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PREFACE TO THE SECOND EDITION 

This, the Second Edition of this volume—one of the six in the Struc¬ 
tural Engineers’ Handbook Library—has been designed to provide both 
the practicing engineer and the student with a reference work in which 
problems relating to the design and construction of the various types of 
movable long-span steel bridges are thoroughly covered. 

All errors of which there is any record have been corrected. The 
senior author of the present revision will be grateful to readers who 
bring any other errors that may be found to his attention for future 
correction. 

Some of the major additions that have been made to the First Edition 
are noted here. Section 1 on Bascule Bridges has been supplemented 
by matter dealing with recent developments in bascule bridge design; 
permissible unit stresses in design in accordance with the 1941 specifica¬ 
tions of the A.A.S.H.O. have been given; and the effect of a recent type 
of bridge floor—the light-weight open steel type—is discussed. 

Considerable new material on vertical-lift bridges has been added in 
Section 2. Recent good examples of vertical-lift spans are included in 
the way of both descriptive matter and illustrations. 

Section 4 on Continuous Swing Bridges has been considerably aug¬ 
mented by new material and illustrations on recent examples of continu¬ 
ous bridges, including the Wichert truss. 

New material illustrating and describing the San Francisco-Oakland 
Bay Bridge, East Bay Crossing, has been added to Section 5 oh Canti¬ 

lever Bridges. 
Section 6 on Suspension Bridges is considerably enlarged by the 

material pertaining to the George Washington and Golden Gate Bridges. 
Comparisons between these two major structures of the suspension type 
are made, covering such matters as the erection of the towers, erectioh 
of the footbridges, spinning of the cables, and erection of trusses and floor 
systems. Features of the world’s largest suspension bridges are also 
given, with numerous recent illustrations. 

Steel Arch Bridges, Section 7, contains new material pertaining to 

good examples of recent steel arches. 
Credit has been given in the text of the volume for all data, illustra¬ 

tions, or specifications used for the purpose of supplementing the tech¬ 
nical matter. Mention is made here of the participation of the following 

v 



VI PREFACE TO THE SECOND EDITION 

Associate Editors in the preparation of the First Edition: Chas. A. Ellis, 
Phil A. Franklin, Arthur G. Hayden, C. B. McCullough, H. E. Pulver, 
and D. B. Steinman. 

The senior author of this revision, who prepared the Preface to the 
Second Edition, acknowledges the continued and very helpful collabora¬ 
tion of his associate, Mr. H. E. Langley, and thanks all others who have 
in any way contributed to the preparation of this, the Second Edition. 

Bethesda, Makyuand, 

September, 1943. 

R. R. ZlPPRODT. 



PREFACE TO THE FIRST EDITION 

This volume is one of a series designed to provide the engineer and 
the student with a reference work covering thoroughly the design and 

construction of the principal kinds and types of modern civil engineering 
structures. An effort has been made to give such a complete treatment 
of the elementary theory that the books may also be used for home 
study. 

The titles of the six volumes comprising this series are as follows: 
Foundations, Abutments and Footings 

Structural Members and Connections 
Stresses in Framed Structures 
Steel and Timber Structures 
Reinforced Concrete and Masonry Structures 

Movable and Long-span Steel Bridges 
Each volume is a unit in itself, as references are not made from one 
volume to another by section and article numbers. This arrangement 
allows the use of any one of the volumes as a text in schools and colleges 

without the use of any of the other volumes. 
Data and details have been collected from many sources and credit 

is given in the body of the books for all material so obtained. A few 

chapters, however, throughout the six volumes have been taken without 
special mention, and with but few changes, from Hool and Johnson’s 

Handbook of Building Construction. 
The Editors-in-Chief wish to express their appreciation of the spirit 

of cooperation shown by the Associate Editors and the Publishers. This 

spirit of cooperation has made the task of the Editors-in-Chief one of 

pleasure and satisfaction. 
G. A. H. 

W. S. K. 
Madison, Wis., 

September, 1923. 
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MOVABLE AND LONG-SPAN 
STEEL BRIDGES 

SECTION 1 

BASCULE BRIDGES 

DESIGNS AND TYPES OF BASCULE BRIDGES 

1. Early Types.—The earliest type of bascule construction doubtless 
consisted of a simple span, trunnioned or hinged at one end, moving in a 
vertical plane about such trunnion, by virtue of an out-haul line attached 
to the free end and running upward and inward to the source of power. 
The genealogy of this type may be traced back to an origin in the medie¬ 
val drawbridge used to carry traffic over artificial military waterways. 
These types and the earlier modern types were not counterweighted to 
any extent and their field of utility was, therefore, quite restricted. 

A few bascule bridges were constructed in Europe during the first 
half of the nineteenth century, but no very great attempt was made to 
develop the art. The real beginning of development for the modern 
bascule bridge may be said to date back about 50 years. 

The Van Buren Street Bridge in the city of Chicago, a Scherzer 
rolling bascule, plans for which were completed in 1893, and the famous 
tower bridge in London, a roller bearing, trunnion bascule constructed 

about the same time may be regarded as the fore-runners of the modern 
bascule spanv * 

2. Advantages Inherent in the Bascule Type.—The development of 
the bascule bridge has been rapid because of its many advantages, among 
which may be mentioned the following: 

2a. Rapidity of Operation.—The bascule may be raised 

slightly to permit the passage of numerous small boats which fail to clear 
the closed span by a small margin, the time for such operation being of 
course proportionally less than full opening time. The swing span, on 
the other hand, requires a full 90-deg. opening for each vessel regardless of 

vertical clearance. The degree to which this difference in method of 
■ 1 



2 MOVABLE AND LONG-SPAN STEEL BRIDGES [Sec. 1-26 

operation may influence the selection, or dictate the relative economy 
depends of course on traffic conditions. For high-masted schooner 
traffic on the waterway, and for high grade-line locations thedisadvantage 
of the swing type is not so apparent. Where there is a large traffic in 
small boats, on the other hand, the necessary frequent complete swing 
openings may simply put the swing span out of the competition regardless 
of cost consideration. Especially is this true where the clearance line 
for the bridge must lie close to the water surface. 

26. Interference with Channel during Operation.—The 
swing span blocks the channel during operation and, in localities where 
docking facilities must be maintained close to the sides of the bridge, it 
oftentimes becomes impossible to obtain the requisite room for the 
horizontal swing. This is more often the case in narrow waterways where 
the movable span constitutes practically all of the stream crossing. 

2c. Duration of Opening.—For the bascule type, river traffic 
will approach within a comparatively short distance of the bridge struc¬ 
ture, while, for the swing span, craft must stand off much farther on 
account of the greater difficulty in negotiating the channel and swinging 
around the draw rest. For congested river traffic the difference in time 
resulting from the above operation factor is truly surprising. Concerning 
this feature, F. A. Rapp, Bridge Engineer for the City of Seattle, makes 
the following comment: 

It seems to me that the time consumed in the actual opening and closing of the 

bridge is of secondary importance. The average time consumed in opening and 

closing the motor-operated bridges of the city at Salmon Bay and the West Waterway 

at Spokane Street is about 12 min. The actual time of making the swing is less than 

a minute so that the actual time of moving is a relatively small amount of the time the 
bridge is out of commission. The fact is, that the vessel signals for the draw while 

some distance away and while moving at a speed slow enough to negotiate the passage 

of the bridge without accident. The time consumed in holding the bridge open 
therefore while the boat passes through is the big item. 

Whatever we can do to diminish the time the bridge is held open will be most 

effective in reducing the delay to road traffic. I have waited at the city waterway 

bridge in Tacoma for 35 min. while a Standard Oil tank vessel was passing the draw. 

The operator could have opened and closed the bridge a half-dozen times but was 

forced to open when signalled and keep open until the vessel had cleared. Of course, 
this is a rare occasion but serves to illustrate the point. 

In my opinion a wide clear channel between masonry piers will inspire confidence 

in the navigator and so induce him to go through at increased speed. 

I believe that as between a bascule or vertical lift and a swing bridge, for the same 
clear width of channel, the navigator will prefer the former types on account of their 
symmetrical position across the stream. 

2d. Pier Considerations.—The swing span necessitates the 
use of a large pivot pier in the center of the stream. For certain locations 
the presence of this pivot pier operates to deSect the current toward the 
sides of to stream with consequent destructive erosive acton at the 
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banks or . quay walls. For such locations the swing span is eliminated 
from consideration at the outset. 

The draw rest for the swing type constitutes another serious obstruc¬ 
tion to the channel as well as an added menace to river traffic. The 
dictates of economy usually require such construction to be of timber, 
thus introducing an added maintenance cost. It is true that as against 
this' portion of the structure there must be considered the matter of 
maintenance of the fenders on the bascule piers. However, in nearly 
every case the first cost and maintenance charge on the latter is much less 
than in the case of the swing span draw rest. Moreover, in many cases 
vessels £re compelled to deviate from their natural course in order to 
pass around the pivot pier and draw rest. The openings being narrow 
and the movement of these craft naturally slow, this condition operates 
to greatly lengthen the time during which the span must remain open. 

2c. Adaptability to Wide Roadways.—Considerations of 
stability limit the width which the swing span may overhang the pivot 

Fig. 1.—Four single track swing spans constructed from time to time to carry additional rail¬ 
road trackage. 

pier when open. This fact puts a fixed relationship between the width 
of the roadway and the dimensions of the pivot pier. For wide roadways, 
therefore, it is neither economical nor feasible from the standpoint of 
channel obstruction to build a pivot pier of the dimensions necessary to 
properly carry the span. 

Many single track railway swing bridges have become obsolete long 
before they were worn out, owing to the tremendous growth of traffic, 
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particularly in cities and terminals. The addition of a second track 
necessitates the removal of the existing bridge. If a double track bridge 
is constructed to replace the above, increased traffic requiring a third 
track installation will require the discarding of this bridge also, and so on. 

Unless this method of procedure is adopted, individual spans as shown 
in Fig. 1 must be built because of the horizontal swing room required for 
the draw span. This method results in objectionable curved tracks 
widely spread, extra right of way, the necessity for additional bridge 
operators, an obstructed and difficult channel, retarded railroad traffic, 

and an increased hazard to all parties concerned. 

(Courtesy of the Scherzer Rolling Lift Bridge Co,) 

Fig. 2.-r-Six track rolling bascule bridge. 

Bascule spaas may be arranged in the manner shown above to operate Bingly, in pairs, or as a 
unit as desired. Any number of spans may be added as traffic demands increase. -This fact alone 
constitutes a big advantage over the awing span which must be arranged as shown in Fig. 1 if addi¬ 

tional trackage is desired. 

Contrasting this with the condition shown in Fig. 2, wherein six tracks 
are carried over three independently operated bascule spans, the advan¬ 
tage of the latter type is at once apparent. These spans may be arranged 
to operate singly, in pairs, or in a group as desired and any number of 
tracks may be provided by adding other spans. 

2/. Safety to Land Traffic.—Railway traffic over any 
movable bridge is generally protected by means of automatic, interlocked 
derailing switches, block signals, etc. For highway traffic, on the other 

the only protection afforded is that of the roadway gates. Most 
types of double leaf bascules may be so arranged that the open leaf Mots 
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as an effectual barricade augmenting the roadway gates in this regard. 
Where such types may be employed, the barrier afforded by the raised 
leaves constitutes a very great advantage over the swing span. One of 
the greatest problems confronting engineers today is the safeguarding 
of highway traffic and in this regard the swing span cannot compete with 
the double leaf bascule. 

2g. Effect of Collisions with River Craft.—Not enough data 
are at hand to warrant a general conclusion, but it seems to be generally 
conceded that river traffic may do considerably more damage through a 
collision with the open end of a swing span, thus crumpling up the span 
and draw rest, than would be possible in the case of a bascule. 

2h. Bascule vs. Vertical Lift.—The advantages of the bascule 
t3rpe over the ordinary swing span, as enumerated above, also apply with 
respect to the vertical lift type, the choice between the bascule and 
vertical lift being largely a matter of esthetics and economics—of first 
cost, maintenance, and operation. 

It would, seem that as regards the matter of protection to traffic the 
double leaf bascule, in certain of its types, possesses a distinct point of 
superiority over the vertical lift type. By locating the break in the 
roadway floor ahead of a vertical plane passed through the axis of the 
trunnion, the leaf of the deck trunnion bascule for example, forms a 
traffic barrier from the instant that it begins to lift. 

This barrier is continuous during the entire operation of opening and 
closing and until the bridge is again fully closed and seated. A traffic 
barrier of this kind in connection with a vertical lift span could only 
operate at the latter end of the lift and in the event of the span being 
lifted to less than its full height (which would constitute the case in the 
majority of openings) such traffic barrier would not be effective. 

The relative economy of the bascule as compared with the vertical 
lift is a question involving many conditions and one which warrants 
individual study. In general the vertical lift shows to maximum advan¬ 
tage for long spans and low lifts, that is, in localities where only a limited 
vertical clearance is required. 

3. Relative Economy of the Bascule Type.—The relative economy in 
first cost of the bascule type as against the swing span is a matter involv¬ 
ing many factors and a problem which must be determined in each indi¬ 
vidual case (assuming that traffic and other conditions as outlined in 
Art. 2 have not already eliminated the swing type from consideration). 
The comparative study outlined below was made in the writer’s office 
during the summer of 1920 and may prove illuminating in so far as general 

principles are concerned. 
Type A, in the table, is an ordinary rim bearing swing span (highway 

loadings) providing a clear channel, on either side of the pivot pier, of 

100 ft 
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Type B is an alternate design, for a single leaf bascule span. This 
design affords the same clear waterway and is used in combination with 
a 100-ft. fixed pony truss span. 

Comparative Estimates of Superstructure Only 

Item 

Type A, awing span Type B, Bascule 

Quantity Rate Amount Quantity Rate Amount 

Structural steel. 309,000 lb. 10c. $30,900.00 291,000 lb. 10c. $29,100.00 
Machinery. 34,700 lb. 35c. 12,145.00 33,500 lb. 35c. 11,725.00 

2,050.00 2,000.00 
Draw rest. (Lump sum) 1,850.00 
Concrete.1 145 cu. yd. $20 2,900.00 
Reinforcing steel. (Counterweight) 3,000 lb. 7c. 210.00 
Fender piling. 600.00 
Operator’s house. (Lump sum) 1,500.00 1,500.00 
Gasoline power plant. 2,500.00 2,500.00 
Total. 50,945.00, 50,535.00 

Royalty charge. (5 per cent assumed) 2,526.75 
Grand total.. 50,945.00 .^ 

i 
53,061.75 

A cost comparison based on 1920 unit prices is given in the table con¬ 
cerning which the following may be said: 

The difference in cost for the structural steel portion is in favor of the 
bascule type. (This result is to be expected in view of the fact that 
both leaves of the swing span act as cantilevers under dead load while 
in the bascule type there is but one such span.) The swing span is 
longer than the combined bascule and fixed span of Type B but this 
fact is to a certain extent offset by the metal required for counterweight 
frames and arms. On the other hand, the cost of the bascule counter¬ 
weight more than offsets the cost of the draw rest for Type A. 

All things considered the superstructure cost appears slightly less 
for the swing span. 

Had it been possible to eliminate the fixed span and run trestle con¬ 
struction up to the bascule pier, Type B would have shown economy over 
the swing span. 

As between the various commercial types of bascule bridges it may 
be said in general that each has its peculiar advantages, and will doubt¬ 
less show economy either in first cost or cost of operation under certain 
conditions. The subject of comparison between types is too lengthy 
and involved for treatment at this point. 

The following quoted from Samuel Murray, Chief Engineer of the 
Oregon-Washington Railroad and Navigation Company is of interest 
as throwing further light on this subject. It will be observed that Mr. 
Murray’s conclusions are not in perfect agreement with those stated 
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above, owing perhaps to the fact that his results are deduced from a 
consideration of railway bridges, while the above comparison is based on 
highway loadings. It is also observed that Mr. Murray's comparisons 
are based on a slightly larger opening for the bascule span than for the 
swing type which is giving the swing span a distinct advantage. 

Where average conditions obtain, that is, where traffic is moderate, fairly high 

masts must be provided for, openings of 100 ft. or more are required, foundations are 

ordinary and no obstructions exist to interfere with swinging—the swing span is the 

cheapest structure that can be built and its reliability has been proven by the number¬ 
less examples in service. 

A bascule suitable for a 180-ft. opening has an overall dimension of about 220 ft. 

on centers, and will require about 640 tons of steel for E-55 loading. A swing span 

335 ft. long and suitable for two 150-ft. openings will require 630 tons tinder the same 
specifications. Both have three piers; and if we consider the concrete counterweight 

of the bascule, it will more than make up the difference due to the large pivot pier. 

The royalty of the patentee may be balanced against the cost of the draw-pier protec¬ 

tion. The swing span is longer than the bascule, however, and we must make up this 

length with another pier and a 115-ft. span. The cost of these will be about the differ¬ 

ence between the bascule and the swing span. This is a rough comparison, but it is 
confirmed by experience with many similar cases. 

Where double-tracking is necessary, or wide roadways required, where the area used 

in swinging is needed for other purposes and the center pier protection interferes too 

greatly with river traffic to allow its use, the bascule or vertical lift should be used. 

Bascule bridges can be built for most lengths of span that are necessary, and we 

hesitate to place a limit on their possible length; however, for single leaves, it is less 

than that of the vertical lift. 

The trunnion bridge is cheaper than the vertical lift for locations where tall masted 

traffic must be provided for, easier to erect under traffic and less affected by settle¬ 

ment, and maintenance on cables is likely to be a large item. 

For low lifts of any length the vertical lift is the cheaper structure of the two, and 

has a special advantage for short spans over canals and other narrow waterways, and 

for longer spans where the adjacent spans are through structures. 

In congested locations, the time of opening becomes important. The swing span 

usually requires from 1 to 2 min. to open it and the same time to close it and 

it must often remain stationary until the boat has gotten out of the swinging circle so 

that it is conservative to say that a delay of at least 5 min. will ensue. 

The bascules and vertical lifts require from % to 1 min. to open‘fully and they can 

close in.the same time. Of the two the vertical lift is probably a little quicker for 

small traffic and slower for the full openings required for large vessels. It is the more 

likely to get out of commission and entirely stop traffic. It should be observed that 

small boats are largely in the majority and that, if plenty of head-room is provided, a 

bridge will have to be opened only for the larger vessels. It is often justifiable on 

this basis to choose a slightly higher level notwithstanding the additional cost and 

inconvenience of the approaches on a grade. 

F. A. Rapp, Bridge Engineer for the City of Seattle, has the following 
to say in regard to movable bridges in general: 

My opinion is that the most important item to be considered in any type of mov¬ 
able bridge is the maintenance cost. The interest on bonds will be a constantly 
decreasing charge whereas the cost of repairs is a constantly increasing one. If this is 
initially high, it can soon overcome any reasonable difference in the first cost. 
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Bearing on this point, I submit some figures for maintenance of movable bridges 

obtained from the Mayor of Chicago's annual reports. 

Table of Costs of Repairs of All Kinds of Movable Bridges 

Abstracts from the Annual Reports of the Mayor of Chicago 

Rolling Lift 

Year 
Number of 
openings 

Total 
repairs 

Number of 
bridges 

Average per 
bridge 

Average per 

operation 

1905 3,941 24,475 5 $4,895.00 $1.24 

1906 3,512 35,049 8 4,381 00 1.24 

1909 3,431 43,841 11 3,985.00 1.16 

1910 v 3,547 40,971 13 3,151.00 0.89 

1911 3,166 t 56,274 
1 

10 5,627.00 1.78 

Trunnion Bascule 

1905 1,190 8,582 5 1,716.00 1 44 

1906 1,175 10,793 5 2,158 00 1.84 

1909 1,925 8,937 7 1,277.00 0.66 

1910 1,757 18,613 7 2,659 00 1.50 

1911 1,940 22,195 9 2,466.00 1.27 

Page Bascule 

1905 1,577 3,737 1 3,737.00 2.37 

1906 1,427 4,832 1 4,832.00 3.38 
1909 2,880 5,987 1 5,897.00 2.04 

1910 2,588 13,129 1 13,139 00 3.35 
1911 1,903 6,352 1 6,352.00 3.34 

Vertical Lift 

1906 2 ,*983 6,427 1 0,427.00 2.15 
1909 1 3,468 7,122 1 7,122.00 2.06 
1910 3,192 1,147 1 1,147.00 1.97 
1911 *2,919 5,769 1 5,709.00 1.98 

Many other special instances may be cited and certain tentative rules 
and formulas may be worked out. In fact, certain curves and published 
data tending to indicate the relative first cost and operating economy for 
various types of movable spans are already available. The problem, 
however, is so highly involved and so extremely individual that such 
data is often misleading. For this reason the foregoing, which is merely 
typical and illustrative of the problem involved, is perhaps as far as this 
discussion should go. 

4 Cable lift Bascules.—The cable lift type, illustrated in Fig. 8, 
constitutes the earliest and most primitive of the bascules and has been 
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largely abandoned in favor of the .more modern and costly types. For 
many localities, however—such, for example, as along sections of the 

Pacific Coast—this type still retains a field of usefulness, and will con¬ 
tinue to be used for temporary structures and on secondary and lateral 
roads for many years to come. Local conditions which will render this 
type of merit may be enumerated as follows: 

(1) The presence of a plentiful timber supply rendering timber con¬ 
struction very cheap. 

Fia. 3.—John Day River Bridge, Clatsop County, Oregon. Cable bascule span with sectional 
counterweight. (Span partly open.) 

The span is lifted by means of the outhauTcable A which runs over the idler located in the tower 
O and thenoe down to the winding drum D. Keyed to this same shaft is the counterweight drum on 
whioh is wound the cable B running up over an idler at G and down to the sectional counterweights C. 
E is the guide frame for the sliding counterweights, F is the hinge or trunnion. Power is applied to 
the shaft, which carries the drums, at D by means of a capstan lever through the roadway door to a 

worm and worm gear not visible in the photograph. 

(2) An excessive haul for structural metal from the nearest railhead 
as contrasted with a close proximity of structural timber. 

(3) The presence of numerous small streams, inlets and sloughs 
which have been declared navigable and which must be kept open for 
government snag boats and small fishing craft. 

(4) .The fact that the necessity for opening is very infrequent and 
that man power from the boat crew is always available when the spans 

need to be opened. 
(5) The lack of adequate finances to meet the cost of more modern 

construction. 
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Figure 4 illustrates the general features of a cable lift bascule span 
such as has just been described. 

At the beginning of the lift the torque of resistance is given by the 
Wa 

term Wa and the stress in the outhaul cable is equal to —; at any c 
other position—such, for example, as shown dotted—the resistance 

War 
torque is Waf and the outhaul cable stress — t' It is thus seen that the 

cable stress is a constantly decreasing quantity and a simple arrangement 
of counterweights to keep the span in constant balance is the principal 
mechanical problem involved. It may seem at first thought that the con¬ 
stant balance is a needless refinement for the rough type of construction 

involved. Such, however, is not the case owing to the fact that man 
power must, in nearly every case, be employed and the crew from the 
small fishing boats is sometimes limited to two or three men. Moreover, 
these spans even though very short, are comparatively heavy and the 
lifting machinery receives scant attention, so that even after gearing 
down to the maximum permissible opening time (generally from 10 to 20 
min.) the tangential force at the capstan bar or lever arm is relatively 
large. It seems, therefore, essential that the load be balanced so that 
only friction, inertia, and wind resistances need be overcome. 

There are several methods used to effect this balance some of which 
may warrant a brief discussion. 

4a. Spiral Counterweight Drums.—Figure 5 shows an 
arrangement sometimes used that originated, as far as is known, with 
Mr. Murray. This consists of one cylindrical and also one spiral drum, 
both keyed to the same shaft. The counterweight cable winds up 
on the cylindrical drum while the counterweight unwinds from the spiral 

dram. The stress in the counterweight cable is thus seen to be 
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Waf 
The stress in the outhaul cable at any point is equal to —t (see Fig. 4). 

c 
Vnf jr 
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A better arrangement would be to run the outhaul cable over an idler 
and down to a cylindrical drum, keyed on to the operating shaft, as shown 
in Fig. 6. The spiral counterweight drum is keyed to this same shaft 

Fiq. 7 —-John Day River Bridge, Clatsop County, Oregon. Cable bascule span with sec- 
tional counterweights (Span closed, see also Fig. 3.) 

and runs up over another idler and down to the counterweight. By 

regulating the taper of the spiral drum so that £jF'r2 — ]5=1 0 

at every point, a theoretical balance in every position would obtain. 

c I ” "T c n U z r L r r r r r r r r r r r r r r r r n ■ ■ B _ L. L _ r t r r i a r j * ■ B ■ ■ ■ ■ 9 Ifl « ■ fl Ifl « n H r r r r r ?/?* » - « ■ a fl fl fl Ifl r H n Ifl ifl r w 
E ia B B * fl ■ ■ a fl ■ fl fl ■ ■ ■ » ■ a fl !■ n a 
1 !■ fl B Ifl Ifl •3 m ■ e a 52 fl ■ H ■ IB B _ L 55 i N ■ ■ ■ ■ ■ 

■ ■ ■ ■ ■ :■ ■ IB fl ■ fl Ifl fl fl fl fl ifl » :«« m m n m ;c 25 <+* 9E a rr T ■ IB B fl ■ Ifl ■ fl ■ !■ « a fl ■ fl ■ ~ " ■ z - n E ifl - - ■ ;■ fl fl ■ fl b ■ r 
U - - - fl ■ ■ ■ fl ■ ■ fl i £ mi "4% 
c Cross hmMtesi trm» naprvssnfs nmoonf m 
c pf oner- or vnoA ■ ■ rsmsm ■ ■ ■ ■ ■ ■ fl m-/A- 
B ■ ■ - J ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ B B ■ 9 ■ ■ ■ ■ ■ ■ ■ ■ ■ fl ■ ■ ■ ■ ■ M ■ ■ \ 1 ! j 
■ B ■ ■ ■ ■ ■i 9 fl ■ i ■ B B fl ■ ■ ■ fl: i ■ ■ a ■ \ ■ I I ; ■ 
£ B Bi ■fl 3 : ■: J El 

■ ■i ■1 fl! Efl 1 ■ SI 1 ■ 1 ! SI T; 

Fi«. 8. 

This letter arrangement also precludes the possibility of the span 
slamming shot As would be probable for the type shown in Fig. 6, inasmuch 
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as this type, being undercounterweighted, must be lowered by means of a 
band brake. 

4b. Sectional Counterweights.—Figures 3 and 7 illustrate 
a movable span of this type. As the span rises, the outhaul cable 

tension, > decreases and the counterweights seat one by one decreas¬ 

ing the stress in the counterweight cable proportionally. The outhaul 
cable A runs over a fixed sheave in the top of the tower G and thence 
down to the operating shaft. The counterweight cable drum is keyed 
on to this same shaft D and the counterweight cable B runs up over 
another sheave in the top of the tower and down to the counterweights 
C which slide in fixed leads E bolted to the sides of the bridge (see Fig. 3). 

Figure 8 shows the relationship existing between the stresses in the 
outhaul and counterweight lines at various points of opening. The 
span is alternately over- and underbalanced during its travel and this fact 
constitutes the main objection to this method of operation. It is really 
surprising how apparent are these changes in balance to the man at the 
end of the capstan bar. 

4c. Curved Track and Rolling Counterweight.—A diagram¬ 
matic sketch of a span of this type is shown in Fig. 9. 

The contour of the curved track may be determined from the following 
considerations and formulas. 

(a) Since for balanced action the work expended in raising the, leaf 
must equal the energy released by the falling counterweight, we have 

Wa - W'd 

(b) If represents the tension in the outhaul cable and TJ represents 
the tension in the counterweight cable, and if hst and represent 
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respectively the infinitely small movements of these two cables, then at 

any instant 

HTe(dse) = HTJ (6su/) 

or 

If the outhaul cable winds up on a drum of radius r and the counter¬ 
weight cable unwinds on a drum of radius r' keyed to the same shaft, then 

for equilibrium 

Tcr = 7V' 

Then 

or, integrating 

For the fully closed position of the leaf, the length of the outhaul cable 
is given by the formula 

c = V7j~+& 

For any angular opening of 6 degrees 

C' = \/(L cos 0)2 + (B — L sin d)2 

Whence for the angular opening 0 

sc = C -C' 

Say = El.Sc 

a = R (sin (0 + <t>) — sin </>). (see Fig. 9) 

d = «(f>) 

To plot the contour of the curved path taken by the counterweight 
therefore, proceed as follows: 

About the idler pulley P swing an arc of radius (sj + b) (see Fig. 9). 
This arc will intersect a horizontal line whose vertical distance below the 
center of the counterweight at the "closed” point is equal to d, in a 
certain point to. In this manner any number of points may be located 
and the curve, taken by the center of the moving counterweight, sketched 
in. 

The disadvantage of this type lies in the excessive amount of material 
'j»qwed to construct the curved track and;the- jMjkhilty hi ihaiakfoiiig 

= - (a constant = K) 
1 to T 

8sw' = 8sc(K) 

Sw ^ Sc(f^) 
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the same. It is, however, a smoother operating device than the sectional 
counterweight arrangement shown in Figs. 3 and 7. 

5. Roller Lift Bascules.—The principal commercial examples of this 
type of construction are the Scherzer and the Rail types, the former put 
out by the Scherzer Rolling Lift Bridge Company and the latter under 
patents controlled by the Strobel Steel Construction Company. 

Figure 10 illustrates the general features of the Scherzer bridge, the 
diagram being of a single leaf bascule. The center of gravity of the 
combined span, counterweight, and counterweight arm is located at 
point 0. About this point is described a quadrant Q which rolls back¬ 
ward over a horizontal quadrant track resting on the pier. The center 

Fig. 10.—Scherzer rolling lift type. (Courtesy of the Scherzer Rolling Lift Bridge Co.) 

Fig. 11.—Typical Scherzer installation— 
showing counterweight, segmental and track 
plate castings, and fixed rack method of 
operation. 

of gravity 0 moves backward in a horizontal line a distance d, where d = 

(r being the quadrant radius and 6 the angle of opening). Power 

may be applied through a pinion P rigidly connected to the pier or 
approach span and engaging a rack R fastened to the moving leaf at or 
near the point 0. As the span opens and recedes, the counterweight, 
for deck structures, lowers into a pit provided for the same. For water 
surface conditions, such as shown in Fig. 10, a watertight counterweight 
pit must be provided and the pier designed as a unit. For locations 
sufficiently above high water to permit of such construction, the heavy 
pier may be replaced by two smaller piers, A and B, and the quadrant 
track supported on horizontal girders spanning these piers. This latter 
arrangement is much less expensive and also relieves the foundations of 
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much of the churning or rocking action due to the rolling dead load on the 
unit pier. For through structures the center of the quadrant is generally 
placed sufficiently high to eliminate the necessity for a pit. 

(Courtesy of the Scherzer Rolling Lift Bridoe Co.) 

Fig. 12.—Scherzer rolling lift span at Grand Central Station, Chicago, Ill. 

Fig. 13.—Hall type bascule bridge (deck girder span). 

For single leaf structures the forward pier is designed in the Same 
'U*a«ner as for any fixed span. For the double leaf type two abutment 
piere are needed as well as a device for locking the leaves when tbey are 
fa&y eloeed. Single leaf spansact as simptespans under Kye load whife 
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double leaf spans are generally designed to act as cantilevers or partial 
cantilevers. This point is fully discussed elsewhere. 

Figures 13 and 14 illustrate the principal features of the Rail type of 
bascule bridge, these drawings being developed from certain advertising 

Fig. 14.—Rail type bascule bridge (through truss span). 

{Courtesy of the Strobel Steel Construction Co.) 

Fig, 15 —Rail type bascule span in operation, Broadway Bridge, Portland, Ore. 

matter put out by the Strobel Steel Construction Company who control 
the Rail patents. 

The span is operated by the pinion P which engages a rack fixed to 
the operating strut E, this operating strut being maintained in align- 
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ment by the carriage frame F. In the closed position the moving span 
bears on pin A, the roller R being raised slightly off the track girder. 
Thus the load is carried direct through pin A to the masonry. As the 

(Courtesy of the Strobel Steel Construction Co.) 

Fig. 16.—Architectural possibilities in deck bascule construction. Rail type bascule span, 
Hanover Street, Baltimore, Maryland. 

(Courtesy of the Strobel Steel Construction Co.) 

Fig. 17.—View showing rollers, track, etc. on Rail type bascule span, Broadway Bridge 

Portland, Ore. 

bridge is opened, the span first revolves about pin A as a center until the 
main roller R comes to bearing with the track girder T. The span then 
rolls backward along this track girder, the awing strut C causing the 
connection D to describe a circle with center A and radius AD: This 
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swing strut thus operates to tip the leaf while the roller R causes it to 
recede. 

The center of gravity of the leaf and counterweight is located at the 
center of the roller R. 

The distinctive feature of this type consists in the combined rolling 
and trunnion motion. The roller R} being free in the fully closed posi- 

(Courtesy of Strobel Steel Construction Co.) 

Fig. 18.—Close view of roller and track, Rail bascule on Broadway, Portland, Oregon. 

tioji, may be replaced without difficulty. The retreating movement also 
provides additional clear opening for navigation. The foundations, 
however, are under a shifting load pressure as in the case of the Scherzer 
type, but where the design is properly proportioned this latter condition 

is not at all serious. 
6. Trunnion Type Bascules.—The most commonly used bridges 

falling under this classification are (1) the Simple Trunnion or “Chicago” 
type, and (2) the Multiple Trunnion type (Strauss type). 
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6a. Simple Trunnion or “Chicago’’ Type.—Figure 19 illus¬ 
trates the simple trunnion principle as applied to a double leaf deck 
bascule. The entire weight of leaf and counterweight during the opera¬ 
tion of opening is carried by the trunnions T located approximately at 
the center of gravity of the mass. These main trunnions are carried in 
trunnion bearings which in turn are supported directly or indirectly on 
the masonry of the pier. Figure 19 illustrates a type wherein the trun¬ 
nion bearings are supported on transverse trunnion girders which in turn 
are carried by the masonry *)f the piers. It is also common practice, 
however, to employ vertical posts or towers underneath the trunnion bear¬ 
ings, thus eliminating the necessity for a transverse girder. The use of 
longitudinal girders on either side of the trunnion and parallel thereto is 

. Fig. 19.—Simple trunnion double leaf bascule bridge. 

The design here shown employs a transverse girder extending through the truss to support the 
trunnion bearings. This method of support may be replaced by longitudinal girders parallel to the 
truss, by vertical columns or towers, or by masonry supports without altering the general scheme of 
the design or the method of its operation. 

also quite frequently employed. It is also possible (by detailing the 
counterweight with suitable recesses) to support both trunnion bearings 
directly upon the masonry and thus eliminate the necessity for aay towers 
or girders whatsoever. 

The method of supporting the trunnion bearings has been the subject 
of litigation between certain municipalities and the Strauss Bascule 
Bridge Company.1 Strauss claims a patent upon the particular typ$ of 
trunnion girder illustrated in Fig. 19 wherein the girder is transverse and 
extends entirely through the truss. Where details will permit, however* 
it is always advisable to support heavy bearings directly upon masonry 
supports and thus avoid the deflection in structural members carrying 
tbs same. In the subject matter which follows, however, and in the 

* See p. 28. 
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illustrative problem, a transverse trunnion girder has been used to illus¬ 
trate its application. The trunnion bascule with bearings supported on 
towers, longitudinal girders or directly upon the masonry would involve 
a procedure no different as regards design. 

As the span comes to rest, the forward bearing point FB comes to 
bearing on the live load shoe LLS, and the rear anchor lug L, attached 
to the counterweight, engages a seat in the anchor columns, thus causing 
the leaf to act, under live load, as a cantilever of span L supported at C 
and anchored at A. 

By adjusting the shims under the live load shoe, the span may be 
made to come to bearing on this shoe slightly before the anchor lugs 
engage, thus allowing the trunnion bearings at T to lift slightly under live 
load by removing the dead load deflection from the trunnion supports. 

(Courtesy of F. A. Rapp, Bridge Engineer, City of Seattle) 
Fig. 20.— University Bridge, Seattle, Washington—double leaf, simple trunnion, bascule 

span. 

The span is operated by means of an operating pinion P rigidly con¬ 
nected with the pier and engaging a circular rack attached to the moving 

leaf. 
This type of structure is sturdy and simple in operation* and is 

unquestionably one of the very best types of bascule bridges in use. 
Ivan C. Peterson, Engineer-Manager of the Chicago Bascule Bridge 

Company, describes the various types of the so-called “Chicago” bascule 

as follows: 

The first example of the so-called “ Ghicago ” type of bascule bridge is the Clyboum 
Avenue Bridge, which was designed by Edward Willman, City Bridge Engineer, and 
John Ericson, City Engineer, about 1899. Since then this type has passed through 
various stages of evolution until at the present time there are 22 simple trunnion 
bridges in service in Chicago, while two more are in the course of Construction. Credit 
for this further development is due Thomas G. Pihlfeldt, who was for about 22 
years the City’s Bridge Engineer, and to Hugh E. Young, who, as Engineer of Bridge 
Design, had charge of the design of practically all the City’s “new” bridges built 
in accordance with the recommendations of the Chicago Plan Commission and having 
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curved bottom chords and low trusses, as against the straight bottom chord and the 
deep trusses of the first design. 

(1) In Type 1 the trunnion bearings, two for each bascule truss, were supported 

(Courtesy of F. A. Rapp, Bridge Engineer, City of Seattle) 
Fig. 21.—Construction view of north leaf of bascule span at 15th Avenue N.W., Seattle 

Washington—simple trunnion, half through design. 

(Courtesy of the Chicago Bascule Bridge Co.) 

Fig. 22/—Chicago type bascule bridge, Belmont Avenue, Chicago. 

on two box girders, one on each side of the truss extending from the front, or river pier, 
to the back wall of the pit* The counterweight consisted of cast iron and was confined 
practically within the truss* The top chord of the rear arm of the bascule truss was 
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shaped as a quarter circle and formed, in effect, the operating rack, and the machinery 
was placed in a space back of the pit, the operating pinions engaging the rack quad¬ 
rants already referred to. 

(2) In Type 2, the trunnion bearings are supported on two triangular box girders, 
or inverted A-frames extending from the front, or river pier, to the back wall of the 
pit, the rear ends of these trunnion girders, or frames, being carried up high enough so 
that the counterweight may extend across from one bascule truss to the other, passing 
under the two inside trunnion supports. The shape of the bascule truss and the location 
of the machinery is the same as in Type 1. 

(3) In Type 3, the arrangement of trunnion trusses and counterweights is the 
same as in Type 2, but while in Types 1 and 2, the bottom chord of the bascule truss 
is horizontal, Type 3 has a curved bottom chord giving the general effect of an arched 
truss, and the top chord does not extend much above the top of the railing. This 
bridge is operated by means of operating struts, pin-connected to the trusses and 
operated by a gear train located back of the pit, as in Types 1 and 2. 

(4) In Type 4, the arrangement of the counterweight and general outline of the 
inside trunnion truss is the same as in Types 2 and 3, but the outside trunnion bearing 
is supported on a horizontal box girder extending from the front, or river pier, to the 
back wall of the pit. The rack is confined within an opening in the truss and is of 
concave, or internal type, while the machinery is in two compact units located on 
the outside of the trusses and supported directly on top of the outside trunnion girder 
referred to above, and on a machinery girder parallel to, flush on top with, and securely 
braced against the trunnion girder. 

(5) Type 5 differs from Type 4 in one respect only, namely this, that the inside 
trunnion bearing is supported on a cross girder extending through the opening in the 
bascule truss referred to above and there is, therefore, no inside trunnion girder or truss. 

There are two modifications of this type: 
(a) The outside trunnion girders span freely from the front, or river pier, to the 

back wall of the pit and support not only the outside trunnion bearing but 
the end of the cross trunnion girder as well. 

(b) The outside trunnion girder is, in fact, eliminated or is replaced with a much 
smaller girder serving rather as a machinery support, and the load on the 
outside trunnion bearing as well as the reaction from the cross trunnion 
girder is carried down into a subpier located directly under the side wall of 
the pit at this point. 

Through a sensational lawsuit which was decided in favor of the Strauss Bascule 
Bridge Company, Type 5 was adjudged to infringe U. S. Patent 995813, belonging 
to the Strauss Bascule Bridge Company, insofar as the cross girder extending through 
openings in the bascule trusses is concerned. 

On the other hand, the employment of the opening in tiie truss for locating therein 
an internal or concave rack is covered by XL S. Patent 1001800, issued to Alexander 
Von Babo in 1911; we are licensees for the use of this patent. The drawings attached 
to this patent show the general arrangement of Type 5, but of course, the suit which 
judged the cross trunnion girder an infringement of Patent 995813, automatically 
voided the claims in Patent 1001800 covering this feature, and with this feature 
omitted, Type 5 reverts to Type 4. 

The Belmont Avenue Bridge, shown in Figs. 30, 31 and 32, is of Type 4. These 
illustrations clearly show: 

(a) The general appearance of the finished structure (see Fig. 22, p. 22). 
(b) The arrangement of trunnion girders and trusses, also anchor posts (see Fig, 

30). 
(c) The framing of the movable span which shows that the bottom lateral 

system extends from the*front end of the leaf and nearly to the trunnion 
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center, when it is interrupted for only a short distance and then continued 
in the counterweight box itself, which forms a most rigid and solid brace 
between the tail ends of the bascule trusses (see Fig. 31). 

(id) The compact arrangement of the operating machinery. In this particular 
bridge, the shaft bearings were bolted directly to the machinery girders, but 
in later structures of this type, the bearings are integral parts of a complete 
cast steel machinery frame or base, which permits the complete assembling, 
adjustment and testing of the gear train before shipment (see Fig. 32). 

6b. Strauss Type.—There are several designs, put out by 
the Strauss Bascule Bridge Company, the most distinctive being (1) the 
Overhead Counterweight type, and (2) the Heel Trunnion type. 

par a//el So 7? 

trunnion £ 

trunnion 7} 

Fig. 23.—Strauss “Overhead Counterweight" bascule bridge. 

Figure 23 illustrates the general outline of the Strauss overhead 
counterweight design, the distinctive features of which are the four 
trunnions T\, Tt, Tz and Tx, forming with their connecting struts, a 
parallelogram. 

The tail trunnion T« is placed on a line passing through the center 
of gravity g of the moving leaf and the main trunnion T\. The link 
TrTz is made parallel to Ti-Tt, also the lines Ti-Tt and 7V71. are 
parallel. The following conditions of equilibrium therefore obtain 

Wa :Wa' ::Pb :Pb' 

This relationship is true because of the fact that g, T\ and 7% He in a 
straight line and also because the parallelogram Tx-T%-TvTz causes the 
pivoted counterweight to move.parallel to itself. 

The principal advantage of this arrangement lies in the fact that the 
main trunnion Tx may be located at any point desired (Tt bang, of 
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course, located accordingly). Thus, it is possible to put the trunnion 
Ti at point shown and place the counterweight above the roadway 
even though the center of gravity of the entire mass (leaf and counter¬ 
weight) would be at some point such as C. The principal disadvantage 
lies in the number of intermoving parts and the hinged and swinging 
counterweight. 

The Strauss "Heel Trunnion” type is illustrated in Fig. 24. 
Ti is the main leaf trunnion, T* the counterweight trunnion, and Th 

T2, T3 and T4 together with their connecting struts form a parallelogram. 
A line is drawn through Ti and g the center of gravity of the moving span, 
and the center of gravity g' of the counterweight is made to lie on a line 
through Tt parallel to g-Tu We then have Wa : Wa' ::Pb :Pb', and a 

condition of constant balance is maintained. This proportionality is 
maintained during the operation of the bridge by means of the trunnion 
parallelogram Ti-Tt-Tt-T*. The bridge is operated by means of the 
strut S attached to the moving leaf and fitted with a rack engaging the 
pinion P rigidly fastened to the fixed tower T. As the moving leaf 
rises, the trunnion parallelogram folds up and the shore end of the rocker 
arm lowers, causing the counterweight to move downward. Pier A 
supports the counterweight and Pier B supports the moving leaf under 
dead load. 

The Strauss Company also put out a. design known as the "Strauss 
Underneath Counterweight” type in which the counterweight principle 
is identical with that of the "Overhead Counterweight” type above 
described, but with the counterweight and link located underneath the 
roadway. This arrangement is particularly adapted to locations which 
provide ample clearance between high water level and grade. 

7. Semi-lift Bascule Spans.—The direct lift bascule is, properly, 
not a bascule span at all, but one that belongs in the vertical lift classifica- 



{Courtesy of the Strohel Steel Construction Co.) 

Fig. 27*—Ball type, semi-lift span, C. B. 4b Q. Railroad near La Salle, HI. (Span closed.) 

The Rail type vertical lift span is illustrated in Figs. 25 and 26, which 
are taken from descriptive matter put out by the Strobe! Steel Construe- 
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tion Company. There are two types shown, differing in minor detail of 
operation; these are completely explained by the drawings. This type 
of span is applicable to spans requiring a head room, when open, of not 
over about 150 ft. and presents the advantage of being applicable to the 
modification of existing fixed spans. 

The Strauss Bascule Bridge Company also put out a semi-lift type 
operating in the same general manner. 

Figures 27 and 28 are views of a Rail type, semi-lift span in operation. 

■§B| 

• (Courtesy of the Strobel Steel Construction Co.) 

Fig, 28.—Rail typo semi-lift span, 0. B. & Q. Railroad near La Salle, Ill. (Span open.) 

8. Other Types of Bascule Spans.—There are several other types of 
bascule construction which have been introduced from time to time. 
Some of these have been quite successfully used, others have been quickly 
abandoned in favor of the more standard types described above. The 
Brown Bascule, built in Buffalo, N. Y., and the Waddell and Harrington 
type, built in Vancouver, B. C., are examples of successful bascule con¬ 
struction outside the types herein described. The roller bearing bascule 
of Cowing and of Montgomery Waddell and the tilting floor bascule of 
Page and Schnable are other examples of interesting design along thip 
line. Dr. J. A, L. Waddell in his “Bridge Engineering” gives a very 
interesting discussion of many of these types. 

Space will not suffice for even the briefest mention of the many bascule 
types for which U. S. Letters Patent have been granted. For the benefit 
of those who wish to collect further information along this line a partial 
list of bascule patents granted by the U. S, Patent Office is herewith 
appended. 
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List op U. S. Letters Patent Granted for Bascule Bridge and Allied 

Construction 

Number Sub-class Patentee Remarks 

173253 36 M. B. Adams Bascule 
983194 41 R. M. Agnew Drawbridge 

1001800 Alexander F. L. Von Babo Bascule 
1048440 39 F. J. Benni Bascule 
442847 36 S. Bergman Drawbridge 
828873 36 F. G. Borg Bascule 
632985 38 W. L. Brayton Bascule 
687926 36 W. H. Breithupt Drawbridge 
590787 36 T. E. Brown Drawbridge 

1151657 36 T. E. Brown Bascule 
1203695 36 T. E. Brown Bascule 
1210410 41 T. E. Brown Bascule 
1251634 36 T. E. Brown Bascule 
1254772 36 T E. Brown Bascule 
1254773 36 T. E. Brown Bascule 
1270925 36 T. E. Brown Bascule 
1302302 36 T E. Brown Bascule 
683811 38 J. P Cowing Bascule 
644405 38 J. P. Cowing Bascule 
665405 38 J. P. Cowing Bascule 
672848 38 J. P. Cowing Lift bridge 
689856 38 E. D. Cummings Lift bridge 

1224629 36 R. D. Gardner Lift bridge 
694744 40 C. F. Hall Bascule 
708348 40 C. F. Hall Bascule 
383880 37 W. Harman Bascule 
952485 36 J. L. Harrington Baseule 
554390 41 E. B. Jennings Drawbridge 
780193 41 ( J. A. Joyce Bascule 
721918 39 C. F. T. Kandeler Bascule 
735414 39 C. F. T. Kandeler Bascule 
685707 41 C. L. Keller Bascule 
752563 40 C. L. Keller Bascule 

1047950 38 C. L. Keller Bascule 
1042238 41 K. C. Krase Bascule 
173253 36 F. L. Krause Bascule 
503377 37 R. P. Lament Bascule 
503378 36 R. P. Lamont Bascule 
544733 36 R. P. Lamont Bascule 
657122 39 F. La Pointe Lift bridge 

1124922 36 C. G. E. Larson Lift bridge 
1078293 37 B. Leslie Drawbridge 
1128478 40 C. McKibben Bascule 
1241237 36 C. H. Mereer Bascule 

180491 39 G. Moody Drawbridge 
1311284 36 S. Morreell Bascule 
719163 40 S. T. Matters Lift bridge 
824135 36 R. E. Newton Bascule 
843167 36 J. P. Nikonow Cantilever bridge 
673923 36 J. W. Page Bascule 
731321 38 J, W Page Bascule 
731322 36 J. W. Page Bascule 

12570 40 T. Rail Bascule 
817516 40 T. Rail . Bascule 

1094473 88 T. Rail Bascule 
511718 39 W. Bcheraer Lift bridge 
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Number Sub-class Patentee Remarks 

721918 39 A. H Schemer Bascule 
735414 39 A. H. Schemer Bascule 
963399 40 A. H. Schemer Bascule 
968987 41 A. H. Schemer Bascule 
968988 41 A H Schemer Bascule 
978493 41 A. H. Schemer Bascule 

1021488 39 A. H. Schemer Bascule 
1041885 39 A. H. Schemer Bascule 
1104318 39 A. H. Schemer Bascule 
1109792 40 A. H. Schemer Bascule 
1114535 39 A. H. Schemer Bascule 
517809 39 M. G. Schinke Drawbridge 

551004 39 M. G. Schinke Drawbridge 
564164 38 E. S. Shaw Bascule 
887131 86 L. H. Shoemaker Lift bridge 
738954 38 J. B. Strauss Bascule 
894239 39 J. B. Strauss Bascule 
995813 J. B. Strauss Bascule 

1124356 36 J. B. Strauss Bascule 
1150643 38 J. B. Strauss Bascule 

1150975 38 J. B. Strauss Bascule 
1157449 41 J. B. Strauss Bascule 

1170703 38 J. B. Strauss Bascule 

1171553 38 J. B. Strauss Bascule 

1211639 36 J. B. Strauss Bascule 

136278 38 S. Swart* Lift bridge 

172204 38 S. Swart* Lift bridge 

911628 38 E. Swenson Lift bridge 

496074 36 G. H. Thompson Drawbridge 

648447 40 F. G. Vent Bascule 

598167 39 M. Waddell Drawbridge 

598168 39 M. Waddell Lift bridge 

621466 38 M. Waddell Lift bridge 

637050 40 M. Waddell Bascule 

660827 36 M. Waddell Bascule 

661113 38 M. Waddell Bascule 

693467 88 M. Waddell Lift bridge 

890947 38 M. Waddell Lift bridge 

908718 40 M. Waddell Drawbridge 

952485 36 M. Waddell Bascule 

789398 39 W. J. Watson Bascule 

442847 36 G, A. Weidenmayer Drawbridge 

534704 37 I B. L. Worden Drawbridge 

536313 39 B. L. Worden Drawbridge 

691035 36 J. D. Wilkins Lift bridge 

1241237 36 C. H. Woethie Basoule 

SELECTION OF TYPE OF BASCULE BRIDGES 

9. Single vs. Double Leaf.—A great many factors are involved in the 
problem of selection of type of bascule for use at a given location. Some 
of these factors should be known even before the site is chosen. Others 
can be determined by a careful topographical survey of the selected 
location. Still other factors are made known by the results of test 
borings and other exploration of the, foundations. The economics of 
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cost of substructure and superstructure for the various types can be 
determined only after comparative designs and careful estimates have 

been worked out. 
It is the intent of this chapter to outline a few of the more important 

points to be considered and to call attention to the fundamental differ¬ 
ences in the various types in so far as these differences may dictate the 
selection of the ultimate design. 

The first question in selecting a type of bascule bridge is usually 

whether one leaf or two shall be used. 
The advantages of the double leaf construction over the single leaf are: 

(1) Added safety to roadway traffic. 
(2) Increased speed of operation. 
(3) Greater adaptability to esthetic treatment. 
(4) Decreased size of individual operating units. 
(5) Lower overturning moments on piers due to wind on upraised 

leaf. 
(6) Shorter counterweight arms or smaller counterweights, or 

both. 
(7) Increased head room at center of channel (in the deck or half 

through types). 
Taking these up in the order given above: The added safety to road¬ 

way traffic is due to the fact that practically all types of bascules may be 
so arranged that either the rear end of the moving floor or else the counter¬ 
weight forms a solid barricade across the roadway when the bridge is fully 
raised, while on a single leaf bridge the outer end raises and leaves the 
open end of the fixed roadway protected only by a gate or other light 
barricade. In certain types of the Rail rolling lift, the Strauss vertically 
moving overhead counterweight, the Strauss Heel Trunnion Pantograph 
type and the Scherzer rolling lift with overhead counterweight, the 
counterweight generally forms this barricade. In the Chicago type 
simple trunnion bascule and in practically all of the other underneath 
counterweight types, the roadway floor on the moving leaf forms the 
barricade when the break between the fixed and moving floor is ahead of 
the trunnion as it should preferably be on single deck bridges. The 
roadway floor probably constitutes a better and more certain roadway 
barricade than does the lowered counterweight particularly in locations 
where a large portion of the lifts will be to less than full height. Either 
type, however, furnishes a barricade much safer and more certain than 
can reasonably be expected for a single leaf design. In substance there¬ 
fore, a double leaf bascule effectually protects both approaches while a 
single leaf bascule leaves one approach unprotected. 

The greater speed of operation for the double leaf construction is due 
to the fact that for a given opening at the center of the channel, two 
leaves can be raised simultaneously in a shorter space of time than one 
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leaf can be raised to twice the desired opening at the far pier. The leaves 
of the double leaf type, being shorter, are lighter and have less inertia to 
be overcome by the machinery. The acceleration is therefore faster than 
with the single leaf. 

In consideration of esthetics the double leaf lends itself readily to a 
balanced treatment, both piers and leaves being symmetrical. The 
stresses in the trusses of a double leaf bridge are a maximum at the piers 
and a minimum at the center of the channel. The double leaf, therefore, 
is economical when a curved chord cantilever is desired in order to give 
the effect of an arch when closed. 

On account of the decreased inertia and lighter weight (because of the 
shorter leaf and the smaller area exposed to probable wind pressure), the 
individual items of machinery required to operate the double leaf type 
will be lighter than those for the single leaf type, although the total weight 
of operating machinery may be about the same. 

In the same degree that the wind pressure is reduced, the overturning 
on the pier and thereby the maximum soil pressure is also reduced. For 
each leaf, the area exposed to wind pressure is half for the double leaf 
type of what it is for the single leaf type. The moment arm also being 
half, the resulting moment is therefore, only one-fourth. This is a very 
important consideration where the foundations are in soft material or on 
piling. 

The moving leaf is shorter and lighter on the double leaf type, there¬ 
fore, in the fixed counterweight types the counterweight arm may also 
be shorter and the size of the counterweight reduced, thus reducing the 
required distance from the grade of the roadway to high water elevation. 
This effect is more than directly proportional to the length of the leaf 
because the lighter truss, as above noted, has also a shorter lever arm. 
In the case of the pivoted counterweight and overhead counterweight 
types, the above relation is true, particularly in regard to the size of 
counterweight. The saving in length of counterweight arm may be 
sufficient to just avoid dipping beneath the water line with the counter¬ 
weight arm when the bridge is raised and therefore, may mean the differ¬ 
ence between a watertight counterweight pit for a single leaf as against an 
open air clearance for the double leaf type. This consideration often 
becomes a determining one in locations where the roadway grade must 
lie close to the water surface. 

In the double leaf type, the counterweights, as above noted, are 
much smaller than in a single leaf bridge of equal channel span on account 
of the lessened weight and moment arm of the overhanging leaf. There 
is, therefore, considerable economy of counterweight material itself in 
the double leaf type. 

In the double leaf types, the adoption of a shallow section at the ends 
of the cantilever arms to give the closed span an arch effect and also to 
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save metal at the center, increases the available head room at that point 
thus permitting a relatively greater percentage of the shipping to pass 

under the closed bridge. 
The advantages of the single leaf type over the double leaf are: 

(1) Centralized power plant and control. 
(2) Greater rigidity under excessively heavy live loads. 
(3) Only one counterweight pit to provide (where the roadway is 

so close to water line as to make a pit necessary and where 
an underneath counterweight type is to be chosen). 

(4) Absence of the necessity for anchoring the rear end of over¬ 
hanging arm for live load with a consequent lessening of 
the churning action on the foundations. 

Referring to the above points: The advantage of a single control and 
mechanical plant is obvious. There is but one machinery room, the 
limit switches and interlocking devices are greatly simplified and 
cheapened and the use of steam or gas as a motive power is made possible 
in localities where electric power is not available or not satisfactory. 
Where electric power is employed, or where gas or steam must be used in 
conjunction with electricity, a submarine cable is necessary with the 
double leaf type for the control of the remote leaf. Remote control for 
the operation of the far leaf has been very highly developed and is per¬ 
fectly safe and certain, the only objection to the same being that it is 
expensive from a standpoint of first cost and because it requires the 
presence of an operator familiar with the electrical wiring of specialized 
equipment. In localities where the underneath counterweight is desir¬ 
able from an esthetic standpoint or for other reasons, but must be 
provided with a watertight pit on account of the proximity of the grade 
line to water line, it is quite possible that the saving effected by the elimi¬ 
nation of one pit through the use of a single leaf design may offset the 
losses due to the various other considerations against the single leaf type. 

The double leaf type generally acts as a cantilever under live load 
and must therefore be anchored at the rear. The single leaf type acts 
as a simple span under live load and hence needs no anchorage. 

One of the greatest advantages of the single leaf type is the elimination 
of the necessity for this anchorage at the heel of the truss inasmuch as 
this anchorage detail in double leaf designs is the cause of considerable 
churning action on the piling or foundation soil and a consequent increase 
in extreme pressure at the toe of the footing. Whether or not the increase 
in live load toe pressure on the double leaf design due to the above cause 
is offset by the decreased toe pressure due to the fact that wind pressure 
on the upraised leaf is much less, can only be determined by analysis of 
each individual case. 

In general it will be found that for heavy loads or for short spms, the 
single leal type mil be the more economical while for lighter loading or for 
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longer spans, the double leaf will be cheaper. In corroboration of the 
above principle, it should be noted that single leaf types are more common 
for railway than for highway loadings and that practically all spans of 
less than 100-ft. clear channel are single leaf designs. No small part in 
the selection of these types is played by the fact that the double leaf 
design gives the more sightly structure and lends itself to balanced archi¬ 
tectural treatment, being for this reason a preferable type for highway and 
municipal bridges, while the single leaf, through truss type is far stiffer 
under heavy engine and train loadings and is therefore, more desirable 
for railway work where esthetics are to a certain extent secondary. 

10. Through vs. Deck Spans.—In addition to the well known con¬ 
siderations which have a bearing on the selection of through vs. deck 
trusses for ordinary fixed spans, the bascule bridge involves certain 
factors relating to location and size 
of counterweights and to the location 
of the trunnions and their supports. 

In any type of bridge where the 
counterweight is fastened rigidly to 
the moving leaf, it is necessary that 
the line through the centers of grav¬ 
ity of the overhanging or river arm, 
and the rear or counterweight arm 
must pass through the center of 
rotation in order that the moving 
part may always be in equilibrium 
without assistance from the machinery. In those types where the coun¬ 
terweight is linked to the moving span, but not rigidly connected thereto, 
the distance in a horizontal line between the main trunnion and the cen¬ 
ter of gravity of the moving leaf must always bear a fixed ratio to the 
horizontal distance from the point of rotation of the counterweight to 
the center of gravity of the same. (This relationship is due to the fact 
that the summation of moments tending to rotate the span about the 
trunnion* must always equal zero for equilibrium and therefore, the ratio 
of the horizontal arm of the moving leaf to the horizontal arm of the 
counterweight must always be in inverse proportion to the ratio of weights 
of moving leaf and counterweight.1) 

It will readily be seen, therefore, that if the trunnion for a through 
truss were located at the lower chord end panel point LO, the counter¬ 
weight would need to be below the .deck of the fixed approach if it were 
to be rigidly connected to the moving leaf because the center of gravity 

1 For purposes of operation, it is generally considered advisable to so arrange the 
relation between theoenter of gravity of the moving system and the center of rotation 
that the channel leaf will be overbalanced very slightly when closed. This, however, 
is discussed more fully in Art. 13, p. 39, 
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of the truss would lie above the trunnion and, from the above considera¬ 
tion, a line from the center of gravity of the truss through the trunnion 

-—” -—r w center of gravity 
The type shown in Fig. 29, on the other hand,' 

F
ig

. 
3

0
. 

E
a
st

 a
b

u
tm

e
n

t.
 J

^e
lm

o
n
t 

A
v
en

u
e 

B
ri

d
g

e,
 C

h
ic

ag
o

, 
O

ct
. 

5,
 

19
15

. 



Sec. 1-10] BASCULE BRIDGES 35 

permits the main trunnion to be placed at or near the heel and at the 
same time, permits the employment of an overhead counterweight. The 
type shown in Fig. 33, p. 40, also permits of the construction of a through 
truss with heel trunnion and overhead counterweight. 

The case first cited above, viz., a through truss with heel trunnion and 
fixed counterweight, would require enough metal at LO to withstand the 

Fig. 31.—East abutment, Belmont Avenue Bridge, Chicago, Feb. 1, 191G. 

bending moment caused by the counterweight and this, for any ordinary 
span, would be prohibitive. If, however, the trunnion is raised to a 
position between the chords of the truss and the truss extended rearward 
to the counterweight connection, it is possible to place the counterweight 
rigidly between the rear ends of the trusses and have its center of gravity 
in line with the center of gravity of the forward end and the center of the 
trunnion. This gives the simple trunnion type as illustrated in Fig. 31 
and changes the design from a through to a half through or deck type. 
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It is also possible to obtain a deck structure with a heel trunnion and 
overhead counterweight although considerations of headroom at high 
water generally confine this type to short spans. 

Advantages of the deck type are: The possibility, as a general rule, 
of securing more rigid bearings for the trunnions; more sightly structures; 
better chance to develop the lateral system in the counterweight arm, 
thereby stiffening the whole moving leaf; and lastly, greater safety to 
roadway traffic as the operator has a much better view of the roadway on 
a deck span than he does on one where the truss members are above the 
floor. 

Some of the disadvantages of the deck type are: The added height 
of roadway necessary, making the approaches steeper; the difficulty in 
general of arranging dimensions and details to allow the break in the floor 
to be placed ahead of the point of rotation (thereby making the moving 
leaf to act as an effective barrier to the roadway traffic); added height 
of counterweight tower posts in the overhead counterweight types; added 
length of channel span in the trunnion types which have trunnions in or 
near the line of the top chord. As a general rule, it may be said that the 
higher the floor is placed above the bottom chord, the more difficult 
become the details. Particularly is this true in regard to the interference 
of moving parts; many cases having arisen where it has been impracticable 
to obtain a deck structure and still keep the break in floor ahead of the 
center of rotation. The reasons for this are not easily demonstrated, but 
the designer will soon find whether his design can be made a deck structure 
or whether the limiting conditions in the case, as above discussed, make 
that type out of the question. 

11. Arrangement of Piers.—There are several types of piers used to 
support bascule spans. Some of these are common to several types of 
bascules while others are adaptable to only one type. Whatever applies 
to the operating, or hinged, end of a single leaf type also applies to the 
hinged ends of a double leaf type. 

In general a forward and a rear pier are required for the operating 
end of any bascule. The simple trunnion type has a live load or forward 
pier, a trunnion pier and (if a double leaf type) an anchor or rear pier. 
The Strauss trunnion type generally has the same piers and the Scherzer 
type has a track between a forward and a rear pier, or else a solid wall 
which is equivalent to a beam over the two supports. The Rail also uses 
a track, but frequently supports one end of this track on a stream pier and 
the other on an approach. The Page bascule, in which the weight of the 
approach is utilized as a counterweight, must have a forward pier for 
the heel of the river arm and a rear pier for the heel of the approach arm. 

A forward and a rear pier are usually necessary on account of the 
fact that the possible overturning moment of the wind on the open, or 
partially open span is very great and enough mass and base area must be 
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furnished by the pier or piers to render the structure stable under maxi¬ 
mum wind pressure on the upturned leaf. Some designers have suc¬ 
ceeded in using the approach* span as a connecting link, thereby causing 
the pier at the shore end of the approach span to act as the rear pier and 
take part of this overturning moment. 

Wherever the counterweight is clear of the water at the fully open 
position of the leaf, the individual piers will probably prove the cheaper 
method of support, but where the counterweight swings below high 
water, it will be necessary to build a watertight pit into which the counter¬ 
weight may swing. In this case, the unit pier construction has the 
advantage and the final design will resemble an open box generally with 
individual piers against the inside walls; the whole being placed on a 
solid foundation slab. The overhead counterweight will practically 
always call for simple individual piers while for the underneath counter¬ 
weight design, the type of pier needed will depend upon the distance from 
roadway to water level. In the wing counterweight type, the weights 
are almost always so arranged that they do not fall below the line of the 
top of the pier and so rarely need a watertight pit. 

12. Relative Merits of Different Types.—There are in use in the 
United States and foreign countries at the present time four principal 
types of bascules. These have been described in a general manner in the 
foregoing pages. They are: (1) Scherzer; (2) Strauss; (3) Chicago, or 
Simple Trunnion; and (4) Rail. It is probable that there are in existence 
more bridges of either one of the four above mentioned types than all 
other miscellaneous kinds combined. A glance at the list of patents on 
pp. 28 and 29 will show that there are a great number of patented 
bascules which have never been built and that the four types mentioned 
above comprise a large part of the patents. It is true that some of the 
patents are for improvements and for small parts in existing types, and 
not for separate and distinct types of bridges. Most of the patents, 
however, cover some basic idea of bascule design in relation to the whole 
superstructure and its method of operation. The fact that some of these 
types have not been built quite likely indicates either that they were too 
costly, or that further investigation has shown the basic idea to be imprac¬ 
tical. At any rate, the result has been that construction has nar¬ 
rowed down at the present time to practically the four types mentioned 
above. 

In the number of bridges of each type in operation, it is probable that 
the Scherzer leads, the various types of Strauss coming next, the Chicago 
or Simple Trunnion being third, and the Rail last. 

BASCULE SUPERSTRUCTURE DESIGN AND ERECTION PROBLEMS 

In this chapter, it is not the intention to treat of that portion of the 
design of a bascule bridge superstructure which involves the same 
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procedure as that for the design of any other steel frame work. There 
are many points, however, which are very different from ordinary fixed 
bridge design. It is with such special features that this chapter has to do. 

13. Balance Requirements.—The main difference between a fixed 
bridge and a bascule lies, of course, in the fact that the latter is a moving 
structure. In order that the machinery required may be as light as 
possible, it is necessary to have the moving portion always in balance so 
that inertia, friction and wind are the only loads on the machinery. The 
designer of the structural portion must, therefore, bring the center of 
gravity of the moving leaf to a coincidence with the center of rotation. 
The moving leaf is best handled by considering it in two complete items: 
(1) All the moving portion except the concrete counterweight, and (2) 
the concrete counterweight. 

The best method of procedure seems to be to choose tentatively the 
number of leaves desired, the type of bascule to be used, the length of 
span, the elevation of grade (thus giving the distance from grade to high 
water) and all other limiting conditions and then to make a rough layout 
of this tentative plan to determine whether all the conditions can be 
fulfilled. From this sketch, the amount of clearance from grade to high- 
water will show whether an underneath counterweight can be used. The 
length of river arm can be determined so as to provide the necessary clear 
channel and the question of deck vs. through bridge decided. Several 
trials and layouts are usually necessary before all points of interference 
are located and corrected. These points being settled, the final design 
may be started. 

Since the portion of the structure between the forward or channel 
piers can be designed with certainty regardless of the shape, support 
required for, or the placing of the counterweight, it is advisable to con¬ 
sider first the bridge in the closed position and design the river arm for 
dead and live load closed. This gives the weight and center of gravity 
of the river arm and, as the limiting dimension between grade and water 
line will fix very closely the length of the counterweight arm, a close 
approximation can be made (1) of the weight and center of gravity of 
the steel in the rear end, and (2) of the amount of concrete required in 
the counterweight. Having these data and the shape of the forward arm, 
the line from the center of gravity of the proposed counterweight to the 
center of gravity of the rest of the moving leaf will constitute the locus 
of the center of rotation for any bascule having a rigidly attached counter¬ 
weight (see Fig. 52, p. 51). 

For bascules with a trunnioned or hinged counterweight, the line 
from the counterweight trunnion to the center of gravity of the moving 
leaf is the locus of the center of rotation (see Fig. 54, p. 52). 

In the Strauss type of overhead counterweight which has the parallelo¬ 
gram connection between the counterweight and the truss (see Fig, 33a), 
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the point of rotation of the truss is fixed at H (the heel of the truss) and 
the line through the center of gravity G of the moving leaf and the trun¬ 
nion H must be parallel at all times to the line CT, where C is the center 
of gravity of the counterweight. This may be readily seen from the 
following consideration: If we consider the parallelogram T-L'-L-H as 
of no width, thus bringing the counterweight trunnion T and the main 
trunnion H to the same point, the length of lines TH and LLf become 
equal to zero and the line TC becomes a continuation of line GH. The 

Fig. 33. 

moving portion can then be considered as a simple trunnion type as 
shown as in Fig. 336. From this treatment, it is seen that the law above 
stated must hold, viz.—that, for the type shown in Fig. 33a, the locus of 
the center of gravity of the counterweight is a line through T parallel to 
the line GH and extending toward the rear. 

When the point of rotation is not yet fixed, as is the case when design¬ 
ing the vertically moving overhead 
counterweight type (see Fig. 53, p. 
52), the point of connection of the 
counterweight to the moving leaf is 
considered as the counterweight trun¬ 
nion and the rule stated above for 
trunnioned counterweights applies. 

In locating the trunnion it is well 
to know the several points at which 
interference is likely to occur and to 
provide early against such difficulty. 

The greatest trouble is generally encountered in locating the break in the 
floor. If this is to be ahead of the center of rotation, it must be far 
enough ahead so that a line through the center of rotation at an angle with 
a perpendicular to the floor line equal to one-half the angle of opening, 
will intersect the floor at or behind the break. This is readily seen from 
Pig, 34, If the break in the floor were to be placed at point A (see Fig. 
3^), the rear end of the moving floor would travel through the circular 
path AD and come to rest (at full open position) at point.D just touching 
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the fixed floor. If the floor break were to be placed back of point A 
(as at Afy Fig. 34), the leaf would obviously foul the fixed floor at some 
position less than the full open position. If the floor break were to 
be placed ahead of point A, as at point B, the leaf would come to rest (at 
the fully open position) at some point C leaving a gap at C between fixed 
and moving floors which, if large enough, would constitute a menace to 
traffic. It is clear, therefore, that if no other clearance condition limits 
the location of the floor break, the same should be placed just far enough 
ahead of point A to furnish a working clearance at point D between fixed 
and moving floors when the leaf is fully raised. 

There is another limiting clearance condition, however, to wit: The 
interference of the forward end of the fixed floor with the sway frame 

between the first panel points of the moving leaf ahead of the trunnion 

(see Fig. 35). 
From an inspection of Figs. 35 and 36 and from the foregoing discus¬ 

sion, it will be readily seen that some very close designing must be done 
at this point. Consider (Fig. 36) the trunnion definitely located at point 
T. At floor position 1, the break must be placed at, or slightly 
ahead of point 5. If the floor is moved to position 2, point 6' becomes 
the limiting rearward position of the floor break, etc. It is thus seen that 
raising the floor operates to throw the limiting position of the floor break 
forward. On the other hand, the clearance line for the sway frame 
intersects the floor level at points which move backward as the floor eleva¬ 
tion is raised intersecting the line b~bf produced at some elevation such as 
floor position 3 (see Fig. 36). It is, then, obviously impossible to locate 
the floor above this elevation without having either the sway frame or 
the moving leaf foul the fixed floor. It becomes necessary, therefore, to 
move the leaf panel point from B-B to some position Bf-Bf so that the 
clearance line for the sway frame is moved ahead of the trunnion a suffi¬ 
cient distance to provide the necessary clearance. This position increases 
the required span length (between trunnions) thereby increasing the 
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amount of metal required in both forward and rear arms, and also the 
amount of material in the counterweight. This change also obviously 
operates to increase the size of the pier. 

Lowering the floor clearance reduces the available space beneath the 
fixed floor in which to place the counterweight and also operates to cramp 
the space necessary for machinery. The foregoing discussion will illus¬ 

trate the difficulty encountered in providing for a true deck truss con¬ 
struction and will also illustrate the importance of careful attention to 
clearance requirements in order to avoid interference between fixed and 
moving parts. 

Another point of interference is between counterweight and pier in 
the fully open position. Many times the detail of the counterweight 

must be changed to fit the pier. In the overhead type, this interference 
is generally between the roadway floor and the counterweight. 

Interference must also be guarded against where the lower lateral 
system approaches the trunnion supports. When the two supports for 
the ends of a trunnion are carried on columns extending downward into 
apit> no lateral system can be used between the trunnion post line and 
the counterweight which interferes with the trunnion posts (see Fig. 37). 
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If the trunnion bearings are carried on a cross-girder extending through 
both trusses, interference must be guarded against where the lower chords 
pass beneath the girder.1 At this point, interference not apparent in the 
closed position of the bridge will develop when the truss is rotated, as will 
be seen by describing an arc through the extreme‘edge of the lower 
flange plates of the girder about the trunnions as a center (see Fig. 38). 
Care must also be taken to see that the truss members, in rotating, do 
not foul any of the shafting of the operating machinery. In certain 
machinery layouts, the main shaft extends through the trusses and operates 
trains of gears on the piers, these gear trains in turn operating the main 
pinions. In these types, a portion of the machinery is usually between 
the trusses on a platform suspended from the fixed floor. This platform 
must be very carefully laid out in order not to interfere either with the 
trusses or the counterweight. 

All the above questions relating to general clearance requirements, to 
the position of the various centers of gravity and to the location of 
trunnions, etc. must be decided and made to correspond before the final 
design of the counterweight arm can be made and the finished calculations 
for balance completed. 

14. Live Load Stresses.—In the design of the forward or river arm, 
the exact live load can be used, but in the tentative layout of the counter¬ 
weight arm only approximate loads can be used until the final form is 
determined. After a certain shape of counterweight arm is definitely 
selected, complete and definite stresses may be calculated for this arm as 
well and the live load stresses are then complete. In single span bascules, 
the live load stress calculations are no different from those in any other 
simple span. In double leaf bascules, however, a lock called a shear lock, 
is used at the junction of the two leaves. The purpose of this lock is to 
make both leaves deflect equally and thus prevent a difference in eleva¬ 
tion at the center due to load on one leaf only. The maximum shear 
passing through this lock will occur when the maximum load is on one 
leaf with no load on the other. For different members of the bridge, 
different load groupings will determine the proper shear lock stress to be 
considered in conjunction with the live load stress. The most convenient 
way to calculate these stresses is to plot a stress diagram of the leaf with 
a unit load at the shear lock and then for each possible placing of the 
live load, determine the pressure on the shear lock. This shear lock 
pressure (for any given load placement) times the stress in any member 
due to unit load at the center is clearly the shear lock stress in the given 
member for the loading considered. This figure is not always to be 
added to the live load stress, however, as it frequently happens that the 
shear lock decreases rather than increases the live load stress. An 
examination of the loading required for any certain stress will soon show 

1 See Art. 6a. 
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just what values are to be combined to give the maximum. Shear lock 
stresses and methods for their calculation will be discussed in more detail 

later. 
In those cases where the two leaves are locked for moment as well as 

for shear, the bridge when locked becomes to all intents and purposes a 
fixed span and should be so analyzed. 

When double leaf spans are provided with an anchor arm and an 
uplift reaction or anchor (to counteract the 
tendency of the live load to overturn the 
moving leaf about the forward support), a 
close adjustment of the finished anchor 
blocks is needed in order that the anchor 
may not come into play before the forward 
support takes its load. If it does, it throws 
an excessive load on the trunnions and their 
supports by throwing the entire upward 
reaction into the trunnions so that the entire 
live load is supported on an upward reac¬ 
tion at the trunnion and a downward reac¬ 
tion at the anchor. The only other available 
upward reaction is the forward or live load 
support, and this support rather than the 
trunnion, should furnish the necessary up¬ 
ward reaction under full live load (see Fig. 

39). The anchors, therefore, should never come into play until the cen¬ 
ter of gravity of the combined live and dead load passes the live load 
shoes. The anchor columns constitute a downward reaction and since 
the shear lock cannot be counted upon for upward reaction (on account 
of the possibility of full live load on the far leaf), the moving leaf, under 
live load, must be considered as a beam overhanging two supports. 

Proper ly Adjusted 

If anchor blocks come into play 

too quickly forward bearing recedes 

no load and both trunnion and 

bascule laaf are under heavier 

stresses than above 

Anchor Columns Improperly Adjusted 

Fig. 39. 

Before any live load comes on the moving leaf, the center of gravity of 
(and, therefore, the whole of) the dead load is centered at the trunnion 
(see Fig. 40). When the live load comes on the leaf, the center of gravity 
of the combined live and dead loads moves away from the trunnion 
toward the forward support and each of these supports (trunnion and 
forward bearing) then takes its proportion of the total (see Fig. 41). 
When the live load becomes heavy enough to balance the whole structure 
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over the forward support, the load on the trunnion becomes zero. When 
still more live load is added, the anchor bracket comes into play, exerting 
a downward reaction and the forward support takes all live and dead 
load and in addition a load equal to the negative reaction on the anchor. 
All of these cases are susceptible of calculation by simple statics. They 
all depend, however, on the adjustment of the anchor to such a position 
that the same begins to take load at the time when the live load just 
brings the center of gravity of the combined live and dead loads to the 
forward bearing and thus takes the deflection out of the trunnion supports. 

In order to obtain this adjustment, it is necessary to set the anchors 
so that there is some clearance between the anchor bracket on the moving 
arm and the anchor on the pier. 

It is customary to cushion the anchor with a resilient substance such 
as white oak blocks. This will compress a certain amount under the 
maximum uplift which it is called upon to carry. 

When in the unloaded state, there is some deflection in that portion 
of the counterweight arm between the trunnion and the anchor bracket. - 
There is a greater deflection in this arm when the center of gravity of the 
combined live and dead loads fall at the live load shoe because in the first 
case, the counterweight arm is a cantilever supported at the trunnion and 
in the second case, it is cantilevered clear from the live load shoe. The 
increased span gives the greater deflection. 

As the trunnions carry the full dead load at all times, when there is no 
live load on the moving leaf, there is considerable deflection in the trun¬ 
nion supports. During the time that the center of gravity of the dead 
and live loads is moving from the trunnion forward toward the live 
load shoe, the load on the trunnion supports is decreasing and the main 
trunnion girder is rising due to this lessening of the load on the trunnions. 
This will allow the span to rotate about the live load shoe as a pivot and 
raise the anchor bracket in proportion to the rise in trunnion supports. 
The rise in the anchor bracket is equal to the rise in the trunnion (due to a 
portion of the deflection being taken out of the trunnion girder) multiplied 
by the ratio of the distance from live load shoe to anchor bracket to the 
distance from live load shoe to trunnion. In order, then, to find the 
correct clearance at which to set the anchor blocks, it is necessary to 
know: 
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(1) The difference in the dead load deflection of the anchor arm 
when supported at the trunnion and when supported at the 

live load shoe. 
(2) The difference in deflection of the trunnion girder at the 

trunnion supports under no live load on the span and with 
full live load on the span. 

(3) The ratio of the distance from the live load shoe to the center 
of the anchor bracket to the distance from the live load 
shoe to the center of the trunnion, 

(4) The amount of compression caused in the oak anchor blocks 
by full live load reaction at the anchor. 

The clearance between the anchor bracket and the anchor blocks 
should be: The rise at the anchor due to the difference in deflection of 
the trunnion girder under no live load and under full live load; less (a) 
the difference between the deflection of the counterweight arm with 
support at live load shoe and with support at the trunnion and (b) the 
amount by which the oak blocks compress under full live load uplift on 
the anchors. If this gives a negative result, the oak anchor blocks would 
be under some compression before any live load came on. This, however, 
would prevent the live load shoes from coming to a firm bearing and would 
cause a chattering when the live load came on the span. Consequently 
it is better in such a case to set the anchor blocks to just touch at the 
instant the live load shoe comes to bearing. In practically all cases, it 

will be found that a clearance of from to % 
in. is needed between the anchor and the an¬ 
chor blocks. 

16. Dead Load Stresses.—The greatest 
difference between the dead load stresses in 
an ordinary framed structure and in a bas¬ 
cule bridge lies in the fact that the bascule 
must be designed to stand at any angle between 

the horizontal and the vertical position. The next point of differ¬ 
ence is that the bascule has but one point of support so far as pure dead 
load is concerned while for live load, it has two or three points of sup¬ 
port and for wind load in the open position and for operating stresses, it 
has two other points of support. 

In all these stress calculations, the graphic solution by means of 
Maxwell diagrams will probably be found to be the simplest and quickest 
method. It is sometimes necessary to calculate one or two of the stresses 
analytically and place in the diagram the value thus found, in order to 
have the complete diagram in one piece. It is perfectly feasible, how¬ 
ever, to obtain all the stresses graphically, but in the case of a trunnion 
support within the truss, such as is illustrated in Fig. 42, the stress in 
member L7-L10 cannot be determined directly by working back from 
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the forward end as there are three unknown forces at both panel points 
U7 and L7. This stress must either be obtained by taking a section A-A 
and a center of moments at panel point U9 and calculating the stress 
in the bottom chord fr6m the loads to the right, or else by constructing 
a separate Maxwell diagram for the counterweight end and taking the 
value thus found and substituting it in its proper place in the diagram 
of the forward end. 

Another point to keep in mind in determining the stresses in a bascule 
tr^uss is that if the dead load stress in the horizontal position (,SH) is of the 
same sign as in the vertical position (>SF) there will be a dead load stress 
($Max.) larger than either, occurring at an angle of opening 0, where 0 = 

tan 1 sv‘ The value of this stress is given by the formula Sm&x. = 

y/Sh2 + Sv2A This will not affect those members which have a large 
proportion of live load as compared to dead. The most seriously affected 
members will be found to be those adjacent to the trunnions. 

16. Wind Load Stresses.—There are two main points of difference 
between wind load stresses and the other stresses in a-bascule span. 
The first is that there are always two points of support, namely, the trun¬ 
nion and the main operating pinion. The second is that the wind loads 
can always cause stresses of either sign in any member of the frame. If 
the wind is from the channel side and puts tension in a certain member, 
the changing of the wind to the shore side will put compression in that 
same member. It is very seldom, however, that wind load enters into 
the final design of any member of the truss proper on account of the provi¬ 
sion in most specifications allowing a 25 per cent overstress under wind 
load. 

The amount of wind against which a bascule leaf must operate has 
long been a mooted question among designers. The governing wind 
velocity should not be the maximum for the locality but should be the 
greatest at which it is possible for shipping to use the channel. This is 
about 40 miles per hr., and is equivalent to a wind load of 5 lb. per sq. ft. 
It is possible that under some conditions there might occur heavier wind 
loads while the leaf is up, consequently the following velocities and 
equivalent pressures are generally used in designing: 

Design truss to stand upright under wind load of 15 lb. per sq. ft., or 
velocity of 69 miles per hr. 

Design truss to stand horizontal under wind load of 30 lb. per sq. ft., 
or velocity of 97 miles per hr. 

Design machinery for wind loadings as set forth in chapter of design 
of operating machinery. 

In all the foregoing values, the* formula P 0.0032 V2 has been used 
for computing the wind pressure. . 

1 Pagon, W. Watters, Trans. Am. Soc. C, E.t vol. 76, p. 7$. 
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17. Floor Design.—Stresses in the floor system of a bascule differ 
from those in an ordinary floor in that provision must be made to support 
the floor when in the vertical position and to transfer its load to the truss. 

Plan 

Fig. 43. 

This can be accomplished in any one of several ways. The most widely 
used method at the present time is to provide, at the floor beam nearest 
the lower end of the open portion, a girder of sufficient strength to carry 

Fig. 44. 

the total load of the floor to the trusses at that panel point. When the 
bridge is down, this girder will be horizontal, lying usually just below the 
floor and is generally termed the horizontal girder (see Fig. 43). Another 

Fig. 45. 

method is to make each floor beam strong enough laterally to carry its 
part of the floor load to the trusses. The stresses occasioned in or by 
either system are easily calculated and need no comment. 

; The floor beams are usually built-up sections and the stringers rolled 
beams or built-up sections framed in between. The stresses in both 
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of these are easily calculated. The sub-flooring is generally of wood and 
fastened to the stringers and floor beams by bolts to prevent slipping 
during the operation of the bridge. The finished floor or paving may be 
either wood block, an asphaltic compound, or even plank. 

When the floor is composed of wood blocks, each piece should be toe- 
nailed to the sub-floor and light angles placed at intervals across the 
roadway to assist in supporting the floor blocks when the leaf is up (see 
Fig. 44). Where asphaltic compounds are used, care must be taken to 
see that there is sufficient key to hold the paving of the leaf to the sub¬ 
floor. It is nearly always sufficient to build the sub-floor with uneven 
sizes of flooring and thus provide a key to hold the paving (see Fig. 45). 

Some care must be taken to prevent moisture from seeping through 
the wearing surface of the deck and rotting the sub-floor, as this sub-floor 
is very hard to repair on account of its inaccessibility. Where the span 
carries street railway traffic, the problem of supplying the necessary 
support for the tracks and at the same time, waterproofing the sub-floor, 
becomes quite com plicated. These problems, however, are not limited 
to bascule construction, but are common to all bridges and therefore, will 
not be treated here. 

18. Erection Features to be Considered in the Design.—In many of 
the commercial, patented types of bascule spans the point of rotation is so 

—- 

_ 
Main girder 

No load position 

Fig. 46. 

arranged that there is an equal deflection of both ends of the main trun¬ 
nions as the load is applied and removed. In the trunnion girder type of 
simple trunnion bridge, the deflection of the main girder causes a tipping of 
the trunnion boxes. Consequently, these boxes must be so placed under 
no load that they will be level under full dead load (see Figs. 46,47 and 48). 
This can be accomplished by either of two methods. First, the boxes may 
be set on the girder in exact position and bolted firmly in place and the 
bore then made with a portable boring bar set on an angle. Second, the 
thickness of shim plates may be calculated sufficient to bring the boxes 
to line under full dead load and then the boxes carefully machined for 
height to center of bore from base and for diameter of inside of bushings 
in order that each pair may be in line. The latter method is theoretically 
perfect, but practically impossible to obtain. The first method gives a 
Una through the center of each box not parallel to the base of the box. The 
best method is to calculate the shims, bolt the boxes to the girder with the 



50 MOVABLE AND LONG-SPAN STEEL BRIDGES [Sec. 1-18 

calculated shims in place, and then bore the trunnion holes for the bushings 
with the beveled shims in place. 

All the foregoing work should be done in the machine shop and all 
parts carefully match marked if disassembling is necessary. If not, the 
girder with the boxes still in place should be moved to the site and placed 
without disturbing the boxes. 

The alignment of the girders should be as nearly perfect as is possible. 
After the bases for the girders are set and grouted to exact elevation 
and as near to line as can be, the girder should be placed in approximate 
position and direct measurements taken with a long tape to establish the 
distance center to center of girders and — 
then the longitudinal center line of each 
girder placed exactly at 90 deg. with the 
center line of the roadway and the dis¬ 
tance girder to girder, back-checked. 
The successful and economical opera- _ 
tion of the bridge depends in a large I 

Fig. 48. Fig. 49. 

measure on the* placing of the boxes and the lining up of the main 
girders. 

As the line of the trunnions will not be at right angles to the final 
plane of the trusses until the full dead load is on the boxes, it is not wise 
to place part of the steel and attempt to rivet as erection proceeds. 
Practically the entire steel work should be in place and held by bolts 
before riveting begins. For instance, if the counterweight ends are placed 
first and the bridge is being erected in the open position, the distance 
between trusses at the extreme rear end may be materially shorter than 
the member which goes between these ends due to the inclination of the 
trunnion boxes with the horizontal (see Fig. 49). If this piece is riveted 
in by reaming the holes, it will hold the outer ends too far apart to receive 
the floor teams. As more load is placed on the girder, however, these 
trusses become more nearly parallel and finally under full dead load 
they assume their true line. 

, After the steel work of both leaves is in place and all riveted except 
one panel of laterals and one main diagonal for each truss, these being 
stiH bolted, the leaves should be lowered and checked for meeting. 

The adjustment for the fine of the trusses (see Fig. 50) is made by 
means of the lateral system with the aid of blocks or by rods and turn 
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buckles. These laterals are unbolted, the trusses pulled into line, and 
held with the blocks or turn buckles until the laterals are? reamed and 
riveted, thus holding the leaf to the proper meeting laterally. Errors 

in the relative levels of the adjacent leaves, as shown by super-imposing 
section A-A on section B-B (Fig* 51), are corrected by bringing both floor 
beams to a level line by means of adjusting the main diagonals which are 

adjustment 

Fig. 51. 

not riveted. If the two floor beams are then not at the saihe elevation, 
they are brought so by adjusting the shims under the forward bearing or 
live load shoe. Any slight error in elevation of the adjacent leaves can 
be corrected in the planking and floor near the ends. 

Y 

Fig. 52. 

The same general method is also true for single leaf bridges when 
testing and correcting the meeting of the leaf with the far approach^ 

19. Counterweights.—In the balancing of the span each leaf is con¬ 
sidered separately and the procedure is, therefore, the same for single 

leaf as for double leaf spans. 



52 MOVABLE AND LONG-SPAN STEEL BRIDGES [Sec. 1-19 

The amount of counterweight required for balancing any span is 
susceptible of accurate computation as soon as the individual weights 
of the different members in the bridge are known. The process of 
computing the amount of counterweight is a long and painstaking opera¬ 
tion. A sample of counterweight calculations is shown on pp. 121 to 
123 incl. 

After the structure is completely detailed, the weight of each piece 
and its distance from each of two axes through the center of rotation is 
carefully calculated and the moment in two directions computed about 
the center of rotation. 

These two axes should be at 90 deg. with each other for convenience 
and should be taken through the center of rotation. One horizontal and 
one vertical axis is the most convenient combination to employ. Hori¬ 

zontal moments on the channel side of the center of rotation are usually 
considered plus and on the counterweight side minus. Lever arms above 
the center may be considered plus and below minus (see Fig. 52). The 
calculations for these moments should be close enough to include every 
rivet head, bolt, etc.—in fact, every item which occurs on the moving 
portion of the structure. 

The total moment of everything except the counterweight itself is 
computed and then, the distance to the vertical center line of the counter¬ 
weight being fixed by the dimensions allowed for the counterweight, it 
is possible to find the amount of counterweight required. With this 
weight and the vertical moment which it is necessary to balance, it is pos¬ 
sible to determine the required position of the center of gravity of the 
counterweight in the vertical direction, keeping in mind the fact that the 
line through the center of gravity of the counterweight and through 
the center of gravity of the rest of the moving span must pass through 
the center of rotation. 

The Hue from the center of gravity of the counterweight through the 
trunnion to the center of gravity of the rest of the moying epan (every 
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thing except the counterweight) will be a continuous straight line in the 
simple trunnion and fixed counterweight types. In the Strauss heel 
trunnion, overhead counterweight with the parallel link motion and the 
counterweight rigidly fixed to the counterweight frame (see Fig. 24, p. 
25), the above line will be offset from the trunnion at the heel to the 
trunnion of the counterweight frame, but the two parts of the line con¬ 
necting the centers will be parallel. In the pivoted counterweight, 
simple trunnion type, the line does not run to the center of gravity of the 
counterweight, but to the center of the counterweight pin, as that is the 
point at which the load is applied. In the case of the pivoted counter¬ 
weight type, it is not necessary to bring the center of gravity of the 
counterweight to any fixed point in the vertical line for so long as the 
total weight is correct, it can be affixed to the hanger at any convenient 
height and will exert the correct force on the counterweight pin. This is 
illustrated in Fig. 53 where the overhead counterweight moves vertically 
and in Fig. 54 where the underneath counterweight is* pinned to the 
counterweight arm. In the Rail vertical lift type, as illustrated in Figs. 
25 and 26, p. 2G, the line is through the center of the rolling wheel, the 
counterweight center of gravity and the point of contact of the operating 
frame and the truss. In the Rail bascule, as illustrated in Fig. 13, p. 
16, the line is through the center of the roller, the center of gravity of 
the counterweight and the center of gravity of the moving leaf. 

When the preliminary layout and calculations were made, the size 
and shape of the counterweight was fixed as closely as possible. At that 
time, the location with respect to the rest of the truss was decided upon 
so that the center of gravity of the counterweight would fall at the 
geometrical center of the mass, thus giving a homogeneous mixture of 
concrete and reinforcement throughout the whole counterweight. This 
condition, however, is rarely if ever realized when the final details and 
counterweight calculations are completed. The desired center of gravity 
of the counterweight mass is almost certain to vary far enough from the 
geometrical position of the center of gravity of the counterweight enclo¬ 
sure to require the use of different densities of concrete or galleries and 
openings in the counterweight. In many cases in actual practice, it has 
been observed that the final position of the center of gravity is almost 
always above the geometrical location of the center of the counterweight 
making it necessary to lighten the bottom of the mass or increase the unit 
weight of the top portion in order to bring the center of gravity to the 
required height. This means that the top must be placed higher than was 
anticipated and in the case of the underneath counterweight type, this is 
sometimes a serious problem. Consequently a very good rule to follow 
is to allow room in the original design to vary the vertical location of the 

* counterweight mass either up or down by 5 to 6 per cent of its vertical 
dimension. 
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In all discussions and illustrations of bascule spans, it is customary 
to consider the line which passes through the centers of gravity of the 
moving leaf and the counterweight as passing through the exact center 
of the trunnion. In actual practice, however, this condition is seldom 
obtained or even desired. It is more often desirable to have the center 
of gravity of the total load on the trunnion in such a position that the 
motors are working only half of the time of operation. 

This allows the center of gravity to be placed in either of four quad¬ 
rants, as shown in Figs. 55a, b, c, and d. The two last take .too much 
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Fig. 55. 

power and, moreover, involve an element of danger, and can be dropped 
without further consideration. In Fig. 556, the bridge starts open of its 
own accord if not locked and requires the application of power upon clos¬ 
ing until the far end of the leaf is clear into position. Both of these 
conditions are rather undesirable. The first, because the bridge may 
become unlocked and swing open of its own accord, and the second, 
because the application of power to the motors the instant that the shoes 
come to bearing may cause serious overstress in the machinery, or the 
truss. The condition illustrated in Fig. 55a is probably the better 
because the bridge swings closed of its own accord after it is half down and 
only needs power during the first half of the operation unless working 
against wind. The operator can, therefore, start the leaf down, shut 
off the motors and devote his entire attention to the brakes to bring the 
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leaf to an easy seating with the assurance that, once seated, it will not 
swing open without the application of power. 

The distance at which the center of gravity should be placed from 
the trunnion is such that it will cause a moment just sufficient to.turn the 
leaf against the friction of the bearings and the free running machinery. 
This friction is about 15 to 20 per cent of the weight of the moving span. 
As the friction moment is Wrk (where W = the load on the trunnions, 
k the friction coefficient of the trunnion in its bearing and r the radius 
of the trunnion), the distance x ahead of the geometrical center of the 
trunnion at which it is necessary to place the actual center of gravity 
(c.g.) is such that Wx — Wrk. Therefore, x = rk, or (assuming k = 
0.15) x = 0.15r (see Fig. 56). The distance necessary above the center 
of the trunnion is the distance to the 
intersection of the vertical through the 
center of gravity (c.g.) with a line making 
an angle 6/2 with the vertical through the 
center of the trunnion. This insures 
that the force holding the bridge fully 
open is the same as the force holding the 
bridge fully closed and that the same 
amount of power is required for opera¬ 
tion in either direction. 

The additional power required on 
account of lifting the span through the 
distance h (Fig. 56) is very slight and, 
as the motors are designed to operate 
against a wind load many times greater 
than this friction and unbalanced load, they will never be seriously over¬ 
loaded on this account. 

The matter of obtaining a field check on the weight of the counterweight 
as it is placed is an item of construction engineering, but the provision 
for seasonal variation in the amount of counterweight needed, should not 
be overlooked in the design. 

Experience has taught that an allowance of 2 to 3 per cent each way 
from normal should be made. This is done by placing pockets in the 
counterweights in such positions that small balance blocks may be added 
or taken away as desired. In the summer, the heat dries out the floor and 
the counterweight is then too heavy and blocks must be taken out until 
the desired balance is obtained. In the winter, water, snow, ice and 
mud accumulate on the span and blocks must be added to counteract the 
added load. On small bridges, these blocks should be of such size that 
one man can handle them—say about 75 lb. apiece (see Fig. 57). On 
large bridges where two men are usually on duty, a block twice this size 
may be used. They should be detailed with a handle for carrying, and 

y 
i 

y 
Fig. 56. 
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the handle should be within the outline of the cube so as not to interfere 
with the stacking of the blocks. In this connection, it is well to see that 
the balance or adjustment holes are in such a position that the blocks 
cannot shift during operation, as this might easily cause serious damage. 

In computing the amount of concrete required to balance the struc¬ 
ture, it is customary to consider first ordinary stone or gravel concrete, 
using a unit weight of about 142 lb. per cu. ft. in the preliminary 

calculations for outside dimensions and to provide 
for a space equivalent to 102 per cent of that actu¬ 
ally computed. There is then an allowance of 2 
per cent for seasonal variation if the final unit 

~jjj weight is the same as the preliminary. If, how- 
T ever, the final figures require a lighter or a 

heavier unit weight, or a combination of lighter 
- and heavier, it may be necessary to adopt some 

of the less common aggregates. Light concretes 
can be made from crushed tufa rock, volcanic rock of different kinds, 
cinders, crushed brick, haydite, waylite, and many other light mineral sub¬ 
stances. Heavy concretes can be made by the use of blast furnace slag 
or by using punchings and small scrap from structural steel shops mixed 
in with the other aggregate. Following are some notes on test weights 
of samples of different aggregates which will show the method of obtaining 
the data sought and will also serve as a rough indication of what unit 
weight can be obtained by the use of the different aggregates: 
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Fig. 57. 

Teat 
block 

Sice 
Cubic 

contents 
(cu. ft.) 

Mix 

Gallons 
water 

per cu. 
yd. 

| Initial 
j weight 

7 
| Weight at 
j 7 days 

Weight at 
14 days 

i _ 

[ Total Unit Total Unit Total Unit 

la | 2' X2' X2' 8.00 1:3:6 28.7 1715.0 214 4 1705 213 1 
2a | 2' X2' X2' 8.00 1:3:6 28.7 1690.0 211.3 1685 210.6 
3a 2' X2' X2' 8.00 1:3:6 28.7 1751.0 218.9 1740 217.5 

lb i 2' X2' X2' 8.0 1:2M:5 1165.0 145.5 1152.5 144.0 1149 143.5 
2b 2' X2' X2' 8.0 1:2:5 1197.5 149.5 1184.0 148.0 1186 148.5 
3 b 1.58X1.58 ■ ; 

XI. 58 4.0 1:2:4% 23.1 + 600.5 150.0 591.5 148.0 591M 148.0 
45 1.58X1.58 

XI.58 4.0 1:2K:4K 23.1 + 592.5 148.0 589.0 147.5 588 ! 
1 
147.0 

U 0.03"*X 9.19 Pit run 17 lb. 93.2 
11.30" | 1:5 1 7 H o*. 

2c 6.0"* X 0.11 . All scoria 10 lb. 91.1 
6.78" ! ! 1:4:4 2 os. 

Be 0.03"* X 0.195 Sand scoria 21 lb. 107.2 
11.84" 1:4:4 

’ * * * ’ 
1 a*. 

0.04"* X 0.20 All scoria 101b. 98.8 
12.10" 1:3:3 

- 
14Hoe. 

(«) Slag concrete from Fremont Avenue Bridge, Seattle. (6) Gravel concrete from Young# Bay 
Bridge. Astoria. (c) Scoria concrete. 
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The blocks in series a were mixed with blast furnace slag as coarse 
aggregate, and bank sand as fine aggregate. The slag was crushed to 
2)4 in. and under. 

The blocks in series b were mixed with ordinary, 2% in. and under, 
river gravel (of a fineness modulus of 7.35) as coarse aggregate and Colum¬ 
bia River sand for fine aggregate. 

The blocks in series c were mixed with a very light volcanic scoria 
from Mt. Tabor, near Portland, Ore. The material was crushed, screened 
and reproportioned in the last three cases and in the first, was used as 
bank-run—that is, without screening and reproportioning after crushing. 
As this material was very soft, the unit compressive strength of the 
blocks was very low. If this kind of material were used, it would require 
complete protection by means of a closed counterweight box. 

It is, of course, possible to use other materials than concrete for mak¬ 
ing counterweights. Cast iron is the medium most frequently resorted 
to outside of concrete. This material will generally cost in the neighbor¬ 
hood of from 2 to 3 ets. per lb. laid down on the work. Concrete of gravel 
or crushed rock weighs very close to 4,000 lb. per cu. yd. and, at a price 
of from $12 to $20 per cu. yd., would cost from 0.3 to 0.5 cts. per lb. which 
shows that the concrete has a decided advantage whenever there is room 
to use it. As the available space decreases, it is always best to use as 
much of the cheap material as possible and make up the difference with 
the more expensive. Scrap steel rails weigh 480 lb. per cu. ft. and can 
usually be bought at about the price of cast iron. One point in their 
favor is that they make excellent material for tying the concrete of the 
counterweight together. 

In selecting the counterweight material, attention should be given 
to the fact that where the counterweight swings below the water and 
needs a pit, and, where for any reason a reduction in the size of the 
counterweight means a reduction in the overall dimensions of the piers, 
it may be advisable to use a heavy unit weight and save more on piers 
than is spent on expensive counterweight material. 

20. Design Specifications Peculiar to Bascules.—The points in which 
the design specifications for a bascule span should differ from those for any 
fixed structure are in regard to the operation conditions. Such points 
as alternate and combined stresses, slenderness ratios, the use of net and 
gross sections, minimum requirements for thickness of metal, size of 
angles, rivets through fillers, sub-punching and reaming, and the like, 
are the same as for a fixed structure. In addition to these usual specifi¬ 
cations, there should be provisions made for: 

(1) Impact allowance of 40 per cent at the anchorage, which will increase 
the design stress in the anchor columns and in the counterweight arm. 

(2) A clause providing that the anchor column should engage a mass 
of masonry weighing not less than twice the maximum computed uplift. 
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(3) Wind load in any direction when the leaf is raised. This is 
usually taken at 15 lb. per sq. ft. over the projected area. 

(4) Stresses caused by center lock on double leaf designs. These are 
determined by the use of an empirical formula which gives the amount of 
shear assumed to be transferred from the loaded to the unloaded leaf 
by the center lock in those designs which have provision for shear and 
not for moment at the center. This formula is as follows: 

where 
S = shear carried by center lock. 
P = any concentrated load. 
A — distance of P from forward bearing. 
L = length of river arm from forward bearing to floor beam at 

center of channel. 
When the overhanging leaf is a truss, P becomes the panel load, A the 
number of panels between P and the forward bearing of the loaded truss, 
and L the number of panels in the overhanging arm. The computations 
are then quite simple. 

(5) Unless hydraulic or pneumatic cushions are to be employed, oak 
or other suitable material should be used for bumping blocks at the upper 
and lower limits of travel to deaden the shock of contact when the leaf is 
fully opened or closed. 

(6) An allowance of 20 per cent of the dead load stresses should 
be added when opening to provide for vibration stresses. This will 
probably govern the design in only a very few members, but should not 
be neglected. 

FOUNDATIONS FOR BASCULE SPANS 

21. Conditions Peculiar to Bascule Spans.—There are several points 
in which the foundation design for a bascule span differs from that of an 
ordinary bridge. These differences are caused by the shifting nature 
of the load. When the foundation for the moving leaf consists of a 
forward pier and a rear pier, not connected at the base, the only effect 
of the changing position of the loads is to increase the direct pressure on 
one pier and decrease it on the other. If, however, the foundation is a 
unit as in Fig. 19, p. 20, the shifting of the load decreases the pressure 
at one face of the footing and increases it at the other, and the result is a 
rocking action that is different from the straight vertical action when the 
forward and rear piers are not connected. 

