE 

726. Every equation of first degree in x and ^ represents a 
straight line (Art. 145). 

Two constants must be determined in order to fix the line and 
to write its equation. 

726. The Slope-point Form.—If a point in the line and the 
slope of the line are given, then the line is completely determined. 

From Art. 713, 

m = yiSZJh f333]. 
Xi, 2/2 

If the coordinates of the fixed point Po (xo, yo) are given and 
P (x, y) is any variable point on the line, 
then 

m - ^ ” 2/0 
m =-y 

X — Xo 

or clearing of fractions, 

[339] y - yo ^ rn{x ~ Xo). 

This equation is the slope-point form 
of the equation of a straight line in 
rectangular coordinates. 

Example.—What is the equation of a line passing through the point 
(4, 4) and having a slope of 2? 

In this case, Xo = 4, yo = 4, and w = 2. 
Substituting in 

y — Xo) [839] 

gives 
y - 4 » 2(x - 4), 

or 
y as 2x — 4, 

which is the equation of the line sought. 
429 
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Example.—The increase in velocity of a body falling under the action 
of gravity is proportional to the time. If i>o is the velocity of the body at 
the time to and v is the velocity of the body at any time ty then 

V — Vo = — U), 
If V and Vo are given in feet per second and t and ta in seconds, then ky 

the proportionality factor, is the constant g = 32.2. 
Example.—The expansion of a bar of steel is nearly proportional to 

its increase in temperature. If U is the length of the bar at some tem¬ 
perature to and I its length at any temperature ty then 

I — lo — — to). 

727. Slope-ijitercept Form.—If the intercept of a line with 
the y-axis and the slope of the line are given, the line is deter¬ 
mined and its equation may be written in the slope-intercept 
form. 

From the point-slope form (Art. 726), 

2/ ~ 2/0 = m(x - Xo). 

But the given point in this case is (0, b). Then 

Xo = 0, and yo = b. 
Substituting in the equation above, 

y — b — m{x — 0). 

Or 

y = mx + b (Art. 128), 

which is the equation of the line in what 
is called the slope-intercept form. 

Example.—What is the equation of the straight line which crosses the 
F-axis at —3 and has a slope of 3? 

Here, 6 = — 3 and in = 3. 
Substituting in 

y = mx + b 
gives 

y = Zx 3, 

which is the desired equation (see Art. 128). 
Example.—Hookers law states that the extension of an elastic string 

varies directly as the tension. If lo is the length of the string when the 
tension is zero, and I is the length under the tension ty then 

I = kt lo. 

Example.—If a falling body has a velocity of vo feet per second when 
/ «= 0, and the velocity varies in proportion to time» then 

V = + Vo. 
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Since the rate of change of velocity with respect to time is denoted by 
the familiar letter gf, then 

V = gt Vq. 

A discussion of the general equation of first degree, Ax + By 
+ C = 0, was introduced in a previous section (Art. 145) in 
order to show the relations existing between the graph and the 
equation and to give a more comprehensive view of the algebra. 
We will repeat some of this discussion in this section so that 
further developments may be made. 

If B 5^ 0, we may solve the equation for y, 

Comparing this form with the slope-intercept form, 

y = mx + 5, 
we readily see that 

m 
A 
W and b == 

C 
B' 

By putting the general equation in this form, the slope and 

the y-intercept are readily found. 
728. Lines Parallel to Axes.—If a line is parallel to the X- 

axis, the slope m equals zero. 
Substituting m = 0 in ?/ = rnx + 6, 

y = 0 X X + b. 

Or 
y = b. 

It will be seen from this that all points on the line have equal 

ordinates, i.e., 6. 
A line parallel to the F-axis cannot be put into the form, y = 

mx 4- b, since m is undefined for such a line. We, therefore, inter¬ 

change X and y and refer to the y-axis. The equation then 

becomes 
X = my + b. 

But referring to the y-axis, m =* 0, and 

X ~ 0 Xy + b. 

Or 
X = b. 

In case 6 « 0 in these equations, then 2/ = 0 .and x = 0, 
which are the equations of the X- and the y-axes, respectively. 
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729. Two-point Form.—If two points in the line are given, the 
line is determined and its equation may be written. 

Rectangular Oblique 
axee axes 

Fig. 389. 

Let P{Xj y) be any point on the line. 
Draw ordinates and parallels to the X-axis as shown in Fig. 

389. 
Then, by similar triangles, 

PA ^PtB 
2Pi PiB 

Or 

[3401 y ^ 2/2 - yi ^ yi - y^ 

Or 

[341] y - yi = ^—^(a: - xi), 
X2 3/1 

which is the two-point form of the equation of a straight line 
passing through the two points P\{xi, yi) and Pzix^y 2/2), in terms 
of the coordinates of the points. 

Example.—What is the equation of the straight line passing through 

she points (2, 3) and (6, 6)? 

Let Ptixit 2/2) = (6, 6). Then xt ^ ^ and yt = 6. 
Let yi) = (2, 3). ’Then Xi - 2 and yi =» 3. 

Substituting in 
y -Vi ^ y2 - yi 
X — Xi X2 — Xi 

gives 

|^=|^,or4y-12 = 3x-6. 

/• 4y — 3jc « 6 is thq^equation j&ought. 
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The dptenninant form of the equation of a straight line 
through the points yi) and Pi{xt, yt) is 

X y 1 
xi 2/1 1 = 0, 
Xt yt 1 

which is very easy to remember. 
X y 1 
Xi yi I — xyi + *12/2 + *22/ — 2/1*2 — 2/2* — *i2/- 
*2 2/2 1 

Add and subtract xiyi which does not change the value. 
Then 

xyi + *i2/2 + *22/ — 2/1*2 — ytx — Xiy + Xiyi — xiyi = 0. 
Collecting like terms, 

*2(2/ - 2/i) - *1(2/ - ^1) + *(2/1 - 2/2) - *1(2/1 - 2/2) = 0. 
(*2 - *0(2/ - 2/1) + (* - *0(2/1 - 2/2) = 0. 

Or 

(*2 - *0(2/ - yi) = (* - *0(2/2 - 2/0- 

Dividing through by (x2 — *0(* ~ *0 ^>^nd canceling like 
terms, 

2/ - 2/1 _ 2/2 - 2/1 

a: — *1 *2 — *0 

which is the two-point form given in [340]. 
730. The Intercept Form.—If the intercepts on the X- and 

F-axes are given, the equation in Art. 729 may be written to 
represent a straight line through these two points. The two 
points would, then, be indicated by (a, 0) and (0, b) with a 

the intercept on the X-axis and b the intercept on the F-axis. 
Calling the X-intercept Pt = (a, 0), 

Xt = a and yt = 0, 

and calling the F-intercept Pi = (0, 6), 
Xi = 0 and yi - b. 

Substituting in the two-point form of the equation of a straight 

line (Art. 729) gives 
y — b ^ 0 — 6 
X - 0 * a — 0 a 

o (y — 6) = —6*, orbx + ay - ab 

Dividing through by ab, then 

[8421 l + l-l- 
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This is the equation of the straight line in terms of its intercepts 
with the coordinate axes. 

H -«f*—> 

Ca) 
(’—Rectangular axes 

(bi 
6—Oblique axes 

Fig. 390. 

Example.—A line cuts the Z-axis at a distance of 8 from the origin 

and the F-axis at a distance of —10 from the origin. Find the equation 

of the line. 
From the statement of the problem, 

a = 8 and 
h = -10. 

Substituting in - + ^ * 1 gives 

I - ^ = 1, or 10* - 8j,' = 80. 

5x — 4^/ = 40 is the equation sought. 

731, The Normal Form.—A line is completely determined if 
the length and direction of the perpendicular to it from the origin 
is known. 

Let the distance from the origin to the straight line be p and 
let the angle which this perpendicular makes 
with the Z-axis be B, 

We desire to express the equation of the line 
in terms of p and B instead of in terms of x 
and y. 

Let A be the foot of the perpendicular from 
the origin to the line. The coordinates of A 

in terms of p and B are 
X = p cos ^ and 2/ = p sin B. 

The slope of OA is tan B and since the line is perpendicular to 
OA, the slope of the line is —cot or m = — cot 

Making these substitutions in the point-slope formula, 

1/ — Vo =* rn{x — Xo), 
we have 

V — p sin ^ — — cot B(x — p cos B), 

Fig. 391. 
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cos B 
Substituting, cot e - , and multiplying through by sin e 

gives 
y ■ sind — p sin* 6 == -x-coad + p cos* 0. 

Transposing to the left side and collecting, 
2/ • sin ^ + a: • cos ^ — p(sin* 6 + cos* 0) = 0. 

But sin* 0 + cos* 0 = 1. 
Therefore, 

[343] y • sin 6 + X • coQ 6 — p - 0. 
This is the equation of the straight line in terms of p and 6 

and is called the normal form. 

Example.—Find the normal form of the equation of the straight line 

for which p = 10 and 6 = 35®. 

Substituting, 

X • cos 35® + y • sin 35® — 10 = 0. 

732. Intercept Form of the General Equation.—If none of the 
(quantities Ay By and C are zero, the general equation, Ax + 
By + C ^ Oy can be put into the intercept form by transposing 
the constant term C to the right side of the equation, thus, 

Ax + Bp = — C, 

* X V 
Comparing this with equation ^ "b ^ = 1 (Art. 730) gives 

a = — the X-intercept, and 

5 = _ the y-intercept of the general equation. 
jD 

If C =0, both intercepts are soro. 
If either A or B is zero, the line is parallel to an axis of 

coordinates. 
733. Normal Fofm of the General Equation.—The x and y 

coordinates (rf the foot of the normal to the line are 
* = p cos 0 and y = p eon 0 (Art. 731). 
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Substituting in the general equation, 
A • p • cos ® + JB • p • sin + C = 0. 

But the slope of the perpendicular (Art. 715) is the negative 
reciprocal of the slope of the line. 

From Art. 731, the slope of the line in the general equation is 
A 

m = — 
B 

Therefore, the slope of the perpendicular is or 

From trigonometry, 

cos 6 

Substituting, 

cos B 

g 
t&^0 = j- 

1 

4 

± \/l + tan'* 8 

A 

[273]. 

From trigonometry, 

-V a) 
± VA^ + 

tan B 
sin B 

[274]. 
cos 8 

Substituting the value of cos 8, 
sin ^ B 
A ~ I' 

±VA^ + B^ 

sin ^ = 
B 

±Va^ + b* 

Substituting these values of sin B and cos B in 
Ap cos B + Bp sin B + C = 0, 

,_ 
±VA’‘ + B‘ ±VA^-hB^ 

Dividing by ±'\/A® + B*, 
A*p , B*P _ -C 

p(A^ + B») ^ _ C 
A^ + B* “ IVA* + B* 

. C 

^ * ±VA» + B*’• 
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Substituting these values for cos d, sin and p in the normal 
form of the equation of a straight line, 

A ’ R r 
[346] -= 0. 

±VA^ + B^ ±\/A^ + B^ ±Va^+& 
This shows that the general form is reduced to the normal form 

by dividing the general form through by the square root of the 
sum of the squares of the coefficients of x and y. The sign of the 
radical should be taken opposite to the sign of C so that p will be 
positive, 

734. Equation of a Line through the Point (xo, yo) and Per¬ 
pendicular to the Line Ax + By + C = 
0.—Assume the equation pf the line to be 
of the form, 

y - Vq = m'{x ~ Xo). 
The slope of the line, Ax + By + C 

A 
= 0, is — 

B 
Since the required line is perpendicular to this line, its slope 

is the negative reciprocal of the slope of the given lin§, or 

. B 
m = -r* 

A 
The equation of the required line is then 

[346] y - yo = j(a: - Xo), 

where xo and yo are the coordinates of the giV^en point. 
736. Distance from a Given Point P(xo, yo) to the Line Ax + 

By + C = 0.—Translate the origin 
to the given point P (xo, yo), and 
write the new equation of the line. 
To translate, see Arts. 172,205,236, 
and 279. 

* => Xo + x'. y yo + v'- 
Substituting in the equation of 

the line, 
A{x’ + Xo) + B(y' + yo) + G = 0. 

Ax' + By’ + Axo + Byo + C = 0, 
where x' and y' are the variable coordinates, while 

Axo + Byo + 
is the constant term. 
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From Art. 733, the perpendicular distance from the origin to 

the line is the constant term divided by ± \/(A* + B*). Therefore, 

[347] d = 
±\/A* + B* 

where Xo and t/o are the coordinates of the given point. 

Example.—Harbor B is 500 miles directly north from A and harbor C 
is 800 miles due east of il. A vessel sails from B to C. A warship is 

stationed 600 miles east and 400 miles north of 

BfO.SOO) A. How near will the vessel come to the K00^400) warship? 
Draw the graph as shown in Fig. 396. 

CfSOQO} will be readily seen from the figure that the 
•A. V intercepts are given so that the equation of the 

Fig. 396. written by substitution in the 
intercept form of the equation. 

a b 
Here a = 800. 

h - 500. 

Substituting, 

“slo + io" + = 
Comparing with Ax + By A- C = 0^ 

^ = 5, 5 = 8, and C = -4000. 

The coordinates of P are (600, 400). Hence, 
Xo = 600, yo = 400. 

Substituting these values in 

±Va^ + b’‘ 
^ ^ 5 • 600 + 8 ■ 400 - 4000 ^ 2200 

±\/26 + 64 V^' 

log d = log 2200 — J log 89; whence, 
d * 233.2. 

736. The Equation of a Line through the Point P (xo, yo)> 
Making an Angle 6 with Ax + By + C = 0.—Suppose that the 
slope of the required line is m' and that the slope of the given line 
is m. 

Since by Art. 726 we may write the equation of a line through 
P having a slope m' by substituting in 

y - yo m'[x - Xo), 
there remains only to determine m'. 
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From Art. 716, 

where 6 

Bear in 
Then 

tan e - 
m — m 
, , -^'or , . 
1 + mm 1 + mm 

is the angle between two lines having slopes m and m'. 
mind that two angles are possible and solve for m'. 

m — m 

From Art. 727, 

Then 

t280]. 
1 + wi tan 6 

m = 
A 
B 

- ^ ± tan e 

1 + ~tan^ 

Substituting in point-slope formula above, 

— ± tan 0 

[348] y - yo =-j- (a: - '*0). 
1 • tan 6 

737. Polar Equations of Straight Lines 
through Two Points, as Pi(pi, 0i) and 

62) is 
[349] ppi sin {e — 0i) + P1P2 sin (di — 82) 

■f PP2 sin (02 - 0) == 0, 

where (p, 6) are the variable coordinates 
of any point on the line. 

738. Systems of Straight Lines.—Consider the equation, 
[360] y — mx = k. 

If the left member of the equation remains unchanged but 
the constant term k be given different arbitrary values, the graphs 
of the equations form a set of parallel lines since they all have the 

same slope. 
The number k which is constant for any one line of the system 

but which varies when we change from one line to another is 
called a parameter and the parallel lines form a system. 

If our problem is to locate a particular line of the system, for 

instance, the line passing through (2, 2) and parallel to y — 3® = 
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2, then by retaining the equation in the form y — 3x k, v/e 
keep the parallel condition and by finding the proper value of k, 
locate the line. 

If a line passes through a point, the coordinates of the point 
must satisfy the equation of the locus. 

Substitute (2, 2) in 
y — Zx — k. 

Then 
2 — 6 = A:, or 

-4. 

The y-intercept of the desired line is —4 and since there can 
be but one line of the system which has a F-intercept at —4, we 
can substitute this value for k in the equation of the system, thus, 

y — Zx = —4, or y — 3x + 4 = 0, 

to obtain the equation of the particular line. 
739. System of Lines Perpendicular to y — mx = k.—Compar¬ 

ing the equations, 
y — mx = k and 
my + X = k, 

it will be seen that the slope m in the first equation is the n^ative 
reciprocal of the slope in the second. From Art. 715, this 
indicates that the line represented by the second equation is 
perpendicular to the line represented by the first equation. 

If k is given different values as before in the two equations, we 
have two systems of Unes, one system perpendicular to the other. 
If our problem is to write the equation of one line perpendicular 
to another and passing through a certain point, we can form the 
line equation in the perpendicular form by interchanging the 
coefficients of x and y and changing the sign of the y term. This 
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amounts to the same thing as inverting and changing the sign 
of the slope. 

Assuming a line, as 
2x + Zy — A = 0, 

then the perpendicular form is 
Zx — 2y — k. 

If our problem is to write the equation of a line perpendicular 
to 2* + 3j/ — 4 = 0 and passing through the point (3, —2), we 
first determine k by substituting coordinates in Zx — 2y = k. 

Note that the substitution is not ipade in 2x + 3y — 4 = 0 
because the point (3, —2) is not in that line. 

3 • 3 - 2(-2) = k. 
9 + 4 = fc. 

k = 13. 
Substituting in the perpendicular form, 

Zx — 2y = 13. 
This is the equation of the required line perpendicular to 

2a: + 3j/ — 4 = 0 and passing through the point (3, —2). 
740. System of Lines through a Point.—Consider the form, 

y - yo == n»(x - Xo). 

Take (xo, yo) as (3, —3); then the equation is 
y + 3 = tn{x — 3). 

By giving m various values, another system of lines develop, 
all of which pass through the point (3, —3). 

If the problem is to find the equation of a line of slope equal 
to 2 through the point (2, 2), we can immediately write 

y — 2 = 2(x — 2), or 
y — 2x + 2 = 0. 
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This form can also be used to find the equation of a line passing 
y , through two points, as (2,2) and (—3,3). 

Write the equation of the system 

y — 2 = m(x — 2). 
Substitute (— 3, 3) for (x, y) to deter¬ 

mine m; then 
3 - 2 = m(-3 - 2). 

m = -i. 
The equation is 

y - 2 = - i(x - 2), or 5?/ - 10 = -x -f 2. 
X + 5j/ — 12 = 0. 

Comparing with the two-point form (Art. 729), 

y - yi ^ yi — yt 
X — Xi Xi — X2 
y- 2^ 2-3^ _ 
X - 2 2-1-3 * 

— 5y 10 = X — 2. 
X -f 5y — 12 = 0. 

741. System of Lines through Intersection of Two Given 
Lines.—If 

Ax + By C = 0 and 
A'x + B'y + C' = 0 

represent two straight lines, then 
[361] Ax + By + C + HA'x + B'y + C) = 0 
represents a system of straight lines passing through the inter¬ 
section of Ax By C = 0 and A'x -f B'y -f- C' = 0. 

For convenience, let 
y) — A- By -{■ C = 0 and 

gix, y) = A'x -f B'y + C' = 0. 
Then, from the above, 

/(a;, y) + k\g{x, y)] = 0 
defines the system, with A: as a parameter. 

Let the point of intersection of the two given lines be P(o, h). 
Then /(x, y) - 0 and g{x, y) - 0 are both satisfied when 

X = a and y — b since P(o, b) lies on both lines. 
If /(o,-6) = 0 and g(a, b) = 0, then 

/(a, b) + kig{a, 6)] = 0 

for all values of k. 
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Hence, every line of the system, f{x, y) + k[g{Xf y)], passes 
through P(a, b) since its coordinates satisfy the equation. 

The advantage of this method is evident from the following: 

Example.—Find the equation of the line through the intersection of 

the lines, 
2a; + 2/ — 4 = 0 and x + 32/ — 3 0, 

and the point P (3, 3). 
Writing the equation of the system through the intersection of the two 

given lines, 
2x + 2/ — 4 + k(x 4* 32/ — 3) = 0. 

Since the desired line contains the point P (3, 3), its coordinates must 

satisfy the equation of the line. Substituting a; = 3 and 2/ = 3 in the 

equation of the system, 

6 + 3 - 4 + A;(3 + 9 - 3) = 0. 

Whence 
5 + 9A; = 0. 

k = 
Then 

2a; 4- 2/ — 4 — Kx + 32/ — 3) = 0. 

Reducing, 
13a; - 62/ - 21 = 0 

is the equation of the line sought. 
Example.—Find the equation of the line passing through the inter¬ 

section of ^he lines, 

2a: + 2/ + 2 = 0 and x — 2y + 2 = 0, 

and parallel to the line, 

3a; — 4?/ — 5 = 0. 

The equation of the system of lines passing through the intersection of 

the given lines is 

2x + y + 2 + k{x — 2?/ + 2) = 0, or 

(2 + k)x + (1 - 2k)y + 2(1 + A;) = 0. 

The slope of this line is 
_ 2 + 

l'~ ~2k 

This slope must be equal to the slope of 3a; — 

therefore, 
2+A; 3 , 11 

- - f »'.* - r 
Substituting, 

5 = 0, or f; 

2a: 4- + 2 + V(a! - 2y + 2) = 0. 
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Beducing, 
16a: — 20y + 26 *= 0, or 

3a; — 4j^ + V = 0. 
The parallelism is indicated in the second form, for the coefiScients of 

X and y are the same as in the equation of the line to be paralleled. 

This last method applies to any equation of the form, 
f(x, y) = 0, 

as well as to the straight-line equation, and use will be made of 
this principle in later sections. v 

The principal advantage of this method lies in the fact that 
we do not need to know the coordinates of the point of intersection 
of the two lines, although these may be readily found in the above 
example by solving the two equations simultaneously. When 
the coordinates are not easily found from the given equations, 
however, the above method may be used to advantage. 

742. Form x cos k + y sin k — p = 0 [362],—In this, we 
readily recognize the normal form and by giving k various values, 
a system of lines, each p units from the origin, is represented. 

If the line determined by the equation, 
X cos fc + t/sini — 2 = 0, 

passes through the point (4, 0), then 
4 cos = 2, cos k — 

sin fc = ± Vl ~ cos2 k = ' 

Then 
X cos k + y sin k — 2 = 0 becomes 

I ± ^^y - 2 = 0, or X ± VSy -4 = 0. 

Any of the standard forms of the straight-line equation involves 
two arbitrary constants. If one is given a numerical value and 
the other left arbitrary, we get a system of straight Lines. 

From the preceding discussion, the convenience of using the 
general formula for a system of lines is apparent when it is desired 
to find a line which fulfils two conditions, for the general equation 
may be written so as to fulfil one condition and the parameter 
determined which fulfils the other condition, thus determining 
the line. ♦ 

743. Product of Two Line Equations.—If each of the equations. 
Ax + By + C = 0 and 
A'a? + B'y + C' = 0, 
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represents a straight line, then the single equation, 

{Ax + By + C)(A'x + B'2/ + C') = oi 

represents the two lines. 
If the coordinates of a point P(a, h) on line 

, Ax + % + C = 0 (or A'x + B'y + C' = 0) 

satisfy the equation, then the left side of the equation is zero 
for X = a and y ^ b. The values of P(a, b) which satisfy either 
of the equations of the given lines then satisfy the equation of the 
product, which means that every point on either the locus 
represented hy Ax + By + C == 0 or the locus represented by 
A'x -f B*y + C' = 0 lies also on the locus represented by 

(Ax + By + C)(A'x + B^y + C') = 0. 

Example. x + 2^/ = 0. 

X - 2y ~ 1 = 0. 

The product is x* — Ay^ — x — 2?/ = 0. 

The coordinates of any point, as (2, —1) on line x + 2?/ = 0, make its 

equation zero, thus, 2 — 2 = 0, and hence, the product of this factor 

by another is zero. 
Therefore, all points on x + 2^/ = 0 lie on the locus, x* — Ay^ — x — 

2y = 0. 
The same is true of x — 2y — 1 = 0. 

744. Second-degree Equations Representing Straight Lines.— 
An equation whose right-hand member is zero and whose left 

member can be broken up into factors of the first degree represents 

straight lines. 

ExABfPLE.—3x* + lOxy + Sy* = 0 represents two lines, for it may be 

factored thus, 
(3x + Ay){x + 2y) = 0. 

The lines are 
3x + 4y = 0 and 

X + 2y = 0. 

The coordinates of all points on these lines satisfy the given equation. 

Art. 743. 
The lines need not necessarily intersect and may be parallel, as 

X* + v* + 2x1/ -h 3x + 3y + 2 = 0 

when factored beteom^ two parallel lines, 

X + y + 1 = 0 and 
X + y + 2 = 0. 
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CHAPTER XXXII 

SECOND-DEGREE EQUATIONS. CONICS. THE 
PARABOLA 

CONICS 

746. The locus of a point which moves so that its distance 

from a fixed point is in a constant ratio to its distance from a 

fixed line is called a conic. 

The fixed point is called the focus and the fixed line the directrix. 

The constant ratio is called the cccenbiciiy and 

is represented by e. 

Conics are divided into three classes: 

If 6 = 1, the curve is a parabola. 

If 6<1, the curve is an ellipse. 

If e>l, the curve is an hyperbola. 

The fact that these curves are cut from cones 

by intersecting planes is the reason given for 

calling them conics. 

746. Equation of Any Conic in Rectangular Coordinates.— 
Let the fixed line, or directrix, be the F-axis and the fixed point 

on the X-axis at (p, 0), and let P{x, y) be any point on the curve. 

Then from definition of conic, 

FP 

PN = "• 

y 

'JPfx.y) 

0 Focus 

Fio. 401. 

Using distance formula [329], 

FP = ■\/{x — pY + {y — 0)* = y/{x — p)* + y"^. 

PN= X. I 

Then 

e 

Squaring, 

V (x - pY + y^ 

X 

(x - pY + y^ 

x“ 

446 
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[363] (1 - e^)x^ + 1/ - 2px + = q, 

which is the equation of the conic. 
To find the intercepts on the X-axis, let y = 0. 
Then 

(1 — e^)x‘^ + 0 — 2px + = 0, 
and 

V 
1 4- 

747. Equation of Conic in Polar Coordinates.—In the figure, 
take the pole at the focus and OX as the polar axis. 

Let P (p, 0) be any point on the curve. 
From definition of conic, 

OP = ePN, (1) 
OP = p. 

PN ** p + OM = p + p cos 0. 

[364] 

Substituting values of OP and PN in (1), 
P = c(p + p cos 6) = ep + cp cos fK 
p — ep cos 6 — ep. 

_ ep 

N 

I — e cos 6 
It will be seen later that some of the 

conics have two foci and two directrices. Fio. 403. 

The equation referred to the other focus and directrix is 
ep 

1 + e cos 6 

PARABOLA 

748. Equation of Parabola.—In the case of the parabola e = 1, 
and hence, the curve is the locus of a point equidistant from the 

focus and the directrix. 
From the definition, there is a point midway between the focus 

and the directrix where the locus cuts the A-axis. This point is 

called the vertex. 
It is convenient to take the origin at the vertex because it 

results in a much simple^* equation. 
Then the coordinates of the focus are 
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and the equation of the directrix is 

X — where p is the distance RF. 

Let P (x, y) be any point on the locus. 
By definition, FP ~ PN. 
By distance formula [329], 

- # -1)’+«'■ 
PN = x + ^- 

Then 

Squaring and simplifying, 
[365] = 27>x. . 

The equation of the directrix is x = — 
Ad 

The focus is at the point 0^ • 

This equation shows that the parabola is symmetrical with 
respect to the X-axis and that the locus crosses the X-axis at 
the vertex only. 

A different-sized parabola is obtained for different values of 

The equation of a parabola whose axis is the F-axis and whose 
vertex is at the origin is obtained by interchanging x and 2/, or 
[366] x^ = 2py. 

The equation of the directrix is 

and the focus is at the point 

(».D- 
If p is negative, the locus is inverted as is shown in b (Fig, 405). 

Fio. 405. 
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749. Conic Equation Reduced. Equation of Parabola.— 
The equation of conic is [363], 

(1 — e*)x* + y* — 2px + p* = 0. 
But e = 1 in the parabola, so that 

7/ = 2px — p^, 
which can be written, 

2/2 = 2p(x - !)• 

Let the origin now be translated to 0)! i'hen 

X = x' +2/ = y'. 

Substituting in = 2px — 

2/'’ = 2p ^x' + I) - p*. 

2/'* = 2px'. 
Dropping primes, 

= 2px[366], 
which is the equation of the parabola. 

760. Latus Rectum.—The chord LLi through 
the focus and parallel to the directrix is called pr 
the latus rectum. From the definition of the * ~ T - 
parabola, the distance of L from the focus and 
the directrix is the same and in this case is equal 
to p. The total length of the latus rectum is, 405. 
then, 2p. 

761. The Parabola and Quadratic Equations.—Considerable 
attention was given to the conic sections and particularly to 
the parabola in the algebra section (Art. 169 et seq.). Its rela¬ 
tion to quadratic and power functions has been explained, and 

a review of those articles is advisable at this point. 
The article on the translation of the axes or origin is of particu¬ 

lar importance since it applies to all conics. 
Comparing the power function, y = ax^, in Art. 170 with the 

equation, x* = 2py, we se j that the equations are of the same 

form with the constant a equal to ~* 

Axis of Parabola Translated.—Transform equation = 2pxby 

translating the origin to the point O' ( — A, —fc) (see Art. 171V 
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Then 
X — xi — hy and 

2/ = 2/1 ~ 

Substitute in 
2/^ = 2'px. 

(2/1 - ky = 2p{xi - h). 
Since (xi, 2/1) can be any point on the locus, we can drop the 

primes, and the equation becomes 
[357] (2/ ~ ky = 2p(x - h). 

Note.—The origin may also be taken at {hyk) and [357] would then be 
{y + ky = 2p (x -f h). 

The focus is located at (^ + 2^ ^) ‘ 

The equation of the directrix is 2/== h— -• 
Jd 

752. General Equation of a Parabola Parallel to the X- or 
Y-axis.—Equations of the forms, 

2/* + Dx + Ey + F = 0 whore D ^ 0 and (1) 
+ Dx + Ey + F = 0 where E 0 (2) 

then both represent parabolas. (1) has its axis parallel to the 
X-axis and (2) has its axis parallel to the Y-axis. 

To prove this, complete the square in (1) which gives 

y^ + Ey + -^ = -Dx -f - F, or 

I3»8, 

which is in the form of [367], where 
D ^ E^-4F , E 

^ ~ 4£> ’ * 2' 
2y— —D, or p = — 
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[369] 

and 

If we examine (2) in the same manner, then 
D\^ „/ - 4F\ 

(* + 2) - 

k = 
- 4F 
4E~’ 

h = - 

4E 

D 
2p = - E, 

E 
and the distance from the focus to the directrix, or p= ~ 2' 

763. Quadratic Form y = ax^ + bx + c [3].—This form reduces 
to form [367], for, by completing the square in x, then 

y 

[360] , 2^, 

In this case it will be seen that 

/ 1 ^ V I ~ 4ac\ 
(* + 2S) )■ 

2 - 4ac 
-, or 

4a 

}>^ — 4ac\ 

4ac I, ^ 1 ^ _ and k =-. 
2a 4a 

This is the equation of a parabola since it reduces to form 
[367]. The vertex is at the point (/i, /c), or 

\2a Tar~)' 
This form has been discussed in the algebra section (Art. 171 

et seq.) together with the translations involved, and a review of 
these articles will, doubtless, add to clearness and make repetition 
unnecessary. It was introduced in the algebra section to make 

the graphical relations clear. 
764. Equation of Parabola in Polar Coordinates.—For the 

parabola, e = 1, which substituted in 

p= [364] N[ 
I — e cos 6 

gives 

[361] p = 
1 — cos ^ 

766. Construction of Parabola.—deferring 
to the method used in Art. 180, a proof of the Fio. 408. 

method will now be given. 
In Fig. 409, 

a: = M'P, y= OM', 
AB = 2a, on = h. 
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By construction, NC and MH are equal parts of AC and AH, 
respectively. 

Therefore, 
NC _ MH 
AC ~ AH’^ 

And from similar triangles, 
X ^NC 

h a 

M hf 

//f CL 

0 H 

B 

But from (1) NC == ~ j which whensubsti- 
> a 

tuted for NC in (2) gives 
hy 

X a o 
- = —, or 'ir = .rx. 
y a n 

Fio. 409. typical form of the parabola [366]. 

766. Path of a Projectile.—Consider a projectile starting at the 
origin with an initial velocity V feet per 
second, and making an angle a with the ^ 
horizontal. N. 

If not influenced by any other forces, such ^ ^ \ 
as wind or gravity, the projectile would ^-\ 
continue in the same direction and at the 
same velocity. 

The X and y coordinates at the end of t seconds would be 
x = t-V cos a and 
y = < • F sin a. 

If the force of gravity is taken into account, then y is decreased 
by in t seconds. 

The coordinates of the projectile at the end of i seconds are then 

X — t-V cos a (1) 
!/ = r 7 sin a - igf, (2) 

Eliminating t between these two equations by substituting 
the value of t found from (1) in equation (2), 

t = 
V cos a 

Fia. 410. 

V cos a 
7 sin a — 

7^ cos^ a 
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Reducing, 

y = (tan a)x - -ow~r- 
COS^a 

Fig. 411. 

This is a parabola of the form of Art. , 

752 (2). ’ 
767. Parabolic Arch.—The equation / \ 1 

of the parabola of the form shown in -Jl___^ \ i 
Fig. 411 with the origin at the vertex is ^ ..J ' 

= 
Since it is more convenient to measure 

the height of the arch as shown, we will translate the origin to O. 
Then y — — h. 
Substituting and dropping primes, 

= ~2p(t/ - A), 
when aj = 2/ = 0. 

Then 
^2 -c ~2p(o - A). 

^ = 2pA. 

By assuming any values for A and s and substituting in above 
equation, the ordinates y can be determined for different values 
of X, Hence, the equation of the arch is 

= - -f^{y - h), 

which reduces to 
, hx^ 

y=h--j 

For a graphical method see Art. 180. 
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THE CIRCLE AND THE ELLIPSE 

THE CIRCLE 

768. In geometry, the circle is defined as the locus of all points 
equidistant from a fixed point called the center of the circle. 

Let (hy k) be the fixed point and r the constant distance or 
radius. 

From the distance formula [329], 

CP = r = \^(x 
Squaring both sides, 

hr +(y~ k)\ 

[362] 

Y 

{x - hf + (?/ - ky = rl 

This is the equation of the circle. 
If A = 0 and ft = 0, or the origin is at the 

center, then 

{x — oy + {y — 0)^ = r^, or 
^2 ^2 _ [19] 

This is the equation of a circle whose center 
is at the origin. 

If we expand {x — hy + {y — ky = r^, then 
^2 _j_ ^2 _ 2hx — 2ky + h? + ft^ ~ 0. 

Comparing this equation with the general equation of second 

degree, 
Ax"^ + Bxy + Cy"^ + Dx + Ey + F = 0, 

we note that the xy term is missing in the equation of the circle 
and also that the coefficients of x^ and are equal. 

The general equation of the circle is, therefore, 
[363] x^ + y^ + Dx-y Ey + F == 0. 

The coordinates of the center and the radius are given by 

If — 4F > 0, the equation represents a circle. 
If + E^ — — 0, the radius equals zero and the locus 

is a point. 
454 
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If — 4iP < 0, the radius is imaginary and the circle 
is imaginary. 

If D = 0, then /i = 0, and the center lies on the 7-axis. 
If £ = 0, then fc = 0, and the center lies on the X-axis. 
If D = 0, and E = 0^ the center is at the origin. 
If F = 0, then = r^, and the origin is on the 

circumference. 
769. Determination of Circles.—Since the equations [362] 

and [363] have three arbitrary constants, as /i, fc, and r in the 
first case and Z), and F in the second case, it is necessary to 
find different conditions (three in number) to determine these 
constants sq that the equation of the circle may be written. 
These conditions may be geometrical, or by imposing different 
conditions on the equations of [362] and [363], a set of simultane¬ 
ous equations can be made from which the values of the con¬ 
stants may be determined algebraically. 

Example.—Find the equation of a circle passing through the points 

(1,7), (8, 6), and (7, --1). 
Each pair of coordinates must satisfy the eciiiation of the circle [362], 

Hence, 
(1 - hY + (7 - ky = r2. 

(S - hy 4* (6 - ky = r2. 

(7 - hy + (-1 - ky = r2. 

Solving simultaneously, 

= 4, = 3, r = 5. 

Therefore, tlie desired equation is 

(.r - 4)2 + {y - 3)2 = 5^, 

which reduces to 
+ 2/^ ~ 8x —■ 6y — 0. 

Using the general form [363] for the equation of the circle and 

substituting the coordinates of the given points gives 

1 + 49 + D + 7fi' + F - 0. 
64 + 36 + 8/) + C)E + F - 0. 

49 + 1 + 7D - E + F = 0. 
Solving, 

Z) - -8, F = -6, F = 0. 

Substituting in [363], 

^2 + 2/' - 8x - 6y = 0, 

as before. 
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Example.—Find the equation of the circle with center on the line, 
2x + Sy — 0, and passing through the points Pi(0, — 4) and P2(4, 0). 

Let the required equation be 
+ Dx + Ey + F — 0. 

Since Pi and P2 are on the locus, their coordinates must satisfy the 
equation of the locus; therefore, we substitute coordinates of Pi and P3. 

Then 
0 + 16 + 0 - 4P + P = 0 and 
16 + 0 + 4D - 0 + P == 0. 

/ D E\ 
The center of the circle whose coordinates are “ 2' 2) 

line, 2x + 3y = 0, or substituting, 

K~^) f) “ 2D + 3S = 0. 

Solving, 

Then 

16 - 4^; + F = 0. 
16 + 4Z) + F = 0. 
2D+ 3E = 0. 

E = 0,F = -16, D = 0. 
Equation [363] becomes 

+ y* = 16. 
The radius is 4 and the origin is the center. 

760. Polar Equation of Circle.—^Let OA be the initial line, 0 
the pole, C the center at (pi, 6i). 

The equation is 
[364] p* — 2ppi cos ($ — 6i) + pi* — = 0. 

If the center is on the polar axis, 
[366] p® — 2ppi cos 9 -f- pi® ~ r® = 0. 

If the pole is on the circle, 
[366] p — 2r cos (9 — 9i) — 0. 

If the pole is on the circle and the polar axis is a diameter, 
[367] p — 2r cos ^ = 0. 

If the center is at the pole, 
p = r. 

Fio. 413. 
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761. Systems of Circles.—If /(x, ^) = 0 and g{x, 2/) = 0 
are equations of two circles, then by Art. 741, 

y) + h[g{x, y)] = 0 

is the equation of a curve through all of the points of intersection 
of f{Xy y) and g{x, y). 

The curve is either a circle or a straight 
line which is the common chord of the 
circles. 

Let f(x, y) = Aix^ + Aiy^ + DiX + 
Eiy + Fi = 0 

and g{x, y) = A^x? + Aiy^ + D2X + Fig. 414. 

^iy + ^2 == 0. 
Then /(x, y) + k[g{Xy ^)] = 0 becomes 

[368] AiX^ + + DiX + Eiy + Fi + fc[A2X^ + A^y^ + D^x + 

E^y + F2] = 0, 
which can be put into the form, 
(Ai + kA2)x^ + (A I + kA2)y^ + (Di + kD2)x + {E^ + kE2)y + 

{Fx + kF2) = 0. 

Since the coefficients of x^ and are equal and there is no 
xy term, this is the equation of a circle. 

The exceptional case is where the coefficient (Ai + fcA2) of 
and 2/^ becomes zero, in which case the equation represents a 

straight line which is the common chord. 
Advantage may be taken of this last condition in finding the 

common chord, for, by giving k the value, 

the x^ and y^ terms are eliminated and the resulting equation 
which is satisfied by the common points of the two circles represents 
a straight line through their points of intersection or their 

common chord. 

Example.—Assume general equation of two circles, as 
X* + 2/* + EiX + Eiy + ~ 0 and 
X® + y^ E2X + E2y + /^2 = 0. 

Putting & « —1, or what is the same thing, subtracting the second 
equation from the fh-st, we get 

(Di - D2)x + {El - E2)y + Fi ~ F* = 0, 
which is the equation of the common chord of the two circles. 
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In the case where the two circles are tangent, the line repre¬ 
sented by the resulting equation is the common tangent of the 
circles. 

Example.—Find the equation of a circle through the point (1,2) and 
the intersections of the circles, 

2x^ + 2y^ — — 4?/ — 1 =0 and 
3^^ + — Hx — 2/ 4 = 0. 

Using [368], 
2x^ + 2?/^ — 3a; — 4?/ — 1 -f k(Sx^ + 3?/^ — Hx — y — 4) =0. 

Since the point (1, 2) is on the locus, its coordinates must satisfy the 

equation of the locus; therefore, 
2 + 8~3-8-l-f'A:(3 + 12-8-2-4)=0, 

whence 
/c = 2. 

Therefore, the required equation is 

2a;* + 22/* — 3a; — 42/ — 1 + 2(3a;* 4- 3?/* — 8a; — 2/ ~ 4) = 0, or 
8a;* -f- Sy^ — 19a; — 6?/ — 9 = 0. 

762. Length of Tangent.—^Let t be the length of the tangent 
TPq to the circle whose center is at C{hj 
k) and whose radius is r. 

From the right triangle CTPq, 
= CPo* - r\ 

Using the distance formula [329], 
= {xq - hy + (2/0 - ky - r^. 

[369] t = a/(xo - hf + (2/0 - kf -~r^. 
Note that the expression under the radical is the same as the 

form [362] of the circle, with the coordinates of the point Po(^o, 
2/0) substituted for the variables x and y. 

This being the case, we can then substitute the general equa¬ 
tion under the radical, so that 

t = + 2/0® + j^Xo + ^yo + [370] 
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Example.—Find the length of the tangent from (5,6) to the circle, 
^2 ^ 2/2 — 4a; -f 6?/ — 3 = 0. 

Substituting in [STOJ^j__ 
t = V52 + 62-4-5 + 6- 6~3 = \/74. 

THE ELLIPSE 

763, Article 745 on Conics states that if the ratio e is less 
than unity, the conic is an ellipse. 

Fig. 417. 

764. To Find Equation of Ellipse.—If P{x, y) is any point on 
the curve, we have 

FP == e^ NP, 
where F is the focus and ND the directrix. 

Divide FB internally at A and externally at A' in the ratio of 

c to 1 (see Art. 717). Thus, 
B_A_F_^ 

Then 

lA ^ e,FA ^ e- AB. (1) 
AB 

= -e, FA' = e • BA'. (2) 

Locate the origin midway between A and A'. 
Then subtract (1) from (2); 

FA'- FA = e{BA'- AB). 

AF + FA' = e{BA + BA'). 
AA' = e{BA -FBAA-AO + OA'). 

Let A A' = 2a; then 
2a = e{2-BA+ 2-AO) = e{2 ■ BO). 

BO = -- 
e 
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Adding (1) and (2), 
FA + FA' = eiAB + BA'). 

2 0F = eA'A = 2ae. 
OF = ae. 

If we consider 0 as the origin and OB and OC as the X- and 
F-axes, then from the figure, the coordinates of the focus F are 

{-ae, 0). 
From the relation, 

PF = 6-JVP, NP = x + BO. 
Squaring, 

= (3) 

From the distance formula [329], 

PF^ = (x.+ eay + (4) 
Then (3) = (4), or 

(x + eay + - e^^x + > 

which reduces to 
(1 “ e^)x^ + y^ = aHl ~ e"). (5) 

We can find the F-intercept b or the sciniininor axis by eciuating 
X to 0; then y = b. 

Substituting these values of x and y in (5), 
= a2(l — e^), or 

Substituting this value of (1 — c-) in (5), 
IF 
\x^ + y^ = b\ 
or 

Dividing by 6^, 

[371] 
x^ 

cF = 1, 
which is the standard equation for the ellipse. 

766. Other Relations.—From the figure, 
CP2 = cat + OP2, 

CO^ = square of F-intercept = a*(l ~ e^). 

OF^ = aV; then ( —ae, 0) are the coordinates of the focus, and 
^ = a2(l - e^) + 

= a* — a*e* + = aF. 
CF - a. 
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Therefore, to locate the focus when the major and minor 
semiaxes are given with C as a center and a as a radius, strike 
arcs intersecting the X-axis. The intersections of the arcs with 
the X-axis locate the foci. 

Since 6^ = 0^(1 — e^) = — aV; transposing, 
^2^2 — ^ ^2^ Qj. _ -h \/a2 — b^. 

V = l-ae = «(i - e) = ? (1 " e*). 

The focus F' is at (a€, 0). 
The focus F is at ( —ac, 0). 

Note, ae — ±\/a^~b^. 

The e(|uation of the directrix ND is x = — j* 

The equation of the directrix \'D' is x = -• 
• e 

Note also that - = "7~7 ^ ' i^* 
e ±V« — 0^ 

The ecpiation of the ellipse can also be put into the form, 

+ 
aHl - e^) 

= 1. 

766. Second Focus and Directrix. 
Take F'A' = FA and OB' = OB, 

X'B' parallel to \B. 
Py' perpendicular to N'B\ 

Then 
F'P - e • Py\ 

%/(ae — xy A- — x^ = a — ex. 

Squaring, 
(ac — x)* + — 2atx + e^x^. 

2aex + — 2aex + e*x^. 

(1 - (^)X^ + if = a\l - €^)y 

which is the same as (5) Art. 764, and therefore reduces to 

= 1 

so that the equation of the ellipse is the same when referred to 
the second focus and directrix as though referred to the original 

focus and directrix. 
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767. Conic Equation Reduced to Equation of Ellipse.—The 
equation of the general conic is 

(1 — e*)a:* + y* — 2px + = 0, 
when referred to the system with ND as F-axis and origin at B. 
Dividing by 1 — e* and completing the square in x, we get 

Now from the figure, 

p2^2 

(1 - e2)2 

p = ae = -(1 ~ e^)y 
e 

or 

1 ~ 
and hence our equation may be written, 

If we now move the origin from B to the point 0 whose coordi¬ 

nates are 0^, this equation becomes 

or 

or 

-L 
a2(l - e^) 

To find p in the ellipse equation, 

P = “(1 - e“) 
6* 

Since ae = +\/a^ — b^, 
_ 6* _ b^ 

^ ae + y/'^ 
Also, 

f^\. = 6^. 
1 — 

6* b /-- b^ 
±Va^~-b^ 

Also, since o*(l — 

1 2 1 - e* = 
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768. Eccentricity e in Terms of the General Equation 
Coefficients.—From Art. 765, 

„ 

If A <C, we have 

CD^ + AE^ - 4ACF CD^ + AE^ - AACF 

__:_: 4ArF g 
CD^ + AE^-4ACF bee Art. [77.2], 

4 A * 6’ ' ' 

This reduces to 

j ^ giCD^ + AE^ - 4ACF] - AlCD^ + A1<F - 44CF] 
® " C[CD^ + AE^ - 4ACF1 .. 

= - 

e = ± 
fC - A 

\ “C 

From this, 

I — c 
provided that C, the coefficient of y^j is greater than A, the coeffi¬ 
cient of x^. The major axis is on the X-axis. 

If A is greater than C, the major axis is on the F-axis and 

[372] 

From this, 
-±4 

A -JC. 
A 

1 - c* 

Example.—Find the eccentricity e of tlie equation, 
+ 4y‘^ = 16. 

A = 1, C = 4. 

jC- A ji - 1 _ 1 /- 
\ "(7“ ■ “ yJ"'T 2 

769. Focal Radii.—Frojii the definition of the ellipse or from 

the relation expressed m Art. 764, 

PF = e • FA = e(^ + x) (from Fig. 417). (1) 
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Also, from Art. 766, 

PF/ = e- PN‘ = e(^ - x)- 

Adding (1) and (2), 

PF + PF' = + x) + e(~ - x)' 

= 2a. 

(2) 

Nl- 

Fig. 418. 

Therefore, the sum of the distances of any point on the ellipse 
from the foci is a constant and equal to the major axis. 

770. Major Axis on the Y-axis.—If x and y are interchanged, 

then 
4/2 ^2 

[373] yi + = 1. 

The ellipse will then have the form shown in Fig. 419. 

The F-intercepts are at 

(0, a) and (0, —a). 

Y The X-intercepts are at 

(6, 0) and ( — 6, 0). 

The focus F is at (0, ae). 
The focus F' is at (0, — ae). 
The equation of the directrix ND is 

a 
y-e 

The equation of the directrix N'D is 

a y=--. 

771. Equation of Translated Ellipse.—If the origin is trans¬ 
lated from the center of the ellipse represented by 

t A. yl ^ I 
a* ^ 6*. 
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to the point {—h, —k), then the equation of the ellipse referred 
to the new origin is 

1374] 
(x - hy (y - kY 

o* 

Note.—The origin may also be translated t-o (h, k) making the equation 

+ hy , (y -hky ^ . 
a* 62 

This is a more general standard form of the equation of the 
ellipse. 

The center of the ellipse is at {h, k). 
The equation of the axes are x = /i and y = k. 
The focus F is at (A — ae, A), or {h — \/— 6^, k). 
The focus F' is at (A + ae^ A), or 

(A + k). 

The equation of the directrix ND is x = A 

X = A — 

a 
or 

e 

The equation of the directrix iV'D' is x = A or 

X A + 
\/— ¥ 

To reduce an equation to the form, 

(X ~ hy ,{y-ky^. 

a* ^ 6* 

simply means to complete the square of the terms in x and y. 
772. Form Ax* + Cy* + Dx + Ey + F = 0.—This equation 

represents an ellipse with its axes parallel to the coordinate axes 
if A and C have like signs but different numerical values. 
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[376] 

Completing the squares of the terms in x and y, 

Dividing by the right member, 

DV / I 
b + 2c) 

/> L’ /' I CD- + AE^ - AACF ' CD^ + AE^ - 4ACF 
4.1'^C ' 4.4r- 

1. 

If A > C, then the equation is of the form, 

K + f! = 1, a- b- 

and has its major axis on the I’-axis. 
Comparing [376] with the e(|uation of the elhi>se [371], we 

see that 

" 2a’ ^ 2C' 

a‘ = -- 

62 = 

CD2 + AE'^ - AACF^ 
~'4MC ‘ 

CD^ + AE^ - 4ACF 
4AC^ 

If A > C, we interchange and h- and get the form, 

1. 
xf x* 

h- 

Hence, the form Ax^ + Cy^ + Dx 4- Ey 4- F = 0 can l)e 

transformed into one of the forms. 

x2 y- x^ , 
, + 2 — 1, or 2 r2 ~ 

a- lA a‘ ir 

by translating the origin to 

(- 
\ 2A’ 267’ 

which will transform the equation to one of the above forms. 

Example.—4x2 ^ Qyt _ jgj; q_ igy _ n = o. 

Collecting the x and y tev ms and completing the scpiare, 

4x‘ - 16x + 16 + 9i/2 + ISy + 9 = 11 + 16 + 9, 

4(x - 2)2 + 9(y + 1)2 = 36. 
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Hence, 

32 22 

a2 = 9, a = 3, = 4^ ^ = 2, /i = 2, A: = -1. 

ae = \/a2 — 62 = \/5. 

Focus F is at (h — ae, A;), or (2 — \/5, —1). 

J'ocus F' is at (A + ac, A:) > or (2 + \/5, — 1). 

The eciuations of the directrices are 

X = 2-. and x = 2 H-—• 
V5 \/5 

773. Major Axis of Ellipse Parallel to Y-axis. Origin Trans¬ 
lated.—^Thc cciiiation takes the form, 

0/ - k)- . (x - h)- 

The center of the ellipse is at 

(h,k). 
The e(iuation of the major axis is 

X = 6. 

The focus F is at (/?, k + ae) or 

(6, A’ + vV ~ 62). 

The focus F' is at (/i, k — ac) or (6, k — y/(F — 6^). 

The ecpiation of the directrix XD is ^ 

j a .a- -- 
y = k — y or y = k-, • 

C Va- - b- 

The C(iuation of the directrix N^D' I 

IS // = A* H—> or 7/ = A: d— , I ^7 
c V u" — h- —I— 

h is the seiniminor axis, parallel to the \ ^ ^ 

.V-axis. ~Q^ Y 

774. Eccentric Angle of Ellipse.— ^ ^ 
The circles drawn on the major and -i- 

minor axes of the ellipse as diameters 

are called the auxiliary circles. 

The equation of the ellipse is 

+ r = 
a2 ^ 62 

The C(juation of the circle drawn on the major axis is 

x2 + //2 = a'K 

Fin. 421. 
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The equation of the circle drawn on the minor axis is 
-(- ^2 -s 12 

If ip is any angle at the center with 
initial line on the X-axis and the terminal 
side cutting the circles at R and Q, draw 
RP and QP parallel to the X- and F- 
axes with intersection at P\ then 
OM = OQ cos ip and MP = OR sin v?, or 

X — a cos ip and i/ = 6 sin p. 

Fio. 422. Substitute X and y values in the equa¬ 
tion of the ellipse; then 

cos^ p 
~2 "T 

sin^ p 
cos^ p + sin^ p 

Hence, P is a point on the ellipse. 
776. Equation of Ellipse in Polar Coordinates.—If e < 1 in 

e cos 0 
(see Art. 747), 

the equation represents an ellipse. 
For the other focus and the other directrix, 

1376] p = r-r-^- 
1 + « cos ^ 

When $ = 90®, the value of 2p is the length of the latus rectum. 

p = £ (1 _ e»). 
fj 

COS ^ = 0. 

Substituting in [376], 

e • ~ (1 - e^) 
e ^ ^ 

^ 1 +0 

Multiplying through by a, 

ap = a*(l — = 6^. 

62 
p =x 

a 
262 

2p = — == length of latus rectum. 

= a(l 

Fig. 423. 
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THE HYPERBOLA 

776. Article 745 on Conics states that when e>l, the locus of 
the point is an hyperbola. 

PlQ. 424. 

From the definition, the locu.s cuts the line FB in the internal 
ratio of e to 1. 

F-B PA. 
F—A~>—B AB’" = e -AB. 

The locus also cuts FB externally at A' in the same numerical 
ratio. 

F_B FA' ^ _ 
F-)-A' A'B 

B->-A' FA'=-e-A'B. 
FA + AA' = FA'. 
Let A A' — 2a. 
Then, just as in the case of the ellipse, 

e-AB + 2a = -e -A'B. 
e(AB + A'B) = - 2a. 
e(BA' - AB) = 2u. 

e • 2 • BO = 2u. 

BO = -• 
e 

Also, 

FF' = 2(FA + AB + BO). 
469 
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But 

FF' = 2F0, FA = e • AB, SO = AB = a - -• 
6 6 

2FO = 2(..AB + ^B + 2)-2[e(»-f) + (a-!)+?]. 
= 2ae. 

FO = 06. 
Consider the origin at 0, OB the X-axis, and OC the F-axis. 

Then, from the figure, the coordinates of the focus areF(--ae, 0). 
The other focus is at F'(a6, 0). 

From the relation, 

PF' - 6 . XT, 
for any point P(x, 7j); squaring we have 

W"" = • NT'‘ = e-‘(x - 

From distance formula, 
= (x aeY + 2/^ 

Therefore, 

e^(x - ^ = (x - 06)2 2^2^ 

which reduces to 
(1 — 62)x2 + 2/2 = ^2(1 — C2) 

exactly as in the case of the ellipse. But in this instance we 
have 6> 1 and, hence, it is better to write the equation, 

(62 — l)x2 — = o2(62 — 1). 

Let 62 = a2(c2 — 1), or 

Substituting above. 

- 1) = 

0 ^ 5*, 

= 1 

Dividing by 62, 

[377] 

which is the standard form of the equation of the hyperbola. 

Since 
62 = o2(62 — 1) = — a2, 

02^2 = a2 + 62. 

06 = ± >/o2 -}- 62, 
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The focus F is at ( — ae, 0). 

Note, ae = ±V^-f 62. 

The focus F' is at (ae, 0). 

The equation of the directrix ND is a; = — 

The equation of the directrix N^D' is a; = -• 
e 

Note. - = _♦ 

777. Foci on the Y-axis.—If x and y are interchanged in 
a;2 

a de 

the foci are then on the F-axis, and the eciuation becomes 

[3781 

The focus F' is located at (0, ae). ae = \ / 

Va^ + h^. 
The focus F is located at (0, — ae). - 

The equation of the directrix -%—^-4— 

T D' 
ND IS 2/ = — 

e X ^ X 

Note. - - ^ 
« Va^ -b ^ Fig. 425. 

778. Equation of Hyperbola from Conic Equation.—The 

eequation of the general conic is 

(1 — e^)x^ + 2/^ — ^px + == 0. 

Since e > 1, the coefficient of is negative, and 

(e^ — l)x^ — 2/^ + 2pa; — = 0. 

Dividing by (e^ — 1) and completing the square of the terms 

+ eT-^ 1)' 

Now from the Fig. 424, 

{e} - If 

:(e‘ - 1), 

- (e* - 1) 
p e 

^-ZTi == ^ - 1 
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Hence, the equation may be written, 

[379] i =«• 

If we now move the origin from B to the point 0, whose 

coordinates are 0^, this equation becomes 

or 

6^ - 1 

_ 
- 1) 

= 

= 1, 

or = 1. 