In those structures having a fixed center of rotation, such as the 
Chicago type simple trunnion and the various types of Strauss bridges, 
this shifting action occurs only under live load. In the rolling tod semi- 
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rolling lifts, such as the Scherzer and Rail types, the shifting action 
occurs under dead load when opening as well as under live load. 

In considering the shifting action due to the live load, it is unneces¬ 
sary to consider the internal arrangement of the piers or superstructure. 
The only data required are: 

(1) The total weight and center of gravity of the pier and super¬ 
structure. 

(2) The area and shape of the base of the pier. 
(3) The total weights and centers of gravity of the various live 

loads which are placed on the roadway to obtain maximum 
conditions of loading. 

The shifting of pressure under live load occurs, in general, with all 
double leaf bascules ^whether they have a fixed or moving center of 
rotation. In single leaf bascules, the passage of the live load merely 
increases or decreases the vertical load on the support and, as the truss 
is supported at both ends, does not cause a tipping action as in the case 
of a double leaf structure which has a cantilever arm. 

In considering the action of the dead load during operation, it is 
readily realized that with a fixed center of rotation the point of application 
of the dead load of the superstructure remains fixed and that therefore, 
the resultant dead load of the pier and superstructure does not move. 
In the types which have a moving center of rotation, the dead load of 
the superstructure is always applied at the point of contact of the roller. 
The maximum dead load footing pressure at the forward footing or edge 
of the unit pier occurs, therefore, with the span closed and at the rear 
footing or edge of the pier with the span open. 

The consideration of wind iPad often gives the maximum design load 
on the footing especially when the center of area of the raised leaf is at a 
considerable distance above the bottom of the footing. 

The items to compute in finding the maximum footing loads are then 
as follows (keeping in mind that the “toe pressure” on a unit pier cor¬ 
responds to the “unit load on the forward pier” in a design having two 
piers per leaf, and that “heel pressure” on a unit pier corresponds to the 
“unit load on the rear pier” in the two pier design): 
Dead Loads 

(1) Toe pressure and heel pressure, leaf down. 
(2) Toe pressure and heel pressure, leaf up. 

Live Load 
(3) Toe pressure and heel pressure, full live load on approach 

and fixed portion, no live load on moving leaf. 
(4) Toe pressure and heel pressure, full live load on moving leaf, 

no live load on approach or fixed portion. 
(5) Toe pressure and heel pressure, full live load on approaches, 

fixed span and moving leaf. 
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Wind Load (Leaf raised to full open) 
(6) Toe pressure and heel pressure with wind from river side. 
(7) Toe pressure and heel pressure with wind from approach side. 

The combinations most likely to give maximum loads are (2), (3) 
and (6) for maximum heel pressure and (1) and (4), or (2) and (7) for 
maximum toe pressure. Case (5) may give a higher load under the 
center portion of the unit pier than either of the above combinations, or 
may give a higher load on both piers of the two pier design than any of 
the above combinations, although the last condition is hardly probable. 

Figure 58 illustrates the pressure 
diagrams on the unit pier for the 
above seven conditions together 
with the various combinations just 
mentioned. 

The difference between the re¬ 
sults here obtained and what would 
apply to a rolling lift would be due 
to the fact that Diagrams 1 and 2 
would be materially different. Dia¬ 
gram 1 would show maximum pres¬ 
sure at the toe as in the figure 
shown, while Diagram 2 would very 
likely be just the reverse, showing a 
maximum pressure at the heel and 
thereby increasing the total heel 
load in the combinations of 2, 3 and 
6. This means that the churning or 
rocking action would be greater with 
a rolling lift type than with a fixed 
trunnion type. If, however, these 

maximum pressures are well within the safe load on the foundation, 
there is little danger of serious settlement from this action. It may per¬ 
haps be easier to proportion a footing in a restricted area for the fixed 
trunnion type than for the rolling type if the foundation is so soft as 
to require the-extensive use of piling to carry the loading. 

When the unit pier is composed of a four walled box set on a tremie 
concrete seal which covers the whole area of the pier base, it is not possible 
to vary the unit foundation pressure very greatly. Varying pile spacing 
can sometimes be employed to obtain the proper distribution of loads, 
but on solid foundations, the only thing which need be certainly deter¬ 
mined is that the maximum pressures are well within allowable limits. 
However, the tremie seal is usually confined to soft bottoms where piling 
must be used and in that case varying the pile spacing takes care of the 
varying loads. 

a ‘Dead food ofsuperstructure 
£> ‘Dead food of pier 
C ‘L/v* food reaction from approach 
d ‘Uvo bad reaction from fated portion 
a ‘Lire food or moving leaf 
f • Wind bad from approach 
g • tVind toad from river 

(Same as 

shown hery 

of ® and® 
fad, and e) 

Fig. 58. 
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When foundations are sufficiently solid to permit of high bearing 
pressures, the unit pier can be most economically designed by using a 
trapezoidal footing in order to have a wide base where the pressure is 
heaviest and a narrow base where the pressure is lightest, thereby keeping 
the maximum soil pressure nearly uniform throughout the whole structure 
and assuring an even settlement if there is any tendency in that direction. 

This type was employed in the piers of the Eastlake Avenue Bridge, 
Seattle, Wash., and is illustrated in Fig. 59. 

Piers which have no churning action and where no watertight pit need 
be provided, present comparatively few difficulties. For that reason, 
they will not be discussed further. There are, however, several points in 
connection with the design and construction of watertight counterweight 
pits and of piers on soft bottoms to accommodate such pits, that may well 

Fig. 59. 

be discussed more fully. The following discussion will, therefore, be 
confined to a pier to support one leaf of a double leaf trunnion bascule* 
The counterweight is hung under the approach roadway. The break 
between the fixed and moving floor is several feet ahead of the trunnion 
and the counterweight arm is so long as to require the use of a watertight 
pit. The foundation material is of such a nature that piles are necessary. 

The best general method to follow in the design of such a pier is to 
determine as closely as possible by preliminary sketches and calculations 
the size of the pier outlines. The location of the forward, main and rear 
(or anchor) columns will be fixed by the dimensions of the moving leaf. 
The height of the pier will be determined by the distance from the road¬ 
way grade to foundation elevation. The distance from side to side of the 
pier will be governed by the width of the roadway and the question of 
number and width of sidewalks together with the desired location of 
machinery and operating houses. The actual size of the cross-section 
of the various columns will be governed more by considerations of propor¬ 
tion than by the actual loads coming upon them. The main columns 
must support the grillages under the girder which carries the trunnion 
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bearings. The main girder is braced to this grillage to withstand the 
overturning effect due to *dnd on the upraised leaf. The grillage must, 
therefore, be long enough to distribute the overturning moment to the 
column without overstressing the masonry. This will generally result 
in a main column which is larger in the direction of the roadway than 
would be necessary for the direct load. 

If the pier is high on account of deep water or because of a roadway far 
above water level, it will be advisable to have one or more sets of heavy 
horizontal beams running around the pier to brace the columns and act 
as supports and stiffeners for the floor and walls of the counterweight pit. 

The size and spacing of these columns and the depth of the pit will 
give the designer a basis for making a close estimate of the dead weight 
on the piling. 

As was mentioned before, a bottom so soft as to require piling will 
very likely be too soft to stand in open excavation and will, therefore, 
require a tremie concrete seal before the cofferdam can be pumped 
out. The depth of concrete required in this seal is such that the weight 
of concrete just offsets the head of water on the bottom of the seal. 

This will be (with a 145-lb. concrete) where h is the static head of 

water on the bottom of the seal. The ratio of 62.5: 145 is approximately 
0.43. This thickness is reduced by some designers on account of the 
holding power of the pile heads around which the tremie seal is placed. 
This holding power is usually taken at about 100 lb. per sq. ft. of area 
of pile which is surrounded by concrete, not including the cross-sectional 
area of the top surface of the pile. Care must be taken to see that suffi¬ 
cient penetration will be secured to allow this bond to be effective. 
Short piles might pull out under a less uplift than would be occasioned 
by the above bond value. The required depth of the seal cannot be 
lessened from a consideration of low porosity of foundation material 
because if the foundation is not porous, no seal is required and if it is 
porous at all, the slightest leak under the footing will, in a short time, put 
the full static head on the seal. 

With the ordinary pier, the trial outside dimensions for the seal 
should be just sufficient to allow easy working room inside the caisson 
and outside the pier forms. This size will usually be found sufficient to 
cover the required number of piles. If necessary, a slight extension of the 
forward edge to accommodate an extra row of piling can be added after 
the preliminary calculations are made. 

The bottom of the concrete should be deep enough to prevent all pos¬ 
sibility of scour undermining the seal and exposing the piling. In ordinary 
navigable waters, this is usually 6 to 10 ft. below the bed of the stream. 

With the preliminary sketches made from the above information, 
the seven conditions of loading mentioned at the beginning of this article 
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may be calculated and the proper combinations made to determine 
the maximum pressures at the toe and heel of the footing. This pressure 
must be taken care of by the use of piling and sufficient piles must be placed 
under the pier to take the entire load of the pier and truss. The buoyancy 
of the concrete may be deducted, but no allowance should be made for the 
water displaced by the volume of the inside of the counterweight pit as it 
is quite possible that the pit may at sometime become full of water. The 
fact that the pier rests on the piles when the cofferdam is pumped out is 
not an argument against considering buoyancy because the dead weight 
of the moving leaf is seldom ever added until after the caisson is either 
flooded or removed entirely. 

22. General Description of a Typical Bascule Pier.—Whether the 
footing course is a tremie seal or two trapezoidal footings each carrying 

one forward column, one main column and one anchor column, the con¬ 
struction of the balance of the pier is the same above the top of the 
footing. 

Figure 60 represents a plan of a unit pier taken just above the top 
of the footing and several feet below the bottom of the watertight counter¬ 
weight pit. It shows the three columns on each side of the roadway 
and the general outline of the structure. Figure 61 is another plan of 
the same pier taken just above the bottom of the counterweight pit 
and shows the walls of the pit, the beams under and around the pier sides, 
and the concrete blocks cast on the floor of the pit to receive the oak 
bumping blocks which limit the travel of the leaf when opening. Figure 
62 is a cross-section of the pit on the center line of the roadway and shows 
the relation of the main girder to the truss and shows also the location 
of the platform which carries the operating machinery. 

At the rear end may be seen the steel anchor columns yehich engage 
the brackets at the rear end of the truss and provide the necessary reaction 
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against uplift under full live load on the overhanging arm. At the for¬ 
ward side may be seen the live load shoes which rest on the forward column 
and take the bearing of the live load from the truss. The relation of the 
fixed* floor to the moving floor is also shown, as well as the method of 
supporting the fixed floor on the main trunnion girder. The general 
outline of the pit is also apparent as is the method of bracing the columns 
with the large horizontal beanos. The slope shown on the top of the 
tremie seal is such as is to be expected when the seal is poured from the 
center and allowed to flow to tha sides of its own accord. This slope is 
variously found to be from 1 in 6 to 1 in 4. Allowance in design should, 

of course, be made to care for whatever 
slope occurs and the top should be 
levelled off for the columns after the 
cofferdam is unwatered. At the rear 
of the pier is seen the platform by which 
access is had to the anchor columns for 
the adjustment of the anchor blocks. 

23. Counterweight Pits.—In the de¬ 
sign of the counterweight pit, the first 
requirement to be met is that of water¬ 
tightness. This is accomplished by 
making the walls extra thick and of high 
grade and dense concrete or sometimes 
by placing an outer surface of mortar 
at the same time the inner portion of 
the wall is placed. Neither method 
should ever be used except under the 
most rigid inspection. One bad gravel 
pocket in a pit wall or floor is a most 
serious condition. When designing such 
a pit, reinforcement should be provided 

against outward as well as inward pressure as it may be desirable to test 
the pit for watertightness by filling it with water before the cofferdam is 
taken out. This allows the small leaky spots to be detected, marked 
and repaired from the outside before the water is let in around the pier 
and oftentimes saves an otherwise poor job. If the waterproofing consists 
of a layer of mortar cast with the pit walls, reinforcement must be so 
arranged as to permit the use of baffle boards. These are usually made 
of structural plate with distance pieces to maintain them at the required 
distance from , the outside face of the forms. The ordinary concrete is 
placed in the main part of the wall and the mortar placed behind the 
baffle board at the same time. The baffles are drawn up as the concrete 
ing progresses and the forms thoroughly tamped, roddedand pounded 
to assure a good, thorough bond between the concrete and the mortar. 

Fiq. 62. 
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This method of waterproofing is very exacting and requires infinite 
pains and constant supervision. The results usually justify the ex¬ 
pense, however, as the pits where this method has been used have 
been completely dry when once pumped out. The customary thickness 
for this type of mortar facing is 6 in. A less thickness might work very 
nicely, but would be too difficult to obtain with accuracy. Pit walls 
should in general be as thick as the static head of water would call for, 
but never less than 18 in. In the event of slight leaks, it is reasonable 
to suppose that in time enough silt and minute vegetation will settle 
in the crack or leak to close it. 

A pump and motor are always placed in the waterproof counterweight 
pits to drain them of any water that may leak through the walls or drip 
into the pit from the roadway above. These pumps and motors need not 
be large, in fact, a 2-in. centrifugal pump with a 3-h.p. motor is ample for 
almost an)' pit where the lift is less than 22 ft. Above this, the size of 
the pump and motor should be increased slightly and the pump placed 
in the pit and attached to the motor by means of a vertical shaft in 
order to keep the motor above water and yet obtain the full efficiency of 
the pump. 

In all bascule piers, it is necessary to have a set of buffers to catch 
the moving leaf at the limits of travel and cushion the jar caused by 
bringing the leaf to a sudden stop. White oak is one of the best and most 
easily obtained materials from which to make the buffer blocks. These 
blocks are generally located in the anchor columns for stopping the bridge 
in the closed position and in the bottom of the pit between the main 
columns for stopping the bridge in the open position. In determining 
the location of the lower buffers, great care must be taken to so place and 
reinforce their supports that the shocks and impacts are transferred to 
the floor and columns in a manner that will not crack the pier walls. A 
pier wall once cracked would mean the driving and unwatering of a 
cofferdam to repair the damage and might require the entire reconstruc¬ 
tion of the waterproof pit. It is customary to locate the bumper blocks 
on the floor of the pit against long ridges of concrete cast integral with 
the pit floor immediately above the heavy beam between the main 
trunnion columns and to anchor these ridges to the rest of the floor with 
plenty of reinforcing to insure them against cracking away on account of 
shrinkage or shocks. Across the face'of these ridges is placed a heavy fir 
timber "extending from side to side of the pier. The white oak blocks 
axe bolted to this fir timber and can thus be removed and renewed should 
they become battered or decayed. 

Hydraulic and pneumatic shock absorbers have also been used with 
considerable success for work of this kind. 

34. Anchor Columns.—The anchor columns are a very important 
part of the pier and next to the main trunnion girder axe probably the 
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most difficult part of the structure to place and maintain in a correct 
position during the placing of the concrete. They* are always the first 
part of the structural steel to be placed and their bases must be set to 
exact grade and line long before the concrete is brought up to the height 
necessary for placing the main trunnion girder. These columns must 
be exactly on the center lines of the trusses, as their location fixes and 
determines the line of each truss across the moving leaves. They are 
usually made of four angles with a diaphragm, the legs of the angles 

being turned away from each other in order 
to permit of the detailing of a rigid seat against 
which to land the anchor brackets on the mov¬ 
ing leaf. The bottom end of these columns 
should have a spread base to assist in engag¬ 
ing the desired amount of masonry as anchor¬ 
age against uplift. The top extremity has a 
diaphragm of sufficient length to develop 
the strength of the column in tension and is 
stiffened by numerous vertical angles riveted 
to the main column angles and to the dia¬ 
phragm. These stiffeners and the diaphragm 
plate in turn carry a horizontal bearing plate 
at their lower edge. This plate is provided 
with holes through which to bolt the shock 
blocks used to deaden the impact of quick 
closing. Hand holes should be provided 
through which to reach and remove the bolts 
holding these bumper blocks. These hand 
holes can usually be placed in the diaphragm 
above the block. The tops of the columns 
are up under the floor and therefore, far above 
the base. It is very difficult, therefore, to 
maintain correct alignment during the plac¬ 
ing of the anchor column concrete and espe¬ 

cially hard to prevent the columns from twisting about the vertical axis. 
A general detail of an anchor column is shown in Fig. 63. 

26. Tremie Seal.—The easiest foundation to construct is one which 
can be handled in the dry without the use of extensive cofferdams. This 
condition is rarely encountered in bascule bridge construction principally 
on account of the fact that in order to need a bascule span, the water 
must be navigable and navigable water is usually fairly deep. 

There are several types of cofferdams and caissons in common use for 
placing foundations under difficult conditions. 

Where the area of each pier is small in relation to the depth and where 
the small section can be carried above high water, the steel shell and air 
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lock method works very nicely, but when the area is large or when the 
whole area of the pier must be floored below low water, the tremie seal, 
in general, has proven the best method of preparing the cofferdam for 
unwatering. The only reason for sealing*the bottom of the cofferdam is 
to allow it to be pumped out without its leaking. Because this type of 
foundation construction has been used so often with pile footings, it is 
sometimes rather hard to dissociate the idea of a tremie seal from that of 
piling in the base. However, if a pier is to be founded on coarse gravel 
and boulders or very seamy but hard rock, it would be obviously unneces¬ 
sary and impossible to drive piling, but also impossible to pump out a 
plain caisson. Such a case calls for a tremie seal just as truly as does a 
pier which is to be founded on silt or other soft material, requiring long 
piling at minimum spacing to carry the load. Both these cases will 
develop full static head on the bottom of the seal. In all ordinary depths 
of water, as has just been stated, the tremie seal will give the best results. 
As the depth increases above 50 cr 60 ft., the amount of concrete required 
for the seal becomes excessive and other schemes must be investigated. 

The depth of concrete required in a tremie seal is the amount required 
to counteract the static head of water on the bottom of the seal. The 
depth of such a mass of concrete will be to the static head as the unit 
weight of the water is to the unit weight of the concrete; or, for all ordi¬ 

nary cases, d = 
62.5/i 
145 

= 0.43ft, where d = depth of concrete and ft = 

head of water. There are several factors affecting the selection of the 
depth of seal required which are outside the foregoing purely theoretical 
consideration. First, the pile heads (if piles are used) will have a bond 
in the concrete which has been variously estimated at 50 to 150 lb. per 
sq. ft. of pile surface in the concrete. Second, the caisson, if excavated 
from within, and forced down through the soft strata until the cutting 
edge is at the bottom of the footing will have a decided friction upon the 
sides of the excavation. Third, it is very easy to build boxes around 
the sides of the caisson and fill them with stone or gravel to hold down the 
caisson against the uplift. The second and third cases can be used to 
assist in holding against the static head only when the inside of the cais¬ 
son is so arranged that the seal cannot lift without lifting the whole 
caisson. The bond on the pile heads can be used at 100 lb. per sq. ft. of 
pile surface (excepting, of course, the top surface of the pile). These 
three factors added together may generally be counted upon to reduce 
the depth of the seal to 75 per cent or even 60 per cent of that theoreti¬ 
cally required to balance the static head. When a pier is to be founded 
on*a solid but porous bottom and when practically no excavation is 
needed, it is necessary to send a diver down to stop up the small gaps and 
openings around the bottom of the caisson between its lower edge and the 
foundation surface. Otherwise, the cement from the concrete is washed 
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away and the resulting gravel pocket robs the pier of that much footing 
area. These holes may be stopped with sacks of sand or with wooden 
lagging, the former for small openings and the latter for the larger 
openings with perhaps a combination of the two for some cases. The 
same procedure must also be followed when the caisson is set into a 
previously dredged area sufficiently large to allow the placing without fur¬ 
ther excavation. This case is often encountered where there is a large 
dredge available to make the excavation and no equipment reasonably 
available with which to dredge out the cofferdam from the inside. An 
example of such a case is where a bridge is to be built over a waterway just 
being dredged through a formerly shallow lake. The dredge which is 
working on the channel can swing over and take out the pier excavation 
at a very low cost as compared with the usual cost of pier excavation. 
A combination of the two methods is sometimes advisable where the 
natural contour of the bottom is so rough as to be likely to warp the 
caisson out of shape should it seat hard on one corner before bottom was 
reached on the others. In such a case, the bottom is leveled off, the 
caisson sunk and the rest of the material dredged from the inside, the 
caisson being forced down as the dredging proceeds. The determining 
factor between the above methods will be the relative cost of the various 
ways of obtaining the same result. If equipment for inside dredging is 
on hand, and payment is to be made only on material inside the neat 
lines on the pier (as is usually the case), the price for first dredging a large 
hole would have to be exceedingly low in order to command consideration. 
Again if a dredge were in the neighborhood and would submit a fair price, 
it might not pay the contractor to procure inside dredging equipment. 

A careful study of these questions will usually determine without much 
doubt which is the best method to pursue. 

In determining the amount of excavation to make, it must be remem¬ 
bered that, if piles are to be driven, the level of the bottom of the excava¬ 
tion inside the cofferdams will be raised materially during the process of 
driving the piles. This is more noticeable with jetted piles than with 
those not jetted. It is also more noticeable when the outside piling are 
driven first (no jet being used). The volume of such material forced 
upward by the pile driving is, with jetted piles, about 75 per cent of the 
volume of the piles in the ground and, with driven piles, about 40 or 50 
per cent of the volume of the piles in the ground. 

For instance, with a pile spacing of 3 ft. each pile has a tributary area 
of 9 sq. ft. Using jetted piles with an average diameter of 13^ in., the 
volume of the pile is 1 cu. ft. per ft. of length. With the bottom of 
the pile at —90 and the bottom of the concrete at —36, there is a 
penetration of 54 ft. or a pile volume of 54 cu. ft. This on an area of 9 
sq. ft, would give a depth of 6 ft. The actual pile swell from an observed 
ease having the above figures was 4^ ft., or 75 per cent of the actual 
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volume of the pile in the ground. The difference between the behavior of 
jetted and driven piles is due to the fact that practically all material 
from the jetted hole is washed to the top while the driven piles force only 

. a portion of the material up, compacting the rest. To allow for the 
above condition, it is customary to excavate below the desired depth a 
sufficient distance to allow the pile swell to bring the earth back up to 
the desired level, thus eliminating any subsequent dredging in and among 
the pile heads. This, of course, presupposes a fairly accurate knowledge 
of the required penetration and indeed no important structure should 
be started until thorough investigation has been made into the foundation 
conditions which surround the site. 

In considering the advisability of sheet pile vs. crib, the question is 
again one of cost. As a usual premise, it may be stated that the deeper 
the water, the less showing the sheet piling can make. Steel sheet piling 
are much more satisfactory than wood, but in most localities wood is 
more plentiful and, therefore, much cheaper. Sheet piling can compete 
with timber crib work in ordinary water up to 30 ft. deep, but for greater 
depths than this, the inside bracing in sheet pile cofferdams becomes 
increasingly difficult and the cost mounts up in proportion, making it 
advisable to adopt the more complicated process of building and sinking 
cribs or caissons. When the cost of building the two types is very nearly 
equal, the sheet pile will probably show up better in moderately stiff 
excavation, and the crib will probably show up to better advantage in 
very soft or silty bottoms. This last is because of the fact that it is safer 
in stiff soil to excavate inside well driven sheet piling than inside an 
open caisson, which of necessity is not as watertight around the outside 
between the soil and the wood. In very soft or silty foundations, the 
water cannot be pumped out on account of the porosity of the bottom, 
therefore, it is easier to sink a crib by dredging inside than to drive sheet 
piling which have to be braced as dredging out progresses and which will 
not in general have a bottom support sufficiently stiff to support the 
lower ends. 

26. Operator’s Houses.—The operating houses of a bascule span 
must, of necessity, be placed on the fixed portion and therein they differ 
from those on a swing span or a vertical lift bridge. Moreover, they 
cannot be placed above the roadway on its center line because if they 
were the upturned leaf would shut off the operator’s view of the channel. 
Neither can they be placed in the face of the pier below the deck because 
the operator must watch the roadway. The only available space is at 
one side of the roadway close to the front of the pier and either at or 
above thelevel of the roadway. 

This makes it desirable that four houses be built if the structure is to 
be an ornamental one. If it is merely for utilitarian purposes and esthe¬ 
tics are neglected, one or two operating houses can generally be made to 
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serve the purpose. If four are built to give balance to the design, one 
may be used as the operating house proper, one or two may be used as 
quarters for the operator and the others used to store the equipment and 
supplies needed about the bridge. When quarters are provided, they 
should be roomy, well ventilated and lend themselves easily to frequent 
and thorough cleansing. The inside finish and plaster should be of the 
very best and capable of standing years of very severe usage. The main 

operating house will have to 
contain the operating manual, 
hand brake, switchboard, desk 
and chairs, gages, current indi¬ 
cators and the like. In short, 
everything necessary to the 
proper operation of the bridge 
should be placed in this one 
room and so arranged as not to 
obstruct the view of the opera¬ 
tor from the channel or the 
roadway. On all ordinary elec¬ 
trically operated bridges, this 

^ usually requires a floor area of 
about 8 X 12 ft. as a minimum; 
10 X 14 ft. is better, but above 
that there is usually too much 
distance between the different 
pieces of apparatus for efficient 
operation. 

The operating manual is 
located in front of the window 
which looks across the chan¬ 
nel. The switchboard may be 
edgewise behind the operator 
as he stands at the manual 
and should be out of his lines 
of sight up and down the 

channel and down the roadway. A very good arrangement is shown 
in Fig. 64. The hand brake should be near his right side and so 
placed that he need not be against the switchboard when using it. 
Directly over the operating manual may be the pull cord for sound¬ 
ing the fog bell. The ammeters and voltmeters may be on the 
switchboard as the operator does* not care to watch them during the 
raising of the leaf. They can be read by an observer when any series of 
tests are to be made. It should be needless to say that all available light 
should be secured and to this end, the house should consist of eonier posts 

Fig. 64. 
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and full glass walls from the window sill height to the ceiling. Heat must 
always be provided, and where electric heat is not available, coal, wood, gas 
or oil may be used. When the bridge is electrically operated, there is 
oftentimes a minimum charge for power on which the amount of current 
consumed by an electric stove has very little effect. For this reason, 
electric heat is many times the cheapest as well as the most desirable 
from the standpoint of cleanliness. Heat should also be provided in the 
living quarters as well as plumbing for toilets and wash basins. These 
are sometimes placed down inside the pier where a large unit concrete 
pier is used. The soil pipe from such fixtures should be carried down to 
1 ft. below water level and all fixtures should be vented with pipes 
through the roof. Running water can usually be taken from the fire- 
protection system. If there is no such protection, steps should be taken 
to see that there is adequate means provided to keep water on hand at 
all times. 

27. Pier Fenders.—While pier fenders are not essential to the opera¬ 
tion of bascules, they are necessary in narrow channels as safeguards both 
to the piers and to navigation. In fact, their value is so universally 
recognized in such locations that the War Department in granting per¬ 
mission to construct bridges across navigable waters of the United States 
requires that the plans of the fenders be shown along with the rest of the 
bridge. They should have wing walls extending up and down stream and 
back toward the shore, thus preventing shipping from coming into con¬ 
tact with the piers and interfering with the operation of the movable span. 
In order that boats coming into collision with the fenders, may be guided 
into the channel without disastrous results, it is customary to make the 
wing walls at about 45 deg. with the center line of the channel. The 
usual construction is timber piling from 4 to 8 ft. on centers with a heavy 
timber along the top and the face toward the channel sheathed with 
lighter plank so placed that there are openings between the sheathing or 
waling pieces for the passage of water without damage to the facing. 
The piles must have resiliency enough to give under the impact of ship¬ 
ping and the top sheer strake and the waling must be strong enough to 
transmit the load to the piles without breaking and thus allowing the 
boat to crash through, wreck the fender, and reach the bridge proper. 

Practically all large channels today have a minimum depth of water 
of 30 ft. Some have more. This 30 ft. represents the unsupported 
length of the fender piles. They should therefore be quite heavy and 
there should also be a seven or nine#pile dolphin at each corner of the 
fender and at each intersection of pier protection and wing fender. Piles 
approximately 16 to 18 in. at the butt should be used and driven to 
sufficient penetration to cause them to break off rather than pull out 
under a horizontal load. The sheer strake along the top should be not 
less than 10 X 14 in. bolted to every pile head and to the waling piece 
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against its lower edge. The waling should be 4 X 12 with joints broken 
on every third or fourth pile so that no two adjacent waling pieces will 
be jointed on the same pile. They should be bolted to not less than 
two piles in each dolphin with which they come in contact and spiked 
to the other fender piles with not less than three boat spikes at each 
intersection. 

The top of the pier protection should be about 4 ft. above high water 
and the lowest waling piece just at, or just below, low water. 

That portion of the fender directly in front of the piers may be bolted 
to the face of the piers or be carried on piling driven in front of the pier. 

Bolting the waling and supporting pieces to the pier saves a few feet 
on the length of truss required to span a given clear channel, but the pile 
protection is a more resilient fender and will be safer in collision as it 
does not transmit its shock to the pier. Whether pile or frame fender is 
used, the waling pieces and sheer strake should be of the same size as on 
the wing walls and fastened to their supports in the same sturdy manner. 

Pur 

With the frame protection, it is best to place those blocks which are 
in contact with the masonry in such a location that they will transfer 
their load to a part of the pier least liable to be affected by repeated 
impacts from heavy boats. The pieces laid across these blocks should 
support a secondary set of timbers in such a manner that no shock could 
come into the final blocks except through the bending of the timbers. 
The sequence of fastening will then be from waling to waling timbers, 
from waling timbers to distributing timbers and from distributing timbers 
to the pier blocks, and thence to the pier. This furnishes a resiliency 
which tends to lessen the shock of impact and thus save the bridge and 
pier from injury. 

In wide channels or in locations where the bulk of the shipping can use 
the openings under the fixed approach piers, it is sometimes found advis¬ 
able to leave the fenders out. Thqjr presence does not improve the looks 
of any structure and in channels subject to great seasonal changes of 
water level, they may extend far enough out of the water to be quite a 
detriment to the appearance of an otherwise handsome structure. 

In this regard, it should be said that those types of bascules requiring 
a pier with enclosed walls need a pier protection much more than do the 



Sec. 1-28] BASCULE BRIDGES 73 

types which can be supported on simple piers. The unit pier with its 
comparatively thin walls is much more susceptible to shock and injury 
than the solid single pier which presents a very much narrower face to 
the line of navigation. The heavier single pier is, however, much more 
liable to damage a boat than is the pile or timber protection of the unit 
pier. 

In conclusion, let it be said that when a pier fender is required, nothing 
but the best is worth while. A fender of light and insufficient construc¬ 
tion is a waste of money and affords a false sense of security which may 
result in an accident that would have been guarded against had there 
been no fender. 

Figure 65 shows the pertinent details of a pier fender used in recent 
years. 

COMPLETE STRUCTURAL DESIGN OF A DOUBLE LEAF SIMPLE TRUN¬ 
NION DECK BASCULE HIGHWAY BRIDGE 

28. Data. 
28a. General Description.—The structure considered in 

this design is substantially the same as illustrated in Fig. 66 and is a 
double leaf trunnion bascule highway bridge. The particular type chosen 
for this problem is that designated as “Type 5” in the statement of the 
Chicago Bascule Bridge Company (see p. 23). Any other of the simple 
trunnion types would involve a design procedure no different in principle 
from that hereinafter described. 

There will be two concrete piers—one pier on each side of the channel 
—each pier carrying one leaf and its appurtenant machinery. Each 
leaf is operated by electric motors geared to pinions which engage 
racks in the planes of the trusses. There are two motors for each leaf 
directly connected with each other and to the machinery. When in the 
lowered position and open for traffic, the two leaves are locked together 
at the center. When the leaves are in the raised position, the roadway is 
protected by electrically operated roadway gates. The operation of the 
center lock is interlocked with the roadway gates#and the operation of 
raising the leaves is interlocked with the operation of the center lock, 
making it necessary to lower the gates before the center lock can be 
drawn and then to draw the center lock before the leaf can be raised. 
There are four houses on the two piers—one oh each side of the 
roadway at each pier. One of these houses contains all the control 
apparatus of the bridge, one is the operator's quarters and the other two 
are for storage. 
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286. Governing Dimensions. 

Clear channel at water line. 150 ft. 0 in. 
Clear channel at tip of raised leaves. 120 ft. 0 in. 
Elevation of roadway surface... +32 ft. 0 in. 

Low tide. — 3 ft. 0 in. 
High tide. +10 ft. 7 in. 
Probable wave crest. +12 ft. 0 in. 
Bottom of existing channel . —24 ft. 0 in. 
Bottom of proposed channel. —33 ft. 0 in. 
Bottom of piers. —38 ft. 0 in. 

Clear width of roadway... 20 ft. 0 in. 
Minimum pile spacing,. 2 ft. 6 in. 

28c. Loads.—The structure will be designed to carry its 
own dead load, properly distributed, together with the specified live 
loads, without exceeding in any part the allowable unit stresses as given 
later. 

Dead Load.—The dead load consists of the estimated weight of the 
entire structure. Plain timber is assumed to weigh (for design purposes) 
4 lb. per b. ft., concrete 150 lb. per cu. ft., and creosoted timber 5 lb. per 
b. ft. 

Live Load.—The live load consists of a uniform load of 80 lb. per sq. ft. 
and two 15-ton trucks of the following dimensions: Distance between 
axles 10 ft., wheel gage 6 ft. Two-thirds of the load on.the rear wheels. 
Space occupied by the truck 20 ft. long and 9 ft. wide. 

Impact.—The computed live load stresses are increased by the follow¬ 
ing percentages in order to provide for the dynamic increment of stress 
due to moving loads: 

Floor stringers. 60 per cent 
Intermediate floor beams. 50 per cent 
Stringers and floor beams at break in floor. . . 100 per cent 

The maximum live load stresses in the trusses are increased by a percent¬ 

age obtained by the formula P (percentage) == w^ere ^ “ 

the loaded length of bridge in feet producing the maximum stress in 
the member. When the bridge is in motion, or open, the dead load 
stresses are increased by a flat 20 per cent to provide for vibration 
effects, etc., etc. 

Impact at Anchorage.—The computed uplift stresses in the anchorage 
at the heel of the anchor arm are not increased in accordance with the 
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* l 

above formula, but receive a 40 per cent increase. The anchorage detail, 
however, is attached to a mass of masonry weighing not less than twice 

the amount of the computed uplift. 

Wind Load.—When in the closed position, the bridge is designed for a 

lateral load of 450 lb. per lin. ft. of bridge, of which 150 lb. is considered 

acting on the upper chord, 150 lb. on the lower chord, and 150 lb. acting 

in the plane of the roadway surface. These forces are all considered as 

moving. When in the open position, a wind force of 15 lb. per sq. ft. is 

considered as acting in any direction. The stresses caused by the above 

specified lateral forces are not increased for impact by any percentage 
such as given by the formula above. 

For stresses produced by longitudinal or lateral wind forces combined 

with those from live load, dead load and impact stresses, the allowed 

unit stresses may be increased 25 per cent over those given in the 
table of allowed stresses, but the section shall not be less than would 

be required if the wind forces were neglected and the 25 per cent increase 
not allowed. 

Shear at Center of Bridge.—The amount of shear transferred from one 

leaf to the other through the center lock is assumed to be the amount 

given by the following formula: 

*-£(£)•(*-£) 
where S = shear carried by center lock. 

P = any concentrated load. 

A — distance of P from L6 (horizontal). 
L = length of forward arm (L6 to Ll horizontal). 

28d. Permissible Stresses.—The size and make-up of each 
member shall be proportioned for stresses due to the following loads, and 

combinations of loads: 
(1) Dead load only. 
(2) Dead load, live load and impact. 

(3) Dead load, live load and impact, together with wind loadings. 
For these various load combinations, the permissible unit stresses 
given in the following table shall not be exceeded: 
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Structural Steel 

Kind of stress 

Permissible 

stress for 

combined 

loads, dead, 

live and im¬ 
pact (lb. per 

sq. in.) 

Permissible 
stress for 

dead load 

only (lb. per 
sq. in.) 

Axial and bending tension on net section of: 
Structural steel. 16,000 12,000 
Upset bars and rods where not annealed. 12,000 , 9,000 L 

Axial compression on gross section1. 16,000-70- 12,000-50- 
(L » unsupported length of member in inches) 

r T 

Direct compression on: 

Cast-steel bearing and structural steel plates.1 16,000 12,000 
Cast-iron blocks. 

Bending on: 
14,000 10,000 

Extreme fiber of pins. 
Shearing on: 

Rivets and turned bolts in floor connections, shop and i 

24,000 18,000 

field. 8,000 

12,000 

6,000 

10,000 Pins and shop rivets, except in floor connections.' 

Turned bolts and field rivets except in floor connec¬ 

tions. 10’, 000 

12,000 

8,000 
10,000 Web of girders, net section. 

Web of girders, gross section. 

Bearing on: 
Rivets and turned bolts in floor connections, shop and 

10,000 8,000 

field. 16,000 

24,000 

12,000 
20,000 Pins and shop rivets, except in floor connections. 

Turned bolts and field rivets, except in floor connec¬ 

tions . 20,000 16,000 
450d Expansion rollers, per lin. in. 

(d ~ diameter of the roller in inches) 

500d 

1 - shall not exceed 100 for main members nor 120 for subordinate members, 
r 
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Reinforced Concrete 

Reinforced concrete shall be designed for the following permissible unit stresses 

in pounds per sq. in.: 

Permissible stress 

for combined 
Permissible stress 

Kinds of stress loads, dead, live 

and impact (lb. 

per sq. in.) 

for dead load 

only (lb. per sq. 

in.) 

Steel reinforcement in tension. 16,000 12,000 
Steel in compression, 15 times stress in sur¬ 

rounding concrete. 

Steel in shear. 12,000 9,000 
Concrete in tension. 0 0 
Concrete in compression due to bending. 650 500 
Concrete in bearing. 400 300 
Concrete in shear, beams having no shear rein¬ 

forcement. 40 30 
Concrete in shear (diagonal tension), beams 

having shear reinforcement of bent-up bars 

and stirrups. 120 90 
Bond of concrete and deformed bars. 100 70 

Allowable Static Pressure on Masonry 

Unreinforced mass concrete may be loaded as follows: 

1:2H*5 concrete. 500 lb. per sq. in. 

1:2:4 concrete. 650 lb. per sq. in. 

28e. Counterweights.—The counterweights shall be so 
designed that they will balance the moving part in all positions and so 
fashioned that they can be easily and properly adjusted for variation in 
weight by adding or removing definitely located weights. T,hey shall be 
of concrete construction, built on and around a structural frame thor¬ 
oughly reinforced and hooped, or else encased in steel boxes. 

28/. Anchor Arm Lateral System.—The lateral bracing in 
the plane of the lower chord will be designed to extend to the trunnions 
as well as to the anchorage at the heel of the truss and will be proportioned 
to carry the full load to either point. 

28g. Buffer Blocks.—Both the anchor buffer blocks and the 
blocks for stopping the bridge in the open position are to be made of 
sound, well-seasoned white oak, * entirely free from knots or other 
imperfections. 

Other details of design and fabrication are according to the ordinary 
rules for such work as found in the various specifications for the design 
and fabrication of steel bridges. 
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29. Design of Floor System.—The mathematical work involved in 
the design of flooring, stringers, and floor beams is exactly similar to that 
for any fixed highway span, and need not be given in full at this point. 
Following is a brief synopsis of the floor system design for the problem in 
hand. 

29a. Flooring.—The type of flooring selected will consist of 
a laminated timber sub-floor supporting a creosoted wood block wearing 
surface. If a 5-ft. stringer spacing be assumed, a 2- X 6-in. decking will 
be ample to carry the maximum loading. If an asphaltic wearing surface 
were to be employed, the 2- X 6-in. decking would prove rather deficient 
in stiffness and might cause a cracking of the surface. In this case, a 
deeper deck or a closer stringer spacing would be highly advisable. For 
this problem, the flooring will he assumed to consist of a 2- X 6-in. 
laminated deck supporting a 3^-in. creosoted wood block wearing surface, 
making in all, a thickness (when sized) of 9 in. 

296. Stringers and Floor Beams.—These are designed in the 
ordinary manner with the following results: 

Stringer Moments Ft.-lb. 

D.L. 7,700 
L.L. 39,200 
Impact. 23,500 

Total 70,400 

Section modulus required (70,400) (12) -s- 16,000 = 53.0. Use five 
lines of 15-in., 42-lb. I-beams. 

Intermediate Floor Beam Moments Ft.-lb. 

D.L.  58,000 
L.L. 153,000 
Impact (60 per cent). 92,000 

Total. 303,000 

Section modulus required (303,000) (12) 16,000 = 227. Use a 
26-in., 90-lb. Bethlehem section. 

The end floor beams carry practically the 
same dead and live loadings, but the speci¬ 
fications provide for a 100 per cent incre¬ 
ment for impact. The total maximum 
moment is, therefore, about 360,000 ft.-lb. 
and the above 26-in., 90-lb. beam must be 
stiffened by the addition of flange plates top and bottom. Plates, 
10 X H in., will prove more than ample. 

Figure 67 indicates the live load floor beam reaction assumed in the 
foregoing calculations; Figs. 68 and 69, the assumed placement of trucks 

.IOC'. 

Fig. 67. 
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for computing the maximum live load moment on floor beams; and Fig. 
70 is a sketch of the flange plates adopted for the end floor beam, showing 
the assumptions made in computing the section modulus of the same. 

Fig. 68. 

Fig. 69. 

The stringer at the break in the floor has a maximum overhang of 
4 ft., as indicated in Fig. 71. Assuming a dead load of 275 per lin. ft. of 
stringer, the moments are as follows: 

Ft.-lb. 

D.L. moment (275) (4) (%) =» 2,200 
L.L. moment (10,000) (4) =* 40,000 
Impact allowance (100 per cent) = 40,000 

Total design moment ** 82,200 
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This moment requires a section modulus of 61.1. The 15-in., 42-lb. 
I-section used for the rest of the stringer system is only slightly under the 
above requirement and may, therefore, be used for the overhanging 
portion as well. (The total stress is 16,700 lb., or only 700 lb. above the 
allowable.) 

29c. Horizontal Girder (Fig. 71).—Assume lj^- X lJHr X 
J^-in. angles nailed to the sub-floor, at 24-in. centers, transverse with 
roadway, to support the blocks. The dead weight of the floor which 
conies on the horizontal girder when the leaf is open is as follows (con¬ 
sidering the length of the moving floor as 82.3 ft.) : 

Blocks (82.8) (5) (31^) (6).. 

Flooring (82.3)<5}(5J4)(4). 
Stringers (82.3) (42). 

Angles for blocks at 1.25 ib. per ft. (1.25)(5) (42).j 
Floor beams 6 at 90 lb. X 5 ft. 0 in. 

Interior stringers 

7,200 

9,060 
3,450 

260 
2,700 

Outside stringers 

3,600 

4,530 
3,450 

130 

2,700 

Totals 

or say. 
22,670 14,410 

23 kips and 15 kips 

The moments will be as follows (see Fig. 72): 

(49.5*)(11.5) - (15)(10) + (23)(5) - 305 kip-ft. = 3,660,000 in.-lb. 

Assume a web plate 32 X JHl6 in., 
flange angles 4 X 4 X XK6 in., and 
flange plates 6X^ in. (see Fig. 71). 
Then, for moment, effective <2 = 32 — 
(2) (2.02) = 27.96 in. 

is* p_ 

SO'-■■■■•( 

f* a* 2 IS* 

.— .. 

> 

—.> 

Fig. 72. 

Flange area = % web = 1.25 
1 angle = 5.03 
1 plate = 3.75 

10.03 sq. in. 

Deducting one hole, or 1.62 sq. in., will give a net flange area of 8.41 sq. in. 
Maximum fiber stress — 3,660,000 4- (27.96) (8.41) = 15,60Q lb. per 

sq. in. . 

Area of web = 10 sq. in. (gross) 
Total shear = 49,500 lb. 
Unit sjiear » 4,950 lb. per sq. in., which is satisfactory. 

30. Design of Main Truss Members.—Thus far the designing has 
been of an absolute nature. That is to say, sufficient conditions have 



82 MOVABLE AND LONG-SPAN STEEL BRIDGES [Sec. 1-30 

been given to enable a correct design to be made without the necessity 
of first making an approximate and then a final calculation before the 
actual dead load was near enough to that assumed to bring the calculated 
stresses within the limit of error. The figures just given for sizes of 
flooring, stringers, etc., are to be used in the actual detailing of the 
structure. In the case of the truss members, however, the procedure is 
different. 

In this case, the weight of the truss is not known with any certainty 
and there is usually insufficient data on which to base even a fair estimate 
of the weight per foot of truss. 

It is therefore, necessary to make a very rough calculation of the 
required sections and use the resulting weights at each panel to calculate 
the dead load stresses for use in designing the final make-up of the truss. 
If on the completion of this second design, the weights are materially 
different from those first assumed, it may be necessary to recalculate the 
dead load stress and alter the sections slightly to conform to the new 
weights and stresses. This is properly a method of trial and error, but 
in practice, it is very seldom that a third calculation is ever necessary. 

The method of procedure will be to compute the weight of the dead 
panel load at LI (Fig. 73) by assuming a weight for the end panel of the 
main truss and adding the floor and other loads above determined. Then 
with this load, the moment will be computed at L2 due to the dead load 
of the truss and to the live load that can come on the end panel. This 
will give a basis on which to calculate the required section at L2. From 
this section, the dead load at L2 can be corrected and the moments and 
section at L3 can be computed. By carrying this process to L6, the 
entire weight of the cantilever arm is computed and with these weights 
a dead load stress diagram is laid out. This diagram together with those 
for the live load, wind load and shear lock load give the combinations 
necessary to design the bridge correctly. 

The shape of the truss is governed by the relation of grade to water 
level, by the clearance desired at the center and by the clear channel 
desired. In meeting the conditions at this site, the outline shown in 
Fig. 73 was adopted after various other lengths of counterweight arm, 
depth of truss, etc., had been tried and eliminated for one reason or 
another. 

Figure 74 shows the general outline of the secondary members and 
is useful as a guide in identifying the different members which do not 
appear in an elevation of the truss. 

Placing the standard 15-ton trucks with the rear wheels over the 
end floor beam and loading the rest of the span with uniform live load, 
gives the maximum stresses in the chords from live load. The panel 
loads resulting from this placing are as follows (10,000 lb. being one rear 
wheel load): 







Sec. l-30o] BASCULE BRIDGES 83 

Ul - (10,000)(2) + (2)(5,000)(^~) = 20,000 + 3,600 = 23.6 kips 

U2 = 6,400 + (15.67 4- 2)(10) (80) = 6,400 + 6,300 = 12.7 kips 
US = (15.67) (10) (80) = 12.5 kips 
C74 = C/5 = 12.5 kips 
U6 « (7.83 + 3.5)(10)(80) « 9.0 kips 

Figure 75 shows the placing of the live load for maximum chord 
stresses and also for maximum web stresses back as far as panel point 4, 
but not including L4~f75. 

30a. Preliminary Calculation of Dead Loads.—Dead load 
at panel point Ul-Ll : The floor system weighs approximately 600 lb. 
per ft. of truss. The length of truss tributary to panel point 1 is half 
of the panel 1-2 plus the overhang between panel point 1 and the center 
of the channel. UI-U2 is 15 ft. 8 in., half of this is 7 ft. 10 in. The 
overhaAig is about 8 in., making 8 ft. 6 in. in all. Total weight of floor is, 
therefore, (8.5) (600) ~ 5,100 lb. Handrail will be assumed at 150 lb. 
per ft., or (8.5) (150) = 1,275 lb. For the lower lateral system 
assume 1,500 lb. at panel point LI, which figure is large enough to include 
the miscellaneous details at this point. Assume the truss or girder to 
weigh about 350 lb. per lin. ft. with stiffeners and rivets, or (8.5) 
(350) = 3,000 lb. The total at Ul will then be 

Floor. 5,100 
Handrail. 1,275 
Truss. 1,700 (portion tributary to Ul) 

Total D.L. 8,075—say 8,000 lb. 

The load at LI will be the weight of the lateral system at that point 
and the balance of the truss. These two items are 1,500 and 1,300 lb. 
respectively, and give a dead panel load at LI of 2,800 lb. 

For purposes of this computation, it will be close enough to take the 
entire panel load at any point and assume one-fourth on the bottom or 
unloaded chord and three-fourths on the top or loaded chord. 

The total dead weight at panel point 1 is 10,800 lb. This gives a 
dead load moment at panel point 2 of (10,800)(15,67), or 169,500 ft.-lb. 
The live load moment at panel point 2 is due to the standard 15-ton 
truck with the rear wheels over the.floor beam at Ul and the front wheels 
toward panel point 2. The center of gravity of the standard truck is 
3.33 ft. ahead of the rear wheels. The total weight is 15 tons. As 
there can be two of them, side by side, each truss carries one full truck 
load. 

The front end of the truck is almost at floor beam 2, so no account need 
be taken of any uniform live load in the end panel. 
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The distance from panel point 2 to the center of gravity of the truck 
is 15.67 — 3.33 = 12.34 ft. and the live load moment is (12.34) (30,000) = 
370,000 ft.-lb. Impact will average about 30 per cent. This gives an 
impact allowance of 111,000 ft.-lb. The approximate total moment at 
panel point 2 is then 169,500 + 370,000 + 111,00Q, or 650,500 ft.-lb. 

The distance out to out of flanges at panel point 2 has been selected 
as 4 ft. 4% in. Allowing 7.5 in. on each flange for distance to center 
of gravity of flange area gives an effective depth of 38 in. (approximately) 
and a stress in the flange of 650,500 ft.-lb. -s- 3.17 = 205,000 lb., requiring 
a net area of 12.9 sq. in. The flanges may, therefore, be composed of four 
6-X 4-X %-in. angles with one hole out. The net area is 3.28 sq. in. 
each, or a combined net area for the four of 13.12 sq. in. 

The shear at panel point 2 is all of the dead load at panel point 1, 
plus the live load at point 1, plus the dead and live load tributary to point 
2. This is 10,800 lb. + 30,000 lb. + (say) 20,000 lb. dead load at 2, 
plus one-half a panel of live load, or (10) (80) (15.67) -f- 2 = 6,300 lb., 
making a total maximum shear of approximately 67,100 lb. The re¬ 
quired area for the web of the girder will then Jse 67,100 -f- 10,000, or 
6.71 sq. in. With a depth of 4 ft. 6 in., the required thickness would be 
6.71 -T- 54.0, or 0.24 in. This being too thin to consider, the web will 
be made in. thick unless the shear at panel point 3 requires it to 
be thicker. 

The weights at panel point 2 are then"as follows: 

Floor system. 
Handrail. 
Web plate. 
Flanges. 
Stiffeners, say!. 
Laterals, say. 
Rivets and miscellaneous 

(15.67) (600) = 9,420 
(15.67) (150) = 2,400 
(15.67) (54) . - 850 
(8) (15.67) (12.3) - 1,540 
. - 250 
. = 1,500 
. = 400 

Total dead panel load of. 16,360 
say 16,400 lb. 

Dividing this as mentioned above into one-fourth at L2 and three- 
fourths at U2 gives L2, 4.1 kips, and U2,12.3 kips. 

Proceeding to panel point 3, the moments will be as follows: 

Dead load 
(10,800) (31.33) 
(16,400) (15.67) 

-r 339,000 
* 257,000 

27,200 506,000 ft.4b. 
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Live load (truck at 15 tons and uniform live load at 80 lb. per sq. ft. 
on 15.67 X 10 ft.). 

(30,000) (28.0) = 840,000 

(12,500) (~5^7’) = 98,000 

42,500 938,000 
Impact 30 per cent 282,000 

1,220,000 ft.-lb. 

Making a total moment at point 3 of 1,816,000 ft.-lb. 
The distance between chords at this point is 5 ft. 734 in. This gives a 

stress of 1,816,000 -f- 5.6, or 325,000 lb. in the flanges of the girder and in the 
i,op chord member This will require an area of steel in the flanges 
of the girder of 325 16, or 20.2 sq. in., and the same in member C/3-C/4. 

At 3.41 lb, per ft. per sq. in., the weight per foot of flanges would be 
(20.2) (3.41) = 69.5 io. Allowing 50 per cent for details and gusset 
plates, would give roughly 110 lb. per ft. as the weight of [73-1/4. 

The shear at point 3 would be 27,200 D.L. plus 42,500 L.L. plus 
(42,500) (0.3) impact, or a total of 82,450 lb., requiring 8.2 sq. in. net of 
web plate at point 3. The plate in the web has an area of (67)(5) 
-T- 16 = 20.9 sq. in, and so is amply strong. 

The shear in panel 3-4 would be from 15 kips to 20 kips more than in 
panel 2-3 from D.L.; 12.5 kips more from L.L. aad four kips .more from 
impact, making the total increase, say 35 kips over panel 2-3. The shear 
in panel 2-3 was 82,450 lb. Then the approximate shear in panel 3-4 
would be about 118,000 lb. requiring a steel area for L3-C/4 of 118,000 -f* 
16,000, or 7.4 sq. in. Allowing for slope and details will bring the weight 
of this to about double, or say (2) (7.4) (3.41) = 50 lb. per ft. of truss. 

The weight of L3-L4 will be assumed as 160 lb. per ft. by comparison 
with C/3-[/4 and estimating the increase due to larger moment. 

The loads at point 3 are as follows: 

Floor system. . .(15.67) (600) = 9,420 
Handrail. .. (15.67) (150) = 2,400 
Web plate. . .(7.83) (57) = 450 
Girder flanges.... ..(7.83) (110) = 860 
Girder stiffeners... ..(6) (5) (7.2) = 220 
E/3-*74. . .(7.83) (110) = 860 
E/4-L3. , . .(7.83) (50) = 390 
L3-L4. .. .(7.83) (160) = 1,250 
Laterals, say. sax 1,600 
Details, etc. ss 1,407 

Total 18,857 say 18,9001b. 
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which gives 14.2 kips at £73 and 4.7 kips at L3. 
Proceeding in this manner the approximate dead load concentrations 

ioT the various panel points are readily calculated. The results are as 

ioWovjs; 

Yah TEL "POINT 

1 
2 
3 
4 
5 

Utead Load Concentration 

10,800 
16,400 
18,900 
22.700 
23.700 

For the members of the counterweight 
arm, the preliminary weight assumptions 
shown in Fig. 76 may be made without 
material error. Based upon these assumed 
values, the following dead load concentra¬ 
tions may be calculated. 

Panel Point 

6 
U1 

Dead Load Concentration 

23,200 
6,200 

, 306. Determination of Dead Load Stresses in Counter¬ 
weight Arm.—With the above dead loads at hand, the next step in the 
analysis is the determination of the size and volume of the counterweight 
and the calculation of ttead load stresses in the rear or counterweight arm 
of the truss. 

Taking the D.L. moments about the trunnion, will give the amount of 
concrete necessary to balance the structure. With this weight deter¬ 
mined, the stresses in the anchor arm are readily calculated. 

.Moments Ahead of Trunnion Moments Back of Trunnion 

(10,800) (86.33) 
(16,400) (71.16) 
(18,900) (55.50) 
(22.700) (39.83) 
(23.700) (24.16) 
(23,200)( 8.50) 

940,000 
1,166,000 
1,048,000 

905,000 
574,000 
197,000 

115,700 4,830,000 ft.-lb. 

176-177.(1,800) (3.7) - 6,670 
176- T.(2,280) (3.7) = 8,450 
L6-L9.(4,500) (12.0) = 54,000 
(77-L9.(4,800) (15.9) = 76,200 
177- 179.(3,400) (15.9) =* 54,100 
179-179.(2,600) (24.0) « 62,500 
Girder A.. . . (5,500)(11.0) - 60,500 
Girder B.(5,500) (24.0) = 132,000 
Side and bottom plates 

(8,500)(17.5) 
38,880 lb. 

and sways. ■ 
148,500 
602,920 

ft.-lb. 

The moment 4,830,000 — 602,920 or 4,227,080 must be balanced by a 
mass of concrete at a distance of 17.5 ft. from the center of rotation 
(see Fig. 73). The amount of concrete needed is, therefore, 4,227,080 + 
17.5 - 242,0001b. 
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Considering concrete to weigh 150 lb. per cu. ft., the total quantity 

required per truss is 242,000 -f* 150, or 1620 cu. ft. Half the distance 

between trusses is 11.5 ft. which leaves 140 sq. ft as the required end 

area, or on a height of 11 ft., the required width will be 13 ft. 

The foregoing paragraph has considered the limiting outline of the 

counterweight as the center lines of the bounding members. Allowance 
for the pockets in the counterweight to provide space for balance blocks 
can be obtained by extending the concrete out and around the supporting 
members if necessary in the final design. 

Distributing this counterweight load equally among the four panel 
points at its corners gives 60.5 kips to the panel point. Then with 6.2 
kips as the weight of metal at 177, there is 32.6 kips of the metal in the 
counterweight arm left to be distributed between the four panel points 
about the counterweight. Dividing this as before, that is, three-fourths 
to the lower end and one-fourth to the upper end (the bottom chord of the 
counterweight end being considered the loaded chord) gives 4.0 kips to 
each of the upper points ai d 12.3 kips to each of the lower points, which 
added to the 60.5 kips of concrete gives a loading of 64.5 kips at MS and 
£79, and 72.8 kips at LS and L9. For purposes of obtaining the reaction 
on the trunnion, 3.8 kips of trunnion plates are assumed in addition to 
the weights of the truss members which frame into that point. This 
gives (approximately) seven kips as the load at T, and the dead load stress 
diagram is then drawn as in Fig. 75. 

This diagram is in two parts because it is impossible to begin at the 
outer end and continue clear through to the rear end on account of the 
presence of three unknown stresses at U6 and L6. Consequently, it is 
customary to begin at Ul and run the diagram back to L6 and then begin 
at L9 and run ahead to L6, thus completing the stress analysis for dead 
load closed, but with the diagram in two parts. (It is possible to com¬ 
pute the stress in L6-L9 algebraically and add this value into the stress 
diagram when L6 is reached, but the usual method is to rely on the 
graphic solution and use the algebraic as a check.) 

Having the dead load stresses in the closed position, it is necessary 
to run another set of diagrams for stress at 90 deg. open (see Fig. 75) in 
order to see which members have a larger stress when partly open than 
when either fully open or closed. From this it is seen that C/6-L6, 
C/6-77 and L6-T, have their greatest stress when partly open. The 
amount of this stress is shown under the heading “maximum stresses” 
in Fig. 75. The four diagrams entitled—(1) “Dead Load River Arm 
(Bridge Closed)/’ (2) “Dead Load River Arm (Bridge Open 90 deg.),” 
(3) “Dead Load Counterweight Arm (Bridge Closed),” and (4) “Dead 
Load Counterweight Arm (Bridge Open 90 deg.)”—will give all the 
necessary dead load stresses required for the design of the structure. 
These diagrams are flso used to determine what angle of opening is 
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critical for each member having its largest stress when partly open. 
It is observed that the leaf, although composed of a plate girder 
section for the outer two panels,' has been considered as a frame 
throughout its entire length. This is done in order to facilitate the 
graphic analysis. The design of the plate girder sections may be readily 
worked out later. 

30c. Live Load Stress Diagrams.—Before beginning the 
live load stress diagrams, it is necessary to compute the live load reactions 
at the anchorage and at L6. The only loading which need be computed 
for stress in the anchor arm is the full live load condition of Fig. 75. 

Taking moments about L6 gives the following: 

(23.6) (78.33) = 1,850 
(12.7) (62.67) = 795 
(12.5) (47.00) = 587 
(12.5) (31.33) = 392 
(12.5) (15.67) = 196 
( 9.0)(0) - 0 

82.8 3,820 kip.-ft. 

This must be resisted by a downward reaction at the anchor column. 
The stress in the anchor column which is 34.2 ft. from the center line of 

, E/6-L6 will be 3,820 -s- 34.2, or 112 kips. The stress in i79-L9, however, 
will be greater as it is only 32.5 ft. away from the center line of C/6-L6. 

Fig. 77. 

As this is the stress upon which the stress diagram depends, it is taken 
instead of the anchor column reaction when solving for the stresses in 
the counterweight arm. It is 3,820 -f- 32.5, or 118.0 kips. 

The live load reaction at L6 is the sum of all the live loads on the river 
arm plus the stress in C/9-L9, or 200.8 kips. 

In drawing the live load stress diagrams, members U7-U9, U9-M8 
and M8-L8 are not considered, as they have no live load stress. Member 
U9-L9 is merely a post loaded at the anchor bracket with the 118.0 kips 
of live load reaction. 

Full load, as in Fig, 75 will give maximum conditions for the chords 
mkHot *««b member. bock to Ut-IA. .Am the I^te of action of IA-LA 
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intersects the line of the top chord just forward of U2, it is necessary to 
place the large truck wheel at U2 (with no load on panel 1) to obtain a 
maximum stress in L4-C/5 and U5-L5 (see Fig. 77). 

The line of L5-L6 intersects the top chord at a point just back of 172. 
For maximum stress in L5-C/6, the large truck wheel should again be 
moved, this time to J73, and no load at U1 or ?72 (see Fig. 78). 

Fig. 78. 

For minimum load at L4-C75 and 7/5-L5, the truck should be placed 
as in Fig. 79, but with no uniform load on the span. For minimum load 
on L5-176, the uniform live load should be added up to the center of 
panel 2-3 (see Fig. 80), or in other words, the live panel load given at U1 

should be used alone to obtain minimum stresses in L4-i75 and U5-L5 and 
panel loads at U1 and U2 should be used to obtain minimum stress in 

L5-£/6. 

. U! UZ U3 U4 U5 U6 

30d. Shear Lock Stresses.—The value of the stress trans¬ 
ferred from one leaf to the other by virtue of the shear lock at the center 
of the span may be determined very closely by means of the following 

empirical formula: 
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Where * 
S = value of the shear at the center lock 

for a given load P on the span. 
A = distance from the support to the given 

load P. 
L — distance from the support to the center 

lock. 

For a full panel load at the various panel points, the value of S as 
computed by the above formula is as follows: 

Panel Point Loaded Value or P 
Value of ~ Value of S, 

Pounds 

C/5 12,500 y5 350 
C/4 12,500 % 1,300 
C/3 12,500 % 2,700 
C/2 12,500 % 4,410 
C/1 6,250 % 3,125 

By means of an ordinary Maxwell diagram, the stress in each member 
of the truss due to a unit load at the shear lock is now determined (see 
Fig. 83). 

Taking the values from the above unit shear lock stress diagram and 

Fig. 81. 

multiplying them by the greatest possible shear lock stress which can 
occur when the member is under maximum (or minimum) stress from 
loads On its own leaf, the amounts to add to the design stress to take care 
of shear lock stresses may be determined. 

Consider member LI-L2 on the right-hand leaf (see Fig. 81). Its 

U6 US U4 U3 Ui Ut Ut UZ US U4 US U6 
JZ5* US* MS* 113* 

L6 L6 

Fig. 82. 

maximum stress occurs when its panel point 1 is fully loaded. Place full 
load on panel point 1 of the opposite leaf to offset this load and then load 
fully all panels of the left-hand leaf. The shear lock stress transferred 
will then be the sum of the shear look loads for panels 5, 4, 3 and 2, or 
0.35 + 1.30 + 2.70 + 4.41 m 8.76 kips, and the shear lock stress in 
L1-L2 will be 8.76 times the stress in L1-L2 under one kip load at the shear 
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lock. This is 4.6 kips. The shear lock stress in L1-L2 is then (8.76)(4.6), 
or 40.3 kips. If all panels of the right-hand leaf were loaded except 
panel 1, and no load were placed on the left hand leaf (see Fig. 82), there 
would be an uplift at the shear lock on the right-hand truss which would 
cause the shear lock stress to have opposite sign. Shear lock stresses 
are thus seen to have two values opposite in sign. Care must, therefore, 
be taken to see that the correct sign is used when combining for maximum 
or minimum stress because it may not be possible to obtain maximum 
shear lock stress rft the same time that maximum live load is obtained, 
in which case, the shear lock stress may have no effect on the design stress. 

The principal shear lock stresses are as follows: 

E/3-E/4 

L3-E/4 

L3-L4 

E/4-L4 

E/4-E/5 

L4-L5 

E/5-£76 

Stress for 1 kip load at center = 6.50 
Shear lock stress » (4.35)(6.5) = 28.20 

Stress for 1 kip load at center = 2.00 
Shear lock stress = (1.65)(2.0) = 3.30 

Stress '‘’or 1 kip load at center = 6.70 
Shear lock stress = (1.65)(6.7) = 11.10 

Stress for 1 kip load at center — 0.00 
Shear lock stress = 0.0 

Stress for 1 kip load at center = 6.70 
Shear lock stress = (1.65)(6.7) = 11.10 

Stress for 1 kip load at center = 6.40 
Shear lock stress = (0.35) (6.4) = 2.24 

Stress for 1 kip load at center — 6.30 
Shear lock stress = (0.35) (6.3) = 2.20 

The shear lock stress in L5-L6 can be neglected because maximum 
stress occurs with the leaf fully loaded and at that time there can be no 
downward reaction on this leaf from the opposite leaf. 

30e. Dead Load Stresses. Leaf Open.—Thus far all stress 
diagrams (with the exception of one purely theoretical one for the leaf 
open 90 deg.) have been drawn for the leaf down. The angle of opening 
required to give 100-ft. clear span at the tips of the leaves is 62 deg. It 
is necessary, therefore, to draw stress diagrams for the leaf in this, the 
fully open, position and determine the dead load and wind load stresses 
in all the members with the bridge thus raised. These are shown on 
Fig. 83. 

There is one point in connection with the dead load distribution 
that needs treatment out of the ordinary. This is the distribution of the 
floor load to the truss. As a horizontal girder was placed under the 
stringers, between the L6-E/6 posts, this girder must be considered as 
carrying the full vertical reaction of the floor system. As the floor is 
inclined at an angle of 62 deg. with the horizontal or 28 deg. with the 
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vertical, there will be two components to the floor load at each panel 
point. One of these will be normal to the floor, the other will be parallel 
to the floor. All those parallel to the floor will be summed up into one 
load at the horizontal girder and then divided into two components, one 
normal to the floor and one vertical. The condition thus represented 
will be a floor supported at U6 by a vertical reaction and a thrust normal 
to the floor to offset the sum of the thrusts which are necessary at each 
panel point to maintain the floor in its inclined position (see Fig. 84). 

30/. Wind Load Stresses.—There is a pbint in connection 
with the solution of the wind load stresses that needs explanation. 

Unlike the dead loads, the wind load 
must be resisted (to prevent rotation) 
by some force other than the coun¬ 
terweight. The only point at which 
this can be accomplished is at the 
main pinion. This is not on any 
member. Therefore, it is necessary, 
for purposes of constructing the 
stress diagram, to consider two the¬ 
oretical members, one from the main 
pinion to U7 and one to L9. This 
will give very closely the stress 
in U7-L9 due to wind load, but the 
actual stress is indeterminate on 
account of the large rack plate which 
rivets to T-U7, AT8-L9, M8-L8 and 
L6-L8-L9 and, therefore, distributes 
part of the wind load to all these 
members. 

The reaction at the main pinion 
to counteract the wind load is necessarily tangent to the rack circle at 
the fully open position of the pinion. As the main trunnion is the only 
other point of contact with the pier when the leaf is in the open position, 
the main trunnion bearing furnishes the other reaction against wind load 
and must be so fastened to the pier and main girder as to prevent its be¬ 
ing overturned in case of a high wind. 

As previously explained, ^the wind loads are plus or minus, conse¬ 
quently only one direction of wind need be assumed and stresses solved. 
Reversing the direction of the wind merely reverses the stresses. 

This completes the stress analysis work and when the impact values 
are determined, the stress table can be laid out and the sections of the 
members designed. 

k)#. Impact Stresses.—The impact formula specified in 
100 

this ease was i* » 2 6L'+3009 w^ere ^ m Percentage to add for 
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impact and L = the loaded length of truss required to produce the stress 
to which it is desired to add the impact allowance. 

Each member will, therefore, have a certain definite L for its maximum 
stress and the impact allowance for the different members is as follows: 

Member Loaded Length (Feet) Impact Allowance 

U2-U3, L1-L2 
U1-U2, LI-U2 8 0.31 

*73-*74, L2-L3 
U2-L2, L2-U3 24 0.28 

U4-U5, L3-LA 
U3-LZ, L3-UA 39 0.25 

U5-UQ, LA-L5 
UA-LA, L4-U5 55 0.23 

L5-L6, *75-15 
L5-U6, 70 0.21 

U6-LG, *76-1'7 
*77-*79, L6-L8 
L8-L9, L6-T 
m-T, V7-T 
M8-L8, U7-M8 
M8-LQ, M8- *79 
*79-L9 

82 0.20 

To the dead load stresses in the open, or ready to open position, a 
flat 20 per cent is added for vibration impact. This is none too much in 
view of the possibility of rather violent closing due to careless operation. 

The next step after having made the stress diagrams is to lay out 
a table of stresses, as shown in Fig. 73. For convenience, the different 
portions of the truss are shown at the left margin of the table and double 
vertical lines separate the stresses for different positions or conditions 
of the leaves. 

As the two panels next to the center line of the channel are to consist 
of a plate girder section, their design stresses are not listed here but only 
the final sections shown on this sheet. 

In making up the column of area required, it is always advisable to 
note that the section required for tension members is net, N, and that for 
compression members is gross, G, as it will save considerable searching 
when laying out the sections of the members. 

The completion of the table of stresses and sections (Fig. 73) completes 
the design of the main members. 

31. Design of Lateral System.—As stated in Art. 28c, the assumed 
Wind Wd will be 450 lb. per lin. ft. of bridge. The panel length is 15 ft. 
8 in, and the distance between chords is 23 ft. Maximum stresses are 
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caused by full load over the entire leaf and a layout as in Fig. 85 repre¬ 
sents the truss system which is to be designed. In this system, the 
struts take compression and the diagonals are considered to take only 
tension. At Ll-Ll and L2-L2, no strut will be provided as the floor 
beam extends down to the top of the chord and a simple bracket will 
transfer the stress from the diagonals to the floor-beam. All the struts 
will be assumed as composed of four angles, 4 X 3 X He in., set the same 

distance back to back as the out to out dimension of 
the chords, and single laced with 2%- X %-in. lacing 
bars. The diagonals will be assumed as made of the 
minimum section, namely, four 3- X 2J^- X He-in* 
angles, single laced with 2H~ X %-in. lacing bars. 

The maximum compression in any strut occurs in 
L5-L5 and amounts to 32.1 kips. Dividing this 
stress by the gross section of the strut, gives a unit 
stress of about 3.3 kips which is much lower than 
the allowed unit stress as given by the formula 

16,000 - 70L- y r 

The maximum diagonal stress amounts to 39 kips 
for diagonal L5-L6 which has a net area of 5.40 sq. 
in. The resulting maximum tension is, therefore, 
only about 7.3 kips. The diagonal system is, there¬ 
fore, seen to be heavier than needed for actual 
strength, but will be adopted for the sake of rigidity. 

Referring again to the diagram of Fig. 85, the reaction at L6 is the 
force necessary to hold the truss in position against the wind load when 
the anchor arm is held at the forward end of the counterweight. Taking 
moments about L8-L8 of all the loads on the channel arm and dividing 
by the distance L6-L8 or 19.5 ft. gives the following: 

. (3.7) (97.83) = 362 
(7.1) (8247) = 583 
(7.1) (66.50) = 473 
(7.1) (50.83) - 360 
(7.1) (35.17) = 248 
(5.1) (19.50) - 99 

(R) (19.50) - 2,125 kip-ft. 

whence, R = 2,125 divided by 19.50 or 109 kips. 
In like manner taking moments about L6, the reaction at L8 is found 

to be 71.8 kips and the sum of the wind loads and the counterweight 
reaction equals the 109-kip reaction at 1/6. 
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The stress in L6-L6 strut will be 109 kips and the stress in the diagonal 
L6-L8 will be 71.8 multiplied by the secant of the angle between the 
diagonal and the L6-L6 strut, or (71.8)(1.31) = 94.5 kips, which will 
require 5.9 sq. in. of metal in the net section. This is furnished in four 
angles, 3^ X 3)^ X JHl6 which have a combined net section of 
6.2 sq. in. 

For the L6-L6 strut, four angles are placed with their sides forming 
a square and the sway frame L6-77 b 
fastened to the corner toward the trun¬ 
nion (see sketch in upper right-hand $1 
corner of Fig. 74). s 

The radius of gyration of four angles, 4j*6*xew 
6 X 6 X % in., with the backs 18 in. 
apart, is 7.62 (see Fig. 86). The allow¬ 

able compression is 16,000 — 70^ > or 

^—^) *-13,500 lb. per 

T. V\. 
</ 

16 ,000 - 7o(- 

sq. in. The required area is, then, 109 ^ 
-f- 13.5 = 8.1 sq. in. Since 17.44 has 86 
been furnished, the member is sufficient. 

The specifications say that the wind load shall be carried to the 
trunnions and to the counterweight by lateral systems, each of which is 
capable of carrying the whole stress. The lower laterals carrying the 
wind load to the counterweight have just been designed. 

<s 

For the system to carry the stress to the trunnions, it is necessary to 
adopt some shape that will provide the necessary strength and yet not 
require an elaborate fastening at the trunnion. Also there must be some 
member between the two trusses near the trunnions to take the upper end 
of the sway frame. From L6 to T is 11 ft. 2 in. If 8 in. is assumed as 
clearance for the trunnions, there remains 10 ft. 6 in. as the distance 
between top and bottom chords of the sway frame L6-T. The layout 
adopted is shown in Fig. 87. This makes the problem the solution of a 
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latticed portal of 10.5 ft. depth.1 The stress in the chords is 98 kips and 
in the web there is 13.8 kips per angle. Assume the web angles the mini¬ 

mum, or 3 X X in. 
The total unsupported length of any web member is about 55 in. 

The radius of gyration of one 3- X 2^- X %6-in. angle is 0.93. The 

allowable stress is 16,000 - ^93— = 16,000 - 4,150 = 11,850 lb. 

per sq. in. The area of the angle is 1.62 sq. in. and the total stress 13,800 
lb. The actual unit stress is, therefore, 13,800 -5- 
1.62 = 8,600 lb. per sq. in. which is well within 
the allowable. 

The bottom chord of the strut is the member 
shown in cross-section in Fig. 86. As it has a 
capacity of (17.44)(13,500) = 235,000 lb. to resist 
the 98-kip reaction, it is ample. For the top chord, 
a^T” section will be assumed, composed of a stem 
14 X % in. with two angles 3 X 3 X % in. to con¬ 
nect it to the top plate, which will be a 20- X %- 
in. plate with two angles 3 X 3 X % in. turned 
down at its outside edges. The 14- X %-in. plate 
will be used as a connection for the lattice angles 
and will serve as a long gusset plate.* The unsup¬ 
ported length of the member will be the distance 
between connections of lattice angles in the verti¬ 

cal direction and the whole 23 ft. in the horizontal direction. The radius 
of gyration is as follows (see Fig. 88): 

X 

Fig. 88. 

Member Area d d2 Ad2 / I + Ad* 

14 X %. 5.25 0 0 0 0.1 0 
20 X H. 7.50 0 0 i 0 250 250 
2 li 3 X 3 X ^. 4.22 1.08 1.17 4.9 3 8 
2 |£ 3 X 3 X ^. 4.22 9.11 

i 
83 350 3 353 

Total moment of inertia about X — X = 611 in.4 and the total area 

is 21.19. The radius of gyration is = 5.4. 
\ 21.19 

(12 \ 
54} = 16,000 — 

3,600, or 12,400 lb. per sq. in. The capacity is (12,400)(21.19) = 261,000 
lb. as against the 98-kip stress from the wind. 

The sway frames between the floor beams and the lower lateral struts 
are for the purpose of maintaining the trusses in a vertical plane under the 

1 Johnson, Bbtan and Tubnhaube, “ Modern Framed Structures,” part I, p. 209. 
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wind load on the top chord. This load is about five kips per panel. 
Considering the frame at f75, the distance between chords is 10 ft. 4% in. 
and between trusses 23 ft. The layout of the sway frame is shown in 
Fig. 74. Taking moments about one lower chord panel point Ogives 
for the vertical reaction at the lower chord point (5.0) (10.4) -f- 23 = 
2.2 kips. 

The stress in the web diagonals is equal to the above shear multiplied 
by the secant of the angle of inclination with the vertical and amounts to 
about 3,000 lb. for which the 3- X 3- X ^6 -in. angles are readily seen to 
be ample. 

The sway frame at L6 is designed in the same manner, but using a 
lattice section of minimum angles. The other sway frames L3 and L4, 
are the same general type as JL5 and need no 
explanation. 

The counterweight is to be hung on and around T~ 
a structural frame. The worst condition to assume | 
is that the frames mentioned carry the whole load. •, 
These frames are called “counterweight truss A” 
“counterweight truss B” 11 counterweight laterals” 
and “counterweight cross frame.” 

The counterweight truss A is located between the 
L8-ilf8 panels of the trusses and the counterweight 
truss B between the L9-U9 panels. The cross frame 
is on the center line of the bridge and extends from 
counterweight truss A to counterweight truss B. 
Its top and bottom members being the center struts 
for the upper and lower lateral systems in the coun¬ 
terweight and its vertical members being the center struts of counter¬ 
weight trusses A and B. 

Referring now to Fig. 74 and to the dead loads given at the counter¬ 
weight panel points of the truss outline in Fig. 75. The layout of Fig. 
89 can be drawn with one-half the total counterweight load or one truss 
load at the center and one-half a truss load at each side for the counter¬ 
weight trusses A and B when the bridge is in the closed positiom 

Adding the 20 per cent impact allowance to these members gives the 
tension diagonals a design stress of 64 kips and the compression diagonals 
a stress of 57 kips. 

Try 6- X 3}^- X M-in. angles with the 6-in. legs % in. apart and the 
3J£-in. legs turned to the outside of the counterweight. The radius 
of gyration is 1.41. The allowable compression on a length of 15 ft. 9 

m. is 16,000 - 70(15.75) ~ M00 lb. per sq. in. The required 

area for 57 kip stress is 8.6 sq. in. The section furnished having 9 sq. in. 
is satisfactory. 
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For the tension diagonals, the stress of 64 kips requires a net area of 
4 sq. in. and the same section will be used for this as for the compression 
diagonals. The top and bottom and center vertical members will be 
mad^of the same section for the sake of uniformity. 

When in the fully open position, the counterweight is carried on the 
upper and lower counterweight laterals in the same manner as it was 
carried by counterweight trusses A and B in the closed position. The 
distance between panel points in this case is 13 ft. instead of 10 ft. 9 in. 
and the layout and stresses are illustrated in Fig. 89. 

As these are practically the same as for counterweight trusses A and 
B the same sections will be used. 

The strut down the center will very likely be used to support the 
forms for the counterweight during construction and so may arbitrarily 
be made of two angles, 8 X 6 X % in. for safety’s sake. 

32. Miscellaneous Parts of the Moving Leaf.—Several minor portions 
of the moving leaf are no t yet taken care of. The rack plates which connect 

the machinery to the truss and the trunnion plates 
which must be built up of sufficient thickness of metal 
to bring the bearing on the trunnion inside the allow¬ 
able are the heaviest of these miscellaneous items. The 
rack plates are made of material and extend 
from M8-L9 and U7-M8 toward the trunnion far enough 
to allow the cast steel rack to be bolted between them. 

The brackets on the L9-C79 posts which engage the 
anchor columns are usually cast steel and riveted to 
the post in the larger bridges. In this design, it will 
doubtless be cheaper on account of the low stress in¬ 
volved to build up a structural bracket, the only de¬ 
signing required being to see that sufficient rivets are 
provided to stand the full reaction and the 40 per cent 
impact allowance. 

The shoe at the bottom of the L6 post which supports the live load 
reaction is of somewhat the same nature, the only designing to be done 
being in the nature of providing a safe connection to the truss. It must, 
however, be strong enough to withstand its share of the lateral force due 
to wind. This wind force is not usually serious on the moving portion 
of the shoe, but in the base on which the shoe rests, provision must be 
made to prevent the truss being moved laterally off its support. For this 
reason, the live load shoe at L6 has two sides extending upward and 

* flared out at their upper edges to catch the descending shoe and guide 
it to place and then prevent its lateral movement. 

These sides should be made considerably stronger than called for 
, by wind forces because they will be called into play in case of a collision 
between a boat and the bridge and in such a contingency wiH throw the 
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loads into the counterweight end of the truss and relieve the strain which 
would otherwise come on the trunnions and their bearings. A sketch of this 
base is shown in Fig. 90. The upper and lower bearing plates are rounded in 
the longitudinal direction in order to insure a seating near the center and not 
at one edge as would perhaps be the case if plane surfaces were to be used. 

33. Fixed Part.—The “fixed part” consists of all that portion that is 
supported by the pier, but does not move in 
the operation of the span. The main items of 
design are: Floor stringers, columns on trunnion 
girder, main trunnion girder and grillage braces. 

These are all illustrated in Fig. 91 and will 
be taken up in the order given. 

33a. Floor Slab.—The stringers will 
be spaced as shown in Fig. 94. 

Consider one rear wheel of the 15-ton truck 
in the center of the panel and neglect continuity 
of the slab. The dead lead will be say 100 lb. per sq. ft. for the slab 

Fig. 92. 

Fig. 93. 

plus about 40 lb. per sq. ft. for paving, making a total 
of 140 lb. per sq. ft. The live load of the wheel will be 
distributed over an area of 3 ft. 4 in. square when the 
wheel is considered as having 2- X 2-ft, contact area 
and the lines of distribution running downwards at 45 
deg. through the assumed 8-in. thickness of slab (see 
Fig. 92). 

The overhanging portion of the slab is shown in Fig. 
93, the outer truck wheel being assumed as lying 1 ft. 3 
in. from the outer stringer. 

With the above loading, the slab is designed by 
means of the ordinary formulas for reinforced concrete beams. The appli¬ 
cation of these formulas indicates an area of steel per ft. of slab of 0.57 sq. 
in. for the interior and 0.62 sq. in. for the overhang. 

Loading tor fixed Part Stringer 

Fig. 94. 

For the sake of simplicity, the whole slab will ,be made 8 in. thick with 
%-in. squares on 7-in. centers, placing the center of the steel lJ4-in. above 
the bottom of the slab and having alternate bent-up and straight bars in 
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order to provide for the shear. This will leave the bars in the top side 
of the overhang on 14-in. centers and short stubs will have to be placed 
in between these to make up the required area. These stubs should 
extend back beyond the first stringer a distance sufficient to develop 
the bar in bond, or say 40 diameters for a square bar at an allowable bond 
stress of 100 lb. per sq. in. 

336. Stringers.—The span of the stringers will be from the 
rear wall of the pier to the columns on the main trunnion girder, a distance 
of 26 ft. approximately. The distance between axles on the truck is 10 
ft. The center of gravity of the two wheels is 3.33 ft. from the large wheel. 
The placing for maximum live load moment is with the large wheel 1.67 
ft. across the center line from the small one. The dead load at 150 lb. 
per sq. ft. for slab and paving gives (5.33) (150) = 800 lb. per ft. of 
stringer. Assume the weight of the stringer at 75 lb. per lin. ft. and the 
complete loading diagram is as shown in Fig. 94. The 5,000-lb. machinery 
load is obtained from the design of the machinery which gave 20,000 lb. 
to be supported on the four stringers at 4.5 ft. from the center of the main 
girder. 

Moments are as follows under the large wheel: Dead load moment = 

(875)(13)(11.33) - C875)^1-33)* = 128,800 - 56,400 = 72,400 ft.-lb. 

Live load moment = 74,300 ft.-lb. 
Impact allowance = (74,300) (0.60) = 44,400 ft'-lb. 

Moment of machinery = (21.5) = 18,600 ft.-lb. 

Total design moment = 72,400 + 74,300 + 44,400 + 18,600 = 
209,700 ft.-lb. = 2,518,000 in.-lb. This requires a stringer having a 

section modulus of == 159, which is furnished by a 24-in. 

Bethlehem section at 73 lb. per ft. 
As the overhang ahead of the center line of the trunnion girder is 

only 4 ft. 8 in., the same 24-in. Bethlehem beam at 73 lb. will be amply 
strong. 

From the design of the machinery, we find that with the bridge in the 
open position and the full 15-lb. per sq. ft. wind load on the upraised leaf, 
there is a load of 24,000 lb. on each of the stringers at the point of 
connection of the hangers for the machinery floor. The moments at 

this point would be D.L. of (875)(13) (4.5) - + L.L. of 

(24,00Q)(21.5) (4 6) _ 51,300 - 8,850 + 89,400 - 131,850 ft.-lb., which 

is considerably less than the live load condition with the bridge closed. 
33c. Columns on Main Girder.—Referring to Fig. 95, 

the truck placing for maximum load is shown. 
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For the sake of simplicity, the large wheel is placed within 0.7 ft. of 
the edge instead of 1 ft. The moments about the left-hand support to 
give the reaction on the column are as follows: 

Dead load (0.875) (30.7) (30.7) (0.5) = 415 
Machinery hanger (5) (21.5) = 108 
Live load (15) (26.7) = 400 
Impact (15) (26.7) (0.3) = 120 

Total moment = 1,043 kip-ft. 

R% — 1,043 -f- 26 == 40 kips, which is the maximum reaction on the 
column. 

Assume a ^Bethlehem I-beam 18 in. wide so that the flanges of the 
beam may rest over the webs of the girder. 

The 18-in. Bethlehem-i at 48.5 lb. has a radius of gyration of 1.59. 

I 
Fig. 05. 

16,000 - 70L/R = 16,000 - (70)(y^) = 12,620lb.persq.in. The 

area of the section is 14.25 sq. in. which is readily seen to be more than 
ample for strength. 

33d. Main Trunnion Girder.—For calculating the loads on 
the main girder, the weight of the trunnion bearings is taken as 3,000 lb. 
each. The trunnions are estimated at 1,400 lb. each, or 700 lb. per bear¬ 
ing. From Fig. 75, the load of the truss is 403,000 lb. or 201,500 on each 
bearing, making a total at each trunnion bearing of 205.2 kips. The load 
from the columns under the fixed part is 40 kips at each post* as just 
determined. The girder is symmetrical about the center line and will 
be assumed to weigh 800 lb. per lin. ft. The loadings and the shear 
and moment diagrams are shown in Fig. 96 from which the maximum 
moment is seen to be 24,578,400 in.-lb. The depth of the girder is deter¬ 
mined by the available space between panel point T and the lower chord 
L6-L8. The center line distance is 7 ft. 3 in. (see Fig. 73). 
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The half depth of L6-L8 (from the same figure) is 9% in. plus the 
lacing and rivets, or say 10 in. all told. This leaves 6 ft. 5 in. from T to 
clearance. The trunnion bearing will be about 30 in. from the center of 
the trunnion to the base and, allowing 1 in. for bearing plates, gives 
another 31 in. to subtract from the 6 ft. 5 in. The arc through which the 
lower chord swings when opening will take off another 1% in., leaving 
3 ft. 8^ in. without considering any lower cover plate. Allow % in. 
for this and make the girder about 3 ft. 8 in. deep from out to out. A 

rough calculation shows about 42 
ufc&Min. as the required area of flange. 

wjSpLh, .%££3%S3»i Allowing8 in-for holes wil1 ®ve 
I)- T- J- TB&Fjyj ; "j ± the make-up as shown in Fig. 97. 
Cl !§ % % % % js jjj ^ Next find the center of gravity 
$! I 1 ^ of the two flanges considering 
p I j of the web as flange. This is done 
| ^ in the ordinary manner and needs 
n—| |' ' no explanation. The results are 

5h&ara. as follows: 
| § The distance from the back of 

/ \ the lower flange angle to the cen- 
/ \ ter of gravity of the lower flange 
/ \ • 212*35 . OK . , 
/ \ 1S 49 84 = 4-25 in., and the dis- 

I \ tance to the center of gravity of the 
I \ V. i vJl fl . 162.55 ft_ . 
|Sl I | I 11 | \ upper flange 18 -mt = 2-97 m- 

as shown in Fis-97- 
« The distance between center jpiq. yo. . , 

of gravity of the flanges is, there¬ 
fore, 3 ft. 7% in. - (2.97 + 4.25) = 36.65 in. 

The required tension area is 
24,578,400 

(16,000)(36.65) 
= 41.8 sq. in. 

The gross area of the bottom flange is 59.84, leaving 8.04 sq. in. which 
can be taken out as holes for rivets. 

Referring again to Fig. 91 there is at the center one h6le through both 
side plates, the flange angle, and the web, and one hole through the 
flange plates and the web. The total distance through all this metal is 
m%) + % + % + (2)(%) + % = 3%6 in. 

This is the same for the other web and makes a total area of 7.125 
sq. in. If a lacing angle were so placed that an additional rivet hole were 
taken out of the effective section, the total holes out would be 8.50 sq. 
In., leaving 41.34 sq, in. net as against a required area of 41.80. 

At the ends, the shear is so great as to require the addition of extra 
web plates to build the shear section up to a gross area of *=* 50.2 sq. 
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in. The main webg are two 43 X % plates giving an area of 32.25. 
Ample shear area will be provided by placing one 43- X %6-m. plate 
inside each of the other web plates at the ends and extending them out 
beyond the inside trunnion bearing. 

The other details of the girder such as rivet pitch, stiffeners, fillers, 
etc., do not differ from the details of any other similar member and need 
no mention here. 

33e. Grillage Braces.—The one other item in connection 
with the fixed part that is different from ordinary fixed span work is 
the anchorage of the ends of the main girder to prevent overturning with 
the leaf up during a high wind. This wind will give a horizontal force 
of 110,000 lb. at the trunnion. Considering a layout, as in Fig. 98, the 

load, a unit stress of 20,000 lb. per sq. in. is allowable, which makes the 
net area required 13.0 sq. in. 

This is furnished by four angles, 5- X 5- X p£-in. riveted at the top to 
the stiffeners on the girder and at the bottom to the I-beam grillage which 
in turn is to be concreted solidly into the body of the pier. 

. The holding down bolts which fasten the trunnion bearings to the 
girder must also resist the overturning due to the wind. 

The vertical arm of the wind force is 30 in. The distance between 
bolt holes in the two sides of the bearing is approximately 32 in. which 
makes the stress on each of the four bolts at one end of the girder equal to 

25 800 
25,800 lb. They will, therefore, need 20^000 ^ 8C1- *n- eac^ *n 

cross-section. These, however, are part of the machinery design and 
as there are other factors entering into their design they will not be dis¬ 
cussed further here. 
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34. Counterweight Calculations and Methods of Balancing Span.— 
Having the structural portion of the moving leaf designed and detailed, 
it becomes necessary to calculate the weight and center of gravity of each 
of the members of the moving portion and then, taking the moment of 
all of the moving parts about the trunnion, to determine the amount of 
counterweight necessary to cause the span to be balanced in all positions. 

Horizontal moments (“X” moments) are taken about a vertical line 
YYy through the trunnion in order to determine the amount of concrete 
to put into the counterweight. Vertical moments (“Y” moments) are 
taken about a horizontal line, XX, through the trunnion in order to deter¬ 
mine the location in a vertical direction of the center of gravity of the mass 
of concrete whose weight was determined by the first set of moments. 

These calculations for counterweight are made from the shop drawings 
and the weights obtained in the calculations carefully checked against 
the shipping weight of the material to guard against* error. 

In the sample calculations shown at the end of this chapter, the dis¬ 
tance to each part of each member was taken from the trunnion direct. 
It is usually customary on large or complicated work to take the center 
of gravity of each part with reference to some panel point on the member 
and after the weight and center of gravity of the individual members are 
found, then to calculate the distance X and Y from the trunnion for each 
member and make a summary sheet showing the moments of the different 
members. In small or simple work, much time can be saved by taking all 
moments about the trunnion in the first place, then in making the summary 
sheet no recalculation is necessary, the only process being that of listing 
and summing up all the sub-totals from the itemized calculation sheets. 

After the total weight and center of gravity have been found and 
listed it is a very simple matter to add or subtract parts of the work or 
make alterations in the work as detailed. In order to illustrate this, a 
sheet of calculations for the floor are included in the sample calculations 
herewith appended, as the floor in this particular case was originally 
intended to be 3^ in. of wood block on a 2 X 6 laminated deck and 
was afterward changed to 2 in. of asphalt on a 2 X 8 laminated deck with 
an attendant increase in weight of 11,350 lb. 

In the accompanying tables of calculations, only such sheets as are 
necessary to convey the idea are given. Their original numbers are pre¬ 
served, however, in order to indicate clearly that the calculations are not 
all included. 

In taking off the material from the shop details, it is a very easy 
matter to list main material and details separately and to do the same 
again in a summary sheet so that the percentage of details can be deter¬ 
mined for use in future estimating. Sheets 1, 2, 3 and 4 are sufficient to 
show the make-up of the sheets which has proved most satisfactory and 
to show also that every item is considered. 
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The weights are for one truss and are multiplied in the summary. 
As the center lock machinery is all on one leaf, the two leaves must be kept 
separate, calculations being made for one and corrections made in that 
final result to care for the differences in the other. The north leaf was 
taken in this case and the right-hand girder considered, as is shown by the 
notation N.G.R. Ul on the first line of the first member. The number 
2 indicates that two trusses will be taken in the summary. The notation 
“ material for one girder on north leaf—multiply this sheet by 4” refers 
to the factor to apply to the sheet to obtain the total steel in the structure 
for the purposes of payment. Also in the upper right-hand corner is a 
notation LI showing on which shop drawing the details of the piece will 
be found. 

Some of the members lie wholly within one quadrant and as a result, 
the moments will be all of one sign. This is true of the material on sheets 
1, 2 and 3. In tlx* upper left-hand corner is a notation to that effect. 
Moments toward the center of the river or above the horizontal through 
the trunnion are plus. Those below the horizontal through the trunnion 
or toward the shore are minus. 

The calculation for fioorbeams 1 and 2 are given on sheet 25. 
Sheet 29 gives a set of stringer calculations and sheet 30 gives the 

calculations for the floor weights together with the correction for the 
change in the floor design mentioned above. 

Sheet 31 shows the calculations for the weights of machinery apper¬ 
taining to the center lock. Sheet 11 shows part of the counterweight end 
and illustrates the distinction between plus and minus. 

The totals of the itemized sheets are multiplied by the number of 
pieces per leaf and listed on sheet 39 with their total moments, both plus 
and minus, about the trunnion. For instance, on sheet 1, the weight of 
girder (71-C72-C/3 for the right-hand tluss on the north leaf is given 
as 6,719.66 lb. of main material and 2,901.87 lb. of details, making a total 
weight per truss of 9,621.53, with moments of 661,214 horizontal and 
42,235 vertical. There are two of these pieces in the leaf so the totals 
on sheet 31 will show just double the amount which appears on sheets 1 

and 2 of the calculations. 
In the left-hand column of sheet 39 are listed the shop detail sheets 

from which the weights are taken together with the number by which the 
sheet weight must be multiplied to obtain the weight per leaf. 

These weights and their moments are summed up at the bottom to 
give the total weight of all moving parts except the counterweight. 

At this time, the change in the design of the floor system was made 
and i;he correction to add to the weights and moments calculated and 

listed on sheet 30. 
The totals.for sheet 39 are now listed on sheet 47 and the correction 

from sheet 30 added. 
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In the original calculation for counterweight details the weight of 
the counterweight concrete was assumed at 142 lb. per cu. ft. When 
construction started, test blocks containing 8 cu. ft. of the proposed 
counterweight concrete mixture were made and weighed from time to 
time to obtain as closely as possible a figure to use in the final balance 
computations. These test blocks indicated that the weight of the 
finished counterweight would be 147 lb. per cu. ft. for the plain concrete, 
to which must be added the increase due to the addition of reinforcing 
bars. The plans call for the reinforcement to be 1-in. square bars, 12-in. 
on centers, all three ways. This gives 36 cu. in. of steel, weighing 10.26 lb., 
which will replace 36 cu. in. of concrete weighing 3.07 lb., making a net 
increase in weight of 7.19 lb. per cu. ft. The weight of the counterweight 
will then be 154.19 lb. per cu. ft. 

Volume Occupied by Structural Steel.—As the counterweight concrete 
is built on and around the structural frame of the trusses, there will be 
certain parts of the structural steel which will be surrounded by the 
concrete. 

The weight of this steel having been included in the calculations, its 
volume must be subtracted from the total volume of the counterweight. 

The usual method of caring for this is to consider a transverse dis¬ 
tance from face to face of counterweight enough different from the actual 
to allow for this extra concrete. 

Sheet 46 shows the calculations for concrete displaced by structural 
steel. Those parts which are only partially embedded (as, for instance, 
lower chord L6-L9 which is only covered from L9 to L8) are listed piece by 
piece. Such items as the counterweight cross frames which are wholly 
embedded may be taken from the itemized weight sheets. 

The total weight of embedded steel is calculated and then divided by 
490 to obtain the volume of displaced concrete. 

Actual Location of Center of Gravity of Entire Leaf,—In the itemized 
lists and the summary, all moments are taken about the center of the 
trunnion. In all discussions also, it is customary to speak of the leaf as 
being in perfect balance about the center of the trunnion. This is a 
condition of counterweighting that can be computed very readily, but 
is neither desirable nor easily obtainable in actual construction. As was 
explained in the chapter on design, the actual center of gravity of the 
entire moving load should be on a line through the center of the trunnion 
making an angle ahead of the trunnion with the vertical of one-half the 
angle of opening and far enough from the center of the trunnion on this 
line to cause a forward moment equal to the friction of the trunnion 
bearings under full load. This friction is usually assumed at 15 per cent. 
This gives the distance ahead of the vertical to which to bring the actual 
center of gravity of the entire leaf as 15 per cent of the trunnion radius. 
It is not desirable to work as close as this in small structures, however, 
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and so when the diameter of the trunnion is less than 18 or 20 in., the 
actual center of gravity of the moving leaf should be placed about 2 in. 
from the center of the trunnion. This was done in this case and the coor¬ 
dinates of the actual location from the center of the trunnion are +0.09 
ft. = a; and +0.135 = y. 

Referring to sheet 47 again, after the corrected weights and moments 
are calculated, the location of the center of gravity of all the moving leaf 
except the concrete is obtained by dividing the moments by the weights. 
This is found to be 27.45 ft. ahead of, and 2.54 ft. above, the trunnion. 
As it is desired to bring the center of total weight to a point 0.09 ahead of, 
and 0.135 ft. above, the trunnion, the coordinates of the point just 
found will be 27.45 - 0.09 = 27.36 ft., and 2.54 — 0.135 = 2.41 ft. 

The weight of 313,995 times these new lever arms gives the X and Y 
moments for the actual counterweight. 

As the distance from the center of the trunnion to the center line of the 
counterweight is 17.50 ft., the distance from the new location of the center 
of gravity will be 17.50 + 0 09 = 17.59. 

The weight of concrete required is found to be 488,396 lb. which at 
154.19 lb. per cu. ft. will occupy a volume of 3,167 cu. ft. The horizontal 
distance from the actual center of gravity of the moving leaf to the center 
line of the counterweight is easily maintained. The location of the center 
of gravity of the counterweight in any predetermined point in a vertical 
direction is a problem of arranging a system of galleries and pockets 
in a fixed end area and a fixed length between trusses. 

The distance to subtract from the transverse width of the counter¬ 
weight on account of the embedded steel is 67 divided by the end area 

3 167 
of the equivalent solid mass. The end height is ^~ 8*95 ft* 

67 
The distance to subtract is then— 0-53 ft., leaving 24.8 ft. 

as the figure to use in calculating the space to be filled with concrete. 
On the basis of a length of 24.8, it requires 9.15 ft. of depth to give 3,167 
cu. ft. of concrete. 

The amount of concrete to be placed as permanent counterweight is 
only 97.5 per cent of the total on account of the necessity of leaving 2% 
per cent of the space to use for changes in the counterweight due to 
seasonal variation in the weight of the overhanging leaf. This gives the 
height of the equivalent solid mass of concrete as 8.88 ft. and the volume 
as 3,088 cu. ft. as shown at the top of sheet 48. 

The center of gravity of the 100 per cent mass must be 1.549 ft. below 
the actual center of the total moving load, or 1.41 ft. below the center of 

the trunnion. 
To insure this condition, the counterweight is roughly laid out to show 

a 12-in. floor in the galleries that are to hold the balance blocks which go 
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to make up the per cent. The extreme lower edge of the counter¬ 
weight is placed 12 in. below the center line of the bottom chord in order 
to allow for approximately 2% in. of cover over the steel. The balance 
blocks will then rest on a floor which is 7 ft. 3 in. below the center of the 
trunnion or 7.25 — 1.41 = 5.84 ft. below the desired center of gravity 
of the 100 per cent counterweight. 

Two and one-half per cent, of the 3,167 cu. ft. of counterweight is 79 
cu. ft. If the gallery is 3 ft. wide, a double layer of blocks need only be 
13 ft. long in the center of the counterweight to make the required weight. 

Taking out these blocks would lighten the lower portion of the 
counterweight and allow the center of gravity to rise 0.11 ft., leaving the 
center of gravity of the 97.5 per cent counterweight, 1.30 ft. below 
the center line of the trunnion. Measuring from a point 12 in. below the 
center line of the bottom chord to the under side of the fixed part stringers 
gives a depth of 12 ft. 2 in. in which to put the counterweight. As some 
clearance must be left, the depth of the counterweight will be assumed as 
11 ft. 9 in., as shown on sheet 48. 

The problem now is to so distribute 3,088 cu. ft. of concrete in a space 
24.8 ft. X 11 ft. 9 in. X 14 ft. 0 in. that there will be pockets and galleries 
accessible for placing balance blocks and also that the center of gravity 
of the completed mass will fall 6.94 ft. above the base, without balance 
blocks, and 6.83 ft. above the base after the 2}^ per cent of balance blocks 
are placed. 

Referring now to sheet 49: The total space occupied by the counter¬ 
weight is (24.8) (14.0) (11.75) = 4,079.6 cu. ft. As it is necessary to con¬ 
centrate the load in the top of the space, the portion above the center of 
gravity will not have any openings and can be left solid. This is (24.8) 
(14)(4.81) or say 1,670 cu. ft., leaving 2,409 cu. ft. in the lower portion. 
Considering moments about the 97.5 per cent center of gravity gives 4,025 
above the center of gravity and 8,359 below (the units being cubic feet 
times lineal feet instead of weight times feet to save changing volume 
into weight and back again). 

The passage down the center (see sketch on sheet 49) was to be 3 ft. 
wide. The total length will, of course, be 24.8 ft., but as the two 
entrances are over the lower chords, 2 ft. 4 in. is taken off each end and the 
reduced portion figured separately. The length is then 24.8 less two 
sections 2 ft. 4 in. = 20.14 ft. Making the height 5 ft., and remembering 
that the bottom of the passage is on the line of the bottom chord, gives 
a distance to the center of gravity of this passage of 3.44, and a moment of 
the subtracted portion of 1,039. The total volume left is 3,777 cu. ft. and 
the moments are 7,320 below' and 4,025 above the center of gravity. 
Taking the two doors to the passage (one at each truss) as 4 ft. high and 
3 ft. wide gives 56 cu. ft. and 165 lower moment to take off, leaving 3,721 
cu. ft. and 7,155 moment. 
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In like manner four holes, X 4 X 1 ft. are placed in the bottom of 
the mass symmetrically about both the longitudinal and transverse center 

lines of the counterweight, taking out 56 cu. ft. and a moment of 361. 
Directly over these the openings are lengthened out to 9.5 ft. and run up 
5 ft. further, making four openings 3.5 X 5 X 9.5 ft., taking away 665 
cu. ft. and a moment of 2,228, and leaving the volume of concrete 88 cu. 
ft. less than the required, but with the moment still higher than that of 
the upper mass. The problem is now to add 88 cu. ft. ip such a position 

that it will increase the moment of the upper portion. This is accom¬ 
plished by placing a slab on top of the counterweight between the 
stringers. 

The distance to the center of gravity of this added block must be 
(4,506-4,025) 

88 
= 5.45 ft. The distance from the center of moments 

to the top of the 11 ft. 9 in. mass is 4.81 ft. which leaves 0.64 ft. as half 
the depth of the blocks, or about 1 ft. 3 in. as the total depth. 

A machinery bracket '•omes across between the stringers about 1.5 
ft. back of the forward line of the counterweight and allowing 1-ft. 
clearance at the back gives 11 ft. as the length of the block. The width 

1S (11) (1.28) = 6,33 ft 
If it is desired, this 6.33 ft. can be divided and the separate blocks 

placed between other stringers without disturbing the balance. 
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DESIGN OF OPERATING MACHINERY 

Doubtless the most logical method of presentation is by means of an 
illustrative problem, for which reason the complete machinery design 
for the double leaf, trunnion, bascule highway bridge shown in Fig. 99 
will be considered at this time. 

It is not possible in the limited space available to treat the subject 
of machine design with any degree of thoroughness. The subject mat¬ 
ter hereinafter presented will therefore be restricted to apply to the 
matter of calculations for design and proportioning of parts, treating 
the matter of machine details only incidentally, and with the utmost 
brevity. 

The two features which stand out as peculiar to the problem of 
design and selection of basoule machinery are: (1) The highly inter¬ 
mittent character of the duty, and (2) the uncertainty as to the loadings. 
It will be observed that a very large percentage of the loading imposed 
upon the machinery and power equipment is due to wind action, and 
that the actual maximum load of this character which may reasonably 
be expected is largely a matter of conjecture. For the foregoing reason 
bascule machine design is approached with an attitude slightly different 
from that for other mechanical equipment. Set and standard formulas 
may be subject to certain modification and stress calculation judgment 
tempered, to a certain extent, by experience and sense of proportion. 

In the problem which follows it has been thought best to interpolate 
such discussion as would serve to illustrate the foregoing thought and to 
confine the subject matter to the particular problem in hand avoiding any 
derivation of formulas or general discussion of the question of machine 
design. The work is intended to outline the general method of procedure, 
to illustrate the character of the problem involved, and to stimulate 
further investigation. A complete treatment of any of the individual 
problems involved may be found in any of the standard text or handbooks 
on machine design. 

35. General Data for Problem in Hand. 

distance center to center trunnions. 175 ft. 8 in. 
Distance center to center trusses. 23 ft. 
Rack radius. 9 ft. 
Angle of opening. 70 deg. 
Dead load (moving) (one truss only) 

River arm. 104,748 lb. 
Rear arm (concrete). 228,044 
Rear arm (steel).   24,858 

Total weight..... 357,650 lb. 
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Distance center to center river arm to trunnion. 41.40 ft. 
Distance center of gravity rear arm (steel) to trunnion. 12.56 ft. 
Distance center of gravity rear arm (concrete) to trunnion. 17.50 ft. 
Area of floor (one truss) 83 X 12 ft. 6 in. = 1,037 sq. ft. 
Distance center of gravity of floor area from trunnion.46.0 ft. 

(approx.) 

The above data, in practice, are computed from the structural cal¬ 
culations, by the structural designing squad and turned over to the 
machine designer in this form. 
The data are not exact, but 
closely approximate. Such items 
as the weight of the center lock 
machinery and the position of its 
gravity center must be assumed 
outright as calculations for the 
design of this portion of the work Fig' weights, 

are yet to be made. The linal results will doubtless slightly modify 
the total weight of the river arm and the position of its gravity center. 
The difference, however, is rarely enough to necessitate a revision of 
the machinery and power calculations. 

36. Wind Pressure Assumptions.—The following relationship, given 
by the formula P = 0.0032F2, may prove of value in formulating an 
assumption as to probable wind loadings: 

Wind Velocity (Miles per Hr.) Wind Pressure CLb. per Sq. Ft.) 
V p 

40 5 
55 10 
69 15 
79 20 

It seems quite improbable that the machinery need ever be called upon 
to operate against a wind in excess of 50 miles per hour velocity. How¬ 
ever, it has been common practice to design machinery of this character 
against wind pressures between 10 and 15 lb. acting normal to the river 
arm. Viewed in another light a 15-lb. wind assumption, while erring 
slightly on the side of conservatism, furnishes a concisely stated require¬ 
ment which will result in massive and well-designed machinery, stable 
against the countless impact and racking strains which militate against 
the life of mechanical equipment of this type and which are so hard to deter¬ 
mine exactly. The machinery in this case will be calculated for the extreme 
15-lb. wind pressure viewed in the light of a blanket specification as above 
set forth. Slight modifications in the design of various parts because of 
the severity of this clause will be discussed as the design is developed. 

37, Friction on Trunnions.—The laws governing friction on well 
lubricated surfaces are considerably different from those for surfaces 
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which are dry, or which are insufficiently lubricated. If the surfaces 
are flooded with lubricant, the actual frictional resistance seems to be 
nearly independent of the pressure per square inch. At low pressures, 
the friction is a direct function of the speed, but for high pressures the 
friction is very great even for low velocities, approaching a minimum at a 
linear velocity of about 2 ft. per sec. and thereafter increasing approxi¬ 
mately as the square root of the speed. For first class lubrication, the 
temperature has a marked bearing on the frictional resistance due to 
the fact that temperature changes cause a change in the viscosity of the 
lubricant and also because the diameter of the bearing changes more 
rapidly with a change in temperature than that of the shaft. 

The coefficient of friction to be assumed in work of this character is 
dependent upon so many variable factors that it is impossible to formu¬ 
late assumptions which are dependable except in a very general way. 
It is general practice in bascule bridge design to assume the following 
coefficients for trunnion and roller friction: (1) Forged steel trunnions in 
phosphor bronze bushings, 15 per cent; (2) rolling lift bascule spans, 
8 per cent. Experiments seem to indicate that the coefficient of friction 
at starting will be several times as great as that for the friction of motion. 
The method of lubrication, and the quality of the lubricant has also a 
considerable bearing on the frictional resistance developed. All con¬ 
sidered, the above values may be said to represent conservative practice, 
and to err, if at all, on the side of safety. 

38. Maximum Starting Force at the Rack Circle.—The tangential 
force at the rack circle applied through the operating pinion must be 
sufficient to overcome the following resistances: (1) Inertia of the 
moving mass; (2) wind resistance; and (3) frictional resistances. 

38a. Inertia of the Moving Mass.—The force required to 
produce an acceleration a is given by the formula 

F = Ma 

where M = the equivalent mass at the rack circle, and a = the accelera¬ 
tion in feet per second; If a given weight W has its gravity center a 
distance c from the center of rotation, the equivalent mass (not weight) 
reduced to a rack of radius r may be had from the formula 

Mm 
Wc2 

32.2 r2 
or Mr2 

Wc2 
32.2 

Applying these formulas with the data given: 

Mr2 (For the river arm) - (104,748)(41.40)2 + 32.2 - 5,576,700 
Mr2 (For the rear arm)(steel) = (24,858) (12.56)2 -f- 32.2 = 122,000 
Mr2 (For rear arm) (concrete) = (228,044) (17.50)2 32.2 = 2,169,000 

Mr2 (Total) 7,867,700 
M m (Round numbers) 97,100 

ft .-lb. 
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For 70-deg. angular rotation the length of travel on the rack is 
(2r)(9)(70 deg.) 

360 deg. 
11 ft. (approx.) 

The usual time allowed for the complete opening of a span of this 
size is about 1 min. (the allowed opening time of course depends upon 
the importance of a speedy handling of traffic, certainly not more than 
IK min., and preferably not more than 1 min. should be allowed for 
completely raising the span). Fixing the total time of opening at 1 min., 
the first 15 sec. may be assumed as constituting the period of acceleration, 
the last 15 sec. the period of retardation, leaving the intermediate period 
of 30 sec. for uniform motion. The uniform speed therefore becomes 

?%“+3<nF= = °-244 ft- per sec. 

The acceleration is, therefore, 
n 944 
■- 0.01626 ft, per sec.2 

lo 
and 

F = Ma = (97,100)(0.01626) = 1,580 lb. (for one rack) 

386. Wind Resistance.—The area of floor (for one truss) 
exposed to wind action is 1,037 sq. ft. (see general data) and its gravity 
center lies 46 ft. from the center of the main trunnion. The tangential 
force at the rack circle due to a 15-lb. wind is, therefore 

(l,037K16K46)_79i50olb 

38c. Frictional Resistance. 

Load on trunnion (dead load). 357,650 lb. 
Wind load pinion reaction (see Fig. 100). 79,500 

Total 437,150 lb. 

This frictional force is applied at 
the periphery of the trunnion (see Fig. 
100), and before we can proceed fur¬ 
ther the dimensions of this trunnion 
must be roughly determined. The 
unit bearing values usually assumed 
for slow moving heavy duty journals 
of this character (steel on phosphor 
bronze) vary from 1,500 to 1,750 lb. 
per sq* in. Assuming a 12-in. length 
for each journal and an 11-in. trun¬ 
nion, the unit pressure becomes 

437,150 
(2) (12) (11) ” 

1,650 lb. 
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(The above is approximate only since the dead load and the pinion reac¬ 
tion do not act in the same direction, see Art. 51.) This value is under 
the maximum specification. We may therefore use a trunnion of 11-in. 
diameter as a basis for calculation. 

The frictional force, reduced to the periphery of the rack circle, 

is, therefore: 

mmmm5)-3,3ooib. 

38d. Total Tangential Force at Rack Circle.—Summing up, 
the total tangential force at the rack circle is: 

Inertial. 1,580 lb. 
Wind. 79,500 
Frictional. 3,300 

Total. 84,380 1b. (say 84,000) 

It will be observed that the wind loading constitutes nearly 95 per 
cent of the total. The entire design of the operating machinery is, there¬ 
fore, dependent upon the assumptions made as to wind pressures. In 
view of the fact that the 15-lb. wind assumption is undoubtedly rather 
severe it may be well to tabulate values for the tangential force for 
other wind pressure assumptions, as follows: 

Frictional and inertial resistance alone. .. . 4,875 lb. 
5-lb. wind 

Frictional and inertial resistances. 4,875 lb. 
Wind resistance. 26,500 lb. 

Total. 31,375 1b. (say 31,000) 

10-lb. wind 
Frictional and inertial resistances. 4,875 lb. 
Wind resistance.   53,000 

Total. 57,845 lb. (say 57,500) 

39. Design of Rack and Main Drive Pinion.—The rack in this case 
is bolted between wide gusset plates on the truss and its width is deter¬ 
mined by the design of the truss members. Racks of this character 
are made of cast steel usually cast in sections, the adjoining surfaces 
being carefully machined. The rack sections are bolted to the structural 
steel, by means of turned bolts. Figure 101 is a sketch showing the 
details of the rack designed to fit this particular truss. Figure 102 is a 
construction view of the same rack. 
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Before taking up the design of this portion of the work it may be well 
to take up very briefly the matter of gear design in general. The terms 
used in designating the various parts of a set of spur gearing are given in 
Fig. 103. 

If two wheels are geared to mesh: (1) The circular pitches are equal; 
(2) the pitch circles are mutually tangent; (3) the two pitch diameters 

are proportional to the number of teeth; (4) the linear velocities of the 
two wheels at the pitch circle are equal; and (5) the angular velocities are 
inversely proportional to the pitch diameters. 

There are in general two standard types of gear teeth in common use* 
the cycloidal and the involute, the latter type being the most commonly 
used and the type selected throughout this design. The involute tooth 
is designated by the angle <j> which the common tangent at the contact 
point makes with a line joining the centers of the two wheels. The stand- 
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ard involute tooth is 15 deg., or sometimes 14)^ deg. (Brown and Sharpe 
standard), but 20-deg. involute teeth are often used for heavy duty gearing 
on account of the increased root thickness R. 

Many formulas have been devised for determining the strength of gear 
teeth, the most generally accepted being that of Wilfred Lewis as follows; 

F 

F
ig

. 
1

0
2

.—
Y

o
u

n
g

s 
B

a
y
 b

as
cu

le
. 

V
ie

w
 s

h
o
w

in
g
 r

ac
k
 a

n
d
 t

ru
n
n
io

n
 b

ea
ri

n
g

s.
 



Sec. 1-39] BASCULE BRIDGES 131 

where 

s = the unit fiber stress in the material. 
F = the total tooth pressure. 
p = the circular pitch. 
/ = the width of the tooth face. 
y = a constant depending on the number and shape of the gear 

teeth. 

Fig. 103.—Principal dimensions and terms used for designating gear teeth. 

Values of the constant y for the commonly used gear sizes are given in 
the following table: 

Number 
of teeth 

Values of y 

Number 
of teeth 

Values of y 

20 deg.* invo¬ 
lute 

15 deg. invo¬ 
lute and 
cycloidal 

20 deg. invo¬ 
lute 

15 deg. invo¬ 
lute and 
cycloidal 

12 0.078 0.067 27 0.111 0.100 
13 0.083 0.070 30 0.114 0.102 
14 0.088 0.072 34 0.118 0.104 
15 0.092 0.075 38 0.122 0.107 
16 0.094 0.077 43 0.126 0.110 
17 0.096 0.080 50 0.130 0.112 
18 0.098 0.083 60 0.134 0.114 
19 0.100 0.087 75 | 0.138 0.116 

,20 0.102 0.090 100 0.142 0.118 
21 0.104 0.092 150 0.146 0.120 
23 0.106 0.094 300 0.150 0.122 
25 0.108 0.097 Rack 0.154 0.124 



132 MOVABLE AND LONG-SPAN STEEL BRIDGES [Sec. 1-39 

The unit allowable working stresses employed in the design of gearing 
by the Lewis formula have been the subject of much discussion. In 
general the value selected for the different tooth speeds will vary between 
the limits shown below depending upon the material and workmanship. 
Forged steel gears and pinions may well be stressed to a higher value 
than cut cast gears. Rough molded gears should be stressed to a much 
less value than gears with machined teeth, etc. For working stresses 
induced by the maximum 15-lb. wind loading, it is quite general practice, 
in work of this character, to even increase the maximum stress values 
given below by a small percentage: 

Tooth speed (ft. per min.) 

Unit working stress (lb. per sq. in.) 
(For use in the Lewis formula) 

Steel gears Cast iron gears 

100 15,000 to 20,000 6,000 to 8,000 
200 12,000 to 15,000 4,500 to 6,000 
300 9,000 to 12,000 4,000 to 4,800 
600 7,500 to 10,000 3,000 to 4,000 
900 6,000 to 8,000 2,500 to 3,000 

1,200 4,500 to 6,000 2,000 to 2,400 
4 1,800 3,750 to 5,000 1,500 to 2,000 

With these data we may proceed with the design of the rack and main 
drive pinion G1 (see Figs. 101 and 104). Since the pinion is to be designed 
for heavy duty let us adopt a 20-deg. involute tooth. Assuming a circu¬ 
lar pitch of V/i in., a tooth face of 11 in. (which is as wide as is possible 
with the rack used) and a pinion of 16 teeth, we find 

84,000 OQ onrk 1U 
* - (3H)(H)(0.094) * 23’200 lb' I*r Sq' 

For holding (not operating) against a 15-lb. wind the inertial resistance 
would be eliminated. Moreover the frictional resistance would be 
deducted rather than added to the wind resistance and the tooth pressure 
would become 

_ (79,500 - 3,300) 
8 (3M) (11) (0.094) 

21,2001b. 

For operating against a 10-lb. wind 

57,500 
8 (3K)(H)(0.094) 

15,900 lb. 

With the maximum wind condition the pinion is only 16 per cent over- 
stressed (assuming a 20,000-lb. working stress for forged steel) which is 
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within the limits of overstress generally allowed for the 15-lb. wind 
condition. 

The number of teeth in a full rack circle of radius 9 ft. would be nearly 
200 (see Fig. 101). The tooth stress in the rack therefore becomes 

84,000 
(3^) (11) (0.147) 

14,700 lb. 

which value is safe even for molded teeth. In this case the rack teeth 
are required to be hand finished which doubtless permits of a larger unit 
stress being used. 

It is quite customary in work of this kind to use molded teeth for 
heavy duty racks without machining the teeth, in which case the use of a 
lower unit stress is doubtless the part of widsom. 

40. Machinery Layout.—Having the main drive pinion designed it 
becomes necessary before further designing can be done to sketch in at 
least a tentative layout of gears and shafting. The nature of this 
layout will of course depend upon the structural dimensions of the bridge, 
the clearances, etc. While making these layouts, it becomes necessary 
to make “rough in” or preliminary calculations for clearances, etc. 
These preliminary calculations do not differ in principle from the final 
calculations and are not given here. Figure 104 shows the general 
layout made after those rough in calculations were finished. 

The motors are direct connected to shaft S4 and drive through $4 
from pinion (79 to (78. Gears G8 and (77 are fastened together and idle 
or rotate on shaft S2. Pinion (77, however, meshes with gear (76 which 
gear, together with pinion (75, is keyed to shaft S3. The motion is thus 
transmitted to (75 and from (75 to (74 which is keyed to shaft 52. Shaft 52 
transmits the power to pinion (73 and thence through (72 to shaft 51, 
thence to pinion Gl which meshes with the rack. When the bridge is to 
operate by hand, gears (77 and (78 are moved along the shaft 52 so that (78 
becomes out of mesh with (79 and the bevel gears (710 and (711 are meshed. 
This operation is performed by removing a set collar and sliding the gears 
back or forth as may be desired, replacing the set collar to clamp them in 
the desired position. 

The problem of determining the best arrangement for the machinery 
is, in each case, an individual one; the following general principles 
however, should guide the designer in every case: 

(1) As between several different arrangements the most efficient 
and economical layout is generally 

■ (a) The one that is most compact and simple. 
(b) The one that permits easiest access to all portions of the 

machinery. 
(c) The one that contains the smallest number of moving parts. 

(2) Avoid the use of bevel, miter or angle gearing wherever possible 
as the efficiency is lower (85 per cent against 90 to 95 per cent). These 
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P»o. 104. 
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gears are moreover hard to maintain in exact alignment and are apt to 
rattle. 

(3) Avoid the use of worm gearing for transmission of power on 
account of the excessive friction loss. (The efficiency of a worm drive is 
between 50 and 65 per cent, as against 90 to 95 per cent for spur gearing.) 

(4) Wherever possible, place machinery on heavy unit castings, as 
shown in Fig. 115, rigidly anchored to the masonry, avoiding the use of 
structural members as a support for the machinery bases. 

(5) Arrange machinery details so that exact alignment during con¬ 
struction is easily possible (eliminating complex instrument work). 

(6) Avoid long shafting if possible, and, where unavoidable, trans¬ 
mit power through it at comparative^ high speed. In other words, if 
long shafting must be used, make the high speed shafts rather than the 
low speed shafts the long ones. There is a very great amount of vibration 
in machinery of this kind. Long drive shafting has been observed 
having a movement under load so great that intermediate gears are 
nearly thrown out </ mesh. Shafts such as S2 in Fig. 104 should be 
steadied by intermediate boxings at every point possible, particularly if 
such shafts are to cairy gears at intermediate points. 

(7) Avoid short vertical shafts and the consequent necessity for 
foot step bearings as these require hardened steel and are much harder 
to maintain than horizontal bearings. 

(8) Arrange machinery in general so that all parts, especially those 
subjected to wear, may be readily removed for repairs or replacement 
without disturbing the remainder of the machinery. 

41. Design of Gearing.—Before definitely deciding upon the gearing 
dimensions it is necessary to ascertain something of the power required 
to operate the span and at what speed the power plant is to operate, for 
without these data we are unable to determine what gear reductions 
are necessary. 

The maximum tangential force applied at the rack circle by the main 
drive pinion is 84,000 lb. (15-lb. wind load). The pitch radius of the 
main drive pinion is (3^) (16) -f* 2t = 8.912 in. The maximum torque 
on the drive pinion is, therefore, 

(84,000) (8.912) = 750,000 in.-lb. or 62,500 ft.-lb. 

For other wind intensities the torque is as follows: 

10-lb. wind (57,500) (8.912) - 510,000 in.-lb. = 42,500 ft.-lb, 
5-lb. wind (31,000) (8.912) = 276,000 in.-lb. == 23,000 ft.-lb. 

0 wind (4,875) (8.912) = 43,600 in.-lb. = 3,600 ft.-lb. 

The maximum linear velocity of the rack (and therefore that of the 
pinion) has been calculated to be 0.244 ft. per sec. or 14.64 ft. per min. 

The circumference of the drive pinion is 4.66 ft. at the pitch 
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circle. The rpm of the pinion is therefore 
14.64 
4.66 

= 3.15 rev. per 

min. The power required to operate each pinion is given by the formula 

* P- ' »'P- P- 

The above represents the power needed at the drive pinion and must be 
increased by a margin sufficient to cover the friction loss between this 
drive pinion and the motor shaft. 

For spur gearing the efficiencies at different speeds may be assumed 
as follows: 

Speed of gear 
(ft. per min.) 

Efficiency (per cent) 

Gear only Gear and journal 

Machine cut teeth Molded teeth Machine cut teeth Molded teeth 

3 90 85 88 83 
10 93 88 90 85 
40 96 90 93 88 

100 97 94 
200 98 

! 

95 

There will be about four sets of spur gearing and journals between the 
main drive pinion and the motor shaft. Assuming an average efficiency 
of 95 per cent for each set, the over-all efficiency becomes (0.95)4 = 
0.81+ and the amount of power needed to overcome this friction loss will 
be 100 per cent 4- 0.81 == 124 per cent, or roughly 25 per cent excess 
power. The excess torque needed is also about 25 per cent. We may 
now tabulate our requirements for torque and power for the various 
wind loadings: 

. 

Wind load (lb.) 

H.p. required 
Torque required 

(ft.-lb.) (Reduced to 
pinion speed) 

/ One truss One leaf One truss 
i 

One leaf 

0 2.7 5.4 4,500 9,000 
5 17.2 34.4 28,700 57,400 

10 31.8 63.6 53,000 106,000 
15 46.7 93.4 78,000 156,000 

For holding (not operating) against 
a 15-lb. wind the values become 
76,500 
g4~0QQ of the last values above.... 42.5 85.0 71,000 144,000 
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Electric power should be selected wherever the same is available as 
the operation is much more satisfactory than with any other type of 
power. Electric power will be used in this case and without going into 
the question of power plant selection suffice it to say that two motors 
for each leaf seem to be the logical power equipment. 

For successful operation these motors should meet the following 
requirements: 

(a) The two motors combined should operate the leaf in the required 
opening time against a 10-lb. wind. 

(b) The maximum torque of the combined motors should be at least 
50 per cent in excess of the torque required to hold (not operate) against 
a 15-lb. wind. 

(c) Either motor alone should develop a maximum torque 10 per cent 
in excess of the torque required to operate the leaf against a 10-lb. wind. 

From the manufacturers or electrical equipment, data concerning the 
speed and torque values for the various standard motors may always be 
secured, and from such data „ tentative selection may be made. 

The following table is typical of data of this character, the motors 
being 440-volt A.C. slip ring, induction motors which will be the .type 
selected for this problem. 

Table of Speeds and Torques 

(440-volt A.C. Induction Motors) 

H.p. 

Speed rev. per min. Torque (ft.-lb.) 

Synchronous Full load Full load Maximum 

15 1,200 1,125 70 165 
15 900 830 95 250 
18 720 680 139 390 
22 1,200 1,135 102 240 
22 900 850 136 400 
22 720 680 170 500 
30 1,200 1,145 137 400 
30 900 580 188 525 
35 1,200 1,140 161 410 
37 1,200 1,155 168 600 
37 600 570 340 870 
52 900 860 318 1,000 
52 600 570 480 1,150 

We will tentatively select two 35-h.p. motors as per the above table and 
determine if these meet all requirements. 

The speed of the motor at full load is 1,140 rev. per min., the gear 
reduction between the main pinion and said motor shaft must therefore 
be 1,140 4* 3.15 * 362. 
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The following motor torques are developed: 

Operating against 10-lb. 
wind... one truss. . . . 53,000 -f- 362 = 147 ft.-lb. 

one leaf. 106,000 362 = 294 ft.-lb. 
Holding against 15-lb. wind, .one truss. . . . 71,000 -f- 362 = 196 ft.-lb. 

one leaf. 142,000 362 = 392 ft.-lb. 

To satisfy the requirements listed above, each motor must deliver 
the following: 

Full load torque t Maximum torque Power 

(O) 147 ft.-lb. 31.8 h.p. 
(6) 196 + 50 per cent — 294 ft.-lb. 
(e) 294 + 10 per cent = 324 ft.-lb. 

From the above the motors originally selected seem to be entirely satis¬ 
factory, developing sufficient power to operate the leaf against a 10-lb. 
wind^in the required opening time. In case of a break down of one motor 
the other will still operate the span although at a much slower speed. 
It is also noted that one motor alone will develop just about enough 
overload torque to hold the span against a 15-lb. wind in case of a break 
down disqualifying the other motor. 

Adopting the above motor equipment we are now ready to proceed 
with the design of the gear train. After several trials the layout given in 
the table on p. 141 (see also Fig. 104) is adopted. This system of gears 
gives the following reductions: 

Speed of pinion G1 and gear G2. 3.15 rev. per min. 
Speed of (73 and (?4 = (3.15)(9%s).... 18.90 rev. per min. 
Speed of (75 and GO = (18.90)(6Ks)*- • 67.00 rev. per min. 

Gear G7 idles on shaft S2 but is rigidly fastened to gear (78, therefore, 
Speed of G7 and G8 ^ (67.0) (6^s)• ■ • • 238.00 rev. per min. 
Speed of (79 and of motor = (238) (9%i) 1090.00 rev. per min. 

This is as near the exact reduction as is practicable and simply means 
that at 1,140 rev. per min. the bridge will be opened in slightly less than the 
assumed opening time of 1 min. 

The exact gear reduction between the main pinion and the motor 
shaft is (9%5) (6^fs) (6%8) (9%i) = 346 and the exact torques required 
at the motor shaft are: 

For 10-lb. wind.one truss. 153 ft.-lb. 
one leaf. 306 ft.-lb. 

Holding against 15-lb. wind-one truss.  205 ft.-lb. 
one leaf.410 ft.-lb. 
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These are only slightly in excess of the torques computed on the 
basis of a gear reduction of 362 and are still within the limits of motor 
performance as given under the headings a, b and c above. 

We may now proceed with the design of the gears. Gear G2 being 
considerably larger than the main drive pinion and transmitting the 
same torque will be required to transmit a smaller tangential force. 
We are therefore safe in assuming a much smaller tooth thickness. Let 
us assume a circular pitch of 2% in. (using 20-deg. involute teeth as 
before) and a face width of 4^ in. 

p (circular pitch). 2\^ in. 
/ (face width). 4^ in. 
y (from table). 1.41 

Pitch diameter (for 90-tooth gear) » (90) (2%) -f- t = 60.87 in. 
(17 82\ 

60~87/ = ^,600 lb. 

f00 87\ 
The tooth speed at the pitch circle is (3.15)(7r) ^ 12 / ~ Per min* 

We may, therefore, assume the efficiency of the pair of gears (including 
the journal friction) as 93 per cent, whence 

24 600 
F (including friction loss) = = 26,500 lb. 

26,500 in ,nn „ 
* “ (485@HKo.i4f5 “ 19>6“lb-per “>•m- 

which is safe for a tooth speed less than 100 ft. per min. (see table, Art. 39). 
For pinion <?3, assuming a face width of in., 

$ 
26,500 

(6j?)(2H) (0.092) 
= 21,000 lb. per sq. in. 

For a 10-lb. wind the tooth stress is of the above or 14,500 lb. per 

sq. in. 
The gears in general are made of cast steel while the pinions are made 

of forged steel, the teeth to be cut from the solid. It is therefore entirely 
permissible to stress a pinion slightly higher than its meshing (cast steel) 
gear. The above dimensions are therefore entirely satisfactory. 

In like manner the design for the entire gear train is worked out. The 
results are tabulated below. 

It will be noted that the rest of the gears are designated by diametral, 
rather than circular pitch. The pitch diameter is given at once by the 
expression 

pitch diameter = 
number of teeth 
diametral pitch 

and the circular pitch cp is found from the formula 

circular pitch = r *4- (diametral pitch) 
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In general, circular pitch is used for cast gearing and for large milled 
teeth while diametral pitch is used for smaller cut gears and pinions. 
Unless otherwise noted, all gears are to be of cast steel and all pinions of 

forged steel. 
Most gears for work of this character are of cast steel with forged steel 

pinions. For minor parts the use of cast iron is sometimes permitted. 
Lately the tendency is toward the use of heat treated and hardened 

gears and pinions; nickel, chrome nickel, chrome vanadium and high 
carbon steels being used. The advantages accruing from the use of heat 
treated metal are: Greatly increased strength, low rate of wear and con¬ 
sequent long life, infrequency of renewals and the possibility of using 
higher working stresses, thus producing a more compact design. 

Hardened gears are sometimes 
ground and polished (using garnet or 
some other abrasive), thus producing 
an exceptionally quiet and smooth 
running train of gears. 

42. Design of Shafting.—Figure 
105 illustrates the general arrange¬ 
ment of pinion shaft and bearings. 
The pinion shaft extends beyond the 
outer bearing and carries G2 as a can¬ 
tilever, but this loading does not in 

this particular case materially affect the shaft stresses. 
The working stresses given below may be used to govern the design 

of shafting for work of this character. It is observed that these values are 
rather higher than employed for ordinary mill and shop work. This is 
due to the highly intermittent character of the duty with consequent 
reduction in the amount of wear and to the very rigid assumptions as to 
wind loading. 

Speed of shafting, revolutions 
per minute. 

Allowable stress in bending 
(lb. per sq. in.) 

Allowable shearing stress 
(lb. per sq. in.) 

10-lb. wind 
loads 

16-lb. wind 
loads 

10-lb. wind 
loads 

16-lb. wind 
loads 

Less than 20. 14,000 16,000 10,000 12,000 
20 to 50.. 12,000 14,000 
50 to 100... 10,000 12,000 
Over 100. 8,000 10,000 8,000 10,000 

The maximum bending moment Mb at the center of the main pinion is 
readily seen to be 

2ZH 
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The stress due to bending above is found from the formula 

/ = 
MbC_ 32Mb 
~r ~ id*- 

ird^ d 
I — the moment of inertia = ^ for circular shafts and c = £ 

Assuming a 10-in. shaft (allowing % in. for keyway) 

(32) (955,000) 
(ir)(9r25)3 12)300 lb- 

The maximum torque or twisting moment, Mt, has already been calcu¬ 
lated being (84,000) (8.912) = 750,000 in.-lb. The shearing stress due 
to this twisting moment alone is found from the formula 

where Ip represents the polar moment of inertia 
7T dA 
32 for circular shafts. 

Whence 

1 mt __ (16) (750,000) 
U tt d8 tt(9.25)3 

4,8301b. 

Where torsional and flexural forces exist simultaneously, as in this 
case, it can be easily shown that both the shearing and tensile (or com¬ 
pressive) stresses are increased, the maximum stresses occurring parallel 
and perpendicular to certain inclined shear planes. The maximum 
values are given by the formulas: 

fm&x. = M(f + Vr+4/,2) 

/w = + 4/,2 

Applying the formulas 

/max. = H [12,300 + \/(12>300)* + 4(4,830)2 J = 13,950 lb. per Bq. in. 

/,max. =H VTl2,300)2 +”4(4,830)2 = 7,800 lb. per. sq. in. 

For torque only (which is the condition at the journal boxes) shearing 
stresses alone are developed, the value of which may be found as follows: 
Assuming a 7-in. shaft (neglecting keyway deductions) 

and 

_ 16 Af (16) (750,000) 
h rd*~ (tt) (343) 

- * 

11,100 for a 15-lb. wind 

(16)(510,000) 
(t)(343) 

7,550 for a 10-lb. wind 
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The above stresses are lower than need be and it is quite possible to 
cut this shaft to a diameter of 9 in. at the center A, tapering to 63^ in. 
at the bearing B without undue overstress. 

43. Keys for Shaft SI.—The torque at the main pinion is 750,000 
in.-lb. (see above). Reduced to periphery of the 9-in. shaft, the tangen¬ 
tial force becomes 

750,000 

4H" 
167,000 lb. 

Using two keys each as long as the pinion (11 in.) and assuming a 
working stress of 5,000 lb. per sq. in. in shear and 12,000 lb. per sq. in. 
in bearing, the dimensions of the keys are found as follows: 

Width (shear) 

Depth (bearing) 

167,000 
(2) (11) (5,000) 

167,000 
(2) (11) (12.000) 

— 1.52 in. 

= 0.63 in. 

Two keys 2 X.l in. are ample for this purpose. 
44. Hand Operating Mechanism.—A bridge of this size, and powered 

as effectively and as certainly as this one, need rarely to be operated by 
hand power. Notwithstanding this fact some method of hand operation 
should be provided as emergency equipment. 

It is impracticable to attempt to provide for hand operation against 
a wind pressure in excess of 5 lb. per sq. ft. or to attempt a gear reduction 
to reduce to torque beyond that which may reasonably be expected from 
four men. 

The customary specification for hand power provides that each man 
be assumed to exert a sustained tangential force of 40 lb. and to travel 

at a rate of 160 ft. per min. 
The maximum torque under a 5-lb. wind has been calculated to be 

23,000 ft.-lb. At gear <78 this torque becomes 

(23,000)(min^ofjHnion s _ (23,0j»H3JI5) 
\ rev. per mm. of gear G8 / 238 

305 ft.-lb. for 

one truss, or 610 ft.-lb. for one leaf. 
The above value does not include the power absorbed by the gear 

and journal friction between the main pinion and the capstan lever. 
Assuming an efficiency of 90 per cent (since the gears are moving slowly) 
for each pair of spur gears and an efficiency of 85 per cent of each pair of 
bevel or miter gears, the over all efficiency becomes 

(0.90)8 (0.85)3 - 0.45 
The applied torque is therefore 
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Four men each at the end of a 4-ft. lever exert a combined torque of 

(4) (4)(40) = 640 ft.-lb. 

The gear reduction between GS and the capstan shaft must, therefore, 
be 

1,360 0 0 , . 
iTn = 2-2 (approx.) 

By making gear (?10 with 48 teeth and gear G11 with 19 teeth, a 
reduction of 4Y\§ or 2.5 is effected, which seems to meet the require¬ 
ments. No further gear reduction is needed and the other bevel gears 
are made miter gears (speed ratio = 1.0) and serve only to transmit the 
power to a location convenient for the capstan shaft. 

During the opening of the bridge the main drive pinion travels 
approximately 11 ft. (linear distance), or 

(11)(%)(3^) = 2.36 rev. 

The gear reduction between this pinion and the hand turning shaft is 

(9K5)(6^8)(6ffs)(4K9) = 190 (approx.) ■> 

and the turning shaft will,therefore, need to make (2.36)(190), or 448 rev. 
Each man at the end of the 4-ft. lever will travel (448)(2?r)(4), or 11,300 
ft. The time of opening by hand is, therefore, 

16q- = 70 mm. (approx.) 

45. Center Lock Mechanism.—The center lock is designed to lock 
the two leaves together in their closed position and is proportioned to 

transmit a certain predeter¬ 
mined shearing stress from 
one leaf to the other. In 
this case the center lock is 
proportioned to transmit a 
shearing stress of 20,000 lb. 
and consists of a cast steel bar 
sliding in and out of a cast 
steel socket riveted to the 
sides of the truss. 

The locking bar must act 
as a cantilever between the 

point of application of the socket pressure and its point of support. 
Thip latter point is rather hard to locate exactly. Assuming a length of 
Cantilever of 10 in., the bar must be designed to resist 20,000 lb. in shear 
and (20,000) (10) ~ 200,000 in.-lb. in bending. 

The general arrangement of center lock pin and socket is shown in 
Fig. 106. The socket castings are designed more from a sense of pro* 
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portion than from any set formulas and the riveting is designed to develop 
the full strength of the locking bar. 

46. Motor Power Required for Center Lock.—The total shearing 
stress (two trusses) transmitted by the center lock has been assumed as 
40,000 lb. Using an assumed coefficient of friction of 30 per cent (which 
is a safe assumption) the pull on the center lock will be 30 per cent of 
40,000 lb. = 12,000 lb. The duration of the operation of locking or 

unlocking the bridge should probably not exceed 12 sec. and since the 
total travel of the locking pins (see Fig. 106) will be about 7 in., the power 
developed is 

(12,000) (7) 
12 

7,000 in.-lb. per sec. 

or 
(7,000) (60) 

12 
= 35,000 ft.-lb. per min. 

or 
35,000 
33,000 

1.01 h.p. 

Assuming an overall efficiency of the transmitting mechanism of 60 
per cent, the theoretical power required is 

1.01 
0.60 

1.7 h.p. (approx.) 
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The most efficient method of operating the center locking device is 
by means of a small electric motor placed at the end of the leaf, as shown 
in Fig. 107. The motor selected in this case will be a 3-h.p. A.C. motor 
running at a full load speed of 1,125 rev. per min. which will afford about 
75 per cent excess power. It is of course not necessary to adopt a. 

(Courtesy of Foote Bros. Gear & Machine Co., Chicaoo, III.) 

Fia. 108.—Foote spar gear speed transformer and direct connected electric motor. 

power unit as large as this but the difference in cost between a 3-h.p. 
and a 2-h.p. motor is so small that it hardly pays to risk burning out 
or stalling the motor in case the locking pin should become jammed. 

The complete operation of locking or unlocking the bridge requires 
a one-half revolution of the crank shaft, and consumes a time interval 

(Courtesy of Foote Bros. Gear A Machine Co., Chicago, III.) 

Fig. 109.—Assembly view of Foote spur gear speed transformer. 

of \2 sec. During this time the motor makes approximately (1,125) 
(i%0) — 225 rev. The gear reduction necessary is therefore 225 -f* H 
=» 450. 

The problem then resolves itself into that of designing a train of 
gears to accomplish the above reduction with due simplicity and without 
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the necessity for a large number of exposed moving parts. A spur gear 
reduction of 3:1 together with a “speed transformer” having a speed 
ratio of 160:1 solves the problem and is the solution adopted in this case 
(see Fig. 107). 

There are several types of commercial reduction gears on the market, 
some involving the planetary principle and others involving nothing other 
than a train of spur gears so arranged that the driving and driven shaft 
are concentric one with another, this latter type giving much better 
service. The bridge engineer is not vitally interested in the design of 
the internal mechanism of a reduction gear of this kind any more than he 
is with the internal design of an electric motor. The gear may be ordered 
from the manufacturer to transmit a given horsepower at a given speed 

Fig. 110.—Diagram of worm gear speed transformer. 

in revolutions per minute of the driving shaft and with a given speed 
reduction ratio. 

The advantage of a compact reduction gear of the type above de¬ 
scribed (see Fig. 108) may be summarized as follows: 

(1) Great strength and durability. 
(2) Enclosed, oil tight and dust proof gear box, free from the danger of 

grit. 
(3) Freedom from the danger, and from the noise of exposed gearing. 
(4) Compactness. 

^ This type of transmission is used for powers from 1 h.p. to 100 h.p. 
and for reduction ratios from 1:4 to 1:326 and above. 

For reduction duty of this kind, worm gear speed transformers are 
also sometimes employed. The spur gear variety are to be preferred, 
however, because of the higher efficiency and the lessened need for con¬ 
stant attention as regards lubrication. 

It is noted from Fig. 110, that for every revolution of a single threaded 
worm, the worm wheel travels forward by one tooth. The speed ratio 
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for a single thread worm is, therefore, equal to the number of teeth in 
the worm wheel. The general expression for any type worm is 

Speed ratio = 
number of teeth in worm wheel 

number of threads in worm 

It is not necessary as a general rule for the bridge engineer to design 
his worm drive transmission, the problem being one of selection from the 
standard manufacturers’ lists. 

The following table is typical of those to be found in any manufac¬ 
turer’s list and serves to illustrate the point: 

Table of Dimensions and Properties Foote Bros. Worm Gear Transmissions 

(Courtesy of Foote Bros. Gear & Machine Co., Chicago, U. S. A.) 

Style number. 20 W 20 W 20 W 20 W 20 W 20 W 20 W 20 W 
Ratio.... 28 33.33 35 42 50 70 84 100 
Safe load in pounds at.. .. 745 650 1030 1700 1530 1105 890 765 

pitch line at this revo- % 
lutions per minute.. 750 750 750 750 750 750 750 750 

Pitch. HCP 6 DP HCP i HCP 3 DP HCP HCP 6 DP 
Safe load, pounds, stand- 

ing pressure. 1,050 900 1,300 2,000 1,800 1,300 1,050 900 
Horse power. 2.00 1.33 2.50 4.75 3.50 1.87 1.25 0.87 
Pitch diameter of gear. .. 16.71 16.66 16.71 16.71 16.66 16.71 16.71 16.66 
Number of teeth. 84 100 70 42 50 70 84 100 
Face. 2% 2 Yx 2% 2 H 2% 2% 2% 2% 
Largest gear shaft. 2He 2He 2^6 2He 2 He 2He 2^6 2 He 
Largest worm shaft. 1% 1% 1% 1% 1 % 1% 1 lHe 1 lHe 
Center to center W and G. 10 10 10 10 10 10 10 10 
Threads in worm. Trip. Trip. Doub. Sing. Sing. Sing. Sing. Sing. 

Pitch diameter of worm.. 3.29 3.33 3.29 3.29 3.33 3.29 3.29 3.33 

It is noted that the reduction desired, 1:160, is rather greater than 
any of the worm transmissions listed in the table for which reason another 
pair of spur gears should probably be employed. 

Assume that the style shown in the above table is tentatively selected, 
the one having a speed ratio of 50 being chosen. The normal revolutions 
per minute as listed is 750. If a pair of spur gears is introduced between 
the worm shaft and the motor with a ratio qf approximately 1)4 • 1, then 
when the motor is running at full load speed the worm will be making 1,125 
* 1%, or 750 rev. per min., and the worm wheel will be making lsHo$0T 
15 rev. per min. 

The safe load at the pitch circle of the worm wheel at this speed is 
given by the table as 1,530 lb. The radius of the from wheel is 8.33 
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in. or 0.7 ft. (approx.). The power which may be safely transmitted to 
the worm wheel shaft is, therefore, 

(1,530) (0.7) (2t) (15) 
33,000 

3h.p, 

which is ample for this purpose. 
This worm may be used, therefore, for this service providing a spur 

gear reduction of 450 -f- (50) (1%) = 6:1 is used between the worm 
transmission and the crankshaft. 

The installation, using this type of transmission, takes more power, 
as the efficiency is much lower, and is also much more cumbersome and 
bulky than the spur gear reduction first described. 

47. Design of Center Lock Shafting.—The line shafting S5 (Fig. 107) 
is designed by the formula used for the design of the main pinion shaft, 
the result showing a e-in. cold rolled shaft to be necessary. 

48. Design of Pin (PI; in Crank.—Let us assume a pin of 1% in. 
diameter, and a connecting ^od lead thickness of 1% in. This pin trans¬ 

mits a connecting rod stress of —= 6,000 lb. and a bending 

moment of (6,000) (1%) -5- 2 = 5,250 in.-lb. From these data we find 

Unit bearing stress = 

Unit fiber stress in bending 

6,000 

\mcm) 
(5,250) (32) 

(t)(1J£)8 

= 1,950 lb. per sq. in. 

= 10,000 lb. per sq. in. 

The above unit bearing stress would be high for a shaft bearing but 
this load is highly intermittent, and the motion very slow, and of short 
duration, consequently the load conditions partake of the nature of static 
stresses for which the value 1,950 lb. per sq. in. is very low. 

The key for attaching the crank to the drive shaft is designed as 

follows: 

Torque on drive shaft = (6,000) (3J"£) 
Radius of drive shaft 

Tangential shear = 21,000 -5- 1.35 
Using a square key (%) (% in.) 

TT .x u 15,500 
Umt shear - mm 
Unit bearing - 

These stresses are higher than usually allowed for line shafting (see 
Art. 48) but may be used here in view of the short duration and inter¬ 
mittent character of the load as above noted. 

= 21,000 in.-lb. 
= 1.35 in. 
= 15.500 lb. 

= 7,1001b. 

= 14,200 lb. 
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49. Design of Gearing for Center Lock Drive.—Gears (?16 and G17 
are designed exactly as hereinbefore outlined with the following results: 

G16 
Diametral pitch.. 3 
Number of teeth. 18 
Pitch diameter. 6 in. 
14>£-deg. involute teeth 
Face width. 3}4 in. 

G17 
Diametral pitch. 3 
Number of teeth. 72 
Pitch diameter. ■.. 24 in. 
143^-deg. involute teeth 
Face width. 3 in. 

Gear (718 will be practically the same as (716, except that (718 has 15 
teeth. 

The bevel gears <719 and (720 are designed as follows: 

Torque on shaft S6 = (2)(21,000)(%) = 8,750 in.-lb. 

Assuming one man to operate at the end of a 5-ft. lever, exerting an 
average tangential force of 50 lb., the torque developed is (50)(60) = 
3,000 in.-lb. The gear reduction needed is therefore 

8,75%,ooo — 2.92 

The bevel gears (719 and (720 are designed exactly as if they were 
spur gears, except that the allowable unit stresses assumed in the design 
are generally taken as 75 per cent of the values adopted for spur gearing. 
Assume a 2-in. face and a circular pitch of 1J4 in. For (719 use 15 teeth 
and for (720 use 45 teeth (which gives the required reduction 3:1). The 
pitch diameter of (719 is 5.968 in. and that of (720 is 17.905 in. The tooth 
speed for this pair of gears is, by inspection, about 8 ft. per min. The 
unit stresses for cast iron gears should therefore not exceed about 75 
per cent of 7,000, or 5,250 lb. per sq. in. (see table on p. 132). 

5 968 
The tooth pressure at the pitch cone is 3,000 -i——— 3=1 1>000 lb. 

(approx.). Applying the Lewis formula 

/ = (2y(l^X0.075) = 5,330 lb' per sq- in- for 019 

and 
1 000 

/ * (2X1)4)(o.ni) = 3,640 lb’ ***sq-in-for 020 

These values axe practically within the above allowable stress limits. 
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The horizontal and vertical shafts 85 and S7 are calculated in the 
ordinary manner, hereinbefore described. 

BO. Calculation for Bearings for Main Pinion Shaft.—The outer 
bearing for the main pinion shaft must be designed to carry the reaction 
from the main pinion and also from gear G2 (see Fig. 105). The pinion 
reaction is 84,000 lb. and the reaction from gear (23 transmitted to gear 
G2 is 26,500 lb. (see table of gear stresses). The maximum bearing reac¬ 
tion, assuming both the above forces to be in the same plane, which is 
nearly true for this case, and neglecting the dead load of the gears, is 
given by the expression 

b, . mmm+snmssm. 72,000 ,b., 
45>3 

For phosphor bronze bushings and slow motion the allowable bearing 
pressure is generally taken at a value between 1,000 and 1,200 lb. per sq. 
in. For the very slow motion in this case the working pressure may be 
taken as high as 1,400 lb. per sq. in. from which the necessary bearing 
width is found to be 

(8HKMjo)-8ln(apt’ro,-) 

In this case a 9-in. bearing will be used. This width is ample to care for 
the dead load of the gears, etc. In this manner the other bearings are 
designed. 

For heavy duty work, in designs of this character, phosphor bronze 
bushings are generally employed. For low pressure duty babbitted 
bearings may be used, as shown in Fig. 116. The phosphor bronze 
bushings may be detailed as shown in Fig. Ill, or, for lighter duty, may 
be babbitted in place. The bushings are scraped to fit the journal and 
oil grooves are cut for both top and bottom bushings. 

A good bearing should combine the following qualities: 
(1) Minimum wear. 
(2) Provision tor easy adjustment to line and elevation. 
(3) Provision for removal with a minimum disturbance to the 

rest of the machinery. 
(4) Adequate and positive lubrication. 

The two-halves of the bushings are so constructed as to permit adjust¬ 
ment by means of brass shims or liners and the lubrication is effected by 
means of grease cups (see Fig. 111). Bearings for bevel gears should be 
constructed as a unit wherever possible in order to eliminate the tend¬ 
ency for such gears to spread under service. 

51. Design for Main Trunnions.—The load on the main trunnion 
is the resultant of: (1) The dead load of entire bascule leaf, (2) the maxi- 



See. 1-51] BASCULE BRIDGES 153 

mum wind load, and (3) the pinion reaction. The resultant of these 
three forces may be obtained either analytically or graphically (as per 
Fig. 112) and is found to be 435,000 lb. for each trunnion. 

A trunnion diameter of 11 in. was originally assumed for the calcula¬ 
tion of trunnion friction using a rough method of calculation (see Art. 
38c). With more complete and exact data now at hand we may compute 
the exact size of trunnion needed. 

The total area required for each bearing, using a working value of 
1,700 lb. per sq. in. for bearing on phosphor 
bronze is 

435,000 
(2) (1/700) 

128 sq. in. 

A journal box of 14 in. total length will 
i 128 

require a trunnion dian^ter of yy- = 9.2 in. 

A diameter of 10 in. is therefore sufficient 
as regards bearing. 

The thickness of the structural steel 
bearing on this trunnion is 13^ in. for each 
web, or 3 in. for each trunnion. The bear¬ 
ing stress on the structural steel is, therefore, 

435,000 
(10) (3) 

14,500 lb. per sq. in. 

which is also satisfactory. 
Assuming the reaction from the truss to be concentrated at the center 

of the web, and the load transmitted to the trunnions to be concentrated 
at the center of the trunnion bearings (see Fig. 110), the trunnion is under 
a bending moment of 

(10) = 2,175,000 in.-lb. 

The unit fiber stress in bending is, therefore, 

- __ 32M __ (32) (2,175,000) 
J TCd8 ; 7r(10)8 

22,100 lb. 

This is about 30 per cent high, but the condition is remote and a 10-in. 
trunnion would probably give excellent service. 

For trunnions above 8 in. in diameter, however, it is customary to 
specify a counterbore not less than one-fourth the diameter of the trunnion. 
If the 10-in. trunnion above is counterbored, the stresses will be even 
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higher than those noted. Let us, therefore, try a trunnion 11 in. in 
diameter with a 3-in. counterbore. Then 

Me 
f. = 

X 

d , , ir(d4 - 
cs=2and/ =-64 

di*) 

f. = 
32 M 

T~(d4 - di4) 
<Z 

(32) (2,175,000) 1AOnn „ 
“ /ll4= 16>900 lb* Per sci* m* 

K n / 
We will use this dimension for our trunnion (as shown in Fig. 111). 

52. Design of Hand Brakes.—The gen¬ 
eral arrangement of brake band and levers 
which will be employed in this case, is shown 
in Fig. 113. When a force F is applied at the 
end of the hand lever, the sum of the tensions 
So and S\ in the brake band, B, is found from 
the expression 

FrAr2 

or 

(So + $1)7*1 = 

$0 + $1 = 

r3 

FrAr2 
7*37*1 

(A) 

It may be easily shown1 that for “impending slip” 

§1 = e»f 
So 

1 Consider the brake band shown in Fig. 114. Let 
p «* the unit normal pressure at any point. 

S = the tension in the brake band, 
r = the radius of the brake drum. 

/ = the coefficient of friction. 

F — the total friction 2fpds. 

Then from elementary mechanics 
S 

P r 
Also from the figure 

or 

Integrating each side 

or log« Si - log, S9 

That is, 

dF = fpds «* dS 
ds = rdd 

dS fpds fprde fdd(pr) 

S " S ~ S “ S Fia. 114. 

/■" 
* — *0 

•-•'dS 

s ■fo 

ftl 

Si 
S' 

#** 
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where e = the naperian base = 2.71828. 

/ = the coefficient of friction. 

6 = the angle of contact in radians. 

Substituting for Si in Eq. (A) above, we have 

$o(l + eef) 
Frir2 
rzri 

The torque on the brake band is easily seen to be 

0Si ~ S0)r0 = So(*/e - l)r0 

whence by substitution 

Tb (the braking torque) = 

For the various angles of contact the values efe for an assumed coeffi¬ 
cient of friction ot ?Q per cent are worked out for ready use in the table 
below. 

Value of 0, 
Degrees Value of e/0 » e°-5°0 

140. 1.63 
160. 1.74 
180. 1.87 
200.■. 2 01 
220 . 2 .16 
240. 2 31 
270. 2.57 
300. 2.85 

With the above data at hand we are now ready to take up the design 
of the brake lever system. 

The braking torque necessary to hold the span against a 15-lb. wind 

is obviously 

(76,200) (8.912) = 679,000 in.-lb. (approx.) 

on the main pinion shaft. 
Reduced to the speed of shaft S3 the braking torque becomes 

679,000^“!^™) = 679,000^^^^^ = 31,800 in.-lb. for one truss 

or 

(2) (31,800) = 63,600 in.-lb. for one leaf 

The system of brake levers should be sufficient to develop this braking 
torque in an emergency using, as a basis of calculation, a maximum pull 
at the end of the brake lever equal to twice the normal, or 100 lb. Assum¬ 
ing the following dimensions for the system in question: n = 3 in., 
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r* = 20 in., r» = 4 in., r4 = 60 in., r0 = 15 in., efi = 2.57, and F = 
100 lb., we find the braking torque to be 

Section* B-B' 

Fto. llS.-Cast machinery frame. For {^(K and 11} 966 ”*• 104' 

Ta r (100) (60) (20)-] r2.57 - 1 
L (4) (3) JL2.57 + 1 

which meets all requirements. 

66,000 in.-lb. 
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It only remains to design the levers, cranks, pins, and connecting 
rods, which form the system, in such manner as to safely carry the stresses 
imposed and also to design the band sufficiently wide to prevent burning 
out. 

The design of the levers, cranks and pins need not be discussed further 
except to state that low unit stresses should always be adopted as a 

Fiq. 116.—Typical babbitted bearing. 

breakdown of this equipment during an emergency would prove disastrous 
indeed. 

If p is the unit pressure on the brake band in pounds per square inch, 
and v is the velocity of the rim of the brake wheel in feet per second, the 
value pv for work of this character should not exceed 18 to 20, otherwise 
the brake lining is likely to become injuriously heated under service and 
to burn out. The above applies to the timber block type of brake lining 
which is the type used in this case. For brakes running in an oil bath, 
etc. a higher value of the term pv may be used. 

RECENT DEVELOPMENTS AFFECTING DESIGN 

The types and basic design of bascule bridges have not materially 
changed since 1920. During the past twenty years, however, there has 
been a definite trend toward uniform highway design specifications with 
a general increase in the permissible unit stresses. The introduction of 
light floors for highway bridges, particularly the open steel type, has 
effected considerable savings in movable and long spans. 

The permissible unit stresses and the effect of an open type steel 
floor on some portions of the bascule highway bridge shown in Fig. 99 
will be presented in the following articles. 

63. Permissible Unit Stresses.—The size and make-up of -each 
member shall be proportioned for stresses due to the following loads and 
combinations of loads: 

Case I—Dead Load.—Bridge open in any position. 
Case II—Dead Load.—Bridge closed. 



157© MOVABLE AND LONG-SPAN STEEL BRIDGES [Sec. 1-53© 

Case III—Wind Load.—Bridge open in any position with a force 
due to wind and lateral vibration acting thereon. 

Case IV—Live Load.—Bridge closed with normal live loads acting 
thereon. 

The following combinations of loads shall be used for determining 
maximum stresses: 

Case I only, plus 20 per cent. 
Case I, plus 20 per cent with Case 3. 
Case 1,1 with Case IV. 

63a. Permissible Unit Stresses in Concrete, in Pounds per 
Square Inch. 

Extreme fiber stress (flexure and direct stress). 1,000 
Tension in reinforced members. None 
Shear in beams without web reinforcement: 

Longitudinal bars not anchored. 60 
Longitudinal bars anchored. 90 

Shear in beams with web reinforcement: 
Longitudinal bars not anchored. 140 
Longitudinal bars anchored. 180 

Punching shear. 160 

636. Permissible Unit Stresses in Reinforcing Steel, in 
Pounds per Square Inch. 

Tension in flexural members. 18,000 
Tension in web reinforcements. 16,000 
Compression. n times the com¬ 

pression in the 
surrounding 
concrete 

Bond on bars not anchored. 100 
Bond on bars adequately anchored. 150 

The value of n shall be 10 for concrete having an ultimate compressive 
strength of 3,000 lb. per sq. in. at 28 days, and 12 for all concretes of 
lesser strength. 

63c. Permissible Unit Stresses in Structural Steel, in 
Pounds per Square Inch. 

Structural carbon steel (See A.S.T.M.: A7) 
Rivet steel (See A.S.T.M.: A'141) 

# Pins and rollers (See A.S.T.M.: A235, Class 
Cl) 

Axial tension, structural steel, net section.. 18,000 
Tension in extreme fibers of rolled shapes, 

girders, and built-up sections subject to 
bending,... 18fQ0Q 
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Tension in bolts at root of thread.... 13,500 
Compression members centrally loaded with 

L/r not greater than 140: 

Riveted ends. 15,000 

Pin ends 15,000 

where L = length, in inches, of member. 
r = least radius of gyration, in 

inches, of member. 
Compression in splice material, gross sec¬ 
tion.. 

Shear in extreme fiber of pins. 
Shear in plate girder webs, gross section. . . . 
Diagonal tension in webs of girders and rolled 

beams, at sections where maximum shear 
and bending occu1* ;fimultaneously. 

Shear in power-driven rivets and pins. 
Shear in turned bolts. 
Bearing on pins. 
Bearing on powder-driven rivets, milled stiff¬ 

eners, and other steel parts in contact.... 
Bearing on pins subject to rotation. 
Bearing on turned bolts. 
Bearing on expansion rollers and rockers, 

pounds per linear inch: 

Diameters up to 25 in. 
P - 13,000 

20,000 
600d 

Diameters from 25 to 125 in. 
P - 13,000 r 

20,000 3>00°Vd 

where d = diameter, in- inches, of roller or 
rocker. 

p = yield point in tension of steel in 
the roller or the base, whichever 
is smaller. 

18,000 
27,000 
11,000 

18,000 
13,500 
11,000 
24,000 

27,000 
12,000 
20,000 

II 
4 r2 
1L* 
3 r2 

'these permissible' unit stresses conform to those recommended by the 
1941 design specifications of the American Association of State Highway 
Officials. The reader is referred to these specifications for additional 
information relative to design. 

64. Effect of Light Floors.—An application of the light open type 
steel floor, using the permissible unit stresses given in Art. 53, to the 
floor system of the bascule highway bridge shown in Fig. 99 will be con¬ 
sidered. No change will be made in the live load assumptions. An open 
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type steel floor 5 in. in depth is satisfactory for the live load with stringers 
5 ft. on centers. 

D.L. (floor). 
D.L. (floor)... 
D.L. (stringer). 

D.L. moment. 3.63 kip-ft, 
L.L. moment. 39.20 kip-ft. 
Impact 30 per cent. 11.80 kip-ft. 

Total. 51.00 kip-ft. 

19 lb. per sq. ft. 
95 lb. per lin. ft. of stringer. 
30 lb. per lin. ft. of stringer. 
Required section modulus.. 2.6 in.8 

Required section modulus 34.9 in.8 

A 14-in. WF 30-lb. beam, having a section modulus of 41.8 in.8 will be 
satisfactory and will be used for the stringers. 

The bending moments in the intermediate floor beams and the 
required size of beam are: 

D.L. moment 
(stringer). 24.9 kip-ft. 

D.L. moment * 
(floor beam).... 4.8 kip-ft. 

Total. 29.7 kip-ft. Required section modulus. . 19.8 in.3 
L.L. moment. 153.0 kip-ft. 
Impact 29 per cent 44.4 kip-ft. 

Total. 197.4 kip-ft. Required section modulus 131.6 in.8 

A 24-in. WF 74-lb. beam, having a section modulus of 170.4 in.8, will 
be selected for the floor beam. The dead load reaction of this floor 
beam is 5.04 kips as compared with 7.84 kips in the original design, a 
reduction of one-third. Thus, it may be seen that a considerable saving 
in weight can be secured by use of the light open steel flooring. This in 
turn results in a reduction in the required volume of concrete in the 
counterweight which is dependent on the’dead load of the rivef arm. 

There are two other characteristics of this type of flooring which 
are well worth consideration in highway bascule bridge design. For 
bridges of this type located in regions where heavy snowfalls may be 
anticipated, the fact that a very small portion of snow will be retained 
on the floor system permits of a more nearly balanced dead load through¬ 
out the year. It is also obvious that wind loads on the open type flooring 
will be much less than on a closed or solid type. The exposed area of 
the open flooring and floor system is usually less than 50 per cent of that 
of the solid flooring. It was shown in Art. 38d that a 15-lb. wind assump¬ 
tion on a solid floor constitutes about 95 per cent of the entire force to 
be handled by the operating machinery of the bridge under consider¬ 
ation. As the exposed area of the upper chords of the main trusses 
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amounts to about 12 to 13 per cent of the total exposed area, it is clear 

that if an open type of flooring had been available when this bridge was 

designed a material saving in structural steel and operating machinery 

could have been made. It is also probable that the cost would have 

been reduced. It should be borne in mind, however, that cost of the 

open type flooring will be at least three times as much as that of the solid 

type flooring used in* the original design. 



SECTION 2 

VERTICAL LIFT BRIDGES 

Vertical lift bridges of small spans and low lifts were constructed in 
Europe at a fairly early date. No vertical lift bridges of any size, how¬ 
ever, were constructed there until recent years. In 1850 Capt. W. Mor- 
son, an Englishman, designed a vertical lift bridge with a span of 100 ft. 
and a rise of 54 ft. for crossing the Rhine River at Cologne, but a compet¬ 
itor secured the prize in the competition in which the plans were entered. 
Oscar Roper of Hamburg in 1867 designed a bridge with a lifting span of 
300 ft. and a high rise to allow the passage of ocean going vessels, but this 
bridge was never built. 

Squire Whipple in 1872 began designing and building small vertical 
lift bridges to cross canals in New York. In 1892 Doctor Waddell 
designed a vertical lift bridge 250 ft. long with a rise of 140 ft. to span the 
ship canal at Duluth. This bridge was not built because of the objections 
of the War Department. The first vertical lift bridge of any importance 
to be built in this country probably yras the South Halstead Street 
Bridge at Chicago. This bridge was designed by Doctor Waddell in 
1892 and constructed shortly afterward. It had a span of 130 ft. and a 
maximum vertical clearance of 155 ft. For a period of 12 or 15 years 
after the construction of the Halstead Street Bridge very little progress 
was made in the construction of vertical lift bridges, but since 1908 many 
well designed and economical lift bridges of this type have been con¬ 
structed, one engineering firm having designed and built about 40 of 
these bridges. 

1. Advantages of Vertical Lift Bridges.—Compared with swing and 
bascule bridges, the vertical lift bridge has proved from data available 
to be economical both in construction and operation' and there is no doubt 
but that many bridges of this type will, be constructed in the future. 
Some of the advantages of the vertical lift bridge are as follows: 

First Cost.—It seems to be generally admitted'that the first cost of a 
vertical lift bridge is about the same as that of swing and bascule bridges 
having the same channel opening. For long spans and low lifts the 
vertical lift is cheaper, though it may be more expensive in cases of short 
spans and high lifts. 

158 
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Simplicity.—The ordinary vertical lift bridge is simple to design and* 
construct. The complicated details are comparatively few and present 
no difficult problems. 

Rigidity.—The vertical lift is as rigid as other types of movable bridges. 
Reliability.—The reliability of the vertical lift has been demonstrated 

many times. The South Halstead Street Bridge of Chicago in 1907 was 
said to be the most satisfactorily operating movable bridge in Chicago. 

Ease of Operation.—A well designed vertical lift is as easy to operate 
as any other type of movable bridge. 

Time of Operation.—The time required for a complete raising or 
lowering of a vertical lift bridge is usually about 45 to 50 sec. Of course 
the time required for a partial raising or lowering is less. 

Duration of Opening .—The total time required for the opening of the 
bridge, the passage of the boat, and the closing of the bridge is less for 
the vertical lift and bascule than for the swing types because a boat will 
approach closer to the vertical lift or bascule bridge. The swing bridge 
requires considerable room *or its swing and appears to obstruct the 
channel to a larger degree. Swing bridges must make a full opening 
each time, while the opening required for the bascule or vertical lift 
depends on the height of the vessel's masts. Hence, much less time is 
required for the passage of the smaller craft through the vertical lift 
and bascule bridges than for the swing bridges. This saving of time is 
well worth considering when the water or the land traffic (or both) is 

heavy. 
Power Economy.—A well-designed vertical lift bridge seems to be 

just as economical of power as a bascule and more economical than a 
swing bridge. 

Cost of Operation.—The cost of operation for each opening and 
closing of vertical lifts is about the same as that for bascules and some¬ 
what less than that for swing bridges. This cost per operation will 
probably vary from $1 to $3 depending on size of bridge, amount of water 
traffic, cost of power, and other conditions. 

Length of Span.—It is generally conceded that vertical lift bridges of 
long span lengths may be more economically constructed than either 
bascule or swing bridges. 

Interference with Channel during Operation.—Vertical lift and bascule 
bridges interfere less with the channel than swing bridges, as the swing 
bridge requires room for its swing, a large central pier, and a draw rest. 

Piers.—The vertical lift and bascule bridges do not require a large 
pivot pier near the center of the channel as in the case of the swing 
bridge. A large central pivot pier may cause a deflection of the current 
toward the sides of the channel so as to cause erosion of the banks. 

The draw rest required for the swing bridge also obstructs the channel 
and is a menace to navigation. The maintenance of the draw rest is an 
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additional expense, and, if this rest is built of timber, the renewal expense 
is an appreciable item. 

Wide Roadways.—A vertical lift bridge may be built as wide as 
any ordinary bridge without much difficulty, but a swing bridge with a 
wide roadway requires a large central pier, the construction of which may 
not be practical because of possible channel obstruction. 

Extra Bridges.—When advisable, extra vertical lift bridges or bascules 
may be constructed very near the first bridge to accommodate increases 
in traffic. Swing bridges may not be built very close to each other as 
they require considerable space for swinging. This means that the 
approaches to the extra swing bridges would have to be curved and that 
more land would be needed and more filling required than in the case of 
the extra vertical lift bridges. 

Protection to Traffic.—Vehicular and pedestrian traffic over vertical 
lift bridges may be amply protected during the raising and lowering of the 
lift span by suitable gates. 

Collisions with Boats.—A vertical lift bridge seems to have an advan¬ 
tage over bascule and swing bridges in regard to possible collisions with 
boats. With the movable span in place, it appears that a boat could do 
more damage to a swing bridge and draw rest than to either a bascule or 
vertical lift bridge. * Probably less time would be required to repair a 
vertical lift span than either a bascule or swing bridge. If the movable 
span was partly open when hit by a boat, the swing span and draw 
rest of a swing bridge would probably be crumpled up. In the case 
of a bascule, the bridge would suffer but little if struck by the top 
hamper of the boat, but considerable damage would result if the 
hull hit the bascule leaf. A vertical lift span partly raised would prob¬ 
ably be high enough to damage the masts, rigging, smokestacks, and 
pilot house of a boat, and, consequently, no very serious damage would 
be done to the bridge. 

Thus, it appears that the possibility of serious damage due to a col¬ 
lision with a boat would be less with a vertical lift than with a bascule 
bridge and less with a bascule than with a swing bridge. 

Interchangeable Spans.—A bridge of several spans, having one 
arranged as a vertical lift, may be constructed so as to permit the moving 
of the towers and lifting machinery from one span to another whenever 
this is advisable due to a shifting channel. In a bridge of this type all 
spans are made exactly alike. 

Lifting Deck.—'The advantage of a lifting deck in a double deck bridge 
is obvious, as the lifting of the lower deck will permit the passage of the 
smaller vessels, thus requiring only an occasional lifting of the upper deck 
for the larger boats. 

2. Classification of Vertical Lift Bridges.—The various types of ver¬ 
tical lift bridges may be classified as follows: 
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I. Those vertical lift bridges having a lifting span with no lifting deck. 
(A) With two towers each consisting of four columns braced 

together in both directions. 
(1) With no overhead spans. 

(а) When the two front columns of each tower are vertical 
and the two rear columns are inclined. Sheaves 
are placed over the vertical columns (see Fig. 4). 

(б) When all four columns of each tower are vertical and 
sheaves are placed over all vertical columns. This 
type has twice as many sheaves as the preceding 
class (see Fig. 11). 

(2) With overhead spans between the tops of the towers. 
(a) Where the two front columns of each tower are vertical 

and the two rear columns are inclined (see Fig. 2). 
(b) Where all four columns of each tower are vertical. 

(Practically no bridges of this type have been built.) 
(B) With two towers, eu,ch consisting of two vertical columns with 

cross bracing in one direction, with overhead trusses between 
the tops of the columns. This ^ype is more suitable for short 
than for long spans (see Fig. 13). 

II. Those vertical lift bridges having a lifting deck with a fixed or a 
lifting overhead span. 
(4) With a lifting deck raising to a fixed overhead span (see Fig. 5). 
(.B) With a lifting deck raising to an overhead span which can be 

raised to the tops of the towers (see Fig. 8). 
III. Vertical lift bridges of the bascule type. This class includes the 

Strauss and Rail vertical lift bridges of the bascule type. In 
general these bridges operate like the bascules patented by Mr. 
Strauss and Mr. Rail except that the lifting is done at both ends 
of the span (see Figs. 25 and 26, p. 26). 

A further refinement of this classification might be made by considering 
the location of the operator’s house, kind of power used, type of trusses, etc* 

3. Adaptability of the Different Types of Vertical Lift Bridges.— 
Most of the vertical lift bridges of any size that have been built have had 
a lifting span with no lifting deck, and have had two towers of four 
columns each. Towers with the rear columns inclined are preferable 
to those with all vertical columns except in special instances such as skew 
lift bridges, etc. Inclined rear columns give a much more pleasing appear¬ 
ance to a bridge than do the vertical rear columns. With four-column 
towers, overhead trusses between* the tops of the towers are rarely needed 
unless pipes or heavy wires and cables are to be carried across the bridge. 
Vertical lift bridges of the above types have been built with lift spans 
up to 425 ft. in length and with lifts up to 140 ft. and weights to over 
3,000,000 lb. 



162 MOVABLE AND LONG-SPAN STEEL BRIDGES [Sec* 2—3 

Vertical lift bridges with two-column towers and overhead spans are 
more adaptable for short lift spans and lifts of moderate heights. 

There have been very few vertical lift bridges built with lifting decks* 
This type of bridge is often advisable when there are two decks required 
for the traffic, one (usually the upper) for highway traffic and the other 

Fio. 1.—South Halstead Street Bridge, Chicago, Ill. 

for railroad trains. Thus, when there is a fixed overhead span, only 
part, of the land traffic is inconvenienced by the passage of the boats 
through the bridge. In the case of a lifting deck and a lifting span, the 
lifting span has to be raised only for the passage of the larger vessels 
and tfahs the land traffic on the upper deck is comparatively rarely 
interrupted. 



Sec. 2-4] VERTICAL LIFT BRIDGES 163 

Vertical lift bridges of the bascule type are usually more expensive 
than those just discussed though they have the advantages ctf requiring 
no cables and sheaves and they may be readily applied to existing bridges 
with immovable spans whenever it is found advisable to change one of 
these spans into a lift bridge. 

4. Description of a Few Vertical Lift Bridges.—Following are some 
brief descriptions of a few of the vertical lift bridges of different types 
which have been constructed. Except as noted, all of these bridges 
were designed by the Waddell Company. 

South Halstead Street Bridge/ Chicago (Figs. 1 and 2).—This was the 
first vertical lift bridge of any size and importance to be constructed in this 
country. The span was 130 ft., with a vertical lift of 140 ft. The bridge 
had a clearance of 15 ft. in its lowered position. The weight of the lifted 
load was about 600,000 lb. Each tower 
was 217 ft. high and had four 12-ft. 
sheaves at the top turning on 12-in. 
axles. The counterweights .were com¬ 
posed of cast iron blocks and were held 
by thirty-two lj^-in. steel cables, eight 
of which were fastened at each comer of 
the truss. The original counterweight 
cables were in use 28 years and were 
replaced in 1922 at a cost of $22,500. 
Wrought iron chains were used to 
counterbalance the cables. There were 
eight up-haul and eight down-haul 
operating cables % in. in diameter. These cables were changed three 
times during the life of the bridge. Pneumatic cylinders were used to 
stop the bridge in both the open and closed positions so as to check any 
sudden jar. Movable cast iron weights were used to take care of the wet 
and dry conditions of the bridge. The original power plant consisted 
of two 70-h.p. steam engines which were replaced by electric motors in 
1907. There was also an operating device that was worked by hand 
power whenever necessary. 

The Hawthorne Avenue Lift Bridge over the Willamette River at Port¬ 
land, Ore, (Figs. 3 and 4).—This was the third important lift bridge to be 
constructed. The foundations for each of the piers for the lift span con¬ 
sist of two concrete cylinders 11 ft. in diameter tapered to 14 ft. with a rein¬ 
forced concrete diaphragm, and cantilevers for the tower reinforcement. 
The piers are supported by concrete-filled timber caissons which rest on 
timber piling, The lift span is a through riveted camelback truss span 
with an operator and machinery house. This span has a length of 244 ft. 
3}i in. and carries a 20-ft. central roadway, two lQ-ft. outside roadways 
with 7-ft. sidewalks, and two street car tracks which are located on the 
outside roadways, 

* Replaced by bascule in 1932. 

Fig. 2.—South Halstead Street lift 
bridge, Chicago, Ill. 
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The weight to be lifted is about 1,800,000 lb. The lift machinery 
is quite compact and is located on the central part of the lift span. The 
power for operation is supplied by two electric motors. The fourteen 
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Fig. 4.—Hawthorn© Avenue bridge over the Willamette River at Portland, Oregon. 
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Fig. 5.—Fratt Bridge over the Missouri River at Kansas City, Mo. 

Fto. 6.—0-W. R. R. & N. Co.’a lift bridge over the Willamette River at Portland, Oregon. 

lifting Cables are %,-in. wire cables which pass over 8-ft. cast steel sheaves. 
with 12}4-in. axles. The counterweights are of concrete. This bridge 
was erected in 1911 at a cost of $511,216. 
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The Fratt Bridge over the Missouri River at Kansas City} Mo. (Fig. 5) 
has a lifting deck which raises into a fixed overhead span. This bridge 
is the only large lift bridge of this particular type in the country. There 
are two decks on this bridge, the upper deck carrying two street car tracks, 
roadways and sidewalks, and the lower deck two railroad tracks. Only 
the lower deck is raised. The length of the lift span is 425 ft., the weight 
to be lifted is 1,560,000 lb., and the height to be raised is 43 ft., giving a 
clearance of 55 ft. above high water. The lifting deck and vertical 
hangers are constructed of nickel steel to reduce weight. When the deck 
is raised, the vertical hangers telescope into the truss posts above. The 
raising is accomplished by means of cables, two of which are attached to 

each hanger. These cables pass from the hangers over sheaves in the top 
of the truss and then over a drum and down to a counterweight. Each 
hanger has a separate counterweight. Operating power is supplied by two 
sets of electrical machinery, either motor being large enough to operate 
the bridge. When the deck is in its lower position, it is automatically 
locked and the stress is transmitted directly to the truss posts above by 
means of pins in the end of each hanger. 

Oregon-Washington Railroad and Navigation Company’s Bridge Over 
the Willamette River at Portland, Ore. (Figs. 6, 7 and 8).—This bridge 
is of especial interest because of a lifting lower deck and a lifting span. 
The lower deck, which carries railway traffic, can be raised to the lifting 
span to permit the passage of tugs, lighters, and small vessels, while the 
lifting span (with the raised lifting deck) can be raised to permit the 
passage of ocean going ships. The bridge was completed in 1912 at a cost 
of about $1,700,000. 
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The lift span of the bridge is 211 ft. long, and the lift of the lower deck 
alone is 46 ft. while the lift of the upper deck is 89 ft. giving ample clear¬ 
ance for the largest ocean going ships. The lower deck has a clearance of 
26 ft. above low water and 5 ft. above high water. The lower deck has 
its own set of counterweights, and it weighs, with its attachments, about 
1,060,000 lb. The upper deck weighs about 3,420,000 lb., exclusive of 
counterweights. Thus the total moving load is about 9,000,0001b., includ¬ 
ing counterweights, making this lift bridge one of the heaviest yet built. 

The upper deck is suspended by 2J4-in. cables at each corner. These 
cables pass over the main sheaves (14 ft. diameter and 24 tons weight) 
fastened near the top of towers about 245 ft. above the top of the piers. 
This deck is raised and lowered by up haul and down haul cables. The 
lower deck has four lJ4-in. counterweight cables for each panel point. 
This deck is moved by traction sheaves at the corners of the lift span. 

About 20,000 openings a year 
are made with the lower deck 
and only about 1,000 openings 
with the upper deck. 

There are four 200-h.p. 
motors used for operating this 
bridge, two for the lower deck 
and two for the upper deck. 
These motors are placed with 

Fig. 9.—City Waterway Bridge at Tacoma, the other Operating machinery 
Washington. . , . . , , ,, 

m a house constructed at the 
center of the top of the upper lift deck. The operator’s house is placed 
just below the machinery house so that the operator can have a full view 
of the highway traffic on the upper deck as well as the water traffic. 
The automatic locking apparatus for both lifting decks is placed in the 
operator’s house. 

City Waterway Bridge at Tacoma} Wash. (Fig. 9). —This lift bridge has 
two unusual features, the height of the bridge floor above the water 
and the overhead span between the tops of the towers for carrying a 
water main. The 214-ft. lift span has two flanking trusses, each 190 ft. 
long, and 650 ft. of steel trestle. The height to be lifted is 78 ft. and the 
lifted weight is 1,640,000 lb. The bridge was constructed for highway 
traffic and has a 50-ft. roadway paved with wood block, and two 10-ft. 
walks. The bridge was completed in 1913 at a cost of $480,000. 

Pennsylvania Railroad Bridge 458 over the South Branch of the Chicago 
River (Figs. 10 and 11).—This Waddell and Harrington double track 
railway lift bridge is built oh a skew and has a span of 273ft. and a vertical 
lift of 114 ft. Each tower is composed of four vertical columns with sheives 
of 15-ft. pitch diameter over each column. The counterweight cableiare 
sixteen 2^-in. plow steel ropes connected to the top chords at each odd of 
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each truss and by equalizing devices to the counterweights. The operating 
cables consist of two lj^-in. up haul and two 13^-in. down haul cables at 
each end of each truss. 

The weight of the lift span, being a little more than 3,000,000 lb., 
makes this bridge one of the heaviest lift bridges constructed. 

The power plant consists of two motors geared to four cast steel 
operating drums, and will lift the span to its maximum height from its 
normal position in 45 sec. Either motor alone is powerful enough to 
operate the lifting machinery. A 50-h.p. gasoline engine has, been 
installed for emergency service. It requires about 10 min. for this engine 
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to raise the lift span. Both solenoid and hand brakes are provided. 
All operating levers and switches are placed in the operator’s house as 
well as a mechanical indicator showing the position of the lift span. 
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Fig. 12.—Canadian Northern Pacific Railroad Company’s bridge over the North Thompson 
River in British Columbia. 

The bridge was designed for a track elevation of 24 ft. in the future. 
A vertical lift railway bridge of one span is more easily adapted to future 
changes in track levels than is any other type of movable bridge. 
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Fig. 13.—St. John & Quebec Railroad Company’s bridge over the Oromocto River in New 
Brunswick, Canada. 

The Canadian Northern Pacific Railway Bridge over the North Thomp¬ 
son River in British Columbia (Fig. 12).—This railway plate girder lift 
bridge is unique in that the lift towers can be moved so as to raise any 

Fig. 14.—Vladicaucaee Railroad Company’s bridge over the Don River near Rostoff, 
Russia. 

one of the spans which are all made exactly alike. The reason for this 
construction is to take care of a possible shifting of the channel of the river. 
The lift span has a length of 90 ft., a weight of 236,000 lb., and a vertical 
rise of 56 ft. 
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St. John and Quebec Railway Bridge over the Oromocto River in New 
Brunswick, Can. (Fig. 13).—This type of vertical lift bridge is different 
from the ones previously described in that each tower is composed of only 
two columns. There are two light trusses between the tpps of the towers. 
The length of the lift span is 58 ft., the weight 147,000 lb., and the vertical 
lift 59 ft. Hand power is used for this bridge. 

Don River Bridge at Rostoff, Russia (Fig. 14).—This lift bridge is quite 
different from the vertical lift bridges of this country, especially in the 
treatment of the flanking spans and the curved rear columns of the lift 
towers. The lift span, towers, and machinery were designed by Doctor 
Waddell while the adjacent spans were designed by Russian government 
engineers. The lift span has a length of 210 ft., a weight of 1,600,000 
lb., and a vertical rise of 131 ft. 

6. General Design Notes.—The following notes are on the general 
design of vertical lift bridges and include information on the particulars 
in which vertical lift bridges differ from ordinary bridges with fixed spans. 
If more detailed information is desired, the treatise on “ Bridge Engineer- 
ing” by Doctor Waddell and the various articles in the technical press 
should be consulted. 

The Truss of the Lift Span.—In general the lift span truss is designed 
in the same way as the ordinary fixed span truss with the exception that 
suitable seating devices must be provided at the ends of the lift span 
and means devised for the fastening of the various cables attached to 
the span. Provision must also be made for the placing of the necessary 
machinery, machinery house, and operator’s house on the lift span. 

Towers.—For long spans and high lifts, each tower should be com¬ 
posed of two vertical front and two inclined rear columns well braced 
in both directions. Provision must be made for fastening the sheaves 
on the vertical columns by suitable sub posts or by a sheave girder. In 
this type of tower the counterweights move up and down inside the 
tower. f 

For short spans and low lifts, where the lift span is usually a plate 
girder, the towers should each be constructed of two vertical columns with 
sway bracing between them. The tops of the columns of the two towers 
should be connected by light trusses to assist in keeping the towers 
vertical and to hold them the correct distance apart. Sheaves are placed 
on top of the columns and the counterweights move up and down outside 
of the columns. 

When the lift span is built on a skew and the towers are supported 
independently on masonry foundations, it is desirable to construct each 
tower of four vertical posts well braced in both directions. Horizontal 
bracing should be provided near the tops of the towers. The sheaves 
should be placed on* all four columns of each tower and the cotmter- 
weights at the rear of the towers. 
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Towers should be cambered so that they will be vertical under dead 
load only (there should be no live load on the lift span when it is raised 
and lowered). No camber is necessary for towers having two or four 
vertical columns resting on masonry and having a sheave on the top of 
each column. When the tower is composed of two vertical and two 
inclined columns, with the vertical front columns resting on a pier and the 
inclined rear columns resting on a supporting truss, the tower should be 
cambered so that the vertical columns are really vertical when the lift 
span is being raised and lowered. In this type of tower the sheaves are 
usually placed directly over the vertical columns, hence these columns 
carry practically all of the load. 

Guides and Centering Blocks.—Guides should be attached at the eight 
corners of the lift span so as to keep it in line while being raised and 
lowered. Roller guides that fit with sufficient clearances in vertical 
tracks on the tower are the preferable type. The guides should be 
designed for wind loads on the span and also for train thrust (in case of a 
railway bridge) and any other loads that may be applied to them. 

Centering blocks should be attached to the four lower corners of the 
lift span to hold this span in place when it is in its lowered position. 
These blocks should engage blocks attached to the base of the towers. 
Some longitudinal movement must be provided for at one end of 
the span. 

Counterweights.—Counterweights for vertical lift bridges should be 
made of concrete cast on a steel framework. This framework should 
be strong enough to carry the concrete when attached to the lifting 
cables. Cast iron blocks may be used when sufficient space for the con¬ 
crete is not available. 

Counterweights should weigh about 5 per cent less than the weights 
to be balanced. Movable weights equaling in all to about 10 per cent of 
the balanced weights should be provided so that the proper balance may 
be obtained between the lifted weights and the counterweights. These 
movable weights should not weigh more than 200 lb. each and they should 
be provided with eye- or U-bolts for handling. Safe places should 
be provided for these movable weights in the top of the counterweight 
framework. The space provided must be such that none of the movable 
weights will project above the top of the counterweight framework. 

* The inside face of the counterweight should be provided with guides 
which engage tracks on the tower. Ample clearances should be provided 
so that the counterweight will not bind or stick. Clearances of 2 in. or 
more should be provided between the tower steelwork and counter¬ 
weights. If a counterweight is composed of two or more parts, about 
2-in. clearance should* be allowed for between the parts. When the 
counterweight is in its lowest position, it should be not less than 3 ft, 
above the bridge floor, 
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Counterweight Cables and Balancing Chains.—The counterweight 
cables for vertical lift spans should preferably be of plow steel and 
consist of six strands of 19 wires each, constructed around a hemp center. 
The sockets may be open or closed, but should be of standard design. 

When the span is being raised, the lifting and counterweight cables 
will cause an unbalanced condition between the span and the counter¬ 
weights. This condition may be met by adding extra motive power or 
by adding balancing chains. If balancing chains are used, suitable 
buckets must be provided for catching the chains as the span lifts. 

Equalizers.—Equalizers of suitable design should be provided between 
the counterweights and counterweight cables. The other ends of the 
counterweight cables should be attached directly to the lift span. 

Sheaves.—The pitch diameter of the sheaves should be equal to at 
least 60 times the diameter of the cable. Clearances of at least ^ 
in. should be allowed between cables on sheaves, and sheaves 
should be grooved to fit the cables. Sheaves up to about 14-ft. pitch 
diameter may be made of cast steel, but larger ones should be built up 
of structural steel with cast steel rims and hubs. Each sheave should 
be fastened to its shaft by at least three keys. Sheaves at the top of the 
towers should be protected from the weather by hoods or housings, 
especially in climates where there is snow and sleet. The sheave shafts 
should be designed for bending, bearing, and shear stresses. The bear¬ 
ings should be large, properly aligned, well oiled, and not placed too far 
apart. 

Buffers.—Buffers, either of the hydraulic or air types, should be 
provided for assisting in the stopping of vertical lift spans. Suitable 
buffers permit of the stopping of the span without any jar. 

Locking Apparatus.—A suitable locking device should be used for the 
lift span to securely lock it in position before traffic is admitted to the 
span. The locking device must be arranged so that it can be applied or 
released by the operator when he is at his station. Rail locks should 
be used for railway and street car tracks. 

Gates.—Strong and substantial gates must be provided to protect the 
highway traffic while the lift span is raised. These gates should be in 
position before the lift span is raised and remain in position until the lift 
span is lowered and locked in place. * For satisfactory operation, four 
gates are usually needed. The gates should be closed and opened either 
by the bridge operator or by special gate tenders. When gate tenders 
are used, small neat houses should be provided for them near each end 
of- the Kft span. Just before the gates are closed, a warning signal should 
be given for the benefit of the traffic. 

Cantilever Walks and Roadways.—When wide sidewalks are cantilev¬ 
ered outside of the trusses of the lift span, the possible effects of live 
loads on one walk only must be carefully considered* especially in regard 
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to unbalanced loading and overturning moment. Proper end bearings 
must be provided when necessary. When a roadway or a street car 
track is cantilevered outside of the main trusses, provision must be made 
for the overturning moment caused. 

Machinery House.—The machinery for a vertical lift "span is usually 
placed in a machinery house on top of the center of the lift span. This 
house should be well built with ample space for the machinery, work 
bench, and stove. In very large and heavy bridges, the placing of a 
5-ton crane in the machinery house is advisable. Suitable stairs and 
walks should be provided to gain access to the machinery house and the 
machinery. 

In deck girder spans, the machinery may be placed below the bridge 
floor and between the girders, while in a half through plate girder span 
the machinery may be placed below the bridge floor or outside of the 
girders. 

Operator's House."-When the operator does not stay in the machinery 
house, he should have a small house provided for him in a place where he 
can have an unobstructed view in all directions of the water and bridge 
traffic. The operator's house must be large enough for the operator, 
operating machinery, and heater, and it should have a large amount of 
window space. A good stairway should be provided. 

Bridge Gage.—At one of the towers and on both the upstream and 
downstream sides, gages or indicators with large figures should be pro¬ 
vided for the convenience of the boats showing the height of the water 
and also the height that the lift span is raised. 

Operating Machinery in General.—In general the operating machinery 
should be compactly arranged and have no more reductions than neces¬ 
sary. When four drums are used, one reduction should be placed at the 
drums. The machinery should be arranged so as to permit of easy access 
for oiling, inspection, repairs, and replacement. 

Power Required for Vertical Lift Spans.—In general the power required 
for raising and lowering vertical lift spans is approximately 1 h.p. for 
every 15 or 20 tons of moving load. This load includes the weight of 
lift span, counterweights, and all moving parts. While improvements 
in the design and arrangement of the machinery may lessen the power 
required for an operation under average or good conditions, yet there 
must be a reserve of power available for times when operating conditions 
are not so good. Wind, snow, and sleet all tend to increase the power 
required. 

The power required for a vertical lift span may be computed from 
the known data of the span. In general, the power must be sufficient 
to accelerate the span and overcome the following resistances: Friction 
between guides and tracks; friction in gears, drums, and sheaves; the 
bending of cables off and on sheaves and drums; inertia of moving parts > 
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of machinery; extra loads caused by winds; extra loads caused by snow 
and sleet; and the other unbalanced loads on the lift span. 

The force required for accelerating the lift span may be computed 
Wa 

from the equation Fi = ^ 2 w^ere — force required in pounds, W = 

total weight of all moving loads in pounds, a = acceleration in feet per 
second per second, and 32.2 is the acceleration of gravity. The time 
required for raising or lowering a lift span usually varies from 30 to 90 
sec., and the time that the span is accelerated usually varies from 10 to 20 
sec. The time for retardation usually requires from 10 to 15 sec. Then, 
the raising or lowering of the span would be divided into three periods: 
A period of acceleration; a period of uniform or constant speed of travel; 
and a period of retardation. Assuming that the average speed during 
the periods of acceleration and retardation is half that during the period 
of uniform speed of travel, the uniform speed of travel can be easily 
computed. Then the average acceleration in feet per second can be 
computed and the force F1 determined. 

Friction between girders and tracks should be taken as about 15 
per cent of the normal wind load. For ordinary operations, a normal 
wind load of 2 lb. per sq. ft. on the vertical projection may be assumed, 
though the span should be able to operate (but more slowly) under a 
wind load of 25 lb. per sq. ft. 

The efficiencies of different kinds of gears vary considerably, and the 
following values are only approximate. Adverse conditions will reduce 
these efficiencies greatly. 

Efficiency of Gears (one pair) 

Spur gears (well designed). 90 to 95 per cent 
Bevel gears (well designed). 75 to 90 per cent 
Worm gearing. 50 to 65 per cent 

The force required to bend the cables on and off of the sheaves and 
drums will vary considerably, say from 5 to 15 per cent according to 
conditions. 

Journal friction at the surface of the shaft may vary from 4 to 15 per 
cent of the applied load. This force must be reduced to an equivalent 
force at rim of sheave or surface of drum. Usually journal friction, as 
such, is included in the gear efficiencies and the sheave and drum 
resistances so that separate computations for this are not required. 

The force required to overcome all unbalanced loads should also be 
included. The counterweight cables are always unbalanced (except 
when the span is raised half way) unless balancing chains Are provided. 
Snow causes an unbalanced load if extra weights are not added to the 
counterweights to counteract it. The unbalanced load should be n^uch 
less than 5 per cent of the weight of the lift spin. 
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Power Equipment.—The power equipment required depends on the 
size and weight of the lift span. Unless the span is very light and the 
lift comparatively low, mechanical power equipment is advisable. But 
whatever the kind of mechanical power selected, some method of hand 
power must also be installed so that the lift span can be operated (though 
slowly) in event of emergencies. 

In the selection of mechanical power, the electric motor is given the 
first place, the internal combustion motor second, and steam power 
third. The electric motor is especially suitable for lift bridge operation 
as it provides a large starting torque and is capable of carrying a 100 
per cent overload on occasion. When two or more electric motors are 
used, it is customary to select them of such a capacity that half .of them 
have power to operate the bridge in case the other half are out of com¬ 
mission. Storage batteries arc sometimes rather unsatisfactory and 
expensive, hence their yse should be avoided. 

Internal combustion motors are satisfactory if they are of a capacity 
to carry at least 125 per cent of the load. This type of motor usually 
will not carry much, if any, overload. For large bridges, where hand 
operation for emergencies is not practical, the internal combustion motor 
is a good alternate for the electric motor. 

Steam power is satisfactory as far as handling the load is concerned, 
but is very expensive to maintain in ready operating condition as the 
steam pressure must be kept .up at all times. This type of power requires 
a boiler and steam engine and needs more attendants to operate it than 
in the case of electric or internal combustion motors. For a lift bridge 
that is operated only a comparatively few times, the steam power 
is very expensive. There is a further objection to the coal smoke from 
the fires. 

For hand power equipment it may be assumed that a man will exert 
a force of 35 to 40 lb. on a lever with a speed of 150 to 160 ft. per min., 
thus giving from to H h.p. For starting the machinery a man can 
exert a force of about 100 lb. A suitable platform, windlass and levers 
must be provided for hand operation on large bridges, while a small 
windlass and cranks are satisfactory for small, light lift spans. 

Efficient, easily operated hand brakes of simple design should be 
provided so that the bridge can be readily stopped and held in any posi¬ 
tion within 10 or 15 sec. after the power is shut off. Brakes of the band 
type are generally satisfactory. Electric brakes of the solenoid type are 
suitable for the electric motors, and these should be installed in addition 
to the hand brakes. It is preferable to have two sets of brakes in most 
instances. 

Machinery Equipment.—In general, all of the machinery equipment 
should be simple in design; solid in construction; easy to inspect, oil, 
clean, and adjust; and easy to remove for repairs and renewals. Shafts, 
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bearings, etc., should keep in their proper position and alignment after 
being installed. Bearings should be designed and constructed so that 
they may be tightened occasionally to take up wear. 

Operating Cables.—The cables used to raise and lower the lift span 
should be of plow steel and be composed of six strands of 19 wires each 
constructed on a hemp center. These cables should never be less than 
% in. in diameter. Preferably two cables for raising and two cables 
for lowering should be used at each corner of the lift span, unless the 
force required to move the span is so small that only one cable is required. 
These cables should be securely attached to drums in the machinery 
house at the center of the span and should pass from the drums over 
deflecting sheaves at the ends of the span and thence to the top and 
bottom of the towers. Some method must be provided for taking up the 
slack in the cables. 

Whenever it is necessary to support the cables between the drums 
and deflecting sheaves, good rollers of not less than 6 in. in diameter 
should be used so that they will easily revolve and keep the cables frpm 
wearing. 

Operating Drums.—For small lift spans two drums are required at 
the center of the span, one for the cables on each side. For larger 
spans, four drums are advisable. All drums should be grooved so that 
they may receive the cables from both ends of the span. The diameter 
of the drums should be about 40 times that of the operating cables, and 
they should be grooved so that there will be at least 3^6 in. clearance 
between the cables wound on the drum. The number of grooves on each 
drum should be such that there will never be less than one and one-half 
or two complete turns of any cable left on the drum. 

Deflection Sheaves.—The deflection sheaves for the operating cables 
should be of the same diameter as the drums and properly grooved for 
the cables. If there are two cables, the clearance between cables should 
be at least 34 in. A small idler sheave should be placed below each deflec¬ 
tion sheave and toward the center of the span to prevent the up haul cable 
from leaving the deflection sheave when it is a little slack. 

Gears.—All gears should have involute machine cut teeth and the 
face width of the gear should be about two and one-half times the 
circular pitch. The use of bevel gears should be avoided. Worm gears 
may be used, provided that the gear shall have 30 or more teeth and that 
both worm and gear are made to run in oil. Worm gears are less efficient 
than spur gears. 

Pinions.—Pinions should not have less than 17 teeth and the ratio 
of reduction of the gear to the pinion should not be less than four. 

Searings and Bushings.^-Single bearing frames should be used for 
all shafts in a unit wherever possible. Bearings should be placed close 
to the points of loading to eliminate bending in the shafts, and they 
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should permit any gear to be removed without moving other gears. All 
bearings should be of the split type and provided with necessary shims. 
Four bolts should be used to bolt caps to bases except in the case of 
small bearings where two bolts are sufficient. 

Bronze bushings one-twelfth of the thickness of the shaft should be 
properly grooved so that the shafts may be lubricated by screw feed 
grease cups. 

6. Recent Vertical Lift Spans.—Although in general the principles of 
design outlined in the previous articles are applicable to lift spans recently 
constructed, several new ones employ a method of operation which is 
quite different from that used prior to 1935. By the use of synchronous 
motors coupled to. the same shaft as the drive motors it is possible to 
place the operatipg machinery on houscd-in decks at or near the tower 
tops. This arrangement also permits applying the power through suit¬ 
able gear trains to the counterweight sheaves, thus eliminating the 
operating cables common to earlier designs. 

Buzzard's Bay Bridge otm Cape Cod Canal} Massachusetts (Fig. 15).— 
This bridge, constructed in 1935, has several unusual features besides 
the synchronous tower drives. It has the longest lift span of any bridge 

Fig. 15.—Buzzard’s Bay Bridge over Cape Cod Canal, Massachusetts. (Courtesy of 
Engineering-New 8-Record.) 

constructed, 544 ft. c. to c. of end bearings. In the open position it 
provides a clearance of 139 ft. above mean sea level and a clear width of 
500 ft. between fenders. It carries a single track railroad over the canal. 
As the daily railroad movements are few and there is considerable 
navigation on the canal, the towers were go designed that the lift span is 
maintained in the open position except for train movements. Each tower 
has four vertical columns, braced in both directions and framed into the 
flanking spans. There is a housed-in deck at each tower top, that sup¬ 
ports the machinery and counterweight sheaves. On each deck there 
are four 15-ft. counterweight sheaves geared directly through suitable 
gear trains to the operating motors (Fig. 16). Each sheave carries ten 
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2^-in. steel wire ropes. Sufficient friction is developed between these 
ropes and the sheaves to provide the coupling medium which permits the 
operation of the lift span, without the use of operating cables common to 
previous designs. 

Each operating unit is driven by two 150-hp. motors connected to 
the same shaft. One of these motors is synchronous and both of the 
synchronous motors are tied in to each other electrically so that the 

Sheave €tnct Bearing Operating A4achf'nery 

Fig. 16.—Driving machinery, Buzzard’s Bay Bridge. (Courtesy of Engineering-News- 
Record.) 

operating units are kept in step; thus, the lift span is maintained in a level 
position when being raised or lowered. In the event that the span should 
get out of level, manually operated controls are provided so that it may 
be brought to its proper position. Automatic devices which shut off the 
power whenever the span gets out of level by 2 ft. are also provided. 
Each operating unit is also furnished with a stand-by motor which is 
connected to a gasoline-driven generator. This arrangement permits the 
operation of the bridge whenever the main source of power is disrupted. 
The shaft on which the counterweight sheaves are mounted Is supported; 
by roller bearings of unusual size and.; capacity-' Because ^%f/fre& 
running character of this type of bearing, the operating inaehinery is 
equipped with an extensive braking system*. y:v;-v .;v 
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Although, this type of drive costs substantially more than those 
formerly used, it is estimated that it requires approximately 60 per cent 
less power. Whenever there is a considerable stand-by charge for 
electrical power, which is usually the case, the use of this type of drive 
is sound practice. It is compact and lends itself readily to architectural 
treatment. 

Triborough Bridge over Harlem Riverf New York (Fig. 17).—This 
bridge, constructed in 1936, contains a good example of a highway lift 
span of recent design. This span is 310 ft. long and the distance between 
the main trusses is 75.5 ft. It carries two 30-ft. roadways separated by 

Fig.‘ 17.—Triborough Bridge over Harlem River, New York. (Courtesy of Engineering- 
N ews-Record.) 

an island, and also an 8.5-ft. sidewalk on the outside of each truss. The 
weight of the completed span is 2,050 tons. In the closed position 
the lift span provides a vertical clearance for navigation of 55 ft. and in 

the open position 135 ft. 
Synchronous tower drives similar to those of the Buzzard’s Bay 

Bridge are used to raise and lower the lift span. Each tower has two 
legs made up of four vertical columns braced both ways. The legs of 
a tower are connected at the top by trusses on the top chords of which is 
placed the machinery deck. On each deck are located four 15-ft. counter¬ 
weight sheaves, each carrying twelve wire ropes. It should be 
noted that the tower legs rest directly on the masonry piers and are 
entirely independent of the flanking spans. This arrangement is unusual 
and was adopted by the designers because of architectural considerations. 

Interstate Toll Bridge over Piscataqua River, Portsmouth, N. H. 
(Fi^. 18).—This bridge, opened to traffic in 1940, has two decks, the upper 

, traffic and the lower for a single track railroad. Both decks 
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of the lift span are raised and lowered simultaneously. This span is 
224 ft. long, weighs 900 tons, and in the fully raised position provides a 
vertical clearance of 125 ft. for navigation. It is raised and lowered by 
synchronous tower drives similar to those previously described. On 
each tower there are two 10-ft. counterweight sheaves, each of which carry 
sixteen 1%-in. wire ropes. 

The towers have two legs each which rest directly on the masonry 
piers and are also connected to the flanking spans for added stability. 
The design of these legs is unusual for this type of bridge. Instead 

Fig. 18.—Interstate Toll Bridge, Portsmouth, N. H. 

of braced columns, an enclosed box section was used. One leg of each 
tower is equipped with an elevator and the other with a ladder which 
provide access to the machinery at the tower tops. 

The operator's house is located near one of the tower legs at the upper 
deck level. The operator has full control over all trains approaching the 
bridge through a set of signals on the railroad. The controls of the 
operating machinery are inoperative until these signals are set against all 
trains approaching the bridge. Failure of the railroad signals to work 
properly is indicated by lights in the operator's house. The operator, 
however, has a telephone by which he can notify the local railroad signal 
office whenever this condition occurs, as all railroad signals are maintained 
by the railroad. 





SECTION 3 

SWING BRIDGES 

CENTER-BEARING SWING BRIDGES 

1. General Considerations.—When a bridge of this type is open, 
each truss is supported at the end of a cross-girder which rests on a center 
bearing C (Fig. 1). This bearing is usually a phosphor bronze disk, 
from 1 to 3 ft. in diameter, between two hardened steel disks. To prevent 
the bridge from tipping, balance wheels W about 18 in. in diameter and 
six to eight in number, are fastened to the trusses and floor system in such 
a way that they roll on a circular track t. These wheels are so adjusted 
that they carry no load, except when the bridge is out of balance on 
account of wind pressure or similar causes. 

When the bridge is closed, the ends a, b, d and e are raised a proper 

Fig. 1. 

amount by wedges. Wedges are also inserted at / and g a sufficient 
amount to give the trusses a bearing on the pier independent of the cross¬ 
girder, but no attempt is made to lift the trusses at these points in order 
to relieve the cross-girder of any of the dead load. Thus at the center 
support, the dead load is carried by the cross-girder, while the live load is 

supported directly by the pier. 
2. Conditions of Loading.—When the bridge is open, the dead load 

is balanced about the center support. When the bridge is, closed, the 
total dead load reaction at the center is relieved, as the wedges are 
driven and the ends raised. (If the ends were raised to a sufficient 
height, the bridge would be lifted free of the center support, and the 
reaction which formerly supported the bridge would be transferred from 
the center to th§ ends.) The mechanical parts of the bridge are usually 
designed in such a way that the end wedges, when fully driven, will 
provide a positive dead load reaction somewhat greater than the negative 
live load and impact reaction. This insures the bridge against hammer-* 

; ISO 
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ing of onaend when the train comes on at the other end. By this arrange¬ 
ment, the dead load end reactions are less than those obtained 
theoretically when the truss is considered as a continuous beam over 
three level supports. The cost of installation and operation is thereby 
reduced. 

If hammering is eliminated and the ends remain fixed in elevation, 
the live load reactions may be computed on the basis of complete con- 

Fig. 2. 

tinuity of each truss. If, however, on account of error in design or 
adjustment of the wedges, or because of settlement of the piers, it happens 
that no dead load end reaction is present, we have the condition as 
illustrated in Fig. 2. Let us assume, for example, that a very small 
clearance exists between the beam and its end supports. The total 
weight of the beam is supported at C, as is the case when the bridge is 
open. When the live load comes on the arm BC (Fig. 3), the beam tilts 
until it finds a bearing at B; and the live load is supported by BC acting 

Fig. 3. 

as a simple span. However, the dead load or weight of the beam is still 
entirely supported at C. If the live load is present in both arms (Fig 
4), the beam will deflect until it has a bearing at A and B} and thus a 
condition of continuity, or partial continuity, must be considered in 
finding the live load reactions. The extent of the continuity will depend 
upon the amount of clearance which previously existed at A and B in 
Fig. 2. The dead load is still totally supported at C. In order to provide 

Fig. 4. 

for these contingencies, the following conditions or classes of loading 
should be considered. 