779. Focal Radii.—From the equation (Art. 776), 
PF = e- PN, 

- i° + *)■ 
PF' = e- PN'. 

(1) 

(2) 

- '(* - -y 
Subtracting (2) from (1), 

pp _ pp. „(?+,) - .(*- 
= a + cx — ex + a = 2a. 

Therefore, the difference of the dis¬ 
tances from any point on the hyperbola 
to the foci is a constant and equal to the 

transverse axis. (The transverse axis is the distance 2a between 

the vertices.) 
780. Asymptotes.—Let POP' be a line passing through 0, 

the center of the hyperbola. The equation of the line is of the 

form, 
y = mx. 

If P is made to recede indefinitely by 
increasing x, POP' will rotate about 0 and 
approach AA' as a limiting position. The 
lines A A' and BB' are called asymptotes. 

The coordinates of the point F(x, y) must 
satisfy the equation of the hyperbola, 

Y 
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and the equation of the line, 

y = mx. 

Solving the two equations simultaneously, 

— aW 

Now as P(x, y) moves off along the curve, x becomes infinite 
and the denominator of the fraction; that is, 

must approach zero. 
If — aW = 0, then 

Substituting in 1/ = mx, 

6, b ^ n A I ^ n y - -X and y = —x. or y-x = 0 and 2/+ -x = 0, 

which are the equations of the asymptotes. 
The equations of the asymptotes can be put into the same 

general form as the hyperbola by combining into the second- 
degree form (Art. 743). 

Then 

+ =o,orj/»-^,x* = o, 

or 

Dividing by 6,* 

a» 
J/* = 0. 

781. Conjugate Hyperbolas.—Two hyperbolas are called 
conjugate hyperbolas if the transverse and conjugate axes of one 
are the conjugate and transverse axes, respectively, of the other. 

When there are no first-degree terms in the equation of an 
hyperbola, the ecjuation of its conjugate hyperbola is found by 
changing the signs of the coefficients of x* and y* in the given 

equation. 
Thus, for 16®* — y* = 16, the conjugate is 

y* - 16®* = 16. 
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Then 

— ™ = 1 and = 1 

are conjugate hyperbolas. 
These two hyperbolas have the same 

asymptotes. 
The foci are all at the same distance from 

the origin and this distance is equal to ae, 
or the foci lie on the circumference of a circle whose center is at 

the origin and whose radius is + 6^. 
782. Translation of Equation of Hyperbola.—The equation 

of the hyperbola can be translated in a manner similar to that 
used in the case of the ellipse (Art. 771). 

By translating the origin from the center ot hyperbola of 
standard form, 

= 1, 
to the point (- 

[380] 

■h, —k) the translated form is 
{X - hy (y ~ ky 

¥ 
= 1. 

Note. 

the form 

The origin can also be translated to (h, k) and the equation will take 

{x + hy (y + k)^ 
a* = 1. 

The center, then, referred to the new axes, is at (/?,, k). 
The equation of the major axis is y = k. 
The focus is located at 

{h + k). 
The focus F is located at 

{h — ae, k). 

Note, oe =* \/a* -f 6*. 

The equation of the directrix ND is 

X — h 
e 

The equation of the directrix N'D' is 

X = h 
e 

a __ _ay_ 
« ~ Va* + 6* 

Note. 
Fig, 429. 
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If the major axis is parallel to the F-axis, the transformed 
equation takes the form, 

[381] ~ _ .(.? ~ = I 
^ ^ a* 6* 

The equation of the transverse axis is a: = h. 
The center, referred to the new axes, is at (h, k). 
The focus F' is located at 

(A, k + ae). 
The focus F is located at 

{h, k — ae). 

Note, ae - \/\ 1 / 

The equation of the directrix ND is 

y-k + !. ^—::—^ 

The equation of the directrix N'D' is 

y = k-^- 
4 

e ” Va2~T^' 
783. Equilateral Hyperbola.—If a = b in the equation, 

^2 — = o} [25]. 

This equation represents what is called an equilateral hyperbola. 
The asymptotes make an angle of 45° with the axes and their 

equations are 
y = X and y = —x. 

The eccentricity e is equal to \/2, or 1.414. 

The length of the latus rectum of the equilateral hyperbola 

is 2a. 
784. Equation of Equilateral Hyperbola Referred to Its 

Asymptotes as Axes.—The formulae of rotation are (Art. 793). 

X == x'- cos (-45°) y"' sin(-45°) and 

y == x'* sin (—45°) + t/'- cos (—45°). 

Then 

X = (x' + y') and (1) 

y - V2 ' *'’■ 
(2) 
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Substitute the values from (1) and (2) in the equation of the 
equilateral hyperbola, X* — y* = o*;then 

+ 2x'y' + I/") - - 2xY + y'‘) = o*. 
Dropping primes and reducing, 

[382] xy = I*. 

From this, it follows that if two variables change in such a 
way that their product is constant, the curve which represents 
them in rectangular coordinates is an equilateral hyperbola. 

An hyperbola having the lines, 
X + 2y + 3 = 0 and 

3x + 4y + 5 = 0, 
for asymptotes will have an equation of the form, 

{x + 2y + 3) (3x + 4y + 5) + A: = 0, 
while the equation of its conjugate hyperbola will be 

(x + 2y + 3) (3x + 4y + 5) — A: = 0. 
If a second condition is imposed upon the hyperbola, e.g., 

that it shall pass through the point (1, — 1), then the value of 
k may be easily found. 

Since the curve passes through the point (1, — 1), 
(1 - 2 + 3) (3 - 4 + 5) + A: = 0. 

.'.k = —8. 
The equation is 

(x + 2y + 3)(3x + 4y + 5) - 8 = 0, 
or 

3x* + lOxy + 8y* + 14x + 22y + 7 = 0. 
The equation of the conjugate hyperbola is 

3x* + lOxy + Sy* + 14x + 22y + 23 == 0. 
If the asymptotes of an hyperbola are chosen as the coordinate 

axes, their equations will be x = 0 and y = 0, or 
xy = 0. 

Therefore, the equation of the hyperbola which differs from 
that of its asymptotes by a constant is 

xy = A:, 

wherein the value of the constant k is to be determined by an 
additional assigned condition concerning the curve, e.g., that it 

shall pass through a point, such as the vertex, 

2 2 
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The equation becomes 

^ xy- 

which is the equation of an hyperbola referred to its asymptotes 
as axes, ordinarily oblique. 

786. Form Ax* + Cy* + Dx + Ey + F = 0.—If A and C 
have unlike signs, the above equation represents an hyperbola 
with axis parallel to the coordinate axis. This equation takes 
the same form as [376], or 

Ci)* + AE* - 4ACF CD* + AE^ - iACF 

(y + 2C) 
= 1. 

4A*C ~4lc”* 
Since A and C have unlike signs, then 4^1 *C and 4AC* will 

also have unlike signs. 

If the second denominator is negative, the transverse axis is 
parallel to the X-axis. 

If the first denominator is negative, the transverse axis is 
parallel to the F-axis. 

The form, Ax^ + Cy^ + Dx + Ey F = 0, can be simplified 

by translating the origin to ^he forms, 

I’ - g - 1 13781. 

and 

786. Eccentricity e in Terms of the General Equation of the 
Hyperbola.—From Art. 776, 

h* = 

e* = 

2^2 - a‘e' 

6* + o* 

er = 

CD* + AD* - 4ACD CD* + d D* - 
* 4AC* ^ 4d*C 

4ACF 

± A :F C 

CD* + AD* - £A(.'D 
4A*C ' 

4 ± A T C 
for transverse axis parallel to XX. 
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For transverse axis parallel to FF, we have 

1±a t c 
^ \ A 

The double signs must be so adjusted that the value of 
is positive. Since, in the hyperbola, A and C have unlike signs, 
the sum of the absolute values of A and C should be taken for 
the numerator and the absolute value of C for the denominator. 

Example.—Find the eccentricity e of the equation, 

- iL = 1 
16 48 

Arrange in the general form, 

Ax^ + Cy^ + F = 0. 
4Sx^ ~ 16?/2 = 768. 

A = 48, C = 16. 

V 
(48 + 16 

16 
= \/4 == 2. 

Note that from the equation of the equilateral hyperbola, 

787. Polar Equation of Hyperbola.—If c > 1 in 

^ i — e cos S 
(Art. 747), 

the equation represents an hyperbola. 
788. Relation of Eccentricity e of Hyperbola and Ellipse with 

the Same Values of a and b. 
Let e represent the eccentricity of hyperbola and 

ei represent the eccentricity of ellipse. 
From Arts. 776 and 764, 

^2 _ j c= and 
a* 

Since a and b are equivalent in both formulae, 

6^ — 1 = 1 — or = 2. 

The ^um of the squares of the eccentricities equals 2. 
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Examples.—Compare the equations, 

Y0 ^ ^ = 1, an hyperbola, and 

16“^ 4 1, an ellipse. 

In both cases a = 4 and 6 = 2. 
Substituting values of a and 6 in 

4 

16' 

e2 = 1.25. 

e — 1.118 (for hyperbola). 
Substituting values of a and 6 in 

62 4 
1 = - = 

16 
ei^ I = .75. 

Then 
Cl = .86() (for ellipse). 

e2 + ei2 ^ 1 25 + .75 = 2.00. 

Again since 
= 2, 

the relation of e and ei can be shown by a right triangle if a and 

6 have the same values in the two equations. 

By drawing the hypothenuse a constant length and keeping 

,the angle A eciual to 90^, the relation of e and 61 are graphically 

shown. 

However, e must be greater than 1 for the eejuation to repre¬ 

sent an hyperbola. 

As Cl approaches zero, e approaches 1.414. 

789. Relation of Eccentricities of Ellipse and H3rperbola 
Having Same Values of a and p.—Denote the eccentricity of the 

ellipse by e and of the hyperbola by Ci. 

Assume the eccentricity of the ellipse as equal to the reciprocal 
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Therefore, the distance p between the focii and the directrices 

are equal in both cases, but the locations of the focii and direc¬ 
trices are interchanged. 

790. If b in the equation of the ellipse is changed to by/ — 1, 

that is, to bi, the equation becomes the equation of an hyperbola. 
If this same substitution is made in the equations of tangents, 
normals, etc., of the ellipse, the equations represent tangents, 
normals, etc., of the hyperbola. 

791. Relations of p in Equation of Hyperbola.—From Art. 778, 
pV „ 

(e2 1)2 « • 

Extracting the square root, 
pe 



CHAPTER XXXV 

DISCUSSION OF GENERAL SECOND-DEGREE EQUATION 

792. Removal of First-degree Terms by Translation,—The 
general equation is 

Ax^ -f- Bxy + Cy^ + Dx + Ey + F = 0. (1) 

Move the origin to (h, k); then 

* */ 7^ where x' and y' are referred to the new axes. y = y’ -\-k " 
Equation (1) becomes 

Ax'^ 4- 2A^x' + Ah^ + Bx’y' + Bhy' -|- Bkx' + Bhk + Cy'^ + 
2Cky' + Ck^ + Dx' + Dh + Ey' + Ek + F = 0. 

Collecting, 

Ax'^ + Bx'y' + Cy'^ + (2Ah + Bk + D)x' + {Bh -h 2Ck -t- 
E)y' + {Ah^ + Bhk + Ck? + Dh Ek F) = 0. (2) 

If values of h and k are chosen which will make the coefficients 
of x' and y' equal to zero, then 

2AA + M + D = 0. (3) 
Bh + ^Ck-^E = 0. (4) 

Solving for h and k, we have 

2CD - BE , 

- 4AC 

If these values of h and k are substituted in the constant term 
of equation (2), or 

Ah^ + Bhk + Cfc* Dh + Ek + F, tlus constant term 
OQ 

-(4ACF 4- PDF -AFP- CD^ - FB^) .. 1383] - ^ 

The last term is very important in determining the nature of 
the locus and is called the discriminant. 

481 



482 MATHEMATICS FOR ENGINEERS 

Substituting these values of (3), (4), and (5) in (2), the general 
equation referred to the translated axes becomes 

imi +B,v+c,'. - - 0^ 

Note that the first-degree terms have disappeared and that the 
coefficients of xy^ and remain as before. 

If the discriminate equals zero, then 
+ C2/'2 = 0. 

This case was discussed in Art. 210 and shown to be two 
straight lines. 

793. Rotation of Axes.—^Let OX and OF be rotated through 
the angle 6 until they assume the position of OX' and 0 F'. Then 
any point P whose coordinates referred to OX and OF are (x, y) 
will have coordinates (x', t/') referred to OX' and OF'. Draw 
PM perpendicular to OX"' and drop perpendiculars from P and M 
to both OX and OF. 

ZNPM = e. 
X = OT - LT. 

OT = x' cos 6. 

LT = MN = y' sin 
X = x' cos d — y^ sin B, 

Fig. 432. 

Similarly, 

y ^ OR + RS. 
OR = x' sin 6. 
RS = PN = y' cos 6, 

7/ = x' sin 0 + y' cos 6, 
Rotation of axes in general equation 

Ax^ + Bxy + Cy^ + Dx Ry + P — 0 

[13]. 
When equations of rotation are 

X = x' cos 0 — y' sin 6 and 
[386] 7/ = x' sin ^ + y^ cos 6. 

Substitute in general equation [13] 
A cos^ $ — 2A sin 6 cos 6 A sin^ B 
B sin 6 cos 6 20 sin 6 cos 0 — B sin 6 cos B 
C sin^ 0 x'2 -B sin2 B x'y' C cos^ B 

B cos^ B 
D cos B f E cos B 
E sin B ^ —Z> sin B 

2/' + B = 0. 



DISCUSSION OF GENERAL SECOND-DEGREE EQUATION 483 

If 6 be so chosen that the coefficient of equals zero, or 
J5(cos2 6 — sin^ 6) = 2(A — C) cos 6 sin 6, 

then B cos 26 = (A — C) sin 26. 
sin 26 

= tan 26 
B 

cos 26 ~ A - C 
794. Tests of Second-degree Equations for Locus.—The first 

test for any equation of the second degree is the discriminant test 
(Art. 792). 

If A = AACF + BDE — AE^ — CD^ — FB‘^ = 0, the equation 
represents two lines, imaginary, intersecting, parallel or coinci¬ 
dent. The proof of this test has already been established in 
Arts. 792 and 210. 

If A 5*^ 0, we have: 
A parabola if B^ — AAC = 0. 
An ellipse if B^ — 4AC<0. 
An hyperbola if B- — 4AC>0. 

The — 4AC test follows (if A 9^ 0) from the solution for y 
in Art. 208. 

-{Bx +E) ± VW^ '- AAC)x^'21^E'^ + i^"^CF) 
2C y = [38] 

Except for the shearing, this is the same conic as 

VCB^ '-^AC)x^ + 2(BW~^2CD)x~+'W^ 
y = ±- 2C 

[39] 

Rationalizing, 
-4C2^2 q. (^2 _ ^AC)x^ + 2{BE - 2CD)x + (E^ - 4CE) = 0. 

From this it is apparent that if IP — 4AC = 0, the equation is 
quadratic in y and linear in x and represents a parabola. 

If J52 — 4AC <0 (that is, negative), the coefficients of x^ and 
will have like signs and the locus will be an ellipse. 

If _ 4A(7>0 (that is, positive), the coefficients of x^ and 
i/2 will have unlike signs and the locus will be an hyperbola. 

795. Tangent (Secant Method).—A tangent to a curve at a 
point P (x, y) is obtained as follows: 

Take a second point P% on the curve near 7^, and draw a line 
through these points. This line is (tailed a secant. 

If the point P2 approaches P along the curve, the line will rotate 

about P. 
The limiting position of the secant, as P2 approaches infinitely 

near to P, is called the tangent at P. 
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r ly Begin by computing the slope of 
1 m(x*h,y+k) the secant line as in the following 

X 
example: 

^-X Let the curve in Fig. 433 be 5y = x*. 
The points Poixo, yo) and P^{xo + 

h, yo + k) are on the curve and their 

Fig. 433. 
coordinates must satisfy the equation 
of the locus. Therefore, 

5yo = aJo*. (1) 
5(yo + fc) = (xo + A)*. (2) 
5j/o + 5k = 3Xo^h + 3xoh‘ + A* + a:„». (3) 

Subtracting (1) from (3), 
5k = Sxo^h + 3xoh^ + hK 

, 3xo^h + 3Xoh^ + k--- 

slope = I = ?5^-±1?A±A*. (4) 

As P2 approaches Poy h and k approach zero. The slope of the 
tangent m can then be found by letting h and k approach zero in 

slope m = 
3xo^ “b 3xoh “b 

approaches 

and this is, therefore, the slope of the tangent. 
The equation of a line in the point-slope form is 

y ~ = m{x - Xo) (6) 
Substituting (5) in (6) then gives 

3Xo^ y \ 
y - Vo ~-^{x ~ Xo). 

796. Tangents to conics can be found by the same method 
(Art. 795) at any point Po{xoj yo) for the following: 
[386] Circle x* 4- 1/* = r® is x^ + yoV = r*. 
[387] Parabola = 2px is yoy = pix + Xo). 

[388] Ellipse + = l is + M = 

Hyperbola ^ ?. = 1 is ^ - 

The equation of the tangent to any conic at the point Po{xo, yo) 
can be found by substituting 

XoX for x^, yoy for y^, 

^y> —2— -g'" for y. 
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In the general equation, 

Ax^ + Bxy + Cy^ + Dx + Ey-\-F^0, 
the equation of the tangent at the point yo) is 

[390] Ax,a + + Cy«y + ^{x + Xo) + ~^(y + + iF" = 0. 

Example 1.—Find the tangent to 3*^ — Axy + 2?/ — 7 = 0 at the 
point (1, —2). 

A = 3, B = -4, C = 0, D = 0, E = 2, F - -7, X, = 1, y. = -2. 

Substituting in the above equation for the tangent gives 

3 • 1 • X - + 0 + 0 + |(l/ - 2) - 7 = 0, 

which reduces to 

3a; — 22/ + 4a: + 2/—2 — 7 = 7a; — 2/-9 = 0, 

which is the equation of the required tangent. 

Example 2.—Find the equation of the tangent to the curve, 

— 2xy — t/2 + 3x — 4?/ — 3 - 0, 

at the point (—3, 5). 

A =3,B = -2,C= -1,D = 3,E= -4,F= -3, x. = -3,2/. = 5. 

Substituting in the above equation for the tangent gives 

3(-3)x - 1{-Zy + 5x) -l{5y) + K-3 + x) -2{y + 5) - 3 = 0, 

which reduces to 

25x + %y + 35 = 0, 

which is the equation of the tangent sought. 

Example 3.—Find the tangent to 

4x2 2^2 — — V2y —8 = 0 

at the point (4, 6). 

A = 4, B = 0, C = 1, D = -5, E = -12, E = -8, x, = 4,2/. = 6. 

Substituting in the above equation for the tangent gives 

4 • 4x + l(6y) - Hi + x) - 6(6 + 2/) - 8 = 0, 

which reduces to 
27x - 108 = 0, or X = 4, 

which is the equation of the required tangent. 

797. Tangents to Conics in Terms of Slope.- The equation 

of the tangent having a slope m to a 

[391] Circle is y = mx ± r\/+ 1. 

[392] Parabola y* = 2px is y = mx + 
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[393] Parabola a? = 2py k y ^ mx — 

[394] Enipse ^+ = 1 k y mx ± 

[396] Hyperbola ^ = lis?/ = mx ± \/ aV — 

[396] Hyperbola ^ ^ — -~lisy = mx ±\/lf a^m^. 

[397] Hyperbola xy — c is y = mx ± 2\/ — cm. 

798. Normals to Conics.—The normal to a curve at the point 
Piixiy yi) is the line drawn perpendicular to the tangent at that 
point. 

The equation of the normal can be found by finding the 
slope of the tangent at the given point and remembering that 
the slope of the normal will then be the negative reciprocal 
of the slope of the tangent and will jmss through the same point 
on the curve, that is, Pi. Since its slope and a point on the normal 
are known, its equation may be written by using the slope-point 
form (Art. 726). 

The equations for the normals to different conics are: 

[398] Circle = r* is x^y = xyo- 
[399] Parabola 2/^ = 2px is yoX + py = Xoyo + Pl/o- 

[400] Ellipse ~ + ^ = I k ahjoX — V^Xoy = (a^ — l^)xoyo- 
% 2 2 

[401] Hyperbola ^ ^ = 1 is ahjoX + hHoy = (a^ + h^)Xoyo- 

In the general equation, Ax^ + Bxy + Cy'^ + Dx + By P 
= 0, the equation of the normal at the point Po{Xo, yo) is 

rAfmi + 2Cyo + S 
'"21 y-y-- 22jr+rrsr+T>** “ 

799. Properties of Tangents and Normals to Conics.—The 
tangent and normal to an ellipsebisect, 
respectively, the external and internal 
angles formed by the focal radii at 
the point of contact. 

In Fig. 434, 
ZFPD = ZDPF' and 

Fio. 434. AF'PN = ZNPC, 
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Therefore, to draw a tangent and a normal to the ellipse at 
the point P, draw lines from P to the foci and bisect the internal 
and external angles formed by these lines. 

From physics, the law of reflection of waves states that the 
angle of incidence equals the angle of 
reflection. 

If a ceiling has the form of an ellipsoid, 
a whisper at F may be audible atP' but 
not at any other point adjacent toP/ 

The tangent and normal to a parabola bisect, respectively, 
the internal and external angles formed by the focal radius 

of the point of contact and the line through 
that point parallel to the axis. 

In Fig. 436, 
ZPPD = /LDPN and 
ZPPC - ZCPP. 

The principle of parabolic reflectors de¬ 
pends upon this property of the parabola. 

All the rays of a light which is located at 
the focus are reflected from the parabola 

in lines that are parallel to the axis of the parabola. 
The tangent and normal to an hyperbola bisect, respectively 

the internal and external angles formed by the focal radii of the 
point of contact. 

In Fig. 437, 
AFT A = AAPF and 
AFPD = ZDPC. 

800, Diameter of Conic.—The locus of the midpoints of any 
system of parallel chorus of a given conic is called a diameter. 
The chords are called the chords of that diameter. 

This is best illustrated by an example. 

Fig. 435. 
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Take the equation of the ellipse, 

= 1. 

Let y = mx + c he the equation of one of the chords and let 
Piixiy yi) and P2(x2, 2/2) be its points of 
intersection with the curve. 

Let Pzixzy yz) be the midpoint of the chord 
through Pi and P2, so that 

+ X2 yi + 2/2 
xz = —2— 2/3 = —2- 

Find the coordinates of Pi and P2 by 
solving the equations of the ellipse and the 

chord simultaneously. Substituting the values of rci, t/i, X2y and 1/2 

so found gives 

—d^cm 

4* 
(1) 

aW + 6^ (2) 

Now by allowing c in the above equations to take on different 
values, we obtain the coordinates of the midpoints of each of 
the chords of the set, or Xz and yz- 

We can, therefore, find the locus of these midpoints by satisfying 
the conditions (1) and (2) without being dependent upon c. 

We, therefore, eliminate c by dividing (1) by (2), which gives 

2/3 

Therefore, the coordinates of the midpoints of a system of 
chords of slope m must satisfy the condition. 

X _ 
y " 

y = 

-pmy or 

_ 
a^m^’ 

This is the equation of the diameter which bisects all chords of 
slope m. 

In like manner the equations of the diameters which bisect 
chords of slope m may be shown to be as follows; 
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For parabola = 2pxisy = —• 
m 

For hyperbola-. - = lisy = -.~ x, 

801, Properties of Diameters.—From inspection of the diam¬ 
eter equation for the parabola, it will be seen that every diameter 
of the parabola is parallel to the axis of the parabola, or every 
line parallel to the axis of a parabola bisects some set of parallel 
chords and is a diameter of the curve. 

The tangent at the end of a diameter is parallel to the bisected 
chords. 

Every diameter of an ellipse passes through the center of the 
ellipse. 

If one diameter, as AA\ bisects the chords 6, c, etc., parallel 
to a second diameter J5J5', then also the second diameter bisects 
the chords d, e, etc., parallel to the first diameter. Such diam¬ 
eters are called conjugate diameters. 

The tangent at the end of a diameter is parallel to the conjugate 
diameter. 

When we start with a system of chords 
of slope m, we get a diameter of slope, 

m' = —— 
arm 

Hence, m and m' are the slopes of con¬ 
jugate diameters when 

m = —or m 
a^m 

¥ 
or mm' = 

Every diameter of an hyperbola 
passes through the center of the 
hyperbola. 

If ilA' and BB' are conjugate 
diameters for the hyperbola CAD and 
C'A'D', then they are also conjugate 
diameters for the conjugate hyperbola 
EBF hml E'BT\ 

The tangent at the end of a diameter 
is parallel to the conjugate diameter. 

802. Subtangents and Subnormals.—In Fig. 441, the projec¬ 
tion of PoT on the X-axis is called the subtangent at Po- Like- 
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wise, the projection of PoN on the X-axis 
is called the subnormal at 

Subtangent is TM. 
Subnormal is MN, 

Consider the equation of the tangent to 
the parabola, 'i/ = 2px, at the point 
Po{Xoy Vo), or 

yyo = p{x -f- Xo). [387] 
To find the intersection of the tangent and the X-axis, let 2/ = 0. 

Then 

px + pxo = 0. 
X = —Xo = OT, r .TO = Xo. 

But the subtangent is 

TM ^ TO + OM ^ Xo + Xo = 2xo. 
The equation of the normal from the point Po{xoy yo) is 

yoX + P2/ = ^oVo + PVo. Let y - 0, then, 

^ + VVo 
Vo 

Xo+ p. 

But ON = Xo + p. 
MN = ON — OM = Xo + p — Xo = p. 

The subnormal for any point Po{xo, yo) is a constant for a 
parabola and is equal to p. 

A convenient graphical method of locating tangents, normals, 
subtangents, and subnormals is to describe a circle with the focal 
radius as radius and with the focus as a 
center. The circle cuts the X-axis at the 
intersections of the tangent and the normal 
with the X-axis. 

By dropping a perpendicular from Po, 
the subtangent and subnormal are obtained. 

By using the same method as that used 
for the case of the parabola, the subtangent 
for any point Po(Xoj yo) on the ellipse is. 
shown to be 

Subtangent = —^ 

If a series of ellipses has the same major axis, tangents drawn 
to them at points having a common abscissa will cut the major 
axis (extended) in a common point N. 
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By drawing a circle with diameter equal to the major axis 

and using the same abscissa of P on the circle, a tangent to the 

circle at that point is easily drawn and the point N located. 



CHAPTER XXXVI 

PARAMETRIC AND POLAR EQUATIONS 

803. Parametric Equations of a Curve.—If the variable coordi¬ 
nates of a point on a curve are expressed separately as functions 
of a third variable, these equations are called 'parametric equations 
of the curve, and the third variable is called a parameter. 

If an equation connecting the variables is known and a relation 
between the parameter and one of the variables is assumed, it is 
often possible to compute the relation between the parameter 
and the other variable. In this way, it is possible to represent a 
given curve by various sets of parametric equations. It is more 
usual, however, to assume some geometric relation between the 
variables and the parameter or to consider the time during which 
a point has been in motion as the parameter and to express the 
variables as functions of this time. In previous chapters, we 
have had some good examples of parametric equations, namely, 
in Art. 756, 

X = t'V cos a and 
y == t-v sin a — \gt^, 

and again in Art. 800, 

X = 
— a^cm 

and 

^ a^m^ + 
804. Parametric Equations of a Straight Line.—From the 

equation of a straight line. 

y - Vo = -ix - Xo), (1) 

we know that the slope of the line is — and that the line passes 

through the point (Xo, Vo). 
Dividing (1) by m, 

y - Vo ^ 
m n 

492 
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Suppose that we make each one of these ratios equal to a third 
variable, <; then 

X — Xo 
- ty or X — Xo + nt. 

Tv (2) 

[403] 

^ = t,QT y - mt. (3) 

The equations (2) and (3) are parametric equations of the 
curve represented by (1). 

Illustration,—Put 5^/ — 4x = 15 in parametric form. 
Then 

5?/ = 4a: + 15. 
liCt each side of the equation equal t] then 

t = 52/. 
^ = 4a: + 15. 

Note that by eliminating t between the two equations the 
equation returns to its original form. 

We can also put the equations in the form, 

5y — 5 = 4a: +10 = t, 
t = 5y — 5 and ( = 4a: + 10. 

^ 5 , t .. 
* = ^ - 2 and y = -g + 1. 

y = lx + 3. 

4 
t y + 1 and ^ ^ a: + 4, 

from which 

X = ^ t — 5. 
4 

y ^ t - 1. 

We will make these relations clear by adopting an entirely 
new kind of coordinate axes. Assume three mutually perpendic¬ 
ular coordinate axes through the point 0, similar to the coordi¬ 
nate axes used in solid analytical geometry. Pass intersecting 
planes through these axes, t.e,j a plane through the X- and F-axes 
for relations between the variables x and y, a plane through the 
X- and T-axes for relations between x and and a plane through 
the F- and T-axes for relations between y and L Bear in mind 
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that we are concerned with the planes and not with space as we 
are in solid analytic geometry. 

For convenience, represent the axes as shown in projection 
in Fig. 444. 

On the Xr-plane plot the equation, 

X = — 5, 

from the last forms of the equation given. 
On the FT-plane, plot the equation, 

y =- t - ly 

and on the XF-plane plot the equation, 

T/ = |x +3. 

Take any point on any of the lines and, by projection, the 
corresponding positions in any of the other lines can be determined. 

y 

Example.—Assumed = 10 and projecting to 

X — it — 5, 

we locate the coordinates (10, 7^), or x == 7|. • 
Now project to 

2/ = ^ - 1, 
or y = 10 ~ 1 = 9. 

From these two points on these lines, project into the XF-plane and 
we find the point (7J, 9) on the line, 

2/ == Jx + 3. 
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It will also be noted that the line. 
y == ix + 3, 

passes through the point ( — 5, —1), and that its slope is i. 
The slope of 

X = 5^ — 5 

with respect to the T-axis is 5, and the slope of 

y ^ t - I 
is 1. 

If we are given any two of these lines, the third is easily found. 
As a matter of fact, we can draw one of the parametric lines 

practically any place in the plane and find the other parametric 
equation from the conditions. 

806. Parametric Equations of Circle.—Consider a circle 
with center at the origin and radius r generated by the point 
P (Xj y)j starting on the axis and moving counterclockwise. 

It is evident from the figure that 

and 

cos^ = 
X 

r 

sin e 

from which 

[404] X = r cos 6 and 
y — r sin 

which are parametric equations of the circle with the angle B 

as the parameter. 

Fig. 445. 

The relations of the circle and the above parametric equations 
can be shown graphically by plotting x == r cos B on the X B- 
plane and the equation ^ = r sin B on the Y ^-plane and the circle 

on the XF-plane. 
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Several points are projected through the three curves. The 
circle has a radius of 6 (Fig. 446). 

Fia. 446. 

In like manner, the parametric equations of the parabola 

/ = 4a;, 
may be 

X = and 

y - 2<. 

For the ellipse, 
a:" y* , 
a2 ’ 

parametric etjuations may be 
X = a cos 0 and 
y = b .sin d. 

For the hyperbola, 

^ = 1 
a* 6^ ’ 

parametric equations may be 
X = asec 0 and 
y = b tan 8,- 

X = a cosh t and 
y = h sinh t (Art. 686). 

To plot a curve, give values to the parameter and compute the 
corresponding values of x and y and arrange the results in the 
form of a table. 
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806. Parametric Equations of Parabola. 

Example.—An aviator flying horizontally at the rate of 45 miles per 
hour wishes to hit a target on the ground. He estimates his height 
above the ground as 1000 feet. How far away must 
he be to hit the target; that is, what is the distance 
AB? 

Take the origin at the point of release of the bomb. 
Let P (Xy y) be the position of the bomb after t 

seconds. 

If V represents the velocity in feet per second, 
the bomb will have moved vt feet horizontally after 
t seconds, or 

X = vt. 

But during t seconds, by physics, the bomb will have fallen a distance 
equal to J (neglecting wind, etc.). 

Hence, 

V = 

Hence, 

^ g 
y = 1000, ^ = 32 (nearly). 

7.906. 

That is, it takes the bomb 7.906 seconds to reach the earth. It also 
travels ahead for the same length of time. Substituting 7.906 for t in 

X — vtj 

V = 45 miles per hour, or 66 feet per second. 

X - 66 X 7.906 = 522 feet. 

Note that the equations can also be changed from the para¬ 

metric form by eliminating tj or 

=-y. 
g 

807. Involute of Circle.—If a string is wound around a circle, 
the curve in the plane of the circle traced by a point on the string 
as it is rewound is called the involute of the circle. 

Locate the X-axis through the center of the circle and the point 

P when it is in contact with the circle. 



498 MATHEMATICFi FOR ENGINEERS 

Let the angle through which the radius to the point of 
tangency of the string has rotated, be the parameter. 

y 

From the figure, 
X = OM = OJ5 + EM = OB + LP, 

OR = a cos 6, LP = TP sin 6 - ad sin 0, 

[406] 

y == MP = EL = BT - LT, 
BT = a sin 6, LT = TP cos 6 = aO cos 0. 

Therefore, the equations are 
X — a cos 8 + ad sin d and 
y = a sin d — ad cos d. 

808. Example of Motion.—If a taut string is unwound from 
the circle of radius a at the constant rate of k radians per second 
(angular velocity), then the angle for t seconds is kt^ which, sub¬ 

stituted in the parametric equations of the involute, gives the 
equations of motion for Ihe point P (x, y), or 

X = a(cos kt + kt sin kt) and 

y = a(sin kt — kt cos kt), 
809. The Cycloid .—The locus of a point P{Xy y) on the circum¬ 

ference of a circle which rolls without 
slipping on a straight line is called a 

cycloid. 
Let the origin 0 be at the point of 

contact of the locus with the X-axis. 
Draw* a circle at any point with a 

radius equal to a. Take the angle d 
as the^dian angle through which the circle has rolled for the vari¬ 

able parameter. Then 
PE = a sin d, CB = a cos d. 

By the condition stated above, 
OA = arc AP = a$. 
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From the figure, 

X = OD = OA — PB = ad — a sin 6, 
y = DP = AC — CB = a — a cos 6j 

rAHAl *'* ^ in radians), and 
2/ = a(l - cos ^), 

which are the equations of a cycloid in parametric form. 
The tangent PT and the normal PA intersect the circle at the 

ends of the vertical diameter TA for any location of the circle. 
The area under one arc is 

A = 37ra^. 

The length of one arc is 

S — 8a. 

810. Construction of Cycloid.—Divide the given circle into any 
number of equal parts, as 1, 2, 3,4, etc. 

Lay off PP' equal to the circumference of the circle and divide 
it into the same number of ecjual parts. 

Draw lines through the pointr? of division on the circle, as 1-9, 
2-8, 3-7, etc., parallel to PP'. 

As the circle rolls forward a distance ecpial to one division as P9', 
the point P moves from contact with PP' to a point on the first 
parallel line, 1-9. 

For the second division, moved forward, the point P moves to 
a position on the second parallel line and so forth. 

Fig. 450. 

The location of P on these parallel lines can be determined in 
two ways, z.e., by locating the center of the (urcle each time, and 
with radius equal to the radius of the circile by striking an 

arc which intersects the parallel lines, or in othcu- words, by draw¬ 
ing just as much of the circle as is necessary; or the other method, 
simply by stepping oil one division on the first parallel line, two 

divisions on the second line and so forth, until the center is 
reached. Then start at the opposite end of PP' and, moving 
towards the center, space the points as before. The reason for 
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r U 

this construction is that the circle moves ahead one division each 
time. 

811. The Trochoid.—If any point on the radius of a rolling 
circle, or on the radius extended, is taken as the generating point, 
the locus is a trochoid. 

If the distance from the point to the center of the circle which 
rolls on the X-axis is less than the radius of the circle, the curve is 
called a prolate trochoid, and if the distance is greater than the 
radius of the circle or radius produced, the curve is a curtate or 
looped trochoid. 

The parametric equations in both cases are 
,X = a0 — 6 sin 0 and 

y = a — h cos d. 
h represents the distance from 

the point on the radius to the 
center of the rolling circle. 

J construct trochoids, draw 
vT U the generating circle in different 

locations as in the case of the 
cycloid, locate the center and 

draw the radius (produced if necessary); then measure the distance 
6 from the center for each location. Trace the curve through the 
points thus located. 

812. Hypocycloid and Epicycloid.—A point on a circle which 
rolls on the inside of another circle without slipping traces a 
curve called a hypocycloid. If the circle rolls on the outside of the 
fixed circle, the curve traced is called an epicycloid. 

If r = radius of rolling circle and 
R = radius of fixed circle, 

the equations of the hypocycloid in parametric form are 
(R — r \ 
-- ^ j and 

L4UBJ . ,R-r X 
y ^ {R — r) sin 6 — r sin ^—--Oj. 

The equations of the epicycloid are 

/R “b r \ 
X = (R + r) COB 0 — r cos (—-— Oj and 

y = (/2 + ?•) sin ^ — r sin (~~~ • ^) • 

X = {R + r) COB d — r cos (- 

y = (/2 + ?•) sin ^ — r sin (- 

• 0) and 

• fl) and 

■ e). 
1409] 
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The parameter 6 is the variable angle in radians that a line 
passing through the centers of the circles makes with the X-axis. 
The X-axis passes through the starting point of the curve as 
shown in Figs. 452 and 453. 

Fio, 452. Fig. 45,3. 

The curves are closed when R and r are commensurable. 
813. Construction of Epicycloids and Hypocycloids.—Divide 

the semicircumference of the rolling circle into n equal parts as 
shown, the points of division being 1, 2, 3, 4, etc. With 0 as a 
center and 01, 02, 03, etc., as radii, strike arcs as shown. 

Lay off arcs, ^11', ^42', ^43', etc,, making them the same length 
as arcs 1-2, 2-3, etc., on the rolling circle. Draw the radii, 
01', 02', 03', etc. 

As the rolling circle moves forward one division, the point P 
moves from the point of contact on the fixed circle to a point bn 
the first outer concentric circle, and since the center of the circle 
is on the radius line 01', its new location is readily drawn in a 
manner similar to that used in the case of the cycloid. 

814. Special Cases of Hypocycloid.—If the radius of the 
rolling circle equals one-half of the radius of 
the fixed circle, the locus is a straight line, 
e,g., a diameter of the fixed circle (Fig. 454), 

If the radius of the rolling circle equals oiuv gi— 
fourth the radius of the fixed circle, the four- V y 
pointed hypocycloid or astroid is the locus. ^ 

The equations in parametric form of the Fig. 454. 

astroid are 
X = IR cos 6 + IR cos 3^ and 

2/ = I/? sin ^ — IR sin • 30. 
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Its equation in rectangular coordinates is 

Fig. 455. 

= c*. 
This equation may be obtained by eliminating 

6 from the parametric equations above. 
If, in an epicycloid, the radius of the rolling circle 

equals the radius of the fixed circle, the locus is a 
cardioid. 

The parametric equations of the cardioid are 
X — 2R cos 6 — R cos 26 and 
y = 2R 6 — R sin 26. 

The rectangular equation of the cardioid is 
(x2 + ?/ + 2Rxy = R^{x^ + y^). 

The graph of the locus of the cardioid equation 
is constructed in a manner similar to that shown 
in the last article. 

Fig. 456. 

EQUATIONS IN POLAR COORDINATES 

816. In examining polar equations, it is advisable to examine 
equations for: 

1. Intercepts on the polar axis by putting 6 = 0°, 180°, or 
n • 180°. 

2. Intercepts on the perpendicular to the polar axis by putting 
6 = 90°, 270°, etc., or {2n - 1) • 90°. 

3. p = 0 gives values of 6 for which the curve passes through 
the pole. 

4. Symipetry. Substitute — p for p. If the equation is 
unchanged, the curve is symmetrical with respect to the pole. 

Substitute 6 for 6. If the equation is unchanged, the curve 
is symmetrical with respect to the polar axis. 

If TT — ^ is substituted for 6 without changing the equation, 
the curve is symmetrical with respect to the perpendicular to 
the polar axis. 

5. Extent. Solve the equation for p in terms of 6. Deter¬ 
mine the maximum and minimum values of p. Determine the 
values of 6 for which p becomes infinite. Determine the values 
of 6 for which p becomes imaginary. 

816. Use of Polar Coordinates.—When the required locus is 
described by the end point of a line of variable length, whose 
other extremity is fixed, polar coordinates may be employed to 
advantage. 
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817. Spirals.—A spiral is the locus of a point which revolves 
about a fixed pole, while its radius vector and its vectorial angle 
continually increase or decrease according to some law. 

818. Spiral of Archimedes.—The locus of a point whose radius 
vector bears a constant ratio to the vectorial angle is a spiral of 
Archimedes. 

The polar equation is 'N. 
[410] p — k • 6 {6 expressed in radians). / 

The spiral of Archimedes may also be (He) ■ 
described as the locus of a point which moves I V ) 
with a uniform velocity along the radius \ 
vector, while the radius vector also revolves 
about 0 with uniform angular velocity. Fiq. 457. 

819. The Reciprocal or Hyperbolic Spiral.—The locus of a 
point whose radius vector varies inversely 

' as the vectorial angle, f.e., as the reciprocal 
of the vectorial angle, is a reciprocal spiral. 

s/ I X The polar equation is 

[411] p = -f or pd ^ k. 

Fia. 458. 

This reciprocal spiral begins at an infinite 
distance from the pole and constantly 
approaches the pole as it winds about it 
/er reaching it. The , .p/pa) 
X__ 

without, however, ever reaching it. The 
curve has an asymptote parallel to the polar 
axis and at a distance k above it. 

820. The Parabolic Spiral.—In this curve, 
the square of the radius vector varies as the 
vectorial angle. 

The equation is 
[412] p^ = k^d. 

821. The Lituus. 

Fio. 459. 

Fio. 460. 

821. The Lituus.—In this curve, 
the square of tbo radius vector varies 
inversely ns the vectorial angle. The 

^ equation is 

This curve has the polar axis as an 

. asymptote. 
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The curve begins at infinity and constantly approaches the 
pole as it winds around it without, however, ever reaching it. 

822. Logarithmic Spiral.—In this curve, the logarithms of the 
radii vectors are in the same ratio as the vectorial angles. The 
equation is 

[414] log - = kd, OT p — oe**. 
CL 

B is expressed in radians. 
a is the value of p when B — 0. 
If a - 2, 
When B = —2, —1, 0, 1, 2, 3, 4, etc., 

P = i, h 1, 2, 4, 8, 16, etc. 

Fio. 461. 

823. The Lemniscate.—The locus of a point P, the product of 
whose distances from two fixed points F and F' is a constant 
equal to is called the lemniscbte. 

The polar equation is 
[416] p2 = cos 2B. 

Since the maximum value of cos 20 is 1, the maximum value of 
p is a. 

If cos 20 is negative, p is imaginary. There is no part of the 
curve between the 45° and 135° lines. 

Fig. 462. Fio. 463. 

If — 0 is substituted for 0, the equation is unchanged, and the 
curve is, therefore, symmetrical with respect to the polar axis. 

When p = 0, cos 20 = 0, 0 = 45°, 135°, and hence, the curve 
passes through the origin at these angles. 

The equation f? ^ d? sin 20 represents the lemniscate rotated 
about the origin through an angle of 46°. 
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824. Three4eafed Rose. 
The equation is 

[416] P = a sin 3^. 

so" 

Fig. 464. Fig. 466. 

825. Four-leafed Rose. 
The equation is 

[417] p = a cos 2$. 



CHAPTER XXXVII 

EMPIRICAL EQUATIONS 

826. Determining Empirical Equations.—A curve plotted from 
experimental data is called an empirical curve or locus. 

An equation which represents a curve that approximates the 
empirical curve more or less accurately is called an empirical 
equation. 

Many of the phenomena of change in nature have been found 
to be in accordance with one of three fundamental laws. These 

are: The Law of Power Functions (Art. 261), The Law of Organic 
Growth (Art. 365), sometimes called The Exponential or Com¬ 
pound Interest Law, and The Harmonic Law (Art. 613). 

The power functions have the general form, 
y — k = m(x — h)'^. 

If n = 1, the equation is a straight line usually given in the 
form, 

y = mx + b and y = mx. 
If n>0, the equation is the parabolic type, 

y — k — m{x — /i)”, 
with vertex at (h, k) and includes the special forms, 

y = mx”, y = mx" + 6, i/ = cx^ + 5x + a. 
If n<0, the equation is of the hyperbolic type, 

y — k = m(x — /i)“", 
with center at {h, k) and includes the special forms, 

^ = :S’ 2/ = X X 

The last form reduces to 

2 + ^ = 1. 
X y 

827. In all cases where empirical equations are to be found, it 
is advisable first to plot the curve in rectangular coordinate 
from test data in order to get some idea of the shape of the locust 

506 



empirical equations 507 

and the nature of the law. If the locus approximates a straight 
line, then the equation y = mx + b may be assumed. 

If only approximate relations of the variables are desired, the 
intercept b on the F-axis, and the slope m may be measured by 
taking a straight line drawn so as to average the plotted points. 

A more accurate determination is to assume two points on the 
straight line which seems to represent the observed data very 
well and to write the e<iuation of the line through these two 
points (Art. 729). 

If the points are (xi, t/i) and (X2, j/s) the line is 

2/ - 2/1 = - xi). 
Xl — X2 

Example.—In an experiment with a pair of gears, the pull P required 
to raise a weight W was observed to be as follows: 

10 20 30 40 50 1 60 70 80 90 100 

2.6 4.0 5.2.5 6..53 7.85 9.10 10.4 11.65 12.95 14.25 

From observation of the plotted points, the locus seems to be a straight 
line and the points located by W = 10, P = 2.6, and W = 100, P = 
14.25 seem to be good points to substitute in the equation, or 

14.25-2.6. . 
2/ - 14.25 =(x-100), 

or 
or 

y = .129x+ 1.3, 
P = .129TF+ 1.3. 

828. If the readings are inad(i v(*ry accurately, and a more 
exact equation is desired, the following process taken from the 

method of least squares should be used. 
Using the data from the previous problem, substitute each 

pair of values in the equation, y = mx + 6, and ten equations 

result: 
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2.6 = 10m + 6. 
4 * 20m + 5. 
5.25 = 30m + 6. 
6.53 = 40m + 6. 
7.85 = 50m + 6. 
9.1 = 60m + h. 

10.4 = 70m + h. 
11.65 = 80m + b. 
12.95 = 90m + b. 
14.25 = 100m + b. 

Multiply each equation by the coefficient of m and add the 
ten results together. 

5713.7 = 38,500m + 550b 
Multiply each oi tbe ten equations by tbe coefhcient of b 

and add 
84,58 = 550m + 10b. 

Solve the last two equations for m and b. 
m = .1287 
6 = 1.380. 

The equation is then 
P = .12871F + 1.380. 

This method of least squares can be expressed as follows: 
First. Set up a series of equations of the first degree by sub¬ 

stituting the observed values in the general equation. 
Second. If as many equations can be formed as there are 

coni^tants, solve to obtain values for the constants simultaneously. 

If there are more equations than there are constants to be deter¬ 
mined, multiply each equation by the coefficient of the first 
constant in that equation and add the resulting equations to 
form a new equation. Proceed similarly for each constant and 
thus find as many equations as there are constant factors to be 
determined. 

Third. Solve these new equations for the constants involved. 
Fourth. Substitute the constants so found in the general 

equation and obtain the required empirical equation. 
829. Laws Reduced to Straight-line Laws.—Equations which 

are not linear when plotted in rectangular coordinates, may be 
reduced to linear form by plotting to different coordinates which 
are functions of x or y. For instance, the equation, 

y ^ a + h7?, 
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will have a linear locus if is represented by w. 
The equation then becomes 

y = a + bu, 
which is linear in y and u. 

To illustrate the law, we will assume the following observed 
relation between resistance and velocity to find the equation 
which represents the relation: 

I 0 i 10 I 20 I 30 I 40 I 50 

R 1 510 1 800 1 1720 1 3300 | 5300 ] 8100 

Plot these points and it will be seen that they lie, approxi¬ 
mately, on a parabola. Therefore, the Jaw is of the form, 

y = a + bx^. 
Let u = and Y = R. 

Tabulate. 

w 1 100 ! 400 I 900 J IGOO | 2500 

R \ SOO \ 1720 I 3300 | 5300 | 8100 

Plot the straight line through the average points. 
The empirical equation can now be found by determining the 

constants of the straight line and substituting in the general 
form. 

For ordinary work, two points on the locus will be sufficient. 

These will determine two simultaneous equations of the form, 

1/ = a + feu, 

which will determine the constants, 

800 == a + lOOfe and 

8100 = a + 2500fe, 
from which 

a = 500 and fe = 3.00. 
Substituting in 

R ^ a + hii, 
or 

R - 500 + 3u = 500 + 3?;^. 

The two simultaneous equations can be plotted, using a as 
abscissae and fe as ordinates. The intersection of the two lines 

gives the values of a and fe which satisfy both equations. 
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In case greater accuracy is desired, the method of least squares 
(see previous article) should be used. 

200 400 000 600 lOOO 1200 1400 IGOO 1800 2000 22002400 

Fig. 467. 

830. The method of reduction to straight-line form is useful 
for equations of various forms, as in the following examples: 

If, after plotting the data on rectangular coordinate paper, 
the law is suspected of taking a form like 

= ax^ + 6, 
let V — and u = x? and plot the straight line to see if it meets 
the conditions. Numerous different trials may be required to 
find the correct law. 

Equations of the form, 

y - a + -, 

can be put into the straight-line form by means of the sub¬ 
stitution, 

1 

Equations of the form, 
' xy hx + ay, 

can be put into the straight-line form by dividing through by 
xy which changes the equation to 

1-2 + ^. 
X y 

Putw = “^andt; == 
x y 

or divide =« 6x + ay by x, which gives 

y.b + (I). 
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y 
Then let ^ which will put the equation in the straight-line 

form between y and u. 

Linear equations have two constants to determine, and two 
separate conditions are essential to determine the law, and the 
substitution of two observed readings in the general form will 
determine the law, since they give two simultaneous equations. 

Only those laws which have but two constants are convertible 
into straight-line laws as will be readily observed. 

831. Power functions of the general form, 

y — k a{x — hy, 

are put into the straight-line form by means of logarithms, for 

log {y — k) = log a + n • log {x — h). 

By letting v = log {y — k) and u = log {x — h), the straight- 
line formula is then 

V — log a (a constant) + n • u. 

This is the principle underlying the use of logarithmic coordi¬ 
nate paper except that the x and y values are indicated on the 
graph instead of the u and v values. 

Accordingly, when such a law as the above is suspected, we 
plot the variables on logarithmic paper. 

p]xAMPLE.—The following data are supposed to follow the law: 

y = ax^. 

X 1 5 1 10 I 20 I 40 I 60 I 80 I 100 

1/ I 97 I 553 I 3130 | 17,700 | 48,800 | 100,000 | 175,000 

The log form of the equation is 

log y = log a + 

I^t == log t/, C = log «, u ^ log X, 
The straight-line equation is then 

V = n • w + C. 

M(=log*)l I 1 00 I 1.301 I 1.002 | 1.778 | 1.903 | 2.00 

logy) I 1.9868| 2.743 | 3.496 | 4.248 | 4.688 | 5.000 | 6.243 
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Plot the points as shown in Fig. 468 with u as abscissa and v 
as ordinates. 

From the figure, the intercept on the F-axis to the scale of 
ordinates is .243, which according to the straight-line law is 
equal to the constant term C, or in this case, log a. 

The slope of the line measured according to the scales is 2.5 
to 1; therefore, n = 2.5. 

The straight-line equation in terms of v and u is 

V = 2.5u + .243, 
or 

log y = .243 + 2.5 log x. 
C = log a = .243. a = 1.75. 

The equation from the log formula is then 

y = 1.75a:2‘. 

Standard log paper can also be used for plotting relations 
which can be expressed according to this law. When this paper 
is used, the values of the variables are plotted instead of the 
logs and all results read directly from the scales, since the logs 
are automatically taken when a point is located. Figure 469 
shows a power function plotted on logarithmic coordinate paper 



Example.—Showing the application of the method of least squares to 

the power function, y = 
The following data satisfy an equation of the form, y = ax”. 

X I 4 I 7 I 11 I 15 I 21 

y 1 28.6 I 79.4 | 182 | 318 | 589 

Tabulating logs, 
log X = u I_. 602_I .845 [ 1.04 | 1.18 | 1.32 

log y ^ V I 1.456 I 1.900 j 2.26 | 2.50 | 2 77 

Forming equations of the form, 
p = n • + C, 

with i; = log y, w = log x, and C - log a, 
1.456 = .mn + C, 

’ * 1.900 = .845/1 + 0. 
2.26 = 1.04n + 0. 

2.50 = 1.1871 + 0. 

2.77 = 1.32n + 0. 
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Multiply each equation by the coefficient of n in each case and add: 
.876 = .362n+ .602C 

1.606 = .714n+ .8450 
2.352 = 1.084n + 1.04C 
2.94 = 1.38311 + 1.180 
3.662 = 1.748n + 1.320 

11.436 = 5.291n + 4.9870 

Adding the equations just as they stand, since the coefficients of 0 
are all unity, we have 

10.886 = 4.987n + 50. 
Solve for n and 0 in 

11.436 = 5.291n + 4.9870 and 
10.886 = 4.987n + 5.0000. 

from which 
n = 1.825, 0 = .357. 
C = log a = .357. 

.-. a = 2.276. 
The equation is then 

y = 2.25a;‘‘«. 

832. Power functions with n negative, or what is known as 
hyperbolic functions, can be solved in the same manner as pre¬ 

vious problems. 
The following table gives the volume V in cubic feet of 1 

pound of saturated steam at a pressure of P pounds per square 
inch, and we desire to determine the law of expansion. 

From experience, the law is suspected to be of the form, 
PF- = C, 

which can be transformed into the form, 
P = cv-\ 

V I 26.43 I 22.40 | 19.08 | 16.32 | 14.04 | 12.12 | 10.51 1 9.147 

P I 14.7 I 17.53 1 20.80 | 24.54 | 28.83 | 33.71 | 39.25 |45.49 

Taking logs, 

log F I 1.4221| 1.3502| 1.28061 1.2127|'1.1473| 1.0835] 1.0216| .9612 

logP 1 1.1673] 1.2430] 1.3181] 1.3900] 1.4599] 1.5277] 1.5938] 1.6580 

The straight-line form is \ 
log P = —n • log F + (7. 

Another method known as the method of averages is often used 
and gives a more exact approximation than can be obtained 
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by the selection of two points on the straight line and the sub¬ 
stitution of their coordinates in the general equation to determine 
two simultaneous equations which can be solved for the constants 
involved. The method is not so accurate as the method of 
least squares (Art. 828), however. The method follows: 

Substitute all readings in the straight-line form and form the 
resulting equations into two groups. Add the separate groups 
to form two equations and solve these .as before, simultaneously 
letting 

log P = V, log V = M, log a = C. 

V = n ■ u + C. 
1.1673 = 1.4221n + C 
1.2430 = 1.3502n -f C 
1.3181 = 1.2806n + C 
1.3900 = 1.2127n + C 

5.1184 = 5.2656n + 4C 

1.4599 = 1.1473n 4- C 
1.5277 = 1.0835n + C 
1.5938 = 1.0216n -j- C 
1.6580 = 0.9612n 4- C 

6.2394 = 4.2136n 4- 4C 

Solving the simultaneous equations, 

5.1184 = 5.2656n 4-4C. 
6.2394 = 4.2136a 4- 4C. 

n = -1.064. 
C = log a = 2.6764. 

:.a = 475. 

The equation is 

p = 475T-‘ or = 475. 

If the plotted points fail to fall on a straight line when a curve of 
the form, y = ax", is plotted but curve upward as x increases, 
try subtracting some constant, as k, from the y values. If this 
straightens the grar-h of the locus, try different values of k until 
a satisfactory value gives a practically straight line. This, then, 

puts the equation in the form, 

'y — k = ax", or y = ax" -f- k. 
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Likewise, if the locus curves downward, add a value ktoy and 
straighten the line, which gives an equation of the form, 

y + fc = ax’', or y = ax” — k. 

Another method of straightening the graph is to add some 

constant, ± k, to all values of x. This has the effect of shifting 
all of the points to the right or left (by different amounts). 
If this method succeeds, the equation is of the form, 

y = C(x — h)". 