Case I.—Dead load—bridge open or wholly supported at the center. 
Case II.—Dead load—bridge closed, both ends raised until a definite 

end reactipn is attained (amount to be specified after negative live load 
and impact end reaction have been determined). 

Case III.—Live load on one arm only—simple span action. 
Case IF.—Live load on one arm only—continuous girder action. 
Case F.—Live load on both arms—continuous girder action. 
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If the ends are raised, we have Case II, combined with Case IV or 
Case V. If the ends are not raised, we have Case I, combined with 
Case III or Case V. 

The bottom chords are usually better protected from the rays of the 
sun than the top chords. Because of this, and also on account of cold 
weather and ice, it is apparent that the temperature of the top chord 
may be considerably higher than that of the bottom chord. Thus the 
top chord may be lengthened and the bottom chord shortened, causing 
the span to “hump” at the center, thereby relieving the center reactions 
somewhat and increasing those at the ends. 

Except in special cases the temperature factor is neglected. 
3. Stresses in a Swing Span.—The stresses for the five cases of 

loading will be computed for the 300-ft. span (Fig. 5a). The assumed 
dead load is 3,000 lb. per ft. of span, or 37,500 lb. per panel per truss. 
The end panel load is assumed at 20,000 lb. A Cooper’s E-40 will be 
taken for the live load. The impact allowance will be computed from 
the formula 

T r 300 
i + 300 

in which I « impact stress, L « live load stress, and l « loaded length 
of span causing the live load stress. 
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Table 1 

Dead load Live load Combinations 

Member 
Case 

I 

Case II 
30,000 
lb. up¬ 
lift net 

Case III Case IV Case V 

I and III II and IV 
or V 

I and 
V Left 

seg¬ 
ment 

Right 
seg¬ 
ment 

Left arm 
loaded 

Right 
arm 

Both arms 
loaded 

Left 
seg¬ 
ment 

Right 
aeg- 
mont 

Brok¬ 
en 

Con¬ 
tin¬ 
uous 

Lo-Ui + 26 -39 
-211 
-141 

-180 
-120 

+ 30 
+ 20 

-352 
+ 18 + 26 

-300 
- 39 

+ 50 
- 26 

-352 -300 + 50 -334 -339 + 24 

Ui-U, + 65 -19 
-208 
-139 

-170 
-113 

+ 38 
f 25 

-347 
+ 44 + 65 

-283 
- 19 

+ 63 
- 12 

-347 -283 + 63 -303 -302 + 51 

Ur-Ut + 254 + 87 
-208 
- 139 

-132 
- 88 

+ 76 
+ 50 

-347 
+ 169 + 254 

-220 
+ 58 

+ 126 
+ 87 

-347 -220 + 126 -178 -162 + 213 

UtrLo — 271 - 205 
-211 
-141 

-241 
- 161 

- 30 
- 20 -271 

-250 
-125 

-352 
-271 

-402 
-205 

-375 
-271 

-352 -402 - 50 -375 -623 -607 -046 

U>-lh + 569 + 319, 0 
+ 115 
+ 77 

+ 115 
+ 77 + 230 

+ 206 
+ 103 + 569 

+ 309 
+ 319 

+ 309 
+ 569 

+ 192 + 192 + 309 + 028 + 878 

Lo-L, - 17 + 25 
+ 135 
+ 90 

+ 115 
+ 77 

- 19 
- 13 

+ 225 
- 12 - 17 

+ 192 
+ 25 

- 32 
+ 16 

+225 + 192 - 32 + 213 + 217 -16 

LrLi -144 -19 
+ 235 
+ 157 

+ 178 
+ 119 

- 57 
- 38 

+ 392 
- 96 

+ 297 
- 13 

- 95 
- 19 

+ 392 4 297 - 95 -296 + 284 -114 

U-U -396 -187 
+ 135 
+ 90 

- 4 
- 3 

+ 42 
+ 34 

- 95 
- 63 -99 -396 

-158 
-187 

- 99 
-396 

+ 225 - 7 + 70 -158 -345 -495 

Ui-Lt - 75 -10 
- 11 
- 10 

+ 140 
+ 100 

- 14 
- 13 

+ 113 
+ 81 

- 30 
- 20 -44 

+240 
- 50 

- 21 
- 75 

+ 194 
- 7! 

- 50 
- 10 

- 44 
- 75 

- 21 + 240 - 27 + 194 - 50 + 190 -96 + 187 - 60 -119 

Lt-Ut + 124 +59 
+ 39 
+ 33 

- 82 
- 63 

+ 48 
+ 41 

- 61 
- 47 

+ 30 
+ 20 + 78 

+ 72 
+ 124 

-145 
+ 82 

-108 
+ 40 

+ 89 
+ 59 

+ 78 
+ 124 

+ 72 -145 + 89 -108 + 50 + 196 - 63 - 68 + 148 + 202 

Ut-Li -172 -107 
- 82 
- 63 

+ 39 
+ 33 

- 99 
- 76 

+ 27 
+ 23 

- 30 
- 20 -129 

-106 
- 53 

-145 
-172 

-175 
-107 

-159 
-172 

-145 + 72 -175 4- 50 - 60 -159 -317 -282 -331 

U-TJ% +221 + 156 
+ 140 
+ 100 

- 11 
10 

+ 165 
+ 118 

- 7 
- 5 

+ 30 
+ 20 + 195 

+ 185 
+ 98 

+ 240 
+ 221 

+283 
+ 156 

+283 
+ 221 

+240 - 21 +283 - 12 + 50 + 283 +461 + 439 + 504 

UrLi + 38 +38 
+ 76 
+ 65 

+ 76 
+ 65 

+ 141 
+ 38 

+ 141 t-141 + 179 
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Since the bridge is symmetrical about the center, the stresses will be 
computed for the left arm only. In Case III, this arm is considered 
as a span simply supported at L0 and Le. The stresses are computed in 
the ordinary way. The results expressed in 1,000-lb. units are tabulated 
in Table 1; the impact stresses appearing directly below the corresponding 
live load stresses. Thus for the member Ui-U* the live load stress is 
—208,0001b. and the impact stress is —139,0001b. For the member L^-Us, 
the live load and impact stress is +72,000 lb. when the left segment of the 
arm is loaded; and —145,000 lb. when the right segment of the arm is loaded. 

In Cases IV and V the reactions, being statically indeterminate, 
cannot be accurately computed until the truss has been designed. In 
order that a preliminary design may be made, the reactions will be 
tentatively determined by assuming that the truss functions as a beam of 
uniform cross-section, continuous over three level supports. Only the 
end reactions Ro are necessary. These are given in Table 2. By this 
process it is possible to compute the stresses and make a preliminary 
design, after which the true reactions may be determined. 

Table 2 

1 lb. at Ro 1,000 lb. at Ro 

Li +0.793 
1 

Lt -0.064 
Li +0.593 L, -0.092 
u +0.406 U -0.094 
u +0.241 L\o -0.074 
u +0.103 L\\ -0.040 

4. Positive Shear in Panel 0-1. Case IIL—The influence line abc 
for shear in the panel is shown in Fig. 56. 

If Pi « the load in panel 0-1, and P — the total load on the arm 0-6, 
the criterion for maximum positive shear in panel 0-1 is 

When the train is moving to the left, wheel 4 passing Li satisfies this 
P 

criterion since P\ is less than g- when wheel 4 is just to the right of Lx 

and is greater than g* when wheel 4 is just to the left of Lx. The maxi¬ 

mum shear in the panel is found to be +162,000 lb. The area abc is 
62.5 and the equivalent uniform load per linear foot is 

162,000 
q 62.5 

2,590 lb. 
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Case IV.—The influence line for positive shear is defghij "(Fig. 5c). 
If Pi = the load in panel 0-1, Pi = the load in panel 1-2, and P3 = 

the load in panel 2-3, etc., the criterion for maximum positive shear in 
panel 0-1 is 

■ 793Pi £ 200P2 + 187P3 + 165P4 + 138P6 + 103P« 

Try wheel 4 at L\, train moving to the left. 

Wheel 4 approaching Lx 

793 Px = (793) (50) = 39,050 200P2 = (200) (66) = 13,200 
187P3 = (187) (56) = 10,472 
165P4 = (165) (73) = 12,045 
138P6 = (138) (57) = 7,866 
103P0 = (103) (50) = 5,150 

48,733 

39,650 < 48,733 therefore th shear is increasing. 

Wheel 4 having passed L\ 

793 Pi = (793) (70) = 55,510 200P2 = (200) (59) = 11,800 
187 P3 = (187) (43) = 8,041 
165P4 = (165) (86) = 14,190 
138P6 = (138) (44) = 6,072 
103P6 = (103) (50) = 5,150 

45,253 

55,510 > 45,253, therefore the shear is decreasing. 
When the train is in flying to the left, wheel 4 at Li therefore satisfies 

the criterion for maximum positive shear in panel 0-1. 
The shear may be computed by scaling the length of the ordinate 

in the influence line for each load, and taking the sum of the products 
of each load and its ordinate. Heretofore this has been the usual method 
of procedure. It requires that the influence line be drawn quite accurately 
to scale, and that considerable care be taken in scaling the ordinates. 
The shear may also be determined by taking the sum of each floor beam 
load and its corresponding ordinate as follows: 

(75.64) (0.793) = 60.0 
(52.56) (0.593) = 31.2 
(72.80) (0.406) = 29.6 
(58.20) (0.241) = 14.0 
(48.60) (0.103) - 5.0 

139.8 * maximum positive 
shear in panel 0-1. 
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A new and much shorter method, as outlined by Chas. A. Ellis in Engi¬ 
neering News-JRecordy June 9, 1921, will now be explained. If the influ¬ 
ence line defghtj were straight from e to j, the criterion for maximum 
shear in panel 0-1 would be the same as for Case III. The difference 
between the broken line efghij and a straight line from e to j is so slight in 
this or any similar truss that the criterion for maximum shear in the panel 
will, in general, place the train in the same position or approximately the 
same position, as will the criterion for Case III. A very close approxima¬ 
tion to the shear of 139.8 lb. can be made very quickly, by assuming the 
same equivalent uniform load in both cases; or, in other words, by assum¬ 
ing that the shears in the panel for the two cases are directly proportional 
to the areas of the respective influence line diagrams. These areas are 
proportional to the sums of their respective ordinates, thus 

area abc: area defghij :: 2.5 : 2.14 

The shear in the panel for Case III was found to be 162 lb., hence the 
shear for Case IV is 

(162)(~~) = 138.3 

This is a reasonably close approximation to the actual shear of 139.8 lb. 
previously determined. 

It is now obvious that the stresses in L0Ui and L0 L2 resulting from 
positive shear, may be quickly found by multiplying the stresses for Case 

2.14 
III by the ratio This ratio for panel 0-1 remains the same for 

any bridge having six equal panels in each arm, irrespective of the length 
of the panel. The stresses for Case III are givetl in Table 1; and the live 
load stresses in Lolli and L0L2 for Case IV are as follows: 

LoUy = (-211)(|~) = -180 

LoL2 = (+135)(~) = +115 

The impact stresses for Case IV are determined in a similar manner. 
The influence line for negative shear in panel 0-1 for Case IV is jklmnop, 

and since there is at present no corresponding area for Case III we shall 
leave this question to be considered later. 

5. Positive Moment about Us. Case III.—The influence line abc 
for moment about U 3 is shown in Fig. 5d. 

Let Pi = the load on the segment 0-3, and P — the total load on the 
area 0-6, then the criterion for maximum moment about Us is 



Sec. 3-6] SWING BRIDGES 187 

Wheel 12 at La satisfies this criterion, and the maximum moment about 
Uz is 7,057 ft.-lb. Hence, the maximum live load stress in is 

7,057 
30 

= +235 

Case IV.—The influence line is defghij, Fig. 5e. If Pi = the load in 
panel 0-1, P2 = the load in panel 1-2, and P3 = the load in panel 2-3, 
etc., the criterion for the maximum moment about £73, when reduced, is 

379.Pi + 400P2 + 439P3 5 495P4 + 414P6 + 309Pz 

Upon trial it will be found that wheel 12 at Lz satisfies this criterion also. 
Multiplying each floor beam load by its corresponding ordinate 

(75.20) ( 9.475) * ' 713 
(51.02X19.475) - 1,011 
(74.52) (30.450) * 2,269 
(56.56) (18.075) - 1 022 
(48.80) ( 7.725) = 377 

5,392 = maximum moment about C/8. 

The maximum tensile stress in L2L4 is 

5,392 
'30 

= +179.7 

This value may be closely approximated from Case III as follows: The 
ratio of the sum of the ordinates in Case IV to the sum of the ordinates 
in Case III is ,* 

85.2 
112.5 

0.756 

and 

(235) (0.756) = +178 = stress in L2L4. 

6, Negative Shear in Panel 0-1. Case IV.—We are now prepared 
to consider the negative shear in panel 0-1 when the right arm 6-12 is 
loaded. The influence line is jklmnop (Fig. 5c), and the criterion devel¬ 
oped therefrom is 

64P7 + 28PS + 2P9 £ 20Pio + 34Pn + 40Pi2 

There are two positions of the train, when moving to the left, which satisfy 
this criterion, namely, wheel 11 at L2 and wheel 8 at Ls. The maximum 
negative shear, occurring when the train is in the latter position, is —22.8 
lb., as found by taking the sum of the products of each floor beam load 
and its corresponding ordinate. This value may be closely approximated 
by the proportionate method, as follows; Since the influence line jklmnop 
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(Fig. 5c) has its longest ordinate at the center of the arm, it will be com¬ 
pared with the influence line abc (Fig. 5d), which also has its longest ordin¬ 
ate at the center of the arm. The latter influence line is for the moment 
at Uz for Case III, and the moment is 7,057. The ratio of the sum of the 
ordinates jklmnop (Fig. 5c) to the sum of the ordinate abc (Fig. 5d) is 

TWiT = — 0.00324 

and 
(7,057)(—0.00324) = -22.9 = shear in panel 0-1. 

This quantity represents also the maximum negative reaction at L0 
when the right arm is loaded, from which all the stresses may be deter¬ 
mined as given in the designated column of Table 1. 

7. Shear in Panel 1-2.—The influence lines are shown in Figs. 65 and 
6c. The stresses in U1L2 for Case III, as given in Table 1, are —11 and 
+140; from which the stresses for Case IV may be found as follows: 

- -14 W(«M) 
1 ' V0.167/ 

0.693 + 0.406 + 0.241 + 0.103\ 
0.667 + 0.600 + 0.333 + 0467/. 

+113 



Sec. 3—8] SWING BRIDGES 189 

The stresses for Case IV, determined by the exact method, are —15 
and +113 respectively. 

8. Shear in Panel 2-3.—The influence lines are shown in Figs. 6d and 
6e. The stresses in L<JJ% for Case IV, determined by the proportionate 
method are 

(~82)( 

(+39)( 
0.207 + 0.407 

^0.167 + 0.333 
0.406 + 0.241 + 0.103 
0.500 + 0.333 + 0.167 

) = +48 

) = -61 

The stresses for Case IV, found by the exact method, are +48 and—60 
respectively. 

9. Shear in Panel 3-4.—The influence lines are shown in Figs. 7b and 
7c. The stresses in UJLa for Case IV, determined by "the proportionate 
method, are 

<-W& 

0.207 + 0.407 + 0.594 
167 + 0.333 + 0.500 

0.241 +0. 103 
0.333 + 0.167 

(+39)( 

) - -99 

) - +27 
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The stresses for Case IV, determined by the exact method are —101 and 
+26 respectively. 

10. Shear in Panel 4-6.—The influence lines are shown in Figs. 7d and 
7e. The stresses in LA Us for Case IV, determined by the proportionate 
method, are 

(+140)( 
0.207 + 0.407 + 0.594 + 0.759 
0.167 + 0.333 + 0.500 + 0.667 ) = +165 

The stresses for Case IV, determined by the exact method, are +167 and 
—5 respectively. 

11. Shear in Panel 5-6.—The influence lines are shown in Figs. 
8b and 8c. The stress in UsLi for Case IV, determined by the propor¬ 
tionate method is 

(-211) /'°-207 + 0.407 + 0.594 + 0,759 + 0.897\ _ ... 
v 1 VO. 167 + 0.333 + 0.500 + 0.667 + 0.833/ " /41 

The stress for Case IV, determined by the exact method is —241 
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12. Moment about L2.—The influence lines are shown in Figs. 8d 
and 8e. The stress in ZJiUz for Case IV, determined by the proportionate 
method is 

The stress for Case IV, determined by the exact method, is —172. 
13. Moment about L4.—The influence lines are shown in Figs. 96 and 9c. 

The stress in UsUsior Case IV, determined by the proportionate method is 

(-3°S>0 - -132 

The stress for Caee IV, determined by the exact method, is —134. 
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14. Moment about Ua.—The influence lines are shown in Figs. 9d and 
9e. Whenever each arm has six or more equal panels, the influence line 
for Case IV shows a reversal of stress in one or more chord members of 
the loaded arm adjacent to the center support. 

This phenomenon is explained in connection with Fig. 10a, where a 
is the distance from R\ to the point of zero bending moment, or 

aRi = P{a — kl) 

From the theorem of three moments, 

Bi = ^ (4 - 5fc + k>) 

Hence 
41 

a 5 — k2 

For any position of P, the limits of k are 0 and 1; hence, the limits of a 
are and 1. It is clear, therefore, that if any panel point experiences 
a negative moment from the influence load, the distance of that panel 
point from the center support must be less than one-fifth of the arm 
length. If the panels are of equal length, this condition can occur only 
when there are six or more panels in each arm. 

The stresses for Case IV cannot be determined by the proportionate 
method as heretofore, on account of the dissimilarity of the influence 
line diagrams. In such instances the equivalent uniform load may be 
approximated by the use of an equivalent uniform load table. For the 
right segment, Zx = 25, l2 = 61.5 and the equivalent uniform load is 
2.7; the area is 464 and the stress in L4Lc is 

(464) (2.7) 
30 

+42 

For the left segment, it will be sufficient to call h =* Z2 8=5 30, and the 
equivalent uniform load is 2.88. Hence, the stress is 

( — 38) (2.88) . 
30 

15. Moment about L8.—The influence line for Case IV is shown in 
Fig. 106. There is no corresponding influence line for Case III. Since 
the influence is symmetrical about the center, the stress in U& U&, when the 
left arm is loaded, is the same as previously determined when the right 
arm was loaded. 

16. Case V, Both Arms Loaded. Broken Loads.—By referring to 
the influence lines in Figs. 5c, 5c, 8c, and 9c, it is apparent that the stresses 
in the members there considered will be less for Case V than for Case IV, 
since any load, brought on to the right arm while the left arm is loaded, 
will decrease the stress because the influence areas on opposite sides rof 
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the center have opposite signs. In Figs. 6c, 6c, 7c, 7c, 8c, 9c and 106 the 
conditions are different, since loads on the right arm and the left segments 
of the left arm conspire, and the live load stress in any instance is the sum 
of the live stresses as given for Case IV. Consider the member C/3L4, for 
example, illustrated in Fig. 7. The live load stress is —99 when the left 
segment of the left arm is loaded, and —30 when the right arm is loaded; 
hence, if a train approaches on each arm, the maximum live load stress 
is —129, as given in the column for broken loads. No impact is added 
when broken loads are considered. Specifications are not usually clear 
on the question of broken loads. If the location of the bridge is near a 
large freight terminal, it is conceivable that trains might occasionally 
approach simultaneously from both ends of the bridge. 

Continuous Loyds.—If Figs. 6 and 7 are taken consecutively, it is 
apparent that the positive influence line area for Case IV is decreasing. 
On Fig. 7c it becomes less than the negative area for the right arm, the 
difference in areas being 2.65, Therefore the stress in UJj4 for Case V 
will be greater than fur Case IV. 

The stress may be approximated as follows: Consider that the train 
moving to the left covers the whole span. Assume that the engine covers 
the segment ab and that the stress in C/3L4, on account of the engine, is 
the same as in Case IV or —99 lb. The shear in panel 3-4, on account 
of uniform train load of 2,000 lb. per lin. ft., from b to c is ( —2.65)(2) = 
— 5.3 lb., and the stress in t/3T4 is (—5.3) (1.3) = —6.9. Hence the stress 
for Case V is —99 — 6.9 = —105.9. Similarly the stress in L4t/& is 
+ 165 + (7.6) (2) (1.3) = +184.8. 

17. Negative Shear in Panel 6-6.—There is no positive area in the 
influence line for the continuous condition of Fig. 8c. The train must be 
moving to the left if the engines are to be on the segment ab, followed by 
a uniform train load on the segment be. Since the segment ab is con¬ 
siderably longer than the length of the two engines, the shear in panel 
5-6 for Cases III and IV would be considerably less if the engines were 
moving toward the left instead of in the opposite direction. We shall 
take this difference into consideration, by computing the negative shear 
in panel 5-6 when the train is moving to the left. This occurs when wheel 
16 is at L5 and the shear (Case III) is —151.7 lb., which is considerably 
less than —162 lb. when the train is moving to the right. Taking the 
same ratio of ordinates as before, the shear for Case V is 

<-|U)(2> - 

The stress in UtLt is (—192.0)(1.3) = —249.6. 
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18. Moment about L$.—The stress in [76£/e for Case IV was found to 
be +115. one arm being loaded. When the other arm is covered with a 
uniform train load of 2,000 lb. per ft., the additional stress is +91. 
Hence, the stress for UhTJs for Case V is +206. 

19. Dead Load, Bridge Open. Case 7.—The panel loads at each 
end are 20,000 lb. and all others 37,500 lb. Each truss is balanced on 

the center support and the stresses are statically determinate. They are 
given in Table 1. 

20. Dead Load, Ends Raised. Case 77.—The maximum negative 
reaction on account of live load was found to be —22.9, to which must 
be added —15.3 per impact, or a total of —38.2. Hence, if the positive 

uplift at each end is 38.2 or greater, there will be no ham¬ 
mering of one end when the train covers the opposite 
arm of the bridge. It will be assumed that the machinery 
parts are to be designed and adjusted so that the end 
wedges, when driven, will exert an upward pressure of 
50. Since there is a dead load of 20 at the end panel 
point, the resultant or net positive end reaction is. 30, 
and the resulting stresses are given in Table 2. If the 
truss were treated as fully continuous, the end reaction 
would be 86.4 instead of 50, and a heavier and more 
expensive lifting device would be required. 

21. Combinations.—As previously explained, Case I 
is combined with either Case III or Case V; and Case II 
is combined with either Case IV or Case V. Only two- 
thirds of the dead load stress is taken when dead load 
and live load stresses have opposite signs. Many speci¬ 
fications are not clear upon the question of stress rever¬ 
sals. In treating reversals, each combination should be 
considered separately—that is, the largest positive stress 

of one combination should not be considered with the largest negative 
stress of another combination. The members have been proportioned, 
and the gross cross-sectional areas are given in Table 3. 

PI 
22. Reactions from Williot Diagram.—The quantities in Table 3, 

when divided by the modulus of elasticity Ef are the strains in the various 
uiembers when the center reaction is removed and the truss, supported 
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Table 3 

Member 
Length 
(inches) 

Area 
(square 
inches) 

A 

Stress 
(pounds) 

P 

PI 
A Ut 

Pud 
A 

Lo-Ux 469 32 5 — 0.652 - 9.40 -0.652 + 6.13 
UrU* 300 30 5 -0.833 - 8.20 -0.833 < + 6.84 
TJr-U* 300 30 5 -0.833 - 8.20 -0.833 + 6.84 
VrVt 300 30.5 -1.666 -16.40 -1.666 +27.35 
UrUt 300 30.5 -1.660 -16.40 -1.666 +27.35 
UrU* 300 68.2 -2.500 -10.99 + 2.500 +27.46 
LtrLi 300 19.8 +0.416 + 6.32 +0 426 + 2.63 
L\~Ij2 3QQ 19.8 +0.416 + 6.32 +0.426 + 2 63 
Lr-Ls 30G 26.5 + 1.250 + 14.14 + 1.250 + 17.68 
LyL 4 300 26.5 + 1.250 + 14.14 + 1 250 + 17.68 
L 4-Lb 300 44.5 | +2 083 + 14 05 +2.083 +29.25 

U-U 300 44.5 I +2.083 + 14 05 +2 083 +29.25 
UrL2 469 ! 19 S +0.652 + 15.44 +0.652 + 10.08 
LyU> 469 19.8 -0.652 -15.44 -0.652 + 10.08 
UyL 4 469 32.5 +0 652 + 9.40 +0.652 + 6.13 
L<-lh 469 44 5 -0 652 - 6 88 -0 652 + 4.49 
UyLfs 469 68.2 +0.652 + 4.48 +0.652 + 2.92 
U \~L\ 0 

UrU 0 

U yhi 0 

UyL< 0 

Ub-U 0 

UrU 0 
1 

234.79 

l UM- 

dt - 2 ~j~ - 469.58 

Table 4 

t lb. at Ro 1 lb. at Rq 

u +0.788 Lj -0.068 

u +0.581 Li -0.108 

u +0.386 Li -0 114 

Li +0.226 L jo -0 088 

Lt +0.099 Ln -0 046 

at 0 and 12, carries a load of 1 lb. at joint 6 (Fig. 11). The Williot dia- 
PI 

gram is drawn in Fig. 12 by using the quantities -j- to represent strains. 

The quantities d which are proportional to the deflections are indicated 
in Fig. Jl. The deflection at the center has been checked in Table 3, 
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where P and necessarily have the same numerical values; but it should 
be remembered that P is measured in pounds, while ue is a ratio. 

It is clear from Maxwell's Theorem that if 1 lb. at joint 6 causes the 
deflection di = 121 at joint 1, then 1 lb. at joint 1 will cause the deflection 
di = 121 at joint 6. Hence, with 1 lb. at joint 1, the reaction at joint 
6, when the truss is continuous over the three supports, is 

* Re = m = 0,258 
and from statics 

(1.0) (275) - (0.258) (150) 
Ro »--goo- - - 0.788 

The reactions at the left ehd, determined in the same manner, are given 
in Table 4. 

If the accurate reactions in Table 4 are compared with the assumed 
reactions of Table 2, it will be apparent that the differences are compara¬ 
tively small. The greatest percentage of error occurs when the load of 
1 lb. is at the center of either arm. This comparison gives a fair idea 
of what error may be expected when the truss is assumed to be a beam of 
constant moment of inertia and no recognition is made of deflection due 
to shear. 

The reactions for the preliminary design might be obtained by assum¬ 
ing that all members have the same cross-sectional area, which may be 
taken as 1 sq. in., and constructing a Williot diagram. 

The combinations of stresses for Cases I and III determine the sizes 
of nearly all members, except the end post and chord members adjacent 
to the center support. Since the stresses for these cases are statically 
determinate, they might be used in making an estimate of the sizes of 
the members, and their areas used in constructing a Williot diagram. 

The continuous girder formulas give such satisfactory results that 
a re-design is seldom necessary, except in a long span and then only 
for a few members adjacent to the center support. 

RIM-BEARING SWING BRIDGES 

23. General Considerations.—The trusses in a rim-bearing swing 
bridge are supported by a large circular girder, which rotates with the 
span. The girder rests on conical rollers, usually about 18 in. in 
diameter; and as many rollers are used as the circumferential length of 
the girder will permit, in order to give as many bearings for the girder 
as possible, and thereby minimize the deflection. The trusses may rest 
directly upon the circular girder or drum, as in Fig. 136. This arrange¬ 
ment is undesirable, because it does not give an equal distribution of 
the load to the rollers* A better arrangement is shown in Fig. 19c, where 
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the truss loads are distributed to the drum at 8 points instead of at 4, as 
in the previous case. This arrangement gives a more even bearing. 
In the diagrams here shown, the center pivot receives neither dead nor 
live load. It is better to frame the structure so that from 15 to 20 per cent 
of the load is transmitted to the center pivot through radial girders. 
In any case each truss is supported at two points over the circular pier, 
as illustrated in Fig. 13a. 

The reactions for the center-bearing bridge of the previous chapter 
were determined by assuming that the span functions as a beam of 
constant cross-section, continuous over three supports, no allowance being 
made for deflection due to shear. It was shown that the reactions thus 
computed by continuous girder 
formulas, compared very favor¬ 
ably with the true reactions deter¬ 
mined after the design had been 
made. Such is not the case when 
the continuous girder formulas 
are applied to a swing span on 
four supports. These formulas 
give a negative reaction at L7 and 
a positive at Li3 when the left 
arm is loaded. This live load 
negative reaction, when the im¬ 
pact factor is added, is in many 
instances, numerically greater 
than the dead load positive reac¬ 
tion, indicating that a live load 
over the left arm would lift the 
truss from its support at L7. 
This assumption is not justified 
either by exact analysis, made after a truss is designed, or by observed 
data taken after erection. 

24. Partial Continuity. Equal Moments at Center Supports.—It will 
be assumed that the diagonal bracing in panel 6-7 is so light that no 
appreciable shear can be transmitted through this panel. The shear 
in the panel is assumed zero under any condition of loading; hence 
r7 as for loads on the arm 0-6, and Ra = — Rq for any loads on the 
arm\6-13. For an influence load of 1 lb. 

t> /i 7 \ k ~ k* 
Ro - (1 - k) - -j-g- 

Ru 05 — 

:u cc) 

Fig. 13. 

and 
k - Jfc* 

4.8 
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The five cases of loading to be considered are the same as for a center¬ 
bearing bridge. The influence lines for shear in panel 0-1 for Cases III 
and IV are shown in Figs. 19d and 19e, respectively. If the live load 
is an E-40, the stresses for Case III will be the same as for the center¬ 
bearing bridge given in Table 1. The stresses for Cases IV and V may 
be found by the proportionate method. For example, the stress in 
L0Ui for Case III is —211, hence, the stress for Case IV is 

\/0.800 + 0.605 + 0.422 + 0.256 0. + 114\ 
A 0.833 + 0.667 + 0.5 + 0.333 + 0.167 / 

The influence lines are drawn and the stresses computed for all the 
members, in precisely the same manner as for the center-bearing bridge. 
It may be noted that in this particular problem the positive shears are 
greater, and the negative shears less, in the rim-bearing type than in 
the center-bearing type. The stresses in some members will be greater, 
and in others less than in the center-bearing bridge. If, however, an 
independent design is made for the rim-bearing type, a comparison will 
show no appreciable difference in the two designs. For this reason it is 
a common practice to disregard the center panel when the stresses are 
computed. The diagonals in the center panel are light adjustable 
members, which serve only to provide stability to the structure when 
open, and resist a longitudinal wind pressure. 

After the trusses have been designed, a sufficiently exact analysis 
of the reactions may be made by omitting the bracing in the center panel, 
removing the center supports, and drawing a Williot diagram for 1 lb. 
loads placed at L« and L7. 



SECTION 4 

CONTINUOUS BRIDGES 

Copyright, 1923, 1943, by D. B. Steinman 

DESIGN AND ERECTION OF CONTINUOUS BRIDGES 

The continuous truss is an excellent bridge type, offering decided 
advantages (under suitable conditions) over all other forms of con¬ 
struction. It is, of course, well known in its application to swing spans. 
Its general adoption for fixed spans has long been retarded by prejudices 
based on erroneous notions; but the successful execution of several 
notable examples in the last few years has served to dispel these preju¬ 
dices, and the continuous truss has become established as an important 
type in American bridge practice. 

1. Advantages of Continuous Bridges.—In comparison with simple 
spans, the continuous bridge offers the same advantages as the cantilever, 
namely: 

(1) Economy of material. 
(2) Suitability for erection of one or more spans without falsework. 

In addition, the continuous bridge is superior to the cantilever in 
(3) Rigidity under traffic, 
(4) Less abrupt stress-changes under traffic. 
(5) Elimination of expensive and troublesome hinge-details. 
(6) Less extra material or hazard in erection. 
(7) Safety of the completed structure. 

2. Economic Comparisons with Simple Spans.—The results of 
economic comparisons between continuous and simple spans will be 
materially affected by (1) the length of spans, (2) the system of web¬ 
bracing employed, and (3) the specification provision for reversal of 
stresses. 

The relative economy of the continuous type increases with the length 
of span or, in general, with the ratio of dead load to live load. It is 
wrong to draw a general conclusion against the economy of continuous 
bridges based on a comparison for small spans (as Bender did in his book 
“Continuous Bridges” in 1876). 

Furthermore, for a correct economic comparison, the most suitable 
system of web-bracing should be assumed for each respective type; a Pratt 
or Petit system may be most economical for the simple spans, but a 
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Warren system will generally yield the best results for the continuous 
truss. 

Finally, the results of the economic comparison may be upset by the 
unscientific practice of imposing a stringent reversal clause; these reversal 
clauses as applied to the proportioning of main sections are relics of 
exploded fatigue theories, and should find no place in modern specifica¬ 
tions for long-span bridges. 

3. Economy of the Continuous Type.—A proper comparison with 
corresponding simple spans will generally show a substantial saving of 
material in favor of the continuous structure. 

For the Sciotoville Bridge, consisting of two spans at 775 ft., the 
saving was found to be about 15 to 20 per cent. 

According to comparative studies reported by Waddell, the economy 
of two 775-ft. continuous spans is 12 per cent for a railway structure and 
22 per cent for a highway bridge; for railway spans of half the length 
(387.5 ft.), the saving is reduced to 7 per cent. 

According to comparative studies reported by Winkler, the saving for 
continuous bridges of two, three, and four spans is 16, 19, and 21 per cent, 
respectively, when the span-length is about 325 ft; and 20, 24 and 28 per 
cent respectively, when the span-length is about 500 ft. (character of 
loading not stated, and no provision made for secondary stresses). 

Generally, however, the economy of material is a minor consideration 
in the adoption of the continuous type, the deciding advantages being the 
convenience of cantilever erection and the increased stiffness of the 
structure. 

4. Prejudices against the Continuous Type.—A common objection 
to the continuous bridge is its static indeterminateness. With modern 
methods of design and construction, however, it is possible to know the 
exact stresses in a continuous structure for any given conditions; the 
uncertainties can be made as small as in simple spans; and the extra 
labor of the computations is trifling, in itself, as well as in comparison 
with the advantages to be derived. 

Another argument that has been frequently advanced against continu¬ 
ous construction is the possibility of change in the stresses as a result of 
settlement or compression of the piers or abutments. This argument 
would have some validity if the structure were supported on soft, yielding 
foundations. No bridge engineer, however, would consider building 
a continuous bridge on soft foundations, without provision for adjustment 
of the supports. Where rock foundations are available, the possibility 
of settlement may be omitted from consideration. Even if an appreci¬ 
able unequal settlement does occur, the effect upon the stresses will 
generally be negligible, especially in longer spans. In the case of the 
Sciotoville Bridge, according to the writer's computations, an excess 
settlement of 1 in. at the middle support would change the reaction "leas-. 
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than four-tenths of 1 per cent. The effect of possible pier settlement on 
the stresses of continuous bridges has been grossly overestimated by 
former writers on the subject. 

As a third objection, it is contended that the continuous truss is 
affected by temperature changes. The effect of expansion and contrac¬ 
tion of intermediate piers is of the same nature as that of settlement of 
the supports; the stresses producible can be easily calculated, but in the 
case of long spans resting on shallow piers they will be found insignificant 
and negligible. The effect of unequal temperature changes in different 
parts of the trusses themselves can also be safely neglected. (In the case 
of the Sciotoville Bridge, a difference of 10° F. between top and bottom 
chords would change the end-reactions by only 1.5 per cent, and the 
middle reaction by only 0.7 per cent.) Uniform temperature changes 
in all the members of a continuous truss will cause no stresses. 

5. Conditions Favorable for the Continuous Type.—The following 
conditions are xmrficularly favorable to the economy and efficiency of 
the continuous bridge in Comparison with other types: (1) Long spans; 
(2) good foundations; (3) piers of moderate height; (4) moderate truss 
depth; (5) spans approximately equal; and (6) cantilever erection. When 
the spans are long, the other requirements assume minor importance. 

6. Economic Proportions and Number of Spans.—Both the economy 
and rigidity of the continuous type increase with the number of spans, 
but the gain beyond three or four spans is insignificant. Moreover, a 
larger number of spans would create difficulty in providing for expansion 
on account of the great length between expansion joints. Another 
objection is the greater number of supports at which jacking operations 
would be required during erection for adjustment of the reactions. (In 
a two-span bridge, only one support out of three requires jacking adjust¬ 
ment; in a ^ve-span bridge, four supports out of six would require jack¬ 
ing.) For these considerations, the number of spans in a continuous 
group is preferably limited to three or four. 

In a two-span bridge, the requirements of economy as well as of 
appearance are best satisfied by making the two spans equal in length. 

In bridges of three or more spans, a symmetrical layout is also desir¬ 
able for appearance and for shop economy. 

iA three-span bridge, the economic ratio of spans is approximately 
7:8: ^jjbut considerable variations from these proportions will not mate- 
rial^kin|fect the economy. 

the ti ^ur-span bridge, the economic, ratio of spans is approximately 
® :^nsidel ^ *bese proportions may also be varied considerably without 

*%rtiom 
,.0,000 
* 

vi 

ly affecting the economy. 
any cases, the span arrangement is determined by natural condi- 
jhe crossing, or by the desire to utilize existing piers, rather than 
Jntc or esthetic considerations. 
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7. History of Continuous Bridges.—The first representative of the 
continuous bridge type was the Britannia Bridge in England, built by 
Stephenson in 1848. It is a tubular plate-girder bridge of four spans: 
230, 460, 460 and 230 ft. This was followed by several similar bridges, 
including the Torksey Bridge over the Trent (1849) with two spans of 
130 ft., and the Bryne Bridge (1855) with three spans of 141, 267 and 
141 ft. 

In the latter part of the nineteenth century, continuous truss bridges 
were extensively built on the Continent. They were usually of the lat¬ 
tice-girder type with parallel chords, continuous over three to five spans. 
The Fades Viaduct in France (1908), with three spans of 378, 472 and 
378 ft., had the longest continuous span prior to the building of the 
Sciotoville Bridge. 

The Lachine Bridge, over the St. Lawrence River near Montreal, 
built in 1888 by C. Shaler Smith, with four spans of 269, 408, 408 and 
269 ft., was the only continuous bridge in America before 1917. It was 
erected as a cantilever bridge, and then converted into a continuous truss 
for the live load. It was replaced in 1910' by a simple-span bridge. 

The Sciotoville Bridge over the Ohio River, completed in 1917 with 
two spans of 775 ft., made a new record for span-length and established 
the continuous type in American bridge practice. Other large continu¬ 
ous bridges followed in rapid succession. The Allegheny River Bridge, 
near Pittsburgh, built in 1918, has three continuous spans of 272,520, 
and 347 ft., followed by three continuous spans of 347, 350, and 272 ft. 
The Hudson Bay Railway Bridge over Nelson River at Kettle Rapids, 
also built in 1918, consists of three continuous spans of 300, 400, and 
300 ft. The C. N. O. Railway Bridge over the Ohio River at Cincinnati, 
built in 1922, has three continuous spans of 300, 300 and 516 ft. 

8. The Sciotoville Bridge.—The Ohio River Bridge of the Chesapeake 
and Ohio Northern Railway at Sciotoville, Ohio (Fig. 1), erected 1915 
to 1917, is a double track bridge with the longest continuous spans in the 
world. In consequence of a bend in the river at the crossing, traffic 
follows the river channel along the Kentucky shore at low water, and 
shifts toward the outer or Ohio shore at high water; two spans of 775 ft. 
were necessary to satisfy the navigation requirements. The bs^ rock 
bottom only a few feet below low water afforded 
tions for a continuous structure; this solution 
rigidity under railroad traffic, maximum econo 
important advantage of erection with a minimum 
out adopted (Fig. 1) yielded a symmetrical and sif 
ing an impression of strength and rigidity. 

The three piers rest on solid shale rock, with i 
pressure of 9,5 tons per sq. ft. from vertical loads 
sq. ft. with longitudinal force acting. The center 
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the coping, resists the longitudinal 
force from the entire bridge and 
carries a vertical load of 16,400 
tons. The shore piers, 12 by 57 
ft. under the coping, carry only 
vertical loads of 5,100 tons. The 
piers are made of 1 2 4 concrete, 
reinforced with 1-in. square rods 
to prevent shrinkage and tempera¬ 
ture cracks. The copings are rein¬ 
forced longitudinally with I-beams 
to distribute the load from the 
bearings. The three piers contain 
about 15,000 cu. yd. of concrete 
and 250 tons of steel i enforcement, 
and cost $165,000, or $11 pe^ cu. yd 

The stresses in the superstruc¬ 
ture were calculated by the exact 
methods outlined in the next chap¬ 
ter, based on a live load of E-60, 
impact according to Lindenthal’s 
formula, and dead load from actual 
weights calculated for each panel 
point. The average dead load is 
18,200 lb. per lin. ft. of bridge, 
which included 700 lb. for the 
weight of each track. The distribu¬ 
tion of the dead load over the spans 
is indicated in Fig. 2a. In addition, 
provision was made for a braking 
force of 60,000 lb. for each locomo¬ 
tive, or 1,000 lb. per lin. ft. for the 
whole train, a lateral force of 600 
lb. per lin. ft., a stationary wind 
load of 1,500 lb per lin. ft., and a 
moving wind load of 500 lb. per 
lin. ft. For stresses from wind + 
braking, the excess over 20 per cent 
of the total of all other stresses was 
considered. The members were pro¬ 
portioned for a basic unit stress of 
20,000 lb. per sq. in. for the total 
of D + L + I + Lat. + Excess. 
The variation in sections of the 
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main members and the resulting variation in moment of inertia of the 
truss are platted in Figs. 26 and 2c. The individual stresses and sections 
are given in a paper by Lindenthal in the Proceedings, Am. Soc. C. E., 
March, 1922, Plate V. 

(a) Distribution of Dead Load 

o t 4 e 8 >o /e w k u eo /» m m /e /o e e * to 
(C) Variation of Sections of Truss Members 

Fio. 2.—Distribution graphs for the Sciotoville Bridge. 

Ample lateral rigidity was secured by making the width between 
centers of trusses 38 ft. 9 in., or one-twentieth of the span-length, although 
a smaller width might have sufficed in view of the continuity of the lateral 
truss. The height at the middle of each span was made 103 ft. 4 in., or 
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approximately one-sixth of the length from the end pier to the point of 
contraflexure, since this length, about 80 per cent of the span, may be 
considered as a simple span. The height over the center pier was made 
129 ft. 2 in., or one-sixth of the span-length, since the maximum moment 
at that point is about the same as at the center of a simple span. The 
height at the end was made 77 ft. 6 in., or equal to a double panel, in 
order to give the end-posts an inclination of not less than 45 deg. These 
three heights, in the ratio 3:4:5, also secured a pleasing outline for the 
continuous truss. 

The Warren system adopted for the web bracing, with subdivided 
panels of 38 ft. 9 in., was found to be the most economical. 

An alternative preliminary design, with pin-connected eyebars for 
the tension members, proved slightly cheaper, but the riveted truss design 
was adopted for its superior rigidity and durability. 

All members have double webs and flange angles. The chords and 
inclined end-post^ have solid cover plates. All the open sides of the 
members have rigid latticing of angles or channels. Transverse dia¬ 
phragms, about 15 ft. apart, stiffen the members against distortion. 

The web plates of the members stop at the gusset plates and are 
spliced to them with rivets in double shear; flange angles extend over 
the gussets. The gussets and webs are 1% in. thick at the main panel 
points (334 in- at U18 and L20), and 1%q in- thick at the secondary 
panel points. The largest gusset plates used are 135 in. by 1% in. by 14 
ft. 9 in., and 140 in. by in. by 18 ft. 2 in. In the main members, 
all rivets are 1 in. diameter (except 13^-in. rivets up to 7% in. grip at 
C/18 and L20). 

The longitudinal struts, which half-length the verticals, extend over 
two panels for better appearance. After erection, the connection at one 
end was loosened so as to allow the necessary sliding. 

The lower lateral system forms with the bottom chords a two-span 
continuous truss. The upper lateral system in each span acts as a simple 
truss between the rigid portals over the piers. 

To provide for unequal deflections of the trusses under one-sided 
loading, the usual sway frames of rigid cross-bracing were replaced by 
deep lattice frames combining strength with elastic stiffness. 

The floorbeams are of exceptional design, in the form of U-shaped 
frames extending up to the struts. 4The available floor-depth was too 
shallow for an economical and stiff floorbeam of the usual type, figured 
as a simple span. As sufficient width was available, deep brackets were 
added and made continuous with the floorbeam so as to form an inverted 
two-hinged arch. This greatly reduced the bending moments in the 
horizontal portion and effected a material saving in weight, besides 
adding to the stiffness of the structure. The overhead strpt takes up 
the horizontal thrust of the inverted arch. 
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To relieve the floorbeam flanges of the high stresses producible by 
braking and other longitudinal forces, a horizontal braking truss was 
provided in every panel in the plane of the lower laterals. 

The bearings are of cast steel. The longitudinal expansion of the 
1,550-ft. truss is divided between the two end bearings (Fig. 3). The 
center bearing is fixed, and has to take up the longitudinal force from 
braking and traction (2,520,000 lb. per truss). The bearing (Fig. 4) 
consists of a pedestal built-up of three separate castings in two tiers, 
and a shoe-casting bolted to the truss. To concentrate the reactions 

Fig. 3.—End bearing, Sciotoville Bridge. 

and permit the truss to deflect freely, the lower surface of the shoe-casting 
was planed convex to a radius of 1,150 in., while the top surface of the 
pedestal was finished to a perfect plane. To prevent horizontal creeping, 
the shoe-casting is secured to the pedestal by four steel dowels, 6-in. in 
diameter. 

The greatest deflections of the ^trusses are 3 in. from full live load 
covering both spans and 4% in. (about 1:2,000 of the span-length) from 
full load covering only one span. The trusses were cambered so as to 
deflect to a straight line under dead* load plus one-half live load. 

Calculations made by the writer showed severe secondary stresses 
producible by dead load and live load, particularly over the middle 
support where the deflection diagram has a sharp upward kink. At this 
point, a bending stress of 21,400 lb. per sq. in. would be produced in the 
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bottom chord, were it not for the special method adopted to counteract 
the secondary stresses. This was accomplished by assembling and 
erecting the members to their geometric angles instead of to their cam¬ 

bered angles; so that, under the load D + the trusses assume their 

true geometric form and their members become straight and free from 
secondary stress. In other words, as a result of forcible initial bending 

Fig. 4.—Center bearing, Sciotoville Bridge. 

of the members in erection, the secondary stresses in this bridge decrease 
as live load comes on, and are fully neutralized under half live load. 

The entire continuous bridge, 1,550 ft. long, contains 13,240 tons 
of steel. If riveted simple spans had been used, the weight would have 
been between 15,000 and 16,000 tons, or 13 to 20 per cent heavier than 
the continuous design. 

* A more complete account of the bridge is given in LindenthaFs paper 
presented before the American Society of Civil Engineers, April, 1922. 
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9. Erection of the Sciotoville Bridge.—Shop assembling of the truss 
connections was required by the specifications. The trusses were assem¬ 
bled in sections, connecting the web members to each chord separately. 

Fig. 5.—Sciotoville Bridge—Erection of Ohio span on falsework 

The members were carefully leveled and laid out with a transit to the 
exact “geometric” angles, and the distances were carefully checked with 
a steel tape; all rivet holes were reamed or drilled with the members 
so assembled. 

Fig. 6.—Sciotoville Bridge—Cantilever erection of Kentucky span. 

The Ohio span was erected on falsework, as the river was shallow and 
no opening for navigation was required under that span. On account of 
the rock bottom, no piles could be driven; and, to minimize the danger of 
the falsework being carried away by sudden flood, narrow falsework 
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towers under the main panel points were used instead of closely spaced 
bents, leaving 60-ft. openings for the passage of drift and ice (Fig. 5). 

Fig. 7.— Sciotoville Bridge—Jacking apparatus for bending members at connections. 

Fig. 8.—Scioioville Bridge—Kentucky span reaching temporary bent at LS. 

On the Kentucky side, a minimum clear channel of 420 ft. was required 
for navigation; consequently cantilever erection was adopted (Fig. 8). 
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Since the erection of the entire 20 panels as a cantilever would have 
necessitated heavy additions to the truss members near the middle pier, 
it was decided to reduce the free cantilever erection to 12 panels (465 ft.) 
by placing steel bents as intermediate supports at the eighth and fourth 
panel points from the Kentucky end (Figs. 8 and 9). 

The outstanding feature of the erection of this bridge was the initial 
bending of the members for the neutralization of the final secondary 
stresses. For these bending operations and for the adjustments in 
height of the trusses at the end piers and at the temporary intermediate 
supports, elaborate preparations and special jacking devices (Fig. 7) 
were required. . * 

The general erection procedure was as follows: By means of a gantry 
traveler1 (Fig. 5), the falsework and, on it, the steel floor system and 

Fig. 9.—Sciotoville Bridge—Kentucky span resting on temporary bents at L8 and L4. 

delivery tracks were laid from the Ohio pier to the center pier. On the 
return trip toward the Ohio pier, the traveler laid the bottom chords. 
These were at once riveted while lying in a straight line, and then jacked 
to the desired camber with the Ohio end 8J4 ha. lower than its final 
position. 

The traveler was then raised to its full height and brought back to the 
center pier, whence it proceeded with the erection of the trusses toward 
the Ohio end (Fig. 5). 

In the meantime, a creeper-traveler had been assembled on top of the 
trusses over the center pier for the erection of the Kentucky span. As 
the creeper-traveler proceeded with the cantilever erection, the timber 
falsework under the completed Ohio span was gradually removed, leaving 
only the steel columns under panel points 4, 8, 12 and 16 to support the 
trusses (Fig* 6). These columns were finally released, when the Ken¬ 
tucky cantilever had reached about mid-span, by jacking the Ohio end 
of the span to its final position (using one 500-ton and four 200-ton jacks 
under each truss)* 
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When the Kentucky cantilever reached 
# the steel bent prepared at L8 (Fig. 8), it was 

jacked up 7% in. at that point, and when the 
truss reached the next bent, at L4, it was 
jacked up 1 in. at that point. When the 
Kentucky pier was reached (Fig. 9), the truss 
was jacked up 1634 in. to its final position 
on the rocker bearings, thereby releasing the 
intermediate supports. The final jacking 
force (about 1,200 tons) checked the calcu¬ 
lated reactions, insuring the correctness 
of the predetermined stresses without fur¬ 
ther adjustment. 

The erection of the steelwork (13,240 
tons) was completed in 14 months. 

The writer was special a^-sistant to Gustav 
Lindenthal, Consulting Engineer, during the 
planning and execution of this work. 

10. The Allegheny River Continuous 
Bridge.—The new Allegheny River Bridge 
for the Bessemer and Lake Erie Railroad, 
built in 1918, is a double track deck structure 
with three continuous spans of 272, 520, and 
347 ft., followed by three continuous spans 
of 347, 350 and 272 ft. (see Fig. 10). 

The necessity for cantilever erection and 
the importance of minimum weight were the 
governing conditions which fixed the choice 
on the continuous type; this solution also 
proved the cheapest. Simple spans would 
have required considerable extra material 
for erection stresses and a cantilever design, 
besides being undesirable for the short spans 
and heavy live load, was not adapted to 
the requirement of erecting from one end 
of each span. The number of spans to be 
connected in a single, continuous structure 
was limited to three, in order to avoid the * 
complication of having too many pier reac¬ 
tions to adjust; grouping three spans in each 
continuous structure, only the two end-reac¬ 
tions of a group had to be weighed off by jacks 
and gages to the predetermined amounts. 
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A special feature of the structure is a counterweight at the end of 
the south span to counteract uplift from live load on the adjoining 
span, 520 ft. long. The counterweight consists of a 350-ton block of 
concrete, molded around the end sway-frame and occupying the full width 
and height below the deck floorbeam. The necessity for this counter¬ 
weight would have been avoided if the end-span could have been made 
longer. 

Silicon steel was used for the stiff truss members (subject to reversal 
of stress), and a specially treated steel was used for the eyebars. These 
materials furnished the cheapest bridge at the prevailing prices. The 
comparative estimates were based on unit stresses of 16,000 for ordinary 
steel, 40 per cent higher stresses for silicon steel, and 27,000 lb. per sq. in. 
for the eyebars. (The eyebars showed results in full-size tests of 53,000 
to 63,000 elastic limit, and 81,000 to 90,000 ultimate strength.) 

The design of the bridge was based on Cooper's E-75 loading to pro¬ 
vide for the existing heavy ore trains with an anticipated increase for 15 
or 20 years. A first approximation to the required distribution of metal 
was obtained by emptying ordinary continuous-girder formulas based 
on constant moment of inertia. The resulting design was then analyzed, 
corrected and re-analyzed by deflection calculations. The dead load 
reactions, however, were fixed arbitrarily at an early stage of the calcula¬ 
tions, and then secured by jacking in the final erection adjustment. 

For the members which get their maximum stresses under broken load, 
the permissible working stress was increased 25 per cent as allowance for 
the improbability of occurrence of short, separated lengths of train occu¬ 
pying just the panels required. Members and connections subject to 
reversal of stress were designed for the maximum stress in each direction 
augmented by 50 per cent of the smaller. 

Severe wind loads were assumed, and the unit stresses for combined 
wind and vertical load were increased 25 per cent above those normally 
allowed. 

In order to relieve the pier masonry of braking forces, the bearings on 
all the river piers are provided with expansion rollers, the two ends of the 
bridge being fixed. At the intermediate bearings, 24-in. rockers are 
carried on a grillage resting on the pier girders, and the truss panel point 
serves as upper shoe. To this panel-point assemblage (Fig. 11), the 
four abutting truss members are pin-connected, producing the equivalent 
of a pin-bearing support and eliminating the high secondary stresses 
that would arise in a continuous chord. 

The steel weight of the bridge is about 10,150 tons, or 8,700 lb. per 
lin. ft. 

The truss diagram (Fig. 10) and the typical details (Fig. 11) are repro¬ 
duced from a description of the structure in Engineering News-Record, 
May 2f 1918* 
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11. Erection of the Allegheny River Bridge.—The two-track continu¬ 
ous bridge (Fig. 10) of the Bessemer and Lake Erie Railroad over the 
Allegheny River, built in 1918, replaced a light, single track structure of 
simple spans. 

A method of building on the existing alignment with use of the old 
piers and without interrupting traffic, was developed. The replacement 
was made as follows: The single track piers were widened on the old 
footings, which had been built of double track width originally. The 
new bridge was then erected alongside the old one, since the widened 
piers, with the help of pier girders, were long enough to accommodate 
both structures side by side. Traffic was then transferred to the new 
bridge, and the old one was dismantled. Finally, the new bridge was 
rolled over into central position on the piers. 

The erection of the new bridge was begun at the two ends, by building 
the shore spans on falsework. All the other spans were erected by 
continuous cantilever operation to closure at the middle of the 520-ft. 
span. 

In the cantilever erection, as soon as each span was landed, it was 
jacked up to correct level. From the fixed bearing at the north end to 
pier 1 (Fig. 10), the first span was erected on falsework and served as an 
anchor span; when the second span reached pier 2, it had to be jacked up 
40 in.; when the third span reached pier 3 it had to be jacked up 42 in.; 
when the fourth span, with temporary top-chord links connecting it to 
the preceding span, reached pier 4, it had to be jacked up 43 in. to permit 
removal*of the links, and was then lowered to position on the pier. In 
the meantime, the south shore span had been erected on false work 
from the south abutment to pier 5, leaving the 520-ft. span to be erected 
by cantilevering from pier 4 and pier 5 to junction at mid-span. For 
this cantilever operation, the rocker bearings on piers 4 and 5 were rendered 
fixed by bolting on temporary side-plates (after the two halves of the 
structure had been pushed forward several inches, and the rear ends had 
been lowered to tip the forward ends up). To close the span, the bottom- 
chord eyebars, which are joined at the middle, were inserted and allowed 
to hang slack; the top-chord closing section was then dropped into place 
and the anchor-ends of the arms were jacked up until the top-chord joints 
came to bearing; the rocker bearings on the main piers were then released 
by taking off the fixing plates, so that the trusses might move backward at 
these points as the jacking continued until the eyebars were put into the 
desired tension. 

Finally, the Old bridge was dismantled and the new bridge was rolled 
into central position on the piers, the two groups of three continuous spans 
being moved successively. 

12. The Nelson River Continuous Bridge.—A three-span continuous 
bridge, 1,000 ft. long, was erected in 1918 for the single track crossing 
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of the Hudson Bay Railway over the Nelson River at Kettle Rapids (Figs. 
12 and 12A). Rapid current, a deep channel, and severe ice conditions pre¬ 
cluded the use of falsework for the channel span; the rock foundations for the 
piers and abutments assured the permanence of the structural adjust¬ 
ment. These physical conditions gave the continuous structure a distinct 
superiority over other types; careful comparison with simple span and 
cantilever designs showed maximum economy for the continuous type as 
well as maximum simplicity in shopwork and in erection. Two islands 
at the point of crossing provided foundations for the intermediate piers, 
reducing the spans to 300, 400, and 300 ft. 

Parallel chord trusses were adopted to simplify the design and fabri¬ 
cation, and to facilitate speedy erection. The trusses, only 15 ft. above 
high water and ice (for economy in pier masonry), are 50 ft. deep and 
are spaced 24 ft, apart. Warren webbing was adopted because it is 
most economical for the alternating stresses and because of its simplicity 
and good appearance. A 45-deg. slope for the diagonals made the main 
panel length 100 ft., and intermediate verticals and sub-panelling reduced 
the panels to 25 ft. (see Fig. 12). 

The approach track grades brought the bridge floor near mid-height 
of the trusses; and this yielded incidental advantages in simplifying 
floorbeam connection, in improving stress distribution, and in reducing 
stringer stresses due to chord elongation. 

The bridge was designed for a live load slightly less than Cooper's 
E-50, and for a total wind load of 800 lb. per lin. ft. The basic work¬ 
ing stress was 16,000 lb. per sq. in. for tension, and 12,000 for com¬ 
pression. Provision for impact and reversal effects was made by the 
impact formula 

T = ik + °-4Z/)2 

L + D 
where L = the greater and 1/ the lesser live load stress. 

All four bearings are of the pin type, the upper and lower shoes beipg 
steel castings. One of the two pier bearings is fixed; all the other bearings 
have expansion rollers. 

Figures 12 and 12A, giving the general elevation of the bridge and 
the stress-sheet of the main span, is reproduced from a description of the 
structure in Engineering News-Record, Aug. 29,1918. 

13. Erection of the Nelson River Bridge.—The trusses of the Nelson 
River Bridge (Fig. 12) were given an arbitrary camber by lengthening 
each top-chord panel % in. The bridge had to be erected with its ends 
low to permit junction at midstream, and provision for jacking up the 
bearings was necessary for adjustment of the structure to the desired 
stress conditions. The floorbeams over the four supports were made 
strong enough to serve a# jacking girders for this purpose. 

Commencing at the south end, a 75-ton derrick car with 50-ft. boom 
erected the members of the southern anchor span on false work. After 
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this anchor span had been fully riveted, the derrick car proceeded with 
the cantilever erection of the south half of the channel span; the riveting 
followed close behind the erection. 

For the work on the north bank, the material 
was transported across the river by a double 
cableway supported directly over the bridge. 
In place of a derrick car, a top-chord traveler 
with two 62-ft. booms was used for the erection 
of the north half of the bridge. Commencing 
at floor level at the river pier, the traveler moved 
backward toward the abutment, placing the floor 
system and lower half of the trusses of the north 
anchor span. Upon arrival at the abutment, the 
traveler was blocked up to top-chord level, where 
it moved forward to erect the upper half of the 
trusses. Then it worked out along the top 
chord, erecting the channel span as a cantilever. 

When the two halves met at mid-span, they 
were found to be in perfect alignment. The*, 
south half of the structure was jacked forward 
on its rollers (it had originally been set back 
5 in.), to make the bottom chord connection. 
The end supports were then jacked up to proper 
level (they had been set 10 in. low), in order to 
close the top-chord gap (1 in.) and to put the 
full calculated dead load stress into the top 
chord. The jacking was stopped when the dead 
load reaction reached the calculated value, 
although this left the ends of the bridge 1% in. 
lower than their, intended position. 

14. The C. N. O. Bridge at Cincinnati.—The 
new bridge of the C. N. 0. and T. P. Ry. 
(Southern Ry.) over the Ohio River at Cin¬ 
cinnati, erected 1922, is a double track struc¬ 
ture of five spans, three of which are continuous. 
The continuous spans are respectively 300, 
300 and 516 ft. 3 in. The structure replaces 
an old single track bridge of simple spans, and 
rests on the old piers slightly widened to take 
the two-track superstructure. The new steel¬ 

work was built around the old. 
The trusses have parallel chords and a subdivided Warren system of 

web bracing. 0 
A novel feature was introduced in the construction of this continuous 

bridge* Instead of figuring exact theoretical values for the dead load 
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reactions, an approximate value was assumed for one of the end-reactions 
and the corresponding end of the bridge was jacked until the desired value 
was attained. 

The steel erection was completed in February, 1922, one year after 
the foundation work ‘began. 

STRESSES IN CONTINUOUS BRIDGES 

"“■'16. The Elastic Curve.—The first step in the analysis of a continuous 
bridge is the construction of the influence line for one of the unknown 
reactions. This influence line can then be used as a foundation for 
quickly drawing the influence diagrams for all the stresses in the structure. 

This reaction influence line may be constructed as the deflection 
diagram produced by a unit displacement at the point of application and 
in the direction of the desired reaction. Since this deflection polygon or 
curve is independent of the actual loading to which the structure may be 
subjected, but depends only upon the elastic relations within the struc¬ 
ture, it is appropriately named the “elastic curve.” 

The elastic curve epitomizes the elastic behavior of the structure, and 
^s the key to all stress determinations. 

Fig. 13.—Elastic curve for middle reaction. (Continuous girder of two equal spans— 
* w uniform I). 

^6. Elastic Curves for Constant 7.—For preliminary designs it is 
customary to assume a constant moment of inertia 7 throughout the 
length of the structure. 

If a beam of constant 7, continuous over two equal spans, is subjected 
to a unit displacement (by a concentrated force) at the middle support, 
the resulting deflection curve will be as in Fig. 13. 

This will be the “elastic curve ” for the middle reaction, and can be 
used as the influence line for that reaction. Thus a load P at the middle 
support will produce a reaction, B « 1*P; and 4load P at the middle of 
either span (x =* 0.51) will produce a reaction, B » l)$$P ** 0.087^. 
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The ordinates at the one-tenth points of the two spans are indicated 
in the diagram. At any point x = kl, the ordinate will be 

y ~ %k - }?ikz (1) 

The influence area between the elastic curve (Fig. 13) and its chord 
AC amounts to 1.251. Hence, a uniform load (w per lineal unit) covering 
the entire bridge will produce a middle reaction equal to 1.25 wl or five- 
eighths of the entire load; and each end-reaction will be 0.375 wl, or three- 
sixteenths of the total load. 

Each half of the elastic curve in Fig. 13 is identical with the elastic 
curve of a beam fixed at one end and simply supported at the other. 

The whole curve (Fig. 13) is identical with the curve assumed by a 
uniform beam supported at the ends A, C when deflected by a concen¬ 
trated load applied at mid-length B. Accordingly, the elastic curve 
can be obtained mechanically, without computation, by using a uniform, 
straight spline with pins for end supports; when the middle point is moved 
through a unit distance, the spline assumes the desired elastic curve and 
the ordinates can be measured. 

If the reaction points B and C are supported and the free end A is 
displaced through a unit distance, the resulting “elastic curve” (Fig. 
14) will be the influence line for the end-reaction, A. 

This influence line is more directly applicable in the analysis of the 
structure than the preceding curve, Fig. 13. 

A load P over the end A will produce a reaction, A = (1)(P). As the 
load moves across the first span, the reaction diminishes; when P is 
at mid-span, the reaction is A = 1%2?> = 0.40625P. As the load 
passes the middle support B, the reaction A reverses in sign; when P 
comes to the middle of the second span, B-C, the reaction becomes A = 
— %2P = — 0.09375P; and when the concentration reaches the end 
support C, the reaction A becomes zero again. 

The ordinates at the one-tenth points of the two spans are indicated 
in the diagram (Fig. 14). At any point, x = kl, in the firsts span, the 
ordinate will be 

y = i - y±k + y±k* (2) 
and at any point, x = kl, in the second span (x being measured from the 
free end), the ordinate will be 

y = -K(fc - fc8) ' (3) 

The elastic curve in Fig. 14 is really the same as the elastic curve in 
Fig. 13, referred to the chord B-C instead of A-C; and the ordinates for 
Fig. 14 may be obtained by measuring or figuring the intercepts between 
the curve in Fig. 13 and its chord B-C (and then dividing by 2). 

The influence area between the elastic curve (Fig. 14) and its chord 
B-C amounts to +0.4375Z - 0.0625Z * 0.375Z, or +%6Z - HqI - %l 

* S 
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Hence, when a uniform load w (per unit length) covers the first span, the 
reaction A = when it covers the second span, the reaction A = 

— and when it covers both spans, the reaction A = %wh Areas 

Fig. 14.—Elastic curve for end reaction. (Continuous girdor of two equal spans—uni¬ 
form /). 

below the elastic curve represent positive contributions to the reaction 

A, and areas above the curve represent negative contributions to the 

reaction. All areas are given exactly by Simpson’s Rule. 

The elastic curve, Fig. 14, may also be obtained mechanically by 

using a spline; when the points B and C are held against pins, and the end 

A is bent through a unit distance, the spline assumes the desired elastic 

curve and the ordinates can be measured. 

Fig. 15.—Influence diagram for bending momenta at (Bridge continuous over three 
supports). 

liT. Influence Diagram for Bending Moments.—The elastic curve 

(Fig. 14) is an influence line for the end-reaction, A. 
To obtain the influence diagram for bending moments at any point Mf 

distant a from the end of the span, simply draw a straight line joining 

A and M (Fig. 15). 
The ordinates or areas of the resulting diagram, Fig. 15, mtJst be multi¬ 

plied by a to give bending moments at M, The factor a is the influence 

constant of thin diagram. Areas below the elastic curve represent posi- 
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tive bending moments, and areas above the curve represent negative 
bending moments. , 

If the line A-M does not cross the curve A-B, the first span must be 

fully loaded for maximum positive bending moment, and the second span 

must be fully loaded for maximum negative bending moment. The 

resulting values (for a uniform load w) will be 

Max. M — wa (%6Z — a/2) (4) 

Min. M = — wa^iol) (5) 

Total M = wa(%l — ^a) (6) 

For a uniform load (w) covering both spans, there is a point of 

contraflexure (Total M ■= 0) at a - l; and a maximum bending 

moment (Total M — maximum = 0.0703 wl2) at a = %l. 
For a uniform load w covering the first span only, there is a point 

of contraflexure (M =■ 0) at a = %l; and a maximum bending moment 

(Max. M ^maximum = X2wl2 = 0.0957w/2) at a = %qL 
When a exceeds 0.8/ the line "A-M crosses the curve A-B, giving a 

load-division point. Th^ critical point, a = 0.8/, is called the “fixed 

point” of the span. 

For bending moments over the middle support B, (a = Z), the line 

A-M (Fig. 15) takes the position A-B. The influence diagram then con¬ 

sists of two negative areas each equal to /, and the bending moment 

for full loading will be, Total M = — }iwl2. 
We thus find the following values for maximum, minimum, and total 

bending moments at the one-tenth points of the span (Table 1). 

Table 1.—Bending Moments in Continuous Girder of Two Equal Spans 

(Assuming Uniform I) 

Point Max. M Mm. M Total M 

a« o 0 0 0 

a - o.i l + 0.0388 wl2 —0.0062 wl2 4 0.03PS Wl2 

o.21 -\-0.0675 til2 —0.0/2S wl2 + O.OS50 Wl2 

a ~ 0.3I + 0.0862 wl2 —0.0/88 Wl2 4-0,0675 Wl2 

a - o.41 4-009S0 wl2 — 0.0250 Wl2 40.0700 Wl2 

a » o.S l 4 00938 wl2 — 0-03/2 Wl3 + 0.0625 Wl2 

a - o.gI + 0.0825 wl2 -0.0375 Wl2 4 0.0450 wl2 

o.71 +0.06/2 Wl2 -00438 Wl2 4ao/7S wl2 

o.el 4 0.0300 Wl2 -0.0500 Wl2 — 0.0200 wl2 

a- o,sl + 0.0001 wl2 -0.0736 Wl1 -0.Q675 Wl2 

a- l 0 — 0./2S0 Wl2 — 0/250 wl2 
---^ 7 

'---' 
1 For Live Load For Do.ad Load 
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The bending moments due to uniform dead load are given by /the 

formula or tabular values for Total M. For variable dead load, it will 

be most expeditious to first determine the end-reaction A (by taking the 

algebraic sum of the product^ of the panel concentrations by the 

respective ordinates of the elastic curve, Fig. 14), and then to calculate 

the shears and bending moments in the ordinary manner. 

18. Influence Diagram for Shears.—The influence diagram for shears 

at any section S of a continuous girder, is obtained by simply drawing 

a vertical line of unit height through the corresponding point of the 

elastic curve, Fig. 16. 

Fia. 16.—Influence diagram for shears at S. (Girder continuous over three supports). 

Areas below the elastic curve represent positive shears, and areas 

above the curve represent negative shears. The constant of this influ¬ 

ence diagram is unity.. 

For maximum positive shears (Max. F), load the segment S-B; for 

maximum negative shears (Min. F), load the segments A-S and B-C. 

Table 2.—Shears in Continuous Girder of Two Equal Spans (Assuming Uni¬ 

form I) 

Point Mi'n. V Total V 

a= o + 0.4375 Wl — 00629 Wl 4 0.37SO wl 

a~ ajl + 03437 Wl -0.0087 Wl +0.27SO Wl 

a- azl 4-0.2624 wl - 0.0874 Wl + 0.17SO Wl 

a * 0.31 +0.1932 Wl —OJ/82 Wl + 0.07SOWI 

cr« 0.41 4- 0.1359 Wl -0./6O9 wl -0.02$ OWl 

a ~ asl 4 00693 Wl -0.2/48 Wl — 0.I2S0 Wl 

a* o.cl +O.OS44 Wl — 0.2794 wl -0.22SQ Wl 

a± o.7l +0.0287 Wl -0.3S37 Wl -0.32SO wl 

a- oaI + 0.0//9 Wl — 0,4369 wl - 0.4230 Wl 

Q,9l +0.0027 Wl - o.srrr wl - O.S2SO Wl 

a~ l 0 -0.6260 Wt - 0.62SO Wl 

...v. 
For the Load For Dead Loan/ 
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‘ From the influence diagram (Fig. 16), and the equation of the elastic 
curve (Eq. 2), we obtain the following values for the shears at any 
section distant a = kl from the left end of a uniform continuous girder of 
two equal spans: 

Max. V = wl (He - k + %k* - He*:4) (7) 
Min. V = - wl (He + ~ Hek*) (8) 
Total V = wl {% — k) (9) 

These formulas yield the following values for the governing shears at the 
one-tenth points of the span (Table 2): 

The shears due to uniform dead load are given by the formula or 
tabular values for Total V. 

19. Two Equal Spans with Symmetrical Loading.—For symmetrical 
loading, a continuous girder of two equal spans is undeflected over the 
middle support, and each span is in a condition identical with that of 
a beam fixed at one end and simply supported at the other. The resulting 
reactions, stresses ard deflections may be figured accordingly. 

20. Two Unequal Spans. -For a continuous girder of two unequal spans 
(l, and If = nl), the elastic curve is obtained in the same manner as Fig. 
13 or Fig. 14, namely, by considering the girder held at two of the supports 
and deflected by a concentrated force applied at the remaining support. 
The resulting curve will be identical with the elastic curve of a beam 
of span l + h deflected by a concentration at a distance l from one end. 

The ordinates of the elastic curve for the intermediate reaction B 
(corresponding to Fig. 13) will be (for any point, x = kl, in the span l) 

y = |n(l + 2n- **) (10) 

and (for any point x = kh in the span h), 

V = ~2~(1 + l ~ A'2) (11) 

Both formulas yield y = 1 over the intermediate support (k = 1). 
The elastic curve for the intermediate reaction B may also be scaled 

from simple-beam deflection graphs, such as those published by Chas. A. 
Ellis in Engineering Record, Jan. 15, 1916 (see also volume in this series 
entitled “Structural Members and Connections”)* 

The ordinates of the elastic curve for the end-reaction A (correspond¬ 
ing to Fig. 14) will be (for any point x — kl in the span Z), 

^=1-fc-2^2 (12> 

and (for any point x — kh in the span h), 

« - - ~ **> <1S) 

At the end A, (k = 0), the first of these equations yields a reaction influ¬ 
ence ordinate, y «* 1; at the intermediate support B, (k = 1), both equa- 
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tions yield a reaction influence ordinate, y = 0; and, at the end C, 
(k = 0), the second equation yields a reaction influence ordinate, y = 0. 
The elastic curve is of the same form as Fig. 14, with positive ordinates 
in the first span and negative ordinates in the second. It may also be 
obtained from the intermediate reaction curve by scaling the ordinates 

Plate I.—Two-span continuous beam (Constant I). Elastic curve for end-reaction 
(n = ratio of second span to first span). 

The equations (10 to 13, inclusive) for two unequal spans reduce to 
the simpler equations (1 to 3, inclusive) for two equal spans, by simply 
substituting n = 1. 

The ordinates of the elastic curve, for different values of n, are given 
initiate I and Table 7. 
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21. Reactions for Two Continuous Spans.—For convenience of refer¬ 
ence, the following table (Table 3) is inserted, giving the values of the 
three reactions of a two-span continuous girder for various cases of load¬ 
ing. The values expressed in Table 3 are obtained from the equations of 
the elastic curves derived above (Eqs. 1 to 3, 10 to 13). 

Table 3.—Reactions for Two Continuous Spans (Assuming I = Constant) 

Condition oRLoadirQ 

Ra Rb Rc 

| l,*nl Reactions a*kt 

Ra Rq Rc 

KS9HH mjgmmm 

iHBIBBBl 
j(4-Skik3)P $(3-* *)R QQ 
'Jt-StukV P k(J-k!JP 

Fpr . '4 
%(3-P)P tj—r 

linn.. f, k k(?-k*)\w k fj i 2-k^}u/ 

V~lrAS l'—*c 
V 2 S(nn))w Z(/+ 4n >W 

kfi 4-4k+kl\w (, k t kf4-4k+kZ\yi 
IS3Bl iv 40+"jr r ?+ sn r 

•fc (is-lok+k3)W l(G-k!)Y/ -k (Z-kl)W 
Jr~* 

k_(4+4k-k*)W £(8-4kz+k3)W -j| (4-4k+kl)W 

ism 1 Jf/ 

issssl IE1 8n(t+n) * 

1 w 
16 ■S -iw 

1,_.i M-fS+n-n*) fd-i+3") 

K3B3B.1 
\wl 

22. Moments and Shears for Two Unequal Spans.—For a continuous 
beam of two unequal spans, the moment and shear influence diagrams are 
constructed upon the elastic curve as a foundation in the same manner 
as for two equal spans (Figs. 15 and 16). 

Except for the sections near the intermediate support (between 
the “fixed point” and the support), the first span must be fully loaded 
for maximum positive bending moment, and the second span must be 
fully loaded for maximum negative bending moment. The resulting 
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values at a section distant a from the left end (for a uniform load w) 
will be, 

M“- M ~ " S<-T+n)] <14) 

Min. M - - «. • ’ (15) 

Total i!7 = wo[?-(3 + n - w2) - |] (16) 

These formulas reduce to the simpler ones, Eqs. (4) to (6), when n = 1. 
For maximum and minimum shears at any section, distant a = kl 

from the left end, the load must be placed as indicated in the shear influ¬ 
ence diagram, Fig. 16. The resulting values (for a uniform load w) 
will be: 

Max. V - (1 - *>‘[4 - (17) 

Min. V = - (6fc2 + 4nfc2 + n3 - (18) 

Total V = (3 + n — n2 - 8k)~ (19) 
O 

These formulas reduce to the simpler ones, Eqs. (7) to (9), when n — 1. 
23. Elastic Curve for Variable I.—For preliminary or approximate 

designs, it is sufficiently accurate to apply the formulas and values given 
in the preceding pages, based on the assumption of a constant moment of 
inertia. For final, exact designs, it is desirable to take into account the 
variation in moment of inertia. 

The elastic curve will differ somewhat from the elastic curve for 
constant 7. It may be constructed as follows: 

First, tabulate or plat the bending moments M produced in the beam 
ABC (supported at B and C) by a unit force applied at A (Fig. 17a). 

Second, tabulate or plat the resulting values of M -5- 7 throughout 
the beam ABC (Fig. 176). 

Third, consider the beam ABC as fixed at A and hinged at B and C, 
and loaded throughout its length with the “elastic weights,” M a- I; 
the resulting bending moment curve (Fig. 17c) is the desired elastic curve. 

The moment curve, Fig. 17c, may be obtained graphically, as the 
M 

funicular polygon for the ~j loading; or analytically, by tabular summa- 

tion of shears. (The equation of the curve may also be found by calculus 
if the value of 7 can be expressed as a function of x.) 

After the elastic curve, Fig. 17c, is obtained by any of the foregoing 
methods/ its ordinates must be scaled down so that the^ end-ordinate at 
A equals unity. The ordinates at B and C are zero. 
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If the beam under elastic loading, Fig. 176, is regarded as a simple 
span supported at A and C, the resulting bending moment diagram 
will be the elastic curve for the intermediate reaction B, similar to Fig. 
13. The ordinates of this curve, measured from the chord B-C, will also 
give the elastic curve for the end-reaction A, similar to Fig. 17c. 

It should be noted that in all constructions and applications of 
elastic curves, ratios and not absolute values are required. The ordinate 
over the reaction under consideration is always called unity, and the 
other ordinates are scaled down accordingly. 

A/ 

*p_x-1 r~:7‘ 
(a) Mcmert Diagram for Unit Load at A 

(b) Continuous Beam Loaded with Clastic Weights 

(c) Elastic Curve for Continuous Girder with Variable J 

Fig. 17.—Construction of elastic curve for variable I. 

24. Special Case—Triangular Variation of I.—A special case of 
variable I, recommended as a basis for preliminary or approximate design, 
is that of triangular variation, assuming the moment of inertia to vary 
as the ordinates of a triangle from zero at the ends to a maximum over 
the intermediate support. This assumption generally represents the 
actual variation of I in a two-span continuous truss about as well as 
the assumption of constant I; moreover it yields results of striking 
simplicity. The elastic curves are parabolas, and other convenient 

relations obtain. 
Referring to Fig. 17a, it will be noted that, for this special case, M 

and I follow the same law of variation, so that M -5- I will be constant 
throughout. The curve of elastic loading, Fig. 176, consequently 
•reduces to a horizontal line; and the elastic curve, Fig. 17c, will be simply 
the moment curve under uniform loading, and consequently a parabolic 

curve. 
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The ordinates of the elastic curve for triangular variation of I will be, 
in the first and second spans, respectively, 

y - 1V - k) (20) 

and 

2/i = - j~^(1 - k)k (21) 

where n is the span-ratio (h l), and k is the position-ratio (x l, or 
Xi -5- Zi). The curve represented by Eqs. (20) and (21) is a parabola. 

If the two spans are equal (n = 1), the foregoing equations reduce 

to 
y-l-Hk + Hk* (22) 

and 
2/i - - H(k - k>) (23) 

The elastic curve platted with these ordinates is shown in Fig. 18. This 
curve is the influence line for reactions at A. 

The elastic curve for reactions at B will be simply a parabola with 
unit ordinate at B (Fig. 19). 

The intercepts measured from the chord B-C in Fig. 19 (divided by 
2.00) will give the elastic curve for reaction A (Fig. 18). 

For a uniform load wl covering the first span, the reactions will be: 

A * tol, B = %wlt C « — ^{2wl 

For a uniform load 2wl covering both spans, the reactions will be: 

A = Hwl, B - %wlf C * Hwl 

Upon the elastic curve, Fig. 18, the influence diagrams for moments 
and shears may be drawn exactly as in Figs. 15 and 16. 

for all sections up to the “fixed point ” (k = %), the first span must 
be fully loaded for maximum positive bending moment, and the second 



S&c* 4-24] CONTINUOUS BRIDGES 229 

span must be fully loaded for maximum negative bending moment. The 
resulting values will be: 

Max. M = — D (24) 

Min. M = — wa(^ j~z) (25) 

Total M = waQj — ^ (26) 

(Compare with Eqs. (4), (5) and (6)). 

Fig. 19.—Elastic curve for middle reaction—Two«equal spans with triangular variation 
of /. 

The bending moment over the middle support B will always be 
negative, with a maximum value of Total MB = — ^£wl2. 

For maximum positive shear at any section <S (distant a = kl from 
the end A), load the span-segment SB; for maximum negative shear, load 
the segment 45 and the span BC. The resulting values will be: 

Max. V = wl(H2 -k + Yik* - (27) 
Min. V = - wl(Ha + %k* - J#a) (28) 

Total V = wlQri - k) (29) 

(Compare with Eqs. (7), (8) and (9)). 
For this special case of two equal spans with triangular variation of 1, 

the general form (for variable /) of the well-known “Theorem of Three 
Moments” reduces to the following simple expression for the moment 
over the middle support: 

MB - - H2M, (30) 
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where M is the simple-beam bending moment produced by each con¬ 
centrated load (or element of uniform load) at its own point of application. 

PI 
Thus, for a single load P at the middle of either span, M = -j- and, 

PI 
accordingly, MB — —g-; consequently the farther end-reaction will be 

P 
— g-, the nearer end-reaction will be %P} and the middle reaction will 

be P. (Compare Figs. 18 and 19). 
For application to uniform loads, Eq. (30) is more conveniently 

written: 

Mb = - |(A, + A2) (31) 

where Ai is the area of the simple-beam moment diagram in one span, 
and A * is the area in the other span. Thus, load covering one span 
produces a parabolic moment diagram with maximum ordinate 
and area Ai = Eq. (31) then yields MB = so that the 
farther end-reaction must be — ^2^7 Load covering both spans pro¬ 

duces, Total Mb = — %wl2. 
If the spans are unequal, Eq. (31) must be written: 

Mb = - (yli + A 2) (32) 
l + h 

Load covering span l produces MB = — ’ 

In any case, when MB is known, the end-reactions (A and C) are 
easily found by taking moments from each end about B; and the inter¬ 
mediate reaction will be the total load minus (A + C). 

25. Elastic Curve for a Continuous Truss.—In the design of a con¬ 
tinuous truss, approximate values of the chord sections may first be 
determined on the basis of a preliminary analysis, assuming either con¬ 
stant 7 or triangular variation of I (employing the corresponding elastic 
curve, Fig. 14 or Fig. 18). With the chord sections thus found, a more 
exact elastic curve may then be constructed as follows: 

To construct the elastic curve for the reaction A (Fig. 20c), consider 
a unit load applied at A and proceed to find the deflections at the various 
panel points of the structure. This may be done graphically using a 
force polygon to get the stresses in the members and then combining 
the resulting strains in a Williot displacement diagram to obtain the deflec¬ 
tions. The graph of these deflections, scaled down to a unit ordinate at A, 
is the desired elastic Curve (Fig. 20c). 

Instead of employing the Williot diagram to get the deflections, 
an analytical procedure proves more expeditious. For this purpose we 
apply the principle that the deflection curve for any structure is identical 
with the moment diagram obtained by applying the angle-changes w 
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as “elastic weights” at the respective panel points of the structure. 
(For a demonstration of this principle, see the writer’s article, Elastic 
Curve Applied to the Design of the Sciotoville Bridge: Engineering 
Recordj Aug. 28, 1915). 

(c) Elastic Curve 

(Obtained as the Moment Diagram of the Elastic Weigbtsj 

Fin 20.—Construction of elastic curve for Sciotoville Bridge. 

If the contribution of the web-stresses to the deflections is neglected 
the angle-changes w (measured in radians) are very simply figured by the 

formula: 

w = - (33) 
r 

where Ac is the elongation (or compression) in each chord member, due 
to unit A, and r is the lever-arm of the member about its center of 

moments (Fig. 20a). 
For greater precision (in the final design), the effect of the web mem¬ 

bers (in a Warren system) is included by using the formula: 

(A'c — A'di — A fdn) /Q4\ 

w = ± —-- \y*) 

where A'c is the elongation of the chord member multiplied by the secant 
of its inclination to the horizontal, A'di and A!d% are the elongations of 
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the two web members multiplied by the secants of their respective inclina¬ 
tions to the horizontal, and h is the vertical altitude of the triangle 
formed by c, dh and d2 (Fig. 20a). In this formula, the plus sign is used 
for angle-changes at the upper panel points, and the minus sign for angle- 
changes at the lower panel points; elongations are taken as positive and 
compressions as negative. (For a demonstration of Eq. (34), see the 
writer’s article, Truss Deflections Accurately Determined by Angle- 
changes and Elastic Weights: Engineering Recordf May 13 and 20, 1916. 
The “elastic weight” w given by this formula represents, for each panel 
point, the angle-change between the two web members plus a correction 
for the line-changes in these two web members.) 

The values thus found for the angle-changes w between the two web 
members meeting at each panel point are then treated as “elastic weights” 
applied at the respective panel points. In order to get zero moments at 
B and C, the beam A-C (with reactions at A and C) is considered hinged 
at B and at C but anchored at A (Fig. 206). The moment diagram is 
found either by calculation of moments or by construction as a funicular 
polygon for the “weights” w. The ordinates of the resulting polygon are 
then all reduced in a uniform ratio to make the initial ordinate scale 
unity. We then have the elastic curve of the structure, or influence line 
for the end-reaction A (Fig. 20c). The curve shows that the reaction 
A changes sign as the load passes the middle pier. 

26. Example—Application of Method to Sciotoville Bridge.—In 
order to illustrate the actual simplicity of the above-described method of 
design, the complete work for determining the elastic curve for the Scioto¬ 
ville Bridge (Fig. 20) is given in the following two tables (Tables 4 and 5). 
Since ratios, not absolute values, are required, the labor is minimized by 
calling the length of a panel unity, E = 1, etc. 

In Table 4, the bending moments M produced by a unit load at A are 
simply the distances (in panels) to the respective centers of moments. 
Dividing the value of M by the corresponding lever arm r, we obtain the 
resulting stress S in each member. Multiplying this stress S by the 
length Z, and dividing by the gross section of the member, we obtain 
the resulting elongation. Multiplying each elongation (AZ) by the secant 
of the inclination of the member to the horizontal, we obtain the terms 
A'Z for the numerator of Eq. (34); grouping these terms in threes for each 
panel triangle, and dividing by the altitude h of that triangle, we obtain 
the desired elastic weight w for each panel point. 

In Table 5, the bending moments are determined for a two-hinged 
beanj loaded with the elastic weights w (Fig. 206). A method of summa¬ 
tions is used as the most expeditious method of figuring the moments. 
In this method, after figuring the simple-beam reaction (—562.4) at the 
free end C, all the shears are obtained therefrom by successive addition 
of the panel loads, and the moments are then obtained by successive 
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Table 4.—Calculation of Elastic Weights (Sciotoville Bridge) 

Panel 
(V ,(V (4) sj (6) (8) (SJ (10) 

Member 

. . 

Bend mg Lever Stress for 
A-t 

of?) 

Gross Pong- Elastic 
weight 

(8+9) 

po>nt moment 

M 

arm 

r 
Length 

l 

section at ion^ . 
10,000 M 
(3x4 r£) 

Secant- Product 
A'! 

(6x7) 

AHttude 

h 

u2 
io-Uz 1 a 7/ 41.4/ 1.41 36/ S6 1.4/ + 79 

L0-L4 I 1.00 -1.00 2 3/S 63 /. -63 / -36 

Uz-U -5 4.9S -t.O! 1.41 189 15 1.4/ -106 

t-4 Uz-Ug Z us + 1.74 2.03 36/ 98 1.0/ + 99 • U7 -22 

Ug 
L4-Ug, - s sso + 0.89 1.67 138 108 1.67 + 180 

1-4’1-8. 3 t.33 -z.zs 2 474 95 /. -95 1.33 +43 
Uq-Lq — — -t.zs 1.67 /OS 199 J.67 -332 

t-6 Ug - U,0 4 1.33 +3.00 2 4/3 145 / +/4S 1.33 -142 

t-8'U/o — — +125 J.67 121 173 1.67 +288 

U/o L8-L12 S /J3 -3.7£ 2 374 /SB f. -158 1.33 -725 

it2 
U/O-L/2 — — ”1.25 /■67 , 238 88 . f.67 -146 
U/O-U/4 6 1.33 +4.S0 2 3/7 284 /. + 284 1.33 -229 

U,4 
L,2-U,4 — — + /.2S 1.67 278 75 167 +125 
1/2-L/g 7 /.33 -5.25 2 ??? 383 /. -369 1.33 -379 

U/4-L/G -/ 7.20 -O.l 4 1.67 39/ 6 J.67 -JO 

i/6 U/4-U/g 8 1.4-8 4 £ 40 2.03 20$ 526 l.OI +534 1.50 -354 

- J/8 
1/G- 0/8 -I tv + 0./3 1.94 38! 1 7 194 + /3 

I/6-L2O 9 /■G7 -5.40 ? 479 226 /. -226 1.67 -90 

I20 
U/Q -120 
Utg-Uzo 10 1.67 

, */./7 
1 +6,00 

I. $4 
/ 

499 
£96 

45 
/O! 

t.94 
/. 

-88 
+/o/ | 1.67 -1/3 

Table 5.—Calculation of Elastic Curve (Sciotoville Bridge) 

Panel 
point 

Elastic 
weight(W) Sheo/r Moment Ordinate 

C 0 0 
m 

-502.4 
0 0 

2 - 3G 
-466.4 

- 502.4 - 0.024 

4 - 22 
- 444.4 

- 96 8.8 - 0.046 

6 443 
- 487.4 

- 14-/3.2 - 0.068 

S - 142 
- 345.4 

- 1900.6 - 0.09/ 

10 - 22S 
- 120.4 

- 224-6.0 -0.108 

n - 229 
J08.6 

- 2366.4 - 0. //3 

14 - 378 
489.6 

- 2257. 8 - 0J08 

16 - 3S4 
840. 6 

- 1771.2 - 0.085 

IS - 90 
930.6 

- 930.6 - 0.045 

B 20 - 227 
1157.6 

0 0 

IS - 90 
1247.6 

1157.6 o.oss 

If -354 
1601.6 

2405.2 0.115 
■ 

14 - 37$ 
1979.6 

4006.8 0.192 

12 - 2 29 
2208.6 

59864 0.287 

10 - 225 
2433.6 

8/95.0 0.392 

8 - 142 
, 2575.6 

10628.6 0.509 

€ 4 43 
2532.6 

13204.2 0.632 

4 . - 22 
2554.6 

15736.8 0.7S4 

2 - 30 
2590.6 

18291.4 0876 

A p% 0 20882.0 1.000 
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summation of the shears. Ordinarily, the results would have to \>e 
multiplied by the panel length to give the true moments, but in the 
present case this factor is unity and the operation otherwise unnecessary 
(since only ratios are required). Dividing all of the moments by the 
value at A (in order to make the initial ordinate unity), we obtain the 
ordinates of the elastic curve (Fig. 20c). 

The final results, in the last column, afford an excellent check upon all 
the computations in Table 5, in the fact that the ordinates taken in pairs 
for corresponding panel points of the two spans give arithmetical sums of 
exactly 1.0, 0.9, 0.8, and so on to 0.0 This necessary relation arises from 
the fact that the ordinates of the elastic curve (Fig. 20c), measured from • 
the chord A-C, are symmetrical about the center line; so that the vertical 
intercepts between the segment A-B of the elastic curve and its chord must 
be identical with the corresponding intercepts of the segment B-C. 

The entire work of figuring the elastic curve by the foregoing method, 
as illustrated in Tables 4 and 5, is a matter of only 2 or 3 hr. at 
the most. • After the elastic curve (Fig. 20c) is determined, the remainder 
of the design is essentially the same as for a simple structure. 

27. Comparison of Elastic Curves for Different Assumptions.—The 
exact method outlined above (developed by the writer for the design of 
the Sciotoville Bridge) is the one to be used for the final computation of 
important structures. For less important or preliminary designs, simpler 
approximate methods may be used. 

In the case of the Sciotoville Bridge, three successive designs were 
made: (1) Preliminary design (approximate); the truss was treated as 
a beam with constant moment of inertia. (2) The above-outlined method 
was used, but with the influence of the web members neglected, employ¬ 
ing Eq. (33). (3) Final design (exact); the effect of all the members was 
included, employing Eq. (34) as shown in Tables 4 and 5. 

For the first approximation (assuming I = constant), the ordinates 
of the elastic curve (fig. 14) are given directly by the general Eq. (2). 
The sections obtained in this approximation are used as a basis for the 
succeeding designs. The elastic ordinates for the three assumptions, 
also for the assumption of triangular variation of I (Eq. 22, Fig. 18), are 
compared in Table 6. 

The ordinates for only one-half of the elastic curve are listed in 
Table 6, as those for the other span are quickly obtainable by the check 
method explained above, i.e., by subtracting the given ordinates of the 
curve from those of the chord A-B. The above table is useful, inasmuch 
as its values can be adopted for the preliminary designs of other struc¬ 
tures, thereby saving considerable time and labor. For a structure 
similar in general outline to the Sciotoville Bridge, the values in column 
(3) should be used. For girders and trusses with parallel chords, the 
values in column (1) would be a closer approximation. , 
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Table 6.—Comparison of Elastic Curves (Sciotovillb Bridge) 

Pane/point 
X 

l 

0) 
Assumption 

I- Constant 

(V 
Web members 

neglected 

„ w 
AH members 

included 

w 
Assumption 
tnanofj/crr 
variation ofI 

A 0 0 1.000 1.000 1.000 /.000 

2 0.1 0.87S 0.87/ 0.876 0.8SS 

4 02 0.7S2 0.744 0.7 S 4 0.720 

6 0.3 0.032 0.623 0.632 0.S9S 

8 0.4 O.S 16 o.s OS O.S09 0.480 

/O O.S 0.406 0.393 0.392 0.3 7S 

/2 0.6 0.304 0.287 0.287 0.280 

14 0.7 0.21/ 0.193 0-/92 0./9S 

!6 0.9 0*126 0. It4 0.//S 0./20 

(2 0.2 0.OS7 0. 0S3 O.OSS O.OSS 

B 20 uQ 0 0 0 0 

Area AB 4.38/ 4.283 4.3/2 4./7S 

Area BC 0.6!$ 0.7/7 0 688 0.8 2 S 

Sum 0/ Areas S.000 S.000 S.OOO S.OOO 

L UU LU_J#—1—1 a / L Ub U 

s ZK zsz N Z S zs 0 
r- IT "TT 4, u b\„ U U l, l. 

!W 
Ca) Diagram of Truss 

("Continuous ov«r 3 -Supports) 

If 
fetfl 

1- M .111. llltHTrm^g .—-r 

(t>) Chord Stresses 
(Influence Line fcr UflfeJ 

(c) Shears 
(Influence Line for L4U10) 

’^'Orwwn minaret center 
* n,.*.*, w, m 

(Influence Line for LfLij 

'&*gzzzZZZZEZZZZZZ!0*‘ 

Fig. 21.—Influence diagrams fbr Sciotovilie Bridge. 
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A comparison of the areas of the three elastic curves, as given in 
Table 6, indicates that the results of the first assumption may be in 
error by +2 to —10 per cent, and those of the second approximation 
by —1 to +4 per cent. In lateral systems, where the web members 
have relatively small sections, the error of neglecting these members 
may be much greater; on the other hand, the great uncertainty of lateral 
forces does not warrant a refined calculation of lateral stresses. For 
important structures, however, the writer recommends the use of the 
exact method (3), as the greater reliability of the results is easily worth 
the slight additional work required. 

28. Influence Diagrams for Continuous Trusses.—After the elastic 
curve (Fig. 20c) is platted to any convenient scale, the influence 
lines for all the members of the truss are simply constructed 
by drawing straight lines across the curve, as illustrated in Fig. 21. A 
single platting of the curve is therefore sufficient for the entire design. 
The various influence lines are drawn and used in the same manner as for 
a simple truss, with the single difference that the elastic curve replaces 
the straight line A-B which would ordinarily represent the influence line 
for the end-reaction. 

29. Determination of Live Load Stresses.—The above-described 
influence diagrams can be applied to the determination of maximum 
live load stresses by the customary procedure of trying different positions 
of the specified train-loading, and comparing the sums of the products 
obtained by multiplying the scaled ordinates by the respective wheel¬ 
loads. To facilitate and expedite this operation, the writer has invented 
two devices. The first is a double scale of wheel loads and spacings on 
a paper strip which is applied to the influence diagram to determine 
directly the critical load position. The second device (independently 
invented by 0. H. Ammann and by the writer) is a tracing of wheel* 
load scales which is superimposed on the influence diagram to give directly 
the products of ordinates by wheel loads. Both of these devices are 

’ described in an article by the writer, entitled Two Time-savers for Use with 
Influence*Lines: Engineering Record, April 24, 1915. 

In the design of the Sciotoville Bridge, a great economy of time and 
effort was effected by the use of equivalent uniform loads. These were 
given directly by a formula invented by the writer and published in an 
article Equivalent Uniform Loads for Long Span Bridges: Engineering 
News, Feb. 25,1915. For shorter spans, the values may be taken directly 
from a chart, invented by the writer, giving the exact equivalent uniform 
load for any point of any span. (Chart of equivalent uniform loads for 
railway bridges: Engineering News, April 22, 1915; American Civil 
Engineer's Handbook," p. 853, 1920; “Lefax," No. 10-348, September 
1020; Pro€eedingB\Am&r* She. C. E., May, 1922.).' • load 
value given by formula or chart is simply multiplied by the x^M^pondlng 
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influence area, to give the maximum stress in any member of the structure. 
For extreme precision, a correction may be made for the curvature of the 
influence lines, as described in the writer's article, Equivalent Uniform 
Loads for Indeterminate Structures: Engineering News-Record, Aug. 1, 
1918; but this correction will rarely exceed 1 to 2 per cent. 

30. Determination of Dead Load Stresses.—For dead load stresses, 
all the panel dead loads are multiplied by the respective ordinates of 
the elastic curve, and the algebraic sum of the products constitutes 
the end-reaction. This determined, the stresses are figured exactly as 
in a simple truss, using the method of summations for shears and 
moments. 

After the details for all connections are worked out, a final adjustment 
of sections is made for the actual dead load weights determined from the 
detail drawings. On the close agreement of these actual weights and 
sections with the values initially assumed depends, to a great extent, the 
efficient solution of the design. In the case of the Sciotoville Bridge, a 
calculation of the weight from the final shop drawings showed the 
assumed weight to be 3 per cent in excess and, therefore, no re-design 
was made. 

31. Bridges Continuous over Three Spans.—The three-span bridge 
merits detailed consideration, as it will be a common type. Where a 
crossing requires a larger number of spans, it will generally be found 
desirable to interrupt the continuity at every third pier. 

The first step in the analysis of a three-span continuous bridge is 
the construction of the elastic curves, or influence lines, for the reactions. 

32. Elastic Curves for Three-span Continuous Bridge.—In general, 
the influence line for the reaction at any support of a continuous bridge 
is simply the elastic curve produced by removing that support and apply¬ 
ing a concentrated load to give the point a unit vertical displacement 
(see the writer's article, Influence Lines as Deflection Diagrams: Engineer¬ 
ing Record, Nov. 25, 1916). 

In the case of a three-span continuous bridge, the elastic curve is 
best obtained by the synthesis of two simpler deflection diagrams. 
Thus, let it be required to construct the influence diagram for inter¬ 
mediate reactions in a three-span girder or truss, AMNB, Fig. 22. 

First consider both supports M and N removed, and a unit load 
applied at M; the resulting elastic curve (drawn to any convenient scale) 
is APXB. Next, to restore X to its original position, a reaction is 
evoked at N. A force at this point would produce an elastic curve 
AQXB shown in dotted lines; this curve is reduced in scale so as to have 
the same ordinate as the first curve at X. The differences between the 
ordinates of the two curves give the ordinates of the desired influence 
J|nO or ehuatio otirve, ARNB. This is platted to a scale making the ordi¬ 
nate at R equal to unity. * 
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It may be noted from the influence line in Fig. 22 that any loads in 
the contiguous spans will give positive contributions to the reaction 
R, and any loads in the non-contiguous span will give negative 
contributions. 

The elastic curve for the end-reaction may be constructed in a similar 
manner as shown in Fig. 23a. 

In this case, the supports A and N are considered removed. A load 
applied at A produces the deflection curve PMXB (drawn to any scale). 
A load applied at N produces the deflection curve QMXB (drawn to 

Fig. 22.—Three-span continuous girder. Construction of elastic curve for intermediate 
reaction. 

reduced scale so as to have the same ordinate as the first curve at X). 
The intercepts between the two curves give the ordinates of the desired 
elastic curve RMNB (drawn to scale giving unit end-ordinate). It may 
be noted from this influence line (Fig. 23a) that any loads in the end 
spans give positive contributions to the reaction R, and any loads in 
the middle span give negative contributions. 

When the spans are symmetrical, it will be simpler to use the con¬ 
struction shown in Fig. 236. In this case, the end supports A and B 
are considered removed. A load applied at A produces the deflection 
curve PMNQ (drawn to any scale). A load applied at B produces the 
similar deflection curve TNMS (drawn to any scale). After multi¬ 
plying the ordinates of either curve by a constant factor to make BT 
equal to BQ, the differences between corresponding ordinates of the two 
curves will give the ordinates of the desired elastic curve RMNB 
(drawn to a scale giving unit end-ordinate). 
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Fig. 236.—Three-span continuous girder. Construction of elastic curve for end reaction. 
(Second method). 
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The eomponent curves in Figs. 22, 23a, and 23b, are identical with 
the elastic curves of two-span continuous girders, and may be calculated 
or platted by the methods described in the preceding pages. If the 
moment of inertia, /, is assumed constant, each component curve of 
Fig. 22 is obtained by regarding the girder as a two-span beam and 
applying Eqs. (10) and (11); the same equations also give the component 
curve QMXB of Fig. 23a (the portion QM being a tangent); and the 
other component curves of Figs. 23a and 236 are given by Eqs. (12) and 
(13). In Fig. 236 the portions NQ and MS are tangents. 

The resultant curves, as well as the component curves, in Figs. 22 
and 23 may also be obtained approximately by the mechanical method of 
bending splines under the described conditions of support and loading. 

Fio. 24.—Three-span continuous girder with constant /. Construction of elastic curve for 
end reaction. (Using fixed point F). 

A simple, direct method of constructing the elastic curve for a three- 
span continuous girder (with constant 7) is illustrated in Fig. 24. In 
this method we make use of a “fixed point” F in the middle span. The 
distance of F from the support C is given by 

/- 
3 + 21^ (35) 

(See Art. 38 on “Fixed Points in Continuous Spans.” Compare Eq. 
(47).) 

When the end support A is removed and a concentrated load substi¬ 
tuted (Fig. 24a), the resulting moment diagram win be as shown in Fig. 
245. (Absolute values are not required.) The diagram passes through 
F, since F is a point of contraflexure (or zero bending moment) for any load 
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to the left of B. Treating the area of this moment diagram (Fig. 246) 
as a loading diagram, the resulting funicular polygon or moment dia¬ 
gram Fig. 24c will be the desired deflection diagram or elastic curve. 
The end ordinate is called unity. 