Some curves may be straightened by using both constants 
when either constant alone would fail to do it. 

833. Empirical Equation of the Form 

y = a + bx + cx® + dx® + . . . + qx”. 

By substituting experimental values in the above equation, 
enough simultaneous equations may be formed to determine the 

values of the constants a, b, c, etc. 
There must be at least as many equations as there are con¬ 

stants to determine in order that they may be solved. As a 
general thing, three terms are all that are required for ordinary 
accuracy but it is well to use more if a greater degree of accuracy 

is desirable. Some of the terms also may be absent, or they may 
affect the result so little that they may be profitably neglected. 

Example .—Data, 

X I 1 I 2 I 3 I 4 I 5 

1/ I 14 I 64 I 182 1 398 | 742 

Form four equations since four constants are assumed in 

y — a bx + cx^ + dx®. 
14 = a + & + c-f-d. 
64 = o + 26 -t- 4c -t- 8d. 

182 = a -t- 36 + 9c -t- 27d. 
398 = o -h 46 -f 16c -h 64d. 

Solving the above simultaneous equations for a, 6, c, and d, 

a = 2, 6 = 3, c = 4, d = 6. 

Form the equation, 
y = 2 + 3x + 4x® -f 5x*. 

834. The law of organic growth or the exponential law has the 
form, 

y = oh*, or y = oe**. 
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The equation, y — can be put into the straight-line form 
by taking the logs of both sides, 

log y = hx ‘ log e log a. 

But the log of e is a constant and equal to .4343. 

log y = .4343*0: + log a. 

This is a straight-line relation with respect to x and log y and 
furnishes one method of plotting to determine the law. 

By plotting on semilog paper, the locus of an equation of this 
form will be a straight line, since the ordinates are plotted 
according to a log scale and the abscissae according to a scale of 
equal parts. 

Example.—Beauchamp Tower’s experiment on the relation of 
friction and temperature of bearings at constant speed gave data as 
shown in the table. 

i 1 120 I 110 1 100 I 90 1 80 I 70 I 60 

IX I .0051 I .0059 i .0071 1 .0085 | .0102 | .0124 \ .0148 

Assuming that the equation is of the form, 

IX = 

log IX = .4343*^ + log a. 

Tabulating, 

t 1 120 I 110 I 100 I 90 1 80 I 70 I 60 

logM 1 3.7076 1 3.7709 I 3.8513 | 3.9294 | 2.0086 | 2.0934 | 2.1703 

Make seven equations by substituting t and log ix. Then find two 
simultaneous equations by the law of averages as in the previous 

problems. 
From this method, the equation is 

IX == .2113e--«i»^h 

Fig. 470. 
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If a more exact equation is desired, use the method of least 
squares. 

In Fig. 471 are shown the above data, plotted on semilog 
coordinate paper. 

The semilog graph is very useful for business purposes. Since 

the ordinate y varies at a constant percentage rate, the curve 

shows where the greatest percentage gains were made. 

If, for instance, the graph A in Fig. 472 represents the selling 

price of a product and B represents the cost graph over a period 

of time, the situation can be seen at a glance. 



CHAPTER XXXVLII 

APPLICATION OF COORDINATES TO THE GEOMETRY 

OF THREE DIMENSIONS 

SOLID ANALYTICAL GEOMETRY 

836. Solid analytical geometry treats of solids and surfaces 

in space by analytical methods and involves three dimensions 
or variables. 

In the case where one of the variables is zero, the analytical 
relations between the remaining two are the same as in two 

variable analyses and the two bear consistent relations to each 
other. 

For rectangular coordinates in three dimensions, three inter¬ 
secting, mutually perpendicular planes are 

used. They are called the XOF, KOZ, 
and ZOX coordinate planes and they 

intersect in three mutually perpendicular 
lines, OX, OF, and OZ, called the coordinate 

axes. 

For a point, P(a;, y, z), the usual method 
of determining the location is as shown in 

Fig. 473. The arrows indicate the posi¬ 

tive directions on the three coordinate axes. 
836. Direction Angles or Polar Coordinates.—Another method 

of locating a point in space is to give its radius vector, or its 

distance from the origin and the angles vvhi(th the radius vector 
makes with the coordinate axes. Those angles arc called direction 

angles, 
A point determined in this way is given as P (p, a, /3, y). 

The projection of the radius vector on the coordinate axes 

gives equations connecting this system with the rectangular 

coordinate system, for 

[418] a; = P cos a, 2/ = p cos /3, 2 = p cos 7. 
519 

y 

Fig. 473. 



520 MATHEMATICS FOR ENGINEERS 

We also have the relation from the rectangular parallel- 
opiped, 
[419] ^ 

By combining the two sets of equations, 
p2 — p2 QQg2 ^ p2 ^Qg2 ^ ^ p2 ^Qg2 

or 
[420] 

From X 

[421] 

cos^ a + cos^ /3 + cos^ 7 = 1. 
p cos a, 2/ = p cos z — p cos 7, and 

p = + 2/^ + 
X X 

cos a = -= — 
\/P 

[422] 

[423] 

cos /? = 
y/ y^ + z^ 

- y 

cos 7 = 

p 
z 

p Va:® + 2/^ + 2^ 
837, Distance and Direction between Two Points.- 

and P2 be the two points. 
-Let Pi 

From Fig. 474, 

P;P22 = IP" + CD^ + BC\ 
AB = X2 — Xi, 
BC = y2 - yi. 
CD = ^2 — Zi, 

Plp2^ = (X2 — XiY + 

(2/2 - yi^ + 
(22 - ziY. 

If the distance P1P2 equals d, then 

[424] d = \/(x2 - xiY + (2/2 ~ yiY + (Z2 - 2i)*. 



APPLICATION OF COORDINATES 621 

The direction of the line PiP^ which does not pass through the 
origin is defined by the direction angles, a, -y, of a line which 
passes through the origin and is parallel to PiPj, and which has 
the same positive direction. 

The edges of the parallelepiped in Fig. 474 are parallel to the 
coordinate axes. 

a = CPjPs, = AP1P2, y = EP1P2. 
Then 

[426] cos a = 
X2 — Xi 

cos 0 = cos 7 
Z2 - Zi 

Squaring and adding these three equations gives 
cos^ a + cos^ /3 + cos^ 7—1. 

838. Angle between Two Radius Vectors or between Two 
Lines. ^Let the lines through the origin parallel to the given 
lines be OPi and OP2 (Fig. 475) with pi, ai, /3i, 71 as the coordi¬ 
nates of Pi, and P2, 0:2, 72 as the coordinates of P2. Also let 
B be the angle between OPi and OP2. 

If the rectangular coordinates of Pi are (xi, 2/1, Zi)y then 
OA — Xi, AB = 2/1, BPi = Zi, 

Project OPi and OA + AB + BPi on OP2; then 
Pi cos 0 = X cos a2 + y cos ^2 + z cos 72. (1) 

Project OPi on the coordinate axes; 
then 

X = Pi cos ai. 
^ = Pi cos pi. (2) 
2 = Pi cos 7i. 

Substitute (2) in (1) and divide by pi; 
then 
cos $ = cos ai • cos a2 + cos ^1 • + 

Fig. 476. 
COS 7i • cos 72. 

If ai, jSi, 7i, and a2, P2j 72 are the direction angles of two lines, 
the lines are parallel if 

= a2, /3i - /32, 7i 72, 

and perpendicular if 
cos ai • cos a2 + cos /3i • cos fi2 + cos 71 • cos 72 = 0. 

839. Dividing a Line in a Given Ratio.—Suppose that we 
desire to divide the line P1P2 at the point P3 in the ratio. 
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PiPiiPtPi = miinii. 

rriiXi 4- 

•C3 *“ j "* 
mi + m2 

= ^1^2 + ni2yi 
mi “h m2 

__ 7?Ii2:2 + m2Z\ 

Fia. 476. Ml + m2 

840. Surfaces.—The locus of a single 
equation in three variables is a surface. 
It will be readily seen that by giving differ¬ 
ent values to x and y in an assumed equa¬ 
tion, such as 

^2 _|_ ^2 _ 2 = 10, 

and computing 2, the point P will generate 
a surface. 

841. Certain Equations in One Variable. 
The equation 2=0 represents the coordinate XOF-plane. 
The equation y = 0 represents the coordinate XOZ-plane. 
The equation x — 0 represents the coordinate 70Z-plane. 
The equation z — k represents a plane parallel to the XOY- 

plane and at a distance equal to k units from it. 
In a like manner, the equation x == k represents a plane paral¬ 

lel to the yOZ-plane and at a distance of k units from it, and 
the equation y = k represents a plane parallel to the XOZ-plane 
and at a distance of k units from it. 

Any algebraic equation in one variable represents one or more 
planes parallel to a coordinate plane. 

842. Equations in two variables of the first degree represent 
Z planes perpendicular to the coordinate 

plane of those variables. 

Example.—Consider the equation, 

3x + 22/ = 5. 

In the XOF-pIane, the equation represents 

a straight line AB (Fig. 478). 

If from any point P on AB a line be drawn 
perpendicular to the XOF-plane, any point Q 

Fig. 477. 

Fig. 478. 
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on this perpendicular will have the same values for x and ?/ as P and, 
therefore, satisfies the equation, 

3a: + 22/ = 5. 

Further, if PQ is moved along AB and always kept perpendicular to 
the XF-plane or parallel to the Z-axis, the coordinates of every point in 
the plane generated satisfy the equation 3a: 2y = 5, which is 
evidently the equation of the plane. 

843. Any Equation in Two Variables. 
Consider 

+ z^ = 25. 

A point P (Vy z) is on a circle in 

the FZ-plane. If PQ be drawn per¬ 

pendicular to the FZ-plane, any point 

Q on this perpendicular will have the 

same values of y and 2 as P and, there¬ 

fore, will satisfy the equation, t/^ + 

2^ = 25. Since P may be any point 

on the circle, the locus of the equation 

is the surface of a circular cylinder 

whose elements are parallel to the X- 

axis and whose intersection with the FZ-plane is the circle shown. 

In like manner, the loci of the equations. 

Fig. 479. 

+ yl 1, 

- ^ = 1, and 

2/2 = 2pZy 

are cylindrical surfaces whose elements are perpendicular to 

the plane of the variables involved and whose intersections with 

these planes are, respectively, an ellipse, an hyperbola, and a 

parabola. Similarly, any equation in two variables represents, 

in solid analytic geometry, a cylindrical surface. Since the 

elements are perpendicular to the plane of the variables, they 

are parallel to the axis of the third variable. The generating 

line PQ is called tlie elementy and the locus on the coordinate 

plane is called the directrix of the cylindrical surface. 

844. Curves in Space.—The locus of two simultaneous equations 

in three variables is a curve. 
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Since one equation in three variables is a surface, and since 
the coordinates of two simultaneous equations must satisfy 
both equations, it is evident that the only points which can satisfy 
these conditions are those which are on the intersection of the 
two surfaces. The intersection, then, is a curve which is repre¬ 
sented by the two equations considered simultaneously. 

Lines in Space.—Since 2/ = fc is the equation of a plane parallel 
to the XZ-plane, and since z = k represents a plane parallel to 
the JTF-plane, their intersection is a line parallel to the X-axis. 

Likewise, 
z = k and x = k represent a line parallel to the F-axis. 
X — k and y == k represent a line parallel to the Z-axis. 
Also, 
X = 0 and y = 0 are the equations of the Z-axis. 
X = 0 and z = 0 are the equations of the F-axis. 
^ = 0 and z = 0 are the equations of the X-axis. 
See Art. 725 for a more general treatment of straight lines. 
846. Sphere.—^Let C (h, k, 1) be the center of the sphere of 

radius r. 
Since any point P (x, t/, z) on the sphere is at a distance r 

from the center, then 
CP - r. 

From the distance formula [424] 

[426] r = V(x - hy + {y- kY + (2 - l)\ 
or 

(x -- hy + {y — ky + (2 — ly = r^. 
This is the equation of a sphere whose center is at the point 

C (A, kjlj), and whose radius is r. 
If the center is at the origin, then A = 0, A = 0, and I = 0, 

and the equation becomes 

[427] x^ + 2/* + ~ 
Z 
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Expanding the equation, 

(x - hy + {y - ky + {z- ly = r^, 

it becomes, after collecting, 

+ y* + 2* - 2hx - 2ky - 21z + /i® + F + P - r* = 0, 

which is in the general form, 

+ Gx + Hy + Kz '+ L = 0. 

By completing the squares in the latter equation, we have' 

[428] (^ + f)* + (y + f)' + (^ + 2y = 4(02 4- IP + K^ - AL), 

which is the same form as 

(x - hy + (y - ky + (z - ty = r^, 
with the coordinates of the center of the sphere as 

, G j H , K 
h = k = - 2,1= -2’ 

and the radius of the sphere, 

r = W(^ + -11, 
provided that + IP + ~ 4L>0. 

846. Projections.—A curve in space may have any number of 
surfaces pass through it. The equations of any two of these 

surfaces will define the curve. 
Consider the two surfaces, 

= 25 and 
2 = 3. 

The former is the equation of a sphere with its center at the 
origin and of radius equal to 5. The latter equation represents 

a plane parallel to the XF-plane and 3 units above it (Fig. 481), 

\Z 

Fig. 481. 

If the coordinates of any point satisfy both of the equations, 
2 = 3 and = 25, they will also satisfy the equation, 
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01^ + = 16, obtained by substituting z — 3 in a? + 

25. 
Hence, a? + y^ = IQ represents a surface passing through the 

intersection of ? = 3 and + y^ + z^ = 25; and it is evidently a 
cylindrical surface with elements parallel to the XF-plane. We 
can, therefore, say that the substitution of 2 ~ fc, where fc is a 
constant, in the equation of a surface will give the equation of a 
cylinder passing through the intersection oi z = k and the sur¬ 
face, or the equation of the projection on the XF-plane of the 
intersection of z = k and the surface. 

In this manner, the nature of the curve in which a plane 

parallel to one of the coordinate planes cuts a given surface is 
determined. 

847. Curve Projection on Coordinate Plane.—Applying the 
reasoning of the previous article to finding the equation of the 
projection on the XF-plane of a curve defined by two equations, 
eliminate z between the two equations. The resulting equation 
is the equation of the projection on the XF-plane. 

In like manner, to project on the XZ-plane, eliminate y 
between the two equations and to project on the FZ-plane, 
eliminate x between the two equations. 

The curve can now be represented by two equations, each in 
two variables. 

The projection of a locus on a coordinate plane is called the 
trace on that plane. 

To find the equation of the intersection of a surface with the 

ZF-plane, make z ^ Q; with the XZ-plane, make y = 0; and with 
the FZ-plane, make x = 0. 

Example.—Determine the nature of the curve in which the plane 

2 = 4 intersects the surface 2/^ + 2^ = 4cx. 
Eliminate z by substituting 2 = 4 in 2/^ + = 42:, or 

— 4x + 16 = 0. 

We can consider the curve as given by 

2/2 - 4x + 16 = 0, 
2 = 4, 

or by 

. 2/* - 42: + 16 - 0, 
^2 -f- ^2 as 4a;. 



APPLICATION OF COORDINATES 527 

Taking the former, since 2 = 4 represents a plane and ?/2 _ 4^; 4. 1(3 

0 is a trace of the intersection with that plane in the X F-coordiriatc 
plane, we find that the locus is a parabola in that plane. 

848. Intercepts of a Surface on the Coordinate Axes.—To find: 

The intercept on the A^-axis, make // = 0, 2: = 0. 

The intercept on the 1^-axis, make .r = 0, 2: = 0. 

The intercept on the Z-axis, make x = 0, 2/ = 0. 

It is advisable to examine a surface for symmetry by substi¬ 

tuting — xforx, —y'loYij^ —ziorz. 
If the equation is unchanged by the substitutions, the surface 

is, respectively, symmetrical with respect to the FZ, AZ, and XY 
coordinate planes and symmetrical with respect to the A-, 7-, 

and Z-axes. 

849. Surfaces of Revolution.—The surface traced by revolving 

any plane curve about a straight line in the plane as an axis is 

a surface of revolution. It follows that each plane section perpen¬ 

dicular to the axis is a circle, and the path of any point on the 

curve as it rotates is a circle. 

Consider the ellipse, 

x2 + Aif - 12x = 0 
2: = 0, 

rotated about the X-axis. 

FfG. 483. 
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Let P {Xy yy z) be any point on the surface generated. 
Pass a plane through the axis OX and the point P, with OF' its 

intersection with the FZ-plane. 
The equation of the ellipse referred to OX and OY' as coordi¬ 

nate axes is 
^2 4^/2 _ 12a: = 0. (1) 

Pass a plane through P perpendicular to OX, Then in the 
triangle PABy 

= ^2 4- y^. (2) 

Substitute the value of from (2) in (1). Then 
x2 + 4^2 + 4^2 _ 12a; = 0, 

which is the required equation. 
Example.—Rotate the line, 2a; -f 32 = 12, ?/ == 0, about the J2^-axis 

to form a cone. Determine the equation of the cone. 

Pass a plane through OZ and P, and another plane through P 
perpendicular to the axis OZ. 

The equation of the line in the ZOX'-plane is 
2x' + S2 = 12. (1) 

From the right triangle ASP, 

a:' = 3? + y^. 
Substitute (2) in (1); then 

2\/x^ + + 3z = 12, 

or 
12 - 3z 

(2) 

= \/a:2 + r- 

Then 

+ r 
-2 ^ (12 - 3g)2 

From the first example, we see that 
the equation of a surface of revolution was obtained by the sub¬ 

stitution of 

y/y^ for 2/, 

and in the second case by the substitution of 

y/x^ + for X, 

In general, in the equation of the curve, find the square root of 
the squares of the two variables different from the variable 
measured on the axis of rotation, and substitute for the one of the 
two variables which appears in the equation of the curve. 
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For ec[uatioiis in x and y rotated about the X-axis, substitute 

s/for y, 

since y and z are the two variables different from x; hence, y/y^ + z^, 
and since y appears in the equation, it is the variable for which the 
radical is substituted. 

To put in different form: 

It fix, y) = 0 is the equation in the XF-plane and the X-axis 
is the axis of revolution, the equation of the surface of revolution 

is 

fix, y/y^ + 2*) = 0. 

If fix, 2/) = 0 is rotated about the F-axis, the equation of the 
surface of revolution is 

/(V-f 02, y) = 0. 

If the curve/(y, z) = 0 is rotated about theZ-axis, the equation 
of the surface of revolution is 

/(\/x2 + J/*, z) = 0. 

850. Equation of Cone.—Surface of cone generated by rotating 
the right line, z — mx + c, about the Z-axis. 

Substitute \/x* + y^ for x. 
Then 

z = my/x® -f y2 -f c, or y/x^ -{■ y^ = ’ 
Ttv 

whence 

[429] 

Likewise, with the right line, y = mx + fc, about the X-axis, 

substitute for y; then 

y^ + = mx + ifc, or y^ + — {mx + ky, 

861. Oblate Spheroid.—The ellipse, 

0“ 

rotated about its minor axis is an oblate spheroid. We, therefore, 

rotate about the Z-oxis. 

Substitute y/+ y^ for x; then 

+ y^ 
+P = '’ 
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or 

[430] ^ 4. y* 4_ ^ = 1 
a^'a^ 6* 

862. Prolate Spheroid.—The ellipse, 

+ - = 1 

rotated about its major axis (X-axis) is a prolate spheroid. 

Substitute -s/^ for z. 
Then 

[431] 
52 T- ;,2 

= 1. 

863. Paraboloid of revolution is the surface generated by 
rotating the parabola, 

X* = 2pz, 
about its axis, or the Z-axis. 

Substitute \/x^ + 2/^ for x and the equation becomes 
[432] a:“ + y® = 2pz, 
which is the required equation. 

864. The h3rperboloid of one nappe is the surface generated by 
rotating the hyperbola, 

x^ _ 2^ _ 

about its conjugate axis (the Z-axis). 

Substitute \/x- + 2/“ for x. 
Then 

[433] -2 + ^2 - ^2 = 1 

is the desired equation. 
866. The hyperboloid of two nappes is the surface generated 

by the rotation of the hyperbola, 

= 1 
6* - ’ 

about its transverse axis (the X-axis). 

Substitute \/-|- 2^ for 2. 
Then 

[434] 

is the required equation. 

x^ j/* 

a 
— - = 1 

ro * 



CHAPTER XXXIX 

LINEAR EQUATIONS IN THREE VARIABLES 

LINEAR EQUATIONS 

866. The Plane.—The normal form of the equation of the 
plane is the most convenient and will be considered first. 

Consider any plane as ABC. 

Draw ON perpendicular to the plane ABC and positive. 
Let OD = p, the distance from the origin to the plane, con¬ 

sidering D as the piercing point of ON in the plane. 
Let a, /3, 7 be the direction angles of ON. 
Let P(x, y, z) be any point on the plane ABC, and draw the 

coordinates of P. Then 
OE = X, EF = y, FP = 

Project OE + EF + FP and OP on ON. Then 
Projection of OE + Projection of EF + Projection of FP = 

Projection of OP. 
Then 

X cos a + y cos P + ^ cos 7 = p, 
or 
[436J X cos a y cos z cos 7 

— p = 0. 
This is the normal form of the 

ecpiation of a plane where p is the 
perpendicular distance from the 
origin to the plane and a, 7 are the 
direction angles of the perpendicular. 

867. General Equation of First Degree. 
[436] Ax + By + Cz i D - 0 
is the equation of a plane for it may be reduced to the normal 
form. 

Multiply the equation by a constant k, whose value is to be 

deteimined, giving 
kAx + kBy + kCz + kD = 0. (1) 

531 
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Comparing with the normal form, 
X cos a + 2/ cos + « cos 7 — p = 0, [436] 

then 
kA = cos a, kB = cos /3, kC = cos 7, (2) 
kD = (3) 

Squaring equations (2) and adding, 
+ C^) = cos^ a + cos^ /? + cos^ 7 = 1 (Art. 837). 

Therefore, 

k = _\__ 
±\/A2 + B2 + C2 

Substituting in (1), 

[437] 
B 

VA^~+ ^ B^ + C’^' 
.2/ + 

+ B^ + C2 

-D 

z = 

\/A^~+~B^ + C^ 
If will be noted that equation [437] is in the normal form with 

A . B 
cos a = 

[438] 

cos 7 = 

± + 52 4. C2 

C 

cos S = 

p = 

±\/A2 + B^ + C^ 

-Z) 

± \/A2 + £2 4. (72' ^ ± VA2 + 52 + C2 
From the above it is evident that the sign of the radical must 

be taken opposite to that of D in order that p may be positive. 
Therefore, to put the general equation into the normal form, 

divide the equation by 

±VA2 + jS2 + c^, 
with the sign of the radical opposite to that of D, 

The coefficients of x, 2/, and z in the equation of a plane are pro¬ 
portional to the direction cosines of any line perpendicular to 
the planes. Then, two planes, as 

Ax By + Cz + D = 0 and A'x + B'y + C'2 + D' = 0, 
are parallel if 

A = A = ^ 
A' B' C' 

and perpendicular if 
AA' + BB' + CC' = 0. 

The angle between two planes not parallel is found from 

^ + BB' + CC' [439] cos $ = ...:-:-rr....v-;:-=r- :- 
\/A2 + £2 + C2 . 4. 5/2 + 
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868. An equation of the form: 

Ax -^r By D = 0 represents a plane perpendicular to the 
XF-plane. 

By + Cz + D = 0 represents a plane perpendicular to the 
FZ-plane. 

Ax + Cz D — 0 represents a plane perpendicular to the 
XZ-plane. 

An equation of the form: 

Ax D - Q represents a plane perpendicular to the X-axis. 
By T> = 0 represents a plane perpendicular to the F-axis. 
C? + 15 = 0 represents a plane perpendicular to the Z-axis. 
If, in the equation, Z) = 0, the plane evidently passes through 

the origin. 

Example.—Find the equation of the plane which passes through the 

point P (2, 3, 4) and is parallel to the plane represented by 
24x - 15y 4- 27z - 80 = 0. 

Assume the required equation to bo of the form. 

Ax + By + Cz -\- D = 0. (1) 
Since the required plane is parallel to the given plane, 

their coefficients are equal. Then 
ABC 

the ratios of 

24 “ -15 “■ 27‘ 
(2) 

Since P is in the required plane, we can substitute the coordinates of 

P in (1). 
2A + 3B + iC + D = 0. 

Solving the simultaneous equations (2) 
(3) 

A = IC,B= -'iC. 
Substituting in (3), 

VC - VC + 4C 4- £> = 0. 

Then 

(4) 

D = - VC. (6) 

Substituting (4) and (5) in (1), 
SCz - eCy -I- Cz - Vt: = 0. 

Dividing by C and multiplying by !), 

Sx - 5;v 4- - 37 - 0, 

which is the required equation. 

See also Art. 862 for a better solution of this problem. 
869. Equation of Plane in Terms of Intercepts. If a, b, 

and c are the intercepts on the X-, Y-, andZ-axes, and 
Ax 4“ By Cz A" B = 0 [436] 
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is the equation of the plane, then since the coordinate points 
(o," 0, 0), (0, 6, 0), and (0, 0, c) must satisfy the equation of the 
plane, then by substituting, 

ila + 2) = 0, + Z) = 0, Cc + £) = 0, 
or 

A = - B C = - -• 
a' h' c 

Substituting in the equation of the plane, 

D D 2> ^ n 
a b c 

0. 
Dividing by — Z), 

[440] a b c 
which is the intercept form of the equation of the plane. 

860. Perpendicular Distance from a Point to a Plane.—First, 
put the equation of the plane into the normal form, 

X cos a + y cos /3 + 2 cos y — p = 0 [436], 
Let the coordinates of the point Po be (xo, yo, Zo) and d the 

required distance. 
Project OE, EF, and FPo on ON^ oi 

OE = Xo CCS a. 
EF - yo cos jS. 

FPo = Zocosy. 
Then 

p + d = Xo cos a + ijo cos 0 + Zo cos 7, 
or 
[441] d = Xo cos a + yo cos 0 + Zo 

cos y — p. 
The required distance is given when 

the coordinates of the given point 
Po(xoy yo, Zo) are substituted in the 
equation of the given plane in the nor¬ 
mal form. 

Example.—What is the perpendicular distance from the point 
(—1, 2, 3) to the plane, 2x -f- 2/ 22 -|- 8 = 0? 

A = 2, 5 = 1, C = -2, D = 8. 
From [438], Art. 857, 

_A_ ^ 2 « A = 
cos a ± V/i* + ±\/4 +T+4’"-3 3’ 
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The sign of D is positive; therefore, the sign of the radical should be 
taken negative in order to make p positive. 

^-Mr -- - = i. _ _1 
+ + -3 3‘ 

_ C _ =-2 = 2 
- -3 3' 

__ _ -8 8 
3‘ 

COS = 

cos 7 = 

V = 
~\/A2 + j52 +“C2 -3 

d = (-l)(~f) + (2)(-5) + (3)(§) - i [441] 
= +?-§ + !-f= -f. 

861. Systcin of Pld.iies. The oejuation of a plane which satisfies 
two of the three conditions necessary to determine a plane usually 
contains an arbitrary constant. Such an equation, therefore, 
represents a system of planes. Two such systems of planes are 
epecially important. 

862. System of Parallel Planes.—The equation of a system of 
planes parallel to the given plane, 

Ax + By + Cz + D = 0, 
is 

[442] Ax + By+ Cz + k = 0, 
where k is an arbitrary constant. 

Example.—Find the equation of the plane which passes through the 
point P (3, 2, — 1) and is parallel to the plane, 

7x — y ~ z ~ 14: — 0. 

The equation of the parallel plane is then 

7x — y—z + k = 0. 

Substitute the coordinates of P (3, 2, —1) in the above equation since 

the point lies on the plane. Then 

21 - 2 + 1 + A; = 0. 
.-.A’ = -20. 

Substitute this value of k in the equation, which gives 
7x — y — ^ — 20 0 

as the equation of the required plane. 

863. System of Planes Passing through the Line of Intersection 

of Two Planes.—If the two planes are 

AiX -j-' Biy CiZ DI == 0 and 

Ajx + B2y + €2^ + Dt = 0, 
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then the system of planes required is represented by 

[443] AiX -jr Biy + Ci2 + Di + k{AiX + B^y + C22 + Da) =* 0, 
where fc is an arbitrary constant. 

The reason for this is that the coordinates of any point on the 
line of intersection of the given planes must satisfy both equations, 
and they will, therefore, satisfy the equation of the system. 

Exa^mple.—-Find the equation which passes through the intersection 

of the planes, 

2x + y — 4 = 0 and 
y + 2z ^ 0, 

and IS perpendicular to the plane, 

3x -f 2?/ — 32^ = 6. 

The equation of the system of planes passing through the line of 

intersection of the given planes is 
2x + 1/ - 4 + -f 22) = 0, 

which reduces to 
2x + {k + l)y + 2A:2 - 4 = 0. 

In order to be perpendicular to 3x + 22/ — 32 = 6, the relation of the 

coefficients must be 

A1A2 "h B1B2 4“ C1C2 = 0. 
= 2, = A; -f 1, Cl = 2L 

A2 ~ 3, B2 ~ 2, C2 “ ““3. 
Substituting, 

2 • 3 + (A: + 1) * 2 + 2A; • (~3) = 0. 

6 + 2 + 2A; - 6A; = 0. 
-4A; = -8. 

A; == 2. 

Substituting this value of k in the equation of the system, 

2x + y - 4 + 2(y + 2z) = 0, 

which reduces to 

2x + 32/ + 42 — 4 = 0 

and is the equation of the required plane. 

864. Set of All Planes Passing through a Point Po(xoi yoi Zo).— 
Suppose that the plane represented by 

Ax + By + Cz + D = 0 (1) 
passes through the point Po(xo, 2/0, Zo). Then, obviously, the coor¬ 
dinates of the point must satisfy the equation of the plane, or 

Axo -f- Byo + Czq -f* D = 0. (2) 

Subtract (2) from (1). Then 
[444] A{x- xo) + B(y - yo) + C{z - Zo) = 0. 
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Example. Find the equation of a plane passing through the point 
(1, -2, 1) and parallel to the plane, 

y — 3x + 4z — 5 = 0. 
The equation of the plane, since it is parallel to the given plane, is 

y — 3x + 4z + k = 0, 
but from [444] above, 

A{x - 1) + B{y + 2) + C{z - 1) = 0. 
Developing, 

Ax + By -4-Cz- A -\-2B - C = 0. 
Comparing the two equations, 

A = -3, B = 1, C = 4, A; = -4 + 2B - C = 3 + 2 - 4 = 1. 
The required equation is, therefore, 

3x — y-4z~l=Q. 

See also Arts. 857 and 862. 

866. Plane through Three Points.—If the plane, 
Ax ^ By Cz + D = Q, 

is to pass through three points Pi(xi, y^, z,), y^, z,), and 
Pzixs, Vi, Za), the three conditions, 

Axi + Byi + Czi + D = 0, 
Ax2 By2 + Cz2 D = Of 
Axz + Byz + Czz + 2) = 0, 

must be satisfied. 

From these four equations solve for the ratios of the coefficients 
Af B,C, and D, The best procedure is to solve for ^4, S, and C in 
the last three equations in terms of D, and then substitute their 
values in the first equation, 

Ax + + C2 + D = 0, 

Example.—Find the equation of the plane which passes through the 
points (2, 3, 0), (—2, —3, 4), and (0, 6, 0). 

Substituting the given coordinate values in the formulae, then 

2A d" 3B + D = 0. (1) 
-2A - 3B + 4C + D - 0. (2) 

6B + JJ ^ 0. (3) 

From (3), B = • (4) 

Substituting three times (4) in (1), 

2A - I + D = 0. 

(8) 
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Substituting two times (5) and three times (4) in (2), 

^+-^ + 4C' + Z) = 0. 

4C + 2D = 0. 

^ 2 
Substituting (5), (4), and (6) 'm Ax + By Cz D — 0^ 

-X - -y - -^2 + D = 0. 

(6) 

4 6^ 2 
12 

Multiplying through by “ 

3x + 2?/ + 6-2 — 12 = 0, which is the equation sought. 

866. Bisecting Planes.—To find the equations of the two 
planes that bisect the angles formed by two intersecting planes: 

First, put the equations of the planes into the normal form and 
then, since any point in the bisecting planes is equidistant from 
the two given planes, or the distance from the point to the two 
planes is equal in absolute value. 

[446] + 
+ VA a + B? + Ci^ + VA+ B:'^ + c/ 

+ 
_ Cl 

2 + 
_ 

±\7a?'+ b,^ + Cl* 

+ 
B, 

± VAi^ + Bi^ +' C2* + \/A2* + Bi^ + C2* V + 

__ 
±Va2^ + Bi‘'+ d 

-z 
2* 

_D2_ 

±VAi‘ + Bi^ + C2* 

is the equation of the planes which bisect the angles formed by 
the intersecting planes, 

Aix + Biy + CiZ + Di = 0 and 

A2X B2y "f* C2Z ”h B2 = 0. 

867. The Straight Line.—The intersection of two planes is 
a straight line; hence, two simultaneous equations of first degree 

represent a straight line in space, as 
Aix + Biy + Ciz + Di = 0 and 

A2X B2y d” C22 + D2 = 0. 

A more convenient way to represent lines is to reduce the above 
equations to a straight-line equation in two variables only. 
This is done by eliminating one variable from the equations. In 
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this case, the equation represents the projection of the line upon 
one of the coordinate planes and is a plane geometry equation 
in this coordinate plane. 

To project the line on the XF-plane, eliminate 2. 
In the above equations, 

_—Aix — Biy — Di —AiX'— Biy — D* 

Cl “ 0* 
Then 

CiiAiX + Biy + Di) — Ci(^AiX + B^y + Di). 
Collecting, 

[446] (A^Ci - AiCOx + (BxCi - BiC,)y + (CjDi - CiDi)=0. 

If put into the slope form, the projection on the XF-plane 
is represented by 

[447] 
_ AiCi - AxCi C\Di - CiDi 

B/Ji - BiCi^ IhCi - BiC\ 

The projection on the XZ-plane is represented by 

[448] 
BiCi - BiCi B,Di - BiDi 
AJh - Ailh^ A.lii - AiBi 

The projection on the TZ-pIane is represented by 

[449] _ 1C2 — A2C) I A1D2 — A^J^x 
y ~ AiBi- Allii - AiBi 

Example.—Determine the e(iuations for the projection on the 
coordinate planes of the straight line represented by 

3.r + 2?/ + <2 - 5 = 0. 

a: + 27/ — 2^ ~ 3 = 0. 
Ai = 3, = 2, Cl = 1, Di = -5. 

A2 = 1, 7^2 = 2, Co = -2, D2 = -3. 

1_. 1 - 3 • (-2) D (-3) ~ (-2)(-5) 

^ “ 2 •1-2) - 2 • r ^ 2 • (-2) -2*1 

“7/ = lx “ V, or 

7.1’ + 0// — 13 0, 

which is the equation of the projection of the given line on the XF-plane. 

Likewise, 
X == -- ![2 + 1, or 2x* + 32 — 2 = 0, 

is the equation of the projection of the given line on the A"Z-plane, and 

7/ = 32 + 1, or 47/ ~ 72 - 4 = 0, 

is the equation of the projection of the line on the FZ-plane. 
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In Fig. 487 is shown the location of the line and its projections 
on the coordinate planes. 

Z 

In the graph, note that the projection lines AC and DB for the 
projection of on the X F-plane are parallel to the Z-axis, and 
that AE and BF for the projection of A5 on the XZ-plane are 
parallel to the F-axis. Also, GA and HB for the projection of AB 
on the FZ-plane are parallel to the A-axis. 

868. Standard Equations of the Straight Line through a 
Given Point Po(xo, yo, Zo) and with Direction Angles «, 5, and y. 

Let P{Xj y, z) be any other point on the line at a distance d 
from Pq. 

From the distance formula (Art. 837) [426], 
X — xo _ y — yo z — Zo 

cos a == -J-y cos P COS y = -^-; 

from which 

[460] 
cos a cos P cos y 

which are the symmetrical or standard equations of the straight 
line. 

869. Straight Line through Two Given Points.—Let Pi{xi, j/i, 
Zi) and P2(x2f 2/2, ^2) be the two given points. 
From the preceding article, 

X - xi ^ y - yi 
cos p 

Z — Zi 
[460] 

cos a cos y (1) 
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and also 
xi — Xj ^ yi - Vi ^ zi - Zj 

cos a cos j8 cos y ^ 

Divide (1) by (2) to eliminate the unknown direction cosines. 

Then either 
X — xi _ y — yi _ z - Zi 

X2 Xi y2 t/i Z2 Zi 
or [461] 

X - xi ^ y - yi ^ z - zi 
xi - X2 yi - i/2 zi - Z2 

870. Line Parallel to a Plane.—A line whose dirfection angles 

are a, /3, and y is parallel to the plane, 
Ax + By + Cz + D — 0, 

when and only when 
A cos a + 5 cos + C cos 7 = 0. 

871. Line Perpendictilar to a Plane.—A line whose direction 

angles are a, jS, and 7 is perpendicular to the plane, 
Ax + By + Cz + D — Oy 

when and only when 
A ^ _B_ ^ _ 

cos a cos cos 7 



CHAPTER XL 

SECOND-DEGREE EQUATIONS IN THREE DIMENSIONS 

872. Equations of Second Degree. 
[462] Ax^ + By^ + Cz^ + Dxy -f- Eyz -f Fxz -f Gx -{■ Hy A- Kz L ~ 0. 

Equations of this type are called quadric surfaces or conicoids 
because every section of a quadric surface by a plane is a conic. 

There are five non-degenerate types, namely, 
Ellipsoid. 
Hyperboloid of one sheet. 
Hyperboloid of two sheets. 
Elliptic paraboloid. 
Hyperbolic paraboloid. 
The degenerate types are cones, cylinders, planes, lines, and 

points. 
873. Ellipsoid.—The simplest standard equation is 

463] 
“2 + 

1/ f 
¥ c2 

= 1. 

This surface can be conceived as generated by a variable 
ellipse moving parallel to the XF-plane with its center always on 
the Z-axis, the end points of the axis parallel to the X-axis follow¬ 
ing the ellipse, 

1, 

wSu npBl in 
^ + ^ w 

and the end points of the axis parallel 
to the F-axis following the ellipse, 

2* 
e 

Fig. 488. 

The intercepts on 
axes are 
F = i&, Z = ic. 

= 1. 

the coordinate 

X = ia, 
Its traces on the coordinate planes are: 

In theXF-plane, the ellipse, % + ^i ~ 1* 
a^ 

542 
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In the XZ-plane, the ellipse, = 1. 

In the FZ-pIane, the ellipse, |j + ^ = 1. 

The equation for the intersection of the ellipsoid. 
If 

r,2 + i = 1, 

and the plane, z = ky parallel to the XF-plane is formed by 
substituting z = kin the equation of the ellipsoid, and is 

t _L. k^ 
1 - 

or 

_' I = 1 

- A:^) -^(c^ - k^) 

This ellipse, it might be interpreted, is the ellipse which 
generates the ellipsoid as k takes on all values between +c and —c. 

Its semimajor axis is equal to 

^ \/c2 - k\ 

and its semiminor axis is equal to 

-\/ — Jc^. 

It is assumed that a > b. If, however, the axes are inter¬ 
changed, then a < b. 

Another form of the equation of the ellipsoid is 

.. J/L . + . "' — = 1 
- x^) ^ c^{a^ - x^) 

From this form, it is readily seen how the major and minor 
axes vary, since a variable appears in the denominator of both 

and 
874. The H3rperboloid of One Sheet.—The standard equation 

is 

[464] __ 4- ^ 
a2 ^ 62 

This surface can be conceived as being generated by a variable 

ellipse moving parallel to the XF-plane with its center on the Z- 



544 MATHEMATICS FOE ENGINEERS 

axis, the end points of the axis parallel to 
the JST-axis following the hyperbola, 

points of the axis parallel to the 
F-axis following the hyperbola, 

Y I 
Pio 489 ^ 

Its intercepts on the axes are 
X = ±a, F = ± 6. 

Its traces on the coordinate planes are: 

In the XF-plane, the ellipse, ^2 + I2 ^ 1* 

In the XZ-plane, the hyperbola, ^ ^ = 1* 

^/2 -2j2 

In the FZ-plane, the hyperbola, ^2 ^ 

This surface has the property that two straight lines may be 
drawn through any point on the surface which will lie wholly 
in the surface. 

The equation is also written in the forms, 

a\& + z^) ^ + z^) ^ 

b^(a^ — x^) (^(a^ — x^) 

The intersection of the hyperboloid of one sheet, 

?! 4. ^** _ ?* = 1 
62 c2 ' 

and the plane, z = kj parallel to the XF-plane is formed by sub¬ 
stituting z — k in the above equation which becomes 

r(c* + 1^) + k^) 
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This equation may be considered as the equation of the 
generating ellipse as k takes on different values or as the inter¬ 
secting plane is moved parallel to the XF-plane. 

875. The Hyperboloid of Two Sheets.—The standard equa¬ 
tion is 

[455] 
_ 2/2 __ 

a2 “■ P ■“ c2 

For convenience in considering sections, we may consider 
the hyperboloid of two sheets to be a surface generated by a 
varying ellipse moving parallel to the FZ-plane with its center 

in the X-axis. 

Its only intercepts are at x = ± a. 
The traces on the coordinate planes are represented by: 

X^ 2/2 

In the XF-plane, the hyperbola, ^2 “ ~ 

x^ 
In the XZ-plane, the hyperbola, ^2 ~ ^2 ~ 

No trace in the FZ-plane. 
The intersection of this surface and the plane, x = fc, parallel 

to the FZ-plane is represented by the equation formed when x 

iu ^ ~9 = 1 replaced by k. The equation then 
or Or 

becomes 

2/^,2"^ k'^ _ j 
P p P ^ 

or 

__ = 1. 
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This equation may be interpreted to be the equation of the 
generating ellipse as k varies. The ellipse is imaginary if 

—a < k < a, 
and, therefore, there is no part of the surface between x — —a 
and X = a. 

876. Elliptic Paraboloid. 

[466] 

The standard equation is 
|2 

= z. 
6" 

Fig. 491. 

This surface can be conceived to be 
generated by a variable ellipse moving 
parallel to the XF-plane, whose center 
is on the Z-axis, and with the end points 
of the axis parallel to the X-axis follow¬ 
ing the parabola, = o?Zj and with the 
end points of the axis parallel to the 
F-axis following the parabola, 2/^ = b‘^z. 

Its intercepts are 
X = 0, y = 0, Z = 0. 

Its traces on the coordinate planes are: 
In the XF-plane, the point ellipse, 

+ t^Q 
^ 

In the XZ-plane, the parabola, 
= a^z. 

In the FZ-plane, the parabola, 
if = b^z. 

The intersection of the elliptic paraboloid, 

^ ¥ ’ 
and the plane, z = parallel to the XF-plane is represented 
by the equation, 

a2 ^ 62 ’ 

4- = 1 
a% ^ b% 

These equations may be considered as the equations of the 
variable ellipse which generates the elliptic paraboloid as k 
varies from zero to infinity. 
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877. The Hyperbolic Paraboloid.—The standard equation is 
/j*2 MiZ 

[467] ^ ~ 

The generating curve in this case will be taken as the parabola 
in the plane, x = k, parallel to the FZ-plane. Then 

¥ 

which is the equation of the generating parabola with vertex 
at 

{k, 0, 
and following the parabola, — arz, in the XZ-plane. This 
parabola has its vertex pointing 
downward. 

Sections parallel to the YZ~ 
plane are parabolas with vertices 
pointing upward, and sections 
parallel to the XT-plane are 
hyperbolas. 

This surface also has the 
property that a straight line 
lying wholly in the surface may 
be drawn through any point on 
the surface. 

878. The Cone,—The standard equation is 
/y.2 rty2 «f2 

[468] % + n-l, = 0. 
0^ (T 

The surface of a cone can be con¬ 
ceived as being generated by a variable 
ellipse moving parallel t o the X F-plane 
with end points of its major axis fol¬ 
lowing the linos, 

Its intercepts are x = 0,2/ = 0,3 = 0. 

Fig. 492. 

- ~ = 0. 
n2 

Its traces on the coordinate planes are: 

^ ytT'tr _ -_‘—j. ^ t y _t 
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In the XZ-plane, the two lines - ^ = 0. 
(? 

In the yZ-plane, the two lines ^ ~ ^ = 0- 

An examination of the equations of the cone and the elliptic 
hyperboloid, 

^ 
¥ 

^2 

r»2 ' 
= 0, 

= 1, 
shows a difference in the constant term only. The surfaces have 
no point in common. If y and z in the two equations are increased 
indefinitely, the corresponding values of x from the two equations 
approach each other. The hyperboloid and the cone are said 
to be asymptotic to each other and bear the same relation to 
each other as the plane hyperbola and its asymptotes. 

879. Cylinders.—In Art. 843, it was shown that an equation in 
two variables represents a cylindrical surface. The cylinder 
whose elements intersect a given curve and are parallel to one of 
the coordinate axes is called a projecting cylinder. These project¬ 
ing cylinders may be found by eliminating the third variable from 
the equation of the curve. 

Any two of these equations of projecting cylinders may be 
conveniently used as the equation of the curve. The original 
curve can then be constructed by using the curve of intersection 
of the two cylinders. 

Example.—Construct the curve of intersection of the two cylinders, 
+ 2/“ = 2y and (1) 

2/2 + 22 ^ 80 + 7 = 0. (2) 
Draw the trace of (1) in the XF-plane. The elements of the cylinder 

will be perpendicular to that plane. 
Draw the trace of (2) in the FZ-plane. The elements of this cylinder 

will be perpendicular to that plane. 

In order to make a good perspective of the cylinders, it is a good 
plan to make the T-scale with a unit one-half as long as that used 
to construct the X- and Z-scales. Thus, if 1 inch = 1 is used as 
the X- and Z-scale, use \ inch == 1 for the F-scale. 

In laying out an ellipse or a circle in perspective, draw the 

circumscribed square or rectangle of the circle or ellipse which 
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gives four points of contact with the circle or ellipse. These 
are the four center points of the four sides. This 
makes the ellipse or circle easier to plot. 

The method is shown in Fig. 494. 
Returning to the problem: 

Consider a plane whose equation is ?/ = fc. -It is parallel 
to the XZ-plane and to the elements of the projecting cyl¬ 
inders. It intersects the F-axis at M, the trace in the XY- 
plane in the points A and B, and the trace in the FZ-plane fig. 494. 
ill the points C and D. These points locate elements 
of the projecting cylinders. The points of intersection of these ele¬ 
ments EF and GH of one cylinder and EG and FH of the other locate 

points on the curve of intersection. By taking several cutting planes 
or by giving k various values, the curve of intersection of the surfaces, 

and 2/^ + 2^ — 82 -f 7 = 0, is constructed. 

Z 

Fio. 406. 

880. Parametric Equations of a Curve in Space.—If the 
coordinates in space are given as a function of a variable param¬ 
eter, the curve is in parametric form, as 

x = y = I ~2t, 2 = -f- 2. 
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The parametric equations of a helix furnish a good example 
and will be determined. 

A point which moves on the surface of a right circular cylinder 
in such a manner that the distance that it moves parallel to the 
axis of the cylinder varies directly as the angle through which 
it rotates around the axis is called a helix. 

Assume the equation of the circular cylinder, 
= 7-2. 

Let Po be the starting point of the helix and let it be located 
on the X-axis. 

Let P (x, y, z) be any point on the helix. 
By the conditions stated, BP varies as kO^ where A; is a constant 

depending upon the pitch of the helix. 

X = OA = OB cos 6 = r cos 6 and 
y = AB = OB sin 6 — r sin 6. 

Hence, the parametric equations of the helix are 
X = r cos 6y y = r sin 6, z — kB, 



CHAPTER XLI * 

DIFFERENTIAL CALCULUS 

RATES OF CHANGE 

881. Before undertaking the study of the calculus, it is advis¬ 

able to review thoroughly the fundamental and important por¬ 
tions of algebra, trigonometry, and analytic geometry. A 
thorough knowledge of and a reasonable facility in the use of the 

methods of analysis of these subjects will materially aid in a 
proper understanding of theTnethods of the calculus. 

It is quite essential that the relation which the function, or 

dependent variable, bears to the independent variable, or argu¬ 
ment, be fully understood. In representing functions, we have 
used the ordinate as a measure of the value of the function for a 
certain value of the independent variable. The curve simply 
locates the end points of the ordinates with whose varying lengths 

we are concerned, offering a convenient method of indicating these 
lengths and of interpolating to find values of the function between 

those computed. 
It is a matter of prime importance, in plotting functions, to 

use the proper variables for the function and for the independent 
variable. When two variable magnitudes vary in such a manner 

that the value of the first depends upon the value of the second, 

the first is a function of the second and is represented by the 
ordinate of a point whose abscissa represents the second, or inde¬ 
pendent variable, or, more simply, the ordinates represent the 
values of the function while the corresponding abscissae represent 

the values of the independent variable, 
882. Rate of Change.—One of the most fundamental problems 

treated in the calculus and one of the most important phases 
of physics is the determination of the rate of change of the vari¬ 
ables, or the amount of change in the function per unit change 
in the value of the independent variable. If this rate of change 

551 



652 MATHEMATICS FOR ENGINEERS 

is a constant, the graph of the function is a straight line. That 
is, the ordinates increase (or decrease) by a certain amount for 
each unit of increase of the independent variable. In general, 
however, the rate of increase is not constant and it becomes 
necessary to consider, further, the ajoerage rate of change and the 
instantaneous rate of change. 

Differential calculus is the study of these rates of change and 
it was through the investigation of problems of this sort that the 
calculus was developed. 

883. Average Rate of Change.—The average rate of change 
or increase of a function in any interval is the amount of increase 
during the interval divided by the number of units in the interval, 
or the amount of increase in the value of the function during the 

interval divided by the amount of in¬ 
crease in the value of the independent 
variable during that interval. Thus 

’ o in the function illustrated in Fig. 497, 
the amount of increase in the func¬ 
tion during the interval from x = 15 

0 5 10 15 20 25 3^ to x = 25 is 8 and the amount of 
jPjQ 497 increase in the value of the inde¬ 

pendent variable is, of course, 10. 
The average rate of increase throughout this interval is or .8. 

In the same manner, we find the average rate of decrease 
throughout an interval, or as is more commonly done, the nega¬ 
tive average rate of increase, since a decrease in the value of 
the function may be more easily considered as a negative increase. 

884. Instantaneous Rate of Change.—A tangent to a curve 
at any point shows the instantaneous direction of the curve at 
that point. Since the direction, or slope, of a straight line is a 
measure of the rate of increase of the function which the line 
represents, the slope of the tangent represents the instantaneous 
rate of increase of the function represented by the curve at the 
point in question, or the tangent indicates the changes which 
would occur in the value of a function during an interval if it 
had continued to increase throughout the interval at the same 
rate as at the beginning of the interval. Thus, the instantaneous 
rate of change in the function of Fig. 497 at the point x = 15 is .5. 
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The word ''instantaneous'’ is perhaps misleading since any 
change, however small, requires an interval, however slight. 
It becomes necessary to examine the relations between the vari¬ 
ables for very small intervals, and in these intervals it is, of 
course, the average rates of change throughout these small 
intervals with which we are concerned. In the consideration of 
the speed of a train, the speed at a certain instant cannot be 
taken as the number of miles traveled during an hour which 
contains the instant or even as the number of feet traversed 
during a second which contains the instant, although the smaller 
the interval, the more nearly the average rate for the interval 
approaches to the instantaneous rate at the beginning of the 
interval. We may, then, by shortening the interval and deter¬ 
mining the average rate for the interval, come close at will to a 
determination of the exact instantaneous rate for the instant 
with which the interval started. In other words, the speed at 
any instant is the limiting values which the average speed 
approaches as the interval is made smaller and smaller, or is 
made to approach zero. 

It is of the greatest importance to consider that the amount 
by which a variable differs from its limit is of no importance while 
the limit itself is the prime consideration. The notion that the 
difference between a variable and its limit may be made small 
at will and ultimately made to become negligible and be dis¬ 
regarded may be confusing and unsatisfactory to some, but if 
the limits only are considered, no difficulty should be experi¬ 
enced with the calculus. 

886. Magnitude.—To define the magnitude of a quantity, we 
must make a comparison between it and some unit of the same 

kind. Comparing ~ ^ with 1, we would say that the former 

was very small. If we compared 1 with 1,000,000 we w’^ould say 

^ with that 1 was very small. If now we compared 
000,000 

1,000,000, we would undoubtedly say that the fraction was 
exceedingly small. The idea of magnitude is a very important 
one in the calculus, and we shall have occasion to become more 

familiar with it later on. 
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886. Variables and Limits.—As a demonstration of the manner 
in which a variable approaches a limit, consider the three points, 

Ay Bn, and C, on the line in Fig. 498. 
. Let the distance between A and C be 1 and suppose that the 
position of Bn is variable and during the first interval under con¬ 
sideration Bn lies midway between A and C at Si. 

A B3 B2_St_C 

Fig. 498. 

During the next interval, the position of Bn changes from Bi 

to B2 which is midway between A and Bi and during the third 
interval, the position of Bn changes from B2 to S3, S3 being mid¬ 
way between B2 and A, It is evident that we can make the point 

Bn come close at will to A by taking a sufficiently large number 
of intervals. Thus for the first interval, the distance between A 
and Bn is equal to for the second interval, the distance equals 
1] for the third interval, it equals -J-; for the fourth, and so on. 
By taking a sufficiently large number of intervals, we may make 
the fraction which represents the distance of Bn from A resemble 

a fraction like or we may make it a fraction which repre- 
1,000,000 

sents any desired degree of smallness. When a variable decreases 
in this manner so that its value ultimately becomes and remains 
less than any arbitrary magnitude, however small, we say that 
the variable approaches zero as a limit. 

Now consider the distance of the point Bn from the point C, 
as the number of intervals is allowed to increase. Thus: 

For the first interval, 5iC = \ = .5. 

For the second interval, fi2C = | = .75. 
For the third interval, fisC = y == .875. 
For the fourth interval, fl4C = = .9375. 
For the fifth interval, B^C — || = .96875. 

For the sixth interval, = ?| = -984375. 
It is evident from the foregoing that the value of this distance 

from Bn to C approaches closer and closer to the value 1 as the 

number of intervals is allowed to increase, and the greater the 
number of intervals considered, the closer the value is to 1. 
Hence, 1 is the limiting value of the variable distance from B„ 
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to C. By taking a sufficiently large number of intervals, we may 
make the value of the variable come close at will to 1. It is 
these limits, 0 and 1, with which we are concerned rather than 
the values of the fractions which represent the distances of Bn 
from A and C, 

887. Concept of a Limit.—The following numerical example 
will aid in illustrating the concept of a variable and its limit: 

A ball is thrown into the air and the relation between the height Qi) 
in feet and the time (t) in seconds is given by 

h = 150/ - 16/2. 

Find the speed after 3 seconds. 

Consider an interval of time beginning at 3 seconds and let .01 be the 
duration of the interval. 

If / == 3, A - 150(3) - 16(3)2 = 306. (1) 

If / = 3.01, h = 150(3.01) ~ 16(3.01)2 = 306.5384. (2) 

The difference in h for a difference in / equal to .01 is .5384. The 

average rate of change throughout the interval from / = 3 to / = 3.01 is 
.5384 

.01 
53.84 feet per second. 

Let the duration of the interval become less and less, that is, 
approach the limit 0. In a manner similar to that used above, 
compute the average rate of change in h throughout the interval. 
Make a table of these average rates calling the difference in A, 
Ah; and the interval, At. 

At Ah 
Ah 
At 

.01 .5384 53.84 

.001 .053984 53.984 

.0001 .00539984 53.9984 

.00001 .0005399984 53.99984 

.000001 .000053999984 53.999984 

As At is taken smaller and smaller, the rate of increase 

comes closer and closer to some limiting number, possibly 54. 
To find the exact value of this limiting number, we may proceed 

as follows: 
Suppose that instead of giving At a numerical value, we follow 

through the algebraic operation starting with the equation, 
h = 150/ - 16/2. (1) 
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If t is increased to t + At, then h increases to h + AA, for the 
increase in t causes a change in h depending upon their algebraic 
relation. 

h + = 150(t + At) - 16(t + At)*. (2) 
= 150t + 150At - 16t» - 32tAt - 16At*. 

Subtracting (1) from (2), 

Ah = 150At - 32tA/ - 16At*. 

Dividing by At, 

^ = 150 - 32t - 16At. 