33. Symmetrical Three-span Continuous Girders.—The common 
case of three-span continuous bridges is that of equal end-spans. For 
this case, if I is constant, the equations of the elastic curve for the end 

Table 7.—Ordinates of Elastic Curve for End Reaction, Two Unequal Spans 

(/ = Constant) (n — Ratio of Second Span to First Span) 

mm n = o.s n^/.o rr=/.5 ft-2.0 

0 1.000 1.000 1.000 f.000 f.000 1.000 f.000 LOOO 
O.f 0867 0.669 0-8 70 0.8 72 0.8 73 0875 0.880 0.884 

0.2 0736 0.740 0.743 0.7 4 S 0 747 0.7S2 0.762 0.768 

03 0.609 0 C/S 0.6/$ 0.622 0.624 0.632 0.64S 0.654 

0.4 0.466 0.49S O-SOO O.S 04 0.507 0.5/6 0.533 Q.S44 

& o.s 0.S7S 0.363 0.388 0.393 0.396 0.406 0.425 0.43 8 

0.6 0.? 72 0.260 C-28S 0290 0.293 0.304 0323 0.336 

0.7 016/ 0./68 Q./91 0. /98 0.20/ 0.2// Q229 0.24/ z ae 0./04 o.no 0../4, CJf8 i/20 0/28 a/4? O.f 5 2 

< 0.9 0 043 0.0+K, 0.049 0.05/ 0.052 0.057 a 066 0.072 

r.o 0 0 0 0 0 0 0 0 

fira 0.417 0.42? 0.42S 0.429 0.43/ 0438 \ 0.450 °'{8. 
r/pj 
--- 

O 0 0 0 0 0 0 

0.9 - 0.0/4 - 0.0/9 -■ 023 - 0.028 - 0-030 - 0.043 — 0.077 -0.1/4 

£ 0.8 - 0.024 - 0-032 - 0.038 ' - 0.046 - 0.05/ — 0.07? - 0./30 - o. 192 

<5 0.7 - 0.03 0 _ 0.040 - 0.048- - 0.057 _ 0.063 - 0.089 _ 0./60 -0.238 

& 0.6 - 0.032 - 0.043 - 0. OS/ - 0.062 - 0.068 - 0.096 - 0./73 - 0.2S6 
o.s - 0.03/ - 0.042 - O-OSO - 0.060 - 0.067 - 0.094 - 0./69 ! - 0.250 

0.4 - 0.028 - 0.038 - 0.04S _ 0 054 - 0.060 - 0.084 - 0-/5/ - 0 224 

C: | 0.3 - 0-023 - 0.03/ - 0.036 _ 0.044 _ 0.048 _ 0.068 - 0./23 - a/82 

2 0.2 ~ 0.0/6 - 0.022 - 0.026 - 0.03/ _ 0.034 - 0-048 - 0.006 - 0./28 

OJ 0.008 _ 0-0// _ 0.0/3 _ 0.0/6 - _ 0.0/8 _ 0.095 - 0.045 — 0.060 

<0 O O i 0 0 0 | O 0 0 0 

Area - 0.02/ - 0.026 — 0.033 - 0.040 —0.044 - 0.063 -0.//3 - a/67 

reaction (Figs. 23a, 23b, 24) will be (iti the first, second and third spans, 

respectively) 

2 + 2 n 
y-l-k- 

m 
-(k - fc3) 

y = - ~[(2 + 2n)(2k - 3fc2 + fc8) - n{k - k3) 

*•> 

Where 
h n = the length-ratio of middle span to end span = j 

x _ Xi 

(36) 

(37) 

k = the position-ratio in any span = j or -j- 

m, = (2 + n)(2 + 3n) - 4 + 8n + 3n* . (39) 

The elastic curve (Fig. 24c) may be platted directly from these 

Eqs. (36) to (38). 
The ordinates of the resulting elastic curve (or influence ordinates for 

ft,), far different ratios of middle-span to end-spans, are given in Plate II 
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and Table SA. The areas of the elastic curve for each span, obtained by 
summation, are also given in the table, and can be used for figuring the 
effects of full-span loads. 

Plate II.—Three-span continuous beam. (Symmetrical spans, constant I). Elastic 
curve for end-reaction, (n = ratio of middle span to end spans). 

For the same case of symmetrical span with constant /, the equations 
of the elastic curve for the second reaction (Fig. 22) will be (in the first, 
second, and third spans, respectively) 

+ <»> 

y = 1 — k + ~[(2n + 2n3)(2k - 3k* + fc») - n*(k - k») + 
m 

(2 + 3n)(fc - 3&* + 2ft‘)I (41) 

-vSkp-»> <42) 

The elastic curve (Fig. 22) may be platted directly from these Bqs. 
(40) to (42). 
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The ordinates of the resulting elastic curve (or influence ordinates for 
R2), for various ratios of middle-span to end-spans, are given in Plate III 
and Table 82?. The areas of the elastic curve for each span, obtained 
by summation, are also given in the table, and can be used for figuring 
the effects of full-span loads. 

Table 8A.—Ordinates of Elastic Curve for End Reaction, Symmetrical 

Three-span Continuous Girder (/ = Constant) (n = Ratio of 

Middle Span to End Span) 

imam n-s.o n=i.2S n * i.33 n =/.s n*/.7s n»$.o 

0 ■+ 1.000 4 1.000 4 1-000 4 1.000 4 1.000 4 /.ooo 
OJ 4-0.8 74 + 0.876 4 0877 f 0878 4 0.880 + 0882 
0.2 4 0.74 9 4 0.754 4 0 755 + 0.758 t 0.76/ + 0.764 

$ 03 + 0.627 4 0-634 4 0.6/36 40640 + 0.644 4 0.649 
0.4 + 0.5// 4 0 5/9 4* 0.522 + 0.526 4 0.531 + 0.537 
0.S + 0.4 00 4 0.410 + 0-4/2 4 0.418 + 0.423 + 0.430 
0.6 -h 0288 -4- 0 308 4 0.3/0 + 0.3/6 + 0.32/ 4 0.328 

£ 

0.1 -h 0 205 4 0 2/4 4- 0.217 4 0.222 4 0.227 4 0-233 
08 4 0.124 4 o. /„?/ -4- 0.133 + 0./37 + 0.14/ + 0/46 
0.9 4- 0.054 4 0. US3 4 0-060 4 0.062 4 0.06S 4 0.068 
/.0 0 0 0 0 0 0 

IEE3 4 0.433 -+ 0.440 4 0.442 4 0.445 WMISEEBM E3sES3H 
0 0 0 0 0 0 o 

0.1 — 0.037 - 0.054 — 0. 059 - 0.070 _ 0.086 _ 0 404 
0.2 - 0.0 64 - 0.088 — 0.097 - Q/14 — 0.141 - OJ68 

03 - 0.077 - 0.106 - 0.7/6 - 0./36 - 0. /68 - 0.200 
& 

* 
0.4 - 0.090 - 0.109 - 0./20 - 0.138 - 0./72 - 0.204 
0.5 - 0.075 — 0.102 - a /// - 0.130 - 0-/59 * - 0.188 

>5 0.6 — 0.064 — 0.086 - 0.094 - 0.109 - O.Z32 - 0. /56 

0.7 -0.049 - 0.065 — 0.07/ - 0.082 - 0.098 - 0.//4 

§ -0.032 - 0.042 - 0045 - 0.05/ - 0.062 - 0.072 
—0.015 - 0.0/9 _ 0.02/ — 0.024 - 0.027 - 0.03/ 

m 0 0 0 0 I 0 O 
tESZi — 0.050 - 0.068 - 0.074 - 0.086 EEE39H BBS9H1 
m 0 0 O 0 o O 
KM 4 0.01/ 4 o.on 4 0.0/1 4 o. on 4. O.Ol/ + O.O/J 
0.8 + 0.019 + 0.019 4 00/9 4 O. 0/9 4 0.0/9 4 0.0/8 

0.7 4 0.024 4 0.024 4 0.024 + 0.024 4 0.023 4 a 022 

§ 0.6 + 0.026 4 0.026 U. 0.026 4 0. 025 4 0.025 + 0.024 

0.5 + 0.025 4 0.025 4 0. 025 -4 0.025 4 0.024 + 0.023 

0.4 4* 0.022 ■r 0.022 4 0.022 + 0.022 + 0.022 + 0.021 
0.3 +0.018 4 0.0/8 4 0.0/8 4 0018 4 O.O/Q + 0.0/7 

*S 
0.2 + 0.013 4 0. 0/3 + 0.013 4 0.0/3 4 0.0/2 f 0.0/2 

K OJ 4 0. 007 4 0. 007 4 0.007 4 0.006 4 0.006 4 0.006 

O! 0 0 0 0 0 O 
szai EXXsZQHi + 0.0/7 ■ him EX22E9H 

With the aid of the elastic curves defined by the foregoing Eqs. (36) 
to (42), inclusive, we may obtain the reactions for various conditions of 
loading. Expressions for these reactions are compiled in Table 9. 

It will be noted that the function (fc — kz) is of frequent occurrence in 
the formulas for continuous-span reactions; a simple tabulation of values 
of this function can be used to expedite continuous bridge computations. 
The same table will also give the function (2k — 3k* + &8), if (l~fc) is 



244 MOVABLE AND LONG-SPAN STEEL BRIDGES [Sec. 4-34 

used instead of k; and the difference between these two functions for any 
value of k, will give (k — 3k* + 2fc3) which is the only remaining function 
of (k) occurring in the reaction formulas (36) to (42) inclusive. 

Instead of applying the formulas, the reactions may also be figured 
directly from the influence ordinates given in Tables 8A and SB. 

: 34. Influence Diagrams for Three-span Continuous Bridge.—For 
the end-spans, influence diagrams are constructed exactly as for two-span 
continuous bridges, namely, by drawing straight lines across the elastic 
curve, as illustrated in Figs. 15, 16 and 21. Typical influence diagrams 
for an end-span are shown in Fig. 25a. The diagram factor for the 
moment influence diagram, in Fig. 25a, is the reaction lever-win a. The 
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The influence diagrams reverse in sign at each intermediate support, 
indicating that alternate spans must be loaded for maximum stress. 

For the middle-span, the problem is not so simple, as the expression 
for each stress involves 222 as well as Ru The usual method of treatment 
is to construct an independent (curved) influence line for each member, 
the ordinates of these influence lines being figured from the values of R\ 
and .R2 given by the respective elastic curves. 

Table SB.—Ordinates of Elastic Curve for Intermediate Reaction, 
Symmetrical Three-span Continuous Girder (/ = Constant) 

(n = Ratio of M iddle Span to End Span) 

ru 
n~t.o n*/.2s n - f.33 W3B3KM ft*/. 75 n*?.o 

0 0 0 0 0 O 0 

at + 0.158 + 0.148 4 C L4S + 0.141 4- 0.135 + 0.13/ 
as ^ 0.3/S 4-10.293 + 0.288 + 0.219 4 0.268 + 0260 
0.3 4- 0.464 •r 0.433 4 0.42S 4 0.4/2 4 0.397 4 0.385 

* 0.4 + 0. 602 4- 0.S63 4 a 554 4 0.S38 + O.S 19 4 0.505 
o.s 4 0.72S 4 C-682 + 0.672 f 0.654 + 0.633 + 0.6/7 

ft 0.6 40.831 4 0.787 + 0.776 4- 0.758 4 0.736 + 0.720 
Hv. 0.7 + 0.914 4 0.874 4 0.864 t 0.846 + 0 627 + 0.8/2 

'i? 0.8 + 0.973 + 0.939 + 0.932 + 09/8 + 0.902 4 0.890 
0.9 + 1. 003 + 0.983 4 0.978 4* 0.970 + 096/ 4. 0.953 
1.0 + 1.0 + 1.0 + 1.0 4 10 4- l.O 

+ 0.650 4- 0.6/S + 0.602 + 0.569 

o + 1.0 4 1.0 + 1.0 + 1.0 

o
 

4
 -4 1.0 

O.J 4- 0.963 + 0.982 4- 0.386 + 1.001 4, 1020 4 1040 

02 +0896 4-0.926 + 0.93S 4- 0.955 + 0.986 + 10/6 
0.3 + 0. SOS + 0.838 + 0.8S0 + 0.872 + 0.907 + 0.942 
0.4 4 0.696 + 0.728 4 0.738 + 0.760 4 0.7SS + 0.828 

<0* O.S + 0.575 4 0.602 + 0.61/ + 0.630 4 0.659 •4 0.688 
0.6 + 0.448 4 0.468 4- 0.47S 4 0.488 4 0.S10 4 0.532 

£ 
JO 0.7 4 0.32/ + 0.333 + 0.336 j 4 0.346 4 0.359 4 0.373 

0.8 +0.200 -+ 0.204 4 0.206 4 0.2/0 i 0.218 4 0.224 

Co 0.9 +0.090 4* o. 092 + 0.092 + 0.094 + 0.094 •4 0.095 

1.0 0 0 0 0 0 O 

Area +0.550 + 0.S68 + 0.S74 + 0.S66 + 0.606 + 0.625 

i.O 0 0 0 0 0 0 

0.9 - 0.068 - 0.0S4 - 0.0SO - 0.044 - 0.037 - 0.032 

0.8 - o. ns - 0.090 - 0.084 - 0.074 - 0.062 - O.OS4 

Vv 0.7 - 0.143 - 0.//2 - 0.104 - 0.092 - 0.077 - 0.067 
*s 
<5 0.6 - 0.1S4 - 0./20 - 0.1/ 2 — 0.098 - 0.083 - 0.072 

& 
0.S - 0, ISO - 0.1/7 - 0.109 - a 096 - 0.081 - 0.070 

'O 0.4 -0./34 — 0. /OS - 0.098 - 0.086 - 0.073 - 0.063 

03 \ - 0.109 - 0.086 - 0 080 - 0.070 - 0.0S9 - 0.05/ 

0.2 -O.Q77 - 0.060 - 0.0S6 - 0.049 - 0.042 - 0.036 

£ 0.1 - 0.040 - 0.031 — 0.029 - 0025 - 0.022 - 0.0/9 

0 
1 ° 

0 ; 0 0 0 0 

223 \-0.100 - 0.076 BMsJGSEMM - 0.047 

In order, however, to retain the advantage of employing the elastic 
curve as a foundation for all influence lines, and thereby to simplify the 
Operation of finding maximum stresses, the writer has devised a method of 
‘‘double influence lines” for treating the intermediate spans of bridges 
continuous over three or four spans. 
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36. The Method of Double Influence Lines.—This method is illus¬ 
trated (for the middle span of a three-span bridge) in Fig. 256. 

The elastic curves for the first and second reactions are used as a 
foundation. The elastic curve AECD (reproduced from Fig. 22) is the 
influence line for Rt\ and the elastic curve FBCD (reproduced from Figs. 

Table 9.—Reactions fob Symmetrical Three-span Continuous Bridge (Assum¬ 

ing Constant I) 

Loading Reactions P 
m = 4- + 8 n + 3nc 

r'f 

R,\iijnr 
|^J f R4 
4-/—i 

R, = PO-k)- P(k-ks) 

= Pk+ n/L%) P(W 

”• p<l'-k'> 
/?. = n.p(h~k3l 

HnRim 

Mz =-£Lnl[(M„)(2k-3 kik3)-n(k-k3)] 

M3 = - ELo![f2+2nJ (k- kS)-r(zk-SkW2 

R, -***, Rt - P O-k) 

R4 - Ml, Rj = Pk - Mi-Mi 

■H R, = R4 - 3+,in\n\ wl * 4(2 + 3n) 
\ P. /?. 5r+i0n+6n2+n3 

- ffs ' 11 TTTTJRj- ■as 

■ 

R, - 3l-7n+3»* i 
2m 

R» = J+ 6n + 6n2 wi 
4n (2+3n) 

R3 = - l+n 1 
4n(2+Zn) 

..it"1 

Si 

R‘ “ R* 4(Z+3n) Wl 

- * - M&kpr1"1 

23a, 236, or 24) is the influence line for Ri. By laying off the ordinates of 
the curve EC upon the curve BC, we obtain GC as an influence line for 
(Si + Ri). 

To obtain the influence diagram for shear in any panel ST of the second 
span, simply draw a straight line ST across the combined reaction curve 
GC, as shown in the figure. The areas of the resulting diagram represent 
sfaeaiBforumt loading. 
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£ 6 10 14 19 <8 t* K> 6 e 

(b) Web Stresses 

(Influence Diagram for 

Fig. 25a.—Typical influence diagrams for end spans of a continuous bridge. 

Influence Dioqram for Moment atM 

Fig. 255.—Influence method for intermediate span of a continuous bridge. 
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To obtain the influence diagram for bending moment at any point M 
of the second span, simply draw a straight line GM below the curve <7(7, as 
shown in the figure. For a unit load at any point P, the value of the 
bending moment at M will be 

M = ayi + ly2 (43) 

where yx is the ordinate of the (Pi + R2) diagram and y2 (which has a 
negative value) is the ordinate of the Pi curve. 

Table 10.—Bending Moments and Shears in Continuous Girder of Three 

Equal Spans. (Assuming Uniform I) 

M»* G-~-{ +- O -•-j 

(p=//ve loact/ff.) 

Point 

(w* dead load/ff4) 

E2E3E22E3 
Total M Max. Y 

pi2 pi2 wl2 pl 
0.000 0,000 0.000 4- 0.450 

4-0.040 - 0.00s 4- 0.035 4-0.356 

4* 0.070 - o.o/o ■4- 0.060 + O.S7S 

+ 0.090 - 00/S ' 4- 0.075 4- 0.206 

+ O./OO - 0.020 4- 0.080 4-0./5O 

4- O./OO - o.oss + 0.07S f 0J04 

4- 0.090 - 0030 4-0.060 4-0.069 

+ 0.070 - 0.03S 4-0.035 7-0.044 

4- 0.040 -0.040 0.000 4-0.028 

4- 0.020 - 0.065 -0.045 A-0.0)9 

4-0.0/7 - O.Z/7 1 -O./OO + 0.0/7 

4- o.on - O.f/7 - o./oo 4- 0.S83 

4- O.O/S - 0.070 
i 

- 0.055 7- 0.487 

+ 0.030 - 0.050, ~ 0.020 4- 0.39$ 

+ o.oss -0.050 4- 0.005 + 0.32/ 

+ 0.070 -0.050 7-0.020 +0.254 

+ ao7$ - 0.050 7-0.025 4- 0./98 

-0.056 

- 0.075 

- O./OG 

- 0-/50 

-0.204 

-0.26$ -0.2 

- 0.344 - 03 

-0.428 - 0.4 

-as/9 - o.s 

-06/7 

- 0.033 

-0.087 ± 

-0.099 + 

-0.12} + 

-0./54 tO./ 

In this manner, by simply using the two influence curves GC and BC, 
we avoid the necessity of constructing a different influence curve for each 
member of the span. If such influence lines are desired, however, they 
may be easily constructed from the last diagram in Fig. 25b, by subtrac- 

ting from the ordinates of GC, the ordinates of BC multiplied by 
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The influence lines shown for the intermediate span BC in Fig. 25b 
may be extended to cover loads in the other spans; but it will be more 
expeditious to* treat the other spans as complete load-units, and to 
calculate independently their contributions to the .desired stresses in 
span BC. 

36. Continuous Bridge of Three Equal Spans.—For a continuous 
bridge of three equal spans (with constant 7), Eqs. (36) to (42) inclusive, 
and the expressions in Table 9 become considerably simplified by the 
substitution of n = 1 and m = 15. 

For load covering the first span, we find (from Table 9), 

Ri = lH0wl = 0.4333wl 
r2 = i y^wl « 0.6500wZ 

Rz — - yiowl ~ — O.lOOOwZ 
Ri ~ ~ 0.0167w7 

For load covering the middle span, we find (from Table 9), 

Ra = -Howl « -omoowi j 
R2 = Rz = uAqwI = 0.5500wZ } 

For load covering all three spans, we find (from Table 9), 

Rx = R4 = %wl = OAOOQwl | 

R2 = Rz = = l.lOOOwZ | 

(44) 

(45) 

(46) 

With the aid of the foregoing values of the reactions, we obtain 
the maximum moments and shears for a continuous bridge of three equal 
spans. These values are tabulated in Table 10. 

37. Multiple-span Continuous Girders.—Continuous girders of more 
than three or four spans may be treated by an extension of the principles 
employed in the preceding sections. 

If the spans are equal (and 7 is assumed constant), the governing 
values for full loading may be taken directly from Table 11. In this 

table 

Riy Rif 

Mi, M3, 
Max. Mi, Max. M2, 

Xh Xi, 

fh hi 

. = the reactions at the supports. 

. = the (negative) moments over the supports 

. = the greatest (positive) moments in the 
respective spans. 

. = the distances of Max. Afi, Max. Af 2, . . ., 
from the adjacent left supports. 

. = the distances of the points of contraflexure 
from the adjacent left supports. 

I = the length of each span 
w = the uniform load per unit length 

Since all relations are symmetrical about the center line, the tabulated 
values are extended only to the mid-point. 



250 MOVABLE AND LONG-SPAN STEEL BRIDGES [Sec. 4-38 

As the number of spans is increased, all of the tabulated values for 
intermediate spans approach, as a limit, the corresponding values for a 
single-span beam with fixed ends. The values for the end spans corres¬ 
pond approximately (or exactly in the case of only three supports) to 
the respective values for a single-span beam with one end fixed. 

Table 11.—Continuous Girders of Equal Spans (I — Constant) (Loaded 

Uniformly over the Entire Length) 

Quantify 
Number of spans 

Lin if 

2 3 4 S 6 7 8 

R, 0,3750 0.4000 0.3929 0.3947 * 03942 0.3944 0.3943 Wl 

Rz 12500 f./OOO 1.1428 1/3/7 1.1346 1.1337 1.1340 

R3 — — 0.9286 0/9736 09616 0.9649 09640 

R4 — — — — 10192 1.0070 l.0i 03 

Rs — — — — — — 0.9948 

0.1?SO o./ooo O.l Oil a 1053 0J0S8 0.1056 O.I057 wl2 
Mi — — 0.0714 0.0789 0.0769 0.07 75 0.0773 

m4 — — — — 0.0865 0.084S 0.0850 

Ms — — — — — — 0.0825 

Max. Mi 0.0703 0.0800 0.0772 0.0779 0.0777 0.0778 0.0777 wl* 
Max. Mi — 0.0250 0.0364 0.0332 0.0340 a 0338 0.0339 

Max. M3 — — — 0.0461 0.0433 0.0440 0.0438 

Max. M* — — — 1 — 0.0405 004/2 

mm 0.37S0 0.4000 0.3930 0.3947 0.3942 0.3944 0.3943 z 

E — 0.5000 0.S357 0.S264 0.5327 0.528/ 0S283 

;B9 — — — 0.5000 0.4904 0.4930 04923 

■9 — — — — — 0.5000 05026 

0.7S00 0.8000 0.786 0 0,7894 0. 7884 0.7887 0.7887 t 

— 0.276 0 0.2659 0.268 0 0.26 75 0.2680 0.2680 

— 0.7240 0.8055 0.7839 0. 7899 0.7684 0.7890 

4 
— — — 0.1964 0.1960 01962 0.1960 

— — — 0.8036 0-7850 0.7897 0.7880 

- - — — —- 02/53 0.2/50 

— - — — 07847 

88. Fixed Points in Continuous Spans.—In any continuous girder 
(Fig. 26a), there are certain critical points which have useful properties 
in facilitating graphic methods and in indicating load placement for 
maximum stresses. These points, one in each end span and two in each 
intermediate span, are independent of the loading and are fixed in position 
in any given structure; hence they are called “fixed points.” 



Sec. 4-38] CONTINUOUS BRIDGES 251 

In a uniform continuous beam of two equal spans, the fixed points 
are located at 0.2Z from the middle support. In the case of three equal 
spans, the fixed point (Ri or L3) in each end span is at 0.21Z, and the 
fixed points (L2, R2) in the middle span are at 0.2Z from the intermediate 
supports. 

For any three symmetrical spans (with constant 7), the fixed points 
(L2, R2) in the middle span will be distant from the nearest supports 

2 4" 3 u 
nl (47) 

and the fixed points (JKi, Lz) in the outer spans will be near the inter¬ 
mediate supports at a distance 

/- 
2n + 2 

(48) 
in 4" 2 u -j- 2 

where n is the ratio of middle span to end span, and m = (2 4- n) (2 4- 3n) 

Pig. 26. 

For the general case (any number of spans, any lengths, constant 7), 
the fixed points may be located by certain graphic methods or, analyti¬ 
cally, as follows: The first L-point (Fig. 26a) will be L2 in the second span 
Z2; it will divide that span into two segments whose ratio is given by 

CU _ _ 2(h 4- I2) 
BLt n h 

(49) 

In the next span, Lz is located by the segment-ratio 

DLz _ __ It * 2(Z2 4" lz) 

CU ~ U ~ Ur2 + U (50) 

Repeating the operation represented by this equation, each successive 
value of r is figured from the preceding value, until all the L-points are 
determined. Commencing at the right end of the structure, and going 
through1 the same operation toward the left, all the R-points are deter¬ 
mined in like manner. 

For any number of equal spans, the successive values of r by Eqs. 
(49) and (SO) will be 4, 3.75, 3.733, 3.732, 3.732, . . .; hence, all values 
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of / will be 0.211 except the first and last (BL<t and FRi} Fig. 26a) which 
will be 0.201. 

The fixed points may also be located from the elastic curves; this is 
particularly convenient when I is variable. A tangent to the elastic 
curve at A (Fig. 14, 17, 18, 20, 23 or 24) will intersect the base in the 
first fixed point. This will yield / = 0.2Z in the case of uniform I, Fig. 
14; f — 0.333Z in the case of triangular variation of 7, Fig. 18; and / = 
0.1941 in the case of the Sciotoville Bridge, Fig. 17. In a three-span 
girder, Fig. 256, the right fixed point in the middle span is located by the 
ratio of the slopes of the tangents at C to the two curves CB and CG. 

The outer supports may also be regarded as fixed points, so there 
will be two fixed points in each span. 

Designating the left fixed point in each span by L and the right fixed 
point by R, we may state the following useful principle (Fig. 266): 

For any loading in any span, the resultant bending moment diagram 
will pass through the fixed points L of all spans to the left, and through 
the fixed points R of all spans to the right. These “fixed points” are 
consequently points of zero bending moment, or fixed points of contra- 
flexure, for unloaded spans. 

Since the bending moment diagram in each unloaded span Is a straight 
line passing through one of the fixed points, the location-ratio r of each 
fixed point determines the ratio between the bending moments M over 
the adjacent supports. All of these bending moments thus become 
known as soon as one is known. 

A corresponding analytical procedure for finding any of the 
moments directly is represented by Merriman’s general formulas for 
continuous girders (Merriman and Jacoby “Higher Structures,” p. 33, 
1905). 

39. General Rules for Loading Placement.—The placement of loading 
for maximum stresses is given by the following general rules: 

(1) For maximum positive bending moment at any section located 
between the two “fixed points” of any span, the load should cover that 
span and all alternate spans. For maximum negative bending moment, 
the given span and all alternate spans should be free from load. 

(2) For maximum positive bending moment at a section outside of 
the “fixed points” of any span, a segment of the span including the section 
is loaded; the adjacent span, the remaining segment of the given span, 
and all alternate spans should be free from load. For maximum negative 
bending moment, apply the opposite loading. 

(3) For maximum negative bending moment over any intermediate 
support, load the two adjoining spans and all alternate spans. The 
same loading also gives the maximum positive reaction at the support. 

(4) For maximum positive shear at any section of any span, load 
the span-segment to the right of the given section and all alternate spans 
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to the right; also load the left adjacent span and all alternate spans to 
the left. For maximum negative shear, apply the opposite loading. 

40. Effect of Settlement of Supports.—In a continuous beam of 
two equal spans £, with constant J, the settlement of the middle support 
through a distance D will produce a relieving moment at that support 
defined by 

M2=^D (51) 

The relief of the middle reaction will be 

-R3 = 2-1 (52) 

and each end reaction will be augmented by the amount 

Iii ~ R> = (53) 

The settlement of both end supports through distances D, or of one 
end support through a distance 2D, will produce effects equal, but 
opposite in sign, to those defined by Eqs. (51), (52) and (53). 

If the spans are unequal, or if the moment of inertia I is variable, 
calculate the deflection d producible at the given support if that support 
were removed and a unit-load substituted. Then, a settlement D would 
produce an increase in that reaction defined by 

* - ~3 <«> 

This principle can be applied to a continuous bridge of more than two 
spans. 

In a symmetrical three-span bridge of constant I (see Table 9), a 
settlement D\ of the end support will produce, over the intermediate 
supports, bending moments defined by 

Mt 

M» 

12EI(1 + ») n 
-Dl 
6EIn 

ml* 'Dl 

(55) 

(56) 

The accompanying changes in the four reactions are easily figured from 
these values of M2 and Ms. If the three spans are equal, the reaction- 
changes will be: 

Rii Ri> Rs> Ri 
24 54 36 6 EIDl 
15’ + 15’ 15’ +15 l* (57) 

For a settlement Dj of the second support, the resulting reaction-changes 
(in a bridge of three equal spans) will be: 

Ri, R»y Ri, R* 
, 54 144 , 126 36 EID» 
+ 15’ 15'+15' 15 l* 

(58) 
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On account of the increased constraint in a three-span bridge, the reaction- 
changes Biy R2, R*, produced by Di or Z>2, are somewhat greater than the 
corresponding reaction changes in a two-span bridge. The change in 
the remote reaction, i?4, however, is comparatively slight. 

The identity between R2 of Eq. (57) and R\ of Eq. (58) is an illustra¬ 
tion of the application of Maxwell’s “Principle of Reciprocal Deflections.” 
Note also, the identity of the symmetrically located reactions. 

It will generally be advantageous to make the intermediate supports 
intentionally lower than the end supports by a small and predetermined 
amount when the bridge is erected. The excess of middle reactions over 
end reactions can thus be somewhat relieved, and the greatest negative 
and positive moments can be equalized. In a two-span girder of equal 
spans (Z) and constant /, it will be advantageous to drop the middle 
support an amount defined by 

D = (1.QW+ p)TJ±m (59) 

where w = dead load, and p = live load per linear foot. This will reduce 
the negative moment over the middle support about 16 to 31 per cent 
(depending on the ratio of w to p) and will increase the maximum positive 
moment within the span to an equal value. 

For the Sciotoville Bridge, Z = 775 ft., the necessary camber or 
lowering corresponding to Eq. (59) would be about 1.1 ft. 

For a three-span continuous girder of total length L, with ratio of 
spans between 8:9:8 and 6:7:6, the advantageous lowering of both inter¬ 
mediate supports is defined by 

D2 = (1.8w + v) 5 900 El ^ 

For other cases, the advantageous lowering of the intermediate supports 
may be determined in the design calculations by trial. 

In a continuous beam or girder of constant section, the above- 
described lowering of the middle support produces a material increase in 
strength. In the case of a continuous truss, the lowering would result 
in greater uniformity of chord sections, reducing the extreme maximum 
sections which are required over the intermediate supports. 

From the same considerations, it is also obvious that the natural 
settlement or compression of the middle supports of a continuous bridge 
(in excess of the simultaneous settlement of the end supports) will be 
advantageous rather than detrimental to the safety of the structure, 
inasmuch as it tends to produce an equalization of absolute values of 
maximum and minimum moments (with the reduction in maximum 
considerably greater than the increase in minimum moments), and a 
desirable relief in the excessive intermediate reactions. In other words, 
natural adjustments by settlement are really an element of inherent 
safety in a continuous bridge. 
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41. Example—Effect of Settlement in Sciotoville Bridge.—Referring 
to Tables 4 and 5, and figuring absolute values instead of relative values, 
we find the end displacement producible by unit applied load (1 lb.) to be 

d = 20,882 E = 0.0000056 ft. 

Accordingly, applying Eq. (54) a settlement of 1 in. (Z> = 0.0833) will 
produce a relief in the end reaction amounting to 

— Ri = ~ = 15,0001b. 

This is only 0.6 of 1 per cent of the total dead-load reaction, or 0.3 of 
1 per cent of the total (D + L + I) reaction. The simultaneous increase 
in the middle reaction will be twice this amount, or 30,000 lb., which is 
only 0.3 of 1 per cent of the dead load reaction, or 0.2 of 1 per cent of the 
total (D + L + I) reaction at the middle support. 

A settlement cf 1 in. at the middle support will produce effects equal 
to twice those given in the preceding paragraph, but opposite in sign. 
The middle reaction would be relieved 60,000 lb., or less than 0.4 of 1 
per cent of the total (D + L + /) reaction at the middle support. 

It is evident from these values that any ordinary settlement of the 
piers would affect the stresses in the structure to so small an extent as 

to be negligible. 
42. Continuous Bridges 1923-1942.—During the past twenty years 

the construction of continuous bridges has been noteworthy, particu¬ 
larly in the highway field. Prior to this period very few bridges of this 
type were designed or constructed in this country. This was undoubtedly 
due to a large extent to the fact that settlement of the supports affected 
the stresses in the superstructure. Many engineers considered that it 
was poor practice to use a continuous type of superstructure unless its 
supports were founded on unyielding foundations. It has been shown 
in the previous articles that relatively small settlements of the supports 
of the superstructures of long-span continuous bridges do not seriously 
affect the stresses. Furthermore it has been demonstrated that by the 
use of continuity considerable economy and increased rigidity is secured. 
A great deal of study and thought has been given to developing a type 
of superstructure that would not only have these desirable character¬ 
istics but would also not be materially affected by settlements of such 
magnitude as vwould be seriously objectionable in the conventional type. 
In 1932 Mr. Wichert produced a type of superstructure which fulfilled 
these requirements in a successful and practical manner. As the Wichert 
truss has been very thoroughly discussed elsewhere,1 only a brief descrip¬ 
tion of it will be given here. 

lD. B. Steinman, “The Wichert Truss,” D. Van Nostrand Company, Inc., 
New York. 
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Mr. Wichert found by introducing four hinges or pinned connections 
at the intermediate supports or piers (Fig. 27), that all the advantages 
of continuity were preserved, that relatively large pier settlements had 
little effect on the stresses, and also that the structure became statically 
determinate. Although it is claimed that the Wichert type requires less 

Fig. 27.—Typical arrangement of members at pier, Wichert truss. 

steel than the conventional type, the latter should not be eliminated 
from consideration, as the hinged connections, as well as other character¬ 
istics, may show little if any saving in the final cost of the Wichert type 
over that of the conventional type. If the character of the foundation 
material is such that pier settlements of considerable magnitude might 
occur, and if a relocation of the bridge to secure more favorable foundation 
conditions is impracticable, then the Wichert truss has a real advantage 
over the conventional type. 

In the following articles several bridges having continuous super¬ 
structures of both types will be described. These bridges have been 
selected as being typical and represent only a few of the many now 
existing in this country. 

43. The C. and O. Railroad Bridge, Cincinnati, Ohio.—Construction 
of this bridge was started in 1927 and was completed in 1929 (Fig. 28). 
The main portion of this bridge consists of a double track three-span 
continuous through steel truss of the conventional type supported on 
reinforced concrete piers. The two shore’piers rest on reinforced con- 

Fig. 28.—C. and O. Railroad Bridge, Cincinnati, Ohio. 

Crete piles driven to refusal. One of the river piers is of new construction 
throughout, and the other consists of an existing pier with a reinforced 
concrete extension added to the downstream end. Both river piers 
rest on unyielding foundation material of alternate thin layers of shale 
and sandstone, some 60 ft. below river level. 

. Because of the large longitudinal force, resulting from the starting 
and stopping of trains on the bridge, and because of the relatively high 
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river piers, the fixed shoes were placed on one of the shore piers, with 
expansion shoes on each of the other piers. Expansion is provided by 
segmental rollers 2 ft. in diameter, protected from dirt and corrosion by 
steel housings filled with oil. 

The spans are 450 ft., 675 ft., and 450 ft., making the trusses the 
longest of their kind at the time of their erection. In order to keep the 
dead load as light as possible, all members of the superstructure are of 
silicon steel, which has a working stress of 24,000 lb. per sq. in. Second¬ 
ary stresses were provided for in the design when it was impractical to 
eliminate them. The maximum secondary stresses will occur in the 
inclined posts and bottom chord members at the intermediate piers if 
provision is not made for their elimination or reduction. In this bridge 
the secondary stresses were eliminated in the inclined posts by providing 
them with pin connections. In the bottom chords they were materially 
reduced bv shortening the subverticals and forcing the chord members to 
connect with them. The stresses produced by this action are relieved 
when the bridge is fully swung and in its final position. 

Full continuity over the three spans was assumed in the design of the 
bottom lateral system. The top lateral system was designed to act as 
three simple spans between the upper ends of the inclined posts at the 
shore and river piers. 

As it was necessary to maintain river as well as railroad traffic the 
scheme of erection adopted did not require falsework in the river channel. 
The end spans were erected on falsework supported on timber piles with 
the center span cantilevered out from the river piers to closure at mid¬ 
span. , The shore ends of the trusses were held approximately 3 ft. below 
their final positions until closure was made at the center of the middle 
span. At closure the bottom chord connection was first made; after¬ 
ward one end of the truss was raised until the top chord could be con¬ 
nected. Following the chord connections both ends of the truss were 
jacked up sufficiently to permit the erection of the end shoes. 

The last step in the erection was the weighing in of the end reactions. 
This was done by jacking up the end bearings until predetermined dead 
load reactions were secured. These reactions were measured by pressure 
gauges placed in the hydraulic jacking system. Shims were placed 
between the bottom chords and the upper shoe castings when necessary 
to maintain the required reactions.1 

44. Lake Champlain Bridge.—Continuity has been used in the con¬ 
ventional manner to a large extent in the design of the superstructure 
of this high level highway bridge which was completed in’1929 (Fig. 29). 
The main portion of the superstructure consists of a series of truss spans, 

1 For a detailed description of this bridge see paper by Wilson T. Bullard, 

"Three Span Continuous-truss Railroad Bridge," Trans. Am. Soc. Civil Eng., vol. 99, 
p. 873. 
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made up of one three-span continuous truss flanked on the one hand by 
a simple span and on the other by a two-span continuous truss. The 
remainder of the superstructure is made up of a series of deck plate 
girder spans on each approach. These spans were designed to act as 
simple spans under dead load and as continuous spans under live load. 
The spans of the three-span continuous truss are 290 ft., 434 ft., and 
290 ft. The two-span continuous truss has spans of 270 ft. and 225 ft., 
with the longer span adjacent to the three-span truss. The simple span 
is 270 ft. long, and the total length of the superstructure is approximately 
2,200 ft. 

Fig. 29.—Continuous three-span truss, Lake Champlain Bridge. 

The simple span and the shorter span of the two-span continuous 
truss were erected on falsework. The longer span of the two-span truss 
was erected in two operations by cantilevering out from the pier and 
end of the shorter span to the temporary bents and thence to the pier 
supporting the end of the three-span truss. The end spans of this truss 
were erected on falsework and the center span was cantilevered out from 
each pier, with closure being made at the middle span. The closure 
and weighing in of the dead load reactions of the spans were carried out 
in a similar manner to that of the C. and O. railroad bridge. 

46; Sagamore Bridge over Cape Cod Canal, Massachusetts.—This 
structure consists of a three-span continuous truss, somewhat similar 
to the three-span continuous truss of the Lake Champlain Bridge. A 
portion of the floor in the center span, however, is suspended from the 
trusses. This permits a maximum vertical clearance above the canal 
level for the larger part of the span. The spans are 396 ft., 616 ft., and 
396 ft. in length. 

Fig. 30.—Continuous truss bridge over Cape Cod Canal, Sagamore, Mass. 

The erection of the superstructure was carried out in the conventional 
manner, except for the weighing in of the dead load end reactions. The 
specifications required that this operation be made within a tolerance of 
1 per cent. The usual method of measuring the reactions by hydraulic 
jacks equipped with pressure gauges will not give this precision. A 
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device known as a “proving ring” gives results with the necessary pre¬ 
cision and was used on this bridge. This instrument consists of a heavy 
steel ring with a stiff metal reed mounted rigidly on the inside so that 
its axis projects through the center of the ring. Directly opposite the 
reed a metal disk is mounted on a micrometer screw in such a manner 
that the disk can be moved to and from the free end of the reed. The 
ring is loaded at points directly in line with the axis of the reed. Under 
load the ring deforms, becoming slightly elliptical with the shorter axis 
in line with that of the reed. This deformation is measured by placing 
the reed in vibration and advancing the disk until it just comes in contact 
with it. This point of contact can be very accurately determined by 
observing the action of the reed. With the ring calibrated for known 
loads, the value of the measured loads is easily determined. This device 
proved quite satisfactory and has been used on other continuous bridges 
for the accurate weighing in of the end reactions. 

Fig. 31.—Ludlow Ferry Bridge over Potomac River. (Courtesy of W. C. Hopkins, bridge 
engineer State Roads Commission, State of Maryland.) 

46. Ludlow Ferry Bridge over Potomac River.—This structure, a high 
level highway bridge of the Wichert type, spans the Potomac River 
(Fig. 31). If has a total length of 10,000 ft. made up of 60 continuous 
steel beam spans of 61.5 ft. each; 8 continuous plate girder spans of 162 ft. 
each; 4 continuous plate girder spans of 117 ft. each; 2 continuous truss 
units having spans of 276 ft., 35Q ft., and 276 ft. in each unit; 1 continuous 
truss unit having spans of 276 ft., two at 350 ft., and one at 276 ft. In 
addition to the continuous spans there is a steel cantilever unit having 
spans of 370 ft., 800 ft., and 370 ft. The middle span of 800 ft. is over 
the main channel and has a vertical clearance of 135 ft. above the river 
level. This bridge has a clear roadway width of 24 ft., with a 1.5-ft. 
emergency walk on each side. The team spans carry a conventional 
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concrete floor and all other spans have a concrete-filled steel grid type. 
All piers were carried on steel H-piles from 150 to 193 ft. long driven to 
solid rock, except those on the Maryland shore. These piers were carried 
on timber and cast-in-place concrete piles. 

The cost of this bridge was approximately $5,000,000. 
47. Hancock Bridge over Potomac River.—This structure is another 

high level highway bridge of the Wichert type. It spans the Potomac 
River, the C. and O. Canal, the B. and O. Railroad, the Western Maryland 
Railroad, and Highway 40 from Hancock, Md., to WestVirginia (Fig. 32). 
It has a total length of 3,157 ft., made up of one continuous plate girder 
unit having one span of 130 ft., two of 160 ft., and one of 130 ft.; two con- 

Fig. 32.—Hancock Bridge over Potomac River. (Courtesy of W. C. Hopkins, bridge 
engineer State Roads Commission, State of Maryland.) 

tinuous plate girder units having one span of 100 ft., three of 140 ft., and 
one of 100 ft. for each unit; one continuous truss unit having one span 
of 118 ft., four of 196 ft., and one of 118 ft.; and also seven beam spans of 
44 ft. each. All spans carry a conventional concrete floor. The road¬ 
way, which has a clear width of 24 ft. with a 3-ft. sidewalk on each side, 
is 84 ft. above normal water and 42 ft. above the highest recorded flood 
water. The substructure is of reinforced concrete supported on shale or 
gravel strata, the bearing capacity of which was proved by loading tests. 

The cost of this structure was approximately $790,000. 
48. licking Creek Bridge, Maryland, and Sagamore Creek Bridge, 

New Hampshire.—These bridges have been selected mow for a compari¬ 
son between the Wichert and conventional type of continuOus bridge 
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superstructure than as examples of long span construction (Figs. 33 and 
34). 

The Licking Creek Bridge is of the Wichert type and has a total length 
of 300 ft. made up of one continuous deck plate girder unit having spans 
of 90 ft., 120 ft., and 90 ft. The roadway has a clear width of 26 ft., 

Fia. 34.—Sagamore Creek Bridge, New Hampshire. 

with a 2.25-ft. emergency walk on each side. All spans carry a conven¬ 
tional concrete floor. The substructure is of reinforced concrete carried 
to solid rock. The cost of this bridge was $152,000. 

The Sagamore Creek Bridge is of the conventional type and has a 
total length of 391 ft. made up of one continuous deck plate girder unit 
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having spans of 116.5 ft., 158 ft., and 116.5 ft. The roadway has a clear 
width of 26 ft., with a 3-ft. emergency walk on each side. All spans carry 
an open steel grid floor, 5 in. in depth. The floors of the walks are also 
of open steel grid, 2 in. in depth. The substructure is of reinforced con¬ 
crete carried to solid rock or cemented shale. As this bridge spans a 
tidewater creek, the intermediate piers are sheathed with wrought iron 
from a point approximately 2 ft. below extreme low water up to the under¬ 
side of the cap. The abutments are protected from the action of the 
tidewater by the approach fills and stone riprap. The cost of this bridge 
was $97,750. 

Whereas it is evident that these two bridges are quite similar, except 
for span lengths and type, the first costs would indicate that the conven¬ 
tional type is the more economical. Such a conclusion, however, would 
not be justified without a careful study of both types for each bridge site. 
Such a study would undoubtedly show both types in such close competi¬ 
tion that actual bids would have to be taken on alternate designs to de¬ 
termine which of the two types is more economical. 





SECTION 5 

CANTILEVER BRIDGES 

1. Cantilever Bridges Compared with Continuous Bridges.—Multiple 
span bridges may be continuous, partially continuous, or discontinuous. 
In Europe the continuous bridge is often preferred, and French engineers 
rarely build girders of more than one span without making them con¬ 
tinuous. In America, adherence to statically determinate types has 
been very persistent, and the cantilever in place of the continuous bridge 
has been highly developed. The latter type has, however, grown in 
favor, and recent years have brought great development along this 
line. 

The partially continuous type is exemplified in such structures as 
the Queensboro Bridge and Minnehaha Bridge, which are cantilevers with 
suspended spans omitted and cantilever arms joined. 

The chief advantages shared alike by the cantilever and continuous 
bridge are (1) economy of material, (2) saving in width of piers which 
may carry one support instead of two as in the case of a series of simple 
spans, and (3) ease of erection and saving of falsework, as explained later. 

The disadvantage of the continuous bridge, which, however, obtains 
only in case rigid foundations cannot be secured or convenient means of 
adjustment made, is that small changes of level in the supports may 
cause great changes or reversal of stress and even lead to complete failure. 
This disadvantage is avoided by the proper use of the cantilever principle 
while all the chief advantages of the continuous type are preserved. 
For small multiple span girder bridges the cantilever type is undoubtedly 
preferable to the continuous. 

2. The Cantilever Bridge as a Development of the Continuous Bridge. 
Although the cantilever principle is very old historically, the modern 

Fig. 1. 

cantilever bridge is a development of the continuous bridge* Figure 1 
indicates a three-span bridge. If the bridge is continuous there are 
tour points of contraflexure as indicated, where the 
aero; and the position of these points changes within narrow limits for 
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different systems of loading. Bitter, in 1860, proposed in effect to make 
the structure hinged at these points and discontinuous. It is seen, 

« however, that the resulting structure would be unstable, as an unbalanced 
load would cause the several units to rotate on their points of support and 
the bridge as a whole to collapse. If, however, hinges are introduced at 
two points only, as indicated in Figs. 2, 3 of 4, the resulting structures 
are stable, providing proper provision is made for negative reactions and, 
as will be shown, they are statically determinate. 

/Suspended 
jpan 

f Anchor arm t xCont/Jt'ver*S ? Anchor orm ? 

Fig. 2 

Canti /ever arn.s 

f ind " 
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span 

End 
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■y- 0 0 Y 1 
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3. Statically Determinate and Statically Indeterminate Cantilever 
Bridges.—Certain conditions must be observed in the design of statically 
determinate cantilevers. In some instances designs have been made 
without a full understanding of the principles involved, although there 
are several examples in which the indeterminate type was purposely 
selected. A full discussion of the principles of statical determination as 
peculiarly applied to cantilever bridges is therefore essential to a clear 
understanding of the general subject. 

4. Conditions of Statical Determination.—A structure supported 
at n points has 2» unknown components of the reactions—n vertical and 
n horizontal. Part of these unknowns may be eliminated by placing some 
Of the supports on rollers, but one reaction at least must be capable 
of developing a horizontal as well as vertical component to preserve 
stability. Assume first that n — 1 supports are on rollers. There 
remain n + 1 unknown quantities and n + 1 equations are required to 
solve them. Statics gives us the three general equations {EH = 0, 
ZV *= 0,' EM =0). n — 2 equations remain to be supplied. In a 
continuous bridge they are supplied by the theory of elasticity. In the 
cantilever bridge the equations necessary to secure statical determination 
Are established by certain features of construction mid are called equations 
of condition. As a concrete.example consider the structure indicated 
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in Fig, 6, Reactions R\> Rz and Rt are applied through roller bearings. 
There are, therefore, five unknown components of reactions. To solve 
these we have the three general static equations. Two equations of 
condition must then be supplied, which is done by introducing the two 
hinges as shown; and the equations of condition are 2Ma = 0 and 2Mb = 
0, which means that the moment of all the outer forces on either side of 
either hinge is equal to zero. These equations must not be confused 

Fig. 5. 

with the general equation 2M = 0, which is applicable at any point 
of the structure and means that the sum of the moments on both sides of 
the point is equal to zero. Also with regard to the moment about the 
hinges, it must not be assumed that each condition supplied gives two 
independent equations, since, if the moment of all the outer forces to 
one side of the hinge is equal to zero, the fact that the moment of all 
forces to the other side is equal to zero follows immediately. 

The proper number of equations of condition may be supplied in 
another way, as indicated in Figs. 6A and 6B. There are four reactions, 

.[ *--L 
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two of which are applied through roller bearings. There are six unknown 
components of reactions and three equations of condition are required. 
Hinge a supplies 2ilffl * 0 and rocker b supplies 2Mb = 0 and 2Hb = 0. 
Also consider the structure illustrated in Fig. 15. There are eight 
unknown components of reactions and five equations of condition must be 
established. Two are established by omitting the (dotted) diagonals over 
the center piers which gives M? = Ms and M2$ » Mu and three more by 
omitting the bars 1712-13, 1/17-18 and L18-19 and introducing the hinge 
at 12 (2Mlt « 0) and the rocker at 18 (zJtfu - 0, « 0). 

If there are too many equations of condition, the structure will be 
unstable if supported at points, as illustrated in Fig. 7. In this case 
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there are six unknowns and three equations of condition are required, 
whereas four are furnished by the hinges. If the points of supports are 
wide piers, however, the structure may still be stable; but in this case 
each pier in reality furnishes two points of support (see Fig. 8). For 
this particular case the piers must be wide enough to prevent overturning 

t v 
Fiq. 7. 

under any condition of loading or else the columns of the piers anchored 
against uplift; and differs from the arrangement shown in Fig. 15 in 
which R2 and Rs are always positive if the diagonals over the piers are 
omitted. 

Again in Figs. 6A and 6B, if one of the fixed bearings is made a roller 
bearing, there will be five unknown components of reactions and two 
equations of condition are required, whereas one is furnished by the hinge 
and two by the rocker. If i?3 is made a roller bearing, the part of the 
bridge b-d will be unstable. If Ri is made a roller bearing, the part of 
the bridge c-6 will be unstable. 

If too few equations of condition are established, the structure is 
stable but statically indeterminate. 

A study of the possible ways of treating a structure of the type of the 
Forth Bridge, Scotland, will make clear the whole subject of statical 
determination of cantilever bridges. 

Case I,—The Forth Bridge, shown in Fig. 9, is supported at a, c, 
0, k and Z, on expansion bearings, and at 6, / and j on fixed bearings. 
At d and i are hinges and at e and h are rockers. There are diagonals 
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over each pier. The width of Pier 2 is such that overturning is pre¬ 
vented under any condition of live load. Piers 1 and 3 are narrower 
and anchorages are provided to take uplift at the shore ends of the end 
cantilever arms. There are then 11 components of reactions and eight 
equations of condition are required for statical determination. Two are 
supplied by the two hinges and four by the two rockers—six in all. Two 
conditions are lacking and the structure is indeterminate; the end canti¬ 
levers being continuous on three supports. 

Case II.—If the diagonals over Piers 1 and 3 were omitted the equa¬ 
tions Mb = Mc and Mj — Mk would be established and the structure 
would be determinate. 

Case III.—If, in addition, the diagonals over Pier 2 were omitted, 
too many conditions would be supplied and the structure would be 
unstable, as is clearly seen. The middle cantilever would collapse under 
unbalanced load. 

Case IV.—Assume now the original structure with diagonals over 
all three piers. If supports at a and l are omitted, the six required 
equations of condition are supplied by the hinges and rockers and the 
structure is stable and determinate, providing Piers 1 and 3 are made 
wide enough to prevent overturning or the legs of the towers anchored 
against uplift. 

Case V.—Suppose now that the structure is supported at b, c, g, 
j and k on expansion bearings, and that / is fixed; that there are no 
supports at a and l; that the diagonals over Piers 1 and 3 are retained, 
and that there are hinges at d} e, h and £, but no rockers. There are 
seven components of reactions and the four required equations of condi¬ 
tion are supplied by the four hinges. The structure is stable and 
determinate. 

Case VI.—If in addition to the conditions assumed in Case V,4the 
diagonals over any pier were omitted, there would be too many conditions 
and part of the structure would be unstable. 

Case VII.—Suppose the structure is supported at a, 6, c, g} j, kf and 
l on expansion bearings and that / is fixed; also that hinges are placed at 
dy €y h and i. If the diagonals over Piers 1 and 3 are omitted, the structure 
is stable and determinate. 

Case VIII.—If the conditions are the same as for Case VII but the 
diagonals over Piers 1 and 3 are retained, the structure is indeterminate. 

In any case diagonals over Pier 2 are required to preserve stability 
of the middle cantilever, which furnishes supports but is itself unsup¬ 
ported at e and h. 

Cases V to VIII are, of course, impracticable for a structure of the 
paagnitude of the Forth Bridge, as it was assumed that expansion would 
be transmitted through the massive cantilever units. The supposed 
cases do, heaver, illustrate the possibilities of a simpler structure. 



Sec. 5-5] CANTILEVER BRIDGES 261 

6. Examples of Cantilever Bridges.—We are now in position to 
examine typical structures and point out their degree of determinateness 
without further discussion. 

Blackwell's Island, or the Queensboro, Bridge connecting Manhattan, 
N. Y., with the Borough of Queens is illustrated in Fig. 10. Here the 
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Pio. 10.—Queensboro Bridge. 

suspended span is omitted and the cantilever arms joined with a rocker 
connection. There are nine unknowns and only four equations of condi¬ 
tion are supplied by the two rocker connections. Two conditions are 
lacking and the bridge is statically indeterminate. To provide for 

a b c 

Fig. 11.—Minnehaha Bridge. 

adjustment after erection and prevent undue strains due to changes in 
level of the supports, the anchorage at the shore end of each anchor arm 
is so constructed as to make that end of the bridge adjustable in height 
within a range of 10 in., and each rocker joining the cantilever arms is 

adjustable within a range of 2 in. 

Fig. 12A.—Thebes Bridge over Mississippi River. 

The structure illustrated in Fig. 11 has five unknowns and two equa¬ 
tions of condition are required. Only one is supplied by the single hinge 
and the structure is indeterminate. 

A different solution would be to make the two intermediate supports 
fixed and the two end supports expansion, or vice ver$a, and the connection 
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of the cantilever arms a sliding joint. The same degree of statical 
indeterminateness would obtain, and stability of each unit would still be 
preserved. 

The bridges illustrated in Figs. 12A and 12B are statically determinate. 

Fig. 12B.—Beaver, Pa., Bridge over Ohio River. 

6. Computation for Moments and Shears.—The actual computations 
for a determinate structure present no difficulty and the position of live 
load which will give maximum stresses can easily be determined by 
inspection. The use of influence lines, however, is often valuable. 

Illustrative Problem.—Figure 13 shows a typical arrangement. Any load on the 
anchor arm affects the anchor arm alone and causes -+M. Any load on the 
cantilever arm affects the cantilever arm and anchor arm, and causes — M. Any 
load on the suspended span is resolved into reactions which are loads on the 

cantilever arm. For max. -f M in the anchor arm, load the anchor arm only. 
For max. —ilf, load the suspended span and cantilever arm. All moments 
on the cantilever arm are negative; load the suspended span and the cantilever 
arm up to the point in question; other loads are immaterial. For max. -bfti, 
load the anchor arm only; for max. — Rl9 load suspended span and cantilever 
arm only. For max. R%t use full load. All moments and shears for the sus¬ 
pended span are the same as for any simple span bridge. 

Assume a dead load (D.L.) of 5 kips per lin. ft. and live load (L.L.) of 3 kips per 
lin. ft. 

Dead Load Moments.—Maximum D.L. moment suspended span ** —» 

*+*9,000 kip-ft. 
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The moment curve will be parabolic with middle ordinate » 9,000 to scale. 
D.L. moment (dot and dash line) at any point on the cantilever arm: 

From suspended span, (5)(60)(X) = —300X kip-ft. 

From cantilever arm, (-5) (X) = —2.5X 2 

Construct the dot and dash line from the hinge to line of action of Rs. Maximum M 

for X *■ 40 is —16,000 kip-ft. Lay off —16,000 on R2 to point 6 and draw the dash 
line o-6. 

Maximum +3f due to dead load on anchor arm alone = — ■ = +14,000 

kip-ft. Construct, on line o-6, a parabola with vertical (not perpendicular) ordinates 

whose middle ordinate =* +14,000 kip-ft. from line a-b. The dot and dash line 
shows the completed D.L. moment curve. 

Live Load Momenta. — The L.L. moment curve for suspended span and canti¬ 

lever arm has ordinates - % the ordinates of the D.L. moment curve and is shown 

by dotted lines. Maximum — M at R% * —9,600 kip-ft. (point c). The —L.L. 

moment for the anchor arm is a straight line (dotted) from a to c. 

Maximum +3/ due to live load on anchor arm alone = (%) (14,000) = + 8,400 

kip-ft. Construct a parabolp on o-d with middle ordinate of +8,400 to scale. 

Add algebraically the vertical ordinates from line a-d to the D.L. moment curve 

and the vertical ordinate from the same line to either curve of L.L. moment to obtain 

the curves for total +3/ and total — M. 

Shears.—For max. +£ at any point on the anchor, arm, load from R2 toward 

Ri up to the point in question—suspended span and cantilever arm unloaded. 

For max. — S, load the suspended span and cantilever arm and the anchor from 

Ri up to the point in question. All shears on the cantilever arm are positive. Load 

suspended span and the cantilever arm from the hinge up to the point in question. 

Other loads are immaterial. 

Dead Load Shears.—First determine values of Ru 

(60)(5)(4%50) — 80 (acting down) 

(40)(5)(29fso) - 26% (acting down) 

(75) (5) =* 375 (acting up) 

Total Ri = 268% kips (acting up) 

D.L. shear at any point distant X to left of Ri * 268% — 5X. For X * 150, S = 

268% — 750 * —481%. D.L. shear immediately to left of R* «= (12% + 40)(5) « 

+500. Rs = 500 + 481% » 981%. D.L. shear curve is shown by dot and dash 

line. 

Live Load Shears.—Maximum — S on the cantilever arm = % D.L. shear. 

Maximum — S on the anchor arm at any point distant X to left of #4. 

From suspended span and cantilever 

(l2%)(3)(4%50) « -48 

(40)(3)(*H5o) = 5jfki5i 

—3X2 
From anchor arm - 

Maximum +5 on the anchor arm at any point distant X to left of Ri (suspended 

span and cantilever arm unloaded) 

shear are shown dotted. 

+(3)(150 - X)2 

(2) (150) * 
Curves for max. L.L. 

The computation for shears at critical points in a cantilever girder bridge is 
important for determining web shear. If the web shear near the intermediate 
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reactions is very high, it may be economical to use web reinforcing plates rather than 
to increase the web thickness throughout the length of the girder, and to provide for 
longitudinal shear between the web and flange by using shear plates connecting the 
vertical legs of the flange angles to the reinforced web. 

The preceding example assumes uniformly distributed load on the girder as for a 
deck bridge. If the loads are brought to the girders through floor beams, the moment 
curves will consist of straight lines between the panel points, and the vertices of the 
broken line curve will be points on the moment curve as drawn above. The shear 
curves will be horizontal lines between the panel points. 

Illustrative Problem.—Figure 14 shows the moment curves and typical influence 
lines for another typical arrangement. In this case max. — M in the intermediate 
span occurs with both suspended spans and both cantilever arms loaded and inter¬ 
mediate span unloaded. Maximum -f occurs with intermediate span only loaded. 
The procedure in plotting the curves is so like the preceding example that the com¬ 
putations wili not be carried through. 

Illustrative Problem.—Figure 15 shows a truss bridge for which the stresses in 
typical members will be computed. Influence lines for the reactions and for shears 
and moments at typical points are drawn with their determining ordinates computed 
and shown in the diagrams. As regards the anchor arm or cantilever arm separately, 
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Pro. 16. 
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the equal and opposite stresses in U7-8 and L7-8 are to be regarded as external forces 

whose moment is equal and opposite to the moment of the other loads and reactions. 

For example, using full dead and live load which gives a panel load of 200 kips. 

Rt « (7)4) (200) « 1,500 kips (acting down) which includes full panel load at 8. 

Ms - Mr - (3HX200X80) + (3) (200) (40) = +80,000 kip-ft. (clockwise). 

80 000 
Tension in U7-8 — compression in L7-8 — —— = 1,600 kips. 

R\ = —----— = 28.6 kips (acting down) which does not include 

half panel load at O. 
Si - 80,000 ± mWOKM) , i 

(Or, 7 X 200 — 28.6 = 1,371) which includes full panel load at 7. 

The areas A between the influence lines and reference line have been computed 

and are shown in the diagrams. For example, for shear in panel 2-3, the area A from 

o to m -(46HXK)- 2%; A, m to 7 - (93H)W) - 8%\ A, 8 to 18-WX100) * 
40 and so on. 

The sums of the vertical ordinates between the influence line and reference lines 

below panel points 1 and 2, (2y) = From m to 7, 'Ey = 

Assume first a dead panel load of 120 kips = 6 kips per lin. ft. of truss, and live 

panel load of 80 kips = 4 kips per lin. ft. of truss. Stresses in the members may be 

computed with equal results by multiplying each panel load by the vertical ordinate 

beneath the load in the influence diagram and summing, or by multiplying the unit 

load per lineal foot by the areas in the influence diagram, except in cases like the follow- 

ing: For shear in panel 2-3 in which the influence line intersects the reference line 

between panel points, use panel loads and vertical ordinates if it is assumed that 3 

may be fully loaded while 2 is entirely unloaded. For determining Ri for loads between 

0 and 7, use the uniform load per lineal foot and areas, or deduct one-half panel load 

from the result obtained by using panel loads and ordinates. 

All loads and stresses are in kips (1,000 lb.). 

All moments are in kip-ft. 

Considering Ri: 

D.L. from 0 to 7 - (70) (6) = +420 
D.L. from 8 to 18 =(-4o^)(6) * -343 

Total » + 77 kips 

L.L. from 0 to 7 =* +280 kips 

L.L. from 8 to 18 * —229 kips. 

Note that Ri includes one-half panel load at 0. 
Considering R%\ 

D.L. from 0 to 8 - (80) (6) » 480 

D.L. from 8 to 18»(4^)(6) » 343 

Total « 823 kips 

L.L. from 0 to 8 = 320 kips 

L.L. from 8 to 18 « 229 kips 

Considering R%* 
D.L. from 7 to 18 » (150) (6) « 900 kips 
L.L. from 7 to 18 * (150) (4) - 600 kips 
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Stress in D2-3.—Vertical component (V.C.) *= shear in panel 2-3. D.L. shear 
in 2-3. 

(-H + iWdaO) - (409^)(6) * -223 kips 

(Dead load Ri - +77 which includes one-half end panel load. Thus S in 2-3 « 
+77 - 60 - 240 * -223.) 

L.L. shear in 2-3: 
(-MX80) - (40^)(4) - -263 

(+1%)(80) « +114 

Total V.C. = —486 kips 
Stress * (—486)(85jo) ** —583 kips (compression) 

Stress in £72-3 « horizontal component (H.C.) in £73-5. D.L. moment at 3: 

^+2,400 — (6) - — 6,200 kip-ft. (counter-clockwise) 

L.L. moment at 3: 

(+2,100) (4) ® +0,600 (clockwise) 

(4) a —13,700 (counter-clockwise) 

Total M 
+3,400 

-19,900 
Stress 

+ ~30° “ (compression) 

19,900 x 
—-gQ - = —663 kips (tension) 

Stress in L3-5.—Take section in panel 3-4 with center of moments at 5 in upper 

chord. Find M6. Note that Mb obtained from the influence diagram includes the 

M of all forces to one side of 5. Since the moment of all forces to left of 4 is desired 

the moment of panel load at 4 must be subtracted algebraically from Mb obtained 
from the diagram. 

D.L. moment: 

(+2,000 = -22,270 

Moment due to P4 — —( — 120) (20) == + 2,400 

Total = —19,870 kip-ft. 

(+2,000) (4) - (—80) (20) * + 9,600 kip-ft. 

( - ^M2?) (4) = -22,860 kip-ft. 

42,700 kip-ft. Stress — = 1,220 kips (compression) 

Stress in D6-7.—Find moment about a. 

D.L. moment: 

(7,980 - 400) (6) - +45,480 kip-ft. 

L.L. moment: 

(+7,980) (4) « +31,920 kip-ft. 

(—400) (4) * -1,600 kip-ft. 

Total M m +77,400 kip-ft. 

77,400 

“ 133 “ 

L.L. moment: 

Total M « — 

V.C. stress in DM 581 kips (compression) 
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Or V.C. maximum compression in D6-7 » R2 — V.C. in U5-7 with live load 

from 0 to 7. Note that R2 includes panel load at 7 which does not affect 1)6-7. 

V.C. in C/5-7 dead load only = = 360. 

Ri for D.L. = 823 - 120 = 703 

fia for L.L. = 320 - 80 = 240 

Total = 943 kips 

943 - 360 = 583 V.C. 

Stress = (583)(5?35) = 882 kips (compression) 

Stress in U7-8 = H.C. in *75-7 - H.C. in C/8-10. Find M, ~ Af*. 

Af - (8,000) (10) - 80,000 kip-ft. 

Stress = = 1,600 kips (tension), 
ou 

Stress in L7-S is equal and opposite to stress in C/7-8. 
Stress in L8-10.—Take section in panel 8-9 with center of moment at 10. Live 

load 10 to 18. Add the effect of dead panel load P9 to Afio obtained from the diagram 

Stress - temm+mm = -845 kips (compression) 
oO 

Stress in Z>8-9.—From diagram for moment at b. 

. -698 V.C. 
loo 

Stress = (—698)(5H5) = —1,056 kips (compression). 
Stresses in the suspended span are the same as for a simple span bridge. 

The method of procedure for finding stresses for wheel concentrations is the same 

as for a simple structure and the influence line diagram will assist in finding the 

Fig. 16. 

position of the loads which will give maximum stress. For example, to find the 

maximum compression in Z)2-3 of Fig. 15 use the wheel loads on 8-18 with the heaviest 

loads near 12, and uniform load in 0-m. The position of wheel loads which will give 

maximum stress is such that the average load per foot in 8 to 12 will be as nearly as 

possible equal to the average load per foot in 12 to 18. For this position, find the 

moment Af at 12 as for a simple span 8 to 18. Then the vertical component of the 

stress in D2-3 will be }4&M. (The moment due to load unity at 12 would be 

while the vertical component of the stress is Therefore, actual 200 

stress :M\\% : 48, or actual stress 
,48 J *84^)* 

The stress may also be found by finding the summation of the products obtained 
by multiplying each load by the vertical ordinate in the influence diagram under the 
load. ■ 

Assume Cooper’s E-40 followed by a train load of 4,000 per Un. ft. (2,O0Q on each 
truss), as sfrowm in Fig. 16. 
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With Pll on 8-12 the average load on 8-12 is = 2.16 and average load on 

With P12 on 8-12 average load on 8-12 is 19%0 — 2.4 and average load on 12-18 is 
92 + (2) (80) 

120 ~ 

Place P12 at 12. 

Using moment diagram, Ri - 227.4 and Mu = 11,485. 
11 485 

V.C. of stress in D2-3 due to loads on 8-18 is —gj *— — 137. 

Check this result by using ordinates in the influence diagram 

©(})<*»- “ 

©G)®» -190 

©(»<*-« 

(ISDO)'60*-32 9 

(£)©<»-" 
("o)(7)<2><SO) 

136.8 check 

The preceding problem illustrates fully the use of influence lines, but 
to the computer familiar with cantilever bridges purely arithmetical 
methods of computation are just as convenient. 

The arrangement illustrated in Fig. 15 requires wide piers for the 
supports at 7-8 and at 22-23 but makes for economy in the superstructure. 
It is, therefore, adapted to cases in which the piers are of short height 
with shallow foundations. 

The arrangement illustrated in Fig. 13 permits narrow piers to support 
single reactions; but for the same total span requires more steel in the 
superstructure than for the arrangement in Fig. 15. It is, therefore, 
better adapted for cases which require high piers or deep foundations. 

7. Reactions for an Indetermidate Cantilever Bridge.—The compu¬ 
tations for an indeterminate cantilever bridge are as simple as for a 
determinate structure once the reactions have been found. The method 
of finding the reactions for the type illustrated in Fig. 11 is as follows: 

Let Ap =* deflection at b due to P at any point in a-fe. 
\ » deflection at 6 of a-6 due to unit load at 6. 

5* * deflection at b of b-c due to unit load at 6. 
. Bb *= reaction at 6 assumed upward on o-fe. 
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With respect to a-6, Reflection at b = Ap — Rb8i 
With respect to 5-c, deflection at b = Rb82 

Therefore 
Ap — Rbd 1 = Rb$2 

or 
Ap 

81 + 62 

8. Erection of Cantilever Bridges.—Cantilever truss bridges may be 
erected with falsework under the main spans only, that is, under the 
anchor arms or the intermediate spans. The cantilever arms and the 
suspended spans may be erected by building out panel by panel from 
the anchor arm or the intermediate spans, the suspended spans being 
made temporarily continuous with the anchor arms or intermediate 
spans and after erection converted into simple spans by making the 
proper members adjustable. 

For example, in Fig. 15, U12-13 is a member, during erection, of the 
cantilever consisting of the left cantilever arm and left semi-truss of the 
suspended span, and C/17-18 and L18-19 are members, during erection, of 
the cantilever consisting of the right cantilever arm and right semi-truss 
of the suspended span. After the semi-trusses are joined, these members 
are made self-adjusting to expansion and contraction by means of sliding 
joints and carry no dead or live load stress. They rAay be used, however, 
as part of the lateral systems to carry wind loads. In dimensioning the 
suspended span of important structures, exact measurements must be 
obtained by triangulation, checked if possible by direct measurement, of 
the distance between the ends of the cantilever arms, corrected for strain 
due to the weight of the suspended span and estimated temperature at 
the time of joining the semi-trusses. Special means of erection adjust¬ 
ment are provided as illustrated in Art. 9. When the suspended span is 
swung, reversal of dead load stress takes place in the chords of the sus¬ 
pended span, and the dead load stresses in the cantilever and anchor arms 
due to the suspended span are reduced. 

The cantilever method of erection is the usual method, but in a few 
cases (the Quebec Bridge and Highland Park Bridge, Pittsburgh, for 
example) the suspended span has been assembled in the field or on 
barges, floated into place and hoisted bodily into position. 

9. Special Details. 
9a. Erection Adjustments.—Erection adjustments are 

needed when the cantilever method of erection of the suspended span is 
used and afford control of the position of the ends of the semi-trusses 
both vertically and horizontally, and allow the last members erected to 
be brought together and connected. The top chord adjustments are 
always made in the members corresponding to 1712-13 and 1717-18, of 
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Fig. 15, which are in tension during erection, and the bottom chord 
adjustments in the bottom chord members corresponding to LI 1-12 and 
£18-19 of Fig. 15 which are in compression during erection. The tempo¬ 
rary adjusting apparatus is placed near a panel point. 

Figure 19 shows the erection adjustment device of the Cincinnati- 
Newport Bridge. The adjustable top chord member is slotted at its end 
around the truss pin and around the pin of the right roller; thus being 
held in position vertically and laterally while permitting longitudinal 
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expansion. The left roller is attached by its pin to the chord. A short 
temporary eyebar connects the right roller, which is unconnected to the 
chord itself, to the truss pin at the panel point. The wedge between the 
rollers, when moved down by its operating screw, separates the rollers 
and draws the panel points corresponding to U17 and U18 of Fig. 15 
together; and when moved upwards allows these panel points to separate. 
The rollers of the bottom chord adjusting device are attached directly 

Fia. 20-4.—Erecting adjustment devices, Beaver Bridge. 

to different sections of the bottom chord; one section of the chord being 
slotted around the pin of the roller attached to the other section. Lower¬ 
ing the wedges separates the rollers and drives apart the panel points^ 
corresponding to L18 and L19 of Fig. 15. Raising the wedges allows 
these panel points to draw together. In practice the adjustments are 
usually so made at the beginning of erection of the suspended span, that 
the outer ends of the semi-trusses will require only to be lowered by releas¬ 
ing the adjusting apparatus. After erection, the temporary eyebars, 
fftpneSi wedges and rojlers may be removed, leaving the proper chord, 
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members self-adjusting to expansion. The apparatus described above 
gave entire satisfaction. 

The erection adjustment device of the Red Rock cantilever bridge in 
California is the same in principle, but the wedges bore against sliding 
surfaces instead of rollers. 

In the Beaver Bridge the bottom chord was adjusted by means of a 
wedge device and the top chord by a semi-toggle operated by a sort of 

turnbuckle arrangement (Fig. 20A and 205). The same device was used 
for the Sewickley and Monongahela bridges. At the beginning of erection, 
the wedges and toggles were so set that no further extension was needed and 
the final adjustment required was only the lowering of the ends of the 
semi-trusses by releasing the wedges and toggles in order to make the final 
connections. 

In large bridges other erection adjustments are required in order to 
make connections at the panel points under varying conditions of erection 
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stresses. A description of the devices used for the Monongahela Bridge is 
contained in the Engineering Record, April 9, 1904. 

9b. Anchorages.—Anchorages at the shore ends of the anchor 
arms usually consist of eyebars extending down into the abutments and 
attached to girder platforms embedded in the masonry. 

The anchorage for the Monongahela Bridge, Pittsburgh, is shown in 
Figs. 21 and 22. The reaction girders are embedded in the pier 50 ft. 
below the top and have a full capacity of 1,500,000 lb. resistance to uplift 
which is 75 per cent in excess of the computed maximum uplift. The 
30-ft. eyebars connected to the reaction girders engage with the 30-ft. 

Fig. 21.—Anchorage details, Monongahela Bridge. 

eyebars connected to the end of the anchor arm. The anchor end of the 
truss bottom chord has bearing plates riveted thereto which bear on the 
top flanges of the cast steel pedestals. They are locked over the pedestals 
and are adjusted by means of the screws so as to bring the end pin to 
exact bearing in the loaded anchor bars and allow for inaccuracies in 
masonry work and setting of the reaction girders. 

The anchorage adjustment of the Beaver Bridge is shown in Figs. 
23 and 24. This provides adjustment for stretch in the anchorage eye- 
bars. The computed end reaction changes under live load from 2,100,000 
lb. positive to 2,300,000 lb. uplift. Wedges are provided between the 
cast steel blocks which engage the anchorage eyebars within the shoe, 
and the inclined wedge-seats in the shoes. These wedges were driven 
when the eyebars were under maximum stress which prevented subse¬ 
quent shortening of the eyebars under reduced load. 

The stress in the eyebars being constant, the shoes are drawn tight 
to the bridge seat under all conditions of uplift. The anchor eyebars 
connecting the embedded reaction girders and anchorage bearings on top 
of the pier, are fixed; provision for expansion being made through the 
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built-up rockers, 5 ft. long, connecting the anchor arm to the anchorage 
bearing. 

The total computed expansion due to temperature and strain is about 
7 in and the 100,000-lb. longitudinal thrust due to the maximum inclma- 

Fig 23 —One of the anchorage bearings of the Beaver Bridge 
With crosshead block at upper end of anchorage eyebars, wedge adjustment under 

block to hold eyebars in maximum tension, and rocker connection from block to end pm of 
bridge. The bearing takes no wind reaction, this being earned to a special wind abutment 
at middle of end floor beam. 

tion of the rockers is taken up within the shoe itself and prevented from 
affecting the anchorage eyebars by shaping the ends of the eyebar blocks 
as slides fitted into guide jaws formed by the outer webs of the shoes. 

In the Sewickley Bridge, Pittsburgh, the anchorage arrangement is 
similar to that of the Beaver Bridge, except that adjustment for stretch 
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in the anchor eyebars is made by means of an eccentric instead of by 
wedges. The 9^-in. pins taking the lower ends of the short rockers are 
turned to 7% in. at the webs of the shoes and pass through flanged steel 
sleeves seated on the webs of the shoes. The 7%-in. pin holes in the 
sleeves are J12 in* eccentric with the outer circumference of the sleeves, 
and, by turning the sleeves, 1-in. adjustment of the pin is obtainable (Fig. 
25). Final adjustment was made under maximum strain in the eyebars. 

9c. Lateral Systems.—The top lateral system of the sus¬ 
pended span may end at portals between the end posts, and the wind 
loads transferred to the bottom lateral system of the cantilever arm; or 
the top lateral loads may be transferred to the top lateral system of the 
cantilever arm and carried through this system to portals between the 
long diagonals corresponding to Z>8~10 and Z>20-22 of Fig. 15 and thence 
to the piers. In the former case, there are no laterals in the end panels 
(12-13 and 17-18 of Fig. 15) of the suspended span. In the latter case 
special details are required to transler the wind loads past the sliding 
joints in the adjusting top chord members in the end panels of the sus¬ 
pended span ((712-13 and 1717-18 of Fig. 15). Likewise, special details are 
required to transfer tiie bottom lateral loads past the sliding joints in 
the adjusting bottom chord members in the last panels of the cantilever 
arms (L18-19 of Fig. 15). 

Figure 26 shows the bottom lateral transfer of the Thebes Bridge. 
The cantilever span lateral system ends at the floor beam (which is 
the lateral strut of the system) near the sliding joint and the suspended 
span lateral system ends at the other side of the joint; there being an 
independent strut to hold the two chords in position, which was placed 
after the erection of the superstructure. The sliding joint is made with a 
clearance of ^2 in*> but the link arrangement (devised by Ralph Modje- 
ski) transmits wind shearing forces without developing bearing in the 

joint itself. 
In this bridge the top lateral system of the suspended span ends at 

portals between the end posts which transfers the load to the bottom 
lateral systems of the cantilever arm. The top chord member in the end 
panel of the suspended span is therefore a dead member after erection 

and the joint is simply an oblong pin hole. 
In the Inter-provincial Bridge over the Ottawa River, Ottawa, Can., 

the top lateral loads of the suspended span are transferred to the top 
lateral system of the cantilever arm; and the end sections of the top 
chords of the suspended span to which the suspended span laterals are 
riveted, are fitted to slide longitudinally with finished bearings between 
the jaws of the members corresponding to (712-13 and J717-18 of Fig. 15. 
The transverse struts and diagonals of the cantilever arm lateral system 
extending toward the piers are riveted to these members. 
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The wind transfer details of the Beaver Bridge are shown in Figs. 
27 and 24. In this bridge both the top and bottom lateral loads of the 
suspended span are transferred respectively to the top and bottom lateral 
systems of the cantilever arm, without preventing free longitudinal 
motion between the suspended span and the cantilever arm and all 
lateral loads are transferred to the end abutments by means of wind 
pedestals which engage the end floor beams at their centers by means of 

longitudinally sliding joints liped with manganese bronze. The sus~ 
pended span top lateral system ends at the hip joint with a transverse 
strut. The top lateral system of the cantilever arm ends at the middle 
of this strut and is provided with a longitudinally sliding joint between 
guide jaws on the strut, the jaws being lined with manganese bronze. 
The eyebars comprising the top chord corresponding to 1712-13 and 1717- 
18 of Fig. 15 which were used as erection members are laced together to 
form stiff members of the lateral system. 

9<f. Stringer Expansion Bearings.—The stringers require 
expansion bearings at one end in the last panel of the cantilever arm. 
They are usually made by allowing one end of the stringer to slide In 
pockets, as seen in Fig. 27. 
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The tower pier bearing for the Beaver Bridge is shown in Fig. 28. 
The center of the bed of rollers is on the bottom chord center line and 
thus permits rotation of the joint and eliminates secondary bending 
stresses due to truss deformation. The bearing is not an expansion 
bearing properly so-called. 

Fig. 27.—Wind-transfer details at end of suspended span, Beaver Bridge. 

10. Economy.—Theoretical discussions have been advanced purpor¬ 
ting to show that, aside from the question of falsework costs, the canti¬ 
lever bridge has in general no economic advantage over a bridge of the 
same size consisting of simple spans, if the conditions are such that the 
piers may be located with equal economy in any position. But the ele¬ 
ments entering into the problem are too many to be expressed in a formula 
and the deductions from such theoretical discussions are likely to be 
erroneous. The economic advantage of the cantilever design in a par¬ 
ticular case is, however, partly offset as a result of the practice of increasing 
the sectional areas of members subject to reversal of stress under live 
load, on account of such reversal. The practice referred to is a relic of 
the now obsolete practice of reducing the allowable unit stresses in 
members subject to change of stress even of like kind (the reduction being 
a function of the maximum and minimum stresses) and should be dis¬ 
carded. It is entirely reasonable to design members for the maximum 
stress of either kind without reduction of unit stresses on account of 
reversal. 

The cantilever principle has been used to advantage even for small 
bridges where simple spans would ordinarily be used. One instance will 
be cited, namely the cantilever girder bridge at Salamanca, N. Y., details 
of which are shown in Fig. 17. 
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It was necessary to build a bridge of specified dimensions over the 
Oswego River within a certain appropriation. Complete designs and 
estimates were made for a bridge of several simple spans all of the same 
length and several span-lengths were tried. The theoretical criterion 
that the cost of two girders (the only variable quantity in the super- 

,t-*o 

Fig. 28.—Typical details of the tower pier bearing, Beaver Bridge. 

structure) should equal the cost of one pier including excavation and pile 
foundation, was verified. Eighty-foot spans were foundmosteconomical. 
The cost of such a bridge, however, exceeded the appropriation. Designs 
were then made for the cantilever structure shown, with the following 
'results: . 1.. 
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! Cantilever 

bridge 
Simple span 

bridge 

Girders 455,000 lb. at 3% cts. $17,100 

15,200 

Girders 355,000 lb. at 3% cts.i $13,300 
4 piers at $3,800 each. 

4 piers at $3,500 each. 14,000 

$27,300 $32,300 

The foregoing comparison is based on very low contract prices; at 
ordinary prices the economic advantage of the cantilever would be 
greater. The total cost of this structure was about $80,000. 

Fig. 28A.—Tower pier bearing, Beaver Bridge. 

11. Relative Rigidity.—The simple span structure possesses a theoret¬ 
ical advantage over the cantilever in point of rigidity Actual canti¬ 
lever bridges show, however, no lack in this regard under all conditions 
of traffic and the designer should not hesitate to take advantage of any 
economy shown, by comparative designs. 

12. Economical Ratios of Span Lengths.—In cases where the location 
of the piers is not more or less fixed by the ground contour or , other 
restrictions, the relative lengths of the anchor arm or intermediate 



284 MOVABLE AND LONG-SPAN STEEL BRIDGES ISec. 6-13 

span, the cantilever arm, and the suspended span necessary to obtain 
maximum economy, must be decided. The economic ratios of lengths 
will differ for different ratios between dead and live load. For any 
particular case it may be assumed, in making a first approximation, that 
the material in the trusses or girders is proportional to the areas of the 
moment diagrams. Having selected a few arrangements that look 
reasonable, the eurves of total moment for the assumed dead and live 
loads should be plotted. That arrangement which has the least total 
moment area may be selected as the basis of making preliminary designs 
and estimates to determine the correct ratios of lengths. 

It will sometimes be of advantage to increase the lengths of the anchor 
arms and decrease those of the cantilever arms in order to avoid using 
anchorages. 

13. Miscellaneous Data.—The following table gives the span lengths 
of several bridges which are all of the type of the Beaver and Monongahela 
Bridges: 

"">T------- 1 

Each of 2 

anchSr 
arms 

i 

Each of 2 
cantilever 

arms 

Suspended 
span 

Total 

length main 

spans only 

Monongahela. 346 226 

1 

360.0 1,504.0 

Beaver. 320 242 285.0 1,409.0 

Sewickley. 300 200 350.0 1,350.0 

Mingo Junction. 298 195 310.5 1,296.5 

Cincinnati-Newport. 250 156 208.0 | 1,020.0 

Burlington, Iowa. 260 132 216.0 1,000.0 

The following data of quantities (structural steel only) in the main 
spans, omitting approach spans, gives an idea of the magnitude of typical 
cantilevers: 

Beaver.—Two-track railroad bridge 34 ft. 6 in. center to center of trusses. 

Anchor and cantilever arms, 1,124 ft. 

Trusses/bracing, bearings, anchorages. 21,000,000 

Floor. 3,500,000 

24,500,0001b. 

Suspended span, 285 ft. 
Trusses and bracing... 2,220,000 
Boor... 875,000 

3,086,000 U>, 
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Sewichley.—Highway and electric railroad bridge, 32 ft. center to center of trusses. 

Anchorages. 93,000 lb. 

Anchorage arms including tower posts. 4,430,000 lb. 

Cantilever arms.. k. 2,545,000 lb. 

Suspended span. 1,805,000 lb. 

Memphis.—One-track railroad and highway bridge, 30 ft. center to center of 
trusses. 

Anchor span, 226 ft. 1,607,000 lb. 

Cantilever span, 169 ft. 1,252,000 lb. 

East suspended span, 452 ft. 2,330,000 lb. 

Cantilever arm, 169 ft. 1,285.000 lb. 

Intermediate span, 621 ft.. . 5,122,000 lb. 

Cantilever arm, 169 ft. 1.260,000 lb. 

West suspended span, 452 ft. 2,328,000 lb. 

The steel in the main spans of Thebes Bridge weighed about 
28,000,000 lb. 

The steel in the Monongahela Bridge weighed about 14,000,000 lb. 
The steel in Mingo Junction Bridge weighed about 12,000,000 lb. 
The diagram, Fig. 29, shows the comparative lengths (main spans 

only) of typical large American cantilever bridges. 
Note the various types of web systems. The “K” system, used in 

the Quebec Bridge, or the double Warren system used in the Memphis 
Bridge (also Cernavoda Bridge, Fig. 36), gives less distortion and smaller 
secondary stresses than the usual' subdivided Pratt system. 

14. Arched Cantilever Bridges,—Strained attempts to disguise the 
true character of a structure should never be made. Most attempts at 
disguise end in failure and show poor judgment and bad taste. Such 
bridges as the Quebec (Fig. 29), Cernavoda1 (Fig. 36), Monongahela 
(Fig. 29) and Red Rock (Fig. 33) are pleasing structures, because their 
true nature is expressed. The Jubilee Bridge,2 Calcutta, India, on the 
other hand, is not a success esthetically because the camel-back truss 
supported at intermediate points does not carry out the cantilever idea 
suggested by the relationship between substructure and superstructure 
(Fig. 31). Cantilever bridges can, however, be built on arch outlines 
with good effect and at the same time conform to structural requirements. 
The cantilever principle gives a correct solution in cases where arches 
suit the topography but where proper foundations for true arches are 
secured with difficulty. 

The Arroya Del Chico railroad bridge Mexico (Fig. 30) is a deck 
truss bridge built over a deep gorge and consists of two anchor arms of 105 
ft. each, two cantilever arms of 135 ft. each, and a suspended span of 120 
ft. The top chord is horizontal. The bottom chords of the anchor arms 
are circular segments and the bottom chords of the cantilever arms and 

lSee Eng* News, Aug. 27, 1896 and R. R. Gazette, Nov* 29, 1895. 
•See Eng. Record, Oct. 4, 25, 1890. 
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suspended span form a circular segment. The depth at the piers between 
anchor arms and cantilever arms is 63 ft. The structure as a whole 
presents the appearance of a spandrel braced arch with two semi-arch 
approach spans. 

The gorge is through solid rock and a better solution would have been 
to make the center span a true arch which could have been erected by the 

Blackwells Island or Queensboro Bridge Mew York. NY 

Memphis Bridge Tennesee 

Beaver Bridge Beaver fb 

Fig. 29.—Outlines of large American cantilever bridges. 

cantilever method, and, after joining at the center, have supported live 
loads by arch action. Or, the suspended span could have been omitted 
and the cantilever arms extended and connected by a sliding joint, 
the structure being partially continuous. Several so-called balanced 
cantilevers, both steel and reinforced concrete girders, have been built 
on* the latter principle to give the appearanoe of arches when the founda¬ 
tions were not suitable to support true arched bridges. 
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Davis Avenue Bridge, Allegheny, Pa., is another example of a canti¬ 
lever built on the lines of a spandrel braced arch. The bridge is over a deep 
ravine and consists of two anchor arms, 95 ft. each, two pier panels 25 ft. 

Fig. 30.—Arroya. Del Chico Bridge, Mexico. 

each, two cantilever arms 39 ft. each and a 78-ft. suspended span. The 
depth over the , piers is 55 ft. The top chord is horizontal (the bridge 
being a deck structure) and the bottom chords form circular segments 
as in the .Arroya Del Chico Bridge. 

Fig. 31.—Jubilee Bridge over Hooghly River, Calcutta, India. 

Riverside Drive viaduct over 96th Street, New York City, is a canti¬ 
lever built on the lines of an arch with suspended span omitted. This is 
a deck steel structure supported on steel columns at the curbs with masonry 
anchor piers beyond the sidewalks. The anchor arms, about 20 ft. each, 

Fig. 32.—Pont de Fran8, sur la Sa6ne a Ville-franche, France. 

span the sidewalks and the cantilever arms about 35 ft. each, join over the 
center line of the street. The cantilever design was adopted because the 
cost of foundations suitable for a masonry arch would have been excessive. 

The Passy Bridge over the Seine River, France, is a beautiful struc¬ 
ture, comprising anchor, cantilever and suspended spans, and resembles 
a series of flat arches with semi-arch approach spans. The narrow por¬ 
tions between chords have solid webs with arched spandrel openings. 
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15. Some Esthetic Considerations.—The Pont de Frans1 over the 
Saone River, France, is one of the most beautiful examples of a cantilever 
structure, exhibiting extreme grace of outline while conforming to struc¬ 
tural requirements (Fig. 32). In contrast to this is the Jubilee Bridge 
(Fig. 31) which is, taken as a whole, discordant, although the trusses have 
graceful outlines. The Red Rock cantilever (Fig. 33) lacks the graceful 

i i 
' 4-^00---X-600‘- 

Fig. 34.—Marietta Bridge. 

1 T * 
--*!*- -/fp-’-'j— -&0—+1 

curves of the Pont de Frans, but is nevertheless, a beautiful structure in 
the same sense that the modern automobile, in comparison with the early 
“horseless carriage,” is a beautiful object. Combining excellence of 
proportion with complete adaptation to conditions, it is a perfect expres¬ 
sion of fitness. The Marietta and Winona bridges (Figs. 34 and 35) are, 
compared with the Pont de Frans and the Red Rock cantilever, at the 

Fig. 35.—Winona Bridge. 

Other extreme of the scale. Lacking symmetry and graceful outlines 
and proportions—in fact, disregarding almost every requirement of 
beauty—they are almost fascinating for ugliness. 

If any criticism may be made of the Forth Bridge, Scotland, it is that 
the suspended spans are not in proportion to the massive cantilevers. 

Fig. 36.—Bridge over Danube River, Cernavoda, Roumania. 

The Quebec Bridge, although consisting of straight lines instead of curves, 
is in the main structure excellently proportioned and impressive, but 
the comparatively insignificant deck approach spans detract from its 
effectiveness as a whole. The good effect of the Beaver Bridge is partly 
offset by an unsymmetrical arrangement of approach spans. 

* See Genie Oivti, Oct. 31,1903; "Annals de Pont et Chaussees,” 1 Trimestre, 1903. 
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16. San Francisco-Oakland Bay Bridge, East Bay Crossing.—Of the 
many excellent examples of steel cantilever bridges which have been 
constructed since 1923, that of the East pay Crossing of the San Fran- 
cisco-Oakland Bay Bridge is outstanding in many respects. It is not 
only a major part of the largest bridge in the world, but it is the longest 
and heaviest in the United States. Only two other cantilever bridges 
in the world have longer spans, the Firth of Forth Bridge, Scotland, 
with a span of 1,700 ft., and the Quebec Bridge, Canada, with a span 
of 1,800 ft. The East Bay cantilever has a main span of 1,400 ft., side 
spans of 508 ft. each, and a vertical clearance above mean high water of 
185 ft. (Fig. 37). 

Fig. 37.—Cantilever span, San Francisoo-Oakland Bay Bridge. (Courtesy of the American 
Bridge Co.) 

This bridge is also noteworthy because of the large amounts of high- 
strength steels used in its construction. Of the total 22,500 tons of steel 
required, there were 3,600 tons of nickel steel, 9,600 tons of silicon steel, 
and 3,000 tons of high tensile strength eyebars. These eyebars are 
arranged in two tiers, one over the other, so that all members made up 
of such bars have a depth comparable to that of the built-up members. 
This arrangement adds considerably to the appearance of the bridge. 

The superstructure at the west end is anchored in a fixed position to 
a concrete pier, which also provides a seat for a flanking span. The other 
thiee supports consist of steel towers or bents about 150 ft. high, resting 
on masonry piers. No expansion joints are provided in the floor except 
at the extreme easterly end. Expansion of the main trusses is permitted 
by flexure of the steel towers or bents. Because of this arrangement the 
main diagonal web members extend in a continuous fashion from one 
end of the structure to the other, without interruption by vertical hangers 
at the ends of the suspended span. 





SECTION 6 

SUSPENSION BRIDGES1 

Copyright, 1923, 1943, by D. B. Steinman 

STRESSES IN SUSPENSION BRIDGES 

1. The Cable. 

la. Form of the Cable for Any Loading.—A cable suspended 
between two points will assume the outline corresponding to the equili¬ 
brium polygon of the applied loads (Fig. la). 

The end reactions (7\ and jT2) will be inclined and will have hori¬ 
zontal components //. If all the loads are vertical, H will be the same for 
both end reactions, and will also equal the^horizontal component of the 
tension in the cable at any point. H is called the horizontal tension of 
the cable. 

Fig. 1.—The cable aa a funicular polygon. 

If M' is the bending moment produced at any point of the span by the 
vertical loads and reactions, calculated as for a simple beam, the ordinate 
of the cable curve at that point (measured from the closing chord) will be 

y 
w 

= H (1) 

'See also Steinman’s “Suspension Bridges, Their Design, Construction, and 
Erection,” John Wiley & Sons, New York, 1922. 

289 
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Since H is constant, the curve is simply the bending moment diagram for 
the applied loads, drawn to the proper scale. If f is the sag of the cable, 
or ordinate to the lowest point C, and if is the simple-beam bending 
moment at the same point, then H is determined by 

M 
H = y* (2) 

To obtain the cable curve graphically, simply draw the equilibrium 
polygon for the applied loads, as indicated in Fig. la, 6. The pole dis¬ 
tance H must be found by trial or computation so as to make the polygon 
pass through the three specified points, A, B and C. The tension T at 
any point of the cable is given by the length of the corresponding ray of 
the pole diagram. H> the horizontal component of all cable tensions, 
is constant. If <p is the inclination of the cable to the horizontal at any 
point, 

T = H sec (p (3) 

It should be noted that the tensions T in the successive members of the 
polygon increase toward the points of support and attain their maximum 
values in the first and last members of the system. 

If V is the vertical shear at any section of the cable, the slope at that 
point will be 

tan ip = 
H (4) 

16. The Parabolic Cable.—If a cable carries a uniform dis¬ 
tributed load (w per horizontal linear unit), the resulting equilibrium 
curve is a parabola. The horizontal tension is 

'3r'^ - -g (5) 

With the origin of coordinateiTatrthe crown, the equation of the curve is 

(6) 

If the origin is taken at one of the supports (as A, Fig. 1), the equation 

becomes 
4Jx 

(l - x) (7) 

The maximum tension in the cable, occurring at either support, will be 

r, = VH' + (HwO* (8) 
or 

y)l* -- 

T i = g^rVl + 16nl 

where n denotes the ratio of the sag / to the span l. 

nm{ 

(9) 

ttO) 
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The inclination of the parabolic cable at the support is given by 

tan (pi = 
l 

4 n (U) 

The exact length of the parabola between two ends at equal elevation 
is given by 

L = |(1 + 16n2)* + L log.[4n + (1 + 16w2)*] (12) 

When a good table of hyperbolic functions is available, a more expeditious solu¬ 
tion is given by the equation 

L » j^(2u + sinh 2u) (13) 

where u is defined by sinh v « 4n. 

An approximate formula for the length of curve is 

£ - 1(1 4 Hn2 - 3%n4) (14) 

where n is defined by Eq. (10). For small values of the sag-ratio n, it will 
be sufficiently accurate to write 

L = 1(1 + Hn2) (15) 

for the length of a parabolic cable in terms of its chord 1. 

The following table gives the values of L as computed by the exact and approxi¬ 

mate formulas, respectively. 

Sag-ratio Length ratio = ^ 

-f 
Es@.ct (Eq. (12) or (13)) Approx. (Eq.(14)) 

0.05 1.00662 1.00663 

0.075 1.01475 1.01480 

0.1 1.02603 L.02603 

0.125 1.04019 1.04010 

0.15 1.05693 1.05676 

0.175 1.07647 1.07566 

0.2 1.09822 1.09643 

1 c. Unsymmetrical Spans.—If the two ends of a cable span 
are not at the same elevation, the ordinates y should be measured verti¬ 
cally from the inclined closing chord AB (Fig. 2). If that is done, all of 
the principles derived above will remain applicable, and Eqs. (1) to (7), 
inclusive, may be kept unchanged. 

For a load uniform along the horizontal, the curve will be a parabola, 
and its equation, referred to the origin A and to the axis AB, will be as 
before 

(7) 
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If it is desired to refer the curve to the horizontal line AD, with which 
the closing chord makes an angle a, the equation becomes 

2/' = - x) + x tan a (16) 

The lowest point of the curve, V, is located by the abscissa 

x. = \(l +fiance) ■ (17) 

To find the exact length of the curve, apply Eq. (12) or (13) to the 
segments VA and VB (Fig. 2), treating each of these segments as one- 
half of a complete parabola, and add the results. 

Fig. 2.—Unsymmetrical parabolic cable. Fig. 3.—Parabolic cable in side span. 

An extreme case of the unsymmetrical parabolic curve occurs in the 
side-span cables of suspension bridges. Using the notation shown in 
Fig. 3> the equation of the curve may be written, similar to Eq. (7), 

Vi = - *1) (18) 

Here, again, y\ and/i are measured vertically from the closing chord, and 
X\ and h are measured horizontally. 

The true vertex of the curve or lowest point V will generally be found, 
by an equation similar to Eq. (17), to be outside point D (Fig. 3). The 
exact length of curve will be VA mipus VD, or the difference between two 
semi-parabolas each of which may be calculated by Eq. (12) or (13). 

An approximate value of the cable length in a side span is given by 

Li = h(sec <*i + ~ -£j~) ^ (19) 
\ 3 sec3ai/ 

where 

«i = T (2°) 
Cl 

Similar to Eq. (1), the side span cable ordinates are given by 
M' 

2/i = f- (21) 

and, similar to Eq. (5), we have 

(22) w 1*1* 

8/, 
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In order that the main and side spans shall have equal values of H, 
the necessary relation between the sags is 

ll = “ill2 (23) 
/ wl2 (6) 

The stress at any point of the cable is given by Eq. (3) or by 

T = H(l + tan2 <p)H (24) 
l ^ 

At the center of the side span, where X\ = and the inclination is 

equal to on, 

T = H(1 + tan2 ai)^ (25) 

At the support, where Xi = 0, the inclination of the cable is given by 

4/l (26) tan <pi = tan a\ + 

and the maximum street* in the cable is 
h 

Ti = H sec <pi (27) 

Id. The Catenary.—If the load w is not constant per hori¬ 
zontal unit, but per unit length of the curve, as is the case when the load 
on the cable is due to its own weight, the cable curve is a catenary with 
the equation 

y = (eCI + e-'x - 2) (28) 

where w 
c = il 

Using hyperbolic functions, Eq. (28) may be written 

y = ~ (cosh cx — 1) (29) 

The total length of the catenary (between two ends at equal elevation) 
is given by 

1 cl cl 

L=c(e 2-e~2) (30) 

or, expressed in hyperbolic functions, 

L=l sinh|Z (31) 

Equations (29) and (31) are useful in computations for the guide 
wires employed for the regulation of the strands in cable erection. If 
the length L is known, Eq. (31) may be solved for the parameter c, using 
a method of successive approximations, and the ordinates then obtained 
from Eq. (29). Good tables of hyperbolic functions will expedite the 

solution. 

The length from the vertex to any point of the catenary is also given by 

L * ~ \/2cy + c V 
c 

which may be used for unsymmetrioal catenaries. 

(32) 
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The stress at any point will be 

r = ^ («" + e-“) (33) 

or, in hyperbolic functions, 
* 

T — H cosh cx. (34) 

The last equation may also be written in the convenient form 

T = wy + H (35) 

At the span center, wfiere y *» 0, this gives T — H; and at the supports where y =* 
f, we have 

Ti**uf+H (36) 

f 
If the sag-ratio (n = -p is small, all of the formulas for the catenary 

may be replaced, with sufficient accuracy, by the formulas for parabolic 
cables. 

le. Deformations of the Cable.—As a result of elastic 
elongation, slipping in the saddles, or temperature changes, the length 
of cable between supports may alter by an amount AL; as a result of tower 
deflection or saddle displacement, the span may alter by an amount AL 
The resulting center deflections, or changes in cable-sag, are then given by 

15 
- + 16n (5 - 24w2) AL 

(37) 

15 - 40n2 + 288ft4 A, 
AJ ~ 16ft(5 - 24ft2) 

(38) 

For a change in temperature of t degrees, coefficient of expansion co, 
the change in cable length will be 

AL = utL (39) 

For any loading which produces a horizontal tension H, the elastic 
elongation will be, very closely, 

AL=fg (40) 

where E is the coefficient of elasticity and A is the area of cross-section 
of the cable. Another expression for the elastic elongation is 

^-EiO+T”’) <41) 
2. Unstiffened Suspension Bridges.—The unstiffened suspension 

bridge is not used for important struc¬ 
tures. The usual form, as indicated in 
Fig. 4, consists of a cable passing over 
two towers and anchored by backstays 

Fio. 4.—Unstiffened suspension bridge. ^ a firm foundation. The roadway is 
suspended from the cable by means of hangers or suspenders. As 
there is no stiffening truss, the cable is free to assume the equilibrium 
curve of the applied loading. 
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2a. Stresses in the Cables and Towers.—If built-up chains 
are used, as in the early suspension bridges, the cross-section may be 
varied in proportion to the stresses under maximum loading. In a wire 
cable, the cross-section is uniform throughout. 

As the cable and hangers are light in comparison with the roadway, 
the combined weight of the three may be considered as uniformly dis¬ 
tributed along the horizontal. Let this total dead load be w lb. per lin. 
ft. The cable will then assume a parabolic curve; and all of the relations 
represented by Eqs. (5) to (15) will apply. 

For a uniform live load of p lb. per lin. ft., the maximum cable stress 
will occur when the load covers the whole span, and will have a value 

T, = (1 + 16n')* (42) 

Adding the dead load stress, we obtain the total stress in the cable at the 
towers: 

T'. iP) = (1 + 16n’)H (43) 

If a i is the inclination of the backstay to the horizontal (Fig. 4), 
the stress in the backstay will be 

Ti — H sec a.\ (44) 

If cable and backstay have equal inclinations at the tower, their 
stresses, represented by Eqs. (43) and (44), will be equal. 

The vertical reaction of the main cable at the tower is (iw + p) 

If the backstay has the same inclination as the cable, it will also have 
the same vertical reaction, so that the total stress in the tower will be 

T = (w + p)l (45) 

26. Deformations under Central Loading.—Under partial 
loading, the unstiffened cable will be distorted from its initial parabolic 
curve. It is required to find the de¬ 
flections produced by the change of 
curve, disregarding for the present 
any stretching of the * cable or any 
displacement of the saddles. 

The maximum vertical deflection at 
the center of the cable will occur when 
a certain central portion of length hi is covered with live load pf in 
addition to the dead load w covering the whole span (Fig. 5). 

Fig. 5.—Loading for maximum vertical 
deflection. 
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V For different values of the load ratio —, we obtain the following values 

for the maximum crown deflection Af: 

For - = 0 
w M 

VO 
h

\ Vi 1 2 3 

k = 1.0 

A/ - 0 

0.64 
0.013 

0.30 
0.022 

0.28 

0.028 

0.25 
0.045 

0.23 

0.067 

0.21 

0.080/ 

From this table we obtain the following empirical values, sufficiently 

accurate between the limits a = -- = Vi to 4: 

0.05 

Q (46) k - 0.20 + 

Af = (0.007 + "0.046? - 0.0075?2)/ 

2c. Deformations under Unsymmetrical Loading.—The 
greatest distortion of the cable from symmetry, represented by the 

maximum horizontal displacement of the low 
point or vertex, V, will be produced by a con¬ 
tinuous uniform load extending for some dis¬ 
tance kl from the end of the span (Fig. 6). 
The maximum deviation e of the crown V from 
the center of the span C will occur when the 
head of the moving load reaches the low point 
V, and is given by 

Fig. 6.— Maximum hori¬ 
zontal displacement of the 
crown. 