Now let At approach zero. Then 

the ratio ^ approaches 150 — S2t, 

which is the limiting value approached by the average speed 
when At approaches zero and this limit is precisely 150 — 32<, 
or, putting the same thing into different form, the expression 
150 — 32/ — 16A/ gives the average rate of increase for any 
interval A/, while the expression 150 — 32/ gives the exact rate 

of increase at the instant t 
For / = 3, this gives 150 — 96 = 54, which was, therefore, 

the limit in the numerical case in the preceding paragraph. 
Carefully note that the expression. 

Ah 
At' 

does not approach zero although both At and Ah approach zero 

as a limit. 
It is absolutely necessary that the foregoing illustration be 

thoroughly understood. If difficulty is experienced, review the 

above example, extending the table if necessary, until it is 
evident that as At and Ah become small without limit, their 
ratio approaches some definite fixed value as a limit. 

Consider the limit of an expression, such as 

y = 10 + 1,000,OOOAx + l,000,000,000Aa;2. 

We might not expect an expression with such large coefficients 

to approach 10 as a limit as Ax approaches zero, but let us 
investigate to find what does happen as we take Ax smaller and 
smaller. 
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Aa; = .1 2/ = 10 + 100,000 + 10,000,000 - 10,000,010 
^x = .01 Z/ = 10 + 10.000 + 100,000 = 110,010 
Ax = .001 2/ = 10 + 1,000 + 1,000 = 2,010 
Ax = .0001 2/ = 10 + 100 +10 = 120 
Aa; == .000001 z/ = 10 + 1 + .001 = 11.001 
Aa; = .000000001 2/ = 10 + .001 + .000000001 = 10.001000001 
Aa; = .000000000001 7/ = 10 + .000001 + .000000000000001 

= 10.000001000000001 

By continually making Aa; smaller, or making it approach zero 
as a limit, we may make y come close at will to 10. This example 
should help to make clear how it is that some expressions with 
exceedingly large coefficients may approach some small finite 
number as a limit when the variable is made to approach zero 
as a limit. 

The symbol, Aa; —> 0, or Aa: = 0, is read, as delta x approaches 
zero as a limit or the limit of delta x is zero.” 

888. Graphical Illustration.—Let P (2, 1) and 1\ (2 + Ax, 
1 + At/) be two points on a curve whose equation \s y = fix), 
and let CD be the secant through these two points. Then, as 
will be seen from the figure. 

Ax 

is the slope of the secant CD through the points P and Pi. 
This ratio also represents the average 

rate of increase of the function y for the 
interval Ax. 

As Ax approaches the limiting value zero, 
the point Pi approaches the limiting posi¬ 
tion P, and the secant through PPi revolves 
about P to the limiting position AB, which 
is the tangent to the curve at P. This 
tangent is the exact limiting 'position which 
the secant approaches as Ax approaches zero, 
and the slope of the tangent is the exact limit which the value 

of approaches as Ax approaches zero. 

The slope of the tangent at any point is the slope of the curve 

at that point. 
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Example.—Find the rate of change of the function with respect to 

X at the point x - ^ when 

4?/ = — 2x + 4. (1) 

Let (xo, yo) be some particular point on the curve, and then 47/o = .ro'-* 

— 2xo + 4. 

If another point on the curve is taken as (xq + Ao;, yo + A?/), the 

equation becomes 

4(2/0 + A?/) = (:ro + Aa;)^ - 2{xo + Ax) + i = (2) 

iyo + 4A?/ = xo® + 2xoAx + Ax‘^ — 2xo — 2Ax + 4. 

Subtracting (1) from (2), 

iAy = 2xoAx — 2A.r + Axl 

Dividing by 4 Ax, 

Ay ^ xo 

Ax 2 
\ + hx. 

When Ax approaches zero, 

^ approaches | | 

Then when zo = 3, 

,^V 3 1 , 
Limit of ^^ = 2-2=1. 

which means that at the point of this curve for which x = 3, the rate of 

change of y is the same as that of x; or that the slope of the tangent at 

that point is 1. 



CHAPTEll XLII 

FUNDAMENTAL DIFFERENTIATION 

889. The Derivative.—If there is given a function y of a vari¬ 

able Xj and a pair of corresponding values of z and ?/; and if then 

an increment Ax be given to x which brings about an increment 

Ay in y, the limiting value of the ratio, 

Ay 

Ax 

as Ax approaches the limit zero is called the derivative of y with 

respect to x. 

The symbol for the derivative of y with respect to x is 

dx 

Another way of saying the same thing is 

r469i ^ Limit r 1 
(}x J- 

Thus, 

(l(4x~ + ^x) _ 

(lx 

Limit [4(-r Aa-)| - |U'2 + 
—> 0 A ^ 

Or 

[460] (id 

dx 

Limit Ay 
A.,-»()^x’ 

890. Importance of Limits.—l^'roni what has already been said 

about limits, the reader will a{)preciate tlu'ir imj)ortan(‘e and, 

if necessary, review those sections in which they hav(' been treated 

(Art. 887). 

A variable x is said to approach a constant limit C, if the dif¬ 

ference between the variable and C ultimately becomes and 

remains less than any assignable number, however small. It 

will be understood that absolute values are considered without 

regard to their signs. 
569 
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897. Difierentiation.—The process of finding the derivative of 
a function is called differentiation. It is equivalent to finding 
an expression for an instantaneous rate, or speed, or slope. 

dv 
The derivative ^ of a polynomial algebraic expression can 

always be found as in Art. 889, but quicker and less laborious 
methods will be given which will cover all the elementary types 
of expressions, such as algebraic, trigonometric, and logarithmic 
functions. 

Since the expression ^ gives the slope of the locus when the 

coordinates of any particular point are substituted in it at any 
point, as (Xo, yo), then the equation of the tangent to the locus at 
that point is 

[461] y-yo= 
y -Vo 

and the equation of the normal is 

[462] 
y - Vo = - 

1 

% 

dx 

(X - Xo). 

See Analytic Geometry (Arts. 795 to 798). 
892. Derivative of a Constant.—The derivative of a constant 

IS 

dC = 0. 
dx 

Since C does not change as x changes by an amount Ax, the 
increment AC is zero. 

Therefore, 
dC 

[463] g = 0. 

As y = C is the equation of a straight line parallel to the X-oxiSf 
the slope at any point is zero. 

893. Derivative of a Variable with Respect to Itself.—The 
derivative of a variable with respect to itself is unity 

liy = X, 



. FUNDAMENTAL DIFFERENTIATION 561 

because y — x and = Ax; hence, 

^ ^ Ax ^ 1 

Ax Ax 

Therefore, 

This will be apparent from Fig. 500. 

894. Effect of an Added Constant.—Let 

F{x) represent some function of x. 

Consider the equation, 

y 

y = F(x) + C. 

Obviously C drops out in subtracting to get Ay, Art. 888. Then 

^ and, hence, ^ have the same valuje as though we were differen¬ 

tiating y = F{x) alone. 

The slope of the tangents to the two curves of Fig. 501 at P 

and Pi are the same for any value Xo in the two 

equations. The added constant 5 simply shifts 

the curve upwards 5 units and does not change 

the slope of the tangent, since the curve has 

been displaced parallel to itself and the tangent 

remains parallel to its former position. Con- 

dv. 
sequently, the value of the derivative is the 

Fig. 501. same in both cases. 

896. Derivative of the Product of a Constant Times a Function 
of a Variable.—The derivative of a constant times a function of a 

variable with respect to the variable itself equals the constant 

times the derivative of the function, 

rf[C/(x)] _ pd[/(x)] 

dx dx 

For, let y = C/(x). 

Then y + Ay C/(x + Ax). 

And Ay = C[f{x + Ax) — f{x)]. 

Then 

Passing to the limit, 

[464] 

J{x + Ax) ~ 

Ax 

dy ^ 

dx dx 
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896. Derivative of a Power.—Take y = 

Let X == Xo. 

Then yo = Xo^, 

t/o + A?/ = + Ax)^ = Xo^ + 2XoAx + Ax^. 

Subtracting yo = 

Ay — 2XoAx + Ax^. 

Dividing through by Ax, 

= 2xo + Ax. 

Let Ax approach the limit zero. Then 
ax 

2xo at any point Xo. 

The rate of change of the ordinates at the point x = 2 is 4 to 1. 
The rate of change of the ordinates at the point x = 3 is 6 to 1. 
The rate of change of the ordinates at the point x = 4 is 8 to 1. 
In a manner similar to that used in the case where y = x^ 

we find the derivative oi y = x^ 

dy 
dx 

3x(,2 at any point Xq, 

and if 2/ = x^ 

dy 

dx 
4xo® at any point Xo, 

and, in general, if n is any positive integer and y = x”, 

dy 
[466] 

dx 
= nxQ^~'^ at any point Xo. 



CHAPTER XLIII 

DIFFERENTIATION OF ALGEBRAIC FUNCTIONS 

897. Differentiation of a Sum.—If u is some function of x 

(as x^) and if v is another function of x (as 2x) and if 

y 

then let A?/, A//, and A?;, be the increments of y, Uy and v corre¬ 
sponding to AXy the increment of the independent variable. 

Let X “ Xijy that is, some definite value, and let Uq, Vq, and 
l)e the corresponding values of Uy v, and y. 

Then 

2/0 = iio + Vq, 

Now let X = 0:0 + A:c. 
Then 

^0 + A^ = Uq + Aw + ^0 + Av. 

Subtracting 2/0 = tU) + 

Ay = All 4- Av. 

Dividing by Ax, 

Ay __ Au Ar 

Ax Ax Ax 

Let Ax approach zero; then 

fix 
[466] 

fill dv 

dx ~ fix 

The derivative of the sum of two functions is the sum of their 

derivatives. 
In the same manner, 

d(ii + V — w) __ dll dv _ (Iw 

dx ^ dx dx 

Example.—Find the derivative of 
y = + 2x2 ~ 5x + 9. 

563 
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This corresponds to 

dy 
dx 

y=^u-\-v — w-\-c. 
d{x^) 

dx + 
d{2x^ 

dx 
d(bx) 

dx + dW. 
dx 

o tdx . . dx Ax , _ 
= Zx\ + — 5t + 0. 

dx dx dx 

= 3x2 + 4c - 5. 

The derivative of the sum of any number of functions, whether 
designated by u, Vj w, etc., or by F(x), /(x), etc., or by + 2ax, 
X®, or any other symbol which stands for an expression involving 
X, or the independent variable, equals the algebraic sum of their 
derivatives. 

898. Derivative of a Power.—^Let y = where n is a positive 
integer and u is any function of x. 

y + Ay = {u + Au)^. 
Expanding (u + Aw)” by the binomial theorem, 

y + Ay = + nu^~^Au + ^ u^-'^Au^ + . . . + Aw”. 

Subtracting y = w”. 

Ay = nw”“^Aw + ” w”“^Aw^ + • • • + Aw”. 
\2, 

Dividing by Ax, 
Ay 

Ax 
= nw” 

,Aw , n{n — 1) Aw , 
1 + —-^-w”-2Aw. + 
Ax 2 Ax 

. + Aw”“ 
Aw 
Ax’ 

As Ax approaches zero. Aw also approaches zero, and 

[467] 
dx 

= ww”~ 
dx 

If w = X which is a special case, then 
2/ = X". 

= nx”“^^ = nx”~^ [466]. 
dx dx 

It may be shown that the same formula holds when n is any 

constant, so that we have the rule: 
The derivative of a function raised to a constant power, where 

the exponent may be positive, negative, fractional, or even 
irrational, is equal to the product of the exponent, the function 
raised to a power one less than the exponent, and the derivative 

of the function. 
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Thus, if n is a positive fraction then 

P 
y = 

[468] 
dy P du 
dx q dx 

In the same manner, if n is negative or eqilals — m, 
y = 

5:c 
dy 

= —nnr 
du 
dx 

lfu = x and n = f, 

dy 

dx 

liy — \/xy y = 

« 1 d'^ = n • • 
dx dx 

y = X* and 

^ = -U. 
dx 2^^^ 2Va: 

If J/ = -8- 2/ = ar-», 

# = -s-r- = 
dx ' X* 

Ify = (a;^ + 3)'\ this is in the form!/ = 

f dx dx 
du d(x^ + 3) 

dx dx 
= 2x. 

= 3(x^ + 3)*-22: = 6a:(x2 + 3)1 
dx 

899. Differentiation of a Function of a Function.—Let u 
be a function of x, and let y be a function of u. 

du du 
Then u changes “ times as fast as x, and y (dianges ^ times 

dy du 
as fast as u. Therefore, it is evident that y changes ^ times 

as fast as x. That is, 
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Reducing this to simple arithmetic, if y changes 4 times as fast 
as Uy and if u changes 6 times as fast as x, then y changes 4X6 = 
24 times as fast as x. 

Extending this to a function of a function of a function: 
If X is a function of ty and z is sl function of x, and if 2/ is a 

function of Zy then 

[470] 
dy _ dy dz dx 
dt dz dx dt 

Likewise, for any number of functions of functions, the form is 

[471] 
dy ^ dy_ _ 
dt ' ‘ ' dt 

If t is the independent variable and y is the last variable func¬ 
tion with intermediate functions, place the numerators and 
denominators in their proper places in the form shown. 

Example.—A steel rod is heated. Its length is a fir.iction of its 
temperature and the temperature is a function of the time. Its length 
is then a function of a function, of the independent variable t. The 
rate of change of length per second is equal to the rate of change of 
length per degree and the rate of change of temperature per second. 

In the graph of a function of a function, the slope of y with 
respect to x equals the slope of y with respect to u times the slope 
of u with respect to x. 

900. Graphical Representation.—A very clear method of 
showing the relations of functions of functions is to consider the 
relations of the three variables if x is a function of t and y is a 
function of x, on coordinate planes. 

Do not confuse this relation with that represented by curve 
in space. 

Let the rate of change of x with respect to t be 

AR _ Ax 
Tl C ~ A^ ‘ 

Let the rate of change of y with respect to x be 

FE _ A?/ 

DE Ax' 

The rate of change of y with respect to t is 

JG Ay 
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Then 

JG _ AB FE ^y_ _ ^ 
JH^ AC' DE' At Ax’ At’ 

Suppose that the rate of change 
between x and ^ is 1| to 1. Take the 
base line to measure slope on OTequal 
to unity. Then AC = 1 and AB ~ 

Also DE = H- 

Suppose that the rate of change 
between y and a: is 2 to 1. Then Fig. 503. 

EF = U X 2 = 3. 

But EF = = 3. Also J/f = 1, being equal to the unit on 
the T-axis with which we started. Hence, 

JG 3 ., ^ 
X 2. 

JH 1 H 

Example.—Differentiate 

y ^ \/a 'i- X = (a + x)^ . 

Let {a + x) = u. 

Then = 1. 
ax 

Andy = = 

(iy dy du 1 ^ 

Substituting value of u above, 

1 / . ^ 1 

2V0 + 

901. The derivative of a function raised to a power may be 
found by using the formula for the derivative of a function of a 

function. 
Let y with n a positive' integer and u any function of x. 
From the formula for the d(U‘ivativ(» of a function of a function, 

# . d» du 
dx du dx 

If X is given an increment AXj then y and u are increased by 

Ay and Au, respectively, or 

1/ + Ay = (u + Au)^. 
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Expanding {u + Aw)** by the binomial theorem, 

2/ + Ay = w** + w • .. • + . . . +Aw". 

Subtracting y = w", 

Ay = n • w^-^Aw + ---• 

Dividing by Au, 

u^~^Ay? + . . . + A^u. 

^ = n • ^ + . . . + Aw”"*^ 
Au I 

As Au approaches zero, 

Ay 
Au 

approaches n • u^ 

dv 
Therefore, j- = n • 

a?i 

Substitute this value in 

dy 
dx 

Then 

dy 

dy du 
du dx 

[469]. 

— n • u^ 
doc 

idu 
dx 

[467]. 

902. The Derivative of the Product of Two Functions.—Con¬ 
sider two functions of x, as (x^ + 3) and (x^ + 5x + 9). 

The product would be indicated as 

y = (x-f 3)(x2 + 5x + 9). 

We could, of course, perform the.indicated multiplication and 
then find the derivative of the product but a shorter method is as 
follows: 

Let y = u X Vy 

where u and v represent the two functions which are factors. 

Let X = Xo; that is, let x have some definite value. 

Then yo - UoX Vo- 
Let X take on an increment Ax; then 

yo + Ay = (Uo + Au){vo + Av). 

= UoVo + VoAu + UoAv + AuAv. 

Subtracting yo = UoVoj 

Ay = VoAu + UoAv + AuAv, 
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Ax 

Dividing by Ax, 

Ax Ax Ax Ax 
Let Ax approach zero. 

Av 
Then Au— also approaches zero, and 

dy du , dv 
dx dx dx 

Applying this formula to the example at the beginning of the 
article: 

Let u = X* + 3. 

j; = X* + 5x + 9. 
Then 

[472] 

I = (z- + + (0.^ + 5x + 

9) = 2x + 5. = 2x. 

^ = (x* + 3)(2x + 5) + (x* + 5x + 9)(2x). 

= 4x^ + 15x2 + 24x + 15. 

Multiplying the functions together before differentiating gives 
x^ + 5x^ + 12x2 ^ 27. Differentiating this as a sum 
gives, as the derivative, 4x^ + 15x2 + 24x +15. This is the' 
same result as was obtained by the use of the formula for the 
derivative of a product. 

Example.—Differentiate 7/ = (x + l)^(2x — 1)^ 

^ = (x + 1)‘- + (2x - 1)5 • 
dx dx ^ dx 

= (x + 1)‘ • 3(2x - 1)^ • + 

(2x - 1)5 ■ 5(x + 
ax 

= 6(x + l)‘(2x - 1)5 + 5(2x - l)’(x I- 1)‘. 

= (2x - l)5(x + l)5(16x + 1). 

In the graph of ?/ = w>, the slope of the curve is equal to u 
times the slope of v = fix) plus v times the slope of u = Fix). 

The derivative of the product of two functions is equal to the 

first times the derivative of the second plus the second times the 

derivative of the first. 
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p- 

H 
yo A 

Xo 

903, Example of the Product of Two Functions.—^Let x and y 
be the two variable sides of a rectangle and suppose that we 

desire to know the rate at which the 
area (product of the two sides) varies with 
respect to the time when the length of 
the sides are functions of the time. 

Let Ao = area and Xo, yo the two sides 
at a certain time U. After an interval 
of time that is, at the time L + A/, we 
would have 

Ao + AA = (xo + Ax)(yo + Ay) = Xoyo + XoAy + yoAx + Ax Ay. 
AA = XoAy + yoAx + AxAy. 

Since each variable varies with respect to the time t, then 

At At 

Fig. 504. 

This is the average rate at which the area varies with respect 
to the time as each side varies in some manner with respect to the 
time. The instantaneous rate of change of the area with respect 
to the time is the limit of this expression as A^ approaches zero. 
This limit is 

dA 
dt 

dy , dx 
- ‘ dl + 

or the length times the rate of change of the width plus the width 
times the rate of change of the length. 

Example. 

y + 
Find its derivative.. 
This expression may be written, 2/ == 
From the formula for the differentiation of a product, 

dy 
dx 

d(l + x^) i /I ^ . 2x — —_-_• 

dx dx 

dx 
, dy I 3x1 

* * dx “ (1 + x2)l 2(1 + x*)!* 

^ __3y*__ 
2\/l + x> \/(F+ 
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904. The Derivative of the Product of More Than Two Func¬ 
tions.—The derivative of the product of a finite number of 
functions is the sum of the products obtained by multiplying the 
derivative of each function by the product of all the remaining 
functions. Thus, if 

[473] 

y = uvWj 
dy du , dv 
j- = vw-T- + uw, 
dx dx dx 

+ uv 
dw 
dx 

905. Another Form of the Formula for the Derivative of a 
Product.—If 

?/ = UVy 

dy dv , du 
dx ^'dx ^dx 

Dividing through by ?/, 

[474] 

y dx 
1 
V 

_ u dv V 
~ y d x'^ y 

1 du 
dx ' u dx 

du 
dx 

In the same manner, if 

[476] 

y = uvWj 
I dy _ \ du 1 dv I dw 
y dx u dx V dx~ iv dx 

Each term involves only one variable, which makes it an easy 
operation to build up the derivative for the product of any 
number of variables. 

906. The Derivative of the Quotient of Two Functions. 

Given y = -• 
V 

Let X — Xo] then 

yo + A.?y = 
Ufi + Au 
v„ + ^v 

Subtracting, 
U^, + >\U ^ Ho 

Vo + Ay Vo Voivo + Ay) 

Dividing by Ax, 

Vo 
Au 

Ax 

Av 

^Ax A^ ^ _ 
Ax Vo{vo + Ay) 
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[476] 

Now let Ax approach zero. 

dx dx 

Then 
du dv 

Tx~^rx 

Example.—Differentiate 

y = 2x 

dx dx 
4x^ 

^_ 
dx 

d(x - 1) ^ ^ 
dx ’ dx 

• ^ ~ 2(x — 1) _ j_ 
‘ * rfa: 2x^ 

Example.—Differentiate 

Put into the form, 
' - Vriv 

y 

+ 

(1 + x)^ 
Since this is the quotient of two functions, 

(1 + _ (1 _ +£)^ 
dy __ __ dx_ _dx 
dx 
d(l — x)^ 

dx 

d(l +x)^ 

1 -ho: 

dx = i<'+*'-'(l)=2vf+V 
■y/l + X vr-": . dy _ __ _ 

■ ■ dx 2y/T^ 1(1 + x) 2\/T+x(i + *) 
_-1_ 

(1 + x)\71 — X® 

907. Slope of the curve of general form, 
Ax^ + Bxy + Cy^ + Dx 4: Ey + F = 0, 

at any point Piixi, yi) on the curve. 
Take another point on the curve, as Qixi + Ax, yi + Ay), 

near the first point and then substitute the coordinates of both 
points in the general equation. 

.4x1* + Bxiyi + Cj/i* + Dxi + Eyi + F = 0. (1) 
A(xi + Ax)*4- B{xi + Ax)(yi + Ay) + Ciyi + Ay)* + D(xi + Ax) 

+ E{yi 4-Ay) 4- -P = 0. (2) 
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Simplify (2) and then subtract (1) from (2); 

Ay(Bxi + BAx + 2Cyi + CAy +E) = —Aa;(2^a:i + AA* + 
By I + D). 

Then 

Ay _ 2Axi + A Ax + Byi + D 
Ax Bxi + BAx + 2Cyi -f-CA?/ + E 

Now as the point Q approaches the point Pi, Ax and Ay 
approach zero and the limit of the ratio, 

is m, the slope of the tangent at the point Pi. 
Ax 

Then 

[477] 
dy _ 2Axi + Byi + D 
dx 2Cyi + Bxi + E’ 

(3) 

which is the slope of the curve at the point Pi(xi, yi). 
The equation of the tangent to Ax^ + Bxy + Cy^ + Dx + Ey 

+ P = 0 at (xi, yi) is, therefore, 

[478] y - yi = 
2Axi + Byi + D 
2Cyi + Bxi + E 

Ax - xi), 

or 

2Cyiy + Bxiy + Ey - 2Cyi^ — Bxiyi - Eyi = 
— 2i4xix — ByiX — Dx + 2ilxi“ + Bxiyi + Dxi, 

or 

2AxiX + B{xiy + yix) + 2Cyiy + Dx + Ey = 
2Axi^ + 2Bxiyi + 2Cyi‘ + Dxi + Eyi. 

Now add Dxi + Eyi + 2F to both sides, and the equation 

becomes 

2^XiX + B(xiy + yix) + 2Cyiy + D(x + Xi) + Eiy + 2/i) + 
2F = 2Axi^ + 2Bxiyi + 2C?/i“ + 2Dxi + 2Eyi + 2F, 

or 

Axix + B 
,xiy + yix 

+ Cyiy + D 
X -b Xi + .V + P = 

2 ' “ 2 ' 2 

Axi* + Bxiiji + Cyi^ + Dxi + Eyi + P. 

But since (xi, yi) lies on the curve, and from (1) the right side is 

zero, hence the equation of the tangent is 

147»| Ax.* + + Cj.!, + + Ilt^+ B - 0. 
2 
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That is, it is the same as the equation of the curve itself if we 
replace a:* bjrxia:. 

by yjy. 

xy by 

»by£±i'. 

y by 

Hence, we have proved the rule stated in Art. 796. All 
examples of tangents to conics can be done more easily by this 
method than in any other way. 

Example.—Find the equation of the tangent to the curve. 
-f- xy -f 4?/^ ~ 2a: — 27/ — 12 = 0, 

at X = 2. 
Substituting in the equation to find the corresponding values of c/, 

4 + 2?/ + 4?/2 - 4 - 2?/ - 12 = 0. 
4^2 = 12. 

y = ±\/3. 

Then the tangent at (2, \/3) is 

2x + + W^V - {x + 2) - (y + V3) - 12 = 0,[4791 

and at (2, — \/3) it is the same except for the change of sign of \/3 all 
the way through. 

908. Differentiation of Implicit Functions.—In all previous 
cases except that of the last article, the function has been defined 

as an explicit function of the independent variable. Suppose 
now that y is an implicit function of x given by such an equation 

as 
= 9 

We can put this into the explicit form, 

2/ = ± \/9 — 

or _ 

X = ±\/9 — 2/^- 
From the first equation, y is an explicit function of x, and from 

the second, x is an explicit function of y. It is not necessary, 
however, to express the relation between the variables explicitly 
in order to perform the differentiation. 
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Differentiate both sides of the equation with respect to x; then 

d(x^) , d(f) _ 
dx ^ dx ~ 

- 0. 

If the variables are so involved in an equation that y cannot 
readily be expressed as a function of x, we may find the derivative 
of y with respect to x according to the following method. 

Set the function equal to zero, and differentiate each term. 
dij 

Collect all terms containing and transpose to the loft side 

of the equation. Transpose all other terms to the other member. 

'^Fake ^ as a factor from the left side of the equation and divide 
dx 

both members by the other factor of the left member. The 
method will be apparent from inspection of the following example. 

Example.—Differentiate 
+ Tu'hj -f Ixy^ 4- ]0y^ + 25 = 0. 

Differentiate each term. 

dx 

d{5pj) ^ ^ 
dx dx 

d{7xy^) ^ ^ ^ djy 
dx dx dx 

= 30i/j- 
dx dx 

Collecting and adding, 

5x4“ + -h 30j/4^ = -(9x^ + 10x2/ + 7y^)- Jy ^ . idy , on,Ay 

Factoring, 

‘^^(Sx^ + 14X2/ + 302/'^) = -(Ox* + lOx.v 4 Ti/*), 
dx 

whence 
dy = . 
dx 5x*T 14x2/+ 302/* 

909. Differentiation of General Equation of Conic.—The 

general equation of a conic is 
Ax^ + Bxy + Cy"^ + Dx + Ey F = 0, 
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Bearing in mind that the second term is the product of two 
variables, its differentiation will be 

Proceeding now with the differentiation of the equation, 

Then 

0. 

2^4? + Bxp- + + 2Cy^ + + 4^ = 0, 
dx dx -^dx -^dx dx dx ’ 

or 

2Ax + + Bi, + 2C„| + O + ^ - 0. 

Collecting, 
dy _ + By + D 
dx 2Cy + 

which agrees with the result obtained in Art. 907. 
910. A Derivative of a Derivative.—Since the derivative is, 

in general, some function of the independent variable, its deriva¬ 
tive may be found and this derivative of a derivative is called 
the second derivative of the original function. 

If y = /(x), then 
d(f[x]) ^ 

dx dx 
and 

d/^y 
is denoted by the symbol -~ 

This does not mean that the second derivative is the square of 
the first derivative but that a second differentiation is performed 
in which the derivative of the original function is considered as 
the dependent variable and differentiated with respect to the 
independent variable. Another notation is used commonly in 
which 

J{x) denotes the function, 
f{x) denotes its derivative, and 
/"(x) denotes the derivative of /'(x), 

which is called the second derivative of f{x). 



DIFFERENTIATION OF ALGEBRAIC FUNCTIONS 577 

In the same manner, the derivative of f"(x) is called the third 
derivative of f{x) and is denoted by/'"(a;), or 

d^y 
dx^ 

Example.—If y + - 

6x5 _ 3^-4, 

= 30x^ + 12x-5. 

= 120x^ — 60x“® 

911. Successive Differentiation.—This process of finding the 
derivative of the derivative or the derivative of a derivative of 
higher order than the first is called successive differentiation. 

Example. 

y = X”. 
dy t 

dx 

= n{n — l)(n. — 2)x“"’. 

^ = n(n - l)(n - 2)(n - 3) . . 

If r = n and is a positive integer, then 

= n(?i — l)(n — 2)(?i — 3) 

(a ~ r + l)x"“^ 

912. Graphs of Derivatives.—In the analytical geometry 
section, the general forms of the (juadratic, cul)ic, and power 

equations are given, and their relations to each other due to 
translation were shown. These laws can be used to determine 

the relation of curves to their derived curves. 
In differentiating a function of the form, 2/ = a polynomial in 

Xj we have learned that the derived curve is a curve of degree 
one less than the degree of the primary function. The derived 



913. The Graph of the Derivative of the Standeurd Quadratic 
Equation y = ax^ + bx + c. 

By the analytical method, 

^ = 2ax + h. 
ax 

This, then, indicates that the de¬ 
rived curve is a straight line whose 
equation is 

y = 2ax + fc, 

with slope equal to 2a, with F-inter- 

cept equal to h, and with X-intercept equal to — • 
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EbcAMPirB.—Draw the derived curve of 
y + I2x + 32. 
a = 1, 6 = 12, c = 32. V 

-h -12 ^ y iri •10 
2a 2 :| 

Slope m = 2. -4 
•2 

914. The Graph of the Derivative 0) 2 345aiH iO' 

of the Cubic Equation, y = ax’ + Fiq. 507. 

bx’ + cx + d. 
From the analytical method, 

= 3aa-’ + 2hx + c 

If we plot the values of 
dy 
dx 

as ordinates, the curve is a parabola. 

since 
y = + 2hx + c 

is the explicit form of the equation of the parabola. Now by 
taking a standard y = x^ graph and translating the origin to the 
point {h, k) and then multiplying the ordinates by a', we have a 
curve represented by the equation, 

where 

y = aV + h'x + c', 

k = 
- 4a'c' 

--4^- • [6] 

Comparing this general equation with the equation of the 
derived curve of the cubic, we see that 

y — + 2hx + c. 
y = a'x- + h'x + c'. 

a! — 3a, 6' = 26, c' = c. 

The formulae for h and k^ when these values are substituted, 
become 

[480] k - 
6^ 3af; 

3a 

By the use of these transformation equations, the standard 
graph ol y ^ X? can be made to represent the derived curve of 
any cubic equation. 
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If k is positive, locate the new origin in the positive direction. 
The direction of k is likewise as indicated by its sign. 

Also note that the vertical scale for y — is multiplied by 
3a and that h and k are measured according to this new scale. 

By having a few graphs of this equation, y = on hand, 
the graph of the derived curve of any cubic equation of 
this form can be quickly made by finding the new origin and 
constructing the new scale. Fig. 508 shows derived curve of 
y = 3x2 _ i2x, 

916. The Graph of the Derivative of Equations of the Form 
y = ax'* + bx^ + cx^ + dx + e. 

From the analytical method, 

= 4ax® + 36x2 + 2cx + d. 
ctoc 

This is a cubic equation. 
From Art. 237, a graph of y — can be used by transposing 

the origin and shearing, but the transposing equations are for 
the form, 

y — a'x^ + 6'x2 + c'x + d'. 

By substituting an a value four times greater, a 6 value three 
times greater, and a c value two times greater in the equations of 
transformation, we can find an origin and a shear for which the 
graph will represent the derived curve of an equation of the fourth 
degree. 
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The equations of transformation become 
i, b j be . b /62 — 4ac\ 

2a 8a2 ^ “ 25V 

m = slope line of shear = 2c — 

Example.—Differentiate graphically y = ^ — I5x. 

Fig. 509. 

916. Graphical Differentiation.—Graphical differentiation is 
simply forming a new curve by erecting ordinates found from 
the slope of the given curve at various points. If a given curve 
(Fig. 510) is to be graphically differentiated, then by accurately 
drawing tangent lines to the curve at the points 1, 2, 3, etc., and 
taking the ratio of the vertical to the horizontal side of the tri¬ 
angles as shown, this ratio or the slope plotted as ordinate for 
that point will locate the derived curve. In the given case, the 
horizontal distance in each triangle is 
unity; therefore, the vertical heights 
are the ordinates. 

Thus, the ordinate at x = 0 is aa' 
and the ordinate at x == 1 is bb', etc. 

By drawing a smooth curve through 
these ordinate ends, the derived curve 
is formed. Care must be taken that 
positive and negative slopes are used. 

Unfortunately, it is very difficult to 
draw a tangent to a curve sufficiently 

Derived Curve 

Fig. 510- 
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accurate, and other schemes using this same principle are better 
adapted to the purpose and will be explained later. 

Do not lose sight of the fact that the ordinates of the derived 
curve really show the instantaneous rate of change at which the 
ordinate of the primary curve is increasing per unit of increase 
in the abscissa. 

917. To Draw a Tangent at a Point on a Curve.—"^Pake a com¬ 
pass or a divider and locate the center of 

B curvature. Then with the edge of a tri- 
angle on the line of the point of tangency 

X center, put a straight edge on the 
^ ^ ^ hypothenuse of the triangle, then slide the 

Fia. 511. triangle to the position ABCy and draw 
AB the tangent at P. 

918. Comparison of the Primary and the Derived Curves. 
Take P and Q, two points very near together. From Art. 888, 
the secant PQ approaches the tangent 
or slope of the curve at P as Q is taken 
nearer and nearer to P and represents ^ Primary 

Curve 

Derived 
Curve 

the average rate of change for the p 

small interval PK. ^ 
Then the ratio *^5— 

QK _ QK _ , , 

PK-pq-^^’ ^ 

the average rate of change. o 
Therefore, 

QK = pq X p'P'. 
From this relation, the distance QK_ 

equals the area of the strip p'P', by p'^'. '0~p' q^r's 

In the same manner, the area of the 
succeeding strips equals PL, SM, TN, etc., or 

QK + RL + SM + TN + . . . = area of strips. 
= p'P' X v'q' + q^Q' X + r'P' X r's' + • • . 

If the thickness of the strip is continually decreased or the 
number of them increased, the sum of the partial ordinates will 
remain the distance PC/ in the primary curve, and the area of the 
strips will approach the area under the derived curve as a limit. 

This important comparison shows that the difference in length 

Fig. 512. 
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of ordinates of the primary curve equals the area between the 
ordinates, the derived curve, and the Z-axis. 

UB = area p'P'U'u^ 

Use is made of this last relation in graphical differentiation. 
From the difference in length of ordinates of the primary curve, 
areas of strips are drawn, and an average curve drawn through 
the strips. 

FiXAMple. Given the curve OABCD. To differentiate graphically. 

First, divide into strips .5 unit wide. The first ordinate is shown at A 
and the ordinate of the derived curve must he of such a height that the 
area in square units equals the length of the ordinate at A. By setting a 
proportional divider to the ratio 2:1, and making the height of the 
rectangles two times the distances, Aa, Bb, Cc, etc., a smooth curve can 
be drawn which will average the triangular areas and make the 
rectangular areas and the strips contain the same areas. This curve is 

the derived curve. 
The horizontal line is drawn to make the shaded area C equal to the 

shaded area D in Fig. 514, thus averaging the area under the 

curv^e. 
In practice, a horizontal line at the proper height is all that 

is required to determine tlie rectangle. C 
Lay off a'A' (Fig. 513) equal to twice the length of u.4. 

The proportional divider will do this if set at a ratio of 2:1. 514 

Then lay off b'B' equal to twice bB and so on. Draw the 

curve tlirough the points so located. This curve is the derived curve. 



CHAPTER XLIV 

APPLICATION OF DIFFERENTIATION 

919. Newton’s Method of Approximation to the Roots of an 
Equation.—We will demonstrate the method by means of an 
example. 

Suppose that we have given the equation, 
+ Sx^ — 2a: — 14 = 0. 

First, draw the graph by the synthetic method (Art. 237). 
From the graph, the root is shown to be slightly larger than 2. 
Substitute a: = 2 in the equation and also in its first derivative. 

2/ = 8 + 12 ~ 4 - 14 = +2. 

^ ==3x^ + Qx- 2. 
ax 

Substituting a: = 2, 

dy _ 
dx 

= 12 + 12 ~ 2 = 22 = slope. 

Let Ax represent the small distance beyond 2 where the tangent 
to the curve at the point x = 2 cuts the X-axis. 

Assume that the graph at this point is 
a straight line, and the slope is then 

2 
Ax 

= 22. 

.-. Aa: = * = .09. 

The graph, then, crosses the X-axis 
at a point which is .09 unit beyond the 
point a: = 2. Therefore, 

a: = 2.09 (approximately). 
If Xi is a first approximation to the root of f{x) = 0, then 

f(xi) 
f\x^) 

is, in general, a closer approximation, 
repeated any number of times. 

* 584 

[482] X2== Xi- 

This process can be 
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The graph is first constructed and a first approximation Xi 

taken. If Xi is substituted in j/ = f{x), then y = /(xi). 
Let Ax represent the small distance beyond x = Xi where the 

tangent at P{xi, y) cuts the X-axis. 
Then the slope at x = xi equals 

approximately. 

Aa: /(^i) 

But X2 = Xi — Arc. Then 

Fig. 516. 

Example.—Find the approximate root of a; + sin a; — 3 = 0. 

Let yi — X — S and 7/2 = sin x. Then y — yi + 2/2. 
Draw the graphs of 7/1 = a; — 3 and 7/2 = sin x {x in radians) and 

add the corresponding ordinates to get the graph of 

y — X + Hill X — 3. 

From the figure, the root is near Xi == 2.2. Then 

f{xi) = 2.2 + sin 2.2 - 3 * .0U9. 
f'(xi) - 1 + cos 2.2 = 1 - .588 = .412. 

X. = 2.2 - = 2.2 - .022. 
.412 

xs = 2.178 an approximate root. 



5g6 MATHEMATICS FOR ENGINEERS 

Newton^s method is best adapted for equations which are not 
of the polynomial form, while Horner’s method (Art. 273) is 
better adapted for polynomial equations. 

920. Speed and Velocity Defined.—Speed will be used in 
these discussions to denote the rate of motion (or rate of change 
of space) regardless of direction. 

Velocity will be used to denote the speed in a given direction 
and, consequently, is a vector quantity possessing direction as 

well as magnitude. 
921. Displacement.—The change in position of a particle is 

called a displacement. 

If A and B are two displacements of the same particle and if 
Pi is its initial position, then by drawing P1P2 equal and parallel 
to A and from P2 drawing P2P3 equal and parallel to P, a single 
displacement P1P3 is found, which is equivalent to the two dis¬ 
placements A and B. 

The resultant displacement can be represented by the diagonal 
of the parallelogram formed by using A and B for sides. It is 
shown in Fig. 517 as the closing side of a triangle whose sides are 
A and B with the arrowhead reversed to show that the direction 
is opposite to that used in drawing the closing side of the triangle. 

Fi«. 517. 

3 

I'lU. 518. 

A displacement can be resolved into any number of component 
displacements. Thus, the displacement P\Pi in Fig. 518 can 
be resolved into components parallel to A and B. 

922. Rectilinear or Straight-line Motion.—(’onsider the 
motion of a particle P on a straight line AB. 

ppt 
Fig. 519. 

A S 
B 
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Let s be the distance measured from some fixed point, as A, 
to the point P, and let t be the time required for the particle to 
travel from A to P, or s. Since t is in nearly all cases considered 
as the independent variable, then for each value of t there cor¬ 
responds a position of P and, therefore, a distance s. Hence, .s 
will be a function of t, or 

= /(O* 

Now let t take on an increment A^, which results in s taking on 
the increment As. Then 

As 
— = average velocity for the interval At. 

If P moves uniformly, this ratio is a constant and has the 
same value for any instant. 

If P does not move uniformly, the instantaneous velocity, 
or rate of change of .s, with respect to t at any instant is the limit 

of the ratio as A^ approaches zero. That is, 

V 
Lirnit 
At-^0 

The velocity is the first derivative of the distance with respect 

to the time. 
From experiments, it was found that a body falling from rest 

in a vacuum near the earth’s surface followed the law, 
s - 10.1/2, 

where 
s = distance fallen in feet. 
t — time in seconds. 

Give t an increment At. Then ,s* takes on an increment A.s, 

and 
s + As = 16.1(/ + At)K 

= 16.1/2 + 82.2/A/ I Hi. 1 A/2. 

Subtracting s = 16.1/% 
As = 32.2/A/ + 16.1 A/2. 

Dividing by A/, 

= 32.2< + 16.1A<. 
At 

- average velocity throughout the interval At. 
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The instantaneous velocity for any time t is 

S = 32.2<. 
at 

For instance, the instantaneous velocity at the end of 10 
seconds is 

== 32.2(10) = 322 feet per second. 
at 

923. Acceleration in Rectilinear Motion.—The rate of change 
of the velocity with respect to the time of a point moving along 
a straight line is defined as the acceleration and will be denoted 
by a. That is, 

d^s 

Example.—At the end of t seconds, the vertical height of a ball 

thrown upward with a velocity of 50 feet per second is 
h ^ bOt- IQAtK 

u == ^^ = 50 — 32.2^ feet per second. 

d% 
a = = —32.2 feet per second per second. 

Note that the velocity is decreasing as the hall travels upward and 
that the acceleration is negative. 

The ball rises until its velocity becomes zero, or 

^ = 0 
dt ^ 

50 - 32.2 t = 0. 

i = 22^ = 1.55 seconds. 

The ball continues to rise for 1.55 seconds after it is thrown. 
To determine the height at which it starts to fall back, we find h 

when t = 1.55. 
- 16.1/2. 

= 77.5 - 24.96 = 52.54 feet. 
(A 

I 924, Space-time Curves.—The slope of the 
§ curve represents the velocity. 

Timet 
Fia. 620. = rate of change of s with respect to L 
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The slope is constant. Therefore, the 
velocity is uniform. 

If 

^ = a variable. 

The slope varies, and, therefore, the velocity 
also varies (see Fig. 521). 

Fig. 521. 

926. Velocity-time Curves.—The slope of the curve in Fig. 
522 represents the acceleration or the rate of change of velocity 
with respect to the time. 

^dv ^ ^(dt) ^ ^ 
“ dt dt dfi 

The slope is a constant. Therefore, the acceleration is 
constant. 

tion also varies. 
926. Angular Velocity and Acceleration- 

rotating about the center 0 (Fig. 524). 
-Consider a particle 

Fig. 524. 

Let 6 be the angle through which the line OP 
rotates in the time t and co the angular velocity or 
the rate of change of w with respect to the time (6 
expressed in radians). 

Then 
do 

[486] Angular velocity ~ ^ ~ 

The angular acceleration a, or the rate 
velocity with respect to the time, is 

do) 
^486] Angular acceleration = « = 

of change of the angular 
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In the case where we are given the number n of revolutions per 
minute instead of the angular velocity w, then 

27rn , 
w = radians per second. 

60 

Example.—A wheel starting from rest under the action of a constant 
moment (or twist) to rotate about its axis will turn in t secoj’ds through 
the angle 

6 = kt^ 

where A; is a constant. Find its angular velocity and acceleration at 
time t. 

dO 
Velocity = co = = 2kl radians i)cr second. 

Acceleration — a 
dco 
dt 

dt 

— 2k radians i)er second per second. 

927. Mean Velocity and Mean Speed.—The mean velocity of 
a moving particle moving from Pi to P2 in a given time is the 
displacement chord P1P2 divided by the number of units of time 
in the interval required for the particle to accomplish the motion. 

As the interval of time is decreased, the displacement P1P2 

becomes smaller and smaller, and the direction of the mean 

0 
Fig. 525. 

velocity approaches the direction of the tangent at 
Pi, and we have the instantaneous velocity. 

The mean speed of the particle is the length of the 
arc P1P2 divided by the number of units in the time 
interval required. 

When a particle moves along a curve, its speed is 
the rate of change of distance along the curve with respect to the 
time L The velocity of the particle at the point P is defined by a 
vector PT tangent to the path of the particle at P, It is a vector 
quantity because it has both magnitude and direction, and velocities 
should always be so represented. The speed of the particle cannot 
be represented by a vector since its direction 
is changing at every point. As the interval 
M approaches zero, the speed approaches 
the instantaneous speed of the particle at the 
point P. 

The average speed for the interval 
also approaches the instantaneous speed, 
for the instant ty as approaches zero. 
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The vector which represents the instantaneous velocity of the 
particle at the point P and which is the tangent to the path at 
that point represents the distance and the direction that the 
particle would move in a unit of time if its motion continued 
unchanged throughout the unit. 

Example.—A wheel of radius r rotates at tho rate 
of N revolutions per minute. Find the speed and 
velocity of a point on the rim (Fig. 527). 

Let s — arc AP (from A to the moving point P). 
Then 

s = rdj 
where r = radius, 6 = angle of rotation in radians. 

The speed of P is 
ds 
di 

— 2TrN feet per minute, 

since 2t is the angle of one revolution and = 2TrN for N revolutions. 

The velocity is also 27rrA’ feet i)er minute in the direction of the 
tangent at the point P. The speed at any point is the same as that at 
any other point, but the velocities differ in their directions although 
they have the same numerical values. 

928. Instantaneous Speed and Direction of Motion of a Par¬ 
ticle.—Let As be the length of the arc PQ 
traveled over by a particle during a short in¬ 
terval of time A/ immediately following the 
instant under consideration. 

Then the required speed v is the limit of 
A^ 

the average speed Chord (Ac)- = (Ax)'^ + 

or 
(A2/)^ 

/Asy/AcV^ _ /Aa:y /^y\^ 
\At) VaJ ” VaY/ \At)' 

3h zero. Then 
A,s , (Is 
- , approaches = v. 

\AtJ \As/ \At/ 

Jjet At approach zero. Then 
A,s , (Is 

At 

approaches' 

^ approaches = v, 

^ approaches 1. 
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Substituting, 

[487] V = Vp** + v/. 

The direction of. motion is the direction of the tangent, or 

[488] tan A = 

Dividing numerator and denominator by d/, 

tan i4. = ^ = ~ = the direction of motion. 

dt 

Example.—Consider x and y as functions of the time t. A bullet is 
fired in such a direction that it moves a horizontal distance in t seconds 
of 

a: = 500Vm 
and a vertical distance of 

y = 500« - 16.1/^ 

Find its instantaneous velocity at the end of 10 seconds, 

a - 500V/3. 

= 500 - 32.2«. 
at 

Substituting t = 10, 

= 500 - 32.2 X 10 = 178. 
at 

^ = V(500\/3)2 + (178)2 = 884 feet per second. 

Example.—Consider the equations of the motion of a projectile, as 

X = 1000< and y = 500^ — 16^2. 

The rate at which the height of the projectile h is increasing at any 
time t is the rate at which the projectile is rising; that is, 

Vertical speed = ~ 32^. 

Thus at the instant ^ = 10 the projectile will be rising at the rate of 
500 — 320 = 180 feet per second. 

Similarly, since 

~ = 1000, 
the projectile will be moving at the rate of 10(X) feet per second in a 
horizontal direction. 
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If we draw directed lines, or vectors, to represent to some scale 
the motion or the component velocities, then the actual velocity, 
both its magnitude and direction, will be presented by the diag¬ 
onal of the rectangle. 

Therefore, 

V = \/(1000)2 + (180)2 = 1016. 
tan A = iVW ~ 

A = 10^2' 

5 
iT 

Vx^lOOO 
Fig. 529. 

Thus at the instant ^ = 10 the projectile was moving with a 
speed of 1016 feet per second in a direction making an angle of 
10^12' with the horizontal. 

929. Relation of Angular Speed of Rotation and Linear Speed 
in a Circular Path of a Particle. 

From Fig. 530, 
As = rA0, 

whence 

As A0 
^—1 Lt 
Fiu. 630. 

Then, as A< approaches zero, 

[488a] 
ds do 
di ^ dt 

The speed of any point on a body rotating about a fixed axis if> 

the product of the distance of the point from the axis and the angular 

speed of the body. 

A similar law holds for tangential acceleration. 

[489] 

V — roo. 

dv do) 

It “ ’'' W 

The tangential acceleration of a point on a body rotating about a 

fixed axis is the angular acceleration about the fixed axis multiplied 

by the distance of the point from the axis. 

930. Curvilinear Motion in a Plane.—It will be recalled from 
the definitions that the speed of a particle is the rate of motion 
in a path irrespective of the direction and that the velocity is 
the rate of motion in a certain direction. 
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Assume that a particle moves along a curved path from Pi 

to P2 in an interval of time and that 
the velocities at Pi and P2 are v and 
V + AVj respectively. The directions 
of the velocities at these points are the 
directions of the tangents to the curve 
at these points. This follows since 
the particle would continue to move 
along a tangent to the curve if it were 
not impelled by some other force to 

If As represents the space traveled at A^ time, 

Fig. 5:U. 

follow the curve, 
then 

As 
At 

represents the average speed for interval A^. 

Draw PiS = P2R2 == v + Av. 

RiS represents the change in velocity during the interval A^, 
R S 

and gives the average, or mean rate of change or accelera- 

tion. Since both velocity and acceleration are vector quantities, 
the resolution of the vector RiS can be made in any direction, 
but for convenience its components are taken in directions 
normal to and tangent to the curve. The change from the 
velocity v to the velocity y + A^; is indicated by the vector RiS 

from JRi to aS. 
Draw the normals PiC and P2C and project RiS on the tangent 

and normal at Pi, The projection of RiS on the tangent line 
is 7?iir and the projection of the vector RiS on the normal is 
PiQ. The interval of time considered is A^ 

Now, 
PiQ = TS = PiS sin A(pj 

or, 

Normal component = 

Substitute v + Av for PiS and multiply and divide by both 
A<p and As which does not change the value of the expression. 
Then 

Normal component = ' As ' 
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As At bGComes smaller and smaller, or approaches zero, then 

v+ Av approaches v. 

sin Av? 1 . ,. 
approaches 1 (Art. 936). 

A(£> , 1 
~ approaches ~ (Art. 975), 

p 

and 
As , ds 
~ approaches ^ ~ 

Then 
1 

[490] Normal component = v ^ \ • v — ~i 
P P 

where p is the radius of curvature of the curve at P\. 

If the path is a circle, then p — r and 

[491] Normal acceleration for circular path is -• 

If the speed is uniform, then the tangential acceleration is zero 

but the normal acceleration is still — and in a direction towards 
r 

the center. 

The tangential acceleration is 

aH* 
R,T = I\T - I\R,, 

But PiT = PiS cos Aip = {v + A/0 cos A<p, and PiRi == /'. 

Then 

Tangential acceleration = 

„ ~ 1)?' + Av cos A<p 
- - 

But cos A<p — 1 = - 2 sin- |A<p. 
Therefore, 

Tangential acceleration = A^ 

Multiplying and dividing the first member by A<p, and 

rearranging, 

) cos A<p — 0 

At 
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Tangential acceleration = 

Limit 
At •[- 

sin ^A<p . . . Atp , Av , 1 
|Av,^ + -^cosA^J. 

sin lAy approaches 1 (Art. 936). 

sinj A(p approaches 0. 
cos A<p approaches 1. 

Therefore, 

[492] Tangential acceleration = ® ^ “I" 

__dv _ dPs 

dt dP 

From principles of effective force, a weight W which moves in 
a curved path has at any instant, 

dv 
Tangential acceleration = 

dt 

Normal acceleration = 
P 

W 
The effective force —a must be the resultant of the two 

g 
components, or 

Tangential force = — . 
g dt 

W 
Normal force = — • — 

9 P 

[493] The resultant acceleration, therefore, equals 

\^(Normal acceleration)*^ + (Tangential acceleration)^, 

or 

/dv\ ^ 
Resultant acceleration = > 

and has a direction 

[494J 6 — tan~* 
dv 

where 0 is the angle between the tangent to the curve at Pi and 
the direction of the resultant acceleration. 
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MISCELLANEOUS PROBLEMS 

931. Problem.—The edge of a metal cube is expanding at the rate of 
.04 inch per hour due to an increase in the temperature. 

How fast is the volume increasing per hour if x is the edge of the 
cube and V the volume? 

We have the relation, 

V = x’. 

But X and, consequently, V are functions of another variable, time, 
which we will call t (in hours). 

Then 

dV 

dt 

dV 

dx 

dx 

dt 
• [469] 

From V = x®, 

We also know that the rate of change of x with respect to < is .04 inch 
per hour, or 

--=04 
dt • 

Substituting these values, 

dV 
-J- = 30^2 X .04 = .12x2. 
dt 

Now if we desire to know at what rate the volume is changing when x 

has any definite value, we need only substitute that value in the above 
expression. Thus, when x = 10, 

dV 
-j- = .12(10)2 = 12 cubic inches per hour. 
dt 

932. Problem.—One end of a 20-foot ladder rests on the ground, 12 
feet from the foundation of a building. The other end rests against the 
side of the building. If the end on the ground is carried away from the 
building on a line perpendicular to it at a uniform rate of 4 feet {>er 
second, find the law of motion of the other end. 

First Method,—Consider the height of the end as a function of the 
horizontal distance of the foot of the ladder from the side of the building 
and this latter distance as itself a function of the time. This involves 
the determination of a function of a function. 

From the right triangle formed, 

x2 + = 20*. (1) 
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From the statement of the problem, the distance of the foot of the 
ladder from the building is a function of the time, 

thus, 
a: = 12 + 4/. (2) 

Differentiating (1), we have 

+ = 0- 
or the rate of change of y with respect to x is 

dy_X __ 
dx ~ y ~ V400 - 

From (2) we find the rate at whic.li x changes 

with respect to the time t, or 

dx 
= 4. 

Since 

we have 

dt 

dy __ dy dx 
dt dx dt * 

[469] 

dt V-KK) 
X 4 = - 

4x 

V-IOO - .t: 
(::) 

Now assume that we desire to know at wliat rate the toj) of th(‘ ladder 
is moving when t - 1 second. 

Substituting in (2), 

X = 12 -f 4(1) = 16. 

Substituting in (3), 

dy 4 X 16 64 ^ 1 , ^ , 
,/ =-= — 7 - = —5 - feet per second. 

V400 - 256 

The minus sign indicates that the height y is decreasing at the 
rate of 5^ feet per second. 

It will have been observed that in this problem we have a 
geometric relation which allows the relation between x and 
y to be expressed implicitly by the equation, 

+ t/2 = (20)2. 

Also from the conditions of the problem we can express re as an 
explicit function of a third variable I and find the derivative of 
y with respect to t by using the formula for finding the derivative 
of a function of a function. 
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Second Method.—Writing the heightas a function of the horizontal 
distance expressed in terms of the time t, then we simply have a function 
y expressed in terms of an independent variable, I, or 

y =\/400 - (12 + Tt)K 

= 4\/l6 - 
= 4(16 - 6< - <2)5. 

^ = 4 X ^(16 - 6< - 
Ctv M (it 

2(-6 - 2<) ^ -12_-4<_ 

" Vie*^ 6< - p Vm - af- c 
If < = 1 as before, 

^ ^ _ -12-4 

dt 
16 
3 

— 5 „ feet per second. 
o 

If the problem had been to find a formula for the motion of 
the top of the ladder with respect to the starting point A, then 
the equation for the motion would have been 

y = 16 - 4\/l6' -'~6/~<2. 

The proof of this is left as an exercise. 
In this second method, the geometric and time relations wen^ 

combined into one equation simply by the substitution of the 
independent variable for the distance x according to the equation 
which expresses the relation between them. 

Putting it in another way, if y is expressed in terms of x and 
if X is expressed in terms of t, then y may be expressed directly 
in terms of ^ As an instance, consider 

y ~ x^ and x ~ 

Then y = 

We can differentiate this as a function of a function. 

^ - = 5a:^ and ^ = 2t, 
ax at 

. 'If = lyx* X 21 - ryp X 2< = 10/’, [469] 
at ax at 

or we may differentiate y with respect t.o ( he independent variable 

directly. 

y = 
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It is often not convenient to use the latter method and in 
certain instances, the first method, while longer, is the safer of 
the two. 

933. Problem.—Water is flowing at a uniform rate of 10 cubic 
inches per minute into a right circular cone whose semivertical angle is 
45®, whose vertex is down, and whose axis is vertical. 

At what rate is the surface of the water in the cone rising and at what 
rate is the area of this surface increasing? 

Compute the rates of increase when the water is 25 inches deep. 
Volume = ih‘Th^. 