= ~ + 
w I w , to* 
p Xp + p* 

(47) 

The uplift of the cable at the center of the span will then amount to 

2e '*■ (48) 
<1 + 2eJ 

We thus obtain the following values: 

S’
 

S
|*

«
 

II &
 

H y 1 H 2 3 4 

e - 0.028 0.036 0.051 0.086 0.105 0.134 0.167 0.191J 

Af - 0.003 0.004 0.008 0.021 0.030 0.045 0.062 0.076/ 

2d. Deflections Due to Elongation of Cable.—The total 
length of cable including the backstays is 

h + 2L\ = l ^1 + % n2 — + 21 i sec cti (49) 
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For a change in temperature of t degrees, the total elongation of cable 
will be 

AL = cot(L 4“ 2Li) (50) 

For the elongation of the cable due to elastic strain, we may write 

AL = + —^ft2^ + 2£i sec5 aiJ (51) 

In addition there may be a contribution to AL from yielding of the 
anchorages. 

If the cable is capable of slipping over the fixed saddles, the resulting 
deflection A/ is obtained by substituting the above values of AL in Eq. 
(37). 

If, however, a displacement of the saddles will occur before the cable 
will slip, any elongation of the backstays will alter the span l but not the 
length L of the cable in the main span. In that case, the combined 
effects of temperature and clastic strain will give: 

AL-.H + fjl (1 + y”) • 
(52) 

Al = —2 sec a>Ui see ai + sec2 (53) 

The resulting deflection Af of the main cable will be: 

4f- 
15 

16(5n - 24ft8) 
AL 

15 - 40n2 + 288n4 
16(5n - 24ft3) M 

(54) 

r 
3. Stiffened Suspension Bridges.—In order to restrict the static 

distortions of the flexible cable discussed in the preceding pages, there is 
introduced a stiffening truss connected to the cable by hangers (Figs. 
7, 13). The side spans may likewise be suspended from the cable (Figs. 
10, 14), or they may be independently supported; in the latter case the 
backstays will be straight (Figs. 13, 16). The main span truss may be 
simply supported at the towers (Figs. 10, 13), or it may be built continu¬ 
ous with the side spans (Figs. 14,16). A hinge may be introduced at the 
center of the stiffening truss in order to make the structure statically 
determinate (Fig. 8), or to reduce the degree of indeterminateness. 

Another form of stiffened suspension bridge is the “braced-chain” 
or “suspension truss” type. Instead of using a straight stiffening truss 
suspended from a cable, the suspension system itself is made rigid enough 
to resist distortion by building it in the form of an inverted arch (Figs. 
17,18.19, 20). 
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For ease of designation, it will be convenient to adopt the following 
symbolic classification of stiffened suspension bridges based on the number 
of hinges in the main span of the truss: 

Side span free 

(Fig. 16) 
Side span suspended 

(Fig. 14) 

Side span free 

Side span suspended 

Side span free 

(Fig. 13) 
Side span suspended 

(Fig. 10) 

Side span free 

(Fig. 8) 
Side span suspended 

= OB 

= IB 
= 2 B 

= SB 

0 

In Types 2F and 3F, the side spans are not related to the main elements of the 

structure and may therefore be omitted from consideration. Hence these types are 

called “single-span bridges.” 

The suspension bridges with straight stiffening trusses will be pre¬ 
sented first. 

3a. Assumptions Used.—In the theory that follows, we adopt 
the assumption that the truss is sufficiently stiff to render the deformations 
of the cable due to moving load practitally negligible; in other words, we 
assume, as in all other rigid structures, that the lever arms of the applied 
forces are not altered by the deformations of the system. The resulting 
thbory is the one ordinarily employed, and is sufficiently accurate for all 
practical purposes; any errors are generally small and on the side of safety. 

If the stiffening truss is not very stiff, or if the span is long, the deflec¬ 
tions of truss and cable may be too large to neglect. To provide for such 
cases, there has been developed an exact method of calculation which takes 
into account the deformations of the system. For lack of space, this 
“Exact Theory” will not be presented here, but the interested reader is 
referred instead to other works on the subject.1 

1 Melan-Stbinman, “Theory of Arches and Suspension Bridges,” pp, 76 to 86, 
McGraw-Hill Book Co., 1913. 

Johnson, Bryan and Turneaure, “Modem Framed Structures,” Part II, 
pp. 276 to 318, John Wiley & Sons, 1911. 

Burr, “Suspension Bridges,” pp. 212 to 247, John Wiley & Sons, ldl'3. 

* OF 

= OS 

= IF 

- IS 
= 2 F 

- 2 S 

- 3F 

* 3*8 
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The common theory developed in the following pages for the analysis of suspension 
bridges with stiffening trusses is based on five assumptions, which are very near the 
actual conditions: 

(1) The cable is supposed perfectly flexible, freely assuming the form *of the 
equilibrium polygon of the suspender forces. 

(2) The truss is considered a beam, initially straight and horizontal, of constant 
moment of inertia and tied to the cable throughout its length. 

(3) The dead load of truss and cable is assumed uniform per lineal unit, so that the 
initial curve of the cable is a parabola. 

(4) The form and ordinates of the cable curve are assumed to remain unaltered 
upon application of loading. 

(5) The dead load is carried wholly by the cable and causes no stress in the stiffen¬ 
ing truss. The truss is stressed only by live load and by changes of temperature. 

The last assumption is based on erection adjustments, involving regulation of the 
hangers and riveting-up of the trusses when assumed conditions of dead load and 
temperature are realized. 

36. Fundamental Relations.—Since the cable in the stiffened 
suspension bridge is assumed to be parabolic, the loads acting on it must 
always be uniform per horizontal unit of length. All of the relations 
established for a uniformly loaded cable (Eqs. (5) to (27)) will apply in 
this case. 

on the stiffening truss. 

If the panel points are uniformly spaced (horizontally), the suspender 
forces must be uniform throughout (Fig. 7). These suspender forces 
are loads acting downward on the cable, and upward on the stiffening 
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truss. It is the function of the stiffening truss to take any live load that 
may be arbitrarily placed upon it and distribute it uniformly to the 

hangers. 
The cable maintains equilibrium between the horizontal tension H 

(resisted by the anchorages) and the downward acting suspender forces. 
If these suspender forces per horizontal linear unit are denoted by $, 
they are given by 

8 = 11^1 (55) 

The truss (Fig. 7) must remain in equilibrium under the arbitrarily 
applied loads acting downward and the uniformly distributed suspender 
forces acting upward. If we imagine the last forces removed, then the 
bending moment M' and shear V' at any section of the truss may be 
determined exactly as for an ordinary beam (simple or continuous as the 
truss rests on two or more supports). 

If the stiffening truss is a simple beam (hinged at the towers), the 
bending moment at any section due to the suspender forces is 

M8 = Hy (56) 

and the total moment at the section will be 

M = M' — Hy (57) 

where y is the ordinate to the cable curve measured from the straight 
line joining A* and B\ the points of the cable directly above the ends of 
the truss (Fig. 7). 

If <p is the inclination of the cable at the section considered, the shear 
produced by the hanger forces is given by 

F, = //(tan (p — tan a) (58) 

and the total shear will be 

V = Vf — //(tan ^ — tan a) (59) 

where a is the inclination of the closing line A'Bf below the horizontal 
(generally zero). 

In Eqs. (57) and (59), the last term represents the relief of bending 
moment or shear by the cable tension //. 

Representing M7 by the ordinates yf of an equilibrium polygon or 
curve constructed for the applied loading with a pole distance = H, Eq. 
(57) takes the form 

M « H(yf - y) - (60) 

Hence the bending moment at any section of the stiffening truss is repre¬ 
sented by the vertical intercept between the axis of the cable and the 
equilibrium polygon for the applied loads drawn through the points 
A’B’{ Fig. 7), 
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If the stiffening truss is continuous over several spans, the relations represented 
by Eqs. (56) to (60), inclusive, must be modified to take into account the continuity 
at the towers. The corresponding formulas will be developed in the section on con¬ 
tinuous stiffening trusses. 

3c. Influence Lines.—To facilitate the study and determina¬ 
tion of suspension bridge stresses for various loadings, influence diagrams 
are most convenient. 

The base for all influence diagrams is the //-curve or //-influence line. 
This is obtained by plotting the equations giving the values of H for 
varying positions of a unit concentration. In the case of three-hingod 
suspension bridges, the //-influence line is a triangle (Figs. 8 and 9). 
In the case of two-hinged stiffening trusses, the //-lines (Figs. 10, 12) 
are similar to the deflection curves of simple beams under uniformly 
distributed load. In the case of continuous stiffening trusses, the //-line 
(Fig. 14) is similar to the deflection curve of a three-span continuous 
beam covered with uniform load in the suspended spans. 

To obtain the influence diagrams for bending moments and shears, 
all that is necessary is to superimpose on the //-curve, as a base, appro¬ 
priately scaled influence lines for moments and shears in straight beams. 

For this purpose, the general expression for bending moments at 
any section (Eq. (57)) is written in the form 

M = y(K. _ u) (61) 

(excepting that in the case of continuous stiffening trusses, y is to be 

replaced by y — ef; see Eq. (158)). 
M' 

For a moving concentration, — repre¬ 

sents the moment influence line of a straight beam, simple or continuous 
as the case may be, constructed with the pole distance?/. If this influence 
line is superimposed upon the //-influence line (Figs. 86, 106, 10c, 146), 
the intercepts between them, multiplied by yf will give the desired bending 
moments M. In the case of stiffening trusses with hinges at the towers, 
Mf is the same as the simple-beam bending moment, and its influence 
line is simply a triangle whose altitude at the given section is 

The 
M' 

y 

86, 106). 

y 4/ 
(62) 

triangles for all sections will have the same altitudes (Figs. 

The corresponding altitude for sections in the side spans is jjr 

(Fig, 10c). The area intercepted between the H-line and the — 
y 

triangles, multiplied by py, give the maximum and minimum bending 
moments at the given section x of the stiffening truss. Areas below the 
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ff-line represent positive moments, and those above represent negative 
moments (Figs. 8, 10, 14). Where the two superimposed lines intersect, 
we have a point K, which may be called the zero point, since a concen¬ 
tration placed at K produces zero bending stress at x. K is also called 
the critical point, since it determines the limit of loading for maximum 
positive or negative moment at x. Load to one side of K yields plus 
bending, and load to the other side produces negative bending. 

The expression for sheaf at any section of the stiffening truss, (Eq. 
(59)), is written in the form: 

V — \  ---— -H1 (tan <p — tan a) (63) 
Ltan <p — tan a J 

where a, the inclination of the closing chord, is generally zero. For any 
given section xy the slope of the cable is constant and is given by 

tan <p — tan a ==-y- ^1 —(64) 

The values assumed by the bracketed expression in Eq. (63) for different 
positions of a concentrated load may be represented as the difference 
between the ordinates of the 77-line and those of the influence line for Vf, 

the latter being reduced in the ratio t-*~r- The latter influence 
° tan (p — tan a 

line is obtained by drawing two parallel lines as and bt (Figs. 9a, 9b, 12a), 
their direction being fixed by the end intercepts 

am — bn — --~- 
tan ip — tan a 

(65) 

The vertices s and t lie on the vertical passing through the given section x. 
The maximum shears produced by a uniformly distributed load are 
determined by the areas included between the H and V' influence lines; 
all areas below the //-line are to be considered positive, and all above nega¬ 
tive. These areas must be multiplied by p(tan <p — tan a) to obtain the 
greatest shear V at the section; and V must be multiplied by the secant 
of inclination to get the greatest stress in the web members cut by the 
section. 

Three-hinged Stiffening Trusses. 
4a. Analysis.—This is the only type of stiffened suspension 

bridge that is statically determinate. The condition of zero bending 
moment at the central hinge enables H to be directly determined. The 
value of H for any loading is equal to the simple-beam bending moment 
(Mo') at ihe center hinge divided by the sag /: 

H 
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The cable will receive its maximum stress when the full span is covered 
with the live load p. In that case 

H = f (67) 

and 
s = V (68) 

Hence, under full live load, the conditions are similar to those for dead 
load, the cable carrying all the load and the trusses having no stress. 
At any section, M = 0 and V = 0. 

For a single load P at a distance kl from the near end of the span, 
the value H will be 

» - ™ (69) 

This value of H will be a maximum for fc ~ yielding 

Max. H = ~ (70) 

The influence line for H is a triangle defined by Eq. (69), and its altitude 

(at the center of the span) is given by Eq. (70) as Figures 8b and 9a 

show the H-line constructed in this manner. 
If the truss is uniformly loaded for a distance kl from one end, the 

value of//will be: 

for = - (71) 

for k>}4, H = (4k - 2fc2 - 1) 

For the half-span loaded, we find 

s = y2V (74) 

One-half of the span is thus subjected to an unbalanced upward load, s - %p, per 
lineal foot, and the other half sustains an equal downward load, p — s The 
maximum moments for this loading, occurring at the quarter points (x — z — 
%l), will be 

Max. M - ± H4pl2 = ±0.01562pZ* (75) 

46. Moments in the Stiffening Truss.—The influence 
diagram for bending moments at any section x is constructed by super¬ 

ior 
imposing the — triangle upon the //-influence triangle, as shown in 

Fig. 86. ' ’ - 
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The two influence triangles intersect a short distance to the left of the 
center, giving the zero point or critical point K. 

Since the two superimposed triangles have the same base and equal 
altitudes, the plus and minus intercepted areas will be equal. Hence, if 
the whole span is loaded, the resultant bending moment at any section 
x will be zero. 

If either of the shaded areas is multiplied by py, it will give the 
maximum value of the bending moment at x. 

The distance kl to the critical point K (Fig. 86) is defined by 

k = (76) 

Fig. 8.—Three-hinged stiffening truss (Type 3F)—Moment diagrams. 

With this distance loaded, we obtain the maximum value of M for any 
value of x. 

The absolute maximum M occurs at x = 0.234Z when k = 0.395, and 
amounts to 

Abs. Max. M = +0.01883pZ2 (78) 

or about lispl*- 
After the maximum moments at the different sections along the span 

are evaluated from the influence lines or from Eq. (77), they may be 
plotted in the form of curves as shown in Fig. 8c. For the three-hinged 
stiffening truss, these maximum moment curves are symmetrical about 
the horizontal axis. They serve as a guide for proportioning the chord 
sections of the stiffening truss. 

4c. Shears in the Stiffening Truss.—The shears produced 
in the stiffening truss by any loading are given by Eq. (59); but the maxi¬ 
mum values at the different sections are most conveniently determined 
.with the aid of influence lines (Fig. 9). 
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l 
The influence line for H is a triangle with altitude = ^ at the center 

of the span. Upon this is superimposed the influence line for shears 
in a simple beam, reduced in the ratio 1: tan <p. The resulting influence 

diagram for shear V at a given section x < ^ is shown in Fig. 9a. There 

are two zero points or critical points at x and at kl. 
is given by 

k = 
3 

1 

The latter point K 

(79) 

Fig. 9.—Shear diagrams for three-hinged stiffening truss (Type 3F). 

With the load covering the length from x to kl, we obtain the maximum 
positive shear at x: 

Max. V (80) 

When x = 0, or for end-shear, k = and we obtain: 

Abs. Max. V = £[ 
o 

When x = we find k — and 

Max. V - 
lo 

(81) 

(82) 

For x > the influence diagram takes the form shown in Fig. 96. There 
is only one zero point, namely at the section x. Loading all of the span 
beyond x, we obtain the maximum positive shear: 

■Kt TT   VX^( _ . X\ ron\ 
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This has its greatest value for x = \il, or at the center, where it becomes 

Max. V = (84) 

The maximum negative shears throughout the span have values 
identical with Eqs. (80) to (84), but with opposite signs. 

Figure 9c gives curves showing the variation of maximum positive and 
negative shears from end to end of the span. The curves are a guide for 
proportioning the web members of the stiffening truss. 

If the two ends of the cable are at unequal elevations, the foregoing results for 
shear (Eqs. (79) to (84), inclusive) must be modified on account of the necessary 
substitution throughout of (tan *p — tan a) for tan y? as required by Eq. (59). 

6. Two-hinged Stiffening Trusses. 
5a. Determination of the Horizontal Tension H.—In these 

bridge systems, the horizontal tension H is statically indeterminate. The 
equation for the determination of H is therefore deduced from the elastic 
deformations of the system. 

Fig. 10.—Moment diagrams fdfr two-hinged stiffening truss (Type 2S). 

The expression for H consists of a fraction whose numerator depends 
upon the loading and whose denominator (N) depends upon the constants 
of the structure. This denominator, for a two-hinged stiffening truss, 
is given by 

AT - |(1 + 2 in*) +' jd + 8»• + | tan *«) 

+ W' f, ‘ T8ec,ai(1 +8ml) (**> 



Sec. 8-5oJ SUSPENSION BRIDGES 307 

where (see Fig. 10a) : 

l = length of main span of stiffening truss, 
li — length of side span of stiffening truss. 
/ = vertical sag of cable in main span (Z). 
fi = vertical sag of cable in side span (h). 

/ = 

h = 

average moment of inertia of truss in main span, 
average moment of inertia of truss in side span. 

i 

A = cable section in main span. 
Ai = cable section in side span (generally equal to A). 
E = coefficient of elasticity of material of truss. 
Ec~ coefficient of elasticity of material of cable. 
V = span of cable, center to center of towers 

(which may be somewhat greater than Z). 
h = horizontal distance from tower to anchorage 

(which may be somewhat greater than h). 
a — inclination of cable chord in main span. 

= inclination of cable chord in side span. 

In the expression for N, (Eq. (85)), the first term is derived from the bending of the 

stiffening truss, and the other two terms from the stretching of the cable in main and 

side spans, respectively. The truss term contributes about 95 per cent, and the 

cable terms only about 5 per cent of the total. Hence certain approximations are 

permissible in evaluating the cable terms. Terms for the towers and hangers have 

been omitted as their contribution to the value of N would be only a small decimal 

of 1 per cent. 

For a concentration P at a distance kl from either end of the main 
span, the value of the horizontal tension will be 

H-±.B{h).P <86) 

where N is given by Eq. (85), and the function 

B(k) - k( 1 - 2k2 + A;3) (87) 

and may be obtained directly from Table 1 or from the graph in Fig. 11. 
The above value of H is a maximum when the load P is at the middle of 
the span; then k = and Eq. (86) yields 

Max-H-wm-p (88> 
Similarly, for a concentration P in either side span, at a distance fa h 

from either end, 

HBM.P (89) 
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where B(ki) is the same function as defined by Eq. (87). This value of 
H is a maximum when the load P is at the middle of the side span; then 

= Y, and Eq. (89) yields 

Max. H = ^ • vr- . P (90) 16 Nn 

Table 1.—Functions Occurring in Suspension Bridge Formulas 

/f-influence 
line 

Critical 
points 

Minimum moments 
H for uniform 

loads 
Shears 

* 1 B(k) C(k) D{k) F(k) 

£
 

k 

&(l-2*2 +**) k+k*-k* (2-k-4k*+3k*)(l -k)n-\ \h U-*)3-(i-*)2+i 

0 0 0 2.0000 0 0.4000 0 
0.05 0.0498 0.0524 1.7511 0.0062 0.4404 0.05 
0.10 0.0981 0.1090 1.5090 0.0248 0.4816 0.10 
0.15 0.1438 0.1691 1.2790 0.0550 0.5232 0 15 
0.20 0.1856 0.2320 1.0050 0.0963 0.5648 0.20 
0.25 0.2227 0.2969 0.8704 0.1474 0.6062 0.25 
0.30 0.2541 0.3630 0.6962 0.2072 0.6472 0.30 
0.35 0.2793 0.4296 0.5445 0.2740 0.6874 0.35 
0.40 0.2976 0.4960 0.4147 0.3462 0.7264 0.40 
0.45 0.3088 0.5614 0.3065 0.4222 0.7640 0.45 
0.50 0.3125 0.6250 0.2188 0.5000 0.8000 0.50 
0.55 0.3088 0.6861 0.1497 0.5778 0.8340 0.55 
0.60 0.2976 0.7440 0.0973 0.6538 0.8656 0.60 
0.65 0.2793 0.7979 0.0593 0.7260 0.8946 0.65 
0.70 0.2541 0.8470 0.0332 0.7928 0.9208 0.70 
0.75 0.2227 0.8906 0.0166 0.8526 0.9438 0 75 
0.80 0.1856 0.9280 0.0070 0.9037 0.9632 0.80 
0.85 0.1438 0.9584 0.0023 0.9450 , 0.9788 0.85 
0.90 0.0981 0.9810 0.0005 0.9752 0.9904 0.90 
0.95 0.0498 0.9951 0.0003 0.9938 0 9976 0.95 
1.00 0 1.0000 0 1.0000 1.0000 1.00 

By plotting Eqs. (86) and (89) for different values of k and ki, we 
obtain the ^-curves or influence lines for H (Figs. 10, 12). The maxi¬ 
mum ordinates of these curves are given by Eqs. (88) and (90). 

For a uniform load of p lb. per ft., extending a distance kl from either 
end of the main span, we find 

H = sjL-W-P* (91) 
where the function 

Fk - *$(*)» - % V + k> (92) 

and may be obtained directly from Table 1 or from the graph in Fig. 11. 
For k - 1, F(k) = 1. 

For similar conditions in either side span, ws find, for a loaded length 
kill, 

“ -6m-ir*v-F(ki)-pi1 
where F(ki) is the same function as defined by Eq. (92). 

(93) 
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The horizontal component of the cable tension will be a maximum 
when all spans are fully loaded (k = 1 and ki = 1), giving 

Total H = ~~^(1 + 2ir*v)pl (94) 

For a live load covering a portion JK of the main span, from x — jl to x = hi, 

H = -mim os) 

The graph of F(k) in Fig. 11 shows the proportional increase in the value of H as 
a uniform load comes on and fills the main span (or either side span). 
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56. Moments in the Stiffening Truss.—With all three 
spans loaded, the bending moment at any section of the main span will be 

Total M = | px(l - x) [l - ~ (1 + 2frs*>)] (96) 

and, at any section of the side spans, 

Total Mi = l2pxi(h - xi) [l - ^(1 + 2irh) (97) 

The influence diagrams for bending moment are constructed, in 
accordance with Eq. (61), by superimposing the influence triangle for 
M' 
— on the ^-influence curve: The H-curve is plotted with ordinates 

M' 
given by Eqs. (86) and (89); the — triangles have a constant height, 

Z ^ 
^ in the main span and in the side spans. The resulting influence 

diagrams are shown in Figs. 106 and 10c. The intercepted areas, 
multiplied by py, give the desired bending moments; areas below the 
fl-curve represent positive or maximum moments, and those above repre¬ 
sent negative or minimum moments. 

For any section in the main span there is a zero point or critical 
point K (Fig. 106), represented by the intersection of the superimposed 
inffuence lines. The distance kl to this critical point is given by the 
relation 

C(k) = k + k2 -ks = Nn~ (98) 

Values of the function C(k) are listed in Table 1 and plotted in a graph 
in Fig. 11, to facilitate the solution of Eq. (98) for k. 

The maximum negative moment at any section of the main span is 
obtained by loading the length Z — kl in that span and completely loading 
both side spans; this yields 

Min. M = — [D(k) + 4irh] (99) 

where the function 
D(k) « (2 - k - 4fc2 + 3ft3)(1 - ft)2 (100) 

and is given, for different values of ft, by Table 1 and by the graph in 
Fig. 11. The value of ft obtained from Eq. (98) is to be used. 

For the sections near the center of the span, from x' * • l to l — x', there are 

two critical points (see dotted diagram, Fig. 106); it is necessary to bring on some load 
also from the left end of the span; consequently for these sections there must be added 
in Eq. (99) to D(k) corresponding to the given section x the value of D{k) correspond¬ 
ing to the symmetrically located section (l — x). 

The maximum positive moments are given by the relation 
Max, M = Total M — Min. M (101) 
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The loading corresponding to this moment is indicated in Fig. 10b; only 
a portion of the main span is loaded, the side spans being without load. 

There are no critical points in the side spans. For the greatest 
negative moment at any section Xi in one of the side spans, load the other 
two spans (Fig. 10c), giving 

Min. M1 = -yi.• pi (102) 

Loading the span itself produces the greatest positive moments, 
which are obtained by the relation 

Max. M\ = Total M{ — Min. Mi (103) 

The maximum and minimum moments for the various sections of a 
stiffening truss (Type 2S), as calculated from Eqs. (99), (101), (102), 
(103), are plotted in Fig. 10d) to serve as a guide in proportioning the 
chord members. 

5c. Shears in the Stiffening Truss.—With the three spans 
completely loaded, the shear at any section x in the main span will be, 

Total V = \ p{l - 2x) [l - -Jy(l + 2irh)\ (104) 

and, in the side spans, 

Total Vt J P(h - 2*x) [l - . £. (1 + 2ir*v)] (105) 

Fig. 12.—Shear diagrams for two-hinged stiffening truss (Type 2S). 

The influence diagram for shear at any section is constructed accord¬ 
ing to Eq. (63) by superimposing on the ff-curve (Eqs. (86) and (89)) 

V' 
the influence lines for r—— The latter will have end intercepts = cot <p tan <p 
where <p is the slope of the cable at the given section. The resulting 
influence diagram is shown in Fig. 12a. The intercepted areas multiplied 
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by p tan <p, give the desired vertical shears V. Areas below the //-curve 
represent positive or maximum shears, and areas above represent negative 
or minimum shears. 

Loading the main span from the given section x to the end of the 
span, we obtain the maximum positive shears by the formula: 

M“:v-M1-r)’[1-|(5-r)-0(f)] <106) 
where the function 

ff(r)-l(1-r)'-(1-r)! + 1 (107) 
and is given by Table 1 and the graph in Fig. 11. 

For the sections near the ends of the span, from x — 0 to £ = the loads 

must not extend to the end of the span to produce the maximum positive shears, but 
must extend only to a point A'(Fig. 12a) whose abscissa x — kl is determined by the 
following equation: 

C(k) = k + fc* - fc» - | • r_^ (108) 

For these sections, the positive shears given by Eq. (106) must be increased by an 
amount: 

Add. V = |p(( 1 - k'f ■ [ia-r)°«‘>-‘] (109) 

where the function 

G(k) = \ (1 - fc)» - (1 -*)« + ! (110) 

and, like the same function in Eq. (107) is given by Table 1 and the graph in Fig. 11. 
Equation (108) for the critical section is also solved with the aid of Table 1 or the 

graph in Fig. 11. 

There are no critical points for shear in the side spans. The influence 
diagram Fig. 126 shows the conditions of loading. For maximum shear 
at any section x\} the load extends from the section to the tower, giving 

?)’ t1 - - f) 0©] ‘U1> 
where G (y1) is the same function as defined by Eqs. (107) and (110). 

The maximum negative shears in main and side spans are given by 
the relations 

Min. 7= Total 7-Max. 7 (112) 
and 

Min. 7i = Total 7i — Max. 7i (113) 

The maximum positive and negative shears for different sections 
of the main and side spans, as given by Eqs. (106), (109), (111), (112) 
and (113), are plotted for a typical suspension bridge, in Fig. 12c, to 
serve as a guide in proportioning the web members. 
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6d. Temperature Stresses.—The total length of cable 
between anchorages is, by Eqs. (15) and (19), 

l-'(, + !"■)+a ,(«*«■+1 <ii4> 

Corrections should be added to this value of L for any portions of the 
cable not included in the spans l or h. 

Under the influence of a rise in temperature, the total increase in 
length between anchorages will be 

A = <atL (115) 

and the resulting cable tension will be 

yj   3jEl • cotL 
Ht = ~ ~PN~ 

(116) 

where N is given by Eq. (85) and L by Eq. (114). (For an extreme 
variation of t = ± 60° F., Eut — 11,720.) 

The resulting bending moment at any section of the truss is given by 

Mt = ~Hty (117) 

and the vertical shear by 

Vt = — Hf(tan <p — tan a) (118) 

where <p is the inclination of the cable at the given section, and a is the 
inclination of the cable chord (see Eq. (64)). 

6c. Deflections of the Stiffening Truss.—For any specified 
loading, the deflections of the stiffening truss may be computed as the 
difference between the downward deflections produced by the applied 
loads and the upward deflections produced by the suspender forces, the 
stiffening truss being treated as a simple beam (for Types 2F and 2/S). 
The suspender forces are equivalent to an upward acting load, uniformly 
distributed over the entire span, and amounting to 

s = (55) 

For a uniform load p covering the main span, the resultant effective 
load acting on the stiffening truss will be 

p_s = p( aw) 
and the resulting deflection at mid-span will be 

, JW i _ .AN?!4 
a ~~ 384 \1 5N/EI 

(120) 

For any loading, the upward deflection at any section x due to the suspender 
forces will be 

d" Jll 
ZEI <i) H (121) 
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where the function B^ is defined by Eq. (87). If d' is the downward deflection at 

the same section due to the applied loads, the resultant deflection will be 

d - d' - d" (122) 

If merely the half-span is loaded with p per unit length, the deflection at the quarter 

point will be, in the loaded half, 

and, in the unloaded half, 
= *;L(S1 

57 8 \ pP 
2 * bN ) El 

1 /57 8 

d 6,144 V 2 5# 
- 26) pi* 

El 

(123) 

(124) 

Whatever the value of the structural constant N, the relative deflection of the two- 
quarter points will be, for this loading, 

d *■ 
384 El (>)■ (125) 

The deflections produced by temperature effects or by a yielding of the 
anchorages are given by 

<i26> 
where the function is defined by Eq. (87) and is given by Table 1 

and the graph in Fig. 11. 
5/. Straight Backstays (Type 2F).—If the stiffening truss 

is built independent of the cables in the side spans (Fig. 13), the backstays 

Fio. 13.—Two-hinged stiffening truss with straight backstays (Type 2F). 

will be straight and/i = 0. Consequently all terms containing/i, yi, 

Ui = y, or v *= y will vanish in Eqs. (85) to (126), inclusive. 
n J 

The side spans will then act as simple beams, unaffected by any 
loads in the other spans; and the main span and cable stresses will be 
unaffected by any loads in the side spans. 

The denominator of the expression for H (Eq. 85) will then reduce to 

AT 8,3/ El1.1 I o o\ I 6/ E 1% o /'1<V7\ 

^ = 5+ Jp'Y.'T '(1 + 8n) + Z^‘F/rsec (127) 

Equations (89), (93), and (102) will vanish. 
The maximum value of H will be produced by a uniform load p 

covering the main span, and will be, by Eq. (94), 

tt Pi /i no\ 
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The bending moment at any section x of the main span will then be, 
by Eq. (96), 

Total M = i px(l — x)(l — ™) (129) 

The greatest negative bending moment will be, by Eq. (99), 

Min. M = — 2pX(^ X) ■ D(lc) (130) 

The greatest positive moment is then given by 

Max. M — Total M — Min. M (101) 

In the side spans, there will be no negative moments. The greatest 
positive moments will be 

Max. Mi Total Mi = }ipiXi(li — Xx) (131) 

With load covering the entire span, the shears in the main span will 
be, by Eq. (104), 

Total V = y2P(l - 2x) (l - (132) 

and, in the side spans, by Eq. (105), 

Total 7i = }4pi(li — 2xi) (133) 

The maximum shears in the main span will be given by Eqs. (106), 
(108) and (109). In the side span, the maximum shears will be, by Eq. 

Max. Fi = y2Vxh{ 1 - X^)2 (134) 

exactly as in a simple beam. 
The total length of cable will be, by Eq. (114), 

L = V ^1 *f- g ws) 4* 2h ■ sec aj (135) 

and the temperature stresses are then given by Eqs. (116), (117) and 

(118). 

6. Hingeless Stiffening Trusses (Types OF and OS). 

6a. Fundamental Relations.—Hingeless stiffening trusses 
are continuous at the towers; hence there will be bending moments in the 
truss at the towers (Fig. 14a). 

For any loading, the resultant bending moments in the main span 
will be given by (Fig. 15): 

M = + (136) 

and, in the side spans, by: 

M - Mo+^-Mut - H(yi - j^e/) (137) 
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where: 
Mo = the simple-beam bending moment at the section x, 

due to the downward loads. 
Mi, M2 = the bending moments at the towers, due to the 

downward loads. 
e = a constant of continuity defined by 

2 + 2 irv e = 
3 + 2 ir (138) 

The ratio-constants i, r, and v are defined under Eq. (85). The abscissa 
xi is measured from the free end of the span and yi is the vertical ordinate 
of the side cable below the connecting chord D'Af (Fig. 14a). 

If any span is without load, M0 for that span will vanish. 

Fig. 14.—Moment diagram for continuous stiffening truss (Type OS). 

The term containing H in Eq. (136) or (137) represents the moments 
M8 produced by the upward-acting suspender forces. The other terms 
give the moment M' due to the downward-acting loads (M = M' — MB). 

For any loading, the resultant shears in the main span will be given 
by: 

V = F„ + — ~ Ml - H(tan <p - tan a) (139) 

and, in the side spans, by: 

V = F0 ± ^ - f(tan - tan a, - f) (140) 

where: 

Vo = the simple beam shear at the section, due to the downward loads 
and the other symbols are as defined above. 

If any span is without load, Vo for that span will vanish. If the two 
towers are of equal height, then, in the main span, a « 0. 

66. Moments at the Tower (Types OF and OS).—The 
values of the end moments Mi and Af2, used in Eqs. (136) to (140), 
may be determined for any given loading, by the Theorem of Three 
Moments, 
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For a concentration P in the main span, at a distance kl from the left 
tower, we thus obtain, 

M, - -PI..«1 - k)&(141) 

M2 = -PI. /c(l — k)-l 

(3 + 2tr)(l + 2ir) 
(3 + 2ir)k + 2ir 

(142) 
7 (3 + 2*r)(l + 2 tr) 

For a concentration P in the left side span, at a distance klx from the 
'outer end, 

M _ p,2fr2(l + ir)(k - fc3) 

•= +PZ 

(3 + 2fr)(l + 2zV) 
ir2(& — fc3) 

'{3 + 2ir)(l + 2ir) 
For a uniform load covering the main span, we obtain 

pi2 
My = M2 = 

4(3 + 2z>) 

For a uniform load covering the left-side span, we obtain 

pyP_2ir3(l + ir) 
~4~* (3T 2^r)(i'T 2?>) 

ir3 

My = 

/If — 4- ^ — 
2 ~ + 4"' (3 + 2»r) (1 + 2ir) 

For a uniform load covering all three spans, we obtain 

Mi = M2 = L+iEi 
1 2 4 3 + 2t'r 

(143) 

(144) 

(145) 

(140) 

(147) 

(148) 

6c. The Horizontal Tension H.—For the continuous type of 
suspension bridge, the denominator of the expression for H will be 
(in place of Eq. (85)): 

N = l~ 4e + 3e2 + 2irQv* + e2 - 2ev) +£• J~. j (1 + 8n2) 

+ ¥e'ljp'T sec*ai(1 + 8ni2) (149) 

(If hinges are inserted at the towers, the coefficient of continuity e, 
defined by Eq. (138), will be zero, and Eq. (149) will reduce to Eq. (85).) 

For a single load P at a distance kl from either end of the main span, 
the horizontal tension will be 

H=A[B(fc) - \e{-k - fc2)]p (i5°) 
where N is defined by Eq. (149); and the function B{k) is defined by 
Eq. (87) and is given by Table 1 and Fig, 11. 

Similarly, for a concentration Pi in either side span, at a distance 
kih from the free end, we obtain 

H = m[vB{ki) ~^ki~ w]Pi (151) 

Plotting Eqs. (150) and (151), we obtain the H-influence line, Fig. 145. 
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If the main span is completely loaded, we obtain: 

x-ikd-l)’’1 <152> 

If both side spans are completely loaded, we obtain: 

H - m'G - !>■' <153> 
If the main span is loaded for a distance kl from either tower, we* 

obtain: 

H = - f (3 - 2fc)fc2]pl (154) 

where F(k) is defined by Eq. (92) and is given by Table 1 and Fig. 11. 
If either side span is loaded for a distance Wi from the free end, we 

obtain: 

H = EWn “ le& ~ W (155) 

where F(k\) is the same function as defined by Eq. (92). 
In the foregoing equations, N is given by Eq. (149). 

If the stiffening truss is interrupted at the towers, the factor of continuity e — 
0, and the above formulas reduce to the corresponding Eqs. (85) to (95) for the two- 

hinged stiffening truss. 

6d. Moments in the Stiffening Truss.—With all three spans 
loaded, the bending moment at any section of the main span is given 
very closely, by Eqs. (136) and (148), as 

Total M = (tp — //*/) x(l - x) - e(| pi*- Hf) (156) 

and, at any section of the side span distant xi from the free end, by Eqs. 
(137) and (148), as 

Total M= (\p - Hjffjxtfi -Xl) -e (±pl* - Hf)^ (157) 

where e is defined by Eq. (138) and H is given by the combination of 
Eqs. (152) and (153). 

The moments for other loadings must be calculated by the general 
Eqs. (136) and (137), with the values of H given by Eqs. (150) to (155), 
and the values of M\ and Af2 given by Eqs. (141) to (148). 

Influence lines for moments may be drawn as in the previous cases, 
in the main span, Eq. (136) is written in the form 

Mo -f Mi 
M 

x , n, x 
~+m,t 

-ff] (y 

For moments 

(158) 

thus giving the bending moments as (y — ef) times the intercepts obtained by super¬ 

imposing the influence line for uPon Influence line for H. This construction 



Sec. 6-GeJ SUSPENSION BRIDGES 319 

is indicated in Fig. 146. For moments in the side spans, the corresponding influence 

line equation is obtained from Eq. (137): 

M = 
Mo + Mll2 

X\ /■ 
Vl - hef 

(159) 

For the continuous stiffening truss, the influence line method just 
outlined is not very convenient, as the M' influence line (Fig. 146) is a 
curve for which there is no simple, direct method of plotting. 

A more convenient method is that of the equilibrium polygon con¬ 
structed with pole-distance H, corresponding to Eq. (60) and Fig. 7. 
For the continuous stiffening truss, this construction is modified as follows 
(Fig. 15): At a distance ef below the closing chord AfB'y a base line AB 
is drawn, so that the cable ordinates measured from this base line will be 
y — ef and will therefore represent the suspender moments Ma. The 

Fiq. 15.—Equilibrium polygon for continuous stiffening truss (Type OS). 

equilibrium polygon A" MB" for any given loads is then constructed upon 
the same base line, with the same pole-distance H; the height AA" rep^ 
resents —Mh the height BB" represents — M2, and the polygon ordinates 
below A"B" represent M0; hence, the ordinates measured below the 
base line AB represent the moments M' due to the downward-acting 
loads. Then, by Eq. (136), the intercept between the cable curve and 
the superimposed equilibrium polygon, multiplied by H, will give the 
resultant bending moment M at any section. 

For a single concentrated load P, the equilibrium polygon A"MB" 
is a triangle, and the M intercepts can easily be scaled or figured. By 
moving a unit load P to successive panel points, we thus obtain a set of 
influence values of M for all sections. 

The corresponding construction in the side spans is also indicated in 
Fig. 15. 

6e. Temperature Stresses.—The horizontal tension pro¬ 
duced by a rise in temperature of t deg. is given by 

Ht 
ZEItatL 

~ PNl 
(160) 

where N is defined by Eq. (149), and L is given by Eq, (114). 
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The resulting moments in the stiffening truss will be 
Mt = —Ht{y - ef) 

for the main span, and 

M, = - ~V) 

for the side spans. 
The vertical shears are given by 

Vt — —#*(tan <p — tana) 

for the main span, and 

Vt = —i/^tan (pi — tan ai — 

for the side spans. 
6/. Straight Backstays {Type OF).—If the stiffening truss in 

the side spans is built independent of the cable (Fig. 16), the backstays 
will be straight and /* = 0. Consequently all terms containing/i, yi, 

f f 
ni = ^ or v = will vanish in Eqs. (136) to (164), inclusive. 

fSec. 6—6/ 

(161) 

(162) 

(163) 

(164) 

i i—i 
1—4- 

“T" 

>v 
+ —■4->1 I 

-4-4 
Fio. 16.—Continuous stiffening truss with straight backstays (Type OF). 

On account of the continuity of the trusses, however, each span will be 
affected by loads in the other spans. 

The denominator of the expression for H, Eq. (149), will become 

N = 5~2e+Ap-We-l(1+Sn) 
6/ E U 

' A,p Ee l 
where ef the factor of continuity, now has the value 

2 

. sec8a ] 

e = 

(165) 

(166) 
3 + 2 it 

Equation (137), for bending moments in the side spans, will become 

Xl ™ ' TT Xl (167) M = M0 
h h 

and Eq. (140), for shears in the side spans, will become 

V = Va ± + H 
11 

For a concentration Pi in either side span, Eq. (151) becomes 

(168) 

(169) 
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For a uniform load covering both side spans, Eq. (1S3) becomes 

H “ ±Nn' pil (170) 

For a uniform load in either side span, covering a length kih from the 
free end, Eq. (155) becomes 

7'v>Zp 

H~ -S^(2~ ww-p'1 (i7j) 
For a uniform load covering all three spans, Eq. (157) becomes 

Total M = ^ VxSx ~ zi) ~ ~ Hf) (172) 

Equation (162), for temperature moments in the side spans becomes, 

Mt = (173) 
n 

and Eq. (164), for shears, becomes 

Vt-+Ht.$ (174) 
n 

7. Braced-chain Suspension Bridges. 
7a. Three-hinged Type 3B.—The three-hinged type of 

braced-clUiin suspension bridge is statically determinate. The suspen¬ 
sion system in the main span is simply an inverted three-hinged arch. 
The equilibrium polygon for any applied loading will always pass through 
the three hinges. The //-influence line for vertical loads reduces to a 
triangle whose altitude, if the crown-hinge is at the middle of the span 
and if the corresponding sag is denoted by/, is 

H-i (175) 

The determination of the stresses is made, either analytically or 
graphically, exactly as for a three-hinged arch. 

Fio. 17.—Three-hinged braced chain with straight backstays (Type 3BF). 

Figure 17 shows the single-span type, in which the backstays are 
straight (Type 3BF). If the lower chorTl is made to coincide with the 
equilibrium polygon for dead load or full live load, the stresses in the top 
chord and the web members will be zero for such .loading conditions. 
These members will then be stressed only by partial or non-uniform load¬ 
ing. Under partial loading, the equilibrium polygon will be displaced 
from coincidence with the lower chord: where it passes between the two 
chords, both will be in tension; where it passes below the bottom chord, 
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this member will be in tension and the top chord will be in compression. 
If the curve of the bottom chord is made such that the equilibrium 
polygon will fall near the center of the truss or between the two chords 
under all conditions of loading, the stresses in both chords will always be 
tension. 

Figure 18 shows the three-hinged braced-chain type of suspension 
bridge provided with side spans (Type 3BS). The stresses in the main 
span trusses are not affected by the presence of the side spans, and are 
found as outlined above. The stresses in the side spans are found as for 
simple truss spans of the same length, excepting that there must be 

H 
. 

i- —4 — 

1 
«--i?-M 

Fig. 18.—Three-hinged braced chain with side spans (Typo 3BS). 

added the stresses due to the top chord acting as a backstay for the main 
span. This top chord receives its greatest compression whejfcthe span 
in question is fully loaded; and its greatest tension when the main span 
is fully loaded. 

Temperature stresses and deflection stresses in three-hinged structures 
are generally neglected. 

76. Two-hinged Type 2B.—This system (Fig. 19) is static¬ 
ally of single indetermination with reference to the external forces, 
sp that the elastic deformations must be considered in determining the 
unknown reaction. 

Fig. 19.—Two-hinged braced chain with side spans (Type 2B8). 

The structure is virtually a series of three inverted two-hinged arch 
trusses, having a common horizontal tension H resisted by the anchorage. 

The general equation for H takes the form: 

UEA 
SvH 

EA 

(176) 

where Z denotes the stresses in the members for any external loading 
when H «= 0 (i.e., when the system is cut at the anchorages); w denotes 
the Stresses produced under zero loading when H ■* 1; l denotes the 
lengths of the respective members and it their cross-sections. The 
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summations embrace all the members in the entire system between 
anchorages. 

The stress in any member is given by adding to Z the stress produced 
by H, or 

S = Z + Hu (177) 
Zl 

For a rise in temperature, the elastic elongations -grj are replaced 

by thermal elongations cotl, and Eq. (176) becomes 
■wj _ 'Zutul 

‘ = ~ y ~vH (178) 
^EA 

For uniform temperature rise in all the members, Eq. (178) may be 
written 

Ht = 
cotL 

XuH 
EA 

(179) 

where L is the total horizontal length between anchorages. 
A graphic method of determining II is to find the vertical deflections at 

all the panel points produced by a unit horizontal force (II = 1) applied 
at the ends of the system. The resulting deflection ourve will be the 
influence line for II. If the ordinates of this curve are divided by the 

n^l 
constant 2 (= the horizontal displacement of the ends of the system 

produced by the same force, H = 1), they will give directly the values 
of H produced by a unit vertical load moving over the spans. 

7c. Hingeless Type OB.—This type of suspension bridge 
(Fig. 20) is three-fold statically indeterminate, the redundant unknowns 

Fig. 20.—Hingeless braced cable suspension bridge (Type OB). 

being the horizontal tension# and the moments at the towers. Instead, 
the stresses in any three members, such as the members at the tops'of the 
towers and one at the center of the main span, may be chosen as redun- 
dants. Let the stresses in the three redundant members, under any given 
loading, be denoted by, X\, X%, X%. When these three members are 
cut, the structure is a simple three-hinged arch; in this condition, let Z de¬ 
note the stresses produced by the external loads, and let ut, u2l and u» denote 
the stresses produced by applying internal forces Xt = 1, X% = 1, and 
X» =» 1. Then, when the three redundants are restored, the stress in 
any member will be 

S m Z + X\Ui + X*u* + Xtu, (180) 
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The restoration of the redundant members must satisfy the three con¬ 
ditions 

2 

2 
2 

Zuil 
EA 
ZuJ, 
EA 
Zuzl 
~EA 

, v yr* U\H , y ^ U1U2I , -rr U\Uzl 

+ Xl2*EA + X2^4 EA +Xz^~ea 

. -cr Vs U1U2I , y U22l . v U2U3I 

+ x'L~ea + Xi4m + XsLlET 
, -\r U\Uzl , v XT' W2^31 , v y^UzH 

~t~Xi2iea + EA ^Xz2*EA 

= 0 

= 0 

= 0 

(181) 

The redundant members are to be included in these summations. 
The solution of these three simultaneous equations will yield the three 

unknowns Xh X2 and Xz and their substitution in Eq. (180) will give the 
stresses throughout the structure. 

DESIGN OF SUSPENSION BRIDGES—CONSTRUCTION FEATURES 

The superior economy of the suspension type for long-span bridges is 
due fundamentally to the following causes: 

(1) The very direct stress-paths from the points of loading to the 
points of support. 

(2) The predominance of tensile stress. 
(3) The highly increased ultimate resistance of steel in the form of 

cable wire. 
For heavy railway bridges, the suspension bridge will be more econom¬ 

ical than any other type for spans exceeding about 1,500 ft. As the live 
load becomes lighter in proportion to the dead load, the suspension bridge 
becomes increasingly economical in comparison with other types. For 
light highway structures, the suspension type can be used with economic 
justification for spans as low as 400 ft. 

Besides the economic considerations, the suspension bridge has many 
other points of superiority. It is light, esthetic, graceful; it provides a 
roadway at low elevation, and it has a low center of wind pressure; it 
dispenses with falsework, and is easily constructed, using materials that 
are easily transported; there is no danger of failure during erection; and 
after completion, it is the safest structure known to engineers. 

The principal carrying member is the cable, and this has a vast reserve 
of strength. In other structures, the failure of a single truss member 
will precipitate a collapse; in a suspension bridge, the rest of the structure 
will be unaffected. 

8. Types of Suspension Bridges.—There are two systems to be 
considered: 

(1) Suspension bridges with suspended stiffening truss (Figs. 21 to 
28 inclusive). 

(2) Suspension trusses, or braced chain bridges (Fig, 27). 
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The main carrying member of a suspension system is generally of 
wire cable (Figs. 21 to 25 inclusive), sometimes of eyebar chain (Figs. 
26, 27), and, in a few instances, of riveted construction (e.g., Breslau). 

The backstays of the cable or chain (extending from tower to anchor¬ 
age) may be straight (Figs. 22, 25); or the side spans may be suspended, 
giving curved backstays (Figs. 21, 23, 26, 27). 

The suspended stiffening truss may be made continuous over main and 
side spans (Fig. 26); the resulting structure is three-fold statically inde¬ 
terminate. The indeterminateness may be relieved by the insertion of 

Fig. 21.—Brooklyn Bridge, East River, New York. Completed, 1883—Span 1.595M ft.— 
Type 3<S. 

hinges or slip-joints. Usually two hinges are used, one at each tower 
(Figs. 22, 23, 25), producing a singly indeterminate structure. By 
adding a third hinge at mid-span (Figs. 21, 27), a statically determinate 
structure is obtained. 

The suspension truss (Fig. 27) is thus far chiefly of historical or specu¬ 
lative interest, as modern suspension bridge construction is principally 
confined to the suspended stiffening truss type. An example of the 
suspension truss type is the Point Bridge at Pittsburgh (1877, span 800 
ft.). 

The use of chains instead of cables is a characteristic of European 
practice. Recent chain bridges are the Elizabeth Bridge at Budapest 
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(1903, span 951 ft.), the bridge over the Oder at Breslau (1911, span 415 
ft.), and the bridge over the Rhine at Cologne (Fig. 26, 1917, span 605 
ft.). With present materials and prices, chain construction generally 
becomes more expensive than wire cables at about 1,000-ft. span. 

Fig. 22.—Williamsburgh Bridge, East River, New York. Completed, 1903— Span 1,600 ft. 
—Type 2F. 

9. Economic Proportions,—The economic sag-ratio for cables has been 
established by some authorities at 1:6, but such large sags are exceedingly 
Uncommon. Ratios between 1:8 and 1:10 are preferable as they produce 
more pleasing lines and, in addition, help to increase lateral and vertical 
rigidity. In past practice, the ratios have, as a rule, ranged between 1:9 
and 1:12. The total cost will not be materially affected. 

The function of the stiffening truss is to distribute any applied load 
uniformly to the suspenders. If the truss is too shallow, the deformations 
will be excessive; if too deep, the truss will carry too great a proportion 
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of the load at a sacrifice of economy. The economic depth-ratio has been 
established by some authorities at 1:40 for 1,000-ft. spans and 1:45 for 
2,000-ft. spans. The Williamsburgh Bridge (Fig. 22) has a ratio of 1:40. 
In the Manhattan Bridge, which has a substantial double deck floor 
construction contributing to the stiffness, a ratio of only 1:60 was used. 
The choice of depth-ratio is also affected by the character of the cross¬ 
bracing. In general, the proper ratio to use will be between 1:40 and 1:60. 

For adequate lateral stiffness, the width center to center of outer 
stiffening trusses should not be less than about one-twenty-fourth of 
the span. 

Fig. 23.—Manhattan Bridge, East River, New York. Completed, 1909—Span 1,470 
ft.—Type 25. 

10. Chain Construction.—The construction of a suspension chain is 
similar to that of a pin-connected truss chord built of eyebars. The 
material is structural steel or, in recent designs, nickel steel (Figs. 26, 27). 
Nickel steel used in eyebar chains and in stiffening trusses has been 
allowed a working stress of 40,000 lb. per sq. in., the ultimate strength 
being 90,000 and the elastic limit 60,000 lb. per sq. in. The substitution 
of nickel steel for structural steel affords a saving of 10 to 15 per cent 
in the cost of a chain or stiffening truss. The allowable working stress is 
one-half to two-thirds of the elastic limit. 

The eyebars are generally made by forging (upsetting and boring, 
Fig. 27). In Europe, eyebars are made by boring out of a full flat (Fig. 
26), an extravagant procedure. 

Chains made of horizontal flats superimposed and riveted together 
(as in the bridge at Breslau) are not to be recommended, on account of 
the difficulty of preventing rust between the plates. Moreover, such 
chains do not appear sufficiently massive in side view, and they are 
subject to high secondary stresses from bending. 

A disadvantage of chain construction is unequal stressing of the indi¬ 

vidual bars between two pins. 
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11. Parallel Wire Cables.—A cable consists either of parallel wires 
(Figs. 21, 22, 23, 24) or of twisted wire ropes (Fig. 25). 

The steel wire is reduced by repeated drawing to a diameter of 0.15 
to 0.25 in. A common size is No. 6, 0.192 in. The ultimate strength is 
200,000 to 225,000 lb. per sq. in., and the yield point is 140,000 to 150,000 
lb. per sq. in.; the usual working stresses being 60,000 to 75,000 lb. per 
sq. in. 

A higher yield point, up to 80 or 90 per cent of the ultimate, is obtain¬ 
able by using harder wire, but such wire is too stiff for easy handling. 

The proportional elastic limit of the wire is about 45 to 50 per cent^ 
of the ultimate strength. The elongation in 20 in. is 2.5 to 4 per cent. 

For protection against the weather, the wires are generally galvanized. 
In addition, the wires are coated with linseed oil at the mill. The 
finished cable is slushed with oil and wrapped with impregnated duck 
(Fig. 22), or preferably with wire wrapping (Figs. 21, 23). 

Parallel wire cables, principally used in this country, have been made 
in diameters up to 21 in. (Fig. 23). 

In erecting parallel wire cables, the individual wires are strung in 
place between the anchorages and, when the desired number is reached, 
bundled together in a strand; when all the strands are completed, they 
are compacted, clamped and finally wrapped into a cylindrical cable. 
The division into strands facilitates operations and makes the work 
systematic. The cable consists of 7, 19 or 37 strands, depending upon the 
size of the cable. 

The following table gives data on the wire cables of the East River 
suspension bridges. 

/ Brooklyn Williamsburgh Manhattan 
(Fig. 21) # (Fig. 22) (Fig. 23) 

Date. 1876-1883 1898-1903 1903-1909 
Main span.. 1,595.5 ft. 1,600 ft. 1,470 ft. 
Cable sag. 128 ft. 177 ft. 160 ft. 
Total load, per lin. ft. 35,5001b. 75,0001b. 104,0001b. 
Number of cables. 4 4 4 
Strands per cable. 19 37 37 
Wires per strand. 278 208 256 
Wire diameter. 0.165 in. 0.192 in. 0.195 in. 
Total cross-section.. 533 sq. in. 888 sq. in. 1,092 sq. in. 
Cable diameter.. 15% in. 18% in. 21% in. 
Size of wrapping wire. 0.135 in. . 0.148 in. 
Maximum stress in cables. 47,500 lb. per 50,300 lb. per 73,000 lb. per 

sq. in. sq. in. sq. in. 
Ultimate strength of cables.*.. 180,0001b. per 200,0001b. per 210,000 lb. per 

sq. in. sq. in. sq. in. 
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Fig. 24.—Cross-sections of suspension bridges* 
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At the anchorage, the cable is separated into its component strands; 
the latter diverge slightly to make room for the “strand shoes” which 
are grooved castings of horseshoe shape around which the respective 
strands are looped. The shoes are pin-connected to the anchorage 
eyebars which are prepared in advance of the cable spinning. 

When the cables are compacted, the “cable bands” are affixed for 
connection of the suspenders. The bands are steel castings, made in 
two halves, with outstanding flanges for bolting together so as to secure 
the necessary frictional resistance to sliding. Flanged grooves around 
the bands receive the suspender ropes. The cable between the bands 
is later given its protective wrapping. 

12. Twisted Wire Ropes.—For smaller spans, up to 600 or 700 ft., 
twisted wire ropes will generally be preferable to parallel wire cables 
(e.g. Fig. 25). Such ropes are prepared at the mill and shipped on drums. 
They are hauled across the span (by means of lighter temporary carrier 
cables) and secured at the anchorages; each rope end is expanded and 
fixed in a steel socket which may be threaded for adjusting the rope to 
exact position. Shim pieces between sockets and anchor plate may also 
be used to regulate the rope lengths. 

Twisted wire ropes are also used for suspenders (Figs. 21, 22, 23). 
The ropes are made up to in. diameter of round wire in spiral lay. 

For larger diameters, a twisted wire cable is formed by laying six twisted 
wire strands spirally around a central strand. Ordinarily the twist of 
the wires into strands is opposite in direction to the twist of the strands 
into rope. 

Twisted wire ropes possess considerable flexibility, particularly when 
successive layers of wires have alternate directions of twist. 

Patent “locked wire ropes” are now made in which the core wires 
are surrounded by wires of trapezoidal section, and these in turn by 
wires having a special interlocking section. This construction gives 
compactness, protection against entrance of moisture and against 
loosening of the outer wires. A good coat of paint affords ample rust 
protection. 

In twisted wire rope, on account of the spiral lay of the wires surround¬ 
ing the core, the coefficient of elasticity E is less than in straight wires 
by 15 to 30 per cent if made up of round wires, and by 10 to 15 per cent 
if composed of patent locked wires. 

The combined tensile strength of the wires is also reduced by the 
twisting into rope. For a single strand rope, the reduction of strength 
is ,15 per cent figured on net metallic section, and 25 per cent figured on 
gross circular section. For a seven strand rope, the reduction of strength 
is 18 par cent on net metallic section and 48 per cent on gross circular 
section* For ropes of patent locked wire, the corresponding reductions 
are 7, 11, 15 and 35 per cent. 
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Galvanized steel suspension bridge rope (used for suspenders and 
for small cables) has a tested ultimate strength (pounds) given by 80,000 
X (diameter)2. The weight of the rope, in pounds per lineal foot, is 
given by 1.68 X (diameter)2. 

*13. Towers.—The design of the tower depends upon the material 
employed. This is either masonry or, more generally, steel. If masonry 
is used, the tower may consist of shafts springing from a common base 
beneath, the roadway and connected together at the top with gothic 
arches (Fig. 21). If steel is used, the tower consists of a column or 
tower leg for each suspension system (Figs. 22, 23, 25, 26, 27). For 
lateral stability, the tower legs are braced together by means of cross¬ 
girders and cross-bracing (Figs. 22, 23, 25, 27), or by arched portals 

Fig. 26.—Cologne Chain Bridge—1915—Span 605 ft.—Type 05. 

(Fig. 26). The sway and portal bracing are necessary to brace the 
columns against buckling, to take care of lateral components from cradled 
cables or chains, and to carry wind stresses down to the piers. 

Steel tower columns (Fig. 23) are made up of plates and angles to 
form either open or closed cross-sections; horizontal diaphragms at 
proper intervals stiffen the section. The cross-section enlarges toward 
the base which is anchored to resist the horizontal forces. 

For high towers, the individual legs may be made of braced tower 
construction,- each leg consisting of four columns spreading apart toward 
the base and connected with cross-bracing (Fig. 22). 

Instead of anchoring the base, a rocker-tower construction may be 
secured by providing hinge-action at the base (Fig. 26). This may be 
accomplished by use of a pin-bearing, a segmental base, or a concave 
roller nest. 

14* Saddles*—On*the tower top, the cable rests in a special casting 
called a saddle. This may rest on rollers to permit longitudinal move- 
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ment from changes in cable length, or it may be bolted to the towers. 
In the latter case, the tower has to take up the movement—by bending 
if fixed at the base, and by pivoting if hinged at the base. 

The radius of curvature of the cable in the saddle should be large in 
order to avoid excessive bending stresses in the wires and strands. 

If the cables are “cradled” (hung off the vertical), the saddles must 
be inclined accordingly; and the cable laying should be conducted so as 
to avoid torsional effects. 

At points where cable or chain changes direction at the anchorage, 
a saddle or knuckle support is required, with provision for movement 
by rocker hinge, rollers, or sliding. 

The tower saddles in long span bridges have generally been provided 
with rollers (e.g.f Brooklyn, Williainsburgh). For the Manhattan Bridge 
(1909) fixed saddle^ were adopted, despite the fact that large bending 
stresses are thereby caused in the tower. The objections to movable 
saddles are uncertainty of operation of the rollers, liability to clog or rust, 
and necessity tor scrupulous maintenance under conditions conducive 
to neglect. Rocker or pin-bearing towers (Fig. 26) appear to afford the 
most economical and scientific solution of the problem. 

Where chains are used instead of wire cables, the saddle support is 
generally of the rocker type—the entire tower acting as a rocker (Fig. 
26), or else anchored and carrying a smaller rocker on its top (Fig. 27). 
The latter rocker is pin-connected at its lower end to the tower and at its 
upper end to the eyebar chains. 

16. Anchorages.—At the anchorage the cable strands loop around 
their respective shoes which are pin-connected to the anchor chains. 
The latter extend in straight, broken or curved lines, as the case may be, 
to their final pin-connection to anchor plate, girders, or grillage bearing 
against the masonry (Fig. 27). 

Cables of twisted wire rope may be anchored directly without the 
use of eyebar chains. The rope ends are secured in sockets which bear 
against the anchor girders. 

The anchorage masonry serves the function of taking up the pull of 
the cable or chain and transmitting it to the foundation. By graphic 
composition of the external applied forces with the weights of the sections 
of masonry, the resultant lines of pressure are determined and fol¬ 
lowed through to the foundation. First class masonry is provided 
where the stresses demand it, and the remainder of the mass may be 
made up of lean concrete or other filling material serving only to provide 
weight. 

In designing, a factor of safety of two is generally adopted against 
uplift, sliding or tilting of the anchorage. For important structures, 
the foundation should be on sound rock. The coefficient of friction is 
taken as 0.5 to 0.6. 
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Consideration should be given in the design of the anchorage to 
protection against rust, accessibility for inspection and maintenance, 
and possibility of replacement of parts. French practice lays great 
stress on ease of replacement: The cables are composed of a number of 
twisted wire ropes which are individually renewable, all rope ends are 
socketed, endless ropes are eliminated, and all steel in the anchorage is 
accessible. American practice emphasizes protection (and permanence) 
rather than replaceability: Parallel wire cables prevail, the cables are 
covered with moisture proof wrapping, the only exposed portions being 
at the loop ends where, however, individual wires can be inspected and 
cleaned. The danger point for rust is in the anchorage, and there we 
generally substitute chain for cable. The steel in the anchorage pit is 
generally surrounded with concrete or other waterproofing material in 
order to exclude water. 

DESIGN CALCULATIONS FOR TWO-HINGED SUSPENSION 
BRIDGE WHH SUSPENDED SIDE SPANS (TYPE 2S) 

16. Dimensions.—The following dimensions are given: 

l — main span = 1,080 ft. (lf = l) 
h = side span = 360 ft. 
/ = cable sag in main span = 108 ft. 
fi — cable sag in side span «= 12 ft. 
h = distance, tower to anchorage = 400 ft 
d = depth of stiffening truss = 22.5 ft. 

Mean chord section (gross): Main span, top = 83, bottom = 137 sq. in 
Side spans, top = 52, bottom = 52 sq. in. 

I (Main span) = 83(14)’ + 137(8.5)’ = 26,200 in.’ ft.’ / _ 
/, (Side spans) = (2) (52) (11.25)’ - 13,100 in.’ ft.’ h ~ 
Width, center to center of trusses or cables = 42.5 ft. 
A — cable section = 78 sq. in. per cable (Ai - A) 
tan a = slope of cable ehord in main span = 0 
tan ai = slope of cable chord in side span = 4(n — ni) = 0.267 

sec ai = 1.034 
tan <p\ = An = 0.4 sec (p\ — 1.08 

17. Stresses in Cable.—(All values given per cable.) 

Given: w = dead load (including cable) = 2,385 lb. per lin. ft. 
p' = live load = 860 lb. per lin. ft. 
t => temperature variation = ± 60° F. (E<ct — 11,720 lb. per 

sq. in.) 

I'3 

n = f _ 1 
l 10 

1 „ =f i = 
1 h 30 

1 
9 

v = [} 
f 
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For dead load, by Eq. (5), p. 290, the horizontal component of cable 
stress is 

H = — « ^wl = 3,220 kips (1 kip = 1,000 lb.) 

For live load, by Eq. (85), the denominator of the ^-equation is 

N = |(1 + 2 irv2) + fi1 + 8n2) + ' j * sec3o:i(l + 8rii2) 

= 1.626 + 0.093 + 0.071 = 1.790 
By Eq. (94), the horizontal tension produced by live load covering 

all three spans will be 

H = 5ik(1 + 2ir*vWl = j^q(1-0164) (9,300) = 1,050 kips 

The total length of cable between anchorages is given by Eq. (114): 

f - 0 +1”’) + 2Ks“ »■ +1 ~1027 +0 767 -I-794 

Then, for temperature, by Eq. (116), 

_ SEIwtL _ 3(11,720)(26,200)(1.794) 
1 PNI (108)2(1.790) 

Adding the values found for H: 

+ 80 kips 

D.L.3,220 kips 
L.L.1,050 
Temp. 80 

we obtain, Total H — 4,350 kips per cable. 

The maximum tension in the cable is, by Eq. (3), 

Tx = H. sec pi = #(1.08) = 4,700 kips 

At 60,000 lb. per sq. in.,.the cable section required is: 

4,700 -r* 60 = 78 sq. in. per cable (as given). 

18. Moments in Stiffening Truss. Main Span. 
Live load = p = 1,600 lb. per lin. ft. 
(All values given and calculated are per truss) 
With the three spans completely loaded, the bending moment at any 

section x of the main span is given by Eq. (96): 

Total M = ^px(l — x)£l — £~(1 + 22>3v)J = ~px(l — :r)[0.091] 

Hence only 9.1 per cent of the full live load is carried by the stiffening 
truss. Accordingly, at the center, 

Total M = 0.091^ = + 21,200 ft.-kipB 

At other points, the values of M are proportional to the ordinates of a 
parabola. They are obtained as follows: 
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Section Parabolic Coefficient Total M 

7 
= 0 (4) (0) (1.0) = 0 0 

0.1 (4) (0.1) (0.9) = 0.36 + 7,600 
0.2 (4) (0.2) (0.8) = 0.64 +13,600 
0.3 (4) (0.3) (0.7) = 0.84 +17,800 
0.4 (4) (0.4) (0.6) = 0.96 +20,400 
0.45 (4) (0.45) (0.55) = 0.99 +21,000 
0.5 (4) (0.5) (0.5) = 1.00 +21,200 ft.-kips 

For maximum and minimum moments, the critical points are found 
by solving Eq. (98): 

C(k) = N-n-~ = 0.179- 
y y 

with the aid of Table 1 or Fig. 11: 
X 
T 

V 
l T; * D(k) 

0 0 (2.50) (0.448) (0.364) (0.508) 
0.1 0.036 2.78 0.498 0.402 0.411 
0.2 0.064 3.12 0.559 0.448 0.310 
0.3 0.084 3.57 0.640 0.512 0.202 
0.4 0.096 4.17 0.747 0.603 0.095 
0.45 0.099 4.55 0.815 0.667 0.050 + 0.000 
0.5 o.ioo 5.00 0.895 0.755 0.016 + 0.016 
0.55 0.099 5.55 0.995 0.950 0.000 + 0.050 

The values of D(k), found from Table 1 or Fig. 11, are recorded in the 
• N _ 

above tabulation. For all sections from x = = • l = 0.447Z to x — 0.553Z 4 
there are double values of D(k) explained under Eq. (100). 

The values of the minimum moments are then given by Eq.(99): 

Min. M = - 2PX^N — [D(k) + 4ir3v] = 

-417,000 ?(l - *) [D(Jfc) + 0.033] 

and the maximum moments are then given by Eq. (101): 

Max. M = Total M — Min. M 
Section tO-t) [■D(i) + 0.033] Min. M Max. M 

= 0 0 (0.541) 0 0 

0.1 0.09 0.444 - 16,700 + 24,300 
0.2 0.16 0.343 - 22,900 + 36,500 
0.3 0.21 0.235 - 20,600 + 38,400 
0.4 0.24 0.128 - 12,800 + 33,200 
0.45 . 0.248 0.083 - 8,600 + 29,600 
0.5 0.25 0.065 - 6,800 + 28,000 ft.-kips 
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Dividing the maximum and minimum moments by the truss depth (d = 
22.5), we obtain the respective chord stresses. Adding the temperature 
and wind stresses, and dividing by the specified unit stresses, the required 
chord sections will be obtained. 

19. Bending Moments in Side Spans. 

(p = 1,600 lb. per lin. ft. per truss) 

With all three spans completely loaded, the bending moment at any 
section xi of the side span is given by Eq. (97): 

Total Mx = ~ *0[l ~ J^(l + 2ir**)£] = \ pxl(h - *i)[0.091] 

Accordingly, at the center, 

Total Mi = 0.091 = +2,300 ft.-kips 
o 

There are no critical points for moments in the side spans. The minimum 
moments are given by Eq. (102): 

Min. Mi = - yi. . pi = -yi(1.124)pZ 

Accordingly, at the center, 

Min. Mi = -12(1.124)(1,730) = -23,400 ft.-kips 

The maximum moments are given by Eq. (103): 

Max. Mx = Total Mi —-Min. Mx 

Accordingly, at the center, 

Max. Mi - +2,300 + 23,400 = +25,700 ft.-kips 

At other sections, the moments are proportional to the ordinates of a 
parabola: 

Parabolic 
Section COEFFICIENT Total Mi Min. Mi Max. Mi 

0 0 0 0 0 

0.1 0.36 + 800 - 8,400 f 9,200 
0.2 0.64 + 1,500 -15,000 + 16,500 
0.3 0.84 +1,900 -19,600 +21,500 
0.4 0.96 +2,200 -22,400 +24,600 
0.5 ' 1 +2,300 -23,400 +25,700 ft.-kips 

20. Shears in Stiffening Truss—Main Span. 

(p =» 1,600 lb. per lin. ft.) 
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With the three spans completely loaded, the shear at any section x of 
the main span is given by Eq. (104): 

Total V = \p{l - 2x)[l - ~ (1 + 2irV)] = ~p(l - 2a:)[0.091] 

The shears will be the same as would be produced by loading the span 
with 9.1 per cent of the actual load, or with 0.091 pi = 157 kips. Total 

P- 157(H): 
Suction 

1 X 

2 l 
Total V 

O
 

II 0.5 + 79 kips 

0.1 0.4 + 63 
0.2 0.3 + 47 
0.3 0.2 + 31 
0.4 0.1 + 16 
0.5 0 0 

The maximum shears are given by Eq. (106): 

Max. V. ip! (l -K^-J)Xr)] 

where the values of are taken from Table 1 or Fig. 11. The shears 

are obtained as follows: 
(3= 864 kips) 

Suction I (i - *\ 
N\2 l) O 

[-i 
0-r)‘ 

Max. V 

f- » 
2.23 0.400 0.107 l + 92 + 194 

0.1 1.79 0.482 0.136 0.81 + 95 + 96 

0.2 1.34 0.565 0.243 0.64 +134 + 22 

0.3 0.89 0.647 0.424 0.49 + 179 

0.4 0.45 0.726 0.673 0.36 + 210 

0.5 0 0.800 - 1.000 0.25 +210kips 

For all sections x < ^1 — ^ = 0.277Z, the loading for maximum shear 

extends from the given section x to a critical point kl defined by Eq. (108): 
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The values C(k) are solved for k with the aid of Fig. 11: 

Section 1 ~ T C(k) k 

0 1 0.446 0.362 
0.1 0.8 0.558 0.448 
0.2 0.6 0.744 0.600 

For these sections, a correction is to be added to the values of Max. V 
found above. This additional shear is given by Eq. (109): 

Add. V = \vK 1 
[&- 

Section k (i - *)» i(i-f) «»> [-] Add. V 

• * = 0 0.362 0.407 2.23 0.696 0.552 + 194 

0.1 0.448 0.305 1.79 0.762 0.365 + 96 
0.2 0.600 0.160 1.34 0.866 0.160 + 22 kips 

The minimum shears are then given by Eq. (112): 

Min. V = Total V - Max. V. 

Section Total V Max. V Min. V 

O
 II 

H
 1~ + 79 + 286 - 207 

0.1 + 63 + 191 - 128 
0.2 + 47 + 156 - 109 

. ' 0.3 + 31 + 179 - 148 
0.4 + 16 + 210 - 194 
0.5 0 + 216 kips — 216 kips 

21. Shears in Side Spans. 

(P = = 1,6001b .per lin. ft., h = = 360 ft.) 

With the three spans completely loaded, 
in the side spans will be, by Eq. (105): 

the shear at any section xj 

Total Vi = Mp(^i “ - 2x0[l 
- 5N f* (1 + 2ir*v)]= ph (2_ I1) [0-091] 

Since l\ — these shears will be one-third of the corresponding values 
in the main span: 5*. 

Section Total V\ 

s
-
I
S

 

ir
 

©
 

+ 26 kips 

0.1 +21 
0.2 +16 
0.3 + 10 
0.4 + 5 

0.5 0 
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There are no critical points for shear in the side spans. The maximum 
shear at any section xx is given by Eq. (Ill): 

Max. Vi = i(l -D’D , 8 . ,/l 

1 -n'"(s“ iHt:)] 

Section N \2 h) t-1 C1 - S) a Max. Vi 

t-o 0.0183 0.400 0.993 1 +286 kips 

0.1 0.0147 0.482 0.993 0.81 +232 
0.2 0.0110 0.565 0.994 0.64 + 183 
0.3 0.0073 0.647 0.995 0.49 + 140 
0.4 0.0037 0.726 0.997 0.36 + 103 
0.5 0 0.800 1.000 0.25 + 72 

The minimum shears in the side spans are given by Eq. (113): 

Min. Vi = Total Vt - Max. Vx 
Sectioa, Min. V\ 

X\ 
U 

= 0 — 260 kips 

0.1 
0.2 
0.3 
0.4 
0.5 

-211 
-167 
-130 
- 98 
- 72 

22. Temperature Stresses. 

(.Ht = +80 kips) 

The stresses in the main span from temperature variation are figured 
with the aid of Eqs. (117) and (118): 

Mt — —Ht.y 
Vt = — Ht(t&n<p — tana). (Here, tana = 0) 

The temperature moments in the side spans are given by the formula: 

Mt - — Ht.yi 

and will therefore be v (= J-6) times the corresponding main span values. 

Section 
Parabolic 

Coe fficient Mi 

O
 

It 0 0 

0.1 0.36 ±350 
0.2 0.64 ±610 
0.3 0.84 ±810 
0.4 0.96 ±920 
0.5 1 ±960 ft.-kips 
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The temperature shears in the side spans are given by the formula: 
Vt — — Ht • (tan <pi — tan a{). (Here, tan at — 0.267.) 

71 
They will be — ( = M) times the corresponding main span values: 

711 

Section Tan tpi — tan ai V, 

4nt = 0.133 + 11 kips 

0.1 0.106 + 8 

0.2 0.080 + 6 

0.3 0.053 + 4. 
0.4 0.027 ±2 
0.5 0 0 

23. Wind Stresses in Bottom Chords.— 

(Assumed wind load = p = 400 lb. per lin. ft.) 

If the lateral bracing is in the plane of the bottom chords, these will 
act as the chords of a wind truss. The applied wind pressure p is partly 
counteracted by a force of restitution r due to the horizontal displacement 
of the weight of the stiffening truss w. The resulting reduction in the 
effective horizontal load is given with sufficient accuracy by the formula 

■ 

In this case, w = total dead load, both trusses, = 4,770 lb. per lin. 
ft.; v = vertical height from cable chord to center of gravity of the dead 
load = 130 ft.; 7 = moment of inertia of wind truss = %(137)(42.5)2 = 
124,000 in.2 ft.2 Substituting these values, we obtain 

r 0.173 
p 1 + 0.173 0,147 

Hence the force of restitution r (due to the obliquity of suspension after 
horizontal deflection) amounts, in this case to 14.7 per cent of the applied 
wind load p at the center of the span. The force r diminishes to zero 
at the ends of the span, and the equivalent uniform value of r maybe taken 
as five-sixths of the mid-span value. The resultant horizontal load on the 
span is 

p — %r « 400 — %(59) = 351 lb. per lin. ft. 

Treating this value as a uniform load, the bending moment at the center is 

Mw - = ±51,000 ft.-kips 

1 For the derivation of this formula, see Steinman, “Suspension Bridges and 
Cantilevers,” p, 76, D. Van Nostrand Co., 1913. 
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Dividing by the truss width 42.5 ft., we obtain the chord stress = ± 1,200 
kips at mid-span. The wind stresses at other sections will be propor¬ 
tional to parabolic ordinates, being zero at the ends of the span. 

The shears in the lateral system may also be calculated for the 
resultant uniform load of 351 lb. per lin. ft. The end shears will be 

OKI 7 

vw = = ± 190 kips 

In the side spans, unless they exceed 1,000 ft. in span length, the 
reduction in effective wind pressure may be neglected. (In this example, 
T 

— would amount to only 1 per cent.) Hence, the moments and shears 

are calculated for the full specified wind load of 400 lb. per lin. ft., acting 
on simple spans 360 ft. in length. 

24. Design of Tower.—Each tower of this bridge consists of two col¬ 
umns ok box section, stiffened with internal diaphragms, and rigidly tied 
together with transverse bracing in a vertical plane. Each tower column 
is 225 ft. high and is made of a double box section, 42.5 in. wide. The 
other dimension d, parallel to the stiffening truss, is 4 ft. at the top, 
increasing to 9 ft. at the base. The walls are 134 in. thick (made up of 
%-in. plates and corner angles) and the vertical transverse diaphragm is 
% in. thick. Splices are provided at such intervals as to keep the 
individual sections within specified limitations of length or weight for 
shipment. Horizontal diaphragms are provided at splices and, in gen¬ 
eral, at 10-ft. intervals. 

The tower columns are battered so as to clear the trusses. They 
are 42.5 ft. center to center at the top and 53.5 ft. center to center at the 

base. 
26. Movement of Top of Tower.—The towers are assumed fixed at 

the base, and the cable saddles immovable with respect to the tower. 
The maximum fiber stress in the tower columns will occur when the 

live load covers the main span and the farther side span at maximum 
temperature. Under this condition of loading, the top of the tower 
will be deflected toward the main span as a result of the following 
deformations: 

(1) The upward deflection (A/i) at the center of the unloaded side 

span. 
(2) The elongation of the cable between the anchorage and the tower 

due to the elastic strain produced by the applied loads. 
(3) The elongation of the cable due to thermal expansion. These 

deformations are computed as follows: 

(Live load * p' «* 860 lb. per lin. ft. H = 1,040 kips) 

(1) The upward deflection A/i is found by considering the unloaded 
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side span as a simple beam subjected to an upward loading equal to the 
live load suspender tensions (Eq. (55)): 

8f rr 8 1,040 ___ ,, » 
s = • H — • j^QgQ — 770 lb. per lin. ft. per truss 

= 384 ~ET[= 0,428 ft- 
(2) The elastic elongation of the cable in the side span is, by Eq. (51), 

ALi = -|j-(l + ^| nx2 + taD2 on) = 0.178 (1.077) = 0.192 ft. 

(3) The temperature expansion of the cable in the side span is, by 
Eqs. (50) and (19), 

ALi - w^j^sec a\ -f- 

We also have, 

ft i 
sec: 

—) = 0.156(1.037) - 0.162 ft. 
a i / 

ALi 8 
-tt~ .= sec ai + -5- Ali 3 

nxi 
= 1.037 

A Lx 16 
3 

nx 
= 0.160 

Afi 3 Kec’ai 

The deflection of the top of the tower is then given by 

, Aii Aia . , . All _ ,.T ■. 
2/0 “ Ah ~ ALi ' Aft ' + ALT ‘ S (ALl) 

Substituting the values just calculated, we obtain the maximum tower 
deflection: 

Vo = (0.428) + ^ (0.192 + 0.162) = 0.408 ft. 
1.037 

26. Forces Acting on Tower.—Considering the above deflection yo as 
produced by an unbalanced horizontal force P applied at the top of the 
tower, this force may be calculated, if the sectional dimensions of the 
tower are known, by the formula 

x 
In the present case, we find 2 y A x = 1,740. Hence, 

E 
P — Vo'Yfid ~ *,200 y° = 7,000 lb. per column. 

The other loads acting on the tower are the vertical reaction V at the 
saddles, and the end-shears V\ at the points of support of the stiffening 
truss. The saddle reaction is given by the formula: 

V — 2# tan <p — (2) (4,340) (0.4) = +3,470 kips per column 

The truss reaction, with all spans loaded and maximum temperature rise, is 

Vi = (42 + 32) + (14 + 11) = +99 kips per column 

With one side span unloaded, as assumed above, 

Vi — (45 + 32) + (11 — 140) = —52 kips per column 
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It will be on the safe side to neglect this uplift V\) so that the column 
need be figured only for the horizontal load P and the vertical load V. 

At any section x of the tower (measured downward), the horizontal 
deflection y from the initial vertical position of the axis is given with 
sufficient accuracy by the equation for the elastic curve of the cantilever: 

»-*[>-§©+*©•] 
27. Calculation of Stresses in Tower.—The resulting extreme fiber 

stresses at any section of the tower will be: 

Combined stress = ^ 

The computations may be arranged as follows, the stresses being figured 
for convenience at 25-ft. intervals: 

Joint 
X v»-v d — 2c A I X 2 V Pic V(yu —y)c Combined 

stress (lb. 
per sq. in.) 

(ft.) (ft.) (ft.) (sq. in.) (in.2 ft2.) I A I I 

0 0 0 4.0 280 560 0 12,400 0 0 12,400 
1 25 0.068 4.5 295 730 * 0.86 11,800 500 7oo 13,000 
2 50 0.134 5.0 310 940 2.66 11,200 900 1,100 13,200 
3 75 0.197 5.5 325 1,170 6.40 10,700 1,200 1,600 13,500 
4 100 0.254 6.0 340 1,440 6.94 10,200 1,500 1,800 13,500 
5 125 0.305 6.5 355 1,740 8.98 9,800 1,600 2,000 13,400 
6 150 0.348 7.0 370 2,080 10.80 9,400 1,800 2,000 13,200 
7 175 0.380 7.5 385 2,460 12.42 9,000 1,900 2,000 12,900 
8 200 0.400 8.0 400 2,880 13.88 8,700 1,900 1,900 12,500 
9 225 0.408 9.0 430 3,850 13.20 

2-69.54 
8,100 1,800 1,700 11,600 

28. Wind Stresses in Tower.—To the above tower stresses produced 
by live load and temperature, must be added the stresses due to wind 
loads. 

The truss wind load of 400 lb. per lin. ft. produces a horizontal reac¬ 
tion at each tower of 

3601 + 400 = 266 kips 

This acts at Joint 4 (x = 100). 
The deflection of suspended truss under wind load produces at the 

top of each tower a horizontal reaction of 40^:; and the wind on the sur¬ 

face of the cables produces an addition to this reaction amounting to 

lo(^-+-^); hence the total reaction at the tower top = 26 kips. 
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The wind acting directly on the tower is assumed at 25 lb. per sq. ft. 
of vertical elevation. This produces, at each joint, an equivalent con¬ 
centrated load of 25 X (25d). 

Joint 
X 

(ft.) 
d 

(ft.) 

Wind 
load 
(kips) 

Shear 
(kips) 

Moment 
(ft.-kips) 

Column 
distance 

(ft.) 

A 
(sq. in.) 

Stress 
from W.L. 
(lb. per sq. 

in.) 

Stress from 
L.L. + tem¬ 

perature 
(lb. per sq. 

in.) 

Total 
stress 

(lb. per 
sq in.) 

0 0 

; 

4.0 27 0 0 42.5 280 0 12,400 12,400 
1 25 4.5 3 27 675 43.5 295 100 1 13,000 13,100 
2 60 5.0 3 30 1,425 44.5 310 100 13,200 13,300 
3 . 75 5.5 3 33 2,250 46.5 325 100 13,500 13,600 
4 100 6.0 270 36 3,150 48.5 340 200 13,500 13,700 
5 125 6.5 4 306 10,800 49.5 355 600 13,400 14,000 
6 150 7.0 4 310 18,550 50.5 370 1,000 13,200 14,200 
7 175 7.5 5 314 | 26,400 51.5 385 1,300 12,900 14,200 
8 200 8.0 5 319 34,375 52.5 400 1,600 12,500 14,100 
9 225 9.0 3 324 42,475 53.5 430 1,800 11,600 13,400 

In the above table, the bending moments divided by the column 
distance gave the column stresses, and these divided by the areas gave the 
unit stresses from wind load. 

The transverse bracing of the tower is proportioned to resist the shears 
tabulated above. 

29. Calculation of Cable Wire.—The total length of each cable is 
given by Eq. (114): 

L-ia+l^+^c + l^) 

= 1,080(1.027) + 720(1.034 + 0.003) = 1,110 + 746 « 1,856 ft. 

To this must be added 43 ft. of cable at each end, between end of truss 
span and anchorage eyebars (scaled from drawing); hence, 

Total L « 1,856 + 86 - 1,942 ft. per cable 

No. 6 galvanized cable wire will be used = 0.192 in. diameter = 0.029 
sq. in. area. Each cable consists of seven strands of 386 wires each = 
2,702 wires at 0.29 sq. in. = 78 sq. in. (as required). 

Weight of No. 6 galvanized wire = 0.1 lb. per ft. 
Total cable wire = 2 X 2,702 wires at 1,942 ft. = 10,500,000 lin. ft. 
Total weight of cable wire = 10,500,000 ft. at 0.1 lb. = 1,050,000 lb. 
30. Calculation of Cable Diameter.—The area of a strand will be 10 

per cent greater than the aggregate section of the wires composing it. 
In this case the area of each strand will be 

(110 per cent)(7^) = 12.3 sq. in. 

The corresponding diameter is 3.96 in. The cable diameter will be 
three strand diameters « 11.9 in. (Adding the thickness of wrapping, 
the finished cable will be 12.2 in. in diameter.) 
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31. Calculation of Wrapping Wire.—The wrapping consists of No. .9 
galvanized wrapping wire (soft, annealed), weighing 0.06 lb. per ft. 
Deducting lengths of cable bands, etc., there will be 3,250 ft. of cable to 
be wrapped. Since the wrapping wire is 0.15-in. diameter, it will make 
80 turns per lin. ft. The diameter of the cable is 11.9 in., hence the 
length of each turn will be 3.16 ft. 

Length of wrapping wire = 80 turns at 3.16 ft. = 
253 ft. per lin, ft. of cable. 

Weight of wrapping wire =* 253 ft. at 0.06 lb. = 
15.2 lb. per lin. ft. of cable. 

Total wrapping wire = 3,250 ft. of cable at 15.2 lb. = 50,000 lb. 
32. Estimate of Rope Strand Cables.—Instead of building the cable 

of individual wires, manufactured rope strands may be used. In the 
case at hand, with a factor of safety of 3, there would be required 61 
1%-in. strands per cable. 

Cable stress per strand = 4,700 kips 61 = 77 kips. 
Allowable stress per 1^-in. strand = 248 kips -f- 3 = 82 kips. 
(Allowable stress per 1%-in. strand = 212 kips -f* 3 — 70 kips.) 
These galvanized steel ropes weigh 5.10 lb. per ft., hence, the total 

weight in the cables would be 
2 X 1,942 ft. X 61 strands at 5.10 lb. = 1,210,000 lb. or 15 percent 

heavier than the parallel wire cables. 
The diameter of the resulting cable would be 7 X 1% in. = 12.25 in. 

plus the wrapping. 
(If rope strands are used, it should be remembered that their modulus 

of elasticity E is less than 20,000,000, as compared with about 30,000,000 
for parallel wire cables.) 

ERECTION OF SUSPENSION BRIDGES 

The erection of suspension bridges is free from the hazards attending 
other types of long span construction. 

The normal order of erection is: Substructure, towers and anchorages, 
foot bridges, cables, suspenders, stiffening truss and floor system, road¬ 
ways, cable wrapping. 

The cables are the only members requiring specialized knowledge for 
their erection. The other elements of the bridge, for the most part, are 
erected in accordance with the usual field methods for the correspond¬ 
ing elements of other structures. 

33. Erection of the Towers.—The erection of the towers may proceed 
simultaneously with the construction of the anchorages. 

For the Manhattan Tower of the Williamsburgh Bridge, a stationary 
derrick on the approach falsework was used to erect the steel up to 
roadway level; the erection was then completed by two stiff-leg derricks 
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mounted ou a timber tower built up on the cross-girder between the two 
tower legs. 

In the case of the Manhattan Bridge, the tower (Fig. 29) consists of 
four columns supported on cast steel pedestals resting on base plates 
set directly on the masonry pier. The tower columns were erected by 
the use of ingenious derrick platforms (one for each pair of columns) 
adapted to travel vertically up the tower as the erection proceeded. 
Each platform projected out from the face of the tower on the shore side 
and was supported by two bracket struts below. The tipping moment 
was resisted by sets of rollers or wheels engaging the edges of the columns, 
and the vertical support was furnished by hooks engaging the projecting 
gusset plates of the bracing system. With a 45-ft. stiff-leg derrick 

Fig. 28.—Kingston Bridge—Towers and footbridges. (1921—Span 705 ft.) 

mounted on each platform, the sections of the tower were lifted from the 
top of the pier and set in place. When a full section had been added to 
the tower, blocks were fastened to the top and falls attached to the 
derrick platform by which it then lifted itself to the next level. 

In addition to the two traveling derricks, there were required, for the 
erection of each tower: two hoisting engines and one stiff-leg derrick on 
the pier; two storage scows moored to the pier; a power plant with air 
compressor on shore; 30 pneumatic riveting hammers; and 6 forges. 
The force at each tower consisted of 100 men including 6 riveting gangs. 
The erection record was 2,000 tons of steel at one tower in 16 working 
days. 

For smaller bridges, the towers may be erected by gin-pole or by 
stationary derrick alongside. For the suspension bridge at Kingston, 
N. Y. (Fig. 28), a guyed derrick with 95-ft. steel boom was set up on a 
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square timber tower 80 ft. high for the erection of each steel tower; the 
same derricks later erected the adjoining panels of the stiffening truss. 

34. Stringing the Footbridge Cables.—The general method consists 
in taking one or more ropes across the river by means of a boat, and then 
raising to position. 

For the Manhattan Bridge (Fig. 29), sixteen 1^-in. wire ropes were 
swung between the towers in four groups of four, each group to make a 
single footbridge cable. The four reels were mounted on a scow brought 
alongside one of the towers, A. The end of each rope was unreeled, 
hauled over a roller saddle on top of the tower, and secured to the anchor¬ 
age A. Then the scow was-towed across the river, laying the ropes along 
the bottom, to the opposite tower B. The remainder of each rope was 

Fig. 29.—Manhattan Bridge—Cable spinning. (1909—Span 1,470 ft.) 

then unreeled and coiled on the deck of the scow. Then, while river 
traffic was stopped for a few minutes, the free end of each rope was hauled 
up by a line over the top of tower B to the anchorage B, the middle of the 
rope or bight rising out of the water during this operation.' The ropes 

* were then socketed and adjusted to the precise deflection desired as deter¬ 
mined by levels. 

36. Erection of Footbridges.—The next step is the construction for 
each cable of a footbridge or working platform which permits the wires 
to be observed and regulated throughout their length, and greatly 
facilitates the entire work on the cables (Figs. 28, 29, 32). 

For the Manhattan Bridge (Figs. 29, 32), four platforms were con¬ 
structed, 8 ft. wide, placed concentric with the main cables and 30 in. 
(clear) below them. The timber floor beams were secured to the upper 
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side of the footbridge cables by U-bolt clamps. Upon the outer portions 
of the floorbeams were dapped the stringers, and on these were spiked 
the floorboards. Each platform carried “ hauling towers ” (Fig. 29), about 
250 ft. apart, to support the sheaves of the hauling ropes used for 
placing the strand wires. The platforms were braced and guyed by 
backstays from each tower, and by inverted storm cables connected to 
them at 54-ft. intervals (Fig. 29); and were provided with wire rope 
hand rails. 

For the Brooklyn Bridge, the timber staging consisted of one longi¬ 
tudinal footbridge and five transverse platforms, called “ cradles,” from 
which the wires were handled and regulated-during cable-spinning. 

Fig. 30.—Williamsburgh Bridge—Traveling wheel for cable spinning. (1903—Span 
1,600 ft.) 

36. Initial Erection Adjustments.—It has become general practice 
to use the method introduced by Roebling of spinning the desired number 
of parallel wires in place and then combining them into a cable. 

Guide wires are used as a means of adjusting the individual wires to 
equal length. 

Special computations have to be made for the location of the guide 
wires, for setting the saddles on top of the towers, and for the length of 
the strand legs. 

Knowing the desired final position of the cable under full dead load, 
its length is carefully computed from center to center of shoe pins at the 
anchorage. Applying corrections for elastic elongation (due to sus- 
pended load) and for difference of temperature from the assumed mean, 
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the length of unloaded cable is determined. This gives the length of 
the guide wire between the same points. 

Assuming no slipping of the strands in the saddles, the initial position 
of the saddles is computed so as to balance tensions between the main 
and side span catenaries. This gives the distance the saddles must 
be set back (toward shore) from their final position on the tops of the 
towers. 

Since the strands will be spun above their final position, the initial 
position of the strand shoes will be a short distance forward or back of 
their final position. This distance is carefully computed and gives the 

Fig. 31.—Williamaburgh Bridge—Strand shoes in position during cable spinning. (1903— 
Span 1,600 ft.) 

required length of the strand legs (Fig. 31). The distance may also be 
determined or . checked by actual trial with the guide wire. 

Taking into consideration the previously calculated and corrected 
total length of cable between strand shoes, the initial raised position of 
the strands above the tower saddles, and the length of strand legs shifting 
the initial position of the strand shoes, the ordinates of the initial caten¬ 
aries in main and side spans are carefully computed. These ordinates 
are used for setting the guide wires with the aid of transit and level 
stationed at towers and anchorages. 

The initial erection adjustments for the Brooklyn, Williamaburgh, 
Manhattan, and Kingston Bridges are summarized and compared in the 

following table: 
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Initial Position op Cable Strands 

With Reference to Final Position 

Height 
above 
crown, 

feet 

Brooklyn. 57.0 
Williamsburgh. 15.0 
Manhattan. 2.0 
Kingston. 1.25 

Height Distance Distance 
above saddle set shoe set 
saddle, back, back, 

feet feet feet 

2.1 0.1 + 12.0 
2.0 i 2.75 + 3.0 
2.0 0.0 - 1.83 
1.25 0.5 - 0.25 

37. Spinning of Cables.—The operation of cable spinning requires 
an endless wire rope or “traveling rope” (Figs. 29, 30) suspended across 
the river and driven back and forth by machinery for the purpose of 
drawing the individual wires for the cable from one anchorage to the other. 
There is also suspended a “guide wire” which is established by computa¬ 
tions and regulated by instrumental observations so as to give the desired 
deflection of the cable wires. 

Large reels upon which the wires are wound are placed at the ends 
of the bridge alongside the anchor chains (Figs. 29, 30). The free end of 
a wire is fastened around a grooved casting of horseshoe shape called a 
“shoe” (Fig. 31), and the loop thus formed is hung around a light grooved 
wheel (Fig. 30) which is fastened to the traveling rope. The traveling 
rope with its attached wheel, moving toward the other end of the bridge, 
thus draws two wires simultaneously across from one anchorage to 
the other; one of these wires, having its end fixed to the shoe, is called the 
“standing wire”; while the other, having its end on the reel, is called the 
“running wire” and moves forward with twice the speed of the traveling 
rope. Arriving at the other end, the wire loop is taken off the wheel and 
laid around the shoe at that end. The two wires are then adjusted 
so as to be accurately parallel to the guide wire, the operation of adjust¬ 
ment being controlled by signals from men stationed along the footbridge. 
The wire is then temporarily secured around the shoe, and a new loop 
hung on the traveling wheel for its second trip. After 200 or more wires 
have thus been drawn across the river and accurately set, they are tied 
together at intervals to form a cable strand. 

For the Manhattan Bridge, the wires (drawn in 3,000-ft. lengths) 
were spliced to make a continuous length of 80,000 ft. (4 tons) wound on a 
wooden reel. On each anchorage were set eight reel stands, each with a 
capacity of four reels (Fig* 29). Supported above the footbridges were 
eight endless %-in. steel “traveling ropes” passing around 6-ft. horizontal 
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sheaves at the anchorages. Attached to each endless rope at two equi¬ 
distant points were deeply grooved 4-ft. carrier sheaves (“traveling 
,wheels”) in goose-neck frames (Figs. 29, 30). The “strand shoe” 
(Fig. 29) was held 22 in. in front of final position by a special steel con¬ 
struction called a “strand leg” attached to the pin between two anchorage 
eyebars. (In the case of the Williamsburgh Bridge, Fig. 31, the strand- 
leg construction was reversed, the shoe being held 3 ft. back of final 
position.) The bights of wire were placed around the traveling wheels 
and pulled across, taking about 7 min. for a trip of 3,223 ft. from anchorage 
to anchorage. As each part of the wire became dead, it was taken by 
an automatic Buffalo grip and adjusted to the guide wire. After each 
strand (256 wires) was completed, the wires were compacted with curved- 
jaw tongs and seized* with a few turns of wire every 10 ft. Then, with 
a “strand bridle” attached to a 35-ton hydraulic jack, the shoe was pulled 
toward shore, releasing the strand leg and the eyebar pin. The strand 
shoe was then revolved 90 deg. to a vertical position and pulled back to 
position on the eyebm pin. The strand was then lifted from the 
temporary sheaves in which it was laid at the anchorages and the towers, 
and lowered into the permanent saddles; a 20-ton chain hoist and steel 
“balance beam” being used for this operation. The strand was then 
adjusted to the exact position desired by means of shims in the strand 
shoe. After the seven center strands of a cable were completed, they 
were bunched together with powerful hydraulic squeezers to make a 
cylinder about 9)4 in. in diameter. Then the remaining strands were 
completed and compacted in two successive layers around the core. 
Then the cable was coated with red lead paste, and the permanent cable 
bands and suspenders were attached. The foot bridges were hung to the 
completed cables to be later used for the work of cable wrapping, and the 
temporary foot bridge cables were cut up for use as suspenders. 

38. Erection of Trusses and Floor System.—The suspension from the 
cables permits the steelwork to be erected without falsework. 

In the Manhattan Bridge, the truss is supported at each panel point 
by four parts of 1%-in. steel rope suspenders with their bights engaging 
the main cables and having at the lower end nut bearings on horizontal 
plates across the bottom flanges of the lower chord. 

All members were shipped separately, the chord members in two- 
panel-length pieces weighing 26,000 to 30,000 lb. each. 

The erection proceeded at four points simultaneously, working in 
both directions from each tower (Fig. 32). Traveler derricks of 25-ton 
capacity were used, with 34-ft. mast and 50-ft. boom, provided with 
bull-wheel. At each point of erection there were two qf these large 
derricks, also one jinnywink derrick with 30-ft* boom and 7-ton capacity. 
In addition to these twelve movable derricks, there were four stationary 
steel-boom derricks at the towers. 
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Starting at the towers, the lower chords and floor system were assem¬ 
bled two panels in advance of the travelers, making temporary connec¬ 
tions to the suspenders (Fig. 32), until the anchorages and mid-span were 
reached. Then the travelers returned to the towers to commence their 
second trip. 

The material was hoisted by the tower derricks and loaded on service 
cars which delivered it to the traveler derricks. 

On the first trip, the lower chords, lower deck and verticals were 
erected; on the second trip, the truss diagonals were erected; and on the 
return (Fig. 33), the upper deck and transverse bracing were put up, 
thus completing the structure. 

Fig. 32.—Manhattan Bridge—Erection of lower chords and floor system. (1909—Span 
1,470 ft.) 

A force of 300 men was employed on this work, and their record was 
300 tons of steel erected in a day. 

The first few panels of the main span are generally erected by the sta¬ 
tionary derricks at the tower as far as their booms can reach. Additional 
panels may be erected by drifting or outhauling from the cable; or by the 
use of “runners, 99 that is, block and falls suspended from the advance 
cable band and operated by the hoisting engine at the tower. At King¬ 
ston, the latter method was adopted, dispensing with the use of travelers. 

39. Final Erection Adjustments.—The elevations and camber of the 
roadway are checked with levels and corrected where necessary by adjust¬ 
ing the lengths of the suspenders. 

Tn completing the stiffening truss, the closing chord members should 
be inserted after all the dead load is on the structure, the connecting 
holes at one end being drilled in the field. 
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If the closure of the stiffening truss has to be made before full dead 
load is on the structure or at other than mean temperature, the vertical 
deflections are computed for these variations from assumed normal condi¬ 
tions and the suspenders adjusted accordingly before connecting the 
closing members. In adjusting the suspenders, the center hanger is 
shortened or lengthened the calculated amount, and the other hangers are 
corrected by amounts varying as the ordinates to a parabola. 

If the trusses are assembled on the ground before erection, the exact 
camber ordinates can be measured and reproduced (by suspender adjust¬ 
ment) so as to secure zero stress under full dead load at mean temperature. 

An ideal method of checking the final adjustments is by means of an 
extensometer, which should check zero stresses throughout the stiffening 

Fio. 33.—Manhattan Bridge—Erection of upper chords of stiffening truss. (1909—Span 

1,470 ft.) 

truss when normal conditions are attained, or calculated stresses for any 
variation from assumed normal conditions. 

40, Cable Wrapping.—Close wire wrapping has proved to he the most 
effective protection for cables. 

For the Manhattan Bridge, No. 9 galvanized soft steel wire (0.148 in. 
in diameter) was used. This was rapidly wound around the cable by a 
simple and ingenious machine operated by an electric motor. This 
machine, designed by H. D. Robinson, is illustrated in Fig. 34. 

In advance of the machine, the temporary seizings are removed and 
the cable painted with a stiff coat of red lead paste. The end of the wrap¬ 
ping wire is fastened in a groove at the end of the cable band. The 
machine, carrying the wire on two bobbins or spools, travels around the 
cable and applies the wire under a constant tension. The machine 
presses the wire against the preceding coil and at the same time pushes 
itself along at a rate of about 18 ft. per hr. 
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The machine weighs 1,000 lb. and is operated by a 1^-h.p. motor at 
a speed of 13 rev. per min. It is handled by a force of six men. 

41. Erection of Wire Rope Cables.—The individual wire ropes com¬ 
posing a cable of this type may be towed across the river in the same man¬ 
ner as the temporary footbridge ropes of a parallel wire cable (see p. 
349); or they may be strung across by means of a single working cable 
stretched from tower to tower. 

The latter method was used for a footbridge of 540-ft. span built over 
the Cumberland River by the American Bridge Company (Fig. 25). Each 
cable consisted of seven ropes of 1% in. in diameter. A working cable of 
1-in. wire rope was first stretched across between the towers for each of the 
main cables. The main ropes were unwound from the reels back of one 

Fig. 34.—Cable wrapping machine in working position on Manhattan Bridge. 

tower. One end of a rope was lifted to the top of the tower and hauled 
across the river to the top of the opposite tower, the rope being supported 
from the 1-in. working cable by blocks attached at intervals of about 60 
ft., thus preventing too much sag. The rope was then lowered to approxi¬ 
mately correct position, and the sockets attached to the tower shoes. 
The remaining ropes were then stretched in the same manner, and all 
were then adjusted by nuts at the ends until they touched a level straight 
edge held on the fixed line of sag determined by a transit in the tower. 
The cable clamps and suspenders were then placed by men on a movable 
working platform hung from the cables, beginning in the center and work¬ 
ing toward each end. The floor system was also erected by men on the 
working platform, in this case working from both ends toward the center. 
The platform was then removed, and the trusses were erected from the 
ends toward the center by workmen on the floor system, using the two 
working cables (shifted to the center of the bridge) as a trolley cable for 



See* 6—42] SUSPENSION BRIDGES 357 

transporting the truss sections to position. Adding the top lateral brac¬ 
ing, railings, and wood floor, the structure was completed. 

42. Erection of Eyebar Chain Bridges.—Chain suspension bridges 
have, as a rule, been erected upon falsework. 

For the Elizabeth Bridge at Budapest (1902, span 951 ft.), the false¬ 
work consisted of huge scaffoldings built on piles and protected from 
floating ice by ice breakers. Four openings of 160 ft. were left for vessels, 
and these openings were spanned by temporary timber bridges floated 
into place on pontoons. After the falsework was completed, the main 
chains were erected in 12 weeks. The falsework was then taken down and 
the steelwork completed. 