= irhK 

dh 

the rate of change of the volume with respect to the height. 
From the statement of the problem, 

dV 
dt 

But 
dV _ 
dt 

whence 

== 10 cubic inches per minute. 

dV dh - — 2 5 dh 
[469] 

dh 
dt 

19... 
irh^ 

10 
== .0051 inch per minute. 

dh _ 

dt ~ T’ 625 
This is the rate at which the height of the water is rising when the 

height is 25 inches. 
To determine the rate at which the area of the surface is increasing, 

we consider the expression for the area, 
A = irh^. 

Differentiating, 
dA 

dh 
= 2'7rh = rate of change of area with respect to the height h. 

The rate of change of the area with respect to the time is 

[469] H h f H — H ™ 
" dA ■ dt' 

Note.—From the first part of the problem, 
^10 

dt irh^ 

dA 
dt 

= 2xA X 
20 
h 

Therefore, 
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When the height h == 25, 
dA 20 ^ . . 

' W ~ ^ ~ minute. 

This is the rate at which the area of the surface is increasing when 
the height of the water is 25 inches. 

934. Problem.—ship A sailing eastward at the rate of 12 miles 
per hour left a certain point 5 hours before another ship B arrived at 
the point from the north traveling at the rate of 16 miles per hour. 
How fast was the distance between the ships changing 2 hours after A 

left the point? 
Let X equal the distance from A to the point and y the distance from 

B to the point. Also let z be the dis¬ 

tance between the two ships. From Fig. 

535, 

+ 2/^. 
Differentiating with respect to the time, 

22- 
It 

2x- 

Or 
dz 

Z-r: = 
^dt 

But X = 12f. 

and y = SO - 

At 

dx , dy 
(1) 

— - 12 
(h 
dt 

m whence 
dt 

= -16. 

t — 2 (2 hours after A left), the instant when 
a; = 12 X 2 = 24. 

7y = 80 - (16)2 = 48. 

2 = (48)2 = V^SO = 53.66. 

Substituting these values in (1), 

53.66^ = 24 X 12 + 48 X (-16) = -480. 
dt 

“ = = —8.95 miles per hour. 
dt 53.66 

From this we see that the distance Ixd.ween the ships is.decreasing at 
the rate of 8.95 miles per hour at tlie instant 2 hours after A has left the 

point. 

936. Force, Mass, and Acceleration.—Sir Isaac Newton 
showed that accelerations in bodies were directly proportional 
to the forces acting and inversely proportional to the masses 
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acted upon. This law is known as Newton’s second law of 
motion and is expressed in mathematical symbols, thus, 

[496] a oc —, or a = k~ 
m m 

Our unit of force is the pound and our unit of acceleration is 1 
foot per second per second, sometimes written, 

V ft./sec.^ 

When a force of 1 pound acts upon a mass of 1 pound, the 
acceleration produced by the force is 32.2 feet per second per 
second. This is true whether the case is that of a falling body or 
another case in which all other forces can be neglected excepting 

that producing the acceleration. As an example, consider a 
1-pound mass sliding on a table and so arranged that a counter¬ 
weight just neutralizes the friction of sliding. If a force of 1 

pound is horizontally applied, it will give the weight an accelera¬ 
tion of 32.2 feet per second for every second that it is allowed to 
act. In other words, the increase in the velocity per second 
is 32.2 feet per second. This increase in velocity per second is 
independent of the length of time that the force acts and is 
independent of the initial state of rest or motion of the mass. 

For convenience, the unit of mass is taken to make the pro¬ 
portionality factor k equal to 1. If, then, a unit force of 1 pound 
acts on a weight of 32.2 pounds instead of on a mass of 1 pound, 
the acceleration would be 1 foot per second per second. Hence, 
to make A; = 1, the unit of mass is taken as 32.2 pounds, or 

Mass = 
Weight 
' 32.2 ’ 

The unit of mass (32.2 pounds) is denoted by g and the weight 
by W. Then 

W 

or 

Mass (M) = 

F F 

W 

g 

9 

M W W’ 

or 

F = Ma^ 
Wa 

9 ' 



APPLICATION OF DIFFFjRENTIATION 603 

A force acting on a body in space produces a motion of the 
body in the direction in which the force acts. 

Force and acceleration are vector quantities having both 
magnitude and direction, while mass is a scalar quantity or a 
magnitude only without direction. 

From Art. 923, 
. , dv d'^s 

dt dP 

Then 
..ft-, r, Tijdv W dv ..(Ps W (Ps 
[496] b - ^ 

If F is resolved into two components F\ and F2 and if ai and 
are the corresponding components of acceleration, then 

Fi = Ma\ and F^ = Ma^. 

Then x and y components are 

FX = Mcijc and Fy - May. 



CHAPTER XLV 

DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS 

936. Derivative of y = sinu.—Consider the function, 
y = sin u, 

where u is some function of x. 
Let Xo be some definite value of x and let wo 0and 2/0 be the corresponding values of u and y, 

'J Then 

2/0 = sin Mo. 
Now let X = Xo + Ax. Then 

yo + Ay = sin (uo + Au). 

Fig. 536. Subtracting ?/o = sinuo, 

Ay = sin (uq + Au) — sin Uq. 
From trigonometry, the difference of the sines of two different 

angles is 
sin A — sin B = 2 cos ^(A + B) sin J(A — B). [283] 

Let A — Uo + AUy B = Wq, 
whence 

Ay = sin (uq + Au) — sin Wo = 2 cos | (2?^o + Au) sin jAu. 

Ay = 2 cos sin ^Au. 

Dividing by Aw, 

Aw 
= 2 cos ^wo + 

Aw \ sin ^Aw 

2 / Aw 

Ay _ Ay Au 
Ax Au Ax 

, [469] 

we have 

= 2 cos 
/. , Awxsin lAw Aw 

"(,<“•+ t) a„ aT 
^ , Au\ sin \Au Au 

As Arr approaches zero, 

- COSMOS X ^^-COSMo^^ J 
604 
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It will be seen that it is necessary to find the limit of 
sin ^Au 

iAu 
As Ax approaches zero, Au also approaches zero. 
Let us examine a small angle and determine what happens to 

the ratio of the sine of the angle and the angle as the angle 
approaches zero, or let us determine 

Let A T be the tangent to the circle at A and 
let BC be perpendicular to OA. The area of the 
triangle OCB is less than the area of the sector 
OAB and OAB is less in area than the triangle 
OAT. Or 

^{BC) (OC) < < h{AT)r. 

B^T 

CA 
Fig. 537. 

BC OC AT OC . ^ 
-< 0 ^ or — sin 6 < 0 < tan d, 
r r TV 

r sin B cos B 

As 6 approaches zero, 
OC 

OC approaches r and — approaches 1. 

cos 6 approaches 1 and - approaches 1. 
cos B 

Since the first and third members of the inequality approach 
1, then 

B 

and, therefore, 
sill B 

sin B 

approaches 1. 

approaches 1. 

Hence, when Au approaches 0, 

therefore 

497 3- = C(VS w or , 
^ ^ dx dx dx 

If w = X, then 
d(sinx) _ 

sin hAu 
approaches 1, and 

du 
cos u • j-’ 

dx 

[498] 
dx 

dx 
cos X* j = cos X. 

dx 
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Further, li y = sin {Bx + C) where B and C are constants, 
then 

[499] = B cos (Bx + C) - ^ = B cos (Bx + C). 

Likewise, 
d[A sin {Bx + C)] 

= AB cos {Bx + C). 

Example.—Differentiate with respect to a;, 

y = 5 sin^ x. 
Let u = sin a;, then 

y ~ 57/2 ^ 
an 

dy dy d u . du 
= r • T“ and , = cos at. dx du dx dx 

But u = sin a*. 
Substituting these values, 

f?[5sin2x] 
-~dx " ~ ^ ^ ~ ^ ^ ^ ^ * 

From trigonometry, 

2 sin a: • cos x — sin 2a: [290] 
Hence, 

dx 
= 5 sin 2a:. 

937. Derivative of y = cos u.—From trigonometry, 

cos u — sin — 21^ (Art. 603). 

Therefore, 

'[™(i - “)] 

= — cos 

= cos(?-«) 

/TT \du 

*(2 Vdx' 

<1 - “) 

From trigonometry, 

<2 - “) 

Therefore, 
d(cos u) . du 
—j^ = — sin w • - 5— 

dx dx 
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[602] 

Further, if u = Xj or y = cos x, 

% _ ^(cos x) 
dx dx 

== — sin X, 

and if y = cos [Bx + C] where B and C are constants, then 

d[cos {Bx + C)] 
dx 

[603] = — B sin (Bx + C). 

Likewise, if y — A cos [Bx + C]j 

[604] 
dy _ d[A cos (Bx + C)] 

= ~AB sin (Bx + C). 
dx dx 

938. The derivative of y = vers u will be given but will not 
be developed, since this function is seldom used. 

[606] 
ri(vers ii) . du 

i-= sin u • 
dx dx 

939. Graphical Differentiation of y = sin x.—If the derived 
curve of the sine curve is carefully drawn according to Art. 916, 
a curve will result which is the same as the sine curve except that 
it is shifted one-half a wave, or 

^ = 1.57 units to the left. 

This curve is, of course, the cosine curve as was shown by the 
analysis of Arts. 622 and 62.3. 

940. Graphical Differentiation of y = cos x.—The derived 
curve of 2/ = cos x resembles the derived curve of y = sin x 
except that it is also shifted one-half a wave to the left. This 

means that the curve is the same as the graph of y = sin x 
except that it is shifted one wave to the left or a distance of 
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3.1416 units. This makes the curve a minus sine curve or a 
graph of 1/ = — sin x. 

To find the successive derived curves oi y = sin x, or t/ = cos 
X, simply move the origin to the right through a distance of Jtt 
or 1.57 units for each successive differentiation. 

941, The Crank and Slot Mecha¬ 
nism.—If we consider a steam engine 
with a slot mechanism similar to 
that shown in Fig. 541, we can apply 
the cosine law. For the initial curve, 

2/ = o cos (at. 
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ExAMPLE.—Assume that a 12-inch (1 foot) crank rotates 60 

revolutions per minute. What is the piston velocity when the crank 

has turned through an angle of 30® from the center? What is the accel¬ 
eration of the piston at this point? 

Analytical Method. 

Ct) — 2Tr (since one revolution (27r) is made per second), 
a == 1 (reducing crank length to feet)*. 

Then 
y — cos 27r/. 

dy 
if — “-27r sin 2Trt = velocity of piston. 

d^J 
dt^ 

— cos 2711 = acceleration of piston. 

Since the crank rotates through 360° in 1 second, and 30® = tS 
revolution 

t = 

% 
dt 

iV second. 

.1 . TT 
— 27r sin 2 * 22 ^ ~ 5 ~ second. 

= velocity. 

= —I’T’’ cos 2x • ,1, = -4x2 cos^ = 39.47 X .886. 
ar 12 6 

= 34.18 feet per second per second = acceleration of piston. 

942. Graphical Solution of Last Problem.—Draw the cosine 
curve to any convenient horizontal and vertical scale and plot 
the time as abscissae. Since the crank rotates through one 
complete revolution in 1 second, our period is 1 second. Divide 
the period into any number of divisions, as 12. 

The crank travels one circumference (2 X 3.1416) in 1 second, 
or 6.28 feet. The ratio of distance to time is, therefore, 6.28 to 
1. 

The first derivative of the distance with respect to the time 
gives the velocity and we, therefore, differentiate the curve 
graphically to get values for the velocity. From Art. 940 the 
shifting of the origin to the right a distani^e ecpial to It is equiva¬ 
lent to differentiating the original curve, but a new vertical or 
ordinate scale must be determined. As the second curve is 
identical with the first except that in the second the origin has 
been translated and the scale of ordinates changed because the 
function has been multiplied by 27r, or 6.28, the vertical scale for 
the derived curve will be taken so that the values of the derived 
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function are in the ratio of 6.28:1 to the values of the primary 
function. In other words, a unit distance represents 1 unit in 
the primary function graph and 6.28 units in the graph of the 
derived function. Thus the maximum value which the primary 
function reaches is 1, whereas the maximum value of the derived 

function is 6.28 units. 
For the acceleration curve, or second derived curve, the same 

curve is again used but translated again to the l6ft a distance 
equal to and the vertical or ordinate scale is changed again 
so that the values of the second derived function are G.28 times 
the corresponding values of the first derived function. This 
will be readily seen upon reference to Fig. 542 where the primary 
and first and second derived curves are shown. It will be seen 
that the height of the loop in the second derived curve is 6.28 X 
6.28 = 39.47 units, which means that a given distance measured 
vertically represents 39.47 times the value in the second derived 
graph that it does in the primary graph. 

Fio. 542. 

Acceleration is an important consideration in the study of the 
inertia of moving parts, and this example illustrates a method 
of determining this acceleration. 

943. Simple Harmonic Motion (S.H.M.).—If a point P 
moves in a circle with a constant angular velocity of co radians 
per second, or o)t radians for t seconds, its projection Q upon any 
diameter will oscillate back and forth in a manner that is called 
simple harmonic motion. 
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Let X equal the distance from the center of rotation to the 
projection. Then 

X — r cos cot 

If the value of the angle is C at the time when t = 0, then 
X = r cos (cot + C). 

This is the general formula for simple harmonic 
motion in terms of the displacement from the 
center. 

If we differentiate, then 
dx 

[606] 
dt 

= —cor sin (cot + C) = speed of Q. 

r 
<-x> 
r 

r 

[607] 

Differentiating again, 
d^x 

Fig. 543. 

df 
= — coh COS (cot + C) = — = acceleration of Q. 

From this it will be seen that the acceleration is constantly 
negatively proportional to the displacement x. 

Many motions, such as the oscillations of particles in wave 
motions, light and sound waves, alternating currents, and 
vibrating springs, can be represented as simple harmonic motions, 
and their motion is described by the above formulae. 

944. Another Simple Harmonic Motion Problem.—If a body 
m which is suspended by a spring is pulled downward from its 

position of equilibrium a distance x, an unbalanced 
force F will act upward upon the body. This force 
will be negatively proportional to x since it acts in a 
direction opposite to x. 

Then 
F = —fcx, 

where k is some constant depending on the spring. 
When the body is released, it will vibrate up and down 
and X will vary with the time t. 

dx (Fx 
The velocity then is and tht^ aci^eleration is Fig. 544. 

The unbalanced force is F - ma. 
d'^x 

~ — A;x(since F 

dF 

-kx), 

whence 
d^x k 
dF 
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That is, the second derivative of the function is equal to the 
k 

function itself multiplied by a constant -- 

If we refer back to Art. 943, we see that the cosine is a function 
of this kind. We can, therefore, apply the laws developed there 

to the present case. 
Starting with the general form of the cosine function in which 

time is the independent variable, then 
X = a cos (cjt + 6), 

dx 
= —wa sin + 6). 

= cos + 6), 

Substituting X for a cos (o)t + $), 
(Px 

= —03^X‘ 

But we have made 

Hence, 
2 k 

m 
If the time is considered to start at the time of release, then 

^ = 0 and the equation becomes 
X — a cos 

where x = a at the time of release. 
946. Derivative of y = tanu.—From trigonometry, 

1 sin U rf^mm M 1 

tan u =-[274]. 
cos u 

We may differentiate this, using the formula for the derivative 
of a quotient. 

(i(sin u) d(cos u) 
d(tan u) 

du 

d(sin u) , d(cos u) 
“^”1—^ == cos u and j = — sm u, 

du du 

d(tan u) _ cos^ u + sin^ u 

du cos^ u 

Therefore, 
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From trigonometry, 

Therefore, 
sin-* u + cos^ u = 1 [266]. 

ci(tan u) 
du 

= sec^ u. 

d(tan u) __ d(tan u) du 
dx du dx 

rcAoi ^/(tan u) „ du 
16081 -- S 

If f/ = tan X, then u = x and 

1609] sec< X. 

Further, the derivative of the general form, 

[610] = B sec'-* (Bx + C). 

Also, 

[611] = aB sec2 {Bx + C). 

946. Other Trigonometric Derivatives. 
y = cot u. 

[612] = = -csc^u.^. 
uX cix ux 

For general form, 

[613] == - AZ? csc^ {Bx + C). 
dx 

y = sec 7^. 
r_*., (/?/ d{sec u) . du 
[6141 , = - - ~ = sec U’ tan u-j- 

^ dx dx dx 

For the general form, 

[616] = A/Z see {Bx -f V) • tan {Bx + C), 
tZ*l/ 

y = CSC u. 

[616] ^ - = —CSC 7« c()t w-^- 
^ dx dx dx 

For the general form, y = A esc {Bx + C), 

[617] = - AB CSC {Bx AC)-cot {Bx + C). 

= -AZJese^ (5x + C). 

= sec M • tan u ■ 

= AB see {Bx -f C) • tan {Bx + C), 

- CSC n ■ (!()t u ■ 
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947. Examples of Trigonometric Differentiation, 

Example 1.—Differentiate y = cos® 6, 
This is the same as (cos 0) ® = y. 

Let -u = cos then 
du . . 

,\y — and 
dy 

Since 
du 

dy _ dy du 

dS du dO 

3^2. 

> [469] 

. dy 
“dd 

= — 3 cos2 6 * sin 6, 

Example 2.—Differentiate y = \/1 + 3tan2^ = (1 + 3taii2^)i. 

Let u — 3 tan2 6^ whence 

du ^ . d(tan 6) ^ . 
“ = 6 tan 6-— = h tan 6 * sec^ 6. 
dO du 

y = (1 + whence 

du du 2\/l + u 

dy_dy du _ 6 tan 6 ■ sec^ 6 

de ~ du dO ~ 2\/l + 3 tan^ B 

2\/\ '+"3 taii^ e 

= Sin X ' 7-h cosj;—^-= sin.T(— sirix) + 

Example 3.—Differentiate?/ = sin a; ♦ cosx. 

Differentiate as a product of tw^o functions. 

dy _ jl{cos x) , _ ^d(sinx) 

dx 
cos x(cos x) = cos2 X — sin2 x. 

948. Derivatives of Inverse Trigonometric Functions. 

Differentiate y = sin“^ u. 
Then 

u = sin y. 
du 
-j- = cos y. 
dy 

Consider the triangle of Fig. 545. It is apparent that u = 

sin y and that cos ?/ = \/1 — u^\ whence 
du 
^ = cos2/ Vl - M*. 

^ ^ ^ J_ 

du ^ y/l — M* 
dy 

But 
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Also, 

[618] 

du 
dy _ dy du _ dx 
dx du dx -y/f __ 2^2 Fi«. 54r>. 

Differentiate y = cos~D/-. 

In the same manner, namely, by the use of the triangle of Fig. 
545, the differentiation of y = cos~^ u gives 

du 

' I'-v'-v 
949. Using the fundamental triangle of Fig. 546, in a manner 

similar to that used in the preceding cases, we may find the 
derivatives of the inverse tangent and cotangent. 

Differentiate y — tan“^ u. 

[620] 
dy 
dx 

dXJL 

dx 
r+ u^ Fig. 546. 

Since we have outlined the general method of differentiating 
the inverse trigonometric functions, we will simply give the 
derivatives of the others without developing. 

du 

[621] 
d(cot”* 

dx 
dx 

1 + ■ 
du 

[522] 
d(sec"^ 

dx 
u) ' 

' 

!> 
11 

du 

[623] 
d(csc“^ 

dx 
dx 

uy/ u^ — 1 
du 

[624] 
d(vers~ 

dx 
^ ii) II 

960. Graphical Analysis of Inverse Functions.—Since the 
inversion is simply the interchange of the variables which can 
be accomplished graphically by the rotation of the curve about 
a line through the origin and making an angle of 45° with the 
coordinate axes (Art. 629), then for ^ = sin a: and for the inverted 
form, y == sin“^ x, the graphs are as shown in Fig. 547. 
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y = sin~^ X means that y is an angle 
in radians whose sine is equal to x. 

The rotation of the curve about the 45° 
line as an axis is simply equivalent to in¬ 
terchanging the variables x and y. The 
derived curve, then, is in a vertical instead 
of a horizontal position. 

In other words, we may graphically 
differentiate 2/ = sin x with reference to 
the F-axis instead of with respect to the 
X-axis, which would give the derivative 
of X with respect to 2/, or 

~ instead of that is, ^ = —L_, 
ay ax ay cos x 

but since we have interchanged the variables by rotation of the 
curve. 

cos y 

But sin ^ = x; therefore, 

^ _ 1 __ 
dx 

X = sin yy or y — sin 
dy _ \_1 

dx \/l - sim y 

cosy Vl-sin^^ 

Since y is restricted to the interval, 

\/l — x^ 

(Art. 629), 

to make it single valued, the radical is taken as positive. 
If y is restricted to the interval, 

0 ^ 2/ k TT, 

the function, y = cos~^ x, is single valued and its derivative is 
taken with the negative sign of the radical. 

961. Derivatives of Hyperbolic Functions,—Since the hyper¬ 
bolic functions occur so seldom in engineering work, their 
derivatives will be given without development. 

[626] 

[626] 

[627] 

d(sinh u) 
dx 

d(cosh u) 
dx 

d(tanh u) 
dx 

= cosh u 
d2i 

dx 
. , du 

= sinh u • -T- 
dx 

= sech^ u 
du 
dx 
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[628] 
d(coth u) 

dx 
csch^ u • —• 

dx 

[629] 
d(csch w) 

dx 
csch u • coth u 

dx 

[630] 
d(sech u) 

dx 
sech ii • tanh u • 

ax 
, du 

[631] 
d(sinh~^ u) dx 

dx Vu^ + 1 
du 

[632] 
d(cosh“^ u) dx 

dx 

I j 
1 

l>
 

du 

[633] 
d(tanh' ^ u) 

dx 
dx 

1 — 

du 

[634] 
d(coth~^ u) 

dx 

dx 

du 

[636] 
d(csch“^ u) 

dx 

dx 

u\/1 + u^ 
du 

[636] 
d(sech“^ u) dx 

dx u\/l — u^ 



CHAPTER XLVI 

DIFFERENTIATION OF LOGARITHMIC AND EXPONEN¬ 
TIAL FUNCTIONS 

962. Derivative of log, u.—Let y — loga u, where u is some 

function of x. 
Let Xq be some definite value of x and let 2/0 and Uo be the cor¬ 

responding values of y and u. 
Therefore, 1/0 = loga Wo- 

Let X take an increment Ax; then 

X = Xo + Ax and 2/ = 2/0 + A^/ = log,, (?/o + Aw). 

Subtracting, 

Az/ = loga (Wo + Aw) - loga W,). 

. lo.. (i + 
Wq ^ 

Dividing by Aw, 

A^ ^ 
Aw Aw 

Aw\ 
Uo) 

Multiplying and dividing the right member by 

log., (1 + 
Aw Wo Aw \ Wo / 

Since m • loga N = loga 
Uo 

^ = ilog.(l+^)“ 
Aw Wo \ ih' 

wo 

Limit [^2/] _dy _ Lin.it lri„„ /i , Awyu] 

We have therefore to find 
Wu 

('+if]- 
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As /ix approaches zero, Au approaches zero and --; or z, 
Au 

approaches infinity. 

Substituting z for ~ in the above, then we are to find 

■“-KO+?)']■■ 
By the binomial theorem, 

(^1 + ly = 1 + . 1 - 1) (^ ~ 2) /1\3 

'I'hen 

('=) 4- 

(,+i)-.,+,+ -+ ■-i. 

And 

1 - 

+ 

+ . . . 

. + 

l3 
+ I'Ti [ (l + IT] = » [1 + ^ + + - 

■ ..+]. 

As z approaches infinity, - ^ approach 

unity, and 

[ (•+1)']" ['+>+1+1 + ■ ■ ■ +1^]- 
Therefore, 

a = i''>«-[' + ‘ + | + |5 + |+■ ■ ■ ]■ 

The quantity in the brackets is denoted by e and is a conver¬ 
gent infinite series (Arts. 343, 462). 

[638] 

Since 

[639] 

or 

= — log„ e. 
au Uo 

1469] 
(lx (lu (lx 
(ly 1 da , 

dx udx 
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[640] 

If the base a equals e, then log« 6 = 1, and 

d{\oge y) _ 1 ^ 

dx ^ u dx 

The limit of the sum of the infinite series e is the base of the 
Naperian system of logarithms and is equal to 2.71828 . . . 
when the infinite series is developed. 

Further, if y = log x, 

[641] 
dx X ^ 

regardless of the base. 
If the base is 6, then log 6 = 1. 
Hence, ify = log* x, then 

[642] 
1 
X 

[643] 

But if the base is 10, logio e = 
Hence, ify = logio x, then 

dx 

43429 = M. 

. K. 
X 

The above formulae show that the rate at which a logarithm 
increases with respect to the number is inversely proportional 
to the number. Geometrically, this means that the graph of 
y = log* X has a slope of 1 at the point x = 1, a slope of ^ at 
the point x = 2, a slope of J at the point x = 3, etc. 

This is the inverse of the case of the exponential function, 
since there the rate of increase is directly proportional to the 
value of the function at any point. 

963. Log Differentiation of General Form. 

r544i d[\oge (Ax + B)] ^ A 
^ dx Ax + B 

dllogio (Ax + B)] .4343A 
-di-= 

Example.—Differentiate 
y = log* {a + bx + cx*). 

Then y = log# u where u = a + bx + cx*. 
dy 1 du - 
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ax du ax u ' a bx cx^ 
Example.—Find the derivative by logarithmic method of 

where v, and w are functions of x and n, rriy and p are constants. 
Then 

log« 2/ = w log« u + m log. V — p logc w. 

Therefore, 

Proceeding, 

rfQog. v) ^ <^(iog. y).'Mu,, t <^(iog» v) ^ 1. 
dx dy dx dy y 

<^(iog. y) ^ 1. 
dx y dx 

^ _i_!??: __ P . 
u dx V dx w dx 

~n du .m dv ^ p div 
u dx V dx V) dx wp L 

n du dv __ p dw~ 
u dx V dx w dx 

964. Compairison of Methods of Differentiating. 

Example .—Differentiate 
• y = (2x^ — 1)(1 + x'^y. 

Using formula for the derivative of a product, 
dy dv , du rj.r,ni 

Let u = 2x’ — 1, and o = (1 + x’ 
du dv _ 
dx ' dz ' 
dv dv dz , -X 

z^ where z — I + x^. 

dx dz dx 
2(1 + x3)(3x2) = Qx\l + x^). 

^ = (2x^ - l)(6a:2)(i + + (1 + x^yiQx^), 
dx 

= 6xH2x’ - l)(l I- x’) I- Ox’^l + x>), 
which reduces to 

= 18x* + 18x*. 
dx 

Consider the same problem, using 
log y = log u + log V. 

y dx u dx V dx 
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Since, from the above, 

and g = 6x^(1 + x»), 

then 

- • ^ O 3^- + V. -T--3^.26xHl + X’). ]j dx 2x^ — 1 (1 + 
6:^2 0^2 

2x3'- 1 1 + x3' 

Multiplying through by ?/, or (2x3 _ -f x3)2, 

dy _ 6x2(2x3 - 1)(1 + x^y 6x2(2x3 - 1)(1 + x3)2 
dx 2x3' - 1 1 + x3 

= 6x^(1 + x^y + 6x2(2x3 — 1)(1 -f x3). 

= ISx* + 18x^ 

After experience with the logarithmic method, it will be found 
to be the most satisfactory one to use. 

966. Graphical Comparison of y — log x and the Derived Curve 

y = K—If fhe ordinates of the derived curve, or y' = are 

represented by y\ then the equation for the derived curve is 

xy' = 1, 

which represents an equilateral hyperbola. Here, we have a 
connection between the logarithmic curve und the hyperbola, 
and for this reason the natural logs are sometimes called hyper¬ 
bolic logs. Since the common logs are .4343 times the values of 
the corresponding natural logs, or the values of the natural logs 
are 2.303 times the value of the corresponding common logs, 
the two systems can be represented by the same curve by chang¬ 
ing the scale of the ordinates as shown in Fig. 548. 

-3.8686 

.4343 

^^^yjL(;^quilaferal Hyperbofcn 

C i 2 3 4 5 6 1 ^9 lb ine 
oc 

Fig. 548, 

.8686 

.4343 
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This change also applies to the derived curve. The equation 

for the derived curve for the common log system whose base 

is 10 is then 
, dy .4343 

This graph will make clear the relations between the two log 

systems. If we draw the common log graph*to the same vertical 

scale as the natural log graph, we have a curve similar to that 

indicated by the dotted line in Fig. 548. It will be noted that 

the ordinates are 2.303 times greater in the natural log than in 

the common log graph. 

The derived curve for the common log is also an ecjuilateral 

hyperbola. 

966. Derivative of Exponential Function. 
Let y ~ 

where u is some function of x. 

Taking the logarithm of both members of the eejuation, 

log, ^ = 4 • log, a. 

Differentiating both sich^s with respect to x, 

1 dy du , 
• -7 = T * loge a. 

y dx dx 

dy du , „ du 
[646] log, a. 

A special case is where a = c; then log, e — I and 

[647] 

If u ~ x, then 

[548] 

dy ^ . die") _ du 

dx dx dx 

y = c^ 

dy 
dx 

Since the function, y is the inverse 

of ^ = loge X, then, as previously explained ‘ 

(Art. 361), y = log"’ x, or y is the number 40 

whose log is x. 30 

But the numl)er, whose log to the l)ase 20 

e is X, is or log,~' x 

Hence, 
y — (f. ^ 

A peculiarity of the function. 
\ 2 ^3 4 

Fia. 549. 

y = 

5 
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is that the derivative is also e*; that is, 

This means that the derived curve of the primary curve y = 
c* is the curve itself. 

The length of the subtangent is constant and equal to 1. 
The subtangent at the point P is shown in the graph as AB. 
Since the primary curve is also the derived curve, only one curve 
is shown (see Art. 362). The subtangent is constant not only 
for y = but also for the more general cases, y = or y = 
ca^. 

Example.—Differentiate 

But 

y = where u — siii“^ x, 

dy _ ^ du _ 1 
du~' ^ 'dx ~ 

dy _ _ 
dx ^ dll dx y/1 1-7^2 

967. Derivative of y = u'", where u and v are both functions 
of X. 

Taking the logarithms of both members, 

log, y = V log, u. 

Differentiating both sides with respect to x, 

y dx 
V du , dv , 

dy 
dx = 2/( 

V du ^ dv 
u dx dx 

log. m). 

Since y = m”, 

[649] iK 
dx 

, du , dv , 
= vu'’~^ • "3—h w"" ^ • log, w. 

dx dx 

Example.—Differentiate y = {I + ®. 

y — where w == (1 + and v = sin x. 
. dv 

cos X. 
du » , dv 
T- = 2x and 3- 
dx dx 

Substituting in formula, 
dy 
dx 

= sin x(l 4- x*)*'*^ * 2x + COB x(l + x^)*’" * • log, (1 a;*). 
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968. Relative Rate of Increase and Compound Interest Law. 
If the rate of change of a function is divided by the function 
itself, the quotient is the rate of change of the function per unit 
value of the function. This quotient, 

dt 1 dy 
y y dt 

is called the relative rate of increase of the function. 
If the relative rate of increase of a function is a constant, the 

function varies according to the compound interest law, or 

Also, 

[661] ^ = percentage rate of increase. 

Compound Interest Law.—The compound interest law is 

in which 

A = amount. 
P = principal. 
r = rate of interest. 
k = number of times compounded per year. 
n = number of years. 

As the number of times compounded per year is increased 
indefinitely, or as fc —> , and letting 

then, 

Then 

r 
k 

1 
z 

+i)T' - +j)T- 
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But from Art. 952, 

Hence, 
[662] A = Pe-\ 

This is the amount of any principal P after n years with interest 
compounded continuo^isly at any annual rate r. For negative 
values of r the formula represents a depreciating investment. 

Since r is negative, z is also negative and (l + “) still approaches 

e if A;Co- 

Example.—If the continuous rate is 0 per cent depreciation, then 
A = P(e)'^\ 

The base e can be changed to any other base as 10, remembering tliat 
= 10-43429, Then 

A = P(10-43429)rn = p . 10.43429rn. 

The identity of r in this form, however, disappears, which 
makes the e base more satisfactory. 

The compound interest law may be vstated thus: 

If any quantity, as y, varies in such a way that its rate of 
increase (or decrease) with respect to another quantity, as x, is 
constantly proportional to itself, it varies according to the 
compound interest law. Then 

y = P(e)-, 
where P is the value of i/ at a: = 0 and r is the fixed percentage 
rate of increase. 

Example.—The speed of a certain chemical reaction v increases 10 

per cent with every degree rise in temperature. Obtain a formula for 

V at any temperature. 

V = P(1.10)h 

li t = Q, V — P. 

From a table of natural logs, 

1.10 = 

Then 
t) = P(e-0953)f ^ p^.0963t^ 

where P is the velocity of the reaction at 0°. 

969. Graphical Differentiation by Use of Exponential Curve.— 
From the development of the exponential derivative, we know 
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that the ordinate of a point measures the slope of the exponential 
curve at that point. That is, 

dx 

By constructing a set of exponential curves, that is, 

y — y — —y = and y = —e*, 

on tracing cloth, we are able to lay off the ordinates of any 

differential curve simply by laying the proper exponential curve 
over the graph of the given curve. We find a point on the 
exponential curve by shifting about until the slope is found to 

be the same as that of the given curve and lay off for the derived 
curve an ordinate equal to the ordinate of the exponential curve 
at that point. 

In case the ordinates are plotted to a different scale from the 
abscissa, we can adjust the plotting to suit the case y = hy 
dividing the horizontal or X-scale by 6, which makes it a graph 
of y = 6^® (see Art. 381). 

A sample graph is shown in Fig. 552 with a portion of the expo¬ 
nential graph shown sketched at the point of tangency to illus¬ 

trate the method. 



CHAPTER XLVII 

DIFFERENTIALS 

960, Differential Notation.—^I^et the dependent variable y 
be a function of the independent variable x. Moreover, let 
dx, called the differential of the independent variabley represent 

an increment of the independent variable. That is, dx = Ax. 
We then define the differential of the dependent variable, or the 
differential of the function, or the differential of y, or simply dyy 

to be the differential of the independent variable multiplied by 
the derivative of the function; that is. 

dy 
in which the symbol is a derivative and not a fraction. 

Dividing through by dx, we have 

# = (iy\, 
dx \dx/ 

where the left member is a fraction and represents the quotient 
of two differentials and the right member is a derivative. 
According to this definition of differentials, we may regard the 

derivative as the quotient of two differentials. In this connec¬ 
tion it is important to note that while dx = Ax, dy is not, in 
general, equal to Ay. The differential of the independent vari¬ 
able is an increment, but the differential of the dependent vari¬ 

able is the product of a derivative and the increment of the 
independent variable. That is, the derivative of y with respect 

to X is equal to the fraction but it is not etpial to the fraction 

Ax 

If 

629 
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we can operate on the equation as we would on a fraction; that 
is, 

dy = 2x • dx. 

Also if we have the product of two derivatives, 
dy du 
du dx 

we may cancel the du, and the expression reduces to 

In the same manner, ii y = u + v, 
dx 

and [663] 
Also, if y 

and [664] 

Also, if y 

and [666] 

dy __ du ^ dv 
dx dx dx 
dy = du + dv, 

uv, then 

dy dv . du 
dx dx ^ dx 
dy = u • dv + V • du. 

' then 

du __ dv 
dy _ ^ dx ^ dx 
dx v^ 
, V • du — u • dv 

dy = — - „ - - • 

961. 

Fio. 653 

But 

Application of Differentials to Curves.—Let P (x, y) 
be any point on the curve, and let PA be the tan¬ 
gent to the curve at P (Fig. 553). 

Let X take an increment Ax, which by defini¬ 
tion is equal to dx. Also, dy, the differential 
of the function, is equal to the derivative of the 
function multiplied by dx. Since the derivative 
of the function is equal to the tangent of the angle 
CPA, then 

dy = tan CPA • dx. 

CA 
dx 

= tan CPA or CA = tan CPA • dx. 

whence CA = dy. 
Note that Ay = BC. 
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The differential of a function y, that is, dy, is the amount that 
y would increase while x increases a certain amount dx if the rate 
remained the same throughout the interval dx as at the beginning 
of the interval. 

We have considered the rate of change of the dependent 
variable with respect to the independent variable as the limit 
of a ratio and we have called this limit the derivative. We have 
written this limiting value of the ratio. 

dy 
= some quantity (constant or variable) = k. 

We have just seen that we may write this in the form, 

dy = k • dx, 
where k = f{x). 

The differential equation then is 

[666] dy = fix) • dx, 

where fix) is the rate of change of the dependent variable with 
respect to the independent variable. 

962. Length of a Curve.—The length of a curve is the limit 
of the perimeter length of the inscribed polygon when the 
number of its sides is allowed to increase without bound. To see 
the reason for this, consider how you would measure with a rule. 
You may consider a flexible rule which would become inaccurate 
in length no matter how thin it were made. It is apparent, then, 
that it is quite essential to adopt the idea of the 
inscribed polygon as above given. 

We will assume that the limiting value of the 
ratio between a small chord and the arc that it 
subtends as the adjacent points P and P' on the curve approach 
each other is 

Fig. 554. 

Limit 
P-^P' 

1. 
rclwrd^^i 
L arc PP' J 

It is immaterial whellu'r P is considered as 
Fig. 555. approaching 7^', or /*' as approaching ]\ since the 

limit of their distanci* from each other is zero. 
963. Differential of an Arc.—Let s be the distance measured on 

a curve from A to a variable point P, Let <p be the angle BPT, 
If P moves a very small distance to P', the increments in x, y, 
and s are 
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^x = PB, 
Ay = BP\ and 
As = arc PP'. 

From the diagram (Fig. 556), 
Ax _ Ax 
PP' ■" Ai 

Ay __ Ay 

cos ZBPP' = 

sin ZPPP' = 
PP' As 

As P approaches P', ZBPP' approaches and 
As _ arc PP' 

PP' chord PP' 
Then, at the limit, 

As 
ppr 

ppr 

approaches 1. 

dx , . dy 
cos ^ - and sin (p — -f* 

ds ds 
This means that dx and dy are the sides of a right trikngle with 

hypothenuse ds extending along the tangent to the curve at the 
point P. 

It must be borne in mind that -since x is the independent 
variable, dx = Ax, but since y and s are dependent variables, 
dy does not equal Ay nor does ds equal As. This is shown by 
the figure. 

Hence, we have the important differential equation, 
[667] (dsy = (dx)2 + {dy)\ 



CHAPTER XLVIII 

CURVE ANALYSIS 

964. Parametric Equations.—If the equations of a curve are 
given in parametric form, 

[660] X = /(O and y = 

it is often convenient to find the derivative of y with respect to 
X without first eliminating t between the two equations. Both 
X and y are functions of t, and ?/ is a function of x. From the 
relation of a function, 

dy _ dy dx 
dt dx dt 

[469] 

Then 

[661] 
dx dx 

dt 

Example.—If x — + t and y = I, find*- 

dy ^ 1_ 
dx 2t i 

dy 
dt 

= 1. 

966. Velocity Components in Space.—If a particle is moving 
along a curve in space, the projection of its velocity vector on 
the three coordinate axes is called its velocity 
components. In Fig. 557, 

PQ = 

QR = 

dt 

dt' 

RT = % 
at 

633 



634 MATHEMATICS FOR ENGINEERS 

But 

Since 

then 

[662] 

(PTy = (PQY + (QRY + (RTy, 

dv l/dx\^ , /dy\^ , /dz\^ 

di = ^lidt) + \dt) + \Jt) ■ 

966, Curve Slopes.—There are a few precautions to be taken 
in finding a particular value of the derivative or the slope of the 
curve at a particular point. 

As an instance, consider the fractional power curves which 
have abrupt cusps as indicated in Fig. 558, which is a graph of 

y = + 1. 
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This curve has a cusp at the point x = 0 and the derivative 
is not defined for this point, for 

dy ^ 2 
dx 

and when a; = 0, the denominator is zero, and 
hence, there is no derivative. At this .point, 
the derivative changes its sign from ~ to +. 

The locus of a rotated hyperbola or parabola may present diffi¬ 
culties of this sort, and in any doubtful case, it is a good plan to 
plot the locus of the equation and any peculiarities will be apparent. 

(b) 
Fig. 559. 

Fig. 558. 

967. Discontinuous Curves.—We should make sure that the 
function is continuous for the value of x for which we are examin¬ 
ing the function. If it is in the form of a fraction and if a value 
of X can be found for which the denominator of the fraction 
becomes zero, then the curve is discontinuous at that value of 
X, It is, therefore, advisable to set the denominator equal to 
zero and to solve for x, and then to test other values of x near 
this value to determine the behavior of the derivative in the 
vicinity of this point. It is possible for the function to be discon¬ 
tinuous in other ways besides the case where the denominator 
becomes zero, but it is wise to examine the function for this 
condition. 

968. When the Derivative is Positive or Negative.—Consider 

y = /(a:). 

Fig. 560. 

If the ordinate, or value of the function, in¬ 
creases as the abscissa x increases, or if the function 
increases as a point moves from left to right along 
the curve, then the function is an increasing one and 
its graph rises, and therefore, the rate of change 

^ is positive. 
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The tangent to the curve at a point where the 
derivative is positive makes an angle of less than 
90® with the Z-axis. 

If the ordinates, or the values of the function, 
decrease as the abscissa x increases, then the curve 

clij 
is falling and the derivative is negative. ^ is 

Fig. 561. negative. 

The tangent to the curve at a point where the first derivative is 
negative makes an angle between 90® and 180° with the X-axis. 

969, If a point may be found on a curve at which the function 
is neither increasing nor decreasing, the curve at _ 
that point is neither rising nor falling, and the 
tangent to the curve at this point is parallel to the ^ 5^ Fj 
X-axis, that is, its slope is zero, and the rate of 
change of the function is zero. 

dy _ 
5^-0* Fig. 662. Fig. 662. 

It naturally follows that a point, in moving along a curve 
from left to right /and passing through a position for which the 
derivative changes sign from positive to negative and the curve 
changes from rising to falling, gives a maximum value for the 
function at that point. If, however, the point in passing from 
left to right passes through a position for which the derivative 
changes sign from negative to positive, such a position determines 
a minimum point on the curve. 

Fig. 663. 

970. Curve Concavity.—Concavity can best be explained by 
reference to an actual curve. Take as an illustration the curve 
y = a;* — 4a: (Fig. 564). 
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Assume some position, as Pi, 
corresponding to some value of x, 
as Xi. As X increases in value, or 
as the point travels from left to 
right along the curve to the posi¬ 

tions Pi, Pt, Pi, etc., the slope of 
dv 

the tangent, or the derivative 

decreases. The curve is concave 
downward. 

dy 
Therefore, if the derivative 

is positive and decreasing, the curve is 
concave downward. 

At position Pb, the tangent to the 
curve is parallel to the X-axis; that 
is, its slope is zero, and 

Fig. .564. 

dx 
= 0. 

As the point moves further to the right to positions Pe, P?, Ps, 
Pg, etc., the slope changes to negative and decreases as x increases. 
The curve is concave downward at these points, and we therefore 
conclude: 

dy , dy 
If the derivative decreases as x increases, whether is positive 

or negative, the curve is concave downward. 

As the point travels still further to the right through P/, P^, 
Pz, etc., the slope of the tangent, or the value of the derivative, 
still remains negative but changes from a decreasing to an 
increasing function, or it increases as x increases, and the curve is 
concave upward. At Pb' the tangent is parallel to the X-axis; 
that is, its slope is zero, and 

As the point travels through the positions Pe', P?', Ps', Ps', etc., 
the slope of the tangent, or the value of the derivative, becomes 
positive and increases as x increases, and the curve is still concave 
upward. We, therefore, conclude that: 
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If ^ increases as x increases, whether ^ is positive or negative, 
ax ax 

the curve is concave upward. 
Referring again to Fig. 564, the graph of the curves, 

y = — Ax, 
«' = = 3x* - 4, and 

dx 

y» = = Qx 
^ dx^ ’ 

the curves being plotted on the same axes and the ordinates 

iand 
(Py 

respectively, an interesting relation representing y, 

will be noted. At the maximum and minimum points of the 
primary curve, the derived curve intersects the X-axis or passes 

through zero values. 
For all values of x for which the first derived curve is above 

the X-axis, that is, positive, the primary curve rises to the right. 
For all values of x for which the first derived curve is below the 
X-axis, that is, negative, the primary curve falls to the right. 
As X increases (from left to right) and the positive sign of the 
first derived curve changes to negative, that is, as the first derived 
curve crosses from above to below the X-axis, the primary curve 
has a maximum at that point, since at this point y' = 0. 

As X increases and the derived curve crosses the X-axis from 
below, or changes in sign from negative to positive, the primary 
curve has a minimum at the zero point. 

For all values of x for which the second derived curve is above 
the X-axis, or positive, the initial curve is concave upward; for 
all values of the abscissa for which the second derived curve is 
below the X-axis, or negative, the initial curve is concave 
downward. 

971. Points of Inflection.—For a value of x at which the 
second derived curve crosses the X-axis, or 

^^ = 0 
dx^ ’ 

the initial curve has a point of inflection. 
dPy 

The sign of changes and, therefore, the initial curve has a 

reverse bend or a point of inflection. This is also the point of 
maximum or minimum slope of the curve. 
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Example. 

y — X + 16. 

= 4x3 — 16x — 1. 

," . g . 12,. - 16. 

Fig, 565. 

Note that the first derived curve crosses the X-axis when the initial 
curve reaches maximum or minimum values. 

The second derived curve crosses the X-axis when the first derived 
curve reaches maximum or minimum values and at the same points 
the initial curve has points of inflection. 

The second derived curve, it will be noted, is positive for minimum 
values of the initial function and negative for maximum values of the 
initial function. 

When the second derived curve lies above the X-axis, that is, when 

dx^ ^ ’ 

the initial curve is concave upwards, and when the second derived 
curve is below the X-axis, that is when 

dhj 
dx^ 

<0, 

the initial curve is concave downwards. 

To determine the values of :r, then, for whiehjhe initial func¬ 
tion has a point of inflection, set. the second derivative equal to 

zero and solve for x. 
972. Determination of Maximum and Minimum Values.—A 

function of one variable, from previous discussions, is said to 

have a maximum value at a point x = Xo if 
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Slope = g = 0, and if g < 0. 

Similarly, a function of one variable is said to have a minimum 
value at a point x == Xo, if 

slope = = 0, and if ^ > 0. 
ax dx^ 

A rough graph of the initial curve is usually advisable, as this 
will show the maximum and minimum ordinates without going 
further. 

973. Rules for Finding Maxima and Minima.—To solve the 
following problems in maxima and minima, determine what it 
is that is to be a maximum or minimum, and then let that be the 
function, or ordinate y. 

Express y in terms of a single variable, or in terms of x. In 
order to do this, it may be convenient to express 2/ as a function 
of a function and then by substitution reduce to a function of a 
single variable. 

Find the first derivative and determine those values of x which 

make 
d^ _ 

dx 
= 0. 

From the nature of the problem, it is usually easy to decide 
whether the function has a maximum or a minimum at the point 
under consideration. If it is not easy to determine this, find the 
values of the second derivative for the points at which the first 
derivative is zero. 

If ^^>0? the function has a minimum at the point. 

d^y 
If < 0, the function has a maximum at the point. 

Example 1.—A steel cylindrical tank with walls and bottom of 
uniform thickness is to have a capacity of 5000 cubic feet. Find the 
dimensions which will make the amount of surface required a minimum. 

Let h = height. 
D = diameter. 
8 = area of surface. 

T 8 = "b ttDH, 

Volume = 
wD^h 

= 5000 cubic feet (a constant). 
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Eliminate h by substituting 

, 5000 X 4 

in the surface equation. Then 

71^" 20,000- tD _ tD^ 20,000 
4 tt/)* 1 4 Z) 

The rate of change of surface with respect to tiie diameter is 

_ 20,000 
~dD ■“ T 7)2 ‘ 

The function s will have a minimum when 

ds ^ ttZ) __ ^,000 
dD~ 2 Z)2 ~ 

tD ^ 20,000 
2 7)2* 

7r7)3 = 40,000. 

7)2 = 12,731. 

D — 23.3 feet = diameter. 

Substituting in 

TrD% 
= 5000, 

h = 11.6 == depth of tank. 

It will be noted that the diameter is twice the depth. 
Example 2.—A contractor is figuring on a water tunnel from point A 

to point B which is 300 feet below A 
and at a distance of 500 feet from A 
horizontally. He is allowed to go in 

any direction through the earth and 

rock. The cost from his records for 

this type of excavating is $10 per 

linear foot in earth and $30 per linear 

foot in rock. What distances in earth 

and rock will give a minimum cost for 

the construction? 

Let X = the horizontal distance as 

shown in Fig. 566. 
500 — X « distance excavated in earth. 

\/x' + 90,000 = distance excavated in rock. 



642 MATHEMATICS EOtt EnCINEERS 

Since the cost is the function for which we desire to find the minimum, 
we make the cost a function of the two distances, or 

Cost = 30(Vx^ + 90,000) + 10(500 - x). 

= 30(x^ + 90,000)* + 5000 - 10a;. 

g = f (.. + 90,000)-* • _ 10. 

- 10. 
V*" + 90,000 

For the function to have a minimum, must equal 0. 

Therefore, 

dC 

_SOx_ 

WOOO 
- 10 = 0. 

Squaring, 

3x 
= 1. 

Vx^ -4- 90,000 

3x = Vx^ -f 9t),000. 

+ 90,000 = 9x\ 
Sx^ = 90,000. 

0:2 =, 11 9,50. 

a: - 106.07. 

\/a:2 + 90,000 = \/(166.07)2 -I- 90,000 = 318.2 feet = the distance 
to be excavated through rock. 

500 — a: = 393.93 feet = distance through earth. 
Cost = 30(318.2) + 10(393,93) = $13,485.30. 
Example 3.—If the cost per hour for fuel to run a steamer is pro¬ 

portional to the cube of the speed and is $20 per hour for a speed of 10 
knots and if the other expenses amount to $100 per hour, find the most 
economical speed in still water. 

Cost of fuel = F = ks^ (s = knots per hour). 
Then 20 = A: (10)^, whence A: = .02. 
Therefore, 

F = .02sK 
Cost of operation per hour = .02s^ -f 100. 

Cost per knot = C =--- 
s 

= .02s2 -h 100s“i. 

C will have a minimum value when 
dC ^ 
ds 

.04s == 

.04s ~ 100s-2 = 0. 

100 
s2 * 

s3 = 2500. 

s == 13.57 knots per hour. 
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To put this into general form: 

Let k *= coefficient of s determined by experiment as above 
and let a = fixed charges per hour. Then the most economical 
speed is given by 

s = 

Note.—Various authorities give the relation of horsepower as propor¬ 
tional to the cube of the speed, and as horsepower varies directly as the 
fuel consumption, then the fuel consumption also varies in direct proportion 
to the cube of the speed. 

A nautical mile (knot) equals 1.15155 U. S. statute miles and equals the 
length of 1' of arc on a circle of diameter of tlie earth. 

Example 4.—The strength of a rectangular beam is proportional to 

the width and to the square of the depth. Find the dimensions of the 

strongest beam that can l>e cut from a round log 24 inches in diameter. 

Let S = strength of the beam. 

X = its width. 

y - its depth. 

Then 
= kxy‘^. 

From the triangle (Fig. 567), 

= (24)2 570, 
?/2 = 576 — x*. 

Then 

S = A:x(576 - x2). 

-y = 576A: - 3A:x». 
ax 

d^S 

dx^ 
— Qkx, 

Fig. 567. 

“ = 0, and = a negative number when 
dx dx^ 

3kx^ = 576/c. 
x2 = 192. 

X = 13.86. 

y = 19.60. 

Example 5.—From mechanics we are given the following relations in 

a belt drive: 

Centrifugal tension = 
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where w is the weight of 1 foot of belt of 1 square inch in section. If Tz 
is the greatest tension on the tight side that the belt should take, 
then the effective tension F for the transmission of power is 

F = T 
^ 9 

The power transmitted per square inch of belt section is 
P - Fv. 

Then 

P = T^v - —• 
9 

To find the maximum power, equate the first derivative to zero. 
dP __ rp 314^2^2 

dv ^ g 

But — = C, the centrifugal tension. Then 

3C = Tj. 

r= Lk 

' The maximum power results when the centrifugal tension is one-third 
the greatest permissible working tension in the belt. 

Example 6.—What velocity will give a maximum power for a chain 
drive having a working load P, when the centrifugal force is considered. 

Let w = the weight of the chain per foot. 
V — the velocity of the chain in feet per second. 
g = 32.17. 

wv^ 
The centrifugal tension is C == - 

If T2 is the greatest permissible working load for the chain, the effec¬ 
tive tension F for the transmission of power is 

F=T,- 
g 

and the power transmitted, as in the previous example, is 

P = T2V - 
9 

dP rr 
- = i 2-* 

dv g 
The maximum velocity that the chain should run is 

Let us take an example of a very common commercial chain, as No. 103 
malleable, and see what happens. 
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tz; = 4 pounds per foot. 

= 1000 pounds. 

^ flOOO X 3^ r . 
V = \-TTzm-= 51.77 feet per second. ^3X4 

It is not good practice to run this chain over 10 feet per second due to 

the tooth action and other reasons. It is, therefore, quite evident that 
the centrifugal force does not become a factor to affect the strength 
of the chain but enters into the problem only when there is consider¬ 
able slack in the chain causing it to jump the teeth of the sprocket wheel. 

974, Curvature,—Consider an arc con¬ 
cave toward its chord for its full length. 
The amount that the arc is bent can be 
measured by the angle between the tan¬ 
gents at its ends or the amount that the 
tangent rotates as the point of tangency 
moves along the curve from one end of the 
arc to the other. 

The ratio 
arc PP 

unit length along PP\ 

~ average bending per 

As P approaches P', or As —> 0, 

Limit ^ 
As 0 (/S 

which is called the curvature at P. It will be noted that the 
curvature varies directly as the sharpness of the bend; that is, 
the curvature is greater where the curve bends more sharply 
and less where the curve is straighter. 

Example.—Find the curvature for a point P on a circle of radius a. 

Then 
dip 

ds 

s — ad, 

dd 
a ’ dd 

1 

The curvature of a circle is constant and o(iual to the reciprocal of its 

radius, or the curvature varies inversely as the radius. For this reason 
the radius is not used to measure curvature since it does not vary directly 

as the radius. 

976, Radius of Curvature,—In the previous article, we found 
that the radius of a circle is the reciprocal of its curvature. 
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The radius of curvature of a curve at any point is defined as 
the radius of the circle which has the same curvature as the cuiwe 
at the point in question and is, therefore, the reciprocal of the 
curvature, or 

i'“i <■ - 5 - £■ 
ds 

Now<p = tan -1 iy. 
dx 

From Art. 949 [620], 

dip = 

1 

<l) 

+(S' 

But ds = {dxY + 
Substituting (2) and (3) in (1), 

(2) 

> + (S)' 

)Y. (3) 

[> + (S)’]’ 
[664] 

ds 
^ dip 

dx^ 
Since the numerical value of p is usually desired, its sign can 

be disregarded. 
In a manner similar to that used, the relation, 

[' + (ST 
[666] 

(Px 
dy^ 

can be shown to hold when the curve is given in the form, 
X = f(y). 

Example.—Find radius of curvature of parabola = 4a; at the point 

(9, 6). 
^ _ 2 _ 2 _ 1 
dx y 6 3 

= <^(2?/'’) ^ _2. . ^ = _1 =_L. 
dx^ dx ^ dx y^ 54 

[■+(!)? (‘+D* 

dx^ 
-L 
54 

= -63.23. 



CHAPTER XLIX 

EXPANSION OF FUNCTIONS 

976. Rolle’s Theorem.—If f(x) and its derivative f'(x) are 
single valued and continuous for all values of x from x = a 

to X == bj and if /(a) = f(b) = 0, then f(x) vanishes for at least 
one value of x between a and 6. 

Geometrically, if a continuous curve cuts 
the X-axis in two points, x = a and x = b, 
and has a finite slope at every point in this 
interval, then at some point, say x = Xo, 
a < Xo < b, the tangent to the curve is 
parallel to the X-axis. 

977. The Law of the Mean.—The law of the mean, sometimes 
called the mean value theorem, is deduced from Rollers theorem 
and is as follows: 

If f{x) and its first derivative/'(x) are continuous from x == a 
to X = b, there is a value x = between x = a and x = 6, such 
that 

[666] m - 
b - = f'M, 

or fib) = f(a) + (6 - a)(/'[xx]). (1) 
Let 

fibl: = Q. 
b — a 

Since a and b are constants, Q is a constant, and 

fib) - fia) - {b - a)Q = 0. (2) 
Let (p(x) be a function built up by replacing a by x in (2). 