A different scheme, eliminating heavy falsework, was used for the 
Clifton Bridge (1864, span 702 ft.). Under each set of three chains, a 
suspension foot bridge was constructed, using wire ropes. Above this 
staging, another rope was suspended to carry the trolley frames for trans¬ 
porting the links. The chains were commenced simultaneously at the 
two anchor plates; the lowest of the three chains being laid first. Com¬ 
mencing at the anchorage, there were inserted the whole of the links, 
namely 12, then 11, 10, 9, 8 and so on until the chain was diminished to 
one link; then the chain was continued with one and two links, alternately, 
until the two-halves met at mid-span. The suspended foot bridge was 
strong enough to carry the weight of this chain until the center connection 
was made; the chain was then made to take its own weight by removing 
the blocking under it. The next operation was to add the remaining 
links of the chain on the pins already in place. The process was repeated 
for the upper chains, and then the roadway was suspended. 

43. Time Required for Erection.—The time schedule for the Man¬ 
hattan Bridge (1,470-ft. span) was as follows: 

First substructure contracts let. 1901 
Pier foundations commenced. May, 1901 
Work commenced on final (revised) design. March, 1904 
Steel towers commenced. July, 1907 
Towers completed (12,500 tons). July, 1908 
Temporary cables strung. June 15-20, 1908 
Foot bridges constructed. July 7-13, 1908 
Spinning of main cables commenced (4 cables). Aug. 10, 1908 
Last wire strung (37,888 wires). Dec. 10, 1908 
Erection of suspended steel commenced. Feb. 23, 1909 
Suspended steel completed (24,000 tons). June 1, 1909 
Approaches completed and bridge formally opened, . Dec. 31, 1909 

The steel erection, amounting to 42,000 tons of steel between anchor¬ 
ages and including towers, cables, trusses and decks, was accomplished 
in two and one-half years. 
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The Kingston Suspension Bridge (705-ft. span) was completed in 
one year (1920-1921), although several months were lost waiting for 
steel delivery. The bridge contains 1,600 tons of structural steel and 
250* tons of cables. 

The 400-ft. span suspension bridge at Massena, N. Y., containing 
400 tons of steel, was erected complete in six months. 

44. Suspension Bridges, 1923-1943.—As the methods of design out¬ 
lined in the previous articles are still valid, attention will be focused 
on the improvements in design and erection details. Many of these 
improvements have been brought about by the construction of heavy 
and extremely long spans. In the following articles, therefore, consider¬ 
ation will be given principally to erection features. 

Fig. 36.—Erection traveler Golden Gate Bridge. (Courtesy of the Bethlehem Steel Co.) 

45. Erection, of Towers.—The erection of the towers of the George 
Washington and Golden Gate Bridges was made by means of a traveler, 
consisting of two stiff-leg derricks mounted on a steel framework between 
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the tower columns (Fig. 35). As the traveler moved up the tower in 
stages limited to the reach of the derrick booms, each derrick erected 
one column and a part of the cross bracing connecting the columns. 

The bottom sections of the tower columns of the suspension spans 
of the San Francisco Bay Bridge were erected by a stiff-leg derrick, 
which was placed on the masonry piers between the tower columns. 

Fig. 36.—Hammerhead cranes, San Francisco Bay Bridge. (Courtesy of the American 
Bridge Co.) 

The derrick was also used to erect two hammerhead cranes and to lift 
the remaining tower sections and cross bracing from the barges to the 
pier top within reach of the cranes. One hammerhead crane was placed 
in the inner well of each tower column (see Fig. 36). The main mast of 
each crane consisted of a box girder type column, 5 ft. square in cross- 
section and 108 ft. long. The lower end was tapered to permit keeping 
the mast plumb as the inner well of the tower column is slightly inclined. 
Within the upper end of the main mast there was mounted another 
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column 3.5 ft. square and 24.5 ft. long. To the upper end of this column 
a cross-arm was rigidly attached. This unit was so designed that it 
could be rotated about its vertical axis. A traveling car with the upper 
block of the lifting falls attached to it was mounted on a track on the 
forward side of the cross-arm. A concrete counterweight was attached 
to the other side, in such a manner as to permit it to be lowered to 
the masonry pier when not required. It was necessary to use the 
counterweight only when the car with load was more than 10 ft. from the 
mast to keep the bending moment in the mast within the design limits. 
As it was always possible to keep the car, when loaded, within 10 ft. 
or less of the mast whenever it was necessary to rotate the hammerhead, 
the counterweight was lowered to the pier during this operation. After 
each 50-ft. section of a tower column was erected, the cranes were raised 
and the process repeated until the erection of the columns together with 
their cross bracing was completed. The cranes were then used to raise 
the saddles and erect a guy derrick on the tower top. This derrick was 
used to dismantle the cranes, place diaphragms in the central wells, 
place the cap plates, and aid in subsequent operations. 

46. Stringing Footbridge .Cables.—On the San Francisco Bay Bridge 
the footbridge cables were kept in sufficient tension, when being hauled 
from one tower to the other, so that they were always clear of the water. 
This was very desirable, as the water of the bay is salt and its bottom is 
covered with a mud that has very penetrating finely divided particles. 
Furthermore these cables were cut up and used as suspenders in the 
finished bridge after the main cables had been erected and the footbridges 
attached to them with wire rope slings. Before shipment the footbridge 
cables were prestressed which reduced their mechanical stretch, fur¬ 
nished data necessary for calculating their modulus of elasticity, and also 
permitted the accurate control of the sags in the footbridges. 

On the Golden Gate Bridge, contrary to usual practice, the footbridge 
cables were not intended for use as suspenders in the finished bridge. 
Several advantages are secured by this arrangement. The use of mate¬ 
rial which is to be used in the finished bridge is not required for a 
temporary service in which it might be damaged. Cables satisfactory 
for supporting the footbridge only, weighed 5 lb. per ft. whereas the 
suspender cables weighed 12.5 lb. per ft. Not only were the lighter 
cables easier to erect, but after they were in place, it was not necessary 
to disturb them until they were no longer needed. This method reduces 
the field operations and permits complete fabrication of the suspenders 
at the shop before shipment. 

47. Erection of Footbridges.—The footbridges of the Golden Gate 
Bridge differed in several respects from those usually employed. Instead 
of wooden stringers the cables were used for these members. This was 
done by spreading out 12 lines for one footbridge and 13 for the other. 
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This reduced the weight and saved some time in erection. The con¬ 
ventional bents or towers that carry the cable spinning tramways and 
are erected on the footbridges were not used on this bridge. Instead, 
the sheaves carrying the tramway cables were attached to cables sus¬ 
pended-from the main bridge towers. These cables were also tied into 
the storm-bracing system of the footbridges. This scheme reduces 
weight, provides cushioning to the impact of the spinning carriages on 
the supporting sheaves, and adds stability to the footbridges and storm 
system. 

Fig. 37.—Footbridge erection, San Francisco Bay Bridge. (Courtesy of the American 
Bridge Co.) 

The footbridges for the San Francisco Bay Bridge were also unusual 
in several respects. Their floor system consisted of wood floor beams to 
which three strips of chain link fencing were stapled, giving a width of 
10 ft. The floor was fabricated on shore in units 100 ft. long. After 
the units were fabricated, they were telescoped into compact bundles 
and shipped to the piers by barge. At that point they were hoisted one 
at a time to the tower tops. They were then attached to the four foot¬ 
bridge cables, spliced together, and allowed to slide down the cables 
(Fig. 37). After all the units had been placed, the mesh was stretched 
until it formed a flat walk. The fencing had a 2-in. mesh which was 
somewhat too coarse for a footwalk surface. It was covered with a wire 
hardware cloth of finer mesh that gave good footing and prevented the 
loss of tools and other small objects. Some of the advantages of this 
type of footbridge are reduced fire hazard, less weight, less exposed area 
to wind action, and greater ease of fabrication, erection, and dismantling. 
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48. Initial Erection Adjustments.—The initial adjustments outlined 
in Art. 36 have been the usual practice on suspension bridges having 
parallel wire cables. On the San Francisco Bay Bridge, however, the 
strands were spun in place in the tower saddles and strand shoes with the 
exception of three strands in each cable which had to be moved a short 
distance. This method eliminated the use of balance beams at the towers 
and also the moving and placing of the strand shoes over the pins in the 
anchorage eyebars after each strand was completed. 

Fia. 38.—Compensation tower and spinning equipment, San Francisco Bay Bridge. 
(Courtesy of Engineering News-Record.) 

49. Spinning of Cables.—Although the basic methods of spinning 
parallel wire cables have not changed, there has been a definite improve¬ 
ment in the art during the last twenty years. This has been due to the 
desire to produce better cables and to reduce the time required for 
spinning the wire. 

Prior to the construction of the George Washington Bridge; the reels 
on which the wire was mounted for spinning were controlled by brakes 
only. The rotation of the reels was started and maintained by the pull 
of the spinning carriages. Any variation of the carriage speed caused 
the “live” or “running” wire to whip and surge about. This action is 
very marked when the reels are full of wire and slows up the spinning 
time materially. This undesirable action was virtually eliminated on the 
George Washington Bridge by the use of power-driven reels and com¬ 
pensation towers. The compensation tower contained several sheaves, 
one of which was floating and acted as a counterweight. The yfire from 
the reels was reeved through the several sheaves before passing around 
the spinning wheels, and the dead ends made fast. 

The floating sheave tends to hold the wire under uniform tension, 
The operator of the motor driving the reels varied their circumferential 
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speed so that it conformed closely to that of the spinning carriages. 
This was done by keeping the floating sheave as near one position as 
possible during the movement of the spinning carriages. Similar methods 
were used on both the Golden Gate and San Francisco Bay Bridges 
(Fig. 38). 

Improvements in carriage design with more positive control of the 
reels and tension in the wire have permitted the spinning to be increased 
approximately 70 per cent, or in excess of 600 ft. per min. On the Golden 

Fig. 39.—Spinning carriage, Golden Gate Bridge. (Courtesy of the Bethlehem Steel Co.) 

Gate Bridge the speed of placing the wire was further increased bv the 
use of a two-wheel carriage. This type of carriage had been previously 
tried with success on the last strands of the George Washington Bridge. 
Before the spinning operations on the Golden Gate Bridge were com¬ 
pleted, a third wheel was added to the carriage (Fig. 39). The tramways 
that supported these carriages were also unusual in that they did not 
extend from anchorage to anchorage. They were so designed that a 
carriage passed from an anchorage to a transfer station at the center of 
the main span. At this j>oint the wires from each carriage were trans¬ 
ferred to the other, so that when the carriages returned to the anchorages, 
each set of wires had been hauled from one anchorage to the other. As a 
split tramway was used on both sides of each main cable, a total of 24 
wires was placed for each complete cycle of the three-wheel carriages and 
10 wires, for ;the two-wheel carriages. Because of the large number of 
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wires to be adjusted at one time, it was necessary to adopt some means 
of distinguishing the wires. Therefore, the wire from one of the two reels 
feeding a carriage was sprayed with a distinctive color. Both the color 
and the original placing of the wires in their proper guides at the control 
points enabled the adjusters to keep the wires identified. 

F:a. 40.—Strand shoes and spinning carriage, San Francisco Bay Bridge. (Courtesy of the 
American Bridge Co.) 

On the San Francisco Bay Bridge the carriages were equipped with 
a single spinning wheel that had two grooves, each of which carried four 
parts of wire. The tramways extended as usual from anchorage to 
anchorage. The two main cables of each suspension section were spun 
at the same time. After the cables in one section were completed, the 
spinning equipment was dismantled and reerected and the cables in the 
other section spun. A carriage was mounted on the tramway at each 
anchorage so that a total of eight wires was placed by each passage of 
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the carriages from one anchorage to the other. The strand shoes were 
placed in pairs on each side of a group of anchorage eyebars (Fig. 40). 
The tower saddles were stepped, instead of grooved, with the strands of 
square cross-section at this point (Fig. 41). This design eliminated the 
use of fillers between strands and gave a very compact section at the 
saddles. All these details permitted the spinning of the wire in place, 
which materially speeded up the cable construction. 

Fig. 41.—Tower saddle, San Francisco Bay Bridge. (Courtney of the American Bridge Co.) 

It was found advisable on the George Washington Bridge to use.power 
in adjusting the wires, as a force of about 600 lb. was necessary to pull a 
wire into its proper position. To accomplish this, several endless power- 
driven cables were mounted along the footwalks. The “come along” 
grips were attached to one end of a pennant line, the other end of which 
was attached to the power-driven cable. The cable drive was reversible 
and could be controlled by the man operating the “come along,” or the 
adjuster. This device used in conjunction with a signal system of lights 
has proved satisfactory on long suspension spans. 

The cross-section of a parallel wire cable tends to assume an elliptical 
form, with the longer axis normal to a vertical plane through the cable 
axis. The most desirable form of cross-section for the cable is circular. 
A very close approximation to this form was secured on both the Golden 
Gate and San Francisco Bay Bridges by two quite different methods. 
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On the Golden Gate Bridge the strands were laid up in vertical tiers rather 
than in the customary horizontal layers. The number of wires in the 
different strands was varied depending on the position of the strand in the 
cable. Before compaction the cross-section of the cable was hexagonal, 
with straight sides, placing the outside top and bottom strands in planes 
at 30 deg. with the horizontal, which tended to increase their stability. 
Previous practice placed the strands in horizontal layers, producing a 
hexagonal cross-section before compaction but with the outside strands 
at the top and bottom lying in the sides of the hexagon (Fig. 42). The 
new design produced a cross-section very close to the circular form after 
completion, with considerably less force required for compaction. On the 
San Francisco Bay Bridge the circular form was secured by the use of a 

Fig. 42.—Cross sections of cables at tower saddles. (Courtesy of Engineering Newe-Record.) 

new type of compacting machine. The usual type of compacting 
machine is equipped with hydraulic jacks mounted on a steel frame 
in such a manner that the jacks advance toward a common center. 
These jacks may be connected so that they act either simultaneously or 
in groups as desired. Their movement is dependent on the pressure 
applied to them and to the resistance they encounter. Unless particular 
care is taken in the design of the cable before compaction, as was done 
on the Golden Gate Bridge, it is virtually impossible to produce a com¬ 
pacted circular cross-section. To eliminate this action, the engineers 
on the San Francisco Bay Bridge designed a compacting machine 
equipped with chain-driven screw jacks. Each screw jack advances an 
equal amount, as its movement is dependent on the mechanical drive, 
which is independent of the resistance encountered. 

The advance in the art of cable spinning is measured in part by the 
daily tonnage of >ire placed. On the Manhattan Bridge (1908-1909) 
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the wires were placed at an average daily rate of 33 tons per cable. The 
wires in the Delaware River Bridge cables (1924-1925) were placed 
at about the same rate. On the George Washington Bridge (1929-1930) 

Fig. 43.—Golden Gate Bridge, San Francisco. (Courtesy of American Institute of Steel 
Construction.) 

Fig. 44.—Suspension spans, San Francisco-Oakland Bay Bridge. {Courtesy of American 
Institute of Steel Construction.) 

the rate was increased to 61 tons and on the East suspension span of the 
San Francisco Bay Bridge (1935-1936) to 64 tons. The average rate 
cm the Golden Gate Bridge (1936) was approximately 173 tons per day. 
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50. Erection of Trusses and Floor System.—The trusses and floor 
system of the San Francisco Bay Bridge were assembled in units at a 
storage yard. The units consisted in general of two panels of trusses, 
two floor beams with intervening panel of lateral bracing, and one or two 
upper floor beams. These units were loaded on a barge and towed to 
the proper position beneath the bridge. The units were lifted into place 
by means of four sets of falls. The lower block on each set of falls was 
attached to the units near the upper end of the truss verticals. The 
upper blocks were attached to the main bridge cables by wire rope slings. 

Floating towers have also been used to erect the trusses and floor 
system on some suspension bridges. 

51. Some Features of the World’s Largest Suspension Bridges.—A 
comparison of the span lengths and tower heights of some of the largest 
suspension bridges is interesting. They are shown in the accompanying 
tabulation: 

Bridge 

Year 

com¬ 
pleted 

Clear 

span 

(ft.) 

Height of 

tower above 

water (ft.) 

Golden Gate. 1937 4.200 

3.200 

2,310 

746 
George Washington. 1932 595 
San Francisco-Oakland Bay. 1936 515 
Ambassador. 1929 1,850 

1,750 
1,632 

378 
Delaware River. 1926 375 
Bear Mountain. 1924 350 
Williamsburgh.*. 1903 1,600 

1,596 
333 

Brooklyn. 1883 273 

The Golden Gate Bridge has the distinction of having the longest 
span of any bridge in the world (Fig. 43). The West Bay structure of 
the San Francisco-Oakland Bay Bridge is a twin suspension bridge with 
an anchorage at each end and a common anchorage at the center (Fig. 44). 



SECTION 7 

STEEL ARCH BRIDGES—GENERAL 

1. Classification and Types of Steel Arch Bridges—The steel arch 
structure is distinguished from the truss or girder in that the reactions at 
the supports are inclined rather than vertical. Figure la illustrates a 
typical steel truss structure. One support is derived from the fixed 
pin at b and the other from a pin resting at a on a roller nest, or other 

Fig. 2.—Fixed arch 

Fig. 3.—Single-hinged arch. 

Fig. 4.—Two-hinged arch. 

Fig. 5.—Three-hinged arch. 

type of support so arranged as to provide for free lateral movement. 
From the figure, it is at once observed that both abutment reactions 
will be vertical in direction. If the rollef at a be replaced by a fixed pin, 
as shown in Fig. lb, the structure at once becomes a two-hinged arch. 
If member c-d were to be removed, the structure would become a three- 

hinged arch (see Fig. lc). 
369 
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Classified according to the method in which the stresses are distrib¬ 
uted throughout the superstructure, arches may be grouped under four 
main headings as follows: 

(1) Hingeless or fixed arches as shown in Fig. 2. 
(2) Single-hinged arches as shown in Fig. 3. 
(3) Two-hinged arches as shown in Fig. 4. 
(4) Three-hinged arches as shown in Fig. 5. 

DecArv 

Classified in accordance with the method in which the rib is fabricated 
and the deck carried by the rib, arch bridges may be grouped under the 
following headings: 

Fig. 7.—Half through arch, two-hinged crescent typo (rib arch). 

(1) Solid Rib Arches.—Arches of this character may be either fixed 
or with one, two or three hinges. The two-hinged type may be either 
•parallel curved as shown in Fig. 6, or of the crescent type as shown in Fig. 

7. The three-hinged type may be either parallel curved as shown in Fig. 
8, or lenticular in section as shown in Fig. 9. The most commonly used 
form of “ plate girder” or solid webbed arch rib is that of a parallel curved 
rib of constant depth throughout its length. 

(2) Braced Rib Arches.—This type differs from the above type in that 
the solid web of the former is replaced by a system of diagonal bracing. 
Either a single or a double intersection web system may be used, as shown 
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in Fig. 10. The single intersection type avoids considerable ambiguity 
in analysis. The double type on the other handis said to result in lower 
secondary stresses. 

Fig. 9.—Lenticular rib arch (three-hinged). 

(3) Spandrel Braced Arches.—Arches of this type are generally con¬ 
structed with two or three hinges on account of the difficulty encountered 

Single Intersection Web System 

Fig. 10.—Braced rib crescent type two-hingod arch. 

adequately anchoring the skewbacks to produce a condition of fixity 
at the abutments. This type of construction generally consists of 

Fia. 11.—Double deck spandrel braced arch. 

horizontal top chord, a curved or arched bottom chord, and a system of 
diagonal bracing connecting the two. Figure 5 illustrates this type of 

arch structure. 
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Arches may be further classified as through arches, half through- 
arches or deck arches in accordance with the method by which the 
roadway‘is supported by the arch proper. Through and half-through 
arches are nearly always of the rib type; although it is possible to construct 
a double deck spandrel-braced arch wherein the lower deck passes through 
the arch frames as shown in Fig. 11. 

2. Relative Merits of Various Types of Arch Construction. 
2a. Fixed or Hingeless Type.—The principal advantage 

claimed for this type of construction is its rigidity. Its principal dis¬ 
advantage lies in the fact that a lateral yielding of the foundations will 
induce very heavy stresses in the superstructure. Other conditions being 
equal, this type will probably show a slight saving in metal over either 
of the hinged types of construction. One of the disadvantages charged 
against this type of construction is the labor involved in making the 
calculations. This, however, should not be considered a serious objection 
for fixed arch analysis has now been standardized to a point where the 
labor involved is not so great as formerly, and, moreover, the expense 
of even the most laborious calculation is very small in comparison with 
what may be saved on a large superstructure by refinements in design. 

2b. Single Hinge Type.—This type of construction is very 
rarely used and possesses no distinct advantages. One of the most 
notable designs of this type was one proposed by Chas. Worthington for 
spanning the St/ Lawrence River at Quebec, this design contemplating 
a structure of some 1,800-ft. clear span. This type of structure is 
undoubtedly less rigid than the fixed type and possesses only one distinct 
advantage, namely, that of definitely locating the line of thrust at the 
crown.1 

2c. Two-hinged Type.—Undoubtedly not as rigid as the 
fixed type, but involves somewhat less labor in the making of calculations. 
This type presents the advantage of definitely locating the thrust line 
at both skewbacks, which is a distinct advantage for certain foundation 

conditions. 
2d. Three-hinged Type.—The principal disadvantage of 

this type lies in its lack of rigidity. Its principal advantage lies in its 
freedom from temperature stresses and in the fact that vertical or lateral 
movements of the supports, unless they be of considerable magnitude, 
will not induce any material stress in the superstructure. 

The three-hinged arch will probably require more metal than the 
fixed arch of corresponding dimension. No definite relationship has ever 

1 It will be shown in Art. 5, p. 368, that wherever a hinge is used, the line of 
thrust for the arch rib must pass through such hinge for every position of the loading, 
otherwise the structure would rotate about the hinge in question. Thus every hinge * 
introduced provides one point of definite location for the otherwise unknown thrust 
line. 
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been established or data presented as to the relative economy of these 
two types of construction. 

2e. Various Types in General.—In regard to the above 
types in general, it may be stated that the three-hinged type has been 
by far the most extensively used type of structure in America, but that 
the fixed arch is becoming more and more popular with American engi¬ 
neers. Where sufficient head room is provided so that the arch may be 
constructed with a generous rise, temperature stresses in this last type 
of structure do not assume very great importance. Flat fixed arches on 
the other hand may develop temperature stresses amounting to a large 
percentage of the total stress in the rib. 

Arches in general are especially to be commended for their beauty of 
line and have been used in Europe to a much greater extent than in this 
country probably for the above reason. This type of construction is 
most adaptable to deep, rocky ravines where 
ample head room can be secured, and where 
natural foundations of the best are encountered. 
It is probably not the part of wisdom to place 
arch structures on pile foundations except per¬ 
haps arches having three hinges. It is true that 
some fixed arches have been constructed on 
foundations of this character apparently with 
satisfactory results; however, the cost of abut¬ 
ments of a size sufficient to distribute the 
eccentric arch thrust in such a manner as to 
provide safe bearing values on the foundation 
material or on the piling, will generally be so 
great as to eliminate this type of construction 
from competition for foundation conditions of 
this character. * 

3. Loadings on Arch Bridges.—The loadings 
for which an arch structure should be designed 
are as follows: (1) Dead load; (2) live load; (3) 
impact; (4) wind load; and (5) temperature and 
rib shortening. 

Stresses resulting from dead load, live load “* 
and impact should be carried by the metal 
at the usual allowable unit stresses. It is permissible, however, to 
increase these stresses when considering the above loads in combination 
with wind or temperature; and to increase them still further when 
considering both wind and temperature stresses acting simultaneously. 
It is general practice to increase ordinary unit stresses of from 25 to 30 
per cent for dead, live and impact loadings plus either wind or temper¬ 
ature. It is also customary to allow these original unit stresses to be 

Fig. 12.—Showing method 
of inclining the planes of the 
arch frames to provide 
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increased up to 40 per cent when considering the above stresses together 
with wind and temperature acting simultaneously. 

Steel arch bridges must be thoroughly investigated for wind stresses 
both as affecting the bracing and as affecting the trusses themselves. 
In many cases arch trusses have been erected in an inclined or battered 
plane, as shown in Fig. 12, so that the lower chord spread increases from 
crown to skewback. In this manner a greater stability against wind or 
other lateral forces can obviously be secured. 

4. Erection of Arch Bridges.—The principal advantages in the span¬ 
drel-braced arch lies in the fact that it can many times be erected as a 
cantilever, thereby dispensing with false work and saving considerable 
in the cost of erection. It is also possible many times to so erect an arch 
bridge as to cause it to act as a three-hinged arch under dead load, or a 
portion of the dead load, afterwards fixing one or more of the hinges, thus 
causing the arch to act as a two-hinged or fixed arch under live load and 
impact. Figures 13 and 14 are construction views of a fixed rib arch 
structure that was erected across the Willamette River. 

This structure was erected piece by piece from a scow derrick and 
the sections held in place by means of stay-cables running from old 
timber suspension bridge towers, as shown in Fig. 13. Figure 14 shows 
the structure connected up at the center. It will be noted that the 
central portion was not supported by stay-cables, but by bents resting 
on steel cables which had formerly been used to support the suspen¬ 
sion bridge which crossed the river at this point. This structure as 
shown in Fig. 14 acts as a three-hinged arch. The hinges are detailed 
inside the rib and are not visible in the photograph. Figure 15 is a 
close-up showing the crown hinge which is placed inside the rib at the 
crown as shown. Figure 16 shows the skewback hinges and Fig. 17 
the grillage upon which they set. At a certain point in the erection pro¬ 
gram, a milled plate was inserted at the crown to fill the key gap shown 
in Fig. 15, and a cover plate riveted over this, thus completely fixing the 
crown. The skewback hinges were then concreted in. (These hinges 
set back some 8 or 10 ft. into solid rock and the entire cavern was filled 
with concrete, thus completely fixing the ends of the rib.) 

Comparative calculations were made for the total stresses resulting 
when the rib was assumed as being fixed at different stages of the erection, 
and it was found that a great deal of economy could be effected by allow¬ 
ing the rib to remain as a three-hinged arch until after the concrete floor 
was placed upon the structure because of the fact that some of the 
stresses induced when the structure was carrying load as a three-hinged 
arch were in a direction such as to counteract the stresses at the same 
point due to additional loading on a fixed arch. This fact, therefore, 
made it possible by properly combining the two actions, to decrease the 
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Fig. 15. Fig. 1C. 

Fig. 15.—Oregon City Bridge. Temporary 7K>-in. pin at crown. Used during erec¬ 
tion. Splice plate driven into tapered gap and riveted after floor load was placed, thereby 
relieving hinge of further action. 

Fig. 17. 
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total dead load stress from the value it would assume if the arch were to be 
fixed either earlier or later in the erection program. A study of this 
kind, especially for this type of construction, will doubtless be found 

worth while in every case. 
Figure 18 illustrates a device some¬ 

times employed for the erection of 
spandrel braced arches by the canti¬ 
lever method. The erection member 
ac is pin connected to the upper chord 
end panel point and anchored back into 
the solid rock, or by means of “dead 
men.” Inserted in this tie member is 
a “toggle joint” or eyebar parallelo¬ 
gram as shown in Fig. 186. By means 
of the toggle, points 6 are moved in or 
out, thus controlling the length of the 
tension member, and hence, the ele¬ 
vation of the cantilevered arm. This 
adjustment is necessary in order to 

enable the arch to close at the crown. Either two- or three-hinged arches 
may be erected in this manner. When two-hinged spans are thus erected, 
the center panel must be made to close at a certain predetermined 
temperature—otherwise, temperature strains, other than those for which 
the structure was designed, are introduced. 

6. General Design Features. 
6a. Shape of Arch.—It will be clear from a consideration of 

the laws of graphic statics and from the discussion of Sec. 8 that the 

Fig. 

(b) Detail of Erection Toggle 

18.—Cantilever method for erecting 
an arch frame. 

external forces and corresponding support reactions on any arch structure 
may be resolved into an "equilibrium polygon” or "thrust line” passing 
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through the rib or frame at or near its center. Thus in Fig. 19, the forces 
Fi-Fe inclusive together with the corresponding support reactions R\ 

and I&2 may be completely replaced by the thrust line Ri — a'-6'-c' — R2. 

If the three-hinged arch of Fig. 19 is loaded with the system Fi-F6, 
such load, deflecting slightly, causes the arch to rotate about each hinge 
until it attains a deflected shape such that the thrust line passes through 
such hinge after which there can be no further movement. For any 
arch, therefore, under any load condition whatsoever, the thrust line 
(for equilibrium) must pass through every hinge. 

If this same arch (Fig. 19) were to be fixed at crown and skewbacks, 
as shown in Fig. 20, it is clear that the rib would have a different deflection 
under the same load system (Fi~F6) and the corresponding thrust line 

would not have the same position relative to the rib, but would have a 
position such as shown (greatly exaggerated) in Fig. 20. The support 
reactions Ri and R2' would be eccentric and would be of different magni¬ 
tude and inclination from Ri and R2 of the three-hinged arch. 

Referring back to Fig. 19 it will readily be observed that wherever 
the thrust line is normal to the rib and coincident with the neutral axis 
of the same, the stress consists of an axial thrust only. Wherever 
the thrust line is not normal but passes through the neutral axis (as 
shown in Fig. 196), the rib stresses at that point consist of an axial 
thrust N and a shearing stress J. Whenever the thrust line fails to 
pass through the neutral axis of the arch rib, there is developed in addi¬ 
tion to the above stresses a bending moment M equal to Np (see Fig. 19c). 

It is therefore seen that the introduction of a hinge at any point 
definitely locates the thrust line and reduces the bending moment to 
zero at this point. It should also be clear that the use of such hinge 
operates to cause the structure to deflect more readily under load. A 
hinged arch, as pointed out in a former paragraph, is therefore, less rigid 
than a fixed arch of the same dimension, but presents the advantage of 
definitely fixing the pressure line and causing it to pass through the 
Same point for any load condition. The pressure line, of course, will move 
up or down between hinges with a change in load, but not at the hinges. 
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When the arch is fixed at the skewbacks, the pressure line acting 
against the foundations will shift under live load, causing a certain 
amount of “churning,” or rocking tendency. A hinge at this point will 
fix the point of application of this thrust, although its direction will 
shift somewhat under moving live load. For foundations where rocking 
is particularly undesirable, such as pile foundations, a skewback hinge 
is thus seen to afford a distinct advantage even at the expense of decreased 
rigidity. 

From the foregoing it should be apparent that arch ribs so designed 
as to keep the line of pressure at or near the neutral axis of the rib at all 
points, present the advantage of eliminating or reducing bending stresses 
and thus effecting a saving in metal. It is, of course, impossible to do 
this for moving live loads as these vary from time to time, thus shifting 
the pressure line, but for dead loads the pressure line may be made to pass 
very nearly through the neutral axis by a proper selection of the rib. 

Fig. 21.—Method of loading 
which produces a “Catenarian” 
thrust line. 

Fig. 22.—Method of selecting arch curve to 
coincide with the dead load thrust line. 

For certain arrangements of dead load, the pressure line assumes 
certain definite curves which fact is often made use of in the preliminary 
selection of a curve for the neutral axis of an arch rib. 

If the dead load varies as the distance a measured from the axis of the 
rib to a horizontal line, as shown in Fig. 21, the thrust line for the rib will 
take the shape of a transformed catenary. It will be seen that for a series 
of ribs covered with a slab and with walls at the faces retaining a filling 
of earth, this type of dead loading would be closely approximated. The 
arch rib in this case, therefore, should be made in the form of a catenary. 
Arches of steel with stone facing and solid stone spandrel walls exemplify 
this type of construction, as shown in Fig. 21. 

If the dead load concentrations are equal and spaced equidistantly 
along the rib, the resulting thrust line will be a parabola with its vertex 
at the crown and its major axis vertical. Figure 6 is a rib design of this 
character* 
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Under other conditions of loading, the pressure line may take the 
form of a circle, an ellipse, or of what is known as the “ geostatic curve ” 

of Rankine. This last curve, however, is rarely used. 
The most practical method of determining and selecting the most 

advantageous curve for the arch rib is probably the method of trial pres¬ 
sure lines as follows (see Fig. 22): 

(а) Select a trial curve as near as possible to what the true thrust line 
will likely be and sketch in an assumed arch rib and spandrel posts. 

(б) Compute the dead load weights including rib, columns or hangers, 
and deck. 

(c) With these loads pass an equilibrium polygon or thrust line 
through the center of section at crown and at both skewbacks. 

(d) This equilibrium polygon is the true thrust line for the loads 
assumed in the case of the three-hinged arch and a very close approxima¬ 
tion in the case of *he fixed or two-hinged arch. 

{e) The arch rib axis is now corrected to correspond with the above 
thrust line, and the dead loads rechecked. The new dead loads will 
generally be so nearly identical with those first assumed as to make further 
calculation unnecessary. Should these loads differ from the original 
assumed loads by any considerable amounts, a new thrust line should be 
constructed and the rib axis again corrected to correspond therewith, 
and so on until the rib axis corresponds with the line of thrust for the dead 
loads used. Generally, the first trial will be sufficiently close, particularly 
in view of the fact that the rib is not yet designed and any dead load 
assumption may be somewhat in error. After the final design is made, 
the dead loads are recalculated, and if found to differ by more than 10 
or 15 per cent, the arch axis may be corrected for the true dead loadings. 

The above method is used for fixed as well as hinged arches, for, in 
any case, it is desirable to have the arch axis correspond in general with a 
dead load thrust line passed through the crown and skewback centers. 

It is sometimes desirable to make the arch curve coincident with the 
thrust line for full dead plus live load so that the minimum eccentricity 
of pressure comes at the same time as the maximum value of thrust. 
Whether such a procedure will result in lower total stresses depends, of 
course, on the relative values of dead and live loadings, the shape of the 
rib, etc. For highway loadings, the dead load is by far the larger por¬ 
tion of the total load, and if the arch is designed for low bending under 
dead load, the live load bending will be relatively small. For Tailway 
loadings, this is not apt to be the case. 

Spandrel-braced arches generally are designed with the lower chord 
panel points lying on, or nearly on, a parabola, although in some cases 
the catenary, the circle, the ellipse, and the hyperbola have been used. 

' 5b. Temperature Stresses.—As the arch rib expands or 
contracts with varying thermal conditions, it will move upward or down- 
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ward at the crown to accommodate its position to the changed length of 
the rib or frame. The rib is forced to do this because unlike a truss span 
on rollers or rockers, the skewbacks cannot move laterally. If the arch 
is a three-hinged structure, the rib or frame will revolve about each hinge 
and no temperature stresses will result. If, however, one or more of the 
hinges are removed, the rib in moving up or down must bend somewhat, 
thus inducing what are termed temperature stresses. 

A lowering of temperature will cause tension at the under side 
(intrados) of the arch at the crown and compression at the upper side 
(or extrados). 

The magnitude of these temperature stresses is, of course, a linear 
function of the assumed variation in the internal temperatue of the metal, 
which in turn varies greatly with varying conditions. In the Annales d 
pont, et claus (1893) will be found an account of some experiments on 
steel arches at Lyons, France. These tests disclosed an average tempera¬ 
ture in the steel of +115° F. when the air temperature was +90° in 
the shade and +95° F. in the sun.. Parts of the structure exposed to 
direct sunshine had a temperature of +130° F. The coldest winter 
temperature recorded was —15° F., giving a maximum range of 130°^F. 
Assuming the arch fixed at mean temperature (+50° F.) a variation of 
65° F. each way from the normal would seem a logical assump¬ 
tion. Where air temperature variations are less or where shade condi¬ 
tions operate to modify the temperature effects, a lower temperature 
range may safely be assumed. 

6c. Location of Crown Hinge.—For rib arches, the crown 
hinge, when used, is generally located at the center of the rib. For 

spandrel-braced arches, the hinge may be placed 
either in the upper chord (as shown in Fig. 1), in 
the lower chord (as shown in Fig. 3) or mid-way 
between the two. 

Taking moments about the center hinge (see 
Fig. 23) and considering the left half of the arch 
frame as a “free body in equilibrium,the ex¬ 
pression for the horizontal thrust at the left 
skewback is: 

H = Kr - 2Fa\ + y 
If tfie crown hinge be placed in the lower chord, the horizontal thrust 

becomes: 

It is thus seen that lowering the rise of an arch frame operates to 
increase the horizontal skewback component* 
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This generally results in in¬ 
creased stresses in the frame 
though not always. It is prob¬ 
able that the stresses throughout 
the frame will be less when the 
crown hinge is placed in the upper 
chord. 

In general the greater the rise 
in any arch structure, hinged or 
fixed, the less the horizontal thrust. 
Temperature stresses will also be 
less for arches with high rise. 

For a spandrel-braced arch 
having a crown hinge in the lower 
chord, the thrust line for dead load 
may be made to follow the lower 
chord line, thus reducing to zero 
the dead load stresses in upper 
chord and web system. For ex¬ 
ample, an arch such as shown in 
Fig. 1 of the next section having a 
parabolic lower chord will develop 
no dead load stress in the upper 
chord members, since the lower 
chord must carry the entire thrust. 
Since the dead load upper chord 
stresses are zero, the web system 
can carry no dead load stress ex¬ 
cept that induced by the trans¬ 
mission of the deck loads to the 
lower chord. When there are 
vertical web members, this simply 
means that each one will carry a 
dead load stress in compression 
equal to the dead load concen¬ 
tration above it. Under live load, 
however, both upper chord and 
web system will be called into 
action. 

5d. Tied Arches. — It 
will be noted that in every case the 
reaction at the skewback of an arch 
bridge is inclined; that where skew- 
back hinges are used, the direction of 
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the thrust is shifting under moving load, and that for fixed skewbacks, 
both the direction and point of application are shifting. These conditions 
all operate to increase the duty of the foundations and to create a 
tendency toward lateral as well as vertical settlement. It is sometimes 
possible to relieve this condition by inserting a horizontal tie between 
skewback hinges to absorb the horizontal thrust component, thus result¬ 
ing in vertical and fixed abutment reactions. Such an arch is termed a 
tied arch and is illustrated in Fig. 24, the same being a preliminary sketch 
prepared in 1921 for a bridge structure at Sellwood, a suburb of Portland, 
Ore. 

It is noted that the arch proper extends from a to b only, the balance 
of the steelwork being a cantilever or umbrella rigidly anchored to the pier 

Fig. 25.—Rainbow Bridge, Niagara Falls. (Courtesy of Shortridge Hardesty.) 

masonry and the adjacent approach spans which are designed as continu¬ 
ous trusses. The foundation conditions (boulder gravel and hard pan) 
indicated the necessity for vertical pier reactions. The truss continuity 

•on the approach spans made the umbrella cantilever feasibly and the tied 
arch design results in the use of very little metal over and above that 
necessitated by the adoption of a simple truss span. The general outline 
of the structure, which is a boulevard bridge, is much more pleasing 
than that of a simple truss. Arches of this type have been constructed in 
Europe in several instances, notably the Rhine Bridge at Mainz. This 
bridge consists of a series of through tied arches of 306- to 384-ft. span. 
This structure was finished in 1904 and carries a double-track railway. 
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The great improvement in appearance of this type of construction 

over the simple truss span may make it a more popular type than formerly, 

particularly in view of the growing tendency on the part of municipalities 

at the present time to demand architectural as well as structural excel¬ 

lence in bridge design. 

6. The Rainbow Bridge, Niagara Falls.—This bridge is not only an 

excellent example of fixed steel arch design but is also the longest of its 

type in the world (Fig. 25). It replaces a bridge that was destroyed by 

an ice jam early in 1938. To prevent the destruction of the new bridge 

under similar conditions, the spring line was raised some 30 ft. and the 

span increased to 950 ft. between skewbacks, with the rise of the arch 

ribs 150 ft. The deck is of reinforced concrete and has a total width of 

60 ft. It has two 22-ft. roadways separated by a 4-ft. dividing strip 

and one 10-ffc. sidewalk. 

The ribs were erected by the cantilever method from each abutment. 

Each portion of a rib was held in position by a series of steel tiebacks 

until closure was made at mid-span. The erection of both ribs and 

bracing was carried on at the same time. 

Approximately 3,300 tons of silicon steel and 2,200 tons of carbon 

steel were used in the arch span. The cost of the bridge was about 

$3,000,000, and it was opened to traffic in the latter part of 1941. 

7. Chesterfield and Orford Bridges, over the Connecticut River.— 

These highway bridges span the Connecticut River between the states 

of New Hampshire and Vermont (Figs. 26 and 27). They have been 

selected as representative of two-hinged and tied-arch construction. 

Each was designed under the same specifications and for the same load¬ 

ings. Both have the same span and the same type of deck, and con¬ 

struction was started on both in the same year, 1936. 

The Chesterfield-Brattleboro Bridge is a two-hinged arch and the 

Orford-Fairlee a tied arch. Both bridges have box girder type ribs, 

having a span of 425 ft. pin to pin and a rise of 85 ft. Each has a clear 

roadway of 24 ft. The Chesterfield bridge has a 2.5-ft. emergency walk 

on each side of the roadway inside the hangers, with the ribs 34.5 ft. 

on centers. The Orford bridge has a 2.5-ft. emergency walk on one 

side of the roadway inside of the hangers and a 5-ft. sidewalk on the 

other side outside the hangers, with the ribs 30.5 ft. on centers. The 

hangers of both bridges had a single-pin connection at their upper ends 

and a two-pin connection at their lower ends. The latter connection 

eliminated bending in the hangers from floor or deck loads. 

At the Chesterfield site the Vermont abutment was carried to solid 

rock. The New Hampshire abutment was carried on a series of steel 

H-piles driven 55 ft. through compact gravel. The piles were used as 

insurance against possible erosion at the face of the abutment in the 

event the riprap should be dislodged by severe flood conditions. 
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Since sand and fine gravel existed for considerable depths at the 
Orford site, both abutments were carried on steel H-piles driven to 
depths of 60 to 70 ft. below the river bed. Because of the foundation 

Fig. 27.—Orford-Fairlee Bridge, over Connecticut River. 

conditions a tied arch was adopted. The abutments were so designed 
that they were subjected to very little earth pressure; thus the piling 
carried principally vertical loads. 
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Erection conditions at the Chesterfield site were difficult, owing to 
the ledge on the Vermont side which lay on a steep slope with no over¬ 
burden into which piles could be driven. This condition existed until 
near mid-span, at which point the water was about 50 ft. deep. An 
attempt to drive steel H-piles into the ledge was not successful. A diver, 
however, succeeded in preparing proper seats for the piles. In order to 
eliminate as many falsework bents as possible, the erector erected only 
the end portions of the span on falsework, cantilevering the ribs a short 
distance beyond the last falsework bents. The center portion of each 
rib, which was about 100 ft. long, was erected by means of two guy 
derricks placed on the floor system over the outer falsework bents. The 
balance of the erection was made in the usual manner. 

The Orford arch was erected on falsework carried on timber bents. 
The falsework extended the entire length of the bridge. The average 
depth of water was about 10 ft., and the material of the river bottom 
proved very satisfact-orv for driving timber piles. 

The following tabulation shows that the tied arch is considerably 
more expensive than the two-hinged type: 

Bridge 

1 
Total cost j 
of bridge 

Cost of 

superstructure j 
No. of tons 

of steel 

Chesterfield. $202,000 $135,000 750 

Orford. $231,200 $153,100 970 

It is believed that these figures give as accurate a comparison between 
the two types as can be secured. It is reasonable to conclude that the 
tied arch will cost at least 15 per cent more than a two-hinged or fixed 
arch. 





SECTION 8 

ANALYSIS OF THREE-HINGED ARCH BRIDGES 

1. Equilibrium Polygons.—Figure 1 represents a common type of 
spandrel-braced three-hinged bridge arch under the action of a load 
system 2F = Fx — F9, and in equilibrium under the action of these 
forces and the two skewback or support reactions Ri and R2. Let it be 
required to determine the stress in each member of the arch due to this 
system of forces. 

From the fundamental laws of graphic statics, the equilibrium poly¬ 
gon or thrust line must pass through the center of each hinge for, were 
this not the case, the eccentricity of such thrust line would induce a 
bending moment and the structure would rotate about the hinge in 

375 
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question. Since it does not rotate, we must conclude that this thrust 
or pressure line acts through the center of each hinge. 

To determine the shape of this equilibrium polygon, the forces 
Fi to F9 inclusive are laid off on a vertical load line (vertical forces alone 
are here considered; inclined forces could obviously be treated in exactly 
the same manner)', and an arbitrary trial pole assumed. 

With this trial pole a ray diagram is constructed and from it a trial 
equilibrium polygon a'b'c' . . . jf constructed. At the points 
where this trial equilibrium polygon intersects verticals through the 
hinges, two closing lines are drawn, these being designated “Reaction 
Line No. 1” and “Reaction Line No. 2,” on the drawing (Fig. 1). If, 
through the assumed pole o, parallels be drawn to these reaction lines, it 
follows from the laws of graphic statics that such parallels divide the 
load line into the resultant load components fY, F2', and F3', which are 
transferred to the three respective hinges by each half of the arch frame 
acting as a simple beam. 

It is obvious that the values of Fi', F* and F$ are entirely independent 
of the position chosen for the pole o and therefore, the reaction lines for 
any chosen pole including the true pole, will pass through these three 
points on the load line. 

It is furthermore apparent that if the equilibrium polygon is to pass 
through the hinges, the closing line or reaction line in each case must be 
parallel to.straight lines passing through these hinges designated “hinge 
lines” in Fig. 1. 

Therefore a parallel to the left hinge line through point m, and a 
parallel to the right hinge line through point n intersect to locate the true 
pole o (see Fig. 1). 

With this true pole and the given load line, a new ray diagram is 
now constructed and, from such ray diagram, a new equilibrium polygon 
drawn, as shown in Fig. 2. If this polygon be started through the left 
hinge, it will evidently pass through each hinge (if the work is correctly 
done), and thus define the true thrust or pressure line induced by the 
forces Fi ... F9. 

Bearing in mind the fact that this equilibrium polygon (a'b'c' 
• • • j't Fig. 2) represents the resultant of the forces Fi. . . . F9 and 
the corresponding support reactions, the stress in any member of the 
frame can be readily calculated as follows: 

Stress in Chord Member U2-U3.—This stress is obviously the moment of the 
forces acting about L3 divided by the lever arm L3- U3 and may be found in several 
ways as follows: 

(A) Algebraically.—The value of the left reaction Ri which is equal in magnitude 
and direction to segment a of the ray diagram is readily determined. Then from 
Fig. 2a: 

$ (the stress in 172-173) * (Rid — F*a% — F%at) 4- p 
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(B) From the Thrust Line.—Bearing in mind that the resultant of Rh Fx and Ft is 

given in direction and magnitude by ray c of the equilibrium polygon (Fig. 26). 

a «■ (ray c') (r) -5- p 

\C) From the Pole Distance H.—Resolving the ray cf into vertical and horizontal 
components, as shown in Fig. 2c, the moment of the vertical component V about L3 
vanishes and 

8 = II h -f- p 

(0 
Fio. 2. 

Stress in Web Member U2-L3.—Simply produce the chords to intersect at o" 
which is obviously the moment center for the web member in question. With the 

left portion of the structure as a “free body in equilibrium ” we have at once 

s • (see Fig. 2d) 

In this manner, the stresses in any member of the frame may be 
readily found and the analysis of stresses for the given load system quickly 
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completed. For dead loads or for fixed live loads, the above method 
answers every purpose; but for moving loads, the method of influence 
lines is much to be preferred. This method is described in Art. 4. 

2. Algebraic Calculation of Reactions.—As a check on the accuracy 
of the graphical work outlined in the foregoing article, the horizontal and 
vertical reaction components may be computed by the formula given in 
Fig. 3. It will be observed that the vertical reaction components are 
identical with those for the same load system on a simple beam of span L. 
Removing the roller at one end and inserting the crown hinge thus 
transforming the frame from a truss to an arch has simply had the effect 
of introducing the horizontal thrust H. 

v2*zf-v, 

Taking momenta about crown hinge 

H‘[*L-5Jc-Ft bt -f3 b,-r4b+]*y 

Hi’H, 

Fig. 3. 

3. Stresses Due to Moving Loads (Method of Reaction Lines),— 
Consider this same structure under the action of a single load F as shown 
in Fig. 4. The thrust lines must pass through the three hinges and the 
reaction components must be as shown, since three forces in equilibrium 
must intersect in a point. These reaction components may be checked 
by algebraic formulas, as shown in Fig. 4. 

With the above in mind, let us now consider the chord J72-J73 (Fig. 5) 
and derive a method of determining what positions of a moving load will 
cause compression in this chord member and what positions win cause 
tension* 
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The stress in U2-U3 is a direct linear function of the moment about 
L3 and will therefore become zero or change sign when this moment does 
the same. 

Through the left hinge LI and the moment center L3 (Fig. 5), draw a 
straight line intersecting the right hinge line in the point c. 

Clearly then, a vertical load passing through c will induce zero stress 
in chord member U2-U3. 

For any load to the right of point c, the left thrust line passes below 
the moment center L3 and there is tension induced in the chord in ques¬ 
tion (see Fig. 5a). 

Fig. 4.—Reaction components for single unit load. 

For any point between c and U3, the left thrust line passes above 
L3 and there is compression in the chord U2-U3 (see Fig. 55). 

For loads between U2 and the left end of the span, the above method 
does not hold for the reaction is no longer the only force acting on the 
left of section m-m. However, if the right-hand portion of the structure 
be taken as a free body in equilibrium (Fig. 5c), it is. at once seen that 
the stress in chord TJ2-UZ is again compression. 

In the above manner, the critical load positions for maximum stress 
of either sign can be determined for each chord member in the frame, 
thus enabling the designer to place his moving loads in such position as 
to determine the maximum stresses. 
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For the parallel curve arch shown in Fig. 7, the line through the left 
hinge is drawn parallel to the chords J72-C/3 andL2-L3, intersecting the 
right reaction line in the point p'. Figure 7 illustrates the procedure from 
here on, which is analogous to that already explained.. It is observed 
that, for a load at p', the thrust line is parallel to the chords f72-?73 and 
L2-L3, and therefore there must be zero stress in the diagonal C72-L3. 
For a load to the right of p', the left reaction has a downward component 
which must be balanced by compression in this diagonal (see Fig. 7b). 
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For a load between E/2 and the left end of the span (taking the right-hand 
portion of the arch as a free body), there is an upward component of the 
right reaction that must be balanced by a compressive stress in the 
diagonal, and so on. Figure 7 should make the procedure entirely clear. 

4. Influence Lines for Three-hinged Arches.—By taking moments 
about either hinge, the vertical reactions are seen to be identical with 

those for a simple truss of equivalent span, and are thus easily deter¬ 
mined. Figure 8a is the influence line for the vertical component of the 
left reaction. 

The horizontal reaction component is obtained by taking moments 
about the center hinge and is given by the expression 

„ VL 
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where y is the vertical distance between crown and skewback hinges. 
The influence line for the horizontal thrust is therefore plotted as shown 
in Fig. 86. It is seen that this influence line is symmetrical about the 
vertical through the center hinge. 

The influence line for the moment at point o (which will determine 
the influence line for the stress in chord C/2-J73) is developed as follows 
(see Fig, 9) ; 

The influence lines of the vertical reactions plot up in exactly the 
same manner as for a simple truss; thus the moment for a unit load at o 

is given by the expression 

Afo' 
ab 
L 
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The moment induced by the horizontal thrust is given by the term 

M," - He - | 

At the center a = ^-andMo" = (see Figs. 8 and 9). 

Obviously the total moment Mo = Mo' — M0'' and the difference 
between the superimposed influence lines is the influence line for the true 
arch moment at L3. 

Fig. 8.—Influence lines for ver¬ 
tical and horizontal reaction 
components. 

Figure 9 also shows the influence line for the moment at US (this will 
determine the influence line for the stress in L3-L4). It is noted that the 
only difference lies in the effect of the horizontal thrust which difference 
is represented by the difference in the values of c and c\ 

Figure 10 illustrates the method used in developing an influence line 
for one of the web members. 

The effect of the horizontal thrust is given by the expression — and 

this portion of the influence line is readily plotted. For loads to the 
right of 172 (up to and including 173), the effect of the vertical reaction 
component at the left hinge upon the web member in question is given 
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Va 
by the term For loads to the left of C/3, the effect of the vertical 

reaction component (in this case, the right reaction component must be 
taken), is given by the expression V(L — a) ~ t. 

The influence line for the web member in question is therefore fully 
determined as follows: 

(a) Lay off the distance — = ^ at the center, determining the point 

c. 

(b) Lay off the distance - on a vertical through the left support, 

thus determining the point d. 

(c) Lay off the distance (—-^) on a vertical through the right 

support, thus determining the point e. 

The area mdencwi is clearly the influence area for the web member 
C/2-L3. 

For parallel chord construction, web stress influence lines are plotted 
in a slightly different manner (shown in Fig. 11) as follows: 

Place a unit load at the center hinge and compute the stress in the 
web member in question due to the horizontal force H, neglecting the 
effect of the vertical reaction components Vi and F2. This* determines 
the point c. 

Next, considering the beam as a simple span, place a upit load succes¬ 
sively at the panel points each side of the web member in question and 
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compute the stresses in such web member, ignoring in this case the 
effect of the horizontal thrust. This determines the points d and e. 

Clearly, as in the former case, area mcned is the influence area for the 
stress in web member C/3-L3. 

The stresses in the above web member due to the various unit loads 
above mentioned, may be computed either algebraically or by graphics as 
may be found the more expeditious. 

Fig. 11.—Influence line for stress in L3-U3. 

5. Fiber Stresses in Solid Ribbed Arch Spans.—Consider the solid 
webbed or plate girder arch shown in section in Fig. 12. 

The following formulas may be derived at once from statics: 

M0(the moment at point g) = R'd 
or N'c 
or Fia + II ib — V\ai 

AT'(the normal thrust) = Rf cos <t> 
J'(the shear on section AA) = R' sin <t> 

The moment thrust and shear at any section of the arch rib can be 
readily computed algebraically, once the reaction components for any 
given load condition are determined. These may also be determined 
from the equilibrium polygon constructed for the given load system., 

Suppose the equilibrium polygon for a certain given load system to 
be constructed as shown in Fig. 12. 
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For any given point g 

Mg = N'c 

f'(the fiber stress due to Mg) = y- 

Nf 
/"(the fiber stress due to the normal thrust N') = y 

Whence/ (the total fiber stress) = /" + f (for the extreme upper fiber) 

* and /" — /' (for the extreme lower fiber) 

Considering first the extreme upper fiber 
N' Me 

/= (/"+/') = x+ I1 
N' 

= y (r2 + cee) 

- <+«)r 

Fia. 12. 

In a similar manner, the stress in the extreme lower fiber is given by 
the expression 

where I =* the moment of inertia of the rib section at the given point, 
e9 and e< = the distances to the extreme upper and lower fibers 
respectively. 

r « the radius of gyration of the section = 

. If the points fci and k% are so located on the arch rib section in question, 
* 'v 

that the distance of point k\ below the neutral axis is equal to — and the 
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7*2 

distance of point above the neutral axis is — these points (known as 

kernal points) are of considerable value in evaluating the fiber stresses in 
the rib during the passage of a moving load (see Fig. 13). 

The maximum compression in the extreme upper fiber of the rib at 
section a-a is given by the expression 

i = NG, +c)ei ‘ 
The maximum tension in the extreme lower fiber of the rib at this 

section is given by the expression 

' --K?!-0r] -(A,e">7 
where c' = — + c and c” = — ( — c) (see Fig. 13). 

It must now be clear that, if the kernal points for each section of the 
arch rib are plotted, the equilibrium polygon may be measured directly 
from these kernal points, giving moments Ncr and Nc", which are direct 
linear functions of the fiber stresses at the 
extreme upper and lower fibers of the 
section. 

The “extradosal” kernal point ki is 
always plotted below the neutral axis and 
is used for scaling the ordinate c' which 
controls the stress in the extreme “extra¬ 
dosal,” or upper fiber. When the thrust 
line lies above this kernal point, this stress 
is compression; when the thrust line lies 
below it, the extradosal fiber stress is tension. 

The “intradosal” kernal point fc2 is 
always plotted above the neutral axis and 
is used for scaling the ordinate c" which controls the stress in the 
extreme “intradosal,” or lower fiber. When the thrust line lies below 

this kernal point, this stress is compression; when the thrust line lies above 

it, the intradosal fiber stress is tension. 

It must therefore be apparent that whenever the thrust line passes 
between the kernal points, the entire section of the rib is in compression. 

It is apparent that the influence line for the moment of the thrust 
line about the neutral axis of the rib would not be the same in form as that 
for the fiber stress on either extreme fiber, owing to the effect of the direct 
thrust N. However, moment influence lines for moments about the 
kernal points as above described, are exactly identical in form with influ¬ 
ence lines for extreme fiber stresses and may be used to determine the 
position of loads for such maximum fiber stresses. The use of kernal 
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points is exceedingly valuable in studying the characteristics of any arch 
rib under moving loads. 

6. Graphical Analysis of Stresses.—If considered more convenient, 
the stresses in any arch frame due to any fixed load condition, may be 
determined by graphics in the ordinary manner. It is, of course, first 
necessary to determine the horizontal and vertical reaction components 
at either skewback hinge, after which each joint of the frame is analyzed 
in succession as in the case of a simple truss or frame. The detail 
involved in this process is treated in any of the standard texts on graphical 
analysis. 

7. Wind Stresses in Spandrel-braced Arch Spans.—Consider the 
three-hinged spandrel-braced arch in Fig. 14 under the action of the wind 
loadings shown. The upper panel points are under the action of certain 
wind load concentrations designated by the letter W (usually assumed at 
a certain value per lineal foot of chord) and the lower panel points under 
the action of similar loads W\. 

When the hinge is placed in the plane of the lower chord at the crown, 
the upper lateral system cannot be made continuous from end to end of 
the structure, but must be interrupted at the crown to permit freedom of 
hinge movement. 

The upper lateral system, therefore, can only transmit wind forces 
to the abutment hinge by virtue of its stiffness as a cantilever. A portion 
of these stresses is doubtless transmitted in this way from the central 
portion of the span back to panel point Uo and thence down the vertical 
cross frame to the hinge at LO. By far the greater portion of these forces, 
however, is transmitted vertically at each panel point to the lower 
lateral system by virtue of the cross frames or vertical sway bracing 
at such panel point. 

The upper lateral system, therefore, may be considered to transmit 
a certain percentage of the total wind loadings active against its panel 
points, but, for the sake of rigidity, should doubtless be designed to 
withstand the entire wind pressure. For example, the upper lateral 
No. 3 should be designed for a stress equal to (W + W') sec (see 
Fig. 14), although the actual stress is doubtless much less. 

The upper lateral forces W are in a large measure transmitted to the 
lower system through the panel point cross frames (shown in Fig. 14) 
and thus exert an overturning moment on the rib. For example, the 
upper panel point wind concentrations at Ub on each side of the hinge 

W W* 
amount to on the leeward truss and on the windward truss. 

We may assume that all of#this force is transmitted through the vertical 
sway frames to Lb and L5', and that the horizontal component of these 
forces is equally divided between Lb and Lb* which latter assumption 
is probably as near the truth as the limits of accuracy in the analysis 
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necessitate, providing the sway bracing is stiff. (If this bracing were to be 

W' 
composed only of tension members, the entire horizontal force 

2i Z 
would be transmitted to one lower panel point.) The lower panel 
points at L5 and L5' are, therefore, under the action of the horizontal 

forces Wi and Wi, 
1/W 

and also the horizontal force 2\ 2 transmitted 

thereto from the upper panel points at U5 and C/5'. 

Path a 

In addition to these horizontal forces, the overturning action induces 

W, 
2 + 

the truss and an equivalent upward force p' on the windward side. 
These last forces induce stresses not in the lateral system, but in the main 
arch -frame itself, in exactly the same manner as for any other vertical 

load system. 

a vertical downward force p = ( 
'\ / h\ 
Ac/ on *eewarc* s^e 
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For this type of construction, therefore, the upper lateral system may 
be first assumed to transmit the entire wind forces active thereon through 
path a, Fig. 14, and this system together with the end cross frame 
designed accordingly. 

The lower lateral system may next be designed, assuming it to carry 
horizontal loads due not only to its own wind concentration Wi> but also 
to the full value of the upper panel point wind concentrations transmitted 
directly through each vertical cross frame and equally divided between 
the two trusses at each lower chord point. Before the analysis is made, 
it is, of course, necessary to develop the lower lateral system into a plane, 
as shown in Fig. 14, after which it may be treated as a simple truss span 
whose panel lengths are the actual developed lengths of the inclined 
chord members. 

The main truss may next be analyzed for the vertical wind components 
due to the overturning action as above described. The leeward truss is 

under the action of the vertical downward loads p = (W + TF')~, where 
c 

W and W' are the upper panel wind loads, h = the height of the truss 
at the panel point in question, and c = the distance center to center of 
trusses. 

The windward truss has exactly equivalent wind stresses, but opposite 
in sign. 

It will be observed that the plane of the lower lateral system is not 
horizontal and, therefore, the diagonal members intersecting at each 
panel point have vertical components which must be carried by the arch 
system itself. An arrangement such as this results, therefore, in an 
additional system of vertical loads acting downward at*the leeward panel 
points and upward at the windward panel points. The value of such 
wind components may be determined as follows: 

Consider the arch shown in Fig. 15 and let IFi . . . W& . . . W\ 
represent the total wind load active against one lower chord, including 
the load transferred to the lower chord panel points through the vertical 
cross frames. W\ . . . HY . . . W x are equal forces applied to the 
other arch frame. 

These forces applied at the lower chord panel points exert an over¬ 
turning moment at each panel point which must be resisted by stresses in 
the arch frame itself. 

Consider the lower lateral frame as a cantilever free at the crown and 
let Fig. 15a be a vertical projection of the same. Cutting the section 
at a-a just above panel point L2, the moment tending to overturn the 
frame about LI as a pivot (and thus causing motion as represented by the 
dotted arrow) is given by the expression 

M = (shear at L2) (A2) 
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The overturning effect must be resisted by the strength of the arch 
frame itself. Therefore, the arch must develop two equal and opposite 
vertical reactions at panel point L2 whose value p is given by the 
expression 

p = (shear at L2)~ 

where c is the distance center to center of arch frames. 

ELndView of Lower Lateral System 

Fig. 15.—Overturning due to wind pressure on inclined lower chord. 

In this manner all the vertical panel point wind reactions from this 
cause may be readily calculated thus: 

pi = (shear at = £ 

P2 

wi + w2 + u>i + w* + 
+ Wi' + W2 + Wz + + }4w5 

h2 
c 

Pa — (ws + w4 + jH&We + w3f + W4! + 
c 

nh 
c 

1*1 
!\c 

[ 
w2 + Wi + w4 4- 
+ w% + wt'+ w4 + %w6 

p* = (w4 + + w4 + 4 

Pi + w*)ht 
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The forces on the windward side act in a direction opposite to those 
on the leeward side. It is necessary, therefore, only to assume these 
forces as acting downward and compute the stresses for one truss. The 
stresses for the other truss are obviously of equal magnitude, but opposite 
in sign. 

The above discussion should be sufficient to give a very clear idea 
of the general method pursued in the computation of wind stresses in 
three-hinged arch bridges where the crown hinge lies in the lower chord. 
For other hinge arrangements, the method will, of course, differ in detail, 
but will be the same in principle. ' For railway bridge structures, it is 
usually customary to consider in addition to the above loads, the effect 
of a wind load applied against a moving train. These loads are horizontal 

Fig. 16.—Vertical wind forces due to overturning action of wind against train. 

and are transferred to the upper lateral system by means of the stringers 
and floor beams. From the upper lateral system, these loads are carried 
either to the end cross frame and down, or else vertically down through 
the cross frames at each panel point and thence via the lower lateral 
system to the skewbacks, as in the case already discussed. It will be 
noted that the wind forces acting against the side of the train induce an 
overturning moment which is resisted by vertical pressures from the rails, 
as shown in Fig. 16. These forces which act downwardly on the leeward 
side of the arch must also be taken into consideration in a complete 
analysis of wind stresses. 

Space will not permit of further discussion of the many problems 
involved in the calculation of wind stresses. However, it may be said 
that no new theory need be developed other than that already discussed 
in this connection and in connection with the design of wind and portal 
bracing for simple structures. 



SECTION 9 

ANALYSIS OF FIXED ARCHES 

FUNDAMENTAL THEOREMS RELATING TO INTERNAL WORK IN RIBS AND 
FRAMES 

The analysis of the fixed arch is based upon what is generally known 

as the mathematical theory of elasticity. The fundamental elastic 

equations which form the basis of this theory may be derived from a 

cqnsideration of any one of several basic mathematical concepts, for 

example: 

(1) From a consideration of Castigliano’s theorem regarding the 

partial derivatives of the internal work. 

(2) From a consideration of the law of mutual elastic equilibrium 

or virtual work. 

(3) From the laws governing elastic displacements in ribs and frames. 

Any one of the above methods yields a series of elastic equations pract¬ 

ically identical in form. The last named method of derivation, namely, 

that based upon a consideration of elastic displacements—has been chosen 

for this discussion because of its comparative simplicity. 

In order that the application of this theory of analysis may be thor¬ 

oughly understood, it is necessary to preface the treatment of arch Analy¬ 

sis proper by a brief consideration of the fundamental laws of internal 

work in ribs and frames. This consideration forms the subject matter of 

the present chapter. 
1. The Laws of Internal Work in Structural Frames.—The structural 

frame, which as hereinafter treated may be made to include the solid web 

structure as well (see Art. 4), may be regarded as a machine in motion. 

The motion is intermittent, occurring only when the equilibrium of the 

system is disturbed, as when loads are added, altered, or removed from 

the structure. 
Consider any elastic framed structure under zero loading and having 

zero stress in each of its members. As external loadings are gradually 

applied, a slight change in form takes place, the points of application 

of the external loads execute small displacements, and the internal 

stresses, which are now set up in the various members, are moved through 

small distances equal in each case to the distortion in the member. At 
393 
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the instant of application both external loads and internal stresses have 
zero values from which they increase gradually and simultaneously, 
reaching their maximum values at the same instant. 

If, at any instant, the value of any external force is F, its average 
value during the period of application is obviously (F + 0) -f- 2, or yF. 
If the displacement of the point of application of this force parallel to its 
line of direction be represented by the symbol A, it follows from the laws 
of mechanics that the work done by the force thus far may be represented 
by the expression y FA. 

The total work performed thus far by all the external forces of the 
system is obtained by simply summing the terms yFA for each external 
force acting, thus 

WE = H2FA (1) 

As the loading has progressed each of the members has been required 
to change length, by a certain small amount X, in order to accommodate 
itself to the new distorted shape of the frame. This linear distortion has 
in turn induced a stress in each member whose value at this instant is S 
and whose average value during the period of loading is obviously (S + 0) 
-r 2, or y2S. The internal work performed by each member in resisting 
distortion is therefore 

K-sx 
and for all the members of the frame, we may write 

Wj = y2LS\ (2) 

At the instant of application of loading the structure is at rest, the 
kinetic energy or energy of motion is zero, and the condition is one of static 
equilibrium. 

The application of the load disturbs the balance and the machine is 
set in motion. The term y XFA at any instant represents the externally 
applied work. The term y represents the work of resistance or the 
work which must be overcome by the external work. Obviously, the 
difference between these two values represents the amount of external 
work avilable for imparting kinetic energy or energy of motion to the 
structure, so that we may write for any instant during the motion 

yXFA — y%S\ = Kinetic energy imparted to structure 

As the loading progresses, more and more of the kinetic energy is 
absorbed by the internal members until a point is reached where the 
internal and external work just balance. We then have 

Kinetic energy = yZFA — y%S\ = 0 (3) 

and the structure again comes to a point of rest.' 
This second rest point may be termed a condition of elastic equi¬ 

librium, whose fundamental law may be stated thus: 

Wi - Wm (4) 
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This equality furnishes the basis for the determination of stresses in all 
structures not susceptible of analysis from the laws of pure statics. 

Whenever a force and the displacement of its point of application act 
in the same direction, the sign of the work is positive. When the direc¬ 
tion of the force is opposite to that of the displacement, the sign of the 
work is negative. 

In general, the external forces representing loads are displaced in the 
same direction in which the force acts though this is not always true. 
The internal work, however, is negative as the displacements of the 
extremities of the members are opposite in direction to the tendency 
of the stress.’ 

To illustrate, a tensile stress in any member operates to pull the pin 
points at its extremities together, while the actual displacement is a 
movement in the opposite direction (a lengthening of the member). 

The internal work may also be regarded as negative in the sense that it 
represents the stored-up energy of resistance, the resilient energy of the 
structure. As the loads are gradually released, it is this energy that 
operates to bring the structure back to its normal position, and, in 
changing from a negative value to zero, it performs positive work. 

From Hooke’s law of stress and strain proportionality, it follows that 
SI 

the term X in Eq. (2) may be replaced by the expression where S 

represents the stress in the member, l its length under zero stress, A 
its cross-sectional area, and E the modulus of elasticity of the material of 
which it is composed. We may therefore write, for bodies in elastic 
equilibrium 

y2xFA = hXje (5) 

which is, in certain cases, a more convenient form for practical use. 
For a uniform change in temperature of t degrees, the internal stress 

in each member of the frame increases gradually from the value S to the 
value (S + St), the average value during the change being (S + }4St). 
During this time the strain or distortion is represented by the expression 
\t = ctl7 where c is the coefficient of expansion and Z represents the length 
of the member. The total internal work is therefore given by the 
expression 

Wjt - ZSctl + y2VStctl 

The external work, since the forces F remain at a constant value, 
is obviously 

Wb{ = S FA* 

where A< represents the displacement of the point of application of each 
force due to internal temperature strains. 
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Equating these two, we may write 

SFA, = 2 Sctl + liXStdl (6) 

for any structural frame at rest and in elastic equilibrium. 
In general the term St is zero for simple spans and cantilevers. In 

other words the frame, being free to move, simply adjusts itself to the 
new lengths of its members and is therefore unstressed under temperature 
changes. 

If any of the supports are elastic, the corresponding reactions are 
moved through certain displacements A, and thus perform ^negative work 
(negative because the force and its displacement act in opposite direc¬ 
tions). We may then write Eq. (5) 

MSFA - M2flAr = HXje (7) 

In other words, a portion of the externally applied work %2FA 
must be consumed in overcoming the elastic resistance of the supports and 

*Sr\S2l 
consequently the work a^sor^e<^ by the internal system will be 

less by that amount. 
The complete work equation, including the effect of temperature 

changes and reaction displacements may be written 

__i s H 
+ 2FA, - HSRA, = MXz£ + XSdl + ^254 (8) 

The term A as herein used does not refer to the actual movement of the 
point of application of a force, but to the component of this movement 
parallel to the line of direction of the force, otherwise the above equality 
does not hold. Unless otherwise specifically defined, the terms A and 5 
are used in this sense through the discussion. 

In the application and derivation of the theorems which form the 
subject matter of this and subsequent chapters, it will be understood that: 

(1) All deformations are within the elastic limit of the material. 
(2) Any change in form, either of a beam or a frame is slight. (This 

is in accordance with observation of ordinary engineering structures under 
loads within the elastic limit.) 

(3) Tensile stresses and strains of elongation are considered as 
positive; compressive stresses and strains are considered as negative. 

2. Deflections and Panel Point Displacements in Frames.—Consider 
the curved cantilever frame, shown in Fig. 1, at rest and under zero load¬ 
ing. If any load Fb acting in any direction, and applied at any panel 
point b, is imposed upon the frame, the same will cause a distortion of 
the members and a deflection of the frame. 
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Let it be required to find the vertical deflection of panel point c, due to 
this load Fb, applied at panel 6. 

Let S = stress in any member of the frame due to the load Fh. 

X = distortion in such member due to the stress S. 

Abb = displacement of panel point b (measured parallel to the line 
of action of Fb) due to the force Fb. 

Abo = desired vertical deflection of panel point c due to this same 
load. 

From the equality of internal and external work stated in Eq. (5), we 
may write (for the load Fb alone) 

Aw,=oo 
$ 

Now let us apply an auxiliary load equal to unity at panel point c, 
acting in the direction in which it is desired to determine the deflection (in 
this case vertically). 

Let Sc = stress in any member of the frame due to this unit load. 
8CC = vertical displacement at panel point c due to this unit load. 
80b = displacement at panel point b due to this unit load 

measured along the line of action of the force Fb. 

The addition of this unit load has increased both the internal and 
external work as follows: 

s i 
Additional internal work = S(S 

Additional external work = 3^(Unity) 5eo + FbSa 

These two according to the preceding article must be equal, therefore 

M6„ + Ftf* m (10) 
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If the above two loads were to be applied simultaneously, equating the 
internal work to the external work would yield the following expression: 

bb + dCb) + H (unity) (A** + Sec) = + sc)2j^ 

or 

}$FbAbb + HFbddb + }^Abc + lidcc 

If all loads were released and the unit load alone applied to the struc¬ 
ture, equating the internal and external work would yield the following 
expression: 

H (Unity) See — AE “ 
(12) 

Substituting from Eqs. (9) and (12) in Eq. (11) and cancelling like 
terms we have 

}4Fhd^ + (13) 

Substituting from Eq. (12) in Eq. (10) and cancelling like terms, we 
have 

Fbdcb = 
2Sscl 
AE 

or 

HFbdcb — 

njssci 
AE (14) 

Substituting for \iFbdeb in Eq. (13), cancelling and multiplying by 
two on each side, we have 

A 2Ssel 
Abc = ~IW 

(15) 

This is the expression for the desired deflection Abc and m&y be 
expressed by this important rule: 

To find the displacement or deflection of any point in a structural frame 
in any given direction and under any given set of load conditions, proceed 
as follows: 

(1) Place an auxiliary unit load at the panel point at which the 
deflection is desired. This auxiliary load is to be assumed as acting in 
the direction along which the deflection is desired. 

(2) Compute the stresses in the given frame dqe to the given loadings, 
calling these stresses S. 

(3) Compute stresses in each member of the frame due to the 
auxiliary unit load, calling these stresses s. 

(4) Compute for each member of the frame the length l and the 
cross-sectional area A. 
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(5) The desired deflection A is then given by the expression 

A = 
XSsl 
AE (16) 

the summation being for each member of the frame. 
The above law is entirely general and can be applied to any frame for 

any load or set of loads and for the calculation of deflections in any direc¬ 
tion. For example, if the unit auxiliary load shown in Fig. 1 had been 
taken as horizontal the values of sc would have been entirely different 
and the result would have expressed the horizontal displacement of panel 
point c. 

If the result comes out negative, it simply indicates that the true 
movement is opposite in direction to that assumed for the unit load in 
computing the values of s. 

Temperature Displacements.—If, instead of the load Fh of the preced¬ 
ing discussion the vertical deflection at panel point, c, due to a change in 
temperature were desired, we have only to reason as follows: 

The deflection Air was caused by the linear distortion in the various 
members due to the load Fb, which linear distortion was represented 

SI 
by the expression -j-jg A change in temperature of t degrees will, 

obviously, distort each member an amount \t = clly where c is the coeffi¬ 
cient of thermal expansion, and l is the length of the member. If this 

SI 
distortion is substituted for the distortion ^ ^ due to the load Fb, we may 

at once write the expression for temperature deflection at panel point c 
as follows: 

Aic = 2 se{ctl) (17) 

Atc represents the displacement of panel point c due solely to a uniform 
change in temperature of t degrees in the various members of the frame 
and is measured in the direction assumed for the auxiliary load (in this 
case vertical). 

Effect of Reaction Displacements.—Throughout the foregoing the 
supports have been considered as inelastic, in which event the work done 
by the reactions is zero. If, however, these supports do yield under load, 
the work done by the reactions is not zero and must be considered. 

Consider, as an illustration, the case shown in Fig. 1. The effect 
of the rigid anchorage at the right-hand end of the cantilever beam maybe 
represented by two reactions i2i and i22, whose numerical value and 
direction of action may be easily determined from statics. 

If each of these reactions is supplied by supports which are elastic or 
yielding, it is apparent that the movement of the same will have an effect 
upon the deflection Abe, as determined above. 
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If these two elastic supports were to be removed and elastic frame 
members (resting in turn upon rigid supports) inserted in their stead (as 
shown in Fig. 2) it is at once apparent that the deflection at any point 
such as A6C remains unaltered—provided, the movement of these new frame 
members is the same as that of the yielding supports. 

Let 
Ar represent the movement of any elastic support under the 

given loading. 
re represent the reaction at this same support induced by a unit 

auxiliary load at point c. 
Applying Eq. (15) to this new frame we have 

A be — 
XSsJ 2S'scT 
AE A'E (18) 

wh$re S'y sc'y V y etc. refer to the two new frame members. 
Since from the original hypothesis these two new frame members 

exactly reproduce the movement of 
the original elastic supports, we may 
write, for each support 

^ (19) 

Rigid support 

,-Un>f bad 

/Vote - The two new elastic members 

are so proportioned as to deflect, 

under any had, exactly the same 

amount as the e/ashc supports 

which they replace 

Fig. 2. 

Ar ~ A'E 

Also, from inspection 

re = 

Therefore 

2Ssel 
AE 

(20) 

+ 2rcAr (21) 

The effect of support displacements, in general, is very slight in well- 
designed arch construction and ordinarily is not considered in the analysis. 
For particular cases, however, it becomes necessary to consider the elastic 
movement of the abutments and piers, in which event the above equation 
becomes of value. 

The general equation including the effect of temperature changes and 
reaction displacements may be written 

A + A, - 2rAr = + Zsctl (22) 

If the desired displacement A, is an angular rotation instead of a 
translatory movement as above, the law stated in Eq. (22) holds, the only 
difference being that the auxiliary unit load employed must, in this case, 
be a unit moment couple, and the stresses s must be taken as the stresses 
resulting from the application of this unit moment couple. (This may 
be easily proved from the general principles above developed; the detailed 
demonstration need not be given here.) 

3. Work Expressions for Solid Web Beams and Cantilevers.—The 
fundamental principles, the demonstration of which forms the subject 
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matter of the foregoing articles, are based upon a consideration of framed 
structures. Let us now consider the case of the homogeneous beam or 
solid webbed structure. 

Consider the structure shown in Fig. 3, a homogeneous, solid curved 
beam, hinged at one end and freely supported at the other, under the 
action of a certain system of external loading 2F. The structure is at 
rest and in elastic equilibrium (see Art. 1) hence we may write 

Wz = WE (as in Eq. (4)) 

Fig. 3. 

The external work is obviously represented by the expression 
^2i?Ar (see Eq. (7)). The internal work corresponding to the expression 

. SH 
°f Eq. (7) will now be evaluated. 

Consider any lamina, abed, of the beam included between two con¬ 
secutive cross-sections whose distance apart is represented by the term ds 
(Fig. 3a). 

'The stresses induced in this lamina by the gradual application of 
the external load system 2F may, obviously, all be resolved into two 
components, viz.; R\ representing the resultant of all stresses transmitted 
to the lamina from that portion of the beam on the right, and repre¬ 
senting the resultant of all those forces transmitted to the lamina from 
the left. Each of these forces being unknown both in direction, amount, 
and point of application may be represented by a normal force N applied 
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at the neutral axis of the section, a tangential or shearing force V} and a 
system of graded forces / (increasing from zero at the neutral axis to a 
maximum value at the extreme fibers) representing the stress couple 

M = Np 

Figure 36 shows the lamina abed as a “free body” under the action of 
the two resultant forces /2i and R2 and Fig. 3a shows these two forces 
resolved into the six unknown elements Mi, M2, Nlf N2, Vi and V2- 

From the figure it is apparent that 

N1 = Ni (23) 
Fi = V2 (24) 

Mi = M2 + V2ds (25) 

Each of the three forces Nf M and V cause a certain distortion of the 
lamina and hence the total internal work will comprise : 

(1) The work of the normal force N. 
(2) The work of the bending moment M. 
(3) The work of the shearing force V. 

The derivation of the expressions for the above work elements is 
given in complete detail in Art. 3a. Following are the results of such 
derivation: 

WIN (the work of the normal force N) = (26) 
AJtL 

Wim{the work of the bending moment M) = (27) 
Jhl 

TF/y(the work of the shearing forces V) = -^=r~r — (28) 
D8A 

In the above expressions : 

Nf V and M are as above defined. 
ds is the length of the lamina of rib included between the two cross- 

sections a-c and b-d. 
A is the cross-sectional area of the beam. 
I is the moment of inertia of the cross-section about the neutral 

axis (see Fig. 3). 
E is the modulus of elasticity of the material in flexure. 
E8 is the modulus of elasticity of the material in shear. 
C is a constant depending upon the shape of the beam crosts-section. 

For rectangular cross-sections C = % 
For circular cross-sections C = l% 
For I-beams and riveted plate girders C is generally taken equal to 

(At + Aw) where At is the total cross-section, and Aw the 
area of the web. & 
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Work Due to a Uniform Change in Temperature.—For a uniform change 
in temperature, the only movement is a direct shortening of the lamina 
ds9 and therefore the only force which does any work is the axial pressure 
Nj the forces M and V doing no internal work. The total work due to a 
uniform temperature change is therefore 

Wn = Nctds (see Art. 3a) (29) 

Work Due to a Variable Change in Temperature.—If the upper fibers 
of the beam are raised or lowered to a different temperature than those of 
the lower fibers, each lamina will undergo a slight angular distortion 
and the moment M will undergo a certain displacement. The work of 
both the axial thrust N and the shearing force V are obviously zero in this 
case and the entire work done on the lamina is given by the expression 

T1T Mdsci' 
Wn = —r~ (30) 

where tf is the difference in temperature between the upper and lower 
fibers of the beam and h is the total depth of the lamina. 

The total work done on the lamina abed by all the forces active is, 
therefore, represented by the expression 

Wj 
N2ds M*ds CV2ds 
2AE + 2 El + 2 ESA 

-f- Nctds 
Mct'ds 

Ti ~ 
(31) 

The entire internal work for the beam is very clearly the summation 
of that for each lamina. 

Thus for the entire beam: 

TXT- -\N2ds . , ,yr\M2ds . 1 yy^-\CV2ds . ij i ^r\Mctfds sOCi\ 
W* = HS-15 + XZ-BI + 1AX2E~A + + X-h~(32) 

This is the fundamental expression for the internal work in any 
solid homogeneous beam including temperature effects and is entirely 
general, holding for straight as well as for curved beams under any loading 
and for any method of support. 

The complete work equation may therefore be written 

MSFA + SFA, + 2FA( - ^RAr = + 

, y^\M2ds . ,.^CV2ds , . vMct'ds /00, 
y*Z~ET + A%2Ej: + mdds + X~T. (33) 

This corresponds to Eq. (8) of Art. 1, except that for framed struc¬ 
tures the effect of a variable temperature change was not considered 
separately. 

The complete derivation of the above work formulas is given here for 

reference: 
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3a. Derivation of Expressions for Internal Work in Ribs and Beams.— 
Work Due to the Axial Force N.—The effect of this force is clearly to cause the linear 

Nds 
distortion \n =* ~AEf w^ere ^ represents the cross-sectional area of the lamina per¬ 

pendicular to the line of action of the force N. 
this axial force, then we may at once write 

Win = %N\n — 

If Win represents the work due to 

HN*ds 
AE (A) 

Work Done by Moment Couple M.—The effect of this force is clearly, to shorten the 
fibers on one side of the neutral axis and lengthen them on the other, producing 
the distortion shown in Fig. 3c. The graded fiber stresses on the right hand face of 
the lamina do not exactly equal those on the left-hand face inasmuch as the two 
moments differ by the quantity Fds. However, by taking ds sufficiently small the 

average value M = 3^! (Mx + M%) — M2 + may be substituted for Mi or Mz 

without material error. 
This average value of M represents very closely the moment along the center line 

q-r of the lamina in question and will be designated by the letter M without subscript. 
Consider any element of area dA whose distance from the neutral axis is repre¬ 

sented by the term z (Fig. 3c). 
From ordinary mechanics of flexure the stress on this element is represented by 

the expression 

fdA = or iiZi-A (see Fig. 3c) 
C* Ci 

The distortion of this fiber is represented by the expression 

and the internal work resisted by this elementary area dA is represented by the 
expression 

dW,M = (HfdA)(XM) = (C) 

The upper surface of a beam or arch rib is hereinafter termed the extrados and the 
distance to the extreme upper fiber measured from the neutral axis will be designated 
by the term et; the extreme unit fiber stress (due to bending stresses only) will be 
represented by the term /. and the corresponding extreme fiber distortion by the term 
Xmb. The lower surface of a beam or arch rib is hereinafter termed the intrados and 
the corresponding quantities will be designated by the terms e*, /», Xat, etc. 

From the fundamental theory of flexure (plane sections maintained during bend¬ 
ing) and from Hooke's law of stress and strain proportionality, it follows that, for 
homogenous beams and ribs 

ft * e,::fi : c» 

The internal work resisted by the entire lamina is obviously given by integrating 
the above expression, whence 

wm~.f dWtu = is*/*** - ml 
where I represents the moment of inertia of the cross-section about the neutral axis. 

From the theory of flexure =* M, substituting which we have 

Win 
M*de 
1ST m 
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for the internal work overcome by the average bending moment M active on the 
lamina abed. 

Work Done by the Shearing Forces.—The effect of the shearing stress V is shown in 

Fig. 3d. The total shear may be considered as made up of elementary forces dV, 
each active on an element of area dA. The displacement of the point of application 
of any one of these elementary forces is, from Fig. 3d, equal to bb" or ds tan or, or, 

since « is very small, equal to ds «. The work resisted by each elementary force dV 
is therefore represented by the expression 

dWiv — )4,dV dA da« (F) 
y 

But from the definition of E, (the shearing modulus of elasticity,) « = whence 

dW,v = M(—(G) 

and the work done by the total shear V active over the entire section is represented by 
the expression 

Wiv - fdWtv = ~2AE~SdVdA {H) 

If the shear were entirely vertical and uniformlv distributed over the cross-section, 
y 

dV would be constant and equal to - j, whence 

Wiv 
V2ds f _ V2ds 

2A*EJ aA ~ 2EsA (/) 

The shear is not uniformly distributed over the cross-section and furthermore is 

not exactly vertical since lateral distortions developed by the axial stresses induce 

small shearing stresses at right angles to the plane of the load system. Consequently 

the above expression must be multiplied by a distribution coefficient C which may be 
determined for any particular section and we may write 

Wiv 
CV2ds 
2E9A (j) 

The distribution coefficient is a function of the size and shape of the particular 
cross-section under consideration and is derived from a theoretical consideration of 
the distribution and direction of the elementary shearing forces active on any section. 

The following values of C will suffice for the solution of the problems ordinarily 

encountered. 

For rectangular cross-sections, C = %. 
For circular cross-sections, C = 1 %. 
For I-beams and riveted plate girders no material error will result if C is taken as 

Aw 
total area of cross-section + area of the web alone. 

Work Due to Uniform Change in Temperature.—If the lamina abed be subjected to a 
uniform change in temperature of t°, the force N will be displaced through a distance 

equal to \ = ctds, and the resulting work will be represented by the expression 

Wt - Nctds (see Fig. 3e) (K) 

The forces M and V do not in this case contribute to the internal work. 

Work Due to a Variable Change in Temperature.—Assume that the temperature at 
the extreme lower fiber of the lamina abed exceeds that of the upper fiber by t'° and that 

the variation from lower to upper fiber is uniform. 
In addition to the direct axial distortion (taken care of by the work expression 

Wt « Nctds (see Eq. (#)) the lamina will distort as shown in Fig. 3/. The work 
at any elementary area dA whose distance from the neutral axis is z is represented by 

the expression 
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and the entire work of the lamina abed is represented by the expression 

Wit = lAsct' f z^dLA = ^dsct' 
Geh | Gtth 

z — — i 

Mdsct' 

h (M) 

Total Work on Any Lamina,—The total work done on the lamina abed by all the 

various forces active is represented by the expression 

Wi — Win + Wim + Wiv + Wn + Wit ~ 
N2ds M2ds 

2AE + 2EI + 
CV2ds Met'as 

2 e;a + Nctds + —r~ (N) 

Entire internal work for the beam is very clearly the summation of the expression 

given in Eq. (N) for every lamina in the beam which is obtained by integration between 

the limits 8=0 and 8—1, Thus for the entire beam 
= l rgS = l = l s*8 — l s*8 ~ l 

+ l *** + I .CFW. I NMs + I Met’d 
2AE + I 2EI + I 2E.A + I I h 

8 =» 0 8 = a 8 = O *18 — O g = 0 

(0) 

4. Displacements and Deflections in Beams and Ribs.—Proceeding 
exactly as in the case of the framed structure (Art. 2) we may now derive 
an expression for the displacement or deflection of any point in a solid 
beam or rib under any condition of loading. 

The method of derivation is practically identical with that employed 
in deriving Eq. (15) of Art. 2, and need not be repeated here. The 
resulting equation corresponding to Eq. (15) of Art. 2 is as follows: 

. ^\Nncds ^Mmcds ^CVvcds /0.N 

= A~aiT + A-~eT + A-E.A (34) 

Where nC) mc and vc represent, respectively, the axial thrust, bending 
moment and shear due solely to the action of a unit auxiliary load 
applied at c, acting in the direction along which the deflection Abe is 
desired. 

The expressions 
Nneds Mmcds 
AE * El 

and 
CVveds 

E8A 
for any lamina will be posi¬ 

tive when N and nc, M and mc, etc. have the same sign, and vice versa. 
A positive result, for the term A&c indicates that the deflection is in the 

same direction as that chosen for the unit load, a negative value indicates 
motion in the reverse direction. 

In general the displacements due to shearing strains are very small 
and may be neglected, whence Eq. (34) may be written 

Ate = VlT + A~eT (35) 

Throughout the remainder of this and subsequent discussions the 
effect of shearing distortions in ribs will be entirely ignored. 

Uniform Temperature Effect.—The expression for the displacement 
due to a uniform change in temperature (corresponding to Eq. (17) of 
Art. 2) may be written 

A** * 2 nectde + SmcCtds (36) 
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It is apparent from Fig. 3, that the distortion ctds is an axial distor¬ 
tion only, the angular movement being zero. The product (mc)(ctds) is 
therefore zero and we may write 

Atc = 2 ricdds (37) 

Variable Changes in Temperature.—It is sometimes necessary to 
consider a condition wherein the upper and lower fibers of a beam or rib 
are changed to different temperatures. This condition undoubtedly 
obtains in masonry arches and to an even greater extent in steel ribs. 

For a variable temperature change whose average value at the neutral 
. * e 

axis is t° and whose maximum and minimum values are t + - ^ and£ — 
n 

V e% 
Eq. (37) may be written 

A., + Arc - Xncctds + " (38) 

Where w* acts in a direction such as to produce a strain in the same 
direction as ctds, the term ncctds will be positive and vice versa. Where 
the moment acts in a direction such as to produce a fiber strain of the 
same direction as is produced by the variable temperature change tf, the 

term mcC^ ^S will be positive and vice versa. 

The complete equation for the displacement of any point including 
the effect of both variable and uniform temperature changes may now 
be written as follows: 

A + A, + A, — grA, = XNM + + ZnddS 

DEVELOPMENT OF THE GENERAL ELASTIC EQUATIONS FOR ARCH 

FRAMES OR TRUSSES 

Space will not permit of a complete treatment of every problem that 
may arise under the general designation of fixed framed arch spans, for 
which reason it is doubtless well to develop first the general basic elastic 
equations; thereafter restricting and modifying such equations for appli¬ 
cation to the most frequently encountered problems. 

The subject matter of this chapter will be devoted to a derivation 
of the fundamental elastic equations as follows: 

General Case.—The basic elastic equation for any fixed framed arch 
under any load condition and for any condition of supports. 

Case I.—Special case—rigid supports—temperature effects neglected. 
Case II.—Special case—rigid supports—temperature effect's alone 

considered. 
Case III.—Special case—one or both arch supports elastic or yielding. 
With these elastic equations developed the problem then becomes 

one of simplifying the same and adapting them for use under any par- 
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ticular set of conditions. This feature of the work forms the subject 
matter of succeeding chapters. 

5. Redundant Forces in a Fixed Framed Arch.—Before proceeding 
with the derivation of the general elastic equations let us consider briefly 
the nature of the unknown forces present in a fixed framed arch span 
under any given loading. 

Figure 4 is a sketch of a frame of this type, the span being taken as 
unsymmetrical in order to make the case perfectly general. 

The effect of the supports may 
obviously be represented by four 
reactions Rh R2> R$ and Ri as shown, 
these reactions being as yet unknown 
both in direction and amount. 

Fig. 4. Fig. 5. 

By introducing at point b (Fig. 4a) two opposing forces each equal and 
parallel to Ri (which may obviously be done without disturbing the equili¬ 
brium), we may resolve Ri and R2 into a moment couple M = Rxa and a 
single inclined force (the resultant of R\ and R2 (Fig. 46) both applied 
at point 6). 

Resolving this last inclined force into horizontal and vertical com¬ 
ponents and treating the right-hand abutment in a similar manner, we 
observe that the arch is in equilibrium under#the action of the external 
load system and six unknown reaction components as follows: 

At each abutment (see Fig. 5): 
(1) A horizontal force H. 
(2) A vertical force V. 
(3) A moment couple M. 
There are three basic equations of static equilibrium which may be 

used for the determination of reaction components as follows: 

2 (Horizontal forces or components) ** 0 
^(Vertical forces or components) =* 0 
2 (Moments about any point) « 0 
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These equations suffice for the determination of three of the above six 
reaction components, leaving three unknown forces which cannot be 
evaluated by statics. 

These forces are known as “statically indeterminate” forces or 
reaction components and must be determined by means of the elastic 
equations hereinafter developed. 

These forces are also sometimes termed “redundant” forces the name 
being derived from the fact that such forces are not necessary to the 
stability of the structure. 

To illustrate this last point the three forces H> V and M, at the left 
support could be entirely removed and the structure would still be 
stable as a cantilever and if properly 
designed would still carry a load (see 
Fig. 6). If, in addition, however, either 
of the forces Rz or Ri (or what amounts 
to the same thing either of the forces H2) 
Fa or Mt) were to be removed, the struo Residval Frame-a Three Hinged Arch 

ture would immediately collapse regard- 

Fio. 6. Fig. 7. 

Statically indeterminate forces or reaction components are always 
redundant in the above sense. Such reactions are supplied for economy 
and rigidity but not necessarily for stability. 

6. Residual Frames.—From the foregoing it is apparent that the 
statically indeterminate forces or reaction components can always be 
removed, leaving a statically determinate frame which is stable under load 
but of greatly decreased strength. 

The frame resulting from the removal of such redundant forces will 
be designated the “residual frame.” 

Residual frames for framed arch construction may be developed in 
several different ways. For example: 

N(I) The three reactions at either support may be removed, develop¬ 
ing a cantilever residual frame (Fig. 6). 
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(2) The three members as shown in Fig. 7a may be removed and the 
residual frame becomes a three-hinged arch. 

(3) One horizontal reaction component and both reaction moment 
couples may be removed and the residual frame becomes a simple truss 
span (Fig. 76). 

(4) Three members near the crown may be removed leaving the 
residual frame as two cantilever spans (Fig. 7c). 

The first method apparently results in a residual frame which is 
simple and easy to analyze and will be the method used hereinafter. 

In general the redundants should be chosen so as to develop the sim¬ 
plest residual frame. For arch analysis the removal of the three reaction 
components at either end is the procedure generally followed although 
some methods of analysis are based upon the removal of three members 
at the crown, leaving the residual frame as two simple cantilevers. This 
last method has some advantages in the case of symmetrical arches. 

7. Properties of the Residual Frame.—Consider the fixed arch span of 
Fig. 8. If the support at point 6 were to be removed, the structure would 

be at once transformed into a cantilever 
span fixed at the right support. It is 
apparent that the removal of this sup¬ 
port greatly modifies the values of the 
internal stresses, the remaining support 
reactions and the deflection of the span, 
for any given loading XF. If, however, 
at this left support there be inserted 
three unknown forces as follows: 

X = the unknown horizontal component 
Y = the unknown vertical component 
Z = an unknown moment couple 

and if these three forces be given such value (as yet unknown) that the 
same will exactly reproduce the effect of the removed support, then the 
original stresses, support reactions, etc., remain unchanged. In other 
words, the stresses in any member of the original arch, under the given 
loading XF} is equal to the stress in this same member of the residual 
cantilever under the action of the given loading, plus three forces X, Y and 
Z, having some certain value as yet unknown and applied as shown (see 
Fig. 8). (This is in accordance with the law stated in elementary 
mechanics that any member of a frame may be removed without disturb¬ 
ing the equilibrium, provided a force or forces representing the complete 
action of this member or the rest of the structure be inserted in its place,) 

It is also observed that the unknown redundant forces must be suoh 
as to hold the residual cantilever in exactly the same position under any 
given load system as that which the original arch would take, since the 

Load iyifem IT 

t-*- 
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stresses and consequently the distortions remain unchanged. In other 
words, the removal of the left support would cause the point b (for 
example) of the residual cantilever, to deflect to some point 6", but the 
three forces X, F, and Z are, by hypothesis, just sufficient to bring the 
frame back to its original position. 

Let: 
8 = total stress in any member of the original arch, due to whatever 

cause. 
So = stress in any member of the residual cantilever resulting from the 

given external loadings only (all redundant conditions removed). 
Sx = stress in any member of the residual cantilever due solely to the 

redundant condition X (all other loads being removed). 
Sy = stress in any member of the residual cantilever due solely to the 

redundant condition F(a!l other loads being removed). 
Sz ~ stress in any member of the residual cantilever due solely to the 

redundant condition Z (all other loads being removed). 
sx = stress in any member of the residual cantilever due solely to a 

unit load applied at b and acting along the line of action of the 
redundant X (all other loads being removed). 

sv = similar stress due solely to a unit load applied at b but acting 
along the line of action of the redundant F (all other loads being 
removed). 

sz = similar stress due solely to the action of a unit moment couple 
applied at b and in the direction assumed for Z (all other loads 
being removed). 

All tensile stresses are considered positive in sign; all compressive 
stresses negative. 

From the foregoing discussion, it is apparent that we may at once write: 

S = S. + Sx + + Sz (40) 

Also, since the stress in any member of the residual frame is a linear 
function of its inducing load, 

Sz = Xs* 

Sv = Ysv \ (41) 
. Sz = Zsz 

Whence 
S = So + Xsx + Ysy + Zsz (42) 

As before stated, the stresses in the residual frame are not altered 
by the removal of the supports at 6, and the insertion of the equivalent 
unknown forces X and F and Zf from which it is apparent that the deflec¬ 
tion of any point in the original structure may be determined by applying 
Eq. (22) to the residual frame, using the values 

S 853 So + X&x + Ysv + Zs9 
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8. Development of the General Elastic Equations.—Substituting for S 
from Eq. (42), we may write Eq. (22) for the arch span shown in Fig. 8 
as follows: 

A, + A** — = 2(S0 + Xsx + + Zse) ~~ + 2sxctl 

which represents the total displacement of the redundant X. 
Writing a similar expression for the displacement of the redundants 

Y and Z, we derive the following three basic equations: 

AE 

\S0Syl 

<~AE 

\S0Stl 

+ + 

^2 AE %s*dl 
(43) 

l . x'' xS^l 
'+ xL'ae 

g^SySzl 
AE 

+ ^8uctl. (44) 

+ X^AE + *2# + 

/jLae 
i . 
+Lte' 

(45) 

In the above equations the following definition of terms and signs 
must be observed: 

Ax, Ay, etc. are the displacements of the point of application 
of the given redundant force measured in the direction 
in which such force is assumed to act with respect to 
the rest of the frame. 

Atx, Atv, etc. represent similar displacements but refer to 
temperature effects. This displacement must also 
be measured in the direction of action assumed for 
the redundant forces X, Y, etc. 

— 2rxAr, — 2r„Ar, etc. represent summations extending over the residual 
frame not the original structure. The terms Ar are 
measured in the direction opposite that of the corre¬ 
sponding reactions. rx or rv. 

The minus sign before the above summation sign indicates that the 
work of an elastic support is always negative. 

The individual terms S0sx,$ysx,StSz, etc. under the various summation 
signs are positive or negative according as the two terms carry like or 
unlike signs. For a rise in temperature the individual terms -sxcil are 
positive for tensile stresses, and negative for compressive stresses and 
vice verm. 

The above equations are applicable to any fixed framed arch span 
under any condition of loading and any condition as regards rigidity of 
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supports. They are, however, more or less unwieldy and can be some¬ 
what simplified for use in certain particular cases as follows: 

Case I—Rigid Supports, Temperature Changes Neglected.—In this case, 
since the supports on the residual frame are rigid 

Sr, Ar = Ol 
2r„Ar = 0 
Sr,Ar = 0 

(46) 

Since the supports on the arch span at the left end are also assumed 
as rigid, the displacement of the redundant forces must also be zero, 
that is to say: 

A, = 0 
Ay = 0 (47) 
A, = 0 

Therefore neglecting temperature terms we may write 

| 1' % \ SgSyl 

+ XL te 

’ AE 

^ AE + rSg + zS 
SySzl 

AE 

SSoSgl ■ -yr x$zt' | -yr'V^'^1 

AE ^ I* AE ^ ^ A E 
\ SySZl 

+ *S& " » 

(48) 

(49) 

(50) 

All the terms in the above three equations, except X, Y and Z, are 
easily found, being stresses, lengths, etc. for the residual cantilever which 
is statically determinate. 

After these terms are computed, the three equations can easily be 
solved for X, Y and Z. 

Having X, F and Z, the stresses “S” in the arch frame are obtained 
from Eq. (42). 

The value of any support reaction at the right-hand support, such for 
example as H, is obviously given by the equation 

H - H0 + Xhx + Yhy + ZK (51) 

where H0 is the value of the horizontal thrust at point d for the residual 
cantilever under the given load system, and hXy hvy and hz, are values of 
this horizontal thrust due solely to unit loads applied at b along the line of 
action of X, F, and Z respectively (these thrusts being obviously computed 
for the residual cantilever). 

In a similar manner M0-g, the bending moment in the arch frame 
about any line g-g, is given by the expression 

M = M0 + Xmx + Yrriy + Zmz (52) 

Particular attention must be paid to the signs of Ho, M0, mX) mV) X, F, 
etc. 

Case II—Temperature Stresses {Rigid Supports).—The effect of tem¬ 
perature stresses alone may be readily obtained by writing Eqs. (43), (44) 
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and (45) with the stress S0 placed equal to zero. Also as in Case I since 
the supports are rigid and unyielding the entire left-hand member of each 
of the above equations may also be made to vanish, whence we have: 

JE + YXai + z2?i + M -0 <«> 
X2x§' + yXm + zXlxi + -0 (54) 

xXfi + rXlfE + Z%TE + *«« -0 <55> 
The individual terms sxctl, syctl and szctl under the summation sign 

will be positive or negative according as s and ctl are of equal or opposite 
direction. For a rise in temperature ctl will carry the same sign as a 
tensile stress and vice versa. 

Case I'll—One or Both Supports Elastic or Yielding.—This is a condi¬ 
tion which rarely occurs in practice, particularly in the case of framed 

arches which are chosen in general only 
for long spans and for locations where 
natural foundations are of the best. 
The equations for this case are of course 
adapted from the general elastic equa¬ 
tions [Eqs. (43), (44) and (45)] but the 
process is rather long and the discussion 
more or less involved. 

For the foregoing reasons the entire 
question of elastic and yielding supports 
will be reserved for discussion elsewhere. 

ELASTIC INFLUENCE LINES FOR FIXED 

FRAMED ARCHES 

Having developed, in the preceding 
chapter, the fundamental elastic equa¬ 
tions for the analysis of stresses in this 
type of structure, the present chapter 
will be devoted to a consideration of 
methods whereby these formulas may be 
simplified for more ready application to 
the analysis proper, 

9, Simplification of Elastic Equations.—Consider the arch span of 
Fig. 9, under the action of any external load system ZF. It has been 
shown in the preceding chapter that the removal of the left support and 
the insertion of three redundant reaction components (two linear forces 
and one moment couple) at point 6, so proportioned as to reproduce the 
action of the removed support does not disturb the equilibrium nor 
modify the stresses in the arch frame. Let us carry this one step further 

Load systtm ZF 
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and replace the left support by a rigid bracket as shown in Fig. 96, termi¬ 
nating at some point O'. 

If this rigid bracket is acted upon by two linear forces X and F 
and a moment couple Z, it is apparent that these new redundant forces 
may be so proportioned as to exactly reproduce the effect of the first 
three redundants (applied at point 6). We may therefore solve, for the 
forces X, Y and Z applied at the terminal point of the rigid bracket, by 
means of Eqs. (48) to (50) and (53 to 55) exactly asbefore. The results will 
not be identical with values obtained by placing the redundants at point 
6, but their combined effect will be identical as regards the stress in any 
member of the frame. 