11 - /(x) - ib - x)Q, (3) 
and <p'(x) = - fix) + Q. W 

Since /(x) and /'(x) are continuous between x = a and X = b, 

<p(x) and are also continuous between x = a and x = = h. 

From (2), 
(b - a)Q = m - fia), 

647 
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which substituted in (3) gives 

<pix) .= f{b) — f(x) — f(b) + f(a) = f(a) — /(*). 
Then 

<p(a) = /(a) - /(o) = 0. 
Also from (3), 

Ab) =/(6) -f(b) - (b-b)Q = 0. 

Hence, <f(x) satisfies the conditions of Rolle’s theorem (Art. 
976) and consequently, 

<p'ixi) = 0, 

0 = -/'(xi) + Q, 
or 

Q = /'(xi), 
where Xi is between x = a and x = b. 

Fia. 671. Substituting in (2), 

m = /(«) + (b- a)rixo, 
which was to be proved. 

978. The Extended Law of the Mean.—If f{x) be a function 
which with its first and second derivatives /'(x) and /"(x) is 
continuous from x = a to x = b, then there is a value x = Xt 
between x = a and x = b, such that 

Let 

m = /(a) + {b- a)f'{a) + 

f(b) - /(a) - (6 - a)/'(a) _ „ 
■ (‘6 - aY ■ 

(1) 

Since a and b are constants, i? is a constant, and 

m - m -(b- a)/'(a) - = 0 (2) 

From the left member of the equation, form the function (p2(x) 
by replacing a by x. Then 

¥>*(x) = fib) - fix) -ib- x)f'ix) - (3) 

Differentiating, remembering that the third term is a product, 

<(>iix) = -fix) - ib- x)f"ix) +fix) + (6 - x)R. 
= ib - Xi)iR - rix]). (4) 
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Since /(x), /'(x), and /"(x) are continuous, ^2(x) and Wix) 
are continuous. 

From (2), 

= m - /(a) - (6 - a)/'(a), 

which substituted in (3) gives 
<P2(x) = m - f{x) - (6 - x)nx) - /(6) + /(a) + (6 - a)/'(a). 

^2(a) = /(a) - (b - a)f(a) - /(a) + (/> - a)/'(a) = 0. 
Also from (3), 

<P2(b) = m - m -(h- b)f'ih) - = 0. 

Hence, the conditions of Rolle’s theorem are satisfied and 
<P2'(X2) = 0, 

and (4) becomes 
0 = (6 - x,)[R - fix,)], 

or R = f'ix^), 
which substituted in (2) gives 

m = m + {b- a)f’{a) + 

which was to be proved. 
This same process may be continued in a similar manner to 

show that 
(b - a)%„ (b - a)\ 

f"(a) + m = /(a) + {b- a)f'{a) + 

and in general, 

[667] m = /(a) + (6 - a)/'(a) + + 

(6 - a)» (6 — aY~ 
13 ^na) + . . . + 

{b - aY 
HXn), 

where a < Xn < b, which is the general form of the extended 
theorem of the mean. 

979. Taylor’s Theorem with the Remainder.—If b is replaced 
by X in the general form of the extended theorem of the mean 

value (Art. 978), then 

668] fix) = /(a) + 
(x - a)., 

II 
-/'(a) + 

{x - af.„ ria) + 
a)\ 

which is called Taylor’s theorem or Taylor’s series. 
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This expansion holds true for all values of x from x = a to 
X = 6 provided that the function and its first n derivatives are 
finite and continuous throughout the interval from x == a to 
X = 6. If X is substituted for b, we have an expression which 
holds between the limits. 

The finite series in (x — a) may be substituted for the function 
fix). 

(x ““ 

The last term,-j-is called the remainder. If this 
' |n 

remainder can be made as small as we please by taking n suffici¬ 
ently large, the series becomes an infinite series which is con¬ 
vergent and which converges to the value/(x). For those values 
of X for which the remainder approaches the limit, zero, or 

= 0, 

the function is equal to the sum of the convergent series. 

Example.—Develop sin x into a power series in (.r — a). 
/(x) = sin X. Then J{a) — sin a. 

j\x) = cos X. Then /'(a) = cos a. 

/"(x) = — sin X. Then/"(n) — —sin a. 
/"'(x) = —cosx. Then/"'(a) = —cos a. 

/*®(x) — sin X. Then f^'’{a) — sin a. 

/’’(x) —■ cos X. Then /•'(a) = cos a. 
Then substituting in [568], 

sin X = sin a -f- cos a(x — a) 
(x - ^0’-^ 

sin a cy id 
(X 

cos a 
— a)^ 

+ sin a 
(x — (l)^ 

-f cos a 
ix — a)^ 

120 ‘ 

If we replace (x) by (a -f h) in [668], we get still another form 
of Taylor^s series, namely, 

[669] fia + A) = /(a) + | /"(a) + + 

h* 

If 
fHa) + + 

hn—l hn 

-/"-‘(a) + /"(a) + 
(n -1) 

This series is particularly useful when it is desired to express 
a function of the sum of two numbers as a power series in one 

of them. 
Let 

y — fix) = ax^ 4“ bx^ 4“ cx + d. 
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If X receives an increment h, then 

fix + h)= fix) +fix)h + + . . . 

Differentiating, 
f'{x) = Sax^ + 2bx + c. 

f'(x) = 6ax + 2b. = Sax + 6. 

f"(x) = 6a. 
r(x) 

r"{x) = 0. 
Substituting, 

f(x + h) = (ax^ + bx^ + cx + d) + (Sax^ + 2bx + c)h 

+ (Sax + b)h^ + ah^. 
This is a much easier metiiod to follow in most cases than that 

of substituting x + h for x in the equation which defines the 

function, and then performing the algebraic operation of multi¬ 
plication, indicated in 

f(x h) — a(x + hy + b(x + liY + c(x + A) + d. 
980. Maclaurin’s Theorem with the Remainder.—This is a 

special form of Taylor’s theorem where a = 0. The function 
f(x) and its first n derivatives are continuous from a: = 0 to 
X = a. The series then becomes 

[670] fix) =/(0) +/'(0)x+r(0)4 +/"'(0) + 

+ /-‘(o)- |(?i - 1) 
+ /"(xi)- 

This is known as Maclaurin’s series. 

Example.—Find a scries for cos x. 

Then/(x) = cos x = /(O) — 
f"(0)x2 , /"'(0)x3 

/(O) = cos 0=1. First term = 1. 

f'(x) = X. Then 

/'(O) = —sin 0 = 0. Second term = 0 • x = 0. 

— sin X. Tlien 

r(x) = 

d( —sin x) 
-cos X. Then 

/"(O) = -cos 0 ■1. Third term = 

f"ix) ^ = sin X. Then 
ax 
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no) 0 • X* 
sin 0 = 0. Fourth term = —= 0. 

w - ^ 

15 

COS X, Then 

/tv(o) « cos 0 = L Fifth term = 
1 • 

Writing the series, 

[671] cos X 1 
12 j4 16 |8 

Example.—Find a series for sin x. 
Letf{x) = sin x. Then/(0) = sin 0 = 0. 

f{x) = cos X. Then/'(0) = cos 0 = 1. 

/"(x) = —sin X. Then/"(0) = —sin 0 = 0. 

/"'(x) = — cosx. Then/'"(0) = — cos 0 = — 1. 
Our series is 

[672] 

Also, 

[673] 

. X- . X'' x, X’ 
sinx = x- -i77 + rF-~r^ + -7r“ . . . 

IZ 9 

Example.—Find series for cos x + i sin x. From the series found for 

cos X and for i sin x, 

rBw.il I • • /i x^ , X* X® , 
[674] cos X + t sin X = ^ - -rg + • 

X 

|2 
x® x’ 

^ i? 15 IZ 
, , . X* , tx’ X* , 

= l+tx-|2 +J3-J4 + . . . 

, , . , t*x* , t’x’ , t*x* , 
= 1 + tx + + -|J + . 

Example.—Find a series for log* (1 + x). 
Let/(x) = log* (1 + x). Then/(0) = log* 1=0. 

n) = Then/'(0) = 1. 

) + 

fix) = Then/''(0) = ^ = -1. 

= (rhy- =1 = 2. 
Substitute in 

fix) = /(o) +m ■ X +rio)~+rio£ + . . . 15701 
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(676] log. (l4-x)=a:-| + |- ^ + 

For series for log. (1 — x), substitute —x for x, and we have 

x)= -X--^-j- j - [676] log, (1 

The fact that all of the terms al’e negative agrees with the fact that all 
logs of numbers less than unity are negative. • 

Example.—Find a series for c**. 
f{x) = e**. Then /(O) = e'’ = 1. 

/'(x) = Then/'(0) = iV = i - \/ — 1. 
f'(x) = Then/"(0) = iV = = — 1. 

/'"(x) = Then/"'(0) = iV = 
Hence, 

4 2/,.2 <i3'y»3 >1 4 >• 4 

[677] = 1 + ix + ^ + ^.^- + . . , 

But this is the same series as we found for cos x + i sin x. There¬ 
fore, 
[678] gt* = cos X + I vsin X. 

981. Limit of x Approaches 0.—This limit was shown 

in Art. 936 to be unity. This fact can also be shown by develop¬ 

ing a series, thus, 

sin X 
5 -L 
1 13 ]5 

- + 
17 ^ 

- 1 — ± -L z_ri_|. 
P F. 

It is easily seen from the abgve that when x approaches 0 
the series approaches unity as a limit for its sum. Therefore, 

[679] 
Limit r sin X] _ 

982. Indeterminate Forms.—The principal indeterminate 

forms are 
0 00 

, 0 • 00 
0 00 

0 • 
The form ^ occurs quite frequently while the forms — and 

(j ^ 

0 • 00 may be transformed into the form 
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Any fraction, as -5) may be written in the form, 
t> 

\ 
B 

A 

If, now, A and B increase without bound, ^ and ^ approach 0 

and the indeterminate form becomes 

Also, if in a product AB one of the factors, as A, approaches 
zero and the other, B, increases without bound, we may write 
the product in the form, 

A 
V 
B 

which is also in the form 

It is necessary, then, to find the limit of a fraction when its 
numerator and denominator both approach zero. 

fix) 
Consider the fraction - t-t* 

Assume that for some value of x, called the critical value, the 

fraction assumes the form, ”• 

For any other value of x the fraction will have a definite 
value which may be determined by the substitution of the value 
of X. 

We seek to determine the limit which the fraction approaches 
as the value of x approaches the critical value. 

Assume that both fix) and (fix) become zero when x = a. 
Then 

/(a) = 0 and <^(a) = 0, 
and a is a critical value of x. 

By Taylor^s theorem, 

fia + A) = fia) +f'ia)h + . . . 

tp{a h) — <p(a) + <p'{a)h + — fg + 
3 

[669] 



EXPANSION OF FUNCTIONS 655 

But /(o) = 0 and <p(o) = 0. Then 

f(a + h) 
(p{a + h) 

f'{a) . 

+ + -h . . . 

If h approaches zero, in which case the Taylor's series con¬ 
verges, then 

Limit //(^)\ 

^'(a) 
We can, therefore, find the required limit of the fraction by 

simply substituting for the numerator and denominator their 
first derivatives with respect to x, and then substituting the 
values of these derivatives when x = a. 

Example.—Find, by above method. 

Limit \x^ :i9] 

If 3 is substituted for x, then 
9 - 9 _ 0 

:f~ 3 “ 0 
Differentiating, 

d(x-2 - \}) 

1 = 
3) 1 1 

(l.C 

Therefore, the limit of tlic fraction as x 3 is 6. 

Example.—Find 
Limit r* 
x->0 Lg + x'“J' 

Differentiating, 
/'(.r) 4.r* + 12.r 

>p'i-r) 1- 2x 
When X = 0 is substituted, the fraction still takes the indeterminate 

form We differentiate again and there results 

f'\i) ^ 12x2 q_ 12 
V?"(x) 'l8x 4- 2 ■ 
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Substituting a; = 0, we have 

LimitfrW 1 ^ Limitf/W 1 = 12 ^ 

Therefore, 

Example.—Find 

Differentiate the numerator for a new numerator and the denominator 
for a new denominator. 

nit [5* + 6**1 „ 
+ x^J 

d(x — tt) 

dx 2 2 



CHAPTER L 

PARTIAL AND TOTAL DIFFERENTIATION 

983. Functions of Two Independent Variables.—Heretofore, 
we have considered functions of a single independent variable. 
We have considered functions, such sls y = uv and u = xy, but 

in the former, u and v were both functions of a single independent 
variable x, and in the latter, x and y were usually used to indicate 
functions of the independent variable L 

In the case that we are about to consider, that of two inde¬ 
pendent variables, there is no single independent variable upon. 
which the value of the function is dependent. Thus, the volume 
of a gas depends upon the temperature and also upon the pres¬ 
sure to which it is subjected, but the temperature and the pres¬ 
sure may vary independently. 

984. Differentiation of Functions of Two Independent Vari¬ 
ables.—In a function/(x, y) of two independent variables, there 
are three relations between the function and the variables that 
we desire to examine. We wish to determine the manner in 
which the function varies as x varies and y remains constant, 
the manner in which the function varies as y varies and x remains 

constant, and the manner in which the function varies when 
both X and y vary. 

Let the function /(x, y) of the independent variable be repre¬ 

sented by the equation, 

2 = /(X, V), 
which according to solid analytical geometry (Art. 840) is an 
equation of a surface. If only one of the independent variables 
is considered to vary and the other to remain constant, the deriva¬ 

tive is called a partial derivative. 
In this case the process is the same as previous cases of differ¬ 

entiation of a single variable, and the equation, z = fix, y), 

is represented graphically by a plane curve formed by an inter¬ 

secting plane parallel to a coordinate plane. 
657 
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In the first case, if y is given a constant value yo and x is con¬ 
sidered to vary, then for any value of x, as Xo, 

AxZ = f{xo + Ax, yo) - /(xo, yo), 
and 

Limit 

dx 
where the subscript x denotes that x is the independent variable 

and ^ is a symbol indicating a partial derivative. 

To illustrate geometrically, let P be a point on the curve 
formed by the intersecting plane y 
= t/o and the surface 

2 = /(^, y) 
at Xo distance from the FZ-plane as 
shown in Fig. 572. 

Assume another point A on the 
curve and drop perpendiculars PC 
and TAD to the AF-plane, inter¬ 
secting the XF-plane at C and D. 

Draw PB parallel to CD. Draw PT tan- 
rhen A B geometrically represents 

Call CD equal to Ax. 
gent to the curve at point P. 

dz 
AxZ, and TB represents dz = from Art. 960 but becomes d^z 

= -^dx when the new symbols are used. 

In the same manner, if x is given a constant value Xo and y 
is considered to vary, then for any value of t/, as ?/,>, 

AyZ = f(xo, yo + Ay) - f(xo, yo). 
and 

^^-"^Ay dy 
To illustrate geometrically, pass an 

intersecting plane x == Xo through any 
point P on the curve formed by the 
intersecting plane and the surface z = 
/(x, y) at Xo distance from, and parallel 
to, the yZ-plane, as shown in Fig. 
573. Assume another point A' on the 
intersecting curve, and draw PD' and 
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T'A^C' perpendicular to and intersecting the XF-plane at C' 
and D'. Draw PB' parallel to C'D'. Let CD' = Ai/. Draw 
PT' tangent to the curve at point P. Then A'B' geometrically 

dz 
represents AyZ and T'B' represents dyZ = 

986. Total Dilfferentiation.—The case remaining to be con¬ 
sidered is the case where x and y are var>dng simultaneously 
but independent of each other. 

Let X — Xo and y = yo sls before, and denote the intersection 
of the two planes and the surface z = f{x]j) by the point 
Po{Xo, yo, Zo). Let x take an increment Ax = dx, and y take an 
increment Ay = dy^ and let L be the point on the surface at Xo + 
Ax, yo + Ay, Zo + Az. From Fig. 574, CD = dx, CC' = dy. 

Let PoTT'R be the plane tangent to the surface at the point 
Po. Then PoT is tangent to the arc PoA, and PoT' is tangent to 
the arc PoA'. The plane PoTT'R satisfies the condition of varia¬ 
tion of the function as x varies, since it contains the tangent 
PoT, and it satisfies the condition of variation as y varies, since 
it contains the tangent PoT. Also, RN represents the incre¬ 
ment dz measured to the tangent plane when x and y are given 
the increments dx and dy. 

Draw T'S parallel to A^F-idane. Then the triangles RT'S 
and TPoB are equal, and RS — TB. 
Then 

RN == RS + SN. 

RN = dz, RS = f dx, SN = TB == ~dy. 
ax ay 

But 



660 MATHEMATICS FOR ENGINEERS 

Substituting, 

Iran d..^ + ^dy. 
The differential of a function of two independent variables is 

equal to the sum of all the products formed by multiplying the partial 
derivatives of the function with respect to each independent variable 
by the differential of that variable. 

This rule applies to functions of any number of independent 
variables. Thus, 

j du. , dUj , du, 

When the independent variables are functions of a single 
independent variable, as ty we may form the total derivative of 
the function with respect to the single independent variable, 

thus: 
Dividing the above equation by dty 

— ^ ^ ^ dy du dz 
dt dx dt dy dt dz dt 

Example.—A dam across a valley forms 
a rectangular lake, 2000 feet wide and 5000 
feet long. A storm causes the width of the 
lake to increase at the rate of 50 feet per min¬ 
ute and the length to increase at the rate of 
200 feet per minute. At what rate is the area 
of the lake increasing 10 minutes after the 
storm starts? 

Let X = the width of the lake. 
y = the length of the lake. 
2 — the area. 

2 = xy. 

dx dt dy dt 
dx dz dy _ 
dt ~ dy dt 

5000 + 200 X 10 = 7000, x. = 2000 + 50 X 10 = 2500. 

y. X 50 + X. X 200. 

7000 X 50 + 2500 X 200.. 
850,000 square feet per minute. 

dz ^ 
dt 
dz _ 
dx 
Vo = 

dt ““ 
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986. Differentiation of a Function of a Function of Two or 
More Independent Variables.—This differentiation takes the 

form of the total derivative as developed in the preceding article. 

If u = f{Xj y) and if x and y are independent of each other but 

each variable is a function of another variable then 

Dividing by dt, 

[682] 

du j , du , 
a/* + si,'*!'' 

du dx dll dy 
6x dt dy dt ^ 

in which the total derivative is the time rate of change of the 

function u. 
In the same manner if u = /(x, y, z) and if x, y, and z are 

independent of each other but are all functions of 

1 du _ du dx du dy du (h 
^ ^ dt dx ~dt dy dt dz dt 

Example.—Given the formula for a gas, 
yV = kTy 

where 
p = pressure. 
V — volume. 
T = temperature. 

^’ = a constant depending on the gas. 
Assume A; = 50 and let the volume and the temperature at a given 

time be Fo = 5 cubic feet, To — 250 degrees. Then 

5po = 50 X 250. 
p<, = 2500 pounds per square foot. 

If the temperature is rising at the rate of .5 degree per minute and the 

volume is increasing at the rate of .2 cubic foot per minute, at what 

rate is the pressure changing? 
Since p is a function of the other variables, we will write the equation 

in the form, 
T 

p = 50-^.* 

dp dJ dp W 

dT ' dV ' dt' 

50 dp 50T 
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We are given in the problem, 
dT 

1- = .5, the rate at which the temperature changes with respect to 
the time. 

dV 
= .2, the rate at which the volume changes with respect to the 

time. 
Substituting in 

dp _ dp d,T dp dV __ 50T^ 
dt ~ df ‘ It dV ’ dt ~ 

Since we desire the rate at which the pressure changes when F = 5 
and T = 250, then, 

dj _ 50( 5) _ .50(250).2 . ^ . _,,5. 
dt 0 2d 

This means that the pressure is decreasing at the rate of 95 pounds per 
minute when the volume is 5 cubic feet and the temperature is 250 
degrees. 

987. Successive Partial Differentiation.—If z is a function of 

two independent variables x and ?/, then the first two derivatives, 

and - are thenrselves functions of x and y, and each of these 
dx dy 
derivatives may be differentiated again with respect to x and y. 

Consider z = x’^y/y. 

Each of these derivatives is a function of x and y. There will 

be two partial derivatives of each of these derivatives, one with 

respect to each variable. 

_a(2xV^ = 2^y. ^ ^ X 
dx dy ' y/y 

d{2xV y) 
dx 

= 2^y. 
d{2xy/ y) 

h 

a( ^ 
\2Vy) X \2Vy) 

dx V y d/y 

= xif^ = 

The derivative of with respect to x is denoted by 
dx 

The derivative of with respect to y is 

dz d^z 
The derivative of - with respect to x is . , • 

dy dydx 
dz . 0^2 

The derivative of ^ with respect to y is . 
dy . dy^ 
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In all cases where 2 is a function of x and 2/, the two second 

partial derivatives, 

dxdy dydx 
are identical. 

988. Dependent Variables.—If some of the variables are 

functions of others, they are called dependent variables. 

Consider 

u = x^ + y^ + 2^, 
and let 2 be a function of x and y. When y is constant, z will 

be a function of x, and the partial derivative of u with respect 

to X will be 

dll 
dx 

2x -h 22 • 
dZ 
dx 

The partial derivative of u with respect to 2/, when x is con¬ 

sidered constant, will be 

If 2 is considered constant, then 

= 2x and = 2y. 
dx dy ^ 

The value of a partial derivative thus depends upon what 

(quantities are kept constant during the differentiation, and the 

nature of the problem will make clear of what independent 

variable u is considered a function. 

If X and y are not independent but dependent, and their 

relation is expressed by the equation, 

y = P{^)y 
or by the equation,' 

y) = 0, 

or by the parametric equations, 

X = Fi(t) and 

2/ = /m 
then we know that the motion is restricted in the XF-plane and, 

consequently, the value of 2 to a particular curve in space given 

by the intersection of the cylinder, ip{Xy y) = 0, and the surface, 

= Kx,y), 
Whenever such a relation exists between x and 2/, we may 

choose any variable (such that both x and y may be expressed 
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as functions of this variable) as / or a; itself, and differentiate the 
function with respect to that variable. 

du — -" dx “1“ ^ dy, 
dx dy ^ 

du ___ dw dx du dy 
dl dx dt dy dt 

Differentiating with respect to x^ 

^ dx dx dx ' dy dx dx dy dx 
Or with respect to i/, 

rKftfil ^ du _ ^ ^ dx du 
dy dx dy dy dy dx dy dy 

In the same manner, if 

M = fix, y, 2), 
from Art. 986, 

du _ du dx . du dy du dz 
dt dx dt dy dt dz dt ^ 

and if, further, 2/ = <p{x)2ind2 = ^ (x), 

rfiftAi — ^ M M — — 
^ dx dx^ dy dx^ dz dx 

These latter formulae are very useful in differentiating com¬ 
plicated functions of a single variable. 

Example.—Find when u = (sin^ x). 

du dx du dy 
dx dy dy dy 

du dx du 
dx dy dy 

du dx du dy du dz 
dx dt dy dt dz dt ^ 

z = sm^ X. 

u = xe^z. 

_ = gV2 — = xe^Zy — = xev. 
dx dy ' dz 

^ __X ^ 

d^ y/ — X* 

Substituting these derivatives in 

T- = 3 sin^ X • cos x. r2 dx 

we have 
du 

dy du dz 
dx ~ dx dy dx dz dx 

x^e^z 
+ 3x6*' sin* X * cos x 

y/ a- — 
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989. Total Differentials.—We have already (Art. 985) devel¬ 
oped the formula for a total differentiation. If we multiply 
through by dt in 

^ dz 
dt dx dt dy dt dz dt ’ 

we get 

[587] du^f^dx + f^dy + ^^dz. 

This formula may be extended to apply to any number of 
variables. 

990. Differentiation of Implicit Functions.—Suppose that y 
is defined implicitly as a function of x by the equation, 

f{Xy 2/) = 0. 
Since the function/(a:, y) has by definition the constant value 

zero for all corresponding values of x and 2/, the total differential 
must also be zero, or 

^-dx 4- ^dy = 0. 
dx dy 

Transposing the first term to the second member of the equa¬ 
tion and dividing both members by 

and dx 

gives 

[688] 1 11 

dy 
This is a very convenient method of writing at once the deriva¬ 

tive ^ of an implicit function and should be used instead of the 
ux 

method given earlier in Art. 908. 

Example.' -Find ~, given 

dx 

/(x, y) = xhj — xy^ = 0. 

=» 2xy - 2/^ ^ 

$ 

df 
Therefore! 



CHAPTER LI 

INTEGRAL CALCULUS 

ELEMENTARY FORMS 

991. In differential calculus, we studied the methods of finding 
the rate of change of a quantity at any given instant. In the 
integral calculus, we are given the rate at which a quantity is 
changing and we desire to find the value of the quantity at any 
instant. This given rate of change of the quantity whose value 
is desired is the derivative of the quantity. The one case is the 
reverse of the other in the same manner as division is the reverse 
of multiplication and involution is the reverse of evolution. 

Consider the law of falling bodies. Tha value of the velocity 
(rate of change of distance with respect to time) at any instant 
is given by the equation, 

V = gt, 

or we can put this into the form. 

We are given the rate of change of space and we desire to find 
a formula which gives the space traversed in the time t. We 
know that this formula is 

and our problem consists in finding a method of determining it 
from the equation for the rate of change of space or velocity. 
This process of finding a function v^hose derivative or rate of 
change is given is called integration, 

992. Let f{x) denote the given derivative which may be 
log X, or any other function of x, and let F(x) be the required 
function whose derivative is/(x). Then 

(1) 
666 
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The sign J* before a quantity indicates that the operation of 

integration is to be performed on the expression which follows, in 

the same manner as \/ indicates that the square root of the 

enclosed quantity is to be extracted, and dx following the expres¬ 

sion means that the expression is the derivative of the required 

function with respect to x. 
The reverse operation of (1) would then be indicated by 

fj{x)dx = F{x). (2) 

In other words. Fix) is a function whose first derivative with 

respect to x is fix). 

Some writers show these symbols in a different form, as 

/dx T dx ^ 
x^ J 1 + ^ 

but do not get confused, for these forms mean the integration of 

- and —;— 
X 1 + x^ 

or the integration of the remaining part of the expression after 

and dx are withdrawn as symbols of operation. 

In algebra, we learned that 

= a, 

or by performing inverse operations on a quantity, we obtained 

the original quantity. In the same manner, 

or 

which shows that 
d 
dx 

and J ... dx 

have contrary effects. 

In the same manner if a is some function of ;r, then 

[6891 /S ■ 

which is a very useful form. 

993. Constants of Integration.—From the differential calculus, 

the addition of a constant to the expression does not affect the 
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rate of change of the function represented by the expression. 
For the same value of x, the slope of the curves was the same. 
For this reason, if we are given the slope or derivative or rate of 
change of a function, we must have additional information which 

to determine the constant term and thus to enable 
us to fix the location of the curve which the in¬ 
tegrated expression represents. 

If we have a starting point or a condition given, 
we can determine this constant. 

It is, therefore, quite essential when integrating, 
to add a constant, thus, 

ff(x)dx = Fix) + C. 

the derivatives of 

will help us 

Fio. 576. 

If we find 

2/ = + 6, 
2/ = x^ + 1, 
2/ = x^ + 10, 

we see that all of these curves have 

dx 
= 3x2. 

Now if we are given 3x2 integrate, the required function 
may be any one of the three above, as well as 

2/ = x^ + any constant. 

The curves are all similar, and for a given x, they all have the 
same slope, but they are shifted vertically from each other, and 
to fix upon any one as the function, the constant of integration 

must be determined. 
994. Integration of —The process of integration is much 

more difficult than that of differentiation and many cases cannot 
be readily integrated. In fact, many forms have been tabulated 
from the differential calculus but put into the reverse form of 
integration. 

If we differentiate 

y = 
1 

n + 1 
Xn+l ^ C, 

iy 
dx 

n + 1 

n + 1 
= X". 

we get 



INTEGRAL CALCULUS 669 

Now by reversing the operation, 

[690] f: 

Another example is 

J'x" dx = ——- + C. 
n -f- i 

= — cos X + C. 

= sin X. 

Reversing the operation gives 
y’sin xdx = — cos x + C. 

From the first example, we see that the differentiation of a 
power of X gives a function of one degree lower, while the integra¬ 
tion gives a function of degree one higher than the original 
function. 

If /(x) = = a:", 

^ 1 + 

We can now, making use of this form, integrate various powers 
at sight, thus, 

£ = x-, y = j-,+C. 

dx * ’ ^ -3^^- 

— ~l y — ?_*. I rj 
dx ^ ’ y Y + 

996. A Constant Factor.—^I^et y — au where u is some function 

of X. Differentiating, 
d{au) _ du 

dx ” ^ dx 

in which a is a constant factor. 
Reversing the operation, or integrating, 

f a dx = aw. 

— dry dx 

dx — u. 
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which shows that any constant factor of a function given for 
integration can be written either before or after the sign of 
integration. 

996. Integration of Sums and Differences.—From the differ¬ 
ential calculus, 

d{u + V — w) _ du dv dw 
dx dx dx dx 

By integration of the above we obtain, 
r/dii . dv dw\ , rdii ^ dv _ dw 

Cdx dx dx ̂
dx = w + w + C. 

Hence, 

[6921 / ( 

/du j Cdv . cdw , 

d{u + V 
dx ■)* - /( /du 

dx 

du dv 
dx ' dx 

dw\ , 
- -,5)''’^ - 

• dx — 

The integral of the sum of two or more terms is equal to the 
sum of the integrals of the separate terms. Thus, 

f(s + s)''"’ - /l‘ ■ + /k ■*■» + >' + c. 
likewise, 

r/du 
J\dx ' :k-/: u — V C. 

The integral of a difference of two terms is equal to the differ¬ 
ence of their integrals. 

997. Areas by Integration.—One of the principal applications 
of integration is to the problem of finding the area under a given 

The only condition is that the graph must be continuous for 
the interval considered. 

In Fig. 577, if CD is fixed and the ordinate yp* PQ moves to the right, the area A will vary 
g with X in some definite way, for the heights, 

or ordinates, vary as a function of x and the 
abscissa varies as x. If the rate of increase 

— dA 
area, or , is determined, then we can 

Fio. 677. find A by integration. 
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If we increase x by Ao:, then A is increased by AA. From 
the figure, the area of the rectangle PBQQ' is y • Ax and the area 
of the rectangle EP'Q'Q is {y + Ay)Ax. 

Then from the figure, if the curve rises from P to P', 
Rectangle PBQQ^ < AA < Rectangle EP^Q'Q^ 

or 
y • Ax < AA < (y + Ay)Ax. 

If the curve is falling from P to P', then 

(y + Ay)Ax < AA< y • Ax. 

Now dividing by Ax, we have 
AA 

y < < y A?/, if curve is rising. 

y A- Ay < < y, if curve is falling. 

As Ax approaches zero, y + Ay approaches y as a limit. 
A 1 

Then, whether the curve is rising or falling from P to P', has 

a value between y and an expression which has y as a limiting 
value, as Ax approaches zero. 

Therefore, 

approaches y as a limit as Ax approaches zero. 

This expression is the average rate of increase of A for the 
interval Ax. Writing the above in symbols, 

Limit 
Ax- Ax ] = 

dA 
dx 

= y = f{x). 

Since y and /(x) are the same thing, that is, the ordinate, one 
may be substituted for the other. From this last form, it will 
be seen that the rate at which the area A is increasing at any 

point is equal to the height of the curve or the ordinate at that 
point. 

Since 

dA 
dx 

= ^ = fix), 

.‘.dA = y • dx = fix)dx. 
[693] A ^ fydx = ff{x)dx. 

We can now find the area under any curve when an equation 
giving the height y in terms of the horizontal distance x is known 
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(x measured from any fixed point), providing that we can 
integrate y ■ dx. 

Example.—Find the area under the curve, y = z®, between the fixed 
ordinate erected at z = 1 and any moving ordinate beyond. 

Then 
A = f y dx becomes f z’dz. 

z»dz = ~ + C. 
O 

If the area increases from a: = 1 as a starting point, then A = 0 
when X == 1, or 

^ + c = 0. 

.-.c = -i 

which substituted above gives the formula for the increa.sing area as 

^ _ 1 
3 3* 

If we desire to find the area when z = 5, then 

(5)» 1 125 1 
3 3 3 3 

41.333+. 

To find the area between the curve, the X-axis and the given 
ordinates when the curve is below the X-axis, the same reason¬ 
ing can be followed, but the area will be the negative of the 

integral, or 
A = —fydx = -ff{x)dx. 

In case the curve is both above and below the X-axis, the 
y resulting area will be the areas above the X-axis 

minus the areas below the X-axis. 
In the same manner, the area between the 

curve, the T-axis, and two abscissae becomes 
A = fxdy. 

Fio. 578. -j'jjjg jjjgy jjg gggjj jjy Tefcrence to Fig. 578. 

In Fig. 579 is shown the graph of the function, y = x*, and the 

area between the curve, the F-axis, and the abscissae y = 0 and 
j/ = a is given by 

A = fy^dy + C. 

When y = 0, A = 0 and, therefore, C = 0 and 

A = Jy^dy = y* X I = 

1 
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In Fig. 680 is shown the graph of the function, j/* = x, and the 
area between the curve, the X-axis, and the ordinates x = 0 and 
X = a is given by 

A = J'x^dx -|- C. 

Fia. 579. Fig. 580. 

When X = 0, A =0 and, therefore, (7 = 0 and 

A = j*xidx = x5 X I = 

Area of rectangle = a X Va = a*. 
Therefore, the area under the parabola equals two-thirds the 

area of the rectangle. 

998. Mean Value Problems.—In many problems where the 
quantity varies, it is necessary to find the average value of the 
quantity over a given time. This average value is called a mean 
value and is represented graphically by an ordinate which is the 

average of all ordinates for a certain distance. It is that height 
which, multiplied by the base, would give the area under the 

curve. 
If we consider an example with the ordinates showing how the 

speed varied during an interval of time, and we 
desire the distance traveled, we simply have the 

average speed multiplied by the number of units in 
the interval of time, or in other words, the area 
under the curve between the ordinates which fix 

the interval of time. 
999. Area Equivalents.—Many engineering problems may be 

solved by considering that the area under a curve represents the 

function. 
In (a) the slope is constant, or uniform. The distance is 

equal to the product of the time by the average velocity, or in 

T/hre 

Fig. 581. 
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other words, the area under the curve is a measure of the distance 
traveled during the time considered. 

Fig. 582. 

In (6) the case is the same except that the velocity does not 
increase uniformly, or the acceleration is variable. In both 
cases, the value of y is the velocity or the rate of change of space 
with respect to the time. 

Another example is the finding of impulse from a force-time 
graph (Fig. 583). Other examples are shown in Figs. 584, 585, 
and 586. 

nf 

Impulse = Average force X Time. 

Fig. 583. 

.1 

Velocity == Average acceleration X Time. 

Fig. 584. 

p’ 

Work == Average force X Distance, WWork' 

Distance 

Fig. 585. 

P* 

Volume = Average cross-section X Height. 
vb 
0 nilghf 

Fio. 686. 
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Example.—Find the impulse Q imparted to a moving object by a 
variable force F at the end of t seconds after starting. 

In an additional interval of time At, further impulse AQ is imparted 
in a similar manner as in the area under a curve (Art. 997). 

In the same manner consider the rectangles PBQQ' and EP'Q'Q. 
FAt < AQ < (F -f AF)AL 

Dividing by At, 

F < < F + AF. 

As At approaches zero, F 4- AF approaches F and 

approaches F. 

Then, as before, 

Q = fFdt. 

Distance.—In a similar maimer, for a speed-time graph, the 
formula is 

s == S^dt. 

Velocity.—In a similar manner, for an acceleration-time graph, 
the area under the curve gives the total change in velocity, or 

Change in velocity = = f adt. 

Work.—The formula for work or the area under a force- 
distance graph is 

Work = fFds. 

Volume.—The volume formula or the area under a graph of a 
cross-sectional slice given in terms of the height considered 
which we will call x, is 

Volume = V = J'Asdx. 

1000. Area in Polar Coordinates.—Let p = fid) be the polar 
equation with fid) single valued and continuous. We wish to 
determine the area between the radii vtud-ors OH and OC (whose 
angles are a and measured from tlie initial line) and the curve 

Let OP represent a radius vector that makes an angle d with 
the initial line. Let d take an increment A^. Let OS represent 
the radius vector that makes an angle d + ^d with the initial 

line, p becomes p + Ap. 
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As 6 takes the increment the area BOP, or A, takes an 

increment A4. If the rate of increment, as 
dA 
de> is determined as 

,0‘ -A 
Fig. 588. 

in the case of rectangular coordinates, then A 
can be found by integration. 

From the figure, the area of the sector POE 
of the circle is one-half the product of the 
radius by the arc PE^ or 

\p X pA^, 
and the area of the sector of the circle DOS is 

Mp + Ap][p + Ap]AP. 

Then, by comparing sectors, 

ip2AP < AA < Mp + Ap]2AP, 
if p or f{6) is increasing from P to aS, or 

Mp + Ap]2AP < AA < ^p^AP, 
if p or f(6) is decreasing from P to S, 

Now divide through by Ad. Then 
P^ AA [p + Ap]^ 
2 ^ Al9 2 

if p is increasing, and 

[p + Ap]^ ^ ^ ^ 
2 ^ AP ^ 2 

if p is decreasing. 
As AP approaches zero, 

approaches ~ 

aa 
whether p is increasing or decreasing, and - has a value that 

AP 

P^ P^ 
lies between ~ and a quantity that approaches ^ as a limit. 

Therefore, 

~ approaches | 

as A6 approaches zero. 

Limit r AA ~j dA 
de 

Therefore, 

[694] A = i/pW. or \fS(.e)*de + C. 
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Example.—Find the area enclosed by the curve, 

p = a\/1 — cos 6. 

A = fp^dd = 

=jf(i - cos e)de. 

=^[(? - sin e] + c. 

When d = 0, A = 0. C = 0. 

When ^ = 27r, A = ^ (27r — 0) = Tra*. Fia. 689. 



CHAPTER LII 

GRAPHICAL INTEGRATION 

GRAPHICAL METHODS OF INTEGRATION 

1001. Graphical Integration.—In Art. 916, it was shown that 
the ordinates of the integral curve measure the area of strips 
under the curve which is integrated. The following graphical 
method is based on this principle and the ordinates are so 
arranged that the ordinate representing each strip is added to 

the sum of the ordinates representing the preceding strips in 
the same manner as in the summation method (Art. 1036). 

Consider the given graph 0ABODE which we wish to integrate 
graphically (Fig. 590). 

Two facts should be continually remembered: 
1. When y = F{x) has a maximum or minimum point, y = 

J{x) crosses the X-axis. 

2. When y = J{x) has a maximum or minimum point, y = 
F{x) must have an inflexion point. 

678 
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Thus in Fig. 590, the OM curve must be tangent to the curve 
at the origin and must have an inflexion point at x = 4J: and in 
Fig. 591, the integral curve must have a maximum point just 
to the left of a: = 3. 

Starting with the first strip OAl, determine the mean height 
of the strip by drawing a horizontal line an, located so as to 
equalize the areas of the two shaded triangles. After a little 
practice, the eye will judge very accurately the position of the 
line an. Plot la as the ordinate measuring the strip. Find 
the average ordinate 52 for the second strip in the same manner 
but produce an to m and make wr equal to 52. Then r2 measures 

the sum of the two ordinates, or the area under the curve OAB. 

Continue in this manner for the various strips, and .¥5 measures 

the area OABCDE in square units. 
In case the strip has a width which is a fraction of a unit, the 

proportional divider, a much neglected instrument, is very use¬ 
ful. In Fig. 591, the width of the strips is taken as .5 unit and 
the proportional divider is set to a ratio of 2:1, and then the 
integral is measured direct on the vertical ordijiale scale. 

If the width of the strips is taken as 2 units, then the propor¬ 

tional divider is set to a ratio of 1:2. 
If the width of the strips is taken as 10 or 20 units, it is 

advisable to consider a new scale for the ordinates of the integral 
curve that is ten or twenty times the ordinates of the curve which 

is being integrated, 
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1002. Graphical Determination of Constant of Integration.— 
Consider the function, 

y == + 6a: — 36, 
and construct the graph as shown in 
Fig. 592. 

Begin at A and construct the in¬ 
tegral curve. Now there is nothing 
to show the location of the X-axis, for 

the integral curve will represent the 
integration of the given curve wher¬ 
ever we locate the X-axis. 

If, however, we have the additional 
information that the value of the in¬ 
tegral is 15 when a: = 0, we can im¬ 

mediately locate the origin at a point 

15 units below the intersection of the 

Fio. 592. integral curve and the F-axis, or where 
X = 0. 

1003. Work Required to Stretch a Spring.—^I>et W be the work 
required to stretch a spring through a distance s. Therefore, W is 

a function of s; that is, the algebraic func- nnn a « « or'*' 
tion must express IF in terms of s. 

According to Hooke’s law, the elonga- K-—S ->1 

tion is proportional to the force, or 

F = fcs, 

where fc is a constant depending upon the spring. 

But 

Work = J’Fds. 

Substituting F = ks, then 

Work = J'ksAi = §ks^ + C. 

When W = 0, s = 0. Then C = 0. 

1004. Example of Graphical Integration.—We desire to find 

the work done in the expansion of 1 pound of dry, saturated 
steam from a pressure of 100 pounds per square inch to 15 pounds 
per square inch. 

Fio. 593. 
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The primary curve is first plotted from data given in a steam 
table, and the integral curve was plotted from this curve using a 
proportional divider set to a 10:1 ratio (Fig. 594). 

The work done is 

77 X 10 X 144 = 110,880 foot-pounds. 

Note. 144 is a factor because the data gives the pressure in pounds per 
square inch, which must be reduced to pounds per square foot. 

Suppose the work of expansion of this example is to be divided 
equally between the three cylinders of a triple-expansion engine. 
Then divide the ordinate representing the work done into three 
equal divisions and project the points of division horizontally 
onto the integral curye and then vertically onto the expansion 
curve. The points thus located determine the initial pressures 
for each cylinder, as A and B. 

1006. Graphical Integration of Velocity Graphs.—The speed¬ 
ometer of an automobile traveling over an uneven country road 
gave the following readings for the different periods of time taken 
from the time of starting. Find the distance traveled during 
any time interval. Time is given in minutes and velocity in 
miles per hour. 

Time.I Q|1 |2 |3 |4 |5 |6 |7 |8 

Velocity.| 0 j 10 | 20 | 25 j 28 1 29 | 26 | 24 | 20 

From the nature of the problem. 

Distance = J^vdt 
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By plotting the speed-time curve and integrating, we find the 
distance traveled. 

Fig. 595. 

The curve is plotted and the proportional divider set in the 
ratio of 3:1 and the integral curve made. Now since velocity 
is in miles per hour, the ordinates must be divided by 60, but since 
the proportional divider is set to a 3:1 ratio, the vertical scale 
must be divided by 20. 

After 3 minutes the automobile has traveled three-quarters of 
a mile, and 8 minutes after starting the distance was a little less 
than 3 miles. 

1006. Standard Forms of Integral Curves.—The principle of 
transposing the origin of standard curves to make them represent 
a given equation can also be applied to curves of integration in 
the same manner as in differentiation, although the values of 
h and k are different in the two cases. 

1007. Graph of the Integral of a. 
J'adx = ax + b. 

If a = 1, the graph is shown in Fig. 596. 

Fig. 596. 

a'' 

Fig. 597. 

X 
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If a = any other finite value than 1, the graph is shown in 

Fig. 597, where 

a = slope, F-intercept = 6, and X-intercept = — ~* 

1008. Graph of the Integral of a Constant with Various 
Integration Constants.—In Fig. 598 is shown the graph of the 
integration oi y = 2 when the constant of integration equals 12. 

The dotted lines show the integral curves for y = 2 for different 
constants. 

I'KJ. 508. 

1009. Graph of the Integral of y = ax + b.—From analytical 

method, 

flT^ 

+ bx + C. 

This integral curve is a parabola. We will, therefore, take 
a curve oi y = change the vertical scale as shown in Fig. 

599, and by substituting ^ for a in the transformation forms 

(Art. 172), locate an origin which will make the curve represent 

the integral curve. Then 

h — ^ 
^ a a 
2-2 

^ -2ac 

* “ .a '2a 2a 

^‘2 
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Example.—In Fig. 599 is shown the graphical integration of 

2/ = 6a: + 6, 
with a constant of integration equal to —12. 

= I = 1, C = -12, jfc = + 12 = 16, 

Figure 600 shows the graph of 

y = f(Sx -f 2), 
when the constant of integration is assumed to be 

h = 

k = 

= 5|. 

-5. 

1010. Graph of the Integral of y == ax* + bx + c.—^Following 
the same principle as in the previous case, we get the values for 
h and k. In this case, however, the a is one-third as large and 
the b is one-half as large as in the standard transformation for¬ 
mulae. Then 

h = 

m « 

k = 
2^- 
^8 

27-- 

6* — 6ac 
6a 

be ^ b^ 

^ — constant. 

c — 
4a 
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ExAMViiB.—Integrate graphically. 

2/ = y + 2x - 5. 

o = b = 2, c = —5. 
2 _2 2(-5) 

* - —3 - r * - „. 3 
^ 2 2 

8 
-3.63. 

Fio. 601. 



CHAPTER LIII 

THE DEFINITE INTEGRAL 

INTEGRATION BETWEEN LIMITS 

1011. Definite Integrals.—A shorter method for finding areas, 
voJumes, etc., under a part of the curve from P to P' is as follows: 

Consider the area under the curve, 

y = 2\/x, 
between the ordinates representing o: = 2andx = 4. 

From the area formula, 

A = ^2y/xdx = 2J* x^dx = + C. 

2 

We begin to measure the area when x = 2, and 
then A = 0, or 

The area formula then is 
. A = ' 

This last formula gives the area under the curve for any point 
X beyond 2. If x = 4, then 

A = t(4)2 - 1(2)- 
Similarly, if we wished to find the area from x = a to x = 6, 

we would find 

The final result is simply the difference between the values 
of the integral function at the beginning and at the end of the 
interval considered. 

The symbol, 

f(x)dx 

686 
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is used to denote the difference between the values of the integral 
function at x == 6 and x = a and is called the definite integral 
front a to 6, while a and b are called the limits of integration. 

This difference is also written, 

£f{x)dx = f * 2\/xdx = 

Since the integrals representing areas, volumes, work, etc. 
are all of the same form, the definite integral formula can be 
applied to all. 

V == £ Adx. 

[696] 

Fdx. 

1012. Mean value of f(x) is represented by the mean ordinate 
or the average ordinate, or 

f''f{x)dx 
Mean value of f{x) = --f- 

0 — a 
(from X = a to X — b) 

Since 

f(x)dx = area APQEy 
a 

if we construct on the base AEj which equals 
(6 — a), the rectangle ACBE whose area 

equals the area APQE then 

Mean value = 
area ACBE 

b — a 
AE FD 

AE^ 

x-a' 

FD. 
U--X=h-M. 
Fici. 60o. 

\E 

1013. Determination of Mean Ordinate Graphically.—Sup¬ 
pose that A'B' is the given curve and that we desire to find a mean 

ordinate graphically between X = aandx = b. 
Integrate graphically as usual and obtain C units as the meas¬ 

ure of the area. Lay off this distance horizontally beginning 

C 
at o. The mean ordinate is r-Then by erecting an ordi- 

0 — a 
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nate at A equal to unity and drawing a line aBD cutting the per- 
pendiculsir line ED, the line DE will measure the mean ordinate. 

Proof.—From similar triangles, 
(7 

Mean ordinate : C::l:b — a, or Mean ordinate = v- 
’ b — a 

1014. Interchange of Limits.—Since 

J^f{x)dx = F{b) — F(a), where F(x) — f f{x)dx, 

and 

f;f{x)dx = F(a) - F{b), 

then, 

[696] = - f^S{x)dx. 

Interchanging the limits is equivalent to changing the sign of 

the definite integral. 

1016. Decomposing the Limits of Integration.—If 

• f^'Kx)dx = F(xi) - F{a) 

and 

f^J{x)dx = FQ>) - Fix,), 

adding, 

f;'f(x)dx + f,\fix)dx = Fib) - Fia). 

But 

f^Six)dx = Fib) - Fia). 

Therefore, 

f^fix)dx - //'fix)dx + fix)dx, 
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or (Fig. 605), 

Fiq. 605, 

f(x)dx = area APDC, 

J'J'f(x)dx = area APEB, 

f(x)dx = area BE DC. XI 
1016. Area in Parametric Form.—^I^et the equations be 

X = /(O, y == ^(0. 
Then 

y = <p{i) and dx = f'(t)dt. 
Substituting in Sydx gives 

[697] A = f<p(t)-r(t)dL 

Example.—Find the area of the ellipse from the equations, 

X = a cos y = 6 sin <p, 
dx ^ '-a sin (pdip. 

When a; = 0, ^ = 

X = a, ^ == 0, 
Then 

A = 

JQ J'2 
[b sin ^(—o sin ^)dV>] 

Total area = 4 X 

Trab 

= TTOh. 

[a6 sin^ ipdip] = = area in one quadrant. 

irab 



CHAPTER LIV 

REDUCTION METHODS FOR INTEGRATION 

1017. Elementary Forms.—In preparing a function for integ¬ 
ration, it is advisable to see if it is in the most convenient form. 
If the function is the sum of several terms, integrate term by 

term. If products or powers are involved, it is often best to 

perform the operations indicated before integrating. Fractions 

can often be divided out or written as negative powers. Radicals 

should be regarded as fractional powers. 
To check the results of integration, simply differentiate the 

result obtained and compare with the function which was to be 

integrated. The two should be identical 

Example .—Integrate. 

fx\^X* + a^dx = \f2x's/+ aHx = hfix’^ + 2x • dx. 

But 2x is the differential coefficient of (x^ + 

Assuming then that 

+ a2)i+Ms the integral 

and differentiating, we obtain 

l{x^ + a^)^2x • dx. 

This is three times too large, and hence the required function is 

+ a^)l. 

1018. Integration by Expansion.—Expressions are usually 
easier to integrate if they are first expanded. 

Example.—Find y*(a'‘ + x'^ydx. 
J'{a^ + x^ydx = J'{a^ + 3a*x^ + 3a%* + x^)dx = 

ya* dx + Zfa^xHx + 3J'a^x*dx + fxHx = 
a®x + oV + + \x’. 

1019. Fundamental Integration Forms.—Since integration is 

the reverse operation from differentiation, we may at once tabu¬ 

late some of the forms which we have learned by differentiating 
them. Also we will develop additional forms by the use of 

those already learned. Wherever a doubt exists as to the 
690 
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correctness of a result, differentiate the result and see if the 
original function is obtained. 

u”rlu = + C. 

[699] r-=log.u + C. 

- e£. + 

[601] fe'^du = + C. 
[602] y'cos ydu = sin u + C. 
[603] J*sin udu — — cos u + C. 

[604] y’sec^ udu = tan u + C. 
[606] y'csc^ udu = — cot i/. + C. 
[606] y'sec u • tan udu = sec + C. 
[607] y*CSC u • cot udu = — esc u + C. 
[608] ytan udu = log (sec u) + C. 
[609] f cot udu = log (sin u) + C. 
[610] f^cc udu = log (sec u + tan u) + C. 

= log [tan (| + 1)] + C. 

[611] y'ese udu = log (esc u — cot u) + C, 

= log [tan (^^)] 

/du _ 

— id 
= sin“^ - + Cj or — cos""*^ + C, 

a a , 

- + Cj or - - cot~^ + C. 
a a a 

r oi d'U 1. i^iyy ^ 

[613 / , ,—^ = - tau"^ - + C, or — cot~‘ - + C. 
'• W a* + a a a a /du 1 I W , ,, 1 1 ] /-r 

uVu^ _ a2 a a ’ a a 

= r„ (“ i-:) + ” r„ -* C /du 

■\/u^ ± 
= log («• + 1 f'• 

[617] ^= vers"* - + C. 

1020. Integration by Introduction of New Variables.—Given 

for integration, 
ffix)dx, 
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and suppose that the corresponding function is Fix); then 
ffix)dx = Fix), 

fix) = glFix)]. (2) 

Now suppose 
X = <f>iu). (3) 

That is, X is some function of m. 
Then fix) and Fix) are both functions of u and we have a 

function of a function. From differential calculus, 

^(x_)]^^F(xil dx 
du dxdu 

But from (2), 

which substituted in (4) gives 
d[F{x)] __ -X vda? 

du 
Integrating with respect to u gives 

Fix) ffix)^du. (5) 

But from (1), 
Fix) = ffix)dx, 

which substituted in (5) gives 
dx 

[618] ffix)dx = ffix)-du. 

By substituting for x its value in terms of u from (3) during 
simplification, a convenient form for integration usually results. 

Example.—Find J'ia + bx)**dx, . 

Let a + bx = u. Then x 

Hence from [618], 

b 
^ _ L 
du b 

dx 1 ti* ^ 
J'ia + bx)^x == J'u^ * 6 “ 6(rr+~l)* 

Substituting for u in terms of x, 

f (a -hbx)^dx » 
(a -f bx) 
b(n + 1) 
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From this particular form, any function of the form (a + bzy 
can be readily integrated for any value of n. 

(a + bxY 
- + C. J*(a + bx)dx = 25 

j'(a + W* - 

J*{o + bxYdx * + C. 

/ 
/ 

dx 
(a + 6a;)2 

dx 

46 

= y* (^1 + bx)-^dx = 
(a -f” 6x) -1 

-6 

= + bx)~^dx — 
1 

6(a -f 6x) 

+ C. 

+ C. 

{a + bxy ^ ^ 2b{a + bx^ 
The integral, S{a — bxYdx, may be treated in the same way 

by substituting a — x = w, and then 

+ c. 

J*(o — bx)dx — — 

J*(o — bxYdx — - 

/dx 
(a — bxY /dx 
ra~zr}^i 

~ 4- r 
2b 

_ (a - bxy „ 
36 

(a - 6x)-‘ ^ _ 
-'6 " 6(a - bx) 

{a-bx)-^C= -J_ 

1 
+ C. 

+ c. 
(a - bxy -26 ' ^ 26(a - bxy 

The exceptional case is when n = — 1 and the integral in 
both cases reduces to logarithmic forms. 

Take /dx 
a 

Put 0 + 6x = u. Then x = 

+ bx 
u — g 
~T~ 

, dx 1 
dS - b 

Substituting in [618] above, 

/"iTte - i /t * 6■ I. /i4 dx 
~T~ a + 

Put a + fex « u. Then x = 

Substituting in [618] above, 

6x 
u — a j dx 1 
TT-“'■aii “ {■ 

li 
Adx 

4* 6x 
A 
b. 

/du A , 
--jhgu ^ log (a + 6x) + C. 
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Example.—Determine the integral Je^^dx. 

Let nx = u. 

rru u , dx 1 
Then x - and = — 

n du n 

From [618], 

dx — I '-du — ~ I ( 
J ri n J 

From this, the integral 
J*e^^dx — 

Example.—Find y' tan xdx. 

Write f tan x dx = 
•I J cos X 

- I e»du = - ~ - e”*. 
n . n 

cos X 

Put cos X u. Then x = cos"^ 
whence 

^ __1 _ _ 
du 

Then 
sin X \/l — s/1 — cos^ X 

= r = - r 
J cos x J cos x\ sin x/ cos x u 

= —log u + C, 
Therefore, 

/tan X dx = — log (coso:) + C = log - ^-h 
cos X 

In a similar manner, 
J* cot X dx — log(sin x) + C. 

Example.—Given — 5.r)(2x — 5)dx. 

Let — 5x = u. 
Then 2x dx — 5dx = du. 

1 dx __ 

du 2x — 5 . 

f (x^ -5x) (2x - 5)dx = = f = 

But II = x^ — 5x. 
Then 

/(x2 - 5x)(2x - 5)dx.= i{x^ - 5x)2. 

Example.—Given cos e^dx. 
I^et e* = u. 

X log e = log u. 

log u j , dx 1 1 
— = log u. and — = - = — 

log e du u e* 
1 

^e* cos e*dx = J*( e* cos e* - du 
e* 

J'cose* du = cos udu* 

sin + C. 
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1021. Integration by Parts.—From the differentiation of a 
product, 

d , . du , dv 
dx dx dx 

Then by integration, 

J'^dx ' J "'dx'" 

which is the reverse of the differential form. 

By writing the above in a transformed form, we have a very 

J ’4^- 

■/ 

du , 
v~j~dx, 
dx 

useful formula for integration. 

[619] ^ ^ 

The method of using this formula is to determine functions 
u and V so that the product, 

4x= 

that is, equals the function given for integration. If the formula 
is put into the differential form, then 
[620] J'udv = uv — fvdu. 

If a quantity to be integrated is separated into two factors 
u and dv, the integral is found from the formula. 

Example.—Find fx log xdx. 
1 

Then du = dx, 
X 

Let log X = V 

Let xdx = dv 

Substituting in formula, 

Jx - log xdx = ^ • log 2: - J 

Thent; = 

X 

/* 

2 ■ l<*g X - ijx dx. 

X 
• log x — ix^ + C. 

To make this clear, note 
(dv) (u) (u) (f) 

■ dx =* log 2: 

(v) (du) 

S'l- -dx, 
X 

j*xlog 

Example.—Find y'sia* xdx. 
Let w = sin x. Then du = cos xdx. 
Let dv « sin xdx. Then v = — cos x. 
Substituting in the formula for integration by parts, 

y*8in* xdx == —sin X • cos 2: + y'cos^ xdx. (1) 
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But cos* X = 1 — sin* x. 
Therefore, 

y'cos* xdx = fdx — y'sin* xdx = x — y*sin* xdx. 

Substituting in (1). 
y*sin* xdx = — sin X • cos x + x — f sin* xdx. 

Transposing y*sin* xdxy 
2y*sin* xdx = x — sin x * cos x, /, „ , X sin X • cos X , 

sin* xdx = 2--- 

Example.—Find sin nxdx and y'e®* cos nxdx. 
Let u = sin nx. Then du = n cos nxdx, 

^ax 
Let dv = e®*. Then = — 

Substituting in 

gives 
y*e®* sin nxdx ^ uv — fvdu 

eax 

e®* sm nxox == — sm nx — I —n 
a J a 

cos nxdx. 

A second integration by parts with 
u = cos nx. du = —n sin nxdx 

e®* 
dt; = e®* dx. t; = 

a 
gives 

~ f e®* cos nxdx = —,n • cos nx + C~Ji^ sin nxdx. 
aj a* J a* 

(2) 

Therefore, 

/ 
The last terra of the second member is equal to the first member 

n* 
multiplied by -j • Therefore, by transposing, 

e®* 6®* n^ /• 
c®* sin nxdx = — sin nx--n • cos nx-I e®* sin nxdx, 

a o* ay 

n* + a* +JLT 
a* J 

e®* sin Tixdx = — sin nx-^n • cos nx. 

= -^a sin nx — n • cos nx). 

e®» 
Therefore, 

/e®* sin nxdx — « , , 
a* + n* 

In the same manner, 

(a sin nx — n cos nx) + C. 

/■ e®* cos nxdx 
a* + n 

j(n sin nx + a cos nx) + C. 
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1022. Integration by Transformation of Function to Be In¬ 
tegrated.—^It frequently happens that a function can be trans¬ 
formed into a form which has been previously integrated. 

/ir’ — 1 
-dx. 

= f(x -l)dx=f xdx - f^dx. 

= I - log a: -b C. 

dv 
EbcAMPiiE.—If ^ = Xf or in differential form, dy = xdx, then 

y = fxdx, 
= \f2xdx, 

= | + C. 

Example.—If dy — x\/l — x^dx, then 

y = i • if\(l — x2)H —2x)dx. 

- --~3—-+£■• 

This amounts to putting the function into the form, 

Su^duj 

with (1 — X*)* = Uy and ( — 2xdx) — duy since 

d(l — x^) — —2xdx, 

By transforming as above, this relation was obtained. 

1023. Integration by Inspection.—If the function to be 

integrated can be separated by inspection into two factors, one 
of which is the derivative of the other, then the integral is equal 
to one-half the square of the latter factor, for 

[621] = I + 

Example.—Find f{x^ + 2x)(3x’^ + 2)fix. 
Now (3x® + 2)dx is the differential of (x’ + 2x). Therefore, the 

integral is 
/w*\ (x® + 2x)* 

2 
Or 

jf (** -f- 2x)(3x* 4- 2)dx = -H C. 
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Example.—Find y* sin x • cos xdx, 
cos X is the derivative of sin x and the function therefore takes the 

form, 

/ du, 
u Tdx = 

dx 

Then 

/ sin X • cos xdx 
sin^ X 

2 
+ 0. 

A more general form for this same relation is 

+ C. 

Example.—Find /'xia^ + x^)^dx. 
Let + x^ = u. Then dii = 2x • dx. 

Then 

i J*2x(a^ + dx ~ " J*uhlu — 

_ l/u^\ _ u'i _ (a^ + 

" 2V i / ~ 7 ""7 

Many integrals can be written immediately from the laws of 
differential calculus since integration is the reverse operation 
from differentiation. If a function is to be integrated, an attempt 
should first be made to reduce it to some form which is recogniz¬ 
able as the differential of some known function. If this method 
does not lead to a solution, try some of the other schemes which 
follow to find the integral. 

Some of the fundamental forms of integration to which the 
function may be compared are as follows: 

f w"dM = + C (If n -1). (1) 

Example.—Find fxHx, 

fxHx = + C. 

Example.—Find fx'-^'^^dx. 

Special cases of X^"du are (2), (3), ahd (4) below. 

r(ax”' + dx = —(aaf" + 6)"+‘ 4- C. (2) 
j ma 
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Examples of this form are 

JVJ(2z^ + 5)^xdx, and J 

/sin"a: • cos xdx = —sin^+^ x+ C, 

as y'sin® x • cos xdx. 

/cos'" x • sin xdx =-cos""^^ x + C, 
n + 1 ' 

as y'cos® X * sin xdxj or /sin xdx 
——r—, which IS 7 cos~2 X • sm xdx. 

cos^ X 

(3) 

(4) 

1024. Inspection for Logarithmic Form.—If the function to 
be integrated can be written as a fraction whose numerator is 
the derivative of the denominator, then the integral sought is 
the logarithm of the denominator, for 

du 

—dx = log w + C. 
u ^ 

/e^ 
-j- 5 4" 

The derivative of (e* + 5) is e^. Therefore, 

'C'+l = 

2x 
Example.—Find | p--r—^dx. 

O “T 

The derivative of 5 + x* is 2x. Therefore, 

f: 
h 

Example .—F ind 

/ 
dx. 

— 5x 
The derivative of x^ — 5x is 3x^ — 5. Therefore, 

"3x2 _ 5 

/- 5x 
dx = log (x'^ — hx) 4* G. 

It will be seen from the foregoing that success in integrating 
a function depends upon trying different schemes of reducing 
the function to some known form which may be easily recognized 
as the differential of a known integral. By trying different 
relations, one may be found which corresponds in form to the 
given function in which case the integral is known. 
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^ dx, or 

/^ = IogM + C, 

5 ~ + C {dx^ = 2xdx), 

Special log forms: 

/x^~^dx 1 , , . ,. 

1 , ^ xHx 
3x^~6 

- log {ax”^ + 6) + C, 

log (3x^ — 5) + C. 

f cot axdx = f-?- -- dx = - log sin ax + C. 

/tan axdx = f^~^dx = — - log cos ax + C. 
J cos ax a /, /•(sec^ ax + sec ax • tan ax) , 

sec axdx = I---7--—-ax. 
J sec ax + tan ax 

= - log (sec ax + tan ax) + C. 
a 

/CSC axdx == + - log (esc ax — cot ax) + C. (10) 
a 

1026, Form y'x“(a + bx®)Mx.—Binomial differentials, as 

[623] fx^{a + 6x”)Pdx, 

are also integrated by the formula for integration by parts. 

The following are the four principal reduction formulae which 
reduce the expression to a simpler form or to one having a more 
convenient value for m or p: 

The above formula diminishes the power m by w but fails 
when (np + w + 1) = 0. 

fz^(a + hx^)pdx * -—H-J* x®‘(a + (2) J ' np + w-f-1 np-fm + 1*' 

This formula reduces the exponent p by unity but fails when 
(np + m + 1) = 0. 

■ S (2) 
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This formula increases the exponent mhy n. It is useful when 
m is negative. It fails when (w + 1) = 0. 

/ x"(a+6x").>d*= (4) 

This formula increases the exponent p by unity. It fail? 

when (p + 1) = 0. 

ExAMPLB.-Find/;;7=™- 

/dx 
which is readily 

solvable. /x^dx c 

Then m = 2, n = 2, p = -i, o = 6 = -1. 

CxHa^ - z^)-idx = ^/-4^- 
J ' 2 2 J y'fl! _ 

—xy/— x^ , — • 1 

=-T— +2B>n-‘- 

1027. Trigonometric Reduction Formulae.—By means of 
the integration by parts formula, the following trigonometric 
formulae are obtained. They will be found to be very useful 
time savers. 

/• t.an 

[624] 
•r ' 

fn-l 
[626] 

[6261 Ji 

Jtan” xdx = 

Jcot” xdx = ~ f cot"“^ xdx. 

fsir 
nj 

sin"* X • cos" xdx = — 
sin”*~^x • cos"‘*'^a: , w— 

m+n m-f-n 
m-2 . cos" xdx. 

[6271 f sin"* X • cos" xdx -^v^-——^ ‘ J w-fn m+nj 

— 7M + 2 fees'* xdx fcos'* a;, cos”*^^ x n — 7n + 2 r 
J X ~ m ’-'l J 

mom f ®®®" * -I- 
^ ^ J ^ ” (n - m)sin’”-' x'^ n -mJ sin" i 

8in"2ilicos_x^»i_:zi fsin-^xdx. 
m m J ein* xdx = — leso] Jm 

lejll /co,- » 4, - + 2-^ /cos- xdx. 
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[6321 f __cos X_m - 2 r dx 
J sin”* X (m — 1) sin*”""^ x m — 1 J x 

[6331 f = sin x n - 2 r dx 
J cos” X (n — 1)008”"*^ 0? n — 1 J cos””^ x 

1028. Forms f—g V jlT' f— J ax2 + bx + c J ax^+ bx + c 
By dividing both the numerator and the deviominator by a 

and completing the square, the first expression can be put into 
the form, 

1 r_dx_ 

J (*+s) - - 7(^+2^)’ 

Now let X + ^ = w. Then du ~ dx and 

/dx -= i du 
ax2 + 6x + c a I ~ ^^ac‘ 

J "" 4a2 ’ 

If ~ 4ac is negative, 
/dx _ 2 _j 2ax + b 

ai^ + bx + c ~ V4oc - P V4m 

If b^ — 4ac is positive, 

/dx _ 1 2ax + 6 — \/b^ — 4ac 

ax^ + 6x + c __ ^ 2ax + 6 + ~ 4ac 

If 62 - 4ac = 0, 

1“'I /a?+V+0 - -2a/+ 6 
[637] Form f—dx. 

U- 

2ax + 6 

V 4ac — 62 

I636I /- 

Jax2 + 6x + c^-"* 
An illustrating example will make the method clear. 

TTi,,__ C "b ^ J- Example.—Find 

[• 3x + 5 , 
x2 + 6x + 11 

2(x + 3)dx . 

x2 + 6x + 11 
^3(x + 3) - 4 
J (x + 3)2 + 2' 

rdx = 3 
• (x + 3) dx 
(x + 3)2 + 2 

-4 r___ 
V (x + 3)» + 2 

2 J (x + 3)» + 2 
is of the form, 

*= log u [W9] « 2 *cg [(x + 3)* + 2], 
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h 

du 
4* u‘ 

A r J '(x + 3)2 + 2 

[613], where m = x + 3 and o = \/2, and -4- dx 

Therefore, /3x + 5 

V2 

(x + 3)* + 2 

tan“ 
V2 

c^ + 6x + 11 
dx 9 log [(x + 3)* + 2]-y~ tan 

^ V2 
-1 £±3. 

\/2 

1029. Integrals Containing Fractional Powers of x or of (a 

+ bx).—If fractional powers of a single linear expression, 
a + bxj appear after the integral sign, then let 

a + bx = 2”, 

when n = least common denominator of the exponents of a + bx. 

Example.—Find 
I 

(x + 2)1 4- 4 
dx. 

(x 4- 2)1 - 3^ 
Let (x 4- 2) (the linear expression) = 

Then / 
t <4. dz. 1 ^ 

(x 4- 2)1 - 3^*^ ~ V - 3 
Divide the numerator by the denominator and the integration is 

readily performed. After integrating, replace 2 by (x 4* 2)*. 
In the same manner for fractional powers of x, use 2 to a power equal 

to the least common denominator of the exponents of x. 

Ex AMPLE.- 

Let X = 2®, 

-Find i dx. 
x* 4- 4' 

Then dx = 62 ^d2 and 

f 
>xl — xi 

xl 4- 4 
dx = 6 / + 4 

z^dz = 6 J1 z^ + 4 
dz. 

Divide the numerator by the denominator as before, until the degree 
of the remainder is small enough to integrate. After integrating, 
replace z by x^. 

This is a case of the preceding with a = 0, 6 = 1. 
1030. Integration by Trigonometric Substitution.—Expres¬ 

sions containing 's/a* — or ± o* can be replaced by 

trigonometric equivalents. 

When \/a* — occurs, let a: = a sin (p. 

When 'v^a* -h a?* occurs, let x = o tan <p. 

When "s/x* — a* occurs, let x = a sec <p. 
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^ Then 

\/a^ — ^ becomes a cos 

y/^ X \/a^ + becomes a sec <p. 

ssx / j — a® becomes a tan 
--^ Since, in a right triangle with x opposite 

the angle (p and a equal to the hypothenuse, 

sin ^ = - and tan ip = —j-?——-- 
\/a2 - a;2 

The other functions of the angle p may be determined by 
reference to the triangle of Fig. 606. 

Example.—Find J" \/— x'^dx. 

Let x == a sin p. Then dx = a cos pdp, 

— x^dx = y*a cos p X a cos pdp = y'a* cos^ pdp. 

Integrate by parts. From Art. 1021, /o j 9 + i sin 
cos* pdp =-"^=2- 

Then 

J*a2 cos^ pdp = ^{p + I sin 2p) + C. 

= ^ ^sin”' ^ + sin p • cos p^ + C. 

2 L a J 

C\/a* — x^ dx — ~ sin“^ - + --y/a* — x* + C. x^ dx ^ sin -‘^ + |v/ar 

1031. Plotting Functions of y/2? — x^, or \/x* ± —From 
the relations between the elements of the triangles of Fig. 607, 
and by constructing triangles in which a has a fixed value and x 
has a series of values, the yalues of the functions, 

y/and y/x^± a*, 
can be obtained graphically and plotted as ordinates. The 
curve can then be constructed and integrated very quickly. 

CL 

Cb) 
Fio. 607. 
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Example.—If a = 6 and we desire 

y'a* + make OA = 6. Draw OX ± 
to OA and by taking x = 0, a; = 1, a: = 2, 
j == 3, etc., the length of the hypothen'use 

gives the values of^/a^ + for each value 
of X (Fig. 608). 

Transfer these hypothenuses as ordi¬ 
nates and draw a curve through the ter¬ 
minal points. This curve is the graph of 

\/a* + X* for a = 6, or of y/SQ -f 
This curve can be graphically integrated. 

1032. Quadratic Expressions.—+ bx + c, il under a radi¬ 
cal, can be reduced to a binomial form such as + k) by 
completing the square. This form can be solved by trigo¬ 
nometric substitution as in the previous article. 

+ 6* + c . «[(*■ + lx + + (e - 

The right member is in binomial form. Now let 

If the quadratic is not under a radical, solve as a binomial, 
j 1033. Integration of Rational Fractions.—A rational fraction 
'in a: is a fraction whose numerator and denominator are polyno¬ 
mials in X, If the degree of the numerator is equal to, or greater 
than, the degree of the denominator, the fraction should be 
reduced by dividing the numerator by the denominator. 

Example.—Find /: * + 

Then 
x^ + 2x +I 

= + x — 3 + - 
5x + 3 

x2 -f 2x + 1 

/ X* + Zx^dx 
x^ + 2x +I 

= f x^dx + y* xdx — J" Zdx /: 
(l)x 4- S)dx 

x^~+2x+T 

The integration of the last term may be accomplished by the method 
given in Art. 1028 [637]. 

1034* Integratioa by Partial Fractions.—In the algebra 
section (Art. 499), a fraction was shown transformed into a sum 
of fractions with factors of the denominator of the given fraction 
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as denominators of the partial fractions 
given in Art. 499, 

5x^ — X — 24 a; — 2 

In the examples as 

+ (a;2 - i)(a; + 3)(x +4) - 1 ' x + 3 x + A 

If our problem was to integrate this fraction, then 
5a^ - 3a: - 24 

(a:*-l)(a: + 3)(a: + 4) /' xdx , f —2dx , f 
X? - IJ x^ - 1^ J : a; + 3 

dx 
h 

-.dx. 
+ 4" 

4 log (a; + 4). = ^ log (a:* - 1) - log ~-qj^ + 3 log (x + 3) 

EXAMPLE-Find 

The factors of the denominator being (x), (x — 1), (x + 2), wo 

assume 
2x -f 3_^ A JL 4. 

x(x — l)(x -b 2) X X ’ 1x4-2 
Clearing of fractions, 

2x 4- 3 == A(x — l)(x 4- 2) 4“ Bx(x 4- 2) 4- Cx(x — 1). 
Equating the coefficients of like powers and solving, 

A = == S, C = -i. 
Substituting these values, 

2x4-3 _3 5 _ 

2x"^3(x~l) 6(x4-'2)’ 

s, 

x(x — l)(x 4* 2) 
(2x 4- 3)dx 

— _L - _\ f- 
2J X sJ X - 1 eJ X“'+2* 

= log 

x(x — l)(x 4- 2) 

= log X 4- S log (x ~ 1) - J log (x 4- 2) 4“ C, 
Cix - 1)« 
xJ(x"4-'2)*' 

1036. Successive Integration.—In the differential calculus we 
found a use for successive derivatives which we obtained by 
differentiating the derivative successively. In integration, we 
have the reverse operation. 

d^v 
Example.—Find y, when ^ = 8x. 

Then 

!l) 
dx 

dx* ’ 
J* Szdx = 4x* 4” Cl. 

Integrating, 
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dM 
„ \dz/ 
But^ may be wntten —. Then 

di © 
dx 
dy 

= 4^2 + Cl, or d{^^ = (4a;2 + Ci)dx, 

Integrating, ^ - f + Ci)dx. 

= ix^ + Cirr + C2. 
Or 

dy = {ix^ -h Cix + C2)dx, 

Integrating again, 

y = f(ix^ + CiX + C2)dx, 
1 

= ^x* + - 2 ' + ^22^ ■+■ ^3. 

This last result is also written in the form, 

y = S S dxdxdx. 
When two integrations are performed, the form is 

y = f f f{x) dxdx. 
If no limits are assigned, the integral is indefinite. 

Example.—The acceleration of a moving point is constant and equal 

to a. Find the expression for the distance s traversed. 
d^s 

Acceleration a = j-r • 
dr 

Then 

Then 

Integrating again, 

Kd^ jds\ , 
^ dt ='^’<>rd[jJ ==adt. 

-j- — J'iidt = at Cl. 
dt 

ds — {at 4- Ci)dt. 

8 ^ J' {at + C\)dt *= + C\t + Cz. 
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SUMMATION METHOD 

1036. Summation Theorem.—^Let y be any quantity which 
varies continuously with x and let i/i, 2/2, 2/8, . . . 2/» values 
of the function at intervals LXi, not necessarily equal, from 
X — aio X = h. 

Multiply each of these values by Ax* and form the sum of 
these products. Then 

yl^Xl 4- 2/2AX2 + 2/3AX3 + y^^Xi + . . . + 2/nAxn. 

Fio, 609. 

Now if the number of the strips in the 
interval from x = a to a; = 6 is allowed to 
increase without limit in such a way that 
all the widths Ax» approach 0, then this 
sum approaches as a limit the definite 
integral 

£ydx, 

or 

[638] + y2^2 + ysAXa + . . . + J/nAXn] == 

where Ax is the largest of the widths Ax*. 
The sum in the brackets above is sometimes written 

h 
]^(xOAXi. 
*-l 

yiAxi, yzAxzj etc. are the areas of rectangles and it is easily 
seen that the sum of these areas, us the number of rectangles is 
allowed to increase without limit, will approach the area under 
the curve as a limiting value. This area has already been proved 
to represent the definite integral; hence, the limiting value of 
the sum of the rectangular areas as their number increases indefi¬ 
nitely is the definite integral of the function between the limits 
a; » a and x =» 6. 

708 
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In most of the older treJk 
the inventor, to the present Newton, 
given as the sum of the infinitesimki ^ summation has been 
gave the definite integral. The sign'Pf added together 

modified S representing sum of. Consi51i.^g^^ti«« ^ ^ 

resulted because according to this idea the Su 
the tops of the strips had to be neglected, and 
retained was that the calculus was a method of app?LP^^^®|^^ 
only. It is, therefore, important to emphasize the notio^^,^^^ 
it is the limit of this sum rather than the sum itself with whi^. 
we are concerned, and this limit is a perfectly definite quantity 

no part of which is neglected. If this point is understood, no 
difficulty should be experienced with the definite integral as the 
representation of an area or a volume. 

In the same way the summation theorem can be used in for¬ 

mulae for work, volume, etc. 

Work = + F2^S2 + F3AS3 FnASn= J^Fds. 

Volume-i^i+-^2A3:2+i43Aa:3+ . . . An^Xn^=^J^Adx. 

We now have integration also as a method of calculating the 

limit of a sum. 
This method is to be used whenever a quantity under con¬ 

sideration is the limit of a sum of the type shown by 

yiAxi + y2Ax2 + yz^Xn + . . . + yn^Xn = ^f{x)Ax, 

proceeding as follows; 
Divide the required magnitude into parts such that it is 

evident that the result will be obtained by finding the limit of 
the sum of such parts. Now find expressions for the magnitude 
of the parts and integrate between the limits x == a and x = 6. 
That is, find the limit of the sum as the number of parts is 

increased indefinitely. 
Some authors represent the fundamental theorem in the form. 

Example.—Find the amount of coal which can be drawn from a 
conical pile having 100 feet as the diameter of the base and an angle of 
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*ae running flush with the ground 
repose of 27°, by a conveyor 2 
across the center of the base of t’ 

Fig. 610. Fro. 611. 

a = 50 X tan 27° - 50 X .5095 = 25.475. 

5 = .5 X tan 27° = .5 X .5095 = .255. 

Height of cone = 25.475 + .255 = 25.73 

Perpendicular distance c = 25.73 X cos 27°. 

= 25.73. X .891 = 22.925. 

If we take our x distances on c and cut our dx slices perpendicular to c, 

the sections will be parabolas as shown in Fig. 612. 
Thus, 

d in terms of x = tan 36° X x. 
= .7265x. 

e in terms of x ~ tan 27° X x. 
= .5095x. 

Height of parabolas = d -f- e = 1.2360z. 

/ = 
X 

Sqi 
= 1.122a:. 

cos 27° 

A: = 2/ X tan 63° = 2 X 1.122a: X 1.963 = 4.405x. 

Archimedes (250 B.C.) proved that a parabola inscribed in a rectangle 
has an area equal to exactly two-thirds of the rectangle (see Art, 560). 

We can, therefore, consider our dx slices as cutting rectangles 1.236a: 
high and 4.405a: wide and take two-thirds of these areas as the areas of 

the parabolas. 

2 2 X 1.236xX. 4,405x^^ ^ ^ 3.6297x»dx. 
Jo 3 Jo 

'*-22.926 3.6297x» 

l»-o 3 
-2.42 X (22.925)*, 
= 29,156 cu. ft. 
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Deducting small triangular wedge volume at D, or 

100 X 1 X .255 f . ---== 12.75 cubic feet, 

29,156 — 13 = 29,143 cubic feet. 

29,143 X 55 (weight of anthracite coal) _ 
_ _ ^0] 

,, , „ 50 X 50 X 3.1416 X 25.475 
Volume of full cone = - - -= 

o 

801.43 tons. 

- ()6,693. 

29 143 
Percentage drawn out = X 100 = 43.7 per cent. 

1037. Areas Bounded by Plane Curves. Rectangular Coor¬ 
dinates. Summation Method.—We desire to find the area 

bounded by the curve, y = /(x), the X-axis, and the two ordi¬ 

nates X = a and x — h. 
The area is the limit of the sum of the rectangles yAx, or 

b 

[639] A = 2 2/A^ = £ ydx. 
a 

an answer that we would expect from Art. 1011 

for the area under a curve. 

Likewise, the area bounded by a curve, 

the }^-axis, and the abscissae y — c and y = rf is 
d 

[640] A = xAy = £ xdy. 
C 

Example.—Find the area bounded by the curve, 
.r = 2 + 7/ - 

and the T-axis. 

Fig. 614. Fio. 615. 

Fig. 613. 
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-h+MT,- 
= (4 + 2 ~ f) — (—2 + i + i). 
-4i. 

Example.—Find the area within the hypocycloid, 
X = a sin* By y — a cos* $, 

From Fig. 616, 

ifjydx. 

From X = a sin* By 
da; = 3a sin* B • cos BdB, 

Substituting these values of y and dx in the area 

formula, 

cos* B • 3a sin* B • cos Bdd» 

■X’ = 12a* I cos^ B • sin* BdB. 

Applying the reduction formula of Art. 1027 [627], 

j* cos"* 

gives 

/ 

X * sin" xdx 

cos^ B • sin* BdB — 

cos”*~^ X ■ sin"^^ X , w ■“ 1 
m + n m + 

cos* B ' sin ^B , 3 

cos"»'“* X • sin**a;da: 

6 
+ ^J*cos* B • sin* BdB, 

But 2 sin ^ • cos B = sin 2By whence 
cos* B • sin* ^ = i sin* 2B, 

Therefore, 
iJ'cos^ B • sin* BdB = i^sin* 2BdB. 

This may be integrated by the method shown in the example of Art. 

1021. 
AB — sin AB 

- i sin 4^) = i f cos*d • sin* B6 

Therefore, 

12a*y*co8^ B sin* BdB = 12a* 

Substituting the limits, 

Area = 12a»(g) 

64 

cos’ 9 • sin’ 0 , 46 — sin 40 

6 64 

3ira* 
8 

1038. Summation Method. Polar Coordinates.—If the polar 
equation of the curve is 

• P^m 
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and the area is required between the curve and two radii vectors, 

then the required area is the limit of the sum of the circular 

sectors as shown in Fig. 617. 

The sum of the areas of the sectors is 

n 

^pi^Adi + \p^A62 + . . . + \pr?Adn = 
1 

n 

[641] \p^d6 = area required by funda^ 

mental theorem. 

Example.—Find the area of the cardioid whose equation is ^ 

p = a(l + cos 6)f 

B ranging from 0 to 27r. 

From 

Area = ^0^(1 + cos B)HB, 

= jT (1 -f- 2 cos B -h cos* B)dB. 

= + 2 cos 6^ 4- cos* B)dB. 

But cos* ^ = i cos 2B+h (Art. 604) [298]. 

Area *= ^1 + 2 cos ^ + 2 + 2)^^* 

*3 “ J* ^1.5 + 2 cos ^ ^ cos 2B^dB, 

« ^*j^L5^+ 2sin^+ ^sin 2^]^'. 

» 2 X 2*r) = 
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1039. Length of Curve. Rectangular Coordinates.—From 
Art. 962 regarding measuring of curves and some of the theorems 

of geometry, the length of a curve is defined 
as the limit of the sum of the chords as the 
number of divisions of the curve is increased 
without limit and at the .^iame time each 
chord approaches zero as a limit. 

Let the curve be defined by an equation, 
as 

y = fix), 
and the length of the arc PQ is to be determined. Points 
P(a, c) and Q(fc, d) are given. 

Take any number of points on PQ and draw chords joining 
these points. Then, arc PQ is the limit of the sum of the lengths 
of these chords as the number of chords is increased without limit. 

Consider one of these chords, as P1P2, as a sample (Fig. 619). 

Then 

chord P1P2 = 
Dividing inside the radical by (Axi)^ and 

multiplying outside by Ao^i, then 

' = 

From the theorem of the mean. 

where x' is the abscissa of the point P' at which the tangent to 
the curve is parallel to the chorti P1P2. Then 

chord P1P2 = [1 + f'ix')^]^Axi = length of first chord. 

In the same manner, the lengths of the chords P2P3, P3P4, 
etc. can be expressed. 

The sum of these chords then is 

[1 +r{xy]^Axi + [1 +f'ix'y]^Ax, + . . . [1 + 

Limit 
A* —► 

Or 

(642] 

= 2(1 
t-1 

Q^[l + f'(xi)^]hAXi * •f/'(a:)*lJcto by fundamental theorem. 

* - r[>+ 
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If y is used for the independent variable instead of *, then the 
formula becomes 

^=r[(l)’+>]v 
where the y limits of integration are c and d. 

Example.—Find the length of the curve ?/ = from x = 3 to a: — 6. 

If g = 2x, and (g)' = 4x^ 

Then 43^ 
/*6. _. 

Si — L U 4- 4:x^]^dx. ^ - 

Let 2x == tan (p. Fig. 620. 

dx — ^ sec^ipd<p. 
The triangle in Fig. 620 shows the relations of the sides and 

' \/l + 4x' — sec (p. 

Then 

J^^[l + 4x^]^dx = sec <p ^ sec^ (pd(p = sec^(pd(p. 

_ 1 ^6 d^ 
2J3 COS'^ <p 

From [633], 
1 rf> d<p __ 11 sill ipdip 1 re dtp 

2J3 cos'^ p 212 cos^^ p 2J3 cos p\ 

But from the figure, 

r!S:r--. - f- *vr+4?; 2 cos^ ^p __2__ 

i + 4x^ 
and from [610], 

r = log (sec <p + tan if) = log \/l + 4x“ + 2x). 
J cos <f 

Therefore, 

^j^xV 1 + 4x* + I log (V1 + ~ 

^eVl + 144 - 3\/i'+ ^1 

+ K[log(Vl + 144 + 12) - log (Vl + 36 + 6)] 

= 72.24 + 18.25 jg _ 2.49] = 27.34 units. 
2 2 



716 MATHEMATICS FOR ENGINEERS 

1010. Length of Cunre. Polar Coordinates.—^Let a straight 
line PN' be drawn perpendicular to OQ from P (Fig. 621). 

(chord PQy = (PiV')» + (N'Qy. 

Fio. 621. 

Rewriting this in equivalent form, 

(chord P«). - (ore PN)’ + (^) W 

which equals, when substituting equivalents, 
/ PN^ \2 /Ar'0\2 

(chord P«-.(j|^)(rA.y + (j|)(ir)=. 

Rearranging again, 

Now the length of the curve is the limit of the sum of the 
lengths of the chords as A$ approaches zero. The fractions 
PN' N'Q 

-=nn: and both approach 1 as approaches zero and 
arc PN NQ 
arcs PQ approach chords PQ. 

Hence, the length of arc, 

rv rfr w . 

^ =/[I-+ (£)>• 
For definite integrals, or length of arc between two limiting 

angles, then 

'•“I ^ - X’[’^+ 
The length of arc can also be expressed as 

Example.—Find the whole length of the cardioid, 
r = 2a(l — cos 6), 

Differentiating the expression, 

2a sin 
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Substituting in above expression, 

/S = 2a[(l — cos + sin^ 9]^d6, 

=* 2j^ 4a sin = 16acos = 16a. 

1041* Surfaces of Revolution.—When a curve, y = f(x)j is 
revolved about the X-axis, a curved surface is generated. Let 
the area of this surface be denoted by S, 

Consider an infinitesimal arc ds as being rotated and generating 
a narrow band running around the surface. . » 
Its length would be 27ri/, its width ds, and its 
area 2Ty • ds, but from Art. 1039 for the length ^ \ 

of the curve, we have ( j j r j 

pp-. *. 
.. . , . Fia. 622. 

_J n n 

F. 

which substituted in the above formula gives 

Surface = 

Or 

[647] Area of surface of revolution = 

or since 

da = y/WF+W)^ = [^ + 

then 

[648] Area of surface = ^^2iryds = 27rJ^ yds. 

Example.—Find the area generated by revolving the parabola, 

= 4j;, 
about the X-axis and between x = 0 and x = 8. 

j/2 = 4x. 
y = 2x1. 

_L . 
dx F~x 

Surface = J^*4irxl^l -H dx “ 4irJ^ (x -f l)ldx. 

1042* Volumes of Solids of Revolution.—^Let V denote the 
volume of the solid generated by the rotation of the curve CD 

about the axis AB or the X-axis. 
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Let the equation of the curve CD be 

y = fix). 
Divide the area ACDB into rectan¬ 

gular strips as shown in Fig. 623. 

Each rectangle, when rotated, gen¬ 

erates a cylinder. 

The required volume is equal to 

the limit of the sum of the volumes 

of these cylinders as their number is 

made to increase without limit. 

If the length of these cylindrical 

slices is denoted by Axi, Aa;2, Axa, 

etc., and if the corresponding radii are denoted by 2/1,1/2,2/3, etc., 

then the volume of the first cylinder considered is 

The sum of the volumes of all such cylinders is then 

TTt/i^ X\ + + TTtJz^^Xz + . . . + TTt/n^AXn = ^WlJi^AXi. 

1 

Applying the fundamental theorem, 

1 

Hence, 

[649] Volume = ^ ~ J* yV/x. 

Example.—Find the volume generated by rotating tlie ellipse, 
r2 •j/2 

= 1, £ . ir 

about the X-axis. 
Transposing, 

bK yz ^ (fl2 _ a;2). f/2 =: —r 
a* 

Since it is more convenient to consider the rotation of only the right 
half of the ellipse, that is, the rotation of AB about OB^ and to multiply 

the result so obtained by 2, then 

V 
2 

^£y-dx. 

x^)dx 

Atrab^ 

2vab^ 
3 

Fia. 624. •3 



SUMMATION METHOD 719 

1043. Fluid Pressures against Vertical Walls.—^Let ABCD 
represent part of the area of the wall 
of a reservoir, and the total fluid pres¬ 
sure against the wall is required. 

If we divide AC into n parts all of 
typical area y • Ax, since the pressure 
per square foot is equal to the depth 

times the weight W of 1 cubic foot of 
the fluid, then the pressure on the 
rectangular strip is 

Wxy • Axj 

and the sum of all the pressures on the n rectangles is approxi¬ 
mately 

^Wxy • Ax. 

The pressure on ABCD is the limit of this sum. Hence, by 
the fundamental theorem, 

Limu ^ fWxydx = Wfxydx. 

The pressure on a vertical submerged surface bounded by a 
curve, the X-axis, and the horizontal lines, x = a and x = b, 

is 

[660] Fluid pressure = W J'^yxdx. 

Example.—Find the pressure on a gate which closes a circular main 

whose diameter is 6 feet, when tlie main is half full of water. 

From the equation of the circle, 
x2 _|_ y2 ^ 9^ 

we have 

1/ = a/9 — x^. 

For water, W = 62. 

The limits of integration are x = 0 and x = 3. Then 

Fluid pressure = x^xdx. 

^ = ~IV(9 - x.ml - 558. 

^ Total pressure = 2 X 558 = 1116 pounds. 

Fig. 626. Note that y must be a function of x. 

1044. Work of Lifting Fluids.—The work done in lifting equals 

the weight multiplied by the vertical height through which it is 
lifted. In emptying a cistern or a reservoir, as the level of the 
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water is lowered, the height increases and we have a variable 
height to consider. 

Consider a reservoir as shown in Fig. 627. We desire to know 
the amount of work done in emptying from depth a to depth b 

and lifting to height 0. 

Fig. 627. 

Divide AB as usual into n cylinders of thickness Ax. The 
volume of each cylinder is 

• Ax, 
and its weight is 

Wiry^ • Ax. 

The work done in raising this cylinder of fluid is 

Winf^ • Ax X X. 

The work done in lifting all of the cylinders is 

HiWiry^x • Ax, 

and 

• Ax = fWiryH ■ Ax. 

Therefore, between the limits x * ct and x 

[661] Work = f^Wirfxdx = Wrc/yxcix. 

Example.—Find the work done in pumping out the water from a 

hemispherical reservoir 10 feet deep and raising the water to a height 
of 10 feet above the reservoir. 

Equation of a circle of radius 10 and center at 0 is 

x^ + y* * 100. 

Equation of a circle of same radius but with center at 0i is 

(x - 10)* + 2/* « 100. 
Developing, 

•y* 20x ~ X*. 
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Therefore, 

Work = Q2wJ'^^{20x —• x^)xdx, 

= 194.78/jj°(20a:" - x’‘)dx. 

= 1,785,548 foot-pounds. 

X 

X 
Fio. 628. 



CHAPTER LVI 

EXAMPLES OF INTEGRATION 

1046. Example of Integration.—A quantity y increases with 
a: at a rate constantly equal to .06?/. If ?/ = 80 when x = 0, 
finji the equation for the function. 

First, note that the quantity varies at a rate which is a per¬ 
centage of the function itself and, therefore, follows the 
exponential law or the compound interest law (Art. 958). 

From the statement of the problem, 

t - 
This can be integrated in this form but if we divide both sides 

by y, then 

06. 
y clx 

The left member is now the derivative, with respect to x, of 

loge y. Then 
log y = .06x + C. 

But y = 80 when x = 0. Therefore, 
log y = log 80 = 0 + C. 

.\C = log 80. 
Then 

log y = .06x + log 80, 

log y — log 80 = .06x, 

whence 

This means that .06x is the exponent to which the base e must 

V 
be raised to equal the fraction 

Therefore, 

or y — SOe’"**. 

722 
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1046. Tension in Belt and Pulley Drive.—Consider a small 
element As of the belt at the top of the pulley subtending an angle 
A$ of the arc 6 of contact in radians. 

Consider the small element As as a free body and the forces 
acting on it. We will, therefore, use a law of mechanics and 
since the body is in equilibrium, we will equate the horizontal 
and vertical forces. 

Let T = tension on one end of As. 
T + AT == tension on other end of As. 
P = the normal pressure. 
fx = the coefficient of friction. 

The difference between the horizontal components of T and 
T + AT is equal to the friction due to P or to jjlP. Then 

{T + Ar)cos — T cos 4' = mP- 

Reducing, 

AT cos ^ = ixP. 

Resolving vertically, 

p = (T + AT) sin 

= 2T sin ^ + AT sin ^ ’ 

C'ombining, 

AT cos 

AT = 

~ = fi{2T -t- ai) sin ~ 

fi(2T + AT) . Ad 
!-_«m — 

Ad 
sin or 

cos 

^ ^ n(2T + ^T 
~ AO 

cos-^ 

A6 ^ 
Now as Ad approaches 0, cos approaches 1, and -- 

sin 
AO 

A6 

sin 
AO 

. approaches 1, and approaches 
Au 

2 

(IT 

do' 
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Hence, taking the limit of both sides, 
^dT 

2T,orf-,.7. 

dT = itTde. 
Grouping like variables together for purposes of integration, 

Y = 

Confining the variables to their proper limits and integrating, 

Ct = 

or 

or 

[d62] 

or 

[663] 

log. Ti - log. Ti = ixd, 

T 
(in the log form), 

i 2 

T jJ = e^e (in exponential form). 
1 2 

In the case of a tandem belt conveyor drive where A and B 
(Fig. 630) are geared together as the drive, 
then 

= e"*' and == e^»*. 

Combining, 
Ti 

or the ratio of the tensions in the tight to 
the slack side is 

[654] p = €>■(»' +»•>. 
1 3 

If the angle of contact is the same for both pulleys, then 

[666] 

If three drive pulleys were used, then 
Tension in tight belt ^ 
Tension in slack belt 

It is assumed, of course, that the speed ratios compensate 
for the stretch in the belt or that the transmitting force of the 
driving pulleys is equalised. 
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1047. Law of Cooling.—Newton established the law of cooling 
which states that the temperature of a heated body surrounded 
by a medium, as air, of constant temperature decreases at a rate 
proportional to the difference in temperature of the body and 
the medium. 

If 0 denotes this difference in degrees, then 
do 

Rate of change of temperature = 

and the given relation is 

where A; is a constant depending upon the units used. 
Putting in differential form, 

* k’ e 
We now come to the object of this example. It is possible 

to integrate each variable between the proper limits, as t between 
h and h and 6 between $i and or 

/>=-ur?=-!>-<• 
1666] <*-<> = i log 

It will readily be seen that the greater the difference of tem¬ 
perature, the more rapid is the rate of cooling, and if you wish 

to cool your coffee in the shortest time during a hurried break¬ 
fast, let it stand as long as possible before you add the cream. 

1048. Work Done by an Expanding Gas.—The expansion of 

gases isothermically, or with constant temperature, is repre¬ 

sented by the hyperbolic curve, y = From the differential 

of log, X (Art. 962) [642], the differential curve was 
, dy 1 

^ ^ dx X 
Therefore, the work done by the expanding gas is represented 

by the log curve. 
1048. Deriving the Equations of Motion of a Projectile (by 

Ihtligni^n).—If we ignore the air resistance, there is no hori- 
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zontal acceleration and the Vertical acceleration due to gravity 
is —32 feet per second per second. That is, 

0. $.-32. (1) 
dt^ df 

Integrating both of these twice gives the desired equations. 
The constants of integration are determined by the way in 
which the projectile is fired. 

Example.—Find the equations of motion of a projectile fired with a 

speed of 2000 feet per second at an inclination of 30°. 
Integrating equations (1) above, 

J^ = c. = -32< + Cl. (2) 

Integrating again, 
[667] x = ^ + 1/= -16^2 4-Cif-f A^i. (3) 

If we have chosen our axes so as to pass through the firing point, then 

X == Oand y — 0, when t = 0. Hence, A; = 0 and ki = 0. 
.o To determine C and Cx from (2) when 

and!| = Ci. 

speeds, or 

m cos 30° = 1732. 

Fig. 631. Vy = = 2000 sin 30° = 1000. 

Substituting these values of C and Ci in (3), 
X = 1732<. y = 1000< - 16C. 

1060. Di&tance Traveled.—Knowing the speed F of a moving 
object at every instant, we can find by integration the distance 

S traveled during any interval of time. 
5 = fVdt. 

If 
X — & and y = — t, 

then 
F, = 2t and F^ = <* - 1. 

From 
F = Vlv,y + (F,)*, 

F = V{2ty + (f* - 1)* = Vt* + + 1 = <* + 1. 
Hence, the distance traveled is 

[668] S = fVdt * /(<* + l)dt » + t. 
The constant of integfation is zero since 5 =* 0 when f - 0, 

t = 0. 

^ = r 
dt 

The component 
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1061. Bc&ms. The shearing force at any section of a beam is 
the algebraic sum of all the transverse forces acting on one side 
of the section taken. When the sum or resultant forces act 
upward on the left of the section, the force is considered positive, 
and if downward, it is considered negative. 

Consider a beam supporting a uniform‘load of w pounds per 
foot and four concentrated loads Wi, W2, Wz, and anilet 
Ri and R2 represent the left and right reactions. 

Fig. 632. 

The shear, then, at any section, say between the second and 
third concentrated loads, is 

S ^ R,-^ TFi - W2 - wx. 

The bending moment at any section is the algebraic sum of 
the moments of all the forces acting on one side of the section 
taken about the center of gravity of the section as an axis. 

When the resultant moment is clockwise, it is positive, and when 
counterclockwise, it is negative. 

Referring to Fig. 632, then, the bending moment is 

[669] M = Rix- W,{x - a) - W^ix - h) - -f- 

Let us now differentiate this equation of the bending moment. 

- Wi - Wi - wx. 
ax 

Compare this equation with the equation for the shear and 
note that they are the same. The moment and shear curves 
always have the relation of primary and derived curves. 

If we draw the moment curve and differentiate it graphically, 
we obtain the shear curve. If we are given the shear curve, which 
is easily found, we can obtain the moment curve by graphical 

integration. 
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Suppose that we are given a beam loaded as shown in Fig. 633. 

100^ 200^ QOO* 

Fio. 633. 

It will be noted that the slope of the curve for the first three 
units is the same. Therefore, if the slope for one is found, the 
same slope can be continued for the three units. 

Fio. 634. 

Since the bending moments at the ends of the beam are zero, 
then our constant of integration is zero and we start the moment 
curve,at zero. 
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Fig. 635. 

Note from the diagram that there are two places where 
maximum bending occurs, one a positive {x = 3) and the other 
a negative (x = 8). 

Fio. 636. 

1063. Uniformly Loaded Beams.—Consider the case of a 

uniformly loaded beam I feet in 
length and loaded iv pounds per 

foot. 
Total load of the beam = wL 

Load Ojtt each reaction = 

Shear at x distance from end — ~ 

Fia. 637. 
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Bending moment — 
wlx wx^ 

Let us examine the nature of this moment curve, calling the 

bending moment or value of the function, Y. Then 

„ wlx wx^ 
^ -2’ 

or 

Comparing with the general form of equations of the second 

degree, 

A E = I, and B‘>- - AAC = 0, 

and the equation represents a translated parabola. 

Let us complete the square of the second-degree term after 

modifying the form. 

Dividing by 

Completing the square, 

X^ — lx + 
■ 4 4 

SY + Ihv _ 

4w 
= -^ (y - 

w\ 8/ 

The negative sign indicates that the parabola is inverted with 

y vertex pointing upward (see Fig. 638). 

Also, the origin is ^ units to the left 

'N. A-t 
/ \ ^ of the axis of the parabola and units 

—1q o 

/ \ below the vertex of the parabola. 

ggg It will also be observed that A; or 

is the maximum bending moment of the beam, a quantity which 

will be found in any book on the strength of materials. 
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As an illustrative example, the diagrams of Fig. 639 represent 
the case of a beam 12 feet long uniformly loaded, the load being 
200 pounds per foot. 

Fig. 639. 

Advantage may be taken of this parabolic law to make a chart 
from which the maximum bending moments for any uniform 
load and span can be found. 

From the equation, 

which is the equation of the bending moment when the origin 
is at the vertex, and selecting suitable horizontal and vertical 
scales, the bending moment will be a multiple of the load w 
per foot. 

For instance, for a beam of 16-foot span, loaded 200 pounds per 
foot, the maximum ordinate is 32w), or 32 X 200 = 6400 pounds. 

For a beam of 20-foot span loaded 300 pounds per foot, the 
maximum bending moment equals 50w;, or 50 X 300 == 15,000 
pounds. 

For any span, as 15 feet, with a divider set to 15 units, find a 
place where the parabola is 15 units wide and the ordinate at 
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this point multiplied by the loading per foot gives the maximum 
bending moment. 

If the bending moment at a certain point of the beam is desired, 
measure the ordinate in terms of the vertical units and multiply 
by the load per foot. 

The shear diagram can also be readily drawn by laying off 
the reactions as shown in Fig. 641 and drawing the diagonal line. 

The graphical method of finding the shear and bending moment 
of beams is the proper method to use, especially if the beam is 
loaded by a combination of concentrated and uniform loads. 

1064. Resisting Moments of Beams.—The bending moments 
of the loads on a beam must be balanced by the resisting moment 
of the section of the beam. 

Represent the beam section as shown. Consider that there 
is a line through the beam called the neiUral ams whore the 
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sum of the moments of areas of strips (that is, their areas times 
their distances from the neutral axis) on the tension side of the 
beam will balance the area of strips times 
their distances from the neutral axis on 
the compression side of the beam. 

Also consider that stress varies as the 
strain and that Young’s modulus for the 
material is the same for tension and for 
compression. 

Moreover, consider that the original radius of curvature of the 
beam is exceedingly great compared with the beam section. 

Let OX be the neutral axis and let / be the stress at units 
distance from OX. Then the stress at y distance is fy. 

The resisting force of the strip is 

Stress X Area of strip = bAy X fy. 

The moment of the strip is 

bAyfy X y = fbAy • y^. 

Since the sums of the tensile and compression moments are 
equal, the summation of the strips becomes 

Passing to the limit, this equals 

SfbyHy, 

or 

Moment of resistance = /XCArea X [Distance]^). 

Now S Area X (Distance)^, which is called the second 
moment, happens to take the same form as the integral for the 
moment of inertia. Just why we should consider that a stationary 

beam should have a moment of inertia is beyond the author, 
even if the same form of equation results. This was more or less 
of a mystery to me in my college work, and it is unfortunate 
that such a connection was made to mon\ent of inertia years ago. 
A better name is moment of section. However, since all reference 
books write it thus, we can only protest and then follow the 

precedent. 
Then, 

[661] 

Fig. 642. 

Resisting moment = //. 
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If Af = the bending moment, then since the bending moment 
equals the resisting moment, 

M ^fl. 
If/i = maximum tensile stress =/2/iand 

/2 = maximum compressive stress — 

then 

^ yi 2/2 l' 

or 

[662] 
M 

I ~c' 

where C is the distance of the fiber from the neutral axis carrying 
the greatest fiber stress and may be either yi or ?/2 whichever is 
greater. 

1066. Energy.—When a body is capable of doing work against 
forces applied to it, it possesses energy. 

A stretched spring can do work against a force, provided the 
force permits the spring to contract. A moving body can do 
work against a force which acts to stop it. Both the spring and 
the body possess energy. 

The energy of position is called potential energy and the energy 
of motion is called kinetic energy. The spring cited as an example 

above, then, has potential energy and the moving body has 
kinetic energy. 

The amount of energy possessed by a body at any instant 

is the amount of work that it can do against a force while chang¬ 
ing from its condition at that instant to a state or condition 
assumed to be standard. The unit of energy^ then, is the same 
as the unit of work. 

The amount of kinetic energy which a body possesses at any 
instant is the work which it can do while the velocity changes 
from its value at the instant to the value taken as standard. 

Zero velocity is usually taken as the standard, and the kinetic 
energy, then, is the work that the body can do in giving up all 
of its velocity. 

W 
A force of p pounds acts on a mass of m or ~ pounds which 

is moving with a velocity of y feet per second in the direction of 
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the force. During the time interval the displacement is As — 
VAt. This follows since 

^ = V 
At 

The work done by the force of P pounds for the interval At 
is 

AU = PAs = PVAt. (1) 
The force P equals the product of the mass times the accelera¬ 

tion, and the acceleration for the interval At is 

and therefore, 

Substitute (2) in (1). 

W AF 

g ‘ Af 
Then 

AU = - 
( 

Passing to the limit, 

W AV 
* VAL or 

Therefore, 
WV‘ 

[663] U = 

If the body starts from an initial velocity of Vo, the limits of 
integration are V and Fo, but if it starts from rest, the limits are 

FandO. 
The formula, therefore, gives the entire work done in increasing 

the velocity of the body from zero to F. 
Since this work imparts velocity to the body, the velocity 

in turn gives an equal amount of kinetic energy which the body 
will impart by being brought to rest. Therefore, 

Kinetic eney _ (Velocity)', 
(m foot-pounds) 2 X 32.174 2 

Potential energy, or the energy of position, can be illustrated 

by a weight lifted a given height above the earth. 
It is capable of doing work equal to the product of its weight 

by the distance the body has been raised. 
If no .energy is lost due to friction or by change into heat, the 

sum of the potential energy and the kinetic energy of a body or 

of a system of bodies remains constant. 
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1066* Momentum*—The quantity of motion of a moving body 
is called its momentum. If the mass and the velocity of a mov¬ 
ing body are constant, the momentum is the product of the two, 
or 

M = mV. 

If we differentiate momentum with respect to the time, then 

d(mV) dV , , . . . 
= m-^ = rate of change of momentum. 

But 

Force, then, can also be called the rate of change of momentum 
as well as mass times acceleration. 

Momentum is a vector quantity and can be resolved into 
components or combined into resultants. 

The unit of momentum is the momentum of unit mass moving 
with unit velocity. 

Now, 

(where W is in pounds, g is in feet per second per second). 

Then 

Pounds _ Pounds X Seconds^ 
Feet Feet 

Seconds^ 

and 

[664] = M 
Pounds X Seconds^ 

Feet' ^ 
Feet 

Seconds 
= Pounds X Seconds. 

1067. Relations of Work, Impulse, Impact, and Momentum.— 
The effect of a force may be given in terms of the product of the 
force and distance, which is called workj or the product of the 
force and time, which is called impulse. The product of the mass 
times the acceleration, which is called the rate of change of momen-- 
tumf is the force. 

Impulse, like force, is vector quantity. If a force F is con¬ 
stant both in magnitude and (^ection during a time the impulse 
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Q is Ft. If F varies in magnitude, the impulse for the time At is 
FAt, or 

AQ = FAt. Hence, ^~ = F &nd^ = F 
At at 

Then for any time t, 

Q-f‘Fdt. 

F must be expressed in terms of t in order to perform the inte¬ 
gration. 

The unit of impulse is the impulse of a unit of force acting for 
a unit of time and is called the pound-second. 

If a force F acts upon a mass M to produce an acceleration a, 
then 

F = Ma. 
If F is constant, then a is also constant, and 

or 

[666] F = MX or Ft = MV - MF,. 
Tt 

If F varies in magnitude, 

[666] F = M-,^foro = 5’ at dt 
and 

Fdt = MdV, 
For the time t if Fo is the velocity when t — 0 and V is the 

velocity after t seconds, 

or 

j^Fdt = MV - MVo. 

Consequently, during any period of time, the impulse of the 
resultant force acting upon a body is equal to its change of 
momentum. 

It is now evident why these units of impulse and momentum 
are used, since problems involving force, mass, and velocity 
can be solved direct instead of using two sets of equations, one 
between force, mass, and acceleration and the other between 

velocity, acceleration, and time. 
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The sudden impulse of a force which acts for a very short 
interval of time is called impact 

1068. Inertia.—Inertia is that property of a body which 
causes it to offer resistance to any change in its condition of rest 

or uniform motion. Unless acted upon by some force, the body 
continues in its state of rest or uniform motion. 

1069. Moment of Inertia.—The calculation .ot the kinetic 
energy of rotating bodies is made in terms of the moment of 
inertia of the body. 

Consider four masses (not weights) connected by light wires 
to an axis of rotation. Let the masses be 5, 4, 3, and 2 units 
at distances of 2, 3, 4, and 5 feet from the axis, respectively, 

®and consider the whole system to be rotating at 
the rate of co radians per second. 

^ ^ The 5-unit mass at 2 feet distance from the 
axis would have a linear velocity of 2a> feet per 

^ second. Therefore, its kinetic energy is 
1 ' ^ X 5 X (2co)2 = I X 22co2. 
^ The total kinetic energy of the system would be 

Fig. 643. kinetic energies of the members, or 

Kinetic energy = ^[5(2^ + 4(3)^ + 3(4)^ + 2{5y]o)\ 
= i(20 + 36 + 48 + 50)0)2 =, i(i54)o)2. 

But the total mass ikf = 2 + 3 + 4 + 5 = 14. 
Dividing 154 by 14 = 11 = (3.317)2. 
Substitutiner, 

Kinetic energy M(3.317)2o>2. 
Now, for convenience, the M(3.317)2 factor of the expression 

is called the moment of inertia of the group of rotating masses 
because if the masses were all concentrated at a distance of 
3.317 feet from the axis of rotation, the kinetic energy of the 
system would remain unchanged. This distance (3.317) is 
called the radius of gyration of the sys{em. 

The moment of inertia is usually represented by /. From 
the foregoing, it will be seen that 

lotX^ 
[668] Kinetic energy of rotation = 

where 
I *= moment of inertia of the system, 
w = angular v^ocity in radians. 
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Example.—Find the moment of inertia of a solid wheel of uniform 

density and thickness about a perpendicular axis through the center. 
If R is the outside radius of the wheel and M the mass of I square foot 

of area and thickness of the wheel, then divide the wheel into concentric 
rings whose width is Ar and whose radius is r. 

The mass of one ring is M2Tr Ar. 
The moment of inertia of one ring is 

(M27rr Ar)r2, 
or 

2Tr Mr^Ar. 

The moment of inertia of the whole wheel is the limit 
of the sum of the terms, Fm. 644. 

27r Mr •‘^Ar, 

for all the rings as Ar approaches zero as a limit and r varies between 
r = 0 and r = R. 

Therefore, 
ttMR* 

^ 2TrMrHT = —-— 

The mass of the whole wheel = ttMR^, 
Therefore, 

Ri 

Moment of inertia = ttMR^ X 

or the energy of the rotating wheel is the same as if the entire mass were 
concentrated in a ring of radius, 

-4= - .707R. 
\/2 

The expression, J'x^dMy where dM denotes any differential 
of mass, each part of which is at x distance from the axis, is the 
general form for the moment of inertia. The sum of the dif¬ 
ferential masses equals the total mass. The expression fxHA 
is also called the second moment of the mass. 