It will now be shown that by properly locating the terminal point 0 
of the above bracket and by properly selecting the angle 0 between the 
lines of action of the two redundants X and F, the resulting elastic 
equations may be very much simplified. 

Referring again to Fig. 9, let us assume the redundant F to act 
vertically upward, the redundant X to act upward and to the right 
making some angle 0 with the line of action of F and an angle of <f> = 
(0 — 90 deg.) with the horizontal. The direction of the redundant 
moment Z will be assumed as shown in the figure. (As has already been 
pointed out the direction of action of the redundant forces may always 
be arbitrarily assumed. If these directions are reversed under any given 
loading the values of the redundants under such loading will simply 
come out negative.) 

Through the assumed terminal point O' construct two temporary 
coordinate axes X'X' parallel to the line of action of the redundant X, 
and F'F' parallel to the line of action of the redundant.Y. 
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Let xf represent the abscissa of any panel point (or moment center, 
such as g Fig. 10) measured horizontally from the axes F'F'. 

Let yf represent the ordinate of any panel point (or moment center) 
measured vertically from the axes XfXf. 

For each member of the frame compute the term G = 

where 
sz = the stress in this member of the residual cantilever due 

solely to the unit auxiliary load (moment couple) Z = unity. 
Z, A and E — us previously defined. 
p = the perpendicular dropped on the member in questign 

from the center of moments for that member (see Fig. 11). 

Fig. 11. 

The values G will be termed the elastic weights of the members in 
question and are hereinafter considered as loads. 

Also let: 

mx = the moment at any panel point (or moment center) due to an 
auxiliary unit load applied at O' along the line of action of the 
redundant X and acting in the same direction. 

my = the moment at any panel point (or moment center) due solely 
to an auxiliary unit load applied at O' along the line of action of 
F and acting in the same direction. 

mz = the moment at any panel point (or moment center) due solely 
to an auxiliary unit moment couple applied at O' and acting in 
the direction assumed for Z. The moments mx, mz and mv 
obviously refer to the residual cantilever not the fixed arch. 

(Moments which produce compressive stresses in the top chord of the 
residual cantilever will be designated as positive and vice versa. The 
coordinate xf will be designated as positive to the right and negative 
to the left of the F'F' axis, the coordinate yf as positive above and nega¬ 
tive below the axis X'X'.) 
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Then from the above and from Fig. 11 (paying due attention to the 
sign designations and to the direction assumed for the redundant forces) 

= 1.0 (56) 

mx — — yf cos^ = — (yn — x tan<£)cos<£ (57) 

where y" is the vertical ordinate measured from a horizontal axis 
through the origin O' 

mv = xf 

s* = 

?/' cos <t> 

Therefore ^since G =» 8tL _ _JL\ 
A£p ~ AFpV 

B5! ~ cos 0 = “cos 0 3KV 

AE m'x' 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

Now if the canter of gravity of the “elastic load” system XG be deter¬ 
mined and the terminal point of the rigid bracket be shifted to such point, 
we may, at once, write 

= 0 

20z' = 0 

whence and both vanish from the elastic equations. 

(64) 

(65) 

The above required center of gravity (which will hereinafter be 
termed the “elastic center ” of the arch system) is obviously located either 
by means of graphics or algebraically, as shown in Fig. 12, in exactly the 
same manner as for any ordinary load system. 

For example, in Fig. 12 the “elastic weights” have been applied 

(1) Vertically, whence x = 

(2) Horizontally, whence y" = 

(3) (as a check) Parallel to X-X, whence y cos <f> = — 

If the work is done correctly, the three “elastic resultants” will 
intersect in a point which is the required “elastic center.” 

The terminal point for the rigid bracket is now shifted to the true 
elastic center, whence (see Fig. 12) 

X — x' — X 

v = y' - ti 
(66) 
(67) 
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Thus far the angle <j> has not been determined and our next step is 
the evaluation of this angle, such that # 

y.W = o 

(68) 
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Co
 

H II 1 ycos<f>^ = — - C08 *[(„" -«")-( x' — x) tan 0 ] (69) 

*•=K*) = Hx' - £ 
p\ ) (70) 

T>1 • ^\SXSyl 
Placing Zj = 0 gives the following: 

- Wcos4(y" ■ - y")(x' - x m*- x^ tan$j — 0(71) 

or 

2(?xi/"cos — 'LGx'y" cos 0 — ItGxy" cos (/» + 2(7x27 " COS 0 — 

2G(x' - • x)2 sin 0 = 0 (72) 

or 

, LGx'y" - ZGx'y" - 2Gxy" + 2Gxy" 

tan *=-mp^w-(73) 

From the above equation the angle is readily found. 
With the redundant X making the above determined angle <t> with 

the horizontal and with the rigid bracket terminating at the elastic center, 
it has been shown that 

2Sx$yl 

~AE 

all vanish 

AE 

Whence Eqs. (48) to (50) may be written: 

SS0sxl 

=_~Je 

A v(s*)2£ 
.A ae m 

SSoSyl 

'AE 
Vs!Sy)2l 

** AE 

Z = - 
V(£^ 
*4 AE 
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Also, for temperature stresses, Eqs. (53) to (55) become 

Xt = 

Yt » 

Zt « 

^ xCtl 

vW? 
^ AE m 

SzCtl 

y(s*)2li 
*4 AE 

(77) 

(78) 

(79) 

10. Application of Above Simplified Formulas.—Equations (74) to 
(76) may be solved algebraically for any given condition of external loading 
but this process is rather laborious inasmuch as it requires a substitution 
in the formulas for every different possible combination of live and dead 
loads. 

A much more expeditious method of analysis may be developed by 
the construction of influence lines for the three redundants Xy Y and Z. 

The method and underlying theory is as follows: The effect of the 
web distortions in framed arch structures is very slight. Moreover the 
inclusion of web strains, in general, results in a large number of elastic 
weights and rather complex graphical diagrams. For this reasop it is 
general practice to ignore the web system when developing the influence 
lines for the redundant reaction components. This will be done in this 
case, the method wherein web strains are included being considered in 
the appendix which follows this chapter. 

Gravity Loadings.—For a unit load at any point, say point g (Fig. 14), 
So becomes sog and Eqs. (74) to (76) may be written: 

Y0 

Z, 

(80) 

(81) 

(82) 
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With these unit load formulas we may proceed as follows: 
(1) Reverse the supports on the residual cantilever thus considering 

it as fixed at the left support and free at the right (see Fig. 14). 
(2) Construct a load line with the elastic weights G applied at their 

corresponding panel points. 
(3) With a pole distance equal to ZG construct a ray diagram and 

equilibrium polygon for the cantilever fixed at the left support. 

"Reversed" Cantilever 

Fig. 14.—Influence line for redundant Z. 

Result: 
This equilibrium polygon is the influence line for the redundant Z. 

Proof: 
Any intercept through any panel point, as for example panel point g 

(see Fig. 14), measures the term 

Point t 

Point g 
- 

** AE 

(83) 
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From Fig. 15 we at once observe that 

k 1 
s°° ~ ~ p 

Whence 

(84) 

Note:- For cant/lever os shown {f/xed at right end) 
6ogf the stress in any member due to a unit 
foac/ at p) ts epuai ro 
mog//°(rhe moment of the center of moments 
for this member due to the same loadinp 
divided byp the perpendicular dropped onto 
the member from said moment center). 

Therefore fora unit load atyj ^Y-K/p 

- —fo/nf t _-Point q f 

and2^oj---EVr ’"IT ° =£> 
Pomtq Point a 3 

Fig. IS. 

Therefore this intercept measures the term 

= ZQ (85) 

h 
'The negative sign is used because the moment - produces tension in the top 

p r 
chord members of the residual cantilever. 
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In a similar manner if the load system 'LGx be employed and an 
equilibrium polygon constructed, using a pole distance H — XGx2, the 
intercept vertically through any panel point g measures the value 

^\Gxk 

9 

V*Gxk 
_ 

XGx‘ 
xm 
X&x 

(86) 

As before 
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Therefore this ordinate measures the term 

AE 

>(sj21 
t AE 

= Y0 (89) 

This equilibrium polygon is therefore the influence line for the redun¬ 
dant Y (see Fig. 16). 

The influence line for the redundant X is constructed in a similar 
manner. In this case: 

Load system = ZGy 
Pole distance = cos <j> = cos <t>2Gys 
Obviously the vertical intercept through panel point g measures the 

term 
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As before 

Also 

v 
~ = — sx(sec <$>) 
P 

Whence this intercept may be written (see Fig. 17) 

-(«» 

(sec <#>)2(cos *)X%2- 

(91) 

* (92) 

(93) 

Having the above influence lines determined, the redundant reaction 
components are readily obtained for any given system of external loading 
(dead or live) and, having these redundants, the stresses, reactions, dis¬ 
placements, etc., for any point or member of the arch frame are readily 
determined Lorn statics (see next chapter). 

Temperature Stresses (Uniform Change).—The value of the redundant 
reaction components induced by a uniform change in temperature may 
be determined directly from Eqs. (77) to (79) as follows: 

For a uniform change of t° in each member of the span 

1 xc>“ 
(cos <j>Y^Gy2 cos 4>^Gy2 

SyCtl XQ)«‘ 
%Gx* %Gx2 

szcil 2(> 
Sc 

(94) 

(95) 

(96) 

The individual terms under the summation sign will be positive for a 
temperature rise and negative for a temperature drop, when sx, sv and sg 
represent tensile stresses and vice versa. 

Stresses Due to a Variable Change in Temperature.—If the change in 
internal temperature is different for different members of the span, the 
above formulas may still be used, the only difference being that the value 
of t will be different for the different members occurring in the summations 

EsvcU) etc. 
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11. Horizontal and Inclined Loads.—Equations (74) to (76) hold for 
stresses produced by any system of external loading—horizontal, vertical 
or inclined. The influence lines developed in Art. 10, however, are based 
upon the consideration of a moving unit vertical load If the effect of a 
syst^pa of inclined loads is desired, it is quite possible to develop a system 
of influence lines for the same, but whether this method of procedure has 
anything to recommend it over the direct solution of Eqs. (74) to (76) 
depends wholly upon the conditions of the problem. The utility of a 
series of influence lines constructed for a unit horizontal moving load is 
not such as to warrant discussion at this point. 

12. Direction of the Redundant Forces.—The result of the demonstra¬ 
tion which forms the subject matter of Arts. 9 and 10 indicates that the 
redundant forces X, Y and Z each act in the direction first assumed (see 
Fig. 9a) for any position of the moving vertical load. If the assumed direc¬ 
tion of one or more of these forces were to be reversed, the signs of the 
corresponding terms mXJ my or mZ} as the case may be, would be immedi¬ 
ately reversed and the expression for the redundants in question would 
come out negative indicating a direction of action as first assumed. 

Effect of Web Distortions.—As stated hereinabove the effect of web distortions in 
this type of structure is relatively slight and is usually neglected in the determination 
of influence lines for the redundant reaction components. 

The effect of these distortions corresponds in a general way to that of the shearing 
strains in a solid homogeneous beam, although the former are rather more pronounced 
because of the smaller relative area of the web system. 

It is generally possible (except for parallel chord arch frames) to include the effect 
of web strains by employing, for each web member, a single elastic load applied at the 
center of moments (intersection of chords) for such web member (see Fig. 11). These 
loads are, however, inconvenient to handle, oftentimes falling entirely outside the 
limits of the drawing. The following method, using for each web member a pair of 
loads, opposite in direction, is much more convenient. The demonstration is as 
follows: (8»zl \ 

A%p ) aPP^e4 

at the center of moments for web member No. 3 (Fig. 18). It is possible to exactly 
reproduce the effect of this elastic load (applied at 03) by two elastic loads 

and 

Gi" = applied at point/ 

Gt = — applied at point e 

as shown in Fig. 18. These two elastic loads applied at points / and e may therefore 
be substituted for the original load G& applied at 03. 

Plotting a ray diagram with pole distance H «= 2(7 and a corresponding equili¬ 
brium polygon for these substitute elastic loads, applied to the reversed cantilever (fixed 
at left support), the vertical intercept under point/obviously measures the term 

-473a 
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The intercept under point d is measured by the term 

-at 
XG XG 

Now from Eq. (76) the effect of this web member on the Z influence line is repre 
Bented by the term 

Fig. 18. 

For a unit load at point / 

and by substitution 

80s — 
a 
p 

Similarly for a load at point d 
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The equilibrium polygon for the two elastic loads Gs and Gin applied to the 

reversed cantilevef ” using a pole distance H = XG is therefore identical with the 

influence line representing the effect of the web member No. 3 on the redundant Z. 

We have only, therefore, to add the two elastic loads GY and GY' (acting as shown) 

to the elastic load line of Fig. 14 in order to include the effect of this web member. 

In a manner similar to the above the two loads GY and Gs" may be shown to exactly 

replace the single load Gs when using the load 

system Gx or Gv. The above identity may also 

be proved for any web member. 

When the chords are parallel, the lever 

arms a and b of Fig. 18 become infinite and 
the expressions representing the value dZ 
involve the indeterminates (0* «). 

Some other method of evaluating the same . 

must therefore be devised. This may be ac¬ 

complished as follows: Suppose the two chords 

whose intersection determines the moment 

center 03 for web member No. 3 (Fig. 18) to bo 
parallel. The position of Os therefore recedes 

to infinity and rays No. 1 and No. 3 become 

parallel (see Fig. 19). 

The two elastic loads G*' and G8" must 

therefore be equal and opposite and may be 

evaluated as follows: Place a single unit load 

at point / and determine the resulting stress s/S 

in web member No. 3 (either algebraically or 
by graphics). 

In order that the load system Gs' and G3" may reproduce the effect of this web 
strain on the influence line for the Z redundant, 

S/sSZ3l 1 

AE 
XG 

. , Gs'd 
must equal 

Whence 

G 
■ - - (n)c#y 

In the above manner the elastic loads G' and G" and also G’x} G'y, Q"x and G"y for 

each web member in the frame may be evaluated and the same added to the elastic 
load lines of Figs. 14, 16 and 17. 

One of the two elastic loads G' or G" for each web member acts downward, the 

other acting in the opposite direction. To determine which is which, recourse may 
be had to the following line of reasoning: 

every chord member in the frame the term is obviously negative For 

8ogStl . 

(with the Z redundant acting as assumed). 

For any web member therefore if the term -jg^for a unit load at this same 

point g, be negative, the elastic loads representing the effect of such web member will 

have a direction such as to increase the influence ordinate at point g when added to the 
goxl 

elastic load line. If, on the other hand, the term -j-g- be positive these loads 

will have a direction such as to decrease this influence ordinate. In this manner the 

particular load G' or G" which acts downward can be readily determined for each web 
member in the frame. 
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THE ANALYSIS OF FIXED FRAMED ARCHES 

(Symmetrical and Unsymmetrical Spans) 

13. Unsymmetrical Spans.—The following method of analysis is 
simply the application of the formulas derived and demonstrated in the 
preceding chapter and is applicable to any fixed framed arch, either sym¬ 
metrical, or unsymmetrical, under any system of loading, provided the 
supports are rigid and unyielding. The special case of elastic supports will 
be considered elsewhere. 

Let it be required to design the fixed framed arch span shown in Fig. 
20, the same being supported on solid rock abutments and having a span 
length of 275 ft. as shown. The span is taken as unsymmetrical in order 
to make the problem entirely general. The special case of symmetrical 
spans will be discussed later. 

The procedure is as follows: 
Operation No. 1.—Assume tentative dimensions for the depth of 

frame at skcwback and at crown and also tentative values for the cross- 
sectional areas of the chord members. These dimension and area assump¬ 
tions are generally based upon previous experience or published data 
regarding spans of like length and designed for similar load conditions. 
After the analysis is complete these assumptions will be corrected in accor¬ 
dance with the results obtained and the analysis re-run using the new 
values of l, A, etc. If these second results are such as to necessitate a 
considerable modification of the last assumed values of l and A, a third 
analysis must be made, etc. Generally two or three trials will prove 
sufficient. 

There have been several approximate methods and formulas devised 
and announced from time to time for determining the approximate size 
of the arch frame members to guide preliminary assumptions. It is 
rather doubtful whether this procedure has anything to recommend it 
over an out and out assumption tempered by judgment and experience. 
Most certainly it takes more time and generally yields results but very 
little closer to the final values than those which may be assumed outright 
by an experienced designer. 

Operation No. 2.—Lay out the frame to an adequate scale, assume a 
temporary origin of coordinates (see Fig. 20) and construct two temporary 
coordinate axes, one vertical and one horizontal through such point. 

Operation No. 3.—For each member of the frame (web members are 
generally neglected their effect being very slight) determine the length l 
(in feet), the cross-sectional area A (in square feet), the perpendicular 
distance p dropped upon each member from its moment center, and also 
the coordinates xr and yn for each of these moment centers measured from 
the temporary origin. 
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Operation No. 4.—Collect and tabulate the values of Z, A, p, p2, 0 = 

Vn) Gxr and Gy" (see Table 1 for the arch under consideration). 

The term E (29,000,000 X 144 for steel when pound and foot units are 
used) occurs in both numerator and denominator of the terms represent¬ 
ing the redundants (see Eqs. (74) to (76) inclusive). To avoid long deci¬ 
mals, therefore, E has been taken as 29 in computing the terms G in Table 
1, this obviously having no effect on the resulting redundant values. * 

Table 1.—Calculation for PJlastic Loads G and Location of the Elastic 

Center O 

l 
(feet) 

Point 

Member 
A 

(sq. ft.) 
P 

(feet) p2 
/ 

° “ A Ep > 
of 

appli¬ 
cation 

x' v" Ox’ Gy" 

C/1-C/2 26.85 0.34 29.3 858.49 0.00317 LI -130.0 16.8 -0.412 0.054 
172-1/3 26.75 0.34 25.0 625.00 0.00434 L 2 -105.0 30.7 -0.456 0.133 
173-174 26.02 0.30 23.0 529.00 0.00565 L3 - 82.0 40.3 -0.463 0.228 
C/4-C/5 25.55 0.30 21.8 475.24 0.00618 L4 - 60.0 47.3 -0.371 0.292 
C/5-C/6 25.12 0.30 20.8 432.64 0.00667 L5 - 37.5 52.0 -0.250 0.347 
C/6- U7 25.02 0.30 20.3 412.09 0.00698 L6 - 12.5 54.6 -0.087 0.381 
V7-V8 25.02 0.30 20.3 412.09 0.00698 L7 + 12.5 54.6 4-0.087 0.381 
C/8-C/9 25.12 0.30 20.8 432.64 0.00667 L8 4- 37.5 52.0 4-0.250 0.347 
C/9- C/10 25.55 0.30 21.8 475.24 0.00618 L9 4- 60.0 47.3 4-0.371 0.292 
C/10-C/ll 26.02 0.30 23.0 529.00 0.00565 L10 4- 82.0 40.6 4-0.463 0.229 
C/ll-C/12 26.07 j 0.34 26.3 691.69 0.00382 Lll 4-105.6 30.6 4-0.403 0.117 
LO-L1 26.00 0.36 31.1 967.21 0.00257 C/1 -150.0| 40.7 -0.386 0.105 
L1-L2 28.71 0.35 20.2 686.44 0.00412 C/2 -125.0 49.2 -0.515 0.203 
L2-L3 25.10 0.35 24.1 580.81 0.00426 C/3 -100.0 59.2 -0.426 0.252 
L3-L4 22.92 0.32 22.6 510.76 0.00484 C/4 - 75.0 66.7 -0.363] 0.323 
IA-L5 22.96 0.30 21.5 462.25 0.00571 C/5 - 50.0 71.6 -0.2861 0.409 
L5-L6 25.17 0.30 20.8 432.64 0.00669 C/6 - 25.0 74.6 -0.167 0.499 
L6-L7 25.00 0.30 20.6 424.36 0.00677 U7 0.0 75.5 0.000 0.511 
L7-L8 25.17 0.30 20.8 432.64 0.00669 U8 4- 25.0 74.6 4-0.167 0.499 
L8-L9 22.96 0.30 21.5 462.25 0.00571 C/9 4- 50.0 71.6 4-0.286 0.409 
L9-L10 22.92 0.32 22.6 510.76 0.00484 C/10 + 75.0 66.7 4-0.363 0.323 
L10-L11 25.55 0.35 24.5 600.25 0.00419 C/ll 4-100.0 59.2 4-0.419 0.248 
L11-L12 14.90 0.35 29.0 841.00 0.00175 C/12 4-125.0 52.1 4-0.219 0.091 

E 1.2043 -1.154 i 6.673 

Operation No. 5.—Locate the position of the center of gravity of the 
elastic load system EG by means of the formulas 

From Table 1 

x = 
EGxf 
EG 

EGy" 
EG 

$ 

9" 

—1.154_ 
1.2043 
6.673 
1.2043 “ 

—9.58 ft. 

55.41 ft, 
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It is well to check the position of the “elastic center” (as above 
determined) graphically, as shown in Fig. 21. 

Any two directions for the elastic load system 20 may be assumed. 
The two resultants in any case will intersect at the elastic center if the 
work is correctly done. The directions should be chosen so as to intersect 
at a well defined angle (as near 90 deg. as possible). 

Operation No. 6,—Determine the angle <j> such that the term 

S8±sv} „ n 

AE 

Note .-Apply the elastic loads 
f/rst vertically arid then horizontally 
determining the two "elastic * 
resultants* The intersection£ 
at these two resultants^, 
determines the re¬ 
quired "elastic center? 

I 

,, . lEGT . 
(Loads applied horizontally) 

-G^Afpl/edhorizontally 

Fig. 21.—Graphical method for determining the “elastic center” of an arch system. 

This is done by means of Eq. (73) of the last chapter, the work being as 
follows: 

From Fig. 20 

x — x' + x = x' + 9.58 ft. 

y — y" — y" — x tan <j> — y" — 55.41 — (x' + 9.58) tan <f> 
Substituting in Eq. (73) 

, a _ 2Gx'y" - 55.412G*' + 9M2Gy" - (9.58)(55.41)IG 
* TXHx'Y + 2(9.58) St?*' + (9.58)*2(7 

The terms 2Gx' and 2Gy" have already been computed (see Table 1). 
Table 2 below, contains a tabulation of the terms 2Gx'y"and 2(?(x')2 
for the problem at hand. 
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Table 2 

Member 

Gx'y" 

G(x')* Member 

Gx'y" 

(+) (-) (+) (-) 

UI-U2 6.92 53.57 

i 

L2-L3 25.22 42.60 
C/2-173 14.00 47.85 L3-L4 24.21 27.22 
C/3-174 18.66 37.99 L4-L5 20.48 14.28 
C/4- C/5 17.55 22.25 L5-L6 12.46 4.18 
f/5-176 13.00 9.38 L6-L7 0.00 0.00 0.00 
176-177 4.75 1.09 L7-L8 12.46 4.18 
C/7-178 4.75 1.09 L8-L9 20.48 14.28 
178-179 13.00 9.38 L9-L10 24.21 27.22 
179-1710 17.55 22.25 L10-L11 24.80 41.90 
1710-1711 I 18 80 37.99 L11-L12 11.40 27.34 
C/ll-C/12 12 33 j 42.60 
L0-L1 

i 
16.71 57.83 Total. 159.78 198.30 

C1-L2 i 
. i 25.34 64.38 — 

i 
i 

i 

1 
2. 38.52 610.85 

Substituting from the above table and from Table 1 

Tan (j> = 

— 38.52— (55.41)(—1.154) + (9.58)(6.673) — (9.58)(55.41)(0.1204) 
610.85 — 2 (9.58) (1.154) + (9.58) (9.58) (0.1204) " °*04t3 

Operation No. 7,—Construct two new coordinate axes through the 
“ true elastic center1 1 as found above as follows: 

Axis F-Fvertical 
Axis X-X making the angle <t> with the horizontal. 

Compute or scale for each chord member the new coordinates x and y. 

x measured horizontally from the new axis F-F. 
y measured vertically from the new axis X-X. 
x will be taken as positive to the right of the axis F-F 

and negative to the left. • 
y will be taken as positive above and negative below the 

, axis X-X. 

Next compute the terms Gx, Gy, Gx2, Gy2 and the summations 2(?, 
XGx2 and ZGy2 for every chord member of the frame. 

This work is tabulated in Table 3 for the arch under discussion. 
Operation No. 8.—Considering the frame as a cantilever fixed at the 

left support (this is the reverse of the condition under which the residual 
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frame was developed), construct the following three equilibrium polygons: 

„ , . ( Elastic load system G 
Polygon ^poledi Btonce„„jC 

/ Elastic load system Gx 
1 Pole distance H = J,Gx2 
I Elastic load system Gy 
1 Pole distance H = cos <j>hGy2 

From the considerations and demonstrations of the preceding chapter: 
Polygon A = the influence line for the redundant Z (a moment 

couple) applied at the end of a rigid bracket fastened to the left support 
and terminating at the elastic center 0. 

Polygon B 

Polygon C 

Table 3 

1 

Member I 

! 

Num¬ 
ber 

i 

Moment 
center 

(7 j 
1 
i 

X . V Gx Gy Gx2 Gy2 

L0-L1 i ■ J1 0.00257 -140.42 - 8.67 0.361 0.022 50.69 0.19 

r; i~(72 2 LI 0.00317 -120.42 -33.43 0.382j0.106 46.00 3.54 

L1-L2 3 U2 0.00412 -115.42 - 1.25 0.476 0.005 54.94 0.01 

U2-m 4 L2 0.00434 - 95.42 -20.61 0.414 0.089 39.50 1.83 

L 2-L3 5 U3 0 00426 - 90 42 + 7.68 0.385 0.033 34.81 0.25 

J73-C/4 6 L3 0.00565 - 72 -42 -12.00 0.409 0.068 29.61 0.82 

L3-L4 7 TT4 0.00484 - 65.42 + 14.10 0.317 0.068 20.74 0.96 

r/4-175 8 L4 0.00618 - 50 42 - 5.94 0.312 0.037 15.73 0.22 

L4-Z/5 9 U5 0.00571 - 40.42 + 17.93 0.231 0.102 9.34 1.83 

175- UG 10 L5 0.00667 - 27.92 - 2.21 0.186 0.015 5.19 0.03 

L 5-7/6 11 U6 0.00669 - 15.42 + 19.85 0.103 0.133 1.59 2.64 

176-177 12 L6 0.00698 - 2.92 - 0.68 0.020 0.005 0.06 0.00 

L6-L7 13 U7 0.00677 + 9.58 + 19.68 0.065 0.133 0.62 . 2.62 

1/7-178 14 L7 0.00698 + 22.08 - 1.76 0.152 0.012 3.36 0.02 

L7-L8 15 U8 0.00669 -f 34.58 + 17.70 0.231 0.118 7.99 2.09 

1/8-179 16 L8 0.00667 + 47.08 - 5.43; 0.314 0.037 14.78 0.20 

L8-L9 17 U9 0.00571 + 59.58 + 13.63 0.340 0.078 19.92 1.06 

179-1/10 18 L9 0.00618 4- 69.58 -11.10 0.430 0.069 29 92 0.77 

L9-L10 19 U10 0.00484 4- 84.58 + 7.65 0.409 0.037 34.59 0.28 

1/10-1/11 20 L10 0.00565 4- 91.58 + 19.29 0.517 0.109 47.35 2.10 

L10-L11 21 Ull 0.00419 4-109.58 - 0.92 0.459 0.004 50.30 0.00 

1/11-1712 22 Lll 0.00382 + 115.18 -29.78 0.440 0.110 50.68 3.28 

L11-L12 23 U12 0.00175 + 134.58 - 9.10 0.236 0.016 31.76 0.09 
s 0.12043 599.47 24.83 

Polygon B = the influence line for the redundant Y applied at the 
same point and acting vertically upward. 

Polygon C « the influence line for the redundant X apphed at the 
same point and acting to the right along the axis X-X 
(making an angle <t> with the horizontal). 
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influence line for any member of the frame may be very readily 
determined. 

Thus for a unit vertical load at any panel point (as for example point 
g) the stress in any frame member becomes 

Sg = Sog + XgSx + YgSy + Z g8t 

due attention being paid to the signs or direction of action of the various 
forces. 

From this equation the chord stress influence lines may readily be 
constructed. 

The influence lines for the web members may be readily plotted from 
the influence lines for the two adjacent lower chord members simply by 
analyzing the lower ‘joint for each position of the unit load, as shown in 
Fig. 24. The method of computing the influence lines for both chord and 
web members is given in complete detail in Tables 4 and 5 and in Figs. 
22, 23, 24 and 2o. 

Fig. 23. 

Operation No. ID—Temperature Stresses, Uniform Temperature 
Change.—The values of the redundants due to a uniform change in the 
internal temperature of the frame members are given directly by Eqs. 
(94) to (96) inclusive of the preceding chapter as follows: 
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Table 4.—Influence Line Data fob Member L1-L2. 

Load 
point X Y z a Yyjasf Yx s 

/ 0.000 1.000 140.42 25.0 0.000 1/542 0.000 

Z 0.0ss 0.838 Are. 20 0.06$ 96.72 0.746 

3 0.230 0.738 94.00 0.288 35J8 0348 

4 0.470 0.666 73.00 0588 76.87 0./25 

S 0.700 0572 54.50 0.875 66.02 0.4/3 

€ 0.8SO 0.4S7 38.80 1.063 52.75 0.492 

7 0.9S0 0.346 25.50 /.//3 39.94 0.509 

8 0.7S0 0.233 15.00 0.938 26-89 0.4/8 

9 o.soo 
L . 

0J34 7.75 0.625 1547 0.27/ 

!0 0.245 0.058 2.50 0.306 669 0.043 

// 0.060 0.0/2 1.25 - 0.075 t.39 0.002 

rz 0.000 a ooo 0.00 0.000 0.00 0.000 

X = -lIS. 42 (.+)= Tension 
y » - 1.25 (-)i Compression 

cos $=0,999 S=i(Z+Xy.cos$-Yx-Pa) 
f = 26.2 1 

Table 5.—Influence Line Data for Member L2-L3. 

Load 
point X Y z a Xy.cos<f> Yx 6 

l 0.000 7.000 740.42 50.0 0.00 90.42 o. ooo 

2 0.055 0.838 176.20 2SO 0.42 75.77 40.623 

3 0.230 0.738 94.00 1.76 6673 +/. 059 

4 0.470 0.666 73.00 3.60 60.22 f 0.38 f 

6 0.700 0.572 54.50 5.37 S/.72 -0.107 

6 0.850 0.457 38.80 6.52 4J.32 -0.375 

7 0.890 0.346 25. SO 6.83 37.29 -0.524 

8 0.750 0.233 75.00 5.75 21.07 -0.490 

9 0.500 0./34 7.75 3.84 12J2 -0.34/ 

to 0245 \ 0.058 2.50 1.88 524 -0.192 

// 0.060 i 0.072 7.25 0.46 108 -<0.072 

12 0.000 0.000 a 00 0.00 0.00 OOOO 

X » -90.42 
198 

p » j.OQ 
CO$$*Cl999 
f> * 24.1 

{4) * Tension 
(-) Compression 

$=£(z-fy.cos$ -Yx -Pa) 
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Table 6.—Values op Redundants 

for 

a Uniform Temperature Rise op 4S° F. 

<+) 
Extension 
Tensiofl 

/ T Compression 
v \ Shortening 

Member 
ctl 40° 

rise 
Sx ^ —V X 

sv = 

8, Ctl 

a, * 1 cos* 
8uCtl : • Szcti 

i 

(+> 
p 

_ + 
_ 

+ 

UI-U2 
C/2-C/3 

0.00645 
0.00642 

-1.141 
— 0 824 

+4.11 
+3.82 

-0.0341 .*. 
-0.0400 . 

0.00736 0.0265 
0.00529 0.0245 

0.000220 
0 000257 

U3-U4 0.00625 -0.522 +3.15 -0.0435 . 0.00326 0.0197 0.000272 
C/4-C/5 0.00613 -0.273 +2.31 -0.0459 . 0.00167,0.0142 0.000281 
U5-UG 0.00604 -0.106 +1.34 -0.0481 . 0.00064:0.0081 0.000290 
U 6- U7 0.00601 -0 033 +0. 14 -0.0493 . 0.00020;0.0009 . 0.000296 
C/7-C/8 0.00601 -0.087 -1.09 -0 04931 . 0.000521 0.0065 0.000296 
U8-U9 0.00604 -0.268 -2 32 -0 0493 . 0.00162 0.0140 0.000298 
(79-{710 |0.00613 -0.509 -3.19 -0.0459 . 0.00312 0.0196 0.000281 
(710-(711 0.00625 -0.839 -3.98 -0.0435 . 0.00524 0.0249 0.000272 
C/ll-£712:0.00625 -0.132 —4.38 -0.0380.. . . 0.00708 0.0274 0.000238 
L0-L1 
Ll-L‘2 

10.00625 
!n DO AMD 

| +0.279 
1 -[“0 048 

-4.52 
—4.41 

+0.0322 0.00174 
+0.0382 0.00033 

0.0282 0.000201 
0 0304 0 000263 

L2-L3 
7/3-I/4 
IA-L5 

0.00604 
0.00551 
0.00552 

-0 319 
-0.624 
-0.834 

-3.75 
-2.80 
-1.88 

+0.0415 . 
+0.0442 . 
+0.0465 . 

0.00192 
0.00344 
o nrufio 

. 0.0227 0.000251 
0.0160 0.000244 
0.0104 0.000257 

L5-L6 
LG-17 
L7-L8 

0 00604 
0.00600 
0.00604 

— °.954 
-0.955 
-0.851 

-0.74 
+0.47 
+1.66 

+0.0481 . 
+0.0485 . 
+0.0481 . 

0.00576 . 
0.00573 0.0028 
0.00514 0.0100 

0.0045 0.000290 
. 0.000291 
. 0 000291 

L8-L9 0.00552 -0.634 +2.77 +0.0465 . 0.00350 0.0153 0.000257 
L9-L10 0.00551 -0.339 +3.74 +0.0442 . . .. 0.00187 0.0206 0.000244 
L10-L11 0.00614 +0.038 +4.47 +0.0408 0.00023 1 0.0275 0.000250 
IA1-L12 0.00357 ; +0.314 | +4.64 +0.0345 0.00112 0.0166 0.000123 

2 (+) .. . 0 00342 0.1867 0.002962 
2 ( —). .0.06796!.io. 2046 . 0.003001 
2 Net total. . 0.06454 .|0.0179 0 000039| 

For a uniform rise in temperature of 40° F. the values of the 
numerators for the above equations have been computed and tabulated 
in Table 6 as follows: 

-0.06454 

- 0.06454 (cos 0) = -0.06448 
-0.0179 
— 0.000039 * 
(approx.) 0.999 

In Table 3 the values 2(7, 2Gx2, 2Gfy2, etc. were computed using the 
value E — 29. This assumption made no difference in the values of the 
redundants due to gravity loadings inasmuch as the term E occurred in 
both numerator and denominator of the expressions for the redundant 
forces (see Eqs. (74) to (76) inclusive). For temperature stresses, on the 
other hand, the term E occurs only in the denominator (see Eqs. (77) to 
(79), inclusive). 

2 sxctl = 
2 SyCtl — 

luSgCtl —■ 

COS <t> = 
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The true value of E is generally taken as 29,000,000 lb. per sq. in. or 
(29,000,000) (144) lb. per sq. 

The values in Table 3 must therefore be divided by 144,000,000 
for use in the above formulas. 

Using these values we therefore write 

X, 

Yt 

Zt 

-[ 
-[ 

--[■ 

(—0.06448X144,000,000)] 
(0.999)2(24.83) J 

(-0.0179)(144,000,000)] 
599.47“ J 

(- 0.000039) (144,000,000) 
1.2043 

= 375,000 lb. 

= 4,300 lb. 

] = 46,600 ft.-lb. 

lo 

Analysis of Joint L2 

Method of plotting wet> stress influence fines 
from those for lower chord members. 

Joint L2 is ona/yeed for each position of the 
unit load, thus a/etermimrm the stress m 
L2-U£ and L2-US for such loading 

. Influence Line for Stress in UMJ3 

Fia. 24. Fig. 25. 

The redundant moment Zt due to a uniform change in internal tem¬ 
perature is practically negligible. In fact this moment would be exactly 
zero if the top and bottom arch chords were of exactly the same length, 
since in this case there would be no angular distortion resulting from 
expansion or contraction of the frame. 

We may therefore neglect the term Zt in calculating the temperature 
stress in any frame member. 

With the temperature redundants determined as above, the stress 
in any frame member is obviously given by the formula 

St Sot + Xt$z + YtSy + Zt8* 

or 
Xt&9 + YfSy + Zt8M 
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since Sot (the temperature stress in any member of the statically 
determinate residual cantilever) will always be zero. 

In the above 

Also 
Zt may be taken as zero without material error. 

Whence 

Sx 
— y cos <f> 

P 
and sv 

x 

P 

St = {—Xty cos 4> + Ytx) -s- p 

For example the temperature stress in chord member L2-L3 is 

*375,000 lb. (7.68 in.)(0.999) +4,300 lb. (-90.42 in.) 
24.1 ft. 

= -135,5001b. 

Note that this is a compressive stress in the lower chord. For a drop 
in temperature the signs of ctl in Table 6 would be reversed and the 
redundants would all have reversed directions. The above stress St 
would then become +135,500 lb. or a tension in the lower chord member 
L2-L3. 

In the above manner the temperature stresses in each member of the 
frame may be readily calculated. 

Operation No. 11—Stresses Due to a Variable Temperature Change.— 
It is sometimes desirable to know the stresses which would result from a 
non-uniform change in temperature throughout the various members of 
the frame. For example it is quite probable that during the hottest 
summer weather the upper chord members assume a temperature con¬ 
siderably higher than those of that portion of the lower chord which is 
more or less shaded by the deck. 

These stresses for any given or desired assumption as to temperature 
distribution may be calculated exactly as has been done above for the 
uniform temperature change by varying the value of t in column two of 
Table 6 in accordance with the assumed facts. 

In this case it is well to observe that the term Zt is no longer negligible. 
14. Symmetrical Spans.—For symmetrical spans the elastic center 

will obviously lie on a vertical through the center of the span and may 
therefore be completely located by applying the elastic load system 
horizontally thus locating the vertical position of said elastic center. 

For coordinates measured from the true elastic center as above 
determined, the terms y and x of Eq. (73) both vanish and thus equation 
may be written 

EGx'y" 
an ^ ZG(x')2 

Since the span is symmetrical, for every value of y" there are two equal and 
opposite values of x', therefore the term EGx'y" also vanishes and we have 

tan 0=0 
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For symmetrical spans, therefore, the two redundants are “con¬ 
jugated” when they are at right angles to each other, one horizontal and 
one vertical. 

The above represents the only difference in procedure, in all other 
respects the analysis of symmetrical arch frames will be as hereinabove 
described for unsymmetrical spans. 

Temperature Effects.—If the span is symmetrical, the term Yt 
becomes zero. That this is true may be seen from the following: 

For every positive value of x there is a corresponding panel point 
having an equal negative value, therefore * 

^SyCtl = Ctl = 0 

and 
Yt = 0 

The temperature stress in any member may then be expressed (neg¬ 
lecting the term Zt as before) 

S* = 

The above holds true for uniform temperature effects only. That it 
cannot hold for variable temperature effects is, of course, self-evident. 

DEVELOPMENT OF GENERAL ELASTIC EQUATIONS FOR RIB ARCHES 

16. Development of Formulas.—Let Fig. 26 represent any fixed arch 
rib at rest and in equilibrium under the action of any system of external 
loads 2F and the rigid anchorage at each abutment. If the two abutments 
were to be removed, it is clearly seen that the action of each abutment 
could be exactly reproduced by the introduction at each support of a 
moment couple M, an axial thrust Nf and a tangential or shearing force 
V (Fig. 266). It is also apparent that, if the value of these six forces under 
any given load condition, can be determined, the stress in the rib at any 
point may very easily be found. 

There are three fundamental static equations of equilibrium which 
may be written for any structure, as follows: 

2 (Horizontal forces, or components) = 0 
^(Vertical forces, or components) = 0 
2 (Moments about any point) = 0 

These three equations, therefore, suffice for the determination of three of 
the six above unknown reaction components, leaving three others which 
must be determined. 

If, therefore, either support (say the left support) be removed and the 
three forces N, F, and M, be inserted to reproduce the action of this same 
support as shown in Fig. 27a, the problem at once resolves itself into that 
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of evaluating these three unknown forces. Once these are determined, 
the other three reaction components and the stress in the rib at any point 
are easily determined from the above static equations. 

Carrying the reasoning a step further, let us replace the three forces 
N, F, and M} by a rigid bracket or arm fastened to the rib at the left 
support and terminating at some point O. At the end of this bracket let 
us apply three new unknown forces as shown in Fig. 276, as follows: 

X = the unknown lateral component at point 0. 
Y = the unknown vertical component at point 0. 
Z = the unknown moment couple at point 0. 

Fig. 26. Fig. 27. 

It is apparent that these forces may be given a value such that they 
will exactly reproduce the action of the forces N, F, and M, at the left 
abutment and will consequently hold the structure in equilibrium. 

It is also apparent that, if these three new unknown forces can be 
determined, the original reaction components N, F, and M, can easily be 
obtained and consequently the other reaction components (and the rib 
stresses as well) may be readily evaluated from statics. 

This last step (the employment of the rigid bracket idea) simply 
replaces three unknown forces applied at the left abutment with three 
other unknowns applied at point 0. This may seem entirely unneces¬ 
sary. However, such is not the case, for by properly choosing the loca¬ 
tion for point 0, the terminal point of the rigid bracket, the equations 
involving the unknowns X, Y and Z (to be derived hereinafter) become 
very greatly simplified. 
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If the three forces X, Y and Z were to be entirely removed, the result¬ 
ing structure would become a cantilever. In any statically indeterminate 
structure there are always one or more unknown forces or reaction com¬ 
ponents which may be removed to produce a statically determinate struc¬ 
ture (see p. 408). The structure resulting from the removal of these 
forces is generally termed the “residual frame” and the forces themselves 

are termed “redundants.” In 
this case X} F, and Z are the 
“redundants” and the “residual 
frame” is a cantilever (compare 
with Art. 6, p. 409). 

Consider the residual frame (a 
cantilever rib) shown in Fig. 28 
under the action of any given 
system of external loading, together 
with the resultant redundant forces 
X, Y and Z. Under the action of 
these loads the terminal point 0 of 

the rigid bracket undergoes certain elastic displacements both angular 
and linear as shown. 

Let 

Ay = the displacement of point 0 along the line of action of the 
redundant F. 

Ax = the displacement of point 0 along the line of action of the 
redundant X. 

A, = the angular displacement of the bracket in the direction 
chosen for the redundant Z. 

Referring back to Art. 4, p. 406, we find these displacements to be given 
by the following expressions (neglecting the effect of shearing distortions, 
see Eq. (39)): 

A, + A,. + - 2r,Ar = +%nIctds + 

^rn^ds (9?) 

A, + A«„ + A,.„ - 2r„A, = X^IT + %nyctda + 

^rn^ds (98) 

A* + A«, + A,., - 2r,A, = + X^m~ + XntCtds + 
Smtct'ds 

h 
(99) 
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In the above equations the various terms have the following significance: 
A, = the displacement as previously defined caused 

by the load system 'LF applied as shown, in com¬ 
bination with the unknown forces X, Yf and Z 
resulting therefrom. This displacement is mea¬ 
sured along the line of action of the redundant X. 

Av and A* = similar displacements due to the same loading, 
but measured along the line of action of the 
redundants Y and Z (A* is therefore an angular 
displacement). 

Afx, Atv and Atz = displacements measured as above caused by 
a uniform change in temperature of t°. 

Ai>x% Ary and Ar* = similar displacements caused by a variable 
change in temperature of tf° between the upper 
and lower fibers of the rib. 

The terms rX) r¥i rg, 2rxAr, 
2rvAr, etc. » as defined in Art. 2, p. 400. 

M0 =~ the moment on the residual cantilever at any point 
due solely to the load system 2F. 

iv r = the moment at any point on the residual cantilever 
due solely to a unit load applied at 0 and acting along 
the line of action of the redundant X. 

mv = the moment at any point on the residual cantilever 
due solely to a unit load as above but acting along 
the line of action of the redundant F. 

m* = the moment at any point on the residual cantilever 
due solely to a unit moment couple applied at point 0 
and acting in the direction assumed for the redun¬ 
dant Z. 

No, nx, nv, nt, etc. are defined as above but refer to axial thrusts in 
place of moments. 

cfe, E, /, ctl, A, tf, and h as previously defined (Arts. 3 and 4, pp. 402 
and 406). 

Now it is observed that the unknown redundants X, F and Z applied 
at 0 completely replace and reproduce the action of the left arch abut- 
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cantilever due to this same loading plus the effect of the redundant forces 
X, 7, and Z caused by such loading (compare with Art. 7, p. 410). 

If therefore: 

M = the bending moment at any point in the arch rib due to any 
given loading. 

M0 — the bending moment at the same point in the residual 
cantilever due to this same loading. 

Then : 

M = Mo + Mx + My + M9 
= Mo + Xmx + Ymv + Zmz (100) 

In a similar manner 

N — No "f* Xnx Yny + ZnB (101) 

We may now write Eqs. (97) to (99) as follows: 

a i a i a vi a A 0?ixds y-\M0mxds 
Ax -f~ Atx ~l“ Afx LrxAr AE El ""b 

vrv'W** i ^(mz)2dsl v[^nxnvds I v[y?nxnvds ■K\mxmvds~] 
A AE + L El J + y LA AE El J + 

r y-\nxnzds . ^wxmzdsl . ^ 
Z[X AE +2 El~J +^ctds+X 

mxct'ds 

Ay + A ty A l'y 
_ y N0nvds yWH.TO, 

ry r ~ Z* AE + A” El 
M„mvds . _____ -p 

v[^\nxnyds , vvWj-niyd.s'l , v , v(mv)!rfsl , 
X I A~AE + A El J + 1 I A AE + L~ET~J + 

(ny)2ds \(mv)*dsl 

z + S”frs] + + Z-"c{ 
\mvmzds mxct'ds 

A, + A* + A,-i - 2rs Ar = + 2 

vr^r\nxnzds . , ,r r^\ngnyds . ^\mtmyds~\ . 
x l A^if + V EI J + 1 LA AE~ + A £/ J + 

\mx?Hgdis 

M0m,gds 
' Ef~ 
\Tbgti/*jds . \mtmvds~] 

z[Vniw + 2“irs] + Sw^+2 
*mtct'ds 
* T" 

These are the general elastic equations applicable to the analysis of any 
fixed rib arch and correspond in general to Eqs. (43), (44) and (45) written 
for fixed framed arches. 

rp, , * ra,ds nxnyds (nv)2ds 
The terms-yy1 AE~’ ~~~AEr etc*are reyatlve’y very smaU> represent¬ 

ing. the distortions due to unit axial stresses. Except for very flat arches, 
these terms may be disregarded without material error. This will be 
done hereinafter except in considering the effect of axial stress or “rib 
shortening*’ as discussed later on. 

Case I—Rigid Supports—Temperature Effects Neglected,—If the 
supports are rigid and inelastic, the above equations may be very much 
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simplified, inasmuch as the entire left-hand member of each equation 
becomes zero for such a condition. 

Ignoring temperature effects, and disregarding the terms (n^ds 

nznvds 
^AE~ etc- as ab°ve set forth, these equations may be written as follows: 

VT?(mz)ds , ^ry^\mxmvds , rz-^\mxmzds ^-\N0nzds 
x ^ ~ET + 7 *—eT~ + El = " X~AE- ~ 

\mzmvds 

mxmyds \(mv)2ds v\?nvmtds „ y-Ktriytn, 
+ z 2,- gi 

v ■y-\m*mzds v y m,m,rf8 r,yW!« 
A A"£7~ +YX~EI +ZX Jjj 

M°mxds 
2* El 

Y AV* yds 

AE'~ ~ 
71/Qmvds 

^ El 

XN0rizds 
AE SM0mzds 

EF 

Case il— Effect of a Uniform Change in Temperature (Rigid Sup¬ 
ports).—The elastic equations for this condition may be readily written 
from Eqs. (102) to (104) inclusive by placing the left-hand member of 
each equation equal to zero, as in Case I, and also placing the terms 
M0, No and tf each equal to zero, whence we write (ignoring the terms 

e^c* as set above): 

XStt* + yXsfr + zX’“ffJ- - **** tm 

xX™^+vX-wJ+z2~gr ~ (109) 
v^mzm,ds v y+mymzds , „ ■y?.(mz)tds „ ... /1im . y-Kmvmtas „ v W 

+ Y X~w + z X~Ei 'Enzctds 
*4 El *4 El *4 El K J 

Case II1—Effect of a Variable Change in Temperature.—In a manner 
exactly analogous to the above these equations become: 

v^(mx)2ds . v ^\mxmyds . „ ^\mxmxds 2mxctfds 
x X~et + F *~w~+z X~et = —h— (111) 
v ^\mxmvds v ^(my)2ds „ ^\mzmyds 'Lmyd'ds mo\ 
x 2^—eT + r Z—eT~ + z ^~EI~ = h (112) 
v^\mxmzds . v ^\mvmzds „ ^\(mz)2ds ’Zmzctfds /11oN 
x *"m~ + y 2/ eT + z *~eT =-h— (113) 
mi, . ., , , ., mxct'ds, mycVds, , 
The individual terms nxctds, nyctds, —^—7 etc. carry posi¬ 

tive signs when the distortions due to the unit thrusts and moments nXf 
nv, mx, mv, etc., are in the same direction as those produced by the 
temperature change, and vide versa. 

X + 7 ^ 
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DEVELOPMENT OF ELASTIC INFLUENCE LINES FOR RIB ARCHES 

16. Development of Formulas.—Consider the fixed arch rib shown in 
Fig. 29, which, in order to make the problem entirely general, has been 
taken as unsymmetrical. Through the terminal point 0 of the assumed 
rigid bracket, construct two coordinate axes as follows: 

Y-Y vertical 
X-X acting along the line of action assumed for the redundant X 

and thus making some angle <t> (as yet unknown) with the horizontal. 
Let us measure the abscissas (x) horizontally, calling the signs positive 

to the right of the Y-Y axis, and 
let us measure the Y ordinates 
vertically, calling the signs 
positive above the X-X axis. 

Assume the three redundant 
forces to act as shown in Fig. 
29. (These redundants may be 
arbitrarily assumed to act in 

either direction. If the true direction is opposite to that assumed, the 
signs will simply come out negative.) 

Moments causing compressive stresses in the upper fiber of the residual 
cantilever will be assumed as positive, and conversely. 

From inspection of the figure 

mx — —y cos <t> (114) 
mu — x (115) 
mz = 1.0 (116) 

Divide the arch ring into small equal segments, as shown in Fig. 30, 

and compute for each segment the term - = y, where ds is the 

length of the segment and I is the moment of inertia of the rib at the 
ds 

center of said segment. The termy is sometimes called the “ elastic 

weight ” of each voussoir or arch block and will hereinafter be designated 
by the term G. 

We may now write Eqs. (105) to (107) inclusive (after multiplying 
them by the term E) as follows: 

X cos *!2Gy* - Y cos fiZGxy - Z cos <p XGy = - ^/N°}^ds + 

cos </> 2 MjGy (117) 

-X cos 4>lGxy + YhGxi + Z2Gx = - _ zMjGx (118) 

—X cos $ 2Gy + YhGx + ZZG =* — “ 2MjG (119) 
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Now if the terms G = y are considered as weights applied at the 

center of each voussoir or arch block, and the terminal point 0 made 
coincident with the center of gravity of such “ elastic ” system, we observe 
at once that 

XGx = 0 
2Gy = 0 

Proceeding a step further it is also observed that the angle <f> may be so 
taken as to make the tei^n 2Gxy cos <t> vanish also. This last procedure 
is as follows: 

Through the origin 0 construct a temporary horizontal axis H-H and 
let y,f represent the vertical ordinate to the center of each ds segment 
scaled from such axis. 

Then 
’ y ~ yn — x tan <£ 

'SGxy = 2Gx?j" - XGx2 tan <t> 
(120) 
(121) 

Placing this last expression equal to zero and solving for the angle <f> 
we have 

0 = tan^1 
ZGxy" 
2 Gx2 

(122) 

from which equation the value of 0 may be readily determined. 
Two axes X-X and F-F, so located that 2Gxy vanishes, are termed 

“conjugate” axes and the operation above described is termed “conjugat¬ 
ing the redundants.” 

Applying the redundants X and F along the conjugate axes above 
determined and locating.the terminal point 0 at the center of gravity of 
the “elastic load system,” which point will be hereinafter termed the 
“elastic center,” we may write Eqs. (117),(118) and (119) as follows: 

X = 

y = 

z « 

- cos <t> s M,Gy 

cos <j>2 "ZGy2 

■^Nc^ds + 2MoGx 

~ ZGx* _ 

+ sMoG 

1G 

(123) 

(124) 

(125) 

The first term in the numerator of each of the above expressions 
represents the effect of the axial thrust and may be disposed of in the same 
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manner as is done with uniform temperature effects. Neglecting this term 
for the present, therefore, the above expressions may be written 

X = 
'EM fly 

(126) 
cos <j>EGy2 

Y = 
EM.Gx 

EGx2 
(127) 

Z = 
EMG„ 

EG 
(128) 

By means of the above equations the values of the redundant forces 
Ar, lr, and Z may be evaluated 
for any given condition of loading. 
It will be observed, however, that 
this method necessitates the 
solution of each equation for 
every possible position of the 
dead and live loads and is there¬ 
fore somewhat lengthy. A much 
easier and simpler method is to 
assume a unit load at any given 
point, compute the value of the 
term M0 for such load and solve 
for the redundants X, Y, and Z 
induced by such unit load. Then 

by moving this unit load across the span, values of the redundants may 
be obtained for each position of the unit load and an influence line 
constructed for each of the redundant forces. 

Placing a unit load at any point g (see Fig. 30) we may at once write 

M0 = — 0(for any point between a and g) 
M0 = — k (for any point between g and t) 

zm0g = y o(o) + X £(-*0= (129) 

Whence Eqs. (126) to (128) inclusive above, become 

- 

~ cos <t>EGy2 
(130) 

%‘lcGx 
Y =_S._ 
' EGx2 

(131) 

V w 

EG 
(132) 

(The minus sign is used before the term k because it represents a moment 
which causes tension in the upper fibers of the residual cantilever.) 
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Placing a unit load at any other point m and proceeding in an exactly 
similar manner we find 

- x‘ k°y 
cos (j)t,Gy2 (133) 

X kGx 
m 

“SGV 
(134) 

X> 
~2G ~~ 

(135) 

By means of the above equations it is possible to plot an influence line 
for the redundant reaction components X, Y, and Z for any arch ring 
having rigid supports. With these influence lines plotted, the value of 
the redundants can be easily determined for any given set of load condi¬ 
tions and from these the stress in the rib at any point may be easily 
computed. 

17. Graphical Solution for Redundant Influence Diagrams.—The 
foregoing method of calculating the influence line ordinates for the redun¬ 
dants X, Y, and Z involves the summation of the terms given in the 
numerator once for every position of the moving unit load and is therefore 
somewhat laborious. An easier and more rapid method maybe developed 
graphically as follows: 

Consider the given arch rib as a cantilever fixed at the left support and 
free at the right support (note that this is the reverse of the condition 
under which the redundants X, Y, and Z were first developed). Load 

ds 
each ds segment at its center with the corresponding elastic load G = -j' 

With pole distance XG construct a ray diagram for these loads and an 
equilibrium polygon (polygon A, Fig. 31). The intercept on this polygon 
by a vertical through any point (as point g) is obviously measured by the 
term 

%‘kG 

-hr- = 3, (136) 

Polygon A is therefore the influence line for the redundant Z. 
Now load the rib with the load system Gy and construct an equilib¬ 

rium polygon (polygon 5, Fig. 31) with pole distance 2Gy2 cos <f>. The 
intercept on this polygon by a vertical through any point (as point g) is 
obviously measured by the term 

~XkGy 
= X. 

2 Gy2 cos <t> 

Polygon B is therefore the influence diagram for the redundant X. 

(137) 
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In a similar manner polygon C (Fig. 31), using the load line Gx 
and a pole distance H = XGz2, becomes the influence line for the redun¬ 
dant F. 

Ray Diagram 
C 

Fig. 31.—Reversed cantilever. 

Having these influence lines plotted the determination of stresses at 
any point in the rib becomes a problem involving ordinary statics. This 
phase of the work is discussed in the next chapter. 

18. Stresses Due to Uniform Temperature Changes.—With the ter¬ 
minal point of the rigid bracket located at the “ elastic center” and with 
the redundants X and F properly “conjugated” the following simplifi- 
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cations for Eqs. (108), (109), and (110) (see Case II, p. 445) may be 
written: 

Also from Fig. 32 : 

2: 

2 
X 
2 

2 

((mx)2ds COS (j> 2 

' EI ~ E 
- 2 

imxmyds — cos f 
' EI E 
,mxmtds _ —cos ± 

EI E 

(XGxy) = 0 

(SGy) = 0 

(my'Pds _ 1 2 

EI ~ E 1 

- i(SCx) - 0 

(m2yds _ 1 
EI ~ E 26 

nx — cos $ 

= sin (6 -f- <£) 
ft* = 0 

(138) 

(139) 

(140) 

(141) 

(142) 

(143) 

(144) 
(145) 
(146) 

The axial fiber distortion caused by the loading X = unity acting as 
assumed is a compression or shortening of the rib. Therefore, the indi¬ 
vidual products cos dctds will be positive for a temperature drop and 
negative for a temperature rise. The sign before the individual products 
sin (0 + <f>)ctds will obviously be positive for a temperature drop when 
(0 + <f>) is positive and negative when (0 + <f) is negative. 
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Applying these formulas 
y _ — EZ ± cos Qctds 
Xt ~ cos <t>22Gy2 

Similarly 
y _ — E2± sin (6 + <t>)ctds 
Yt “ .~~XGx¥ 
Zt = 0 

From Fig. 33 
2 cos dds = L' 

2sin(0 + <t>)ds = L" 
Whence 

X, = 
Yt = 

± r Ecilj i 
Lcos <t>2EGy2J 

(147) 

(148) 

(149) 

(150) 

(151) 

(152) 

(153) 

Obviously the plus signs are to be used for a temperature rise and 
the minus signs for a temperature drop. 

19. Stresses Due to a Variable Temperature Change.—Using the 
simplification identities listed in Art. 18, above Eqs. (Ill), (112), and 
(113) of Case III, p. 445, may be written 

rct'EZyds/hl 
~ ± Lcos 4> 2Gy2\ 

[ct’E2xds/h-\ 
S(?x8 

Xf 

Yt = ± ’J 

Zt 

l: 
f ct'E'Zds/K 
L 2X? J 

(154) 

(155) 

(156) 

Theste equations express the values of the redundants due to a differ¬ 
ence in temperature between the upper and lower fibers of the arch rib. 
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When the upper fibers are at a higher temperature, the distortion of the 
residual cantilever will obviously be in the same direction as that induced 
by a vertical loading. Hence the redundant forces will act in the same 
direction as for vertical loading. When the upper fibers are at a lower 
temperature than that of the lower fibers, the reverse is true. 

20. Stresses Due to Rib Shortening or Axial Thrust.—In Art. 15, p. 

445, the terms ^e^c* were dropped from the elastic equations 

(see Eqs. (105) to (107) inclusive). While this is perfectly permissible when 
considering the effect of gravity loadings and of temperature, it involves 
large errors when considering the effect of axial distortions. We must 
therefore develop the expressions for the redundants due to axial thrust 
directly from Eqs. (102) to (104) inclusive. 

With the terminal point of the rigid bracket system located at the 
elastic center and with the redundant axes properly “conjugated” 

Smxmvds _____ 

27ax7Tizds ^ 

El * 2mymzds 
~~eT~ 

For rigid supports, and neglecting all temperature terms and terms 
involving the moments Mo (since the effect of the thrusts N alone is now 
desired), we may write Eq. (102) as follows: 

\N0nxds _ 

■j Tt xnKds~] 

[*2 (mxyds (nx)2ds 
El + Z A E 
\{mx)2ds 

\nxnyds 

= +£(Xn* + Yny + Zn,)(^)] (157) 

— 2(iV. + Xnx + Ynv + Zn.) ^ 

But from Eq. (101) 

Whence 

In a similar manner 

2(rnxyds 
~~EI 

No + Xnx + Ynv + Znt = N 

tjj^N nxds 
= -eX~aT 

cos <j>2XOy2 

^Nnyds 
eL~at 

2 Gx2 

E*r AE An 
»-— — 0 (since n, = 0 
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It will be noted that these equations are in exactly the same form as 
those representing the effect of a uniform change in temperature if we 

• N 
substitute -r for Ed. In other words, the stresses due to the effect of 

A 
the axial thrust are equal to those produced by a temperature drop of t" 
degrees where 

t" = 
N 

AEc 
(163) 

In this manner the axial effects may be regarded in the light of an 
“equivalent temperature drop” and solved from the temperature stresses 
by direct proportion. These stresses are generally designated by the 
term “rib shortening” stresses. 

21. Symmetrical Arch Ribs.—If the arch rib is symmetrical about the 
center line of the span, it is obvious that the “elastic center” will fall on 
a vertical through this center line. It is only necesssary therefore to 

locate the vertical position of the elastic center on this center line, which 
may be done by applying the elastic weights horizontally as discussed in 
the next chapter. 

Consider the symmetrical arch span shown in Fig. 34, with the elastic 
center 0 determined as above. Through this elastic center construct the 
vertical redundant axis Y-Y and a temporary horizontal axis X"-X". 

The true conjugate axis X-X (from Eq. (122)) makes some angle # 
with the axis X"-X" such that 

tan # 
ZGxy” 
2Gx* 

(164) 

Rut, since the arch is symmetrical, 2Gzy" must equal zero, whence tan# 
* 0, # * 0, and the axes X"-X" and X-X coincide. For symmetrical 
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arch ribs, therefore, the conjugate axes are at right angles, which simpli¬ 
fies the equations for determination of the redundants. 

We may therefore rewrite the redundant equations in the foregoing 
articles to apply to symmetrical arches as follows: 

Case I—Unit Load at Any Point g (see Eqs. (130) to (132) inclusive). 

_ 2 IkGy 
ZGy* ■' 

Y - *'kGx 
0 zGx* 

(165) 

(166) 

7 %kG 
0 ~siG 

(167) 

Case II—Uniform Change in Temperature.— 
metrical rib Lr = L and L99 ~ 0.) 

(Note that for a sym- 

(168) 

Yt and Zt = 0 (169) 

Case III—Effect of Variable Temperature Change. 

Xt. = 

Yr = 

rct'E 2yds/hi 

± L 2Gy*~~ J 
T ct'E2xds/hl 

± L 2Gx* J 
rd'E2ds/hl 

±L 2G J 

(170) 

(171) 

(172) 

COMPLETE ANALYSIS OF A 360-FT. FIXED STEEL ARCH RIB 

The calculations given below are taken from the preliminary anal¬ 
ysis of the 350-ft. encased steel'arch rib designed to span the Willamette 
River at Oregon City, Ore. 

Figure 35 indicates the general dimensions and make-up of the 
structural ribs as first assumed, the span being a “half through” type 
consisting of two box girder arch ribs of 350-ft. center line span and 
100-ft. rise. The structure is encased in concrete and supports a rein¬ 
forced concrete deck carrying a 20-ft. roadway and two 5-ft. sidewalks. 
The arch rib is fixed at the skewbacks and sprung from solid basalt 

cliffs. 
The analysis considers only the structural steel rib, the concrete 

encasement being considered merely as a protective covering. The 
procedure is as follows: 

OPERATION I 

The arch rib was first sketched in with roughly assumed dimensions, 
the dead loads at each panel point were calculated and an equilibrium 
polygon for such loading passed through the center line at crown and at 
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both skewbacks. The axial curve for the arch was then corrected to 
closely approximate this “trial polygon” and again sketched in. “Rough 
in” or preliminary stress calculations were then made and the assump¬ 
tions as to the “make-up” of the rib at various points corrected accord- 

Fig. 35. 

ingly. Figure 35 illustrates the dimensions and make-up of the rib at this 
stage of the work. 

OPERATION II 

The half rib was next divided into 16 equal linear increments ds(d8 in 
this case * 156.4 in.) and the moment of inertia of the rib section at 
the center of each of these increments or “voussoirs” then computed. 
The calculations for this operation are given in Table 7. 



Sec. 9-21] ANALYSIS OF FIXED ARCHES 

OPERATION III 

457 

The elastic weights G = j = j (since mz = unity) were next 

computed and the center of gravity of such elastic load system deter¬ 
mined, thus locating the “elastic center” of the system. (Since the span 
is symmetrical this elastic center must lie on a vertical through the 
center line of the span.) The calculations for this operation are given 
in Table 8. 

OPERATION IV 

Next, for each section, or “voussoir,” the terms y, y2, Gy, Gy2, z, z2 
Gx and Gz2, also the summations XG, XGx2, and XGy2 were computed 
(see Table 9). With these terms the equilibrium polygons for the load 
lines XG, XGz and XGy, were next constructed, thus determining the 
influence diagrams for the redundants X, Y, and Z, acting at the elastic 
center of the system (see Fig. 36A). The values of these redundants for 
a unit moving load were scaled from these influence diagrams and are 
tabulated for use in Table 10. It will be noted that for ease in plotting 
the pole distances have been taken as follows: 

For redundant Z, pole distance = 2 XG 
For redundant X, pole distance = XGy2 -s- 500 
For redundant Y, pole distance = XGx2 4- 1,000 

The influence line ordinates therefore measure to the scale of the draw¬ 
ing the values ^Z, 500X and 1,000F. 

OPERATION V 

With the X, Y and Z influence lines plotted, it now becomes necessary 
to plot influence lines for the moment M, and axial thrust T at any point. 
The calculations for this work are given in Tables 11 to 19 inclusive and 
the influence diagrams in Fig. 362?. Moment and thrust influence lines 
being calculated for nine different points on the rib as shown. 

OPERATION VI 

The thrust Xt due to a temperature variation of 30 deg. each way 
from normal is next computed. (The structure, being located in the 
Willamette Valley, is not subjected to any large variation in external 
temperature, the winter seasons being very mild). Thirty degrees varia¬ 
tion was, therefore, considered sufficient. 

EctL _ (30,000,000) (0.000006) (30) (4,200) 

±XGy2 ± 2,191 
Mt - ± Xty 
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Influence Lines for Moment and Thrust 
Fig. 36il< 
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thrusts calculated therefrom. With these moments and thrusts the 
stresses in the material are calculated by the ordinary formulas. The 
detail work for this last operation is given in Tables 20 to 28 inclusive. 
This completes the principal features of the preliminary analysis. It will 
be noted that the stresses at every point except the skewback are within 
the usual allowable limits indicating that the skewback section should 
be increased for the final analysis. 

Sidewalk live /ood-00 /b perstf ft 
~ ton 1 rucks ond 
Foodway hvt iood-{loolbptr&9 H rooawOJ 

Fig. 37. 

OPERATION IX 

The only other stresses remaining to be determined are the “rib 
shortening” stresses and those resulting from a variable change in internal 
temperature. The former stresses are obtained from the temperature 
stresses simply by direct proportion as was discussed in the preceding 
chapter. The effect of* a variable temperature change may be determined 
from the application of the formulas discussed in Art. 21, p. 454 (see 
Eqs. (170) to (172) inclusive). Neither of these conditions was considered 
in the preliminary design hereinabove described. The method of obtain¬ 
ing them for the final analysis having been explained in a former chapter, 
is not given here. 

In addition to the above stresses, there will, of course Jbe certain wind 
stresses in the rib, but these, being calculated by the ordinary static 
formulas, need not be discussed in this connection. 
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Tabus 7.—Calculations fob Moment of Inertia of Rib Section 

Section Depth "d" 
b.'b.fl.ls 

Make up M omcnl of inertia 
(Ziq,, inches) 
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(77.3) (33.8) 4200 = 723500 
L /69400 

14 8r 
Web 2 P/s Zz "* B/'c/ 8/3 4 !Z = 44200 

(77.$),(39.3)4+200 Xeft/s 

IS 80 " 
Web BP/s Zz "x 80" 

\*w\%%, 
! (77.9)(38.8)2+200^jA4oo 

16 79 " 
Web 2 P/s Z2'*79" „ 
F/oncre 1B P* 6 x G 'a /ff NonPe\4Cov p/s hw 

7g3-r7? * * 4//00 

(77.3X38.3/4200 ' j 
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Table 8.—Calculations for Position of “Elastic Center” of Arch System 

Section 
VoussoirNc 

,i 
(Biq/inches) 

m 
(inches) 

mG 

/ 490800 0.0003/9 1/36 0.363 

2 447300 1000349 1016 .354 

3 405500 .000396 900 .247 

4 356000 . OOO 428 783 .338 

s 329400 .000479 684 ,325 

G 30f S0 O ,000SIS 584 ,303 

7 275400 . 000568 490 .278 

8 30/500 . 0005/9 402 .20S 

9 272700 , OOOS74 22J_ J84 

to 254300 .0006'5 247 . J52 

// 23550 0 .000665 no . NS 
)2 2/7300 . 000720 12/ .087 

'3 JG9400 . 000924 73 ,067 

/4 /64600 . 000950 38 . 036 

IS /60/00 .000977 /4 , o/4 

16 /SS400 . 00/005 2 .002 

s .009993 3.178 
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Table 9.—Calculations fob Factors Evaluating Redundantb 



464 MOVABLE AND LONG-SPAN STEEL BRIDGES [Sec. &-21 

Table 10.—Values of Influence Line Ordinates (Scaled from Fig. 36) 

Umf load 
at 

Section No. 

i n 

(I* lb.) 
/ o.o oo /. 000 20S3 
2 . 010 0,998 1950 

3 .034 .99/ I8S2 

4 .0 72 . 983 }745 

S .120 . 970 /G40 

6 .J80 , 950 IS3/ 
7 ,252 . 929 /4/S 

8 , 332 , 903 13/2 

9 .4/3 , 870 /203 

!0 ,SO2 . 832 1094 

/! , 589 , 792 9SS 

12 .67/ , 747 878 
13 • 746 . 697 7 75 

U , 806 . 645 6 79 

IS . 8SO .588 586 

IG . 874 .528 Soo 

16 . 874 . 47/ 425 

IS . 850 , 4/3 356 

14 . 806 . 3S7 293 

13 . 746 . 303 240 

12 \ 67f . 252 192 

// . S3 9 . 207 154 

/0 . S02 . /66 120 

9 . 4/3 . 130 9/ 

8 . 332 . 098 67 

7 . 252 . 072 48 

G i , ISO .048 3/ 

5 . 120 . 030 19 

4 . 072 . 0/7 // 

3 . 034 . 008 5 

2 , 0/0 . 003 2 
/ . 000 , 000 0 
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Tabus 11.—Influence Line Ordinates for Moment Thrust (Skew Back) 

Scc+ioti Moment (in.lbj 1 Thrust C lb.) 1 
tfoussooirfo JCiL_ Yx z M Xcos© Ysin© T 

/ 0.0 2JOO 2053 - 47 0.000 0.807 0.807 
2 8.8 \ 2095 J950 ~ J3<6 .006 ,805 .8// 
3 30.0 2030 J852 - J98 >.020 .800 . 820 
4 G3.S 2065 J74S -256 .043 .793 , 836 
5 106.0 1/036 J640 -290 .07/ .782 .833 
6 IS9.0 J995 153/ -305 JOG .766 .872 
7 222.0 J950 >4/8 \ — 3/0 J49 .749 .838 
8 293.0 /89G 13/2 -29/ J96 .728 .324 
9 364.0 J827 J203 -200 .244 . 70! ,945 
JO 441.0 J147 J094 -2/0 .296 .67/ .967 
// S/9.0 J664 985 -/GO .348 ,639 .987 
!2 S92.0 1568 878 - 98 ,396 .602 .998 
13 ose.o 1462 j 775 - 30 .440 .562 1,002 
14 7H.0 J3S1 6/P ±36 .476 .520 .996 
IS IS0.0 1235 586' +- /0/ .502 .474 .976 
JG 770.0 /no SOO + J60 .5/5 .426 .94/ 
Tg " 770,0 990 423 ±205 .5/5 ,3$Q .895 
IS J ' 750.0 866 336 + ?4C .502 .333 ,835 
J4 7 ko 750 ’ 192 ±854 .476 ,288 .763 
13 658.0 636 240 4 262 .440 .244 .684 
12 592,0 529 J9? ■+233 .336 .203 .599 

_//_ S/9.0 435 \ 154 ±238 ,348 s/67 .5/5 
JO HM. 343 J20 + 2/4 .296 .134 .430 
9 364.0 273 9/ ± / 82 ,244 JO 5 .349 
8 293.0 206 67 + /54 .196 .079 .275 
7 222.6 JSJ 48 + f/9 s/49 ,058 .207 
6 ! ’759.0 }OJ 3/ + 89 s/06 .039 J45 

5 JO6.0 63 J9 4 62 .07/ .024 .095 
4 63.5 35.7 // 4 39 .043 .0/4 067 

3 30.0 J7 5 4 /8 .020 ,007 .027 
2 8,8 6.3 2 7- 4 .006 .002 .008 

/ 0.0 0,0 0 0 ,000 .OOO .000 

y = 882" 
X — 2100" 

COS© = 0.590 

sin © = 0.807 

M = Xy+Z-Yx 
T= Xcos0+Ysin8 
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Table 12.—Influence Line Ordinates for Moment and Thrust (Panel Point 

No. 1) 
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Table 13.—Influence Line Ordinates for Moment and Thrust (Panel Point 

No. 2) 
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Table 14.—Influence Line Ordinates for Moment and Thrust (Panel Point 

No. 3) 
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Table 15.—Influence Line Ordinates for Moment and Thrust (Panel Point 
No. 4) 
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Taht.it. 16.—Influence Line Ordinates fob Moment and Thrust (Panel Point 

No. 6) 
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Table 17.—Influence Line Ordinates for Moment and Thrust (Panel Point 

No. 6) 
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Table 18.—Influence Line Obdinates foe Moment and Thbust (Panel Point 

No. 7) 
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Table 19.—Influence Line Ordinates for Moment and Thrust (Panel Point 
No. 8) 

mu 
Mome rKin.-lb.) _ 1 Thrus4(lM 1 

131 mm\ ran z M XcosS YsinGIPsinG T 
EESX o' n 20S3 0.0 0.000 OSS 8 0. OS 8 0.000 

2 wm MSH /9S0 -7.0 • 0/0 • OSS .058 .0/0. 
3 MEEK ■9 1852 - 7.7 . 034 •OSS •058 •034 
4 WM1 w/Mtl /74S — IS.7 • 072 .OSJ • oss •0 7/ 

5 TTE1 mm* /640 ~/8.2 •/zo .056 • 058 .1/8 

■91 BBE&Ii EH mm /S3f -22.7 380 .OSS .058 'W 

mm WBzS EH Em 1418 -30.8 .25/ .054 .058 .247 

■5 J/28 wzm WMHi /3/2 -28,7 • 33/ • OS2 •058 <325 
9 99S /04.4 /203 -26,4 .4/2 .OSO .0S8 •404 
to 8S7 kssei /094 -2/.0 .SO/ .048 •oss •491 

// I/S' 35.0 985 -/OS .587 •046 •OSS .575 

J2 S70 2//.0 89 6 878 + 7.4 .663 • 043 •058 .634 

/j 42/ 23S.0 83 S 77S 4 3SS .744 .040 ■ OSS • 726 

/4 269 234,0 77.4 675 4- 78.6 .804 .037 .oss • 763 

7s 1 //4 268.0 70S see 4 /33S •848 .034 ■ ose .824 

_(6 27S.0 63.4 soo +/G/.6 . 872 .03/ .903 

f6 Z7S.0 s&s 42S 4 J3S .872 ■027 •699 

/s 268. 0 49.6 3S6 +38.4 .848 • 024 ■ 8iz 

/4 ZS4.0 293 -3.8 .804 • 02/ • 825 

13 23S.0 EUa 240 - 3U • 744 • 0/6 • 762 

td 2//.0 30.2 /92 -49.2 .669 .0/5 '684 

// ms 92MM fS4 -5S.3 .587 .0/2 •599 

MEM /S8.0 W2TM 120 -57.9 SO/ .0/0 .51/ 

/30.0 ESI 9/ -54.6 •008 '420 

r~r 104.6 wiAim 67 -49.4 .33/ ~006^ .337 

ma ■ 7b S 8.6 48 -40J •23/ S>p4_ • 25S 

mm S6.7 S.8 3/ -3/.S S80 •003 J83 

B BISS 37.8 3.6 /$ -22.4 •/20 .002 '122 

mm ■ WEEM, EEH // - /J. 7 •072 •oo/ • 073 

■ wm WEBk 5 -6.7 •034 .000 .034 s EH wza 2 -/.£ .0/0 . OOO .0/0 

ma ■ Eg wm 0 o.o . soo .000 •OOO 
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SECTION 10 

ANALYSIS OF TWO-HINGED ARCHES 

The method of analysis described in Section 9 applies to two-hinged 
arches. Consider the two-hinged rib arch span shown in Fig. 1 on folding 
page. To simplify the analysis, the rib has been considered as having a 
constant moment of inertia from end to end. It is apparent that a like 
method of analyst would suffice were the rib section of varying dimension. 

From Fig. 1, it is seen that there will be one redundant reaction 
component which for convenience, we will assume as being the horizontal 
component at the left skewback. 

Equation (102) of p. 444 may be written for this redundant as follows: 

Ax + A tx + A t'x 
v . N 0Tlxds , yfr\M oWlxd*S* 

ir-4- - S-zs- + S-gr 
vfS(nx)2ds , X(mx)2ds-] , v 

Xl AE + El J+" 

+ 

rixdds + 
h 

(d'ds) 

It will be noted that the residual span is not a cantilever as in the case 
of the fixed arch span, but a simple beam. 

If we assume the hinges to be supported on rigid and unyielding shoes, 
which is nearly always the case in construction of this kind, the entire 
left-hand member of the above equation vanishes and we can greatly 
simplify the analysis. 

From Fig. 2, it is at once observed that 

n, = cos a 
mx * y 

ds cos a ~ dx 
483 
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The expression 
then be written 

in the brackets in the above 

dx cos a 
~nr~ 

general equation may 

Designating the above term for the present by the letter D, we may 
write an expression for the redundant X (separating the effects of gravity 
loadings, temperature, etc.) as follows: 

For gravity loading XN0dx yvM0yds 
~AE~^Zi El 

X - D 

<--> -JC,-> 

ff-— 
_a" Si_._T t 

<- - dx, - ~4 -afxM - 

<-Q- 

4c- cfx9 - 4 —*■ 

Mg [Moment at point p due to unit foods shownj 

*[x,+xMrxs+x+] 

Z mg [the summation erf moments at the above toad 

points due to a unit load at pointy] 

'B('x****Hit)'*-t -(■*•-*>) */r)x’ 
»£• (•*■>+** * 

«*. Mg * Emj 

Fig. 3. 

Nodx 
Except for very flat arches, we may neglect the term 2 without 

material error. This will be done in this case. Also we may write for a 

unit load at any point g 
M0 = m0 

Whence, for a unit load at any point g 

2m0y 

X0 = 

d$ 
El 

D 
Before going further, it is necessary to demonstrate a simple rela¬ 

tionship governing loads on any simple beam as follows: 
Consider the simple beam shown in Fig. 3 and let the same be divided 

into any given number of linear increments dx. 
Let Mg represent the moment at any point g due to a series of unit 

loads one at the center of each dx division. 
Let represent the summation of the moments at the center of 

each dx division caused by a unit load applied at point g. 

From Fig. 3, it is easily seen that 

2mg * M0 . „ 
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It should now be clear that represents the moment at the 

given point g caused by the application of a system of loads Gy = 
HI 

at the center of each ds division of the arch rib. 
vds 

It is therefore apparent that if the loads Gy = ^ be laid off on a 

vertical load line with pole distance!) = the equilib¬ 

rium polygon plotted therefrom will be the influence line for the redun¬ 
dant X. 

Pursuant to the above, the arch rib is now divided into equal linear 
elements (in this case ds = 120 in. except for the spring line elements 

ds 
which are 156 in. in length). The elastic loads G = ^ are next computed 

and also the terms Cj — These loads are now laid off on a vertical 

load line, as shown in Fig. 1. 
The pole distance D is next calculated, the work being tabulated 

below as follows: 

Calculation of Elastic Loads and Pole Distance D 
(E Assumed = 29) 

Division 
number y r„ - yds 

C"J ~ El Gj/2 dx COS a1 

1 54 0.0041 0.22 0.72 
2 144 0.0083 1.20 0.70 
3 221 0.0127 2.81 0.76 
4 286 0.0164 4.68 0.84 
5 348 0.0200 6.96 0.92 
6 398 0.0229 9.12 0.98 
7 443 0.0254 11.20 1.04 
8 476 0.0274 13.00 1.10 
9 503 0.0288 14.50 1.14 

10 522 0.0300 15.70 1.16 
11 530 0.0305 16.20 1.18 

Total . 95.59 10.44 
S. (For en tire span) 191.18 20.88 

1 This term may also be determined graphically as shown in Fig. 16, on folding page. 

The area A for the arch rib in question (see Fig. 1) is 63 sq. in. The 
pole distance D is therefore 

191-18+mm -192 76 
With this pole distance (divided by 500 for convenience in plotting), 

the equilibrium polygon is constructed for the loads Gy. The ordinate 
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to this polygon intercepted by the vertical through any point g measures 
to the scale of the rib diagram the term 

y-\mcyds 

El 

D + 500 
= 500X„ 

The area included between this equilibrium polygon and its closing 
line is, therefore, the influence line for the redundant X with a factor 
of 500. 

The influence line for the redundant X thus determined, it now 
remains to construct influence lines for the moments, thrusts, shears 
and fiber stresses at the various points along the rib. 

As discussed in the section on three-hinged arch design, the fiber 
stress at the extreme intradosal, or extreme cxtradosal fiber is not a linear 
function of the moment at the neutral axis, on account of the effect of 
the direct axial thrust. This fiber stress is, however, a direct linear 
function of the moment about the “kernal” point corresponding to the 
fiber stress in question. 

Proceeding therefore, ^s in the case of the three-hinged rib arch, we 
may lay off the point kx whose distance below the neutral axis is equal 

r2 
to the quantity —, and also the kernal point &2 whose distance above the 

f2 
neutral axis is equal to the quantity . In the above, the term r repre- 

e% 

sents the radius of gyration of the rib section, ee the distance 

from the neutral axis to the extreme extradosal fiber, and e* that to the 
extreme intradosal fiber. 

As in the chapter on three-hinged arches, we may at once prove that 

and 

It is only necessary, therefore, to plot influence lines for moments 
about the two “kernal” points on any given section, as these are obviously 
identical in form with the influence lines for fiber stress at the section in 
question. 

Consider first the section 6-6 (Fig. Id) and let kx and k2 be the two 
“kernal” points. 

Considering first the intradosal kernal point whose ordinate 
measured from the horizontal through X is equal to 

The total moment ilf*2 at this point is given by the expression 

M*2 - Mo - XVi - 3- x) 
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In an exactly similar manner, the moment about the kernal point kt 

is given by the expression 

(Mo 
yi 

M, =MU- XVl = yt (~-° - X) 

Therefore, if the moment lines and are simply superimposed 
M o , M o 
— and — 
y* 2/i 

upon the X influence line, the area representing the difference between 
these two areas (the shaded area Fig. 1) is the influence line for the 
desired moment at the kernal point. 

For example, in Fig. le, the X line is replotted from Fig. 1 c and (to 

the same scale) the influence line is superimposed thereon. 

7 0 is proport ional to the moment on a simple beam of span L and is 

(L_x 'j (x ) 
fully determined bv plotting the distance b'b"f equal to —(L)'(y'y * anc* 

drawing the lines a'h'" and b"'df. 

The shaded area, therefore, measures to the scale of the arch drawing 
the term 

Mo 

2/2 2/2 
— X = —— = fi (—■ } == fi [a constant] 

2/2 \ e»2/2/ 

In an exactly similar manner b"bfv is laid off equal to 

M0 

(L - xi) (Xi) 
(L) (y i) 

and the line — plotted. 
y i 

The area between this line and the X line measures the term 

(— — Ar) = ^ = fe () = fe [a constant] 
\ 2/i / 2/i V«2/i/ 

It is apparent that the X line, once it is plotted, may be used as a 
M 

base upon which to superimpose the —? lines for any section of the rib, 

and thus determine influence lines for fiber stresses at every point desired. 
In this case, the kernal points for every point on the rib will lie on 

r2 
two curves parallel to the neutral axis, since - is constant for every 

c 

section. Should the depth or the moment of inertia vary from point to 
point, the kernal points must be located for each section investigated. 

The above influence lines completely cover the effect of both bending 
moment and axial thrust; it only remains to investigate the effect of 
shearing forces on the rib. 

These stresses are generally of comparatively slight importance as 
the axial stresses are very nearly normal to the rib. 
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If desired, however, the shear influence line for any section (as for 
example section 6-6) may be plotted as follows: 

If we designate the total tangential force or shear on this section by 
the term J, and if Jo represents the corresponding shear at this same 
section considering only the residual simple span, we may at once write 

J = J0 + X sin a = r , -- + x] sin a 
Lsm a J 

where a. is the angle made b}^ the arch axis at section b-b with the 
horizontal. 

Noting that Jo is negative for loads to the left of section 6-6, the 
shear line may be plotted at once, as shown in Fig. 1/. 

It will be observed that for a load just to the right of section 6-6, Jo 

= (left reaction) cos a = cos a and ~ co^a* For 

a load just to the left of this section, the beam shear J0 is equal to 

— (jjr cos a), and the term sj"°“ = — cota^. The lines a" a!" and 

d'"d!v are therefore made, to scale, equal to the quantity cot a, as shown in 
the figure. 

This completes the analysis of stresses at section 6-6; any other section 
can obviously be investigated in like manner. 

Temperature Effects.—The horizontal thrust Xt due to temperature 
effects only, may be written at once from the general equation as follows: 

For uniform temperature changes 

v _ 2nxdd$ _ ct Xdx _ ctL 
xt - j) “ IT 

Also for any section, as section 6-6 

Mt = Xty 
Jt = Xt sin a 

In this manner, all the stresses due to a uniform temperature change 
may be readily evaluated for any given section. 

For a variable temperature change, wherein the upper and lower 
fibers of the rib section differ in temperature by V degrees, 

Xt' = 2 Ict’ds 
h 

Mt' - Xt'y 
Jt' = Xt' sin a 

These last stresses may therefore, be evaluated in much the same 
manner as for a uniform temperature change. 

The effect of the axial compression “rib shortening” may be taken 
care of as an equivalent temperature drop exactly as explained for the 
fixed arch. 
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designs and types, 1-29 

foundations for spans, 58-73 

operating machinery, 124-157 

selection of type, 29-38 

structural design complete, 73-123 

superstructure design and erection 
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San Francisco-Oakland Bay bridge, 

East Bay crossing, 288a 
span lengths, 284 

statically determinate type, 257 

stringer expansion bearings, 280 

Cantilever walks for vertical lift bridges, 
174 
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163 
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Cincinnati, C. N. O. Railway bridge, 202, 

217 - 
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Cologne, Rhine River bridge, 326 
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highway bridge, 100 

Concrete, amounts needed to balance 
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Continuous bridges, 199-2550 
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Allegheny River bridge, 211-214 
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C. N. O. bridge at Cincinnati, 202, 217 

comparison of elastic curves for differ¬ 

ent assumptions, 234 

with cantilever bridges, 256 

conditions favorable for, 201 

dead-load stresses, 237 

design and erection, 199 
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history of, 202 
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for shears, 222 
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Curved track and rolling counterweight 
type of bascule, 13 

D 

Dead-load stresses in counterweight arm, 
on bascule bridge, 86 

on bascule bridges, 46-47, 91 
Dead loads, calculation for bascule high¬ 

way bridge, 83 

on bascule foundations, 59 

Deck span vs through bascules, 33-37 
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bridges, 178 

Deflections, in beams and ribs, 406 

in structural frames, 396-400 
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157~157d 
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1-29 

adaptability to wide roadways, 3 
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Brown bascule, 27 
cable-lift type, 8-15 

Chicago type, 20-24, 30, 38, 58 

collisions with river craft, 5 
comparison with vertical lift, 5 

Cowing type, 27 

duration of opening, 2 

early types, 1 
economy, compared with swing type, 

5-8 

Page and Schnabel type, 27 
patented types, 28-29 

pier considerations, 2 
rapidity of operation, 1 

roller-lift type, 15 
safety to land traffic, 4 

semi-lift bascule spans, 25 

Strauss type, 24 

trunnion type, 19 

Waddell and Harrington type, 27 

Displacements, in beams and ribs, 406 

in structural frames, 396-400 
Double-leaf bascule vs. single, 30-33 

Drums for operating vertical-lift bridges, 

178 

E 

Economy of bascule bridges vs. swing 

type, 5-8 
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Elastic curve in continuous bridges, 218 

equations for arch frames or trusses, 

407-414 

Elongation of cable in suspension bridges, 

296 

England, Britannia bridge, 202 

Bryne bridge, 202 

Forksey bridge, 202 

Equalizers for vertical-lift bridges, 174 

Equations for arch frames or trusses, 

407-414 

Erection adjustments of cantilever 

bridges, 270 
features in design of bascules, 49 

problems in bascule bridges, 38-58 

Ericson, J., 21 

F 

Fenders on bascule piers, 71 

Fixed arches, analysis of, 393-482 

framed arches, analysis of, 429-440 

elastic influence lines for, 414-428 

Floor design of bascule bridges, 48 

Floors, light, effect of, 1576 

Floor slab of bascule highway bridge, 

99 

Floor system for a bascule highway 

bridge, 79 

Footbridges of suspension bridges, 349 

cables, stringing, 3586 

erection of, 3586 

Foote Bros. Gear & Machinery Com¬ 

pany, 148 

Foundations for bascule spans, 58-73 

action of loads, 59 

anchor columns, 65 

buffers, 65 

conditions peculiar to, 58 

counterweight pits, 64 

fenders, 71 

operator's houses, 69 

pier, description of, 63 

sheet pile vs. crib, 69 

tremie seal, 66 

watertight counterweight pits, 61 

France, Fades viaduct, 202 

Passy bridge, 287 

Pont de Trans, 288 

Friction on trunnions of bascule bridge, 

125 

G 

Gage on vertical-lift bridges, 175 
Gates for vertical-lift bridges, 174 

Gear design for bascule bridge, 129, 135 

for center lock drive, 150 

Gears for vertical-lift bridges, 178 

Grillage braces on a bascule highway 

bridge, 103 

Guides for vertical-lift bridges, 173 

H 

Hand brakes, on bascule bridge, 154 
operating mechanism for bascule 

bridge, 143 
Heel trunnion type of bascule, 25 

Highway bridge, structural design of, 

73-123 
Horizontal girder for bascule highway 

bridge, 81 

1 

Impact stresses on a bascule bridge, 92 

India, Jubilee bridge at Calcutta, 285, 

288 
Interstate toll bridge, Portsmouth, N.IL, 

1796 

K 

Kansas City, Mo., Fratt bridge, 167 

Kettle Rapids, Canada, Hudson Bay 
R.R. bridge, 202, 216 

Kingston, N.Y., bridge, 352, 354, 358 

L 

Lake Champlain bridge, 2556 

Lateral system, for a bascule bridge, 93 

of cantilever bridges, 279 

Lewis, W., formula for gear teeth, 130 

Licking Creek bridge, Maryland, 255e 

Live-load stress diagrams, for bascule 

bridge, 88 

loads, on bascule foundations, 59 

stresses on bascule bridges, 43-46 

Lindenthal, G*, 211 

Loads of bascule highway bridge, 75 

Locking apparatus for vertical-lift 

bridges, 174 

Ludlow Ferry bridge, 255d 
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Machine design for bascule bridges, 124- 
157 

Machinery equipment for vertical-lift 
bridges, 177 

house for vertical-lift bridges, 175 
layout for bascule bridge, 133 

Maxwell's theorem, 196 
Memphis bridge, 285 
Mexico, Arroya del Chico railroad bridge, 

285, 287 
Mississippi river, Thebes bridge, 279, 285 
Moments, computation for, in cantilever 

bridges, 262-269 
in swing bridges, 191 

Montreal, La cl. ’no bridge, 202 
Motor powr* for center lock, on bascule 

bridge, 145 
Murray. S., comment on economy of 

bascule and Sv. big bridges, 7 
originator of type of bascule, 10 

N 

Negative shear, in swing bridges, 187 
Nelson river continuous bridge, 214-217 
New Brunswick, Can., St. John and 

Quebec railway bridge, 172 
New York City, Brooklyn bridge, 328, 

333, 350, 352 
Manhattan bridge, 327, 328, 333, 348, 

349, 352, 353, 355, 357 
Queensboro bridge, 261 
Riverside Drive viaduct, 287 
Williamburgh bridge, 327, 328, 333, 

347, 352, 353 

O 

Operating machinery of bascule bridges, 
124-157 

bearings for main pinion shaft, 152 
center lock mechanism, 144 

shafting, 149 
data for problem, 124 
friction on trunnions, 125 
frictional resistance, 127 
gear design, 129, 135 
gearing for center lock drive, 150 
hand brakes, 154 

operating mechanism, 143 
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Operating machinery, inertia of moving 
mass, 126 

keys for shaft, 143 
machinery layout, 133 
main trunnions, 152 
motor power for center lock, 145 
pin in crank, 149 
rack and main drive pinion, 128 
shafting, design of, 140 
starting force at rack circle, 126 
tangential force at rock circle, 128 
wind pressure, 125 

resistance, 127 
Operating machinery on vertical-lift 

bridges, 175 
Operation of swing span and bascule 

bridges, 1 
Operator's houses, 69, 175 
Oregon City, Ore., Williamette River 

bridge, 364, 368, 455 
Orford bridge, Connecticut River, 374a 
Ottawa, Inter-provincial bridge, 279 
Overhead counterweight type of bascule, 

24 

P 

Page bascule bridge piers, 37 
Peterson, I. C.,. comment on Chicago 

bascule, 21 
Pier considerations for swing span and 

bascule bridges, 2 
fenders, 71 

Piers for bascule bridges, 37, 63 
Pihlfeldt, T. G., 21 
Pin in crank of bascule bridge, i49 
Pinions for vertical-lift bridges, 178 
Pits, counterweight, for bascule bridges, 

. 64 
Pittsburgh, Allegheny River bridge, 202, 

211, 214 
Highland Park bridge, 270 
Monongahela bridge, 274, 275, 284 
Point bridge, 325 
Sewickley bridge, 274, 277, 285 

Portland, Ore., Hawthorne Avenue 
bridge, 163 

O. W. R. and N. Co/s bridge, 167 
Positive moment, in swing bridges, 186 
Positive shear, in swing bridges, 184 
Power for vertical-lift bridges, 175, 177 
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R 

Rack of bascule bridge, 128 
plates on a bascule bridge, 98 

Railway traffic, adaptability of bascule 

bridges to, 3 
Rainbow bridge, Niagara Falls, 374a 

Rail rolling lift, 30 
type of bascule, 17, 37, 38, 53, 59 

of vertical-lift span, 26, 53 
Rapp, F. A;, comment on cost of bascule 

and swing bridges, 7 
on duration of opening of draw bridges, 

2 
Reaction displacements in structural 

frames, 399 

Redundant forces in a fixed framed arch, 

408 

Residual frames, 409 
Rhine River bridge, Mainz, 374 

Rib arches, elastic influence lines for, 

446-455 
equations for, 440-445 

Rim-bearing swing bridges, 196-198 

Robinson, H. D., 355 

Roller-lift bascules, 15-19 
Rail type, 17 

Scherzer type, 15 

Rope-strand cables, 347 

Roumania, Danube River bridge at 

Cernavoda, 285 

Russia, Don River bridge, Rostoff, 172 

S 

Salamanca, N. Y., cantilever bridge, 281 

Sagamore bridge, Cape Cod Canal, 255c 

Sagamore Creek bridge, 255e 

San Francisco-Oakland Bay bridge, 

East Bay crossing, 288a 

Scherzer rolling bascule bridge, 1, 30, 

37, 38, 59 

Rolling Lift Bridge Company, 15 

Sciotoville bridge, 200, 201, 202-211, 232, 

234, 236, 237, 252-255 

Scotland, Forth bridge, 259, 260, 288 

Seattle, Eastlake Avenue bridge, 61 

Sectional counterweight type of bascule, 

13 
Selection of type of bascule bridges, 

29-38 

arrangement of piers, 37 

Selection of type of bascule bridges, 

relative merits, 38 

single vs. double leaf, 29-33 

through vs. deck spans, 33-37 
Sellwood, Ore., bridge, 374 

Semi-lift bascule spans, 25 

Shafting for bascule bridges, 140 
Shear in panels, of swing bridges, 188 

lock stresses on a bascule bridge, 89 

Shears, computation for, in cantilever 

bridges, 262-269 
Sheaves for vertical-lift bridges, 174 
Sheet pile vs. crib, 69 

Single-leaf bascule vs. double, 29-33 

Specifications for design of bascules, 57 
Spiral counterweight drums, 10 

Steel arch bridges, 359-374c 

braeed-rib arches, 300 

classification and types, 359 
erection, 364 

fixed or hingeless type, 362 

loadings, 363 

location of crown hinge, 372 

merits of types, 362 

shape of arch, 368 

single-hinge type, 362 

solid-rib arches, 360 
spandrel-braced arches, 361 

temperature stresses, 371 

three-hinged type, 362 

tied arches, 373 
two-hinged type, 362 

Steel, volume of, in bascule bridge, 106 
Steinman, D. B., on Continuous bridges, 

199-255 

on Suspension bridges, 289-358 

Strauss Bascule Bridge Company, 20, 

23, 24, 27 

type of bascule, 24-25, 30, 37, 38, 53, 

58 

vertical lift, 30 

Stresses, on bascule highway bridge, 76 

in continuous bridges, 218 

in a swing span, 182 

Stringer expansion bearings, 280 

Stringers and floor beams for bascule 

highway bridge, 79, 99 

Strobel Steel Construction Company, 

15, 17, 26 

Structural design of bascule highway 
bridge, 73-123 

anchor arm lateral system, 78 
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Structural design of bascule highway 

bridge, balancing span, 104 
brackets, 98 

buffer blocks, 78 

calculation of dead loads, 83 

center of gravity of entire leaf, 106 

columns on main girder, 100 

counterweight calculations, 104 

counterweights, 78 

dead-load stresses, 91 
in counterweight arm, 86 

description of problem, 73 

dimensions, 75 

floor slab, 99 

system 7u 

grillage braces, 103 
impact, 75 

impact stresses 02 
lateral system, 93 

live-load stress diagrams, 88 
loads, 75 

main trunnion girder, 101 

truss members, 81 
rack plates, 98 

shear at center, 76 

lock stresses, 89 

shoe, 98 

stresses, permissible, 76 

stringers, 99 

volume occupied by structural steel, 

106 

wind-load stresses, 92 

Structural frames, displacements in, 390- 

400 

laws of internal work in, 393-396 

Superstructure design of bascule bridges, 

38-58 
Suspension bridges, 289-35Sj 

1923-1943, 358 

anchorages, design of, 333 

bending moments in side spans, 338 

braced chain type, 321 

cable, 289-294 

diameter, calculation of, 346 
spinning of, 358d 

wire, calculation of, 346 
wrapping, 355 

calculations, of stresses in tower, 345 

for two-hinged type, 335 

catenary, 293 

chain construction, 327 

construction features, 324 

Suspension bridges, deflections due to 
elongation of cable, 296 

deformations, in unstiffened cable, 295 
of cable, 294 

under unsymmetrical loading, 296 
design of, 324-335 

dimensions, 335 

economic proportions, 326 
erection of, 347-358 

eyebar-chain type, erection of, 357 
floor system, erection of, 353, 35Sj 
footbridges, erection of, 349, 3585 
forces acting on tower, 344 

hingeless stiffening trusses, 315 
influence lines for stresses, 301 

initial erection adjustments, 358d 

moments in stiffening truss, for two- 

hinged type, 336 

movement of top of tower, 343 
parallel-wire cables, 328 

rope-strand cables, estimate of, 347 

saddles, 332 
shears in side spans, 340 

in stiffening truss, 338 

spinning of cables, 352 

stiffened, 297 -302 
straight backstays, 314 

stresses, 289 

in cable, for two-hinged type, 335 

in cables and towers, 295 

permissible unit, in concrete, 157a 
in reinforcing steel, 157a 

in structural steel, 157a 

in tower, calculation of, 345 

stringing the footbridge cables, 349, 

358b 

temperature stresses, 341 
in two-hinged trusses, 313 

three-hinged stiffening trusses, 302-306 

time required for erection, 357 

towers, design of, 332, 343 

erection of, 347, 358 

trusses, erection of, 353, 358j 

twisted-wire ropes, 330 

two-hinged stiffening trusses, 306-315 
types of, 324 

unstiffened, 294 

wind stresses in bottom chords, 342 
in tower, 345 

wire-rope cables, erection of, 356 

world's largest, features of, 35&y 

wrapping wire, calculation of, 347 
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Swing bridges, 180-198 

center bearing, 180-196 

combinations, 194 

compared with bascule, 1 

conditions of loading, 180 
dead load, bridge open, 194 

ends raised, 194 

general considerations, 180 

moments, 191, 194 
negative shear, 187, 193 

positive moment, 186 

shear in panel, 184 

reactions from Williot diagram, 194 

rim-bearing, 196-198 

general considerations, 196 

partial continuity, 197 

shear in panels, 188 
stresses in a swing span, 182 

with broken loads, 192 

with continuous loads, 193 

Symmetrical arch ribs, 454 

, spans, analysis of, 439 

T 

Tacoma, Wash., City Waterway bridge, 

168 

Temperature changes in beams and ribs, 

406 

displacements in structural frames, 399 

in rib arches, 450 

work due to, 403 

Three-hinged arch bridges, 375-392 

algebraic calculation of reactions, 378 

equilibrium polygons, 375 

fiber stresses in solid ribbed arch spans, 

385 

graphical analysis of stresses, 388 

influence lines for, 381 

stresses due to moving loads, 378 

wind stresses in spandrel-braced arch 

spans, 388 

Three-span continuous bridges, 237 

Through vs. deck span bascules, 33-37 

Towers of suspension bridges, 332 

of vertical-lift bridges, 172 

Traffic, safety to, over bascule bridges, 4 

Tremie seal, 66 

Triborough bridge, New York City, 1795 
Trunnion girder on bascule highway 

bridge, 101 

Trunnion-type bascules, 19 

heel-trunnion type, 25 

overhead-counterweight type, 24 

simple or Chicago type, 20-24 

Strauss type, 24-25 

Trunnions of bascule bridge, 152 

Truss members for a bascule highwi 
bridge, 82 

Two-hinged arches, analysis of, 483-48 

U 

Unsymmetrical spans, analysis of, 42 

439 

V 

Vertical-lift bridges, 158-179c 

adaptability of types, 161 
advantages, 158 

bearings and bushings, 178 

buffers, 174 

cantilever walks and roadways, 174 

classification, 160 

compared with bascule, 5 

counterweight cables and balancii 

chains, 174 

counterweights, 173 

deflection sheaves, 178 
descriptions, 163 

equalizers, 174 
gage, 175 

gates, 174 

gears, 178 

general design, 172 

guides and centering blocjcs, 173 

locking apparatus, 174 

machinery equipment, 177 

house, 175 

operating cables, 178 

drums, 178 
machinery, 175 

operator’s house, 175 

pinions, 178 

power equipment, 177 

required, 175 

sheaves, 174 

towers, 172 

truss of the lift span, 172 
Vertical-lift spans, recent, 179 
Volume of structural steel in bascu 

bridge, 106 
Von Babo, A*, 23 
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Waddell and Harrington bascule, 27 
Waddell Company, 163 
Waddell, J. A. L., 27, 158 
Watertight counterweight pits, 61, 64 
Williot diagram, 194 
Willman, E., 21 
Wind-load stresses on bascule bridges, 

47, 60, 92 

Work expressions for solid-web beams and 

cantilevers, 400-406 

Worthington, C., 362 

Wrapping wire, for suspension bridges, 

347 
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Young, H. E., 21 