1060. Moments of Inertia of an Area with Respect to Two 
Parallel Axes in the Plane of the Area.— 

^ . -r--' K ^clA Let A^o be a centroidal axis of the area and 
I A A"i any other axis parallel to it at a dis- 

cl tance d from it. 
--^The moment of inertia with respect to 

Fio. 645. A'l-axis is 
U, = fyi^dA. 

(yiY = (2/ + dy = + 2yd + d\ 
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Substituting, 
hi = fy^dA + 2dJ'ydA + d^fdA. 

But 
2dJ'ydA — moment of mass about Xo = 0, 

because Xo passes through the center of gravity of the mass. 
Then 

[669] I,, = + Ad». 

The moment of inertia of an area with respect to any axis in 
the plane of the area equals the moment of inertia of the area 
about an axis parallel to the j^iven axis through the center of 

area, plus the product of the area and the square of the distance 
between the two axes. 

Example.—Given 

7*0 (for a rectangle) 
W 
12* 

Find I with respect to the base. 
J = 7,0 + AdK 

bh^ , bh^ bhl> 
12 ^ 4 3 

1061. Radius of Gyration.—From Art. 1059, 
I = faf^dA = kU, 

where k is the radius of gyration or the distance from the axis 
at which the area would be considered as concentrated and 
the moment of inertia remain the same. From the above formula 

[670] * = ^/z• 

1062. Centroids.—For any system of parallel forces, a resultant 
moment can be substituted for the moments of. the forces, and 

xR = FiXi + FsX2 + FaX* + . . r + F„x„, 
or 

, _ _ FiXi + FjXa 4" FsXs + . . . + F„Xn 
X = R ~ 

If a line, area, or volume is divided into infinitesimal parts, 
the centroid, or center of gravity, can be determined by finding 
the center of resultant in the same manner as the resultant of 
several forces. 

T?ie centroid of a line of lengUi s, if 2 denotes the X-coordinate 
of the center of resultant, is 

si =» (xiA« + x*As + XaAs + . . . + *i.A«] =* J’xds, 
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where As< are infinitesimal elements of 
from the origin. Then 

[671] « = y = LvJl, 7= Ml. 

741 

at Xi distance 

Example.—Find the coordinates of the center of gravity of a circular 
arc of radius r which subtends an angle of 2^ at the center. 

<yX on the line of symmetry. Then 

^ = 0, 
and the cen£roid will'be on OX. 

olar coordinates. 

X — r cos ds — rddf 

s = 2rP. 

Substituting these values in 

r cos 6 • rdS 
X = s 2rfi 

2r^ sin jS _ r sin 
2r/3 - /S * 

= 2 s: cos 

2r/5~ 

The Centroid of an Area^ A.—From moments, 

Ax = XiAAi + X2^A2 + X3AA3 + . . . + Xn^An = fxdA 

and 

[672] 
f xdA _ fydA _ _ fzdA 

Example.—Find the center of gravity of a triangular plate of uniform 
thickness and density by moments, about an axis through the vertex 

parallel to the base. 
The element of area, 

Pia. 647. 

AA = yAx, 

is chosen because the entire triangle may be built up 

of strips of this kind. 
From similar triangles, 

X h hx 
• - = r and y ^ y b h 

A ^ and dA == ydx. 
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From 

5 = 
bh bh bh 
~2 ~2 ^ 

^ 3 ^ ^ 

bj s' 
2 

The center in the F-clirection is found in the same manner to be 

- bh^ 
y o 

The Center of Gravity of a Volume:—^From moments, 

Vx = XiAFi + + XsAFa + . . . + XnAVn = fxdV 
and 

[673] 
fxdV . fydV _ fzdV 

X y j y Y ~ Y ’ 

Example.—Find the center of gravity of a 

^ hemisphere. 

Selecting the axes as shown, 

Fig. 648. 

and since == r'\ 

y — 0 and 2 = 0, 

V = iirr\ 

The elemental slice has an area of ry^ and is A.r 

thick, or 
AF = tt/z^Ax, 

x\ 
From 

and dV = mjHx, 

substituting the above values, 

J*xiryHx 

|7rr^ |7rr^ ir^ 
X = 



CHAPTER LVII . 

PARTIAL AND MULTIPLE INTEGRATION 

1063. Partial Integration.—Partial integration is the reverse 
operation from partial differentiation. If given a differential 

expression involving two or more independent variables, we 
consider, when integrating, first only one as varying and the 
others as remaining constant. The result of this integration 
is again integrated considering another variable as varying and 
the others as remaining constant and so on. 

Thus, 

u == y)dydx 

indicates that we are to find a function u of x and y such that 

Jxa, ~ 
If integrating first with respect to y regarding x as constant, 

the constant of integration may depend upon x or it may be a 

constant C. 
Then 

^ = / /(^. y) + 
or 

^ = //(X, y) + C. 

Since the differentiation of either expression with respect to y 
gives the same result, /(.r, ^), we, therefore, assume as a general 

case, 

[674] S “ 

where <p{x) is an arbitrary function of x. 

Example.—Given u = ffe^^yHydx. Find w. 
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Integrating first with respect to y, regarding x as constant, 

Integrating with respect to x with y constant, 
u = + f<p{x)dx + •^{y), 

or, since ^(x) was arbitrary, Svixi) dx is arbitrary so that 
M = + ^2{y), 

where both ^iCx) and are arbitrary. 

1064. Geometrical Illustration for Partial Integration.—^Let 
2 = /(x, y) be the rectangular equation of the surface CD 
(Fig. 649). 

Z 

Take some area in the XT-plane, as A5, and construct a right 
cylinder ABA'B' with elements parallel to OZ and whose inter¬ 
section with the 2 = /(x, y) surface is A'B'. 

Draw perpendicular planes through the cylinder parallel to 
the ZT-plane Ax distance apart, and perpendicular planes 
through the cylinder parallel to the ZX-plane Ay distance apart. 

These planes cut the cylinder into a number of vertical columns 
having a curvilinear surface at the top and a base area of Ax • Ay. 

Consider the column PQ and let it be replaced by a prism PQ 
formed by passing a plane through P parallel to the XF-plane. 
The coordinates of P are (x, y, z) and the height of the prism is z, 
or fix, y), since z = /(x, y). Therefore, the volume of the prism 
PQis 

fix, y)-Ax- Ay. 
By the principle of summation, then , 

Volume of prisms =* ZXfix, y)-Ax- Ay. 
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Now if we increase the number of cutting planes and let Ax 
and Ay diminish indefinitely, then the sum of the volumes of the 
prisms will approach the volume of the cylinder, or 

[676] V = 22/(a:, y)- Ax- Ay, which is equal to f fzdxdy. 

1066. Partial Integration. Another Method.—The volume of 
the cylinder in the previous article can be found by considering 
the volume to be made up of numerous slices cut from the 
cylinder by planes parallel to the TZ-plane and Ax distance apart. 

The value of z when x = OA in the equation, 

_ 2 = M y), 
if the value of OA is subsituted for x gives the intersection of the 
surface/(a:, y), and the plane BODE, or the values of 2 along CD. 

Hence the area 

BCDE = ////(OA, y)dy. 

0 

The volume of the slice with faces BCDE and FGHI is 

Area BCDE X Ao; = Ax {0A ^ y)dy. 

The volume of the whole cylinder is the limit of the sum of 
all slices between K and L, or 

' ^ = /oK<^^////(*. 
AE and AB are functions of x. 

This formula is usually put into the form, 

[676] y - 
where Wi and Ut are functions of x, and oi and oj are the constant 

limits of X. 

In the Solid Analytical Geometry section (Art. 847) concerning 
curve projections on coordinate planes, the equations of cylinders 
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y.-a. 

were shown to be the same as the equations for the projections 
of the curve on’the coordinate planes, and in following articles 
the X and y only will be considered and the z eliminated. 

1066. Plane Areas by Double Integration.—^Let y = f(x) be a 
given curve and we wish to apply the prin¬ 
ciple of double integration to the problem 
of finding the area under t]?.e curve. While 
a great many problems of this sort may be 
solved by a single integration, they may 
also be solved by double integration. In 
such cases, the best method is the applica¬ 
tion of double integration. 

Consider the area between the curve AC, the ordinates x —a 
and X = bj and the X-axis. Divide the interval b — a into n 
very small strips, each Ax wide. Take any one of these strips, 
as PB, and cut it up into small rectangles Ay high. Then the 
area of each of these rectangles is Ax • Ay. If we sum up these 
rectangles with respect to 2/, we shall have the area of the strip 
PB,or 

fix) 

Fio. 651. 

Ax^Ay = area of PB. 

Now if we sum up these strips between the limits x — a and 
X = bj then 

'/(x) 

Ax = area of all the strips. 

Upon passing to the limit, first as Ay approaches zero and then 
as Ax approaches zero, we have the required area. 

[677] 

Note that the inside integral sign belongs to dy and the out¬ 
side sign to dx. 

Example.—Find by double integration the area of the circle, 
x* + t/* = 

To simplify the solution, we will find the area of the first quadrant 
and multiply this result by 4. 

In the first quadrant, 

2/ — zK 
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Area of rectangle = 

’!/= Va* - I* Limit 
Ay —* o 

Lt/^0 
U 1 / \ 
XAy dyJAx. 

Area of the sum of the strii)s — Limit 

'">)■'--If. (hjdx. 

r 1 J/« Va2 - x2 . frt --- , 
[y] dx =1 Va^ — = 0 2/ = 0 

a/ 
Tra'' 

The area of the circle is four times this result, or ira^, 
1067. Area between Two Curves by Double Integration.—It 

will readily be seen that, by subtracting the single integral of 
F{x) from the single integral of /(x), y 
the result will be the area between 
the curves but this same result can be 
found by double integration. 

Consider the element of area AxAy 
as before. Then the area of the strip 

-PQ is 
m 

Ax ^ Ay, 
h\x) 

The summation of the strips from A to B between the limits 

X = aandx = 6 is 
b r /(a?) 

a F(x) 

b m 

Ax = X X ^2/Aa;. 
a F{x) 
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Passing to the limits, first as Ay approaches zero and then as 
Ax approaches zero, then 

1678] 

This will reduce to the same form as for single integration, for 

Then 

£- £F{x)dx. 

Y 

Fio. 654. 

Applying formula, 

Again, we might desire to sum up 
the area first with respect to x and 
then with respect to y. Then 

[679] Area = /*“* P^^’dxdj/, 
Jc JifiiM) 

where ^(y) and <p{y) are the inverse 
functions of f{x) and F{x), 

Example.—Find by double integration 
the area between the parabolas, — x ' 
and y x^.. 

First write the integral of the strip PQ with limits, as 

y^F{x) 

Next solve as simultaneous equations to find 
the limits, which are 1 and 0. 

Now the next operation, or the summation 
of strips from a to 6 or from 0 to 1, is done by 
aflSixing the integral sign with the proper limits, 
which gives 

Fio. 655. 

Integrating first with respect to y, 

£ \y]£dx~ £ (- x*)dx = £x!dx - £x*dx. 

Integrating with respect to x. 
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1068. Graphical Solution of Previous Problem.—The problem 
of finding the area between the two curves, —x and -y 
may be solved graphically as follows: 

After plotting the curves, consider the strips .2 unit wide and 
draw the horizontal lines averaging the triangular areas as shown. 
Set the proportional divider to the ratio* of 5:1 since each strip 

is .2 unit wide. 
The integral curves are OA and OB, Since ordinate AC 

represents to the given vertical scale the area under the y^ = x 
curve, and the ordinate BC represents the area between the 
y — x^ curve and the X-axis, then the difference of the ordinates, 
or ABy represents the difference of these areas or the area between 
the curves. In practice it is not necessary to shade the triangu¬ 

lar areas. 

and the straight line, ^ « 2a — x. ^ 
Solving simultaneously, the parabola and the line intersect at 

A{0j 2a) and —da). 

Draw the strips as shown and use the form, Xy md 

-c 
dxdy [679]. 
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netting up the integrals, 

- - xije: =/“ (- - ^ 

If the expression is integrated first with respect to the 
problem is much more difficult. The vertical strips to the left 
of the F-axis will be bounded by the parabola curve only and 
should be set up separately from the area to the right of the F- 
axis. 

For the area to the left of the F-axis, 
■» 2'\/aaj -f- a* ^ 

2 r r 
•'X as — " 

^ dydx = 2 r \/ ax + aHx = 
‘'x as — a*' y “ 0 — a 

a La 3 3 
For the area to the right of the F-axis, £=»8a 

- "0 

= 2a — x 

-2y/ ax+o* 
dydx == 

®“2aa:-| + l{a^4-a^)« = 

16a* - 32a* + 36o* = 20a*. 

Total area = ~ + 20a* = ^o*, as before. 
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1069. Plane Areas by Double Integration. Polar Coordinates. 
Let p = f{B) be the equation of the curve and we wish to find 
the area between the radius vectors, pi and P2, and the curve. 

Let us consider the element of area (Fig. 659). 
From elementary geometry, 

Sector AOC = ^p X pAd == ip^Ad. 
Sector BOD = §(p Ap^Ad, 

Hence, area ABCD = 

|(p + ApYAB - ip^AB == (p + ^Ap)ABAp. 

If we keep constant and make our summation with respect 
to p, we have the area of the sector POE, which is 

Kz'.'Z - "X- 
Now if we make a summation with respect to 6, we get the 

sum of the wedge-shaped areas, or 

A = 
Limit X -X,XT’’ 

In the same manner as found in double integration using 
rectangular coordinates for the area between two curves, the 

polar area between twb curves may be found. 



752 MATHEMATICS FOR ENGINEERS 

The expression for this area takes the form, 

If the summation is made first with re¬ 
spect to 6 keeping Ap constant, we obtain 
a segment of a circular ring as is shown in 
Fig. 661. 

The limit of the sum of these circular 
segments is 

Ex;ample.—Find the area between two circles tangent internally and 

having radii ri and r2, respectively. 
From trigonometry, 

Pi = 2ri cos 0. 

p2 = 2r2 cos d. 

Integrating between ~ and 0 as limits,-then for half the area, 

= 2[(r2)* — (n)*] I + i sin ir j (sin t = 0). 

= |[(r2)*- (n)*]. 

Since this is the expression for half the area, the whole area is 
A - T[(r,)* - iun 

Fio. 661. 
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1070. Moment of Area by Double Integration.—Consider 
an element of the area as PQ with the coordinates of P, as (x, y). 
The area of this element is AxAy, The moment of this area 
about the F-axis is the area of the element times its distance from 
the axis, or AxAy times x equals 

X ‘ Ax Ay. 

Form a similar product for every element within the boundary 
of the full area A B, and add these elements by double summation. 
Then 

^ f fxdydx, 

which is the moment of area with re¬ 
spect to the F-axis. 

In the same manner find the moment 
of the area with respect to the X-axis. 
This moment, then, is 
[682] = f fydxdy. 

The limits of integration are applied 
to these formulae similar to the case of 
the area. 

Then 

Fig. 663. 

[683] 

and 

fx^h ry 
JX = ajy - F (x) ^dydx, 

i«8*i ». - 
1071. Centroids by Double Integration.—If we consider that 

the area under consideration is concentrated at a point (x, §,) 
such that the moment of the area is unchanged, this point is 
called the center of mass or center of gravity. From this, 

My = area X x, 
Mx area X 

area ^ area 

Fio. 664. 

x^a Jy^F{x)XdyaX 
[686] £ 
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In the same manner, the equations in polar coordinates are 
developed. Since a: = p cos 5 and y'= p sin B, then the area 
element becomes p • ApA0 and the formulae are 

[686] 3i = 
(0)^* Sdpdd ^ ^ ^ ^ dpdd 

—Find the center of gravity of the area bounded by 

= 42:, a: = 4, and y — 0. 

'^•®= fo*^ ■ rdx. 
r4x»i^ m 

-a 

2xHx r _T 
L sJo 

ydydx = r = r 22rfj* = 
Jo L Ji/«o Jo 

Area = T f^^^dydx = T yda* = f 2\/xdx = I 
Jo Jo Jo Jo L 

4xi 
*3" 

Jo 
32 
3‘ 

16. 

Substituting these values in the formulae of Art. 1071, 

12 —f 
5 

1072. Location of Centroids or Centers of Gravity. 

Triangular area 

Semicircular area 

Fio. 666. 

Semicircular arc 

Fio. WT. 
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Parabolic segment 

Fio. 668. 

Semiparabolic segment 

Area over parabolic curve 

Quadrant of circle 

Fig. 671. 

Fillet-shaped area 

Fig. 672. 
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Trapezoid 

Trapezoid 

Quadrilateral area 

' Fia. G75. 

1073. Moment of Inertia of Plane Areas by Double Integra¬ 
tion.—If we consider an element of the area as PQ, with coordi¬ 
nates of P as (x, y)j multiplying the element AxA?/ by the square 
of the distance gives the product, 

x^AyAXj 

which is called the moment of inertia of 
the element with respect to the F-axis. 

If we form similar products for each 
element and add all such products by a 
double summation, then 

dx-^O x^AyAx — ff x^dydx. 

If 

[687] 

we apply the limits as in the case of the area, then 

which is the moment of inertia of the area AB with respect to 
the F-axis. 
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In the same manner, the moment of inertia with respect to 
the X-axis is 

[688] I 

The only difference is the substitution of for x^. 
1074. Polar Moment of Inertia. Rectangular Coordinates. 

The moment of inertia about an axis perpendicular to the plane of 
the area is determined by double integration. 

If P(x, y) is a point in the element of area 
AyAXj then the distance from P to 0 is 

Vx^ + 2/2. 
If now the area element AyAx be multi¬ 

plied by the square of its distance from 0, 
which gives the polar moment of inertia of 
the element, then we have 

(x^ + i/)AyAx. 

The summation of all the elements gives 
Limit 

Ay 
Ax 

as (x^ + y^)AyAx = // (x^ + y^)dydx. 

Introducing the limits, then 

which is the equation for the polar moment of inertia where h 
denotes this polar moment. 

From the above equations, 

[689] lo -//(»■ + y-)dydx = J JxMydx + ff y^dydx. 

Comparing with the rectangular formulae, 

lo = Ix + ly- 

Example.—Find h over the area bounded by the lines, 

X * a, y - 0, y ^ 
a 

X. 

<• 

Sr»(7 

The given lines form tiie triangle OAB, 

^ up the vertical strip, the y limits are 

b 

Summing 

a 
X and 0. 

^ Summing up the strips in the triangle, the x limits are 

a and 0. Fxa. 678. 
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Then from 

Jo = J* + y^)dydx, [689] 

r 0?-* 
Jo = y^)dydx “ **2/ + ^ I “ 

=-(f+s> 

1076. Polar Moment of Inertia by Double Integration. 
Polar Coordinates.—The element of area in this case is p • ApAB 
(see Art. 1069) on the area in polar coordinates. We also have 
the relation, 

"p® = + y^, 
which substituted in equation for polar moment in rectangular 
coordinates, 

/o = //(^^ + y^)dydx, 

Introducing the limits, 

which is the equation of the polar moment of inertia in polar 
coordinates. 

Example.—Find h over the region bounded by the circle, 
p *= 2r cos 6, 

Substituting in formula, 

“ Jr 1-0 ^ 

coi 9 prp^-iP-a 
Jr L 4 Jp-0 

Fio. 679. 

I 4r‘ COB* 6d9, 
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£ 
4r^ I cos^ 6d$ = 4r^ 

I'cos^ ^ ♦ sin ^ _l_ 3 J* 

*■ 

];• 
-4r.[o + 3| + o]-[-^].4r..|,. 

COS® ]■ 

cos® ^ • sin ^ 
4 

,3/0,1. 
+ 4(2 + 4®*“ 

3rV 
2 

1076. Areas of Surfaces by Double Integration.—If 
2 = f(Xy y) 

is the equation of the surface CRy ^ 
and we desire to find the area A on 
the surface: 

Let A' be the orthogonal projec¬ 
tion of A on the XF-plane. 

Pass planes parallel to the FZ- 
and ZX-planes at common distances 
Lx and Ly. These planes form 
truncated prisms bounded at the top 
by an element of area whose pro¬ 
jection on the XF-plane is LxLy, 
Consider the plane tangent to the 
surface at P, From analytical geometry, 
Area of element LxLy = Area of tangent plane element X cos 7, 
where 7 is the angle which the tangent plane makes with the 

XF-plane. Then 
LxLy = Area of tangent plane element X cos 7. 

^ut 
1 

cos 7 = 

Hence, 

Then 

£iXAy - 
Area of tangent plane element 

+'(!£]■ ■ dyl 

az\* 
Area of tangent plane element =“ [l + (^) + ©■]W 
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Making a summation of all the tangent plane elements, 

+ (_) + (-) J A»i». 

- //[* + (s)’ + 
Introducing the limits of integration, 

where y = f(x) and y = F(x) are the projections on the XF-plane 
of the boundary curves of the area. 

If it is more convenient to project the area onto the XZ- 
plane, the formula becomes 

16931 Area - O";'!' + (g)' + 

For the projection on the FZ-plane, 
a ^1/ -d -G(v)r, , /dX\ 

It might be well to recall the method of finding the projection 
of the area on the XF-plane (see Analytical Geometry section 
Art. 847). By eliminating z between the equations of the 
surfaces whosj intersections form the boundary of the area, the 
equation of the projection of this curve on the ZF-plane is 
found. 

Example.—Find the area of the surface of the sphere, 
x^ + y^ + = r^. 
Consider one-eighth of the surface, that is, 

the area included in one quadrant between the 

coordinate planes. 
From the equation, 

— r*, mm 

Fio. 681. 

ic* + 2/* + r® 
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By making 2 = 0, wo get the projection of the area on the XF-plane, 
or 

^ 
Forming our equation from 

i... 
- f"-E-’, 

J*=s0 Jiz-o L\/r^ -- — i/^J 2 

or 

A — Akt-. 

\ Volumes by Triple Integration.—Volumes bounded by 
3mrfaces with given ecjuations can be calculated by three suc- 
c^sive integrations in the same method as that used in double 
integration. 

First, divide the solid into rectangular parallelepipeds having 
dimensions Aa;Aa/A2. Then the volume of each one is 

Ax ' Ay • AZj 

which is the element of volume. 
Sum all of these elements within the boundaries of the given 

surfaces by first taking the elements of a column, then the sum 
of all such columns to form slices, and finally sum the slices into 
the full volume. 

Then 

[696] y = 
Limit 

22X AxAyAz 
A, -.0 

f f f dzdydx. 

Consider the limits of integration when finding the volume of 
the ellipsoid, 2^ 

a‘ (? 

which lies in the first quadrant. 
Consider, first, the limits of the sum 

mation of the elements, 
Ax ■ Ay ■ Az, 

as they are summed into columns. The y 
z limits are from z = 0 to z Fio. 682. 
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The summation of the columns into slices with respect to 
y is between the limits, 

I ^ 
y = 0 and y = byjl - 

Since this boundary curve lies in the XT-plane, it.is found 
from the equation, 

a2 ^ 62 ^ c2 ’ 

by making z = 0. 
Now the limits of the summation, as we sum the slices into 

the volume with respect to x, are between 

= 0 and x = OA = a. 

We are now in a position to form the equation, 

.y=6'v/r^^; y-ns 7 
,\/l _ 
' ^ a* 6S 

dzdydx. 

wabc 

Volume of the entire ellipsoid = 

The usual notation is 
«<p(x) 

4tTrabc 

“3"“' 

““ Jo Jo Jo 
^/(x,y) 

dzdydx. 

It will be observed that the limits for integration with resp)ect 
to X and y are the same as those that we use in finding the area 
AC BO in the XT-plane, or the projection of the given solid on 
the X T-plane, as 

A ■*0 
dydx. 

This means that we can find the required volume by double 
integration, thus, 

V 
fa fy 

Jo Jv-o zdydx, 

which is the same as integrating the triple integral with respect 
to*. 
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1078. Comparispn of Single and Double Integration.—In Art. 
997 and again in Arts. 1011 and 1036, the area by single integra¬ 
tion was shown to be 

A = fydx. 

In Art. 1066, the area by double integration was shown to be 

A = f fdydx. 

We can reduce this last expression to the first one by integrating 
first with respect to y. Then 

A == fydx. 

SUMMARY 

0\ 

1^: 

Fig. 683. 

1079. Moments by Summation Method.—Divide into ele¬ 
ments a given geometrical magnitude, such as a line, a surface, or 
a solid. The line would be divided into elements of length, the 
surface into elements of area, and the solid into elements of volume. 
Let each of these elements. As, AA, or A7, be ^ 
multiplied by its distance from chosen point, 
or reference line, or plane. This is the 
moment of the element about the chosen point, 
line, or plane. The limit of the sum of the prod¬ 
ucts of all the elements times their distances 
from the reference as the elements are allowed 
to decrease in magnitude indefinitely is called 
the first moment of the geometrical magnitude. 

= fyds. 
= moment of a line. 

In the same manner, the moment of a plane area about the 
X-axis is 

M. = yAA. 

« fydA. 

Also, since 
AA = Ax • Ay, 

then 
fydA - f fydxdy, 
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which gives the equivalent form for double integration (see Art. 
1070); 

For the first moment with respect to one 
of the coordinate planes, as the ZF-plane, of a 
solid, the formula is 

M.y = 

For As, Ail, and AF, proper length, area, 
or volume elements must be substituted before 
integrating. 

Cr) 
Fig. 684. 

Also, 

Then 
AF = Ax ‘ Ay ^ Az, 

fzdV = f f f zdzdijdx. 

It will be seen that by substituting \/{dyY + (dxy for ds, 
dydx for dA and dzdydx for dF, the formulae for single integra¬ 
tions can be transformed into those for double and triple 
integrations. 

1080. Approximate Integration.-—TAe trapezoidal rule makes 
use of the trapezoidal areas for areas under a curve instead of the 
rectangular areas, which makes the approximation nearer the exact 
area. Divide the distance from a to 6 into any number n of equal 
spaces. The greater the value of n used, the closer the computed 
area comes to being the exact area. The area of the trapezoid is 
one-half the sum of the parallel sides multiplied by the width of 
the trapezoid which we will call Ax. 

f\ 
X 
* 

1 a B 
Fig. 685. 

Then 

hivo + J/i)Aa; = area of the first trapezoid. 
i(yi + 2/2)Ax = area of second trapezoid. 
i{y2 + 2/3)Ax = area of third trapezoid. 

+ yn)Ax a= area of the nth trapezoid. 
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Adding the areas of the trapezoids for the total area from a 
to bj we get 

i(2/o + 22/1 + 2y2 + 2yz + . . . + 22/n~i+yn)Ax. 
Therefore, the trapezoidal rule is 

[696] Area = (^?/o + 2/i + 2/2 + 2/3 + . . . + 2/n-i + \yn)^x. 
/•lO 

Example.—Calculate x^dx by trapezoidal rule. 

Divider == Itox = 10 into 9 spaces. Then each space or Ax = 1. 

Substituting x = 1, x = 2, x = 3, . . . , x = 9, in 2/ == x^, for this 
is the curve under which we desire the area, then 

2/0 = 1, 2/1 = 4,1/2 = 9, . . . , 7/n == 81. 

Substituting in formula, 
Area = (^ + 4 + 9 + 16 + 25 -f 36 + 49 + 64 -f 81 + i(lOO)/ 

= 334i 

By integration, 

This is an error of less than one-half of 1 per cent. 

1081. Simpson’s Rule of Approximations.—In place of drawing 
straight lines for the top of the trapezoids, a closer approxima¬ 
tion can be made by using a parabolic curve and then summing 
up the areas under the arc. A parabolic curve can be drawn 
through any three points and the computed area will be closer 
to the exact area if such a curve is used than if the tops of the 
trapezoids are straight lines as are used in the trapezoidal rule. 

Divide the interval from a to b into n even number of spaces 
whose width is Ax. Through each set of three points on the 

curve, as Po, Pi, P2, consider parabolic arcs to be drawn. 
Then the area of the strip aPoPiP2C equals the area of the 

trapezoid plus the area of the parabolic segment P0P1P2. But 
Area of the trapezoid =* Hyo + y%)2Lx = (yo + 2/2)Ax. 
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The area of the parabolic segment PoPiPt equals two-thirds 
of the area of the circumscribed parallelogram. 
Area PoPiPt = f(yi - Uvo + yt))2Ax = f(2yi - yo - yt)^x. 

Hence, the area of the first strip is 
Area = (yo + y%)^x -f- \(2yi — yo - Vi)Ax. 

= y(j/o + 4?/i + yi). 
The area of the remaining strips is found in the same manner. 
The area of the second strip is 

y (ys + 4j/3 + y*). 

The area of the third strip is 

^(2/4 + 4^5 + yo). 

The area of the last strip is 

+ 4l/n-l + l/n). 

Adding, we get 
Ax 

[697] Area = -^(j/o + 4j/j -1- 2y2 + ^y» + 2yo + . . . + y«), 

which is Simpson’s rule when n is even. 

/•lo 
Example.—Calculate xHx^ using Simpson^s rule. 

Take 10 spaces. Then Ax = .9 unit. 
Substituting the abscissae, 
X = 1, 1.9, 2.8, 3.7, 4.6, 5.5, 6.4, 7.3, 8.2, 9.1, 10.0, 

and the corresponding ordinates, 
2/ = 1,3.61,7.84,13.69,21.16,30.25,40.96, 53.29,67.24, 82.81,100, 

in Simpson’s formula, 

Area = + 4(3.61) + 2(7.84) 4- 4(13.69) + 2(21.16) 

+ 4(30.25) + 2(40.96) + 4(53.29) + 2(67.24) 
+ 4(82.81) + 100]. 

-.3(1 + 14.44 + 15.68 •+■ 54.76 + 42.32 + 121 + 81.92 
+ 213.16 + 134.48 + 331.24 4- 100) - .3(1110). 

- 333. 
This is tile exact value of the int^ral, as we would expect, since the 

curve ^ — X* is a pairabola. 
Ax was purposely chosen fractional to show how the area could be 

computed in such a case. 
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1082. Planimeter for Integration.—The planimeter is an 
instrument which measures areas. It is also extensively used 
as well as the methods of approximation which have been given. 
Since the planimeter computes areas mechanically, it can be used 
in that way for integration. No special instruction is necessary 
provided one is familiar with the use of the instrument for finding 
areas. 

The use of the instrument is restricted to definite integrals, 
that is, to the measurement of definite areas, such as an area 
between two curves which have been plotted, or the area, between 
a curve and the X- or F-axes within certain limits. 

A tracing point is made to follow the perimeter or boundary 
curves of the figure to be measured, and the area is given by the 
reading of a recording wheel on the instrument. 
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A Angles, defined, functions of, 343, 
348 

Abscissa, 67 
Absolute errors, defined, 22 

in addition, 24 
in division, 34 
in multiplication, 26 

Acceleration, ang^ar, 589 
defined, 588 
graphs, 610 
normal, 595 
of mass, 601 
problems, 707 

Addition, bankers, 1 
change making, 4 
checking, 1 
checking by nines, 17 
combined with subtraction, 3 
double column, 2 
period, 2 
of radicals, 62 
three column, 2 

Addition formulae sinos 4id 
cosines, 386 

Algebraic notation, 44 
Aliquot parts, 13 
Alternating current, 364 
Alternating series, 289 
Amplitude of complex numbers, 398 

of sinusoid, 359 
Analytical geometry, 416 

solid, 519 
Angles, defined, 320, 340 

approximations for small, 352 
between lines, 420 
between two radius vectors, 621 
cpmplimeniaiy, 346 
eoaentt^, 467 

for, 343,361 

in space, 521 
initial side of, 342 
magnitude of, 340 
negative, 347 
tables of, 345 
units of, measure of, 340 
vectorial, 418 

Annulus, 331 
Annulus sector, 331 
Antilogs, 233 
Approximations, 21, 42, 43, 189, 

295, 352, 764, 765, 767 
Arch, 453 
Arcs, differential, 631 

length of, 714 
Area, areas, by double integratioi 

746, 751 
bfl^n^gratlon, 670 
by polar coordinates, 675 

by summation method, 711 
equivalents, 673 
in parametric form, 689 
‘n:*egular, 334 
nM;nients of, 753 
of e/)ipse, 332 
of fillV^32 Jt 
of 
of opbque triangles, 322, 424 
of p^ms, 335 
of r?«bt triangles, 320 
of scfotors, 331 
of s|rberes, 336 

rule for, 334 
variafci®> ^70, 660 * 

Arithm^cal progression, 210 

AsymptoK®®> 
769 
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B 

Beams, bending moments of, 727, 
732 

resisting moments of, 732 
shearing of, 727 to 732 
strength of, 643 

Belts, centrifugal force of, 644 
drives, 732 
tandem, 724 

Bending moments, 727 
Binomial, factors, general method, 

56 
reduction, 55 

Binomial theorem, approximation, 
295 

expansion, 48 
the nth term in, 49 
series, 292, 294 

Boundary curves, 367 

C 

Calculus, differential, 551 
integral, 666 

Centrifugal tension, 643 
Centroids, center of gravity, by 

double integration, 753 
of areas, 741, 754, 755 
of lines, 740 
of volumes, 742 

Change, of base, 236 
rate of, 551 
uniform, 551 ^ 

Circle, circumscribing a triang)(j^ 322 
equations, 454 
formidae iT geomet^^^^r 
inscribed in trlt,»:;ro, 322 
involute of, 497 
parametric equations of, 4$5 
polar equations of, 456 
sector of, 331 
segment of, 331 
system 9f, 457 
tangent to, 458 
theorems, 328 

Circular functions, 342 
Clock problems, 95 
Coal pile problem, 710 
Cologarithms, 234 
Combinations, 312 
Commission, 80 
Complementary angles, 346 
Completing the square, 112 
Complex numbers, 392, 394 

conjugate of, 396 
division of, 397 
multiplication of, 397 
polar form of, 397, 399, 400 

Compound interest law, 240, 625, 
722 

Concavity, 636 
Cone, 336, 528, 547 
Conic, equations of, 446 

definition of, 446 
differentiation of, 575 
the elliptic form of, 462 
the hyperbolic form of, 471 
the parabolic form, 449 
polar form of, 447 

Conjugate axes, 473 
Constants, added, 561 

differentiation of, 560 
£ integration, 667 

times a function, 561 
Ci^ling law, 725 
Coi te paper, 242 
Coo; ,3^ line segment, 416 

polar, 342, 383, 417 
rectangular, 342, 417 

Cosecant, 342 
graphs of, 373 

Cosines, construction of, 266, 365 
differentiation of, 606, 607 
expansion in series of, 403, 652 
exponential values of, 404 
graphs of, 365 
harmonic motion using, 265, 611 

Cotangent, graphs of, 372 
graphs construction of, 372 

Crank and slot mechanism, 608, 
609 
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Cube root, by algebraic formula, 20 
.short cut method for, 20 
by slide rule, 264 

Cubes, 334 
Cubic functions, definition of, 171 

derivative of, 579 
graphs of, 171 to 183 
shearing of, 173 
translation of, 172 

Curve, continuous, analysis, 633 
concavity of, 636 
curvature, 645 
curvilinear motion in, 593 
discontinuous, 635 
length of, 631, 714, 716 
slope of, 634 
in space, 523 

Cycloid, 334, 498, 499 
Cylinder, 335, 623, 548 

D 

Damped oscillations, 367 
Decimal point rule, 14 
Decreasing functions, 69, 552 
De Moivre^s theorem, 401 

application, 402 
Derivative, partial, 657 

second, 576 
successive partial, 662 
total, 657 

Determinant, cofactor of, 304 
definition of, 299 
evaluation of, 306 
factoring of, 308 
minor of, 302 
nth order of, 304 
properties of, 305 
second order of, 299 
simultaneous equations of, 299 
third order of, 300 

Diameters to conics, 487 
Difference of two powers, 54 
Differentials, definition, 629 
Differentiation, application, 684 

graphical illustrations, 566, 577 

Differentiation of algebraic func¬ 
tions, 563 

of constant, 560 
of cubic function, 679 
of a derivative, 576 
of an exponential function, 623 
of a function of a function, 565 
of implicit function, 665 
of logarithmic functions, 618 
of power functions, 562, 564, 567 
of a product, 668 
of trigonometric functions, 604 

to 617 
of two variables, 661 
of a variable itself, 560 
successive, 577, 578 

Discontinuous functions, 635 
Discount, 80 
Discriminant, 105 
Displacement, 586 
Distance between two points, 418, 

419, 420 
Distance from a point to a line, 437 
Divergency of infinite series, by 

comparison test, 281 
by ratio test, 288 

Dividing a line in a ratio, 521 
Division, absolute errors in, 34, 35, 

36 
algebraic check, 58 
by detached coefficients, 52 
by factors, 16 
by similar triangles, 323 
check, by nines, 17 
inspection in, 16 
miscellaneous forms for, 57 
of radicals, 63 
short cuts, 37, 38 

E 

e, Naperian base, 297, 404 
Eccentricity, 477 
Ellipse, area of, 332 

conic equation of, 462 
definition of, 459 
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Ellipse, eccentric angle of, 467 
eccentricity of, 463 
focal radii, 463 
foci of, 461 
general form of, 465 
graphs of, 130 
parametric equation of, 496 
perimeter of, 332 
polar form of, 468 
sheared, 141 
translated, 464 

Ellipsoid, 337, 542 
Empirical equations, 506 

of exponential form, 516 
of polynomial form, 516 
of power functions, 511, 514 
straight line law of, 508 

Energy, 734 
Epicycloid, 500 
Equality, 71 
Equations, definitions of, 70 

formation of, 426 
integral, 71 
setting up, 71 
tabular method of, 73 

Equations, linear, analytical solu¬ 
tions of, 88 

graphs of, 75, 76, 77, 84, 86, 87 
graphs of simultaneous, 87, 88 
intercept form of, 88 
slope-intercept form of, 430 
slope-point form of, 429 
with three unknowns, 73 
with two unknowns, 72, 429 

Equations, quadratic, analytical 
solutions of. 111 

explicit form, graphs of, 99 to 127 
general form, graphs of, 139 to 

146 
homogeneous form of, 146 
implicit form, graphs of, 127 to 

162 
« of higher degree, 153 

of second degree, 446 
other graphical solutions of, 157 

to 160 

Equations, quadratic, simultaneous, 
147 

symmetrical simultaneous, 151 
with irrational roots, 160 
with three unknowns, 156 

Errors, absolute, 22 
limiting, 22 
relative, 22 

Evolution, by algebra, 19 
by logarithms, 235 

Expansion, binomial, 48 
of functions, 647 

Exponent, fractional, 65 
negative, 65 
values of sine and cosine, 404 
zero, 65 

Exponential functions, 237 
compared to logarithmic func¬ 

tions, 237 
differentiation by graphs of, 626 
equations of, 239 
formulae of, 250 
of complex numbers, 405 
slope of, 239 
subtangent, 239 

Extraneous roots, 164 

F 

Factor theorem, 56, 184 
Factoring, 18 
Factors, 52, 53 
Family of curves, 439, 457 
First degree equations (see equa¬ 

tions), 83 
Fluid pressure, 719 
Force, definition, 601 
Fractions, by undeterminate coeffi¬ 

cients, 313 
defining, 162 
equations of, 162 to 167 
of radicals, 63 
partial, 315 
reduction of, 166 

Frequency in sine functions, 361 
Functions, circular, 342 

cosine, 365 
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Functions, cubic, 171 to 183 
definition, 66 
discontinuous, 635 
explicit, 99 
exponential, 618, 623 
hyperbolic, 406 
implicit, 127 
logarithmic, 237, 618, 700 
of first degree, 68 
periodic, 353 
quadratic, 99, 127 
sine, 349, 353 
trigonometric, 342 

G 

Gas, work done expanding, 725 
General equations of, cosine func¬ 

tions, 366, 607 
cubic functions, 174 
explicit quadratic function, 100 
exponential function, 250 
first degree in three variables, 531 
implicit quadratic functions, 139 
logarithmic functions, 620 
planes, 531 
polynomial functions, 183 
power functions, 201 
sine functions, 357, 606 

Geometric mean, 215 
Geometric progression, 215 
Geometry of, angles, 320 

circle, 327 
cone, 336 
cylinder, 335 
ellipse, 332 
ellipsoid, 337 
hyperbola, 333 
irregular areas, 334 
parabola, 333 
paraboloid, 337 
parallelogram, 324 
polygons, 326 
prismoidal formula, 338 
prisms, 334 
quadrilateral, 326 

Geometry of, rectangle, 324 
rhombus, 325 
sector, 331 
segment, 331 
solids, 334 
sphere, 336 
surfaces, 334 
trapezoid, 325 
triangles, 320 
wedge shaped volume, 338 

Graphical, differentiation, 581 
integration, 678, 749 

Graphs, defined, 67 
Graphs of, circular functions, 355 

to 373 
complex numbers, 396, 397, 399, 

401 
ellipse, 131, 141, 157, 160, 459, 486 
exponential functions, 237, 238, 

239, 623 
geometrical series, 217, 218 
hyperbolas, 132, 133, 134, 139, 

158, 161, 469, 471, 472 
integrals, 683 
linear equations, 84, 85, 86 
logarithmic and exponential 

curves, 238, 622 
parabola, 99, 100, 101, 102, 103, 

104, 105, 107, 108, 128, 140, 
145, 159, 448, 449, 450, 451, 
452, 453 

parabolic arch, 453 
power functions, 197, 198 
products, 323 
quadratic equations, 99 to 111 
quotients, 323 
simultaneous equations, 90, 97, 

124, 157, 158, 159, 160, 178 
sinusoids, 354, 364 
tangents and cotangents, 370, 372 

H 

Harmonic motion, 610, 611 
Highest common factor (H. C. F.), 

59 



774 MATHEMATICS FOR ENGINEERS 

Hindu method for quadratics, 112 
Homogeneous quadratic equations, 

146 
Hyperbola, area of, 333 

asymptotes of, 472 
conic equation of, 471 
conjugates of, 473 
definition of, 469 
eccentricity of, 446, 469 
equations of, 132, 133, 134, 135, 

469 
equilateral, 132, 475 
focal radii, 472 
polar equation of, 478 
rectangular, 132 
shearing of, 143 
translated, 474 

Hyperbolic function, definitions of, 
406 

derivatives of, 616 
Hyperbolic system of logs, 228, 235, 

236, 407 
Hyperboloid, 530, 543, 545 
Hypocycloid, 500, 501 

I 

Imaginary numbers, addition of, 394 
division of, 394 
graphs of, 393 
multiplication of, 394 
subtraction of, 394 

Impact, 736 
Implicit quadratic equations, defi¬ 

nition of, 127 
differentiation of, 574, 665 

Impulse, 674, 736 
Increment, 555, 559 
Indeterminate forms, 653 
Infinity, 222 
Inflection, 638 
Integrals, 686 
Integration, approximate, 764 

areas by, 670 
double integration, 746, 756 
examples of, 722 
fundamental form of, 691 

Integration, graphical determination 
of constants of, 680 

multiple, 743 
partial, 743, 744, 745 
successive, 706 
volumes by, 761 

Integration by, expansion/690 
graphical method, 678 
inspection, 697 
logarithmic forms, 699, 700 
new variables, 691 
parts, 695 
reduction method, 690 
summation method, 708 
transposition, 697 
trigonometric substitution, 703 

Integration of, binomial forms, 700 
constants, 667, 669 
fractional powers, 703 
partial fractions, 705 
power functions, 668 
quadratic forms, 702, 705 
sums and differences, 670 
trigonometric forms, 701 

Intercept form of, general equation, 
435 

linear functions, 433 
surfaces, 527 

Interest, compound, 240, 625, 722 
exact, 80 
formulae, 78, 79 
one day method, 80 
six per cent method, 79 

Interpolation, 230 
Intersection of loci, 76, 123, 157, 

178, 412 
Inverse trigonometric functions, 

deijvatives of, 614 
grap^ of, 369, 615 

Involute of circle, 497 
Irrational, equations, 167 

roots, 160 

L 

Law of mean, 647 
extended, 648 
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Length of arc, 632 
Limiting errors, 22 
Limits, 555, 559, 655 

decomposing, 688 
interchanging, 688 
lower, 686 
upper, 686 

Limniscate, 504 
Linear functions, 69, 83, 92, 93, 94 

general equation of, 531 
in three variables, 531 
intercept form of, 433 
normal form of, 434 
slope-intercept form of, 430 
slope-point form of, 429 
through a point and making an 

angle to a line, 438 
through a point and perpendicular 

to a line, 437 
two point form of, 432 

Lines, divided in ratios, 422, 423 
equation of, 83 
in space, 538 
parallel to axes, 431 
parallel to plane, 541 
product of, 444 
second degree equations repre¬ 

senting, 445 
segments of, 416 
system of, 439, 440, 441 
through a given point, 437, 540 

Logarithmic functions, differentia¬ 
tion of, 618 

graphs of, 622 
Logarithmic paper, 242 
Logarithms, approximating, 241 

bases of, 297, 619 
by slide rule, 266 
change of base of, 236 
common, 229, 236 
computations of, 231 to 236 
decrement of, 241 
division by, 233 
formulae for, 242 
paphs of, 243, 247, 248 
increment of, 240 

Logarithms, mantissa, 229, 231 
modulus of system of, 237 
natural or Naperian, 235 
powers by, 234 
series of, 298 

Lowest common multiple, 60 

M 

Maclaurin’s theorem, 651 
Magnitude, 553 
Mass, 601 
Maximum, 106, 108, 109, 110, 637, 

639 
Mean, arithmetical, 211 

geometrical, 215 
harmonical, 218 
ordinate, 687 
values, 673, 687 

Medians, 322, 325 
Minimum, 106, 108, 109, 110, 637, 

639 
Modulus, of decay, 241 

of log system, 237 
Moment of inertia, by double inte¬ 

gration, 756 
of areas, 739 
polar, 757, 758 

Moments of force, 763 
Momentum, 736 
Multiplication, a new system of, 

40, 41 
absolute errors in, 26, 27, 28 
algebraic forms for, 9 
approximations in, 42 
by aliquot parts, 13 
by detached coefficients, 51 
by multipliers ending in 1, 12 
by similar triangles, 323 
check by nines, 17 
dropping right hand numbers in, 

33 
extended tables for, 3 
in algebra, 52 
of numbers ending in five, 7, 8 
of radicals, 62 
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Multiplicsftion, relative errors in, 
29, 30, 31, 32 

short cuts, 4 to 33 
supplement and complement 

method of, 12 

N 

Naperian base, 235 
Napier, John, 226 
Natural system of logs, 235 
Negative angles, 347 
Net profit problems, 96, 97 
Newton’s approximation, 584 
Newton’s law of cooling, 725 
Normal form, of conics, 486 

of general equation of line, 435 
of linear functions, 434 
of system of lines, 444 

O 

Oblique axis, 417 
Oblique triangle, 376 
Ordinate of point, 67 
Origin, 83 
Orthocenter, 322 

P 

Parabolas, areas of, 333 
conics reducing to, 449 
construction of. 111, 451 
directrix of, 448 
equations of, 99 to 127, 447 
focus of, 448 
general equation of, 450 
inverted, 448 
latus rectum of, 449 
length of arc of, j333 
parametric equation of, 496, 497 
polar equation of, 451 
properties of, 487 
semi-cubical, 197 
shearing, 140, 145 
translated, 101, 449 

Parabolic arch, 453 
Paraboloid, elliptic, 546 

hyperbolic, 547 
of revolution, 337, 530 

Parallelogram, 324 
Parameters, 492 
Parametric equations of, circle, 49." 

curve in space, 540 
cycloid, 498 
ellipse, 496 
parabola, 496, 497 

Partial differentiation, 657 
Pascal’s triangle, 50, 51 
Path of projectile, 452, 725 
Per cent problems, 77 
Period in sine functions, 360, 387 
Periodic oscillations, 366 
Permutations, 311 
Perpendicular lines, 421 
Planes, bisecting, 538 

distance from point to, 534 
equations of, 533 
system of, 535 
through a point, 536 
through three points, 537 

Planimeter, 767 
Point of inflection, 638 
Polar, coordinate paper, 383 

coordinates, 383, 385, 502 
distance between points, 419 
equation of circle, 456 
equation of ellipse, 468 
equation of hyperbola, 478 
equation of parabola, 451 
form of complex numbers, 397 
graphs, 383 
moment of inertia, 758 
relations to rectangular coordi¬ 

nates, 385 
Polygons, areas of, 426 

construction of, 326, 327 
regular, 326 
similar, 327 

Polynomial, 66 
Polynomial functions, factor the¬ 

orem for, 184 
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Polynominal functions, forming 
equations from roots of, 193 

general form of, 183 
graphs of, 189, 194 
reduction of, 183 
remainder theorem for, 183 
roots of, 186, 187, 189, 192, 194 
signs of, 195 
synthetic method for, 185, 190 

Power, powers, approximate forms 
of, 42 

by logarithms, 234 
by slide rule, 263, 269, 272 
differentiation of, 567 
formulae for, 65 
integration of, 668 
relative errors in, 39 
series, 291 

Prismoidal formula, 338 
Prisms, 334, 335 
Products of two or more variables, 

571 
Profit problems, 96 
Progression, arithmetical, 210 

geometrical, 215 
harmonical, 218 

Projection, in space, 525 
curve, 526 

Proportion, 44, 45, 46, 262 
by. logarithms, 235 

Proportional dividers, 40, 47, 131 
Pythagoras theorem, 321 

Q 

Quadratic equations, analytical solu¬ 
tions of, 111 

equations in quadratic fonn, 116 
Euclidean graphical method for, 

119, 120, 121 
factoring, 114 
formation of, 114 
formulae for, 113 
general equation explicit form 

of, 100, 451 
graphical short cut for, 123 

Quadratic equations, graphs of, 99 
Hindu method for, 112 
implicit form of, 127 
with irrational roots, 124 

Quadrilateral, 326 
Quadrinomial reductions, 55 
Quotient of‘two functions, 571 

R 

Radian, 340, 341 
Radicals, addition and subtraction 

of, 62 
definitions of, 61 
division of, 63 
multiplication of, 62 
powers and roots of, 64 

Radius of curvature, 645 
Radius of gyration, 740 
Radius vector, 418 
Rate of change, average, 552 

instantaneous, 552 
of ordinates, 562 
problems in, 597 
relative, 625 

Ratio, 44 
Ratio tests for convergency, 283 
Ratio tests for divergency, 283 
Reciprocals, approximations of, 43 

by logarithms, 235 
Rectangles, 324 
Relative errors, in addition, 25 

in combined multiplication and 
division, 39 

in division, 35, 36 
in multiplication, 29, 30, 31, 32 
in numbers, 23 
in powers and roota, 39 

Remainder theorem, 183 
Retained digits, 22 
Rhombus, 325 
Right angle triangle, 320, 374, 375 
Rollers theorem, 647 
Roots, extraneous, 164, 165 

irrational, 167 
relative errors in, 39 
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Rose, four leafed, 506 
three leafed, 505 

Rotation of axes, 482 
Rounded numbers, 21 

S 

Secant, graphs of, 373 
method, 483 

Second degree equations, (see quad¬ 
ratics) 

in three dimensions, 542 
in two unknowns, 446 
removal of first degree terms in, 

481 
rotation of axes, 482 

Sector of circle, 331 
Selling price, 80, 81 
Series, alternating, 289 

binomial, 292 
Cauchy^s ratio test for, 284 
comparison test, 280 
converging, 278, 281 
directions for testing, 290 
exponential, 296, 404 
hyperbolic, 408 
in^te, 278 
logarithmic, 298 
non-convergent, 279, 281 
power, 291 
ratio test of, 283 
with negative terms, 287 

Shearing, cubic equations, 176 
power equations, 202 
quadratic equation, 139 

Significant figures, 21 
Signs of trigonometric ftmctions, 346 
Simple harmonic motion, 358, 611 
Simpson's rule, 334, 339, 765 
Simultaneous, cubic equations, 178 

linear equations, 299, 302, 303 
quadratic equations, 147 to 161 
trigonometric equations, 413 

Sines, by slide rule, 266, 271 
differentiation of, 604, 607 
expanded in series, 404, 652 

Sines, exponential values of, 404 
graph construction of, 354 
graphs of, 353 
harmonic motion in, 611 
integration of, 691, 696, 696, 701 
law of, 376 
polar graphs of, 384 

Slide rule, A and B scales on, 263,270 
C and D scales on, 262 
correction method by, 276 
cosines by, 266 
description of, 251 
dividing by ir with, 265, 261 
division, regular setting by, 263 
folded scales on, 254 

form a Xb X variable quantity 
with, 259 

form a Xb X c with folded scale 
with, 260 

form g X variable quantity with, 

257 

i X vaTi^ie quantUy 

258 
form xy = c with, 257 
general form with, 267 
inverted and folded scales on, 256 
inverted scales on, 256 
K scales on, 264 
log L scale on, 252 
logarithms by, 267 
multiplication, regular setting by, 

253 
multiplying by v with, 255, 261 
powers by, 271, 272 
proportions by, 262 
reciprocals by, 257, 268 
sine scale on, 265, 271 
tangent scale on, 264, 270 
triangles solved by, 274 

Slope, 83, 239, 420, 421, 572 

Slope-intercept form of linear func¬ 
tions, 42^ 

Solids, 334, 335 
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Space-time curves, 588 
Speed, 586, 593 
Sphere, 336, 337, 524 
Spheroid, oblate, 529 

prolate, 530 
Spirals, Archimedes, 503 

logarithmic, 504 
parabolic, 503 
reciprocal, 503 

Square root, 19 
Squaring, by slide rule, 263 

numbers ending in 5, 6 
numbers ending in 3^, 6 
polynomials, 53 

Subnormal, 490 
Subtangent, 490 
Subtraction, Austrian method of, 2 

check by nines in, 17 
complement method of, 3 
of radicals, 62 

Sum of two powers, 54 
Summation method of integration, 

areas by, 711 
description of, 708 
fluid pressure on walls by, 719 
moments by, 763 
polar areas by, 712 
surfaces of revolution by, 717 
volumes by, 717 
work of lifting fluids by, 719 

Supply and demand, 82 
Surfaces, 522 

of revolution, 527 
System of lines, 439 to 444 

T 

Tangent, 
derivative of, 612 
equation of, 484 
graphs of, 370 
scale on slide rule, 264 
slope of, 557 
to conics, 484 
to curves, 483 

Taylor's theorem, 649 

Tensor, 398 
Theorem, binomial, 48 

factor, 56, 184 
remainder, 183 

Time and distance problems, 74 
Time graphs in sine functions, 357, 

387 • 
Torus, 337 
Total differentiation, 659 
Transformation coordinates, 101,102 
Translation of second degree equa¬ 

tions, 481 
Trapezoid, 325 
Trapezoidal rule for areas, 764 
Triangle, triangles, any plane, 321,322 

areas of, 320, 321, 424, 425 
congruent, 323 
division by similar, 324 
equilateral geometrical relations 

of, 321 
geometrical relations of, 320 
logarithmic solutions of, 375 
multiplication by similar, 323 
oblique, 274, 376 
right, 273, 374 
similar, 323 
solution by slide rule of, 274 
solution of trigonometry of, 377 

to 382 
Trigonometric functions, definitions 

of, 340 
derivatives of, 612 
derivatives of inverse functions 

of, 614 
differentiation of, 604 
equations of, 410 
formulae of, 348 to 351 
graphical representation of, 346 
graphical solutions of, 412 
negative angles of, 347 
signs of, 346 
simultaneous equations of, 413 

Trinomials, general form of, 54 
special forms of, 54, 55 
which are* perfect squares, 54 

Trochoid, 600 
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V 

Variables, change of, 199, 366, 369, 
615 

dependent, 663 
independent, 67 

Variables and limits, 554 
Vectorial angles, 418 
Vectors, 390 
Velocity, angular, 589 

by areas, 674 
components in space, 633 
curvilinear, 593 
definition of, 586 
graphs of, 610 
instantaneous, 590 
mean, 590 
time curves, 589 

Versor, 398 
Vertex, 107 
Vibrations, damped, 367 
Volumes, by areas, 674 

by prismoidal formula, 338 

Volumes, by Simpson^s rule, 339 
by triple integration, 761 
of cones, 336 
of cubes, 334 
of cylinders, 336 
of parabaloids, 337 
of prisms, 334 
of solids of revolution, 717 
of spheres, 336 
of wedge shapes, 338 

W 

Waves, 357 
Wedge shaped volumes, 338 
Work, areas representing, 674 

of lifting fluids, 719 
problems, 83, 90, 91 
relations, 736 

Z 

Zero, forms, 60 
operations with, 60 
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